

:INTRODUCTI.ON

Your Commodore. computer is equipped with .one of the most sophisti-
catedele.ctronic music synthesizers available on any computer. It comes
complete with .three voices, totally .addressable, ATTACK/DECAY/
5USTAIN/RELEASE(ADSR), filtering, modulation, and "white noise." All
.of these .capabilities are directly available for you through a few easy to
use "BASIC and/or assembly language 'statements .and functions. This
means that you can make very ..complex sounds and songs using pro-
grams ,that are :relatively simple to design.

This section of your. Programmers :Reference Guide has been created
to help you explore all the .capabilities of the 6581 "SID" chip, the sound
and music synthesizer inside your Commodore computer. We~1Iexplain
both the theory behind musical ideas and the practical aspects of .turn-
ing those ideas into real finished songs on your .Commodore computer.

You need not be .an experienced programmer nor a music expert to
achieve exciting results from the music synthesizer. This section Cisfull of
programming examples with complete explanations to get you started.

You get to .the sound generator by POKEing into specified memory
locations. A full list of the locations used is provided in .Appendix O. We
will go through each concept, step by step. By the end you should be
able to create an almost :infinite variety of sounds, and 'be. ready to
perform experiments. with sound on your own.

'Each .section of this chapter begins by giving you an example and a
fuliline-by-line'description :of each program, which will show you how to
use the characteristic being discussed. The technical explanation is for
you to read whenever you are curious about what is actually going on.

The workhorse of your sound programs is the POKE'statement. POKE
sets the indicated. memory location (MEM) equal .to a.:specified value
~NUM).

.POKE MEM,NUM

The memory locations (MEM) used for music synthesis start at 54272
($D400) in the Commodore 64. The memory locations 54272 '10 54296
inclusive .are the POKE Jocotions you need to remember when you're
using the 6581 (SID) chip'register map. Another way to use the locations
above is.-to remember only location 54272 and then add a number from
'0 through 24 to it. By doing this you can -POKEall the locations from
54272 to 54296 that you need from the SID chip. The numbers. (NUM)

184 PROGRAMMING SOUND AND MUSIC

that you use in your POKE statement must be between 0 and 255,
inclusive.

When you've had a little more practice with making music, then you
can get a little more involved, by using the PEEKfunction. PEEKis a
function that is equal to the value currently in the indicated memory
location.

X=PEEK(MEM)

The value of the variable X is set equal to the current contents of mem-
ory location MEM.

Of course, your programs include other BASIC commands, but for a
full explanation of them, refer to the BASIC Statements section of this
manual.

Let's jump right in and try a simple program using only one of the
three voices. Computer ready? Type NEW, then type in this program,
and save it on your Commodore DATASSETTETMor disk. Then, RUN it.

EXAMPLE PROGRAM 1:

5 ~:;=54272
10 FORL=STOS+24:POKEL,0:NEXT:REM CLEAR SOUND CHIP
20 POKE:::+5, 9 :PC1f(ES+6., °

30 POKES+24,15 :REM SET VOLUME TO
r'tA:":I r1Ur1
40 READHF, LF .' DR
50 IFHF(0THENEND
60 POKES+l,HF:POKES,LF
70 POKES+4., ::;::::;:

80 FORT=ITODR:NEXT
90 POKES+4,32:FORT=IT050:NEXT
100 CiOT04r21

110 DATA25,177,250,28,214,250
120 DATA25J177J250J25J177J250
130 DATA25,177,125,28,214,125
140 DATA32,94,750,25,177,250
150 DATA28,214,250,19,63,250
160 DATAI9,63,250,19,63,250
170 DATA21.154,63,24,63,63
180 DATA25,177,250,24,63,125
190 DATA19,63,250,-1,-1,-1

Here's a line-by-line description of the program you've just typed in.
Refer to it whenever you feel the need to investigate parts of the pro-
gram that you don't understand completely.

PROGRAMMING SOUND AND MUSIC 185

LINE-BY-LINE EXPLANATIONOF EXAMPLEPROGRAM 1:

VOLUME CONTROL

Chip register 24 contains the overall volume control. The volume can
be set anywhere between ° and 15. The other four bits are used for
purposes we'll get into later. For now it is enough to know volume is 0 to
15. Look at line 30 to see how it's set in Example Program 1.

FREQUENCIES OF SOUND WAVES

Sound is created by the movement of air in waves. Think of throwing
a stone into a pool and seeing the waves radiate outward. When similar
waves are created in air, we hear it. If we measure the time between
one peak of a wave and the next, we find the number of seconds for

one cycle of the wave (n = number of seconds). The reciprocal of this
number (1/n) gives you the cycles per second. Cycles per second are
more commonly known as the frequency. The highness or lowness of a
sound (pitch) is determined by the frequency of the sound waves pro-
duced.

