
(:commodore

The Transactor
Copyright Commodore Business Machines Ltd. 1978

1. PET INSTRUCTION BOOK SET

comments and bulletins
concerning your

COMMODORE PET

BULLETIN # 5
September 30, 1978

All PETs are currently being shipped with the revised
instruction book, plus a booklet titled lIPet Communications
With The Outside World" (this information was issued with
Transactor Bulletins 3 and 4), plus the booklet containing
a description of the programs "Bigtime", "Squiggle", and
"Machine Langugage Monitor" plus either the tape, or a print
out of the programmes if the tapes are not available. Also ~
available on request is a revised issue of the "Compendium .
of Notes.1t Enclosed is copy of all of the above - except "Pet
Communications With The Outside World" which was issued in
the last two bulletins, and 'tBigtime/Squiggle" which were
issued in Transactor Bulletin #2.

2 • PERIPHERALS

C2N Second Cassette - available ex-stock $100 USA, $120 CDA.

Printer - Although many delivery dates have been quoted, tne
Commodore Printer is unlikely to be available before
January, 1978. $695 USA, $995 CDA.

Floppy Disk - Still on target for the end of the year.
Specification will certainly be worth waiting
for. $1,000 USA approximately, $1,500 CDA.
approximately. Dual drive.

Expansion Memory - End of the year. No price yet.

Modem - No price or delivery date yet.

Although only C2N cassette is available, yet various printers
with parrallel andT~erial interfaces giving ASCII characters
will work with PET using adaption leads e.g. Serial from
Connecticut Micro Computer, Parrallel from Computer Factory
(see this bulletin). Also IEEE Floppy from H.P. or
Tectronix, and Expansion Memory from Convenience Living
Systems (see Bulletin 4). For modem, see Bulletin 2.

3. SOFTWARE

The only programmes available now are listed in this Bulletin.

4. Part 12 of the contents of Bulletin #4 was not available
on August 31st, however this is listed below:-

12. Default Parameters
Table 12-1. Def~ult values.

Parameter Default Value Default Operation

Device # 0=1 Cassette #1 selected

Secondary SA=0 On tape files open for read
address On IEEE-488 devices, no

secondary address is sent.

Table 12·2. Example of default parameters.

Equivalent
Statement (Default) Operation

Parameter Values

OPEN#1 OPEN 1,1,0 Open logical file #1 for cassette #1 read
no file name

OPEN#1,2 OPEN#1,2,0 Open logical file #1 for cassette #2 read
no file name

OPEN#1,2,l OPEN#1,2,l Open logical file #1 for cassette #2 write
no file name

OPEN#1,2,1, OPEN#l ,2,1, Open logical file #1 for cassette #2 write
"OAT" "OAT" file named "OAT"

5. Pages 9-35 are extract from the PET Users Club letter
in Britain.

-2-

**
1) fWM112. MIC; 1
?99 C589 emFDOl H=A STA 01FIi
i300 C58C 68 (f'LA
[:01 C58D 8DFEOl M)A STA 01FE
co:: C590 A2FC e< LDX tFC
803 C592 9A Z TXS
804 C593 A900)@ LIlA tOO
805 C595 858!1 EM STA 8I1
i3()6 C597 8561 E! STA 61
e,f); C599 60 RTS
c:·'~J8 C59A 18 X CLC

ROM192.MICH

::9<;.' C589 A8 (TAY
800 C58A 68 (F'LA
6':;'1 C58Ii A2FE .> LDX tFE
bC2 C58D 9A Z TXS
E03 C58E 48 h f'HA
[:04 C58F 98 X TYA
805 C590 48 h PHA
['06 C591 A900)~ LIlA tOO
8(;7 C593 858D EM 5TA 8I1
808 C595 8561 E! 5TA 61
:: ::.f S' C597 60 RT5 ,- ,', C598 5160 a EOR (60),Y -, "-'

- C59A 18 X CLCt-

*********************~****************************
DIFFERENCES FOUND BETWEEN ROM 011 AND ROM 019
TO CORRECT LOSS OF CURSOR.

-3-

NEW PRODUCTS FOR THE COnnODORE PET 2001

"Getting Started With Your PET" is a new workbook now available
to PET users who are anxious to put their PET to work.

This beginner's workbook supplements the documentation provided
by Commodore. It covers the fundamentals of PET BASIC and explains
its characteristics, limitations, and useful features. The
descriptive text is heavily laced with step-by-step, detailed
exercises including the expected PET responses.

If you are already an expert on your PET, "Getting Started
With Your PET" is an excellent guide for other members of your
family who want to use the PET.

In addition to this beginning text, workbooks on advanced
topics are available. Some of the advanced techniques covered in
these workbooks include string handling, arrays and loopings,
graphics, cursor control, PEEK and POKE memory, programmed cassette
I/O, real time clock, linkage to assembly language subroutines,
subroutine nesting.

TIS also provides software applications for the PET. These
programs are available as source listings and cassettes with operating
instructions, theory of operations description, and performance time
and space limitations.

For more information contact Total Information Services,
P.O. Box 921, Los Alamos, NM 87544.

1.6 MEGABYTE FLOPPY DISK SYSTEM

Datatr6~ics has an 800K byte and 1.6M byte S-lOO floppy disk
storage system. Based on the PerSci Model 277 drive with voice
coil head positioning, this system offers more storage in a standard
size drive than most other currently available drives.

The 800K byte model is a single density drive system, while
the others employ dual-density recording techniques. The S-lOO
controller is processor independent, and can be used with most
8080, 8085, Z-80 and 6502 based systems as well as with the Datatronics
6800 CPU (S-lOO based). Several formats are allowed, including IBM 3740.

Software included with the systems is written for the 6800, but
8080 (8085 and Z-80) versions will be available soon. Termed SDOS,
this Disk Operating System offers full dynamic file allocation and
file maintenance. That means that data or program files may expand
or shrink as needed with all necessary housekeeping being totally
transparent to the user.

- 4 -

SWTPC (SS-50) and Digital Group Bus-Compatible systems are now
available. Several 6800 based Business languages and complete
6800 Business packages are also available.

Complete systems start at $1999 (includes drive, case with
and power supply, controller, cable and SDOS on disk). Availability
is stock to 4 weeks. For more information, contact Datatronics,

W. Olive, Lamar, CO 81052 (303) 336-7956.

6502 ASSEMBLER FOR PET 2001

The 6502 Assembler in BASIC is designed to run on an 8K
Commodore PET. It accepts all standard 6502 instruction mnemonics,
pseudoops and addressing modes, and evaluates binary, octal, hex,
decimal, and character constants, symbols and expressions. Source
statements can be read from cassette or from DATA lists and machine
code can be assembled anywhere in memory or directed to an external

e through a user-supplied subroutine.

The package includes a text editor in BASIC, and an execution
monitor with a disassembler. Price with documentation is $24.95
by cheque or Visa/MC from Personal Software, P.O. Box 136-17,
Cambridge, MA 02138, (617)783-0694.

MACHINE LANGUAGE MONITOR

Below is a listing of the Machine Language Monitor in machine
language (Hex), if listed into the PET this can be saved on cassette
and run in the PET.

-~

JVLACHINE LANGUAGE MONITOR

(14 a 121 9t1 €.1D a4 aA aa 9E .-', ,', 31 ':::'0

~:'j40:3 30 '--J-t

~..:) 39 2'3 a'3 9a uft ft'3
fH1a 27 8D 1S a2 A9 a4 8D 1C
t,1418 132 R'9 07 85 7D A9 6E 85
04213 ''1(.:. A'3 43 85 21 D8 12 A9
.3428 42 ,'-, t:"'

':;)...i 21 D8 41'1 68 85 lE
043~3 68 85 iD 68 85 11~ 68 8S
~,438 1£ 68 69 FF r=,C'"

u...i 1'3 68 69
(14416 FF c'c:- 11'1 BA 86 IF 58 2e ~'--'

e448 F'~' .:.. e4 A6 21 A'3 2A 2e 22
1645a 06 A9 C'':!

