

READ AND DATA

You've seen how to assign values to variables directly within the pro-
gram (A = 2), and how to assign different values while the program is
running-through the INPUT statement.

There are many times, though, when neither one of these ways will
quite fit the job you're trying to do, especially if it involves a lot of
information.

Try this short program:

In line 10, the computer READs one value from the DATAstatement
and assigns that value to X. Each time through the loop the next value in
the DATAstatement is read and that value assigned to X, and PRINTed.
A pointer in the computer itself keeps track of which value is to be used
next:

Pointer

~
40 DATA 1, 34, 10.5, 16, 234.56

When all the values have been used, and the computer executed the

loop again, looking for another value, the OUT OF DATAerror was dis-
played because there were no more values to READ.

92

It is important to follow the format of the DATAstatement precisely:

40 DATA1, 34, 10.5, 16, 234.56

i i
Comma separates

each item

No Comma

Data statements can contain integer numbers, real numbers (234.65),

or numbers expressed in scientific notation. But you can't READother
variables, or have arithmetic operations in DATAlines. This would be
incorrect:

40 DATAA, 23/56, 2*5

You can, however, use a string variable in a READstatement and then

place string information in the DATAline. The following is acceptable:

Notice that this time, the READ statement was placed inside a FOR

. . NEXT loop. This loop was then executed to match the number of
values in the data statement.

In many cases you will change the number of values in the DATA
statement each time the program is run. A way to avoid counting the
number of values and still avoid an OUT OF DATAERROR is to place a
"FLAG" as the last value in the DATAline. This would be a value that

your data would never equal, such as a negative number or a very
large or small number. When that value is READ the program will
branch to the next part.

There is a way to reuse the same DATAlater in the program by RE-

93

STOREing the data pointer to the beginning of the data list. Add line 50
to the previous program:

50 GOTO 10

You will still get the OUT OF DATA error because as the program
branches back to line 10 to reread the data, the data pointer indicates
all the data has been used. Now, add:

45 RESTORE

and RUN the program again. The data pointer has been RESTOREdand
the data can be READ continuously.

AVERAGES

The following program illustrates a practical use of READand DATA,
by reading in a set of numbers and calculating their average.

5 T = 0
1"-1 F~EAD
20 IF::"; = '-1
25 CT = CT +
::::0 T = T + >::
40 GOTO 10
5~~1PR r HT "THERE \>JEF.:E ".: CT.:" ' ALUE:::;
6~) PRItH "TOTAL = ".:T
70 PI': I tH "A'./EPfiCiE =".: T,,"CT
80 DATA 75, 80, 62, 91, 87, 93, 78, -1

CT

THEH 50: REM CHECK FOR FLAG
1
: REM UPDATE TOTAL

F.:EAD"

RUH
THERE WERE 7 VALUES READ
TOTAL = 566
AVERAGE = 80.8571429

Line 5 sets CT, the CounTer,and T, Total, equal to zero. Line 10 READs
a value and assigns the value to X. Line 20 checks to see if the value is
our flag (here a -1). If the value READis part of the valid DATA,CT is
incremented by 1 and X is added to the total.

When the flag is READ,the program branches to line 50 which PRINTs

94

the number of values read. Line 60 PRINTs the total, and line 70 divides
the total by the number of values to get the average.

By using a flag at the end of the DATA,you can place any number of
values in DATA statements-which may stretch over several lines-
without worrying about counting the number of values entered.

Another variation of the READ statement involves assigning informa-
tion from the same DATAline to different variables. This information can

even be a mixture of string data and numeric values. You can do all this
in the following program that will READ a name, some scores-say
bowling-and print the name, scores, and the average score:

t.jE!.j

1(1 F:EAD tU.A .f:.C
20 PP I t.n tJ$;...' :=: :::;COPE:=; !.jEPE: "; A.;" ".; B;" ".; C
':::0 PP nn "At.m THE A EPACiE I:::;: "; 0::A+E:+C":o ::::
40 PPINT: GOTO 10
50 DATA MIKE.. 190.. 185.. 165.. DICK.. 225.. 245. 190
60 DATA JOHN.. 155.. 185.. 205.. PAUL.. 160.. 179.. 187

F.; U t.J

t'1I f'::E":=; ::::COPE:::; !.jEF.:E: 190 1 ::::5 I8£iIiI
AND THE AVERAGE IS : 180

DICK" :::: SCOPE:::; !.jEF.:E: 225 245.:1m]
AND THE AVEPAGE IS : 220

In running the program, the DATAstatements were set up in the same
order that the READ statement expected the information: a name (a
string), then three values. In other words N$ the first time through gets
the DATA"MIKE", A in the READcorresponds to 190 in the data state-
ment, "B" to 185 and "c" to 165. The process is then repeated in that
order for the remainder of the information. (Dick and his scores, John
and his scores, and Paul and his scores.)

