C＝commodore

Combuted GOTO

 まuch シs：

$$
120 \text { IF ST GOTG ET * } 10 \%
$$

Hormelly FET does not allow this kut Frat Temeletor of

 for Lresterde Foll


```
                                OIES STHTH% EFFGF:
```



```
                                intestar>>=日 シru& <=63g%
                                jume to gigTG routine wj try regult.
```



```
    TGF DLGE 三ENE #E #FOUE
    TEF INEIE
    IMF ETEE
```


EAEIC LOEGER

H．FOHE：	LIAF	まFこ日
	EMI	吅口
	IEF：	CDFE
	ISF：	CESF
	$I E \mathrm{E}$	DETE
	THF	CTES
O．FOME：	ISE：	CE11
	ISE：	C．E．C． 4
	IEF：	
	ITFF	CTHE

The following pheit magresimill lage the ganoe：
10G FOE I＝EEE TO 854
116 FEFII X
12 FOFE I ：x
130 HERT

32，216，214，F5，17E， 195
220 IHTA 52,17 ，20E $\because 32,184,204$ ，
3， $26,214,76,159,159$

TESt witra tro＋aliomins

$$
\begin{aligned}
& 16 \%=\text { Eも } \\
& \text { こG "TEET" }
\end{aligned}
$$

Many programmers like to indent their FOR-NEXT loops, to enhance readability. Up until now, this has only been possible by putting a colon (:) at the start of each line to be indented or spaced. For example:

This helps readability greatly, but you can go even further By substituting SHIFTED(graphic) characters instead of colons, and using \because (graphic space graphic) to blank a line, the listing woulc be typed in like this (note: any shifted character can be substituted for the $\%$):

This would list like this:

The same result is achieved, but the listing is cleaner. To use the screen editor, and retain this formatting, list the problem lines, put a $¥$ after the line\#, and edit as usual.

More PET ::ouirks:
Fïck Ellis, Torontc, Canaia.

Clear The Screen on your 8K. FET and type in the following lines:

POKE 59468,14
1ф0p1, $3: ?$ "cs" : X=63: $\mathrm{Y}=192$

Ge:í1,A\$:?:?"chededed"TaX-I)A\$:NeI
Li

$\left.\begin{array}{l}\left(\begin{array}{l}\text { cS }\end{array}=\text { Clear Screon }\right) \\ (\underline{c h}=\text { Cursor Hore }\end{array}\right)$

(Type line $\begin{gathered}\text { ñ } \\ 20 \\ 0\end{gathered}$ above as one continuous line).
($\underline{\text { cd }}=$ Cursor Down)

Surprise 1 Iine 20 is over 100 characters long. Pefore you try to run the above program, check that your listed version reads as follows. If not, correct it now by moving the cursor up and correctine the version you typed in to match the above:

10 OPE: 1,3 : PRINT"CS": $\mathrm{X}=63: \mathrm{Y}=192$
$2 \emptyset$ FOR $I=\emptyset$ TO X:
$I \$=R I G E T \$(S T R \$(I), 1):$
PRIITT"chrv" TAB(I) CHP\$(I+Y) "Cl=";:
GETH1, A\$:
PRINT:
FRIMT"chcdedicd"TAE(X-I) A\$:
MEXT I
except of course you wont see it spaced out as above.
Now type:
Fou
The program now displays a character-string on screen lines $1 \& 2$, in PEVESSE, and as it prints each character, reads it from the screen with the GET\#1 command, and reprints it in reverse onder below.

Try changing line $\# 10$ (yes, it's short enouch!), so that $\underline{Y}=6$ and PTTi: scain.

IF less Ieciミions

 decision mikirss stetement．The furdementel decision mabers in FET BHEIC are of course the IF－THEH Erad IF－GOTO Etetements．However，wher，arosrem berforms a lot of tests or comberisons，it ogn kecome rlasued with IF－THEN statements．Followins Ere \equiv tew techricule for melins decisions without＂IF＂．
 irmpt onto the soreen．Eome keve mes meed to be interoerted
 CLF，Etc．FlEa，ather kevs mistht mont to be used Es control＇keys for initisilizinst furnotions：keys Euch as FETUFH．FWG，ghitted FETURH，HOME．Etc．EElow is E routirie which eliminates eount less IFE＂．

```
55000 C= = "回#%%*+%<n: CLF<'HOME"/FWS"
```



```
    + EHEFEEEET` + EHE#G`EhEET`)
```



```
50ce E = G
ESGG FOE I = 1 TO LEN <Cक>
```



```
ESEG IF F# = T& THEH E=T : I=LEHECO%
5EGEG HENT
E5GTG IF E = G THEH FRINT Tw:GOTO 55G1E
```



```
550G0 ON F-10 GOTG E1000.E110G.E.200.E130G
```


