
commodore COMMODORE BUSINESS MACHINES LIMITED
3370 PHARMACY AVENUE, AGINCOURT, ONTARIO M1W 2K4
TELEPHONE (416) 499-4292 - CABLE ADDRESS : COMTYPE
TELEX NUMBER 06-525400

TABLE OF CONTENTS

1. Additional BASIC Commands

2. Input/Output Command Para~eters
2.1 Logical Files
2. 2 Device Numbers
2.3 Secondary Addresses
2.4 File Names

3. Tape Cassette Operation for Files
3.1 File Recording Technique
3.2 File Headers
3.3 Tape Buffers
3.4 Multiple Files

4. Logical File I/O Operations: General

5. Opening File
5.1 Examplesof Open Statements
5.2 LOAD
5.3 VEiITFY
5.4 SAVE
5.5 IEEE-488 OPEN Considerations

6. Tape File Operation Model
6.1 Open For Write or Tape From PET
6~2 Open for Read From Ta~e to PET

7.
7.1
7.1.1
7.2
7.3
7.4
7 .5

8.
8.1
8.1.1
8.2
8.3
8. 3.1

9.
9.1
9.2
9.3

Data INPUT: General
Input - String and Variable Inrut
Example of Input# Statement
GET# - Character Transfers
Tape INPUT .
IEEE Device INPUT Sequences
INPUT Buffer Limitations

Data OUTPUT: General
PRINT#
Examples of PRINT# Statement
IEEE .. AB8 Bus OUTPUT
CHfl Co:nr.land
Examp 1 es of r.11D

Closing File
Example of Close Statement
Tape File Closure .
IEEE-488 Named Device Closure

Ikwll'- C

10. Error Detection: General
10.1 Status ~Jord (ST)
10.2 IEEE Device Errors
10.3 Tape Unit Errors
10.4 Examples of ST Use

II. Polling Techniques

12. Default Parameters

1. ADDITIONAL BASIC COMMANDS

By this time, the user is probably familiar with the use of
the commands INPUT and PRINT. INPUT permits the entry of data
from the input keyboard and PRINT permits the output or display
of data. These commands are common to all forms of BASIC.

To add flexibility to the PET computer system, several commands
have been added to classical BASIC in the PET and future
Commodore products will take advantage of the resulting extra
capability. In general, enhanced flexibility of data interchange
between the PET and peripheral devices is possible, thanks to the
use of these extra commands.

To communicate with any device, a combination of the additional
commands is used:

(1) OPEN/CLOSE
(2) PRINT#
(3) CMD

(4) INPUT#
(5) GET#

Open or close logical file.
Write data from PET to I/O device.
Same as PRINT# but leaves IEEE
device on bus after execution of
command.
Read data from I/O device to PET.
PET accepts one character from
I/O device.

2. INPUT/OUTPUT COMMAND PARAMETERS

In order to use the additional commands referred to in Section I,
four parameters must be taken into consideration:

(1) Logical file number (L)
(2) Device number (D)
(3) Secondary addres.s (SA)
(4) File-name (FN)

These parameters can appear, for example, when using the OPEN#
command in the form of the statement:

OPEN#L,D,SA,FN

These parameters are defined and explained in sections 2.1
through 2.4. The default values for these parameters are
listed in Tables 12-1 and 12-2 of the Appendix.

2.1 LOGICAL FILES

Files are used to store and retrieve data, as for example in
the case of a magnetic tape or disc file. A convenient
extension of this idea is to regard any device which can

receive and/or generate data as a logical file. To the PET
operating system, data might just as well have come from, or
be going to, a storage system such as magnetic tape.

For example, imagine that an external digital voltmeter is set
up so that it can transmit voltage readings upon request to the
PET via the IEEE data bus. Sometime during the "voltmeter
program'i the programmer will have to open a file and assign a
10Qical file number to the voltmeter. Once this has. been done, the
PET can use a 'read' command (INPUTH) that uses the Jogical
file number to refer to the voltmeter. When no further data
is required from the voltmeter, the logical file can be closed.

More generally, the advantages offered by the use of logical
files are:

(a) Every device number-secondary address combination
can be associated with its own unique logical file
number within a program.

(b) Multiple files within a single device can be referred
to by means of distinct logical file numbers. This
approach is to be used in the newly developed disc
storage system for the PET.

(c) Once a logical file number has been defined in an
OPEN statement within a program, only this single
number need be used in the following input/output
statements. This eliminates the need for further
restatement of device number, secondary address
(where used) and file name (where used).

Although it is permissible to identify and use many logical
files in a given program, the P~T operating system has to keep
track of the files that are currently in use in the program.
The greatest number of files that can be controlled by the
PET at one time is ten. Note that in the present version of
the operating system, exceeding ten will result in loss of
PET operation; this can be restored by switching the computer
off and on. A logical file number can be any integer in the
range 1 through 255.

2.2 DEVICE NUMBER

All devices which the PET communicates with are assigned device
numbers. The first four of these are reserved for the following
peripherals:

2.3

DEVICE
NUMBER

o
Default - 1

2
3

DEVICE

Keyboard
Cassette 1 panel mounted.
Cassette 2 add-on.
Video screen.

