 www.Commaodore.c

| 2 " \A)id 4 N .
May Not Reprint Without PRrmission

Cccommodore commnt o

COMMODORE PET™"

The Transactor ...

PET"is a registered Trademark of Commodore Inc. February 28, 1979

Enclosed in this month's "Transactor" is a copy of
Jim Butterfield's memory map. Generally its a listing of what
is contained in PET memory and where. Although other maps have
been published in previous bulletins, I found Jim's to be the
most comprehensive thus far. It lists nearly all of the sub-
routines that PET has in ROM and also the areas of RAM that
PET uses as registers and buffers. For those who haven't used
a memory map it's as easy as using a city road map. We'll
explore this simplicity with a few examples but first a brief
explanation of PET memory and the memory map.

ADDRESSING

Every memory location in your PET contains one byte of
information. In order for PET to get at these bytes it must
have a means of accessing them. Therefore each and every
memory location has its own individual address; all 65536 of
them. The microprocessor places these addresses on the address
buss which immediately enables one memory location to the data
buss. Bearing that in mind, one of two operations can happen
now. PET can either place a byte into that location (i.e. POKE)
or "look" at what's already there (i.e. PEEK). When performing
the first operation the microprocessor places a byte on the data
buss and transfers it along the buss and into the enabled
memory location.

In the second operation, the information or byte in the
enabled location is transferred onto the data buss and along

Y4

Commodore Systems, 3370 Pharmacy Avenue, Agincourt, Ont. (416-499-4292)

C‘ www.Commodore.ca
May Not Reprint Without Permission

, www Commodore ca

May Not Reprint ¥ t Perr

-2 -

the data buss back to the microprocessor. This location is not
"emptied" but rather only a duplicate or copy of the information
is transferred. Once either of these operations is complete

the microprocessor then places a new address on the address buss
and another location is enabled. This process repeats thousands
of times every second, however these operations aren't possible
on all memory locations, but I'll explain this later.

The microprocessor has control of 99.9% of the addresses
being placed on the address buss. That extra 0.1% control was
left for the user and can be obtained through use of the PEEK,
POKE and SYS commands. When executing these commands the user
must choose an address. This address will be one of the 65,5%6
memory locations (i.e. O to 65535). This is where the memory
map enters the picture. The memory map may well be your most
powerful tool for choosing addresses. If you look at the map
you'll see that all of the addresses are listed in ascending
order down the left hand side; first in hexadecimal and then in
decimal. (See section on hexadecimal and binary for explanation
of this conversion) the decimal address is the one you use when
executing the above 3 BASIC commands. To the right are the
descriptions of what you can expect to find at the corresponding
addresses. I1f we then PEEK these addresses we are returned
the actual bytes that are in those particular memory locations.
For example, let's say during a program we hit the STOP key and
got:

BREAK IN 600

READY.

4]
PET gets '600' from a storage register at addresses 138 and 13%9.
We could also PEEK these locations and find that 600 is indeed
stored in 138, 139. However it is not stored as a six, a zero
and a zero. Instead it is stored as the decimal conversion of

300/

, www Commodore ca

May Not Reprint ¥ t Perr

-3 -
the line numbers represenfation in hexadecimal. All information

of this type is returned in this manner. Now that we know what
the memory map will help us do let's cover some of the rules.

RAM and ROM

We all go through life with basically 3 types of memory:

1. MEMORY PRESENT: This memory we use to remember things like
what street we're driving on or our present location.

2. MEMORY PERMANENT: Things like our names and fire is hot we
never forget.

3. MEMORY PAST: Recent occurrences and not so recent such as
things we did 10 or 12 years ago.

In the PET there are only two:

1. RAM Random Access Memory: This type of storage is used for
our programs and things that change such as the clock and
previous line number.

2. ROM Read Only Memory: This is PET's permanent memory. In
ROM are the addition routines, clock updating routines and
loading routines to name a few. These functions would have
to programmed into PET on each power up if they weren't
permanently 'burnt in'.

The third type, memory past, is instantly 'forgotten' on
power down. The only way to recall it is to first save it on
tape, disc, etc.

Recall earlier I mentioned that POKE and PEEK aren't
possible on all memory locations for several reasons:

A. DNot all PET memory locations actually exist. On the memory
map, locations 1024 to 32767 is the 'available RAM including
expansion'. If you have a PET with 8K, simple arithmetic

4eoo/

, www Commodore ca

May Not Reprint ¥ t Perr

-4 -

shows that 3/4 of the available RAM space is non-existent.
If you decide to expand your system, PET will 'fit' the
added RAM into this area. However POKing or PEEKing this

space (i.e. 8192 to 32767) will return invalid results on
8K PETs.

