

INTRODUCTION

The next few chapters have been written for people who have be-
come relatively familiar with the BASIC programming language and the
concepts necessary to write more advanced programs.

For those of you who are just starting to learn how to program, you
may find some of the information a bit too technical to understand
completely. But take heart. . . because for these two fun chapters,
SPRITEGRAPHICS and CREATINGSOUND, we've set up some simple
examples that are written for the new user. The examples will give you
a good idea of how to use the sophisticated sound and graphics
capabilities available on your COMMODORE 64.

If you decide that you want to learn more about writing programs in
BASIC, we've put a bibliography (Appendix N) in the back of this man-
ual.

If you are already familiar with BASIC programming, these chapters
will help you get started with advanced BASIC programming techniqu-
es. More detailed information can be found in the COMMODORE64
PROGRAMMER'SREFERENCEMANUAL,available through your local
Commodore dealer.

42

SIMPLE ANIMATION

Let's exercise some of the Commodore 64's graphic capabilities by
putting together what we've seen so far, together with a few new con-
cepts. If you're ambitious, type in the following program and see what
happens. You will notice that within the print statements we can also
include cursor controls and screen commands. When you see something

like {CRSRLEFT} in a program listing, hold the Emil key and hit the
CRSRLEFT/RIGHTkey. The screen will show the graphic representation
of a cursor left (two vertical reversed bars). In the same way, pressing

EmIlI and 11I.:',t:lm",.shows as a reversed heart.

NEW
: INDICATES NEW

COMMAND10 REM BOUNCING BALL
20 PR I NT ,,{ CLR,,'HOME}"
25 FOR X = 1 TO 10 :~PRINT
30 FOR BL = 1 TO 40
40 PRINT"l8 {CRSR LEFT} II::REM (8 is a. SHIFT-Q)
50 FOR TM~ TO 5
60 NEXT TM
70 NEXT BL
75 REM MOVE SQ' RIGHT TO LEFT
80 FOR BL - 40 TO 1 STEP -1
510 PRINT" {CRSR LEFT} {CRSR LEFT} 8 {CRSR LEFT} It;

100 FOR TM = 1 TO 5
110 NEXT TM
120 NEXT BL
130 GOTO 20

THESE SPACES

ARE INTENTIONAL

TIP:

All words in this text will be completed on one line. However, os long as you don't

hit ED!II your 64 will automatically move to the next line even in the middle of a

word.

The program will display a bouncing ball moving from left to right,

and back again, across the screen.

If we look at the program closely, (shown on page 44) you can see

how this feat was accomplished.

. line 10 is a REMark that just tells what the program does; ithas no

43

10
20

G

25
30
40

C~:
70
75

~
80
90

r-100
LI10
120
130

REM BOUNCING BALL
!PRINT "{CLR/HOME}I

FOR X = 1 TO 10 : PRINT "{CRSR/OOWN}":NEXT
FOR BL = 1 TO 40
PRINT" 8{CRSR LEFT}";:REM <8 is a SHIFT-Q)
FOR TM = 1 TO :5

NEXT TM
NEXT BL
REM MOVE BALL RIGHT TO LEFT
FOR BL = 40 TO 1 STEP -1

PRINT" {CRSR LEFT} {CRSR LEFT}. {CRSR LEFT} ";
FOR Tt'l= 1 TO 5
NEXT TM
NEXT BL
GOTO 20

effect on the program itself. line 20 clears the screen of any informa-

tion.

line 25 PRINTs 10 cursor-down commands. This just positions the ball

in the middle of the screen. If line 25 was eliminated the ball would

move across the top line of the screen.

line 30 sets up a loop for moving the ball the 40 columns from the left

to right.

line 40 does a lot of work. Itfirst prints a space to erase the previous

ball positions,then itprintsthe ball,and finallyitperforms a cursor-left

to get everything ready to erase the current ball position again.

The loop set up in lines 50 and 60 slows the ball down a bit by delay-

ing the program. Without it,the ball would move too fast to see. -;

line 70 completes the loop that prints balls on the screen, set up in

line 30. Each time the loop is executed, the ball moves another space to

the right.As you notice from the illustration,we have set up a loop

within a loop.

This isperfectly acceptable. The only time you get in trouble iswhen

the loops cross over each other. It'shelpful inwriting programs to check

yourself as illustrated here to make sure the logic of a loop is correct.

