The Transactor
Book of

Bitls

and

Pieces
#1

For ALLCommodore Computers!

Transactor Publishing Inc.

WWW. Commodore ca

Vithout Per

The Transacior’
Book of
Bits
and

Pieces
#1

© June 1986 Transactor Publishing Inc.
500 Steeles Avenue Mifton, Ontario, L9T 3P7

All rights reserved
Printed in Canada

Canadian Cataloguing in Publication Data

Main entry under fitle:
The Transactor book of bits and pieces, #1

A collection of the Bits and pieces sections from
The Transactor, v. 4-6.

Includes index.

ISBN O-9692086-1-8

1. Commodore computers. |. The Transactor

QA76.8.C64T73 1986 004165 C86-094352-6

Commodore 64, VIC, PET, CBM, Plus 4, C16, B128, 1541, 4040, 8050, 8250, 2090,
1525, C128, and AMIGA, are registered tfrademarks of Commodore Business Machines
PAL and POWER are registered trademarks of Pro-Line Software

The Transactor Book/vw Commodore ca

of Bits and Pleces #1'

edited by
Karl J.H. Hildon and Chris Zamara

produced by
Karl J.H. Hildon

Zero Page

Once again we've produced a book that was necessary as a “working tool”. Like
the Anthology, the “Bits Book™ (our abbreviated in-house title) was designed to
eliminate a lot of flipping through pages and pages of magazines trying to find that
one particular item that we just know is in there somewhere.

You'll notice the title of this book is followed by “#1”. This is a deliberate ploy to
eliminate any ambiguity between this Bits Book and the possibility of a second Bits
Book. We chose to include all the Bits and Pieces in every magazine from Volume
4 to Volume 6 for a few reasons: first, to keep this edition a reasonable size; second,
it seemed like a logical starting point and a tidy ending point; and third, since the
Bits column seems to get bigger and more compact every issue, it’s very possible
we'll have enough material for the second Bits Book by the end of Volume 8, at
which point we'll be going crazy flipping through magazine after magazine looking
for that. . . well, you know.

Some seriously meaningless items were omitted, and references to magazine
articles have been removed when unnecessary. Other somewhat outdated bits
have been left in purely for their historical value, but otherwise they’ve all been
printed here as they originally appeared, except for some minor editing during the
proofreading stage.

They're listed in the same order, starting from Volume 4 Issue 01 through to
Volume 6 Issue 06. We considered re-grouping the information but abandoned the
idea for several reasons. We could have re-grouped it by machine, by subject, by
BASIC versus M.L., or a number of other ways. In the end we decided that leaving
the order undisturbed would be best, and that adding a comprehensive index and
cross-reference would eliminate flipping through page after page of the Bits Book.
Also, by maintaining the original order, the reader can progress from beginning to
end on the same path as those who read the material from one issue of the
magazine to the next. One can also get a feel for the time these items were
originally conceived and at what point the newer machines arrived on the scene,
thus maintaining a little “machine grouping”. You'll find PET/CBM material near
the front, C128 and Amiga info at the back, with Plus 4 and B Series somewhere in-
between; VIC 20 and Commodore 64 bits are spread pretty much over the entire
book.

The Transactor Book of Bits and Pieces #1

TW

th

10Ul

Pe

Although some bits are written specifically forope cwww dited iy BROKE O e Ca
applied to the other machines, in principal %a0t it |practicé.REqrriexdmple; it Permission
wouldn’t be difficult to port Plus 4 dazzlers to the C128.

The cross-reference I mentioned are those numbers in square brackets beside the
titles of each bit. They refer to pages which contain other bits that are either
directly or indirectly related. Often they refer to bits that have been updated from
an earlier issue. In such cases you'll notice that the cross-references are “bi-
directional”. In others the cross-reference will be “uni-directional” - it depends on
the subject at the outset. For example, page 117 describes a method for salvaging
squashed diskettes. It references page 182 which describes salvaging scratched
files. However, page 182 does not reference 117 because information on un-
squashing a floppy is not necessary for un-scratching a file on a perfectly sound
diskette. A bi-directional reference here would cause a waste of time. 1 suppose if
you had to un-scratch a file on a squashed diskette the reference might have been
useful, but that's reaching too far.

The same item on 117 has a reference to page 35. Page 35 references 117 because
both items deal with floppy diskettes specifically, even though they’re two entirely
unrelated ideas. There are other areas where we've attempted to thread root
subject matter such as video chips, sound, printers, keyboards, and disk access.
But if you find the cross-reference isn’t steering you to the right spot, try the index.
Also, if for some reason you think that two items should be considered “related”,
please call or write - perhaps we can make the change if there is a second press
run.

If any of the items raise any questions, please write us at The Transactor. As of the
completion of this book, we are also available on CompuServe. Sign on and type
GO CBMNET at any “!” prompt. Officially we're in the Commodore Programming
and Commodore Communications Forums with plans for a third section devoted
to Commodore Magazines. However, helpful advice can be found in any of the
forums of CBMNET. If you haven't yet tried your hand at online networking, see
the TeleColumn in The Transactor Magazine starting with Volume 7, Issue 04.

I'd like to thank everyone who has contributed to the Bits and Pieces Column over
the last few years and hope to see more over the years to come. Remember, each
published bit is good for a free one year subscription.

Like everything else, book projects usually take twice as long as the initial estimate

- arule that, I'm afraid, will always be “as constant as change”. The first Bits Book

was no exception, so without further adieu, it's back to work on the next
magazine. . .

Karl J.H. Hildon, Editor-in-Chief

The Transactor Magazine

dedicated to Colleen J. Hildon, my mom

The Transactor Book of Bits and Pieces #1

Contents www.Commodore.ca

The “Volume” and “Issue” refers to the issue of The Transactor that these Blts and Pleces flrst o

appeared. You won'’t need the magazines - these are just for reference. A “e

" indicates a

“screen dazzler” or items published purely for their entertainment value.

1 The Verifizers

Volume 4, Issue 01

Optical lllusion ¢

Selective Directory

A Most Welcome Error Message?
Quick File Reader

The Dreaded lllegal Quantity
The Mysterious Extra Records
Out Of Memory Error?

Stack (Crackle) Pop!

10 POP For The C64

11 Universal Reset

11 Vertical Messages

12 Escape Without Escape

13 Shift Key Detect

14 SuperPETs With Hard Disks
14 Petunia Users Beware!

15 Supermon 64 Correction

LCO~NJgmHoHuL

Volume 4, Issue 02

17 The Transactor?

17 Screen Spaced ®

18 Mind Twister / Brain Bender

19 Loading C64 Programs On PET/CBMs
21 Cheating A Syntax Error

21 More Key Combos

22 Looks Are Deceiving!

23 Incompatibilityisms: C64

24 More Incompatibilityisms: Disk
24 1540/41 Command Change

25 VIC-20 Printer Output Bug

25 No Interlace On VIC I Chips

26 Zenith TV Mod

26 Commodore 64 Bugs Update

27 New Kernal ROM For 64

28 Best Monitor Picture From VIC/64

Volume 4, Issue 03

31 Kaleidoscope ®

32 4.0 Disk Append

33 Crash Your Commodore 64! o
33 €64 TV Colour Adjust

34 CRless CMD

35 Sunny Side Up!

35 Waste Space

36 Moving Strings

37 Butterware

38 String Thing

38 Tapemaker for BASIC 4.0

40 Universal Disk Change

41 Drive 1, Are You There?

41 SuperPET Bits

41 Index Expressions In APL

41 Form Feeds and SuperPET Printer Qutput
42 Simulating a GET in PASCAL

Volume 4, Issue 04

43 One Line Squiggle ¢

44 Invisible Colours

44 Miscompulations

45 Cathode Ray Tubing

46 Combomands

47 Number Numbing

47 TIming The Commodore 64
48 DATAdjuster

50 New 64 Video Port

50 New VIC 20 Power Supply
51 Three Blind Noughts

52 Retina Wrencher ®

53 Supermon Notes

54 Machine Code Delay

56 Flag Stacking

57 Arithmetickling

57 SuperPET Bits

57 APL Character Set

57 ACIA Status Handling

Volume 4, Issue 05
59 .. .had no Bits and Pieces column

Volume 4, Issue 06

61 Incrementation

62 Moneyout

63 Palindrome

64 Auto Liner

65 DisClosed Files

66 Direct Error Reads

67 Hard Disk Formatting
67 Disk De-Activity Indicator
68 Weirdities

68 DLOAD'N »

68 Five and Dime ®

68 Pirate Peeves

69 RAM Expansion

69 Marquis de Sade

69 Instant BASIC Monitor
70 Text In Drag

71 The Wooden Wedge
72 Some More C64 Hardware Tips
72 Octopus Syndrome

72 DATAdjuster Update

Volume 5, Issue 01

75 Computenmachinen Blitzensparken
75 The Brain

75 Screen Marquis ®

76 The Boxer ¢

76 Screen Marquis 40 ®

76 Commodore 64 and VIC 20 Versions ¢
78 The Plunge ¢

79 Sequins ®

79 Curtains ®

The Transactor Book of Bits and Pieces #1

S10]

80 Graphic Print

80 Modulo Counter

81 Reverse RVS

81 One Line PET Emulator
82 On Error Goto

82 But Seriously Folks. . .
83 Zoundz

84 aMAZEing quickies ®
84 CBM 4032 V2.2 Disable

Volume 5, Issue 02

85 Kernal 3 For The Commodore 64
85 Cylinder Screen ®

85 Down Scroll 64

86 Screen Spaced With Colour Mods ¢
87 Machine Language Screen Spaced ®
87 amaZAMARAiIng ®

88 Quick Note: on VIC 20 speed

88 Stop RUN/STOP

88 Cursed Commodore Cursor!

89 Sorry, But That DOES Compute

91 Low-Res Screen Copy

91 EepEep

92 Mirror @

94 Ram Scan

95 Crystal ®

96 Number Base Converter

97 The Un-Cursor

Volume 5, Issue 03

99 Line Doo Daa e

99 Colourtest

100 Would You Buy A Used Car From This Man?
100 Bytefinder

101 Quick Note: on Collect

101 UN-DiMension

103 ERROROUTER

104 Line Hider

104 Ghost Liner

105 List Decorator

106 Sinhibitors

106 List Terminator

106 Save Terminator

107 STOP Key

107 Keyboard Killer

107 ETCHASKETCH

108 C64 Default Screen Colours
109 Tape Saving Notes

110 RESTORE X

Volume 5, Issue 04

111 64 Quick Beep

111 Colour Bar

111 Dazzler of the Month e
112 Which Way Did He Go? ®
112 Aquarius ®

112 Quick Note: on sprites
113 SHIFTing your WAIT

113 Interrupt Key-Scanning
113 C64 Example

114 40/8032 Example

114 File Ripper

115 Quick Note: on character sets
116 File Loader

116 ASCI/@BMLoryersiRil | Commodore Ca

117 QuickMote®on GET ., .,

117 Easy DisKSalvaging? *©! REPINTW
118 A Magic Number?

118 Safe VAL Function

119 Quick Note: on loops

119 Hardware Random Number Generation on the 64
119 Round-up

119 Quick Note: on INT

120 Prime Number Generation

122 Quick Note: on variables

122 Useless Fact: on RUN suffix

123 Useful Fact: on REM replacement

Volume 5, Issue 05

125 Built-In Debugging Aid

125 Easy Disk Directory Pattern Matching

125 Poison Line Number

126 Closing “Forgotten” Files

126 SAVE-ing a Range of Memory From BASIC
127 WAIT A SECOND!

128 Checking for SHIFT, CTRL, and Commodore keys
128 Changing Screen Character Colours

129 Death by Garbage

130 Drowning in Garbage!

131 Single Disk Copy Program

132 BASIC 4.0 String Bug

133 Intercepting C64 System Error Messages
134 C64 RESTORE Key Checking

135 A Questionable Prompt

136 Fast BASIC HI-RES Point Plot

136 Fast HI-RES Screen Clear

137 Decimal to Hex Conversion Table

138 Large Characters on VIC or 64

Volume 5, Issue 06

141 C64 IRQ Reset

141 80 Column Right-Justify

141 Quick Note: on loading

141 C64 Zero Page View

142 C64 V2 ROM Colour Memory Fix

143 SYScreeching Off Into Oblivion

143 Disabling RESTORE On C64

143 Quick Note: on NOT

144 Fast Hi-Res Screen Clear From BASIC

144 In Search Of. . . The Perfect Colour Combination
144 Quick Note: VIC I video chip

144 Put Mental Notes on Disk (or Tape)!

145 Assembler Programming Tip (on branching)
145 One Line Decimal to Binary Conversion

146 The Bleeper

146 40 Column Wordpro Dump

146 Regain

147 Warm Start Border Flasher

147 Double Width Directory Printout

148 C64 Easy Disk Status

148 Bounce 8032

149 Filename Extensions With SHIFTed SPACE
149 Easy Screen Print

149 Phone Speller

150 Assembler Programming Tip #2 (on BIT)
151 1541/4040 Write Incompatibility Bug

152 Auto Keywords For The VIC, C64, PET, and CBM

The Transactor Rook of Rits and Piecas #1

out Per

Volume 6, Issue 01

155 VIC/64 Clear Screen Line

155 Move Screen Line

155 The Memory Transfer Subroutine
156 Cheap Video-Game Dept.

157 Full-featured RACER for PETs:
157 (64 mods:

157 VIC-20 mods:

157 C16/ +4 mods:

158 NEW facts

158 C64 Programiming Tip

159 Defaults in INPUT Statements

159 350800 And Its Relatives

161 Tickertape

162 Debugging Aid Update

162 Easy Program UN-NEW After Reset
163 1541 DOS Crash With REL Files
163 1541 DOS Wedge Tips
163 One-Line Decimal =
164 Restore Key Fun

164 Quick Note: on disk writing
164 Screen Save Update

165 +4 and C16 Bits

169 B-128, 1541, and 8050 Bits

Base B

Volume 6, Issue 02

173 C64 Keyboard Joystick Simulation
173 1-Line SEQ file read

173 C-64 Character Flash Mode

174 Plus 4/C16 Pretty Patterns

175 C-64: Text on a Hi-Res Screen
176 “Someone’s coming” or “Boss” mode
176 Fast Key Repeat

176 Modem Speed-Up

177 1200 Baud Fallacy

177 Bto PET/CBM Program Converter
178 C64 Screen Sizzle

179 C64 Simple Banner Program

179 Break Box Baffler

Volume 6, Issue 03

181 Disk Cleaner

182 The 1541’s amazing "+ "
182 World'’s Simplest Un-Scratch
182 C-64 Directory LOAD & RUN
183 Jumbo Relative Files

183 APPENDing ML to BASIC
184 Another Use For " A"

184 Creating DEL Files

185 Read Blocks Free Directly
185 1541 Track Protect

186 Scratch & Save

188 C-64 POP

188 C64/VIC20 PRINT AT

188 Menu Select

189 LIST Freeze

190 A Couple of Plus/4 Goodies
191 Simulated IF..THEN..ELSE
191 ML Binary/ASCIl Conversions
193 Lett’er Fly!

Volume §,
198 Muliple Directory, Pa tem tchmg
195%@ orrupting‘RAMTAS Rodiing YVITE
195 Where am I?

196 QUAKE!!

197 The Schizophrenic Sprite

198 Try This

198 Error-Driven Catalog Routine for VIC/64
199 REVCNT: The Error Recovery Count Variable
200 ML Right Justify

200 Slipped Disks: Speeding up your disk drive
202 1541ders

203 C-64 BASIC STP

204 Gaussian Elimination Routine

204 The Lottery Companion

205 The Evil Swords Of Doom!

t Parry

Volume 6, Issue 05

207 C-64 Input Routine With Screen Editing!
207 Quick Screen Code to ASCIH Conversion
207 C-64/VIC20 Mini-Datafier

208 Dale’s Dazzler

208 The Alien From The Cheap Sci-Fi Movie
208 VERIFIZER For Tape Users

209 Improved 1541 Head-Cleaning Program
210 PRINT AT Update

212 C-128Bits

213 More B128 Bits From Liz Deal

213 Un-Scratcher For Commodore Drives
214 Hardware Device Number Change for 2031
215 C64 Doodle Screen

215 1541 Write-Protect Check

215 C-64 Memory Fill ROM Routine

216 Relocate!

Volume 6, Issue 06

219 SAVERIFY

219 Double Verifizer

220 Corrupting RAMTAS Update

220 Finding the Missing File

220 LOAD & RUN Trick

221 Check For Device Present

221 Word-Wrap For VIC, 64, PET, etc.

222 Visible “searching” Messages

222 C-64 Scroll Down Routine

223 Easy ‘RESTORE X’ Using TransBASIC

224 Sneaky Saves

224 Sanitation Engineer

225 What Is Garbage Collection?

225 Faster Collection

227 Some C128 Bits

227 Ornament and Happy New Year

227 Multiple Circle, Triangle, and Square
High-Res Draw Routine

228 3-D Effect High Res Draw Routine

228 More Ideas

228 Some Amiga Bits and Pieces

228 Notes About CLI

The Transactor Book of Bits and Pieces #1

odore.ca

S10]

The “Veriﬁzgrs/’\h w.Commodo

Pe

[208, 219] May Not Rep
The Transactor’s Foolproof Program Entry Method

Verifizer should be run before typing in any long program from the pages of
The Transactor. It will let you check your work line by line as you enter the
program, and catch frustrating typing errors. The Verifizer concept works by
displaying a two-letter code for each program line which you can check
against the corresponding code in the program listing.

For this Bits and Pieces Book, The Verifizer will often not be necessary - the
programs are mostly short enough that errors will be easy to spot. Also, The
Verifizer was not invented until Volume 6, Issue 01. Although most of the
programs shown are not “verifized”, the Verifizers have been included here
for those that are, and for reference should we ever discontinue listing one of
the versions in future magazines.

There are four versions of Verifizer on this page; one for PET/CBMs, the VIC or
C64, the Plus 4, and the C128. Enter the applicable program and RUN it. If you
get a data or checksum error, re-check the program and keep trying until all
goes well. You should SAVE the program, since you'll want to use it every time
you enter one of our programs. Once you've RUN the loader, remember to
enter NEW to purge BASIC text space. Then turn Verifizer on with:

SYS 634 to enable the PET/CBM version (turn it off with SYS 637)
SYS 828 to enable the C64/VIC version (turn it off with SYS 831)
SYS 4096 to enable the Plus 4 version (turn it off with SYS 4099)
SYS 3072,1 to enable the C128 version (turn it off with SYS 3072,0)

Once Verifizer is on, every time you press RETURN on a program line a two-
letter report code will appear on the top left of the screen in reverse field. Note
that these letters are in uppercase and will appear as graphics characters
unless you are in upper/lowercase mode (press shift/Commodore on C64/
VIC).

Note: If a report code is missing (or “~-") it means we've edited that line at the
last minute which changes the report code. However, this will only happen
occasionally and usuaily only on REM statements.

With Verifizer on, just enter the program from the magazine normally,
checking each report code after you press RETURN on a line. If the code
doesn’t match up with the letters printed in the box beside the listing, you can
re-check and correct the line, then try again. If you wish, you can LIST a range
of lines, then type RETURN over each in succession while checking the report
codes as they appear. Once the program has been properly entered, be sure to
turn Verifizer off with the SYS indicated above before you do anything else.

The Transactor Book of Bits and Pieces #1 1

I YV 10U

re.ca

Verifizer will catch transposition errors (eg. POKB 52?81\0/1Wt\é¥d6@mm0d ore.ca

53281,0), but ignores spaces, so you may add or ohmit spacesv frbm Re@listed Ithout Permission
program at will (providing you don’t split up keywords!). Standard keyword
abbreviations (like nE instead of next) will not affect the Verifizer report code.

Technical info: The PET/CBM and VIC/C64 Verifizers reside in the cassette
buffer, so if you're using a datasette be aware that tape operations can be
dangerous to its health. As far as compatibility with other utilities goes,
Verifizer shouldn't cause any problems since it works through the BASIC
warm-start link and jumps to the original destination of the link after it’s
finished. When disabled, it restores the link to its original contents.

PET/CBM Verifizer (BASIC 2.0 or 4.0)

Cl | 10 rem= data loader for " verifizer 4.0" *

CF | 15 rem pet version

LI | 20cs=0

HC | 30 for i=634 to 754:read a:poke i,a

DH | 40 cs=cs+anexti

GK | 50:

OG | 60 if cs<>15580 then print” ===+ data error ==++* " : end
JO | 70 rem sys 634

AF | 80 end

IN | 100

ON | 1000 data 76,138, 2,120,173,163, 2,133,144

IB | 1010 data 173,164, 2,133,145, 88, 96, 120, 165
CK | 1020 data 145, 201, 2,240, 16, 141,164, 2,165
EB | 1030 data 144, 141,163, 2, 169, 165, 133, 144, 169
HE | 1040 data 2,133, 145, 88, 96, 85,228, 165, 217

Ol | 1050 data 201, 13,208, 62,165, 167,208, 58,173
JB | 1060 data254, 1,133,251,162, 0, 134,253, 189
PA | 1070data 0, 2,168,201, 32,240, 15,230, 253
HE | 1080 data 165, 253, 41, 3,133,254, 32,236, 2
EL | 1090 data 198, 254, 16, 249, 232, 152, 208, 229, 165
LA | 1100 data 251, 41, 15, 24,105,193, 141, 0,128

Kl | 1110 data 165, 251, 74, 74, 74, 74, 24,105,193
EB | 1120 data 141, 1,128,108,163, 2,152, 24, 101
| DM | 1130 data 251, 133, 251, 96

C64 and VIC-20 Verifizer
KE | 10 rem=* data loader for " verifizer" =

JF | 15 rem vic/64 version
LI 1 20cs=0

2 Tha Tronsaictor Rnok of Rits ond Piecas #1

BE
DH
GK
FH
KP
AF
IN
EC
EP
oC
MN
MG
DM
CA
NG
OK
AN
GH
JC
EP
MH

BH

NI
PM
EE
NH
Ji
AP
NP
JC
iD
PL
CA
oD
LP
EK
DI
LK
GJ
DN
GJ
CB

30 for i =828 to 958: read a:pokf€ i@ WWW, Commodore ca

40 cs=cs+a:nexti May Not Reprint W
50:

60 if cs<>14755 then print" =+ data error =*++x " : end
70 rem sys 828

80 end

100 :

1000 data 76, 74, 3,165,251,141, 2,
1010 data 252, 141, 3, 3, 96,173, 3, 201
1020 data 3,240, 17,133,252,173, 2, 133
1030 data 251, 169, 99,141, 2, 3,169, 3,141
1040 data 3, 3, 96,173,254, 1,133, 89, 162
1050 data 0,160, 0,189, 0, 2 240, 22,201
1060 data 32,240, 15,133, 91,200, 152, 41, 3
1070 data 133, 90, 32,183, 3,198, 90, 16, 249
1080 data 232, 208, 229, 56, 32,240, 255, 169, 19
1090 data 32,210, 255, 169, 18, 32,210, 255, 165
1100 data 89, 41, 15, 24,105, 97, 32,210, 255
1110 data 165, 89, 74, 74, 74, 74, 24,105, 97
1120 data 32, 210, 255, 169, 146, 32,210, 255, 24
1130 data 32, 240, 255, 108, 251, 0, 165, 91, 24
1140 data 101, 89,133, 89, 96 ‘

165

© W w

Plus 4 Verifizer

1000 rem * data loader for " verifizer +4"

1010 rem * commodore plus/4 version

1020 graphic 1: scnclr: graphic 0: rem make room for code
1030 cs=0

1040 for j = 4096 to 4216: read x: poke j,x: ch =ch +x: next
1050 if ch<>13146 then print " checksum error " : stop
1060 print " sys 4096: rem to enable”

1070 print " sys 4099: rem to disable "

1080 end

1090 data 76, 14, 16,165, 211,141, 2, 3

1100 data 165, 212, 141, 3, 3, 96,173, 3
1110data 3,201, 16,240, 17,133,212, 173
1120data 2, 3,133,211,169, 39,141, 2

1130 data 3,169, 16,141, 3, 3, 96, 165

1140 data 20, 133,208,162, 0,160, 0, 189
1150data 0O, 2,201, 48,144, 7,201, 58

1160 data 176, 3,232,208,242, 189, 0, 2

1170 data 240, 22,201, 32,240, 15,133,210

1180 data 200, 152, 41, 3,133,209, 32,113

1190 data 16, 198, 209, 16, 249, 232, 208, 229

The Transactor Book of Bits and Pieces #1

nour rerm

3

4

CB
PE
DO
BA
BG

PK
AK
JK
NH
0G
JP
MP
AG
D
GF
MG
HE
LM
JA
El
KJ
DH
JM
KG
EF
CG
EC
AC
JA
CcC
BO
PD

1200 data 165, 208, 41, 15,
1210data O,
1220 data 24, 105, 193, 141,
, 165,210, 24

1230data O
1240 data 96

12,165, 208,

12,108, 211
, 101, 208, 133, 208

C128 Verifizer (40 column mode)

1000 rem * data loader for " verifizer c128"
1010 rem * commodore ¢128 version

1020 rem * use in 40 column mode only!

1030 ¢cs=0

1040 for j=3072 to 3214: read x: poke |,x: ch=ch +x: next

1050 if ch<>17860 then print " checksum error " : stop

1060 print " sys 3072,1: rem to enable”
1070 print " sys 3072,0: rem to disable "

1080 end

1090 data 208,
,141, 3, 3,

1100 data 254

1110 data 201,

1120 data 3

1130 data 169,

1140 data 133
1150 data 2
1160 data 3
1170 data 22

1180 data 152,

1190 data 198
1200 data 32

1210 data 169,
1220 data 15,
1230 data 250,

1240 data 32

1250 data 24,

1260 data 252

11,165, 253

12,240, 17
, 133, 253,

,250,162, O
, 201, 48,
, 232, 208,
, 201, 32,
41, 3,
, 251, 16,
, 240, 255,
18, 32,
24,105,

242

133
249

210
, 210, 255, 169

32, 240, 255
, 24,101,250

169,
12,141, 3,

144,

240,

169,

193,
74, 74, 74,

, 141,
96,
, 133,
38,

3,
, 160,
7,
., 189,
15,
, 261,
, 232,
19,
, 255,
32,
74,
, 146,
, 108,
, 138,

The Transactor Book of Bits and Pieces #1

2,
173,
254,
141,

96,

0,
201,

0,
133,

32,
208,
32,
165,
210,
24,
32,
253,
250,

3,

3,
173,
2,
165,
189,
58,
2,
252,
135,
229,
210,
250,
255,
105,
210,
0,

96

165

22

176
240
200

12

56
255

41
165
193
255
165

)i

10U

Parmiss

24 gt 199w .Commodore.ca
74, i, T4y Mot Reprint Without C
1,

on

Volume 4, Issus w.Commod

it Pe ssion

A - MNAat Do
May Not Reg v

Optical Illusion

This neat little machine language program was written by Dave Berezowski at
Commodore Canada. It doesn’t do very much except create a rather interest-
ing looking screen. The program will work on 40 or 80 column machines but
the 80 column seemed to be the most impressive.

033c ldx #%$00

033e inc $8000, x ;ViC users must subst.
0341 inx screen address
0342 bne $fa

0344 inc $033f

0347 jmp $e455 ;for BASIC 4.0 users
0347 jmp $eb2e ;for BASIC 2.0 users
0347 jmp $eabf ;for VIC-20 users

As you can see, the routine is interrupt driven which means you'll need to
POKE the interrupt vector to get it going.

poke 144, 60 : poke 145, 3

After servicing this code, the normal interrupt routines are executed which
means you'll still see the cursor. You can even edit (and RUN) BASIC while this
is running, just don’t try to use the cassette buffer that it lives in or whammo!
Try moving the cursor around the “affected area”.

Notice that the program is self modifying, a practice that is OK for small
programs but should be avoided like the plague in larger ones. Self-modifying
software is the worst for debugging and finding out the hard way is not fun.

Vic users could also get this going without too much difficulty (maybe even
with colour?). Just substitute the PET/CBM screen start address ($8000 in the
second line) with the start address of the screen in your particular Vic, one of
two possibilities, $1E00 normally or $1000 with some memory expansion
units. To engage it. . .

poke 788, 60 : poke 789, 3

For BASIC 4.0 users, just type in this loader. Others will need to change just the
last two DATA elements and the interrupt vector POKEs.

10 for j=828 t0 841 : read x : poke j, x : next

20 data 162, 0,254, 0,128,232, 208, 250
30data238, 63, 3, 76, 85,228

The Transactor Book of Bits and Pieces #1 5

ore.ca

One last note. . .don't try to include the interrupt y&ter ROKES\ ﬁ@mm O d ore. ca
program. Chances are your machine will crash because beforebbihi R@KEs\gavithout Permission
executed, an interrupt occurs somewhere in-between.

Selective Directory {125,147, 195]

Ever been searching through your diskettes for a program and found yourself
sifting through SEQ and REL filenames that just seem to get in the way? Or
how ’'bout the opposite. . .when you're looking for an SEQ or REL filename
that's lost in diskettes full of programs. Well..here's a quick way around it.

LOAD "$0:x=PRG", 8

When finished, LIST will display all PRG files from the directory. It would
stand to reason that matching type filenames would appear for both directories
if the drive number were omitted, but such is not the case. If you leave out the
drive number the disk only returns filenames from the last drive used.

Mysteriously, DLOAD won’t work the same way. You must use the LOAD
command followed by ‘8. Any file type can be selected though. Merely
substitute PRG for SEQ, REL or USR.

Another variation. . .subtitute the * for filename patterns. This has been
discussed before, but now you can look for filenames that match a pattern and
are also of a particular type. . .

LOAD "$1:B»=SEQ", 8

. .would load a directory of all sequential files on drive 1 that start with ‘B’.

A Most Welcome Error Message? [69]

Never thought you'd see the day an error message would be pleasant, did you?
Well today is the day! Just turn on your machine, hit HOME and RETURN. Too
bad you can only get it when the machine is empty!

Quick File Reader [114,173]

This three-liner will read just about any SEQ file. It's not very sophisticated

but when you just want to “take a boo” at a file, it can be typed in quickly and
isn’t too hard to memorize. The RVS will help to spot any trailing spaces.

6 The Transactor Book of Bits and Pieces #1

10 open 8, 8, 8, "somefile - WWW. Commodore Ca
20input#8, a$: ? "[l" a$: if kB2 thenalpse® pendwithout Permission
30 goto 20

For REL files, simply change the IF statement in line 20 to:

if st=64 and ds=50 then. . .

The Dreaded lllegal Quantity [118]

Sometimes you want to read files one byte at a time. A routine much like the
one above might be used, only the INPUT# would be replaced by a GET#.
There’s just one minor gotcha. It seems that when a byte value of zero is
retrieved by GET#, the string variable slated to receive it is set to a null string,
not CHR$(0).

The most common occurence of byte-by-byte reading is with PRG files from
disk. Program files contain lots of these zeroes, at least one per line of BASIC
(end-of-line markers). Usually a program to read the PRG file is set up like
this:

10 open 8, 8, 8, "some prg file,p,r"

20 geti#8, a$: print a$, asc(a$) : if st=64 then close 8 : end

30 goto 20

The problem is that when a zero is read into A$, the ASC(function cannot cope

will a null string and bombs out with 2ILLEGAL QUANTITY ERROR. The
solution? You could add an extra IF statement after the GET#, for example:

ifa$="" then a$=chr$(0)

..but that would mean an extra line for the PRINT statement and the
following IF. . .rather clumsy. Keep things tidy with:

print a$, asc (a$ + chr$(0))
The ASC(function returns the ASCII value of the first character of A$. If A$
starts with a valid character, then adding CHR$(0) will make no difference. If
not, then CHR$(0) will be added to the null string and a " 0" will be printed
rather than the dreaded illegal quantity error.

The Mysterious Extra Records [163, 183, 202]

Those of you familiar with the Relative Record system will know that the end
of a relative file is flagged by the 2RECORD NOT PRESENT error, DS=50.

The Transactor Book of Bits and Pieces #1 7

However, the last record used for data is not necessarilltﬂé»dw vetdrdf e N O dore.ca
file. May Not Reprint Without Permission
As relative files get bigger, the DOS formats additional sectors by filling them

with “empty records”. An empty record starts with a CHR$(255) followed by

CHRS$(0)'s to the end of the record which is determined by the record length.

This formatting process occurs when data is written to a record that will

require more disk space than has been allocated to the file so far.

Each 256 byte sector can contain 254 bytes of data (the other 2 are used by the
DOS). Let's take an example record length of 127, thus 2 records fit exactly into
1 sector. Imagine that 2 complete records have already been written to the file.
Upon writing a third record, the DOS must format another sector. Two empty
records are written, but the first will be replaced by the data of our third record.
Closing the file causes our third record and the one empty record to be stored
on the diskette.

Re-opening the file is no problem, but how do we find the next available space
for writing a new record? Athough our fourth record is empty, a RECORD*If, 4
will NOT produce a PRECORD NOT PRESENT error and the CHR$(255) could
successfully be retrieved and mistaken for valid information. Therefore, we
must test the first character of the record for CHR$(255). An INPUT# of this
record will result in a string of length 1, so a combination of the two conditions
might be appropriate. However, INPUT#ing live records of length greater than
80 will produce ?STRING TOO LONG error, so GET# must be used in
combination with an ST test:

1000 rem * ** find next available record ***

1010 record# (If), (rn) :rem rn=record number
1020 get#lf, a$:rem get 1st char

1030 if ds =50 then return

1040 if a$ =chr$(255) and st=64 then return

1050 rn=rn+1:goto 1010

This subroutine will search forward from wherever you set RN initially. It stops
when either a ?RECORD NOT PRESENT occurs or when an empty record is
found. For larger files, you might consider starting at the end of the file an
work backwards, but you'll need to find the first live record and then move the
record pointer one forward.

In summary, relying on RECORD NOT PRESENT is not good enough.
Although it will insure an empty record every time, it will eventually leave you
with wasted disk space. Often the first record of the file is used to store a
“greatest record number used” variable which is updated on closing and read
back on opening. Although this is probably the cleanest approach, it will only
return new record numbers. Any records that have been deleted by writing a

8 The Transactor Book of Bits and Pieces #1

single CHR$(255) must be found with a subroutipg Jike\alfove. mﬁmdore ca
combination of both these techniques will,nroduge;2 mmores effigientifiling permission

system.

Out Of Memory Error?

10 gosub 20
20 goto 10

The problem is obvious. As line 10 calls line 20, line 20 routes to line 10, and
around we go again. The “return” information placed on the stack by Gosub
never gets removed. As more and more piles up, eventually the stack
overflows and the ?Out Of Memory Error is displayed.

FOR-NEXT loops will also do it to you. If you start a FOR-NEXT loop and jump
out of the loop with GOTO, information is left on the stack waiting for the
NEXT statement to come along and use it. If another loop is opened, this
information get pushed farther down the stack and will probably not be
removed. This is the beginning of a mess.

There are, however, a couple of built-in safeguards. If the loop is within a
subroutine, a RETURN will strip off the NEXT information as well. Likewise, if
you exit a loop, but use the same loop variable to open a new one, the old
“NEXT" information will be removed.

Of course nobody writes programs like this but if you get the ?0ut Of Memory
Error and FRE(0) indicates plenty of room available, check your loops and
GOSUB:s.

Stack (Crackle) Pop! [10,188)

The following SYS'’s will “crackle” your stack and cause a POP. Apple users
will know all about the POP command. It’s used to remove one level of
subroutine RETURN information. However, this POP simulator removes ALL
levels of subroutine returns.

A particularly useful application is within an Input Subroutine. You may have
a line that detects a certain character (eg. “@") that exits the Input routine and
transfers control to a Command Input routine. Further, the Command routine
might test for a special character and exit to a Menu routine.

But, jumping out of subroutines with GOTO can be hazardous (as discussed in

the previous item). By using one of these SYS's, the stack is all cleaned up and
potential stack overflow is prevented.

The Transactor Book of Bits and Pieces #1 9

BASIC 1.0 :sys 50568 g% o www.Commo

BASIC2.0 : Sys 50583 May Not Rep
BASIC 4.0 :sys46610
VIC 20 : 8ys 50544
Ce4 : 8ys 42352

No, Wait!

Fooled! The C64 and VIC 20 SYS commands to simulate a POP, don’t work. At
first, the C64 SYS appeared to be working, but on further testing it was FUBAR.
I didn’t have a VIC 20 at the time and just assumed it would be the same plus
8192, but of course this didn’t work either. The BASIC 1.0, 2.0, and 4.0 SYS
calls are correct.

Using the SYS’s from the earlier BASICs, I compared disassemblies and found
the equivalent C64 and VIC 20 ROM code lies at:

64: sys 42622 ($a67e)
20: sys 50814 ($c67¢)
Note: difference is 8192 ($2000)

But these don’t work either. Argh! The results appear the same as RUN/STOP
- RESTORE. The problem? Although the code at these addresses is virtually
identical to the earlier machines, the code that performs the SYS command is
much different. Garry Kiziak of Burlington, Ontario, explained this in detail
(Volume 5, Issue 02, Page 49) and offered the following short routines to
replace the above SYS calls which don’t work.

10 clear=828 : for k=clear to clear+ 4 : read j : poke k,j : next k
20 data 104,104,76,126,166 :rem for the c64
20 data 104,104,76,126,198 :rem for the vic 20

The routine is completely relocatable, so you can put it in any (safe) place that
you like. Now, a SYS CLEAR will clear the stack of all RETURNs and open
FOR/NEXT loops.

POP For The Commodore 64 {9, 188]

The CLEAR routine does its job just fine. However, it may also do more than
you really want. There may be times when all you want to do is ‘POP’ the last
RETURN address off the stack. The following routine will do just that on the
Commodore 64.

10 pop =828 : for k=pop to pop+24 : read j : poke k,j : next k

20 data 104,104,169,255,133,74,32,138,163,154,201,141,240,5
30 data 162,12,76,55,164,104,104,104,104,104,96

10 The Transactor Book of Bits and Pieces #1

1 YV

;

10U

ore.ca

Par

SRLLSAN |

The command SYS POP will remove just thejast REFURNaddiess. Anphighet O e . ca
levels of subroutines will be unaffected untilfanother call 0SYSROPR 1Alseslike permission
the normal RETURN statement, any active FOR ... NEXT loops within the
subroutine will be removed by the POP. Notice that this routine is also
relocatable so it can be placed in any ‘safe’ place.

Universal Reset [141, 158]

Instead of switching off your computer next time you want to clear out
memory, etc, try this SYS. It does the same thing without that nasty power
interruption.

sys peek(65532) + 256 * peek(65533)

This works not only on all Commodore machines, but any machine that uses
the 6502 as its microprocessor. The 6502 pre-defines addresses 65532 ($fffc)
and 65533 ($fffd) as the locations that will contain the address of the machines
reset routine.

When you “power up”, the 6502 does a “JMP Indirect” to $FFFC. This is
known as the Hardware Reset Vector. The HRV will change from machine to
machine. Use the above statement for universality; use these when you want
to reset from a particular machine:

BASIC 1.0 : sys 64824 ($fd38)
BASIC 2.0 : sys 64721 ($fcdi)
BASIC 4.0 : sys 64790 ($fd16)
VIC20 : sys64802 ($fd22)
Ccé64 : Sys 64738 ($fce2)

Vertical Messages [45, 80, 81, 173]

Want to print a string vertically instead of the same old horizontal way? Easy
with the windowing feature of 8032 type and Fat 40 machines.

10 input " [ifsome string " ; ss$
20 a$ =ss$: gosub 1000 : print ss$

30 goto 10
1000 print : print tab (rnd(0 ;
5000 print " " ;Ieft$(" SIS 1T IR TR TR TR TR TR E TS TSRS TATSTSTSTaIaN ,Ien(a$)); "";
5010 return

The two “Cursor Home” characters in line 10 clear any existing window. SS$ is
transferred to A$ to make the subroutine more versatile.

Line 1000 can be removed. It merely TABs a random amount across the screen
for the demonstration.

The Transactor Book of Bits and Pieces #1 ||

Line 5000 sets a window one column wide and as giigh aWWMOJ@ (OThel mOd or e Ca
routine leaves the cursor at the bottom of the windowy U’on returningd; S5%is Without Perm

printed and neatly scrolls into place. For one column windows, the scrolling is
so fast you'll never notice it.

The special characters in line 5000 are achieved using the sequence of ESCape
and RVS. After typing the quote, ESC turns quote mode off, RVS enters reverse
field mode, and the letter “o” (Set Top character) is pressed. However, you're
still in reverse mode; hit Shift RVS to get out. Same goes for * " (Set Bottom).
Try this program:

100 @B = "=csscmsmmmommsossammsommsossocssocsocsioszosaaas

110 print“"; :rem*t48 =’s

120 a=rnd(0)*48:i= rnd(O

130 print tab()* B efts(”
“ "left$(a$,a); remf24 downs&1 right

140 print spc(24 + a/2) - ;1 goto 120

qoaaaeaaeaaaaaad |

Pretty useless, eh?

Escape Without Escape

The ESC (Escape) key is found on Commodore machines with business
keyboards only. On some earlier machines it does absolutely nothing. On later
machines with BASIC 4.0, it serves to cancel “quotes mode”; invoked when an
odd number of quote keys (") have been pressed.

However, quotes mode is also invoked when an odd number of quotes are
PRINTed to the screen (eg. PRINT CHR$(34);). This can be rather offensive in
an Input Subroutine, especially when you don’t want to disable the quote key.
After the user hits the " key, any cursor keys pressed will be displayed in their
reverse field or “programmed” representation. To disable this mode, the user
must either hit the ESC key (if there is one) or type another quote and DELete
it. What a pain.

The following POKEs will cancel quotes mode. The POKE could be placed
after a test for the quote key:

geta$
ifa$ = chr$(34) then poke. . .

..or, more simply, executed after every key press:

geta$: poke. . .

12 The Transactor Book of Bits and Pieces #1

Here are the POKEs you'll need depending on—&)uWﬁMWeC ommodore.ca
May Not Reprint Without Permission
BASIC 1.0 : poke 234, 0
BASIC 2.0 : poke 205, 0
BASIC 4.0 : poke 205, 0
VIC 20 :poke212,0
Co64 : poke 212, 0

If for some reason you want to turn quote mode on, just POKE the respective
location with a 1.

Shift Key Detect [113, 128, 134]
On PET/CBMs, this program will detect if the Shift key is depressed.

100 if peek(152) then print " shift key down "
101 print " shift key up " : goto 100

And YOU say, “so what?”. Well, the Shift key has one advantage over other
keys in that no character is entered in the keyboard buffer to interfere with
your GET and INPUT commands. As part of a piece of software its uses are
limited (Superscript uses the Shift key to speed up scrolling through text and
output to video). But of even greater significance is during program develop-
ment. Such a statement could be used to re-direct execution, test variables,
change variables, or even alter machine conditions such as toggling Upper/
Lower case or STOP key disabled/enabled. For example:

2000 print " Press ‘S’ to Save Record”

2010 x=rn: gosub 10000 : geta$: ifa$ = " " then 2010
2020 ifa$ <> "s" then return

2030 record #8, rn

2040 print #8, rn$

2050. ..

10000 if peek (152) then print x;
10010 if peek (152) then 10010
10020 return

Of course any amount of information could be transferred to subroutine
10000. By using a common variable to receive data (ie. “x”), the subroutine
remains versatile and can be called from elsewhere in your program.

Line 10010 is a loop that waits for the Shift key to be released. If you hit “Shift”
and nothing happens, you've probably pressed it during this line; release and

try again.

The Transactor Book of Bits and Pieces #1 13

This merely demonstrates a technique. It could beffygh Mé14/sdpHistadieum odor e ca

than shown. One improvement might be the additiOms6f curb‘er positionistoreVithout Per

& restore subroutine calls at the beginning and end of this “pseudo-monitor”.
Variables could then be displayed on, say, the top or bottom line of the screen
where they won't disturb other screen contents. Then the cursor would be
sent back to its previous position to retain normal program appearance.

Once again, the main PEEK will depend on:

BASIC 1.0 : peek (516)
BASIC 2.0 : peek (152)
BASIC 4.0 : peek (152)
VIC 20 . peek (653)
Co4 . peek (653)

In all cases, if the above PEEK yields a zero, the Shift key is up, otherwise
down.

Other possibilities for “PRINT X;” in line 10000:

poke 59468, 26-peek(59468) ;flip case (pet/cbm)

poke 144, 173-peek(144) ;stop en/disable (4.0)
poke 144, 95-peek(144) ;stopen/disable (2.0)
poke 537, 269-peek(537) ;stop en/disable (1.0)

SuperPETs With Hard Disks {41,53]

When using the SuperPET, the language disk is usually in drive 1 of your
floppy. From the SuperPET menu, by simply entering the first letter of the
language (ie. “a” for APL, “b” for BASIC, etc.), the system goes off to drive 1 to
begin loading.

But if you have just added a Commodore 9060 or 9090 Hard Disk, you may
have noticed there is no drive 1, only drive 0. Now you must enter language
load commands manually. Syntax is:

disk/0.APL

Of course, “APL” could be any language by choice.

Petunia Users Beware!

Back around 1978/79, an interface for PET/CBMs was released called “The
Petunia”. It combines an active digital to analog converter and a video

14 The Transactor Book of Bits and Pieces #1

interface for connecting to external monitg#S.s TheWW Wbr@@éﬁ WG Ore. ca
PET/CBMs, but don’t use them on your VIC'gg b4l 1 ot Reprint Without Permission

The Petunia plugged on at the PET User Port. Video lines are on the top edge
and the User Port lines are on the bottom. On the VIC and 64 the User Port
lines are still on the bottom edge, but video signal lines are now routed to a
connector all their own. Where the video out (pin 2) used to be on the PET
User Port, is now + 5 volts on the VIC/C64 User Port. If the Petunia “video in”
is connected to +5 volts it will fry like a banana!

Now, you ask, “How does a banana fry?". . . plug your Petunia into your VIC
and you'll find out!
Supermon 64 Correction [53]

In the January '82 issue of COMPUTE!, Jim Butterfield’s Supermon 64 was
published with one slight error that will throw a wrench into the works.

At the end of the BASIC listing are three pokes. The middle one should be
POKE 45, 235 (not ,232).

Also, Dave Berezowski of Commodore Canada suggests this mod to be
included at the beginning of the program:

poke 53281, 12

The poke sets the background colour to grey which looks much nicer than the
blue background from power-up

The Transactor Book of Bits and Pieces #1 15

c‘ www.Commodore.ca
May Not Reprint Without Permission

Volume 4, Issue02.commod
May Not Reprint Without

Yy 10U
The Transactor?

Since the release of our latest “new format” Transactor, we've had a lot of new
interest from a lot of different people,. . . and for different reasons. But it seems
that one of the questions most often asked is, “Why is it called The Transac-
tor?”.

Back in the olden days, Commodore’s very first micro to hit the market, as
most of you will remember, was called the PET; an acronym for Personal
Electronic Transactor. Also, the word “transactor” was defined in a dictionary
somewhere (that escapes my recollection) as “a vehicle or device for transfer-
ring information from one place to another”. This was also the basis of our
new masthead, designed to represent outward motion from a centre, but
retain the familiar border that's the same shape as the stickers put on early
machines.

So, influenced by these two facts, the name “The Transactor” was created. But
enough nostalgic reminiscing and sentimental mermorabilia, let’s have some
fun.

Screen Spaced s, 87]
This short one-liner should get an award for variety of display.

1 ¢c=32:forn=1t041:¢c=192-c:fora=0ton:
for b=32768 + ato 34768 step n: poke b, c: nextb, a, n

After entering RUN, the program will appear to do nothing. . . but don't hit
your STOP key. . . it just needs to warm up. Once it gets going I think you’ll
agree. . . “not bad for a one-liner, eh?”

The program could be sped up slightly by substituting the literal numerics for
variables which would be initialized on line 0. In fact, any BASIC program on
any Commodore machine will run faster by using floating point variables to
represent your constants (integer variables are not as fast*). When BASIC runs
into a literal numeric such as “32768", it must first interpret each character
and then convert it to floating point in the “Floating Point Accumulator” (see
any memory map). During this, time is also spent on error checking. (* Integer
variables aren’t as fast because they also need to be converted to floating point)
But BASIC just loves floating point variables. The value is looked up in the
simple variables table, transferred into the F.P. Accumulator, and execution
proceeds. Not only that, but if the same constant is used in several places,
you'll save on memory, and the run-time improves considerably too.

The Transactor Book of Bits and Pieces #1 17

ore.c
Permissic

Getting back to our one-liner. . . it’s written for the 803‘2;50\403’?,\)00@20, BRdT O

4032 : change 34768 to 33768.
VIC-20 :change 32768 to 4096 or 7680 and
change 33768 to 4602 or 8186*
* use second value with 8K (or more) memory expanders.
C64 : change 32768 to 1024 and
change 34768 to 2024

Mind Twister / Brain Bender

This one will dazzle you! It’s the handiwork of John Stoveken in Milton
Ontario. In fact, don’t look at it too long or your grey matter will turn three
shades of purple-ish orange and ooz out your nose onto your keyboard, and
make a real mess.

The program simply fills the screen with characters and then starts playing
with the Upper/Lower case register at decimal 59468. By tapping any key,
Upper/Lower case mode is toggled at different rates. . . 256 in all! Hita “1” to
end the routine.

The program, like some others we've presented here in Bits & Pieces, is so fast
that the video beam can’t keep up with the changing display, thus producing
the truly weird effects.

It's designed to work on 8032’s; BASIC 2.0 and Fat Forty users will have no
trouble making it work, but the results will differ. VIC-20 and C64 users will,
once again, need changes; two to the screen start and end addresses and
another for the Upper/Lower case control register (59468 on PET/CBMs). The
code is relocatable so it will work wherever you have memory.

The BASIC loader that follows is all you need to get it going (or rather all it
needs to get you going). RUN it and enter:

SYS 20480

The number “1” shown in bold on line 30 is the base character used to fill the
screen. For different effects, try changing this to 193, 223, 255, or your choice.
You “need-to—-know-what-makes—it-tick” machine code addicts will find the
source code following the loader.

10 for j=20480 to 20539 : read x : poke j, x : next : end

20 data 169, 128,133, 1,169, 0,133, O
30 data 168,169, 1,145, 0,200,192, O

10 Tha TrAanenntar Rnnk of Rits and Pieces #1

dore.ca

64 users will need to make changes. May Not Reprint Without Per

SRLLSAN |

40 data 208, 247,230, 1, 165 4™ dx 20936/ . Commodore ca

50 data 208, 239, 169, 12, 141" 7623&17@ Reprint Without Pe
60 data 76,232, 73, 2,141, 76,232,165

70 data 151, 201, 255, 240, 7,201, 49, 208

80data 1, 96,198, 2,166, 2,202,208

90 data 253, 76, 31, 80

= $5000

Ida #$80 ;screen start

sta $01

lda #8$00

sta $00

tay
loop lda #$01 ;base char.
sta ($00),y

iny

cpy #$00

bne loop

inc $01

Ida $01

cmp #$88 ;screen full?

bne loop

lda #%0c

sta $e84c ;setgraphic
loop2 Ida $e84c

eor #$02 ;toggleto

sta $eB84c ;text mode

lda $97 ;key pressed?

cmp #$ff

beqg lop ;no, do delay

cmp #$31 ;yes,isita1?

bne next ;no, change delay
rts ;yes, end
next dec $02 ;alter delay
lop Ildx $02 ;and do one
lop1 dex
bne lop1
jmp loop2
.end

Loading C64 Programs On PET/CBMs [216]
BASIC programs in PET/CBMs commonly start at $0401. But C64 BASIC

programs start at memory location $0801 (remember, there is always a “zero”
in the byte preceding BASIC text space). So Commodore, in their infinite

The Transactor Book of Bits and Pieces #1 19

SION

wisdom, decided that the 64 would have the capabffityfo #8/16¢até gEpcanmodore.ca
programs. They LOAD right where the 64 wants tfem withl all ¢hair'poimers/IThout Permission
adjusted perfectly.

Not so in the reverse situation! PET/CBMs didn’t know there was going to be a
C64. . . so programs written on the 64 will LOAD into the PET at address
$0801. YUK!

There are actually two solutions to this one. First, we could move the Start-of-
BASIC pointer in the PET “up” to $0801. Then a zero must be placed at $0800
to keep the operating system happy. A LIST would display your program ok,
but SAVE or DSAVE would reep havoc! On PET/CBMs, SAVE always starts at
$0401. This would store 1K of “fore-junk” before reaching the start of the
actual program. Take this file over to the 64 and it will try and load this fore-
junk, leaving memory full of organized hodgepodge. The only way around it is
to use the M.L.Monitor to store the program from the PET, which is also
painful because we need to find the end-of-program address for the .S
command.

So forget all this. . . here’s a much easier way (thanks to James Whitewood,
Milton Ontario}:

1. Type: NEW

2. LOAD the C64 program into your PET/CBM. A “LIST” at this point should
result in “READY.”

3. Add the following line of BASIC: O REM

4. Now enter: poke 1026, 8

5. Delete line 0 by typing a 0 and <RETURN>

6. lastly, enter: poke 43, peek(43)-4 : clr

7. Type “LIST” and your program will be there!

A brief explanation. In Step 1, the PET thinks no program exists because the
first thing in memory is an end-of-BASIC marker (2 consecutive zeroes).

Step 2 loads the 64 program into the PET and sets the End-Of-BASIC pointer.
PET now thinks a program exists in memory, but the end marker is still down
at $0401, so LIST will never get past this point.

In Step 3, all memory between $0401 and the End-Of-BASIC pointer (which is
pointing at the end of the 64 program) is moved up to make room for “0 rem”.

The forward chain pointer for Line 0 is now pointing at $0407, the end marker.
The first byte of the 64 program now lies at $0807. By altering only the high
order byte of the chain pointer (Step 4), Line 0 is “linked” to the program
residing at $0807. The low order byte need not be adjusted since it will be the
same.

20 Tha Traansaictor Book of Bits ond Pieces #1

Step 5 deletes Line 0. The PET treats this lig€ any Wthier WeldteOlla spacd Ore. ca
occupied by Line 0 is reclaimed by moving thg ['ines/abovis déwnriLingifrisut Permission
effectively “squeezed out”. But since Line 0 was the first Line, the new first

Line will be that of the 64 program. Presto! The 64 program is right where the

PET/CBM is most comfortable with it.

Step 6 adjusts the End-Of-BASIC pointer. When a line is deleted, it is assumed
it will never be longer than 255 bytes so only the low order byte of the pointer
is altered unless one page boundary is crossed. In this case 4 page boundaries
are crossed, so we have to do the adjustment ourselves. The CLR command
cleans up all the other pointers. Omitting this step would cause 4 pages of
“after-junk” to be stored on a SAVE.

Wouldn't it be nice if everything were so simple?

Cheating A Syntax Error [46,220]

If you're extremely lazy like me, you probably take any chance to make
programming more effortless. For example. The RUN command is three entire
key presses followed by a Return. And you don’t always hit them right. How
many of you have entered “RUIN”, “RUB” or “RUM”. Argh! Right?

Well fellow short-cutters, Wayne Garvin of Toronto has this one for us. The
keys Shift and RUN/STOP do the auto LOAD and RUN sequence. Some
machines want to load from disk, others from tape, but every machine, back to
the original PET, has this feature.

But try this! Type a letter (eg. “k”) and then hit Shift-RUN/STOP. A ?Syntax
Error will result and the LOAD is ignored. However, the characters R-U-N
and Return are still in the keyboard buffer. These will be honoured as if YOU
entered them, and your programs begins!

Just don'’t hit a number key first or the LOAD command will be entered on a
program line which might mutilate existing code.

This little trick is convenient. . . it means I'll see my program errors that much
faster.

More Key Combos (46, 220)

If you have an 8032, 8096 or a SuperPET, you've probably used the “:” key to
pause scrolling when LISTing a program or a Catalog. Try this. LIST a program
and hit the “:” key; the listing stops at the bottom of the screen. Now, with your
forefinger on the “:”, use your pinky to press the RUN/STOP key; scrolling
resumes. To pause, release RUN/STOP; to abort, release the *:”.

The Transactor Book of Bits and Pieces #1 21

Another I use often is “Shift, RVS, A & L”. Hit Shiffiust, tHék RS, Grid prasan Od O re. Ca
the A and L keys together. This combination doeSwa rne insertiol. handyifgrithout Permission
inserting lines into programs visually. The screen will scroll down from the

cursor line and you fill in the gap.

Looks Are Deceiving!

How may syntax errors can you find in this line:
ifgorb>tandforinthend = storun:header " disk * ,d1,ifn

Some are rather obvious but don’t be fooled. . . other parts will run fine.

The problem is a result of “tokenizing”. When you hit Return to enter a line of
text, the BASIC editor begins analyzing or parsing the line (from left to right)
looking for patterns that match pre-defined keywords in ROM. If a match is
made, the editor converts the sequence into a number or “token”. Tokens are
used not only to save memory (ie. keywords consume only one byte) but also
for speed. During execution, BASIC need only interpret a single byte instead of
string of 2 to 7 characters long.

The first is probably the most difficult to spot. The sequence G OR B will
correctly calculate G OR'd with B, until the spaces are removed! Now it
effectively becomes GO RB. Yes, “GO” is actually defined as a keyword that
doesn’t do anything, unless you like putting spaces in your GOTOs (ie. GO
TO). To honour the spaced out “GO TO”, Commodore had to include GO in
the keyword table. Otherwise “GO” would be considered a variable during
execution, followed by the keyword “TO”, and a ?Syntax Error would result.
Such was the case in the original BASIC 1.0. All BASICs from 2.0 on
incorporated this change.

Two rules here: 1. Don’t use GO for a variable, and; 2. if the variable G
precedes the boolean operator OR, follow G with a space or enclose it in
brackets.

This next one is easy. T AND F will read as TAN DF. Since there is no open
bracket for the variable DF, ?Syntax Error occurs. Once again, follow T with a
space or put it in brackets.

The same thing will happen on FOR and INT until we use spaces to separate:

.tandforin. ..

is how this part must read to work.

22 The Transactor Book of Bits and Pieces #1

“THEN™ is processed next so END will notgfe detettad! Vs mm@dor e ca
needed before the variable D. However, good programmiers wilbinsert|tneut ssion
anyways for tidiness.

After the “="" comes S TO RUN, which is of course meaningless. For this to
work at all, it must be entered as: ST OR UN

Our last syntax error lies in the HEADER command. The “I” delimiter for the
disk ID is followed by an “F”. This tokenizes to “IF” and is definitely out of
place. Inserting a space after the I will avoid ?Syntax Error, but “FN” is now
tokenized as if it were part of a “DEF FN” sequence. Your disk ID will now be a
space and the graphic character L1, which has a PET ASCII value of 165, the
same value as the token for “FN”. Solution: A. Don’t use F as the first character
ofadisk ID, and; 2. Don't use a pair of characters that match a keyword. These
are FN, GO, IF, ON, OR, TO, or ? (PRINT shorthand).

