Buyer's Guide To Music Software

COMPUTE $\$ 3.00$ May 1987 Issue 84 Vol. 9, No. 5 $\$ 4.25$ Canada 02193 ๔ 15SN 0:944-357x

The Leading Magazine Of Home, Educational, And Recreational Compułing

own cust

Synthesis

Transform your 64 sifto a powerful, multifeatured musical synthesizer
 Febily create ard eor sh-oen a क
 six vow operoh orster - ino BASIC
$0 m e 9 \cdot\left(8 r^{2}\right.$
 Hares texs to apol
Comnocore 123 ec

There are two things almost everyone has in common. An active imag. ination. And a tough time putting it on paper.

But now we present our Graphics Scrapbook ${ }^{m}$ series. A huge collection of pictures that enable you to easily bring your creative inspirations to The Print Shop,"'

PrintMaster ${ }^{\text {m" }}$ or Create a Calendar.

On each disk there are over 100 unique pictures. For example, in our School

 teachers and students will find everything from cheerleading to finals. In the Sports Scrapbook, dozens of sports, mascots
er a huindred eye-catching pictures on every disk.
 and trophies. In the Off the Wall Scrapbook, well, just expect the unexpected. And plenty more Scrapbooks are coming. So even if you can't draw a straight line, it's okay. As long as you make a straight one to the offer below.
Apple \& Compatibles
C64/128, IBM \& compatibles.

AIIOWUSTODRAN olp

We'll pay you to take the most exciting classes anywhere.

You'll learn electronics, avionics, aircraft maintenance, health care sciences, management or logistics-the Air Force will train you in one of more than 200 technical specialties America needs today.

You'll get hands-on experience with the latest equipment, and we'll pay 75% of your tuition for off-duty college courses, to get you even further.

Whatever your goals, the Air Force will equip you with the skills to get where you want to be.

If you're looking seriously into your future, Aim High to a future in the Air Force. Visit your Air Force recruiter today or call toll-free 1-800-423-USAF (in California 1-800-232-USAF).

 With Indoor Sports, you can play darts without putting holes in your walls, ice an opponent in air hockey, become a ping-pong pro, and pick up some spares without venturing into an alley.

As a Harrier jump-jet ace in High Roller, you'll be doing barrel rolls toward designated targets without waking the
 neighbors.

Bop'n Wrestle puts you in the ring with 10 of the biggest, baddest bruisers ever to perfect the turnbuckle fly.

Prepare to take evasive action with Infiltrator. Foil your foes from your 'copter's cockpit and then
convert to covert ground action behind enemy lines. In Balance of Power, you are the President. And the burden of global responsibility seems so real you may wonder why you don't have Secret Service protection.

What do you have to lose? For much less than the cost of a night on the town, Mindscape makes home sweet home a more exciting place to be.
※

[^0]
COMPUTE!
 MAY 1987
 VOLUME 9
 NUMBER 5
 ISSUE 84

One of the ABC Publishing Companies
ABC Publishing, President, Robert G. Burton
1330 Avenue of the Americas, New York, New York 10019

COMPUTEI The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., 825 7th Ave., New York, NY 10019 USA. Phone: (212) 265-8360. Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, \$24. POSTMASTER: Send address changes to: COMPUTEI Magazine, P.O. Box 10955, Des Moines, IA 50950 . Second class postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1987 by COMPUTE! Publications, Inc. All rights reserved, ISSN 0194-357X.

Apple has announced two new Macintosh computers. Their impressive specifications will further strengthen the already impressive Macintosh line: More than one million Macs have been sold and are currently selling at the formidable rate of over 50,000 units a month. What's more, these machines establish new performance standards which foreshadow the consumer computer of tomorrow.

The older machines, the Macintosh 512e and Macintosh Plus, should continue to sell well to home, educational, and business buyers, their traditional markets. The new machines are expected to open new markets for Apple: advanced graphics workstations, memory- or speed-intensive business applications, scientific research, artifical intelligence studies, and other applications not ordinarily associated with "personal" computers. In fact, these new computers diverge in several ways from the traditional Macintosh line as well as from the traditions of home and personal computing.

The Macintosh SE (for System Expansion) is the long-awaited, open-architecture Mac which allows the attachment of third-party peripherals through one expansion slot. The SE also permits the addition of a variety of keyboards because it includes the Apple II-style interface. Although quite similar to the Macintosh Plus, the SE features greater speeds with some software, permits add-ons, and Apple expects it to compete effectively against the PC AT and AT clones. Two important improvements over the Mac Plus derive from adjustments to the ROM routines and system software as well as a significant increase in hard disk communications.

The Macintosh II is higher-end and is targeted to compete with 80386-class machines and the DEC

VAX. It diverges from the Macintosh line in several important respects. Featuring an optional color display with as many as 256 simultaneous colors, this machine makes extraordinary graphics possible since it has a total of 16.8 million different colors available.

The Macintosh II is not an integrated package: The computer itself is in a box similar to the IBM PC's; the video is separate. There are six internal expansion slots. The computer can address more than four gigabytes of memory (limited to two gigabytes of internal RAM). The high-capacity, full 32-bit 68020 processor operates at 16 MHz , twice as fast as the Macintosh Plus.

To further beef up the power of the Mac II, Apple offers a 68881 math coprocessor chip which can improve the speed of floating-point calculations as much as 200 times. Also, the data-transfer rate has been increased to over one million bytes per second.

COMPUTE! columnist and longtime Apple-watcher David Thornburg thinks the Macintosh II represents, in effect, a first step in an entirely new direction for Apple. "Rather than look at the personal computer market and move upward, it seems that Apple looked at the serious workstation market (populated by companies like Sun, Symbolics, Apollo, and others) and brought high performance within the price range of small businesses and university research labs."

The Mac II, Thornburg says, would be quite a bargain for, to take one example, researchers working in artificial intelligence. "For well under $\$ 10,000$, one can get the Macintosh II with a 40-megabyte hard disk, lots of RAM, and a splendid version of LISP - all this would compete quite handily with systems costing five times as much."

What makes these develop-
ments intriguing and even predictive for personal computer users is that we've been here before. Recall the LISA. It was priced beyond most home and educational computer users' budgets and marketed to a similar list of high-end users. But soon after LISA's introduction, the personal computer market was treated to the original Macintosh, with the major design improvements of the LISA intact.

With Apple's announcement of these advanced Macintoshes, and the other high-performance machines coming out of Commodore, Atari, and the IBM world, we can confidently expect to see consumer computers in the next few years which will challenge the capabilities of minicomputers. And all these avant-garde machines seem to have a commonality of design and features, as if the trends of the past several years were now converging and leading to the ideal home computer: extraordinarily impressive graphics resolution, high-quality color, massive memory, open architecture, sophisticated sound capability, and ultra-high speed.

Of course we can always look even farther down the road; no one would mind seeing a consumer version of the massive, state-of-the-art Cray mainframe on a chip. But for the forseeable future, who will be dissatisfied with machines which match the capabilities of all but the most sophisticated commercial graphics workstations?

Richard Mansfield
Editorial Director

Outstanding Artistic Instructive books from COMPUTE!

You'll find expert information, useful applications, intriguing games, graphics, colorful art, music, programming guides, and more in these new Atari ST-specific books. Beginning to advanced ST users will benefit from the applications and tutorials in each book. And as always, the books are written in COMPUTE!'s clear, understandable style.

Abstract

COMPUTE!'s ST Applications Brian Flynn and John J. Flynn $\$ 16.95$

ISBN 0-87455-067-X An excellent assortment of games and applications for business and home, written in BASIC, COMPUTEI's ST Applications is an instant library of programs that every ST owner will want to have. All programs have been fully tested and are ready to type in and use on the Atari 520 or 1040 ST. There is also an optional disk available for $\$ 15.95$ which includes the programs in the book.

COMPUTE!'s ST Artist

Selby Bateman and Lee Noel, Jr. $\$ 18.95$

ISBN 0-87455-070-X
A step-by-step guide to creating dazzling graphics and art on the Atari ST personal computer. Using NEOchrome and DEGAS*, this book shows you how to get the most out of these excellent painting and drawing programs. Tips and techniques provide you with the most efficient ways of creating graphics and demonstrate how to produce colorful art. Examples illustrate each step and show off all the visual power of the Atari ST and its graphics software. Information is included on the newest versions of NEOchrome and DEGAS Elite. There is an optional companion disk available for $\$ 15.95$ which includes artwork from the book.

COMPUTEI's ST Applications Guide: Programming in C
Simon Field, Kathleen Mandis, and Dave Myers $\$ 19.95$

ISBN 0-87455-078-5
COMPUTEI's ST Applications Guide: Programming in C is your complete tutorial to designing and writing effective ST application programs. Practical examples show you how to use GEM routines to develop professional-looking applications of your own. Explore topics such as disk files, menus, icons, the mouse, sliders, dialog boxes, programming desk accessories, music, and much more. For intermediate to advanced C programmers.

The Elementary Atari ST
William B. Sanders
$\$ 18.95$
ISBN 0-87455-024-6
A clear, easy-to-use guide to the Atari ST, this book takes you through everything from connecting your computer, loading programs, and creating graphics and music, to writing your own programs.

- A product of Batteries Included.

Order your Atari ST book today. Call toll-free 800-346-6767 (in NY 212-887-8525), or write COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

NC residents add 5 percent sales tax and NY residents add 8.25 percent sales tax. Shipping and handling: $\$ 2.00$ U.S. and surface mail: $\$ 5.00$ airmail.

Please allow 4-6 weeks for delivery.

COMPUTE! books are available outside the United States from subsidiaries of McGraw-Hill International Book Company.

Editor, COMPUTE!
\& COMPUTEI'S GAZETTE
Assistant Editor, COMPUTE! Production Director
Editor, COMPUTE!'s Atari ST Disk \& Magazine Technical Editor Assistant Technical Editors Assistant Editor, COMPUTE!'s

Atari ST Disk \& Magazine Assistant Editor, COMPUTEI's GAZETTE
Assistant Features Editor Programming Supervisor Editorial Programmers

Copy Editors
Editorial Assistant Submissions Reviewer Programming Assistants Executive Assistant Administrative Assistants

Associate Editors
Contributing Editor
COMPUTE!'s Book Division
Editor

Assistant Editor
Director of National Sales
Production Manager
Art \& Design Director
Assistant Editor, Art \&

Assistant Editor, Art \& Design
Mechanical Art Supervisor
Artists
Typesetting
Illustrator
Director of Advertising
Sales

Associate Advertising
Director
Production Coordinator
Production Coordinalor

Customer Service Manager Diane Longo
Dealer Sales Supervisor
Jose Cruz
Individual Order Supervisor Cassandra Green Receptionist Anita Armfield Warehouse Manager John Williams

James A. Casella, President
Richard Mansfield, Vice President, Editorial Director
Richard J. Marino, Vice President, Advertising Sales
Christopher M. Savine, Vice President, Finance \& Planning
1987 Editorial Board
Richard Mansfield
Kathleen Martinek
Selby Bateman
Lance Elko
Tom R. Halfhil
Stephen Levy
Robert Lock, Founder and Editorial Consultant
COMPUTEI Publications, Inc. publishes

COMPUTEI

COMPUTEI's Gazette
COMPUTEI's Gazette Disk
COMPUTEI's
Apple Appllcations Special
COMPUTEI's
Atarl ST DIsk \& Magazine

Editorial offices:
324 West Wendover Avenue Sulte 200 Greensboro, NC 27408 USA
Corporate offices:

Customer Service:
Hours:

James A. Casella
Robert C. Lock
Richard Mansfield Kathleen Martinek Selby Bateman

Lance Elko
Philip I. Neison
Tony Roberts
Tom R. Halfhill
Ottis R. Cowper
George Miller, Dale McBane
Todd Heimarck
Rhett Anderson
Kathy Yakal
Patrick Parrish
Tim Victor, Tim Midkiff, William Chin Tammie Taylor, Karen Unlendorf, Karen Siepak Caroline Hanlon
David Hensley David Florance, Troy Tucker Debi Nash
Julia Fleming, lris Brooks, Mary Hunt, Sybil Agee Jim Butterfield Toronto, Canada Fred D'Ignazio Birmingham, AL Dovid Thomburg Los Altos, CA Bill Wikinson

Stephen Levy
Gregg Keizer
Joseph W. Hatcher
Irma Swain
Janice R. Fary
Lee Noel
De Potter
Robin Case, Kim Potts Terry Cash. Carole Dunton Harry Blair

Peter Johnsmeyer
Bernard J. Theobald, Jr Kathleen Hanlon

Available NOW from COMPUTE! Books

The complete guide to using Microsoft ${ }^{\circ}$ Works

Mastering Microsoft Works is available now from your local

computer or book store.

You can also order directly from COMPUTE! by calling toll-free 800-346-6767 (in New York 212-887-8525) or by writing COMPUTE! Books, P.O. Box 5038, F.D.R.

Station, New York, NY 10150.

Mastering Microsoft Works

Sharon Zardetto Aker
$\$ 17.95$
ISBN 0-87455-042-4 287 pages
Microsoft Works offers a system of four integrated modules for home and business Macintosh users. This comprehensive guide and tutorial shows how to use Works efficiently and easily. Works includes a word processor, database, spreadsheet, telecommunications, and graphics, and this book describes how to master Works-from creating form letters with the word processor to tax forms with the spreadsheet. Integrating the modules is explained and illustrated. More than a tutorial, more than just a reference, Mastering Microsoft Works is the complete guide to this state-of-the-art software.

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

Proofreader For Tandy 1000

I recently purchased a Tandy 1000 IBMcompatible computer and subscribed to your magazine. After numerous attempts, I have been unable to make the "IBM PC/PCjr Proofreader" program work on my computer. I would like to know if there is something in this program that keeps it from working on my computer and, if so, will I have the same problem if I try to enter other IBM programs from your magazine?

Billy Bolden
At COMPUTE! we make every effort to insure that our IBM PC/PCjr programs will also work on the dozens of IBMcompatible models now available. Since we don't have one of each different model available for testing purposes, we can't guarantee that every program will work on every model. Nevertheless, we have found few documented cases where our programs wouldn't work because of machine incompatibility. Most problems occur on systems which lack some required hardware. For example, programs which require a color/graphics adapter card (or equivalent hardware) will not work on a system that has only a monochrome adapter card.

The "Proofreader" is, for the most part, a "plain vanilla" BASIC program, using no fancy programming tricks. The only exception is in line 160, which uses the dynamic-keyboard technique to insure that LINE INPUT gets the entire program line. While it's possible that your computer is incompatible with this program, a much more likely source of your problem is a typing error.

Check every line of the program carefully against the magazine listing, even those lines you believe you typed correctly. Even experienced programmers make typing mistakes, and a single typing error can have drastic effects, depending on where it occurs in the program.

You also should make sure that the computer is in Caps Lock mode (so that all letters appear in uppercase) except when the listing shows that you should be typing a lowercase letter. This is important because the Proofreader is sensitive to the case of characters. These three lines, for instance, generate three different checksums when typed in with the Proofreader. The checksums are shown in front of each line.
HN 10 print "hi there"
NN 10 PRINT "HI THERE"

FN 10 PRINT "Hi there"

In COMPUTE! listings for the IBM PC/PCjr and compatibles, BASIC keywords such as PRINT and IF are always in uppercase. Lowercase letters usually don't appear except after REM and DATA statements, or, as shown in the example, as part of a string enclosed in quotation marks.

We don't have access to an original Tandy 1000, but we do have one of the new Tandy 1000EX models. After receiving your letter, we tested the IBM PC/PCjr Proofreader program on our Tandy 1000EX to confirm that it works correctly. The program works the same on a Tandy 1000EX as it does on an IBM PC/PCjr. The Proofreader has also worked on all the other IBM-compatible models we have tested.

Sending Printer Escape Codes In Amiga BASIC

Here is some information that will be useful to any Amiga owner who wishes to use special printer effects (double strike, compressed characters, and so on) from Amiga BASIC. I have had no difficulty printing Amiga screen dumps on my Epson MX-80. However, when I tried to send printer escape codes from Amiga BASIC, they had no effect. This occurred both when I tried to send the control codes with LPRINT and when I used PRINT\# to send output to a file I had previously opened to LPT1:, the printer device. In these circumstances, it appears that all printer output is filtered according to the printer selected in Preferences. The solution is to open a printer file using the PAR: device for a parallel printer or the SER: device for a serial printer. If you then use PRINT\#
to output CHR\$(27) followed by the appropriate control codes, your printer will behave as it should.

Charles Heckel
Thank you for the information. Although the Amiga BASIC manual doesn't mention PAR: or SER:, both device names are understood by AmigaDOS, the disk operating system which BASIC uses for input/ output operations.

Upgrading To An Apple ligs

I am very impressed by what I have read about the Apple IIGs. Do you have any information on how to upgrade a IIe to IIGS specifications? I understand that the 65 C 816 microprocessor is available to individuals at a reasonable price, and I would like to purchase one and put it all together.

Mike Mendoza
When Apple premiered the IIGS, they also announced that IIe models could be upgraded to IIGs level. Although they offered only complete IIGS systems at first, upgrades should become available sometime in 1987 for around $\$ 500$.

About upgrading it yourself: The 65C816 chip can't simply replace a IIe's 6502 or 65C02 processor. Its pinouts-the signals which are present on each of the chip's leg-like connecting pins-are different enough from earlier models that they aren't interchangeable. Another new chip, the 65C802, is pin-compatible-you just plug it in, and it runs. It has the same new machine language instructions as the 65C816, but like the older chips, it can only directly access 64 K of memory. Although we haven't tried doing it, putting a 65C802 in an Apple IIe sounds like an interesting idea. It would be totally compatible with existing Apple II software, but it wouldn't be much like a IIGs.

Many third-party hardware makers offer plug-in cards for the Apple IIe which contain a 65C816, often along with more memory. These acielerator cards can include quite a bit of RAM, far beyond the IIe's 64 K or 128 K , as well as a high-speed clock for more processing power. Some of these cards can run eight-bit Apple II software faster than a IIGS in emulation mode. For users who only want more speed and storage for IIe applications like

From impossible dungeons and splitsecond snares, the Bard and his party emerge. The Sceptre, so long forgotten, gleams with power like an exploding sun. Even Phenglei Kai, the ancient archmage, bows his head in awe.
"I smell serpents!" Slipfinger squeals, stealing away like the thief he is. Two archdragons slither out of the ground, their eyes burning with the relentless fury of treasure lost.

Protected behind the flame lizards, beyond the reach of normal weapons, a cackling wizard begins the eerie chants of a death spell. A spell that can finish the Bard and his party.

The time has come to battle-test the magic of the Destiny Wand - and reveal the awesome powers of The Destiny Knightr"

You get a new class of magic user - the Archmage. With 8 powerful spells like Heal All, Fanskar's Night Lance, and the awesome Mangar's Mallot.

There are over 100 monsters, like this Kner Drone. Many animated. All dangerous.

25 scrolling dungeon levels. All in color. All 3-D. Including 7 different Snares of Death, a new kind of real-time puzzle.

The Bard's Tale II

The Destiny Knight
from

ELECTRONIC ARTs ${ }^{*}$

HOW TO GET IT: Visit your retailer, or call $800-245-4525$ (in CA call $800-562-1112$) for VISA or Mastercard orders. To buy by mail, send a check, money order, or VISA or Mastercard information to Electronic Arts, P.O. Box 7530, San Mateo, CA 94403 . The price is $\$ 39.95$ for the Commodore 64 version, and $\$ 49.95$ for the Apple version. Add $\$ 5$ for shipping and handling ($\$ 7$ Canadian). Allow $1-4$ weeks for delivery. The Bard's Tale II and Electronic Arts are registered trademarks of Electronic Arts. Ultima is a registered trademark of Richard Garriott. Commodore is a trademark of Commodore Electronics Ltd. Wizardry is a trademark of SirTech Software, Inc. For a copy of our complete catalog, send 50 c and a stamped, self-addressed envelope to Electronic Arts Catalog, 1820 Gateway Drive, San Mateo, CA 94404.

When you want to talk computers.

HOME COMPUTERS.

Atari 1040 Color System $\$ 879$

Includes: 1040ST, 1 mb RAM with $31 / 2^{\prime \prime}$ drive built-in, 192K ROM with TOS, Basic, Logo, ST language, power supply and color monitor.

Commodore Computers

Commodore-64C 64K Computer189.00
Commodore-64C System w/1802C539.00
Commodore-128 128K Computer259.00
Commodore-128 System...........759.00
Amiga 500 \& 2000.........................call
Commodore Peripherals
1660 Commodore Modem...........59.99
1670 Commodore Modem...........99.99
1541C Disk Drive........................ 189.00
1571 Disk Drive......................... 239.00
1802 Color Monitor....................199.00
1902 Color Monitor.................... 299.00
Amiga 1010 3½" Ext. Drive...... 219.00
Amiga 1020 5¼" Ext. Drive...... 189.00
Amiga 1080 RGB Monitor......... 269.00
C128 512K Expansion Board..... 179.00
PPI Parallel Printer Interface.......34.99
Xetec S/Graphix 8K.....................69.99
Micro R\&D MW350...................... 44.99

MS/DOS SYSTEMS.

PC-TOO 20 Meg XT-Compatible

$\$ 999$
AT\&T 6300....................from $\$ 1299.00$
Compaq..........................from 1699.00
Cordata.............................from 899.00
IBM-XT............................from 1099.00
IBM-AT............................from 2699.00
Leading Edge......................from 999.00
NEC Multispeed................from 1499.00
Panasonic Business Partnerfrom 799.00
Toshiba 1100 Plus...........from 1749.00

MULTIFUNGTION CARDS.

AST
Six Pak Plus PC/XT................. $\$ 169.00$
Six Pak Premium PC/XT.............249.00
Advantage-AT 128K.................... 339.00
Everex
EV-221 Evergraphics Mono......... 139.00
EV-640 Edge Card.....................259.00

Hercules

Color Card................................159.00
Graphics Card Plus....................209.00
Fifth Generation
Logical Connection 256K.............329.00
IDEAssociates
IDE-5251 Local Emulator............. 579.00 Intel
1110 PC Above Board................ 279.00
Inboard 386K OK...........................Call
NEC
GB-1 EGA................................ 409.00
Quadram
Quad Ega + Graphics Adapter....299.00
Silver Quadboard........................129.00
Expanded Quadboard................119.00
VIDEO 7
EGA Video Deluxe..................... 389.00
Zuckerboard
Color Card w/Parallel.................... 89.99
Monochrome Card w/Parallel......... 99.99
576K Memory Card.
. 59.99

DRIVES.

Allied Technology
 Apple Half-Heights..................... $\$ 109.00$
 Controller Card.
 .39 .99

CMS
Drive Plus 20MB Internal Card.... 399.00

Everex

Stream 20 20MB Tape-Backup.... 669.00 Genie Technology
210 H 10 + 10 subsystem.......... 1749.00 Indus
Atari GT Disk Drive..................... 189.00
Commodore GT Disk Drive......... 189.00 lomega
A210H $10+10$ Bernoulli Box..... 1899.00
A220H $20+20$ Bernoulli Box..... 2499.00 Irwin
110 D 10MB Tape backup.......... 319.00
Mountain Computer
Drive Card 20MB Internal Card... 499.00
A220 $20+20$ Subsystem........... 2199.00

Racore Jr.
 Expansion Chassis
 \$299

Seagate

ST-225 w/Controller...................... 399.00
Toshiba
Half-Height 360 K internal.
89.99

DISKETIES.

Maxell

MD-1 SS/DD 51/4"........................ $\$ 8.99$
MD-2 DS/DD 5¼"........................ 10.99
MD-2HD Hi-Density $51 / 4$ "...............21.99
MF-1 SS/DD 3½"......................... 12.99
MF-2 DS/DD 3½"........................ 21.49
CS-500 20Mb Streamer Tape........ 11.99
CS-600 60Mb Streamer Tape........ 13.49
Sony
MD1 SS/DD 514"........................... 7.99
MD2 DS/DD 51/4"............................ 9.49
MD-2HD Hi-Density 51/4"............... 20.49
MFD-1 SS/DD 3½"...................... 12.99
MFD-2 DS/DD 3½"......................19.99

When you want to talk price.

MONITORS.

Amdek 410 12"
 TTL Monitor

Amdek
Video 310A Amber TTL........... $\$ 149.00$
Color 722 RGB, CGA/EGA........ 479.00
Magnavox
8CM515 RGB Monitor-80.......... 289.00
7BM623 PC Monitor-80 Amber....99.99
8CM873 14" Multimode............ 549.00
Mitsubishi
XC 1409C 14" RGB.................319.00 NEC
12" TTL Green or Amber..........109.00
JC-1401P3A Multi-Sync............. 579.00
Princeton Graphics
MAX-12 12" Amber TTL........... 169.00
HX-12 12" Color RGB............... 429.00
HX-12E 12"RGB/EGA............... 499.00
Quadram
8460 Quadchrome Enhanced....439.00
Taxan
Model 124 12"' Amber............... 119.00

MODEMS.
Anchor
6480 C64/128 1200 Baud......... $\$ 119.00$
Omega 80 Amiga....................129.00
VM520 ST520/1040 1200 Baud...139.00
Expressi PG-1200 Half Card.......149.00
Everex
Evercom 1200 Baud Internal.......119
Hayes
Smartmodem 300 External......... 139.00
Smartmodem 1200B Internal.......359.00
Smartmodem 2400B Intern
Quadram
Quadmodem II 1200 Baud
Supra
MPP-1064 AD/AA C64................ 69.99
1200AT 1200 Baud Atari............149.00
U.S. Robotics

PRINTERS.

Canon

LBP-8A1 Laser, 8 Page/Min...... $\$ 1899.00$ Citizen
MSP-10 160 cps, 80-Column....... 319.00
Premier 3535 cps Daisywheel....499.00

C.Itoh

8510-SP 180 cps , 80-Column..........Call
310-SEP Epson/IBM 80-Column.......Call
Cordata
The Desktop Printshop Laser.....2199.00

Epson

LX-86 120 cps , Dot Matrix.......... 199.00
FX-86E 240 cps , 80 -Column............Call
FX-286E 240 cps , 132-Column........Call
EX-800 $300 \mathrm{cps}, 80$-Column........ 449.00
LQ-800 180 cps , 24Wire Printhead..Call Hewlett Packard
Thinkjet
399.00

Juki

630040 cps Daisywheel.............659.00
610010 cps Daisywheel............389.00
5510C Color Dot Matrix.............. 349.00

NEC

Pinwriter 66024 Wire................. 489.00
Pinwriter 76024 Wire................. 689.00
Okidata
ML-182 120 cps , 80-Column........ 239.00
ML-192 + $200 \mathrm{cps}, 80$-Column.... 369.00
ML-193 + 200 cps , 132-Column.......Call
ML-292 200 cps , 80-Column............Call
Panasonic
KX-1080i 120 cps , 80-Column...... 219.00
KX-1091i 180 cps , 80-Column......299.00
KX-1592 180 cps, 132-Column.....439.00

Star NX-10

120 cps Dot Matrix $\$ 209$

Star Micronics

NX-10C 120 cps , C64 Interface. 219.00
NX-15 120 cps , 132-Column...... 369.00
Texas Instrument
TI-855 150 cps, 80-Column........ 599.00 Toshiba
P321 216 cps, 24-Pin Printhead479.00
P341 216 cps, 24-Pin Printhead589.00

SOFTWARE.

FOR AMIGA

Aegis Development

Animator \& Images................... $\$ 99.99$
Commodore
Textcraft/Graphcraft......................59.99
Electronic Arts
Deluxe Paint. . .64 .99
Microillusions
Dynamic CAD............................359.00
Micro Systems
Scribble Word Processor .79 .99
Sublogic
Flight Simulator II.........................37.99

The Print Shop For IBm $\$ 39^{99}$
For Commodore \& Atari $\$ \mathbf{2 9}^{99}$ FOR ATARI ST
Access
Leader Board Golf....................... 27.99
Batteries Included
D.E.G.A.S. Elite........................... 59.99

Microprose
Silent Service...............................29.99
Paradox
Wanderer 3D...............................29.99
Sublogic
Flight Simulator II........................37.99
Timeworks
Swiftcalc...................................... 54.99
FOR IBM
Ashton-Tate
d-Base III + 429.00
5th Generation
Fastback Utility............................ 89.99
IMSI
Optimouse w/Dr. Halo..................99.99
Lotus
Lotus 1-2-3................................. 329.00
MicroPro
Professional 4.0 w/GL................ 239.00
Microstuf
Crosstalk XVI................................89.99
P.F.S.

First Choice...............................119.00
Satellite Systems
Word Perfect 4.2........................ 209.00

In the U.S.A. and in Canada

Call toll-free: 1-800-233-8950.

Outside the U.S.A. call 717-327-9575 Telex 5106017898
Educational, Governmental and Corporate Organizations call toll-free 1-800-221-4283
CMO. 477 East Third Street, Dept. A205, Williamsport, PA 17701

ALL MAJOR CREDIT CARDS ACCEPTED.

POLICY: Add 3\% (minimum \$7.00) shipping and handling. Larger shipments may require additional charges. Personal and company checks require 3 weeks to clear. For faster delivery use your credit card or send cashier's check or bank money order. Pennsylvania residents add 6% sales tax. All prices are U.S.A prices and are subject to change and all items are subject to availability. Defective software will be replaced with the same item only. Hardware will be replaced or repaired at our discretion within the terms and limits of the manufacturer's warranty. We cannot guarantee compatibility. All sales are final and returned shipments are subject to a restocking fee.

Appleworks, this option is worth considering.

But a IIgs has a lot more than a new processor and more RAM. The new video and sound circuitry are only available from Apple. They are also the only source for the ToolBox software built into each IIGS, supporting Macintosh-like windows and menus. Since most commercial developers plan to use all these new features, the only foreseeable way to make your IIe into a true IIGS is through your Apple dealer. And, for this operation, upgrade isn't exactly the right word. All the IIe's electronic innards are replaced with a new main circuit board. The only parts that are kept are the cabinet, power supply, and keyboard. Your old interface cards will still work, though.) But when enough new IIGs software has arrived, this procedure could be a very effective means for entering the 16 -bit world.

Quiet Disk Format For Commodore 128

The excellent short program written by Martin Filbeau for the Commodore 64 ('Readers' Feedback," December 1986) does indeed prevent the 1541 disk drive's head from rattling when you format a disk. But that program doesn't work on the Commodore 128 in 128 mode. Here is a modified version of the program that works in 128 mode with either a 40 -column or 80 -column monitor.
 G..."

```
DD 250 PRINT#1,"U3:";DNAMŞ","D
    IDS
MC 260 GOTO 120
QD \(27 \varnothing\) PRINT"\{4 DOWN\}PRESS ANY KEY TO CONTINUE"
HK 280 PRINT
JE 290 POKE 2ø8, ø
AJ 30ø WAIT 208,1
PK \(31 \varnothing\) RETURN
EC \(32 \emptyset\) DATA \(169,78,141,0,2,169\) ,48,141,1,2,169,11,141, 42,2
CD 330 DATA \(32,238,193,169,1,1\) 33, 81,76,13,238
```

Carlos Vidales

Thanks for the modification. Because of the length of this program, we've added checksums for our "Automatic Proofreader" program. If you're unfamiliar with the Proofreader, see "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue.

DOS 3.3 CATALOG From Applesoft

I am using an Apple IIc and would like to know how to read a DOS 3.3 catalog into a BASIC array. Can you show me how to do it and explain how it works? Steven Pinckney
DOS 3.3, unlike ProDOS, provides no easy way to do this. However, it can be done. The following code adapts part of "Jacket Lister," a program that appeared in the September 1986 issue of COMPUTE!:
$2 \varnothing$ DIM TB\$(144), WS(1øøø)
86 FOR I $=768$ TO 779: READ A : POKE I, A: NEXT
$9 \varnothing C=\emptyset: P 1=W S(\emptyset)-W S(\emptyset)+$ PEEK (131): P2 = WS (Ø) $-W$ $S(\emptyset)+$ PEEK (132)
$1 \emptyset \emptyset$ POKE 769, P1: POKE 779,P2
110 POKE 54, Ø: POKE 55,3: POK E 56,11: POKE 57,3: CALL $10 \boxed{ }$
$12 \oint$ FRINT CHR\$ (4);"CATALOG"
125 PRINT
$13 \emptyset$ POKE 768, 173: POKE 769,P1 : POKE 77Ø,P2
140 POKE 54,11: POKE 55,3: PO KE 56, D: POKE 57,3: CALL 1002
15ø FOR I = Ø Tロ 4: INPUT A\$: NEXT
$16 \varnothing$ INFUT TB\$(C): IF TB $\$(C)=$ "" THEN $17 \emptyset$
$165 \mathrm{C}=\mathrm{C}+1:$ GOTO 160
170 POKE 54,249: POKE 55,253: POKE 56,27: POKE 57,253: CALL 1092
190 DATA $141, \emptyset, 64,238,1,3,208$, 3
$20 \emptyset$ DATA $238,2,3,96$
The program starts by dimensioning two arrays, TB\$ and WS. TB\$ is a table of strings to hold the directory entries. WS is just a big block of storage to be used as workspace. Line 80 sets up a short machine language routine which will be used for trapping input and output. The next line uses a trick to find out the address
where an array variable is stored. Most versions of BASIC have a function called VARPTR to do this, but Applesoft doesn't. P1 gets the eight low bits of the address, and P2 gets the eight high bits.

In line 100, the address of the workspace is stored in the machine language routine. Line 110 hooks up this routine to intercept all input and output operations, then tells DOS about the new I/O routines with the CALL 1002 statement. (Otherwise, DOS would be completely disconnected.) As it's hooked up at this point, the ML routine will store all output in the workspace and disregard requests for input.

Lines 120 and 125 perform the CATALOG operation, printing all the information into the workspace. In the next line, the ML routine is modified slightly to function as an input routine, and the workspace pointer is reset to the start of the WS array. Then the I/O hooks are changed so that input operations will read from the workspace, while output requests will be ignored.

After line 150 skips four header lines, lines 160 and 165 read each catalog entry into the TB\$ array. Variable C keeps count of the number of files found. Finally, line 170 resets the I/O hooks to the normal values for a 40-column display, and the program ends.

Phantom Opcodes On The 6502

I have a question about 6502 assembly language. I know that every machine language command is contained in one byte, which may be followed by one or two additional bytes. For example, the byte value for the LDA immediate instruction is 169 (\$A9). Some of the possible byte values, however, are not assigned to an instruction. A machine language monitor prints ??? when you try to disassemble one of these instructions. What do these instructions do when the computer executes them? I have heard that they give the combined effect of two other instructions.

Gergely Viczian
Not all of the 256 possible one-byte values are defined as valid machine language instructions for the 6502/6510/8502 microprocessor. The remaining values are officially undefined, meaning that the designers of the processor do not intend them to be used as instructions at all. Many machine language monitors flag such values with ??? to indicate that the byte value could not be interpreted as a valid opcode.

If you've been trying to learn machine language by disassembling other people's programs, you may see many places where it appears on the surface that an undefined opcode has been used.

IS GeTTING THE ANSWERT0 SOFTWARE PROBLEMS A Bigger Problem Than THE PROBLEM?

Don't stay on hold when there's help online from CompuServe Software Forums.

The new upgraded . version of your software locks up. And every time you reboot, you get stuck in the same place in the program.

You've chucked the manual, because you've done exactly what it tells you to do six times already. So you call the software company.

Now you spend half a day beating your head against a brick wall of busy signals, ranting at recorded messages, hanging around on hold. And you still don't get the solution to your problem.

Meanwhile, progress is stopped and your profits are dribbling away. But wait. There's help...

Several prominent, progressive software publishers recognize this problem, and
 working with CompuServe, have developed a solutionCompuServe Software Forums.

Now you can go online with experts from the companies that produced your software and get
prompt, written answers to your specific problems. You can even talk with software

frequently publish software reviews. And you can find help for many other software products in our other computer-related forums for IBM°, Tandy, Atari, Apple, Commodore, $\mathrm{TI}^{{ }^{\circ}}$ and others.

The last thing you need when you've got a software problem is a bigger problem
Aldus, Ashton-Tate, Autodesk, Borland International, ${ }^{8}$ Creative Solutions, Digital Research, ${ }^{8}$, Living Videotext, Lotus ${ }^{8}$ Inc., Microsoft, ${ }^{8}$, MicroPro, Misosys Inc. and Software Publishing* all have CompuServe Software Forums.
And we keep adding more.

CompuServe's large subscriber base also puts you in touch with thousands of other, often more experienced, users of the same software. You'll find they can give you lots of creative ways to get the most out of your software.

And software forums are the best way to learn about product updates, new product announcements, new ways to expand the uses of your software, and offer free uploads of your own programs.

Our online electronic magazines
getting answers.
So, from now
on, get
prompt,
informed
answers on
CompuServe Software Forums.
To buy your CompuServe Subscription Kit, see your nearest computer dealer. Suggested retail price is $\$ 39.95$.

To order direct or for more information, call 800-848-8199
(in Ohio, 614-457-0802).

If you're already a CompuServe subscriber, just type
GO SOFTWARE at any ! prompt.

CompuServe

Information Services, P.O. Box 20212
5000 Arlington Centre Blvd., Columbus, OH 43220
An H\&R Block Company

Instruction	Abs	Abs, X	Abs, Y	Zer	Zer, X	Zer, Y	(Ind, X)	(Ind), Y	Imm
ASO (ASL,ORA)	0F	1F	1B	07	17		03	13	OB
RLA (ROL,AND)	2F	3F	3B	27	37		23	33	2B
LSE (LSR,EOR)	4 F	5F	5B	47	57		43	53	
RRA (ROR,ADC)	6F	7F	7B	67	77		63	73	
AXS (STX,STA)	8 F			87		97	83		
LAX (LDX,LDA)	AF		BF	A7	B7		A3	B3	
DCM (DEC,CMP)	CF	DF	DB	C7	D7		C3	D3	
INS (INC,SBC)	EF	FF	FB	E7	F7		E3	F3	
ALR (LSR,EOR)									4B
ARR (ROR,ADC)									7B
OAL (TAX,LDA)									AB
SAX (DEX,CMP)									CB
NOP	1A, 3A, 5A, 7A, DA, FA								
SKB	80, 82, C2, E2, 04, 14, 34, 44, 54, 64, 74, D4, F4								
SKW	0C, 1C, 3C, 5C, 7C, DC, FC								

ASO ASL then ORA the result with the accumulator
RLA ROL then AND the result with the accumulator
LSE LSR then EOR the result with the accumulator
RRA ROR then ADC the result from the accumulator
AXS Store the result of A AND X
LAX LDA and LDX with the same data
DCM DEC memory and CMP the result with the accumulator
INS INC memory then SBC the result with the accumulator
ALR AND the accumulator with data and LSR the result
ARR AND the accumulator with data and ROR the result
OAL ORA the accumulator with \#\$EE, AND the result with data, then TAX
SAX SBC data from A AND X and store result in X
NOP No operation
SKB Skip byte (that is, branch of +1)
SKW Skip word of two bytes (that is, branch of +2)

However, you should be aware that-in the vast majority of cases-when you see ??? in a section of disassembled code, you are not looking at a undefined opcode. It's much more likely that you've tried to disassemble a section of memory that doesn't contain machine language, but rather contains data tables, message text, jump vectors, or the like. Since it's only coincidental that the values of these types of data will fall in the range of valid opcodes, most bytes in such areas will show as ???. Undefined opcodes are very rarely used. If you disassemble the entire 16K of BASIC and Kernal ROM in a Commodore 64, you'll find many places where the data disassembles as ???, but none of these is truly an undefined opcode.

Some of the undefined opcodessometimes called quasi-opcodes-simply lock up the computer. The computer locks up completely when you attempt to execute any byte ending with $\$ 3, \$ 7, \$ B$, or $\$ F$, and most byte values ending with $\$ 2$.

Other undefined opcodes cause the processor to perform a meaningful task. Some of these simply replicate a standard instruction: For example, there are six byte values $(\$ 1 A, \$ 3 A, \$ 5 A, \$ 7 A, \$ D A$, and SFA) that duplicate the NOP (No OPeration) opcode. Others, such as SKB (SKip a Byte) and SKW (SKip a Word) do jobs that are not done by any standard
instruction. The remaining quasi-opcodes generally combine the effects of two siundard instructions. For example, the quasiop LAX loads both the A and X registers with the same value, just as if you had performed LDA and LDX in sequence with the same value.

Quasi-opcodes have few practical uses. You might save a byte here or there by performing two jobs with one instruction, but most quasi-ops perform pretty obscure functions, and since ordinary monitors and assemblers don't allow for them, it's difficult to write or even disassemble programs containing such codes. Because quasi-ops show up as ??? in an ordinary monitor, they have been used occasionally as a concealment device in copy-protected commercial programs. But for ordinary programming, they are probably more trouble than they're worth. The table above lists all the usable quasiopcodes, taken from Programming the Commodore 64, by Raeto West (COMPUTE! Books). The codes shown in boldface type are thought to be the most reliable.

De Re Atari Lives

I just read a letter in the February 1987 installment of this column referring to the availability of the Atari reference
book De Re Atari. Your readers may be interested to know that a large supply of these books is available for $\$ 10$ per copy from this computer dealer.
B \& C Computervisions
3283 Kifer Rd.
Santa Clara, CA 95051
They also stock many other hard-tofind Atari publications and products.
M. J. White

Thank you for this information.

BUMPing In BASIC 7.0

I am writing a game for my Commodore 128 and I have run across a problem with the BUMP(2) function. From what I can determine, the BUMP values to signal sprite collisions should be as follows:

Sprite	Bump Value
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128

I am getting other numbers such as $12,18,36$, and 63 . What do those numbers mean?

Jamie Chulada

The mysterious numbers indicate that two or more sprites are colliding. The BUMP function reads the contents of the 128's sprite-collision registers and returns it to BASIC. BUMP(1) reports sprite-to-sprite collisions-the same as performing PEEK(53278) on the Commodore 64-and BUMP(2) reports sprite-to-foreground collisions-the same as PEEK(53279). Each bit of the collision register is assigned to one of the computer's eight sprites. When sprite 0 is involved in a collision, bit 0-the lowest bit of the collision register-is set to 1 . When sprite 1 is involved in a collision, bit 1 is set to 1 , and so forth. The second column of numbers that you list indicates the decimal values for each bit position in the collision register.

BUMP returns the sum of all the bits in the sprite-collision register. Thus, the number 12 indicates that sprites 2 and 3 are touching one another. Sprite 2's bit value is 4, and sprite 3's bit value is 8 . When you add those two bit values together, you get 12. Similarly, the number 18 indicates that sprites 1 and 4 are colliding $(2+16=18)$.

The BUMP value tells you which sprites are currently involved in some collision. But if more than two sprites are on the screen, it won't necessarily tell you which sprite is touching a given sprite or foreground object. For instance, the value

The way computer football should be.

Other football games put you in the grandstands, looking down on the action. Now see what it's like from the player's perspective-looking out of your helmet at an angry linebacker headed straight for you, and no blockers in sight.
With GFL Championship Football, ${ }^{\text {r/ }}$ you've got the first football simulation that actually takes you down on the field, taking the hits and making the plays. And it's more than just a pretty pictureyou really get the feel of playing football.
No other football simulation gives you so many features:

- In-the-helmet perspective puts you at ground

level on the playing field.
- Scrolling-screen animation moves you up and down the playing field.
- Realistic sound effects let you hear everything from the quarterback calling the signals to the sound of your own footsteps.
- Team selection screens allow you to set the playing style of your team and that of your opponent.
Whether you're taking on bone-crunching action against a friend, or going up against any of the 27 computer-controlled teams in the GFL, this is the one that puts you where the action is!

Available now for the Commodore 64/128,
IBM PC and Tandy 1000, Apple II, Amiga, Atari ST and 100% compatible computers.

Amiga screen

Commodore 64-128 screen

Commodore 64-128 screen

Commodore 64-128 screen

COMMODORE APPLE

*99 ADDITIONAL FOR MONITOR

PRINTER

SEIKOSHA

NEAR LETTER •100 CPS DRAFT
QUALITY - 20 CPS NEAR •COMMODORE READY

DISKETTES

PRO-TECH-TRONICS
6860 Shingle Creek Parkway \#201 Minneapolis. MN 55430
 1-800-345-5080

63 indicates that sprites $0-5(1+2+4+8+16+32$ $=63$) are touching other sprites or foreground objects. But this result does not mean that each of those sprites is involved in the same collision as the others. For all you know, sprites 0 and 1 may have collided on one part of the screen, and sprites 2-5 may be involved in a three-way collision elsewhere.

In other words, BUMP(2) tells you that a given sprite has collided with some foreground object, but does not indicate which foreground object it is touching. If that information is important, you must compare the horizontal and vertical screen positions of every sprite on the screen.

BASIC Page Flipping On The ST

I am programming in ST BASIC, and I would like to know how to flip from one screen to another.

> R. W. Sharples

Page flipping-switching from one display screen to an-other-is quite simple in a language like C , but it's not practical in ST BASIC. The first problem has to do with memory allocation. An ST screen requires 32,000 bytes, and it must begin at an address that's evenly divisible by 256. In order to use an alternate screen, you must reserve 32,000 bytes of memory at a location divisible by 256 . This ordinarily would be done with GEMDOS routines, but ST BASIC provides no means to call a GEMDOS routine. If you attempt to use an unprotected memory area, you run the risk that output to the new screen will interfere with BASIC, or that BASIC's operations will corrupt the screen.

Assuming that you could surmount the memory problem, you also would have difficulty flipping from one screen to the next. Page flipping is done by calling an XBIOS routine, but ST BASIC also lacks any method for calling XBIOS routines. Furthermore, switching to a new screen requires that you pass to the system a 32-bit address representing the location of the new screen. Since the largest variable in ST BASIC is only 16 bits long, you have no practical way to tell the system where your alternate screen begins.

The recently introduced GFA BASIC language permits access to GEMDOS and XBIOS routines, and it also has a built-in command that can flip screens without resorting to system calls. The SWAP command exchanges the values of two variables in GFA BASIC. If you previously have reserved a screen space named SCREEN2, this statement is all it takes to flip from the old screen to the new one:
SWAP screen1, screen2

GET UPTO2OO FUN-FILED PROGRAMS EACH YEARwhen you subsaribe now to CourPute!

Subscribe to COMPUTE! today through this special introductory money-saving offer, and you'll be getting a lot more than just another computer magazine. That's because each issue of COMPUTE! comes complete with up to 20 all-new, action-packed programs.

Subscribe now and you can depend on a steady supply of high quality, fun-filled programs like Hickory Dickory Dock, Switchbox, TurboDisk, Home Financial Calculator, Turbo Tape, SpeedScript, SpeedCalc, and hundreds of other educational, home finance, and game programs the entire family can use all year long.

The superb programs you'll find in each issue are worth much, much more than the low subscription price.

And there's more to COMPUTE! than just exciting new programs. Month after month, COMPUTE!'s superb articles deliver the latest inside word on everything from languages to interfaces... from programming to disk drives.

Whether you're a novice or an experienced user, COMPUTE! is the magazine for you. So subscribe today. Return the enclosed card or call 1-800-247-5470 (in lowa, 1-800-532-1272).

Selby Bateman. Features Editor

Digital technology and computers are changing the ground rules of music. Sounds are being produced that have never before been heard. Many professional musicians are altering the business of commercial music by composing and performing in ways previously unthinkable. And nonmusicians can now create and play music with the help of smart computer programs that teach, guide, and accompany.

Pick up many of the latest records, tapes, and compact discs on the market and you're in for a surprise. In addition to the traditional credits given to those who play guitar or piano or drums, you'll increasingly find credit being given for programming, digital mastering, and other computer-related processes.

You may be in for a similar surprise at your next concert. One or two musicians can now play a bank of computer-controlled instruments that sound like an entire orchestra. Drum machines, sequencers, sound samplers, digital pianos, and synthesizers cover the stage-all hooked into one another and connected to one or more computers.

Musicians as varied as Frank Zappa, Philip Glass, Wendy Carlos, Jan Hammer, Vangelis, Steve Winwood, Pat Metheny, Peter Gabriel, and many others are experimenting with a variety of new-tech musical styles and machines as they explore the cutting edge of digital technology. More fundamental changes are occurring today in the ways we create, play, and listen to music than in any previous era. And those alterations are raising eyebrows, expectations, and problems.

For most computer users, however, the most direct effect of the changing musical landscape may be in the dozens of new and sophisticated music software packages that have been emerging over the past
couple of years. Computers with more memory and power are providing a much richer environment for software developers, and this translates into some of the most accessible and flexible music programs ever developed.

The MIDI March

Each of these subject areas-sound generation, commercial production, and amateur access-is based on the revolution in music caused by the introduction of MIDI in 1982.

MIDI-the Musical Instrument Digital Interface-is a standard set of electronic specifications for interconnecting electronic musical instruments, and that includes computers. MIDI is both a hardware standard and a software standard, the basics of which were agreed upon by a number of the leading companies in the electronic music business, such as Yamaha, Sequential Circuits, Korg, E-Mu Systems, Roland, and others. The fact that these companies were able to agree on the standards back in 1982 has meant that all electronic music development could move forward much faster.

How important is MIDI? David Kusek, president of Passport Designs, a leading music software company, claims that MIDI is turning musical instruments into computer peripherals. "It's making it possible for a much larger group of people to make music," he adds. "MIDI is changing the nature of music learning and production."

The basics of MIDI are easy to understand. Let's say you have a personal computer, a synthesizer, a drum machine, and a sequencer. Before MIDI, it would have been virtually impossible to connect the four machines in any mutually productive combination. But through MIDI, you physically connect the four with cables and communicate
via a common set of transmission signals that travel from machine to machine.

MIDI itself is an open-ended set of specifications, designating a minimum group of standards that all companies can follow. At the hardware, or machine, level, MIDI is really quite simple. MIDI ports can be MIDI IN, MIDI OUT, or MIDI THRU. MIDI IN ports receive the digital data, MIDI OUT ports send the data, and MIDI THRU ports pass along the data. The plugs, jacks, and cables used by MIDI must be the same. The cable is the common shielded, twistedpair type, and the ports are the standard five-pin DIN variety.

There are 16 separate MIDI channels that can be set to send, carry, or receive data from different instruments. In the newest instruments, individual voices can be assigned to different channels. They operate in much the same way that television channels do, but the sending and receiving options are much more flexible and interactive with MIDI channels. There are also a variety of modes for sending and receiving information. As you can see, at its most basic level, MIDI is very simple; at higher levels, with many machines interconnected and different channels carrying different voices, the results can become both complex and powerful.

The New Professional Environment

For most computer users and amateur musicians, however, there's no real need to become a technical wizard to exploit the promise of MIDI. Some new computers, like the Atari ST, come with MIDI ports already installed. And MIDI interfaces for personal computers are getting much cheaper and more versatile.

For professional musicians, there's every reason to explore the

The computer becomes your musical accompanist and teacher with Instant Music, from Electronic Arts.
many uses of MIDI. The results among musicians who have already become proficient with computeraided, MIDI-controlled composition and performance have been remarkable. Most dramatic, perhaps, are the works of composers such as Jan Hammer, who every week single-handedly scores an hour-long episode of the television program "Miami Vice" from the computer-controlled recording studio in his home. In a similar fashion, the composer Vangelis created, by himself, the entire award-winning score for the movie Chariots of Fire, composing and producing all of the music.

Frank Zappa-who has, in the past, delighted in writing musical compositions too difficult for musicians to play-now has digital music machines that can do the job quite easily. "I use synthesizers for three things," says Zappa. "For generating sounds that never existed before, for performing music which human beings would have difficulty playing, and to get rid of some of the drudgery of composition.'

While professional musicians may be more experienced in composing and performing music, their goals are not unlike those of nonmusicians who want to make music. And thanks to a new breed of music software, amateurs today can do more and sound better than ever before.

Improving Hardware

Making music on a computer has come a long way in a very short time. Before computer manufacturers put music chips in their computers, some adventurous computer users made sound by actually programming their computers to tell their printers to tap out meager rhythmic patterns. The first soundproducing computers used simple tone generators with oscillators that

could affect pitch and volume, and not much more.

For several years, the Atari eight-bit computers' four-voice sound chip was the best that could be had on a personal computer. But then came the Commodore 64's amazing SID (Sound Interface Device) chip which-five years lateris still a remarkable sound processor.

But the greatest leap has been in the advances in sound-generation capabilities that have come with the latest generation of computers. Add to that the vastly expanded power that these computers have because of their 512 K and even one-megabyte memories, and the musical landscape looks even broader.

The Amiga's four-voice stereo sound output, with independently programmable volume level and sound-sampling rates, is only now beginning to be effectively tapped. And the Apple IIGs computer goes even further in sound generation with the amazing Ensoniq Q chip that has 15 separate, two-oscillator voices and a built-in analog-todigital converter. It will take a while before software developers exhaust the musical power of the Amiga and Apple IIGS computers.

At the same time, both the Macintosh and the Atari ST computers arè attracting professional and amateur musicians alike to their powerful and yet easy-to-use environments. During the past couple of years, software developers have produced quite an array of music-composition programs for the Macintosh, and the same situation seems likely for the ST. In fact,

Atari engineers realized that the potential for musical applications of the ST was so great that they designed MIDI IN and MIDI OUT ports on the back of the STs when they were first built. So, instead of needing a MIDI interface to connect between the computer and MIDI instruments, the ST is already set for MIDI use.

More Memory, More Music

There has developed a very large library of music software for eightbit machines like the Commodore 64 and the Apple II-series computers. And many professional musicians first began tinkering with digital music, MIDI, and computers on one of these eight-bit machines.

But despite the flexibility of these computers, the pros soon found themselves reaching the limit of memory on the 64 K machines. It's possible to get about 6000 notes into memory at one time on a Commodore 64. And if you want to process those notes in any advanced ways-say, by pitch bending or using a modulation wheel on a MIDI-equipped synthesizer-the memory is used even faster.

The new-generation computers, with 512 K or as much as one megabyte of memory, can handle virtually all of the notes and processing that even the most demanding composer can throw at them. Software companies have not been slow to realize this potential. Activision, Aegis Development, Cherry Lane Technologies, Dr. T's Music Software, Electronic Arts (EA), Hybrid Arts, MidiSoft, Passport Designs, Sonus, and Southworth

Music Systems are but a few of the companies that have produced a number of music software programs for both professionals and amateurs. (See accompanying music buyer's guide.)

There are almost as many kinds of music software available today as there are packages. But most of them fall into one of three broad categories: educational programs aimed at systematic teaching, training, and/or practice of musical knowledge and skills; entertainment software aimed at unleashing the creative and playful aspects of music creation and performance while also allowing some level of serious productivity; and MIDI-related programs that serve as controllers for you to use with your computer and one or more MIDIequipped musical instruments.

Many of the educational programs have proven to be a boon to music instruction in school settings as well as in the home. But it's the latter two categories-the creative programs and the MIDI pro-grams-that seem to be capturing the fancy of most amateur and professional musicians. In addition, an increasing number of the newest music-creativity programs are being developed with MIDI compatibility already built in.

The range of options and features that are a part of most MIDI programs-sequencers, editors, controllers-is remarkable. Passport Designs' new Midisoft Studio for the ST, for example, is a complete multitrack recording studio and sequencer that features realtime recording, playback, overdub, rewind, and fast forward. It has 32 polyphonic tracks which are independently controlled, and a capacity for more than 80,000 notes per song. In addition, there is full track editing for combining, moving, copying, and erasing any combination of the 32 tracks. In other words, you can change virtually any musical parameter you can think of in just about any manner.

For computer users who aren't interested in using their machines with electronic synthesizers, drum machines, digital pianos, and the

Activision's The Music Studio is an entertaining creativity program which also has a full set of music-composition tools.
like, there are plenty of software programs that use just the computer to compose and perform music. Among the best-known and the most complete of these programs for both 8 -bit and new 16 -bit computers are Activision's The Music Studio and Electronic Arts' Music Construction Set (and the new Deluxe Music Construction Set).

The Music Studio, for example, is something of a musical tool kit that has an impressive array of features, but is also accessible to beginners. The program offers full composing capabilities, as do many programs, but there are also tools for creating your own instruments and sound effects, and a "paintbox" feature for free-form musical experimentation. Activision also offers MIDI capability on the ST, Amiga, Tandy 1000, and Commodore 64 versions.

In a similar fashion, Music Construction Set and the new deluxe version offer free-form composition tools and user-definable sounds. The emphasis in both programs is to give the beginner plenty to play around with and to enjoy, without having to know too much at the start. As the level of knowledge and skill goes up, the programs have built-in tools that are quite sophisticated.

Your Computer Accompanist

A most interesting offshoot from these composition and entertainment programs are software packages that actually become accompanists to your creative and performance efforts. This is the logical next step, and one that promises to bring even more non-
musicians into the computer-music fold.

One of the newest and best examples of this breed of helpful music software is Electronic Arts' Instant Music, a program that won't let you make a mistake-unless you want to. The software does this by keeping you in the right key and rhythm no matter what you're playing. You can even "Mousejam" along with the program-using the mouse to control one instrument as several other instruments play a composition. No matter where you move the mouse on the musical staff, you're in key and in rhythm and always following the melody. The computer becomes your musical partner. For a nonmusician, the experience is both fascinating and educational.

Instant Music, and a few programs like it, provide that one extra step that can help a beginner really get excited about creating music. "Instant Music is a result of what we learned from Music Construction Set," says EA producer Stewart Bonn. "Although we had freed a person from having to play a keyboard in order to play music, we hadn't necessarily taught them where to place the notes. And, unfortunately, music composition is composed of a lot of rules that not a lot of people understand.
"Instant Music lets the computer take care of all those rules," he says. "It's as though you had the computer holding your hand and guiding you."

It's clear that the digital-music invasion is just underway. And computers will remain in the forefront of this amazing musical transformation. The digital music machines and computers that you can buy today for less than a thousand dollars can produce far more sophisticated results than musicians could have achieved 20 years ago in a firstrate recording studio. And much of that power comes from MIDI.

Says one music-software developer, "The real power is with the consumer. MIDI will allow the marginal musician perfect performances, if he's willing to use it."©

TEST DINE ONE FOR YOURSELF

In their day, they ruled over three quarters of the earth's surface.

During WWII, they viciously brought Britain to her knees. And Japan to the ground

These were the silent killers: Tench. Gato. U-Boat.

And now, they return. In this, the most realistic, all-encompassing simula-

TAKE OUR PREVIEW DISK FOR A SPIN. Drop this coupon in the mail with your check or money order, and we'll gladly send you to the South Pacific to have it out with an enemy fleet.
Mail to Sub Battle Preview, P. O. Box 8020, Redwood City, CA 94063.

	Quantity	
Apple II \& compat. $(128 K)$	Total	
Commodore $64 / 128$		$\$ 1.50 \mathrm{ea}$.

And the contents of a vital target book, among other things.

Your arsenal will include deck and antiaircraft guns. Torpedoes. And mines.

But even all that may not be enough.

Because besides the risk of bumping a depth charge or facing a killer Destroyer, you'll still have to contend with the gunfire of enemy aircraft.

No simulation has 30: ever had the degree of
tion ever created for the personal computer.

You will command one of six types of American subs or German Kriegsmarine U-Boats, during any year from 1939 to 1945. You'll perform one of over

60 missions. Or you'll engage in the most difficult task of all: To make it through the entire war. Each vessel is completely unique and painstakingly authen tic, so you'll have a lot to learn: Navigation. Weather. Radar.

The No. 1 battery. Sea guard radar stub. The ship's heart.

The 360° periscopes. authenticity, gut-wrenching action or historical accuracy of this one.

The first release of our new Masters Collection. And a challenge of unbelievable depth.
Apple II \& compatibles, Apple IIG
Atari ST, C64/128, IBM \&
compatibles, Macintosh.
Independent generator
Salt water tank, for trimming and compensating. $5^{\prime \prime} 25 \mathrm{cal}$ gun.

Electronic Music Terms

Amplitude-loudness.

Analog sound-recordings on ordinary tape recorders or vinyl records. The sound waves on these media replicate the waves which will hit the air when the tape player or record player is turned on. You can see them if you look closely at an LP: little fluctuations in the grooves which are an analogy of the sound therein contained.
Bandwidth-the amount of fidelity. The distance between the lowest and highest frequencies possible in a given instrument or device.
Digital sound-recordings on compact disc or digital tape. The sound waves bumping against a microphone are translated into numbers (digits) which are then stored. Sound information stored in this fashion is far less susceptible to the dust, warpage, and other kinds of decay which have plagued analog storage media since their invention in the nineteenth century. More importantly, the numbers can be easily processed at virtually no cost. If you want to add echo, just copy the pitch numbers, adjust the timing numbers, and reduce the loudness numbers associated with the copy. All this is a software event in the digital domain: Nothing physical has to happen, just some math. Contrast that to the expensive electronics required to send analog music through a device that has to somehow physically control the necessary repetitions and relationships.
Dynamics-variations in amplitude.
Envelope-how the sound builds and dies away. Broken into four fundamental phases-attack, decay, sustain, and release-the envelope of a sound is the variation in its amplitude over time.

The ear is very sensitive to variations in the loudness of a

sound, and the envelope is one of the most important ways that we distinguish different musical instruments. Some instruments have similar waveforms (pitch relationships) but are easily told apart because one abruptly goes silent while the other slowly fades.
Fidelity-how well a recorded or synthesized sound matches the original. For instance, a two-inch speaker will always be low fidelity no matter how good a signal you feed into it. It's just too small; few musical instruments have two-inch openings through which their sounds normally pass. Forcing the big boom of a bass drum through a two-inch opening is a doomed endeavor: The sound waves are just too large to fit through, and such a speaker is politely described as "lacking in bass." Attach larger speakers to the system, though, and you'll get higher fidelity.
Filtering-selectively removing elements of a sound. When you turn down the treble control on your stereo set, you are filtering out some of the high-frequency content of the music. It sounds less bright because you are invoking a variable filter which eliminates a portion of the sound.
Low-pass filter-a device which allows the low-frequency content of a sound to pass through, but blocks the high-frequency content. In digital recording, there are effects beyond the range of human
hearing which nevertheless can distort the sample and which require low-pass filtering. Such filtering is also used to eliminate hiss or other high-frequency noise.
Noise-disorganized sound. Noise can come from the 60 -cycle-persecond hum of ordinary electrical current if electronic equipment isn't properly grounded, from the hiss caused by imperfections in recording tape, or from other sources such as inadequately shielded computer circuitry. Whatever its source, noise is a constant problem in the creation of music and its high-fidelity reproduction. Tape hiss might well be the exact same sound as a brushed cymbal, but the cymbal is brushed with the music, on the beat, while the tape noise is random. Orchestration-the choice of instruments. Deciding, for example, that you want your melody played by a clarinet and not by an oboe is orchestration.
Oscillator-an electronic device which vibrates, causing electrical signals to take on waveforms. Useful in generating sound.
Pitch-how high or low a sound is. Polyphonic-more than one sound at a time. A soloist singing a melody without accompaniment is monophonic. But when you add a guitar, a drum, and other musicians, you get polyphony. An important aspect of a musical instrument is the number of sounds it can make simultaneously. A drum is normally monophonic, but a set of drums can be played polyphonically.
Reverb-complicated clusters of echoes which add fullness and naturalness to a sound and which are caused by reflections of sound waves off the walls of a room. Differences in reverberation are what you hear when you can distinguish the sounds made by the same piano

New books from COMPUTE!

> COMPUTE! Books is bringing you a brand new line up of books for your Commodore 64 and 128. These recent releases offer you everything from programming hints to exciting games, from educational to home and business applications.

Pascal for Beginners

$\$ 14.95$
0-87455-068-8
Book/disk combination for the Commodore 64 \$29.95

ISBN 0-87455-069-6
This introductory text to standard Pascal on any computer is an ideal tutorial for anyone who wants to learn this powerful computer language. It includes everything you need, including an introductory Pascal interpreter* for the Commodore 64 and 128 in 64 mode, ready to type in and use. Written in plain English and offering numerous program examples, it gently and clearly explains standard Pascal and structured programming. Latter sections include discussions of advanced topics such as files and dynamic data storage. There is also an optional disk available for $\$ 12.95$ for the Commodore 64 which includes most of the programs in the book. 688BDSK.
-The Commodore 64 Pascal interpreter is not full-featured, but still a powerful implementation of Pascal which suits the needs of most beginners.

COMPUTE!'s Music System
for the Commodore 64 and 128
Book/disk combination only
\$24.95
ISBN 0-87455-074-2
Sidplayer, the feature-packed, popular music player and editor program, is now more versatile and more impressive than before. Enhanced Sidplayer for the Commodore 128 and 64 includes two new versions-one for the Commodore 128 running in 128 mode and another for the Commodore 64. Take advantage of every feature the SID chip (the sound chip in the 128 and 64) has to offer. Just like the original, Enhanced Sidplayer is easy to learn and use, with many powerful new features. The accompanying disk contains the editor, player programs (including a Singalong program), utilities, and sample music that you can enjoy immediately or change. The new Sidplayer plays any songs created by the original Sidplayer for the Commodore 64.

User's Guide to GEOS: geoPaint and geoWrite $\$ 18.95$
 ISBN 0-87455-080-7

Learn the ins and outs of GEOS, the new icon-based operating system for the new Commodore 64C and the 64, with this step-by-step guide. Everything from creating simple letters with geoWrite and pictures with geoPaint to merging text and graphics and using desk accessories is clearly and concisely explained.

COMPUTE!'s Second Book of the Commodore 128 $\$ 16.95$
 ISBN 0-87455-077-7

The editors at COMPUTE! Publications have collected some of the best games, programs, and tutorials for the Commodore 128 (in 128 mode) from COMPUTEI magazine and COMPUTEI's Gazette. Like COMPUTEI's First Book of the Commodore 128, this book offers a variety of programs and articles for every 128 user. Each program has been fully tested and is ready to type in and use on the Commodore 128 running in 128 mode. There is also a disk available for $\$ 12.95$ which includes the programs in the book. 777BDSK.

Mapping the Commodore 64, Revised

 $\$ 16.95$ISBN 0-87455-082-3
An update of the bestselling memory map and programming guide. It's a necessity for intermediate and advanced programmers. This definitive sourcebook has been expanded and now covers the new icon-based GEOS (Graphics Environment Operating System) with clear descriptions of how to make it work for you. For BASIC and machine language programmers of both the Commodore 64 and 64C.

Look for COMPUTE! Books at your local computer or book store. Or, to order directly from COMPUTEI, call toll free 1-800-346-6767 (in NY 212-887-8525) or write COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
Please include shipping and handling: $\$ 2.00$ per book in U.S. and surface mail; $\$ 5.00$ airmail.
NC residents add 5 percent sales tax and NY residents add 8.25 percent sales tax.
Please allow 4-6 weeks for delivery.

- IBM - COMMODORE -EPSON —— NLQ 180 SPECIFICATIONS

Print Buffer
8 K bytes utility buffer
Printing Direction
Text Mode - Bi-directional
Graphic Mode - Uni-directional Interface
Centronics type parallel (8-bit)
Paper
Plain paper, Roll paper, Single sheet
Fanfold, Multipart paper: max. 3 sheets (original plus 2 copies)
Character Fonts
Pica, Elite, Italics, Condensed

Printing Method
Impact dot matrix
Printing Speed
160-180 CPS at standard character printing
Printing Characters
Standard 9×9 dot matrix
NLQ 12×18 dot matrix (33 cps)
Character size: $2.12 \times 2.8 \mathrm{~mm}$ (standard)
Character sets: Full ASCII character set (96)
32 International characters

INTERFACES
Atari $\$ 39.95$ Apple $\$ 49.95$ Commodore $\$ 29.95$

Add $\$ 10.00$ for shipping, handling, and insurance. Illinois residents please add $61 / 2 \%$ sales tax. Add 20.00 for CANADA, PUERTO RICO, HAWAII, ALASKA, APO-FPO orders. All orders must be in U.S. Dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA. Enclose Cashier Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail. Prices \& Availability subject to change without notice.
VISA - MASTER CARD - C.O.D.
C.O.D. on phone orders only.

- - APPLE - ATARI - ETC.

Ink Ribbon Cartridge
Ribbon Life: 3 million characters/cartridge
Physical Dimensions
Size: $15^{\prime \prime} \times 12$ ' $\times 5$ "'
Weight: 12.7 lbs.
Maximum Number of Characters

Standard:	10 cpi	80 cpl
Standard enlarged:	5 cpi	40 cpl
Elite:	12 cpi	96 cpl
Elite enlarged:	6 cpi	48 cpl
Condensed:	17 cpi	132 cpl
Condensed enlarged:	8.5 cpi	66 cpl
Condensed elite:	20 cpi	160 cpl

Laser \$19.95

COMPUTER DIRECT
22292 N. Pepper Rd., Barrington, Illinois 60010 Call (312) 382-5050 or 382-5244 to Order We Love Our Customers

Look at all you get for only ${ }^{\mathbf{5} 599^{\circ 0}}$

The complete system

10 MHz Super Turbo XT Computer

* 512 K Memory
* Single floppy disk drive
* Parallel printer port
* Serial printer port
* Mouse/joystick port
* RGB color graphics port
* Hercules compatible monochrome port

MS DOS 3.2 \& GW Basic
12'' Hi-Res 35 MHz Green Screen Monitor
(TTL \& EGA compatible)
Monitor interface cable
Big Blue Printer
RS 232 IBM to Big Blue cable
2 rolls of paper
Word First • Word Processor
Data First • Data Base
Calc First • Spreadsheet

List Price
s $1295^{\circ 0}$
599^{95}
$5129^{\circ 5}$
559^{95}
559^{95}
\$59.5
599^{5}
579^{95}
\$19900
${ }^{5} 249^{\circ 0}$
${ }^{5} 24^{95}$
${ }^{5} 199^{\circ 0}$
${ }^{5} 19^{95}$
519^{95}
59900
s9900
$\$ 99^{\circ 0}$

Sale Price
${ }^{3} 499^{\circ 0}$
No extra cost
\$9900
${ }^{8} 99^{\circ 0}$
${ }^{8} 19^{95}$
${ }^{8} 3995$
${ }^{5} 995$
${ }^{5} 5^{95}$
${ }^{3} 39.5$
${ }^{8} 3995$
${ }^{8} 3995$ reports, calculations, business projections...the list can go on and on. With the addition of some of the thousands of software programs available for IBM® you can increase the capabilities of your system even further. A terrific home improvement, business enhancer, entertainment center \& educational aid!

Save over \$27500 off sale prices!

${ }^{8} 892^{65}$
Complete System only '599

- Built-in the Super Turbo XT IBM® is the trademark of International Business Machines Inc.
*90 Day Immediate Replacement Policy from Computer Direct
Shipping. Handling \& Insurance Charges and Information

Add $\$ 35.00$ for shipping, handling and insurance. Illinois residents please add $61 / 2 \%$ sales tax. Add $\$ 70.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA and APO-FPO. All orders must be in U.S. dollars. Enclose Cashier Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail. Prices \& Availability subject to change without notice.
VISA - MASTERCARD - C.O.D.
Please call for C.O.D. charges.

22292 N. Pepper Rd., Barrington, Illinois 60010
Call (312) 382-5050 or 382-5244

played in a small room or played in Carnegie Hall. Reverb is often added artificially in recording studios to make music sound more real and more pleasing to the ear.
Ring Modulation-a special way of superimposing filtering on a sound which results in the exotic, constantly shifting timbre characteristic of bells and gongs.
Sampling-making a brief digital recording of a sound or musical instrument. Although we're all familiar with analog recording using tape recorders, the quality of digital recording can be much greater; and the resulting sound, captured in RAM memory instead of tape, is far easier to work with. For example, if you sampled the sound of a pencil hitting a cup, you could then play the sound back at different pitches, as if you had 88 cups sitting inside a piano, 1 for each key. Or you could modify the sound in a variety of ways (echo, play it in reverse, and so forth), which is quite easy to do when the sound resides in computer RAM memory, but difficult, if not impossible, when it's on tape. Sampling, however, does use up RAM memory very quickly. A few seconds of sampled sound can require thousands of bytes of storage space.
Sampling Rate-how often, per second, the sound waves hitting a microphone are measured and transformed into numbers. All things being equal, the higher the sampling rate, the more the resulting sample will resemble the original.
Sonic-pertaining to sound.
Sync-using one oscillator to control another to produce such effects as tremolo (where the pitch rapidly rises and falls, almost like yodeling) or vibrato (where the amplitude rises and falls).

