

INTRODUCTION

This chapter talks about how BASIC stores and manipulates data. The
topics include:

1) A brief mention of the operating system components and functions
as well as the character set used in the Commodore 64.

2) The formation of constants and variables. What types of variables

there are. And how constants and variables are stored in memory.

3) The rules for arithmetic calculations, relationship tests, string han-
dling, and logical operations. Also included are the rules for form-

ing expressions, and the data conversions necessary when you're
using BASIC with mixed data types.

SCREEN DISPLAY CODES
(BASIC CHARACTER SET)

THE OPERATING SYSTEM (OS)

The Operating System is contained in the Read Only Memory (ROM)
chips and is a combination of three separate, but interrelated, program
modules.

1) The BASIC Interpreter
2) The KERNAL

3) The Screen Editor

1) The BASIC Interpreter is responsible for analyzing BASIC state-
ment syntax and for performing the required calculations and/or

data manipulation. The BASIC Interpreter has a vocabulary of 65

"keywords" which have special meanings. The upper and lower
case alphabet and the digits 0-9 are used to make both keywords

and variable names. Certain punctuation characters and special
symbols also have meanings for the Interpreter. Table 1-1 lists tl1e

special characters and their uses.

2) The KERNALhandles most of the interrupt level processing in the
system (for details on interrupt level processing, see Chapter 5).

The KERNAL also does the actual input and output of data.
3) The Screen Editor controls the output to the video screen (television

set) and the editing of BASIC program text. In addition, the Screen
Editor intercepts keyboard input so that it can decide whether the

2 BASIC PROGRAMMING RULES

CHARACTER

Table 1-1. CBM BASICCharacter Set

NAMEand DESCRIPTION

;

BLANK-separates keywords and variable names
SEMI-COLON-used in variable lists to format output
EQUAL SIGN-value assignment and relationship

testing
PLUSSIGN-arithmetic addition or string concatenation

(concatenation: linking together in a chain)
MINUS SIGN-arithmetic subtraction, unar{. minus (-1)
ASTERISK-arithmetic multiplication
SLASH-arithmetic division

UP ARROW-arithmetic exponentiation
LEFTPARENTHESIS-expression evaluatiorl and

functions

RIGHT PARENTHESIS-expression evaluatibn and
functions

PERCENT-declares variable name as ani integer
NUMBER-comes before logical file num~er in input/

output statements
DOLLARSIGN-declares variable name s a string
COMMA-used in variable lists to forma output;

also separates command para eters
PERIOD-decimal point in floating point onstants
QUOTATION MARK-encloses string cons ants
COLON-separates multiple BASICstatem nts in a line
QUESTIONMARK-abbreviation for the ke ord PRINT
LESSTHAN-used in relationship tests
GREATERTHAN-used in relationship test
PI-the numeric constant 3.141592654

=

+

-
*

/
t
(

)

%
#

$

If

?
<
>
7T

characters put in should be acted upon immediatelyl or passed on
to the BASIC Interpreter.

The Operating System gives you two modes of BASIC loperation:

1) DIRECTMode
2) PROGRAM Mode

1) When you're using the DIRECTmode, BASIC statem~nts don't have
line numbers in front of the statement. They are executed
whenever the .:~IIIIII:~/. key is pressed.

2) The PROGRAM mode is the one you use for running programs.

BASIC PROGRAMMING RULES 3

When using the PROGRAM mode, all of your BASIC statements
must have line numbers in front of them. You can have more than

one BASIC statement in a line of your program, but the number of
statements is limited by the fact that you can only put 80 char-

acters on a logical screen line. This means that if you are going to
go over the 80 character limit you have to put the entire BASIC
statement that doesn't fit on a new line with a new line number.

NOTE: Always type NEW and hit DI!IiIII before starting a new program.

The Commodore 64 has two complete character sets that you can use
either from the keyboard or in your programs.

In SET 1, the upper case alphabet and the numbers 0-9 are available

without pressing the IDIIiI key. If you hold down the IDIIiI key
while typing, the graphics characters on the RIGHT side of the front of
the keys are used. If you hold down the [i key while typing, the
graphics characters on the LEFTside of the front of the key are used.
Holding down the IDIIiI key while typing any character that doesn't
have graphic symbols on the front of the key gives you the symbol on the
top most part of the key.

In SET2, the lower case alphabet and the numbers 0-9 are available

without pressing the IDIIiI key. The upper case alphabet is available
when you hold down the IDIIiI key while typing. Again, the graphic
symbols on the LEFTside of the front of the keys are displayed by press-
ing the [i key, while the symbols on the top most part of any key
without graphics characters are selected when you hold down
the IDIIiI key while typing.

To switch from one character set to the other press the [i and
the IDIIiI keys together.

PROGRAMMING NUMBERS AND VARIABLES

INTEGER, FLOATING.POINT AND STRING CONSTANTS

Constants are the data values that you put in your BASIC statements.
BASIC uses these values to represent data during statement execution.