 A revest－key goula also be ime lemented with：

```
SETHE IF E = G THEN FFINT TN::FOKES15,25S
                            GOTOFEG1G
```



```
1G IHFUT }%\mathrm{ , 'T'
```



```
Bag bita 16
10 IHFUUT * , 'r'
```



```
8日 GOTG16
```

Modifiestigns at the aboue routines \＆i．e．usins a
 Nrosrame Rerformins sorts．

3．IF $E=$ THEN $A=327 E 8$
IF $\mathrm{F}=1$ THEN $\mathrm{A}=1.259$
IF $E=2$ THEN $\bar{A}=556.2$
IF $E=3$ THEH $A=4 G \mathbb{E} E$
The above oould gontime forever debendiris on the nossikilities for E．Tr．the followins in dreot mode orn your FET：

Tyme：$E=2$
How tune：$? \mathrm{E}=\square$
FET will resly with g beceuse E does not extacl a．
Type：$\geqslant \mathrm{E}=2$
arid：$\because \mathrm{E} \boldsymbol{\mathrm { O }}$
In both oeses fet will return a＂－1＂becouse the statemerts シre true．This can be used most Eftioiehtly to revese tire EyouE IF－THEH 三tetements：

$$
\begin{aligned}
& \text { + (E=S) * 46日 * } \mathrm{F}
\end{aligned}
$$

Since orly are will be truse the bthere will be multirelied bey zerce arod adede The nesetive sish in front gharses the result beok to resitive．
 Nrosresin．

16 IWFIIT $\%$
$2 G$ IF \because THEH＂＂IIII EF：AH：H＂：ODTG 16
3日＂FIII HOT EEFHEH＂：GOTG 16

16 IHFUIT X

GE THIN HOT EEAHCH＂GOTG 1 G

Disabling the STOP key.

It's useful to be able to disable the STOP key, so that a program cannot be accidentally (or deliberately) stopped.
METHOD A is quick. Any cassette tape activity will reset the STOP key to its normal function, however.
METHOD A, Original ROM:
Disable the STOP key with POKE 537.136
Restore the STOP key with POKE 537,133
METHOD A, Upgrade ROM:
Disable the STOP key with POKE 144,49
Restore the STOP key with POKE 144,46
Method A also disconnects the computer's clocks (TI and TI\$). If you need these for timing in your program, you should use method B.
METHOD B is slightly more lengthy, but does not disturb the clocks. This method prohibits cassette tape activity.
METHOD B, Original ROM:
$100 \mathrm{R} \$=" 20>: ? ?: 9 ? ? 8=09024<88>6 "$
110 FOR I=1 TO LEN (R\$)/2
120 POKE $\mathrm{I}+900, \operatorname{ASC}(\operatorname{MID} \$(\mathrm{R} \$, I * 2-1)) * 16+$ ASC(MID $(R \$, I * 2))-816: N E X T I$
After the above has run:
Disable the STOP key with POKE 538,3
Restore the STOP key with FOKE 538,230
METHOD B, Upgrade ROM:
$100 \mathrm{RS}=$ "20>: ? ?: $9 ? ? 8=9 ; 004<31>6 "$
110 FOR I=1 TO $\operatorname{LEN}(\mathrm{R} \$) / 2$
120 POKE $\mathrm{I}+844, \operatorname{ASC}(\operatorname{MID} \$(R \$, I * 2-1)) * 16+$ ASC (MID\$(R\$,I*2))-816 : NEXT I
After the above has run: Disable the STOP key with POKE 144,77: POKE 145,3 Restore the STOP key with POKE 145,230 : POKE 144,46

How they work: Both methods change the interrupt program which takes care of the keyboard, cursor, clocks and the stop key.
Method A simply skips the clock update and the stop key test.
Method B builds a small program into the second cassette buffer which performs the clock update and stop key test, but then nullifies the result of this test.
The little program in method B is contained in $R \$$ in "pig hexadecimal" format. Machine language programmers would read this as: 20 EA FF (do clock update and stop key test) A9 FF 8D 9B 00 (cancel stop test result) 4 C 31 E6 (continue with keyboard service, etc.)

A Fast Sort. : Jim Butterfield, Toronto
When you need to sort a large array, sorting speed becomes important. Most simple sorts become very slow, since twice as many items will take four times as long to sort.