Synthesis-creating artificial sounds from scratch. Using the elements of sound (waveforms and envelopes), it is possible to build very close approximations of acoustic instruments or to invent entirely new sounds.

Sound is vibration. It's a disturbance of the air that forms wavelike patterns which strike the ear. And there are two fundamental elements to sound: pitch and amplitude. Pitch is how high or low the sound is on the musical scale and is a direct result of how many vibrations per second are occurring. A high pitch is caused by frequent vibrations; a low pitch by fewer vibrations. The amplitude is how loud the sound is.

Synthesists can use electronics and computers to create waveforms and control amplitude in complex ways. They can superimpose, invert, filter, and otherwise manipulate them into sounds that are designed rather than natural. Modern music is becoming increasingly reliant on synthesis in the same way and for the same reasons that modern manufacturing increasingly relies on synthetic materials: The product is often less expensive, more reliable, and, sometimes, cannot be found in nature.
Transpose-applied to digital sampling, this means to move a sound up or down in pitch. A drum transposed up three octaves could sound like a bird chirp-a shorter and higher-pitched sound. Transposing a sampled sound so far from its normal range is called the Mickey Mouse effect because the sound begins to take on an odd, hollow quality. For this reason, several different samples of instruments with wide pitch ranges (such as the guitar) need to be made. The piano, one of the most difficult instruments to
sample, requires many samples across its range. The waveforms of the low notes and high notes on a piano are so distinct that they seem to derive from different instruments altogether.
Voicing-adding character to a sound. Changing the voicing of an organ can make it sound like reed or wind instruments, for example. Waveforms-The sometimes intricate shapes of the sound waves characteristic of different sounds. The sine wave (shown below), the simplest waveform, sounds like a flute.

A sine wave
If you start to deform the waves, like this:

A modified sine wave
you'll start hearing a more raspy sound. Enough deformation, and you can end up with what sounds like a trumpet. Manipulating waveforms, in combination with control over a sound's envelope, can produce the sound of any instrument. The unique quality of an instrument's sound, its particular waveform, is called its timbre.

Everything for the Amiga. From BASIC beginner's guides to advanced programming handbooks, COMPUTE! offers you information-packed tutorials, reference guides, programming examples, ready-to-enter applications, and games to help you develop your computing skills on Commodore's Amiga.

COMPUTE!'s AmigaDOS

Reference Gulde
Arlan R. Levitan and Sheldon Leemon A comprehensive tutorial and reference guide to the powerful AmigaDOS-the operating system underlying the Workbench and Intuition-this book offers information useful to every Amiga owner. It defines and illustrates all DOS commands, and shows you how to create file directories, access peripherals, run batch file programs, and avoid "disk shuffle." The screen- and line-oriented text editors are explained in detail. Numerous examples and techniques explain how to use AmigaDOS to make operating your Amiga both convenient and efficient.
\$16.95 ISBN 0-87455-047-5

Elementary Amiga BASIC

C. Regena

Here's your introduction to the new and powerful BASIC on the Amiga personal computer. The Amiga's impressive graphics, animation, and sound can be unlocked with the right commands, and BASIC is the place to start. Complete descriptions of Amiga BASIC's commands, syntax, and organization take you from the beginner level to a full-fledged programmer. Plus, the book offers you ready-to-type-in programs and subroutines while showing you how to write your own programs. There is a disk available which includes the programs in the book, $\$ 12.95$. This title is also available as a book/disk combination for $\$ 29.95$ (057-2).
\$14.95 ISBN 0-87455-041-6

COMPUTEI's Amiga
Programmer's Guide

Edited

Your tutorial and reference manual to AmigaDOS, BASIC, Intuition, and other important software tools which accompany the new Amiga, COMPUTE!'s Amiga Programmer's Guide is a clear and thorough guide to the inner workings of this fascinating newgeneration computer. The great speed of its 68000 microprocessor, coupled with the versatility of the Amiga-specific graphics and sound, makes the Amiga one of the most powerful computers available today.
This book is the key to accessing the Amiga's speed and power.
\$17.95 ISBN 0-87455-028-9

Advanced Amiga BASIC

Tom R. Halfhill and Charles Brannon
This guide to applications programming on Commodore's new Amiga contains everything an intermediate programmer requires to begin creating sophisticated software on this powerful machine, including several ready-to-type-in programs. Clear, yet comprehensive documentation and examples cover advanced BASIC commands, designing graphic applications, generating sound and music, using the Amiga's built-in speech synthesizer, creating a user interface, and programming the computer's peripherals. There is a disk available which includes the programs in the book, $\$ 15.95$. (June release)
\$17.95 ISBN 0-87455-045-9

Look for these books at your local book or computer store. Or order directly from COMPUTE!.
 Call toll-free 1-800-346-6767 (in NY 212-887-8525).

COMPUTEI's Beginners Guide to the Amiga

Dan McNeill

Written in a lively and entertaining style, this book teaches you everything a beginner needs to know to get started quickly with the Amiga from Commodore. You will learn about setting up the system, all the most popular types of software, and details about the hardware. \$16.95 ISBN 0-87455-025-4

Inside Amiga Graphics

Sheldon Leemon
The Amiga, Commodore's powerful new computer, is an extraordinarily impressive graphics machine. Easy to use, the Amiga can produce color graphics and excellent animation. You'll find thorough descriptions of the computer's abilities and the hardware required to create a complete graphics system. Software, too, is central to the Amiga's power, and complete tutorials show you how to get the most from the machine. (June release) \$17.95 ISBN 0-87455-040-8

COMPUTE!'s Kids and the Amiga

Edward H. Carlson

The latest in this bestselling series written by Edward Carlson, COMPUTE!'s Kids and the Amiga, will acquaint you with BASIC. Over 30 sections-all with instructor notes, lessons. assignments, and lively illustrations-entertain and amuse you as you learn to program your new computer. Clear writing and concise examples make it easy for anyone-children and adults alike-to painlessly learn BASIC. (May release)
S14.95 ISBN 0-87455-048-3
Please allow 4-6 weeks for delivery after your order is recelved.

A Buyer's Guide To Music Software

The programs listed here are only some of the hundreds of music software packages available for personal computers. This buyer's guide is not meant to be exhaustive, but does give you some idea of what's available and which companies are producing music software. A number of the companies mentioned here have a variety of other music programs available. The following guide does not attempt to include the professional programs priced significantly above the general consumer level. Note that prices and machine availability change frequently.

Product	Price	Publisher/ Vendor	System	Description
Adams' Music Disk Version 6.0	\$39.95	Adams' Soft	Apple II, IIe, IIc	Elementary music-learning program with colorful graphics. Most useful for elementary-school teachers.
Advanced Music System	\$79.95	Firebird	Commodore $64 / 128$	A music program allowing creation of full compositions with MIDI capability. Suitable for the professional musician as well as beginners.
Aegis Sonix	\$79.95	Aegis Development	Amiga	Create any type of music by combining multiple instruments and sounds with this professional music-composition program. An expanded version of a program originally called Musicraft.
Bank Street Musicwriter	\$49.95	Mindscape	Apple II+, IIe, IIc; Atari eight-bit; Commodore 64; IBM PCjr	Composing comes to life as you arrange music on the screen. It's as easy to learn as arranging words in word processing.
Basic Chords	\$39.95-\$99.95	Electronic Courseware	Apple II + , IIe, IIc; Commodore 64/128; IBM PC, PCjr; Tandy 1000	Computer plays a basic chord or its inversion, which the user must then identify.
Basic Guitar 1	\$50	Digital Concept Systems	Apple II, II + , IIe	Two-disk set of sound and graphics to teach chords to beginning guitarists.
Basic Piano Theory Software	\$29.95	Alfred Publishing	Apple II + , IIe, IIc; Commodore 64/128	Creative graphics and animation in game formats reinforce concepts taught in Alfred's Basic Piano Theory.
Beatles Classics	\$29.95	DJ Software	Commodore 64/128	Strum-along-song disk comes with 15 songs, from "Hey Jude" to "Hard Day's Night."
Camus	\$50	Conduit	Apple II; IBM PC	Set of exercises that train the ear to perceive musical notation.
Chord Power for Guitar	\$39.95	Newarts	Commodore 64	Displays over 10,000 guitar chords with sound at user's request.
Chord Primer	\$49.95	Dynacomp	IBM PC, PCjr	Program capabilities range from a built-in library of over 600 chords to a set of automated lessons on music theory for guitar.
Chords	\$79	Wenger Computer Software	Apple II, II + , IIe	Intermediate or advanced music students drill and practice chord identification for ear training.
Christmas Classics	\$9.95	Free Spirit Software	Commodore 64/128	"Joy to the World," "Deck the Halls," "Twelve Days of Christmas," and "Jingle Bells" are among the over 40 songs included.
Christmas, Volume 3	\$15	Great Wave Software	Mac, Mac Plus	Collection of Christmas songs.
Classical Selection, Volume 5	\$15	Great Wave Software	Mac, Mac Plus	Collection of favorite classical music.
Clef Notes	\$39.95	Electronic Courseware	Apple II + , IIe, IIc; Commodore 64/128; IBM PC, PCjr; Tandy 1000	Drill-and-practice in identifying notes as they're placed on the treble, alto, tenor, and bass clefs.
Coco Notes	\$12.95	CBS Interactive Learning	Atari eight-bit; Commodore 64	Players try to catch notes, create melodies, and fish for tunes. Teaches sound discrimination, musical patterns, and composition. For ages 6 and up.
$\begin{aligned} & \text { Computer } \\ & \text { Song/Album/Music- } \\ & \text { Video Hits } \end{aligned}$	\$15.95	Sight \& Sound Music Software	Commodore 64	Listen to hits of favorite artists while controlling computergenerated instrument sounds and special effects.
COMPUTE!'s Music System for the Commodore 128 \& 64	\$24.95	COMPUTE! Publications	Commodore $64 / 128$	Enter, edit, and play the most sophisticated music possible on the Commodore 128 and 64 with Enhanced Sidplayer.
ConcertWare + MIDI	\$139.95	Great Wave Software	Mac, Mac Plus	Control any MIDI-compatible electronic keyboard, synthesizer, or drum machine. Record voices as you enter them monophonically on an electronic keyboard.
$\begin{aligned} & \text { ConcertWare }+ \text {, Version } \\ & 3 \end{aligned}$	\$69.95	Great Wave Software	Mac, Mac Plus	Create, edit, print, and play music files; create new instrument sounds, as well. Some music and instruments included.
Deluxe Music Construction Set, Version 2.0	\$99.95	Electronic Arts	Mac, Mac Plus; Amiga	Improved and redesigned to take full advantage of these powerful computers. Enter notes directly on the staff with the mouse or from onscreen keyboard.

Renu to your dealer to check out this GREAT SOFTWARE

Abstract

"...everything a good compiler should be...easy to use...efficient...offers a good range of optional features...excellent documentation...inexpensive." Tom Benford, Commodore Magazine

Give your
BASIC programs a boost!

Basic Compiler

Now anyone can speed up their BASIC programs by 3 to 35 times! Basic-64 and Basic-128 easily converts your programs into fast machine language or speedcode (takes up less space yet protects your programs from prying eyes) or a mixture of both. You can even compile programs written with extentions-Simon's Basic, VICTREE, BASIC 4.0, VideoBasic and others. When the compiler finds an error, it just doesn't stop, but continues to find any other errors as well. Supports overlays and has many other options. 128 version works in FAST mode and allows you to use all 128 K of memory. If your program walks or crawls, give it the speed to RUN!
for C-64 \$39.95
for C-128 $\$ 59.95$

Super C

C is one of today's most popular languages. It's easy to transport C source code from one computer to another. With Super C you can develop software or just leam C on your Commodore. Super C is easy to use and takes full advantage of this versatile language. Produces 6502 machine code and is many times faster than BASIC. Includes full-screen editor (search, replace and block

operations), compiler, linker and handbook. Combine up to seven modules with the linker. Besides the standard I/O library, a graphic library (plot points, lines, fill) and a math library (sin, cos, tan, log, arctan, more) are included. Whether you want to learn C , or program in a serious C environment for your Commodore, Super C is the one to buy. for C-64 \$59.95
for C-128 $\$ 59.95$

PPM

Personal Portfolio Manager is the most comprehensive stock market portfolio management system available for the 64 or 128-For investors who need to manage stock portfolios, obtain up-to-the-minute quotes and news and perform selected analysis. Allows multiple portfolios for special intrests (high tech, low risk, income, etc.) and monitored individually. And the versatile report generator lets you produce any kind of report to analyze a portfolio or stock. You can even update your portfolio automatically using Dow Jones or Warner Computer Systems and your modem.
for C-64 \$39.95
for C-128 $\$ 59.95$

"...Personal Portfolio Manager will help you make the most of your money." Jim Grubbs, RUN Magazine
"...a customized data base with advanced telecommunications features and a relatively sophisticated report generator. This combination is hard to beat on any microcomputer. Ted Salamone, Commodore Magazine

... and SUPER BOOKS!

Anatomy of the C-64 Ansider's guide to ' 64 internals. Graphics, sound, I/O, kernal, memory maps, and much more. Complete commented ROM listings. 300pp $\$ 19.95$

Anatomy of the 1541 Drive Best handbook on this drive, explains all. Filled with many examples programs, utilities Fully commented 15, ROM listings. $\quad 500 \mathrm{pp}$ \$19.95

Tricks \& Tlps for the C-64 Collection of easy-to-use techniques: advanced graphics improved data input, CP/M, enhanced BASIC, data hand ling and more. 275pp \$19.95

GEOS Inside and Out Detailed info on GEOS. Add your own applications to GEOS. Edit icons. Constant display clock. Single-step through memory.

GEOS Tricks and Tlps Collection of helpful techniques for all GEOS users. Includes source for a font editor and a machine lang uage monitor.

 INTERNALS

 C-128 INTERNALS

 Important C-128 information. Covers graphic chips, MMU, I/O, 80 column graphics and fully commented ROM listings, more. 500pp $\$ 19.95$

Essential reference. Internal drive functions. Explains various disk and file formats. Fully-commented ROM listings. $450 \mathrm{pp} \$ 19.95$

C-128 TRICKS \& TIPS Fascinating and practical info on the $\mathrm{C}-128.80$-col hires graphics, bank switching 300 pages of useful inform ation for everyone. $\$ 19.95$

C-128 PEEKS \& POKES Dozens of programming quick-hitters. techniques on the operating system, stacks, zero page, pointers, and
BASIC.
$240 p p$ \$16.95

C-128 BASIC7.0Internals Get all the inside info on BASIC 7.0. This exhaustive handbook is complete with fully onmmented BASIC 7.0
RON is int RON lis inlolvivivilat.95

Product	Price	Publisher/ Vendor	System	Description
Ear Challenger Game	\$39.95	Wenger Computer Software	Apple II, II +, Ile	An aural/visual game designed to increase tonal memory of a series of pitches. Seven levels of difficulty. For elementary, intermediate, and advanced students.
Early Music for Musicworks	\$15	Recreations Software	Mac, Mac Plus	More than 60 music files of early music of many different styles, sounds, and moods.
Early Music Skills	\$39.95	Electronic Courseware	Apple II + , IIe, IIc; Commodore 64/128; IBM PC; Tandy 1000	Note-recognition tutorial and drill for beginning music students. A MIDI version is available.
Early Music, Volume 4	\$15	Great Wave Software	Mac, Mac Plus	Collection of music from the Renaissance period.
Ear Teacher	\$79	Wenger Computer Software	Apple II, II + , IIe	Provides complete record keeping for students using the Intervals, Tunings, Chords, and Melodic games music programs.
Easy Guitar	\$29.95	DJ Software	Commodore 64	Guitar instruction.
Elvis Classics	\$29.95	DJ Software	Commodore $64 / 128$	Strum-along-song disk with 15 songs. Includes "Teddy Bear," "Hound Dog," "Love Me Tender," and more.
Euphony Jr.	\$19.95	TCO Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \\ & \hline \end{aligned}$	A collection of three hours of classical music for your listening enjoyment.
Euphony ${ }^{+}$	\$29.95	TCO Software	Commodore $64 / 128$	Create, edit, and play music in three voices. Print out your music scores.
FB01 Design	\$139.95	Sonus	Commodore 64/128	A double-banked MIDI librarian and editor for use with the Yamaha FB01 FM sound generator.
Find That Tune	\$39.95	Electronic Courseware	Apple II, II + , IIe, IIc, IIcs; Commodore 64/128	Aural/visual program with two difficulty levels.
GlassTracks	\$69.95-\$85	Sonus	Apple II + , IIe, Macintosh; Commodore 64; Atari 520/1040ST	A multifunctional MIDI recording studio.
Guitar Master 1.0	\$49.95	Mastersoft	Commodore 64	A comprehensive program of instruction designed for students, amateurs, and professional guitarists.
Guitar Tutor, Volume 1	\$49.95	Nappo Software	Mac, Mac Plus	Teaches beginning guitarists the correct finger positions of basic chords.
Guitar Wizard	\$29.95-34.95	Baudville	Apple II + , IIe, IIc, IIcs, Mac; Atari eight-bit, ST; Commodore 64/128, Amiga; IBM PC, XT, AT	Learn and analyze scales, chords, and tunings for all types of fretted string instruments. Clear graphic displays of the fretboard, notes, intervals, and finger positions.
Halftime Battling Bands	\$12.95	CBS Interactive Learning	Atari eight-bit; Commodore 64	Children choreograph and stage their own Be-Bop Bowl halftime show. Trip up the opposing band while creating your own marching tunes and band formations.
Hey Diddle Diddle	\$20.95-\$26.95	Spinnaker Software	Apple II, II + , IIe, IIc; Atari eight-bit; Commodore 64; IBM PC	Collection of 30 classic nursery rhymes featuring brilliant color graphics and lively music.
Imagination: Music	\$34.95	Wiley Professional Software	Apple II, II +, IIe	Music is both heard and seen; each song can be repeated, edited further, or saved for future listening.
Incredible Musical Keyboard	\$29.95	Sight \& Sound Music Software	Commodore 64	Transforms the Commodore 64 into a musical instrument complete with black and white keys.
$\begin{aligned} & \text { Instant Keyboard Fun I- } \\ & \text { MIDI } \end{aligned}$	\$39.95	Electronic Courseware	Apple II + , IIe; Commodore 64/128	Twenty-six songs the user plays on a synthesizer keyboard.
Instant Music	\$49.95	Electronic Arts	Amiga	The Amiga accompanies you with the sound of three instruments while you create music using a mouse; a music composition and creativity program.
It's Only Rock'n'Roll	\$29.95	Electronic Arts	Amiga	The first in a series of library disks for use with EA's Deluxe Music Construction Set, Deluxe Video, and Instant Music.
Kawasaki Rhythm Rocker	\$26.95	Sight \& Sound Music Software	Commodore 64	Combines color graphics with electronic instrument sounds and preprogrammed bass rhythms. Features a multitrack recording capability.
Kawasaki Synthesizer	\$29.95	Sight \& Sound Music Software	Commodore 64	Two-disk package that transforms the Commodore 64 into a programmable synthesizer and sound processor.
Keyboard Chords-MIDI	\$79.95	Electronic Courseware	Apple II + , IIe; Commodore 64/128; IBM PC; Tandy 1000, 1200	Tutorial on major, minor, diminished, and augmented chords; a chord spelling drill; and a keyboard drill.
Learning Guitar Overnight	\$39.95	Chipware	Commodore 64	Introduction to the joy of playing a guitar. Learn to strum songs in less than an hour.
Listen	\$69	Imaja	Mac, Mac Plus	Interactive music program providing melodic and harmonic ear training.
Listen!	\$39.95	Electronic Courseware	Apple II + , IIe, IIc; Commodore 64; IBM PC, PCjr; Tandy 1000, 1200	Three lessons designed to help increase the ability to perceive and identify intervals, basic chords, and seventh chords.
Magic Piano	\$49.95	Edusoft	Apple II, II + , IIe, IIc	A music-learning system for any teacher who wishes to introduce music in the classroom. Transforms computer keys into piano keys.

Lyco Computer Marketing \& Consultants
Since 1981

Lyco Computer is one of the oldest and most established computer suppliers in America. Because we are dedicated to satisfying every customer, we have earned our reputation as the best in the business. And, our six years of experience in mail-order computer sales is your assurance of knowledgeable service and quality merchandise.
We fill 95% of all orders every month. Here's how: \bullet lowest prices anywhere \bullet multimillion $\$$ factory fresh inventory \bullet courteous, knowledgeable sales staff $\bullet 24$-hour shipping on in-stock items.
Plus: \bullet free shipping in U.S. on prepaid cash orders \bullet no deposit on C.O.D. orders • no sales tax outside PA • full manufacturers' warranties apply \bullet air freight, UPS Blue/Red shipping available. Call Lyco Computer. See for yourself why so many customers keep coming back to Lyco for the best prices, the most complete inventory, and our fast and courteous service.
To order, call toll-free:
1-800-233-8760
In Penna.: 1-717-494-1030
Customer Service:
1-717-494-1670
Or write:
Lyco Computer, Inc.
P.O. Box 5088

Jersey Shore, PA 17740

Risk-Free Policy: e prices show 4\% cash discount; add 4% for credit cards - APO, FPO, international: add \$5 plus 3\% for priority mail - 4-week clearance required on personal checks - compatibility not guaranteed - return authorization required \bullet we check for credit card theft

Price and availability subject to change without notice.

Vickie Blaker

Customer Service Department Manager
"Our Customer Service Department is one example of how much Lyco Computer cares about your satisfaction. Everyday we talk to people from all over the world, and our goal with each person who calls is to be as helpful, efficient, and courteous as possible. We're ready to find the answers -- from questions about the status of an order, to warranties, to product availability and price -- or guide you to someone who can. And we're always here to help you. . .before, during, and after your purchase."

Product	Price	Publisher/ Vendor	System	Description
Making Music on Micros	\$69.95	Random House Software	Apple II, II+	Learn BASIC programming and music theory at the same time.
Master Composer	\$39.95	Access Software	Commodore 64	Takes full advantage of the sound chip to produce all types of music, from simple melodies to intricate compositions.
Melodian ConcertMaster	\$59.95	Melodian Systems	Commodore $64 / 128$	Combines the capabilities of a music synthesizer, recording studio, and video display. ConcertMaster creates an environment for experimenting and learning about music.
Melodian Keyboard with ConcertMaster	\$159	Melodian Systems	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	This unique system is a major advance in the teaching, learning, and enjoyment of music.
Melodian RhythmMaster	\$59.95	Melodian Systems	Commodore $64 / 128$	RhythmMaster helps develop perfect timing through the use of color-coded video-displayed notes.
Melodian ScoreMaster	\$59.95	Melodian Systems	Commodore $64 / 128$	Program your music and print it out in music notation which other musicians can read and play. Any music recorded with ConcertMaster can be printed.
Melodic Games	\$79	Wenger Computer Software	Apple II, II + , IIe	Drill-and-practice memory dictation for ear training.
MIDI/4+	\$129.95	Passport Designs	Apple II, II + , IIe; Commodore 64	Four-channel multitrack composing and recording tool for MIDI.
MIDI/8 +	\$169.95	Passport Designs	Apple IIe; Commodore 64/128	Eight-channel multitrack recording software that turns your computer and MIDI keyboard into a professional recording studio.
MIDI Jazz Improvisation	\$79.00	Electronic Courseware	Apple II +, IIe, IIc	Provides instrumental and vocal students with play-along material to learn jazz improvisation using original tunes.
Midimac: Patch Librarian-Casio CZ	\$75	Opcode Systems	Mac, Mac Plus	Made for the Casio CZ synthesizer with several banks of patches to store thousands of sounds with MIDI capabilities.
MIDI Processor	\$149.95	Sonus	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \\ & \hline \end{aligned}$	A processing program for use with the Super Sequencer or Studio I sequencers.
MIDI Recording Studio	\$39	Dr. T's Music Software	Atari ST	A MIDI recording program for those just beginning to work with MIDI, with a stripped-down version of parts of the Dr. T Keyboard Controlled Sequencer.
MIDIsoft Studio	\$99	Passport Designs	Atari ST	A multitrack recording studio that works with the ST and any MIDI-equipped instrument.
MIDI Tech 64	\$99.95	Sonus	Commodore 64/128	A full-featured monitor/system-exclusive librarian program.
MIDI Voice Librarian	\$69.95	Passport Designs	Apple II + , IIe, IIc; Commodore $64 / 128$	Over 100 great new sounds for MIDI keyboard. Load up to four banks of 32 sounds at any moment.
Musical Computer I and II, Version 1.0	\$34.95	Computer Applications Tomorrow	Apple II+; Atari eight-bit; Commodore 64	Teaches music fundamentals. Covers note reading, sharps and flats, tempo definitions, and more.
Music Box I	\$59.00	Wenger Computer Software	Apple II, II + , IIe, IIc; Commodore 64	Four programs designed to aid students in learning and remembering music symbols.
Music by Matrix	\$29.95	Dynacomp	Commodore 64	Audiovisual aid to help the student understand chords and scales in terms of the intervals involved.
The Music Class	\$39-49 each	Wenger Music Software	Apple II, II + , IIe, IIc, IIcs	A five-part music-instruction series, including Fundamentals, Rhythm, Ear Training, Music Symbols, and Note Reading.
Music Concepts, Version 1.0	\$59.95	Ventura Educational Systems	Apple II, II + , IIe, IIC	Introduce the concepts of music theory, the history of music as we know it, and even the science of sound.
Music Construction Set	\$34.95-\$69.95	Electronic Arts	Apple II, II + , IIe, IIc, IIcs; Atari eight-bit; Commodore 64/128; IBM PC, PCjr, PC XT	A computer music program that everyone can enjoy. Doesn't require years of piano lessons or learning computer codes.
Music Editor	\$20	Affordable Software	IBM PC	Compose songs with as many as 500 notes per song.
Music Logo	\$99.95	Terrapin	Apple II, II + , IIe, IIc	Explores musical structure and extends the user's musical understanding and appreciation.
Music Made Easy	\$29.95	Alfred Publishing	Apple II + , IIe; Commodore 64	Teaches the basics of music in a step-by-step course. Lessons are reinforced with drills and quizzes.
Music Magic	\$30	Dayline Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	Play your favorite songs and/or compose your own music.
Musicman	\$29.95	Zephyr Services	Apple II, II + , IIe; IBM PC, XT, PCjr	Try your hand at composing music right on the screen with standard musical methods. Save compositions on disk or play some of the sample music provided.
Music of the Masters: I, II, III, and IV	\$9.95	Free Spirit Software	Commodore 64/128	Collections of works by major classical composers. Instrument simulations include violin, piano, harpsichord, flute, and guitar.
Music of the Masters V	\$9.95	Free Spirit Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	Approximately one hour of popular themes from the bestknown classical works, using various instrument simulations.
Music Processor	\$24.95	Sight \& Sound Music Software	Commodore 64	Create, edit, play, and compose your own musical arrangements.
Music Program	\$19.95	Micro Demon	TRS-80 Model 100	Turns any Model 100 into a musical instrument by modifying the sound routine.
Music: Rhythm	\$29	MECC	Commodore $64 / 128$	Stimulating practice on rhythmic fundamentals. For beginningto advanced-level music students.

Product	Price	Publisher/ Vendor	System	Description
Music: Rhythm and Pitch	\$29	MECC	Atari eight-bit; Commodore 64	Three disks which can be used singly or in a combination to provide practice at successive levels of difficulty.
Music: Scales and Chords	\$29	MECC	Atari eight-bit; Commodore 64/128	Music theory and drill-and-practice.
Music Shop	\$149.95	Passport Designs	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \\ & \hline \end{aligned}$	Compose, edit, print, and play back with a joystick, easy-to-use pull-down menus, and your MIDI keyboard.
Music Studio	\$34.95-\$59.95	Activision	Atari eight-bit, ST; Commodore 64/128; Amiga; IBM PCjr; Tandy 1000; Apple IIcs	Music, lyrical composition, and audio synthesis program that lets you orchestrate, mix, create sounds, and even invent new sounds.
Music System	\$39.95	Firebird	Commodore $64 / 128$	A multitracking sound system. Use your Commodore keyboard to enter and correct music with the cassette-recorder-style multitracking functions.
MusicWorks	\$49.95	Hayden Software	Mac	Provides all the tools needed for anyone to create and edit music, from simple melodies to fully orchestrated symphonies. Music can be composed on a standard musical staff or on a player-piano grid.
Notable Phantom	\$19.95	Designware	Apple II +, IIe, IIc; Commodore 64; IBM PC, PCjr	Learn to play a keyboard instrument and to read music, with the help of funny ghosts, spiders, and The Notable Phantom.
Notes	\$19.95	Comput-Ability	Apple II + , IIe, IIc	Develop speed and accuracy in identifying each musical note by its letter name. For ages 6 and up.
The Orchestrator	\$49.95	Intersect Software	Atari ST	A music composition and entertainment system for both the experienced and beginning musician. MIDI compatible.
Party Songs	\$15.95	John Henry Software	Commodore 64/128	A sing-along software program with old-time favorites.
Patch LibrarianYamaha DX21/27/100	\$75	Opcode Systems	Macintosh, Macintosh Plus	Use Mac disks to store thousands of sound patches for the Yamaha DX synthesizer. Takes the place of expensive RAM cartridges. Makes using inconvenient cassette-tape storage of sounds obsolete.
Personal Musician	\$29.95	Creative Software/ Activision	IBM PC, PCjr	Experiment with computer-generated musical tones as you learn to read music and write your own original songs.
Player Piano	\$19.95	Dynacomp	Atari	Turn your Atari into a player piano.
Rock ' ${ }^{\prime}$ ' Rhythm	\$26.95	Spinnaker Software	Atari eight-bit; Commodore 64/128	Expand and develop your music skills by taking charge of your own recording studio.
RX Librarian	\$49.95	Sonus	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	A MIDI librarian that works with the Yamaha RX11 and RX21 drum machines.
Song Painter	\$59.95	Rubicon Publishing	Mac, Mac Plus, Mac XL	Turns the Mac into a four-voice synthesizer that lets you create your own music with no knowledge of musical notation.
Songwriter	\$19.95	Mindscape	Apple II + , IIe, IIc; Atari eight-bit; IBM PC, XT, PCjr	Colorful graphics combined with editing functions for over 28 different songs. Connector cable is included to hook up to stereo.
Sound Development System	\$29.95	Dynacomp	Commodore 64	Create and place sound effects and music within your own BASIC or machine language programs.
Soundscape Pro MIDI Studio	\$149	Mimetics	Amiga	A MIDI recording studio consisting of several interrelated MIDI modules.
Sound Tracks	\$49	MECC	Apple II, II + , IIe, IIC	Turn your computer into a musical keyboard with this package. For ages 5-12.
Staff Master	\$45	Micro Learningware	Apple II, IIe, IIc	Three programs for the beginning music student. Excellent graphics. For grade-level 4 and up.
Stickybear Music, Version 1.0	\$39.95	Weekly Reader Family Software	Apple II, II + , IIe, IIc, IIcs	Compose a piece of music, play it, change the tempo, or go back and change notes or sections.
Strum-Along Songs	\$69.95	DJ Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	Play and sing your favorite songs on your guitar or keyboard accompanied by your own backup band. Each disk includes 15 easy-to-play songs.
Studiomac, Version 1.3	\$125	Creative Solutions	Mac	Create music and play it out over a Casio CZ101 synthesizer.
SYNTHY-64	\$17.95	Abacus Software	Commodore 64	A music and sound synthesizer that can duplicate a piano, banjo, flute, drum, or almost any other instrument. You can also make special-effects sounds in an endless variety of combinations.
Terpsichore	\$49.95	Great Wave Software	Macintosh, Macintosh Plus	Music for exclusive use with ConcertWare + and ConcertWare + MIDI on the Macintosh.
3001 Sound Odyssey	\$26.95	Sight \& Sound Music Software	Commodore 64	An educational odyssey that explores the basics of electronic music synthesis and the construction of sound effects.
12-Bar Tunesmith	\$39.95	Electronic Courseware	Apple II + , IIe, IIc; Commodore 64/128; IBM PC, PCjr; Tandy 1000, 1200, 3000	Helps the young compose and play simple melodies using bargraph notation. Choose from four different pitch durations and hear tunes played at varying tempos.
Xylophone/Square Puzzle	\$8.95	Kidware	Commodore $64 / 128$, TI	Play any of nine songs or program your own. ©

The data for this guide was supplied by MENU—The International Database Corporation. For further evaluative information, or to insure that your product is included in the database, contact MENU, 1520 South College Avenue, Fort Collins, Colorado 80524. The toll-free number is 1-800-THE-MENU.

Rememory

Charles Harbert

How good is your memory? This program lets you test your memory against the computer or a friend. The original version is written for the Commodore 64. We have added new translations for the Amiga, IBM PC/PCjr, Apple II series, and Atari 400, 800, XL, and XE. The Commodore and Atari versions require at least one joystick. The IBM PC/PCjr version requires BASICA and a color/graphics card for the PC and Cartridge BASIC for the PCjr. The Apple II version works on any Apple II-series computer, under DOS 3.3 or ProDOS.
"Rememory" is a game that will push your powers of concentration and memorization to the limit. Type in the program listed for your computer and save it. Read the general instructions and refer to the specific notes for your computer before you begin to play.

Playing Rememory

Rememory is played on a grid containing 54 boxes arranged in a 9×7 matrix. Each box contains a graphics shape, and there are many matching shapes within the grid. The object of the game is to find all of the matches in the playing grid by selecting any two boxes at a time.

The graphics cursor (mouse pointer in the Amiga version) indicates your current postion on the game screen. Move the cursor to the box you wish to select using the joystick, mouse, or cursor controls, depending on which computer you are using. When you select the box, the computer displays the shape which it contains.

A turn consists of two selec-
tions. After you select both boxes, the computer displays both of them briefly. If the two shapes you selected are identical, you have scored one match, and those shapes remain visible on the board. If the shapes do not match, the computer erases them, and it is your job to remember where those shapes were found. The computer scrambles the shapes at the beginning of each game, so you won't know where a given shape is found until you uncover it.

Rememory can be played with one or two players. When you play alone, the object is to match all the shapes in the fewest number of turns. For a two-player game, the goal is to score more matches than your opponent. You get an extra turn every time you succeed in making a match. If you set a time limit for each move (for instance, 20 or 30 seconds), Rememory can be a fast-paced, exciting two-player game.

When you run the program, it asks how many players will play the game. Enter the number of players, 1 or 2 . Then the program asks how many matches will be required to finish the game. If you enter the maximum number, 27, you will have to match every pair of shapes in the grid to finish. If you choose a lower number, the game ends when you achieve the designated number of matches. The right side of the screen displays the current score.

Commodore 64 Version

This version of Rememory (Program 1) can be played with one or two joysticks. If you are using only one joystick, plug it into port 2.

"Rememory" for the Commodore 64, a challenging memory game. This version uses custom machine language subroutines to speed up its graphics.

The Amiga version of "Rememory" uises a 32-color palette and color cycling to enhance the game's visual appeal and difficulty.

The Apple II version of "Rememory" is played with the keyboard and runs with either DOS 3.3 or ProDOS.

"Rememory" for the IBM PC/PCjr.

A custom display list is used to achieve the graphics effects in "Rememory" for the Atari 400, 800, XL, and XE.

Amiga Version

The Amiga game (Program 2) is played with the mouse. Move the mouse pointer to the desired box and press the left mouse button to select it. In the two-player game, the colors of the window border change to indicate whose turn it is. To add to the interest and difficulty, this program uses color cycling to change the colors of the graphics shapes.

IBM PC/PCjr Version

This version of Rememory (Program 3) requires BASICA and a color/graphics card for the PC, and it requires Cartridge BASIC for the PCjr. Move the cursor with the cursor keys and press Enter to select a box. For a two-player game, the scores are displayed on a red or green background. The cursor changes color to indicate whose turn it is.

Apple II Version

Rememory for the Apple II (Program 4) runs on any Apple II-series computer under either DOS 3.3 or ProDOS. This program is played with the keyboard. Press the I, J, K, and M keys to move the cursor up, left, right, and down, respectively. Press the space bar to select a box. In the two player game, the asterisk
(*) indicates whose turn it is.

Atari 400, 800, XL, And XE Version

The Atari version of Rememory (Program 5) can be played with one or two joysticks. If you use only one joystick, it should be plugged into port 1.

For instructions on entering these programs, please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue

Program 1: Commodore 64 Rememory

AP $10 \mathrm{RO}=-2: \mathrm{CO}=2$
BD $2 \emptyset \operatorname{DIM} \operatorname{SYM}(27,12): \operatorname{DIM} \operatorname{BT}(25$, 4Ø): DIM MAT $(53,16)$
JG $3 \emptyset$ POKE 252, Ø: POKE 253, $0:$ RE STORE
KC $4 \emptyset$ POKE 5328Ø,14:POKE 53281 , 14
$\mathrm{BQ} 5 \emptyset \mathrm{MA}=\varnothing: \mathrm{S}(\varnothing)=1 \varnothing \varnothing \varnothing: S(1)=1 \varnothing \varnothing \emptyset$ $: C(\emptyset)=\varnothing: C(1)=\varnothing$
FH 60 GOSUBl290:GOSUB450:GOSUB 750 : GOSUB1ø8 0 : GOSUB1840: GOSUB61Ø: GOTO32ø
BH 70 IFMA=NMTHEN GOTO14 0
AX 80 GOSUB1580:LET Bl=BX:GOSU B1500
DP 90 GOSUB1580:LET B2=BX:IF B 1=B2 THEN GOTO9ø
SJ 1øø GOSUB15øø
KJ $11 \varnothing$ IF $\operatorname{MAT}(B 1, \varnothing)=\operatorname{MAT}(B 2, \emptyset)$ \{SPACE\} THEN GOTO210
HK 120 GOSUB141 $0:$ LET BX=Bl:GOS UB141ø:LET BX=B2
MQ 130 GOTO26ø
KH $14 \varnothing$ PRINT "\{HOME $\}$ \{RVS \}\{WHT \} \{8 DOWN $\}\{6$ RIGHT $\}$ PRESS \{SPACE\}ANY KEY TO CONTI NUE"
FB 150 FOR A=øTO1 $0: G E T$ BS:NEXT
CE 160 GET AS:IF AS=""THENGOTO $16 \emptyset$
PC 170 INPUT "\{2 DOWN\}\{RVS\} \{9 RIGHT\} PLAY AGAIN(Y O R N) "; Z
BP $180 \operatorname{IF} \operatorname{MIDS}(Z \$, 1,1)=" N "$ THE N GOTO2øø
RA 190 GOTO3ø
MB $20 \varnothing$ END
GP $21 \emptyset$ LET $\operatorname{MAT}(B 1,1)=99:$ LET MA $T(B 2,1)=99$
CF 220 LET $C(U P)=C(U P)+1:$ LET M $A=M A+1$
MP $23 \emptyset$ LET $S(U P)=S(U P)+1$
AX $24 \varnothing$ IF PL=2THENGOTO $31 \varnothing$
DE 250 GOTO270
GK 260 LET $\quad \mathrm{S}(\mathrm{UP})=\mathrm{S}(\mathrm{UP})+1$
FR 270 IF PL=1 THEN GOTO31 \varnothing
ED 280 IF UP $=\varnothing$ THEN GOTO3øØ
CM 290 LET UP $=\varnothing$: GOTO $31 \varnothing$
RP $30 \emptyset$ LET UP=1
SG 310 POKE 1ø24+40*3+39,96:PO KE1Ø24+4б*12+39,96
FF $32 \emptyset$ IF UP $=\emptyset$ THEN POKE1ø24+4 ø* $3+39,42$
PA $33 \emptyset$ IF UP $=1$ THEN POKE $1 \varnothing 24+4$ Ø* $12+39,42$
PA $34 \varnothing$ POKE 251,UP:IF JS=1 THE N POKE 251, Ø
PP 350 PRINT" $\{$ HOME $\}$ \{3 DOWN $\}$ \{38 RIGHT\}1"
QB 360 PRINT"\{38 RIGHT\}UP": LET S\$=STRS (S (Ø))
GP 376 PRINT" $\{37$ RIGHT $\}$ "; RIGHT \$(S\$,3)
AM $38 \emptyset$ LET CS=STRS (C($\varnothing))$

CE 385 PRINT"\{38 RIGHT\}";RIGHT $\$(C \$, 2)$
AS $39 \emptyset$ IF PL=1 THEN GOTO7Ø
GA 4øø PRINT"\{HOME\} \{12 DOWN\} \{38 RIGHT\} 2"
MH $41 \varnothing$ PRINT" $\{38$ RIGHT $\}$ UP"
DX 42 LET $\mathrm{S} \$=\mathrm{STR} \$(\mathrm{~S}(1)):$ PRINT
"\{37 RIGHT\}"; RIGHT\$(S\$, 3)

SS 430 LET $C \$=S T R \$(C(1))$
PP 435 PRINT"\{38 RIGHT \}";RIGHT \$($C \$, 2)$
KB 440 GOTO7Ø
GS 450 FOR R=øTO 24
GX $46 \emptyset$ FOR $\mathrm{C}=\emptyset \mathrm{TO} 39$
XS $47 \emptyset$ LET $\operatorname{BT}(R, C)=88$
FB 480 NEXT C
BK $49 \emptyset$ NEXT R
BF 5øø LET T=øø
CK $51 \emptyset$ FOR R=ØTO $2 \emptyset$ STEP 4
KM $52 \emptyset$ FOR $\mathrm{C}=\emptyset \mathrm{TO} 32$ STEP4
GS $530 \mathrm{BT}(\mathrm{R}+1, \mathrm{C}+1)=\mathrm{T}: \mathrm{BT}(\mathrm{R}+1, \mathrm{C}+$ 2) $=T$

EQ $540 \mathrm{BT}(\mathrm{R}+1, \mathrm{C}+3)=\mathrm{T}: \mathrm{BT}(\mathrm{R}+2, \mathrm{C}+$ 1) $=T$

GJ $55 \emptyset \mathrm{BT}(\mathrm{R}+2, \mathrm{C}+2)=\mathrm{T}: \mathrm{BT}(\mathrm{R}+2, \mathrm{C}+$ 3) $=T$

MK $56 \emptyset \mathrm{BT}(\mathrm{R}+3, \mathrm{C}+1)=\mathrm{T}: \mathrm{BT}(\mathrm{R}+3, \mathrm{C}+$ 2) $=T$

JH $57 \emptyset \mathrm{BT}(\mathrm{R}+3, \mathrm{C}+3)=\mathrm{T}: \mathrm{T}=\mathrm{T}+1$
CH 580 NEXT C
XA 590 NEXT R
HP $6 \emptyset \emptyset$ RETURN
HE $61 \emptyset$ REM DRAW BOARD
QA 620 PRINT "\{CLR\}": $\mathrm{C}=\emptyset: \mathrm{X}=224$
AJ 63ø FOR V=ØTO24STEP4:GOSUB6 60:NEXT
JS 640 FOR H=ØTO36STEP4:GOSUB7 10:NEXT
PX 650 RETURN
RM 660 FOR $\mathrm{H}=\emptyset \mathrm{TO} 36$
FS 670 POKE $1 \emptyset 24+40 * V+H, X$
MA $68 \emptyset$ POKE $55296+4 \varnothing$ * $\mathrm{V}+\mathrm{H}, \mathrm{C}$
MB 690 NEXT H
RA 700 RETURN
DA 710 FOR V=øTO24
DK $72 \emptyset$ POKElø24+4の*V+H,X:POKE5 $5296+4 \emptyset * V+H, C$
KM 730 NEXT V
RF 740 RETURN
RR 750 REM INIT SYM TABLE
HG 76 FORX $=$ ØTO26
KF 770 FOR $Y=\emptyset T O 11$
DC $780 \operatorname{READ} \operatorname{SYM}(X, Y): N E X T Y$
BX 790 NEXT X
CK 8øØ RETURN
FD $81 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, 96,96,96,193$,193,193,96,96,96
SF $82 \emptyset$ DATA $\emptyset, 2, \varnothing, 96,96,96,96$, 90, 96, 96, 96,96
QE $83 \emptyset$ DATA $\emptyset, 2, \varnothing, 12 \emptyset, 12 \emptyset, 12 \emptyset$, $120,120,12 \sigma, 120,120,12 \sigma$
CX 840 DATA $0,2,0,96,224,96,22$ 4, 224, 224,96, 224,96
PA $85 \emptyset$ DATA $\emptyset, 2, \varnothing, 23 \varnothing, 23 \varnothing, 23 \varnothing$, $230,230,230,230,23 \emptyset, 23 \emptyset$
RQ $86 \emptyset$ DATA $\emptyset, 15, \varnothing, 233,96,223$, 96, 87, 96, 95, 96, 105
AM $87 \emptyset$ DATA $\emptyset, 9, \emptyset, 224,223,96,9$ 5,224,223,96,95,224
ME $88 \emptyset$ DATA $\varnothing, \varnothing, \emptyset, 231,2 \emptyset 5,2 \emptyset 5$, $206,2 \emptyset 6,206,229,205,229$
JH $89 \emptyset$ DATA $\varnothing, 1, \varnothing, 85,67,73,74$, $67,73,74,67,75$
KG 9øØ DATA $\varnothing, 6, \varnothing, 214,214,214$, $214,214,214,214,214,214$
GA $91 \emptyset$ DATA $\varnothing, 3, \varnothing, 96,96,96,79$, $8 \emptyset, 96,8 \emptyset, 122,112$
MP $92 \emptyset$ DATA $\varnothing, 11, \varnothing, 127,127,127$,127,127,127,127,127,12 7

DH $93 \emptyset$ DATA $\varnothing, 1, \emptyset, 224,224,224$, $224,224,224,224,224,224$

XJ 94ø DATA $\varnothing, 9, \varnothing, 112,67,11 \varnothing, 9$ 3,224,93,109,67,125
AF 950 DATA $\varnothing, 6, \varnothing, 78,77,1 \varnothing \emptyset, 1 \varnothing$ Ø, 78, 77,78,77,1øø
PG 960 DATA $0,6,0,85,114,73,10$ $7,86,115,74,113,75$
KC $97 \emptyset$ DATA $\emptyset, 2, \varnothing, 224,224,224$, 224, 224, 224, 224, 224, 224
RB $98 \emptyset$ DATA $\varnothing, 9, \varnothing, 11 \varnothing, 0,112,1 \varnothing$ 9,91,125,85,113,75
RB $99 \emptyset$ DATA $\varnothing, 4, \varnothing, 224,224,224$, 224, 224, 224, 224, 224, 224
SG 1øøø DATA $\varnothing, 7, \varnothing, 91,91,91,91$,91,91,91,91,91
DM $101 \varnothing$ DATA $\varnothing, 7, \varnothing, 75,73,74,85$, 91, 73, 73, 74, 85
HJ $102 \emptyset$ DATA $\varnothing, 11, \varnothing, 96,81,96,8$ $5,91,75,74,113,73$
DM $103 \emptyset$ DATA $\varnothing, 15, \varnothing, 95,224,224$, $96,95,224,96,96,95$
GA 1040 DATA $\varnothing, 13, \emptyset, 85,96,73,9$ 6,91,96,74,96,75
KG $105 \emptyset$ DATA $\varnothing, 9, \varnothing, 77,96,78,96$, 86,96,78,96,77
ED $106 \emptyset$ DATA $\varnothing, 9, \varnothing, 96,96,96,79$, 80,96,76,122,96
DR 1ø7Ø DATA Ø, 9, $0,96,96,96,85$,73,96,74,75,96
QG $1 \varnothing 8 \emptyset$ REM INIT MAT TABLE
PE 1ø9Ø FOR X=ØTO53: $\operatorname{MAT}(X, 4)=\varnothing$: NEXT
HC lløø FOR X=ØTO26
AF $111 \varnothing$ FOR $Y=\emptyset T O 1$
DG 1120 LET R9=INT (RND (ø)*54)
HF 1130 IF R9< 0 OR R9>53 THEN \{SPACE\}GOTO1120
CD 1140 IF $\operatorname{MAT}(R 9,4)=9$ THEN GO TO112の
CM 1150 LET MAT (R9, Ø) $=\mathrm{X}: \operatorname{MAT}(\mathrm{R} 9$,1) $=\varnothing: \operatorname{LET} \operatorname{MAT}(\mathrm{R} 9,4)=9$
GR $1160 \operatorname{MAT}(R 9,2)=\varnothing \varnothing: \operatorname{MAT}(R 9,3)$ $=\operatorname{SYM}(X, 1)$
JR $117 \emptyset$ FOR E=3 TO 11
DG $1180 \operatorname{MAT}(R 9, E+2)=\operatorname{SYM}(X, E)$
QC 1190 NEXT E
DX $12 \emptyset \emptyset$ NEXT Y
HX 1210 NEXT X
BJ $1220 \mathrm{~K}=1: \mathrm{K} 2=1: \mathrm{A}=\varnothing: \mathrm{B}=8$
QS 1230 FOR W=ØTO5
GE $124 \emptyset$ FOR X=ATOB
QD $1250 \operatorname{MAT}(X, 14)=K: \operatorname{MAT}(X, 15)=$ K2:K2 =K2 4 : NEXT X
BJ $1260 \mathrm{~K}=\mathrm{K}+4: \mathrm{K} 2=1$
GS $1270 \mathrm{~A}=\mathrm{A}+9: \mathrm{B}=\mathrm{B}+9$: NEXT W
CA 1280 RETURN
DS 1290 REM INPUT OPTIONS
XA $130 \emptyset$ LET JS=1
XD 1310 PRINT"\{CLR\}"
ED 1320 INPUT "\{BLK\}ONE OR TWO PLAYER GAME";PL
BQ 1330 IF $\mathrm{PL}<>1$ AND $\mathrm{PL}<>2$ THE N1310
HB 1340 IF PL=2 THEN INPUT" \{CLR\} \{DOWN\} ENTER NO. O F JOYSTICKS(1 OR 2)";J S
QE 1350 IF JS <>1 AND JS <>2 THE N134Ø
FC 1360 INPUT"ENTER NO. OF MAT CHES (1-27)";NM:NM=INT (NM) : IFNM<1ORNM>27THEN 1370
BJ 1370 IFNM<1ORNM>27THENPRINT " \{HOME \} \{DOWN \} ": GOTOI36 Ø
EA 1380 PRINT"\{CLR\}\{1ø DOWN\} \{6 RIGHT\}PLEASE STANDB Y FOR 45 SECONDS"
GR 1390 LET UP=ø
SG 1400 RETURN
BD 141σ REM BLANK OUT BOX
XB $142 \emptyset$ POKE 6,6

CX 1430 X=MAT $(B X, 14):$ POKE 252 X
GJ 1440 X=MAT $(B X, 15):$ POKE 253, X
CA $1450 \quad \mathrm{Y}=96$
ME 1460 FOR X=49414 TO 49422: P OKE X,Y:NEXT
JF 1470 SYS49674
GX 1480 RETURN
QR 1490 X=MAT $(B X, 3)$: POKE 6, X
DQ $15 \emptyset 0 \mathrm{X}=\mathrm{MAT}(\mathrm{BX}, 3): \operatorname{POKE} 6, \mathrm{X}$
SM 1510 X=MAT $(B X, 14):$ POKE 252 , X
DH $1520 \mathrm{X}=\mathrm{MAT}(\mathrm{BX}, 15): \operatorname{POKE} 253$, X
AJ $1530 \mathrm{Y}=5$
RX 1540 FOR X=49414 TO 49422
XK 1550 Q=MAT(BX,Y) : POKE X, Q:Y =Y+1:NEXT
BJ 1560 SYS49674
MC 1570 RETURN
HK 1580 SYS $49426: \operatorname{RO}=\operatorname{PEEK}(252)$: CO=PEEK (253)
DX 159. IF $\operatorname{BT}(R O, C O)=88$ THEN G OTO1580
XD $1600 \mathrm{BX}=\mathrm{BT}(\mathrm{RO}, \mathrm{CO})$
FJ 1610 IF $\operatorname{MAT}(B X, 1)=99$ THEN G OTO158
HH 1620 RETURN
ES $163 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 1 \varnothing 2,1$ Ø2,1ø2,1ø2,1ø2,1ø2,1ø2 $, 1 \varnothing 2,102,0, \varnothing, \varnothing, 76,122$
JA 1640 DATA $193,24,166,251,18$ 9, Ø, 220, 74,176,5,198,2 $52,76,70,193,24,74$
XK 1650 DATA $176,5,230,252,76$, $70,193,24,74,176,5,198$,253,76,7Ø,193,24,74
AA 1660 DATA $176,5,230,253,76$, $70,193,24,74,176,211,3$ 2,251,193,96,169,36
XH 1670 DATA $197,253,208,4,162$, 0, 134, 253,169,25,197, $252,208,4,162,0,134$
HQ $168 \emptyset$ DATA $252,24,169,0,1 \emptyset 1$, $253,16,4,162,35,134,25$ 3,24,169, 0,101, 252
QD 1690 DATA $16,4,162,24,134,2$ $52,173,5,193,201,0,240$, 3, 32, 251,193,169,1
DB 17ØØ DATA $141,5,193,24,166$, $252,164,253,142,1,193$, $140,2,193,32,240,255$
SM 1710 DATA $32,165,193,32,297$,193,169,113,32,210,25 $5,162,48,160,255,136$
SB $172 \emptyset$ DATA $2 ø 8,253,2 \emptyset 2,2 \emptyset 8,2$ 48,76,21,193,165,252,1 $62,1,134,250,10,10$
PQ 1730 DATA $101,252,10,10,38$, $250,10,38,250,101,253$, $133,249,169,0,101,250$
JA 1740 DATA $133,250,174,0,193$, 224,99, 24ø, 7,16Ø, Ø, 17 7,249,141,4,193,96
HM 1750 DATA $162,54,134,248,16$ $5,252,133,247,10,10,10$ $1,247,10,10,38,248$
JS $176 \emptyset$ DATA $10,38,248,101,253$,133,247,169,0,101,248 ,133,248,174, 0,193
QC 1770 DATA $224,99,24 \varnothing, 7,160$, Ø, 177, 247,141,3,193,96 ,173,4,193,160, 0,145
KS $178 \emptyset$ DATA $249,16 \emptyset, \emptyset, 173,3,1$ 93, 145, 247,96,162,99,1 $42, \varnothing, 193,162, \varnothing, 142$
SE 1790 DATA $5,193,32,165,193$, $166,250,134,3,166,249$, $134,2,32,207,193,166$
SF 18øØ DATA $248,134,5,166,247$,134,4,162, $0,142,6,193$
,162,3,142,15,193,162
EA 1810 DATA $0,160,0,189,6,193$,145,2,165,6,145,4,200 , 232,192,3,2ø8, 241
MH $182 \emptyset$ DATA $24,169,4 \emptyset, 1 \emptyset 1,2,1$ 33,2,169,0,101,3,133,3 , 24,169,40,101,4,133
RS $183 \emptyset$ DATA $4,169,0,101,5,133$ $, 5,2 \varnothing 6,15,193,160,0,2 \varnothing$ $4,15,193,208,203,96$
SR 1840 FOR X=494ø8TO49771:REA D A:POKE X,A:NEXT
DE $185 \emptyset$ RETURN

Program 2: Amiga Rememory

DEFINT $a-z$:DEFSNG $r, g, b, m x:$ RANDO MIZE TIMER: SCREEN $1,320,2 \emptyset 0,5,14$ WINDOW $3, " ",(0, \varnothing)-(311,186), 16,1$:WINDOW OUTPUT 34
DIM bn $(5,8), c b(26), r(11), b(11), d$ $f(7), \operatorname{aLt}(7), \operatorname{hor}(7), \operatorname{ver}(7), \operatorname{sL}(7)$, $\mathrm{rn}(7), \mathrm{ck}(7) \leqslant$
RESTORE PaletteData:FOR $i=\varnothing$ TO 1 5: READ $r, g, b:$ PALETTE $i, r, g, b: N E X$ T4
FOR $i=2 \emptyset$ TO 21:READ $r, g, b:$ PALETT E $i, r, g, b: N E X T^{4}$
FOR $i=\emptyset$ TO 5: READ $r(i), b(i):$ PALE TTE $i+22, r(i), \varnothing, b(i): N E X T \&$
FOR $i=\emptyset$ TO $5: r(11-i)=b(i): b(11-i$) $=r(i):$ NEXT 4
PaletteData:
DATA $\emptyset, \emptyset, \emptyset, .5, .5, .5, .5, .5, .5, .6$, 0,04
DATA $\varnothing, .6, \varnothing, .6, .6, \varnothing, .6,0, .6, \varnothing, .6$, . 64
DATA $\varnothing, \varnothing, .6, .9, .9, .9, .9, \varnothing, \varnothing, \varnothing, .9$, 04
DATA $\varnothing, \emptyset, .9, .9, .9, \varnothing, .9,0, .9, .5,$. 5, .54
DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \angle$
DATA $.6, \varnothing, .8, \varnothing, 1, \varnothing, .8, \varnothing, .6, \varnothing, .5$, . 34
FOR $i=\varnothing$ TO 26:READ cb(i):NEXT 4
DATA $9,4,13,15,3, \varnothing, 9,6,12,9,4,2 \emptyset$,13, $0,0,0,22,12,9,13,15,15,9,8,9$,3,104
eS=SPACES(3):ON TIMER(1) GOSUB C ycLe4
FOR $i=\emptyset$ TO 74
$\mathrm{d} f(\mathrm{i})=\& \mathrm{HFFFF}: \operatorname{ver}(\mathrm{i})=\&$ HAAAA $: \mathrm{rn}(\mathrm{i})$ $=$ RND* \& HFFFF 4
IF (i AND 1) THEN hor(i)=\&HFFFF: $a L t(i)=\& H A A A A$ ELSE $\operatorname{aLt}(i)=\& H 5555$ 4
IF (i AND 4) THEN $\mathrm{ck}(i)=\& H F \emptyset F \emptyset \mathrm{E}$ LSE ck(i)=\&HF0F 4
NEXT4
FOR $i=\emptyset$ TO $3:$ READ $s L(i): s L(i+4)=$ sL(i): NEXT4
DATA \& H3 333, \&H6666, \&hcccc , \&H9999 4
Start: 4
COLOR 2, Ø:CLS:GOSUB InPLayers:LO CATE 13,9:GOSUB InMatches 4
GOSUB RandBoard:mf= $0: t s=\emptyset: F O R$ i= \emptyset TO 1:tr(i)= $0: \mathrm{sc}(i)=\varnothing: \operatorname{NEXT}^{4}$
GOSUB DrawBoard: $\mathrm{pL}=\varnothing: \mathrm{m}=1: \mathrm{sw}=\varnothing: \mathrm{TI}$ MER ON4
WHILE ts $<\mathrm{nm} 4$
IF np THEN PALETTE $1, .6^{*}(1-\mathrm{pL})$, 6*pL, 04
GOSUB SelectBox:GOSUB ShowPic:rl =ro:cl=co:GOSUB SelectBox:GOSUB ShowPic
IF $b n(r l, c l)=b n(r o c o)$ THEN \angle $\mathrm{sc}(\mathrm{pL})=\mathrm{sc}(\mathrm{pL})+1: \mathrm{ts}=\mathrm{ts}+1: \mathrm{m}=04$ ELSE 4
FOR $i=1$ TO 4øøø:NEXT:GOSUB HideP ic 4
END IF 4
$\operatorname{tr}(\mathrm{pL})=\operatorname{tr}(\mathrm{pL})+1$: GOSUB UpdateScor e:IF m THEN pL=pL XOR np 4
$\mathrm{m}=14$

WEND4

COLOR 15, 0:LOCATE 9,10:PRINT "An other game (y / n) ?" 4
EndLp: $\mathrm{k} \$=$ UCASE $\$($ INKEY $):$ IF $\mathrm{k} \$="$ Y" THEN Start 4
IF $\mathrm{k} \$=$ "N" THEN TIMER OFF: SCREEN CLOSE 1:WINDOW CLOSE 3:END ELSE EndLp 4
4
SelectBox:
WHILE MOUSE (\varnothing) $=\varnothing$: WEND: $\mathrm{px}=$ MOUSE (1): $\mathrm{Py}=\operatorname{MOUSE}(2): \operatorname{WHILE} \operatorname{MOUSE}(\varnothing)<>\varnothing$: WEND 4
IF POINT(px,py) <>2 THEN SelectBO x
$p x=p x$ AND \&HFFED: $p y=p y$ AND \&HFFE $\varnothing: r o=\operatorname{INT}(p y / 32): c o=\operatorname{INT}(p x / 32): p y$ $=p y+8$
RETURN4
4
ShowPic:
$\mathrm{n}=\mathrm{bn}(\mathrm{ro}, \mathrm{co})$: COLOR , $\mathrm{cb}(\mathrm{n})$: GOSUB H ides
ON n+1 GOTO $1,1,1,2,3,4,5,6,7,8$, $9,10,11,12,13,14,15,16,17,18,19$, 20,21,22,23,24,14
LOCATE Cy, cx:PRINT STR\$(bn(ro,co))
1 RETURN 4
2 COLOR Ø:LOCATE CY $+1, \mathrm{cx}+1:$ PRINT CHRS (214): PAINT(px+12, py +12): RET URN4
3 COLOR 13:as=CHRS(191)+CHRS(63) :LOCATE cy, cx:PRINT a\$CHR\$(191) LOCATE CY+1, cx:PRINT CHRS(63)a\$: LOCATE CY +2, cx:PRINT aSCHRS(191) ; : RETURN 4
4 PATTERN ,sL:FOR $i=\varnothing$ TO 7:COLOR i+74
LINE (px+2*i, py+2*i)-(px+23-2*i,p $\left.\mathrm{y}+23-2^{\star} \mathrm{i}\right)$, , $\mathrm{bf}:$ NEXT:PATTERN , $\mathrm{df}: \mathrm{R}$ ETURN
5 COLOR 10:AREA($p x+2, p y+12$): AREA $\operatorname{STEP}(10,-1 \varnothing): \operatorname{AREA} \operatorname{STEP}(10,10)<$
AREA $\operatorname{STEP}(-10,10)$: AREA $\operatorname{STEP}(-10$, $-10)$: PATTERN , hor:AREAFILL:PATTE RN , df: RETURN 4
6 COLOR 14:GOSUB Triangle:AREAFI LL: RETURN 4
7 COLOR 13:CIRCLE(px+19,py+5),2: PAINT(px+20, py+5) 4
PATTERN, sL: GOSUB Triangle:AREAF ILL: PATTERN , df: RETURN 4
8 COLOR , 3:LOCATE cy, cx+1:PRINT
SPACES(1):LOCATE CY+1, cx:PRINT e \$4
LOCATE CY $+2, \mathrm{cx}+1$: PRINT SPACE\$(1) ;: RETURN 4
9 FOR $\mathrm{i}=\emptyset$ TO 2:FOR $\mathrm{j}=\emptyset$ TO 2:COLO R $2 \varnothing+((i+j)$ AND 1): $x=p x+5 * i+7: y=$ py +5 * $j+74$
CIRCLE(x, y), 2:NEXT j,i:RETURN4
10 COLOR 21:GOSUB BOX:PATTERN ,a Lt:AREAFILL: PATTERN , df:RETURN 4 11 COLOR 6:GOSUB BOX:PATTERN, sL : AREAFILL: PATTERN , df:RETURN4 12 COLOR 14:PATTERN, hor: $\mathrm{x}=\mathrm{px}+4$: $\mathrm{y}=\mathrm{py}+4$: GOSUB Diamond:AREAFILL 4 $\mathrm{x}=\mathrm{px}: \mathrm{y}=\mathrm{py}+12$: GOSUB Diamond:AREAF ILL4
$\mathrm{x}=\mathrm{px}+12: \mathrm{y}=\mathrm{py}+16$:GOSUB Diamond:AR EAFILL:PATTERN ,df:RETURN 4
13 FOR i=ø TO 11:COLOR (i MOD 6) $+22: \operatorname{LINE}(p x, p y+2 * i)-(p x+23, p y+23$ -2^{*} i) : NEXT ${ }^{4}$
RETURN 4
14 FOR i=ø TO 11:COLOR (i MOD 6) $+22: \operatorname{LINE}(p x, p y)-(p x+2 * i, p y+23-2 *$ i) 4

LINE $(p x+23, p y+23)-(p x+2 * i, p y+23-$ 2*i) : NEXT: RETURN 4
15 COLOR 24:GOSUB BOX:PATTERN, a Lt:AREAFILL:COLOR , Ø
LOCATE CY $+1, \mathrm{cx}+1$: PRINT SPACES (1) :PATTERN ,df:RETURN4

16 COLOR 20:x=px+8:y=py+12:GOSUB Diamond: AREAFILL: $\mathrm{x}=\mathrm{x}+44$
$\operatorname{CIRCLE}(\mathrm{x}, \mathrm{y}), 2,21: \operatorname{PAINT}(\mathrm{x}, \mathrm{y}), 21,2$ 1:RETURN
17 COLOR 12:GOSUB Triangle:PATTE RN , ver:AREAFILL:PATTERN, hor:CO LOR 9,124
$\operatorname{AREA}(p x, p y): \operatorname{AREA} \operatorname{STEP}(23, \varnothing): \operatorname{AREA}$ $\operatorname{STEP}(\varnothing, 23): \operatorname{AREA} \operatorname{STEP}(-23,-23) 4$ AREAFILL: PATTERN ,df:RETURN
18 PATTERN, rn: PAINT($p x, p y$) $, 22, \varnothing$: PATTERN ,df:RETURN4
19 PATTERN ,ck:PAINT(px,py), \varnothing, \varnothing : PATTERN , df: RETURN 4
$2 \varnothing$ COLOR 15, $0: \operatorname{LINE}(p x, p y+7)-(p x+$ $23, p y+7), \varnothing 4$
LOCATE cy +1, cx: PRINT CHRS $(240) \mathrm{CH}$ R\$ (245) CHR\$ (240) : RETURN
21 FOR i=1 TO 11:LINE (px,py+i*2) $-(p x+23, p y), 104$
LINE (px, py+23)-(px+23,py+i*2),12 : NEXT: RETURN 4
22 FOR $i=4$ TO $20: \operatorname{LINE}(p x, p y+i)-($ $p x+23, p y+i)$,(i MOD 4)+28:NEXT:RE TURN
23 COLOR Ø: LINE (px,py+17)-(px+6, py+9):LINE -STEP $(6,2):$ LINE -STEP $(6,6) 4$
$\operatorname{LINE}-\operatorname{STEP}(5, \varnothing): \operatorname{PAINT}(p x, p y), \varnothing, \varnothing$: LINE ($p x, p y+16$) $-(p x+6, p y+8), 284$
LINE $-\operatorname{STEP}(6,2), 29: \operatorname{LINE}-\operatorname{STEP}(6$, 6), 3ø:LINE $-\operatorname{STEP}(5, \emptyset), 31:$ RETURN \angle $24 \operatorname{LINE}(p x, p y+8)-(p x+23, p y+16), \varnothing$: PAINT ($p x, p y+23$) , 5, $0:$ RETURN 4

Triangle: 4
$\operatorname{AREA}(p x, p y): \operatorname{AREA} \operatorname{STEP}(23,23): \operatorname{ARE}$ A $\operatorname{STEP}(-23, \varnothing): \operatorname{AREA} \operatorname{STEP}(\varnothing,-23): R$ ETURN 4

Diamond: 4
$\operatorname{AREA}(x, y): \operatorname{AREA} \operatorname{STEP}(4,-4): \operatorname{AREA} S$ $\operatorname{TEP}(4,4)$: AREA $\operatorname{STEP}(-4,4)$: AREA ST $\operatorname{EP}(-4,-4) \leftarrow$
RETURN4
Box: 4
$\operatorname{AREA}(p x, p y): \operatorname{AREA} \operatorname{STEP}(23, \varnothing): \operatorname{AREA}$ $\operatorname{STEP}(\varnothing, 23): \operatorname{AREA} \operatorname{STEP}(-23, \varnothing) \leftarrow$
AREA $\operatorname{STEP}(\varnothing,-23)$: RETURN 4
4
HidePic: 4
COLOR , 2 : GOSUB Hide: $\mathrm{ro}=\mathrm{rl}: \mathrm{co}=\mathrm{cl}$: GOSUB Hide: RETURN 4
Hide: $c x=4^{*} c o+1$: $c y=4^{*}$ ro +24
FOR $i=\emptyset$ TO 2:LOCATE CY+i, cx:PRIN T eS;:NEXT:RETURN 4
4
UpdateScore: 4
COLOR Ø, pL+3:pr=8*pL-4*np+13:LOC ATE $\mathrm{pr}, 37: \mathrm{s} \$=\mathrm{STR}(\mathrm{tr}(\mathrm{pL})) \&$
PRINT RIGHTS("øø"+RIGHT\$(s\$,LEN($\mathrm{s} \$(-1), 3) 4$
LOCATE pr $+2,37: s \$=\operatorname{STR} \$(\mathrm{sc}(\mathrm{pL})) \leftarrow$ PRINT RIGHT\$("øø"+RIGHTS(s\$,LEN(s\$)-1), 3) 4
RETURN4
DrawBoard: 4
CLS:COLOR , 2:FOR i=ø TO 234
IF (i AND 3) <> \emptyset THEN 4
FOR $j=\emptyset$ TO 8:PRINT e\$SPC(1);:NEX T4
END IF\&
IF $i<23$ THEN PRINT 4
NEXT4
FOR pL=ø TO np: COLOR $\varnothing, \mathrm{pL}+3: F O R$ $j=\emptyset$ TO 6:LOCATE 8*pL-4*np+1 $\varnothing+j, 3$ 74
PRINT eS:NEXT:LOCATE 8*pL-4*np+1 1,37 : PRINT STRS (pL+1): GOSUB Upda teScore:NEXT 4
RETURN 4
RandBoard: 4
$i=\emptyset: F O R \quad j=\emptyset$ TO 4 STEP 2:FOR $k=\emptyset$

TO 8:bn $(j, k)=i: b n(j+1, k)=i: i=i+1$:NEXT $k, j \nmid$
FOR $j=\emptyset$ TO 5:FOR $k=\emptyset$ TO 8: $s j=I N T$ (RND*5):sk=INT(RND*9) 4
$t=b n(s j, s k): b n(s j, s k)=b n(j, k): b n$ (j, k) $=t:$ NEXT $k, j \nless$
RETURN 4
4
InPLayers: 4
LOCATE 11,9:PRINT "Number of pla yers (1/2)?"4
GetKey: $\mathrm{k} \$=$ INKEY\$:IF $k \$=" \mathrm{Cl}$ OR ($k \$$ <>"1"AND k\$<>"2") THEN GetKey np=VAL (k\$)-14
RETURN 4
4
InMatches: 4
INPUT "Number of matches (1-27)? ", s\$4
nm=VAL($s \$$):IF nm<1 OR nm> 27 THEN $\mathrm{nm}=274$
RETURN 4
4
CycLe: 4
nsw=sw XOR 1:PALETTE 20, $0, \mathrm{sw}^{*} .9$, Ø: PALETTE 21, $0, \mathrm{nsw}$. 9,04
$\mathrm{sw}=(\mathrm{sw}+1)$ MOD 2: $\mathrm{cc}=(\mathrm{cc}+1)$ MOD 12 4
FOR $\mathrm{cn}=28$ TO $31:$ PALETTE $\mathrm{cn}, 1,1,1$: NEXT: PALETTE (©c MOD 4) $+28, \emptyset, \emptyset$, 14
FOR $\mathrm{cn}=\emptyset \mathrm{TO} 5: \mathrm{ck}=(\mathrm{cc}+\mathrm{cn})$ MOD 12: PALETTE $\mathrm{cn}+22, \mathrm{r}(\mathrm{ck}), \varnothing, \mathrm{b}(\mathrm{ck}):$ NEXT

