

INTRODUCTION

Now that you've become more intimately involved with your Commo-
dore 64, we want you to know that our customer support does not stop
here. You may not know it, but Commodore has been in business for

over 23 years. In the 1970's we introduced the first self-contained per-
sonal computer (the PET). We have since become the leading computer
company in many countries of the world. Our ability to design and
manufacture our own computer chips allows us to bring you new and
better personal computers at prices way below what you'd expect for
this level of technical excellence.

Commodore is committed to supporting not only you, the end user,
but also the dealer you bought your computer from, magazines which
publish how-to articles showing you new applications or techniques,
and . . . importantly . . . software developers who produce programs

on cartridge, disk and tape for use with your computer. We encourage
you to establish or join a Commodore "user club" where you can learn
new techniques, exchange ideas and share discoveries. We publish two
separate magazines which contain programming tips, information on
new products and ideas for computer applications. (See Appendix N).

In North America, Commodore provides a "Commodore Information
Network" on the CompuServe Information Service . . . to access this

network, all you need is your Commodore 64 computer and our low cost
VICMODEMtelephone interface cartridge (or other compatible modem).

The following APPENDICEScontain charts, tables, and other informa-
tion which help you program your Commodore 64 faster and more

efficiently. They also include important information on the wide variety
of Commodore products you may be interested in, and a bibliography
listing of over 20 books and magazines which can help you develop your
programming skills and keep you current on the latest information con-
cerning your computer and peripherals.

106

APPENDIX A

COMMODORE 64 ACCESSORIES
AND SOFTWARE

ACCESSORIES

The Commodore 64 will support Commodore VIC20 storage devices
and accessories-DATASSETTE recorder, disk drive, modem, printer -
so your system can expand to keep pace with changing needs.

· Datasette Recorder-This low cost tape unit enables programs and
data t~ be stored on cassette tape, and played back at a later
time. The data sette can also be used to play pre-written programs.

· Disk-The single disk unit uses standard SIf4-inch floppy diskettes,
about the size of a 45 RPM record, to store programs and data.
Disks allow faster access to data and hold up to 170,000 char-
acters of information each. Disk units are "intelligent," meaning
they have their own microprocessor and memory. Disks require no
resources from the Commodore 64, such as using part of main
memory.

· Modem-A low-cost communication device,the VICMODEM allows

access to other computers over ordinary telephone lines. Users will
have access to the full resources of large data bases such as The
Source, CompuServe, and Dow Jones News Retrieval Service (North
America only).

· Printer-The VIC printer produces printed copies of programs,
data, or graphics. This 30 character per second dot-matrix printer
uses plain tractor feed paper and other inexpensive supplies. The
printer attaches directly to the Commodore 64 without any addi-
tional interfaces.

. Interface Cartridges-A number of specialized cartridges will be
available for the Commodore 64 to allow various standard devices

such as modems, printers, controllers, and instruments to be at-
tached to the system.

107

With a special IEEE-488 Cartridge, the Commodore 64 will support
the full range of CBM peripherals including disk units and printers.

Additionally, a Z80 cartridge will allow you to run CP/M* on the
Commodore 64, giving you access to the largest base of
microcomputer applications available.

SOFTWARE

Several categories of software will be offered for the Commodore 64,
providing you with a wide variety of personal, entertainment, and edu-
cational applications to choose from.

BUSINESS AIDS

. An Electronic Spreadsheet package will allow you to plan budgets,
and perform "what in" analysis. And with the optional graphic
program, meaningful graphs may be created from the spreadsheet
data.

. Financial planning, such as loan amortization, will be easily han-
dled with the Financial Planning Package.

. A number of Professional Time Management programs will help
manage appointments and work load.

. Easy-to-use Data Base programs will allow you to keep track of
information . . . mailing lists . . . phone lists . . . inventories . . .
and organize information in a useful form.

. Professional Word Processing programs will turn the Commodore 64
into a full-featured word processor. Typing and revising memos,
letters, and other text material become a breeze.

ENTERTAINMENT

. The highest quality games will be available on plug-in cartridges
for the Commodore 64, providing hours of enjoyment. These pro-
grams make use of the high resolution graphics and full sound
range possible with the Commodore 64.

. Your Commodore 64 allows you all the fun and excitement avail-
able on MAX games because these two machines have completely
compatible cartridges.

.CP/M is a registered trademark of Digital Research Inc.

108

EDUCATION

. The Commodore 64 is a tutor that never tires and always gives
personal attention. Besides access to much of the vast PET educa-
tional programs, additional educational languages that will be
available for the Commodore 64 include PILOT, LOGO and other
key advanced packages.

109

APPENDIX B

ADVANCED CASSETTE OPERATION

Besides saving copies of your programs on tape, the Commodore 64
can also store the values of variables and other items of data, in a

group called a FilE. This allows you to store even more information than

could be held in the computer's main memory at one time.

Statements used with data files are OPEN, CLOSE, PRINT#, INPUT#,

and GET#. The system variable ST (status) is used to check for tape
markers.

In writing data to tape, the same concepts are used as when display-
ing information on the computer's screen. But instead of PRINTing in-

formation on the screen, the information is PRINTed on tape using a
variation of the PRINT command-PRINT#.

The following program illustrates how this works:

10 PRINT "WRITE-TO-TAPE-PROGRAM"
20 OPEN 1,1,1,"DATA FILE"
30 PRINT "TYPE DATA TO BE STORED OR TYPE STOP"
50 PRINT
60 INPUT "DATA",A$
70 PRINT #1, A$
S0 IF A$ <:>"STOP" THEN 50
90 PRINT
100 PRINT "CLOSING FILE"
110 CLOSE 1

The first thing that you must do is OPEN a file (in this case DATA FilE).
Line 10 handles that.

The program prompts for the data you want to save on tape in line

60. Line 70 writes what you typed-held in A$-onto the tape. And the
process continues.

If you type STOP, line 110 CLOSES the file.

110

To retrieve the information, rewind the tape, and try this:

19 PRINT "READ-TAPE-PROGRAt1"
29 OPEN 1,1,9,"DATA FILE"
39 PRINT "FILE OPEN"
49 PRINT
59 INPUT#l, A$
69 PRINT A$
70 IF A$ = "STOP" THEN END
89 GOTO 49

Again, the file "DATA FILE"first must be OPENed. In line 50 the pro-
gram INPUTs A$ from tape and also PRINTs A$ on the screen. Then the
whole process is repeated until "STOP" is found, which ENDs the pro-
gram.

A variation of GET-GET#-can also be used to read the data back

from tape. Replace lines 50-80 in the program above with:

59 GET#l, A$
69 IF A$ = "" THEN END
79 PRINT A$, ASC(A$)
89 GOTO 59

111

APPENDIX C

COMMODORE 64 BASIC

This manual has given you an introduction to the BASIC language-
enough for you to get a feel for computer programming and some of

the vocabulary involved. This appendix gives a complete list of the rules
(SYNTAX) of Commodore 64 BASIC, along with concise descriptions.

Please experiment with these commands. Remember, you can't do any
permanent damage to the computer by just typing in programs, and the
best way to learn computing is by doing.

This appendix is divided into sections according to the different types
of operations in BASIC. These include:

1. Variables and Operators: describes the different type of variables,
legal variable names, and arithmetic and logical operators.

2. Commands: describes the commands used to work with programs,
edit, store, and erase them.

3. Statements: describes the BASIC program statements used in num-

bered lines of programs.
4. Functions: describes the string, numeric, and print functions.

VARIABLES

The Commodore 64 uses three types of variables in BASIC. These are

real numeric, integer numeric, and string (alphanumeric) variables.

Variable names may consist of a single letter, a letter followed by a
number, or two letters.

An integer variable is specified by using the percent (%) sign after the

variable name. String variables have the dollar sign ($) after their
name.

EXAMPLES

Real Variable Names: A, AS, BZ

Integer Variable Names: A%, AS%, BZ%

112

String Variable Names: A$, A5$, BZ$
Arrays are lists of variables with the same name, using extra numbers

to specify the element of the array. Arrays are defined using the DIM
statement, and may contain floating point, integer, or string variables.
The array variable name is followed by a set of parentheses () enclos-
ing the number of variables in the list.

A(7), BZ%(11), A$(50), PT(20,20)

NOTE: There are three variable names which are reserved for use by
the Commodore 64, and may not be defined by you. These variables
are: ST, TI, and TI$. ST is a status variable which relates to input/output
operations. The value of ST will change if there is a problem loading a
program from disk or tape.

TI and TI$ are variables which relate to the real-time clock built into
the Commodore 64. The variable TI is updated every 1/60th of a second.
It starts at 0 when the computer is turned on, and is reset only by chang-
ing the value of TI$.

TI$ is a string which is constantly updated by the system. The first two
characters contain the number of hours, the 3rd and 4th characters the
number of minutes, and the 5th and 6th characters are the number of
seconds. This variable can be given any numeric value, and will be
updated from that point.

TI$ = "101530"sets the clock to 10:15 and 30 seconds AM.

This clock is erased when the computer is turned off, and starts at
zero when the system is turned back on.

OPERATORS

The arithmetic operators include the following signs:

+ Addition
- Subtraction

* Multiplication
/ Division

i Raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in
which operations always occur. If several operations are used together

113

on the same line, the computer assigns priorities as follows: First, ex-
ponentiation. Next, multiplication and division, and last, addition and
subtraction.

You can change the order of operations by enclosing within pa-
rentheses the calculation to be performed first. Operations enclosed in
parentheses will take place before other operations.

There are also operations for equalities and inequalities:

= Equal To
< less Than
> Greater Than
<= less Than or Equal To
>= Greater Than or Equal To
<> Not Equal To

Finally, there are three logical operators:

AND
OR
NOT

These are used most often to join multiple formulas in IF . . . THEN
statements. For example:

IF A = BAND C = D THEN 100 (Requires both parts to be true)

IF A = B OR C = D THEN 100 (Allows either part to be true)

COMMANDS

CONT (Continue)

This command is used to restart the execution of a program which has
been stopped by either using the STOP key, a STOP statement, or an
END statement within the program. The program will restart at the exact
place from where it left off.

CONT will not work if you have changed or added lines to the pro-

gram (or even just moved the cursor), or if the program halted due to an
error, or if you caused an error before trying to restart the program. In
these cases you will get a CAN'T CONTINUE ERROR.

114

LIST

The LISTcommand allows you to look at lines of a BASIC program in
memory. You can ask for the entire program to be displayed, or only
certain line numbers.