All other devices are automatically assumed by the PET to be
IEEE devices, and control is transferred to the device which
will have been allocated a number within the range 4 through
3~. Except in special cases, a specific number would be
allocated to each IEEE device to allow the PET and a particular
aeVlce to communicate using the parallel IEEE-488 bus.

On many IEEE devices, the allocation of the device number is
made by means of a switch, or in the case of less expensive
products, by the connection of jumpers.

SECONDARY ADDRESSES

The concept of a secondary address may be new to those people
who have never worked with the IEEE bus. The use of a secondary
address permits an intelligent peripheral to function in
anyone of the number of modes. For example, in the PET

·2020 printer, there are six secondary addresses:

SECONDARY
ADDRESS

Default - 0
1
2
3
4
5

OPERATION

Normal printing.
Printing under format statement control.
Transfer data from PET to format statement.
Set variable lines per(page.
Use expanded diagnostic messages.
Byte data for programmahle character.

In short, by changing the secondary address used to communicate
with a given physical device, its operating characteristics
can be totally changed, if so desired. Many of the IEEE
devices have their own particular secondary address conventions
which must be followed. Specific data on these conventions
can be obtained by consulting the manual for that particular
device.

2.4

3.

The PET tape units have a special set of secondary address
rules:

SECONDARY
ADDRESS

Default - 0
1
2

OPERATION

Tape is being opened for 'read'.
Tape is being opened for 'write'.
Tape is being opened for 'write'
with an 'end of tape' header being
forced when the file is closed.

The secondary address can have values over the range
o through 31.

FILE NAMES

In random storage dev; ces where there is more than one fi 1 e to
be accessed, the use of names to identify files is mandatory.
In the case of tapes, a file name is desirable, even if there
is only one file on the tape, since it facilitates the
identification of tapes.

For the two cassette tape units of the PET, a file name may
be any combination of up to 128 characters.

When a file name is searched for, it is matched on an
ascending character basis. Assume that an eight character

, file name COUNTING was specified when writing, if desired
this could be searched for with an abbreviated name such as
COU. The first file header that is found-with these three
consecutive characters will then be opened and positioned orr.
In principle, this could include unwanted file names such
as COUNT or COUNTRY, as well as the wanted COUNTING.
It is, therefore, advisabl~ to specify the complete file
name in order to avoid errors.

For other devices which use named files, the individual
description of the device should be consulted in order to
ascertain the specific requirements for file name usage.

TAPE CASSETTE FILE OPERATION

The PET devotes special attention to the two tape cassette
units that can be attached to it. The tape units are
specially modified so that the PET has control over the
motor movement of the cassette. If can also sense when the
play, rewind, or fast forward buttons have been pushed;
this is done by means of a single switch mounted in the tape
unit. Note that the same switch is used to sense all three
buttons, and if ~ of the three is pushed, the PET will think

3.1

that you pushed the 'play' key and will respond accordingly.

Because of the type of mechanism used in the tape unit, the
user must rewind, fast forward, stop, load and eject tapes.
He must also put the unit into the write mode by pushing
the record button either simultaneously with, or before
the 'play'button is pressed.

The PET has total control over the movement of the tape once
the appropriate buttons have been pushed to engage the motor.

Messages displayed throughout the program will tell the user
when it is necessary for him to initiate the function of
play or record. Logic dictates the times when the user
should rewind and fast forward.

The two tape units of the PET are handled independently,
and the various control lines permit the reading of data
from cassette #1, the reading of data from cassette #2,
motor control of cassette #1, motor control for cassette #2
and a common write line.

RECORDING ~1ETHOD

The data structure embodied in tape files will ensure the
maximum memory utilization and maximum reliability of
recording.

To accomplish this, the PET records data at two audio
frequencies in two consecutive blocks of data. All of the
data is totally repeated, and by means of error checking
techniques incorporated in the PET software, it is possible
for most audio dropouts to be corrected by the operating
system utilizing the redund~nt data stored in the second
data block.

In order to correct for (a), the fact that tape units record
at different speeds, and (b), the normal drag characteristics
of tapes, a speed correlation technique is used during
reading. To correct for the individual start/stop characteristics
on the tape and synchronize correctly between each block
on tape, a single tone is written between blocks. This
signal is used to synchronize both position and speed of
the tape. Varying lengths of tone are used at the beginning
and between the data blocks of the tape. By writing about
ten seconds of the tone on each opening of a file, the PET
automatically corrects for normal ·leader. Individual tape
blocks are separated by shorter tone durations.

3.2

3.3

FILE HEADERS

An important assumption underlying the tape system design
was that the user would often want to record more than one
file of data on tape. In order to facilitate this and
to allow for proper label checking, the first physical data
recorded on tape for any operation is a file header. This
file header looks exactly the same as the normal data block,
except that the first character of every block on tape
contains an identification character which enables the
operating system to differentiate between program blocks,
data blocks, file headers and end of tape headers.

The PET allows for up to 128 characters of a file name to be
stored in the file header. This is the name which is
searched for and matched on in the various OPEN/CLOSE
options.