CBM BASIC can recognize and manipulate three types of constants:

1) INTEGER NUMBERS

2) FLOATING-POINT NUMBERS

3) STRINGS

4 BASIC PROGRAMMING RULES

Integer constants are whole numbers (numbers without decimal

points). Integer constants must be between -32768 and +32767. In-
teger constants do not have decimal points or commas between digits.
If the plus (+) sign is left out, the constant is assumed to be a positive

number. Zeros coming before a constant are ignored and shouldn't be

used since they waste memory and slow down your program. However,

they won't cause an error. Integers are stored in memory as two-byte
binary numbers. Some examples of integer constants are:

-12

8765

-32768

+44

o
-32767

NOTE: Do NOT put commas inside any number. For example, always type 32,000 as

32000. If you put a comma in the middle of a number you will get the BASIC error
message ?SYNTAX ERROR.

Floating-point constants are positive or negative numbers and can
contain fractions. Fractional ports of a number may be shown using a
decimal point. Once again remember that commas are NOT used be-
tween numbers. If the plus sign (+) is left off the front of a number, the

Commodore 64 assumes that the number is positive. If you leave off the

decimal point the computer will assume that it follows the last digit of
the number. And as with integers, zeros that come before a constant

are ignored. Floating-point constants can be used in two ways:

1) SIMPLE NUMBER

2) SCIENTIFIC NOTATION

Floating-point constants will show you up to nine digits on your screen.

These digits can represent values between -999999999. and
+999999999. If you enter more than nine digits the number will be
rounded based on the tenth digit. If the tenth digit is greater than or

equal to 5 the number will be rounded upward. Less than 5 the number
will be rounded downward. This could be important to the final totals of

some numbers you may want to work with.
Floating-point numbers are stored (using five bytes of memory) and

are manipulated in calculations with ten places of accuracy. However,

BASIC PROGRAMMING RULES 5

the numbers are rounded to nine digits when results are printed. Some
examples of simple floating-point numbers are:

1.23

-.998877

+3.1459
.7777777

-333.
.01

Numbers smaller than .01 or larger than 999999999. willbe printed in
scientific notation. In scientific notation a floating-point constant is made
up of three parts:

1) THE MANTISSA

2) THE LETTERE

3) THE EXPONENT

The mantissa is a simple floating-point number. The letter E is used to
tell you that you're seeing the number in exponential form. In other
words E represents *10 (eg., 3E3=3*10j3=3000).And the exponent is
what multiplication power of 10 the number is raised to.

Both the mantissa and the exponent are signed (+ or -) numbers.
The exponent's range is from -39 to +38 and it indicates the number of
places that the actual decimal point in the mantissa would be moved to
the left (-) or right (+) if the value of the constant were represented as
a simple number.

There is a limit to the size of floating-point numbers that BASIC can
handle, even in scientific notation: the largest number is
+1.70141183E+38 and calculations which would result in a larger
number will display the BASIC error message ?OVERFLOWERROR. The
smallest floating-point number is +2.93873588E-39 and calculations
which result in a smaller value give you zero as an answer and NO error
message. Some examples of floating-point numbers in scientific notation
(and their decimal values) are:

235.988E-3
2359E6
-7.09E-12

-3.14159E+5

(.235988)

(2359000000.)

(-.00000000000709)

(-314159.)

String constants are groups of alphanumeric information like letters,

numbers and symbols. When you enter a string from the keyboard, it
can have any length up to the space available in an 80-character line

6 BASIC PROGRAMMING RULES

(that is, any character spaces NOT taken up by the line number and
other required parts of the statement).

A string constant can contain blanks, letters, numbers, punctuation
and color or cursor control characters in any combination. You can even
put commas between numbers. The only character which cannot be in-
cluded in a string is the double quote mark ("). This is because the
double quote mark is used to define the beginning and end of the string.
A string can also have a null value-which means that it can contain no

character data. You can leave the ending quote mark off of a string if
it's the last item on a line or if it's followed by a colon (:). Some exam-
ples of string constants are:

(a null string)
"HELLO"

"$25,000.00"
"NUMBER OF EMPLOYEES"

NOTE: Use CHR$(34) to include quotes (") in strings.

INTEGER, FLOATlNG.POINT AND STRING VARIABLES

Variables are names that represent data values used in your BASIC
statements. The value represented by a variable can be assigned by
setting it equal to a constant, or it can be the result of calculations in the
program. Variable data, like constants, can be integers, floating-point
numbers, or strings. If you refer to a variable name in a program before
a value has been assigned, the BASIC Interpreter will automatically
create the variable with a value of zero if it's an integer or floating-point
number. Or it will create a variable with a null value if you're using
strings.

Variable names can be any length but only the first two characters
are considered significant in CBM BASIC. This means that all names
used for variables must NOT have the same first two characters. Vari-

able names may NOT be the same as BASIC keywords and they may
NOT contain keywords ;n the middle of variable names. Keywords in-
clude all BASIC commands, statements, function names and logical
operator names. If you accidentally use a keyword in the middle of a

variable name, the BASIC error message ?SYNTAXERRORwill show up
on your screen.