The sound generator in your Commodore computer uses two locations
to determine the frequency. Appendix E gives you the frequency values
you need to reproduce a full eight octaves of musical notes. To create a

186 PROGRAMMING SOUND AND MUSIC

Line(s) Description

5 Set S to start of sound chip.
10 Clear all sound chip registers.
20 Set Attack/Decay for voice 1 (A=0,D=9). I

Set Sustain/Release for voice 1 (S=O,R=O).
30 Set volume at maximum.
40 Read high frequency, low frequency, duration of note.
50 When high frequency less than zero, song is over.
60 Poke high and low frequency of voice 1.
70 Gate sawtooth waveform for voice 1.
80 Timing loop for duration of note.
90 Release sawtooth waveform for voice 1.
100 Return for next note.
110- 180 Data for song: high frequency, low frequency, duration

(number of counts) for each note.
190 .Last note of song and negative 1s signaling end of song.

frequency other than the ones listed in the note table use "Fout" (fre-
quency output) and the following formula to represent the frequency (Fn)
of the sound you want to create. Remember that each note requires
both a high and a low frequency number.

Fn = Fout/.06097

Once you've figured out what Fn is for your "new" note the next step is
to create the high and low frequency values for that note. To do this you
must first round off Fn so that any numbers to the right of the decimal
point are left off. You are now left with an integer value. Now you can
set the high frequency location (Fhi)by using the formula Fhi=INT(Fn/256)
and the low frequency location (Flo) should be Flo=Fn-(256*Fhi).

At this point you have already played with one voice of your compu-
ter. If you wanted to stop here you could find a copy of your favorite
tune and become the maestro conducting your own computer orchestra
in your "at home" concert hall.

USING MULTIPLE VOICES

Your Commodore computer has three independently controlled voices
(oscillators). Our first example program used only one of them. Later on,
you'll learn how to change the quality of the sound made by the voices.
But right now, let's get all three voices singing.

This example program shows you one way to translate sheet music for
your computer orchestra. Try typing it in, .and then SAVE it on your
DATASSETTeMor disk. Don't forget to type NEW before typing in this
program.

EXAMPLEPROGRAM2:
10 8=54272: FORL=STOS+24: POKEL,10:NE>(T
20 D1MH(2,200),L(2,200),C(2,200)
30 DII1FQ(11)
40 V(0)=17:V(1)=65:V(2)=33
50 POKES+10,8:POKES+22,128:POKES+23,244
60 FOR1=0T011:READFQ(1):NEXT
1'21'21FORK=0T02
110 1=0
120 READt'IM
130 IFNM=0THEN250
140 WA=V(K):WB=WA-l:1FNM(0THENNM=-NM:WA=0:WB=0
150 DR%=NM/128:0C%=(NM-128*DR%)/16
160 NT=NM-128~DR%-16*OC%
170 FR=FQ(tH)

PROGRAMMINGSOUND ANDMUSIC 187

180 IFOC%=7THEN200
190 FORJ=6TOOCr.STEP-1:FR=FR/2:NEXT
200 HF%=FR/256:LF%=FR-256*HFr.
210IFDRr.=1THENHCK,I)=HFr.:LCK,I)=LFr.:C<.K,I)=WA:
I=I+l:00TOI20
220 FORJ=ITODR%-l:HCK,I)=HFr.:L(K,I)=LF%:C(K,I)=WA:
I=I+l:NEXT
230 H(K,I)=HFr.:L(K,I)=LF%:CCK,I)=WB
240 I=I+l:00T0120
250 IFI)IMTHENIM=I
260 NEXT
500 POKES+5,0:POKES+6,240
510 POKES+12,85:POKES+13,133
520 POKES+19,10:POKES+20, 197
530 POKES+24,31
540 FORI=0TOIM
550 POKES,L(0,I):POKES+7,LC1,I):POKES+14,L(2,I)
560 POKES+l,H(0,I):POKES+8,H(1,I):POKES+15,H(2,I)
570 POKES+4,C(0,I):POKES+ll,CCl,I):POKES+18,C(2,I)
580 FORT=lT080:NEXT:NEXT
590 FORT=lT0200:NEXT:POKES+24,0
600 DATA34334,36376,38539,40830
610 DATA43258,45830,48556,51443
620 DATA54502,57743,61176,64814
1000 DATA594,594,594,596,596
1010 DATA1618,587,592,587,585,331,336
1020 DATA1097,583,585,585,585,587,587
1030 DATA1609,585,331,337,594,594,593
1040 DATA1618,594,596,594,592,587
1050 DATA1616,587,585,331,336,841,327
1060 DATA1607
1999 DATA0
2000 DATA583,585,583,583,327,329
2010 DATA1611,583,585,578,578,578
2020 DATA196,198,583,326,578
2030 DATA326,327,329,327,329,326,578,583
2040 DATA1606,582,322,324,582,587
2050 DATA329,327,1606,583
2060 DATA327,329,587,331,329
2070 DATA329,328,1609,578,834
2080 DATA324,322,327,585,1602
2999 DATA0
3000 DATA567,566,567,304,306,308,310
3010 DATA1591,567,311,310,567
3020 DATA306,304,299,308
3030 DATA304,171,176,306,291,551,306,308
3040 DATA310,308,310,306,295,297,299,304
3050 DATA1586,562,567,310,315,311
3060 DATA308,313,297
3070 DATA1586,567,560,311,309
3080 DATA308,309,306,308
3090 DATA1577,299,295,306,310,311,304
3100 DATA562,546, 1575
3999 DATA0

