| Ckeommaodore

The Transactor

F e [|
B VW . COTTO Fe.ca

May Not Reprint Without Prmission

comments and bulietins
concerning your
COMMODORE PET

BULLETIN # 6
October 31, 1978

The October edition of the news bulletin begins with

some very exciting news....

The complete PET business system will be unveiled at
the 1978 Canadian Computer Show. On display will be the PET
with a new "typewriter style" keyboard, a floppy disk, and a

printer.

The Computer Show will be held in Toronto at the

International Centre, 6900 Airport Road.

are:

November 28
November 29
November 30

Snowless Version of Life:

12:00 to 6:
12:00 to 9:
12:00 to 6:

.M
‘M.
M

-

The times and dates

.

The "Life" program listed in Transactor #5 can be further
refined to eliminate the snowy effect on the screen.
Mark Taylor, in the U.K., has written to us with a snowless
version of Life. He also included another interesting program

illustrated in example 2:

1. If you are plagued by snow on the screen during POKE operations to

the screen RAM or with machine code programmes, then if in BASIC
location 59409 is POKEd with 52 then that will inhibit the character

generator.

Any transfer operations can then be carried out with the

screen totally blank,

To restore normal operation the above location

should be POKEd with 60.

For machine code programmes then LDA 52 &

STA ABSOLUTE the above location will be somewhat faster.

The attached listing is a

snowless version of "Life".

y WWW. Commodore ca

==

May Not Reprint W

188 READL
118 READAS :C=LEN(AS) : IFA$="¥""THENEND

129
138
148
15e
168
208
368
316
329
338
348
358

378
388
398
468
418
428
438
448
450
468
478

2.

IFCCL0RCO2 THENZOA

A=ASCCA$)~48: B=ASC(RIGHT$(A4$,1))-48
N=B¢7H(BIF) -(C=2) ¥ (16 ECA+TH(AID DD

IFNCBORND 235 5 THEN2G8

POKEL.N:L=L+1:G0T) 118

PRINTBYTE"L"=["A4$"1 772" :END

DATAB40GB
DATA2B.38,19,26.87,19, 26.E6, 19, 26.88,1A,A5.34,8D,11.E3

out Pe

DATAZ2B.VB,19,A9.3C,3D,41.E8,A9,FF.CD,12,EB.F8,.E6,4C.8B,C3,AA.68.28,4C.3R,3

DATA EA.EA.EA,EA.EA.EA.EA.A2,19,BD.3R,19,95.1F.,CA,DA.F3,48,60.33,04,15.04

DATABD.08,18,66,1B,07,26.81,FE,D8.D6,29,27.68,.E3,83.08,15,60.04
DATAEA.ER.EA,EA.EAR.EA.EA.EAEA.EALEA.EAEA.EA.EAEA.EAEA,EA.ER.EA EALEAR
DATAEA.EA.EA.EA.ER.28,A6.19,B1,26.D8.85,A9.20.31,26.08.84,R9.51.,91,26.29
DATA BD.19.F6,ED.28.A6,19.68,26.A6.19,B81.28.°3,51,F0.85,A9,808.31,26.F@
DATAB4.A9,01,91.26,28,ED.19.,F8,EB.28,A5,19.68,A9, 86.AR,A8,8%.28,85,26.35
DATA39,A5,25,85.21.35,29.85,27,A%.36,35, 3A.608,E6, 26.E5,28,E6.39.E8,E4
DATA33.FB.8(,E6.88,08,0E.E60,27,.E6.21,E6,3A.D3,36,A5.34.05,21.FB.,83,A9.64
DATh 68,A3,684,68.EA,EAEAEA.EA.EA.28,A46,19.B1.26,08.85,A49.268.91,39,DA
DATAB4.ART9,51,91.39.28,BD.13,F6,ED.28,A6,19.68,28,A6.19.2@,2F. 18,81, 38.23
DATAS1,FE,8C,A5.32,09,82.D08,14,A5.81,91,26.D8,8E,R5,32.29,63,.F8.,88,(9.82
DATAFB.84,A9,86.91,206,26.8D,19,F8.D3,28,A6.13,58,98.43,3A,48.A3,088, 84 .32
DATAAZ,B88,B5,29.18,15,49.FF ,35,37V.38.A5,39.E5.37,85%.22,45,3R.85.23,BA. 11
DATACE,.23.06,8D.18.85,39.85,22,A5.3R.,35,23.93,82,E6.23,B81,22.C3.,51,D08.682
DATAES.32,CA,DB.CF 58, AR.53, AR, 68. %