RETURN 4

Program 3: IBM PC/PCjr Rememory

BM $1 \varnothing$ KEY OFF: DEF SEG= \varnothing :DEFINT A -Z:POKE 1ø47,PEEK(1ø47) OR 64: RANDOMIZE TIMER
GA $2 \varnothing$ SCREEN $\varnothing, 1$:WIDTH 4ø:LOCATE ,, $\varnothing:$ COLOR 日, $\varnothing, \varnothing:$ CLS
FM $3 \emptyset$ DIM CF (26), $\operatorname{CB}(26)$, $\operatorname{PS\$ }(26,2$), $\operatorname{BN}(5,8): G O S U B$ 15øø: GOSUB 4øøø: LOCATE 13,9:GOSUB 45 øø
DA $4 \varnothing$ GOSUB 3øøø: RO= \varnothing : $\mathrm{CO}=\varnothing: \mathrm{PX}=1$: PY=1:MF=ø:TS=ø:FOR $I=\varnothing$ TO 1:TR(I) $=\varnothing$:SC(I) $=\varnothing$: NEXT:GOS UB 1øøø: $\mathrm{PL}=\varnothing$
LJ 45 WHILE TS<NM
KN $5 \varnothing$ GOSUB 2øøø: IF BN(RO,CO) $=27$ THEN 59 ELSE GOSUB 12gø:R 1=RD:C1=CO
$006 \varnothing$ GOSUB 2øøø: IF (BN(RO,CO)=2 7) $O R((R 1=R O)$ AND ($C 1=C O)$) THEN $\ddagger \varnothing$ ELSE GOSUB $12 ø \varnothing$
JK $7 \varnothing$ IF BN(R1, C1) $=\mathrm{BN}(\mathrm{RO}, \mathrm{CO})$ THE $\mathrm{N} \mathrm{SC}(\mathrm{PL})=\mathrm{SC}(\mathrm{PL})+1: \mathrm{TS}=\mathrm{TS}+1:$ $B N(R Q, C O)=27: B N(R 1, C 1)=27$ ELSE FOR I=1 TO 2øøø: NEXT: GOSUB $110 \varnothing$
dL $8 \varnothing$ TR $(P L)=T R(P L)+1$: GOSUB 1 1 $1 \varnothing$: IF BN(RO,CO) < 27 THEN PL=P L XOR NP
8096 WEND
BA 1 øø COLOR 7, Ø: LOCATE 9,1ø:PRI NT "Another game (Y/N)?"
HB $11 \varnothing \mathrm{~K} \$=1$ NKEY $\$: I F K \$=$ Y" THEN CLS:LOCATE 13,7:GOSUB 45ø ø:COLOR 8: GOTO 4ø
NH 120 IF K $\$=" N "$ THEN CLS:END EL SE $11 \varnothing$
NE 10øø E\$=STRING $\$(3,219)$
MG 1010 FOR $\mathrm{I}=\varnothing$ TO 23: LOCATE , 2
NA $1 \varnothing 2 \varnothing$ IF (I AND 3) < > \varnothing THEN FOR $\mathrm{J}=\varnothing$ TO 8: PRINT E\$SPC(1) ;: NEXT
6 6 1030 IF I<23 THEN PRINT
01 1ø4ø NEXT
EB 1 1 $5 \varnothing$ FOR PL=ø TO NP:COLOR Ø, P L*2+2:FOR J=ø TO 6:LOCAT E 8*PL-4*NP+10+J,38: PP-

T SPACE $\$$（3）：NEXT：LOCATE 8＊PL－4＊NP＋11，38：PRINT ST R\＄（PL＋1）：GOSUB 1ø7ø：NEXT
JN $106 \varnothing$ RETURN
18 $197 \emptyset$ COLOR $\emptyset, P L * 2+2: P R=8 * P L-4$ ＊NP＋13：LOCATE PR，38： $5 \$=5$ TR\＄（TR（PL））：PRINT RIGHT\＄ （＂ø日＂＋RIGHT\＄（S\＄，LEN（S\＄）－ 1），3）
PC $198 \emptyset$ LOCATE PR＋2，38： $5 \$=S T R \$(5$ C（PL））：PRINT RIGHTक（＂øø＂ ＋RIGHT\＄（S\＄，LEN（S\＄）－1），3）
J6 109ø RETURN
os 1160 COLOR 8：GOSUB 115 1 ：R1＝RO ：C1＝CO：GOSUB 1150：RETURN
if $115 \emptyset \mathrm{X}=4 * \mathrm{C} 1+2$ ： $\mathrm{Y}=4 * \mathrm{R} 1+2$ ：LOCATE Y，X：PRINT E\＄DL\＄E\＄DL\＄E\＄； ：RETURN
JE $12 \emptyset \emptyset$ LOCATE $\mathrm{PY}+1, \mathrm{PX}+1: \mathrm{N}=\mathrm{BN}(\mathrm{RO}$ ，CO）： $\operatorname{COLOR} C F(N), C B(N): P$ RINT PS\＄（N，ø）DL\＄PS\＄（N，1） DL\＄PS $\$(\mathrm{~N}, 2)$ ；：RETURN
FB $150 \emptyset \mathrm{DL} \$=\operatorname{CHR} \$(31)+\operatorname{STRING} \$(3,2$ 9）
ML 1510 FOR $I=\emptyset$ TO 26
QM $152 \emptyset$ READ CF（I），CB（I）：FOR $J=\emptyset$ TO 2：READ Tø，T1，T2：PS\＄（ $I, J)=C H R \$(T \varnothing)+C H R \$(T 1)+C$ HR\＄（T2）：NEXT J，I
JO 1530 RETURN
CP $18 \emptyset \emptyset$ DATA $6,1,168,63,168,63,1$ $68,63,168,63,168$
PO $18 \emptyset 5$ DATA $7,5,2 \emptyset 1,2 \emptyset 2,187,211$ ，21ø，21ø，218，2ø8，215
NH 1810 DATA $14,4,32,32,32,32,15$ ，32，32，32，32
aH 1815 DATA $9,2,15,15,15,15,178$ ，15，15，15， 15
IN $182 \emptyset$ DATA 4，7，244，244，159，245 ，179，244，159，245，245
DP 1825 DATA 8，2，177，176，177，176 ，177，176，177，176，177
PF $183 \emptyset$ DATA 8，Ø，223，223，223，6，6 ，6，22ø，22ø，22ø
ON 1835 DATA $13,1,32,32,32,157,3$ 2，157，32，157， 32
GF $184 \emptyset$ DATA $\emptyset, 7,176,176,176,176$ ，176，176，176，176，176
GK 1845 DATA $10,2,32,4,32,4,32,4$ ，32，4， 32
N1 $185 \emptyset$ DATA 4，7，32，219，32，219，2 19，219，32，219，32
OH 1855 DATA $7,3,178,178,178,178$ ，178，178，178，178，178
JF $186 \emptyset$ DATA $\varnothing, 6,206,206,206,206$ ，206，2ø6，2ø6，2ø6，2ø6
OM 1865 DATA $\emptyset, 4,32,32,32,32,32$ ， 32，32，32， 32
ME $187 \emptyset$ DATA $14, \varnothing, 219,219,219,21$ 9，219，219，219，219，219
DF 1875 DATA 3，1，247，247，247，247 ，247，247，247，247，247
MM $188 \emptyset$ DATA 12，4，222，186，221， 24 Ø，24ø，24ø，222，186， 221
QP 1885 DATA $4, \varnothing, 32,95,32,248,32$ ，248，92，236，47
ML $189 \emptyset$ DATA $8,5,248,248,248,248$ ，248，248，248，248，248
NL 1895 DATA $9,2,32,32,32,32,32$ ， 32，32，32， 32
FB $19 ø \emptyset$ DATA $12,5,177,177,177,17$ $7,177,177,177,177,177$
MO $19 \varnothing 5$ DATA 4，7，248，249，248，25ø ，249，248，25ø，249，25ø
LF 1910 DATA $15,7,32,32,237,32,2$ 37，32，237，32， 32
BK 1915 DATA $12,1,184,64,213,192$ ，197，217，214，193，183
FG 1926 DATA $13,4,232,32,232,32$ ， 32，32，232，32， 232
D！ 1925 DATA $1,7,14,32,32,32,32$ ， 32，32，251， 32
BC $193 \varnothing$ DATA $1 \varnothing, 1,188,32,2 ø \varnothing, 32$ ，

234，32，187，32，2ø1
FH $200 \varnothing$ GOSUB $250 \varnothing$
ID 2065 K\＄＝RIGHT\＄（INKEY\＄，1）：IF K \＄＝＂＂THEN $2 ø \varnothing 5$ ELSE $K=A S$ C（K\＄）
FH 2010
IF $K=13$ THEN LOCATE PY，P X：PRINT SPACE\＄（5）；：LOCAT E PY＋4，PX：PRINT SPACE ${ }^{(5}$ ）；：RETURN
AE 2ø2ø IF K＝72 THEN IF RO＞ø THE N RO＝RO－1：GOSUB 25øø
ON $2 ø 3 \emptyset$ IF K＝8ø THEN IF RO＜S THE N RO＝RD＋1：GOSUB 25øø
PH $2 ø 4 \varnothing$ IF $K=75$ THEN IF CO＞ø THE N CO＝CO－1：GOSUB 25øø
$6 A 205 \emptyset$ IF $K=77$ THEN IF CO＜8 THE N CO＝CO＋1：GOSUB 25øø
NK $2 \boxed{60}$ GOTO 2005
FL 25 פø $X=4 * C O+1: Y=4 * R O+1:$ COLOR PL＊2＋2，
EO $251 \varnothing$ LOCATE PY，PX：PRINT SPACE $\$(5)$ ；LOCATE PY＋4，PX：PRI NT SPACE $\$(5)$ ；
KL $252 \varnothing$ LOCATE $\mathrm{y}, \mathrm{X}:$ PRINT CHR\＄（21 8）SPC（3）CHR（ 191 ）；：LOCAT E $Y+4, X:$ PRINT CHR $\$(192) S$ PC（3）CHR\＄（217）；
LE $2530 \mathrm{PX}=\mathrm{X}: \mathrm{PY}=\mathrm{Y}$
JC 2540 RETURN
IE 3 Øøø $\mathrm{I}=\emptyset$ ：FOR $\mathrm{J}=\emptyset$ TO 4 STEP 2： FOR K＝ø TO 8： $\operatorname{BN}(\mathrm{J}, \mathrm{K})=\mathrm{I}: \mathrm{B}$ $\mathrm{N}(\mathrm{J}+1, \mathrm{~K})=\mathrm{I}: \mathrm{I}=\mathrm{I}+1:$ NEXT K ， J
DG 3 Ø1ø FOR J＝ø TO 5：FOR K＝ø TO 8：SJ＝INT（RND＊S）：SK＝INT（R ND＊9）
$M A 3 \varnothing 2 \varnothing T=B N(S J, S K): B N(S J, S K)=B N$ $(\mathrm{J}, \mathrm{K}): \mathrm{BN}(\mathrm{J}, \mathrm{K})=\mathrm{T}:$ NEXT K， J
163030 RETURN
BF 4øøø LOCATE 11，9：PRINT＂Numbe r of players（1／2）？＂
KD $4 \varnothing 1 \varnothing K \$=I N K E Y \$: I F K \$="$＂OR（K \＄＜＞＂1＂AND K\＄＜＞＂2＂）THEN $4 \varnothing 1 \varnothing$
HJ $4 \varnothing 2 \varnothing \mathrm{NP}=\mathrm{VAL}(\mathrm{K} \$)-1$
IH 4030 RETURN
MD $45 \emptyset \emptyset$ INPUT＂Number of matches （1－27）？＂，S\＄
EH $451 \varnothing$ NM $=$ VAL（S\＄）：IF NM＜1 OR NM >27 THEN NM＝27
JO $452 \emptyset$ RETURN

Program 4：Apple II Rememory

Q9 20 HOME ：GOSUB 4øøø：UTAB 13 ：HTAB 5：GOSUB 450ø
$5230 \operatorname{DIM} \operatorname{PS} \$(26,2)$ ，BN $(5,8)$ ：GOS UB 15øø：GOSUB 100.0
OC 4ø GOSUB 3øøø：RO $=\varnothing$ ：CO＝ø：P $X=1: P Y=1: M F=\emptyset: T S=\varnothing$ $:$ FOR I $=\varnothing$ TO $1: T R(I)=\varnothing$ ：SC（I）＝Ø：NEXT ：GOSUB 1 øøø：PL $=\varnothing$ ：GOSUB 1095
1950 GOSUB 2øøø：IF BN（RO，CO）$=$ 27 THEN 5ø
5355 GOSUB 1200：R1 $=\mathrm{RO}: \mathrm{C} 1=\mathrm{CO}$
$866 \varnothing$ GOSUB 2øø日：IF（BN（RO，CO）
$=27)$ OR（ $(R 1=R Z)$ AND（ C 1 ＝CO））THEN $6 \varnothing$
1865 GOSUB 1200
EJ $7 \varnothing$ IF $B N(R 1, C 1)=B N(R O, C Q) T$ HEN SC $(P L)=S C(P L)+1: T S$ $=T S+1: B N(R O, C O)=27: B$ $N(R 1, C 1)=27:$ GOTO $8 \varnothing$
D7 75 FOR I＝ 1 TO 1øø日：NEXT ： GOSUB $11 ø \varnothing$
40 $8 \emptyset \operatorname{TR}(P L)=\operatorname{TR}(P L)+1:$ GOSUB 1ø7ø：IF BN（RO，CO）＜ 27 T HEN PL $=N P-P L$
6190 IF TS＜NM THEN GOSUB 1095 ：GOTO 5ø
DD 1 øø VTAB 8：HTAB 8：PRINT＂AN

OTHER GAME（ Y OR N ）？＂；
EA 110 GET K\＄：IF K\＄＝＂Y＂THEN UTAB 12：HTAB 4：GOSUB 45 פD：HGR2 ：GOTO 4ø
A4 120 IF K\＄$=$＂N＂THEN HOME ：E ND
91130 GOTO 110
951 1øø HOME $: E \Phi=" ":$ FOR $I=\varnothing$ TO 2：E\＄＝E\＄＋CHR $\$(32$ ）：NEXT
A6 $1 \varnothing 1 \varnothing \mathrm{~K}=\varnothing$ ：FOR I $=\varnothing$ TO 23： HTAB 2：IF K $=4$ THEN K ＝\varnothing
881 1020 IF K＜＞ 3 THEN FOR J＝ Ø TO 8：INVERSE ：PRINT E\＄；：NORMAL ：PRINT SPC（ 1）；：NEXT
EF 1030 IF I＜ 23 THEN PRINT
$611040 \mathrm{~K}=\mathrm{K}+1$ ：NEXT
B6 1 ø5 0 FOR PL $=\varnothing$ TO NP：INVERS E ：FOR J＝ø TO 6：VTAB 8＊PL－4＊NP＋ $9+\mathrm{J}$ ：HTAB 38：PRINT E\＄：NEX T ：VTAB B＊PL－ 4 ＊NP $+10:$ HTAB 39：PRINT ST R\＄（PL＋1）：GOSUB 1ø7ø： NEXT
E9 $106 \varnothing$ RETURN
A6 $107 \varnothing$ INVERSE ：PR $=8 * P L-4$ ＊NP＋12：UTAB PR：HTA B 38：S $\$=$ STR\＄$(\operatorname{TR}(P L))$ ： PRINT RIGHT\＄（＂øø＂＋S\＄ ，3）
801 1ø8 VTAB PR +2 ：HTAB 38： $5 \$$ $=$ STR\＄（SC（PL））：PRINT R IGHT\＄（＂øø＂＋S\＄，3）
$831 ø 9 \varnothing$ NORMAL ：RETURN
D8 1095 INVERSE ：VTAB 8＊NP＊ （ 1 －PL）－ 4 ＊NP＋1ø： HTAB 38：PRINT CHR\＄（32） $: P R=8 * P L-4 * N P+$ 10：UTAB PR：HTAB 38：PR INT CHR\＄（1ø5）：NORMAL ： RETURN
㫙 1100 INVERSE ：GOSUB 115ø：R1 $=$ RD：C1 $=$ CO：GOSUB $115 \emptyset$ ：NORMAL ：RETURN
उC $1150 \mathrm{X}=4$＊C1 $+2: \mathrm{Y}=4 * \mathrm{R}$ $1+1:$ VTAB $Y:$ HTAB $X: P$ RINT E\＄：HTAB X：PRINT E \＄：HTAB X：PRINT E\＄；：RE TURN
日B 1200 FOR $\mathrm{J}=\varnothing$ TO 2：VTAB PY ＋J：HTAB PX＋1：PRINT PS\＄（BN（RO，CD），J）；：NEXT ：RETURN
Eß 15øø FOR $1=\varnothing$ TO 26：FOR J＝ ๑ TO 2
J8 $151 \emptyset \operatorname{PS} \$(\mathrm{I}, \mathrm{J})=\operatorname{STR} \$(\mathrm{I}): \operatorname{NEX}$ T J，I
F3 1529 FOR I $=\varnothing$ TO 26：FOR J $=$ g TO 2
F5 1530 READ Tø，T1，T2：PS $\$(\mathrm{I}, \mathrm{J})=$ CHR\＄（TD）＋CHR\＄（Ti）＋ CHR\＄（T2）：NEXT J，I
EB 154ø RETURN
251890 DATA $35,35,35,35,35,35,3$ 5，35， 35
$31181 \varnothing$ DATA $58,63,58,63,58,63,5$ 8，63，58
711820 DATA $64,64,43,64,43,32,4$ 3，32，32
D5 1830 DATA $32,44,64,42,32,44,6$ 4，42， 32
A4 1840 DATA $33,32,34,32,35,32,3$ 4，32， 33
$84185 \emptyset$ DATA 47，46，46，47，46，46， 4 6，47，47
4E 1869 DATA $36,38,37,32,39,36,3$ 9，36， 39
$17187 \varnothing$ DATA $64,91,64,92,91,92,6$ 4，91，64
48 188ø DATA 61，61，61，61，61，61，6 1，61，61
47 189ø DATA 91，91，91，91，91，91，9

1，91，91
9F $19 \varnothing \varnothing$ DATA $92,91,92,64,64,64,9$ 1，92，91
481905 DATA $45,32,42,32,94,32,4$ 4，32， 43
bE 1910 DATA $39,32,37,32,93,32,3$ 8，32， 36
821915 DATA 36，37，38，39，59，37，3 7，38， 39
$32192 \emptyset$ DATA 46，46，46，46，46，46， 4 6，46，46
EA 1925 DATA 94，93，94，94，93，94，9 4，93，94
A1 1930 DATA 91，92，91，91，92，91，9 1，92，91
EA 1935 DATA 92，91，92，92，91，92，9 2，91，92
उD $194 \varnothing$ DATA $95,95,95,95,95,95,9$ 5，95， 95
5D 1945 DATA 32，32，32，96，96，96，3 2，32， 32
$45195 \emptyset$ DATA 97，97，97，97，97，97，9 7，97，97
EE 1955 DATA 98，33，33，34，34，34，9 9，33， 99
E4 196ø DATA 34，33，10ø，1øø，34， 33 ，34，33，1ø9
2F 1965 DATA 32，96，32，39，59，36，3 8，59，37
F4 1970 DATA $32,39,37,32,38,36,3$ 2，32， 32
111975 DATA 1ø1，1ø2，1ø1，1ø1，1ø2 ， $1 \varnothing 1,1 \varnothing 1,1 \varnothing 2,1 \varnothing 1$
70 198ø DATA 1ø3，1ø4，193，1ø3， 194 ，1ø3，1ø3，194，1ø3
42 2øøø GOSUB $25 ø \emptyset$
7E $201 \varnothing$ GET K\＄：IF $K \$=$ CHR $\$(32$ ）THEN VTAB PY：HTAB PX： PRINT CHR\＄（32）；：HTAB PX＋4：PRINT CHR\＄（32）： VTAB PY＋2：HTAB PX：P RINT CHR\＄（32）；：HTAB PX + 4：PRINT CHR\＄（32）：R ETURN
$292 \varnothing 2 \varnothing$ IF K $=$＂I＂THEN IF RO＞ \varnothing THEN RO $=$ RO－1：GOS UB 2500
BC 2030 IF $K \$=$＂M＂THEN IF RO＜ 5 THEN RO $=$ RO $+1:$ GOS UB $25 \varnothing \varnothing$
DA 204ø IF K\＄＝＂J＂THEN IF CO＞ \square THEN CO $=\mathrm{CO}-1$ ：GOS UB $25 ø 0$
C2 2050 IF K\＄$=$＂K＂THEN IF CO＜ 8 THEN CO $=\mathrm{CO}+1$ ：GOS UB $25 \varnothing \varnothing$
$68206 \varnothing$ GOTO $201 \varnothing$
$862500 \mathrm{X}=4 * \mathrm{CO}+1: \mathrm{Y}=4 * \mathrm{R}$ $0+1$
9F $251 \varnothing$ VTAB PY：HTAB PX：PRINT CHR $\$$（32）；：HTAB PX＋4： PRINT CHR\＄（32）：VTAB P $Y+2:$ HTAB PX：PRINT CH R\＄（32）；：HTAB PX＋4：P RINT CHR\＄（32）；
2A $252 \varnothing$ VTAB Y ：HTAB X ：PRINT CH R\＄（62）；：HTAB $x+4$ ：PR INT CHR\＄（ $6 \varnothing$ ）：VTAB $Y+$ 2：HTAB X：PRINT CHR\＄ 16 2）；：HTAB $x+4:$ PRINT C HR\＄（6ø）；
C5 $2530 \mathrm{PX}=\mathrm{X}: \mathrm{PY}=\mathrm{Y}$
EC 2549 RETURN
6C उøøø I＝Ø：FOR J＝Ø TO 4 ST EP 2：FOR K＝\varnothing TO 8：BN（ $\mathrm{J}, \mathrm{K})=\mathrm{I}: \mathrm{BN}(\mathrm{J}+1, \mathrm{~K})=\mathrm{I}$ $: I=I+1:$ NEXT K，I
27 3ø1ø FOR J＝\varnothing TO 5：FOR K＝ ø TO 8：SJ＝INT（RND（1 ）＊5）：SK＝INT（ RND（1 ）＊9）
B6 3ø2ø $T=B N(S J, S K): B N(S J, S K)$ $=\operatorname{BN}(\mathrm{J}, \mathrm{K}): \operatorname{BN}(\mathrm{J}, \mathrm{K})=\mathrm{T}: \mathrm{N}$ EXT K，J

66 4øøø VTAB 11：HTAB 5：PRINT NUMBER OF PLAYERS（1 OR 2）？＂；
बF 4 gø5 $\mathrm{K}=$ PEEK（49152）： $\mathrm{R}=$ RND （1）：IF K＞ 127 THEN PO KE 49168，\varnothing
CA $4 \varnothing 10 \mathrm{IF} \mathrm{K}$＜＞ 177 AND K＜＞ 1 78 THEN $4 ø 05$
$784020 \mathrm{NP}=\mathrm{K}-177$
E 8903 RETURN
15 45øø INPUT＂NUMBER OF MATCHES （1 TO 27）？＂； $5 \$$
D5 4510 NM $=$ VAL（ $5 \$$ ）：IF NM＜1 OR NM >27 THEN NM $=27$
E6 4520 RETURN
उA 1 Фøøø HGR2 ：GOSUB 1ø99ø：GOS UB $12 \varnothing \varnothing \varnothing$
D8 1 1øø3ø IF PEEK（190＊256）$=7$ 6 THEN PRINT CHR\＄（4）；＂ PR\＃A768＂：GOTO 1øø5ø
F9 1øø4ø POKE 54，ø：POKE 55，3：C ALL $1 ø ø 2$
FC 1øø5ø POKE 6， $0:$ POKE 7，128：P OKE 230，64
831 1øøbø RETURN
F2 1999 FOR I $=768$ TO 855：REA D A：POKE I，A：NEXT ：R ETURN
FJ 11 øøø DATA 216，12ø，133，69，134 ，7ø，132，71
5E 11 Ø1ø DATA 166，7，1ø，10，176，4， 16， 62
6B 11 ø2ø DATA 48，4，16，1，232，232， 10， 134
AJ 11 1ן3 DATA $27,24,1 \varnothing 1,6,133,26$ ，144，2
$9711 ø 4 \emptyset$ DATA $23 \varnothing, 27,165,4 \varnothing, 133$ ， 8，165， 41
$851105 \emptyset$ DATA 41，3，5，23ø，133，9，1 62， 8
56 11 ø6ø DATA $16 \varnothing, \varnothing, 177,26,36,5 \varnothing$ ，48， 2
$881167 \emptyset$ DATA $73,127,164,36,145$ ， 8，230，26
E4 11ø8ø DATA 2ø日，2，23ø，27，165，9 ，24，1ø5
7A 11ø9ø DATA 4，133，9，2ø2，2ø8，22 6，165，69
उE 111øø DATA 166，7ø，164，71，88，7 6，24ஏ， 253
F2 12øøø FOR I＝ 32768 TO 33359： READ A：POKE I，A：NEXT ：RETURN
$5 \varnothing$ 12ø1ø DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
46 12ø2ø DATA $1,3,6,12,24,48,96$ ， 64
JB $12 ø 3 \varnothing$ DATA $64,96,48,24,12,6,3$ ， 1
DF $12 ø 4 \emptyset$ DATA $65,99,54,28,28,54$ ， 99，65
$2512 ø 5 \emptyset$ DATA $152,152,152,143,13$ 5，128，128， 128
CJ $12 \emptyset 6 \emptyset$ DATA $128,128,128,135,14$ 3，152，152，152
4C 12ø7ø DATA 14の，14の，14ø，248， 24 Ø，128，128， 128
$4512 ø 8 \emptyset$ DATA $128,128,128,24 \varnothing, 24$ 8，14ø，14ø， $14 \varnothing$
ө8 $12 \varnothing 9 \varnothing$ DATA $128,176,152,14 \varnothing, 14$ Ø，152，176， 128
A1 $121 ø \emptyset$ DATA $128,134,14 \varnothing, 152,15$ 2，14ø，134， 128
BE $1211 \varnothing$ DATA $\varnothing, 1,3,7,15,31,63,1$ 27
$551212 \emptyset$ DATA $127,63,31,15,7,3,1$
62 1213 ， DATA $127,126,124,129,11$ 2，96，64，\varnothing
CC $1214 \varnothing$ DATA $\varnothing, 64,96,112,12 \varnothing, 12$ 4，126， 127
AF $1215 \varnothing$ DATA $25,51,1 ø 2,76,25,51$ ，1ø2，76
IE $1216 \emptyset$ DATA $76,1 ø 2,51,25,76,1 \varnothing$ 2，51，25
3B $1217 \varnothing$ DATA $128,188,239,246,23$

8，230，188，128
8B 1218ø DATA $128,152,156,152,15$ 2，152，188， 128
Q3 $1219 \varnothing$ DATA $128,188,23 \varnothing, 176,14$ Ø，23ø，254， 128
83 122øø DATA $128,188,23 \emptyset, 176,22$ 4，236，188， 128
95 1221ø DATA $128,176,184,18 \varnothing, 25$ 4，176，176， 128
BC $1222 \varnothing$ DATA $128,254,134,19 \varnothing, 22$ 4，23ø，188， 128
IB 12230 DATA $128,188,134,19 \varnothing, 23$ ø，23ø，188， 128
E6 1224ø DATA $128,254,224,176,15$ 2，14ø，14ø，128
D8 1225ø DATA $128,188,230,188,23$ Ø，23ø，188， 128
73 1226ø DATA 128，188，230，23ø， 25 2，176，152， 128
D1 1227 D DATA $128,152,128,152,17$ 6，23ø，188， 128
$881228 \emptyset$ DATA $14 \emptyset, 14 \emptyset, 140,255,25$ 5，14ø，14ø，14ø
37 1229ø DATA 128，152，140，134， 14 g，152，128， 128
IE $123 \varnothing 9$ DATA $157,178,149,181,12$ 8，173，265， 186
A2 12316 DATA $128,140,152,176,15$ 2，14ø，128， 128
F8 12326 DATA $128,188,230,176,15$ 2，128，152， 128
17 1233פ DATA 255，255，255，255， 25 5，255，255， 255
D9 12349 DATA $128,252,230,236,25$ 4，236，236，128
D7 1235 DATA 128，19ø，23ø，23ø， 19 Ø，23ø，254， 128
7B 1236ø DATA 128，188，23ø，134， 13 4，23ヵ，19ø， 129
BF $1237 \varnothing$ DATA $128,199,23 \varnothing, 23 \varnothing, 23$ ஏ，23ø，19ø， 128
F2 1238ø DATA $128,254,134,134,19$ Ø，134，254， 128
FG 1239 DATA $128,254,134,134,19$ g，134，134， 128
65 124øø DATA 128，188，23ø，134，24 6，23ø，19ø，128
4412419 DATA $128,239,23 \varnothing, 23 \varnothing, 25$ 4，23ø，23ø， 128
8A $1242 \varnothing$ DATA $128,152,152,152,15$ 2，152，152， 128
JA $1243 \varnothing$ DATA $128,224,224,224,22$ 4，230，188， 128
IC 1244ø DATA $128,230,230,182,15$ 8，230，230，128
4612459 DATA $128,134,134,134,13$ 4，134，254， 128
©C 1246ø DATA $128,239,254,236,23$ ø，23ø，23ø， 128
AD 12479 DATA $128,19 \varnothing, 230,230,23$ ø，236，236，128
CB $1248 \varnothing$ DATA $128,188,230,230,23$ ஏ，23ø，188， 128
DJ $1249 \varnothing$ DATA $128,19 \varnothing, 230,230,19$ 6，134，134， 128
8F 125øø DATA $128,188,230,230,23$ g，182，236， 128
$971251 \varnothing$ DATA $128,19 \varnothing, 230,230,19$冋，23ø，23ø， 128
C1 12529 DATA $128,188,23 \varnothing, 14 \varnothing, 17$ 6，23ø，19ø，128
B7 12536 DATA $128,254,152,152,15$ 2，152，152， 128
4E 1254ø DATA 128，230，230，236，23 Ø，23ø，19ø，128
56 1255ø DATA $128,230,230,230,23$ ஏ，236，152， 128
CA $1256 \emptyset$ DATA $128,236,230,230,23$ ஏ，254，236， 128
A2 $1257 \emptyset$ DATA $128,236,230,230,18$ 8，236，236， 128
2212589 DATA 128，236，23ø，230， 18 8，152，152，128
8E 1259 D DATA $128,254,176,152,14$ ஏ，134，254，128

F9 $126 \varnothing \varnothing$ DATA $17 \varnothing, 17 \varnothing, 17 \varnothing, 17 \varnothing, 17$ ø，17ø，17ø，17ø
©A 12616 DATA $213,213,213,213,21$ 3，213，213，213
C5 12629 DATA $162,162,179,136,13$ $6,17 \varnothing, 162,162$
$231263 \varnothing$ DATA $136,136,176,162,16$ 2，176，136， 136
B3 $1264 \emptyset$ DATA 85， $127,42, \varnothing, 85,127$ ，42， 1
2E $1265 \varnothing$ DATA $\varnothing, 8,42,42,42,42,8$ ， g
B8 $1266 \emptyset$ DATA $74,1 \varnothing 9,85,74,1 ø 6,7$ 3，123，43
4312676 DATA 96，96，96，96，96，96， 96，96
AG $1268 \emptyset$ DATA $3,3,3,3,3,3,3,3$
$481269 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 127$
㫙 127 Øø DATA $85,85,85,85,85,85$ ， 85， 85
17 12719 DATA 42，42，42，42，42，42， 42，42
C8 $1272 \emptyset$ DATA $\varnothing, 8,34,8,34,8,34$ ， 8 D8 $1273 \varnothing$ DATA $\varnothing, 8,34,8,34,8,34,8$ DJ 1274 DATA $8,42,28,8,28,42,8$ ，

Program 5：Rememory For Atari 400，800，XL，And XE

BJ 1 OPEN \＃1，4，\varnothing ，＂K：＂：PRINT CHR $\$(125)$
IL 2 DIM SPACE $1 \$(4 \emptyset)$ ，SPACE $2 \$$ （20）， $\mathrm{BN}(5,8), 5 \$(6), \operatorname{TR}(1$ ），SC（1）
HE 5 GOSUB 4 ØDD：POSITION 9,1 3：GOSUB 45øø
HN $1 \emptyset$ GRAPHICS $\varnothing:$ POKE $82, \varnothing: P$ OKE 83，39
FH 15 POKE 752，1：PRINT
DE $2 \emptyset$ DLIST＝PEEK（56め）＋PEEK（5 61）＊256
CD $3 \emptyset$ FOR T＝6 TO 28 STEP 2：P OKE DLIST＋T， 6 ：NEXT T
PL 40 POKE 756， 226
CB $5 \emptyset$ SCREEN＝PEEK $(88)+\operatorname{PEEK}(8$ 9） ＊ 256
NK $6 \emptyset$ FOR $I=\emptyset$ TO $66 \emptyset$ STEP $6 \emptyset$ ：K＝SCREEN＋I
MA Bø FOR J＝4の TO 59：POKE K＋ J，128：NEXT J：NEXT I
PA $9 \varnothing$ POKE 71Ø，\varnothing ：POKE 752， 1
$601 \emptyset 5$ GOSUB 3øøø：ROW＝ø：COL＝ $\emptyset: M F=\emptyset: T S=\emptyset: F O R \quad I=\emptyset T$ 0 1：TR（I）$=\varnothing: S C(I)=\varnothing: N$ EXT I：GOSUB 1 øøø：$P L=\varnothing$
OH $11 \varnothing$ GOSUB 2øøø：IF BN（ROW， $C D L)=27$ THEN 119
BE 115 GOSUB 12øø：PROW＝ROW：P $\mathrm{COL}=\mathrm{COL}$
6H $12 \emptyset$ GOSUB 2øøø：IF（BN IROW ，$C Q L$ ）$=27$ ）OR（（PROW＝R OW）AND（PCOL＝COL））T HEN $12 \emptyset$
N． 125 GOSUB 1200
00130 IF $B N(P R O W, P C O L)=B N(R$ $O W, C Q L$ THEN $S C(P L)=S$ $C(P L)+1: T S=T S+1: B N(R D$ $W, C O L)=27: B N(P R O W, P C O$ L）$=27$ ：GOTO 14ø
KK 135 FOR I＝1 TO 2øØ：NEXT I ：GOSUB $11 \varnothing \varnothing$
JH $14 \varnothing \mathrm{TR}(P L)=T R(P L)+1$ ：GQSUB 1ø8ø：IF BN（ROW，COL）＜ 27 THEN PL＝NP－PL
O日 15ø GOSUB 1ø7ø：IF TS＜NM T HEN $11 \emptyset$
ON $16 \emptyset$ POSITION $1 \varnothing, 9:$ PRINT＂ ANOTHER GAME（Y／N）？＂： POKE SCREEN $+4 \varnothing, 128$
JF 17 G GET \＃ $1, K$ ：IF $K=89$ THEN GRAPHICS $\varnothing: P R I N T$ CHR \＄（125）：RUN
JB $18 \emptyset$ IF $K=78$ THEN GRAPHICS

Ø：PRINT CHR\＄（125）：EN
6L 190 GOTO 170
IK 1 Øøø POS＝SCREEN＋63：FOR $I=$ Ø TO 5：FOR J＝ø TO 8： POKE 4 ＊J＋POS，128：POK E 4＊J + POS＋1，128：NEXT J：POS＝POS＋12ø：NEXT I
IL $1 \varnothing 5 \emptyset$ POSITION $1, \varnothing:$ PRINT＂ ＊P1 Øøø øøø＂：IF NP＝1 THEN POSITION 29，\varnothing ： PRINT＂P2 Øøø øøø＂
ND 1 Ø6ø GOTO 1 Ø99
6C 1ø7ø POSITION 27＊PL＋1，Ø：P RINT＂＊＂：POSITION 27 ＊$(1-P L)+1, \emptyset:$ PRINT CH R\＄（32）：GOTO 1 G99
01 1 ø日ø $\mathrm{PR}=27 * \mathrm{PL}+8: 5 \$=5 T R \$(T$ $R(P L))$ ：POSITION PR－L EN（S\＄），\varnothing ：PRINT S\＄
IN $1 \varnothing 9 \varnothing \quad$ S $\$=S T R \$(S C(P L)): P O S I$ TION PR＋4－LEN（S\＄）， ： PRINT $5 \$$
DC 1 Ø99 POKE SCREEN＋4の，128：R ETURN
JK 11 Øø PIC＝27：GOSUB 115ø：PR OW＝ROW：PCOL＝COL：GOSU B 115ø：RETURN
EM $115 \emptyset \times P O S=P C Q L: Y P O S=P R O W$ ： GOSUB 2øøøø：RETURN
NO 12 Øø PIC＝BN（ROW，COL）：XPOS ＝COL：YPOS＝ROW：GOSUB 2øのøø：RETURN
AK 2 Øの 0 GOSUB $251 \varnothing$
AK 2005 JY $=$ STICK（PL＊JS）：POKE 77，\square
JA $2 \emptyset 1 \emptyset$ IF STRIG（PL＊JS）$=\varnothing$ TH EN PQKE PCUR，PC1：POK E PCUR＋3，PC2：RETURN
FH 2020 IF $J Y=14$ THEN IF ROW ＞ø THEN ROW＝ROW－1：GO SUB 250ø
PI $203 \emptyset$ IF $J Y=13$ THEN IF ROW ＜5 THEN ROW＝ROW＋1：GO SUB 25øø
K 1204 IF JY＝11 THEN IF COL ＞ THEN COL＝COL－1：GO SUB 25פø
IC 2 20 5 IF $J Y=7$ THEN IF COL 8 THEN $\mathrm{COL}=\mathrm{COL}+1: \mathrm{GOS}$ UB 25øø
GJ $206 \emptyset$ FOR $I=\varnothing$ TO $5 \emptyset:$ NEXT I ：GOTO $2 ø ø 5$
BC $250 \emptyset$ POKE PCUR，PC 1：POKE P CUR＋3，PC2
BO 251 Ø CUR＝SCREEN＋ROW＊ $12 \emptyset+4$ ＊COL＋62：PC $1=$ PEEK（CUR ）：PC2＝PEEK（CUR＋3）
FA 252ø POKE CUR，32：POKE CUR ＋3，32：PCUR＝CUR
KK 2530 RETURN
F6 $3 \emptyset \emptyset \emptyset \quad I=\emptyset: F O R \quad J=\varnothing$ TO 4 STE P 2：FOR K＝ø TO 8：BN（ $J, K)=I: B N(J+1, K)=I: I$ ＝I＋1：NEXT K：NEXT J
8． $3 \emptyset 1 \emptyset$ FOR $J=\emptyset$ TO 5：FOR $K=\emptyset$ T0 8：SJ＝INT（RND（ \varnothing ）＊ 5）：SK＝INT（RND（Ø）＊9）
PO 3ø2ø T＝BN（SJ，SK）：BN（SJ，SK ）$=\mathrm{BN}(\mathrm{J}, \mathrm{K}): \operatorname{BN}(\mathrm{J}, \mathrm{K})=\mathrm{T}:$ NEXT K：NEXT J
K6 $3 \varnothing 3 \emptyset$ RETURN
LN 4 Øøø POSITION 9，9：PRINT＂ NUMBER OF PLAYERS（ 1 ／2）？＂；
FF 4 Ø1ø GET \＃1，NP：IF NPく＞49 AND NP $\langle>5 \emptyset$ THEN $4 \emptyset 1 \varnothing$
$K 64 \emptyset 2 \emptyset \quad N P=N P-49: I F \quad N P=\emptyset \quad T H E$ N 4060
IM $4 \emptyset 3 \emptyset$ POSITION 9，11：PRINT ＂NUMBER OF JOYSTICKS （1／2）？＂；
F！ $4 \emptyset 4 \varnothing$ GET \＃1，JS：IF JS $\langle>49$

NK $405 \emptyset$ JS $=$ JS -49
KK 4ø6ø RETURN
KJ $45 \emptyset \emptyset$ PRINT＂NUMBER OF MAT CHES（1－27）＂；：INPUT S\＄：IF S\＄＝＂＂THEN S\＄＝ ＂ø＂
HB $451 \emptyset \quad N M=V A L(S \$): I F \quad N M<1 \quad \square$ $R \quad N M>27$ THEN $N M=27$
KL $452 \emptyset$ RETURN
JK 1øøøø DATA 81，69，65，82，82 ，68，90，67
NH 1øø1ø DATA 2ஏ9，2ø7，Ø，74，7 2，Ø，154，131
KO $1 \varnothing \varnothing 20$ DATA $12,3, \emptyset, 93,91$ ，Ø ，3， 86
DK 10030 DATA 2，86，75，79，75， 79，2， 86
6J 1 Øø4Ø DATA 2ø，84， $0,212,21$ 2，$, 84,2 \emptyset$
J6 10050 DATA 96，128，0，96，96 ， $0,128,96$
H6 1øø6ø DATA 8，128，ø，28，3ø， Ø，128， $2 \varnothing 4$
KI 1øø7ø DATA $73,79,65,83,83$ ，68，75，76
EG 1øø日ø DATA $2 \emptyset 1,2 \emptyset 7,26,84$ ， 84，26，293，294
I6 10090 DATA $11,128,66,3,3$ ， B6，128，15
6E $1 \varnothing 1 \varnothing \varnothing$ DATA 299，195，75，82， 82，79，299，195
MJ $1 \varnothing 11 \varnothing$ DATA $124,124, \emptyset, 6 \varnothing, 6$ Ø， $5,124,124$
EJ $1 \emptyset 12 \emptyset$ DATA $61,61,217, \varnothing, \varnothing$ ， 89，61，61
NH 1 Ø13Ø DATA 254，254，Ø，31， 3 $1, \emptyset, 254,254$
FE $1 \emptyset 140$ DATA $199,169,45,55$ ， 45，55，119， 119
NB 10150 DATA $1,4,65,68,65,6$ B，1， 4
BO $1 \varnothing 16 \emptyset$ DATA $1,68,6,139,139$ ， $0,1,68$
DA $1 \varnothing 17 \emptyset$ DATA $128,128, \emptyset, 211$ ， 211，ஏ，2ø3，2ø4
NN $1 \emptyset 18 \emptyset$ DATA $128,128, \emptyset, 72,7$ 4，ø，2ø3，2ø4
0Е 1 Ø19Ø DATA $73,79, \varnothing, 128,12$ 8，ø，2ø3，2ø4
$161 \emptyset 2 \emptyset \emptyset$ DATA $73,128, \emptyset, 9 \varnothing, 69$ ，$\emptyset, 128,76$
$061 \emptyset 21 \emptyset$ DATA 2פ9，128， $0,90,6$ 9， $0,128,2 \emptyset 9$
DP 1 Ø22ø DATA $128,128, \varnothing, 251$ ， 251，$, 128,128$
BK 1 Ø23ø DATA $71,7 \emptyset, 9,66,86$ ， Ø，7ø， 71
6B 1ø24ø DATA 213，213，ø，ø，ø， Ø，206，206
OA $1 \varnothing 25 \emptyset$ DATA $6,7, \varnothing, \varnothing, \varnothing, \varnothing, 7$ ， 6
PN 1 Ø26ø DATA $198,198, \varnothing, 7 \emptyset, 7$ Ø， $0,198,198$
EK 1 ø27ø DATA $128,128, \emptyset, 128$ ， 128, ， 128,128
FF 2øøøø REM Call with PIC h olding the picture number，XPOS \＆YPOS holding the card p osition（ $0-8, \emptyset-5$ ）
JL 2øø2ø RESTORE PIC＊1פ＋1øøø \emptyset
JO $2 \emptyset \emptyset 4 \emptyset$ START＝SCREEN＋YPOS＊ 1 $2 \emptyset+X P Q S+X P O S$
CK 2005 FOR $I=1$ TO 2：READ A ：POKE START $+4 \emptyset+1, A:$ NEXT I
BK 20Ø6Ø FOR I＝1 TO 4：READ A ：POKE START＋61＋I＋XP OS＋XPOS，A：NEXT I
FJ 2øø7ø FOR I＝1 TO 2：READ A ：POKE START＋1øØ＋I，A ：NEXT I
NK 2øø日の RETURN

On Balance

James V. Trunzo

Requirements: Apple II-series computer with a minimum of 128 K . Both $3^{11 / 2}$-inch and $51 / 4$-inch disks contained in each package.

After a hard day's work, few people want to take time to manage the money they make. In our house, that task is ably handled by my wife. Now, in order to make her job a little easier, I had, in the past, tried to get her to use my computer and any number of home accounting software packages. My efforts, however, were in vain. Either it took too many hours to set up accounts prior to even beginning to use the software, or the programs were too complicated for those of us without a degree in accounting. All we really needed was a computerized checkbook program with the ability to do some neat things, like sorts. Nothing we found could overcome her preference towards her own calculator, pen, and paper system. That is, nothing could until Broderbund released its newest productivity package: On Balance.

On Balance is a money management program-which, incidentally, is not copy protected-that so closely simulates the most basic of noncomputer household systems, it destroys the inhibitions many people have about using a computer to aid in financial management. The fact that it emulates the system most households are already using makes it unintimidating to novices, giving them the security they need to fairly evaluate the program.

Simple And Versatile

On Balance allows the user to begin working with it immediately. After ten minutes of initial setup, you can begin making full use of the program. While you can create all your accounts before making any entries if you so desire, On Balance, unlike many other similar financial packages, doesn't require that you do so. Accounts can be established on the fly. If entering the details of a
check is your first transaction, you set up your checking account at that time. If your next entry is a deposit into a savings account, just answer the series of onscreen questions, and another account has come into existence. Simplicity is one of On Balance's best features.

However, don't confuse simplicity with lack of sophistication or get the idea that this program is a watereddown version of a "real" home accounting program-On Balance is as complete a program as any of its type currently on the market. It's just that Broderbund's program allows you a tremendous amount of versatility, and it doesn't require that you use all of its features if you need only a few. And it certainly has enough features. For instance: On Balance will handle all standard record keeping, reconciliation tasks, budgets, check printing, and so forth. It will generate reports showing your net income and net worth as well as reports on individual accounts and transaction lists. It will even print graphs allowing you to compare a variety of financial information, like money spent versus money budgeted. And it does all these things in a speedy, clear, simple way-which is what really separates it from others of its ilk.

Part of the ease of use implied above stems from On Balance's use of pull-down windows and constant onscreen menus. Using a mouse, a keyboard, or a combination of both, the user selects major elements of the program from a menu line at the top of the screen. This drops a window containing more detailed choices. For example, selecting "Accounts" from the menu line will open a window listing all the account types that have been created. Furthermore, onscreen help is almost always available, and editing is a snap if modification is needed due to change or error.

Other features aid in the speed and usefulness of the program. An everpresent, full-functioning calculator hides behind the main screen, waiting to be summoned through the use of Open Apple-C, and a Notepad is also always available to jot down important notations about a transaction. Another feature that saves the user time and
trouble is the ability to enter a set of regular payments, like a mortgage payment. For example, not only will On Balance prepare itself to handle these recurring transactions, it will also prompt you, through the use of onscreen messages, when one is due. Of course, these are just a few of the features built into On Balance.

Manipulating Data

Once you have entered information, you can manipulate it in a variety of ways. Searches and sorts can provide you with various forms of comparisons that will clearly show you where your money is-or where it went. Search by date, check number, payee, dollar amount, or even text; and send the data to a customized report. Then view the information that you requested either on your monitor screen or on paper. On Balance lets you record up to 800 transactions a month, and Broderbund claims that users can store an entire year's data on a single disk. This is an important factor if you wish to flag certain transactions throughout the year (for example, tax-related entries) and pull them all at one time.

One other thing: On Balance is compatible with AppleWorks. This means that the user can both export financial data from On Balance to AppleWorks and do forecasting and analyzing without having to re-enter startup figures. A special disk facilitates the exporting of information from one program to the other.

Overall, On Balance is an impressive piece of work. It is designed to put you in charge of your financial affairs by giving you a wide variety of information in a simple, easily understandable fashion. Whether you're setting up a budget, keeping track of stock purchases, or simply balancing your checkbook, On Balance helps you do the job quickly and painlessly.

On Balance

Broderbund Software
17 Paul Dr.
San Rafael, CA 94903-2101
$\$ 99.95$
(Interactive demo disk available for \$7.99. Price can be applied to purchase of full package at later date.)

Amnesia

James V. Trunzo

Requirements: Apple II series, IBM PC and compatibles, and Commodore 64 computers.

It's not the type of thing one often, if ever, thinks about. Yet, for a moment, consider the terrifying prospect of complete memory loss. Your entire life disappears. All those you have grown to know and love-or even hate-become strangers. The career you've built and the knowledge you've gained dissolve into nothingness. Your solitude is so complete that, upon looking in a mirror, you don't even know the face staring back at you.

The rather unpleasant concept of complete memory loss, or amnesia, is the basis for Electronic Arts' first journey into the text adventure genre. Employing the considerable skills of Thomas M. Disch, winner of the Campbell Award for best science fiction novel in 1980, EA thrusts the player into the hazy world of an amnesia victim who lives in New York City. As this character, you wake up in the fictional Sunderland Hotel suffering from acute amnesia, and are lacking any comforting physical resources like food, clothing, or money. As you stumble about trying to piece together information that will literally return your life to you, you discover that things could get worse. As the package copy notes: "A strange woman wants to marry you. A strange man is trying to kill you. The state of Texas wants you for murder...," and you still aren't sure who you are.

Beyond The Ordinary

Amnesia, like other well-designed text adventures, puts you in a predicament and challenges you, with the aid of an extensive and sophisticated parser, to figure out which piece goes where in the giant puzzle. However, Amnesia goes well beyond ordinary text adventures, many of which arrived after Infocom's shining successes.

Electronic Arts lives up to its reputation by building its electronic novel in Manhattan-all of Manhattan. There are four thousand individual and authentic locations on this eclectic urban island, including 650 streets and the entire Manhattan subway system. Central Park, Chinatown, Soho, Broadway and 42nd Street, Times Square, Greenwich Village, the Battery, and even the Brooklyn Bridge are all faithfully reproduced. If you care to find out how faithfully, cruise Central Park at 2:00 in the morning (from the safety of your home). Am-
nesia's internal clock keeps very accurate time, so the muggers know when to come out. Actually, part of the enjoyment of playing Amnesia is wandering about fabulous Manhattan, especially if you're familiar with some of it. Even if you aren't, don't despair: Electronic Arts provides you with a detailed street map of the borough, as well as a complete map of the subway system.

Beyond the vast scope of the gaming environment that makes up Amnesia, Disch and EA have not glossed over the details that make day-to-day existence possible. In Amnesia, you need money or credit cards to function. Restaurants and stores open and close according to schedule. The television news (worth watching, incidentally) comes on at 7:00 in the evening. Your character is aware of the time of day, and it becomes hungry and sleepy.

Because Amnesia occurs in a modern-day setting that incorporates many familiar physical surroundings, it may appeal to some game players that don't enjoy the mythical or space-age formats that many computer games employ. This 1980's urban backdrop also provides the game with a sense of realism that may be a bit unsettling.

The program itself contains features typically found in text adventures. In addition to its excellent parser, Amnesia allows multiple saves, printouts, and a scoring system that rewards accomplishments beyond simply solving a piece of the puzzle.

The powerful combination of Thomas Disch's fine prose and EA's program design talent makes Amnesia a text adventure well worth experiencing.
Amnesia
Electronic Arts
1820 Gateway Dr.
San Mateo, CA 94404
\$44.95 Apple II, IBM PC and compatible versions
\$39.95 Commodore 64 version

Starglider

Andy Eddy

Requirements: Commodore 64, Amiga, Atari ST, Apple II, and IBM PC and compatibles. Disk drive required. Mouse optional, but recommended on systems where it is available; joystick optional, but recommended on all others. Color display also optional, but recommended. Atari ST and Commodore 64 versions reviewed.

Every once in a while, a game comes along that tickles and teases your senses. Remember the exhilaration you experienced the first time you played Space Invaders or Asteroids-the panic that overcame you as you got used to the controls, the racing heartbeat that seemed to match the pounding pulse of the sound effects, the adrenaline rush with every laser blast for or against you.

Over the years there have been some computer contests that touch you like this. One such product is Starglider by Rainbird Software (marketed in the U.S. by Firebird Licensees). A space sortie in vector graphics that can be likened to an aerial Battlezone, Starglider has a mix of bright colors, rapid movement, and strategic excitement that will bring you back again and again.

Find Out For Yourself

One of the most enticing points of the game is the inherent mystery that its creator has engineered. Much like a suspense novel, Starglider's charms aren't spelled out at the beginning for you. Given very little in the way of instruction beyond the most cursory navigational direction, your piloting skill is increased only through prac-tice-during which time you will face many frustrating defeats-and careful perusing of the accompanying novella that details, in story form, the reason you are battling Herman Krudd and his troops. If your bent is to plunge into a game without reading through the manual, you'll find yourself in deep trouble time and time again

Once you've acquired the knowledge to stay alive and keep your craft aloft (refueling your ship, replenishing your missiles, lasers, shields, and so on), and you've learned how to track all of the various indicators that alert you to your ship's condition, position, and endangerment, all you have to do is dispatch the many enemies that threaten you. Oh, is that all?

Most of these adversaries can be blown away with your shipboard lasers, though it takes quite a few shots for them to meet their demise. Others are impervious to your blasters and

The Atari ST version of Starglider from Firebird.
must be taken out with a missile-and your ship can hold only two at any given time. If this gives you the impression that your work is cut out for you, you're right.

Importantly, it must be pointed out that the discouragement level is not enough for you to shelve the game. Waving a galactic carrot in your windshield, Starglider teases you into the just-one-more-try mode. Most times, you find yourself getting a few more points on the scoreboard than the last time, maybe reaching a higher level than before. But with each level come new challenges that must be overcome. And on and on....

Jeremy "Jez" San of Argonaut Software (Jez San of Argonaut, Jason and the Argonauts-get the connection?), who originated Starglider and programmed the 68000 versions, is a talented individual who has constructed a visually smooth concoction that's so realistic in its feel that you'll duck and squirm in your seat in an attempt to guide your careening jet with body English.

A Loss In Translation?

Starglider was obviously designed on a 16 -bit machine and converted to the 8 bit counterparts, and it suffers a bit in the transition. For example, the game is very well suited to mouse use, as I discovered in the ST version, for controlling altitude, speed, steering, and laser triggering.

But, in the Commodore rendering, the joystick seems to come up a little short in giving you carefree handling of the ship, though some latitude is provided by having two different joystick modes. Here, the keyboard assists on certain functions; in fact, all versions of the game can be played entirely from the keyboard, and the ability to redefine keys lets the player make a personal layout for game control.

Graphics differences are more drastically exposed. On the ST, a radar screen at the bottom of your dashboard shows all objects within a certain perimeter with each item's "blip" a distinct color. On the 64 , it's impossible to
distinguish one blip from the next, which puts you at a marked disadvantage when you're on the prowl for a docking silo or energy tower at critical moments. Other than that difference and a few variations in sound and visual effects between the two, the game play is very similar, and the differences only limit its spectacularity on the Commodore. I must say, the digitized voice status reports during play and the rockin' intermission music with vocals on the ST rendering were real shocks.

About the only across-the-board complaint I had was tolerable, to say the least. At the end of each foray, a high score table is displayed where you may insert your name among the top achiev-ers-standard fare for most games of this ilk, and, above all, making for some heated competition between contestants. The problem is that the list lasts only the length of that immediate session; no scores are saved to disk for permanent recall. While San told me that this was to prevent the possibility of overwriting vital program data, in the past it has been a feature on many games with very little, if any, detriment.

To The Future

So far, Rainbird has brought The Pawn and Starglider to the Americas from overseas-and these are two of the most critically acclaimed programs in recent memory. If they keep this streak going, they can be counted on to become one of the major suppliers of quality gameware.

Starglider

Firebird Licensees
P.O. Box 49

Ramsey, NJ 07446
$\$ 39.95$ Commodore 64 version
$\$ 44.95$ all other versions

Robot Rascals

Karen G. McCullough
Requirements: Apple II series, Commodore 64.

Robot Rascals is a hybrid; it's a cross between a card game and a computer adventure-Go Fish meets the electronic scavenger hunt. In games, as in plants and animals, cross-fertilization has the potential to produce hopeless disasters as well as unusually strong, effective offspring. Robot Rascals is among the successes.

Each player (up to four) is dealt four item cards; then each selects a robot from the ten available onscreen. During a turn the player directs the robot on a scavenger hunt, looking for the items that match the cards in his or her hand. The player who gets to home first with items to match all the cards in his or her hand wins.

Sounds simple, right? You bet. Except for a few complications, like the luck cards you draw before each turn. These can direct you to take a card, steal a card, force a swap among other players, and so on, all of which can wreak havoc with your (or your opponent's) hand. The item deck contains a few surprises also: wild cards, a killer card, and a cosmic cheat, though these are used only in more advanced games. Then there's the problem of thieving robots, and, just to keep things from getting boring, the computer will occasionally change the rules.

If this sounds like overkill, take heart: The game can be played on several levels. Not all the complications apply at the lower echelons. To start, you can play a super-beginner game, a simple race to find the four items in your hand and beat your opponent(s) home. It's a good introduction, but only three- and four-year-olds won't be quickly bored and ready to move onto higher levels. The advanced game is a no-holdsbarred free-for-all, with more complications than a jet fighter's controls.

This is a well-designed, wellexecuted game program. The screen windows give all the status information you need, and they show what your robot is up to. Joystick control is tight and precise, a real pleasure. There's plenty of variety in the terrain you search, and enough travel and movement options: Your robot can walk or teleport to get around, drop an item, or erect defensive shields.

But the real joy of the game is the robots themselves. There are ten to choose from, and each is distinctive; in fact, it's no exaggeration to say they

The Commodore 64 version of Robot Rascals from Electronic Arts.
have individual personalities. The animation of these little technological marvels is subtle and clever. Each robot moves differently; some grin while they walk. Belbot pounds his chest in delight when he finds an item; Birt jumps for joy. Sphero flops along lazily when he moves, but if you take too long to give him directions, he'll stamp his "foot" impatiently.

The whole family, including the three-year-olds, can play Robot Rascals since a handicapping feature lets players of differing ability compete against each other. If the game has a flaw, it's that it's-pardon the pun-almost terminally cute. But then, so is Teddy Ruxpin, and we know how many of those have sold.

> Robot Rascals
> Electronic Arts
> 1820 Gateway Dr.
> San Mateo, CA 94404
> \$39.95 Commodore 64 version
> \$44.95 Apple II version

Back issues of COMPUTE!, COMPUTEI's Gazette, or any magazine disks can be ordered by calling 800-346-6767 (in NY 212-887-8525). Some issues may no longer be available.

> COMPUTE! TOLL FREE Subscription Order Line 1-800-247-5470 In IA 1-800-532-1272

Jet
Michael B. Williams
Requirements: Apple II series with 64 K minimum, Commodore 64, or IBM PC/PCjr and compatibles with 128 K minimum and color graphics adapter. Joystick optional. Apple version reviewed.

It's the realtime, three-dimensional display that best exemplifies this SubLOGIC program. Everything-from planes, missiles, and mountains, to the runway and control tower-is shown in perfect perspective and color. If you were to fire a missile at a plane passing in front of you, you would see not only the missile eject from your jet, but also, in perspective, the unwary plane approach from the side, be hit by the missile, and break into pieces as it falls toward the ground.

Jet has several display enhancements to help you maneuver the aircraft. As if using a telescope, you can zoom in to see objects in greater detail and zoom out to expand your field of vision. The attitude (pitch) indicator, which can be superimposed over the display, rotates, rises, and falls to reflect your orientation to the horizon. It, too, is seen in perspective, with its ten-degree graduations becoming smaller towards the center of vision. To help you in battle, you can summon a colorcoded radar display that shows the location of enemy planes and missiles and of your home base-all with respect to your aircraft. Jet' can also supply a range indicator that changes color as you close in on a target.

Jet's instrument panel is sparse compared with those of other flight simulators. It is this deceptively simple display that allows you to ignore many of the technical aspects of flying and to concentrate on the flying experience itself. At the same time, this makes Jet noticeably less realistic than SubLOGIC's Flight Simulator II.

Flying By Remote Control

In addition to the normal cockpit display, there is a unique feature which allows you to pilot the plane from the control tower. In essence, you are flying the plane by remote control. Your field of vision is fixed toward the aircraft, and you can see the plane as it is taking off and landing. Since the only display feature that is accessible in this mode is zoom, you will find it difficult to fly the jet this way. You can easily toggle back to the cockpit display at any time. There, in addition to the forward view from the cockpit, you can also see
above and to the left, right, and rear of the plane.

Jet does have a few problems which surface because of the speed and graphics limitations of the Apple II: Sound effects are sparse. The program is painfully slow at updating the display, which can turn a smooth flight into a spasmodic one. The program is slowest in its combat mode; screen updates occur at about one second intervals. Most importantly, you must use a color monitor with the Apple version of Jet. On a monochrome monitor, it is nearly impossible to distinguish between the sky, horizon, and markings on the ground; attempting to land the jet becomes a daredevil event at best. With a color monitor, however, each element has a unique color to help distinguish it.

A few of Jet's problems are due to its implementation. The aircraft's speed is given as a Mach number (relative to the speed of sound) on a graduated scale which is only marked in increments of Mach 0.5. The altitude is also represented by a vertical graduated scale, but is equally difficult to read because it is marked with increasing intervals instead of constant ones. Digital readouts for both the speed and the altitude would help tremendously. When you are fighting MiGs, you won't have time to guess your actual altitude and speed.

To add to the feeling that you are really flying, Jet includes real hazards such as blackout and red out, which reflect the human body's limited tolerance to high acceleration. In the event of imminent destruction, you can push the eject button and float safely back to earth by parachute.

Jet comes with a quick reference card summarizing the commands available. It is also compatible with the same scenery disks used by Flight Simulator II and Microsoft's Flight Simulator. SubLOGIC offers scenery disks for Japan and the San Francisco area.

If you have a color monitor, you'll definitely want to consider adding the state-of-the-art Jet to your program library. Its lack of realism may turn off flying aficionados, but its ease of flight and its truly remarkable graphics are sure to please weekend pilots who want to take their F-16 for a spin around the Golden Gate Bridge.

Jet

SubLOGIC
713 Edgebrook Dr.
Champaign, IL 61820
\$39.95 Apple II series and Commodore 64 versions
\$49.95 IBM PC/PCjr (and compatibles) version

A Look At An Era

When there's talk about the success stories of the personal computer industry, most people think of Silicon Valley with all its ups and downs. Names like Jobs, Wozniak, Peddle, and others too numerous to mention, are bandied about as though they were the only people involved with the success of this industry.

While no one would want to diminish the contributions of these people, the fact remains that there is another part of the personal computer industry located far from Silicon Valley with success stories of its own. As valuable as your personal computer might be, you probably wouldn't know more than half the things you can do with your computer if it weren't for magazines like COMPUTE!.

Now this piece is not a pitch to get you to read COMPUTE!-after all, you are doing that already. The reason for spending time on this topic this month is that, with the departure of Robert Lock from the day-to-day operations of this magazine, COMPUTE! has entered a new era. Accordingly, I thought I might share some of my recollections on the growth of this magazine since I had an article in its very first issue, and have had at least one article in nearly every issue since that one.

Retrospectives of this sort are usually to be found in the last issue of a magazine just as it goes belly up. As you know, many computing magazines have fallen prey to the vagaries of the computer market. Some of the older magazines (like Recreational Computing) were acquired by other magazines (like COMPUTE!), and still others just quietly went out of business (like Creative Computing).

COMPUTE! has had its ups and downs-just as has the industrybut unlike most of its counterparts, COMPUTE! has emerged stronger than ever for one simple reason-
its readers.
A dedicated base of readers is essential to the survival of a magazine, and COMPUTE! was careful from the start to insure that it had a solid base of editorial writers who helped maintain the consistency that made this magazine what it is.

In the fall of 1979 the first issue of COMPUTE. The Journal of Progressive Computing hit the stands. It was 104 pages long and contained 19 articles, 10 reviews, and a full spectrum of advertisers from Commodore to small garage operations. My company, Innovision, placed its first ad in this premier issue. While my company hasn't grown much in the intervening years, it is still around.

While the major focus of COMPUTE! was on the Commodore PET, it also devoted space to other 6502based computers like the Ohio Scientific Challenger (remember that one?) and the single-board computers like the KIM-1 and AIM-65 (may they rest in peace).

While COMPUTE! started as a quarterly, Robert decided to make it bimonthly starting with the January/ February 1980 issue. By this time the magazine was publishing articles about the Apple II and Atari 800, as well as continuing its strong PET coverage.

By the third issue, this column was started. This means that COMPUTE! has had the longest-running column on the social impact of computers in the history of personal computer magazines.

Within a short time COMPUTE! became a fancier magazine, sporting a full-color cover and monthly publication. Our magazine had come of age.

ABC

I was concerned when $A B C$ acquired the magazine. I was afraid that COMPUTE! was going to lose some of its personal touch. But, un-
der Robert's careful guidance, this never happened. Even though I am on the West Coast and have never visited COMPUTE!'s offices, I could tell from my phone conversations that Robert was hiring exactly the right kind of people to let the publication grow and thrive.

From the humble beginnings of COMPUTE!, Robert built a multifaceted publishing venture that included several magazines and a full catalog of books. Furthermore, he did this during a time when the computer industry was on a rollercoaster ride of immense proportions.

The Lesson?

When the computer magazines started to drop like flies, the "smart money" people said the the survivors would be the highly focused one-machine magazines. Magazines with a general focus were going to be victims simply because advertisers would not be able to target their ads as carefully.

Because COMPUTE! also published machine-specific magazines (like GAZETTE for Commodore owners), it could offer advertisers what they needed-and this probably helped maintain the magazine's success.

Can a general personal computing magazine survive? COMPUTE! has shown that it can not only survive, but that it can, with your support, thrive in both good times and bad.

The main reason, as I said before, is because of you-the readers of this magazine.

Another reason-one I think is equally as important-is because this magazine was built with the leadership of one of the finest men I have met in the industry.

Thank you, Robert, for all you have done for all of us. Our entire industry is watching to see what you will be doing next.

Sometimes the impact of a rumor is more significant than whether or not it proves, in the end, to be true. A good example is the new generation of personal computers that IBM may or may not have announced by the time that you read this. For months, we've been hearing about as many as three different PCs that IBM may come up with, with code names like "Renegade" and "CloneKiller." The most often discussed is a low-end machine for the home and educational market. The machine described doesn't have expansion slots-at least not any compatible with current mod-els-although it's said to have some networking capabilities (vital in an education setting). It will likely use the 80286 processor running at a slow six megahertz, and have a built-in graphics adapter, but rumors here range from a normal EGA-type adapter to one with fabulous graphics capabilities, such as 640×480 resolution with up to 256 colors onscreen at once, and windowing capabilities in ROM. Likewise, sound may be anything from an internal beeper to a fullblown synthesizer. All rumors agree on a $31 / 2$-inch disk drive and a full keyboard.

The operating system is another area of dispute. Most sources agree that it will use a new DOS, but reports on its features range from a slight change to support networking, to a version that includes Microsoft Windows or Topview, to a hybrid MS-DOS with a proprietary hardware/software scheme to shut out would-be cloners, to a completely proprietary system. In all of the rumors, we hear again and again of the possibility of a completely new hardware bus that will not accept the thousands of third-party add-on products for the current PC, and of a completely new operating system
that will be upwardly compatible with the current one, but that can't be copied. In short, the anticipated PC wouldn't be PC compatible, and couldn't be cloned.

At first, we heard that the machine would be announced during the Super Bowl, à la Apple. When that didn't come to pass, stories began to center around a big meeting of IBM dealers in March, and a possible April announcement. But whether or not any of the rumors turn out to be true, their existence is being felt in the PC marketplace. Corporate buyers are holding off, waiting to see what develops before they commit to new purchases. The mood is reminiscent of that which prevailed before the announcement of the PCjr, when a "PC II" was rumored to be imminent.

But rather than being the product of a conspiracy on IBM's part, as some have suggested, it may well be that these rumors are a reflection of a growing perception of the seriousness of IBM's position. Having spawned the enormous PC market, IBM has had to stand idly by and watch its influence in that market diminish. Whether IBM will take bold action, and whether that action will be enough to stem the tide, are questions that will keep everybody in the industry watching.

Although the new high-end Macintosh models discussed in this issue's "Editor's Notes" are priced beyond the means of the average consumer, they're bound to have an effect on the home computer market, just as the original Mac did. For one thing, their introduction will send down the price of the Mac Plus and 512 K Mac. The street price of the latter may break the $\$ 1,000$ barrier for the first time, putting it head to head with the Atari ST, the Amiga, and PC clones.

The small screen and closed
architecture of the old Mac are much less of a problem with the home market than with the business crowd, and users may be more apt to put up with these limitations for the time being, knowing that upgrades are available. Since software and the time spent creating data files usually end up as the biggest part of a computer investment, it's quite important that the user know that when he buys new hardware, he'll be able to take his software with him. Atari and Commodore have stated their intentions to manufacture 68020 machines, but so far, only Apple has assured a compatible upgrade path.

Although the Atari PC clones caused quite a sensation at CES, there have been recent reports that they may not appear quite as quickly as expected. Though Atari claimed that the machines would be ready by March, it may be as late as August when they are actually sold. For one thing, they have yet to undergo the sometimes-lengthy FCC approval. For another, Atari has yet to sign an agreement with Digital Research allowing it to distribute the GEM operating system with the machine. Though one distributor was quoted as saying he had the machines in the warehouse, others have doubted that the models shown at CES were actually the finished product.

In the meantime, Atari's announcements may end up hurting ST sales, with buyers waiting for the new PC clones or Mega ST machines. And though Atari cut the price of the current STs at the time the new machines were announced, dealers whose stock was purchased at the old price may be reluctant to sell them at as large a discount as some consumers will expect.

Twelve Special Bulletin Boards

While most continue to be microcomputer related, a growing number of electronic bulletin board systems (BBSs) have veered off the beaten track. BBSs devoted to law, medicine, genealogy, and real estate are common enough to elicit little more than a yawn from seasoned telecomputerists. Here are a dozen free boards that will spice up even the most jaded palate. Bon appétit!

Note: All numbers were verified as of February 20, 1987. Please observe board rules and common courtesy. Remember, you are a guest in the system operator's (SYSOP's) "house."

Aviation Connection

(214) 245-5633

Dallas, TX
You don't need a $2400-$ bps modem to fly around here. Whether you're certified for flying on instruments or just an aeronautics buff, the Aviation Connection is dedicated to your wild blue yonder.
Bullet ' N Board
(703) 971-4491

Silver Spring, VA
SYSOP Tanya Metaksa's aim was to dedicate this board to the Second Amendment and firearms. News on the latest legislative happenings and weaponry. Gun-show schedules and National Rifle Association information abound. While this board is free, you must go through a registration process to gain access.
The Casino BBS
(609) 652-6030

Atlantic City, NJ
Feel lucky? You won't lose your shirt playing in this casino. SYSOP Dave covers the Atlantic City casino beat, including nightlife and entertainment guides. Ask regulars where the best slot payoffs are and how much it takes to build a hotel on Boardwalk these days.

Collectors Network

(213) 204-0646

Los Angeles, CA

Just how much is that Charlie "Sunday Punch" Maxwell card worth? SYSOP Harry Rosenfeld knows. Info on coins, stamps, baseball cards, and just about anything else that's collectible. Also includes excellent BBS lists.

Crime Prevention BBS

(214) 578-1311

Plano, TX

Who broke Emma's window last Thursday night? Follow the saga of crime in Plano, Texas. Tips on spotting con artists, prevention of criminal mischief, and personal protection-all from SYSOP Captain Lyndon Payne and the rest of Plano's finest. Be sure to check out the "Crime of the Week."