TAPE BUFFERS

Another basic premise in the design of the tape operating
system was that the user would want to write tape independently
of what is occurring on tape at a given moment. This is
accomplished in the operating systen by permanently assigning
a block of memory as a data buffer for each cassette tape.
A 192 character buffer is located at decimal address 634
for cassette #1, followed by a 192 character buffer at

. decimal address 826 for cassette #2. The tape file header
is written into the buffer first and then written on tape.

Data files are accumulated in the tape buffer until 192
characters are exceeded, then the contents are either written
on tape for write, or if the program is reading tape, the
next block of data is read, into the buffer. Tape fil e
headers and all data blocks are, therefore, 192 characters
long.

Tape buffers are not used in the case of program files, since
these are written onto the tape directly from the memory in
which the program resides. In order to accommodate the
variable memory location, the file header for a program file
contains the beginning and ending address for the program.
The full program is written onto tape in the usual form of
two consecutive redundant blocks.

3.4 MULTIPLE FILES

In order to have multiple files on tape, the user needs the
ability to add files to a tape and also know when the tape
is at its end~ It is, therefore, important that the operatin"
system give an 'end of file' and end of tape indication.

In the case of data files, and 'end of file' marker is
appended after the last data character. This is available
to the user in a status word on reading; the 'etld of file'
marker is automatically inserted when a write file is
closed.

In the case of program files, because all the data is always
contained in a single block, the end of the block signifies
the end of the program.

To signify that the end of tape has been reached, a special
separate file header is written. When this is encountered
during a search for files, the PET automatically stops the
tape and indicates 'file not found' to the user. A typical
multiple file tape could contain first a data file, then a
program file. followed by an 'end of tape l header as
illustrated in the example of Figure 3-1.

Data file

Program fil e

FIGURE TAPE SYSTEM

I 1 Osccooo s of leader

192 character file header block

2 seconds of leader

192 character data block

2 seconds of leader

last block of this file

10 seconds of leader

192 character file header block

_, 2 oeconds of 1 eader

10 byte
.J.-

32K byte

program block

I 2 seconds of leader

optional 192 characters
end of tape header

Figure 3-1. An exa of multiple file structure.

4.

5.

LOGICAL FILE INPUT/OUTPUT OPERATIONS: GENERAL ORIENTATION

These operations can be subdivided into three steps:

(1) Open the file - tell the PET everything it
needs to know about the file.

(2) Read data from, or write data to the logical
files.

(3) Close the file - allow the PET to clear up the
device and terminate the active file.

These steps are discussed in detail in Sections 5. through 9.

OPENING FILES

In order to tell BASIC about the file you want to operate on,
it is first necessary to open the file. This is done by the
following statement:

OPEN Logical file, device, secondary address, file name

5.1

More specifically, the statement consists of the command
OPEN followed by the logical file number, then the device
number to which the file is assigned, then the secondary
address data (if any) communicated during the interaction
of BASIC with the file, and last the name of the physical
f i 1 e (if any).

This statement, or expression, is interpreted by BASIC, and
could, therefore, use computed logical file numbers, device
numbers or secondary address data. This capability is
extremely useful when handling multiple file de~ices such
as discs.

The keyword 10PEN I and the logical file numbers are essential
in order to open a file; that is address a device in
preparation for a tread l (INPUT#) or a 'write l (PRINT#).

The device number is optional; if not entered, the default
value III will be used (see Section 2.3 and Appendix).

A file name is optional, though preferred. for the tape units;
a name would be essential for a disc storage unit, however.

EXAMPLES OF OPEN STATEMENTS

The statement OPEN 1,2,1 is interpreted by the operating
system as saying:

PARAMETER
(L) Logical file #1 has been opened.
(0) Logical file #1 has been assigned to tape unit #2.
(SA) Tape unit #2 has been instructed to write on tape.
(FN) A file name has not been assigned to the tape record.

Similarly OPEN 3 is interpreted as saying:
PARAt·1ETER
(L) Logical file #3 has been opened.
(D) Logical file #3 has been assigned to tape unit

#1 (default Ill).
(SA) Tape unit #1 has been instructed to read

from tape (default 10').
(FN) No file name referred to.

If the PET 2020 printer is assigned 14' as a device number,
then OPEN 12,4,1 is interpreted as:

5.2

PARAMETER
(L) Logical file #12 has been opened.
(0) Logical file #12 has been assigned to device

#4.
(SA) Printer has been instructed to print under

format statement control (see Section 2.3).

(FN) File name not applicable.

NOTE: The current version of PET has a problem with OPEN
for tape files. The opening of the tape file .is automatic,
but the tape header may not always be written at the beginning
of the tape buffer; this implies that the operating system
does not always correctly initialize the buffer pointer.
For consistent and reliable operation of the tape file
header, the following statements should be used:

(1) For tape #1: POKE 243,122
POKE 244,2

(2) For tape #2: POKE 243,58
POKE 244,3

These should be written prior to each OPEN for write.

This problem will be resolved in due course as a set of
modified ROMs will shortly be available. However, the
two POKEs will not cause any PET malfunction, if the
new ROMs are installed.