188 PROGRAMMING SOUND AND MUSIC

Here is a line-by-line explanation of Example .Program 2. For now, we
are interested in how the thre.e voices .are controlled.

LlNE-BY-LiNEEXPLANATIONOF EXAMPLEPROGRAM 2:

10

20

30
40
50

60
100
no
120
130
140

150
160
170
180
190
200
210

220

230

240
250
260
500

line(s) Description

Set S equal to start of sound chip and clear all. sound
chip registers.

Dimension arrays to contain activity of song, l/l6th of a
measure per lo.cation.
Dimension array to contain base frequency for each note.
Store waveform control byte for each voice.
Set high pulse width for voice 2.
Set high frequency for filter cutoff.
Set resonance for filter and filter voice 3.

Read in base frequency for each note.
Begin decoding loop for each voice.
Initialize pointer to activity array.
Read coded note'.

If coded note is zero, then r:'ext ,voice.
Set waveform controls. to proper voice.
If silence, set waveform controls to. O.
Decode duration and octave.
Decode note.

Get base frequency for this note.I
If highest octave, skip division loop.
Divide base frequency by 2 appropriate number of times.
Get high and low frequency bytes.

If sixteenth no.te, set activity array: high frequency, low
frequency, and: waveform control (voice on).
For all but last beat of note, set activity array: high
frequency, low frequency, waveform control (voice on).
For last be.at of note, set activity array: high frequency,
low frequency, waveform control (voice off).
Increment pointer to activity array. Get next note.
If longer t~an before, reset number of activities.
Go back for next voice.

Set Attack/Decay for voicel (A=O, D=O)..
Set Sustain/Release for voice 1 (S=15, R=O).

PROGRAMMING SOUND AND MUSIC 189

The values used in the data statements were found by using the note
table in Appendix E and the chart below:

190 PROGRAMMING SOUND AND MUSIC

line(s) Description

510 Set Attack/Decay for voice 2 (A=5, D=5).
Set Sustain/Release for voice 2 (S=8, R=5).

520 Set Attack/Decay for voice 3 (A=O, D= 10).
Set Sustain/Release for voice 3 (S=12, R=5).

530 Set volume 15, low-pass filtering.
540 Start loop for every 1/16th of a measure.
550 POKE low frequency from activity array for all voices.
560 POKE-high frequency from activity array for all voices.
570 POKE-waveform control from activity array for all voices.
580 Timing loop for 1/16th of a measure and back for next

1/16th measure.
590 Pause, then turn off volume.
600-620 Base frequency data.
1000-1999 Voice 1 data.
2000-2999 Voice 2 data.
3000-3999 Voice 3 data.

NOTE TYPE DURATION

1/16 128
1/8 256

DOTTED1/8 384
1/4 512

1/4+ 1/16 640
DOTTED 1/4 768

1/2 1024
1/2+ 1/16 1152
1/2+ 1/8- 1280

DOTTED 1/2 1536
WHOLE 2048

The. note number from the no.te table is added to the duration above.
Then each note can be entered using only one number which is decoded
by your program. This is only one method of coding note values. You
may be able to come up with one with which you are more comfortable.
The formula used here for encoding a note is as follows:

1) The duration (number of 1/16ths of a measure) is multiplied by 8.
2) The result of step 1 is added to the octave you've chosen (0-7).
3) The result of step 2 is then multiplied by 16.
4) Add your note choice (0- 11) to the result of the operation in step

3.

In other words:

««D*8)+O) *16)+N)

Where D = duration, 0 = octave, and N = note
A silence is obtained by using the negative of the duration number

(number of 1/16ths of a measure * 128).

CONTROLLING MULTIPLEVOICES

Once you have gotten used to using more than one voice, you will find
that the timing of the three voices needs to be coordinated. This is ac-
complished in this program by:

1) Divide each musical measure into 16 parts.
2) Store the events that occur in each 1/16th measure interval in three

separate arrays.

