
(kcornrnodore comments and bulletins
concerning your

COMMODORE PET

The Transactor BULLETIN # 6
October 31, 1978

The October edition of the news bulletin begins with
some very exciting news ••••

The complete PET business system will be unveiled at
the 1978 Canadian Computer Show. On display will be the PET
with a new "typ6writer style ll keyboard, a floppy disk, and a
printer.

The Computer Show will be held in Toronto at the
International Centre, 6900 Airport Road. The times and dates
are:

November 28
November 29
November 30

Snowless Version of Life:

12:00 to 6:00 P.M.
12:00 to 9:00 P.M.
12:00 to 6:00 P.M.

The IILife lf program listed in Transactor #5 can be further
refined to eliminate the snowy effect on the screen.
Mark Taylor, in the U.K., has written to us with a snowless
version of Life. He also included another interesting program
illustrated example 2:

1. If you are plagued by snow on the screen during POKE operations to

the screen RAM or with machine code programmes, then if in BASIC

location 59409 is POKEd with 52 then that will inhibit the character

generator. Any transfer operations can then be carried out with the

screen totally blank. To restore normal operation the above location

should be POKEd with 60. For machine code programmes then LDA 52 &

STA ABSOLUTE the above location will be somewhat faster.

The attached listing is a snowless version of "Life".

188 READL
119 READA$:C=LEtHAS) : IFIH="""THENEND
129 IFC(lORC)2THEN2aB
139 A=ASC(A$)--48:B=ASC(RIGHT$(A$.1»-48
149 ":8t7*(B)'3) -(C=2) *(16t:(A+7* (A}9»:>
159 IFN(BORt0255THEN299
169 POKEL,t.j:L=L+1:GOT':)118
200 PRIHT"B'HE"L"=("A:t"] ?'??" :END
383 DATA6400
319 IIA TA2B, 39 • 19 , 2ft .• 8A • 19 • 2£1 .• E6 , 19 • 2£1 .• 89 • 1 A • A~ .' 34 .3 J) • 11 .• E8
329 DIHA2B,79 .19. A9,3C .3D. 1LE8, A9, FT .. CD .12. EB .• F9 ,E6, 4C .. 8B ,':3 .tIA .• 68 .. 23, 4c..8B ,C3
339 DATA EA .• EA, EA, EA .• ErLEA, EA .• A2 , 19, BD .• 3A .19.95 .• 1F ,':A. r>e .. F8, 68, ee .• 80 ,90,15 .. 00
349 DA TABB,G9, 1B. ee .• 1B ,D7, 2B .• 81.FE. D8 .• D6 .29,27 .• 89 ,E8. 83 .• 80,1:5,0£1 .• 00
SC'...a DA TAEA,EA. EA, EA.EfLEA. EA .. EA .EA. EA .• EfLEA. EA .. EA ,EA. EA .. EA ,EA. EA .• EA .. EA. EA .• EA
369 DATAEA,EA .EA, EA .. EA .20. AE •.. 1'3 ,B 1. 26,D9 .96. A9 .• 20 .• '31. 2£1 .• D8 .• 9-4. A9 .• 51 .. '31. 2e .. 20
37e DA TA BD, 1'3 • F 8. ED .• 20 • A 6 • 19 .• 60 • 20 • A6 .' 1'3 • B 1. 28 .• >::'3 • :51 , Fe .• 86 • A 9 • ee .' '31. 26 • Fe
389 DATAB4 .• A'3 .91. 91.26.29, BD .. 1'3 .F8. EB .• 29 ,A6, 19 .• 6B ,A9, oe .. AA ,A8. 85 .• 20 ,35.26 .. 85
39a DA TA39,A5 .2:5, B5,21 ,AS. 29 .• 85 .27. AS .• 36 .35. 3A .• 6B ,E6. 26 .• E6 ,29, E6 .. 3'3 .• E3. E4
400 DATA33 .. FO .9C, EB,G9 .De. 0LE6, 27, E6 .• 21 ,E6. 3A .• D~3 ,96. A5 .• 34 .• ·:5, 2LFO ,93. A9 .. eo
41G DATA 69,A'3, 81. 6B .. EA .EA. EA .• EA, EA, EA .. 29 , A6, 1.9 .. Bl ,26, D8 .. 86. A9, 2e .• '31 ,39, De
429 IIATAB4,A'3, 51.91,3'3.28. BD..1'3. F8. ED .• 2~3 .A6. 19 .. 68 .29, A6 .• 1'3 .. 29. 2F .• 1tLB 1.39.('3
439 DATA5LF9 ,9C I A5,32 ,':9. 03 .. DB, 14. A9 .• 81 ,'H. 26 .• DB ,9E. A5 .• 32 ,,':'3, 03 .• FG .• 93. C9 .. G2
449 DATAFB,G4 ,A9. BE1,91 ,26. 2e .• BD, 19. H1 .. D8 .29. A6..1'3 .69,98..48 .. :3A, 48 .. AG ,e9, 84 .. 32
4:>3 DATAA2,Ga ,BS, 29..1G .15 • 49 .. FF ,35.37 .. 38 ,AS • 39 .• E5 ,37,85 .• 22 .• AS. 3A.85 .• 23. £18 .• 11
469 DA TAC6.23 .D9. eD .• 18 ,6S, 39 .. 85,22. A5 .• 3A ,3S. 23,'3~3, 92. E6 .• 2:3, B1. 22 .. C9, 51, D8 .. 92
473 DATAE6,32, ':A, DO .. CF ,68, AA .. 6:3, AS, 60 .. *