LOAD

A special case of the OPEN command is the LOAD of a named
file; a LOAD is done with the following statement:

LOAD name, device number

The operating system automatically generates an OPEN using
the appropriate secondary addresses for 'load'. This open
causes the loading device to search for a program name. After
the program is found, it is automatically read from the
device and loaded into memory starting at an address
specified in the file header. Any reading errors on the first
pass through that program are automatically fixed on the second
pass, if possible.

At the end of the load cycle, a checksum of the total program
is made. If a checksum error, or if an unrecoverable read
error occurred, the operatinq system automatically prints
'?LOAD ERROR' and stops the load program.

5.3

If the program load was from direct mode, the clear function
is performed at the end of the load, thereby, initializing
all variables.

If the load is called from a program, then the PET treats
this load as an overlay. The new program is loaded into the
space used by the previous program but the values of all of
the variable are maintained from the previous program. This
allows for one program to call another and pass parameters
to the called programs.

.
The only restriction on this is that all called programs
must fit in the same, or less space as the first program.

Because BASIC totally replaces the current program, it is not
directly possible to have a single main program and several
subroutine overlays, however, by including the main program
with each overlay, the same effect is obtained with some
loss of speed.

The combination of the use of named files and overlays allows
the writing of very large structured programs of significant
complexity.

VERIFY

This instruction is a special case of LOAD. It should be
, used after every program SAVE.

The command causes BASIC to go through all the steps of
a program LOAD, with the exception that the data does not get
loaded into memory, but, instead, gets compared with memory.
If eith~r first or second pass errors occur, the PET wi)l

type out I ?VERIFY ERROR I W;'~Ch means that tne. pr~gram should
be saved again before it is lost. On verify, the status
word has the following meanings (see Section 10.1 for
explanation of meaning):

CODE
-4-

8
16
32

MEANING
short block
long block
any mismatches
checksum ERROR on tape

5.4

5.5

SAVE

'SAVE' also performs an automatic open and close. The SAVEis
specified by the statement:

SAVE name, device number

If the physical device is one of the two tape units, the
operating system automatically initiates a tape header and
opens a tape file with the appropriate name. The file header
is w~itten with the beginning and ending address:

If the device is an IEEE-488 device, a special open message
is sent indicating that the PET is sending a program file.

The program is then written directly from its memory locations
to the tape or the IEEE-488 bus.

If the SAVE is on tape, a checksum is computed and also
saved and then the whole program is, again, written to give
the redundant recording. At the end of the program, the
tape is automatically stopped and positioned for the next
data.

1EEE-488 SPECIAL FEATURES

In the tape, the program beginning and ending address are
stored in and retrieved from the tape file header.

In order to more efficiently use the IEEE-488 data, the
starting address of the program ;s sent as-the first two
bytes of data on a SAVE and retrieved from those positions
on a LOAD.

lEEE-488 OPEN CONSIDERATIONS

If the OPEN command selects a device which has a value of
4 Ol~ more, the operating system assumes that the device is
an IEEE-488 device.

If the OPEN does not specify a file name, then nothing is
communicated on the lEEE-488 bus. However, if a file name
is specified, the operating system sends a listen attention
sequence to the device number specified in the OPEN along
with a secondary address which is the OR of hexadecimal
"F0" and the secondary address specified in the OPEN
statement.

6.

6.1

6.2

Commodore supplied peripherals. such as the floppy disc
storage system,' will use this secondary address and also
the file name which is then transmitted to the listeninq
device,in order to transfer data later to the open file.

TAPE FILE OPERATION MODES

Tape files can be opened for two distinct purposes:

(a) In order to write from the PET onto tape.
(b) In order to read from tape to the PET.

OPEN FOR \~RITE ON TAPE FROM PET

The flow diagram of Figure 6-1 outlines the PET-user
interaction and PET function when opening a file for write
on tape. The initial block shows that there are two ways
of opening the file:

(1) OPEN for write - data tape.
(2) SAVE - write a program tape.

Note that if the tape file is opened directly, that is from
the keyboard, then the message 'writing name' ;s displayed.
If the file is opened under program control, and the ~lay
and record' buttons are depressed previously, then no message

. appears on the screen; in this manner, any display material
placed there by the current program is not disturbed.

OPEN FOR READ FROM TAPE TO PET

The flow diagram of figure. 6-2 outlines the PET-user
interaction and PET function when opening a file for readtng
on tape. The initial block shows that there are two ways
of opening the file:

(1) OPEN for read data tape.
(2) LOAD program into memory.

Note that if the file is opened directly, that is from the
keyboard, then the messages PRESS PLAY, SEARCHING FOR NAME
and FOUND NAME are displayed. If LOAD was used, then the
BASIC variables of the loaded program are initialized.