The statement has one more problem in general that often plagues even the
most experienced programmers. At first glance, the condition appears to be:

is g or b greater than t and f or in

Not so! The > symbol is actually operating on the variables B and T. To
achieve the above test, brackets must be used to delimit the >

if (g orb) > (tand forin) then. . .

You may even require brackets within brackets to ensure correct order of
operations. Don't be afraid to use a few extra brackets. . . the time you save
later will be well worth the extra bytes!

Incompatibilityisms: C64 (s

If you have a 1540 disk drive, you'll need a set of upgrade ROMs to make it a
1541 to make it work properly with a Commodore 64. It seems the 1540 works
ok with a VIC 20, but is incompatible for program loads on a C64. Fear not
though. While you're waiting for your new chip, here is a temporary fix:

poke 53265, 11 : load "your program", 8 : poke 53265, 27

The first POKE turns off the 64’s screen. The 6510 uses about 25% of its
processing time servicing the VIC II video chip, mainly due to the extra
features (je. sprites, etc.) which the VIC-20 doesn’t have. The 1540 delivers
bits at the rate of about one every 20 ms. The 64 uses up more time servicing
the screen than the character is available for. Therefore, some bits are lost.
With the screen off there’s no problem. After the program loads, the second
POKE turns video back on.

The Transactor Book of Bits and Pieces #1 23

Only input is affected. File data read with INPUT# amd GETH Vill GuiterTtnan) Od O re.ca

same horrible fate. Writing data is ok though. The 1540 hathotiéubles keepingith
up with bits offered by SAVE and PRINT# because they're slowed down by the
screen. With the screen off, SAVE would be much faster (maybe too fast?).

Basically, (or rather machine languagely) the 1541 ROM is 25% slower than
the 1540. This means the 64 can continue with video and still service the disk.
You'll notice program LOADs are a little slower, but the tradeoff is worthwhile.
The 1525 Printer is also subject to this problem.

More Incompatibilityisms: Disk [151,202]

One other note. . . diskettes formatted on the 1540, the 1541, the 2031, the
4040 (3040 in Europe) or, if there’s any still around, the 2040, can all be read
by from any of these models. But don’t write “interchangeably”. That means if
you have a 1540 disk and you insert it in a 1541 (or a 4040, etc.), you can read
it but don’t write on it! Some say they haven’t experienced any problems with
this but there have also be reports of diskette clobberation. I make it a habit to
have one of each format on hand so I can pick up programs from any drive.
Then I copy them onto my 4040 later on.

The same is true with 8050 diskettes on the 8250 drives. One difference
though. . . upon first inserting the disk in the drive, your initial access will give
an error (eg. Catalog). Clear the error channel with PRINT DS$ and give the
Catalog command again. You should have no further trouble until you insert
another disk. But once again, don’t write on them. Instead, format a new 8250
" diskette and use COPY to transfer 8050 Program and Sequential files across. If
you have Relative files, you'll need to use a utility to make the transfer because
REL files are formatted differently on the 8250. (Transcsribe by Richard Evers,
Transactor Volume 7, Issue 02, will do it)

1540/41 Command Change [200]

All Commodore disk units support the Memory-Write command. This com-
mand works like a “disk POKE” for writing data into DOS memory. On 2040,
4040, 3040, 2031, 8050, 8250, 9060 and 9090 drives the syntax is: "m-w:"
(followed by an address and data, see your disk manual for details). Syntax on
1540 and 1541 drivesis: "m-w" (ie. without the colon).

This command is not to be used haphazardly. Memory-Write deposits data in
DOS memory that may or may not send it into never-neverland.

24 The Transactor Book of Bits and Pieces #1

510N

-~

VIC-20 Printer Output Bug o WWW.Com‘deOI’e.C’a_

A - MNAat Da nt W SN Darmm
May Not Reprint Without Permis

If a program is LISTed to the 1525 printer from the VIC-20 immediately after a
SAVE to tape, the 1525 will drop characters. For example:

“beige tint” might become “big ti .. .hmm, poor choice
Well, you get the point. The fix? Simple. After the SAVE, type the following:
VERIFY <Return> <RUN/STOP>

It seems that activating the VERIFY command clears the adverse condition
created by SAVE. RUN/STOP aborts the VERIFY and you can now send
unbugulated listings to your printer.

Alternately, you could LIST your program before SAVE. After the SAVE, a
LOAD will untangle the output routines like VERIFY.

No Interlace On VIC II Chips

Some televisions on the market have what's called “interlaced CRT scan”.
This means that the video beam scans all the even rasters during one sweep,
then goes back and scans all the odd rasters on the next sweep. Other TVs
simply scan consecutive rasters.

VIC-20 video chips have a feature called “interlaced mode”. To activate it:

poke 36864, 133
poke 36864, 5 de-activates it

If your picture appears to “flutter”, try the above POKE. It may or may not
help. Note that game cartridges from VIC-1910 up, with one exception, allow
you to toggle this feature by hitting the F7 key before the game is started. The
exception is “Gorf” (VIC-1923). With this cartridge, push the joystick up
instead of hitting F7.

Back to the point. . . The Commodore 64 uses a new video chip called the VIC
II. This chip doesn’t have the interlace mode feature. Although this is not a
bug, it was included in this section because it might look like one. If it happens
to you, I'm afraid you're stuck. However, the 64 has pretty good video output.
Chances are you won’t notice it even if you have a TV with interlaced
scanning.

The Transnctor Bnok of Rite and Pieres #1 28

Zenith TV Mod g www.Comm
On some recent Model 3 Zenith TVs there is a problem with the vertical hold

synchronization. This not only affects the 20 and the 64, but virtually any

device used locally to drive it (ie. other micros, video games, VCRs, etc.). The

picture will, once again, appear to “flutter” because Zenith factory sets the unit

to receive its vertical sync (or interlace) signal “off air”. (the signal is mixed in

by the station — you may have heard the buzzletters “V-I-P” used to promote

this product)

The POKE discussed in the previous segment can be used to fix it, but only for
VIC 20s. However, Zenith offers this more permanent fix:

Inside the Model 3 lies a yellow wire on connector 2H of module 9-152.
Disconnecting this wire will force the set to generate its own internal sync
signal. This might seem simple enough, but have a dealer or qualified
technician do it for you. Your warranty won’t be voided, nor will you notice
any change during regular TV viewing (most TVs like Sony don’t even use off-
air sync).

Note: There is a white wire connected next to the yellow wire which should

NOT be disconnected. This problem has been observed on other Zeniths and
some RCAs but no specific model numbers or fixes are available at this time.

Commodore 64 Bugs Update [215, 222]

Here is a list of all known 64 bugs to date (Nov. 1982):

1. TAB and SPC

The PRINT# command cannot be followed directly by a TAB or SPC operator.
To get around this, simply precede TAB or SPC with two quotes (a “literal null
string”). Eg:

open4, 4
print#4," "tab(10) " some string”

2. Prompt Suppress After CONT

If a program is interrupted with the RUN/STOP key, and CONT is entered to
resume execution, the prompt messages generated by the operating system
will no longer be suppressed. For example, if you have CONTinued a program

and a dynamic LOAD occurs, ie:

100 load " next module",8

26 The Transactor Book of Rits and Piecas #1

odor

A - NAat Ra nt WV SN
May Not Reprint Without Pe

e.C

a

the prompt, “searching for next module” will"be dl‘sﬁd]WeWoﬁ:@mm@d O r e Ca

This one is really no big deal so there’s no fix, although & POKE eclocation 194 ssion
before using CONT might do the trick.

3. Screen Editor Crash

This one was found pretty early and you may have already heard about it. Let’s
say you're on the 23rd, 24th, or 25th line of the screen and you type a line
that’s longer than 80 character but less than 120. If you now begin deleting
characters, upon deleting the 80th character (DELete from column 1 of the 3rd
line around to column 40 of the 2nd line), your machine will appear to hang.

Apparently, upon writing a space to this location, the 64 incorrectly writes
information outside of the colour table. This info actually gets written to CIA 1
which is just above the colour table ($DC00). If a certain bit is set, CIA 1 will
invoke an auto LOAD/RUN (as if you hit Shift RUN/STOP). This bit will be set
or unset depending on the colour of your cursor. At this point, your keyboard
will seem to be disabled.

Fear not! Here is the fix (thanks to Don Lekei of North Vancouver, BC). If the
“9” and the “N” keys are depressed together and then released, the prompt
“PRESS PLAY ON TAPE” will appear. Do so and the screen will display “OK”
and go blank. Now press the RUN/STOP key and you will regain control of
your 64 with no apparent ill effects. (Note for disk users with no Datasette:
connecting the cassette port pins 1 and 6, the outside pins, together will have
the same effect as pressing PLAY)

To avoid this potential situation altogether, simply change the cursor colour to
white (usually best), purple, green, orange, brown, grey2, or bright green.

New Kernal ROM For 64 [s5, 128, 142]

Commodore has been installing new Kernal ROMs in their latest production
64s. Dubbed the “Kernal 2", it fixes bug #1 from above (and maybe #2 but not
#3) and also incorporates some changes. However, it's already been discontin-
ued in lieu of a “Kernal 3” ROM coming soon. Rumour has it that Kernal 2
machines will be updated to Kernal 3, but Kernal 1 machines will have to wait.
The reason for this is a change in Kernal 2 that was made too late for it to be
effective. Kernal 3 will revert back to the original method used in Kernal 1.

The change in point is this. A “Screen Clear” with Kernal 1 resulted only in the
screen being written with space characters. The colour table was left un-
touched which means any subsequent POKE to the screen would produce a
character in the previous colour assigned to the location being POKEd.

The Transactor Book of Bits and Pieces #1 27

Kernal 2 works the same way as the VIC 20. Clearlr\gth\évs%ﬂ'f Leamanodor e Ca

entire contents of the colour table to be written With the'safnéValgeas thel!
background colour. Now, a POKE anywhere to the screen will produce a
character that is the same colour as the background. Thus it will appear to be
“not there”.

Had Commodore released the original Kernal 1 C64 with the VIC-20 clear
screen procedure, there would be no need for a Kernal 3. Kernal 2 renders
several 64 programs already in circulation inoperative after a clear screen
(WordPro 3+ 64 for one). This may be a blessing in disguise though, since
new bugs have been discovered since the release of Kernal 2.

Other changes in Kernal 2/3 include a slightly different operation of the
Commodore Logo key when LOADing from tape. In Kernal 1, a tape LOAD
would cause the tape deck to find the program and wait indefinitely for the
Logo key to be pressed before proceeding. This gives you the option of
aborting the LOAD by hitting RUN/STOP. With Kernal 2/3, the 64 waits 10
seconds for you to hit the Logo key once the program is found. After 10
seconds, LOAD proceeds as if you did hit Logo.

To check for Kernal 2, enter the following line:

print : if peek(55296) = peek(53281) + 240 then print" Kernal 2"

Best Monitor Picture From VIC/64 (33,72,99, 111]

Here are the pin designations for the 5 pin Video/Audio connector on VIC 20s
and C64s. The colours are those of the Radio Shack 5 pin European plug to 4
phono jack cable (Part* 42-2394).

VIC 20 C64

1 Red +5V@ 10ma. Luminance
2 No Lead Ground Ground

3 Grey Audeo Out Audeo Out

4 Black Video Low Video.

5 White Video Hi SID Audio In

If you have a VIC 20 and a B&W or colour monitor, try connecting pin 4 (Video
Low) or pin 5 (Video Hi) to your monitor input. Whichever gives you the best
picture will obviously be the one to use.

Commodore 64 users with video monitors have a couple of options available.

For colour monitors, get yourself a phono “Y” adapter from Radio Shack. To
this connect Luminance (pin 1, Red) AND Video (pin 4, Black) and plug the Y-

ao Tha Tr~nocmatar DAAl, ~AF Rite ~nA Din~oe #1

10Ul rFer

adapter into your monitor. You should get a ,muﬁ SWP;%WICQQ mm@ﬁ ore.cCa

just Video alone. s May Not Reprint ¥
For 64s with B&W monitors, connect just Luminance (pin 1, Red) to the
monitor input. Video seems to give a “grainy” picture but Luminance comes

through nice ‘n’ clear!

DON'T however try either of these with your VIC 20. You'll be connecting + 5
volts to your monitor and you could be in for a spark show!

The Transactor Ronlke of Rite and Piarac #1 %20

PN"‘v 39

ion

c‘ www.Commodore.ca
May Not Reprint Without Permission

Kaleidoscope

This program was dug up from the depths of my cassette tape collection. The
program is about 4 years old so I don’t know who wrote it, although I'd be
delighted to find out.

100 print "[";: c=0

110forj=01t0 7 : read ch(j) : next

120 data 160, 127, 102, 64, 91, 93, 58, 32
130 sc=32768: cols =80 : lines =25

140 mx =int(co/2-1) : Ic =li/co : ck = co-0.0001
150 for h=3 to 50

160 fori=1 to mx

170 for j=0 to mx

180 k=i+j

190 c=ch((j*3/(i+ 3) +i*h/12) and 7)

200 s1 =sc + co*int(lc*)

210 s2 =sc + co*int(lc*K)

220 s3 = sc + co*int(lc+(ck—i))

230 s4 =sc + co*int{lc+{ck-k))

240 poke i+s2, ¢ : poke co-i+82, C

250 poke i+ s4, ¢ : poke co-i+5s4, ¢

260 poke k +s3, ¢ : poke co-k+83, ¢

270 poke k+s1, ¢ : poke co-k+s1, ¢

280 nextj, i, h

290 goto 150

The program was modified to work on all Commodore machines so it doesn't
make use of colour on the VIC and 64. Before RUNning, change the variables
in line 130 to suit. SC is the screen start address, the other two are rather
obvious.

To get colour wouldn't be hard though. All you would need is another
variable, say CT for Colour Table, set equal to its start address. Then just copy
lines 200 to 270 into all the “in between” line numbers (ie. 205 - 275) and
substitute CT for SC, C to CL, and C1 to C4 for S1 to S4. The variable CL is a
colour that would be generated randomly, or using another cryptic statement
like line 190. Right now line 190 chooses a character from the CH array which
is set up with the screen poke values of 8 graphics. Change these if you wish,
but likewise, another array (eg. CL{0-7)) could be set up to contain the poke
values of some screen colours from which a new line 195 would select. Of
course if line 195 were stereotyped from line 190, each character would get the
same colour in all occurences. Try changing some I's and J's around.

The Transactor Book of Bits and Piecas #1 au

Cca

S1ION

VIC 20 users and Commodore 64 users with Kernal2 #ill nee Mdﬁ@mm od LO re.ca
May Not Reprint Without Permission
C64 : 105 poke 53281, 13
V20 : 105 poke 36879, peek(36879) and 15 or 208

This changes the background colour so that the pokes to the screen will show
up. With the 20 (and 64 Kernal 2), a clear screen writes the whole colour
nybble table with the background colour value. Thus a poke to the screen only
puts a character in screen memory that’s the same colour as the background,
making it “invisible”. This will be averted if simultaneous colour selection is
added, however, changing the background colour dynamically might also be
interesting.

As is, the program’s about as fast as it's gonna be in BASIC. If you have a
compiler and you've got nothing better to do. . . Finally, any dazzling new
versions would be most welcome in a future issue!

4.0 Disk Append {183
The program to follow is fairly self explanatory.

10 print " basic 4.0 disk append

20 print " this routine will allow a subroutine

30 print " saved as a program file on disk to be

40 print " appended to a program in memory. " : print
50 print " the subroutine must begin with a line

60 print " number greater than the last line of

70 print " basic text in memory " . print

80 print " activate with : ";

90 read ad : rem replace with ad =??? for permanent placement
100 for j=01t0 56 : read x : poke ad +}, x : next

110 print "sys” ad; chr$(34) "file name” chr$(34) ",8"
120 rem routine is fully relocatable

130 rem first data element is start address (ad)

140 rem remove 1000 if ad is set within program
1000 data 634

1010data 169, 0, 133, 157, 32, 125, 244, 169
1020 data 96, 133, 211, 164, 209,208, 3, 76
1030data 0,191, 32, 73,244, 32,165,244
1040 data 32, 210, 240, 165,211, 32, 67,241
1050 data 32, 192, 241, 32,192,241, 56, 165
1060 data 42,233, 2,133,251,165, 43,233
1070data 0,133,252, 32,140,243, 76, 28
1080 data 244

29 Tha Traner~~tar Ranl ~f Dite AnA Din~ae #1

Lately I've had quite a bit of use for it. For ga%w %eg QMPQW e Ca

renumber only part of a program and don’t Have a selé¢ive refarnber Uity ' el
First you renumber the part you want renumbered, then you bring in the rest
with DiskAppend.

The version above works on BASIC 4.0 only, however if there’s enough
demand we’ll re-cut it for the others. After running it once, I tend to save a
direct load copy from the MLM. This way it can be loaded back using the
monitor without disturbing the contents of memory.

Crash Your Commodore 64!

A dastardly perpetration indeed for such a fine upstanding computer. But let’s
do it anyway (Nyah ah ah). While looking for the problem with the C64 POP
SYS published last issue, I stumbled across a most interesting crash, however it
seems to only work on 64s with the racing stripes:

poke 783, 8 : sys 42622

Now hit some number keys. That’s it. . . keep going. Neat eh? (Neat uh? for
U.S. readers). And why is the text on the screen (ie. from above) not disturbed
by all the vertizontal scrolling? Hmm. Eventually it locks up completely but no
harm done. Just power down, up, and you're back to normal (your machine
that is). Any more out there?

C64 TV Colour Adjust (28,99, 111]

Don Lekei of Vancouver, B.C., has this useful note for those not satisfied with
the colour output of their C64 to a television set.

First power down your 64. Open the casing and on the PC board, around the
general vicinity of the Return key, you'll find a metal “box” (you can’t miss it).
Lift the lid off this box, being careful not to wipe off that white gunk that's on
the bottom of the lid and the top of that 40 pin chip. This stuff acts as a heat
transfer from the chip to the lid.

Inside the box are two white nylon adjustment pots. The one on the left is the
Chroma output adjust, and the one on the right is the Clock rate adjust. Turn
your 64 back on and, of course, connect it to your TV. Before changing these
pots, take a black felt pen and mark each one so you can return to the original
positions should you get carried away. Also, you'll need some stuff on the
screen to make the adjustment by. Set a black background with POKE 53281,0
and type some lines of jibberish on the screen using the colours available from

The Traanentnr Ranlr ~f Rite AnA Diarac #1 22

the keyboard (ie. CTRL - WHT, RED, CYN, etc.. On@thWWéNnC}@immOdor €.ca

ready for the important part. Pe on

Using a small screwdriver (preferably plastic in case it gets dropped), turn the
Chroma level down (counter—clockwise) until your TV just loses the colour
signal. Ideally it will “flicker” between colour and no colour. Now adjust the
Clock pot so that colour is regained and stable. This will be either a clockwise
or counter-clockwise turn, but all it should need it just a “tweek”. Look good?
Re-assemble the machine, making sure the metal lid goes on the right way,
and you're done.

Of course you may not get it looking any better than it was. If so, you can
always re-set both adjustments to their original positions. If your machine is
still under warranty, you may want to take this note and your 64 down to your
dealer and have them do it.

CRless CMD

How many of you are making sequential listings of programs to your disk
drive? If you are, you probably do something like:

open 8, 8, 8, "0:prog file,s,w"
cmd 8 : list
print#8 : close 8

This puts a listing to the disk just as if it were to the printer. You might use this
file at some later time with a terminal program, etc. But have you noticed an
extra carriage return always seems to creep in at the beginning of the file? If
this bothers you, read on. If not, forget I mentioned it.

The CMD command works somewhat like PRINT#, Without punctuation a CR
gets sent afterwards. In future, try replacing the CMD 8 with:

CMD 8,;
This suppresses that extra preceding CR. And just a reminder, choosing a file
number 128 or greater causes a Line Feed to be sent after each Carriage

Return.

For some reason the comma cannot be omitted. Does this suggest there may
be other combinations?

24 Tha Tranem~tar Ranl Af Rite AnA Diarac #1

Sunny Side Up! (117,181, 182] < WWW.C mquore.c’e}

~+ Dea rirvt Withh~ Dy \
May Not Reprint Without Permis

It seems almost criminal what they're charging for diskettes these days. The
material can’t cost more than about a quarter, and they probably make about a
thousand every minute. So what do we do? We cleverly hack out a notch on
the opposite side of the jacket, flip them over, and presto! One double sided
diskette.

But consider this. A diskette always spins in one direction, even double sided
disks, which are not intended to be flipped but rather for use with double head
drive units. When dirt and dust particles manage to land on the disk surface,
the drive spins it into the inner lining of the jacket. Usually it collects there and
doesn’t bother us too much. If the disk is flipped over, rotation will now be in
the opposite direction. All that crud will now be released from the lining on
both sides of your disk. YUK!

I'hope I'm not sounding like a diskette salesman. I suppose we just have to put
up with prices until enough competition brings them down. . . kind of a “fact
of datalife” (ooh, poor).

Waste Space

The following is for those who like to define your variables at the beginning of
aprogram. If you're the type that lets all your variables be defined as execution
sees them, you could be in for some peculiar results.

When BASIC “sees” a variable, the variable name and information related to it
gets stuffed into the simple variables table that sits immediately above your
program text. Each new variable seen causes the table to grow by 7 bytes,
which cannot be reclaimed short of doing a CLR. But only floating point
variables make use of all 7 bytes. String variables use only the first 5, the last 2
are wasted, and integer variables use only the first 4. MicroSoft did it this way
to reduce ROM code and also to make searching through the table a little
quicker.

I don’t suggest you actually try to use these bytes unless you're seriously
strapped for memory and another 7 bytes to store some value is absolutely
unaffordable. This was meant more as a refresher on the simple variables table
than anything else. However if you do need these bytes, here’s how to go
about it.

First you MUST define some variables at the start of your listing that you will
be using later on. These variables must be either string or integer type, but
depending on how many you choose to pre-define will decide how much
waste space you'll have to play with later. If you're using J.B.’s String Thing,

The Transactor Book of Bits and Piaeces #1 25

stop right here. Jim uses the last two bytes of the first vquat}ﬁ%{ Wﬁ\ﬁ{txgoam m odor e Ca

Per

assumes these will start with 0. Watch out for this wit[i'$6me othér tilinesigs. Without

Moving Strings

To demonstrate the above, 1 borrowed part of a “function input” idea [was
tossing around. . . more on that in a minute.

Line 100 defines some variables. As you can see, we'll only be able to use the
waste space from A$ and B%; the third table entry, C, must not be disturbed!

To save space, the poke/peek address is calculated in a function. FN AD takes
the address stored in the Start of Variables pointer and adds Y to it (equivalent
of “indirect indexed” in machine code).

100a$="":b%=0:c=3.3
110 def fn ad(y) =y + peek(42) + peek(43)*256

500 input " some function " ;fu$
510 a$ =fu$

520 gosub 1000

530 rem go to plot routine, etc.

1000 poke fnad(5), peek(48)
1010 poke fnad(6), peek(49)
1020 poke 48, peek(fnad(2))-1
1030 poke 49, 2

1040 poke fnad(12), peek(47)
1050 poke 47, 1

1060 a$ =a$

1070 poke 2+256 + peek(fnad(2)), O
1080 poke 47, peek(fnad(12))
1090 poke 48, peek(fnad(5))
1100 poke 49, peek(fnad(6))
1110a$=""

:rem save bottom of
:rem strings pointer
:rem move pointer to
:rem basic input bufr
:rem save Top of Arrys
:rem move pointer below
:rem $0200 & rebuild a$
:rem O marks bufr end
:rem restore Top of Arys
:rem restore string

:rem bot pointer

:rem null a$

1120 rem sys to tokenize routine, and/or eval expression
1130 return

Line 500 inputs FU$ (sorry about my choice of variables but FN$ would cause
?Syntax error, and you have to admit, it probably wouldn’t be used eisewhere).
FUS$ is transferred to A$ because A$ must be nulled later on.

With a Y argument of 5, the result of FN AD is the effective address at which we

store the Bottom of Strings pointer. To store info in B% waste space, simply
passa12(5+7,and 13,6+ 7)to FN AD.

- TL - T L Denle m b Db Al Dimman =47

Now the String Move part. Lines 1020 angf1030 &%Wﬂélﬁﬁmmr@@so r e Ca
pointer to point at the BASIC input buffer. The buffér starttbdt $0200 (dec52), Per on
but the pointer is set to $0200 plus the length of A$, which we get from PEEK

FN AD(2) (note: this better not be >80). Before A$ is rebuilt, the Top of Arrays

Pointer must be set lower than the Bottom of Strings pointer so that garbage

collection is not invoked which would ruin everything. Line 1060 merely

causes A$ to be transferred to the BASIC input buffer, and line 1070 marks the

end of valid buffer contents with a 0.

After mending all the assaulted pointers, again using FN AD to access values
stored in waste space, A$ is set to null so that garbage collection doesn’t
clobber anything important down in lower memory. Continuing, the program
might continue to use the contents of the input buffer. Specifically, the string
could be tokenized and evaluated for use with a plotter subroutine, trigonome-
try program, etc.

I haven't actually tested this, but the idea was to demonstrate using waste
space. For one thing, the contents of the BASIC input buffer may require a
conversion to screen codes before tokenization is called. For another, the
buffer itself may get clobbered by subsequent BASIC operations (ie. POKE, FN,
SYS, etc). If someone decides to tackle the “function input” utility, it may
require machine code for everything past the input statement. However, I'd be
most interested in ANY results!

Butterware [207]

The next three programs are from who else but Jim Butterfield. The first is
String Thing 64, the second is Tapemaker for BASIC 4.0, and the third is
Universal Disk Change.

String Thing 64 is the Commodore 64 version of Universal String Thing,
published in Transactor 01, Volume 4. This utility will input strings from the
disk up to 255 characters in length, terminating only on carriage return. . .
handy when commas and colons in files are interfering with input. Remem-
ber, the variable that receives the input must be the first one defined in the
simple variables table. Also, the file number used to open the input file must
be number 1. (ie. OPEN 1, 8, etc.)

String Thing has other interesting applications. The test for CR can be changed
to virtually any character. Input is also controlled by the length of the buffer
string (A$ below). If lines 110 and 120 are removed, input will be throttled to
15 characters maximum (len(a$)). Location 142 stores the number of charac-
ters received from the most recent input (note lines 430, 440).

I can’t be sure, but a quick look at the machine language part indicates that it
will work on the VIC 20 without modification.

The Transactor Book of Bits and Pieces #1 a7

50 rem ****************************:* WWWCO mmao

M NAatl

60 rem *= string thing 64 »+ May Not Rep
70 rem =x jim butterfield *ox

BO rem *xkx sk rkkkkkkkkxkkkkkhkkkrkkk

90 rem input string must be first variable

100 a$ = " abcdefghijkimnopq”

110 a$=a%+a%+a$+a$+a$

120 a$=a%$ +a$+a$

130 rem above sets string for max (255)

200 data 160, 2,177, 45,153,137, 0,200
210data 192, 6, 208,246,162, 1, 32,198
220 data 255, 32,228, 255,201, 13,240, 15
230 data 164, 142, 145, 140, 200, 132, 142, 196
240 data 139, 240, 4, 165, 144, 240,234, 76
250 data 204, 255

260 for j=896 t0 937 ;: read X : ch=ch +x

270 poke |, x: next

280 if ch<>6120 then stop 300 stop

400 open 1, 8, 2, "file"

410 rem next sys same as 'input#1,a$’

420 sys 896

425 rem | = size of input (could be 0)

430 | =peek(142)

440 print left$(a$,])

450 if st=0 goto 420

460 close 1

Tapemaker for BASIC 4.0 [io9]

Tapemaker will accurately make a tape from any PRG file on disk. Now you
might say, “. .but all [have to do is DLOAD the program and SAVE it on tape
for the same results”. Not so! Not all programs load to the start of BASIC text
space. Some load to the cassette buffer and others load above the start of
BASIC. Tapemaker will handle these correctly.

And there’s more! Tapemaker will also make tapes of PRG files that start above
address $8000. The tape routines in ROM don'’t allow this, even if you use the
machine language monitor. Now you ask, “. .what would I possibly want to
save on tape that lies above hex 8000 ?”.

Tapemaker is EXTREMELY position dependent. One too many or too few
spaces and whammo! So in order to publish it and eliminate any potential for
entry error, we've taken the entire program and put it in DATA statements.
Since you need a disk drive to use Tapemaker, the two listings that follow
actually generate a new program on your disk. In fact, don’t waste time

28 The Traansairtor Book of Rits aind Piecas #1

1Yy

;

10U

ore.ca

Par

SRLLSAN |

making them too pretty. . . once the listing ha.;bew m%@@&ﬂm 9)@ O r e

can discard it. . . you won'’t need it again.

100 forj=110348:read x: ch=ch+x: next

110 if ch<>32053 then stop
120 open 8, 8, 8, " @0:tapemaker 4.0,p,w
130 restore : for j=11t0 348 : read x

140 print#8, chr$(x); : next : close 8 : end

150data 1, 4

160data 44, 4,100, 0O,

170 data 65, 80,
180data 32, 32,
190 data 32, 32,
200 data 84, 84,
210data 68, 34,

69, 77,
32, 32,
74, 73,
69, 82,

0, 64,

220 data 49, 58,159, 32,

230 data 49, 53,
240data 4,120,
250 data 78, 65,
260 data 70, 73,
270 data 68, 73,
280data 0,117,
290 data 56, 44,
300 data 44, 80,
310 data 132, 49,

44, 34,

0, 160,
77, 69,
76, 69,
83, 75,

4,130,
51, 44,
34, 0O,
44, 69,

320 data 139, 69, 179, 177,
330 data 36, 58,137, 49,

340 data 4, 150,
350 data 84, 32,
360 data 34, 59,
370data 0, 151,
380 data 139, 198,
390 data 48, 137,
400 data 4, 170,

0, 133,
79, 82,
86, 36,
56, 50,
40, 86,
32, 49,

0, 151,

410data 51, 58, 139, 198,
420 data 179, 177, 56, 54,137, 32, 49,
430 data 48, 0,229, 4,
53, 0,239, 4,190,
450 data 160, 50, 58,160, 49, 0, O,

440 data 50, 54,

460 data 162,

2, 32,198, 255,

470 data 133, 251, 133, 201,

480 data 252, 133, 202, 169, 98, 162,

490 data 90, 134,

510 data 230, 201, 208,
520 data 240, 233, 32, 204, 255, 160,

The Transactor Book of Rits anA Piaracs #1

153, 32, 34,
65, 75, 69,
32, 32, 32,
77, 32, 66,
70, 73, 69,

4,110, 0,
49, 44, 56,
73, 34, 0,
50, 58,133,
32, 79, 70,
32, 79, 78,
34, 59, 78,

0,159, 50,
78, 36,170,

144, 4,140,
44, 69, 36,
48,167, 153,
49, 48, 0,
32, 34, 80,
32, 86, 73,

0,192, 4,
54, 44, 49,
36, 41,178,
56, 48, O,
56, 50, 54,
40, 86, 36,

180, 0,158,

84
82
32
85
76

160

44
98
34
32
32
36
44
34

0
58
69

166

69
67

160

58
56

219

44
41
53
49
0
0

32, 228, 255

32, 228, 255, 133

91, 32,228, 255, 160,
500 data 145, 90,230, 90,208, 2, 230,

5,133

0
91

2,230, 202, 165, 150
0,132

ca

530 data 150, 200, 132, 212, 200, 17, B2 a4/ W.C OmmOd

1QuUl re

540 data 209, 200, 177, 42,133,215 200,477 ot Reprind
550 data 42,133,219, 32,149,246, 32,140

560 data 248,173, 58, 3, 32, 25,246,169

570 data 98,162, 5, 133,251, 134,252, 165

580 data 90, 133,201, 165, 91,133,202, 76

590 data 206, 248

Now LOAD Tapemaker using the appropriate file name. A LIST will show you
the BASIC part but beyond this is a whole mess of machine language. DO NOT
make changes. Altering the BASIC code will shift the machine language and
the SYS command will probably crash your computer. Changing the SYS
command won't help either ‘cause the machine code is position dependent
too!

When Tapemaker is run, it will prompt for the filename of the program you
wish to make a tape of, and then it asks “pet or vic?”. This refers to the name
you just entered, not the machine it will be loaded into. That is, if you're
making a tape of a PET program, enter ‘p’. Enter ‘v’ if the filename you entered
belongs to a VIC or 64 program, OR if you want the tape to be a “direct load”
file such as with machine language programs. Then simply follow the
instructions to come.

Universal Disk Change [214]

Disk Change allows you to temporarily change the device number of any
Commodore disk unit; 2040, 4040, 2031, 8050, 8250, 1540, and 1541.

100 data 12, 50, 119,0

110 input " old device number " ;do

120 if do<8 or do>15then 110

150 input " new device number " ;dn

160 if dn" 15 then 150

200 open 15, do, 15 :rem command channel

210 a$ =chr$(do + 32) : b$ =chr$(do + 64)

220 read a : if a=0 then print " disk not recognized! " : goto310

230 print#15, " m-r" chr$(a)chr$(0) : get#15, x$: if x$<>a$ goto 220
240 print#15, "m-r" chr$(a+ 1)chr$(0) : get#15, x$: if x$<>b$ goto 220
300 print#15, " m-w" chr$(@)chr$(0)chr$(2)chr(dn +32)chr$(dn + 64)
310close 15

To get your unit back to the original device number (usually 8) simply power
down. Or you can send this to the command channel:

print#15, "u:”

- T o T ndaa DN b mE Didn mum A DimAn~a 41

A
A

re.ca

SRLLSAN |

Drive 1, Are You There? [221] < WWW.C mqu_ore.c’a_

\ay Not Reprint Without Per on

iYiay

Single disk drives have one very distinguishing characteristic; there’s no drive
1! If you want to test this from within a program, here's a simple procedure.
Open the command channel and send an [1 (initialize drive 1). Upon reading
the error channel, the error returned will either be 0 for OK, or 21 for read
error. This suggests there IS a drive 1, but there may or may not be a disk
mounted. If a single drive is connected, the error will be 74, drive not ready.

SuperPET Bits [14,57]

How many bits in a SuperPET? Seems like a silly question, doesn't it. Well, it
is. The answer will be sure to impress your friends though. . . we’ll have it here
next issue, but you may want to add it up just for fun.

Index Expressions In APL

An error in the evaluate of the individual components of an index expression
can cause errors or incorrect results when using WLU microAPL with a
fragmented workspace. The problem exists only with Version 1.1. The
expression evaluates incorrectly when a garbage collection occurs during the
evaluation. The likelihood of this happening can be reduced by forcing a
garbage collect (eg. M L O WA) from time to time. The problem will never
occur if the individual expressions are assigned to variables prior to perform-
ing the index operation. For example:

x<a[1+1;2+2]
changes to:

al<1+1

a2«2+2

x+<al[al;a2]

Form Feeds and SuperPET Printer Output

Normally a SuperPET printer is dedicated to the SPET to which it is connected.
It is up to the person using it to ensure that the printer is positioned to the start
of a page before printing a listing. If the printer is connected to several
SuperPETs through a device such as a MUPET, it can be shared by more than
one person. It can even be physically distant from one or more of the micros to
which it is connected, and adjusting the printer before producing a listing can
be rather cumbersome. In response to requests from SPET users who wish to
share printers, the following program was written:

The Transactor Book of Bits and Pieces #1 a1

010 open #2, "ffpatch,prg” outpu WWW CommOdore Ca
020 loop 030 read i May Not Reprint Without Permission
040 ifi=999 then quit

050 print #2, chr$(i);

060 endloop 070 close #2

080data 5,192, 0, 41, 0, O

090 data 134, 8,183, 5,149, 15

100 data 50, 57, 5,202,174, 98

110 data 230, 2,193,130, 38, 22

120 data204, 0, 96, 52, 6,236

130 data 100, 189, 192,114,204, O

140 data 12, 237, 228, 236, 100, 189

150 data 211, 123, 50, 98, 57, O

160data O, O, O, 2, 0,999

The program is run only once. It creates a disk file called “ffpatch” (form feed
patch). The patch program is run from the SPETs main menu by entering
“disk.ffpatch” when the SPET is turned on, or whenever a switch from 6502 to
6809 mode is made. When it has completed the program returns to the menu.
The program applies a patch to the system routine called I3ECLOSE__ so that
a FormFeed character is output whenever a printer file is closed. This will
prevent printer output from more than one source from appearing on any
single sheet.

Simulating a GET in PASCAL

The program below simulates a BASIC GET statement to read a character from
the keyboard:
program main (input , output);
var
¢ :char;
io : file of char;
begin
writeln (‘Character?’);
reset (io, ‘keyboard’);
¢: =chr(0);
while (c=chr(0)) do
read(io, c);
writeln (‘Character="",¢,’"’);
end.

Until a key is hit, the read statement returns a null value in the variable C.
When a non-null value is returned, the while-loop is terminated and the
character is displayed by the second writeln statement. The character entered
is not echoed directly on the screen when it is typed.

a2 Thea Traansairtor Rnok nf Rits and Pieras #1

I YV 10U

Volume 4, Issue\04..Commodo

F
One Line Squiggle

Squiggle was one of the very first programs written for the PET 2001 back in
1977. It didn't really do very much except draw a continuous pattern of lines
on the screen. Since then a lot has been learned about Commodore Basic and
Squiggle has been rendered many refinements. Even though Squiggle still
doesn’t do very much, it now does it in only one line of Basic.

100 print "1 line squiggle "
110 c$ =chr$(34)
120 print " ype <return> 3 times

130 print "g§linew
140 a=548 : b=peek(57345) : ifb=75then a=167
150 if b=86 or b=220 then a=204
160 print " [E1pO " right8(str$(a),3) " ,0:x = 4+
IN(1) + 1:f0i = 1t010+rN(1):?2mI(";
170 print c$ "[Lft] "c$" x,1)"c$ "[Lft] "
c$";:pO " right$(str$(a+1),3)" ,1";
180 print ":nE:gO1"
190 print "run
200 print " EeEEIeE

As you can see there is much more than just one line here. However, this
program prints another program after some decisions are made about what
type of computer is underneath it (Lines 140 & 150). It will work on any
Commodore machine, although BASIC 2.0 machine users will want to ensure
that A=167 as we couldn't find a 2.0 machine to test it on. Also, it’s best to
enter the program using Upper/Lower case, but run it in Graphics mode. . .
the program doesn’t switch itself.

The program won't fit into one edit line so abbreviations are used. The
mnemonic [Lft] is of course a Cursor Left character. You might LIST the
program after it's entered to see just how much can actually be squeezed into
one line using abbreviations.

VIC 20 and Commodore 64 users could make several additions I'm sure. A
random colour changer would be an interesting mod no doubt. Once again,
we'll be most pleased to see any new versions but I can’t imagine them fitting
onto one line anymore. . . or could they?

Late N.B.: Can anyone explain why after an extended run on a Commodore 64

the RUN/STOP key is disabled? RUN/STOP-RESTORE is also locked out.
Most peculiar.

The Transactor Book of Bits and Pieces #1 43

Pe

re.c

Invisible Colours [99,111) o WWW.CO mm od

- Y r
May “[

No, this is not a new feature. . . just a reminder that by using the Commodore
Logo key instead of the CTRL key in combination with the colour keys across
the top, you can obtain the other 8 colours even though they aren’t shown on
the key fronts. Of course this only applies to C64 users since the 20 only has 8

colours. The corresponding colours are:

CTRL 1 = Black (0)
CTRL2 = White (1)
CTRL 3 = Red 2)
CTRL4 =Cyan (3)
CTRL5 = Purple (4)
CTRL 6 = Green (5)
CTRL7 = Blue (6)
CTRL 8 = Yellow (7)

Logo1 = Orange (8)
Logo2 = Brown (9)
Logo3 = LtRed (10)
Logo4 = Gray 1 (11)
Logo5 = Gray 2 (12)
Logo 6 = Lt Green (13)
Logo 7 = Lt Blue (14)
Logo 8 = Gray3 (15)

Can someone think up a “jingle” using the first letters of these colours? Some
of your may know this one: Bad Boys Rape Our Young Girls But Violet Gives
Willingly. It’s a great way to remember your resistor colour codes. A similar
one for these would become a world standard!

Miscompulations [68, 106, 107, 143, 176]

The following miscellaneous compilations for the 64 come from Howard
Strasberg of Toronto, Ontario.

People always want their BASIC program to be unable to list, and unable to
break in to. Well, if you start the first line with a REM followed by a shifted “L”,
when you type LIST, the computer will display part of line one and then a
2SYNTAX ERROR! However, like everything, you can still list it by taking out
line 1 or whatever your first line may be. This is a way to prevent listing before
the program is run.

To prevent listing after the program is run, you simply disable LIST in your
program. This is done by:

poke 774, 0 : poke 775, 141

This will make it so that when you type LIST, you get a clear screen and a
READY. Also, when STOP and RESTORE are entered, these two POKESs
remain so your program still cannot be listed. In order to list your program
type:

poke 774, 26 : poke 775, 167

aa Tl n Temmnmatnr DAanl ~f Rite ~mnA Diarae #1

hou

L3

ore.ca

Par

201N

This next one will disable STOP/RESTORE afid mak’é’ %Mmﬁ@ @aaah@ d O r e Ca

Load a program and: Without Pe on
poke 808, peek(808)-5

Now try a LIST. Obviously to return to normal:
poke 808, peek(808)+5

Another good thing to do is disable SAVE so people cannot copy your program
once it is run. This is done by POKE 818,0. However, you must also disable
STOP/RESTORE as this will enable SAVE. By the way, with the disable LIST
Pokes, the program can be SAVEd but still not listed.

Ever got your finger worn out from banging on the same key over and over
again to draw a long line or something? Well, now your problem is solved. All
you have to do is POKE 650,128 and now you can hold down the keys! No
more worn out fingers either!

Cathode Ray Tubing [11,80,81,173]

PRINTing is a term that has grown with computers since even before the dawn
of their concept. For without the need for some form of output data, what use
would we have for them? But unlike the pioneers of computed data who relied
mainly on bulky motor driven output, most of us have come to depend on the
CRT screen for most data display. A printer enters the picture only when it
becomes necessary for output to be transported, stored over some period of
time, or consolidated in large quantities. Indeed these limitations of the CRT
may one day be history, but at the present it is all too apparrent that the CRT is
only the next step in the evolution of the printer. The concept of PRINTing has
only been carried over to a new media and the full potential of the CRT has
become lost in the limitations we have unnaturally imposed on ourselves from
the mechanics of printers.

The next couple of routines will attempt to dissolve some conditioning that us
humans have allowed. Although we can’t put CRTs in our pockets (yet!), we
need not treat them like printers with no moving parts. And besides, who says
that printing goes left to right anyway!

100 a$ = " now is the time for the crt to come of age "
110 cols=80: c=len(a$)

120 ifcand 1 thena$=a$+chr$32): c=c+1
130forj=1toc/2

140 print tab(co/2-))mid$(a$,c/2 + 1-j,1)chr$(145)
150 print tab((co/2-1) +)mid$(a$,c/2 + j,1)chr$(145)
160 next : print : print

170 run

Tha Tranenntnr Rnanle ~f Rite nnd Diarac #1 AR

The above centers each line output. Adjust COLS 0 tiie e\ Wugs@mm Od or e Ca

The program here merely demonstrates a technique?® In acttialpractiee A$Y
would be read from disk or DATA statements and line 170 would be a RETURN
from a GOSUB to this routine. Line 120 ensures that A$ contains an even
number of characters. CHR$(145) is a Cursor Up and could be replaced with
the quotes—mode character.

Have you tried this yet? Good. If you didn’t like it, you might be impressed by
reversing it. If you did, try this anyway.

130 forj=c/2to 1 step -1
Your printer would hate you for trying this one

100 a$ = " now is the time for the crt to come of age”
110 c=len(a$)

120 ifcand 1then c=c+1
130forj=1toc:x=c+rnd(1) +1

140 print tab(x) mid$(a$,x, 1)chr$(145)

150 next : printtab(1) a$: print : run

Applications? CRTubing really only comes in handy when you've got a batch
of text destined for the screen and the PRINT statement just doesn’t seem very
intellectually stimulating. Instructions for a game fall into this category and
there’s no need to slow it down so the reader can keep up. Besides, it might get
them to read the instructions the first time.

Combomands [21, 182, 220}

This next batch of weirdisms are key combinations that invoke commands on
the Commdore 64. Essentially they throw a curve at the hardware that lies just
beneath the keyboard.

This one from Craig MacIntyre of Toronto. Press SHIFT, “?”, and the space bar
simultaneously. It's much like hitting some erroneous keys and a Shifted
RUN/STOP, except it’s a lot tidier in the finger department.

These are from Darren Spruyt of Gravenhurst, Ontario. Darren wouldn’t
reveal the outcome to us in his letter, so we're passing on the cessation. Here’s
part:

“. . .press the plus, minus, and the pound, and hold down. Now do it again,
this time holding down the shift or Commodore key. Neat! Now, holding the
left shift, press and hold the keys two, three and four. One final item: hold
down the left shift and press and hold down the Q, W and E keys. Have Fun!”

AR Tho Tranenntnar Rnnk nf Rite AnA Pieroc #1

t Par

Number Numbing [203] g www.Commodore.ca
May Not Reprint Without Permission

This has to be the fastest, cheapest wordprocessor of all time. It has full screen

editing, and can handle files easily over 400 lines. It's compatible with all CBM

printers, and most others, and it’s fast! The program uses no memory:

Basic4/2- open4,4:cmd4: poke 19, 32 : list
VIC20/C64 open 4, 4:cmd4: poke 22, 35 : list

That POKE there in the middle makes the machine omit line numbers when
LISTing. It works on the screen too. All parameters for LIST work as normal,
you just won't see the line numbers.

This creates some interesting possibilities. Using one of any Basic Aid type
programs, you instantly have a text editor with enough flexibility to do most
jobs. To enter a line, simply type a line number followed by text. Need more
lines? Use your Renumber command. And most Basic Aids offer Delete,
Search, and Search with Replace. To see it on the screen, just give the POKE
without OPENing, etc. Adding a line or a ?SYNTAX ERROR turns it off.

Timing The Commodore 64

While on the subject of timing, several Commodore 64 users in the U.S. and
Canada have noticed a slight discrepancy in the accuracy of Tl and TI$; the
internal clock. So slight that it can add up to about 2.4 seconds per minute!

The problem stems from the factory. Commodore makes two versions of the
64 that have only one difference - the crystal oscillator that generates the
system clock frequency. The crystals are different to accommodate the
different types of colour TV sets. Namely, PAL sets such as those made in the
UK. and Europe, and NTSC (North American Television Transmission Stand-
ards Commission) sets like those found in North America. (C64 users else-
where should check with a service department to see which they have)

Unfortunately, televisions are rather picky things. Without getting too much
into detail, NTSC sets operate around a frequency of about 1.02273 MHz. In
PAL sets the number is about 0.98525 Mhz. Although Commodore installs the
proper crystal into 64s depending on destination, they don’t make two
different sets of ROMs to adjust the TI timer accordingly on power up which,
naturally, is also affected by the clock crystal.

The crystal cannot be replaced without snafuing your video output but there
are two solutions here. . . the one you pick will depend largely on how much
time and money you have to waste. First, you could buy a voltage converter
and a round trip ticket to anywhere in Europe for you and your 64. Now run a

The Transactor Book of Bits and Pieces #1 a7

TI$ dependant program against your timepiece ariéi y@’llﬂo‘ﬁé%gp%mm od LO re.ca
May Not Reprint Without Permission

has gone away. ' n
The second comes from Greg Beaumont of Toronto. Try this:
poke 56325, 66

The clock is updated during interrupts. Interrupts are controlled by Count-
down Timer A in CIA 1 of the 64. The low order byte of the timer (56324)
continuously counts down from $FF to 0. Each time the low order byte reaches
0, the high order byte is decremented by 1. The high order byte of the timer is
also a latch. The number you POKE into the latch is the number that the high
order byte begins counting down from. When the high order and low order
both reach 0, an interrupt is generated on the IRQ line.

Normally, the value 64 is placed in the latch at power up. The interval at which
each interrupt will occur can be calculated by:

Frequency / (256 * latch) / 60 = X

Where X = the interval in 60ths of a second. When the latch value is 64, X
works out to:

1.02273 e6 / (256 * 64) / 60 = 1.0404 60ths

Omit the divide by 60, and the number of clock updates per minute comes to
62.42. This is too many. Therefore, the latch value must be increased so that
Timer A must go through more countdowns in order to generate an interrupt.
Using a latch value of 66 results in an interrupt interval of about 1.008 60ths of
a second. This is about as close as you can get short of adjusting the clock
frequency.

For those that could care less about the clock, this leaves open some other
possibilities. For example, is your cursor too slow, or maybe you'd like LIST to
be a little less hasty. Try POKing 56325 with values lower and higher than 66.
This will cause more or less (respectively) interrupts to occur and affect the
general speed of your 64 based on the number of times the interrupt routines
are serviced.

DATAdjuster (72,110,223
Can you say Restoreshjiblinkuhwitz? Then you should have no trouble putting

these next Pokerismettes to good use. As you may have have guessed, it
involves the somewhat unpopular RESTORE command.

an ThAa Trrmammbnr Danls ~Af Dite ~nAl DinAne #1

As you all know, RESTORE adjusts the DATA pgintww thde @@mtﬁﬂm@ ore.ca
command will pick up the first element of thesfirst' DATA'Gtdlement inlyouy! Permission
program. However, sometimes it would be nice if the DATA pointer could be

directed to the line of your choosing. A RESTORE with an optional line

number parameter would have been perfect for this. Although it wouldn’t be

hard to write a machine code utility to do this, these next POKEs will

accomplish the same result.

Consider the Current DATA Address at decimal locations 65 & 66 in your VIC
20/C64 memory maps (62 & 63 in BASIC 4.0/2.0). This pointer will always be
somewhere between the beginning and end of your BASIC text. It actually
starts at the beginning of BASIC and, upon a READ command, goes forward
through text until it finds a DATA statement. If it gets to the end of text without
finding one, an ?0ut of DATA error results.

There is another pointer that will always be somewhere within BASIC text and
that is the CHRGET pointer within the CHRGET subroutine. This pointer lies
at decimal 122 and 123 (119 & 120 in BASIC 4.0/2.0). This is convenient. Now
all we need to do is get the CHRGET pointer as close as possible to the DATA
we wish to READ next, and then transfer its contents into the Current DATA
Address pointer. Like this:

10 rem restore x simulator or datadjuster

20 print " which block of data ? "

30input "1,2,3,0r4"; x

40 on x gosub 100, 200, 300, 400

50 read a$: print a$

60 ifa$ <> "end" then 50

70 print : goto 30
100 poke 65, peek(122) : poke 66, peek (123) : return
101 rem 4.0/2.0 users: remember to change 65 to 62,

661063, 122t0 119, 123 t0 120

110 data "blk", "wht", "red", "cyn", "end"
200 poke 65, peek(122) : poke 66, peek (123) : return
210 data "one”, "two", "three", "end"

300 poke 65, peek(122) : poke 66, peek (123) : return
310 data "yuk”, "blech™, "brap”, "end"

400 poke 65, peek(122) : poke 66, peek (123) : return
410 data "buzz", "whir", "click", "crunch”, "end"

Notice that every block of DATA must be preceded by a duplicate of the
adjuster subroutine. When the POKEs are finished, the Current DATA Address
pointer will be somewhere just prior to the RETURN command. But that’s ok.
When READ is executed, BASIC goes searching for the next DATA statement.

The Transnctor Rook of Rite AanA Piarac #1 A0

Another variation might be to save the value of the goifer vk vy VQQJQ m O dor e Ca

say DL and DH, which might be pointing into the “middie™ef @ DATAV Thout Per

statement. Then you could go READ some other block of data and return the
pointer to the address stored in DL and DH to continue READing from the
place you left off.

New 64 Video Port [71]

As mentioned in an earlier issue, Commodore is now shipping C64s with a
new 8 pin video connector. Reasoning? It seems some users have been
plugging their video cables into the power connector, and we can’t have that.

Although there are three extra pins, only one of them has been connected to
anything internally. The others don’t change. The new port configuration is:

7 8
1 6 3
4 2 5

Face View

1. Luminance

2. Ground

3. Audio Out

4. Composite Video
5. Audio In

6. Chroma

7. No Connection
8. No Connection

As you can see, only Chroma has been added to the connector outputs. This
will only be of use to those with monitors that have Chroma input connectors.
The pattern of the connector doesn’t change much either. The only incompati-
bility you need be concerned with is inserting 8 pin plugs into the old 5 pin
ports. The only question [have is, won’t the power plug now fit into the video
port? If it does, and you do, watch it. Your video chip will have one more
feature; air-conditioning. Colour coded stickers & tape might be a wise safety
precaution under potential circumstances.

New VIC 20 Power Supply

VIC 20s are now being shipped with the same power supply as the C64. New
VICs will also get the new power plug which means that they too are
succeptable to the problem described above. But with a littie common sense, it
won’t happen.

RO The Traineni~tnr Rnnle nf Rite nnd Pinroce #1

The old transformer continued to dissipate povgr Sek\wivh @@m m@@j O r e Ca
off. This one actually shuts off with the VIGsflike 'itiev64}! thes prolonging’ P sion
transformer life.

Three Blind Noughts [162]

With machine language becoming so popular, many “hybrid programs” are
being written. A hybrid is a program combining Basic and machine language.
Often the machine code begins right where the Basic text ends. But where IS
the threshold point? Usually we won’t need to know this, until us curious types
want to look at the code that follows Basic.

Since there are no pointers set up by Basic to indicate this spot, the only way to
find it is to look for the 3 consecutive zeroes that mark the end of Basic text.
This is the point where the LIST function terminates. This type of work
invariably requires a machine language monitor to scan memory, so if you
don’t have it built-in, you should arrange to load one (eg. the appropriate
version of Supermon) before you load the program you wish to examine. But
it’s generally pretty hard to estimate the size of text in bytes from looking at the
size of the LISTing, so where do you start?

The first method we all seem to try is a memory dump starting from the
address where Basic text begins. As the hex listing scrolls by, we frantically
scan each line hoping to catch a glimpse of three zeroes. But this can be rather
tough, since they may not be all on one line. By the time empty memory rolls
around, your eyes are declaring war against your brain, and of course you
missed them three cursed zeroes. Feel like trying again?

Next, we could write a program to OPEN the program file on disk, read the
start address, and increment it each time a byte is read until we count three
zeroes in a row. Then after you calculate the address into hexadecimal, you
LOAD the program, SYS to the monitor, etc, etc. But this doesn’t work for tape,
and besides, how many of you are actually going to have this utility handy
when you need it? It would probably be faster to re-write instead. BLECH!

How ‘bout using ROM routines to find it. All Commodore machines have a
ROM routine that rebuilds the Basic text chain links every time a line is
inserted or removed. As the routine executes, it maintains an address in RAM
workspace that is continually updated until the routine reaches the end of text.
Once done, this address can be viewed with the monitor.

Enter Murphy’s 467th law. “A byte that contains important information will be
destroyed before being allowed to examine it.” The only problem with this
routine is that it leaves this address in a place that the operating system uses a
lot. So by the time “READY.” is printed, the address is clobbered and we're no

The Transactor Book of Bits and Pieces #1 51

further ahead. Therefore we need a second SYS tg trqasféfvtw Wd@@ g hm odor e Ca

safer spot. Here are both together, and they must be eritered ori {lfe'saftfellineV
separated by a colon: (Note - the “:SYS4” or “:SYS8" at the end is to get you
into the monitor for the .M command next, but this could be entered
separately.)

Basic 4.0- sys46262 : sys62792 : sys4
Basic 2.0- sys50242 : sys62729 : sys4
VIC 20 sys50483 : sysb4762 : sys8
Coe4 sys42291 : sys46570 : sys8

Enter Murphy’s 468th law. “A byte you wish to transfer to a safer place will be
clobbered before it gets there.” This is exactly what the second SYS does. But
only to the low order byte of the address. Fortunately the high order stays in
tact. (Murphy doesn't have a law for addresses, just single bytes) So the second
SYS (BASIC 4/2) transfers only the high order part, although it could be
“backed up” to get both. The VIC20/C64 SYS’s unavoidably transfer both, but
again the low order is invalid.

Now, using the monitor, you can display the page number that contains the
end of text marker.

BASIC 4/2 .m 00db 00db [or peek(219)]
VIC20/C64 .m 004f 004f [or peek(79)]

Although you'll still have to do some eyeballing to find the 3 blind noughts, at
least you can single it down to one page of memory. If anyone has a better
approach, short of writing a program, or finds a single SYS that gets the whole
address, it would make a splendid update.

Retina Wrencher

If you are chronically sane and wish to stay that way, then don't, | repeat,
DON'T enter this program. Of course if you know someone you'd like to see go
right around the bend, just run this program for them. But don’t dare look at it!
Or you too will suffer the wrath of the diabolical Retina Wrencher!

The program is the handywork of Richard Evers, Toronto Ontario. It works
only with machines that use the 6845 CRT Controller chip. Commonly, these
are the 8032, 8096, SuperPET, and the Fat 4032.

10 input "[glenter a number between 0 and 13" ;a
20 print" use the Shift key to terminate program "
30 forz=1101500 : next : print"[§"

40 poke 59520, a:z=1

[L] Tha Tranenntar RAnk ~f Rite AnA Diaroc #1

mnourt rer

50 for =32768 to 3477 e W W. Commodore ca

Parry

60 poke c, int(rnd(1)*258): nektay Nol Reprint Withou
70ford=0to 255 step z

80 poke 59521, d

90 if peek(152) then print" "

100 next

110 fore=25510 0 step -z

120 poke 59521, e

130 if peek(152) then print" [l

140z=z+1:goto 70

Caution: The Zero option may cause damage to your CRT if left running for
too long. Try it, but hit your Shift key right after you've had a chance to see it.
To bring you this spectacular display, the zero option strains the CRT yoke
somewhat. Leaving it run for too long would be like driving your car on the
highway in second gear; eventually something breaks. When Shift is pressed,
the screen will stay blank for a moment so don’t panic. Afterwards, the
characters will appear a bit smaller but will resume normal size shortly.
Although The Transactor can assume no liability for damage, both Richard
and I will be extremely disappointed to hear of any, especially as the result of
malicious intentions. In the past, programs like this have not been released for
this reason, and if there is but one report, there will be no more.