...i.:.. 85 aD De 2B A9
€)458 a0 t::,c:::-

\...'-J CA 85 aD 8S aA 2a
0460 F2 04 A9 2E 2a D2 FF A6
.346:::: 20 E0 02 F0 e4 E0 83 D8
0470 a6 20 3A 86 2e 37 06 20
04r{E~ '30 06 (:*] 2E F0 F'3 (:9 2e
0480 Fa F5 A'-' .:::. 07 DD 82 €IS D0
1:.1488 €IF AS 28 ,-,r;:-

O...i aE 86 28 ED
[149£1 aA 05 48 BD 12 €IS 48 60
04'38 eA la E'3 A'3 3F 20 D2 FF
164A0 4(: C'..., 84 38 A5 13 ES 11 ...if

04Ae ,-,t..::" ,=, ~ 16E AC'" ") 14 E5 12 A8 €IS
i34B0 BB 6a ri'" 11 8'" ' .. ' 1'3 AI:" ... 1 12
04£:=: :=:5 lA 6a ,-.C'"

0·_: 21 A0 8e 28
.34(:0 3A £16 B1 11 20 13 06 28
.34(:8 04 21 D0 F1 68 20
04D0 SE 86 98 eD A:::. e0 81 11
e4D8 (:1 11 Fe 0S 68 68 4(: 9B
[14Ef1 04 2ft F7 134 (:6 21 60 A9
i:J4E8 iB ,-,C'"

J=,...) 11 A9 80 85 12 A9
04F0 85 68 A9 eD 4(: D2 FF E6
04F8 11 De 86 E6 12 D0 02 E6
0500 eA 6e 3A 3B 4D 47 58
e5e8 4(: 53 0S €IS e5 05 05 05
8510 06 86 (:1 B1 2(: 5E D7 FD
aS18 9E 9E 28 58 43 20 20 53
052f1 c;- . .,

'.11::- 2ft 41 43 28 58 52 20
tlS28 59 C'':)

... >..:.. 20 53 50 A5 0D De
aS38 86 20 F2 04 20 37 06 28
8538 37 06 A2 00 BD 1A 05 28
8540 I>2 FF E8 E8 13 D0 F5 20
0548 F2 04 A2 2E A9 3B 28 22
0550 06 2ft 37 06 28 08 06 20
0558 E7 04 20 BB 04 Fe 4D 28
0568 90 06 20 4F 86 ge 4S 20
8568 3F 86 28 98 86 28 4F 06
8578 90 3D 20 3F 06 A0 08 B9
0578 4A 87 30 06 20 D2 FF (:S
0580 D8 F5 29 7F 20 D2 FF 20
0588 2A F3 F0 28 A6 eA D0 1(:
0590 20 A3 84 '30 17 20 F2 84
05'3:3 A .. · .. .:::. 2E A9 3A 20 22 86 28
0:'H0 06 28 84 86 A9 8S 28

-5A-

t15A8 BB 84 F8 DB 4C 57 84 4C
85B8 9B 84 28 SE 86 28 4F 86 MACHINE LANGUAGE MONITOR (Continued)
85B8 98 83 28 B2 04 28 E7 84
05(:0 D0 8A 20 SE 06 28 4F 06
05(:8 98 E5 A9 88 85 21 28 98
8SD0 06 20 (:F 84 D8 F8 F8 D4
85D8 20 (:F FF (:'3 0D F8 8C (:9
05E0 20 D0 CC 28 4F 86 '38 83
05E8 20 B')

0:.. 84 A6 1F 9A AS 1A
05F0 48 AC::: ~. 19 48 A5 1B 48 AS
05F8 1(: A6 1D A4 1E 40 A6 1F
(168f1 '3A 4(; 8B C3 A2 01 D8 02
0608 A2 09 BS 18 48 BS 11 28
0610 13 06 68 48 4A 4A 4A 4A
061E: 20 2B 86 AA 68 29 €IF 28
0620 2B 86 48 8A 28 D2 FF 68
0628 4"~ "'. D'-' '" FF 18 6'3 86 69 F8
0630 90 02 69 06 69 3A 68 20
0638 3A 06 A9 28 4·:: D2 FF A2
0648 ~32 BS 10 48 BS 12 95 18
0648 68 95 12 CA D0 F3 60 28
0650 5E 06 90 02 85 12 28 SE
0658 06 90 8'-' '" 8S 11 68 A9 00
066£1 85 €IF 20 90 06 C9 28 D0
0668 89 20 90 06 (:9 20 D8 0E
0670 1'-' ,;:I 60 20 8S 06 0A 8A 8A
0678 0A 85 €IF 28 90 86 28 85
0688 06 05 €IF 38 68 C9 3A 88
0688 2'3 €IF 28 98 02 69 88 68
06'30 20 (:F FF C9 8D D8 F8 68
8698 68 4C 57 04 4C 9B 84 28
06A8 90 06 A9 88 85 EE 8S FA
06A8 A9 23 85 F9 28 SE 86 29
06B0 0F 8J F1 28 90 86 A2 88
06B8 20 (:F FF C9 2C F8 55 C9
06(;0 0D F0 8B Ea 18 F8 F1 95
06(;8 23 E6 EE E8 D8 EA AS 28
~36D0 (;'3 06 D8 C8 A2 88 8E 8B
06D8 02 AS F1 D8 83 4C 9B 84
06E0 (:9 03 B0 F9 28 67 F6 28
£16E8 3B F8 20 FF F3 AS EE F8
06F0 88 20 95 F4 D8 a8 4C 9B
86F8 04 20 AE FS F8 F8 28 4D
8788 F6 28 22 F4 28 8A F8 28
0788 13 F9 AD 0C 82 29 18 D8
8710 ES 4C S7 84 28 4F 86 AS
8718 11 85 F7 AS 12 85 F8 28
072f1 (:F FF C9 20 F0 F9 C9 0D
0728 F0 A4 (;9 2C F0 83 4C 9C
0730 06 20 4F 86 AS 11 8S ES
0738 AS 12 85 E6 AS 28 C9 86
8740 F8 92 A2 0a 28 B1 F6 4C
8748 57 04 aD 2a 20 28 28 28

-5B-

513 CLR: PR INT"l"~/I ; : POKE 245,6: PR INT
109 PR IN TilTH I S PROGRAM TES TS YOUR REFLEXES B 'f"
299 PRINT"MEASURING YOUR REACTION TIME. WHENEVER"
309 PRINT"THE SCREEN IS CLEARED HIT ANY CHARACTER-"
41313 PRItH"'y'OUR REACTION TIME IN SECONDS WILL BE"
S90 PRINT"DISPLAYED--WHEN THIS DISSAPPEARS HIT"
609 PRINT"ANOTHER KE'i (AN'i KEY WILL DO) AND SO ON-"
659 FOR 1=1 TO 151313: NEXT: PR INT TAB (15) "I:aGET READY"
709 FOR 1=1 TO 2500: NEXT: PR INT"L'~" : POKE 245,11
8139 PRItH:PRINT TAB(l1)"(I:iHIT ANY I<EY NOW!!!)":GETA$,A$d'1$,A$,A$,A$,A$:GOTO
1090 FOR 1=1 TO RND(1)*2ae0+750:GET C$:NEXT:PRINT""'~";
l1e0 T=T I : FOR 1=1 TO 500: GET C$: IF C$(}'"' THEN 1500
120e NEl<: T : PR IN T "l"~" : POKE 245) 10 : PR IN T
1300 PRINT"1;1 'IOU SHOULD HAVE TYPED A CHARECTER WHEN ";
135e PRINT"I:i
1400 PRINT"I:=I THE SCREEN WAS CLEARED
142e FOR 1=1 TO 100e:NEXT
1425 FOR 1=1 TO 40: PR ItH"1ia ";: NEXT
1430 PRINT"1;1 (STAND B't FOR M()RE INSTRUCTIONS)
1440 FOR 1=1 TO 10e0: GETC$: IF C$(}"" THEN 1500
141e NEXT:GOTO 50
1415 GOTO 50
15e0 Tl=TI-T:PRItH""'~"; :POKE 245.11
1530 FOR 1=1 TO 25e0:GETC$:IF C$(}"11 THEN 1500
1550 PRINT:POKE 226,11
16130 PRINT INT(CT1/60*1000)+.5)/1000:GOT01000

READY.

