# A Buyer's Guide To Printers 

## COMPUTEI.

The Leading Magazine Of Home, Educational, And Recreational Computing

# The New, Expandable Amiga 2000 A hands-on look at Commodore's newest and most powerful machine ever 

## Euchre

An absorbing versign of the popular card game for Commodore 64, Amiga, Apple II, PC/PCjr, and Atari

## Applecoder

Hide your private files from prying eyes

Filedump For IBM PC/PCjr
Examine your disk files in detail
Custom Characters For Atari XL And XE
An efficient way to makevour
own character sets
DOS Calc For The 64
Work with your disks the easy way

## 3-D Surfaces For Amiga

Create 3-D shapes in any color combination

## Diskcheck

Powerful Apple sector editor for DOS 3.3

## 128 File Viewer

A fast, multipurpose disk utility

# Is GETTING THE ANSWERTO SOFTWARE PROBLEMS A BIGGER PROBLEM THAN THE PROBLEM? 

## Don't stay on hold when there's help online from CompuServe ${ }^{*}$ Software Forums.

 same place in the program.

You've chucked the manual, because you've done exactly what it tells you to do six times already. So you call the software company.

Now you spend half a day beating your head against a brick wall of busy signals, ranting at recorded messages, hanging around on hold. And you still don't get the solution to your problem.

Meanwhile, progress is stopped and your profits are dribbling away. But wait. There's help...

Several prominent, progressive software publishers recognize this problem, and
 working with CompuServe, have developed a solutionCompuServe Software Forums.

Now you can go online with experts from the companies that produced your software and get
prompt, written answers to your specific problems. even talk with software


Aldus, Ashton-Tate, Autodesk, Borland International, Creative Solutions, ${ }^{\text {s }}$, Ligital Research, Living Videotext ${ }^{\circ}$, Lotus ${ }^{\circ}$ Inc., Microsoft, ${ }^{\circ}$ MicroPro, Misosys Inc. and Software Publishing ${ }^{\circ}$ all have CompuServe Software Forums. And we keep adding more.


CompuServe's large subscriber base also puts you in touch with thousands of other, often more experienced, users of the same software. You'll find they can give you lots of creative ways to get the most out of your software.

And software forums are the best way to learn about product updates, new product announcements, new ways to expand the uses of your software, and offer free uploads of your own programs.

Our online electronic magazines
frequently publish software reviews. And you can find help for many other software products in our other computer-related forums for IBM, Tandy, Atari, Apple, Commodore, $\mathrm{TI}^{*}$ and others.

The last thing you need when you've got a software problem is a bigger problem getting answers. So, from now on, get prompt, informed answers on CompuServe Software Forums.

To buy your CompuServe Subscription Kit, see your nearest computer dealer. Suggested retail price is $\$ 39.95$.

To order direct or for more information,
call 800-848-8199
(in Ohio, 614-457-0802).

If you're already a CompuServe subscriber, just type GO SOFTWARE at any ! prompt.

## CompuServe

# TEST DINE ONE FOR YOURSELF: 

In their day, they ruled over three quarters of the earth's surface.

During WWII, they viciously brought Britain to her knees. And Japan to the ground.


These were the silent killers: Tench. Gato. U-Boat.

And now, they return. In this, the most realistic, all-encompassing simula-
 tion ever created for the personal computer.

You will command one of six types of American subs or German Kriegsmarine U-Boats, during any year from 1939 to 1945. You'll perform one of over

Mail to Sub Battle Previeu, PO. Box 8020, Redwood City, CA 94063.


And the contents of a vital target book, among other things.

Your arsenal will include deck and antiaircraft guns. Torpedoes. And mines.

But even all that may not be enough.

Because besides the risk of bumping a depth charge or facing a killer Destroyer, you'll still have to contend with the gunfire of enemy aircraft.

No simulation has ever had the degree of authenticity, gut-wrenching action or historical accuracy of this one.

The first release of our new Masters Collection. And a challenge of unbelievable depth.
Apple ll \& combatibles Apole IIGS Atari ST, C64 128, IBM \& Atari ST, Compatibles, Macintosh.

Independent generator \& diesel engines.

$$
5^{\prime \prime} 25 \mathrm{cal} . \mathrm{gun} .
$$

Tryenc The sealed control room.

60 missions. Or you'll engage in the most difficult task of all: To make it through the entire war. Each vessel is completely unique and painstakingly authen. tic, so you'll have a lot to learn: Navigation. Weather. Radar.

The $360^{\circ}$ periscopes.

# Outstanding Artistic Instructive books from COMPUTE! 



You'll find expert information, useful applications, intriguing games, graphics, colorful art, music, programming guides, and more in these new Atari ST-specific books. Beginning to advanced ST users will benefit from the applications and tutorials in each book. And as always, the books are written in COMPUTE!'s clear, understandable style.

## COMPUTE!'s ST Applications

Brian Flynn and John J. Flynn $\$ 16.95$
ISBN 0-87455-067-X
An excellent assortment of games and applications for business and home, written in BASIC, COMPUTEI's ST Applications is an instant library of programs that every ST owner will want to have. All programs have been fully tested and are ready to type in and use on the Atari 520 or 1040 ST. There is also an optional disk available for $\$ 15.95$ which includes the programs in the book.

## COMPUTE!'s ST Artist

Selby Bateman and Lee Noel, Jr.
$\$ 16.95$
ISBN 0-87455-070-X
A step-by-step guide to creating dazzling graphics and art on the Atari ST personal computer. Using NEOchrome and DEGAS*, this book shows you how to get the most out of these excellent painting and drawing programs. Tips and techniques provide you with the most efficient ways of creating graphics and demonstrate how to produce colorful art. Examples illustrate each step and show off all the visual power of the Atari ST and its graphics software. Information is included on the newest versions of NEOchrome and DEGAS Elite. There is an optional companion disk available for $\$ 15.95$ which includes artwork from the book.


> COMPUTE!'s ST Applications Guide: Programming in C
> Simon Field, Kathleen Mandis, and Dave Myers $\$ 19.95$

> ISBN 0-87455-078-5
> COMPUTEI's ST Applications Guide: Programming in C is your complete tutorial to designing and writing effective ST application programs. Practical examples show you how to use GEM routines to develop professional-looking applications of your own. Explore topics such as disk files, menus, icons, the mouse, sliders, dialog boxes, programming desk accessories, music, and much more. For intermediate to advanced $C$ programmers.

The Elementary Atari ST
William B. Sanders
$\$ 18.95$
ISBN 0-87455-024-6
A clear, easy-to-use guide to the Atari ST, this book takes you through everything from connecting your computer, loading programs, and creating graphics and music, to writing your own programs.

- A product of Batteries Included.

Order your Atari ST book today. Call toll-free 800-346-6767 (in NY 212-887-8525), or write COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

NC residents add 5 percent sales tax and NY residents add 8.25 percent sales tax.
Shipping and handling: $\$ 2.00$ U.S. and surface mail; $\$ 5.00$ airmail. Please allow 4-6 weeks for delivery.

COMPUTEI books are available in Canada from McGraw-Hill, Ryerson Ltd., 330 Progress Ave., Scarborough, Ontario, Canada MIP 275.

# COMPUTE! <br> MARCH 1987 <br> VOLUME 9 <br> NUMBER 3 <br> ISSUE 82 



COMPUTEI The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., 825 7th Ave., New York, NY 10019 USA. Phone: (212) 265-8360 Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, $\$ 24$. POSTMASTER: Send address changes to: COMPUTEI Magazine, P.O. Box 10955, Des Moines, IA 50950. Second class postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1987 by COMPUTE! Publications, Inc. All rights reserved, ISSN 0194-357X.

As microprocessors, computer chips, become increasingly a fact of modern life-stamped into everything from coffeemakers to greeting cards-we can expect the things around us to grow ever smarter and, consequently, more useful. Madison Avenue seems to follow a predictable pattern when describing the various levels of appliance intelligence. It's most obvious with communications appliances like stereos and TVs. What was just a radio suddenly becomes a digital radio. A year or two later, and some additional RAM and ROM chips, and it's computerized (or microprocessor controlled). Eventually, when the device is finally more computer than radio, it's called programmable.

Although there's considerable imprecision and variability in the use of these terms, there is a profound change taking place.

You can see it happening now with television sets. A year ago we were introduced to the first "digital" TV. All this amounted to was "picture within picture": You could cause a frame to appear on the screen holding an image that differed from the larger, normal TV image. Now, however, newer "digital" TVs use special sampling techniques to improve picture quality by creating more lines than were originally broadcast. In other words, the TV is smart enough to infer what would have been sent if the TV studio or videotape were transmitting roughly twice as much picture as either is currently able to. The result is a sharper, more detailed picture, and you cannot see the fine horizontal lines which are visible on most TV images.

With this we have moved closer to high-definition, theater-quality home entertainment. However, there is a clear line of progress yet to come, from these early steps to the ultimate TV. For one thing, even intelligently enhanced images are not, themselves, digital. To see why, we need to briefly define the important distinction between analog and digital.

There are only two ways to transmit, store, or manipulate information: analogously or digitally. Analog information is an imitation, where digital information is a numeric code. Cavemen
used both forms: If an advance scout needed to tell the hunting party that he saw two elephants, he could either imitate them by sketching two elephant figures on a tree, or simply poke two sticks into the ground. (Digital, being a code, depends on a prior agreementfor instance, that sticks in the ground represent elephants.)

But an even more fundamental distinction between digital and analog rests on whether the information is continuous or separated into abrupt steps. Again, this can be seen in the earliest cave paintings: A drawing of an elephant is a unit, a whole unto itself, sometimes even drawn with a continuous single line. A series of straight lines, however, perhaps representing a herd of elephants, is discontinuous, separated into symbols, and bears no real resemblance to the thing it communicates. Thus, when you call someone on the telephone, the rise and fall of your words is reproduced, imitated by the little speaker in the earpiece of the telephone on the other end. The information is continuous, a flow of sound. Were you to communicate via smoke signals or Morse code, the information would be broken into distinct steps or pulses and would bear no resemblance to the spoken word. In the modern sense of the term, digital communication means frequently sampling a continually varying event to reduce it to a series of numbers. The numbers, then, can be easily stored or transmitted. They are also easy to manipulate: To make a louder sound, just multiply the numbers.

Nevertheless, analog has been the primary method of communication for most of man's history simply because it's generally easier to accomplish without computer assistance. For example, the traditional phonograph record is made by a little needle which vibrates a pathway into soft vinyl. When recording a trumpet, the needle digs a vinyl pathway which is a direct imitation of the vibrations in the air caused by the trumpet. Then, when you want to listen to it, the needle on your record player sends the same vibrations to your speaker, which, in turn, vibrates the air as the trumpet originally did. All the
way along, from Doc Severinsen's horn to your ear, the information is passed in the form of various analogies to the vibrations of air we recognize as the sound of a trumpet.

To digitize this sound requires enormous amounts of computer power, and it was only a few years ago, with advances in microprocessing, that digital music, in the form of the compact disc, became possible. Whereas analog is easy (the needle and vinyl and speakers transmit vibrations to each other pretty much unassisted), digital requires that the sound be turned into a code, into numbers to be stored on the disc. Then, in order for you to listen to it, those numbers have to be translated back into vibrations by a compact disc player through a process known as dig-ital-to-analog conversion. And to get accurate sound, you need lots of numbers: 44,000 per second. A single minute of music on a compact disc requires more than 2.5 million numbers.

A video event requires far more information than audio. So we can expect to wait years before TV images are thoroughly digitized all through the chain from network camera to home TV screen. Some few studios are just now beginning to add digital capabilities, but the cost is as yet far beyond the consumer market. As usual, the consumer must wait for lower chip costs and higher chip speeds before the manifest benefits of digital TV will be everywhere available.

The latest home video recorders do have enough memory to capture a single still image and display it, rock steady, as a freeze frame. We can also expect digital signal enhancement for VCRs soon. But the most dramatic changes will come in the next stage, the computerization phase. At that point, the home television will start to make some decisions all by itself.

To get a hint of what's possible, we can look at a couple of recent developments in the satellite TV world: constant database broadcasting and intelligent receivers.

There's now a service which acts like a smart TV Guide. You interact with it when you tune it in. You can request a list of sports events only, or reviews of
all of tonight's movies. In other words, it works like a typical computer database where the user is able to search and filter the information, to tailor it to his or her needs or tastes.

In a related development, if you want to watch scrambled satellite broadcasts like HBO, you purchase a "descrambler," a unit that looks something like a hi-fi receiver, but which is really a sophisticated computer in disguise. You plug it in between your satellite dish and your TV and it mostly just passes the pictures and sound right through. It sits there and does nothing more than pretend it's just a wire, since most satellite signals are unscrambled. But when you change to HBO, it recognizes the scrambling and blanks out the picture with the message "No Subscription."

If you choose to subscribe, you can call HBO directly and give them your credit card number and the serial number of your descrambler. Within 30 minutes, the HBO movies are coming through the descrambler. What's startling about this, and also predictive, is that HBO turns on your particular descrambler from its central offices via the satellite signal which is beaming all across the country. Within that signal, for a brief time, is a special message to your individual descrambler. This facility for pinpoint targeting is also now giving rise to pay-per-view services and individualized messages sent between the normal pictures.

And there is a lot of space between the normal pictures. The vertical blank interrupt, that black line you see if your picture rolls, can contain considerable additional information. Bilingual or captioned movies; stereo audio; teletext and other printed data; and dozens of other kinds of communications can fit in that extra space. But none of this would have been possible without the advent of computers and their capacity for blazingly fast digital manipulation.

One major byproduct of computerization is increased personalization, increased interactivity with the appliances around us. We can expect to see TV sets which will allow us to customize them to a degree previously impossible. Not only will we be able to establish passwords for channels considered inappropriate for younger members of the family, but we'll also be able to tell the TV to always turn to our favorite news broadcast, or even to recognize and record any W. C. Fields movies.

Further, the media itself can become more personalized. There can be more shows on less popular topics; more foreign movies; more special interest broadcasts-all because a small audience can support such narrowcasting through pay-per-view.

## ANNOUNCING A FREE OFFER WITH A 3,000-YEAR GUARANTEE.

> What a deal! Your first Shanghai" game's on us! Just send for your free Shanghai demonstration disk which contains one tantalizing puzzle. It's guaranteed to whet your appetite for the billions of options on the complete disk.
> What makes us so sure? History.Shanghai is derived from the ancient oriental game of Mah Jongg, which has captured players' imaginations for over 30 centuries.
> Find out what a 3,000-year obsession is all about. Write for your free Shanghai Demo:

Activision, Inc.
P.O. Box 7287

Mountain View, CA 94039
Enclose a $\$ 3.00$ check for postage and handling.
"..Activision said
Shanghai is addictive.
They're right..."
-stuart Alsop

"Just be warned: spend one night with Shanghai and you could be spoiled ... $\star$ (Five Stars)"
-Tracie Forman Hing - Tracle Forman Hines
Senior Editor, MacU User

Now available for IBM PC/ PCjr. Tandy 1000, Apple II, Macintosh. Commodore 64/128, Amiga, Atari ST and compatible computers. Coming soon for the Apple II GS.


## Publisher

Founder/Editorial Consultan Editor In Chlef
Managing Ediltor
Executive Editor
Editor, COMPUTEI
\& COMPUTEI'S GAZETTE
Assistant Editor, COMPUTEI Production Director
Editor, COMPUTE!'s Atari ST
Disk \& Magazine
Technical Editor
Assistant Technical Editors Assistant Ediltor, COMPUTEI's
Atari ST Disk \& Magazine Assistant Editor, COMPUTEI's GAZETTE
Assistant Features Editor Programming Supervisor Editorial Programmers Copy Editors

Ediltorial Assistant Submissions Reviewer Programming Assistants Executive Assistant Administrative Assistants

Associate Editors

James A. Casella
Robert C. Lock
Richard Mansfield Kathleen Martinek Selby Bateman

## Lance Elko

Philip I. Nelson
Tony Roberts
Tom R. Halfhill
Ottis R. Cowper
George Miller, Dale McBane

## Todd Heimarck

Rhett Anderson
Kathy Yakal Patrick Parrish
Tim Victor, Tim Midkiff Tammie Taylor, Karen Uhlendorf, Karen Siepak Caroline Hanlon David Hensley David Florance, Troy Tucker Debi Nash
Julia Fleming, Iris Brooks, Mary Hunt, Sybil Agee Jim Butterfield Toronto. Canada Fred D'Ignazio Birmingham, AL David Thornburg Los Altos, CA Bil Wilkinson

Stephen Levy Gregg Keizer, Ann Davies

Steve Voyatzis
Irma Swain
Janice R. Fary
Lee Noel
De Potter
Dabney Ketrow, Robin Case Terry Cash, Carole Dunton Harry Blair

Peter Johnsmeyer
Bernard J. Theobald, Jr. Kathleen Hanlon

Customer Service Manager Diane Longo Dealer Sales Supervisor Orchid Tamayo Individual Order Supervisor Cassandra Green Receptionist Anita Armfield Warehouse Manager John Williams

James A. Casella, President
Richard Mansfield, Vice President, Editorial Director Richard J. Marino, Vice President, Advertising Sales Christopher M. Savine, Vice President, Finance \& Planning
COMPUTE! Publications, Inc. publishes:

## COMPUTE! <br> COMPUTEI's Gazetfe COMPUTEI's Gazette Disk COMPUTEI's Apple Applications Special COMPUTEI's Atari ST Disk \& Magazine

| Editorial offices: | 324 West Wendover Avenue Suite 200 <br> Greensboro, NC 27408 USA |
| :---: | :---: |
| Corporate offices: | 825 7th Avenue New York, NY 10019 212-265-8360 |
| Customer Service: | $\begin{aligned} & 800-346-6767 \\ & \text { (in NY 212-887-8525) } \end{aligned}$ |
| Hours: | $\begin{aligned} & \text { 9:30 A.M.-4:30 P.M. } \\ & \text { Monday-Friday } \end{aligned}$ |

## Coming in Future Issues

The Winter Consumer Electronics Show (CES): A Comprehensive Report

SpeedScript 80: Our Popular 80-column Word Processor for Apple II

## HyperScan: Mandelbrot Graphics for Commodore 64

ST Outlook: A Hands-on Look at Desktop Publishing
Disk COMpacker for IBM PC/PCjr

## Atari Disk Sector Editor

Controlling Amiga Text Fonts
Menu Planner: Computer Assisted Cooking for the Commodore 64, Apple II, ST, Amiga, IBM PC/PCjr, and Atari 400, 800, XL, and XE.

