A Report From The 1987 Winter Consumer Electronics Show

COMPUTEI.

The Leading Magazine Of Home, Educational, And Recreational Computing

SpeedScript 80
 Our powerful, full-featured 80 -column word processor now for Apple lle, Ilc, and Iles

Menu Planner

Plan meals efficiently with this easy-to-use program for the Commodore 64, IBM PC/PCjr, Apple, ST, Amiga, and Atari

Hyperscan

Stunning, high-speed graphics for the commodore 64
Disk COMpacker For IBM PC/PCjr
Consenve disk space and simplify directories

Easy BASIC Autoboot For Afari

Magazine Indexer
A specialized database for the IBM PC/PCjr, Atari ST, and Apple

Amiga Fonts

Select system fonts and text styles under program control from BAstc
Merge 128

SO REAL IT HURTS GFL Championship Football ${ }^{\text {m }}$

The way computer football should be.

Other football games put you in the grandstands, looking down on the action. Now see what it's like from the player's perspective-looking out of your helmet at an angry linebacker headed straight for you, and no blockers in sight.

With GFL Championship Football, ${ }^{\text {TM }}$ you've got the first football simulation that actually takes you down on the field, taking the hits and making the plays. And it's more than just a pretty pictureyou really get the feel of playing football.

No other football simulation gives you so many features:

- In-the-helmet perspective puts you at ground

level on the playing field.
- Scrolling-screen animation moves you up and down the playing field.
- Realistic sound effects let you hear everything from the quarterback calling the signals to the sound of your own footsteps.
- Team selection screens allow you to set the playing style of your team and that of your opponent.
Whether you're taking on bone-crunching action against a friend, or going up against any of the 27 computer-controlled teams in the GFL, this is the one that puts you where the action is!

Available now for the Commodore 64/128,
IBM PC and Tandy 1000, Apple II, Amiga, Atari ST and 100% compatible computers.

Amiga screen

Commodore 64-128 screen

Commodore 64-128 screen

Commodore 64-128 screen

At last! DOME... America's favorite bookkeeping system runs on your computer.

Now the popular DOME bookkeeping system is easier and quicker to use than ever, through the power of your IBM, Apple, Commodore or Tandy computer.
It works just like the familiar DOME record book used by millions of people for over forty years. Just enter receipts and expenses on each "page" on the screen. You can even turn the pages back to look at prior weeks or months. And you can erase! No more smudges, no more cross-outs. Just clear, errorfree entries for all your transactions.

The entire DOME book on a single diskette!

In a simple format DOME includes a complete system for business and tax recordkeeping: income, expenses, payroll and financial reports. Plus, exclusive "pop-up" accessories appear on your screen with a single keystroke: a calculator, notepad, list of accounts and even a perpetual calendar. . .everything you need to maintain a set of books and business records for a full year.
And not only does DOME keep your records but it will help you analyze them with powerful reporting capabilities.
Reports you always wished you had.
Look up or list every expense for the past year, month or day. You can do it by payee or account. Analyze income by product or service. If you have employees, DOME will help when 941 and W -2 forms are due. And print weekly or monthly financial statements showing profit or loss.

Sets up in less than 10 minutes!

Because DOME is based on the familiar DOME book, you already know how to use it! Save time setting up, save time learning and save time each week-because DOME does all the addition for you with complete accuracy. All you do is enter your income and expenses, and let DOME do the rest!
Try it yourself for 15 days without obligation!

[^0]
Accounting

 SYSTEMEy
NICHOLAS PICCHIONE, C.P.A.
Bropured

Complete and mail the coupon or CALL TOLL FREE 1-800-528-5015 and charge it to your credit card!

"The

 Best Selling Word Processing Package"-
PAPERCLIP II

FOR THE COMMODORE 128

- Compatible with C-64 PaperClip files: the natural choice for C-128 upgrades
- Includes integrated 38,000 -word spelling checker
- Built-in telecommunications module: access on-line services, incorporate on-line data in your work, and send text to other users
- New editing features include multiple columns, reverse video scroll, chaptering, powerful macros
- Maximum document size expanded to 999 lines

PAPERCLIP FOR THE APPLE IIe, c

- Insert/Delete, Move \& Copy, Cut \& Paste, Global Search \& Replace
- Automatic page numbering, headers and footers
- Simplified columns, tabbing and scrolling
- Form letter and mailing label functions
- Unique new capabilities for Apple: dual text windows, automatic text protection, macro commands and more
PAPERCLIP

FOR ATARI HOME COMPUTERS

 (WITH SPELLPACK FOR THE 130 XE)- All the high-productivity editing features plus: Dual Text Windows, Automatic Paging, Macros and much more
- Fully-integrated SpellPack spelling checker on the same disk
- 36000 words in the SpellPack dictionary plus you can add thousands more
- Memory-resident for speed and convenience: no need to quit the word processor to check a document

PAPERCLIP with SPELLPAK FOR THE COMMODORE 64

- Built-in spelling checker
- All the high-productivity text editing features
- Move, Copy, Insert, Delete - words, sentences or entire blocks of text
- Macro power: define \& store up to 52 repetitive words/phrases, then enter them with just one keystroke
- Includes 80-column Print Preview display, requires no extra hardware
- Sophisticated Global Search \& Replace, Mail Merge and Mailing Label functions

PAPERCLIP ELITE FOR THE ATARI ST and COMMODORE AMIGA

- Go beyond word-processing, with idea processing, text/graphics integration, real-time spell checking, independent variable columns and so much more. Look for PaperClip Elite.
Coming soon.

"you can't go wrong choosing Paper Clip" - THE GUIDE TO COMPUTER LIVING

"the Cadillac of word processors."

- OMNI MAGAZINE

"best professional word processor available"

- RUN MAGAZINE

"by far the best word processor ever available ... So clearly superior, . . State-of-the-art word processing"

- ANTIC

"as far as we are concerned, PaperClip is the top word processor running on a micro computer."

- HOME APPLICATIONS FOR THE C-64

"Performance: excellent. Error-handling: excellent. Value: excellent. . . You'll find yourself growing spoiled."

- FAMILY COMPUTING

"Exceptional word processing. .."

- INPUT

"many features . . e easy to use"

- ATARI EXPLORER

"A superb word processor . . . the most sophisticated to date."

- COMPUTE MAGAZINE

". . . the ultimate word processor

- ANALOG MAGAZINE
"One of the easiest of the professional word processors . . . a sensible manual . . . plenty of aids for the accident prone."

- COMPUTING NOW

"An excellent word processor . . . well designed ... many advanced features."

- INFOWORLD

"a "must have" in an ideal software library"

- ELECTRONIC LEARNING

"... most powerful of packages"

- COMMODORE MAGAZINE
"PaperClip is a logical evolutionary step forward."

- AHOY

"... facts attest to its excellence!"

- FAMILY COMPUTING

COMING
SOON!

COMPUTE!

COMPUTEI The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., 825 7th Ave., New York, NY 10019 USA. Phone: (212) 265-8360. Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, $\$ 24$. POSTMASTER: Send address changes to: COMPUTEI Magazine, P.O Box 10955, Des Moines, IA 50950. Second class postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1987 by COMPUTE! Publications, Inc. All rights reserved, ISSN 0194-357X.

Editor's Notes

Computerization, like industrialization and other great cultural shifts, is permeating all facets of society. Few aspects of modern life will remain untouched. Here at COMPUTE! the change has been both swift and dramatic.

When COMPUTE! started six years ago, we were doing most of our writing on typewriters and had only one, earlymicrocomputer word processor. But within two years we had moved almost exclusively to word processing.

We were among the many journalists who abandoned the traditional typewriter in the first half of this decade. Still, because our articles pass through many hands-general, technical, copy editing, typesetting, and so on-we didn't pass disks around with the articles on them. Instead, an article was printed out and the paper copy was then edited by the several editors.

After the pen-and-paper editing phase, the article was then typeset. This meant that it had to be retyped into a machine which could produce magazinequality print. It also meant an extra opportunity for errors to creep in, so the copy had to be proofread after it came out of the typesetting machine.

Now, however, the days of paper editing are long gone for us and many other publications. Today, most articles are edited entirely on our networked word processing system. Most authors send in a paper (or disk) copy of their submission. If the article is selected for publication, it is then typed (or uploaded) into our system, where it moves from screen to screen around the building until it is finally ready to be sent to the printer.

Our editing system is similar to ordinary word processors, but includes additional features which make it easy for articles or memos to be transmitted from one editor to another. There are built-in safeguards against crashes, power outages, and accidental deletions. We haven't lost any copy in the three years we've been using the system, which is more a testament to the computer system than to our collective caution.

Since it must serve a variety of purposes, the "editing processor" keyboard has 134 keys instead of the usual 60 on a typewriter or computer key-
board. If, for example, you press the H\&J (Hyphenate \& Justify) key by accident, your article will suddenly seize up and reformat into a single, magazinesize, column. (Fortunately, you can unH\&J quickly.) Also, there are dedicated keys to define blocks, sentences, words, and characters, and keys to move, copy, or delete these units as well. A first look at the huge keyboard is daunting. You suspect you'll never master it. There are actually far more than 134 keys, since each key can be shifted, supershifted, and even supershift-shifted. Thus, each of the 134 keys can perform as many as four different functions.

Fortunately, most of the writing and editing is accomplished in the same way it would be on a less formidable word processor. Nested in the center of the huge keyboard are the familiar typewriter keys. And, after a little practice, we've all learned to reach for the supershift key when necessary.

And the advantages of the system are considerable. Some of our authors and columnists send copy directly to our system memory via modem. When visiting computer shows in Chicago or California, our feature writers type latebreaking stories into lap portables, call us from their hotel phones, and their copy-sounding like a high-pitched scream-enters the terminals here at the office in North Carolina. These are crack feature writers, so a story sometimes flows, largely unchanged, onto the printed page where, for the first time, it becomes paper and ink.

Since from start to finish our articles are in electronic mass memory, the possibilities of introducing various kinds of typographical and transcription errors is greatly reduced. Even something as simple as passing an article around is now far more efficient.

Our book division, too, has welcomed the new system because an entire book can be online at once and even copied to more than one editor simultaneously. There's also a feature which shows what changes have been made to the copy so that the original can be compared to the edited version. If necessary, editing can be selectively removed.

Also, we're currently experimenting with digitizing drawings, photos,
and charts. This will result in more flexibility and more options with the graphics in our publications. Even program listings will soon be electronically reproduced instead of photographed from paper printouts as they are now. Ultimately, every page of a magazine will be edited, composed, and pro-duced-from the original story idea to the final layout-entirely on video screens with computer assistance.

COMPUTE! Publications, as you might imagine, is among those companies welcoming the tremendous advantages offered by computerization.

Richard Mansfield Editorial Director

COMPUTE! Publications, Inc. is seeking a Features Editor and Assistant Book Editor to join its staff.

Features Editor-Requires

 college degree in journalism, English, communications, or related field which emphasizes writing; three years experience in journalism; some experience with microcomputer industry desirable.Assistant Book Editor-Requires knowledge of computer programming. Undergraduate degree in English or related field. Two years writing and editing experience.
Send résumé and salary history in complete confidence to:
Personnel Director
COMPUTE! Publications, Inc.
P.O. Box 5406

Greensboro, NC 27403

Publisher
Founder/Editorial Consultant Editorial Director
Managing Editor
Executive Editor
Editor, COMPUTE!
\& COMPUTEI'S GAZETTE
Assistant Ediltor, COMPUTEI Production Director Editor, COMPUTEI's Atari ST Disk \& Magazine Technical Editor Assistant Technical Editors Assistant Editor, COMPUTEI's Atari ST Disk \& Magazine Assistant Editor, COMPUTEI's GAZETTE
Assistant Features Editor Programming Supervisor Editorial Programmers Copy Editors

Editorial Assistant Submissions Reviewer Programming Assistants Executive Assistant Administrative Assistants

Associate Editors
Contributing Editor

COMPUTEI's Book Division Editor
Assistant Editors
Director, Book Sales \& Marketing

Production Manager Art \& Design Director
Assistant Editor, Art \& Design
Mechanical Art Supervisor Artist Typesetting
illustrator
Director of Advertising Sales
Associate Advertising Director
Production Coordinator
Per Johnsmeyer
Bernard J. Theobald, Jt. Kathleen Hanlon

Customer Service Manager Diane Longo Dealer Sales Supervisor Orchid Tamayo Individual Order Supervisor Cassandra Green Receptionist Anita Armfield Warehouse Manager John Williams

James A. Casella, President
Richard Mansfield, Vice President, Editorial Director Richard J. Marino. Vice President, Advertising Sales Christopher M. Savine. Vice President, Finance \& Planning
COMPUTEI Publications, Inc. publishes:

COMPUTEI

COMPUTEI's Gazette COMPUTEI's Gazette Disk COMPUTEI's Apple Applications Special COMPUTEI's Atari ST Disk \& Magazine

Editorial offices:

Corporate offices: 324 West Wendover Avenue Suite 200 Greensboro. NC 27408 USA 8257 th Avenue New York, NY 10019 212-265-8360
Customer Service:
Hours:

Coming In Future Issues

Buyer's Guide To Music Software
Rememory: A challenging memory game for Commodore 64, Apple II, Atari, IBM PC, and Amiga
Font Printer for IBM PC
Synthesis: A powerful sound tool for the Commodore 64
Six New Operators for Atari BASIC ShapeMaker for Apple II DOS Menus for IBM PC/PCjr

Subscription Orders COMPUTE!
P.O. Box 10954

Des Moines, IA 50340
TOLL FREE
Subscription Order Line
800-247-5470
In 1 A 800-532-1272

COMPUTE! Subscription Rates (12 Issue Year):

US
(one yr.) $\$ 24$
(two yrs.) \$45
(three yrs.) $\$ 65$
Canada and Foreign
Surface Mail $\$ 30$
Foreign Air
Delivery
$\$ 65$

Andit Bareaz
of Circelations

Advertising Sales

212-315-1665
2. Southeast \& Forelgn

Harry Blair
919-275-9809

3. Midwest \&

Southwest
Jerry Thompson
312-726-6047 (Chicago)
713-731-2605 (Texas)
303-595-9299 (Colorado) 415-348-8222 (California)
Lucille Dennis
415-348-8222

Director of Advertising Sales:
Peter Johnsmeyer

4. West, Northwest \&

British Columbla
Jerry Thompson
415-348-8222
Lucille Dennis
415-348-8222
5. Canada

Harry Blair
919-275-9809

Associate Advertising Director: Bernard J. Theobald, Jr.
COMPUTEI Sales Office 212-315-1665
Address all advertising materials to: Kathleen Hanlon
Advertising Production Coordinator COMPUTEI Magazine
324 West Wendover Avenue Suite 200
Greensboro, NC 27408

[^1]Everything for the Amiga. From BASIC beginner's guides to advanced programming handbooks, COMPUTE! offers you information-packed tutorials, reference guides, programming examples, ready-to-enter applications, and games to help you develop your computing skills on Commodore's Amiga.

COMPUTEI's AmigaDOS

Reference Guide
Arlan R. Levitan and Sheldon Leemon A comprehensive tutorial and reference guide to the powerful AmigaDOS-the operating system underlying the Workbench and Intuition-this book offers information useful to every Amiga owner. It defines and illustrates all DOS commands, and shows you how to create file directories, access peripherals, run batch file programs, and avoid "disk shuffle." The screen- and line-oriented text editors are explained in detail. Numerous examples and techniques explain how to use AmigaDOS to make operating your Amiga both convenient and efficient.
\$16.95 ISBN 0-87455-047-5

Elementary Amiga BASIC

C. Regena

Here's your introduction to the new and powerful BASIC on the Amiga personal computer. The Amiga's impressive graphics, animation, and sound can be unlocked with the right commands, and BASIC is the place to start. Complete descriptions of Amiga BASIC's commands, syntax, and organization take you from the beginner level to a full-fledged programmer. Plus, the book offers you ready-to-type-in programs and subroutines while showing you how to write your own programs. There is a disk available which includes the programs in the book, \$12.95. This title is also available as a book/disk combination for $\$ 29.95$ (057-2).
\$14.95 ISBN 0-87455-041-6

COMPUTE!'s Amiga

Programmer's Guide
Edited
Your tutorial and reference manual to AmigaDOS, BASIC, Intuition, and other important software tools which accompany the new Amiga, COMPUTEI's Amiga Programmer's Guide is a clear and thorough guide to the inner workings of this fascinating newgeneration computer. The great speed of its 68000 microprocessor, coupled with the versatility of the Amiga-specific graphics and sound, makes the Amiga one of the most powerful computers available today.
This book is the key to accessing the Amiga's speed and power.
\$17.95 ISBN 0-87455-028-9

Advanced Amiga BASIC

Tom R. Halfhill and Charles Brannon
This guide to applications programming on Commodore's new Amiga contains everything an intermediate programmer requires to begin creating sophisticated software on this powerful machine, including several ready-to-type-in programs. Clear, yet comprehensive documentation and examples cover advanced BASIC commands, designing graphic applications, generating sound and music, using the Amiga's built-in speech synthesizer, creating a user interface, and programming the computer's peripherals. There is a disk available which includes the programs in the book, $\$ 15.95$. June release)
\$17.95 ISBN 0-87455-045-9

Look for these books at your local book or computer store. Or order directly from COMPUTE!.
 Call toll-free 1-800-346-6767 (in NY 212-887-8525).

COMPUTE!'s Beginners Gulde to the Amiga
Dan McNeill
Written in a lively and entertaining style, this book teaches you everything a beginner needs to know to get started quickly with the Amiga from Commodore. You will learn about setting up the system, all the most popular types of software, and details about the hardware. S16.95 ISBN 0-87455-025-4

Inside Amiga Graphics

Sheldon Leemon
The Amiga, Commodore's powerful new computer, is an extraordinarily impressive graphics machine. Easy to use, the Amiga can produce color graphics and excellent animation. You'll find thorough descriptions of the computer's abilities and the hardware required to create a complete graphics system. Software, too, is central to the Amiga's power, and complete tutorials show you how to get the most from the machine. (June release) $\$ 17.95$ ISBN 0-87455-040-8

COMPUTEI's KIds and the Amiga
Edward H. Carlson
The latest in this bestselling series written by Edward Carlson, COMPUTE!'s Kids and the Amiga, will acquaint you with BASIC. Over 30 sections-all with instructor notes, lessons, assignments, and lively illustrations-entertain and amuse you as you learn to program your new computer. Clear writing and concise examples make it easy for anyone-children and adults alike-to painlessly learn BASIC. (May release)
S14.95 ISBN 0-87455-048-3
Please allow 4-6 weeks for dellivery after your order is received.

Abstract

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

Computer Laryngitis

I own an older model of Atari, the 1200XL. As advertised when I bought it, the computer was said to have a voice synthesizer. However, I have not been able to use it. Do I have to use some special software or can I get voice synthesis from BASIC? Also, can the synthesizer sing?

> Chris Macy

The 1200XL was the first of the XL line of Atari computers. Although it featured a few new innovations over the Atari 800, it did not meet with wide consumer acceptance and was discontinued within a year of its introduction. The 800XL and 600XL became the new high- and low-end machines, respectively. For a while, Atari planned to introduce computers called the 1400XL and the 1450XLD. Both of these models were supposed to offer easy-to-use speech synthesis. Before the 1450XLD was finally canceled, the designers were planning to route the speech through the AMY sound chip (which now may show up as an enhancement for the ST line), allowing the computer to "sing." Unfortunately, the 1450XLD (and the 65XEM, another computer designed to use the AMY chip) never made it to the store shelves.

At present, the Amiga is the only home computer which includes built-in speech synthesis. Although speech is not built into your computer, hardware and software speech synthesizers are sold for the Atari computer line and other machines, as well. We've even seen a limited but functional public domain speech synthesizer for the Atari ST.

As a technical matter, it's actually somewhat easier to make a computer sing than it is to make it talk: It is simpler to create a steady musical tone than is to produce the extremely complex sounds that make up human speech. Some electronic music synthesizers can generate a passable imitation of a human voice tone,

but none of them can talk.

As a practical matter, speech-specific voice synthesizers don't sing very well. Just for fun, one of our programmers spent some time trying to make the Amiga's built-in speech synthesizer sing "Happy Birthday," using the synthesizer's pitch controls to change from one note to another in Amiga BASIC. The results were amusing, but not very satisfactory. Spoken words require sounds (known as phonemes) that change in complicated ways over very short time periods. Since speech phonemes aren't designed for music, they don't sound convincing in a song, even if you change the pitch to produce different notes. It's possible, of course, to have a voice synthesizer that handles both speech and music, but that capability would have to be built into the program.

Keyboard Polling In ST BASIC

Is there a way to make the Atari ST respond to a string input immediately in ST BASIC? I know how to use INP, but the computer waits for the input before going to the next line. I would like the program to continue whether or not a key was pressed. What command or PEEK should I use?

Jamieson Schulte

This is one of those happy occasions where a question from one reader is answered by another reader. If you experiment with the PEEK mentioned by Mr. Honzik below, you'll discover that when no key is pressed, a negative value is returned (the number varies, but it's always negative, unless the mouse is moved). Positive values mean a key is being held down. If you divide this number by 256, you'll see a value that indicates the position of the key being pressed. The letters $\mathrm{Q}, \mathrm{W}, \mathrm{E}, \mathrm{R}, \mathrm{T}$ and Y are numbered consecutively because they're laid out in that order on the keyboard.

It is well known that the INKEY\$ function is missing from ST BASIC and that the statement $A=\operatorname{INP}(2)$ is an adequate substitute in many cases. But when you wish to poll the keyboard and go on if no key is pressed, the INP function does not work. I've found that PEEKing $\& H F F F C 02$ will return a unique value
for each depressed key, thus making polling possible.

> Bill Honzik

Deleting Apple Documents

I own an Apple II + with a single disk drive. I also own SpeedScript 3.0, which I use often for word processing. How can I erase an unwanted letter or other document which I have accidentally stored on my SpeedScript disk? In some cases I have accidentally stored the same document under two or even three slightly different titles. This usually occurs after I load a stored document, make a few corrections, then save it using an incorrect name.

Donald Wilmot
COMPUTE!'s popular SpeedScript word processing program for the Apple doesn't have a built-in command for deleting files, but you can easily remove unwanted SpeedScript documents with BASIC's DELETE command. Boot the computer with a DOS disk (don't load SpeedScript), then enter Applesoft BASIC. At a BASIC] prompt, enter

DELETE filename

where filename is the name of the document you want to erase. Unwanted ProDOS SpeedScript files can also be removed with the Delete File option in the ProDOS Filer utility or System Utilities package.

Timing In Compiled Commodore BASIC

One way of speeding up a BASIC program on the Commodore 64 is to compile it. This generally makes datahandling programs more efficient and game programs more challenging. One problem I've experienced in compiling my own programs is with delay loops. If the original program contains any lines of the form FOR TD=0 TO 1000:NEXT TD, the delays become much shorter after the program is compiled. Thus, you may not have enough time to read a message, for instance, or respond to a question before the program moves on. Fortunately, there is a simple solution. Replace all such delay lines in your program with a GOSUB to
a jiffy clock comparison subroutine, such as the one shown here:

1ØØØ TI\$="ØØøøøØ"

$1 \emptyset 1 \emptyset$ IF TI/6Ø<DELAY THEN $101 \emptyset$ $102 \emptyset$ RETURN

When you need a delay, just set the variable DELAY equal to the time delay in seconds, then perform GOSUB 1000. For example, to cause a five-second delay, define DELAY as 5 .

The Commodore 64's jiffy clock keeps time in $1 / 60$-second units. This routine initially sets the jiffy clock to 0 (line 1000). Line 1010 divides the value of the reserved variable TI to convert to seconds. When the elapsed time equals or exceeds the specified time, the routine returns.

It's possible that your program may already use the jiffy clock for timekeeping. This version of the same routine performs the same function without resetting the clock.

1øøの JC=TI/60
$1 \emptyset 1 \emptyset$ IF TI/ $6 \emptyset<$ DELAY THEN $1 \emptyset 1 \emptyset$ $1 \varnothing 2 \emptyset$ RETURN

Arnold Walter
Thank you for these programming hints.

Autostarting IBM BASIC Programs

I own a Compaq Plus IBM-compatible computer. Is there any way I can make a BASIC program run automatically when the computer is turned on? If so, I would like to do this with a hard drive (drive C :).

Doug Halbert
The PC-DOS/MS-DOS operating system used by IBM and compatible PCs has no explicit provision for automatically starting a BASIC program when the computer is booted. However, there is an easy way to achieve this effect. At the end of the boot process, DOS checks the current disk directory for a text file named AUTOEXEC.BAT. If a file with that name exists, the DOS commands from the file are read one at a time and executed as if they had been typed from the keyboard. You can load BASIC and simultaneously load and run a BASIC program with a command of the form

BASIC filename

where filename is the name of the program you wish to start. (If you are using an IBM $P C$ and want to run the program using Advanced Disk BASIC, you would instead use the command BASICA filename.)

Thus, to automatically load and run a BASIC program when the computer is booted, you need only have an AUTOEXEC.BAT file containing this command. If your boot disk already contains an AUTOEXEC.BAT file, use a text editor (such

as EDLIN) or a word processor to add the command as the last line of the file. If you don't already have an AUTOEXEC.BAT file on the disk, it's easy to create one. Just enter the following command:
COPY CON: AUTOEXEC.BAT
Next, enter the command:
BASIC filename (or BASICA filename)
Then press the F6 function key and Enter to end entry and write the text to the file. The disk with the AUTOEXEC.BAT file must also contain BASIC itself (BASIC.COM or BASICA.COM; for compatibles, the file may have a name like BASIC.EXE or GWBASIC.EXE) as well as a copy of the BASIC program to be autostarted.

Exactly the same procedure works from a hard disk. If your system is set up to boot from the hard disk, you must include the AUTOEXEC.BAT file in the root directory of the hard disk. With a hard disk, it's likely that BASIC itself and the program you want to run will reside in a subdirectory. In this case, you'll need to include a CHDIR (change directory) command in your AUTOEXEC file to point DOS in the right direction. For example, to autostart a program named TELCOM.BAS in a subdirectory named BASIC (which also contains the IBM Advanced BASIC file BASICA.COM), you would place the following commands at the end of your AUTOEXEC.BAT file:

CHDIR \BASIC
 BASICA TELCOM

If your system has a hard disk, but doesn't boot from it, the AUTOEXEC.BAT file must be on the floppy disk used to boot the system. In this case, the CHDIR command must also specify the drive designation. In the example above, the command would change to:

CHDIR C: \BASIC

IBM PC/PCjr Hidden Files

I would like to create hidden files on my IBM PC, but I don't know how to do so. How are hidden files created? When you copy a disk, are hidden files copied along with the rest of the files?

Scott Cottrile
To answer your last question first, the DISKCOPY command copies all files, including hidden files which are inaccessible with most other DOS commands including COPY. Any bootable DOS disk for the IBM PC/PCjr will contain two important hidden files: IBMBIO.COM and IBMDOS.COM. On IBM-compatible MS-DOS computers, these files are usually named IO.SYS and MSDOS.SYS, respectively.

Hidden files do not appear when you look at the disk directory with the DIR command from DOS or with the FILES command from BASIC. However, they can be revealed with the DOS command

A $>$ debug
-L ds:100 051
-D 100
0966:0100 4942 4d 4249 4f 20 20-43 4f 4d 2700000000 IBMBIO
0966:0110 $0000000000000060-5407020080120000$.......
0966:0120 4942 4d $444 f 5320$ 20-43 4f 4d 27000000 .
0966:0130 $0000000000000060-5407$ Oc 0080420000'T.... B
0966:0140 43 4f 4d 4d 414 e 44 20-43 4f 4d 2000000000 COMMAND COM
0966:0150 $0000000000000060-5407$ 2e $0080450000 \ldots \ldots . .$.
0966:0160 41 4e $534920202020-5359532000000000$ ANSI SYS
0966:0170 $0000000000000060-5407510080060000$.............'T.Q
-E 10b
0966:010B 27.20
-W ds:100 051
-Q
A>

CHKDSK. Put your DOS master disk in drive A and enter this command:

CHKDSK A:/V

The drive spins for a moment, then the screen displays a list of all the files on the disk, including hidden files. The CHKDSK display ends with a summary which indicates, among other things, how many hidden files the disk contains. If you omit the /V option after the drive specifier, CHKDSK prints only the summary.

Hidden files are used mainly for DOS system files and are of little use in ordinary programming. What good is a BASIC program that you can't LOAD or a data file that you can't OPEN for reading? The same is true of most DOS commands: If a file is hidden, you can't copy it with COPY, list it with DIR, or execute it by typing its name from the DOS prompt. Creating a hidden file from within a program is not easy, since BASIC provides no direct means for handling such files. DOS provides system routines (interrupts) for directly reading and writing a disk sector, but you'll need a machine language subroutine to call such interrupts from BASIC.

The directory entry for each file includes a status byte which determines whether the file is hidden, along with several other attributes. It is possible to change a file's status byte with the DEBUG utility. (For the PC and PCjr, this program is included on the DOS Supplemental Programs disk; for compatibles, it's on the DOS master disk.) Be forewarned, however, that DEBUG is a lowlevel program with no safeguards: If you accidentally scramble the disk's directory while using DEBUG, you can easily render one or more files unreadable. If you would like to work through the following exercise, do so on a copy of the DOS disk, not on the original.

The figure above illustrates a simple session with DEBUG which changes IBMBIO.COM or IO.SYS from a hidden, system file to a normal file. The text shown in boldface is what you type. The rest is printed by the computer. For compatibles, the filenames will vary from those shown. For example, the first entry should be
named IO.SYS.
After you type debug and press Enter at the DOS prompt, the computer loads and executes the DEBUG utility. The DEBUG prompt is a dash (-). The first DEBUG command (L ds:100 05 1) loads the contents of track 0 , sector 5 from disk into the memory area beginning at location Eh100. The 1 at the end of the command indicates how many sectors to load. After this command executes, you have a copy of the first part of the disk directory in memory, where it can be examined and modified.

The D command causes DEBUG to print the display shown in the next several lines. The central portion of the display shows the hex value of each byte and the right portion shows each byte's ASCII value. The byte immediately after the last byte of each filename is that file's status byte. This byte determines the file's attributes, including whether it is a hidden file. The value Eh27 indicates a hidden, system file; the value Eh20 indicates a normal file.

The next command (E 10B) tells DEBUG that you want to edit a byte. The value 10B indicates which byte to change. DEBUG responds by printing the address and current value of that byte (0966:010B 27.). It then waits for you to enter a new value. To change the byte to Eh20, type 20 and press Enter.

The W command writes the data back to disk; Q exits from DEBUG and returns you to the DOS prompt. If you examine the disk with DIR, you'll see that IBMBIO.COM (or IO.SYS) now appears in the normal directory display. To restore its hidden status, repeat the same procedure and change its status byte back to Eh27.

Missing MAKEDIR

I am trying to move Workbench commands into a RAMdisk as explained in "Moving AmigaDOS Commands to RAM" from "Readers' Feedback" in the April 1986 issue. Instead of copying the commands, the computer prints these error messages:
Copying AmigaDOS commands to

RAMdisk...
Can't open ram:c/copy - object not found Can't find ram:c/copy
Assign failed returncode 20
What do these messages mean? Margaret Hettinger
A line was inadvertently left out of the example batch file printed in that answer. Here is the correct batch file in its entirety:
echo "Modified Workbench disk" echo ""
echo "Copying AmigaDOS commands to RAMdisk...!
makedir ram:
copy c/copy ram:c/copy
assign x: ram:c/copy
assign d: ram:c
cd sys:c
x : assign d:
x: cd d:
x: copy d:
x: delete d:
x: dir d:
x: diskcopy d:
x: echo d:
x : ed d:
x : endcli d:
x : info d:
x : list d:
x: makedir d:
x: newcli d:
x : rename d:
x : run d:
x : type d:
cd sys:
assign c: ram:c
assign d: c:delete
loadwb
endcli > nil:
This file replaces the file startupsequence which AmigaDOS executes automatically when you boot the system. These commands copy some commonly used AmigaDOS commands to the Amiga's built-in RAMdisk as part of the normal startup procedure. Of course, you can delete commands from this list, or add others if desired. After the startup process is complete, the Amiga will search the RAMdisk to access any AmigaDOS commands. This method saves time and possibly some disk swapping.

The line which was omitted is the one containing the command makedir ram:c. That command creates a subdirectory named c in the native RAMdisk device, which is called ram: in AmigaDOS. If the c directory doesn't exist, then subsequent commands which refer to that directory will cause the error messages you saw.

The April 1986 answer explains how to edit and resave the startup-sequence file with the AmigaDOS editor ED. You can also edit it with any Amiga word processor that saves files in plain ASCII form, without special control codes or formatting information. Be sure to save a copy of your original disk and practice on an unimportant disk first, in case you make a mistake in editing startup-sequence.

When you want to talk computers....

When you want to talk price.

MONITORS.	PRINTERS.	SOFMWARE.
Amdek	Canon	FOR AMIGA
Video 310A Amber TTL........... \$149.00	LBP-8A1 Laser, 8 Page/Min..... $\$ 1899.00$	Aegis Development
Color 722 RGB, CGA/EGA......... 499.00	Citizen	Animator \& Images................... $\$ 99.99$
Magnavox	MSP-10 160 cps , 80-Column......319.00	Commodore
8CM515 RGB Monitor-80........... 289.00	MSP-20 200 cps , 8K Buffer........ 349.00	Textcraft/Graphcraft 59.99
7BM623 PC Monitor-80 Amber......99.99	Premier 3535 cps Daisywheel.... 499.00	Electronic Arts
Mitsubishi	C.Itoh	Deluxe Paint.............................64.99
XC 1409C 14" RGB................. 319.00	8510-SP 180 cps , 80-Column.........Call	Microillusions
NAP	310-SEP Epson/IBM 80-Column.......Call	Dynamic CAD.........................359.00
873 14" Multimode................... 549.00	Cordata	Micro Systems
NEC	The Desktop Printshop Laser..... 2199.00	Scribble Word Processor..............79.99
12" TTL Green or Amber..........129.00		Sublogic
JC-1401P3A Multi-Sync.................Call		Flight Simulator II......................37.99
Princeton Graphics		FOR ATARI ST
MAX-12 12" Amber TTL............ 169.00		Access
HX-12 12" Color RGB............... 429.00		Leader Board Golf.....................27.99
HX-12E 12"RGB/EGA............... 499.00		Batteries Included
Quadram		D.E.G.A.S. Elite..........................59.99
8460 Quadchrome Enhanced..... 439.00		Microprose
Taxan	Epson LX-86	Silent Service..............................29.99
Model 124 12" Amber............... 139.00	120 cps, Dot Matrix ${ }^{\text {P }} 19$	Paradox
MODEMS.	Epson	Sublogic
Anchor	FX-86E 240 cps, 80-Column............Call FX-286E 240 cps , 132-Column........Call	Flight Simulator II........................ 37.99
6480 C64/128 1200 Baud..........\$119.00	EX-800 300 cps , 80-Column....... 459.00	
Omega 80 Amiga 129.00	LQ-800 180 cps , 24-Wire Printhead..Call	Swiftcalc......................................54.99
VM520 ST520/1040 1200 Baud... 139.00	Juki	
Expressi PC-1200 Half Card........149.00	630040 cps Daisywheel............ 699.00	d-Base III +.................................. 429.00
	610010 cps Daisywheel............ 429.00	5th Generation
	5510C Color Dot Matrix............. 449.00	Fastback Utility.......................... 89.99
	NEC	IMSI
	Pinwriter 66024 Wire.................. 489.00 Pinwriter 76024 Wire 689.00	Optimouse w/Dr. Halo.................99.99
	Okidata	Lotus Lotus 1
	ML-182 120 cps , 80-Column.......219.00	MicroPro
	ML-192+ $200 \mathrm{cps}, 80$-Column....369.00	Wordstar Professional w/GL........ 189.00
	ML-193+200 cps, $132-$ Column.......Call	Microstuf
1200 Baud Internal ${ }^{\text {\$ }} 119$	ML-292 200 cps , 80-Column............Call ML-293 200 cps, 132-Column...........Call	Crosstalk XVI.............................89.99
Hayes	Panasonic	
Smartmodem 300 External.........139.00	KX-1080i 120 cps, 80-Column..... 219.00	
Smartmodem 1200B Internal......359.00	KX-1091i 180 cps , 80-Column..... 299.00	
Smartmodem 2400B Internal......539.00	KX-1592 180 cps , 132-Column..... 439.00	
Practical Peripherals	Star Micronics	
Practical Modem 1200 External...159.00	NX-10C 120 cps , C64 Interface... 219.00	3
Quadram	NX-10 120 cps , 80-Column........219.00	
Quadmodem II 1200 Baud.........299.00	NX-15 120 cps , 132-Column.......379.00	
Supra	Texas Instrument	Satellite Systems
MPP-1064 AD/AA C64.................. 69.99	TI-855 150 cps , 80-Column........599.00	Word Perfect $4.2 \$ 209$
1200AT 1200 Baud Atari............ 149.00	Toshiba	
U.S. Robotics	P321 216 cps, 24-Pin Printhead... 479.00	P.F.S.
2400 Baud Internal................... 189.00	P341 216 cps, 24-Pin Printhead...589.00	First Choice................................ 99.99

In the U.S.A. and in Canada

Call toll-free: 1-800-233-8950.

Outside the U.S.A. call 717-327-9575 Telex 5106017898
Educational, Governmental and Corporate Organizations call toll-free 1-800-221-4283 CMO. 477 East Third Street, Dept. A204, Williamsport, PA 17701

IBM PriSc Revisited

I was delighted to see the answer "IBM PrtSc Problems" in the September 1986 installment of this column, since I had the same problem (thin white lines between each row of a graphics printout) with my Mannesman Tally Spirit 80 printer. But your answer did not tell the whole story. The GRAPHICS.COM utility does not reset the printer completely, but it does reset the print spacing by sending the code appropriate for an IBM or Epson printer. If your printer works correctly with PrtSc except for the gap between lines, you can fix the problem simply by replacing the spacing number for the printer in the GRAPHICS.COM file. Here is a commented disassembly of the relevant section of GRAPHICS.COM:

GRAPHICS.COM and press Enter. This activates DEBUG and loads GRAPHICS.COM into memory. The DEBUG prompt is a hyphen (-).
3. Use the Display command (D) to look at the section of code to be changed. Type D 0150016 F and press Enter. The computer displays two lines of 16 hexadecimal numbers, in the same order in which they appear in memory. Notice the number $\$ 18$ in location \$0169.
4. Use the Enter command (E) to enter your new value as a two-digit hexadecimal number. For instance, if the new value is $\$ 15$, type E 016915 and press Enter.
5. Repeat the same Display command outlined in step 3 . This time you will notice your new value in location \$0169.

1. DS:0159-	E8	95	01-	CALL 02F1	send linefeed to printer
2. DS:015C-	B8	1B	$00-$	MOV AX,001B	load A register with $\$ 1 \mathrm{~B}$
3. DS:015F-	E8	7A	$01-$	CALL 02DC	routine sends $\$ 1 \mathrm{~B}$ to printer
4. DS:0162-	B8	33	$00-$	MOV AX,0033	load A register with $\$ 33$
5. DS:0165-	E8	74	01-	CALL 02DC	send $\$ 33$ to printer
6. DS:0168-	B8	18	00-	MOV AX,0018	load A register with $\$ 18$
7. DS:016B-	E8	6E	01-	CALL 02DC	send $\$ 18$ to printer

The routine at \$02DC uses INT \$17 to send data to the printer when the value in register AH equals 0 . Lines $2-3$ of this code fragment send the ESC code (\$1B, character 27) to the printer. Lines $4-5$ send the code to make the line spacing $n / 216$, where n is the number sent in lines 6-7. As shown, GRAPHICS.COM sets up the printer with a line spacing of $\$ 18 / \$ D 8=24 / 216=$.111 inches.

To get the right spacing, you need to replace the $\$ 18$ in address $\$ 0169$ with the correct number for your printer. With the DEBUG utility, I substituted $\$ 15$ (decimal 21) for that value and got excellent results with a high-resolution screen dump.

If you're interested in making this modification, but don't have much experience with DEBUG, here are step-by-step instructions for performing the change. Before you attempt to edit the file, figure out the spacing you needin terms of inches-by printing some graphics with PrtSc. Then calculate how many 216ths of an inch it will require to close the gap. If you convert this number to hexadecimal, you then have the number to store in address $\$ 0169$ of GRAPHICS.COM. Here are the remaining steps.

1. Copy GRAPHICS.COM and DEBUG.COM from your DOS master disk onto a new disk. Do not use your original disks, in case you make a mistake with DEBUG and garble a file.
2. From the DOS prompt, type DEBUG
3. Use the Write command (W) to save the modified copy of GRAPHICS.COM to disk. Type W and press Enter. This operation works correctly if you follow the exact steps outlined here; it may not work if you have used other features of DEBUG in the meantime.
4. Use the Quit command (Q) to exit DEBUG and return to the DOS prompt. Type Q and press Enter.
It doesn't hurt to experiment, as long as you take care to save an unmodified copy of GRAPHICS.COM on a separate disk. If the first modification doesn't work out, repeat the procedure using a slightly different value.

> Larry Bogan

Thank you for the information.

2 Times 8 Is Not 16

Is it possible to link two Atari 400 computers together through the I/O port? If so, would the two memory capacities combine to become 16 K ? Which keyboard should I use to type in programs? Are there any dangers or complications?

Michael Zucca

Although it is physically possible to connect two Atari computers (or two Commodore 64s, for that matter) through the I/O ports, it would serve no useful purpose to do so. In fact, it may even damage one or both of the computers.

The Atari serial ports are designed to communicate with special "intelligent"
peripherals. There is a protocol-a specified means of communication-that any peripheral must follow in order to be recognized. In the case you suggest, neither of the computers is equipped to act as a peripheral for the other, so communication is impossible. In addition, electricity flows through the serial port, so the connection might damage the POKEY chip on one or both of the machines.

It is possible, however, to connect two computers with a null modem cable, in order to transfer information from one computer to another. A null modem cable is essentially a normal modem cable with the send and receive lines reversed at one end. Information which one computer transmits on its send wire is received on the other's receive line, and vice versa.

When linked with a null modem cable, the computers would not share their memories, however. It would be more like calling a bulletin board to transfer files from one computer to another. In most cases it's easier to use the disk drive or cassette recorder to transfer files.

If you're running out of RAM, Atari and other manufacturers previously offered memory upgrades up to as much as 48 K . You still may be able to find one. However, it may make more sense to buy an Atari 65XE, which is software compatible with the 400 and features 64 K of memory and a full, typewriter-style keyboard.

Null String Blues

I have been having trouble with dimensioning arrays. I am writing a program that writes 50 lines of text to a sequential file. I have talked with several of my friends, and they say the program works on their computers, but I still have problems with it. The portion that actually writes the file appears to work, as I've been able to load the file using a word processor that handles text in a sequential file. Here is the routine I use to write the file:

10 DIM AS (50)
$2 \varnothing$ FOR X=1 TO $5 \varnothing$
$3 \varnothing$ INPUT AS $(X): I F$ A $(X)=" "$ THE N $1 \varnothing \varnothing$
40 NEXT X
$1 ø \varnothing$ OPEN $3,8,3$, "SEQ-TEST, S,W"
$11 \varnothing$ FOR $\mathrm{X}=1$ TO $5 \varnothing$
$12 \emptyset$ PRINT\#3,AS(X)
130 NEXT X
140 CLOSE 3
When I try to read the file back, the disk drive starts to whir as if it's reading successfully. Then the drive stops, but its red light remains on. Nothing else happens and the program appears to lock up. Here is the routine I use to read the file:
$5 ø \emptyset$ OPEN $3,8,3$, "SEQ-TEST,S,R"
510 FOR X=1 TO $5 \varnothing$
$52 \emptyset$ INPUT\#3, A\$(X)

530 NEXT X
$54 \emptyset$ CLOSE 3
$55 \emptyset$ FOR X=1 TO 5 0
$56 \emptyset$ PRINT AS (X)
$57 \emptyset$ NEXT X
Should I redimension the array in the middle of the program? I heard that this will also produce an error. Can you give me an idea of what's going on here?

Scott Bradbury
Your problem actually has nothing to do with the DIM statement. For the most part, it's caused by the INPUT\# statement. By dimensioning A\$ to 50 in line 10, you initially set aside room for 51 elements of A\$; remember, there's an $A \$(0)$ element, even if you don't use it. At the same time, each of those elements is defined as a null string (a string that contains nothing). After you have entered text definitions for as many of these elements as you wish (lines 20-40), the remaining elements are still nulls. When you write A\$ to disk as SEQ-TEST in lines 100-140, the null string elements are written as carriage returns (character 13). But so far, you're OK.

The problem arises when you attempt to read the null-string elements back with an INPUT\# loop (lines 500-540). INPUT\# expects each string to be terminated with a carriage return. Thus, the INPUT\# statement in line 520 reads correctly the elements of A\$ that are defined as something other than a return. But when the program encounters CHR $\$(13)$ alone, it continues to look for some char. acter that's not a return. Since there's nothing to read, the program halts indefinitely, and the drive light remains on.

The solution is simple. Add a FORNEXT loop between lines 10 and 20 which initializes every element of $A \$$ to some character that's unlikely to be entered in line 30. Depending on what the rest of the program does, a graphics character such as CHR\$(255) might be suitable. This will prevent INPUT\# from hanging up when it encounters null elements. You'll also need to add a statement to your reading routine to discard the null markers when they are read back in. For example, if you choose to use CHR\$(255) as your null marker, you could add the following line to your reading routine:
525 IF $\mathbf{A} \$(X)=$ CHR $\$(255)$ THEN
$\mathrm{A} \$(\mathrm{X})=" \prime$
©

Two-On-Two Basketball Action

One-on-one is OK for a little practice, but real basketball is a team sport. To be really good at it, you need all the skillspassing, dribbling, shooting, stealing and rebounding. That's what it takes to win a championship. That's what GBA Championship Basketball ${ }^{\text {T: }}$: Two-on-Two ${ }^{\text {TM }}$ delivers.
From the roar of the crowd to the swish of the net, from slam dunks to three-point shots, it's all here-fast and competitive.
Not only is there team action, but you can even compete in a 4 -division, 23-team league - all the way to the playoffs and the GBA Championship game!
When you're ready to jump into the big leagues of computer basketball, start with the game that begins where the others leave off - GBA Championship Basketball: Two-on-Two.

Distributed and marketed exclusively by Activision. Gamestar is a trademark of Activision Inc. Commodore 64, 128 and Amiga are trademarks of Commodore Electronics. Limited. Apple is a tradernark of Apple Computer, Inc. Atari ST is a trademark of Atari Corporation. IBM PC and PCJr are trademarks of International Business Machines Corporation. Tandy is a trademark of Tandy Corporation. © 1986 Activision. All rights reseryed.

For Commodore 64, 128 and Amiga,
Apple IIe, IIc, and IIcs, Atari ST, IBM PC, PCjr, Tandy 1000 and 100\% compatibles.

COMPUTEI's Author's Guide

Most of the following suggestions serve to improve the speed and accuracy of publication. COMPUTE! is primarily interested in new and timely articles on the Commodore 64/128, Atari, Apple, IBM PC/PCjr, Amiga, and Atari ST. We are much more concerned with the content of an article than with its style, but articles should be clear and well-explained.

The guidelines below will permit your good ideas and programs to be more easily edited and published:

1. The upper left corner of the first page should contain your name, address, telephone number, and the date of submission.
2. The following information should appear in the upper right corner of the first page. If your article is specifically directed to one make of computer, please state the brand name and, if applicable, the BASIC or ROM or DOS version(s) involved. In addition, please indicate the memory requirements of programs.
3. The underlined title of the article should start about $2 / 3$ of the way down the first page.
4. Following pages should be typed normally, except that in the upper right corner there should be an abbreviation of the title, your last name, and the page number. For example: Memory Map/Smith/2.
5. All lines within the text of the article must be double- or triple-spaced. A one-inch margin should be left at the right, left, top, and bottom of each page. No words should be divided at the ends of lines. And please do not justify. Leave the lines ragged.
6. Standard typing paper should be used (no erasable, onionskin, or other thin paper) and typing should be on one side of the paper only (upper- and lowercase).
7. Sheets should be attached together with a paper clip. Staples should not be used.
8. If you are submitting more than one article, send each one in a separate mailer with its own tape or disk.
9. Short programs (under 20 lines) can easily be included within the text. Longer programs should be separate listings. It is essential that we have a copy of the program, recorded twice, on a tape or disk. If your article was written with a word processor, we also appreciate a copy of the text file on the tape or disk. Please use high-quality 10 or 30 minute tapes with the program recorded on both sides. The tape or disk should be labeled with the author's name, the title of the article, and, if applicable, the BASIC/ROM/DOS version(s). Atari tapes should specify whether they are to be LOADed or ENTERed. We prefer to receive Apple programs on disk rather than tape. Tapes are fairly sturdy, but disks need to be enclosed within plastic or
cardboard mailers (available at photography, stationery, or computer supply stores).
10. A good general rule is to spell out the numbers zero through ten in your article and write higher numbers as numerals (1024). The exceptions to this are: Figure 5, Table 3, TAB(4), etc. Within ordinary text, however, the zero through ten should appear as words, not numbers. Also, symbols and abbreviations should not be used within text: use "and" (not \&), "reference" (not ref.), "through" (not thru).
11. For greater clarity, use all capitals when referring to keys (RETURN, TAB, ESC, SHIFT), BASIC words (LIST, RND, GOTO), and three languages (BASIC, APL, PILOT). Headlines and subheads should, however, be initial caps only, and emphasized words are not capitalized. If you wish to emphasize, underline the word and it will be italicized during typesetting.
12. Articles can be of any length-from a singleline routine to a multi-issue series. The average article is about four to eight double-spaced, typed pages.
13. If you want to include photographs, they should be either 5×7 black and white glossies or color slides.
14. We do not consider articles which are submitted simultaneously to other publishers. If you wish to send an article to another magazine for consideration, please do not submit it to us.
15. COMPUTE! pays between $\$ 70$ and $\$ 800$ for published articles. In general, the rate reflects the length and quality of the article. Payment is made upon acceptance. Following submission (Editorial Department, COMPUTE! Magazine, P.O. Box 5406, Greensboro, NC 27403) it will take from four to eight weeks for us to reply. If your work is accepted, you will be notified by a letter which will include a contract for you to sign and return. Rejected manuscripts are returned to authors who enclose a self-addressed, stamped envelope.
16. If your article is accepted and you have since made improvements to the program, please submit an entirely new tape or disk and a new copy of the article reflecting the update. We cannot easily make revisions to programs and articles. It is necessary that you send the revised version as if it were a new submission entirely, but be sure to indicate that your submission is a revised version by writing, "Revision" on the envelope and the article.
17. COMPUTE! does not accept unsolicited product reviews. If you are interested in serving on our panel of reviewers, contact the Review Coordinator for details.

GET UPTO 200 FUNFFILIED PROCRAMS EACHYEARwhen you slsbsatie now to courPuTE

Subscribe to COMPUTE! today through this special introductory money-saving offer, and you'll be getting a lot more than just another computer magazine. That's because each issue of COMPUTE! comes complete with up to 20 all-new, action-packed programs.

Subscribe now and you can depend on a steady supply of high quality, fun-filled programs like Hickory Dickory Dock, Switchbox, TurboDisk, Home Financial Calculator, Turbo Tape, SpeedScript, SpeedCalc, and hundreds of other educational, home finance, and game programs the entire family can use all year long.

The superb programs you'll find in each issue are worth much, much more than the low subscription price.

And there's more to COMPUTE! than just exciting new programs. Month after month, COMPUTE!'s superb articles deliver the latest inside word on everything from languages to interfaces...from programming to disk drives.

Whether you're a novice or an experienced user, COMPUTE! is the magazine for you. So subscribe today. Return the enclosed card or call 1-800-247-5470 (in lowa, 1-800-532-1272).

Do it now.

If attached order card is missing, write: COMPUTE! P.O. Box 10955, Dec Moines, IA 50950

Report From The Winter Consumer Electronics Show

The personal computer industry is pulled along in many ways by the oohs and aahs evoked by rapidly advancing technology. Like a giant fireworks display, each new explosion must seem to top the last.

But as the show goes on, the more astute observers realize that the spectacle's subtle patterns and unique tempo are as fascinating and as much a part of the picture as the escalating pops and whistles.

The Winter CES in January featured plenty of fireworks for personal computer users. Not only were there important new announcements, but the industry's tempo and market patterns that emerged made this CES one of the most significant in years-especially as it affects the home, educational, and small business markets.

Despite this fact, much of the general-interest news coverage of CES in January focused almost exclusively on the pop and whistle of the latest high-tech audio and video products. In many newspaper, magazine, and television reports, scarcely a mention was made of the computer segment of CES, even though it takes up at least a third of the entire show and the attention of more than one hundred thousand attendees.

Consider a few of the following twists and turns that emerged from CES:

- Commodore sneak-previewed, for selected dealers and the press, two new Amiga computersone a low-priced entry-level machine with the same functionality of the original Amiga 1000 and the other an expandable multiprocessing computer that can handle up to nine megabytes of memory. (See "Commodore's New Expandable Amiga 2000" in the March issue.)
- Atari chief Jack Tramiel announced to the press that just ten years after he introduced his first computer at CES, a Commodore PET with only 4 K of memory, he was pleased to introduce a four-
megabyte $(4000 \mathrm{~K})$ Atari ST, one of two new Mega ST systems. The other machine has two megabytes of RAM.
- Atari also announced a new laser printer for the ST series that will cost under $\$ 1,500$. With the new two-meg and four-meg STs, that means a desktop publishing system can now be purchased for under $\$ 3,000$.
- At least five companies, including both Atari and Commodore, announced the introduction of new IBM PC compatibles, joining a host of other companies already selling the MS-DOS computers. At the same time, companies specializing in home and educational software continued to introduce more IBM PC-compatible programs than ever before.
- Commodore showed its new
256K RAM expander for the Com-
modore 64 , which, among other
things, will make the 64's new
GEOS operating system work far
faster and easier. At the same time,
Commodore officials and third-par-
ty software developers gave indica-
tions that the Commodore 64
computer will more than likely be
supported into the 1990 s.
- Commodore also introduced a reconfigured, new-look Commodore 128.
- Atari displayed a prototype of its new XE Video Game System, a reconfigured Atari 65XE personal computer that can be bought as a game machine, but is expandable into a personal computer. Ironically, the videogame machine, once considered dead, has roared back to life for Atari and for several other companies during the past year.

Maturing And Growing

What became abundantly clear at CES was that the personal computer industry is continuing to mature as it grows. The computers are more powerful, their applications more sophisticated, and the surviv-
ing software and hardware companies more knowledgeable about what consumers want.

As one company official noted, the 1986 holiday season was the first year-end period in which some computer manufacturer wasn't trying to dump a computer that had failed in the marketplace or been defeated in price wars. IBM was unloading its PCjr in 1985, and in previous holiday seasons Coleco dumped the Adam, Texas Instruments closed out the TI-99/4A and the pre-Tramiel Atari flooded the market with surplus Atari 800 s and 400s before the XL series was ready.

At the end of 1986 and the beginning of 1987, however, all of the major players were supporting their computers to the hilt, from the five-year-old Commodore 64 and the eight-bit Ataris to the latest Amigas and Mega STs. The Apple II series was being extended by the Apple IIGS, and a new generation of Macintoshes was expected. And even if IBM was edging away from a less profitable MS-DOS standard it established, there were plenty of PC-compatible manufacturers supporting those computers.

The Affordable Amiga 500

One of the happiest pieces of news to emerge from CES was the fact that Commodore was planning to introduce two new Amiga computers this spring.

Commodore officials previewed the new Amiga 500, a lowcost machine (under \$650), and the powerful Amiga 2000, an expandable Amiga which contains slots for both Amiga and IBM cards and is priced beginning at under $\$ 1,500$. Both Amigas are completely compatible with the original Amiga 1000, as long as the software being used follows the specifications for version 1.2 of the Amiga operating system.

Although the Amiga 1000 originally sold for about $\$ 2,000$, the
price dropped below $\$ 1,500$ during 1986. The new Amiga 500 will sell for about $\$ 1,000$, which includes the price of Commodore's new $\$ 350$ A2002 composite/RGB monitor (similar to the present Amiga 1080 monitor).

The Amiga 500 has 512 K of RAM, double the memory of the 1000 ; a built-in $880 \mathrm{~K} 31 / 2$-inch floppy disk drive; an expanded keyboard with separate cursor and numeric keypads; the Kickstart 1.2 operating system built into ROM instead of on disk; and a 35 -watt power supply. The Amiga 500 uses about half the power of the original Amiga. If other devices or extra memory is added, the 500's power supply will have to be supplemented. But for many 500 owners this will never be necessary.

The 500's keyboard is not detached, as it is with the 1000. Rather, the 500 is a one-piece computer and keyboard with the built-in disk drive in the right side. This is similar in structure and appearance to the Atari 1040ST and the Commodore 128 computers. The 500's motherboard has been efficiently redesigned so that the entire computer is on one board and, consequently, is cheaper to manufacture.

The 500 has the same system expansion bus, stereo audio outputs, RGB and composite video outputs, and two joystick/mouse ports that the original 1000 has. However, the genders of the RS232 serial port and Centronics-standard parallel port were swapped, allowing the 500 to work with commonly available IBM PC modem and printer cables. Currently under way is an optional RF modulator so that the 500 can use a television as a monitor.