The characters used to form variable names are the alphabet and the
numbers 0-9. The first character of the name must be a letter. Data

BASIC PROGRAMMING RULES 7

type declaration characters (%) and ($) can be used as the last char-
acter of the name. The percent sign (%) declares the variable to be an

integer and the dollar sign ($) declares a string variable. If no type
declaration character is used the Interpreter will assume that the vari-
able is a floating-point. Some examples of variable names, value as-
signments and data types are:

A$="GROSS SALES"
MTH$="JAN"+A$
K%=5
CNT% =CNT% + 1
FP=12.5
SUM=FP*CNT%

(string variable)
(string variable)
(integer variable)
(integer variable)
(floating-point variable)
(floating-point variable)

INTEGER, FLOATING-POINT AND STRING ARRAYS

An array is a table (or list) of associated data items referred to by a
single variable name. In other words, an array is a sequence of related
variables. A table of numbers can be seen as an array, for example.
The individual numbers within the table become "elements" of the
array.

Arrays are a useful shorthand way of describing a large number of
related variables. Take a table of numbers for instance. Let's say that
the table has 10 rows of numbers with 20 numbers in each row. That

makes a total of 200 numbers in the table. Without a single array name
to call on you would have to assign a unique name to each value in the
table. But because you can use arrays you only need one name for the
array and all the elements in the array are identified by their individual
locations within the array.

Array names can be integers, floating-points or string data types and
all elements in the array have the same data type as the array name.
Arrays can have a single dimension (as in a simple list) or they can have
multiple dimensions (imagine a grid marked in rows and columns or a
Rubik's Cube@). Each element of an array is uniquely identified and re-
ferred to by a subscript (or index variable) following the array name,
enclosed within parentheses ().

The maximum number of dimensions an array can have in theory is
255 and the number of elements in each dimension is limited to 32767.

But for practical purposes array sizes are limited by the memory space
available to hold their data and/or the 80 character logical screen line.
If an array has only one dimension and its subscript value will never

8 BASIC PROGRAMMING RULES

exceed 10 (11 items: 0 thru 10) then the array will be created by the
Interpreter and filled with zeros (or nulls if string type) the first time any
element of the array is referred to, otherwise the BASIC DIM statement
must be used to define the shape and size of the array. The amount of
memory required to store an array can be determined as follows:

OR
OR

AND

5
+ 2
+ 2
+ 5
+ 3
+ 1

bytes for the array name
bytes for each dimension of the array
bytes per element for integers
bytes per element for floating-point
bytes per element for strings
byte per character in each string element

Subscripts can be integer constants, variables, or an arithmetic ex-
pression which gives an integer result. Separate subscripts, with com-
mas between thAm, are required for each dimension of an array. Sub-
scripts can have values from zero up to the number of elements in the
respective dimensions of the array. Values outside that range will cause
the BASIC error message ?BAD SUBSCRIPT.Some examples of array
names, value assignments and data types are:

A$(O)="GROSS SALES"
MTH$(K%)="JAN"
G2%(X)=5
CNT%(G2%(X»=CNT%(1)-2
FP(12*K%)=24.8
SUM(CNT%(1 »=FPfK%

(string array)

(string array)

(integer array)

(integer array)

(floating-point array)

(floating-point array)

A(5)=0 (sets the 5th element in the 1 dimensional

array called "A" equal to 0)

B(5,6)=0 (sets the element in row position 5 and

column position 6 in the 2 dimensional array
called "B" equal to 0)

C(1,2,3)=0 (sets the element in row position 1, column

position 2, and depth position 3 in the

3 dimensional array called "c" equal to 0)

EXPRESSIONS AND OPERATORS

Expressions are formed using constants, variables and/or arrays. An

expression can be a single constant, simple variable, or an array vari-

BASIC PROGRAMMING RULES 9

able of any type. It can also be a combination of constants and vari-
ables with arithmetic, relational or logical operators designed to
produce a single value. How operators work is explained below. Ex-
pressions can be separated into two classes:

1) ARITHMETIC

2) STRING

Expressions are normally thought of as having two or more data items
called operands. Each operand is separated by a single operator to
produce the desired result. This is usually done by assigning the value of
the expression to a variable name. All of the examples of constants and
variables that you've seen so far, were also examples of expressions.

An operator is a special symbol the BASIC Interpreter in your Com-
modore 64 recognizes as representing on operation to be performed on
the variables or constant data. One or more operators, combined with
one or more variables andlor constants form an expression. Arithmetic,
relational and logical operators are recognized by Commodore 64
BASIC.

ARITHMETIC EXPRESSIONS

Arithmetic expressions, when solved, will give an integer or floating-
point value. The arithmetic operators (+, -, *, I, t) are used to perform
addition, subtraction, multiplication, division and exponentiation opera-
tions respectively.

ARITHMETIC OPERATIONS

An arithmetic operator defines an arithmetic operation which is per-
formed on the two operands on either side of the operator. Arithmetic
operations are performed using floating-point numbers. Integers are
converted to floating-point numbers before an arithmetic operation is
performed. The result is converted back to an integer if it is assigned to
on integer variable name.