B. The same concept applies to locations 36864 to 49151. This
is the available ROM expansion area.

C. Next on the memory map is the Microsoft BASIC area; loca-
tions 49152 to 57463. This is the memory that recognizes
and performs your commands. Changing the contents of these
locations is impossible because it is Read Only Memory and
is actually 'burnt in' at the factory. Therefore, POKing
these locations will simply do nothing. Also, Microsoft
requested that these locations return zeros if PEEKed (for
copyright reasons).

With these 3 rules and your memory map you are now equipped
to explore capabilities of your PET that you probably never
thought possible. Before we try some examples let's go into one
more important occurrence that may have had you scratching your
head ever since that first power up.

MISSING MEMORY?

When you turn on your 8K (where K = 1024) PET, the first
thing it tells you is 7167 BYTES FREE; a reduction of almost 12%.

Q. Where did the missing 1024 bytes go?

A. It's still there...right below the available RAM space
(notice it starts at location 1024). PET uses this memory
to do some very useful operations for you which you can
find and access by looking them up on the memory map.

Q. But why not do this in ROM space?

A. PET needs RAM type memory to store this data because it is
always changing. The information in this "low" end of memory
is actually produced by routines found in ROM.

S5ees/

, www Commodore ca

-5 -

Take for example the built-in clock. The clock or time
is stored in locations 512, 513 and 514 of RAM. However the
data comes from a routine found in ROM at location F736y,.. .
The time is of course always changing, therefore it must be
stored in RAM. But because it is in RAlM, you may also change
it; either by setting TI or TI$ or you can POKE the above 3

locations.

Try it.

~ Now let's try some examples.

1.

Location 226 (OOE2 in HEX) holds the position
of the cursor on the line. Try these:

POKE 226,20: ?"PRINTS AT NEXT SPACE
?21123456789" ; : ?PEEK(226)

Location 245 (OOF5 in HEX) stores the line
the cursor is presently on (O to 24). POKing
this location will move the cursor to the
specified line after a display execution.

For example try:

?"A": POKE 245,10:2"B":?"C"
POKE 245,21-1:?"cu":POKE 226,20: ?"PRINTS HERE"

The above will move the cursor to line 20 (21-1),
print a 'cursor up' on line 21 and display your
message starting at column 21, line 20.

While experimenting with out-of-range values

I obtained some rather interesting results. Try
POKing location 245 with a number greater than 24,
say 40 or 60, and hit the cursor up/down key a
number of times. Also, experiment with unusual
numbers in location 226 such as:

POKE 226,100:7"123456789" 6./

May Not Reprint ¥ t Perr

, www Commodore ca

May Not Reprint ¥ t Perr

-6 -

Location 526 is the reverse field flag. POKing
this address with a non-zero value will execute
the following same line print statements in RVS
field. Once finished, PET resets 526 to zero.
Try this:

POKE 526, 1:7"123":?"456"

now INST a semi-colon between 3" and the colon
(i.e. eee23";:2"4,,.) and re-execute.

Notice below the RVS field flag is location 525;
the number of characters in the keyboard buffer.
Above the RVS flag is the buffer itself at
locations 527 through 53%6. Although this
designates 10 buffer locations, there are actually
only 9. The tenth (536) is for some reason a
"dead" location. During program execution,

the operating system scans the keyboard every 60th
of a second. If keys are typed say during a
'"FOR-NEXT' loop, they are stored in the keyboard
buffer until the program encounters a GET or an
INPUT.. PET then 'draws out' the contents of

the buffer and implements them according to the
command involved (GET or INPUT). However, if

more than 9 keys are typed during the loop,

PET erases the entire contents of the buffer and
continues to fill the buffer with the 10th
character as if it were the first, and so on
("modulo 10").

*or after a BREAK, READY.

«e?/

, www Commodore ca

May Not Reprint ¥ t Perr

-7 =

In the command mode (i.e. when you're operating PET
directly all typed keys go first into the keyboard buffer
and then into screen memory or VIDEO RAM. However you may
also load the buffer under program control by POKing the
ASCII representations of the characters into sequential loca-
tions of the buffer. You must also increment by 1 the contents
of 525 each time another character is POKed in, but remember —-
not past 9. Page 6 of "Transactor" #2 contains a table of all
the values for characters and commands. "Transactor" #1,
page 12 lists some extras such as cursor controls and the
RETURN key (13). Try the following endless loop. 145 is a
cursor up

POKE 525,4:POKES27,145: POKES28,145: POKES29,145: POKE530,13%

Some other interesting items are:

POKES9409,52 -~ Blanks screen
POKES9409,61 - Screen back on
POKE59411,53 - Turns cassette motor on
POKES9411,61 -~ Turns motor off
POKES9468,14 - Lower case mode
POKES9468,12 - Graphics mode

POKE5%27,136 - Disables STOP key and clock

If anyone knows of or discovers any peculiarities by
"POKing" around, please send them in. When I receive enough of
them a handy dandy 'PETRIX' card will be included in a future

"Transactor" bulletin.