-6-

II'
I

II'
)

II

111313

~cornmodore PET ™

The following programs on cassette are now available from Commodore and shortly
its dealers. Each program uses 8K of RAM unless otherwise specified.

DIET PLANNER AND BIORHYTHM
Diet Planner (by Les Palanik) determines your ideal weight and computes the
number of calories needed each day to maintain that weight or reduce to that
weight. Biorhythm displays a chart of the intellectual, emotional and ~
physical biorhythmic cycles.

Part 321002 $14.95 USA
$15.95 CDA

TARGET PONG AND OFF THE WALL
Target Pong. Insert paddles in the path of a fast moving ball to deflect the
ball into a target. The secret is to use the fewest number of paddles and the
least time to hit the target just once. Off ~ Wall is exactly the opposite.
Here the secret is to use as many paddles as you can without hitting the ~
targets. And just to make the gaine more di.fficult., there are many targets in
this game.

Part 321003 $ 9.95 USA

$10.95 CDAB BASIC BASIC
Basic Basic (by Ralph James and Ron Lodewyck) is a tutorial program introducing
you to the BASIC language. Thoroughly interactive; your PET will teach you how
to operate your PET! Basic Basic is written by two very experienced college ~
professors. The topics covered include line numbers, variables, strings, arrays,
and the use of the various commands such as LIST, RUN, and SAVE. Also basic
keywords will be explained and used such as PRINT, READ/DATA, INPUT, IF/THEN,
GOTO, and FOR/NEXT. Fifteen chapters, six sample programs ••• and homework
assignments. Uses just 4K of RAM memory. ~

Part 321005 $14.95 USA
$15.95 CDA

~~s B Galaxy Games (by Peter Ruetz). Maneuver your space ship while firing at the
enemy, and at the same time avoid hitting a star. In one game, you're firing
at fixed targets. In the other game, you're firing at a spaceship that's being
piloted by an obviously drunk astronaut1

Part 321006

MORTGAGE

$ 9.95 USA .,.
$10.95 CDAV

Mortgage computes the payment amount, given the principal, interest rate and
term of the loan. For any payment period it computes the amount that is
principal and the amount that is interest (amortization schedule) and gives
the interest, principal, and total amount paid to date.

Part 321007

SPACE FIGHT

.$14.95 USA
$15.95 CDA

Space Fight (by Leonard K. Sweatman).
player game.

Fire missiles ~t each other in this two

Part 321010 $ 9.95 USA

~

$10.95 I!:DA ~

'IJ -7- P19789

COMPUTER FACTORY, INC. 485 LEXINGTON A VE. (BET. 46 & 47) NEW YORK, NY 10017

488 PARALLEL

IEEE 488 TO PARALLEL OUTPUT PORT

The 488/Parallel provides a flexible uni-directional interface from an IEEE 488 bus to any device with a

TTL compatible, 8 bit parallel port with handshake. It is contained on a single printed circuit board designed

to plug directly into the interface slot of any Centronics printer except Model 779. It is optionally available

mounted in an attractive cabinet for use with the Centronics 779 or with other manufacturers' (e.g. Data
Products, Integral Data, etc.) equipment.

Users of the Commodore Pet, Hewlett Packard computers, or intelligent instruments will find in this

product an economical and effective method for connecting to their systems any of the many peripherals

which have a parallel interface. Expensive optional adapters can be avoided while the handshake protocall
allows data transfer to occur at the peripheral's maximum rate.

Convenient, on board dip switches tailor the signal polarities, device address (full 5 bit), and pulse durations

to those required by your application. The I EEE capabilities supported are acceptor handshake, listener, and
interface clear.

The unit comes fully documented and with a 90 day guarantee.

PRICE LIST

488/Parrallel Pet -

488/Parallel Pet -

OPTIONS

Pet to Centronics printer interface complete, assembled and tested with neces
sary cabling

$225

Interface mounted in cabinet with connectors to Pet and 1 device (specify

CE IA or microribbon connectors)

$255

Power supply (not req'd when used with Centronics printers)

lEE E/488 connector instead of Pet connector

IEEE/488 connector in addition to Pet connector

AVAILABLE SOON

Bi-directional capability

DEALER INQUIRIES INVITED

-8-

U

S

E

R

p

o

R

T

VERT.

•
HORIZ.

VIDEO

•
GRND.l

ATTACHING A VIDEO MONITOR TO PET

I.C. = 74LS~2
1 SPARE GATE

11'\1 4148 etc.

COMPOSITE
r------1IJ--_e VIDEO

OUT

This I.C. requires +SV on pin 14. Pin 7 is
ground () connect a 1 uF TANT. capacitor
between pins 14 and 7. observing polarity

Above is a simple circuit which takes the horizontal drive,

vertical drive and video waveforms from the PET User Port and

converts them to composite video suitable for driving an RF

modulator or a straightforward monitor. The circuit requires

a 5 volt power supply and this may be obtained from a 2nd

cassette socket which has a few milliamps available at 5 volts.

There are no particular pOints to watch out for when constructing

this circuit. Lay-out is not critical. In the unlikely event of

the horizontal hold of your display devioe misbehaving, adjust

the value of the 1.SK resistor. This will alter the horizontal

sync. pulse width.

DELAYS

Quite a few people have asked how to put delays into

programs. Here are two common methods:

l~ FOR A = 1 to l~~~ : NEXT this will cause a delay

of approximately 1 second

l~ FOR A = 1 to 2~~~ : NEXT this will cause a delay

of approximately 2 seconds etc.

l~ T::TI

2~ IF TI - T < 6~ THEN 2~

Lines l~ and 2~ cause a delay of approximately one second

and work as follows:

Line l~ sets the variable T equal to the real time jiffy

clock TI (a jiffy is 1/6~ of a second)

Line 2~ tests to see whether 6~/6~ of a second have elapsed,

if not the program returns to the beginning of line 2~ and

checks again.

Here is a small program you might like to try which uses

delays involving the real time clock in an interesting manner.

REArI)' •

5 PRINT"KEY IN A NlJrHiER ",,;
It T=f:A$:""
2. GETK$:IFK$:""THEN21
31 T=TI:60TD6f
4. GETK$
5. IFTI-T)6tTHEN71
61 IFK$<>""THENPRINTK$;:AS=A$+K$:T=Tl:GOT04f
65 60T041
71 IFA=.THENPRINT"t";:A=UALCA$):GOT011
a. PRINT":"AtVAL(A$)

RUllY.

- '0-

PLOTTING

It is possible, with very little effort, to address locations

on the screen using simple XY co-ordinates. Below we have

a program that uses a simple formula that enables one to do

this.

READY.

5 DATA12,15,22,5.12,25.33
10 PRINT""
20 PI=3.14159265
30 FORA=0T04.PI STEP(4*PI)/39
40 Y=INT(SIN(A)*12+12):X=X+l
50 GOSUB80
60 NEXT
70 FORA=33568T033574:READZ:POKEA,Z:NEXT
75 60T075
80 POKE«24-YI*40+3276B)+X,46:RETURN

REAllY.

The line that does the actual XY co-ordinate conversion is

line 8~. For the sake of clarity line 8~ has been made a sub-

routine but the formula is so compact that in some cases,

including this one, it is not necessary. Line 5 and 7~ should

be included when you test this program out but may be omitted

subsequently_ X has a range of ~-39 and Y has a range of

~-24.

-1{-

INPtl'I"l'ING

It is worth pointing out that commas and colons act as

delimiters in input strings, eg.

l~ INPUT A $.:·1 A $ If this program is run and

you type HOWEVER, I THINK the machine will accept HOWEVER

and print the error message EXTRA IGNORED. The same will

happen if you use the : in similar circumstances. If you

wish to include either of these characters in an input

statement enclose your typed INPUT in quotes. Many people

must have been annoyed by the way BASIC will abort if the

return key is pressed when the machine is waiting on an

INPUT statement and no data has been typed in.