Subscription Orders COMPUTE!
P.O. Box 10954

Des Moines, IA 50340
TOLL FREE
Subscription Order Line
800-247-5470
In IA 800-532-1272

## COMPUTE! Subscription Rates ( 12 Issue Year):

US
(one yr.) $\$ 24$
(two yrs.) \$45
(three yrs.) $\$ 65$
Canada and Foreign
Surface Mail $\$ 30$
Foreign Air
Delivery
$\$ 65$

## ABC

Andit Buras of Circalations

## Advertising Sales



212-315-1665
2. Southeast \& Foreign

Harry Blair
919-275-9809

## 3. Midwest \&

Southwest
Jerry Thompson
312-726-6047 (Chicago)
713-731-2605 (Texas)
303-595-9299 (Colorado) 415-348-8222 (California) Lucille Dennis
415-348-8222

## Director of Advertising Sales:

Peter Johnsmeyer
4. West, Northwest \&

British Columbla
Jerry Thompson
415-348-8222
Lucille Dennis
415-348-8222
5. Canada

Harry Blair
919-275-9809

Associate Advertising Director: Bernard J. Theobald, Jr.
COMPUTE! Sales Office 212-315-1665
Address all advertising materials to:
Kathleen Hanlon
Advertising Production Coordinator
COMPUTEI Magazine
324 West Wendover Avenue
Suite 200
Greensboro, NC 27408

The COMPUTEI subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our readers. If you prefer not to receive such mailings, please send an exact copy of your subscription label to: COMPUTEI P.O. Box 10955, Des Moines, IA 50950. Include a note indicating your preference to receive only your subscription.
Authors of manuscripts warrant that all materials submitted to COMPUTEI are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTEI, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of COMPUTE! Publications, Inc. No portion of this magazine may be reproduced in any form without written permission from the publisher. Entire contents copyright (c) 1987. COMPUTE! Publications, Inc. Rights to programs developed and submitted by authors are explained in our author contract. Unsolicited materials not accepted for publication in COMPUTEI will be returned if author provides a self-addressed, stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings are optional, but helpful. Articles should be furnished as typed copy (upper- and lowercase, please) with double spacing. Each page of your article should bear the title of the article, date and name of the author. COMPUTE assumes no liability for errors in articles or advertisements. Opinions expressed by authors are not necessarily those of COMPUTEI.
PET, CBM, VIC-20 and Commodore 64 are trademarks of Commodore ATARI is a trademark of Atari, Inc.
Business Machines, Inc. and/or Commodore Electronics Limited TI-99/4A is a trademark of Texas Instruments, Inc Apple, Apple II, and Apple llgs are trademarks of Apple Computer Company Radio Shack Color Computer is a trademark of IBM PC and PCjr are trademarks of International Business Machines, Inc. Tandy, Inc.

It's not impossible to imagine TV eventually becoming so specialized that there would be channels devoted to, say, showing only Kubrick films. If that happened, whatever you might want to see or hear would always be on.

Eventually, perhaps within the next five years, television will enter the third stage of its computerization: programmability. When TV is sufficiently integrated with the VCR and other entertainment appliances, it will be possible to teach the machines to work together for the viewer's benefit and to suit the viewer's personal tastes. One early example is the generalized remote control brought out by GE last year. You put it face to face with all your other remotes and simultaneously press the same buttons on each. The GE then memorizes all the codes and can be used in place of all your other remotes.

Plans have been announced to introduce this year a controller with macro capabilities. Not only does this device know what time it is; it can also learn a complicated series of keystrokes and be programmed to repeat them. Among the many uses for a macro controller will be its ability to act as if it were a well-trained servant performing a complex series of tasks-before you arrive at breakfast, for example. Assume that you want to see the weather report first thing. Before you awake, the macro will be able to turn on the TV, change channels to the weather report, precisely adjust the volume, rewind your VCR, wait until the weather comes on, record just that part of the program, and then rewind again, waiting for your arrival.

Such controllers could contain hundreds of personal macros, and the macros themselves could be chained together into a highly complicated series of actions. Macro programming is just another word for computer programming.

There will be some spectacular advances in the coming years as the quality and convenience of our domestic devices continue to benefit from the microprocessor revolution. And whatever words are used in advertising, many of our household machines are clearly in the process of becoming more computer than appliance.


Richard Mansfield
Editorial Director

## Ioday's Gure for the Perm Paper Blues

The term paper...sleepless nights, worry-filled days, and no time left for anything else. With all that organizing and writing to do, the thought of just getting started gives you a serious case of the blues. Your computer and Term Paper Writer $^{\text {TM }}$ are the only cure.

The Notetaker: Helps you collect, save, sort and find information. It might even help you find the perfect topic.
The Outliner: Puts your ideas into subject groups and gives them the right flow, so your conclusion isn't part of your preface.
The Writer: A complete word processor that breaks writer's block and turns your thoughts into crisp, printed pages that look top-grade.
The Footnoter \& Bibliography Compiler: No more latenight thumbing through style manuals. The Compiler does it for you.

Term Paper Writer. Because making the grade doesn't have to be a full-time job. Or give you the blues.

For Commodore 128, IBM PC, PGjir, Tandy 1000 and $100 \%$ Compatibles, and Apple II Series Computers.
 The pational Busi. ss Matimes Corporation. Midy 1000 is a tridamark of Mady corporation. Apple II is a
 the registered tradomaz of Activision, Inc. 1987 Activision.

## COMMODORE'S

# New, Expandable Amiga 2000 

# A Hands-On Report 

Philip I. Nelson, Assistant Editor

Eighteen months after the debut of the Amiga 1000 personal computer, Commodore is introducing a powerful next-stage machine: an easily expandable, multitasking, multiprocessing Amiga that can be configured by users in more ways than any previous computer. Here's a firsthand look at Commodore's new Amiga 2000.

When Commodore introduced the Amiga in mid-1985, the machine was rightly hailed as a breakthrough in power, ease of use, and versatility. Without taking away any of the features that made the original Amiga such an important computer, Commodore is now presenting users with a machine that's a remarkable hybrid: an Amiga that can become just about any computer combination you want it to be.

In this way, Commodore answers those critics who have said that the original Amiga was too expensive to be a home computer and not powerful enough for a business machine. The Amiga 2000 can, in fact, bridge many different markets-from the under- $\$ 1,500$ entry-level to the multi-thousanddollar powerhouse machines.

On a related note, Commodore officials have also admitted that
plans are well under way for an even lower-priced Amiga-functionally similar to the Amiga 1000-in the not-too-distant future (in addition to the marketing of the Amiga 2000). In this way, Commodore hopes to create an Amiga solution for virtually any computer user's need.

What does the new Amiga 2000 offer?
"The basic machine has one $31 / 2$-inch drive, seven expansion slots, three drive ports, and a 200watt power supply, for under $\$ 1,500$-plus a choice between a $\$ 300$ monitor or a $\$ 500$ monitor," says Clive Smith, Commodore's general manager for product marketing and development. He also notes that the Amiga 2000 is completely software-compatible with the existing Amiga 1000, provided the software complies, as all commercial programs should, with the standards for version 1.2 of the operating system. (The 1.2 operating system fixes some bugs and adds many new features to the previous operating system.)
"What you have," Smith adds, "is a machine with a low entry point [in terms of price], but which is more expandable than any other machine in the marketplace. Do
you want eight megabytes of extra memory? Plug it in. If you want a $51 / 4$-inch drive, an 80 -megabyte hard drive, you plug them in. What we have is a coprocessing environment with the Amiga's 68000 chip and the IBM's 8088. If you want math coprocessors [an Intel 8087 or Motorola 68881], a video digitizer, a multifunction card next to your IBM card, you just plug them in. What we're saying is that you've got a coprocessing, multitasking environment. It's a low-price machine that you can easily upgrade to whatever level you want."

## Low Price <br> And Expandability

Two of the keys to expandability at low cost are the optional Amiga Bridge card, which allows the Amiga to run IBM PC software (see below), and PC-compatible expansion slots on the machine's main circuit board. The fierce competition among PC-clone manufacturers has driven the price of IBM peripherals and enhancement cards to amazingly low levels. PCcompatible $5^{1 / 4}$-inch floppy drives can be found for less than $\$ 100$, and you can buy a high-quality tenmegabyte hard card (hard disk drive on a single plug-in card) for less than $\$ 400$.

Other PC enhancements such as enhanced graphics adapter (EGA) cards follow similar pricing patterns. The ability to install an inexpensive hard disk is especially attractive because you can use it for

Amiga files as well as IBM files. Even including the cost of the Bridge card, that gives you a fast, large-capacity hard drive for less than you might pay for an Amigaspecific stand-alone unit (not to mention the fact that the drive goes inside the case rather than taking up precious desk space).
"Everything we said about the original Amiga [1000] is true," says Gail Wellington, director of product marketing and development. "It is an expandable machine with an open architecture. However, for expanding the machine in a practical sense-in terms of how much space it requires and where you can get the items you need-the original design is not the optimum solution. For the Amiga 2000, we were looking for a machine that could be
expanded and upgraded in a practical way, both ergonomically and in terms of sources [for hardware]. We wanted people to be able to configure the system easily to meet their own requirements."

The immediate market for the Amiga 2000 is obvious. It appeals to anyone who likes the Amiga for its fast processing speed and superlative graphics, but who also wants the ability to run IBM PC software. Since IBM and its workalikes still dominate the office environment, the 2000 will be attractive to professionals who bring work home. And PC compatibility helps Commodore fill some Amiga software gaps. Many Amiga software titles are now available, but the machine is still somewhat weak in the area of mature business and professional

software. With a Bridge card, you can take immediate advantage of the large library of existing IBM PC software.

There are some applications where an Amiga-PC combination simply makes excellent sense. For example, the Amiga 2000's large memory and powerful graphics make it a natural for desktop publishing applications. But many of the documents published in a business environment would be generated on PC systems. With a Bridgeequipped Amiga 2000, you could read the documents directly from an IBM floppy disk and process them for publishing on the Amiga end of the system.

But the Amiga 2000 can give you more than the equivalent of an IBM PC and an Amiga sitting on the same desk, since the two processors communicate over a shared memory area. In fact, Commodore sees the opportunity for new hybrid programs that exploit the best features of both machines. An application, for instance, might use the PC's 8088/8087 combination for number crunching and pass the results to the Amiga to be displayed in high-quality color graphics. Admittedly, this category of software has yet to be created. But given the Amiga's ability to multitask (run more than one program at a time) and the open design of the 2000, it may be only a matter of time before such applications emerge.

## Externals

The Amiga 2000 is instantly recognizable as a different machine from the 1000. Although its footprint (the physical shape and size) is about the same, the case is considerably taller to make room for extra internal hardware and expansion slots. The front panel has room to mount three disk drives: two $31 / 2-$ inch drives and one half-height $51 / 4$ -

The Amiga 2000 takes up about the same amount of desk space as the Amiga 1000 , but its case is taller to hold additional disk drives and internal expansion cards. The front panel can hold two $3^{11 / 2}$-inch disk drives and one $5^{51 / 4}$-inch drive. This particular model has two $3^{112}$-inch floppy drives and an internally mounted hard disk. A $5^{114}$-inch drive can be installed in the slot below the two smaller drives.

# When you want to talk computers... 

## HOME COMPUTERS.

## Atari Computers

520ST Monochrome System...... $\$ 619.00$
520ST Color System................... 789.00
1040ST Color System..................999.00
800XL 64K Computer....................69.99
65XE 64K Computer....................89.99
130XE 132K Computer...............129.00
Atari Peripherals
1010 Cassette Drive..................... 49.99
1020 Color Printer........................ 29.99
1050 Disk Drive........................ 129.00
835300 Baud Modem..................24.99
850 Atari Interface......................109.00
M301 300 Baud Modem............... 39.99
XM801 80-Column Printer...........179.00
XM804 ST Printer......................169.00
ICD PR Connection...................... 59.99


## Amiga System Package

\$1199
Includes: Amiga CPU, 256K RAM expansion, RGB Monitor, Amiga DOS, Basic, Tutorial, Kaleidoscope, Voice Library.

## Commodore Computers

Commodore-64C 64K Computer.. 189.00
Commodore-64 64K Computer..... 149.00
Commodore-64 System............... 479.00
Commodore-128 128K Computer.259.00
Commodore-128 System.............759.00
Amiga 1000 256K Computer....... 849.00
Commodore Peripherals
1530 Data Cassette...................... 34.99
1660 Commodore Modem............ 59.99
1670 Commodore Modem...........139.00
1541C Disk Drive....................... 189.00
1571 Disk Drive......................... 249.00
1802 Color Monitor.....................189.00
1902 Color Monitor..................... 299.00
Amiga $101031 / 2^{\prime \prime}$ Ext. Drive........ 219.00
Amiga 1020 51/4" Ext. Drive........ 189.00
Amiga 1080 RGB Monitor...........269.00
C128 512K Expansion Board....... 179.00
PPI Parallel Printer Interface..........34.99
Xetec S/Graphix 8K...................... 69.99
Micro R\&D MW350..................... 44.99

MS/DOS SYSTEMS.
DRIVES.


## PC-TOO 20 Meg XT-Compatible

AT\&T 6300
Compaq $\qquad$
......................from 1699.00
Ordata............................from 899.00
IBM-PC. $\qquad$
IBM-XT............................from 1699.00
IBM-AT.............................from 2699.00
Leading Edge.....................from 999.00
Toshiba 1100 Plus...........from 1749.00
Zenith from 999.00

## MULTIFUNGTION CARDS.

AST
Six Pak Plus PCIXT................. $\$ 169.00$
Six Pak Premium PC/XT............. 349.00
AdvantageAT 128K....................339.00

## Everex

EV-221 Evergraphics Mono.........139.00
EV-640 Edge Card ..................259.00

## Hercules

Color Card................................159.00
Graphics Card Plus....................209.00
Fifth Generation
Logical Connection 256K............. 299.00
IDEAssociates
IDE-5251 Local Emulator..............579.00
Intel
1110 PC Above Board................. 279.00
Inboard 386K OK..............................Call
NEC
GB-1 EGA.................................. 409.00
Quadram
Quad Ega+ Graphics Adapter.... 339.00
Silver Quadboard..........................239.00
Expanded Quadboard.................. 119.00
VIDEO 7
EGA Deluxe................................ 389.00
Zuckerboard
Color Card w/Parallel..................... 89.99
Monochrome Card w/Parallel.........99.99
576K Memory Card.......................59.99

Allied Technology
Apple Half-Heights
Controller Card.
.\$109.00
39.99

CMS
Drive Plus 20MB Intemal Card.... 399.00
Everex
Stream 20 20MB Tape-Backup.... 669.00
Genie Technology
210 H $10+10$ subsystem....... 1749.00 Indus
Atari GT Disk Drive..................... 199.00
Commodore GT Disk Drive......... 199.00

## lomega

A210H $10+10$ Bernoulli Box.. 1899.00 A220H $20+20$ Bernoulli Box..... 2499.00 Irwin
110 D 10MB Tape backup.......... 369.00

## Mountain Computer

Driye Card 20MB Internal Card... 649.00 A220 $20+20$ Subsystem........ 2199.00
Racore Jr. Enhancements
Jr. Expansion Chassis w/DMA..... 319.00


Seagate ST-225
20 MB Kit Toshiba
Half-Height 360 K internal
89.99

## DISKETIES.



## Maxell

MD-1 SS/DD 5¼

MD-2HD Hi-Density 51/4"...............21.99
MF-1 SS/DD 3½"......................... 12.99
MF-2 DS/DD 3½"......................... 21.49
CS-500 20Mb Streamer Tape........11.99
CS-600 60Mb Streamer Tape........13.49
Sony

MD-2HD Hi-Density $51 / 4^{\prime \prime}$...............22.49
MFD-1 SS/DD 3½"....................... 14.49
MFD-2 DS/DD $31 / 2$ "
20.49


## When you want to talk price.



In the U.S.A. and in Canada

# Call toll-free: 1-800-233-8950. 

## Educational, Governmental and Corporate Organizations call toll-free 1-800-221-4283 CMO. 477 East Third Street, Dept. A203, Williamsport, PA 17701 <br> ALL MAJOR CREDIT CARDS ACCEPTED.

POLICY: Add $3 \%$ (minimum $\$ 7.00$ ) shipping and handling. Larger shipments may require additional charges. Personal and company checks require 3 weeks to clear. For faster delivery use your credit card or send cashier's check or bank money order. Pennsylvania residents add $6 \%$ sales tax. All prices are U.S.A. prices and are subject to change and all items are subject to availability. Defective software will be replaced with the same item only. Hardware will be replaced or repaired at our discretion within the terms and limits of the manufacturer's warranty. We cannot guarantee compatibility. All sales are final and returned shipments are subject to a restocking fee.


The Amiga 2000's keyboard, mouse, and joystick cables plug into the front panel of the computer. In this photo, the joystick port is occupied by a security device ("dongle") for running a copy-protected commercial program.
inch-drive (see photo).
The basic machine includes one $3^{1 / 2}$-inch floppy disk with a capacity of 880 K , just as on the Amiga 1000. The front panel also has space to mount one extra $31 / 2$-inch drive and a half-height PC-compatible $5^{1 / 4}$-inch drive. This arrangement is not only compact, but it also provides a number of storage options, since the extra drive spaces can hold either floppy or hard drives, and the Bridge card allows a hard drive to be shared by both the PC and the Amiga.