THE SYStem COMMAND

On the last three pages of the memory map are listings
of the subroutines stored in PET ROM that perform your commands
and programs. These subroutines are stored as machine language.

Y4

, www Commodore ca

May Not Reprint ¥ t Perr

-8 -

When a SYS command is executed PET jumps to the specified
decimal address and continues from there in machine language.
Take for example the Machine Language Monitor program. This
is a machine language program and is initialized by a SYS
command stored as a BASIC program line. IOAD and RUN your
M.L.M. then type 'X' and hit 'RETURN' to exit to BASIC. Now
list. What you'll see is:

10 SYS (1039)

Location 1039 is the address to which PET will Jump and
also the address at which the first maching language instruction
is stored. (A listing of all of the M.L.M. instructions is in
"Transactor" #5, pages S5A and 5B) . When this BASIC line is
executed PET operates in machine code beginning with address 1039.

The SYS command does not require brackets around the
specified address.

Since PET hag its subroutines stored in machine language
you can use the SYS command to access and execute them. However
you may come up with some rather peculiar if not disastrous
results. When jumping into ROM you may find yourself in the
middle ofasubroutine or at the beginning of a subroutine belonging
to a major function routine. Often PET will 'hang-up' or crash
and you will be forced to power down to resume normal operation.
To demonstrate jumping into the middle of a routine, try the
following examples:

1. SYsSs52764 (CELC)
2. B8YSe2498 (Fa422)
3. POKE52%,1:5YS62498 (Fu22)
4. 8YSe2u46% (F3FF)
5. SYsSeu824 (FD48)

.9/

, www Commodore ca

May Not Reprint ¥ t Perr

-9 -

The numbers on the right are the addresses df the above sub-
routines in hexadecimal. Compare them to the memory map,
especially for e.g. #l. Also take a look at 523.

The following are examples of valid locations which'you
can use with the SYS command to access useful routines, however
these routines are already accessible through BASIC.

1. 8YSe2651 (F346)
2. BY562278 (F4BB)
3. SYS63134 (F69E)

Example #3% will perform a '"SAVE' but will not produce a
tape header.

Experiment with your memory map. Hex to decimal
conversions can be obtained using the method following this
article.

SUMMARY

This has been merely 'a scratch on the surface' of the
extremely complex inner workings of PET. Do not be afraid to
experiment with the POKE and SYS commands. There is absolutely
nothing you can do to harm PET from the keyboard that turning
power off and on won't fix. Also do some PEEKing around
especially in low end memory. One good way is to write a small
monitor program:

10?"c¢"PEEK(516) :GOTO 10

The above will monitor the 'SHIFT' key. Try running it
and depress 'SHIFT'. Compare the map.

ee 10/

g WWW. Commodore ca

May Not Reprint Without Permission

- 10 -

When POKing or SYSing to random addresses, remember the
address you choose. Often PET will do something which may erase
the address from the screen (e.g. SYS64840).

The addresses that have been listed here are only a few of
many that are already known and only a minute percentage of the
ones not known. Probe around and send in any discoveries, useful,
peculiar or otherwise. They will be collected together and
published in a future "Transactor" bulletin.

Karl J.

, www Commodore ca

May Not Reprint ¥ t Perr

- 11 -

BINARY to HEXADECIMAL to DECIMAL

We all know how to count in base 10 or decimal. We start

at zero and count one...two...three and so on to nine. Once nine
is reached we've run out of numbers, that is single digit numbers.
So in order to continue we must now make use of two digits; we
place a "1" in the 10's column and reset the 1's column back to
zero. Continuing from here, sooner or later we would reach 99.
Adding "1" would generate a carry into the 10's column and this
in turn will generate a carry into the 100's columns to zeros.

This explanation of base 10 was given simply to demonstrate
how we actually do our counting that we just do naturally.
Binary is much simpler than decimal because there are only two
numbers to worry about; zero (0) and one (1).