If the file is opened under program control and provided
that the PLAY button had been pressed previously, no messages
appear on the video screen in order not to disturb material
displayed by the current program. Initialization of the
BASIC variables does not occur.

header
goes
to

tape

Figure 6-1. Open for write from PET. (PRINT#, cr·1D) or SAVE /oP)= operating
system takes over. ~

1-- -- ----- ... -----,
; open for

read
, or
I load L-. ___ . ___ ,

r --·-I ---]---: /~""' message: nq/ f'pl ay" "
button >

l"press playll ', down /
l ------r--- . '" · ... 3 'yes

r -wa ittfor 1 I 5\11 cn ; ______ _
~ closure 1

r
~;sag~-~- direct d'i~e~t""

. searching f.E+----...... - or progra~
for . "Qperatiop'/ ... :r:- ~'Y

rfea<r19T-dim
lacter block . • -- ",~ -- ... _J

I .,' "-

I n all f i1 e '"",-
.~ 1---</ header '>

'... ./
"', ... ,found /'

"]/ yes

/" "
-'-

,/direct" direct _' or DrOQram-.. opera non .-- -'-
?

program

1 _ . _______ .. _._. __

.. ---.. ~. /~~
tape // -

(y:
? file not I

found
erl~or

'----~--'-

Q£)

-- ---------,
message:

"found name"

Figure 6-2 OPEN for read to PET (INPUTH) or load.
OP Operating system takes over.
B BASIC takes over

/""
, dire'rit...ditect

"'-or nro g ra5----,
~er}j.t.iO~~
I ~, mess-a-g-e-: I program - "loading
i pame"

.L -
r

read in
full

program
I t _ a. me'!10ry

r init;~lheI BASIC'-- I
variables I

J

7.

7.1

7.1. 1

DATA INPUT

The use of the word 'ir.put' in this context implies input
of data to the PETfro~ any device.

INPUT# - STRING AND VARIABLE INPUT

INPUT# is the command used to initiate data transfer from
1/0 devices to the operating system. The statement format
is:

INPUT# logical file number, A,A$,B,B$, etc

Where A,A$,B and B$ are numerical and string variables to be
inputted (read) from the selected logical file to the
operating system one character at a time.

Because the rules for the BASIC interpreter apply to these
input statements, all carriage returns, commas, terminate
fields, nulls, preceeding blanks (except in strings), and
other control characters are automatically deleted.

It is not always possible to mix both numeric and alphabetic
data on an I/O device. If a numeric field is specified, only
numeric data in the standard from exoected.bY BASIC is
accepted, otherwise a '?BAD DATA ERROR' '
message is displayed.

If there is any ambiguity about the data coming in, the user
should input only to strings and then use the various string
manipulation commands to process the data into the appropriate
variables.

EXAMPLE OF INPUT# STATEMENT

If X represents a series of 50 numbers stored on a tape
file named 'vector' and we assume that the 'play' button has
just been depressed on tape unit #1. Then the following
program will read the 50. numbers one at a time and display
them on the video screen.

7.2

7.3

10 OPEN 1,1,0, 'VECTOR' Open logical file #1.
Assign file to cassette 1.
Open tape for 'read'.
Look for physical file
named 'VECTOR'.

20 FOR K=1 to 50 Read 50 numbers one at a
time from cassette 1.

30 INPUT#1,X

40 PRINT X

50 NEXT K

60 CLOSE 1

CHARACTER TRANSFERS - GET#

Display numbers on video
screen.

When fifty numbers have
been read, close logical
file #1.

Not all devices transfer data in a form which is acceptable
d;Y'ectly to BASIC. There is a series of binary data and
combinations which BASIC ignores and although many IEEE
devices do correctly respond with data formats which are

. acceptable to BASIC, not all do.

In addition, in some cases, it ;s desirable for the programmer
to have immediate access to characters as-they are transferred
to the system. GET# fetches from the IEEE-488, or a tape
device, a single character at a time, putting a character
in a field specified following the GET#. The form is:

GET# logical device, field

TAPE INPUT

When reading from the tape file, the data comes to the user
I/O independent. Each time BASIC starts on INPUT' or
GET# from a logical device which was opened for read on tape
1 or 2, a special subroutine is called, which initiates
tape INPUT.

7.4

As each character is requested from BASIC, it is fetched from
the appropriate tape buffer. Hhen the buffer is empty, the
tape INPUT routine suspends the user program and reads the
next data block from tape into the buffer and then transfers
the next character to BASIC. If a read error occurs, it is
noted in the status word.

When the end of file mark is encountered in the buffer, the
end of file position of the status word is set on and carriage
returns are forced automatically out until the command ;s
finished.

At the end of a command, BASIC calls another routine which
reinitializes the input to the keyboard and tells the end of
file operation that a command is complete.

lEEE-488 DEVICE INPUT SEQUENCES

The sequence that all INPUT# or GET#commands goes through
is the same. When the command is first encountered, the
IEEE-488 input initiation routine is called, which sends a talk
attention sequence to the device and secondary address which
was specified for that logical file in the open sequence.
At the end of the attention sequence, the PET establishes
itself in a listener mode and attempts to wait for a DAV
signal indicating a single character has been received.
If the DAV is received within 65 milliseconds, that character
'is handed to BASIC and/or to the other program calling the
lEEE-488 routine. Each time the IEEE-488 routine is called,
it will go through the same sequence of getting a single
character while waiting for a time out to occur. If the bus
does not respond in 65 milliseconds, then the IEEE-488 routine
will automatically terminate the sequence; giving a read
error in the status word ta indicate that it has terminated
the sequence.