To see what would happen ifyou cross a loop, reverse the statements

in lines 60 and 70. You will get an error because the computer gets

confused and cannot figure out what's going on.

lines 80 through 120 just reverse the steps in the firstpart of the

program, and move the ball from right to left. line 90 is slightly differ-

ent from line 40 because the ball is moving in the opposite direction (we

have to erase the ball to the right and move to the left).

44

And when that's all done the program goes back to line 20 to start the

whole "p_~~cess over again. Pretty neatl To stop the program hold
down .:I~"'I8I:I:IIand hit 1:lIllrjI8J:I.

For a variation on the program, edit line 40 to read:

40 PRINT "1"; ~
TO MAKE THE to HOLD THE SHIFT

KEY DOWN AND HIT THE lETTER "Q."

Run the program and see what happens now. Because we left out the
cursor control, each ball remains on the screen until erased by the ball
-moving right to left in the second part of the program.

INPUT

Up to now, everything within a program has been set before it is run.
Once the program was started, nothing could be changed. INPUT
allows us to pass new information to a program as it is running and
have that new information acted upon.

To get an idea of how INPUTworks, type NEW_:I:lIII:U_and enter this
short program:

What happens when you run this program is simple. A question mark
will appear, indicating that the computer is waiting for you to type
something. Enter any character, or group of characters, from the
keyboard and hit _:1:1111:11_.The computer will then respond with "YOU
TYPED :" followed by the information you entered.

This may seem very elementary, but imagine what you can have the
computer do with any information you enter.

You can INPUT either numeric or string variables, and even have the
INPUTstatement prompt the user with a message. The format of INPUTis:

INPUT "PROMPT MESSAGE";VARIABLE

~ PROMPT MUST IE 38 CHAaACTERS OR LUS.

45

Or, just:

INPUT VARIABLE

NOTE: To get out of this program hold down the .:~IJ/r~"tIOI:.Iand
.:1:1-'1101:1:8 keys.

The following program is not only useful, but demonstrates a lot of

what has been presented so far, including the new input statement.

1 REN TEI1PERATUF.:E C:OHVERSI Ot~ PF~O(;F.:AI1
5 P": ItH "{ GU-: HOI1E}"
10 PRIt~T "COt~VEF.:TFRON FAHRENHEIT OF.: CELSIUS

(F/G)": nlPUT A$
20 IF A$ = "~" THEt~ 20
3(1 IF A$ = "F" THEN 10(1
413 IF A$ <:? "C" THEt.4 10
513 INPUT "ENTEF.: DEGF:EES .cEL~:;I US : ": C
613 F = (C~9)/5+32
713 PRINT C.:" DEO. GELSI U::; = "; F.:" DEO.

FAHF.:Et~HEIT"
8~j PI': It-IT
913 (;OTO 113
HKI IHPUT "EtHEl': DEGREES FAHRENHEIT: ": F
1113 C = (F-32)~5/9
1213 PI': I NT F.:" DEG. FAHF.:Et-4HEI T = "; C.:" DEG.

CELSII-'S"
1:313 PI': I NT
1413 (;OTO 113

If you enter and run this program, you'll see INPUT in action.
Line lOuses the input statement to not only gather information, but

also print our prompt. Also notice that we can ask for either a number or
string (by using a numeric or string variable).

Lines 20, 30, and 40 do some checks on what is typed in. In line 20, if
nothing is entered (just .:~:lIII:~/. is hit), then the program goes back to
line 10 and requests the input again. In line 30, if F is typed, you know
the user wants to convert a temperature in degrees Fahrenheit to Cel-

sius, so the program branches to the part that does that conversion.
Line 40 does one more check. We know there are only two valid

choices the user can enter. To get to line 40, the user must have typed
some character other than F. Now, a check is made to see if that char-
acter is a C; if not, the program requests input again.

This may seem like a lot of detail, but it is good programming prac-

46

tice. A user not familiar with the program can become very frustrated if
it does something strange because a mistake was made entering infor-
mation.

Once we determine what type of conversion to perform, the program
does the calculation and prints out the temperature entered and the
converted temperature.

The calculation is just straight math, using the established formula for
temperature conversion. After the calculation is finished and answer
printed, the program loops back and starts over.