Cryptologic Research

(703) 237-4322

McLean, WV
Hours: 5:30 p.m.-8:00 a.m. EST M-F
Do you suspect that the scribblings of your three-year old are really cleverly coded messages for special agents? SYSOP Robert Juneman operates this board as a service to the International Association for Cryptologic Research (IACR) and anyone else interested in Cryptography and Computer Security.
Electronic Call Board
(718) 499-1633

Brooklyn, NY
Dedicated to the performing arts, SYSOP Bobby Ballard keeps aspiring actors apprised of the latest casting notices. Special-interest sections covering theater, film, video, music, and art. If the Muse moves you, participate in electronic role playing. The Call Board also includes schedules of stage shows playing around the country.
The Guideboard
(415) 864-3858

San Francisco, CA
Get a real hacker's view of one of America's most popular vacation spots. The Guideboard is frequented by cabbies who keep each other
posted on what's going on in the city by the Bay. Enough colorful personalities to populate a season's worth of "Taxi" TV reruns.
MIDI World Network
(213) 826-4288

Los Angeles, CA
SYSOPs Moore, Daystrom, and Fitzpatrick are in tune with the times. An excellent BBS devoted to MIDI-related computer use. Highly recommended if one of your keyboards has black and white keys.
Survival Communication
(707) 545-0746

Napa Valley, CA
Pack the freeze-dried food, hop in the jeep, and head for the mountains. Don't forget your modemequipped lap-top, though; there are forums on survival, self-sufficiency, and emergency preparedness. SYSOP Don Kulha hosts discussion areas on medicine, food, alternative energy, radio communications, weapons-craft, and survival vehicles.
Top of the Rockies BBS
(303) 963-3688

Roaring Fork, CO
Is warmer weather tempting you to hang up the skis and poles for the season? Let SYSOP Barry Clements tempt you with ski information for Aspen, Snowmass, Sunlight, and the rest of the country. If you get tired of discussing equipment and technique, check out the tasty recipes and nutrition information.

The Train Board

(513) 398-0928

Mason, OH
Does the thought of the electric "chug" of an ancient Lionel train set running in your living room bring tears to your eyes? Or do you prefer using radio-controlled submarines in the local duck pond? SYSOP Decker Dogget moderates information on train collecting and radio-control hobbies.

Hardware Add-Ons

There are an astonishing number of good hardware products for the Amiga 1000, and more are waiting in the wings. The following sampling represents products that are currently available, or that should be by the time this column appears. I've chosen to list only hard disks, RAM expansions, and clock calendars, since these represent the categories in which users are most interested.

Hard Disks

Two outstanding products in the hard disk category are the MAS-20 from Microbotics, and the C Ltd. drive, both of which provide 20 megabytes of storage and a SCSI port for a list price of about $\$ 1,000$. C Ltd. has lately added a full line of higher-capacity drives, ranging from 30 megabytes for $\$ 1,300$ to 350 megabytes for $\$ 7,000$. Xebec is a name that's new to the Amiga community, but it's very familiar in the IBM PC world, where the company is a leading maker of hard drives and controllers. Just out is the Xebec 9720 H 20-Meg SCSI hard drive, with a list price of $\$ 1,075$. I've used a preliminary unit, and my timings indicate that this drive loads files a bit faster than the C Ltd. and Microbotics drives.

Two new drives should be available for sale by the time you read this. The first is from Supra Corporation, which has an established track record with hard drives for the Atari ST and the Macintosh. The Supra $20-\mathrm{meg}$ hard drive lists for $\$ 1,000$, and offers an optional 1-meg-RAM upgrade board that fits into the drive controller card. The second is the PAL Jr. from Byte by Byte. Having gone through many design changes, the final version will be a mini version of the PAL box, an expansion box that fits on top of the Amiga. Though only $2^{1 / 2}$ inches tall, it will come with a $20-$
meg hard drive and a meg of RAM, and have two full-size horizontal expansion slots. The price remains at $\$ 1,500$, and because all sales will be direct, there will be no discounts from list price. For this price premium, Byte by Byte hopes to offer much higher performance.

RAM Expansion

RAM expansion units for the Amiga have really proliferated lately. Prices keep changing so quickly that it would be pointless to give exact costs here, but at this time, one-meg boards range from $\$ 300$ to $\$ 450$, and two-meg boards from $\$ 575$ to $\$ 850$. Many of these are in the form of self-contained modules that plug into the right side of the Amiga. In this category there's the the onemeg aMEGA from C Ltd.; the Xpander II from Pacific Cypress, a two-slot box that comes with a twomeg card in one slot; and my own favorite, the Starboard 2 from Microbotics. The Starboard is a compact unit which holds from 512 K to two meg, and has provisions for a multifunction card with clock calendar and 68881 math coprocessor.

The Insider, from Michigan Software Distributers, is a new onemeg board that mounts internally. It plugs into the 68000 processor socket, and includes a clock calendar. Another internal expansion is the Kickstart Eliminator and RAM Expansion Kit from Creative Microsystems. This isn't strictly a RAM expansion, since the kit provides the Kickstart 1.2 code on EPROM chips. Not only does this eliminate the need for the Kickstart disk, but it also frees up the 256 K of writeprotected RAM for general use. A couple of caveats apply. Installation is not for the inexperienced, and it voids your Amiga warranty. With Kickstart in ROM, you can't switch versions without changing chips, which means you can't run soft-
ware that only works with 1.1. But Sidecar or hard disk users, who will want to use 1.2 exclusively, won't find anything better for convenience and extra memory.

ASDG also makes memory expansion boards that fit in expansion boxes like the PAL Jr., and its own Mini-rack. But its most exciting product may well be the Recoverable RAM Disk, a shareware program which creates a RAM drive that survives a warm reset (CTRL-Amiga-Amiga). It's available on most of the information services and bulletin boards.

Clock Calendars

There's a clock-calendar board available for almost every port on the the Amiga. Tic from Byte by Byte and MouseTime from Microbotics connect to the second mouse port. MouseTime fits next to memory expansion modules, but Tic doesn't, necessitating software that switches the function of the two mouse ports. Atime, from Akron Systems, sits on the printer port, and provides a pass-through for the printer. The most innovative, though, may be Time Saver from C Ltd., which connects in the keyboard line. Not only does it update the system time automatically at power-up time, without software, but it also has 8 K of battery-backedup RAM for keyboard macros and CLI command history.

Only NRI teaches you to service all computers

 as you build your own fully IBMcompatible microcomputerWith computers firmly established in offices-and more and more new applications being developed for every facet of business-the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years-a faster growth rate than for any other occupation.

Total systems training

No computer stands alone. . it's part of a total system. And if you want to learn to service and repair computers, you have to understand computer systems. Only NRI includes a powerful computer system as part of your training, centered around the new, fully IBM-compatible Sanyo 880 Series computer.

As part of your training, you'll build this highly rated, 16 -bit IBMcompatible computer system. You'll assemble Sanyo's "intelligent" keyboard, install the power supply and disk drive and interface the highresolution monitor. The 880 Computer has two operating speeds: Standard IBM speed of 4.77 MHz and a remarkable turbo speed of 8 MHz . It's confidence-building, real-world experience that includes training in programming, circuit design and peripheral maintenance.

No experience necessaryNRI builds it in

Even if you've never had any previous training in electronics, you can succeed with NRI training. You'll start with the basics, then rapidly build on them to master such concepts as digital logic, microprocessor design, and computer memory. You'll build and test advanced electronic circuits using the exclusive NRI Discovery Lab*, professional digital multimeter, and logic probe. Like your computer, they're all yours to keep as part of your training. You even get some

of the most popular software, including WordStar, CalcStar, GW Basic and MS DOS.

Send for 100-page free catalog

Send the post-paid reply card today for NRI's 100-page, full-color catalog, with all the facts about at-home computer training. Read detailed descriptions of each lesson, each experiment you perform. See each piece of hands-on equipment you'll work with and keep. And check out NRI training in other high-tech fields such as Robotics, Data Communications, TV/Audio/Video Servicing, and more.

If the card has been used, write to NRI Schools, 3939 Wisconsin Ave., N.W., Washington, D.C. 20016.

NRI is the only technical school that trains you as you assemble a top-brand microcomputer. After building your own logic probe, you'll assemble the "intelligent" keyboard.
. then install the computer power supply, checking all the circuits and connections with NRI's Digital Multimeter. From there, you'll move on to install the disk drive and disk drive

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue, NW Washington, DC 20016 We'll Give You Tomorrow.

IBM is a Registered Trademark of International Business

Sound And Music In BASIC

Programming sound and music on your computer can be both fun and rewarding. It's among my favorite things to do on the computer. I wish I could just give you a BASIC listing for some music on your specific computer this month, but that's not possible, since this is a column for all computers, and music commands in BASIC are very machinespecific. However, here are some general ideas you can use when programming sound and music.

The Most Common Commands

To program your own music or sounds, you'll need to refer to your BASIC programming manual. The most common key BASIC words for sound are PLAY, SOUND, BEEP, and WAVE. Look these words up in your index or list of BASIC words to see if they are available on your computer. The Commodore 64 uses POKE commands, so refer to the chapter on sound in your manual as well as the pages in the appendices that list the memory locations and values for sound, volume, and voice programming.

On some computers you may be able to use the command PRINT CHR\$(7), which is the bell or beep character for a short tone.

The PLAY command usually uses note names in quotes to "play" musical tones ABCDEFG. You may also specify sharps with \# or + and flats with -. To specify which octave for the note you want, use the letter O before an octave number, such as O3. Other options include the length, L; a pause (rest), P; a dot for dotted notes; and tempo, T. The IBM PLAY statement has many more options which are listed in the manual. A sample command is

30 PLAY "O3 CBABCDE"

After you get used to the general PLAY command, try using
string variables to play a longer tune or to play repetitious phrases without typing a lot of individual PLAY statements. For example, let $\mathrm{A} \$$ be the string to play one musical phrase. Then you can use the command PLAY "XA\$;". You may use numeric variables also. For example, if you have a variable octave J , use the command PLAY " $\mathrm{O}=\mathrm{J}$;". Consult your manual for the use of variables and to determine when the semicolon is necessary.

Different computers have different variations of the SOUND command. Here are some examples:
IBM: SOUND frequency, duration, volume, voice
Atari: SOUND voice, note, tone, loudness Atari ST: SOUND voice, volume, note, octave, duration
Amiga: SOUND frequency, duration, volume, voice
Commodore 128: SOUND voice, frequency, duration

Any of the parameters may be numeric variables, but you do need to make sure the variables are within the proper limits.

For the Atari and Atari ST commands, the notes are numbered. You can refer to charts to see the numbers that correspond to each musical note and tone or octave.

Sound Frequency

Some SOUND commands use a frequency parameter. The frequency is the cycles per second, or Hertz (Hz), that produce a particular tone. For example, concert A is 440 cycles per second. Your manual should have a chart comparing note names to frequencies. You might keep in mind that a note one octave higher is double the frequency. For example, concert A is 440 Hz , and the A note one octave higher is 880 Hz . The note A one octave lower is 220 Hz .

The duration parameter is a number that tells how long to play a note. On the IBM and Amiga, the duration is figured in "clock ticks,"
which occur 18.2 times per second; on the Atari ST the duration is the time in $1 / 50$ second counts; on the Commodore 128 it's in $1 / 60$ second counts.

On most computers, the volume parameter is a number from 0 to 15 , with 15 the loudest. The Amiga uses numbers from 0 to 255 . The voice parameter refers to the sound channel you want to use. Using different voice numbers allows you to play more than one note at a time, as when playing a three-note chord.

Other commands may be associated with the SOUND command. You may need to use a delay loop instead of specifying a duration (Atari). If so, you could use a FORNEXT loop in a subroutine. In IBM BASIC, be sure to read about MB for the differences in music background and music foreground.

The WAVE command for the Amiga and Atari ST computers are very versatile commands that change the waveforms of the sounds so you can get, for example, white noise, a flute sound, or a trumpet sound. (POKE commands on the Commodore 64 change waveforms.) Since numeric variable names are allowed in SOUND commands, try using variable notes in FOR-NEXT loops for all kinds of different sound effects. You might keep the note number or frequency the same, but vary the volume. Or try a FOR-NEXT loop with the frequency increasing in the loop.

You might want to experiment a bit with PLAY and SOUND to create your own computer musical composition. You may need to experiment a lot to get the sound you want, but the results can be very satisfying.

A Magic Slate For Young Writers

I am currently working with Alabama's Dr. Gloria Solomon and Canada's Dr. Julie Davis to develop multimedia presentations using computers in educational environments. For our word processor we have chosen Magic Slate from Sunburst Communications (39 Washington Ave., Pleasantville, NY 10570-9971). Magic Slate costs $\$ 99.95$ and is available for the Apple II family of computers with a minimum of 48 K . (An 80 -column card is needed if you use the 80 column version.)

Magic Slate is a full-function word processor. It lets your young authors do all the basic word processor functions, including cutting and pasting, word-wrap, centering, underlining, search and replace, and so on. It comes in a large orange notebook with a backup disk, a teacher's guide, and primary and advanced student handbooks which the manufacturer encourages you to reproduce. For an extra price you can also get a lab pack and extra reference cards.

Electronic Pen Pals

We chose Magic Slate for three major reasons. First, it comes in 80column, 40 -column, and 20 -column versions. Teachers and older students find the 80 -column version easy to learn and use, yet comparable to "business"-quality word processors. Younger students delight in the 20 - and 40 -column versions. They especially like the 20 -column Magic Slate's big letters. It's easy to fill a screen with these letters, and you can print them out on paper if you have a graphics printer.

Second, Magic Slate's utility function makes it easy to convert students' papers, reports, and stories into files which can be sent via modem to other students thousands of miles away. There is so much more incentive for students to write when
they know their words will be transmitted quickly to other students over the telephone line. Hundreds of students have become electronic pen pals, and several students in Alabama and Canada are collaborating on research and science reports for their teachers. Another dozen students are jointly authoring an electronic novel which is presently growing at a rate of five new chapters a day.

Third, Magic Slate does not exist in a vacuum. It is supported by an excellent family of writing programs which enhance and extend the basic word processor. The first program is Type to Learn (for grade level 2-adult students, \$69). Type to Learn teaches students how to use the computer keyboard. Since the program uses a language-based approach, students not only learn where the keys are on the keyboard; they also practice their spelling, composition, grammar, and punctuation as they type. (At extra cost teachers can purchase a ten-disk lab pack, student typing textbooks, and a gradebook disk to manage students' keyboard activities.)

Next come a group of three programs: I Can Write! (\$40, for grade 2 students), Be a Writer! (\$40, for grade 3 students), and Write with Me! (\$59, for grade 4 students). Each program contains 25 lessons which take the student, step by step, toward becoming a young author. I Can Write!, the most elementary program, starts with openended writing exercises which encourage a student to explore his or her personal identity. Be a Writer! carries beginners into more formal language objectives, including the construction of full sentences, and using descriptive, narrative, and explanatory writing. The third program, Write with Me!, lets children construct their own book, 25 chapters long.

The Collected Writings

Students use the 20 -column version of Magic Slate when they are doing I Can Write! and Be a Writer! activities; they use the 40 -column version of Magic Slate with Write with Me! The programs challenge students to develop their word processing skills along with their language skills. As their writing ability increases, students are encouraged to use more advanced word processing functions. Teachers can use a printer to print out the students' compositions. Each page of a student's work adds to a growing book of his or her writings. After three years and 75 chapters, a student's "collected writings" can be quite impressive.

One last program, Magic Slate Typestyles ($\$ 49$ for either the 20column or 40 -column Magic Slate), lets students install new typestyles on their Magic Slate disk. Students can use premade typestyles or design new typestyles of their own with the program's powerful editor. Teachers especially like the typestyles program because it enables them to teach students that learning to write no longer means just putting words on a page (or screen). Now a person who wishes to communicate can also be involved with the way the writing looks. With this program, the writer must choose a page's layout and design, the character set and font being used, and the accompanying graphics. Even for second- and third-graders, desktop publishing is right around the corner. The Magic Slate family is so valuable because it prepares youngsters for the age of desktop publishing by integrating language arts, word processing, and "page processing" skills into a single curriculum of exercises and activities.©

RUN And INIT Vectors

This month's discussion is something of a continuation of my column of a couple of months ago, where I presented a program that showed you the segments of a binary file. And that column, in turn, referred back to the April 1986 column. Both columns are required reading for a full understanding this month, but you'll learn something even if you are reading this cold.

We begin by noting that when you ask Atari DOS (version 2.0S or 2.5) to save a chunk of memory as a binary file, it asks you to supply four numbers:

START,END,INIT,RUN

And, if you've looked through enough magazine articles or user group newsletters, you've probably come across places where an author instructed you to use the save binary file option, mentioned the beginning and ending addresses, and then told you to be sure to give the proper RUN (and/or INIT) address. The START and END numbers seem obvious: They are the first and last addresses of the range of memory to be written out. But what about INIT and RUN? What can those possibly mean?

A Feature Unmatched

The ability of any binary file, including the ever-important AUTORUN.SYS, to have a RUN or INIT address associated with it is, in my opinion, a feature unmatched by any small system DOS, up to and including MS-DOS (IBM PC and clones) and TOS (for the ST). Only with Atari DOS's binary files and their format-compatible relatives can you tell the operating system to load part of your binary file (also called machine language file, object code, and so on-several names for the same thing), execute that part, and then continue loading more of the file. So let's see how it all works.

When DOS loads a binary file, including the AUTORUN.SYS file at power-up time, it monitors two locations. The simpler of the two is the RUN vector. Before DOS begins the load of a binary file, it puts a known value into locations 736737 (hex \$2E0-\$2E1). When the file is completely loaded-DOS encounters the end of the file-if the contents of location 736 have been changed, then DOS assumes the new contents specify the address of the beginning of the program just loaded. DOS calls the program (via a JSR) at that address.

The second monitored location is the INIT vector, at 738-739 (hex \$2E2-\$2E3). This vector works much the same as the RUN vector, but DOS initializes and checks it for each segment as the segments are loaded. If the INIT vector's contents are altered, then DOS assumes the user program wants to stop the load process long enough to call a subroutine. So DOS calls (via a JSR) at the requested address, expecting that the subroutine will return so that the rest of the load can take place. This is a very handy feature. Most of you have probably seen it at work-for example, when a program first puts up an introductory screen (maybe just a title and a Please wait message) when you run (or boot), then continues to load.

Taking Full Control

The other important difference between the RUN and INIT vectors is that DOS leaves channel 1 open while the INIT routine is called. (DOS always opens and loads the binary file via this channel.) I suppose a really tricky program could close channel 1 , open a different binary file, and then return to DOS. DOS would proceed to load the new file as if it were continuing the load of the original one. Most of the time, though, INIT routines should
not touch channel 1.
As noted, when you SAVE a binary file from DOS 2.x (and many of its variants), you are allowed to specify both an INIT and a RUN address. But the INIT address is sort of useless, since it is added to the end of a file; so, for example, your opening screen display won't occur until the entire file is loaded. To take full control, you must resort to assembly language (or to a compiled language, such as Kyan Pascal or OSS's Action). For those of you familiar with assembly language, I present the skeleton listing below. This listing is compatible with the Atari Assembler Editor cartridge or the MAC/65 assembler. You will need to make a handful of minor substitutions if you are using some other assembler.

I'm not going to explain the program in great detail-the source code is fairly well documented. A couple of important points though: Notice that there is no special command to the assembler that will force it to put in an INIT vector (or RUN vector-unless you have the AMAC assembler). Instead, we simply create a binary file segment that is only two bytes (one word) long. And this segment is loaded by DOS's loader at-where else-the appropriate vector. So the very act of loading the specified addresses modifies the contents of the vector. What could be neater?

As mentioned, this is strictly a program skeleton. It will do nothing as is. You must add some of your own assembly language to it to make it actually do something. So, if you thought INIT and RUN vectors were beyond you, try this skeleton and be ready to change your mind.

INIT Vector Example

[^1]; the screen before loading the ; main code.
$*=\$ 3000$; or someplace DOINIT
; the code which follows is for ; demo purposes only! Use your
; own code...pretty display lists
; or dazzling colors or whatever

LDX	\#0	; channel zero
LDA	\#9	; Put Text command
STA	\$342	; command byte
LDA	\#MSG\&255	
STA	\$344	; low byte, addr of msg
LDA	\#MSG/256	
STA	\$345	; high byte, ditto
LDA	\#255	; use a too-big length...
STA	\$348	```; since RETURN terminates ; this call anyway```
JSR	\$E456	; call CIO
RTS		; back to DOS

MSG .BYTE 125 ; (clear screen) .BYTE 29,29,29,29 ; (cursor down) .BYTE 127 ; (tab once) .BYTE "-please wait-" .BYTE 155 ; (return...end of msg)
; now the INIT VECTOR forces DOS
; to call our DOINIT routine

* $=$ \$2E2 ; init vector
.WORD DOINIT ; gets pointed to us
; Your main program...
; you are on your own here!
* $=\$ 3000$; the same address if you like
;
; I can use the same address because
; my init code can disappear when
; its job is done. This may not
; work with your code. Be careful.

DORUN

; then we get DOS to run our program ; by using a RUN vector.

* $=$ \$2E0	; AMAC uses ORG, not ${ }^{*}=$
.WORD	DORUN ; AMAC uses
	WORD, no dot
.END	AMAC uses END,

Attention all FX80, FX100, JX, RX, \& MX owners: You already own half of a great printer

Now
On'y ESSN

Now for $\$ 79.95$ you can own the rest. You see, today's new dot matrix printers offer a lot more.

Like an NLQ mode that makes their letters print almost as sharp as a daisy wheel. And mode switching at the touch of a button in over 160 styles. But now, a Dots-Perfect
upgrade kit will make your printer work like the new models in min-utes- at a fraction of their cost.

And FX, JX and MX models will print the IBM character set, too.
So, call now and use your Visa, MasterCard, or AmerEx. Don't replace your printer, upgrade it!

1-800-368-7737
 (Anywhere in the United States or Canada)

Dots-Perfect

Sample of letter without Dots-Perfect

9
\&resselhaus
8560 Vineyard Ave., Ste. 405, Rancho Cucamonga, CA 91730
(714) $945-5600$

An upgrade kit for EPSON FX, JX, RX, \& MX printers

Precision Images normally stocks most spare parts for your Okidata printer, from the Okimates to the Pacemarks including the new Microline and Laserline series. Anything and everything for your Okidata printer is only a phone call away. Precision Images is "your direct connection to genuine Okidata parts and supplies."
for Visa/MasterCard orders call:
1-800-524-8338

Precision Images, Inc. P.O. Box 866

Mahwah, New Jersey 07430

Window Magic

SUPER HI-RESOLLTION DRAWING IN MLLTIOR MONO COLOR
 - IINES - SAVE AND LOAO YOUR WINOOWS ON DISK - oraw - SAve ano loa your windows on disk

- prints on stanonad dot matrox prontea - phints on stanonad dot matrax prontea
- Clone colon attrigutes
- COLOR sounaes - clone color attributes
- TYPES LETTERS ANO GRAPHICS
- POLYGON gMAPES-EXPAND, ShRIMK ANO ROTATE, THEN STAMP AMTWHERE - ZOOM PLOT-DAAW ON AN EXPANDEO WINDOW ANO YOUR DRAWNG AT THE SAME TIME

STOCK BROKER.

ACORN OF INDIANA, INC.

SHIPPING AND HANDLING, ADD SI.SO - C.O.D.'S ACCEPTED
VISA AND MASTER CARD ORDERS ADD A\%
INDIANA RESIDENTS ADD 5% SALES TAX

The Mother Load Of Software

Imagine thousands and thousands of computer programs available for less than ten cents each, and you have just imagined PC-Sig's new CD-ROM disc with more than 15,000 files. PC-Sig is an unofficial keeper (there being no official keeper) of the DOS computer programs that have found their way into the public domain either from computer clubs and savvy individuals or from professional software developers seeking to avoid the high cost of promotion and advertisement.

For about $\$ 20$ you can join PCSig and receive a directory listing the contents of more than 700 disks as well as a monthly newsletter describing new contributions. You may order disks through the mail, by toll-free telephone, or from several dozen PC-Sig authorized dealers. Each disk-even the ones stuffed with 20 or more programs-is priced at just \$6. Until recently PC-Sig's only method of distribution was via floppies, but now the distribution has entered the CD-ROM age.

A Huge "Hard Disk"

For $\$ 195$ you can purchase the entire PC-Sig collection containing thousands of programs all on one CD-ROM disc. The disc comes with driver software causing your CDROM player to emulate a huge hard disk, which permits many standard DOS commands to be used to access and manipulate files on the CD-ROM. The CD is organized so that each floppy is allocated its own directory. To read a file named CASTLE.DOC on what would be disk number 47, for example, you simply use the DOS TYPE command. The syntax to point to the subdirectories and display the file would be TYPE D: $\backslash 1-100 \backslash$ DISK$047 \backslash$ CASTLE.DOC. The DOS COPY command is used to copy the programs from the CD-ROM to your floppies or hard disk for execution, although some programs
will execute directly off the disc.
In order to make the CD available as economically as possible, PC-Sig has not included expensive search software with the disc. Instead you must rely on the printed directory, on the DOS FIND command, or on your own word processing software to scan the index files and locate programs that are of interest to you. This isn't quite like looking for a disk in a haystack, since many of the disks have a theme: games, utilities, languages, word processing, communications, and special interest.

The quality of the software runs from ho-hum to excellent. The following descriptions are quoted from the PC-Sig newsletter's hit parade of disks. Disk 517: "IMAGEPRINT allows the production of high-quality characters on a dotmatrix printer....All the mathematical symbols, international characters, and graphics characters are included." Disk 418: "HARD DISK UTILITIES is a collection for the hard-disk user compiled from over 25 disks in our library." Disk 523: "SIDEWINDER is a program that allows printers to output sideways....It works much like the commercial program...is written in PASCAL and the source code is provided." Disk 558: "PCPROMPT is a memory-resident DOS extension that provides syntax prompting for DOS commands as you type." Disk 273: "BEST UTILITIES have been taken from other library volumes...to collect on one disk all of the better utilities." Disk 310: "QMODEM is a fantastic telecommunications program...." Disk 376: "PATCHES are programs that allow you to place the indicated programs on your hard disk or to make backup copies.'

Personal Bests

Some of my own favorites: Disk 53, which contains BASIC programs to
make different sounds, including chirp, bomb, siren, engine, and tadaa; Disk 78, the PC-Write word processing program; Disk 120, a PC Chess program; Disk 216, a group of C utilities; Disk 241, specializing in games for the PCjr; Disk 321, home applications; Disk 354, another disk of games just for PCjrs; Disk 372, a collection of dozens of BASIC subroutines; Disk 375, a group of Pascal utilities; and Disks 528-529, which contain the New York Word word processing program. Other disks that look interesting include Disk 447-THE SKY, Disk 459-AGRICULTURAL PROGRAMS, Disk 465-FAMILY TIES, Disks 494-496-THE WORLD DIGITIZED, and Disk 565-HAMRADIO.

Although the PC-Sig CD is quite a bargain, most software distribution will continue to be made on floppy disks until CD-ROM players fall in price. For more information, write PC-Sig, 1030 East Duane Ave., Suite D, Sunnyvale, CA 94086, or call (408) 730-9291.

Fix It Yourself

It wasn't long after I got my IBM PC that I took some of the key caps off just to see what made the keys click. The A and the S caps reseated perfectly, but the space bar didn't quite snap into place, and I'd been working with it partly attached for years. Now-thanks to a new book, How to Repair and Maintain Your IBM PC, by Gene Williams-I've been able to repair my faulty keyboard. If you are do-it-yourself inclined (or stupidly curious, as I was), this book may be just what you're looking for. It has chapters on diagnosing what is wrong, disk drives, power supplies, troubleshooting memory, adding to your system, and-when all else failsdealing with the technician. It's priced at $\$ 13.50$ from Chilton Publishing in Radnor, PA.

Tower Of Babel

This month we'll take a whirlwind tour of some popular ST languages, translating a short but useful program into each language in turn. The assembly language version of this program is only 59 bytes long, but it can speed up disk save operations by a factor of about $30-50$ percent, depending on the size of the file involved. No, it's not done with mirrors. In fact, the job is so easy as to be almost trivial from a programming standpoint.

Like some other computers, the ST automatically verifies the success of every disk write operation. At memory location $\$ 444$ (1092) is a word-length variable that indicates whether verification is in effect. If this flag contains a nonzero value ($\$ \mathrm{FF} 00$ is normal) the ST verifies all disk saves; if it contains zero, verification is turned off. Thus, you can disable verification simply by putting a zero into $\$ 444$. Our programmers use this technique regularly to speed up saves on floppy disk drives; however, I advise against using it with any hard disk drive.

Assembly Language Version

Program 1 is the source code for the original version, which is written in assembly language. If you don't have an assembler, you can create this program with Program 6. Type in that program with ST BASIC and run it; then go to the desktop and double-click on QUICKSAVE.PRG. Verification is disabled, and you should notice a significant speedup in disk saves.

The first four instructions in Program 1 call the XBIOS routine known as Supexec, which executes a routine in supervisor mode. (As explained in a previous column, certain ST memory areas can be accessed only in supervisor mode.) The first instruction passes to Su -
pexec the address of the routine we want to execute. The second instruction passes the opcode (38) of the Supexec routine itself. When we invoke the routine with trap \#14, the machine flips into supervisor mode, performs the designated routine (mycode), and switches back to user mode. In the mycode routine, the instruction clr.w $\$ 444$ clears, or stores a zero in, location \$444. After returning from the XBIOS trap, we add six bytes to the stack pointer to adjust for the word and longword previously pushed onto it. Finally, the instructions clr.w -(sp):trap \#1 call Term, the standard GEMDOS routine for terminating a program.

C Version

After writing and testing the assembly language version, I translated it into C (Program 2). The \#include statement in the first line tells the compiler to include, or read, a header file named osbind.h when it compiles this program. This particular header file contains definitions for all of the XBIOS, BIOS, and GEMDOS functions on the ST, including Supexec, the XBIOS function we need. Actually, we need to grab only two statements from osbind.h:

extern long xbios();
 \#define Supexec(a) xbios(38, a)

The \#define statement allows us to substitute the descriptive name Supexec for XBIOS function 38. We could have skipped the \#include and defined Supexec with these statements, but using the header file saves typing and minimizes the risk of typos-important considerations in longer programs, which may use dozens of different system routines. (By the way, every language package contains all the requisite include files.)

Note how the use of a descriptive name makes this program easier to read than the first example. If
you know what Supexec does (ignoring for the moment the question of how one attains that knowledge), you can tell at a glance what's involved in any statement where that name appears.

The second statement in the program-extern int mycode()makes it possible for Supexec to find the address of mycode, the function we wish to execute in supervisor mode.

The third line in Program 2 declares a pointer variable named ptr. Because C has no keyword equivalent to BASIC's POKE, we must use a pointer, which is simply a variable that points to something else. The first statement in the mycode function is $\mathrm{ptr}=$ (int *) 0×0444. It makes ptr point at location \$444, or 0x0444 in C terminology. The expression (int ${ }^{*}$) is a cast which tells the compiler we're dealing with a word-length object rather than something of another size. Once ptr is aimed at the right spot, the statement ${ }^{*} \mathrm{ptr}=0$ stores a zero in the place where it points.

The main body of every C program is contained in a function named main. The curly braces $\{$ and \} mark the extent of main, and of every other function. Our main function contains the single statement Supexec(mycode), which invokes the Supexec function, passing to it the address of the routine we wish to execute in supervisor mode. The program terminates when we hit main's second curly brace. Notice that we don't have to do anything special to terminate the program; the compiler handles that detail for us, as it does many others.

Pascal Version

Program 3 is the same program written for Personal Pascal, the OSS implementation of Pascal for the ST. Pascal is very different from C. In the first place, Pascal originated as an academic, not a practical,
computer language, and it was developed for large, multiuser computers where tinkering with the machine's innards is a definite nono. Accordingly, the pure incarnation of Pascal forbids any direct access to the computer's memory. But such concerns are less important on a single-user, non-multitasking computer like the ST. And, as a practical matter, most Pascal compilers let you do a number of things that the Pascal language doesn't want you to do. So let's be naughty.

Near the top of Program 3, the VAR statement declares the variable $s s p$, which we'll use later to store an address. Compare this to the statement which declares ptr in the C program. Though the syntax is slightly different, the result is the same: Both declarations tell the compiler the name and type of a variable which we intend to use. Unlike BASIC, which automatically creates variables as soon as you use them, Pascal and C require you to declare every variable (state its name and type) before use.

The FUNCTION declaration gives the compiler the information it needs to call a system routine-in this case, the GEMDOS function named Super, whose opcode is $\$ 20$. Again, despite some syntactical variations, you can see the similarity between this and the \#define statement which we could have used in the C version.

The naughty part of Program 3 is found in the procedure wpoke, which performs the equivalent of a POKE by means of an unusual variant record named funny. I can't take credit for this procedure, by the way; it comes from an unsupported OSS include file (unsupported meaning that OSS offers this code for general use, but does not answer questions or offer other customer support relating to it).

The main body of this program occurs in the last BEGIN-END construct. Just as curly braces enclose the body of a C function, the words BEGIN and END enclose the body of a Pascal procedure. The first statement in this procedure invokes the system routine Super, passing it a zero to get us into supervisor mode and saving the previous address of the user stack pointer in the variable
ssp. The second statement calls the procedure wpoke to store a zero in location $\$ 444$. The third statement calls Super a second time, passing it the address stored in ssp to put us back in user mode. The two calls to Super have the same effect as one call to Supexec, without the difficulty of passing the address of one Pascal procedure to another.

ST BASIC Version

Program 4, the ST BASIC version, requires only one line of code. The DEFDBL statement insures that we'll be POKEing a word-length quantity rather than a byte. Notice that we needn't do anything to put the computer in supervisor mode before doing the POKE: Either ST BASIC itself runs in supervisor mode, or it shifts in and out of supervisor mode to do the POKE.

That may sound convenient, particularly since ST BASIC offers no means to access the XBIOS or GEMDOS routines that invoke supervisor mode. But it makes POKE a potent weapon, indeed. One of the most common and most deadly BASIC programming errors comes from POKEing to an address different from the one intended. In this program, for instance, say that you accidentally type POKE AA, 0 instead of POKE A, 0 . The variable AA is never defined in this program, so it has the value zero by default. The effect is to POKE a zero into location zero: ST BASIC crashes with two cherry bombs on the screen, and the system locks up completely when the desktop reappears. Be extremely careful with POKE in ST BASIC.

GFA BASIC Version

GFA BASIC offers two different types of POKE statements. POKE, DPOKE, and LPOKE let you store a byte, word, or longword value, respectively, in any memory location that's accessible in user (normal) mode. If you need to access protected memory, you may use SPOKE, SDPOKE, or SLPOKE, to store a byte, word, or longword in a protected address. The S in these commands stands for supervisor mode.

What's nice about this scheme is that it protects the unwary tyro against simple blunders, without denying sophisticated programmers
access to the machine. If you accidentally POKE to a protected memory address, GFA BASIC traps the error and puts up a message suggesting that you check your POKEs and PEEKs. BASIC recovers without crashing, as it should from any runtime error. If you go to the trouble of putting an S in front of the POKE, it is assumed that you know what you're doing and are prepared for the possible consequences.

Bloody But Unbowed

That concludes our pocket tour of Babel, but the list of ST dialects is by no means exhausted. Had space (and my patience) permitted, we might have tried Modula-2, Forth, BCPL, and others. It's interesting to see how various languages favor different solutions to the same problem, but don't worry if some of the examples look confusing. Few programmers need to become proficient in more than one or two languages, and the plain truth is that a good programmer can write effective programs in almost any language. So find one that suits your own needs and go to work.

Program 1: Assembly Language Version

```
move. 1 \#mycode, -(sp)
move.w \#38, -(sp)
trap \#14
addq. \({ }^{\#} 6\),sp
clr.w -(sp)
trap \#1
mycode:
clr.w \(\$ 444\)
rts
```


Program 2: C Version

\#include <osbind.h>
extern int mycode();
int *ptr;
main()
Supexec(mycode);
mycode()

```
    \(\mathrm{ptr}=\left(\right.\) int \(\left.{ }^{*}\right) 0 \times 0444 ;\)
    \({ }^{*} \mathrm{ptr}=0\);
```

\}

Program 3: Pascal Version

PROGRAM quiksave;

VAR

ssp: long-integer;
FUNCTION super(sp: long-integer):
long-integer;
\{\$P-\}
PROCEDURE wpoke(address: long-
integer; value: integer);
TYPE
int $-\mathrm{ptr}={ }^{\text {in }}$ integer;
VAR
funny: RECORD
CASE boolean OF true: (a: long-integer);
false: (p : int -ptr);
END;
BEGIN
funny.a := address;
funny. $\mathrm{p}^{\wedge}:=$ value;
END;
$\{\mathbf{\$ P}=\}$
BEGIN
ssp : = super(0);
wpoke(\$444,0);
ssp := super(ssp);
END

Program 4: ST BASIC Version

10 defdbl $a: a=\& H 444: p o k e ~ a, 0$

Program 5: GFA BASIC Version

sdpoke \&H444, 0

Program 6: QUIKSAVE.PRG Filemaker

$1 \varnothing \square$	close: open "R",1,"A: \QUIK SAVE.PRG",59
110	field \#1,59 as a\$
120	for $j=1$ to 59:read byt $\$$
130	byt=val ("\&H"+byt\$)
140	$c=c+1: c h k=c h k+c+b y t$
150	x \$=x\$+chr\$(byt) : next
160	1set aj=x \$:put 1, D:close
170	if chk<>3363 then ? "Typi
	ng error": kill "A: \QUIKSA VE. PRG"
$18 \emptyset$	data $6 \varnothing, 1 A, \emptyset \emptyset, \emptyset \varnothing, \varnothing \varnothing, 1 A$
190	data øø, \varnothing, øø, øø, Øø, Øø
	data $\varnothing \varnothing, \emptyset \varnothing, \emptyset \emptyset, \emptyset \varnothing, \emptyset \varnothing, \emptyset \varnothing$
210	
22ø	data $\varnothing \varnothing, \emptyset \emptyset, \emptyset \emptyset, \emptyset \emptyset, 2 F, 3 C$
230	data $\varnothing \varnothing, \varnothing \varnothing, \emptyset \varnothing, 12,3 F, 3 C$
246	data øø, $26,4 \mathrm{E}, 4 \mathrm{E}, 5 \mathrm{C}, 8 \mathrm{~F}$
250	data $42,67,4 \mathrm{E}, 41,42,79$
260	data $\emptyset \emptyset, \emptyset \emptyset, \emptyset 4,44,4 E, 75$
270	data øø, Øø,øø,ø2,øø ©

Attention Programmers

COMPUTE! magazine is currently looking for quality articles on Commodore, Atari, Apple, and IBM computers (including the Commodore Amiga and Atari ST). If you have an interesting home application, educational program,
programming utility, or game, submit it to COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Or write for a copy of our "Writer's Guidelines."

Apple Magazine Indexer

The Apple version of this filing utility from the April issue (p. 106) is missing its first three lines. To create a working version, add the following to the published listing:
369 GOTO 59
DE 1 REM FOSITION COMMAND
SC 2 PRINT D\$"READ"Z末", R"FP", B"B Y: RETURN

Euchre

In the Apple version of this game from the March issue, the first four lines are missing from the BASIC listing (Program 3, p. 54). For a complete program, add the following lines:

1 PRINT CHR\$ (4); "BLOAD EUCHRE. B IN, A36998"
$2 \operatorname{IF} \operatorname{PEEK}(19 \varnothing * 256)=76$ THEN PRIN T CHR\$ (4); "PR\#A36øø8": GOTO 4
3 POKE 54, 168: POKE 55, 140: CALL 1002
4 POKE 6, Ø: POKE 7, 141: POKE 23ø, 64

Many owners of IBM PC and compatible computers have had difficulty deciphering the graphics characters used in their version of the game (Program 5, p. 58). To simplify entry, change or add the following lines, which build the graphics from character codes in DATA statements:

[^2]LL 1114 DATA $32,254,32,219,32,25$ $4,32,22 \emptyset, 32,32,32,219,32$ $, 32,32,32,32,219,32,32,3$ $2,32,32,219,32,32,32,32$, 32
CI 2218 COLOR 1ø, 2: $Y=F * 5+4$: LOCAT E 21, Y:PRINT CHR\$ (2ø1)CH R\$ (187) : LOCATE 22, Y: PRIN T STRING\$ $(2,186):$ LOCATE 23, Y: PRINT CHR $\$(2 \emptyset \varnothing)$ CHR $\$$ (188)
$113 \emptyset 7 \emptyset$ PRINT CHR $\$(2 \emptyset 5)$ CHR $\$$ (187) CD\$CL\$CHR (186) NL\$CD\$CHR \$ (186) CD\$CL\$CHR\$ (2øø) CHR \$ (295)
The article states that the Atari version (Program 2) will work on an Atari 400 . This is true only if the 400 has memory expansion.

Atari Wari

There is an error in the Atari version of this game from the February issue (Program 6, p. 70), and in the WARI.FEB program on the COMPUTE! Disk for January-March. Line 840 should end with THEN 970 rather than THEN 950. As listed, the program will crash with an ERROR 16 (RETURN without GOSUB) after the maximum number of moves in a limited game. No problem occurs in an unlimited game. Thanks to Frank Walters for pointing out this correction.

SpeedView

This 80 -column preview enhancement for SpeedScript (November 1986, p. 76) should not be confused with the "SPEEDVIEW" SpeedScript preview enhancement released earlier by Upstart Publishing, P.O. Box 22022, Greensboro, NC 27420. The latter program is a part of Upstart Publishing's SPEEDMATE customizer program for SpeedScript.

Synthesis

Dan Monaghan

Hang on to your hats, music enthusi-asts-this program turns the Commodore 64 into an impressive music synthesizer with full control over the 64's multifaceted sound chip. Beginners and experts alike can have fun playing music and trying out different sounds with this program. And if you're already familiar with the 64's sound capabilities, you'll find "Synthesis" a powerful tool for experimenting with electronic music sounds. The program works with either disk or tape and requires no extra equipment.

When you got your Commodore 64 or 128, you may have heard that its SID (Sound Interface Device) chip is one of the best sound and music devices in any personal computer. That's true, but programming the SID chip can be a complex business, requiring several POKEs to produce just one sound. "Synthesis" unlocks the full potential of the 64's sound-maker, providing you the equivalent of a sophisticated electronic music synthesizer.

Synthesis turns the 64's keyboard into a musical keyboard, so you can play the synthesizer simply by pressing on the computer's keys. The program also provides a convenient, full-featured editor for designing your own sounds and for experimenting. Once you find a sound that you like, it can be saved to disk or tape for future use or revision. In this way you can build a complete library of instrument voices and sound effects.

Even if you don't know anything about programming the SID chip, you can have fun with this program immediately. This article includes 36 preset patches (sound settings), ranging from conventional musical instruments like the flute and cello to far-out electronic sounds such as space bass, percolator, and metallica.

A Synthesizer And 36 Voices

This article includes two programs. Program 1 is the synthesizer and sound editor. Program 2 is not actually a program, but a data file of 36 different synthesizer voices. While it's not absolutely necessary to type in Program 2, you'll probably want to have it as a demonstration of the wide capabilities of Synthesis and the SID chip.

Both programs must be entered with the "MLX" machine language entry program found elsewhere in this issue. Follow the MLX instructions carefully. If you are using a cassette drive, you'll want to save Program 2 immediately after Program 1 on the same tape. Here are the addresses you need to type the programs in with MLX:
Program 1. SYNTHESIS
Starting address: 0801
Ending address: 1 C37
Program 2. VOICES
Starting address: 1C38
Ending address: 23E2
Although it's written in machine language, Synthesis loads and runs the same way a BASIC program does. Load it from disk or

"Synthesis" turns the Commodore 64 into an impressive musical synthesizer, and offers full control of the sound chip.
tape, type RUN, and press RETURN. Do not try to start it with a SYS command.

Quick Demo

We'll describe all of the synthesizer's functions fully, but for those who can't wait to try it out, here's a quick demonstration. After typing and saving Programs 1 and 2, load and run Program 1. Synthesis puts you in the file editor screen. The top portion of the screen contains prompts that show you which keys to press for various options. The remainder of the screen is taken up with blank slots which will be filled in after you load a voice file. (Program 2 is a sample voice file.)

Let's begin by playing the synthesizer. From the main screen, press the $\mathrm{f7} 7$ function key: Synthesis displays the synthesizer screen. At the bottom of the screen is a musical keyboard display that indicates which of the computer's keys act as synthesizer keys. Play the synthesizer using these keys. (If you don't
hear any sound, turn up the volume on your TV or monitor.) This is the default voice-the one that Synthesis uses if you haven't loaded or created a custom voice.

When you've finished playing, press E to exit the synthesizer and return to the file editor. Now let's load a voice file. Press L; then type in the filename when prompted. If you saved Program 2 with the name VOICES, type VOICES and press RETURN. Synthesis then asks whether you wish to load from disk (press D) or tape (press T). After the file has loaded, Synthesis prompts you to press the asterisk (*) key to return to the file editor.

When you return to the main screen, notice that it is now filled with the names of 36 different synthesizer voices. All of these voices have been loaded in memory and are available for your use. To select a voice, press the f 1 key . Synthesis displays a cursor ($>$) in front of the first voice name. Use the cursor keys to move around the screen until you find a voice that sounds interesting. To choose that voice, press RETURN.

The voice which you selected has now been loaded into the synthesizer. To hear what it sounds like, press f 7 to go to the synthesizer; then press any of the synthesizer keys. The synthesizer uses the selected voice in place of the default voice which you heard earlier. When you've heard enough, press E to return to the file editor; then press f 1 to select one of the other 35 voices. There's a wide variety to choose from.

File Editor

The program begins by displaying the file editor screen. Here is where you select existing voices, name new voices that you have created, and save or load completed files. A voice file can contain as many as 36 individual voices.

The file editor screen offers six options, which you select by pressing the keys indicated on the screen. A list of editor options follows.
f1. The f 1 function key loads a voice from the file into the synthesizer. Use the cursor keys to move the pointer to the desired voice, and press RETURN. Synthesis loads that voice into the synthesizer;
when you go to the synthesizer screen, that voice is available for your use.
f 3 . This key takes the voice currently in the synthesizer and stores it in the voice file. If you have just created a new voice and wish to save it, you must store the voice with this function before saving the file (the save function is explained below). $f 5$. The f5 key allows you to change the name of the current voice. Enter a name when prompted and press RETURN. The voice name must be no more than 12 characters in length. To rename an existing voice, first select it with f1; then press $f 5$ to rename it.
f7. Press f 7 to exit the file editor and go to the synthesizer screen.
L. Loads a voice file from tape or disk. The program prompts you to enter a filename and then asks whether to load from disk or tape. Press C at the second prompt to cancel the operation.
S. Saves the voice file to tape or disk. This saves all of the voices which appear in the voice list on the file editor screen (voices which have been loaded with L or stored by pressing f 3). The current voice in the synthesizer will not be saved unless you have previously stored it in the file.

Synthesizer Functions

The synthesizer screen serves two different purposes: playing music and creating new voices.

By pressing the keys indicated in the musical keyboard display, you can play notes using the current voice parameters. The musical keyboard configuration appears at the bottom of the screen. Press the E key to return to the file editor screen.

The synthesizer screen also allows you to change the current voice characteristics to create a new voice or modify the current one. The voice characteristics appear in the upper portion of the screen.

Playing the synthesizer requires no further explanation. To change a voice characteristic, use the cursor keys to move the pointer to the parameter you wish to change; then press the plus key (+) or minus key (-) to increase or decrease the current value.

When you're using this feature of Synthesis, it will help to have a basic understanding of how the SID chip works-a subject which is beyond the scope of this article. The user's manual for your computer explains more about the SID chip, and many other references are available. If you don't have a complete reference, don't be afraid to experiment: You can't hurt the computer in any way by trying out different settings (although certain combinations may result in no sound or very peculiar sounds). If you produce an unwanted sound, or simply want to discard the current voice, press the asterisk key (*); Synthesis resets all three voices to the default parameters.

Certain features of this synthesizer, such as sample and hold, are not features of the SID chip itself, but will be familiar to those who have a general knowledge of electronic music synthesis. Following is an explanation of what each voice parameter controls.

Voice Parameters

Waveform. This parameter controls the basic tonal characteristics of each of the synthesizer's three voices. You may choose any of the basic waveforms supplied by the SID chip: triangle, sawtooth, pulse, and noise (random). Note that each of the three voices can have a different waveform.
Pulse width. This parameter controls the symmetry of the pulse waveform. Note that pulse width is relevant only if you have selected a pulse waveform; if you are using some other waveform, changing the pulse width has no effect. The range for this parameter is from $0-8$, with 0 creating a very narrow pulse and 8 creating a square wave. Pulse mod. The pulse mod parameter allows you to use voice 3 to modulate the pulse width (note that pulse width is meaningful only when a pulse waveform is in use). A constantly changing pulse width can create very interesting sounds. You may choose as the source of modulation either the envelope of voice 3 (ENV) or the output of voice 3 (LFO). LFO stands for low frequency oscillator, a source which changes with a comparatively low frequency (over' a comparatively
long period of time). If you choose ENV as the source of modulation, the modulation is controlled by voice 3's current ADSR parameters (see below).
Ring. This parameter enables or disables ring modulation, a special SID chip effect which combines the frequencies of two voices in a way which produces mathematically incongruous harmonics. If that description sounds baffling, select the steel drum voice from the VOICES file and play some notes on the synthesizer. The ringing, metallic tones result from ring modulation. Ring modulation always involves two voices. If you select ring mod for voice 1 , then its output is ring modulated with the output of voice 3 . Voice 2 is ring modulated by voice 1 , and voice 3 is ring modulated by voice 2 .
Sync. This parameter enables or disables synchronization, another special effect involving two voices. Synchronization combines the frequency output of two voices to create a more complex sound than would be created with either voice alone. To hear examples of synchronization, select space bass or sync sweep from the VOICES file. The modulation order for synchronization is the same as for ring modulation. Voice 1 is synchronized with voice 3 , voice 2 is synchronized with voice 1 , and voice 3 is synchronized with voice 2 .
Filtered. This parameter determines whether a voice is routed through the SID chip's built-in filter. The filter allows you to suppress the output of the selected voice within a defined frequency range.
Octave. The SID chip has a frequency range of seven full octaves. This function lets you set any voice to a desired octave. If you set voice 3 's octave to 0 , that voice goes into LFO (low-frequency oscillator) mode. LFO mode is used in cases where you want to use voice 3's output to modulate some characteristic of a second voice. When you set a voice to LFO mode, that voice produces no audible output itself; instead, its output is rerouted for another purpose.
Interval. The interval parameter causes a voice's frequency to play at a certain number of half-steps
above the note being played on the musical keyboard. For instance, if you set voice 1's interval to 7 and play an F\# note on the musical keyboard, Synthesis plays a C\# note. If you set the voice 1 interval to 0 , the voice 2 interval to 4 , and the voice 3 interval to 7 , you will hear a complete major chord. The major triad voice in the VOICES file demonstrates one use of the interval parameter.
Pitch. The pitch parameter allows you to detune the selected voice by raising or lowering its pitch slightly, within the range +2 to -2 . The idea behind detuning is to make two (or more) voices play the same note, but set one voice just slightly off key by raising or lowering its pitch. The results sound more interesting and "natural" than if both voices were playing in perfect unison. Listen to the honky tonk voice in the VOICES file for a demonstration of detuning.
Pitch mod. Pitch modulation is useful for creating vibrato or other pitch-based effects. Again, this parameter always involves two voices. Voice 3 provides a modulating signal which you can use to affect the output of either voice 1 or voice 2 . Voice 3 may be in LFO, ENV, or S/H (sample and hold) mode. Sample and hold effects are explained below.
Track. This parameter determines whether or not the designated voice follows the synthesizer keyboard. If tracking is on for a given voice, its frequency is determined by which musical key you press. If tracking is off, the keyboard has no effect on its pitch: Instead, that voice's pitch is controlled solely by its octave, interval, and pitch parameters. Untracking a voice allows you to use its output as an LFO or to create a drone voice which plays at a constant frequency. The bagpipe voice in the VOICES file untracks one voice for use as a drone.
Attack. The next four parameters (attack, decay, sustain, and release) are usually abbreviated with the acronym ADSR. Together, they define the envelope, or characteristic shape of the final output for a given voice. The attack parameter controls the rate at which, after a musical key is pressed, the level of the
designated voice rises to its maximum volume.
Decay. After the attack has reached its peak (see above), the decay parameter controls the rate at which the output of the designated voice drops to the sustain level.
Sustain. This parameter controls the volume level at which the output of the designated voice remains until you release a key on the musical keyboard.
Release. After you've released a key, this parameter controls the rate at which the output of the designated voice fades away into silence.
Mod level. Some of the special effects available in Synthesis involve two voices: One voice is used to modulate (change) the output of a second voice. For pitch mod, pulse mod, sample and hold $(\mathrm{S} / \mathrm{H})$, and filter mod, the source of the modulating signal is either the ADSR envelope of voice 3 or the waveform output of voice 3. The mod level parameter controls the intensity of modulation in such cases. If you are using voice 3 to create vibrato, for instance, the mod level can change the vibrato effect from a slight wavering in pitch to a large, multioctave sweep. The maximum mod level is 9; at this extreme level, you may exceed the range for other parameters, creating a glitch in the sound.
S/H rate. The acronym S/H stands for sample and hold, another special electronic sound effect. This feature samples (looks at) the output of voice 3 , holds the sampled level, then applies it to the pitch of any voice for which S / H modulation is selected. The modulated voice is then played automatically, just as if you had pressed the key again. Instead of a constantly changing pitch, as with LFO modulation, S / H modulation occurs in discrete steps. If you set the LFO mod level to 0 , the pitch of the modulated voice is not changed, but the voice is still automatically rekeyed. For examples of S/H modulation, listen to the staircase, random, and mandolin voices in the VOICES file.
Filter pitch. This parameter sets the resonant frequency of the filter.
Resonance. The resonance parameter controls the strength, or
amount of emphasis，which the fil－ ter has．
Mode：This characteristic selects the type of filter to be used．A band－ pass filter（BP）causes the filter to pass through，or admit，only fre－ quencies above the designated filter pitch；frequencies above the cutoff point are suppressed．A high－pass filter（HP）passes frequencies above the cutoff point and suppresses lower frequencies．Careful filtering can be very useful in simulating the sounds of natural instruments．How－ ever，since the filter is subtractive－ that is，it takes away part of the sound you would otherwise hear－ it tends to make the final output somewhat quieter than normal．
Voice 3．The voice 3 parameter en－ ables or disables the final output of voice 3．If you are using voice 3 to modulate another voice，you will normally want to disable its output with this feature．If you don＇t，you may hear unwanted clicks during each envelope cycle for voice 3 ．If you wish to disable the output of voice 1 or voice 2 ，set all of the ADSR parameters for that voice to zero．
Please refer to the＂MLX＂article elsewhere in this issue before entering the following programs．

Program 1：Synthesis

ø8ø1：ØВ ø8 øø øø 9E 323036 EC Ø8Ø9：31 Øø Øø ØØ 4С ЕØ ØЕ ØØ B3 Ø811：18 6A EØ ØØ DØ Ø2 A9 ØØ C5 Ø819：AØ ØØ 84 2A 18 9Ø Ø4 2 A El Ø821：26 2A 18 CA Dø F9 66 2A E3 ஏ829：6A A6 14 A4 2A 6Ø BC 1E 4 F Ø831： 40 B9 CD 14 8D 5F ø8 B9 7E Ø839：C8 14 8D $6 \emptyset$ Ø8 89 D7 $14 \begin{array}{llllll}55\end{array}$ ø841：8D 64 Ø8 B9 \quad D2 14 8D 6535 Ø849：Ø8 $\mathrm{BD} 2440 \mathrm{~F} \mathrm{\emptyset}$ Ø8 AC 8D E3 Ø851：Ø2 B9 EE $17 \quad 6542$ 7D $18 \quad 67$ Ø859：40 7D 1B 40 A8 B9 D4 18 3E Ø861：85 45 B9 Fø 1A $8546 \quad 60$ 9F Ø869：20 22 ØC A5 4599 ØØ D4 53 Ø871：A5 $46 \quad 99$ Ø1 D4 60 BD 0 C D8 Ø879： 4 Ø 29 FE 2 2 $\quad 22$ ØC 99 Ø4 4 E Ø881：D4 6Ø AØ ØØ B1 26 2Ø D2 61 Ø889：FF C8 Cø Ø9 DØ F6 6Ø A4 3C Ø891：28 E6 29 A6 29 18 20 FØ D9 Ø899：FF A2 Ø2 $6 \emptyset$ A9 $9918 \quad 65$ 9F Ø8A1：26 $85 \quad 26 \quad 9 \emptyset \quad$ Ø2 2 E6 $27 \quad 6 \emptyset \quad 4 \mathrm{E}$ Ø8A9：48 A9 CD $85 \quad 26 \quad 68$ A8 10 8E ø8B1：ø6 A9 E8 $85 \quad 26$ Dø 16 Fø 36 Ø8B9：14 2Ø 9D ø8 Cø Ø1 FØ ØD Ø9 Ø8C1：2Ø 9D Ø8 CØ Ø2 FØ Ø6 $2 \emptyset 56$
 Ø8D1：A9 $2 \emptyset \quad 2 \emptyset \mathrm{D} 2 \mathrm{FF} 88 \mathrm{D} \varnothing \mathrm{FA} A \mathrm{~A}$ Ø8D9：6Ø 8D 51 Ø2 8A 48 AØ Ø2 8Ø
 Ø8E9：A2 $11 \begin{array}{llllllll} & 18 & 2 \mathrm{E} & 51 & \emptyset 2 & 2 \mathrm{E} & 5 \emptyset & \mathrm{~B} 4\end{array}$ Ø8F1：Ø2 CA Fø 11 2E 53 Ø2 AD 55 Ø8F9：53 Ø2 38 E9 ØA 30 EB 8D $5 \emptyset$ Ø9ø1：53 ø2 38 Bø E6 AD 53 Ø2 E5 Ø9ø9：ø9 $30199 \begin{array}{lllllll}54 & \boxed{ } 1 & 88 & 10 & \text { DØ } & 47\end{array}$ Ø911：68 AA 60 4A 4A 4A 4A 4C ØF

Ø921：D1 Ø8 C8 2ø 3D ø9 Aø Ø3 8B 0929：20 D1 08 A9 1D 4C D2 FF 1B Ø931：20 DA Ø8 AØ Ø2 20 D1 Ø8 51 Ø939：AØ Øø FØ E7 B9 54 Ø2 2Ø 7B Ø941：D2 FF C8 Cø Ø3 DØ F5 6089 Ø949：48 AØ Ø2 $2 \emptyset$ D1 Ø8 $68 \quad 2089$ Ø951：D2 FF Aø Ø2 4C D1 Ø8 85 4Ø Ø959：26 A9 $1485 \quad 27$ A2 Ø4 AØ $3 \varnothing$ Ø961：ØØ $84 \quad \mathrm{C} 7 \quad 18$ 2Ø $\mathrm{F} \emptyset \mathrm{FF}$ B1 85 Ø969：26 FØ Ø6 2Ø D2 FF C8 DØ 86 Ø971：F6 6Ø A9 Ø6 85 C7 8D 86 Ø979：Ø2 A4 67 A6 6818 20 FØ E1 Ø981：FF A9 3E 20 D2 FF 20 E4 83 Ø989：FF A4 67 A6 68 C9 1D DØ 91 Ø991：ØС CØ Ø6 FØ Ø4 AØ Ø6 DØ 29 Ø999：Ø2 AØ 1A DØ 24 C9 9D FØ 99 Ø9A1：FØ C9 11 DØ Ø9 E8 EØ 1792 Ø9A9：DØ 17 A2 65 DØ 13 C9 9186 Ø9B1：DØ Ø9 CA EØ Ø4 DØ Ø2 A2 DF Ø9B9：16 Dø Ø6 C9 ØD DØ BA FØ 7A Ø9Cl：11 $8467 \begin{array}{lllllll}67 & 86 & 68 & \text { A9 } & 9 D & 2 \emptyset & 18\end{array}$ Ø9C9：D2 FF A9 $2 \emptyset 20$ D2 FF 18 EØ Ø9D1：90 A7 A9 1B 85 8C A5 68 ØF Ø9D9： 38 E9 Ø5 AA A9 CE 1869 EF Ø9E1：6A 9Ø Ø2 E6 8C CA 1ø F6 A2 Ø9E9：A4 67 C C \quad Ø6 $\mathrm{F} \emptyset \quad 07 \quad 18 \quad 69 \mathrm{DD}$ Ø9F1：35 9ø Ø2 E6 8C 85 8B A9 AC Ø9F9：1C 85 8F A9 $38 \quad 85$ 8E 6Ø 5D ØAØ1：A Ø Øб 2Ø CF FF 99 Øø Ø2 CE ØAØ9：C8 C9 ØD DØ F5 AØ Øø B9 8E ØA11：ØØ Ø2 AA C9 ØD FØ 1C 2925 ØA19：7F 38 E9 $3 \emptyset$ BØ Ø4 A9 $2 \emptyset 44$ ØA21：DØ $\emptyset 9 \quad 8 \mathrm{~A} \quad 29 \quad 7 \mathrm{~F} \quad 38 \mathrm{E} 9 \mathrm{5B} \mathrm{CF}$ ØA29：BØ F4 8A 99 Øø $4 \emptyset$ C8 CØ 11 ØA31：ØC DØ DC 4C F8 Ø9 A9 $06 \quad 25$ ØА 39：8D 86 Ø2 A2 ØØ AØ ØØ 8427 ØA41：29 18 2Ø FØ FF BD ØØ $4 \varnothing$ 3A ØA 49： $2 \emptyset$ D2 FF E8 EØ ØC DØ F5 7F ØA51：A9 ØD $85 \quad 28 \quad 20$ 90 08 A9 AD ØA59：16 $85 \quad 27$ A9 A9 $85 \quad 26 \quad 85 \quad 8 \mathrm{E}$ ØA61：C7 A9 Øø 8D 86 Ø2 A9 1ø 3C ØA69：85 2A A5 2A 3D ØC $4 \varnothing$ DØ 8D ØA71：Ø8 2ø 9D Ø8 18 Ø6 2A $9 \varnothing 83$ ØA79：F1 20 83 Ø8 A9 A9 85 26 A4 ØA81：CA 1Ø E3 $2 \emptyset 9 \varnothing$ Ø8 BD ØF AC ØA89：4 4 2Ø 1B ø9 CA 1Ø F7 $2 \emptyset$ 6ø ØA91：90 Ø8 BD 1240 20 A9 98 A6 ØA99：CA 1Ø F7 2 2 90 Ø8 BD ØC 44 ØAA1：4Ø 29 Ø4 $2 \emptyset$ A9 Ø8 CA $1 \emptyset$ B5 ØAA9：F5 209098 BD ØC $4 \varnothing 18$ ØA ØAB1：29 Ø2 2A $2 \emptyset$ A9 $\emptyset 8$ CA 1035
 ØAC1：A9 Ø8 CA 10 F7 A9 06 8D $\varnothing 7$ ØAC9：86 Ø2 2 2ø $9 \varnothing$ Ø8 AØ 042 2Ø 99 ØAD1：D1 Ø8 BD $184 \emptyset \quad 2 \emptyset$ ØF ØC B6 ØAD9：AØ Ø3 2Ø D1 Ø8 A9 1D $2 \varnothing 61$ ØAE1：D2 FF CA $1 \varnothing$ E8 $2 \varnothing 9 \varnothing$ Ø8 AA ØAE9：BD 1B $4 \varnothing 20$ 1B \quad Ø9 CA $1 \varnothing 50$ ØAF1：F7 20 9ø 08 A9 FA $85 \quad 26 \quad \emptyset 7$ ØAF9：A9 $16 \quad 85 \quad 27 \mathrm{BD} 1 \mathrm{E} \quad 40$ A8 1 B ØBØ1：FØ 18 2Ø 9D Ø8 Cø 01 Fø A9 ØBø9：11 $2 \emptyset$ 9D Ø8 CØ Ø2 FØ ØA DD ØB11：20 9D Ø8 CØ Ø3 FØ Ø3 2Ø AD ØB19：9D $08 \quad 20 \quad 83$ ø8 CA 10 D4 9C ØB21：20 9ø Ø8 A9 $1685 \quad 27 \mathrm{BD}$ D9 ØB29：21 40 2Ø A9 08 CA $1 \emptyset$ F7 Ø2 ØB31：2Ø 9ø Ø8 BD 24 4Ø $2 \emptyset$ A9 64 ØВ39：Ø8 CA 1Ø F7 $2 \emptyset$ 9Ø Ø8 A9 84 ØB41：ØØ 8D 86 ØB49：20 14 Ø9 CA 10 F6 20 9Ø 6F ØB51：Ø8 BD 27 4ø 29 ØF $2 \emptyset$ 1B A4 ØB59： $99 \mathrm{CA} 1 \emptyset \mathrm{~F} 5 \quad 2 \emptyset 90$ Ø8 BD 19
 ØB69：F6 $2 \emptyset \quad 9 \emptyset \quad$ Ø8 BD 2A $40 \quad 29$ D5 ØB71：ØF 2Ø 1B Ø9 CA 1Ø F5 AØ 2E ØВ79：16 $20 \quad 92$ ø8 A9 Ø6 8D 86 7C
 ØB89：Ø9 AØ $2 \emptyset \quad 2 \emptyset \quad 94$ Ø8 AD 34 A 6 ØB91： 40 Ø9 $\begin{array}{llllllll} & 30 & 2 \emptyset & 49 & \emptyset 9 & 2 \emptyset & 90 & 51\end{array}$ ØB99：Ø8 AD $\begin{array}{llllllll} & 32 & 4 \emptyset & 2 \emptyset & 74 & 12 & \text { A9 } & \text { ØA }\end{array}$ ØBA1：ØØ 8D 86 ØBA9：Ø8 AD 2D $40120 \quad 31 \quad \emptyset 9$ AØ 51

ØBB1：1F $20 \quad 94 \quad$ Ø8 $A D \quad 2 F \quad 4 \varnothing \quad 2 \varnothing \quad 3 D$ ØBB9：A9 Ø8 Aø ØD $2 \emptyset 92$ Ø8 AD 94 $\emptyset B C 1: 3 \varnothing 4 \varnothing \quad 2 \emptyset 1 B \quad \emptyset 9 \quad A \emptyset \quad 1 \mathrm{~F} \quad 2 \emptyset \quad \mathrm{DE}$ ØBC9：94 ø8 AD $3140 \quad 85$ 2A E6 48 ØBD1：27 AØ $27 \quad 84 \quad 26$ AØ ØØ A9 2 E ØBD9：1Ø 25 2A Dø $1 \varnothing$ A9 Ø6 $2 \emptyset$ E6 ØBE1：9F ø8 A9 2Ø 25 2A DØ Ø5 79 ØBE9：A9 $\begin{array}{lllllllll} & \text { Ø6 } & 2 \emptyset & 9 \mathrm{~F} & \text { Ø8 } & \mathrm{B} 1 & 26 & 2 \emptyset & \mathrm{C} 7\end{array}$ ØBF1：D2 FF C8 CØ 06 DØ F6 Aø 98 ØBF9：ØD $2 \varnothing 92$ Ø8 C6 27 A5 2A B9 ØCø1： 29 8Ø $\mathrm{F} \emptyset \quad$ Ø4 A9 ØØ $\mathrm{F} \emptyset \quad \varnothing 2$ 5D ØС09：A9 Ø4 2Ø A9 Ø8 60 FØ ØC 45 ØC11：Aの Øø 18 6A 6A 38 C8 E9 D2 ØC19：Ø3 DØ FA 98 Ø9 3Ø 4C D2 44 ØC21：FF AØ ØE EØ Ø1 DØ Ø2 AØ 21 ØC29：Ø7 EØ Ø2 DØ Ø2 AØ ØØ 6Ø 3D ØC31：AØ $14 \begin{array}{llllllll}14 & 27 & \mathrm{~A} \emptyset & \mathrm{~F} 2 & 84 & 26 & \mathrm{Al}\end{array}$ ØC39：A Ø ØØ B1 $26 \mathrm{~F} \emptyset$ ØA $2 \emptyset \mathrm{D} 2 \mathrm{FC}$ ØC41：FF C8 Dø F6 E6 27 DØ F2 7D ØC49： 2 Ø 37 ØA AØ ØØ A2 Ø2 BD D6 ØC51：ØF 4099 Ø3 D4 BD 274090 ØC59：99 Ø5 D4 BD 2A 4 （Ø 99 Ø6 81 ØC61：D4 $98 \quad 18 \quad 69 \quad 07 \mathrm{AB}$ CA 10124 ØC69：E6 A2 Ø1 BD 2D 40 9D 15 54 ØC71：D4 CA 1ø F7 18 AD 304040 ØС79：ØА ØА ØА ØА 85 2A А9 ØØ 23 ØC81：AE 15 4Ø F Ø Ø2 09 Ø4 AE 38 ØC89：16 40 Fø Ø2 09 Ø2 AE 17 BF ØC91：4の FØ Ø2 Ø9 Ø1 Ø5 2A 8D D4 ØC99：17 D4 $18 \mathrm{AD} 3140 \quad$ Ø9 \quad ØF FB ØCA1：8D 18 D4 AD 1C D4 AE 33 CØ ØСА9：4Ø 2 Ø A4 ØD 85618462 6C ØCB1：86 6D AD 1B D4 AE 3440 D9 ØCB9：2Ø A4 ØD 85 63 $84 \begin{array}{llllll}64 & 86 & 81\end{array}$ ØCC1：6E CE C1 Ø2 DØ 1ø AD 3271 ØCC9：4の 8D C1 Ø2 A9 Ø1 $45 \quad 69$ Ø3 ØCD1：85 69 F Ø 0285 6A A2 \quad Ø2 62
 ØCE1： 99 AD 1C D4 AC 33404 C B9 ØCE9：F1 ØC AD 1B D4 AC 34 4Ø 67 ØCF1：2Ø DB ØD CA 1Ø E2 AD 2F F5 ØCF9： 40 F （1C C9 Ø1 DØ Ø9 AC 98 ØDØ1：34 4Ø AD 1B D4 18 9ø Ø6 18 DA ØDØ9：AC $33 \quad 40$ AD 1 C D4 18 CØ 4 E ØD11：Ø9 FØ Ø4 6A C8 DØ F8 18 A6 ØD19：6D 2D $4 \emptyset$ 8D 16 D4 A6 C5 2D ØD21：8A AC 8D Ø2 FØ Ø2 Ø9 8Ø 9F ØD29：85 F7 BD ØØ $14 \begin{array}{llllll} & 85 & 6 B & 10 & 59\end{array}$ ØD31：ØA A2 Ø2 $2 \emptyset 77$ Ø8 CA $1 \varnothing$ BC ØD39：FA $3 \emptyset \quad$ Ø2 $85 \quad 41$ A2 Ø2 A4 B2 ØD41：41 $18 \quad 84 \quad 42 \quad 2 \emptyset \quad 2 \mathrm{~F}$ ø8 $\begin{array}{lllll} & 18 & 42\end{array}$ ØD49：21 4Ø FØ 22 10 Ø6 A5 6A 92 ØD51：FØ 24 DØ ØF C9 Ø2 Dø ØB FA ØD59：A5 6285 FA A5 61 A4 6D A8 ØD61：18 9ø Ø8 A5 6485 FA A5 DB ØD69：63 A4 6E 2Ø BB ØD $2 \emptyset 69 \mathrm{E} 9$ ØD71：Ø8 BD 214 4 10 Ø9 A5 69 8ø ØD79：DØ Ø5 $2 \varnothing 77$ Ø8 5Ø ØA A5 F3 ØD81：6B $30 \quad \emptyset 6 \mathrm{BD}$ ØC $4 \emptyset \quad 2 \emptyset \quad 7 \mathrm{C} \quad 18$ ØD89：Ø8 CA 10 B3 A9 ØØ 85 6A 5A ØD91：A5 6B 1Ø Ø3 2Ø 3 E ØE 4C ED ØD99：A4 ØC 18 4C FØ FF Øø Øø 58 ØDA1：Øø Øø ØØ 18 A8 $3 \varnothing$ Ø7 85 D6 ØDA9：2A 38 A9 7 F E5 $2 \mathrm{~A} \quad 29$ 7F $\quad \mathrm{BD}$
 ØDB9： 11 Ø8 18 Cø øø DØ ØB 65 2C ØDC1：45 $85 \quad 45$ A5 FA $\begin{array}{llllll}65 & 46 & 85 & 62\end{array}$ ØDC9： 46 6曰 3885 8D A5 45 E5 F1 ØDD1：8D 8545 A5 46 E5 FA 85 5C ØDD9：46 6Ø 8D 1ø Ø2 A9 Øø 8D 26 ØDE1：11 $\begin{array}{lllllllll} & \boxed{ } & 88 & 3 \emptyset & \emptyset B & 18 & 6 D & 1 \varnothing & \mathrm{BC}\end{array}$ ØDE9：$\varnothing 2$ 9Ø F7 EE $11 \quad \emptyset 2 \mathrm{~B} \emptyset \quad \mathrm{~F} 2 \mathrm{FB}$ ØDF1： 20 Ø 22 ØC 99 Ø2 \quad D4 18 AD Ø1 ØDF9：11 Ø2 7D ØF $40 \quad 99$ Ø3 D4 Ø1 ØEØ1：6Ø A9 9320 D2 FF A9 0117 ØEø9：8D 86 Ø2 A9 Øø 85 C7 AØ AE ØE11：ØC A2 Ø1 $2 \emptyset$ 9B ØD 86 3D 59 ØE19：84 3E A9 3E 2Ø D2 FF 4C B8 ØE21：31 ØC A2 Øø 86 C7 E8 8E EØ ØE 29：86 Ø2 A6 3D A4 3 E 2Ø 9B AB ØE31：ØD A9 $2 \emptyset \quad 2 \emptyset$ D2 FF 18 A5 B \varnothing ØE39：B5 FØ Ø1 38 6Ø A6 F7 8A 28