If during the course of reading the character, the lEEE-488
routine senses an EOI line, it will indicate the end of
information in the status word and will continue to return
carriage returns, until the command it has been currently
operating under has been terminated. At the end of the
command, BASIC calls a termination subroutine which
reinitializes the device to the keyboard and sends an untalk
to the lEEE-488 bus, thereby, freeing the bus for the next
command.

7.5

8.

8.1

INPUT BUFFER lH4ITATIONS

Although data is transferred from the operating system one
character at a time, in order to edit, BASIC accumulates
these characters into an 80 column INPUT buffer. This
buffer must be terminated by a carriage return.

On current PETs, should more than 80 characters be read, the
operating system will malfunction, as the operating system
vadables are overwritten. The PET can be made to function
again by switching the line supply off and on ..

Although this problem will be resolved in future versions,
the 80 column limitation will still apply. This constraint
must be kept in mind when using tape and disc file systems.

This means that
carriage returns must be written on tapes, discs, or other
110 devices in such a way that not more than
80 characters per field are written.

If an 110 device sends more than 80 characters, the GET
command can be used to build your own string without running
into the buffer limitation.

DATA OUTPUT

. The use of the words 'print' and 'write ' refers to data
output from the PET to any device.

PRINT#

The command PRINT# must be. followed by the logical file
number, and then a comma to separate the data that would
fo 11 ow PRINT:

PRINT# logical file number, data

Data is transferred a single character at a time to the
physical device correlated with the logical file specified in
the relevant OPEN statement. Many of the file delimiters
such as commas are automatically deleted by BASIC; although
this does not greatly effect the printing, it should be
remembered that when reading back from tape or another 110
device that file delimiters must be forced. This forcing can
be done by inserting a CHR$(44) or "." between fields or by
only printing single fields in each PRWT# statement which
will force carriage returns between fields. Example:

instead of writing

PRINT# IF, A;B$;O$

which will be sent as:

AB$C

with no delimiters:

PRINTH IF, A; CHR$(44);B$;CHR$(44);C~

or:

PRINTH IF,AII,II;B$;II~II;C$

which will output:

or:

A ,B$,C$@

PRINT#lF, A
PRINTHlF, B$
PRHHnlF, C $

which will output:

A @ B$ @ C$@

Because BASIC always formats outputs to any devices as though
it were outputting to the screen, PRINTHlF, A,B has several
skip characters between the values of A and B, while A ; B
does not have any extra skips.

An exception to this rule is the tape where the first skip on
output is suppressed.

NOTE: Although both the INPUTH and PRINT# commands operate
in virtually the same way as their equivalent INPUT and
PRINT statements do in BASIC, the abbreviated command '?I
which can be used in place of PRINT, does not apply to PRINT#.
?# and PRINT# are recognized and reduced to two different
token characters when processed by BASIC. 7# will look like
PRINT# when listed but gives '7SYNTAX ERROR' when an attempt
is made to execute it.

8.1.1 EXAMPLES OF PRINT# STATEMENT

This program will print the series of numbers 1,2,3, ... 50,
one at a time on the PET 2020 printer.

10 OPEN 5,4,0

20 FOR K=1 to 50

30 PRINT#5,K

40 NEXT K

50 CLOSE 5

Open logical file #5.
Assign logical file #5 to device
#4 (2020 printer) in normal print
mode corresponding to secondary
address 10 1.

Print the series of fifty numbers
on printer.

Close logical file #5.

To write the above series of numbers on a cassette in tape
unit #2, only the OPEN line would have to be modified, if
the same logical file number were chosen:

10 OPEN 5,2,1

20 FOR K=l to 50

30 PRINT#5,K

40 NEXT K

50 CLOSE 5

Open logical file #5 "new line".
Assign logical #5 to device #2
(tape unit #2) with'a write
without "end of tape" designation
corresponding to secondary
address 111.

Record the series of fifty
numbers on tape.

Close logical file #5.

In the above cassette example, the data would be accumulated
in a 192 character buffer one character at a time. When the
capacity of the buffer is exceeded, then data entry is
suspended, the tape started, and the buffer contents
written to tape. The buffer is initialized to accept up to
192 characters and then the program is allowed to proceed.

8 2

NOTE: Not all tape units currently operate with the same
START/STOP characteristic as defined for the original tape
operating system. In order to obtain reliable operation
of the tape recorders, the 192 characters of the buffer
should be monitored by the program. Prior to transferring
192 characters. the programmer should turn on the appropriate
cassette motor and then wait for at least .1 seconds before
transferring the last character.

There are several ways to accomplish this. The simplest is
to just POKE 59411,53 for cassette #1 and POKe 59456,207
for cassette #2 after every print statement, this keeps the
motor on all of the time and eliminates the problem.