ADDITION (+): The plus sign (+) specifies that the operand on the
right is added to the operand on the left.

10 BASIC PROGRAMMING RULES

EXAMPLES:
2+2
A+B+C
X%+1
BR+l0E-2

SUBTRACTION(-): The minus sign (-) specifies that the operand on
the right is subtracted from the operand on the left.

EXAMPLES:

4-1
100-64
A-B
55-142

The minus can also be used as a unary minus. That means that it is
the minus sign in front of a negative number. This is equal to subtracting

,-~ the number from zero (0).

EXAMPLES:

-5
-~4
-B
4- (-~romeas4+2

MUIJIPLICATION(*): An asterisk (*) specifies that the operand on the
left is multiplied by the operand on the right.

EXAMPLES:

100*2

50*0

A*Xl

R%*14

DIVISION (/): The slash (/) specifies that the operand on the left is
divided by the operand on the right.

EXAMPLES:

10/2
6400/4
AlB
4E2/XR

BASIC PROGRAMMING RULES 11

EXPONENTIATION(t): The up arrow (t) specifies that the operand on
the left is raised to the power specified by the operand on the right (the

e,xponent). If the operand on the right is a 2, the number on the left is
squared; if the exponent is a 3, the number on the left is cubed, etc. The
exponent can be any number so long as the result of the operation gives
a valid floating-point number.

EXAMPLES:

2t2
3j3
4t4
ABtCD
3t-2

Equivalent to: 2*2
Equivalent to: 3*3*3
Equivalent to: 4*4*4*4

Equivalent to: V3*V3

RELATIONAL OPERATORS

The relational operators «, =, >, <=, >=, <» are primarily used

to compare the values of two operands, but they also produce an arith-
metic result. The relational operators and the logical operators (AND,
OR, and NOT), when used in comparisons, actually produce an arith-
metic true/false evaluation of an expression. If the relationship stated in
the expression is true the result is assigned an integer value of -1 and if
it's false a value of 0 is assigned. These are the relational operators:

< LESSTHAN
EQUALTO

> GREATERTHAN
< = LESSTHAN OR EQUALTO
> = GREATER THAN OR EQUAL TO

<> NOT EQUAL TO

EXAMPLES:

1=5-4
14>66
15> = 15

result true (-1)
result false (0)
result true (-1)

Relational operators can be used to compare strings. For comparison
purposes, the letters of the alphabet have the order A<B<C<D, etc.
Strings are compared by evaluating the relationship between corre-
sponding characters from left to right (see String Operations).

12 BASIC PROGRAMMING RULES

EXAMPLES:

"A" < "BII

"X" = IIYYII

result true (- 1)
result false (0)

BB$ <> CC$

Numeric data items can only be compared (or assigned) to other
numeric items. The same is true when comparing strings, otherwise the
BASIC error message ?TYPEMISMATCHwill occur. Numeric operands
are compared by first converting the values of either or both operands
from integer to floating-point form, as necessary. Then the relationship
of the floating-point values is evaluated to give a true/false result.

At the end of all comparisons, you get an integer no matter what
data type the operand is (even if both are strings). Because of this, a
comparison of two operands can be used as an operand in performing
calculations. The result will be -lor 0 and can be used as anything but
a divisor, since division by zero is illegal.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT) can be used to modify the
meanings of the relational operators or to produce an arithmetic result.
Logical operators can produce results other than -1 and 0, though any
nonzero result is considered true when testing for a true/false condition.

The logical operators (sometimes called Boolean operators) can also
be used to perform logic operations on individual binary digits (bits) in
two operands. But when you're using the NOT operator, the operation is
performed only on the single operand to the right. The operands must
be in the integer range of values (-32768 to +32767) (floating-point

numbers are converted to integers) and ~ogical operations give an in-
teger result.

Logical operations are performed bit-by-corresponding-bit on the two
operands. The logical AND produces a bit result of 1 only if both
operand bits are 1. The logical OR produces a bit result of 1 if either
operand bit is 1. The logical NOT is the opposite value of each bit as a
single operand. In other words, it's really saying, "If it's NOT 1 then it is
O. If it's NOT 0 then it is. 1."

The exclusive OR (XOR) doesn't have a logical operator but it is per-

formed as part of the WAITstatement. Exclusive OR means that if the bits of
two operands are equal then the result is 0 otherwise the result is 1.

Logical operations are defined by groups of statements which, taken
together, constitute a Boolean "truth table" as shown in Table 1-2.

BASIC PROGRAMMING RULES 13

Table 1-2. Boolean Truth Table

The AND operation results in a 1 only if both bits are 1:

1 AND 1 = 1
o AND 1 = 0

1 AND 0 = 0
o AND 0 = 0

The OR operation results in a 1 if either bit is 1:

lOR 1 = 1
o OR 1 = 1

lOR 0 = 1
o OR 0 = 0

The NOT operation logically complements each bit:

NOT 1 = 0
NOT 0 = 1

The exclusive OR (XOR) is part of the WAIT statement:

1 XOR 1 = 0
1 XOR 0 = 1
o XOR 1 = 1

o XOR 0 = 0

The logical operators AND, OR and NOT specify a Boolean arithmetic
operation to be performed on the two operand expressions on either
side of the operator. In the case of NOT, ONLY the operand on the
RIGHT is considered. logical operations (or Boolean arithmetic) aren't
performed until all arithmetic and relational operations in an expression
have been completed.