LIST

LIST 10-
LIST 10

LIST -10
LIST 10-20

LOAD

Shows entire program
Shows only from line 10 until end
Shows only line 10
Shows lines from beginning until 10
Shows line from lQ to 20, inclusive

This command is used to transfer a program from tape or disk into
memory so the program can be used. If you just type LOAD and hit
RETURN, the first program found on the cassette unit will be placed in
memory. The command may be followed by a program name enclosed
within quotes. The name may then be followed by a comma and a
number or numeric variable, which acts as a device number to indicate

where the program is coming from.
If no device number is given, the Commodore 64 assumes device # 1,

which is the cassette unit. The other device commonly used with the
LOAD command is the disk drive, which is device #8.

LOAD
LOAD "HELLO"

LOAD A$
LOAD " HELLO",8
LOAD "*",8

NEW

Reads in the next program on tape
Searches tape for program called

HELLO, and loads program, if found
Looks for program whose name is in the variable A$
Looks for program called HELLOon the disk drive
Looks for first program on disk

This command erases the entire program in memory, and also clears

out any variables that may have been used. Unless the program was
SAVEd, it is lost. BE CAREFULWHEN YOU USE THIS COMMAND.

The NEW command can also be used as a BASIC program statement.

When the program reaches this line, the program is erased. This is use-
ful if you want to leave everything neat when the program is done.

115

RUN

This command causes execution of a program, once the program is
loaded into memory. If there is no line number following RUN, the com-

puter will start with the lowest line number. If a line number is desig-
nated, the program will start executing from the specified line.

RUN
RUN 100

RUN X

SAVE

Starts program at lowest line number
Starts execution at line 100

UNDEFINED STATEMENT ERROR. You must

always specify an actual line number,

not a variable representation

This command will store the program currently in memory on cassette
or disk. If you ju;t type SAVEand RETURN,the program will be SAVEdon
cassette. The computer has no way of knowing if there is a program
already on that tape, so be careful with your tapes or you may erase a
valuable program.

If you type SAVEfollowed by a name in quotes or a string variable,
the computer will give the program that name, so it can be more easily
located and retrieved in the future. The name may also be followed by
a device number.

After the device number, there can be a comma and a second
number, either a or 1. If the second number is 1, the Commodore 64 will
put an END-OF-TAPE marker after your program. This signals the
computer not to look any further on the tape if you were to give an
additional LOADcommand. If you try to LOADa program and the com-
puter finds one of these markers, you will get a FILENOT FOUND ER-
ROR.

SAVE

SAVE "HELLO"

SAVE A$

SAVE "HELLO",8

SAVE "HELLO", 1, 1

-.

Stores program to tape without name
Stores on tape with name HELLO
Stores on tape with name in A$
Stores on disk with name HELLO

Stores on tape with name HELLO
and follows program with END-OF-

TAPEmarker

116

VERIFY

This command causes the computer to check the program on disk or

tape against the one in memory. This is proof that the program is actu-
ally SAVEd, in case the tape or disk is bad, or something went wrong
during the SAVE. VERIFY without anything after the command causes the

Commodore 64 to check the next program on tape, regardless of name,

against the program in memory.
VERIFY followed by a program name, or a string variable, will search

for that program and then check. Device numbers can also be included
with the verify command.

VERIFY

VERIFY "HELLO"

VERIFY "HELLO",8

Checks the next program on tape

Searches for HELLO, checks against memory
Searches for HELLO on disk, then checks

STATEMENTS

CLOSE

This command completes and closes any files used by OPEN state-
ments. The number following CLOSE is the file number to be closed.

CLOSE 2 Only file #2 is closed

CLR

This command will erase any variables in memory, but leaves the
program itself intact. This command is automatically executed when a

RUN command is given.

CMD

CMD sends the output which normally would go to the screen (i.e.,
PRINTstatements, LISTs, but not POKEs onto the screen) to another de-
vice instead. This could be a printer, or a data file on tape or disk. This
device or file must be OPENed first. The CMD command must be fol-

lowed by a number or numeric variable referring to the file.

117

OPEN 1,4
CMD 1
LIST

OPENs device #4, which is the printer
All normal output now goes to printer

The program listing now goes to
the printer, not the screen

To send output back to the screen, CLOSE the file with CLOSE1.

DATA

This statement is followed by a list of items to be used by READ

statements. Items may be numeric values or text strings, and items are

separated by commas. String items need not be inside quote marks

unless they contain space, colon, or comma. If two commas have noth-

ing between them, the value will be READ as a zero for a number, or an
empty string.

DATA 12, 14.5, "HELLO, MOM", 3.14, PARn

DEF FN

This command allows you to define a complex calculation as a func-
tion with a short name. In the case of a long formula that is used many
times within the program, this can save time and space.

The function name will be FN and any legal variable name (lor 2
characters long). First you must define the function using the statement
DEFfollowed by the function name. Followingthe name is a set of pa-
rentheses enclosing a numeric variable. Then follows the actual formula
that you want to define, with the variable in the proper spot. You can
then "call" the formula, substituting any number for the variable.

1~ DEF FNA(X) =
2~ PRINT FNA(7)

t

12*(34.75 - X/.3)

J 7;. ;n.orted who.e
X is in the formula

For this example, the result would be 137.

DIM

When you use more than 11 elements of an array, you must execute a
DIM statement for the array. Keep in mind that the whole array takes up

118

room in memory, so don't create an array much larger than you'll need.
To figure the number of variables created with DIM, multiply the total
number of elements in each dimension of the array.

10 DIM A$(40), B7(15), CC%(4,4,4)
t t t

41 ELEMENTS 16 ELEMENTS 125 ELEMENTS

You can dimension more than 'one array in a DIM statement. How-
ever, be careful not to dimension an array more than once.

END

When a program encounters an END statement, the program halts, as
if it ran out of lines. You may use CONT to restart the program.

FOR. . .TO. . .STEP

This statement works with the NEXTstatement to repeat a section of
the program a set number of times. The format is:

FOR (Var. Name)=(Start of Count) TO (End of Count) STEP(Count By)

The loop variable will be added to or subtracted from during the
program. Without any STEPspecified, STEPis assumed to be 1. The start
count and end count are the limits to the value of the loop variable.

10 FOR L = 1 TO 10 STEP .1
20 PRINT L
30 NEXT L

The end of the loop value may be followed by the word STEP and
another number or variable. In this case, the value following STEP is
added each time instead of 1. This allows you to count backwards, or
by fractions.

GET

The GET statement allows you to get data from the keyboard, one
character at a time. When GETis executed, the character that is typed is

assigned to the variable. If no character is typed, then a null (empty)
character is assigned.

..-
119

..-

GET is followed by a variable name, usually a string variable. If a
numeric variable was used and a nonnumeric key depressed, the pro-
gram would halt with an error message. The GET statement may be
placed into a loop, checking for any empty result. This loop will continue
until a key is hit.

1" GETA$: IFA$ ="" THEN1"

GET#

ThfW:ZEJ...#statement is used with a previously OPENed device or file,

to input one character at a time from that device or file.

GET #1 ,A$

This would input one character from a data file.

GOSUB

This statement is similar to GOTO, except the computer remembers
which program line it last executed before the GOSUB. When a line with
a RETURN statement is encountered, the program jumps back to the
statement immediately following the GOSUB. This is useful if there is a
routine in your program that occurs in several parts of the program.
Instead of typing the routine over and over, execute GOSUBs each time
the routine is needed.

2" GOSUB8""

GOTO OR GO TO

When astatement with the GOTO command is reached, the next line

to be executed will be the one with the line number following the word
GOTO.

IF. . .THEN

IF. . .THEN lets the computer analyze a situation and take two possi-
ble courses of action, depending on the outcome. If the expression is
true, the statement following THEN is executed. This may be any BASIC
statement.

If the expression is false, the program goes directly to the next line.
The expression being evaluated may be a variable or formula, in

which case it is considered true if nonzero, and false if zero. In most
cases, there is an expression involving relational operators (=, <, >,
<=, >=, <>, AND, OR, NOT).

120

10 IF X > 10 THEN END

INPUT

The INPUT statement allows the program to get data from the user,
assigning that data to a variable. The program will stop, print a ques-
tion mark (?) on the screen, and wait for the user to type in the answer
and hit RETURN.

INPUT is followed by a variable name, or a list of variable names,

separated by commas. A message may be placed within quote marks,
before the list of variable names to be INPUT. If more than one variable

is to be INPUT, they must be separated by commas when typed.

10 INPUT "PLEASE ENTER YOUR FIRST NAME ";A$

20 PRINT "ENTER YOUR CODE NUMBER"; : INPUT B

INPUT#

INPUT# is similar to INPUT, but takes data from a previously OPENed
file or device.

10 INPUT#l, A

LET

LET is hardly ever used in programs, since it is optional, but the
statement is the heart of all BASIC programs. The variable name which
is to be assigned the result of a calculation is on the left side of the
equal sign, and the formula on the right.

10LETA=5
20 LETD$ = "HELLO"

I
NEXT

NEXTis always used in conjunction with the FOR statement. When the
program reaches a NEXTstatement, it checks the FOR statement to see
if the limit of the loop has been reached. If the loop is not finished, the
loop variable is increased by the specified STEP value. If the loop is

:::- finished, execution proceeds with the statement following NEXT.

121

NEXTmay be followed by a variable name, or list of variable names,
separated by commas. If there are no names listed, the last loop started
is the one being completed. If variables are given, they are completed
in order from left to right.

10 FOR X = 1 TO 100: NEXT

ON

This command turns the GOTO and GOSUB commands into special
versions of the IF statement. ON is followed by a formula, which is
evaluated. If the result of the calculation is one, the first line on the list is
executed; if the result is 2, the second line is executed, and so on. If the
result is 0, negative, or larger than the list of numbers, the next line
executed will be the statement following the ON statement.

10 INPUT X

20 ON X GOTO 10,20,30,40,50

OPEN

The OPEN statement allows the Commodore 64 to access devices such
as the cassette recorder and disk for data, a printer, or even the screen.
OPEN is followed by a number (0-255), to which all following statements
will refer. There is usually a second number after the first, which is the
device number.

The device numbers are:

o Screen
1 Cassette
4 Printer
8 Disk

Following the device number may be a third number, separated
again by a comma, which is the secondary address. In the case of the

cassette, this is 0 for read, 1 for write, and 2 for write with end-of-tape
marker.

In the case of the disk, the number refers to the buffer, or channel,
number. In the printer, the secondary address controls features like ex-
panded printing. See the Commodore 64 Programmer's Reference Man-
ual for more details.