On the other hand, if your pro~rams have time consuming
functions like human input, sorting, or other long program
run times, you should not run the motor all the time, but
obtain the delay either putting a delay loop before each
print, or turning the motor off with a POKE 59411,61 for
cassette #1 or a POKE 59456,223 for cassette #2 before the
long function and turning it back on after it.

IEEE-488 BUS OUTPUT

The PRINT# command causes BASIC to call an output subroutine
which initializes an IEEE-488 device for output. The first
step in the command is that the PET reassigns its normal
output from the screen device to the phYSical device that was
chosen for the logical file in the open routine. A listen
command is sent on the IEEE bus to the physical device and a
secondary address specified for that logical file in the
OPEN.

BASIC then hands one character at a time to another sub
routine which proceeds to transfer that character over the
bus with the PET acting as a talker and all addressed
devices responding listeners.

When BASIC has finished the PRINT#, another subroutine in
the operating system is called and the PET sends an unlisten
command to the entire bus and restores the primary address
to the screen. This frees the whole bus for the next
operation.

This unlisten sequence also sends an EOI signal on the bus,
along with the last character sent from BASIC. To accomplish
this, each character is stored in a buffer crior to trans
mission by the IEEE routines and the previous character is sent

•

8.2

8.3.1

CMD COMMAND

Normally, each print command deals only with one logical device
and itt the end of the command the entire bus is unlistened.
In sane instances, it is advisable to have more than one
device on the bus; in order to facilitate this, the special
comnand CMO is provided. CMD is virtually identical to
PRINT#, except that at the end of the data transfer, the
unlisten routine is not called, thereby, leaving the device
on the bus as a listener.

The operating system continues to treat the last device to
be cOllunanded by CMD as the primary output dev; ce for BASIC.
PRINT or LIST commands are then directed to this primary
device, rather than to the video screen. More specifically,
the CMD of the printer device, followed by LIST, results in a
hard copy printed listing. instead of a video screen listing.
However, since neither the CMD nor LIST command terminate
bus operation for the device, a PRINT# is required to
term; nate a G1D command.

EXA~lPLES OF cl-m Cor1~1AN!)

To list:

OPEN 4-,4
Cr~D 4
LIST

PRINT#4

where 4 is the printer

will list just the same as the
screen. except on the printer.

to print and write to a disc at the same time:

* C~1O 4
PRINT#15 ,A, B.C

where 4 is open on the printer.
where 15 is the floppy disc

9.

9.1

will result in A,B, and C being stored on the floppy but
also being displayed on the printer.

To monitor an input device:

**CMD 4
INPUT#15,A,B,C

turn on printer
read from floppy

This will result in the data coming from the floppy being
transferred to A , Band C but also being printed as they
are being transferred.

* Must be given each time because PRINT# unlistens the bus.
** Need not be given each time, more code may be

included between the instructions.

CLOSING FILES

Any logical files which have been opened during a program
should preferably be closed when no longer required and in
the case of tape or disc files, must be closed before the
program ends. The following should be kept in mind:

(1) If the total number of logical files
currently open exceeds ten, then loss of
PET operation will result.

(2) If a logical file assigned to a tape unit ;s
not closed, no 'end of file' mark will be
recorded at the end of the physical tape file.
If this tape is then loaded into memory,
the PET will have no way of knowing the file
has ended, and if unwanted and erroneous
data is present from a previous recording,
it will also be read into memory.

EXAMPLE OF CLOSE STATEMENT

To close any file, the following simple statement is
sufficient:

CLOSE logical file

If it is required to close logical file number 5, then this
becomes:

CLOSE 5

9.2

9.3

10.

10.1

TAPE FILE CLOSURE

If a file had been opened on the tape, there are two
operations that occur, one an 'end of file' marker is
recorded in the next data character, then the tape buffer
is forced out onto the cassette.

If during the OPEN the 'end of tape' option was chosen,
an 'end of tape file' header block is also forced out on
the cassette.

lE[E-488 NAt1ED DEVICE CLOSURE

For lEEE-488 devices, which were opened with file names, a
special listener command sequence, with the special secondary
adrlress of hexadecimal E0 ORed with the secondary address
from the OPEN is sent. This allows devices such as disc
files to be closed by the peripheral controller.

ERROR DETECTION: GENERAL

The basic concept of the PET operating system is that the
user will be allowed to operate in a free-fonn format;
reading and writing on tapes, discs, printers, in the manner
that is most comfortable for him. Because I/O is totally
free-form, it is important that the operating system should

. have a means of informing the user when transmission errors
or end of data conditions occur. Sections 10.1 through 10.4
deal with error detection methods available to PET users.

ST I\TUS fJORD (ST)

In order to facil itate INPUT/OUTPUT operation error
detection, the PET uses the 'status word' concept in which
a byte in memory ;s manipulated by each of the ItlPUT/OUTPUT
operations for the PET, and can be sampled by the programmer
at any time by calling the function ST. Each bit in the
status word has a general meaning for all operations and a
specific meaniqfj for the individual I/O device. Table 10-1
shows the errors as a function of the ST word value for the
tape cassette units, IEEE read/write operations, tape
verify and load operations.