Expanding the Amiga 500 to a full megabyte of memory is an easy process. For under \$150, an Amiga owner can buy a 512 K memory expansion card that includes a bat-tery-backup realtime clock. The underside of the 500 has a small, easily removable cover which hides the connector for the expansion card. The extra 512 K can be installed by the user and doesn't require a trip to the dealer.

The Genlock video interface, designed for the Amiga 1000, won't work with the 500 because of the different physical configuration of
the machine. However, according to one Commodore engineer, a redesigned Genlock will more than likely be made for the 500 .

The Powerhouse 2000

As highlighted in last month's COMPUTE!, Commodore's Amiga 2000 is a powerful, expandable Amiga that can become an IBM PC compatible with the simple addition of a Bridge Card that fits into two of the 2000's internal slots. Expandable up to nine megabytes, the Amiga 2000 can run IBM and Amiga software simultaneously.

The 2000 is expected to sell for under $\$ 1,500$, without monitor, and will include one megabyte of memory, seven expansion slots, a builtin $880 \mathrm{~K} 31 / 2$-inch floppy drive, three drive ports, a detached keyboard, and a heavy-duty 200 -watt power supply. The front section of the 2000's system box contains spaces for one additional half-height PCcompatible $5^{1 / 4}$-inch disk drive and two $31 / 2$-inch drives. However, the drive spaces can be used with any combination of floppy and hard drives the user wants. And the 2000's internal slots allow a rich variety of coprocessors, drives, and boards. Video digitizers, multifunction cards, math coprocessors, and many more additions can be used in the slots. Additionally, any hard disk you use with the Amiga 2000 can be partitioned into Amiga and PC-compatible sections. The data in the drive can be passed back and forth between the two sections, as well.

Physically, the 2000 has a few other changes. The keyboard, joystick, and mouse ports are on the front rather than on the right side and the underside as on the 1000 . The rear of the 2000 has standard connectors and IBM-style vertical slots, rather than the 1000's nonstandard connectors. The 95-key keyboard has also been enlarged and redesigned.

Commodore's new $\$ 500$ A2080 long-persistence monitor can be used with the 2000, reportedly eliminating the screen jitters that can be seen on the 1000 in the Amiga highresolution screen modes.

Although some observers believe that Commodore will eventually retire the Amiga 1000 in favor of the two newer models, current

1000 owners have nothing to fear since the three machines are perfectly compatible. Commodore officials, at this point, say that they have no intention of stopping Amiga 1000 production as long as there's a continuing market for the machine.

With the Amiga 500 and 2000, Commodore has answered the call of many Amiga fans who wanted either a low-cost Amiga or a more expandable Amiga. They now have both. Judging from the reactions of those who saw the sneak previews of the new Amigas at Commodore's CES booth, the future of the Amiga seems brighter than ever.

Atari Turns Blue

Meanwhile, over at the Atari booth, still more interesting hardware was on display. Atari announced three new ST-series computers and an under- $\$ 1,000$ laser printer that will make it possible to assemble a complete desktop publishing system for the unheard-of price of $\$ 3,000$. But paradoxically, it wasn't this new technology that focused most of the attention on Atari at CES.

Instead, it was Atari's announcement of two IBM PC compatibles at rock-bottom prices that reaped the most press coverage and sent Atari's newly public stock soaring. Both of the Atari PCs are aimed at the burgeoning clone market now ruled by Tandy, Leading Edge, Epson, and Blue Chip. Atari plans to undercut them all with two models priced at $\$ 499$ and $\$ 699$.

Both models include 512 K RAM (expandable to 640 K on the motherboard); an additional 256 K of video RAM, freeing up the main memory for programs; an internal 51/4-inch floppy disk drive; RS-232 serial and Centronics-standard parallel ports; a mouse port and mouse controller; composite and PC-standard RGBI video outputs; softwareswitchable clock speeds of 4.77 megahertz (the same as the IBM PC) and 8 megahertz (turbo mode); a socket for an 8087 math coprocessor; a PC-style detached keyboard; and a built-in color graphics adapter.

The $\$ 699$ model adds a built-in monochrome display adapter; Hercules display adapter; enhanced graphics adapter (EGA); and an EGA-compatible green-screen

enfer theworld of

 miade airth
Fellowe The shíp of the Ring

A SOFTWARE ADVENTURE

HEREIN LIES THE KEY TO MAGICAT SOPTWARE ADVENTURE

Cross the britge on Old South Road. beax right at the fork. . . take a left at East Road, past Weathertop Mountain . . . then . . . enter the world of J.R.R. Tolkien's classic fantasy novels. Roam about in this captivating, imaginary world, filled with creatures and situations beyond your wildest dreams. Become Bilbo Baggins!

This season, Addison-Wesley and Melbourne House Software take a step beyond THE HOBBIT to bring you Tolkien's THE FELLOW. SHIP OF THE RING. In addition to the features and exceptional graphics that made THE HOBBIT a software
bestseller, THE FELLOWSHIP OFTHE RING contains two complete, consecutive adventures. This program has over 100 graphic locations, which allow you to see Middle-earth through the eyes of Frodo, Sam, Merry, and Pippin.

You can assume the role of any one of these characters-or play with up to 3 friends, each of whom can become a different Hobbit
THE FELLOWSHIP OF THE RING and THE HOBBIT are available now at your local computer store, bookstore, or wherever software is sold. Your opportunity to live a few hours of your life as a Hobbit is here! THE FELLOWSHIP OF THE RING and THE HOBBIT are available for the Apple IIe/IIc, the Commodore 64/128, and the IBM PC/PC jr.
Ar Addison-Wesley
Reading, Massachusetts 01867

The Atari PC is a low-priced IBM compatible with 512 K RAM and a wide variety of built-in display adapters and interfaces. Two models are priced at $\$ 499$ and $\$ 699$.
monitor. This makes it the lowestpriced EGA system by far-a plugin EGA board by itself now costs at least \$200.

Atari says both models will also come with the disk-based MSDOS 3.2 operating system; GWBASIC; the MS-DOS version of Digital Research's GEM (Graphics Environment Manager); and some applications software for which Atari is still negotiating. According to Atari, the clones should be available from computer dealers and mass merchants sometime this spring.

A Question Of Slots

Atari's announcement stole considerable thunder from other manufacturers who were showing PC clones at CES-including Commodore, Amstrad, Blue Chip, and Victor (see below). Generally they responded by ignoring Atari or by criticizing the Atari clones for lacking expansion slots. Instead of the internal slots found in most PC compatibles, the compact Atari PCs have a connector for adding an external expansion box with slots. As the other manufacturers pointed out, Atari didn't even have a prototype of the expansion box on display.

Given the mass consumer market that Atari is pursuing.with its
clones, the lack of internal slots probably won't be a major factor. Atari says its goal is to sell "preconfigured" PC clones that are ready to run straight from the box, including software. The Atari PCs already include most of the options that a typical IBM PC owner buys in the form of add-on boards.

However, there are two exceptions: The Atari PCs have no room to add a second internal floppy disk drive, and the absence of slots means there is no place to plug in one of the inexpensive hard disk cards that are so popular with PC users.

Atari was ready with two answers to these criticisms. First, additional $51 / 4$-inch floppy drives can be added externally, and ST-series $31 / 2$ inch floppy drives can be plugged directly into an Atari PC. Since the ST drives are compatible with the IBM $31 / 2$-inch disk format, the Atari PCs are a step ahead of most clones in the trend toward $31 / 2$-inch disks. Second, Atari showed a prototype of an external 20 -megabyte hard disk drive that fits neatly atop the Atari PC system unit.

Of course, external floppy drives add to desk clutter, and the announced price of the 20 -megabyte hard disk-about \$700-is roughly twice as high as the lowest-
priced hard disk cards available for other PC compatibles. Still, Atari doesn't perceive these shortcomings as major weaknesses in a pair of clones aimed at the mass market.

Atari has other markets in mind as well. "We have a total commitment to a full line of PC compatibles," said Atari President Sam Tramiel. Later this year, according to Tramiel, Atari will announce a turbo XT clone and an AT clone, both with 80286 microprocessors. In 1988, an 80386based machine is a possibility. "Once we jump into the market, we've got to be there with everything," said Tramiel. "We can't be just another 'me, too."'

Mega Memory

Atari emphasized that its jump into the PC world doesn't mean the company is abandoning its other product lines. To reinforce this, Tramiel pointed to the three new ST computers, the low-priced laser printer, and another videogame machine exhibited at CES.

The new Mega STs are fully compatible with the current 520ST and 1040ST computers, but offer more memory and other enhancements. They have one, two, or four megabytes of memory; detached keyboards; internal double-sided floppy disk drives; battery-backup realtime clocks; blitter chips; and expansion connectors for adding external boxes or boards. The system units are very compact-in fact, they use the same cases as the Atari PC system units. And like the Atari PCs, the Mega STs will have a stackable 20-megabyte hard drive available for around $\$ 700$.

Atari says the Mega STs will be available this spring, but was not very firm on prices. In ballpark figures, the one-megabyte model is expected to sell for slightly more than a 1040 ST (probably around $\$ 1,200$); the two-megabyte model is expected to come in at $\$ 1,500$; and the four-megabyte model at about $\$ 2,000$. These prices would include the built-in floppy drive and a monochrome monitor.

One reason why Atari was vague on prices is that the Mega STs will be among the first personal computers to use the new onemegabit dynamic RAM chips. It takes only eight of these high-

STAY HOME AND PL AY whoum monanamemen fun at home? Just take a gander at the kind of excitement Mindscape has to offer.

 With Indoor Sports, you can play darts without putting holes in your walls, ice an opponent in air hockey, become a ping-pong pro, and pick up some spares without venturing into an alley.As a Harrier jump-jet ace in High Roller, you'll be doing barrel rolls toward designated targets without waking the
 neighbors.

Bop'n Wrestle puts you in the ring with 10 of the biggest, baddest bruisers ever to perfect the turnbuckle fly.

Prepare to take evasive action with In filtrator. Foil your foes from your 'copter's cockpit and then
convert to covert ground action behind enemy lines. In Balance of Power, you are the President. And the burden of global responsibility seems so real you may wonder why you don't have Secret Service protection.

What do you have to lose? For much less than the cost of a night on the town, Mindscape makes home sweet home a more exciting place to be.

[^2]

Atari's Mega ST is available in one-, two-, and four-megabyte models. All have a detached keyboard, internal floppy disk drive, blitter chip, battery-backup clock, and expansion bus.
density chips to yield one megabyte of memory, compared to 32 of the 256-kilobit RAM chips found in current STs and most other personal computers. Because the onemegabit chips are so new, production costs are still high, and the market for them is very volatile. If the chip prices do not drop as fast as Atari and other manufacturers anticipate, the Mega STs will probably be delayed several months.

The one-megabit chips also explain why the system units of the Mega STs are so small and can get by without cooling fans. Four times as much memory can be packed into the same amount of space, and less heat is generated.

Inexpensive Deskiop Publishing

Atari is taking advantage of the memory and speed of the Mega STs to introduce a laser printer priced at under \$1,500-about one-third the cost of comparable printers. To achieve this reduction, Atari has modified the concept of the laser printer.

One of the major reasons why laser printers are so expensive is that they're really powerful computers in their own right, containing a 16 -bit microprocessor and a few megabytes of memory. In fact, it requires at least two megabytes of memory for a laser printer to pro-
duce full-page graphics at its highest resolution of 300 dots per inch (dpi).

Atari's solution is to remove the memory and make the printer dependent upon the computer's memory. Thus, a two- or fourmegabyte ST will be required to produce full-page, 300 dpi graphics with Atari's laser printer. Half-page graphics could be achieved with a one-megabyte Mega ST, 1040ST, or expanded 520 ST . An unexpanded 520ST with 512 K of memory could produce quarter-page graphics at 300 dpi . The printer can use any page-description language or type font under software control from the computer.

This approach wouldn't be possible without the ST's highspeed direct-memory access (DMA) port. Capable of transferring data at ten megabits per second, the DMA port is fast enough to drive the laser printer while the computer is buffering an entire page of text and graphics in RAM. No other personal computer currently on the market is fast enough to do this.

Therefore, a complete desktop publishing system capable of fullpage, 300 dpi graphics will cost about $\$ 3,000$-roughly $\$ 1,500$ for the laser printer and $\$ 1,500$ for the two-megabyte Mega ST. It also means that Atari will sell a Mega ST with almost every laser printer,
since no other computer (besides an expanded 520ST or 1040ST) can drive Atari's printer.

A Secret Engine

With more than two megabytes of memory, it's possible that an ST could run another application while driving the laser printer, according to Atari. Otherwise, the computer will be tied up while the printer does its work-something that's not a problem with other laser printers that have their own memory. Even with this handicap, however, Atari's low-ball desktop publishing system will probably attract those who can't afford more expensive systems.

The printer's output is equivalent in quality to pages produced by competing printers, largely because the printer uses a Japanese printer engine virtually identical to those found in other printers. Atari would not reveal the manufacturer of the engine, saying only that two Japanese suppliers are involved-one for the U.S. market and one for the European market. The prototype printer exhibited at CES contained a Canon printer engine, but Atari said this was not the engine being used in production models. Atari says the production printer will work at eight pages per minutefairly fast for a laser printer.

The Atari PCs, Mega STs, and laser printer overshadowed Atari's other significant announcements at CES:

- Prices were cut slightly for the 1040 ST and drastically for the 520ST. The monochrome 1040ST system was reduced from $\$ 999$ to $\$ 899$; the color 1040 ST system was cut from $\$ 1199$ to $\$ 1099$; and the monochrome 520ST system was slashed from $\$ 799$ to $\$ 499$, putting it directly in competition with eight-bit computers like the Commodore 128 and Apple IIc.
- The blitter chip upgrade for 520STs and 1040STs was expected to be released in March. It includes the blitter chip (which speeds up memory moves, and therefore, screen graphics), plus six ROM chips that contain a new version of the TOS operating system slightly modified for the blitter. (No other changes were made to TOS.) Atari says the blitter chip can be switched on or off to reduce compatibility
problems with some existing software. The upgrade is expected to cost less than \$100, including installation.
- The SX212 Hayes-compatible modem should finally be available this spring. It works at 300 or 1200 bits per second with any computer that has an RS-232 serial port, including all STs. The modem also has an SIO (Serial Input/Output) port so it can be plugged directly into an Atari $400 / 800$, XL, or XE without an interface. Retail price: $\$ 99$.
- Behind glass, Atari showed a prototype of a new videogame machine based on-believe it or nota stripped-down Atari 65XE home computer. Basically, the game machine is a 65 XE without a keyboard. One Atari spokesman explained that the 65XE hasn't been selling particularly well in the U.S., partly because the 130XE offers twice as much memory (128 K) for only a little more money (roughly \$139 versus $\$ 89$). At the same time, Atari has been enjoying a recent resurgence in videogames, selling thousands of 2600 s and 7800 s. By converting the 65 XE into a game machine, Atari figures it can sell more units and expand the market for cartridge-based software. And in another twist, Atari might offer a plug-in keyboard for the game machine that would turn it back into a 65XE computer.

The Clone Wars

As noted earlier, the MS-DOS invasion was very much in evidence at CES. Although Atari's PC compatibles got the jump on several rivals because of Atari's surprise introduction and the low pricing, Commodore and other computer manufacturers showed PC clones that they are pushing aggressively in the U.S. market. Several companies, including Tandy, Blue Chip Electronics, and Leading Edge, have gotten a big headstart in the PC-clone distribution and visibility races. Commodore, Atari, and the other new entries in this fight will have to work hard to establish themselves.

Commodore exhibited two versions of a PC compatible, the \$999 PC10-1 and the \$1,199 PC102. Although somewhat higher in price than Atari's clones and those

What a deal! Your first Shanghai" game's on us! Just send for your free Shanghai demonstration disk which contains one tantalizing puzzle. It's guaranteed to whet your appetite for the billions of options on the complete disk.
What makes us so sure? History.Shanghai is derived from the ancient oriental game of Mah Jongg, which has captured players' imaginations for over 30 centuries.
Find out what a 3,000-year obsession is all about. Write for your free Shanghai Demo:

Activision, Inc.
P.O. Box 7287

Mountain View, CA 94039
Enclose a $\$ 3.00$ check for postage and handling. Please be sure to specify your computer system.
"..Activision said Shanghai is addictive. They're right..." -Stuart Alsop

Now available for IBM PC PCjr, Tandy 1000, Apple II, Macintosh, Commodore 64/128, Amiga, Atari ST and compatible computers Coming soon for the Apple II GS

$$
\begin{array}{ll}
\text { 10", Carriage } & \text { NL.Q-180 Premium Quality Printer } \\
\text { Near Letter Oualitv Selectable From Front }
\end{array}
$$

 Panel Controls • High Speed Dot Matrix• Letter Quality Modes - 8K Buffer frees up computer 4-times faster • Pica, Elite, Italics, Condensed • Super Graphics \bullet Business or Personal • Tractor/Friction 15 Day Free Trial •Lifetime Warranty on Print Head* • 6 Month Immediate Replacement Warranty ${ }^{\bullet}$

NLQ-180 Print Samples
This is an example of ITALICS
 Condensed Text Double-strike example of Near Letter Quality
 ——— APPLE - ATARI - ETC.

Ink Ribbon Cartridge
Ribbon Life: 3 million characters/cartridge
Physical Dimensions
Size: 15 " $\times 12$ " $\times 5$ "'
Weight: 12.7 lbs.
Maximum Number of Characters

Standard:	10 cpi	80 cpl
Standard enlarged:	5 cpi	40 cpl
Elite:	12 cpi	96 cpl
Elite enlarged:	6 cpi	48 cpl
Condensed:	17 cpi	132 cpl
Condensed enlarged:	8.5 cpi	66 cpl
Condensed elite:	20 cpi	160 cpl

INTERFACES

Atari $\$ 39.95$ Apple $\$ 49.95$ Commodore $\$ 29.95$ IBM $\$ 49.95$ Laser $\$ 19.95$

Add $\$ 10.00$ for shipping, handling, and insurance. Illinois residents please add $61 / 2 \%$ sales tax. Add 20.00 for CANADA, PUERTO RICO, HAWAII, ALASKA, APO-FPO orders. All orders must be in U.S. Dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA. Enclose Cashier Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail. Prices \& Availability subject to change without notice.
VISA - MASTER CARD - C.O.D.
C.O.D. on phone orders only.

COMPUTER DIRECT
We Love Our Customers
22292 N. Pepper Rd., Barrington, III. 60010
312/382-5050 to order

Complete Apple ${ }^{\circledR}$ Compatible Word Processing System

- 15 Day Free Trial - 90 Day Warranty ${ }^{\circ}$ Home - Business • School - Word Processing

Look At All You Get for only $\$ 519.00$

			ale Price	Over $\$ 70000$ Off List Prices	
- Laser 128 Apple Compatible Computer - Big Blue Printer - 12"' Hi-Resolution Monitor - Magic Window IIe wordprocessor - Magicalc Spreadsheet - Magic Memory Data Base - Laser 128 Big Blue Printer Interface - 2 Rolls of Paper					
		99	9.9		
		229.9	99.9		
		150.00	39.9		
		150.00	39.9		
		60	29.		
		19	12.95		
		19.9	9.9		
Comparable Apple System (\$2495.00)		\$1327.8	667.65	All 8 Pieces Only \$519	
Magic Window IIe: Word processing is easy and more efficient because of a simple-to-read menu system and editing commands. Many powerful features of professional quality programs and more. Supports virtually all major printer functions. Operates with most 80 column video cards or $40 / 70$ column	Magicalc: Rated as the best electronic spreadsheet on the market for Apple. The speed with which PMagicalc solves number problems allows you to accurately analyze decisions beforehand. Supports multiple RAM cards of most manufacturers in any combinations up to a full 512 K . Magic Memory: File anything, any way you want to: names, addresses, important numbers, dates and notes. Your information is organized simply, easy to maintain, and available instantly. Supports all popular printers and video cards.				

We Love Our Customers

22292 N. Pepper Rd., Barrington, Illinois 60010
312/382-5050 $\frac{\text { Po order }}{}$
of several other manufacturers, Commodore's North American general manager Nigel Shepherd was quick to point out that the machines will be sold in different markets by different dealers. Commodore plans to give its dealers profit margins of 35 percent to help get the Commodore PCs distributed widely. They'll also be sold by computer dealers rather than in mass market outlets.
"We haven't gone for the jugular on price," he said. "It's a very competitive business. What we've gone for with the PC is a price/ feature combination that gives the dealer a margin [of profit]. And we think it will give us acceptable market share and acceptable profits."

Although it may seem odd to many American Commodore fans that their favorite company is making and selling a PC clone, Commodore has actually been selling these PCs in Canada and Europe for some time. With the current explosion of MS-DOS machines in the U.S., Commodore officials decided the market was ripe for their entry here also.

The \$999 PC10-1 has one built-in 360 K double-sided, double-density disk drive and 512 K of RAM, which can be expanded to 640K. The $\$ 1,199$ PC10-2 has two drives built in and 640 K of RAM standard. And both systems have space for a half-height or fullheight hard disk.

Beyond those differences, the computers are identical. Each has the 8088 microprocessor running at a clock speed of 4.77 MHz , MSDOS 3.2, a PC-XT compatible BIOS, a PC-XT compatible keyboard, and GW BASIC 3.2. There are five full-size expansion slots, and the machines also have as standard equipment an RS-232 serial port, a Centronics parallel port, and an ATI Graphics Solution Adapter, which is a built-in monochrome and color display card compatible with IBM, CGA, MDA, Hercules, and Planatronics video modes. The power supply can handle a 40 -meg hard disk, two floppy drives, and five expansion cards. Commodore is also bundling with each PC the popular Borland Sidekick desktop organizer.

Although Commodore has had considerable success with the PC

Commodore's $\$ 1,199$ PC10-2 is a PC compatible with two disk drives, 640 K of RAM, and five expansion slots. Commodore also introduced to the U.S. market the one-drive PC10-1 with 512 K of memory.
compatibles in Europe and Canada, the low prices of other PC-clone competitors in the U.S. market will put pressure on Commodore to lower the prices of its PC10 systems.

Amstrad From England

Among the companies at CES that were also showing PC compatibles were Amstrad, Franklin, and Victor, each of which seems determined to fight vigorously for the PC-compatible buyers' attention.

Amstrad is a British computer manufacturer that has had success in selling its PC 512 PC clone systems in Great Britain and Europe. The computer has now entered the U.S. and is being distributed by Vidco of Longview, Texas.

The Amstrad PC 512 comes with 512 K of RAM, expandable to 640 K , an 8086 microprocessor running at $8 \mathrm{MHz}, \mathrm{MS}$-DOS 3.2, three full-size expansion slots, a choice of one or two $360 \mathrm{~K} 51 / 4$-inch floppy disk drives or one floppy with one 20-megabyte hard disk drive, standard RS-232 serial and parallel interfaces, a battery-backed realtime clock, mouse, and a socket for an 8087 math coprocessor.

The PC 512 systems can be
purchased for as little as \$799, which includes a single drive and a monochrome monitor; or, for as much as $\$ 1,499$, which includes a 20 -meg hard drive and color monitor. There are several variations of features and prices between those two systems, as well. The Amstrad units also come with Digital Research's GEM Desktop, GEM BASIC 2, and GEM Paint software and the user manuals.

The Amstrad machines will be sold in mass market outlets in the U.S., similar to the distribution system used in Europe. "We plan to approach the mass market channels in the United States and feel that the market will require a substantial volume to fill demand," said Vidco president, Vernon Moore.

Franklin And Victor

Franklin Computer, which previously sold only Apple-compatible computers and equipment, has entered the PC-compatible market with two different machines-the $\$ 699.95$ PC-6000 and the $\$ 799.95$ PC-8000.

The standard features for each computer include 512 K of RAM, which is expandable to 640 K ; built-

Cadpak

Design pictures and graphics quickly and precisely. Unlike other drawing programs, you can produce exact scaled output on your printer. Design in the units of your drawing problem (feet, miles, meters,etc.) and send hardcopy to most printers. Uses either the keyboard or a lightpen. Two separate work screens-transfer artwork from one screen to the other. Place text in four sizes anywhere in the picture-three extra fonts included: Old English, 3-D and Tech. "Try Again" functions allows you to undo a mistake. Solid or dashed lines, circles, ellipses at any angle, rays and boxes. Save and edit fill patterns, fonts and objects. Cadpak is the full-featured design package for your Commodore computer.

$$
\begin{array}{ll}
\text { for the C-64 } & \$ 39.95 \\
\text { for the C-128 } & \$ 59.95
\end{array}
$$

Design an addition to your house... Remodel your apartment...
Create a layout for your garden... Draw schematic diagrams... Engineer a new widget... all to scale!

Features of Super Pascal:

- full implementation of Jensen \& Wirth Pascal
- C-64 high-speed DOS (3X faster)
- includes many language extensions for systems programming
- integrated assembler for machine code requirements
- built-in editor with renumber, find, auto, change, append, delete
- includes fast graphic library
- large 48 K workspace
- works with one or two drives
- advanced error handling
- C-128 version supports 80 -column hires graphics
- with 220-page manual

Super Pascal

Your complete system for developing applications in Pascal. Super Pascal is a complete implementation of standard Pascal (Jensen and Wirth). C-64 version has a high-speed DOS (3X) that makes using it quick and efficient. The extensive editor (source included) contains added features: append files, search and replace. Includes an inline assembler for optionally coding in machine language. Super Pascal is so capable that it's used in hundreds of schools to teach Pascal. But it can be used for more than just learning Pascal, use it for serious programming. The graphic library (source included) is written in machine language for fast execution. Want to learn Pascal or develop software using the best tool available? Super Pascal is your first choice.

$$
\begin{array}{ll}
\text { for the C-64 } & \$ 59.95 \\
\text { for the C-128 } & \$ 59.95
\end{array}
$$

 Pásčal

 Language Compiler
Abacus .in

P.O. Box 7219 • Dept. C4 • Grand Rapids, MI 49510•Telex 709-101 • Phone 616/241-5510 Call now for the name of the dealer nearest you. Or order directly using your MC, Visa or Amex card. Add $\$ 4.00$ per order for shipping. Foreign orders add $\$ 12.00$ per item. Call (616) $241-5510$ or write for your free catalog. 30 -day money back software guarantee. Dealers inquires welcome-over 2000 dealers nationwide.
www.commodore.ca
in 360 K floppy drive (the 8000 has two drives); built-in serial, parallel, and monochrome/color graphics adapters; a game port; and MSDOS 3.1. An optional realtime clock with battery backup is available for $\$ 39.95$, and a GW-BASIC and MS-DOS 3.2 package can be purchased for $\$ 99$.

Franklin is aiming its PC compatibles at mass market chains. Some of the major outlets, such as Sears and Electronics Boutique, which already carry the Franklin Ace Apple-compatible computers, are now selling the new Franklin PCs, according to Franklin's president Morton E. David. And like Atari, with its PC compatibles that are usable right out of the box, Franklin and Amstrad are banking on capturing the consumers who don't want to have to learn about expansion slots, accelerator cards, math coprocessors, and the like.

Another MS-DOS machine is the Champion from Victor. Introduced last fall, the $\$ 799$ Champion PC compatible is an IBM PC/XT clone that uses an 8086 microprocessor running at 4.77 MHz . The system includes 640 K of memory, five expansion slots, standard serial and parallel ports, MS-DOS 3.1, GW BASIC, one 360 K floppy drive (a second is optional), a detachable PC/AT-style keyboard, and a monochrome graphics card. An optional high-resolution monochrome monitor is available for $\$ 119$.

The New
 Commodore 128D

Not all of the computer news at CES focused on the 16 -bit machines and the MS-DOS clones. The Commodore 64 and 128 computers have continued to sell extremely well. And that has resulted not only in much new software for these computers, but also several important hardware additions.

One of the most noticeable changes within the Commodore booth was an additional configuration of the 128. The Commodore 128 D is actually the same machine functionally as the earlier 128, but is structured to be more businesslike in its appearance and able to fit more easily on a desk.

The 128D consists of a system box with a built-in 1571 disk drive, a single power supply, and a detachable keyboard with a two-foot cord. The computer console can support a monitor or monitor stand. The 128D works with either a standard television or a computer monitor such as the Commodore 1902 RGBI/composite color monitor.

This format of the Commodore 128 has actually been in Europe for more than a year, but couldn't be released in the U.S. at that time because the machine couldn't pass stringent FCC shielding requirements. Now, redesigned to overcome that problem, the computer can enter the U.S. market. The retail price of the 128D should be about $\$ 550$ when available in May.

The Commodore 128D computer is functionally identical to the original 128 , but sports a new business-style configuration with detached keyboard and a system box with built-in 1571 drive that can support a monitor.

New Mass Storage

Both the Commodore 64 and the 128 now have new mass storage options. At CES, Commodofe introduced the $1581 \quad 31 / 2$-inch disk drive as well as the new 1764 RAM Expansion Module for the 64.

The Commodore 1581 disk drive uses $31 / 2$-inch disks that can hold up to 808 K of data and can be used with the 64, 128, Plus 4, and 16 computers.

With a retail price of $\$ 399$, the 1581 drive allows the 64,128 , Plus 4 , and 16 computers from Commodore to begin using the increasingly popular $31 / 2$-inch disks. Not only do the $31 / 2$-inch disks store up to 808 K of data, but their hard shells and small size make them easier and sturdier to use. The 1581 is also reportedly three times faster than the 1541 disk drive.

Some Commodore 64 owners have envied 128 owners who've been able to buy either the 1700 or 1750 RAM expanders for their machines. To remedy that, Commodore announced the $\$ 1291764$ RAM Expansion cartridge, which gives the 64 a whopping 256 K of memory for data or program stor-age-five times the amount 64 owners have been used to. The expansion module is designed to plug into the 64's expansion port.

The module comes with two software packages, as well. The first is a disk operating system (DOS) program that is designed to help users get the most out of the RAM module as a RAM disk. In other words, memory within the RAM expander is used as a separate floppy drive would be to store and retrieve frequently used data. The loading and saving of information can be virtually instantaneous with a RAM disk.

The second program bundled with the RAM Expansion cartridge is called the GEOS RAM Disk, a RAM disk that is set to work under

the popular GEOS operating system and its applications. GEOS requires disk access numerous times, and the additional memory, when used as a RAM disk, turns GEOS and its applications into much easier and faster programs.

More Memory

For those who just can't seem to get enough memory, two third-party companies also exhibited their hard drives for the 64 and 128 in the Commodore booth.

JCT (P.O. Box 286, Grants Pass, OR 97526) has $10-\mathrm{meg}$ (\$795), 5-meg (\$695), and 3.7-meg (\$595) hard drives. These work with any machine that uses the Commodore serial bus (128,64 , Plus/4, 16, or VIC, for example). Data transfer on the JCT drives is 1.7-2 times faster than on the 1541, but a parallel option for speeds $10-20$ times faster is available (cable and cartridge are \$50).

Xetec (2804 Arnold Rd., Salina, KS 67401) displayed its Lt. Kernal 20-Meg Hard Disk Drive. Developed by Fiscal Information, this drive was originally announced more than two years ago, but never
distributed. Cardco, a software company, announced its intention to distribute the drive, but soon after, Cardco went out of business. Xetec, awaiting FCC approval at the time of the show, plans to have the drive available through dealers by the time you read this. The suggested retail price for the 64 version is $\$ 899$; for the 128 version, $\$ 949$.

Commodore 64 owners will also be happy to know that Commodore is releasing the long-awaited 1351 two-button mouse for cursor movement on the screen. The $\$ 49$ mouse has two modes of operation: joystick, which is familiar to anyone who has used a joystick on the 64, and proportional, for precise and measured mouse movements with major applications like GEOS.

Moving Ahead

While nothing in the fast-moving microcomputer industry can be taken for granted, CES gave indications that 1987 will be a good year for computer companies and computer users alike.

Commodore has apparently pulled itself out of severe financial straits, posting three consecutive
profitable quarters after more than a year and a half in the red. The new Amigas and the continuing successes of the 64 and 128 will certainly help to firm up the bottom line for the rest of 1987 and into 1988.

At the same time, Atari has moved boldly forward in the areas of desktop publishing with the ST, new Mega machines that use state of the art one-megabit dynamic RAM chips, and even the aggressively priced PC compatibles. After going public in late 1986, Atari watched its stock rise steadily.

Apple Computer, with the new GS extension of the Apple II family, looks as though it will move through the year in sound financial shape as well. Although there's bound to be some fallout among the MS-DOS manufacturers as the clone wars heat up, it's clear that this market will be a popular one throughout the year.

What all of this spells for us, the computer users, is the widest selection of popular, powerful, and usable machines ever available in the short, turbulent history of this industry.

Lyco Computer Marketing \& Consultants

Lyco Computer is one of the oldest and most established computer suppliers in America. Because we are dedicated to satisfying every customer, we have earned our reputation as the best in the business. And, our six years of experience in computer mail-order is your assurance of knowledgeable service and quality merchandise.
We fill 95% of all orders every month. Here's how: lowest prices anywhere \bullet multimillion $\$$ factory fresh inventory \bullet courteous, knowledgeable sales staff $\bullet 24$-hour shipping on in-stock items Plus: \bullet free shipping in US on prepaid cash orders \bullet no deposit on C.O.D. orders • no sales tax outside PA \bullet full manufacturers' warranties apply \bullet air freight, UPS Blue/Red shipping available Call Lyco Computer. See for yourself why so many customers keep coming back to Lyco for the best prices, the most complete inventory, and our fast and courteous service.
To order, call toll-free: 1-800-233-8760
In Penna.: 1-717-494-1030 Customer Service:
1-717-494-1670
Or write:
Lyco Computer, Inc.
P.O. Box 5088

Jersey Shore, PA 17740
MasterCard

Risk-Free Policy: • prices show 4\% cash discount; add 4% for credit cards \bullet APO, FPO. international: add $\$ 5$ plus 3% for priority mail - 4-week clearance required on personal checks - compatability not guaranteed - return authorization required \bullet we check for credit card theft

A Maturing Software Market

Kathy Yakal, Assistant Features Editor

Exciting new hardware was only half the story at January's CES. As the technologies that comprise the consumer electronics industry move closer together and toward the electronic home of the 1990s, software publishers are constantly gauging the entertainment, educational, and personal productivity needs of buyers. Here's a look at how they're doing.

A futurist, observed one computer industry leader recently, is anyone who can even think of an idea before Jack Tramiel introduces it on the floor of the Consumer Electronics Show.

Tramiel, the founder of Commodore Business Machines who amazed the industry in 1984 by purchasing the Atari Corporation and bringing it back to financial health, seems to have the ability to come to market faster, and with more inexpensive new products, than anyone else. That's a tough thing to do in this volatile, exciting industry characterized by its rapid growth.

Unfortunately, that growth hasn't helped to foster any single standard of hardware and software, as it has (for the most part) with television, radio. and stereo system components. And no consumer electronics product has achieved widespread household penetration without strict standards for compatibility.
"Over a dozen home computer systems have been marketed over the last few years with totally incompatible operating systems," says David Seuss, president of Spinnaker Software. "Imagine the
early days of the TV industry: If you had had to choose from among 15 different TV's, each of which could only receive one channel, and onethird of all the stations went off the air every year, you probably would have said, TV's not for me, I like my radio. I'll wait 'til next year."

Standardization of consumer products like televisions and stereos has not halted improvements in the quality of those items. Witness the recent explosion of improvements in digital TV's, compact disc players, and other electronic entertainment media. Video and audio products continue to get better, smaller, and faster-without confusing the consumer.

Consider, though, what would have happened if the home computer industry had imposed similar standards in its earlier days. Perhaps for every five consumers who scoff at the idea of having a computer in their home, there's one who says, "Well, this computer doesn't seem to do what I need but this other one does, so I guess I'll buy it...." And this selectivity is what some industry leaders think attracts many consumers. Uncontrolled growth may make the industry as a whole look unstable, but that free rein has encouraged hardware developers and software publishers to constantly redefine "state-of-the-art."

Further, explorations into new ways of electronically assisting home entertainment, education, and management-extending well beyond the home computer slice of the consumer electronics pie-are paving the way for the powerhouse computers a few years down the road.

Product Pipelines

In the meantime, there's still a healthy and growing installed base of personal computers whose users continue to need software. The U.S. computer manufacturers keep upgrading their existing machines, encouraging third-party peripheral and software development.

Software publishers see several major software niches based on different computers, though each places the order of emphasis differently, depending on their particular specialty. First is the venerable Commodore 64, whose low price and excellent graphics and sound make it a superb game machine.

Second are the PC clones, which are compatible with the MSDOS format driving the IBM PC. "Over the last year, the PC format has risen to the number 2 position, whereas two years ago it was nonexistent as a home software format," says Trip Hawkins, referring to what he has experienced in the marketing of Electronic Arts popular product line. Hawkins, president of EA, believes MS-DOS software could outsell every other format in 1987.

Third are the powerful 16 -bit machines, the Commodore Amiga and Atari ST, which deliver state-of-the-art home computer technology and advanced audio/video features.

And finally the Apple II-series and Macintosh computers continue to redefine educational, desktop publishing, and related markets.

Here are highlights of some of the new products announced at CES, as well as information about

existing products converted to new machine formats. For more information about new products at CES, see "News \& Products," elsewhere in this issue.

Accolade's Comics: This interactive computer comic book was introduced by year-old software publisher Accolade at CES. Its plot revolves around a character named Steve Keene, who must try to thwart evil plots for the Chief of Spystuff, Inc. Unlike text-only adventures, Accolade's Comics incorporates detailed color graphics. The player determines the direction of the story by selecting answers to a series of questions. Some of the answers lead to dead ends, and others take you through a variety of themes and plot twists. Several different endings are possible each time the game is played. Arcade action becomes part of the game when Keene falls into traps, inescapable positions, and embarrassing situations. (Commodore 64, $\$ 39.95$, Accolade)

Aliens: The Computer Game: Based on last summer's hit movie, Aliens features six game segments closely tied to the movie's storyline and action. (Commodore 64, \$39.95, Activision)

The Bard's Tale: Now available for the Commodore Amiga. (\$49.95, Electronic Arts)

The Bard's Tale II: The Destiny Knight: This fantasy sequel to The Bard's Tale is even more challenging than its predecessor. It features an expanded dominion for exploration and adventure, and incorporates advanced combat and magic systems. (Commodore 64, \$39.95; Apple II version coming, Electronic Arts)
B.I. Calc, File, Spell, Write: Four productivity packages for IBM PC and compatible users, including, respectively, a spreadsheet, a database, a spell checker, and a word processor. The programs are designed for ease of use in home and business environments. (\$39.95 each, Batteries Included)

Bop 'N Wrestle, Infiltrator, and Trailblazer: Now available for Atari eight-bit computers. (\$29.95 each, Mindscape)

Bureaucracy: Fans of Douglas Adams' book Hitchhiker's Guide to the Galaxy were delighted when Adams helped design a computer version of that tale for Infocom. Now Adams has lent his comic writing style to Infocom once again by co-designing Bureaucracy, a text adventure that wraps up the player in the endless swathes of red tape that everyone faces when dealing with big institutions. (MS-DOS, Apple II and Macintosh, Commodore Amiga, Atari ST, \$39.95, Infocom/Activision)

Championship Golf: The Great Courses of the World-Volume One: Pebble Beach: Now available for the Commodore Amiga. (\$54.95, Gamestar/ Activision)

Create a Calendar: This program offers an assortment of calendar types and a wide variety of decorative fonts, borders, and graphics suitable for special occasions. In addition, graphics from the Epyx Graphics Scrapbook series or The Print Shop may be used. Multiple lines of text and graphics can be placed on any day of the year, and regularly scheduled events can be repeated automatically. (Commodore 64, Apple II, and MS-DOS compatibles, Epyx)

Dan Dare: Pilot of the Future: In this interactive game, each screen becomes a comic book panel that

COMMODORE APPLE

C-128

FULLY WARRANTY
*WITH PURCHASE OF 1571 COMMODORE DISK DRIVE

AMIGA

*75 ADDITIONAL FOR MONITOR
PRINTER

SEIKOSHA

NEAR LETTER •100 CPS DRAFT
QUALITY • 20 CPS NEAR •COMMODORE READY

DISKETTES

DSDD PER PACK OF 100

PRO-TECH-TRONICS 6860 Shingle Creek Parkway \#201 Minneapolis, MN 55430 QuIck DELIVERY

you control, complete with captions, full-color 3-D cartoon graphics, mazes, puzzles, fist fights, and a realistic soundtrack. The game follows the adventures of Britain's popular comic book hero Dan Dare and his pet, Stripey, as they travel to a distant asteroid and neutralize the threat posed by the alien Treens. (Commodore 64, under \$20, Electronic Arts)

Data Manager PC: This is a flexible filing and record-keeping system that generates customized data reports and includes a built-in graphics package, print preview mode, and label maker. (IBM PC and compatibles, \$59.95, Timeworks)

Deluxe Creativity Series: Five productivity packages, compatible with each other, turn the Commodore Amiga and Apple IIGs into home sound/video production studios. The programs include Deluxe Paint II, Deluxe Music Construction Set, Instant Music, Deluxe Print, and DeluxeVideo. The series is also supported by a growing library of data disks and a quarterly magazine, $D e$ luxeNews. (Electronic Arts)

Deluxe Music Construction Set: Now available for the Amiga (\$99.95), Macintosh (\$99.95), and Apple IIGs. (Electronic Arts)

Deluxe Paint II: Now available for the Apple IIGs. (\$99.95, Electronic Arts)

Deluxe Print: Now available for the Apple IIGs. (Electronic Arts)

Earl Weaver Baseball: This is an action/strategy baseball simulation coauthored by Baltimore Orioles' former manager Earl Weaver. (Commodore Amiga, \$49.95, Electronic Arts)

Earl Weaver Baseball is an action/ strategy baseball simulation game for the Commodore Amiga that was designed with the help of former Baltimore Orioles manager Earl Weaver. (Electronic Arts)

GBA Championship Basketball: Two-on-Two: Now available for the Amiga. (\$44.95, Gamestar/ Activision)

GFL Championship Football: Now available for the Amiga. (\$44.95, Gamestar/Activision)

GEOS: Just one year ago, at the 1986 Winter CES, Berkeley Softworks premiered an operating system/graphics user interface for the Commodore 64 called GEOS (Graphic Environment Operating System). GEOS was designed to speed up disk access five to seven times and make the 64 easier to use by providing windows, icons, and pull-down menus. Since then, GEOS has been adopted by Commodore as the official operating system for the 64 , and it's now bundled with the redesigned Commodore 64C computer.

At the 1986 Winter Consumer Electronics Show, Berkeley Softworks introduced GEOS, which was adopted as the official graphics user interface for the Commodore 64. At the 1987 WCES, Berkeley premiered an 80-column version of GEOS for the Commodore 128. Berkeley also announced a number of new companion packages for the program, including geoCalc and geoFile, a spreadsheet and database manager.

At the 1987 Winter CES, Berkeley made a commanding appearance with a large booth across the aisle from Commodore, and the company announced new add-ons for GEOS. geoCalc (\$49.95) is a spreadsheet program with space for 112 columns and 256 rows of data. It provides basic arithmetic functions to 12 places of accuracy and advanced mathematical functions to nine places of accuracy. In addition, geoCalc performs sum and average calculations on data, displays two different portions of a spreadsheet at the same time, does manual or automatic calculations, and lets the user adjust the size of cells. geoFile (\$49.95) is a GEOS-
based filing system for managing all types of data. And geoDex (\$39.95) is an electronic card file that lets the user organize names, addresses, phone numbers, and other miscellaneous information by group or alphabetically.

An 80 -column version of GEOS for the Commodore 128 was also announced. It's expected to be available in the second quarter of 1987. (Commodore 64 and 128, \$69, Berkeley Softworks)

GraphicWorks Version 1.1: This product is an upgrade of Mindscape's sophisticated desktop publishing package, GraphicWorks. Enhancements include onscreen rulers; color printing; rotation, perspective, skew, and distortion tools; and PageMaker 1.2 and 2.0 support. (Apple Macintosh, \$99.95; registered owners of the earlier version can receive the upgrade for $\$ 19.95$; Mindscape)

Guild of Thieves: Firebird offered a sneak preview at CES of its follow-up to its popular text-andgraphics adventure, The Pawn, titled Guild of Thieves. (Firebird Licensees)

Hollywood Hijinx: The latest Infocom text adventure is a tribute to old Hollywood B-grade movies. You play a character whose Uncle Buddy Burbank has left you a sprawling Malibu estate. The catch is that you must find ten treasures hidden in the estate in one evening, or lose the whole thing. Hollywood Hijinx is loaded with the kinds of pure logic problems found in Infocom's classic Zork trilogy. (Commodore 64, Atari XE/XL, \$34.95; MSDOS, Apple II and Macintosh, Commodore Amiga, Atari ST, \$39.95; Infocom/Activision)

Instant Music: Now available for the Apple IIGs. (Electronic Arts)

Laser Author: One of the first offerings in Firebird Licensees' new business division, Laser Author is a document processor/desktop publishing package for the Macintosh. (Apple Macintosh, under \$200, Firebird Licensees)

MasterPiece: This professional sequencing program offers dual MIDI port capabilities, 32 tracks, and 24 sequences. (Apple Macintosh and Atari ST, \$475, Sonus)

Music Construction Set: Now available for the Apple IIGs. (\$49.95, Electronic Arts)

Activision voiced early support for the new Apple IIGs with both entertainment and productivity software. Shown here is The Music Studio, an easy-to-use music composition tool.

The Music Studio: Now available for the Apple IIGs. (\$79.95, Activision)

PHM Pegasus: Designed in consultation with a former Patrol Hydrofoil Missilecraft (PHM) commander and technical adviser to the U.S. Navy, PHM Pegasus puts you in control of a hydrofoil as you battle enemy vessels in any of eight different combat assignments. You complete a basic hydrofoil training session and become part of the Terrorist Action Group (TAG) Force, which can be called to action at any time. (Commodore 64, \$39.95; Apple II version to be announced, Electronic Arts)

Partner PC: This is a memoryresident program that operates concurrently with other applications and includes ten time-saving organizational tools. (IBM PC and compatibles, \$59.95, Timeworks)

Partner 64: This is a 40 -column cartridge-based desktop accessory for the Commodore 64. Memoryresident once it's plugged into the back of the computer, Partner 64 gives you eight time-saving organizational programs: appointment calendar and date book; memo pad; phone list and autodialer; name and address list; calculator; typewriter; label maker and envelope addresser; and screen print utility. (Commodore 64, \$59.95, Timeworks)

PC Voyager: Another of Firebird's new business offerings, $P C$ Voyager is an interactive database that helps you plan trips by providing information on such things as hotels, restaurants, ground transportation, and travel routes for specific international locales. (IBM PC and compatibles, under \$100, Fire-

bird Licensees)

Portal: Assisted by a biological computer named Homer in the year 2106, you must explore the culture of the twenty-second century to try and find out why all the earth's inhabitants have disappeared. Using Homer's massive database, you learn about such things as the Antarctic Expeditionary Force (AEF), the Elite Neutralization Corps (ENC), and the technology of the era-neurophage weapons, agrobiotics, biomonitors, LN cells, IR nightvision thermography, and induction sensorium. (IBM PC and compatibles, Apple II, \$44.95; Macintosh, Commodore Amiga, Atari ST, \$49.95; Commodore 64, \$39.95, Activision)

PrintMaster Plus: This is an upgrade to Unison World's desktop publishing package, PrintMaster. It's designed to allow greater flexibility when creating and printing signs, banners, stationery calendars, and greeting cards. (MS-DOS compatibles, \$59.95; Commodore Amiga and 64, Atari ST, \$39.95; Apple II version available soon; Unison World)

Red Storm Rising: With the author's assistance, Tom Clancy's bestselling novel Red Storm Rising is being developed as a simulation game. The program is expected to appear in late 1987. (Microprose)

One of the first entertainment products announced for the Commodore Amiga at its launch nearly two years ago, Return to Atlantis is an interactive adventure story with rich graphics and animation. (Electronic Arts)

Return to Atlantis: One of the first entertainment offerings announced at the launch of the Amiga, this is a novel-sized adventure incorporating stunning graphics and animation. (Amiga, \$49.95, Electronic Arts)

Sinbad: This is a new program in the Cinemaware line distributed

Cinemaware is a line of interactive entertainment software from Mindscape for the Commodore Amiga, Atari ST, and Apple Macintosh that incorporates movie characters and themes in a graphics-intensive environment. Sinbad, the latest title in the series, debuted at CES.
by Mindscape. Cinemaware titles, available only for the Macintosh, ST, and Amiga, use highly sophisticated color graphics and animation in an interactive game environment. (Cinemaware/Mindscape)

Springboard Publisher: Springboard, publisher of the popular productivity programs The Newsroom and Certificate Maker, has introduced Springboard Publisher, a sophisticated desktop publishing program for Apple II-series computers that creates the working environment of the Apple Macintosh on the eight-bit Apple IIs.

Publisher gives the user total control over page design and layout. Pages can be preformatted, or the user can work free-form. Graphics and text can be placed anywhere on the page and rearranged at any time. The program's impressive library of working tools are accessed via pull-down menus, so the user is never required to leave the page currently being designed.

Springboard Publisher is compatible with any Apple IIe, IIc, or IIGS computer with 128 K memory, and supports both dot-matrix and laser printers. (Apple II-series with 128 K memory, Springboard)

Star Trek: The Promothean Prophecy: Sequel to the popular Star Trek: The Kobayishi Alternative, this game features a sophisticated parser that understands nearly 1000 words and can handle multiple sentences and objects. The game's premise involves an alien attack that depletes the U.S.S. Enterprise's food supply; you must beam down to a nearby planet to
replenish the supply. (IBM PC and compatibles, Apple II, \$39.95; Commodore $64, \$ 32.95$; Simon \& Schuster)

Starglider: Excellent 3-D graphics and sound effects contribute to the realism of this fast-action arcade game. Already a hit on the Atari ST, the game requires cunning, skill, and quick reflexes as you do battle with the starship Starglider. (Commodore 64, \$39.95; Atari ST, Commodore Amiga, Apple II, and MS-DOS, $\$ 44.95$; Firebird Licensees)

Stickybear Numbers, Stickybear Math I, Stickybear Reading, Stickybear Typing, and Stickybear Spellgrabber: Now available for MSDOS and compatible computers. (\$39.95, Weekly Reader Family Software)

Street Sports Basketball: Epyx made a name for itself in the area of sports simulations with the Summer Games/Winter Games series. Now the company has introduced a new sports line, the Street Sports series. The first title, Street Sports Basketball, was introduced at CES. (Commodore 64, Epyx)

Sub Battle Simulator signals a return to the kinds of simulations that Epyx published in its early days in the software business. Versions will be available for the Apple II and Macintosh, Atari ST, Commodore 64, and MS-DOS compatibles. The Mac version is shown here.

Sub Battle Simulator: Another new series announced by Epyx at CES is the Masters Collection, a return to the kinds of simulations that gave Epyx a start in the home computer software business. Sub Battle Simulator, first in that series, is a detailed submarine simulation set in World War II. Players can choose from over 60 different missions, all based on actual historical data. (Apple II and Macintosh, Atari ST, Commodore 64; Epyx)

SuperScore: This program loads SuperScore, Super Sequencer, Glass Tracks, and MasterPiece data files and prints out musical scores; it also serves as an editor and sequencer. (Macintosh and ST, \$425, Sonus)

Super Sequencer: A professional MIDI recording system and librarian. (Macintosh, ST, \$195, Sonus)

Swiftcalc PC: Now available for IBM PC and compatibles. (\$59.95, Timeworks)

Tracker: This game challenges you with fast maneuvers, highspeed 3-D battle sequences, and demanding play action. (Commodore 64, \$39.95; Atari ST and Apple Macintosh, \$44.95, Firebird Licensees)

TRIO: Already available for the Commodore 64 and Apple II, TRIO is an integrated package for the Commodore 128 that includes a word processor, spreadsheet, and database manager. TRIO WORD lets you edit text easily, link files together, and work on two documents simultaneously. TRIO CALC offers a large, flexible worksheet for financial planning. And TRIO FILE offers all the recordkeeping, searching, and printing capabilities of a good database manager. (Commodore $128, \$ 69.95$, Softsync)

Word Writer PC: A word processing program for MS-DOS machines, Word Writer PC includes a 90,000-word spelling checker, integrated thesaurus with over 60,000 synonyms and alternatives, and an integrated outliner and dictionary. (IBM PC and compatibles, $\$ 59.95$, Timeworks)

Word Writer 3: This word processor features an 85,000 -word spelling checker, integrated thesaurus and outline processor, 80 -column print preview mode, and automatic program setup. It's also GEOS-compatible. (Commodore 64, \$49.95, Timeworks)

Writer's Choice Elite: Part of Activision's Personal Choice line of productivity software, this is an easy-to-use word processing program that offers colored text and highlighting in five colors. (Apple IIGS, \$99.95, Activision)

Inexpensive Collections of Oldies

In addition to new products at CES, several companies announced new lower prices for collections of old
titles. The Accolade Avantage line includes Spy vs. Spy I \& II, Deceptor, and Desert Fox (Commodore 64, Apple II, Atari 8 -bit, \$14.95). Electronic Arts added to its line of Software Classics Archon II: Adept, Skyfox, Movie Maker, Financial Cookbook, and Mind Mirror (most titles available for all eight-bit computers for under $\$ 15$ each). Activision announced the first in its series of Solid Gold Software titles: Pitfall! and Demon Attack will be packaged together (Commodore 64/Atari XE/XL "flippy," under \$15). Mindscape rolled out its Thunder Mountain Division, previously published and new titles (Apple II and Macintosh, MS-DOS, Commodore 64, and Atari 800, \$9.95). And Infocom has bundled its three popular Zork programs in the Zork Trilogy (Commodore 64, Atari XL/XE, \$59.95; Apple II and Macintosh, Commodore Amiga, MS-DOS compatibles, \$69.95).

For more information about any of these products, contact a local retailer or:
Accolade, 20833 Stevens Creek Boulevard, Cupertino, CA 95014
Activision, 2350 Bayshore Parkway, Mountain View, CA 94043
Batteries Included, 30 Mural Street, Richmond Hill, Ontario, Canada L4B 1B5
Berkeley Softworks, 2150 Shattuck Avenue, Berkeley, CA 94704
Electronic Arts, 1820 Gateway Drive, San Mateo, CA 94404
Epyx, 600 Galveston Drive, Redwood City, CA 94063
Firebird Licensees, P.O. Box 49, Ramsey, NJ 07446
Infocom, 125 Cambridge Park Drive, Cambridge, MA 02140
MicroProse, 120 Lakefront Drive, Hunt Valley, MD 21030
Mindscape, 3444 Dundee Road, Northbrook, IL 60062
Simon \& Schuster, One Gulf + Western Plaza, New York, NY 10023
Softsync, 162 Madison Avenue, New York, NY 10016
Sonus, 21430 Strathern Street, Ste. H., Canoga Park, CA 91304
Springboard Software, 7808 Creekridge Cir., Minneapolis, MN 55435
Timeworks, 444 Lake Cook Road, Deerfield, IL 60015
Weekly Reader Family Software, 4343 Equity Drive, P.O. Box 16754, Columbus, OH 43216

SpeedScript 80 The 80-Column Machine Language Word Processor For Apple II

Charles Brannon, Kevin Martin, and Bill Rodrick

COMPUTE! is proud to present SpeedScript 80, an 80-column word processor for Apple IIe, IIc, and IIGs computers. Based on SpeedScript 3.0, which was first published in the June 1985 issue of COMPUTE! magazine, SpeedScript 80 is an impressive word processing application that's easy to learn, and just as easy to use. If you already have and use SpeedScript, you can save yourself retyping time by following the easy instructions which show you how to modify SpeedScript for 80 columns. SpeedScript 80 runs on any Apple IIc and IIGS, and on IIe computers with an 80-column card. DOS 3.3 and ProDOS versions are included.

SpeedScript 80, though compact in size $(5.5 \mathrm{~K})$, has most of the functions you expect in a full-featured word processor. SpeedScript is also very easy to learn and use. You type in everything first; preview and make corrections on the screen; insert and delete words, sentences, and paragraphs; then print out an error-free draft, letting SpeedScript 80 take care of things like margins, centering, headers, and footers.

Special Typing Instructions

SpeedScript 80 is a long program, but our "Apple MLX" entry system helps you type it right the first time. MLX can detect most typing errors as they happen. (See the Apple MLX instructions and program elsewhere in this issue.) MLX also lets you type SpeedScript 80 in more

SpeedScript 80 is an 80-column version of SpeedScript, COMPUTE!'s popular word processor for Apple II computers. This version runs on any Apple IIc and IIGs and on Apple IIe computers with 80 -column cards. The program works with either DOS 3.3 or ProDOS.
than one sitting. Although the program listing is lengthy, we think you'll agree the effort is worthwhile. If you prefer, you can order this issue's companion diskwhich includes SpeedScript 80 -directly from COMPUTE! Publications by using the coupon in the magazine or by calling COMPUTE! Publications toll-free at 1-800-3466767 (in NY 1-212-887-8525).

To begin entering the data for SpeedScript 80, boot up your Apple with a DOS 3.3 or ProDOS startup disk in the drive. Programs entered with MLX must be saved to disk with the same operating system format as the disk from which MLX was loaded. If you will be using the ProDOS operating system, you must enter the DOS 3.3 version of SpeedScript 80, listed at the end of this article, then create a ProDOS
version by following the instructions found in the section "ProDOS Modifications."

ProDOS users should read the section "ProDOS Modifications," which explains the conversion procedure, before attempting to run the SpeedScript 80 program.

