
BASIC Programming on the
COMMODORE 64

By the time you read this, the Com-
modore 64 will be on your dealer's
shelf-if he or she can keep it there!
As you know by now, it is a spectac-
ular breakthrough in personal pro-
gramming, offering more computer
at less cost than anything Commo-
dore has ever produced. And, need-
less to say, it is even more of an
advance over the competition.

Programming the 64 should be a
snap for anyone with experience on
PET or VIC. For the most part, our
familiar BASIC 2.0 will work
exactly as programming for the
older machines and for the Commo-
dore 64. As we learn more, we'll
make sure that we feed the informa-
tion to you. The choice of BASIC
2.0 instead of 4.0 was made with
some soul-searching, not just at ran-
dom. The typical user of a 64 is not
expected to need the direct disk
commands as much as other exten-
sions, and the amount of memory to
be committed to BASIC was to be
limited. We chose to leave expansion
space for color and sound exten-
sions instead of the disk features. As
a result, you will have to handle the
disk in the more cumbersome man-
ner of the "old days." And, of
course, we will have to put up with
noticeable garbage collection, but
that doesn't appear to be quite as
much of a problem as it was in the
older machines.

Of all the PEEKS and POKEs for
the PET, the only one we need to be
concerned with on the Commodore
64 is 59468. Of course, VIC-style
code for literals and graphics is the
preferred route, but if you want to
be interoperable on the 64 and the
"Fat 40" then you may want to
POKE 53272,21 along with POKE
59468,12 and POKE 53272,23 along
with POKE 59468,14. Neither poke
hurts any machine, and the combi-

nation will do to any machine what
59468 did to the old ones.

Operating system changes may be
important to the BASIC program-
mer, although many will be trans-
parent to you. Two items that are
apparent are the fact that files no
longer routinely close on file errors
and the RESTORE key can have
anomalous results, especially when
sound and sprites are in use. The file
change will be helpful in de-
bugging-your error channel will
still be open after, for example, a
"file not open." We're trying to be
more specific about the RESTORE
phenomenon, and will let you know
when we do.

As many programmers have already
learned one can program for relative
files under BASIC 2.0, although it
requires use of the command chan-

nel. We find that opening a relative
file of record length n requires:

OPEN If,8,sa,"0:REL FILE
NAME,L," + CHR$(n)

instead of DOPEN#lf,"REL FILE
NAME",Ln. Locating a record and
byte under 2.0 requires separating
the record number into high and low
bytes (HI = int(#/256), LO = #-
256*HI). Then the command chan-
nel (#15) is used to:

PRINT#15,"P" + CHR$(SA + 96)
+ CHRS$(60) + CHR$(HI) + CHR-
$(BYTE) where SA is the secondary
address of the file you're using and
BYTE is the byte number you want
(optional for byte 1). For reasons I
don't understand, this set of com-
mands seems trickier than those of
4.0 in handling record pointers. I
recommend that you point to the

August/September 1982 65.

imatthews



PROGRAMMER'S TIPS

record you want explicitly before
and after every operation, just to be
sure.

That's a summary of everything
we've learned so far that we needed
to put substantial software onto the
64 in BASIC. While we still have a
lot to learn, it's encouraging that
most software has moved up to the
new machine with nothing more

than these few items of change;
most of it doesn't even need that
much. In most cases, a 4040 disk or
a cassette of your favorite PET pro-
gram will probably load and run
perfectly on the 64 the first time.
Then, add color, sound, sprites, and
whatever else you desire to move up
to a whole new world of operation. C=

-Michael Richter

imatthews