\,

122

10 OPEN 1,O
20 OPEN 2,1 ,0,"D"

OPENs the SCREEN as a device

OPENs the cassette for reading,
file to be searched for is D

OPENs the printer
OPENs the data channel on the disk

30 OPEN 3,4
40 OPEN 4,8,15

Also see: CLOSE, CMD, GET#, INPUT#, and PRINT#, system variable
ST, and Appendix B.

POKE

POKE is always followed by two numbers, or formulas. The first loca-

tion is a memory location; the second number is a decimal value from 0

to 255, which will be placed in the memory location, replacing any pre-

viously stored value.

10 POKE 53281,0

20 5=4096* 13
30 POKE 5+29,8

PRINT

The PRINT statement is the first one most people learn to use, bUJ
there are a number of variations to be aware of. PRINTcan be followed

by:

Text String with quotes
Variable names
Functions
Punctuation marks

Punctuation marks are used to help format the data on the screen.
The comma divides the screen into four columns, while the semicolon

suppresses all spacing. Either mark can be the last symbol on a line.
This results in the next thing PRINTed acting as if it were a continuation
of the same PRINT statement.

10 PRINT "HElLO"

20 PRINT "HElLO" ,A$
30 PRINT A+ B

123

4~ PRINT J;

6~ PRINT A,B,C,D

Also see: POS, SPC and TAB functions

PRINT#

There are a few differences between this statement and PRINT.

PRINT# is followed by a number, which refers to the device or data file
previously OPENed. This number is followed by a comma and a list to be

printed. The comma and semicolon have the same effect as they do in
PRINT. Please note that some devices may not work with TAB and spc.

1~~ PRINT#I,"DATA VALUES"; A%, Bl, C$

READ

READ is used to assign information from DATA statements to vari-

ables, so the information may be put to use. Care must be taken to
avoid READing strings where READ is expecting a number, which will
give a TYPE MISMATCH ERROR.

REM (Remark)

REMark is a note to whomever is reading a LIST of the program. It
may explain a section of the program, or give additional instructions.

REM statements in no way affect the operation of the program, except
to add to its length. REM may be followed by any text.

RESTORE

When executed in a program, the pointer to which an item in a DATA

statement will be READ next is reset to the first item in the list. This gives
you the ability to re-READ the information. RESTOREstands by itself on a
line.

RETURN

This statement is always used in conjunction with GOSUB. When the

program encounters a RETURN, it will go to the statement immediately
following the GOSUB command. If no GOSUB was previously issued, a
RETURN WITHOUT GOSUB ERROR will occur.

124

STOP

This statement will halt program execution. The message, BREAKIN
xxx will be displayed, where xxx is the line number containing STOP. The
program may be restarted by using the CONT command. STOP is nor-
mally used in debugging a program.

SYS

SYS is followed by a decimal number or numeric value in the range
0-65535. The program will then begin executing the machine language
program starting at that memory location. This is similar to the USR
function, but does not allow parameter passing.

WAIT

WAITis used to halt the program until the contents of a memory loca-
tion changes in a specific way. WAITis followed by a memory location
(X) and up to two variables. The format is:

WAIT X,Y,Z

The contents of the memory location are first exciusive-ORed with the
third number, if present, and then logically ANDed with the second
number. If the result is zero, the program goes back to that memory
location and checks again. When the result is nonzero, the program
continues with the next statement.

NUMERIC FUNCTIONS

ABS(X) (absolute value)

ABS returns the absolute value of the number, without its sign (+ or
-). The answer is always positive.

ATN(X) (arctangent)

Returns the angle, measured in radians, whose tangent is X.

125

COS(X) (cosine)

Returns the value of the cosine of X, where X is an angle measured in
radians.

EXP(X)

Returns the value of the mathematical constant e(2.71827183) raised

to the power of X.

FNxx(X)

Returns the value of the user-defined function xx created in a DEF
FNxx(X) statement.

INT(X)

Returns the truncated value of X, that is, with all the decimal places
to the right of the decimal point removed. The result will always be less
than, or equal to, X. Thus, any negative numbers with decimal places
will become the integer less than their current value.

LOG(X) (logarithm)

Will return the natural log of X. The natural log to the base e (see
EXP(X». To convert to log base 10, simply divide by LOG(10).

PEEK(X)

Used to find out contents of memory location X, in the range 0-65535,

giving a result from 0-255. PEEK is often used in conjunction with the
POKE statement.

RND(X) (random number)

RND(X) returns a random number in the range 0-1. The first random
number should be generated by the formula RND(-TI) to start things off
differently every time. After this, X should be a 1 or any positive
number. If X is zero, the result will be the same random number as the
last one.

126

A negative value for X will reseed the generator. The use of the same
negative number for X will result in the same sequence of "random"
numbers.

The formula for generating a number between X and Y is:

N = RND(l)*(Y-X)+X

where,
Y is the upper limit
X is the lower range of numbers desired.

SGN(X) (sign)

This function returns the sign (positive, negative, or zero) of X. The
result will be + 1 if positive, 0 if zero, and -1 if negative.

SIN(X) (sine)

SIN(X) is the trigonometric sine function. The result will be the sine of
X, where X is an angle in radians.

SQR(X) (square root)

This function will return the square root of X, where X is a positive
number or O. If X is negative, an IllEGAL QUANTITYERROR results.

TAN(X) (tangent)

The result will be the tangent of X, where X is an angle in radians.

USR(X)

When this function is used, the program jumps to a machine language
program whose starting point is contained in memory locations. The pa-
rameter X is passed to the machine language program, which will re-
turn another value back to the BASIC program. Refer to the Commodore
64 Programmer's Reference Manual for more details on this function
and machine language programming.

127

STRING FUNCTIONS

ASC(X$)

This function will return the ASCII code of the first character of X$.

CHR$(X)

This is the opposite of ASC, and returns a string character whose
ASCII code is X.

LEFT$(X$,X)

Returns a string containing the leftmost X characters of $X.

LEN(X$)

Returned will be the number of characters (including spaces and
other symbols) in the string X$.

MID$(X$,S,X)

This will return a string containing X characters starting from the Sth
character in X$.

RIGHT$(X$,X)

Returns the rightmost X characters in X$.

STR$(X)

This will return a string which is identical to the PRINTed version of X.

VAL(X$)

This function converts X$ into a number, and is essentially the inverse
operation from STR$. The string is examined from the leftmost character
to the right, for as many characters as are in recognizable number for-
mat.

128

10 X = VAL("123.456")
10 X = VAL("12A13B")
10 X = VAL("RIUfij17")
10 X = VAL("-1.23.45.67")

X = 123.456
X = 12
X = fij
X = -1.23

OTHER FUNCTIONS

FRE{X)

This function returns the number of unused bytes available in memory,
regardless of the value of X. Note that FRE(X)will read out n negative
numbers if the number of unused bytes is over 32K.

POS{X)

This function returns the number of the column (0-39) at which the
next PRINT statement will begin on the screen. X may have any value
and is not used.

SPC{X)

This is used in a PRINT statement to skip X spaces forward.

TAB{X)

TABis also used in a PRINTstatement; the next item to be PRINTed will
be in column X.

129

APPENDIX D

ABBREVIATIONS FOR
BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commo-
dore 64 BASIC allows the user to abbreviate most keywords. The ab-
breviation for PRINT is a question mark. The abbreviations for other
words are made by typing the first one or two letters of the word, fol-
lowed by the SHIFTed next letter of the word. If the abbreviations are
used in a program line, the keyword will LISTin the full form.

Loolcslik. Loolcslik.
Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen

ABS A_B Am END E BIIiI N E0
AND A_N A0 EXP ElmiIx E

ASC A BIIiI S A FN NONE FN

ATN A_T A[J FOR F BIIiI 0 FO
CHR$ CIIIIIIH c[] FRE FBllDR F

CLOSE ClI1lDDO CLD GET GBIIDE GEj

CLR C 11IIII L cD GET# NONE GET#

CMD C BIIiI M cIS] GOSUB GO BID S GO

CONT C I1IDD 0 cD GOTO G BIIiI 0 GO

COS NONE COS IF NONE IF

DATA D BIIiIA D[!] INPUT NONE INPUT

DEF DEmlE DE! INPUT# I_N I 0
DIM D_I DfJ INT NONE INT

,
130

131

Looks like Looks like
Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen

LEFT$ LEIDIIII F LEbJ RIGHT$ R IIIIiI I R

LEN NONE LEN RND R BIIiI N RIZI

LET L18E LO RUN RBllDu RGj
LIST LEDIIiII L SAVE S Emil A S

LOAD LIDIIII 0 LO SGN S IIIIiI G SID

LOG NONE LOG SIN SBIIDI sl;]
MID$ MBIIDI MEJ SPC{ slIDiIp sO
NEW NONE NEW SQR S BID Q S.
NEXT NIDIIIIE NEj STATUSST ST

NOT N Emil 0 NO STEP ST" E STE]

ON NONE ON STOP S"T sID
OPEN o IIIIiI P 00 STR$ STIIIIiI R STQ

OR NONE OR SYS S IIIIiI Y s[]]

PEEK PIIIIiI E PEl TAB(T BID A T

POKE P BIIiI 0 pO TAN NONE TAN

POS NONE POS THEN TIDIIII H T[]

PRINT ? ? ITIME TI TI

PRINT# PImDR PbJ TIME$ TI$ TI$

READ RImDE REI USR ulmDs U

REM NONE REM VAL VIIIIiIA vI!!
RESTOREREBIIiI S RE VERIFY VBIIiIE vEJ
RETURNREEDIiIT RE[] WAIT WBIIiIA wI!!

APPENDIX E

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commodore
64 character sets. It shows which numbers should be POKEd into screen
memory (locations 1024-2023) to get a desired character. Also shown is
which character corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This
means that you cannot have characters from one set on the screen at
the same time you have characters from the other set displayed. The

sets are switched by holding down the Emil and [I keys simul-
taneously.

From BASIC, POKE 53272,21 will switch to upper case mode and
POKE 53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE.The
reverse character code may be obtained by adding 128 to the values
shown.

If you want to display a solid circle at location 1504, POKEthe code
for the circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of each
character displayed on the screen (locations 55296-56295). To change
the color of the circle to yellow (color code 7) you would POKEthe corre-
sponding memory location (55776) with the character color: POKE
55776,7.

Refer to Appendix G for the complete screen and color memory
maps, along with color codes.