The 2000's mouse, joystick, and keyboard ports are now grouped together on the front of the housing. This is more convenient than the 1000's configuration, which puts the mouse and joystick ports on the right side and the keyboard cable underneath and to the rear. The keyboard cable also has a sturdier connector than the cable on the 1000 , which uses a modular telephone-type connector.

The rear panel of the new Amiga looks something like the back end of an IBM PC, with vertical slots that can be opened up for connectors of various types. Unlike the original Amiga, which has nonstandard connector configurations for the printer and serial ports, the 2000 has the same parallel printer port and RS-232 serial port connectors as the IBM PC. The industry-standard ports permit you to use non-Commodore printer, modem, and cables if you wish-an important consideration for IBM compatibility.

## Video And Sound

As on the 1000, the Amiga 2000's graphics and sound are controlled by a triumvirate of custom chips code-named Agnes, Denise, and Paula. The basic graphics and sound capabilities of the two machines are identical: The 2000 has all the screen modes of the 1000 and includes the same four-channel sound system and software-based speech synthesizer.

Commodore is offering two new monitors for use with the Amiga 1000 or 2000. The A2002 monitor is switchable between RGB and composite video, like the current 1080 monitor. The A2080 is a special long-persistence display unit designed specifically for the highest resolution graphics modes. The screen phosphors in a longpersistence monitor hold their glow longer than ordinary phosphors, a feature which overcomes the problem of video jitter in the Amiga's special screen modes.

Composite video output is not
standard on the 2000. If you wish to use a composite monitor or television, you must purchase the A2060 composite/RF modulator board, which goes into a special video slot on the motherboard. This interface mounts internally to reduce problems with radio frequency interference (RFI).

For music enthusiasts, Commodore will offer the A1400 MIDI Interface as an option. Unlike the Atari ST's built-in MIDI interface, which includes only MIDI IN and OUT, the A1400 interface supports MIDI IN, OUT, and THROUGH.

## Keyboard

A number of changes are visible in the 2000's larger 95-key keyboard (see keyboard photo). The main keyboard cluster is nearly identical to the 1000 keyboard, except that the Shift, Tab, Backspace, and Return keys have been enlarged and labeled with PC-like arrows rather than words. On the Amiga 1000 keyboard, the Delete and Help keys are easy to hit by accident, since they're sandwiched very close to the Return key. The 2000's keyboard solves this problem by relocating Delete and Help away from the main cluster.

The four cursor keys have been relocated and moved into a T configuration. The numeric keypad follows the standard Teletext configuration and has also been moved somewhat to the right. The forward faces of some keypad keys contain legends such as Num Lock and Pg Dn which are meaningful in many PC applications.

The keys themselves are nicely sculptured and the key action is solid, with a more positive feel than that of the 1000 . While the new keyboard is a bit wider than the old one, it is also considerably less clut-


The keyboard of the Amiga 2000 has been enlarged and redesigned for keyboardintensive applications such as word processing. Some of the keycaps contain legends for IBM PC applications.
tered. All in all, the modifications make the Amiga 2000 keyboard substantially more efficient for word processing and other key-board-intensive uses.

## Inside The 2000

Internally, the Amiga 2000 has exactly the same microprocessor as the 1000 model: a $16 / 32$-bit Motorola 68000, running at a clock speed of 7.14 megahertz. However, the system can be easily upgraded for even greater speeds or numbercrunching power. Commodore intends to market an optional accelerator board which contains a 32-bit Motorola 68020 processor running at 14 MHz , a memory management unit (MMU), and cache memory. This processor could work either in parallel with the resident 68000 or as a replacement for it. The machine can also accept a Motorola 68881 math coprocessor to speed up math operations. The Bridge card allows coprocessing with an Intel 8088 8 -bit processor and optional 8087 math coprocessor, as well. (A math coprocessor, of course, depends on software that takes advantage of its special capabilities. Many calcula-tion-intensive programs for the PC check for the presence of an 8087 coprocessor and use it if it's available. Since the 68881 is newer than the 8087 , it may be a while before you can buy Amiga software that exploits the Motorola math chip.)

The 2000 comes with a full megabyte (over one million characters) of memory, and it offers a choice of two different memory expansion boards. The A2050 RAM expansion board can be supplied with an extra half-megabyte, one megabyte, or two megabytes of RAM. If that doesn't sound like enough, you'll be able to buy a bigger memory board populated with either four, six, or eight megabytes of extra RAM. The system is designed to handle a maximum of nine megabytes of memory.

Another welcome improvement is the elimination of the Kickstart disk. The 2000 has 256 K of ROM containing the operating system software which the Amiga 1000 has to load from disk. This simplifies and speeds up the process of booting the system, since you now need to insert only one

## IT'S A WORD PROCESSOR

## IT'S AN OUTLINER

## IT'S A FLASH CARD MAKER

## IT'S A CALENDAR



Homeworker from Davidson is an easy-to-use productivity program that helps students manage their coursework through six integrated modules: Word Processor, Outliner, Flash Card Maker, Calculator, Calendar and Grade Keeper.

The program also features on-screen tutorials, fact finder files and a clipboard for easy transfer of materials from one module to another.
The Homeworker software is packaged in a deluxe student organizer, along with a variety of study accessories:

- easy-to-follow
instruction manual
- study skills book
- calendar section
- phone/address book
- nine separate subject tabs
$\$ 89$ sug sted retail price Ask your dealer for this Davidson program or call us directly for assistance: (800) 556-6141 (213) 534-4070 (Outside California)
(California Only)


## Davidson.

Educational software that works

- fact finder-a quick reference guide for students
- highlighter and felt tip pen
- metric ruler
- $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ notepad
- disk holder


An overhead look at the inside of an Amiga 2000, showing the expansion area to the left and the power supply and internal floppy drives to the right. The bulk of the Amiga's internal circuitry, including its 68000 microprocessor, is not visible from this angle.
disk rather than two.
There's a second reason, apart from the convenience factor, why Amiga owners and software developers should rejoice at the demise of Kickstart. A computer manufacturer ordinarily doesn't move an operating system into ROM until it is satisfied that the system has reached final, debugged form; system software is more difficult to update once it has been "graven in stone" in ROM. The fact that Commodore has taken this step should increase everyone's confidence in the reliability of the system as a whole.

The accompanying photo shows the Amiga in an overhead view with its entire housing removed except for the backplate. (The front of the machine faces the bottom of the page.) In the lower right corner are two heavily shielded $31 / 2$-inch floppy drives. The metal cage at the upper right houses the machine's power supply, and the left area contains expansion slots.

Commodore is offering an optional hard disk/ SCSI controller board for the Amiga 2000. The card
includes two hard disk interfaces: The ST 506 -compatible interface allows you to connect up to two PC/XT hard drives, and the SCSI interface will accept SCSI-standard devices on either a 50 -pin SCSI connector or a 25 -pin Macintosh Plus-compatible connector. In addition to hard disk drives, this card lets you add a high-speed tape drive for backing up a hard drive's contents.

To insure adequate power for extra drives and cards, the Amiga 2000 provides a hefty 200 -watt power supply. Computerists who like time- and date-stamping will be glad to learn that the 2000 also includes a built-in clock/calendar with battery backup.

## Slots Galore

Inside the case of an Amiga 2000 are nine different expansion slots, some of which can serve a dual function. An 86 -pin expansion slot extends the Amiga's CPU (Central Processing Unit) bus; if you upgrade to a faster 68020 processor, this slot holds the CPU card. The video slot can hold an interface for
the optional composite/RF modulator or other video hardware such as the Genlock video mixing system.

The remaining seven slots extend the Amiga's system bus and provide slots for IBM PC cards. Five of these are 100 -pin Amiga slots and two are PC-specific. However, two of the 100 -pin slots can also be used as PC slots, so you have the equivalent of four PC slots in all.

The overhead photo illustrates the slot layout inside the Amiga's housing. The Amiga CPU slot is the long connector just below the center of the board. To its left are the five 100 -pin Amiga slots, the longest slots in the system. Two of these are shared with the four PC slots, which are grouped in the upper left corner from this view.

The two innermost PC slots are PC/AT-compatible, while the shorter, outermost PC slots are PC/XT-compatible. For those who aren't familiar with the latest IBM acronyms, a PC/XT is essentially the familiar IBM PC with some ROM upgrades and a built-in hard disk drive. A PC/AT is a significantly different machine, with a true 16 -bit microprocessor (the 80286), a much faster hard disk drive, and some additional expansion slots to take advantage of the 80286 processor's greater addressing range. The Amiga's circuit board is drilled for AT connectors in the outer PC slot positions, implying that you can upgrade all the PC slots to the AT level just by installing two more connectors.

## Plug-In IBM PC

As you've undoubtedly surmised, the reason the Amiga 2000 has slots for IBM PC hardware is that it can run PC software with the aid of an optional Amiga card known as the Bridge. This card, which contains an 8088 processor, is functionally very similar to the Sidecar accessory now available for the Amiga 1000. (Sheldon Leemon's "AmigaView" column in this issue has a hands-on description of the Sidecar.) There are two main differences between the two accessories. The Sidecar lives in a box that connects to the side of the Amiga 1000, and it includes a built-in $5^{1 / 4}$-inch disk drive. The Bridge plugs into an internal slot in the Amiga 2000, and it does not include a $5^{1 / 4}$-inch drive

## The Marketers Moving.... Port folio system!

## THELCORPORTNOLOSVSHRyIS:

## WINNER OF "THE EDITORS CHOICE AWARD"- PC MAGAZINE

Software that helps you manage any combination of investment portfolios more efficiently: stocks, bonds, currencies, options, commodities, mutual funds, and MORE. An easy, quick to learn alternative to the massive "professional" systems, but with all of their features and flexibility.
"Easy to learn, easy to use, ...gives serious investors many of the tools used by professionals. A four-disk rating!'" - INFOWORLD

## HOW II WORKS:

IPS Automatically Updates your Portfolios: using the latest data from your preferred on-line service. The built in integrated telecommunications module is preset to receive Dow Jones, CompuServe, The Source and InfoGlobe.
Timely Alerts with "Memo" Function: automatically advises you of option expiry dates, critical short term/long term changes, or your own personal deadlines.
"A very complete investment package... a lot of thought has gone into the extras."-PERSONALCOMPUTING

Flexible and Intuitive: display, sort, compile, manipulate and printout your investment data exactly as you want it. By portfolio, by security, or using a whole menu of helpful criteria.
Powerful Analytical Features Include: • "Raise Money" • "Splits/ Dividends" • "Cash and Margins" - "Suppose or What If" Functions and many more. The combined result? More profitable investment decisions, with less work.
'It's dangerous to look at any software package and say, 'This is the one', but this one comes very close... a rich variety of information formats and reporting options." - COMPUTERIZED INVESTING

The Isgur Portfolio System. The investment management program designed by Lee Isgur, Senior Vice-President of PaineWebber, New York, and one of the world's leading financial analysts.
"The developers obviously consulted with a stockbroker who knows his business." - PC MAGAZINE


## Sturamimons praise n extremely powerful, yet easy to use! 》) -FORTUNE MAGAZINES 1987 INVESTORS GUIDE

The Isgur Portfolio System is Only \$2495s. on IBM PC and Compatibles or \$19995. on The MACINTOSH and Atari ST.
Try The Isgur Portfolio System for 30 days, on a no-risk trial basis, call us and weill tell you how. Call 1-800-387-5707 or you can buy IPS from your favorite software retailer.


The Amiga Bridge card supplies everything which the Amiga 2000 needs to run IBM PC software, including an Intel 8088 microprocessor, 512 K of RAM, and a floppy disk controller for $5^{1 / 4}$-inch PC-compatible floppy disk drives. The board can also accept an Intel 8087 math coprocessor.
(however, it does include a disk controller; see below).

The Bridge is in essence an IBM PC, all on a single plug-in card. The basic card (model A2088) is PC/XT-compatible, with a 16 K Phoenix operating system kernel in ROM, 512 K of RAM, and MS-DOS 2.11 on disk. Commodore will also offer a PC/AT-compatible Bridge card (model A2286) which is based on the more powerful 80286 microprocessor rather than an 8088 . The Bridge must go in one of the two shared Amiga/PC slots. However, it can go in either shared slot, which lets you choose between three Amiga slots and three PC slots, or four Amiga slots and two PC slots. Incidentally, both the Bridge card and the Amiga's motherboard have the appearance of finished, debugged products; neither circuit board contains any jumper wires or other evidence of last-minute modifications.

The accompanying photo shows the layout of the basic Amiga Bridge card. Just to the right of the board's center is the 8088 microprocessor. The empty socket above the 8088 is where you would plug in an 8087 math coprocessor.

The three large, square components on the Bridge card are custom chips which presumably perform address decoding and other "glue" functions needed to make the Bridge work as a whole. Commodore owns the MOS Technologies company, which enables it to develop and manufacture custom chips of this type more inexpensively than other personal computer companies.

The large chip at the top of the board is the main component in the
onboard floppy disk controller (FDC) interface. The Bridge's floppy disk interface can support one internal floppy and up to three daisychained external floppies. If you install a $5 \frac{1}{4}$-inch floppy drive in the Amiga's front panel, it is controlled via the hardware on the Bridge card.

To the left of the FDC chip, arranged in two rows of 8 , are 16 chips that yield a total of 512 K RAM. These chips appear to be socketed, by the way, so it's conceivable that you could perform a future memory upgrade by simply swapping in larger-capacity RAM chips.

The rest of the PC system is emulated on the Amiga side. To run a PC application, the Amiga reconfigures its keyboard as a PC/XT keyboard, emulates the PC printer port on its own Centronics port, and displays the PC's video output in both monochrome and color. Supplying these services through software allows Commodore to keep the Bridge's chip count-and thus, its manufacturing cost-impressively low. The Bridge contains only about 50 chips, compared to well over 200 chips on any reasonably configured IBM PC.

If you're interested in how such feats are achieved, the technical documentation for the Bridge card makes fascinating reading. For communications between the two processors, 128 K of dual-ported, or shared, memory is used. Dual-ported memory can be "seen" in the address spaces of both processors, although not all of it is accessible by both the 8088 and the 68000 . The 2000 uses 64 K of this RAM for general data exchange, 32 K for the $\mathrm{PC}^{\prime}$ s
color video display, 8 K for the monochrome display, and 8 K for emulating PC input/output registers. The remaining 16 K is used to orchestrate the whole process.

## Does It Work?

In the world of PC clones, one of the toughest tests of IBM compatibility is to run Flight Simulator. At Commodore, we saw an expandedmemory Amiga 2000 run Flight Simulator for the IBM PC on one screen while it ran Superbase on a second screen and ran two copies of Aegis Draw Plus on third and fourth screens. That's three full-blown Amiga applications plus a proces-sor-intensive PC application, all running at the same time. Running from the Bridge, the flight simulator program took off, flew the plane, and updated the scenery as fast as it would on an ordinary PC.

To the Amiga's multitasking operating system, the PC application is just another task to run. Of course, since the PC's MS-DOS operating system cannot multitask, and the Bridge card has only a single 8088 processor, you're limited to running one PC application at a time. A PC screen can be "frozen," however, for reference from another PC application.

Who will buy the Amiga 2000? For anyone who uses an IBM PC at work, or who prefers not to give up the vast base of available PC software, the Amiga 2000 may well represent the best of both worlds. The Amiga end of the system offers speedy processing and excellent graphics and sound, while the Bridge card can run anything that runs on an IBM PC. But the design of the 2000 shows that Commodore has more in mind than simply exploiting an immediate market niche.

The flexible, completely open design of the Amiga 2000 puts it in a strong competitive position for the future. In contrast to a closedarchitecture machine such as the Atari ST, the 2000 can be not only reconfigured, but easily upgraded. The Amiga's multitasking operating system already makes it unique in the 16-bit arena. By allowing a plug-in upgrade to a processor like the 68020, Commodore has enabled the Amiga to survive through the next, even more powerful generation of 32 -bit computers as well.

# GET UPTO 200 FUNFFILIED PROCRAMS EACHYEARwhen you susbsaibe now to CourPrit 



Subscribe to COMPUTE! today through this special introductory money-saving offer, and you'll be getting a lot more than just another computer magazine. That's because each issue of COMPUTE! comes complete with up to 20 all-new, action-packed programs.

Subscribe now and you can depend on a steady supply of high quality, fun-filled programs like Hickory Dickory Dock, Switchbox, TurboDisk, Home Financial


Firisicapred he machine language progran that vorks on five dilferent conputers is no
shall task. the first hurdie is finding asafe place to put the code, Though
the caserte bufter is an obvious
chorce, it's iocated in differs Rlaces on various nachines and putting
 memory ${ }^{2}$ fore the installs the routine in
which compurer check to see Which eonpuker youre using, Thon it

 proptreader overurites that bocauses the
Bisitc ines.
delete basic lines ouervites its first fex
delete anything from the first portion Calculator, Turbo Tape, SpeedScript, SpeedCalc, and hundreds of other educational, home finance, and game programs the entire family can use all year long.

The superb programs you'll find in each issue are worth much, much more than the low subscription price.

And there's more to COMPUTE! than just exciting new programs. Month after month, COMPUTE!'s superb articles deliver the latest inside word on everything from languages to interfaces...from programming to disk drives.

Whether you're a novice or an experienced user, COMPUTE! is the magazine for you. So subscribe today. Return the enclosed card or call 1-800-247-5470 (in lowa, 1-800-532-1272).



If attached order card is missing, write: COMPUTE! P.O. Box 10955, Des (Mrineshatdoroommodore.Ca
A Technolo jies personal is only as strong as the peripherals that surround it-the monitors, disk drives, printers, modems, and other pieces of hardware that let you use your computer to its maximum potential. Over the past few years, more advanced computers such as the Apple Macintosh, the Atari ST, and the Commodore Amiga have brought new levels of power and flexibility to personal computing. At the same time, there have been major advances among the peripherals that support these computers, the IBM PC and compatibles family, and the earlier eight-bit machines like the Commodore 64, Apple II family, and Atari 400/800/XL/XE computers. On the following pages you'll find overviews of three of the most important developments occurring in computer peripheral technology today and during the next several years. New capabilities for dot-matrix printers, lower-priced hard disk drives, and computer screens with far greater resolutions will be affecting how we print, store, and look at computer information. And the changes will likely be occurring at a faster rate than many of us realize.