The high and low frequency bytes are calculated by dividing the fre-
quencies of the highest octave by two (lines 180 and 190). The
waveform control byte is a start signal for beginning a note or continu-
ing a note that is already playing. It is a stop signal to end a note. The
waveform choice is made once for each voice in line 40.

Again, this is only one way to control multiple voices. You may come
up with your own methods. However, you should now be able to take

any piece of sheet music and figure out the notes for all three voices.

PROGRAMMING SOUND AND MUSIC 191

CHANGING WAVEFORMS

The tonal quality of a sound is called the timbre. The timbre of a
sound is determined primarily by its "waveform." If you remember the
example of throwing a pebble into the water you know that the waves
ripple evenly across the pond. These waves almost look like the first
sound wave we're going to talk 'about, the .sinusoidal wave, or sine
wave for short (shown below).

To make what we're talking about a bit more practical, let's go back
to the first example program to investigate different waveforms. The
reason for this is that you can hear the changes more easily using only
one voice. LOADthe first .music program that you typed in earlier, from
your DATASSffiE™ or disk, and RUN it again. That program is using the
sawtooth waveform (shown here)

from the 6581 SID chip's sound generating device. Try changing the note
start number in line 70 from 33 to 17 and the note stop nlJmber in line 90
from 32 to 16. Your program should now look like this:

192 PROGRAMMING SOUND .AND MUSIC

EXAMPLE PROGRAM3 (EXAMPLE1 MODIFIED):

5 ~3=5427:;-~
10 FORL=STOS+24:POKEL..0:NEXT
20 POKES+5..9:POKES+6..0
::::121 POf<E~:;+24,15
40 REAIIHF, LF.. IIF.:

50 IFHF<0THENEND
60 POKES+l..HF:POKES..LF
70 POKE:::+4., 17

80 FORT=lTODR:NEXT
90 POKES+4..16:FORT=IT050:NEXT
100 130T040
110 DATA25,177..250..28,214..250
120 DATA25..177..250..25..177..250
130 DATA25.. 177.. 125..28..214.. 125

140 DATA32..94.. 750.. 25.. 177,250

150 DATA28,214..250..19,63,250
160 DATAI9,63..250..19..63..250
170 DATA21 ,154,63..24..63,63
180 DATA25,177..250,24,63, 125
190 DATAI9,63..250..-1,-I,-1

Now RUN the program.

Notice how the sound quality is different, less twangy, more hollow.
That's because we changed the sawtooth waveform into a triangular
waveform (show below).

The third musical waveform is called a variable pulse wave (shown

below).

PULSE WIDTH

PROGRAMMING SOUND AND MUSIC 193

It is a rectangular wave and you determine the length of the pulse
cycle by defining the proportion of the wave which will be high. This is
accomplished for voice 1 by using registers 2 and 3: Register 2 is the low
byte of the pulse width (Lpw= 0 through 255). Register 3 is the high 4
bits (Hpw = 0 through 15).

Together these registers specify a 12-bit number for your pulse width,
which you can determine by using the following formula:

The pulse width is determined by the following equation:

PWout = (PWn/40.95) %

When PWn has a value of 2048, it will give you a square wave. That
means that register 2 (Lpw)= 0 and register 3 (Hpw) = 8.

Now try adding this line to your program:

15 POKES+3,8:POKES+2,O

Then change the start number in line 70 to 65 and the stop number in
line 90 to 64, and RUN the program. Now change the high pulse width
(register 3 in line 15) from an 8 to a 1. Notice how dramatic the differ-
ence in sound quality is?

The last waveform available to you is white noise (shown here).

It is used mostly for sound effects and such. To hear how it sounds, try
changing the start number in line 70 to 129 and the stop number in line
90 to 128.

UNDERSTANDING WAVEFORMS

When a note is played, it consists of a sine wave oscillating at the
fundamental frequency and the harmonics of that wave.

194 PROGRAMMING SOUND AND MUSIC

The fundamental frequency defines the overall pitch of the note.

Harmonics are sine waves having frequencies which are integer multi-
ples of the fundamental frequency. A sound wave is the fundamental

frequency and all of the harmonics it takes to make up that sound.

FUNDAMENTAL (1ST HARMONIC)

2ND HARMONIC

In musical theory let's say that the fundamental frequency is harmonic
number 1. The second harmonic has a frequency twice the fundamental
frequency, the third harmonic is three times the fundamental frequency,
and so on. The amounts of each harmonic present in a note give it its
timbre.