The other options are all quite harmless (to the machine that is). However,
some don'’t do very much. If, after the initial pattern is displayed, there is no
apparent activity, terminate it with Shift and try another. But once again, avoid
zero, or you'll drive yourself and your machine insane.

Supermon Notes [15]

Un-beknown to many is the Supermon “P” command. The command exists
in the BASIC 4.0 version as well as the VIC 20 and 64 renditions. It's used to
send continuous disassembly of code to a printer. The printer must first be
activated with:

open4,4:cmd4

Then give a SYS 8 (SYS 54386 on BASIC 4.0 Supermon) to get back into the
monitor. Now follow “P” with Start and End Addresses and hit Return. All
code between these addresses will be sent to the printer in disassembled
format. Actually, any output activity that normally occurs on the screen will
now be diverted to the printer. This includes “R” for Register Display, “M” for
Memory Dump, and “D” for Disassemble except this will only send X number
of disassembled lines where X equals the number of lines normally output on
your screen. To deactivate the printer, issue a:

The Treinenrtor Ranke ~f Rite AnA Diarac #1 [1]

print#4 : close 4

; Nat Ranrint With
lay Not Reprint With

As mentioned in an earlier issue, POKE 53281, 12 will change the background
colour to grey offering better contrast, especially to those with C64s connected
to B&W screens. But this means you first gotta exit Supermon, give the POKE,
and enter the monitor again. Why not do it from Supermon? Greg Beaumonts’
favourite first off is:

:d020 fb fc <return>

You might also try . . .F3 FF. . . for a fairly clear contrast or play with your own
combinations.

You might be asking, “what colours are FB, FC, F3 and FF?”. You could effect
the same colour changes by using 0B, 0C, 03 and OF. The leading ‘F’s are there
mainly to avoid a *?' mark prompt when you hit return. The ? is generated
when Supermon reads the location you just changed and finds it doesn't
match your selection. This is because the colour registers are only 4 bits wide —
the lower four bits. Remember, there are only 16 colours. . . why have 8 bits
when only 4 are needed. The upper 4 are effectively non—existent and an open
connection in hardware, as a rule, is always logic hi. The Fs fool Supermon
into a correct verification.

Machine Code Delay [113]

Usually when we decide the only alternative is machine language it's because
BASIC is just too slow. But sometimes machine code can be too fast. The
following bit of code is a common subroutine for inserting delays.

ldx #$00
delay2 Idy #$00
delay1 iny

bne delay1

inx

bne delay2

rts

As you can see there are 2 simple loops, one (using the Y register) nested
within the other (using .X), and will yield about 0.25 seconds of delay on the
average PET/VIC/64. But what if 1/4 second still isn’t enough. You could find
a countdown timer in some I/0 chip to use, but this can make programs very
machine dependent. JSRing to it over and over will do, but you’ll need another
register to increment and we've already destroyed two of them which means
you'll need to use a free memory location. How ‘bout a third outer loop and
we'll free up the X and Y registers while we're at it.

54 The Transactor Book of Bits and Pieces #1

ou

2 www.Commodor

Par

e.C

a

WWW. Commodore ca

php ;save Calfy flag (optidlsal)er Vithout Per n
delay clc ;clear Carry

pha ;# times thru inner 2 loops

Ida #$00 ;initiate secondary loop
delay2 pha ;save secondary loop count

Ida #$00 ;init primary loop
delayl adc #$01 ;primary loop
bce delayt ;loops 255 times
cle ;un-set Carry
pla ;recall sec loop count
adc #3$01 ;increment it
bce delay2 ;255 complete?
* pla ;recall # iterations (C=1)
sbc #$01 ;decrement
bcs delay ;Carry still set?
plp ;restore Carry (optional)
rts

With the extra code, the two inner loops will add up to a little more than .25
seconds, excluding time spent on any interrupts that may occur in the process.
For fine tuning, try adjusting the second LDA operand with numbers slightly
above zero. For now though, we'll assume the delay is still .25s.

Before calling the routine, the Accumulator (.A) is given a value that will be the
number of iterations, plus 1, of the two inner loops. Plus 1 because the two
inner loops will always execute at least once. Therefore:

Effective Delay = (A+1)*.25s
Minimum Delay = (0+1)*.25s
Maximum Delay = (255+ 1)*.25s = 64s.

The two inner loops escape to the point marked * when the Carry flag is set.
Thus there is no need to do an SEC before the SBC. When the PLA at point *
receives a zero, subtracting 1 results in a clear C flag and the delay ends.
Otherwise, the new “outer loop” iterations value is stacked at DELAY, and the
two inner loops are repeated.

Saving and restoring the P register (processor status) is optional. Since the
routine is totally dependent of the Carry flag, you may wish to preserve it in
case it contains “hot data” prior to your delay.

Sure, it’s a little longer, but 12 bytes is a small price to pay for a more versatile

solution. Plus, it will save a lot of headscratching when it’s unclear whether .X
and/or .Y need be preserved.

The Transactor Book of Rits and Pieces #1 (33

Flag Stacking g www.Commodore.ca

\ay Not Reprint Without Per n

iYiay
Machine language programmers are no doubt well aware of the value of the
instruction “PHP”; PusH Processor status. The Status register (often called the
“P" register) is, for all practical purposes, a byte stored within the microproces-
sor itself. This byte, like any other byte, has 8 bits. However, each bit is used to
represent the occurence of some condition present in the computer as the
result of a previous operation. For example, if the operation of subtracting one
byte from another yields a value of zero, the bit that represents the Zero flag (or
“Z” flag) is set to *“1”. Subsequent code might then test this flag in a decision
making process for transferring execution.

Since there is only one P register, it often becomes necessary to store it for
future reference while some other code is executed that may affect and change
P register flags. In the previous item on delays, the routine starts with a PHP
and ends with a PLP to restore the state of the Carry fiag in case the code
following the delay is dependent of the C flag. Remember, dependent can
mean two things; dependent of Carry Clear, OR, dependent of Carry Set - a
condition that cannot necessarily be assumed upon exiting the subroutine.

The same holds true for all the other flags in the P register. One that requires a
particular amount of attention is the “1” flag or Interrupt Disable flag. When I is
set (ie [=1), an IRQ (Interrupt ReQuest) will be ignored by the microprocessor.
Hopefully it won’t be set for too long as this would disable any keyboard
servicing and your machine goes into never neverland.

Let’s consider the following sequence of code. It has absolutely no meaning
except to demonstrate an effect:

... ;codeleading upto..
PHP ;save P reg on stack

SEl ;disable IRQs

... ;some bunch of code. . .
PLP ;recall P reg

Atter the “PLP”, will the IRQ be accepted or ignored by the CPU? Those of you
that said, “I dunno”, are absolutely right! Without knowing the condition of
the [flag prior to the “PHP” instruction, there is no way of giving a correct Yes
or No answer. But this is good. Because no matter what it was it will be
returned to that state by PLP, naturally! By using PHPs and complimentary
PLPs, one can set or clear flags for a certain stretch of code, subroutine, etc.,
and return the flags to their previous state to make decisions based on
previous conditions.

N.B. I wrote this piece after examining a routine that appeared to be missing a
CLIinstruction (CLear Interupt disable). When I took the bag off my head, I saw

56 The Transactor Book of Bits and Pieces #1

why it wasn’t necessary. What does seem necessaryhbw;*/‘dnﬁl@mtﬁ’d’b@d or e Ca

interrupts. May Not Repr rint Without Perr

Arithmetickling [63, 18]

This next item has absolutely nothing to do with your computer, but it will get
you thinking. Stretch out and see if you can spot the glitch. If your skin starts
crawling away, you can use your machine to iron out the wrinkles, but try it
without first.

Step 1 a=2

Step 2 b=1
Therefore a=2b
Multiply by (a-b)
Then: a’-ab = 2ab - 2b?
Subtract ab

Then: a’~2ab = ab - b?
Multiply by (a-2b)
Then: a=>b

So: =1
Subtract 1 1=20

But this is absurd! Uh hubh, it is. I'll be leaving now.

SuperPET Bits [14,41]

In the previous issue we posed the question, “How many bits in a SuperPET?”,
Did anyone try it? How many came up with the answer 1,181,104? What, you
say there’s more?

APL Character Set

Want to access the APL character set of your SPET? Try this:

poke 59520, 12 : poke 59521, 48

To get back, use “Escape-Reverse-n".

ACIA Status Handling

The 6551 ACIA (Asynchronous Communications Interface Adapter) is an
extremely powerful and efficient chip when communication between the

The Transactor Book of Bits and Pieces #1 57

SION

SPET and other devices is required. But it has comefto gr atvenvioy t@gm odor e Ca

isabugin the 6551. This bug comes in the form of a Qistrepaficy {haf separatesV!Thout Permission
the 6551 from all other 6500 series ICs.

In all other MOS interface chips such as the 6520 PIA, 6522 VIA and the new
6526 CIA, when data is received into an input register, a flag is set in another
register usually known as a status register. Often this flag is “tied” to the IRQ
line so that an interrupt is generated. The microprocessor then goes examin-
ing status registers to see which chip caused the interrupt, and then services it
accordingly. PET, VIC, and C64 cassette tape routines work this way. When
the data register is read by the CPU, the status register is cleared automatically
by the internal hardware of the chip. The IC essentially prepares itself to
receive and indicate the arrival of new data.

In the 6551, unlike the others, the status register is cleared not when the data
register is read, but when the status register itself is read. This can be
potentially hazardous during simultaneous input and output of data on your
communication lines.

In programs built to handle these situations, output is usually done in the main
stream of your program, for example when spooling from disk (when sending
from the keyboard, characters usually only go one direction at a time and this
problem will probably not occur). Input is usually handled by an interrupt
routine invoked by the IRQ line. But IRQ can be generated by a number of
sources. It is up to the interrupt routine to determine which source the
interrupt request is coming from. The following will demonstrate how the
interrupt routine could get snafued if the IRQ comes from the 6551.

inoutreg = $eff0
status = $eff
cmdreg = $eff2
ctrireg = $eff3

Notice that the Input reg is the same as the Output reg.
In our example we’'ll assume that the Command and Control Registers are
properly configured and that a disk file has been opened for spooling to the

communications line. Typical code might look like:

testout lda status ;get status reg

and #16 ;last char sent?

beq testout

jsr $ffct ;get char from disk

sta inoutreg ;putchar in acia to send
imp testout

858 The Traansaictor Rnole of Rite onA Piarac #1

The branching tight loop at “TESTOUT" j™gsting/ e Gridadore. ca
Register Empty flag, bit 4 of the Status regiSter. " Whnybitcd | igoesihighilithelt Permission
character has been sent and the loop is exited. Now another character can

then be queued for output.

But let’s say a character comes in from the line during this spooled output. In
typical asynchronous communications with, for example, a host mainframe,
the character could be an X-Off (transfer off) character instructing your SPET
to stop sending. The 6502 always completes the current instruction before
servicing an interrupt. If the X-Off were to come in during the AND or the
BEQ, no problem. Your interrupt routine could examine the status reg where it
would find the 6551 was the source of the interrupt. However, if the character
arrives during the LDA instruction, the interrupt would still occur, but your
interrupt routine would find that the flag in the 6551 status register has been
cleared by LDA STATUS. This means you cannot naturally determine that an
interrupt has been generated by the 6551. Since 40% of the time spent in this
loop is on the LDA instruction, this could potentially occur 4 times out of 10!

There are two solutions here - one software, the other hardware. In software,
your interrupt routine would examine the 6551 status register first. If this were
not the source of the interrupt you would continue by testing the other chips.
But if all are tested and there is still no chip claiming responsibility, then you
must assume it was the 6551. This will work until you start communicating at
speeds of 19,200 baud. Testing all other potential sources for generating an
IRQ and then servicing the 6551 by default may not be fast enough.

The better solution is in hardware. Instead of having the 6551 generate an IRQ
when characters are received, it would generate an NMI interrupt. NMI is not
used for anything else in the SuperPET, so why not. Simply disconnect the
6551 from the IRQ trace and hook it up to the NMI trace. Now simply point the
NMI vector at your code to handle incoming data. Since NMI doesn’t do
anything else, you need not even test for the source of the interrupt - just got
directly to the 6551 service routine. With this modification, the bug in the 6551
will give you no further trouble.

Volume 4, Issue 05

. .was The Reference Issue. It would become known to many as “The Brown
Bible” and was the forerunner to “The Inner Space Anthology”. But, there was
no Bits and Pieces column in Volume 4, Issue 05.

The Transactor Book of Bits and Pieces #1 59

Volume 44 lssue«ﬁﬁammodore ca

t Without Pe

Incrementation

Our screen dazzler this issue is “Incrementation”, a concept originally from
Transactor Editor, Richard Evers. Since the original version there have been
several mods - portability, set-up procedures - and credit for them in line 10.
Frankly, the program itself is virtually useless, but aren’t all screen dazzlers?
Perhaps someone looking for an eyecatcher can let us know how well it works.

Moreover, the program demonstrates once again the phenomenal speed of
machine language. To start, a pattern of incrementing ASCII values is POKEd
into screen memory. Hit ‘S’ and the machine code takes over. Quite simply,
the code increments the contents of every byte in screen memory by 1, unless
the byte contains a space. They are left untouched, but this part of the program
could be removed for some really brain twisting effects.

The program is also a lesson in extending the boundaries of the thought
process to beyond the ultimate goal. When | first saw the program in action, I
immediately thought of several more difficult ways to accomplish the same
effect.

Operation is simple - use the cursor keys to direct the character stream.
Alternate between the space bar and cursor keys to leave gaps (ie. for
messages). ‘S’ starts it and Shift stops it. Once stopped the pattern can be
continued or cleared. The program has been published so that parts can be
removed to suit your machine. Use line 15 to store changes — just space over
the line* and “REM” and hit return.

Of course you need not enter the parts that will get removed, but if you do,
SAVE a copy first so that it can be passed to a friend that may have different
equipment than yours. For the VIC 20, the first “4” would change to a 16 or 30
depending on the high order address of your screen memory. You will also
need to ensure the machine code is deposited in “real” memory which means
the FOR/NEXT loop (line 120) and the SYS address (line 60) will require
changes.

0 rem = this version is totally relocatable !!! *
10 rem a rico mariani, chris zamara, rick evers, and karl hildon production
15 rem save " @0:incrementation " ,8:verify " 0:incrementation” ,8
20 print chr$(147);
25 TOIM *kkkkkkkkkkkkkkkkkRbkRkkhkkkk*
30rem * 4.0 -key=151:q1=196: q2=197: q3=198: sp=32
35 rem * c64 — key=203: q1=209: g2=210: g3=211: sp=60:
poke53281,493-peek(53281)

A FEITY e sk s s ok ok ok s o ok sk ok o ok sk ok ok ok ook ok ok ok ok K

The Trainsnctor Rnok of Rits and Pieces #1 61

45 a=0: gosub120: rem * stash the data g $GQOCW Ww C ommodore.ca

Reprint Without Pe

50 get a$: ifa$="" then 50 ay Nc
55 aa=asc(a$): if aa=19 or aa=147 then print a$;: goto 50
60ifa$="s" then sys24576: rem * press the ‘s’ key to start increment
65 if peek(key) = sp then 90: rem * space bar to indicate desire to move *
70 aa=asc(a$): if aa<>17 and aa<>29 and aa<>145 and aa<>157

then 50
75 printa$;: gosub115: pokee,a:a=a+ 1:ifa=256thena=0
80 if a=32 then a=33: rem it's a space !!
85 goto50
90 gosub115: pokee,peek(e)or128
95 geta$: ifa$=""then 95
100 aa=asc(a$): if aa<>17 and aa<> 29 and aa<>145 and aa<>157

then 95

105 printa$;: poke e,f: goto50
110 rem * mark the screen location and remember what was there *
115 e=peek(ql) + peek(q2)*256 + peek(q): f = peek(e): return
120 for j=24576 to 24625: readx: poke j,x: next: return
125 rem * data for inc—80 *
130 data 169, 128,133, 1,169, 0,133, 0,168, 177, 0,201, 32
135 data 240, 14,133, 2,201, 31,208, 2,230, 2,230, 2,165
140data 2,145, 0,165,152,208, 15,200,192, 0, 208, 227, 230
145data 1,165, 1,201,136,208,219,240, 208, 96, 0
150 rem for 4000 series change 136 inline 14510 a 132
155 rem * data for inc-commodore 64 *
160 data 169, 4, 133, 106,169, 0, 133,105, 168,177, 105, 201, 32
165 data 240, 14, 133,107,201, 31,208, 2,230,107, 230, 107, 165
170 data 107, 145, 105, 173, 141, 2,208, 15,200, 192, 0, 208, 226
175 data 230, 106, 165, 106, 201, 8, 208, 218, 240, 207, 96

Moneyout [119]

No, this program doesn’t deal with the Christmas season aftermath. It's a
subroutine that will format dollar figures for output. Sure you've seen lots of
them before, but this 7 liner is so compact and tidy, we felt it worthy of a re-
press. Of course it was written by Jim Butterfield.

The routine formats to 2 decimal places and adds trailing zeroes. V1 specifies
the maximum number of digits left of the decimal place. V2 is the precision
after the decimal place. An overflow will be displayed as all asterisks. The
demo routine (lines 100 & 110) will show you the possibilities when the
control variables are changed.

Although this routine won't dissolve any financial muck, it will make the
muck look prettier.

_- T e momdmr Dmnls ~f Dite AnA Diaroc #1

J

100 V1 =4: v2=2 g WWW. Commodore ca
110 v =rnd(1)*12000: gosub9000: REAtVSHFUR Not Reprint Without Permission
9000 rem print format for money

9010 v4 = int(v+101v2 + .5)

9020 v$ =right$(" [8 spcs] " + str§(v4),v1 +v2 +1)

9030 if v2<1 goto 9070

9040 for v5=v1 + 2 to v1 +v2 + 1: if asc(mid$(v$,v5))<48 then nextvd

9050 v6 = v5-v1-1

9060 v$ = mid$(v$,v6,v1 + 1) +left$(".00000 " ,v6) + mid$(v$,vb)

9070 if asc(v$)>47 then v§ =eftP(" +x*xxxxxrxx" v1 +v2 +2+(v2=0))

9080 return

Palindrome [57, 118]

You have just become one of the few people that have actually read the word
“palindrome” — it’s not exactly part of everyday conversation. Nor should it be.
A palindrome is something that reads the same way backwards as it does
forwards. Words like mom, dad, eve, and clumsmulc (clumsmulc?) are all
palindromes. Same for numbers — 23632 is a palindrome.

As it turns out, all numbers can eventually be made into palindromes, except
one (more later). The idea is: pick a number, reverse the order of the digits, and
add it to itself. If you don’t get a palindrome, repeat the above using the result
of the previous summation. For example:

Number: 158

Reverse 851
sum = 1009
Reverse 9001
sum = 10010
Reverse 01001
sum = 11011 - a Palindrome!

Not ali numbers take so many iterations (eg. 56). Others require several, like
98. Regardless, Jim Butterfield felt it was a perfect candidate for a machine
language program since a similar program in BASIC might take hours to
eventually reach 7OVERFLOW ERROR.

The following program generates palindromes from some given value. Jim
cuts it off at 255 digits — “I figure if it doesn’t palindrome by 255 digits, it’s not
gonna. And it seems there’s one relatively small number that doesn’t” -
What’s that Jim? - “well it lies between 150 and 200.” - I hate it when he does
that.

The Transactor Book of Bits and Pieces #1 63

100 data 162, 0, 142, 226, g apaswwL£ommodore.c
110 data 32, 210, 255, 201, 329 A0 ayaNeBReprint Without Permission
120 data 208, 243, 32,228, 255,201, 13, 240
130 data 24,201, 48, 144,245,201, 58,176
140 data 241, 32,210,255, 41, 15,174, 226
150 data 3,157, 0, 24,238,226, 3, 208
160 data 225, 32, 210, 255, 234, 32,225, 255
170 data 240, 100, 162, 0,172, 226, 3,169
180data 0,141,227, 3,141,228, 3,189
190data O, 24, 9, 48, 32,210,255, 41
200 data 15,217,255, 23,240, 3,238,227
210data 3, 24,121,255, 23,109,228, 3
200 data 78,228, 3,201, 10,144, 5,233
230 data 10,238,228, 3,153,255, 24,232
240 data 136, 208, 212, 173,228, 3,141, 0
250 data 24,174,226, 3,172,226, 3,173
260 data 228, 3,240, 6,200,238,226, 3
270 data 240, 20, 189, 255, 24,153,255, 23
280 data 136, 202, 208, 246, 169, 13, 32,210
290 data 255, 173,227, 3,208,153, 96, 86
300data 65, 76, 85, 69, 63, 32
310forj=82810993 :read x 1 t=t+X

320 poke j,x : next |

330 if t€>22051 then stop

400 sys 828

410 goto 400

Auto Liner (s8]

Most program listings in print have usually been “renumbered” - they start at
some line like 100 or 1000 and proceed in nice neat increments of 10.
Depending on the length of the listing, just entering the line numbers can take-
a considerable percentage of the total time to enter the entire program. This is
why several of the programmers packages available have included an Auto
Line Numbering feature.

Quite simply, Auto Liners print the next line number and leave the cursor just
beyond for you to enter the code. That’s exactly what these do, ‘cept it won't
cost you anything. The first is for BASIC 4.0/2.0 users, the second for VIC 20/
Co64.

60000 input " auto: start, increment "8,
60010 print " |8 " g;:poke167,0
60020 geta$:ifa$=""then 60020

60030 print a$; : if asc(@$)<>13 then 60020

za TL A Temmamn: tmr DAnl ~Af BRite nnA Piaras #1

60040 p = peek(33009 + Ien(str$(s))) Jfp W ;@O mm@g@v e ca

60050 print "s="s+i ":i="i ":g0iebU0} rint Without Pe
60060 poke158, 2 : poke 623,13 : poke624, 13
60070 end

60000 input " auto: start, increment” ;s,i

60010 print " SISlslel " ; s;:poke204,0

60020 geta$:ifa$="" then 60020

60030 print a$; : if asc(a$)<>13 then 60020

60040 p = peek(1265 + len(str$(s))) : if p=320 or p=160 then 60010
60050 print "s="s+i ":i="i ":goto60010s"

60060 poke198, 2 : poke 631,13 : poke632,13

60070 end

DisClosed Files [i26, 184]

How many times have you been in a file routine when something goes wrong.
The program breaks and the disk file is left open with the LED left staring you
down with a look of inadequecy. If you're just reading the file, a DCLOSE will
tidy things up. That’s if you have BASIC 4.0 or equivalent (ie. V/C-Link). With
BASIC 2.0 you need to give the basic CLOSE command, followed by the logical
file number. And if you can't remember which number you used, start
looking.

If you're just reading files, cleaning up disk channels is not really critical. The
disk unit can deal with this oversight and your files are not affected. But it is
especially important that files open for writing are properly closed. It could
mean the difference between a smooth operation and chronic teeth gnashing!

Once again, a DCLOSE command or a CLOSE followed by the correct file
number will close your writefiles under most conditions. But certain program
errors, and especially: program editing, will terminate communications with
the disk, and your files are left in a state of potential doom.

Fear not! All Commodore disk units have a built-in procedure for closing any
open files, read or write. Simply closing the Error Channel does it all! If the
Error Channel isn’t open, OPEN it - then CLOSE it. Quite simply:

OPEN 1,8, 15: CLOSE 1
The “, 15" specifies the Error Channel - common to all CBM drives. A look at
the code in the disk ROMs shows a routine that examines all possible

secondary addresses — 0 to 14 - and closes any with apparent activity. The
routine is executed whenever the Error Channel is CLOSEd.

The Transactor Book of Bits and Pieces #1 65

on

This might sound too good to be true. Well, somg@iMSWiVNOG@ maEsg ore.C
errors like Disk Full and machine crasheSmmay [otee NouRtgleave/ it filet permission
improperly closed. When this happens, an asterisk is displayed beside the file

type when a Directory is printed. Do NOT Scratch them. “Star files” can be

hazardous to the good health of other files. Sector links at the end of the star

file might lead to other sectors that are part of another file(s). These sectors will

also be de-allocated which means the disk could use them later for new stuff

and whammo. Instead, use the Collect command. It will wipe out any star files

while protecting the integrity of the others.

“But I've got valuable data in that blasted star file that | don’t want to lose!” If
that’s the case you can still get at it. One little known and virtually undocu-
mented feature of all CBM drives is the file Mishaps option. That’s right - you
can OPEN for Reading, Writing, or Mishaps. It allows you to dig into a star file,
the result of some unfortunate event, and extract as much data as you deem
necessary. For example:

OPEN 8, 8, 8, "0:SOME STARFILE, §,M"

Actually, the M probably doesn’t stand for Mishaps. Regardless, once the file is
open you can start to GET# data and transfer it to a new file. Depending on
how badly mangled the end of the file is, you can repair the end of the new file
with direct PRINT#’s.

Once you feel the new file is complete AND properly Closed, do a Collect to
purge the bad file(s).

Direct Error Reads [148]

Reading the Error Channel (Secondary Address 15) isn’t a problem for BASIC
4.0 users — you simply PRINT DS$, the Disk Status string. Those without
BASIC 4.0 (ie. 2.0, C64, VIC 20) are probably familiar with this subroutine:

60000 open 1, 8,15

60010 input#1, e1$, e2%, e3%, e4$
60020 print e1$;e2$,63%;e4%
60030 return

This routine needs to be programmed in memory because the’ INPUT#
command won’t work in direct mode. Of course if this code is already part of
your program you can RUN it or GOTO it, but that can cause other headaches.
The following allows reading the Error Channel in direct mode:

open1,8,15 :remunless already open
for j=1to 40: sys51844 #1,e$: print e$;: if st= 0 then nextj

Y Tha Traner~tor Ronk of Bifs and Pieces #1

This is for BASIC 2.0. For the 64 the SY§/ddre3éHdivesto@3Y06 N0 @iitee . Ca
VIC 20 it's 52098. Although you wonitgneed\/itforcthis: pircumstance; thenission
address for BASIC 4.0 is 48001. You can omit any spaces from the statement.

The SYS jumps into the ROM GET routine 7 bytes past the start ~ this is where
it checks for direct mode and sends the “?illegal direct” error message. This
works for GET# but not INPUT# - it checks for direct mode differently and
can't be skipped short of writing your own machine language routine.

Understandably, this can become rather tedious. You might consider one of
several programmers aids that include a direct mode error reading command.

Hard Disk Formatting

If you have any plans to install a Commodore hard disk drive, chances are the
first command you send to it will be a New or HEADER operation. Disk users
will know that this formating procedure is necessary to prepare the unit for all
future operations. But once you get it started, you might as well find something
else to do for a while, like learn to play piano or re-build the engine in your
car. A Header operation on the hard disk can take as long as 1 hour 45 minutes
because the ID you select is recorded on every sector header.

You need only do this once unless you wish to change the ID. A Header
without the ID merely clears the BAM (Block Allocation Map) and the directory
- the rest of the disk is left untouched. If you do decide a re-format is
necessary, just remember it will take a while.

Two other hard disk notes: The unit should never be moved while the cylinder
is spinning. It takes a minute or so for the cylinder to come to a complete stop
after power-down. When moving it, keep the unit level - don’t set it on end or
its side. Hard disks should be kept on a good solid surface during operation.
Even small vibrations can cause undue wear on the disk bearings. Avoid
shelfs, tables with long legs or spots that may get bumped by passers-by.

Lastly, Commodore hard disks don’t have a drive 0 and drive 1 - only drive 0.
Some software packages assume you have a dual floppy and will attempt to
access drive 1. Even BASIC tries to read drive 1 when you give a Catalog or
Directory command with no drive specified. If you're experiencing any
trouble, just slip in a *“,D0” or “0:".

Disk De-Activity Indicator [111]
If you're disk unit gets into some long operation, like the one mentioned

above, you might not notice that it’s finished until the next time you browse

The Transactor Bonok of Bits and Pieces #1 67

by. If you have a bell built into your computehéhng‘:{\i‘éVg\%'&a@ QMQ@ O
May NOT Keprir

useful:

print ds$: poke 231, 100 : print " slsle

The POKE increases the chime time of the bell, and the 3 reverse G’s invoke it
3 times. If you're within ear-shot, this should be enough to get your attention.
Or you can put the bell in an endless loop that stops when you hit a key. Only
one problem with this though - if you happen to step out or something, that
insidious chiming is enough to drive someone bonkers if left exposed to it for
too long. You might come home to find your new hard disk is now a chopping
block in the kitchen!

Weirdities

Here's our latest collection of crashes and assorted phenos for Commodore
machines. None of them will harm your computer (unless otherwise specified)
but don’t try them with anything important in memory - we get enough hate
mail as it is.

DLOAD'N
On any BASIC 4.0 machine type:
dioad " [ESC][RVS] n
. Don’t ask why. We don’t know. Could be like eating a power cookie.
Five and Dime
Try this on an 8000 series machine. The screen should be in upper/lower case
with “unsquashed” lines. It alters the 6545 video chip and although won't hurt
anything, just the same, don't let it run too long.

poke 59520, 5 : poke 53521, 10

To get out of it, hit both Shift keys and “2” (the one over the Q, not the one on
the keypad).

Pirate Peeves [196, 107, 179]

Want to drive program pirates crazy? You must admit, if a burglar really wants
in, he’ll get in no matter how much protection you have. Program pirates are
no different. The idea is to make them work for it. As they remove one lock,
you check for it later in the program and throw them a couple of knuckle balls.
Here’s a couple of knuckle balls:

nt Without Per

re.ca

poke 753 WWW. Commodore ca

May Noi orint Without Pe
. .switches the input device from the keyboard to the screen. For VIC 20/ C64
use poke 153,3. Of course the pirate will remove this rather unsophisticated
excuse for protection. So, you check for it. Then execute:

sys 57441
This turns off the keyboard completely except for carriage returns. It has no
VIC20/C64 equivalent. The point is, if you make it appear as though the more

they unprotect your software, the more foul it behaves, pretty soon they’ll be
replacing the protection they removed just so they can use it.

RAM Expansion [¢]

Wanna show off to that overinflated 48K Apple user next door. Try this on ‘im.
sys 54295 ;BASIC 4.0

Of course you know there can’t possibly be that much, but how’s he gonna

know. Stay sharp though - he may know his Apple ROMs with equal
impunity.

Marquis de Sade |11, 161, 179]

Try this first. It won't be too impressive to begin with but give it a chance to -

reach the 5 digit numbers.
forj=1to 1e30: printj "[CRSR UP]"; : next

What an effective display for some 5 letter message - if I could only think of
one.

Instant BASIC Monitor (9, 125, 162]

You can execute this SYS directly, but it won’t mean much. However, put it on
the end of some line in your program and it will report what line that is. It’s
part of the error message routine - the part that reports the line number after a
run is interrupted. For example: ?syntax error in 6010.

Immediately upon entering direct mode, the operating system deposits an FF
into the high order byte of the Current Line Number word, thus rendering that
information meaningless. During program execution, the current line being
executed is copied here. Try this:

The Transactor Book of Bits and Pieces #1 69

n

100 print " line 100" g www.Commodore.c

110 print "someline " : syS 53119Y St Reprint Without Permissior

120 sys 53112
130 goto 100

For C64 it's SYS 48585 and the VIC 20 is 56777. As you can see, if the program
is renumbered, the message in line 100 will need updating. The ROM call,
however, is universal. You can skip the “in” display by adding 7 to the
address.

Taking it one baby step further, this routine could be used as a primitive hex to
decimal converter. For example:

poke 55, 10 : poke 54, 7 : sys 53119

.. .would print the decimal equivalent of $0A07. (C64/VIC20: use 58 and 57
for the POKE addresses, with the above SYS address + 7) This is ok when you
can convert the low order and high order to decimal in your head. When
numbers get like CF7D, it’s a little tougher. Perhaps someone with BASIC 4.0
(built-in MLM) will investigate a more sophisticated approach to the same end.

Text In Drag

Back when there were only 40 Column PET/CBMs, The Transactor discussed
a method of attaching the code from one line of BASIC onto the end of the line
above it. For example, the following two lines need not be on two separate
lines:

100 forj=1t010

110 next

The two lines would be LISTed on the screen. Then using the space bar to

wrap around the top line onto the bottom line, the two lines would become

one double line. Naturally it only worked for a range of 80 characters. The top
line had to be less than 40 characters long and only the first 40 characters of
the line below could be transfered. With the two screen lines linked together,
the DELete key would be used to “drag” the line below up onto the line above,
squeezing out the line number plus those extra spaces in the process. Of
course you'd have to insert a colon yourself and also delete line 1 10. Try it! (By
the way, this doesn’t work on the VIC 20/C64 - the screen editor has been
changed and is now too smart for this trick to be pulled off)

When 80 Column machines came along there was no longer any need for a
line wrap table in low RAM - all the lines were identical regardless of how
much code was entered. So the situation above could still occur, but to add one
line to another required re-typing.

— - , N P il DYmnAn T

J

(You must know what I'm leading up td-" Y&, aMnQnQ@%ﬁ@QQE@ .Ca
operating system “think” that each line ¥sdongét Ban 80'characteys! thig'safien ssion
trick can be played on the 80 column screen editor. Slight of hand? No. More
accurately, “right of hand”. Location 213 is the right hand window margin.
Normally it contains 79 for 80 column lines (0-79):

poke 213, 189

.. .will make the editor think that each screen line is 160 characters long,
however, you're still limited to 80 characters per program line.

Now, about the only way I could make this work was to start from the
beginning of the first line and “cursor right” all the way over to about column
75. Only then would DELete cooperate and drag the bottom line up. Using
cursor left to “go around the other way” created some other problems.

Once you're done you'll want to restore 213 to a 79. Otherwise you’ll get some
strangeness occurring. Try POKE 213, 255 and cursor down off the bottom of
the screen. Weird, eh? Again, | don’t know why. And if you think that’s weird,
try listing a program that will cause screen scrolling. You won't crash the
machine, but you may have to clear the screen before entering any new direct
commands. Try experimenting. I'm not sure, but it might even work for 3
screen lines (ie. POKE 213, 239).

The Wooden Wedge [50]

Ted Evers of Toronto has this valuable advice: It has been observed that if the
power-supply plug for the C-64 is supplied with 4-pins instead of the
standard 7-pin type, damage can, and will occur to the computer and power
supply circuitry if this plug is inserted into its power socket the wrong way.
The shallow key of the plug will allow this to happen.

To overcome this shortcoming, fill the three unused socket holes with wooden
toothpicks. The offending sockets are pin #'s 1, 3 and 4, indicated by the
blocked in areas of the diagram.

ON.

C64 Right Side View
Power Plug

Tha Trane~ntar Ranlk ~F Rite AnA Diarac #1 m

Some More C64 Hardware Tips (28] >

A~ RA
viQ

y Not Reprint Without Pe

In an earlier issue we published one procedure for a video allignment on your
C64. Tony Lamartina of Chicago has another, but it’s more suited to service
technicians or those with access to necessary equipment.

1. Remove metal cover from video RF area.

2. Connect scope lead between ground and pin 1 of IC 31.

3. Adjust R27 for 1.5 volt DC level.

4. Connect scope lead between ground and pin 4 of DIN plug.

5. Adjust R25 for midposition

6. Connect decade box between pin 4 of DIN plug and right side of C78

7. Adjust resistance of decade box for 0.8 to 1 volt of signal level on scope

8. Connect resistor of value determined by decade box across pin 1 and pin 4
of DIN plug

9. Fine adjust R25 for best display of colour monitor.

Tony also suggests the following be checked on early releases of the 64:

1. Loose RF box covers. Tighten the metal tabs and re-install.

9. Check for a missing heat sink on VR2-7805 voltage regulator. Install
suitable heat sink.

3. If the unit displays “sparkling” (interference across the CRT screen, random
in nature) connect a 330 picoF capacitor from pin 20 (ground) to pin 30
(address 6) of the 6567 (VIC II) video chip. Make this connection outside the
RF shielded box.

Octopus Syndrome

Tony also has this tip for those using a VIC20/C64 with multiple peripherals: If
more than one 1541 disk drive is connected, bus lock-up will occur if all the
units are cycled on at the same time (such as using a power bar main switch).
To avoid this, turn on the 64 first, then one disk, then the other. Same with the
serial printers - turn them on last.

DATAdjuster Update [48, 110,223

In Volume 4, Issue 04 we presented an item called “DATAdjuster”; a routine
using POKE that would position the Data Pointer for your next READ
command. It seems a potential bug can invade that version of the routine and
Elizabeth Deal of Malvern, PA, has sent us a new one.

There are two POKEs that do all the work. Quite simply they deposit a copy of
the CHRGET pointer into the Data Pointer. However, if a page boundary of text

www.Commodore.ca

J

memory is crossed in between the tWo PL)KW Wé/}{r& Qy@m@@i-@@ﬂ Ca

Pointer is incremented by 1 and this véltie thirows tife Data Poirller Torbard by s
almost 256 bytes. Changing the order of the POKEs doesn’t help because the
same thing would happen, only in reverse - the pointer would be sent
backwards through memory by 256 extra bytes. Therefore, this routine is
what's called “position dependent”. Of course you can’t write programs to
accommodate subroutines. . . quite the contrary.

Elizabeth has come up with a routine that is “position independent”. It no
longer uses the CHRGET Pointer but rather the BASIC CONT Pointer. This
pointer is constantly updated by the operating system to point at the “link
bytes” (stored at the beginning of each line of text) of the line currently being
executed. The link pointer always points to the link bytes of the NEXT line of
text. This value, then, is perfect for transfering to the Data Pointer. Liz
subtracts 1 so that it ends up pointing at the zero byte at the end of the current
line — this would be the line that contains the POKEs. The next scan for DATA
would begin with the line immediately following.

Type in the demo program with no extra spaces in the first 6 lines.

100 data 0123456789 0123456789 0123456789
110 data 0123456789 0123456789 0123456789
120 data 0123456789 0123456789 0123456789
130 data 0123456789 0123456789 0123456789
140 data 0123456789 0123456789 0123456789
150 data 0123456789 0123456789 0123456789
160 poke 62, peek(119) : poke 63, peek(120)

170 read a$: print a$

180 data next read should be of this line

190 data however

200 data this will never be found

210 data the colon in line 160

220 data crossed a page boundary

230 rem
240 rem random restore - liz deal
250 rem
260 a1 =58:a2=62: rem c64/vic20 = 61 & 65
270 def fn pp(q) = peek(q) +256+peek(g+1)
280 def fn hi(q) = in(g/256)

290 def fn lo(g) = g-256+fn hi(q)

300 y =fn pp(fn pp(al) + 1)-1

310 poke a2, fn lo{y) : poke a2 + 1, fn hiy)

320 read a$: printa

330 data this is position independent

Tha Treemer~tar RAanl ~Af Rite AnA Diarac #1 72

For VIC 20 and Commodore 64 users, line 160 <chmge¥s¥t¥v w.Commodore.ca

viay Not Reprint Without Permission

160 poke 65, peek(122) : poke 66, peek(123)

Lines 260 to 290 would be placed near the start of text - they’re only executed
once. Lines 300 and 310 do the work. They need to be duplicated immediately
preceding each READ for which positioning is desired.

As previously discussed, one might save the contents of the Data Pointer in

two other variables before altering it. This way it could be restored to its
previous position at some later time.

Lt P il Dmm~n AT

Volume 5,_19311& Odmmodore ca

int Without Pe

Computenmachinen Blitzensparken

Screen dazzlers do only one thing better than tormenting a cathode ray. They
demonstrate the lightning speed of machine language. The next batch of
loaders are the creations of Richard Evers. Rich says, “They’re really not to
difficult to write, it's just that they usually turn out differently than originally
planned.”

The Brain (8032)

When this one was finished, it left the screen in such a state of disorder it could
only be called The Brain. The code is self modifying, a no no in more serious
applications, but it makes fast, compact code. The Brain checks the STOP key
- we felt a good brain should at least do that.

2000 rem the brain 80

2010 for j =634 t0 693 : read x : pokej,x : next
2020 sys 634

2030 data 169, 128, 133, 88,169, 0,133, 87
2040 data 168, 177, 87,133, 89,230, 89, 165
2050 data 89, 145, 87, 200, 208, 243, 230, 88
2060 data 165, 88, 201, 136, 208, 235, 206, 149
2070data 2,238,123, 2,173,123, 2,201
2080 data 132, 208, 213, 169, 128, 141,123, 2
2090 data 169, 136, 141, 149, 2, 165, 155, 201
2100 data 239, 208, 197, 96

Screen Marquis (8032) (76,161, 179]

Just like any other marquis, except this only does one screenful and it’s a lot
shorter. It too checks the STOP key.

5000 rem screen marquis 80

5010 for j =634 to 688 : read x : pokej,x : next
5020 sys 634

5030 data 169, 128, 133, 88,169, 0,133, 87
5040 data 160, 2,173,207,135, 72,173, 1
5050 data 128, 72,173, 0,128,141, 1,128
5060 data 177, 87,170, 104,145, 87,138, 72
5070 data 200, 208, 245, 230, 88, 165, 88, 201
5080 data 136, 208, 237, 104, 104, 141, 0,128
5090 data 165, 155, 201, 239, 208, 202, 96

The Trainsnctor Rook of Bits and Pieces #1 75

=~
A

MAav ~t Danrint Withaot
Viay NOT Kepril t Without Perr

The Boxer « Www.Commodore.ca

J

This one’s in BASIC, but it uses the special window commands that are only in
the 8032. It also makes a great screen “‘set-up” program for Screen Marquis 80
or The Brain 80. Type in The Boxer first:

10b=160:c=79:e=23

15ford=0to 11:a$=chr$(d+219)

16 poke224, 0 +d : poke225, 24-d : poke226, 0+d : poke21 3,79-d
: print"";

20 fora=11to b: printa$; : next

40fora=1toe

50 print” " a$tab(c)a$; : next

60b=b-4:c=c-1:e=e-2:nextd

70 goto 15 : rem sys 634

Then change line 70 from GOTO 15 to SYS5 634 as shown. If you have already
tried The Brain or Screen Marquis, line 70 will activate it once The Boxer is
finished. Otherwise you'll have to RUN one of the previous loaders to avoid
crashing.

Screen Marquis 40 (75, 161, 179]

_is the same as the 80 column version. The only changes are the last address
of screen memory, and a short time delay loop was inserted at the end to slow
it down a bit.

5000 rem screen marquis 40 \

5010 for j=634 to 698 : read x : poke j,x : next
5020 sys 634 \
5030 data 169, 128, 133, 88,169, 0,133, 87
5040 data 160, 2, 173,231,131, 72,173, 1
5050 data 128, 72,173, 0,128,141, 1,128
5060 data 177, 87,170, 104, 145, 87,138, 72
5070 data 200, 208, 245, 230, 88, 165, 88, 201
5080 data 132, 208, 237, 104, 104, 141, 0,128
5090 data 160, 240, 162, 0, 232, 208, 253, 200
5100 data 208, 248, 165, 155, 201, 239, 208, 192
5110 data 96

Commodore 64 and VIC 20 Versions

Screen Marquis for the C64 and VIC 20 is only a little more involved. The
colour table must also be scrolled every time the screen is. Otherwise

_ - - iAo Pmmd. m&Didn A Din~ac #1

characters tend to disappear whenever_théﬁ'/ &%\Mece@ [B‘lm&a@@ tHar. Ca
initially contained a space. Early 64s'won’t Havethis problemVbécause eheyssion
have a different Kernal ROM. Marquis 64 was designed to work with either
Kernal.

The number shown in bold in line 5130 is the delay counter value. The lower
this number, the longer the delay.

5000 rem marquis 64

5010 for j=828t0 924 : read x : poke j,x : next
5020 sys 828

5030 data 169, 4,133, 88,169, 0,133, 87
5040 data 169, 216, 133, 91,169, 0,133, 90
5050 data 160, 39,177, 87,133, 89,177, 90
5060 data 133, 92,160, 0,177, 87,170,177
5070 data 90, 133, 93,165, 89, 145, 87,165
5080 data 92,145, 90, 134, 89, 165, 93,133
5090 data 92, 200, 192, 40, 208, 230, 24, 165
5100 data 90, 105, 40,133, 90, 24,165, 87
5110 data 105, 40, 133, 87, 144,202, 230, 91
5120 data 230, 88,165, 88,201, 8,208,192
5130 data 160, 240, 162, 0, 232, 208, 253, 200
5140 data 208, 248, 165, 145, 201, 127, 208, 160
5150 data 96

Marquis 20 is for unexpanded VIC 20s. The numbers in bold in lines 5030,
5040 and 5120 are, respectively, the screen start address high byte, the colour
table start address high byte, and the screen end address high byte. For VICs
with memory expansion that changes these addresses, change these 3 num-
bers to 16, 148, and 18, respectively.

Once again, the number in bold in line 5140 is the delay counter value. Make
this smaller for a slower scroll.

5000 rem marquis vic 20

5010 for j=828 t0 924 : read x : poke j,x : next
5020 sys 828

5030 data 169, 30,133, 88,169, 0,133, 87
5040 data 169, 150, 133, 91,169, 0,133, 90
5050 data 160, 21,177, 87,133, 89,177, 90
5060 data 133, 92,160, 0,177, 87,170,177
5070 data 90, 133, 93, 165, 89, 145, 87,165
5080 data 92, 145, 90, 134, 89, 165, 93, 133
5090 data 92, 200, 192, 22, 208, 230, 24, 165
5100 data 90, 105, 22,133, 90, 24,165, 87
5110 data 105, 22, 133, 87, 144,202, 230, 91

The Transactor Book of Bits and Pieces #1 77

5120 data 230, 88, 165, 86, a1 gazVopNMdOMmModore.c
2130 data 160, 224, 162, 0, 298 208 258265 PrInt Without Permission
5140 data 208, 248, 165, 145, 201, 254, 208, 160

5150 data 96

The Brain for the C64 works the same way as the 80 column version, but is
subject to the same problem as Screen Marquis. Except this time it is corrected
by adjusting the background colour as opposed to the foreground colour. If
you remove line 2010 before running this program, you'll notice that the
spaces on your C64 screen seem to be unaffected. That's because the
foreground colour of a space is the same as the background colour. The POKE
in line 2010 changes the background colour to give the characters something
to show up against.

2000 rem the brain 64

2010 poke 53281, 493-peek(53281)

2020 for j=828 to 887 : read x : pokej, X : next
2030 sys 828

2040 data 169, 4, 133, 88,169, 0,133, 87
2050 data 168, 177, 87,133, 89,230, 89,165
2060 data 89, 145, 87, 200, 208, 243, 230, 88
2070 data 165, 88,201, 8,208, 235,206, 87
2080 data 3,238, 61, 3,173, 61, 3,201
2090 data 6,208,213,169, 4,141, 61, 3
2100 data 169, 8,141, 87, 3,165, 145, 201
2110 data 127, 208, 197, 96

The Plunge

The Plunge also uses the window features of the 8032 so it won’t work on
other Commodores.

4000 rem the plunge - 1984 r.t.e. the transactor
4010 for j=634 to 702 : read x : pokej,x : next
4020 sys 634

4030 data 169, 19, 32,210,255, 32,210,255
4040 data 169, 128, 133, 88,169, 0,133, 87
4050 data 168, 177, 87,170,232, 138, 145, 87
4060 data 200, 208, 246, 230, 88, 165, 88, 201
4070 data 136, 208, 238, 230, 224, 198, 225, 198
4080 data 213, 230, 226, 169, 147, 32,210, 255
4090 data 165, 224, 201, 13,208, 210, 165, 155
4100 data 201, 239, 208, 196, 169, 19, 32,210
4110 data 255, 32,210,255, 96

-a T~ Tommamntar Danl ~f Rite AnA Dioroc #1

Sequins g Www. Commodore ca

lay M nt Without Perr
Sequins is another demo that shows how the cathode ray can often not keep
up with the incredible speed of machine language.

100 rem sequins 80/40

110 for j=634 to 662 : read x : pokej,x : next

120 sys 634

130 data 162, 0,160, 0,254, 0,128,238
140 data 127, 2,222, 0,130,206,133, 2
150 data 200, 208, 241, 232, 208, 236, 165, 155
160 data 201, 239, 208, 228, 96

1000 rem sequins 64 — 1984 r.t.e. the transactor
1010 poke 53281, 493-peek(53281)

1020 for j=828 to 856 : read x : pokej, x : next
1030 sys 828

1040 data 162, 0,160, 0,254, O, 4,238
1050 data 65, 3,222, 0O, 6,206, 71, 3
1060 data 200, 208, 241, 232, 208, 236, 165, 145
1070 data 201, 127, 208, 228, 96

Curtains

“Curtains” demos how the 8032 (SuperPET, and B Series) video controller
chip can be altered to blank the screen. Register 6 of the 6845 controls the
number of display lines on the screen. Normally it contains the number 25,
naturally.

The 6845 video chip is controlled by 2 registers at 59520 and 59521 (55296 &
55297 on B Series). First 59520 is POKEd with the register number for which
you want access. Then 59521 is POKEd with the value to be sent there. Both
registers are write only so reading them with a PEEK will give unreliable
results.

The demo also shows how text can be written to the screen while it is blank.
The chip is poked with values of 1 through 25, but there’s no reason why you
can't go directly from 25 to 1. To stop the program, hit the SHIFT key. If you hit
STOP you may find yourself left with half a screen. POKE 59521,25 will get
everything back to normal.

100 print" [

110forj=1t0 24

120 fori=11079

130 print” + "; : rem fill screen

The Transactor Book of Bits and Pieces #1 79

on

|

140 nexti : print « Www.Commodore.ca
150 next | May Not Reprint Without Permission

160 print" [’

170 poke 59520,6 : rem selectreg 6

180 for j=25t0 1 step-1

190 poke 59521, j : rem write to reg 6

200 next

210 print" print on screen while blank

220 forj=11t025

230 poke 59521, j: rem reg 6 still selected
240 next

250 if peek(152) then poke 59521,25 : end
260 goto 180

Graphic Print [11,45,81,173]

This next routine is rather useless the way it stands, but the part that plots the
bar chart is simple and fast. The variable HT (height) could be replaced by data
READ from a DATA statement.

10 sc=4448 : In=22 : rem vic 20

20 sc=8032:In=22 : rem vic 20 w/exp
30sc=1824:In=40 :rem c64

40 sc=33408 : In=40 : rem 40 column
50 sc=34048 : In=80 : rem 80 column
60 input "[fenter a word ";a$

70 rem poke 53281, 12 : rem for c64

80 fori=1to len(a$)

90 ht=asc(mid$(a$,i,1)) : It=sc +i-In/2x(ht-64)
100 y=sc+i: pokey+In, ht+64

110 forj=ytoltstep -in

120 if j=It then poke j,123 : goto 140
130 poke j, 97

140 nextj, i

Modulo Counter [96]
Paul Obeda of London, Ontario, uses this handy little counter that will go from
1 to any value of your choosing, and then repeat, without any IF/THEN
statements and independent of any FOR/NEXT loops.

c=-cx(c<max) + 1
The statement (C < MAX) will yield a result of -1 when true and O for false. For
example, if MAX =12 and C starts at zero, -C will be multiplied by -1 since 0 is

80 The Transactor Book of Bits and Pieces #1

J

definitely less than 12. 1 is added and C flows equ Whdo O rﬂﬁftﬁ)lﬁﬂ@&e ca
-1, plus 1 equals 2. And so on until C equals 5120442 HARA2)iequidls Oy pldstm
and we're back to the start.

Of course MAX could be any value, but so can + 1. This could be replaced by
any expression your imagination can conjure.

Reverse RVS (11, 45,80, 173]

Setting Reverse character print is as easy as printing a RVS field control
character. But there’s another way that is somewhat uncommon but can be
handy in the right circumstances. Suppose you want every second character of
a message to be in Reverse field. Can you imagine all those control characters?
Try this:

10 a$ = "some string”

20 for j=1 to len(a$)

30c=1-c: poke 199, ¢

40 print mid$(a$,j,1);

50 next

60 print"" : rem cursor up

70 goto 20

Line 30 POKEs 199 with alternating values of 1 and 0. (Use 199 for C64/VIC 20
and 159 for BASIC 2/4) This is the RVS field flag for the operating system.
When you print a RVS field control character, the OS does virtually the same
thing. Location 199/159 is checked by the PRINT routine as it outputs
characters.

One Line PET Emulator

Need to RUN some PET software on your Commodore 64? Try these POKEs
courtesy of Jim Butterfield. Most of what they do is set the screen to $8000
(32768) and the boundaries of BASIC text space from $0400 to $8000. This will
handle most programs, even those that POKE to the screen. But programs
with SYS calls to machine language routines that perhaps rely on the operating
system will give you trouble no matter what adjustments are made. C64-Link
users will have to use the Link Relocator first.

1 poke56576,5: poke53272,4: poke648,128: poke1024,0
: poked4,4: poke56,128: print““: new

The Transactor Book of Bits and Pieces #1 81

On Error Goto {103, 133, 198] 4 www.Commodore.cC
May Not Reprint Without Permission

This tidy little error trapping routine for the C64 is another Butterfield original.

Jim POKEs the code in at $CF00 where it’s out of the way, but it’s totally

relocatable so it could be set up anywhere. Line 50 adjusts the Error Message

Link to point at $CFO0 (207+256 +0).

First, the code tests for an error. If there isn’t one, it jumps to warm start or
READY. If there is one, the error number is stored in $030D (781) which is also
used as the X register save for SYS. (The error number is held in the X register).
Then the number 1000 is placed at $14,15 and the routine jumps to the GOTO
routine in ROM. Note: the stack pointer is reset to $FA so all RETURNs and
FOR/NEXT loops will be popped off the stack.

Line “1000” is determined by the two numbers shown in bold on line 15
(1000 =232 + 3+256). If you want to use a different range of lines for your error
trap, just change these two numbers accordingly. For example, line 50000
would be 80+ 195%256.

10data 16, 3, 76,139,227,142, 13, 3

15 data 169, 232, 133, 20,169, 3,133, 21

20 data 162, 250, 154, 169, 167, 72, 169, 233

25data 72, 76,163,168

30 for j=52992 to 53019 : read x

40 poke j, X : nextj

50 poke 768, 0 : poke 769, 207

100 rem test program

110 stop

1000 x = peek(781)

1010 if x=2 then print” you already opened that file, numskull " : end
1020 if x = 20 then print" you can’t divide by zero, calculus breath " end
1030 if x= 11 then print " type it right this time, ninny " : end

1040 print " something else went wrong, probably your fault”

1050 end

Once installed, try executing OPEN 4,4 twice, PRINT 1/0, and any old syntax
error. With this routine one can write a more informative and user—friendly
error status reporter. Some errors could even be fixed for the user followed by
re-entry to the program.

But Seriously Folks. . . (83,91, 111, 146, 208]
Coming up with new discoveries on your computer might be personally

rewarding and intellectually stimulating, but there’s no immediate recogni-
tion. Now it’s time for the other extreme - a fanfare for everything you try.

an Tha Trane~ntnr Rnnk nf Rits and Pieces #1

Thanks to our Rick Evers, everytime gfBurhit/vethrdvwitiOthis, nﬂﬂl@-@lﬁ‘ﬁe ca

installed, you'll get a drum roll and cymbarmaum Not Reprint Without Pe

The routine is linked in by the Input Vector of the 8032 type machines. Line
110 re—points the vector at this code, and it in turn transfers execution to the
input routine.

100 for j =634 t0 686 : read x : poke j,x : next
110 poke 233, 122 : poke 234, 2

120data 8, 72,138, 72,152, 72,169, 16
130 data 141, 75,232,169, 55,141, 74,232
140 data 169, 0,133, 0,141, 72,232,160
150data 0,200,192, 21,208,251,230, O
160 data 165, 0,201, 0,208, 238,141, 75
170 data 232, 141, 74,232,104, 168, 104,170
180 data 104, 40, 76, 29,225

Zoundz (82,91, 111, 146, 208}

This next sound effect for the C64 is from Howard Strasberg of Toronto,
Ontario. Notice how little code is required to keep the SID making sounds once
it's set up properly.

105=54272

20 forl=0to0 24 : poke s+I, 0 : next
30 pokes+3,8

40 poke s+ 5, 128 : pokes+6, 8
50 poke s+ 14, 117

60 pokes+18, 16

70 poke s +24, 143

80 for fr=1 to 24000 step 100
90 gosub 150

100 next fr

110 for fr=24000 to 1 step -100
120 gosub 150

130 next fr

140 run

150 poke s+ 4, 65
160fort=11t04

170 fq=1r+ peek(s +27)/2

180 hf=int(fa/256) : If = fq and 255
190 poke s, If : poke s+ 1, hf
200 next t

210 poke s+4, 64

220 return

The Transactor Book of Bits and Pieces #1 83

n

|

NA

aMAZEing quickies « Www.Commodore.ca

MAav At Panrint Withant
May Not Reprint Withou Pe

This next couple of short snorts come from Chris Zamara of Downsview, Ont.

The below will work on any commodore machine, but make sure you're in
upper case/graphics mode. Try this tiny program:

10 print mid$(" /A" .rnd(1)*2+1,1); : goto 10
20 rem a shifted "n" and a shifted "m"

Or for a different effect:

10 print mid$(" /\X " ,rnd(1)*3+1,1); : goto 10
20 rem the X is a shifted "v"

Here’s a neat variable one. -

10 geta$: v=val(a$) : if vthen m=v*2
20 if rnd(1)<.5 then print ieftS(" /11T ,rnd(1)+m); : goto 10
:rem 18 shifted "n"'s

30 print left$(" \\\\\\ AW 7 rnd(1)#m);:goto10
40 rem 18 shifted "m"’s

After running the above program, press one of the number keys 1 to 9.

CBM 4032 V2.2 Disable

For those of you with 80 column machines, you may or may not know about
Chuan Chee’s CBM 4032 program. It converts the 8032 to behave just like a
4032 making life a little easier when you want to run a 40 column program.
Version 2.2 is the latest. Early versions had minor bugs and loaded in about 10
seconds. V2.2 is clean as a whistle and boots up in a split second.

I this utility gets more than a little machine time on your computer, you need
not reset the entire machine to disable it.

sys 14 = 4096

__disables CBM 4032 with no nasty side effects on the program in memory.
Once back to 80 columns though, you'll have to re-boot to get back to 40.

aa Thm Tramemn~tar RAnlL ~f Rite nnd Piecas #1

J

Volume 5 I§suaf023mmodore ca

IW 1Oou P
Kernal 3 For The Commodore 64 (27, 142)

Commodore has released Kernal 3 - a new retro fit ROM for the C64. The
“Kernal” is one of 4 ROMs found inside the 64. It’s called the Kernal because it
handles the fundamental or “inner most” operations of the machine. Report-
edly, fixes over Kernal 2 are:

1) The INPUT command has been fixed so that the INPUT prompt is not
included with the response when the prompt is greater than 40 characters.