# An Introduction To Hard Disk Drives 

Philip I. Nelson, Assistant Editor

More and more personal computer owners are bringing home hard disk drives-those mysterious "black boxes" that can hold vast quantities of information and transfer data at amazing speed. In this article, we'll look at what's inside a typical hard drive and what makes this device so attractive to home users as well as to businesses and software developers.

Hard disk drives have long been popular with computer professionals. But until recently, they were simply too expensive to tempt most home users. That picture has changed dramatically within the last year. Comparatively inexpensive units are now available for the Atari ST, Amiga, and Macintosh, as well as for the increasingly important IBM PC workalike market. And you can even buy hard disk drives for eight-bit machines such as the Commodore 64 and eight-bit Ataris.

## The Proverbial Black Box

Hard drives are deceptively simple in appearance. The typical unit is a rectangular box adorned with nothing but a power switch, a cable to the computer, and a light that indicates when the drive is busy. A few are even functionally invisible: The latest development in the IBM PC market is the hard card-a complete hard disk drive mounted on a card that plugs into the computer's internal expansion box.

Hard disk drives go by various names: hard disk, rigid disk, fixed disk, or even Winchester disk, a holdover from early days when the
market was dominated by a manufacturer of that name. The first two names refer to the fact that the disk platter is made of hard, rigid material (often aluminum) rather than the flexible plastic used for floppy disks or tapes. The term fixed disk refers to the fact that the platter is permanently installed, unlike a removable medium such as a floppy disk.

## Bigger And Faster

The basic function of any mass storage device-a tape drive, disk drive, bubble memory, or whatever-is to let you move information from the computer's memory into permanent storage, and vice versa. The advantage of a hard drive can be summed up in two words: capacity and speed. Let's look at capacity first.

An IBM PC floppy disk has 362,496 bytes ( 354 K ) of total space. By comparison, the smallest available hard drive stores 10 megabytes of information-the equivalent of 10 million characters of text. Larger hard drives store $20,40,60$, even as much as 140 megabytes of data. Thus, a 10 -megabyte hard drive holds roughly the same amount of data as 27 IBM PC floppies, and it takes something like 386 PC floppy disks to hold as much information as a single 140 -megabyte hard drive. Currently, the most popular units for personal use are 10-megabyte and 20-megabyte hard drives.

Hard drives are a great deal faster than floppy drives. To demonstrate the speed difference, I wrote a simple program in C for the Atari ST. The test program writes ten 10,000-byte files and one 200,000byte file to disk (a total of 300,000
bytes), and then reads the same files back. All in all, the system has to move 600,000 bytes in the course of a program run. The elapsed time was calculated using the ST's internal timer, which counts time in twosecond increments. Here are the results from running the program with a single-sided floppy Atari drive, a 20 -megabyte Atari hard drive, and a commercial RAMdisk utility which emulates a disk drive entirely in RAM:

| Floppy | Hard Disk | RAMdisk |
| :---: | :---: | :---: |
| 16:24 | $9: 46$ | $8: 24$ |

The outcome of the race is a foregone conclusion: We expect the RAMdisk to win because it doesn't have to perform any mechanical operations at all. The hard drive, however, compares very favorably to the RAMdisk, performing the test several minutes faster than the floppy drive. (Please keep in mind that these results are provided only as a rough-and-ready demonstration, not as a scientific benchmark of any sort. Different computer systems, using a different microprocessor and DOS, or disk operating system, would produce quite different results. However, it's safe to say that a hard drive usually operates considerably faster than a floppy disk on the same system.)

There are several reasons why hard drives move data so much faster than floppy drives. The first has to do with rotation speed. Hard disks spin up to 3600 revolutions per minute ( rpm ), about 12 times as fast as floppies, which usually spin at about 300 rpm .

Hard disk sectors are also

# Call (800) 621 SAVE <br> In Illinois <br> (312) 280-0002 for THE ... highest quality and best value in computer products 

## COMMUNICATION

All THE tw Modems are Hayes Compatible THE ro Internal Modems For IBM ${ }^{*} \mathrm{XXT} / \mathrm{AT}$ and compatibles, feature auto answer, dial and re-dial w/built-in speaker, RS232-C serial port and FREE communication software.

## 1200 BAUD INTERNAL

\$109.00* ,

Retail Price $\$ 332.00$
THE ${ }^{0}$ External Modems
For IBM $\mathrm{Tw}_{\mathrm{w}}$, Apple m and other computer systems. These self-testing 1200 and 2400 Baud modems come with auto answer, auto dial, re-dial, and built-in speaker with volume control. 1200 BAUD

2400 BAUD \$119.00*\$259.00*

Retail Price $\$ 161.25$
Retail Price $\$ 346.75$

|  | MEMORY |
| :---: | :---: |
| ED | IBMmPC or XT $\$ 7.75$ <br>  |

## VIDEO CARDS

For the IBM TMXT/AT and Compatibles THE ${ }_{\text {TW }} \mathrm{H}_{720}$ MONOGRAPHICS
This short slot graphics card w/132COL capability and Printer Port is $100 \%$ IBM twand Hercules TM compatible. $^{\text {com }}$. Retail Price $\$ 91.25$
THE TmEGA PLUS
\$67.00*
100\% IBM + mEGA/Hercules Graphics/CGA/MDA compatible, w/Printer Port. EGA. Plus is perfect for high resolution graphics, w/256K
\$220.00*
standard. Retail Price $\$ 300.64$


THE TM COLOR CARD
Features $320 \times 200 / 640 \times 200$ graphics and $80 \times 25$ alphanumeric with $100 \%$ IBM tu color card compatibility, with Printer Port.
Retail Price $\$ 75.00$
\$60.00*

## MULTIFUNCTION

For IBM. TM XT/AT and Compatibles THE $\operatorname{m}$ MULTI I/O $100 \%$ AST TM I/O + compatible w/serial, parallel and game ports standard, clock/calendar, RAMdisk and Print Spooler. Second Serial Port $\$ 60.00 \%$ optional. Retail Price $\$ 75.00$
$\$ 60.00^{*}$
THE тм 2MB EMS RAM CARD
Meets Lotus $\mathrm{TM} /$ Intel Tm specs, compatible with Microsoft m Windows. Lotus. Framework and more RAMdisk/Print Spooler, software \$99.00* included, w/OK. Retail Price $\$ 172.00$ $\$ 99.00^{*}$ THE tm MULTI 384
$100 \%$ AST tw SixPack compatible. Features 0.384 K additional memory, serial and parallel ports, clock/ calendar w/battery backup, RAMdisk
and Print Spooler, w/OK.
Retail Price $\$ 90.00$
\$67.00*
*PC NETWORK MEMBERS BUY HARDWARE AND SOFTWARE AT WHOLESALE + 8\% AND GET 14-30 DAY SOFTWARE RENTAL $\dagger$


Signature

[^0]MEMBERS GET.
500 PAGEWHOLESALE CATALOG
30.000 Listed Items and

Their Wholesale Prices
PERIODIC NEWSLETTERS
With Catalog Updates and Reviews

## 10 DAY RETURNS

On Hardware - If You Don't Like It, Retur It. No Questions Asked
24 HOUR BULLETIN BOARD
10,000 Free Software
Programs to Download
CUSTOMER SERVICE
TECHNICAL SUPPORT
Help to Get the Best Products for Your Needs, and Solve Any Hardware or Software Problem
Mon.-Fri. 8am - 7pm
Saturday 9am - 5pm CST
Customer Service and Order Status: (312) 280-1567 Mon.-Fri. 8:30am-4:30pm PC NETWORK
320 West Ohio Street Chicago, IIlinois 60610

## STORAGE DEVICES


$\mathrm{THE}_{т м} 20+20$ SUBSYSTEM

The 20MB streaming tape drive packaged together with our 20MB Hard Disk allows you to backup the entire contents of your 20MB hard disk in minutes


## TCTI BACKED BY A $\$ 90$ MILLION

CARE PACKAGE
THE wcommitment to our customers is compatfoiffy, qualfty, value, service and support
THE mbacks every product with a 45 DAY MONEY BACK GUARANTEE and a 1 YEATR WARRANTY ON PARTIS ANND IABBOR
${ }^{*}$ All Prices Listed in this Ad are Wholesale Only PC Network Members Pay Wholesale Plus $8 \%$

Prices Subject To Change Without Notice Products Subject To Availability

THE $_{\text {m }} \mathbf{P C}+$ COMPUTER $^{2}$ is compatible with all business, professional and personal software written for the IBM $M_{m}$ PC It will also enhance your productivity with its ability to switch to an 8 megahertz clock rate, enabling you to run your software twice as fast as the IBM ${ }_{m}$ PC. THE ${ }_{\text {m }}$ PC + also comes standard with an 'AT' style keyboard, correcting the inefficiencies found by $\mathrm{IBM}_{\mathrm{m}}$ on their regular PC keyboard. 256 K standard ( 640 K optional) on the mother board will allow you to run memory intensive programs such as Lotus 1-2-3, DBase III and Framework without adding extra memory cards. Plenty of power, with a 150 Watt source and lots of room for expansion with 8 card slots, is also standard. Base unit includes: 256K RAM, Computer with One 360K 51/4" Floppy Drive, Dual Turbo Clock Speed, 8 Expansion Slots, 150 Watt Power Supply, 'AT' Style Keyboard. Retail Price $\$ 586.25$
Special Wholesale Price
$\$ 444.00$
THE TM 12
Duai Frequency Mono Monitor, Amber IIL As Shown \$80.00* and has enough company support behind it to make it a very attractive alternative to higher priced competition."

## Computer Dealer

"...the unit became the preferred computer in our office, which has several name brands as possible alternatives..."

## THE MOST INCREDIBLE LIMITED TIME OFFER IN COMPUTER HISTORY FROM

 THE and PC NETWORK

## 100\% IBM PC/XT

## compatible

 256K RAM360K 5.25"
Disk Drive, Turbo Speed, "AT" Styile Keyboard

Retail Price $\$ 586.25$
ALI THE TMRODUCTS in this special SALE are offered thru

\$469.00* for 640K System
Dealer Inquiries Weicome, Call THE $m$ at (312) 642-9626
located closer together than floppy disk sectors, and the data on each sector is packed more densely. Locating sectors close together reduces access time, the average amount of time it takes the read/ write head to find a sector. This factor, together with the dense data format and fast rotation speed, allows the hard drive to access much more data than a floppy for a given amount of time.

Performance of this type requires advanced technology. To eliminate friction, the drive's read/write head actually flies above the surface of the disk, supported by a microscopic (about .00015 -inch) layer of trapped gas. The gap between the read/write head and the disk is so small that a tiny speck of airborne dirt-or even a particle of tobacco smoke-can scratch the delicate disk surface. To prevent contamination accidents, the disk and read/write machinery are sealed in a housing filled with clean, inert gas or carefully filtered air.

Another key factor in hard drive technology is the interface between the drive and the computer. It doesn't matter how fast a drive can read or write if it can't move data to the computer with commensurate speed. Most floppy drives use a comparatively slow serial interface which transmits one bit (binary digit, a one or zero value) of data at a time. Hard drives typically use a variation of SCSI (Small Computer Systems Interface, pronounced scuzzy), an interface that supports much faster transfers.

## Subdirectories And Partitions

Hard drives can store hundreds, even thousands of files. If you think it's difficult to find a file on a floppy disk that has dozens of files, imagine searching through a disk directory that contains thousands of filenames. Without some way to organize the drive's contents, simply finding a file could be a nightmare. Hard drives can be organized in two fundamental ways: with partitions and with subdirectories.

Like floppy disks, hard disks need to be formatted before you use them for the first time. After formatting, most hard disks are then compartmentalized into two or more separate partitions. If you vi-
sualize the entire hard drive as a conventional filing cabinet, then a partition is the equivalent of a drawer. Each partition is logically distinct and can be used, for practical purposes, as if it were a physically separate drive. Figure 1 illustrates the partitioning of a $20-$ megabyte drive for the Atari ST. Drives A: and B: always refer to floppy drives. In this case, drives C:, D:, and E: are all partitions, or logical drives, contained in a single hard drive unit.

If a partition is equivalent to a file drawer, then a subdirectory is equivalent to a folder within the drawer. Related files are usually grouped together in the same subdirectory: You might store word processing files in one subdirectory, database files in another, and so forth. Figure 2 shows the directories
for drives C :, D :, and E : (on the $\mathrm{ST}^{\prime}$ 's desktop, subdirectory entries are marked with a graphics symbol and appear at the top of the main directory).

In addition to files, a subdirectory can contain other subdirectories. Figure 3 shows the partial contents of the DEGAS subdirectory on drive C: of this particular system. Notice that this subdirectory contains several subdirectories. A well-organized hard drive may contain subdirectories nested several levels deep.

## Using A Hard Drive

Hard drives are reliable, but they're still susceptible to misuse and accidents of nature. In the worst casefor instance, if you suffer a power failure in the midst of a massive file update-an accident can garble the

Figure 1: Hard Drive Partitions


Figure 2: Partition Directories


Figure 3: Subdirectories

entire contents of the drive. Because the read/write head floats so close to the rapidly spinning disk, hard drives are especially sensitive to being bumped or jostled during operation. If you need to move the drive, you must run a special program to "park" the read/write head in a safe landing zone on the disk surface.

The enormous capacity of a hard drive makes regular backups an absolute necessity. The more data you put on a drive, the more vulnerable it becomes to a single accident. Many hard drive owners copy critical data onto floppy disks; there are a number of utility programs to make this process relatively painless. You can also buy highspeed tape drives for the same purpose, although these units sometimes cost more than the unit they're designed to serve.

Hard drives have also added a new wrinkle to the copy-protection controversy. Some hard disk owners have become foes of copy-protection-not because they condone piracy, but because a copyprotection scheme that prevents a program from running on a hard drive defeats the purpose of buying a hard drive in the first place. Any copy-protection that keeps you from making illegal copies on a floppy will probably prevent you from storing the program on a hard drive, as well. If you're forced to load the program from a copy-protected floppy disk, you lose the time savings of loading it from the much faster hard drive. In the worst case, the software might take control of
the system when it boots and prevent you from storing data files on the hard drive, making its large storage capacity useless.

Partly in response to such concerns, some software companies are removing copy-protection completely. A compromise solution is to allow the software to run on a hard drive, but only if you plug in a dongle or boot up with a key disk in the floppy drive. Once the program has determined that you are using a legal copy, it can allow you to store and retrieve data files from the hard drive.

## The Sludge Factor

New hard disk owners are often tempted to put their entire software libraries on the hard drive, but that's usually not a good idea. Clogging the drive with a multitude of files and subdirectories makes the disk's organization more complex. In such an environment, files tend to become fragmented-located in scattered, noncontiguous disk sectors. The more fragmented the file structure, the longer it takes the drive to access the file.

There's no question that a heavily loaded drive runs slower than one that's comparatively empty. At the time this article was being written, we happened to receive a new 20 -meg hard drive for evaluation. To confirm that the "sludge factor" is real, I ran the test program just after formatting the new drive, when it was still completely empty. The time was a sparkling 8:58, significantly faster than the result from our other hard drive, which
had only 380,000 bytes free on the partition where I ran the test. Then I loaded the new drive with files until the current partition had only 380,000 bytes free, and I ran the test again. The result was a time of 10:56, a full minute and a half slower than when the drive was empty.

Not surprisingly, the increased use of hard disk drives has led to a whole new category of software. Two of the most popular hard drive utilities are catalog programs, which print a comprehensive catalog of everything on a drive, and file finders, which sift through every subdirectory on the drive and tell you exactly where a designated file resides.

## Who Needs One?

Should you buy a hard disk drive? If your major use of a computer is to play "Laser Blasters" two or three times a week, the answer is probably no. Entertainment programs often use copy-protection schemes that take over the system completely and run only from a floppy disk. Many games don't access the disk while running, anyway, so you have little to gain by shaving, say, ten seconds off the time it takes to load the game.

On the other hand, a hard disk drive may be a necessity for a business or a software developer. Developers use them to speed the process of compiling new programs, and businesses are always looking for ways to enhance productivity. A hard drive is also a boon to anyone who operates a computer bulletin board: A large-capacity hard drive can provide fast, ready access to thousands of archive files. If you're a heavy user of bulletin boards or commercial information services, a hard drive can make life easier, too: Disk-related delays become a thing of the past, and you can capture enormous files without any fear of running out of disk space.

What these groups have in common is that they tend to use software that's highly disk-dependent. If you regularly deal with large quantities of data or a great number of disk files, a hard drive might be a useful acquisition. The more disk-intensive the activity, the more you stand to benefit from the large capacity and fast access time of this device.

In the early days of personal computing, choices were limited when it came to picking a printer. Even dotmatrix printers with relatively few features and rough printing capabilities could be expensive and unwieldy. Of course, personal computers were also significantly more expensive then, so it didn't seem unreasonable that peripherals would also be a major expense.

When the home computer market exploded in the early 1980s, manufacturing costs for both computers and peripherals started to decrease. Numerous small companies began to manufacture printers for personal computers, and many existing

The New,
High-QualityDot Matrix $==\underline{2}$ or $8 \times 8$ matrix pattern. These wires are hammered into an inked ribbon which then strikes the paper in various patterns to form different characters.

Printers

Kathy Yakal, Assistant Features Editor

New laser printers may be getting most of the high-technology headlines these days, but the marked improvement in dot-matrix printer capabilities is the most important news for many computer users. The emergence of near-letterquality ( $N L Q$ ) and even letter-quality ( $L Q$ ) dot-matrix printers at reasonable prices is a trend that's offering computer users better printing at lower costs than ever before. require For many computer users, daisywheel printers have traditionally been too expensive, and their inability to print graphics characters has further limited their popularity in the home and educational markets. A daisywheel printer has a printhead composed of formed characters located on the ends of spokes-or petals-that emanate from a central, spinnable hub. Shaped much like a daisy, these printers give the most professional look to alphanumeric characters and have been popular-and affordable-in business.