2. To input data in BASIC without returning to BASIC command mode

on receipt of a null string then an input statement can be simulated

by a GET loop which contains additional statements to cope with DEL

codes. This has the additional advantage that if there is a displayed

frame on screen the frame characters will not be accepted as part of

the input.

The attached listing shows the above routine. This starts at line 9000

and to use it. instead of INPUT A~ you put GOSUB 9000:A~=IN~.

8800 RH1 SlIBR(WTINE TO :JII'IlILATE NON-PET
8810 R01 STANDARD INPUT DOES NOT BREhK
8820 ROl "TU.PUT" COUlD BE ALSo:) BE
8830 R01 ZA;$ IS DEFINED I N LINE 19
9£180 INS='II' :PR IN Til ? ";

STANDARD INPUT S TATEt'ENT
ON RECEIPT OF A NULL STRIN>3
SHtULATED EASIL'I

9810 '30SUB9G70 :PRINT2A$(ZB).; : IFZ$:""THEN'3910
9820 IFZ$=CHRH 13)fHEt~PRINT" II .RETlIRN
9830 IFZ$=C.HR:t (20) TH8~':)NSGN (LEN (ItU)) +10:3':) T')9018 .• '3060
9B40 PR INTZ;$.;. ItH= IN;$tZ $: GC'J T090 19
986G PRINTZ;$;: Hu=mDl<ItU, 1..LEtH INS)-l) :;3'H0981B
9870 ZB=1+(ZB= 1) . FCiR2A=1 T06£1 :GET2 $: IFZ;$()" H THENRETURN
9000 Nn:r :P£TURN

2

Programme Overlays on a PET - Supplied by Mike Stone

1. The 8K core of a PET is not usually a limitation in the

home computer and hobbyist world, nor even in an

educational environment where students are just creating

small exercise programs. With the devices now available

for attachement - the second cassette,(the printer, and

floppy discs shortly)- the PET becomes a valid and

genuine data processing machine, and complex string

handling programs with files may well run out of space.

2. Programmers with experience on other computers know

that one answer to this kind of problem is to break

the program down into segments, so that only part of

it is occupying memory at any time, and all or part

is "overlaid" by other segments as required. When

the program segments are on a disc, direct access features

normally permit great flexibility, in that any required

segment can be loaded; for tape only systems, the

segments have to be arranged in order of need - e.g. job

initialisation, main coding, and termination segments.

3. Since PET's BASIC includes a LOAD instruction to acquire
dynamically a new program from tape, and (provided the
new program is no longer than the one issuing the LOAD)

all data areas remain available to the loaded program,
the basis exists for an overlay system. However, for
true overlaying, it is essential that some of the
original program (e.g. control of the program flow,

common subroutines, etc.) be retained throughout,
whatever new segments are loaded. PET does not do
this automatically; this paper tells you how to do it.

3

4. PET stores BASIC programs in location 1024 upwards.

Note that the pointera, and line numbets, are pairs of

bytes giving low/high. The high must be multiplied by
256 and added to the low to give the actual quantity.

5. Whenever a line of code is entered from the keyboard,

PET moves every statement around as necessary and re
adjusts all the chaining, so that statements are always

stored in strict sequence of line number.