After running, the screen might look like this:

I

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?F I
ENTER DEGREES FAHRENHEIT: 32
32 DEG. FAHRENHEIT = 0 DEG. CELSIUS

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C):

After running the program, make sure to save it on disk or tape. This
program, as well as others presented throughout the manual, can form
the base of your program library.

GET

GET allows you to input one character at a time from the keyboard

without hitting ,,:1:1111:1/..This really speeds entering data in many appli-
cations. Whatever key is hit is assigned to the variable you specify with
GET.

The following routine illustrates how GET works:

NEW

1 PRINT "{CLR/HOME}"
113 GET A$: IF A$ = "1" THEN 113
213 PRINT A$:
313 GOTO 113

47

If you RUNthe program, the screen will clear and each time you hit a
key, line 20 will print it on the display, and then GETanother character.
It is important to note that the character entered will not be displayed
unless you specifically PRINT it to the screen, as we've done here.

The second statement on line 10 is also important. GET continually
works, even if no key is pressed (unlike INPUTthat waits for a response),
so the second part of this line continually checks the keyboard until a key
is hit.

See what happens if the second part of line 10 is eliminated.
To stop this program you can hit the 1:IIJlrl-"lIII:.JIand .:1;'"1111:18keys.
The first part of the temperature conversion program could easily be

rewritten to use GET. LOAD the temperature conversion program, and
modify lines 10, 20 and 40 as shown:

112.1 PRINT "CONVERT FROM FAHRENHEIT OR CELSIUS
(F,IC)"

212.1 GET A$: IF A$ = "I.,THEN 212.1

412.1 IF A$ C> "C" THEN 212.1

This modification will make the program operate smoother, as nothing
will happen unless the user types in one of the desired responses to
select the type of conversion.

Once this change is made, make sure you save the new version of the
program.

RANDOM NUMBERS AND OTHER FUNCTIONS

The Commodore 64 contains a number of functions that are used to

perform special operations. Functions could be thought of as built-in
programs included in BASIC. But rather than typing in a number of
statements each time you need to perform a specialized calculation, you
just type the command for the desired function and the computer does
the rest.

Many times when designing a game or educational program, you
need to generate a random number, to simulate the throw of dice, for
example. You could certainly write a program that would generate these
numbers, but an easier way to call upon the RaNDom number function.

To see what RND actually does, try this short program:

48

NEW

10 FOR X
20 PRINT
30 NEXT

= 1 TO 10(IFYOU LEAVE OUT THE COMMA YOUR LIST

RND(1),-\ OF NUMBERSWILLAPPEAR
AS 1 COLUMN

After running the program, you will see a display like this:

Your numbers don't match? Well, if they did we would all be in
trouble, as they should be completely random!

Try running the program a few more times to verify that the results are
always different. Even if the numbers don't follow any pattern, you
should start to notice that some things remain the same every time the
program is run.

First, the results are always between 0 and 1, but .never equal to 0 or
1. This will certainly never do if we want to simulate the random toss of
dice, since we're looking for numbers between 1 and 6.

The other important feature to look for is that we are dealing with real
numbers (with decimal places). This could also be a problem since
whole (integer) numbers are often needed.

There are a number of simple ways to produce numbers from the
RND function in the range desired.

Replace line 20 with the following and run the program again:

49

That cured the problem of not having results larger than 1, but we still
have the decimal part of the result to deal with. Now, another function
can be called upon.

The INTeger function converts real numbers into integer values.
Once more, replace line 20 with the following and run the program to

see the effect of the change:

That took care of a lot, getting us closer to our original goal of
generating random numbers between 1 and 6. If you examine closely
what we generated this last time, you'll find that the results range from
o to 5, only.

As a last step, add a one to the statement, as follows:

2" PRINT INT(6*RND(1»+l,

Now, we have achieved the desired results.

In general, you fan place a number, variable, or any BASIC expres-
sion within the parentheses of the INT function. Depending on the range
desired, you just multiply the upper limit by the RND function. For

example, to generate random numbers between 1 and 25, you could
type:

2" PRINT INT(2S*RND(1»+ 1

The general formula for generatind a set of random numbers in a
certain range is:

NUMBER=INT(LOWER LIMIT +(UPPER-LOWER+ 1)*RND(1»

GUESSING GAME

Since we've gone to some lengths to understand random numbers,
why not put this information to use? The following game not only iIIus-

50

trates a good use of random numbers, but also introduces some addi-
tional programming theory.

In running this program, a random number, NM, will be generated.