Bése 2 number set Base 10 number set
O,l 0,19235:4’ 536979829

With a little practise you'll see that counting in Binary
is Jjust as easy as counting in decimal.

Binary is base 2 ('Bi') just as decimal is base 10 ('Deci')
just as hexadecimal is base 16 ('Hexadeci') but I'll talk about
the "HEX" numbering system later.

In base 10 we are 'allowed' to count up to 9 before carrying
the "1" into the next column. Generally in any base we count
to one less than the base # and generate a carry into the next
column. In base 2 we count up to "1" and do our carry. dJust
as we cannot fit a "10" base ten into one column we cannot fit
a "2" base two into one column. The base # is most important.
Let's illustrate by comparison.

eessl2/

, www.Commodore.c

.l May Not Reprint Without Permission
- 12 -

NUMBER REPRESENTATION IN:

NUMBER BASE 2 BASE 10
0 0000 0000
1 0001 0001
2 0010 0002
3 0011 0003
4 0100 0004
5 0101 0005
6 0110 0006
7 0111 0007
8 1000 0008
9 1001 0009
10 1010 0010
11 1011 0011

Notice how in binary, on every multiplé of 2 a carry is
generated whereas in decimal the carry is generated upon
multiples of 10.

Let's now define the columns of the two number bases. In
base 10 we have the 1's column, 10's column, 100's column and
so on. Each column is the previous column times ten; 1 = 0.1 x
10, 10 = 1 x 10, 100 = 10 x 10 and so on. We can also represent
these using exponents; 1 = 10, 10 = 10, 100 = 10 (10 'squared'),
1000 = 10° (10 'cubed'), and so on. In base two each column is
the previous column times two; we have the 1's column, 2's
column, 4's column, 8's, 1l6's, 32's and on. Using exponent
representation, 1 = 2° y 2 = 2 y 4 = o* y 8 = 2* s 16 = ! ’

32 = of , and so on. Now let's represent some numbers of the
two bases using their column breakdown:

eeol3/

g WWW. Commodore ca

May Not Reprint Without Permission

- 13 -

2page to= 0002 = 0x1000 + 0=100 + O=10 + 2x1
2bose 2 = 0010 = 0Ox8 + 0x4 + 1%2 + 01
710 = 0007 = 0x1000 + 0=100 + 0=10 + 721
72 = 0111 = 0Ox8 7+ I»4 + 122 + =]
12p = 0012 = 0»1000 + 0100 + 1x10 + 2x1
12, = 1100 = =8 + 1%4 + 0x2 + 0Ox1

The same three examples using exponent representation will be:

s 2 1)
2 = 0002 0x10 + 0x10 + Ox10 + 2x10

2 = 0010 = 0%2% + ox2® + 1x2' + ox2°

7 = 0007 = 0%x10® + Ox10° + 0x10 + 7x10°

7 = 0111 = 0%2® + 1x2® + 1x2' + 1x2°

12 = 0012 = 0x10% + 0x10% + 1x10'+ 2x10°

12 = 1100 = 1%2® + 1x2% + ox2' + ox2°

2° = 1 2t - 16
2' = 2 7 =32
2t = 4 2% = 64
2 = 8 2" = 128

Use this table as a reference for the following exercises.

www.Commodore.c

May Not Reprint Without Permission

-14-

Try the following example on representing decimal numbers in binary by placing
al or a 0 in the correct column position.

NUMBER 2° 22 2’
4 = _— — . —
12 = _ _ _ _
B = _ - - -
% = _ _ _ _
15 =

What must be done to represent the number 16 in binarv. If you said " A
fifth digit must be used at the leftmost position ", then you're absolutely
right. Except for one thing: digit is a word we use in decimal. In binary
we use the word BIT derived from Binary digIT. By implementing a fifth bit
it is now possible to represent numbers greater than 16 but only up to 31. Once
past 31, a sixth bit position must be used. Continue with the exercise. Notice
the leftmost column values have changed. .

NUMBER 25 " 2 2 2
6 = _ _ _ _ _ -
21 = _ _ _ _ _ -
28 = _ _ _ _ — -
32 = _ _ _ _ _ _
51 = _ _ _ _ _ _
62 = _ _ _ _ _ -
63 =

ve.15/

- 15 - , www Commodore ca
’ May Not Reprint ¥ t Permiss

6 b W?at would be the highest posible number you could represent using only
ts!?