Because the machine language data for SpeedScript 80 resides in the same area of memory where BASIC programs are normally loaded, it's necessary to reconfigure memory before loading MLX to enter SpeedScript 80. Otherwise, the SpeedScript 80 data you enter with MLX will overwrite the MLX program itself as you type. To reconfigure memory, type the following line in direct mode (no line number) and hit Return:
POKE 104,32: POKE 8192,0: NEW
You must always enter this line before loading MLX to enter SpeedScript 80 data. It is, however, not necessary to enter this line before loading the completed SpeedScript 80 program.

Now run MLX. Respond to its prompts as indicated:

STARTING ADDRESS? 0800
 ENDING ADDRESS? 1 E45

An options menu appears next. Press E to Enter the program. Now type the address at which you'd like to start typing. If you're just beginning to type the listing, enter 0800. The screen then shows the first prompt, the number 0800 followed by a colon (:). Type in each twodigit number shown in the SpeedScript 80 listing (Program 1). Some

Apple SpeedScript 3.0 Keyboard Map
Use CTRL or control with most commands
Apple IIc Keyboard Shown. Apple Ile,II+ keyboard similar

of the digits are letters, because the numbers are in hexadecimal. You don't need to type the spaces between the two-digit numbers shown in the listing, but you can for the sake of readability. MLX doesn't let you type illegal characters.

The last number you enter in each line is a checksum. If you type the line correctly, the checksum calculated by MLX should match the checksum number you typed in. If it doesn't match, MLX makes you retype the line. MLX is not foolproof, though. It's quite rare, but it's possible that an error in one number could be offset by an error in another. MLX will help catch your errors, but you still must be careful.

Typing In Multiple Sittings

If you want to stop typing the listing at some point and pick up later, press Return at the address prompt without typing anything. Write down the address where you stopped. The options menu reappears, and you can save your typing at this point. To continue entering
data the next time, boot your system, enter the direct-mode line given above to configure memory, and load MLX. Answer the STARTING ADDRESS? and ENDING ADDRESS? questions with the same values you used the first time, 0800 and 1 E 45 . Then select Load from the options menu, and press E to enter data. Give MLX the address number where you previously stopped. Then continue typing as before.

When you finish all typing, MLX returns you to the options menu, where you can save the finished program. Since you'll have quite a bit of effort invested in entering all the data, we recommend that you use the MLX Save option to save copies of SpeedScript 80 on several different disks before you leave MLX.

MLX has now created a binary file on disk. This version of SpeedScript 80 will run only with DOS 3.3; ProDOS users should read the section "ProDOS Modifications" for information on converting this version of SpeedScript 80 into a ProDOS version.

Running SpeedScript 80

To run SpeedScript 80 with DOS 3.3, reboot the machine to clear out memory. Then, from BASIC, type BRUN filename, where filename is the name you specified when saving SpeedScript 80 on disk with MLX. SpeedScript 80 automatically loads and runs. If you prefer, you can write a short program, something like

10 PRINT CHR\$(4);"BRUN filename"

Save it as the HELLO file on the disk (use INIT HELLO to format and set up a blank disk). This makes SpeedScript 80 load and run automatically when you boot up.

To run the ProDOS version, simply reboot the machine with the SpeedScript 80 startup disk in the drive, and SpeedScript 80 will load and run automatically. Alternatively, if you already have ProDOS booted, insert the SpeedScript 80 disk and at a BASIC] prompt, enter: -SS.SYSTEM

An Empty Page

When you run SpeedScript 80, you'll see a blank 80 -column screen with

"Bẹfore you buy insurance
 examine the evidence."
 RAYMOND BURR

An agent who works for one company can only offer you the policies that his company sells. An Independent Insurance Agent represents several companies. So your Independent Agent can help you select the right coverage at the right price because there are more policies from which to choose. The evidence is clear.

THE MORE-THAN-ONE-COMPANY INSURANCE AGENT.
You'll find the Independent Insurance Agent nearest you in the Yellow Pages.
a blinking underline cursor. The first line on the screen is in reverse video, white with black letters. SpeedScript 80 presents all messages on this command line. The remaining 20 lines of the screen are used to enter, edit, and display your document.

The clarity of the 80 -column display will vary depending on your monitor or television set. If the characters appear fuzzy and a bit unreadable, try adjusting the contrast of the monitor or set while turning up its brightness. This leaves you with a gray background instead of black, but the characters should show up more easily.

The cursor shows where the next character you type will appear on the screen. SpeedScript 80 lets you move the cursor anywhere within your document, making it simple to find and correct errors.

Entering Text

To begin using SpeedScript 80, start typing, just as you would on a typewriter. Hold down the Shift key to type an uppercase letter, and be sure the Caps Lock key is disengaged if you want to type lowercase.

When the cursor reaches the right edge of the screen, it automatically jumps to the beginning of the next line, just as in BASIC. But unlike BASIC, SpeedScript 80 never splits words at the right edge of the screen. If a word you're typing won't fit at the end of one line, it's instantly moved to the next line. This feature, called word-wrap, helps make your text more readable.

Scrolling And Screen

Formatting

When you finish typing on the last screen line, SpeedScript 80 automatically scrolls the text upward to make room for a new line at the bottom. Imagine the screen as a 20line window on a long continuous document. The DOS 3.3 version provides room in memory for 27,904 characters, or about $10-15$ pages of text. Unfortunately, the DOS 3.3 version cannot make use of memory in excess of 48 K . However, the ProDOS version of SpeedScript 80 does give you access to an
additional 10 K , or about 10,240 more characters.

To check at any time how much space is available, press Con-trol-A (hold down the Control key while pressing the A key). The number appearing in the command line indicates how much available room remains for characters of text.

If you're used to a typewriter and this is your first experience with word processing, you'll have to unlearn some habits. For one thing, you don't have to press Return at the end of each line as you do on a typewriter. SpeedScript 80's word-wrap takes care of this automatically. Press Return only when you want to force a carriage return to end a paragraph or limit the length of a line. A return mark appears on the screen as a reverse less-than sign (<).

Using The Keyboard

Most features are accessed with Control-key commands-you hold down Control while pressing another key. In this article, Controlkey commands are represented as Control- x (where x is the key you press in combination with Control). An example is the Control-A, mentioned above, to check on available memory. Control-E means hold down Control and press E.

Some commands have special options. You may be required to press the Open Apple key (the key to the left of the space bar with a hollow Apple symbol on the face) while pressing another key or Con-trol-key combination. The Open Apple key is abbreviated as OpAp in this article. OpAp-Control- x means to press Open Apple in conjunction with a Control-key combination. Other keys are referenced by name or function. See the "Keyboard Map" figure for a complete quick-reference chart of all keyboard commands. Because SpeedScript 80 uses almost every key, not all combinations are especially mnemonic. Most keys, though, stand for the name of the function they perform.

Some keys let you move the cursor to different places in the document to make corrections or scroll text into view. You can move the cursor by character, word, sentence, or paragraph. Here's how to

control the cursor:

- The + and \rightarrow keys (cursor-left and cursor-right) move the cursor a single space in either direction. By holding down the Open Apple key while pressing the appropriate cursor key, you can move the cursor to the beginning of the next (\rightarrow) or previous (-) word.
- The \uparrow and \downarrow keys (cursor-up and cursor-down) move the cursor to the beginning of either the previous or next sentence. A sentence is defined as any sequence of characters ending in a period, question mark, exclamation point, or return mark. Hold down the Open Apple key as you press the arrow to move to the beginning of the next (\downarrow) or previous (\uparrow) paragraph. A paragraph is defined as any sequence of characters ending in a return mark.
- Pressing Control-@ (Control-Shift-2) puts the cursor at the top of the screen. If the cursor is already at the top of the screen, Control-@ moves the cursor to the top of the document. To move quickly to the beginning of the document, press Control-@ twice.
- Control-Z moves the cursor to the end of the document, scrolling if necessary. It's easy to remember since Z is at the end of the alphabet.

Making Corrections

Sometimes, you'll have to insert characters to make a correction. Use Control-O to open $u p$ a single space. Merely position the cursor at the point where you want to insert a space, and press Control-O.

It can be tedious to use Con-trol-O to open up enough space for a whole sentence or paragraph. For convenience, SpeedScript 80 has an insert mode that automatically inserts space for each character you type. In this mode, you can't type over characters; everything is inserted at the cursor position. To enter insert mode, press Control-I. To cancel insert mode, press Con-trol-I again. To let you know you're in insert mode, the cursor changes from a blinking underline to a blinking reverse underline, which looks like a solid square. The cursor changes back to a blinking underline when you exit insert mode. Because of keyboard decoding redundancy, the Tab key works just like Control-I.

Insert mode is the easiest way to insert text, but it can become too slow when you're inserting near the top of a very long document, because it must move all the text following the cursor position. So SpeedScript 80 has even more ways to insert blocks of text.

One way is to use Control-T. It's programmed in SpeedScript 80 to act as a five-space margin indent. To end one paragraph and start another, press Return twice and press Control-T. A shortcut for this is Control-]. This key combination automatically inserts two return marks and then indents the margin. Control-T always inserts; you don't need to be in insert mode. You can also use Control-T to open up more space than Control-O. (You cannot set or clear tab stops in SpeedScript 80 as you can with some word processors.) No matter how much space you want to insert, each insertion takes the same amount of time. So Control-T can insert five spaces five times faster than pressing Control-O five times.

There's an even better way, though. Press Control-Q to quickly insert 255 spaces. (It doesn't insert a line; use Return for that.) You can press it several times to open up as much space as you need. Control-Q inserts 255 spaces as fast as Con-trol-O opens up one space. Now just type the text you wanted to insert over the blank space. (You don't want to be in Control-I insert mode when you use this trick; that would defeat its purpose.)

Since Delete is also slow when you're working with large documents (it, too, must move all text following the cursor), you may prefer to use the - key to backspace when using this method.

After you've finished inserting, there may be some inserted spaces left over that you didn't use. Just press OpAp-Control-Q. This instantly deletes all extra spaces between the cursor and the start of following text. It's also useful whenever you need to delete a block of spaces for some reason.

Erasing Text

To erase the character on which the cursor is sitting, press Control-G (to grab the character). The character highlighted by the cursor is re-

ProDOS Modifications

The SpeedScript 80 word processor listed in this issue is for DOS 3.3. To create an enhanced ProDOS version, you need to do a little more than simply enter the program. (If you've bought this issue's companion disk, the ProDOS version is already on it and no conversion is necessary. However, you will need to refer to the instructions below for putting the SpeedScript 80 SS.SYSTEM file on a disk with the PRODOS file, but without the BASIC.SYSTEM file.)

Apple's ProDOS operating system offers a considerable improvement in performance and utility over DOS 3.3, but it also makes things a little more complicated. ProDOS uses and lays out memory differently from DOS 3.3, so many DOS 3.3 machine language programs are not compatible with ProDOS. Also, many DOS 3.3 functions are not supported in the same way by ProDOS. This is enough to keep the original Apple version of SpeedScript 80 from running with ProDOS, even if you save it on a ProDOS disk.

The solution is "ProDOS Maker," which changes an existing copy of DOS 3.3 SpeedScript 80 into a program usable with ProDOS. As a bonus, ProDOS SpeedScript 80 gives you 10K more of text memory to work with.

Making The Conversion

First, type in SpeedScript 80 using MLX as described above. To prepare for the conversion, type in and save both Programs 4 and 5 below. Program 4 is a BASIC program that makes the changes to SpeedScript 80. Program 5 is a binary file that must be typed in with the MLX program.

To enter the data from Program 5, load and run the MLX program. Note that, while special preparations are necessary before loading MLX to enter SpeedScript 80 data, no unusual steps are needed before loading MLX to enter data from Program 5. Apple MLX asks
you for the starting and ending addresses of the program you're typing in. Enter the values as indicated:

STARTING ADDRESS? 3AF0
 ENDING ADDRESS? 3CBF

Next, you'll see a menu. Press E to enter data; then enter 3AF0 as the address at which to begin typing. Program 5 is not a long listing, so take your time and be careful. MLX will ask you to retype a line if you make a mistake. When you finish, you return to the MLX menu. Press S to save the file. You must use the name SPEEDSCRIPT2 for the data from Program 5, since this is the filename which Program 4 looks for.

After you've typed in the programs (you may want to make backup copies of them on another disk for security), follow these step-by-step instructions:

1. If you have an Apple IIe, load and run the "Filer" system utilities program from your ProDOS master disk. For the Apple IIc, boot up the System Utilities disk. For the Apple IIGS, boot up the System disk, open the folder SYS.UTILS, and run the application SYSUTIL.SYSTEM.
2. If you're using Filer, select option V (Volume Commands) from the main menu; then select option F (Format a Volume) from the Volume Commands menu. If you're using the IIc System Utilities disk, select option 6 (Format a Disk). If you're using the IIGs, select Format a Disk from the column Work on Entire Disks.

Insert a blank disk into the drive and format it for use with ProDOS. Type in SPEED.DATA for the volume name, or just press Return when asked for the volume name.
3. If you're using Filer, select option F (File Commands) from the main menu; then select option C (Copy Files) from the File Commands menu. From the IIc's System Utilities menu, simply select
option 1 (Copy File). For the IIGS, choose Copy File from the column labeled Work on Individual Files.

Copy the file named PRODOS from the ProDOS master disk to your newly formatted ProDOS disk.
4. Now copy the DOS 3.3 version of SpeedScript 80 to the newly formatted disk. Even if you typed in SpeedScript 80 and saved it on a ProDOS disk, go ahead and copy it to this disk for convenience. Important: Make sure SpeedScript 80 is saved on the disk with the filename SPEEDSCRIPT, since this is the name Program 4 looks for.
5. Copy Program 4 and the file you created from the data in Program 5 (using MLX) onto the same disk with SPEEDSCRIPT. You can name Program 4 anything you like. We used the name PRODOS.MAKER. Be sure that the binary file created from Program 5 is named SPEEDSCRIPT2.
6. Verify that the disk contains the following files:
$\begin{array}{ll}\text { PRODOS } & \begin{array}{l}\text { The ProDOS operat- } \\ \text { ing system } \\ \text { The DOS 3.3 version }\end{array} \\ \text { SPEEDSCRIPT } & \begin{array}{l}\text { of SpedScript 80 }\end{array} \\ \text { PRODOS.MAKER } & \begin{array}{l}\text { Program 4, the Pro- } \\ \text { DOS Maker BASIC }\end{array} \\ & \begin{array}{l}\text { prograam }\end{array} \\ \text { SPEEDSCRIPT2 } & \begin{array}{l}\text { The ProDOS Maker } \\ \text { binary file (from } \\ \text { Program 5) }\end{array}\end{array}$
7. You're now ready to convert the DOS 3.3 version of SpeedScript 80 to ProDOS. Run Program 4 (PRODOS.MAKER). It reads the file SPEEDSCRIPT, merges it with SPEEDSCRIPT2, makes some modifications, and then permits you to switch disks before it saves a new file called SS.SYSTEM, which is the ProDOS version of SpeedScript 80. We recommend leaving the same disk in the drive the first time you perform the conversion process. Later, you can use ProDOS Maker to create additional copies of ProDOS SpeedScript 80 on other disks, or simply copy the file SS.SYSTEM onto a backup disk with the Copy Files utility. If you want the backups to be SpeedScript 80 startup disks, make sure each
disk contains the PRODOS file and does not have the file BASIC.SYSTEM on it. (Otherwise, BASIC.SYSTEM will take priority over SS.SYSTEM, and SS.SYSTEM will not boot up automatically.)
8. Your new ProDOS SpeedScript 80 disk is now ready to boot up and use. Just insert the disk into the drive and turn on your com-puter-SpeedScript 80 automatically loads and runs. To run SpeedScript 80 after you've already booted up your system from another ProDOS startup disk, just enter -SS.SYSTEM. The hyphen (-) is the ProDOS "smart load" command.

Using ProDOS SpeedScript 80

The ProDOS version of SpeedScript 80 varies only slightly in operation from the original DOS 3.3 version. Because ProDOS is stored in the upper 16 K of memory, and because BASIC.SYSTEM is not needed for SpeedScript 80 , you have about 10 K more of text memory in ProDOS than you do with DOS 3.3.

All changes in the instructions for using the ProDOS version of SpeedScript 80 are to support ProDOS filename conventions. Con-trol-C still displays a disk catalog. But the filename convention for Load, Save, and the G (goto file) printkey command has changed. If you boot SpeedScript 80 off its own startup disk, it remembers the volume name of the disk it was booted from. You don't have to enter a volume name to load, save, or link to a file on that disk. Just enter any legal ProDOS filename. Remember that-unlike DOS 3.3-ProDOS does not allow spaces in filenames. Using spaces in a filename courts disaster.

To access a file on any other disk, though, you'll have to enter the volume name. For example, if you want to load the file named SPROITZ from a disk with the volume name BLANK27, enter /BLANK27/SPROITZ at the LOAD: prompt. Just surround the volume name with slashes. If you have two drives, ProDOS automatically searches for the indicated volume name on both drives.
moved, and all following text is moved toward the cursor to fill the empty space.

Press the Delete key to delete the character to the left of the cursor. All the following text is moved with the cursor to fill the empty space.

These keys are fine for minor deletions, but it could take all day to delete a whole paragraph using them. So SpeedScript 80 has two commands that can delete an entire word, sentence, or paragraph at a time. Control-E erases text after (to the right of) the cursor position (and can also erase all text), and Control-D deletes text preceding the cursor.

To use the Control-E erase mode, first place the cursor at the beginning of the word, sentence, or paragraph you want to erase. Then press Control-E. The command line shows the message ERASE (S,W,P,A): RETURN TO EXIT. Press S to erase a sentence, W for a word, or P for a paragraph. Each time you press one of these letters, the text is quickly erased. You can keep pressing S, W, or P until you've erased all the text you wish. Then press RETURN to exit the erase mode.

You also use Control-E to erase all text from memory when you want to start a new document. To erase all text, press Control-E; then press the A (all) key. A prompt appears: ERASE ALL TEXT: ARE YOU SURE (Y / N). Press Y to perform the irreversible deed. You cannot recover any text erased in this way. Press N or any other key to cancel this function.

The Control-D delete mode works similarly to Control-E, but it deletes only one word, sentence, or paragraph at a time. First, place the cursor after the word, sentence, or paragraph you want to delete. Then press Control-D. Next, press S, W, or P for sentence, word, or paragraph. The text is immediately deleted and you return to editing. You don't need to press Return to exit the Control-D delete mode unless you pressed this key by mistake. (In general, you can escape from any function in SpeedScript 80 by simply pressing Return.) Control-D is most convenient when the cursor is already past what you've been typing.

The Text Buffer

When you erase or delete with Control-E and Control-D, the text isn't lost forever (unless you've performed an Erase All). SpeedScript 80 remembers what you've removed by storing deletions in a separate area of memory called a buffer. The buffer is a fail-safe device. If you erase too much or change your mind, just press Control-^ (Con-trol-Shift-6) to restore the deletion. Be aware, however, that SpeedScript 80 normally remembers only the last erase or delete you performed. It's not hard to remember this command, since the ^ (caret) symbol is used in paper-and-pencil editing to signify an insertion.

Another, more powerful use of this buffer is to move or copy sections of text. To move some text from one location in your document to another, first erase or delete it with Control-E or Control-D. Then move the cursor to where you want the text to appear and press Control-^. Control- ${ }^{\wedge}$ instantly inserts the contents of the buffer at the cursor position. If you want to copy some text from one part of your document to another, just erase or delete it with Control-E or Control-D, restore it at the original position with Control-^, then move the cursor elsewhere, and press Control- ${ }^{-}$to restore it again in the new position. You can retrieve the buffer with Control-^ as many times as you like. If there is no room left in memory for inserting the buffer contents, you'll see the message NO ROOM.

Important: The Control-E erase mode lets you erase up to the maximum size of the buffer (2 K , or about 2,000 characters). If you try to erase more text than the buffer will hold, you'll get the message BUFFER FULL, and erase mode will be canceled. Each new Control-E removes the previous contents of the buffer. Keep this in mind if there's something in the buffer you'd rather keep. If you don't want the current buffer contents to be erased, hold down the Open Apple key when you press Control-E. OpAp-Control-E works just like Control-E, except that it preserves the current buffer contents and adds the newly erased text to the buffer.

If you ever need to erase the contents of the buffer, press Con-trol-N (null buffer). As an added safety measure, you'll be asked if you are sure you want to erase the buffer. Press Y to null the buffer, and N (or any other key except Y) to cancel the command.

Search And Replace

SpeedScript 80 has a FIND command that searches through your document to find a selected word or phrase. A Replace option lets you automatically change one word to another throughout the document.

OpAp-Control-F (find) lets you define a search phrase, or OpAp-Control-R (replace) lets you define a replace phrase, and Con-trol- Y is used for automatic searching and replacing.

Searching is a two-step process. First, you need to tell SpeedScript 80 what to search for; then you trigger the actual search. Hold down Open Apple and press Con-trol-F. The command line prompts FIND:. Type in what you'd like to search for-the search phrase-and then press Return. If you press Return alone without typing anything, the Find command is canceled.

When you're ready to search for the specified phrase, press Con-trol-F (without the Open Apple). SpeedScript 80 looks for the next occurrence of the search phrase starting from the current cursor position. If you want to hunt through the entire document, press Control@ twice to move the cursor to the very top before beginning the search. Each time you press Con-trol-F, SpeedScript 80 looks for the next occurrence of the search phrase and places the cursor at the start of the phrase. If the search fails, you'll see the message NOT FOUND.

Control-R works together with Control-F. After you've specified the search phrase with OpAp-Control-F, press OpAp-Control-R to specify the replace phrase. (You can press Return alone at the REPLACE WITH: prompt to select a null replace phrase. When you hunt and replace, this deletes the located phrase.) To search and replace manually, start by pressing Con-
trol-F. After SpeedScript 80 finds the search phrase, press Control-R if you want to replace the phrase. If you don't want to replace the phrase, don't press Control-R. You're not in a special search-andreplace mode. You're free to continue writing at any time.

Control- Y links Control- F and Control-R together. (Think of the two branches of the Y linking together Find and Replace.) It first asks for a search phrase, then asks for a replace phrase, and finally, automatically searches and replaces throughout the document starting from the current cursor position.

There are a few things to watch out for when you're using search and replace. First, realize that if you search for the, SpeedScript 80 finds the embedded the in words like therefore and heathen. If you changed all occurrences of the to cow, these words would become cowrefore and heacown. If you want to find a single word, be sure to include a space as the first character of the word, since almost all words are preceded by a space. Naturally, if you're replacing, you need to include the space in the replace phrase, too.

SpeedScript 80 also distinguishes between uppercase and lowercase. The word Meldids does not match with meldids. SpeedScript 80 will not find a capitalized word unless you capitalize it in the search phrase. To cover all bases, you will sometimes need to make two passes at replacing a word. Keep these things in mind when using Control-Y, since you don't have a chance to stop a linked find-andreplace.

Storing Your Document

To store your text, press Control-S. You'll see the prompt SAVE:. Type in a legal filename and press Return. SpeedScript 80 defaults to drive 1. If you need to access a second disk drive, precede the filename with 2:. Once specified, this becomes the default drive for future disk access. To return to drive 1 , precede the filename with 1 :.

If the filename you specify coincides with one already on the disk, the existing file will be overwritten by the new one. (You won't be given any warning, so be careful
not to accidentally use duplicate filenames.) You can press ControlC to display a catalog of the files on the disk. The catalog pauses when the screen is full, waiting for you to press a key to continue. When the catalog is finished, press Return to return to editing.

Control-S always saves the entire document. The cursor position within the document is not important.

When the save is complete, SpeedScript 80 reports NO ERRORS if all is well, or it gives a message like DISK FULL if not. Check your DOS or BASIC manual for a list of error messages and their causes.

Loading A Document

To recall a previously saved document, press Control-L. Answer the LOAD: prompt with the filename. Again, you can precede the filename with 1: or 2 : to switch drives as necessary. SpeedScript 80 loads the file and will display NO ERRORS if no problems are encountered in the load; otherwise, it reports the error.

It's important to position the cursor correctly before loading a file. Documents start loading at the cursor position, so be sure to press Control-@ twice or Control-E and A (Erase All) to move the cursor to the start of text, unless you want to merge two documents. When you press Control-L to load, a flashing asterisk appears to warn you if the cursor is not at the top of the document.

To merge two or more files, simply load the first file, press Con-trol-Z to move the cursor to the end of the document, and then load the file you want to merge. Do not place the cursor somewhere in the middle of your document before loading. A load does not insert the text from disk, but overwrites all text after the cursor position. The last character loaded becomes the new end-of-text pointer, and you cannot access any text that appears ahead of this pointer.

SpeedScript 80 stores documents as binary files, so you cannot read a document in BASIC, load a BASIC program into SpeedScript 80 for editing, or upload a document file with a modem. However, Programs 2 and 3 (both of which ap-
pear after the listing for SpeedScript 80 itself) are file-conversion programs which allow these functions. They convert SpeedScript 80 binary document files into ASCII text files. They can also convert an ASCII text file into a SpeedScript 80 binary file. This lets you convert documents from other word processors or change a SpeedScript 80 document into a text file suitable for uploading via telecommunications. You can even edit BASIC programs with SpeedScript 80. Add the following line to your BASIC program and run it. It creates a text file of your BASIC listing.
0 PRINT CHR\$(4);"OPEN filename": PRINT CHR\$(4)"WRITE filename": LIST

Use the SpeedScript 80 "File Converter" (Program 2 for DOS 3.3 or Program 3 for ProDOS) to convert the program text file into a SpeedScript 80 file. You can then load this file into SpeedScript 80 for editing. Save the edited file back to disk, run the File Converter program again to convert the SpeedScript 80 file back to a text file, and then use EXEC filename to read the text file back into BASIC. Although this seems rather tedious, you may find it worthwhile when working with long programs. A similar technique can be used to edit files written by other applications.

Note: Delete any print-formatting commands (described below) before using the File Converter program to change a SpeedScript 80 file into a text file. Otherwise, the embedded commands will not be converted properly, and the text file may not be usable.

Additional Features

SpeedScript 80 has a few commands that don't do much, but are nice to have. Control-X exchanges the character under the cursor with the character to the right of the cursor. Thus, you can fix transposition errors with a single keystroke. Con-trol-W (think sWitch) changes the character under the cursor from uppercase to lowercase, or vice versa.

Apple SpeedScript 80 traps the Reset key. Reset and Control-Reset always return you to editing mode. There's no way to exit SpeedScript 80 once you've run it, short of rebooting.

Printing

If you already think SpeedScript 80 has plenty of commands, wait until you see what the printing package offers. SpeedScript 80 supports an array of powerful formatting features. It automatically fits your text between left and right margins that you can specify. You can center a line or block it against the right margin. SpeedScript 80 skips over the perforation on continuous-form paper, or it waits for you to insert single-sheet paper. A line of text can be printed at the top of each page (a header) and/or at the bottom of each page (a footer), and can include automatic page numbering, starting with whatever number you like.

SpeedScript 80 can print on different lengths and widths of paper, and single-, double-, or triple- spacing (or any spacing, for that matter) is easy. You can print a document as big as will fit on a disk by linking several files together during printing. You can print to the screen or to a file instead of to a printer. You can send special codes to the printer to control features like underline, boldface, italics, and double-width typeface (depending on the printer).

But with all this power comes the need to learn additional commands. Fortunately, SpeedScript 80 sets most of these variables to a default state. If you don't change the settings, SpeedScript 80 assumes a left margin position of 5 , a right margin position of 75 , no header or footer, single-spacing, and continu-ous-paper page feeding. You can change these default settings if you want (see below).

Before printing, be sure the paper in your printer is adjusted to top-of-form (move the paper perforation just above the printing element). One additional note: Some printers incorporate an automatic skip-over-perforation feature. The printer skips to the next page when it reaches the bottom of a page. Since SpeedScript 80 already controls paper feeding, you need to turn off this automatic skip-overperforation feature before running SpeedScript 80, or paging won't work properly.

To begin printing, press Con-trol-P. If your printer is attached, powered on, and selected (online),

Modifying An Existing Copy Of SpeedScript 3.0

If you already have a copy of SpeedScript 3.0-typed in from the June 1985 issue of COMPUTE! or from the book SpeedScript: The Word Processor for Apple Personal Comput-ers-you don't have to type in the listing for SpeedScript 80. Instead, you can modify, or patch, SpeedScript 3.0. The result, SpeedScript 80, is no larger than your original copy and maintains full command and file compatibility. It doesn't even matter if you have a DOS 3.3 or ProDOS version of SpeedScript 3.0 -methods for patching both are given here.

Bug Fixes

Before you begin to patch SpeedScript 3.0, though, you must make some slight corrections to the program. As originally published in both the magazine and book forms, SpeedScript 3.0 has two bugs: an underline bug, which prints garbage characters whenever the underline toggle (Control-V, U) is used; and the header bug, which shifts the first header on a page to the right of its proper position. These corrections originally appeared in the article "SpeedScript 3.0 Revisited" in the December 1985 issue and in the "CAPUTE!" column in the March 1986 issue. If you have already made these corections to your copy of SpeedScript 3.0, skip ahead to the section entitled "The Patch."

The following corrections apply only to the DOS 3.3 version of SpeedScript. To create a corrected ProDOS version, you must correct the DOS 3.3 version, then follow the directions in the section "ProDOS Modifications" to turn this into a ProDOS version.

The following program fragments should be typed in with Apple MLX. Before you load Apple MLX, you must reconfigure memory with the following POKEs. These POKEs prevent memory conflicts between MLX and SpeedScript.

POKE 104,32:POKE 8192,0:NEW

These are the same POKEs used to type in SpeedScript with Apple MLX, and must be used every time you wish to edit SpeedScript with Apple MLX.

After typing these POKEs and running Apple MLX, enter the starting and ending addresses as indicated:

STARTING ADDRESS? 0800

 ENDING ADDRESS? 1 E45Next, press L to select (L)OAD FILE from the menu, and give the filename of the original SpeedScript 3.0 file. You must load a copy of SpeedScript 3.0 before making the following patches.

To make the first correction, press E to select (E)NTER DATA, and enter 1C58 for the address. Type in these seven lines:
1C58: D8 1038 AD D7 1E ED 5345 1C6O: $1 E 38$ ED DG 1E AB A9 AQ 68 1C6日: Dø Eø C9 55 Dø øA AD EC Cb 1C7ø: 1E 49 Ø1 BD EC 1 E 19 B1 B4 1C78: C9 63 D 11 8C E5 1E AE 88 1C80: DD 1E AD DE 1E 2024 ED 7 A 1CBE: AC ES 1E Dø YC AE EG A9 7B

When you've finished this block, press Return on the next line to get back to the main menu. Press E to select (E)NTER DATA; then enter 1DE0 and type in this last line:

1DED: D4 C9 CE C7 AE AE BD $6 C$ ©6
Press Return on the next line; then press S , for (S)AVE DATA, to save your modified copy of SpeedScript 3.0. Now you're ready to patch your corrected version of SpeedScript to turn it into SpeedScript 80.

The Patch

First, type in Programs 6 and 7. Program 6 (SS80.MAKER) is a BASIC program and is easily entered using Apple Automatic Proofreader. As listed, though, SS80.MAKER works only with DOS 3.3.

Note: Take a look at line 100 of

Program 6. Change the statement F1\$ $=$ "SPEEDSCRIPT" to reflect the filename you used for SpeedScript 3.0 (or change the disk filename to match what's in SS80.MAKER).

If you're using ProDOS, replace lines $100-110$ with the following:

```
1ø\emptyset F1$= "SS.SYSTEM" : F2$ = "
    SSB\emptyset.SYSTEM"
105 FA$ = ",A$2øø\emptyset" : FL$ = ",L
    $1CBF":FT$= ",TSYS"
110 B1 = 8242:B2 = 4096
```

These lines inform SS.MAKER of the source and destination files being used, as well as their load and program start addresses.

ProDOS users also need to add the following three lines to Program 6:

555 PRINT D\$; "CREATE ";F2\$;FT\$ 2200 DATA 6964,1,185,20 $221 \emptyset$ DATA $-1,3 \boxminus 38$

Line 555 contains a ProDOS command which must be executed before saving the new file. Line 2200 prevents a call to a routine which would reset the video output to 40 columns before printing a ProDOS error message.

Before you run Program 6, you must enter the data from Program 7 (PATCH.80). This data must be entered using MLX. Load and run Apple MLX; then respond to the prompts as indicated:
STARTING ADDRESS? 2000
ENDING ADDRESS?
When you see the menu, press E to enter data; then enter 2000 as the address to begin typing. When you've finished (it shouldn't take you long-PATCH. 80 is short), use the S command to save the file. $I t$'s important that you name the file PATCH.80, since that's what the SS80.MAKER program expects to find.

Ready To Convert

You're ready to begin the conversion process. First, though, make sure that your disk contains the necessary files.

For $\operatorname{DOS} 3.3$, the files are $\begin{array}{ll}\text { SPEEDSCRIPT } & \begin{array}{l}\text { The corrected version } \\ \text { of SpeedScript } 3.0\end{array} \\ \text { SS80.MAKER } & \begin{array}{l}\text { Program } 6 \\ \text { PATCH.80 }\end{array} \\ \begin{array}{l}\text { The binary file data } \\ \text { from Program } 7\end{array}\end{array}$

For ProDOS, the files are
PRODOS The ProDOS operating system
BASIC.SYSTEM The ProDOS BASIC interface
SS.SYSTEM The corrected ProDOS version of SpeedScript 3.0

SS80.MAKER Program 6 with ProDOS modifications The binary file data from Program 7
Before running SS80.MAKER to convert a DOS 3.3 version of SpeedScript 3.0, type this line in direct mode (without a line number):
POKE 104,48: POKE 12288,0: NEW
This prevents SpeedScript 3.0 from overwriting SS80.MAKER as it's loaded into memory.

Now, for both versions, type RUN SS80.MAKER. As it's performing the conversion, you'll see a series of progress messages. If any of the DATA statements were entered incorrectly, the message ERROR IN DATA STATEMENTS appears. If this happens, correct the appropriate line, save the program again, and start over.

SpeedScript 80 begins printing immediately. To cancel printing, press Control and the Reset key.

If you need to print to an RS232 printer or to a printer in a slot other than slot 1, press OpAp-Con-trol-P. This brings up the prompt PRINT TO: SCREEN, PRINTER? Press S to print to the screen. SpeedScript 80 automatically prints to the screen, simulating the printer.

If you select P, you'll be asked for the slot number. Output is sent to the slot number you select. It's similar to PR\# in BASIC. If you print to slot 6 (the disk drive), you'll cause the system to reboot, so be careful.

Formatting Commands

The print formatting commands are single letters embedded in text, such as L for left margin. To enter a formatting variable, press ControlV. You'll see the prompt ENTER FORMAT VARIABLE:. Now press any key. The print formatting com-

When you're prompted to insert a disk to receive the new file, simply hit Return or insert a new disk in the drive before doing so. (It's a good idea to use the same disk the first time through the procedure.)

Your 80 -column version of SpeedScript is now ready to use. For the DOS 3.3 version, type BRUN SPEEDSCRIPT80. For the ProDOS version, type -SS80.SYSTEM. After you're satisfied that everything works as it should, you'll probably want to copy the new version to another disk. For ProDOS, the disk with SS.SYSTEM should contain the PRODOS file, but not the BASIC.SYSTEM file.

Changes From 3.0

If you've used SpeedScript 3.0, you know all there is to know about SpeedScript 80 . No new functions or features have been added. However, there are a few purely cosmetic changes that you should be aware of.

First, printer format variables now appear on the screen in reverse video, not as flashing characters. The reason for this is that the Apple cannot display flashing characters in 80 -column mode. Instead, the IIe displays that part of its character set
as reverse characters. The Enhanced IIe, the IIc, and the IIGs have special graphics characters known as MouseText in part of that area of the character set. Since that would have resulted in an oddlooking display, the original REFRESH routine was modified to display all format codes as reverse video. Internally, though, the codes remain unchanged, maintaining file compatibility with the original version.

Secondly, you may notice that refreshing the screen takes a bit longer than in the original version, simply because the REFRESH routine has about twice as much text to write each time it's called. This is really only noticeable when you continuously hold down a key (using auto-repeat) such as the right- or left-arrow key. Use the program's advanced cursor commands to avoid this.

To gain a little extra speed and improve readability, the second line and the last two lines are unused. A horizontal line is also drawn at the bottom to give a "window" effect.
mands must be distinguished from normal text, so they appear onscreen in reverse video. All lettered printer commands should be entered without the Shift key. During printing, SpeedScript 80 treats these characters as printing commands.

There are two kinds of printing commands-Stage 1 and Stage 2. Stage 1 commands usually control such variables as left and right margins. Most are followed by a number, with no space between the command and the number. Stage 1 commands are executed before a line is printed.

Stage 2 commands, like centering and underlining, are executed while the line is being printed. Usually, Stage 1 commands must be on a line of their own, although you can group several Stage 1 commands together on a line. Stage 2 commands are by nature embedded within a line of text. Again, remember to press Control-V to enter the boldface characters shown below.

Stage 1 Commands

L Left margin. Follow with a number from 0 to 255. Use 0 for no margin. Defaults to 5 .

R Right margin position, a number from 1 to 255 . Defaults to 75. Be sure the right margin value is greater than the left margin value, or SpeedScript 80 will behave unpredictably.

T Top margin. The position at which the first line of text is printed, relative to the top of the page. Defaults to 5 . The header (if any) is always printed on the first line of the page, before the first line of text.

B Bottom margin. The line at which printing stops before continuing to the next page. Standard $81 / 2 \times 11$-inch paper has 66 lines. Bottom margin defaults to line 58. Don't make the bottom margin greater than the page length.

P Page length. Defaults to 66. If your printer does not print six lines per inch, multiply lines-per-

NRI Trains You At Home-As You Build Your Own IBM PC Compatible Computer

能保 wore

Learn the Basies the NRI Wayand Earn Good Money Troubleshooting Any Brand of Computer

The biggest growth in jobs between now and 1995, according to Department of Labor estimates, will occur in the computer service and repair business, where demand for trained technicians will actually double.

You can cash in on this opportunity-either as a full-time corporate technician or an independent service-person-once you've learned all the basics of computers the NRI way. NRI's practical combination of "reason-why" theory and "hands-on" building skills starts you with the fundamentals of electronics, then guides you through advanced electronic circuitry and on into computer electronics. You also learn to program in BASIC and machine language, the essential languages for troubleshooting and repair.

Tołal Compułer Sysłems Training, Only From NRI

No computer stands alone . . . it's part of a total system. To really service computers, you have to understand computer systems. And only NRI includes a powerful computer system as part of your training, centered around the new, fully IBM PC compatible Sanyo 880 Series computer.

You start with the step-by-step assembly of the new, highly-rated, Sanyo computer. You install and troubleshoot the "intelligent" keyboard. Then you assemble the power supply, install the disk drive, and add extra memory to give you a powerful 256 K RAM system.
The new 880 computer has two operating speeds: standard IBM speed of 4.77 MHz and a remarkable turbo speed of 8 MHz , making it almost twice as fast as the IBM PC. Next, you'll interface the highresolution monitor and begin to use the valuable software also included with your complete computer system.

It all adds up to confidence-building, real-world experience that includes training in programming, circuit design, and peripheral maintenance. You'll be learning about, working with, servicing, and troubleshooting an

supply-to ensure that you have all the essential skills you need to succeed as a professional computer service technician.

No Experience Needed, NRI Builds if In

This is the kind of practical,

Your NRI total systems training includes: - NRI Discovery Lab to design and modify circuits - Your four-function, digital multimeter with walk-you-through instructions on audio tape - Digital logic probe for visual examination of keyboard circuits. The newest Sanyo 880 Series Computer with "intelligent" keyboard and 360K double-density, double-sided disk drive - High resolution monochrome monitor -8 K ROM, 256K RAM - Bundled software including GW BASIC, MS-DOS, WordStar, CalcStar - Reference manuals, schematics, and bite-size lessons. hands-on experience that makes you uniquely prepared, with the skills and confidence you need for success. You learn at your own convenience in your own home. No classroom pressures, no night school, no need to quit your present job until you're ready to make your move. Your training is backed by your personal NRI instructor and the NRI technical staff, ready to answer your questions and help you when you need it. You get it all with NRI at-home training.

100-Page Free Cafalog Tells More

Send the postage-paid reply card today for NRI's big, 100 -page, color catalog on NRI's electronics training, which gives you all the facts about NRI courses in Microcomputers, Robotics, Data Communications, TV/Audio/Video Servicing, and other growing, high-tech career fields. If the reply card is missing, write to the address below.

SEND COUPON TODAY FOR FREE NRI CATALOG!

 We'll give you tomorrow.
\square CHECK ONE FREE CATALOG ONLY
\square Computer Electronics
\square Basic Electronics
TVIAudio/Video Servicing
Satellite Electronics
Robotics \& Industrial Control
\square Industrial Electronics
Telephone Servicing
\square Digital Electronics Servicing
Electricians Small Engine Repair
Air Conditioning, Heating, \& Ref. Locksmithing \& Electronic Security Photography
Bookkeeping \& Accounting
inch by 11 to get the page length. European paper is usually longer than American paper- $115 / 8$ or 12 inches. Try a page length of 69 or 72.

S Spacing. Defaults to singlespacing. Follow with a number from 1 to 255 . Use 1 for singlespacing, 2 for double-spacing, and 3 for triple-spacing.
@ Start numbering at page number given. Page numbering normally starts with 1.
? Disables printing until selected page number is reached. For example, a value of 3 would start printing the third page of your document. Normally, SpeedScript 80 starts printing with the first page.
X Sets the page width in columns (think a cross). Defaults to 80. You need to change this for the sake of the centering command if you're printing in double width or condensed type, or if you're using a 40column or wide-carriage printer.
\mathbf{N} Forced paging. Normally, SpeedScript 80 prints the footer and moves on to the next page only when it has finished a page, but you can force it to continue to the next page by issuing this command. It requires no numbers.

M Margin release. Disables the left margin for the next printed line. Remember that this executes before the line is printed.

W Page wait. This command should be placed at the beginning of your document before any text. With page wait turned on, SpeedScript 80 prompts you to INSERT NEXT SHEET, PRESS RETURN when each page has been printed. Insert the next sheet, line it up with the printhead, and then press RETURN to continue. Page wait is ignored during disk or screen output.

J Causes SpeedScript 80 to automatically add a linefeed character after each carriage return sent to the printer. Like W, this command must be placed before any text. Use this command only if your printer puts all text on the same line when you try to print your document. (Don't use this command to achieve double-spacing.)

I Information. This works like REM in BASIC. You follow the command with a line of text, up to 255 characters, ending in a return
mark. This line will be ignored during printing and is handy for making notes to yourself (such as the filename of the document).

H Header define and enable. The header must be a single line of text (up to 254 characters) ending in a return mark. The header prints on the first line of each page. You can include Stage 2 commands such as centering and page numbering in a header. You can use a header by itself without a footer. The header and footer should be defined at the top of your document, before any text. If you want to prevent the header from printing on the first page, put a return mark by itself at the top of your document before the header definition.

F Footer define and enable. The footer must be a single line of text (up to 254 characters) ending in a return mark. The footer prints two lines prior to the last line of each page. As with the header, you can include Stage 2 printing commands, and you don't need to set the header to use a footer.

G Go to (link) next file. Put this command as the last line in your document. Follow the command with the filename (with no spaces between the G and the filename), including the drive number prefix 1 : or 2: if appropriate. After the text in memory is printed, the link command loads the next file into memory. You can continue linking successive files, but don't include a link in the last file. Before you start printing a linked file, make sure the first of the linked files is in memory. When printing is finished, the last file linked to will be in memory.

Stage 2 Commands

These commands either precede a line of text or are embedded within one.

C Centering. Put this at the beginning of a line you want to center. This centers only one line ending in a return mark. Repeat this command at the beginning of every line you want centered. Centering uses the page-width setting (see above) to center the line properly. To center a double-width line, either set the page width to 40 or pad out the rest of the line with an equal number of spaces. If you use
double width, remember that the spaces preceding the centered text will be double-wide spaces.

E Edge right. This works in the same way as centering, but it blocks the line flush with the right margin.
\# When SpeedScript 80 encounters this command, it prints the current page number. You usually embed this within a header or footer.

U A simple form of underlining. It works only on printers that recognize CHR\$(8) as a backspace and CHR\$(95) as an underline character. Underlining works on spaces, too. Use the first U to start underlining and another one to turn off underlining.

Fonts And Styles

Most dot-matrix printers are capable of more than just printing text at 10 characters per inch. Some printers have several character sets, with italics and foreign language characters. Most can print in double width (40 characters per line) or condensed (132 characters per line), and in either pica or elite. Other features may include programmable characters, programmable tab stops, and graphics modes. Many word processors customize themselves to a particular printer, but for flexibility SpeedScript 80 was purposely designed not to be printerspecific. Instead, SpeedScript 80 lets you define your own Stage 2 printing commands.

You define a programmable printkey by choosing any character that is not already used for other printer commands. The numbers $0-9$, most symbols, and some alphabetic characters are available for printkeys. You enter these commands, like printer commands, with Control-V. The printkeys are like variables in BASIC.

To define a printkey, press Control-V; then type the key you want to assign as the printkey, then an equal sign $(=)$, and finally the ASCII value to be substituted for the printkey during printing. As a result, whenever SpeedScript 80 encounters the printkey embedded in text, it prints the character with the ASCII value you previously defined. (If you have trouble passing some printkeys to the printer, try adding 128 to the ASCII value you
wish to send．Otherwise，some printer interfaces intercept the printkey．）

For example，to define the + key as the letter z ，first look up the ASCII value of the letter z（in either your printer manual or in the BASIC manual）．The ASCII value of z is 122 ，so the definition is
$\boldsymbol{\Psi}=122$ 《
Now，anywhere you want to print the letter z ，substitute the printkey：

Gad \boldsymbol{H} ooks！The $\boldsymbol{\Pi} \boldsymbol{0} 0$ is $\boldsymbol{\Pi}$ any！
This will appear on paper as
Gadzooks！The zoo is zany！
More practically，here＇s how you could program italics on an Epson MX－80－compatible printer． You switch on italics by sending an ESC（a character with an ASCII val－ ue of 27），then the character 4．You turn off italics by sending ESC 5. So，define＊as the escape code（27）． Anywhere you want to print a word in italics，bracket it with＊4 and＊5．

You can similarly define what－ ever codes your printer uses for fea－ tures like double width or emphasized mode．For your convenience，four of the printkeys are predefined，though you can change them．The keys 1－4 are de－ fined as character codes $27,14,15$ ， and 18 ，common values for most printers．On most printers， CHR\＄（27）is the ESC key， CHR $\$(14)$ starts double－width printing，CHR\＄（15）either stops double－width or starts condensed characters，and CHR\＄（18）usually cancels condensed characters．

Keep one thing in mind about printkeys：SpeedScript 80 always as－ sumes it is printing to a rather dumb，featureless printer，the least common denominator．SpeedScript 80 doesn＇t understand the intent of a printkey；it justs sends out its value．So if you make one word within a line double width，it may make the line overflow the speci－ fied right margin．There＇s no way for SpeedScript 80 to include built－in font and type style codes without being customized for a particular printer，since no set of codes is uni－ versal to all printers．

Hints And Tips

It may take you a while to fully master SpeedScript 80，but as you do，you＇ll discover many ways to use the editing and formatting com－ mands．For example，there is a sim－ ple way to simulate tab stops，say， for a columnar table．Just type a period at every tab stop position． Erase the line with Control－E；then restore it with Control－＾many times．When you＇re filling in the table，just use word－left／word－right to jump quickly between the peri－ ods．Or you can use the program－ mable printkeys to embed your printer＇s own commands for setting and jumping to tab stops．

You don＇t have to change or define printer commands every time you write．Just save these defi－ nitions and load this file for each session．You can create many cus－ tom definition files and have them ready to use on disk．You can create customized＂fill－in－the－blank＂let－ ters．Just type the letter，and every－ where you＇ll need to insert something，substitute a unique character，such as an＊or a Control character．When you＇re ready to customize the letter，use Find to locate each symbol and insert the specific information．Instead of typ－ ing an oft－used word or phrase， substitute a unique character；then use Control－Y to automatically change these characters into the ac－ tual word or phrase．You can even use SpeedScript 80 as a simple filing program．Just type in all your data， flagging each field with a unique character．You can use Find to quickly locate any field．

Program 1：SpeedScript 80
 For mistake－proof program entry，use＂Apple

 MLX．＂found elsewhere in this issue，to type in this program．ø日øø：A9 8ø 8D øø Ø3 4C 28 ø8 58 ø日ø日： $2 \emptyset \quad 84$ FE $2 \emptyset$ ตø C3 8 D ø1 56 Ø81ø：Cø BD ØD Cø AØ $172 \emptyset \mathrm{BC} E F$ Ø818：ØA A9 DF Aø $5 \emptyset 2 \emptyset E D ~ F D ~ 7 A$ Ø82ø：88 Dø FA 4C 9ø ØA $\emptyset \emptyset \emptyset \emptyset 79$ ø828： $2 \emptyset \quad 29$ ØA 29 9B 99 4C $18 \quad 87$
 ø838：8D 52 ø8 A5 19 8D 54 ø8 AE Ø84ø：A5 1B 日D 55 g8 AG F9 Fø $B \emptyset$ ø日48： $2 \emptyset$ A9 øø 8D 53 1E AØ ØØ FF פ85ø：B9 FF FF 99 FF FF CB CC 35 ø858： 53 1E Dの F4 EE 52 g8 EE C2
 Ø868：EØ AS 1D DØ DE $6 \emptyset$ AS F9 CØ
 ø日78： 65 Ø8 8D 99 g8 A5 66 8D FB ஏ88ø：98 ø8 18 8A 65 1B 8D 9C D9 ø888：ஏ8 A5 19 8D 9B ø日 E8 A4 75
 ø898：FF FF 99 FF FF 88 CØ FF 7F

ØВAØ：DØ F5 CE 99 Ø日 CE 9C Ø8 C6 ø日AB：CA DØ EA $6 \emptyset$ A2 $0120617 \varnothing$ ø日Bø： $14 \mathrm{AD} 4 \mathrm{~F} \quad 1 \mathrm{E} \quad 207414 \mathrm{AD} A \mathrm{~A}$ ต8B8： $5 \emptyset 1 E 2 \emptyset 7 E 14$ EB Aø øø E9 ø日Cø：B9 FF FF CB C9 82 Fø 1C 9ø Ø日C8：C9 उC FØ 18 CØ $5 \emptyset$ DØ FØ 46
 Ø8D8： 29 3F C9 20 Fの 0588 Dの 96 Ø8EØ：$F \mathscr{F}$ A 4 F C8 $84 \mathrm{ED} 88 \quad 86$ 7B

 ø日F8： $88 \quad 84 \mathrm{FD}$ C8 48 8D 54 Cø 9C ஏ9øø： $2 \emptyset \quad 9714$ 68 A4 FD BD 55 9E ø9ø8：CØ 209714 A6 FE A4 ED 1F ø91ø： $1898 \quad 6 \mathrm{C}$ C1 $98 \quad 2 \emptyset 7414 \mathrm{DB}$ 9918：$A D C 2$ Ø日 69 øø 2ø 7E 14 DA の92Ø：Eø Ø2 Dø Ø3 8C 4E 1E Cø ஏB و928： $5 \emptyset$ Fø 24 98 4A 9ø $9969 ~ B C ~$ פ930： $9085 \mathrm{FD} 38 \mathrm{E9} \mathrm{~g}_{1} 1962$ 5C ø938： $85 \mathrm{FD} A B$ A9 Aø 8D 54 Cg EØ פ94ø： $2 \emptyset$ Bg 14 A4 FD Cg 28 Fg 8 F ø948：Ø6 日D 55 Cø 29 Bø $1420 \quad 83$ 9950： 6114 EB E に 16 Fg Ø3 4L ØA ஏ958： BE ø日 $\mathrm{AD} \mathrm{C} 1 \mathrm{ø日} \mathrm{8D} \mathrm{59} \mathrm{1E} \mathrm{E4}$ ø96ø：AD C2 ø8 8D 5A 1E BD 54 8E

 ஏ988： $8 \varnothing$ Øø 日ø 28 A8 28 A8 28 CC g99Ø：A8 28 AB 5 5 D D $5 \emptyset$ Dg $5 \emptyset$ D4 ø998：Dø $5 \emptyset$ Dø AD 46 1E B5 EB BD の9AØ：8D 4F 1E 8D 55 1E 85 FB 14 ø9A8：AD 47 1E $85 \mathrm{EC} 8 D 5 \emptyset 1 E \quad D B$ Ø9Bø：8D 56 1E 85 FC 38 AD 49 AB 99B8： $1 E$ ED 47 1E AA A9 Aの Ag FD の9Cø：FF C6 EC 91 EB C8 E6 EC 78 פ9C8： 91 EB CB Dø FB EG EC CA E4 の9D．Dø FG 91 EB $6 \emptyset 95$ ED 8473 ø9D8：EE $2 \emptyset$ 日Ø FE Aø øø B1 ED CØ Ø9EØ：FØ $\emptyset 62 \emptyset$ ED FD CB DЯ F6 7B の9E8： 69 2の F5 ø9 FØ FB C9 Cø 4E
 Ø9F8：1ø 2C AD Øø Cø C9 CØ 9の 13
 ØAø日：AD 61 Cø ØD 44 1E 4D 63 CC ØA1Ø：CØ 19 Ø8 AS E3 99 20 8D F4 ØA18： $1 \emptyset$ Cの $6 \emptyset$ A9 Øø 8D 44 1E E7 ØA2Ø：A5 EЗ 8D 1ø CØ GØ A9 ØØ 8D ØA28： $6 \emptyset \quad 2 \emptyset 84$ FE A9 פg 8D 52 AF ØA3Ø： $1 E \quad 8 D \quad 46$ 1E $8 D \quad 48$ 1E $8 D$ B8 ØA38：4A 1E 8D 4C 1E BD Fø IE 96 ØA4Ø： $8 D 19$ 1F EA EA EA A9 GØ AA ØA48：8D D5 A6 A9 $\emptyset_{1} 2 \emptyset$ 5D A2 ED ØA5Ø：A9 22 18 69 Ø1 8 BD 47 1E 46 ØA58：A9 9Ø 8D 49 IE A9 91 日D F3 ØAGG：4B 1E A9 99 8D 4D 1E A9 F7 ØA68：FF 8D EE 1E 2978 פE A9 48 ØA79：AØ 8D F2 øЗ A9 ØA 8D F3 4B ØA78： 9349 A5 8D F4 g3 A9 DF D4 ØA8ø： $85 \mathrm{FF} 2 \emptyset$ ø日 ø日 A9 D1 Ag 97毋AB8：1C 29 D5 99 EE 51 IE $6 \emptyset 57$ ØA9ø： $2 \emptyset$ AG ØA A9 C1 AØ 1C $2 \emptyset \quad 23$ ØA98：D5 ஏ9 A9 Øロ 日D 511 IE 6פ 5D ØAAØ： $2 \emptyset \quad 82$ ØA 4 C 18 18 БB 29 BA 53 ØAAB：ØA $2 \emptyset$ 日ø FE A2 $5 \emptyset 2 \emptyset 4 A$ AA ØABø：F9 $2 \emptyset 84 \mathrm{FE} 4 \mathrm{C}$ BA ØA $\emptyset \emptyset \mathrm{AB}$ ØABB：ஏø Gø Aø Øø $A 2$ Øø $8 E$ 7B $A 6$ ØACØ：Ø5 $84 \quad 25$ 4C 22 FC A9 $27 \quad 61$ ØACB：ED 7B $\emptyset 56 \emptyset$ Ag øø B1 FB BD
 ØAD8：FØ ØB 29 3F C9 2Ø DØ ØA BB ØAEØ：A9 8ஏ 4C EC ØA A9 82 4C 8A ØAEB：EC ØA A9 8191 FB 20 AC AC ØAFØ：ஏB AØ Øø A5 1F 91 FB A2 65 ØAFB： 1229 F5 פ9 DØ 19 CB DØ BA ØBøø：FB CA DG F5 $2 \emptyset$ AC פB A2 25 ஏBø日： 12 20 F5 99 Dø 99 CB Dg 8B
ØB1ø：F8 CA Dø F5 4C D2 ØA GØ Fg

ตB2ø：øø 日D 44 1E CE 45 1E 4 C 18
ตB28： 2 F øB A9 øø 日D 45 1E 2Ø AB
ØB3ø：CC ØA AA AD 51 1E Fg 97 4B
ØB38： 8 A 48 2ஏ 9Ø ๆA 68 AA 8 A 84