Over the last couple of years, however, printing capabilities for personal computer owners have continued to improve. Dot-matrix printers today, even the least expensive, generally offer more features, faster speeds, and better quality. At the same time, dotmatrix printers using 24 -pin printheads, previously considered a tool for business applications, have started to move downward in price and are now almost within the financial reach of home computer owners. Offering more features and flexibility, these highquality dot-matrix printers are starting to compete for the consumer's attention. And they even threaten to make daisywheel printers obsolete for business purposes in the future.

## A Good Business Tool

For now, however, the newest high-end dot-matrix printers have yet to become household items. "Twenty-four-pin printers at this time are going into the busi-


#  <br> ENTERPRロZES "The Computer Experts" 

22292 N. Pepper Rd,, Barringron IL 60010

- our warranty• All our products carry a minimum 90 day warranty from the date of purchase. If problems arise, simply send your product to us via U.P.S. prepaid. We will IMMEDIATELY send you a replacement at no charge via U.P.S. prepaid. This warrantv proves once aqain that... We I.ove ()ur ( Ustomers!

COMMODORE 64c


Includes the GEOS program.
SALE \$ 159.95
List $\$ 299$

BIG BLUE PRINTER


This is the affordable printer you've waited for! $8^{1 / 2 "}$ letter size, 80 column dot matrix, heat transfer printer features upper and lower case, underline, graphics, word processing, and much more.
SALE \$ 39.95
List $\$ 199$

160-180 CPS
N.L.Q. 180

PRINTER
This printer has a Near Letter Quality button on the front panel. No more turning the printer on and off. The 8 K buffer will free up your computer four times faster than conventional printers and the high speed will keep you computing more than printing. Super graphics along with Pica, Elite, Italics, and Condensed print. Lifetime Warranty on Print Head plus 6 month immediate replacement warranty.

## SALE 199.00 <br> List \$499

BLUE CHIP DISK DRIVE


SALES159.95
List \$249

## PRINTER \& TYPEWRITER COMBINATION

Superb Silver Reed letter quality daisy wheel printer/typewriter, just a flick of the switch to interchange. Extra large carriage, typewriter keyboard, automatic margin control, compact, lightweight, drop in cassette ribbon! Includes Centronics Parrallel Interface
SALE $\$ 179.95$ List \$299

COMSTAR 1000 PRINTER


Print letters, documents, ect., at 100 cps . Works in Near Letter Quality mode. Features are dot addressable graphics, adjustable tractor and friction feed, margin settings, pica, elite, condensed, italics, super/subscript, underline, \& more. CBM Interface Included.

\author{

## SALE \$179.95

 <br> List \$349}

COMMODORE 128


SALE $\$ \underset{\text { List } 5399}{289.00}$

1571 DISK DRIVE


SALE $\underset{\text { List } 5349}{259.95}$

TV TUNER
Now switch your computer monitor into a television set with the flick of a switch. This Tuner has dual UHF/VHF selector switches, mute, automatic fine tuning and computer/TV selector switches. Hooks up between your computer and monitor! Inputs included for 300 ohm, 75 ohm, and UHF.

## SALE $\$ 49.95$

List $\$ 130$

## 14' RGB \& COMPOSITE COLOR MONITOR

High Resolution amber or green screen monitor. 80 col x 1000 lines at center. Non-glare screen. Works terrific with IBM, Apple and Laser business computers.
SALE \$
99.00

List \$129


High Resolution, 80 column Monitor. Switch from RGB to Composite. (C128 - IBM -Apple) RGB cable $\$ 19.95$. Add $\$ 14.50$ shipping.
SALE\$22?
List \$399

## BEST SERVICE IN THE USA • ONE DAY EXPRESS MAIL • 15 DAY FREE <br> TRIAL • VOLUME DISCOUNTS• OVER 500 PROGRAMS. CUSTOMER LIST OF OVER 3,000,000 - LARGEST IN THE USA

## FOR FREE CATALOG GALL

 (312) 382-5244 CALL BEFORE YOU ORDER: PRICES MAY BE LOWER \& WE OFFER SPECIAL SYSTEM DEALS

| COMPUTER CLEANERS |
| :---: |
| TV/Monitor Screen Restorer \& Cleaning Kit, Disk Drive Cleaner, Anti-Static Keyboard Cleaner |
| *Choose any of these three computer cleaners for only $\$ 9.95$ each! |
| SALE \$9.95* <br> List \$19.95 |

## 1200 BAUD MODEM

Save time and money with this 1200 Baud modem. It has many features you expect a modem to have plus 4 times the speed!

$$
\begin{array}{r}
\text { SALE } \$ 79.95 \\
\text { uatsion }
\end{array}
$$

SUPER AUTO DIAL MODEM


Features on-line clock, dialing from keyboard, capture and display high resolution characters, and much more.
SALE \$29.95
List $\$ 99$

## SINGLE SIDED DOUBLE DENSITY DISKS

$100 \%$ Certified $51 / 4^{*}$ floppy disks. Lifetime
$.29^{\circ}$ ea.

## SPECIAL BONUS COUPON

We pack a special software discount coupon with every Computer, Disk Drive, Printer, or Monitor we sell! This coupon allows you to SAVE OVER $\mathbf{\$ 2 5 0}$ off sale prices!

| (EXAMPLES) |  |  |  |
| :---: | :---: | :---: | :---: |
| Name | List | Sale | Coupon |
| B. I. Homepak | \$49.95 | \$19.95 | \$17.95 |
| Super Huey II | \$19.95 | \$12.95 | \$11.95 |
| Flight Control Joystick | \$19.95 | \$12.95 | \$10.00 |
| Newsroom | \$49.95 | \$32.95 | \$29.95 |
| Leader Board TV Tuner | $\$ 39.95$ <br> $\$ 9.95$ | \$23.95 | 522.95 |
| Commando | \$99.95 | \$49.95 | \$39.95 |
| Create with Garfield | \$ $\mathbf{\$ 3 4 . 9 5}$ | $\mathbf{\$ 2 1 . 9 5}$ $\mathbf{1 1 6 . 9 5}$ | S21.95 $\mathbf{5 1 4 . 9 5}$ |
| Geos | \$59.95 | \$39.95 | 537.95 |
| SAT The Perfect Score | \$69.95 | \$42.95 | 539.95 |
| World Games | \$39.95 | \$24.95 | \$22.95 |
| Trinity | \$34.95 | \$24.95 | \$22.95 |
| C128 Partner | \$69.95 | \$49.95 | 544.95 |
| Robotics Workshop | \$149.95 | \$124.95 | \$114.95 |
| C128 Programmers Reference Guide | \$21.95 | \$12.95 | \$9.95 |

ness market," says Brian Kennedy, marketing manager for Star Micronics, a major printer manufacturer. "This is determined by the price. In general, they start at $\$ 900-\$ 1,000$, so this is not going to penetrate the consumer market too much.'

Kennedy sees three strong points for these new dot-matrix models that make them competitive with daisywheel printers. First, for business correspondence, which has traditionally been geared toward a daisywheel printer, the new 24 -pin printers have a letter-quality mode (as opposed to near-letter-quality mode on 9 -pin printers) that is virtually indistinguishable from daisywheel print. In 99 percent of the cases, says Kennedy, people would accept it as a good vehicle for business correspondence.

Second, these new dot-matrix models offer the high speed that a daisywheel cannot provide. The average speed of a daisywheel is between 30 and 40 characters per second (cps), while 24 -pin printers in letter-quality mode run around 100 cps . Plus, they offer higher speed draft printing for documents not requiring letter-quality type. Draft mode on some 24pin printers can operate as fast as 300 cps .

Third, 24 -pin printers offer high-resolution graphics. Daisywheels are limited to the characters on the printwheel.

Beyond those advantages, many 24 -pin printers provide additional flexibility to the user. Juki Office Machines, which targets its 24 -pin printers primarily to the business and government users, has printers that let you load and print sheets and envelopes at the same time. For example, the Juki Model 7200 also offers extremely high-resolution graphics ( $360 \times 360$ ), can print on forms as small as a business card or as large as $17 \times 24$-inch paper, and can operate under adverse conditions like high humidity. These capabilities make it competition not for 9 -pin dot-matrix printers or daisywheels, but for highly sophisticated laser printers.


EHWAFRGED MCIDE

ENLARGED \& CONDENSED

EMLARGED \& EMPMASIZED

ENLARGED \& EMPHASIZED \& CONDENSED


Example Feport Legend:
U $=$ Last Year's Actual Sales
\#\# = This Year's Frojected Sales
碃 $=$ This Year's Actual Sales
The secret to Output Technologies' 700 series of printers is the unique Tri-Head printing mechanism. By using three nine-pin printheads that operate simultaneously, these printers can run at speeds of up to 700 characters per second. Prices begin at $\$ 1,995$.


## '64 or'128Soffware Take your Pick!

## BASIC Compiler

Complete BASIC compiler and development package. Speed up your programs $3 x$ to $35 x$. Compile to machine code, compact p-code or both. A great package that no software library should be without. '128 version: 40 or 80 col. monitor output and FAST mode operation, extensive 80-page programmer's guide. C-64 $\quad \$ 39.95$

C-128 $\$ 59.95$

## Super C

For software development or school. Learn the C language on the '64 or '128. Compiles into fast machine code. Combine M/L \& C using CALL; 51 K available for object code; Fast loading; Two standard l/O librarys plus math \& graphic libraries Added '128 features: CP/Mlike operating system; 60K RAM disk C-64 $\$ 59.95$ C-128 $\$ 59.95$

Let your 64 or 128 communicate with the outside world. Obtain information from various computer networks. Flexible, command driven terminal software package. Supports most modems. Xmodem and Punter transfer protocol. VT52 terminal emulation with cursor keys, large 45 K capture buffer \& user definable function keys. Contains both versions C-64 \& C-128 $\$ 39.95$

## Chartpak

Create professional quality charts fast- without programming. Enter, edit, save and recall data. Interactively build pie, bar, line or scatter graph. Set scaling, labeling and positioning. Draw charts 8 different formats. Statistica routines for average, standard deviation, least squares and forecasting. Use data from spreadsheets. Output to most printers. C-64 $\$ 39.95$ C-128 $\$ 39.95$


Speeds up your BASIC programs by 3 to 35 times. For C-64 and C-128

## C Language

## Compiler

Learn the language of the 80's and beyond on your '64 and '128


COBOL
Now you can learn COBOL, the mos! widely used commercial programming language, on your 128 or 64 COBOL Compiler package comes complete with syntaxchecking editor, interpreter and symbolic debugging aids. New '128 version works with 40/80 column monitors and is quicker than the '64 $\begin{array}{lll}\text { version. } & \text { C-64 } & \$ 39.95\end{array}$

C-128 \$39.95

## NoNC vorslon! Super Pascal

Complete system for developing applications in Pascal. Extensive editor. Standard J \& W compiler. Graphics library. If you want to learn Pascal or develop software using the best tool available, Super Pascal is your first choice. Added ' 128 features: RAM disk; 100K source/one drive or 250K/two; 80/40 column. C-64 $\$ 59.95$ New! C-128 $\$ 59.95$

## Cadpak

Easy-to-use interactive drawing package for accurate graphic designs. Dimensioning features to create exact scaled output to all major dot-matrix printers. Input via keyboard or lightpen. Two graphic screens for COPYing from one to the other. DRAW, BOX, ARC, ELLIPSE, etc. available. Define your own library of symbols/objectsstore up to 104 separate objects. C-64 \$39.95 C-128 $\$ 59.95$ PPM
Comprehensive portfolio management system for the 64 and 128. Manage stocks, bonds, mutual funds, T-bills; record taxable or non-taxable dividends \& interest income; reconcile each brokerage account cash balance with the YTD transaction file; on-line quotes through Dow Jones or Warner. Produces any type of report needed to analyze a portfolio or security. C-64 \$39.95 C-128 \$59.95


## Pascal Language Compiler

Expand your programming homlzons on youtrs 64 and 128 With lhes secomid mosi tusedaknguage.


Call now for the name of the dealer nearest you. Or order directly form Abacus using your MC, Visa or Amex card. Add $\$ 4.00$ per order for shipping. Foreign orders add $\$ 12.00$ per item. Call (616) 241-5510 or write for your free catalog. 30-day money back software guarantee. Dealers inquires welcome-over 2000 dealers nationwide.

## COMMODORE APPLE

C64 COMPUTER

*WITH PURCHASE OF OUR SPECIALLY PRICED SOFTWARE


WITH PURCHASE OF 1571 DISK DRIVE

DISK DRIVES
 MODEM


## PRINTER



MONITOR


RETAIL \$299

FULL COLOR

## RADAR DETECTOR

RETAIL VALUE \$249.00
$\$ 78^{00}$


MONOCROME MONITOR (HIGH RESOLUTION)
PRO-TECH-TRONICS 6870 Shingle Creek Parkway \#103 Minneapolis. MN 55430 QUICK $\qquad$ DELIVERY


Caught In-Between
The price and capabilities of 24 -pin dotmatrix printers put them in a very interesting market position right now-somewhere between 9 -pin printers and laser printers, and parallel in some ways to daisywheels. Though their strongest appeal may still be to the business market, consumer interest is beginning to pick up.
"The 24-pin market is really growing in both areas [business and consumer]," says Dennis Cox, peripherals product manager for Epson America, a large printer manufacturer. "You're getting higher performance 24 -pins that are going into the business market, and they are taking away significant chunks of the daisywheel market. On the other side, moving down, they are going into more price-sensitive environments, which tend to be the home and small business.'

The overlap with the lower end of the printer market comes between high-end 9pin printers and low-end 24 -pin printers. In the $\$ 600-\$ 1,000$ price range, both are represented. In the long run, one or the other will likely be bypassed. Representatives of leading printer manufacturers predict that highend 9 -pin printers will be replaced in that market position by low-end 24 -pin printers and that most 9 -pin printers will eventually sell for under $\$ 300$ or $\$ 400$.

Several other factors will also be affecting the printer market during the next couple of years. New printer drivers-the short software programs that allow your word processor, spreadsheet, or other application to send the right signals to different printers-will be written to take advantage of the 24 -pin printers. Much of existing consumer software is compatible with 9 -pin printers; 24 -pin printer drivers will have to be widely available for those printers to become accepted by consumers.

Several years from now, color printers are likely to be a larger part of the market than at present. While not a necessity for the computer owner now, they have a long-term potential that will quickly be realized when color-capable photocopiers become widely available. The fast-growing popularity of specialized print packages like The Newsroom and Print Shop are making it more desirable. Any dot-matrix printer, no matter what the pin configuration, is technically capable of printing color with the right hardware and software setup. Twenty-four-pin printers have finer pins that offer sharper resolution. As color becomes more of an issue for the printer market, so will the quality of that color.

More immediately important is the recent introduction of inexpensive IBM PC clones into the U.S. market. Printer manufac-

# 6EOS <br>  Fo 

## Another Abacus Best GEOS Inside and Out

If you use GEOS then our new book, GEOS Inside and Out, has the info you need.
A detailed introduction is laid out for the novice-beginning with how to load the GEOS operating system...how to create a backup...how to alter the preference manager...how to format disks...learn geoWrite and geoPaint in detail...use geoPaint for designing floor plans or drawing electronic diagrams. Easy-to-understand examples, diagrams and glossary are included to enlighten the beginner.

The advanced user will find more detailed information on GEOS's internals and useful tricks and tips. Add a constant display clock-includes assembly and BASIC listing...complete listing of our FileMaster utility (converts your programs to GEOS format with an icon editor) with a line by line explanation...create a single-step simulator for observing memory and the various system registers...learn about windows and how to use them to your advantage...understand GEOS file structure.

If you're just getting started with GEOS or getting to the point of wanting to add your own applications, then GEOS Inside and Out will help you on your way. \$19.95

## Coming Soon! <br> GEOS Tricks \& Tips

Continuing the tradition established by our famous C-64 reference library, GEOS Tricks \& Tips is a collection of helpful techniques for anyone who uses GEOS with their Commodore. It's easy to understand without talking down to the reader, and detailed in the applications of the routines. Includes a font editor to create up to 64 point text and a machine language monitor. A perfect companion volume to GEOS Inside and Out. Available Second Quarter.
\$19.95


To receive your copy of GEOS Inside and Out and/or GEOS Tricks \& Tips, call now for the name of the dealer or bookstore near you. Or order directly using your Visa, MC or Amex card. Add $\$ 4.00$ per order for shipping and handling. Foreign orders add $\$ 10.00$ per book. Call or write today for your free catalog. Dealer inquires welcome-2000 nationwide.

Order both today!
Abacusismin
P.O. Box 7219 • Dept. C3 Grand Rapids, MI 49510
Telex 709-101 • Fax 616/241-5521 Phone 616/241-5510

GEOS, geoWrite, geoPaint are tradenames of Berkeley Softworks.


# Lyco Computer Marketing \& Consultants 

Lyco Computer is one of the oldest and most established computer suppliers in America. Because we are dedicated to satisfying every customer, we have earned our reputation as the best in the business. And, our six years of experience in computer mail-order is your assurance of knowledgeable service and quality merchandise.
We fill $95 \%$ of all orders every month. Here's how: $\bullet$ lowest prices anywhere - multimillion \$ factory fresh inventory $\bullet$ courteous, knowledgeable sales staff $\bullet 24$-hour shipping on in-stock items Plus: $\bullet$ free shipping in US on prepaid cash orders $\bullet$ no deposit on C.O.D. orders • no sales tax outside PA $\bullet$ full manufacturers' warranties apply $\bullet$ air freight, UPS Blue/Red shipping available Call Lyco Computer. See for yourself why so many customers keep coming back to Lyco for the best prices, the most complete inventory, and our fast and courteous service.
To order, call toll-free:
1-800-233-8760
In Penna.: 1-717-494-1030
Customer Service:
1-717-494-1670
Or write:
Lyco Computer, Inc.
P.O. Box 5088

Jersey Shore, PA 17740


Risk-Free Policy: - prices show 4\% cash discount; add $4 \%$ for credit cards $\bullet$ APO, FPO. international: add $\$ 5$ plus 3\% for priority mail - 4-week clearance required on personal checks e compatability not guaranteed - return authorization required $\bullet$ we check for credit card theft


C
COMMODORE
SOFTWARE

 Talking Teacher $\$ 28.95$ Traker, $\$ 28.95$

\begin{tabular}{l}
SOFTWA <br>
\hline... <br>
\hline

 Hi Tech Expressions: Ware With All................................................. $\$ 11.75$ Mach 5 .... 