SCREEN CODES
SET1 SET2 POKE SET1 SET2 POKE SET1 SET2 POKE

@ 0 C c 3 F f 6

A a 1 D d 4 G 9 7

B b 2 E e 5 H h 8

132

SET1 SET2 POKE SET1 SET2 POKE SET1 SET2 POKE

I i 9 % 37 A 65

J j 10 & 38 [JJ B 66

K k 11 , 39 B C 67

L I 12 (40 EJ D 68

M m 13) 41 Ej E 69

N n 14 * 42 bJ F 70

0 0 15 + 43 D G 71

P P 16 I 44 OJ H 72

Q q 17 - 45 EJ I 73

R r 18 46 J 74

S s 19 / 47 EJ K 75

T t 20 0 48 0 L 76

U u 21 1 49 [SJ M 77

V v 22 2 50 0 N 78

W w 23 3 51 0 0 79

X x 24 4 52 0 P 80

Y Y 25 5 53 II Q 81

Z z 26 6 54 bJ R 82

[27 7 55 S 83

£ 28 8 56 D T 84

] 29 9 57 [lj U 85

t 30 58 V 86

+- 31 , 59 C W 87- 32 < 60 X 88

33 = 61 []] Y 89

34 I

> 62 [J] Z 90

35 ? 63 EE 91

$
36 I

B 64 IJ 92

133

134

SET 1 SETZ POKE SET 1 SET Z POKE SET 1 SETZ POKE

rn 93 IB 105 [] 117

ITB . 94 [] 106 [] 118
95 rn 107 LI 119- 96 108 120

IJ 97 [g 109 121

98 6J 110 0 0 122

0 99 CJ 111 123

0 100 ca 112 124

0 101 113 125

II 102 EI3 114 126

0 103 HJ 115 127

104 IJ 116

Codes from 128-255are reversed Images of codes 0-127.

APPENDIX F

ASCII AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT

CHR$(X), for all possible values of X. It will also show the values ob-

tained by typing PRINT ASq"x"), where x is any character you can type.
This is useful in evaluating the character received in a GET statement,

converting upper/lower case, and printing character based commands

(like switch to upper/lower case) that could not be enclosed in quotes.

135

PRINTS CHR$ PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

0 II 17 .. 34 3 51

1 .. 18 # 35 4 52

2 . 19 $ 36 5 53

3 . 20 % 37 6 54

4 21 & 38 7 55. 5 22 39 8 56

6 23 (40 9 57

7 24) 41 : 58

DISABlES..Cl8 25 * 42 59.

ENABLES"Cl9 26 + 43 C 60

10 27 , 44 = 61

11 - 28 - 45 :> 62
12 II 29 46 ? 63.. 13 . 30 / 47 @ 64

"14 . 31 0 48 A 65 i

15 III
32 I

1 49 B 66

16 , 33 2 50 C 67

136

PRINTS CHR$ PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

D 68 97 ffD 126 B3 155
E 69 CD 98 C!II 127 . 156
F 70 E3 99 128 II 157
G 71 D 100 129 - 158
H 72 Ej 101 130 . 159
I 73 g 102 131 lID 160
J 74 0 103 132 IJ 161
K 75 OJ 104 f1 133 .. 162
L 76 EJ 105 f3 134 D 163
M 77 106 f5 135 0 164
N 78 107 f7 136 D 165
0 79 0 108 f2 137 11III 166

P 80 [SJ 109 f4 138 D 167
Q 81 0 110 f6 139 168
R 82 0 111 f8 140 169

S 83 0 112 __141 [] 170
T 84 . 1131llliJ142 rn 171
U 85 D 114 143 [Ij 172
V 86 115 . 144 [g 173

W 87 D 116 III 145 ElJ 174
X 88 Cd 117 .. 146 175
Y 89 118 II 147 ca 176
Z 90 C 119 II 148 177

[91 120 Cd 149 53 178
£ 92 OJ 121 150 8J 179

] 93 [I] 122 C 151 [] 180

r 94 B3 123 152 [] 181
- 95 IJ 124 OJ 153 [] 182

E3 96 rn 125 [I] 154 U 183

CODES
CODES
CODE

192-223
224-254
255

SAME AS
SAME AS
SAME AS

96-127
160-190
126

137

PRINTS CHRS PRINTS CHR$ PRINTS CHRS PRINTS CHRS

184 D 186 188 190
185 187 f!] 189 191

APPENDIX G

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing char-
acters on the screen, and the locations used to change individual char-
acter colors, as well as showing character color codes.

SCREENMEMORYMAP

1024-
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

10
COLUMN

20 30

'"
10 ~

20

24

138

The actual values to POKE into a color memory location to change a
character's color are:

For example, to change the color of a character located at the upper
left-hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

10
COLUMN

20 30 39

55335
~

55296-
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

10 ~

20

24
t

56295

139

f/! BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED If/! Light RED
3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YellOW 15 GRAY 3

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to Commodore 64 BASIC may be calcu-
lated as follows:

'140

FUNCTION BASIC EQUIVALENT

SECANT SEC(X)= I/COS(X)
COSECANT CSC(X)= I/SIN(X)
COTANGENT COT(X)= I/TAN(X)
INVERSE SINE ARCSIN(X)=ATN(X/SQR(- X.X + 1»
INVERSE COSINE ARCCOS(X)= -ATN(X/SQR

(-X.X +1» +7T/2
INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X.X - 1»
INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X.X -1»

+(SGN(X)-I.7T/2
INVERSE COTANGENT ARCOT(X)=ATN(X)+7T/2
HYPERBOLIC SINE SINH(X)= (EXP(X)- EXP(- X»/2
HYPERBOLIC COSINE COSH(X)= (EXP(X)+ EXP(- X»/2

HYPERBOLICTANGENT TAN H(X)= EXP(- X)/(EXP(x)+ EXP

(- X».2+ 1
HYPERBOLIC SECANT SECH(X)= 2/(EXP(X)+ EXP(- X»
HYPERBOLIC COSECANT CSCH(X)= 2/(EXP(X)- EXP(- X»
HYPERBOLIC COTANGENT COTH(X)= EXP(- X)/(EXP(X)

-EXP(-X».2+1
INVERSE HYPERBOLIC SINE ARCSINH(X)= LOG(X+ SQR(X. x + 1»
INVERSE HYPERBOLICCOSINE ARCCOSH(X)= LOG(X+SQR(X.X -1»
INVERSE HYPERBOLICTANGENT ARCTANH(X)= LOG« 1+ X)/(1- X»/2
INVERSE HYPERBOLICSECANT ARCSECH(X)= LOG«SQR

(-X.X+ 1)+ I/X)
INVERSE HYPERBOLICCOSECANT ARCCSCH(X)= LOG«SGN(X). SQR

(X.X+l/x)
INVERSE HYPERBOLICCOTAN- ARCCOTH(X)= lOG«X + 1)/(x-l »/2
GENT

APPENDIX I

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be
made to the Commodore 64.

1) Game I/O

2) Cartridge Slot
3) Audio/Video

Control Port 1

Control Port 2

4) Serial I/O (Disk/Printer)

5) Modulator Output
6) Cassette

7) User Port

2
o

4
o

5
o

3
o

1
o

o
7

o
8

o
9

o
6

141

Pin Type Note
1 JOYAO
2 JOYAl
3 JOYA2

4 JOYA3
5 POT AY
6 BUTTON A'LP

7 +5V MAX. 50mA

8 GND

9 POT AX

Pin Type Note

1 JOYBO
2 JOYBI
3 JOYB2
4 JOYB3

5 POT BY

6 BUTTON B
7 +SV MAX. SOmA

8 GND

9 POT BX

Cartridge Expansion Slot

22 2120 1918171615 U 13 12 1110 9 8 7 8 5 4 3 2 1

IV XWVUTSRPNMLKJHFEOCBA

Audio/Video

IT
SerialI/O

142

Pin TVDe

12 BA
13 i5MA
14 D7

15 D6
16 DS
17 D4

18 D3
19 D2
20 D1
21 DO

22 GND

Pin Type

N A9

P A8

R A7

S A6

T AS

U A4
V A3

W A2

X Al

Y AO

Z GND

Type Note

LUMINANCE
GND
AUDIO OUT

VIDEO OUT
AUDIO IN

Pin Type

1 SERIALSRQIN
2 GND

3 SERIALATN IN/OUT
4 SERIALCLK IN/OUT

5 SERIAL DATA IN/OUT

6 RESET

Pin Type

1 GND

2 +SV

3 +SV
4 IRQ
S R/w

6 Dot Clock
7 I/O 1
8 GAME
9 EXROM

10 I/O 2
11 ROML

Pin . Type

A GND
B ROMH
C REsEr
D NMI
E S 02

F A1S
H A14

J A13
K A12
L All
M Al0

Cassette

User I/O

1 2 3 4 5 6 7 8 9 10 11 12

ABC D E F H J K L M N

143

123458
..---.

ABC D E F

Pin Type
A-I GND
B-2 +SV
C-3 CASSETTEMOTOR
D-4 CASSETTEREAD
E-S CASSETTEWRITE
F-6 CASSETTESENSE

Pin Type Note
I GND
2 +SV MAX. lOa mA
3 RESET
4 CNTI
S SPI
6 CNT2
7 SP2
8 PC2
9 SER. ATN IN

10 9 VAC MAX. lOa mA
11 9 VAC MAX. lOa mA
12 GND

Pin Type Note
A GND
B FLAG2
C PBO
D PBI
E PB2
F PB3
H PB4
J PBS
K PB6
l PB7
M PA2
N GND

APPENDIX J

PROGRAMS TO TRY

We've included a number of useful programs for you to try with your
Commodore 64. These programs will prove both entertaining and
useful.

-~.