It is possible to arrange an input statement so that it

will never do this. The method is as follows:

(note1" means CURSOR RIGHT and'" meaRS CURSOR LEFT)

l~ INPUT "-+.... * .. + 'f- " J A

When this input statement is encountered the user must type

a number in reply, anything other than a number, including

no entry at all, will cause the machine to return to the

input statement with the appropriate message. Symbols other

than * can be used where required.

- 12.-

DATA FILE ERRORS

There is a bug in the file handling routine which causes

data to be written on the tape prematurely, not allowing

for cassette motor start up time.

This is temporarily curable by keeping the motor running

whilst the tape buffer is being filled, or by starting

the motor when the buffer is almost filled.

The method of turning on the motor is to change a bit in the

appropriate PIA register. The location of the PIA register

is 59411 and the correct byte to place in that register is 53.

Therefore the syntax for turning on the cassette motor is

PIKE 59411,53. This should be done either every time PRINTH=

is used or just before the buffer is full. Using the latter

method involves PEEKING location 625 which is the buffer

pointer. When this pOinter approaches 191 which is the size

of the buffer, turn on the motor. The relevant locations of

bytes for the second cassette port are 59456 and 223 for STOP

and 2~7 for START.

-13-

DATA FILE ERRORS (coot.)

A problem with opening files to write on either built-in cassette #1, or
external cassette #2, has been discovered. When a file is opened, garbage
will be written out instead of a proper data tape file header. Without this
header I it is impossible to open the tape file for reading.

You may not have encountered this problem previously I because it is
disguised by having loaded a program on the cassette prior to writing a data file.
In this mode I the start address of the buffer with the header information is
initial ized properly but cassette data file operation still could be random.

Fortunately I there is a software patch you can implement in your BASIC
program to force the open for write on tape to work every time.

Before opening to write on #1 cassette:

and on #2 cassette:

POKE 243,122
POKE 244,2

POKE 243,58
POKE 244,3

Locations 243 and 244 contain the 10 and hi order bytes respectively of
the address of the currently active cas~ette buffer. The start address of buffer
#2 is $33A which is 3 / 58 ($3=:=3,$3A=58) in double byte decimaL Similarly
cassette #1 is $27A <$2=2, $7A=122 >.

TAPE HEAD CARE

It has been noted that the READ/WRITE head in the PET

cassette deck has the annoying habit of magnetising itself

after a remarkably short period of operation. It is in fact

possible to partially erase your tapes by up to 15% after only

15 or 2~ passes over the head. The most convenient way to

deal with this problem is to demagnestise the tape head very

frequently. ie every couple of days with a demagnetising

cassette. AMPEX market quite a good one for about £3.-

USEFUL ADDRESSES

On the following page you will find an extensive map of

the PET memory. This list is "home" generated and not

from CBM U.S. so may contain slight inaccuracies, but all

the major buffers and ram areas are correct. Also here are

some common PIA addresses and how to use them.

User Port - data register 59424

User Port Data Direction 59426

DATA REGISTER ADDRESS
59471

DATA DIRECTION REGISTER
59459

The major portion of the user port consists of 8 connections

at the rear of the PET. Whether these connections are used

for INPUT or OUTPUT is up to the programmer. These 8 wires

may be used as either input or output. Before using this

8 bit port you must first configure these wires as inputs or

outputs. This is done by writing a byte to the data direction

register at address 59459. In the example above bits ~, 1,

3 and 7 are configured as outputs. Bits 2,4,5 and 6 are

configured as inputs. The bit that you see in the data direction

register is generated by poke 59459, 139. In order to test a

particular bit being used as an input in the data register

USEFUL ADDRESSES (CONT.)

(59471) one must peek 59471 and apply a "mask" in order to

mask out unwanted bits. For instance to examine bit 2 we

would use the expression PRINT PEEK (59471) AND 4. If the

result of this expression is ~ then bit 2 of the data

register (59471) has been held at ~ volts by the outside world.

-Ib-

-...J
I

flI9j~fI¢f2'2
flfl'fl'5
fI~A-flI9j5A
flfl'5C
flfl'5E
flfl'5F
fl'fl'7A-flf"7B
GJiJ7C-007D
flI9j7E-¢f2'7F
flI9j8f"-flf"81
flI9j82-flf"83
~84-~85
f"fl'86-¢f2'87
flI9j88-flfl'89
~8A-f"f"88
~8C-f"fl'8D
~92-fl'fl'93
fl'fl'94-f"f"95
flI9j96-flI9j97
flfl'AE-f"f"AF
¢f2'8fl'
f"fl'81
~82
~83
~84
f"f"85
flf"88-f"f"Cfl'
fl'¢f2'2-
f"f"C9-f"f"CA

-flfl'D9
flI9jE¢--
~El-fl'fl'E2
fl'fl'~3-fl'fl'E4
~E5-fl'f"E6
~~EA

~smE

JUMP,USER ADDRESS
CURSOR COLUMN
BASIC INPUT BUFFER
BASIC INPUT BUFFER POINTER

PET MEMORY MAP

CURRENT RESULT TYPE (FF) STRING (¢~) NUMERIC
" " "(80) INTEGER(~)FLOATING POINT

START OF BASIC STATEME~S
START OF VARIABLE TABLE
END OF VARIABLE TABLE
START OF AVAILABLE SPACE
BOTTOM OF STRINGS (MOVING DOWN)
TOP OF STRINGS (MOVING DOWN)
TOP OF MEMORY ALLOCATED FOR BASIC WORKING AREA
CURRENT PROGRAM LINE NUMBER

" " " " SAVED BY END
" " POINTER'SAVED BY END

DATA STATEMENT POINTER
CURRENT VARIABLE SYMBOLS
CURRENT VARIABLE STARTING POINT
POINTER ASSOCIATED WITH BASIC BUFF TRANSFER
EXPONENT + S8~)
MANTISSA MSB)

I,) __ (FLOATING POINT ACCUMULATOR)
")

LSB)
SIGN OF MANTISSA (0 IF ZERO) (+ IF POS.) (- IF NEG.)
DYADIC HOLDING AREA
START OF ROUTINE FOR FETCHING NEXT BASIC CHARACTER
PROGRAM POINTER
END OF CHARACTER FETCH
SCREEN POSITION ON LINE
POSITION OF LINE START
CURRENT TAPE BUFFER POINTER
END OF CURRENT PROGRAM
QUOTE MODE (~~ IF NOT IN QUOTE)
NUMBER OF CHARACTERS IN FILE NAME

I

0()

fl}¢EF'
~F~
~fi'Fl
~F3-~F4
~F5
~F6
~F7-~~F8
~F9-~~FA
~FC
~FD
~FE
~FF-IFF
~2~fi'-~2~2
~2~3
~2~4
~2~5-~2~6
~2~7
~2~8
~2~9
~2~
~2~
~2~D
~2~E-c;216
~219-~21A
fi'2lB-~21C
~223
flJ225
,,228
~242-~24B
~24C-{tY255
{tY256-{tY25F
~262
~265
flJ268
flJ26C
flJ27~
flJ273

GPIB FlLE~
GPIB COMMAND
GP IB DEVICE'#
START OF TAPE BUFFER
CURRENT SCREEN LINE~
RUNNING CHECKSUM OF BUFFER
POINTER TO PROGRAM DURING VERIFY,LOAD
FILENAME STARTING POINTER
SERIAL WORD
NUMBER OF BLOCKS REMIA~ING TO WRITE
SERIAL WORD BUFFER
BASIC STACK ETC.
CLOCK H.M.S.
MATRIX COORDINATE OF LAST KEY DOWN (255 IF NONE)
SHIFT KEY STATUS (1 IF DOWN)
JIFFY CLOCK
CASSETTE 1 ON SWITCH
CASSETTE 2 ON SWITCH
KEYSWITCH PIA
LOAD 0, VERIFY 1
STATUS
NUMBER OF CHR IN KBD BUFFER
KYBD INPUT BUFFER
HARDWARE INTERRUPT VECTOR
BREAD INTERRUPT VECTOR
KEY IMAGE
CURSOR TIMING
TAPE WRITE
LOGICAL NUMBERS OF OPEN FILES
DEVICE NUMBERS OF OPEN FILES
R/W MODES OF OPEN FILES (COMMAND TABLE)
GPIB TABLE LENGTH
PARITY
POINTER IN FILENAME TRANSFER
SERIAL BIT COUNT
TAPE WRITE COUNTDOWN
LEADER COUNTER