2 2¢ 7 2 2 2 2 2
? - 11 1 11 1
7 bits?
1 = 1 1 1 1 1 1 1
8bits?
7 =1 1 1 1 1 1 1 1

If your answers were 63, 127 and 255, you're correct. Notice how these
values are 1 less than the value of the next bit position to the left. (28 =256)

The BYTE

Every memory location in PET is actually one byte. A byte
consists of 8 bits. In computer electronics the binary number
system is used. This way we can use a high voltage to represent
a "1" and a low voltage to represent a "O". Can you imagine the
circuitry that would be required to operate a computer in decimal
or base 10?7 Ten unique voltages would have to be used to
represent each of the ten digits. Then a separate computer would
probably be required to distingusih between them all. By using
binary PET must only distinguish between two voltages. ©Since a
5 volt supply is used for the logic circuitry, anything over 2.4
volts is considered high cor a "1" and anything under is considered
low or a "O". These voltages are typically 4.8 volts and 0.2 volts,
respectively. Each bit of every byte in memory holds one of these
voltages. With 8 bits in each byte, 256 combinations can be
obtained (0-255) as you can see from the above exercise. If you
look at the table on page 6, "Transactor #2, you'll see that all
the keys can be encoded into one of these combinations. PET
uses some combinations to represent the commands so that they
only take up one byte in memory. PET also uses some of these
combinations twice to represent graphics as you'll see by comparing

the table to page 12 of "Transactor" #1. PET ROM routines

distinguish between commands and graphics.
_ .16/

, www Commodore ca

May Not Reprint ¥ t Perr

- 16 -

Try POKing a RAM location, say 6000, with a number greater
than 255, say 256. A ?ILLEGAL QUANTITY ERROR will be returned
because more than 8 bits are required to represent 256 in binary.

256 = 1 0 O
Essentially, 256 won't 'fit' into a single byte.
Try PEEKing a non-existent memory location, say 10,000:
?PEEK(10000)
A 255 will be returned. A unconnected or open line is considered

high by PET. Since the byte is not really there, the data buss

lines will be open and read as high or all 1's by the micro-
processor.

Hexadecimal or "HEX"

Hexadecimal means base 16. This means we can count up to
15 before generating a carry. However we can't use the numbers
10, 11, 12, 13, 14 and 15; these take up two columns. We need
to represent these numbers using a single character. Therefore
we use the first 6 letters of the alphabet.

Hexadecimal number set

O‘) l’ 2’ 5, 4? 5? 6’ 7? 8’ 9‘) ‘A‘) B, C3 D? E’ F

Ay = 10, D =13,
B 6 = llm E 114 = l“’\o
Ciw =12, Fow = l5w

«e 17/

, www Commodore ca

May Not Reprint ¥ t Permission
...]_'7...

When counting in HEX we generate our carry upon 16:

14‘«) = E 16
¢)
15 - i) th
| i
16 10 = lO e

Recall in binary, 4 bits will yield a maximum of 15

15, = 1111, = F,

Now since a byte has 8 bits, we can split it up into two fields

of our and then represent it as two hexadecimal characters.

4, = 0000 0100, = O&4

12, = 0000 1100, = OC ,

255, = 1111 1111, = FF
| ‘ | |

HEX Addresses

We won't discuss how a byte recognizes its own address; this
is buried deep inside the integrated electronics of the IC chips.
The address buss consists of 16 lines, O through 15. PET needs
this many lines to address all 65,536 bytes. Because location O
(zero) is included, the maximum address obtainable is 65,535 in
decimal. When this location is addressed, all 16 lines of the
address buss will have ahigh voltage. In other words Iogic 1.

2\5 2:4 2rs 291’. 1 2 10 2 Q 23 27 26 25‘ 24 2‘5 27. 2! 20
65,5% =1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
= 2 R 0 2 2% 2t 2% DT P T 2 e e 2 2

On PET = 2415 + 2¢ 14+... 240 Try it.

ee..18/

< www.Commodore.c

May Not Reprint Without Permission

- 18 -

If we now split the 16 columns into four fields of four we can
also represent each field using a hexadecimal character thus
converting decimal to hexadecimal as Jim has on the left of the
Memory map.

il

65,535, = 1111 1111 1111 1111 ,,

e

Recall e.g. #1 of the SYS command (pg.8)

52764, 1100 1110 0001 1100 ., ,

CELC ,

[}

When operating PET, the decimal addresses are used for PEEK,
POKE and SYS. Therefore you probably won't find yourself
converting from decimal to HEX when using BASIC. However you
will need to convert from HEX to decimal when you want to SYS
to those ROM subroutines.