EXAMPLES:

IF A=100 AND B=100 THEN 10 (if both A and B have a value
of 100 then the result is

true)

A=96 AND 32: PRINT A (A = 32)

14 BASIC PROGRAMMING RULES

IF A=100 OR B=100 THEN20 (if A or B is 100 then the
result is true)

A=64 OR 32: PRINT A (A = 96)

IF NOT X<Y THEN 30 (if x> =Y the result is true)

X= NOT96 (result is -97 (two's complement»

HIERARCHY OF OPERATIONS

All expressions perform the different types of operations according to
a fixed hierarchy. In other words, certain operations are performed be-
fore other operations. The normal order of operations can be modified
by enclosing two or more operands within parentheses (), creating a
"subexpression." The parts of an expression enclosed in parentheses will
be reduced to a single value before working on parts outside the par-
entheses.

When you use parentheses in expressions, they must be paired so that
you always have an equal number of left and right parentheses.
Otherwise, the BASIC error message ?SYNTAX ERRORwill appear.

Expressions which have operands inside parentheses may themselves
be enclosed in parentheses, forming complex expressions of multiple
levels. This is called nesting. Parentheses can be nested in expressions
to a maximum depth of ten levels-ten matching sets of parentheses.
The inner-most expression has its operations performed first. Some
examples of expressions are:

A+B

cj(D+E)/2
«X -cj(D+E)/2)* 10)+ 1
GG$>HH$
JJ$+"MORE"
K%=l AND M<>X
K%=2 OR (A=B AND M<X)
NOT (D=E)

The BASIC Interpreter will normally perform operations on expressions
by performing arithmetic operations first, then relational operations, and
logical operations last. Both arithmetic and logical operators have an

BASICPROGRAMMINGRULES 15

order of precedence (or hierarchy of operations) within themselves. On
the other hand, relational operators do not have an order of precedence
and will be performed as the expression is evaluated from left to right.

If all remaining operators in an expression have the same level of
precedence then operations happen from left to right. When performing
operations on expressions within parentheses, the normal order of pre-
cedence is maintained. The hierarchy of arithmetic and logical opera-
tions is shown in Table 1-3 from first to last in order of precedence.

Table 1-3. Hierarchy of Operations Performed on Expressions

STRING OPERATIONS

Strings are compared using the same relational operators (=, <>,
<=, >=, <, » that are used for comparing numbers. String compari-
sons are made by taking one character at a time (Ieft-to-right) from
each string and evaluating each character code position from the PETI
CBM character set. If the character codes are the same, the characters
are equal. If the character codes differ, the character with the lower
code number is lower in the character set. The comparison stops when

16 BASIC PROGRAMMING RULES

OPERATOR DESCRIPTION EXAMPLE

t Exponentiation BASE t EXP

- Negation (Unary Minus) -A

* I Multiplication AB * CD
Division EF I GH

+- Addition CNT + 2
Subtraction JK - PO

>=< Relational Operations A <= B

NOT Logical NOT NOT K%

(Integer Two's Complement)

AND Logical AND JK AND 128

OR Logical OR PO OR 15

the end of either string is reached. All other things being equal, the
shorter string is considered less than the longer string. Leading or trail-

ing blanks ARE significant.

Regardless of the data types, at the end of all comparisons you get

an integer result. This is true even if both operands are strings. Because

of this a comparison of two string operands can be used as an operand

in performing calculations. The result will be -lor 0 (true or false) and
can be used as anything but a divisor since division by zero is illegal.

STRING EXPRESSIONS

Expressions are treated as if an implied "<>0" follows them. This
means that if an expression is true then the next BASIC statements on.

the same program line are executed. If the expression is false the rest of
the line is ignored and the next line in the program is executed.

Just as with numbers, you can also perform operations on string vari-

ables. The only string arithmetic operator recognized by CBM BASIC is
the plus sign (+) which is used to perform concatenation of strings.
When strings are concatenated, the string on the right of the plus sign is

appended to the string on the left, forming a third string as a result. The
result can be printed immediately, used in a comparison, or assigned to
a variable name. If a string data item is compared with (or set equal to)
a numeric item, or vice-versa, the BASIC error message ?TYPE MIS-
MATCH will occur. Some examples of string expressions and concatena-

tion are:

10 A$="FILE" : B$="NAME"
20 NAM$ = A$ + B$
30 RES$= "NEW " + A$

1

(gives the string: FILENAME)

+ B$ (gives the string: NEW FILENAME)

Note space here. I

BASIC PROGRAMMING RULES 17

PROGRAMMING TECHNIQUES

DATA CONVERSIONS

When necessary, the CBM BASIC Interpreter will convert a numeric
data item from an integer to floating-point, or vice-versa, according to
the following rules:

. All arithmetic and relational operations are performed in floating-
point format. Integers are converted to floating-point form for
evaluation of the expression, and the result is converted back to
integer. logical operations convert their operands to integers and
return an integer result.