ØE41：Aの Øø 2980 FØ Ø1 C8 84 7C ØE49：B5 8A 29 7F C9 40 FØ EC le ØE51：C9 Ø7 Fø 30 EA C9 02 Dø 88 ØE59：ø3 4C EE ØF C9 28 Dø Ø4 6D ØE61：18 4C $631 \varnothing$ C9 2B Dø 03 A9 ØE69：38 Bø F6 C9 31 Dø 03 4C 68 ØE71：C8 ØE C9 ØE DØ C6 $2 \varnothing$ F8 6A øE79：ø9 Aø øø 84 C6 6868 A9 DC ØE81：93 4C D2 FF $2 \varnothing 23$ ØE BØ 2F ØE89：Ø9 EØ 14 DØ Ø2 A2 øø E8 75 ØE91：Dø ØC Cø 1F Dø Ø1 88 EØ 9F ØE99：Ø1 DØ Ø2 A2 15 CA 86 3D F2 ØEA1：8A 29 1ø FØ Ø8 AØ ØC EØ 1A ØEA9：1Ø Dø Ø2 AØ 1584 3E $2 \varnothing$ A3 ØEB1：9B ØD A9 3E $2 \varnothing$ D2 FF CE 13 ØEB9：Ø1 24 Dø FB A9 3ø 8D Ø1 63 ØECl：24 CE ØØ 24 DØ Fl 60 AØ 95 øEC9：34 B9 B8 1799 øø 4088 CC ØED1：10 F7 6868 4C 31 øC Øø C6 ØED9：øø Øø Øø Øø øø øø Øø A2 98 ØEE1：FF 9A $2 \varnothing$ F8 ø9 A2 øø 8691 ØEE9：69 AØ Øø B9 B8 17918 EE 52 ØEF1：C8 Cø 35 DØ F6 981865 Ø6 ØEF9：8E 85 8E 90 ø2 E6 8F E8 4D ØFØ1：EØ 25 DØ E5 A9 $932 \emptyset$ D2 FF ØF69：FF A9 05 8D $2 \varnothing$ DØ 8D 21 8B ØF11：DØ A9 ØE 20 D2 FF Aø 17 B4 ØF19：A9 Øø 99 Øø D4 88 10 FA 23 ØF21：A9 Ø5 85 68 A9 ø6 856764 0F29：A9 3885 8B A9 1C 85 8C E8 ØF31：20 F8 ø9 Aø 34 B1 8B 99 E1 ØF39：Øø 4ø 88 10 F8 Aø Ø1 B9 7F ØF41：39 17 FØ Ø6 2ø D2 FF C8 55 ØF49：DØ F5 Aø øø B9 øø 4ø $2 \varnothing$ CF ØF51：D2 FF C8 CØ ØC DØ F5 A9 37 ØF59：ØD $2 \varnothing$ D2 FF A9 20 A2 28 9B ØF61：2ø D2 FF CA DØ FA E8 86 BB ØF69：8D 86 C7 A9 ø6 8D 86 ø2 F8 ØF71：A5 8D $2 \varnothing$ 1B ø9 Aの Øб 8C D2 ØF79：86 Ø2 A9 9D $2 \varnothing$ D2 FF Bl 68 ØF81：8E 2Ø D2 FF C8 Cø øC Dø 7B ØF89：F6 18 A9 35658 E 85 8E Bø ØF91：90 Ø2 E6 8F E6 8D A5 8D 94 ØF99：C9 25 Dø CF A5 CB C9 Ø4 FØ ØFAl：DØ ØB A9 5C $2 \varnothing 58$ ø9 2ø 7A ØFA9：73 ø9 4C 31 ØF C9 ø5 Dø DA ØFB1：15 A9 72 2ø 58 ø9 $2 \emptyset 73 \mathrm{AF}$ ØFB9：ø9 AØ 34 B9 øø $4 \varnothing 91$ 8B 56 ØFC1：88 1ø F8 4C 3 E ØF C9 Ø6 D3 ØFC9：Dø ØB A9 9ø $2 \varnothing$ 58 Ø9 2ø E5 ØFD1：Ø1 ØA 4C 3E ØF C9 Ø3 DØ D6 ØFD9：Ø6 2Ø Ø2 ØE 4C 3E ØF C9 67 ØFE1：ØD DØ Ø3 4C CB 12 C9 2A 44 ØFE9：DØ B2 4C DD $122 \varnothing 23$ ØE E9 ØFFl：EØ ll DØ Ø3 4C AE ØE EØ 29 ØFF9：14 FØ F9 EØ 1ø DØ ØA AØ 24 1øø1：15 C4 3E Dø Ø2 Aø 1F Dø 53 1ø09：EB EØ 12 DØ ØA AØ ØC C4 56 1011：3E Dø Ø2 Aø 1E DØ DD Eø 9F 1019：13 Fø F2 18 A5 B5 F0 Ø1 C5 1ø21：38 98 Bø ØB Cø 1E Dø Ø2 6C 1029：A9 Ø2 69 Ø9 A8 Dø C5 Cø 31 1031：øC DØ Ø2 A9 27 E9 Ø9 A8 ø2 1039：DØ BA $1010101 \varnothing 1 \varnothing 1 \varnothing 64$ 1041：10 1111111111111111 Eø 1049：11 $11 \begin{array}{llllllll}11 & 11 & 12 & 12 & 88 & 9 F & F 2\end{array}$ 1051：B9 D8 E1 EA F3 ØE 2842 D9 1059：4C $55 \quad 6989$ 9D BD E7 F3 62 1ø61：1C 50 A9 øø 69 øø 85 B5 E4 1069：A6 3D A4 3 E 2073104 C DF 1071：D3 ØE CA BD 3B 1048 BD 9C 1079：4F 1048 A2 øø C $\varnothing 1 \mathrm{E}$ FØ A8 1081： 06 E8 Cの 15 FØ Ø1 E8 60 Ø6 1089：BD ØC 40 A8 29 ØF 85 B5 64 1091：98 29 FO 18 2A DØ Ø2 A9 2A 1099：10 05 B5 9D øC 4060 BC 72 1ØA1：ØF 40 A5 B5 Dø Ø9 C8 Cø 66
 10B1：10 Ø2 Aø ø8 98 9D ØF 4088 1øB9：6ø BC 12 40 20 C4 $1 \varnothing 9 D 51$ 1ØCl：12 4Ø 60 A5 B5 Dø Ø9 C8 2D 1øC9：Cø Ø3 DØ ØA Aø FF DØ Ø6 72

10D1：98 10 ø2 Aø $038898 \quad 6058$ 10D9：BD ØC 4Ø 49 Ø4 9D ØC 4ø 67 1øE1：6Ø BD ØC $4 \varnothing 49$ Ø2 9D ØC Cø 1øE9：4の 60 BD 154049 Ø4 9D 18 1øF1：15 $4 \varnothing 60$ BD 18 4ø A4 B5 55 1øF9：Dø Ø9 18 C9 $54 \mathrm{~F} \emptyset$ ØB 69 4A 1101：øC Dø Ø7 38 C9 øø Fø ø2 F3 1109：E9 øC 9D 18 4ø 60 BC 1B 7ø 1111：40 A5 B5 Dø Ø9 C8 CØ ØС 79 1119：DØ Ø9 Aø Øø FØ Ø5 88 10 B6 1121：ø2 Aø ØB 98 9D 1B $4 \varnothing 6091$ 1129：BC 1E 4Ø A5 B5 Dø Ø9 C8 5F 1131：CØ Ø5 Dø ø9 Aø øø FØ Ø5 8B 1139：88 10 02 Aø 0498 9D 1E C9 1141：4ø $6 \varnothing$ BC 214020 C4 1061 1149：9D 214060 BD 244049 D8 1151：ø4 9D 244060 BD 2740 ED 1159：A4 B5 Dø $\varnothing 61869101854$ 1161：90 Ø3 38 E9 10 9D 27 40 B7 1169：6Ø BD 27 4ø 29 ØF A4 B5 98 1171：Dø $0518 \quad 69$ Ø1 9ø ø3 385 F 1179：E9 Ø1 29 ØF 85 B5 BD 27 8C 1181：40 29 Fg 05 B 5 9D 2740 2F 1189：6Ø BD 2A $4 \varnothing$ A4 B5 Dø Ø6 38 1191：18 $69101890 \quad 0338$ E9 88 1199：10 9D 2A $4 \varnothing 60$ BD 2A $4 \varnothing \emptyset 3$ 11Al：29 ØF A4 B5 Dø Ø5 $18694 \varnothing$ 11A9：ø1 9ø Ø3 38 E9 Ø1 29 ØF Ø9 11B1：85 B5 BD 2A $4029 \mathrm{~F} \varnothing \quad 05 \mathrm{~EB}$ 11B9：B5 9D 2A $4 \varnothing 60$ AD $3340 \mathrm{C7}$ 11Cl：CØ $15 \mathrm{~F} \varnothing 03 \mathrm{AD} 3440 \mathrm{A6} 3 \mathrm{D}$ 11C9：B5 Dø ØA AA E8 EØ ØA Dø 96 11D1：øA A2 Øø FØ Ø6 AA CA $1 \varnothing 31$ 11D9： 02 A2 $69 \mathrm{C} \varnothing 15 \mathrm{~F} 0$ Ø4 8E D5 11E1：34 40 60 4C A9 13 Øø A5 3E 11E9：B5 Dø $842 \varnothing$ 5A $12602 \varnothing 99$ 11F1：63 1260 Cø ØC Dø ØC A5 C3 11F9：B5 Dø Ø4 EE 2D $4 \varnothing 60$ CE 94 12ø1：2D $4060 \mathrm{AE} 2 \mathrm{~F} 4 \varnothing$ A5 B5 3 E 12ø9：Dø ØB E8 EØ Ø3 DØ Ø2 A2 85 1211：$\varnothing \varnothing 8 \mathrm{E} 2 \mathrm{~F} 4 \varnothing 60 \mathrm{CA} 1 \varnothing \mathrm{F9}$ ØB 1219：A2 Ø1 Dø F5 Cø øC Dø 1333 1221：AE 3Ø 4Ø A5 B5 Dø Ø4 E8 EC 1229：1890 Ø1 CA 8A 29 ØF 8D EE 1231：30 4ø 6ø AD $314 \varnothing$ A2 øø 34 1239：A8 29 8ø FØ Ø2 A2 80 86 3D 1241：B5 18 18 $98 \quad 29$ 7ø $2 \mathrm{AA} 10 \quad 02$ 3A 1249：A9 1ø Ø5 B5 8D 31 4ø 6054 1251：AD $314049808 D \quad 314012$ 1259：60 EE 3240 Dø 14 A9 95 E2 1261：Dø ØD CE 3240 AD $324 \varnothing 8 B$ 1269：38 E9 05 Bø 05 A9 FF 8D 2C 1271：32 40 60 38 E9 054 C 31 7B 1279： 09 93 ØD ØD ØD 12 D3 4113 1281：56 45 2ø C6 49 4C 45 øD A5 1289：93 ØD ØD ØD 12 CC 4F 41 Dø 1291：44 $2 \emptyset$ C6 49 4C 45 øD C5 A4 1299：4E $54 \quad 45 \quad 52 \quad 20$ C6 49 4C C2 12Al：45 4E 41 12A9：90 ØD ØD D4 415045 2C 4A 12Bl：20 C4 4953 4B 204 F 5241
 12Cl：28 D4 2C C4 $2 \varnothing 4 \mathrm{~F} 52$ C3 A7 12C9：29 øø Aø Øø B9 7A $12 \quad 2 \emptyset 92$ 12D1：D2 FF C8 Cø ØF Dø F5 A9 D5 12D9：ø0 48 F 010 Aø $\varnothing \varnothing$ B9 8931 12E1：12 $2 \varnothing$ D2 FF C8 Cø ØF Dø A9 12E9：F5 A9 Ø1 48 Aø Øø B9 9728 12F1：12 Fø Ø6 2ø D2 FF C8 Dø 17 12F9：F5 Aø øø 84 C6 $2 \emptyset$ CF FF DF 1301：29 7F $99 \quad 0602$ C8 C9 ØD A2 1309：DØ F3 84 BB Aø øø B9 A9 Ø3 1311：12 Fø Ø6 $2 \varnothing$ D2 FF C8 Dø 38 1319：F5 2ø E4 FF C9 54 FØ 2282 1321：C9 44 Fø 22 C9 43 Dø F1 6C 1329：68 Aø øø B9 A6 14 Fø Ø6 B4 1331：2Ø D2 FF C8 DØ F5 A5 CB 1E 1339：C9 31 DØ FA 20 F8 ø9 4C 9D 1341：3E ØF A2 Ø1 Dø Ø2 A2 ø8 8A 1349：Aø øø A9 Ø1 $2 \emptyset$ BA FF A5 96 1351：BB A2 Øø Aø Ø2 2ø BD FF 14 1359：20 421468 Fø 2A A9 $\varnothing \varnothing$ AC

1361：A2 38 Aø 1C 20 D5 FF 9ø A5 1369：32 Aø 36 C9 Ø4 DØ Ø2 AØ 3C 1371：Øø C9 ø5 Dø Ø2 Aø 11 C9 36 1379：Ø8 DØ Ø2 AØ 17 B9 C2 13 5A 1381：FØ A7 2ø D2 FF C8 DØ F5 F5 1389：A9 $38 \quad 85$ C1 A9 1C 85 C2 EA 1391：A9 C1 A2 E2 AØ 23 2Ø D8 2A 1399：FF Bø CE Aø øø B9 4814 5B 13A1：Fの 8720 D2 FF C8 D \varnothing F5 ØE 13A9：EØ ØØ DØ ØA A5 B5 DØ Ø4 A4 13B1：A2 Ø1 Dø ø2 A2 ø9 8E 33 2D 13B9：4Ø $6 \varnothing$ Øø Øø øø Øø Øø Øø 18 13Cl：øØ ØD 46494 C 45 2ø 4E 8E 13C9：4F $54 \quad 2 \varnothing 464 F 554 E 44 C 5$ 13D1：ØD Øø ØD 4445564943 BD 13D9：45 20 4E $4 \mathrm{~F} 5420 \quad 50 \quad 527 \mathrm{~F}$ 13E1：45 53 45 4E 54 ØD øø øø E3 13E9：øD 4E 4F $2 \varnothing 46494 \mathrm{C} 454 \mathrm{~B}$ 13Fl：20 4E 41 4D 45 ØD Øø ØD 24 13F9：45 52524 F 52 øD øø FF 5D 1401： FF FF FF FF FF FF FF FF 29 1409：FF FF FF øø ø1 FF FF FF 39 1411：FF Ø3 FF 04 FF FF Ø2 FF 3E 1419：FF 66 FF 07 Ø8 FF 65 FF 7D 1421：FF ØA FF ØB FF FF 99 FF 8E 1429：FF ØD FF ØE ØF FF ØC FF Ø6 1431：FF FF FF FF FF FF 10 FF 79 1439：FF FF FF FF FF FF FF FF 61 1441：Øб A9 øD 4C D2 FF Øø ØD DD 1449：44 4F 4E 45 ØD øø øø øø ED 1451：øの øø øø øø øø øø øø øø 79 1459：Øø øø øø D3 45 4C 4543 E7 1461：54 2ø D6 4F 494345208 D 1469：26 $2 \varnothing$ D2 45 54 55 52 $4 \mathrm{4E} 46$ 1471：Øб D3 45 4C 45435420 FB 1479：C6 49 4C $45 \quad 20$ CC $4 \mathrm{~F} ~ 43-4 \mathrm{~B}$ 1481：41 54 49 4F 4 E 2026 20 DC 1489：D2 455455524 E øø C5 DD 1491：4E $54 \begin{array}{llllll} & 45 & 52 & 2 \varnothing & C E & 41 \\ 4 D & C F\end{array}$ 1499：45 2ø 26 2ø D2 $455^{5} 55$ DC 14A1：52 4E $2 \varnothing$ 1F øø ØD øD Dø 9B 14A9：52 455353 2ø 2A $2 \varnothing 54$ 2A 14Bl：4F $20 \quad 5245 \begin{array}{llllll}54 & 55 & 52 & 4 \mathrm{E} & 13\end{array}$ 14B9：2Ø $54 \begin{array}{llllllll} & 4 \mathrm{~F} & 2 \emptyset & \mathrm{C} 5 & 44 & 49 & 54 & 19\end{array}$ 14Cl：4F 52 øø øø øø øø øø 17 3D 14C9：18 18 19 19 FC 68 D4 40 2C 14D1：AC 1A 1A 1A 1B 1B $18 \quad 84$ B5 14D9：Fの 5C C8 øø øø øø 88 82 3E 14E1：9C 40 9A 9E 9C 82 8E 9042 14E9：82 9C $4 \varnothing$ øø $62727 \varnothing 6 \mathrm{C}$ AC 14F1：Ø0 13 Ø5 1D 1D 1D 1D 1D 06 14F9：1D 1D 1D 1D 1D 1D 1D 1D 22 15ø1：12 D6 $4 \mathrm{~F} 49 \begin{array}{lllll}43 & 45 & 2 \varnothing & 31 & 09\end{array}$ 1509：20 1D D6 $4 \mathrm{~F} 494345 \quad 2 \varnothing$ 5C 1511：32 20 1D D6 4F 494345 D8 1519：20 33 2ø ØD 9ø D7 $41 \begin{array}{llllll}56 & \text { B1 }\end{array}$ 1521：45 46 4F 52 4D øD Dø 5524 1529：4C 534520 D7 494454 B9
 1539：CD 4F 44 øD D2 49 4E 4717 1541：øD D3 59 4E 43 øD C6 49 1C 1549：4C $5445 \quad 52$ ØD 1F CF 4344 1551：54 41 5645 ØD C9 4E 5495 1559：45 52 56 414 C ØD $\mathrm{D} \varnothing \quad 49$ 1B 1561：54 43 48 ØD Dø 495443 F7 1569：48 20 CD 4 F 44 øD CB 45 Al 1571：59 2ø D4 524143 4B øD CA 1579：90 C1 54544143 4B ØD E6 1581：C4 45 43 $41 \begin{array}{llllll}59 & \text { ØD D3 } & 55 & \text { D7 }\end{array}$ 1589：53 $5441494 E$ øD D2 45 Cø 1591：4C 45 41 53 45 0 DD 1 F D6 64 1599：4F 494345 2ø 33 2ø CD 56 15Al：4F $442 \varnothing$ CC $45 \begin{array}{llllll}56 & 45 & 4 \mathrm{C} & \mathrm{AF}\end{array}$ 15A9：2ø C5 4E 56 1D 1D 1D 1D 39 15B1：1D 1D $2 \varnothing$ CC C6 CF ØD D3 E5 15B9：2F C8 20 D2 $41 \begin{array}{cc}54 & 45 \\ \text { ØD } & \text { D1 }\end{array}$ 15Cl：9ø C6 49 4C $5445 \begin{array}{llllll}52 & 2 \varnothing & 5 \varnothing\end{array}$ 15C9：DØ 49544348 1D 1D 1D 7B 15D1：1D 1D 1D 1D 1D 1D 1D CD AC 15D9：4F $44 \quad 554 \mathrm{C} 415445$ øD 1F 15E1：D2 $45 \begin{array}{llllllll} & 53 & 4 \mathrm{~F} & 4 \mathrm{E} & 41 & 4 \mathrm{E} & 43 & 7 \mathrm{D}\end{array}$ 15E9：45 1D 1D 1D 1D 1D 1D 1D 28

Abstract

1D88：Øø øø Øø Øø øø Øø 3C 3C 77 1D9の：3C øø øø øø ø2 ø3 Ø1 Øø ø7 1D98：øØ Øø Ø4 Ø4 Ø4 5Ø 5ø 5Ø E5 1DAØ：F8 F8 F8 1Ø Øø ØØ ØF 1ø E3 1DA8：Ø5 Ø1 Øø 53545249 4E A7 1DBØ： $47 \begin{array}{lllllllll}53 & 2 \emptyset & 32 & 2 \emptyset & 20 & 2 \emptyset & 21 & 6 D\end{array}$ 1DB8： $21 \quad 21$ Ø8 108 ø8 øø Øø Øø 8D 1DCØ：Øø ØØ Øø 24 3Ø 3C ØØ ØØ AF 1DC8：Øø Ø2 Ø3 ø1 øø Øø øø Ø4 F7 1DDØ：Ø4 Ø4 5ø 5ø 5ø F8 F8 F8 6E 1DD8：1Ø Øø Øø ØF 10 Ø5 Ø1 ØØ A2 1DFØ：Ø8 Ø8 øø Øø Øø Øø Ø4 Ø4 3D 1DF8：18 1818 Øø Øø Øø Ø2 Ø3 4F 1EØØ：Ø2 Øø Øø Øø Ø4 Ø4 Ø4 Ø6 7B 1Еø8：Ø5 Ø5 Ø6 Ø8 D8 Ø4 Øø Ø2 22 1E1の：øF 1の Ø5 Ø6 Øø 46 4C 55 DF 1E2の：2の 111111 Ø8 11 Ø8 11 Ø8 $\varnothing 64$ 1Е3Ø：Ø7 øø øø ø2 ø2 ø2 øø Ø1 29 1E38：Ø1 ØØ Ø4 Ø4 Øø 43 5Ø F8 5C 1E4の：Øø F8 1の Øø Øø ØF 9ø Ø5 1F 1E48：ø1 Ø1 $5045524355 \quad 5341$ 1E50：20 $42 \begin{array}{llllllll} & 41 & 53 & 53 & 20 & 41 & 11 & 39\end{array}$ 1E58：41 Ø8 Ø8 Ø8 Øø Øø Øø Øø B 8 1E6Ø：ØØ øø 241824 Øø Øø Øø C3 1E68：Ø3 Ø2 ø1 øø øø øø ø4 ø4 D2 1E7ø：ø4 Ø8 ØA Ø8 $97 \quad 97 \quad 97$ 1ø E4 1E8Ø：41 $52 \begin{array}{llllllll}50 & 53 & 49 & 43 & 48 & 4 \mathrm{~F} & 68\end{array}$ 1E88：52 4420414141 Ø3 Ø1 2D 1E9の：Ø3 Øø Øø øø øø øø øø 4896 1E98：3C 3Ø Øø Øø Øø Ø2 Ø1 Ø2 ØВ 1ЕAØ：ØØ ØØ Øの Ø4 Ø4 Ø4 Ø9 Ø8 67 1EA8：Ø9 Ø5 Ø5 Ø5 1の Øø ØØ 日F 2B 1EBØ：1Ø Ø5 Ø1 ØØ 4143434 F 43 lEB8：52 $44 \begin{array}{llllllll}49 & 41 & 4 \mathrm{E} & 20 & 20 & 20 & \mathrm{BF}\end{array}$ 1ECØ：11 4141 Ø8 Ø8 Ø8 Øø ØØ DE 1EC8：ØØ Øø Øø Øø Øø 3C 3C ØØ 6E

Attention Programmers

COMPUTE！magazine is currently looking for quality articles on Commodore，Atari， Apple，and IBM computers（including the Commodore Amiga and Atari ST）．If you have an interesting home application， educational program， programming utility，or game，submit it to COMPUTE！，P．O．Box 5406，Greensboro，NC 27403．Or write for a copy of our＂Writer＇s Guidelines．＂

1EDの：Øø Øø Ø2 Ø4 Øø øø øø Øø 8D 1ED8：ø4 04 Ø4 $\begin{array}{lllllll} & \text { Ø9 } & 2 \emptyset & 2 \emptyset & 78 & \text { F8 } & 94\end{array}$ 1EEØ：F8 1ø Øø ØØ ØF 9Ø Ø5 Ø1 63 1EE8：ØØ 4D 41 1EFØ：2Ø $46 \quad 49 \quad 534811 \quad 21 \quad 21 \quad 17$
1EF8：Ø8 Ø8 Ø8 Øø ØØ ØØ ØØ Ø4 4Ø 1Føの：ø4 Øø 24 3ø ø9 øø Øø ø2 12 Fø8：ø2 Ø2 Ø2 Øø øø Øø Ø4 Ø4 14 1F1の：Cの Øの ØØ F8 F8 F8 1の ØØ ØA 1F18：Ø1 ØF 9Ø Ø5 ø3 ø8 $5 \emptyset 45$ 1B 1F2の：52 434 F 4 C 41544 F 5253

 1F38：3C øø øø øø Ø2 ø2 ø2 øø Bø 1F4の：Øø Øø Ø4 Ø4 Ø4 Øø Ø2 Ø4 67 $1 F 48: F 8$ Ø2 Ø4 2Ø ØØ Øø ØF 9Ø B4 1F5の：ø5 Ø1 øø 46524 E 4348 5ø 1F58：20 5ø 4F 4C 494345418 C 1F60：11 11 ø8 ø8 Ø8 øØ øø Øø 2D 1F68：Øø Øø Øø Øø 3C 3C Ø3 Ø7 86 1F7Ø：ø7 Ø2 Ø4 Øø øø Ø1 Ø1 Øø 39 1F78：Ø4 Ø4 Øø øø øの F8 F8 F8 88 1 F 8 ： 2 の Øの ØØ ØF 9Ø Ø5 Ø1 Ø5 5F $1 \mathrm{~F} 88: 55 \quad 46 \quad 4 \mathrm{~F} \quad 20 \quad 54414 \mathrm{~B} \quad 45 \quad 72$ 1F90：4F 46 1F98：Ø8 Ø8 Øø Øø øø Øø Ø4 Ø4 E8 1FAØ：ØØ $3 \varnothing$ 3Ø Ø9 ØВ ØВ Ø2 Ø2 ØС 1FA8：Ø2 ØØ Ø1 Ø2 ØØ Øø Øø FØ 19 1FBØ：Øб ØØ FF FF Øø ØØ Øø Ø2 FØ 1FB8：ØF 9Ø ØE 98 Ø8 $53 \begin{array}{llllll}59 & 4 \mathrm{E} & 73\end{array}$ 1FCD：43 $2 \emptyset \quad 53 \quad 5745455 \emptyset 2 \emptyset 88$
 1FDの：Øø ØØ Øø ØØ ØØ ØØ 3C 24 AB 1FD8：Ø6 Øø Øø Ø4 Ø2 Ø2 Ø2 Ø1 77 1FEØ：ØØ ØØ Ø4 Ø4 CB 18 ØØ Ø8 A6 1FE8：87 47 1の ØØ Øø ØF 9Ø Ø5 21 1FFD：Ø2 $\quad 07 \quad 48$ 1FF8：50 $54 \quad 45 \quad 52$ 2の $204181 \mathrm{C7}$ 2øøø：85 ø8 Ø8 ø8 øø øø øø øø 86 2øø8：Øø Ø4 245454 Øø Øø øø B5 2ø10：Ø2 Ø2 Ø2 FF FF FF Ø4 Ø4 1E 2ø18：Ø4 Ø3 Ø4 2の ØØ ØØ $\mathrm{F} \mathrm{\emptyset} 1493$ 2ø20：Øø Ø2 ØF 1の ØE Ø9 ØØ 46 9E
 2の3ø：45 4E 56 2Ø38：Ø8 Øø Øø øø ØØ Ø4 Ø4 Øø 94
 2Ø48：Øø Øø øø øø Ø4 Ø4 59 Ø3 6E 2ø5ø：Øø Ø8 5A FA Øø Øø Ø2 ØF Aø 2058：10 Ø5 Ø8 Øø 48414 E 44 ØВ 2ø60：2Ø 43 4C $4150 \quad 20 \quad 20 \quad 2 \emptyset \quad 82$

 2ø80：ø4 Ø4 ø4 2253 Ø3 øø Ø3 1ø 2ø88：ø3 1ø Øø øø ØF 1Ø Ø5 Ø1 12
 2098：52 49 41 44204141418 A

 2ØВØ：Ø2 Ø2 øø øø øø Ø4 Ø4 Ø4 8E 2øB8：øø Øø øø F8 F8 F8 1の Øø 54 2øСØ：Øø ØF 1ø Ø5 Ø1 ØØ 5354 1A 2のC8：41 $49 \begin{array}{llllllll} & 52 & 43 & 41 & 53 & 45 & 2 \emptyset & 7 C\end{array}$
 2øD8：Øø Øø Øø Øø ØØ Øø ØØ ØØ 19 2øEØ：3C Ø1 Øø Øø Ø2 Ø2 Ø2 øø 9B 2ØE8：ØØ FF Øø Ø4 Ø4 ØØ ØØ Ø9 92 2のFП：F8 ØØ Ø5 1の Øø Øø ØF 9Ø FD 2ØF8：57 Ø1 $0752 \begin{array}{lllllll}51 & 4 \mathrm{E} & 44 & 4 \mathrm{~F} & 46\end{array}$
 21ø8：11 41 Ø8 Ø8 ø8 øø Øø øø E4
 2118：Øø Ø2 Ø2 Ø2 øø øø FF øø 3B 2120：ø4 Ø4 Øø Øø Ø9 Øø Øø Ø5 B2 2128：1Ø ØØ ØØ ØF 9Ø 35 Ø1 Ø8 C6 2130：50 $4154 \quad 54 \quad 45 \quad 52 \quad 4 \mathrm{E} 53 \mathrm{lE}$
 2140：Ø8 Ø8 Øø øø øø øø øø øø 88 2148：Øø Øø 3ø Ø1 Øø Øø Ø2 Ø2 А6 2150：Ø2 Øø Øø FF Ø4 Ø4 Ø4 Øø CB 2158：Øø Ø5 Øの Øø Ø4 1の Øø øø 3С

2160：ØF $90 \quad 35$ Ø1 0753 50 41 6C 2168：43 45 20 42 41 $53 \begin{array}{llllll}53 & 20 & \text { E3 }\end{array}$ 2170：20 11 43 41 Ø8 05 Ø8 Ø0 E7
 218ø：øø Ø2 øø Ø2 Ø2 ø2 Øø ø2 7D 2188：Øø Ø4 Ø4 Ø4 Ø7 Øø Øø Ø7 CB 219ø：F8 Øø 1ø øø Øø ØF 90 Ø5 B3 2198：ø7 ØØ $42 \quad 41 \quad 475049 \begin{array}{llllll}50 & 19\end{array}$

 21Bの：Øø Øの $3 \varnothing 4848$ ØØ Øの Øø BF
 21CØ：Ø4 ØØ $2 \emptyset 2 \emptyset$ F8 F8 F8 10 B8 21C8：Øの Øの ØF 1の Ø5 Ø1 ØØ 54 6E
 21D8：2の 20 20 114121 Ø8 Ø2 48 21Eの：ø8 øø Øø Øø øø Ø4 ø4 Øø 3F 21E8：3C 3C øの øø øø Ø2 Ø2 Ø2 66 21Fの：Øの ØØ ØØ Øø Ø4 Ø4 2425 DØ 21F8：55 Ø7 A8 A8 2B ØØ Ø2 ØF B3 22ØØ：9Ø ØA Ø6 Øø 52 4E 44 2の 44 2208： $48 \quad 41 \quad 524 \mathrm{D} \quad 4 \mathrm{~F} \quad 4 \mathrm{E} 49 \begin{array}{lllll} & 48 & 7 \mathrm{E}\end{array}$ 2210：81 43 41 Ø8 Ø8 ø8 ØØ øø EE 2218：Øø Øø Øø Øø ØС 3C 3Ø øø ØE
 2228：Øø Ø4 Ø4 Øø Øø Øø 8F FC ØA 223Ø：øø 2ø øø øø ØF 9Ø 24 Ø6 85 2238： $08 \quad 4241 \quad 53 \quad 534 \mathrm{~F} 4 \mathrm{~F} \quad 4 \mathrm{E} \quad 33$
 2248：ø8 ø8 Ø8 øø øø øø øø ØØ 93 225Ø：Ø4 ØØ Øø 24 Ø6 Øø Øø Ø2 ØВ 2258：Ø2 Ø2 øø Øø øø øø Øø Ø4 22 2260：øØ 44 ØØ F8 Ø2 F8 ØD ØØ 53 2268：øø Øの 9Ø Ø5 Ø1 Ø1 4F 52 Øc
 2278：20 20111111 Ø8 08 Ø8 11
 2288：24 Øø ø7 øø Ø2 ø2 Ø3 øø DD

 22AØ：ØA Ø1 ØØ 574 F 572020 D7
 22Bø：21 41 Ø8 Ø8 Ø8 Øø Øø Øø 97
 22Cø：øø ø2 ø2 Ø2 øø øø øø ø4 E9 22C8：Ø4 Ø4 A9 ØØ Øø Ø8 F8 F8 50 22DØ：Ø1 Øø Ø2 ØF 9ø ØA Ø8 Øø 83 22D8：53 4C $494445 \quad 52 \quad 20 \quad 2 \emptyset \quad 1 B$
 22E8：Ø8 ø8 Øø øø øø øø øø øø 33 22FØ：24 3ø 3ø øø Ø7 Øø Ø2 Ø4 99 22F8：Ø1 Øø Ø2 Ø2 Ø4 Ø4 Ø4 ØA 60 23Øø：Øø Øø 87 F6 F6 2の Øø Øø DE 23Ø8：ØF 9Ø ØA Ø7 ØØ 4D 4554 BF 2310：41 $4 \mathrm{C} \quad 4 \mathrm{C} 4943 \quad 41 \quad 2 \emptyset \quad 20$ A7 2318：20 11 15 43 Ø8 08 Ø8 Øø $\mathrm{F9}$
 2328：Øø Øø Øø Ø2 Ø4 Ø2 Øø Ø2 B8 233Ø：Ø2 Ø4 Ø4 Ø4 ØА ØА ØА Ø9 CE 2338：Ø4 Ø4 2Ø ØØ Øø ØF 9ø ØA EC
 2348：52 $2064241 \quad 53$ 53 $41 \begin{array}{llllll}41 & \text { C7 }\end{array}$ 2350：41 Ø8 Ø8 Ø8 øø Øø øø øø BA
 2360：Ø2 Ø2 Ø2 Øø Øø øø Ø4 Ø4 74 2368：Ø4 ØF ø9 Ø4 ø8 Ø6 Ø5 20 58 2370：Øの Øの ØF 1の ØА Ø1 Øø 5341 2378：59 4E $54 \quad 48 \quad 45 \quad 58$ 20 20 F9
 2388：ø8 øø øø øø øø øø øø 3 Ø Ø3 2390：48 3С Øø Øø Øø Ø2 Ø2 Ø1 17 2398：Øø ØØ Øø Ø4 Ø4 Ø4 Ø9 Ø9 6А 23AØ： 0798 Ø8 98 1Ø Øø ØØ ØF AA 23A8：10 Ø5 Ø1 ØØ 2A 2A 2A $2 A$ D $23 \mathrm{~B} \emptyset: 2 \mathrm{~A} \quad \mathrm{~F} 6$ 23B8：11 1111 Ø8 ø8 日8 øø øø CE
 23C8：Øø Øø Ø2 Ø2 Ø2 Øø øø øø 7F 23Dの：Ø4 Ø4 Ø4 øø øø Øの F8 F8 85 23D8：F8 1Ø Øø Øø ØF 10 FF Øø 58

When It ComesTo ReadingMusic, MostPeopleDrawABlank.

If you're not content with your knowledge of music, Wenger has something that will fill in the blanks.

It's called The Music Class.m An exciting new 5-part
 software series for kids, adults, beginners, even professionals.

The Music Class is the consummate music teacher. Its simple step-by-step instructions teach everything from the basics to rhythm to note reading-all at your own speed.

And The Music Class even gives advice, points out errors, and applauds correct answers.

Fundamentals: Make sense of those skinny lines with blobs and tails. All the basics from note reading to rhythm. \$49.

Rhythm: What is the real difference between a waltz and a polka, ragtime and rock, and more. A comical little guy named Mr. Metro Gnome is your teacher. \$49.

Ear Training: How to hear exactly what's happening in a piece of music. You'll never listen to Bon Jovi or Mancini quite the same way again. \$49. Music Symbols: And you thought they were called squiggles, slashes, and dots. Animated graphics and games will teach you up to 80 musical symbols. $\$ 39$.

Note Reading: Know the difference between an E-Flat eighth note and a B-Flat quarter note. This is where you learn to read the foreign language called music. \$39.

Any Apple II or IIGS with 64K memory can run The Music Class.

So order by calling toll free 1-800-843-1337. In Hawaii and Alaska call collect 612-854-9554.

And begin changing that blank stare into an ear-to-ear grin.

ShapeMaker For Apple II

William C. Vergara

Have you ever wished that you could enliven your programs with eyecatching title pages or graphs and charts labeled with descriptive information? Shape tables are very useful for creating such effects on the Apple II. This comprehensive program makes it easy to create and edit shape tables for a variety of purposes. It runs on any Apple II-series computer, under either ProDOS or DOS 3.3.

Many programs can be enhanced by presenting graphics based on custom character fonts or other special shapes. But designing hi-res characters and generating shape tables can be a complex undertaking. "ShapeMaker" provides a simple means of generating and editing shape tables containing characters and shapes-from very small figures to shapes many times larger than standard Apple characters. You can design your own shapes and characters, or you can copy them automatically from existing shape tables and add them to your own customized table.

Using ShapeMaker

Type in and save Programs 1 and 2. Note that you must save Program 2
with the filename SHAPEMAKER because that's the name Program 1 uses when loading Program 2. Program 1 is a very short program that resets the BASIC start-of-program pointer and runs Program 2. This is done to create a protected memory area for hi-res page 1.

Because BASIC memory is modified, you should be very careful about editing or resaving either of these programs after you have run them. If you need to edit the program, you should reboot the computer, reload the program from disk, make the desired changes, and resave it before running it again.

When you run the program, it displays a main menu which looks like this:

MAIN MENU

(1) DESIGN A NEW SHAPE
(2) ESTABLISH SIZE OF DOT MATRIX
(3) CHANGE STARTING COORDINATES
(4) SAVE SHAPE TABLE TO DISK
(5) LOAD OR START A NEW SHAPE TABLE
(6) REVIEW A SHAPE TABLE
(7) COPY SHAPES FROM OLD TO NEW TABLE
(8) EDIT THE NEW SHAPE TABLE
(9) LEAVE THE PROGRAM
(PRESS <ESC> KEY TO CATALOG A DISK)

The main menu gives you ac-

"ShapeMaker" for Apple II computers is a convenient tool for creating and editing shape tables. This screen illustrates just one of the ways that shape tables can be used.
cess to the program's basic functions. To select an option, simply press the indicated key. For instance, you can press the ESC key to display a catalog of the current disk, or press 9 to exit the program and return to BASIC.

Creating A New Shape

You will usually begin with option 5 , which clears the screen and prints a menu with two options. Press N to begin a new table from scratch, or L to load a partially completed table from disk.

If you choose to create a new shape table, the program asks you
to enter the table's capacity-that is, the number of shapes which this table will contain. An Apple shape table can hold as many as 255 shapes. Next, the program prompts you to enter the number of rows and columns for the design matrix and the starting point within the matrix. For instance, say that you want to design a character which is seven pixels (screen dots) wide and nine pixels high; you would enter 7 at the column prompt and 9 at the row prompt. The starting point determines where in the matrix you will begin drawing; the lower left corner of the matrix corresponds to coordinates $(1,1)$.

The design matrix can be as wide as 35 columns and as high as 25 rows. On the screen, it is displayed six times its actual size. You are now ready to design your first shape. If you press Q followed by N , you return to the main menu.

Once the matrix has been set up, you can begin designing a new shape by selecting option 1 from the main menu. The matrix appears immediately with a blinking cursor, which indicates your current position. Beneath the matrix, Shapemaker displays the capacity of the new shape table and the number of the shape being designed.

As indicated by the prompts, you can move the cursor with the arrow keys (for the IIe and IIc) or the keys I, J, K, and M. Press P wherever you want to draw a dot: That point in the matrix is filled. Continue by moving the cursor and plotting pixels until the shape is complete. Pressing Q ends the design process and displays the shape in its true size to the right of the matrix.

At this point you can press Y to add the shape as the next numbered shape in the current table, or press N to discard it. In either case, the program returns to the main menu.

Additional Options

From the main menu, you can select option 2 to change the matrix size or option 3 to select new starting coordinates for the next shape. It's a good idea to save new shape tables frequently to protect against a power failure or other accidents. To save a file, choose option 4 and follow the prompts on the screen.

After it saves the file, ShapeMaker prints the starting address and the length of the file in bytes, which you may wish to record for future reference.

ShapeMaker goes to some lengths to protect against mistakes. If you hit the wrong key by mistake, it usually gives you another chance to repeat the input or sends you back to the main menu.

Option 7 allows you to copy an existing shape table into a new table. Again, you can simply follow the prompts on the screen after selecting this option. If there is a source shape table in memory, the program prints its name and asks whether you wish to copy that table. If no table is in memory, ShapeMaker asks you to enter both the name of the desired shape table and the drive where it can be found. At that point, the program gives a description of the source table and asks for the number of the source shape you wish to copy. Before proceeding with the copy, it allows you to verify that this is the correct shape by displaying it on the screen. If you press Y (yes), that shape is copied to the end of the current shape table.

It can take several seconds to copy a shape, so ShapeMaker prints a flashing reminder while it is busy. When the copying is complete, you can either enter the next shape number to copy or enter 0 to exit to the main menu.

Option 6 allows you to review either the source or the destination table.

Option 8 lets you edit the new shape table. When you choose this option, it displays a four-item menu asking whether you wish to insert a shape, delete a shape, increase the table's capacity, or decrease its capacity. For the first two items, you'll need to enter the number of the shape to insert or delete. Inserting shape 7, for instance, has the effect of moving upward all existing shapes with the number 7 and above, and putting in a new shape as number 7 .

When you insert, ShapeMaker asks whether you will design the new shape from scratch or copy it from a source table in memory. For a new design, the program jumps to the design matrix. If you choose to
copy the new shape into place, the program follows the normal copying procedure, but inserts the shape where indicated rather than adding it to the end of the shape table. If the shape table is full before insertion, the table capacity is increased by one to make room for the inserted shape (as long as the number of shapes would not exceed 255). Deleting a shape removes it from the table and decrements the number of each shape higher than the number chosen.

When you select option 9 (quit), ShapeMaker checks to see if the new table has been changed since the last save. If so, it asks whether you really want to lose the changed shape table, and exits only if you respond with Y (yes).

Custom Character Sets

Programs 3-5 are three sample character sets which you can use immediately or modify further to your own tastes. Each shape table must be entered with the "MLX" machine language entry program listed elsewhere in this issue. Here are the starting and ending addresses needed to enter these files with MLX:
Program 3. SHAPETABLE3X6

STARTING ADDRESS?	7800
ENDING ADDRESS?	$7 B F F$

Program 4. SHAPETABLE5X7
$\begin{array}{ll}\text { STARTING ADDRESS? } & 7800 \\ \text { ENDING ADDRESS? } & 7 \mathrm{CA7}\end{array}$
Program 5. SHAPETABLE7X9
STARTING ADDRESS? 7800
ENDING ADDRESS? 7F8F
The first shape table (SHAPETABLE3X6) contains 58 uppercase letters, numerals, and other ASCII characters in a format three pixels wide and six pixels high. The characters are small enough so that 70 of them can be placed across the high-resolution screen spaced one pixel apart.

The second table (SHAPETABLE5X7) duplicates the standard Apple character set in size, with uppercase, lowercase, and all other standard characters. The third shape table (SHAPETABLE7X9) includes a larger version of the previous table, plus a complete Greek alphabet.

Once you have saved these files to disk, they can be loaded,
reviewed，and edited at any time with ShapeMaker．

Displaying A Shape Table

Program 6 is a short BASIC pro－ gram that will display any of the three example shape tables in its entirety．To view a shape table，run Program 6 and answer the two prompts requesting a filename and drive number．The shape table will be displayed on the monitor screen in several rows of 20 characters each．

Hi－Res Bar Chart

Programs 7 and 8 aren＇t necessary to use ShapeMaker，but you may want to type them in to view an example of what can be done with shape tables．Program 7 is a BASIC program that loads a shape table into memory and uses it to create a bar chart on the hi－res screen．（See photo．）Program 8 is the shape table data for Program 7．It should be entered with MLX using these addresses：
Program 8．BARTABLE
STARTING ADDRESS？ 7800

ENDING ADDRESS？ 79EF

For Program 7 to function properly， you must save the data from Pro－ gram 8 with the name BARTABLE． （See line 300 of Program 7．）

Program 1：SHAPEBOOT

For instructions on entering this program， please refer to＂COMPUTE｜＇s Guide to Typing In Programs＂elsewhere in this issue．
D2 10 REM THIS PGM RESETS THE ST ART OF BASIC
$952 \emptyset$ REM IT ALSO RUNS SHAPEMAKE R
日8 $3 \varnothing$ POKE 1ø3，1：POKE 1ø4，64：P OKE 16384，$D:$ REM PUT BASIC ABOVE HIRES PAGE 1
E月 4ø PRINT CHR\＄（4）；＂RUN SHAPEM AKER＂

Program 2：SHAPEMAKER

For instructions on entering this program，
please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．

345 GOSUB 3426
58 $1 \varnothing$ TEXT ：HOME ：IF PEEK（ $1 \varnothing 3$ $)+256 \cdot *$ PEEK $(1.54)<>1$ 6385 THEN PRINT ：PRINT＂R UN SHAPEBOOT TO SET START OF BASIC＂：PRINT ：GOSUB 2 12ø：GOTO 1ø4Ø
$602 \varnothing \mathrm{BL}=\varnothing: K T=\emptyset: X=\varnothing: Y=\varnothing$ ： $I=\emptyset: \operatorname{CODE}=\emptyset: M \$=" ": Q=$ $\emptyset: X Z=\varnothing: B H=\emptyset: P=\varnothing: H=$ $\emptyset: R=\varnothing: C=\varnothing: A D D R=\varnothing$
BE 30 ONERR GOTO $156 \emptyset$
5040 HCOLOR＝3：SCALE＝ $1:$ ROT $=$ Ø：TA $=3 \emptyset 72 \emptyset: T B=23 \emptyset 4: P O$ KE TB，$: ~ P O K E ~ T A, ~ Ø: ~ R E M ~$
\＄78øø（NEW）\＄9øø（OLD）TA BLES
$385 \emptyset$ TC $=7938:$ FLAG $=\emptyset$
F9 $6 \emptyset$ POKE 768，1：POKE 769，$\curvearrowleft: ~ P O ~$ KE 77ø，4：POKE 771，Ø：REM CURSOR TABLE
3D 70 POKE 772，112：POKE 773，3ø： POKE 774，7：POKE 775，32：
POKE 776，\varnothing
$078 \emptyset$ POKE TC，1：POKE TC $+1, \emptyset:$ POKE TC $+2,4$ ：POKE TC +3 ，Ø：REM EDIT TABLE
3990 GOTO 84ø
BD $1 \emptyset \emptyset$ TEXT ：HOME ：$S N=\emptyset$
$8711 \emptyset$ PRINT＂PLEASE PRESS：＂：PR INT ：PRINT＂L TO LOAD A SHAPE TABLE FROM DISK＂ ：PRINT＂N TO START A NEW SHAPE TABLE＂：PRINT ： PRINT ：PRINT＂PRESS ANY OTHER KEY FOR MAIN MENU＂ ：PRINT ：PRINT
BB $12 \emptyset$ PRINT＂YOUR SELECTION：＂； ：GET $A \$$ ：PRINT A\＄
AE $13 \emptyset$ IF $A \$=$＂N＂THEN $22 \emptyset$
C8 14の IF A\＄＜＞＂L＂THEN 84ø
$1115 \emptyset$ PRINT ：INPUT＂NAME OF TA BLE＂；N\＄
B1 $16 \emptyset$ GOSUB 154ø：REM GET DRIV E \＃
7E 170 PRINT CHR\＄（4）；＂BLOAD＂；N \＄；＂，A＂；TA；＂，D＂；AN
$29189 \mathrm{~N}=($ PEEK $(T A+2)+256$ ＊PEEK（TA＋3）－2）／ 2
4A $19 \emptyset$ SN $=$ PEEK（TA）：PRINT ：I $F \operatorname{SN}=N$ THEN PRINT＂TABL E FULL＂：PRINT ：GOSUB 21 20：GOTO 84ø
$5929 \varnothing$ ADDR $=$ PEEK（TA + SN＊ 2 $+2)+$ PEEK（TA + SN＊ 2 ＋3）＊256＋TA
B4 210 GOSUB 34øø：GOSUB 212ø：G OTO 849
F1 220 TEXT ：HOME ：PRINT＂PLEA SE ENTER THE DESIRED NUMB ER＂：INPUT＂OF SHAPES FOR THIS TABLE：＂；N：IF $N>$ 255 OR N＜ 1 THEN PRINT ： $E N=2:$ GOTO 158ø
BB $23 \emptyset$ POKE TA，$\varnothing:$ POKE TA $+1, \emptyset$
CA 24ø D1 $=2 * N+2$
A4 25ø POKE TA＋2，D1－256＊IN T（D1／256）
$2226 \emptyset$ POKE TA +3 ，INT（D1／ 25 6）
$2527 \emptyset \mathrm{FOR} I=T A+4 \mathrm{TO} T A+2$ ＊$N+3:$ POKE I， \boldsymbol{D} ：NEXT I
6F $28 \emptyset$ PRINT ：PRINT＂CHOOSE SIZ E OF SHAPE DESIGN GRID＂
36296 INPUT＂NUMBER OF COLUMNS （1－35）＂；C：C＝6＊C：I $F C>210$ THEN 290
IE $3 \varnothing \emptyset$ INPUT＂NUMBER OF ROWS（ 1 －25）＂；R：R＝15の－6＊R ：IF R＜\varnothing THEN $3 \emptyset \varnothing$
4F 31ø HGR ：POKE 25ø，R：POKE 25 1，C
49320 IF $C=\emptyset$ OR R $=15 \emptyset$ THEN 155ø
B9 33ø FOR I $=R$ TO $15 \emptyset$ STEP 6： HPLOT \emptyset, I TO C, I ：NEXT I
C5 34 G FOR I $=0$ TO C STEP 6：HP LOT I，R TO I，15ø：NEXT I
17359 IF $F 1=1$ THEN $37 \emptyset$
66 360 IF $A=1$ OR FLAG $=1$ THEN 390
71370 HOME ：VTAB 21：PRINT＂OR IGIN OF SHAPE？LOWER LEF T IS（1，1）＂
EB $38 \emptyset$ INPUT＂COLUMN＂； $\mathrm{X1:} \mathrm{INPUT}$ ＂ROW＂；Y1
$D B 39 \emptyset X=6 * X 1-3: Y=153-$

6＊Y1
5F $4 \emptyset \emptyset$ IF F $1=1$ THEN $224 \emptyset$
CB $41 \emptyset$ IF $S N=N$ AND $F L A G=\emptyset \mathrm{TH}$ EN PRINT＂TABLE IS FILLED TO PRESENT CAPACITY＂：PR INT ：PRINT ：GOSUB 212 2 ： GOTO 84ø
$7 E 420$ IF FLAG $=1$ THEN $A D D R=F$ EEK $(T C+2)+$ TC：GOTO 4 4Ø
IF $43 \emptyset$ ADDR $=$ PEEK $(T A+S N * 2$ $+2)+256$＊PEEK（TA +5 $N * 2+31+T A$
04440 POKE 232，Ø：POKE 233，3：R EM CURSOR TABLE
$6445 \emptyset$ HOME ：VTAB 21：FRINT＂TA BLE CAPACITY：＂；N；＂SHAPE S－THIS IS \＃＂；
$8846 \emptyset$ IF FLAG $=\varnothing$ THEN PRINT SN ＋1：GOTO 48G
63 $47 \emptyset$ PRINT IS
44 48Ø VTAB 22：PRINT＂TO MOVE C URSOR，USE IJKM OR ARROW KEYS＂
$2549 \emptyset$ VTAB 23：PRINT＂PRESS：P TO PLOT A POINT＂
8E 5øø VTAB 24：PRINT TAB（ 9）；＂Q TO END THIS SHAPE＂；
$9651 \emptyset$ CODE $=\varnothing$
97520 GOSUB 146 ：H＝8：REM DRAW B LINKING CURSOR
24549 IF $M \$=" P$＂THEN CODE $=4$ ：FOR I $=X-1$ TO $X+1$ ： HPLOT I，Y－ 1 TO I，Y +1 ：NEXT I：GOTO $52 \emptyset$
2755 IF $\mathrm{M} \$=$＂Q＂THEN POKE ADD R，CODE：POKE ADDR＋1，255 ：GOTO 669
EB 590 POKE 6，ASC（M\＄）：POKE 8， Y：POKE 9，X：POKE 252，COD E：CALL 2948
FE GøØ $H=\operatorname{PEEK}$（7）：$X=$ PEEK（9） $: Y=\operatorname{PEEK}$（ 8 ）
$4 E 61 \emptyset$ IF $H=8$ THEN $52 \emptyset$
$7864 \emptyset$ POKE ADDR， $\mathrm{H}: \mathrm{ADDR}=\mathrm{ADDR}+$ $\begin{array}{ll}1 & \\ \text { GOTO } \\ 51 \emptyset\end{array}$
$9665 \emptyset$ GOTO 51の
$7866 \emptyset$ IF FLAG
7866 IF FLAG $=1$ THEN ADDR $=P$ EEK $(T C+2)+T C: L O C=A$ DDR：GOTO 68ø
$9467 \emptyset$ ADDR $=$ PEEK（TA $+5 N * 2$ $+2)+256$＊PEEK（TA＋S $N * 2+3)+T A: L O C=A D D$ R
B6 68 V1 $=$ PEEK（LOC）：IF V1＝ 255 THEN POKE ADDR，$\varnothing:$ ADDR $=\mathrm{ADDR}+1:$ GOTO 78．
EF $69 \emptyset$ V2 $=$ PEEK $($ LOC +1$):$ IF V $2=255$ THEN POKE ADDR，$V 1$ ：POKE ADDR＋1，$:$ ADDR $=$ ADDR＋2：GOTO 78ø
DE $7 \emptyset \emptyset V 3=$ PEEK $(L O C+2):$ IF V $3=255$ THEN POKE ADDR，V1 +8 ＊V2：POKE ADDR +1 ， Ø：ADDR＝ADDR＋2：GOTO 7 8ø
EF $71 \emptyset$ BYTE $=V 1+8 * V 2+64 *$ V3
A4 729 IF BYTE $=\varnothing$ THEN POKE ADD R，64：POKE ADDR＋1，24：AD $D R=A D D R+2: L O C=L O C+$ 3：GOTO 68ø：REM USES 3 SKIP－UP VECTORS
7 D 73 IF V3 $>\emptyset$ AND V3＜ 4 THEN POKE ADDR，BYTE：ADDR＝AD $D R+1: L O C=L O C ~+~ 3: ~ G O T$ －689：REM USE ALL 3 VEC TORS
$3274 \emptyset$ BYTE $=V_{1}+8 * V 2:$ REM SRD VECTOR NOT USED FROM HERE ON
$6675 \emptyset$ IF $V 2>\emptyset$ THEN POKE ADDR，
＝LOC＋2：GOTO 689：REM
2 VECTORS USED
F9 760 IF V_{1}＜＞\varnothing THEN POKE ADD R，BYTE：ADDR $=$ ADDR＋1：LO $\mathrm{C}=\mathrm{LOC}+1$ ：GOTO 68ø：RE M 1 VECTOR USED
$6677 \emptyset$ IF BYTE $=\varnothing$ THEN POKE ADD R，24：POKE ADDR $+1,8$ ：ADD R $=$ ADDR $+2:$ LOC $=$ LOC＋ 2：GOTO 68ワ：REM 2 SKIP－ UPS AND 2 OFFSETTING MOVE S SIDEWAYS
FE 78 Ø IF FLAG $=1$ THEN POKE 232 ，TC－INT（TC／256）＊ 25 6：POKE 233，INT（TC／ 25 6）：DRAW 1 AT 2øø，1øø： 60 TO 227ø
$8479 \varnothing$ POKE TA，SN＋1：POKE 232， TA－INT（TA／256）＊ 256 ：POKE 233，INT（TA／ 256 ）：XDRAW SN＋ 1 AT 245，1ø ø
$848 \varnothing \varnothing$ HOME ：PRINT ：VTAB 22：P RINT＂SAVE THIS AS SHAPE NUMBER＂；SN＋1；＂（Y／N）＂；： GET A\＄
$0881 \varnothing$ IF $A \$=$＂Y＂THEN SN＝SN $+1: S F=1: I F S N<N$ THE N D1＝ADDR－TA：POKE TA $+2 * S N+2, D 1-256 *$ INT（D1／256）：POKE TA＋ 2＊SN＋3，INT（D1／ 25 6）
48820 IF $A \$$＜＞＂N＂AND $A \$$＜＞ ＂Y＂THEN 8øø
9C 830 POKE TA，SN
41 84ø TEXT ：HOME ：PRINT＂SH APEMAKER＂；TAB（ 32）；＂MAIN MENU＂：VTAB 4：PRINT＂PL EASE MAKE A SELECTION：＂： PRINT ：PRINT
$6585 \emptyset$ FLAG $=\varnothing: E X=\varnothing: B L=F R E$ （ø）
61 $86 \emptyset$ PRINT TAB（ 3）；＂（1）DESIGN A NEW SHAPE＂
91870 PRINT TAB（ 3）；＂（2）ESTABL ISH SIZE OF DOT MATRIX＂
EA $88 \emptyset$ PRINT TAB（ 3）；＂（3）CHANGE STARTING COORDINATES＂
$8789 \varnothing$ PRINT TAB（ 3）；＂（4）SAVE S HAPE TABLE TO DISK＂
$109 \varnothing 0$ PRINT TAB（ 3）；＂（5）LOAD 0 R START A NEW SHAPE TABLE

F9 $91 \varnothing$ PRINT TAB（ 3）；＂（6）REVIEW A SHAPE TABLE＂
T 920 PRINT TAB（ 3）；＂（7）COPY S HAPES FROM OLD TO NEW TAB LE＂
68930 PRINT TAB（ 3）；＂（8）EDIT T HE NEW SHAPE TABLE＂
of 940 PRINT TAB（ 3）；＂（9）LEAVE THE PROGRAM＂
BF $95 \emptyset$ PRINT ：PRINT ：PRINT＂ 1 P RESS 〈ESC〉 KEY TO CATALOG A DISK）＂
64960 PRINT ：PRINT ：PRINT＂YO UR SELECTION：＂；：GET A\＄： PRINT A\＄：A $=$ VAL（A\＄）
57970 IF ASC $(A \$)=27$ THEN 143 \emptyset
3F 980 IF $A<1$ OR $A>9$ THEN 84 \emptyset
AF $99 \varnothing$ PRINT ：IF $N=\varnothing$ AND $A<$ 5 THEN PRINT＂NO TABLE AV AILABLE．LOAD OR INITIAL IZE＂：PRINT＂A SHAPE TABL E bEFORE DESIGNING SHAPES ＂＂：PRINT ：GOSUB 2120：G OTO 84ø
$8610 ø \varnothing$ IF $\mathrm{SN}=255$ AND $A<4 \mathrm{TH}$ EN ：HOME ：PRINT＂THE s

HAPE TABLE IS FULL＂：PRI NT ：GOSUB 2120：GOTO 84 \emptyset
AA $1 \varnothing 1 \varnothing$ ON A GOTO 31ø，28ø，31ø， $1 \varnothing$ 59，137ø，114ø，17øø，2125， 1 ø2ø
FA $102 \varnothing$ IF SF $=\varnothing$ THEN $104 \varnothing$
FB $1 ø 3 \varnothing$ HOME ：PRINT＂YOU ARE AB OUT TO PERMANENTLY LOSE＂ ；CHR\＄（7）：PRINT＂THE S hape table file in memor Y＂：PRINT＂DO YOU REALLY WANT TO DO THAT？（Y／N） ＂；：GET AN\＄：IF AN\＄＜＞ ＂ Y ＂THEN $84 \varnothing$
C® 1ø4ø TEXT ：HOME ：POKE 103，1 ：POKE 194，8：POKE 2ø48， ø：POKE 2ø49，ø：POKE $2 ø 5$ ø，$\varnothing:$ VTAB 7：PRINT＂THE APPLESOFT POINTER HAS NO W BEEN RESET＂：PRINT＂TO ITS NDRMAL LOCATION IN MEMORY．＂：VTAB 11：PRINT ＂TO LIST THIS PROGRAM F IRST USE COMMAND
8A $1 ø 45$ VTAB 14：HTAB 12：PRINT ＂LOAD SHAPEMAKER＂：END
OC $105 \varnothing$ INPUT＂NAME＂； $\mathrm{N} \$$
711060 GOSUB 1540
E6 $107 \emptyset \mathrm{BL}=$ PEEK（TA + SN＊2） +256 ＊PEEK（TA＋SN＊ $2+1)+T A$
721 1ø8ஏ FOR EO＝BL TO BL＋ $2 ø \varnothing \varnothing$ ：IF PEEK（EQ）$=\varnothing$ THEN $L=E O-T A+2:$ GOTO 11 øの
$28109 \emptyset$ NEXT EO
F6 11øø PRINT CHR\＄（4）；＂BSAVE＂； N\＄；＂，A＂；TA；＂，L＂；L；＂，D＂；A N
D3 111ø PRINT ：PRINT＂FILE ：＂； N\＄：PRINT＂SAVED AT：＂；T A；＂DECIMAL＂：PRINT＂FIL E LENGTH：＂；L；＂DECIMAL＂ ：PRINT ：PRINT＂PRESS A KEY＂：GET BL\＄
60 $112 \emptyset \mathrm{SF}=\varnothing$ ：GOTO 84ø
581130 TEXT ：HOME ：END
B2 1149 IF PEEK（TB）$=\varnothing$ AND PEE $K(T A)=\varnothing$ THEN PRINT＂T here are no tables in me MORY＂：PRINT ：GOSUB 212 Ø：GOTO 84ø
57 115ø IF PEEK（TA）$=\varnothing$ THEN 12 10
DD $116 \varnothing$ IF PEEK $(T B)=\varnothing$ THEN 11 $9 \varnothing$
$38117 \emptyset$ HOME ：PRINT＂WHICH SHAP E TABLE DO YOU WANT TO S EE？＂：PRINT ：PRINT＂PRE SS：＂：HTAB 3：PRINT＂1 F OR THE TARGET（NEW）TABL E＂：HTAB 3：PRINT＂2 FOR THE SOURCE（OLD）TABLE ＂：GET AN\＄
E2 1180 IF AN $\$$＜＞＂1＂THEN $120 \varnothing$ 7F 1190 TT $=$ TA：SS $=$ SN：GOTO 12 $2 \varnothing$
EA 12øø IF ANक＜＞＂2＂THEN 84ø $16121 \varnothing$ TT $=$ TB：SS $=0 S$
531220 POKE 232，TT－INT（TT／ 256）＊256：POKE 233，IN T（TT／256）
F5 $123 \varnothing$ HOME ：PRINT＂THERE ARE ＂；SS；＂SHAPE（S）IN THE T ABLE＂
C8 $124 \varnothing \mathrm{NN}=($ PEEK $(T T+2)+2$ 56＊PEEK（TT＋3）－2） ／2：PRINT＂TABLE CAPACI TY IS＂；NN；＂SHAPES＂
$04125 \emptyset$ IF SS $=\varnothing$ THEN PRINT ：G OSUB 212ø：GOTO 84の
$64126 \emptyset$ PRINT ：PRINT＂ENTER $\emptyset T$

O RETURN TO MAIN MENU＂： PRINT
$61127 \emptyset$ INPUT＂OR ENTER NUMBER 0 F DESIRED SHAPE＂；DS\＄：DS
$=$ VAL（DS $\$$ ）：IF DS $>$ SS THEN $123 \varnothing$
$38128 \emptyset$ IF DS $=\varnothing$ THEN $84 \varnothing$
6F 1290 POKE 232，TT－INT（TT／ 256）＊256：POKE 233，IN T（TT／256）
$9813 \emptyset \emptyset$ HGR
C4 1310 XDRAW DS AT $220,1 \varnothing \varnothing:$ VTA
B 21：CALL－868：PRINT
＂CURRENT SHAPE IS \＃＂；DS
$88132 \emptyset$ VTAB 22：PRINT＂ENTER NU MBER OF NEXT DESIRED SHA PE，＂：CALL－868：INPUT ＂OR ENTER \mathfrak{g} TO RETURN TO MAIN MENU＂；ANक：IF AN \＄＝＂Ø＂THEN 84ø
C7 1330 XDRAW DS AT 220，10ø：DS $=$ VAL（AN\＄）
$88134 \varnothing$ IF DS＞SS OR DS＜ 1 THE N TEXT ：PRINT CHR（7）： GOTO $123 \varnothing$
2E $135 \emptyset$ IF DS $=\varnothing$ THEN $84 \varnothing$
$72136 \emptyset$ GOTO $131 \varnothing$
$58137 \varnothing$ HOME ：IF SF $=\varnothing$ THEN $1 \varnothing$ \emptyset
$55138 \emptyset$ PRINT＂THE SHAPE TABLE I N MEMORY WILL BE＂：PRINT
＂LOST IF YOU START A NE w SHAPE＂：PRINT＂TABLE． DO YOU REALLY WANT TO D 0 ＂：PRINT＂THAT？（Y／N）＂ ；CHR\＄（7）；
E8 1390 GET AN\＄
7E $140 \varnothing$ IF AN $=$＂Y＂THEN 1 Øø
I3 1410 IF AN\＄＜＞＂Y＂AND AN\＄ ＞＂N＂THEN PRINT ：PRIN T ：GOTO 138ø
हנ $142 \varnothing$ GOTO $84 \varnothing$
73 1430 GOSUB 1540
DB $144 \varnothing$ PRINT CHR $\$$（4）；＂CATALOG， D＂；AN
CA $145 \emptyset$ PRINT ：GOSUB 2120：GOTO $84 \varnothing$
D2 14Eø XZ $=\operatorname{PEEK}$（49168）：KT $=\varnothing$
151470 XDRAW 1 AT $\mathrm{X}, \mathrm{Y}: K T=K T+$
C5 $148 \emptyset$ IF KT $=2$ THEN KT $=\varnothing$
$4 \mathrm{C} 149 \varnothing$ FOR $I=1$ TO $3 \varnothing: B L=P E E$ K（49152）：IF BL >127 T HEN M\＄＝CHR\＄（BL－128） ：BL＝ø：GOTO 152ø
$7515 \varnothing \varnothing$ NEXT I
7C 1510 GOTO $147 \varnothing$
$2 \mathrm{~A} 152 \emptyset \mathrm{IF} \mathrm{KT}=1$ THEN XDRAW 1 A T X，Y
E7 1530 RETURN
F1 $154 \emptyset$ HOME ：PRINT＂ENTER DISK DRIVE NUMBER：＂；：GET A N\＄：PRINT AN\＄：AN＝VAL（ AN $\$$ ）：RETURN
C9 $155 \emptyset$ TEXT ：HOME ：PRINT＂THE RE＇S NO SHAPE DESIGN MAT RIX IN MEMORY＂：PRINT＂P LEASE ESTABLISH ONE＂：PR INT ：GOSUB 212ø：GOTO 8 40
$34156 \varnothing$ TEXT ：HOME ：PRINT ：PR INT＂ODPS！CAN＇T DO THAT ＂：PRINT CHR\＄（7）
$58157 \varnothing$ EN $=$ PEEK（222）
51 1589 IF EN $=2$ OR EN $=3$ THEN PRINT＂THAT NUMBER IS T OO BIG OR SMALL＂
E4 $159 \varnothing$ IF EN $=4$ THEN PRINT＂SO RRY，CAN＇T WRITE TO A WR ITE＂：PRINT＂PROTECTED F ILE＂
40 16gø IF EN $=6$ THEN PRINT＂SO

RRY，CAN＇T FIND THAT FIL E＂
791610 IF EN $=8$ THEN PRINT＂TH ERE＇S SOME SORT OF INPUT ／OUTPUT＂：PRINT＂ERROR＂
a3 1620 IF EN $=9$ THEN PRINT＂SO RRY，THAT DISK IS ALREAD Y FULL OF DATA＂
F8 $163 \emptyset$ IF EN $=1 \varnothing$ THEN PRINT＂ S ORRY，CAN＇T WRITE TO A L OCKED FILE＂
$2 \mathrm{~A} 164 \varnothing \mathrm{IF} E N=11 \mathrm{OR} \mathrm{EN}=16 \mathrm{TH}$ EN PRINT＂THERE＇S SOME S ORT OF SYNTAX ERROR HERE

D6 1659 IF EN $=53$ THEN PRINT＂S ORRY，THAT NUMBER IS NOT LEGAL＂
381669 IF EN $=77$ THEN PRINT＂ 0 H OH！WE＇RE OUT OF MEMO RY！＂
2A 167ø ONERR GOTO 156ø
B8 1680 PRINT ：PRINT＂LET＇S RET URN TO THE MAIN MENU AND ＂：PRINT＂TRY AGAIN＂：PR INT ：GOSUB 212ø：GOTO 8 4ø
86 169ø OT\＄＝＂＂：GOTO 156ø
69 17øø IF SN $=N$ THEN PRINT＂TA BLE IS FULL＂：GOSUB 212ø ：вото 84ø
DB 1710 HOME ：IF OT\＄＜＞＂＂THE N PRINT＂THE SQURCE SHAP E TABLE IN MEMORY IS：＂： PRINT OT\＄：PRINT ：PRINT ＂IS THAT OK？（Y／N）：＂：G ET AN\＄：IF AN\＄＝＂Y＂THE N 1769
A2 $172 \varnothing$ PRINT ：PRINT＂ENTER NAM E OF SOURCE SHAPE TABLE： ＂：INPUT＂＂；OT\＄：
$79173 \varnothing$ GOSUB $154 \varnothing$
E1 1740 ONERR GOTO $169 \varnothing$
$69175 \varnothing$ PRINT CHR\＄（4）；＂BLOAD＂； OT\＄；＂，A＂；TB；＂，D＂；AN
$88176 \emptyset$ HOME ：IF $N=\varnothing$ THEN PRI NT＂THERE IS NO TARGET T ABLE AVAILABLE IN＂：PRIN T＂MEMORY．PLEASE INITI ALIZE A NEW TABLE＂：PRIN T＂OR LOAD ONE FROM MEMO RY＂：PRINT ：PRINT＂RETU RNING TO MAIN MENU＂：PRI NT ：GOSUB 212ø：GOTO 84 ø
DB $177 \emptyset \mathrm{NO}=($ PEEK $(T B+2)+2$ 56＊PEEK（TB＋3）－2） 12
AE 1780 OS $=$ PEEK（TB）
D8 $179 \varnothing$ DA $=$ PEEK（TB＋OS＊ 2 ＋ 2）＋PEEK（TB＋OS＊ 2 ＋3）＊ 256 ＋TB：REM AD DRESS OF OLD TABLE
6F $18 ø \varnothing$ PRINT＂THE SOURCE TABLE CAN HOLD＂；NO；＂SHAPES＂： PRINT ：PRINT＂IT NOW H AS＂；OS；＂SHAPES IN IT＂： PRINT ：GOSUB 212ø：
551810 HOME ：HGR ：VTAB 24：PR INT＂ENTER \varnothing TO RETURN T －MAIN MENU＂
4A 1820 VTAB 21：HTAB 36：PRINT
311839 VTAB 21：HTAB 1：PRINT＂ ENTER SOURCE SHAPE NUMBE R TO COPY：＂；：INPUT＂＂； AN\＄：AN＝VAL（AN\＄）
Fi 184ø IF AN $=\varnothing$ THEN $84 \varnothing$
Ag $185 \emptyset$ IF AN＜ 1 OR AN＞OS THE N PRINT＂SORRY，NO SUCH SHAPE IN TABLE＂：PRINT＂ pLEASE PRESS A KEY＂：GE T AN\＄：GOTO $181 \varnothing$