CE1C,, = 1100 1110 0001 1100
U L L - L S L
ON PET = 2t15+ 2t 14 + 2t11 + 2110 + 219 + 2t 4 + 2t 3 + 242
= 52764,
F422, = 1111 0100 0010 0010
= 2% ¢ 2™ £ 2% 42 42" 4 2% 42!
anET:2915+2914+2115+2t12+2s10+2r5+2f1

I}

62498 ,
Try verifying some of the other examples using the same

conversion method. With a little practice HEX conversions will be
as easy as counting to 'F'.

...19/

g www.Commodore.

May Not Reprint Without Permission

- 19 -

CAMERA FAIR:

The T. Eaton Company of Canada is holding their 2nd Annual
Camera Fair; a camera clinic for photography enthusiasts.
Representatives of 10 camera manufacturers will be there to
answer questions and Eaton's has invited Commodore to participate
with a PET program clinic. ZKarl Hildon will be there to demons-
trate the new big keyboard PET, answer programming questions
and give print-outs of your personal computerized biorhythm.

Some club programs will be available for copying (limit 1 per
customer).

PLACE: EATON CENTRE, Downtown Toronto (Dundas & Yonge)

Show dates are: April 5th - 11:00 a.m. - 3:00 p.m.
April 6th - 5:00 p.m. - 8:00 p.m.
April 7th - 10:00 a.m. - 5:00 p.m.

Hope to see you there.l

FOR YOUR INFORMATION:

The subscription form for the 1979 "TRANSACTOR" bulletin
will be in next month's issue....Don't miss it!

Karl J.

« www.Commodore.c

- = Withatit Parm A0
May Not Reprint Without Permission

COMMEACTAL CON.USION, Jim Butterfield
or, roronto
"Where'd the pe-ry go”"

F¥l is certal-ly the greatest business tool since
electric pe-cil sharperers, ard printers arnd Tloppy
disks will herald ar explosio- of commercial apprlications.

Bagsic seems like the ideal language Tor a small
busi~ess system « but it has a hidden "gotcha" that
will give you problems :7 vou dor't know how to hardle
it. T call it, "the missirg pennies problem", ard 't's
common to almost all Basic implementations.

Crank up your IET and try this: PRINT 2.23 - 2.18 -- it'sg
a 8imple busi-ess calculatio- and the answer has gotta be
a rickel, r'ght”® So how come PF" says .04999999937

Think 07 the mess this could cause ‘i you're prirting

out ‘eat columns o! dollar-and-cent results ‘hink o

the problems if you arrange to print the [irst two places
behind the decimal point: you'll pri~t .04 ‘-1stead of .05l
‘hi "k o” what the auditor will say wher. he fénds that the
totals do-'t add up correctlyl

Ir a meme t we'll discuss how t0 get rid of this problem.
First, though, let's see how it happens.

1T holds umbers in .Jloati-g binary. . hat means certai«
fract’o-s don't work out eve-ly. Just as, in decimal,
o-e third works out to .333333 .., ar e dless rumber,

IT”. sees i‘ract 08 like .10 or .6. as endless repeat’ g
‘ractiors - in binary. o 7t the .ractio~ ir memory,

it must trim it ihus, mary ‘ract'ons such as .37 are
adjusted slightly bdTore storage.

‘ry th's program: it will tell you how rumbers are stored
‘ngide TE s

100 T TU T AMOUT";A:B=T i (A)1C=A=-B: A "="1B;" ";

110 70 :J=1T010:C=C+10:D=T""7(C)1C=C-Ds?D; s T-C>0 'HE | "EX"J
120 ?7:G070100

If you try e~tering numbers in our above example, 2.23 ard

2.1¢, you'll see how [T’ stores them - and why the problems
happer.

How to Tix the problem. Easy. Charge all -umbers to
pernies - which elimi-ates fractions - and your troubles
disappear. For example:

340 IIFUIAMOUNT"3A : A=I " (A*100+.5) converts A to peries;
760 F<I['i7 A/100 outputs pennies i dollars-and-cents

www.Commaodore.
May Not Reprint ¥

[

1EE DIMCCS, DO1ZEs
118 PRINT"ONTHA

PRINTY 1 BUTTERFIELD"

111 INFHI“INm1FHl1IHNH" i IFHﬁFf¢$1=r5uﬂTn 126
112 PRINT"ONTARID INCOME TRA FOR 137a"

113 PRINTUFOLLOM YOUR FORM: THIS PROGRAM WILL"
114 PRINTVYHELF WITH THE ARITHMETIC.

115 FRINT"FOR “MIL- ITEMS, JUST FRESS “RETURNH-. ©
1ie FPRINT"FOR -MULTIFLES ENTRIES. ENTER HAMOUNT®
117 FPRINTYANMD FREZS "+ INSTEAD OF “RETURM- TO"
1l PRINT"SIGHAL MORE ITEMS TO Ccome ©