ST
ST BIT NUMERIC CASSETTE IEEE R/'{ TAPE VERIFY

POSITION VALUE READ + LOAD

0 1 'rime out on
write

1 2 'rime out on
read

2 4 Short block Short block

3 8 Long block Long block

4 16 Unrecover_ Any mi smat ch
lahle read
error

5 32 Checksum Checksum error
~rror

6 64 IF;nd of EOI line
!Pile

7 ,-128 End of Device not Fond of tape.
ape present

Table 10-1. Status Word (ST) values correlated with tape
cassette, unit and IEEE bus read/write errors.

10.2 ERRORS IEEE DEVICES
There are basically three errors that Can occur
during an IEEE-488 transfer. First, that the
entire hus does not respond to an attention
sequence. If this occurs, the IEEE-488 sub
routine sets the device not present (bit 7,
or -128), The PET als~ terminates the current
pro~ram with a$DEVICE NOT PRESENT ERROR. If the
bus resPonds correctly to the attention, but
when the PET goes to write the first character

ST BIT ST Nm1ERIC CASSETTE TAPE VERIFY
POSITION VALUE READ IEEE R/W + LOAD

a J Time out on write

1 ., Time out on read t-

. -- ~

2 4 Short block Short block

--

3 8 Long block Long block

--
4 16 Unrecoverable Any mismatch

read error

--
5 32 Checksum Checksum error

error

6 64 End of file EOI 1 i ne

.-

7 -128 End of tape Device not End of tape.
pr'esent

.------
Table 10-1. Status Word (ST) values correlated with tape cassette, unit
and IEEE bus read/write errors.

10.2 ERRORS lEE DEVICES

There are basically thrAA errors that can occur during an
lEEE-488 transfer. First, that the entire bus does not respond
to an attention sequence. If this occurs,

the lEEE-488 subroutine sets the device not present
(bit 7, or minus 128). If the bus. responds correctly to the
attention, but when the PET goes to write the first character

10.3

to the bus and the phusical device is not present as indicated
by having NRFD or NDAC low, the PET, again, gives a Idevice
not present l indication.

The second error occurs during the process of transferring
data to the device, the bus does not respond in the appropriate
times and/or if it ceases to respond by means of bringing
NRFD and NDAC both high. a write error indication is given
in bit 0. The third error occurs when during read on an IEEE-
488 the IEEE device has not sent DAV in less than 65
milliseconds, bit 1 of the status word is sent .. Whenever
the EOl line is encountered, the subroutine sets the bit 6 on
in the status word and continues to force carriage returns.

TAPE UNIT ERRORS

The cassette only checks data on read. The errors detected
are:

(1) SHORT BLOCK (4). When reading a block from
tape, a spacer tone was encountered before the
expected number of bytes had been read from that
block. Possible cause: attempting to read a
short load file as a data record.

(2) LONG BLOCK (8). When reading a bloc~ from
tape, a spacer tone was not encountered after the
expected number of bytes had been read from that
block. Possible cause: reading a long load file
as data.

(3) UNRECOVERABLE READ ERROR (16). Cause: more
than 31 errors on the first block of redundant
blocks - or - an .error that could not be corrected
because it occurred in the same place in both
blocks.

(4) CHECKSUM ERROR (32). After a LOAD or reading
of data, a checksum is computed over the bytes in
RAM and compared to a byte received from the input
device. If they do not match, this bit is set.

(5) END OF FILE (64). This bit is set when the end
of data file mark is encountered in a tape record.

(6) END OF TAPE (-128): An EOT record was read.

10.4

11.

EXAHPLES OF ST USE

As you can see, there is no status that the PET detects for
the writing of tapes, nor errors detected for printing to and
reading from the screen. There is an error on writing data
out to the IEEE-488 and there is also a series of errors
detected on inputting from the IEEE-488 or from tape.

The normal programming technique is to follow an INPUT# or a
GET# by either' a test or storage of the value of status.
Because this is only a single byte of memory and the status
changes on each new I/O command, the status is very transient.

100 INPUT#2,A
110 INPUT#5,B
120 IF ST=O THEN 200

This code only checks the result of the transfer of data from
logical file 5. The results of reading logical file 2 is
forever lost. Similarly:

100 INPUT#2,A
110 PRINT A
120 IF ST=O THEN 200

In this case, the ST reflects the print status, rather than the
results of reading #2.

A correct way to use ST is the following:

100 INPUT#2,A,B,C
110 IF ST=O THEN 200 process normally
120 IF ST=64 THEN 300 (end of data processed with

no errors).
130 IF ST=2 THEN 400 (time out with no errors)

each error can now be processed.

140 IF ST AND mask THEN (in which the mask is the
bit which you are testing for.

POLL ING TECHNIQUIi

One technique to poll slow lEEE-488 devices such as sampling
devices, which take many minutes to respond, is to use the
INPUT# from the device then, if the status indicates time
out, process other routines or lopp on the INPUT until no error
occurs. If there are no errors, the correct data has been
finally read and one can process that data information.

By using this sampling technique, a whole series of slow
devices can be serviced, along with running a foreground
program by use of the real time clock (TI,TI$) and the INPUT/
timeout error sequence to occasionally poll devices.