SUBSCRIPTED VARIABLES

In the past we've used only simple BASIC variables, such as A, A$,
and NU to represent values. These were a single letter followed by a

95

letter or single digit. In any of the programs that you would write, it is
doubtful that we would have a need for more variable names than
possible with all the combinations of letters or numbers available. But
you are limited in the way variables are used with programs.

Now let's introduce the concept of subscripted variables.

A(l)

IL Sub.cr;p.Variable

This would be said: A sub 1. A subscripted variable consists of a letter
followed by a subscript enclosed within parentheses. Please note the
difference between A, A1, and A(l). Each is unique. Only A(l) is a
subscripted variable.

Subscripted variables, like simple variables, name a memory location
within the computer. Think of subscripted variables as boxes to store
information, just like simple variables:

A(O)
A(l)
A(2)
A(3)
A(4)

If you wrote:

10 A(P) = 25: A(3) = 55 : A(4) = -45.3

Then memory would look like this:

A(O)
A(l)
A(2)
A(3)
A(4)

25

55

-45.3

This group of subscripted variables is also called an array. In this
case, a one-dimensional array. Later on, we'll introduce multidimen-
sional arrays.

Subscripts can also be more complex to include other variables, or
computations. The following are valid subscripted variables:

A(X) A(X+l) A(2+l) A(1*3)

The expressions within the parentheses are evaluated according to the
same rules for arithmetic operations outlined in Chapter 2.

96

Now that the ground rules are in place, how can subscripted vari-
ables be put to use? One way is to store a list of numbers entered with
INPUTor READstatements.

Let's use subscripted variables to do the averages a different way.

There might have been an easier way to accomplish what we did in
this program, but it illustrates how subscripted variables work. Line 10
asks for how many numbers will be entered. This variable, X, acts as
the counter for the loop within which values are entered and assigned to
the subscripted variable, B.

Each time through the INPUTloop, A is increased by 1 and so the next
value entered is assigned to the next element in the array A. For exam-
ple, the first time through the loop A = 1, so the first value entered
is assigned to B(l). The next time through, A = 2; the next value is
assigned to B(2), and so on until all the values have been entered.

But now a big difference comes into play. Once all the values have
been entered, they are stored in the array, ready to be put to work in a
variety of ways. Before, you kept a running total each time through the

97

INPUT or READ loop, but never could get back the individual pieces of
data without re-reading the information.

In lines 50 through 80, another loop has been designed to add up the
various elements of the array and then display the average. This sepa-

rate part of the program shows that all of the values are stored and can
be accessed as needed.

To prove that all of the individual values are actually stored separately
in an array, type the following immediately after running the previous
program:

FOR A = 1 TO 5 : ?B(A),: NEXT

125

158

167 189 167

The display will show your actual values as the contents of the array
are PRINTed.

DIMENSION

If you tried to enter more than 10 numbers in the previous example,

you got a DIMENSION ERROR. Arrays of up to eleven elements (sub-

scripts 0 to 10 for a one-dimensional array) may be used where needed,
just as simple variables can be used anywhere within a program. Arrays
of more than eleven elements need to be "declared" in a dimension
statement.

Add this line to the program:

5 DIM B(100)

This lets the computer know that you will have a maximum of 100

elements in the array.

The dimension statement may also be used with a variable, so the
following line could replace line 5 (don't forget to eliminate line 5):

15 DIM B(X)

This would dimension the array with the exact number of values that
will be entered.

Be careful, though. Once dimensioned, an array cannot be redimen-
sioned in another part of the program. Youcan, however, have multiple
arrays within the program and dimension them all on the same line, like
this:

10 DIM C(20}, D(50), E(4r3)

98

SIMULATED DICE ROLL WITH ARRAYS

As programs become more complex, using subscripted variables will
cut down on the number of statements needed, and make the program
simpler to write.