2) The problem with DELeting the last character of the last line on the screen
has been corrected. Recall, if you start typing on the last line of the screen
for 80 characters such that the screen scrolls twice, and then use DEL to
move back and delete the 80th character, the CIA that lies above the colour
table is disturbed and becomes very unfriendly. Now eliminated.

3) A problem was found in the RS-232 routines that occurred with either even
or odd parity enabled that could result in inaccurate status reads.

4) Serial Bus Timing has been slightly modified to allow for several chained
peripherals. When too many peripherals were connected on the serial bus

the system would occasionally misbehave.
To test for Kernal 3, PRINT PEEK(65408). Details of price and availability are
not yet available - call your local dealer or Commodore Service.
Cylinder Screen

For an interesting but useless screen effect on your 8000/9000 series machine,
try this POKE from Dave Gzik of Burlington, Ontario:

POKE 59521, 40
When the video chip recovers from this punch you'll notice that your screen
has been twisted into a cylinder. Reset or PRINT CHR$(14) will restore order.
Down Scroll 64 (155,222
Another of Murphy’s unwritten laws states that “while trying to accomplish a
specific task you will always accomplish some other task that brings you no

closer to your original goal”. Paul Blair of Holder, Australia has reconfirmed
this law with the following submission.

The Transactor Book of Bits and Pieces #1 85

« . came across this while doing something e * K\ tgs@(ﬂs‘l‘m%g ore. C,,a

happen that way. The routine will scroll the Cominddore ea streerdown' e

starting from line D ie. from the top line with D=0, second line with D=1, etc.
Colour changes from line to line are also allowed. At the end of the routine,
some pointers are left a bit untidy, so use with caution. A PRINT or two on the
end seems to restore order. . . thought you might like it - regards, Paul Blair”.

100d=0:x=211:v=15:a=53280

110 poke a, 1 : pokea+1,3

120 print“" ;

130 reada$: v=v-1:pokea,v:ifa$="end" thenend
140 print““ :

150 fort=110 10 : print a$;d : next

160 fort=0to 14 : poke x + 3, d : sys 59749 : next
170 print : for dl=110 2000 : next: d=d+1:goto 130
180 data " scroll down with this pgm ™

190 data " it's really very easy to use”

200 data "include it in games and so on”

210 data "list the pgm to see the set up”

220 data " see how you can select scroll start?”

230 data "havefun paul blair”

240 data "end”

Equivalent VIC 20 and BASIC 2.0 routines have not been investigated but
presumably would work depending on their ROMs. Fat 40 and 8000/9000
series machines don’t need a routine like this — use PRINT CHR$(153) instead.

Screen Spaced With Colour Mods

Remember Screen Spaced? It has since been updated by Louis Black of
Oshawa, Ontario to include colour on the C64. A VIC 20 version would not
pose too big a problem. . . just swap out the numbers that reflect the screen
width and address locations, as well as the POKEs in line 4 for border and
background colours, and swap in the appropriate VIC 20 equivalents. Lines 1
and 3 must be entered using abbreviated keywords on at least some of the
commands to make them fit on one line.

0 print ;

1 ¢=232: forn=1t041: gosub3: ¢ =192-c: fora=0ton
- forb = 1024 + ato2024stepn: pokeb,c: nextb,a,n

2end

3 x=int(15*rnd(1)): y =int(15+rnd(1)): poke53280,x: poke53281,y
: fori=1t0100: next: return

- . T dm P e s & Dl e~ DinAne #1

Machine Language Screen Spacedf” ¥ W WW. C O mmod ? re.ca
May Not | rint Without Perr SIon

Here’s Screen Spaced in machine language for the 64. Wnter Chris Zamara

said he had to insert a delay loop into the code because it was just too fast to

have any adverse effect on your brain. Although it’s still faster than the BASIC

version, you will also notice that it's much smoother. Once again, the Surgeon

General advises that danger to mental health increases geometrically with the

number of SS iterations. And as they say on the 20-Minute Workout, “do not

over Space yourself”. And Murphys’ first law says, “if something can go S5, it

will”. And Mr T. says “jus try it, fool”

1000 rem machine code screen spaced

1010 for j=49152 to 49330 : read x

1020 poke j, x : ch=ch +x: next

1030 if ch <> 24671 then print” checksum error” : end
1040 sys 49152 : goto 1040

1050data 76, 9,192, O, 0, 32, 0, 9
1060 data 50,160, 0, 32,129, 192,169, 32
1070 data 141, 5,192,169, 1,141, 6,192
1080 data 32, 52,192, 32,129, 192, 165, 197
1090 data 201, 63,240, 10,238, 6,192,173
1100 data 6,192,201, 42,144,234,169, O
1110 data 141, 33,208, 96,173, 5,192, 73
1120 data 128, 141, 5,192,169, 0,141, 3
1130 data 192, 32, 82,192,238, 3,192,173
1140 data 3, 192,205, 6,192, 240, 242, 144
1150 data 240, 96, 24,173, 3,192,105, O
1160 data 133, 253, 169, 0,105, 4,133,254
1170data 173, 5,192, 145,253, 32, 169, 192
1180 data 24, 165, 253, 109, 6, 192, 133, 253
1190 data 165, 254, 105, 0, 133, 254,201, 7
1200 data 144, 230, 165, 253, 201, 192, 144, 224
1210data 96, 169, 0, 133,251, 169, 216, 133
1220 data 252, 173, 7, 192, 145, 251, 230, 251
1230 data 208, 2, 230, 252, 165, 252, 201, 219
1240 data 144, 239, 165, 251, 201, 232, 144, 233
1250 data 173, 33,208,205, 7,192,208, O
1260 data 96, 174, 8, 192, 234, 234, 234, 202
1270 data 208, 250, 96

amaZAMARAing
(Sorry Chris - I just couldn't resist it) Here’s another blitzoid screenzler:

Timescroll for the C64 from Chris Zamara of Downsview, Ontario. Notice how
the line is padded with spaces in two spots? Change the number of these

Tha Trancm~tar Banl ~f Rite AnA Diarac #1 a7

spaces for different effects. Line 20 details thie e’xéct}ﬁ{lwpw &me&ﬂ gdore.ca
can also change variable R to 53280 (the border cOl6tr Yegister)tor madded Permission
adness.

10a=0:b=1:r=53281:fori=0to1step0: pokera: poker,b:next
20 rem step0:3 spaces poker,a: 7 spaces poke etc.

Quick Note: The VIC 20, matched task for task, is the fastest of the
Commodore machines. (circa June 1984)

Stop RUN/STOP {107,143]

Most of you have no doubt seen at least one RUN/STOP disable for the C64.
The following POKE was published several issues ago. It disables RUN/STOP
(and RUN/STOP-RESTORE) without affecting the TI clock, but don't try
LOADing or SAVing and expect normal results!

POKE 808, PEEK(808)-16

Therefore, this should only be used after the program has been LOADed and
only with programs that do not LOAD subsequent software modules. This
next routine is by James Whitewood of Milton, Ontario. It does everything the
above POKE does without messing up LOAD and SAVE:

10lo=12 = 4096

20 c=int(lo/256) : b=lo-Cc*256
30fori=lotoi+4:reada: pokeia: next
40 poke 808, b : poke 809, ¢ : end

50 data 169, 255, 133, 145, 96

The address computed in line 10 as variable LO can be any available memory
ie. the cassette buffer will host this routine just fine. Notice how line 30 uses
the loop variable I in the calculation “1+4” to specify the end of the loop. This
is quite legal since | is set to LO and entered in the simple variables table (just
like any other variable) before BASIC interprets the TO operative. However,
you might also notice that 4 is one less than the number of DATA items. In
situations like these, inclusive logic must be used to determine the number of
loop iterations.

Cursed Commodore Cursor! [64]

Keith Preston of Ottawa, Ontario, has these comments on invoking the built-
in cursor routines while a program is running, as detailed in TheT.

- - —_ - i ALt PR el Dimmnn T

“Several articles in Volume 4, Issue 6 suggeWWW ﬂ%@dﬂg mrgbd thee. Ca

neophyte’s comforter, may be retained diving a'€emmedSRFGET by livekingms
POKE 204, 0. These are “Auto Liner” on page 18, “Subroutine Eliminators” on

page 37 and “Three GET Subroutines” on page 38. When using the C64,

however, the single POKE does not guarantee a flashing cursor for more than

the first character of an input string (as requested in “Auto Liner”). Further-

more, the cursor may disappear upon hitting RETURN! To prevent this, simply

add:

POKE 207,0

in any line after the GET. A further:
POKE 204, 1 : POKE 207, 0
before exiting the input routine ensures a return to normal cursor function.

The accompanying short routine illustrates the technique and should be used
to replace “Auto Liner”. A number of other minor errors in that program have
also been corrected.”

60000 input "64 auto start, increment” ;s,i

60010 print " SIERIEL " ; s;:poke204,0

60020 geta$: ifa$="" then 60020

60030 poke 207, 0 : print a$; : if asc{a$)<>13 then 60020

60040 p =peek(1145 + len(str$(s))) : if p=32 or p= 160 then 60010
60050 print "s="s+i ":i="i ":goto6001084"

60060 poke 631,13 : poke632,13 : poke198, 2

60070 poke 204, 1 : poke 207, 0 : end

60000 input "4.0/2.0 auto: start, increment” ;s,i

60010 print " 288" ; s;:poke167,0

60020 geta$: ifa$="" then 60020

60030 poke 170, 0 : print a$; : if asc(a$)<>13 then 60020

60040 p = peek(33009 +len(strd(s))) : if p=32 or p=160 then 60010
60050 print "s="s+i ":i="i ":goto60010§}"

60060 poke 623,13 ;: poke624,13 : poke 158, 2

60070 poke 167, 1 : poke 170, 0 : end

Sorry, But That DOES Compute
Ernest Blaschke of Sudbury, Ontario has these comments:
“In the commercial world, we all have heard the phrase: “Sorry, the computer

made a mistake!”. We know, of course, that it is the programmer and not the
computer that made the mistake. Computers don’t make mistakes. Right?

Tha Troonenrtnr Ranlke nf Rite and Pieroas #1 20

Well let me show you that your computer will ma.ke\%WlYéé L@4 IGQ@IQ O re C a

contradict itself. Yet, not all is lost. A prograniiiier sHGd Krdw e compliters’ Pe
weaknesses and keep it from making true mistakes.

Type into your computer the direct command:
PRINT5*8

The reply will be 390625. The computer has in fact produced the correct value
which is 5¥5*5#5%5#5%5x5

Now enter the following small program:

10518 = 390625 then print "true”
20 if 5 1 8 <> 390625 then print "false”

Type “RUN" and the computer will print “false”, contradicting its previous
statement that 518 =390625.

You probably know that your computer will reply with -1 to a true statement
and with 0 to a false one.

If you aren’t sure about this, try:
PRINT (2+2=4)

The computer replies with -1 (true). PRINT (2+2=5) will result in O (false).
However, even using this approach, the computer stubbornly denies its own
findings that 518 = 390625.

PRINT (518 = 390625) will reply with 0, false.

So what happened? The problem is that the computer calculates 518 in floating
point arithmetic and due to roundoff errors thinks the result is slightly greater
than 390625. For printing, it “rounds off” the value in memory to the correct
390625. However, equality tests fail since the computer perceives the true
result to be larger, and therefore unequal.

There are whole sets of problems where it is essential for the programmer to
avoid this pitfall in order for the computer to do its task reliably. Bearing
potential roundoff errors in mind, the programmer should have typed:

PRINT (INT(518) = 390625)

This would result with the -1 or true response. Of course this is limited to
numbers that can be anticipated to have no fractional content. For numbers

an Thn Tomemamn +mr Danls Af Rite mnA Diarac #1

with magnitude to the right of the dgfirgsl poiNY/ Wegr@éﬂﬂri?ﬂe@ﬁi&ﬁﬁ .Ca
consider moving the decimal point rightby midlfiplyingbyrsome/ dultiplésomission
10, say 100 or 1000, or as many significant digits as desired. Then take the
INTeger portion of this number and divide by the same multiple of 10.

| hope to have convinced you that you may not blindly trust everything that
appears on the screen or consider your computer’s logic infalible.”

Low-Res Screen Copy [149]

If you've ever attempted to do a low resolution screen dump of a screen
containing graphics, you've seen that the printer leaves a little horrible space
on carriage returns. This leaves the printout looking like it went through a
shredder. But by using “LOW RES COPY”, you can eliminate that space on the
printout. The program itself is only 14 lines long, somewhat shorter than the
22 lines of “Screen Copy’ in the VIC 1525 user’s manual. I find this program to
be a very handy utility when the time arises that you need a true low
resolution screen copy. Brian Dobbs, Timmins, Ontario.

100 si$ =chr$(15) : bs$ =chr$(8) : d=1024 : open4,4
110fora=dtod+39

120 print#4, si$;

130 b =peek(a)

140 if b>-1 and b<32 then e$ =chr$(b + 64)
150 if b>31 and b<64 then e$ = chr$(b)

160 if b>63 and b<96 then e$ =chr$(b + 32)
170 if b>95 and b<128 then e$ =chr$(b + 64)
180 print#4, e$;

190 next

200 print#4, bs$

210d=d+40:if d>1984 then 230

220 goto 110

230 end

Eep Eep (81,82, 111, 146, 208)

Eep Eep is a short interrupt driven routine that uses the cursor countdown
timing register to drive the CB2 transducer (it's not really a speaker so it's
called a transducer). Eep Eep only works on BASIC 4.0 machines but could be
modified to drive the SID or VIC 20 sound registers. However, it's only good for
two things really: one, it demonstrates the concept of pre-interrupt code.
Notice the first 9 numbers in the DATA statements — you can almost read them
without a dissassembler. They go LDA with 131, STA in location 144, LDA
with 2, STA in location 145, and RTS (96). 2 times 256 plus 131 equals 643

The Transactor Book of Bits and Pieces #1 o1

which is where the actual pre-interrupt prograaé b\%x\ﬂ'\éYIYDg le‘llm@lm ore.cCa
after the RTS). This is one of the most comiiion ethods (o efigdge”a prad! Permission
interrupt routine, and the quickest ways to spot one — something to remember

when you find some old listing lying around.

At the end of line 1090 are three 234’s. These are NOPs. It means simply No
OPeration or NO oPeration, whichever you prefer. The reason these are here
is to accommodate the three POKEs in line 1035. Line 1035 can be left out for a
different Eep Eep. RUN the program as is, then remove 1035 and RUN again.

Line 1100 contains the code JMP to location $E455. This is the regular
interrupt routine that the computer usually goes to when there is no pre-
interrupt code — another way to spot pre-interrupt routines.

Eep Eep plays with the same chip responsible for LOADs and SAVEs. It's
suggested you purge your machine of Eep Eep before continuing with more
serious work.

Oh ya, the other thing Eep Eep does effectively is drive you bonkers. Just hook
your computer up to your stereo, start Eep Eep, and tell no-one to touch your
equipment. Then leave.

1000 rem eep eep — rte 1984

1010 for j=634 to 676 : read x

1020 poke j, x : ch=ch +x : next

1030 if ch <> 6145 then print" checksum error " : end
1035 poke 671, 238 : poke 672, 147 : poke 673, 2
1040 sys 634

1050 data 169, 131, 133, 144,169, 2,133, 145
1060 data 96, 169, 16,141, 75,232,169, 20
1070 data 141, 74,232,165, 168, 141, 72,232
1080 data 160, 0, 200, 208, 253, 169, 0, 141
1090 data 75, 232, 141, 74,232,234,234,234
1100 data 76, 85,228

Mirror

Mirror is another pre-interrupt routine also written by Richard Evers. It was
written for no other reason but to see it work.

1000 rem mirror 40 - rte 1984

1010 for j =634 to 682 : read x

1020 poke j, x : ch=ch +x: next

1030 if ch <> 6710 then print” checksum error” : end
1040 sys 634

- - - AP . ek P m ol Dimm~n T

1050 data 169, 131, 133fT4g, 166V VY. Ca@niiemOdOl’e ca
1060 data 96,162, 0,460, 295160, Rep]id/ihout Pers
1070 data 153, 232, 130, 136, 232, 208, 246, 238

1080 data 137, 2,206,140, 2,173,137, 2

1090 data 201, 130, 208, 233, 169, 128, 141, 137

1100data 2, 169, 130, 141,140, 2, 76, 85

1110 data 228

1000 rem mirror 80 - rte 1984

1010 for j =634 to 682 : read x

1020 poke j, x : ch=ch +x: next

1030 if ch <> 6696 then print" checksum error” : end
1040 sys 634

1050 data 169, 131, 133, 144,169, 2,133, 145
1060 data 96,162, 0, 160,255,189, 0,128
1070 data 153, 208, 134, 136, 232, 208, 246, 238
1080 data 137, 2,206, 140, 2,173,137, 2
1090 data 201, 132, 208, 233, 169, 128, 141, 137
1100data 2,169, 134,141,140, 2, 76, 85
1110 data 228

The C64 version is a little longer due to colour table servicing required for
Kernal 2 machines. However, it stops working after a Clear Screen is done,
until the POKE in line 1040 is given. Can someone help us here? It's probably
just some silly oversight that we can’t seem to spot because of the clouds
between us and the screen - you know the ones we mean, they're made of
clear air? Hmm.

1000 rem mirror 64 - rte 1984

1010 for j=828 to 900 : read x

1020 poke j, x : ch=ch+x: next

1030 if ch<> 8190 then print" checksum error” : end
1040 poke 53281, 493-peek(53281) : sys 828
1050 data 169, 71,141, 20, 3,169, 3,141
1060 data 21, 3, 96,162, 0, 160,255, 189
1070data 0, 4,153,232, 6,189, 0,184
1080 data 153, 232, 186, 136, 232, 208, 240, 238
1090 data 77, 3,206, 80, 3,238, 83, 3
1100 data 206, 86, 3,173, 77, 3,201, 6
1110 data 208, 221, 169, 4,141, 77, 3,169
1120 data 6,141, 80, 3,169,184, 141, 83
1130data 3,169,186, 141, 86, 3, 76, 49
1140 data 234

Tha Trane~atar RAnl ~f Rite mnA Diaroce #1 o2

< www.Commodore.c

Ram Scan (141) y May Not Reprint
Ram Scan might be useful to somebody out there. Once engaged, it contin-
ually displays as many bytes of memory as will fit on the screen. Positioned
over Zero Page, it will show the various timers, etc, in action. Same with the
VIA and PIA registers up at $£800. To move the display use the cursor keys -
cursor up/down moves it by one line of bytes, cursor left/right by one byte ata
time. The STOP key puts you back in BASIC. Other than this, it too will give
some pretty eye crossing patterns, something Richard seems to enjoy inflict-
ing. Try moving the display around just below, and then above the first screen
address.

1000 rem ram scan 80 - rte 1984

1010 for j=634 to 724 : read x

1020 poke j, X : ch=ch+x: next

1030 if ch <> 11974 then print" checksum error* : end

1040 sys 634

1050 data 165, 151, 201, 255, 240, 43, 166, 152

1060 data224, 0,208, 10,201, 17,208, 16

1070 data 238, 178, 2, 76,171, 2,201, 17

1080 data 208, 16,206,178, 2, 76,171, 2

1090 data 201, 29,208, 6,238,177, 2, 76

1100 data 171, 2,201, 29,208, 3,206,177

1110data 2,160, 0,174,178, 2,185 O

1120 data 255, 153, 0, 128, 200, 208, 247, 238

1130data178, 2,238,181, 2,173,181, 2

1140 data 201, 136, 208, 234, 142,178, 2,169

1150 data 128, 141, 181, 2,165, 155, 201, 239

1160 data 208, 166, 96

1000 rem ram scan 40

1010 for j=634 to 744 : read x

1020 poke j, X : ch=ch +x: next

1030 if ch <> 14739 then print” checksum error” : end
1040 sys 634

1050 data 169, 147, 32,210, 255, 165, 151, 201
1060 data 255, 240, 41,166, 152,208, 10, 201
1070 data 17,208, 16,238,199, 2, 76,174
1080 data 2,201, 17,208, 16,206,199, 2
1090 data 76,174, 2,201, 29,208, 6,238
1100 data 198, 2, 76,174, 2,201, 29,208
1110 data 3,206,198, 2,173,198, 2,133
1120 data 251, 173,199, 2,133,252, 169, 19
1130 data 32,210,255, 32, 23,215,160, O
1140 data 174,199, 2,185, 0,255,153, 5
1150 data 128, 200, 208, 247,238, 199, 2,238
1160 data 202, 2,173,202, 2,201,132,208

t Without Permiss

il

1170 data 234, 142, 199, &1¥§W2\év1gp5b}m0d?f§ .Cca
1180data 2, 32,225,285, 76,427 (g Wilhou n

1000 rem ram scan 64

1010 for j=828 10 916 : read x

1020 poke j, x : ch=ch +x: next

1030 if ch <> 10348 then print" checksum error” : end
1040 poke 53281, 493—peek(53281) : sys 828
1050 data 165, 203, 201, 64,240, 42,174, 141
1060 data 2,208, 10,201, 7,208, 16,238
1070 data 115, 3,184, 80, 27,201, 7,208
1080 data 16, 206, 115, 3,184, 80, 17,201
1090data 2,208, 6,238,114, 3,184, 80
1100data 7,201, 2,208, 3,206,114, 3
1110data 160, 0,174,115, 3,185, 0,255
1120data 153, 0, 4,200, 208, 247,238, 115
1130 data 3,238,118, 3,173,118, 3,201
1140 data 8, 208, 234, 142,115, 3,169, 4
1150 data 141, 118, 3, 32,225, 255, 184, 80
1160 data 167

Crystal

Crystal is just a short little program that draws a crystaline pattern on your
screen. Aside from that, it demos how very little code it takes to get something
happening - something like a game layout, a game intro, or an attract mode
for a game you may have just finished and thought you didn’t have room for
an attract mode feature.

Crystal also demonstrates a technique that all programmers should be used to
or else get used to - portability. Some programs aren’t suited to be run on all
machines, but those that could potentially be run on any machine should
include for the user all necessary conversion information. It doesn’t take long
and it’s a courtesy that adds an extra professional touch.

100 rem crystal
110 rem 8000/9000 series : sw=80

120 rem 4000 + c64 :sw=40

130 rem vic 20 (sw=22

140 rem 4.0 basic :85=32768

150 rem c64 : ss=1024 (default)
160 rem vic 20 : 85 =7680 (default)

170 rem sw = screen width : ss =screen start
180 print” ";:88=32768 : sw=80 : rem * place your variables here
190x=1:y=1:dx=1:dy=1

T o T de Dl Al Db in A DYmmamn 47 ae

200 poke ss + X +sw*y, 81 poke ss+Xx+ sw*rQYVWW
210 x=x +dx : if x=0 or x=sw-1then dx=—dx "
220y=y+dy:ify=0ory=24 then dy =-dy

230 s=peek(ss + X +swxy) : if s=91 then dx=-dx : poke sS+ X+ 8wy,
86 : goto210

240 goto 200

Number Base Converter (80, 116, 137, 145, 163, 191, 207]

This next program works on BASIC 4.0 machines only because it uses some
internal ROM routines of the built in Machine Language Monitor which the
other machines don’t have. Quite simply, it will convert numbers from one
number base to another that are in hexadecimal, decimal, or binary.

There are two internal ROM routines used here: the first, SYS HD (where
HD =55124), inputs a hexadecimal number from the keyboard and places its
high order and low order components in locations 252 and 251. The program
takes over from there and uses variable NO to build a decimal representation
(line 12 or 13).

The second, SYS DH (where DH=55063), is the MLM routine for outputing a
hexadecimal number whose high order and low order components are in
locations 252 and 251 (line 15 or 19).

0 rem save " @0:hex/dec/bin conv" ,8:verify " 0:hex/dec/bin conv "8
1 rem * richard evers — march 8th 1984 — 4.0 only *
10 input” x>dec, hex>Jll b [§llin, B d Jilec>hex,
in, bin>{l] H [§llex. bin>J D [lillec " 108
11 print" " ;: hd =55124: dh =550863: if $ = "B" then
input " ff§decimal " ;no: goto16
12if q$="b"then print" Jg§hex val ";: syshd
: no = peek(251) + 256*peek(252): goto16
13if g% = "h"then print"jghex val " ;: syshd
: printpeek(251) + 256+peek(252): goto1 0
14ifg$="H" org$="D" then input"binary number " ;bn$
: gotol7
15 input” udecimal "-a: b =int(a/256): c =a-256+b : poke251,c
: poke252,b: sysdh: goto10
16 print: a=32768: forc=1t016: b= int(no/a): printb;: no=no-b+a
: a=a/2: nextc: goto10
17 a=0: c=1: for b=len(bn$) to 1 step-1: a= a+ val(mid$(bn$,b, 1))*c
:c=c*2: nextb
18ifg$="D" then print" decimal"a: goto10
19 print"$" ;: b=ink(a/256): c =a-256*b : poke251,c: poke252,b
: sysdh: goto10

Commodore.ca

ot Reprint Without Pe

J

WWW., Commodore ca

The Un—-Cursor - ' Nt Y)

May No orint Without Pe
Still another pre-interrupt routine is this one called Un-Cursor. As the name
might imply, Un-Cursor flashes everything on the screen except the space at
the cursor position. At least that was the original intention - the real cursor
seems to slip in an appearance every once in a while.

These pre-interrupt routines we’ve been bombarding you with may have no
place in your utilities library, but they do serve one vital purpose. By giving
you several examples we believe we accomplish two things - eliminating the
fear and apprehension of messing with the fundamental operation of the
machine is an important.step towards becoming proficient with your com-
puter. And second, when you come up with your own idea for a pre-interrupt
program, we hope one of these examples will serve as a guide to completing
your task.

1000 rem un—cursor 80

1010 for j=634 to 692 : read x

1020 poke j, x : ch=ch + x : next

1030 if ch <> 7656 then print” checksum error” : end
1040 sys 634

1050 data 169, 131, 133, 144, 169, 2,133, 145
1060 data 96, 165, 170,201, 1,240, 41,169
1070 data 128, 133, 88,169, 0,133, 87,168
1080 data 177, 87, 73,128, 145, 87,200, 208
1090 data 247, 230, 88, 165, 88, 201, 136, 208
1100 data 239, 238, 134, 2,173,134, 2,201
1110data 2,208, 5,169, 0,141,134, 2
1120 data 76, 85,228

1000 rem un-cursor 40

1010 for j=634 to 692 : read x

1020 poke j, x: ch=ch+x: next

1030 if ch <> 7652 then print” checksum error” : end
1040 sys 634

1050 data 169, 131, 133, 144,169, 2,133, 145
1060 data 96, 165, 170,201, 1,240, 41,169
1070 data 128, 133, 88,169, 0,133, 87,168
1080 data177, 87, 73,128, 145, 87,200, 208
1090 data 247, 230, 88, 165, 88, 201, 132, 208
1100 data 239, 238, 134, 2,173,134, 2,201
1110data 2,208, 5,169, 0,141,134, 2
1120 data 76, 85,228

3[e]s]

WWW
1000 rem un-cursor 64 | Mew Mot TCO'??m'OEj?re CaI

1010 for j = 828 to 888 : read e

1020 poke j, x: ch=ch+x: next

1030 if ch <> 6949 then print” checksum error" : end
1040 sys 828

1050 data 169, 71,141, 20, 3,169, 3,141
1060 data 21, 3, 96,165,207,201, 1,240
1070 data 41,169, 4,133, 88,169, 0,133
1080 data 87, 168,177, 87, 73,128,145, 87
1090 data 200, 208, 247, 230, 88,165, 88, 201
1100 data 8, 208,239,238, 74, 3,173, 74
1110data 3,201, 2,208, 5,169, 0,141
1120 data 74, 3, 76, 49,234

1000 rem un-cursor 20

1010 for j= 828 to 888 : read x

1020 poke j, x : ch=ch +x: next

1030 if ch <> 7141 then print" checksum error " : end
1040 sys 828

1050 data 169, 71,141, 20, 3,169, 3,141
1060 data 21, 3, 96,165,207,201, 1,240
1070 data 41, 169, 30,133, 88,169, 0,133
1080 data 87, 168,177, 87, 73,128,145, 87
1090 data 200, 208, 247, 230, 88, 165, 88, 201
1100 data 32, 208, 239,238, 74, 3,173, 74
1110data 3,201, 2,208, 5,169, 0,141
1120 data 74, 3, 76,191,234

Volume §,dssue 08 modore.c

Reprint Without Permission

Line Doo Daa [112]

Our first screen blitz was submitted by Giovani Polese of Downsview, Ontario.
The program shown is somewhat longer than it has to be - try PRINTAS after
running it once. We changed it to make it enterable from all keyboards
(business keyboards don’t have some of the graphic characters available). Try
changing the ‘15 in line 30 to 14, 13, 12, etc., for different effects.

30forj=1to15:reada

40 a$ =a$ +chr$(a) : next

50 print" [EML" ;

60 print a$; : goto 60

70 data 164, 210, 198, 192, 195, 196, 197, 163
80 data 197, 196, 195, 192, 198, 210, 164

Colourtest (28,33, 111]

Colourtest is a simple little program that merely draws boxes in all the colours
available so that you can adjust your TV/monitor for the best possible contrast.
Like the program above, it too is much longer than it needs to be. For example,
lines 115, 120 and 125 can be replaced by C$= all the colour control
characters except black, which is the background colour used for the test. This
will also save you from entering the DATA statements. Lines 135 and 140 can
be replaced by B$= 1 cursor down and 5 cursor lefts.

100 print"[§]" : rem clear screen

110 poke 13+4096 + 33,0
115fori=1t015

120 read a: c$ =c$ + chr$(a)

125 next

130s$=" ":rem 5 spaces

135 b$ =chr$(157)

140b$="[f]" +b$ +b$ +b$ + b$ + b$
145fori=11t015

150 print mid$(c$,i,1);

155 print "[f"; : rem home

160 for j=1 to i:print:next

170 printspc(i+2) " [l * sbsSbSsSbs
175 for j=1 to 300:next

180 nexti

200data 5, 28,159,156, 30, 31
210 data 158, 129, 149, 150, 151, 152
220 data 153, 154, 155

Tha Trancrntnr Ranle nf Rite nind Pieres #1 090

A

Would You Buy A Used Car From This Man?
Bytefinder

Have you ever needed to know what byte values are NOT present in a
program or file you may be working on? The situation arises when you need a
value to act as a terminator. If this same value exists elsewhere, the file will be
terminated prematurely. The following program will show which values are
not present in the 4K ROM block between $F000 and $FFFF. Quite simply, the
program counts the occurence of byte values (line 120) by incrementing the
approriate array element of U(. Naturally, all the values will lie between 0 and
9255, hence DIM U(255). The elements of U(that remain zero indicate values
that were not encountered (line 210).

100 dim u(255)

110 for j= 15+4096 to 65535
120 x = peek(j):u(x) = u(x) + 1
130 next

200 for j=0to 255

210 if u(j) = 0 then print j;
220 nextj

This could be easily altered for any area of memory, or for any disk file by
changing:

110 open 8,8,8, "some file”

120 get#8, a$: sx=st

125 x = asc(a$ + chr$(0)) : u(x) = u(x)+1

130 if sx =0 then next |

140 close 8

- - - vl N mnls A€ Dite ~nA Dinrac #1

T 17; ~t Danrint Withaot
blay Not Reprint Without Pe

g www.Commodor

.C

J

Quick Note: Remember, a COLLECT DO or. OPEIEQSEE "VO* dnever
[213] hurts, especially aftér ynu
pen. You know what 6 chaﬁge for' driven, Without Pe

UN-DIMension

As you know, any attempt to DIMension an array that is already in use will
result in the REDIM’D ARRAY ERROR. In fact, the only way to DIM an array by
the same name twice is to issue a CLR which destroys all your other variables.

In most cases you shouldn’t have to define an array more than once. But
sometimes a program may lack memory for a particular operation because
some array that isn’t required is occupying valuable space. The program
wouid be required to determine if array definitions could be erased without
losing valuable information. Then, using the following techniques, some or all
of the arrays could be eliminated. After performing the sort, etc., the arrays can
be re-defined, ready for further use.

In another case, you may have an array that is too small. When your program
detects this, invoke UN-DIM and re-DIM the array (by the same variable
name) at the new larger size.

This method can not quite be called ‘dynamic dimensioning'. First, you must
actually eliminate the array before it can be re-defined. Any important data
contained in the target array must be re-established after it is re-DIMed.
Secondly, you cannot eliminate an array without affecting other arrays defined
at a later time. In other words, the last array defined will be the first one erased,
and so on. Therefore, it is best to DIM the arrays first that will be considered
permanent and DIM the “variable” arrays last.

Function A(Q) (line 100) measures the “distance” in bytes from the Start of
Arrays Pointer to the End of Arrays Pointer. When new simple variables are
defined, both these pointers change as the arrays get pushed higher in
memory. But the size of the arrays hasn’t changed. So to erase an array, you
simply back up the End of Arrays Pointer by the same distance (line 140).
BASIC only looks up to the End Pointer for existing arrays, so if it isn’t found
DIM is allowed.

The next program is an “untaxed” and less commented version of the
program after it.

VIC 20 / Commodore 64 Version (For BASIC 2.0/4.0 subtract 3 from all PEEK/
POKE address in the first 5 lines.)

ThA Temneratar RAnl AF Rite mnA Dinnne #1 i (o}]

.Ca

100 def fn a(q) = (peek(50)-peek(48)[+258 %%%m&gmm)o dore.ca
110 def fn hi(q) = peek(48) + int(q/256) May Not Reprint Without Permission
120 def fn lo(q) = peek(47) + (g and 255)

130 goto 160

140 poke 50, fn hi(x) : poke 49, fn lo(x) : return

150 rem * start of program *

160 dim a(10), c(15), b(15) : a(8) =na(0)

170 dim j(20), i(20) : a(5) =fna(0)

180 x=a(3) : gosub 140 :remclr i(&i(

190 dim j(100),i(100) - a(5) =fna(0) : rem re~dim
200 dim ad(250)

210 x=a(5) : gosub 140 : rem clr array ad(
220 x=2a(3) : gosub 140 :remclrj(&i(arrays
230x=0 :gosub 140 :remclrallarrays

BASIC 2.0/4.0 Version (For VIC/64, add 3 to all PEEK/POKE. addresses in first
6 lines.)

100 def fn a(g) = (peek(47)-peek(45))*256 + peek(46)-peek(44)
110 def fn hi(q) = peek(45) + int(q/256)

120 def fn lo(q) = peek(44) + (g and 255)

130 goto 180

140 rem ——— cir array subroutine -——

150 poke 47, fn hi(x) : poke 46, fn 1o(x)

160 return

170 rem == start of program **x

180 dim a(10), b(15), c(15) : a(3) =fna(0)

190 rem a(3) = bytes used by first 3 arrays, a(, b(& ¢(
200 p=3.14159:i%=10:etc$="and soon”

210 rem arrays move up as simple variables are defined
220 rem however, a(3) remains the same

230 dim j(20),i(20) : a(5) =fna(0)

240 rem new arrays, a(5) = bytes used by all 5

250 r$ =chr$(13) : g$ =chr$(34)

260 rem and perhaps some new variables

270 x=a(3) : gosub 150

280 rem cir arrays j(& i(, leaving a(, b(& c(intact

290 dim j(100),i(100) : a(b) =fna(0)

300 rem re dim j(& i(

310 dim ad(250)

320 x=a(5) : gosub 150 : rem cir last array

330 x=a(3) : gosub 150 : rem clr j(& i(arrays

340 x=0 :gosub 150 : rem cir all arrays

- - - - . AL P i d Dmmmn #T

ERROROUTER (82,133, 198] < WWS%Eﬂdaﬂm@ﬂﬁﬁ& ca
May Not rint Without Perr
Many people have written programs that they do not want to have other
people crash out of either by accident or on purpose. The short program
presented here traps all errors and re-runs the program if an error occurs. The
program is written in BASIC, with a machine language routine loaded with
data statements. It will work on the VIC or 64. Run the program and it will ask;
“Install where?”. Enter an address of safe RAM in your computer (see below).
When you press RETURN it will enter the machine language section and
activate it.
Safe places to install

C64 49152 or 828
VICGK) 7168 or 828
VIC(+8K) 16354 or 828
VIC(+3K) 7168 or828

Location 828 is the tape buffer. Use it only if you are not doing any tape
operations, otherwise the computer will crash when you get an error. To use
this routine in your own programs, enter the data statements and read them
into free RAM. Then poke locations 768 and 769 with the LO/HI address of the
place you put the program in. It will then be activated.

How it works

Locations 768 and 769 are the locations which tell the computer where to go if
it encounters any kind of error. By POKEing these locations with our own
numbers, we can tell the computer to execute our own program instead of it’s
regular error routine. This program POKEs the numbers representing RUN
and a chr$(13) (return) into the keyboard buffer. Then it jumps to the normal
error routine. The computer then displays the error and checks the buffer. It
sees some characters there and assumes the user typed them, so it displays
and executes them, thereby re-RUNning the program in memory.

This program could be used for just about any program you write, it makes it
virtually crashproof. I use it on my bulletin board, so if someone manages to
crash it, it simply restarts itself, hanging up on the user in the process. 'm sure
you'll find many other uses.

51=peek(768) : h=peek(769)

10 data 169, 82, 141, 119, 2

15 data 169, 85, 141, 120, 2

20 data 169, 78, 141,121, 2

25 data 169, 13, 141,122, 2

30 data 169, 4, 133, 198, 76, 256
35 print chr$(147);

The Transactor Book of Bits and Pieces #1 103

40 input " install where " ;x : =" WWW-COn‘lmOdOFQ.Ca
50 read a May Not Reprint Without Permission

55 if a=256 then 75

60 ck=ck+a

70 poke x,a : x=x+1: goto50

75 poke x, | : poke x+1, h

80 if ck<>2568 then print " data error” : end
90 hi =int(y/256) : lo =y—(hi*256)

100 print "installed at”y

110 poke 768, 1o : poke 769, hi: new

Line Hider

Line Hider does just that — hide lines of code that you don’t want shown
without affecting their operation in the program. However, if you use Line
Hider to hide a line that is the target of a GOTO or GOSUB, you'll get an
UNDEFD STATEMENT ERROR. Use the next utility for these.

There’s just one trick to using it — you must supply the input with the number
of the line that comes BEFORE the one you wish to hide. It wouldn’t be hard to
modify this to hide an entire program!

100 rem save" @0:line hider " ,8:verify " O:line hider " ,8

105 rem * hide a line within your basic program

110 rem * basic 4.0:sb=1025

115 rem * c64 only : sb=2049 (default)

120 rem *viconly :sb=4097 (default)

125:

63989 sb=1025 : rem ** set-up for basic 4.0

63990 input " line # of preceding line *;pl

63991 for Ip=1to (2116)-1

63992 num = peek(sb + 2) + peek(sb + 3)*256 : rem * line #

63993 nxt = peek(sb) + peek(sb + 1)*256

63994 if num < pl then sb=nxt: next Ip : end : rem = still below the line
63995 if num > pl then print " line not found” : end

63996 sh = peek(sb) + peek(sb + 1)*256 : rem * position of line to hide
63997 nl = peek(sh) : nh =peek(sh + 1) :rem ptrs to next line

63998 poke sb,nl : poke sb + 1,nh :rem bypass the line to hide

63999 poke sh +2,0 : poke sh +3,0 :rem and change line # to zero

Ghost Liner
Ghost Liner does just what Line Hider does, except the line number will be

displayed with nothing beyond it. Ghost Liner searches for lines that start with
5 colons. It substitutes the first colon with a zero. When the LIST routine sees

~a Tha Tranemntar Ranl ~f Rite AnA Pieras #1

J

this zero, it assumes end of line and ggesgn MJIWN‘M-: E:eﬂ rhmamdﬁlse ca

affected. May Not rint Without Pe

100 remark * ghost liner — rte

110 remark * cloaks all lines starting

120 remark * with ::::: (5 colons)

130 remark * basic 4.0 : vI=42 : vh=43 : sb=1025

140 remark * c64 & vic: vi=45:vh =46

150 remark * c64 only : sb=2049 (default)

160 remark * vic only : sb=4097 (default)

170

180 : vi=42:vh =43:sb=1025 : rem * basic 4.0 set-up

190 loc = peek(vl) + 256+peek(vh)

200 printchr$(147)loc, " : maximum *

210 print,": current”

220 if peek(sb)<>58 then 250

230 ct=sb:forlp=0to0:ct=ct+1:lp=(peek(ct)=58) : next
240 if ct > sb+4 then poke sb,0:sb=sb+4

250 sb=sb +1 : print chr$(19)chr$(17)sb : if sb<loc then 220
260 end

List Decorator

With all the screen function characters available for changing colour and
cursor position, why not make use of them while LISTing as well as when you
RUN: List Decorator will take dull, unoticeable remarks and make them bright
and easy to spot. The list below shows what value to use for the possibilities.
You need not stop at one though - after running it once on itself (see line 160 &
170), LIST the program and insert new @ signs in the same place. Now RUN
again. List Decorator will replace all occurences of “REM @” with RB.

rb = 5 for white line (c64 & vic)

rb = 7 forring the bell (cbm only)

rb = 13 for carriage return

rb = 14 for upper/lower case

rb = 15 to set the top left corner (cbm only)
rb = 17 for cursor down

rb = 18 for reversed program rem lines
rb = 19 for cursor home

rb = 20 for delete char

rb = 21 for delete a line (cbm only)

rb = 25 for scroll down (cbm only)

rb = 28 for red line (c64 & vic)

rb = 29 for cursor right

b = 30 for green line (c64 & vic)

rb = 31 for blue line (c64 & vic)

Tha Traanenintor Rnonk of Rits and Pieces #1 108

100 rem = list decorator - rte g WWW, Commodore Ca
110rem*lb = 42:hb = 43:sb = o5 feiAvied Basica.gvithout Permis

120rem * b = 45:hb = 46 ‘rem * for c64 & vic

130 rem * sb = 2049 ‘rem = for c64 (default)
140 rem * sb = 4096 ‘rem * for vic (default)
150:

160 rem @ this is how your remark should look when entered
170 rem @ every occurence is substituted
180:
63995 Ib =42 : hb =43 : sb=1025 : rem basic 4.0 setup
63996 input " replacement byte for @ " ;rb
63997 mx = peek(lb) + peek(hb)*256 : for a=sb to mx
: b=peek(a) : if b<>143 then285
63998 if peek(a+ 1) =32 and peek(a +2) =64 then poke(a+2),rb
63999 next : end

Sinhibitors [6s,179]

This next collection of handy POKEs was submitted by Adam Foster of
Kingston, Ontario.

Many software companies go through a great deal of trouble to stop program
pirates from stealing their software. But no matter how much protection you
have on a program, if the pirate really wants to get in, he will.

On the VIC 20 and Commodore 64 there are several easy POKEs to stop the
common thief. I stress the word “common” since any experienced pirate will

get by these easily.

List Terminator

This feature will prevent others from viewing your program. On both the VIC-

and the 64 add a line to:
POKE 775, 200

To re-enable LIST, POKE 775 with 167 on the 64 and 199 on the VIC.
Unfortunately, it only works if the program has been RUN before they try and
LIST it.

Save Terminator ([143]

The 64 version of this stops the saving of your program by disabling the RUN
STOP/RESTORE keys. To do this:

POKE 808, 225 : POKE 818, 32

- TL o Tommamntdar Danls ~Af Dite ~nA Din~rac #1

n

To return to normal POKE both locatjffisgio YSWVGN tﬁ:@/m fskal@ Fs@ ca

enabled by: May No rint Without Pe
POKE 802, 0 : POKE 803, 0 : POKE 818 165

and is disabled with:
POKE 802, 243 : POKE 803, 0 : POKE 818, 133
STOP Key (88, 143]
To disable the STOP key, add:
POKE 808, 225

to your program. POKE 808, 237 turns the STOP key on again. This works on
both computers.

Keyboard Killer
POKE 649, 0

turns the keyboard off, and POKE 649, 10 turns it back on for both VIC and 64.

Etch. . .,., A Sketch.

Not the quickest hi-res graphic aid, but it demonstrates clearly some funda-
mentals. Like setting up the hi-res screen, testing boundaries and adjusting for
max/min, calculating hi-res position to the bit, testing for the fire button, and
determining joystick direction. It wouldn’t be tough to make this machine
language. Written by Dave Gzik, Commodore Canada.

ETCHASKETCH [173]

Here is a neat little program that converts your C64 into an etcha—sketch type
tablet. To use this, just load the program and run it. You'll need to have a
joystick plugged into port 2.

Drawing is accomplished by moving the joystick in the direction you want and
this program will draw in eight directions. If you want to lift the drawing pen

just hold down the FIRE button and move where you want to go.

This is a very simple BASIC program, there is no cursor to indicate the location
of the pen, so you'll be guessing when you lift it off the drawing area.

You can expand on this if you wish but it is rather slow in BASIC. Give it a try
it'’s not that long or tedious.

The Transactor Book of Bits and Pieces #1 107

n

5 rem etchasketch by dave gzik % www.Com m odo re Ca

10 base = 2+*4096 : poke 53272, peek(5327 9l &aprint Without Permission
20 poke 53265, peek(53265) or 32

30 for i =base to base + 7999 : poke i, 0 : next
40 for i=1024 to0 2023 : poke i, 3 : next

50 x=160: y =100 : rem start off point
75ify<0 theny=199

76ify>199 theny =0

77ix<0 thenx=319

78 if x>319 thenx=0

80 row = int(y/8) : char =int(x/8) : line=y and 7
90 bit=7-(xand7): byte =base + row=320 + char+8 + line
95iffr+jv=111then 110

100 poke byte, peek(byte) or 2tbit

110 jv=15-(peek(56320) and 15)

111 fr = peek(56320)
120ifjv=1theny=y-1:goto75
140ifjv=2theny=y+1:goto75

150 if jy=4 then x=x-1: goto75

160 if jv=5then x=x-1: y=y-1:goto75

170 ifjv=6then x=x-1:y=y+ 1:goto75

180 if jv=8then x=x+1: goto75

190 ifjv=9then x=x+1:y=y-1:goto75

200if jy=10thenx=x+1:y=y+1:goto 75
210 goto 75

Editor’s Note: Notice how Dave tests the fire button in line 95. This works no
matter what direction the joystick is being held. Why? Because the joystick
ports are inverted logic. This means when nothing is happening on the
joystick (except for the fact that it’s plugged in) the joystick register will contain
a value of 127 (bits 0-6 on, 7 off which flags port 2). Line 110 un-inverts the
value by first looking at only the first 4 bits, and subtracting that from 15 to get
direction values that make a lot more sense. As JV goes up FR goes down, so
FR+JV remains constant, whether the fire is down or not. But when the fire
button IS down, that constant is 111.

C64 Default Screen Colours (128, 144] R.D. Young,
James Park, New Brunswick.

If your black and white TV has the blues, or at least if it doesn't like the blue
default screen colours that appear on power-up, you can easily POKE in new
colours. Then frequently and just as easily, you can watch your new colours
disappear with each RUN-STOP/RESTORE key sequence and you must set
them all over again. You may even have a favourite colour combination with
your colour monitor. . . same problem.

-~ L L Pl D enfe & Dl il DimnAn 7

Try the following little program. It loadgfa rggcm&%wu@@ﬂ%kmﬂrﬁiﬁﬁﬁ .Ca

M

desired memory area, changes the “BABIE Wari Start Veetor td\pbintitherenission
and will keep your screen set to your own default colour combination.

The starting location for the machine language program is first selected. My
default is decimal 900, the middle of the cassette buffer. Another usually safe
place is between 49152 and 53232.

10 rem set default colours on run--stop/restore
20 rem by r.d. young

30 input " start location 900[left 5] " ;ad
40fori=adtoad+15:read x : poke i, x : next
50 hi=int(ad/256) : lo=ad and 255

60 input " screen colour (0-15) 6 [left3]";c
70 pokead+1,cC

80 input " cursor colour (0-15) 13 [left4]";c
90 pokead+9, ¢

100 poke 770, lo : poke 771, hi

110 sys 65126

500 data 169, 6, 141, 32,208, 141

510 data 33,208,169, 13,141,134
520data 2, 76,131, 164

The defaults in the program are set to blue screen with light green text. Refer to
any colour table (pg 159 in 64 User Guide) for colour codes that represent each
colour choice. Both the screen and border are set to the same colour (my
choice) but a little extra machine language could change all that. Happy
RESTOREing!

Tape Saving Notes [126, 144, 164]

Saving to tape from BASIC merely writes to tape everything that lies between
the Start and End of BASIC Pointers. Saving to tape from the Machine
Language Monitor allows one to save any area of memory because the user
supplies the start and end address. The format is:

sys4 enter monitor on BASIC 4.0 machines
.s "some name",01,6000,7000

.. .which saves all memory from hex 6000 to 7000 on cassette #1 using the
name “some name”. But the MLM Save always had one drawback. It would
not save any memory above hex 7FFF. The problem lies in the tape write
routines that Commodore designed years ago with the PET 2001. Commodore
assumed back then that tape would never be written with data above 7FFF. So

The Transactor Book of Bits and Pieces #1 109

they used the high bit of the high byte of thie asdr\é‘és\%‘é‘{g&l%h"mg ore.ca

When the current write address matched th&end address (16~ EHa'of BASHE Permissio
Pointer), this bit would be set. The last byte would be output and, in a later part

of the tape output routines, this bit would be detected and writing tape would

be terminated. However, if the current write address goes above 7FFF, this bit

is set naturally, but of course the tape close routine would have no way of
differentiating and tape write would terminate.

Without telling anybody, it seems Commodore has lifted that restriction from
the tape routines in the VIC 20 and Commodore 64. Although you must install
your own MLM program (ie. Supermon, VICMON Cartridge, etc.) the following
command will behave perfectly:

.s "some name" ,01,c000,d000

.. .will save to tape everything from $C000 to $CFFF. Remember, you must
specify the last address desired, plus 1.

RESTORE X [48, 72,223

This short machine language loader was submitted by Garry Kiziak of
Burlington, Ontario. It allows you to RESTORE the DATA pointer to any DATA
line as opposed to the first DATA line. And with just one single SYS. Written for
the 64 or VIC 20.

10 restr =828:for k =restr to restr + 31:read j:poke k,j:-next k

20 data 32,253,174,32,158,173,32,247,183,32,19,166,176,5,162,17
30 data 76,55,164,165,95,233,1,133,65,165,96,233,0,133,66,96
100fori=11t020

110 x=100*(int(rnd(1)*5) + 2)

120 sys restr,x

130 read a$: print a$

140 next

150 end

200 data i'm at line 200

300 data i'm at line 300

400 data i'm at line 400

500 data i'm at line 500

600 data i'm at line 600

And yes, that was Jim. B., ‘69

- - L SRS R | (R N L e v e

Volume 5 fissiie @40mmodore.c

t Without Permission

64 Quick Beep [67, 82,91, 146, 208]

The 64 is highly capable when it comes to sound generation, but it lacks a
simple method of making a single beep, or ringing a “bell”, as in the 40/8032
machines. The following POKEs will create a pleasant “ding”, and can be used
to get your attention after the computer has completed a certain task.

poke 54273,70: poke 54278,249: poke 54296,15
: poke 54276,17: poke 54276,16

Note: changing the argument in the first POKE varies the frequency of the
ring.

Colour Bar (28, 33,99]

(Credit for this goes to someone out there with a stylish but somewhat
unreadable signature. . . M.S. Renouf, perhaps?)

“Recently while developing a colour select routine for a program of mine
(colour of background, border, sprites, etc) I discovered that certain colours
side by side were virtually impossible to see. So I took a look at the Reference
Manual, and using some sophisticated analysis methods (trial and error) came
up with the best possible general colour map using all 16 colours strung out in
a line side by side. If you POKE the colours below in consecutive screen
positions, you will get a most readable Colour Bar:

10 data 4,0,8,2,10,9,7,12,6,3,14,1,11,13,5,15
20 c=55295:s=1023

30forj=1to16:reada
40 poke s+j,160 : poke c+j, a: next

Dazzler of the Month

You were waiting for it, weren't you? Just so we don't disappoint you, here’s a
screen dazzler for any BASIC 4.0 machine (4032/8032):

10 fori=47 to 57 : poke 59521,i: ford=1to 100 : nextd,i: goto 10
Enter the above program and RUN it without clearing the screen. I call it

“Attack of the Killer Program (in 3-D)”. P.S. It doesn't look like it’s very healthy
for the video circuitry, so don’t keep it running too long.

T oo P 2 D nds mE Dl md Dim~~n AT m

g www.Commodore.c

MAav Nt Ranrint Withaf "
May Not Reprint Without Permission

Which Way Did He Go?

Here's an effect that owes more to the nature of human visual perception than
it does to the graphics capabilities of your computer. On any 40 column
machine, enter this program:

10 Print™ ## e s rsknsknrsrsssrs ".:goto 10

(Note that there are 20 asterisks and 21 spaces. The exact number of asterisks
is not important, but there must be 41 characters altogether. You may use your
favourite graphics symbol in place of the asterisks).

Now run it. You probably first see lines of asterisks running from the bottom of
the screen to the top. Try fixing your eyes onto the centre of one of the bars of
asterisks. See them moving slowly from left to right? You'll probably find the
illusion flipping between vertically and horizontally moving bars.

The illusion is even more pronounced on 80-column machines. Use this
program:

10 print" s ok sk ok o oKk ok ok K ok ok ok ok sk ok ok ok ok o ok ko e ok sk ko ok ok ok ok Kk ek ";
20 print” ", :goto10
30 rem 40 asterisks, 41 spaces

The 80—column version creates slow-moving bars that are very difficult to see
as moving vertically. A procession of diagonal bars is seen moving slowly from
left to right.

Aquarius [99]

While we're doing special effects, here’s another dazzler for 80-column
machines. It's based on the program by Giovani Polese in last issue’s Bits &
Pieces section, but works especially well on 80-column machines. In upper/
lowercase text mode, enter:

10 print chr$(142)
20 print" EDCFRFCDE " ;:goto20

I won’t describe the resulting effect, but it's better than you'd expect from such
a small program. TRY IT!

Quick Note: The more sprites you have displayed on the screen of
[197] the 64, the slower the processor operates due to wait
states from the VIC chip.

www Commodore ca

NAt +

y NO rint Without Permission

SHIFTing your WAIT [13, 127, 128, 84}

Here’s a handy technique that comes to us from Rico Mariani of Downsview,
Ont. To insert a pause in a program that can be enabled from the keyboard,
use the command:

Cé4: WAIT 654,1

40/8032: WAIT 1521

. .which will wait until the shift key is pressed. For the opposite effect, you
can wait until the shift key is released with:

Cé64: WAIT 654,11
40/8032: WAIT 1562,1,1

To enable a program halt at that point, engage the shift/lock key. This is a
good way to synchronize a program with an external process: just disengage
the shift lock key to continue program execution. This way you can be certain
whether or not the program will halt at the WAIT statement, simply by
knowing the position of the shift lock key.

Interrupt Key-Scanning [158]

Sometimes it is desirable for some action to be performed any time a certain
key is pressed. A routine may be set up to run during the interrupts, but the
desired routine must be performed once when the key is depressed, not every
interrupt as long as the key is held down. The following examples in
assembler show an easy way to accomplish this.

C64 Example [128, 147]

The following assembler program, once initialized with SYS 49152, will
change the border colour whenever the F1 key is pressed.

10 * = $c000 ;startat 49152 decimal
20keybd = 197 ;key pressed
30 ;set up irq vector

40 sei

50 lda #<intrtn

60 sta $0314

70 Ida #>intrtn

80 sta $0315

90 cli

100 rts

110;

120 prevkey .byte 0

Th e Temammdne DNcnls A€ Didba eenAl DimAmn Eal 1192

g WWW. Commodore ca

A t

May Not | rint Without Permis n

:keyboard code for 1 key

:f1 key pressed?

:no, exit to system irq

:check previous key pressed
:exit if f1 pressed previously

-increment border colour register

220 ;(any desired code could be inserted here)

130;

140 intrtn = ¥

150 Ida #4

160 cmp keybd

170 bne out

180 cmp prevkey

190 beq out

200;

210 inc $d020

255;

230 out = *

240 Ida keybd

250 sta prevkey

260 jmp $ea31
40/8032 Example [i2s]

:system irg routine

The example program for the CBM will switch between graphics/lowercase
modes when the up-arrow key is pressed. Use the 64 program above, making
the following changes:

10 = = $7000
20 keybd = 151
60 sta $90
80 sta $91
150 Ida #222
210 lda $e84c
212 eor #2
214 sta $e84c
260 jmp $e455

;start at 28672 decimal
;key pressed
;irq vector low

;irq vector high
:keyboard code for up-arrow

;ifo register for graphics mode
:flip graphics mode bit

:store back into register
;system irq entry point

Use SYS 28672 to enable this version.

File Ripper (s,173]

Need to look through some disk file in a real hurry? Actually File Ripper is far
too fast for the eye, but if you want to see what's at the end of a large file and
have no time to waste, File Ripper will get you there quick! Once at the point
you're interested in, you can use the regular slowscroll or pause keys (back
arrow, :, RVS, CTRL, etc.). The 64 version would theoretically work on the VIC
20 but it hasn’t been tested.

1000 rem file ripper 4.0
1010 forj= 634 to 774 : read x
1020 poke j,x : ch=ch +x: next

1030 if ch<> 15942 thefl piiat” \éﬁ\é\é% 9@7 manj Ore. ca
1040 sys 634 ' rint Without Perr
2,169,209, 32, 29,187, 32

0,133, 218,169, 2

5,133, 210,169, 8

1050 data 160,
1060 data 226, 180, 169,
1070 data 133, 219, 169,
1080 data 133,212,169, 5,133,211,162, O
1090 data 189, 0, 2,240, 3,232,208,248
1100 data 134, 209, 32, 99, 245, 166, 210, 32
1110 data 198, 255, 32,207,255, 32,210,255
1120 data 165, 150, 240, 246, 165, 210, 32,226
1130 data 242, 32,204, 255, 160, 2, 169, 238
1140 data 32, 29,187, 32,228, 255, 240, 251
1150 data 201, 89, 240, 172, 76, 255,179, 147
1160 data 70, 73, 76, 69, 78, 65, 77, 69
1170 data 32, 63, 32, 40, 32, 68, 35, 58
1180 data 70, 73, 76, 69, 78, 65, 77, 69
1190 data 32, 41, 32, 0, 17, 18, 65, 71
1200 data 65, 73, 78, 32, 63, 32, 40, 32
1210data 89, 32, 32, 79, 82, 32, 32, 78
1220 data 32, 41, 32,146, O

1000 rem file ripper 64
1010 for j= 82810 926 : read x
1020 poke j,x: ch=ch+x: next

1030 if ch<> 11254 then print " checksum error” : end
1040 sys 828
1050 data 160, 3, 169, 131, 32, 30, 171, 32

1060 data 96, 165, 169,
1070 data 133, 188, 169,
1080 data 133, 186, 169, 5,133, 185,162, O
1090data189, 0, 2,240, 3,232,208, 248
1100 data 134, 183, 32, 74,243, 166, 184, 32
1110 data 198, 255, 32, 207,255, 32,210, 255
1120 data 165, 144, 240, 246, 165, 184, 32, 145

0, 133,187,169, 2
5,133,184,169, 8

1130 data 242,
1140 data 783,
1150 data 63,

32, 204, 255,
76, 69, 78,
32, 40, 32,

76,116, 164,
65, 77, 69,
68, 35, 58,

70
32
70

1160 data 73,
1170 data 41,

76, 69, 78, 65, 77, 69,
32, 0

32

Quick Note: to disable character set switching with the shift/

{138, 175] Commodore keys, PRINT CHR$(8);. To re-enable,
PRINT CHR$(9);. An easier way to do it is to simply key
CTRL-H or CTRL-I, respectively. Thanks to Jeff
Goebel for this latter tip.