An acoustic instrument, like a guitar or a violin, has a very compli-
cated harmonic structure. In fact, the harmonic structure may vary as a
single note is played. You have already played with the waveforms
available in your Commodore music synthesizer. Now let's talk about
how the harmonics work with the triangular, sawtooth, and rectangular
waves.

A triangular wave contains only odd harmonics. The amount of each
harmonic present is proportional to the reciprocal of the square of the
harmonic number. In other words harmonic number 3 is 1/9 quieter than
harmonic number 1, because the harmonic 3 squared is 9 (3 X 3) and
the reciprocal of 9 is 1/9.

As you can see, there is a similarity in shape of a triangular wave to a
sine wave oscillating at the fundamental frequency.

Sawtooth waves contain all the harmonics. The amount of each har-

monic present is proportional to the reciprocal of the harmonic number.
For example, harmonic number 2 is 1/2 as loud as harmonic number 1.

The square wave contains odd harmonics in proportion to the recip-
rocal of the harmonic number. Other rectangular waves have varying
harmonic content. By changing the pulse width, the timbre of the sound
of a rectangular wave can be varied tremendously.

PROGRAMMINGSOUNDAND MUSIC 195

By choosing carefully the waveform used, you can start with a har-
monic structure that looks somewhat like the sound you want. To refine
the sound, you can add another aspect of sound quality available on
your Commodore 64 called filtering, which we'll discuss later in this
section.

THE ENVELOPE GENERATOR

The volume of a musical tone changes from the moment you first hear
it, all the way through until it dies out and you can't hear it anymore.
When a note is first struck, it rises from zero volume to its peak volume.
The rate at which this happens is called the ATTACK.Then, it falls from
the peak to some middle-ranged volume. The rate at which the fall of
the note occurs is called the DECAY. The mid-ranged volume itself is
called the SUSTAIN level. And finally, when the note stops playing, it
falls from the SUSTAIN level to zero volume. The rate at which it falls is

called the RELEASE.Here is a sketch of the four phases of a note:

SUSTAINLEVEL--

A

Each of the items mentioned above give certain qualities and restric-
tions to a note. The bounds are called parameters.

The parameters ATTACKIDECAY/SUSTAIN/RELEASEand collectively
called ADSR, can be controlled by your use of another set of locations in
the sound generator chip. LOADyour first example program again. RUN
it again and remember how it sounds. Then, try changing line 20 so the
program is like this:

196 PROGRAMMING SOUND AND MUSIC

EXAMPLEPROGRAM 4 (EXAMPLE 1 MODIFIED):

5 :3=54272

10 FORL~STOS+24:POKEL,0:NEXT
20 POKE:::;+5., :;:::::: F'OKES+6, 195
3121 PCW:ES+:;::4, 15
40 F.:EADHF" LF, DR
50 IFHF<0THENEND
60 POKES+l,HF:POKES,LF
71<:1POKES+4" 33
80 FORT81TODR:NEXT
90 POKES+4,32:FORT=IT050:NEXT
100 GOT040 .

110 DATA25,177,250,28,214,250
12121DATli25, 177, 251::1"25., 177., 2512:1
130 DATA25,177,125,28,214, 125
140 DATA32,94,750,25, 177,250
150 DATA28,214,250,19~63,250
160 DATAI9,63~250,19,63,250
170 DATA21,154,63,24,63,63
180 DATA25, 177,250,24,63,125
190 DATAI9,63,250,-I,-I,-1

Registers 5 and 6 define the ADSRfor voice 1. The ATTACKis the high
nybble of register 5. Nybble. is half a byte, in other words the lower 4 or

higher 4 on/off locations (bits)'in .each register. DECAYis the low nybble.
You can pick any number 0 through 15 for ATTACK,multiply it by 16 and
add to any number 0 through 15 for DECAY.The values that correspond
to these numbers are listed below.

SUSTAIN level is the high nybble of register 6. It can be 0 through, 15.
It defines the proportion of the peak volume that the SUSTAIN level will
be. RELEASE rate is the low nybble of register 6.

PROGRAMMINGSOUND,ANDMUSIC 197

Here are the meanings of the values for ATTACK, DECAY, and RE-
LEASE:

Here are a few sample settings to try in your example program. Try
these and a few of your own. The variety of sounds you can produce is

astounding! For a violin type sound, try changing line 20 to read:

20 POKES+5,88:POKES+6,89:REM A=5;D=8;S=5;R=9

Change the waveform to triangle and get a xylophone type sound by
using these lines:

20 POKES+5,9:POKES+6,9:REM A=0;D=9;S=0;R=9
70 POKES+4,17
90 POKES+4,16: FORT=1T050:NEXT

.198 PROGRAMMING SOUND AND MUSIC

VALUE ATTACK RATE(TIME/CYCLE) DECAY/RELEASE RATE(TIME/CYCLE)