ØB4B： 18 øB 8A C9 8D Dの 02 A2 71 ØB5ø：3C 8A 29 7F C9 2ø 9ø 48 7C øB58：BA 2ø B9 ØA 48 Aの Øø B1 ØA ØB6 ：FB C9 3C Fg g5 AD 52 1E 1F ØB68：Fø ø3 2ø BE 1ø 68 AØ Øø ØB ஏB7ø： 91 FB 2ø AC 6838 A5 FB 85 ตB78：ED $551 E 85$ ED A5 FC ED E4 øB8ø： 56 1E 65 ED 9ø ØE AS FB CC øB88： 69 Øロ 日D 55 1E A5 FC 6945 øB9ø：ஏø 日D 56 1E E6 FB Dg $\emptyset 2$ 日1 øB98：E6 FC 2ø 1F gC 4C 18 øB 24 פBAD： 8 A $482 \emptyset$ AC $98 \quad 68$ AE C7 E3 ФBAB：ஏB DD C7 פB FØ $\sigma 6 ~ C A ~ D \emptyset ~ 6 B ~$ øBBø：FB 4C 1B ØB CA BA פA AA 49 ØBBE：A9 ØB 48 A9 17 48 BD E6 46 ØBCØ：ØB 48 BD E5 øB $486 \varnothing 1 D$ DB ØВCB： 9588 8B 8A 82 8F 84 日g C1 ØBDø： $89 \quad 85 \mathrm{BC} 93 \quad 83$ 9E 98 9A 3 3A ตBDE： 90968797 8E 868194 6D ஏBEØ： 9192 9D 99 9B D4 9 C E日 E2 øBEB：ஏC 94 øD øB פE 59 ØF BD FD ØBFØ： $1 \varnothing 83$ ØF C8 ØF 2311 E4 6A פBFE： 11 EJ 13 EE 12 CB 145822 ØCøø： 15 EC $15 \quad 78$ gD 82 16 BC 63 ØCø日： 1374 gF FC 1565 gE BS BE
 פC18：1B A2 1ஏ 94 1A B2 1C 29 A5 ØC2の：7D øC 38 A5 FB ED 4F 1E AF ØC28：AS FC ED $5 \emptyset 1 E$ Bø $2 \emptyset 3841$ øC3Ø：AD 4F 1E ED 46 1E B5 ED 39 øC38：AD 5ø 1E ED 47 1E 95 ED 88 ØC4Ø：Fø פD A5 FB BD 4F 1E A5 14 øC4B：FC 8D 5ø 1E $2 \emptyset$ AC 98 38 2A פC5g：AD 59 1E ES FB 85 EB AD 33 ØC58：5A 1E E5 FC 85 EC 95 EB 87
 ØC6B： $6 D \quad 4 E 1 E \quad 8 D \quad 4 F 1 E A D \quad 5 \emptyset \quad \emptyset 6$ øC7の：1E 69 פø BD $5 \emptyset$ 1E 2g AC B2 øC78：øB 4C 4F øC 6の 38 AD 55 E6 øC8ø：1E ED 48 1E 85 ED AD 56 A3 פCB8：1E ED 49 1E 95 ED 9の $9 C 43$ ØC96：AD 48 1E 8D 55 1E AD 49 F5 øC98：1E 8D 56 1E 38 AS FB ED ØE ØCAØ： 46 1E 85 ED AS FC ED 4737 øCAB：1E 95 ED Bg gB AD 46 1E 93 ØCBø： $85 \mathrm{FB} A D \quad 47$ 1E 85 FC 6Ø 16 øCB8： 38 A5 FB ED 55 1E 85 ED Dg ØCCØ：A5 FC ED 56 1E 95 ED Bg 9F øCC8： $91 \quad 6 \emptyset$ AD 55 1E 85 FB AD 31 ØCDø： 56 1E 85 FC $6 \emptyset$ AD 61 Cø 59 øCD8：øD 44 1E 4D 63 Cg $1 \varnothing 55$ B4 øCEØ：E6 FB DØ $\emptyset 2$ EG FC 4 C 1F 88 ØCE8：ØC AD 61 Cø ØD 44 1E 4D AD
 פCF8：C6 FC C6 FB 4C 1F פC A5 EB ØDøø：FB 85 EB A5 FC 85 EC C6 EF ØDø8：EC AØ FF B1 EB C9 Aø FØ 94 ØD1ø：$\varnothing 4$ C9 उC Dø ø3 B8 Dø F3 $\emptyset 3$ ØD18：B1 EB C9 Aø Fø ø日 C9 3C Cø ØD2ø：Fø ø4 B8 Dø F3 $6 \emptyset 3898 \mathrm{FB}$ øD28： 65 EB 85 FB AS EC 69 פø 14 ØD3Ø：85 FC 4C 1F ØC Aø Øø B1 5C
 ØD4Ø：$\emptyset 4$ C8 DØ F3 6ロ CB Dø øB BA ØD48：E6 FC AS FC CD 56 1E 9ø 2E ØD5Ø：Ø2 Dø 19 B1 FB C9 AØ Fø 17 ØD5日：EC C9 उC FØ EB $1898 \quad 65$ 30 ØD6Ø：FB 85 FB AS FC 69 øø 85 C6 ØD68：FC 4C 1F gC AD 55 1E 85 3D øD7ø：FB AD 56 1E 85 FC 4C 1F 7B ØD78：ØC A9 Øø BD 4F 1E AD 56 8ø øD8ø：1E 38 E9 $\wp 4$ CD 47 IE Bø AD
 ØD9Ø：AC Ø8 4C 6C ØD AD 61 Cø F5 øD98：ஏD 44 1E 4D 63 Cg $3 \emptyset \quad 93 \quad 64$ ØDAD：4C BA 11 AS FB 85 EB A5 73 ØDAB：FC 85 EC CG EC AD FF B1 48 ØDBØ：EB C9 AE FG פC C9 A1 FØ D3 øDB8：ஏ8 C9 BF Fg 94 C9 3C Dg Eg øDCØ： 6488 DØ EB $6 \varnothing$ B1 EB C9 43 ØDC8：AE Fg 1B C9 A1 Fg $17 \mathrm{C9}$ 3F ØDDØ：BF Fø 13 C9 3C Fg ØF 8852 ØDD8：DØ EB CG EC AS EC CD 46 CØ ØDEØ：1E Bø E2 4C FC ØD $84 \mathrm{ED} 6 A$ ØDE8：C6 ED C8 FØ ØA B1 EB C9 C2

ØDFø：Aの Fg F7 B8 4C 26 ØD A4 DB ØDF8：ED 4C C5 øD AD 46 1E 85 EE GEDD：FB AD 47 1E 85 FC 4 C 1F $2 日$ ØEø8：$\varnothing C A D \quad 61$ Cの ØD 44 1E 4D Dg
 gE18：ØØ B1 FB C9 AE Fg 1D C9 F9 ØE20：A1 FØ 19 C9 BF FØ 15 C9 BE gE28：उC Fø 11 CB Dø EB E6 FC 4E ØE3Ø：AS FC CD 56 1E FØ E2 $9 \emptyset$ B8 gE38：EØ 4C 6C ØD CB Dg gE E6 C2 ØE4の：FC AS FC CD 56 1E $9 \varnothing \emptyset 512$ gE48：$F \emptyset \emptyset 3$ 4C 6C ØD B1 FB C9 DE ØE5Ø：AØ FØ E9 C9 AE FØ ES C9 A1 ØE58：A1 FØ E1 C9 BF FØ DD C9 A1 ØE6Ø：3C FØ D9 4C 5D ØD 2Ø A6 DC ஏE68：ØA A9 38 Aø 1E 2ø D5 ø9 2B ØE7Ø： $2 \emptyset$ 38 11 FØ ØЗ 4C 9Ø ØA 5ø øE78：$A D \quad 4 A 1 E \quad 8 D \quad C A 1 E A D \quad 4 B \quad 1 \varnothing$ ØEBØ：1E 8D CB 1E 2Ø A6 ØA A9 C3
 のE96：8D 51 1E $6 \mathscr{D}$ 38 A5 FB ED CF øE98： 46 1E 85 ED AS FC ED 4733 ØEAØ：1E Ø5 ED Dø Ø3 6日 $68 \quad 6 \emptyset \quad$ C2 øEA8：A5 FB 85 Ø6 AS FC 85 ø8 DB gEBø：6Ø 38 A5 FB 851949 FF A2 ØEB8： 65 Ø6 8D CE 1E AS FC 85 AE ØECØ：1B 49 FF 65 ø8 8D CF 1E 47 ØECE：A5 ø6 8D DØ 1E A5 ஏ8 8D 1D बEDø：D1 1E A5 19 8D D2 $1 E 85$ 1D פED8：ø6 A5 1B 日D D3 1E 85 ø8 C7 gEEØ： 38 AD CF 1E 6D CB 1E CD 95 gEEB：4D 1E $9 \varnothing 10 \quad 2 \emptyset$ AG ØA A9 9F פEFØ：FE AØ 1C $2 \emptyset$ D5 99 A9 $\emptyset 161$ ØEF8： $8 D \quad 51$ 1E $6 \varnothing$ AD CA $1 E 8554$ ØFøø： 19 AD CB 1E 85 1B AD CE 34 øFø日：1E 85 1D 18 6D CA 1E 8D 1C ØF1ø：CA 1E AD CF 1E B5 F9 6D 36 のF1B：CB 1E 日D CB 1E $2 \emptyset 31$ ø日 ED ØF2Ø：AD Dø 1E 85 Ø6 AD D1 1E ØE gF28： 85 g8 AD D2 $1 E$ 85 19 AD D4 gF3g：D3 1E 85 1B 38 AD 55 1E 63 gF38：E5 1985 1D AD 56 1E ES FA ดF4の：1B 85 F9 $20 \quad 31$ g8 38 AD 56 øF48： 55 1E ED CE 1E 8D 55 1E 33 ØF5ø：AD 56 1E ED CF 1E 8D 56 E5 øF58：1E 6ஏ 2の 94 ØE 2の F4 ØC D1 ØF6Ø： $2 \emptyset$ B1 gE 38 AD CA 1E E9 FE のF68：$\emptyset 1$ BD CA 1 E AD CB 1E E9 68 のF7ø：$\emptyset \emptyset$ 8D CB 1E $6 \emptyset 2 \emptyset E \emptyset$ ØC 9E ØF78：2ø 94 פE $2 \emptyset$ F4 ØC $2 \emptyset$ B1 59 ØF8ø：ØE 4C 63 ØF 2078 ØE $2 \emptyset 35$ øF88：A6 ØA A9 ØA AØ 1D $2 \emptyset$ D5 E1 ØF9Ø：Ø9 2Ø CC ØA C9 CØ 9Ø Ø2 E9 øF98： 29 DF $48 \quad 2090 \quad \emptyset A \quad 68 \quad 29$ F4 ØFAØ：7F C9 57 Dの $\emptyset 92094$ פE E8 øFAB： $2 \emptyset$ FF gC 4C B1 gE C9 53 C9 ØFBø：DØ ø9 2ø 94 פE $2 \emptyset$ A3 ØD פC ØFB日：4C B1 øE C9 5ø Dø ø9 2ø BF ØFCØ： 94 ØE 2Ø 8A 11 4C B1 ØE 84 ØFCB： $6 \emptyset 38$ A5 FB ED 4F 1E 85 ØB ØFDØ：ED A5 FC ED $5 \emptyset 1 E \emptyset 5$ ED Cø ØFD8：$F \emptyset$ ØB $A D 4 F 1 E 85$ FB AD 89 ØFEg： 59 1E 85 FC $6 \emptyset$ AD 46 1E 93 ØFE日： 85 FB AD 47 1E 85 FC 4C $4 \emptyset$ ØFFø：1F ØC A5 FB 85 EB 851916 ØFF8：A5 FC 85 EC 85 1B Aø $\varnothing \emptyset 82$ 1øøø：B1 EB C9 Ag Dg 1E C8 Dg 98 1øø8：F7 AS EC CD 56 1E 9ø $9 F 63$ 1ø1ø：AD 55 1E 85 EB AD 56 1E 59 1ø18：85 EC Aø Øロ 4C 24 1ø E6 44 1ø2ø：EC 4C ஏø $1018 \quad 18 \quad 65$ EB A4 1ø28： 85 Ø6 A9 $\boxed{1} 65 \mathrm{EC} 85$ ø日 BЗ 193ø： 38 AD 55 1E E5 1985 1D 20 1ø38：AD 56 1E E5 1B 85 F9 38 ø2 1ø4ø：AS Ø6 E5 19 日D CE 1E AS 8C 1ø48：ø日 ES 1B 8D CF 1E $2 \emptyset 31$ 8A 105ø： 9838 AD 55 1E ED CE IE F1 1ø58：8D 55 1E AD 56 1E ED CF øA
 1ø68：øD 44 1E 4D $63 \mathrm{C} \mathrm{\emptyset} 3 \varnothing \emptyset 3$ 3A 1ø7ø：4C F2 øF A9 FF BD E日 1E 16 1ø78：4C 8D 1ø A9 ø5 日D E8 1E øD
 1ø88：Ø1 C8 4C 5D øD A9 øø 8D 57 1ஏ9Ø：E9 1E 29 D4 1g A9 Aø AE 95

1ø98：EB 1E Aø øø 91 FB CB CA A1 1øAØ：DØ FA 6Ø $2 \emptyset \mathrm{BE} 1 \emptyset 2 \emptyset \mathrm{BE} 2 \mathrm{~B}$ 1øAB： $1 \emptyset$ A9 ЗC Aø $\emptyset \emptyset ~ 91 ~ F B ~ C B ~ D З ~$ 1øBg： 91 FB $2 \emptyset \mathrm{AC}$ פB 20 Eg פC F5 1øB8：2Ø Eø øC 4C 7B 1ø A9 Ø1 D7 1øCø：8D EB 1E A9 øØ 8D E9 1E 6B 1øC8：2ø D4 1ø A9 Aø AØ Øø 91 EJ 1øDø：FB 4C 1F øC 18 AD 55 1E E6 1øDB： $6 D$ E8 1E AD 56 1E 6D E9 78 1øEØ：1E CD 49 1E $9 \varnothing$ Ø5 $68 \quad 68 \quad 68$ 1øEB：4C 2311 18 A5 FB 85 g6 C9 1のFg：6D E8 1E 8519 A5 FC 85 FC 1øF8：ø8 6D E9 1E B5 1B 38 AD 4E 11øø： 55 1E E5 $\varnothing 685$ 1D AD 56 C 11ø8：1E ES ø8 85 F9 2ஏ 6E ø8 41
 1118： 55 1E AD 56 1E 6D E9 1E 20 1120：8D 56 1E $6 \emptyset$ AD 52 1E 49 A4 1128：ØE 8D 52 1E Fø Ø5 A9 1F EE 1136： 85 FF 69 A9 DF 85 FF $6 \emptyset 31$ 1138：A9 19 AØ 1D 20 DS 9920 ES 114ø：CC ØA C9 CØ 9ø Ø2 29 DF 4F 1148：C9 D9 6Ø $2 \emptyset$ A6 ØA A9 3ø B4 115ø：Aø 1D 2ø D5 Ø9 2の 3811 B5 1158：$F \emptyset$ Ø3 4C 9Ø ØA A2 FA 9A B1 116ø：20 9B $99 \quad 2982$ ФA 4 C 18 89 1168：ØВ Aø øø B1 FB C9 उC Fø CЗ 117ø： 11 C8 DØ F7 E6 FC A5 FC 5A 1178：CD 56 1E $9 \varnothing$ EE Fg EC 4C 45 118ø：6C ØD CB DØ Ø2 E6 FC 4C 34 1188：5D ØD AS FB 85 EB AS FC 35 119ø： 85 EC C6 EC AØ FF B1 EB AC 1198：C9 3C FØ 1188 CØ FF Dg F5 11Ag：F5 C6 EC A5 EC CD 47 1E B2 11AB：$B \emptyset E C$ 4C FC $\emptyset D \quad 3898 \quad 6597$ 11Bø：EB 85 EB A9 $\varnothing \varnothing 65$ EC 8537 11B8：EC 38 AS EB ES FB 85 ED EA 11Cの：AS EC ES FC gS ED Dg 1211 11C8： 84 ED 18 AS EB ES ED 85 SE 11Dø：EB AS EC E9 $\emptyset \varnothing 85$ EC 4C CA 11D8：9C 11 A5 EB 85 FB AS EC 55 11EØ： 85 FC 4 C 1 F ØC AD 61 C C 1 B 11E8：$\emptyset D \quad 44$ 1E 4D 63 CØ 1ø Ø3 7C 11FØ： $2 \emptyset 78$ ØE $2 \emptyset$ AG $\emptyset A$ A9 3F F4 11F8：A 1 D 2の D5 $992 \emptyset \mathrm{CC}$ ØA $8 \emptyset$ 12øø：C9 Cø 9ø 9229 DF C9 D7 9F 12ø8：Dø ø9 2ø 3 A $12 \quad 2 \emptyset 35 \quad \emptyset D ~ \emptyset 7$ 1210：4C 4912 C9 D3 DØ $69 \quad 29$ 9F 1218：उA 12 2ø 17 ØE 4C 491299 122Ø：C9 Dø Dø ø9 2ø 3A 122036 1228： 69114 C 4912 C9 C1 D 12 6F 1230：Ø3 4C 4B 11 20 1F øC 4C 45 1238：9ø ØA A5 FB 8519 8D C4 øС 1240：1E A5 FC 85 1B 8D C5 1E 8D 1248：6ø 38 A5 FB 85 Ø6 ED C4 94 125ø：1E 8D CE 1E AS FC 85 g8 D6 1258：ED C5 1E 8D CF 1E $2 \emptyset$ C8 81 126ø：gE AD C4 1E $85 \mathrm{FB} A D \mathrm{CS} A E$ 1268：1E 85 FC 2ø AC ø日 4C FD BA 127ø： $112 \emptyset$ CG ØA EA BD 57 1E FB 1278： $2 \emptyset 84 \mathrm{FE} A \emptyset$ Øø A9 5F $2 \emptyset$ 3D 1280：ED FD 8C 58 1E $2 \emptyset$ F5 99 9日 1288：FØ FB AC 58 1E 85 ED A9 CB 129ø： 8820 ED FD A9 2ø $2 \emptyset$ ED 9A 1298：FD A9 88 20 ED FD AS ED D9 12AD：C9 9B Fg $37 \mathrm{C9}$ 8D Fg 39 C 1 12AB：C9 FF Fø 94 C9 88 Dø ØF 31 12Bø： 8810.94 CB 4C 7D 12 A9 $5 \emptyset$ 12B8： 8820 ED FD 4C 7D 12 A5 E8 12CØ：ED 29 7F C9 29 9ø B6 CC $3 \varnothing$ 12CB： 57 1E Fø B1 AS ED 26 B9 38 12Dø：GA 9983 1E $2 \emptyset$ ED FD C8 3ø 12D8：4C 7D 12 2g B3 1C 4C 7D EA 12EØ： 12 2ø ED FD A9 $\emptyset \emptyset 9983$ B7 12E8：1E 98 $2 \emptyset 8 \emptyset$ FE A8 $6 \emptyset 2 \emptyset$ C9 12Fø：AG ØA A9 76 Ag 1D 29 D5 17 12F8： 99 20 4C 13 AD 46 1E 日D B4 13פの： 72 AA AD 47 1E 8D 73 AA EC 13ø8：AD 55 1E 38 ED 46 1E 8 FB 1310：6C AA AD 56 1E ED 47 1E 87 1318：BD 6D AA A9 $3 \emptyset$ 8D 5F AA 71 1320：A9 99 8D 65 AA $206 \emptyset 1410$ 1328：20 8ø A1 20 96 14 AD C5 DA 1330：B5 Dø $\emptyset 3$ 4C 531420 A6 5C 338：ØA AE C5 B5 29 g2 A7 A9 25

1349： 8720 Fg FD 60 A9 9_{1} 8D 69 1348： 51 1E 68 og 2871120066 1358： 862090 øA 68 68 68 20 F9 1358： 95 Ag A9 988051 AA 8 g 3 B 1368： 52 AA 8D 74 AA 8D 66 AA 56 1368：BD GC AA ED GD AA ED 6333 1378：AA ED 78 AA BD 71 AA BD 1D 1378：D3 9C A2 88 A8 91 日9 83 g4 1388： $1 \mathrm{EC9}$ BA D8 1F AD 日3 1E of 1388： 38 E9 B8 Fg øD 39 9B C9 73
 1398：Ab 1368 68 28 Ab סA A2 bC
 13AB：1E 28 2F 16 C9 E® 900222 13BE： 29 DF 9D 75 AA EB CB cC c5 138B： 581 ED DE EA 6828 Ab ©A 36 13C8：A9 5F A8 1D 28 D5 992894 13c8：CC gA C9 C8 980229 dF DB 1309： $293 F 694848$ AD 52 1E 3 C 13D8：F® 0328 BE 182090 ØA 54 13E日： $684 C$ 6E gB 28 A6 gA AS 22 13E日：FB CD 46 1E DE 87 AS FC 16 13F9：CD 47 1E F® 85 A9 $6 A$ 日D D3 13FE： 2784 A9 86 A8 1 D 26 DS EO 1490： 89284 C 13 AD $2784 \mathrm{C9} 4 \mathrm{~B}$ 1488： $6 A$ FG 83289899 A5 FB 4 C 1419： 8 DD 72 AA AS FC 8D 73 AA FA 1418：A9 32 日D 5F AA A9 g $_{1}$ 日D D 4 1420：©S AA 28601420 日ब A1 73 1428：AE 68 AA AC 61 AA AD C5 B6 1430：B5 F6 $862096144 C 3686$ 1438： 13 8E 55 1E 日C 56 1E AS 日9 1448：FB 18 6D 551 E 日D 551 E 5 F 1448：AS FC $6 D 56$ IE 日D 56 1E 日7
 1458：A8 10 28 D5 $894 C 451398$ 1460： 68 BD $6 D 89$ 日D A9 14 日D $2 F$ 1468：B2 14 BD 8489 日D AB 14 D2 1478：8D B1 14 o8 8D C1 g8 8D 65 1478：D2 ge 8D 9914 b8 8D C2 57 1488：ge Bd d3 g8 日D 9A 1468 6A 1488：CD $561 E$ D6 E6 CE 56 1E 3 B 1498：©8 ø9 C8 4 C 7F 14 68 AA BF
 14Aø：Ø6 A5 FF 9ø Ø2 29 3F 9D gF 14AB：FF FF CA 888819 E9 696 B 1488： 99 FF FF CB C8 28 D8 F8 73 1488： 66 A9 878536 A9 23 球 1 A
 14C8： 1 F 4 C B5 1428 84 FE 28 BC 14D®：58 FC A9 ø® BD DJ 9C 28 AE 14D8：$G E$ AS A9 BD 28 ED FD A9 बE 14EQ：BC A 1 DD 28 D5 8920 F5 26 14E8： 99 C9 8D D F9 4 C g8 ge DF 14F日：A2 वб 8E C6 1E 日E C7 1E 日1

 1598： 26 øE C6 1E 2E C7 1E GE SE 1518：C6 1E 2E C7 1E EE C6 1E 3 C 1518：2E C7 1E QE C6 1E 2E C7 C2 1528：1E GD C6 1E BD C6 1E CB E3 1528：Dg D4 E6 EC 4 CFE 14 FB 1 18 1538：AD Cb $1 E$ ©D C7 1E F6 1C 2 C 1538： 38 AD C6 1E E9 91 8D C6 D9 1548：1E AD C7 1E E9 g® 8D C7 F1 1548：1E EE CB 1E Dg g3 EE C9 72 1559：1E 4 C 3815 AD CB 1E DB 99 1558： 68 38 AD CA 1E ED 4A 1E $7 E$ 1568： $8 D$ CC 1E AD CB 1E ED 4B 21 1568： 1 E 日D CD 1E øD CC 1E Dg 49 1578： 1828 Ab 8 A A9 A1 A 10 1D 52
 1588： 6818 A5 FB 8586 6D CC 41 1588： $1 E$ 日5 19 AS FC 85 ø日 6 D 1 C 1598：CD 1E 85 1B 3B AD 55 1E CC 1598：E5 06 日5 1D AD 56 1E E5 A2 15A9：${ }^{88} 85$ F9 18651 BCD 496 CD 15AB： $1 E 981828$ Ab 8 日A A9 9954 15Bg：Ag 1028 D5 89 A9 91 8D 52 1588： 511 E 6828 6E 88 18 AD 92 15CO：CC 1E 日5 1D 6D 55 1E 日D E5 15C8： 55 1E AD CD 1E B5 F9 ©D 28 15D9： 56 1E BD 56 1E AS FB 85 C9 15D8： 19 AS FC 85 1B AD 4 A 1 E 33 15Eø： 85 ø6 AD 4B 1E 日5 ø日 29 Fø

15E8： 31 ø8 4C 1F øC Aø øø B1 BD 15FD：FB AA CB B1 FB 8891 FB 19 15F8：CB 8A $91 \mathrm{FB} 6 \emptyset \mathrm{AD}$ Øø 8 C 2E 16ஏø： 44 1E B1 FB 2C $9 \varnothing 93 \quad 3963$ 16ø8： 12 C9 2の 9Ø ஏ9 C9 Cø 90 3E 1610： $19 \quad 29$ 1F 4C 2A 16 Ø9 Cø 38 1618：4C 2A 16 C9 Cg 9の øB C9 7C 1620：ED 90 0529 DF 4C 2A 16 AE 1628： 092091 FB 4C EØ ØC 2C FC
 1638：C9 Cø 9ø Ø2 $99206 \varnothing 99$ उE 164ด：Cø 6ø $954 B 42$ Ø5 3A Ø1 D5 1648：Ø1 Ø1 Øø Ø1 Øø 5Ø 1B ØE CA 165ø：ØF 12 BD EF 1E BA 4898 7D 1658： 4838 AD DD 1E ED DF 1E Dø 166Ø：AD DE 1E ED EØ 1E 90 9664 1668：AD EF 1E 20 ED FD 68 AB פE 1670： 68 AA AD EF 1E 6ø 20 A6 89 1678：פA A9 DC Aの 1D 4C D5 9988 168ø：4C EF 17 AD 61 C ØD 44 FB 1688：1E 4D 63 C C 1ø 93 4C D5 8A 169ø： $16 \quad 20$ A6 ØA $2 \emptyset$ AC 98 A9 B2 1698：B4 AØ 1D 2の D5 ø9 20 E9 E9 16AD： 99 A2 $\boxed{16}$ 8E EA 1E C9 DЗ 7A 16A8：FØ 3ø A2 ø日 8E EA IE C9 54 16Bの：Dg Dg CD 29 AG DA A9 CF B5 16B8：Aø 1D 2の D5 9920 E9 9983 16CØ：C9 B1 9Ø øD C9 B8 Bø 99 BC 16C8： 38 E9 Bø 日D EA 1E 4C DA BD 16DØ： $16 \quad 2 \emptyset 9 \emptyset$ ØA $6 \emptyset$ A9 91 日D FB 16D8：EA 1E AD EA 1E AB 2ø 76 Bø 16EØ： 16 AD EA 1E C9 93 DØ وD CB 16E8：AD ø5 C3 18 6D $97 \mathrm{CJ} \mathrm{C9}$ FF 16Fø：5ஏ Dø ø5 A9 ø3 2095 FE 77 16F8： 2084 FE A2 øø BE D5 1E 64 17øø：8E D4 1E 8E EB 1E 8E EC 39 17øB：1E BD 4216 9D D6 1E E8 CB 171ø：EØ ØC Dø FS A9 FF 8D E4 78 1718：1E 8D E2 1E A2 ø4 BD 4D E4 1720： 16 9D 72 1F CA Dg F7 AD 38 1728： 46 1E 85 EB $A D 47$ 1E 85 BC 173ø：EC Aの Øø 8C E3 1E CC E2 D9 1738：1E FØ ø6 AD D6 1E 8D E3 7B 174ø：1E B1 EB $3 \varnothing 67$ C9 4ø 9Ø DA 1748：ø3 4C CA 18 C9 3C Fø 2C 33 175ø： 99 C 2 FF CB EE E3 1E AD 5D 1758：E3 1E CD＇D7 1E 9Ø E2 8C BC 176の： 54 1E B1 EB C9 Ag FØ 14 FB 1768：CE E3 1E 88 Dø F4 AC 54 4B 177ø：1E 4C 7F 17 C8 B1 EB C9 D 1778：Aø Fø Ø1 88 8C 54 1E 9B 66 1789： $38 \quad 65$ EB 85 EB AS EC 6933 1788：Øø 85 EC AD Øø AD E4 1E 5E 179ø：C9 FF Dø 93297518 AD A2 1798：E2 1E Fg g3 2ø A5 18 38 gE 17AD：2E E2 1E AD 54 1E 8D 53 C6 17A8：1E A9 C2 85 D6 A9 1F 8522
 17B8：E4 1E CD DA 1E 9Ø Ø3 2Ø A1 17CØ：ஏø 18 38 A5 EB ED 55 1E 36 17C8： 85 ED A5 EC ED 56 1E 95 C2 17Dg：ED Fg 2A 9ø 28 AD D5 1E 42 17D8：Fg øB A9 øø 日D D4 1E 8D ø1 17Eの：D9 1E 20 Øø 18 AD EA 1E F2 17E8：C9 Ø3 Dø $93 ~ 2 \emptyset ~ E 9 ~ Ø 9 ~ A 9 ~ 6 B ~$ 17Fø：$\emptyset \emptyset E A E A$ EA A2 FA 9A $2 \emptyset$ 3C 17F8：ஏ8 ø8 4C 18 øB 4C $31 \quad 17$ 3B 18øø： 38 AD D8 1E ED E4 1E A8 9C 18ஏ8： 88 88 Fg ØA $3 \varnothing$ Ø8 A9 8D DF 1810： 2052 16 88 Dg F8 AD D5 CB 1818：1E Fg 11 8D 53 1E A9 C2 87 1820： 85 D6 A9 2185 D7 $2 \emptyset$ A5 81 1828： 18 2ø 95 1C A9 日D $2 \emptyset 52$ E4 1830： $16 \quad 29 \quad 5216 \quad 20 \quad 5216$ EE 84 1838：DD 1E Dø ø3 EE DE 1E AD g6 184ø：DC 1E Dg 31 AD EA 1E C9 B2 1848：ஏ3 Fg 2A 38 AD DD 1E ED gE 185ø：DF 1E AD DE 1E ED Eg 1E 24 1858： $9 \varnothing 1 B$ A9 Øø 2ø B9 1420 FC 186ஏ：A6 ØA A9 E8 AØ 1D 20 D5 B9 1868： $99 \quad 20$ E9 $\emptyset 9 \quad 2076$ 16 AD A7 1879：EA 1E 2g 95 FE AD D4 1E 71 1878：Fg 11 日D 53 1E A9 C2 85 EE 1889：D6 A9 2985 D7 20 A5 1885 1888： $2 \emptyset \quad \emptyset 5$ 1C A9 8D 295216 CF

189ø：AC D9 1E 8C E4 1E 88 88 53 1898：Fの øA $3 \emptyset$ ø日 A9 8D 2052 6ø 18AØ： 16 B8 Dø FB $6 \emptyset$ A9 Ag AC 3F 18A8：D6 1E BC E3 1E Fg Ø6 20 7C 18BD： 5216 88 D 16 FA $6 \emptyset$ AC DB 3C 18B8：1E 1898 6D E4 1E 8D E4 87 18CØ：1E A9 8D 2ø 521688 DØ EA 18C8：FA $6 \varnothing$ 日D E6 IE AE 101993 18Dø：DD 1019 FØ Ø9 CA Dg FB 34 18D8：CE E3 1E 4C 99 1A CA BA C2 18EØ：ØA AA 日C E5 1E A9 18 48 Cg 18E8：A9 F3 48 BD 221948 BD 93 18Fg： $211948 \quad 6 \emptyset \quad 38$ AD E5 1E 69 18F8： 65 EB 85 EB AS EC 69 øø F9 19øø：85 EC 4C $3117 \mathrm{B1} \mathrm{~EB}$ C9 ED 19ø8：ЗC Fø 9188 8C E5 1E $6 \varnothing$ D5 1910：10 $574 \mathrm{C} 5254 \quad 42534 \mathrm{E}$ 6F 1918： 4846 40 50 7F 58 4D 49 4E 1920： 47 7D 198619 90 19 9A 88 1928： 19 A4 19 AE 19 B8 19 C7 C3 1930：19 E9 196319731953 DE 1938： $1949194019 \quad 92$ 1A 29 9E 194ø：1A C8 A9 øø 8D E2 1E 4C 67 1948： 0519 C8 20 FØ 14 8D E1 33 1950：1E 4C \quad Ø5 19 CB 20 Fg 1493 1958：8D DF 1E AD C9 1E 日D Eø AA 196ø：1E 4C $\emptyset 519$ CB 20 Fø 14 A3 1968：8D DD 1E AD C9 1E 8D DE 38 197ø：1E 4C $\emptyset 519$ CB 20 Fø 14 B3 1978：8D D8 1E 4C ø5 19 A9 øø 1ø 198ø：BD DC 1E C8 4C 9519 C8 72 1988：20 FØ 14 8D D6 1E 4C ø5 2F 199の： 19 C8 2g Fg 14 8D D7 1E 39
 19AD：D9 1E 4C ø5 19 C8 20 Fø 3E 19A8： 14 8D DA 1E 4C 9519 C8 F6 19Bの： $2 \emptyset$ Fø 14 8D DB 1E 4C 95 7F 19B8： 19 AC E5 1E CB 984820 9A 19CØ：ØØ 18 68 A8 BC E5 1E $6 \emptyset 29$ 19C8：2Ø E2 1988 8C D4 1E Aø ø4 19DØ： 01 B1 EB 99 C1 20 C8 CC F3 19D8：D4 1E 9ø F5 FG F3 C8 4C A3 19Eด： 6519 C8 B1 EB C9 3C Dø DF 19E8：F9 6ø 20 E2 19 88 8C D5 3C 19FD：1E AØ $\emptyset_{1} \mathrm{~B} 1 \mathrm{~EB} 99 \mathrm{C} 1 \mathrm{Cl}$ FF 19F8：CB CC D5 1E 90 FS FØ F3 91
 1Aø8： 19 C8 B1 EB C9 BD Fø $\emptyset 7$ 1E 1A1ø：88 AD E6 1E 4C 4C 17 C8 3D 1A18： $2 \emptyset F \emptyset 1448$ AD E6 1E AA BF 1A20： 68 9D 42 1F $2065194 C \quad B D$ 1A28：F4 18 A2 øø C8 B1 EB C9 DF 1A3Ø：उC Fg ØA 20 2F 16 9D 8392 1A38：1E E8 4C 2C 1A 8E 58 1E DB 1A40： 20 9B 69265713 A5 FB DC 1A48： $8 D 72$ AA AS FC 8D 73 AA $3 F$ 1A50：A9 32 8D 5F AA A9 $\emptyset 1$ 8D 19 1A58： 65 AA $2 \emptyset 6 \emptyset 1420$ 日Ø A1 B7 1AGØ：AE $6 \emptyset$ AA AC 61 AA AD C5 FA
 1A79： 2995 FE 4C 3613 8E 55 2F 1A78：1E 8C 56 1E A5 FB 18 6D 46 1ABg： 55 1E 8D 55 1E AS FC 6D DC 1A88： 56 1E 8D 56 1E 26961439 1A9Ø：68 68 4C $2717 \quad 2 \emptyset$ C1 1A E5 1A98：AD FØ 1E Fø $16 \quad 2068$ 1B CF 1AAØ： $2 \emptyset$ E7 1 A AD EE 1E C9 FF $8 \varnothing$ 1AAB：$F \emptyset \emptyset 92 \emptyset 8 B 1 B 2 \emptyset A C$ ØB ØF 1ABø：4C AØ 1A 4C 9Ø ØA AD 61 A4 1ABB：Cø ØD 44 1E 4D 63 Cø $3 \emptyset$ A4 1ACØ： 26 2の AG ØA A9 Ø8 AØ 1E 52 1AC8： $2 \emptyset \quad D 5 \quad 692 \emptyset 7112$ 8D FØ 85 1ADø：1E Dø ø3 4C 9ø ØA Aø øø 5B 1AD8：B9 83 1E 99 F1 1E C8 CC 日E 1AEØ：58 1E DØ F4 4C 9ø ØA AS 9ø 1AE8：FB 85 EB A5 FC 85 EC A9 D5
 1AFB：AD Fg 1E FØ $5 \emptyset$ BD F1 1E 8E 1Bøø：D1 EB FØ Ø5 EØ øø Dø EE 2ø 1Bø8：CA CB DØ øB EG EC AS EC CЗ 1B1ø：CD 56 1E Fg 62 Bg 36 EB BD 1B18：EC FØ 1E DD EØ 189865 CF 1B20：EB 85 ED A5 EC 69 gø 8558 1B28：EE AD 55 1E C5 ED AD $56 \quad 65$ 1B3Ø：1E ES EE 9Ø 18 38 A5 ED Bø

7E 29ø PRINT D\＄＂BSAVE SS．SYSTEM， A\＄2øøø，L\＄1CBF，TSYS＂
6A 3øø PRINT＂SUCCESSFULLY CONVE RTED．BOOT DISK TO RUN＂： END
B5 $31 \emptyset$ PRINT＂ERROR IN DATA STAT EMENTS＂：END
$7 E 32 \emptyset$ DATA $\varnothing, 49$
78 33ø DATA $16 \emptyset, \emptyset, 185, \emptyset, 32,153$
6F 34ø DATA Ø，144，2øø，2ø日，247，76
E6 $35 \emptyset$ DATA $14,144,169,32,133,25$
5 F 36 DATA $169,5 \emptyset, 133,259,169,8$ ED $37 \emptyset$ DATA $133,253,169, \emptyset, 133,25$ 2
 $2 g 8$
8D 39Ø DATA 249，230，251，23Ø，253， 165
DB 4øø DATA $253,2 \emptyset 1,37,2 \emptyset 8,239,7$
fF 419 DATA $9,8,7499$
$3542 \emptyset$ DATA 2862，5
$6243 \emptyset$ DATA $32,194,34,76,83,2 \emptyset$
AF $44 \emptyset$ DATA 439
BE 459 DATA 3136,5
$3146 \emptyset$ DATA $32,82,35,76,57,20$
$2447 \emptyset$ DATA $3 \emptyset 2$
$5148 \emptyset$ DATA 4728，5
6E $49 \emptyset$ DATA $32,82,35,76,118,26$
2B 5øø DATA 369
B1 510 DATA -1
$8552 \emptyset$ DATA $643,36,651,175,656,1$ 76
17530 DATA 661，184，2953，76， 2954 ， 158
$3254 \emptyset$ DATA 2955，35，3332，76，3333 ， 184
$5655 \emptyset$ DATA 3334，35
5B 56 D DATA－1，1135

Program 5：MLX Data For SPEEDSCRIPT2 File

For mistake－proof program entry，use＂Apple MLX，＂found elsewhere in this issue，to type in this program．
उAFø： $45 \quad 3231 \quad \emptyset 3 \quad 2 \emptyset \quad \emptyset \varnothing \quad \mathrm{BF}$ C1 2D उAF8： $54242 \emptyset 6 \emptyset 142 \emptyset$ øø BF 日B उBøø：Cø 5724 Bø $552 \emptyset$ Øø BF 27 3Bø8：CB 6324 Bø 4D AD $68 \quad 24 \quad 61$ 3B10：8D 6A 24 BD 6F 24 日D 77 EJ 3B18： 24 AD 55 1E 38 ED 46 1E BC 3B2Ø：8D 6B 24 8D 7224 AD 56 6B 3B28：1E ED 47 1E 8D 6C 24 日D E7 3B3ø： 7324 AD 46 1E 8D $7 \emptyset 24$ AF 3B38：AD 47 1E 日D 712420 øø 5ø उB4ø：BF Dø $6924 \mathrm{~B} \mathrm{\emptyset} 1429$ øø $5 \emptyset$ 3B48：BF CB 6E 24 Bø øC $2 \varnothing$ Øø 97 3B59：BF CC 7624 Bø 742096157 3B58： 14 6ø 8 DD AB $1 \mathrm{E} \quad 2 \emptyset 961410$ 3B6Ø：A9 פの 日D 77242995 FE Ag 3B68： $2 \emptyset$ Øø BF CC $7624 \quad 2 \emptyset$ AG DE उB7Ø：ØA A9 85 AØ 24 2ஏ D5 $\emptyset 967$ 3B78：$A D$ AB 1E $2 \emptyset$ DA FD A2 FA 85
 3B88：øø BF C8 6324 BD CB AD 67 3B90： $68 \quad 24$ 8D 7924 8D $7 E \quad 24 \quad$ Ø6 3B98：日D 7724 2ஏ øø BF D1 7855 उBAD： 24 Bø B7 AD 7A 24 8D 81 28 3BAB： 24 AD 7B 24 8D 8224 A5 B2 उBBø：FB 8D 7F 24 A5 FC 8D 8Ø 77 3BBE： 2420 Øø BF CA 7D 24 Bø 8A उBCØ： $992 \emptyset$ Øø BF CC 7624 Bø 41 3BC8： 91 AE 7A 24 AC 7B 24 6ø 41 उBDØ：AØ Øø B9 83 1E 29 7F 9935 3BD8：AC 1E C8 CC 58 1E DØ F2 E2 3BEg： $8 C$ AB 1E $6 \square$ 日D AB 1E 4C F5 उBE8：2E 23 2Ø $\emptyset \emptyset \mathrm{BF}$ C5 $46 \quad 24 \quad 99$ उBFØ：Bø F2 AØ ØØ AD ØØ BE 29 A4 3BF8：פF 日D AB 1E B9 91 BE 99 9A उCøø：AD 1E C8 CC AB 1E Dg F4 29 उCg8：C8 8C AB 1E A9 2F 8D AC 31
 3C18：CB A9 AF $2 \emptyset$ ED FD $2 \emptyset$ Øø 8ø

3C2Ø：BF CA 4A 24 Bø BE A9 B9 44 3C28： 85 D7 A9 $\emptyset 485$ D6 Aø $\boxed{ } 197$ 3C3Ø：B1 D6 C9 $\boxed{\square}$ Dø ø日 C日 B1 5A 3C38：D6 Fø 34 4C 2924 8D E5 7E 3C4D：1E 29 GF AA EB 日E 58 1E EE 3C48：C8 B1 D6 99 日ळ 26 ED FD 5B 3C5Ø：C8 CC 58 1E DØ F3 A9 8D B4 3C58： 20 ED FD A9 $2718 \quad 65$ D6 F1 3C66： 85 D6 A5 D7 69 ஜø 85 D7 B1 3C68：C9 BB Fø B2 4C FC 2320 BA उC7Ø：Øø BF CC 5224 4C DA 14 B3 3C78：Ø2 6ø ஜø BE Ø4 Ø1 Øø B9 D3

 3CB8：D2 D2 CF D2 Aפ A3 ஜø Cø CA

Program 6：SS80．MAKER

Be sure to use＂Apple Automatic Proofread er，＂found elsewhere in this issue，to enter the following program．

55 5Ø D \＄＝CHR\＄（4）
B1 1 Øø F1\＄＝＂SPEEDSCRIPT＂：F2\＄＝ ＂SPEEDSCRIPTBø＂
64 1ø5 FA\＄＝＂，A\＄8øø＂：FL\＄$=$＂，L\＄ 1645＂：FT\＄＝＂＂
F5 $110 \mathrm{~B} 1=2 \emptyset 48: \mathrm{B} 2=8192$
F9 $12 \varnothing$ PRINT＂LOADING MLX FILES．
D6 13Ø PRINT D\＄；＂BLOAD＂；F1\＄；FA\＄ ；FT\＄
ED $14 \emptyset$ PRINT D\＄；＂BLOAD PATCH． $8 \emptyset$ ， $A^{\prime \prime}$ ；B2
7F $15 \mathscr{1}$ PRINT＂READING DATA STATE MENTS．．．
$84155 \mathrm{C}=\varnothing$
$1216 \varnothing$ READ I：IF $I=-1$ THEN 1 9ø
$3817 \emptyset$ READ L：FOR I $=I$ TO $\mathrm{I}+$ L：READ A：C＝$C+A$
35175 POKE I＋B1，A：NEXT
A $18 \emptyset$ GOTO 16Ø
59 19Ø READ CS：IF C＜$>$ CS THEN 1ØØø
2F 2øø PRINT＂PATCHING FROM PATC H FILE．．．＂
ED 210 READ D：IF $D=-1$ THEN 5 Øø
BB 220 READ $5:$ READ L：$D=D+B 1$ $: S=S+B 2$
8B $23 \emptyset$ FOR $I=\emptyset$ TO L：POKE（D + I），PEEK（S＋I）：NEXT
$1524 \emptyset$ GOTO 210
69 5øø PRINT＂INSERT DISK TO REC EIVE＂；F2\＄
A6 $51 \emptyset$ PRINT＂PRESS ANY KEY WHEN READY＂：GET A\＄
EJ $52 \emptyset$ PRINT＂SAVING＂；F2\＄
$9953 \emptyset$ ONERR GOTO 559
CE 54ø PRINT D\＄；＂DELETE＂；F2\＄
6A 55ø ONERR GOTO \emptyset
C9 56ø PRINT D\＄；＂BSAVE＂；F2\＄；FA\＄ ；FL\＄；FT\＄
E4 6 © 9 PRINT＂SUCCESSFULLY CONVE RTED．＂：END
131 1øøø PRINT＂ERROR IN DATA STA TEMENTS＂：END
17 2øøø DATA 554，1，132，254
4A $262 \emptyset$ DATA $579,2,234,234,234$
$49294 \emptyset$ DATA $643,1,8,8$
BD 2ஏ6ø DATA $3276,5,32,132,254,3$ 2，88， 252
25 2ø8ந DATA $331 \emptyset, 1,8,8$
FD $21 \emptyset \emptyset$ DATA $4 \emptyset 81,2,234,234,234$
462120 DATA 4189，1，185，2ø
6E $214 \varnothing$ DATA 4ø日B，1，8，8
432206 DATA $-1,2833$
A1 $23 \varnothing \varrho$ DATA $9,9,3$ ？
D6 2310 DATA 172，4ø， 192
7B 2329 DATA $678,233,37$

6C 233Ø DATA 2673，271，13
E9 234ø DATA $3168,285,39$
382350 DATA $3222,325,43$
16 24øø DATA－1

Program 7：PATCH． 80

For mistake－proof program entry，use＂Apple MLX，＂found elsewhere in this issue，to type in this program．

2ஏøø：A9 8ø 8D øø ø3 4C 28 98 8日 2ஏø日：2ø 84 FE 2の øø C3 日D ø1 86 291ø：Cø 日D øD Cの Ag $1729 \mathrm{BC} 2 \emptyset$ 2018：ØA A9 DF AØ 5Ø 2g ED FD AA

2ø28：A2 ø1 20 61 14 AD 4 F 1E 28
2ø3Ø： $2 \emptyset 7414$ AD 5ø 1E 29 7E B4
2ø38： 14 E8 Aø øø B9 FF FF C8 67
294ø：C9 82 Fg 1C C9 3C Fg 18 1F
2ø48：Cø 5g Dg Fg 88 B9 FF FF 51
2ø5ø：C9 8ø Fø øB 29 3F C9 2פ 5E
2ø58：$F \emptyset$ Ø5 88 Dの Fø Aø 4F CB E1
266ஏ： 84 ED 88 86 FE 98 4A Bø 77
2ø68：øB 84 FD 8848 38 E9 91 8F
2ø7ø： $1 \emptyset \emptyset 7$ 3ø øB 8884 FD C8 4C
2078： 48 8D $54 \mathrm{CD} \quad 209714 \quad 68 \mathrm{Cb}$
2980：A4 FD 8D 55 Cg 29971463
2ø88：A6 FE A4 ED 1898 6D C1 ØF
2ø90：ø8 $2 \emptyset 7414$ AD C2 $98 \quad 69$ 9E
2ø98：Øø 2ø 7E 14 EØ Ø2 Dø Ø3 AS
2ஏAØ：8C 4E 1E Cø 5ø Fø $2498 \mathrm{B1}$
2øAB：4A 90 $9969 \quad 0085$ FD 3834
2øBø：E9 Ø1 $1 \emptyset \emptyset 285 \mathrm{FD}$ AB A9 67
2øB8：AØ 8D 54 CØ 29 BØ 14 A4 D3
2øCØ：FD Cg 28 Fg 96 8D 55 C C 16

2ஏDø： 16 Fg Ø3 4C BE ø日 AD C1 Bø
2øD8：ø日 8D 59 1E AD C2 ø8 8D A3
2øEØ：5A 1E BD 54 CØ $6 \emptyset$ Øø $\emptyset \emptyset ~ 54 ~$
2øE8：Øø $2 \emptyset$ BA $\emptyset A 2 \emptyset$ 8ø FE A2 CC
2øFø： $5 \emptyset 2 \emptyset$ 4A F9 $2 \emptyset 84$ FE 4C A7
2øF8：BA ØA פø Øø $6 \emptyset$ AØ Øø A2 41
21øø：øø 8E 7B $9584 \quad 254 C \quad 2219$
21ø8：FC A9 27 ED 7B ø5 6ø 20 C7
211ø：CG ØA EA BD 57 1E 298466
2118：FE Ag Øø A9 5F Gஏ BD 6D $\emptyset 2$
2120： 99 8D A9 14 日D B2 14 BD DD
2128： 84 g9 BD A8 14 8D B1 1479
213ø：6ந 8D C1 ø8 8D D2 ø8 8D 14
2138： 9914 6ø 8D C2 ø8 8D D3 56
2140：ஏ8 8D 9A 14 6Ø 6ø AA B9 12
2148：FF FF 10 ø8 C9 $83 \mathrm{~B} \mathrm{\emptyset} \emptyset 6 \mathrm{D} \emptyset$
2150：A5 FF 90 9229 3F 9D FF 19
2158：FF CA 888810 E9 609969
216ø：FF FF C8 CØ 28 DØ F8 6Ø 9E
2168：A9 $97 \quad 85$ 36 A9 C3 $85 \quad 37$ F3
217の：6ø 74 AA 8D 74 AA Dg E9 ØB

> Back Issues of COMPUTE！， COMPUTE！＇s Gazette， or any magazine disks can be ordered by calling 800－346－6767 （in NY 212－887－8525）． Some issues may no longer be available．

Menu Planner

W. M. Shockley

For those who like to plan ahead, here's an easy-to-use BASIC program that lets you plan dinner menus for an entire week in advance. Versions are included for the Commodore 64, IBM PC/PCjr, Apple II series, Atari ST, Amiga, and Atari 400, 800, XL, and $X E$. A disk drive is required. A printer is optional. The IBM PC/PCjr version requires BASICA for the PC or Cartridge BASIC for the PCjr.

In a world where there's almost always too much to do, a computer can be a wonderful ally. "Menu Planner" is a time-saving program which allows you to plan an entire week of daily menus in advance, with only a few minutes at the keyboard. When the menu is cornplete, it can be printed out for use in shopping and in preparing meals. Previous menus can be loaded from disk and reviewed, reused, or edited. Since the entire program is written in BASIC, it's also a simple matter to customize it for your own particular needs.

Typing The Program

Type in and save the program for your computer. Because each version is almost the same, we've published one main program (Program 1) with line changes for specific computers (except for eight-bit Ataris-see below). If you are using a Commodore 64, IBM PC/PCjr, Apple II, Atari ST, or Amiga, type in all of Program 1 and then type in the line changes printed in the separate listing for your computer. Be sure to save the complete program before you run it.

Amiga users should remember that Amiga BASIC doesn't use line numbers, unlike most other versions of BASIC. In an Amiga BASIC program, line numbers are treated as labels; the numeric value of the line number is not significant. That
is, if you type in the main program, then type line 600 from Program 6, the added line will not automatically be placed between the existing lines labeled 540 and 999. Instead, the line is added at the position where it is typed. When adding the lines from Program 6 to the main program, you must manually position the cursor in the proper spot in the listing before entering each line. The line shown as line 5 should be added as the first line of the program. The remaining lines from Program 6 should be added between existing lines 540 and 999 of Program 1.

A separate program is provided for the eight-bit Atari computers ($400,800, X \mathrm{~L}$, and XE models). If you have one of these computers, type in and save Program 7.

Main Menu

Menu Planner is a menu-driven program, meaning that you make program choices by selecting from convenient, onscreen menus. When you first run the program, it prints the main menu on the screen. By pressing the indicated letter keys, you can make a new menu, review the current menu, print the current menu, save the current menu, load a previous menu from disk, edit the current menu, or quit the program.

For instance, the first time you use Menu Planner, you will want to press M to make a new menu. The computer clears the screen and prints a new display with onscreen prompts that tell you what to do.

You will be creating a dinner menu for each day of the week, beginning with Sunday. You begin with the entree: Choosing from the program's built-in list of entrees, Menu Planner prints the first entree choice on the screen. To move to the next entree, press the space bar. Continue cycling through entree selections until you find the one
you want; then press RETURN to select it.

Under the entree section is a special offering called Eat Out. If you select this choice, the program jumps to the next day of the week. The last selection in each category is called Choice. This selection allows you to type in any food that is not offered in the program's builtin list.

After you choose an entree, the same process is repeated for three additional categories: a vegetable dish, a starch or bread dish, and a dessert. When you have completed an entire meal, the entire cycle repeats until you have made an entire week of menus. At this point, the main menu reappears.

Other Options

The Review option lets you review the entire current menu, one meal at a time. Press the space bar to continue to the next meal.

The Print option prints a menu to a printer with a couple of extra items to aid you in shopping for the week. Be sure that the printer is connected and turned on before you select this option.

The Save option saves the current menu to disk. When you select this option, Menu Planner prompts you to enter a number for the menu. Enter a 1 for the very first menu, 2 for the second, and so on. You do not have to type in a filename: Menu Planner automatically creates a filename using the number you supply. Do not use the same number twice.

The Load option loads an existing menu from disk. This selection should be used whenever you want to review, edit, or print out an old menu. Again, you don't need to type in a filename. Simply enter the number of the menu you wish to load.