NEW

1 REM NUMBER GUESSING GAME
2 PRINT "{CLR,IHOME}"
5 INPUT "ENTER UPPER LI t'!IT FOR GUESS "; LI
10 NM = INT<LI*RND<I»+1
15 CN = 0
20 PRINT "I'VE GOT THE NUMBER.":PRINT
30 INPUT "WHAT'S YOUR GUESS"; GU
35 CN = CN + 1
40 IF GU ::> NM THEN PRINT "MY NUMBER IS

LOWER": PRINT: GOTO 30
50 IF GU < Nt'! THEN PR I NT "t'!Y NUt'!BER IS

HIGHER": PRIN1. : GOTO 30
60 PR I NT "GREAT! YOU GOT MY NUMBER"
65 PRINT "IN ONLY "; CN ;"GUESSES.":PRINT
70 PRINT "DO YOU WANT TO TRY ANOTHER <Y,IN)";
80 GET AN$: IF AN$="" THEN 80
90 IF AN$ = "Y" THEN 2
100 IF AN$ <::> "N" THEN 70
110 END

You can specify how large the number will be at the start of the pro-
gram. Then, it's up to you to guess what the number is.

A sample run follows along with an explanation.

51

IF/THEN statements compare your guess to the number generated.
Depending on your guess, the program tells you whether your guess was
higher or lower than the random number generated.

From the formula given for determining random number range, see if
you can add a few lines to the program that allow the user to also
specify the lower range of numbers generated.

Each time you make a guess, CN is incremented by 1 to keep track of
the number of guesses. In using the program, see if you can use good
reasoning to guess a number in the least number of tries.

When you get the right answer, the program prints out the "GREAT!
YOU GOT MY NUMBER"message, along with the number of tries it took.
You can then start the process over again. Remember, the program
generates a new random number each time.

PROGRAMMING TIPS:

In lines 40 and 50, a colon is used to separate multiple statements on a single line.

This not only saves typing, but in long programs will conserve memory space.
Also notice in the IF/THEN statements on the same two lines, we instructed the

computer to PRINT something, rather than immediately branching to some other point

in the program.
The last point illustrates the reason behind using line numbers in increments of 10:

After the program was written, we decided to add the count part. By just adding

those new lines at the end of the program, numbered to fall between the proper
existing lines, the program was easily modified.

YOUR ROLL

The following program simulates the throw of two dice. You can enjoy
it as it stands, or use it as part of a larger game.

5 PR I NT "Care 1;0 1;ry your luc.k?"
10 PRINT "RED DICE = ";INT(6*RND(I»+1
20 PRINT "WHITE DICE = "; INH6*RND(1))+1
30 PRINT "HIT SPACE BAR FOR ANOTHER ROLL":PRINT
40 GET A$: IF A$ = "" THEN 40
50 IF A$ = CHR$(32) THEN 10

Care to try your luck?
From what you've learned about random numbers and BASIC, see if

you can follow what is going on.

52

RANDOM GRAPHICS

As a final note on random numbers, and as an introduction to design-
ing graphics, take a moment to enter and run this neat little program:

10 pr;;:ItH "{ CLF.: 'HOt'1E} "
20 PRINT CHR$(205.5 + RNO(l»;
40 CiOTO 20

As you may have expected, line 20 is the key here. Another function,
CHR$ (Character String), gives you a character, based on a standard
code number from 0 to 255. Every character the Commodore 64 can
print is encoded this way (see Appendix F).

To quickly find out the code for any character, just type:

PRINT ASC("X")

where X is the character you're checking (this can be any printable
character, including graphics). The response is the code for the char-
acter you typed. As you probably figured out, "ASC" is another function,
which returns the standard "ASCII" code for the character you typed.

You can now print that character by typing:

PRINT CHR$(X)

If you try typing:

PRINT CHR$ (2~5); CHR$(2~6)

you will see the two right side graphic characters on the M and N keys.
These are the two characters that the program is using for the maze.

By using the formula 205.5 + RND(l) the computer will pick a random
number between 205.5 and 206.5. There is a fifty-fifty chance of the
number being above or below 206. CHR$ ignores any fractional values,
so half the time the character with code 205 is printed and the remain-
ing time code 206 is displayed.

If you'd like to experiment with this program, try changing 205.5 by
adding or subtracting a couple tenths from it. This will give either char-

acter a greater chance of being selected.

53