0 2 ms 6 ms

1 8 ms 24 ms
2 16 ms 48 ms

3 24 ms 72 ms

4 38 ms 114 ms

5 56 ms 168 ms
6 68 ms 204 ms
7 80 ms 240 ms
8 100 ms 300 ms
9 250 ms 750 ms

10 500 ms 1.5 s

11 800 ms 2.4 s

12 1 s 3 s
13 3 s 9 s
14 5 s 15 s
15 8 s 24 s

Change the waveform to square and try a ,piano type sound with these
lines:

15 POKES+3,8:POKES+2,O
20 POKES+5,9:POKES+6,O: REMA=0;D=9;S=0;R=0
70 POKES+4,65
90 POKES+4,64:FORT=lT050:NEXT

The most exciting sounds are those unique to the music synthesizer
itself, ones that do not attempt to mimic acoustic instruments. For
example try:

20 POKES+5,144:POKES+6,243:REM A=9;D=0; S=15;R=3

FILTERING

The harmonic content of a waveform can be changed by using a
filter. The SID chip is equipped with three types of filtering. They can be
used separately or in combination with one another. Let's go back to the
sample program you've been using to play with a simple example that
uses a ,filter. There are several filter controls to set.

You add line 15 in the program to set the cutoff frequency of the filter.
The cutoff frequency is the reference point for the filter. You SETthe high
and low frequency cutoff points in registers 21 and 22. To turn ON the
filter for voice 1, POKE register 23.

Next change line 30 to show that a high-pass filter will be used (see
the SID register map).

PROGRAMMING SOUND AND MUSIC 199

EXAMPLEPROGRAM5 (EXAMPLE1 MODIFIED):

10 FORL=STOS+24:POKEL,8:NEXT
15 POKES+22,128:POKES+21,0:POKES+23,1
20 POKES+5,9:POKES+6,0
3el POKES+24, 79
40 READHF, LF .'DF.:
50 IFHF<0THENEND
60 POKES+l,HF;POKES,LF
70 POKE::;+4, 33
80 FORT=ITODR:NEXT
98 POKES+4, 32: FORT= 1T050 : NE:-:T
11210 00T04121

110 DATA25,177,250,28,214,250
120 DATA25, 177,250,25, 177,250
131<:1DATA25.. 177.. 125,28..214.,125
14121DATA32., 94, 7S12I,25, 177, 25121
150 DATA28,214,250, 19,63,250
160 DATA19,63,250,19,63,250
178 DATA21 , 154,63,24,63,63
180 DATA25,177,250,24,63, 125
19121 DATAI9,63,258,-1,-1,-1

Try RUNning the program now. Notice the lower tones have had their

volume cut down. It makes the overall quality of the note sound tinny.
This is because you are using a high-pass filter which attenuates (cuts
down the level of) frequencies below the specified cutoff frequency.

There are three types of filters in your Commodore computer's SID
chip. We have been using the high-pass filter. It will pass all the fre-
quencies at or above the cutoff, while attenuating the frequencies below
the cutoff.

Q
III
II)
II)""
Q.
..
Z
:;)
o
:;""

FREQUENCY

The SID chip also has a low-pass filter. As its name implies, this filter
will pass the frequencies below cutoff and attenuate those above.

200 PROGRAMMING SOUND AND MUSIC

Q
W'"'"
<I:II.
I-Z
:>o
::;:
<I:

Finally, the chip is equipped with a bandpass filter, which passes a
narrow band of frequencies around the cutoff, and attenuates all
others.

Q
W'"'"
<I:II.
I-
Z
:>o
::;:
<I:

The high- and low-pass filters can be combined to form a notch reiect
filter which passes frequencies away from the cutoff while attenuating
at the cutoff frequency.

Q
III'"'"<I:II.
I-Z
:>
o
::;:
<I:

CUTOFF

FREQUENCY

PROGRAMMING SOUND AND MUSIC 201

Register 24 determines which type filter you want to use. This is in
addition to register 24's function as the overall volume control. Bit 6
controls the high-pass filter (0 = off, 1 = on), bit 5 is the bandpass

filter, and bit 4 is the low-pass filter. The low 3 bits of the cutoff fre-
quency are determined by register 21 (let) (let = 0 through 7). While the
8 bits of the high cutoff frequency are determined by register 22 (Hct)
(Hct = 0 through 255).

Through careful use of filtering, you can change the harmonic struc-
ture of any waveform to get just the sound you want. In addition, chang-
ing the filtering of a sound as it goes through the ADSR phases of its life
can produce interesting effects.

ADVANCED TECHNIQUES

The SID chip's parameters can be changed dynamically during a note
or sound to create many interesting and fun effects. In order to make
this easy to do, digitized outputs from oscillator three and envelope
generator three are available for you in registers 27 and 28, respec-
tively.