-,

144

100
120
130
140
150
160
170
180
190
200
210
220
250
260
270
280
290
300
310
320
330
340
400
410
420
430
440
450
500
510
520
530
540
550
560
570

print"~jotto Jim butterfi~ld"
input"~want instructions"i;$:ifasc(;.)=78got0250
pr nt"~try to gu~ss the mystery 5-1etter word"
pr nt"~you must gu~ss only legal 5-1etter"
pr nt"words, too..."
pr nt"you will b~ told th~ number of matches"
pr nt"(or 'jots') of your guess."
pr nt"~hint: the trick is to vary slightly"
pr nt" from one guess to.the next, so that"
pr nt" If you guess 'batch' and get 2 jots"
pr nt" you might try 'botch' or 'chart'"
pr nt" for the next guess..."
data bxbsf,ipcc;,dbdif,esfbe,pggbm
data hpshf,ibudi,djwjm,kpmm;,lb;bl
data sbkbi,mfwfm,njnjd,boofy,qjqfs
data rvftu,sjwfs,qsftt,puufs,fwfou
data xfbwf,fyupm,nvti;,afcsb,gjaa;
data uijdl,esvol,gmppe,ujhfs,gblfs
data cppui,mzjoh,trvbu,hbvaf,pxjoh
data uisff,tjhiu,bymft,hsvnq,bsfob
data rvbsu,dsffq,cfmdi,qsftt,tqbsl
data sbebs,svsbm,tnfmm,gspxO,~Sjgu
n=50
dim n$(n),z(5),y(S)
for j=1ton:readn$(j):nextj
t=ti
t=t/1000:ift>=1thengot0440
;=rnd(-t)
g=0:n$=n$(rnd(1)*n+1)
print "~i have a five letter word:":ifr>Ogot0560
print "guess (with legal words)"
print "and i'll tell you how many"
print "'jots', or matching letters,"
print "you hav~ "
g=g+1:input "your word",z'
if len(;$)<>5thenprint"you must guess a
S-l~tt~r word!":gotoS60
v=O:h=O:m=O
forj=1t05
z=asc(mid$(z',j,1»:y=asc(mid$(n$,j,1»-1:lfy=64theny=90
if;(650rz>90thenprint"that's not a word!":got0560
ifz=650rz=690rz=730rz=790rz=850rz=89thenv=v+1
ifz=ythenm=m+1
z(j)=z:y(j)=y:nextJ
ifm=5got0800
ifv=00rv=5thenprint"come on..what kind of
a word is that?":got0560
for j=1t05:y=y(j)
for k=lt05:ify=z(k)thenh=h+l:z(k)=0:got0700
next k
next j
print"DDDDDDDDDDDDDDDDDDDD",H,"JOTS"
ifg(30got0560
print"i'd.better tell you.. word was '",
forj=1t05:~rintchr$(y(j»i:nextj
print"'":got0810
print"you got it in onlY"ig,"guesses."
input"~another word",z$
r=1:ifasc(;$)(>78gotoSOO

580
590
600
610
620
630
640
650
660

670
680
690
700
710
720
730
740
750
800
810
820

145

1 rem *** seQuence
2 relR
3 rem ***
I, rem ***
5 reM ***
6 rem ***
7 rem
50 dllR a$(26)

100 z$="abcdefghijklmnopqrstuvwxyz"
110 21$="12345678901234567890123456"
200 print"'~~enter length of string to be sequenced~"
220 Input "maximum length is 26 "~s%
230 if s%(1 or s%)26 then 200
240 s=s%
300 for i=1 to s
310 a$(i)=mid$(z$,i,l)
320 next i

400 rem randomize string
420 for 1=1 to s
430 k=int(rnd(I)*s+l)
440 t$=a$ (I)

450 a$(i)=a$(k)

460 a$(k)=U

470 next i

480 Qosub 950
595 t=O
600 rem reverse substring
605 t=t+l
610 input "how many to reverse ";r%
620 if r%=O goto 900
630 if r%)O and r%(=s goto 650
640 print "must be between 1 and "IS: go to 610
650 r=int(r%/2)
660 for i=1 to r
670 U=a$(i)
680 a$(i)=a$(r%-i+l)
690 a$(r%-i+l)=t$
700 next i

750 gosub 950
800 c=l: for i=2 to s
810 if a$(i»a$(i-l) goto 830
820 c=O
830 ne>:t i
840 if c=O go to 600
850 print "~you did it in "it;" tries"
900 rem check for another game
910 input "~want to play again ";y$
920 if left$(y$,I)="y" or y$="ok" or y$="I" goto 200
930 end
950 print

960 print left$(zl$,s)
970 for 1=1 to s: print a$(i)~:next
980 print "~"
990 return

from pet user group
software exchange
po box 371
montgomeryville, pa 18936

This program courtesy of Gene Deals

146

9(1

10C'
110
12')

1 :-::"~1
141)
15')

16')
1(1)

1:~0
19')
2(10
211)
22(1
23"~1

REM F'l At.m KE'T'E:OAF;D
PRINT"~ ~ g ~ I U ~ ~ I ~ n I ~ ~ "
PRINT" ~ M ~ I ~ ~ ~ i ~ M I ~ ~
PR HIT" ..1~ I!J I ~J i!JI it~ I i!JI I!J I I!II I!J "
PFUNT" ~ I I I I I I I I I I I I "
PRINT" ;:11)I~j IE IR IT I','IU 1110 IP II] I;+;I.t"

PRUIT":!j'-SPACE'-FOR SOLO OR POL','PHO~UC"
PRINT":!j'F1 ,F~'3._F5..F7'-OCTAVE SELECTIClt~"
PR I ~IT" :!j'-F2._ F 4._ F6._ F8'- 1..IA' EFClRt.1~..

PRHIT"HAt'IG ()N._SETTIt~G UP FREClUEI..jC','TABLE_ __"
S_13*41)96+1024:DIMF(26):OIMKC255)
FOR I ",\)TCI2:~ : POKE:;+ I. <) : t.jE;".:T .
Fl_7040:FORI_1T026:F(27-I)_F1;+;5.8+30:F1_F1/2~C1/12):NEXT
K$="1)2W3ER5T6Y7UI900P@-*£~"
FC'PI~l TOU::N(K$> : I.::(F'f;:;C(rHO:t(Kt._ I»)-1 :NE:,:T
PRItH":J
AT =1) : DE") : SU= 15 : PE-9 : :;:; '''':;1)* 16+RE : AV=AT;+;16+0E :
~N= 16 : 1.,=0 : 1'1=1 : OC=4 : H8=256 : Z=':'
FIJR I ",')T'J2 : PCtKES+5+ I *7.. AT;+;16+0E : PCIKES+6+ I;+;7._SU;+;16...RE
POKES+2+ 1;+;7._40CII)At.10255 : POI(ES+3+ 1;+;7,4000/256: t.jE:.<:T
POKES+24,15:REM+16+64:POKES+23.7
GETA$: IFA$=" "THEt.1301)
FR.F(K(ASI:::CA,'P)),..t'1 :T-'./;+;7 :CR-S+T+4: IFFR-ZTHEH50')
POI<:ES+6+T,Z :REI'1 FItHSH DEC.":3US
POKES+5+ T ._2 :REt'1 FItH:;H ATT REL
POKECR,8:POKECR,O:REM FIX ClFF
POKES+T..FR-H8;+;HITCFR/HB) :REI1 $ET LO
PClKES+l+T..FP,'HB:REt'1 :;ET HI
POKES+6+T,SV:REM SET OEC/SUS
POKES+5+ T._AV :REI'1 :;ET ATT /REL
PPKECR,WV+l:FORI_1T(51)*AT:NEXT
POKECR,WY:REM PUL$E
IFP-1THENV=V+1:IFY=3THENY=1)
t3IJTIJ3a.)I.)

I FA$=" iiii"THEt'U'1=1 : OC=4 : GOT03CII)
IFA$'-"!!!"THEHI'1=2 :IJC-~: : GOTO:3CII)
IFA$="I!I"THEt~~1=4 :OC-2 :130TO:::o)C,
IFA$="ill"THEt.H'1=::;. :OC=l :GOT03')')
IFA$="9"THEt~I.J-C' :.1' =16 : GOT'J:::O')
I FA$_" JG"THEHI.I- 1 : 1.1'.,1=32: GOTO:3')O
IFA$=":i!"THEt.n.I=2 :W =64 : GOT03.:II)
I FA:$:="11"THEt.U.J=:?': ~J1...1=128 : !31)T(I:3QO
IFA$=" "THEHP=1-P:GOT0309
I FA$ -":J" THE~j2'30

O(ITCI3(1(\

PRHIT"HIT A KE','"
13ETA,. :IFA'~=" "THE:H::;.1C,:I.IAIT FOR A I.:E','

PRHJTA$:RETUF:N

/

241)

.250

261.)
2713

3~30
31e
321)
:325
33&.)
341)
350
361.)
:365
3713
375
3813
4 ell)
501.)
51')

53')
540
'550
560
570
581)
59(1
61.3(1
:3(.1)
:::1(1
:32a.~

NOTES:
Line 100 uses (SHIFT CLR/HOME).
(CTRL 9),(CTRL]),(SHIFT B).
Line 150 uses (CRSR DOWN)
Line 240 uses (CRSR UP)
Line 500 uses (11)
Line 510 uses (13)
Line 520 uses (15)

Line 530 uses (17)
Line 540 uses (12)
Line 550 uses (14)
Line 560 uses (16)
Line 570 uses (18)
Line 590 uses (SHIFT CLR/HOME)

147

APPENDIX K

CONVERTING STANDARD
BASIC PROGRAMS TO
COMMODORE 64 BASIC

If. you have programs written in a BASIC other than Commodore
BASIC, some minor adjustments may be necessary before running them
on the Commodore-64. We've included some hints to make the conver-
sion easier.

String Dimensions
Delete all statements that are used to declare the length of strings. A

statement such as DIM A$(I,J), which dimensions a string array for J
elements of length I, should be converted to the Commodore BASIC
statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation.
Each of these must be changed to a plus sign, which is the Commodore
BASIC operator for string concatenation.

In Commodore-64 BASIC, the MID$, RIGHT$, and LEFT$functions are
used to take substrings of strings. Forms such as A$(I) to access the Ith
character in A$, or A$(I,J) to take a substring of A$ from position I to J,
must be changed as follows:

Other BASIC

A$(I) = X$
A$(I,J) = X$

Commodore 64 BASIC

A$ = LEFT$(A$,I-1)+X$+MID$(A$,I+1)
A$ = LEFT$(A$,I-1)+ X$+MID$(A$,J+ 1)

Multiple Assignments
To set Band C equal to zero, some BASICs allow statements of the

form:

19) LET B=C=9)

148

Commodore 64 BASIC would interpret the second equal sign as a

logical operator and set B = -1 if C = O. Instead, convert this state-
ment to:

1!11C=0 : B=!II

Multiple Statements
Some BASICs use a backslash (\) to separate multiple statements on

a line. With Commodore 64 BASIC, separate all statements by a colon
(:).
MAT Functions

Programs using the MATfunctions available on some BASICsmust be
rewritten using FOR. . .NEXT loops to execute properly.

149

APPENDIX L

ERROR MESSAGES

This appendix contains a complete list of the error messages gener-

ated by the Commodore-64, with a description of causes.