To input data in BASIC without returning to BASIC command mode

on receipt of a null string then an input statement can be simulated

by a GET loop which contains additional statements to cope with DEL

codes, This has the additional advantage that if there is a displayed

frame on screen the frame characters will not be accepted as part of

the input.

The attached listing shows the above routine. This starts at line 38000

and to use it, instead of INPUT A8 you put GOSUB 9000:A8=INS.

£088 REM SUBROUTINE TO SIRULATE NON-FET STANDARD INPUT STATEMENT
£0168 REM STANDARD INPUT DOES NOT BREAK ON RECEIPT OF A NULL STRING
028 REM "TINPUT" COULD BE ALSYD BE SIMULATED EARSILY

£038 REM ZA%$ IS5 DEFINED IN LINE 16

SEEa INS="":PRINT" 2 ",

9018 305UBSG78 :PRINTZAS(ZR) : : IFZ$=""THENTE 1@

9028 IFZ$=CHR$(13) THENPRINT" " :RETURN

9E38 IFZ$=CHR$(2@) THEMONSGNLLEN CINS$)) +1539799618.38648
9648 PRINTZS, (INS=IN$+2§:60T038148

G058 PRINTZS, (INS=MIDS(INS, L.LENCINE) —12 50705818
@78 ZB=1+(2B=1) :FORZA=1{T06E :GETZ$: IFZ3<2" " THENRE TURN
50388 NEXT:FETURN

on

, www Commodore ca

May Not Reprint ¥ t Perr

Programme Overlays on a PET - Supplied by lMike Stomne

1.

The 8K core of a PET is not usually a limitation in the
home computer and hobbyist world, nor even in an
educational environment where students are just creating
small exercise programs. With the devices now available
for attachement - the second cassette,(the printer, and
floppy discs shortly)- the PET becomes a valid and
genuine data processing machine, and complex string
handling programs with files may well run out of space.

Programmers with experience on other computers know

that one answer to this kind of problem is to break

the program down into segments, so that only part of

it is occupying memory at any time, and all or part

is "overlaid" by other segments as required. When

the program segments are on a disc, direct access features
normally permit great flexibility, in that any required
segment can be loaded; for tape only systems, the

segments have to be arranged in order of need - e.g. job

initialisation, main coding, and termination segments.

Since PET's BASIC includes a LOAD instruction to acquire
dynamically a new program from tape, and (provided the
new program is no longer than the one issuing the LOAD)
all data areas remain available to the loaded program,
the basis exists for an overlay system. However, for
true overlaying, it is essential that some of the
original program (e.g. control of the program flow,
common subroutines, etc.) be retained throughout,
whatever new segments are loaded. FPET does not do

this automatically; this paper tells you how to do 1it.

, www Commodore ca

May Not Reprint ¥ t Perr

PET stores BASIC programs in location 1024 upwards.
Note that the pointers, and line numbets, are pairs of
bytes giving low/high. The high must be multiplied by
256 and added to the low to give the actual quantity.

Whenever a line of code is entered from the keyboard,
PET moves every statement around as necessary and re-
adjusts all the chaining, so that statements are always
stored in strict sequence of line number.

When your program contains a LOAD‘statement, this does
NOT imply either CLR or NEW. The new program is simply
loaded in at (and then executed from) location 1024,
for as much space as it needs. The new program does
NOT (as with some BASIC's) just replace those statements
with identical line numbers; it is strictly a new
program in its own right. However, any program
statements at the end of the LOADING program whose
space is not required by the LOADED program do remain
unscathed by the LOAD. The problem is that the new
program has no (forward-) chain into them, so PET

knows nothing about them.