Tha Trancr~tar RAnl ~f Rite nnA PDiarac #1 ns

File Loader -4

NA

MAav At Panrint Withant
May Not Reprint Withou Pe

When a number of program files must be loaded in succession, for example
sprite or character definitions, machine code, or high resolution screens, this
simple loading technique is a good way to do it:

10A=A+1

20 ON A GOTO 30,40,50,60,70

30 LOAD " FIRST FILE ",8,1

40 LOAD "SECOND FILE" 8,1

50 LOAD " THIRD FILE " ,8,1

60 LOAD " FOURTH FILE" 8,1

70 final statement - sys, load, goto, etc.

Since BASIC automatically performs a RUN (without clearing variables) after a
LOAD from program mode, the files are loaded in succession. Any number of
files may be similarly loaded, but make sure none of them are BASIC program
files, or the loader program will get clobbered. As indicated, the last statement
may be a SYS or other statement to start the program instead of a LOAD

ASCII/CBM Conversion [96, 137, 145, 163, 191, 207}

If you've ever tried to print to an ASCII printer, or receive from the RS-232 port
on the 64, you're familiar with the problem: Upper and lower case are
reversed. To solve the problem, use one of the following lines of BASIC to
convert a single character, stored in A$.

ASCII to CBM
a=asc(a$ + chr$(0)):a$ = chr$(a + 32+(2>96 and a<123)-128+(a>64 and a<91))

CBM to ASCII
a=asc(a$ + chr$(0)):a$ = chr$(a + 128+(a>192 and a<220)-32+(a>64 and a<91))

Another difference between regular ASCIl and CBM ASCII are the control
characters. ASCII codes from 0 to 31 are reserved for special control charac-
ters, such as bell, linefeed, carriage return, backspace, etc. There is no direct
correlation between ASCII and CBM control characters, but the conversion
that must frequently be made is substituting the Commodore’s “DELete”
character (20) with ASCII's “backspace” (8). This may be done by adding the
line,

if a=8 then a$ = chr$(20) For ASCII to CBM conversion, or

if a=20 then a$ =chr$(8) For CBM to ASCII conversion.
a$ =chr$(a+12+((a=20)-(a=8))) will convert either way.

mL Tha Trana~atar DAl ~fF RQite AnA Din~ne #1

www.Commodore.ca

J

Any or all control characters may be cozyer\éﬁW(W Qs@ln)m@rg QJQ Ca

conversion string which holds the deSied CBWY difatdetérsNslién asuédisen s
controls, tabs, etc. The position of each character in the string should
correspond to the ASCI code that it replaces. To make the conversion using a
conversion string 32 characters long, the following line could be added to the
conversion program above:

if a<32 then a$ =mid$(c$,a+1,1)

This technique may also be used to convert Commodore control characters
into ASCII equivalents. Usually, however, only the delete/backspace charac-
ters need to be switched.

Quick Note: the GET statement can accept more than one argument,
as in:
GET A$,B$,C$,D$, or using GET#

Easy Disk Salvaging (35, 181, 182)

All programmers live in constant fear of losing their irreplacable work due to
death of a disk. This leads to paranoic backing up of important files, a very
healthy activity. Occasionally, however, even the most paranoid among us
hear the horrifying klik-klik-klik-klack-griiiind-klkklk which signifies -
horror of horrors - a read error!

After you curse yourself for not having made a recent back-up, what can you
do? Well, the first thing you should do before resorting to sector-reading, is to
restore the disk jacket. A common cause of read errors is a disk jacket that’s
been squeezed tightly near the edges because of careless handling or storing.
This creates too much friction between the disk and jacket, slowing the disk to
the point where the drive can’t read it. To fix this problem, carefully run the
edge of the disk along the corner of a table to flatten it. Tapping the edge of the
disk on a corner at many points also helps. This should spread out the jacket
enough so that you can read the disk and make a copy of it onto a fresh one.
That's the happy ending of this story, but there’s also a moral: treat disks
gently and don’t hold them by the edges or squeeze them in any way. And
that’s not a fairy tale.

Tha Trrncrntar Ranl ~f Rite mnA Diarac #1 n7?

A Magic Number? [57,63] < WWW Commodore Ca

A

May Not | rint Without Perr

Examine the following program:

10 input " enter any number ”;n
20 printn

30 n$ =mid$(str$(n).2)

35k=0

40 fori=1to len{n$)

50 : k=k+ val(mid$(n$,i,1))*3
60 nexti

70n=k:goto 20

As you can see, it just accepts any number, and then sums all of the digits in
the number, first multiplying each digit by three. The result then becomes the
new number, and the process repeats indefinitely, showing the new value,
“N”, every iteration. What's so special about it? Try it with any number you
like, and see what happens after the first three or four iterations. If you can
figure out the reason for this strange numerical omnipresence, your math
students await you!

Safe VAL Function (7]

To permit “idiot proof” entry of numerical values from within programs, it is
best to input a string, and then convert it to a floating point value with the VAL
function. This technique is still not 100% idiot proof, however. If, for example,
the string “1e99” is entered, attempting to take its VAL would result in an
overflow error - disaster! The VAL of the string can only be taken if the result
would not exceed 1.7e + 38. The following subroutine will take the VAL of the
string V$ and put the result in V if doing so would not cause an overflow error.
If an error would result, the flag “OVERR” is set, and V is set to zero.

50000 rem=* safe val subroutine

50001 rem+ input parameter : V$

50002 rem+* output parameters: V, OVERR

50010 overr =0: Il =len(v$)

50020 for i =1 to Il: if mid$(v$,ii, 1)<>" e " then next i
50025 if ii>ll goto 50065 :rem= no "e"s, ok

50030 : mn = val(mid$(v$,1,ii-1)) :rem* mantissa *
50040 : for jj=ii+ 1 to Il if mid$(v$,jj, 1)<>" e " then next jj
50050 : ex = val(mid$(v$,ii + 1,jj-ii)) :rem=* exponent *
50060 : if ex + log(mn) > 38.53 then overr = 1: v =0: return :rem+ 100 high
50065 rem— endif —

50070 v =val(v$) :rem= ok *

50080 return

ne Tho Trmmeomatar Ranl ~Af Rite AnA Diarac #1

n

Quick Note: An elegant way to cy€aig MW&&BWMBH@ Ca

GOTO is: M rint Without Pe
FORI=0TO 1STEPO. NEXTI

Hardware Random Number Generation on the 64 {204

From BASIC, it's easy to get random numbers (actually, pseudo-random
numbers) using the RND function. If random numbers are desired in a
machine language program, or if better randomness is desired, the SID chip
may be used to supply them. The amplitude of the output waveform from
voice three may be read from SID register 27, and if voice three is set up for
high frequency noise generation, this value will be random. If that doesn'’t
make sense to you, don’t worry. Just set up the SID chip with:

POKE 54287,255: POKE 54290,129
Any time after that, a random number from zero to 255 may be read with:
PEEK(54299) from BASIC, or
LDA $D41B in assembler.
Round-up [62]

Here's some fun with floating point round-off errors that works with either
BASIC 2.0 or 4.0. Enter:

75.99999999 (8 nines)
The result, as you'd expect, is just what you entered. Now try:
?5.999999999 (9 nines)

This time the result is 6, which is quite reasonable, since it is just rounded off.
But now go one step further and enter:

?5.9999999999 (10 nines)
What? Not so reasonable this time (try it). Before you trash your computer for

being so stupid, don’t worry: the floating point routines are accurate to about 7
decimal places - that’s one part in 10 million!

Quick Note: 1% =1 is a quick way of taking the integer part of a
variable without using the INT function.

The Transactor Book of Bits and Pieces #1 1o

Prime Number Generation 4 www.Commodore.c
May Not Reprint Without Permission

I know, | know, generating prime numbers probably isn’t high on your list of

fun things to do with a computer. Notwithstanding, you'll probably get a kick

out of the following method and accompanying program. You may learn

something, too — don’t forget, this is the education issue.

Math class flashback: a prime number is a number which can only be evenly
divided by 1 and itself. Thus, 11 is a prime because it has no factors other than
1 and 11, but 9 is not, since it’s factors are 1, 3, and 9.

If you were asked to write a subroutine to determine whether or not a number
is a prime, a reasonable approach would be to divide by each whole number
from 2 up to the argument, and if none are found to divide evenly. . .

a=d/q: if a<>int(a) then. .«

.. .then the number is a prime. You could go one step further for efficiency and
only try numbers up to the square root of the argument, since factors above
that would be redundant. Now, here’s another problem: write a program
which prints all prime numbers from 1 up to a given value. You might be
tempted to pass integers from one up to the limit to the above subroutine, and
print the number if it is a prime. That will of course work, but there’s a better,
not-so-obvious way.

The prime number generation technique used here comes to us courtesy of
Eratosthenes (E-RA-TOS’-THENEEZ), of Athens, Greece. Around 200 B.C.,
Eratosthenes had this great brainstorm for generating primes. The technology
of the time did not include computers, so a long line of small stones was
probably used to do the trick. Actually, it's no trick — here’s how it works (We'll
use a computer instead of the stones. Less work).

1) First we set up an array containing all zeros. The array must have as many
elements as the maximum prime we want to generate. This array could be
represented by a string of bits since only 0 or 1 is needed in any element.

2) We initialize the process by printing the first prime, which is 1, and setting
the first element in the array accordingly.

3) The array is scanned from the current prime until a zero is found. The
position of the next zero in the array represents the next prime, and it may
be printed out. It will be 2 in this case.

4) The array element pointed to by this prime is settoa 1, and, in this first case,
every second element thereafter is also set. In the next iteration (prime =3),
the third element and every third thereafter would be set.

5) Steps 3 and 4 are repeated until the next prime is greater than the maximum
prime to be found.

120 Tho Treinenrtar Rnnle nf Rite and Pinres #1

The technique may look strange on mltlal.ﬁxammatlon gu(Plp g ?)o ? Ca
it a bit, you'll see why it works. By settifig a glven efemem ybu re rul mg s en
position out as a prime, and thus the multiples of every prime are being ruled

out as primes. This effectively cancels out all numbers which have factors
(other than 1 and the number itself).

Why go through mental gymnastics to generate primes? Well, this technique
spits out primes so fast, you won't be able to read them as they fly by on the
screen. The first few primes come out slowly, then get faster and faster as they
approach the specified limit. The program below prints all the primes up to
100 (there are 26 of them) in about 4 seconds. An optimized BASIC program
does it in less than three, much of that time taken just to print the numbers
out.

Try different numbers for the maximum prime, and see the effects. Each array
element is an integer variable instead of a single bit. A bit-oriented routine
would allow higher primes to be generated since less memory would be
required per prime, but would run slower due to increased processing.

100 rem= prime number generation
110 rem= using " sieve of Eratosthenes”
120:

130 input " maximum prime " ;max
150:

160 ti$ = " 000000 "

165 dim sieve%(max + 1)

170 number =0: rem+* prime count
180 prime =1 : rem+ first prime is 1
190 sieve(prime) = 1

200:

210 for mloop=0to 1

220 : print prime

230:

235 : remx find next prime

240 :fornp=0to 1

250 : prime =prime +1

260 : np =—(sieve%(prime) =0)
270 : next np: rem+* until zero found
280

285 : rem* set multiples of prime
290 : for set = prime to max step prime
300 : sievebo(set) = 1

310 : next set

320:

330 : number = number + 1

335 : mloop =-(prime> = max)

Thoa Temmammdme Daale ad Dida e Mo o oL -3 LT X

340 next mloop 4 WWW Commodore Ca

350 May Not | rint Without Pe
351 tme =ti: rem+ stop timing

352 print: print

360 print number; " primes generated. "

370 print tme/60; " seconds taken. "

The above program was written so that you can easily understand the process,
and modify it if neccessary. If you're too lazy too type the whole thing in, here’s
a simplified and slightly shorter version. Note that what is gained in brevity is
paid for in clarity and versatility.

1 rem= sieve of eratosthenes *

2input” maximum prime";m : dim s%(m+1):p=1:fork=0to 1 : printp

3fori=0to1:p=p+1:i=1-s%(p): next:fors=ptomstepp: s%(s)=1
1next: k=-(p>=m): next

The disadvantage of using the sieve to generate primes is that the amount of
memory available limits the highest prime that can be produced. On the 64,
the above routines can go as high as about 19000. (Yes, I tried it. The highest
prime was 18979. No, I don’t know how long it took). Using a single bit per
element, you should theoretically be able to get sixteen times that. A simpler
meodification would be to change the routine so that it doesn’t set the prime
locations after it prints the primes. This would leave the array intact so that the
list could be printed again without re-setting the elements. (That’s the correct
approach to take: my sieve routines are a bit non-standard. Also, traditional
sieve algorithms start with an array of ones and zero out the factors, but since
DIM zeros the array free of charge, doing it this way means we don’t have to
initialize every element in the array).

I'hope you found the above piece (or was it a bit?) interesting, even if it wasn’t
of prime importance.

Quick Note: the use of integer instead of floating point variables
results in slower, not faster, execution times

Useless Fact:

A program with a line number zero can be RUN by typing anything beginning
with the letters R-U-N, such as: RUNNING AWAY, RUN FAST, etc. Also, if you
type R-U-N on a line containing other text, you need not type a colon to delimit
the RUN command. And if your fingers occasionally go spastic after typing R-
U-N, you need not delete that “sufferin suffix” before hitting Return. However,

122 The Transactor Book of Bits and Pieces #1

510N

if there is no line zero in the prograin, wckWaw&Vag %QQE@QQQ&E Ca
“?UNDEF'D STATEMENT ERROR”. May No rint Without Pe

Useful Fact:

Yes, some obscure little bugs in BASIC can actually be “features”. When
documenting GOSUBs in a program, instead of using a REM, as in:

GOSUB 10000: REM= INPUT THE DATE
GOSUB 20000: REM* EXECUTE OTHER ROUTINE
GOSUB 30000: REM+ ETCETERA, ETCETERA

You can fit more comments on the line by leaving out the REM, and following
the destination line number with any character, for example:

GOSUB 10000 ‘INPUT THE DATE
GOSUB 20000 ‘EXECUTE OTHER ROUTINE
GOSUB 20000 ‘ETCETERA, ETCETERA

The apostrophe (’) allows remarks beginning with numbers, and makes an

attractive REM substitute. This tidy method of annotation works with GOTOs,
too.

Tha Trrnerctar BAanl ~f Rite ~nA Din~ae 41 192

www.Commodore.ca
May Not Reprint Without Permission

Volume 5 !§S\ue/\05>mmodore ca

int Without Pe

Built-In Debugging Aid (69, 162]

Here’s an idiosyncrasy that can be put to good use. On a BASIC 4.0 machine
(40/8032), performing SYS 53027 from within a program prints the message

in ”, followed by the line number in which the SYS is located. The program
then continues normal execution. This is an easy way to trace a recalcitrant
program: just insert this SYS at various points in the code, and the messages
will show what parts of the program are being executed. In a way, it's more
handy than a regular TRACE function, since it only traces the parts of the
program you're concerned with. A couple of notes about it: No carriage return
is printed after the message, and if you execute it from direct mode, a strange
line number is printed out (well, what do you expect?). If it wasn’t such a well-
kept secret, it would look as though the subroutine was purposely designed as
a debugging aid.

Easy Disk Directory Pattern Matching |6, 147, 195]

If you want to load a selective directory from a 1541 single disk drive, or from
drive 0 of a dual unit, you needn’t use the complete syntax:

LOAD " $0:pattern” ,8
The command,
LOAD " $pattern” .8

. .will do the same thing. For example, to see a directory of all programs on
drive 0 starting with a ‘P’, just enter:

LOAD"$P+" 8
This leads to any easy way to load just the disk header and number of blocks

free:
LOAD"$$" .8

Poison Line Number [i59]

Sometimes a computer can get annoyed for the smallest reasons. Enter the
following number on your computer (it works with 4032/8032 and 64):

350800
There’s actually a whole range of numbers in the same neighborhood that

produce the same effect. Try entering it more than once. Why does it happen?
Who knows, maybe it’s just an unlucky number.

The Transactor Book of Bits and Pieces #1 128

Closing “Forgotten” Files (65, 184] < W WW., C O mmodo re ca

May Not Reprint Without Permission

Editing with Commodore machines is wonderful compared to others, but it
can be annoying when all variables are lost whenever a line number is
entered, with or without text. Besides clearing variables, though, the machine
forgets about all open files. Suppose you OPEN a sequential file to disk and
write to it. You MUST close the file afterwards, but if you did any line editing,
deliberately or not, the system will think there are no open files, and won't let
you close it. Now, you know perfectly well that the file is indeed open, since
the light on the disk drive is on.

In such a situation, here are two ways to close the file:
1) The disk drive will automatically close all files when the command channel
is closed. To use this feature, just enter:

OPEN1,8,15 : CLOSE1
ALL open files will then be closed, courtesy of the disk drive.

2) You can change the number of files open in the operating system. This
method allows you to close the first file opened, or the first N files opened,
rather than all open files llke method 1. The change is done with a single
POKE:

POKE 152,1 on VIC/64
or POKE 174,1 on PET

You can then CLOSE the file as usual. If you wish to re-activate more than one
old file, change the value of the POKE accordingly.

SAVE-ing a Range of Memory From BASIC [109, 144, 155, 164]

On a 4032 or 8032, you can always save a range of memory from the monitor,
for example:
S "0:filename ",08,8000,8400

. .would save screen memory out to disk. With the C64, such a feature would
be even more desirable, so that the picture currently in the high resolution
screen could be SAVEd. The 64 doesn’t have a built-in monitor like the 4.0
PETs do, but you can SAVE a range of memory by entering a single line from
direct mode! Here it is:

sys57812" filename " ,8: poke193,slo: poke194,shi
: pokei74,elo: poke175,ehi: sys62954

126 The Transactor Book of Bits and Pieces #1

The variables SLO and SHI are the loyapd R éraéroana stam addese. Ca
respectively, and variables ELO and EFRi are (Herlovcdric: high' éndraddréssm
(SLO=start AND 255, SHI =start/256, ELO=end AND 255, EHI=end/256)

For example, to save the high resolution screen from 8192 ($2000) to 16192
($3F40) using the filename “screen” on drive zero, the line would look like
this:

sys57812" Q:screen”,8: poke193,0: pokel194,32: poke174,64:
poke175,63: sys62954

The file can then be LOADed as usual, with:
LOAD " filename " ,8,1.

Cassette can be used instead of disk if you change the “,8” to “,1” when saving
and loading. Remember, if you're loading the file back in from within a
program, you have to make sure it only gets loaded on the first RUN. For
example, the first line of the program could be:

10iff=0then f=1:load " flename " ,8,1

WAIT A SECOND! [113,222] Jeff Goebel, Georgetown, Ont.

“If you are ever using cassette files on a 64, it is a good idea to first make sure
the PLAY button has been shut off. [always include a line:

"PRESS STOP ON CASSETTE PLEASE"

..and a WAIT 1,16 at the beginning of any of my cassette loaded programs.
This will STOP the computer until the STOP button on the tape player is
pressed. That way, when | later try to read from a file, the PRESS PLAY prompt
will again be displayed, and the user has the option to change tapes or
whatever, before pressing PLAY. Actually, [can spiff up the standard PRESS
PLAY prompt to be almost anything [want by using my own routine. If
include a PRINT statement like;

"PRESS PLAY ON TAPE CASSETTE UNIT"

. .followed by a WAIT 1,16,16, the computer will stop and wait till the play is
pressed. [then have time to

PRINT "THANK YOU "
or "SEARCHING FOR DATA"

The Traansnctor Rooke r»f Rite aand Piereas #1 127

. .before 1 open the file. Since the plaf key W\dl/rbbﬁﬁﬂ}ﬁ}amo{ﬂé) re Ca

computer s own prompt will not appear, and the datawilblogd as moynialout Pe

“Actually, the WAITSs are universal; WAIT 1,16 will stop until ALL keys are up
on the tape unit and WAIT 1,16,16 will stop and wait until ANY key is pressed
on the unit. It doesn’t have to be the PLAY key specifically.”

Checking for SHIFT, CTRL, and Commodore keys [13, 113, 134,212]

PEEK(653) will yield the state of these three keys; bit O for SHIFT, 1 for the
“Commodore Key”, 2 for CTRL. Study the following example.

10 rem=* control key demo *

20 print chr$(8): rem=* lock case *

30:

40fori=0to1step0

50 ck =peek(653)

60 if ck=0 then print" - none -";

70 if ck and 1 then printtab(1) "SHIFT";
80 if ck and 2 then printtab(8) " Commodore " ;
90 if ck and 4 then printtab(20) " CTRL";
100 print

110 next i

As you can see, the state of any or all keys may be examined with a single
POKE, and an AND to see which key(s), if any, are being held down. (Holding
down the CTRL key also slows the speed of scrolling).
Changing Screen Character Colours [108, 142, 144]
A quick way to change the colour of ALL characters on the C64 screen:

10 c=1: b=53281: rem* ¢ is colour, b is border color reg *

20 s=peek(b): poke b,c: poke 648,160: print chr$(147)

: poke 648,4:poke b,s

The above works on 64s with ROM version V2, which sets colour memory to
background colour when the screen is cleared. If you have other ROM
versions (that set colour memory to character colour), use this line 20:

20 poke 646,c:poke 648,160:print chr$(147):poke 648,4

The first version won’t change the current character colour, it'll just change the
colour of all characters on the screen.

128 The Transactor Book of Bits and Pieces #1

n

It works by telling the operating systepithat th¥/ sereeh & @dyupmRAN 56 . Ca
that clearing the screen serves only t& set colouy emdeyThéscrear pagenission
pointer is then set up to its normal default value, 4 (screen at $0400).

Death by Garbage {130, 132, 224]

Delays caused by garbage collection (discarding of unwanted strings by the
system) are often a minor annoyance, but sometimes uncollected garbage can
be the cause of unexpected crashes! Suppose we wanted to write a program to
store data from a sequential file into memory, either to be examined there by a
program, or to be written to a new file. The following harmless-looking
program should do the trick, right?

10 rem=* read bytes into memory from seq file *
20 open 8,8,1, " O:lots of data,s,r"

30 bm =4096: rem= start of memory for storage *
40c=0 :rem=* counter *

50 rem— loop —

60 get#8,a%: poke bm + ¢,asc(a$ + chr$(0))
70c=c+1

80 if st=0 and bm<24576 goto 50

90 rem— endloop —

100 close 8

110 end

Bytes are read from the sequential file and POKEd into successive memory
locations. The program ends when end-of-file occurs, or memory location
24576 ($6000 in hexadecimal) is reached. When run on a 4032 or 8032, the
above program seems to work fine — unless the file is more than about 5000
bytes long. On a long file, the machine will suddenly break into the machine
language monitor, or simply halt. Inspection of the data after the crash reveals
that it has been totally corrupted. What happened?

It may be obvious to some of you who fully understand the nature of strings in
Commodore BASIC, but it may be a surprise to the uninitiated. It occurs
because the data being POKEd into memory steps on string storage space. One
would think that the 8k of memory between $6000 and $8000 would be more
than enough to store the strings; there’s just A$, right? Well, the string storage
space grows each time a new A$ is read, because a new string is created in
memory. Each time a new string is created, the bottom-of-strings pointer
decreases (this pointer is at 48-49 in BASIC4, 51-52 in VIC/64). The garbage
left over from previous strings won'’t be collected until this pointer decreases
until it equals the top of arrays pointer - in other words, when there’s no more
free memory. Unfortunately, we want to use the memory between the top of
BASIC and variables, and the bottom of strings.

The Transactor Book of Bits and Pieces #1 129

What we really want in the case of the abg¥egprogvaity Wedrada tslRA@EO re Ca
after every new byte is read in. That will keep RANfreécandesate)! sivicecthe Pern

strings will never grow more than a few bytes (one byte will be required to
store A$, and another to store the result of A$+CHR$(0)). The best way to
force a garbage collect is by invoking the FRE function. In the above program,
we could insert the statement:

75 F =FRE(0)

This doesn’t slow down the program noticeably, since there are only two bytes
of garbage to discard each time. In fact, in any program which reads in many
bytes of data from disk, or redefines string variables often with GETs or string
expressions, it's a good idea to use the FRE function in every iteration of the
loop. If the strings are allowed to pile up until a garbage collect is automatically
invoked, there could be a long wait in store, especially in BASIC 2.0 machines.
A program user may think the machine has crashed during a long garbage
collect, and become quite hostile as he turns off the power after waiting ten
minutes.

So be careful when POKEing into “free” memory, and use the FRE function
liberally in string-intensive programs. As a more drastic measure, CLR will
also do the trick, but of course it must be used with care within programs.
There’s another lesson here: even if a program works fine when tested with
relatively small amounts of data, it may die when worked harder or for longer
periods of time. By coincidence, if 'm testing a commercial program and it
crashes on me, the first word that usually springs to mind, is “GARBAGE”.

Drowning in Garbage! [129, 132, 224] Elizabeth Deal

Liz writes, “We all know about the elegant screen dazzlers. The other end of
the computing stick is:”

100 rem drowning in c64 garbage!
110 rem by elizabeth deal

120:

130 rem+* set top of basic to $4000 *
140 poke55,0:poke56,64:cir:vi=53248
150 :

160 rem+ hires screen at $2000 *
170 poke vi + 17,peek(vi+ 17)or32
180 poke vi+ 22,peek(vi+ 22)or16
190 poke vi+ 24,peek(vi+ 24)or8
200

210 rem= define a string 200 times
220 ta=56324: forj=1t0 200

130 The Transactor Book of Bits and Pieces #1

n

230 v§ = chr$(peek(@)gr VBVAGKYY . C 0 m Mo do re.ca

240 get i$:if i$ = " thep cir! Jotd220Reprint Without Pe
250:

260 rem= exit and restore screen *

270 vi=53248

280 poke vi+ 17,peek(vi+ 17)and223

290 poke vi+22,peek(vi+ 22)and239

300 poke vi+ 24,peek(vi+24)and247

The wild patterns displayed on the screen are as a result of “garbage” - the
string V$ is repeatedly redefined, filling memory, which happens to be video
RAM.

Single Disk Copy Program [200] Rick Illes, Milton Ontario

The program that follows allows you to make copies of programs, or SEQ files
on 2031/1540/1541 disk drives. Files can be of any kind: BASIC, machine
language, or sequential. The only limit is the length of the file to be copied,
which depends on how much memory your machine has. As it stands, it will
work on upgrade and 4.0 BASIC; if you have a VIC 20 or Commodore 64,
change these lines:

110 poke 828,peek(55): poke 829,peek(56): ds=0
120 poke 55,peek(45): poke 56,peek(46) + 1: cir

130 t=peek(55) + 256 +peeck(46): s=t

300 close: poke 55,peek(828): poke 56,peek(829):clr

The program follows:

100 rem= single disk copy: by rick illes

110 poke 828, peek(52): poke 829, peek(53)

120 poke 52,peek(42): poke 53,peek(43) + 1: clr
130 t=peek(52) + 256+peek(53): s=t

140 input” filename " ;a$

150 input " Prg or Seq (P/S) " ;t$

160 open 1,8,8,a$+ ", " +1$: if ds goto 300

170 print"ok. . ."

180 rem=* read the file in =

190 get#1,b$: poke s,asc(b$ + chr$(.)): s=s+1: if st=. goto190
200 if ds goto 300: rem= disk error (basic 4) *

210 closet: print" insert copy disk into drive #0"
220 print" then press <space>"

230 getb$: ifb$="" goto 230

240 get b$: if b$<>" " goto 240

250 0pen 1,8,8,a%+ "," +t$+ ",w": if ds goto 300

The Traancartor Rnnle nf Rite AnA Diarac #1 17

n

260 print" ok. . ." g Www. Commodore ca

270 rem= write the file out = " May Not Reprint Without Pe
280 for i=tto s-1: print#1,chr$(peek(i));: next

290 if ds =0 then close1: print" fg§done! "

300 print ds$: close 1: poke 52,peek(828):poke 53,peek(829)

Editor’s note:
Notice the ‘IF ST=." and ‘CHR$(.)’ in line 190? This is perfectly acceptable for
the value zero. Faster too.

Also note the way that Rick protected memory before storing the bytes from the
disk file. He first saves the current top of memory, then sets it to 256 bytes above
the top of the BASIC program, that'’s plenty of space for variables in this case.
After the program finishes, it restores the top of memory pointer to their original
state. This is a good technique, and it avoids the possibility of “death by
garbage’, as explained in the piece of the same name. The only thing to watch
out for though, is if you want to use the above routine as a subroutine in a
larger program: The variables and arrays in that case may need more than the
256 bytes provided above the program. To allocate more variable space, just
change the “+ 1" in line 120 to give more than one 256 byte block. -T. Ed

BASIC 4.0 String Bug 129, 130, 224]

Here’s a bug, reported by Commodore:

“The bug is a failure to detect ‘Out of Memory’ error. This can cause corruption
of string data or programs if space is running short.

“The bug only occurs in BASIC4 and when there are less than 768 bytes (or 3
times the longest string) free after all variables and arrays have been assigned
to a program.

“An example of the bug on a 32k PET:

10 DIM A(6330)
20 BUG$=BUGS+ "W" + ".": PRINT BUG$: GOTO20

“The above program will concatenate a string of aiternating characters
‘WW.W.WW'. The ‘Out of memory’ terminating is correct but the string is

corrupted after only a few passes.

Solution? The easiest solution is to trap the ‘Out of memory’ error from within
BASIC:

IF FRE(0)<768 THEN PRINT"OUT OF MEMORY ERROR": STOP.

132 The Transactor Book of Bits and Pieces #1

510N

Another solution is preventative medxcmq.DW W&ﬂéa@n@@%@l@%@g Ca

strings at the same time. Doing the corestenatioty it twd steijs jeithout f
BUG$=BUGS$ + "W": BUG$ =BUGS + "."

. .will circumvent the problem.

Intercepting C64 |52, 103, 215, 222] Elizabeth Deal
System Error Messages Malvern, Pennsylvania

By changing the “Error message link” at $0300-$0301 to point to your own
routine, you can change the behaviour of the operating system when it prints
messages, including “READY.”. Your code should jump to the normal error
handling routine after it’s finished (normally $E38B). The type of error is
indicated by the X register; the value $80 (128 decimal) indicates no error, and
causes “READY.” to be printed.

With that brief explanation, I'll present a few useful applications that were sent
in by Elizabeth Deal from Malvern, PA.

1) If you're tired of seeing ?SYNTAX ERROR you can get rid of the insults: using
SUPERMON (or a similar machine language monitor), change the vector at
$0300-0301 to point to your code:

YOURCODE LDX #$80 ;code for no error
JMP (SAVEDVEC) ;back to operating system
SAVEDVEC ... ;here goes whatever was previously

at $0300/0301 (normally $8b, $e3)
This will suppress all error messages, but still print READY.

2) A slightly more useful thing might be to print all messages at the top of the
screen (second line, actually) to prevent scrolling:

YOURCODE TXA ;x holds error #

BMI QUT :NO error

LDA #$13 ;:ascii code for "home"

JSR $FFD2 ;print it
ouT JMP (SAVEDVEC) ;remainder of error handling
SAVEDVEC . .. as above

3) Selective handling of errors can be useful. In graphic situations it is
particularly annoying to get a ?FILE NOT FOUND ERROR (#4) as well as a
flashing disk light. The light is enough, let’s get rid of the error message:

Tha Trancantar RAnl ~f Rite AnA Diam~ac #1 1722

YOURCODE CPX #4 :coffe ggr MV V\érQrO m Mo do FE Ca

BNEOUT ;coftiftue iFGthéIErksPrint Without Pe
LDX #$80 :fake no error

ouT JMP (SAVEDVEC)

SAVEDVEC ... as above

4) you can suppress printing “READY.” to avoid messing up the screen. We
won't need to save the existing vector here.

YOURCODE TXA

BMI OUT ;NO error

JMP $A43A :normal error with "READY."
ouT JMP $A478B ;skip printing " READY."

A combination of points 3 and 4 could be useful, and the latter point could be
modified so that “READY.” is only suppressed in certain circumstances.

There is one drawback to suppressing “READY.”: any action that doesn’t send
a final linefeed, such as LIST, will finish with the cursor one line too high.
Small price to pay!

5) This is just a scratch of the surface. The C64 is a programmer’s delight, but it
can be a nightmare if the housekeeping isn’t good. Intercepting the error
routine to clean up house (switch out of high-resolution mode, bring back
BASIC, restore normal pointers, kill the sprites and so on) permits
nightmare-avoidance. Other uses are possible, though I haven’t tried them
- for instance, how would you like to POKE (address),-40 ? It’s a pain to
figure out the two’s complement value of -40 to feed to some machine
language program; using the error vector might help in that one.

Note to Liz: Your hunch was right - we do like this sort of thing.

C64 RESTORE Key Checking {13,113, 128, 143, 158, 164]

In last issue’s Bits & Pieces, there was a little interrupt-driven machine
language program which performed a subroutine whenever a given key was
pressed. Well, if you want to use the RESTORE key on the 64, there’s an easier
way, and it's better: you don’t have to change the IRQ vector, so it will work
even with IRQ-driven programs.

The RESTORE key is unlike any other key on the keyboard. There is no
memory location which can be read to indicate whether or not RESTORE is
depressed. Rather, the RESTORE key is connected directly to hardware
circuitry which generates an NMI whenever the key is struck sharply (a slow,
gentle push won't do the trick).

134 The Transactor Book of Rits and Pieces #1

An NMI, or Non-Maskable Interruptff ggloMikeAMIQ@QRS P REGAES

except that it can’t be disabled by softwase. Wieéty AN bectrs) thed jliipsssion

to the location pointed to by the vector at $0318 and $0319 (792 and 793
decimal) - this vector normally points to $FE47. On the 64, NMlIs are used for
two purposes: The RESTORE key (to warm-start if the RUNSTOP key is also
held down), and for the RS-232 software (an NMI is generated when a
character is received on the RS-232 port). The RS-232 routines don’t affect
detection of the RESTORE key, though. By changing the vector at $0318/9, we
can point to our own routine. If this routine transfers control to the usual NMI
routine at $FE47 after it’s finished, then the interrupt will finish normally and
execution will continue from the point where the interrupt occurred.

Detecting the key is incredibly simple. First the NMI vector must be changed to
point at our routine. Suppose the routine lives in the cassette buffer, at $033C.
The vector could be set up from BASIC like this:

POKE 792,60: rem+* set nmi low byte to $3c¢ *
POKE 793,3 :rem+ . .. high byte to $03 =«

The code at $033C would perform some action, say, set up certain border and
background colours, then JMP to $FE47:

033C:A9 00 LDA #0 ;black

033E:8D 21 DO STA $D021 ;background
0341: A9 OB LDA #11 ;dark grey

0343: 8D 20 D0 STA $D020 ;border

0346: 4C 47 FE JMP $FE47 ;normal nmi entry

That’s all there is to it. Now, whenever the RESTORE key is struck, the colours
will be set up. The normal operation of RESTORE is not hindered, since the
normal NMI-handler routine at $FEA7 will perform a warm start if the
RUNSTOP key is depressed.

A Questionable Prompt [159, 207]

Ok, we all know that BASIC’s INPUT statement does us favours and displays a
question mark as a prompt, free of charge. Well, sometimes the question mark
is totally out of place, since the prompt message isn't a question at all, like:
PLEASE ENTER YOUR NAME? -looks a bit silly, doesn't it? To kill the question
mark on any machine, without using POKEs or anything machine-specific,
open a file to the keyboard (device number 0) as follows:

100 open 1,0: rem* open file to keyboard *

110 print" Please enter your name: " ;: input#1,name$
120 close 1

The Traancnrtor Ranle nf Rite nnA Piarac #1 12R

Besides kitling the question mark, using INPU'LmWM Q)@, rﬂ&@@r@@ O re Ca

carriage return after entry, so that a message ¢otild belpririted 6 Big'sattie line e
as the prompt. Furthermore, you can reject null entry elegantly by adding the
line:

115ifa$=""then 110
This makes the prompt seem to ignore a carriage return without text.

While on the subject of opening keyboard files, it should be noted that the real
advantage lies in full-screen editing capability. Instead of entering a string in
response to the prompt, you can simply move the cursor to any screen line
and press RETURN, reading the contents of that line into the INPUT variable.
A good application would be user-entry of multiple fields, such as name,
address, etc. The user could cursor around to his heart’s content, editing the
fields to his satisfaction before pressing RETURN over correct fields. The
program would read the fields one at a time, and could exit the INPUT loop
when a special end string is received, for example, “EXIT”.

Fast BASIC HI-RES Point Plot {133, 175)

Here’s a short BASIC subroutine which will plot a point on a bit mapped
screen. The variable ‘B’ must be set to point to the beginning of bit mapped
screen memory (normally 8192), and the array ‘E(’ must be initialized with:

FOR =0 TO 7:E(l) = 28(7-I):NEXT |

1000 rem= plot a point *

1010 I=b + (yand248)+40 + (yand7) + (xand504)
1020 poke |,peek(l)or e(xand7)

1030 return

Fast HI-RES Screen Clear [144]

Clearing the bit mapped screen with POKEs from BASIC can be maddeningly
slow. Here’s a machine language program to zero 8192 bytes anywhere in
memory. It's 16 bytes long and fully relocatable. The following BASIC program
puts the machine language into memory and executes it, clearing the bit
mapped screen at 8192 ($2000 in hexadecimal).

124 Tha Tranerntar RAnL Af Rite ~nA Dinroc #1

10 rem= clear hi-res scrgenWWW Commodore Ca

20 data 162, 32, 160w 0,152, Ma572810200!hout Pe
208, 251, 230, 252, 202, 208, 246, 96

30 rem=* load ml prog into memory *

40 for i=0to 15: read a: poke828 +i,a: next

50 poke251,0: poke252,32: rem+ start address *

60 sys828: rem= execute clear routine *

Decimal to Hex Conversion Table {96, 116, 145, 191, 207] Brian Dobbs

Before you breath a dec-to-hex-programs-have-been-done-to-death sigh,
please note: this one produces a neat looking table on a printer, for future
reference. Even if you already have such a table, running this program will
save you a run to your nearest photocopy machine if you need extra copies. As
the program stands, it goes from zero to 255, but the top limit can be changed
in line 130.

100 rem decimal to hex conversion table

110 rem by brian dobbs-timmins, ontario

120

130 max = 255: rem= highest value in table

140 open4 4,1: x=0:y=1: k§="--—-"

150 print#4,spc(25) " decimal to hex conversion table "

160 :

170 rem— main printing loop —

180 d =x: gosub280: rem=* convert to hex *

190 if x>9 thenk$="--"

200 if x>99 then k$="-"

210 print#4,tab(5);x;k$;h$;

220 x=x+1:y=y+1:ify=6theny=1: print#4

230 if x<=max goto180

240 print#4: close4: end

250 rem— end loop —

260 :

270 rem xconvert dec to hex subroutine*

280h$="":d=d/4096: fori=1to 4. d%=d
:h$=h$ + chr$(48 + d%-(d%>9)*7): d = 16+(d-d%): next

290 return

The Trynerr~tor Rank nf Rite AanA Diarac #1 127

n

Large Characters on VICor 64 [115,178] & WWW Commodore Ca

t Without Pe

May Not | rn
The ROM character generator is accessible to BASIC on the VlC and 64. By
PEEKing into the character generator ROM, you can duplicate the shape of all
512 characters in magnified form (8 times larger). The following program asks
for the desired character set, and the character to be printed. It uses the
subroutine starting at line 330 to print a large image of the character, using

asterisks as pixels. The available character sets are:

Char Set Description
0 upper case/graphics
1 upper/lower case
2 reverse upper/graphics
3 reverse upper/lower

For the VIC version, change line 160 as indicated and delete lines 350, 370,
and 440 to end. The 64 version needs extra code because its character ROM is
hidden under 1/0, and it must be expressly switched in and out. Unfortu-
nately, switching out the [/0 will crash the machine unless the interrupts are
disabled, so that must be done as well. Subroutines handle the ROM switch-
ing.

T OO rEIT* * % % s sk 3 s sk e ok s s ok ok ok ok o ok ok ok ok
110 rem= print large characters +*
120 rem= transactor magazine *
130 rem=* written sep'84 -cz *
140 rEITY* * % % %k ok o sk ok ok ko ok sk e ok ok
150 :

160 crom = 13+4096: rem 84096 for vic
170 for i =0to7:e(i) = 24(7-i):next i
180:

190 print chr$(147)

200 for loop=0to 1 step 0

210 : input” character set (0-3) " ;set
220 : input” character” ;c$
230 : print chr$(147)c$

240 : cp =peek(peek(648)*256)*8
245 : rem 1st screen loc gives char #
250 : rom=crom + set*1024 + cp
260 : print

270 : gosub 330: rem+* printimage *
280 : print

290 next loop

300:

310:

320 -subroutines:

138 The Transactor Book of Bits and Pieces #1

510N

330 rem~ translateffogLimaige/+V . C O m m odore.ca

340fori=0to7 May Not Reprint Without Permiss

350 gosub 460 ‘+ char rom in

360 line =peek(rom +)

370 gosub 540 ‘* i/oin
380forj=0to7

390 disp = 1:ifline and e(j) then disp=2
400 rem=* space for 0, '+’ for 1 *

410 print mid$(" *" disp,1);

420 next j:print:next i

430 return

450 :

460 rem= switch char rom in *

470 poke 56334,peek(56334)and 254
480 rem= turn interrupts off *

490 pokel,peek(1)and 251

500 rem=* enable character set rom *
510 return

530:

540 rem* re—enable i/o *

550 poke 1,peek(1)or 4

560 rem+ turn interrupts on *

570 poke 56334,peek(56334)or 1
580 rem+ switch in i/o *

590 return

Tho Trrnenrtnar Ranlk ~f Rite nnA PDinrac #1

120

on

www.Commodore.ca
May Not Reprint Without Permission

Volume 5, lssue Oﬁnmodore ca

Mc o orint Without Perr n

C64 IRQ Reset [11]

You know the problem: you want to disconnect an IRQ-driven program, but a
RESTORE will also reset other things like your screen and border colours.
Here's an easy way to set the IRQ vector back to its normal entry point of
$EA31:

poke 781,12 sys 64701

or in assembler: Idx #12
jsr $fcbd

80 Column Right-Justify [200]

The ultimate one-liner: when there’s a bunch of stuff on the screen of your
8032, enter this:

fori=1to 80: ?““;: forj=1to 24: ?“": nextj,i
(The reverse n is an insert). 8000 Series PET/CBM owners. . . try starting

the line with:
poke 213, 159

Quick Note: when using the non-relocating load as in:
load " file " ,8,1

you can use any non-zero value instead of 1, so you can use “,8,8” to
make typing it in a little easier.
C64 Zero Page View [94]
On the PETs, a good way to get a look at what's going on in zero page was to
run an interrupt-driven routine which would continously display the contents
of zero page on the screen. Well, on the 64, there’s an easier way:

poke 53272,7 (,23 to get back to normal)
This tells the VIC-II video chip to find screen memory at $0000, giving you a
dynamic view of what'’s going on there. If you have V2 ROMs, you’ll have to fill

colour memory with something other than background colour to see it, or use
the ROM change method below.

The Transactor Book of Bits and Pieces #1 141

C64 V2 ROM Colour Memory Fix (27, 85 Z W WW., C O mmodo re ca
May Not rint Without Permis n

If you have a C64, try this: clear the screen, move the cursor down a line or

two, then type:

poke 1024, 0

Ifyou see an ‘@’ on the top left of the screen, then you have ROM versions 1 or
3. Consider yourself lucky; you can freely POKE to screen memory and see the
results of your efforts. If you don’t see the ‘@’, then you have ROM version 2.
With this ROM, the kernal routine which clears a screen line ‘cleverly’ fills the
corresponding colour memory with the background colour. Since background
equals foreground the result is a truly clear screen. Furthermore, if you've ever
run a program for the 64 or typed in a little screen blitz from a magazine that
didn’t work, it could be because the author wrote it on a V1 or V3 machine and
assumed it would work on any 64.

The solution? If you're willing to forsake the RAM underlying the kernal ROM
for this cause, you can correct the foolish behaviour by changing just two
bytes. First copy the BASIC and Kernal ROM into the underlying RAM. If you
have a Machine Language Monitor with a ‘Transfer’ command (like Supermon
or Micromon), this can be done with these two operations:

t a000 bfff a000
t e000 f f{fe000

This transfers the contents of the 8K BASIC ROM and the 8K Kernal ROM into
RAM. But it gets it from ROM. . . why does it not try to put it back in ROM?
Because the 64 knows you can't possibly mean that thanks to a chip called a
FPLA (Field Programmable Logic Array). This redirects data flow to a logical
destination that has been preset by the engineers. And yes, it’s fast!

Next switch out the ROM and switch in the RAM by putting a 53 decimal into
the bank select register (location 1):

BASIC: poket, 53
Monitor: : 0001 35

Now, at $E4DA, there is the instruction:

LDA $D021
Change this to: LDA $0286
like this: :e4db 86 02

($0286 holds the current cursor colour)

142 The Transactor Book of Bits and Pieces #1

The kernal will be living out of RAM fyfn HOWWW POREING TG GidS@(E'eﬁ Ca

will always yield visible characters. Seegas like alatiof Wepkifor justpokifgrtols

the screen, especially when you could have merely changed the background
colour. But there was another reason for this excercise (of course).

Now that you have all of your 64 operating from RAM, anything can be
changed. The spelling of keywords and error messages are fun to modify, but
more importantly the ROM routines can be altered. JMP instructions can be
re-routed or entire routines can be substituted. Most common is the “BRK
instruction insert” for examining the state of the machine at any particular
point in a routine. With your favourite dissassembler you simply change the
first instruction beyond the last instruction you want executed to a BRK ($00).
Now when you cause that particular stretch of code to execute it will stop at the
BRK and you can peer around awhile.

Logically you should be able to replace the BRK with the instruction you wiped
out and continue executing. Some routines will allow such interruptions but
others aren’t so tolerant. Most likely you'll need to replace the BRK and start
over (perhaps with a BRK somewhere eise?).

SYScreeching Off Into Oblivion

On any BASIC 4.0 machine, you can easily enter the monitor with SYS4, right?
Well, try it with a quote after the 4 like:

SYs4*’
What happened? We won't spoil it by giving it away — look up the purpose of
location 4 to figure it out.
Disabling RESTORE On C64 88, 106, 107, 134, 164]

If you don’t want someone crashing out of your program with the RUNSTOP/
RESTORE sequence, here’s an easy way to disable it:

poke 792, 193 (,71 gets back to normal)

The disable POKE pretty much renders the NMI routine impotent, so RS-232
operations won't work while it’s in effect.

Quick Note: 255-x = 256 +not(x)

The Transactor Book of Bits and Pieces #1 143

n

Fast Hi-Res Screen Clear From BASIC [13«0 1WWW Commodore Ca

May Not | rint Without Pe

Last issue’s Bits & Pieces gave a little machine language routme to quickly
clear bit-mapped memory. Since then Nick Sullivan from TPUG magazine
showed us this neat trick to accomplish the same thing from BASIC. If you
create a large array and then CLR it, BASIC will zero out anything in its path,
including hi-res screen memory if it happens to be in the way. If you have a
hi-res screen within the limits of BASIC variable space, just put this line at the
beginning of your program:

clr: f=fre(0):dim a((-65536+(f<0) +)/5~10): clr
That's it! Within a second, the screen will clear. You can't use this trick if your
screen memory is at $C000, but at the usual spot at $2000, and with BASIC
pointers set up normally, it works like a charm.

In Search Of. . . The Perfect Colour Combination (28, 33,99, 108, 111, 128]

Looking for the perfect background/border/character colours for program-
ming on the C64 with a 1701/1702 monitor? Try this:

poke 53281,0 : poke 53280,11 (press Commodore-2)

For the VIC:
poke 36879,9 (press CTRL-8)

Adjusting the bright/contrast controls to look good with this combination
results in an easy-to-look-at screen for hours of programming without fried
retinas.

Quick Note: If processing time is critical, you can speed up the CPU
by turning off the VIC-II video chip in the c64:

poke 53265,peek(53265) and 239.

Put Mental Notes on Disk (or Tape)! [109, 126, 141, 164]

Ever compose your thoughts idly on the screen of your computer? Or draw a
neat picture using graphics symbols while idly talking on the phone? Want to
save the screen to disk or tape to bring it in again later? Enough questions,
here’s what to do. Last issue’s Bits & Pieces gave a method to save a range of
memory. To save the screen (at $0400 on the C64):

144 The Transactor Book of Bits and Pieces #1

510N

sys57812" filename " 8: poke §83D: ,www mﬂam@:dore ca

poke175,7: sys62954 1y nt Without Pe
(use *,1,1’ for tape)

Of course, that'll mess up a bit of the screen: that’s the catch. To bring back
your screen, just LOAD it any time with:

load " filename " 8,1 orload" flename",1,1 for tape
With a BASIC 4.0 machine, just use the monitor to save the screen:

sys4
s"filename " ,08,8000,83e7
(,8000,87cf for 80 column machines)

Unfortunately you can’t save memory above $8000 to tape. Pardon me. . . you
can save it to tape, you just can’t LOAD it back. Commodore never expected
anyone to require memory above $8000 to be saved so they used the high bit
of the address for something else. In the VIC or 64 this anomaly has been dealt
with and whatever that bit does is now separated into its own byte.

Assembler Programming Tip [150]

Branch instructions like BNE, BEQ, BPL, etc. can be a pain when your
program grows and the branch can’t reach the intended destination any more
- the assembler gives a “BRANCH OUT OF RANGE” error. You can get around
this problem by branching to a JMP somewhere, but for a short easy way to do
long branches, consider this:

intended branch : BNE SOMPLC
easy long branch: BEQ * + 5: JMP SOMPLC

This leaves the intent of the branch clear, and doesn'’t force you to define a
meaningless label somewhere.

One Line Decimal to Binary Conversion (g6, 137, 163, 191, 207]
Store the value (0-255) to be converted in ‘x’, then:

z$="":forj=0to 7: k=x/2: x=int(k): z$ = mid$(str$(k<>x),2) + z$
: nextj: printz$

The Traineri~tar Rnnle nf Rite nnd Diarac #1 14R

The Bleeper [82,91, 111, 208] 4 WWW Commodore ca

May Not | rint Without Perr

This little noisemaker runs on any PET with CB2 sound:

10 poke59467,16: for a=1 to 255: poke59466,a:
for b=1 to 255 step a: poke59464,b: nextb,a
20 print chr$(7)

40 Column Wordpro Dump [221]

Here’s a small program that will print out a Wordpro-format text file to the
screen. It will work with Paperclip, but there will be a few bytes of garbage
printed at the beginning as Paperclip stores extra information at the start of its
files.

10 rem= print a wordpro file to screen

20 rem=* 40 column version for 4032/c64
100 input” filename " ;f$

110 0pen1,8,0,"0:" +1$

120b=1984

130 rem b =33728 for 4032

150 cc= peek 646). c= 54272 rems# onI for 64
160 print " ERERERERE aoanoaaeaca
165 rem 25 cursor downs

170 get#1,a$,a$

175 rem- main loop -

180 fori=btob+39

190 get#1,a$: poke i,asc(a$ + chr$(0))

210 poke ¢ +i,cc: rem=* only for 64

220 if st then 250

230 next i: print: goto180

240

250 close1:end

Regain {162, 182] Lenard Painchaud

5 rem= restore pgm after reset or new *

10 ad=49152: fori=0to 21

20 read d: poke ad +i,d: nexti

30data169, 8,141, 2, 8, 32, 51,165, 24
40 data 165, 34,105, 2,133, 45,165, 35

50 data 105, 0,133, 46, 96

60 print" to execute this program, use: "

70 print” sys";ad;":clr”

146 The Transactor Book of Bits and Pieces #1

n

Lenard writes: “It comes in handy whens pWM&&@HM@Qﬁ@@ Ca

your cursor back. Before you can use this p! program Nioweveryol{ ifeed ‘alteseat!ss
switch. When you turn on your computer, load and run the Regain program.
Now, when the computer crashes, press the reset switch. That doesn’t do the
trick though. You then have to type sys 49152. Now you will have your
program back. You can change the memory location where the ML program is
stored by changing the value of AD in line 10.”

Note: To reset your computer, you have to momentarily ground pins 3 on the
user port — pin 1 is a ground. Connecting a push button across pins 1 and 3
makes a good reset switch - It can save your program’s life! The above
program will also bring back a program after a NEW.

Warm Start (113,134, 158, 164] Nick Barrowman
Border Flasher St. John’s, NFLD.

Nick writes: “This small routine doesn’t serve any practical purpose but it is
an example of how you can use the main basic program loop vector in the C64
(warm start link at $0302). A more practical purpose is auto-run routines. This
routine will change the colour of the screen border whenever <return> is
pressed (from BASIC) or when a break or restore is performed. Hope you like
it!”

10 for a=49152 to 49169: readb: pokea,b: c=c + b: nexta

20 if c<>1779 then print " checksum error! " : stop

30 sys49152

40 print" basic warm start flasher activated "

50data169, 11,141, 2, 3,169,6192,141, 3

60data 3, 96,238, 32,208, 76,131,164, O

Double Width |6, 125, 188, 195] Brian Dobbs
Directory Printout Timmins, Ont.

The following little program will give you a disk directory in two columns,
useful for printing out and putting in the disk sleeve. If sending the directory to
the screen, it will appear as a normal directory on a 40 column screen, and
double width on an 80 column screen.

100 rem==* directory double width ==

110 rem»*+ by brian dobbs **

120 rem#** timmins, ontario **

130 k=4: rem= k=23 for screen, 4 for printer *
135r=1: open k,k

140 dr=0: rem= directory drive zero *

150 gosub 220: rem= directory subroutine

The Traansactor Rook of Rits and Pieces #1 147

160 close3 g Www. Commodore ca

A t

170 input " another (y/n)" ;an$. May Not Reprint Without Perr

180 if an$<>"y "then end

190 print” insert another disk, press any key "

200 geta$: if a$<>" " then 200

210 goto130

220 n$ =chr$(0): h=256: open1,8,0,"$" +mid$(str$(dr),2)
230 get#1,a$,a$

240 get#1,a$,a$,a$,a1$: if st then 290

250 d =asc(a$ + n$) + asc(al$ + n$)+h: print#k,.d;
260 get#1,a$: if a$<>" " thenprint#k,a$;: goto260
270 r=r+1:ifr=2 then r=0: print#k: goto240
280 d$ = str$(d): print#k,tab(40);: goto240

290 closet

300 return

C64 Easy Disk Status [66] John Currie, Mississauga Ont.

This tidy little routine sits in the cassette buffer at 828, and will display the
current disk error status when executed. It’s very handy, since the C64 has no
built-in disk status function.

100 rem basic loader for disk status

110 a=828

120 read b: c=c+b: if b=256 then 140

130 poke a,b: a=a+1: goto120

140 if c<>8574 then print " error in data statements " : end
150 print” 'sys 828’ returns the current disk status "
160 data 169, 0, 32, 189, 255, 169, 15, 162
170data 8,160, 15, 32,186,255, 32,192
180 data 255, 162, 15, 32,198,255,169, O
190 data 141, 19, 3, 32,228, 255,172, 19
200 data 3,238, 19, 3,153,127, 3,201
210 data 13, 208, 240, 32,204, 255,169, 15
220 data 32, 195, 255,160, 0,185,127, 3
230 data 170, 200, 32, 210, 255,224, 13, 208
240 data 244, 96, 0,256

Bounce 8032 [196]
Here's another one of those useless little special effects. For some reason
though, this one can hold your attention for hours (well, minutes maybe). It

only runs on 8032’s, since it uses the scroll down feature unique to that
machine.

148 Tha Tresnsortor Rook of Rite and Piaras #1

n

5sp=32768: forj=0to 1 step 0: ¢= 1§3W264=ch pmmodore.ca

Filename Extensions With SHIFTed SPACE [1s2,224]

Filename extensions such as .SEQ, .ASM, .OBJ, etc. are useful to indicate file
types, but some programmers prefer to use a shifted space instead of a period
in the filename. Such a file will be listed in the directory with the extension
OUTSIDE the quotes around the filename. To load the file back in, you can
specify the filename without the extension, or specify the entire filename
(including the shifted space) if greater uniqueness is required. You can also use
this method to make “notes” about a file — the note will show up in the
directory but need not be entered to load the file in.

Easy Screen Print [91]

A powerful and little-used feature of Commodore BASIC is the ability to use a
screen file for INPUT. If you open a screen file and then GET or INPUT from
that file, you will read characters directly from the screen starting at the cursor
position, and advance the cursor to the next character or INPUT field.

There are all kinds of uses for screen input, but a good application is to convert
screen memory character codes to their CBM ASCII equivalents. Such conver-
sions are necessary when printing all text on the screen to a printer. The
following line of code will dump an 8032’s screen to a Commodore printer
with an 80 column margin width.

1 open3,3: opend 4: print"" ;ifori=11to 80: get#3,a$
: print#4,a%;: next: close3: close4

For 40 column machines or a printer set for column widths greater than 80,
use this version — it prints a carriage return every 40 characters:

1 open3,3: opend,4: printchr$(19);: fori=1to 24
2 for j= 110 40: get#3,a$: print#4,a$;: next j: print#4," ": nexti
: close3: close4

Phone Speller
Some telephone numbers are most easily remembered by the letters on the
dial. For example, you can get information on 1985 Volkswagens by calling 1-

800-85-VOLKS. Wouldn't it be nice to give your friends a similarly catchy way
to remember your number? The following program (it works on any machine)

The Transactor Rnonk rf Rite nnd Piaroc #1 140

gives all letter combinations from any phoiie ngmM—:lr\(YeW MQMQQQ re. Ca

associated letters, so 0 or 1 appears). There afe®, 187" ‘ComBitiations for'd 7 dig
number, so be prepared for a long list. And even if there are no pronounceable
words in the list, you can invent acronymns. What better way to spend an
afternoon than to find phrases to fit 2,187 acronyms?