EA 1860 FOKE 232，TB－INT（TB／ 256）＊256：POKE 233，IN T（TB／256）
IE $187 \emptyset$ DRAW AN AT 2øø，1øø：IF F LAG $=1$ THEN $263 \varnothing$
65 188ø HOME ：UTAB 21：PRINT＂C OPY THIS AS SHAPE \＃＂； $5 N$ $+1 ; "(Y / N)$＂；：GET AN\＄
$85189 \varnothing$ IF AN\＄$=$＂N＂THEN 1810
S8 1900 IF AN\＄＜＞＂Y＂THEN 849 AT 1919 VTAB 24：HTAB 1：FLASH ： PRINT＂COPYING DATA＂；： NORMAL ：PRINT＂
86 1926 ADDR $=$ PEEK（TA + SN＊ 2 $+2)+256$＊PEEK（TA＋ SN＊ $2+3$ ）＋TA
16 1936 SF＝1：IF SN＜N THEN D 1 ＝ADDR－TA：POKE TA＋ 2＊ $5 N+2, D 1-256$＊I NT（D1／256）：POKE TA＋ 2 ＊ $\mathrm{SN}+3$ ，INT（D1／ 2 56）
021949 POKE TA， $\mathrm{SN}+1$
A5 195ø OA $=$ PEEK（TB $+2 *$ AN） $+\operatorname{PEEK}(T B+2$＊AN＋1） ＊ 256 ＋TB
31 1960 Z1 $=\varnothing$
321970 FOR I＝ 1 TO 1øøø
F4 1989 POKE 232，TB－INT（TB／ 256）＊256：POKE 233，IN T（TB／256）
34 199ø BI $=$ PEEK（OA）
83 2006 POKE 232，TA－INT（TA／ 256）＊256：POKE 233，IN T（TA／256）
C7 2010 POKE ADDR，BI
3D 2020 ADDR $=$ ADDR +1
$042 \emptyset 3 \varnothing O A=O A+1$
05 2ø4ø IF BI $=\varnothing$ AND $Z 1=\varnothing$ THE N POKE ADDR， $\mathscr{D}:$ ADDR $=$ ADD R＋1：GOTO $2 ø 8 \varnothing$
$89205 \varnothing$ IF BI $=\emptyset$ THEN $208 \emptyset$
85 $2060 \mathrm{Z1}=\mathrm{Z1}+1$
$88207 \varnothing$ NEXT I
CB $208 \varnothing \mathrm{SN}=\mathrm{SN}+1$ ：IF $\mathrm{SN}<\mathrm{N} T$ HEN D1＝ADDR－TA：POKE $T A+2 * S N+2, D 1-25$ 6＊INT（D1／256）：POKE TA +2 ＊ $5 N+3$ ，INT（D $1 / 256$ ）
7A 2096 VTAB 23：HTAB 1：PRINT＂ DONE，PLEASE PRESS A KEY ＂；：GET AN\＄
6821 Dø IF SN $=N$ THEN HOME ：$V T$ AB 23：GOTO 17øø
652110 GOTO 1810
432120 PRINT＂PRESS ANY KEY TO CONTINUE＂；：GET AN\＄：RE TURN
5F 2125 IF $N=\varnothing$ THEN 176ø
4F 2130 HOME ：PRINT＂PRESS：＂：P RINT ：PRINT TAB（ 3）；＂ 1 ）TO INSERT A SHAPE IN T ABLE＂：PRINT TAB（ 3）；＂ 12 ）TO DELETE A SHAPE FROM TABLE＂
662140 PRINT TAB（ 3）；＂（3）TO IN CREASE TABLE CAPACITY＂： PRINT TAB（ 3）；＂（4）TO DE CREASE TABLE CAPACITY＂； ：GET AN\＄：PRINT AN\＄：IF AN\＄＜＂1＂OR AN\＄＞＂4＂ THEN $84 \varnothing$
$38215 \emptyset$ AN $=$ VAL（AN $\$$
$5 F 216 \varnothing \mathrm{PL}=\varnothing$ ：IF AN $=3$ THEN P $L=1$
66217 D IF AN $=1$ AND $\mathrm{SN}=255 \mathrm{~T}$ HEN PRINT ：PRINT＂SORRY ，THE NEW Shape table is FULL＂：PRINT ：PRINT＂D ELETE A SHAPE BEFORE ADD ING to table＂：gosub 212

Ø：GOTO 84ø
$48218 \emptyset$ ON AN GOTO $219 \varnothing, 2749,3 \varnothing 2$ 5，3025
$11219 \varnothing$ HOME ：PRINT＂ENTER NUMB ER OF SHAPE TO BE INSERT ED＂：INPUT＂INTO THE NEW TABLE＂；IS：IF IS＜ 10 R IS＞SN THEN PRINT ：P RINT＂THAT NUMBER IS OUT OF RANGE＂：PRINT ：GOSU B 2120：GOTO 840
Q3 $22 ø \emptyset$ FLAG $=1: S 1=S N: N N=N$
932210 HOME ：PRINT＂PRESS：＂：P RINT ：PRINT TAB（ 3）；＂${ }^{(1}$ ）TO DESIGN NEW SHAPE \＃＂ ；IS：PRINT TAB（ 3）；＂（2） TO GET IT FROM THE SOURC E TABLE＂；：GET AN\＄：PRI NT AN $\$$ ：IF AN $\$$＜＂1＂OR AN\＄＞＂2＂THEN 221ø
$31222 \emptyset$ AN $=$ VAL（AN $\$$ ）
E1 2230 ON AN GOTO 2240，2610
9C 2240 F1 $=\varnothing$ ：IF C $=\varnothing$ OR $\mathrm{R}=$ $15 \emptyset$ THEN F1 $=1$ ：GOTO 28

E9 $225 \varnothing$ IF $N=\varnothing$ THEN PRINT ：PR int＂No target table ava ILABLE＂：PRINT ：GOSUB 2 12ø：GOTO 84ø
E5 2260 GOTO $31 \varnothing$
502278 HOME ：POKE－16368， $0: V$ TAB 22：HTAB 1：PRINT＂I NSERT THIS AS SHAPE NUMB ER＂；IS；＂（Y／N）？＂；：GET AN\＄
FO 2280 IF AN $\$$＜＞＂Y＂THEN TEXT ：HOME ：GOTO 2130
DJ 2290 HOME ：VTAB 24：FLASH ： PRINT＂INSERTING SHAPE N UMBER＂；IS：NORMAL ：SF＝

36 $2300 \mathrm{NL}=\varnothing$
872310 FOR I $=T C+4$ TO TC +1 ロロロ
$91232 \varnothing \mathrm{BL}=\operatorname{PEEK}$（I）：NL $=\mathrm{NL}+$ 1： IF BL $=\varnothing$ AND NL >1 THEN 235ø
$17233 \varnothing$ IF $B L=\varnothing$ THEN NL $=2$ ：G OTO 235ø
82 234ø NEXT I
$74235 \emptyset$ IF $S N=N$ THEN EX $=2$
7A $236 \varnothing$ GOSUB $334 \varnothing$
DE $237 \emptyset$ START $=$ PEEK（TA + IS＊ 2）＋ 256 ＊PEEK（TA＋IS ＊ $2+11$＋TA：REM FR OM IS TO END
582380 FOR I＝OE TO START STEP
$26239 \varnothing$ POKE I＋NL＋EX，PEEK（ I）
74 24øø NEXT I
F9 $241 \varnothing \mathrm{Z}=\varnothing$
iC $242 \emptyset$ FOR $I=T C+4$ TO TC +4 + NL－1：REM INSERT N EW SHAPE
D9 $243 \varnothing$ POKE START $+E X+Z$ ，PEE $K(I): Z=Z+1$
84 244ø NEXT I
F4 $245 \varnothing$ BEGIN $=$ PEEK $(T A+2)+$ 256＊PEEK（TA＋3）＋TA ：REM ADDRS OF \＃1 SHAPE
TC $246 \varnothing$ FOR $I=$ START -1 TO BEG IN STEP－ 1
$27247 \emptyset$ POKE I＋EX，PEEK（I）
$94248 \emptyset$ NEXT I
$952490 \mathrm{BH}=\varnothing$
$4825 \emptyset \square$ A1 $=2$ ：IF SN $+1>=N$ THEN A1 $=\varnothing$
262510 FOR $I=T A+2 * S N+A 1$ TO TA +2 ＊IS STEP－ 2
A9 $2520 \mathrm{BH}=$ PEEK $(\mathrm{I}+1): \mathrm{BL}=\mathrm{P}$ $\operatorname{EEK}(\mathrm{I}): \mathrm{BL}=\mathrm{BL}+\mathrm{NL}+\mathrm{E}$

X：IF BL＞ 255 THEN BL＝ BL－256： $\mathrm{BH}=\mathrm{BH}+1: \mathrm{P}$ OKE I＋3，BH
D6 2530 POKE I＋2，BL：POKE I＋ 3，BH
86 2549 NEXT I
102550 FOR I $=T A+2$＊IS TO T $A+2$ STEP－ 2
79 2560 BH＝PEEK（ $1+1$ ）：BL＝P EEK（I）：BL＝BL＋EX：IF BL＞ 255 THEN BL $=$ BL－ 256： $\mathrm{BH}=\mathrm{BH}+1$ ：POKE I $+1, \mathrm{BH}$
7E $257 \emptyset$ POKE I，BL：POKE I＋1，BH
96 258 Ø NEXT I
A3 $259 \varnothing \mathrm{SN}=\mathrm{S} 1+1: \mathrm{N}=\mathrm{NN}+E X$ ／2：POKE TA，SN：D1＝ 2 ＊ $\mathrm{N}+2$
Ая 26øø HOME ：VTAB 23：PRINT＂ 1 NSERTION OF SHAPE NUMBER ＂；IS；＂COMPLETE＂；：PRIN T ：GOSUB 212ø：GOTO 84ø
$98261 \varnothing$ IF N $=\varnothing$ THEN $225 \varnothing$
712620 GOTO 1710
$76263 \varnothing$ HIME ：UTAB 21：PRINT＂I NSERT THIS AS SHAPE \＃＂； IS；＂（Y／N）＂；：GET A\＄：IF A $\$=$＂N＂THEN 181ø
B6 264の IF A\＄＜＞＂Y＂THEN 84の
1F 2650 OA $=$ PEEK（TB $+2 * A N)$ + PEEK（TB＋ 2 ＊AN＋1） ＊ 256 ＋TB：REM ADDR 0 F SHAPE
122660 Z＝ø
C7 2670 FOR I＝Ø TO 1øøø：REM PUT IT IN TABLE
3A $2680 \mathrm{BI}=\operatorname{PEEK}(\mathrm{DA}+\mathrm{I})$
642699 POKE TC $+4+1, B I$
$1027 \varnothing \varnothing$ IF BI $=\varnothing$ AND $Z>\varnothing$ THEN 273ø
75 271ø IF BI $=\varnothing$ THEN POKE TC + 4 ＋I＋1，ø：GOTO 273ø
822726 NEXT I
8E 2730 GOTO $229 \varnothing$
83 2749 PRINT ：PRINT＂ENTER NUM BER OF SHAPE TO DELETE F ROM THE＂：INPUT＂TARGET （NEW）SHAPE TABLE＂；AN\＄： DS $=$ VAL（AN\＄）：IF DS＜ 1 OR DS＞SN THEN PRINT ：PRINT＂ND SUCH NUMBER IN TABLE＂：PRINT ：GOSUB 212ø：GOTO 84ø
A5 $275 \emptyset$ POKE 232，TA－INT（TA／ 256）＊256：POKE 233，IN T（TA／256）
$85276 \varnothing$ HGR ：DRAW DS AT 2øø，1øø $68277 \varnothing$ HOME ：VTAB 22：PRINT＂D ELETE THIS AS SHAPE \＃＂； DS；＂？（Y／N）＂；：GET AN\＄： IF AN\＄＜＞＂Y＂AND AN\＄ ＜＞＂N＂THEN 84ø
$96278 \emptyset$ IF AN\＄＝＂N＂THEN 274ø
EF 279ø HOME ：VTAB 22：FLASH ： PRINT＂DELETING SHAPE \＃
＂；DS：NORMAL ：SF $=1$
$6228 \emptyset \varnothing$ ADDR $=$ PEEK（TA + SN＊ 2 ）＋ 256 ＊PEEK（TA $+5 N$ ＊ $2+11$＋TA
E9 $281 \varnothing$ IF PEEK（ADDR）$=\varnothing$ THEN EO＝ADDR＋1：GOTO 285
592820 FOR EO＝ADDR TO ADDR＋ 1øøø：REM FIND END OF T ABLE
B3 $2830 \mathrm{BL}=\operatorname{PEEK}$（EO）：IF BL＝ Ø THEN 285ø
28 284ø NEXT EO
f4 $285 \emptyset$ START $=$ FEEK $(T A+2 * D$ S）+256 ＊PEEK（TA +2 ＊$D S+1)+T A$
16 286ø z＝Ø
082870 FOR I＝START TO START＋

1øøø：REM FIND LENGTH OF DELETE SHAPE
$67288 \emptyset \mathrm{BL}=\operatorname{PEEK}(\mathrm{I}): Z=Z+1$ ： IF BL $=\emptyset$ THEN 29øの
AB $289 \emptyset$ NEXT I
$3729 \emptyset 0$ IF $z=1$ THEN $Z=2$
FE 2910 FOR I＝START＋Z TO EO： REM MOVE VECTORS
492920 PDKE I－Z，PEEK（I）
8A 2930 NEXT I
182940 EX $=\varnothing$ ：IF $S N<N$ THEN E $X=2$
8 A $295 \emptyset$ FOR I $=T A+2 * D S+2$ TO TA＋ 2 ＊SN＋EX STEP 2
$562960 \mathrm{BH}=\operatorname{PEEK}(\mathrm{I}+1): \mathrm{BL}=P$ EEK（I）：BL $=B L-Z: I F$ $\mathrm{BL}<\emptyset \mathrm{THEN} \mathrm{BL}=\mathrm{BL}+25$ $6: \mathrm{BH}=\mathrm{BH}-1$
CC 2970 POKE I－2，BL：POKE I－ 1，BH
9E $298 \emptyset$ NEXT I
242990 IF $S N=N$ THEN BL $=E O-$ $Z+1:$ POKE TA $+2 * S N$ ，BL－INT（BL／256）＊ 2 56： $\mathrm{POKE} T A+2 * S N+1$ ，INT（（BL－TA）／256）
B6 Зøøø IF EX $=2$ THEN POKE TA + 2 ＊ $5 N+2$ ， ：POKE TA＋ 2 ＊ $5 N+3, \varnothing$
$73301 \emptyset \mathrm{SN}=\mathrm{SN}-1:$ POKE TA，SN： $E X=\varnothing: A D D R=E D+1$
43 3ø2ø HOME ：VTAB 22：PRINT＂D ELETION DF SHAPE NUMBER ＂；DS；＂COMPLETED＂：PRINT ：GOSUB 212ø：GOTO 84ø
DC $3 ø 25$ GOSUB 34øø：IF PL $=\varnothing \mathrm{TH}$ EN PRINT＂SUBTRACT＂；：G OTO $3 \emptyset 35$
81 3ø3Ø PRINT＂ADD＂；
$143 \emptyset 35$ INPUT＂HOW MANY SHAPES？ ＂；NC\＄：NC＝VAL（NC\＄）
60 3ø4の GOSUB $334 \varnothing$
76 3ø5ø START $=$ PEEK $(T A+2)+$ 256＊PEEK（TA＋3）＋TA
CF 3ø6ø IF PL $=\varnothing$ THEN $323 \emptyset$
$88367 \emptyset$ IF N＋NC >255 THEN HOM E ：PRINT＂TOO MANY SHAP
ES！＂：PRINT ：GOSUB $212 \emptyset$ ：GOTO 840
JA 3ø8ø GOSUB 341ø：SF＝ 1
$57309 \emptyset$ FOR I $=$ OE TO START STEP -1
QE $31 \emptyset \emptyset$ POKE I＋ 2 ＊NC，PEEK（I

33110 NEXT I
$6 E 312 \emptyset$ FOR $I=$ START $T O T A+2$ ＊$(N+N C)+1$
2E $313 \emptyset$ POKE I，\emptyset
$7 F 314 \emptyset$ NEXT I
EF $315 \emptyset$ FOR I $=T A+2$ TO START － 2 STEP 2
$873160 \mathrm{BL}=$ PEEK（I）：BH＝PEEK $(\mathrm{I}+1): \mathrm{IF} \mathrm{BL}=\varnothing$ AND B $H=\emptyset$ THEN $321 \varnothing$
BB 317ø BL $=\mathrm{BL}+2 * \mathrm{NC}$
$00318 \emptyset$ IF BL >255 THEN BL $=B L$ －256： $\mathrm{BH}=\mathrm{BH}+1$ ：GOTO 318ø
7F $319 \emptyset$ POKE I，BL：POKE I +1 ，BH
71 32øø NEXT I
E7 $3210 \mathrm{BH}=\mathrm{INT}((0 E-T A+2 *$ $\mathrm{NC}+1) / 256): \mathrm{BL}=\mathrm{OE}$
+2 ＊NC＋ 1 －TA－BH＊ 256：POKE TA＋SN＊ $2+$ 2，BL：POKE TA $+5 N * 2$ $+3, \mathrm{BH}: \mathrm{N}=\mathrm{N}+\mathrm{NC}$
$21322 \emptyset$ GOSUB 34øø：GOSUB 212ø： GOTO 84ø
C5 3230 IF N－NC <1 OR N－NC >255 THEN $213 \varnothing$
643235 IF NC＜ 1 THEN EN＝2：G

OTO 158ஏ
44 324ø IF SN＞N－NC THEN PRIN T＂DO YOU WANT TO LOSE＂ ；SN－N＋NC；＂SHAPE（S）？ （Y／N）＂；：GET AN\＄：IF A N\＄＜＞＂Y＂THEN 84！
32 325ø GOSUB 341ø：SF＝ 1
5C 326 G FOR I＝START TO OE：POK E I－ 2 ＊NC，PEEK（I）： NEXT I
B6 327 F FOR I $=T A+2$ TO START － $2-2$＊NC STEP 2
D1 $328 \emptyset \mathrm{BL}=$ PEEK（I）：BH $=$ PEEK $(\mathrm{I}+1): \mathrm{IF} B L=\varnothing$ AND B $H=\emptyset$ THEN $332 \emptyset$
C9 $3290 \mathrm{BL}=\mathrm{BL}-2 * \mathrm{NC}$
92 33øø IF BL＜Ø THEN BL $=\mathrm{BL}+$ 256： $\mathrm{BH}=\mathrm{BH}-1:$ GOTO 3 3øø
C1 $331 \emptyset$ POKE I，BL：POKE I＋1，BH ：NEXT I
$332 \emptyset \mathrm{~N}=\mathrm{N}-\mathrm{NC}$ ：IF $\mathrm{SN}>\mathrm{N}$ TH EN $S N=N:$ POKE TA，SN
6C 333Ø GOTO 322ø
C1 $334 \emptyset$ Z $=$ Ø：ADDR $=$ PEEK（TA + SN＊2）＋ 256 ＊PEEK（TA + SN＊ $2+1)+T A$
26335 FOR I＝ 1 TO 1øøø
$9 E 336 \emptyset \mathrm{BL}=\mathrm{PEEK}$（ADDR）：IF BL $=\emptyset$ AND $\mathrm{Z}>\emptyset$ THEN $339 \varnothing$
$9 A 337 \emptyset$ IF $B L=\emptyset$ THEN ADDR $=A D$ DR＋1：GOTO 339ø
$88338 \emptyset$ ADDR $=$ ADDR $+1: Z=Z+$ 1：NEXT I
73 339ø OE＝ADDR：RETURN
6B 34øØ HOME ：PRINT＂THIS TABLE CAN HOLD＂；N；＂SHAPES＂： PRINT ：PRINT＂IT NOW H AS＂；SN；＂SHAPE（S）IN IT ＂：PRINT ：PRINT ：RETUR N
$9 E 341 \emptyset$ PRINT ：FLASH ：PRINT＂A DJUSTING CAPACITY＂：NORM AL ：RETURN
IF $342 \emptyset$ FOR $I=1$ TO 178：READ X ：POKE $2 \boxed{6} 47$＋I，X：NEXT I：RETURN
AE $343 \emptyset$ DATA $165,6,201,73,24 \emptyset, \emptyset 4$ ，2ø1，11，2ø8，37，165，252， 1 $33,7,56,165,8,291,3,249$ ， $16,233,6,133,8,197,25 \emptyset, 1$ 44，3
66 344Ø DATA 76，177，8，24，1ø5，6， 1 $33,8,32,58,255,169,8,133$ ，7，76，177，8，2ø1，75，24ø， 4 ，2ø1，21，2ø8，37， 24
FJ $345 \emptyset$ DATA $165,252,195,1,133,7$ ，24，165，9，195，6，133，9， 16 $5,251,197,9,176,192,56,1$ $65,9,233,6$
IE $346 \emptyset$ DATA $133,9,32,58,255,169$ ， $8,133,7,76,177,8,2 \emptyset 1,77$ ，24ø，4，2ø1，1ø，2ø8，37，24， 165，252，1ø5，2，133，7
AB $347 \emptyset$ DATA $24,165,8,165,6,133$ ， $8,169,15 \emptyset, 197,8,176,57,5$ $6,165,8,233,6,133,8,32,5$ $8,255,169,8$
CE 3480 DATA $133,7,76,177,8,2 \emptyset 1$ ， $74,24 \varnothing, 4,2 \emptyset 1,8,2 \varnothing 8,32,24$ ，165，252，1ø5，3，133，7，56， 165，9，233， 6
AD $349 \emptyset$ DATA $133,9,165,9,2 \emptyset 1,24 \emptyset$ ，144，12，24，195，6，133，9， 3
$2,58,255,169,8,133,7,96$
53 5øøøø $\mathrm{D} \$=$ CHR\＄（4）：I\＄$=$ CHR\＄ （9）
IE 5øø2ø PRINT D\＄；＂PR\＃1＂
2F 5øø4ø PRINT I\＄；＂6øP＂
85 5øø5ø PRINT I\＄；＂8øN＂
6E 5øø6ø LIST 1，4øøø
44 5øø7ø PRINT D\＄；＂PR\＃Ø＂

Program 3：SHAPETABLE3X6

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program．

78øø：ЗА Øø 76 Øロ 7С Øロ 82 Øø C5
 781ø：AC ஏø B4 Øø BB Øø C1 Øø 4F 7818：C6 Øø CA øø CE Øø D1 Øの DF
 7828：F8 Øø FF Øø Ø6 Ø1 ØE $\emptyset 1$ E6 783g： 15 פ1 1F 15126 Ø1 29 פ1 68 7838：2E $\varnothing 1 \quad 34$ ø1 39 פ1 40 Ø1 66 7840： 47 Ø1 49 Ø1 51 Ø1 59 91 $9 \varnothing$ 7848：61 Ø1 6A $\emptyset_{1} 74$ Ø1 7B $\boldsymbol{0 1}_{1} 27$
 7858：A9 Ø1 Bø $\emptyset 1 \mathrm{BA} \emptyset 1 \mathrm{C} 4 \mathrm{~g}_{1} \mathrm{~EB}$
 7868：EE $\emptyset 1 \mathrm{~F} 5$ ø1 FE 91 ø7 02 EB
 7878： $29 \quad 24 \quad 94$ øø $4 \varnothing 18 \quad 33$ øD D8 788ஜ： 24 Øø $212417 \begin{array}{lllllll}24 & 17 & 15 & 17\end{array}$ 7888： 3677 GE $24 \quad 27$ פØ 24 BC CØ
 7898：2C 20 9F 日D 12 1F 26 gø CD 78Ag： 36 E5 23 Ø5 29 E5 94 פø 7B 78A8： $4 \emptyset$ Ø3 24 Øø 23 C5 ØC 96 DD 7日Bஜ：1A 76 g4 صø 24 1C BE 12 日D 78B8：F6 ø4 פø Eø ØD 16 IF 9437 78Cり：øø 2415 1F ø4 øø 32 1E F1 78C8：Ø4 øø 38 øD ø4 øø 12 פ4 DB
 78D8：E4 1E $3676 \quad 95 \quad 29$ gø 29 BA 78Eg：BC 95 36 6F g4 gø 21 E4 9A 78E8： 17 日E D1 17 2D 04 Øø 2856 78Fg： 29 3F 8E 1136 3F 94 gの 5B 78F8： $38 \quad 24 \quad$ gD $36 \quad 36 \quad 26 \quad 90 \quad 38 \quad 96$ 79øø： 24 2D 96 F6 27 øø 3864 AØ 79ø日： 95 32 1E 1C 24 gø 182049 791ø：2D $36 \quad 36 \quad 26$ gø $38 \quad 28 \quad 79$ F1 7918：D7 32 פE $95 \quad 20 \quad 94$ פø 38 DE 7920： 24 2D $36 \quad 36 \quad 26 \quad 09 \quad 04 \quad 29$ F3 7928：øø Ø4 Bø 13 ø4 ศø 15 C7 75
 7938：øø 1A øC øC 1C 1C ø4 øg 4D 794ø：Cg 2C 35 F6 $16 \quad$ g4 gø gø 75 7948：$\emptyset \emptyset 25$ E4 1E 36 36 øD 24 CB
 7958：ஏஜ 2324 2D B6 32 3F 24 8C 796ø： $9021 \quad 3 C \quad 38 \quad 36 \quad 36 \quad 2 E \quad \varnothing 592$ 7968： $2 \emptyset$ פø ø8 40 ஏЗ $3 F 36$ F5 E7 797ø： 36 2D 94 øの $6 \emptyset \quad 38 \quad 37 \quad 36$ D2 7978： 36 פ4 פø ø日 $4 \varnothing$ פЗ $3 \mathrm{~F} ~ 36 \mathrm{CA}$ 7989： $362 \mathrm{E} \quad 25 \quad 24$ פg $28 \quad 24$ 1F 99
7988： 36 36 6E 24 פ4 פg 24 3C D8 799ø：פD 96 1A 36 ø8 1F 94 פの 1B 7998：C1 ø日 $3 \varnothing$ 36 F6 0720 øø EB
79Ag： 94 Eg g9 1F 3636 6E 24 6C
79A日：Øø 11 उE $2724 \quad 24 \quad \emptyset 4$ øø D3
79Bg： $21 \quad 24 \quad 17 \quad 07 \quad 30 \quad 36 \quad 36 \quad 9 D \quad 64$
79B8： 24 Dロ 24 1C 36 36 $6 E$ SC A7
 79C8： 36 2E 25 פ4 פø 28 Eg 37 ED 79Dछ： 3636 פ4 9021 3C Fg 36 FE 79D8： 36 øE 3D 2824 øø ø5 2ஏ DF 79Eg：1C $37 \quad 3636$ gD 24 gø 38 gB 79EB：6ø B5 32 1E 27 Øø 122423 79FØ： 24 3C ØD Ø6 $\emptyset \emptyset 11$ उE 27 6F 79FE： $24 \quad 24$ gD 36 Ø6 140124 A2
 7Aø日： 24 1F $36 \quad 36$ 2E $28 \quad 26$ øø 5 F 7A1ø：2C 29 1F B6 32 פD 24 Øø 日の 7A18： 122464 FC 36 Øg 2C 2ø A5

7AB8：øø øø øø øø øø øø øø øø 7D

 7AAB：øø ๆの øø øø øø øø øø øø 9D 7ABø：øø øø øø øø øø øø øø øø A5 7AB8：øø øø øø øø øø øø øø øø AD

 7AFø：$\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset ~ E 5 ~$

 7B38：øø øø øø øø øø øø øø øø 2F

 7BB8：øø øø øø øø øø øø øø øø AF
 7BC8：Øø øø øø øø øø øø øø øø BF
 7BD8：øø øø øø øø øø øø øø øø CF
 7BE8：Øø øø Øø øø øø Øø øの øø DF
 7BF8：Øø øø øø øø øø øø øø øø EF

Program 4：SHAPETABLE5X7

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program．

78øஜ： 64 øø CA øø D1 øø D9 øø BE 78ø8：E7 Øø F5 øø ø3 ø1 1ø ø1 E8 781ø： 17 Ø1 1 E Ø1 24 Ø1 31 Ø1 29 7818： 39 פ1 उE ø1 44 Ø1 48 Ø1 75 782ø：4E Ø1 5C $\emptyset 164$ ø1 71 Ø1 1F 7828：7C ø1 87 Ø1 92 Ø1 $9 F$ Ø1 71 783ø：A9 Ø1 B7 Ø1 C2 Ø1 C9 ø1 EB 7838：D2 ø1 D9 ø1 E2 ø1 E9 ø1 øE 784ø：FJ ø1 ø3 ø2 øF ø2 1E ø2 AA 7848： $28 \quad \emptyset 2 \quad 35$ ø2 41 ø2 4A ø2 3D 785ø： 56 g2 62 g2 6A g2 72 ø2 9B 7858：7E ø2 86 ø2 92 ø2 9 E ø2 $\mathrm{D5}$ 786ø：A9 ø2 B3 ø2 BE ø2 CA ø2 D2 7868：D7 ø2 DF ø2 EA ø2 F6 0231

 788ø： 45 פ3 4B $9358 \quad 9363 \quad 93 \quad 97$ 7888：6C $93 \quad 76$ ø3 81 ø3 8A 93 9F 789ø：97 ø3 9F 93 A6 ø3 AD 93 D1 7898：B7 ø3 BE $93 \mathrm{C7}$ Ø3 CF 93 1B 78Aø：D8 øЗ EJ øЗ ED ø3 F4 øЗ D3 78A8：FD 03 פ7 94 बF 9418 ø4 37 78Bø： 23 g4 2D 9437 g4 $41 \quad 94$ 6A 78B8： 49 פ4 4F $04 \quad 57 \quad \emptyset 461 \quad 94 \quad$ øB
 78CB： $99 \quad 94 \quad 99 \quad 94 \quad 18$ פ8 $24 \quad 2436$ 78Dø：øø $\emptyset 1 \quad 4 \varnothing 18 \quad 20 \quad 6 \mathrm{C} \quad 36 \quad 94 \mathrm{AE}$ 78D8：øø 21 3C øC उC øC 6C 36 7B 78Eの： $6 F \quad 17$ 3E gD $17 \quad 26$ gの 9942 78E8：1C 2D \quad gC 1 C 37 1C $\quad 97 \quad 28$ DG 78Fg： 28 E5 16 ø4 $9 \varnothing 2 C 28289 B$ 78F8： 2820 DF 3325 日D 9232 EB 79øg： 25 g4 gø 29 gD 1C DF 6C 1E

79ø日： 29 DC 2F 38 60 15 g4 øø 日F 791ø：4ø $1829 \quad 20$ उC 26 øの 4914 7918：1C 2424 gC 94 øD 2920 F9 7926： 24 E4 g4 øø Ø1 2日 28 C8 Ag 7928： 23 1C gD 16 BS 23 DB 27 C9 793ø：ஏø ø9 2ø 24 FC 12 6D 25 DB 7938：øø 2135 F6 ø4 øø 4ø 1842 794ø：2D 2D פ4 øø $21 \quad 3594 \quad 9 \emptyset 7 B$ 7948： $28 \quad 28 \quad 28 \quad 28 \quad 29$ øø $2824 \quad 46$ 795g： 64 2D $15 \quad 36 \quad 36$ 1E $3 F 9473$ 7958： $28 \quad 28 \quad 20$ gø 29 3D 202410 796ஏ： 24 1E 94 gØ 2D 2D DC 1B 6D 7968： 64 2D 95 20 1C 3F 1E 9499 797ø：Øø 7ø 2D ø5 20 1C 2F 28 6D 7978：ED 3F 64 פø 4924 FD 3F 42
 7988：2D 65 2ø E4 3F 27 2C 2D C1 799ø： 25 gø 29 2D 2g 1C $3 F 37$ 35 7998： 26 18 ø8 64 2D 94 øø 996 E 79AØ： 24 פ5 2ø 95 2ஏ 3F 3F 94 BB 79AB：$\emptyset \emptyset 29$ 2D 201 C 3F 1726 BF 79Bg： 18 ø8 64 2D $15 \quad 26 \quad ø 6 \quad 29$ 7B 79BE：2D 2ø 24 E4 3F 1776 2D 日D
 79C8：ஏø 91 g5 202725 38 2C 2D
 79D8：ஏø 18 ø日 2D 2D 94 38 3F CE 79Eの： 27 פの बB ロC ロC 1C 1C 9436 79E8：ஏø $99 \quad 94 \quad 28 \quad 28 \quad 20 \quad 97 \quad 38 \quad 29$
 79F8：3F 36 FD 1A 2424 日C 2D 71
 7Ag8： $15 \quad 36$ 36 C4 $3 F$ g4 gø 2D 5F 7A1g：2D 20 1C $3 F$ 36 6418 gB 15 7A18：3C 28 2D 1526 øø $2 \emptyset 24$ C1 7A2． 64 2D 1596 F2 $3 F 94$ gの $3 B$ 7A28： 052924 3C 28 2D 153646 7AJø： 36 1E 3F 94 øø 242424 EC 7A38：2D 2D 96 3B B7 2A 2D 94 5A 7A4D：ØD 242424 2D 2D 96 3B 日B 7A48： 27 gø $2 \emptyset 2464$ 2D 15 9E B7 7A5פ：2B 35 F 6 3F $\emptyset 4$ Øø $2424 \quad 87$ 7A58： 24 4D 31 36 3F 6F 113640 7A6ø：Ø4 øD 29 E5 $2424 \quad 97 \quad 28$ C2 7A68： 25 פø AB 2D 2024 3C 28 øA 7A7ø： 25 øø 242424 4D F1 1E 17 7A78：1E ØE ØE øE ஏ4 øø 2D 2D 4A 7ABg：DC 1B 242424 Øø 2424 FE 7AB8： 24 gE $15 \quad 66 \quad 28 \quad 3 \emptyset \quad 36 \quad 36 \mathrm{Cg}$ 7A9ワ： 26 Øø 242424 ØE ØE ØE E2 7A98： $9621 \quad 24 \quad 24 \quad 24 \quad$ Øø 2924 6D 7AAD： $64 \quad 2 \mathrm{D} \quad 15 \quad 36 \quad 36 \quad 1 \mathrm{E}$ 3F $\quad 04 \mathrm{C5}$ 7AAB：ஏD 242424 2D AD 36 1E 18 7ABg：उF 94 פの $2 \emptyset 24642 \mathrm{D} \quad 15$ 6A 7AB8： 36 B6 1F 6721 Øø 242446 7ACD： 24 2D AD F6 3F ØE gE ØE 94 7AC8： 54 Øø AB 2D ø5 2ø 1C 3F C7
 7ADB： 242424 3F 4D 25 øø 20 日ø

 7AFפ： $99 \quad 36 \quad 361 E \quad \emptyset 4 \quad \emptyset 6 \quad 2 \emptyset \quad 24 \quad 25$ 7AFB： 24 4D $31 \begin{array}{lllllll}36 & 36 & 1 E & 1 F & \text { gC } & 51\end{array}$ 7Bøø： 24 øø 64 פC ØC ØC FC 1B FB 7Bø8： 76 8E 7126 øø 9924 3C 17
 7B18：2D DC 1B øC øC ØC ØC 3C E5 7B2Ø：उF 27 פø Ø9 E5 2424 2C 45 7B28：$\emptyset 4$ Øø 48 ø9 1C 1C 1C 1C 6D 7B3Ø：ø4 øø 2924242427 פø 9ø 7B38： $4 \varnothing 18 \quad 28 \quad 28 \quad 7 \varnothing$ ØE 94 Øø AØ 7B4ø： 12 2D 2D 94 øø $4 \varnothing$ 4ø 18 øB 7B48：7ø ø4 øø 29 øD ø7 2ø 3F øF
 7B58： 29 2D 20 E4 3F 3626 40 E0 7B6ø：18 24 øø 29 E5 1B 24 øC EE 7B68：2D $15 \quad 64$ øの $20 \quad 64$ 2D 1 D C5 7B7Ø： $29 \quad 96 \quad 36$ उE $27 \quad 90 \quad 29 \quad 2578$ 7B78： 68 3F 3F $26 \quad 60$ 2D 159473 7B8ø：פø 2124 3C 95 6Ø 2D D6 E2 7B88： 27 øø 29 2D 36 3F 27 18 20 7B9ø：ø8 24 2C 2D $36 \quad 26$ øø 24 5B 7B98： $24 \quad 2495 \mathrm{AD} 36 \quad 26 \quad \emptyset \emptyset 29 \mathrm{AB}$ 7BAØ：E5 24 3C ØC $2 \emptyset$ øø 72 2D EE 7BAB： $2 \mathscr{} 242427$ øø 242424 AC 7BBø：4D F2 1E ØE ØE 26 Øø 29 E1

7BB8：3D 20242427 øø 2424 C2 7BCD：AD $36 \quad 6 E \quad 24 \quad 24 \quad 27 \quad \emptyset \emptyset \quad 21 \quad \emptyset B$ 7BC8： $241 \mathrm{C} \quad$ ØD $A D \quad 36 \quad 26 \quad \emptyset \varnothing 20 \quad B F$ 7BDØ： 64 2D 15 36 1E 3F g4 gD 41 7BD8： $1224 \quad 24 \quad 24 \quad 2 \mathrm{D}$ AD 36 1E 53 7BED：उF 04 Øø 2064 2D 15 36 B2 7BE8： 36 E6 3827 Øø $21 \quad 24$ 1C 17 7BFø：ØD AD Ø4 Øø 29 2D Eø $3 F 59$ 7BFB：$\emptyset 76 \varnothing$ 2D $\varnothing 4$ Øø 71 Ø5 Eg 22
 7Cø8： $244 \mathrm{AD} 3676 \quad 1 \mathrm{~F} \quad 27 \quad \varnothing \varnothing 9933$
 7C18： 292056 Ø5 2024 DF 33 4D 7C2め： 36 Ø4 øø øC ØC 1C 1C 4D 4C 7C28：F1 16 ØE Ø4 ØØ 12 2D $2 \varnothing 64$ 7C30： 24 1C 1C 4D F1 Ø4 gの 2D 67 7C38：2D DC 63 ØC ØC $3 F$ 3F 94 øC 7С4ø：Фの Ø9 E5 23 1С ØC 642569 7C48：øø ø9 $2424 \quad 24 \quad \emptyset 4 \quad \varnothing \varnothing 29$ A4 7C50： 05 20 ØC 1C E4 27 Øロ $401 B$ 7C58： $18 \quad 18 \quad \emptyset 8 \quad \emptyset C \quad 15 \quad 15 \quad \emptyset 5 \quad 204 C$ 7C60： $05 \quad 292 \mathrm{D} 38 \quad 3 \mathrm{~F} 67$ 2D $05 \mathrm{C3}$ 7C68： $38 \quad 3 \mathrm{~F} \quad 67 \quad 2 \mathrm{D} \quad 05 \quad 38 \quad 3 \mathrm{~F} 67 \mathrm{FB}$ 7C7日：2D $\emptyset 4$ Øø Ø9 2424 F4 1E 4B 7C78：4D E1 Ø4 Øø 18 ø8 ØE ØE 1C 7C8ロ：2C ØC 1F 2424 Øø Øの EØ CC 7C88：1C $\emptyset 53 \emptyset 25 A 82 A \emptyset 4$ Øø 1F 7С9ø：ø9 2828 38 3C Bø 3 F ø4 C7 7C98：øø $25 \quad 24 \quad 2 \mathrm{C} 1 \mathrm{~F} \quad$ Ø5 $6 \emptyset \mathrm{AD} 9 \mathrm{D}$ 7CAØ： 96 F2 $\varnothing 7$ 2ø Øø 2ø øø øø Ø5

Program 5：SHAPETABLE7X9

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program

78øø：8ø øø Ø2 Ø1 1ø Ø1 20 Ø1 47 78ø8：2E ø1 $3 B \quad \emptyset 146 \quad \emptyset 154 \quad \emptyset 1$ A7 781ø：61 Ø1 73 Ø1 7A Ø1 87 Ø1 58 7818： 93 Ø1 9E Ø1 AB $\emptyset 1$ BS Ø1 AC
 7828：F1 ø1 FC ø1 ø8 ø2 14 ø2 74 783ø： 24 ø2 33 ø2 $4 \varnothing$ Ø2 4C 02 DE 7838： 57 ø2 63 ø2 6E ø2 7A ø2 54 784ø：8B ø2 9C ø2 A4 ø2 AD ø2 B5 7848：C2 ø2 DB ø2 ED ø2 øø øЗ 31 7859： 97 Ø3 10 $9319 \quad 93 \quad 33 ~ 93 ~ F 5 ~$
 786ø： 56 ø3 6A $93 \quad 74 \quad 93849376$ 7868：95 øЗ AS øЗ B4 ø3 C7 ø3 øE 787ø：DЗ øЗ E7 ø3 F8 ø3 øø ø4 11 7878：Ø8 ø4 13 ø4 1E Ø4 $29 \quad 94 \quad 68$ 788ø： 35 ø4 48 9459 Ø4 6C 94 øE 7888：7A $0489 \quad 0499 \quad 04$ A4 9453 789ø：B4 ø4 C5 ø4 Dø 94 DA 9426 7898：EA 94 F5 $94 \quad 96 \quad 95 \quad 18 \quad 6578$ 78Aワ： $28 \quad 95 \quad 359547 \quad 95 \quad 58 \quad \emptyset 5$ E1 78AB： $68 \quad 95 \quad 73 \quad 65 \quad 81 \quad 95 \quad 9 \emptyset \quad 95 \quad 14$ 78Bø：AЗ 95 B3 95 Cø 95 Dø $ø 5 ~ 3 C ~$ 78BE：DB 95 ES 95 EE Ø5 F8 9568 78Cø：FD 95 פ4 $9610 \quad 106 \quad 29$ פ6 B1 78C8：2B 96 3B 0648 96 53 פ6 9F 78Dの： $659671 \quad \emptyset 6$ 7A $9684967 F$ 78D8： 91 Ø6 $98 \quad \emptyset 6$ A4 96 AE $96 \quad 28$ 78EØ：B9 66 C8 $96 ~ D 9 ~ 66 ~ E 1 ~ פ 6 ~ 5 A ~$ 78E8：EC ø6 F7 ø6 ø2 97 øC 07 7C
 78F8：4E $9756 \quad 97 \quad 6 \emptyset \quad 97 \quad 6 A \quad 97 \quad 99$ 79øø：BB $97 \quad 2964$ AD 151515 C5 79ø8：$\emptyset 4$ 4ø 18 1E 9F F2 27 פø 99 7916： 92 g5 29242424 2D AD 8D 7918：1E 3F 96 2D 652964 פø 4ø 7920： $92 \quad 29$ 3C 2C 2424 1C 6F 4A 7928： 49 F1 1E 1E ø4 øø 29 g5 59 793ø： 29 D7 23 øC E5 972064 3E 7938：AD 04 Øø 99 E5 3B 2ø 2D 1D 7940：E5 1B ØC ØC 25 øø 99 2D 97 7948：Eø $3 F \quad \emptyset 7 \quad 20$ ø5 282074 DB 795ø：2D 3C 04 Øø $9249 \quad 992459$ 7958： $24 \quad 24$ 1C FF 17 øD $36 \quad 26 \quad 69$ 796ø：Ø』 99 2D 2日 20 3C 3F 3F 6D 7968： 36 פE C4 18 ø日 64 øC AD AB 797ø： $15 \quad 26$ Øø 29 Ø5 F8 $23 \quad 24$ 日ø 7978： $24 \quad$ Øø $24 \quad 24 \quad 24 \quad 95$ 2A 28 38
 7988： $28 \quad 28 \quad 15 \quad 15$ C4 D8 24 E4 44

799ø：1C ø4 øø 92242424 6C 22
 79AD： 24 6F 49 FG 1E 1E Ø4 øØ 8B 79A8： 49 2D Eø 3F 3F 6ø ØC E5 15 79Bø： 63 2D 1C 94 פø 99 2D 28 gB 79B8：2ø 1C 1C F7 1E 76 ø4 øø 98 79Cø： 992424 3C 17 4D 28 2D F4 79CB：9F $36 \quad 36 \quad \emptyset 4$ øø $92 \quad 24 \quad 24$ D6 79Dø： 24 gC gC AD 15 FG 1E E7 DD 79DE：Ø4 øø 18 ø日 64 øC 2D 2D 2C 79EØ：9F gE F6 1E 3F $2 \emptyset$ gø 49 AB 79E8： 2424 3C BF ØD 48 2D 6462 79FD：$\emptyset \emptyset \emptyset 12024$ 3C 4D Ø9 17 AA 79F8： 36 F6 27 øø 9924 3F 2021 7Aøø： 6425 B4 A9 36 1E Ø4 Øø DJ 7Aø日： 29282828 FB 1 B 6F AA EØ 7A1Ø： $1115 \quad 25$ gø 92492424 9D 7A18： 2424 DF פE 36 ØE øD Ø5 ஏE 7A2の： 2964 Ø4 Øø 29 Ø5 $2 \emptyset 248 \emptyset$
 7AЗø：1C 94 Øø 25 E4 24 ØC ØC 62
 7A4Ø：18 øB ØE ØE $24 \quad 242424 \quad \emptyset 4$ 7A48：2D 2D ø4 øø 4ø 18 28 2D 7F 7A5ø：2D E5 1C 96 2A $2 \emptyset \emptyset \emptyset 4 \emptyset 54$ 7A58：18 $28 \quad 28$ Bø $12 \quad 97 \quad 20 \quad 2 \mathrm{D}$ 8D 7AGロ：2D 25 Øロ 4924242424 E7 7A68：1E 1E 4D E1 Ø4 øø 49 18 86 7A7D：ø日 ø4 38 $3 \mathrm{~F} 44 \quad 9956$ 2D 85 7A78：$\emptyset 4$ øø 2D 2D 2D DC DB øC 88 7ABø：ØC øC FD 38 38 $38 \quad 28$ 2D E1 7AB8：2D 25 øø $4 \varnothing 18 \quad 95 \quad 28$ 15 9B 7A9め： 15 2D 2918 g8 1E 3 F 38 5 5 7A98： $3817 \quad 94 \quad 9 \varnothing \quad 49 \quad 9418 \quad 98 \quad 82$
 7AAB： 24 4D 36 ø4 øø ø9 24 3C B2 7ABD： $27 \quad 28 \quad 35$ gE $35 \quad 3644 \quad 28$ FD
 7ACø：ø4 øø 28 2D 2D ø5 2ø 1C 69 7AC8：उF 3F ø7 2ø øC 2D 2D E5 65 7ADø：BЗ B6 B6 1F $942 \emptyset \quad \emptyset 42 \emptyset \mathrm{DE}$ 7AD8：Ø4 2ø øø 49 ø9 ø5 Eø 17 A1 7AEØ：DF 63 ØC ØC פC ØC פC DF 69 7AEB：EJ 17 ØE Ø4 Øø 29 6D E1 FB 7AFØ： $2765 \mathrm{DF} 1 F 17$ 2E 4D $6 \emptyset 13$

 7Bø日：1C 1C 2424 øC øC $\varnothing 4$ øø 73 7B1ø： 49 øC øC 2424 1С 1C 94 4ø 7B18：ஏø 6Ø ØС 2D øE ØE DE 23 Ø5 7B2Ø： 24 38 3F g4 18 ø8 øE ØE 6A 7B28：2D øC øC 96 3F ø7 18 ø8 F1 7B3Ø： 24 Ø4 øø 49 2ø 24 3F 6746 7B38： 092495 2A 25 Øø 922989

 7B5ø：øС øС øС øС ø4 øø 29 2D 32 7B58：2D $20.24 \quad 24$ E4 $3 F \quad 3 F \quad 17 \quad 6 E$
 7B68： 64 øø 29 2D E5 $232424 \quad 81$ 7B7Ø： 24 1E $\quad 64$ Øø 2 D 2D 2 D DC 10 7B78：DB 63 øC øC 65 ØC E4 $3 F$ DC

 7B90：2D $15 \quad 36 \quad 64$ Øロ $49 \quad 99 \quad 24$ C5 7B98：2C 1F 3F $3 F$ øC øC øC øC FD
 7BA8： $05 \quad 20$ E4 $3 F \quad 3 F 27242 C$ C5 7BBめ：2D 2D 25 Øø 29 2D 2D 2ø A6 7BB8：E4 $3 \mathrm{~F} \quad 3 \mathrm{~F} \quad 37 \quad 36 \quad 94 \quad 40 \quad 18$ A7
 7BCB： 2464 פC פC ØC 3C 3F 3F 3C 7BDø： 37 ø4 øø 29 2D 2D 2ø E4 3A
 7BEØ：ØC 2D 2D $15 \quad 36 \quad \emptyset 4$ Øø $7 \emptyset 52$ 7BEB：2D 2D ஏ5 $2 \emptyset 24$ 3F $3 F$ 3F $4 \varnothing$ 7BFの： 2064 2D 2D 15 36 154 øø 13 7BF8： 0118 ø8 184 4ø 1894 øø 22
 7Cø日： 49 E1 1C 1C 1C ØC ØC ØC 98 7C1の：øC ø4 Øの 4の 18 2D 2D 2D 11 7C18： 64 38 3F 3F 27 øø 99 ø5 4D 7C20： 282828 Eg 1C 1C 1C 04 D7
 7C3Ø： 3 F 3F 1726 פø 29 2D E5 C2 7C38：DB 23242464 2D 2D 15 F5

7C40： 36 F6 $3 F 27$ øC 35 g4 $0 \varnothing$ A9
7C48： $2424 \quad 24$ øC øC 2D 1515 FS
7C5ø： 36 3F 3F 6F 4A 313694 9A
7C58：gの 2D 2D 2D 2ø E4 3F 3F 67
 7C68：AD 36 ø4 øø 99 2D 2D F8 96 7C7ø：DB 1C 2424 øC øC 2D AD BD 7C78：ஏ4 øø 2D 2D 2D $2 \varnothing 242442$ 7CBg：E4 JF 3 F AF $36 \quad 36 \quad 36 \quad 9499$ 7C88：øø 2D 2D 2D DC DB 2324 ø6 7C9ø：2D E5 1B 24 2C 2D 2D 25 D4 7C98：øஜ 2424 2D E5 1B 24 2C 92 7CAø：2D 2D 25 øø ø9 2D 2D $2 \varnothing 97$ 7CAB： 3 C FF 9A 1C 2424 øC бC $A A$ 7CBg：2D AD 04 øø 24242424 4A
 7CCD：ge 3F 3 F g4 ge 29 2D E5 9A 7CCB： 23242424 3F 4D 25 gø 9C 7CDE：7ø 2D $05202424246 F 59$ 7CDB： 94 פの 24242424 4D 4930 7CEg：1E 1E 1E 1E 6F 72 gE gE 85 7CEB： 94 øø 2D 2D 2D DC DB 2314 7CFg： 242424194 פ® 242424 C6 7CFB： 24 פE बE ØE 26 øB øC øC 9F 7Døø： 36 7Dø8： 2424 פE gE פE פE פE פE 93 7D19： 36 g4 18 ø日 242424 פø A4 7D18： 99 2D 95 28 2024 E4 1C 7D
 7D28： 24242424 2D 2D AD 36 B4
 7D38：1C 1C 9D 2424 1C 1C 3F 35 7D4ø：1E 1E 36 36 EE g4 פø 24 Ag 7D4B： 242424 2D 2D AD 36 1E 60
 7D58：7ø 2D 2D 95 2ø E4 $3 F 3 F 1 F$
 7D68： 4924242424 3F $6 F 99$ DD 7D7ø：2D 94 øø 29 2D 2D $2 \boldsymbol{1 0} 2418$ 7D78： 2424 DF DB $36 \quad 36 \quad 3626 \quad 65$ 7D8g：gø 49 1C 1C 1C 2424 6C 39

 7D98： 36 7DAø：1E ø4 øø 64 øC øC 1C 1C D6 7DAB：1C $6 \mathrm{C} \quad 49 \quad 31$ 1E 1E 16 gE AC 7DBg： $\operatorname{gE} 26$ gø 492424 1C 1C D6 7DB8：1C 6C 4931 1E 1E 94 gの 8A 7DCg：2D 2D 2D DC DB 63 gC gC A1 7DC8：øC øC øC 3C 3F 3 F 27 øø 57 7DDø： 99 2D E5 1B $2424242 C 3 \varnothing$ 7DDE：2D 94 øø 4 B 49 E1 1C 1C 16

 7DFø：4ø 48 E1 3F 3F $17 \emptyset 4$ ØI AC
 7Eøg： 49 1C 24 øø 29 6D 3C 55 A9 7Eø日：2ø 24 3F BF 1736 ø4 øø 9B
 7E18： 972018 18 ø8 2424 øø $3 E$ 7E2ø： 29 2D 05 FB DB 2464 2D 92 7E28：AD 94 gø 29 6D 3 C g5 2916 7E3ø：उC 95262496 1B 3 SF 1789 7E38： $36 \quad 26$ øø 29 2D ES DB 2348 7E4ø：2D 2D 25 E4 $3 F$ BF $26 \quad ø \varnothing 57$ 7E48： 992424 3F 4D FD 206452 7E5ø：AD Ø4 øø 12 ØE 2D 2D 2ø E5 7E58： $24 \quad 24 \quad 24$ 1E $97 \quad 38$ BF 36 A5 7E6日： 76 2D 6520 Øø 24242483 7E68： 24 96 GA GC AD 15362673
 7E78： 94 øø 12 øE 2D 2D $2 \varnothing 24$ 1D 7EBø： 2424104 øø 2424242437 7E88： 9649 F1 1E 6F 72 øE g4 AB
 7E98： 2424 2C AD 36 36 4D 24 5A 7EAø： 24 1C 27 øø 2424 AC øC B2
 7EBg： 052924 1C $3 F$ BF 3626 gA 7EBE：øø 9224242424 øE ø5 F3 7ECg： 28 AD 36 F6 $3 F 9729$ gø C9 7ECB： 92496924242424 1E DC
 7ED8：øø 242474 øC 2D 15 ø4 ED 7EEの：øの 7ø 2D 2D Eの E7 E7 ØC F4 7EE8：2D AD 94 øø 49 2D FB 23 7C

7EFg： 2424 B4 3B 4D 25 פø 29 7B 7EFB：2D 652024 FC DB 3636 gE 7Føø：ø4 øø ø9 1C 1C 24 6C 99 37 7Fø日： 36 F6 64 Øø $2 \emptyset 24$ 6C 11 DB 7F1ø： 36 F6 6F 29 Ø5 29 2424 7D 7F18：øø øC øC 25 3F 386849 E2
 7F28：2D 201242424 DF 1 1B 3699 7F3Ø：36 ØE 2D ø5 2ø Øロ 2D 2D 4C 7F38：E5 DB øC øC ØC 9538 3F 87 7F4D：3F g4 øの 49 2D DC 23 E4 7C 7F48：ஏC 24 øC 2D ø4 øø 49 2の 7D 7F5ø： $24 \quad 18$ ø日 $24 \quad \emptyset 4$ øø 29 2D $4 A$
 7F6Ø： $40184018 \quad 6 \varnothing$ AD 15 2D $2 \emptyset$ 7F68： $2 \emptyset$ øø 242424243536 9ø 7F7D： $\begin{array}{lllllllll}36 & 36 & 2 E & 24 & 24 & 24 & 24 & 35 & 4 F\end{array}$ 7F78： 36

Program 6：DISPLAYSHAPE

For instructions on entering this program． please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．

2E $1 \emptyset$ HOME ：TEXT
$922 \emptyset$ HGR ：SCALE＝1：ROT＝Ø：HC OLOR＝ 3
Aी $3 \emptyset$ POKE 232，Ø：POKE 233， 112 F\＆ $4 \varnothing$ VTAB 22：PRINT＂ENTER NAME DF TABLE：＂：INPUT＂＂；N\＄： PRINT＂ENTER DRIVE \＃：＂；： GET AN\＄：AN＝VAL（AN\＄）
4C $5 \emptyset$ PRINT AN
9E $6 \varnothing$ PRINT CHR\＄（4）；＂BLOAD＂；N\＄ ；＂，A28672，D＂；AN
EJ $7 \emptyset X=1: Y=1$
$308 \emptyset$ FOR I $=\varnothing$ TO 2øØ STEP $2 \emptyset$
$489 \emptyset$ FOR J $=1$ TO 20
$231 \emptyset \emptyset x=X+1 \varnothing$ ：IF $J=1$ THEN

COMPUTE！ Subscriber Services

Please help us serve you better．If you need to contact us for any of the reasons listed below，write to us at：

COMPUTEI Magazine

P．O．Box 10954
Des Moines，IA 50340
or call the Toll Free number listed below．
Change Of Address．Please allow us 6－8 weeks to effect the change；send your current mailing label along with your new address．

Renewal．Should you wish to renew your COMPUTEI subscription before we remind you to，send your current mailing label with payment or charge number or call the Toll Free number listed below．
New Subscription．A one year（12 month）US subscription to COMPUTEI is $\$ 24.00$（2 years，$\$ 45.00 ; 3$ years，$\$ 65.00$ ． For subscription rates outside the US， see staff page）．Send us your name and address or call the Toll Free number listed below．

Dellvery Problems．If you receive dupli－ cate issues of COMPUTEI，if you experi－ ence late delivery or if you have prob－ lems with your subscription，please call the Toll Free number listed below．

COMPUTE！
1－800－247－5470
In IA 1－800－532－1272

F9 110 IF $\mathrm{I}+\mathrm{J}>\operatorname{PEEK}$（28672）T HEN $15 \emptyset$
C8 126 DRAW I $+J$ AT X, Y
$6413 \emptyset$ NEXT J
E5 14の NEXT I
IA 15Ø HOME ：VTAB 22：PRINT＂PL EASE PRESS A KEY＂；：GET AN\＄：TEXT ：HOME ：END

Program 7：BARCHART

For instructions on entering this program． please refer to＂COMPUTEI＇s Guide to Typing in Programs＂elsewhere in this issue．

B7 $11 \varnothing$ TEXT ：HOME $:$ MAX $=\varnothing$
2F $12 \emptyset$ READ NB，WB
$3813 \emptyset W S=(28 \emptyset-N B * W B) /(N$ $B+1)$
F7 $14 \emptyset \mathrm{X}=\mathrm{WS}+1$
74 15ø IF NB＊（WB＋WS）＜ $28 \emptyset$ T HEN $17 \varnothing$
58 16Ø PRINT CHR\＄（7）；＂CHART IS TOO WIDE＂：PRINT＂PLEASE PRESS A KEY＂：GET AN\＄：G OTO 49ø
48 17ø DIM BAR（2＊NB），C（5ø）
2A $18 \emptyset$ FOR I $=1$ TO $2 * \mathrm{NB}$
$9819 \emptyset$ READ BAR（I）
992 20 IF MAX＜BAR（I）THEN MAX $=$ BAR（I）
Eg 210 NEXT I
$11220 \mathrm{SCL}=13 \emptyset / \mathrm{MAX}$
5B 23Ø HGR ：ROT $=\varnothing$ ：SCALE $=1: \mathrm{H}$ COLOR＝ 3
QC 24ø HPLOT Ø，Ø TO $\varnothing, 159$ TO 279 ，159 TO 279，ø TO Ø，ø
FC $25 \emptyset$ FOR I $=1$ TO NB
7D 260 HPLOT $x, 159$ TO $x, 159$－SC L＊BAR（I）TO $X+W B, 159$ －SCL＊BAR（I）TO X＋WB， 159
$91270 X=X+W B+W S$
EE 280 NEXT I
5D $281 x=W S+W B+13: B W=W B$ -5
FB 282 FDR I $=\mathrm{NB}+1$ TO $2 * \mathrm{NB}$
48283 HPLOT X， 159 TO X， 159 －SC L＊BAR（I）TO $x+B W, 159$ －SCL＊BAR（I）TO X＋BW， 159
AJ $284 \mathrm{X}=\mathrm{X}+\mathrm{WB}+\mathrm{WS}$
63 285 NEXT I
fF 290 POKE 232，Ø：POKE 233， 112
19 3øø PRINT CHR\＄（4）；＂BLOAD BAR TABLE，A\＄7øøø＂
F5 310 FOR I＝ 1 TO NB
2C $32 \emptyset \mathrm{~K}=\varnothing$
3333 FOR J $=1$ TO $1 \emptyset$
55 34ø READ C（J）：IF C（J）$=\varnothing$ TH EN 38ø
4A $35 \emptyset$ DRAW $C(J)$ AT I＊（WS＋WB $)+5,156-K * 9$
$5 B 360 K=K+1$
6E 376 NEXT J
$7838 \emptyset$ IF I $=$ NB THEN 4øø
F1 390 NEXT I
43 4øø FOR I $=1$ TO 25
FB $41 \emptyset$ READ C（I）
EJ 420 DRAW C（I）AT $18+(\mathrm{I} * 9)$ ， 13
E6 430 NEXT I
FF $44 \emptyset$ FOR $I=1$ TO 4
if 45ø READ C（I）
$8746 \emptyset$ DRAW C（I）AT $185+(I * 5$ ）， 22
EE $47 \emptyset$ NEXT I
QA 471 FOR $I=1$ TO 4
DB 473 READ $C(I)$ ：DRAW C（I）AT 5 7 ＋I＊5，22
FE 474 NEXT I
6D 476 DRAW 32 AT 85，24：DRAW 31

FI AT 213，24
F1． $48 \emptyset$ DRAW $3 \emptyset$ AT $1 \emptyset, 15 \emptyset$
8E 49Ø VTAB 24：PRINT＂PRESS ANY KEY＂；：GET AN\＄：TEXT ： HOME
80 5øø END
AC $51 \varnothing$ DATA $4,1 \emptyset, 169,1 \emptyset 8,42,168$ ， $110,148,111,127$
F5 $52 \emptyset$ DATA $1,2,3, \emptyset, 4,2,2,3, \emptyset, 7$ ， $1,6,1,5, \emptyset, 8,3,9,4,3,8, \varnothing$
$7253 \emptyset$ DATA $1 \emptyset, 11,12,13,14,15,16$ $, 11,24,17,14,11,11,12,24$ ， $18,10,19,29,21,22,14,15,1$ 9，23
$2354 \emptyset$ DATA $25,26,27,28,25,26,2$ 9，25

Program 8：BARTABLE

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program．

7818：C8 Øø DJ ஏø E4 Øø EF øø EE

7830： 73 Ø1 75 Ø1 7C ø1 83 ø1 C9
7838：8B 9192 ø1 9C 101 D5 9127
7840：E4 512424 日C ØC 15 15 7A
7848： 3636 C4 3 F g4 gø AB 2D øD

7858： 15 g4 øø 202424 4D 3154
7860： 3636 1E JF 94 פの 2424 3E
7868： 24 2D AD F6 $3 F$ פE बE פE 38

7878： 25 øø 242424 2D AD 36 2A
78BE：1E $3 F 64242424$ GE DB
7888：बE פE 9621242424 פø E2
789ø： 242424 2D 2D 96 3B B7 E5

78AB： $24 \quad 2424 \quad 2 \mathrm{D}$ 2D AD 36 1E B6
78Bŋ： 3 F 3F 日D GE GE GE 94 פD 54
78B8：2D 2D 2D DC DB 2324 2D DF
78C＠：E5 1B 24 2C 2D 2D 25 gø 1B
78C8：2D 2D 2D DC DB $23 \quad 2424$ E6
78Dø： 24 ø4 øg 242424 gC øC EC
78DE：2D $1515 \quad 36 \quad 3 F \quad 3 F \quad 6 F ~ 4 A ~ C B ~$

78EB： 24 3F 6F 99 2D 94 øø 29 DC
78Fg：2D ES 23242424 3F 4D 16
78F8： 25 פø 49 1C 1C 1C 242425
7900：6C $49 \quad 31 \quad 36 \quad 36$ 1E 1E 04 6F
79ø8：ஏø 7ø 2D 2D ø5 2ஏ E4 3F 41
7910： 3 F 日7 20 64 2D 2D 1564 FA
791日： 6624242424 2D 2D AD BB

7928： 0528 20 24 E4 1C JF 17 1B

7938：2D 29 2424 E4 3F 3F AF E2
7949： 36
7948：20 242424 DF DB 36 36 2C
7950： $36 \quad 26$ øø 69 2D 2D FB DB 64
7958：1C 2424 øC פC 2D AD 04 1C
796ø：Øロ 24242424 बE बE GE AG
7968：ФE ФE ஏE 36 ஏ4 18 øB 24 BF

7978： 36 6F 94 פø 3824 2D 36 C5
798ø： $36 \quad 26 \quad 9 \emptyset \quad 38 \quad 649532$ 1E 97
7988：1C 24 øø 3824 2D 96 FG 10
799ø： 27 Øø $38 \quad 28 \quad 7 \emptyset$ D7 32 曰E FS
7998：ஏ5 2ø $94 \quad$ Øø $2424 \quad 24 \quad 24 \quad$ B4
79AD：2D 2D 2D 2D 2D 2D 2D 2D 93
79A8：2D 2D $36 \quad 36 \quad 36 \quad 36 \quad 3 F \quad 3 F$ EF
79Bg： 3 F 3F 3 F 3F 3 F 3F 3 F 27 8B

79C8：øC ØC øC DF FJ 9E FJ 1C 62
79D』：1C 18 1C 64 gø 2424 2C Ag
79D8：2D 2D 2D 2D 3636 3E 3F 6C
79Eg： 3 F 3F 27 פの 2424 2C 2D 5F
79E8： $35 \quad 36 \quad 36 \quad 3 F \quad 3 F$ gø $\quad 06 \quad 94 \mathrm{BC}$

Font Printer For The IBM PC/PCjr

John Klein
"Font Printer" for the IBM PC/PCjr allows you to print a wide variety of custom character styles on a dotmatrix printer. Its editor makes it easy to design custom text fonts, and the printing program lets you print any ASCII (plain text) file using your custom print style. Another program allows you to print large banners using any custom printer font. As a special bonus, the quarterly IBM PC/PCjr disk that includes this month's COMPUTE! programs also contains a library of 25 ready-to-use custom printer fonts for this program. The editor program requires a color monitor, and, for the IBM PC and compatibles, a color/graphics card or equivalent hardware is also required. The printing program requires an IBM Graphics Printer or compatible dot-matrix printer. All the programs require BASICA for the PC, Cartridge BASIC for the PCjr, or GWBASIC for compatibles, and DOS version 2.1 or higher.
"Font Printer" makes it possible to create, edit, and print custom fonts on a dot-matrix printer. You can print text in almost any imaginable print style, from Gothic and Roman to Old English, outlined characters, or whatever else you can devise. You have full control over the shape of each character, so Font Printer isn't limited to printing ordinary characters of the alphabet. It also can print custom letterheads, other graphic designs, and banners.

This article includes four programs. The font editor (Program 1) lets you design and edit complete custom fonts and save them to disk. The printing program (Program 2)

Figure 1: Custom Fonts

REGULARQUALITY

This is a test
abcde fghi jk 1 mnopars tuvwnyz
DOUBLEE
This is a test
ABCDEFGH I JKLMNOPQRSTUVWXYZ
abcde fghijk 1 mnopars tuvwxyz
1234567890
TRIPLE
This is a test
ABCDEFGH I JKLMNOPQRSTUVWXYZ
abcdefghijk 1 mnopqrstuvwxyz 1234567890
GRYOLESGORGOT
This is a test ABCDEF \&H Y \&KL MENBODRSGUYW以Y\% abcdefghijklmnapgrsturuxyz 1234567890
OHWEST
This is a test
ABCDEFGHI JTI MANORORSTUXWXYZ
abode fihi jkimnoparsturywyz
1234557890

7illiis iis (a)

RANDOM

This is a test
ABCDEEGHI JKLMNOPORSTUVWXYZ
abcdefghijk 1 mooparsturwxyz
OLDENGEISH
This is a fesf
ABCDEFSE9 Skemion orstuditxuz
abcdef ghi jkI mropqqrs fupmxyz
"Font Printer" allows you to create many different custom fonts and print any font in a variety of sizes.
lets you print any ASCII text file using the custom font of your choice. Program 3 helps you keep track of the custom fonts you have created, and the banner printer pro-
gram (Program 4) prints large-letter banners using custom fonts. The accompanying figures illustrate just a part of what you can do with Font Printer.

Figure 2: Letterhead

Dear Prospective Traveler,
With prices rising in what seems every market, the
cost of travel is lower than it has ever been. In fact
some companies cut their prices in half all the way across
the board. Take that long needed vacation today! Don't
put it off any longer.
Come down and see our special vacation packages. Simply
choose your vacation spot and budget and we' II set you up with
the best possible package. We'll get you your airplane, bus,
or cruise tickets and reserve a nice place to stay, once at your destination.

See us soon. There is no better time than the present!

Sincerely,

Herbert Filling

Herbert Filling
General Manager
safe travel
SAFE TRAVEL 300 STATE STREET, ANYTOWN, USS. A

"Font Printer" can also create eye-catching graphic designs, such as this letterhead for a fictitious travel agency. The graphics shapes are created by redefining a block of text characters.
(Ed. Note: As a bonus for disk subscribers, the COMPUTE! Disk that includes the programs for this month also contains 25 ready-made custom printer fonts. (Because space is limited, we cannot publish the bonus fonts in the magazine.)

These programs were tested on an IBM Graphics Printer, a Star Micronies SD-10 (in IBM mode), and on an Okidata printer with the IBM Plug ' n Play Kit. To use Font Printer on another type of printer, check the printer manual to see if it can print APA (All Points Addressable) graphics, also known as bit-image graphics. The printer must also use the command sequence $\mathrm{CHR} \$(27)$ CHR\$(76)-ESC L-in order to get 960 dots in the same space normally occupied by 80 text charactersusually referred to as doubledensity graphics mode.

Using The Font Editor

Type in Programs 1-4 and save them on disk; then load and run Program 1, the font editor. The program begins by asking you to enter a filename for the font you wish to edit. Each custom font is saved in a separate disk file. The filename must be no longer than eight characters, not including the extension. You should add a special extension such as .FNT with font filenames as a reminder that they contain costom printer fonts.

Each disk that contains font files must also contain a font code directory file named FONTCODE.DIR. If no font code directory is found on the disk, the font editor will create a new FONTCODE.DIR file. The font editor will also make the appropriate entries in the font code directory for each new font you create. Any disks containing
font files must also have a font code directory file before the fonts can be used by Programs 2-4.

To load an existing font, place a disk containing the appropriate font file in the drive and enter the desired filename. The editor loads the file from disk and displays the first character of that font on the screen. If you enter the name of a file that is not found on the disk or is not currently in the font code directory, Program 1 asks whether you wish to create a font code diretory entry for the new file. Press Y to create a new font file or to add an existing file to the font code directory, or press N to abort the function and return to the original prompt.