It follows from the above that if we code the
instructions-to-be-preserved with high line numbers;
and if the space needed by the newly-loaded segment
does not over-write them; and if we can force the new
segment to chain into the o0ld instructions; then

we have a real overlay system. So, if during the
original program you can find in memory the last
statement not to be preserved, you know it forward
chains into the next highest line number, i.e. the
first of the statements you do want preserved. Then
when the overlay arrives, you need only find its
very last statement and replace its forward-chain by
the one you previously found, and both new and old
code form a contiguous program.

'g www.Commodore.ca

May Not Reprint Without Permission

8. A very simple illustration follows

Enter this program (do NOT put any spaces, except
after line numbers):

1@ A=A+1

20 GOSUBS@

3¢ LOAD"NEWPROG"
5@ PRINTA*2

55 RETURN

This is stored as follows ("PEEK" values):

1024) ©
) U 3 forward chain; 4 x 256 = 1024 + 11 = 1035
6) 4
7 10 3 line number 10
8) O
9) 65 A
1030) 178 =
1) 65 A
2) 170 +
3) 49 1

4)

6)
7)
8)
9)
1040)
1)
2)

4)
5)
6)
7)
8)
9)
1050)
1)
2)
3)
4)
5)
6)
7)
+ 8)
9)
1060)
1)
2)
3)
4)
5)
6)
7)
8)
9)
1070)
1)
2)
-+ 3)

19

20

141
53
48

34

30

147
34
78
69
87
80
82

79

71
34

43

50

153

65

172

50

49

55

142

forward chain; 4

3 line number

GOSUB
5
0

forward chain; 4

} line number

LOAD

LU

O O W W E @B =

forward chain; 4

; line number

PRINT

A
*

2

forward chain; 4

} line number

RETURN

g WWW. Commodore ca

X 256 = 1024 + 19 =
20

X 256 = 1024 + 34
30

X 256 = 1024 + 43 =
50

x 256 = 1024 + 49
55

Mav Not

Reprint Without Permissio

1043

= 1058

1067

= 1073

n

 www.Commodore.

If we want lines 50 and 55 to be available tO‘aﬁ’OMeITaY;PVTW”WanTM;}r

the important information is the forward chain in line 30,
i.e. locations 1043 and 1044.

To see how it works, SAVE"PROG" and leave the cassette
Record and Play keys down.

Enter NEW; then the following (again, no spaces):

5 A=A*2
1@ GOSUBS5@
15 STOP

LIST if you like, to confirm that there are no lines
50 and 55.
SAVE"NEWPROG".

Now rewind your tape, and press RUN.

PROG will be loaded, will print "2", and continue up

the tape. When NEWPROG has been loaded, you will get
?UNDEF'D STATEMENT ERROR IN 1¢

That is because the overlay looks like this:

1024) 0
5) 11 forward chain to 1035
6) 4
7) ,
line number 5
8)
9) 65 A
1030) 178 =
1) 65 A
2) 172 *
3) 50 2
4) 0
> 3) 19 forward chain to 1043
6) 4 ’
, 7) 10 3 line number 10
8) o}
9) 141 GOSUB
1040) 53 5

- 10.

ll'

1)
2)
+ 3)
4)
5)
6)
7)
8)
-+ 9)

48

25

15

144

, www Commodore ca
May Not Reprint ¥ t Perr

forward chain to 1049

; line number 15

STOP

The last line, 15, does not chain into the old line 50.
But that line 50 is still there, in location 1058 et seq.
So, do this:

POKE 1043,34
POKE 1044, 4

LIST - and behold, NEWPROG now includes lines 50

and 55!

You can RUN if you like, to prove it.

What we have done is to use what we discovered about

.the first program (last sentence of paragraph 9) to

modify the second program.

How do you program all this to happen automatically? It
is not at all difficult. Let us assume that the

statements~to-be-preserved are at lines 5000 and upwards.
So, just before that, code this (NO SPACES):

4997
4998
4999
5000

N1=PEEK{(201) Get (low) address of line 4998
N2=PEEK (202) Get (high) address of line 4999
RETURN

. e 0. s 8 s e

(Locations 201, 202 always contain, during instruction

execution,

the address of the next instruction -~

strictly, the "¢g" between instructions.)