This fast sort is called "selective replacement"; it's classified as a tree type sort. It needs an index array, called $I(J)$ here, which is twice the size of the items to be sorted. Memory can be saved, if needed, by making it an integer type array:

100 DIM $I(200), \mathrm{N} \$(100), A \(100)
110 REM SIMPLE INPUT ROUTINE - WRITE YOUR OWN FOR FILES
120 INPUT "HOW MANI ITEMS"; N
130 FOR J=0 TO N-1
140 INPUT "NAME"; N\$ (J).
150 INPUT "ADDRESS";A\$(J)
160 REM INPUT OTHER DATA HERE IF DESIRED
170 NEXT J
200 REM SORT STARTS HERE - INITIAL SCAN FINDS FIRST NUMBER
$210 \mathrm{~B}=\mathrm{N}-1$: FOR J $=0 \mathrm{TO} \mathrm{B} \mathrm{:} \mathrm{I}(\mathrm{J})=\mathrm{J}: \mathrm{NEXT} \mathrm{J}$
220 FOR J=0 TO N*2-3 STEP 2
$230 \quad B=B+1: I 1=I(J): I 2=I(J+1)$
240 GOSUB 700 : REM PERFORM COMPARISON
250 I(B) $=\mathrm{I}$: NEXT J
300 REM MAIN LOOP - OUTPUT NEXT VALUE
$310 \mathrm{X}=\mathrm{X}-1$: $\mathrm{C=I}(\mathrm{~B})$: $\mathrm{IF} \mathrm{C}<0$ GOTO 800
320 REM OUTPUT ITEM TO SCREEN, PRINTER, OR FILE AS DESIRED
330 PRINT N\$ (C),A\$ (C)
$340 I(C)=X$
350 REM INNER LOOP TO FIND NEXT ITEM
$360 \mathrm{C}=\mathrm{C}=\mathrm{C} / 2: \mathrm{J}=\mathrm{C} \% * 2: \mathrm{C}=\mathrm{N}+\mathrm{C} \%: \mathrm{IF} \mathrm{C}>\mathrm{B}$ GOTO 300
370 ПIII J) : $\mathrm{I} 2=\mathrm{I}(\mathrm{J}+1)$
380 IF IIくO THEN I=I2 : GOTO 410
390 IF I2<0 THEN I=n : GOTO 410
400 GOSUB 700 : REM PERFORM COMPARISON
$410 \mathrm{I}(\mathrm{C})=\mathrm{I}$: GOTO 350
700 REM COMPARE TWO ITEMS - MODIFY TO FIT APPLICATION
710 I=I1 : IF $\mathrm{N} \$(\mathrm{I} 2)<\mathrm{N}$ (II) THEN I=I2
720 RETURN
800 STOP : REM END OF SORT
As you get tine soried item at ling 320. it's best to output it (or procees it) or tine spct. If some reason exists for completing the sort before going on to other processing. you'll find that index array $I(J)$ contains information about the proper order for the data.

FET EFT FIX

TシNES TGEt of Eomerville MEsEsohusette hes written the Trabsector with the followirs fix for sll FET screens...

Abstract

...I sust discouered thet the brisht spot on nomer-domin Ean be correoted very easily. The brishtress pot prouides a veriskle amourt of dimmins voltese to the tuse Most FETs have this turned ur to: maximum. The oereacitor thet stores this charse doesn't hald it until the electron suri cools down. The result is \exists moximum bristitriess sroot with no defleotion when FET is turned off. The cure is very Eimele! Fri eleotrolytio caresitor of 20 to 100 ufd at 3u to 5 wolte edded aroses the brishthese not laokins from the rear...esositive lean to the left side and hesetive to the ristht side of the three terminals in a rom . This will completely eliminate the denser at burning a hele in the Ecrebri. . . .

Fi Moulifiogtion

FET Guners Bresertly usins the Gentronies Migronrinter Fi will be raterested in the followines hardugre modifiestion sent in ber Rick Hoftmern af centronice in MissiEsense. It goncerne the extre line feeds thet ogedr when LISTins broseresis or trie Fi.

To Eufrates entrg lire fiedde ari the Fi:
F. Lovete IG $1-\mathrm{I}$
E. Lovete IL E-E

'Give Me All Your \$10s, \$20s and \$50s.'

'Looks Like a Good Program. Climb In, Everybody.'

```
Carmodore Business Machines, Inc.
3330 Scott Blvd.
Santa Clara, California
95050
Commodore/MOS
Valley Forge Corporate Center
950 Rittenhouse Rd.
Norristown, Pennsylvania
19401
Cormodore Business Machines Ltd.
3370 Pharmacy Ave.
Agincourt, Ontario
M1W 2K4
Cormodore Systems Division
360 Euston Rd.
London, England
NW1 3BL
Commodore Buramaschinen ImbH
Frankfurter Strasse 171-175
6 0 7 8 \text { New Isenburg}
West Germany
Commodore Japan Ltd.
Taiei-Denshi Building
8-14 Ikue I-Chomeasahi-Ku
Osaka 535, Japan
Cormodore Electronics (Hong Kong) Ittd.
watsons Estates
Block C, 1lth Floor
Hong Kong, Hong Kong
```