The output of oscillator 3 (register 27) is directly related to the
waveform selected. If you choose the sawtooth waveform of oscillator 3,
this register will present a series of numbers incremented (increased
step by step) from 0 to 255 at a rate determined by the frequency of
oscillator 3. If you choose the triangle waveform, the output will incre-
ment from 0 up to 255, then decrement (decrease step by step) back
down to o. If you choose the pulse wave, the output will jump back-
and-forth between 0 and 255. Finally, choosing the noise waveform will
give you a series of random numbers. When oscillator 3 is used for
modulation, you usually do NOT want to hear its output. Setting bit 7 of
register 24 turns the audio output of voice 3 off. Register 27 always
reflects the changing output of the oscillator and is not affected in any
way by the envelope (ADSR) generator.

202 PROGRAMMING SOUND AND MUSIC

Register 25 gives you access to the output of the envelope generator
of oscillator 3. It functions in much the same fashion that the output of
oscillator 3 does. The oscillator must be turned on to produce any output
from this register.

Vibrato (a rapid variation in frequency) can be achieved by adding
the output of oscillator 3 to the frequency of another oscillator. Example
Program 6 illustrates this idea.

EXAMPLE PROGRAM 6:

1121 8=54272
20 FORL=0T024:POKES+L,0:NEXT
31Z1 F'CiKES+3, 8

40 POKES+5,41:POKES+6,89
50 F'OKES+14..117
60 POKE::::+18., 16

70 POKE:;:;+24., 143

:3121 READFf<:, DR

90 IFFR=0THENEND
100 POKES+4,65
110 FORT=lTODR*2
12121 FQ=FR+PEEK 0:8+27 >/2
130 HF=INT(FQ/256>:LF=FQAND255
140 F'OKES+0,LF:POKES+l,HF
150 NE::<:T

160 POKES+4., 64
170 GOT080
500 DATA4817,2,5103,2,5407,2
510 DATA8583,4,5407,Z,8583,4
520 DATA5407,4,8583,12,9634,2
530 DATAI0207,2,10814,2,8583,2
540 DATA9634,4,10814,2,8583,2
550 DATA9634,4,8583,12
56121 DATI"10.,(I

Here is a line-by-line explanation of Example Program 6:

PROGRAMMINGSOUND AND MUSIC 203

LlNE-BY-LiNEEXPLANATIONOF EXAMPLEPROGRAM 6:

A wide variety of sound effects can also be achieved using dynamic
effects. For example, the following siren program dynamically changes
the frequency output of oscillator 1 when it's based on the output of
oscillator 3's triangular wave:

204 PROGRAMMING SOUND AND MUSIC

LinesCs) Description

10 Set S to beginning of sound chip.
20 Clear all sound chip locations.
30 Set high pulse width for voice 1.
40 Set Attack/Decay for voice 1 (A=2, D=9).

Set Sustain/Release for voice 1 (S=5, R=9).
50 Set low frequency for voice 3.
60 Set triangle waveform for voice 3.
70 Set volume 15, turn off audio output of voice 3.
80 Read frequency and duration of note.
90 If frequency equals zero, stop.
100 POKEstart pulse waveform control voice 1.
110 Start timing loop for duration.
120 Get new frequency using oscillator 3 output.
130 Get high and low frequency.
140 POKE high and low frequency for voice 1.
150 End of timing loop.
160 POKE stop pulse waveform control voice 1.
170 Go back for next note.
500-550 Frequencies and durations for song.
560 Zeros signal end of song.

EXAMPLE PROGRAM7:

10 8=54272
20 FORL=0T024=POKES+L,O=NEXT
30 POKES+14,5
40 POKES+18,16
50 POKES+3,1
60 POKES+24,143
70-POKES+6,240
80 POKES+4,65
90 FR=5389
100
110
120
130
140
150

FORT=lT0200
FQ=FR+PEEK(S+27).3.5
HF=INT(FQ/256)=LF=FQ-HFI256
POKES+0,LF=POKES+l,HF
NEKT
POKES+24,0

Here is a line-by-line explanation of Example Program 7:

LlNE-BY-LiNEEXPLANATIONOF EXAMPLEPROGRAM 7:

PROGRAMMING SOUND AND MUSIC 205

Line(s) Description

10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set low frequency of voice 3.
40 Set triangular waveform voice 3.
50 Set high pulse width for voice 1.
60 Set volume 15, turn off audio output of voice 3.
70 Set Sustain/Release for voice 1 (S= 15, R=O).
80 POKE start pulse waveform control voice 1.
90 Set lowest -frequency for siren.
100 Begin timing loop.
110 Get new frequency using output of oscillator 3.
120 Get high and low frequencies.
130 POKE high and low frequencies for voice 1.
140 End timing loop.
150 Turn off volume.