BAD DATA String data was received from an open file, but the pro-
gram was expecting numeric data.
BAD SUBSCRIPT The program was trying to reference an element of
an array whose number is outside of the range specified in the DIM
statement.
CAN'T CONTINUE The CO NT command will not work, either because

the program was never RUN, there has been an error, or a line has
been edited. .

DEVICE NOT PRESENT The required I/O device was not available for
an OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.
DIVISION BY ZERO Division by zero is a mathematical oddity and not
allowed.
EXTRA IGNORED Too many items of data were typed in response to

an INPUT statement. Only the first few items were accepted.
FILENOT FOUND If you were looking for a file on tape, and END-OF-
TAPEmarker was found. If you were looking on disk, no file with that
name exists.
FILENOT OPEN The file specified in a CLOSE, CMD, PRINT#, INPUT#,
or GET#, must first be OPENed.
FILEOPEN An attempt was made to open a file using the number of
an already open file.
FORMULA TOO COMPLEX The string expression being evaluated

should be split into at least two parts for the system to work with, or a
formula has too many parentheses.
ILLEGALDIRECT The INPUT statement can only be used within a pro-

gram, and not in)direct mode.
ILLEGALQUANTITY A number used as the argument of a function or
statement is out of the allowable range.

150

lOAD There is a problem with the program on tape.
NEXTWITHOUTFOR This is caused by either incorrectly nesting loops
or having a variable name in a NEXTstatement that doesn't correspond
with one in a FOR statement.

NOT INPUT FilE An attempt was made to INPUT or GET data from a
file which was specified to be for output only.
NOT OUTPUTFILE An attempt was made to PRINT data to a file which
was specified as input only.
OUT OF DATA A READ statement was executed but there is no data
left unREAD in a DATAstatement.
OUT OF MEMORY There is no more RAM available for program or

variables. This may also occur when too many FOR loops have been
nested, or when there are too many GOSUBs in effect.
OVERFLOW The result of a computation is larger than the largest
number allowed, which is 1.70141884E+38.
REDIM'DARRAY An array may only be DIMensioned once. If an array
variable is used before that array is DIM'd, an automatic DIM operation

is performed on that array setting the number of elements to ten, and
any subsequent DIMs will cause this error.
REDO FROM START Character data was typed in during an INPUT
statement when numeric data was expected. Just re-type the entry so
that it is correct, and the program will continue by itself.
RETURN WITHOUT GOSUB A RETURNstatement was encountered,
and no GOSUB command has been issued.
STRINGTOO lONG A string can contain up to 255 characters.
?SYNTAX ERROR A statement is unrecognizable by the Commodore
64. A missing or extra parenthesis, misspelled keywords, etc.
TYPEMISMATCH This error occurs when a number is used in place of a

string, or vice-versa.
UNDEF'D FUNCTION A user defiried function was referenced, but it
has never been defined using the DEF FN statement.
UNDEF'D STATEMENT An attempt was made to GOTO or GOSUBor
RUN a line number that doesn't exist.

VERIFY The program on tape or disk does not match the program cur-
rently in memory.

151

APPENDIX M

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the

values to be POKEd into the HI FREQ and LOW FREQ registers of the
sound chip to produce the indicated note.

152

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

0 C-O 268 1 12

1 C#-O 284 1 28

2 D-O I 301 1 45

3 D#-O 318 1 62

4 E-O 337 1 81

5 F-O 358 1 102

6 F#-O 379 1 123

7 G-O 401 1 145

8 G#-O 425 1 169

9 A-O 451 1 195

10 A#-O 477 1 221

11 B-O 506 1 250

16 C-1 536 2 24

17 C#-l 568 2 56

18 D-1 602 2 90

19 D#-l 637 2 125

20 E-1 675 2 163

21 F-1 716 2 204

22 F#-l 758 2 246

23 G-1 803 3 35

24 G#-l 851 3 83

25 A-1 902 3 134

26 A#-l 955 3 187

27 B-1 1012 3 244

32 C-2 1072 4 48

153

MUSICAL NOTE OSCILLATORFREQ

NOTE OCTAVE DECIMAL HI LOW

33 C#-2 1136 4 112
34 D-2 1204 4 180
35 D#-2 1275 4 251
36 E-2 1351 5 71
37 F-2 1432 5 152
38 F#-2 1517 5 237
39 G-2 1607 6 71

40 G#-2 1703 6 167
41 A-2 1804 7 12
42 A#-2 1911 7 119
43 B-2 2025 7 233
48 C-3 2145 8 97
49 C#-3 2273 8 225
50 D-3 2408 9 104

51 D#-3 2551 9 247

52 E-3 2703 10 143

53 F-3 2864 11 48
54 F#-3 3034 11 218

55 G-3 3215 12 143

56 G#-3 3406 13 78

57 A-3 3608 14 24

58 A#-3 3823 14 239

59 B-3 4050 15 210

64 C-4 4291 16 195

65 C#-4 4547 17 195
66 D-4 4817 18 209
67 D#-4 5103 19 239

68 E-4 5407 21 31

69 F-4 5728 22 96
70 F#-4 6069 23 181

71 G-4 6430 25 30
72 G#-4 6812 26 156

73 A-4 7217 28 49

74 A#-4 7647 29 223

75 B-4 8101 31 165
80 C-5 8583 33 135

81 C#-5 9094 35 134

154

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

82 C-O 9634 37 162
83 C#-O 10207 39 223
84 D-O 10814 42 62
85 F-5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A#-5 15294 59 190
91 6-5 16203 63 75
96 C-6 17167 67 15

97 C#-6 18188 71 12
98 D-6 19269 75 69
99 D#-6 20415 79 191

100 E-6 21629 84 125
101 F-6 22915 89 131
102 F#-6 24278 94 214
103 G-6 25721 100 121
104 G#-6 27251 106 115
105 A-6 28871 112 199

106 A#-6 30588 119 124

107 6-6 32407 126 151
112 C-7 34334 134 30

113 C#-7 36376 142 24

114 D-7 38539 150 139
115 D#-7 40830 159 126

116 E-7 43258 168 250

117 F-7 45830 179 6
118 F#-7 48556 189 172

119 G-7 51443 200 243

120 G#-7 54502 212 230

121 A-7 57743 225 143

122 A#-7 61176 238 248

123 6-7 64814 253 46

FILTER SETTINGS

155

Location Contents

54293 Low cutoff frequency (0-7)

54294 High cutoff frequency (0-255)

54295 Resonance (bits 4-7)
Filter voice 3 (bit 2)
Filter voice 2 (bit 1)
Filter voice 1 (bit 0)

54296 High pass (bit 6)
Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0- 3)

APPENDIX N

BIBLIOGRAPHY

Addison-Wesley

Compute

Cowboy Computing

Creative Computing

Dilithium Press

"BASIC and the Personal Computer", Dwyer
and Critchfield

"Compute's First Book of PET/CBM"

"Feed Me, I'm Your PET Computer", Carol Al-
exander

"looking Good with Your PET", Carol Alexan-
der

"Teacher's PET-Plans, Quizzes, and An-
swers"

"Getting Acquainted With Your VIC 20",
T. Hartnell

"BASIC Basic-English Dictionary for the PET",
lorry Noonan

"PET BASIC", Tom Rugg and Phil Feldman

Faulk Baker Associates "MOS Programming Manual", MOS Technol-
ogy

Hayden Book Co. "BASIC From the Ground Up", David E. Simon

"I Speak BASICto My PET", Aubrey Jones, Jr.

"Library of PETSubroutines", Nick Hampshire

"PET Graphics", Nick Hampshire

"BASIC Conversions Handbook, Apple, TRS-
80, and PET", David A. Brain, Phillip R.
Oviatt, Paul J. Paquin, and Chandler P. Stone

156

Howard W. Sams

,Little, Brown & Co.

McGraw-Hili

Osborne/ McGraw-Hili

P. C. Publications

"The Howard W. Sams Crash Course in Mi-

crocomputers", louis E. Frenzel, Jr.

"Mostly BASIC: Applications for Your PET",
Howard Berenbon

"PET Interfacing", James M. Downey and Ste-
ven M. Rogers

"VIC 20 Programmer's Reference Guide", A.
Finkel, P. Higginbottom, N. Harris, and M.
Tomczyk

"Computer Games for Businesses, Schools,
and Homes", J. Victor Nagigian, and William
S. Hodges

"The Computer Tutor: learning Activities for
Homes and Schools", Gary W. Orwig, Univer-
sity of Central Florida, and William S. Hodges

"Hands-On BASIC With a PET", Herbert D.
Peckman

"Home and Office Use of VisiCalc", D.
Castlewitz, and L. Chisauki

"PET/CBM Personal Computer Guide", Carroll
S. Donahue

"PET Fun and Games", R. Jeffries and G.
Fisher

"PET and the IEEE", A. Osborne and C.
Donahue

"Some Common BASIC Programs for the PET",
L. Poole, M. Borchers, and C. Donahue

"Osborne CP/M User Guide", Thom Hogan

"CBM Professional Computer Guide"

"The PET Personal Guide"

"The 8086 Book", Russell Rector and George

Alexy

"Beginning Self-Teaching Computer lessons"

157

Prentice-Hall "The PET Personal Computer for Beginners",

S. Dunn and V. Morgan

Reston Publishing Co. "PET and the IEEE488 Bus (GPIB}", Eugene
Fisher and C. W. Jensen

"PET BASIC-Training Your PET Computer",
Ramon Zamora, Wm. F. Carrie, and B.
Allbrecht

"PET Games and Recreation", M. Ogelsby, L.
Lindsey, and D. Kunkin

"PET BASIC", Richard Huskell

"VIC Games and Recreation"

Telmas Courseware

Ratings

Total Information Ser-
vices

"BASIC and the Personal Computer", T. A.
Dwyer, and M. Critchfield

"Understanding Your PET/CBM, Vol. 1, BASIC
Programming"

"Understanding Your VIC", David Schultz

Commodore Magazines provide you with the most up-to-date infor-
mation for your Commodore 64. Two of the most popular publications
that you should seriously consider subscribing to are:

COMMODORE-The Microcomputer Magazine is published bi-monthly
and is available by subscription ($15.00 per year, U.S., and $25.00 per
year, worldwide).

POWER/PLAY-The Home Computer Magazine is published quarterly
and is available by subscription ($10.00 per year, U.S., and $15.00 per
year worldwide).