The Edit feature allows you to
change an existing menu．This is done by reentering the selections for an entire day．Note that you must have a menu in memory before you select this option（if you don＇t，Menu Planner has nothing to edit）．Type in the day of the week when prompted；you must spell out the day completely（for instance， type MONDAY instead of MON）． When the menu has been altered， the main program menu reappears． This feature simplifies the process of making similar menus．Simply reload an old menu，change the meals for one or more days，and then resave it．

The Quit option ends the pro－ gram．If you have not already saved the current menu，be sure to do so before quitting．

Customizing Menu Planner

The program can be changed easily for personal preference．For ex－ ample，you may prefer to start the week＇s menus with Monday rather than Sunday．To do so，rearrange the order of the days in line 90 ．If you don＇t like some of the foods offered in the built－in lists，substi－ tute different foods of your own． This is done by editing the DATA statements that contain the names of dishes．If you make this change， be sure that the total number of items matches the values in lines $10-40$ ．These lines contain RE－ Marks to indicate which category they control．For example，to change the total number of entrees from 40 to 45 ，change the 40 in line 10 to 45 ．A more significant modifi－ cation might be to add an entirely new category－say，a second vege－ table dish or a beverage．

For instructions on entering these programs， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．

Program 1：Menu Planner－ Main Program

$1 \varnothing$ NI $(\varnothing)=4 \varnothing:$ REM NUMBER OF ENTRE ES
$2 \emptyset$ NI $(1)=2 \emptyset:$ REM NUMBER OF VEGET ABLES
$3 \varnothing$ NI $(2)=2 \emptyset:$ REM NUMBER OF STARC H／BREADS
4の NI $(3)=2$ ：REM NUMBER OF DESSE RTS
5ø FOR I＝ 1 TO 17：EL $\$=E L \$+C H R \$$ （32）：NEXT
6ø T＝Ø：FOR I＝Ø TO 3：IF NI（I） $>\mathrm{T}$ THEN $\mathrm{T}=\mathrm{NI}$（I）
$7 \emptyset$ NEXT：DIM $\operatorname{MN} \$(3, T+1)$ ，SE $\$(3,7)$

8ø FOR $N=1$ TO 7：READ DA\＄（N）：N EXT
$9 \varnothing$ DATA SUNDAY，MONDAY，TUESDAY，W EDNESDAY，THURSDAY，FRIDAY，SAT
URDAY
1 Øø FOR I＝Ø TO 3：READ TI\＄（I）： TI\＄（I）$=$ TI\＄（I）＋＂：＂：NEXT
$11 \varnothing$ DATA ENTREE，VEGETABLE，STARC H／BREAD，DESSERT
$12 \varnothing$ FOR $I=\varnothing$ TO 3：FOR $N=1$ TO NI（I）：READ MN\＄（I，N）：NEXT：M
$N \$(I, N)=" C H O I C E ": ~ N E X T$
13Ø CH\＄＝＂MRPSLEQ＂：GOTO 35ø
$14 \varnothing \mathrm{~N}=1$
15ø RW＝1：CL＝14：GOSUB 9øø：PRINT＂ MENU PLANNER＂
16ஏ RW＝3：CL＝ø：GOSUB 91ø：PRINT D A\＄（N）
17ø RW＝12：CL＝11：GOSUB 91ø：PRINT ＂〈C＞TO CANCEL＂
18ø RW＝13：GOSUB 91ø：PRINT＂＜RETU
RN＞TO SELECT＂
19ø RW＝14：GOSUB 91ø：PRINT＂$\angle S P A C$ E BAR＞TO CYCLE＂
2øø I＝ø：FOR K＝Ø TO 3：SE\＄（K，N） ＝＂＂：NEXT
$21 \varnothing \mathrm{RW}=5+\mathrm{I}:$ CL＝$=$ ：GOSUB 91ø：PRINT TI事（I）
$220 \mathrm{R}=1$
23ø RW＝5＋I：CL＝15：G0SUB 910：PRIN
T MN\＄（I，R）；EL\＄
24ø GOSUB 93Ø
$25 \emptyset$ IF A\＄＜＞CHR\＄（13）THEN $28 \emptyset$
26ø IF $R=N I(I)+1$ THEN GOSUB 4 8Ø：SE $\$(I, N)=I M \$: G O T O$ 31ø
$27 \emptyset \operatorname{SE} \$(I, N)=M N \$(I, R):$ GOTO $31 \emptyset$
$28 \emptyset$ IF $A \$=$＂C＂THEN GOTO 15Ø
29ø IF $A \$=C H R \$$（32）THEN $R=R+1$
：IF R $>\mathrm{NI}(\mathrm{I})+1$ THEN $22 \emptyset$
3øø GOTO 23ø
$31 \varnothing$ IF $\operatorname{SE} \$(\emptyset, N)=$＂EAT OUT＂THE N 330
$32 \emptyset I=I+1: I F I<4$ THEN $21 \varnothing$
$33 \varnothing$ IF FL $=1$ THEN FL＝ø：GOTD 35 \emptyset
$34 \emptyset \mathrm{~N}=\mathrm{N}+1$ ：IF $\mathrm{N}<8$ THEN $15 \emptyset$
35ø RW＝1：CL＝14：GOSUB 9øø：PRINT＂
MENU PLANNER＂
36ø RW＝5：CL＝9：GOSUB 91ø：PRINT＂＜ M $>$ AKE A MENU＂
37ø RW＝6：GOSUB 91ø：PRINT＂〈R＞EVI EW＂
38ø RW＝7：GOSUB 91ø：PRINT＂〈P＞RIN T＂
39ø RW＝8：G0SUB 919：PRINT＂＜S＞AVE
4øø RW＝9：GOSUB 91の：PRINT＂$\langle L>O A D$
$41 \varnothing$ RW＝1ø：GQSUB 91ø：PRINT＂＜E＞DI T＂
42ø RW＝11：GOSUB 91ø：PRINT＂＜Q＞UI $\mathrm{T}^{\prime \prime}$
43ø RW＝15：CL＝6：GOSUB 919：PRINT＂ TYPE LETTER OF YOUR CHOICE＂
44ø GOSUB 93ø：FOR L $=1$ TO 7：IF A $\$\langle>$ MID $\$(C H \$, L, 1)$ THEN 4

$6 \square$

45ø ON L GOTO 14ø，6øø，6øø，7øの， 7 5ø，51ø，8øø
46Ø NEXT
47ワ GOTO 44の
48ø GOSUB 92ø：RW＝1ø：CL＝ø：GOSUB
915：INPUT＂CHOICE＂；IM\＄
49ø IF IM $=$ CHR $\$(32)$ OR IM $=$
＂＂THEN 48ø
5øø R＝46：RW＝1ø：CL＝ø：GOSUB 91ø：P RINT EL\＄；EL\＄：RETURN
51ø RW＝2：CL＝5：GOSUB 9øø：INPUT＂D AY TO EDIT＂；DA\＄
52ø FOR $N=1$ TO 7：IF DA $\$=D A \$$
（N）THEN FL＝1：GOTO 15ø
53ø NEXT：RW＝4：CL＝3：GOSUB 91ø：PR INT＂DAY MUST BE SPELLED OUT IN FULL＂

54の FOR R＝ 1 TO 2øøø：NEXT：GOTO 35ø
999 REM ENTREES：
1 Øøø DATA HOT DOGS，HAMBURGERS，P
ORK CHOPS，STEAK，ROAST BEEF
，ROAST PORK，LAMB CHOPS
1ø1ø DATA VEAL CUTLETS，ROAST CH ICKEN，FRIED CHICKEN，CHICKE
N SALAD，SPAGHETTI
1 162 $2 \square$ DATA LASAGNA，TACOS，TUNA PA
TTIES，TUNA SALAD，TUNA NOOD
LE CASSEROLE，BEEF STEW
1ø3ø DATA TURKEY，POTATO CHEESE SOUP，COTTAGE CHEESE，PEA SO UP，OMELETTE
$1 \emptyset 4 \varnothing$ DATA FETTUCINI，CANNELLONI， MANICOTTI，CREPES，SCRAMBLED EGGS，BURRITOS
1 1ø5ø DATA MEAT LOAF，LEG OF LAMB
，VEAL SCALOPPINE，HALIBUT，F
ISH，LOBSTER，CRAB
1 ØGø DATA CHOW MEIN，CHOP SUEY，B EEF VEGETABLE SOUP，EAT OUT
1099 REM VEGETABLES：
11 Øø DATA CORN，PEAS，TOMATOES，GR
EEN BEANS，SPINACH，GREEN SA
LAD，FRUIT SALAD，CARROTS
$111 \varnothing$ DATA BROCCOLI，CAULIFLOWER， SQUASH，ZUCCHINI，LETTUCE，CU
CUMBER，PICKLE，MUSHROOMS 11
2σ DATA CELERY，ONIONS，GREE
NS，LIMA BEANS
$112 \emptyset$ DATA CELERY，ONIONS，GREENS， LIMA BEANS
1199 REM STARCH／BREADS：
$12 \emptyset \emptyset$ DATA BREAD，FRIED POTATOES， NOODLES，ROLLS，PILAF，PITA，K
ASHA，MATZOHS，CRACKERS
$121 \emptyset$ DATA SWEET POTATOES，RICE，F RENCH FRIES，MASHED POTATOE
S，BAKED POTATO
$122 \emptyset$ DATA BREAD STICKS，GARLIC B READ，FRIED RICE，POILED POT
ATOES，BUNS，PASTA
1299 REM DESSERTS：
$13 \emptyset \emptyset$ DATA ICE CREAM，POPSICLE，CA KE，DOUGHNUT，FRUIT，CHEESECA
KE，COOKIES，PUDDING
$131 \varnothing$ DATA JELLO，SORBET，BROWNIES ，FUDGE，FRUIT PIE，CREAM PIE
，SWEET ROLL，TORTE
$132 \emptyset$ DATA BOMBE，BAKED ALASKA，DR IED FRUIT，JELLY ROLL

Program 2：Commodore 64 Line Changes

DX $60 \emptyset \mathrm{RW}=\varnothing$ ： $\mathrm{CL}=17+\mathrm{M}$ ：GOSUB9øø
SM $61 \varnothing$ PRINT＂MENU：＂：IFBS＝＂P＂TH ENPRINTSPC（45）＂ON HAND $\{5$ SPACES \}NEED TO BUY"
GD $62 \emptyset$ FORN＝1TO7：PRINT：PRINTSP C（20－LEN（DAS（N））／2）DAS（ N）：PRINT
MR 63ø FOR I＝ø TO 3：PRINTSPC（4 ）；TIS（I）；SPC（14－LEN（TIS （I）））； $\operatorname{SE}(I, N): \operatorname{NEXT}$
AH 640 IFB $\$=$＂R＂THEN GETAS：IFAS ＝＂＂THEN64
RM 650 NEXT
CM 660 IFB\＄＝＂P＂THENPRINT\＃4：CLO SE4
AS $67 \emptyset$ GOTO35ø
JK 7øø RW＝2：CL＝3：GOSUB9の日：NO\＄＝ ＂＂：INPUT＂NUMBER OR MENU TO SAVE＂；NO\＄：IFNO\＄＝＂＂T HEN $35 \varnothing$
DP 710 OPEN3，8，3，＂$\varnothing:$ MENU $^{\prime}+$ NO + ＂ S, W＂
BA $72 \emptyset$ FORN＝1TO7：FORI $=\varnothing$ TO3：PRI NT\＃3，SES（I，N）：NEXTI，N
AK 730 CLOSE3：GOTO35ø

AJ 75 Ø RW＝2：CL＝3：GOSUB9 Øø ：NO $\$=$ ＂＂：INPUT＂NUMBER OF MENU TO LOAD＂；NOS：IFNO\＄＝＂＂T HEN35 6
KB 760 OPEN3，8，3，＂$\varnothing:$ MENU＂+ NOS + ＂ S, R＂
QS 77Ø FORN＝1TO7：FORI＝ØTO3：INP UT\＃3，SES（I，N）：NEXTI，N
QR 78ø CLOSE3：GOTO35ø
AD 8øø RW＝ø：GOSUB9øø：END
RG 9øø PRINTCHR\＄（147）
CM $91 \varnothing$ POKE781，RW：POKE782，CL：P OKE783，ø：SYS65520：RETUR N
JQ $92 \emptyset$ POKE198，Ø：RETURN
QJ 930 GETAS：RETURN

Program 3：IBM PC／PCjr Line Changes

NB 5 KEY OFF：DEF SEG＝$=$ ：DEFINT A－ Z：POKE 1ø47，PEEK（1ஏ47）OR 6 4：WIDTH 4ø：LOCATE ，，Ø
PA $29 \varnothing$ IF A $\$=$ CHR $\$(32)$ THEN R＝R ＋1：RW＝5＋I：CL＝15：GOSUB 91． ：PRINT SPACE $\$(21)$ ：IF R $>$ NI（I）+1 THEN $22 \varnothing$
KL 6øø B\＄＝A\＄：RW＝ø：CL＝17：GOSUB 9ø Ø
MF 61ø IF $B \$=" P$＂THEN OPEN＂LPT 1 ：＂FOR OUTPUT AS \＃1：PRINT \＃1，SPC（18）ELSE OPEN＂SC RN：＂FOR OUTPUT AS \＃1
CL 620 PRINT \＃1，＂MENU：＂：IF B $\$=" P$ ＂THEN PRINT \＃1，SPC（45）；＂ ON HAND NEED TO BUY＂
OH 63Ø FOR $\mathrm{N}=1$ TO 7：PRINT \＃1，C HR\＄（13）：PRINT \＃1，SPC（2g－L $\operatorname{EN}(D A \$(N)) / 2) ; D A \$(N): P R I N$ T \＃1，CHR\＄（13）
PH 64の FOR $1=\emptyset$ TO 3：PRINT \＃1， 5 PC（4）；TI\＄（I）；SPC（14－LEN（T I\＄（I）））；SE\＄（I，N）：NEXT
6C 65ø IF $B \$=" R "$ AND INKEY $\$=" "$ T HEN $65 \emptyset$
LE G6Ø NEXT：CLOSE \＃1：GOTO $35 \emptyset$
IK 7 Øø RW＝2：CL＝3：GOSUB 9øø：INPUT ＂NUMBER OR MENU TO SAVE＂ ；NO \＄：IF NO\＄＝＂＂THEN 35פ
JM $71 \emptyset$ OPEN＂MENU＂＋NO\＄FOR OUTPU T AS \＃1
6K $72 \emptyset$ FOR $N=1$ TQ 7：FOR $I=\emptyset$ TO 3 ：PRINT \＃1，SE\＄（I，N）：NEXT I ，N
BA 73Ø CLOSE \＃1：GOTO 35ø
HH 75 （RW＝2：CL＝3：GOSUB 9øø：INPUT ＂NUMBER OR MENU TO LOAD＂ ；NO\＄：IF NO\＄＝＂＂THEN 35ø
FN 760 OPEN＂MENU＂＋NO\＄FOR INPUT AS \＃1
OA 77ø FOR N＝1 TO 7：FOR I＝ø TO 3 ：INPUT \＃1，SE\＄（I，N）：NEXT I ，N
CK 78ø CLOSE \＃1：GOTO 35ø
EN 8 GØ CLS：END
Af 9 gg CLS
LH 919 LOCATE RW＋1，CL＋1：RETURN
CK 920 WHILE INKEY $\$\rangle " "$ ：WEND：RET URN
HI 93Ø A\＄＝INKEY\＄：RETURN

Program 4：Apple II Line Changes

$445 \mathrm{D} \$=\mathrm{CHR} \$(4): \mathrm{I} \$=\mathrm{CHR} \$$（9） 5F 6øø RW $=$ Ø：CL $=$ Ø：GOSUB 9øØ $A E 610 \mathrm{~B} \$=\mathrm{A} \$$ ：IF $\mathrm{B} \$=$＂P＂THEN PRINT ：PRINT D\＄；＂PR\＃1＂： PRINT I\＄；＂BøN＂
DB 620 PRINT＂MENU：＂：IF $B \$=" P$ ＂THEN PRINT SPC（ 45）＂ON HAND NEED TO BUY＂
92639 FOR $N=1$ TO 7：PRINT ：P

RINT SPC（ 20 －LEN（DA\＄（N ））／2）DA $\$(N)$ ：PRINT
CA 640 FOR I $=\varnothing$ TO 3：PRINT SPC （4）；TI\＄（I）；SPC（ 14 －LE N（TI\＄（I）））；SE\＄（I，N）：NEX T
F1 650 IF $B \$=$＂R＂THEN GET $A \$$
6A 660 NEXT
F8 670 IF $B \$=$＂$P$＂THEN PRINT $D \$$ ；＂PR\＃Ø＂
A5 68ø GOTO 35ø
$487 \emptyset \emptyset \mathrm{RW}=2: \mathrm{CL}=3:$ GOSUB 9øø： INPUT＂NUMBER OR MENU TO SAVE＂；NOS：IF NO\＄＝＂＂T HEN 35ø
CF 710 FF \＄＝＂MENU＂＋ND\＄：PRINT D\＄；＂OPEN＂；FF\＄
91720 PRINT D\＄；＂WRITE＂；FF\＄：FOR $N=1$ TO 7：FOR $I=\emptyset T Q$ 3：PRINT SE\＄（I，N）：NEXT I，N
3E 730 PRINT D\＄；＂CLOSE＂；FF\＄：GOT － $35 \emptyset$
D4 75ø RW＝2：CL＝3：GOSUB 9øø： INPUT＂NUMBER OF MENU TO LOAD＂；NO\＄：IF NO\＄＝＂＂T HEN $35 \emptyset$
D9 $76 \emptyset$ FF $\$=$＂MENU＂＋NO\＄：PRINT D\＄；＂OPEN＂；FF
$6177 \emptyset$ PRINT D\＄；＂READ＂；FF\＄：FOR $N=1$ TO 7：FOR $I=\emptyset T O$ 3：INPUT SE\＄（I，N）：NEXT I ，N
$4878 \emptyset$ PRINT D\＄；＂CLOSE＂；FF\＄：GOT 0 35』
IF 8øø HOME ：END
46 9øØ HOME
20 910 VTAB RW＋1：HTAB CL＋1： RETURN
10 920 RETURN
65930 GET A\＄：RETURN

Program 5：Ałari ST Line
 Changes

5 FULLW 2：CLEARW 2
 \wp_{1} IF B＝＂P＂THEN 65ø PRINT＂MENU！＂
620 FOR $N=1$ TO 7：PRINT：PRIN T SPC（2の－LEN（DAB（N））／2）；D A ${ }^{(N)}$ ） 1 PRINT
63® FOR I $=$ TO 3ıPRINT SPC 4）；TI慗（I），SPC（14－LEN（TI象（ I）））：SE（I，N）：NEXT
640 A＝INP（2）：NEXT：GOTO 35ø
65ø LPRINT＂MENU：＂
66ஏ FOR $N=1$ TO 7iLPRINT：LPR INT SPC（2g－LEN（DA（N））／2） －DA（N）：LPRINT
675 FOR $I=\emptyset$ TO 3：LPRINT SPC （4）：TI（I）：SPC（14－LEN（TI （I））），BE（I，N）：NEXT
68Ø NEXT：GOTO 35ø
7 70ٍ RW＝2：CL＝3：GOSUB 9のg：INPUT
＂NUMBER OR MENU TO SAVE＂ ；NO§：IF NO\＄＝＂n THEN 35g FFF＝＂MENU＂＋NO\＄：OPEN＂O＂，\＃ 1，FF象 TOR $=1$ TO 7：FOR I $=\varnothing$ TO 3：PRINT \＃1，SE（I，N）：NE XT I，N
73ø CLOSE \＃1：GOTO 35ø
RW＝2：CL＝3：GOSUB 9øぁ：INPUT
＂NUMBER OR MENU TO LOAD＂ ；NO \＄：IF NO\＄＝＂＂THEN 35g FF $=$＂MENU＂$+N O$（DPEN＂I＂， 1，FF
779 FOR $N=1$ TO 7：FOR $I=\emptyset$ TO 3：INPUT 漛1，SE（I，N）：NE XT I，N

78
8ஏฮ

9 CLEARW 2
910 GOTOXY CL，RW：RETURN
929 RETURN
930 A \quad＝CHR（ $\operatorname{INP}(2)$ ）
935 RETURN

Program 6：Amiga Line Changes

5 DEFINT A－Z：SCREEN $1,32 \emptyset, 2 \emptyset \varnothing, 4$
1 ：WINDOW 3 ，＂＂$,(\varnothing, \varnothing)-(311,186), 16$
，l：WINDOW OUTPUT 34
$6 \emptyset \emptyset \mathrm{~B}=\mathrm{AS}: \mathrm{RW}=\varnothing: \mathrm{CL}=17$ ：GOSUB 9004 610 IF $\mathrm{B} \$=$＂ P ＂THEN OPEN＂LPTl：＂ FOR OUTPUT AS \＃1：PRINT \＃1，SPC（18 ）ELSE OPEN＂SCRN：＂FOR OUTPUT A S \＃14
620 PRINT \＃1，＂MENU：＂：IF BS＝＂P＂T HEN PRINT \＃1，SPC（45）＂ON HAND
NEED TO BUY＂ 4
630 FOR N $=1$ TO 7：PRINT \＃1，CHRS （13）：PRINT \＃1，SPC（20－LEN（DAS（N）） ／2）；DAS（N）：PRINT \＃1，CHRS（13） 4 640 FOR $I=\varnothing$ TO 3：PRINT \＃1，SPC（ 4）；TIS（I）；SPC（14－LEN（TIS（I）））；SE \＄$(I, N): N E X T \leftarrow$
650 IF $\mathrm{B} \$=$＂R＂AND INKEY $\$="$＂THEN 6504
660 NEXT：CLOSE \＃1：GOTO 3504
$7 \emptyset \emptyset$ RW＝2：CL＝3：GOSUB 9øø：INPUT＂N UMBER OR MENU TO SAVE＂；NOS：IF NO \＄＝＂＂THEN 3504
$71 \varnothing$ OPEN＂MENU＂＋NOS FOR OUTPUT A S \＃14
720 FOR N＝1 TO 7：FOR I＝Ø TO 3：PR INT \＃1，SES（I，N）：NEXT I，N 4
730 CLOSE \＃1：GOTO 3504
750 RW＝2：CL＝3：GOSUB 9øø：INPUT＂N UMBER OR MENU TO LOAD＂；NOS：IF NO \＄＝＂＂THEN 3504
760 OPEN＂MENU＂＋NOS FOR INPUT AS \＃14
$77 \varnothing$ FOR N＝1 TO 7：FOR $\mathrm{I}=\emptyset$ TO 3：IN PUT \＃1，SES（I，N）：NEXT I，N 4
780 CLOSE \＃1：GOTO 3504
8øø WINDOW CLOSE 3：SCREEN CLOSE 1：END
$9 \emptyset \emptyset$ CLS 4
910 LOCATE RW＋1，CL＋1：RETURN 4
920 WHILE INKEY\＄＜＞＂＂：WEND：RETURN
930 AS＝UCASES（INKEYS）：RETURN 4
4

Program 7：Menu Planner
 For Atari $400,800, \mathrm{XL}$ ，
 And XE

HK 5 DIM NI（3），IM\＄（21），T\＄（21 ），EL\＄（17），DE\＄（9），CH\＄（7） ，FF\＄（9），NO\＄（3），A\＄（1），B\＄ （1）
KH $1 \varnothing$ NI（Ø）$=4$ Ø：REM NUMBER OF ENTREES
HI $2 \emptyset$ NI（1）$=2 \varnothing$ ：REM NUMBER OF VEGETABLES
DN $3 \varnothing$ NI $(2)=2 \emptyset:$ REM NUMBER OF STARCH／BREADS
AH 4 Ø NI $(3)=2 \emptyset:$ REM NUMBER OF DESSERTS
DD 45 DPEN \＃1，4，$, ~ " K: ": P O K E$ 752，1：POKE 82，ø
AO 5の EL\＄＝CHR\＄（32）：EL\＄（17）＝C HR\＄（32）：EL\＄（2）＝EL\＄
㫙 6 D $\mathrm{NI}=$ ■：FQR $I=\emptyset$ TO $3: I F N$ I（I）$>N \mathrm{~N}$ THEN NI＝NI（I）
MI 70 NEXT I：DIM MN\＄（4）（NI＋ 1 ）$\ddagger 21+21$ ），DA\＄$(8 * 9), S E \$($ 4客21＋7＊4＊21），TI \＄（4＊13）
L6 75 FQR J＝ø TO 3：FOR N＝1 T －7：K＝J＊21＋（N－1）＊ 4 富 $21+$ 1：SE\＄$(K, K+16)=E L \$: N E X T$ $\mathrm{N}: \mathrm{NEXT} \mathrm{J}$

DK Bø FOR N＝1 TO 7：READ T\＄：L ＝LEN（T\＄）：IF L＜9 THEN T $\$(L+1)=E L \$$
KM $85 \mathrm{~K}=(\mathrm{N}-1) * 9+1$ ： $\mathrm{DA} \$(\mathrm{~K})=\mathrm{T} \$$ ： NEXT N
IK $9 \varnothing$ DATA SUNDAY，MONDAY，TUE SDAY，WEDNESDAY，THURSDA Y，FRIDAY，SATURDAY
IE 1 øø FOR I＝ø TO 3：READ T\＄： L＝LEN（T\＄）：IF L＜13 THE N T\＄（L＋1）＝EL\＄
JJ $105 \mathrm{~T} \$(\mathrm{~L}+1, \mathrm{~L}+1)=":=\mathrm{K}=\mathrm{I}$＊ 1 3＋1：TI\＄（K）＝T\＄：NEXT I
$0011 \varnothing$ DATA ENTREE，VEGETABLE ，STARCH／BREAD，DESSERT
D6 120 FOR $I=\varnothing$ TO 3：FOR N＝1 TO NI（I）：READ T\＄：L＝LE N（T\＄）：IF L＜21 THEN T\＄ $(L+1)=E L \$$
OK $125 \mathrm{~K}=\mathrm{I} *(\mathrm{NI}+1) * 21+(\mathrm{N}-1) * 2$ $1+1: \operatorname{MN}(\mathrm{K})=\mathrm{T} \$:$ NEXT $\mathrm{N}:$ $K=K+21: M N \$(K)=E L \$: M N \$$ （ $K, K+5$ ）$=$＂CHOICE＂：MN\＄ $K+6)=E L \$:$ NEXT I
PQ $130 \mathrm{CH} \$=$＝MRPSLEQ＂：GOTO 35 \varnothing
FB $14 \varnothing \mathrm{~N}=1$
L15ø RW＝1：CL＝14：GOSUB 9øの： PRINT＂MENU PLANNER＂
FA 16 Ø RW＝3：CL＝ø：GOSUB 91ø：K $=(N-1) * 9+1$ ：？DA $\$(K, K+$ 8）
K0 17ø RW＝12：CL＝11：GOSUB 91ø ：PRINT＂〈C〉 TO CANCEL ＂
PP 18の RW＝13：GOSUB 91ø：PRINT ＂＜RETURN＞TO SELECT＂
BC 19ø RW＝14：GOSUB 91ヵ：PRINT ＂〈SPACE BAR＞TO CYCL E＂
NH 2øの I＝ø：FOR J＝ø TO 3：K＝J＊ $21+(N-1) * 4 * 21+1: S E \$(K$ $, K+16)=E L \$: S E \$(K, K+17$ ）＝EL\＄：NEXT J
KK $21 \varnothing$ RW＝5＋I：CL＝\varnothing ：GOSUB $91 \varnothing$ ：K＝I \＆ $13+1$ ：PRINT TI\＄（K ，K＋12）
FE 22ø R＝1
CF 23ø RW＝5＋I：CL＝15：GOSUB 91 $g: K=I *(N I+1) * 21+(R-1)$ ＊21＋1：PRINT MNक（K，K＋2 ஏ）
LC 240 GOSUB 930
LL 25 IF $A \$<>C H R \(155) THEN 280
Cl 26 の $\mathrm{K}=\mathrm{I} * 21+(\mathrm{N}-1) * 4 * 21+1: \mathrm{I}$ F $R=N I(I)+1$ THEN GOSU B 47פ：SE\＄$(K, K+2 \emptyset)=I M \$$ ：GOTO $31 \emptyset$
E6 27 Ø K $1=\mathrm{I} *(\mathrm{NI}+1) * 21+(\mathrm{R}-1)$＊ $21+1: S E \$(K, K+2 \varnothing)=M N \$($ K1，K1＋2ø）：GOTO $31 \varnothing$
FA 28ø IF $A \$=" C "$ THEN GOTO 1 $5 \emptyset$
J129の IF $A \$=C H R \(32) THEN R ＝R＋1：IF R＞NI（I）＋1 THE N 220
68 3øø GOTO 23ø
HB $31 \emptyset \mathrm{~K}=(\mathrm{N}-1) * 4 * 21+1: I F$ SE $\$$ （ $K, K+6$ ）$=$＂EAT OUT＂THE N 330
AE 32 I $=I+1$ ：IF $I<4$ THEN 210
FO 33 Ø IF FL＝1 THEN FL＝ø：GOT － $35 \emptyset$
BM4． $\mathrm{N}=\mathrm{N}+1$ ：IF $\mathrm{N}<8$ THEN $15 \varnothing$ LN 35ø RW＝1：CL＝14：GOSUB 95g： PRINT＂MENU PLANNER＂
6A 36ø RW＝5：CL＝9：GOSUB 91ø：P RINT＂＜M＞AKE A MENU＂
6837ø RW＝6：GOSUB 91ø：PRINT ＂〈R＞EVIEW＂

B0 38ø RW＝7：GOSUB 91ø：PRINT ＂\langle P＞RINT＂
HC $39 \varnothing$ RW＝8：GOSUB 91 ：PRINT ＂＜S＞AVE＂
KK 4øø RW＝9：GOSUB 91ø：PRINT ＂＜L＞OAD＂
NL $41 \varnothing$ RW＝1ø：GOSUB 91ø：PRINT ＂＜E＞DIT＂
PK 420 RW＝11：GOSUB 91ø：PRINT ＂＜Q＞UIT＂
BP 430 RW＝15：CL＝6：GOSUB 910： PRINT＂TYPE LETTER OF YOUR CHOICE＂
JN 440 GOSUB 930：FOR L＝1 TO 7：IF A\＄＜＞CH\＄（L，L）THE N 45ø
01445 ON L GOTO $14 \varnothing$ ，6øø，6øø ，7øø，75ø，5øø，8øø
CE 45ø NEXT L
6L 46ø GOTO $44 \varnothing$
OB 47ø RW＝1ø：CL＝ø：GOSUB 91の： PRINT＂CHOICE＂；：INPUT IM
HP 48ø IF IM\＄＝CHR $\$(32) \quad$ OR IM \＄＝＂＂THEN 47g
PE 49ø RW＝1の：CL＝ø：GOSUB 91の： PRINT EL\＄；EL\＄：RETURN
FN 5øø RW＝2：CL＝5：GOSUB 9øD： P RINT＂DAY TO EDIT＂；：I NPUT DE\＄：IF DE\＄＝＂＂TH EN 35ø
30 $51 \emptyset$ FOR $N=1$ TO 7：K＝（N－1）＊ 9＋1：IF $D E \$=D A \$(K, K+L E$ N（DE\＄）－1）THEN FL＝1：G OTO $15 \varnothing$
If 52 の NEXT N：RW＝4：CL＝3：GOSU B 91ø：PRINT＂DAY MUST BE SPELLED OUT IN FU LL＂
EK 53ø FOR R＝1 TO 2øø：NEXT R ：GOTO 35
KP 6øø $B \$=A \$: R W=\varnothing: C L=17: G O S U$ B $9 \varnothing \square$
CN61ø DE\＄＝＂P：＂：IF B\＄＝＂R＂TH EN DE\＄＝＂E：＂
LI 62の OPEN \＃2， $8, \varnothing, D E \$$
DA 63ø PRINT \＃2；＂MENU：＂：IF B \＄＝＂P＂THEN PRINT \＃2；E L\＄；EL\＄；EL\＄；＂ON HAND （5 SPACES\}NEED TO BUY

FE 64D FOR N＝1 TO 7：PRINT \＃2 ；CHR\＄（155）： $\mathrm{K}=(\mathrm{N}-1) * 9+$ 1：PRINT \＃2；EL\＄（1，16）； DA ${ }^{2}(K, K+B)$

HP 65 g FOR $I=\varnothing$ TO $3: K=I * 13+1$ $: K 1=I * 21+(N-1) * 4 * 21+1$ ：PRINT \＃2；TI\＄（K，K＋12） ；EL\＄（1，2）；SE\＄（K1，K1＋2 ø）：NEXT I
DE 66ø IF $\mathrm{B} \$=$＂R＂THEN GET \＃1 ，A
DK $67 \varnothing$ NEXT N：CLOSE \＃2：GOTO 35ø
EP 7øの RW＝2：CL＝3：GOSUB 9øø： P RINT＂NUMBER OR MENU TO SAVE＂；：INPUT NO\＄：I F NO\＄＝＂＂THEN 35ø
EH 71 Ø FF $\$=$＂D：MENU＂：FF $\$(5)=N$ 0\＄：OPEN \＃2，8，ø，FF\＄
AG 72 Ø FOR $N=1$ TO 7：FOR I＝ø TO $3: K=1 * 21+(N-1) * 4 * 2$ 1＋1：PRINT \＃2；SE\＄（K，K＋ 2ø）：NEXT I：NEXT N
HA 730 CLOSE \＃2：GOTO 350
EF 75ø RW＝2：CL＝3：GOSUB 9øø：P RINT＂NUMBER OR MENU TO LOAD＂；：INPUT NO\＄：I F NO $\$="$＂THEN $35 \emptyset$

E176の FF\＄＝＂D：MENU＂：FF\＄（5）＝N 0\＄：OPEN \＃2，4，ø，FF\＄
HF77ø FOR N＝1 TO 7：FQR I＝g TO 3：K＝I \＆ $21+(N-1) \$ 4 \% 2$ 1＋1：INPUT \＃2；T\＄：SE ${ }^{\text {（K }}$ ， $\mathrm{K}+2 \varnothing$ ）$=$ T\＄：NEXT I：NEXT N
HF 78ø CLOSE \＃2：вOTO 35ø
DF 日øø ？CHR $\$(125)$ ：POKE 752， の：END
KC 9øD ？CHR $\$(125)$
IM 910 POSITION CL，RW：RETURN
M6 93ø GET \＃1，A：A\＄＝CHR\＄（A）：R ETURN
II 999 REM ENTREE：
BF 1 Øøø DATA HOT DOGS，HAMBUR GERS，PORK CHOPS，STEA K，ROAST BEEF，ROAST P ORK，LAMB CHOPS
L 1 1ø1ø DATA VEAL CUTLETS，RO AST CHICKEN，FRIED CH ICKEN，CHICKEN SALAD， SPAGHETTI
AI $102 \emptyset$ DATA LASAGNA，TACOS，T UNA PATTIES，TUNA SAL AD，TUNA NOODLE CASSE ROLE，BEEF STEW
6N 1 ø3ø DATA TURKEY，POTATO C heEse soup，cottage c HEESE，PEA SOUP，OMELE TTE
OA $1 \varnothing 4$ D DATA FETTUCINI，CANNE LLONI，MANICOTTI，CREP ES，SCRAMBLED EGGS，BU RRITOS
D6 1 ø5ø DATA MEAT LOAF，LEG 0 F LAMB，VEAL SCALOPPI NE，HALIBUT，FISH，LOBS TER，CRAB
OJ 1 ØGの DATA CHOW MEIN，CHOP SUEY，BEEF VEGETABLE SOUP，EAT OUT
HN 1 1069 REM VEGETABLE：
KA 1 ø7 \varnothing DATA CORN，PEAS，TOMAT OES，GREEN BEANS，SPIN ACH，GREEN SALAD，FRUI T SALAD，CARROTS
HE 1 ø日ø DATA BROCCOLI，CAULIF LOWER，SQUASH，ZUCCHIN I，LETTUCE，CUCUMBER，P ICKLE，MUSHROOMS
FC 1 ø9ø DATA CELERY，ONIONS，G REENS，LIMA BEANS
ED 1 ø99 REM STARCH／BREAD：
JA 11 Øø DATA BREAD，FRIED POT ATOES，RICE，FRENCH FR IES，MASHED POTATOES， BAKED POTATO
BO $111 \varnothing$ DATA SWEET POTATOES， NOODLES，ROLLS，PILAF， PITA，KASHA，MATZOHS，C RACKERS
FF $112 \emptyset$ DATA BREAD STICKS，GA RLIC BREAD，FRIED RIC E，bOILED POTATOES，BU NS，PASTA
ML 1129 REM DESSERT
KH 1130 DATA ICE CREAM，POPSI CLE，CAKE，DONUT，FRUIT ，CHEESE CAKE，COOKIES ，PUDDING
CK 114 D DATA JELLO，SORBET，BR OWNIES，FUDGE，FRUIT P IE，CREAM PIE，SWEET R OLL，TORTE
HJ $115 \emptyset$ DATA BOMBE，BAKED ALA SKA，DRIED FRUIT，JELL Y ROLL

Tass Times In Tonetown

Ervin Bobo

Abstract

Requirements: Amiga (reviewed here), Apple II series, Atari ST, Commodore 64, IBM PC and compatibles, and Macintosh computers. Different computer versions may vary slightly. Color monitor required.

Gramps has disappeared, Spot is following you all around the house, and in the lab is a fishbowl full of guitar picks. (Well, where else would you keep them?)

This is the beginning-almost-of Tass Times In Tonetown, a new graphics adventure from Activision and Interplay Productions, the team who brought Mind Shadow and Borrowed Time to the home computer.

Like those predecessors, Tass Times is a mystery, and the disappearance of Gramps is only the beginning. Before you're through, you'll see strange places, deal with stranger people, and learn a strange new dialect in which the word "tass" equates-some-what-with what a long-ago generation called "hip."

After a striking opening screen and theme music, you'll find yourself in the living room of Gramps. His dog Spot is here and so is a receipt for an anchovy and pepperoni pizza, but no Gramps.

The screen is divided into four main sections. In the upper left quarter you'll see Gramps' living room, while the upper right quarter contains eight icons that will speed your communication with the parser (the portion of the program that interprets your commands). Just below this and running the width of the screen is another bar where your inventory will be displayed and where simple directional commands can be executed by clicking on the proper compass point. At the bottom of the screen is the text area, large enough to display seven lines of text. It waits for you to make your move.

Mouse Magic

As you might expect, moves may be made with the Amiga mouse or by typing them in the conventional manner,
although the mouse can be used for almost all communication. For example, it's possible to move through the house, examine objects, and even find the key inside the cookie jar by using only mouse control. But to use the key to unlock the door to the lab, you'll have to type, "unlock door."

In using mouse control, you click on one of the eight icons. (It will be obvious that the picture of an eye means "look" or "examine.") As you click on it, the operative verb appears in the text area just where you would have typed it, and the flashing cursor tells you the parser is waiting for you to complete the command. Assuming you are in the kitchen, move your pointer into the graphic scene and click on the cookie jar. A key appears, floating in midair, and the text area indicates that you see a key. To take the key it is not necessary to click on the "take" icon; simply click on the key and it will be added to your inventory.

Similarly, should you at any point in the game need to reexamine, use, or drop an object, you may do so by clicking on its picture in the inventory file.

It is in this method of mouse communication that Tass Times moves a great stride beyond other parsers and, in doing so, speeds up the game. Another benefit is this: Although the graphics are superb and even fine detail is rendered well, there may be times when you wish to examine an object for which you have no name. In most games, you might need to type several guesses. Here, point at it and click. If it is important to the game, it will be identified for you.

Nor does this method affect your interaction with the parser, for it is only your own moves that are being automated. Do something stupid, and you'll receive the same acid reply as if you had typed in the stupid move.

Anyway, you have the key and you've unlocked the lab. There you find a fishbowl full of guitar picks and a large loop that seems to be connected to the generator. As you turn on the gen-

Tass Times In Tonetown from Activision features a colorful graphics interface.
erator, a strange humming fills the room. Spot leaps through the hoop and disappears. You follow him and find yourself in Tonetown.

So far, that's not giving away much of the game, and it's all you're going to get. Well, one more thing: Spot's name is now Ennio, and he's capable of speech. Listen to him, for he has been here before, and although he talks like a human he still retains certain dog instincts that can aid you in your search for Gramps.

As stated before, the graphics are excellent. As you move from one room to the next, the scene changes quickly in what is best described as a very fast dissolve. Sound, from the hum of the generator to the rock band in Tonetown, is very good, using the two-channel feature of the Amiga. More to the point, if no sounds are appropriate to the scene, then there are no sounds.

Documentation consists of a book that defines the controls and a copy of the Tonetown Times. A careful reading of the newspaper is essential, for you've involved yourself in much more than a search for Gramps. Other things have been happening in Tonetown, many of them instigated by the evil Franklin Snarl, and you seem to be a catalyst.

Further, you'll find that both Gramps and Ennio/Spot have been here before and are held in high regard. You, on the other hand, are invariably referred to as a "stupid tourist," and, until you can shed that image, you're going to feel handicapped. Your clothing and the way you talk are dead
giveaways. Until you discover the ultratouch way to ultratass, you're going to look like a tourist; and until you learn the Tonetown dialect, you're going to sound like one.

Get tone quick, for you don't have that many moonal periods in which to find Gramps. And if you don't, you may find ycurself in the position of Jonboi Waltune, who recently had to leave town after being cited for aggravated tonelessness.

Tass Times In Tonetown Activision
2350 Bayshore Frontage Rd.
Mountain View, CA 94043
\$34.95 Commodore 64 version \$39.95 Apple II series and IBM PC and compatibles versions
\$44.95 Amiga, ST, and Macintosh versions

Attention Programmers

COMPUTE! magazine is currently looking for quality articles on Commodore, Atari, Apple, and IBM computers (including the Commodore Amiga and Atari ST). If you have an interesting home application, educational program,
programming utility, or game, submit it to COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Or write for a copy of our '"Writer's Guidelines.'

AN OPPORTUNITY UNLIKE ANY OTHER

The nation's largest computer camp offers all traditional camping activities and camaraderie in a beautiful setting. Your child will have exclusive use of a major brand microcomputer for at least 6 hours every day.

An experienced staff ratio of one to three and a computer ratio of one to one uncaps the creativity of young people. Students receive hands-on experience in robotics, graphics, lasers, sound, languages, telecommunications and more.

Complete details on the $1,2,4$, and 8 week coed sessions for ages $8-18$ are available in a free brochure. Call or write for yours!

Call (317) 297.2700 or write to
MIDWEST COMPUTER CAMP
9392 Lafayette Road, Unit C4, Indianapolis, IN 46278

Airheart for The Apple II

James V. Trunzo

Requirements: Apple II-series computer with a minimum of 128 K ; joystick and color monitor required.

A quick look at current entertainment software available for the Apple II-series computer systems certainly indicates the trends that have developed over the last year or so. More elaborate dungeon games, increasingly realistic wargames, and super-sophisticated text adventures claim all the top spots on most bestseller lists. Ironically, the genre that started the computer entertainment craze, the arcade game, is not represented. But Brøderbund's latest game may change all that.

Airheart from Broderbund mixes action and strategy in a game with excellent color graphics.

Airheart, a stunning graphics arcade adventure game, challenges both your strategic skills and your hand-eye coordination just as well as any of its illustrious predecessors. Designed by Dan Gorlin of Choplifter fame, this state-of-the-art arcade game utilizes double hi-res graphics and a simple taskoriented approach to come up with one of the best arcade games in years.

Striving for the title of the legendary champion Airheart, you must prove yourself worthy both of the name and the task of caring for the infant prince (who, incidentally, awaits your coming in a state of suspended animation). To do so, you must use your highly mobile, jet-powered sled to. overcome the robotic defenses that have been installed to insure that only the best of warriors succeed. Spirit guardians will present you with increasingly difficult tasks: You must retrieve a sword (strength), a goblet (generosity), and a harp (harmony) before earning the right to enter into the final battle. Barring your way are seven types of robots, each with a different form of deadly defense
aimed at thwarting your efforts.
These various robots provide Airheart with not only its challenge but also with its variety. Some of the robots, like the Bumper, simply harass you; others, like the Spitter, may destroy you or your craft. A different strategy is needed to defeat each type of robot, and only a steady hand and quick thinking allow you any chance of success. All the robots can be shot, of course, but that's only half the battle. Once you've destroyed a robot, you must pick up the Pod that remains, or it regenerates into a new robot of the type just destroyed.

Topnotch Graphics
 And Animation

As mentioned earlier, Airheart offers excellent graphics in all phases of the game. The animation is top-of-the-line stuff, and, each time you play, you'll notice something new that will delight you. Whether it's the Spirit Guardians casting spells over you, a deadly bubble encasing you, or jet-sledding underwater, the details that have gone into the graphic rendering of the action would be worth the price of the program even if the game was only medio-cre-which it definitely is not. What kind of graphics surprise awaits the winner of the game I can only guess at, for the best I've been able to do is secure the sword and the goblet.

Airheart contains other features, including sound effects, a vanity score board, and so on. Additionally, it should be noted that the game does require 128 K of memory and a joystick. Due to the speed and sensitivity of the jet-powered sled, it's easy to understand that keyboard control would not have proved sufficient for the task of guiding the sled.

Airheart proves that there is still room for arcade games in the software entertainment field, providing that ingenuity and programming skill go into the product. Both of these elements are aptly presented in Airheart.

Airheart

Brøderbund
17 Paul Dr.
San Rafael, CA 94903-2101
\$34.95

Lance Haffner Games

James V. Trunzo

Requirements:

3-In-1 Football-Apple II series, Macintosh, Commodore 64, Amiga, Atari 800/XL/XE, Atari ST, and IBM PC and all compatible computers.
Basketball: The Pro Game-Apple II series, Commodore 64, Amiga, and IBM PC and compatibles.
Final Four College Basketball-Apple II series, Atari 800/XL/XE, Commodore 64, Amiga, and IBM PC and compatibles.
Full Count Baseball-Apple II series, with Commodore 64 and IBM and compatibles available by April.
A printer is recommended, but not required.

Lance Haffner's statistical sports games, while not widely known, are excellent entertainment packages.

Basketball: The Pro Game, Final Four College Basketball, and 3-In-1 Football are the heart of the game line, although by the time this review goes to press, a fourth game, Full Count Baseball, will be available. There are also a variety of utility disks available.

The first three programs have many features in common, so, before looking at each product's individual attributes, let's examine the similarities. The games are statistically oriented, and there are no frills, such as flashy graphics. Instead, all their programming power is poured into reproducing accurately played contests based on actual player and team statistics. No matter which game you are playing, it's obvious that the emphasis is on statistics. All screens keep you informed of both the overall stats, on which each player's performance is based, and on current game stats, which reflect the actual game taking place.

Additionally, in keeping with this emphasis, all Lance Haffner games let you print complete game stats appropriate to the sport being played and then compile those figures for one or all teams being used. Whether you simply want to see the outcome of a particular game or replay an entire season, Lance Haffner software allows you to do so.

A third similarity among the programs is the ease and speed of play. Whether you're choosing your lineup, selecting plays, or making substitutions, you have complete flexibility and the constant aid of onscreen instructions. Football games can be played in as little as 25 minutes, while basketball can be played in approximately 45 min utes (due to the greater number of options and the necessary substitutions).

Finally, all games stress user participation. Even with their statistical bent, these aren't passive programs (though all of them can play computer-versus-computer contests, if you wish).

For example, 3-In-1 Football allows you to select from among 16 offensive plays and from 6 defensive formations; the basketball games constantly demand that the user choose who will be handling the ball and what he'll do with it once he gets it. You can play against the computer or against a human opponent, and the enjoyment level is top-notch in either case. Now let's take a quick look at each game.

Dream Matchups

3-In-1 Football features 176 college teams, 28 NFL teams, and 14 USFL teams from the most recently completed season. In addition, a second disk (included with the game) offers the user a choice of 174 great college teams and 189 great pro teams of the past. Watch Navy, led by Roger Staubach, take on Dan Marino's Pitt Panthers. Match the 1967 USC Trojans against the defensive giants of the 1983 Nebraska team-can OJ Simpson run against those guys? See if the Pittsburgh Steelers' Steel Curtain can contain the explosive AFL San Diego Charger greats like Keith Lincoln and John Hadl.

The football game allows you to select all plays, call time-outs, elect to accept or decline penalties, go for twopoint conversions, and do much more. Individual player stats are provided at half time and at the conclusion of the game, although it should be noted that when selecting plays, the computernot the user-determines who is carrying, throwing, or receiving the ball. This is determined by the actual player stats from the given year and results in very accurate statistics. It insures that a player will not be overused and that a seldom-used player with a high aver-age-yards-gained record will not be used in every crucial situation. This method also helps speed the game along. Individual players are announced with each play, however, and your knowledge of a team's personnel will dictate your play-calling.

Final Four College Basketball and Basketball: The Pro Game offer the same exceptional value as the football game. The college game includes 292 teams from the 1985-86 season plus 70 alltime great teams. Remember the classic matchup between the Houston Cougars, led by Elvin Hayes, and the UCLA

Bruins, led by Lew Alcindor? Replay that contest and see if the Cougars can repeat their upset victory. Or match Alcindor against Georgetown's Patrick Ewing.

The Pro game features all 23 NBA teams from the most recently completed season and throws in 100 great teams of the past. Bill Russell's Celtics can go head-to-head against West, Chamberlain, and Baylor of the Lakers.

In either game, you select who will take the shot, who will pass the ball, who will intentionally foul, and who will be fouled. Starting line-ups are yours to determine, but, more importantly, it's your coaching throughout the game that will determine the outcome. It's an absolute must that you substitute wisely and timely. Leave a tired player in the game too long and he'll become exhausted and be of no use for the remainder of the game. Ignore the number of fouls on a player, and it's certain that he'll watch the rest of the contest from the bench. On-screen stats give you the percentage chance of each shooter with each potential shot. Players are rated for their ability to rebound, pass, shoot, and play defense.

Other features? In the Pro game, you can elect to play with the threepoint shot. In the college game, you can play with or without a 45 -second shot clock. In either game, you select the type of team defense you wish to play, the type of offense, whether to press after a basket, and much more. Home court advantage is built into the games, based upon home and away records. Competition between teams in the college game takes into consideration the strength of a team's schedule and conference to insure realism and accuracy.

It's obvious from the preceding information that I'm sold on these products. Sure, it would be nice if fancy graphics enhanced the programs, but for those of us who like realism and the ability to play complete seasons, Lance Haffner game programs are hard to beat.

All Lance Haffner games come with a stat compiler and a report generator, plus more teams than you'll use in a lifetime. The $\$ 39.95$ price for each program is an excellent value, especially considering all that you get. New team disks are available each year for $\$ 12.99$.
Lance Haffner Games
P.O. Box 100594

Nashville, TN 37210
$\$ 39.95$ each
Annual team disks: $\$ 12.99$

Instant Music For The Amiga

Neil Randall

Instant Music from Electronic Arts breaks new ground in computer entertainment software. Not only does it encourage the nonmusician to play music, it makes playing music easy. Only minutes after loading the program, anyone-no matter how little musical training he or she has-can be playing along, creating music that has no choice but to sound good. The Amiga's mouse becomes the instrument, playing whatever instrument the player chooses in key, in tempo, and in tune with the rest of the song.

Of course, there are those who think that music-like all art-should be tough, because only the most exacting standards allow us to understand the sheer importance of creative expression. To that end, such purists would suggest that playing a musical instrument is something to be perfected over years of study, after which point we are free to compose and experiment on our own. Nobody, not even the designer of Instant Music, would disagree with that. What he would disagree with, however, is the notion that only music scholars should be allowed the joy of musical performance.

Unique Notation

When Instant Music appears, the screen shows a unique and colorful display. Immediately noticeable is the actual music display, or score window, that occupies the majority of the picture. The musical notation for Instant Music, unlike any other music program I have seen, is not standard. Instead of the usual staffs, quarter notes, half rests, naturals, and so on, Instant Music displays its music as a series of squares or bars. The notation for each instrument (four appear at once) is colored differently, so that you can tell at a glance which instrument you currently control. If the electric guitar is in green, for instance, you can see how its notes ascend and descend by watching the cursor roll by the sequence of green squares and bars that make up the guitar's "notes." The display itself is divided into eight bars, and you can view all eight at once, or, by using the zoom bar, you can look at as few as you wish.

Below the display are the four instrument boxes, showing the instruments currently used for the song. Each box contains the name of the instrument, a bar to adjust that instrument's volume, and a button that allows you to get rid of that instrument's notation from the viewscreen. By clicking on any of the instruments, you can either play
that instrument, change its notation in the score window, or select a different instrument.

Above the score window is the scroll bar, which allows you to scroll ahead or back; the tempo bar, with which you speed up or slow down the music; the zoom bar; and a chord control. The chord control allows you to select one-, two-, or three-note chords for the instrument you are working with. I have found that a three-note drum adds volume and weight to the drum beat, while a two-note guitar places one note on each stereo channel. Also on this line above the score window are the QuickDraw and MouseJam selection buttons, and the button that stops and starts the music.

Instant Music opens with a song already playing. The instruments make full use of the Amiga's built-in sound capabilities, and many of them sound digitized. Four instruments play at once, with many combinations possible. Electric piano, drums, electric bass, strings, saxophone, trumpet, pipe organ, electric guitar, vibes, accordian, steel drums-the choices are plentiful. One of the first things you will want to do, after listening for a moment to the song itself, is to change the instrumentation.

To do so, you simply move the mouse pointer to the bottom of the screen, where the instruments are shown, and click the one you want to get rid of. Then you move to the menus at the top of the screen and select from three lists of instruments. When you have chosen the one you want, the program loads that instrument in, and the song now uses it in place of the original instrument.

The MouseJam

There are several ways of making music with Instant Music. The first, and by far the most fun, is the MouseJam. In this mode, you press the left mouse button as the music plays, and move the mouse up and down. You are now playing your chosen instrument. Moving the mouse downwards lowers the notes, while pushing it up raises them. Instant Music will not let you stray from the chords or the rhythm of the song unless you specify that you want to, so everything you play will be musically competent, occasionally even musically brilliant.

After you have tried your hand at playing lead, adding bass, or drumming, to every song on the disk, you will want to experiment a bit. To add to your flexibility as a musician, Instant

Music allows you to move beyond the standard rhythm of the piece to either "keypad rhythm" or "free rhythm." To use keypad rhythm, you press any key on the numeric keypad; each key offers a rhythm different from the original. The 8 key, for instance, offers a beat off the normal syncopation of the tune, while the 6 key presents a driving rhythm especially effective at higher volumes. The rhythms work for any instrument you choose. Free rhythm, as its name suggests, allows you to choose your own beat, completely from scratch. While this mode offers the greatest originality, it also allows you, unlike the other rhythms, to make mistakes.

MouseJam is not the only way to make music, though. With QuickDraw, you can not only play your own lead line, you can also record the changes to the original. The procedure is very simple. All you do is drag the mouse across the screen for a chosen distance, going up or down on an angle as you choose. In this way, you will change the appearance of that instrument's track on the screen, and when the cursor gets around to that position, it will play the new notes instead of the old. Once again, the program keeps your changes within the pitch and rhythm guides for that song.

The menus for the program allow considerable flexibility in editing and arranging compositions. Perhaps the most interesting menu is the Draw menu, which contains such commands as Rhythm Guide and Scale Ruler. When you select Scale Ruler, the left and right sides of the Score Window open up to reveal a small musical keyboard and several other bits of information. Now as you play the music, you can watch the names and keyboard positions of the notes change. This information helps you compose your own songs. The Rhythm Guide lets you change the rhythm of the song, allowing such rhythmic variations as $1 / 4$, $1 / 8,1 / 8$ triplet, $1 / 16$, and multiples of the current rhythm. Although the Draw menu takes practice to get used to, it greatly increases your ability to control the music.

Instant Music offers much more than what is described here, but, until you actually use the program, most of its features won't mean much. Instant Music is so different from any other available music programs that it really must be seen to be believed. For those who want to turn up the volume and blast away at an electric guitar with a prerecorded band, this is an indispensible program. For those who want to compose music that sounds good, but does not demand a thorough knowledge of music theory, Instant Music allows that, too. And for those who are
learning a band instrument, and who hate practicing without the backing of the rest of the band, Instant Music is just the thing.

Thanks to this program, I've picked up my electric guitar again and am quickly relearning all those licks I'd forgotten several years ago. With a band at my command, playing whatever song I want them to, I can crank up my Fender and let fly with whatever my fingers are willing to give. Unlike a real band, nobody complains about the mistakes, and nobody gets impatient when I ask for the same song to be played for the twenty-second time. An excellent program, Instant Music offers pure fun. Besides the fun, it teaches music, even to those who know nothing to begin with. In other words, Instant Music allows you to expand your horizons, and that, in my opinion, is what computers are all about.

Instant Music

Electronic Arts
1820 Gateway Dr.
San Mateo, CA 94404
$\$ 49.95$

COMPUTEI Subscriber Services

Please help us serve you better. If you need to contact us for any of the reasons listed below, write to us at:

COMPUTEI Magazine

P.O. Box 10954

Des Moines, IA 50340
or call the Toll Free number listed below.
Change Of Address. Please allow us 6-8 weeks to effect the change; send your current mailing label along with your new address.
Renewal. Should you wish to renew your COMPUTEI subscription before we remind you to, send your current mailing label with payment or charge number or call the Toll Free number listed below.

New Subscription. A one year (12 month) US subscription to COMPUTEI is $\$ 24.00$ (2 years, $\$ 45.00 ; 3$ years, $\$ 65.00$. For subscription rates outside the US, see staff page). Send us your name and address or call the Toll Free number listed below.
Dellvery Problems. If you receive duplicate issues of COMPUTEI, if you experience late delivery or if you have problems with your subscription, please call the Toll Free number listed below.

> COMPUTE!
> 1-800-247-5470
> in IA $1-800-532-1272$

The SoundMouse

Rhett Anderson

Requirements: Any eight-bit Atari computer with at least 48 K and a disk drive.

The SoundMouse is a small peripheral box that plugs into the first joystick port of any Atari eight-bit computer with at least 48 K and a disk drive. Surprisingly, it adds a large range of capabilities to your computer.

The Hardware

The SoundMouse is called a mouse simply because it looks like a mouse that plugs into the Amiga, Atari ST, and Apple computers. But it's not motion that drives this mouse-it's sound. To give your Atari an ear, just plug this sturdy little piece of hardware into the first joystick port. The computer reads the SoundMouse as if it were a game paddle, so it's easy to write programs that use the SoundMouse, no matter what language you wish to use. The SoundMouse is partial to low-frequency sounds, responding well to a clap or a thump, but ignoring a whistle.

The Software

When you boot up the disk that comes with The SoundMouse, you select from three options: the Graphics Menu, the Games Menu, and the SoundMouse Band. The Graphics Menu lets you synchronize computer graphics with music that you play on your stereo. The Games Menu offers a selection of sound-controlled games. The SoundMouse band is a trio of computerdrawn musicians that appear to perform the music you play.

There are ten games from which to choose. Some of them aren't really games, though. One checks the speed of your reactions and one just draws a foot on the screen every time you make a noise. But the real games are well done. The author of these programs clearly knows the capabilities of the Atari. "Bugsquasher," in which you pulverize small insects by making loud sounds, was my favorite. The games can be played in a variety of ways-by tapping on the table where the SoundMouse rests, by tapping on the SoundMouse itself, by snapping your fingers, or by shouting. Because the SoundMouse is partial to low-frequency sounds, it appears to be a bit of a chau-vinist-while I can shout from across the room to squash a bug, the SoundMouse turns a deaf ear to my wife's loudest and lowest shouts, so she plays by clapping her hands. One game, "Soundman" (a Pac-Man-style game in
which you turn corners by making sounds), is so difficult that I can get a higher score by playing a radio next to the SoundMouse than by playing the game myself.

If you program your own games you'll have no problem making the computer respond to sounds. The manual describes programming the SoundMouse in a special section near the end. All Atari languages I'm aware of are capable of using the SoundMouse. There are other possible applications for the SoundMouse, and the ease of programming the peripheral makes experimentation easy.

Another option on the menu, the SoundMouse Band, is disappointing. A drummer, a lead guitarist, and a keyboard player made a shallow attempt at playing some of my favorite songs. Fortunately, the third menu option, the Graphics Menu, is a genuine prize.

The SoundMouse manual states that the programs included in the Graphics Menu are like color organs-a fad of the early seventies. They came in two varieties: one plugged into your stereo like a speaker and the other was accompanied by its own little microphone. Color organs had two or three colored light bulbs that turned on and off in time with the music.

The Graphics program that comes with the SoundMouse is like a highresolution color organ that uses the SoundMouse as a microphone. Patterns bounce, dance, and explode across the screen in a variety of changing colors. You've probably never seen anything like this. You can even program your own light shows. The display moves to low-frequency sounds-drums and bass, mostly-so the manual recommends rock-and-roll music, but jazz and a few classical pieces worked as well for me. On the basis of the Graphics Menu programs, and the potential for use in my own programs, I believe that the SoundMouse is an unique and exceptional peripheral.

SoundMouse

Soundsoft
Box 740, 10 Maple Ave.
Andover, NJ 07821
$\$ 29.95$ (plus $\$ 2$ shipping and handling)

The Beginner's Page

Odds And Ends

Here are a couple of questions about BASIC programming that I have recently received in the mail.
Q. "What is the REM statement?"
A. REM is the BASIC word for "remark." This statement can be used as an explanation to someone reading a listing of the program. When the program runs, the computer ignores it. For example, I often use a REMark as the first line of a program to indicate the title of the program. You may also add an author's byline, address, or other information about the program:

100 REM EXAMPLE TITLE 110 REM BY REGENA

As you are creating a program, you may want to use lots of REM statements to help you keep track of different sections of your program. This is a way to document or annotate your program and to write reminders to yourself as you are programming. You may want to label your subroutines or the major sections of a program, or you may want to give expanations for particular programming sequences or equations. Some examples are:

200 REM DRAW TITLE SCREEN

300 REM PRINT INSTRUCTIONS
400 REM START GAME
500 REM SUBROUTINE TO SHOOT ALIEN
600 REM SUB TO CHECK POSITIONS
Some computers use an apostrophe or an exclamation point as an abbreviation for REM.