The noise waveform can be used to provide a wide range of sound
effects. This example mimics a hand clap using a filtered noise
waveform:

EXAMPLE PROGRAM 8:

110 8=54272

210 FORL=eT024:POKES+L,e:NEXT
310 POKES+0,24iZ1:POKES+1,33
410 POKE8+5,8
510 POI(ES+22., 11214

610 POf(ES+23, 1
710 POKES+24,79
810 FORN=1T015
90 POKES+4,129
1010 FORT=1T0250:NEXT:POKES+4,128
1110 FORT= 1T030 :t.jE:.:T:t~E>::T

12121 POKES+24,1O

Here is a line-by-line explanation of Example Program 8:

LlNE-BY-LiNEEXPLANATION OF EXAMPLEPROGRAM 8:

206 PROGRAMMING SOUND AND MUSIC

Line(s) Description

10 Set S to start of sound chip.
20 Clear all sound chip registers.
30 Set high and low frequencies for voice 1.
40 Set Attack/Decay for voice 1 (A=O, D=8).
50 Set high cutoff frequency for filter.
60 Turn on filter for voice 1.
70 Set volume 15, high-pass filter.
80 Count 15 claps.
90 Set start noise waveform control.
100 Wait, then set stop noise waveform control.
110 Wait, then start next clap.
120 Turn off volume.

SYNCHRONIZATION AND
RING MODULATION

The 6581 SID chip lets you create more complex harmonic structures
through synchronization or ring modulation of two voices.

The process of synchronization is basically a logical ANDing of two
wave forms. When either is zero, the output is zero. The following
example uses this process to create an imitation of a mosquito:

EXAMPLE PROGRAM 9:

10 8=54272
2121 FORL=0T024: POKES+L, 121: ~jEXT
3~~1 POKE:=:+ 1 , 1130
40 POKES+5,219
5121 POKE:=:+ 15., 28
60 POKES+24., 15
7121 POKES+4..19
8121 FORT=lT05000:NEXT
90 POKES+4., 18

1121121FORT=lT011Z11Z11Z1:NEXT:POKE8+24..0

Here is a line-by-line explanation of Example Program 9:

LlNE-BY-LiNE EXPLANATION OF EXAMPLE PROGRAM 9:

The synchronization feature is enabled (turned on) in line 70, where
bits 0,1, and 4 of register 4 are set. Bit 1 enables the syncing function
between voice 1 and voice 3. Bits 0 and 4 have their usual functions of

gating voice 1 and setting the triangular waveform.

PROGRAMMING SOUND AND MUSIC 207

Line(s) Description

10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set high frequency voice 1.
40 Set Attack/Decay for voice 1 (A= 13, D= 11).
50 Set high frequency voice 3.
60 Set volume 15.
70 Set start triangle, sync waveform control for voice 1.
80 Timing loop.
90 Set stop triangle, sync waveform control for voice 1.
100 Wait, then turn off volume.

Ring modulation (accomplished for voice 1 by setting bit 3 of register
4 in line 70 of the program below) replaces the triangular output of
oscillator 1 with a "ring modulated" combination of oscillators 1 and 3.
This produces non-harmonic overtone structures for use in mimicking bell
or gong sounds. This program produces a clock chime imitation:

EXAMPLE PROGRAM 10:

1121 8=54272
20 FORL=0T024:POKES+L,0:NEXT
30 POKES+l,130
40 POKES+5,9
50.POKES+15,30
60 POKES"+24,15
70 FORL=lT012:POKES+4,21
80 FORT=lT01000:NEXT:POKES+4,20
90 FORT=lT01000:NEXT:NEXT

Here is a line-by-line explanation of Example Program 10:

LlNE-BY-LiNE EXPLANATION OF EXAMPLE PROGRAM 10:

The effects available through the use of the parameters of your
Commodore 64's SID chip are numerous and varied. Only through ex-
perimentation on your own will you fully appreciate the capabilities of
your machine. The examples in this section of the Programmer's Refer-
ence Guide merely scratch the surface.

Watch for the book MAKING MUSIC ON YOUR COMMODORECOM-
PUTERfor everything from simple fun and games to professional-type
musical instruction.

208 PROGRAMMING SOUND AND MUSIC

Line(s) Description

10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set high frequency for voice 1.
40 Set Attack/Decay for voice 1 (A=O, D=9).
50 Set high frequency for voice 3.
60 Set volume 15.
70 Count number of dings, set start triangle, ring mod

waveform control voice 1.
80 Timing loop, set stop triangle, ring mod.
90 Timing loop, next ding.