..... $\$ 23.95$ <br>
\hline
\end{tabular} 10th Frame...................... $\$ 24.95$ Card Ware.

Heart Ware... Party Ware...... Triple Pack......................................................................................... $\$ 16.95$ Art Gallery 1 or 2.
$\qquad$ $\$ 22.95$


turers have already started to see the effects from the proliferation of these machines into the consumer and business arenas, raising the demand for low-end printers even further. Some budget-conscious new owners may choose to buy the most inexpensive printer available, but those willing to spend $\$ 500-\$ 1,000$ will likely opt for one more fully featured.

## Other Technologies

Dot-matrix and daisywheel are not the only print technologies being used. Ink-jet printers, which form characters on paper by spraying ink through tiny tubes, are sold by several manufacturers. And light-emitting diode (LED) printers, which print through the use of tiny semiconductors that emit light when energized by a pulse of current, are also manufactured.

It's the laser printer, though, that most industry leaders look to as the printer of the future. Impeccable print quality and high-resolution graphics (generally 300 dots per inch) are the laser printer's forte. But the prohibitively high cost of such printers- $\$ 3,000-$ $\$ 6,000$-has kept them almost exclusively in the business domain. Opinion is sharply divided as to whether they will ever play a major role in the consumer printer market, although some laser printers are already available for less than $\$ 2,000$.
"I think it [the laser printer] will definitely be in the home of the future,"' says Star Micronics' Brian Kennedy. "Within about four years, you'll probably see them in the $\$ 500$ price range, which would make them a consumer item. But I think there are other barriers to overcome before they're accepted in the consumer market, such as servicing. There's obviously some hesitancy on the part of people in general to approach lasers because they're not too sure from a servicing or maintenance standpoint what they're going to get from a laser."

Sal Sestito, national sales manager for Juki Office Machines, has a different viewpoint. "There's no consumer I can think of who needs a laser printer, either now or in the next ten years," he says. "I just don't see the technology of laser printers developing that fast and the price coming down that quickly to make it worthwhile. There's so much software for 9 -pin and daisywheel printers-it would involve so much change that it's just not going to happen for a lot of years."


The Star Micronics NB-15 offers letter-quality printing at 100 cps and high-speed draft at 300 cps . In addition, the printer has a 15-inch-wide carriage and a 16 K buffer. The NB-15 also features two slots for plug-in font cartridges, providing access to a wide range of character sets.

## A Significant Impact

So for now, 24 -pin printhead printers are carving an interesting niche in both the business and consumer markets, one that's only beginning to make a significant impact. "The 24 -pin printers are starting to gain percentage in the overall share of the printer market [units sold]," says Epson's Dennis Cox.
"There's still a significant price difference between high-end 24 -pin dot-matrix printers and entry-level low-cost laser printers," he says. "The lowest-priced laser is around $\$ 2,000$, with the highest-end dot-matrix a little higher, and you're talking about different levels of functionality here."
"I think in the next year or so, 24 -pins are going to steal the high-end 9 -pin market away," says Kennedy. "Within the next five years, you're going to see the whole [impact] printer industry dominated by $24-$ pins."

Opinions are likely to remain divided over the future of the laser printer in the consumer marketplace. But what is no longer being debated is the remarkable performance of the latest wave of dot-matrix printers.


The LQ-800 and wide carriage LQ-1000 dot-matrix printers from Epson print drafts at 180 cps and business documents in let-ter-quality mode at 60 cps . These high-resolution 24-pin printers feature option cartridges that support extended Epson control codes or emulate IBM or Diablo 630 printers.

## Consumer Printer Outlook For 1987

The following list reveals some of the diversity and the overlapping price ranges for the major computer printer categories in the consumer market, based on interviews with printer manufacturers. Price ranges are approximate.
Laser Printers (\$1,800-\$6,000): Too early to predict consumer acceptance because of high price, lack of color capability, and perceived service problems. Opinion is divided as to whether there will ever be consumer need. The best projected application for 1987 is as a page printer for desktop publishing and other business needs. Prices will have to fall well below $\$ 1,000$ before laser printers have a major impact in the consumer market.
High-End 24-Pin Printers (\$1,000-\$2,000): Good life expectancy for business use, but little consumer potential because of the price. These printers are faster and offer higher quality than low-end 24-pin printers. But prices will start to collide with lowend laser printers within the next year. These highend 24 -pin printers may prove more popular for business use than low-end laser units because of better resolution, color capability, easy operation, and more flexibility.
Low-End 24 -Pin Printers (\$600-\$1,200): Good life expectancy for both business and consumer applications. These printers can be expected to have an impact in the consumer market because of decreasing prices, letter-quality print, speed, excellent graphics reproduction, and some color capabilities.
High-End 9-Pin Printers (\$500-\$1,000): A possibility that these will be phased out over the next year, or their prices will drop significantly. The prices are beginning to overlap with those of lowend 24 -pin printers which offer more features and better quality.
Low-End 9-Pin Printers (\$200-\$600): These printers are expected to maintain a strong presence in the consumer market for the foreseeable future because of the low price, near-letter-quality capabilities, and capacity to print graphics. The popularity of low-cost IBM PC clones may also help to increase their sales in 1987.
Daisywheel Printers (\$250-\$1,400): Opinions on the future of daisywheel printers are mixed. Some manufacturers believe daisywheel printers, if inexpensive enough, may maintain a share of the business and consumer markets where color and graphics aren't necessary. Others predict that lowend 24 -pin dot-matrix printers will push them out of the market in the next year or so.

# The BIG <br> <br> Picture <br> <br> Picture <br> Advances In Screen Display 

Selby Bateman, Features Editor

Perhaps you're used to staring at the 64,000 picture elements, or pixels, that make up a Commodore 64 screen, or the 53,376 pixels on an Apple II screen. Or, maybe you're more familiar with the 174,104 pixels on a Macintosh or the 256,000 pixels in the high-resolution monochrome mode of the Atari ST or the normalmode high resolution of the Amiga.

Whatever your computer, you're accustomed by now to its screen resolution, its sharpness, which is based in large part on the number of pixels that can be crowded onto the screen. The Commodore 64, for example, has a maximum screen resolution of 320 pixels high by 200 pixels wide-hence the total of 64,000 . The Macintosh's monochrome display is 512 $\times 342$, the Apple II series is $278 \times 192$, and the ST and Amiga computers have $640 \times 400$ capabilities. Although video displays depend on other factors besides pixels to determine the final output, it's the tiny pixel itself which has the most to do with what you see.

Now, however, new video display monitors are being produced that can put almost two million pixels on the screen at a time. Monochrome displays with
resolutions of $1664 \times 1200$ are now being offered, opening up a wide range of new possibilities for computer users.
"From the old days of computers, the 24 lines $\times$ 80 columns-displays represent a mature and extremely inexpensive technology," says Steve Gibson, president of Gibson Research, and a pioneer in computer display technology. "We've seen a direct...translation of that technology into our homes and personal computers. But the ultimate destiny is to very high resolution, large screens-and I mean for everyone.
"In the future, all computer screens will look like big-screen Macintoshes," he says. "When you see that much information on your screen, you get a better feel for it."

The first examples of large screen, high-resolution graphics are occurring in the burgeoning field of desktop publishing. Monitor manufacturers are building screen display devices that can present the user with screens of what-you-see-is-what-you-get pages, whether they're from a book, a newsletter, a pamphlet, or even a newspaper.

## Complete Vision

When you can display 1200 lines of information with more than 1660 dots per line on one screen, amazing things begin to happen. Rather than looking at stairstepped, blocky, diagonal lines, suddenly you can see shaded, perfectly straight diagonals. Digitized pictures can seem almost as real as those on your television set. And most importantly, you can manipulate entire pages of information while seeing the big picture-the overall impact on what is going to be printed out.

These new display monitors are expensive-anywhere from $\$ 600$ to $\$ 2,000$, depending on the size and quality of the units. But, Gibson points out, prices will begin to fall just as they have for computers and other electronics equipment.
"The price is the determiner. If they were inexpensive now, everyone would have them," he says. "That will happen first in desktop publishing within large corporations, where they really have a need for that kind of a screen. Then it will slowly migrate downward as economies of scale bring the price down lower."

Sigma Designs of Fremont, California, recently introduced its LaserView Display System for use with PC, XT, and AT computers. Aimed at the desktop publishing and computer-aided-design markets, LaserView consists of a high-resolution adapter board and a choice of a 15 -inch $(\$ 1,895)$ or a 19 -inch $(\$ 2,395)$ monochrome monitor. They display 150 and 110 dots per inch, respectively, which, when combined with four shades of gray, provides an effective perceived resolution close to the 300 dots per inch available from most current laser printers.
"This is the first time that close to two million pixels can be brought to the desktop publishing world, a resolution equivalent to 8 times that of an EGA (IBM's Extended Graphics Adapter) display and 11 times that of a Macintosh screen," says Thinh Tran, president of Sigma Designs.

Princeton Graphic Systems of Princeton, New Jersey, has just introduced its LM- 300 high-resolution display. The $\$ 750$ unit, which is compatible with the


The LM-300 high-resolution monitor from Princeton Graphic Systems is one of a new breed of display devices capable of putting almost two million pixels on a computer screen.

PC, XT, AT, and compatibles, offers 1200 lines by 1664 dots-per-line resolution on a 15 -inch display. The LM300 also emulates 300 dots per inch.

One of the problems that designers of these new display devices are battling is simple human physiolo-gy-what Gibson calls the flicker threshold. If the screen, which is constantly redrawn-or refreshedwith a beam of electrons, is refreshed less than 60 times a second, the human eye picks up the flickering of the constant redrawing.
"It turns out that 60 cycles per second is around that threshold," says Gibson. "For example, we don't see flicker in a fluorescent light, even though it's really off half the time and on half the time. But [on the new hi-res display devices], in order to get the kind of resolution for realtime displays, you have to put out phenomenally fast data to paint incredibly more scañ lines that are also crammed with more individual pixels."

Gibson believes that as more and more pixels are placed in displays, the old CRT (cathode ray tube) technology still being used may give way to new highcontrast liquid crystal displays (LCD) or similar technologies now under development. While most of us may not be buying the new high-resolution displays for a few years-at least until the prices come down significantly-it seems inevitable that their advantages will soon force them in the direction of all computer users.

## From the publishers of COMPUTE!

## COMPUTEE.



## March 1987 COMPUTE! Disk

All the exciting programs from the past three issues of COMPUTE! are on one timesaving, error-free, floppy disk that is ready to load on your Atari 400/800, XL, and XE. The March $1987^{\circ}$ COMPUTE! Disk contains the entertaining and useful Atari programs from the January, February, and March 1987 issues of COMPUTE!.

The March 1987 COMPUTE! Disk costs $\$ 12.95$ plus $\$ 2.00$ shipping and handling and is available only from COMPUTE! Publications.

For added savings and convenience, you may also subscribe to the COMPUTE! Disk. At a cost of only $\$ 39.95$ a year (a $\$ 12.00$ savings), you'll receive four disks, one every three months. Each disk will contain all the programs for your machine from the previous three issues of COMPUTE!. To order a subscription, call toll free 800-247-5470 (in IA 800-532-1272).

This is an excellent way to build your software library while you enjoy the quality programs from COMPUTE!.

Disks and subscriptions are available for Apple, Atari, Commodore 64 and 128, and IBM personal computers. Call for details.

For more information or to order individual issues of the March 1987
COMPUTE! Disk, call toll free 1-800-346-6767 (in NY 212-887-8525) or write COMPUTE! Disk, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

# A Buyer's Guide To Printers 

There are many good computer printers available this year for a variety of applications. Whatever your computer, chances are good that you'll find a printer listed below that will more than meet your needs.

To help you gather the information you'll need to make the best buying decision, we've gathered information on printers in the under- $\$ 800$ price range and listed some of the most important features in the following chart. New printers are being introduced continually from major manufacturers, so it's possible that a few of the newest printers will not appear in our buyer's guide.

Here's a brief explanation of the major categories on the chart:

Compatibility. Chances are your computer has either a serial or parallel port (or both) that hooks up to a printer. Some printers come in either serial or parallel versions; some offer both interfaces; and some are available in parallel or serial only. If the printer you want comes only in a version that doesn't support your computer, you should be able to buy a separate interface that allows that configuration. Also, many printer manufacturers sell interfaces designed specifically for certain computers, avoiding any compatibility problems.

Be careful here. In some situations, a particular interface will let you print text, but will be incapable of producing graphics. If there's any doubt, it's best to try and test your setup at a computer dealer.

Print technology. This refers to how characters and graphics are actually transferred from printer to paper. There are three types in this price range: impact, thermal, and ink-jet.

Impact printers form characters by striking the paper through an inked ribbon, either with a daisywheel (a small wheel whose spokes have letters and numbers on their tips), or with a printhead containing a column of tiny wires or pins that form characters and graphics (dot-matrix). Thermal printers use either a column of hot pads that change the color of heat-sensitive paper, or a column of tiny spark plugs that evaporate a special aluminum coating onto the paper, exposing an underlying dark
surface. Thermal printers require special paper, which often costs more than regular paper and has a shorter life. Thermal transfer printers work with any kind of paper because they use ribbons; heat from the printhead melts a waxlike ink onto the paper. Ink-jet printers spray ink onto the paper through tiny holes.

Speed. How fast does the printer operate? This can vary if the printer offers different modes. Draft mode is usually the fastest, but produces rougher, fainter type. Near letter quality ( $N L Q$ ), or correspondence mode, takes longer to print, but looks more polished. Some printer speeds vary depending on the type of font (for example, pica or elite) used. In our chart, a wide speed range, like $30-120$ characters per second (cps), indicates that the printer offers some kind of correspondence-quality type.

Pitch. This indicates how many characters fit on a line, measured in characters per inch (cpi) or characters per line ( cpl ). The pitch range for a printer often varies greatly, especially if it is capable of printing several types of fonts.

Buffer. A buffer is an area of memory in a printer that can store a fixed amount of text while the printer is working, freeing up the computer for other tasks. Most printers in the under$\$ 800$ price range still have rather small buffers, so if you'll be doing many long printing jobs, you may want to consider buying an add-on buffer.

Feed type. Friction-feed printers grip the paper and move it around the platen much as a typewriter does, while tractor-feed printers have teeth at both ends of the platen that grab holes at the edges of continuous-feed paper. Many printers have optional tractors.

Suggested retail price. This is the price set by the manufacturer; you may well find it at a lower price if you shop around.

A full explanation of the graphics capabilities of each printer takes more space than we have available. If you plan to use your printer extensively for printing graphics, make sure it's capable of doing what you need before you buy.

For more information on any of the printers listed in the following chart, please contact:

Alphacom
2108 Bering Dr., Unit C
San Jose, CA 95131
Alps America
3553 N. 1st St.
San Jose, CA 95134
Apple Computer
Customer Relations Department
20525 Mariani Ave.
Cupertino, CA 95014
Aprotek
1071-A Avenida Acaso
Camarillo, CA 93010
Axonix
417 Wakara Way
Salt Lake City, UT 84108
Blue Chip Electronics
2 W. Alameda Dr.
Tempe, AZ 85282
Brother International
8 Corporate Pl.
Piscataway, NJ 08854
C. Itoh Digital Products

19750 S. Vermont Ave.
Suite 220
Torrance, CA 90502
CAL-ABCO
6041 Variel Ave.
Woodland Hill, CA 91367
Canon USA
System Division
One Canon Plaza
Lake Success, NY 11042
Centronics Data Computer
1 Wall St.
Hudson, NH 03051
Citizen America
2425 Colorado Ave. \#300
Santa Monica, CA 90404
Commodore Business Machines
1200 Wilson Dr.
West Chester, PA 19380

## Dataproducts

6200 Canoga Ave.
Woodland Hills, CA 91365

## Dynax

6070 Rickenbacker Rd.
Commerce, CA 90040
Edwards-CPE
Manufacturers of Axiom Printers
1014 Griswold Ave.
San Fernando, CA 91340

Continued on page 45.