6. When your program contains a LOAD statement, this does
NOT imply either CLR or NEW. The new program is simply

loaded in at (and then executed from) location 1024,

for as much space as it needs. The new program does
NOT (as with some BASIC's) just replace those statements

with identical line numbers; it is strictly a new
program in its own right. However, any program

statements at the end of the LOADING program whose

space is not required by the LOADED program do remain

unscathed by the LOAD. The problem is that the new

program has no (forward-) chain into them, so PET

knows nothing about them.

7. It follows from the above that if we code the

instructions-to-be-preserved with high line numbers;

and if the space needed by the newly-loaded segment

does not over-write them; and if we can force the new

segment to chain into the old instructions; then

we have a real overlay system. 50, if during the

original program you can find in memory the last

statement not to be preserved, you know it forward

chains into the next highest line number, i.e. the

first of the statements you do want preserved. Then

when the overlay arrives, you need only find its

very last statement and replace its forward-chain by

the one you previously found, and both new and old

code form a contiguous program.

4

8. A very simple illustration follows

Enter this program (do NOT put any spaces, except

after line numbers):

l~ A=A+l

2~ GOSUB5~

3~ LOAD "NEWPROG"

5~ PRINTA*2

55 RETURN

This is stored as follows ("PEEK" values):

1024) 0

5) 11

J
forward chain: 4 x 256 1024 + 11 =

6} 4

7) 10 j line number 10
8) 0

9) 65 A

1030) 178 =

1) 65 A

2) 170 +

3) 49 1

5

= 1035

4) 0

-+ 5) 19

~ forward chain; 4 x 256 1024 + 19 = 1043 =
6) 4.

7) 20

~ line number 20
8) 0

9) 141 GOSUB

1040) 53 5

1) 48 0

2) 0

-+ 3) 34 j forward chain: 4 x 256 1024 + 34 1058 .- =
4) 4

5) 30

~ line number 30
6) 0

7) 147 LOAD

8) 34 "
9) 78 N

1050) 69 E

1) 87 w
2) 80 P

3) 82 R

4) 79 0

5) 71 G

6) 34 "
7) 0

-+ 8) 43
forward chain: 4 x 256 1024 +' 43 1067 = =

9) 4

1060) 50

~ line number 50
1) 0

2) 153 PRINT

3) 65 A

4) 172 *
5) 50 2

6) 0

7) 49 forward chain: 4 x 256 = 1024 + 49 = 1073
8) 4

9) 55

~ line number 55
1070) 0

1) 142 RETURN

2) 0

-+ 3) 0

6

If we want lines 50 and 55 to be available to an overlay,

the important information is the forward chain in line 30,

i.e. locations 1043 and 1044.

9. To see how it works, SAVE"PROG" and leave the cassette

Record and Play keys down.

Enter NEW; then the following (again, no spaces):

5 A=A*2

l~ GOSUB5~

15 STOP

LIST if you like, to confirm that there are no lines

50 and 55.

SAVE "NEWPROG" •

Now rewind your tape, and press RUN.

PROG will be loaded, will print "2", and continue up

the tape. When NEWPROG has been loaded, you will get

?UNDEF'D STATEMENT ERROR IN l~

That is because the overlay looks like this:

1024} 0

5) 11 j forward chain to 1035
6) 4

7) 5 line number 5
8) 0

9) 65 A

1030) 178 =

1) 65 A

2) 172 *

3) 50 2

4) 0

-+ 5) 19

~ forward chain to 1043
6) 4

\

7) 10

~ line number 10
8) 0

9) 141 GOSUB

1040) 53 5

7

l} 48 0

2} 0
-I- 3} 25 j forward chain to 1049

4) 4

5) 15 line number 15
6) 0

7) 144 STOP

8) 0

-I- 9) 0

10. The last line, 15, does not chain into the old line 50.

But that line 50 is still there, in location 1058 et seq.

So, do this:

POKE 1043,34

POKE 1044, 4

LIST - and behold, NEWPROG now includes lines 50

and 55!

You can RUN if you like, to prove it.

What we have done is to use what we discovered about

the first program (last sentence of paragraph 9) to

modify the second program.

11. How do you program all this to happen automatically? It

is not at all difficult. Let us assume that the

statements-to-be-preserved are at lines 5000 and upwards.