JJ

~275
~276
~279
~27A-~339
~33A-~3F9
~4~~

-lFFF
-"7FFF

8~~8FFF
9~-BFFF
C~-E~~
E~85-E27D
E294-E66A
E66B-E684
E685-E75B
E75C-E7D4
E8~-EFFF
~86-F226
F346-F82C
F82D-Fd15
F038-FFB2
FFCiS-FFED
FFFA-FFFF

~ IF FIRST HALF BYTE MARKER NOT WRITTEN
~ IF SECOND " " " " "
CHECKSUM WORKING WORD
BUFFER FOR CASSETTE .. 1

"It "-'2
START OF BASIC STATEMENTS
END OF AVAILABLE RAM (81(VERSION)
END OF AVAILABLE RAM EXPANSION
VIDEO RAM
AVAILABLE ROM EXPANSION AREA
MICROSOFT "8K" BASIC
SYSTEM SET UP
VIDEO DRIVER
INTERRUPT HANDLER
CLOCK UPDATE,KYBD SCAN(60HZ INT.)
KYBD ENCODING TABLE
PIA'S
GPIB HANDLER
FILE CONTROL
TAPE CONTROL
DIAGNOSTICS
JUMP VECTORS
65¢2 INTERRUPT VECTORS (NMI NOT USED IN ORIG. VERSIONS)

MACHINE CODE ENVIRONMENT

If you wish to write machine code programs in your PET and

do not wish to have BASIC trampling allover them here is

a suggestion:

When the PET is first powered up a test pattern is written

into and read back from the RAM in ascending address order.

When this routine discovers a location which does not read

back properly it presumes that it has run out of RAM and

displays XXXX bytes free. At this point it makes a note of

where it thinks the 'top of memory' is •. A quick glance at

the memory map will show that BASIC program text is stored

from location 1¢25 upwards and strings are stored from the

top of the memory downwards which means that in any normal

circumstances there is nowhere in the PET main memory where

you can hide your machine code routines.

If however, the first thing you do after powering up the PET

is to alter the top of memory pointer to say 6¢~ everything

from 6¢¢1 upwards, as far as PET is concerned, does not exist.

e.g. strings will be stored from 60¢¢ downwards etc. and mach

ine code programs can be safely put in location 6¢¢1 upwards.

This pOinter is held in locations 134 and 135 constituting a

16 bit pointer with 134 being its lower 8 bits. This is a

binary pointer which means that we must convert your 6~¢¢

or whatever to binary before POKING locations 134 and 135 with

the information. In the standard 8K PET 134 will be ~ and 135

MACHINE CODE ENVIRONMENT (cont.)

will be 32 (32 x 256 = 8192) Remember that 1~25 bytes are

used for house keeping by the PET (8192 - 1¢25 = 7167)

However to give the PET a ceiling of 6~ we convert 6~~

into binary which gives us POKE 134, 112 and POKE 135, 23.

LIFE FOR YOUR PET

Here is a good example of what can be done in machine code

in the PET. It is the game of "LIFE" by John H. Conway of

Cambridge. If one attempts to write a Commodore PET screen

size (l¢¢¢ cell) version of LIFE in BASIC it can take ~p

to two or three minutes per generation. This program performs

two generations per second. In order to use it type in a

listing in the form of data statements and load in the machine

code with a small BASIC routine being careful to fill in

the gaps between 1928 (HEX) and 193~ and also 1954 and 197~

with no-ops. Below is a listing of the documentation provi

ded by the author.

LIf£ fOR YOUR PET

Since this is the first time I have
attempted to set down a machine lang
uage program for the public eye, I will
attempt to be as complete as practical
without overdoing it.

The programs I will document here are
concerned with the game of "LIFE", and
are written in 6502 mach ine language
specifically for the PET 2001 (8K ver-
51on). The principles apply to any
6502 system with graphic display capa
bility, and can be debugged (as I did)
on non-graphic systems such as the
KIM-l.

The first I heard of LIFe was in Martin
Gardner's "Recreational Mathematics"
section in Scientific American, Oct-Nov
1970; Feb. 1971. As I understand it,
the game was invented by John H. Con
way, an English mathematician. In
brief, LIFE is a "cellular automation"
scheme. where the arena is a rectang
ular grid (idel'!lly of infinite size).
Each square in the grid is either occu
pied or unoccupied with "seeds", the
fate of which are governed by relative
ly simple rules, i.e. the "facts of
LIFE" . The rules are: ,. A seed sur
vives to the next generation if and on
ly if it has two or three neighbors
(right. left, uP. down, and the four
diagonally adjacent cells) otherwise it
dies of loneliness or overcrOWding,
as the case may be. 2. A seed is born
in a vacant cellon the next genera
tion if it has exactly 3 neighbors.

With these simple rules, a surprisingly
rich game results. The original Scien
tific American article, and several
subsequent articles reveal many curious
and surprising initi91 patterns and
resul ts. I understand that there even
has been formed a LIFE: group, complete
with newsletter, alth~')ugh I have not
personally seen it.

The game can of course be played man
ually on a piece of graph paper, but it
is slow and prone to mistakes, which
have usually disasterous effects on the
final results. It would seem to be the
ideal thing to put to a microprocessor
with bare-bones graphics, since the
rules are so simple and there are es-

sentially no arithmetic operations in
volved, except for keeping track of ad
dresses and locating neighbors.

As you know, the PET-2001 has an excel
lent BASIC interpreter, but as yet very
little documentation on machine lang
uage operation. My first stab was to
write a BASIC program, using the entire
PET display as the arena (more lbout
boundaries later), and the f1 lIed
circle graphic display character as the
seed. This worked just fine, except
for one thing - it took about 2-1/2
minutes for the interpreter to go
through one generation! I suppose I
shouldn't have been surprised since the
program has to check eight neighboring
cells to determine the fate of a par'
ticular cell, and do this 1000 times to
complete the entire generation (40x25
characters for the PET display).

The program following is a 6502 version
of LIFE written for the PET. It needs
to be POKE t d Into the PET memory,
since I have yet to see or discover a
machine language monitor for the PET.
I did it wi th a simple BASIC program
and many DATA statements (taking up
much more of the program memory space
than the actual machine language pro
gram!). A routine for assembling, and
saving on tape machine language pro
grams on the PET is sorely needed.

The program is accessed by the SYS com
mand. and takes advantage of the dis
play moni tor (cursor control) for in
serting seeds, and clearing the arena.
Without a serious attempt at maximizing
for speed. the program takes about 1/2
second to go through an entire genera
tion t about 300 times faster than the
BASIC equivalent r Enough said at)out
the efficiency of machine language pro
gramming versus BASIC interpreters?

BASIC is great for number crunching,
where you can Quickly compose your pro
gram and have plenty of time to await
the results.

The program may be broken down into
manageable chunks by subroutining.
There follows a brief description of
the salient features of each section:

MAIN (hex 1900)

In a fit of overcaution (since this was
the first time I attempted to write a
PET machine language program) you
will notice the series of pushes at the
beginning and pulls at the end. I de
cided to save all the internal regis
ters on the stack in page 1, and also
included the CLD (clear decimal mode)
just in case. Then follows a series of
subroutine calls to do the LIFE genera
tion and display transfers. The zero
page location, TIMES, is a counter to
permit several loops through LIFE be
fore returning. As set up, TIMES is
initialized to zero (hex location 1953)
so that it will loop 256 times before
jumping back. This of course can be
changed either initially or while in
BASIC via the POKE command. The return
via the JMP BASIC (4C 8B C3) may not be
strictly orthodox, but it seems to work
all right.