L WWW, Commodore Ca
12. Now, just before your program wants to load if chlay Not Reprint ¥ t Permission

overlay program, code this (spaces if you likel):

850 GOSUB 4997

860 N1 = N1 + 14 Low address of 4999 (the length
of 4998 is 14 bytes)

870 N2 = N2 * 256 Actual high address of 4999

880 If N1 < 256 THEN 900 Adjust low for page boundary

890 N1 = N1 - 256

900 BC = N1 + N2 + 1 BC is now actual machine address

of line 4999
PEEK (BC) : Z2=PEEK (BC+1) Hold the forward-~chain
locations out of 4999

910 Z1

920 LOAD "NEWPROG"

13. As the first instructions of NEWPROG, the chain-adjusting
must be done. The necessary code is very similar:

At the end of NEWPROG, as the very last statements,
code (NO spaces):

3997 N1=PEEK (201)

3998 N2=PEEK (202)

3999 RETURN

And at the beginning code:
10 GOSUB3997
20 N1=N1l+14
30 N2=N2*256
40 IF N1<256 THEN 60
50 N1=N1-256
60 BC=N1+N2+1 BC is now actual machine
address of 3999

70 POKE BC,Z1:POKE BC+1,22

14. It is worth just reiterating that the total size of the
incoming overlay (irrespective of line numbers; just its
size in bytes occupied) must be less than the total
size of the instructions being overlaid.

Mike Stone

, www Commodore ca

May Not Reprint ¥ t Perr

ABBREVIATING BASIC WORDS

As explained in the instruction manual, any BASIC word takes
up 1 byte of memory storage space. It has been stated that
the work "PRINT" can be abbreviated to "?" which saves time
on entering programs. When listed, the word is expanded

to its full form. Both forms take 1 byte per word.

We now have information on how to abbreviate the complete
list of BASIC words. The algorithm to remember is as follows:

1. For any BASIC word, type in the first letter of the
-~ word (e.g. V for VERIFY).

2. Hold down the 'Shift' key and type in the second letter.
If you are in graphics mode, this will appear as a
graphic character (e.g.ffj for E). It is a good idea
to go into lower case mode as the two letters are then
easy to read.(Poke 59468, 14 ~+ 12 for PET to graphics).

In some cases, this two-letter method gives a poésibility of
more than one BASIC word (e.g. READ and RESTORE). For one
of the words (usually the longer) it will be necessary to
type the first two letters and the shifted third. All these
abbreviations are converted to full words upon the command
LIST.

Below is a complete list of the words and abbreviations:

10

BASIC ABBREV
LET Le
READ Re
PRINT ?
PRINT# Pr
DATA Da
THEN Th
FOR Fo
NEXT Ne
DIM Di
END . En
GOTO Go
RESTORE REs
GET Ge
GOSUB GOs
OPEN Op
CLOSE CLo
SAVE Sa
LOAD Lo

BASIC ABBREV
DEF De
RETURN REt
STOP St
STEP STe
INPUTH In
SGN Sg
ABS Ab
SQR Sq
RND Rn
SIN Si
ATN At
EXP Ex
AND An
NOT No
VAL Va
ASC As
CMD Cm
VERIFY - Ve

SIMULATING A CALCULATOR ON YOUR PET

, www Commodore ca

May No

eprint ¥ t Perr

BASIC ABBREV
RUN Ru
CLR Cl
LIST Li
CONT Co
FRE Fr
TAB (Ta
SPC (Sp
PEEK Pe
POKE Po
USR Us
SYS Sy
WAIT Wa
LEFTg LEf
RIGHTS Ri
MIDgZ Mi
CHRZ Ch
STRZ STr

Many users have asked whether the PET can do live calculations.