100 rem=* phone speller *

110rem* decB84/cz =

120 :

130 open1,3 :rem 1,4 for printer

1401$ = " 00011 1abcdefghijklmnoprstuvwxy "

150 :

160 input” phone number " ;pn$

170 n=len(pn$)

180 dim p(n), n$(n)

190:

200fori=1ton

210 n$(i) = mid$(1$, val(mid$(pn$,i,1)}*+3 + 1 ,3):p()) = 1

220 next |

230 rem= n$ holds letter groups for each digit in number *

240

250fori=1to3tn

260 print#1,i,

270 for c=1 to n: print#1,mid$(n$(c),p(c),1);: next ¢
: print#1,chr$(13);

280 carry=1

290forj=1ton

300 p(j) =(p(j) + carry): carry=0

310 if p(j)>3 then carry = 1:p(j) =1

320 next j,i

Assembler Programming Tip #2 [145]

If you've ever looked through someone’s machine language program and
come across a seemingly useless BIT instruction (eg. BIT $FFA2), or an
inexplicable .BYTE $2C, there is a method to his madness.

The BIT instruction doesn’t do any harm to memory or CPU registers, it just
sets the zero, minus, and overflow flags based on the contents of the given
memory location. In some instances, BIT is used almost like a NOP, but with
one major difference: the two operand bytes used to specify the memory
location are part of the instruction, and so are not executed as instructions if
the BIT is executed. If the first byte of the instruction ($2C) is skipped however,
you can execute a 2-byte instruction. For example, consider the following
assembler code:

180 Tha Trexnenntar Ranls ~f Rite anA Diarac #1

ENTRY1 (ByTE\$b0/ W. Commodore ca

't Without Pe

ENTRY2 DX #$PF Nc

If a program were to execute the code starting at ENTRY1, the CPU would see a
$2C which is a BIT instruction, and interpret the next two bytes (the LDX
instruction) as the argument for the BIT — in this case, the CPU would see:

BIT $FFA2

If the $2C was skipped over and instructions were executed from ENTRYZ2, the
CPU sees the bytes $A2, $FF and interprets the LDX #$FF instruction
normally.

Using the above technique allows you to enter a routine with the X register
intact, and later enter the routine one byte past the start and have the register
changed to something else before the routine does its thing. Of course, any
register may be used instead, or any 1 or 2 byte op code can be executed after
the $2C.

The technique is explained here in case you come across it in someone else’s
program, since it'’s a fairly widely used and accepted 6502 programing
practice. Generally though, programmers who use tricks like this enjoy writing
obscure code to save a byte or two of memory, and don't care if anyone else
can look at the program and understand it. Many programs, including those
printed in the Transactor, are designed to be easily read by people, not
computers, and should keep away from such brain—-twisting exercises. But
giving such advice to a hacker is about as effective as advising a kid not to step
in puddles on his way home from school.

1541/4040 Write Incompatibility Bug (24]

When the 1541 single disk drive arrived, so did a new buzz word: “write-
compatible”. At first it seemed that diskettes were completely portable be-
tween 4040 and 1541 drives. Then reports of some nasty disk failures started
circulating. Here’s why.

Every sector on a disk starts with a “synchronizing character”, a Header block,
another sync character, and then the data stored in that sector. “Physically” it
looks something like:

{....=sync HHH=Header DDD=Data)

Tha Trnaneni~tnr Rnnle nf Rite nnA Diarac #1 181

510N

Notice how the second sync on a 1541 disk is shorter than on the 4040. Now
you take a 4040 disk and write on it with a 1541, It becomes:

But that's OK - the 1541 and the 4040 can still cope. There is still enough of
the sync and the data block is still the same “length”. However, go back to the
4040 and write to the same sector and:

Blammo! The data block starts with residue data from the 1541 write to the
second sync character. The data block is now “too long” and the disk returns
Read Error 23: Checksum Error in Data Block

Apparently new 1541’s (as of July 84) have been modified to allow write
compatibility between all 1541 and 4040 diskettes.

Auto Keywords For The VIC, C64, PET, and CBM [141]

Today we have the contender for the ‘two liner’ of the year contest. This
machine language monster consumes less than the equivalent of two lines of
BASIC. It sits in the cassette buffer and will reconfigure every (shifted) letter on
your keyboard to produce a keyword. It’s IRQ driven, but retains the old IRQ to
jump through at the end, so if IRQ driven code is already installed, this
program won't bother it. The code also operates in direct mode only, which
most can appreciate if INPUT statements are used in your program. And, if it
comes down to it, the “\” key on the PET/CBM or the (shifted) pound symbol
on the C64/VIC will reset the original IRQ and kill the routine.

Now, considering that there are only 26 letters on the keyboard, how are all
the keywords accessed? With the VIC and C64 we have 76 keywords in total,
and with the PET/CBM models with BASIC 4.0 we have 91. To battle this
problem, a memory location within the routine can be altered to supply you
with every keyword. This location defines a “window” over the total set of
keywords. You can'’t get access to all the keywords simultaneously, but you
can move the 26 keyword window over any part of the command set (ie. the
part you use most). Check out any list of keywords for your optimal window.

As shown, the program will give you the first 26 keywords. Since the first
keyword is “END”, a shifted-A will print “END”. Vary location 683 from 128 to

182 Tha Tranerntar RAanl ~F Rite ~nl Dim~n~e 441

193 for the PET/CBM, or location 8824f0mr 143/16/198. Gﬂﬂam ﬁﬁj@ﬁ e ca

Lower values will move the window ovesthe error medsagesiint Without Permission

Note For PET/CBM Users: Reset IRQ before LOADing from disk, then sys(634)
to start again. The C64 and VIC do not have this bug, but the PETs sure do. The
machine will hang until the STOP key is pressed if any IRQ driven wonder is
present during a LOAD.

10 rem save " 0:keyword pet.bas” ,8

100 rem ** rte/84 - auto keyword for the pet/cbm
110 for j=634 to 774: read x: poke j,x: ch =ch + x: next
120 if ch<>17758 then print” checksum error " : end
130 print " sys(634): rem ** to enable " : end

140 data 165, 145, 201, 2,240, 20, 165, 144
150 data 141, 5, 3,165,145,141, 6, 3
160 data 120, 169, 149, 133, 144, 169, 2,133
170 data 145, 88, 96, 165, 55, 201, 255, 208
180 data 90, 165,217, 201, 92,240, 87, 201
190 data 193, 48, 80,201,219, 16, 76, 56
200 data 233, 193, 170, 169, 27, 32,210, 255
210data 169, 157, 32, 210, 255, 169, 178, 133
220 data 87,169, 176, 133, 88,160, 0,132
230data 89,224, 0,240, 21,177, 87, 24
240 data 42,176, 8, 200, 208, 247, 230, 88
250data 76,199, 2,200,230, 89,228, 89
260 data 208, 235, 177, 87,133, 90, 36, 90
270data 48, 11, 32,210, 255, 200, 208, 242
280 data 230, 88, 76,220, 2, 56,233,128
290data 32,210,255,108, 5, 3,173, 5
300data 3,133,144,173, 6, 3,133,145
310data108, 5, 3, 0, O

10 rem save " 0:keyword c64.bas " ,8

100 rem ** rte/84 - auto keyword for the commodore 64
110 for | =828 to 370: read x: poke j,x: ch =ch + x: next
120 if ch<>17162 then print " checksum error " : end
130 print " sys(828): rem ** to enable " : end

140data 173, 21, 3,201, 3,240, 24,173

180 data 20, 3,141,201, 3,173, 21, 3

160 data 141,202, 3,120,169, 92,141, 20
170data 3,169, 3,141, 21, 3, 88, 96

180 data 165, 58, 201, 255, 208, 85, 165, 215

190 data 201, 169, 240, 82,201, 193, 48, 75

200 data 201, 219, 16, 71, 56,233, 193, 170
210data 169, 20, 32,210, 255, 169, 158, 133

220 data 87, 169, 160, 133, 88,160, 0,132

The Transactor Book of Rits and Piecas #1 182

230 data 89,224, 0,240,424 17V Ve .eOomMmodore. ca

thout Permissit

240data 42,176, 8,200, 208 2473280 RBrint W
250 data 76,137, 3,200,230, 89,228, 89

260 data 208, 235, 177, 87,133, 90, 36, 90
270data 48, 11, 32,210, 255, 200, 208, 242

280 data 230, 88, 76,158, 3, 56,233,128

290 data 32, 210, 255, 108,201, 3, 173, 201
300data 3,141, 20, 3,173,202, 3,141
310data 21, 3,108,201, 3, 0, O

VIC users need only make one change. The number 160 in bold becomes a
192 (Also add 32 to the checksum just for completeness).

154

The Transactor Book of Bits and Pieces #1

Volume 6; lssue/\(l:bmmodore ca

int Without Pe

VIC/64 Clear Screen Line [144]
There’s an easy way to clear any line on the screen right from BASIC:

C-64: POKE 781.line: SYS 59903
VIC-20: POKE 781 line: SYS 60045

where ‘line’ is the screen line to be cleared, in the range 0 through 24.
Move Screen Line [s5]

There’s another general ROM routine that can be easily put to good use: this
one copies 40 bytes from a specified point on the screen to the current cursor
position.

C-64: POKE 780,hi: POKE 172,lo: SYS 59848

Where lo,hi represents the beginning of screen characters to copy (o +256*hi
must be in the range 0 to 999).

For the VIC-20, use SYS 59990

While We’re Exploring ROM Routines. . .
The Memory Transfer Subroutine [126,215]

Often you may wish to move a range of memory, for example to transfer
screen or hi-res memory in or out. BASIC is too slow, but you don’t need to
write a general-purpose memory transfer routine in machine language (al-
though many of you probably have by now, anyway).

The Kernal itself has to move memory around a lot, for example when
inserting or deleting BASIC program lines, and there is a memory transfer
routine built into ROM in all machines.

Before calling the routine, there are three addresses which must be supplied:
source start, source end + 1, and destination end+ / (not start+ 1). The vital
information follows.

src start |src end + 1 |dest end + 1 |subrtn entry point
PET(2.0)| $5C $57 $55 $C2DF
CBM (4.0)] $5C $57 $55 $B357
C-64 $5F $5A $58 $A3BF
VIC-20 $5F $5A $58 $C3BF

The Transactor Book of Bits and Pieces #1 155

Cheap Video-Game Dept. g Www. C OmMmo do re.ca

May Not | rint Without Pe

RACER is the concept of John Durko of Toronto, Ont. This has got to be one
the simplest game programs around that is so much fun to play. The version
below is for BASIC 2.0/4.0 PETs (40 or 80 columns) and is only 13 lines long. If
that’s too long for you, try this slightly compressed version — you have
nothing to lose typing in 4 lines of code!

RACER for 40 or 80 column PETs: (clear screen before running)

HB | 1w=10:y=21:1=20-w/2: x=21: n=y: |=32768 + y*80
forr=1tol: fori=1to n: pokes,32

FF | 2 printtab(t)” (* "spc(w) " #)": t=t+c: s=1+x: get x$

. if peek(s)<>32 then sr=r: r=1: goto7

KH | 3 pokes,160: k= peek(151): x=x+ (k=180)-(k=182)

: ¢ =sgn(c-2*((t<5)-(t + w>40))): next

| MG | 7 n=rnd(1)*10: c=int(rnd(1)*3)-1: nextr

: print " @+ * * crash! score = " sr;sr+xy*(20-w)

Steer left and right with the 4 and 6 keys (or as indicated with VIC/64/16/ +4
versions) to stay within the track as it changes its path. The variables ‘W’ and
‘Y’ in line 1 control the width of the track and the screen line that the “car”
appears on, respectively. A narrower track makes for a more challenging
game, as does a lower screen line (greater value of ‘Y’), since you have less
time to react to changes in the track.

The “long” version of the program below prompts you for track size and car
position, providing defaults. It can also be modified to work on the C-64, VIC-
20 (joystick or keyboard), C16 or +4. In fact, this program could be made to
work on any machine that runs BASIC; all you have to know is the location
which stores the current key pressed, and where screen memory lies.

After you crash, your score is given as two values; the first value indicates the
number of “turns” that you survived, and the second is scaled to take into
account the track width and car vertical position.

Possible enhancements? Dynamically change the width of the track; change
the “speed” of the car by changing its line position from joystick or keyboard
controls; put random “obstacles” in the track which must be avoided; write it
in machine code!

One last point: if you have an 8032, you can speed up the track by setting the
top of a window on a line above the car.

184 The Traansortor Rnolk of Rite nnd Pieras #1

3[e]s]

Full-featured RACER for PETS: g Www. C OmMmo do re.ca

May Not | rint Without Pe

OE | 100rem” RACER -jd/cz
DH | 110 print" gf** use 4/6 keys for left/right *+ "
IB | 120 input” 8ftrack width (1-20) 1 "W
EA | 130 input” car position (1-23) 2 ey
BP | 140 sc=32768 +80+cy: kbd=151: If = 180: rt=182
: rem#** machine-specific **
EK | 150 b=1:e=38: tw=w+4: ti=20-tw/2: cx=20: s=sc: n=cy
NF | 160 fori=1 to n: poke s,32: printtab(tl) " (x " spc(w) " *) "
1 S=SC+CX

IJ | 170 if ti<b or tl + tw>e then inc = (tl + tw>e)—(ti<b)
CD | 180 get z$: if peek(s)<>32 then 220
DG | 190 poke s,160: k = peek(kbd): cx = cx + (k = f)—(k =rt)

LA | 200 ti=tl+inc: next: sr=sr+1

KO | 210 n=rnd(1)*10: inc = int(rnd(1)*3)-1: goto160

PK | 220 print"&*** you crashed!! +* — score: "
sr;sr+(40-tw)*cy: print” run QQO N

C64 mods:

140 sc = 1024 + 40+cy: kbd =56320: If =123: rt=119
: rem for joystick
or 140 sc=1024 + 40*cy: kbd=197: If=51: rt=0
: rem keyboard; home/del keys
165 poke s +54272,1: rem colour memory (white "car")

VIC-20 mods:

140 sc=7680 + 22+cy: kbd=37151: If=122: rt=118
: rem joystick up/down
or 140 sc=7680 + 22*cy: kbd =197: If=62: rt=7
: rem home/del keys
150b=1:e=20:tw=w+4:tI=11-tw/2: cx=11: s=8C: n=cy
165 poke s+30720,0: rem black car

C16/ +4 mods:

140 sc=3072 + 40*cy: kbd=198: If=48: rt=51
: rem= crsr left/right keys

Tha Trnec~AatAr DAanl: ~Af Dida ~mAl Diaana 41 =2

n

NEW facts (146, 162] g Www. Commodore ca

A t

May Not | rint Without Permission

Many programs, after loading some machine code and changlng BASIC
pointers to protect the top of memory, contain the following line of code:

NEW : CLR

This is dumb for two reasons:

1) The NEW command does a CLR automatically, free of charge. In fact, the
CLR routine comes directly after the NEW routine in ROM, and NEW just
falls through into CLR.

2) Any statement appearing after a NEW, even on the same line, even in direct
mode, WILL NOT BE EXECUTED. Thus, NEW:CLR, NEW:PRINT, and
NEW:SYS64738 all do the same thing: a NEW.

So even though using the command NEW:CLR doesn't do any harm to your
programs, it sure doesn’t do any good. Leave off the CLR and let’s put an end to
this custom before it's carried on to future generations.

C64 Programming Tip (113,134, 164]

It is often desirable to be able to halt a machine language program by pressing
a key. The usual approach is to use the “check stop key” routine at $FFE1 and
check the Z flag to see if the STOP key was pressed. This approach will not
work, however, with programs that disable IRQs, since the keyboard isn’t
being scanned.

Another possibility is to actually scan the keyboard for a specific key by storing
the keyboard row number (inverted) in location $DC00, and checking location
$DCO1 for the value of the desired key. The problem with this approach is that
the key must be down when the scan takes place for it to register. To make
sure that the key is detected, it would have to be scanned frequently and
possibly in several places throughout the program. That can be time-
consuming, and using the keyboard in this way also interferes with operation
of the joysticks.

A good solution involves using the RESTORE key and NMI vector. Point the
NMI vector to a routine which sets a flag (stores a nonzero value in some
memory location), then jumps to the normal destination of the NMI vector.
Whenever the RESTORE key is struck, it generates an NMI and this flag will be
set. The machine language program can check the flag and exit if it is set. That
way, no matter what the program is doing when the RESTORE key is hit, it will
eventually find out about it when it gets around to checking the flag. When the
flag is found to be set, it should be cleared (set to zero) before exiting to prepare
for future runs.

1RR Tha Tranenir~tor Rnnk nf Rite nand Pierocs #1

Defaults in INPUT Statements {35507 W WW. C O mmodo re Ca

May Not rint Without Permission

When using INPUT statements it’s nice to provide the user with a reasonable
default so that he/she can just press return in most cases. Here is a good way to
doit:

10 input” Drive number O[3 Lefts] " ;dr

After the prompt message comes three spaces, the default, followed by three
cursor-lefts. If the default is more than one character long, increase the
number of spaces and cursor-lefts accordingly.

An added bonus of this technique is that you can reject invalid entries in a very
nice way. For example:

20 if dr<0 or dr>1 then print" [8)" ;: goto10

This will simply ignore any input other than 0 or 1, without any drama.

350800 And Its Relatives [125] Elizabeth Deal, Malvern PA

The “350800 poison number” mentioned in the BITS and PIECES of the Vol 5,
Issue 5 Transactor is indeed a member of a class of neat numbers with high
byte 137 (in fixed point format). This is due to a little bug in the PET, VIC and
the C64 computers, as well as the APPLE. The bug does NOT exist in the
RADIO SHACK computers, nor in the Commodore’s B-128, Plus 4 and C-16.

Tracking the story down can be fun, and shows that the culprit is an intended
error-exit from the routine that converts numeric characters in the BASIC text
to a fixed point number. This routine is used for many things, one of them
being BASIC line number entry. If you follow the PET code (below), beginning
where it says ‘START HERE’, you'll see that when a number’s high byte
exceeds hex $19 (25 decimal) the intent is to abort. But . . . the PET code jumps
into the middle of the ON routine. Now when, and only when, your entered
number has a high byte of 137 (hex $89) we fall into the trap. We pull an item
off the stack and crash on trying to execute the code. By now, the action-
address has been mangled. In the upgrade PET, we end up in zero page, $C8
being the remaining byte on the stack. Good fun.

You can look up the details in the Butterfield’s maps - the ‘perform ON’
routine can be your starting point for disassembly. After ON comes the ‘get
fixed point number’ routine which contains the multiply-by-10 code which is
pretty long, and not reproduced here. The story ends with the call to the
CHRGET routine and the loopback. Here are two disassemblies, one from the
Upgrade PET (problems) and one from the B-128 machine (all fixed).

The Transactor Rnok of Rits nnd Piaras #1 150

Y

c853 20 78 d6 jsr $d678 " May Not Reprint Without Perr

c856 48 pha

c857 ¢9 8d cmp #$8d ;gosub token?

c859 f0 04 beq $c85f

c85b c9 89 cmp #$89 ;goto?. . .atrap into which we fall
¢85d d0 91 bne $c7f0

c85f c6 62 dec $62

c861 d0 04 bne $c867

c863 68 pla ;<— herein lies the stack problem.
c864 4c 02 c7 jmp $c702 ;dispatch command/rts

c867 20 70 00 jsr $0070

c86a 20 73 c8 jsr $c873

c86d c9 2c cmp #%2¢

c86f f0 ee beq $c85f

c871 68 pla

c872 60 rts

;———>START HERE - get fixed point number

c873 a2 00 ldx #$00

c875 86 11 stx $11

c877 86 12 stx $12

:big loop — do while characters are numeric

c879 b0 17 bcs $c872 ;all done - exit

c87b e9 2f sbc #%2f

c87d 85 03 sta $03

c87f a5 12 lda $12

c881 85 if sta $if

c883 9 19 cmp #3$19 is the number over 639997
c885 b0 d4 bcs $c85b ;yup. .. getout (into the trap!) *#
c887 a5 11 lda $11

;... etc — multiply by 10 routine

c8a7 20 70 00 jsr $0070 ;chrget - from basic text
c8aa 4c 79 c8 jmp $c879 ;andloop back

Here we have the same thinking, but this time in the B-128. An identical code
is in the Plus 4 machine, see Butterfield’s Plus 4 map in vol.5, issue 5. It's clear
as daylight that the problem has been fixed. Entering a BASIC line: 350800
print " what'’s the point? " just blows off to SYNTAX ERROR. If you follow this
disassembly, you'll see the little fix:

;perform ON
f8d2b 20 d6 b4 jsr $b4d6
f8d2e 48 pha

f8d2f c9 8d cmp #$8d ;gosub?

1AM Tha Trancrntar Ranl ~f Rite nnA Diarace #1

n

f8d31 f0 07 beq $8d3f & WWW Commodore ca

t

f8d33 c9 89 cmp #$89 WgotdHY rint Without Pe
f8d35 f0 03 beq $8d3a

f8d37 4c 4f 97 jmp $974f ;nope...goto Syntax Error
8d3a c6 75 dec $75 yes

f8d3c d0 04 bne $8d42

f8d3e 68 pla

f8d3f 4c aa 87 jmp $87aa

f8d42 20 26 ba jsr $ba26
f8d45 20 4e 8d jsr $8d4e
f8d48 c9 2c¢ cmp #%2c
f8d4a 10 ee beq $8d3a
f8d4c 68 pla
8d4d 60 rts

;START HERE - get fixed point number
f8d4e a2 00 ldx #$00
f8d50 86 1b stx $1b
8d52 86 1c stx $1c

;big loop — while characters are numbers

f8d54 b0 f7 bcs $8d4d ;normal exit, not a number
8d56 e9 2f sbc #%$2f

f8d58 85 Oc sta $0c

f8d5a a5 1c lda $1c

f8d5¢c 85 22 sta $22

f8d5e c9 19 cmp #3$19 ;over 639997

{8060 b0 d5 bcs $8d37 ;yes, jump out to Syntax Error
f8d62 a5 1b ida $1b

;- . . etc multiply by 10

18d82 20 26 ba jsr $ba26 ;chrget-next character
f8d85 4c 54 8d jmp $8d54 ;loop back

Tickertape (75,76, 69, 179, 208] Dave Smart, Russell, Ont.
Here’s a good little ticker—tape routine — it can be used on any machine, but
the 64 version has ‘tick—tick’ sound efects. The nice thing about this routine is
that it can handle strings up to 255 characters long.

Usage notes: just put the string to be scrolled in Q$, and GOSUB 100; you can

vary the speed by changing the ‘65’ in line 160; line 105 must be changed for
80 or 22 column screens; the string Q$ is left altered by the routine.

Thom Trremnmmtbomr Danls A% Didn mmad Diaan -7 1412

n

100 rem tickertape subroutffies I,;jaW W\Wt C O mmodo re Ca
105 In=40; rem#ofcolumns in sérégnNot Reprint Without Permis

110forl=1toln:g$=" " +qg$: next
120forl=1toIn: g$=qg%+" ":next
130 fori=1 to len(g$)-In + 1

150 print mid$(g$,.in)" 8" :

160 for t=1to 65: nextt,!

170 return

Add the following lines for sound effects on the C-64:
106 poke 54273,70: poke 54278,249
: poke54276,17: pokeb4276,16
140 poke 54296,15: poke 54296,0
Debugging Aid Update (69, 125] R.C. Marcus, Agincourt, Ont.

Mr. Marcus writes,

“In the Volume 5, Issue 05 Bits & Pieces column, a handy ‘Built-in debugging
aid’ for BASIC 4.0 machines was shown.

[would like to add more information along this line. This is a BASIC routine
and is in BASIC ROM of the VIC, 64 and by your listing of the 16/ +4 memory

map, page 25 of the same issue, it resides there as well.

It is referred to as Print ‘IN’ routine and resides in the following locations: VIC,
56770; 64, 48578; C16/ + 4, $A453.

A SYS to the appropriate location will provide this handy feature.”

Easy Program UN-NEW After Reset 51, 146, 182]
Last issue’s Bits & Pieces presented “REGAIN" to restore your BASIC program
after a system reset or a new. If you crash and reset, but don’t have REGAIN in
memory, you can use this method, sent in by Alan Clooney of Cranbourne,
Australia:

poke 2050,1: sys 42291: poke 46,peek(35): poke 45,peek(781) +2: clr

If this gives an error message then

poke 45,peek(781)-254: poke 46,peek(46) + 1: clr

1A9 Tha Tranenntor Rnnle ~f Rite ninA Piesroc #1

n

1541 Crash With REL Files [7, 3, zgg] W W)Wl ﬁ&x?@ MQQW.ﬁLCB
1y NO orint Without Perr \
“Failure to properly close a relative file crashes the 1541 s DOS. Subsequent
disk operations will give unpredictable results, probably damaging other files,
the directory, and BAM. Use of the initialize command ‘I’ only apparently and
deceptively sets things right. The DOS will not work correctly after the
initialize in this case. It must be reset with ‘UJ’ or ‘U:’ or by turning the drive off
momentarily.”

1541 DOS Wedge Tips John Menke

“Most of the 1541 wedge commands work in program mode with a minor
syntax change; whatever follows @, >, /, t or < must be in quotation marks.
There appears to be a problem only with the % command when used in this
way. These commands must be on their own on a separate program line; in
some cases they’ll work as the last statement on a line. Variables are not
recognized as file names by the wedge commands. The following program
lines illustrate the three most useful applications which | have found for these
commands:

10@"$"

20<

301" program name"

Line 10 lists the directory, and as usual the space bar stops/continues the

listing on the screen. Line 20 reads the disk error status and prints it to the
screen. Line 30 is useful in loaders, or in chaining programs.”

One-Line Decimal = Base B (96, 116, 137, 145, 191, 207] A Hooyer
He Soest, Holland
To convert from decimal value ‘D’ to base ‘B’ with output length ‘L’:

8n$="":fori=1tol: h=d: d=int(h/b): h=h-d*b
:n$ =chr$(h + 48-7+(h>9)) + n$: next: return

Result in ‘N$’. To convert ‘N$’ from base ‘B’ to decimal, output in ‘D’:

9d=0:fori=1tolen(n$): h =asc(mid$(n$,i))-48
cd=d*b+h+7+(h>9): next: return

Examples:

From decimal to hex: d=4096: b=16: | =4: gosub 8: print n$
From binary to decimal: n$ = " 1000101 ": b=2: gosub 9: print d

The Traansactor Ronk nf Rite nnd Piarac #1 1A2

Restore Key Fun [134,143,158] Scott Macmgp,wwmmm&d ore.ca
May Not Repr mission

int Without Pe

Most programmers know that
poke 808, 205

will disable RUN STOP/RESTORE, but it has other minor side effects, such as
disabling the LIST function etc. The RESTORE key is tied directly into the 6510
NMI (Non-Maskable Interrupt) line. When you press it, it jumps through a
vector at 792-793 to wherever it goes, does its stuff, and has its fun. It is
possible to replace the vector with say, 49152:

poke 792, 0: poke 793, 192

Ha, now when we press RESTORE, it jumps to location 49152, and starts doing
things. Let’s put an RTI (Return from Interrupt) instruction there with:

poke 49152, 64

Now press RESTORE! Neat! Wow! When you press it, nothing happens! Try
RUN STOP/RESTORE. Still nothing. Try this:

poke 49152, 32: poke 49155, 64: poke 792, 0: poke 793, 192
X=226:Y =252
poke 49153,X: poke 49154.,Y

Press RESTORE. Or this:
X=234:Y=232 Or: X=34.Y=228

Quick Note: The 8250 Dual Drive records files in sectors spread 5
apart as opposed to 3 apart in the 4040, 8050, and 1541.

Screen Save Update (109, 126, 141, 144) R.C. Marcus, Agincourt, Ont.

The handy method to save the screen which appeared in the recent issue
under Bits and Pieces, titled “Put Mental Notes on Disk (or tape)!”, can be
indeed a useful tool. It can be used as well on the VIC with the appropriate
changes to the Kernel SYS’s.

Unfortunately, with the limited screen of the VIC this direct mode entry takes
up three to four lines, depending on the length of the filename; plus another
for the “SAVING . . . ” message, so in all, a possible five lines are taken or 110
character positions. As the screen has only 506, this is a fair amount of space
just for the saving instructions.

144 Tha Traanenrtar Rank nf Rite nnA PDiarec #1

The attached short program is for thEGIC Wit/ &W@@@Q&ﬁltca

provides screen save with a single command SYSIR28!The programtsaves up®
to the second last line of the screen, so by placing the SYS command on the
second last line, as instructed by the BASIC loader program, it does not scroll
the screen or appear when the screen is recalled. This gives 462 screen
positions for message characters.

This program places a machine language program in the tape buffer, so it can
only be used in disk-based systems. The filename is built into the routine as
“scr(shifted space)ml” and appears in the disk directory as " scr " ml; the ml is

the reminder [use to indicate that the load command must include the " 1% to
indicate a relocating load,

To recall a saved screen, LOAD it in with: LOAD "scr” ,8,1. Putting the LOAD
on line 18 will cause the “READY.” to appear near the bottom of the screen
and not mess up the message.

The routine does the save without the SAVING message to conserve screen
space, but will print error messages if they arise. It also saves with the replace
option, so be sure to rename your old screen file if you don’t want it wiped out
by the next one you save.

100 rem basic loader for screen save

110 for p=8281t0 879 : read a: poke p,a: cs=cs+a : next

120 if cs<>6685 then print "error!..in data " spc(14)
" statements. " : end

130 print” ‘sys828'...on the 2nd " spc(11) " last line to " spc(10)
" save screen. "

140 data 169, 64, 32, 144,255,169, 0, 162

150 data 8,160, 1, 32,186,255,169, 9

160 data 162, 103, 160, 3, 32, 189, 255, 169

170data 0, 133,251,173, 136, 2, 133, 252

180 data 164, 252, 200, 162, 205, 169, 251, 32

190 data 216, 255, 96, 64, 48, 58, 83, 67

200 data 82,160, 77, 76

+4 and C16 Bits (190 Elizabeth Deal, Malvern, PA
These computers are miracles. What follows are some notes I have which may
well be unintelligible to the beginners, but can be of use to someone familiar
with other Commodore machines. The User’s manual is rather complete, so

these are just additional comments:

Character strings are handled differently than in previous machines: there is
no such thing as pointers into a program. All strings declared inside a program

Tha Traancnrtar Ranl ~f Rite AnA DinAne #1 1LR

are copied to RAM (usually hidden under gROM). VPHararare. &f@amgadore ca
collection delays. Additionally, new functions Gan be dorie Maththestringshout Pe

1. The first one is assignment statement with MID$ on the left. Yup, you're
seeing it correctly. It's now OK to code:

MID$(a$,4,2) = "de”

This will change whatever was in positions 4 and 5 to be “de”. Can you see
why strings can’t live inside a program? Would be a programming nightmare if
they did.

2. INSTR function returns a position of one string within another, so
INSTR$("xyz","y")
returns 2. You can also specify a starting position for the search. The old code
for j=1to len(a$): if x$ =mid$(a$,j,1) then nextj

is no longer needed, and the INSTR function is instantaneous! Hurray to
Commodore.

Tape is incompatible with other CBM machines. The connector is different,
but that's the small part. The timing is different. It seems that the writing goes
at about half the speed of the previous units. The code to accomplish tape
writing and reading is enormous. Reading is particularly difficult because the
TED chip functions differently: there is no such thing as detecting a negative
transition - all transitions have to and are being detected in software. The
screen is turned off to permit 1.7 mhz operation. Still, it is a slow process.

Tape errors are funny. If you happen to position a tape to the very tippy-end of
a program you don’t want to load, the computer reports BREAK error (*30)
and does not go on to look for the program you do want. Using error trapping
(TRAP statement exists in the language!) is the way to go in program mode.

Generally, error numbers when used with tape are wrong. You may get a
DEVICE NOT PRESENT ERROR, when you think it should be a FILE NOT
FOUND ERROR. You invariably get BREAK ERROR when the end-of-tape
header has been read in. This would be only a cosmetic nuisance, were it not
for the fact that a STOP-key also causes a BREAK error. It’s hard to tell one
from another

There is lots of RAM in the machine, and one tends to play a lot of hide-and-
seek games in finding things. Some clues:

146 The Transactor Bonok of Bits and Pieces #1

1. Page 4 contains various indirect rofituriis th WrWlt QWB@QMB% Ca
or RAM. These routines are used bysBASI¢Y @y Nol Reprint W

2.In page 7, specifically at $7d7 is an equivalent routine for use by the
machine code monitor.

3. BASIC PEEK returns a byte from RAM. Machine Language Monitor returns
a byte from ROM. MLM normally saves only RAM, you can’t save ROM.
BASIC SAVE normally saves RAM. LOAD loads bytes into RAM, as you'd
expect. Sometimes you may wish to change the defaults. It can be done:

(a) To PEEK ROM from BASIC: modify a routine in page 4 (at $0494) to ignore
the store instruction:

poke1176,44 : now peek ROM : poke1176,141

This is fairly safe, so long as you DO NOT WORK ANY STRINGS BETWEEN
THE TWO POKE1176 INSTRUCTIONS. This, for instance, is the only way you
can get at the character generator ROM from BASIC, as far as [can tell.

(b) To peek/save ROM from the MLM, set bit 7 in the byte at $7{8. Incidentally,
the monitor has a nice feature - “>7f8 80” is all you need to type in, the “>”
sets bytes and displays just one line of memory.

The MONITOR is nice, it's almost like SUPERMON. But there is a serious bug -
they chopped the TRANSFER command: T with overlapping addresses does
not work in one direction — when the destination is higher in memory than the
source. The bytes just write one over another and you lose all your work. A
cure: first Transfer to another, non-overlapping area, then do a second
transfer to where you wanted to go in the first place.

Colour memory, as in the C64, contains the colour codes for the 1000 screen
bytes. One difference, bit 7 is the flashing bit. Funny things happen when you
load the C64 colour map into, what's now called, screen attributes map in the
Plus 4. You get flashing for nothing.

To change the colour attributes from the C64 POKEs into the COLOR
statements, you'll need to add one to each value, as the Plus 4 colour numbers
are from 1 to 16. POKE values are still 0-15, but there is little reason to use
them.

The keyboard is a delight. Perhaps a bit too soft, but easy to use. The ESC
sequences are a joy to use. There is even a pause-all-output key: two keys
actually - CTL-S, with any other key restarting the output. There is only one
problem: if you use CTL-S during a program run, and use a subsequent GET
statement, the S will appear to the GET statement as a real input - I think it’s a
bug - the keyboard buffer isn’t cleared, so you'll have to do it yourself.

Tha Trancr~tAr RAnl AF Rite A Dimmne 41 1Ly

Programmable function keys are useful. Unllkgnw&%%mam&ﬂ Ore Ca

them have a carriage return at the end. | dofsdike thisvféatures bupit'talnbe’ Pe sion
easily changed. Unfortunately, the keys are active inside a running program.

Watch out here: if you use GET, and the user pushes the DIRECTORY key, all

the letters in ‘DIRECTORY’ including the carriage return will be delivered to

the GET! If you don’t want it to happen, there is a way to disable the function

keys: either set them all to null (" ") inside a program and redefine at the end,

or POKE their lengths to zero.

The default colours and luminances for the sixteen colour keys are in RAM.
They are in a table in page 1 at $113. You can change them as you wish.
Machine code people who love to POKE the stack (auto-run programs!) will
have to stay away from this area.

Some of the structured BASIC statements are splendid. For instance, the DO
WHILE construct permits you to code a loop that will never execute (FOR-
NEXT loops always run at least once, unless you test and skip around). The
interpreter seems to be looking ahead, almost like a compiler: it skips the loop
and all the loops inside it. EXIT permits leaving a loop early. LOOP UNTIL
tests a condition at the end of a loop. What more can we ask?

The character table is half the size of that in the C64. Reverse characters aren’t
in ROM, they are software-generated. You may have to take this into account
if you convert programs from the C64 to the +4/C16 machines. Pointing the
character base address is simple. It does require POKEs, a rare event in this
machine: using the BASIC method (above) or the monitor transfer command,
move the characters to any RAM. Then tell the TED chip about the move: tell
location $ff13 the page number of the start of your character definitions, then
clear bit 2 at location $ff12. That's all there is to it. Much simpler than in the
C64. Incidentally, it is perfectly all right to speak in semi-hex to the BASIC
interpreter, hence

POKE DEC(" FF12"), DEC("71")

will tell the chip the character base is at $7000. What's that 1 doing in $71? No
connection, nothing. Nothing is a one. I don’t know why.

When you play with non—ROM character set, a nasty thing can happen: an exit
from the monitor or any error in BASIC resets things only half way back to
normal. So the screen becomes a mess. Several solutions: TRAP all errors in
BASIC. Do not leave the monitor (guarantees jearning machine code by the
total immersion method). Hold STOP and push the little reset button. Define a
function key to (blindly) type the reverse maneuver to set the character base to
the default again. Enjoy the crazy screen sight and push some keys while you
do so — it’s actually an interesting display.

1AR Tha Tranenrtar Rnnlke nf Rite and Piecas #1

It is possible to move the screen meinogy aWWéé/ i{CﬂM.‘]mQ‘&Qdﬂﬁ .Ca
needs to be told of the move, of coutse. $FFIA register s the'place! to'wge)ssion
However, | know of no way to print on the screen when it’s not in the standard
location. You can POKE it, you can flip it, you can do all sorts of things with the
relocated screen, but no printing. The print command ($FFD2) delivers bytes

to the default location and only there. It should be possible, if you must print

on a relocated screen, to reroute output to your own routine (page 3 vectors)

but I doubt that it's worth the trouble.

The GRAPHIC split screen always splits five lines from the bottom. The bottom
five lines are in the text mode, the top is bit-mapped. The constant which
controls the split raster line is coded in ROM, hence a bit rough to change.
However, there is a link in the interrupt-service code which does permit you
to modify the place of the split screen, if you must do it.

Disabling the STOP key is a favourite pastime of many people. It’s quite easy
on the Plus 4 computer - use a TRAP statement and trap error #30 to resume
execution. I know, however, of one situation where the STOP cannot be
TRAPped. That is in I/0. Tape LOAD illustrates it quite well, as things are
slow: the STOP can be TRAPped after the message “LOADING” would appear,
not before. While the computer is searching for a header, it uses another way
to test the STOP. It looks directly at the keyboard register in the TED chip, and
it never tells BASIC about it. The same is probably true with the serial disk, but
it is a bit harder to catch, as things happen faster. A moral: to disable a STOP
during [/0 use a little machine code, especially if your program uses tape. The
whole exercise is almost pointless anyway, as the little reset button lets anyone
in. I like that.

B-128, 1541, and 8050 Bits [213] Elizabeth Deal, Malvern, PA
I wish Commodore would reconsider their decision to drop the B-machines.
B-128 is a terrific machine. Sure it’s hard to program, but it’s fun. It has superb

BASIC, superb keyboard, 2mhz clock, it's fast and pleasant to use!

There are an assortment of curiosities about the machine itself and some disk
drives:

Happy news: On the B128 the files close themselves! When an error condition
causes a disk file to remain open, editing a program line makes the disk whirr
a bit and a file gets closed. It’s incomplete, but it’s not a * file anymore. Clever
and useful - if you keep the drive door down, of course.

There is a RESTORE <line number> command in BASIC, just as in +4.

BLOAD "file name" drive,unit,bank,address

Tha Traanen~tor Ranlke nf Rite AnA Pioroc #1 1A0

loads program files and does not cause BASICgD rW %th@ @e,@‘hm@ﬁj O re Ca

splendid feature. 1y rint Without Pe

BASIC programs which have machine code tacked on to the end are difficult to
manage. They can be run, but don’t try to SAVE’em without first fixing the
pointers up. LOADing such programs causes the end-of-program pointer to
be set to the byte following the three zeros (ouch!). Editing a line (or just
pushing a RETURN over a line) on the screen does the same thing.

There appears to be a bug in the screen editor which can unreverse reversed
characters such as home, cursor directions, etc. in quotes. This only happens if
you insert characters ANYWHERE on a line containing the control characters
and only when you use the INST key. If you use ESC-A/C to enter/cancel the
insert mode, then the line is not ruined. Something is wrong in the setting of
the insert-flag but you can prevent trouble by pushing RETURN twice over
such lines if you have used the INST key. Say it again Sam. . .

There is an “initialize the drive” command in BASIC-128. It is DCLEAR D1
(for drive #1). 1 don’t know why, but [keep thinking it can NEW the disk.
Funny name.

The DOS built into the 8050-drives that come in the Protecto package is a
fairly advanced version number 2.7 as you can see in the sign—-on message.

There has been a change in the way character string functions work. While
ASC of a null byte still returns ILLEGAL QUANTITY instead of a zero (as in the
PLUS 4), ASC of characters outside the string aren’t ignored anymore:

ASC(MID$(" ABC" ,4)) is now ILLEGAL.
Machine Language monitor is a bit rough to use. Some pointers:

1. You can enter the MONITOR by a call, bank15:sys14+4096 does it. You will
never exit the monitor, even pressing the reset button doesn’t work. This
can be useful if you are messing with page zero and rather not exit to BASIC.
The exit address is in $f03{8/9. It can be changed.

2. Normal entry is via a break; bank15;poke6,0:sys6 does the job. Exit is nasty,
it clears the screen, among other things. Once again, you can change the
reset vector to a better setup.

3. Probably the most annoying feature of the resident monitor is that all error

commands default to loading and running machine language programs. A
pest.

170 The Tresnsoirtor Ronk of Rite nnd Pinrac #1

4. The G (go) command is dangerous: @by notW\MW).Q @dB‘hEﬂlQlGinﬁ'ee Ca

crashes are unreal. May Not rint Without Pe

5. Do not use the Z-command. It tries to work a co-processor, whatever that
is, which isn’t there. Consequently we crash.

6. There is a nice little monitor, called EXTRAMON, on the TPUG disk. It has a
fairly clean exit to BASIC, as it does not clear the screen. However, do not
use the B-exit if you have run a Go command. Most likely you will crash.

7. Crashing has a new twist. Much of the time you don't really crash. The
cursor comes back, and things may appear normal. But a closer look
reveals, for instance, that your BASIC text is mangled up, the transfer
sequences may have funny bytes put in them, and so on. So - like in the old
days, shut off, and start from scratch - even when you see the cursor.

If you store a byte in RAM that isn’t there and try to read it back, do something
between the two operations. A little bit of time (Jim Butterfield says 14
microseconds) are needed for the address to vanish and a real byte to come
through. Otherwise the read operation gives a false result. I've been putting
three NOP instructions, that’s 12 cycles. That may be cutting it too close.

If you have a mismatch-type of error in READing DATA items, the B-machine
reports an error about the DATA line itself, rather than the READ statement.

I suspect that there has been an undocumented change in the way IEEE
devices function since the 4040. Things that are plugged in but not turned on
cause a bus crash. For instance, a printer that is connected but not on will
cause a crash if you try to LOAD or SAVE. Incidentally, the same is true in the
Plus 4 machine - two 1541 disk drives, one not turned on, will also crash the
system. Can anyone explain this?

Another change is that a 1541 and an 8050 drive must have the complete error
message read off the drive. You can no longer look at the first value (first byte
of the error message) and quit if it's good. The whole thing has to be read in to
that last carriage return. Failure to do so causes strange problems which are
hard to debug. In the case of relative files, the light continues to flash on the
1541, but not so on the 8050. Non-relative files and/or the 8050 give no clue.
So read the whole message. Again, this change hasn’t been documented by
CBM, as far as | know, but I've seen the trouble ever since the 1541 was born,
and now get the same behaviour in the 8050. Life sure was simpler with my
old PET and 4040!

The MPS 8050 drive with DOS 2.7 has a bug: if you try to copy a file from one

drive to another, and the file already exists on the destination drive, the disk
crashes. BASIC COPY command and the monitor's wedge crash in this way.

The Transactor Book of Bits and Pieces #1 17m

on

The only way out is to reset the disk (on/off swggh)/é/rWWnGlﬁﬁl‘lfa@eﬂﬁieo re Ca
computer. The fault doesn’t seem to be in“vhe B-rhachiite, Sirvenit Helvaves Pe sion
correctly with the 4040 drive (FILE EXISTS DOS-error). My Upgrade PET also

has trouble with the 8050, yet none with the 4040.

Do not trust the writeup of the KERNAL routines in the various guides to the
B-computer. Some routines are described correctly, others are copies of the
C64 guide and may not function the same. For instance, to read ST, a major
task on the B, you must set the carry bit. If you don’t, you'll be setting ST to a
value in the A-register. Not a very nice thing to do, when you're reading a file.

Due to the zero-page pointers, programs saved from the B 128 do not LIST
very well on any other Commodore computer. If you need compatibility, put
BASIC higher in memory. PET-type of a setup seems to be the best thing -
BASIC at 1025 (3401 in bank 1). The pointer to start of BASIC is in bank 15 at
$2c/2d.

Keyword token numbers have been shifting recently. You cannot count on the
PRINT USING token, for instance, to be the same in the B machine as on the
Plus 4. The standard command (PET vocabulary) numbers are the same, but
there is no pattern with the expanded commands. A bit nasty for a program
such as LISTER.

172 The Transactor Book of Bits and Pieces #1

Volume 6 Issu&(lZDmmodore ca

int Without Pe

C64 Keyboard Joystick Simulation {107]

If you ever need to try out a joystick—driven program but you don’t have a
joystick plugged in, you can simulate the stick by using the keyboard. The
keyboard can be used instead of the joystick in port 2 by holding down the
space bar while pressing C,Z,B,M or F1 to perform the functions in the table
below. The port 1 joystick can’t be simulated in some video games, like those
which use the keyboard as well as the joysticks, but in most programs you can
get joystick 1 functions by just pressing a single key - refer to the table below.

JOy2:
space + C = left
space + Z = down
space + F1 = up
space + B = right
space + M = fire

JOY 1.
CTRL = left
b = down
1 = up
2 = right
spc = fire

1-Line SEQ file read |6, 114]

You've probably typed in a little sequential file-read program many times.
Although utilities such as BASIC AID and POWER have such a feature built in,
the utility isn’t always installed when you need to look at a file. To save typing
in several program lines whenever you wish to view a sequential CBM ASCII
file, here’s a short program to do it. It will print the file to the screen and stop
and close the file when the end is reached. You can just tack this line to the
beginning of the program in memory and delete it when you don’t need it
anymore.

1 0pen8,8,8, " filename " :for i=01to 1: get#8,a$: i=st
: printa$;: next: close8: end
C-64 Character Flash Mode [11, 45, 80, 81]
One of the many features of the plus 4 and 16 machines is a “flash” mode,

which operates like reverse on/off, but causes all characters printed in that
mode to continuously flash at the rate of the cursor. Flashing is a great way to

The Transaictor Roolk of Rite nnd Piaras #1 172

highlight important text, signal an error condltlonWtWB&oG @{ﬂﬂrﬁg}&d@ re Ca
simulate flash mode on the C-64. One of e 16/textoldias becsriss thee
“flash” colour; anything printed in the flash colour (default green) or the
current background colour will blink at approximately the same speed as the
cursor. Line 65 sets up the flash colour as 5 for green - change it to whatever
you wish.

NN | 10 rem=* data loader for "flash " *

LI | 20cs=0

CG | 30 fori=49152 to 49245:read a:poke i,a

DH | 40cs=cs+a:nexti

GK | 50:

HI | 60 if cs<>12150 then print" ! data error " : end

JI | 65 poke 49152 + 19,5 :rem flash colour =5 (green)
DD | 70 sys 49152

AF | 80 end

IN | 100:

NA | 1000 data 173, 21,192, 141, 22,192, 120, 169
KO | 1010 data 24, 141, 20, 3,169,192, 141, 21
GO | 1020data 3, 88, 96, 5 0, 20, 0, O
LI | 1030 data 206, 22,192,208, 61,173, 21,192
ID | 1040 data 141, 22,192,173, 33,208, 41, 15
BJ | 1050 data 141, 20,192,160, 0, 132,251, 169
NG | 1060 data 216, 133, 252, 238, 23,192,173, 23
GB | 1070 data 192, 41, 1,170,177,251, 41, 15
OH } 1080 data 205, 19, 192,240, 5,205, 20, 192
GK | 1090 data 208, 5,189, 19,192, 145,251, 200
NF | 1100 data 208, 234, 230, 252, 165, 252, 201, 220
| AL | 1110 data 208, 226, 76, 49, 234, 252

Plus 4/C16 Pretty Patterns [19%0,227)

Here's a short one. Try changing the step value for different effects, and the
values of ‘B’ and ‘E’ for different sizes.

10 graphic1,1:b=20:e=190
20fori=btoestep? : draw 1,b,itoi,e: next

This next one gives a different pattern each time. After a pattern is drawn,
press any key for a new one. Try a few - some are pretty incredible. It works by
drawing boxes of different sizes rotated at different angles, thanks to the
flexible BOX command in BASIC 3.5.

174 The Transactor Book of Bits and Pieces #1

100 rem+ +4 boxgBhral www Commodore ca

110 graphic 1,1: cBies 1,May Nof rint Without Pe
120 x1=0:y1=0: x2=100: y2—100

130 n1 =rnd(0)*10: n2 =rnd(0)*10

150 for angle=01to 180 step 5

160 box 1,x1,y1,x2,y2,angle

170 x1=x1+n1:yl=y1+n2

190 next angle

200 rem#* run again when key pressed

210 getkey a$: run

C-64: Text on a Hi-Res Screen (115, 136, 138]

The hi-res screen is so much more fun than just plain, boring old text. You
know, a picture is worth. . . But we work with words and numbers so much
that it's sometimes hard to give meaning to a diagram such as a bar graph
without words of explanation and numbers for scales. The subroutine below
lets you label your creations by displaying a given ASCII character on a hi-res
screen. The character must lie in one of the usual character cells (25 down by
40 across). Before calling the routine, specify the column (0 to 24) in ‘CY’ and
the row (0-39) in ‘CX’. The character itself must be in the variable ‘CC$’. The
program copies the eight-byte character definition from ROM into hi-res
screen memory addressed at $2000.

1000 rem= put text on hi-res screen *

1010 rem= character rom

1020 rom = 13*4096 + 1024+(peek(53272)and?2)
1030 c =asc(cc$): print" [

1040 rem=* convert ascii to screen code

1050 cc=c +64+(c>64andc<192) + 128+(c>191)
1060 rem turn off irgs and select character rom
1070 poke56334,peek(56334)and254

1080 poke1,peek(1)and251

1090 rem=* copy from character rom to hires screen
1100 br =rom + cc*8: bs =8192 + cy*320 + cx*8
1110 for i=br to br + 7: poke bs,peek(i)

1120 bs=bs+ 1: next

1130 rem# switch back i/o in place of char rom
1140 poke1,peek(1) or 4

1150 poke56334,peek(56334) or 1

1160 return

Subroutine notes:

1) Line 1020 chooses upper/lowercase or uppercase/graphics mode for dis-
playing the character, depending on the current mode.

The Transactor Book of Bits and Pieces #1 175

n

2) If the hi-res screen is located in memory sg,[neW]\éVe\’MthrQlﬁIﬁm@a Ore Ca

t

change the ‘8192’ in line 1100 to the actudmbcationly Not Reprint Without Pe

“Someone’s coming” or “Boss” mode

For those of us who work with computers as an occupation, it’s hard to load up
a game for a bit of stress-relief without feeling some guilt. If you work in an
office, you may find yourself looking over your shoulder between blasting
meanies in space - some stress relief.

To let you play at ease, several games for the IBM PC (which are primarily used
for business — no having fun allowed) have a “someone’s coming” mode.
When you hit the “boss” key, the game instantly disappears from the screen
and is replaced by a fake spreadsheet, word processor or bar graph display.
When the big guy once again leaves the room, you can continue your game
right from where you left off with another strike of the boss button.

Sounds like a good idea. Might be good for the home computer in case you're
killing klingons when you should be cutting the grass. When your wife looks
in on your progress, just hit the button and, “just a minute dear, have to
balance last month’s budget first.” To cover all bases, maybe every game
should have “boss”, “spouse”, and “parent” functions built in. Well, game
developers? How about it?

Fast Key Repeat [44] David Jankowski, Manoora, Australia

David writes:

“I would like to submit this small interrupt—driven routine. Its purpose is to
speed up the keyboard repeat (about 74 % faster) for game programs that use
the GET command to receive instructions. The program sits in the cassette
buffer and runs on the C64.

5 rem c64 fast key repeat

10 for i=828 to 847: read a: poke i,a: next

20 data 120, 169, 3,141,21, 3,169, 73,141, 20
30data 3, 88,96,169, 0,133,197,76, 49,234

For the VIC, change the second last value in line 30 (49) to 191.

Modem Speed-Up [177]

Daniel Bingamon of Batavia, Ohio gives this command to speed up a 1600,
1650 or 1660 modem to 450 baud:

174 The Tranenir~tar Ranke nf Rite nnd Pierac #1

open 5,2,3,chr$(0) + chr(O)g cWW 2’)’+Gmm od ? re. Ca
1Y t Without Perr
Now you might be asking, “Who would you connect to at 450 baud? Most are
either 300 or 1200.” Well, the sequence above has been around just long
enough for some authors, like Steve Punter, to make provisions in their
bulletin board software. Once connected, you have the option of changing to
the higher speed.

1200 Baud Fallacy [176]

Have you ever been told that 1200 bps transmission is too fast for normal
telephone lines? The Phone Company, and their gullible subscribers, will
rhyme off a rather technically believable line like, “the bandwidth of the signal
encoding equipment is not wide enough to handle some frequencies at 1200
bits per second - you need a special line installed to avoid dropouts”, which
costs you more, of course.

Don’t believe it! | have talked to bulletin board systems as far as 3000 miles
away with absolutely no trouble. In fact, the entire Transactor magazine is sent
over a regular garden variety phone at none other than 1200 bps - no sweat.

True, most 1200 baud modems are somewhat overpriced but there are some
deals to be had. And once you start downloading at 4 times the speed you're
familiar with, you'll be spoiled for life. Actually, 1200 is becoming quite
popular. Some systems will even detect your transmission speed at connect
time and automatically adjust themselves to suit.

B to PET/CBM Program Converter [19, 169, 213, 216]

A quick B fact. Basic programs SAVEd by a B machine have a start address of
$0003 in zero page. The B machine accepts and relocates PET/CBM Basic
programs as if they were its own, just as the Vic and C64 do. But just try to
LOAD the Basic program back into the PET or CBM. It will destroy zero page,
the stack, and whatever else lies in its wake depending on the size. A horrible
awakening for PET people, until now. The program listed below will take your
Basic B program and relocate it for the PET or CBM. It will re-create a new
Basic program on diskette starting at $0401, with each link address also
correctly relocated. A pretty terrific utility. Our special thanks to Jack Weaver
of Input Systems Inc. in Florida for this one.

PH | 100 rem ** change b-128 program to run on 80/4032
FL | 110 rem =+ jack weaver input systems, inc.

LF | 120 rem ** 15600 palmetto lake dr. miami fl 33157
CD | 130 rem #+ phone (305) 252-1550

AA | 140:

Tha Tranernn~tar Rank ~f Rite nnA PDiarac #1 177

FK | 160 c$ =chr$(0)
KH | 170 open 15,8,15,"i0
AM | 180 def fn r(x) = (b2+256 + b1) + 1022
P | 190ifdO
JD | 200 print cu$;ry$; " name of b-128 prog to change"m$" "
FA | 210 input of$
HO | 220 print cd$ " new name of the 80/4032 program ";
GB | 230 input nf$
AO | 240 print "b-128 prg = "ry$;0f$: print " 80/4032 prg
= "ry$;nf$
GD | 250 print cd$;cd$ " OK (y/n) n"cl$;cl$;cl$;
FH | 260 input yn$
OF | 2701if yn$<>"y" then stop
HM | 280 a=1025: open 4,8,4,0f$: if ds then print ds$: stop
ED | 290 get#4,a$,b$: a1l =asc(a$ + c$): a2 =asc(b$ +c$): if a1<>3
then next: stop
Ol | 300 open5,8,5," @0:" +nf$+ " ,p,w": if ds then print ds$: stop
FJ | 310 print#5,chr$(1)chr$(4);
AC | 320 if sthen 390
HK | 330 get#4,a$,b$: b1 =asc(a$ + c$): b2 =asc(b$ +c3)
BL | 340 x=fnr(x). if x=1022 then s=1: goto 390: rem check for
end of prg
OD | 350 hi=int(x/256): lo =x-hi*256: print ry$;a;rn$;b1;b2;x;lo;hi
FJ | 360 a=a+2: print#5,chr$(lo)chr$(hi);
KE | 370 if a=xthen 320
EC | 380a=a+1
PM | 390 if s then print#5,¢$;c$;c$;: closeb: close4:
print "converted !": end
PD | 400 get#4,a$: s=st: print#5,chr$(asc(a$ + c3));
| BF | 410 goto 370

C64 Screen Sizzle James Cashin, Corner Brook, Nfld

For the Bits & Pieces obligatory screen blitz, we are proud to present this little
two-liner for the 64 from James, alias the ‘Happy Hacker':

10 poke53280,0: poke53281,1: printchr$(147): poke53281,0:
poke53272,18: cs=2304
20 fori=0 1o 1step0: b =rnd(1)*256: for j=1 10 7: pokecs + j,b: next j,i

The program fills the screen with spaces, and continually changes the

character definition for a space. If you've never thought that staring at a CRT
can be nasty to your eyeballs, try this one out. A starving optometrists’ delight!

179 Tha Tranenrtar Rank ~f Rite nnA Diaroc #1

IA | 150 cu$ =chr$(145): cd$ = chr$(#)s gs;wwwﬁpmmodore ca
ry$ =chr$(18): rn$ =chr$(146) May Not rint Without Perr

n

C64 Simple Banner Program (6945, 1 16W W.Wr&@ @mﬁ Gk@:ﬁﬁ Ca
Bay, Ontario 1y N¢ rint Without Perr

Here’s a short banner program for the C-64 and a printer. The message can be
up to 255 characters long, and will reproduce any character including
graphics.