If a file with the specified name exists on the disk but is not in the font code directory, Program 1 allows you to simply add the file to the directory and begin editing. Otherwise, you must create a new font file. In this case, you have two options: You can start with an empty font (all character patterns will be blank), or you can start with a font that is a copy of an existing font. If you choose the option to start with an empty font, you must answer a few questions before you begin to edit. First, the program requests that you specify the charaster size in terms of width and height.

The character width (in dots) can be any whole number from $4-36$. A width value of 12 creates normal-width characters which will print ten characters to the inch on a standard printer. To create halfwidth characters, you would specify a width of 6 . Use a width of 24 for double-width characters, 36 for triple-width, and so on.

After you specify the character width, Program 1 asks you to specify the character height in terms of lines. A character may be one, two, or three lines high. Each line contain eight vertical dots, and the normal printer font is one line in height. A character with a height of two lines is 16 dots high, and one with three lines is 24 dots high-a very large character, indeed.

The next prompt asks you to enter the font call code for this font. This is the code name you will use to call (begin using) the font within a word processing document. The
font call code can be a descriptive word of any length, but it must contain no spaces, colons, or hyphens. To use a font, you need to remember its call code, not its filename. The font code directory matches call codes with filenames.

Finally, the font editor program prompts you to press C if you wish to create a character font or H if you wish to create a header. A header is simply a picture or graphic design that is built of several individual custom chanacters. The process of creating headers is described later in this article.

Editing Screen

After you answer those questions (or if you began the program by loading an existing font), the font editor displays the main editing screen. This screen is divided into two areas. On the left is a list of single-key options used in editing. On the right is the editing window, which displays an enlarged version of the current character.

A custom character set is created by drawing one character at a time in the editing window. Use the cursor keys to move around inside the editing window. If you press the space bar when the cursor is on a blank space, that space is turned on. To turn off a space that is already turned on, simply move the cursor to that square and press the space bar again.

Font Printer allows you to define patterns for ASCII characters 33-126. These are all the characters that can be entered from the IBM PC/PCjr keyboard without using the Alt-key entry mode.

If you are creating a comparatively small font, you can draw each character by moving around the editing window and turning on the dots to represent that character. For larger characters or graphics, you may find it faster to draw each character on graph paper before transferring the design to the computer. Another method is to tape a sheet of clear plastic over the monitor screen and draw on the plastic with washable marking pens, then use the editor to fill in the squares to make up the design. When you're done creating one character, simply wipe off the plastic and proceed to the next.

Figure 3: Centering Guidelines

Placement

The placement of each character within the editing window is critical. If you don't align each character in the set properly, the font may look messy or be difficult to read. For most fonts, you'll want to leave white space around characters to prevent them from running into one another and becoming illegible. Figure 3 illustrates some centering guidelines which will create a pleasing appearance in most cases. Note that all characters except uppercase I should be placed flush against the left side of the editing window.

The exact amount of blank space bordering each character depends on the effect you wish to achieve. In general, you should leave one or two blank lines below the characters to leave room for descenders on the lowercase characters q, j, p, q, and y. Similarly, the top line or two of space should be reserved for uppercase characters and for the ascenders in the lowercase characters b, d, h, k, l, and t. Every character should have at least one row of white space to the right.

Editing Options

The left side of the editing screen displays the font editor's single-key commands:

M	move to new character
clear edititin window	
C	trace from character
T	save character to disk
S	reinitialize fort parameters
I	clear all characters
A	rewrite screen
W	restart program
R	quit
Q	
SPACE	plot/erase point
or cancel current command	
D	or card draw mode on/off turn erase mode on/off
E	tur

The move command (M) lets you change which character you are editing.

The clear window command (C) clears the editing window, erasing the current character pattern.

The trace command (T) allows you to copy the pattern of another character in the font into the editing window. This is useful for creating characters that look similar. For instance, to create a lowercase e character, you might begin by tracing in the pattern of lowercase c (assuming you have already created the c). When asked to choose which character to trace, you may either enter the character's ASCII value or simply type the desired character. Note that this command clears the current character before tracing the pattern of the new one.

The save command (S) saves the current character pattern (the contents of the editing window) to the font file. To add the pattern to the font file, you must save it before moving to another character or exiting from the editor. After you save a pattern, you will automatically be moved to the next character in the set. Note that all the data for the pattern may not be written immediately to disk when you use the S command. The computer collects the data in a buffer and writes to disk only when the buffer is full. For this reason, it's important to always exit the program with the Q (quit) command. If you use CtrlBreak to break out, the last editing changes you made may not be written to disk.

The initialize command (I) resets the size of the font and allows you to change its call code. If you change the font size, you'll probably need to use the clear all (A) command to erase any previous character definitions. Character patterns designed for one font size will appear garbled when displayed in another size.

The clear all command (A) clears all the characters in the current font. Use this command with care; it's not possible to recover the character patterns once they have

been erased.

The rewrite command (W) erases and redisplays the entire editing screen. The editing window is redrawn with the character pattern from the font file.

The restart command (R) restarts the program. The current chararacter set patterns will be cleared, and you'll be given the opportunity to choose another font file for editing.

Press the Q key to exit the program and return to BASIC. All saved character patterns will be written to disk before the program exits.

The clear all, restart, and quit commands all ask Are you sure? before proceeding. Respond with Y to execute the command or N to cancel the command. You can also cancel the clear, trace, and save commands by pressing the space bar while the command is acting.

The draw-mode command (D) allows you to turn automatic draw mode off and on. When draw mode is on, the cursor automatically turns on every square which it moves over. This is useful for filling large areas of the editing window. When draw mode is off, the cursor moves without disturbing anything in the edit window.

The erase-mode command (E) allows you to turn automatic erase mode off and on. When erase mode is on, the cursor automatically erases every square which it moves over.

Both draw mode and erase mode are canceled when you draw with the space bar.

Creating Headers

A header is simply a picture made of many custom characters. Perhaps the most common use of a header is to create a letterhead which goes at the top of a page of stationery. (See Figure 2.) However, you can use this feature to put graphics anywhere on a page.

The first step in creating a header is to decide on its size. You must subdivide the header into blocks of character size. For example, to create a header that is 240 dots wide by six lines high, you could use character blocks 24 dots wide by three lines high, in which case 20 characters would be re-
quired for the header-two rows of 10 characters each. Other character sizes could be used, such as 12 dots wide by two lines high, in which case the header must be subdivided into more blocks. The only restriction is that the complete header pattern can use no more that 94 blocks (only characters 33-126 can be defined). If you use the largest character size (36 dots wide by three lines high) and divide the header into 26 characters across by 3 characters high, you can create a header line that is three times as high as the largest font style and the width of 80 normal characters, a space about $8 \times 3 / 4$ inches in size.

If you create a header of the maximum size, the three lines of character blocks can be divided in many different ways. For instance, you might use the upper two lines to create a custom letterhead for the top of a page, and use the remaining line to create a design for the bottom of the page.

Header characters can be created by drawing as you go on the editing screen. However, you may find it somewhat difficult to visualize the overall design, since only one character is visible in the editing window. Perhaps the simplest method is to tape together several sheets of graph paper and design the header completely before you begin editing with the font editor. Then decide what portion of the design should go in each character block, and begin filling in the characters. You'll have an easier time remembering which character blocks comprise the header pattern if you use a sequential series of characters for the patern. For example, if you subdivide your header design into two rows of ten characters, you might use characters 65-74 (corresponding to $A-J$) for the top row and characters 75-84 (corresponding to $K-T$) for the bottom row. Be sure you remember which characters you used for your design. You'll need this information to print the header later.

Forbidden Character Values

When you save a character, its pattern is converted into a series of numbers in the range $0-255$. Two
of the 256 possible values create problems when you attempt to write them to disk as part of a file. The tab character (ASCII 9) is written as five space characters rather than as one tab character. Character 26 signifies the end of a file and prevents all subsequent values from becoming part of the file. If you try to save a pattern containing either of these values, the program shows you which dots in the pattern create the problem number (they will be changed to red), and it gives you a chance to correct them. Simply change one of the offending dots in the vertical column containing a problem pattern and try to save the character again. Fortunately, these values appear infrequently.

Using Custom Fonts

Once you have created a custom font or header, you can use the font or header in a word processor document. The first step, of course, is to create the document and decide which fonts you wish to use. You can use almost any word processor, as long as it has an option to store documents as ASCII text files. (Program 2, the printing program, can use only ASCII text files.) You can use any of the fonts created with the font editor as well as the standard character styles available in your word processor or printer. A few special rules must be followed when preparing a document to use the custom fonts and headers.

Using a font that's wider than the usual 12-dot width may require some extra planning. Because the characters take up more space horizontally, you may have problems centering them or determining how many will fit on a line. For instance, if you are using double-width (24dot) characters, you should reduce the margins on your word processor by half, or insert an extra space between each character in a line so that the word processor will not attempt to store too many characters per line. If a line of text translates into font characters requiring more than the maximum number of dots the printer can place on a line (960 dots for the IBM Graphics Printer), characters to the right of the limit will be lost. Similarly, you may encounter problems when trying to set the page length for fonts

Increase your knowledge about all aspects of compo

Select 5 Books for only $\$ 3^{95}$

More programs, projects, and ways to use your micro. Keep well-informed about the latest books available-and get the original publishers' editions at discounts of up to $\mathbf{5 0} \%$ off the publishers' prices!

\square

$2850 \quad \$ 25.95$

$1737 \quad \$ 18.95$

$2732 \quad \$ 18.95$

1884P $\$ 18.95$

1535 \$16.95

$1990 \$ 24.95$

2766P \$12.95

$1768 \quad \$ 19.95$

$1816 \quad \$ 15.95$

$1970 \quad \$ 22.95$

$1807 \quad \$ 17.95$

$2622 \$ 21.95$

$2710 \quad \$ 27.95$
Counts as 2

1251P $\$ 10.25$

$1988 \quad \$ 23.95$

2623 \$21.95

2761 \$19.95

2691 \$23.95

1724P $\$ 13.50$

2756 \$18.95

2650 \$21.95

$2856 \quad \$ 25.95$

Membership Benefits - Big Savings. In addition to this introductory offer, you keep saving substantially with members' prices of up to 50% off the publishers' prices. - Bonus Books. Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices. - Club News Bulletins. 13 times per year you will receive the Book Club News, describing all the current selections-mains, alternates, extras-plus bonus offers and special sales, with hundreds of titles to choose from. - Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the reply form provided. - Ironclad No-Risk Guarantee. If not satisfied with your books, return them within 10 days without obligation! - Exceptional Quality. All books are quality publishers' editions especially selected by our Editorial Board.

© 1987 The COMPUTER BOOK CLUB* , Blue Ridge Summit, PA 17214
All books are hardcover editions unless numbers are followed by a P for paperback.

Please accept my membership in The Computer Book Club ${ }^{\circledR}$ and send the 5 volumes circled below, billing me $\$ 3.95$ plus shipping and handling charges. If not satisfied, I may return the books within ten days without obligation and have my membership canceled. I agree to purchase at least 3 books at regular Club prices (plus shipping/handling) during the next 12 months, and may resign any time thereafter.
$\begin{array}{llllllllllll}1085 P & 1251 P & 1275 & 1535 & 1724 \mathrm{P} & 1737 & 1768 & 1807 & 1816 & 1876 \mathrm{P} & 1884 \mathrm{P}\end{array}$ $\begin{array}{lllllllllllll}1970 & 1988 & 1990 & 1993 & 1997 & 2622 & 2623 & 2650 & 2691 & 2694 & 2710 & 2730\end{array}$ $\begin{array}{llllllllllll}2732 & 2738 & 2749 & 2756 & 2761 & 2766 P & 2771 & 2831 & 2850 & 2855 & 2856\end{array}$ Name
Address
City
State/Zip Phone
Valid for new members only. Foreign applicants will receive special ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by The Computer Book Club ${ }^{3}$
that are taller than usual-each line printed in the tall font will occupy more than one line printed in standard height. You can compensate by inserting a blank line between each line of double-height text, or two blank lines between each line of triple-height text.

Comma Command

To change the font style within a word processing document, you must include a comma command at the point of change. A comma command is simply a comma (,) followed immediately by a the call code of the font which you wish to use. (Remember, use the call code for the font, not the filename under which the font is stored.) When the document is printed, the comma command tells the printing program (Program 2) which font to use at that point in the printout.

All of the fonts created by the font editor program are line fonts, meaning that you must print an entire line of text in the selected font, not just part of the line. The comma to begin the command must be the first nonspace character in the line, except that leading form feed characters, $\operatorname{CHR} \$(12)$, are allowed. Only one comma command is allowed per line of text.

The comma must be followed immediately (without spaces) by the call code of the desired font, which must be entirely in uppercase characters. A comma command can also take several optional parameters. Here is a list of the comma command options:
S space following lines horizontally
SS space following lines horizontally and vertically
D double strike
G change printer graphics mode
H horizontal expansion
V vertical expansion
You need not include any options in the comma command. For example, if you simply wish to change to the custom font named MYFONT, you would insert this comma command at the beginning of the line where you want the change to take effect:
,MYFONT:Your text goes here.
Notice that the call code (MYFONT) contains no spaces. The comma command must be separated from the text to be printed by a
colon (:). In this case, your text consists of the words Your text goes here. If you include options in the comma command, each option must be preceded by a hyphen (-). For instance, this comma command changes the font to MYFONT and causes the printer to double-strike each character one dot below the first character.

,MYFONT-D1:Your text goes here.

The S and SS options tell the printer program how to handle large fonts. The S option assumes that you have provided extra spaces between each character to be printed; this option is appropriate when you are printing characters that are normal height, but wider than normal . The SS option makes the same assumption about horizontal spacing and further assumes that you have inserted an extra line between each line of text to be printed; this option is appropriate when you are using characters that are both wider and higher than usual.

The D option invokes doublestrike mode, in which the printer prints each character, then backs up and prints it again before proceeding to the next character. You may follow the D with a number from 1 to 3 to control how many dots below the first character the second character is printed. Double-strike values of 1 or 2 make characters appear darker than normal. Larger values create a mirrored or doubling effect.

The G option changes the printer's graphics mode. This permits you to squeeze or expand existing fonts even further by invoking built-in printer modes. The G should be followed by the two-digit numeric code of the option you want to invoke. For an IBM Graphics Printer and compatibles, the codes 75,76 , and 90 invoke normal graphics, double-wide graphics, and compressed graphics, respectively. Thus, the comma command ,MY-FONT-G90 causes the printer to use the characters in MYFONT, using compressed graphics mode.

The H and V options affect the optional automatic spacing invoked by the S or SS options (see above). The H option is followed by a number in the range 1-9 to indicate how many times the font should be ex-
panded horizontally. The V option is followed by a number from 1 to 4 to indicate how many times to expand the font vertically. For example, the comma command ,MYFONT-H3-V2-SS tells the printer program to print each subsequent character three times its normal width and two times its usual height.

Expanding characters with the H and V options can be a slow process. To indicate that something is happening, the program flashes an exclamation point (!) on the screen.

Back To Normal

To cancel a custom font and resume printing with the printer's standard character set, insert this comma command:

,REGULAR

Note that this command cannot use any of the options of the other commands. There are two ways of changing the print style while using the standard character set. The first is to use the usual formatting commands for your word processor. You must use some care, however, when mixing these commands with Font Printer comma commands. To use this method, insert all of the comma commands needed to do what you want, then print the document to disk using your word processor's printer option or print program. It is important to include this step so that the output is reformatted according to your embedded formatting commands and so that the final file is in ASCII.

Standard Fonts

The second way to change printer styles is to define special printer font call codes. The definitions must be entered as DATA statements at the end of Program 2. Remember, a standard printer style is one which your printer can print without the aid of Font Printer. Program 2 must know three things for each standard character style: the style's call code, the ASCII code or sequence of codes which invokes the style, and the code or sequence which disables the style.

Definitions for some styles available on the IBM Graphics Printer are already in the DATA
lines at the end of Program 2, but you may want to add more. To avoid confusion, it is best to put each set of standard font information on its own DATA line. Begin by typing a descriptive name for the style. This name is the style's call code; note that the call code must be entirely in uppercase, with no spaces, colons, or hyphens. The call code must be followed by the ASCII value or values which invoke (enable) this font, each number separated by a comma. Next must come the value -1 , which marks the end of the invoking sequence. In the same manner, enter the ASCII values which turn off (disable) the font, following that sequence with another -1 . Here are two examples for standard compressed and double-width compressed modes:

1010 DATA COMPRESSED,15,-1,18,-1 1020 DATA DOUBLECOMPRESSED, $15,14,-1,20,18,-1$

Notice that two codes are used to enable double-width compressed mode: The first valueequivalent to CHR\$(15)-invokes compression and the second (14) invokes double-width printing.

If you add new DATA lines to Program 2, note that the last DATA item must be named ENDD. Do not delete the line containing the REGULAR call code; this item is needed to return to normal print mode after you have invoked a custom font.

Once you have defined the special font codes for the standard styles, you can invoke the styles by including comma commands just like those for the custom fonts. For example, if you have defined a call named COMPRESSED, you can invoke that style with the command ,COMPRESSED:.

Printing Headers

Headers are printed in much the same manner as any other font created by Font Printer. The comma commands have the same effect for headers as for any font. The only difference is in how the different parts of the picture are written into the document. Remember, a header consists of many different blocks which have been designed to make up one large picture. Thus, your word processing document would contain the constituent characters
which, when redefined, make up the picture.

To illustrate, say that you have created a graphic header named MYHEAD using all of the characters from ASCII 33-110; you have used the largest font style as suggested earlier, and the design occupies three lines, 26 characters to each line (characters 33-58 were used for the top line, 59-84 for the middle, and $85-110$ for the bottom). In the header file-and in the final printed product-each character's pattern makes up part of the overall design. But here is the way the header would appear in a word processing document before printing to disk:

,MYHEAD:!"\#\$\%\&'0* + ,-./0123456789: $;<=>$?@ABCDEFGHIJKLMNOPQRST UVWXYZ[\] - 'abcdefghijklmn

The comma command ,MYHEAD tells the printer program to use the font from the file MYHEAD. Like other comma commands, it is separated from subsequent text with a colon. After the comma command comes the series of characters which, when translated by the printer program, creates the graphic design of the header.

Printing A Document

When you run Program 2, it asks you for the name of the file to print. Enter the name of the ASCII text file that contains your document. There are two different ways to print the document. The first is to enter LPT1: (or simply press Enter) when the program asks you for the output file/device. This option causes the document to be printed directly to the printer, a method which works in most cases.

If the first method does not produce the expected results, or if you wish to print more than one copy of the document, use this technique: When prompted for the output file/device, enter a filename. The program creates a disk file containing the data that would otherwise have been sent to the printer. Once saved on disk, the document can be printed in one of two ways. You can use the DOS PRINT command to put the file in the print queue, allowing you to run other programs while the file is printing. You can also use TYPE and redirect the output to the print-
er instead of the screen. Here are examples of both commands (remember, these are DOS commands which you enter from the DOS prompt):
PRINT filename
TYPE filename >LPT1:
The expression >LPT1: diverts the output from TYPE to the printer. TYPE works about twice as fast as PRINT, but it doesn't allow you to perform other tasks while printing like PRINT does.

After you enter the output file/ device, Program 2 asks for the name of the disk drive (be sure to include the colon-A:, B :, and so on) which contains the font files. This allows you to keep your font files on a separate disk. If you have more than one drive, put the document disk (the one containing your text file) in drive A : and the the font disk in drive $B ;$; then specify B : for the drive containing font files. If you have only one disk drive, you can either put the text file on the same disk as the font files, or you can enter B: for the font-file drive. In the latter case, you'll have to repeatedly swap the document and font disks. (When it's time to swap disks, the computer will beep twice. Wait for a message to insert the correct disk.) In any case, the font disk must also contain a font code directory file (FONTCODE.DIR).

If the program can't find a font file called in your document, it indicates the error and gives you the option of inserting a disk containing the specified font file or ignoring the font change.

After you have answered all the necessary questions, Program 2 prints the document to a file or to the printer, according to your choice.

Listing Call Codes

Program 3 helps you keep font files in order. To get a complete list of the font call codes for all of the font files in the current font code directory for a disk, use Program 3. You can direct the listing of font codes and filenames to the screen, printer, or a disk file. Program 3 also has an option to create a file containing a sample of all the fonts in the font code directory. If you choose this option, the program will create a disk file named ALLFONTS, which you can then print with Program 2.

Printing Banners

Program 4 prints banners using custom fonts which you have creat－ ed with the font editor．After you enter the words to be printed on the banner and the font call code for the font in which the banner is to be printed，the program displays the possible print sizes and asks you how many times to expand the font horizontally and vertically．In most cases，the best results are obtained by selecting a horizontal expansion value that is about half the vertical expansion value．This prints the font with about the same propor－ tions as it would normally have．

After you select the banner size，you are given three different ways to make up each letter．In the first method，the banner letters are made from the words of the mes－ sage itself．For example，if the mes－ sage is Happy Birthday，each letter is made up of the letters HappyBirth－ day．The second method is to create each character out of normal－sized versions of the character itself．（The large H is made of small H charac－ ters，and so on）．The third method lets you choose the character or combination of characters to use for the banner；for instance，to make a happy birthday banner for your friend Bill，you might use BILL to make up each character．

For instructions on entering these programs， please refer to＂COMPUTE！＇s Guide to Typing In Programs＂elsewhere in this issue．

Program 1：Font Editor

FM 1ø	SCREEN Ø，1：WIDTH 8Ø：KEY OF F：DIM CHAR $(2,37), \operatorname{CODE} \$(2,5$ ø）： $\mathrm{COL}=3$
Q1 20	CLS：LOCATE 1，14：COLOR $\varnothing, 5:$ PRINT＂Font Editor＂：LOCAT E 3，1：COLOR 5，ø：INPUT＂Name of font file to edit $>$＂，F ILE\＄：B\＄＝FILE\＄：GOSUB 940：IF
	B $\$="$＂THEN BEEP：GOTO $2 \emptyset$ E LSE FILE $\$=B \$$
LJ 30	A\＄＝＂＂：ON ERRDR GOTO 49：OPE N＂I＂，\＃1，FILE\＃：CLOSE \＃1：ON ERROR GOTO פ：GOTO 5ø
HO 40	IF ERR＝53 THEN A\＄＝＂NOT＂：R ESUME $5 \emptyset$ ELSE $98 \emptyset$
IL $5 \emptyset$	ON ERROR GOTO 6ø：OPEN＂I＂，\＃ 3，＂FONTCODE．DIR＂：ON ERROR GOTO Ø：GOTO 7ø
BD $6 \varnothing$	IF ERR＝53 THEN OPEN＂O＂，\＃3， ＂FONTCODE．DIR＂：CLOSE \＃3：RE SUME 50 ELSE 98ø
KE 7ø	IF NOT（EOF（3））THEN FOR $Z=$ \emptyset TO 2：INPUT \＃3，CODE\＄：NEXT
	Z：IF CODE\＄＜＞FILE\＄THEN 7ø
	ELSE IF A\＄＝＂＂THEN 9ø
OA 8 ¢	CLOSE \＃3：GOSUB 579：GOTO 10

FM 10 SCREEN $\varnothing, 1:$ WIDTH B $\begin{array}{r}\text { B：KEY OF } \\ \text { F：DIM CHAR }(2,37), \text { CODE } \$(2,5\end{array}$ ø）： $\mathrm{COL}=3$
QI $2 \emptyset$ CLS：LOCATE 1，14：COLOR $\varnothing, 5$ ： PRINT＂Font Editor＂：LOCAT 3，1：COLOR 5，$:$ ：INPUT＂Name ILE\＄：B\＄＝FILE\＄：GOSUB 949：IF B\＄＝＂＂THEN BEEP：GOTO $2 \emptyset$ E LSE FILE $\$=B \$$
LJ $3 \emptyset$ A $=$＝＂＂：ON ERROR GOTO 4פ：OPE N＂I＂，\＃1，FILE\＃：CLOSE \＃1：ON ERROR GOTO Ø：GOTO 5ø
HO 4ø IF ERR＝53 THEN A\＄＝＂NOT＂：R ESUME $5 \varnothing$ ELSE $98 \emptyset$
IL $5 \emptyset$ ON ERROR GOTO 6ø：OPEN＂I＂，\＃ 3，＂FONTCODE．DIR＂：ON ERROR （ Ø：GOTO 7ロ
BD $6 \emptyset$ IF ERR＝53 THEN OPEN＂O＂，\＃3， ＂FONTCODE．DIR＂：CLOSE \＃3：RE SUME 50 ELSE 98ø
KE $7 \emptyset$ IF NOT（EOF（3））THEN FOR $Z=$ 2：INPUT \＃3，CODE\＄：NEXT ELSE IF A\＄＝＂＂THEN 9ø
0 A $8 \varnothing$ \emptyset

BK 9ø CLOSE \＃3：OPEN＂R＂，\＃1，FILE\＄， 4：FIELD \＃1，2 AS B\＄， 2 AS C $\$$ ：GET \＃1：$X=V A L(B \$): Y=V A L$（ $C \$$ ）＊8：CLOSE \＃1
GL 1øø OPEN＂R＂，\＃1，FILE\＄，X：FIELD \＃1，X AS D\＄：CHR＝1
PD 110 COLOR 6， $0:$ LOCATE 8，1：PRIN T＂M＝MOVE to new charact er＂：PRINT＂C＝CLEAR editi ng window＂：PRINT＂T＝TRAC E（copy）image from chara cter＂：PRINT＂S＝SAVE char acter to disk＂：PRINT＂I＝ reINITIALIZE font paramet ers＂：PRINT＂A＝clear ALL characters＂
NP $12 \emptyset$ PRINT＂W＝reWRITE screen＂ ：PRINT＂R＝RESTART progra m＂：PRINT＂Q＝QUIT＂：PRINT＂ SPACE BAR＝plot／erase po int＂TAB（1ø）＂（or cancel cu rrent command）＂：PRINT＂D＝ DRAW is OFF＂：PRINT＂E＝E RASE is OFF＂：DRAWS＝ø：ERAS ES＝ø
IJ 130 GOSUB 920：COLOR 4，Ø：FOR Z $=1$ TO 25：LOCATE Z，42：PRIN T SPACE $\$$（38）；：NEXT $Z: F O R$ $\mathrm{Z}=1$ TO X：LOCATE $\mathrm{Y}+1, \mathrm{Z}+42$ ： PRINT RIGHT\＄（STR\＄（Z），1）； NEXT Z：FOR $Z=\emptyset$ TO 1：FOR Z $1=1$ TO Y：LOCATE $\mathrm{Z1}, 42+(Z$＊ （ $\mathrm{X}+1$ ））：PRINT RIGHT\＄（STR\＄（ Z1），1）；：NEXT Z1，Z：XP＝1：YP ＝1：CR＝CHR
ND 14ø GOSUB 89ø：FOR $Z=1$ TO Y／8： GET \＃1，（（CR－1）\＆Y／B）＋Z＋1：F OR Z1＝1 TO X：A＝ASC（MID\＄（D $\$, Z 1,1)$ ）：IF $A=\varnothing$ THEN $18 \emptyset$
LH $15 \emptyset$ IF INKEY\＄＝＂＂THEN GOSUB 93Ø：GOTO 19ø
6H 16Ø FOR Z2＝7 TO Ø STEP－1：IF $A=>2^{\wedge} Z 2$ THEN $A=A-\left(2^{\wedge} Z 2\right): L$ OCATE $(Z-1) * 8+(8-Z 2), Z 1+4$ 2：COLOR 5，5：PRINT＂＂；
KF $17 \emptyset$ NEXT $Z 2$
LH $18 \emptyset$ NEXT $Z 1, Z: C O L=(S C R E E N(Y P$ ， 42＋XP，1）AND 15）
HB $19 \emptyset$ COLOR，Ø：LOCATE 23，1：PRIN T SPACE ${ }^{(4 \varnothing)}$ ；
PE 2øø LOCATE YP，XP＋42：COLOR 1，C OL：PRINT CHR\＄（1）；
MO 210 A $\$=I N K E Y \$:$ IF $A \$=" "$ THEN 2 $1 \varnothing$
NE $22 \emptyset$ IF CANCEL THEN CANCEL＝\varnothing ： C OLOR ，Ø：LOCATE 21，1：PRINT SPACE $\$$（4б）；
נJ 230 IF LEN $(A \$)=2$ THEN $39 \emptyset$ ELS E IF $A \$="$＂THEN IF DRAWS THEN A\＄＝＂D＂ELSE IF ERAS ES THEN A\＄＝＂E＂ELSE COLOR 5，5：LOCATE YP，XP＋42：PRIN T＂＂；：IF COL＝5 OR COL＝4 T HEN COL＝3：GOTO 2øø ELSE C OL＝5：GOTO 2øø
PA 24Ø LDCATE YP，$X P+42$ ：COLOR COL ，COL：PRINT＂＂；：A\＄＝CHR\＄（AS $C(A \$)+32 \$(A \$>=" a$＂AND A $\$<$ ＝＂z＂））
MF 250 IF $A \$=" C$＂THEN COL＝3：GOSU B 89ø：GOTO 2ஏø
EO $26 \emptyset$ IF $A \$=" T$＂THEN $5 \emptyset \emptyset$
FK 276 IF $A \$=" S$＂THEN 420
JK $28 \emptyset$ IF $A \$=" W "$ THEN GOSUB 56』： GOTO $11 \varnothing$
DP $29 \emptyset$ IF $A \$=" M "$ THEN $53 \emptyset$
ह1 3øø IF $A \$=" I "$ THEN GOSUB 96ø： CLOSE \＃1：GOSUB 72ø：GOTO 1 $3 \emptyset$
JH 310 IF $A \$=" A$＂THEN GOSUB 960： GOSUB 86ø：GOSUB 89ø：COL＝3 ：CHR＝1：GOSUB 92ø：GOTO 2øø 68 320 IF $A \$=" R$＂THEN GOSUB 96ø：

CLOSE \＃1：RUN
PL $33 \emptyset$ IF $A \$=" Q$＂THEN GOSUB 96ஏ： CLOSE \＃1：SCREEN g：CLS：END
FI $34 \emptyset$ IF $A \$=" D "$ THEN DRAWS＝1－DR AWS：COL＝5：IF ERASES THEN ERASES＝ø
G1 $35 \emptyset$ IF $A \$=" E$＂THEN ERASES＝1－E RASES： $\mathrm{COL}=3$ ：IF DRAWS THEN DRAWS＝ø
HD 36 G LOCATE 19，13：IF DRAWS THE N COLOR 14，Ø：PRINT＂ON＂E LSE COLOR 6，Ø：PRINT＂OFF＂
Q1 $37 \emptyset$ LOCATE 2ø，14：IF ERASES TH EN COLOR 14，\varnothing ：PRINT＂ON＂ ELSE COLOR 6，\varnothing ：PRINT＂OFF＂
C1 38ø GOTO 2øø
$L X 39 \emptyset$ A\＄＝RIGHT\＄$(A \$, 1): X 0=X P: Y O=$ YP：IF $A \$=" H "$ AND YP＞1 THE N YP＝YP－1 ELSE IF $A \$=" M "$ AND $X P<X$ THEN $X P=X P+1$ ELS E IF $A \$=" P$＂AND YP＜Y THEN $Y P=Y P+1$ ELSE IF $A \$=" K " A$ ND $X P>1$ THEN $X P=X P-1$ ELSE $2 \emptyset \emptyset$
DM 4øø LOCATE YO，XO＋42：COLOR COL ，COL：PRINT＂＂；：COL＝（SCREE N（YP，XP＋42，1）AND 15）：IF D RAWS THEN COL $=5$ ELSE IF E RASES THEN COL $=3$
If 410 LOCATE YP，XP＋42：COLOR 1，C QL：PRINT CHR\＄（1）；：GOTO 2Ø g

PO $42 \emptyset$ SAVED＝ø：COLOR 2，ø：LOCATE 21，1：PRINT＂SAVING＂SPACE\＄（ 18）；
PD 430 FOR $X 1=43$ TO $X+42$ ：FOR NUM $=1$ TO Y／8：BYTE＝ø：FOR Y1＝8 TO 1 STEP－1：BYTE＝BYTE－2 へ（8－Y1）＊（（SCREEN（Y1＋（NUM－ 1）$\left.* 8, X_{1}, 1\right)$ AND 15）＜＞3）：NEX T Y1
HM 44ø IF INKEY $\$=$＂＂THEN GOSUB 93Ø：GOTO 2øø
KO $45 \emptyset$ CHAR（NUM－1，X $1-42$ ）＝BYTE：IF BYTE $=9$ THEN COLOR 4，4：LO CATE（NUM－1）＊ $8+5, \mathrm{X} 1:$ PRINT ＂＂；：LOCATE（NUM－1）＊8＋8，x 1：PRINT＂＂；：SAVED＝1
6 L 46 IF BYTE $=26$ THEN COLOR 4，4 ：LOCATE（NUM－1）$\% 8+4, \times 1:$ PR INT＂＂；：LOCATE（NUM－1）＊8＋ 5，X1：PRINT＂＂；：LOCATE（NU M－1）＊8＋7，X $1:$ PRINT＂＂；：SAV $E D=1$
CC 47 Ø NEXT NUM，X $1:$ IF SAVED＝1 TH EN COLOR 4，$:$ ：LOCATE 21，1： PRINT＂PATTERN CANNOT BE S AVED＂：CANCEL＝1：GOTO 2øø
MK 48ø FOR $Z=1$ TO Y／8：B\＄＝＂＂：FOR $\mathrm{Z} 1=1$ TO $\mathrm{X}: \mathrm{B} \$=\mathrm{B} \$+\mathrm{CHR} \$$（CHAR （Z－1，Z1））：NEXT Z1：LSET D\＄ ＝B\＄：PUT \＃1，（（CHR－1）＊Y／8）＋ Z＋1：NEXT Z
FC 496 CHR＝CHR－1＊（CHR＜94）：GOSUB 92ø：COLOR ，Ø：LOCATE 21，1： PRINT SPACE $\$(6): C R=C H R: G O$ TO 14ø
FE 5øø COLOR 3，Ø：LOCATE 23，1：LIN E INPUT＂Character to trac e（！－～or 33－126）＞＂，B\＄：I F B\＄＝＂＂THEN $19 \varnothing$
MP $516 \mathrm{CR}=\mathrm{VAL}(B \$)-32$ ：IF $C R<=-23$ THEN IF $\mathrm{B} \$>" \sim$＂OR $\mathrm{B} \$<"!"$ THEN BEEP：GOTO 5øø ELSE C HR＝ASC（B\＄）－32：GOSUB 920：C R＝CHR：GOTO 14ø ELSE IF CR ＜1 OR CR＞94 THEN BEEP：GOT $05 \emptyset 0$
DA $52 \emptyset$ GOTO $14 \emptyset$
KL 530 COLOR 3， $0:$ LOCATE 23，1：LIN E INPUT＂Character to edit （！－～or 33－126）＞＂，B\＄：IF B\＄＝＂＂THEN $19 \emptyset$

HE 54 Ø CR＝VAL（B\＄）－32：IF CR＜$=-23$ THEN IF B\＄＞＂～＂OR B\＄く＂！＂ THEN BEEP：GOTO 53Ø ELSE C HR＝ASC（B\＄）－32：GOSUB 92ஏ：C R＝CHR：GOTO 149 ELSE IF CR ＜1 OR CR＞94 THEN BEEP：GOT 0530
JH 550 CHR＝CR：GOSUB 920：GOTO 14ø
If 56の CLS：LOCATE 1，14：COLOR 9,5 ：PRINT＂Font Editor＂：LOC ATE 3，1：COLOR 5， $5:$ PRINT＂C urrent font filename＞＂FI LE\＄：RETURN
CK 570 COLOR 12：LOCATE 21，1：IF C ODE\＄＜＞FILE\＄THEN 59ø
DN $58 \emptyset$ PRINT FILE\＄；＂appears in the font code directory， but isn＇t on disk．＂：PRINT ＂Do you wish to create a new version of＂；FILE\＄；＂ （Y／N）？＂；：GOTO 6øØ
FB $59 \emptyset$ PRINT＂There is no entry f or＂；FILE\＄；＂in the font code directory．＂：PRINT＂Th ere is＂；A\＄；＂a file named ＂；FILE\＄；＂on this disk．＂ ：PRINT＂Do you wish to cre ate an entry for＂；FILE\＄； ＂（Y／N）？＂；
LD 6øØ B\＄＝INPUT\＄（1）：IF B\＄＝＂N＂OR B\＄＝＂n＂THEN RETURN $2 \varnothing$
NC 610 IF $B \$\rangle " Y$＂AND $B \$\rangle " Y$＂TH EN BEEP：GOTO 6øø
KC 620 LOCATE 21，1：FOR $Z=1$ TO 3： PRINT SPACE $\$$（7ø）：NEXT $Z: L$ OCATE 21，1：PRINT＂（E）＝st art with an EMPTY font＂：P RINT＂（C）＝start with a C QPY of an existing font＂： IF $A \$="$＂THEN PRINT＂$(A)=$ ADD an existing font fil e to the font code direct ory＂
FC $63 \emptyset \mathrm{~B} \$=\mathrm{INPUT} \$(1):$ IF B\＄＝＂E＂OR B\＄＝＂e＂THEN GOSUB 56ø：A\＄ ＝＂NEW＂：GOTO $72 \emptyset$
NH 64Ø IF $B \$=" A$＂OR $B \$=" a "$ THEN IF $A \$="$＂THEN SOURCE $\$=F I L$ E\＄：GOTO 67ø
CK 650 IF B\＄＜＞＂C＂AND B\＄＜＞＂c＂TH EN BEEP：GOTO 63ø
OA 66Ø CLS：INPUT＂Filename of fon t to copy＞＂，SOURCE\＄：B\＄＝S OURCE $\$$ ：GOSUB 94ø：IF $B \$="$＂ THEN BEEP：GOTO $66 \emptyset$ ELSE SOURCE $\$=$ B $\$$
JB 67ø ON ERROR GOTO 71ø：OPEN＂I＂ ，\＃1，SOURCE\＄：CLOSE \＃1：OPEN ＂R＂，\＃1，SOURCE $\$, 4$ ：FIELD \＃1 ， 2 AS B $\$, 2$ AS C $\$:$ GET \＃1：X $=\operatorname{VAL}(B \$): Y=V A L(C \$) * 8: C L O S$ E \＃1：ON ERROR GOTO Ø
$6168 \emptyset$ IF SOURCE $\$=$ FILE $\$$ THEN GOS UB 56ø：GOTO 78ø
N1 $69 \varnothing$ OPEN＂R＂，\＃1，SOURCE $\$, X: F I E L$ D \＃1，X AS B\＄：OPEN＂R＂，\＃2，F ILE $\$, X$ FIELD \＃2，X AS C $\$$
IE 7øØ FOR $\mathrm{Z}=1$ TO 94：GET \＃1， $\mathrm{Z}+1$ ： LSET C $\$=B \$$ ：PUT \＃2，$Z+1$ ：NEX T Z：CLOSE：GOSUB 56ø：GOTO 78ø
IL 710 GOSUB 56ø：LOCATE 5，1：PRIN T＂ERROR：＂；SQURCE\＄；＂not found or couldn＇t be read ．＂：RESUME 62の
EM 720 COLOR 5，ø：LOCATE 4，1：INPU T＂Character width in dots （4－36）＞＂，X：IF X＜4 OR X >36 THEN BEEP：GOTO $72 \emptyset$
BJ 730 LOCATE 5， $1:$ INPUT＂Characte r height in lines（1－3）$>$ ＂， $\mathrm{Y}: \mathrm{Y}=\mathrm{Y}$＊ $\mathrm{B}: \mathrm{IF} \mathrm{Y}\langle 1$ OR $\mathrm{Y} / \mathrm{B}>$ 3 THEN BEEP：GOTO 73ø

EM 74 OPEN＂R＂，\＃1，FILE\＄，4：FIELD \＃1，2 AS B\＄， 2 AS C\＄
PL 75 L LSET B $\$=$ RIGHT\＄（STR $\$(X), 2)$ ：LSET C $\$=$ RIGHT\＄（STR $\$(Y / 8)$ ，2）：PUT \＃1，1：CLOSE \＃1
EH 76 IF $A \$=" I "$ OR $A \$=" N E W "$ THE N OPEN＂R＂，\＃1，FILE\＄，X：FIEL D \＃1，X AS D\＄
HO $77 \emptyset$ IF $A \$=" N E W$＂THEN GOSUB 86 Ø：CLOSE \＃1
נ $78 \emptyset$ COLOR $3, \emptyset:$ LOCATE 23， $1:$ INP UT＂Enter code name for th is font＞＂，CODE\＄：B\＄＝CODE\＄ ：GOSUB 94の：IF B\＄＝＂＂THEN BEEP：GOTO $78 \emptyset$ ELSE CODE $\$=$ B\＄
AC 790 LOCATE 23， $1:$ INPUT＂Font ty pe：（C）＝Character or（H ）＝Header＞＂，TYPE\＄：IF T YPE $\$=$＂C＂OR TYPE $\$=" c$＂THE N TYPE＝ø ELSE IF TYPE $\$=$＂H ＂OR TYPE $\$=$＂$h$＂THEN TYPE＝ 2 ELSEBEEP：GOTO 79ø
㫙 $8 \emptyset \emptyset$ OPEN＂I＂，\＃3，＂FONTCODE．DIR＂ ：Z＝ø
FK 81ø WHILE NOT（EOF（3））：FOR Z1＝ \emptyset TO 2：INPUT \＃3，CODE $\$(Z 1$ ， Z）：NEXT Z1：Z＝Z +1 ：WEND：CLO SE \＃3：Z1＝ø
KB 820 IF $Z 1=Z$ THEN $Z=Z+1$ ELSE I F CODE $(2, Z 1)<>F$ ILE $\$$ THEN Z1＝Z1＋1：GOTO 82Ø
EN 83 Ø CODE $\$(\emptyset, Z 1)=S T R \$(T Y P E): C O$ DE\＄（1，Z1）＝CODE\＄： $\operatorname{CODE} \$(2, Z$ 1）$=$ FILE $\$$
BL 84ø OPEN＂ロ＂，\＃3，＂FONTCODE．DIR＂ ：FOR Z1＝ø TO Z－1：FOR Z2＝ø TO 2：PRINT \＃3，CODE\＄（Z2，z 1）：NEXT Z2，Z1：CLOSE \＃3
JP $85 \emptyset$ COLOR，Ø：LOCATE 23，1：PRIN T SPACE\＄（5ø）；：RETURN
HG 86ø FOR $Z=1$ TO 94：FOR Z1＝1 TO Y／B
OP 87ø IF INKEY\＄＝＂＂AND A\＄＝＂A＂ THEN 93Ø
KF $88 \emptyset$ LSET $D \$=$ STRING $\$(x, \operatorname{CHR} \(\varnothing) ）：PUT \＃1，（Z－1）\＆$Y / 8+Z 1+1: N$ EXT Z1，Z：RETURN
KH 89ø FOR Z1＝1 TO Y：COLOR 3，3：L OCATE Z1，43：PRINT SPACE\＄（ X）；
B1 9øø IF INKEY\＄＝＂＂AND A\＄＝＂C＂ THEN $93 \emptyset$
DB 910 NEXT Z1：Z1＝FRE（＂c＂）：RETUR N
LF 920 COLOR 7，Ø：LOCATE 6，1：PRIN T＂Current character $=$＂；： COLOR 15：PRINT CHR\＄（CHR＋3 2）；：CQLOR 7：PRINT SPC（5）； ＂ASCII＝＂；：COLOR 15：PRINT CHR＋32；：RETURN
OM 930 COL $=($ SCREEN $(Y P, 42+X P, 1)$ AN D 15）：CANCEL＝1：COLOFR 4， $0:$ LOCATE 21，1：PRINT＂COMMAND CANCELLED＂：WHILE INKEY\＄く ＞＂＂：WEND：RETURN
JI 94ø C $\$=$＂＂：FOR Z2＝1 TO LEN（B\＄） ：ASCII＝ASC（MID\＄（B\＄，Z2，1）） ：IF ASCII＜＞32 THEN C $\$=\mathrm{C} \$+$ CHR\＄（ASCI I＋32（（ ASCI I＞96） AND（ASCII＜123）））
FI $95 \varnothing$ NEXT Z2： $\mathbf{B} \$=\mathrm{C} \$$ ：RETURN
If 960 COLOR 12，Ø：LOCATE 23，1：PR INT＂Are you sure you wish to＂A\＄＂（Y／N）？＂；：B\＄＝INP UT\＄（1）：IF B\＄＝＂Y＂OR B\＄＝＂y ＂THEN LOCATE 23，1：PRINT SPACE（41）；：RETURN
KJ 970 IF $B \$=" N "$ QR $B \$=" n$＂THEN RETURN $19 \varnothing$ ELSE $96 \emptyset$
IC 98も CLOSE：PRINT：PRINT＂Error＂ ；ERR；＂in line＂；ERL：RESUME 99ø

ME 990 END

Program 2：Printing Program

IF $1 \emptyset$ SCREEN $\emptyset: W I D T H$ 8ø：COLOR 2， ஏ，\varnothing ：KEY OFF：DIM TEXT\＄（94，2 ）， $\operatorname{CODE} \$(3,1 \emptyset \emptyset), B \#(96 \emptyset)$
$Q 02 \emptyset$ READ $A \$:$ IF $A \$\rangle " E N D D "$ THEN $\operatorname{CODE} \$($（,$Z)=" 1 ": \operatorname{CODE} \$(1, Z)$ ＝A\＄：FOR $Z 1=2$ TO $3:$ READ A：W HILE $A\rangle-1: \operatorname{CODE} \$(Z 1, Z)=C O D$ E\＄（Z1，Z）＋CHR\＄（A）：READ A：WE ND：NEXT $\mathrm{Z1}: \mathrm{Z}=\mathrm{Z}+1$ ：GOTO 26
NH $3 \emptyset$ STANDARD＝Z－1
KB 4ø CLS：COLOR ஏ，2：LOCATE 1，33： PRINT＂Font Printer＂：COLO R 2，ø：LOCATE 3，1：INPUT＂Dri ve with disk containing do cument file（default $=A$ ：） $>$＂，DISK1\＄：IF DISK1\＄＝＂＂T HEN DISK1 $\$=$＂A：＂ELSE IF RI GHT\＄（DISK1\＄，1）＜＞＂：＂THEN B EEP：GOTO 4ø
PP 5ø LOCATE 5，1：PRINT＂Insert di sk containing document fil e into drive＂；DISK1\＄
6F $6 \emptyset$ LOCATE 7，1：PRINT SPACE $\$$（78 ）：LOCATE 7，1：INPUT＂Name of ASCII document file to pr int＞＂，IN\＄：IF IN\＄＝＂＂THEN BEEP：GOTO $6 \emptyset$
DL $7 \emptyset$ ON ERROR GOTO 82ø：OPEN＂I＂， \＃2，DISK1\＄＋IN\＄：ON ERROR GOT $0 \emptyset$
MP 8ø FEND＝ø：WHILE NOT（EOF（2））：L INE INPUT \＃2，A\＄：FEND＝FEND＋ 1：WEND：CLOSE \＃2
II $9 \emptyset$ IF FEND $=\emptyset$ THEN BEEP：LOCATE 9，1：PRINT＂ERROR：Input fi le＂；IN\＄；＂is empty．＂：GOSU B 76ø：GOTO 4ø
CO 1 øø LOCATE 9，1：PRINT SPACE $\$$（ 7 8）：LOCATE 9，1：INPUT＂Name of output file or device （default $=$ LPT1：）＞＂，OUT T\＄：IF OUTT\＄＝＂＂THEN OUTT\＄ ＝＂LPT1：＂
BB 110 ON ERROR GOTO 83ø：OPEN＂0＂ ，\＃1，OUTT\＄：ON ERROR GOTO Ø
ED 120 LOCATE 11，1：PRINT SPACE\＄（ 78）：LOCATE 11，1：INPUT＂Dri ve with disk containing f ont files（default＝B：） $>$＂，DISK2\＄：IF DISK2\＄＝＂＂T HEN DISK2\＄＝＂B：＂ELSE IF R IGHT\＄（DISK2\＄，1）＜＞＂：＂THEN BEEP：GOTO $12 \emptyset$
ML $13 \emptyset$ IF DISK $2 \$<>$ DISK1 $\$$ THEN LO CATE 13，1：PRINT＂Insert di sk containing font files into drive＂；DISK2\＄
CB $14 \emptyset$ PRINT：PRINT STRING\＄（78，＂－ ＂）
DN $15 \emptyset$ OPEN＂R＂，\＃2，DISK1\＄＋IN\＄，1：F IELD \＃2，1 AS I\＄：FLIN＝ø：CH $A R=\emptyset: N U M=\emptyset$
KH 160 FLIN＝FLIN＋1：IF FLIN $<=$ FEND THEN 2øø
DE $17 \emptyset$ CLOSE：PRINT STRING\＄（78，＂－ ＂）：PRINT＂Finished printin g＂；IN\＄：PRINT
BN $18 \emptyset$ PRINT＂Print another docum ent $(Y / N)>" ;: A \$=I N P U T \$($ 1）：IF $A \$=" Y$＂OR $A \$=" Y$＂TH EN 4ø
MO 190 IF $A \$\rangle " n$＂AND $A \$\rangle " N$＂TH EN BEEP：GOTO $18 \emptyset$ ELSE CLS ：END
EE $2 \emptyset \emptyset A \$="$＂：ON ERROR GOTO 88Ø
10 210 IF EOF（2）THEN $17 \emptyset$ ELSE C HAR＝CHAR＋1：GET \＃2，CHAR：IF

ASC $(1 \$)<>13$ THEN A $\$=A \$+1$ \＄：LS＝（I\＄＜＞＂＂）：GOTO 21ஏ
If 220 GET \＃2：IF ASC（I $\$$ ）＜＞ $1 \varnothing$ THE $N \quad L F=\varnothing$ ELSE CHAR＝CHAR $+1: L$ $\mathrm{F}=-1$
BO 236 IF INSTR（A\＄，CHR $\$(12))=1 \mathrm{~T}$ HEN A\＄＝RIGHT\＄（A\＄，LEN（A\＄）－ 1）：PRINT \＃1，CHR\＄（12）；
HD $24 \varnothing \mathrm{Z}=\mathrm{INSTR}(\mathrm{A} \$, ", "):$ IF $\mathrm{z}=\varnothing \mathrm{TH}$ EN $54 \varnothing$ ELSE IF $\mathrm{z}=1$ THEN 2 $6 \square$
EA 250 FOR $\mathrm{Z} 1=1$ TO $\mathrm{z}-1: \mathrm{IF}$ MID $\$(A$ \＄， $\mathrm{Z} 1,1)<>"$＂THEN $Z=\varnothing$ ：NEX T Z1：IF $\mathrm{Z}=\varnothing$ THEN 54ø
$6 E 260$ Z1＝INSTR $(Z, A \$, ": "): I F \quad Z 1=$ g THEN 54ø ELSE FONT\＄＝MID $\$(A \$, Z+1, z 1-z-1)$
ル 276 Z2＝INSTR（FONT\＄，＂－＂）：IF 22 THEN OPT\＄＝MID\＄（FONT\＄，Z2） ：FONT $\$=$ LEFT （FONT $\$$, Z2－1）
J6 $28 \emptyset$ COLOR 6：PRINT＂font＝＂；FONT \＄；IF 22 THEN PRINT＂\＆＂； OPT\＄；
BJ $29 \varnothing$ IF FONT $\$=0 L D \$$ THEN $39 \varnothing$
MC $3 \varnothing \varnothing \quad 23=\varnothing$
ER 310 IF $Z 3<=S T A N D A R D$ THEN IF C ODE $\$(1,23)=$ FONT $\$$ THEN $38 \varnothing$ ELSE $23=23+1$ ：GOTO 310
6L 320 FLAG＝1：GOSUB 789：ON ERROR GOTO 869：OPEN＂I＂，\＃3，DISK 2\＄＋＂FONTCODE．DIR＂：ON ERRO R GOTO \emptyset
$00339 \mathrm{z}=$ STANDARD +1 ：WHILE NOT（EO F（3））：FOR $Z 3=\emptyset$ TO 2：INPUT \＃3，CODE $\$(z 3, Z):$ NEXT Z3：Z ＝ $\mathrm{Z}+1$ ：WEND：CLOSE \＃3： $\mathrm{Z3}=$ STA NDARD＋1
MN $34 \varnothing$ IF $Z 3<Z$ THEN IF CODE $\$(1, z$ 3）$=$ FONT THEN 389 ELSE Z3 ＝Z3＋1：GOTO 34ø
DH $35 \mathscr{5}$ BEEP：PRINT：PRINT：PRINT＂No entry for＂；FONT\＄；＂in f ont code directory．＂
FE 366 PRINT＂（I）$=$ Ignore font c hange＂：PRINT＂（R）＝Retry on another font file disk ＂：B\＄＝INPUT\＄（1）：IF B\＄＝＂i＂ OR B\＄＝＂I＂THEN FLAG＝2：GO SUB 78ø：GOTO 53ø
NH 37 IF $\mathrm{B} \$=$＂ r ＂OR B\＄＝＂R＂THEN 32ø ELSE BEEP：GOTO $36 \varnothing$
D0 389 NUM $=23$ ：IF VAL（CODE $\$(\varnothing$ ，NUM ））$=1$ THEN PRINT：GOTO $53 \varnothing$
KE $39 \varnothing$ DOUBLE $=$ ： $\mathrm{DNUM}=\emptyset: G R=76$ ：SPA CED＝ø：VERT $=1$ ： $\mathrm{HOR}=1$ ：SP＝ø： P R＝ø：IF $Z 2=\emptyset$ THEN $47 \varnothing$
CJ $40 \varnothing$ FOR $Z 3=1$ TO LEN（OPT\＄）：B\＄＝ MID\＄（OPT\＄，23，1）
J 410 IF $B \$=" S$＂THEN SPACED $=1:$ I F MID\＄（OPT\＄， $\mathrm{Z} 3+1,1$ ）$=$＂S＂T HEN SPACED $=2$ ：$z 3=23+1$
IH 420 IF $B \$=" D$＂THEN DOUBLE $=1: D$ NUM $=$ VAL （MID （OPT $\$, Z 3+1,1$ ） ）： $\mathrm{Z3}=\mathrm{Z3}+1$
KD $43 \varnothing$ IF $B \$=" G$＂THEN GR＝VAL（MID \＄（OPT\＄， $\mathrm{Z3}+1,2$ ））： $\mathrm{Z3}=\mathrm{Z3}+2$
FA $44 \varnothing$ IF $B \$=" V$＂THEN VERT＝VAL（M ID $\$($ OPT $\$, \mathrm{Z3}+1,1$ ） ：$: \mathbf{Z 3}=\mathrm{Z3}+1$ ：IF VERT＞4 THEN VERT＝4 EL SE IF VERT＜1 THEN VERT＝1
HL 45ø IF $\mathrm{B} \$=$＂ H ＂THEN HOR＝VAL（MI $\mathrm{D} \$(\mathrm{OPT} \$, \mathrm{Z3}+1,1)$ ）： $\mathrm{Z3}=\mathrm{Z3}+1$ ： IF HOR＜1 THEN HOR $=1$
L8 469 NEXT 23
HE $47 \emptyset$ PRINT \＃1，CHR $\$(27)+$ CHR $\$(5 \varnothing$ ）；：IF FONT $\$=$ OLD $\$$ THEN NUM ＝ONUM：PRINT＂－Font alre ady in memory．＂：GOTO 530
ED $48 \varnothing$ ON ERROR GOTO $87 \varnothing$ ：OPEN＂I＂ ，\＃3，DISK2\＄＋CODE $\$(2, N U M): C$ LISE \＃3：ON ERROR GOTO $ø$
If 496 OPEN＂R＂，\＃3，DISK2\＄＋CODE（2 ，NUM），4：FIELD \＃3， 2 AS B\＄，

2 AS C\＄：GET \＃3，1：WIDE＝VAL （ $\mathrm{B} \$$ ）： $\mathrm{HIGH}=\mathrm{VAL}(\mathrm{C} \$):$ CLOSE \＃ 3：SP\＄＝STRING（WIDE， ）
FB 5 6ø OPEN＂R＂，\＃3，DISK2\＄＋CODE\＄（2 ，NUM），WIDE：FIELD \＃3，WIDE AS B\＄
NO 51ø FOR $Z=1$ TO 94：FOR $Z 3=\varnothing$ TO HIGH－1：GET \＃3，（z－1）＊HIGH ＋Z3＋2：TEXT $\$(Z, Z 3)=$ B\＄：NEXT z3，z：CLOSE \＃3：FOR $z=\varnothing$ TO HIGH－1：TEXT $\$(\varnothing, z)=S P \$: N E$ XT Z
B1 526 OLD $=$ FONT $\$$ ：ONUM＝NUM：PRINT ＂high＝＂；HIGH；＂wide＝＂； WIDE：FLAG＝2：GOSUB 78ø
BH $53 \emptyset$ A $\$=$ MID $\$(A \$, Z 1+1)$
PO $54 \varnothing$ COLOR 7：IF VAL（CODE $\$(\square, N U$ M））$=1$ THEN PRINT A\＄：PRINT \＃1，CODE\＄（ 2, NUM）；A\＄；CODE $\$$ （ 3, NUM）；：IF NOT（LF）THEN PRINT \＃1，CHR\＄（27）；CHR\＄（74 ）；CHR\＄（1）；：GOTO 160 ELSE PRINT \＃1，＂＂：GOTO 16ø
£1 $55 \varnothing$ IF SPACED $=\varnothing$ THEN Gøø
6C 569 LE＝LEN $(A \$): B \$=A \$: A \$=" ": F 0$ R $\mathrm{Z}=1$ TO LE STEP WIDE＊HOR 12：FOR Z1＝1 TO WIDE＊HOR／ 12：IF $\operatorname{MID\$ (B\$,Z+Z1-1,1)="'~}$ ＂THEN NEXT Z1：A\＄＝A\＄＋＂＂ ELSE A $=A \$+M I D \$(B \$, Z+Z 1-$ 1，1）
FH $57 \varnothing$ NEXT Z：IF SPACED $=1$ THEN 6 øø
НВ 58 ø $\mathrm{SP}=\mathrm{SP}+1$ ：IF $\mathrm{SP}=\mathrm{HIGH}$＊VERT T HEN SP＝ ：IF NOT（PR）THEN 6øø ELSE PR＝ø：GOTO $16 \varnothing$
HK $59 \varnothing$ IF NOT（LS）OR PR THEN $16 \varnothing$ ELSE PR＝－1
D0 $6 \boxed{0}$ A $\$=$ LEFT $\$$（A\＄，INT（96ø）（WIDE ＊HOR））： LE＝LEN（A\＄）：PRINT A
HF 616 FOR $Z 1=\varnothing$ TO HIGH－1：FOR 22 $=\varnothing$ TO DOUBLE：IF $Z 2=1$ THEN PRINT \＃1，CHR\＄（27）＋CHR\＄（5 1）+ CHR（ （NNUM +1 ）ELSE IF Z $1>\varnothing$ AND VERT $=1$ THEN PRINT \＃1，CHR\＄（27）+ CHR\＄（49）
DB $62 \varnothing$ C $\$=$ CHR $\$(27)+$ CHR $\$(G R)+$ CHR $\$$ （（LE＊WIDE＊HOR）MOD 256）＋CH R\＄（FIX（LE＊WIDE＊HOR／256））： IF VERT＝1 THEN PRINT \＃1，C \＄；
6K 630 FOR $Z 3=1$ TO LE：ASCII＝ASC（ MID $\$(A \$, 23,1))-32$ ：IF ASCI I＜ø OR ASCII＞94 THEN ASCI $I=\varnothing$
10646 IF VERT >1 THEN $68 \varnothing$
HF 65 Ø IF ASCII＝ø THEN FOR $Z 4=1$ TO HOR：PRINT \＃1，SP\＄；：NEXT Z4：GOTO 71の
A6 665 IF HOR $=1$ THEN PRINT \＃1，TE XT\＄（ASCII，Z1）；：GOTO 719
$0 E 67 \emptyset$ FOR $Z 4=1$ TO WIDE：A $=$ MID\＄$($ TEXT\＄（ASCII，Z1），Z4，1）：FOR Z5＝1 TO HOR：PRINT \＃1，A\＄； ：NEXT Z5，Z4：GOTO 71ø
CE G8Ø FOR $Z 4=1$ TO WIDE：$A=A S C$（MI D\＄（TEXT\＄（ASCII，Z1），Z4，1）） ：B\＃＝の
JF $69 \varnothing$ FOR $25=7$ TO \emptyset STEP－ $1:$ IF A $>=2^{\wedge} Z 5$ THEN $A=A-\left(2^{\wedge} Z 5\right):$ FO R $\mathrm{Zb}=\varnothing$ TO VERT－1：B\＃＝B\＃＋（2 ＾Z ${ }^{\text {＾}}$ VERT）＊（2＾Z6）：NEXT Z6
NK 7øØ NEXT 25：FOR Z5＝1 TO HOR：B \＃（（Z3－1）＊WIDE＊HOR＋（Z4－1）＊ HOR +25 ）$=$ B\＃：GOSUB 75ø：NEXT 25，z4
FK 716 NEXT Z3，Z2：IF VERT $=1$ THEN 730
C6 72 FOR $Z 2=V E R T$ TO 1 STEP－1：P RINT \＃1，C\＄；：FOR Z3＝1 TO W IDE＊HOR＊LE：PART＝INT（（（B\＃）
Z3）／256＾22－INT（B\＃（Z3）／256
＾Z2）） 256^{\wedge}（Z2）／256＾（Z2－1）） ：PRINT \＃1，CHR\＄（PART）；：GOS UB 759：NEXT Z3：PRINT \＃1，C HR $\$$（27）+ CHR $\$$（49）：NEXT Z2
BC $73 \varnothing$ NEXT Z1：IF VAL（CODE $\$(\square, N U$ M））$=2$ THEN PRINT \＃1，＂$": G 0$ TO 160
MC 74ø PRINT \＃1，CHR\＄（27）＋CHR\＄（5ø ）：GOTO 16ø
PC 75 （ PRINT＂！＂CHR\＄（29）＂＂CHR\＄（2 9）；：RETURN
6C 760 PRINT TAB（8）＂Press any ke y to continue．．．＂：WHILE I NKEY\＄＝＂＂：WEND：RETURN
HD $77 \varnothing$ LOCATE 11， $1:$ PRINT SPACE $\$($ 78）：PRINT SPACE（78）：RETU RN
HI 78ø IF DISK1\＄＜＞DISK2\＄THEN RE TURN ELSE BEEP：ON FLAG GO T0 79ø，日øø
NA 796 PRINT：PRINT＂Remove docume nt disk from drive＂；DISK 1＊；＂．Insert font disk．＂： GOTO 81ø
FD $8 \varnothing \varnothing$ PRINT：PRINT＂Remove font d isk from drive＂；DISK1\＄；＂ ．Insert document disk．＂
DP 81ø BEEP：PRINT＂Press any key when ready．＂：WHILE INKEY\＄ ＝＂＂：WEND：RETURN
Св 829 IF ERRく＞53 THEN $89 \varnothing$ ELSE BEEP：LOCATE 9，1：PRINT＂ERR OR：Input file＂；IN\＄；＂no t found on the disk in dr ive＂；DISK1\＄：GOSUB 76ø：RE SUME 4ø
MA $83 \varnothing$ IF ERR $=24$ OR ERR＝25 OR ER $\mathrm{R}=27$ OR ERR＝64 OR ERR＝68 THEN BEEP：LOCATE 11，1：PRI NT＂ERROR \＃＂；ERR；＂－Check device＂；OUTT\＄：GOSUB 76ø： GOSUB 77ø：RESUME 1øø
OC $84 \varnothing$
IF ERRく＞58 THEN $89 \varnothing$ ELSE BEEP：LOCATE 11，1：PRINT＂ER ROR：The disk already con tains a file named＂；OUTT \＄：PRINT＂Do you want to re place the existing file ？ $Y / N)>" ;: A \$=I N P U T \$(1): I F$ A $\$=" y$＂OR A $\$=" Y$＂THEN KI LL OUTT\＄：GOSUB 77ø：RESUME 110
JH $85 \varnothing$ IF $A \$<>" n "$ AND $A \$<>" N "$ TH EN BEEP：GOTO 84ø ELSE GOS UB 77ø：RESUME $1 ø \varnothing$
QJ $86 \emptyset$ IF ERRく＞53 THEN $89 \varnothing$ ELSE BEEP：PRINT：PRINT：PRINT＂ER ROR：The disk in drive＂； DISK2\＄；＂has no font code directory file．＂：PRINT T $A B(8)$＂Insert another disk ．＂：GOSUB 76Ø：RESUME 32ø
BH $87 \varnothing$ IF ERR＜＞53 THEN $89 \varnothing$ ELSE BEEP：PRINT：PRINT：PRINT＂ER ROR：Font file＂；CODE $\$(2$ ， NUM）；＂not found on the d isk in drive＂；DISK2\＄：RES UME 360
СВ $88 \emptyset$ IF ERR $=15$ THEN RESUME $2 \emptyset \emptyset$ CD 896 PRINT：PRINT＂Error＂；ERR；＂i n line＂；ERL：RESUME 9øø
LC $9 \varnothing \varnothing$ END
CG 1 øøø DATA REGULAR，$-1,-1$
JP $1 ø 1 \varnothing$ DATA CONDENSED， $15,-1,18$ ， -1
EE $1 ø 2 \emptyset$ DATA DOUBLEWIDTH， $14,-1,2$ Ø，-1
ON $1 ø 3 \varnothing$ DATA ENDD

Program 3：Call Code Lister
AG $1 \emptyset$ SCREEN Ø：COLOR 12，Ø，Ø：WIDT H 8ø：CLS
CP $2 \emptyset$ PRINT：INPUT＂Drive containi ng font files（default $=A$ ：）＞＂，DISK\＄：IF DISK $=$＝＂T HEN DISK\＄＝＂A：＂
PB $3 \emptyset$ ON ERROR GOTO 1øø：OPEN＂I＂， \＃1，DISK\＄＋＂FONTCODE．DIR＂：ON ERROR GOTO \varnothing
6P $4 \varnothing$ PRINT：PRINT＂Select quṭput device（P）rinter（S）creen or（D）isk＂：PRINT
EN 5 Ø $A \$=I N P U T \$(1):$ IF $A \$=" S "$ OR A\＄＝＂S＂THEN OUTT\＄＝＂SCRN：＂ ELSE IF $A \$=" p$＂OR $A \$=" P " T$ HEN OUTT\＄＝＂LPT1：＂ELSE IF A\＄＝＂d＂OR A\＄＝＂D＂THEN $7 \emptyset$ E LSE BEEP：GOTO 5ø
GJ $6 \emptyset$ TB＝\varnothing ：OPEN＂O＂，\＃2，OUTT\＄：WHIL E NOT（EOF（1））：INPUT \＃1，A\＄： INPUT \＃1，A\＄：INPUT \＃1，B\＄：PR INT \＃2，TAB（4ø＊TB）B\＄；＂＝＂； A\＄；：TB＝1－TB：WEND：PRINT \＃2， ＂＂：CLOSE：END
6D 70 PRINT：PRINT＂Do you want th e alphabet for each font p rinted also $(Y / N)>": A \$=I$ NPUT\＄（1）：IF A\＄＝＂n＂OR A\＄＝＂ N＂THEN 9ø ELSE IF A\＄＜＞＂ y ＂ AND A\＄く＞＂Y＂THEN $7 \emptyset$
GP 8 $8 \mathrm{C} \$=\mathrm{CHR} \$(13)+\mathrm{CHR} \$(1 \varnothing): \mathrm{D} \$=\mathrm{C} \$$ ：FOR $Z=65$ TO 9．：$C \$=C \$+C H R \$$ $(Z): D \$=D \$+C H R \$(Z+32):$ NEXT Z
NN 9ø OPEN＂O＂，\＃2，＂ALLFONTS＂：WHIL E NOT（EOF（1））：INPUT \＃1，A\＄： INPUT \＃1，A\＄：PRINT \＃2，＂，＂；A \＄；＂：＂；A\＄；C\＄；D\＄：INPUT \＃1，A\＄ ：WEND：CLOSE：END
DL 1 Øø BEEP：PRINT：PRINT＂The disk in drive＂；DISK\＄；＂has n －font code directory fil e．＂：RESUME $2 \emptyset$

Program 4：Banner Printer

CH $1 \varnothing$ SCREEN Ø：WIDTH 80：COLOR 1， $\emptyset, \emptyset:$ CLS：DIM TEXT $\$(94,2)$
FC 20 LINE INPUT＂Enter Banner wo rds＞＂，A\＄
j6 $3 \emptyset$ INPUT＂Enter Font Call Code $>$＂，CODE\＄：FOR $\mathrm{Z}=1$ TO LEN（ CODE $\$$ ）：B $\$=$ MID $\$($ CODE $\$, Z, 1)$ ： IF B\＄＞＂＊＂AND B\＄く＂\｛＂THEN C $\$=C \$+C H R \$(A S C(B \$)-32)$ ELS E IF B\＄＜＞＂＂THEN C $\$=C \$+B \$$
BL $4 \emptyset$ NEXT Z：COLOR 6：PRINT＂Inse rt disk with font files in to disk A ：and press any k ey when ready＂：AN $\$=$ INPUT\＄（ 1）
ON 5 5 CODE $\$=C \$:$ ON ERROR GOTO $24 \emptyset$ ：OPEN＂I＂，\＃1，＂FONTCODE．DIR＂ ：WHILE NOT（EOF（1））：INPUT \＃ 1，C\＄：INPUT \＃1，C\＄：IF CODE\＄く ＞C CLOSE：BEEP：COLOR 7：LOCATE 3，1：PRINT＂FONT NOT FQUND＂ SPACE（65）：C\＄＝＂＂：COLOR 1：L OCATE 2，1：GOTO 3ø
FD 60 INPUT \＃1，FILE $\$:$ CLOSE：LOCAT E 3，1：PRINT SPACE $\$(79):$ ON ERROR GOTO Ø：OPEN＂R＂，\＃1，FI LE\＄，4：FIELD U1， 2 AS B $\$, 2$ A 5 C ${ }^{(1)}$ GET \＃1，1：WIDE＝VAL（B\＄） ：HIGH＝VAL（C $\$$ ）：CLOSE：OPEN＂R ＂，\＃1，FILE（，WIDE：FIELD \＃1，W IDE AS B\＄

PH 7ø FOR $Z=1$ TO 94：FOR $Z 1=\emptyset$ TO
 1＋2：TEXT $(Z, Z 1)=B \$:$ NEXT $Z 1$ ，Z：CLOSE：SP事＝STRING\＄（WIDE， छ）：FOR $Z=\emptyset$ TO HIGH－1：TEXT $\$$ $(6, Z)=$ SP $\$$ ：NEXT Z
FM 8ø COLOR 2：LOCATE 4，1：PRINT：F QR $Z=1$ TO $8 \emptyset /(H I G H * B):$ PRIN

 ches tall＂：NEXT Z：PRINT
BH 96 INPUT＂Enter VERTICAL expan aion multiple＞＂，VERT：IF VERT $\Rightarrow>Z$ THEN $9 \varnothing$
JF 1øø COLOR 3：FOR Z1＝1 TO Z－1：L OCATE $\mathrm{Z1+4,5历:} \mathrm{PRINT} \mathrm{USING}$

 hes 1 ong＂：NEXT Z1
6J 110 LOCATE 5＋Z，4历：INPUT＂Enter HORIZONTAL expansion mul tiple＞＂，HOR
PB 12ø B\＄＝＂＂：FOR Z＝1 TD LEN（A\＄）： IF MID\＄（A\＄，$Z, 1)\rangle "$＂THEN B\＄＝B\＄＋MID\＄（A\＄，Z，1）
JD $13 \emptyset$ NEXT Z：COLOR 6：LOCATE 18， 25：PRINT＂Create the lette $r s$ of the banner with：＂TA $B(25) " 1)$ The original str ing＂TAB（25）＂2）Each lett er creating itselt＂TAB（25 ）＂3）You enter the string used＂：PRINT
PL 140 LOCATE 22，3ø：INPUT＂Enter melection $>$＂，AN：IF AN＞3 QR AN 11 THEN 140 ELSE IF AN＝3 THEN LOCATE 23，36：IN PUT＂Enter String＞＂，B\＄
FE 15ø COLOR 20：LOCATE 3，18：PRIN T＂SET UP PRINTER AND PRES

5 ANY KEY WHEN READY＂：AN ＝INPUT（1）：LOCATE 3，18：PR INT SPACE（18）＂PRINTING＂S PACE（18）
PO $16 \emptyset$ TABB $\$=$ SPACE $\$($ INT（ $8 \emptyset-V E R T$ ＊B＊HIGH）／2））：LPRINT CHR（ 27）；CHR（49）
NK $17 \varnothing$ FOR $Z=1$ TO LEN $(A \$): I F$ MID $\$(A \$, Z, 1)="$＂THEN FOR Z1
＝1 TO WIDE\＆HOR：LPRINT：NEX
T Z1：GOTO 23פ
JC $18 \emptyset \mathrm{ST}=\mathrm{ST}+1:$ FOR $\mathrm{Zi=1}$ TO WIDE： FOR $Z 2=1$ TO HOR：$S T=5 T+1: I$ F ST＞LEN（B\＄）THEN ST＝1
OP $19 \emptyset$ PT＝ST：FOR $Z 3=H I G H-1$ TO \emptyset STEP－1 ：ASCI I＝ASC（MID\＄（TEX T ${ }^{(A S C}$（MID\＄（A\＄，$\left.Z, 1\right)$ ）$-32, Z$ 3），Z1，1））：FOR Z4＝ø TO 7：I F ASCII MOD $2^{\wedge}(Z 4+1)>\emptyset T H$ EN ASCII＝ASCII－2＾Z4：FLAG＝ －1 ELSE FLAG＝g
CD 290 FOR $Z 5=1$ TO VERT：$P T=P T+1:$ IF PT＞LEN（B\＄）THEN PT＝1
PE $21 \emptyset$ IF NOT（FLAG）THEN LN $\$=L N \$$ ＋＂＂ELSE IF AN＝2 THEN LN \＄＝LN\＄＋MID\＄（A\＄，Z，1）ELSE L $\mathrm{N} \$=\mathrm{LN} \$+\mathrm{MID} \$(\mathrm{~B} \$, \mathrm{PT}, 1)$
KH $22 \emptyset$ NEXT Z5，Z4，Z3：LPRINT TABB \＄；LN ；；SPACE \＄（Bø－LEN（TABB\＄ ＋LN（\＄））；：LN $\$="$＂：NEXT Z2，Z1
EO 23Ø NEXT Z：COLOR 7：BEEP：CLS：E ND
AE 24 COLOR 7：PRINT＂FONT FILES NOT FOUND－Insert correc t disk and press any key to continue＂：AN\＄＝INPUT\＄（1 ）：LOCATE 2，1：RESUME 2ø

COMPUTE！Publications，Inc．is seeking to fill the following in－ house editorial positions：

Assistant Book Editor－Requires knowledge of computer programming．Undergraduate degree in English or related field．Two years writing and editing experience．
Assistant Technical Editor－Requires extensive experience with microcomputers，knowledge of machine language． Experience or training in editing or writing．Undergraduate degree preferred；experience in lieu of degree considered．
Microcomputer Programmer－Requires proficiency on one or more of the following computers：IBM PC，Commodore， Atari，Apple．College degree preferable with coursework in BASIC．Proficiency in BASIC programming．Extensive ma－ chine language experience a plus．
Features Editor－Requires college degree in journalism， English，communications，or related field which emphasizes writing；three years experience in journalism；some expe－ rience with microcomputer industry desirable．
Send résumé and salary history in complete confidence to：
Personnel Director
COMPUTE！Publications，Inc．
P．O．Box 5406
Greensboro，NC 27403

128 Colorswap

Paul W. Carlson

This short machine language routine makes it simple to create dazzling special effects on the Commodore 128 by swapping colors in the multicolor graphics mode. Several BASIC demonstration programs are included to show you how to use the routine. A disk drive is required.