. If a numeric variable name of one type is set equal to a numeric
data item of a different type, the number will be converted and
stored as the data type declared in the variable name.

. When a floating-point value is converted to an integer, the frac-
tional portion is truncated (eliminated) and the integer result is less
than or equal to the floating-point value. If the result is outside the
range of +32767 thru -32768, the BASICerror message ?ILLEGAL
QUANTITY will occur.

USING THE INPUT STATEMENT

Now that you know what variables are, let's take that information and
put it together with the INPUT statement for some practical program-
ming applications.

In our first example, you can think of a variable as a "storage com-
partment" where the Commodore 64 stores the user's response to your
prompt question. To write a program which asks the user to type in a
name, you might assign the variable N$ to the name typed in. Now
every time you PRINT N$ in your program, the Commodore 64 will
automatically PRINT the name that the user typed in.

Type the word NEW on your Commodore 64. Hit the .:~;aIlI:~I. key,

and try this example:

10 PRINT ''YOUR NAME":INPUT N$
20 PRINT "HEllO," N$

18 8ASIC PROGRAMMINGRULES

In this example you used N to remind yourself that this variable stands
for "NAME." The dollar sign ($) is used to tell the computer that you're
using a string variable. It is important to differentiate between the two
types of variables:

1) NUMERIC

2) STRING

You probably remember from the earlier sections that numeric vari-
ables are used to store number values such as 1, 100, 4000, etc. A

numeric variable can be a single letter (A), any two letters (AB), a letter
and a number (A1), or two letters and a number (AB1). You can save
memory space by using shorter variables. Another helpful hint is to use
letters and numbers for different categories in the same program (A1,
A2, A3). Also, if you want whole numbers for an answer instead of
numbers with decimal points, all you have to do is put a percent sign
(%) at the end of your variable name (AB%, Al%, etc.)

Now let's look at a few examples that use different types of variables
and expressions with the INPUT statement.

10 PRINT "ENTER A NUMBER":INPUT A

20 PRINT A

10 PRINT "ENTER A WORD":INPUT A$
20 PRINT A$

10 PRINT "ENTER A NUMBER":INPUT A

20 PRINT A "TIMES 5 EQUALS" A*5

NOTE: Example 3 shows that MESSAGES or PROMPTS are inside the quotation
marks (" ") while the variables are outside. Notice, too, that in line 20 the variable A

was printed forst, then the message "TIMES 5 EQUALS", and then the calculation,
multiply variable A by 5 (A*5).

Calculations are important in most programs. You have a choice of
using "actual numbers" or variables when doing calculations, but if
you're working with numbers supplied by a user you must use numeric
variables. Begin by asking the user to type in two numbers like this:

10 PRINT "TYPE 2 NUMBERS":INPUT A:INPUT B

BASIC PROGRAMMING RULES 19

INCOME/EXPENSEBUDGETEXAMPLE

5 F'RUn ":1!:.-~~
1121PRINT"MONTHLY INCOME":INPUT IN
2121PRINT
30 PRnn"n:PEt-jSE CATEGORY 1": WPUT El$
4121 PRun" E:><;PENSEAMOUNT": INPUT E 1
50 PRINT
6121PRINT"EXPENSE CATEGOR'T' 2": UjPUT E2$
70 PRun"EXPENSE AMOUNT": INPUT E2
80 PRINT
9121PRun"E:";PEt~SE CATEGORY 3": mpUT E3$
100 PRINT"EXPENSE At10UrH": INPUT E3
lie PRINT ":1~rBIImm
12121 E=E 1+E2+E:3
13121 EP=E/ I t~
140 PRINT"MONTHLY INCOME:
15121PR un" TOTAL EXPErjSES:
16121 PRINT"BALANCE EQUALS:
17121F'RItH
18121PRIt~T El$"=" (E1/E>:t.100";,: OF TOTAL EXPENSES"
190 PRItH E2$"=" (E2/E>,U00";-; OF TOTAL EXPEr~SES"
2121121PRINTE3$"=" (E3/E>:4I.10121";-; OF TOTAL EXPENSES"
21121 PRUH
22121 PR nn" 'T'OUR E:":PErjSES=" EP*, 11210";-; OF YOUR TOTAL
INCOME"
23121 FOR X=lT0501210:NEXT:PRINT
240 PRUn"F.:EPEAT? ('T' OR rD": INPUT 'T'$: IF Y$="Y"THEN5
25121 PRINT ":1":END

'ImIrBIImm

$"IN
$"E
$"Uj-E

NOTE: IN can NOT = 0, and El, E2, E3 can NOT all be 0 at the some time.

20 BASIC PROGRAMMING RULES

LlNE-BY-LiNEEXPLANAnON OF
INCOME/EXPENSEBUDGETEXAMPLE

Now multiply those two numbers together to create a new variable C as
shown in line 20 below:

20 C=A*B

To PRINT the result as a message type

30 PRINT A ''TIMES'' B "EQUALS" C

Enter these 3 lines and RUN the program. Notice that the messages are
inside the quotes while the variables are not.