100 rem=*+ banner by jeremy stewart — #*
101 rem== for 64 and 80-col printer ~ **
105:

1101=53248: open1,4

120 asP = "##xxxx2++":gpf="
130 rem 9 asterisks, 9 spaces -reduce for shorter characters
135:

140 input” input message " ;m$: print” “ m$

150 for y = 1024 to 1023 +len{m$): n = peek(y)
160forz=11t08:a$(z)="": nextz

170 poke 56334,peek(56334)and254

180 poke 1,peek(1)and251

190 fora=7to 0 step-1: b=21%a

200 for c = (I + (n*8) + 7)to(l + (n+8))step-1

210 p = peek(c): x=abs(a-8)

220 if (p and b) =b then a${x) =a$(x) + as$: goto 240

230 a$(x) = a$(x) + sp$

240 nextc,a

250 poke 1,peek(1)or4

260 poke 56334,peek(56334)or1

270 for j=1to 8: for k=1 to 4: print#1,a$()): next k,|

280 next y: closet

Notes:

1) Alter the height of the letters as indicated in line 130.

2) Use a character other than asterisks in line 30 for different effects.

3) Change the ‘for k=1 to 4’ loop in line 270 for wider or narrower characters.

Break Box Baffler (68, 106] Tom Johnson, Jefferson, MO

Here’s a terrific bit of code to retard the code buster blues. Written for the
Commodore 64, you will find great benefits in locating it high up at $8000 in
RAM. This is the area looked at during system reset for the presence of a
cartridge. If the correct code is present, ie. CBM 80 etc., then it will be
executed. Tom'’s code takes advantage of this trick. Upon an NMI break in, the
code will be executed, thus throwing the 64 into an endless loop. Pretty bad
news all packed into 50 bytes.

The Transactor Book of Bits and Pieces #1 179

63000 for i=32768 t0 32818 : r "pWM{le&t@:ﬁﬁﬁﬁuOd ore.ca
63010data 9, 128, 216, 128, , 19402061 BEorint Without Permission
63020 data 48, 120, 169, 128,162, 9,141, 3

63030 data 3,142, 2, 3,141, 21, 3,142

63040 data 20, 3,141, 23, 3,142, 22, 3

63050 data 141, 25, 3,142, 24, 3,141, 41

63060 data 3,142, 40, 3,169, 48,133, 1

63070 data 76, 9,128

180 Tha Transaictor Rook of Bits and Pieces #1

Volume 6; Ismxﬂgommodore ca

t Without Pe

Disk Cleaner [209] Peter Boisvert, Amherst MA

“I clean my disk drive read/write head using a diskette-like insert containing
awoven cloth disk impregnated with cleaning solution. To clean the head you
must insert the diskette and close the door. Now the instructions say to “run
the disk drive for 45-60 seconds” by sending any disk command to the drive.]
used to use the initialize command. Unfortunately, the disk turns for only 4
seconds or so before it “knocks” the head and stops. To clean the disk propetly
requires repeating the disk command 10 to 12 times. That's an awful lot of
knocking. Since too much knocking can precipitate head alignment problems,
[was determined to find a better way. To my surprise the solution was very
simple, provided you have a disk map of the ROM:

10 rem+* 1541 motor spin routine *

20 open 15,8,15

30 rem execute ml at $f97e to start motor
40 print#15, " m-e " chr$(126)chr$(249)
50 for i=1 to 6000: next: rem time delay
60 rem execute mi at $f9e8 to stop motor
70 print#15, " m-e " chr$(232)chr$(249)
80 close 15

This short BASIC program executes two disk ROM routines directly, bypasss-
ing the 1541 error checking protocol and avoiding the dreaded “knock”.
Location $F97E in disk ROM is the start of a routine which simply turns the
drive motor on, nothing else. Similarly at location $FOE8 a routine exists
which shuts off the drive motor. Thus all that is needed is a short program to
execute the routines and a delay loop for the cleaning time. When the program
is RUN the drive motor turns but the drive LED doesn't light. Ahh, the
wonders of direct access programming! The motor will run for a minute and
then stop, leaving a shiny disk in its wake. But, make sure the disk drive door
is closed when the cleaning diskette is inserted, otherwise the head will not
make good contact with the cleaning surface.”

Using Peter’s technique, here’s another 1541 motor spin program that will
make it turn whenever the shift key is pressed. You can use SHIFT LOCK to
keep the motor running if you wish. This one is handy when working on the
drive.

10 rem+* 1541 motor spin routine #2 *

20 print chr$(147) " hold SHIFT to spin drive motor”
30 print” press CTRL to quit program "

40 open 15,8,15

50fori=0to 1

Tha Tranemntar RAanls ~Af Rite ~nA DinAsnns %1 121

60 s0=s1: s1=(peek(653)=1) o« WWW. Commodore Ca

70 if 1 and not(s0) then print#15,"m-¢" chr¢(726)ohr$c249) gemmmetonont Perr

80 if not(s1) and sO then print#15, " m-e " chr$(232)chr$(249): rem motor off
90 i=-(peek(653) =4): next: rem until ctrl pressed
100 close 15

The 1541’s amazing " *" [146, 162]

On the 1541, the special filename " *" can be used to load the most recently
used file, or if no disk access has yet taken place, the first file on the disk. On
other Commodore drives, " *" always loads the first file. If you want the 1541
to behave as the other drives, i.e. you want to load the first program on disk,

just use the filename ":+" instead of " * ", for example:

LOAD ":+" .8

World’s Simplest Un-Scratch [146, 162, 213)

The "*" filename on the 1541 will let you LOAD the last program SAVEd,
even if it has been previously scratched! You probably won't believe it so try it
for yourself:

SAVE the current program in memory: SAVE"0:TEMP" 8
SCRATCH it from the disk: OPEN 1,8,15,"SO:TEMP"

You may check the directory at this point to make sure it has been scratched.

NEW the program in memory or even reset the C64 with SYS 64738 (don’t turn
it off and on, as this will also reset the 1541).

LOAD" =" 8 and your scratched program is back. Now you can safely save it
again.

The above technique will not work if you've used any file since the scratched

one, or if the drive has been reset. But it’s great for those times when you
realize you need a file right after you scratch it!

C-64 Directory LOAD & RUN (149,220, 224] Bob Davis, Salina, Kansas

“The 8032 series have the capability of using shifted RUN/STOP to load and
run the first program on disk. . . but the 64 can go one better.

182 The Transactor Book of Bits and Pieces #1

n

When you save a program, follow the pro&an\“ﬁ%%ﬁl@@m @ﬁre Ca

characters: rint Without Pe

1) A shifted space

2) Commodore D (The Commodore key and letter ‘D’ simultaneously)
3) Commodore U

4) Shifted ‘@’

This will force the disk directory to contain the file name in quotes, followed by
“,8:” and all you do is display the directory, move the cursor to the appropriate
line and press shifted RUN/STOP to load AND run your program.

While surely someone else has noticed this before, the trick is new to me, and I
have not seen it published.”

Jumbo Relative Files (7,163, 183] Elizabeth Deal, Malvern, PA

“The B128 and the MPS-80 Drive can write large (500Kk) relative files without
a “file too large™ error. An old manual (circa 1982) has this incantation for the
8250, which just happens to work on the DOS 2.7 MPS drives:

open 1,8,15
xx=0: print#3, " m-w " chr$(164)chr$(67)chr$(1)chr$(x)
close 1

Reset, UJ or the above program with xx =255 turns the largefile feature off.

The CBM 8050 test/demo floppy has a program which expands relative files to
an 8250 format. It works only on PET 4.0 computers; I don't have one. | find it
mildly amusing that the 8050 test/demo wasn't fixed up to work on the B-
machine.”

APPENDing ML to BASIC [32, 184]

A hybrid program - one using both machine language and BASIC - often
consists of a single file on disk containing a BASIC program with machine code
tacked onto the end. An easy way to create such a file is to simply SAVE the
BASIC part, then send the object from your assembler to the same filename
with the “,A” (append) filename extension. For example, using the PAL
assembler:

100 open 1,8,12, " 0:oldfile,p,a" :rem append to basic prg file

110 sys700 ;activate " PAL" assembiler
120 .opt o1 ;direct object to append file

Tha Traneni~tar Rnanl ~f Rite nAnA PDiarac #1 12

(The PAL example is redundant, since that g8semhler has\hibadragabitigl Ore . ca
but you can use any assembler, or a BASIC.Toader programpusingy BATAt Permission
statements to generate the ML object.)

When using this technique, the assembly origin will have to be set to the end
of the BASIC program, which you can find by PEEKing the top-of-BASIC
pointers ($2D,2E on VIC/64), and the new pointers will have to be set to the
end of the ML object before you SAVE the BASIC (so that variables won't
clobber the code). Also, remember that when using an assembler the first two
bytes of the ML will be the start address, so you'll have to SYS two bytes past
the start to execute the program.

Another Use For ", A" [i83]

The filename extension for append (,a) can helpc out when you're word
processing. If you're creating a document and wish to maintain a table of
contents, list of references, or any notes that come to mind, you can keep
appending to a file by putting a “,s,a” or “,p,a” after the filename (depending
on whether you're using SEQ or PRG files). Just set a “range” on the next note
you wish to add to the file, and save the range with the above extension. Bits
and pieces uses this technique with Superscript to keep a list of B&P authors in
a separate file.

Creating DEL Files (65, 126) David Stevenson, Pilot Mound, Man.
“A ‘DEL’ file may be created as follows:

OPEN2,8,2,"0:TEST,S,W"
OPEN 3,8,3,"0:TEST,SW"
PRINT#2, " FIRST"
PRINT#3," SECOND"
CLOSE 2: CLOSE 3

The first file opened will become a DEL file. The DOS allows you to open more
than one file with the same name as long as you haven't closed any and
attempts to recover by giving a different file type designator. If you try this with
more than two files all but the first two are lost. To make both files easily
accessible just rename, changing the first one in the directory.

This happens with SEQ, PRG or USR files (or a combination) on my 1541. I
haven’t seen mention of this anywhere.”

Neither have we. It seems to work with the 8050 as well.

184 The Transactor Book of Bits and Pieces #1

Read Blocks Free Directly [183] < WWW Commodore ca

May Not | rint Without Pe

This will let you directly read the number of blocks free on the current dnsk
without any disk access (the disk must have been previously used in some
way).

5 rem=* read blocks free-1541

6:

10 lo =250: hi=2: rem $02fa-$02fd

20 z$ =chr$(0)

30 open 15,8,15

40 print#15, " m-r " chr$(lo)chr$(hi)chr$(4)

50 get#15,108,11$,h0$,h1$

60 f0 =asc(l0$ + z$) + 256 *asc(h0$ + z$)

70 print " blocks free: " 0

80 close 15

For the 8050 or 8250, make these changes (sorry, no 4040/2040 version):

10lo=157: hi=67: rem $439d-$43a0
90 f1 =asc(11$ +z$) + 256+asc(h1$ + z$)
100 print” blocks free - 0:"f0", 1:"f1

1541 Track Protect (215 John R. Menke, Mt. Vernon, IL

It's sometimes useful to be able to reserve certain tracks for later use, or
prevent programs and files from being saved to a disk or certain tracks. Here’s
a short, quick 1541 utility which save-protects an entire disk or designated
tracks. It works by writing zeros to the BAM (Block Availability Map), thereby
misinforming the DOS that those tracks have already been used and are
unavailable.

Conveniently, the BAM is restored and the save-protection removed simply
by validating the disk.

ON | 10 print" save—protect”
EN | 20 print" (d) entire disk

IN | 30 print” (t) a track

MO | 40 geta$:ifa$ = " " then40
FH | 50ifa$="d" then x=4:y =143: goto 100
MD | 60if a$<>"t" then 40

FE | 70 input” track number " ;t
BB | 80if t<1 or t>35 then end
CM | 90 x=t*4: y=x+3

CC | 100 open 15,8,15

IK 1110 0pen5,8,5,"#"

The Transactor Book of Bits and Pieces #1 185

n

MO | 130 print#15, " b—p¥as;x May Nol Reprint Without Pe
MN | 140fori=xtoy

LJ | 150 print#5,chr$(0);

EK | 160 next

FD | 170 print#15,"u2. " 5;0;18;0

IM | 180 print#15,"u; "

GC | 190 ciose 5: close 15

| JO | 200 print” validate deprotects”

Scratch & Save (219 Bob Hayes, Winnipeg, Man.

“Unlike SAVE with ‘@:’, this program actually scratches your old file before
saving the new one. | initially wrote it as an additional command to the
TransBASIC language. Once the program is in memory, type this:

SYS<start address> " filename "

Notice there is no “,8” needed.

Below are BASIC loader and PAL source listings of “Scratch & Save”. The start
address of these listings is $C000 (49152), but the program is fully relocatable.
If you're using a dual drive, you'll have to remove lines 350 and 360 from the
source code, and specify the drive number in the filename whenever you call
“Scratch & Save”.

PO
LI
LF
DH
GK
oC
MB
AF
IN
CB
BF
EC
MB
PG
AC
GH
MA
KF
00

10 rem* data loader for " scratch & save” *
20cs=0

30 for i=49152 to 49252:read a:poke i,a

40 cs=cs+anexti

50:

60 if cs<>14558 then print" * data error ": end
70 rem sys 49152 " fiiename "

80 end

100

1000 data 32, 158, 173, 32, 163, 182, 134, 251
1010 data 132,252, 72,162, 0,189, 90,192
1020 data 32, 210, 255, 232, 224, * 11, 208, 245
1030 data 169, 8, 32,177,255,169, 111, 32
1040 data 147, 255, 169, 83, 32, 168, 255, 169
1050 data 58, 32,168, 255, 104,170,160, O
1060 data 177, 251, 32, 168, 255, 32,210, 255
1070 data 200, 202, 208, 244, 132, 253, 32,174
1080 data 255, 165, 253, 166, 251, 164, 252, 32
1090 data 189, 255, 169, 8, 168, 170, 32, 186

186 The Transactor Book of Bits and Pieces #1

PP | 120 print#15," ul: SQJMWW Commodore ca

3[e]s]

HL
GN

HK

FD
HC
LP
NI
AC
OP
MA
KB
KA
GD
HE
OE
DC
FF
GD
DJ
AO
MP
P
NB
FG
DM
10
KJ
PD
DG
DF
KP
HE
BN
LA
IN
J
HE
N
JH
CcL
IF
JA
oM
oC

1100 data 255, 169, 48, QGWWWGLQGI‘H?@OdOFe ca

1110 data 216, 255, 88w 67 @2NBF184) rhout Pe
1120data 72, 73, 78, 71, 32

100 sys700

110 ; scratch and save

120 ; bob hayes; winnipeg, manitoba
130 ; routine help from brian munshaw's
140 ; "new error wedge ".

150 .opt oo

160 write = *

170 jsr $ad9%e

180 jsr $b6a3

190 stx $fb

200 sty $fc

210 pha

220 fdx #0

230 mloop= =

240 Ida smsg,x

250 jsr $ffd2

260 inx

270 cpx #11

280 bne mloop

290 lda #8

300 jsr $ffb1 listen
310 lda #$6f

320 jsr $ff93 ;send secondary address
330 lda #"s"

340 jsr $ffa8 ;ciout
350 lda #":"

360 jsr $ffa8 ;ciout
370 pla

380 tax

390 idy #0
400sloop = =

410 Ida ($fb),y

420 jsr $ffa8 ;ciout
430 jsr $ffd2

440 iny

450 dex

460 bne sloop

470 sty $fd

480 jsr $ffae ;unisn
490 lda $fd

500 ldx $fb

Tha TranerntAr Ranl ~f Rite AnA Dinroe #1 127

n

C-64 POP 09, 10]

Sometimes you need to clean up the stack and re-start a program without
killing variables, for example when you need to get back to the main menu
from a deeply nested subroutine after an error condition occurs. The POP
routine that works on the PET doesn’t do the trick for the 64, but you can use
this trick instead: just LOAD the program from within itself. That will cause an
automatic re-run, cleaning the stack of subroutine return addresses and
for..next loops, but leaving variables intact.

C64/VIC20 PRINT AT [210] M. Van Bodegom, St. Albert, Alberta

“On many computers you can move the cursor to any spot on the screen with
a simple command. For example, TAB(8,8) or PRINT AT(8,8); would allow you
to print starting at row 8, column 8. Commodore doesn’t have a BASIC
command for this so most programmers PRINT down to the line and then use
TAB(column). There is an easy way to get the cursor directly to any spot on the
screen. The KERNEL has a routine that does just what we want. Simply use
this line to set the cursor location:

POKE 781, row: POKE 782,column:
SYS 65520: PRINT " message "

Menu Select [147] Tim Buist, Grand Rapids, MI

There have been many menu selection programs, but this is one of the nicest
to use, and it’s fairly short! Just put the selections in the array ‘A$(), the
number of choices (up to 11) in ‘N’, then call this subroutine. It will display the
options centred on the screen and highlight the first one. You can use the
cursor up/down keys to highlight any option, and confirm the selection by
pressing RETURN.

188 The Transactor Book of Bits and Piaras #1

PD | 510 dy $ic g Www. Commodore ca
AB | 515 jsr $ffbd .Smam May Not Reprint Without Permiss
DA | 520 ida #8

BO | 530 tay

HO | 540 tax

NO | 550 jsr $ffoa ;setlfs (open8,8,8)

BK | 560 lda #%$2b

CF | 570 ldx $2d

DG | 580 ldy $2e

PJ | 590 jmp $ffd8 ;save $2b,2cto .x,.y
| JJ | 600 smsg .asc "scratching "

510N

The subroutine returns with the chosén ;ﬁﬁ]eWoWﬁﬁ/mgeQiH‘t]m@Qﬁ%Fle .Ca
You can then branch the the appropriée sectich/cf' yotf fifain Progratn With''ssion
ON I GOTO or ON I GOSUB. With the few additions given below, you can
select using either the joystick or the keyboard.

100 rem+* menu subroutine *

110 cd$ =chr$(17): cu$ =chr$(145)

115his="[": ofs = "[§1"

116 rem use reverse—on and reverse—-off for above,

117 rem any two colours, or a combination.

120 aa=(25-n+*2)/2: printchr$(147)

130 fori=1 to aa: print: next

140 for i=1 to n: printtab(20-len(a$(i))/2);0ff$;a$(i): print: next
150 print chr$(19)

160 for i=1 to aa: print: next: i=1

170 printtab(20-len(a$(i))/2); hi$;a$(i)

175 get a$

180 if a$<>cd$ and a$<>cu$ and a$<>chr$(13) then 175
190 if a$ =chr$(13) then return

200 printcu$;tab(20-len(a$(i))/2);oft$;a$(i)

210 ifa$ =cd$ then print: i=i+ 1: if i>n then 150

220 if a$ = cu$ then print cucucu$;: i=i-1: if iK1 then 150
230 goto170

Notes:

1) Line 115 is set up to highlight the selected option with reverse field. If you
wish, use colours for ‘HI$ and ‘OFF$’, or colours combined with reverse on
and reverse off (see comments in program).

2) To allow use of the joystick as well as the keyboard (up/down and fire to
select), add the following lines:

176 j = peek(56320): rem 56321 for joystick port #1
177 if j=111 then a$ =chr$(13)

178 if j=125 then a$ =cd$

179if j=126 then a$ =cu$

LIST Freeze Yijun Ding, Pittsburgh, PA

Here's a real convenience utility. It lets you temporarily halt a program listing
in progress to examine a section of code. Saves having to BREAK and re-list all
the time! Once activated, this 21-byte machine language demon will live
unobtrusively in your C-64 until you hold the SHIFT, CTRL, or Commodore
key during a LIST to “freeze” the action. Just RUN the program below to set it

up.

Tha Trrneri~tnar Rnnk nf Rite nnA Diaroc #1 10

10 rem= data loader for I|stfreeze'WWW Commodore ca

20cs=0 May Not | rint Without Perr

30 fori=49152 t0 49172: read a: poke i,a
40cs=cs+a: nexti
50
60 if cs<>2031 then print" !data error! " : end
65 sys 49152
70 print” Iist freeze activated.

C

80 print " gefpress ctrl, shift or commodore keys to
halt program listings.

90 end

100:

1000 data 169, 11,141, 6, 3,169,192, 141
1010data 7, 3, 96, 8,174,141, 2,208
1020 data 251, 40, 76, 26, 167

A Couple of Plus/4 Goodies [i65, 174,227

The first one, Waving Spokes, was originally designed to run on a Radio
Shack plotter. You'll understand its title when you run it a few times. You can
get vastly different patterns by supplying different parameters on start-up.
Some recommendations: 20,6,20; 50,4,10; 30,6,60; 40,20,10; 20,4,100

After a pattern is complete, you can press F6 (RUN) to generate a new one.

1rem" waving spokes — plus/4

10 graphic 0,1

20 input” no. of spokes, no. of waves,
amplitude of waves " ;spok,waves,amp

30 graphic 1,1

35 p=360/spok

40 for angle =0 to 360—p step p

50 locate 160,100

60 fori=01o 100 step 5

70 d =amp+sin(i*waves*.01745)

80 x =i*cos((angle + d)*.01745)

90 y =ixsin((angle + d)*.01745)

100 drawto 160+ x,100 +y

110 next i,angle

This next dazzler - Kaleidoscope ~ was originally written for an Atari
machine. It's uncomplicated and easy to modify, but produces a constantly
changing intricate pattern —- certainly worth a try.

190 The Transactor Book of Bits and Pieces #1

on

1rem” kaleidosqfpg- WWW Commodo re Ca

50 xm=159: ym = |99 Moy ot Reprint Without Pe

60 graphic 3,1: color 0,1: color4,1:
color1,8: color2,2: color3,4

65 do

70forb=1toxm

80 mc=mc+1: if mc>3 thenmc =1

90 draw mc,b,c to xm-b,c

100 draw mc,b,c to xm-b,ym-c

110 draw mc,b,ym-c to xm-b,ym-c

120 draw mc,b,ym-c to xm-b,c

130c=c+6:ifc>ymthenc=0

140 next b: color 3,4,

150i=(i+ 1)and?

160 loop

BASIC Programming Tip - Simulated IF..THEN..ELSE

Here is a way you can put a statement on the same line as an IF. . .GOTO and
have it execute if the branch isn? taken:

ON —(condition) GOTO 1000: statement(s)
This is equivalent to
IF (condition) THEN 1000: ELSE statement(s)

Since the C-64 and PET don’t have an ELSE, the above trick can come in
handy.

See why it works? By negating the condition, we get ON 1 or ON 0, which

jumps to the given line if the condition is true, or “falls through” to the next
statement if not. A bit tricky, but easier to follow than a rat’s nest of GOTOs.

ML Binary/ASCII (96, 116, 137, 145, 163, 207] Tim Buist
Conversions Grand Rapids, Ml

“This first routine is easy to use: just place the binary number you wish to
convert after the SYS, for example:

SYS 49152, 110010

The 16-bit result will be in RESULT and RESULT + 1, which are 828 and 829 in
the listing below.

Tha Trrinenrtar Ranl nf Rite aind Piarec #1 101

n

100sys700;pal 64 assembler & WWW Lom modore ca
101;this program converts an ascn May Not Reprint Without Permis

102;binary number to actual binary
103;form and stores it in "RESULT"
104;it works on anything up to 16 bits

105;

110.opt oo

120result = 828

130 lda #0 :Clear it first!
140 sta result JIsb

150 sta result+1 ;msb

160loop = =

170 jsr $0073 ;chrget

180 cmp #'0°

190 beqg zero

200 cmp #"1°

210 beq one

220 rts ;returnif not O or 1
230zero =

240 clc

2500ne = *

260 rol result ;put in carry bit
270 rol result+1

280 jmp loop ;get more digits

While looking like it does nothing, it actually rotates a bit into RESULT. Since a
CMP. . .BEQ will sett the carry bit, at ONE the carry bit will be ROLed into
RESULT. If the CMP #'0’ succeeds, the carry bit is cleared and a zero inserted
into RESULT. These Sure are fun to write!

Here’s another simple but fun subroutine that converts an 8-bit binary
number to ASCIl binary and prints it. While this is again a not-so-
complicated-that-I-couldn’t-think—of-it subroutine, it might spark someone
just getting started in M.L.”

100 sys700;pal 64

101 ;this program converts a byte
102 ;toits ascii binary equivalent
103 ;and prints it.

105 ;

110 .optoo

120 number = 828 ;result will go here
130 ldx #7 ;8 bits

140 loop = *

150 Ida #'0"

160 asl number ;get a bit from number

109 Tha Trane~~tar RAnl ~f Rite mnA Diarac #1

n

170 adc #0 ("g WddhEdgynNModore.ca

180 jor Sffd2ms McpripeitReprint Without Permission
190 dex ;next bit

200 bpl loop ;all 8 bits done”?

210 rts

Lett’er Fly! [198]
Try this:
10818 =chr$(19) + chr$(17) + chr$(157): s2% =chr$(19) +
chr$(29) + chr$(20)
20 get a$
30 print s1as2$: goto 20

Press a few letter keys and watch. We know, neat but totally useless, right?
Well, modify line 20 like this:

20 geta$: ifa$=""then 20

Now try it. You might have a use for an input routine like that in one of your
programs.

Tha Trrnenr~tnr Ranle nf Rite nnA Diarac #1 102

www.Commodore.ca
May Not Reprint Without Permission

Volume 6 I§Stw0210n1modore ca

t Without Pe

Multiple Directory Pattern-Matching (s, 125, 147)

Commodore’s filename pattern-matching feature for disk directories is more
powerful than many people are aware. One little-used ability is the use of
multiple patterns in a directory listing. For example, you could get a list of all
files on the disk in drive zero starting with either the letter ‘S’ or the letter ‘D’

LOAD " $0:5*,0:.D+".8

Up to five selective directories may be used in a single directory filename.

Corrupting RAMTAS Routine [220] Edward Smeda
Victoria, Australia

RAMTAS ($FF87) is a C-64 Kernal routine which, among other things, has the
function of setting the top of memory pointer. This is done by non-
destructively testing RAM until it finds a memory location which does not
return the value written to it. This location, usually $A000, then becomes the
top of memory. RAMTAS is part of the C-64 power—up routine ($FCE2).

Normally, no problems occur with this routine. However, if you have any
machine code or other information stored in the RAM under BASIC ROM you
will find that a hardware reset (reset button) or software cold—start (SYS 64738)
will always corrupt the byte at $A000. This occurs because when RAMTAS
tests $A000, it writes the RAM with $55 but, on reading, it reads the BASIC
ROM instead and finds a different value. RAMTAS aborts at this point, leaving
$55 in the RAM at $A000.

While this does not really qualify as a bug, programmers should be aware that
it does occur and should make allowances. There are a number of ways
around the problem, but the simplest is to avoid using location $A000 for
program or data.

Editor’s note: On the other hand, this “feature” can be used to check if a
reset occurred since a program was last RUN

Where am 1? Noel Nyman, Seattle, WA

Relocatable machine language programs are the easiest to use. Invariably
some nifty routine from The Transactor sits in a spot needed for another part of
your program. it would be best if authors made their code relocatable. This
isn’t always easy. JMPs within the code are usually necessary and to use JMP
commands, absolute addresses are required.

Tha Tranerntar Ranl ~f Rite nnA Dianace #1 108

However, if the code can find its own locatign lg.mm%%@ﬂhm@éé O re Ca

can be calculated regardless of where the usémstuck{R¢ ptegranr!Int Without Pe

The “Where am [?” routine below stores a reference to its beginning address
before executing the main program. It uses a JSR to force the program counter
(the address of the JSR instruction) to the stack, then retrieves the address.

JSR $FFDE ;read real-time clock, or any harmless JSR
TSX
DEX
DEX
TXS :move the stack pointer to the stored address
PLA
STA $FD ;store high byte of address
PLA
STA $FC ;store low byte
(main program)

The vector stored at $FC/$FD is the starting address of “Where am 1?” plus
two. By adding an offset to this value and using indirect JMPs, the program can
be made totally relocatable.

QUAKE! [i48]

This is another one of those lovely Transactor specials, frivolous but somehow
worth typing in anyway. QUAKE!! will simulate the effect of a 6.0 on the
Richter scale, or programming while using hallucinogenics. Good at parties or
for practical jokes; amaze your friends! The BASIC loader below will generate
the 191 bytes of machine code which unleashes “quake mode” - you'll still be
able to program normally while the quake is occurring. Quake mode is
activated with SYS 49152 and turned off with SYS 49155. Make sure you have
plenty of air-sickness bags nearby!

AA | 10 rem+ data loader for "quake"” *
DK | 11 rem# transactor magazine ‘85 —cz
KJ | 15 rem save” @0:quake.bas" ,8
LI { 20¢cs=0
KF | 30 for i=49152 to 49342:read a:poke i,a
DH | 40cs=cs+a:nexti
GK | 50
FB | 60 if cs<>16666 then print" data error! " : end
DD | 70 sys 49152
EP | 80 rem sys 49155 to stop
KF | 90 end

T V3 Tha Temnmammatar Danal, A€ Dite ~nA Dinsans 41

IN | 100 g www.Commodore.ca
IH | 1000 data 76, 49, 1928 7694 2\o{gEprig Wigout Permission

DA | 1010data 1, 2, 3, 4, 5 6 7, 7
PB | 1020data 7, 7, 7, 6, 5 4, 3 2
BA | 1030data 1, O, O, O, 4, 5 6, 7
DD | 1040data 7, 7, 7, 6, 5 4, 3, 2
FP | 1050data 1, O, O, O, O, 1, 2, 3

OC | 1060data 4,120,169, 88,141, 20, 3,169
FG | 1070data 192, 141, 21, 3,169, 1,141, 26
NC | 1080 data 208, 169, 0, 141, 18,208,173, 17
MM | 1090 data 208, 41, 119,141, 17,208,173, 22
EJ | 1100 data 208, 41, 247,141, 22,208, 88, 96
JH | 1110data 173, 25,208, 41, 1,240, 11,169
EF | 1120data 1,141, 25,208, 32,150,192, 76
KO | 1130 data 49, 234, 104, 168, 104, 170, 104, 64
BP | 1140 data 120, 169, 128, 141, 26, 208, 169, 49
LH | 1150 data 141, 20, 3,169, 234,141, 21, 3
MK'| 1160 data 173, 22,208, 41,240, 9, 8,141
AK | 1170 data 22,208,173, 17,208, 41,240, 9
PO | 1180data 11,141, 17,208, 88, 96,174, 6
CN | 1190 data 192, 173, 22,208, 41,248, 29, 7
DG | 1200 data 192, 141, 22,208,173, 17,208, 41
HF | 1210 data 248, 29, 28,192, 141, 17,208, 238
PK | 1220data 6,192,173, 6,192,201, 21, 144
| PG | 1230data 5,169, 0,141, 6,192, 96

The Schizophrenic Sprite [i12]

The shape of any C64 sprite is completely determined by 63 bytes in memory.
To change the shape of a sprite, the sprite definitions are usually kept static,
and pointers are changed to point to definitions elsewhere in memory. What
about doing the opposite - keeping the sprite pointer constant but changing
the 63 bytes defining the sprite? What if a sprite definition occurs in screen
memory? To find out, enter this short bit of code:

10 rem schizo-sprite, cz85

20 vic =53248: rem vic chip at $d000
30 poke vic,25 : poke vic+ 1,100

40 poke vic+21,1: poke vic + 39,1
50 poke vic +23,1: poke vic + 29,1

60 poke 2040,16

A double-sized white sprite appears, whose shape changes depending on the

first 63 characters on the screen - the top screen line and part of the second.
The fun part comes by playing. Try different groups of characters:

Tha Trrne~n~tar RAnl Af Rite mnA Din~ne #1 107

“joioioioi”..etc produces the effect of thre¢ papllW M‘el&@fscr@bmlﬁ@ {HQOFQ Ca

asterisk and english pound characters displays altéepedting’ eheckerboard’ Pe

effect; “cxcxcxcxcxexexc” is pretty interesting, too (all of these were found by
experimenting). Type in your name to see what it “looks like”. As usual, we
leave it to you to find an application for the above bit of foolishness.

Try This [193]

10 geta$:ifa$="" then printb$;: goto 10
20 b$ =b$ + a$: printb$;: goto 10

Press a few keys, then try some cursor controls. It will eventually die with a
?STRING TOO LONG, but by then you'll be tired of it anyway.

Error-Driven Catalog Routine for VIC/64 (82, 103,133,215

This machine-language program sits in the cassette buffer and displays a
directory of drive zero whenever a “>” (greater-than) is entered. It works by
trapping the syntax—error vector, so it won't bother anyone when it’s not in
use.

LB | 10 rem save" O:errcat 64.bas " ,8

MM | 100 rem *=* rte/85 - error vector driven catalog
routine for c64 and vic 20

NJ 1 110 rem =+ press > then (return) for a catalog of drive zero
HG | 120 for j=828 to 951: read x: poke j,x: next

DD | 130 sys(828)

KK | 140 rem

PE | 150data 169, 71,141, 0, 3,169, 3, 141
JN | 160data 1, 3, 96,201, 49,208,104, 169
GK | 170data 2,162, 182,160, 3, 32,189,255
FC | 180data 169, 2,162, 8,160, 0, 32, 186
BD | 190 data 255, 32, 192,255,162, 2, 32,198
ID | 200 data 255, 169, 13, 32,210, 255, 32,207
GB | 210 data 255, 32, 207,255,160, 2, 32,207
CB | 220 data 255, 32, 207, 255, 32,207, 255, 170
DD | 230data 32, 207, 255, 132, 251, 32, 205, 189
IH 1 235rem ok, ok, ok, ok, ok, ok, ok, 221
Note: use line 235 to change line 230 for vic 20
LG | 240 data 164, 251, 169, 32, 32,210,255, 32
AC | 250 data 207, 255, 32, 210, 255, 32, 183, 255
LI | 260 data 208, 19, 200, 192, 28, 208, 240, 32
CD | 270 data 225, 255, 240, 9,169, 13, 32,210

108 The Traansactor Rnok of Rits and Pieceas #1

on

KN | 280 data 255, 160, 4D, WJWW@COZHWOdOFe ca
PK | 290 data 195, 255, 32w204, 256, 1eR2Re2g8n! Feihout Perm
ML | 300 data 139, 227, 36, 48
L JJ | 305rem 58,196, ok, ok
Note: use line 305 to change line 300 for vic 20

Notes On REVCNT:
The Error Recovery Count Variable - CBM Drives [200]

Your drive can tell you quite simply when it is out of alignment. By writing a
value of 193 to location REVCNT (see below), your drive will err out immedi-
ately when an alignment error occurs. The code and an explanation follows
below:

1541/2031LP : print*15," m-w " chr$(106)chr$(0)chr$(1)chr$(193)
: rem loc $006a

2040/4040 : print*15," m-w " chr$(252)chr$(67)chr$(1)chr$(193)
: rem loc $43fc

8050/8250 : print*15," m-w " chr$(245)chr$(16)chr$(1)chr$(193)
: rem loc $10f5

The Reasons Behind Choosing The Value 193 (Binary 11000001)

A quick note on the 6502 BIT instruction. When a BIT is performed on a
memory location, the NEGATION flag is set from bit 7 of the location, and the
OVERFLOW flag is set from bit 6 of the location.

A BIT instruction is performed on REVCNT by DOS for two different reasons.
First, after a BIT on REVCNT, a BVS is made that branches past a routine that
executes a track offset. Second, after a BIT on REVCNT, a BPL is made that
branches past a routine that tosses a BUMP onto the job que. These two
reasons explain why Bits 7 and 6 were set (192), but still leaves the last bit, Bit
0, unexplained. Look below for the answer.

Whenever an error occurs when reading or writing to disk, the routine is
attempted a set number of times before aborting. Location REVCNT holds the
key to the number of attempts. The DOS will AND location REVCNT with
#$3F, storing the result in the Y register for a counter of the number of
attempts. [f you were to AND 192 with $3F, the result would be zero:

11000000 (192)
00111111 ($3F)

00000000 after ANDing

Tha Traner~tar Ranl ~f Rite AnA Diarac #1 100

Therefore, in order to not loop through 2§5 cméé\/deaY\énQQ [ﬁﬂzm_@@Ol’e Ca
routine), bit 0 has to be set. This gives a totai*alue ot 193\ Bits 7P6 artd (see) P

Original 1541 tip thanks to the Central Coast Commodore Users Group
Newsletter — April 2, 1985.
ML Right Justify [141] Richard Perrit, South Porcupine, Ont.

In Volume 5, Issue 6 we ran this one-line “right justify” for 80-column
computers:

fori=1 to 80: print” ;: for j=1to 24: print : next: next
Richard Perrit of South Porcupine, Ontario has since re-written this special

effect in machine language. The program is relocatable and can be installed
using the BASIC loader below.

CK | 10 rem === right justify 80 **=
GD | 20 rem === richard perrit *#x
LO | 30rem *++ august 11/85 *=*+
MJ | 40:

JE | 50 rem ad=49152 for c-64
GE | 60 rem ad=634 for pet

JL | 70 rem must have 80 columns

EM | 80:
IL | 110 ad=634: fori=ad to ad+31: readx: ch=ch +x:
pokei,x: next

EM | 120 if ch<>4605 then print" !data error! " : stop

FK | 140data 169, 0,162, 1,160, 1,169, 19
IO | 150 data 32, 210, 255, 169, 148, 32,210, 255
CO | 160 data 169, 141, 32, 210, 255, 200, 192, 24
| AB | 170 data 144, 241,232, 224, 80, 144,229, 96

Slipped Disks: (24,131, 199] Scott Maclean,
Speeding up your disk drive Georgetown, Ont.

This item deals with speeding up dual drives - examples are given for the
4040, 8050 and 8250. Unfortunately, the method given here will not work on
the 1541, because the method we are using does not exist on the 1541.

In the dual drive memory map, at location $1000 (4096 decimal), to location

$1003 (4099 decimal) are 3 interesting variables. (Note: 8250 values also apply
to the 8050 drives)

21N Tho Tranerirtnr Ranlk ~f Rite and Dinrac #1

Contents Contentf™ s WWW. Commodore ca

Location (4040) (8250)%wsLabblayDisstAptiont Without Pe
Hex Dec Hex Dec Hex Dec
$1000 4096 $0A 10 $03 3 ID Interrupt Delay
$1001 4097 $0D 13 $0D 13 MAD Motor acceleration delay
$1002 4098 $30 48 $30 48 MCT Motor cutoff time

We can change the contents of these locations to change the speeds of the
different functions of the disk unit. We can change the value of the Interrupt
Delay, which increases or decreases the overall speed of the drive, including
the transfer rate of the drive. Very small delay rates will cause read errors and
the drive won't read a thing from disk. The most noticeable thing this value
changes is the speed at which a “drive bump” occurs. For instance, set thisto 5
on a 4040 and then open a file to disk with the drive door open to cause an
error. You will hear a buzzing noise instead of the familiar
“WHAPWHAPWHAP” noise a 4040 makes. Also affected is the stepping rate,
if you send the head from track 1 to track 35, you will notice a significant
increase in stepping speed. A safe value for the 4040 is 9, and for the 8050/
8250 is 2.

We can also change the Motor Acceleration Delay rate. When you tell the drive
to access the disk, it turns on the drive motor, then waits for a certain amount
of time for it to accelerate and stabilize to exactly 300 RPM. We can change this
value to change how long the startup delay is. Safe values for all drive types is
2. This value has the most visible effect, as it decreases directory search times,
and generally speeds all internal disk access up. Using these two functions,
you can read the directory from a 4040 with about 1 second of drive motor
time. After setting these two locations and requesting a directory, the 4040 will
do a drive bump, move to track 18 and seem to stop instantly. However, it will
continue sending directory data until it has finished the directory.

The last location is the Motor Cutoff Time. This is the delay the drive uses after
afile is closed, or after data stops flowing. Normally, after you finish using the
drive, it will whirr for a few seconds longer, even though it isn’t doing
anything. By changing the value in this location you can control how long it
will continue to spin the disk. If you are used to the length the 4040 spins, and
you then start to use an 8250, you will notice that the 8250 seems to take
forever to stop spinning. Using all three locations, it is possible to change the
entire speed characteristics of the drive. Following is a table showing the safe
values for each location, followed by a short program that can be used to
change the values easily and quickly.

One last note: | would expect that the same method should operate correctly

on the SFD-1001, but don’t quote me on that as | have never used one of those
units.

The Transactor Book of Bits and Pieces #1 201

3[e]s]

Location Lower Limit £ ¢ WWM -lgn@tn‘] modo re Ca

Hex Dec 4040 8050/8250 4020 No1g50/8250 hout Per
$1000 4096 $0A 10 $03 3 $F5 250 $F7 252
$1001 4097 $02 2 $02 2 $FE 254 $FE 254
$1002 4098 $02 2 $02 2 $FE 254 $FE 254

Editor’s Note: The above Lower Limit values may not work on all drives -
experiment. Also, speeding up your drive may make it less reliable; don't trust
important data or complex disk functions to a hyped-up machine.

10 rem ==program to change velocity

20 rem ==+values of dual drives

30 rem **by scott maclean

40 open 1,8,15:rem **open command channel
50 print chr$(147)

60 input " Interrupt Delay " ;id

70 input "Motor Accel. Delay " ;mad

80 input " Motor Cutoff Time " ;mct

90 print#1, " uj" :rem **reset drive

100 print#1, " m-w " chr$(0)chr$(16)chr$(3)chr$(id)chr$(mad)chr$(mct)
110 rem **sets up at locations $1000-$1003
120 close 1

10 rem =*quick program to speed up

20 rem **dual drives

30 open 1,8,15:rem **open command channel

40 print#1, " uj” :rem *=*reset drive

50 print#1, " m-w " chr$(1)chr$(16)chr$(2)chr$(2)chr$(2)
60 close 1

1541ders (7,163, 183) Daniel Bingamon, Batavia, Ohio

When [attempt to open a relative file with a record length of 58 (ASCII code for
colon) I get errors. It appears that the 1541 likes to think of the colon as a
delimiter and since between the comma and the colon is nothing, you get an
error for opening a file of record length zero. Maybe this will give Commodore
the hint to tear into their source and fix this along with a few other problems
(like SAVE@), if we find enough bugs.

The “UJ” command sent via the command channel is being used by some
widely sold software. Some drives (most of them) require three seconds for the
reset, but some software only waits one second or less. this causes the
computer to “hang up” when further disk commands are given. This can
occur when the programmer writes a routine in BASIC, then compiles and
does not compensate for the speed increase in the FOR.NEXT time delay
loops.

202 The Transactor Rnolk of Rits and Piares #1

C-64 BASIC STP 47,207] < wwaek@@mmﬁm.om ca

May No rint Without Pe
“STP” stands for “Sequential To Program”. This is a BASIC STP for those who
don’t want to STP the M/L way. Refer to Chris Zamara's STP program in
Transactor Vol 5, Issue 6.

This routinie will enter any program that has been listed to a SEQ file on disk. It
uses the Dynamic Keyboard technique from BASIC.

As a dividend, BASIC STP may be used to append or merge several programs
together. The individual program lines must have no duplicate numbers or
your final program will be a total mess.

A great idea is to have a series of routines, with specific numbering for each
category of routine. Call and merge them together with BASIC STP. Build a
program of routines, using BASIC STP to do it.

To use it for appending a program or routine to an existing program, you may
LOAD Basic STP and list it to the screen. Then LOAD the program you are
using as the “master” program. Bring the cursor up to the top line of BASIC
STP, and hii RETURN over all the lines, 63990 through line 63999. Now BASIC
STP is appended to the program.

RUN 63990, and enter the file name of the routine or program on SEQ file you
wish to append or merge with your “master” program. BASIC STP will do just
that.

The last step is to delete BASIC STP lines, and SAVE the new program.

KK | 63990 poke828,169: poke829,0: poke830,76
FM | 63991 pokeB831,49: pokeB832,243: closed

PG | 63992 input " filename " ;f$: open4,8,4,1$: get#4,a$,a$:
pok9829 1:a%=""
MP | 63993 print " [Slelalpoke812,60: poke813,3JHl" : if a$<>" "
then 63995

Pl | 63994 get#4,a$

FI | 83995 printa$;: if a$<>chr$(13) then 63994

IO | 63996 get#4,a$: a=0: if st=0 then a=asc(a$ + chr$(0))
NB | 63997 print"a$=chr$("a"): goto63993

BK | 63998 if st then poke829,0: close4: stop
GO | 63999 poke198,3: poke631,13: poke632,13: poke633,13:
print"[§": end

The Transactor Book of Bits and Pieces #1 203

Gaussian Elimination Routine ZANES Witka) Go it END
May Not Reprint Without Pe
The following routine is capable of solving up to nine equations in nine
unknowns of the form Ax =b. It can also solve or yield information about non-
square arrays. It is done entirely off-screen but the user should be aware that a
little gentleness in key input is appropriate. The routine occupies 700 or so odd

bytes in the raw and is an excellent tutorial for those who study matrix theory.

EL | 100 rem * gaussian elimination routine *

FI | 110 print: input " Row Dimension " ;n: input " Column
Dimension ™ ;m

LO | 120 dim a%(n,m + 1),b(n+m+1):fori=1ton:forj=1tom+1:
K=i+]j

MN | 130 print®a"i;j;: input” = ";a(i,j,b(k))

AP | 140 print ;- next: next: print: print"Next Row Dim":n-1;
"Next Col Dim " ;m-1

NG| 150 fori=1to n: for j=1tom+ 1: printa(i,j,b(k));: next: print:
next: print

PP | 160 fori=1ton:forj=1to m+ 1: def fna(i) =-a(i-1,1,b(k))*
a(i,j,b(k))

KK | 170 def fnb(i) = a(i,1,b(K))*a(i-1,j,b(k)): r =fnai) + fnb()

KA | 180 r1 =-a(i-1,1,b(K))*a(i,j,b(K)): r2 =a(i,1,b(k))*a(i-1,j,b(k)):
ra=rl1+r2

CD | 190 r1 =a(i,1,b(k))*a(i-1,j,b(K)): r2=a(i,1,b(k))*a(i-1,j,b(k))
ctb=r1+r2:r=rax*rb

GN | 200 r=fna(i+ 1) + fnb(i+ 1): printr;: next: print: next: if m=1 and
n=1then 220

PP | 210clr: goto110

PH | 220 y =a(n,m+ 1,b(k))/a(n,m,b(k)): print y; " is a solution": clr:
goto 110

The Lottery Companion [119]

When you run out of birthdates, license numbers and hats to pull numbers
from, you might want to use this program the next time you play a lottery. It
will pick up to ten sets of six numbers, chosen from a pot of 39 or 49, as you
choose.

OO | 100 rem save " O:lottery " ,8

KA | 105 rem ** an evers co-production 1985
MJ | 110 dim win%(49,10), out$(10): c$ = chr$(147)
JG | 115 print c$ " select option "

DF | 120 print " 1) Iottario 6/39 "

HD | 125 print "2) lotto 6/49"

NF | 130 input x$: if x$<" 1" or x$>"2" then 130

204 The Transactor Rnok of Rits and Piarac #1

re.ca

CF
IN

IG
FA

HN

Kl
CL

DH
MA
EB
AM
Mi

AO
HK
DH
EP
HD

MD

135 ot =39: if x$ = "2 {fftgh A Commodore ca

140 input " output (3) sCrgen (Ayprifiter=fay! Without Pe
: if dv<3 or dv>4 then 140

145 open 1,(dv)

150 input " required # sets (1-10) = ";max
: if max<1 or max>10 then 150

155 print#1, " your 6/ " mid$(str$(lot),2) " numbers
are:": print#1: print#1

160 rem assign the random values to the array

165 for try =1 to max: for pk=11t0 6

170 v% =rnd(0)*lot + 1: if win%(v%,try) then 170
: rem loop till un-used #

175 win%(v%,try) = 1: rem flag as used

180 next pik, try

185 rem = got the numbers — build the strings =+

190 for pik =1 to max: for asn=1 to lot

195 if win%(asn,pik) then out$(pik) = out$(pik)
+right$(" [3 spaces] " + str$(asn),4)

200 next asn, pik

205 rem =+ all ready - time to print **

210 for spt=1to 24 step 4: for prt=1 to max

215 print#1,mid$(out$(prt),spt,4);

220 next prt: print#1: next spt

225 print#1: close 1: end

The Evil Swords Of Doom!

Beware as the evil sword slices through the screen and wipes any characters
unfortunate enough to be in its way. Look out! Here comes another - you
never know where the next one will strike. Before long, all characters have
been slain by the EVIL SWORDS OF DOOM! Stay tuned until next issue for the
conclusion of this exciting tale. (PHHH Gimme a break Chris - KH)

10 rem evil swords of doom
20 a%$ = " MEIMESEVIES
30b%=" [e 1 e
40 print chr$(142)
50 print chr$(19)tab(rnd(1)*41)
60 fori = 1to19:printa$;

70 rem delay here if desired

80 next i: print b$;: goto 50

Tha TraneArtnr RAnk ~f Rite nnd Diarac #1 200R

n

www.Commodore.ca
May Not Reprint Without Permission

Volume 6, ISSNQ\OEO mmodore.ca
Mc 0 rint Without Perm
C-64 Input Routine (159] Dale Lambert,
With Screen Editing! Tupelo, MS

This little INPUT substitute allows any characters to be entered and also allows
full screen editing. It uses the input routine that BASIC uses in direct mode.

1 sys42336: for b =512 to 592: if peek(b)<>0 then next
2in$="": poke peek(71) + 256+peek(72) +1,0:

poke peek(71) +256+peek(72) + 2,2
3 poke peek(71) + 256+peek(72),b-512: in$ =mid$(in$, 1)

Quick Screen Code (96, 137, 145, 163, 191] Dale Lambert
to ASCII Conversion

This line will convert screen code (in the variable S) to ASCII:

a=(s and 127)or((s and 64)+2)or((64-s and 32)*2)

C-64/VIC20 Mini-Datafier [203] Dale Lambert

This program will quickly and easily make DATA statements for a machine-
language program.

All you have to do is put the starting address of the code in variable S, put the
end address in E, put the starting line number of the DATA statements in Z,
and the amount to increment the DATA line numbers by in variable 1. For
example:

1 s=49152(start): e =50000(end): z= 1000(line #): i=10(incr)
And here’s our program:

15=49152: €=49400: z=1000: i=10

2 print z"data ";: if s>e thenend

3k=s+6:ifk>ethenk=e

4 for s=sto k: print mid$(str$(peek(s)),2) ", " ;: next:
print chr$(157);chr$(32) :rem 1 left, 1 spc

S5print"s="s":e="e":z="z+i":i="i": gotoZﬂ",
poke631,13: poke632,13: poke198,2: end

The Transactor Book of Bits and Pieces #1 207

Dale’s Dazzler Trythlson IWWW COn‘lmOdOf‘e Ca
May Not | rint Without Perr sion
1a=192: b=200: c=53270: fori=1to 1000 step 001
pokec,a: pokec,b: next

C64 Meets The Alien (31,82, 91,111, 146] Giuseppe Amato
From The Cheap Sci-Fi Movie

Give this a listen, Earthlings:

15=54272: a=peek(162)and199: pokes + 24,15: pokes + 6,90:
pokes +4,21: pokes+1,a
2 pokes + 15,abs(99-a): goto1

VERIFIZER For Tape Users [1,219] Tom Potts, Rowley, MA

The following modifications to the Verifizer loader (see the VERIFIZER page in
this book) will allow VIC-20 and C-64 owners with Datasettes to use the
verifizer directly (without the loader) and just SYS to activate it.

After running the new loader, you'll have a special copy of the verifizer
program which can be loaded from tape without disrupting the program in
memory.

Just run the program below, pressing PLAY and RECORD when prompted to
do so (use a rewound tape for easy future access). To use the special verifizer
that has just been created, first load the program you wish to verify or review
into your computer from either tape or disk. Next insert the special program
tape created above and be sure that it is rewound, then enter in direct mode:
OPENI:CLOSEL1. Press PLAY when prompted by the computer, and wait while
the special verifizer loads into the tape buffer. Once it has loaded, the screen
will show FOUND VERIFIZER.SYS850. To activate VERIFIZER, enter SYS 850
(not the 828 as in the original program). To de-activate, use SYS 853. These
moves in the SYS addresses were required because of the method used to store
and retreive the program in the tape buffer.

If you are going to use your tape recorder to SAVE a program, you must turn off
VERIFIZER first (SYS 853) since VERIFIZER moves some of the internal
pointers used during a SAVE operation. Attempting a SAVE without turning off
VERIFIZER first will usually result in a crash.

If you wish to use VERIFIZER again after using the tape, you'll have to reload it
with the OPEN1:CLOSE1 commands.

208 The Transactor Book of Bits and Pieces #1

Make the following additions and chgnges td%\évﬁﬂsgﬁmﬂﬁmgd@tﬂ‘é% Ca

listed on page 4 of any magazine, and ‘@the Bégirining bfthe boskhout Pe

Line:
NB 30 fori=85010980: read a: poke i,a
AL 60 ifcs<>14821 then print" *+*=xdata errors++** "
:end
IB 70 rem sys850 on, sys853 off
-- 80 deleteline
—-— 100 deleteline
OC 1000 data 76, 96, 3,165,251,141, 2, 3,165
MO 1030 data 251, 169, 121, 141, 2, 3,169, 3, 141
EG 1070data133, 90, 32,205, 3,198, 90, 16,247
BD 2000 a$ = " verifizer.sys850[space] "
KH 2010 for i=850 to 980
GL 2020 a$ =a$ + chr$(peek(i): next
DC 2030 open 1,1,1,a$: close 1
IP 2040 end

Improved 1541 Head-Cleaning Program [is1)] David Peterson,
Irvine, CA

Volume 6 Issue contained a program by Peter Boisvert which turned the
1541’s motor on for 60 seconds to allow cleaning the head using a cleaning
disk. This prompted David Peterson to write in with the following improve-
ment. It turns the motor on, then steps the head slowly along the surface of the
disk to utilize the entire cleaning surface. David Peterson explains how it
works:

“After turning on the drive motor, the program peeks location $24 in drive
RAM. This location contains the track number that the read/write head is
currently at. After finding the head, the program steps it quickly to track 1,
then slowly across the disk to track 35. Movement of the head is controlled by
bits 0 and 1 of location $1C00 in drive RAM. After peeking $1C00, the head is
moved outward to track one by cycling bits 0 and 1 of $1C00. To move the
head outward the low bits are decremented (say 01 to 00 to 11 to 10 to 01 etc.).
To move the head inward to track 35 the two low bits are cyclically incre-
mented. The head is stepped twice for every track, since the stepper motor
moves the head in 1/2 track steps. The NEW at the end of the program is not
an attempt at program protection, it’s there as drive protection. This direct
method of stepping the head does not update location $24. If the program was
immediately rerun, the drive head could end up being stepped to track 35 or to
bump up against the stop at track 0. Therefore use the loop in line 280 to
control how long the process takes.”

The Transactor Book of Bits and Pieces #1 209

on

Here’s the new cleaning program; make surg yogsMéWBéfog @ﬂﬁr@q odo re Ca

NC rint Without Perr

LM | 100 rem* improved 1541 head cleaning prg *
LD | 110 print" [&linsert cleaning disk and hit return”
NI | 120 geta$: if a$<>chr$(13) then 120

AL | 130 open 15,8,15: print#15, " m-e " chr$(126)chr$(249)
EE | 140 rem locate head

HP | 150 print#15, "m-r " chr$(24)chr$(0)

JD | 160 get#15,a$: x=asc{a$ + chr$(0))

EC | 170 print" drive head at track # " x

IA | 180 rem read $1c00

PH | 190 print#15, " m-r" chr$(0)chr$(28)

EL | 200 get#15,sc$: sc =asc(sc$ + chr$(0))

FO | 210 rem select bits 0 and 1
GN | 220 bt=scand 3

CD | 230 rem # tracks to 1

ID | 240 sp=2%(x-1)

MH | 250 rem move head to track 1

BL | 260 print” stepping to track #1"

FJ | 270 fory=1tosp

EF | 280 bt=bt-1: bt=btand 3

KO | 290 s=(sc and 252)or bt

IH | 300 print#15, " m-w" chr$(0)chr$(28)chr$(1)chr$(s)
FE | 310 nexty

HL | 820 rem step out to 35

IM | 330 print" stepping out to track # 35. . ."

FB | 340 print#15, " m-r" chr$(0)chr$(28)

CH | 350 get#15,a$: sc =asc(a$ + chr$(0))

CG | 360 bt=scand 3

CE | 370fory=11068

GF | 380 print” rack # " int(y/2 + 1)
AF | 390 print” !
JM | 400 bt=bt+1: bt=btand 3
CG | 410 s=(sc and 252) or bt
AP | 420 print#15, " m-w " chr$(0)chr$(28)chr$(1)chr$(s)
FF | 430 ford=1 to 220: nextd
HM | 440 nexty
FI | 450 print#15, " m-e" chr$(232)chr$(249): close15
HF | 460 new: rem to prevent re-running without a normal
disk operation first

PRINT AT Update [18g) Stephen Gast, Champaigne. IL

“In the Bits and Pieces column of Volume 6, Issue 3, a C64/VIC20 PRINT AT
command was suggested:

210 Tha Traneartor Ronle of Rite nind Pieras #1

poke 781,row: poke 782,colf sy_;GfWQO’ WWQQ}EE&E&,@ d ? re. Ca
1y nt Without Perr
The above method utilizes the documented KERNAL routine PLOT. The
general technique is a useful one but can be unreliable when accessed through
the KERNAL jump table at 65520 ($FFF0).

If the carry flag is set, the routine will GET the current cursor position! Not
exactly what we had in mind. To correct this the current row and column
coordinates should still be placed directly into the register storage area in 781
($030D9 and 782 ($030E). Then simply bypass the logic of the cursor get/set
routine at $E50A and SYS directly to 58636 ($E50C). In both the VIC 20 and
the Commodore 64 this will work:

poke 781,row: poke 782,col: sys58636: print"message "

Now let’s talk a little about some other things you can do on a 64. First, the
following line is an alternative to the above example:

poke 211,col: poke 214,row: sys 58640: print" message "

This enters the plot routine a little later and avoids two steps (big deal at ML
speeds). But secondly, if you do this a lot in a program, here is a neat 25 byte
machine language routine that makes life a little simpler:

0806 20 fd ae jsr $aefd ;scan pastthe comma

0809 20 9e b7 jsr $b79e ;put row in .X

080c86d6 stx $d6 ;store row in TBLX (current cursor line #)
080e 20 f1 b7jsr $b7f1 ;scan past comma and put columnin .X
081186d3 stx $d3 ;putcolumnin PNTR (current cursor column #)
0813 4c 10 e5 jmp $e510 ;set the cursor

The following short BASIC program will place this routine in a REM statement:
10 rem XXXXXXXXXXXXXXXXXXXXXXXXX [25 X's]

20 for x=2054 to 2069: read y: poke x,y: next x

30 data 32,253,174,32,158,183,134,214,32,241,183,134,211,76,16,229
Be sure 25 x’s follow the REM in line 10. After typing the program in, run it and
delete lines 20 and 30. Save the remaining line 10 to disk as a program and
simply load and use it as the first line of any program in which you want to

easily be able to position the cursor. The syntax is now simplified to:

SYS 2054, row#,column#: PRINT "message "

The Transactor Book of Rits and Piaras #1 m

C-128 Bits (125 RaffdgLiNui, Wiflowdale Gatl O

Reprint Without Pe

Here are a couple of “C64 mode” peculiarities: The CAPS-lock key can be read
in C64 mode, and the most interesting feature - 2Mhz. clock speed is available
in C64 mode!