INIT (hex 1930) and DATA (hex 1938)

This shorty reads in the constants
needed, and stores them in page zero.
SCR refers to the PET screen, TEMP is
a temporary wor'king area to hold the
new generation as it is evolved, and
RCS is essentially a copy of the PET
screen data, which 1 found to be neces
sary to avoid "snow" on the screen dur
ing read/write operations directly on
the screen locations. Up, down, etc.
are the offsets to be added or subtrac
ted from an address to get all the
neighbor addresses. The observant
reader will note the gap in the addres
ses between some of the routines.

TMPSCR (hex 1970)

This subroutine quickly transfers the
contents of Temp and dumps it to the
screen, using a dot (81 dc.c) symool for
a live cell (a 1 in TEMP) and a space
(32 dec) for the absence of a live cell
(& 0 in TJ:;MP).

SCRIMP (hex 198A)

This is the inverse of TMPSCR, quickly
transferring (and encoding) data
from the screen into TEMP.

RSTORE (hex 19A6)

This subroutine fetches the initial
addreSSeS (high Clnd low) for the SCR,
TEMP, and RCS memory spaces.

NXTADR (hex 19BD)

SinCe we are dealing with 1000 bytes of
data, we need a routine to increment to
the next location, check for page cros
sing (adding 1 to the high address when
it occurs), and Checking for the end.
The end is signa led by returning a 01
in the accumulator, otherwise a 00 is
returned via the accumuiator.

TMPRCS (h~x 19E6)

The RCS address space is a copy of the
screen, used as mentioned before to
avoid constant "snow" on the screen if
the screen were being cont inually ac
cessed. This subroutine dumps data
from TEMP, where the new generation has
been computed, to RCS.

GENER (hex lAOO)

We finally arrive at a subroutine where
LIFE is actually generated. After
finding out the number of neighbors of
the cur'rent RCS data byte from NBRS,
GENER checks for births (CMPIM $03 at
hex addr. lAOE) if tLI.: cell was prev
iously unoccupied. If a birth does not
occur, there is an immediate branch to
GENA DR (the data byte remains 00). If
the cell was occupied (CMPIM 81 dec at
hex lA08), OCC checks for survival
(CMPIM $03 at hex lA1A and CMPIM $02 at
hex lAlE), branching to GENADH when
these two conditions are met, otherwise
the cell dies (LDAIM $00 at hex lA22).
The results are stored in TEMP for the
1000 cells.

NBRS (hex lA2F)

NBRS is the subroutine that really does
most of the work ~nd where most of the
speed could be gained by more efficient
programming. Its job, to find the tot
al number of occupied neighbors of a
given RCS data location, is complicated
by page crossing and edge boundaries.
In the present version, page crossing
is taken care of, but: edge boundaries
(left, right, top, and bottom of the
screen) are somewhat "strange". Above
the top line and below the bottom line
are considered as sort of forbidden re
gions where there should practically
always be no "life" (data in those re
gions are not defined by the program,
but 1 have found that there has never
been a case where 81's have been pres
ent (all other data is considered as
"unoccupied" characters). The right
and left edges are different, however,

and lead to a special type of "geom
etry". A cell at either edge is not
considered a~; special by NBRS, and so
to the right of a right-edge location
is the next sequential address. On the
screen this is really the left edge
location, and one line lower. The in
verse is true, of course for tft ad
dresses of left-edge locations Topo
logically. this is equivalen, to a
"helix" . No special effects df this
are seen during a simple LIFE evoi~~ion
since it just gives the impression of
disappearing off one edge while appe~r
ing on the other edge. For an object
like the "spaceship" (see Scientific
American articles), then f the path
eventually would cover the whole LIFE
arena. The fun comes in when a config
uration spreads out so much that it
spills over both edges, and interacts
with itself. This, of course cannot
happen in an infinite universe, so that
some of the more complex patterns will
not have the same fate in the present
version of LIFE. Most of the "bl ink
ers", including the "glider gun" come
out OK.

This 40x25 version of LIFE can undoubt
edly be made more efficient, and other
edge algorithms could be found, but 1
chose to l~ave it in its original form
as a benchmark for my first successful
ly executed program in writing machine

A Brief Introduction
to the Game of Life

One of the interesting properties of
the game of LIFE is that such simple
rules can lead to such complex acti v
ity. The simplic ity comes from the
fact that the rules a~ply to each in
dividual cell. The complexity comes
from the interactions between the indi
vidual cells. Each individual cell is
affected by its eight adjacent neigh
bors, and nothing else.

The rules are:

1. A cell survives if it has two or

language on the PET. One confession.
however - I used the KIM-l to debug
most of the subroutines. Almost all of
them did not run on the first shot!
Without a good understanding of PET
memory allocation particularly in page
zero, I was bound to crash many times
over, with no recovery other than pul
ling the pI ug. The ac tual BASIC pro
gram consisted of a POKING loop with
many DATA statements (always save on
tape before running!).

2. A cell dies from overcrowding if it
has four or more neighbors. . It dies
from isolation if it has one or zero
neighbors.

3. A cell is born when an empty space
has exactly three neighbors.

with these few rules, many different
types of activity can occur. Some pat
terns are ,sTABLE, that is they do not
change at all. Some are REPEATER,s,
patterns which undergo one or mor'(~
changes and return to the origin:d
pattern. A REPEATER may repeat as fast
as every other generation, or may have
a longer period. A GLIDER is a pattern
Wilich moves as it repeats.

three neighbors.
REPEATERS

• • • GLIDERS STABLE • • • • • • If . .. • • • • • • • • I • • • • • • • • .. . •

1900 LIFE ORG $1900

1900 BASIC • $C38B RETURN TO BASIC ADDRESS
1900 OFFSET • $OO2A PAGE ZERO DATA AREA POINTER
1900 DOT • eOO51 DOT SYMBOL = 81 DECIMAL
1900 BLANK • $0020 BLANK SYMBOL = 32 DECIMAL

1900 SCRL • $0020 PAGE ZERO LOCATIONS
1900 SCRH • $0021
1900 CHL • $0022
1900 CHH • $0023
1900 SCRLO f $0024
1900 SCRHO f $0025
1900 TEMPL • $0026
1900 TEMPH • $0027
1900 TEMPLO • $0028
1900 TEMPHO • $0029
1900 UP • $002A
1900 DOWN • $002B
1900 RIGHT f $002C
1900 LEFT • $0020
1900 UR • $002E
1900 UL • $002F
1900 LR f $0030
1900 LL • $0031
1900 N • $0032
1900 SCRLL • $0033
1900 SCRLH f $0034
1900 RCSLO f $0035
1900 RCSHO f $0036
1900 TMP • $0037
1900 TIMES * $0038
1900 RCSL • $0039
1900 RCSH * $003A

1900 08 MAIN PHP SAVE EVERYTHING
1901 48 PHA ON STACK
1902 8A TXA
1903 48 PHA
1904 98 TYA
1905 48 PHA
1906 BA TSX
1907 8A TXA
1908 48 PHA
1909 08 CLD CLEAR DECIMAL MODE
190A 20 30 19 JSR INIT
1900 20 8A 19 JSR SCRTMP
1910 20 E6 19 GEN JSR TMPRCS
1913 20 00 lA JSR GENER
1916 20 70 19 JSR TMPSCR
1919 E6 38 INez TIMES REPEAT 255 TIMES
191B DO F3 BNE GEN BEFORE QUITTING
1910 68 PLA RESTORE EVERYTHING
191E AA TAX
191F 9A TXS
1920 68 PLA