BASIC PROGRAMMING RULES 21

line(s} Description

5 Clears the screen.
10 PRINT/INPUT statement.
20 Inserts blank line.
30 Expense Category 1 = E1$.
40 Expense Amount = E1.
50 Inserts blank line.
60 Expense Category 2 = E2$.
70 Expense Amount 2 = E2.
80 Inserts blank line.
90 Expense Category 3 = E3$.

100 Expense Amount 3 = E3.
110 Clears the screen.
120 Add Expense Amounts = E.
130 Calculate Expense/lncome%.
140 Display Income.
150 Display Total Expenses.
160 Display Income - Expenses.
170 Inserts blank line.
180-200 Lines 180-200 calculate % each expense

amount is of total expenses.
210 Inserts blank line.
220 Display Ell %.
230 Time delay loop.

Now let's say that you wanted a dollar sign ($) in front of the number

represented by variable C. The $ must be PRINTed inside quotes and in
front of variable C. To add the $ to your program hit the .:411~'Ao"tI'I:.JI
and .:I:I."tIlI:I:8 keys. Now type in line 40 as follows:

40 PRINT "$" C

Now hit 8:1:1111:118,type RUN and hit 8:1:1111:118again.
The dollar sign goes in quotes because the variable C only represents

a number and can't contain a $. If the number represented by C was
100 then the Commodore 64 screen would display $ 100. But, if you
tried to PRINT $C without using the quotes, you would get a ?SYNTAX
ERRORmessage.

One last tip about $$$: You can create a variable that represents a
dollar sign which you can then substitute for the $ when you want to use
it with numeric variables. For example:

10 Z$="$"

Now whenever you need a dollar sign you can use the string variable
Z$. Try this:

10 Z$="$":INPUT A
20 PRINT Z$A

Line 10 defines the $ as a string variable called Z$, and then INPUTs a
number called A. Line 20 PRINTs Z$ ($) next to A (number).

You'll probably find that it's easier to assign certain characters, like
dollar signs, to a string variable than to type "$" every time you want to
calculate dollars or other items which require" " like %.

USING THE GET STATEMENT

Most simple programs use the INPUT statement to get data from the
person operating the computer. When you're dealing v/ith more complex
needs, like protection from typing errors, the GET statement gives you
more flexibility and your program more "intelligence." This section shows
you how to use the GET statement to add some special screen editing
features to your programs.

22 BASIC PROGRAMMING RULES

The Commodore 64 has a keyboard buffer that holds up to 10 char-
acters. This means that if the computer is busy doing some operation
and it's l10t reading the keyboard, you can still type in up to 10 char-
acters, which will be used as soon as the Commodore 64 finishes what it
was doing. To demonstrate this, type in this program on your Commo-
dore 64:

NEW
10 TI$="OOOOOO"
20 IF TI$ < "000015" THEN20

Now type RUN, hit .:j:llll:jl_ and while the program is RUNning type
in the word HELLO.

Notice that nothing happened for about 15 seconds when the pro-
gram started. Only then did the message HELLOappear on the screen.

Imagine standing in line for a movie. The first person in the line is the
first to get a ticket and leave the line. The last person in line is last for a
ticket. The GET statement acts like a ticket taker. First it looks to see if

there are any characters "in line." In other words have any keys been
typed. If the answer is yes then that character gets placed in the ap-
propriate variable. If no key was pressed then an empty value is as-
signed to a variable.

At this point it's important to note that if you try to put more than 10
characters into the buffer at one time, all those over the 10th character
will be lost.

Since the GET statement will keep going even when no character is

typed, it is often necessary to put the GETstatement into a loop so that it
will have to wait until someone hits a key or until a character is received

through tour program.Below is the recommended form for the GET statement. Type NEW to

erase your previous program.

10 GET A$: IF A$ = "" THEN 10

Notice that there is NO SPACEbetween the quote marks ("") on this line.
This indicates an empty value and sends the program back to the GET
statement in a continuous loop until someone hits a key on the computer.

Once a key is hit the program will continue with the line following line
10. Add this line to your program:

100 PRINT A$j: GOTO 10

BASIC PROGRAMMING RULES 23

Now RUN the program. Notice that no cursor. appears on the screen,

but any character you type will be printed in the screen. This 2-line

program can be turned into part of a screen editor program as shown
below.

There are many things you can do with a screen editor. You can have

a flashing cursor. You can keep certain keys like (1I.:..t:I'I~II:a from

accidentally erasing the whole screen. You might even want to be able
to use your function keys to represent whole words or phrases. And

speaking of function keys, the following program lines give each func-

tion key a special purpose. Remember this is only the beginning of a
program that you can customize for your needs.