So, just before that, code this (NO SPACES):

4997

4998

Nl=PEEK (20l)

N2=PEEK(202}

4999 RETURN

5000

Get (low) address of line 4998

Get (high) address of line 4999

(Locations 201, 202 always contain, during instruction

execution, the address of the next instruction -

strictly, the "~" between instructions.)

8

12. Now, just before your program wants to load in the

overlay program, code this (spaces if you like!):

850 GOSUB 4997

860 Nl = Nl + 14 Low address of 4999 (the length

of 4998 is 14 bytes)

870 N2 = N2 * 256 Actual high address of 4999

880 If Nl < 256 THEN 900 Adjust low for page boundary

890 Nl = Nl - 256

900 BC = Nl + N2 + 1 BC is now actual machine address

of line 4999

910' Zl = PEEK(BC):Z2=PEEK(BC+l) Hold the forward-chain

locations out of 4999

920 LOAD "NEWPROG"

13. As the first instructions of NEWPROG, the chain-adjusting

must be done. The necessary code is very similar:

At the end of NEWPROG, as the very last statements,

code (NO spaces):

3997 Nl=PEEK(20l)

3998 N2=PEEK(202)

3999 RETURN

And at the beginning code:

10 GOSUB3997

20 Nl=Nl+14

30 N2=N2*256

40 IF Nl<256 THEN 60

50 Nl=Nl-256

60 BC=Nl+N2+l BC is now actual machine

address of 3999

70 POKE BC,Zl:POKE BC+l,Z2

14. It is worth just reiterating that the total size of the

incoming overlay (irrespective of line numbers; just its

size in bytes occupied) must be less than the total

size of the instructions being overlaid.

Mike Stone

9

ABBREVIATING BASIC WORDS

As explained in the instruction manual, any BASIC word takes

up 1 byte of memory storage space. It has been stated that

the work "PRINT" can be abbreviated to "?" which saves time

on entering programs. When listed, the word is expanded

to its full form. Both forms take 1 byte per word.

We now have information on how to abbreviate the complete

list of BASIC words. The algorithm to remember is as follows:

1. For any BASIC word, type in the first letter of the

word (e.g. V for VERIFY).

2. Hold down the 'Shift' key and type in the second letter.

If you are in graphics mode, this will appear as a

graphic character (e.g.E:] for E). It is a good idea

to go into lower case mode as the two letters are then

easy to read. (Poke 59468, 14 12 for PET to graphics).

In some cases, this two-letter method gives a possibility of

more than one BASIC word (e.g. READ and RESTORE). For one

of the words (usually the longer) it will be necessary to

type the first two letters and the shifted third. All these

abbreviations are converted to full words upon the command

LIST.

Below is a complete list of the words and abbreviations:

10

BASIC ABBREV BASIC ABBREV BASIC ABBREV

LET Le DEF De RUN Ru

READ Re RETURN REt CLR CI

PRINT ? STOP St LIST Li

PRINT# Pr STEP STe CONT Co

DATA Da INPUT# In FRE Fr

THEN Th SGN Sg TAB (Ta

FOR Fo ABS Ab SPC (Sp

NEXT Ne SQR Sq PEEK Pe

DIM Di RND Rn POKE Po

END En SIN Si USR Us

GOTO Go ATN At SYS Sy

RESTORE REs EXP Ex WAIT Wa

GET Ge AND An LEFT$ LEf

GOSUB GOs NOT No RIGHT$ Ri

OPEN Op VAL Va MID$ Mi

CLOSE CLo ASC As CHR$ Ch

SAVE Sa CMD Cm STR$ STr

LOAD Lo VERIFY . Ve

SIMULATING A CALCULATOR ON YOUR PET

Many users have asked whether the PET can do live calculations.

Although a simple sum such as 2 + 3 can be performed thus:

PRINT 2 + 3 'RETURN'

it would be more convenient if the operation of a calculator

could be simulated directly. The following program should

give you an idea of how this can be achieved:

11

5 REI1 GRAPH I CS
18 PRINT .. t~ ,r-----------r'
28 PRINT" I
2S PRINT" ,

r'
"' I

38 PRINT" _____________ ~r'

48 FORJ=1T01'3
58 PRINT" II
68 NEXT
Ieee Rnl CONTR'JLLER./ INPUT
IB18 '1ETA$:IFA$=""GOT0:1010
1B2G ~=ASC(A:t)
1£138 IFA}57THEN40eE!
1£148 IFA{48ANDA{}46 THEN290e
18:>8 IF T=l 1HEtn<f="": 1=9