| Model Name | Manufacturer/ Distributor | Compatibility | $\begin{aligned} & \text { Print } \\ & \text { Technology } \\ & \hline \end{aligned}$ | Speed | Pitch | Buffer | Feed Type | Warranty | Suggested Retail Price | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alpha 42 | Alphacom | Parallel or serial std | Thermal | $\begin{aligned} & 2 \\ & \text { lines } / \mathrm{sec} \end{aligned}$ | 10-15 cpi | 1 line | Friction std | 6 months | 180 |  |
| Alpha 81 | Alphacom | Parallel or serial std | Thermal | $\begin{aligned} & 2 \\ & \text { lines } / \mathrm{sec} \end{aligned}$ | 10-15 cpi | 1 line | Friction std | 6 months | 169 | 80 -column |
| Alphacom Aero | Alphacom | Parallel or serial std | Dot matrix | 130 cps | 5-16.5 cpi | 2K | Friction and pin std | 6 months | 299 | Dot-addressable and fully programmable graphics |
| Alphapro 101 | Alphacom | Parallel or serial std | Daisywheel | 20 cps | 10-15 cpi | 93 characters | Friction std | 6 months | 399.95 |  |
| ALQ 200 | Alps America | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 80-240 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10-20 cpi | 7 K ( 64 K opt) | Friction and cut-sheet feeder std; tractor opt | 1 year | 595 | Interchangeable 18 - and 24 -pin printheads |
| Image Writer | Apple Computer | Serial std | Dot matrix | 120 cps | 4.5-17 cpi | 32 K available | Friction or tractor std | 90 days | 749 | Wide carriage |
| Image Writer II | Apple Computer | Compatible with Apple II, III, Lisa | Dot matrix | $\begin{aligned} & 180-250 \\ & \mathrm{cps} \\ & \hline \end{aligned}$ | 4.5-17 cpi | 32 K available | Friction and adjustable-width pin std; cut-sheet feeder opt | 90 days | 595 |  |
| Scribe | Apple Computer | Serial std | Dot matrix | $50-80 \mathrm{cps}$ | 10-17 cpi | N/A | Tractor std | 90 days | 299 |  |
| Aprotek Daisy 1120 | Aprotek | Parallel std; serial opt | Daisywheel | 20 cps | $10-15 \mathrm{cpi}$ and proportional | 2K | Friction std; tractor and cut-sheet feeder opt | 1 year | 279.95 | Two-week trial available |
| SP-1000 | Aprotek Blue Chip Electronics | Parallel or direct connect; IBM standard | Dot matrix | $20-70 \mathrm{cps}$ | $10-15 \mathrm{cpi}$ | 1.5K | Friction and tractor std | 2 years | 169.95 | Dot-addressable graphics; <br> Commodore graphics built-in on Commodore version (\$219.95) |
| Blue Chip 120/NLQ <br> D12/10 | Blue Chip Electronics | Parallel std | Dot matrix | 120 cps | 5-17 cpi | 3 lines | Tractor std | 6 months | 279 |  |
| D12/10 | Blue Chip Electronics | Commodore serial std | Daisywheel | 12 cps | 10 cpi | 2 K | Friction std; tractor opt | 6 months | 249 | Comes with Fleetwriter III wordprocessor |
|  | Blue Chip Electronics | Parallel and Commodore serial std | Daisywheel | 20 cps | 10 cpi | 2 K | Friction std; tractor opt | 6 months | 279 | Comes with Fleetwriter III wordprocessor |
| M 150/15 | Blue Chip Electronics | Parallel std; serial opt | Dot matrix | 120 cps | 5-17 cpi | 3 lines (4K opt) | Friction and tractor std | 6 months | 229 | Dot-addressable graphics |
| HR-10 | Brother International |  | Dot matrix | 130 cps | 5-17 cpi | 2 K | Friction and tractor std | 6 months | 349 | Dot-addressable graphics |
| HR-10 | Brother International | Parallel and serial std | Daisywheel | 12 cps | 10-15 cpi and proportional | 2 K | Friction and tractor std | 90 days | 349 |  |
| HR-20 | Brother International | Parallel and serial std | Daisywheel | 22 cps | 10-15 cpi and proportional | 8 K (16K opt) | Friction and tractor std; cut-sheet feeder opt | 90 days | 499 |  |
| M-1109 | Brother International | Parallel and serial std | Dot matrix | $\begin{aligned} & \begin{array}{l} 25-100 \\ \mathrm{cps} \end{array} \\ & \hline \end{aligned}$ | 10 cpi | 2 K | Friction std; tractor opt | 1 year | 299 |  |
| M-1409 | Brother International | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 45-180 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10-12 cpi and proportional | 3 K | Friction and tractor std; cut-sheet feeder opt | 90 days | 479 |  |
| M-1509 | Brother International | Parallel and serial std | Dot matrix | $\begin{aligned} & 45-180 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10 cpi | 3 K | Friction and tractor std; cut-sheet feeder opt | 1 year | 599 | Seven bit-image graphics modes |
| M-1709 | Brother International | Parallel and serial std | Dot matrix | $\begin{aligned} & 50-240 \\ & \text { cps } \end{aligned}$ | 10 cpi | 24K | Friction and tractor std; cut-sheet feeder opt | 90 days | 699 | Seven bit-image graphics modes |
| Prowriter Jr. | C. Itoh | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 20-120 \\ & \mathrm{cps} \end{aligned}$ | 10-17 cpi | 1 line | Friction and tractor std | 1 year | 349 |  |
| Prowriter C-210XP | C. Itoh | Parallel std; serial opt | Dot matrix | $\begin{aligned} & \begin{array}{l} 45-180 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | 10-20 cpi | 10K | Friction and tractor std | 1 year | 529 | Epson SX80+ and IBM Proprinter compatible |
| Prowriter C-215XP | C. Itoh | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 45-180 \\ & \text { cps } \end{aligned}$ | 10-20 cpi | 10K | Friction and tractor std | 1 year | 679 |  |
| Prowriter C-310XP <br> Y10-20 | C. Itoh | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 33-300 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10-15 cpi | 2 K | Friction and tractor std | 1 year | 649 |  |
| Legend 808 |  | Serial or parallel std | Daisywheel | 22 cps | 10-15 cpi | 2K | Friction std; tractor opt | 1 year | 549 |  |
| Legend 808 | CAL-ABCO | Parallel std | Dot matrix | $\begin{aligned} & 50-100 \\ & \text { cps } \\ & \hline \end{aligned}$ | 5-17 cpi | 1 line | Friction and tractor std | 90 days | 199 | Bit-image graphics |
| Legend 1080A | CAL-ABCO | Parallel std; serial opt | Dot matrix | $\begin{aligned} & \begin{array}{l} 70-140 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | 5-17 cpi | 1 line ( 4 K opt ) | Friction and tractor std | 90 days | 295 | Five switch-selectable modes including NLQ |
| Legend 1380 | CAL-ABCO | Parallel std; serial opt | Dot matrix | 160 cps | 5-17 cpi | $2 \mathrm{~K}(4 \mathrm{~K} \mathrm{opt})$ | Friction and tractor std | 90 days | 345 | 10 -inch version of 1385 |
| Legend 1385 | CAL-ABCO | Parallel std; serial opt | Dot matrix | 160 cps | 5-17 cpi | 2 K ( 4 K opt) | Friction and tractor std | 90 days | 395 |  |


| Model Name | Manufacturer/ Distributor | Compatibility | Print <br> Technology | Speed | Pitch | Buffer | Feed Type | Warranty | Suggested Retail Price | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A-40 | Canon USA | Parallel std | Dot matrix | $\begin{aligned} & \begin{array}{l} 27-140 \\ \text { cps } \end{array} \end{aligned}$ | 10 cpi | 1.4 K | Friction and tractor std | 1 year | 349 |  |
| A-50 | Canon USA | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 34-180 \\ & \text { cps } \end{aligned}$ | 10 cpi | 2 K | Friction and tractor std; forms guide opt | 1 year | 499 | Epson FX compatible |
| A-55 | Canon USA | Parallel std | Dot matrix | $\begin{aligned} & 27-140 \\ & \mathrm{cps} \\ & \hline \end{aligned}$ | 10 cpi | 1.4 K | Friction and tractor std; forms guide opt | 1 year | 699 | 17-inch carriage |
| A-60 | Canon USA | Parallel or serial std | Dot matrix | $\begin{aligned} & 100-200 \\ & \mathrm{cps} \end{aligned}$ | 10-17 cpi | 8.5K | Friction and tractor std | 1 year | 649 | 10-inch carriage |
| A-65 | Canon USA | Parallel std | Dot matrix | $\begin{aligned} & 134-200 \\ & \mathrm{cps} \end{aligned}$ | 10-17 cpi | 8.5K | Friction and tractor std | 1 year | 769 | 14-inch carriage |
| BJ-80 | Canon USA | Parallel std | Bubble jet | $\begin{aligned} & 110-220 \\ & \mathrm{cps} \end{aligned}$ | 10 cpi | 2-4.3K | Pin std | 1 year | 679 | Cross between ink jet and thermal transfer |
| BJ-80 serial | Canon USA | Serial std | Bubble jet | $\begin{aligned} & 110-220 \\ & \mathrm{cps} \\ & \hline \end{aligned}$ | 10 cpi | 2-4.3K | Pin std | 1 year | 729 | Cross between ink jet and thermal transfer |
| PJ-1080A | Canon USA | Parallel std | Ink jet (color) | 37 cps | 12 cpi | 1 line | Friction std | 1 year | 699 |  |
| GLP II | Centronics | Parallel and serial std | Dot matrix | $\begin{aligned} & \begin{array}{l} 25-100 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | 5-17 cpi | N/A | Cut-sheet and fan-fold std | 1 year | 279 | IBM PC block and pin-addressable graphics |
| H-80 | Centronics | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 27-160 \\ & \mathrm{cps} \end{aligned}$ | 5-20 cpi | 2 K opt | Cut-sheet and fan-fold std | 1 year | 699 |  |
| HPC-80B | Centronics | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 34-180 \\ & \text { cps } \end{aligned}$ | 5-20 cpi | 2 K opt | Cut-sheet and fan-fold std | N/A | 699 | Pin-addressable and block graphics |
| Printstation 220 | Centronics | Parallel and serial std | Dot matrix | $\begin{aligned} & \begin{array}{l} 45-180 \\ \mathrm{cps} \end{array} \\ & \hline \end{aligned}$ | 5-20 cpi | 3 K | Friction, tractor std; cut-sheet feeder opt | N/A | 599 |  |
| Citizen 120D | Citizen America | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 50-100 \\ & \mathrm{cps} \end{aligned}$ | 10-12 cpi | 8K | Friction and tractor std; cut-sheet feeder opt | 18 months | 499 | Can create own graphics |
| MSP-10 | Citizen America | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 40-160 \\ & \mathrm{cps} \end{aligned}$ | 10-12 cpi | 1K | Friction and tractor std; cut-sheet feeder opt | 18 months | 399 | Emulates IBM graphics |
| MSP-15 | Citizen America | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 40-160 \\ & \mathrm{cps} \end{aligned}$ | 10 cpi | 1K | Tractor and friction std; cut-sheet feeder opt | 18 months | 599 |  |
| MSP-20 | Citizen America | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 50-100 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10-12 cpi | 8K | Friction and tractor std; cut-sheet feeder opt | 18 months | 499 | Can create own graphics |
| MSP-25 | Citizen America | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 50-100 \\ & \mathrm{cps} \end{aligned}$ | 10-12 cpi | 8 K | Friction and tractor std; cut-sheet feeder opt | 18 months | 749 | Can create own graphics; 136character column; wider carriage than MSP-20 |
| Premiere 35 | Citizen America | Parallel std; serial opt | Daisywheel | 35 cps | 10-15 cpi | 8 K | Tractor std | 1 year | 699 | Diablo print wheel |
| MPS 1200 | $\begin{aligned} & \text { Commodore Business } \\ & \text { Machines } \end{aligned}$ | Two Commodore serial ports | Dot matrix | $\begin{aligned} & 24-120 \\ & \mathrm{cps} \\ & \hline \end{aligned}$ | 5-20 cpi | 2 K | Friction and tractor std | 90 days | 299.95 | Eight different graphics densities |
| FORTIS DX-15XL | Dynax | Parallel std; serial opt | Daisywheel | 20 cps | 10-15 cpi | 5K | Friction std; cut-sheet feeder and tractor opt | 90 days | 599 |  |
| FORTIS DX-21 | Dynax | Parallel and serial std | Daisywheel | 25 cps | 10-15 cpi | 16 K | Friction std; cut-sheet feeder and tractor opt | 90 days | 499 |  |
| FORTIS DM-2010 | Dynax | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 50-200 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10-17 cpi | 7 K (8K opt) | Friction and tractor std; cut-sheet feeder opt | 90 days | 459 | Graphics capabilities; wide-carriage model available for $\$ 559$ |
| DX 1500 | Edwards-CPE | Parallel std | Daisywheel | 14 cps | 10-12 cpi and proportional | 2 K | Friction std; tractor and auto cut-sheet feeder opt | 1 year | 349 |  |
| DX 2000 | Edwards-CPE | Parallel std | Daisywheel | 20 cps | $10-15 \mathrm{cpi}$ and proportional | 2 K | Friction std; tractor opt | 1 year | 449 |  |
| DX 2500 | Edwards-CPE | Parallel std; serial opt | Daisywheel | 20 cps | $10-15 \mathrm{cpi}$ and proportional | 2K | Friction std; tractor opt | 1 year | 499 |  |
| DX 3500 | Edwards-CPE | Parallel and serial std | Daisywheel | 35 cps | 10-15 cpi and proportional | 2K | Friction std; tractor opt | 1 year | 699 |  |
| Thin Print 80P/80S | Edwards-CPE | Parallel or serial std | Thermal transfer dot matrix | 40 cps | 10-17 cpi | 2 K | Friction std | 90 days | 339 | High-resolution graphics; portable (battery powered), AC adapter included |
| Thin Print 100 | Edwards-CPE | Parallel or serial std | Thermal transfer dot matrix | $\begin{aligned} & \text { r }{ }_{c}^{25-100} \\ & \hline \end{aligned}$ | 10-17 cpi | 2K | Friction std | 90 days | 299 |  |
| Thin Write 100 | Edwards-CPE | Parallel and serial std | Dot matrix | $\begin{aligned} & \begin{array}{l} 25-100 \\ \mathrm{cps} \end{array} \\ & \hline \end{aligned}$ | 5-17 cpi | 4 K | Friction and pin std; tractor opt | 90 days | 479 |  |


| Model Name | Manufacturer/ Distributor | Compatibility | Print <br> Technology | Speed | Pitch | Buffer | Feed Type | Warranty | Suggested Retail Price | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AP-80 | Epson America | Apple exclusive | Dot matrix | 15-75 cps | 9-17 cpi | 1 K | Friction and tractor std; auto cut-sheet feeder opt | 1 year | 379 |  |
| DX-10 | Epson America | Parallel std | Daisywheel | 10 cps | 10-12 cpi | None | Friction std; tractor and cut-sheet feeder opt | 1 year | 299 |  |
| DX-20 | Epson America | Diablo all-purpose interface std | Daisywheel | 20 cps | 10-15 cpi | $1 \mathrm{~K}(7 \mathrm{~K} \mathrm{opt})$ | Friction std; tractor and cut-sheet feeder opt | 1 year | 459 | 110 column |
| EX-800 | Epson America | Parallel and serial std | Dot matrix | $\begin{aligned} & 50-250 \\ & \mathrm{cps} \end{aligned}$ | 10-12 cpi | 8 K ( 32 K opt) | Friction, tractor, and single-sheet feeder std | 1 year | 749 | IBM Proprinter emulation |
| FX-85 | Epson America | Parallel std | Dot matrix | $\begin{aligned} & \begin{array}{l} 32-160 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | N/A | 8K | Friction and tractor std; cut-sheet feeder opt | 1 year | 549 |  |
| FX-286 | Epson America | Parallel std | Dot matrix | $\begin{aligned} & \begin{array}{l} 40-200 \\ \mathrm{cps} \end{array} \\ & \hline \end{aligned}$ | 5-20 cpi | 8K | Friction and tractor std; cut-sheet feeder opt | 1 year | 799 |  |
| HS-80 | Epson America | Parallel std | Ink jet | $\begin{aligned} & \begin{array}{l} 32-160 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | 5-20 cpi | 1K | Friction std; auto cut-sheet feeder opt | 1 year | 499 |  |
| LQ-800 | Epson America | Parallel and serial std | Dot matrix | $\begin{aligned} & \text { 60-180 } \\ & \text { cps } \end{aligned}$ | 10-15 cpi and proportional | 7K | Friction std | 1 year | 799 | 24-pin printhead |
| LX-86 <br> Facit 4509 | Epson America | Parallel std | Dot matrix | $\begin{aligned} & \begin{array}{l} 16-120 \\ \mathrm{cps} \end{array} \\ & \hline \end{aligned}$ | 10-12 cpi | 1 K | Friction std; tractor and cut-sheet feeder opt | 1 year | 349 |  |
| Facit 4509 | Facit | Parallel std | Dot matrix | $\begin{aligned} & \hline 70-120 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10-17 cpi and proportional | None | Tractor std | 90 days | 425 | IBM compatible graphics |
| Facit 4510 | Facit | Parallel and serial std | Dot matrix | $\begin{aligned} & 70-120 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10-17 cpi and proportional | 2K | Friction and tractor std | 90 days | 495 | Block and pin-addressable graphics |
| Facit 4511 | Facit | Parallel and serial std | Dot matrix | $\begin{aligned} & \begin{array}{l} 40-160 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | 10-17 cpi and proportional | 2K | Friction and tractor std | 90 days | 595 | Wide-carriage version \$795 |
| Facit 4513 | Facit | Parallel and serial std | Dot matrix | $\begin{aligned} & \begin{array}{l} 40-160 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | 10-17 cpi and proportional | 2K | Friction and tractor std | 90 days | 695 |  |
| Facit B 3100 | Facit | Parallel and serial std | Dot matrix | 25 cps | 10-17 cpi | up to 16 K | Friction and tractor std | 1 year | 745 | Color and graphics capabilities |
| Facit D 2000 | Facit | Parallel or serial std | Daisywheel | 24-30 cps | 10-15 cpi and proportional | 2 K | Friction std; tractor opt | 90 days | 695 |  |
| DX2100 | Fujitsu America | Parallel std; serial opt | Dot matrix | 220 cps | 10-17 cpi | 2 K ( 18 K opt) | Friction and tractor std; cut-sheet feeder opt | 1 year | $\begin{aligned} & 545 \text { (Color } \\ & 695 \text { ) } \end{aligned}$ | Dot-addressable graphics |
| DX2200 | Fujitsu America | Parallel std; serial opt | Dot matrix | 220 cps | 10-17 cpi | 7 K (16K opt) | Friction and tractor std; cut-sheet feeder opt | 1 year | 695 |  |
| GE 8100 | General Electric | Parallel std; Atari, <br> Commodore and IBM <br> PCjr interfaces available | Thermal transfer (nonimpact dot matrix) | 25-50 cps | 24 cpi | 2K | Friction std | 2 years | 259.95 | Block graphics; special graphics characters |
| MP-1300AI <br> SL-80AI | Hattori Seiko | Parallel and serial std | $\text { Dot matrix, } 9$ pin | $\begin{aligned} & 50-300 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10-20 cpi | 10K | Friction and tractor std | 2 years | 699 | Optional color printer kit for \$155; graphics resolution up to 240 dpi |
| SL-80AI | Hattori Seiko | Parallel std | Dot matrix, 24 pin | $\begin{aligned} & \begin{array}{l} 45-135 \\ \mathrm{cps} \end{array} \\ & \hline \end{aligned}$ | 10-20 cpi | 16K | Friction and tractor std | 2 years | 549 | Graphics resolution up to 240 dpi |
| SP-1000 | Hattori Seiko | Parallel or serial std | Dot matrix | $\begin{aligned} & 20-100 \\ & \mathrm{cps} \end{aligned}$ | 10-17 cpi and proportional | Varies with model | Friction and tractor std | 2 years | 299 | Commodore/VIC version: \$270 |
| SP-1200AI | Hattori Seiko | Parallel std | Dot matrix, 9pin | $\begin{aligned} & 25-120 \\ & \mathrm{cps} \\ & \hline \end{aligned}$ | $10-17 \mathrm{cpi}$ and proportional | $\begin{array}{ll} 2.3 \mathrm{~K} \\ \text { opt) } \end{array} \quad(8 \mathrm{~K}$ | Friction and tractor std | 2 years | 319 | Graphics resolution up to 240 dpi |
| Thinkjet (HP2225) | Hewlett-Packard | Parallel, HP-1B, HP-1L and serial available | Thermal ink jet | 150 cps | 5-18 cpi | 1 K | Friction and pin std | 1 year | 599 | Best results using special paper; portable |
| Quietjet (HP2228A) | Hewlett-Packard | Parallel or serial | Thermal ink jet | $\begin{aligned} & 40-160 \\ & \mathrm{cps} \end{aligned}$ | 5-20 cpi | 2K | Friction and pin std | 1 year | 599 | Best results using special paper; portable; graphics capabilities; wide carriage model, QuietJet Plus, available for $\$ 799$ |
| M185 | Mannesmann Tally | Parallel, serial or Apple std | Dot matrix | $\begin{aligned} & \begin{array}{l} 45-180 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | 10-17 cpi | 3K | Friction and tractor std | 1 year | 549 | Dot-addressable graphics |
| MT86 | Mannesmann Tally | Parallel, serial, or Apple std | Dot matrix | $\begin{aligned} & \begin{array}{l} 45-180 \\ \text { cps } \\ \hline \end{array}{ }^{2} \\ & \hline \end{aligned}$ | 10-17 cpi | N/A | Friction and tractor std | 1 year | 679 |  |