Many different graphics effects are possible in the Commodore 128's multicolor graphics mode. Here is a brief explanation of that mode and the way it is used by " 128 Colorswap." A multicolor mode screen consists of 1000 blocks of 32 double-width pixels. Four different color sources can be used within each block of pixels: background, foreground, multicolor 1, and multicolor 2. These color sources correspond to the color source numbers $0,1,2$, and 3 in the BASIC COLOR statement. Although each of the 1000 blocks of pixels can have its own colors for each of the four color sources, this article explores some of the effects possible when the same four colors are used for the entire screen and three of the four colors are instantly interchanged.

Creating The Machine Language Routine

To begin, type in, save, and run Program 1. This program creates a short machine language (ML) routine on disk using the filename COLORSWAP. You may want to give Program 1 a descriptive name and keep it to create the Colorswap routine on other disks. The other
programs demonstrate how you can use the ML routine in your own programs even if you're not an ML programmer.

Demonstration Programs

Program 2 is the first demonstration program. Type it in and save it on the disk containing the ML file COLORSWAP. Now run the program: It displays three colored boxes. Press any key (except Q, which exits the program) to see how the colors are swapped. Each time you press a key, the colors are shifted one box to the right with the rightmost color going into the box on the left. The box on the left is always the current foreground color at the moment a key is pressed. Likewise, the center box is the current multicolor 1 color and the right box is the current multicolor 2 color.

When you press a key, the program calls the ML routine with the statement SYS 2816. This routine replaces the multicolor 2 color with the multicolor 1 color, replaces the multicolor 1 color with the foreground color, and replaces the foreground color with the old multicolor 2 color. If you look at Program 2, you'll see that it executes SYS 2816 once in line 60 before it waits for a keypress in line 70. This is done because the ML routine does not change any colors the first time it is called in a program.

Programs 3, 4, and 5 show how rapid color swapping can simulate movement. Type in and save all of them.

Program 3 creates a red, green, and blue spiral design against a
white background. When the pattern is complete, the spiral appears to rotate rapidly. In fact, this illusion is achieved without redrawing anything or swapping screens (page flipping). Instead, the program simply calls the Colorswap routine to swap the colors.

Programs 4 and 5 use a similar technique. Program 4 creates the illusion of rushing through a tunnel. Program 5 has an interesting 3-D effect that's difficult to describe.

Using Colorswap

Colorswap is easy to put to work. Because the ML routine resides in the cassette buffer, it can be BLOADed at any point in your program before the first SYS 2816 that activates it. Keep in mind that no colors are changed the first time you call the ML routine (this is not important, however, if you intend to call the ML many times in succession to simulate animation).

"128 Colorswap" is a machine language utility that makes it possible to create interesting graphics displays. In this screen, different colors in the design are changed rapidly to create an animated, 3-D effect.

A second point to remember is that Colorswap will change the color of all non-background pixels on the screen to the current color source colors defined in your BASIC program. A multicolor screen could contain as many as 16 colors, but after you call the ML routine, the number of colors is reduced to four at the most. This might be useful in some applications, but for simulating animation you should create the display using just one color for each of the four color sources.

It's important to time color changes carefully to eliminate flickering in simulated animation. Flickering occurs in cases where the Colorswap routine cannot change the colors everywhere on the screen during the time the raster is outside of the display area. No flashing is visible in Programs 3-5 because the timing is such that the flickering is limited to the top left corner of the screen, where no swapping occurs. The timing in all three demonstration programs is controlled by the same series of statements. (See lines 130-140 of Program 3.) Fortunately, the timing that produces the least amount of flicker also produces a nice rate of color changing. If you want to use a different rate in your own programs, you may have to experiment a bit.

BASIC 7.0 makes it easy to create multicolor graphics screens, and Colorswap can really make those screens come alive. The short demonstration programs in this article just hint at what is possible.

For instructions on entering this program.
please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue.

Program 1: 128 COLORSWAP File Creator

QK $1 \varnothing \mathrm{~T}=\varnothing:$ FORN=2816TO292ø:READ $\mathrm{K}: \mathrm{T}=\mathrm{T}+\mathrm{K}:$ POKEN, K:NEXT
JE 2 IFT<>154øøTHENPRINT"*** \{SPACE\}ERROR IN DATA STA TEMENTS ***": END
PD $3 \emptyset$ BSAVE"COLORSWAP", P2816TO P2921
JD 40 PRINT"COLORSWAP SUCCESSF ULLY CREATED": END
BP $5 \emptyset$ DATA $166,132,164,133,165$,134,134,133
DQ 60 DATA $132,134,133,132,10$, $10,10,10$
MR $7 \emptyset$ DATA $24,101,133,133,250$, 169, 0,133
JG 80 DATA 251,133,253,169,216 ,133,252,169

JF $9 \emptyset$ DATA $28,133,254,162,4,16$ $\varnothing, \varnothing, 165$
DB 1øø DATA $134,145,251,165,25$ Ø, 145,253,2øø
PB $11 \emptyset$ DATA $2 \emptyset 8,245,230,252,23$ Ø, 254, 2ø2,2ø8
AM 120 DATA $238,165,1,41,254,1$ 33,1,162
KK 130 DATA $4,160,0,132,251,16$ 9,216,133
KF 140 DATA $252,165,134,145,25$ 1,2øø,2ø8,249
RB $15 \emptyset$ DATA $23 \varnothing, 252,2 \emptyset 2,2 \emptyset 8,24$ 4,169,10,205
KH 160 DATA 18,2 20, 2ø8, 251, 165 ,1,41,253
ER 170 DATA $133,1,165,1,9,3,13$
QM $18 \emptyset$ DATA 96

Program 2: 128 ColorswapDemo 1

GM $1 \varnothing$ BLOAD"COLORSWAP"
MA $2 \emptyset$ COLORø, $2:$ COLOR1, 3 :COLOR2 , 6: COLOR3, 7 : COLOR4, 2 : GRA PHIC3, 1
DD $3 \varnothing \mathrm{Xl}=1 \varnothing: \mathrm{Y} 1=7 \emptyset: \mathrm{X} 2=5 \emptyset: \mathrm{Y} 2=13 \varnothing$
PD $4 \emptyset$ FORC=1TO3: $\mathrm{BOXC}, \mathrm{X1}, \mathrm{Y} 1, \mathrm{X} 2$, Y2, , 1
EJ $5 \emptyset \mathrm{Xl}=\mathrm{Xl}+5 \varnothing: \mathrm{X} 2=\mathrm{X} 2+5 \emptyset:$ NEXT
MX 60 SYS 2816
BA $7 \emptyset$ GETKEYAS: IFAS $\langle>$ " Q "THEN6 \varnothing
JE $8 \emptyset$ COLORø,12:COLOR4,14:GRAP HICØ, 1: GRAPHICCLR

Program 3: 128 ColorswapDemo 2

GM $1 \varnothing$ BLOAD"COLORSWAP"
CB 2ø COLORø, 2:COLOR1,3:COLOR2 , 6:COLOR3, 7: COLOR4, 2
KF $3 \emptyset$ GRAPHIC3,1:CX=8 : $\mathrm{CY}=1 \emptyset \emptyset$
DH $4 \emptyset$ CIRCLE3, CX, CY, 63,9Ø
EG $5 \emptyset \mathrm{RD}=89.5: T \mathrm{P}=2$ * $\uparrow: \mathrm{K}=9: \mathrm{N}=2 \varnothing$: $\mathrm{F}=\mathrm{RD} / \mathrm{TP}: \mathrm{DA}=\mathrm{TP} / \mathrm{K}: \mathrm{DB}=\mathrm{TP} / \mathrm{N}:$ $A=\emptyset: C=4$
AQ $6 \emptyset$ FORI $=1 \mathrm{TOK}: B=\emptyset: A=A+D A: C=C$ $-1: I F C=\varnothing T H E N C=3$
FR $7 \emptyset$ DRAWC, CX, CY
QH 8 Ø FORJ=1TON: $B=B+D B: R=F * B: D$ RAWCTOCX $+.7 \star R^{*} \operatorname{SIN}(A+B), C$ $\mathrm{Y}+\mathrm{R}^{\star} \operatorname{COS}(\mathrm{A}+\mathrm{B}): \operatorname{NEXTJ}, \mathrm{I}$
QF $9 \emptyset$ DRAW3,78,1ø2:A= \emptyset
MP 1øØ FORI=1TOK: $A=A+D A: C=C-1$: IFC=ØTHENC=3
GQ 110 PAINTC, $\mathrm{CX}+.65$ *R*SIN(A), CY+. 95 * $\mathrm{R} * \operatorname{COS}(\mathrm{~A}), 1: \mathrm{NEXT}$
RK 120 CIRCLE \varnothing, CX, CY,63,9 9
CD 130 FORN=1TOIØ:NEXT:SYS2816
MS 140 GETAS:IFAS=""THEN13 0
BD 150 COLORø, 12: COLOR4, 14:GRA PHICØ, 1:GRAPHICCLR

Program 4: 128 ColorswapDemo 3

GM $1 \varnothing$ BLOAD"COLORSWAP"
CR $2 \emptyset$ COLORø,1:COLOR1,3:COLOR2 , 6: COLOR3, 7 : COLOR4,1:GRA PHIC3,1
JM $30 \mathrm{C}=1: \mathrm{Xl}=16: \mathrm{X} 2=144: \mathrm{Yl}=1 \varnothing: Y$ $2=19 \varnothing$
RK $4 \varnothing$ FORI $=\varnothing$ TOI $\varnothing: \mathrm{XP}(I)=\mathrm{X} 1+1: \mathrm{YP}$ (I) $=\mathrm{Y} 1+1$
HK 50 BOXC, X1, Y1, X2, Y2
BC $60 \mathrm{C}=\mathrm{C}-1: I F C=\varnothing$ THENC=3
SM $7 \varnothing \mathrm{X} 1=\mathrm{X} 1+.1^{*}(\mathrm{X} 2-\mathrm{XI}): \mathrm{X} 2=159-$

AB 8 $8 \mathrm{Yl}=\mathrm{Y} 1+.1$ * $(\mathrm{Y} 2-\mathrm{Y} 1): \mathrm{Y} 2=199-$ Y1:NEXT
QA $9 \emptyset \mathrm{C}=2: \mathrm{FORI}=\emptyset T O 9: \mathrm{C}=\mathrm{C}-1: \mathrm{IFC}=$ ØTHENC=3
EX 1øø PAINTC, XP (I), YP (I) , $1: N E$ XT
KA $11 \varnothing$ GETAS:IFAS < > " "THEN $13 \varnothing$
JS 120 FORN=1TOIの:NEXT:SYS2816 : GOTO11ø
KB $13 \emptyset$ COLORø, 12:COLOR4,14:GRA PHICØ, 1:GRAPHICCLR

Program 5: 128 ColorswapDemo 4

GM 10 BLOAD"COLORSWAP"
MA $2 \emptyset$ COLORø, 2 : COLOR1, 3 : COLOR2 , 6 : COLOR3, 7 : COLOR4, 2 : GRA PHIC3, 1
RM 3 Ø $C X=8 \emptyset: C Y=11 \emptyset: R D=7 \emptyset: T P=2 *$ $\uparrow: N=15: F=R D /(2 * T P): D B=T P$ $7(N+N): C=1$
QG 40 FORJ $=1 T O 4 \cdot 8^{*} \mathrm{~N}: \mathrm{B}=\mathrm{B}+\mathrm{DB}: \mathrm{R}=\mathrm{F}$ *B: $\mathrm{X}=\mathrm{CX}+.7 * \mathrm{R} * \mathrm{SIN}(\mathrm{B}): \mathrm{Y}=\mathrm{CY}$ $+R^{*} \cos (B)$
EK 50 IFJ >1 ØTHENCIRCLEC, $X, Y, .1$ $75 * R, .25{ }^{*} \mathrm{R}$: PAINTC, $\mathrm{X}, \mathrm{Y}, \emptyset$
BC $60 \mathrm{C}=\mathrm{C}+1:$ IFC $=4$ THENC $=1$
RJ $7 \emptyset$ NEXT
CF $8 \emptyset$ GETAS:IFAS < > ""THEN1øØ
CD 90 FORN=1TO1の:SYS2816:GOTO8 \emptyset
EX 1øø COLORØ,12:COLOR4,14:GRA PHIC $\varnothing, 1:$ GRAPHICCLR
©

COMPUTE! Disk Subscriptions

COMPUTE! Disks are available for the following computers:

- Apple II series
- Commodore 64 and 128
- Atari 400/800 /XL/XE
- IBM PC and PCjr

Each error-free disk contains all the programs from the previous three issues of COMPUTE!. With a disk subscription, you'll receive one disk-for the machine you specify-every three months. To subscribe, call toll free
800-247-5470
(in lowa 800-532-1272).

Six New Operators For Atari BASIC

Rhett Anderson, Assistant Editor

This compact machine language utility adds six useful bitwise operators to Atari BASIC.

Atari BASIC differs from most other BASICs in a number of ways. Although it includes some hardwarerelated commands (GRAPHICS, STICK, PADDLE, and so on), its lack of bitwise operators makes accessing other hardware features difficult. "Six New Operators for Atari BASIC" adds six bitwise operators to BASIC. The program is published in the form of BASIC statements which you can add to your own programs. Begin your program at line 30 .

Bitwise Operators

What are bitwise operators, and what makes them so important? On some computers you may see a line that looks like this:

```
1\emptyset POKE 6546\emptyset,PEEK(6546\emptyset)
    AND 254
```

This line looks confusing to most Atari programmers because Atari BASIC uses AND only as a logical operator. Logical operators consider values to be either true or false. They are often used to create an IF statement that contains two or more logical tests. For instance, this line uses AND as a logical operator:

```
2\emptyset IF A=1 AND Y<2\emptyset\emptyset THEN
    GOTO 2\emptyset\emptyset
```

In this statement, the computer performs GOTO 200 only when the value of A is 1 and the value of Y is less than 200. The AND links together the conditions $A=1$ and $\mathrm{Y}<200$.

In Atari BASIC, a zero is treated as false and anything else is considered true. Logical operators always return a value of either 0 or 1. Thus, the result of the IF test in line 20 is 0 when one or both conditions are false, and 1 when both of them are true.

A bitwise operator, on the other hand, treats each bit of a byte-size value separately. A plain English translation of line 10 would read something like this: "Get the value from memory location 65460 and perform an AND operation with the value 254 , treating each bit separately. Store the result back in location 65460." Since 254 is 11111110 in binary, line 10 has the effect of turning off the least significant bit of location 65460 (setting the lowest bit to 0).

Bitwise operators are extremely useful when you need to access one of the Atari's hardware registers (a memory location set aside for controlling a specific hardware feature). Some hardware registers serve more than one purpose, with each bit in the register controlling a different feature. There are many cases where you might want to change the value of just one bit in a hardware register, without disturbing the other bits. That sort of activity is difficult if you don't have bitwise operators.

This program provides a convenient means for performing bitwise operations such as the one in line 10. If you are a bit confused by the preceding explanation, don't lose heart. The last section of this article offers some examples which you can use even if you don't understand binary numbers or bitwise operators fully.

Operator List

The new bitwise operators are XOR (eXclusive OR), BOR (Bitwise OR), BAND (Bitwise AND), BNOT (Bitwise NOT), SHL (SHift Left), and SHR (SHift Right). Let's examine them.

XOR. The result (for each bit) is 1 if one and only one of the operands is 1. So, 1 XOR $1=0$ and 0 XOR $1=1$.
BAND. The result is 1 only if both operands are 1. So, 1 AND $1=1$ and 0 AND $1=0$.
BOR. The result is 1 if either or both operands are 1. So, 1 OR $1=1$ and 0 OR $1=1$.
BNOT. The result is opposite the operand (this operator only accepts one operand).
SHL. Shifts all bits (16 of them) to the left a designated number of times. Each shift is equivalent to a multiplication by 2 .
SHR. Shifts all bits to the right a specified number of times. Each shift is equivalent to an integer division by 2 .

These operators are accessed with the USR function. Following are examples which show the syntax of each operator.

RESULT = USR (XOR, $, a, b$)
RESULT $=$ USR(BAND $, a, b$)
RESULT $=$ USR (BOR, a, b)
RESULT $=\mathrm{USR}(\mathrm{BNOT}, a)$
RESULT $=\mathrm{USR}(\mathrm{SHL}, a, b)$
RESULT $=\mathrm{USR}(\mathrm{SHR}, a, b)$
Each USR statement must include the desired operator (XOR, BAND, and so on) plus two operands (except for BNOT, which takes only one operand). The oper-ands-represented by a and b in the examples-are the values needed
to perform the operation. The operands may consist of numeric constants or any expressions that evaluate to a numeric value. For instance, both of these lines return the result of 3 :
$1 \varnothing$ RESULT=USR (BOR, 1,2)
$2 \emptyset A=1: B=(2 * A):$ RESULT $=$ USR ($B O R, A, B$)
In each case, the variable RESULT will contain the result of the operation. Of course, you can replace RESULT with any legal Atari BASIC variable name. To save space, the machine language routine includes no error checking, so be sure to include the proper number of parameters. If you don't, you will have to press SYSTEM RESET to regain control of your computer.

Examples

Bitwise operators can be used in many different ways. Following are some examples which you can use in your own programs. Ian Chadwick's book, Mapping the Atari (available from COMPUTE! Books), contains much more information about hardware registers and how to use them.
$B=\operatorname{USR}(B A N D, A, 1): \operatorname{REM} B=$ 1 IF A IS ODD, $B=\emptyset$ IF A IS EVEN
$B=\operatorname{USR}(X O R, B, 1): R E M$ MAK
ES $B=1$ IF B WAS \emptyset, MAK ES $B=\emptyset$ IF B WAS 1 .
$B=\operatorname{USR}(B N O T, B): R E M$ SAME AS ABOVE
$B=$ USR (BAND, NUM, 255): RE M RETURNS THE LOW BYTE OF NUM
$B=\operatorname{USR}(S H R$, NUM , 8) : REM R ETURNS THE HIGH BYTE O F NUM
$A=\operatorname{USR}(B A N D, 8, S T I C K(\varnothing))$
: REM RETURNS A \varnothing IF TH E JOYSTICK IS PRESSED RIGHT (AND A \& IF IT I $S N^{\prime} T$)
$A=\operatorname{USR}$ (BAND, 1, PEEK (5327 9)) : REM RETURNS A Ø IF START IS PRESSED, A 1 IF IT ISN'T.

POKE 623,USR(BOR, PEEK (623), (64): REM ENABLE GT IA MODE 9. THIS IS INT ERESTING TO DO IN GRAP HICS \varnothing.

POKE 562,USR(BAND, PEEK (562), 254): REM TURN OF F KEYBOARD DEBOUNCE CI RCUIT.

Six New Operators For Atari BASIC

For instructions on entering this program, please refer to "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue.
HD $1 \varnothing$ FOR $T=1536+128$ TO 1775 : READ A:POKE $T, A: N E X T$ T
FN $26 \times O R=1536+128: B A N D=X D R+$ $16: B O R=16+B A N D: B N O T=16$ +BOR: $S H L=B N D T+12: S H R=5$ $H L+13$
BA 1 Ø1ø DATA $32,214,6,165,21$ $2,69,214,133$
HL $1 \emptyset 2 \emptyset$ DATA $212,165,213,69$, $215,133,213,96$
AN $1 \emptyset 3 \emptyset$ DATA $32,214,6,165,21$ $2,37,214,133$
H! $164 \emptyset$ DATA $212,165,213,37$, $215,133,213,96$
NK 1656 DATA $32,214,6,165,21$ $2,5,214,133$
EF 1 פ6 \quad DATA $212,165,213,5,2$ $15,133,213,96$
HC $1 \emptyset 76$ DATA $1 \emptyset 4,1 \Phi 4,73,255$, $133,213,104,73$
BN 1 ø日g DATA 255,133,212,96, $32,214,6,166$
E1 $1 \emptyset 9 \emptyset$ DATA $214,6,212,38,21$ 3,2ø2,2ø8,249
OC 11 Dפ DATA $96,32,214,6,166$, 214,7ந,213
KB 111 DATA $1 \emptyset 2,212,2 \emptyset 2,2 \emptyset 8$, 249,96,104,133
MI $112 \emptyset$ DATA $216,164,133,217$ $, 104,104,133,213$
NE $113 \emptyset$ DATA $1 \emptyset 4,133,212,1 \emptyset 4$, 133, 215,104,133
FH $114 \emptyset$ DATA $214,165,217,72$, $165,216,72,96$

THE AMAZING
VOCEMASTER。 ENTER
THE FINAL
FRONTER
OF
MAN-TOMACHINE
COMMUNICATIONS

There is nothing else like it. Voice Master gives both speech output

and voice recognition with this single hardware product! Your voice controls programs, or home appliances, robots, and more with spoken commands. Verbal response back gives status, verifies, or requests your reply! Speech output and recognition patterns are recorded in with your voice. Or use the voice of your friend, boss, teacher, mother, even the family pet! Programming is simple with new commands added to BASIC. A music bonus program lets you write and compose musical scores simply by humming the tune. Unlimited applications for fun, education. and commercial use. Design your own programs for profit. Speech and recognition quality unsurpassed by even the most sophisticated machines. Only Covox provides this high-tech marvel at a price less than most common peripherals.
The Covox Voice Master comes complete with all hardware and sottware for only $\$ 89.95$. (Add $\$ 4$ shipping and handling for USA $\$ 6$ Canada, $\$ 10$ overseas.) Available for Commodore 64/128, Apple ll, IIt, Ilc, Ile, Atari 800 . 800 XL .130 XE. Specify when ordering. Visa, MasterCard phone orders accepted.

Call or write for FREE Voice Master Infopak
and special combination package affers.
COVOA INC. DEPT. C!
675-D Conger Street - Eugene, Oregon 97402 - U.S.A Area Code (503) 342-1271 - Telex 706017 (Av Alarm UD)

Public Domain \& User Supported Software

NEW TOP TEN FOR COMMODORE 64

The 64 GOLD Library S5.00/DISK

$\square 105$ ARTIST SKETCHBOOK drawing programs
$\square 106$ GREAT AMERICAN NOVELSTS word processing
107 PHONE CONNECTIONS communications
108 SPACE WARS space games
109 DUNGEONS \& DRAGONS text adventures
$\square 110$ HOME ORCHESTRA instrument simulation
1111 JUKE BOX prerecorded songs 112 EINSTEINS FAVORITES advanced math 113 PONZO'S TUTOR programming from BASIC to machine
] 114 ELECTRONIC SECRETARY filehandling utilities
NEW TOP TEN FOR IBM S6.00/DISK
PC-SIG Authorized Dealer
1005 PC-FILE III, V4 labels, forms, and more
7078 PC-WRITE v. 2165 popular and powerful
273 BEST UTIUTIES print spooler, file search, more
1274 BEST GAMES packman, breakout. wizard, more
1293 ARCADE GAMES (color graphics required)
1405 DESKMATE more than a sidekick
1457 GREATEST ARCADE the best of the best games
528 NEW YORK WORD sophisticated word processing. 1 of 2
I 529 NEW YORK WORD 2 of 2
$\square 557$ PINBALL ALLEY from simple to complex pinball games
Add $\$ 4$ shipping \& handing per order. CA residents
NEW TOP TEN FOR APPLE $55.00 / D I S K$
$\square 037$ FREEWRITER wordprocessor (Apple $11+$ needs paddles)
$\square 038$ BUSINESS HOME MANAGEMENT checkbook, calculator, more
$\square 039$ BEST OF BUSINESS general ledger, payroll. much more
$\square 056$ BANKin SYSTEM check balancer, write \& print checks
057 OMNI FILE data base with instructions 1064 BEST OF EDUCATION math drills, spelling, typing, etc.
1 085 BASIC MATH DRILLS fractions, multiple choice, work problems 118 GAMES fast action space arcade games 195 PASSTIME, a potpourri of programs $\square 213$ BEST UTILTIES diskcat, krunch, diskcheck, diskmap. etc.
NEW TOP TEN FOR MAC S9.00/DISK I 005 CODE CRACKING. FEDIT edit file blocks in ASCll or hex
$\square 006$ ResED and ReED edit menu bars, icons and ID numbers
$\square 007$ SWITCHER edit multiple Microsoft BASIC files 029 COMMUNICATIONS Red Ryder, MacTep 037 SLIDE SHOW
$\square 039$ FONTS Font catalog
045 DESK ACCESSORIES Minifinder, timer 1062 GAMES Dungeons of doom, baseball 1067 GAMES Billiards. volleyball, juggling 086 BEST OF MAC MacWorid 86
PUBLIC DOMAIN SOFTWARE EXCHANGE Authorized Dealer
add 6.5\% sales tax
Amount enclosed \$ Check IVISA Π MasterCard
Card No.
Signature \qquad Exp. Date
Phone (
Name
Address
City
y \square
State__Z Zip

Omega Sort

Jonathan J. Holuta

Written entirely in machine language, this fast sorting routine for the Commodore 64 can be used by anyone and does not take away any space from BASIC memory.

If you write programs that handle data, sooner or later you will need a routine to sort items into alphabetical order. There are several sorting methods suitable for use in BASIC, including the bubble sort, shell sort, and quick sort. None of those methods, however, is very efficient for sorting large amounts of data.
"Omega Sort" is a speedy machine language routine which you can use in any BASIC program, even if you don't know a thing about machine language. Program 1 contains the sort routine. Type in this program with the "MLX" machine language entry program found elsewhere in this issue. Here are the starting and ending addresses you'll need when typing in the program:

Starting address: C000
 Ending address: C377

Don't forget to save a copy of the program after you finish typing it in. If you want use Program 2 to test the sorting routine, save the data from Program 1 with the name OMEGASORT, since that's the name Program 2 looks for.

Omega Sort can sort 1000 randomly ordered strings in alphabetical order in less than six seconds. To see the routine at work, type in and save Program 2, the BASIC demonstration program. If you are using tape instead of disk, change the 8 to a 1 in line 10 of Program 2 .

When you run Program 2, it loads the machine language routine from disk or tape into memory. Then it prompts you to enter the number of strings you wish to sort. To create 1000 random strings, for instance, type 1000 and press RETURN. The program prints all of the strings on the screen in their original order, then it sorts them alphabetically. When the sorting is done, the program displays the strings in the new order, one screenful at a time. Press any key to view the next page of data, or press f1 to exit the program.

How To Use It

To use Omega Sort, your program must begin by loading the machine language routine into memory. The first line of Program 2 demonstrates how this is done.

Some machine language sorting routines sort only one dimension of a multidimensional array, which is not always convenient. To demonstrate why, suppose that you have an address file program that stores a list of names and addresses in a two-dimensional array as shown here:
$\mathrm{N} \$(1,1)=$ name 1
$\mathrm{N} \$(1,2)=$ street 1
$\mathrm{N} \$(1,3)=$ city 1
$\mathrm{N} \$(1,4)=$ state 1
$\mathrm{N} \$(1,5)=$ zip code 1
$\mathrm{N} \$(1,6)=$ phone 1
Each full entry contains six separate items: the name, street, city, state, zip code, and phone number. In a real program, of course, you might have dozens or even hundreds of such entries. The name for entry 2 would be contained in $\mathrm{N} \$(2,1)$, and so forth.

If you sort the first dimension of this array (name), then the names will be mismatched with the other data items. The name for entry number 1 might be matched with the street for entry 36 , and so on.

Instead of sorting the strings themselves, Omega Sort sorts a numeric index array. Each element of the numeric array points to one data set in the string array. The advantage of this method is that all the items within each data set remain in their original order. In addition to great speed, this gives you more flexibility in using string arrays.

In Program 2, the string array is named A\$, and the index array is named N\%. Note that the index array must be an integer array (one whose name ends with \%). Any legal Commodore variable names may be used, provided you follow this simple rule.

Calling The
 Machine Language

Like other machine language routines, Omega Sort is called with a SYS command. In addition to the command itself, which includes the starting address of the machine code, you must supply three items of information: the number of elements to sort, the name of the string array, and the name of the index array. Here is an example:

100 SYS 49152,N,N\$(0),N\%(0)

In this statement, the variable N indicates the number of elements to be sorted, and the variable $N \$(0)$ indicates the name of the array you wish to sort. If there are 40 elements in the $\mathrm{N} \$$ array, for instance,
you would set N to 40 before exe－ cuting line 100．Or，you could just replace N with the number 40 ．The variable $\mathrm{N} \%$ is the index array．

Once the sorting is complete， the index array contains the new order．To gain access to the sorted data，you must refer to elements of the string array through the index． Look at line 110 of Program 2．The expression $\mathrm{A} \$(\mathrm{~A} \%(\mathrm{X}))$ causes PRINT to display the elements of $\mathrm{A} \$$ in the order contained in the A\％array．Remember，Omega Sort rearranges the order of the numeric index array，not the string array itself．Each element of the index array points to one element of the string array．

The SYS statement for a multi－ dimensional array is the same，ex－ cept that you must specify which dimension to sort．Here is an example：
100 SYS 49152，N，N\＄（0，3），N\％（0）
For the address array men－ tioned above，the preceding state－ ment would sort the addresses according to the array＇s third dimension（city）．This statement would sort it according to the first dimension（name）：
100 SYS $49152, \mathrm{~N}, \mathrm{~N} \$(0,1), \mathrm{N} \%(0)$
This statement would sort the address array by its fifth element （zip code）：

100 SYS 49152，N，N\＄（0，5），N\％（0）

Here is an example line that would print the elements of the address array in their new order：

110 FOR $X=0$ TO N：PRINT X，N\＄（N\％（X）

 ，5）：NEXTYou can use this routine with－ out knowing how it works，but，for those who are interested，here is a brief explanation．Omega Sort first stores important zero page pointers in the cassette buffer so it can use these locations for its own pur－ poses．Then it determines where in memory the arrays reside．In the case of strings，the actual text is stored from the top of BASIC mem－ ory in a downward direction．The array storage space（located just above the end of BASIC program text）contains a series of pointers to the strings in high memory．Omega Sort checks the pointers and then changes the values of the integer array to match the alphabetical or－
der of the strings themselves．When finished，it restores the contents of the zero page and returns to BASIC． The entire process works so quickly that it can sort a hundred strings in less than a second．

Program 1：Omega Sort

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program．
 Cøø8：CØ E6 D9 DØ Ø2 E6 DA 3885 CØ1Ø：A5 DD E9 Ø2 85 DD A5 DE 07 Cø18：E9 ØØ 85 DE $2 \emptyset 48 \mathrm{C} 1 \quad 2 \emptyset$ F2 Cø2Ø：9A C $\emptyset 6 \emptyset$ A5 DD 85 DF A5 EF Cø28：DE 85 EØ A9 Øø 85 E1 $859 \varnothing$ Cø3Ø：E2 AØ Ø1 A5 E1 91 DF 8863 CØ38：A5 E2 91 DF C5 DA FØ $16 \quad 07$ CØ40：18 A5 DF 69 02 85 DF A5 55 CØ48：EØ 69 ØØ 85 EØ E6 El DØ 24 Cø50：EØ E6 E2 4C 31 CØ A5 E1 D6 CØ58：C5 D9 Fø Ø3 4C 40 CØ $6 \emptyset$ C6 CØ6Ø：2Ø FD AE 2Ø 9E AD $2 \emptyset$ F7 2D C $668: \mathrm{B} 7 \mathrm{~A} 514 \quad 85 \mathrm{D9}$ A5 $15 \quad 85 \quad 1 \mathrm{~F}$ Cø7Ø：DA $2 \emptyset$ FD AE $2 \emptyset$ 9E AD A5 8 E C $078: 4785$ DB A5 $48 \quad 85$ DC $2 \emptyset \quad 07$ Cø8Ø：FD AE $2 \emptyset$ 9E AD A5 $47 \quad 85$ B2 Cø88：DD A5 48 85 DE $6 \emptyset$ Aø $19 \quad 96$ Cø9Ø：B9 D8 Øø 99 3C Ø3 88 DØ 8E Cø98：F7 6Ø AØ 19 B9 3 C Ø3 99 32 CØAØ：D8 ØØ 88 DØ F7 60 A5 DD 17 CØA8：85 DF A5 DE 85 E D AØ Ø2 7A CØBØ：18 A5 DF 6D 72 C3 85 DF Ø8 CØB8：A5 EØ 6D 73 C3 85 EØ 88 A8 CØCØ：D \emptyset EE $6 \emptyset$ A5 DD 85 El A5 3B CØC8：DE $85 \mathrm{E} 2 \mathrm{~A} \emptyset \quad$ Ø2 18 A5 E1 1 F CØDØ：6D 74 C3 85 E1 A5 E2 6D CF CØD8： 75 C3 85 E2 88 DØ EE $6 \emptyset$ AA CØEØ：AØ Ø1 B1 DF 8D 76 C3 88 7D CØE8：B1 DF 8D 77 C3 A5 DB 8556 CØFØ：E6 A5 DC 85 E7 AØ Ø3 1823 CØF8：A5 E6 6D 76 C3 85 E6 A5 C3 Cløø：E7 6D 77 C3 85 E7 88 Dø AB C1ø8：EE AØ Ø2 B1 E6 99 EA ØØ F9 C11Ø：88 1Ø F8 6Ø AØ Ø1 B1 E1 4F C118：8D 76 C3 88 B1 E1 8D 77 A8 C120：C3 A5 DB 85 E8 A5 DC 85 DF C128：E9 AØ Ø3 18 A5 E8 6D 76 CC C130：C3 85 E8 A5 E9 6D 77 C3 26 C138：85 E9 88 DØ EE AØ Ø2 B1 C6 C140：E8 99 EA Øø 88 1Ø F8 $6 \emptyset$ D2 C148：A2 Ø1 A9 Ø1 9D 8ø C3 A9 C2 C150：øØ 9D AE C3 E8 A5 D9 9D 7C C158：8 0 C3 A5 DA 9D AE C3 A9 48 C16Ø： 02 8D 7A C3 A9 øø 8D 7B B7 C168：C3 AE 7A C3 BD 8Ø C3 8D ØA C170：78 C3 BD AE C3 8D 79 C3 CE C178：AD 7A C3 DØ Ø3 CE 7B C3 Ø5 C18Ø：CE 7A C3 AE 7A C3 BD 8Ø 4C C188：C3 8D 7C C3 BD AE C3 8D DA C190：7D C3 AD 7A C3 DØ Ø3 CE 57 C198：7B C3 CE 7A C3 AD 7C C3 DD C1AØ：8D 72 C3 AD 7D C3 8D $73 \quad 64$ C1A8：C3 AD 78 C3 8 D 74 C 3 AD 38 C1B6：79 C3 8D 75 C3 18 AD 7C 41 ClB8：C3 6D 78 C3 8D 7E C3 AD 6ø ClCØ：7D C3 6D 79 C3 8D 7F C3 5ø ClC8：6E 7F C3 6E 7E C3 A5 DD EE ClDØ： 85 E3 A5 DE 85 E4 AØ Ø2 B5 ClD8：18 A5 E3 6D 7E C3 85 E3 17 ClEØ：A5 E4 6D 7 F C3 85 E4 88 9C ClE8：DØ EE AØ Øø B1 E3 8D 7754 C1FØ：C3 C8 B1 E3 8D 76 C3 A5 $7 \emptyset$ ClF8：DB 85 FO A5 DC 85 Fl AØ C5 C2øø：ø3 18 A5 FØ 6D 76 C3 $85 \quad 23$ C208：Fの A5 F1 6D 77 C3 85 F1 4C C210：88 DØ EE AØ Ø2 B1 FØ 9948 C218：ED ØØ 88 1の F8 $2 \emptyset$ A6 C \varnothing FC

C220：2Ø EØ CØ A $\quad \mathrm{FF}$ C8 C4 ED AA
 C230：D1 EE 90 ØE FØ EF 4C 5A 87 C238：C2 A5 EA C5 ED $9 \emptyset$ Ø3 4C 46 C24Ø：5A C2 EE 72 C3 DØ Ø3 EE FE C248：73 C3 18 A5 DF 69 Ø2 85 Ø4 C250：DF A5 EØ 69 Øø 85 EØ 4C Ø6 C258：1D C2 $2 \emptyset$ C3 Cø $2 \emptyset 14 \mathrm{Cl}$ CD C26Ø：A FF C8 C4 EA $\mathrm{B} \emptyset \quad$ ØF C4 98 C268：ED B $\emptyset 14$ B1 EE D1 EB 90 D5 C27ø：ØE Fø EF 4C 9A C2 A5 ED 15 C278：C5 EA 9ø Ø3 4C 9A C2 AD DD C280：74 C3 DØ Ø3 CE 75 C3 CE 1E C288：74 C3 38 A5 E1 E9 Ø2 85 DA C290：E1 A5 E2 E9 øø 85 E2 4C 93 C298：5A C2 AD 73 C3 CD 75 C3 EC C2AØ：9Ø $12 \mathrm{~F} \emptyset$ Ø3 4C E2 C2 AD 62 C2A8： 72 C3 CD 74 C3 $9 \varnothing$ Ø5 Fø B4 C2Bø：Ø3 4C E2 C2 AØ ØØ B1 DF 9B C2B8： 48 C8 B1 DF 48 B1 E1 9127 C2Cø：DF 88 Bl El 91 DF AØ Ø1 FA C2C8：68 91 El $88 \quad 6891$ El EE E7 C2D $: 72$ C3 DØ Ø3 EE 73 C3 AD 45 C2D8：74 C3 Dø Ø3 CE 75 C3 CE 76 C2E0：74 C3 AD 73 C3 CD 75 C3 82 C2E8： 9012 F Ø Ø3 4C FF C2 AD 1 F C2Fも：72 C3 CD 74 C3 9Ø Ø5 Fの FC C2F8： 03 4C FF C2 4C 1D C2 AD 49 C3øø：7D C3 CD 75 C3 $9 \varnothing$ 1Ø FØ B9 C3ø8： $03 ~ 4 \mathrm{C} 43 \mathrm{C} 3 \mathrm{AD} 7 \mathrm{C}$ C3 CD 7D C310：74 C3 9Ø Ø3 4C 43 C3 EE EA C318：7A C3 DØ Ø3 EE 7B C3 AE B3 C32ø：7A C3 AD 7C C3 9D 8Ø C3 AC C328：AD 7D C3 9D AE C3 EE 7A 15 C330：C3 DØ ø3 EE 7B C3 E8 AD 87 C338：74 C3 9D 8Ø C3 AD 75 C3 2A C340：9D AE C3 AD 72 C3 8D 7C CF C348：C3 AD 73 C3 8D 7D C3 CD 7F C35ø：79 C3 9Ø Ø3 4C 5A C3 4C 67 C358：A9 Cl Dø 08 AD 7C C3 CD 74 C36Ø：78 C3 9Ø F3 AD 7B C3 DØ 1A C368： 66 AD 7 A C3 Dø Ø1 6Ø 4C 81 C370：69 C1 EA ØØ ØØ ØØ Øø ØØ 7A

Program 2：BASIC Demonstration

For instructions on entering this program， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．

DG $1 \emptyset$ IF $\mathrm{Z}=\emptyset$ THEN $\mathrm{Z}=1:$ LOAD＂OME GASORT＂， 8,1
QQ $2 \emptyset$ POKE 53281，1：PRINT＂$\{$ CLR\} \｛2 DOWN\}\{BLK\}"
MH $3 \emptyset \operatorname{DEFFNA}(X)=\operatorname{INT}(X * 1 \varnothing \varnothing+.5) /$ $1 \varnothing \emptyset$
MC 40 INPUT＂HOW MANY＂；N：DIMA\＄（ $\mathrm{N}), \mathrm{A} \%$（ N ）
PA 50 AS＝＂ABCDEFGHIJKLMNOPQRST UVWXYZ＂
QQ $6 \emptyset$ FORX＝ØTON：AS $(X)=\operatorname{MID} \$(A S$ ， RND（1）＊ $18+1$ ，RND（1）＊5＋3）： PRINTX，A\％（X），A\＄（X）
RJ 70 NEXT
FK $8 \emptyset$ PRINT＂\｛DOWN\} \{RVS\}SORTING ＂：Tl＝TI
GD $9 \varnothing$ SYS $49152, \mathrm{~N}, \mathrm{~A} \$(\varnothing), \mathrm{A} \%(\varnothing)$
EG $1 \emptyset \emptyset \mathrm{~T} 2=\mathrm{TI}: T M=(\mathrm{T} 2-\mathrm{Tl}) / 60: \mathrm{PRI}$ NT＂\｛CLR\} \{DOWN\}"
HF $11 \varnothing$ FORX $=\emptyset T O N: \operatorname{PRINTX}, A \%(X)$ ， AS（A\％（X））
BG $12 \emptyset$ IFPEEK $(214)<21$ THEN17 9 BR 130 PRINT＂\｛DOWN\}HIT ANY KEY TO CONTINUE：$\{2$ SPACES $\}$ Fl TO END
BQ 140 GETB\＄：IFB\＄＝＂＂THEN140
CH 150 IFB $\$="\{$ Fl $\}$＂THENX $=\mathrm{N}-18$
GH $16 \varnothing$ PRINT＂\｛CLR\} \{DOWN\}"
SQ 170 NEXT
FE 180 PRINT＂ 22 DOWN \} \{RVS\} "FNA （TM）＂\｛OFF\}SECONDS"

Atari Disk Sector Editor

Marcelo Adapon

With this utility you can view and change the contents of any sector on a standard floppy disk. The program works with Atari DOS 2.0 and 2.5 and runs on any Atari 800XL, 65XE, or 130XE computer. (The program will not work on the older 400 or 800 models.) A disk drive and joystick are required. Recommended for intermediate and advanced programmers.

If you are interested in learning about Atari disk organization, or if you have ever needed to recover an accidentally deleted disk file, "Atari Disk Sector Editor" can be a very useful tool. It's a convenient, menudriven utility which allows you to display the contents of any disk sector on the screen and modify any byte or series of bytes within the sector. (A disk editor is a very powerful tool-if misused, it can easily scramble an entire disk, destroying its contents forever. To avoid losing important data, you should practice using this program on an unimportant disk until you are familiar with its use.)

Type in the program and save it to disk. Notice line 5: To edit an enhanced-density DOS 2.5 disk, you'll need to change the DENSI$T Y=0$ in that line to DENSITY $=1$. The program uses several of the less common screen editor sequences, so be sure to refer to the "Guide to Typing In Programs" article elsewhere in this issue if you see something in braces ($\}$) that you don't understand. For example, the $\{5$ DEL LINE $\}$ in line 470 means to type the delete-line sequence, ESC-SHIFT-DELETE, five times.

When you run Disk Sector Editor, it spends a few moments in-
stalling machine language subroutines; then it displays the menu screen. This screen lists all the commands available in the program. The menu disappears when you display a disk sector. Use the joystick to move the cursor from one byte to another in the sector display. You can go back to the menu at any time by pressing the question mark key (?).

Command List

Here is a complete list of the program's commands:
R. Reads the sector indicated by the number in the sector indicator and displays its contents on the screen.
W. Writes the current sector back to disk, including any changes you have made while editing the sector.
C. Changes to a new sector.
T. Activates text input mode. Text mode lets you change the contents of the byte under the cursor by typing a key. (Don't type too quick-ly-input is rather slow in this mode.) Exit this mode by pressing CTRL-CLR.
H. Activates hexadecimal input mode. As with text mode, this mode lets you change the contents of a byte. However, the new value is typed as a hexadecimal value. For instance, typing the characters AA changes the contents of the byte under the cursor to hexadecimal $\$ A A$. Exit hexadecimal mode by typing ZZ .
D. Activates decimal input mode. This mode works the same as text and hexadecimal mode, except that entries are in decimal. Exit by typing -1 .
L. Displays sector link information. This function shows the data con-
tained in the last three bytes of the current sector. These bytes show the number of active bytes in the sector, the file number, and the next sector in the chain of linked sectors. Note that if the last byte is zero, you have reached the final sector in the chain (the end of the file).
S. Shows the decimal value of the byte under the cursor.
A. Shows the character in ATASCII and internal format.
N. The Next command automatically reads the next sector in the file chain and increments the sector indicator to that sector number.

+ . Pressing the plus key $(+)$ causes the program to read the next sector in numerical order. If you execute this command from sector 720 (standard density) or 1010 (enhanced density), the program proceeds to sector 1 .
-. Pressing the minus key (-) causes the program to read the previous sector in numerical order. If you execute this command from sector 1 , the program backs up to sector 720 (standard density) or 1010 (enhanced density).
?. The question mark key (?) returns you to the main menu, which lists all the program's commands.

Among other things, this program allows you to recover a file that was deleted accidentally. Before you try to recover an actual file, it's a good idea to practice this process with a dummy file on an unimportant disk. For instance, create a dummy file by saving a oneline BASIC program to disk; then delete the file to set up the conditions for recovering it. After you know that you can successfully recover the dummy file, you can proceed to restore important files.

Directory Records

To begin the recovery process，read the directory sectors（361－368）to find out whether the filename of the deleted file still exists．It＇s important to understand the format of file records within the disk direc－ tory．Each record contains 16 bytes， whose significance is explained as follows．

Byte 0 ：Status

The status byte records the file＇s status，which is one of four possible values：
$\$ 40=$ normal
$\$ 43=$ unclosed
$\$ 80=$ deleted
$\$ 20=$ locked
The status byte for a deleted file appears on the screen as the heart character．

Bytes 1－2：Length

These bytes show the length of the file in low－byte／high－byte format． To convert from low－byte／high－ byte format to a decimal number， use the BASIC statement PRINT LO $+256^{*} \mathrm{HI}$ ，where LO equals the low－byte value and HI equals the high byte．

Bytes 3－4：Starting sector

This pair of bytes indicates the sec－ tor where the file begins．This value is also in low－byte／high－byte format．
Bytes 5－12：Filename
The first part of the filename（the eight characters before the period） is contained in these bytes．

Bytes 13－15：Extension

These three bytes contain the three－ character extension which appears after the period in a filename．

When you view a file record with this program，each record takes up two lines of the display．Each record starts on a line that ends with a zero（ 10,20 ，and so on）．To recover a deleted file，you need only change that file＇s status byte from $\$ 80$ ， meaning that it＇s deleted，to $\$ 40$ ，the normal file type．Once this is done， write the sector back to disk．

File Recovery

The best time to recover a file is immediately after it has been de－ leted，before any other files have been created or updated．That way， you can be reasonably certain that no part of the deleted file has been
overwritten by another file．After recovering a file，you should exit the program and attempt to read the file normally，to make sure all of it is present．（Don＇t write to that file or any other file on the disk，how－ ever，or you may destroy your chances of recovering it．）

With the file intact，only one job remains．You have changed the file＇s status back to normal，but you must still update the disk＇s VTOC （Volume Table Of Contents）so that DOS knows the file＇s sectors are in use again．Copy the recovered file to a second disk；then insert the origi－ nal disk and delete the file again from the DOS menu．Now copy the file back from the second disk to the original．DOS updates the VTOC and the file is restored completely．

Recovery is much more diffi－ cult in cases where the deleted file has no entry in the directory sectors or where part of it is missing after you＇ve restored it to normal status． Since the directory holds no clue as to the file＇s length or location，you have to look through every sector on the disk to find the beginning of the file，then determine its length manually by chaining through all its sectors until you reach the final sector．Once that has been done， you have to construct a new file record in the directory and update the VTOC as well．It＇s possible to recover a file in this way，but only if none of it has been overwritten by other files．And this method de－ pends on your ability to recognize the file＇s first sector amongst all the other sectors on the disk．Unless the file is absolutely irreplaceable，you may find it more time－efficient to recreate the file by using the pro－ gram that created it in the first place．

Atari Disk Sector Editor

For instructions on entering this program． please refer to＂COMPUTE！＇s Guide to Typing In Programs＂elsewhere in this issue．

FE 5 DENSITY＝ø：REM DENSITY＝1 IF USING DOS 2.5 ENHAN CED DENSITY
MA $1 \emptyset$ IF $\operatorname{PEEK}(1536)<>173$ THE N GOSUB $115 \varnothing$
FF 2ø P2＝PEEK（1ø6）－5：POKE $1 \emptyset$ 6，P2：GRAPHICS $\varnothing: S C 1=P E$ EK（88）：SC2＝PEEK（89）：SC RN＝P2＊256：DL＝PEEK（56ø） ＋256＊PEEK（561）
AF $3 \varnothing$ POKE 752，1：SECTOR＝1
CN 4 D DIM R $\$(1), B U F \$(128), C M$ $D \$(1): D R I V E=1: B U F \$=C H R$
\＄（ \varnothing ）：BUF $\$(128)=B U F \$: B U$ $F \$(2)=B U F \$: A D D R=A D R(B U$ F\＄）
JA 5 Ø DIM $H X \$(16), H X N \$(3), H X$ N1 $\$(2): H X \$=" \emptyset 123456789$ ABCDEF＂
ID 6ø DIM ML1\＄（26），ML2\＄（19）： RESTORE 62
FI 62 FOR I＝1 TO 26：READ BYT ：ML1\＄（I）＝CHR\＄（BYT）：NEX T I
FN 64 FOR I＝1 TO 19：READ BYT ：ML2\＄（I）$=$ CHR\＄（BYT）：NEX T I
NP 66 DATA $1 \emptyset 4,1 \emptyset 4,133,1,1 \emptyset 4$ ，133， $0,162,9,160,0,169$ ， $0,145, \varnothing, 2 \emptyset \varnothing, 2 \varnothing 8,249,2$ $3 \varnothing, 1,232,224,4,2 ø 8,242$ ， 96
HD 68 DATA $72,138,72,162, \emptyset, 1$ $69, \emptyset, 157,192,158,232,2$ $24,4 \emptyset, 2 \emptyset 8,246,1 \emptyset 4,179$ ， 104,64
$F C 7 \emptyset \quad A=U S R(A D R(M L 1 \$), S C R N):$ $A=A D R(M L 2 \$): P O K E \quad A+9$ ，I NT（（SCRN＋96の）／256）：POK E $A+8, S C R N+96 \emptyset-$ PEEK（ $A+$ 9）≈ 256
JF 日ø POKE DL＋1 $0,13 \emptyset:$ POKE 51 3，INT $(A / 256)$ ：POKE 512 ， A－PEEK（513）＊256：POKE 5 4286， 192
FH 9ø ？＂R－READ SECTOR＂
PD $1 \emptyset \emptyset$ ？＂W－WRITE SECTOR＂
MB $11 \emptyset$ ？＂C－CHANGE SECTOR READ／WRITE NUM＂
HE $12 \emptyset$ ？＂T－ENTER TEXT DAT A＂
AJ $13 \varnothing$ ？＂H－ENTER HEX DATA
BA $14 \varnothing$ ？＂D－ENTER DECIMAL DATA＂
EJ $15 \varnothing$ ？＂L－PRINT SECTOR L INK INFO＂
EH $16 \varnothing$ ？＂S－SHOW DECIMAL V ALUE＂
JM $17 \varnothing$ ？＂A－CHARACTER REPR ESENTATIONS＂
KA $18 \varnothing$ ？＂N－NEXT SECTOR IN CHAIN＂
JK $19 \emptyset ? "+$－DISPLAY NEXT S ECTOR＂
NC 2øø ？＂－DISPLAY PREVIO US SECTOR＂
6 6L 210 ？＂？－HELP SCREEN＂
CK 220 ？＂USE JOYSTICK TO M QVE CURSAR＂
NH 230 ？＂PRESS A KEY TO CO NTINUE＂
M 24 D OPEN \＃ $1,4, \varnothing$ ，＂K：＂
IE 25 GET \＃1，B：IF $F L<>1$ THE N GOSUB Gøø
FD 26 （ $\mathrm{FL}=1$ ：GOSUB 65ø：POKE 7 54，1：POKE 694， $0:$ POKE 7ø2，64
LB 27 IF $\operatorname{PEEK}(754)<>1$ THEN 45ø
KE 28日 $\mathrm{D}=\mathrm{PEEK}(632)$ ：IF $\mathrm{D}=15 \mathrm{~T}$ HEN $27 \varnothing$
DH 290 POKE LOC，PEEK（LOC）－ 12 8：POKE LOC＋1，PEEK（LOC ＋1）-128
BA $3 \emptyset \emptyset$ POSITION 28，Y＋1：？＂＂
JA $31 \emptyset$ POKE TEMP，PEEK（TEMP）－ 128：POKE TEMP＋1，PEEK（ TEMP＋1）－ 128
BH $32 \emptyset$ POSITION $6+x * 3, \varnothing: ? x$ ： POSITION $29+x, \emptyset: ? x$
$6 C 330$ IF $D=1 \varnothing$ OR $D=14$ OR $D=$ 6 THEN $Y=Y-1$
DH 349 IF $D=9$ OR $D=13 \quad O R \quad D=5$ THEN $Y=Y+1$

6C 35 IF $D=1 \emptyset$ OR $D=11$ QR $D=$ 9 THEN $X=X-1$
AH 360 IF $D=6$ OR $D=7 \quad Q R \quad D=5$ THEN $\quad x=x+1$
OK $37 \emptyset$ IF $x>7$ THEN $X=\emptyset$
0J $38 \emptyset$ IF $X<\emptyset$ THEN $X=7$
BN 390 IF $Y>15$ THEN $Y=\varnothing$
BD $4 \varnothing \varnothing$ IF $Y<\varnothing$ THEN $Y=15$
CP 41 Ø LOC $=S C R N+45+4 \emptyset * Y+X * 3$ ： POKE LOC，PEEK（LOC）+12 8：POKE LOC＋1，PEEK（LOC ＋1）＋128：POSITION 28，Y $+1:$ ？＂\｛ESC\}\{RIGHT\}"
 E TEMP，PEEK（TEMP）+128 ：POKE TEMP＋1，PEEK（TEM $P+1)+128$
EP 430 POSITION 6＋X＊3，\quad ：？CH R\＄（176＋X）：POSITION 29 $+X, \varnothing$ ： ？CHR\＄$(176+x)$
6K 44ø GOTO 27
CC 450 GET \＃1，B：R\＄＝CHR\＄（B）：P OKE 754，1
LE 46ø IF R\＄＝＂？＂THEN GOSUB 660：GOTO 25ø
IK 47 D IF R $\$=$＂R＂THEN CMD $\$="$ R＂：GOSUB 127ø：GOSUB 6 Øø：POSITION $\varnothing, 18: ? "$ \｛5 DEL LINE\}": GQTO 27 \emptyset
JF 48ø IF R\＄＝＂W＂THEN CMD\＄＝＂ W＂：GOSUB $127 \emptyset:$ GOSUB 6 øø：POSITION $\emptyset, 18: ?$ \｛5 DEL LINE\}": GOTO 27 Ø

DC 49ø IF R\＄＝＂C＂THEN 67
DC 5øø IF R\＄＝＂H＂THEN 88ø
CL 510 IF $R \$=" D "$ THEN $84 \emptyset$
6852ø IF R\＄＝＂T＂THEN 1 Øøø
DE $53 \emptyset$ IF R $\$=$＂L＂THEN $74 \varnothing$
BI 540 IF R\＄＝＂+ ＂THEN $69 \emptyset$
BE 550 IF R $\$="-"$ THEN 710
DN 56ø IF R $\$=$＂S＂THEN $73 \varnothing$
DA 57 IF $\mathrm{R} \$=$＂A＂THEN $77 \emptyset$
DK 58ø IF R $\$=$＂N＂THEN 820
HA 59ø GOTO 27ø
MP 6øø GOSUB 65ø：$X=\varnothing: Y=\emptyset:$ LOC $=S C R N+45$
MO $61 \emptyset$ POSITION $\emptyset, \emptyset: ? ~ " L I N E ~$ $\begin{array}{lllllll}\text { E } & 1 & 2 & 3 & 4 & 5 & 6\end{array}$ 7 ［玉1234567＂：A＝USR（15 36，ADDR）
ON 620 ？：？＂SECTOR \＃TO BE WRITTEN／READ：＂；SECTOR ；
HM 63Ø TEMP＝LOC－3：POKE TEMP， PEEK（TEMP）＋ 128 ：POKE T $E M P+1, \operatorname{PEEK}($ TEMP＋ 1$)+12$ 8
LJ 640 POKE LOC，PEEK（LOC）+12 8：POKE LOC＋1，PEEK（LOC ＋1）＋128：POSITION 28， 1 ：？＂\｛ESC\}\{RIGHT\}": RET URN
PD 65 Ø POKE DL＋4，$\emptyset:$ POKE DL +5 ，P2：POKE 88，Ø：POKE 89 ，P2：RETURN
K0 66Ø POKE DL＋4，SC $1:$ POKE DL ＋5，SC2：POKE 88，SC1：PO KE 89，SC2：RETURN
IK $67 \emptyset$ POSITION $\varnothing, 18:$ ？ \｛5 DEL LINE\}SECTOR NU MBER＂；：TRAP 670：INPUT SECTOR：POSITION 3Ø， 1 7：？SECTOR；＂＂
DN $68 \emptyset$ POSITION $\emptyset, 18: ?$
\｛DEL LINE\}":GOTO $27 \emptyset$
N0 690 SECTOR＝SECTOR＋1：IF SE CTOR＞1ø1ø THEN SECTOR ＝ 1
KD 691 IF DENSITY $=\varnothing$ AND SECT
$\square R>72 \emptyset$ THEN SECTOR＝1
007 Dø R\＄＝＂R＂：GOTO 47ø
NH $71 \emptyset$ SECTOR＝SECTOR－1：IF SE CTOR＜1 THEN SECTOR＝1 \varnothing $1 \varnothing$
AE 711 IF DENSITY $=\emptyset$ AND SECT QR $>72 \emptyset$ THEN SECTOR＝72 Ø
PA $720 \mathrm{R} \$=" \mathrm{R} ":$ GOTO $47 \emptyset$
AF $73 \varnothing$ POSITION $\emptyset, 18: ?$ \｛5 DEL LINE\}THE DECIM AL VALUE OF BYTE \＃＂；Y ＊ $8+X$ ：？＂IS EQUAL TO＂ ；PEEK（ADDR＋ 8 ＊$Y+X$ ）：GOT － 280
AK $74 \emptyset \quad \mathrm{FN}=\mathrm{INT}($ PEEK（ADDR＋125） ／4）：NSEC＝PEEK（ADDR＋12 6）+256 ＊（PEEK（ADDR＋125 ）-FN ＊4）
EJ 750 POSITION ø，18：？＂
\｛5 DEL LINE\}DOS FILE NUMBER＂；FN：？＂NEXT S ECTOR IN THIS FILE IS ＂；NSEC：AC＝PEEK（ADDR＋ 127）
FJ 76ø ？＂THERE ARE＂；AC；＂A CTIVE BYTES＂：？＂IN TH IS SECTOR＂：GOTO $27 \emptyset$
OC $77 \emptyset$ POSITION $\emptyset, 18: ? "$〔5 DEL LINE\}ASCII \｛1ø SPACES\} INTERNAL": ？＂GRAPHIC ASC
\｛4 SPACES\}GRAPHIC INT
EO 78 Ø $V=P E E K(Y * 8+X+A D D R)$ ：IF $V=155$ THEN $V=27$
AK $79 \emptyset$ POSITION $1 \emptyset, 18:$ CHR $\$$ （27）；CHR $\$(V):$ POKE SCR $N+759, V$
EM 8øø $V=V$－INT $(V / 64) * 64+64: P$ OSITION 15，19：？CHR\＄（ 27）；CHR $\$(V):$ POKE SCRN ＋79日，V＋64－（V＋64＞128）＊ 128
6L日1の GOTO 27の
$6182 \emptyset$ FN＝INT（PEEK（ADDR＋125） ／4）：NSEC＝PEEK（ADDR＋12 6）＋256＊（PEEK（ADDR＋125 ）- FN＊4）：IF NSEC＝\varnothing THE N GOTO 26ø
6 6 830 SECTOR＝NSEC：$C M D \$=" R "$ ： R\＄＝＂R＂：GOTO $47 \varnothing$
LH 84ø POSITION Ø，18：？
\｛5 DEL LINE\}TYPE IN D ECIMAL NUMBER THEN RE TURN＂：？＂TYPE－ 1 TO E ND DECIMAL ENTRY MODE

EP 85ø POSITION 2，20：？＂
\｛DEL LINE\} NUMBER TO R EPLACE＂；PEEK（ADDR＋Y＊ 8＋X）；＂：＂；：TRAP 85ø：I NPUT V：TRAP $4 \emptyset \emptyset \emptyset \emptyset$
FL 86Ø IF $V=-1$ THEN POSITION の，18：？＂\｛5 DEL LINE\} ＂：GOTO 26ø
P6870 GOSUB 1ø6ø：GOTO 85ø
ル 88ø POSITION ஏ，18：？＂ \｛5 DEL LINE\} TYPE IN H EXADECIMAL NUMBERS AN D RETURN＂；
MH 89ø ？＂TYPE IN ZZ TO END HEX ENTRY MODE＂
$609 \emptyset \emptyset \quad V=P E E K(A D D R+Y * 8+X): H X$ $=V:$ GOSUB 126ø：POSITIO N $\varnothing, 2 \varnothing:$ ？＂\｛DEL LINE\}H EX NUMBER TO REPLACE \＄＂；HXN\＄；＂：？＂：INPUT H XN\＄
BG $91 \varnothing$ TRAP $9 \emptyset \emptyset: H X N 1 \$=" \emptyset \emptyset ": H$ XN1\＄（3－LEN（HXN\＄），2）$=\mathrm{H}$ XN\＄：HXN\＄＝HXN1\＄：TRAP 4

Øøøø
KO 920 IF HXN $\$=" Z Z "$ THEN POS ITION ø，18：？ \｛5 DEL LINE\}": GOTO 26 \emptyset
DD $930 \mathrm{H}=\mathrm{ASC}(\mathrm{HXN}(1,1)):$ IF $($ $H<48$ OR $H>57$ ）AND（ $\mathrm{H}<$ 65 QR $H>7 \emptyset$ ）THEN ？＂ \｛BELL\}":GOTO 9øø
EK 940 L＝ASC $(H X N \$(2,2)):$ IF（ $L<48$ OR $L>57$ ）AND（ $L<$ 65 OR L＞7ø）THEN ？＂〔BELL\}": GOTO 9øø
NE 950 IF $H<65$ THEN $H=H-48: G$ OTO 970
AD $960 \quad \mathrm{H}=\mathrm{H}-55$
NE 97ø IF L＜65 THEN L＝L－48：G OTO 99.
AN $980 \mathrm{~L}=\mathrm{L}-55$
BC99ø V＝H＊16＋L：GOSUB 1ø6ø：G ロTO 9øø
HB 1øøø POSITION $\varnothing, 18: ? "$ \｛5 DEL LINE\}ASCII CH ARACTER ENTRY MODE＂
IC 1ø1ø POSITION 2，19：？＂PRE SS GEDE－लघ EXT ENTRY MODE＂
DM $1 \varnothing 2 \emptyset \quad V=P E E K(A D D R+Y * 8+X): P$ OSITION Ø，2ø：？
\｛DEL LINE\}CHARACTER TO REPLACE＂；：IF $V=1$ 55 THEN ？＂R3更DELE＂：G OTO 1ஏ2の
kB1 1 の
LC $1 \varnothing 4 \emptyset$ GET \＃1，V：IF $V=158$ TH EN POSITION $\emptyset, 18: ? "$ \｛5 DEL LINE\}": GOTO 2 60
ED 1 Ø5
PG 1 Ø6 6 POSITION $X * 3+5, Y+1: H$ $X=V$ ：GOSUB 126ø：？HXN \＄：POSITION $X+29, Y+1$ ： ？CHR\＄（27）；：IF $V=155$ THEN ？CHR\＄（27）：GOT －1ø8ø
Y 1 פ7Ø ？CHR\＄（V）
EL 1 Ø8 POSITION 6＋ $\mathrm{x} * 3$ ， ，？ x ：POSITION $29+x$ ，\varnothing ：x
PP 1 Ø9 1 POKE ADDR $+Y * 8+X, V$
MH $11 \emptyset \emptyset \quad X=X+1$ ：IF $X>7$ THEN $X=$ Ø：POSITION 28，Y＋1：？ ＂＂；：Y＝Y＋1：IF $Y>15 \mathrm{~T}$ HEN $Y=\emptyset$
LP $111 \emptyset$ POKE TEMP，PEEK（TEMP） －128：POKE TEMP＋1，PEE $K($ TEMP＋ 1$)-128$
EC $112 \emptyset$ TEMP $=S C R N+42+4 \emptyset * Y: P O$ KE TEMP，PEEK（TEMP）+1 28：POKE TEMP＋1，PEEK（ TEMP＋1）＋ 128
FP $113 \emptyset \quad L O C=S C R N+45+4 \emptyset * Y+X * 3$ ：POKE LOC，PEEK（LOC）＋ 128：POKE LOC＋1，PEEK（ LOC＋1）＋128：POSITION 28， $\mathrm{Y}+1$ ：？＂\｛ESC\} \｛RIGHT\}"
ग1114ø POSITION $6+X * 3$ ，$: ? ~ C$ HR\＄（176＋X）：POSITION $29+X, \emptyset: \quad C H R \$(176+X)$ ：RETURN
DK $115 \emptyset$ RESTORE $116 \emptyset: F O R \quad A=\varnothing$ TO 2ø7：READ B：POKE $A+1536$ ，B：NEXT A：RETU RN
AJ $116 \emptyset$ DATA $173,6,228,141,1$ $89,6,238,189,6,173,7$ ，228，141，19ø，6，169，ø ，141，253，6，141，254
DB $117 \emptyset$ DATA $6,141,255,6,165$ ，10，141，2ø8，b，165， 11 ，141，2ø9，6，1ø4，1ø4， 1 $33,11,194,133,19,174$

[^0]: Indoor Sports is available on C64 \& C128. High Roller is available on C64 \& C128 and AtaniST Bop'n Wrestle is available on Apple II family. IBM \& compatibles. C64 \& C128 and Atari 800 . Infiltrator is available on Apple II family. IBM \& compatibles. C64 \& C128 and Atari 800 . Balance of Power is available on Apple II family. Macintosh. IBM \& compatibles. Amiga and Atari ST
 Visit your retailer or call $1.800-443-79 e 2$ (in illinois $1.800-654.3767$) for VISA or MasterCard orders. To purchase by mail. send VISA or MasterCard number with expiration date. check or money order to Mindscape. Inc. PO. Box 1167. Northbrook. IL 60065 . Add $\$ 3.00$ for shipping and handling. Allow $3-5$ weeks for delivery.

 If you're an attorney read this: Apple. IBM, PC.jr. Commodore. Atari and Amiga are registered trademarks of Apple Computer. Inc.. International Business Machines, Commodore Electronics Ltd. Atari. Inc. and Commodore
 Amiga. Inc. respectively. Mindscape is a trademark of Mindscape. Inc.

[^1]: ; Skeleton of a program which puts ; a 'please wait' type message on

[^2]: PL 1 Øø5 COLOR ø, 6: LOCATE 1, 28, ø: PRINT CHR\$ (2Ø1) STRING\$ (1 Ø, 2ø5) CHR\$ (187)
 P1 $1 \emptyset 1 \emptyset$ LOCATE 2,28:PRINT CHR\$ (1 86)" EUCHRE "CHR\$(186)

 JC 1015 LOCATE 3, 28: PRINT CHR\$ (2 øø) STRING\$ (1ø, 2ø5) CHR\$ (1 88)

 EC 1 Ø6ø FOR I=ø TO 5:LOCATE 19+I , 33: PRINT CHR\$(222);:NEX T
 CB $107 \emptyset$ FOR $I=\emptyset$ TO 5: LDCATE S +I , 33: PRINT CHR\$(222); : NEXT
 QL 1112 RESTORE 1113:FOR $\mathrm{I}=\emptyset$ TO 2: $\mathrm{N} \$(\mathrm{I})=" \mathrm{n}:$ FOR $\mathrm{J}=\emptyset$ TO 19 : READ A:N\$ (I) $=N \$(I)+C H R \$$ (A) : NEXT J, I

 6A 1113 DATA $32,32,219,32,220,32$, 22ø, 32, 222, 32, 32, 220, 32 , 22ø, 22ø, 32, 254, 32, 254, 3 $2,222,32,219,32,32,220,2$ $29,32,32,32,22 \emptyset$