158

APPENDIX 0

SPRITE REGISTER MAP

159

Register #
Dee Hex 087 086 085 084 083 082 081 080

0 0 SOX7 SOXO SPRITE 0 X

Component

1 1 SOY7 . SOYO SPRITE 0 Y
:

Component

2 2 S1X7 SIXO SPRITE I X

3 3 SIY7 SIYO SPRITE 1 Y

4 4 S2X7 S2XO SPRITE 2 X

5 5 'S2Y7 52 YO SPRITE2 Y

6 6 !S3X7 S3XO SPRITE 3 X

7 7 !s3Y7 S3YO SPRITE 3 Y

8 8 S4X7 S4XO SPRITE 4 X

9 9 S4Y7 S4YO SPRITE 4 Y

10 A S5X7 S5XO SPRITE 5 X

II B 5Y7 S5YO SPRITE 5 Y

12 C S6X7 S6XO SPRITE 6 X

13 D S6Y7 S6YO SPRITE 6 Y

14 E S7X7 S7XO SPRITE 7 X

Component

15 F 7Y7 S7YO SPRITE 7 Y

Component

16 10 7X8 S6X8 S5X8 S4X8 S3X8 S2X8 SIX8 SOX8 MSB of X

COORD.

17 11 RC8 ECM BMM BlNK RSEl YSCl2 Y5Cll YSClO Y SCROll
MODE

18 12 RC7 RC6 RC5 RC4 RC3 RC2 RCI RCO RASTER

19 13 PX7 lPXO LIGHT PEN X

20 14 PY7 lPYO LIGHT PEN Y

160

Register #
Dee Hex DB7 DB6 DBS DB4 DB3 DB2 DBI DBO

21 IS SE7 SEO SPRITE
ENABLE

(ON/OFF)

22 16 N.C. N.C. RST MCM CSEl XSCl2 XSClIXSClOX SCROll
MODE

23 17 SEXY7 SEXYOSPRITE
. EXPAND Y

24 18 VS13 VS12 VSlI VSIO CBI3 CBI2 CBII N.C. SCREEN

Character

Memory

25 19 IRQ N.C. N.C. N.C. lPIRQ ISSC ISBC RIRQ Interupt

Request's

26 IA N.C. N.C. N.C. N.C. MlPI MISSC MISBC MRIRQ Interupt

Request
MASKS

27 IB BSP7 BSPO Background-
Sprite

I PRIORITY

28 IC SCM7 SCMO MUlTICOlOR
SPRITE
SelECT

29 ID SEXX7 SEXXO SPRITE

EXPAND X

30 IE SSC7 SSCO Sprite-Sprite
COLLISION

31 IF SBC7 SBCO Sprite-
Background
COLLISION

COLOR CODES DEC HEX COLOR

lEGEND:
ONLY COLORS 0-7 MAY BE USED IN MUlTICOlOR CHARACTERMODE

161

32 20 0 0 BLACK EXT 1 EXTERIORCOl

33 21 1 1 WHITE BKGDO

34 22 2 2 RED BKGDI

35 23 3 3 CYAN BKGD2

36 24 4 4 PURPLE BKGD3

37 25 5 5 GREEN SMC 0 SPRITE
MUlTiCOlOR 0

38 26 6 6 BLUE SMC 1 1

39 27 7 7 YellOW SOCOl SPRITE0 COLOR

40 28 8 8 ORANGE SICOl 1

41 29 9 9 BROWN S2COl 2

42 2A 10 A l T RED S3COl 3

43 2B 11 B GRAY 1 S4COl 4

44 2C 12 C GRAY 2 S5COl 5

45 2D 13 D LT GREEN S6COl 6

46 2E 14 E IT BLUE S7COl 7

15 F GRAY 3

APPENDIX P

COMMODORE 64 SOUND CONTROL
SETTINGS

This handy table gives you the key numbers you need to use in your
sound programs, according to which of the Commodore 64's 3 voices
you want to use. To set or adjust a sound control in your BASIC pro-
gram, just POKE the number from the second column, followed by a
comma (,) and a number from the chart. . . like this: POKE 54276,17
(Selects a Triangle Waveform for VOICE 1).

Remember that you must set the VOLUME before you can generate
sound. POKE54296 followed by a number from 0 to 15 sets the volume
for all 3 voices.

It takes 2 separate POKEs to generate each musical note . . . for

example POKE54273,34:POKE54272,75 designates low C in the sample
scale below.

Also. . . you aren't limited to the numbers shown in the tables. If 34

doesn't sound "right" for a low C, try 35. To provide a higher SUSTAIN
or ATTACKrate than those shown, add two or more SUSTAIN numbers
together. (Examples: POKE54277,96 combines two attack rates (32 and
64) for a combined higher attack rate . . . but. . . POKE54277,20
provides a low attack rate (16) and a medium decay rate (4).

162

SETTING VOLUME-SAME FOR ALL3 VOICES

163

(0 to 15 . . . or . . . 0 to 255 depending on range)

TO PLAYA NOTE C C# D D#E F F# G G# A A# B C C#

HIGH FREQUENCY 54273 34 36 38 40 43 45 48 51 54 57 61 64 68 72

LOW FREQUENCY 54272 75 85 126 200 52 198 127 97 111 172 126 188 149 169

WAVEFORM POKE TRIANGLE SAWTOOTH I PULSE NOISE

54276 17 33 I 65 129

PULSE RATE(Pulse Waveform)

HI PULSE 54275

I

A value of 0 to 15 (for Pul.e waveform only)

LO PULSE 54274 A value of 0 to 255 (for Pul.e waveform only)

ATTACK/DECAY
I

POKE ATK4 ATK3 ATK2 ATKI DEC4 DEC3 DEC2 I DECI

54277 128 64 32 16 8 4 2

SUSTAIN/RELEASE I POKE SUS4 SUS3 SUS2 SUSI REL4 REL3

REL2 I REL154278 128 64 32 16 8 4 2 1
.- o

TO PLAYA NOTE C C# D D# E F F# G G# A A# B C C#

HIGH FREQUENCY 54280 34 36 38 40 43 45 48 51 54 57 61 64 68 72

LOW FREQUENCY 54279 75 85 126 200 52 198 127 97 111 172 126 188 149 169

WAVEFORM POKE TRIANGLE SAWTOOTH PULSE NOISE

54283 17 33 65 129

PULSE RATE

HI PULSE

I

54282

I

A value of 0 to 15 (for Pul.e waveform only)

LO PULSE 54281 A value of 0 to 255 (for Pulse waveform only)

ATTACK/DECAY POKE ATK4 ATK3 ATK2 ATKI DEC4 DEC3 DEC2 DECI

5-428-4 128 64 32 16 8 -4 2 1

SUSTAIN/RELEASE POKE SUS4 SUS3 SUS2 SUSI REL4 REL3 REL2 REL1

54285 128 64 32 16 8 4 2 1

II

TRY THESE SETTINGS TO SIMULATE DIFFERENT INSTRUMENTS

MEANINGS OF SOUND TERMS

ADSR-Attack!Oecay/SustainlRel8Gse

Attack-rat. sound rises to peak volume

D.coy-rat. 50und falls from peak volume to Sustain level

Sustain-prolong note at certain volume

Releas.-rote at which volume foU. from Sustain level

Waveform-".hape" oflOundwaye

Pulse-tone quality of Pulse Waveform

NOTE: Attack/Decay and Sustain/Release settings should always be POKEd in your program
BEFORE the Waveform is POKEd.

164

I
ocm
" . .. , ..

I TOop.LAYA NOoTE C CII D' D' E F FII. G GII. A All B' C CII.

HIGH FREQUENCY 54287 34 36 38 40 43 45 48 51 54 57 61 64 68 72

LOW FREQUENCY 54286 75 85 126 200 52 198 127 97 111 172 126 188 149 169

WAVEFORM POKE TRIANGLE SAWTOOTH PUL5E NOISE

54290 17 33 65 129

PULSE RATE

HI PULSE 54289 A value of 0 to 15 (for Pul.e waveform only)

LO PULSE 54288 A value of 0 to 255 (for Pul.e waveform only)

ATTACK/DECAY POKE ATK4 ATK3 ATK2 ATKI DEC4 DEC3 DEC2 DECI

54291 128 64 32 16 8 4 2 I

SUSTAIN/RELEASE POKE SUS4 SUS3 SUS2 SUSI REl4 REl3 RE12 RELI

54292 128 64 32 16 8 4 2 I

Instrument Waveform Attack/Decay Sustain/Release Pulse Rate

Piano Pulse 9 0 Hi-O, Lo-255

Flute Triange 96 0 Not applicable

Harpsichord Sawtooth 9 0 Not applicable

Xylophone Triangle 9 0 Not applicable

Organ Triangle 0 240 Not applicable

Colliape Triangle 0 240 Not applicable

Accordion Triangle 102 0 Not applicable

Trumpet Sawtooth 96 0 Not applicable

INDEX
A

Abbreviations, BASIC commands, 130,
131

Accessories, viii, 106-108
Addition, 23, 26-27, 113
AND operator, 114
Animation, 43-44, 65-66, 69-75, 132,

138-139
Arithmetic, Operators, 23, 26-27,

113-114
Arithmetic, Formulas, 23, 26-27, 113,

120, 140
Arrays, 95-103
ASC function, 128, 135-137
ASCII character codes, 135-137

B
BASIC

abbreviations, 130-131
commands, 114-117
numeric functions, 125-127
operators, 113-114
other functions, 129
statements, 117-125
string functions, 128
variables, 112-113

Bibliography, 156-158
Binary arithmetic, 75-77
Bit, 75-76
Business aids, 108
Byte, 76

C

Calculations, 22-29
Cassette tape recorder (audio), viii, 3,

18-20,21
Cassette tape recorder (video), 7
Cassette, port 3
CHR$ function, 36-37, 46-47, 53,

58-60, 113, 128, 135-137, 148
CLR statement, 117
CLR/HOME key, 15
Clock, 113
CLOSE statement, 117
Color

adjustment, 11-12
CHR$ codes, 58
keys, 56-57
memory map, 64, 139
PEEKS and POKES, 60-61
screen and border, 60-63, 138

Commands, BASIC, 114-117
Commodore key, (see graphics keys)
Connections

optional, 6-7
rear, 2-3
side panel, 2
TV/Monitor, 3-5

CONT command, 114
ConTRL key, 11, 16
COSine function, 126
CuRSoR keys, 10, 15
Correcting errors, 34
Cursor, 10

D

DATASSETTE recorder, (see cassette
tape recorder)