-:1..6-

1921 A8 TAY
1922 68 PLA
1923 AA TAX
1924 68 PLA
1925 28 PLP
1926 4C 8B C3 JMP BASIC RETURN TO BASIC

1930 ORG $1930

MOVE VALUES INTO PAGE ZERO

1930 A2 19 INIT LDXIM $19 MOVE 25. VALUES
1932 BD 3A 19 LOAD LDAX DATA -01
1935 95 1 F STAZX $lF STORE IN PAGE ZERO
1937 CA DEX
1938 DO F8 BNE LOAD
193A 60 RTS

193B 00 DATA :: $00 SCRL
193C 80 :: $80 SCRH
1930 00 :: $00 CHL
193E 15 :: $15 CHH
193F 00 :: $00 SCRLO
1940 80 :: $80 SCRHO
1941 00 :: $00 TEMPL
1942 1B :: $1B TEMPH
1943 00 :: $00 TEMPLO
1944 1B :: $1B TEMPHO
1945 07 :: $07 UP
1946 28 :: $28 DOWN
1941 01 :: $01 RIGHT
1948 FE :: $FE LEFT
1949 08 :: $08 UR
194A 06 :: $06 UL
194B 29 :: $29 LR
194C 27 :: $21 LL
1940 00 :: $00 N
194E ~8 :: $E8 SCRLL
194F 83 :: $83 SCRLH
1950 00 :: $00 RCSLO
1951 15 :: $15 RCSHO
1952 00 :: $00 TMP
1953 00 :: $00 TIMES

1910 ORG $1970

1970 20 A6 19 TMPSCR JSR RSTORE GET INIT ADDRESSES
1913 B1 26 TSLOAD LDAIY TEMPL FETCH BYTE FROM TEMP
1915 DO 06 BNE TSONE BRANCH IF NOT ZERO
1971 A9 20 LDAIM BLANK BLANK SYMBOL
1979 91 20 STAIY SCRL DUMP IT TO SCREEN
197B DO 04 BNE TSNEXT
1910 A9 51 TSONE LDAIM DOT OOT SYMBOL
191F 91 20 STAIY SCRL DUMP IT TO SCREEN
1981 20 BD 19 TSNEXT JSR NXTADR FETCH NEXT ADDRESS
19134. FO ED BEQ TSLOAD

-.:21-

1986 20 A6 19 JSR RSTORE RESTORE INIT ADDRESSES
1989 60 RTS

198A 20 A6 19 SCRTMP JSfl RSTORE GET IN IT ADDRESSES
198D B1 20 STLOAD LDAIY SCRL READ DATA FROM SCREEN
19BF C9 51 CMPIM DOT TEST FOR DOT
1991 FO 06 BEQ STONE BRANCH IF DOT
1993 A9 00 LDAIM $00 OTHERWISE ITS A BLANK
1995 91 26 STAlY TEMPL STORE IT
1991 FO 04 BEQ STNEXT UNCOND. BRANCH
1999 A9 01 STONE LDAIM $01 A DOT WAS FOUND
199B 91 26 STAn TEMPL STORE IT
199D 20 BD 19 STNEXT JSR NXTADR FETCH NEXT ADDRESS
19AO FO EB BEQ STLOAD
19A2 20 A6 19 JSR RSTORE RESTORE INIT ADDRESSES
19A5 60 RTS

19A6 A9 00 RSTORE LDAIM $00 ZERO A, X, Y
19AB AA TAX
19A9 A8 TAY
19AA 85 20 STAZ SCRL IN IT VALUES
19AC 85 26 STAZ TEMPL
19AE 85 39 STAZ RCSL
19BO A5 25 LDAZ SCRHO
19B2 85 21 STAZ SCRH
19B4 A5 29 LDAZ TEMPHO
19B6 85 21 STAZ TEMPH
19B8 A5 36 LDAZ RCSHO
19BA 81, 3A STAZ RCSH
19BC 60 RTS

19BD E6 26 NXTADR INCZ TEMPL GET NEXT LOW ORDER
19BF E6 20 INCZ SCRL BYTE ADDRESS
19C1 £6 39 INCZ RCSL
19C3 £8 INX
19C4 E4 33 CPXZ SCRLL IS IT THE LAST?
19C6 FO OC BEO PAGECH IS IT THE LAST PAGE?
19C8 EO 00 CPIIM $00 IS IT A PAGE BOUNDARY?
19CA DO OE BNE NALOAD IF NOT, THEN NOT DONE
19CC E6 21 INCZ TH:PH OTHERWISE ADVANCE TO
19CE E6 21 INCZ seRH NEXT PAGE
19DO E6 3A INCZ RCSH
1902 DO 06 BNE NALOAD UNCONDITIONAL BRANCH
19D4 A5 34 PAGECH LDAZ SCRLH CHECK f'OR LAST PAGE
19D6 C5 21 CMPZ SCRH
19D8 FO 03 BEQ NADONE IF YES, THEN DONE
19DA A9 00 NALOAD LDAIM $00 RETURN WITH A=O
19DC 60 HTS
19DD A9 01 NADONE LDAIM $01 RETURN WITH A=l
19DF 60 RTS

19E6 ORG $19E6

19E6 20 A6 ',9 TMPRCS .JSR RSTORE IN IT ADDRESSES
19E9 B1 26 TRLOAD LDAIY TEHPL FETCH DATA FROte rEMP
19EB DO 06 BNE TRONE IF NOT ZERO TH~h ITS ALIVE

-.2 8 -

, 19ED A9 20 LDAIM BLANK BLANK SYMBOL
19EF 91 39 STAIY RCSL STORE IT IN SCREEN COPY
19F1 DO 04 BNE NEWADR THEN ON TO A NEW ADDRESS
19F3 A9 51 TRONE LDAIM DOT THE DOT SYMBOL
19F5 91 39 STAIY RCSL STORE IT IN SCREEN COpy
19F1 20 BD 19 NEWADR JSR NXTADR FETCH NEXT ADDRESS
19FA Fa ED BEQ TRLOAD IF A=O, THEN NOT DONE
19FC 20 A6 19 JSR RSTORE ELSE DONE. RESTORE
19FF 60 RTS

1100 20 A6 19 GENER JSR RSTORE IN IT ADDRESSES
1A03 20 2F 1A AGAIN JSR NBRS FETCH NUMBER OF NEIGHBORS
1A06 B1 39 LDAIY RCSL FETCH CURRENT DATA
1108 C9 51 CHPIM DOT IS IT A DOT?
lAOA FO OC BEQ OCC IF YES, THEN BRANCH
lAOC A5 32 LDAZ N OTHERWISE ITS BLANK
lAOE C9 03 CMPIM $03 SO WE CHECK FOR
lAl0 DO 14 BNE GENAOR A BIRTH
1112,A9 01 BIRTH LDAlM $01 IT GIVES BIRTH
11 14 91 26 STAIY TEMPL STORE IT IN TEMP
1A16 DO OE BNE GENAOR INCONDITIONAL BRANCH
1118 A5 32 OCC LOAZ N FETCH NUMBER OF NEIGHBORS
lA1A C9 03 CMPIM $03 IF IT HAS 3 OR 2
lAlC FO 08 BEQ GENA DR NEIGHBORS IT SURVIVES
11 1E C9 02 CMPIM $02
1A20 FO 04 BEQ GENA DR
1A22 A9 00 DEATH LDAIM $00 IT DIED!
1124 91 26 STAlY TEMPL STORE IT IN TEMP
1A26 20 BD 19 GENA DR JSR NXTADR FETCH NEXT ADDRESS
1A29 FO 08 BEQ AGAW IF 0, THEN NOT DONE
1A2B 20 A6 19 JSR RSTORE RESTORE INIT ADDRESSES
112E 60 RTS