It

1£155 I:: LEN GH:> = 'HHEN.D$= "E Rf.~OR ":GOSUBS115; 1=1 : GO TO 1000
1£~3 i(f=l<:$+A:t ;<= W\;'" G-<:l) ;'3 OSllBS020
1£178 1~lj TO 1 BOO
2£33 ROt OPERAT·jRS
2e18 IFA{4BORA=44THEND:l="ERROR .. :'~NSUB51:1S: eLF.: :G'::>T'~108a
2£128 IFA=4BTHEtni=N+-l: B ':tl} =)<::)-::=0: '{=0: O$(tD=I~ $: 0$="" : T=l: GOSUBS088 :'30 TO 1888
2Kfi3 I H) $=" *" THE Nl,;=)-::*'i
2(149 IF i~ $=,,/,.11 THEN:':='TJ/·~o{:

2eS0 IF'H="+"THEN1,:=!-WI
2£1613 I:: 'J $="--" THE Nl<:=T'--H
2B65 'i=>:: O$=A:f. 1=i
2£178 IFA=41 THEN'/=B(W .Q:f=:HG-D :N=N-I: 1=0
2ese (j'jSllBS00e .('OT0100e
4831:3 IFA$="S" THEt·Il<;=S:::ti GO
4£118 IFA$="C" -;-HEN1,;=COS G{)
48~~~ r1=Af="T"THENl<:=TAtH;O
4£1313 JFA $="L" THE Nl'::=LOG GO
48413 IFA $="E" rHEN:,;=D-:;P ':;<)
4£142 IFA$="="(;'~ T'n8343
4£14:3 IFA$= .. .,.. .. THENCLR: T=1
4Et45 '~'J SllBseee
4B58 (Jlj TO 1003
SEtOO RE: 1'1 Ii ISPll1 '(
SB1e ~H=srF.:$C<)
SBza D$=RIGHT${" "+:-<$.11)""
SB3e If l< (=999'3'3 '3 '3 99ANDH) • 81 GO T0511 S
5£148 Ifl<=BOOT>:>511S

..

SB:>9 IfABSO{»1E3SQRABSOO C1E-3STHEND$="ERROR .. :ooT05115
S100 R$=F.:IGHH (.. H+H:t.1S)
S118 D$=LEfT$ (R $, 11> +" "+R I 6HT$ (R $.3)
S115 PRINT' "D$
S129 RETURN

lEAD\,.

j,,1.._-- "2 « "" ~ I"IPfIIfC.)(c~ ~ 12JC' Cf.Il'IQIt 1I'IJIiH("

12

Although the program is by no means perfected, the framework

exists for a versatile prog~am. Lines 4000 onwards determine

the functions so that when 's' is pressed the sine of the

number on display is calculated and to clear all registers

'+' is pressed. The normal operation for +, -, x and ~ is

the same as a straightforward calculator, and there are

multiple sets of brackets.

This idea could be used to simulate actual models - including

programmable calculators, thus giving access to a wide

range of ready-written low key software. We would like to

hear from any user who succeeds in doing this.

BITS AND PIECES

Some more hints and tips to help you write efficient

programs:

When writing REMark statements, graphics and lower

case can be included if they are put inside inverted
comma's. This enables separating lines such as:

l~ REM "---------"

* * * * * * * * * * * *

When using subscripted variables such as A(4) the operating

system automatically reserves 10 elements without having

to declare a dimension with DIM. If, however, you are
using a very long program and are using less than

10 elements per variable - say 4 - it will save space

to declare the dimension's length. For example:

l~ DIM A(4), C$(3)

* * * * * * * * * * *

13

*

To display a number (N) to D decimal places, use the

following routine:

1~ M = INT(N*1~tD~.5)/1~tD

2~ PRINT M

* * * * * * * * * * *

For an intriguing display of graphics, try running this

one line program entitled "BURROW"

*

1 A$="i't-O' •• " :.PRINTMID$ (A$,RND (.5) * 4+1,1) "* ~ " ; : FORT=lT03~:
NEXT:PRINTtllB~·. "; : GOT 0 1

* * * * * * * * * * * *

NEW PET MANUAL:

We are currently working on an extensive PET users manual.
The manual will eventually be available for sale through
our dealers. We do plan, however, offering the manual
in chapters through future issues of the "Transactor".

14