128 DEFFHSﬁMW=(M+:—HE£fH~QW3#2

128 DEFFMHECM»=CM+B+ABS CM-ED 3,7

25 DEFFHPQM;—lHTuH%F.luu+.43;

S8 DEFFHI CMO=INTOM+108+, S

B Pl=1 =1 F=1 0 G05UBZBea

A 1E="IHCOME FROM EMPLOYMENT" :GOSUBZIHG
3 Pl et Ew.I~FN:“FHF“IﬁW Fewl: I$="LESL
PR T D aET EMPL EHFNIHUL" G,gm?ﬁ-TZ
- I%m“rt“b FROM CDM CORP GOSUBZ LGS
=1 D= IHTEREST & TRV THCM™ . lgsl :
CIEsORNALTAN CARFPTITAL GRINS" Lﬂlﬁﬂh .lﬁn
’-'"l‘IT“"HLL OTHER THCOME" @ GOSUEZLEE

L T e TOTHL. THCOME " GOSUBZ 266

3 I Pd=2 GOSUBZEEE GOSUBZ 206

SOPREINTYLESS " =2 00l a=0: I$="CFF CONTRIBUTIONS" (GOS0IEBZ 16
4 I& “HIF FREMIUMS" | GOSUEZL8E

= COEDAMCT DO G0SLIB S L6

LCHCr=EO=1 Pl I$e #TOT DEDUCTIONS : ' GOSUEZ15
SHGERR T == THCOME" | DEEa=1 GOSUBZ200

FRINT E;
D= AGE EXEMPT GOSUBZI0E I$="MARRIED EXEMPT" : GOSUE
338 I$="DEFNDT CHILD EXMPTY:GOSUBZ18@: I$="0THEF EXMFT" GOSUBZ1EG
EAE T=0O0D DiAZ=] Ol P T4t #TOTAL EMENPTH" GOSUESLSH

R LB TE=" wrl TNE sisen’ - GOSLUEZZ00

TESUPEDICAL EXFENSES" GOSHEZLA0

OB B - L FmoHoIM LJLI_U&-.. 1568
A DE=PLLOWABLE MEDR EXP" GOSUBZ20E
b ﬁ[:iF*"I:IP-lF:iF:ITFIE:LE:I CAORFT TS I GOSLIRZ 00 T=1000 20D d=R
ts f0d s Tesf P T Db e DT HMDARD DEDCT M GUOSUE DL SE
0 S T N P ST O G D 5 DR W MR DA SV IR W S N |
IF1: 1H AEMDEF= "L, D & D0 DEDUCTION" GOSUBZL S8

FLl. DTHER: L LLII BT TOME " GOELIE SR8
L e TR Sk TOTARL DEDLCT TOHS
A Tafpe=tt skt I'H,x B THUCORE s G0EL XIs
~=ITHE"|JFF' IWTY MO TARS PRYABLEY (DOS =0 GOTOL

HH[L" & '—-HTHE“HFF IWNT"YOL MAY USE THS TRELE . 0OF

fioe] R
L

Hl e] 5
FRINT

-
Do R

G fo b fo B b BB P b]
Pl ') e ?"- ;
]

N
Somd I B DB B D 00 - OB

R T
S

§,

iy
oo

CAT Hil F"T": l ZE
DATALIe33. 265,
DRTALBe4T, 1!