Many programmers believe it is wise not to GOTO or GOSUB to a REMark statement. (For example, use line 500 for the REMark to label the subroutine to shoot an alien, but actually start the subroutine in line 510 , or the very next line.) One reason to avoid using GOTO or GOSUB to a REM is that if you later delete the REMark statement, you won't have to remember all the
places where you referred to that line number. In using published programs, readers often don't type in REM statements; this, too, would be a problem if that skipped line were referenced elsewhere.

In general, it is a good idea to use REM statements in your program while you are working on it or if anyone else will be trying to interpret your programming techniques. It is easier to modify or correct a program that has REM statements because you can quickly locate its various sections.

A couple of readers have asked me why I don't use REMark statements in my programs, probably because another magazine that publishes programs insists that all explanations be within the program in REM statements. I choose instead to describe my programs in their accompanying articles or to include a line-by-line description with the programs. Also, I don't use a lot of REM statements because a lot of my early computer work was on computers with limited memory (such as the VIC-20 or the MC-10), and REM statements use valuable memory [and valuable magazine space - Ed]. I got used to programming without REMs. But even if you don't have to worry about memory constraints, a program will run faster if it is shorter.
Q. "After typing in a program and trying to RUN it, I get a SYNTAX ERROR message. What is the problem?'
A. SYNTAX ERROR is one of the most common error messages. It usually means that a BASIC word is spelled or used incorrectly. The first thing to do is to check each word in that line to make sure it is spelled right.

A syntax error may also indicate an incorrect number of parentheses, unmatched parentheses, or
parentheses which are not in the right places. Or, you could have an incorrect number of parameters (numbers separated by commas). For example, the CIRCLE command needs a horizontal coordinate and a vertical coordinate for the center, plus a radius. If you forget to specify a radius, you will get a syntax error. In this example, you also need to use parentheses in the right places and put the numbers in the right order-different computers have different requirements:
CIRCLE 120,100,50 Atari ST
CIRCLE $(120,100), 50$ IBM, Amiga, and others
The manual that comes with your computer (or with BASIC) should have a list of other error messages or error codes. Some computers give an error code number that you look up in the manual; others give a short error message. However, most manuals provide explanations for the various errors.

One kind of error message is particularly perplexing, however, because the program line to which it refers isn't actually the culprit. If you have DATA statements in your program, the error message may refer to a different line number, but the error is actually in a DATA statement. Make sure that you have the right number of commas among your data.

A Meeting With An Ex-Pirate

Abstract

A recent flurry of articles and legal opinions on software copyrights were piling up on my desk. The more I read, the more confused I got. "How can I make some sense

 out of this?" I asked.The answer was obviousonce again it was time to start a trek up the side of the Santa Cruz mountains near Silicon Valley to visit the intrepid software pirate, Long John Silicon. The last time I had seen Long John (COMPUTE!, February 1982), he was actively engaged in software piracy. If anyone knew how to sort out my confusion, he would.

Armed with my climbing gear and a few days' supply of food, I started towards my goal. After hours of climbing through the poison oak and wild berries, I could see the opening to his cave looming above me. As I drew nearer I could make out a sign: "THIS ENTRANCE IS CLOSED. PLEASE ENTER THROUGH THE FRONT DOOR."

This was strange-the last time I had come here, this had been the only entrance. I climbed to the top of the mountain and saw that a freeway exit had been created to bring people to a large parking lot in front of a stunning building. A heliport on the building's roof had a steady stream of traffic, and I felt out of place in my climbing gear. The building was teeming with people in three-piece suits. The sign on the building said "Long, John, and Silicon, Copyright Law." There were two entrances to the building, one marked "Sue-ers" and the other marked "Sue-ees." I picked Sueers and went inside.

I presented myself to the receptionist and started to tell her I had an appointment to see Long John. Just then, he appeared in the lobby: "Ahoy there, matey!TM," he shouted.

I looked up to see my old
friend, the pirate. He still wore his eye patch, and he had a sword strapped to his waist, but even he was wearing a three-piece suit.
"Ahoy there, matey," I shouted back.

Instantly I was pinned against the wall by a team of Trademark Police. "Ah," said Long John, "let the laddie go, mates! He meant no harm. He just a dinna know that 'Ahoy there matey ${ }^{\mathrm{TM}}$ ' is a registered trademark of Long, John, and Silicon."

Needless to say, by the time I was seated in his office I was quite disoriented. What follows is our interview.

The Interview

DT: Tell me what this new business of yours is all about! The last time I visited, you were in the software copying business-now you have a law firm.
LJS: Aye, 'tis true, I have changed. Ah laddie, there is no money in software copyin' any more. The real money is in litigation. I tell you, it's enough to make you hang up your disks.
DT: Are you telling me you have become a lawyer?
LJS: Oh no, I have too much pride for that. But I did form a law firm with two partners, Long and John.
DT: How did you pick them?
LJS: Well, y'see, I had a lot of stationery with LJS printed on it, so I picked partners whose names would fit.
DT: Now that I have regained my composure, why don't you tell me why the police pinned me to the wall when I said, "Ahoy there matey!"
LJS: Ah there you go again! 'Tis enough to make me want to slit you from your stack to your index register! You left out the ${ }^{\text {TM }}$
DT: The what?

LJS: The ${ }^{\text {TM }}$. The sentence "Ahoy there matey ${ }^{\mathrm{TM}^{\prime \prime}}$ is a trademark of LJS, Inc. No one, not even you, can use this sentence without our express permission.
DT: You have to be kidding!
LJS: Ah, another one! We used "You have to be kidding!TM" in a project last year. I'm sorry, you'll have to say something else.
DT: Well, let's get to the real purpose of my visit. I just read a few articles about user interfaces for some of the newer computers like the MacIntapple that said that the ideas expressed in their user interface could not be used on any other computers.
LJS: 'Tis true, laddie, 'tis true. We handled that case ourselves. 'Tis enough to make you flush your buffer, the way people think they can use other people's ideas when the ideas are protected by copyright law.
DT: Well wait just a minute. I'm not a lawyer, but I recall reading somewhere that copyright law protects only the expression of ideas, not the ideas themselves. Furthermore, if an idea is indistinguishable from its expression, that is, if the idea is "merged" into its expression, the expression cannot be protected under copyright laws. To my feeble mind this means that if I write a word processor program that includes a feature to translate English into Pig Latin, I can protect the source code and the object code for this program, but not the idea of a program that does this type of translation.
LJS: It depends.
DT: What do you mean, it depends?
LJS: Well, keepin' in mind that I'm not a lawyer meself, what you say may be true, as it stands. But there is another level between the program and its idea-there is the "look and feel" of the program.

DT: Oh, by look and feel you must mean things like the Range Top interface used in the MacIntapple computer.
LJS: Exactly. In their case they defined a user interface around the concept of a kitchen. The main screen has a stove top with burners on it. Programs look like pots and pans, and documents for these programs look like plates. To start a program you just place the pan on a burner and click on the spaghetti strainer. To throw a program away, you just empty the pan into the disposal. Now, the company that designed this interface has a copyright on the source code, the object code, and the "gestalt" or feel of the interface. Anyone who creates a program usin' this look and feel will have $m e$ to contend with!

At that, LJS drew his sword and threw it through a stack of floppy disks, neatly pinning them to the wall within six inches of my left ear.
DT: Wait a minute, friend-you're saying that copyright protection is not limited to the literal aspects of a computer program, but rather that it extends to the overall structure of a program, including its audiovisual displays.
LJS: Ah, 'tis a pleasure to see that your monitor is startin' to warm up, matey; you've got the truth.
DT: If this is true, then why limit this to programs? Suppose I decide to copyright a sentence structuresay a sentence form that has an adjective-noun-verb-adjectivenoun form.
LJS: Oh, like "Green frogs eat blue shoes?" Sorry, it's already copyrighted. We handled that one, too.
DT: Hold on. The form of a sentence seems more like an idea than an expression.
LJS: Not really; after all, you could say "The green frogs eat blue shoes" and you'd be OK as far as we are concerned. Since there are many ways of expressin' sentences in this form, we decided to try to protect the form, not just a particular sentence.
DT: What is this going to do for poets and other writers?
LJS: Why do you think we are so busy! The reason I started this firm
was to make sure that anyone who lifted fingers to keyboard or pen to paper would need our services.
DT: Isn't that going to stifle creativity in this country?
LJS: I'm not in this for the philosophy; I'm in it for the money.
DT: Wait a minute ${ }^{\text {TM }}$, I think you are going too far here(c).
LJS: Look matey ${ }^{\mathrm{TM}}$, I've tried to make an honest livin' as a software pirate© but couldn't ${ }^{\mathrm{TM}}$ © , so now I've had to compromise ${ }^{\text {TM }}$ my values ${ }^{\text {TM }}$ © and work to defend our way of life ${ }^{\mathrm{TM}}$.
DT: Your way of life ${ }^{\text {TM }}$ seems© to be one where© ${ }^{\text {TM }}$ no one can do anything without securing your services ${ }^{\mathrm{TM}} \mathrm{C}^{\mathrm{TM}}$.
LJS: Sounds good to me! ${ }^{\text {TM }}$
DT: On this note ${ }^{\text {TM }}$ I left, more confused than ever. What freedom do software developers have to expand on ideas for programs that they see elsewhere? What freedom will customers have if there is only one word processor, one graphics program, or one spreadsheet on the market? To my naive mind, it seems that the copyright of the overall structure, sequencing, and organization of a program is another way of copyrighting the program's idea.

Maybe I should go back in time and ask Benjamin Franklin what he would have thought of this!
David Thornburg, founder of Innovision ${ }^{\mathrm{TM}}$ and an associate editor of COMPUTEITM, is also a software developer who is confused by the recent flurry of rulings in the software copyright field. (Contents ©, 1986 by David Thornburg, Innovision; and COMPUTE! Publications, Inc. All rights reserved.)

NOW J.K. LASSER'S TAX EXPERTS ARE AS CLOSE AS YOUR COMPUTER

J.K. LASSER'S your income tax ALL NEW 1987 EDITION 1986 RETURNS INCLUDES A FREE COPY : Tu'YOUR INCOME TAX BOOK
 selling tax software package ever. Watch it save you time and money on your 1986 taxes by:

- Preparing your tax returns thoroughly and confidently
- Personalizing your tax returns with a unique, easy-to-use Interview
- Providing extra on-screen help for every Interview question
- Including 27 IRS forms
- Cross-referencing every line of your tax forms to your FREE copy of Your Income Tax, America's favorite tax guide for over 50 years
- Allowing you to complete all your calculations at the touch of a single key
- Helping you profit-not lose-from the 1986 tax reform laws

Wherever sotware is sold, or:
Call 1-800-624-0023
(in N.J. 1-800-624-0024) to order. But do it today. April 15th will be here before you know it.
${ }^{*}$ IBM PC. PCir. PC/XT. PC/AT and Apple versions $\$ 69.95$: Commodore 64/128 versions $\$ 49.95$: Macintosh version $\$ 79.95$ (sugg retail)
SimondSchuster:Software

The COMPUTEREYES/2 Digitizer

If you'd like to turn your computer into a desktop publishing and video workstation, or if you're a frequent user of Print Shop, Newsroom, Dazzle Draw, or other popular Apple II graphics programs, you should take a look at the COMPUTEREYES/2 video digitizer from Digital Vision.

The digitizer itself is a green circuit card with three gray cables snaking out the back. The circuit card goes into any slot in an Apple II-series computer, and your video camera plugs into an attached cable. COMPUTEREYES retails for $\$ 129.95$. (Note: There is no version of COMPUTEREYES/2 for the Apple IIc yet, only the basic product, COMPUTEREYES.)

I used two video cameras with COMPUTEREYES/2: a Sony 8 mm camcorder (the CCD-V8AFU) and a JVC camcorder (the GR-C7U). Both cameras hooked up easily to the cables and immediately generated a video signal on the Apple II screen.

Make sure you have a copy of the COMPUTEREYES/2 disk. The COMPUTEREYES/ 2 enhanced software comes separately from the circuit card and costs an additional \$24.95.

Single Or Double Hi-Res

When you boot up the disk, it asks you whether you want to use the DOS 3.3 or ProDOS operating system. This turns out to be an important question. The two versions have different features. In DOS 3.3, you can create single-hi-res digitized images which you can later use in Print Shop and Newsroom. In ProDOS, you can create double-hires images which you can use in Dazzle Draw.

After you "configure" your system (I chose NTSC video, 80column extended memory, and slot 3), a master menu appears on the computer screen. At the master level, you can view direct video input
from your video camera, capture (digitize) the video image, adjust the image brightness and/or contrast, modify the image, save the image onto disk, or load a new image from a disk file.

I set my JVC camera up on a tripod so the lens was pointed down at the floor. On the floor (mounted on a couch pillow) I placed an 8×10 black-and-white photo of my daughter Catie. I chose the COMPUTEREYES/2 capture menu option and standard hi-res. The program automatically calibrated the brightness and contrast, and, voilà! I had a very nice digitized image of Catie. I played with the brightness and contrast a little and improved the image slightly, then I saved it onto my DOS 3.3 data disk.

Now the real fun began. I returned to the main menu, and after choosing modify, I shrank the digitized image of Catie, inverted it (so it looked like a photographic negative), flipped it over (using the mirror function), and restored it to its original form. Next, I created a Print Shop graphic version of the image (using the convert function) and a Newsroom "photo," and saved them on the data disk.

Using The Image

Leaving the COMPUTEREYES/2 program, I booted up Print Shop and Newsroom, retrieved the digitized photo files, and incorporated them into a Print Shop "sign" and a Newsroom "panel." Print Shop gave me the option of shrinking or enlarging the photo and placing it anywhere I wanted on my sign page. In Newsroom, I learned that the best way to use the digitized image was to first load it into the Photo Lab, then crop it, save it on disk, and load it into a Newsroom panel at the Copy Desk. Last, I typed in a little Newsroom story
which wrapped around the picture in the panel. I printed the picture and story panel and the Print Shop sign without any problem. The quality of the ImageWriter II's printed copy was quite good.

When I returned to COMPUTEREYES/2, I chose ProDOS as my operating system so I could create Dazzle Draw images. I returned to the master menu, captured a new image of Catie from the photo, and this time saved it as a Dazzle Draw file. I left COMPUTEREYES/2, booted up Dazzle Draw, and loaded the digitized photo of Catie. As a double-hi-res image, it was much sharper than the single-hi-res images I had used in Print Shop and Newsroom. In Dazzle Draw I cropped the photo (keeping only the part I wanted), drew an orange picture frame around it, created a nice caption box, framed it in blue, and printed the entire graphic out on the ImageWriter II. Next, I disconnected the monitor cable from the back of the picture screen, plugged it into the VIDEO IN outlet of my VCR, and copied the entire picture onto videotape as a title screen for a little video of Catie's birthday party.

You can also use COMPUTEREYES/2 to capture a Print Shop graphic, then convert it into a Newsroom "photo" for use in a newsletter, or you can use it to capture a Newsroom "photo" and convert it into a Print Shop graphic.

Digital Vision, the manufacturer of COMPUTEREYES/2, is located at 66 Eastern Ave., Dedham, MA 02026.

Microscope
Sheldon Leemon

The Winter Consumer Electronics Show isn't a computer show as such, but the kinds of computer products exhibited there are indicative of current trends in the computer market in general, and home computers in particular.

Considering the current size of the personal computer industry, it's almost impossible to believe that six or seven years ago it didn't ex-ist-at least not as we know it today. But as recently as the January 1981 CES, Commodore was showing off the new VIC-20, which was still awaiting FCC approval (some things never seem to change). Since then, the industry has been through a lot of ups and downs in a very short period of time. If the latest CES is any indication, though, things are finally leveling off, and the industry is at last entering a more mature phase. I spent most of the show peering through binoculars (the big end), trying to spot trends, and here's some of what I turned up:

- Exhibition Space. The exhibition space devoted to computers overall appears to be up somewhat, but there seems to be less diversity than in former years. In the "glory days" of 1983, large displays were hosted by every major software and hardware manufacturer, while smaller booths showcased the many unknown hopefuls. At this show, a great many of the larger software firms were represented, but mostly at the booths of the software distributors that sell their wares. Rather than having a large display devoted to one manufacturer, these booths were shared by competing firms. There are far fewer "wildcard" exhibits, like the guys who used to show an Applecompatible computer built into a TV set, that also played Atari 2600 game cartridges.
- PC Clones. It used to be that a

PC's place was in the office, but no more. As a result of price cutting reminiscent of the Home Computer Wars a few years back, PC compatibles have crashed through the $\$ 1,000$ price barrier, and are poised on the brink of becoming the next Commodore 64. This CES was notable not only for the number of inexpensive PC clones shown, but also for the names and the quality behind them. Blue Chip was showing its $\$ 700$ Korean PC, built by Hyundai, the car manufacturer, and Victor Technology had an \$800 PC. But the most interesting development came when two of the top home computer manufacturers, Commodore and Atari, entered the PC sweepstakes.

Commodore's machines, the PC-10 and PC-20, were far more conservative than Atari's. Commodore's clones look like the PC, feel like the PC, and act like the PC. They run at the standard (slow) 4.77 MHz clock rate, and their only nonstandard feature is a built-in video adapter that emulates the Hercules monographics card and the Plantronics color card. Likewise, their pricing ($\$ 1,000$ for the PC-10 and $\$ 1,200$ for the PC-20) is far from innovative. Commodore is apparently depending on its name, and the previous success of these machines in Europe and Canada, to draw in the customers. Their slogan: "It's not a clone. It's a Commodore."

Atari's entry, however, is anything but conventional. In a move that took many observers by surprise, Atari announced two new very low-priced compatibles. These units look much more like audio or video components than the boxy old PC. In fact, the styling is the same as that of the Mega ST se-ries-sleek, white plastic squares that ride low on the table. These models come complete with dual clock speed (4.77 and 8 MHz), seri-
al port, parallel port, graphics adapter, and floppy drive, but no built-in expansion slots. This strategy resembles that used with the Apple IIc-build in the most popular options, and the consumer won't need slots. In Apple's case it didn't really work out that way, but Atari has one thing going for it that Apple didn't-the price. At $\$ 500$ for the basic model, and $\$ 700$ for one with a monochrome monitor and built-in EGA-type graphics adapter, there will undoubtedly be a few who'll decide that they don't need expansion slots after all.

- Videogames. A couple of years ago, you'd have sworn that the videogame was dead. The Adam had dragged down the Colecovision system, Mattel had abandoned Intellevision, and Atari was on the ropes. This year, however, videogames have made their comeback in a big way. Sega and Nintendo both have hot new systems with improved graphics and lots of RAM, Atari is healthy again and showing more game machines than ever, and even the Intellevision system had a booth. Since the success of videogames has always boded well for the home computer (which can play the same or better games, and do a lot more besides), this can only be taken as an encouraging sign. Although the idea of making a videogame machine into a computer isn't new (Nintendo's machine is part of a popular computer system in Japan), Atari's scheme of turning its 65 XE into a videogame machine adds a new twist. It does make a kind of sense, though. The 65XE was so low-priced that it was hard to take it seriously as a fullfledged computer (which, of course, it was). Maybe it will get more respect as a high-end videogame machine than it did as a lowend computer.

Atari Does It Again

It's not easy to startle insiders in the computer industry, but Atari did just that with its new product announcements in January at the Winter Consumer Electronics Show (CES) in Las Vegas. True, there had been talk of expanded-memory ST models and a low-cost Atari laser printer, but very few people in or out of this business had advance knowledge of the new "Atari PC"-an IBM PC-compatible computer sporting the Atari logo. Combine those products with a solid 8bit computer line and a videogame division that won't quit, and you can understand why many folks are bullish on Atari these days.

Not surprisingly, the Atari PC comes with the PC version of the GEM desktop (as well as MS-DOS and GW BASIC for conventional PC applications). As you may have heard, Apple Computer recently convinced Digital Research, the creator of GEM, to alter GEM on grounds that it unfairly duplicated the "look and feel" of Apple's Macintosh user interface. But you needn't worry about GEM changing on the ST. The changes apply only to the original, PC-based version of GEM and are largely cosmetic, in any case. For instance, the trash can appears in a menu rather than as an icon on the desktop. Both incarnations of GEM are similar enough that ST and Atari PC users should be able to switch from one to the other without difficulty.

The new Mega ST is a largememory ST computer aimed primarily at the business market. The machine comes with one, two, or four megabytes of RAM; has a detached keyboard and batterybacked clock; and includes the long-awaited blitter chip for enhanced graphics. Coupled with the under- $\$ 1,500$ laser printer, a twomegabyte desktop publishing system based on the Mega ST will cost
about $\$ 3,000$. That price tag could make the Mega ST a serious contender in the red-hot desktop publishing market, still dominated by the Macintosh.

Incidentally, the announcement of the Mega ST in no way signals the demise of the 520ST and 1040ST models. In fact, prices were cut $\$ 100$ on both the monochrome and color 1040ST systems, and reduced from $\$ 799$ to $\$ 499$ for the monochrome 520ST system.

New Software

The flood of new ST software titles shows no signs of abating. Smaller software companies continue to introduce new ST programs, while more established firms are rounding out their catalogs with ST translations of already-popular titles. Electronic Arts, for example, is releasing the highly rated Chessmaster 2000 for the ST, as well as games like Skyfox and Ogre. And Epyx is translating titles like Winter Games and the Temple of Apshai Trilogy.

If you do a lot of writing, you may be interested in WordPerfect for the ST. Long a favorite with IBM PC owners, WordPerfect is a professional word processor with advanced features such as keyboard macros, footnotes and endnotes, a built-in thesaurus, and automatic generation of a table of contents or index. If you don't need all the bells and whistles, it's still a dandy word processor. The ST version, of course, is fully GEM-based; virtually all functions are available with the mouse or keyboard, and you can also use desk accessories.

Another interesting third-party BASIC has surfaced, this time from Computer Concepts in England. Fast BASIC exists in a ROM cartridge rather than loading from disk. Putting BASIC on a cartridge has two major advantages: You don't have to wait for BASIC to
load, and you have more RAM space for programs. Although I haven't seen this package, its specifications look intriguing, to say the least. Besides the usual commands, the language includes a wide array of debugging modes and an enhanced SWITCH-CASE-ENDSWITCH decision-making structure (the latter will be familiar to C programmers). Fast BASIC also offers a GEM-based editor with word processor-style features such as search and replace, cut, copy, and paste. Moreover, it supports C-style pointer operations (variable indirection) and permits you to mix assembly language instructions with BASIC statements. Fast BASIC programs don't appear to run without the cartridge, however, which means you can't share programs with friends who don't own the cartridge, too.

In the MIDI arena, Sonus now offers ST versions of four different recording and sequencing programs: GlassTracks, The Super Sequencer, The Master Piece, and The Super Score. The first three include recording, sequencing, and librarian functions, and the fourth is a scoring and layout application.
Computer Concepts
Gaddesden Pl.
Hemel Hempstead
Herts.
HP2 6EX England
U.S. and Canadian distribution:

G-Plus Marketing
130 Albert St., Ste B-8
Ottawa, Ontario
Canada K1P 5G4
Electronic Arts
1820 Gateway Dr.
San Mateo, CA 94404
Epyx Software
600 Galveston Dr.
Redwood City, CA 94063
Sonus
21430 Strathern St.
Canoga Park, CA 91304
WordPerfect Corporation
266 W. Center
Orem, UT 84057

Low-priced Speed And Space

There are dozens of speed-up boards on the market for the IBM PC, costing from three hundred to thousands of dollars, and all working with some degree of success. Although I've tested many of these boards in the past, I have never made one of them a permanent part of my aging PC. Either they had compatibility problems or they required special software to effect the speed-up; at the very least they took up one of my expansion slots.

Enter the NEC V20, an exact replacement for the Intel 8088 processor that is found in the IBM PC, PCjr, XT, and most PC clones. The V20 is faster than the Intel processor and costs-are you ready?only $\$ 10$. NEC has designed the circuits inside its chip to execute more instructions in fewer clock cycles. In addition, a second internal data-bus contributes to the increased speed. While the processor is considerably faster than its Intel counterpart, the computer's clock still runs at 4.77 MHz , and thus the overall performance is not astound-ing-in fact, the performance varies from application to application. The V20 is rated 6 percent faster than the Intel 8088, but recalculating a spreadsheet which performs lots of calculations is speeded up more than copying a file.

Before It's Too Late

While I have yet to find any cases of dramatically improved speed, I did buy and install V20s in both my IBM PC and my PCjr. At $\$ 10$ each, I figure I can't go wrong. And I confess that the possibility that this chip may soon be pulled from dealers' shelves also influenced me to part with $\$ 20$-the lure of the unobtainable and all that.

Intel is in court with NEC over alleged patent infringements and, should Intel win, it's expected that the V20 processors will be swiftly
withdrawn. Even as you read this, the case may already be settled and the V20 unavailable. Nevertheless, here are (were?) two sources: Leo Electronics, P.O. Box 11307, Torrence, CA, 90510 , (213) 212-6133 or (800) 421-9565 outside CA; and Ariel Computer Corp., Box 866 Flemington, NJ, 08822, (201) 788-9002. Leo is selling the V20 for $\$ 9.50$ plus $\$ 2$ shipping, and Ariel is selling it for a few dollars more.

The installation isn't complicated. For the IBM PC, pull the power plug out of the wall, remove the two screws in the rear that hold the cover on, and then slide the metal case slightly up, forward, and off. The Intel 8088 chip is located on the motherboard to the left of the power supply and just behind the disk drive. It's not necessary to remove any option boards to remove the 8088 . Once you've found it (it'll have "Intel 8088" printed on it), carefully note its location and orientation. The empty socket to the right is for the 8087 coprocessor. Before removing the 8088 , notice the notch or cut in one end of the chip. Be sure to insert the V20 with its notch in the same orientation.

To remove the old processor, slip a small screwdriver (or nail file blade) between the chip and its socket; gently rock from side to side to loosen one end of the chip from its base; apply the same gentle rocking motion to the other end. By using gradually leverage under each end of the chip you can safely free it from its socket. (Be sure you are working on the chip and not the socket, which is soldered into the motherboard.) Carefully insert the V20 into the socket and push firmly into place. I found it fit more easily when I bent the tines on one side of the V20 just slightly inward. Verify that all the tines are in the sockets before reinstalling the cover.

Installing the NEC V20 in the

PCjr is a bit more troublesome because the 8088 is located under the disk drive. Pull the wall plug, remove the two cables-one signal, the other power-from the head of the drive, then gently push the drive's plastic tabs up through the bottom of the case. The disk drive is not screwed into the chassis but rather is held in place by friction tabs. Follow the PC instructions for removing, orienting, and installing the V20 chip in the PCjr. If you discover significant increases in speed, please let me know.

More Disk Space

Once you have a faster computer, you're going to want more disk space, and there's even an inexpensive way to get that. SoftLogic Solutions makes a product called Cubit that compresses the data in a filesometimes by as much as 60 percent. For example, this article is 6194 bytes long (or was, before the editor's heavy hand), and Cubit shrank it to 3445 bytes-is a compression ratio of 44 percent.

Not only does Cubit make the file smaller, it also includes a memory resident program that can automatically decompress and recompress a file every time it is used. (Decompression for this article into my word processor took about 3.5 seconds.) When I'm finished using the file and the wordprocessing program issues the close-file instruction, Cubit jumps in and recompresses the file, a process which takes about six seconds.

Since I have a hard disk with a few million spare bytes, I use Cubit mostly for backup files and for archiving old letters and articles onto floppy disks. Cubit costs $\$ 49.95$ and is available from SoftLogic Solutions; 530 Chestnut St., Manchester, NH 03101, (603) 644-5555.

The New Amigas

If the Winter Consumer Electronics Show is any indication, things are looking up for Commodore and the Amiga. Though Commodore has had to reduce its presence at trade shows for the last couple of years due to financial problems, this year they were back with their usual large booth. And this was the first time the Amiga's been displayed along with the Commodore 64 and 128 at a consumer product show. One side of the booth, packed throughout the show, was devoted to Amiga hardware and software.

Electronics Arts previewed Return to Atlantis, a cinematic adventure game. Digi-View was showing an even newer version of its video digitizing software, this time with 320×400 HAM mode. New Horizons had its Pro Write word processor, displayed on a Commodore prototype long-persistence phosphor monitor, which nearly eliminates flicker in interlace mode.

But Commodore's was not the only spot where the Amiga was on display. Aegis Software had a booth where they previewed a video titling program whose graphics extend to the edges of the screen, a telecommunications package that allows simultaneous file transfer in both directions while an online "chat" is taking place, and a 3-D animation system. Progressive Peripherals showed a two-megabyte memory card, a file utility called CLI-Mate, and a word processor, Vizawrite, that allows you to mix IFF graphics and different text fonts. Master Designer Software showed new titles in their Cinemaware line, including $S D I$ and Sinbad, and Amigas could be seen in several of the booths hosted by large software distributors.

Amiga Senior And Junior

The Amiga products shown could easily provide enough material to
fill this column, but the most exciting new Amiga products weren't on display-not publicly, at least. Upstairs at the Commodore booth, there were private showings of the two new Amiga models that we've been hearing rumors and hints about for many months. The smaller and less expensive of the two, the Amiga 500, is a one-piece unit similar in appearance to the 128 . Senior Engineer Jeff Porter said that this machine was code-named the B-52 because he was told if he couldn't reduce the size, power requirements, and component count of the Amiga, "they might as well send in the bombers and level the place."

Fortunately they were able to do it, and the result of the redesign is a single circuit board that looks no more complex than a 128 , but is a complete Amiga. The 500 contains 512 K of chip memory, a builtin $31 / 2$-inch disk drive, and has room internally for a plug-in board with 512 K of fast RAM and a clockcalendar. It has the same external ports as the A1000, including an expansion bus connector, though some of these plugs have different pin configurations and are located closer to the table than those on the 1000. With proper cabling it can use all Amiga 1000 peripherals, providing power requirements don't exceed the capabilities of the smaller external power supply that comes with the 500 . Though pricing isn't firm, it will probably be in the $\$ 650$ range for the A500, under $\$ 150$ for the 512 K expansion card, and $\$ 350$ for the color monitor.

While the Amiga 500 is meant to fill in at the low end of the home market, the Amiga 2000 is designed for maximum power and performance. Its case is twice as tall as the current A1000, and the extra space is used to provide more room for internal disk drives, and built-in expansion slots. There's space for
two $3^{1 / 2}$-inch drives and one $5^{1 / 4}$ inch drive, which may be made up of any combination of floppy and hard drives. There are two rows of slots for up to seven expansion cards, with four full-size PC-AT slots at the rear of the computer, five 100 -pin Amiga slots at the front, and two of each type overlapping.

Continuity, Compatibility

The PC slots are electrically inert, and become active only when you plug in the Bridge card. That's a Sidecar on a card which plugs into a PC slot at one end and an Amiga slot at the other. You can plug the Bridge card into either of two positions, to get either three free PC slots and three Amiga slots, or two PC slots and four Amiga slots.

Amiga intends to market peripherals for the expansion slots, including two- and eight-meg RAM cards, and a DMA hard disk controller that supports two ST-506 (IBM type) hard drives or four SCSI drives. In addition to the regular slots, there is an 86 -pin slot for special cards (like a 68020 coprocessor, or expanded video capabilities), and a connector that brings out the raw RGB video signals for an internal genlock or other professional video peripherals. List priced at about $\$ 1,500$, the 2000 will come with one $31 / 2$-inch drive, a meg of RAM, and a clock-calendar. Both machines will have Kickstart 1.2 in ROM.

Despite rumors to the contrary, the two new Amiga models do not support either expanded graphics resolution or more than 512 K of chip memory. Both use the 68000 processor, and neither supports a math coprocessor. Although the lack of new features will disappoint some, a lot of current Amiga owners will be relieved to find that the new models maintain complete compatibility and don't make their current computers obsolete.

Telecomputing Today

April Antics

First, the good news.
Intel Corporation, the semiconductor folks responsible for the 8000 series of microprocessors that beat within the hearts of most IBM and compatible PCs, has announced a new low-cost 2400 -bps modem chip set that requires little outboard electronics support. The Intel product will be available in quantity to modem manufacturers by the end of the summer. Expect to see a flock of full-featured highspeed modems based on the Intel set to hit retailers' shelves by year's end. Manufacturers who opt to stick with the Rockwell chip set currently in vogue will face stiff competition. Projected average list price of the new $2400-$ bps units is only $\$ 200$.

Happy April from Levitan's Lexicon of Telecomputing Tomfoolery:
Acoustic Modem: A modem juryrigged from spare electronic parts and a wooden staff normally used to play billiards.
ASCII: Ancient deity of telecomputing. Rumored to bestow vast volumes of data upon supplicants. Hence the saying, "ASCII and ye shall receive."
Auto Answer: What the author of this column should do when informed that a COMPUTE! editor is calling to find out where in blazes this month's column is.
BBS: Tall tales of telecomputing told by insects that produce honey.
Block Parity: One heck of a good time.
Buffering: A popular pain reliever.
Carrier Detect: Raison d'être for premarital blood tests.
CBBS: More tall tales of telecomputing told by Naval engineers.
Ethernet: Device used to catch the Ether Bunny.
File Transfer: Procedure followed
by telecomputerists who become tired of their present job.
Hayes Compatible: Prone to riding with a grizzled old cowhand who sings off key. Gene Autry is the accepted industry standard.
Kermit: A popular file-transmission protocol, most effective for short hops.
Local Area Network: A UHF television station that carries high school sporting events.
Macro: A tasty saltwater fish.
Modem: What landscapers do to lawns.
OAG: The sound a telecomputing buff makes after opening the monthly phone bill. (Moral: Ask not for whom Bell tolls.)
Off Hook: What the author of this column is after finally finishing it. Online: Where you hang your laundry to dry.
Prime Time: Any hour of the day divisible only by 1 and itself.
Packet Switch Delay: Intermittent data flow caused by heavy traffic in a packet network. Most famous example was HULANET, a packet network set up in Hawaii to facilitate communications between manufacturers of pineapple, guava, papaya, and passion fruit juices. Due to high data volume, HULANET was plagued with frequent, excessive delays. Moral: Don't wait for the punch line.
Protocol: For golf, Arnold Palmer or Jack Nicklaus.
Serial Interface: A spoon.
Terminal Emulation: Function performed by canines when commanded to lie on their backs with legs in the air.
Upload: A group of tourists on their way to the observation deck of the Sears Tower.
Videotex: The largest commercial purveyor of VCRs and televisions in Dallas.

XModem: A telecommunications device that was on the losing end of an encounter with lightning.

Wretched Excess

Many commercial information services provide special "complimentary" (comp) IDs to the shakers and movers of the micro industry. One of the largest and most popular information services recently moved to restrict the privileges of comp IDs. It seems that an extremely well-known public relations mouthpiece for a major microcomputer manufacturer got hooked on playing a popular online multiplayer game-so much so that the space-happy VIP started taking unfair advantage of the fact that the longer one played the game in question, the stronger one's starship became. Things got way out of hand as novice and experienced players alike were mauled as they entered the online melee by a starship that had accumulated days of strength points. Beset with a raft of complaints from paying customers, the information service graciously kneeled to user pressure and yanked all game access for its comp IDs.

Monty Python And The Art Of Telecomputing

Americans don't have a monopoly on misbehavior. Consider the strange case of Paul Needs of London, England. Needs, employed as an editor for Britain's Prestel videotex system, pleaded guilty to illegally using British Telecom's electronic mail system during 1986.

Needs pleaded to four counts of "theft of electricity," pulling a $\$ 150$ fine for each count (would a dozen or so Duracells have sufficed?), and was ordered to pay an additional $\$ 195$ in packet-switching charges. After the January decision, Needs' computer equipment, impounded for three months, was returned to him.

Retry, Retry, Retry Again

In the past, I have claimed in this column that I have never had an Atari disk "crash" on me if I wrote to it with verify turned on. Thanks to the little display panel on my Indus drives, I finally figured out why. A couple of times now, I have been writing programs or articles to disk (with verify turned on) and have noticed the Indus drive indicate that an error occurred. Yet neither DOS nor BASIC (nor the word processor) have reported any such error. Why?

Simple: Because of a safety feature in Atari DOS called a retry counter. Any time a disk operation fails, Atari DOS tries to perform the task again. In fact, it tries up to three more times. Now, if you write to the disk without verify, the drive may not know if something goes wrong (for example, if there is a defective spot on the disk). So you don't find out that the write failed until the next day (or week or year), when you try to reread the data. Kablooey! Even the fact that DOS retries the read three times may not help.

On the other hand, if you write with verify turned on, the drive writes the information to the disk and then immediately reads it to be sure the write was successful. Assuming that there was an error, though, you would seem to be no better off than you were without verify mode turned on except that the drive tells DOS about the verify error and DOS tries again (and again and again if it needs to) to write that same sector.

Soff Errors

Usually, disk write errors are what are called soft errors. That is, if you try again, the write succeeds. And after three attempts, if the write still fails, that disk is in really bad shape (or you forgot to format the disk or remove the write-protect tab). Well, very few of my disks are in really
bad shape, so DOS tries againand I don't even realize that I had a near miss with a blown file.

The point of all this is twofold: First, I would like to try to convince anyone doing work which would require a long time to reconstruct to use the "write with verify" mode. (If you are using DOS 2.5, this is easy, since the SETUP.COM program allows you to choose verify mode with just a few keystrokes. DOS 2.0 users can type POKE 1913,87 and then make the change permanent by using the DOS menu's WRITE DOS option.) Second, although three retries seem like enough for any write operation, I have had a few disks where a file seemed "slightly" damagedthat is, one time it would seem to read okay and the next time it would give me an error (usually ERROR 164). Well, I really should move that file to another disk (and I do), but how can I increase my chances that I can read it well enough to do the transfer? Answer: Change the number of retries that DOS makes.

Time for another program: Program 1 is a short BASIC program that you can use to modify DOS 2.5's retry count (and, incidentally, turn on verify mode for writes). Once you run it, all DOS disk operations will be tried as many times as you specify until you boot DOS again. (And, if you would like to make the changes permanent on a given disk, just answer the question in the program appropriately. An error message from this operation probably indicates that the disk was full, the disk was write-protected, or the DOS.SYS file was locked. In any case, try another disk.)

Finally, if you are still using DOS 2.0 s (or DOS XL, most versions), just change three lines in the listing. I doubt seriously that either

Atari version is compatible with any other DOS, so you may need to experiment and/or contact the publisher of your DOS to change the retry counts. Anyway, the three lines to change are

```
JM 40 IF PEEK (1932)<>169 OR
    PEEK(1933)>10 THEN 23\emptyset
FC 10\emptyset POKE 1933,RETRY
NN 23Ø REM *** APPARENTLY NO
        T DOS 2.\emptyset ***
```


Random Ramblings

Unlike most personal computers, the Atari 8-bit machines use a hardware random number generator which is supposed to produce better random numbers than purely software schemes. Notice the words "supposed to." In practice, the hardware random number generator operates in a fairly predictable manner, and, if you were to take two values from it in very close succession ("very close" means under a dozen microseconds or so), you would find that certain values tend to follow certain other values.

Atari BASIC itself pulls a pair of hardware random numbers in very close succession. Most of the time, the results of the bias this creates are unnoticeable, especially when the range of random numbers you want is under 200 or so (for reasons too complicated to go into here). But look at what happens when you run Program 2. If BASIC's RND function produced truly random results, then you would expect the four counts that are printed to be approximately equal. They obviously aren't.

My suggested solutions: If you are a BASIC programmer having problems with Atari's randomness (and remember, most of you won't), look at Program 3. We avoid the RND function and instead read two random bytes directly from the hardware register. Because BASIC takes so long (rela-

COMPUTEI Disk Subscriptions

COMPUTE! Disks are available for the following computers:

- Apple II series
- Commodore 64 and 128
- Atarl 400/800 /XL/XE
- IBM PC and PCJr

Each error-free disk contains all the programs from the previous three issues of COMPUTEI. With a disk subscription, you'll receive one disk-for the machine you specify-every three months. To subscribe, call toll free
800-247-5470
(in lowa 800-532-1272).

Attention all FX80, FX100, JX, RX, \& MX owners: You already own half of a great printer
 Only

Now for $\$ 79.95$ you can own the rest. You see, today's new dot matrix printers offer a lot more.

Like an NLQ mode that makes their letters print almost as sharp as a daisy wheel. And font switching at the touch of a button in over 160 styles. But now, a Dots-Perfect
upgrade kit will make your printer work like the new models in minutes - at a fraction of their cost.
And FX, JX and MX models will print the IBM character set, too.
So, call now and use your Visa, MasterCard, or AmerEx. Don't replace your printer, upgrade it!

$$
\begin{aligned}
& \text { 1-800-368-7737 } \\
& \text { In California: 1-800-831-9772 }
\end{aligned}
$$

Dots-Perfect
Sample of letter without Dots-Perfect

Didessellhaus
837 E. Alosta Ave., Glendora, CA 91740 Tel: (818) 914-5831
An upgrade kit for EPSON FX, JX, RX, \& MX printers

tively speaking) to do this, there is plenty of time between the PEEKs, and the generator gives pretty good results. For machine language programmers who need to get two random numbers in quick succession, try a sequence like this:
LDA RNDLOC ; get first random byte STA WSYNC ; wait for horizontal sync LDX RNDLOC ; get second random byte

Program 1: DOS Reliability Enhancer

```
PJ 1\emptyset REM **** DOS RELIABILI
    TY ENHANCER ****
DD 2\emptyset DIM Q$(1)
NH 3ø IF PEEK (1913)<>8\emptyset AND
    PEEK(1913)<>87 THEN 23
    \emptyset
KI 4ø IF PEEK(1947)<>169 OR
    PEEK (1948)>1\emptyset THEN 230
PL 5\emptyset POKE 1913,87:REM TURN
    ON VERIFY MODE
CHGD PRINT "HOW MANY TIMES
    SHOULD DOS RETRY"
BF7\emptyset PRINT "A DISK OPERATIO
    N (\emptyset TO 1\emptyset) ";
10 8\emptyset INPUT RETRY
HH9\emptyset IF RETRY<\emptyset OR RETRY>1\emptyset
        OR RETRY< >INT (RETRY)
        THEN RUN
F1 1øø POKE 1948,RETRY
OG11\emptyset PRINT :PRINT
PN 12\emptyset PRINT "DO YOU WANT TO
        MODIFY THE DOS ON"
BF 13\emptyset PRINT " THE DISK IN
```

DRIVE $1 \quad(Y / N) \quad " ;$
6E 14 I INPUT $Q \$: I F Q \$\langle \rangle " Y " T$ HEN STOP
FP 15ø TRAP $2 \emptyset \emptyset$
AP $16 \emptyset$ DPEN \#1, 8, $0, " D 1: D O S .5$ YS"
GC $17 \varnothing$ CLOSE \# 1
FI $18 \emptyset$ PRINT : PRINT "DOS MOD IFIED"
HB 190 END
DB 2 øø PRINT "ERROR WHILE TR YING TO MODIFY DOS ON

PM $21 \emptyset$ PRINT " DISK IN DRIV E 1. ERROR \#";PEEK(1 95)

6L 220 END
OB 23 R REM *** APPARENTLY NO T DOS 2.5 里音
D1 24 Ø PRINT "INCOMPATIBLE W ITH THIS DOS"
60250 END

Program 2: Random Number Generaior Test

[^3]
Program 3: Improved Random Number Routine

```
BP 1\emptyset\emptyset DIM TEST(3):FOR I=\emptyset T
        0 3:TEST(I) = Ø:NEXT I
JE 11Ø FOR I=1 TO 1\emptyset\emptyset\emptyset
AM 120 R=PEEK(53770)*256+PEE
        K(5377\emptyset)
8A 13Ø T=INT(R/4):R=R-T*4
PE 14Ø TEST (R)=TEST (R) +1
BO 150 NEXT I
CE 1GØ PRINT
NP 17Ø PRINT "VALUE", "COUNT"
AM 18\emptyset FOR I=\emptyset TO 3
H6 19\varnothing PRINT I,TEST (I)
8K 2øø NEXT I
```


Attention Programmers

COMPUTE! magazine is currently looking for quality articles on Commodore, Atari, Apple, and IBM computers (including the Commodore Amiga and Atari ST). If you have an interesting home application, educational program, programming utility, or game, submit it to COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Or write for a copy of our "Writer's Guidelines."

튿APUTE!

Wari

All versions of this game program from the February issue (p. 62) suffer from the same quirk: The game doesn't play according to its stated rules. When 12 or more counters are sown from a compartment, the starting compartment should be skipped as the counters are sown around the board. (The starting compartment should contain zero counters after the sowing is completed.) This is not the case with any of the versions as published. If you enjoy the game the way it is, no change is required. To make the game obey the stated rule, add the appropriate line.
Program 1 (Commodore 64):
1335 IF T=I THEN 1320
Program 2 (Apple II series):
1365 IF T = I THEN 1350
Program 3 (Atari ST):
1375 IF T=I THEN 1360
Program 4 (IBM PC/PCjr): 1305 IF T=I THEN 1290
Program 5 (Amiga):
In the movecounters: subroutine, add the label addone: immediately before the line that reads $\mathbf{t}=\mathbf{t}+1$; then add the line IF $\mathrm{t}=\mathrm{i}$ THEN addone following the existing line that reads IF $\mathbf{t}>12$ THEN $\mathbf{t}=1$.
Program 6 (Atari 400, 800, XL, XE):
1325 IF T=I THEN 1310

Amiga Jigsaw

This game for the Amiga from the February 1987 issue (p. 46) is a puzzle with a missing piece. In addition to the problem of misplaced lines described in last month's "CAPUTE!" column, an important subroutine was also left out. For a functioning version, rearrange the program as described last month, then add the following lines:
CoLr.Shift: 4
coLr. index $=($ coLr.index +1$)$ MOD nc oLrs
FOR $j=\emptyset$ TO ncolrs-14
$i=($ coLr.index+j) MOD ncoLrs 4
PALETTE $j+6, \operatorname{coLrs}(i, 1)$, coLrs(i, 2), $\operatorname{coLrs}(i, 3) 4$
NEXT ${ }^{4}$
RETURN 4

Simple Banners For IBM PC/PCjr

Vic Neupauer

With just a few modifications, a screen graphics program for the IBM PC/ PCjr can be used to print paper banners. A dot-matrix printer is required. You must also have BASIC for the IBM PC or cartridge BASIC for the PCjr.

After using the program "IBM PC/ PCjr One-Liner" from the December 1986 issue of COMPUTE!, I decided to modify the program into one that adults could use. The result is an easily modified program that prints banners on a dot-matrix printer. By following the instructions on the screen, you'll see how easy it is to use "Simple Banners."

The modified program uses essentially the same routine as the original, but it stores the characters in the array A\$. Several other features were added to choose the type and size of print and to allow a longer message. The characters in the A\$ array are printed sideways on the paper. The message can be as long as 255 characters.

Anyone using a non-IBM printer may need to change the value of T in lines 20 and 30 , since some printers cannot print the solid block character. Choose the ASCII value of the new character you wish to use; then subtract 32 from that value to get the new value for T.

Simple Banners For IBM PC/PCjr

For instructions on entering this program, please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue.

DP 10 KEY OFF:DIM A\$(8)
PD 2ø CLS:PRINT"Choose One":PRIN T:T=144: PRINT"E=End Progra
m": PRINT"L=Light Print": PR

INT"M=Medium Print": PRINT" D=Dark Print": PRINT: INPUT A\$:IF A\$="D" OR A\$="d" THE N T=187
NC $3 \emptyset$ IF $A \$=" M "$ OR $A \$=" m$ " THEN T $=174$
QP 40 IF $A \$=" E "$ OR $A \$=" e "$ THEN C LS: END
NG $5 \emptyset$ PRINT: INPUT"Letter Size 1 - 9 Inches "; X\$:SIZE=VAL (X \$)
PP $6 \emptyset$ IF SIZE<1 THEN SIZE=1
CG $7 \emptyset$ IF SIZE>9 THEN SIZE=9
MA $8 \emptyset \mathrm{Q}=25$ - (SIZE*2)
AH 90 WIDE=INT $(S I Z E / 2): \operatorname{IF} W I D E<1$ THEN WIDE=1
DO 1 פø PRINT:LINE INPUT"Enter Me ssage ",L\$:IF LEN(L\$)<1 0 R LEN (L\$) >255 THEN $2 \emptyset$
J6 110 CLS: DEF SEG=\&HFFA6
HO $12 \emptyset$ FOR $X=1$ TO LEN (L\$): $N=A S C($ MID\$(L\$, X, 1)): $\mathrm{C}=8$
KB $13 \emptyset$ FOR L=ø TO 7
NE $14 \emptyset B=(N * B)+L+14: A=\operatorname{PEEK}(B): A \$$ (C) $=$ ""

PE 15ø FOR $J=\emptyset$ TO 7: $M=A$ AND 1: $W=$ $32+(M * T)$
BD $16 \emptyset A \$(C)=C H R \$(W)+A \$(C)$
KK $170 \mathrm{~A}=(\mathrm{A}-\mathrm{M}) / 2$
OB $18 \emptyset$ NEXT J
EF $19 \emptyset$ PRINT A\$ (C): $C=C-1$
06 2øø NEXT L
KO 210 FOR $I=1$ TO 8
$6022 \emptyset$ FOR $Z=1$ TO WIDE:LPRINT SP C(Q);
LE 230 FOR K=1 TO 8
CB $240 \mathrm{~B} \$="$ ": REM INCREASE SIZE 0 F PRINTED LETTERS
CE 25 Ø FOR $S=1$ TO SIZE: $8 \$=B \$+M I D$ \$(A\$ (K), I, 1): NEXT S
Ch $26 \emptyset$ LPRINT B\$;
EP 270 NEXT K:LPRINT
IC 280 NEXT Z
DP $29 \varnothing$ NEXT I:LPRINT
${ }^{6 P} 3 \varnothing \emptyset$ NEXT X
QS 31ø CLS: FOR $X=1$ TO $8:$ LPRINT: N EXT X:GOTO 2ø

Easy BASIC Autoboot

Ron Goodman

This utility for eight-bit Atari computers lets you run any Atari BASIC program automatically when you boot up the system. For Atari DOS versions 2.0 and higher.

How do you make a BASIC program start up automatically when you boot up the computer? If you want a machine language program to start, it's easy. Just rename the program file as AUTORUN.SYS; as soon as the computer boots DOS, it loads and runs AUTORUN.SYS. But that method doesn't work for BASIC files. "Easy BASIC Autoboot" lets you make any BASIC program into an autobooting file, even if you don't understand all the ins and outs of AUTORUN.SYS and the boot process.

Type in the program and save it; then insert the disk that contains the program you want to start automatically. When you run the program, it asks you to enter the BASIC statement you want to execute when the system boots up. You can include any BASIC command or commands up to 27 characters in length.

For instance, if you want to autorun the BASIC program named SAMPLE, just type RUN"D:SAMPLE.BAS". To autorun a different
program, simply replace SAMPLE with the filename of your choice. You can also perform commands that don't involve running a program. For example, to start in graphics mode 8, just type GRAPHICS 8 at the prompt. When the system boots, you'll be in GRAPHICS 8 instead of GRAPHICS 0.

This program creates a special AUTORUN.SYS file on the disk. The AUTORUN.SYS file contains a short machine language program that is temporarily placed in page 6 memory during the boot process. The machine code first checks if there is a cartridge in place. If there isn't, it loads DOS normally. If a cartridge is present, however, it displays and executes the command you specified when creating the file.

Easy BASIC Auioboot

For instructions on entering this program, please refer to "COMPUTE!'s Guide to Typing in Programs" in this issue of COMPUTEI.

FF $1 \emptyset$ GRAPHICS ø: SETCOLOR 2, Ø, Ø: ? "This program wi 11 create a":? "AUTORU N.SYS file on a disk t hat will"
EC 2ø ? "execute any BASIC c ommands":? "automatica ly on bootup."
FL 3 ? : ? "This includes co mmands like:": " \{3 SPACES\}RUN"; CHR\$(34
);"D:FiLENAME. bas"; CHR $\$$ (34)
CE 48 ? : DIM B\$(27), A\$(38)
EB 5ø ? "Enter the line you
want executed.":? " "; :FOR $X=1$ TO 27:? "-";: NEXT X:? :TRAP 50:INPU T BE:IF B\&="" THEN 59
NH 55 A $\$=$ "POKE日42, 12: ": A\$ (12) $=\mathrm{B}$ \$
KA57 ? : "Command will be written as:": B\$
MD 6 ? : ? "Put the disk tha t you want the":? "AUT QRUN.SYS file on and p ress RETURN.": INPUT B\$ PJ $7 \varnothing$ OPEN \#4, 8, \varnothing, "D: AUTORUN . SYS"
CI $8 \varnothing$ FOR $X=1$ TO 4:READ $A: P U$ T \#4, A:NEXT X: PUT \#4, L $E N(A \$)+34$
HP $9 \emptyset$ FOR $X=1$ TQ 34 : READ $A: P$ UT \#4,A:NEXT X
MK 1 Øø $\operatorname{M=PEEK}(88)+\operatorname{PEEK}$ (89) * 2 56
EC $11 \emptyset$ FOR $X=1$ TO LEN $(A \$): P O$ SITION $\emptyset, \emptyset: ? ~ A \(X, X); : PUT \#4, PEEK (M): NEXT X
HK $12 \emptyset$ FOR $X=1$ TO $8:$ READ $A: P$ UT \#4,A:NEXT X
OF $13 \emptyset$ CLOSE \#4:POKE M, Ø:POS ITION 2,23
OA 1 Øøø DATA 255, 255, $\boxed{6}, 6,6,1$ 65, 6, 24ø,36
FO 1 Ø1ø DATA $169,13,141,74,3$ $, 165,88,24,195,82,13$ 3,293,165
EB 1 Ø2ø DATA 89, $133,204,16 \emptyset$, Ф, 185, 33, 6, 24ø, 5, 145 , 2ø3,2øø, 2ø8,246,96
 , D, 6

HyperScan A Full-Featured Mandelbrot Graphics Program

Kenneth W. Shepard

This sophisticated, full-featured Commodore 64 program lets you explore the fascinating Mandelbrot set-a mathematical object which forms the basis of some stunning graphic designs. A disk drive is required to save and reload graphics screens. If you wish to print out graphics screens, you must have a Commodore-compatible printer capable of printing bitmapped graphics.
"HyperScan" opens a window onto the world of the Mandelbrot set, which has been called the most complicated object in mathematics. HyperScan takes care of the complex math and lets you explore the fascinating and intricate pictures and places to be found within this world. In fact, with HyperScan you can find patterns and images that no one has ever seen before and be an explorer in the truest sense of the word.

Getting Started

HyperScan is written in two parts: Program 1 is a BASIC program and Program 2 is written in machine language. When you run Program 1, it loads and activates Program 2 automatically.

Type in and save both programs. Program 2 must be entered with "MLX," the machine language entry program listed elsewhere in this issue. When you run MLX, you'll be asked for starting and end-
ing addresses for the data you'll be entering. Here are the addresses to use for Program 2:

Starting address: C000
 Ending address: CA2F

Follow the MLX instructions carefully and be sure to save the program before you exit MLX. You must save Program 2 with the filename HS.MAC because that is the name used by Program 1 when it loads Program 2. After you save the programs, load and run Program 1. HyperScan begins by displaying its help screen, followed by its command prompt. The command prompt is where you enter HyperScan commands. You can summon the help screen at any time by typing HELP at the prompt and pressing RETURN. Like other commands, HELP can be abbreviated (as H). On the help screen, the abbreviation for each command is shown in reverse video.

The World Map

The first time you run HyperScan, you'll want to start with a SCAN command. Enter SCAN at the command line. HyperScan begins scanning and simultaneously displays the results as a multicolor contour map. In a few moments, HyperScan completes the scan, giving you an overall view of the world of the Mandelbrot set.

In the middle of the world map is a strangely shaped central plateau, shown in red, surrounded by terrain that becomes very steep and
complex along the edges of the plateau. The edge regions contain the most interesting features. One striking aspect of this world is that it's infinitely detailed-as a portion is magnified, more and more structure and form are revealed. HyperScan is a very powerful exploratory tool, since it is capable of magnifying portions of the overall view more than 100,000 times.

When the map is complete, press the f1 function key several times: This command toggles the display between text and graphics. You can enter commands from graphics mode, but the results can be seen only from text mode.

Since you may often begin exploration from the world map, you should save this map to disk with the PUTMAP command. When HyperScan prompts you for a filename, enter the name WORLD.MAP and press RETURN. The disk drive spins as the map is saved. Now you can recall the map at any time with a GETMAP command. Again, keep in mind that these commands can be abbreviated.

Delving Deeper

The FRAME command allows you to delve deeper into the Mandelbrot world. When you enter this command, four cross-shaped markers appear on the graphics screen. You can move the frame around the screen by using the cursor keys in the usual way. To resize the frame, press B to make it bigger or S to

A view of the Mandelbrot world map created by "HyperScan," a sophisticated graphics program. More interesting screens are created by magnifying selected portions of this world view.

This screen shows a highly magnified portion of the Mandelbrot set-an enormously detailed mathematical object.

Close-up views of the Mandelbrot set reveal a highly intricate world of form and color.
make it smaller. The C key changes the marker colors in case they become difficult to see against the graphics background.

Move and size the frame to enclose an area that you would like to explore more closely. Once you have chosen an interesting region, press X to set the new coordinates. The markers disappear. To exit frame mode, press Q .

Now press f1 to return to text mode and perform another scan. HyperScan begins scanning the new area. By repeating the FRAME and SCAN sequence, you can obtain higher and higher magnification, burrowing deeper and deeper into the Mandelbrot set. Before going much further, however, you'll need some of the more advanced features of HyperScan.