Although a simple sum such as 2 + 3 can be performed thus:

PRINT 2 + 3
it would be more convenient if the operation of a calculator
could be simulated directly.
give you an idea of how this can be achieved:

'RETURN'

11

The following program should

, www Commodore ca

May Not Reprint ¥ t Perr

S REN GRAPHICE

ie PRINT. f ‘ T
28 PRINTY |
25 PRINTY i
3B PRINT® L
48 FIRI=1T013

Se PRINT™ [~ H

68 NEXT

1868 REN CONTR2LLER .~ INPUT

16848 SETAS . IFRs=""60TO4818

1628 R=ASCIASD

16838 IFAXSTTHEN4 AR

1648 IFAC4AEBANDA(Y46THEN2888

1658 sF T=1 THENK§="".T=Q

16855 IFLENGH3)= 3THE¥‘D$"”ERF\F’ "LGOSUBTLLE T=1:460T01888

1663 I{S-r$+ﬂi H=VALOHSY (SOEUESE28

1678 33701868

CEB3 REM OPERATORS

2818 IFAC4E0RA=44 THEMDS="ERRCR "G SURS 145 CLRGOTY 1268

2E28 IFA=4BTHERN=N+1 . BMi=k F=8 Y= 0FHNI=08$:08="" : T=1 :GOSUBRSEEE 530701000
ZE33 IR F=" R THENK=REY

248 IFOE=" " THENK=Y H

CESH FOf="+" THENK=R+Y

ZERZ IFOf="- “Y'ﬂ’%-—’r"n

2865 ?-A«U$=ﬁq I=1

CETE IFA=SLITHENY=R{N 0 3=08iM (HN=N-1.T=

cEEE SoSUREREE . S0TELE38

46003 [FAF="S" THENK=EIN)

AFIR [FAF="C" THENK={03 {4}

4673 [FAS=" TV THENK=TAN (A}

4633 (FAf="L" THENK=LOG K]

4643 [FAS="E" THENK=ERP (X}

4842 (FAf="="0307028308

46843 [FAF="="THENILE 1 T=d

4045 §YEURSEEA

4858 9701608

SePa REM DISPLAY

2010 KI=STR$H:

S628 DE=RIGHTS (" "e4F.11 " "

L6838 [FR(=99933399%ANDKD. 81@0T‘35115

048 IFX=8G0TI511F

e}

-
-

Sase IFﬁBQ{‘*{}}iESSORﬂB‘S(X)(1E-SBTHEND$=“ERROR " GOTQT41S
51088 RF=RIGHTS$(" "+4$,1%)

5118 D§=LEFTS$(R$,11)+" "+RIGHTS (RS, 3)

5115 PR INT'S0DSOOOBRIESSNN" D$ ~ .

5128 RETURN {""’M'i’x “cussar pams” 12x Tuesoe Reed
READY.

12

, www Commodore ca

May Not Reprint ¥ t Perr

Although the program is by no means perfected, the framework
exists for a versatile program. Lines 4000 onwards determine
the functions so that when 'S' is pressed the sine of the
number on display is calculated and to clear all registers
'«' is pressed. The normal operation for +, -, x and % is
the same as a straightforward calculator, and there are
multiple sets of brackets.

This idea could be used to simulate actual models - including
programmable calculators, thus giving access to a wide

range of ready-written low key software. We would like to
hear from any user who succeeds in doing this.

BITS AND PIECES

Some more hints and tips to help you write efficient
programs:

When writing REMark statements, graphics and lower
case can be included if they are put inside inverted
comma's. This enables separating lines such as:

1 REM " "

When using subscripted variables such as A(4) the operating
system automatically reserves 10 elements without having

to declare a dimension with DIM. If, however, you are
using a very long program and are using less than

10 elements per variable - say 4 - it will save space

to declare the dimension's length. For example:

1@ DIM A(4), C8(3)

15

< www Commodore ca

May Not Reprint Without Perr

To display a number (N) to D decimal places, use the
following routine:

1g M = INT(N*1g@+D+Z.5)/1@4D

2¢ PRINT M

For an intriguing display of graphics, try running this
one line program entitled "BURROW"

1 A$="0# V¥ & " PRINTMIDS (A$,RND(.5) *4+1,1) "* € " ; : FORT=1TO3@:
NEXT:PRINT"R ¥ & " ; : GOTOL

* * * * * * * * * * * *

NEW PET MANUAL:

We are currently working on an extensive PET users manual.
The manual will eventually be available for sale through
our dealers. We do plan, however, offering the manual

in chapters through future issues of the "Transactor".

14