1A2F 9B NBRS TYA SAVE Y AND X ON STACK
1A30 48 PHA
1131 BA TIA
1132 48 PHA
1A33 AO 00 LDYIM $00 SET Y AND N = 0
1A35 84 32 STYZ N
1A31 A2 08 LDXIM $OB CHECK 8 NEIGHBORS
1A39 B5 29 OFFS LDAZI OFFSET -01
1A3B 10 15 BPL ADD ADD IF OFFSET IS POSITIVE
1A3D 49 FF EORIM $FF OTHERWISE GE'I' SET TO
1A3F 85 31 STAl TMP SUBTRACT
1141 38 SEC SET CARRY BIT FOR SUBTRACT
1A42 A5 39 LDAl RCSL
1A44 E5 31 SBCl TMP SUBTRACT TO GET THE
1A46 85 22 STU CHL CORRECT NEIGHBOR ADDRESS
1A48 A5 3A LDAZ RCSH
1A4A 85 23 STAl CHH
114C BO 11 BCS EXAM OK, FIND OUT ~HAT'S THERE
lA14E C6 23 DECZ CHH PAGE CROSS
lA50 DO 00 BNE EXAM UNCOND. BRANCH
1152 18 ADO CLC GET SET TO ADD
lA53' 65 39 lDCZ RCSL ADD
lA55 85 22 STAZ CHL STORE THE LOW PART

-.2'1 -

lA57 A5 3A
lA59 85 23
lA5B 90 02
lA5D E6 23
lA5F Bl 22
lA6l C9 51
1A63 DO 02
lA65 E6 32
1A67 CA
lA68 DO CF
lA6A 68
lA6B AA
lA6C 68
1A6D A8
lA6E 60

LDAZ RCSH FETtd THE HIGH PART
STAZ CHH
BCC EXAM OK, WHAT'S THERE
INCZ CHH PAGE CROSSING

EXAM LDAIY CHL FETCH THE NEIGHBOR
CMPIM DOT DATA BYTE AND SEE IF ITS
BNE NEXT OCCUPIED
INCZ N ACCUMULATE NUMBER OF NEIGHBORS

NEXT DEX
BNE OFFS NOT DONE
PLA RESTORE X,
TAX
PLA
TAY
RTS

This program was prepared by:

Dr. F. H. Covitz,
Deer Hill Road,
Lebanon,
N.J. 088'33,
USA.

Y FROM STACK

LIFE FOR ,YOUR PET (cont.)

Below we have a way of actually getting our HEX OP-CODES

into the PET. Lines l~~-2~~ read the data statements

convert them to decimal and POKE them sequentially into the

memory. The first data item is expected to be the starting

point of the loading in decimal and the last data item is

expected to be an asterix. The beauty of this method is that

you can use the screen edit facility on the PET for inserting

and deleting codes. When you have inserted your own data

statements from line 3~~ upwards, save the entire performance

prior to running as machine language routines rarely work

first time around and the PET is quite likely to hang up and need

turning off and on. The data statements in the example are for the

game of LIFE. In the original version listed on the previous

pages, 256 generations must occur before the control ret~rns

to BASIC. I have modified the program slightly in the begin-

ning in order to allow the stop button to halt the binary

routine. If you think you have loaded the following program

correctly type RUN and press RETURN. This loads the binary

program. When the machine prints READY, clear the screen. Type

say eight shifted Os in a row in the middle of the screen

followed by SYS (64¢>¢) (which is 19P~H in decimal) and press

return. GOOD LUCK!

100 READL
110 READ Ai:C:::LEN(Ail:IFAi="t"THUiLNLI
120 IFC 10RC>2THEN201l
130 A=AS[(A.)-48:B=AS(RIGHHiAi,1 1 \-48
140 N=B+7*(B>9)-IC=2'*116*(A+7*IA 91))
150 IFN,00RN)255THEN200
160 POKEL,N:L=l+l :GOTOl10
2U PRINTIBYTE"LI:::[IAi"J ?77 I1 :END
300 DATA6400
310 DATA 08.48,8A,48.98,48,BA,8A,48,D8,20,3~,19.2~,8A,19,2e.E6.19,2~,00,lA
320 DATA20,70.1 9 ,A9,FF,CD,12,E8,F0,F0,4C,8B,C3,AA,68,28,4C,8B,(3
330 DATA EA,EA,EA,EA,EA,EA,EA,A2,19,BD,3A,19,95,IF,CA,D0.F8,6~,00,80,00,15,00

340 DATA80,00,IB,00,IB,D7,28,01 ,FE,D8,D6,29,27,00,E8,83,00,15,0~,00
350 DATAEA,EA,EA,EA,EA.EA,EA,EA.EA,EA.EA.EA,EA.EA,EA.EA,EA,~~, A.EA.EA,EA,EA
360 fi A T A E A, E A, E A , E A , E A , 2" , A 6 , 1 9 , B 1 • 20 , [10 , "6 • A 9 , 2" • 9 1 ,20 , [I \.~ • (.14 , A 9 , '3 i , 91 ,~ 0 , 20
370 DATA BD,19,F0,ED,20,A6,19,60,20,A6,19,Bl ,20,C9,51,F0,06,A9,00,91 ,~o.Fe
380 DATA04,A9,01 ,91 ,26,2",BD,19,F0,EB.20,A6.19,60,A9,00,AA,A8,85,20,85,26,85
390 DATA39,A5,25,85,21,A5,2 9 ,85,2 7 ,A5,36,85,3A,60,Eo,26,E6,20,E6,3 9,E8,E4
400 DATA33,F0,0C,E0,00,D0,0E,E6,2 7 ,E6,21 ,E6,3A,D0,06,A5,J4,C5,21 ,F0,0J,A9,00
410 DATA 60,A9,01 ,60,EA,EA,EA,EA,EA,EA.20,A6,19.Bl ,26.D0,16,A1,20,91,J9,D0
420 D A T A 04, A 9, 51 , 91 ,39,20. B Ii , 1 9 , F 0, ED • 20 , A 6 , 1 9 • 6'; , 20 , A 6 , 1 't , 20 , 2 F , I,;, B 1 • J 9, C ((
430 DATA51 ,F0,0C,A5,32,C9,0J,D0.14,A9,01.91,26,D0,0E,A~S,32,C9,llJ,F0,08,C9,02
440 DATAF0,04,A9,00,91,26,20,BD,t9,F0,D8,20,A6,19,60,9B.48,8A.48,A0.00.84,32
450 DATAA2,08,B5,29,10,15,49,FF,B5,3?,38,A5,39,E5,37,85,22,A5.3A,85,23,B0,1 1
460 DATAC6,23,D0,0D,18,65,39,B5,22,A5,3A,85,23,90,02,E6,23,Bl,22,C9,51,00,02
470 DATAE6,32,CA,D0,CF,68,AA,6B,AB,60,*

REA[lY.

Mr. J. Smith of 38 Claremont Crescent, Croxley Green, Rickmansworth,
Herts. WD3 3QR

wrote in: The error in the definition of arc cos X should) I

feel
J

be corrected. A possible version is: - (£)

ACS X = ATN(SQR (l-Xt2)/X) + (l-SGN(X»*TI/2

this correctly gives (unless x=¢) arc cos (-~.5) as

con~ ...

- 32-

YOUR LETTERS (cont.)

your formula gives

arc cos <-,.S} as _6¢o this would be incorrect

in e.g. a "cosine rule" problem.

As you expect PET to be used in educational establish

ments for solving trig. problems, I think it important

to put this right.

o Note that if X is negative

l-SGN{X) = 2

& if X is positive

l-SGN(X) = ¢
this ensures that a correct multiple of i\ is added to the

arctangent. Also, would it not be better to suggest ••

P = l8¢/1l (before FNS is used)

DEFFNS(V) = SIN (VIP) etc.

for the user defined functions?

HERE ARE SOME COMMENTS FROM MR. M.J. SMYTH who isth.
Senior Lecturer, Department of Astronomy, Royal Observatory,
Edinburgh EH9 3HJ.

Using ,BASIC and the IEEE 488 bus, PET can input 40

numbers per second from a 3% digit voltmeter (Hewlett

Packard 3437A). Also using BASIC, the user port can

generate an output trigger (e.g. to a measuring device)

-3"6-

YOUR LETTERS (cont.)

within about l¢ ms of an input trigger. We have not

yet tried using assembler. But the BASIC speeds make

possible very interesting applications in equipment

control and real-time data processing.