The CAPS-lock key can be checked with bit 6 in memory location $0001 of the
C64 side. If bit 6 is set, then the CAPS-lock key is NOT pressed; if it is zero, the
key is pressed. Example:

if (peek(1)and64) =0 then print " caps lock on ™.

Bit 0 in memory location $D030 controls the speed of the microprocessor. In
C64 mode, this bit is normally zero, running the system at 1Mhz. If you set this
bit, the computer will run at 2Mhz! Example:

poke 53296,peek(53296)or1

to set 2Mhz mode. The catch is that in C64 mode, the VIC video chip cannot
operate at warp 2 and is disabled when 2Mhz mode is set, displaying a blank
screen. However, for operations which do not need the video screen, such as
assembling programs in machine language or sorting lists, the screen can be
turned off for a speed increase of 100%!

For a simple demonstration, try the following program in C64 mode.

10 print" C64 at 2Mhz - Randy Linden”

20 print " Caps-lock down for 2Mhz, "

30 print” Caps-lock up for 1Mhz.”

40 ford=010 36

50 read rl: poke 52992 + d,rl: ck=ck +rl: next d
60 if ck<>3571 then print " ?Data error! " : stop
70 sys 52992: print" Now installed. " : end

100 data 169, 11,141, 20, 3,169,207, 141
110data 21, 3, 96,165, 1, 41, 64, 73
120 data 64, 10, 10, 42,141, 37,207,173
130 data 48,208, 41,252, 13, 37,207,141
140 data 48,208, 76, 49,234

The code resides at $CF00-$CF25 in memory on the Commodore 64. When

run, it changes the IRQ vector to point to a routine at $CFOB which scans the
CAPS-lock key and turns on 1Mhz mode if it is up, or 2Mhz mode if it is down.

219 Tha Trane~n~tar Ranl Af Rite nnA Diarac #1

re.ca

More B128 Bits From Liz Deal (11, 1@17WWW Commodore Ca

nt Without Pe

1. COLLECT is a variant of the DOS native command VALIDATE (V). The B
machine actually thinks at the time of validation. Example: if you've just
written a file of 6 blocks but didn’t close it, the directory shows 6 blocks and a
*. At this point 'V’ would get rid of the file, but COLLECT closes it. Not bad.

‘1‘_

2. An important control byte exists at $258: Logical file number of CMD file.
It's used for printing integers (line numbers) on a CMD device. It permits
sending disk directories directly to a CMD device, so:

OPEN 4,4:CMD 4: CATALOG
Does just that to the printer. Neat.

3. Everybody knows that LIST is a harmless command. . .or is it? Try it on the
B128 with a program from the plus 4 containing the keyword SCALE (that’s
token number $E9). The machine either crashes dead or ends up in the
machine language monitor. And if that weren't enough, the program you just
tried to list NEWs itself. Brilliant.

4. Locations $20-$21 are important in working dynamic strings. They hold
temporary pointers to strings. Do not ever use them for anything else if you
don’t want your strings mangled, FRE crashing, and so on.

Un-Scratcher For Commodore Drives [162, 182]

Oops! Just scratch the wrong file by mistake and wipe out 3 hours of work?
Don’t panic — use the Un-Scratcher. If you haven’t done any more saving since
the scratch, your old file is still recoverable. The Un-Scratcher program below
will ask you the type of drive you have (you may want to hard-code this into
the program if you're always using the same drive), and display the filenames
of scratched programs one by one, asking if you wish to un-scratch them. It
will then write in the new directory information and validate the disk, asking
for confirmation before each step. After that your life may continue normally
since your precious work has been restored. Even if you have to enter it by
hand, this is a routine that can really pay for itself!

CN | 100 rem save" Q:un-scratch " ,8: rem =* rte/85

NL | 110 2$ =chr$(0}): cr$ =chr$(13): sc=1: dr=0: rem dirsec

+ drvnum

FI | 120 print "=+ disk file un—scratcher =+ " cr$ " enter drive type "
LO | 130 print " a) 1541/2031 " cr$ " b) 2040/4040" cr$”

¢) 8050/8250"

FM | 140 input " your choice ";dt$: if dt$<"a" or di$>"c¢" then 140

Tha Tranecrrtnr RAnl ~f Rite mnA Din~nc 41 212

3[e]s]

MP

KE
EN
GD

MG

KD
LE
BD

FF

LE
KD

KN
ML

OK
KM
CH
KE
EB
AH
MK
PA

NE
oG

co
PF

150 dt=18: bh=3: if di$ =>"b" thengNWWd@@mmOdore ca

then dt=39 May No rint Without Perr

160 open 15,8,15: open 8,8,8,"#0"

170 print#15, " u1:" 8;dr;dt;sc: rem read dir sector

180 print#15, " m-r " chr$(0)chr$(bh)chr$(2): get#15,nt$,ns$:
rem next trk/sec

190 flag=1: for k=0to 7: ps=1k*32: print#15, " m-r" chr$(2
+ ps)chr$(bh)chr$(19)

200 get#15,sb$,fi$,fs$: if len(sb$) or len(fi$) = 0 then 310

210 print " 1st data track " asc(ft$) " sector " asc(fs$ + z$)

220 print " filename " ;: for name =1 to 16: get#15,n$: print n$;
i next

230 print#15, " m-r " chr$(30 + ps)chr$(bh)chr$(2): get#15,I1$,h$
: rem file size

240 print: print " size " asc($ + z$) + 256+asc(h$ + z$) " block(s) "

250 input "un-scratch (y/n) ";us$: if us$<>"y" then 310
: rem * nope

260 input "file type: s, p,u, r ";ft$: us=0

270 for chk =1 to 4. if ft$ =mid$(" spur " ,chk,1) then
us=chk+128

280 next chk: if us =0 then 260: rem incorrect reply

290 print#15, " m-w " chr$(2 + ps)chr$(bh)chr$(1)chr$(us)

300 print "done !!": print: flag=0

310 next Ik

320 if flag then 350: rem no change in sector

330 input " write block to disk (y/n) ";yn$: if yn$<>"y" then 350

340 print#15, " u2: " 8;dr;dt;sc

350 dt=asc(nt$ + z8): sc = asc(ns$ + z$): if dt then 170
:rem more to go

360 if us=0 then 390: rem nothing to un-scratch

370 input " validate the diskette (y/n) ";yn$: if yn$<>"y"
then 390

380 print#15,"v" +str$(dr): print " >> validating disk <<"

390 close8: close15: end

Hardware Device Number Change for the 2031 Drive (40]

The 2031 single drive can be hard-wired as device number 9 or 10. The
number is determined by two diodes on the PC board, CR18 and CR19. Both
diodes are normally connected for device number 8; snip one of the leads on
CR18 for device 10 or CR19 for device 9.

214

The Transactor Book of Bits and Pieces #1

n

C64 Doodle Screen [133,222] = wwmﬁ.ﬁmm.s}cme ca
May No orint Without Perr

If you've ever drawn pictures on the screen with the standard graphics and

editor on the C-64, you've probably hit the RETURN key by accident more

than once. This results in a READY or ?SYNTAX ERROR message partly

wiping out your creation. To counter this menace, simply enter the following

before you start your masterpiece:

poke 768,123: poke 769,164

While in this mode, all of the BASIC commands still work, so take care not to
type LIST, RUN or any similar instruction that might ruin your picture. To
return the error messages back to normal, type:

poke 768,139: poke 769,227

1541 Write-Protect Check [1s5] Craig McQueen, Guelph, ON

Have you ever wanted a routine to find out if there is a write-protect switch on
a disk? All one has to do is read the value of $1C00, bit 4. If the bit is 0, then the
write protect is on. Here is a memory-read routine to do the checking for you.

5 rem check for write—protect (1541)
10 open 15,8,15

20 print#15, " m-r " chr$(0);chr$(28)
30 get#15,a%: a=asc(a$ + chr$(0))
40 if (a and 16) then 70

70 print" write protect is on! "

60 goto 80
50 print" no write protect”
80 close 15
C-64 Memory Fill ROM Routine {155 Thomas Henry,

North Mankato, MN
Thomas writes:
“In the Volume 6, Issue 1 Bits & Pieces section, you described the use of the
memory transfer subroutine contained within the BASIC ROM. One vital piece
of information is missing, though. The memory transfer routine is not
“intelligent”. Specifically, it fails to work correctly if you attempt to move a
block of data in the downward direction AND if the source block overlaps the
destination block. In all other cases however, it works just fine.

By the way, the routine has this limitation since it was originally designed to
spread apart BASIC lines in memory. The designers apparently never in-

The Traansoirtor Roolk of Rits and Pieres #1 218

tended for it to be used for any other purposgtﬁé{l\/MWug kb m@&LO re Ca
BASIC lines in RAM. Of course, this type olmmemoiy {ranstecwilh alwayobe Pe on
occuring in an upward direction (from lower to higher adresses). Now that we

know the limitation, however, we hackers can use it for other purposes as

well.

Here's a neat trick that actually exploits the shortcomings just mentioned to
good advantage. See if you can figure out how it works. (The following
addresses are for the C-64; refer to the abovementioned issue for for the
corresponding addresses in the PET/CBM and VIC-20.)

THE TASK: We wish to fill a block of RAM with a specific byte. We'll call this a
memory fill subroutine. Possible uses include clearing a bit-map screen,
setting colour memory to some value, filling a buffer with zeroes, etc.

THE SOLUTION: Suppose the addresses of the start of the block to be filled is
START and the last address of the block is END. For example sake, let’s
imagine we wish to fill this block with zeros. Perform the following steps:

1. Store a zero (or whatever byte you wish to fill memory with) in location END
2. Store address END in location $58 (low byte, high byte).

3. Store address END +1 in location $5A.

4. Store address START +1 in location $5F

5. Call subroutine $A3BF (The memory transfer subroutine)

The block from START to END (regardless of length or location) will be filled
with the specified byte — zeros in this case.

One limitation of the block fill routine is that it cannot be accessed from BASIC.
Apparently the POKE number or SYS number evaluator plays havoc with
locations $58 through $60. However, the routine works just great with
machine language and is far simpler to use than “rolling your own”.

Relocate! (19]

When creating sprite files, high-res screens, character sets and the like, you
don’t always know where in memory you’ll want to put them. You'd also like
those files to be LOADable programs that will go into whatever spot you want.
For example, some drawing packages create a high-res screen PRG file on
disk that can be LOADed into memory starting at $2000 (8192). If you wish to
use that picture but put it at, let’s say, $E000, you need to change the picture
file’s load address on disk. Guess what RELOCATE does? Just tell it your drive
type, the filename of the program, and your desired load address, and it
changes the load address of the file. Right now. Yes, it is fast, because it goes
directly into disk memory to change the first two bytes of the file and writes the
block back to the disk surface.

216 The Transactor Rook of Bits and Pieces #1

HD
AF
CO
GK
CK
GH

DD

HC

OF

FA
AJ
HE

MP

FL
IP
D
il

AH

BD

oM
HF
DM

BP
IE
GE

BO

g WWW. Commodore ca

May Not | rint Without Pe

100 rem save "Q:relocate " ,8

105 rem ** rte/85 - allows quick change of prg load address **

110:

115 28 =chr$(0)

120 print " drive type: "

125 input " 1)1541/2031, 2)4040, 3)8050/8250 " ;d: if d<1 or d>3
then 125

130ifd=1thendl=144: dh=2:di=4: dt=18: bl=0: bh=3
: rem 1541/2031

135ifd=2then dl=150: dh=67: di=4: dt=18: bl=0: bh=17

: rem 2040/4040

140ifd=3then dl=96: dh=67: di=8: dt=39: bl=0: bh=17
: rem 8050/8250

145:

150 input " drive #, flename " ;dr,f$: f$ =str$(dr) + ":" +1$

155 input " new start address (decimal) " ;sa : sh% = sa/256:
sl =sa-256+sh%

160 open 15,8,15: open 8,8,8,(f$): get#8,a$: if st then close8:
stop

165 print#15, " m-r" chr$(dl)chr$(dh): get#15,s$: rem sector

170 print#15, " m-r " chr$(dl + di)}chr$(dh): get#15,i$: rem index

175 s =asc(s$ + z$): i =asc(i$ +z2$) + 1

180 close 8: open 8,8,8,"#0 "

185 print#15, " u1:" 8;dr;dt;s: rem read in directory track/sector

190 print#15, " m—r" chr$(bl + i)chr$(bh)chr$(2) : rem get 1st data
block ptr

195 get#15,13,s%: t =asc(t$ + z$): s=asc(s$ +z$)

200 print#15, " u1: " 8;dr;t;s: rem get first data block

205 print#15, " m-w " chr$(bl + 2)chr$(bh)chr$(2) chr$(sl)
chr$(sh9%)

210 print#15, " u2: " 8;dr;t;s: rem write block back

215 close 8: close 15

220 print " «* address changed ** "

225 end

Thom Termammdoe Do o Dldn msnnd MV n 4T ~r

n

www.Commodore.ca
May Not Reprint Without Permission

Volume 6; lswevﬂﬁmmodore ca

rint Without Pe

SAVERIFY [136] Bob Hayes, Wmmpeg, Manitoba

This is a short program which enables the 64 (and possibly other Commo-
dore?) owner to SAVE and VERIFY a program with one command. The format
is:

SYS(address) " filename " ,8

Where the address is the start of the machine language code (relocatable in the
BASIC loader).

Here is the assembly:

start jsr $eld4
jsr $e159
Ida #3$01
sta $93
bit $00a9
sta $0a
jsr $etof
rts

And the BASIC loader:

10 rem =* saverify —— bob hayes **

20 rem =+ wpg, man. canada **

25 sa=828: rem start address-note: relocatable

30 g$ =chr$(34): a=0: for x=0to 18: read q: poke sa+x,q;
a=a+q: next

40 print: print” format: sys"sa;q$ " filename"g$",8"

50 end

60data 32,212,225, 32, 89,225,169, 1

70 data 133, 147, 44,169, 0,133, 10, 32

80 data 111,225, 96

Double Verifizer [1,208] Steven Walley, Sunnymead, CA

When using ‘VERIFIZER’ with some TVs, the upper left corner of the screen is
cut off, hiding the verifizer-displayed codes. The program below, ‘DOUBLE
VERIFIZER’ solves that problem by showing the two-letter verifizer code on
both the first and second row of the TV screen. The program uses the interrupt
vector to update the screen every 1/60 of a second.

To use Double Verifizer, just run the below program once the regular Verifizer
is activated.

Tha Traanenirtonr Rank of Rite AnA PDiarae #1 210

KM | 100 for ad =679 to 720 readlga\ﬁbww&a&‘imociore ca
BC | 110 sy3679 print. print May Nc rint Without Per on
DI | 120 print" double verifizer activated " :new

GD | 130 data 120, 169, 180, 141, 20, 3

IN | 140 data 169, 2,141, 21, 3, 88

EN | 1560 data 96, 162, 0,189, 0,216

KG | 160 data 157, 40, 216,232,224, 2

KO | 170 data 208, 245, 162, 0,189, O

FM | 180 data 4,157, 40, 4,232,224

| LP | 190data 2,208, 245, 76, 49,234

Corrupting RAMTAS Update (195 Yijun Ding, Pittsburgh, PA

“Corrupting RAMTAS Routine” in Bits and Pieces Volume 6, issue 4 men-
tioned the fact that $A000 will contain $55 after a reset. But there is more.
RAM from $FD30-$FD4F will be written with the contents of the correspond-
ing ROM, as the routine at $FD15 ($FF8A, reset vectors in $0314-$0333) is
called in a reset process. Actually, the RAM at $FD30-$FDA4F will be corrupted
every time $FD15 is called.

Finding the Missing File Jeffery Coons, Lake Ridge, Virginia

If a program bombs because it needed some file that wasn't on the disk, you
can find out what file the program wanted with this one-liner:

for i=0 to peek(183)-1: poke 1024 +i,peek(peeck(188)*256
+peek(187) +i): next

The name of the last file used will be displayed at the top left-hand corner of
the screen. You have to POKE to the screen in this manner because PRINTing
will corrupt the last character in the string. Users with ROM version 2 will have
to also POKE to colour memory (at 55296 + i) or make sure there is some text
already on the top line of the screen.

LOAD & RUN Trick (21,46, 182] Chris Wong
. .A really neat load and run trick: After you type

load " flename " ,8,1
or load " flename " ,8:

Press shifted RUN/STOP instead of RETURN. The program will automatically

RUN itself after loading. It eliminates the old load/return/run/return routine,
easing up loading a bit.

220 The Transactor Book of Bits and Pieces #1

Check For Device Present [1] Qaw WWcE E. m}m{é? N& Ca

1Y Int Without Perr
As most every C-64 user knows, the ‘DEVICE NOT PRESENT message and
consequent crash is not the most pleasant experience in the world to endure.
Believe me, I've been searching for close to a year for ANY solution that will
work. It was not that obvious. I stumbled upon it quite by accident after coding
a small routine that provided a way for me to print the value of the ‘ST’
variable after multiple I/0 operations. If you do that you'll notice something
interesting. An OPEN followed by an immediate CLOSE will not hang the
computer even if the device is not present, but it allows you to interrogate ST
which returns a nonzero result in this case.

If you use the following code, your program will be able to check for DEVICE
NOT PRESENT and continue without bombing.

100 open 15,8,15: close 15

110 if st<>-128 then 160

120 print "1 DRIVE NOT PRESENT 1"

130 print " ## check drive power and cables, then press a key ## "
140 geta$: if a$= ""then 140: rem wait for a key

150 goto 100

160 rem program continues. . .

Word-Wrap For VIC, 64, PET, etc. {146] Gary Royal, Chicago, IL

There never seems to be enough columns on the screen to display what you
want to print on it. And there’s nothing uglier than a word hanging partly on
the end of one line and at the beginning of another. Whining about it does no
good (I've tried), but word-wrap does. Place the string you want wrapped in
‘w$’, the desired line width in ‘w’, and call this routine.

100 rem= recursive word-wrap routine *
110 rem= put string in w$,

120 rem= line width in w

130:

140 if len(w$)>w then 160

150 print w$: return

160 p=0: fori=wto 1 step-1

170 f p=0 and mid$(w$,i,1)=" "thenp=i
180 next: h$ = right$(w$,len(w$)-p)

190 w$ = left$(w$,p): gosub150

200 w$ =h$: goto 140

Since strings in Microsoft BASIC can be up to 255 characters long, you can
easily squeeze five screen lines into w$ with the peace of mind that can only

The Traansartor Roonike of Rite nnd Pierac #1 27

come from the knowledge that it will be formamecy}ég\{sw BubeRre @hel O re Ca

routine is recursive, and assumes that wordsws the'téxt Will BeBeparated by’ Pe sion
spaces. [f the length of w$ is greater than ‘w’ and ‘w$’ contains no spaces it will

loop forever, so avoid hyphenated words that might be longer than your

desired line length (or modify line 170 to look for hyphens, too).

Visible “searching’’ Messages [127,127,215] Terry Montgomery,
Auckland, New Zealand

In direct mode you get ‘SEARCHING’ and ‘FOUND’ messages that tell you
what is going into the computer. These messages can be extremely helpful,
especially when using tape. But when LOAD statements are encountered in
program mode, the messages are suppressed. During program development,
it would be nice to see what's going on a bit more. Here are two ways to see
these messages from a running program:

1) Use GOTO instead of RUN to start the program. If the first line is 0, GOTO
doesn’t need a line number specified.

2) POKE 157,128 to flag direct mode. This can be turned off by POKE 157,0.
This way you can get messages from one part of the program and block
them from others.

C-64 Scroll Down Routine 85, 155] Chris Johnson, Toronto, Ont.
In Volume 5, Issue 2 of The Transactor, Paul Blair reported a ROM routine that
scrolled down the screen of a C-64. He also mentioned that it “left some
pointers a bit untidy . . . a PRINT or two seems to restore order”.
I found that a PRINT or two did not set things right; however, resetting the
screen line link table did. The following routine clears the link table before and
after calling the scroll-down routine.
The syntax to use is:

SYS address, n, topline
Where ‘n’ is the number of times you want the screen to be scrolled down one
line and topline (0 to 24) is the last line not to be scrolled. All the lines below

this will be scrolled down x times.

To change the location of the routine, just change the value of s in line 110.
The loader will make the necessary changes to the machine code.

222 The Transaictor Rnok of Rits and Pieces #1

WWW., Commodore ca

t

AF | 100 rem+ c-64 scrollewn ¥ay Not Reprint Without Pe
MO | 110 s=49152: rem start address (relocatable)

OL | 120 fori=sto s+33: read a: poke i,a: next

PH | 130 print” =* scroll down — syntax: "

D! | 140 print"sys"s" ,n,topline”

LA | 150 print” Where 'n’ = number of lines to scroll "
EB | 160:

Ol | 170 if s=49152 then end

GM | 180u=s+22:ju=s+7:r=s+34:jr=s+4

CB | 190jj=s+18

AG | 200 poke ju + 1,u/256: poke ju,u-256+*peek(ju + 1)
PN |-210 poke jj + 1,r/256: poke jj,r-256*peek(jj + 1)
BE | 220 poke jr+ 1,11256: poke jr,r-256+*peek(jr + 1)
KF | 230:

HB | 240 data 32,241, 183,142, 34,192, 32, 22
KD | 250 data 192, 32, 241, 183, 134, 214, 32, 101
FH | 260 data 233, 206, 34, 192, 208, 248, 162, 24
AD | 270 data 181,217, 9, 128, 149, 217, 202, 208
| GJ | 280 data 247, 96

Easy ‘RESTORE X’ [48, 72, 110] Andy Hochheimer,
Using TransBASIC Wallaceburg, Ont

I'have been using a lot of DATA statements in programming for quite a while.
99% of the time I have to RESTORE then search for my data on a specific line
number before reading again. In Transactor Volume 5 Issue 3 was this
‘RESTORE X’ program from Gary Kiziak, which allowed a RESTORE to a
specific line number:

10 restr =828: for k=restr to restr + 31:read j:poke k,j: next
20data 32,253,174, 32,158,173, 32,247

30 data 183, 32, 19,166,175, 5,162, 17

40data 76, 55,164,165, 95,233, 1,133

50 data 65,165, 96,233, 0,133, 66, 96

60 rem format: sys restr x

I've found a shorter and easier way to RESTORE X, using TransBASIC:

10 doke 65,line(x) + 4
This incredible program line does work; location 65 is the Current DATA
Address. It restores the pointer to the first byte of line X. The 4 is added to

avoid reading the last data element of the previous line. This is a small sample
of the great things you can do with TransBASIC!

The Transactor Book of Bits and Pieces #1 2922

n

Sneaky Saves (149, 182] Terr;PHﬂ‘ﬁéW -ﬂsmﬂma O re Ca

rint Without Pe
In Vol 5 issue 3, “Unveiling The Pirate Part 2: Programming Slelght of Hand” -

‘Ye Olde Standbye’, where by using a shifted-space before the filename within
quotes produces a directory that shows two quotes followed by the filename:

save " 0:{Shift-space]filename " ,8
In the directory it becomes:
3 " "filename prg

By experimenting with it, | found even more ways to twist the minds of Pirates
(asif they weren’t in the first place). Ever see directories where the name of the
program is in reverse field? Well here’s how it’s done. Type:

save,1 quote, drive number, colon, 1 quote, rvs on, 1 delete, 2 inserts,
shift-M, rvs on, rvs off, filename, quote, comma, device number

When done, it will appear something like:
save " OJMdgfilename” 8

In the directory, it will show the block count and the first quote where it would
normally appear. The shifted M causes a carriage return (because a shifted
reverse M is a ‘13’) and the filename will appear right under the block count in
reverse field. The file type indicator (i.e. “prg”) and the spaces preceding it will
also appear in reverse field.

Try adding a couple DELSs, or even cursor control characters, by hitting 1 Insert
for every control character you wish to include immediately before the
filename. However, you must remember what characters are in this “prefix” in
order to LOAD that file. Experiment and have fun!

Sanitation Engineer [129,130,132] Fred Simon
Gibbsboro, New Jersey

Did you ever have to wait for several minutes while your computer collected
“garbage” strings? Garbage collection on the C-64 has been known to take
more than twenty minutes when a large number of strings need be processed.
With the program “Sanitation Engineer”, active strings are collected lightning
fast.

224 The Transartor Rook of Rits and Pieras #1

n

What Is Garbage Collection? g Www. C OmMmo do re.ca

May Not | rint Without Pe

Each time the Basic interpreter encounters a new string vanable defmmon, it
builds that string character by character in high memory, working downward
from location 40960. If a string variable is changed, the old string remains in
memory as ‘‘garbage”. If the available free memory is less than the maximum
length of a couple of strings, or if the Basic command FRE(0) is issued, the
garbage collection routine is called. This routine looks at each string variable
to find the one stored highest in memory, moves all of the other strings down
by the length of this string, and then copies the string to the top of available
memory. The length of time it takes to complete this task depends only on the
number of strings and not their length.

To see garbage collection at work, try this program:

10 d =500: dim x$(d)

20 for j=0 to d: x$(j) = str$(j): next
30 print " starting collection. . .”
40 t=ti: j=fre(0)

50 print (ti-t)/60 " seconds”

Change the value of D in line 10 to see the effect of increasing the number of
strings.

Faster Collection

One way to speed up garbage collection is to first copy the string memory to a
buffer area (Sanitation Engineer uses the area located underneath the Kernal
ROM). Each active string can then be pulled out of the buffer and written to the
clean string area. The bottom of the string memory is then the bottom of the
last active string copied from the buffer. Sanitation Engineer is written as a
“patch” to the Basic operating system. It uses the area of memory from 51740-
52223 for the garbage collection routines. Thus, it can be used with the DOS
Wedge and leaves 49152-51739 free for other machine language routines.

Type in and Save Sanitation Engineer. A mistake in one of the Data statements
could cause your computer to lock-up when the routine is executed. A
checksum is included to reduce the chance of errors. When you Run the
program, Basic ROM is first copied to RAM. The new address for the Sanitation
Engineer is written over the old collection routine. In addition, the READY.
prompt is changed to READY! to remind you that Basic has been modified. If
you hit Run/Stop-Restore, the Sanitation Engineer will be deactivated. To
reactivate, just type SYS 51740. Try the test program you typed in earlier.
Change D to 5000 and try again. No more delays!!

The Transactor Rook of Bits and Pieces #1 225

3[e]s]

Sanitation Engineer Basic Loader < W WW. C O mmodo re Ca
May Not | rint Without Perr sion
Pl | 10 rem save " O:sanitation 64 " ,8
DD | 100 rem sanitation engineer
FN | 110 rem for the commodore 64
BP | 120 rem by fred simon 8/85
HO | 130 ck=0: for i=51740 to 52223: read d
BP | 140 poke i,d: ck =ck + d: next
EG | 150 if ck=63591 then sys51740: end
GK | 160 print "error in data statements " : stop
OB | 170:
MD | 180 data 120, 169, 55,133, 1,169, 160, 133
HL | 190data 3,160, 0,132, 2,177, 2,145
AN | 200data 2, 136, 208, 249, 230, 3,165, 3
JH | 210 data 201, 192, 208, 241, 169, 54,133, 1
NC | 220 data 88,169, 5, 141, 143;183, 169, 33
LG | 230 data 141, 125, 163, 162, 2,189, 83,202
BF | 240 data 157, 38, 181,202, 16,247, 96, 76
JK | 250 data 86, 202, 169, 0, 141, 239, 203, 169
EG | 260 data 15, 133, 250, 169, 224, 133, 249, 165
NI | 270 data 52, 141, 240, 203, 56, 229, 50, 201
NE | 280 data 19, 144, 22,233, 3, 133,250, 165
ND | 290 data 50, 105, 0, 133, 249, 165, 56, 229
DB | 300 data 52,105, 1,197,250,176, 2,133
EK | 310 data 250, 165, 56, 141, 242, 203, 165, 55
GD | 320 data 141, 241, 203, 133, 51, 24,240, 1
Gl | 330data 56, 173, 242,203, 133, 52,233, 0
KJ | 340 data 133, 251, 105, 0, 133, 252, 165, 50
KB | 350 data 105, 1, 133,254, 165, 45,233, 6
HJ | 360 data 133, 95,165, 46,233, 0,133, 96
NK | 370 data 165, 47, 133, 253, 165, 251, 205, 240
BL | 380 data 203, 144, 51, 229, 250, 133, 248, 165
EA | 390 data 52,229, 251, 229, 248, 73, 255, 105
OK | 400 data 2,197, 248, 144, 2, 165, 248, 205
Jl 1 410 data 240, 203, 176, 5, 173, 240, 203, 233
DI | 420data 0, 133,251, 32,138,203, 166, 48
BO | 430data 32,243,202,176, 9, 32, 39,203
CC | 440 data 165, 251, 133, 252, 144, 182, 96, 24
GC | 450 data 165, 95,105, 7,133, 95,144, 2
KF | 460 data 230, 96, 69, 47,208, 4,228, 96
PM | 470 data240, 31,160, 0,177, 95,200, 81
FC | 480data 95, 16,228,177, 95, 16,224, 160
DG | 490 data 4,177, 95,197,251, 144,217,197
JA | 500 data 252, 176, 212, 32, 170, 203, 144, 208
NF | 510 data 96, 24, 96, 32, 83,203, 176, 249
MA | 520 data 160, 2,177, 95,197,251, 144, 10

226 The Transactor Book of Bits and Pieces #1

NJ | 530 data 197, 252, b ww:ﬁaﬁmm@dore ca
Cl | 540data 2, 96, dy 169}y BcIGEPOS, WaB0uT Permissic
DJ | 550 data 95,144, 2,230, 96, 197,253,208
KJ | 560 data 223, 228, 96, 208, 219, 240, 212, 24
CL | 570 data 165, 253, 133, 95,134, 96, 69, 49
JE | 580 data208, 4,228, 50,240, 39,160, 2
LH | 590 data 177, 95,101, 95,133,253, 200, 177
AH | 600 data 95,101, 96,170,160, 0,177, 95
KG | 610 data200, 81, 95, 16,218,160, 4,177
HL | 620 data 95, 10,105, 5,101, 95,133, 95
MJ | 630 data 144, 3,230, 96, 24, 96,165, 248
EA | 640 data 133, 79, 165,249,133, 89,160, 0
OM | 650 data 132, 78,132, 88,166, 250, 232, 177
EE | 660 data 78, 145, 88,200, 208, 249, 230, 89
IF | 670 data230, 79,202,208,242, 96, 72,120
JD | 680 data 169, 53,133, 1,104,197, 248, 144
KM | 690 data 5,229, 248, 24, 101,249,133, 79
DI | 700 data 136,177, 95,133, 78,136, 56,165
CO | 710data 51,241, 95,133, 51,200,145, 95
PO | 720 data 165, 52,233, 0,133, 52,200, 145
HG | 730 data 95,136, 136,177, 95,240, 9,168
OD | 740 data 136,177, 78,145, 51,152,208, 248
ND | 750 data 169, 54,133, 1, 88, 24,165,254
H | 760 data229, 52, 96, 0, 0, 0, O, 67
JG | 770data 49, 57, 56, 53, 32, 70, 46, 83
| DL | 780 data 73, 77, 79, 78

Some C128 Bits (174, 190] Perry Shultz, Miami, Florida

Ornament and Happy New Year In High-Res

9 graphic1: scnclr: color1,5: for u=1 to 50 step3: circle1,160,75,u,60-u:
next: color1,2: for r=9 to 85 step5: circle1,160,r/9,r+2,r+3,,,,72: nextr:
char1,13,18, " happy new year " ,1

Notes: The line number must be 9 or less. Type line with no spaces. After
entering the last character, cursor back anywhere in the line then return.

Multiple Circle, Triangle, and Square High-Res Draw Routine
5 graphic1,1: for i=25 1o 300 step9: circle1,i,100,20,18,,,,120: next:

for i=25 to 300 step9: circle1,i,20,20, 18,,,,45: next:
for i =25 to 300 step9: circlel,i,175,20,,,,,90: next

The Transactor Book of Bits and Pieces #1 227

Incredible 3-D Effect High Res Draw RoutmeW WW., C O mmodo re ca

May Not | rint Without Perr

More Ideas

10 graphic1; scnclr: for r=3 to 100 step6:
circle1,160,130,r + 20,r+ 18,,,,120: nextr
15 graphic1: scnclr: for r=3 to 100 step4:
circle1,r+100,130,r+20,r+ 18,,,,120: nextr
20 graphic1,0: scnclr: for r=3to 100 step4:
circle1,160,110,r+ 20,r +18,,,,100: nextr
25 graphic1,0: scnclr: for r=3 o 100 step4:
circle1,99+r,110,r +20,r + 18,,,,100: nextr
30 graphic1,0: scnclr: for r=3to 100 step4:
circle1,160,110,r+20,r + 18,,,,90: nextr
35 graphic1,0: scnclr: for r=3to 120 step3:
circle1,r+ 70,r+20,r+20,r+18,,,,90: nextr
40 graphic1,0: scnclr: for r=3 to 100 step4:
circle1,160,110,r+20,r+ 18,,,,150: nextr
45 graphic1,0: scnclr: for r=3to 120 step3:
circle1,r+75,99,r+20,r +18,,,,30: nextr
50 graphic1,0: scnclr: for r=3 to 120 step3:
circle1,r+100,95,100,r + 10,,,,75: nextr
55 graphic1,0: senclr: for r=7 to 100 step2:
circle1,160,r+60,r +55,r+3,,,,72: nextr

Redefine two function keys as graphic 0 (textscreen), graphic 1 (hi-res screen)
— this enables screen change with one keytouch.

With the 160 bytes per line, [hope to see many new exciting 1 liners.

Some Amiga Bits and Pieces

Notes About CLI

CLI, Amiga’s Command Line Interface, is your interface to AmigaDOS. You
can access CLI by clicking its icon on your WorkBench disk - the CLI icon
appears if the “CLI on” option is chosen in “Preferences”. When a DOS
command is entered, the system looks for the command in the current
directory, and if not found, in the subdirectory C on the SYS: disk (the disk that
was booted with). See the article in this issue for a brief description of the DOS

commands.

The disk-oriented nature of the DOS commands makes for a flexible system,
since you can add and change commands at will. With a single drive though, it

228 The Transactor Book of Bits and Pieces #1

on

can be a problem doing operations with aldlsk%méWhgl @\@‘](m @f@ A ﬁ% Ca

drive). For example, if you wish to get divectéry?of drotierdisk!youtantgust ss
switch disks and type DIR because the system will ask for the SYS: disk again
(by volume name) and then do a DIR, giving you the directory of your original
disk. Since AmigaDOS is a fairly flexible and powerful system, there are many
ways of getting around the problem; here are a few suggestions:

1) The standard method is to refer to the new disk by name when giving the
DOS command, for example to get a directory of a disk called “Utilities”, you
could just enter:

dir utilities:

The system would then put up a requester asking you to insert volume
“utilities” in the drive, and would give you a directory after you had done so.
You can work with any file or directory on the new disk in this way, for
example:

type utilities:stuff/TextFile

. .would display the file “TextFile” in the sub-directory “stuff’ on the disk
“utilities”. This method works fine when you know the volume name of the
disk you're interested in (which you should, since you've thoughtfully written
it on the disk label, right?), and you only want to use the disk a few times and
don’t mind swapping disks back and forth.

2) If you wish to switch to a new disk for awhile to perform several commands,
and the new disk has those commands on it (usually in the C sub-directory),
you can just change the assignment of C: , telling the system to look elsewhere
for commands. For example, if from the original disk you typed:

assign c: utilities:c

You would be prompted to insert volume “utilities:”, and the C sub-directory
on that disk would then be searched for all DOS commands subsequently
issued.

Likewise, you could re-assign the current directory using the CD command, as
n:
cd utilities:c

The disadvantage with this approach is that it locks you into C as the current
directory.

3) A more direct approach for using a new disk which also contains the DOS
commands is to refer to the disk explicitly when issuing the command,
preventing DOS from requesting the SYS: disk. For example, if you wanted a
directory of any old disk laying around (remember, it MUST contain the

Tha Trnerntar Ranl Af Rite mnA Dinr~nc #1 29%0

required DOS command - in this case DIR - tfie OMM&W}IQ@@%M@]@ O re Ca

new disk and type: 1y t Without Pe
df0:c/dir

That way you are referring to Drive 0 (not a specific volume), C directory, then
finally the command name. This is a handy technique for little one-time
commands such as a DIR or TYPE when you don't feel like typing in or don't
know the new disk’s volume name.

4) A favourite trick used by many is COPYing all or some of the DOS
commands into RAM and then assigning C: to RAM to tell the system to look
there for the commands. You could use the following sequence of commands,
possibly in your startup-sequence batch file, to accomplish this:

makedir ram:c ;make ¢ sub-directory in RAM:
copy C: ram:c ;copy entire ¢ sub-directory to RAM:
assign c¢: ram: ;assign ram as new source of commands

This seems to be the ultimate solution at first glance, since all of your
commands execute out of RAM at lightning speed, and you’re never bound to
adisk when issuing a command. The disadvantage (there had to be one) is that
you use up lots of RAM, and also (OK, two) it takes a long time to copy all of
those commands. Nonetheless, some people have enough RAM and enough
time that this really is the ultimate solution to fast and flexible DOS com-
mands.

5) A variation on the above RAM technique is my favorite, thought up by
Amiga-buff Rico Mariani. Pick your most-used DOS commands, for example
DIR, LIST, COPY, ASSIGN, CD, and TYPE, and copy them to RAM. Then assign
names to each of those files, and use those new names in lieu of the command
names. (ASSIGN is just a way of setting up a new name to refer to a volume,
directory, or file.) As a confusion-avoiding convention, make the assigned
names identical to the command names, except for the required colon (:) at the
end. The example below should clear up any confusion (you could use this in
your startup—sequence).

copy :c/dir to ram:

copy :c/copy to ram;

copy :c/cd to ram:

copy :cltype to ram:

assign dir: ram:dir

assign copy: ram:.copy

assign cd: ram:cd

assign type: ram:type

Now, with those assignments in place, when you wish to do a DIR, just type
dir: (with the colon at the end). This will get the dir command from RAM,

220 Tha Traanenctor Rnnle nf Rite AnA Diarac #1

executing it quickly, and you don’t hdbe the\man%lm&a g\@(f ﬁ Ca
currently in the drive. Also, you haven#ise up tons'6f RAM! Sinle yiive 6Hily'ss
copied the commands you need. Obviously the assignments aren’t needed at

all, since you could just use “ram:dir” for the same effect, but the assignments
make things just a bit clearer and easier to type. Incidentally, you can use
assign whenever you'd like to use an alias to refer to a directory or file. Tired of
typing “execute” all the time? Just do an:

assign !: c/execute

and use “!:” instead of the word “execute” at any time. Assigns are system-
wide, not just for the current window, so your assignments will last until re-

boot (and beyond, if you put them in the startup-sequence).

Tha Tranemnatar RAanl ~f Rite mnA Din~ac #1 221

www.Commodore.ca
May Not Reprint Without Permission

Index/vww.Commodore.ca

Products by Number

1525 24, 25, 91

1541 24,40, 72,125, 131, 151, 163,
181, 182, 185, 202, 209, 215

2031 131, 214, 24, 40

2040 24, 40, 24

4040 151, 200, 24, 40

8050 183, 200, 24, 40

8250 164, 200, 24, 40

9060 24

9090 24

ICs by Number
6502 11, 151,59
6510 23

6520 58,94, 58
6522 94

6526 58

6545 52, 68
6551 57

6561 112,197
6567 72

6581 111, 119, 208, 83
6809 42

6845 79

Pointers

Bottom of Strings 36, 129
CONT 73

DATA, Current Address 49, 110, 223
End of Arrays 101

End of BASIC 20, 109
Screen Page 129

Start of Arrays 101

Start of BASIC 20, 109
Top of Arrays 37, 129
Top of BASIC 132, 184
Top of Memory 132

Vectors and Links

Error Message Link 82, 133

Error Vector 198, 215

Input Vector 83

Interrupt Vector 5

NMI vector 135, 143, 158, 164

Reset Vector 11

Warm Start Vector 82, 109, 135, 147, 203

Errors

?break error 166

?device not present error 166, 221
?disk full error 66

?drive not ready error 41

ile not found error 133, 166, 220
?file too large error 183

?illegal direct error 67

?illegal quantity error 7

?out of data error 49

?out of memory error 9, 132

May Reprint Without Perm
?overflow error 63, 118

?record not present error 7

?redim’d array error 101

?string too long error 8

?syntax error 21, 22, 36, 44, 69, 133, 215
?undef'd statement error 104, 123

abbreviations 43, 86

accumulator ((A) 55

ACIA 57

acronyms 150

Amiga 228

AmigaDOS 229

AND 128

AND 22

AND 59

APL 41

APL 57

APPEND 183, 184

appending files 32

Apple 9, 69, 159

arrays 100, 101

ASC(7,170

ASCII 61

ASCII, to CBM conversion 116

assembler 145, 150, 183

ASSIGN 229

asynchronous communications 59

auto number 64, 89

B Series 79, 169, 177, 213

background colour 15, 28, 32, 33,
54,78, 86, 128

BAM (Block Allocation Map) 67, 185

BANK 170

banner 179

bar chart 80

baud rate 177

bell 68, 105, 111

BEQ 59, 145

binary, conversion 96, 145

BIT 150, 199

BLOAD 169

Block-Write 216

blocks free 185

BNE 145

border colour 86, 113, 141, 147

Bottom of Strings pointer 36, 129

BOX 174

BPL 145

brackets 23

branching 145

bulletin board 103

BYTE $2C 150

C subdirectory 228

C128 212,227

CAPS-lock key 212

carriage return 34, 37

carry flag 55, 56, 211

cartridges 25

cassette 127, 208

cassette buffer 38, 88, 109, 148
cassette port 27

cassette tape 58

CATALOG 24, 67, 213

CB2 91, 146

CD 229

chain link pointers 20, 51, 73
chaining, programs 116, 163
character definition 178
character set 57, 138, 168
chart 80

CHR$(0) 7

CHR$(7) 146

CHR$(8) 115

CHR$(9) 115

CHR$(34) 12

CHR$(142) 112

CHR$(145) 46

CHR$(153) 86

CHRGET 49, 72

chroma 33, 50

CIA 27,48, 58, 85

CIRCLE 227

CLI 56, 228

clock rate, crystal 33, 47, 212
CLOSE 34, 54, 65, 126, 208, 221
closing files 126

CLR 21, 35, 101, 130, 144, 158
CMD 34, 47, 53, 213
COLLECT 66, 101, 213
COLOR 191, 227

colour 108, 111

colour control characters 99
colour keys 44

colour memory 141, 142, 167
colour registers 54

colour table 27, 31, 77,93
command channel 40, 41, 126
command register, 6551 58
comments 123

connector, power 50, 71
connector, video 50
connector, video/audio 28
CONT 26

CONT pointer 73

control characters 105, 115, 116
CONTROL key 44, 128
control register, 6551 58
conversion, ASCll/binary 191
conversion, hex/dec 168
conversion, dec/bin 145
conversion, dec/hex 137
conversion, number base 163
conversion, screen/ASCIl 149, 207
conversion, SEQ/program 203
COPY 24

COPY, Amiga 230

current directory 228

cursor 48, 88

cursor colour 27

cursor down 71

cugfhy homwww Commodore ca

cutsor Tt ?lv

cursor position 97 211

cursor right 71

cylinder 67

DATA 38, 48, 72, 80, 91, 110, 207, 223

DATA, Current Address 49, 73, 110, 223

dazzler 5,17, 18, 31, 43, 52, 61,
68, 69, 75, 76, 78, 79, 84,
87,92, 93,94, 95,99, 111,
112, 141, 148, 178, 193, 196,
198, 205, 208, 227

dazzler, Plus 4 174, 190

DCLEAR 170

DCLOSE 65

debugging 125, 162

decimal, conversion 96, 137, 145

DEF FN 23, 36

DEL key 12, 27, 70, 85, 116, 224

DEL files 184

delay loop 54, 76, 77, 87

delete line 105

device number 40, 214

digital to analog 14

DIM 100, 122, 225

DIM, UN-DIM 101

DIR, Amiga 229

direct mode 66, 69, 152, 222

directory 6, 67, 125, 147, 149, 163,

182, 195, 198, 213, 224

DIRECTORY 67

disassemble 53

disk copying 131

disk drives 23, 58, 65, 72, 131, 151, 163,

185, 195, 199, 213, 214, 215, 216

disk drives, blocks free 185

disk drives, cleaning 181, 209

disk drives, speed 201

disk drives, status 148

disk files 126

disk files, relocating 216

disk ID 23, 67

disk writing, bug 151

disk, recovery 117

diskettes 35

DLOAD 6, 38, 68

DO WHILE 168

dollars 62

drawing 107

DRAWTO 190

DS/DS$ 7, 8, 24, 66, 68

ELSE 191

emulator, 4032 84

emulator, PET 81

END 23

End of Arrays pointer 101

End of BASIC marker 20, 51

End of BASIC pointer 20, 109

error channel 24, 41, 65, 66, 148

error message 6

error message link 82, 133

error number 82

The Transartor Rnolk of Rite and Pierec #1

orint Without Perr

n

error status 163
error trap 82, 103, 133, 198
error vector 198, 215
ESCape key 12,57
EXECUTE 231
exponentiation 90
external monitors 15
fileread 6, 7, 24, 37, 65, 114,
129, 131, 146, 173, 203
file read, analysis 100
file write 24, 65, 131, 184, 202
filenames 149, 220, 224
fire button 107
flags, microprocessor 150
flash 97, 147,167,173
floating point 119
floating point variables 17, 35, 122
FOR/NEXT 9, 22, 82,119,173
formatting output 62
formatting, disk 67
FRE(0) 9, 130, 225
function keys, Plus 4 168
games 156,173, 176
garbage collection 37, 129, 130, 166, 224
garbage collection, APL 41
gaussian elimination 204
GET 12,13, 42, 89, 117, 130, 149, 176
GET* 7, 24,66, 117
GO 22
GOSUB 9, 104, 123
GOTO 22, 82, 104, 119, 123, 222
GRAPHIC 169, 174, 190, 227
graphic characters 99, 112, 144, 215
greater than > 23
Hard Disk 14, 67
HEADER 23, 67
header block 151
heat sink 72
hexadecimal, conversion 96, 137
hi-res graphics 107, 136, 144, 175, 216
hi-res graphics, C128 227
hi-res screen 126
hybrid 51, 183
Initialize, disk drive 41, 163
input buffer 37
input vector 83
input, keyboard 207, 193
input, numerical 118
INPUT 13, 85, 135, 149, 152, 159, 207
INPUT# 7, 24, 66
INSTR$(166
INT 22,91, 119
integer variables 17, 35, 119, 122
interlace 25
interrupt 48, 91, 97,113
interrupt disable flag 56
inverted logic 108
IRQ 5, 56, 58, 113, 134, 141, 152, 219
JMP 92,195
job queue 199
joystick 107, 156, 158, 173, 189
JSR 54

LA

key combinations 21, 46

keyboard 107, 135, 173 176, 189

keyboard buffer 13, 21, 103

keyboard, Plus 4 167

keyboard, reading 113

keyboard, scanning 158

keywords 22, 86, 152

latch 48

LDA 55, 59,91

LDX 151

line feed 34

line insert 22

line number 69, 47, 125, 162

line number, bug 159

line wrap table 70, 222

LIST 25, 34, 44, 47, 48, 51, 104,

105, 106, 164, 172, 213

LIST, freezing 189

LOAD 21, 24, 25, 26, 51, 88, 92,
116, 125, 127, 141, 182, 188,
216, 220, 222, 224

loading 19

Logo key 28, 44, 128

LOOP UNTIL 168

loops, infinite 119

lottery 204

luminance 29

machine language monitor 51, 96, 109,

142,145, 167

machine language monitor, bug 167

MAKEDIR 230

mathematics 57, 118, 120, 204

Memory-Read 40, 215

Memory-Write 24, 40, 199, 201, 209

memory, analysis 100

memory, fill 215

memory, saving 109, 126, 144

memory, transfer 155, 215

menu 188

merge 203

messages, Kernel 222

microprocessor 56, 58

microprocessor, C128 212

MID$(81, 84, 118, 166, 170

modem 176, 177

modulo counter 80

monitor, 1702 144

NEW 146, 158, 162

NMI 59, 134, 164, 179

NMI vector 135, 143, 158, 164

noise generation 119

NOT 143

NOP 92, 150

null string 7, 26, 136

number base converter 96

ON GOSUB 189

ON GOTO 116, 189, 191

OPEN 34, 47,51, 53, 65, 82,
101, 126, 208, 221

OPEN (,M) 66

Tha Trrinenr~tor Rnnle ~f Rite AnA Dinrace #1

eV 07, 8% 47, 65133 BB, @lrre ca
'R‘err}el,‘bug‘ 169495in ? Nithout Pe

n

OPEN, keyboard device 135
OPEN, screen device 149

OR 22

overflow flag 199

P register (processor status) 55, 56
page boundary 72

palindrome 63

Paperclip 146

parsing 22

PASCAL 42

pattern matching 6, 125, 182, 195

PEEKs

peek (1) 139, 179
peek (1) (C128) 212
peek (35) 162

peek (42) 131

peek (42) 36

peek (43) 20, 36, 131
peek (44) 102

peek (45) 102

peek (46) 102, 131
peek (47) 36, 102
peek (48) 36, 102
peek (49) 36, 102
peek (50) 102

peek (55) 131

peek (56) 131

peek (71) 207

peek (72) 207

peek (79) 52

peek (119) 73

peek (120) 73

peek (122) 49, 74
peek (123) 49, 74
peek (142) 38

peek (144) 14

peek (151) 114

peek (152) 13, 14, 53, 80
peek (183) 220
peek (187) 220
peek (188) 220
peek (197) 113
peek (219) 52

peek (516) 14

peek (537) 14

peek (646) 146
peek (648) 138
peek (653) 14, 128
peek (768) 103
peek (769) 103
peek (781) 82,162
peek (808) 45, 88
peek (36879) 32
peek (53265) 108
peek (53265) 144
peek (53272) 108
peek (53281) 28, 61, 78, 93
peek (55296) 28
peek (53296) (C128) 212
peek (54299) 119
peek (56320) 108, 189

pedl®(E632VIBY W . Commodore ca

peek (5633 1&39Not Reprint Without P
peek(56333g qoNot Reprint Without Pe
peek (57345) 43
peek (59468) 14
peek (65408) 85
peek (65532) 11
peek (65533) 11

peripherals 72
Petunia 14

phone lines 177
phone numbers 149
PHP 56

PIA 58, 94

PLA 55,142
plotting 80

PLP 56

POKEs

poke 1 139,142,179
poke 19 27, 47
poke 22 47

poke 43 20

poke 44 81

poke 45 15, 162
poke 46 102, 162
poke 47 36, 102
poke 48 36

poke 49 36, 102
poke 50 102

poke 52 131

poke 53 131

poke 54 70

poke 55 70, 130, 131
poke 56 81, 130, 131
poke 57 70

poke 58 70, 73
poke 59 73

poke 61 73

poke 62 73

poke 63 73

poke 65 49,73
poke 66 49, 73
poke 129 168
poke 144 5, 14
poke 145 5

poke 152 126
poke 153 69

poke 157 222
poke 158 65, 89
poke 159 81

poke 167 64, 89
poke 170 89

poke 174 126, 145
poke 175 69, 126
poke 175 145
poke 193 126, 145
poke 194 126, 145
poke 198 65, 89, 203, 207
poke 199 81

poke 204 65, 89

The Transactor Book of Bits and Pieces #1

sion

poke 205 13

poke 207 89

poke 211 211

poke 212 13

poke 213 71, 76, 141

poke 214 211

poke 224 76

poke 225 76

poke 226 76

poke 231 68

poke 233 83

poke 234 13, 83

poke 537 14

poke 623 65, 89

poke 624 65, 89

poke 631 65, 89, 203, 207

poke 632 65, 89, 203, 207

poke 633 203

poke 646 128

poke 648 81, 128

poke 649 107

poke 650 45

poke 768 82, 103, 215

poke 769 82, 103, 215

poke 770 109

poke 771 109

poke 774 44

poke 775 44, 106

poke 780 155

poke 781 82, 141, 155, 211

poke 782 211

poke 783 33

poke 788 5

poke 789 5

poke 792 135, 143, 164

poke 793 135, 164

poke 802 107

poke 803 107

poke 808 45, 88, 106, 107, 164

poke 809 88

poke 818 45, 106, 107

poke 1024 81, 142

poke 1026 20

poke 1176 167

poke 2050 162

poke 36864 25

poke 36879 32, 144

poke 53248 131

poke 53265 23, 108, 144

poke 53272 81, 108, 141, 178

poke 53280 86, 144, 178

poke 53281 15, 32, 54, 61, 78,
80, 86, 93, 144, 178

poke 53296 (C128) 212

poke 54273 111, 162

poke 54276 111, 162

poke 54278 111, 162

poke 54287 119

poke 54290 119

poke 54296 111, 162

poke 56325 48

poke 56334 139, 179

okBEBAE\A] . Commodore ca

okeli9464\ 146R
poke 59466 146
poke 59467 146
poke 59468 14
poke 59520 52, 57, 68, 79, 80
poke 59521 53, 57, 68, 79, 80,
85, 111

t Without Pe

pop 9, 33, 82, 188
portability 61, 95, 122, 157, 168,
172,177, 213

power supply 50, 71

Preferences, Amiga 228

PRG files 7, 38

prime number generation 120

PRINT 45, 80, 81, 82, 99, 112, 149,
161, 221, 222

PRINT AT 188, 210

PRINT, vertical 11

PRINT# 24, 26, 34, 54, 66

printer 47,72, 91, 147, 149, 179,
213, 53,137

protection 68, 104, 106, 179, 224

quote mode 12, 143

radio frequency (RF) 72

ram-disk, Amiga 230

RAMTAS 195

RAMTAS 220

random number generation 119, 204

raster 25

re-locate 20

READ 49,72, 80

read errors 117

RECORD#* 8

recovery, disk file 213

recovery, diskettes 117

recovery, program 146, 162, 182

relative files 24, 163, 183, 202

relative files, empty records 7

relative files, ?record not present error 7

REM 44, 105, 123, 211

renumber 33, 64

reset 11, 141, 147,162, 195, 220

reset vector 11, 220

reset, disk drive 40

RESTORE 48, 110, 223

RESTORE Key 134, 158, 164

RETURN 9, 82

REVCNT 199

RND(11, 84

rounding 89, 119

RS-232 85

RTI 164

RTS 91

RUN 21,105, 116, 122, 182, 220

RUN/STOP key 43, 46, 88, 220

RUN/STOP-RESTORE 43, 44, 88, 106, 108,

135, 141, 143, 164, 225
RVS 12,22, 81, 105, 224
SAVE 20, 21, 24, 25, 38, 45, 88, 92,
106, 109, 126, 165, 208, 219, 224

Thaa Toanmammdoaw N ale ~ad Nida miomad NV a n -

n

SAVE@ 186, 202

SBC 55

SCALE 213

SCNCLR 227

SCRATCH 182, 186, 213

screen clear 27

screen code, conversion 149
screen colours 108, 128, 135, 141, 144
screen copy, low-res 91

screen editor 70

screen memory 131, 141, 144, 197
screen memory, dump 149
screen memory, saving 164
screen page pointer 129

screen start address 31

screen, clear line 155

screen, move line 155

scroll 77, 85

scroll down 105, 148, 222
scrolling 21, 71, 128, 161, 222
SEC 55

secondary address 65, 66

sector header 67

Sector links 66

SEI 56

self modifying 5, 75

serial bus 72, 85

set bottom 12

settop 12, 105

SHIFT key 13, 22, 46, 68, 79, 113, 128
Shift RUN/STOP 21

SHIFTed SPACE 149, 165, 183, 224
SID 83,91, 111, 119, 208

sieve, of Eratosthenes 120
sound 83,91, 111, 146, 161, 208
SPC 26, 137

sprites 23, 112, 197

ST 8, 221

STA 91

stack 9, 56, 82, 159, 188, 196
stack pointer 82

star files 66

Start of Arrays Pointer 101

Start of BASIC pointer 20, 109
startup-sequence, Amiga 230
status register 58

STEP 119

STOP key 75, 79, 107, 158
STOP key, Plus 4 169

String Thing 35, 37

string variables 35

strings 36, 221, 224

strings, B128 213

strings, bug 132

strings, storage space 129
Supermon 15, 51, 53, 110, 167
SuperPET 14, 41, 52,57, 79
SuperScript 184

sync character 151

SYS 10, 11, 33, 36, 38, 51, 53, 66, 69,

70, 82, 84, 109, 125, 126, 141, 143,

145, 155, 162, 184, 188, 207, 211

TABE 44, 26MBR/ W, Commodore ca

table B‘? 147 F Wi t Perr

m»u Not nnt w

TAN"Z2

tape 38, 127, 166, 208

tape, errors 166

tape, saving 145

tape, saving, write routines 109

TED chip 166, 168

THEN 23

TI/TI$ 47, 88

timer 48

TO 22,88

tokenize 22, 36

Top of Arrays pointer 37, 129

Top of BASIC pointer 132, 184

Top of Memory pointer 132

trace 125

Transactor 17

transformer 51

TRAP 166, 168

TV 26, 33, 108, 219

TV, PAL/NTSC 47

TV/monitor 99

UJ 163,183

UJ, bug 202

UN NEW 146

UN SCRATCH 182, 213

UN-NEW 162

upper/lower case 105, 114

upper/lower case, lock 115

User Port 15

VAL(118

Validate 101, 185, 213

variables 35, 101

variables, pointers 132

variables, space 144

vector 83

VERIFY 25,219

VIA 58, 94

VIC Il chip 23, 25, 72, 112, 141,
144,197, 212

video 25,72, 111

video chip 68, 72

video controller 79

video port 50

voltage regulator 72

WAIT 113, 127

warm start vector 82, 109, 135, 147, 203

wedge, DOS 163, 225

windows 11, 76

word-wrap 221

Wordpro 146

WorkBench, Amiga 228

wrap table 70

write-protect 215

X register 54, 82, 133, 151

X-off 59

Y register 54

zero flag 56

zero page 94, 141

The Transactor Book of Bits and Pieces #1

n