8 DATATEHRS,
500 DATA456E

AR AN
LN

-
it

LA s anancn O

AT EMPENS T GOSLIES] S

PIFTTONS " C=2 TE="BRSI0 ESEMPTIONT (F=1 I=24Z2E%5 GOSUEDLSE

Ca

Vithout Permission

www Commodore ca
t Per

May No

DRATAZG42, 425, 15

DRTALSZL. 167,47

CATHTSL, 46, 168

DATH-1E13, 8. &

DHTAH~1

hLHb.-. RN ¥ Rt e N e T RN ot &

YH1EE FRINTYON FIRST % < "TAY 1S5 iy

=UTITEL. FED THCM THEY GOSUESLSS

= P tFHF'h'H'-‘ [l d el

THFNF”“j LE=CDIY THS CREDIT GOSUESZLSH

FoIFE=" EASID FEDERAL TR GOSURZZA0 FRINT . Died=1
SGOTOa

‘”ILMTHtﬂl =tEd GOTOP GG

“‘;F-:—

L IE=TGENERAL TAE REDUCTTONY [GOSOEZ1 58
FoR LHILDFtN“ GUSUBZ1E3
o 1 :F$“1:I$=“TGTHL FEbUC[NHf“

LR L=t ARFEDERAL TR : (30
'“4 IF="FORELGH T PRIDY GOSUBSLAG
P=1 0 I$="FORGH [NCOME" : GOSUBZ166 K
5 LK D PRINTEALBE: "5 s
[o PEDLICT - D=FHES € - G0 .
FRINT®. . AMOTHER COLMTRY. % GOTOPSE
I=0¢30 : 1$="FEDERAL TAX PHVH&LE":PHIHT:GUSUBQ“”*'
we PEad T=FNFIDGES s I$="BASIC DNTARID TAX" : GOSUE
J_m BORERD TE S L0 ToL e
16 B LT == TRR O FROPERTY THi=="
: |x~':nrnt RENT FRYMEMTS" GUSUBSLEE : TF I=0050T 0L
ez L=FHEY 15 T2l OF REMT :G0GUEZ26e
“'i;—x Fad: I5="FROFERTY TRAES&COLLG RES® : GOSLEZLE6
e MEFNE L s ODTUPRNGY COSTH" GUSUEZZ08 . FRINT

R ST KO a=l Tmd D= YO0
:.|htL1T"-wmﬂw ‘

CREDLT

GOSUERZ1I5

L4:1 H‘-I-HI':.'-—-
: =URPOLITICAL THS CREDTT: hUtUF“lUU
'I¥""+THTHL HHT TH& LEE[IT:“ [

”HHthIH THH FHY HbLE" X
F=UTOTAL PAY HELE“'I bDJUEv;UB FRINT
NECH Nl LR L Y S II""TH” DEMICTED PEP SLIPS" (GOSUBEZ1G8
IT#="0ONTARIO TH CREDITS: ~P' 3 S

T ERFAYMENTS S TNSTHLMERTS " »h :
1 TetZloo s D= TOTHL, CREDI TS GOTUBZZR0 PREINT
l;au IF="BALANCE DUE" I=Kk~1:IFI<8THENI#="FEFUNL: " I=RES

m

DO

1 L=ENPC I PRINTON RMG $0; 10106 “TAK_AT": P33 15 $

- & P CREDITSY DGOSUBEES

eprint ¥

GDSUBRZLEG

BT TR e W

;:I«iki‘ 1$="TGTHL CREQITSY (G0SUE

(S

T MDA 6 1 &

WWW. Commodore ca

May Not Reprint Without Pe

GOSLESZEE PRINT
E ML

FRINT PRINT ===PAGE": GOTOZE26
FRINT :PRINT " ===SCHEDULE "
FRINTRL: "OF FETURMsss RETLIRH
T=0 GETEF PRINTIS: v v
wEETCPRINT

S SEGOTORL4E

RN GO TO2 14

o T T Y g I
BTORD=Z0 3 ANDYE 5 THENY Sl EFTEOv8, LENCYE0-10 CPRINTY "5 GOTO2147

m e UTHEMNFREIMNTY Y IRl O FOR T L TOLEN Y - PRINTY Y CHEST GOTOZLLs

AN T =8 THENPRINT "

ETHEM =MD O el Oy s o PRINT GOTOZLSE

=
o
—
I
EIi
i
-
f
L3

i
¥

ii
[ax!

plsl EHC TEITOSN PRIMNTY " MEST
IR0 “. Ls"“ o ‘ HE..”F F il ” ; 1 n.; : El‘...””.;,.
: LT L..Hhi DR 2 T

,.4 T% MR TNTE#;

TF 10 THENFR TNT " CR
PRI ! F' E TL !F ﬂ
Promid c ImPRHEBEOD D DO e RETUIRH

< www.Commodor

USER PORT COOKBOOK

Recall last month the User Port Cookbook was included with
the "Transactor". Since then an error has been brought to my
attention. The cardedge illustration of the User Port on the
front page is reversed. Compare it to the actual cardedge at
the back of your PET and notice the polarization slots. Although
the pin names correspond correctly, the illustration is essen-
tially the "mirror image". Below is the corrected version which
you can cut out and pasteover top.

% ~ W - N ™M 30N g
€ a4 € <€ £ € & 4 < M Z
Zwum&mmmmmmuu
ot

Ho< moA@nm X E oz

P¢.8o1r0 4 ' — ' Top

| IR | I |

- BoTroM
POLARIQATION
SLAT S

May Not Reprint Without Pe

€.Ca