Infinite Detail

Since the Mandelbrot set is a mathematical object, it has, in a sense, an existence of its own. No one has seen, or is likely ever to see, all of it. The analogy of exploring a new world is a good one. Scanning the full area available to HyperScan at the highest useful magnification would produce several billion fullscreen maps-so there is a lot of virgin territory to be explored.

HyperScan calculates the "altitude of the terrain" around the Mandelbrot set with a special fixedpoint multiplication algorithm that achieves high speed and also uses a lot of memory. A high-altitude, high-resolution scan can take several hours to perform. During this time, your 64 is performing roughly 4000 multibyte arithmetic operations every second.

If you are interested in the mathematical basis of HyperScan and the properties of the Mandelbrot set, read the "Computer Recreations" column in the August 1985 issue of Scientific American.

The following sections list all of the HyperScan commands.

Scanning Commands

SCAN. Scans the current coordinates and displays a contour map according to the current parameters. LIMIT. Sets the altitude limit for scanning. The initial setting is 20 and the maximum legal value is 767. The higher the altitude, the longer it takes to complete the scan, so you should experiment with the limit to give the best results for the particular terrain you are exploring. If the actual altitude exceeds the limit, the scanning routine returns an altitude value of zero.
COLORS. This command lets you choose four map colors and the border color. In the hi-res graphics mode, only colors 1 and 4 are used. Changing colors affects the current map.
CONTOURS. Assigns a color to a range of altitudes. Up to 85 different ranges can be specified. The default assignment is color 1 for even altitudes ($2,4,6$, and so on) and color 2 for odd altitudes. Remember to assign the color for the altitudes exceeding the limit to the value zero (for instance, 4,0,0).
MODE. Allows you to select one of the three available graphics modes. The HIRES mode includes two colors on a 320×200 screen; this is suitable for examining very fine detail. The MULTICOLOR mode
gives the most colorful display, with four colors on a 160×200 screen. The LORES mode is best for performing a fast, preliminary scan of an area; it has four colors on a 40×50 grid.
FRAME. FRAME mode lets you select a portion of the current map visually and set new range coordinates automatically.
RANGE. The RANGE command permits you to enter new coordinates manually, rather than automatically, as with the FRAME command. Both the vertical and the horizontal coordinates must be within the range -2 to 2 .
STATUS. Lists the current values of all parameters.

Disk Commands

HyperScan provides several commands for loading and saving maps and performing disk maintenance.
DISK. The DISK command can also be activated by pressing the f3 key. It returns you to the text screen and prompts you to enter a disk command. To view the disk directory, type $\$$ and press RETURN. Other disk commands can be entered as described in your disk drive manual. For instance, the command IO initializes the current disk. The command SO: followed by a filename scratches the designated file from disk, and so on. If you press RETURN at the prompt without typing anything, HyperScan displays the drive's error status (the message OK means that all is well). PUTMAP. Saves the current map as a sequential (SEQ) disk file. The filename must end with the characters .MAP (a period followed by

MAP) so that HyperScan can recognize it as a map file.
GETMAP. Retrieves the designated map from disk and displays it. DSCAN. This command performs the same function as SCAN, except that the raw altitude data is saved to disk in addition to being displayed on a map.
DLOAD. With DLOAD, you can map a DSCAN altitude data file with different color values and contour intervals. You can also map a HIRES file in MULTICOLOR mode. The advantage of this process is that it is much faster than SCAN, which can take several hours to scan complex, high-altitude terrain. DLOADing an existing altitude file lets you find the best way to map and display an area without wasting time.

Miscellaneous Commands

PRINT. Prints the current graphics display on a dot-matrix printer. You must have a printer capable of printing bitmapped graphics. Different combinations of printers and printer interfaces may produce different vertical scales. If the printout seems squashed or stretched unnaturally, try changing the value of the variable PL in line 41 of HyperScan. The smaller the value of PL, the taller the printout will be.
f5. The f5 key allows you to abort any SCAN, DSCAN, DLOAD, or PRINT process and return to text mode.
f1. This key toggles between graphics and text display modes. You can also enter TOGGLE from the command prompt.

Program 1: HyperScan

For instructions on entering this program, please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue.

JR 1 IFQ= THENQ 2 : PRINT"LOADIN G HS.MAC....": LOAD"HS.MAC ",8,1
DK 2 POKE53281, $0:$ POKE53280, $0: P$ RINT" \{CLR\} \{GRN\}HYPER-SCAN ": SYS505 21:PRINT"\{UP\}"
XQ 3 DIM TL\% (256),CL\$(17):CL\$= " \{BLK \} \{WHT \} \{RED\} \{CYN \} \{PUR\} \{GRN\} \{BLU\} \{YEL\} EI
 \$="\{RVS\}区15 T习\{OFF\}\{GRN\}"
FM 4 GOSUB52: R\$=CHR\$ (13): D\$=CH $\mathrm{RS}(2 \emptyset): Q \$=\operatorname{CHR} \$(34)$
FB 5 CSS="C\{RIGHT\} \{LEFT $\}$ \{DOWN $\}$ \{UP\}BSXQ": DATA "FRAME", "GE

TMAP", "HELP", "LIMIT", "MOD E", "QUIT", "RANGE"
XJ 6 DATA"TOGGLE","DISK","DLOA D", "DSCAN", "PRINT", "PUTMA P", "SCAN", "STATUS"
QA 7 DATA"COLORS", "CONTOURS", 3 ,13,2ø,4
CA 8 ElS="\{RVS\}DISK ERROR\{OFF\} ": E2\$="\{RVS\}IMPROPER VALU E-RE-DO\{OFF\}": MD=2:LM=2 \emptyset
JA $9 C R=-2: D R=3: C I=-1.25: D I=2$. 5: CL\% (1) =6: CL\% (2)=14:CL\% (3) $=7$: CL \% (4) $=9: \mathrm{BC}=14$

JS $1 \varnothing \mathrm{RT}=51968: \mathrm{Sl}=5 \varnothing 429: \mathrm{FORI}=\varnothing$ TO16: READCL $(\mathrm{I}): \mathrm{Z} \$=\mathrm{Z} \$+{ }^{\prime \prime}$ \{SPACE\}": ES=ES+DS:NEXTI
AH 11 FORI=ØTO3:READTL\% (I):NEX TI: GOSUB93: POKE53ø64, ø:Z \$=Z\$+E\$+">": GOTO114
BD 12 SYSSI:PRINT:GOSUB93:SYS5 Ø553: RETURN
QG 13 SYSSI:IOS="R":GOSUBlø8:I FDS<> ØTHENRETURN
RK 14 INPUT\#8,AS:IFAS<<>". DTA"T HENCLOSE8:CLOSE15:PRINT" \{RVS\} NOT . DTA FILETYPE \{SPACE\}\{OFF \}": RETURN
XJ 15 POKE5Ø596,96:INPUT\#8, X,L M, CR, DR, CI, DI : IFX < > IORMD <>2 THENMD=X: GOTO19
BP 16 PRINT"HIRES FILE - WANT \{SPACE\}MULTICOLOR DISPLA Y": PRINT" (Y OR N) ? ";:MS =" "
AA 17 GOSUB152:IFC\$="Y"THENPOK E50596,76
PM 18 IFC\$<>"Y"THENMD=X
KX 19 GOSUB93:SYS5ø545:CLOSE8: CLOSE15
PA $2 \emptyset$ RETURN
DB 21 SYSS1:IO\$="W":GOSUB1ø8:I FDS<>
MF 22 GOSUB93:PRINT\#8,". DTA"; R \$;MD;RS;LM;RS;CR;R\$;DR;R \$;CI;RS;DI;RS;
FS 23 SYS5ø549:CLOSE8:CLOSE15: RETURN
GS 24 SYSSI:PRINTR\$RS"MODE="; M D; R\$"LIMIT="; LM
PX 25 PRINT"HORIZ="; CR; RS"HRAN GE="; DR: PRINT"VERT="; CI; R\$"VRANGE="; DI:PRINT
FH 26 FORI=1TO4:PRINT"COLOR"I" $\{3$ LEFT $\}(\{$ RIGHT $\})=" \mathrm{CLO}(\mathrm{I}$), MID\$ (CLS, CL\% (I) $+1,1$)" \{RVS \} \{4 SPACES \}\{OFF \} \{GRN\}":NEXTI
CB 27 PRINT"BORDER COLOR="BC,M IDS (CLS,BC+1,1);"\{RVS\} \{4 SPACES \}\{OFF\}\{GRN\}"
JR 28 PRINT:PRINT"CONTOUR : ": P RINT"INTERVAL: ":PRINT"LI MITS $\{2$ SPACES $\}:\{3 \text { UP }\}^{\prime \prime}$
QD 29 PRINT," COLOR"," LOWER \{5 SPACES $\}$ UPPER ${ }^{\prime \prime}: I=\varnothing$
CE $3 \emptyset \mathrm{X}=\mathrm{TL} \%$ (I): $\mathrm{IFX}=\varnothing$ ORI $>254 \mathrm{THE}$ NPRINT: RETURN
SQ 31 PRINT, X;MID\$(CL\$,CLZ (X) + $1,1) ; "\{$ RVS $\}\{4$ SPACES $\}$ \{OFF\} \{GRN\}",TL\% (I+1),TL\% ($\mathrm{I}+2$): $\mathrm{I}=\mathrm{I}+3$: GOTO 3 Ø
GG 32 PRINT:IF (PEEK (53265) AND3 2) <>øTHENSYSS1:RETURN

GJ 33 SYS5ø269:RETURN
FJ 34 SYSSI:PRINT": ($1=$ HIRES, $2=$ MCOL, $4=$ LORES $)=$ " ; : INPUTX
RK 35 IFX<>1ANDX <>2ANDX < 4 4THEN PRINT"\{RVS\}*IMPROPER VAL UE* \{OFF\}": RETURN
JK $36 \mathrm{MD}=\mathrm{X}:$ GOTO93

BJ 37 SYSSI:INPUT": COUNT LIMI T="; X
BR 38 IFX<øORX>767THENPRINT" \{RVS\}*IMPROPER VALUE* \{OFF\}": RETURN
FS $39 \mathrm{LM}=\mathrm{X}: \mathrm{TL} \%(\varnothing)=\varnothing$: GOSUB93:GO TO1 31
PB $4 \varnothing$ REM**TO INCREASE/DECREAS E LENGTH OF
DJ 41 REM**SCREEN PRINTOUT, DE C/INC PL
MG $42 \mathrm{PL}=160:$ POKE53ø68,INT (PL/ 256) : POKE53069, PL-INT (PL /256)
SJ 43 PRINT:OPEN4, 4:PRINT\#4:SY S51437:PRINT\#4
PM 44 PRINT\#4, SPC (33); "HYPER-S CAN MAP"
XQ 45 AS="HORIZ="+STRȘ (CR) +" H RNG $=$ " + STRS (DR) $+"$
\{2 SPACES \}VERT $=$ " + STRS (CI) + " VRNG=" + STRS (DI)
XQ 46 PRINT\#4,SPC(INT ($(8 \emptyset-L E N($ AS)) $/ 2+.5)$) ; AS: PRINT\#4:P RINT\#4: CLOSE4: RETURN
QE 47 SYSSI:PRINT":DISK COMMAN D: ";
AC 48 GOSUB152:PRINT:IFCS="\$"T HENGOTO146
GE 49 OPEN15,8,15,C\$: INPUT\#15, E, ES:CLOSE15:IFE < >OTHENP RINTE1\$;
AG $5 \emptyset$ PRINTE,ES:RETURN
JS 51 SYSSI:PRINT
AC 52 PRINT"\{RVS\}F1\{OFF\}/\{RVS\} T\{OFF\}OGGLE - TOGGLES CO MMAND/DISPLAY MODE"
GE 53 PRINT" $\{\mathrm{UP}\}$ \{RVS $\}$ F3\{OFF \}/ \{RVS\}DI\{OFF\}SK - ACCESSE S DISK DRIVE"
PJ 54 PRINT"\{RVS\}F5\{OFF\} - ABO RTS SCAN, DSCAN, DLOAD, AND PRINT"
CF 55 PRINT" \{DOWN\} \{RVS \}SC\{OFF \} AN - CALCULATES ALTITUDE AND MAPS"
RH 56 PRINT"\{RVS\}DS\{OFF\}CAN \{SPACE\}SCANS AND SAVES D ATA TO DISK"
SM 57 PRINT"\{RVS\}DL\{OFF\}OAD \{SPACE\}MAPS DATA FROM DI SK FILE"
EG 58 PRINT"\{RVS\}G\{OFF\}ETMAP RETRIEVES MAP FROM DISK FILE"
CE 59 PRINT" \{RVS\}PU\{OFF\}TMAP SAVES MAP TO DISK"
HB $6 \emptyset$ PRINT"\{RVS\}L\{OFF\}IMIT \{SPACE\}SETS ALTITUDE LIM IT"
CS 61 PRINT" \{RVS\}CON\{OFF\} TOURS - SET MAP CONTOUR INTER VALS"
HF 62 PRINT"\{RVS\}COL\{OFF\}ORS SET MAP COLORS"
BB 63 PRINT"\{RVS\}M\{OFF\}ODE - S ET DISPLAY RESOLUTION"
XK 64 PRINT"\{RVS\}R\{OFF\}ANGE \{SPACE\} INPUT MAPPING RAN GE MANUALLY"
HP 65 PRINT" \{RVS\}F\{OFF\}RAME \{SPACE\} RANGE \& SUBSET OF CURRENT MAP"
JM 66 PRINT" 6 SPACES $\}^{\prime} \mathrm{B}^{\prime}-\mathrm{TO}$ E NLARGE: 'S'-TO REDUCE FRA ME"
FS 67 PRINT"\{UP\}\{6 SPACES\}' X ' TO SET FRAME: ' Q^{\prime}-TO EXIT "
BS 68 PRINT"\{RVS\}M\{OFF\}ODE - S ET DISPLAY RESOLUTION"

XEROX ${ }^{8}$ PERSONAL COMPUTER FOR BUSINESS, HOME, AND PROFESSIONAL USE

XEROX®...The Name You Can Trust!

For over 20 years Xerox ${ }^{\circledR}$ has been the world leader in office products and copying equipment. They have set standards that others can only imitate. The Xerox 6064 Personal Computer was designed to meet the demands of business, professional, and personal computing today, and into the future! We are proud to offer this complete Xerox ${ }^{\circledR}$ System at a remarkably LOW price! Compare for yourself...then buy your Xeroxe 6064 from C.O.M.B.!
Get the Xerox ${ }^{\text {® }}$ Advantage! The Xerox ${ }^{\left({ }^{(}\right)}$ PC offers you the advantage of running $\mathrm{BM}^{\text {w }}$ compatible MS ${ }^{\text {Tw }}-$ DOS, so you can run the hundreds of business and professional software programs available today! And the Xerox ${ }^{\circledR} P C$ is easy to use! It's designed to get you up and running as quickly as possible with computer-aided instruction and superior documentation covering all aspects of personal computing.
Xerox ${ }^{(1 . .}$ Service You Can Count On! If you're considering an IBM $^{\text {w }}$-compatible, don't be misled by price alone! The system we are offering is a complete system...very easy to hook up and use... and very affordable. But more than that, each system we sell is backed by Xerox ${ }^{\circledR}$ service and support. When you buy this system, your name and computer's serial number is automatically registered with Xerox ${ }^{\circledR}$. Should you need service or advice, a network of over 150 service centers stands ready to help you. Before you buy...compare! Xerox® is your best value! Check all these features:

- $I \mathrm{BM}^{\text {u }}-\mathrm{PC} / \mathrm{XT}$ Compatibility.
- 256KB Memory Features an 8 MHz Intel 8086-2 Microprocessor for Faster Speed, Less Waiting Time.
- Two 51/4" Floppy Disk Drives, 360K Each.
- Seven Expansion Slots, Plus a Serial Port for Communications or Printer, and Parallel Printer Port.
- High-Resolution 640×400 Pixels Monochrome Monitor, with $12^{\prime \prime}$ Diagonal Non-Glare Screen, Swivel and Tilt Base.
- Standard 83-Key PC Keyboard with Mouse Interface (Mouse Not Included.)
- Comes with ScreenMate ${ }^{\text {Tu }}$, a User Friendly Guide to the Functions of the MS ${ }^{\text {rw }}$-DOS Operating System. ScreenMate ${ }^{\text {T }}$ is Menu Driven...No Need to Remember Complicated Commands!

Lets You Select from a Menu and Provides Clear On-Line Instructions If You're Confused About Your Next Step.

Complete Tutorial Software and Manuals Included:

- "Getting Started" Booklet.
- Four Reference Guides.
- Four Software Programs: Two X-Celw Training Disks, Two Diagnostic Disks, GW $^{\text {T}}$-BASIC Interpreter, and MS ${ }^{\text {T4 }}$ DOS/ScreenMate ${ }^{\text {Tu }}$ Operator's Guide.
- Twenty Blank Disks.
enters Nationally. Manufacturer's Limited 90-Day Warranty on Parts/Labor.

List Price

Priced At Only

Item H-2301-7129-232 Shipping, handling: \$49.00 ea. XEROX* ScreenMate'" and the identilying numbers herein are trademarks of Xerox* Corporation. ${ }^{\text {IBM }}{ }^{*}$, IBM" ${ }^{*}$ PC, and PC $^{* *}$-DOS are trademarks of Intermational Business Machines Corporation. MS ${ }^{{ }^{\prime}-\text {-DOS }}$ is a trademark of Microsoft Corporation.

SEND TO:

C.O.M.B. Direct Marketing Corp.

1405 Xenium Lane N/Minneapolis, MN 55441-4494
Send_Xerox ${ }^{\circledR}$ Personal Computer(s) Item H-2301-7129-232 at $\$ 999$ each, plus $\$ 49$ each for ship, handling. (Minnesota residents add 6% sales tax. Sorry, no C.O.D. orders.)
\square My check or money order is enclosed. (No delays in processing orders paid by check.)
Charge: \square VISA® \square MasterCard \square Discover ${ }^{5 M} \square$ American Express ${ }^{\text {® }}$ Acct. No.

PLEASE PRINT CLEARLY
Name
Address
City
State \quad ZIP
Phone
Sign Here

HR 69 PRINT"\{RVS\}ST\{OFF\}ATUS DISPLAY CURRENT PARAMET ERS"
FP 70 PRINT"\{RVS\}PR\{OFF\}INT \{SPACE\}PRINTOUT MAP ON C BM PRINTER"
QH 71 PRINT"\{RVS\}H\{OFF\}ELP - D ISPLAY HELP SCREEN": RETU RN
XC 72 SYSSI:IO\$="R":GOSUB1ø8:I FDSく> ØTHENRETURN
DG 73 INPUT\#8,AS:IFAS<<".MAP"T HENPRINT"\{RVS\} NOT .MAP \{SPACE\}F1LE \{OFF\}":CLOSE 8:CLOSE15:RETURN
QQ 74 INPUT\#8,MD,LM,CR,DR,CI,D I, CL\% (1) , CLz (2), CL\% (3), C L\% (4), BC: $I=\varnothing$
QH 75 INPUT\#8,TL\%(I):IFTLZ(I)< > THENINPUT\#8,TL\%($\mathrm{I}+1$), T L\% ($\mathrm{I}+2$): $\mathrm{I}=\mathrm{I}+3$: GOTO 75
XH 76 GOSUB93:SYS5ø269:SYS5077 9:CLOSE8:CLOSE15:RETURN
KR 77 SYSSl:IO\$="W":GOSUB108:I FDS <> ØTHENRETURN
GC 78 PRINT\#8,".MAP";R\$;MD;R\$; LM; RS;CR;RS;DR;RS;CI;RS; DI;R\$;CL\%(1);R\$;CL\%(2);R \$;
DK 79 PRINT\#8, CL\% (3);R\$;CL\% (4) ;R\$;BC;R\$;:I=ø
AP $8 \varnothing$ PRINT\#8,TL\%(I);RS;
CS 81 IFTL\% (I) <> ØTHENPRINT\#8, T L\% (I+1) ; R\$; TL\% (I+2) ; R\$; : I=I+3: GOTO8ø
JB 82 SYS50725:CLOSE8:CLOSE15: RETURN
SF 83 PRINT:SYSS1:SYS5ø269:SYS 50981:POKE650,128
CP 84 GETAS:X=ø:FORI=1TO9:IFMI D $\$(\mathrm{CS} \$, \mathrm{I}, 1)=\mathrm{A}$ \$THENX=I: $\mathrm{I}=$ 9
RR 85 NEXTI:IFX=øTHEN84
PS 86 IFX<8THENPOKE253,X-1:SYS 51279:GOTO84
GB 87 IFX>8THEN92
BM 88 XL=(PEEK (53248) +256 * (PEE K (53264) AND1) -12)/319
HE $89 \mathrm{X}=($ PEEK $(53252)+64$ * (PEEK (53264)AND4)-12)/319: $\mathrm{x}=\mathrm{x}-$ XL: $\mathrm{IFX}=\varnothing$ THEN84
HS $90 \mathrm{Y}=(\operatorname{PEEK}(53249)-40) / 199: \mathrm{Y}$ $\mathrm{H}=(\operatorname{PEEK}(53253)-40) / 199: \mathrm{Y}$ $=Y \mathrm{H}-\mathrm{Y}:$ IFY=ØTHEN84
SH $91 \mathrm{CR}=\mathrm{CR}+\mathrm{XL}$ *DR:DR=X*DR:CI=C I + DI - YH*DI: $\mathrm{DI}=\mathrm{Y}$ *DI: POKE5 3269, 0
CD 92 FORI=1TOI0ø:GETAS:NEXT:P OKE53269, 0 : POKE65 \varnothing, \varnothing :RET URN
QM 93 CC=53058:FORI $=1$ TO4: POKEC C-1+I, CL\% (I) : NEXTI: POKE5 3053, BC
ED 94 IFMD $=1$ THENPOKECC +1 , CLZ (4): POKECC +2 , CL\% (1)
QE 95 DX=DR*MD/320:DY=DI/2ø0:I FMD $=4$ THENDY $=D Y * 4$
DF $96 \mathrm{~V}=\mathrm{CI}+\mathrm{DI}-\mathrm{DY} / 2: \mathrm{I}=53026: \mathrm{GOS}$ UB138:I=53036:V=-DY:GOSU B138
FX $97 \mathrm{I}=53041: \mathrm{V}=\mathrm{CR}+\mathrm{DX} / 2$:GOSUB1 38
XM $98 \mathrm{~V}=\mathrm{DX}: \mathrm{I}=53031$:GOSUB138: PO KE53047, MD
KA $99 \mathrm{I}=\varnothing$: POKE53ø46,1:IF(ABS(D X) + ABS (D Y)) <2.E-4THENPOK E53ø46, ø
CD 1øø POKERT+I,TL\% (I):IFTL\% (I) $=$ ØTHEN1ø3
DH 1 Ø1 X=TL\% (I+1):GOSUBIØ4: POK ERT+I+1, X

BC $1 \varnothing 2 \mathrm{X}=\mathrm{TL}$ ($\mathrm{I}+2$): GOSUB1ø4: POK XQ ERT+I+2,X:I=I+3:GOTO1ø XQ 1 1ø3 $\mathrm{X}=\mathrm{INT}(\mathrm{LM} / 256)$: POKE53ø2ø , X:POKE53ø19,LM-256*X:R ETURN
JS 104 IFLM<256THENRETURN
JR 105 IFX<128THENRETURN
QS 106 IFX <256 THENX $=128+(\mathrm{X}-128$)/2
RH $107 \mathrm{X}=192+(\mathrm{X}-256) / 8$: RETURN
BS 108 DS=1:NMS="":INPUT":FILE NAME"; NMS: IFNMS=" "THENR ETURN
GM 109 OPEN15,8,15:OPEN8,8,8,N M\$+", SEQ, "+IO\$: INPUT\#15 , E, ES:IFE= $=$ THENDS $=\varnothing$: RET URN
SP 110 PRINTEMS;E,ES:CLOSE8:CL OSE15:IFE<>63THENRETURN
GJ 111 PRINT"SAVE WITH REPLACE ?(Y OR N) ";:GOSUBl52
CE 112 PRINT:IFC $\$<>$ " Y "THENRETU RN
FP 113 NMS="@ø:"+NMS:GOTO1ø9
HX 114 IFPEEK (53064) < > ØTHENPOK E53ø64, $\varnothing: S Y S S 1:$ PRINT" \{RVS\} BREAK\{2 SPACES\}\{SPACE\} INTERRUPT OF RUN \{OFF\}"
MD 115 PRINT:PRINT"<";:GOSUB15 2:PRINT">": $\mathrm{X}=\varnothing$
MK 116 FORI $=\emptyset$ TO $: \operatorname{IFLEFT} \$(C \$, 1)$ $=\operatorname{LEFT} \$(\operatorname{CL} \$(I), 1)$ THENX=I $+1: I=7$
JQ 117 NEXTI:IFX<>øTHENPRINT" \{UP\}\{RIGHT\}"CL\$(X-1); Z\$;
XC 118 IFX<> ØTHENONXGOSUB83,72 ,51,37,34,163,125,32:GO TOll4
XF 119 FORI=8TO14:IFLEFTS(CS,2)=LEFT\$(CL\$(I), 2)THENX= $I-7: I=14$
SE $12 \emptyset$ NEXTI:IFX<>øTHENPRINT" \{UP\}\{RIGHT\}"CL\$(X+7); Z\$;
EX 121 IFX<> ØTHENONXGOSUB47,13 ,21,42,77,12,24: GOTO114
AX 122 FORI=15TO16:IFLEFTS(CLS (1) , 3) =LEFT $\$(\mathrm{C} \$, 3$) THENX $=I-14: I=16$
PJ 123 NEXTI:IFX<>ØTHENPRINT" \{UP\}\{RIGHT\}"CL\$(X+14); Z \$;:ONXGOSUB14ø,131:GOTO 114
CE 124 PRINTRS"\{RVS\}UNKNOWN CO MMAND - FOR HELP ENTER \{SPACE $\}$ "QS"HELP"Q\$:GOTO 114
BM 125 SYSSI:PRINTRS" $\left.{ }^{\text {(DOWN }}\right\}$
\{2 SPACES\}\{RVS \}
\{2 SPACES \}SPECIFY REGIO n $\emptyset F$ COMPLEX PLANE
\{OFF\} \{DOWN\}"
XR 126 INPUT"REAL INITIAL VALU E, RANGE"; CR, DR
EB 127 IFABS (CR) >3.99990 RABS (D R) >3.9999THENPRINTE2\$:G OTO126
XR 128 INPUT"IMAGINARY INIT VA LUE, RANGE";CI,DI
HD 129 IFABS (CI) >3.99990 RABS (D I) >3.9999 THENPRINTE 2 : G OTO128
JA 130 GOTO93
KF 131 SYSSI:PRINT":INTERVALS \{SPACE\}FOR CONTOURS"
MF 132 PRINTSPC(5);"\{RVS\} RESE T ALL PLOTTING INTERVAL S \{OFF\}":I=ø
BR 133 PRINT"INPUT COLOR (1-4) LOWER AND UPPER PLOT
\{SPACE\}RANGES ($\varnothing-255$)"
XG 134 CL=-1:INPUT"COLOR,LL, UL "; CL,LL, UL: IFCL=-1THENT L\% (I) $=\varnothing$: RETURN
AB 135 IFCL<1ORCL>40RLL<øORUL> LMORLL>ULTHENPRINTE2\$:G OTO134
RR $136 \mathrm{TL} \%(\mathrm{I})=\mathrm{CL}: \mathrm{TL} \%(\mathrm{I}+1)=\mathrm{LL}: \mathrm{T}$ L\% ($\mathrm{I}+2$) =UL: $\mathrm{I}=\mathrm{I}+3$: GOTO13 4

CX 137 RETURN
JD $138 \mathrm{X}=64 * \mathrm{ABS}(\mathrm{V}):$ FORK $=\emptyset$ TO $3: \mathrm{P}$ OKEI $+\mathrm{K}, \mathrm{X}$: $\mathrm{X}=256^{*}$ ($\mathrm{X}-\mathrm{INT}$ (X)):NEXTK:X=ø:IFV < \varnothing THENX $=255$
QB 139 POKEI $+4, \mathrm{X}: \mathrm{I}=\mathrm{I}+5$: RETURN
MM 140 SYSSI:PRINT:FORI=1TO8:P RINTI-1;MID\$(CLS,I,1);M 1\$" ";
BH 141 PRINTMID (CLS,I+8,1);M1 \$; I+7:NEXTI
JR 142 PRINT"\{DOWN\}NAME FOUR C OLORS: EX.: $\varnothing, 5,6,7$ ":IN PUT CL\%(1), CL\% (2) , CL\% (3), $\mathrm{CL} \%$ (4)
PE 143 FORI=1TO4:IFCL\% (I) < ØORC L\% (I) > 15 THENPRINTE $2 \$$: GO TO142
CE 144 NEXTI:INPUT"BORDER COLO R"; BC: IFBC< ØORBC>15 THEN 144
JC 145 GOTO93
CK 146 OPEN8,8, $\varnothing, " \$ \emptyset ": G E T \# 8, A \$$, AS, AS, AS:A\$=CHRS(\varnothing) : B $\$$ $=\operatorname{CHR} \$(\varnothing): F=-1:$ GOTO148
JP $147 \mathrm{~F}=-1: \mathrm{GET} \# 8, \mathrm{~B} \$, \mathrm{~B} \$, \mathrm{~A} \$, \mathrm{~B}$: IFB $\$="$ " THENB $\$=\operatorname{CHR} \(\varnothing)
FH 148 PRINT(ASC(AS) $+256 *$ ASC (B \$)) ; CHRS (13);"\{UP\} \{6 RIGHT\}":
HQ 149 FORI $=1$ TO 28 :GET\#8,AS:IFA $\$=$ CHR $\$(34)$ ORF $=1$ THENPRIN TAS; :F=1
JM 150 NEXTI:IFST=ØTHENPRINT:G OTO147
BF 151 PRINT"***BLOCKS FREE*** ": CLOSE8:RETURN
DX $152 \mathrm{C} \$="$
DH 153 I=Ø: PRINT"\{RVS\} \{OFF\} \{LEFT\}";
MR 154 GETAS:I=I+1:IFAS<>""THE NIFAS=D\$ORAS=R\$OR (ASC (A \$) > 31 ANDASC (A) <94) THEN GOTO159
KK 155 IFA $=$ CHR (133) THENA $=$ R $\$$: C $\$=$ "TO" : GOTOI59
JE 156 IFA $=$ CHR $\$(134)$ THENA $=$ R $\$$:C\$="DI": GOTOL59
XR 157 IFI=7ORI=14THENPRINT" \{LEFT\}";:IFI=14THEN153
JB 158 GOTO154
QF 159 PRINT" \{LEFT\}";:IFAS<>D \$ANDA\$<>RSTHENPRINTAS; : $\mathrm{C} \$=\mathrm{C} \$+\mathrm{A}$: GOTOL 53
GA 160 IFA $=\mathrm{D} \$$ THENX=LEN $(\mathrm{C} \$): I F$ $\mathrm{X}<>\varnothing$ THENPRINTD $; ~: ~ C \$=L E F$ T $\$(C \$, x-1)$
JX 161 IFAS=D\$THEN153
BA 162 RETURN
CF 163 SYSSI:STOP

Program 2: HS.MAC

Please refer to the "MLX" article in this issue before entering the following program.
Cøøø:A2 øC A9 øø 9525 CA DØ B2 Cøø8:FB Aø 32 A9 28 AA 20 5D 1A Cø10:Cl Aø 3C A9 2D A2 28 2ø 21 Cø18:2D Cl Aø 37 A9 2D AA $2 \emptyset 9 F$ Cø2Ø:5D C1 A2 32 Aø $372 \varnothing$ CF 2 A Cø28:C2 Bø 52 E6 26 Dø Ø2 E6 4F

C7EØ:F5 6Ø A5 FD DØ ØF 98 2D 39

 C7E8:1の DØ FØ ØA BD FE CF C9 C6 C7FØ: 4C 9Ø ØC E6 FD $6 \emptyset$ BD FE A6 C7F8:CF C9 ØC Bø Ø2 9ø F4 BD 69 C8ØØ: FF CF C9 FØ $9 \emptyset$ Ø2 BØ EB A7 C8Ø8: C9 28 Bø E9 9ø E5 A2 Ø8 A6 C81ø:AØ Ø8 20 9F C7 8A DO FA F6 C818: 20 CE C7 A5 FD FØ 11 A9 4 4 C820: Øø 38 E5 FB 85 FB A9 Øø AB C828:38 E5 FC 85 FC 4C ØE C8 45 C830:A9 Øø 85 FB 85 FC 6Ø A9 91 C838:ø1 85 FB DØ D1 A9 FF 85 F2 C840:FB DØ CB A9 Ø1 85 FC DØ 01 C848: C5 A9 FF 85 FC D \emptyset BF A5 CF C850:FD C9 Ø1 FØ E2 C9 Ø2 Fø B5 C858:E4 C9 Ø3 FØ E6 C9 Ø4 FØ 95 C86Ø:E8 C9 Ø5 Fø 3B C9 Ø6 Fø 86 C868:50 4C 8E C7 A9 Øø 85 FC D8 C870:AD 49 CF 85 FB A2 Ø6 Aø 94 C878: Ø4 2ø 9F C7 2ø 9F C7 A9 3D C880: øø 85 FB AD 4A CF 85 FC 67 C888:A2 Ø8 AØ Ø8 2Ø 9F C7 2Ø 31 C89Ø: 9 F C7 2Ø CE C7 A9 Øø 85 3F C898:FC 8D 49 CF 8D 4A CF 60 C7 C8AØ:A2 Ø1 8E 49 CF A5 FE 1855 C8A8:6D D3 C8 $85 \mathrm{FE} 9 \emptyset$ Ø3 8E 26 C8B $: 4 \mathrm{~A}$ CF $2 \emptyset$ 6C C8 A5 FD Fø EF C8B8: 19 A2 FF 8E 49 CF A5 FE 3C C8C0: 38 ED D3 C8 85 FE Bø Ø3 7D C8C8:8E 4A CF $2 \emptyset$ 6C C8 A5 FD FF C8DØ: DØ CE $6 \emptyset$ AØ 1010134 Øø 42 C8D8:8Ø A5 FD C9 C7 BØ Ø3 4C C3 C8E0:8B C3 A9 77 8D 38 CF A9 6C C8E8:C3 8D 39 CF 6Ø A5 Ø1 29 A8 C 8 F : FE 85 Ø1 A9 ØØ 85 FE 85 B 7 C8F8:FD A9 Ø1 8D 3A CF A2 9447 C9øø:20 C9 FF A9 Ø8 2Ø D2 FF 17 C908: A9 Øø $85 \mathrm{FB} 85 \mathrm{FC} A A \mathrm{BD} 14$ C910:D4 C8 C9 øø Fø ø6 2Ø D2 2C C918:FF E8 DØ F3 A5 FD 8D 4A C9 C920:CF A5 FE 8D 4B CF A2 øØ 9C C928: 26 D9 C8 AD 38 CF 8D 38 8A C930:C9 AD 39 CF 8D 39 C9 AD CA C938: Øø FF 8D 38 CF A9 Ø1 CD F5 C940:37 CF Fø 26 CD 3A CF FØ CB C948:21 AD 38 CF 29 AA 8D 41 2C C950:CF 4A 8D 4ø CF ØD 41 CF 19 C958:8D $41 \mathrm{CF} A D \quad 38 \mathrm{CF} 295580$ C960: ØA ØD 40 CF 2D 41 CF 8D DC C968:38 CF AD 38 CF 9D 4E CF A6 C970:A5 FE 18 6D 4D CF 85 FE 24 C978: A5 FD 6D 4C CF 85 FD A9 ØB C980:ø1 4D 3A CF 8D 3A CF E8 ØA C988:8A C9 Ø7 DØ 9B A9 8Ø 8D D3 C99Ø:D8 C8 A2 Ø7 A9 Øø 8D 4939 C998: CF AD D8 C8 3D 4D CF FØ D6 C9A0:09 A9 Ø1 18 6D 49 CF 8D 82 C9A8:49 CF ØE 49 CF CA DØ E9 6Ø C9Bø:6E 49 CF AD 49 CF Ø9 8 \quad Ø BE C9B8:20 D2 FF 4E D8 C8 Dø D2 54 C9CØ:A9 Ø1 4D 3A CF 8D 3A CF AF C9C8:A9 Ø8 $1865 \mathrm{FB} 85 \mathrm{FB} 9 \emptyset \quad$ ØВ C9DØ:ø2 E6 FC A9 4 Ø C5 FB DØ 3B C9D8: 29 A9 Ø1 C5 FC DØ 23 A9 Ø3 C9EØ: ØD 2 D2 FF A9 Ø1 4D 3A 83 C9E8: CF 8D 3A CF AD 4D CF 1866 C9F0:65 FE $85 \mathrm{FE} A D 4 \mathrm{C}$ CF 65 3B C9F8:FD 85 FD C9 C7 BØ 19 4C C8 CAØロ: Ø8 C9 AD 4B CF 85 FE AD B6 CAø8:4A CF 85 FD A5 C5 C9 Ø6 25 CAl0:FØ Ø3 4C 1C C9 8D 48 CF ØF CA18: A9 ØF 2ø D2 FF $2 \emptyset$ CC FF 91 CA2Ø:A5 Ø1 Ø9 Ø1 85 Ø1 6Ø A2 8D CA28: Øø 4C D2 C4 øø øø øø øø 77Are you running out of room on your IBM PC/PCjr disks? Are your disk directories cluttered with a multitude of small COM programs? This utility conserves disk space and simplifies the directory structure of a disk by packing several COM programs into a single file. It also works with PC compatibles.

Most IBM PC/PCjr owners have a collection of favorite COM programs that perform various tasks. "Disk COMpacker" takes several small COM programs and packs them into a single disk file. By packing several programs together, you can save disk space and reduce the number of directory entries on the disk.

Type in and save the program before you run it. The BASIC program begins by READing all the DATA lines and checking them against checksums to confirm that they have been typed correctly. If no errors appear, the program creates the file COMPACKR.COM on the disk; this is the machine language program that you'll use to pack other files.

Packing COM Files

Before you use COMPACKR.COM, you must collect on one disk the
files which you wish to compact. The COM files can be any collection of programs that run independently. (You should not attempt to pack a program that is called from within another application, since that application will have no way to know that the program has been packed.) Make sure that COMPACKR.COM is present on the disk and that the disk is in the current default drive, as well. You invoke COMPACKR.COM by typing its name from the DOS prompt. You do not need to type the COM extension after COMPACKR. Here's the general syntax to use:

compackr output input1 input 2 ...

The command COMPACKR is followed by three or more filenames separated by spaces. The first name (output, in the example command) is the name of the file you wish to create; this file will contain all the COM files in packed form. The remaining names indicate which COM files you wish to pack into the output file.

For instance, say that you want to pack three COM files named DEMO1.COM, DEMO2.COM, and DEMO3.COM into a single file called BIGONE.COM. Here is the command to use:
compackr bigone demo1 demo2 demo3

Notice that it is not necessary to type the .COM extension for any of the filenames. COMPACKR.COM supplies the extensions automatically. Do not use any drive specifiers, pathnames, or extensions in the command. COMPACKR.COM assumes that all the input files are in the current directory of the default drive and it places the output file there, too. You cannot use the same name for an input file and the output file; for instance, if one of the input files is DISKFS, you can't name the output file DISKFS.

Be sure to keep a copy of each original file that is packed. COMPACKR.COM makes no provision for unpacking the components of a packed file, and you may want to use the COM files separately or pack them with other COM files in the future.

Leader Of The Pack

Once you have created the packed file, you can access any of the COM programs which it contains. Here is the syntax to use:

mainfile comfile parameter(s)

In this example, mainfile represents the output filename you used when creating the large packed file. The parameter comfile represents the name which the desired individual packed COM file had before you packed it. If the COM file takes additional parameters, those should be typed after the filename.

For instance, say that you have created the file BIGONE containing the COM files DEMO1.COM, DEMO2.COM, and DEMO3.COM, and that DEMO2.COM requires you to supply one parameter-the password secret. Here's how to invoke DEMO2.COM after packing:

bigone demo2 secret

If you invoke the main file without supplying any parameters, an appropriate error message is displayed (the program returns errorlevel 255). The program also displays the names of all the packed COM files as a reminder.

Why Pack?

You may wonder why packing several COM files into one file saves disk space. The answer has to do
with the way that PC-DOS (or MSDOS, if you are using an IBM PC compatible) allocates disk space. When you create a file, DOS allocates space in the form of uniform clusters rather than using only as many bytes as the file requires. The size of a cluster depends on what sort of drive you're using. A cluster normally contains 512 bytes (one sector) on a single-sided floppy disk, 1024 bytes (two sectors) on a double-sided floppy, or 4096 bytes (eight sectors) on a 10 -megabyte hard disk.

Since few programs are an exact multiple of the cluster size, most disks contain a considerable amount of wasted space. The amount of waste varies, based on how much of the last cluster each program uses and the type of drive. For example, a 4500 -byte program on a double-sided floppy disk uses five clusters, or 5120 bytes, wasting the last 620 bytes of the final cluster. On a 10 -megabyte hard disk, the same 4500 -byte file uses two clusters, or 8192 bytes, wasting 3692 bytes of disk space.

The theoretical average number of bytes you can save per packed program is half the cluster size for the type of disk in use. This does not apply to a program whose file size is an exact multiple of the cluster size, of course.

The packed file includes code to find and run the program you choose, and to display appropriate error messages. This overhead amounts to about 512 bytes, plus an extra 10 bytes for every program packed in the main file. Note that the packed file must not exceed 62 K in length. Since the DOS command line is limited to 127 characters, you can usually pack only about 12 files into a single main file. If the filenames of the original input files are short, you may be able to pack more than 12 , providing that you don't exceed the 62 K maximum length for the main file.

Disk COMpacker For IBM PC/PCjr

For instructions on entering this program. please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue.
P) 130 CLS: DEFINT I:FOR $I=\emptyset$ TO 5 :READ MSG\$ (I) : NEXT
BM 131 READ PGM $\$$, I 1 MAX, I 2 MAX, GRT OTCK, ILOF

BJ 140 IPASS=IPASS+1:PRINT MSG\$ (IPASS):IF IPASS $=\varnothing$ OR IPAS $S=3$ THEN END
B1 $15 \emptyset$ PRINT: IF IPASS=2 THEN OPE N PGM\$ AS \#1 LEN=1:FIELD \#1, 1 AS BYTE\$
BH $16 \emptyset$ RESTORE 5ø1: GRTOT=ø:FOR I $1=1$ TO I IMAX:FOR I2=1 TO I2MAX
AD $17 \emptyset$ READ IBYTE: $I T O T=I T O T+I B Y T$ E
PF $18 \emptyset$ IF IPASS $=2$ AND ICLOF $\angle I L O F$ THEN LSET BYTE $\$=$ CHR $\$$ (IBY TE): PUT \#1: ICLOF=ICLOF +1
JL 190 NEXT I2: READ ICHECK: IF IC HECK=ITOT GOTO $21 \emptyset$
JL $2 ø \emptyset$ PRINT MSG\$(4);5øø+I1:IPAS $S=-1$
6K $21 \emptyset$ GRTOT=GRTOT+ITOT: ITOT= $=\mathrm{N}$ EXT I1:PRINT
6N $22 \emptyset$ IF IPASS $>\varnothing$ AND GRTOTCK=GR TOT GOTO $14 \emptyset$
AH $23 \varnothing$ IF IPASS<>-1 THEN PRINT M SG\$ (5):END ELSE GOTO $14 \emptyset$
HA $3 \emptyset \emptyset$ DATA Correct Errors., Chec king DATA Lines., Creating Program.
HB $31 \varnothing$ DATA Program Created., Err or (5) On Line -, Check Lin e 5øø.
ED $5 \varnothing \varnothing$ DATA "COMPACKR.COM", 133, 1 Ø, 126794, 1327
PF $5 \boxed{1}$ DATA $233,143,3,233,4,1,13$,9,13,1ø, 662
JB $5 \emptyset 2$ DATA $67,79,77,89,65,67,75$,82,32,45, 669
FF $5 ø 3$ DATA $32,32,89,97,99,197,1$ $15,32,83,199,786$
HJ $5 \emptyset 4$ DATA $97,1 ø 8,198,32,67,79$, $77,32,8 \mathfrak{9}, 114,794$
DN $5 \emptyset 5$ DATA 111,1ø3,114,97,1ø9,1 $15,32,73,110,116,98 \emptyset$
CP $5 ø 6$ DATA $111,32,79,11 \emptyset, 1 \emptyset 1,46$ $, 13,1 \varnothing, \emptyset, \varnothing, 5 \varnothing 2$
KI $5 \varnothing 7$ DATA $\varnothing, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$, \emptyset
KL 5ø8 DATA $\varnothing, \emptyset, \varnothing, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \varnothing, \emptyset$,
KO $5 \emptyset 9$ DATA $\varnothing, \varnothing, \emptyset, \emptyset, \emptyset, \varnothing, \varnothing, \varnothing, \emptyset, \varnothing$,
IF $51 \emptyset$ DATA $\varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset$,
JI 511 DATA $\varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$, Ø
J 512 DATA $\varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset$, Jo 513 DATA $\varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \emptyset, \varnothing, \varnothing, \varnothing, \emptyset$,
JB 514 DATA $\varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, \varnothing, \emptyset, \emptyset, \emptyset$,
OD 515 DATA $26,73,110,118,97,108$,1ø5,1øø,47,77, 861
LE 516 DATA 1ø5, 115, 115, 1ø5, 11ø, $1 ø 3,32,79,112,116,992$
DE 517 DATA 165, 111, 116, 46, 46, 46 , 86,97,198, 195, 869
60518 DATA $19 \emptyset, 32,79,112,116,1 \emptyset$ $5,111,119,115,32,912$
CA 519 DATA $65,114,191,58,13,19$, $9,44,32,47,493$
DC $52 \emptyset$ DATA $\emptyset, \emptyset, \emptyset, 8 \emptyset, 87,51,192,1$ 72,60,13, 655
EM 521 DATA $116,33,191,186,1,185$,4, Ø, 242,174, 1132
MG 522 DATA $116,241,139,214,74,2$ $54,196,172,69,13,1479$
NK 523 DATA $116,13,191,186,1,185$,4, $, 242,174,1112$
FG 524 DATA $117,239,248,235,1,24$ $9,51,291,138,264,1683$
NE 525 DATA 95, 88, 195, 69, 97, 114, $6,60,122,119,956$
FI 526 DATA $2,36,223,195,8 \emptyset, 83,1$
$87,2, \varnothing, 18 \varnothing, 988$
KN 527 DATA 64,2ø5,33,91, 88, 195, 252, 136, 38, 19ஏ, 1292
LA 528 DATA $1,83,81,82,87,86,128$,62,128, ஜ, 738
CF 529 DATA $\varnothing, 119,59,186,8,1,185$,178,ø,198, 934
DK $53 \varnothing$ DATA $6,14 \varnothing, 1,10,232,213,2$ $55,185,1 \varnothing, \varnothing, 1 \varnothing 52$
OA 531 DATA 19ø, 237, 2, 139, 92, 8, 1 41,12の,19,184, 1123
BO 532 DATA $32,32,57,5,117,3,184$,13,19,139, 592
10533 DATA 214,135,68,8,232, 183 , 255, 135, 68, 8, 1366
FJ 534 DATA $139,247,61,32,32,116$,222,184,255, 76, 1364
E6 535 DATA 2ø5, $33,19 \varnothing, 129, \varnothing, 232$,191,255,227,189, 1561
CH 536 DATA 78, 131, 249, $8,119,183$,191,129, $\varnothing, 16 \varnothing, 1248$
ND 537 DATA 128, $, 152,3,199,43,1$ 98, 162, 128, $\varnothing, 1613$
PJ 538 DATA 139,2øø, 65, 243, 164, 1 87,237,2,129,63, 1429
PN 539 DATA $32,32,116,155,191,93$, $5,139,243,185,1186$
PN $54 \curvearrowleft$ DATA $8, \varnothing, 243,166,116,8,13$ $9,119,8,141,948$
00541 DATA 88, 1ø, 235, 23ø, 83, 138 ,3ø, 19ø, 1,5ø, 1 ø55
EJ 542 DATA 255, 19ø, 1ø8, ø, 191,92 , $\varnothing, 185,16, \varnothing, 1637$
in 543 DATA $243,164,191,1$ ®8, 9,17 6, $, 179,176,32,126 \varnothing$
LM 544 DATA $185,11, \emptyset, 243,17 \varnothing, 51$, 192, 171, 171, 128, 1322
MI 545 DATA $62,128, \emptyset, \varnothing, 116,27,19$ ø,129,ø,232, 884
LE 546 DATA $253,254,114,19,232,2$ 48,254,139,242,191, 1946
$6 F 547$ DATA $1 \varnothing 8, \varnothing, 184,14,41,2 ø 5$, 33, 6ø, 255, 117, 1 1017
L6 548 DATA $2,183,255,139,195,91$,139,79,8,141, 1232
HL 549 DATA $119,19,191,9,1,137,6$ 2,254, ஜ, 255, 1ø29
DF 559 DATA $38,191,1,32,32,69,79$,7ø,243,164, 919
HP 551 DATA 94, 95, 96, 89, 91, 255, 3 $8,254, \varnothing, 1 \varnothing, 1 \varnothing 16$
OB 552 DATA $79,111,114,199,97,11$ $6,58,32,32,67,866$
AD 553 DATA 79,77, 8ø, 65, 67,75,82 ,32,111,117, 785
FA 554 DATA 116, 112, 163, 169,95, 1 $19,97,1 ø 9,1$ 191,32, 984
LA 555 DATA 1ø5, 11ø, 112, 1ø3, 1ø9, 49,32,1ø5,119,112, 947
QL 556 DATA 1 1ø3, 1ø9, 56, 32, 46, 46, $46,13,16,16,465$
JN 557 DATA $78,111,116,101,58,32$,32,32,32,8ø, 672
QL 558 DATA $114,111,193,114,97,1$ 69, 115, 32, 77, 85,957
QN 559 DATA $83,84,32,98,161,32,1$ ฮ5, 11ø,32, 116, 793
BB $56 \emptyset$ DATA $1 \varnothing 4,1 \varnothing 1,32,67,117,11$ 4,114,1ø1,119,116, 976
MI 561 DATA $32,68,165,114,1 \varnothing 1,99$,116,111,114,121, 981
JB 562 DATA $32,111,1 \varnothing 2,13,1 \varnothing, 9,3$ $2,32,116,194,561$
KI 563 DATA $1 ø 1,32,68,161,162,97$,117,198,116,32, 874
OA 564 DATA $68,114,165,118,161,4$ 6,32,32,78,111, 865
LB 565 DATA $32,69,120,116,161,11$ Ø, 115,1ซ5,111,11ஏ, 989
OH 566 DATA $115,46,13,19,36,47,6$,47,6,46, 372
PL 567 DATA $67,79,77,8,32,32,32$, 32,32,32, 415

FP 568 DATA $32,32,32,45,32,32,67$,114,161,97, 584
JN 569 DATA 116,1 1 $1,1 ø \varnothing, 32,66,12$ $1,32,116,194,191,889$
AC $57 \emptyset$ DATA $32,67,79,77,8 \emptyset, 65,67$,75, 82,32, 656
ED 571 DATA $89,114,111,193,114,9$ 7,199,46, 32, 32, 838
AD 572 DATA $58,92,46,78,111,32,7$ 9,117,116,112, 841
IP 573 DATA 117,116,32,7ø,165,1ø $8,1 \varnothing 1,13,1 \varnothing, 36,7 \varnothing 8$
DA 574 DATA $78,111,32,73,119,112$,117,116,32,7ø, 951
KA 575 DATA $165,168,101,115,13,1$ ஏ, 36, 68, 114, 165, 775
BJ 576 DATA $118,191,47,8 \emptyset, 97,116$,194,47,69,129, 899
LP 577 DATA $116,191,11 \varnothing, 115,165$, 111, 119, 115,32,78, 993
FB 578 DATA $111,116,32,65,198,10$ 8,111,119,1ø1,1øø, 971
KE 579 DATA $13,10,36,68,1 ø 5,114$, 191,99,116,111, 773
6P $58 \emptyset$ DATA $114,121,32,7 \emptyset, 117,1 \varnothing$ 8,1ø8,32,111,114, 927
N6 581 DATA 32,82,191,97,1øø,32, 79,11ஏ,1ø日, 121, 862
AE 582 DATA $32,7 \varnothing, 1 ø 5,1 ø 8,1 ø 1,13$,10,36,68,1ø5, 648
HE 583 DATA $115,197,32,7 \varnothing, 117,1 \varnothing$ 8, 198,13,19,36, 716
6F 584 DATA $32,7 ø, 1 ø 5,1 ø 8,1 ø 1,32$,78,111,116,32, 785
NK 585 DATA 7 $7,111,117,11 \sigma, 1 ø \sigma, 1$ $3,1 \varnothing, 36,32,7 \varnothing, 669$
F0 586 DATA 1ø5, 1ø8, 1ø1, 32, 78, 97 ,199,161,32,84, 847
OK 587 DATA $111,111,32,76,111,11$ g, 193, 13, 16, 36, 713
JN 588 DATA $8 \varnothing, 114,111,163,114,9$ 7,169,32,84,111, 955
CL 589 DATA $111,32,76,111,116,1 \varnothing$ $3,13,19,36,67,669$
ED 59ø DATA 79,77, 8ø, 65, 67,75, 82 ,32,76, 195, 732
BC 591 DATA $11 \varnothing, 1 ø 5,115,194,1 ø 1$, 19ø, 13,1ø, 36, 189, 874
QP 592 DATA $9,2 ø 5,33,195,252,128$,62,128, ø,, $1 ø 12$
KC 593 DATA $119,24,235,3,232,238$, 255, 198, 6, 14ø, 145ø
ㄴH 594 DATA $1,36,186,8,1,232,227$,255, 186, 253, 1385
MA 595 DATA $2,232,221,255,265,32$,19ஏ,129, $, 172,1438$
NE 596 DATA 60, $13,116,21,232,54$, 253, 136, 68, 255, 1268
MK 597 DATA $191,198,3,185,3,9,24$ $2,174,117,235,1348$
H6 598 DATA 186,235, 3, 235, 265, 19 g, 129, $\varnothing, 232,236,1651$
HD 599 DATA $252,115,12,227,5,186$,218,3,235, 19ø, 1443
CH $6 \emptyset \emptyset$ DATA $186,2 \emptyset 1,3,235,185,86$,139,242,191,152, 162ø
6H 601 DATA 3,243, 164, 87, 190, 152 ,3,191,1ø, 1, 1944
ME $6 \boxed{ }$ DATA $185,46,6,243,164,95$, 185,5, $6,19 \varnothing$, 1113
EP $6 \varnothing 3$ DATA $147,3,243,164,94,232$,189,252,131,249, 1764
NH 694 DATA $\varnothing, 119,3,233,156, ø, 13$ $1,249,8,118,1 \not 17$
LF $6 \boxed{5}$ DATA $5,186,89,4,235,134,8$ $6,139,242,139,1259$
BM $6 \boxed{ } 6$ DATA 217, 139,62, 145,3,243 ,164,185,8, 6,1166
BE 697 DATA $43,263,176,32,243,17$ ஏ,139,263,139,242, 159ø
LE $6 \varnothing 8$ DATA 191,93, $9,243,164,185$,5, $, 19 \varnothing, 147,1218$
FL 699 DATA $3,243,164,186,93,6,1$

84, $0,61,205,1139$
CJ 610 DATA $33,115,25,190,93,0,1$ 39,214,172,60, 1641
DO 611 DATA $\varnothing, 117,251,198,68,255$,36,232,55, 255, 1467
HK 612 DATA $186,62,4,232,49,255$, 2ø5, 32, 139,216, 138ø
BI 613 DATA $51,2 \varnothing 1,139,299,184,2$, 66, 2ø5, $33,8 \varnothing, \quad 117 \varnothing$
6C 614 DATA $131,25 \varnothing, 9,117,12,3,6$,145,3,114, 781
PD 615 DATA 6,59,6,6, $6,114,9,88$, 186,1ø2, 576
CJ 616 DATA $4,232,11,255,265,32$, 184, $\varnothing, 66,2 ø 5,1194$
JP 617 DATA $33,89,139,62,145,3,1$ 37,77,8,141, 834
FD 618 DATA $85,19,139,194,3,193$, $163,145,3,186,1115$
6H 619 DATA $63,265,33,18 \varnothing, 62,205$,33, 94, 78, 233, 1186
MD 626 DATA $89,255,19 \varnothing, 237,2,139$, 62, 145, 3, 185, 1367
MD 621 DATA $5,9,1,14,145,3,243,1$ 64,139,62, 776
6K 622 DATA $145,3,139,199,45,66$, 3,144,163,191, 1698
DN 623 DATA $1,19 \varnothing, 242,2,185,11$, ø , 1, 14, 145, 791
IN 624 DATA $3,243,164,184,144,14$ $4,191, \varnothing, 1,171,1245$
NE 625 DATA $179,51,291,186,152,3$,18ø, 6ø, 2ø5, 33 , 1241
HI 626 DATA $115,8,186,15,4,232,1$ $63,254,265,32,1214$
D6 627 DATA $139,216,186, \emptyset, 1,185$, 237,2,43,2ø2, 1211
KF 628 DATA $189,64,265,33,59,193$,116,19,18ø, 62, 1111
FA 629 DATA 265, 33, 186, 152, 3, 180 , 65, 265, $33,186,1248$
LF 630 DATA $59,4,232,126,254,265$,32, 139, 22, 143, 1267
BL 631 DATA $3,139,14,145,3,43,2 \varnothing$ 2,189,64,295, 998
BA 632 DATA $33,59,193,117,219,18$ 9, 62, 265, 33, 186, 1287
IP 633 DATA 121,4,232,96,254,265 ,32, ø, ø,ø, 944

To receive additional information from advertisers in this issue, use the handy reader service cards in the back of the magazine.