A single subscripted variable can be used, for example, to keep track
of the number of times a particular face turns up:

1 REM DICE SIMULATION : PRINT CHR$(147)
10 INPUT "HOW MANY ROLLS:";X
20 FOR L = 1 TO X
30 R = INT(6*RND(1»+!
40 F(R) = F(R) + 1
50 NEXT L
60 PRINT "FACE", "NUMBER OF TIMES"
70 FOR C = 1 TO 6 : PRINT C, F(C): NEXT

The array F, for FACE,will be used to keep track of how many times a
particular face turns up. For example, every time a 2is thrown, F(2) is
increased by one. By using the same element of the array to hold the
actual number on the face that is thrown, we've eliminated the need for
five other variables (one for each face) and numerous statements to
check and see what number is thrown.

Line 10 asks for how many rolls you want to simulate.
Line 20 establishes the loop to perform the random roll and increment

the proper element of the array by one each for each toss.
After all of the required tosses are completed, line 60 PRINTsthe

heading and line 70 PRINTs the number of times each face shows up.
A sample run might look like this:

Well, at least it wasn't loaded!
Just as a comparison, the following is one way of re-writing the same

program, but without using subscripted variables. Don't bother to type it
in, but do notice the additional statements necessary.

99

113 INPUT "HOW MANY ROLLS': II.:X
213 FOR L = 1 TO X
313 R = INT<6*RND(1»+1
413 IF R = 1 THEN F1 = F1
41 IF R = 2 THEN F2 = F2
42 IF R = 3 THEN F3 = F3
43 IF R = 4 THEN F4 = F4
44 IF R = 5 THEN F5 = F5
45 IF R = 6 THEN F6 = F6
613 PRINT "FACE", "NUMBER
713 PRINT 1, F1
71 PRINT 2, F2
72 PRINT 3, F3
73 PRINT 4, F4
74 PRINT 5, F5
75 PRINT 6, F6

+ 1 : NEXT
+ 1 : NEXT
+ 1 : NEXT
+ 1 : NEXT
+ 1 : NEXT
+ 1 : HEXT
OF TIMES"

The program has doubled in size from 8 to 16 lines. In larger pro-
grams the space savings from usirrg subscripted variables will be even
more dramatic. .

TWO-DIMENSIONAL ARRAYS

Earlier in this chapter you experimented with one-dimensional arrays.
This type of array was visualized as a group of consecutive boxes within

memory each holding an element of the array. What would you expect
a two-dimensional array to look like?

First, a two-dimensional array would be written like this:

A(4,6)

r t!scRIPTS
ARRAY NAME

and could be represented as a two-dimensional grid within memory:

~
1

2
3
4

The subscripts could be thought of as representing the row and col-
umn within the table where the particular element of the array is stored.

100

A(3,4) = 255

i L COLUMN
ROW

~
1
2
3

4

255

If we assigned the value 255 to A(3,4), then 255 could be thought of
as being placed in the 4th column of the 3rd row within the table.

Two-dimensional arrays behave according to the same rules that were

established for one-dimensional arrays:

They must be dimensioned:
Assignment of data:
Assign values to other variables:
PRINTvalues:

DIM A(20,20)

A(I, 1) = 255
AB = A(l,1)
PRINT A(I, 1)

If two-dimensional arrays work like their smaller counterparts, what
additional capabilities will the expanded arrays handle?

Try this: can you think of a way using a two-dimensional array to
tabulate the results of a questionnaire for your club that involved four
questions and had up to three responses for each question? The prob-
lem could be represented like this:

CLUB QUESTIONNAIRE

Ql: ARE YOU IN FAVOR OF RESOLUTION #1?

01-YES 02-NO 03-UNDECIDED

. . . and so on.

101

The array table for this problem could be represented like this:

YES
RESPONSES

NO UNDECIDED

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

The program to do the actual tabulation for the questionnaire might
look like that shown on page 103.

This program makes use of many of the programming techniques that
have been presented so far. Even if you don't have any need for the
actual program right now, see if you can follow how the program
works.

The heart of this program is a 4 by 3 two-dimensional array, A(4,3).
The total responses for each possible answer to each question are held
in the appropriate element of the array. For the sake of simplicity, we
don't use the first rows and column (A(O,O) to A(O,4». Remember,
though, that those elements are always present in any array you design.

In practice, if question one is answered YES, then A(I, 1) is in-
cremented by one-row 1 for question 1 and column 1 for a YES re-
sponse. The rest of the questions and answers follow the same pattern.
A NO response for question three would add one to element A(3,2), and
so on.

102

103