Data, loading and saving (disk), 18-21
Data, loading and saving (tape),

18-21
DATAstatement, 92-94, 118
DEFine statement, 118
Delay loop, 61, 65
DELete key, 15
DIMension statement, 118-119
Division, 23, 26, 27, 113
Duration, (see For . . . Next)

E

Editing programs, 15, 34
END statement, 119
Equal, not-equal-to, signs, 23, 26-27,

114
Equations, 114
Error messages, 22-23, 150-151
Expansion port, 141-142
EXPonent function, 126
Exponentiation, 25-27, 113

F
Files, (DATASSETTE), 21, 110-111
Files, (disk), 21,110-111
FOR statement, 119
FRE function, 129
Functions, 125-129

G

Game controls and ports, 2-3, 141
GET statement, 47-48, 119-120
GET# statement, 120
Getti n9 sta rted, 13-29
GOSUB statement, 120
GOTO (GO TO) statement, 32-34, 120

165

Graphic keys, 17, 56-57, 61, 132-137
Graphic symbols, (see graphic keys)
Greater than, 114

H
Hyperbolic functions, 140
I
IEEE-488Interface, 2-3, 141
IF . . . THEN statement, 37-39, 120-

121
INPl/T statement, 45-47, 121
INPUT#, 121
INSert key, 15
INTeger function, 126
Integer variable, 112
I/O pinouts, 141-143
I/O ports, 2-7, 141-143

J

Joysticks, 2-3, 141

K

Keyboard, 14-17

L

LEFT$function, 128
LENgth function, 128
Less than, 114
LETstatement, 121
LISTcommand, 33-34, 115
LOAD command, 115
LOADing programs on tape, 18-20
LOGarithm function, 126
Loops, 39-40, 43-45
Lower case characters, 14-17

M

Mathematics
formulas, 23-27
function table, 140
symbols, 24-27, 38, 114

Memory expansion, 2-4, 142
Memory maps, 62-65
MID$ function, 128
Modulator, RF, 4-7
Multiplication, 24, 113
Music, 79-90

N
Names

program, 18-21
variable, 34-37

NEW command, 115
NEXT statement, 121-122

NOT operator, 114
Numeric variables, 36-37

o
ON statement, 122
OPEN statement, 122
Operators

arithmetic, 113
logical, 114
relational, 114

p

Parentheses, 28
PEEK function, 60-62
Peripherals, viii, 2-8, 107-109
POKE statement, 60-61
Ports, I/O, 2-3, 141-143
POS function, 129
PRINT statement, 23-29, 123-124
PRINT#, 124
Programs

editing, 15, 34
line numbering, 32-33
loading/saving (DATASSETTE),18-21
loading/saving (disk), 18-21

Prompt, 45

Q
Quotation marks, 22

R

RaNDom function, 48-53, 126
Random numbers, 48-53
READ statement, 124
REMark statement, 124
Reserved words, (see Command state-

ments)
Restore key, 15, 18
RESTOREstatement, 124
Return key, 15, 18
RETURN statement, 124
RIGHT$ function, 128
RUN command, 116
RUN/STOP key, 16-17

5
SAVEcommand, 21, 116
Saving programs (DATASSETTE),21
Saving programs (disk), 21
Screen memory maps, 62-63, 138
SGN, function, 127
Shift key, 14-15, 17
SINe function, 127
Sound effects, 89-90
SPC function, 129

166

SPRITE EDITOR, vii, 69-76
SPRITE graphics, vii, 69-76
SQuaRe function, 127
STOP command, 125
STOP key, 16-17
String variables, 36-37, 112-113
STR$ function, 128
Subscripted variables, 95-98, 112-113
Subtraction, 24, 113
Syntax error, 22
SYS statement, 125

T

TABfunction, 129
TAN function, 127
TI variable, 113
TI$ variable, 113
Time clock, 113
TV connections, 3-7

u
Upper/Lower Case mode, 14

USR function, 127
User defined function, (see DEF)

V

VALuefunction, 128
Variables

array, 95-103, 113
dimensions, 98-103, 113
floating point, 95-103, 113
integer, 95-103, 112
numeric, 95-103, 112
string ($), 95-103, 112

VERIFYcommand, 117
Voice, 80-90, 162-164

W

WAIT command, 125
Writing to tape, 110

Z
Z-80, vii, 108

167

Commodore hopes you've enjoyed the COMMODORE 64
USER'S GUIDE. Although this manual contains some pro-

gramming information and tips, it is NOT intended to be a

Programmer's Reference Manual. For those of you who are
advanced programmers and computer hobbyists Commo-
dore suggests that you consider purchasing the COMMO-
DORE 64 PROGRAMMER'S REFERENCE GUIDE available

through your local Commodore dealer.

In addition updates and corrections as well as programming hints and tips are available in
the COMMODORE and POWER PLAY magazines, on the COMMODORE database of the

COMPUSERVE INFORMATION NETWORK, accessed through a VICMODEM.

SIMPLE VARIABLES

COMMODORE 64 QUICK REFERENCE CARD

Type Nam~ Range
Real XY ::1.701411183E+38

~2.93873S88E-39

Integ~r XY" ~32767
String XY$ 0 to 255 charaCters
X is a tener (A-Z), Y is a Jener ar number (0.9). Variable names
can be more than 2 choracters. but only the firsl two are recog.
niud.

ARRAY "'RIAlLES

Type

Singl~ Dimension

Two-Dimension

Three-Dimension

Name

XY(S)
XY(5,S)
XY(S,5,S)

AlGEBRAIC OPERATORS

Arrays of up 10 eleven .Iements (subscripts 0.10) can be used
where n.ed~d. Anay$ with more Ihan eleven er~m.nts need 10
be DIMens;on.d.

= Assigns ...alu. 10 variabl.

- "'egalion
Exponentiation

· Multiplication
I Division
+ Addition- Sublraction

RELATIONAL AND LOGiCAl OPERATORS

Equal
<> NOl Equal 10
< Less Than
> Greol~r Than

< = Less Thon or Equal To

> = Grealer Thon or Equal To

NOT logical "Nor"
AND logical "And"
OR logical "Or"
Expr.ssion..quals 1 if true, 0 if fals~.

SYSTEM COMMANDS

LOAD "NAME"
SAlE "NAM£'"

LOAD "NAME" ,8

SAlE "NAME" ,8

. VERIFY "NAME"

RUN
RUNxxx

STOP
END
CONT

PEEK(X)

POKE X,Y

SYS xxxxx

WAIT X. Y.Z

USR(X)

loads a program from tope

Sav.s a program on lope

loads a program from disk

Sa s a program 10 disk

Verifies Ihal program was SAlEd

wilhoul ~rrors

Execules a program

Execules program storting at line

"""

Holts execution

Ends execution

Continues program execution from

lin. where program was halted

R.lums conlents of memory

location X

Chang.s contenls of 10cOlion X

10 ...alue Y

Jumps to .xecule a machine language

program, starting at JCXXXX

Program wafts until conlents of'

location X, when FORed with Z and

ANDed with Y, is nonzero.
Posses value of X 10 a machine

language subrouline

EDITING AND FORMAJTlNG COMMANDS

LIST
UST A-.B

REMMessage

tAB(X)

Lisn entire program

Usts from line A to line B

Comment message can be listed but

is ignored during program execution

Used In PRINT stotements. Spaces X

pasltions on screen

SPC(X)
POS(X)
ClR/HOME

PRINTs X blanks on line

Relurns currenl cursor position

Posilions cursor to left comer of

scr~~n

CI.ars scr.en and places cursor in

"Home" position

Inserts spac. at current cursor

position
Deletes character at currenl cursor

position

When us.d wilh numeric color key,

sel.cts text color. May b~ used in

PRINT slatement.

Moves cursor up, down. left, righl

SHIFT CLRlHOME

SHIFT INST/DEL

INST/DEL

CTRL

CRSR Keys

Commodore Key When used with SHin s.lects

betw..n upperllower case and
graphic display mod..
When us.d wilh numeric color key,

selects oplional lext color

ARRAYS AND STRINGS

DIM A(X. Y.Z) Sets maximum subscripts for A;
reserves space for (X+1)-(Y+1)-CZ+1)
eJem.nts starting 01 A(O,O,O)
Returns number of characters in X$
Re",rns numeric value of X.

con rt.d 10 a string
Returns num.ric value of AS, up 10
first nonnumeric character
Returns ASCII character whose code
is X
Returns ASCII cod. for fir"
character of XS
Retums leftmost X characlers of AS

Relurns rightmost X characters
of AS
Relurns Y characters of AS

Slorting at character X

LEN(XS)
STRS(X)

UX$)

CHRS(X)

ASC(X$)

LEFT$(AS.X)

RIGHTS(A$,X)

MIDS(AS,X, Y)

INPUT/OUTPUTCOMMANDS

INPUTAS OR A PRINTs'?' on screen and waits for

us.r to enter a sIring or value
INPUT"ABC";A PRINTsmessage and waits for user

to ent.r value. Can also INPUTAS
GETA$ or A 't'Ibits for user 10 type one-

character value; no RETURNneed.d
DATAA,"B",C Initializes a s.t of values thol

can be used by READstatement
READA$ or A Assigns nexl DATAvalue 10 AS or A
RESTORE Res~Is dOlo pointer to start

READingthe DATAlist again
PRINT"A-";A PRINTsSIring 'A= ' and value of A

./ suppresses spac.s -': tabs data
to next field.

PROGRAM ROW

GOTO X Branche. 10 line X
If A=3 THEN 10 If assertion is Irue THENexecute

following port of statement. If
fal... execute next line number

FOR A= 1 TO 10 Executes all statements betw.en FOR

STEP2 : NEXT and corresponding NEXT.with A
going from 1 10 10 by 2. SI.p size
is 1 unless s~jfied

NEXTA Defines .nd of loop. A is optional
GOSUB 2000 Branches 10 subroutine slarting at

line 2000
RETURN Marks end of subroutine. R~turns to

stat.ment following mosl recent
GOSUB

ON X GOTO A,B Bronches 10 xth line number on
list. If X-I branches 10 A, elc.

ON X GOSUB A,B Bronches 10 subroutine at Xth line
number in list

(:: commodore
COMPUTER

Commodore Business Machines. Inc.-Computer Systems Division.
487 Devon Park Drive. Wayne. PA 19087

DISTRIBUTEDBY

Howatd W. Sams & CO., Inc.
4300 W. 62nd Street, Indianapolis, Indiana 46268 USA

$12.95/22010 ISBN: 0.672.22010.5