20 IF A$ =
30 IF A$ =
40 IF A$
50 IF A$ =

CHR$(133) THEN POKE 53280,8:GOTO 10

CHR$(134) THEN POKE 53281,4:GOTO 10
CHR$(135) THEN A$="DEAR SIR:"+CHR$(13)

CHR$(136) THEN A$="SINCERELY,"+CHR$(13)

The CHR$ numbers in parentheses come from the CHR$ code chart in

Appendix C. The chart lists a different number for each character. The

four function keys are set up to perform the tasks represented by the
instructions that follow the word THEN in each line. By changing the
CHR$ number inside each set of parentheses you can designate differ-

ent keys. Different instructions would be performed if you changed the
information after the THEN statement.

HOW TO CRUNCH BASIC PROGRAMS

You can pack more instructions-and power-into your BASIC pro-

grams by making each program as short as possible. This process of
shortening programs is called "crunching."

Crunching programs lets you squeeze the maximum possible number

of instructions into your program. It also helps you reduce the size of
programs which might not otherwise run in a given size; and if you're
writing a program which requires the input of data such as inventory
items, numbers or text, a short program will leave more memory space
free to hold data.

ABBREVIATING KEYWORDS

A list of keyword abbreviations is given in Appendix A. This is helpful
when you program because you can actually crowd more information on
each line using abbreviations. The most frequently used abbreviation is

24 BASIC PROGRAMMING RULES

the question mark (?) which is the BASIC abbreviation for the PRINT
command. However, if you LISTa program that has abbreviations, the
Commodore 64 will automatically print out the listing with the full-length
keywords. If any program line exceeds ao characters (2 lines on the
screen) with the keywords unabbreviated, and you want to change it,
you will have to re-enter that line with the abbreviations before saving
the program. SAVEing a program incorporates the keywords without
inflating any lines because BASIC keywords are tokenized by the Com-
modore 64. Usually, abbreviations are added after a program is written
and it isn't going to be LISTed any more before SAVEing.

SHORTENING PROGRAM LINE NUMBERS

Most programmers start their programs at line 100 and number each
line at intervals of 10 (i.e., 100, 110, 120). This allows extra lines of
instruction to be added (111, 112, etc.) as the program is developed.
One means of crunching the program after it is completed is to change
the line numbers to the lowest numbers possible (i.e., 1, 2, 3) because
longer line numbers take more memory than shorter numbers when ref-
erenced by GOTO and GOSUB statements. For instance, the number 100
uses 3 bytes of memory (one for each number) while the number 1 uses
only 1 byte.

PUTTING MULTIPLE INSTRUCTIONS ON EACH LINE

You can put more than one instruction on each numbered line in your
program by separating them by a colon. The only limitation is that all
the instructions on each line, including colons, should not exceed the
standard aO-character line length. Here is an example of two programs,
before and after crunching:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 PRINT "HELLO. . .";
20 FOR T=l TO 500:NEXT
30 PRINT "HELLO, AGAIN
40 GOTO 10

"

10 PRINT "HELLO . . .";:FORT=lTO
500:N EXT:PRINT"HELLO,
AGAIN. . .":GOT010

REMOVING REM STATEMENTS

REM statements are helpful in reminding yourself-or showing other
programmers-what a particular section of a program is doing. How-
ever, when the program is completed and ready to use, you probably

BASIC PROGRAMMING RULES 25

won't need those REMstatements anymore and you can save quite a bit
of space by removing the REM statements. If you plan to revise or study
the program structure in the future, it's a good idea to keep a copy on
file with the REM statements intact.

USING VARIABLES

If a number, word or sentence is used repeatedly in your program it's
usually best to define those long words or numbers with a one or two
letter variable. Numbers can be defined as single letters. Words and
sentences can be defined as string variables using a letter and dollar
sign. Here's one example:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 POKE 54296,15
20 POKE 54276,33
30 POKE 54273,10
40 POKE 54273,40
50 POKE 54273,70
60 POKE 54296,0

10 V=54296:F=54273

20 POKEV,15:POKE54276,33
30 POKEF,10:POKEF,40:POKEF,70
40 POKEV,O

USING READ AND DATA STATEMENTS

large amounts of data can be typed in as one piece of data at a
time, over and over again. . . or you can print the instructional part of
the program ONCE and print all the data to be handled in a long run-
ning list called the DATAstatement. This is especially good for crowding
large lists of numbers into a program.

USING ARRAYS AND MATRICES

Arrays and matrices are similar to DATA statements in that long
amounts of data can be handled as a list, with the data handling por-
tion of the program drawing from that list, in sequence. Arrays differ in
that the list can be multi-dimensional

ELIMINATING SPACES

One of the easiest ways to reduce the size of your program is to
eliminate all the spaces. Although we often include spaces in sample
programs to provide clarity, you actually don't need any spaces in your
program and will save space if you eliminate them.

26 BASIC PROGRAMMING RULES

USING GOSUB ROUTINES

If you use a particular line or instruction over and over, it might be
wise to GOSUB to the line from several places in your program, rather
than write the whole line or instruction every time you use it.

USING TAB AND SPC

Instead of PRINTing several cursor commands to position a character
on the screen, it is often more economical to use the TAB and SPC in-

structions to position words or characters on the screen.

BASIC PROGRAMMING RULES 27