Amiga System Fonts

Daniel L. Stockton

This short program illustrates how to select different system fonts and text styles under program control in Amiga BASIC.

Nearly every Amiga owner recognizes that there are two system text fonts. If you open the Preferences tool, you can switch between the 80 -column font, actually called Topaz Eight Point, or the 60 -column font, called Topaz Nine Point. The font which you select from Preferences is carried over when you activate Amiga BASIC. Many Amiga BASIC programs are written with the assumption that you have selected one font or the other-either Topaz Eight or Topaz Nine. If you run a program only to find that printing is not aligned correctly, the cause is usually that you're using the wrong font. The only remedy is to exit BASIC, open Preferences, select the other font, and run the program all over again.

In fact, there's no need to make users play "guess the font" when they run Amiga BASIC programs. With a relatively simple system call, you can select either of the system fonts under program control. And the same system call can be used to select special text styles, including boldface, italics, and underlining. The subprogram included with this article makes it all easy to do.

Opening The Library

To change fonts under program control, you must make a call to operating system routines. A group of system routines is known as a library; the particular library which we need is called graphics.library.

The door to the library is opened with the BASIC statements LIBRARY and CALL.

Type in the program and save it. Before you run the program, you must make sure that a special system file is on your BASIC work disk. When BASIC executes the LIBRARY command in this program, the Amiga looks for a file named graphics.bmap which enables it to locate graphics.library routines. If graphics.bmap can't be found, the computer displays an error box.

The simplest way to make sure that graphics.bmap can be found is to copy it from the BasicDemos drawer (subdirectory) of your Extras disk to the LIBS subdirectory of your BASIC work disk. Enter these commands to perform the copy from the CLI:
COPY Extras:BasicDemos/graphics.bmap TO ram:
COPY ram:graphics.bmap TO work-
bench: libs
DELETE ram:graphics.bmap
These commands assume that your BASIC work disk is named workbench. If it is not, substitute your disk name for workbench in the second AmigaDOS command. (If the disk name contains a space, you must enclose that portion of the command in quotes. For example, if your work disk is named BASIC Programs, then the command will be COPY ram:graphics.bmap TO BASIC Programs:libs.) When it encounters LIBRARY in a program, the computer automatically searches the LIBS subdirectory for the designated file.

Another way to insure access to the .bmap file is to use CHDIR before the LIBRARY statement. CHDIR can be used to specify a particular subdirectory as the cur-
rent directory for DOS access. If you create a subdirectory devoted exclusively to .bmap files, then every program can perform a CHDIR to that directory before attempting a LIBRARY command. One advantage of the second method is that it avoids unnecessary duplication of .bmap files in a case where you keep BASIC programs in more than one subdirectory on a disk.

Styles

Once graphics.bmap is located in the correct place, load and run the program. It prints eight different text styles in each of the two system fonts. The variable style\% controls which style is selected; here is an explanation of the different values assigned to that variable:

style\% Result

0	plain text
1	underlined
2	boldface
3	boldface, underlined
4	italics
5	italics, underlined
6	italics, boldface
7	italics, boldface, underlined

The subprogram named FontChange is designed to be merged with your own programs. Once you know that the demonstration works correctly, you can delete everything but the FontChange subprogram and save it in ASCII form (type SAVE "FontChange", A and press RETURN). You can then add it to another program with a MERGE command.

Amiga System Fonts

REM The next three lines must be in the main body of your program 4
REM and occur before any calls t - subroutine FontChange 4

DECLARE FUNCTION AskSoftStyle\& L IBRARY 4
DECLARE FUNCTION OpenFont\& LIBRA RY4
REM Place optional CHDIR comman d here to point to the 4
REM graphics.bmap file director y as next line example: 4
REM CHDIR "ABC:D" $\&$
REM which points to volume/disk $A B C$ directory $D 4$
LIBRARY "graphics.library" 4
4
REM The format for a CALL to Fo ntChange is: 4
REM CALL FontChange ("topa z.font", height\%, style\%) 4

REM "topaz.font" is the na me of the system font 4
REM height\% is a short int eger variable to be selected 4
REM as 8 or 94
REM style\% is a short inte ger variable to be selected 4 REM as Ø through 74

REM The nine lines of Testit be low are for testing only ${ }^{4}$
REM and should be replaced by y our application(The main body ${ }^{4}$ REM of your program). 4
4
Testit: ${ }^{4}$
CLS 4
FOR heighti=8 TO 94
FOR style\%=0 TO 74
CALL FontChange ("topaz.font", he ight\%, style\%) 4
PRINT "This is the topaz font o f height ";height\%;" style ";sty 1e\%4
NEXT style\%
NEXT height\% 4
CALL FontChange ("topaz.font", 8, Ø) 4
REM The library should be closed when no longer required 4
4
LIBRARY CLOSE 4
END 4
4
REM The subroutine FontChange s hould be placed at the bottom REM of your program after the E ND statement 4

4
SUB FontChange(font\$, height\%, sty le\%) STATIC4
SHARED pFont\& 4
IF pFont\&<> \quad THEN CALL CloseFont (pFont\&) 4
fontAS=font $\$+\operatorname{CHR} \$(\varnothing) 4$
textAttr $\&(\sigma)=\operatorname{SADD}($ fontAS $) \&$
textAttr\& (1)=height\%*65536\& + st yleq*256 4
pFont\& $=$ OpenFont \& (VARPTR (textAttr \& (\varnothing)) $<$
IF pFont\& <> Ø THEN SetFont WIND OW (8), pFont\& 4
permit\%=AskSoftStyle\&(WINDOW (8))
SetSoftStyle WINDOW(8), style\%, pe rmit\% 4
END SUB 4
4
4

Structured BASIC 64

Scott Kell

This unusual Commodore 64 utility should interest anyone who wants to learn about structured programming techniques. It introduces several new commands and programming features to Commodore 64 BASIC.

Recently, structured programming languages such as Pascal, Modula2, Forth, and C have been growing in popularity. In the most general sense, a structured language is one which encourages you to break a program down into different parts, each of which performs a separate, identifiable function. Among other things, this technique simplifies the process of writing big, complicated programs because each module, or section of the program, can be tested separately. In addition, structured programs can be easier for others to read and understand.

BASIC, on the other hand, does little to encourage structured programming, a feature for which it has often been criticized. "Structured BASIC $64^{\prime \prime}$ is designed to help you make the transition from BASIC to the world of structured programming. It modifies Commodore 64 BASIC to support a more structured programming style. (It does not, however, reproduce all
the features of any of the languages mentioned above. Obviously, if you wish to learn C or Pascal, you need a compiler and some good programming texts-not a modification of BASIC.)

Since Structured BASIC 64 is written in machine language, it has to be typed in with COMPUTE!'s " MLX " machine language entry program, found elsewhere in this issue. When you run MLX, you'll be asked for starting and ending addresses for the data you'll be entering. The addresses you need for Structured BASIC 64 are as follows:
Starting address: C000
Ending address: C44F
Load Structured BASIC 64 with the command, LOAD "filename", 8,1 for disk or LOAD "filename ${ }^{\prime \prime}, 1,1$ for tape. When the READY prompt reappears, type NEW and press RETURN. To activate Structured BASIC 64, type SYS 49152 and press RETURN. When using this program, take care not to POKE new values in locations 49152-50671, since that area is used by the program itself. It also uses the RAM hidden underneath the computer's BASIC ROM, so you also should avoid any activity that disturbs that memory. Because Structured BASIC 64 changes the
way that BASIC works, it may not work with other BASIC programming utilities.

Begin At The Beginning

Structured BASIC 64 adds several new or modified keywords to BASIC. Four of these are IF, THEN, ELSE, and ENDIF. IF and THEN are among the most popular, and most frequently abused, BASIC statements. These lines exemplify a common form of misuse:
$1 \varnothing$ INPUT A
$2 \emptyset$ IF $A=\emptyset$ THEN PRINT"A IS ZERO
$3 \varnothing$ IF A<>ø THEN PRINT"A IS NOT ZERO"

These three lines check whether A is equal to zero, but the method is cumbersome and inefficient, since it requires two separate IF tests and two separate THEN statements. In Structured BASIC 64, the previous example can be replaced by the following lines:

$1 \varnothing$ INPUT A

$2 \emptyset$ IF $A=\varnothing$ THEN PRINT"A IS ZERO " : ELSE PRINT"A IS NOT ZER O"
$3 \varnothing$: ENDIF
This version is much more compact. When the computer finds the IF statement, it checks whether the expression after IF is true. If the expression is true, the computer executes only the statements between THEN and ELSE. If the expression is false, it performs only the statements between ELSE and ENDIF. After BASIC finds ENDIF, the program continues normally.

With ELSE and ENDIF, the traditional IF clause becomes more flexible. The ELSE and THEN statements need not appear on the same line as IF:

5 INPUT A
$1 \varnothing$ IF $A=\varnothing$
$2 \emptyset$: THEN PRINT"A IS ZERO"
$3 \emptyset$: ELSE PRINT"A IS NOT ZERO"
40 : ENDIF
This code is easier to understand than the first example. Locating THEN and ELSE statements on separate lines can serve a practical purpose, as well. How many times have you run out of space on a line after an IF statement? For example, let's say that a long string of characters is to be printed when the variable A\$ is equal to "STRUCTURED-

PROGRAMMING". Here's how you might write the code in conventional Commodore 64 BASIC:

10 INPUT AS
$2 \emptyset$ IF A $\$=$ "STRUCTURED PROGRAMMI NG" THEN $4 \varnothing$
$3 \varnothing$ GOTO $5 \varnothing$
$4 \varnothing$ PRINT"THIS IS THE SUPER LON
G STRING OF CHARACTERS THAT WON'T FIT ON LINE $2 \varnothing^{\prime \prime}$
$5 \emptyset$ STOP
This program's logic is needlessly complex, simply because the statement which should come after THEN is too long to fit into the remainder of line 20 . Two extra GOTO statements are required: the implied GOTO after THEN on line 20 and the explicit GOTO in line 30. The more unnecessary GOTOs a program includes, the harder it is to read and debug. Here's how to do the same job with Structured BASIC 64:

10 INPUT AS
$2 \varnothing$ IF A $\$=$ "STRUCTURED PROGRAMMI NG" THEN
30 PRINT"THIS IS THE SUPER LON g String of characters that WON'T FIT ON LINE 2ø"
$4 \varnothing$ Endif
50 STOP
Now the program's structure is simple and straightforward, without needless GOTO branches. In Structured BASIC 64, every IF clause must end with an ENDIF statement. However, ELSE is optional. Thus, you can use IF-THEN-ELSE-ENDIF or IF-THEN-ENDIF, but you may not use IF-THEN without a closing ENDIF.

Looping Around

Loops are an integral part of any kind of programming. In fact one of a computer's main strengths is the ability to do repetitive tasks quickly. Most structured languages support several different looping methods. Commodore 64 BASIC supports only one explicit loop structure: FOR-NEXT. (You can create loops with IF and GOTO, but GOTO is usually considered a branching command.) Unfortunately, FORNEXT loops are inconvenient for certain programming tasks. Consider the following code fragment:

[^4]$5 \emptyset$ PRINT"THE PROGRAM IS CONTIN UING"
60 REM PROGRAM CONTINUES
This program contains a loop in lines $20-30$, but the loop is disguised in the form of an IF with a GOTO. What the programmer wants to do is loop until a specified condition is satisfied (in this case, until you press a key). Structured BASIC 64 borrows a technique from Pascal to solve such problems. This program accomplishes the same task:
$1 \emptyset$ PRINT"PRESS ' Q ' IF YOU WANT
TO QUIT THE PROGRAM."
$2 \emptyset$: REPEAT
$3 \varnothing$ GET AS
$4 \emptyset:$ UNTIL AS<>""
$5 \emptyset$ IF $A \$=" Q$ " THEN STOP : ENDIF
$6 \emptyset$ PRINT"THE PROGRAM IS CONTIN UING."
$7 \emptyset$ REM PROGRAM CONTINUES
In this version, the loop is found in lines 20-40. The REPEAT statement tells BASIC to perform all the statements it finds between REPEAT and UNTIL. The UNTIL statement marks the end of the loop and it also states the condition to be tested. If the expression after UNTIL is false, the computer repeats everything between REPEAT and UNTIL and tests the expression again. This process continues until the condition is satisfied, at which point the computer exits the loop and proceeds with the rest of the program.

The keywords REPEAT and UNTIL make it clear what is happening. The effect is to enhance the program's readability while eliminating the mishmash of IF and GOTO statements.

It's important to note that the statements inside a REPEAT-UNTIL loop are always performed at least once. This occurs because the computer doesn't check the condition until it reaches UNTIL at the end of the loop. In some programming situations, you might want the computer to check the condition before it performs the statements contained in the loop. The WHILEWEND loop is designed for exactly such cases:

[^5]This program does the same thing as the previous example; as long as you have not pressed a key, it scans the keyboard over and over. However, the logic is different. When it encounters the WHILE statement, the computer immediately tests the condition that appears after WHILE. If that expression is true, the computer executes all the statements found between the WHILE condition and the WEND which closes the loop. If the expression is false, the computer falls through all of the intervening statements and executes the next statement after WEND.

In this case, both examples do the same ultimate task. But if the condition after WHILE had been false, the computer would have skipped immediately past WEND, without performing anything in the loop.

REPEAT-UNTIL and WHILEWEND loops can both be nestedthat is, either kind of loop can exist inside another loop. Just remember that each REPEAT needs an UNTIL, and each WHILE needs a WEND. If there are too many UNTILs or too many WENDs, Structured BASIC 64 prints the error message WEND, UNTIL, OR CASE ERROR IN XXXXX, replacing XXXXX with the line number in which the error occurred.

CASE For Complex Decisions

Have you ever written a menudriven program that uses a bunch of IF clauses like this?

10 PRINT"WHICH CHOICE DO YOU W ANT";:INPUT AS
20 IF A\$="A" THEN GOSUB 1øø:GO TO 10
30 IF $A S=" B$ " THEN GOSUB 2øø:GO TO 1の
$4 \varnothing$ IF $A S=" C$ " THEN GOSUB $3 \varnothing 0: G O$ TO $1 \varnothing$
$5 \emptyset$ IF $\mathrm{A} \$=" \mathrm{D}$ " THEN GOSUB 4øø:GO TO 10
60 IF A\$="E" THEN GOSUB 5ø0:GO TO 10
70 PRINT"I DON'T UNDERSTAND YO UR CHOICE"
$8 \emptyset$ GOTO $1 \varnothing$
This program waits for you to make a menu choice by pressing a letter from A to E. If you pick A, the program branches to a subroutine at line 100 . If you choose E, it goes to a routine at line 500 . After the
subroutine is complete, the program asks for your next choice. If you choose something that's not offered, it tells you to make another choice.

The long series of IF statements, each paired with identical GOTO statements, is not an efficient solution. BASIC does provide ON-GOTO and ON-GOSUB for such situations, but those statements have limitations, too. Here's how you can handle the same problem in Structured BASIC 64, which adds a CASE statement similar to that of the C language:

10 PRINT"WHICH CHOICE DO YOU WA NT"; :INPUT AS
$2 \emptyset$: CASES OF A\$
$3 \varnothing$: CASE "A":GOSUB 1øø:ENDCASE
$4 \varnothing$: CASE "B": GOSUB 2øø:ENDCASE
50 : CASE "C": GOSUB 3øø: ENDCASE
$6 \emptyset$: CASE "D":GOSUB 4øø:ENDCASE
$7 \emptyset$: CASE "E":GOSUB 5øø:ENDCASE
$8 \emptyset$: OTHERWWISE
$9 \varnothing$: PRINT"I DON'T UNDERSTAND Y OUR CHOICE"
95 ENDCASES
99 GOTO 10
Here are five new statements: CASES OF, CASE, ENDCASE, OTHERWISE, and ENDCASES. We'll look at each of them in turn.

This sort of structure is wellsuited for a situation where you want to perform several different tasks based on a single condition. In this circumstance, you want to branch to different subroutines, depending on what value $A \$$ has been given.

The entire decision-making structure is enclosed by CASES OF and ENDCASES. The CASES OF statement indicates which condition to test-in this example, the value of A\$. The ENDCASES statement marks the end of the structure.

Each CASE statement is followed by an expression. When it encounters each CASE, the computer tests the expression to see whether it matches the condition stated in CASES OF. If the expression is false, the computer passes on to the next CASE. If it is true, the computer executes all the statements found between that CASE and the next ENDCASE statement. Thus, each CASE must be matched by its own ENDCASE.

The OTHERWISE statement allows you to take some action in
the event that none of the CASE statements are true. This statement is optional; if it is absent, the computer simply falls though to ENDCASES. (If you include OTHERWISE, be sure to put it at the very end of the CASES OF-ENDCASES structure, as shown in this example.)

Every CASES OF structure must begin with CASES OF, end with ENDCASES, and include at least one CASE-ENDCASE pair. Incidentally, a CASE statement can be followed by a list of variables or constants, separated by commas; if any of the expressions match the CASES OF condition, the statements after CASE are performed. This example demonstrates the use of multiple expressions with CASE, as well as the nesting of CASES OF structures.

```
10 InPuT"What do you want n to
        BE";N
15 : CASES OF N
2ø : CASE 1,2:PRINT"N IS EITHE
    R ONE OR TWO"
25 : INPUT"WHAT DO you want x
    TO BE";x
30 : CASES OF X
35 : CASE 1:PRINT " }\textrm{X}=1\mathrm{ ":ENDCAS
    E
40 : CASE 2:PRINT "x=2":ENDCAS
    E
45 : Endcases
5\varnothing : ENDCASE
55 : CASE 2,3:PRINT"N IS EITHE
    R TWO OR THREE":ENDCASE
60 : OTHERWISE:PRINT"I DON'T K
    NOW WHAT N IS"
6 5 \text { ENDCASES}
```

This example adds another feature beloved by many structured programmers: meaningful indentation. Notice how the indentation of lines make the overall structure more clear. If you wish to indent lines for readability, you must put a colon at the beginning of the line. (BASIC ignores any spaces between the line number and the first alphanumeric character.)

Labeled Subroutines

Another drawback of Commodore 64 BASIC is that the target of a GOSUB statement must always be a line number. Say that you are reading a program and encounter the statement GOSUB 6100. The only way to discover what that subroutine does is to find line 6100 and examine the code. Once you get sidetracked, you can easily lose your place in the main program or
forget what was happening prior to the GOSUB．

Wouldn＇t it be nice if BASIC let you call a subroutine by name in－ stead of a number？Languages like C and Pascal（as well as some ver－ sions of BASIC）let you refer to subroutines with meaningful la－ bels．Here is an example of a la－ beled subroutine in Structured BASIC 64：

1øøø＂PRINT＇HI＇ON THE SCREEN ：PRINT＂HI＂：RETURN
You can call this routine in the old way，with GOSUB 1000，or you can do it the new way，with GO－ SUB＂PRINT＇HI＇ON THE SCREEN＂．As this example shows， a meaningful label can make the purpose of a subroutine immediate－ ly apparent．

The label must be enclosed in quotation marks and it must be the first thing in the line．A colon must follow the label to separate it from other statements on the line．

You can GOTO a labeled line， as well．However，you cannot use labels with ON－GOTO or ON－GO－ SUB．That＇s not a problem with Structured BASIC 64，since you can always replace ON－GOSUB with the more powerful CASES OF structure．

Subroutines are an important part of structured programming， since they help break a big，compli－ cated job into smaller，more man－ ageable jobs．They are also very useful in debugging．If you separate each part of the program into dis－ crete，testable modules，it＇s much easier to pinpoint problems．

Abbreviations

Structured BASIC 64 adds or modi－ fies 15 BASIC commands．Most of them have abbreviations，just like the normal BASIC commands．

Command	Abbreviation
REPEAT	R－SHIFT－E
UNTIL	U－SHIFT－N
WHILE	W－SHIFT－H
WEND	W－SHIFT－E
CASES OF	C－SHIFT－A－SPACE－OF
CASE	no abbreviation
ENDCASE	no abbreviation
OTHERWISE	O－SHIFT－T
ENDCASES	END－SHIFT－C
IF	no abbreviation
THEN	T－SHIFT－H
ELSE	E－SHIFT－L
ENDIF	END－SHIFT－I
GOTO	G－SHIFT－O
GOSUB	GO－SHIFT－S

Now it＇s your turn to experi－ ment with Structured BASIC 64．By experimenting with this version of Commodore BASIC，you＇ll be ex－ posed to some of the ideas behind the new wave of microcomputer programming languages．This ex－ posure，in turn，may help you de－ cide if you want to make the leap to another one of the high－level lan－ guages．Once you become comfort－ able with using these new tools， you＇ll find it easier to learn the rules of those languages，as well．

Structured BASIC 64

Please refer to the＂MLX＂article in this issue before entering the following program．

Cøøø：A9 3785 Ø1 A2 øø Aø Aø DB Сøø8：8C 18 Cø $8 \mathrm{E} \quad 17 \mathrm{C} \varnothing 8 \mathrm{C}$ 1B C6 CØ1Ø：CØ 8E 1A Cø AØ $2 \emptyset$ AD FF C5 Cø18：FF 8D FF FF EE 17 Cø Dø 23 Cø20：ø3 EE 18 Cø EE 1A Cø Dø $2 \varnothing$ Cø28：03 EE 1B Cø CA Dø E7 8848 Cø30：Dø E4 A2 ø3 BD CF C3 9D 2A Cø38：ø6 Ø3 CA 10 F7 A2 Ø2 BD E3 Cø40：18 C4 9D FF A5 BD 1B C4 D1 Cø48：9D B3 A5 CA 10 Fl A9 36 B8 Cø50：85 Ø1 A9 Aø 8D 20 AØ A9 EB Cø58：Cø 8D 21 Aø A9 D7 8D øø 93 Cø60：ø3 A9 Cø 8D Ø1 Ø3 A9 Ø1 27 Cø68：8D 1B A8 A9 C2 8D 1C A8 54 Cø70：A9 øø 8D 1E Aø A9 C2 8D 19 Cø78：1F AØ A9 DF 8D 26 Aø A9 D4 Cø80：C1 8D 27 Aø 60 ø8 C9 CC B8 Cø88：9Ø 1ø C9 D9 BØ ØF 24 ØF 46 Сø90：30 ØВ $2 \varnothing 46$ C2 38 E9 4C 6C Cø98：DØ Ø3 $2062 \mathrm{C} 22^{28} 4 \mathrm{C}$ 1A D 6 СØAD：A7 日8 26 F6 C2 28 4C 71 2C CøA8：A8 2ø AF Cø 4 C AE A7 $2 \emptyset 15$ СøВØ：73 øØ C9 CC 9ø 15 C9 D9 38 CØB8：Bø 1138 D8 E9 CC ØA AA AC CøCD：BD 1F C4 48 BD 1E C4 48 3E СøС8：4C 73 øø C9 22 Fø 156851 CøDØ：68 $2 \varnothing 79$ øø 4C E7 A7 ø8 17 CøD8：48 8A $3 \varnothing$ Ø3 $2 \varnothing$ F6 C2 6822 CøEØ：28 4C 8B E3 4C 67 C3 $2 \emptyset$ EØ CøE8：FE C2 Fø ø3 4C DB C2 4C 8C CøFØ：C1 C2 $2 \varnothing$ 9C C2 $2 \varnothing$ FE C2 29 CøF8：FØ Ø1 6ø $2 \varnothing$ DB C2 A9 Dø 4F C1ø0：8D 11 C3 8D 15 C3 A2 CE AB C1ø8：8E 19 C3 $2 \varnothing$ Ø4 C3 A2 D1 D9 C110：8E 19 C3 A2 D3 8E 11 C3 82 C118：E8 8E $15 \mathrm{C} 3602 \varnothing \mathrm{Cl}$ C2 5C C12ø：4C F5 Cø $2 \varnothing$ FE C2 Dø ØE 14 C128：2ø ø4 C3 C9 øб Fø CB C9 F6 C130：3A Bø ØA 4 C Ø1 C2 $2 \varnothing 79 \mathrm{CF}$ C138：ø0 C9 Ø0 F0 BD 4C B2 Cø 82 C14の：2ø ø4 C3 4С B2 Cø Aø øø EB C148：8C EF C5 $2 \varnothing 73$ Øб C9 46 3E C150：FØ Ø3 4C ø8 AF $2 \varnothing 73$ øø FB C158：2ø 9C C2 4C FE C2 $2 \varnothing$ 9C $1 \varnothing$ C160：C2 2ø DB C2 $2 \varnothing$ C1 C2 2Ø A2 C168：67 C3 E8 E8 E8 E8 8E ED 32 C17ø：C5 $84932 \emptyset \mathrm{Cl}$ C2 $2 \emptyset \mathrm{DB} \mathrm{Al}$ C178：C2 A9 FF $2 \varnothing 84$ C3 Dø 54 F2 C180：2C EE C5 $3 \varnothing 46$ A2 øø $2 \varnothing$ 6E C188：73 øø C9 øø Fø 21 C9 CF 6E C190：DØ Ø1 E8 C9 D6 Dø ØB EØ 67 C198：øø DØ Ø6 $2 \varnothing 73$ øø 4C DB 23 C1AØ：C2 CA C9 D5 Dø ØF 8A Dø 77 ClA8：DE $2 \varnothing 73$ øø 4 C 5E Cl $2 \varnothing 91$ C1Bø：C6 C3 4C 87 Cl C9 D7 Dø $4 \varnothing$ C1B8：CE 8A DØ CB $2 \varnothing 73$ øø 2C 18 ClCø：EF C5 $3 \varnothing$ Cl 60 A9 FF 8D 97 ClC8：EF C5 $602 \varnothing 73$ øø 2ø 9C 3C ClDø：C2 4C 73 Cl 2C EE C5 1ø øC

ClD8：F1 A9 ø0 8566 4C 3B C3 B6 ClE6：C9 22 F6 ø3 4C 83 A8 A9 8B ClE8：ø3 20 FB A3 A5 7B 48 A5 ø1 ClF0：7A 48 A5 3A 48 A5 3948 AF C1F8：A9 8D $4820 \quad 09 \mathrm{C} 24 \mathrm{C}$ AE 5A C2ø日：A7 C9 $22 \mathrm{~F} \varnothing \quad 0418$ 4C Aø D8 C2ø8：A8 A5 3985 3B A5 3A 8535
 C218：A6 $2 \varnothing$ A8 C3 Bø 152073 D7 C22ø：øø C9 22 Fø 19 A5 9E 85 8D C228：7A A5 9F 85 7B $2 \varnothing$ 7B C3 \quad B7 C230：4C 19 C2 A5 3B 8539 A5 DC C238：3C 85 3A 4C E3 A8 A9 øø 5E C240：2ø 84 C3 Fの Eの $6 \varnothing 18487 \mathrm{~F}$ C248：8A 48 A2 45 BD 9E AØ ВØ 28 C250：ø3 BD D3 C3 9D 9E AØ CA Fø C258：10 F2 A9 3685 Ø1 68 AA E6 C260：68 60 48 A9 3785 ø1 38 DF C268：B \varnothing DE B9 9E Aø Dø 1ø AD 35 C270：9E AØ C9 45 FØ ØA 2ø 62 4D C278：C2 Aø øø 84 ØВ A9 FF 60 2F C280：20 46 C2 Aø 44 B9 9E AØ FØ C288：60 ø8 $4898482 \varnothing 46$ C2 E4 C290：Aの 4C 84 ØB 68 A8 $68 \quad 2899$ C．298：86 7A CA $6 \varnothing$ AE ED C5 A5 BD C2AØ：7A $2 \varnothing$ B7 C2 A5 7B $2 \varnothing$ B7 Al C2A8：C2 A5 $392 \varnothing$ B7 C2 A5 3A 7 7 C2Bも：2Ø B7 C2 8E ED C5 6ø 9D 5A C2B8：ED C4 E8 Fø Ø1 60 4C 35 E9 C2Cø：A4 AE ED C5 Fø 22 BD EC D6 C2C8：C4 85 3A BD EB C4 8539 EB C2Dø：BD EA C4 85 7B BD E9 C4 4 C C2D8：85 7A 60 AE ED C5 Fø 0827 C2EØ：CA CA CA CA 8E ED C5 6Ø 9C C2E8：20 F6 C2 A9 38 85 22 A9 F4 C2F0：C4 8523 4C 47 A4 48 A9 6A C2F8：øø 8D ED C5 6860209 EF 9 F C3øø：AD A5 6160 A2 øø $2 \varnothing$ 7B CA C3ø8：C3 $2 \varnothing 73$ øø C9 øø $\mathrm{F} \mathrm{\emptyset} 22$ 3A C310：C9 D3 F0 ØB C9 D4 FØ 07 CA C318：C9 D1 DØ ED E8 DØ EA EØ 33 C32ø：øØ FØ øC C9 D3 FØ E2 EØ ØB C328：øø Fø ØD CA 4C ø9 C3 4 C 94 C33ø：73 øø $2 \varnothing$ C6 C3 4С 99 C3 97 C338：4C Ø8 AF A9 øø 8D EE C5 52 С34ø：2ø 79 øб 4С 49 С3 $2 \varnothing 73$ ø8 C348：øØ C9 Øø FØ ØF C9 3A FØ 56 C350：øB C9 2C Fø 0899 4D C4 6A C358：C8 4C 46 C3 $6 \varnothing 24661 \varnothing$ CC C360：F4 A9 FF 8D EE C5 $6 \emptyset$ AØ 95 C368：0ø $84662 \varnothing$ ЗВ С3 А9 2945 C370：99 4D C4 A9 B2 C8 99 4D 84 C378：C4 C8 60 A5 7A Dø Ø2 C6 DC С380：7B C6 7A 608566 A4 93 6F C388：2ø 3B C3 A9 øø 99 4D C4 C7 C390：C8 $2 \varnothing$ 9С C2 A9 C4 85 7B 2B C398：A9 4C 85 7A 2ø FE C2 ø8 EA C3Aø：2Ø C1 C2 $2 \varnothing$ DB C2 $286 \emptyset$ 9D СЗА8：AØ ø1 B1 7A 85 9E C8 B1 88 C3BØ：7A 85 9F Fø ØF A9 60 8D 47 C3B8：E1 A7 20 C6 A7 A9 6C 8D D5
 C3C8：C3 9ø FA 184 C 4 B A8 85 9D C3D6：C0 A9．C0 $5245 \quad 50454197$ C3D8：D4 55 4E 5449 CC 5748 A 3 C3E0：49 4C C5 43415345 D3 C2 C3E8：57 $45 \quad 4 \mathrm{E}$ C4 $49 \begin{array}{llllll} & 49 & \text { C6 } & 54 & \text { D9 }\end{array}$ C3FD：45 CE 454 C 53 C5 45 4E C6 C3F8：44 49 C6 $43 \begin{array}{llllll} & 41 & 53 & \text { C5 } & 45 & 2 A\end{array}$ C4ø0：4E $44 \quad 43 \quad 41 \quad 5345$ D3 4 F E4
 C410：45 $4 \mathrm{E} 44 \quad 43 \quad 41 \quad 53$ C5 øø 6 F C418：20 6A C2 $2 \varnothing 89$ C2 9B C2 F7 C42ø：E6 Cの F1 Cø 45 Cl 1 C C1 C2 C428：22 Cl 2A Cl 3F Cl F9 Cø 4A C430：5D Cl 9D Cl BE Cl C4 Cl Fø C438：57 45 C44ø：54 49 4C $2 \mathrm{C} \quad 2 \varnothing 4 \mathrm{~F} 52 \quad 2 \emptyset 95$ C448：43 4153 C5 28 øø øø øø CB

Merge 128
 Jeffrey D. Partch

This Commodore 128 utility allows you to merge two programs into a single file-and resolves any linenumber conflicts in a unique way.

If you've been writing BASIC programs for a while, it's quite possible that you've found yourself reusing certain subroutines time and time again. It's also quite possible that you've found yourself retyping those subroutines time and time again. "Merge 128" eliminates all of that retyping by allowing you to combine two BASIC programs into one. It's flexible enough to meet the needs of almost any programmer, and it handles the problem of linenumber conflicts in a unique way.

Typing it In

Merge 128 is written entirely in machine language, so you'll need to type it in with the 128 version of COMPUTE!'s "MLX" machine language entry program, found elsewhere in this issue. When you first run MLX, it will ask you for the starting and ending addresses of the data you wish to enter. Here are the addresses for Merge 128:
Starting address: 17E2
Ending address: 1BF9
Remember to save a copy of Merge 128 before you exit MLX. To load Merge 128, use the BASIC 7.0 command BOOT. Assuming that you have saved your copy with the name MERGE 128, here is the syntax to use (the drive and device parameters are needed only if you have a dual drive or a disk drive with a device number other than 8):

BOOT"MERGE 128", Ddrive, Udevice

When the READY prompt returns, you can activate Merge 128 by pressing the F1 function key. Two files are needed for a merge operation: The first should be loaded into memory before you perform
the merge. The second must be located on a disk. Merge 128 will read the second file from disk, merging it with the program in memory. When the process is complete, you can save the merged program as usual.

When you press F1, Merge 128 prints the first part of the merge command on the screen. Here is the full syntax for the command:
MERGE "filename", Ddrive, Udevice, Lline

Everything up to and including the first quotation mark is printed for you in advance. Everything following the second quotation mark is an optional parameter that may be ignored unless you require it. If you don't use any of the options, the second quotation mark may be ignored, too. To enter the command, press RETURN: Merging will begin. If you change your mind and decide not to perform the command, press SHIFT-RETURN.

The filename parameter is, of course, the name of the file that you want to merge. It will be merged with the program currently in memory. The filename must be a legal Commodore name, no longer than 16 characters.

The drive parameter is needed only if you own a dual disk drive. This option accepts only the values of 0 and 1 (enter D0 or D1). Since the Commodore 1541 and 1571 drives are always drive number 0 , this parameter defaults to 0 .

The device parameter accepts any value in the range of $8-30$. This option is useful if you have more than one single drive. For instance, U9 lets you access a drive that is device 9 . The default for this option is 8 .

The line parameter is explained in the next section. If you wish to change any of the default values for optional parameters, see "Changing the Defaults" at the end of this article. It's important that you enter optional parameters in the order
indicated. Each option must include a comma and letter code (D, U, or L) and a legal accompanying value. If you don't need an option, omit both the comma and the letter code.

The Effects Of Merging

Because BASIC expects each program line number to have a unique value, line numbers are of foremost concern in merging. If the programs have two lines with the same number, a merge operation must decide what to do with the duplicate line. Some merge utilities ignore linenumber conflicts or delete lines with duplicate numbers. Both of those strategies have disadvantages, since you may garble the program or lose lines unexpectedly. Merge 128 handles line-number conflicts by renumbering the entire appended file with a line-number increment of 1 .

Before it merges anything, Merge 128 determines the value of the last line in the current program (the program in memory). It adds this value to the default increment, and the result is used as the first line number for lines from the merged file. (If there isn't any program in memory, this value is set to 0 .)

Merge 128 calls the RENUMBER routine of BASIC 7.0 to renumber the merged file. This renumbering differs in one respect from a RENUMBER in direct mode: It changes only those internal references that can be equated to lines within the merged file. If the merged file contains an unresolved reference (for instance, a GOTO command directed to a line not contained in the file) the offending reference is highlighted in reverse and a bell will sound when you list the program.

Renumbering can take a while for large files. To indicate that the program is working, Merge 128 prints periods on the screen while renumbering is in progress.

Line Option

The line parameter in the MERGE command lets you specify the ini－ tial line number of the merge file． Supply any legal line number after the L letter code．For instance， L1000 begins numbering at line 1000．If the supplied value is larger than the last line number in the current program，renumbering be－ gins with the number you supply．

If you supply a line number that＇s smaller than the last line in the current program，Merge 128 merges the new file in insert mode． This mode lets you insert the lines from a merged file somewhere in the middle of the existing program． Insertion begins at the numerically correct position and continues until the entire merge file has been pro－ cessed．The remainder of the origi－ nal program is then renumbered as if it were part of the merged file．If the renumbered portion of the pro－ gram references a line number that now precedes the merged file，an error is flagged when you list the program；this is a harmless error， which you can ignore．If the first block originally referenced a line contained in the renumbered por－ tion，then it will probably be cor－ rupted－but no error is recognized by the RENUMBER routine．Thus， you should use care when inserting text．Insertion is a powerful，but potentially confusing，operation．

Errors And Error Traps

To determine whether errors oc－ curred，you should always list the entire program after merging．Any line that contains an error will show up with a reverse－video error flag． This flag must be removed before the program can run．You can re－ move the flag by editing the line in any way：Correct the reference or simply press RETURN over the line．（If any line contains more than 160 characters－an unusual situa－ tion－the 128 ＇s function keys and SHIFT－RETURN become inactive； press RUN／STOP－RESTORE to re－ set the keyboard．）

Two error conditions will cause Merge 128 to abort operation： a merge operation that creates a file too big to fit in memory，or a re－ number operation that creates an illegal line number or line refer－ ence．In either case，Merge 128
prints an error message and returns you to direct mode without harm－ ing the current program．

Changing The Defaults

It＇s easy to alter Merge 128 for dif－ ferent default values．To do this， install Merge 128 as usual．You can now change the default device number，drive number，or line in－ crement value by POKEing new values into the following locations：

	Location	Contents
Device number	$\$ 18 \mathrm{C} 5(6341)$	numeric value
Drive number	$\$ 1880(6272)$	character code
Increment	$\$ 1 \mathrm{~A} 38(6712)$	numeric value

Use this command to save the modified version of the utility：

BSAVE＂filename＂，Ddrive \＃，Udevice \＃，

 P（6144）TO P（7147）
Merge 128

Please refer to the＂MLX＂article in this issue before entering the following program．
17E2：A9 8 20 7Ø 1B A6 FE 1Ø 92 17EA： 03 4C Ø3 40 4C 3F 4D 12 1E 17F2：$\emptyset \emptyset \quad 07 \quad 1 \mathrm{~B} \quad 58 \quad 53 \quad 59 \quad 53 \quad 36$ A8 17FA： $31 \quad 34 \quad 32 \quad$ ØD 8D Ø1 FF AD $\quad 94$ 18Ø2：Ø2 1C A8 FØ 25 AØ Ø1 B1 BD 180A：2D FØ 14 AØ Ø3 B1 2D 99 6C 1812：FA øø 8810 F8 A5 FA 85 AB 181A：2D A5 FB 85 2E D 6 E6 A4 49 1822：FD A5 FC 18 6D 38 1A 96 EC 182A：$\varnothing 1$ C8 85 16 8417 A9 $80 \quad 73$ 1832：20 70 1B 20 7D FF 91 1B 1E 183A：51 1B 58 4D $45 \quad 524745$ Ø1 1842：22 øø A9 ØØ 85 FA 78 A9 6B $184 \mathrm{~A}: 1 \mathrm{~B}$ 8D 3D $\quad 3$ A9 B4 8D 3C BA 1852：Ø3 $58 \quad 20 \quad 934 \mathrm{~F} 78$ A9 C6 CD 185A：8D 3D Ø3 A9 AD 8D 3C Ø3 BA 1862：AD 15 Ø3 8D $5 \emptyset$ 1A AD 1442 186A： 03 8D 55 1A $58 \quad 86$ 3D 84 A7 1872：3E A5 FA Fø Ø3 4C E2 17 BF 187A：A9 3A 8D $\varnothing 111$ A9 30 8D EC 1882：Øø 11 2Ø 8Ø Ø3 B1 3D 99 F5 188A：Ø2 11 F （ 10 C9 2C FØ ØC ØC 1892：С9 22 Fø ø8 C8 CØ 11 9Ø CA 189A：EC 4C E8 1A 4898 DØ 93 5C 18A2：4C F1 1A 1865 3D 85 3D A2 18AA：C8 C8 84 FA A9 ${ }^{-2 C} 99$ Øø E2 18B2：11 A9 5Ø 99 Ø1 1168 C9 $6 \emptyset$ 18BA： 22 DØ Ø3 $2 \emptyset 8 \mathrm{~F}$ 1A A5 FC BF 18C2：D $\emptyset 6$ A9 0885 FC 8D 1C 69 18CA：Ø1 C9 Ø8 9ø Ø4 C9 1F 9ø ØE 18D2：Ø3 4C EB 1A A9 Øø 8D Øø 1F 18DA：FF AA $2 \emptyset 68 \mathrm{FF}$ A5 FA AØ 6D 18E2：11 20 BD FF 20 ØF F5 A9 2E 18EA：øØ 85 7A 85 9D E6 B7 E6 Ø3 18F2：B7 A6 98 EØ ØA $9 \emptyset$ Ø3 4C AE 18FA：F7 1A Aø $0298 \quad 20 \quad 59$ FF 99 19Ø2：BØ Ø4 A8 C8 DØ F6 A8 A6 89 190A：FC 85 Ø5 2 Ø BA FF $2 \emptyset$ CØ 95 1912： FF 9 Ø Ø3 4C F4 1A A6 Ø5 EF 191A： 20 C6 FF 20 CF FF AA A9 8D 1922：Ø2 24 90 FO Ø3 4C EE 1A CØ 192A：CA FØ Ø3 4C DF 1A 20 CF 9A 1932：FF 2ø 7D FF ØD 4D $45 \quad 5296$ 193A： $47 \quad 49 \quad 4 \mathrm{E} \quad 47$ ØØ A5 16 8D $\mathrm{F} \emptyset$ 1942：70 11 A5 17 8D $7111 \quad 2 \emptyset 8 B$ 194A：64 50 A5 6185 18 A5 62 C7 1952：85 19 A9 61 8D B9 Ø2 A2 D2 195A：Ø1 AØ Øø 8D Ø1 FF B1 61 DA 1962：8D Ø3 FF 2077 FF A4 6184

196A：A6 62 C8 DØ Ø1 E8 $86 \quad 62$ C9 1972：84 61 C4 AE DØ El E4 AF 4A 197A：D 0 DD A4 1984 2E 84 AF 48 1982：A5 $18 \quad 85$ 2D 85 AE AØ ØØ $\quad 39$ 198A：8C ØØ FF $2 \emptyset$ CF FF 24 9Ø 5C 1992：7Ø 1D 8D Ø1 FF 91 AE A5 4F 199A：41 DØ Ø9 C6 42 DØ Ø5 8514 19A2：FE 38 BØ ØC C6 41 E6 AE FØ
 19B2：Ø8 A4 AF A6 AE Dø Ø1 88 B5 19BA：CA $289 \varnothing \quad$ Ø 4 A6 18 A4 19 A6 19C2：2Ø Cl 1B $2 \emptyset$ Ø1 1B 24 FE 96 19CA：30 1D $2 \emptyset$ 7D FF ØD 3F 46 31 19D2：49 $4 \mathrm{C} \quad 45 \quad 2 \emptyset \quad 544 \mathrm{~F} 4 \mathrm{~F} \quad 2 \sigma \quad$ Ø6 19DA：4C 41 19E2：52 4F 52 Øø 4C E2 17 A6 1F 19EA：AE A4 AF $2 \varnothing$ 7D FF 1B 4A $\quad 2$ 19F2：4E $554 \mathrm{D} \quad 42 \quad 45 \quad 52 \quad 49 \quad 4 \mathrm{E} ~ C 3$ 19FA： 47 2ø Øø $A D$ Øø Ø3 $858 \emptyset 4 \mathrm{~B}$ 1Aø2：AD $01 \quad \emptyset 3 \quad 85 \quad 81 \quad 78$ A9 1 1A 61 1AøA：8D 15 Ø3 A9 $628 \mathrm{D} \quad 14$ Ø3 B9 1A12：58 8D Ø3 FF 8E 10 12 8C 9B 1A1A： $111286 \mathrm{AE} 84 \mathrm{AF} 86 \mathrm{FA} \quad \emptyset 2$ 1A22：84 FB A9 1B 8D Ø1 Ø3 A9 9E 1A2A：Ø9 8D Øø Ø3 Aの ØØ 8С 73 Ø8 1A32：11 84 5C 84 5D A9 Ø1 8D Ø5 1A3A：72 11 $2 \emptyset 87 \mathrm{AF}$ Aø $\varnothing \emptyset ~ 4 \mathrm{C}$ B4 1A42：68 5B A5 81 8D ø1 Ø3 A5 6A $1 \mathrm{~A} 4 \mathrm{~A}: 8 \emptyset$ 8D Øø 0378 A9 FA 8D $4 \varnothing$ 1A52：15 Ø3 A9 65 8D 14 Ø3 58 78 $1 \mathrm{~A} 5 \mathrm{~A}: 20 \quad 87 \mathrm{AF}$ A5 FE 4C E4 17 DA 1A62：A5 82 DØ Ø5 A9 2E $2 \emptyset$ D2 8D 1A6A：FF E6 82 4C 65 FA A2 2 ØØ C9 1A72：2の $8 \emptyset \quad \emptyset 3$ 2Ø 22 8D A6 $63 \begin{array}{lllll} & 31\end{array}$ 1A7A：FØ ØB EØ 9Ø FØ Ø7 $46 \quad 64$ A3 1A82：66 65 E8 DØ F5 2086 Ø3 AD 1A8A：A6． 64 A4 65 6Ø A2 ØØ 20 C3 1A92：8Ø Ø3 Fø 48 C9 2 C Dø 4853 1A9A： $2 \emptyset$ 8 8 Ø3 C9 $44 \mathrm{~F} \quad 15$ C9 95 1AA2：4C FØ 2E C9 55 DØ 39 A6 A2 1AAA：FC 20 C6 1A 84 FC 4868 Fø 1AB2：FØ 2A DØ EØ $2 \emptyset$ C6 1A CØ 23 1ABA： 32 B $\begin{array}{llllllll}28 & 48 & 98 & 69 & 30 & 8 D & 16\end{array}$ 1AC2：Øø $119 \emptyset$ EB EØ ØØ DØ 18 CC $1 \mathrm{ACA}: 2 \emptyset 701 \mathrm{~A}$ EØ ØØ DØ $14 \mathrm{E} 8 \mathrm{D} \varnothing$ 1AD2：60 2Ø 701 A C9 Ø0 DØ Ø8 E6 IADA： 86 1AE2：A9 ØB 2C A9 ØE 2C A9 17 5A 1AEA：2C A9 Ø9 2C A9 Ø4 2C A9 E2 1AF2： 08 2C A9 Ø5 2C A9 Ø1 48 ØE 1AFA： 20 Ø1 1B 684 C E4 $17 \quad 2 \emptyset \mathrm{AD}$ 1Bø2：CC FF A5 Ø5 4C C3 FF 8A 9F 1BØA： $3017 \begin{array}{llllllllll}17 & \mathrm{C} 9 & 27 & \mathrm{~F} \emptyset & 16 & 85 & \mathrm{FE} & \mathrm{B} 3\end{array}$ 1B12：A4 2 E A6 $2 \mathrm{D} \quad 8419 \begin{array}{lllll}19 & 86 & 18 & 7 B\end{array}$
 1B22：12 4C 44 1A A2 F9 9A 8D 5E 1B2A：$\emptyset 1 ~ F F ~ A E ~ Ø 1 ~ 12 ~ 86 ~ F D ~ A E ~ 1 C ~$ 1B32：Øø 1286 FC AØ ØØ B1 FC F2 1B3A：8D F2 17 AØ Øø B1 FA AØ 3E 1B42：Ø2 91 FA A6 FA DØ Ø2 C6 8D 1B4A：FB CA 86 FA E4 FC DØ EB 5A 1B52：A6 FB E4 FD DØ E5 AØ Ø2 B8 1B5A：B9 F1 1791 FA 88 10 F8 F8 1B62：A4 AF A5 AE $18 \quad 69 \quad 62$ 9ø 71 1B6A： 11 C8 AA $4 \mathrm{C} \quad 13$ 1A 85 FE 78 1B72：24 $76 \quad 30 \quad$ Ø3 A9 1 C 2C A9 4 E 1B7A： $40 \quad 85$ 2E A9 Ø1 85 2D AD B8 1B82：10 12 85 AE AD $1112 \quad 85$ 3C 1B8A：AF 38 AD $\quad 77$ ØA E5 AE 8597 1B92：41 AD Ø8 ØA E5 AF 8542 Bl 1B9A：A2 Øø 8E ØØ FF 86 FC A9 B1 1BA2：F4 85 8ø A9 $17 \begin{array}{llllll}17 & 85 & 81 & 86 & \text { B7 }\end{array}$ 1BAA： 82 A2 Ø1 A9 8 8 AØ ØA 4C 6C 1BB2：65 FF Ø8 C9 8D DØ Ø4 8576 1BBA：FA A9 ØD $\quad 28 \quad 4 \mathrm{C}$ B7 \quad C6 $86 \quad 52$ 1BC2：AE 84 AF 8D Ø3 FF AØ Øø 99 1BCA：A9 18 A2 \quad Ø1 $2 \varnothing \quad 74 \mathrm{FF}$ 8D A \varnothing 1BD2：Ø1 FF $91 \mathrm{AE} \mathrm{E} 6 \mathrm{AE} \mathrm{D} \emptyset$ Ø2 3C 1BDA：E6 AF A4 18 C8 DØ 02 E6 FA 1BE2： $19 \begin{array}{lllllllll}84 & 18 & C 4 & 61 & \mathrm{D} & \mathrm{DC} & \mathrm{A} 6 & \mathrm{C} 4\end{array}$ 1BEA：19 E4 62 D 19 D6 A9 Ø0 8D 2B 1BF2：Øø FF 6Ø Øø Øø Øø Øの Øの 35

Apple's Built-In Music Program

Mike Miyake

Put music into your Applesoft programs the easy way: Apple's own built-in music subroutine features 50 preset pitches, a choice of five timbres (tone colors), and a wide range of note durations-and you can use it from DOS 3.3 or ProDOS.

Unlike some other popular computers, the Apple II series has no builtin firmware for generating musical tones. If you want music in your programs, you must write or otherwise supply your own machine language music subroutine. Unless, that is, you know how to use Apple's own music subroutine. All you need is your DOS 3.3 System Master disk. Insert the master disk in drive 1 and boot the system. Type FP, then enter this program:

```
70 FOR I = 768 TO 777: READ X
    : POKE I,X: NEXT : REM INS
    TALL MUSIC SWITCH
8\emptyset DATA 173,128,192,32,23,215
    ,173,129,192,96
90 POKE 765, 2: REM SET TIMBRE
1\emptyset\emptyset FOR I = 1 TO 5: GOSUB 140
        : NEXT
110 POKE 765,32: REM CHANGE T
        IMBRE
120 FOR I = 1 TO 9: GOSUB 14\varnothing
        : NEXT
130 END
140 READ DUR: POKE 766,DUR: R
        EM DURATION
15\emptyset READ PITCH: POKE 767,PITC
        H: REM PITCH
160 CALL 768: REM CALL MUSIC
        SWITCH
17\emptyset RETURN
18Ø DATA 96,27,96,29,96,25,96
        ,13,240,2\emptyset
```

190 DATA $24,5,24,6,48,8,48,5$, $52,6,52,3,52,5,52,1,13 \emptyset, 3$ $2 \emptyset 0$ REM DUELING PLANETS 210 REM
220 REM DURATION AND PITCH
$23 \emptyset$ REM ALTERNATE IN DATA
Save the program, then run it and sit back to listen. Where did all this music come from? And why did you have to use DOS 3.3? The music subroutine is written by Gary Shannon and is part of Programmer's Aid \#1, which makes up part of the INTBASIC file. Since ProDOS doesn't support Integer BASIC, you've got to have DOS 3.3.

Lines $70-80$ in the example program install a short routine that calls the music subroutine in Integer BASIC-let's call the music routine MUSIC SWITCH-and returns to Applesoft BASIC without wiping out your Applesoft program. For those interested in assembly language, the example program's ML routine consists of only four instructions:
LDA \$C080 ;make Integer BASIC visible JSR \$D717 ;call the MUSIC subroutine LDA \$C081 ;make Applesoft BASIC visible
RTS ;return to Applesoft

How To Use The
 Music Subroutine

Here's the procedure for using the music subroutine from Applesoft BASIC.

1. From Applesoft, install MUSIC SWITCH at any location except locations 765-767.
2. POKE values for timbre, duration, and pitch into the following locations:

Value	Location
timbre	765
duration	766
pitch	767

For instance, if T represents the timbre value, the statement POKE $765, \mathrm{~T}$ sets the timbre for the music routine. The pitches are numbered from lowest to highest in the range $1-50$. These values form a chromatic scale of some four octaves with pitch 20 being approximately middle C . The figure accompanying this article contains more information about pitch.

Durations are numbered from shortest to longest in the range $1-255$. Metronome settings may be approximated as $M M=\operatorname{INT}(10200 /$ $M M$) and should be no slowe than 40 beats per minute ($M M=40$). (In this example, MM stands for Maelzel's metronome.)

Timbres are numbered $2,8,16$, 32, and 64. They do not sound greatly different. Some of the lowest and highest pitches will not sound true in combination with some timbres. However, timbre 32 may be used with any pitch.
3. Once you've set the pitch, duration, and timbre, call MUSIC SWITCH. Note that you need not POKE all three values (timbre, duration, and pitch) before each CALL to MUSIC SWITCH unless you wish to change all the values.

[^0]: System Req: IBM PC, XT, AT or compatibles, 256 k : Apple Ile, Ill; Commodore 64, 128: Tandy 1000, 1200,

[^1]: The COMPUTEI subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our feaders. If you prefer not to receive such mailings, please send an exact copy of your subscription label to: COMPUTEI P.O. Box 10955. Des Moines. IA 50950. Include a note indicating your preference to receive only your subscription.

 Authors of manuscripts warrant that all materials submitted to COMPUTEI are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTE!, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of COMPUTE! Publications. Inc. No portion of this magazine may be reproduced in any form without written permission from the publisher. Entire contents copyright author contract. Unsolicited materials not accepted for publication in COMPUTEI will authors are explained in our author contract. Unsolicited materials not accepted for publication in COMPUTEI will be returned if author provides a self-addressed. stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings are optional, but heipful, Arricles should be furnished as typed copy (upper-and lowercase, please) with double spacing. Each page of your article should bear the title of the article, date and name of the author. COMPUTE assumes no liability for errors in articles or advertisements. Opinions expressed by authors are not necessarly those of COMPUTE!
 PET, CBM. VIC- 20 and Commodore 64 are trademarks of Commodore ATARR is a trademark of Atari, Inc. Business Machines, Inc. and/or Commodore Electronics Limited Business Machines, Inc. and/or Commodore Electronics Limited \quad TI- $-9 / 4 \mathrm{~A}$ is a trademark of Texas instruments. Inc.
 Apple. Apple li. and Apple lisare trademarks of Apple Computer Company Radio Shack Color Computer is a trademark of IBM PC and PCjr are trademarks of International Business Machines, Inc. Tandy. Inc.

[^2]: Indoor Sports is available on C64 \& C128. High Roller is available on C64 \& C128 and Atar ST. Bop'n Wrestle is available on Apple II family, IBM \& compatibles. C64 \& C128 and Atan 800 . Infiltrator is available on Apple If family.
 IBM \& compatibles. $C 64 \&$ C128 and Atari 800 . Balance of Power is available on Apple II family. Macintosh. IBM \& compatibles. Amiga and Atarist.
 Visit your retailer or call $1-800-443$-7962 (in illinois $1-800-654-3767$) for VISA or MasterCard orders. To purchase by mail, send VISA or MasterCard number with expiration date. check or money order to Mindscape. Inc. P.O. Box 167. Northbrook. IL 60065 . Add $\$ 3.00$ for shipping and handling. Allow 3.5 weeks for deivery.
 if you're an attorney read this: Apple, IBM. PCjc. Commodore. Atan and Amiga are registered trademarks of Apple Computer. Inc.. International Business Machines. Commodore. Electronics Ltd. Atari. Ino. and Commodore

[^3]: BP $1 \varnothing \varnothing$ DIM TEST (3):FOR $I=\emptyset \quad T$ 0 3:TEST (I) = Ø: NEXT I
 JE $11 \varnothing$ FOR $I=1$ TO $1 \varnothing \varnothing \varnothing$
 HN $120 \mathrm{R}=\mathrm{INT}$ (RND (ø) *65535/12 8+ (. 5)
 BA $130 T=I N T(R / 4): R=R-T * 4$
 PE $14 \emptyset \quad \operatorname{TEST}(R)=T E S T(R)+1$
 BO 150 NEXT I
 CE 160 PRINT
 NP $17 \emptyset$ PRINT "VALUE", "COUNT"
 AM 18ø FOR $I=\emptyset$ TO 3
 H6 190 PRINT I, TEST (I)
 BK $2 \emptyset \emptyset$ NEXT I

[^4]: $1 \emptyset$ PRINT"PRESS ' Q ' IF YOU WANT
 TO QUIT THE PROGRAM."
 $2 \emptyset$ GET AS
 $3 \emptyset$ IF $\mathrm{A} \$=" "$ THEN GOTO $2 \emptyset$
 $4 \emptyset$ IF $A \$=" Q$ " THEN STOP

[^5]: $1 \varnothing$: WHILE AS=""
 $2 \varnothing$ GET AS
 30 : WEND
 $4 \varnothing$ PRINT"THE KEY '";AS;"' HAS
 JUST BEEN PRESSED"