| Model Name | Manufacturer/ Distributor | Compatibility | Print <br> Technology | Speed | Pitch | Buffer | Feed Type | Warranty | Suggested Retail Price | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E.L.F. 350 | NEC Information Systems | Parallel and serial std | Daisywheel | 19 cps | 10-15 cpi | 2K | Cut-sheet guide std; cut-sheet feeder and tractor opt | 1 year | 545 |  |
| E.L.F. 360 | NEC Information Systems | Parallel and serial std | Daisywheel | 19 cps | 10-15 cpi | 2K | Cut-sheet guide std; cut-sheet feeder and tractor opt | 1 year | 545 | - |
| P60 | NEC Information Systems | Parallel std | $\begin{aligned} & \text { Dot matrix; } \\ & 24 \text { wire } \end{aligned}$ | $\begin{aligned} & \text { 65-180 } \\ & \mathrm{cps} \end{aligned}$ | 10-15 cpi | 8K | Tractor std; cut-sheet feeder, bidirectional, unidirectional, cut-sheet guide opt | 1 year | 699 | 80-column |
| P65 | NEC Information Systems | Serial std | Dot matrix | $\begin{aligned} & 65-180 \\ & \mathrm{cps} \end{aligned}$ | 10-15 cpi | 8K | Tractor std; cut-sheet feeder, bidirectional, unidirectional, cut-sheet guide opt | 1 year | 775 | 20 resident fonts; graphics capabilities |
| Microline 182 | Okidata | Parallel and IBM std; serial opt | Dot matrix | $\begin{aligned} & 30-120 \\ & \mathrm{cps} \\ & \hline \end{aligned}$ | 5-17 cpi | 1 line | Friction and pin std | 1 year | 339 | Serial version, \$399 |
| Microline 182 TTY | Okidata | Parallel and IBM std; serial opt | Dot matrix | $\begin{aligned} & 30-120 \\ & \mathrm{cps} \\ & \hline \end{aligned}$ | 5-17 cpi | 1 line | Friction and pin std | 1 year | 389 | Designed for communications applications; serial version, $\$ 449$ |
| Microline 183 | Okidata | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 30-120 \\ & \text { cps } \end{aligned}$ | 5-17 cpi | 1 line | Friction and tractor std | 1 year | 549 | Wide-carriage version of 182 ; block and bit-image graphics |
| Microline 192+ | Okidata | Parallel and IBM std | Dot matrix | $\begin{aligned} & 40-200 \\ & \mathrm{cps} \\ & \hline \end{aligned}$ | 5-17 cpi | 8K | Friction and pin std | 1 year | 499 | Block and bit-image graphics |
| Microline 193 | Okidata | Parallel and serial std | Dot matrix | $\begin{aligned} & \text { 33-160 } \\ & \mathrm{cps} \end{aligned}$ | 5-17 cpi | 8 K | Friction and tractor std | 1 year | 699 | Wide-carriage version of 192; block and bit-image graphics |
| Microline 292 | Okidata | Parallel or serial std | Dot matrix | $\begin{aligned} & 100-200 \\ & \text { cps } \end{aligned}$ | 10-17 cpi | 8K | Pin std; tractor and cut-sheet feeder opt | 1 year | 699 |  |
| Okidata 120 | Okidata | Commodore serial | Dot matrix | $\begin{aligned} & 30-120 \\ & \mathrm{cps} \end{aligned}$ | 5-17 cpi | 1 line | Friction and pin std | 1 year | 269 | All-points-addressable graphics; Commodore Special Graphics |
| Okimate 20 | Okidata | IBM, Apple and Amiga | Dot matrix | 40-80 cps | 5-17 cpi | 8 K | Friction and tractor std | 90 days | 268 | High-resolution, all-pointsaddressable, bit-image graphics |
| KX-P1080I | Panasonic | Parallel std; serial opt | Dot matrix | $\begin{aligned} & \begin{array}{l} 24-120 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | 10-17 cpi | 1 K | Friction and tractor std | 2 years | 329 | Enhanced IBM graphics; 9-pin printhead |
| KX-P1091I | Panasonic | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 32-160 \\ & \mathrm{cps} \end{aligned}$ | 10-17 cpi | 1 K ( 4 K opt) | Friction and tractor std | 2 years | 429 | IBM Proprinter compatible; word processing capabilities |
| KX-P1092I | Panasonic | Parallel std; serial opt | Dot matrix | $\begin{aligned} & 48-240 \\ & \mathrm{cps} \end{aligned}$ | 10-12 cpi and proportional | 7K | Friction and push tractor std | 2 years | 549 | IBM Proprinter compatible; wide carriage |
| KX-P1592 | Panasonic | Parallel std; serial opt | Dot matrix | $\begin{aligned} & \text { 38-180 } \\ & \text { cps } \end{aligned}$ | 10-17 cpi and proportional | $7 \mathrm{~K}(32 \mathrm{~K} \mathrm{opt})$ | Push tractor or friction std | 2 years | 699 | Color ribbons available |
| KX-P3131 | Panasonic | Parallel std; serial opt | Daisywheel | 17 cps | N/A | 6 K ( 32 K opt) | Friction std; tractor and auto cut-sheet feeder opt | 2 years | 419 | Diablo 630 code compatible; color ribbons available |
| KX-P3151 | Panasonic | Parallel std; serial opt | Daisywheel | 22 cps | 10-12 cpi | $7 \mathrm{~K}(54.5 \mathrm{~K}$ opt) | Friction std; tractor and cut-sheet feeder opt | 2 years | 659 |  |
| RP2200Q | Ricoh | Parallel and serial std | Daisywheel | 20-22 cps | 10-15 cpi | One line | Friction std; auto cut-sheet feeder and tractor opt | 90 days | 699 |  |
| EXP 420 | Silver-Reed | Parallel or serial std | Daisywheel | 10 cps | 10-12 cpi | None | Friction std | 90 days | 299.95 |  |
| EXP 600 | Silver-Reed | Parallel or serial std | Daisywheel | 25 cps | $10-15 \mathrm{cpi} \text { and }$ proportional | $\begin{aligned} & 3 \mathrm{~K}(19 \mathrm{~K} \text { and } \\ & 40 \mathrm{~K} \text { opt }) \\ & \hline \end{aligned}$ | Friction std; tractor and cut-sheet feeder opt | $\begin{aligned} & 90 \text { days labor; } \\ & 1 \text { year parts } \\ & \hline \end{aligned}$ | 699 | $\begin{aligned} & \text { Dual bin feeder; emulates Diablo } \\ & 630 \end{aligned}$ |
| Gemini II | Star Micronics | Commodore-specific | Dot matrix | $\begin{aligned} & 30-120 \\ & \mathrm{cps} \end{aligned}$ | 5-17 cpi | 1 line | Tractor std | 1 year | 329 |  |
| NL-10 | Star Micronics | Parallel std | Dot matrix | $\begin{aligned} & 30-120 \\ & \mathrm{cps} \end{aligned}$ | 5-17 cpi | 1 line | Tractor std; cut-sheet feeders opt | 1 year | 319 | Additional cost for interface |
| NP-10 | Star Micronics | Parallel std | Dot matrix | $\begin{aligned} & 25-100 \\ & \text { cps } \end{aligned}$ | 5-20 cpi | 2K | Friction and tractor std | 1 year | 279 |  |
| NX-10 | Star Micronics | Parallel std | Dot matrix | $\begin{aligned} & \hline 30-120 \\ & \mathrm{cps} \end{aligned}$ | 5-10 cpi | 5 K | Friction and tractor std | 1 year | 349 | Emulates IBM graphics printer |
| NX-10C | Star Micronics | Commodore serial std | Dot matrix | $\begin{aligned} & \begin{array}{l} 30-120 \\ \text { cps } \end{array} \\ & \hline \end{aligned}$ | 5-17 cpi | 1 line | Friction and tractor std | 1 year | 349 |  |
| Powertype | Star Micronics | Parallel std; serial opt | Daisywheel | 18 cps | $10-15 \mathrm{cpi}$ and proportional | 1 line | Friction std; tractor opt | 180 days | 499 |  |
| SB-10 | Star Micronics | Parallel std | Dot matrix | $\begin{aligned} & 60-144 \\ & \text { cps } \\ & \hline \end{aligned}$ | 5-16.7 cpi | 1 line | Cut-sheet feeder std | 1 year | 749 |  |


| Model Name | Manufacturer/ Distributor | Compatibility | Print <br> Technology | Speed | Pitch | Buffer | Feed Type | Warranty | Suggested Retail Price | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SD-10 | Star Micronics | Parallel std; serial opt | Dot matrix | 160 cps | 5-17 cpi | 2K | Friction and tractor std | 1 year | 449 | Ultra-high-resolution bit-image graphics |
| SD-15 | Star Micronics | Parallel std; serial opt | Dot matrix | 160 cps | 5-17 cpi | 16 K | Friction and tractor std | 1 year | 599 |  |
| SR-10 | Star Micronics | Parallel std; serial opt | Dot matrix | 200 cps | N/A | 2K | Friction, tractor, automatic cut-sheet feed std | 1 year | 649 |  |
| SR-15 | Star Micronics | Parallel std; serial opt | Dot matrix | 200 cps | N/A | 2K | Friction, tractor, cut-sheet feeder std | 1 year | 799 | 15-inch carriage |
| STX-80 | Star Micronics | Parallel std | Thermal transfer dot matrix | 60 cps | 5-11 cpi | 1 line | Friction std | 1 year | 199 | Dot-addressable, bit-image graphics |
| Compumate 2100 | Swintec | Parallel and serial std | Daisywheel | 16 cps | 10-15 cpi | 1 line | Friction std | 90 days | 599 |  |
| M-20P | TAB Products | Parallel std | Dot matrix | 120 cps | $10-15 \mathrm{cpi}$ | 1 K | Friction std; pin tractor opt | 90 days | 299 | Dot-addressable graphics |
| M-21S | TAB Products | Serial std | Dot matrix | 120 cps | 10-15 cpi | 1 K | Friction std; pin tractor opt | 90 days | 378 | Dot-addressable graphics |
| M-22P | TAB Products | Parallel std | Dot matrix | 160 cps . | 10-15 cpi | 1 K | Friction and pin std; tractor and cutsheet feeder opt | 90 days | 499 | Dot-addressable graphics |
| M-23S | TAB Products | Serial std | Dot matrix | 160 cps | 10-15 cpi | 1 K | Pin and friction std; cut-sheet feeder and tractor opt | 90 days | 578 |  |
| M-24P | TAB Products | Parallel std | Dot matrix | 160 cps | 10-15 cpi | 1 K | Tractor and friction std; cut-sheet feeder opt | 90 days | 699 |  |
| M-25S | TAB Products | Serial std | Dot matrix | 160 cps | 10-15 cpi | 1 K | Tractor and friction std; cut-sheet feeder opt | 90 days | 778 |  |
| DMP 105 | Tandy | Parallel and serial std | Dot matrix | 80 cps | $\begin{aligned} & 10-17 \mathrm{cpi} \text { and } \\ & \text { proportional } \end{aligned}$ | N/A | Friction and tractor std | 90 days | 199.95 | Bit-image graphics |
| DMP 130 | Tandy | Parallel and serial std | Dot matrix | 100 cps | $10-16 \mathrm{cpi}$ | N/A | Friction and tractor std | 90 days | 349.95 | Bit-image graphics |
| DMP 430 | Tandy | Parallel and serial std | Dot matrix | $\begin{aligned} & 20-100 \\ & \text { cps } \\ & \hline \end{aligned}$ | 10-16 cpi | N/A | Friction and tractor std | 90 days | 699 | Bit-image graphics |
| DWP 230 | Tandy | Parallel and serial std | Daisywheel | 20 cps | $\begin{aligned} & 10-12 \text { and } \\ & \text { proportional } \\ & \hline \end{aligned}$ | N/A | Friction std; tractor opt | 90 days | 399.95 | ' |
| P321 | Toshiba | Parallel and serial std | Dot matrix | $\begin{aligned} & \begin{array}{l} 72-216 \\ \mathrm{cps} \end{array} \end{aligned}$ | 10-12 | 2 K | Friction and cut-sheet feeder std; tractor opt | 1 year | 699 | Dot-addressable graphics; 24-pin printhead |
| IMP-24 | Weigh-Tronix | Parallel or serial std | Dot matrix | 16.8 cps | N/A | 1 line | Friction std | 90 days | $\begin{aligned} & i 35(24 \mathrm{cpl}) \\ & 150(32 \mathrm{or} \\ & 40 \mathrm{cpl}) \\ & \hline \end{aligned}$ | Dot-addressable graphics |
| Advantage D-25 | Xerox/Diablo | Parallel or serial std | Daisywheel | 25 cps | N/A | 2 K | Friction and tractor std | 90 days | 745 |  |

LEST6 WO भuour
 08976 й 'u 'us $n_{L}$ Toshiba American
Information Systems
2441 Michelle Dr.
. 1800 One Tandy Center
Fort Worth, TX 76102 Tandy/Radio Shack
1800 One Tandy Cent 1400 Page Mill Ra.
Palo Alto, CA 94304 Moonachie, NJ 07074
TAB Products 200 Park Ave.
Suite 2309
Pan Am Bldg.
New York, NY 10166
Swintec
320 W. Commercial Ave.
P.O. Box 356
Moonachie, NJ 07074
OAB Star Micronics
200 Park Ave. 19600 S. Vermont Ave.
Torrance, CA 90502
 West Caldwell, NJ 07006
 One Panasonic Way
Secaucus, NJ 07094 Computer Products Division
One Panasonic Way Mt. Laurel, NJ 08054
Panasonic 532 Fellowship Rd.
Mt. Laurel, NJ 08054 Boxborough, MA 01719

 Cupertino, CA 95014 Hewlett-Packard
Personal Computer Group
10520 Ridgeview Ct.
Ctertino CA 95014 1111 Macarthur Blvd.
Mahwahh NJ 07430
Hewlett-Packard Hattori Seiko Computer Peripherals
1111 Macarthur Blod.

 3055 Orchard Dr.
San Jose, CA 95134

Fujitsu America
3055 Orchard Dr.
Sen
Merrimack, NH 03054 Facit
9 Executive Park Dr.
P.O. Box 334
Mer Epson America
3415 Kashiva St.
Torrance, CA 90505 Epson America
3415 Kashiwa

## Euchre

David Shimoda

Here's a finely detailed implementation of the popular card game of Euchre. The author originally wrote the program in Pascal on an IBM PC. He then translated the Pascal program to BASIC for the Commodore 64. We've supplied new BASIC translations for the Amiga, Apple II series, IBM PC/PCjr, and Atari 400, 800, XL, and $X E$. The IBM PC/PCjr version requires BASICA and a color/graphics adapter for the PC or cartridge BASIC for the PCjr. The Atari program requires a joystick. A joystick is optional for the Commodore 64 version.
"Euchre" is a four-handed translation of the popular card game of the same name. In this version, you play with a computer partner against two computer opponents. The computer will deal the cards, keep score, and play your partner's as well as your opponents' hands. Even better, it never gets bored or commits blunders such as trumping your ace. Nearly all the subtleties of the original card game are reproduced faithfully, including lone hands, short suits, and more. You can even choose different personalities for your partner and opponents. Type in the program for your computer and read the specialapplication notes before you run it.

## Compułer Personalities

The game begins by asking you to choose personalities for your partner and your opponents. Move the reverse-video cursor to your choices, and make selections by pressing the joystick button or the Return key.

The normal personality plays a more cautious game, while the aggressive personality tends to take more risks. Both opponents must have the same personality, but the partner's personality is chosen separately. This makes the game much
more varied than if the computer players always stick to the same, predictable strategy. One of the more difficult combinations is to choose a normal partner and aggressive opponents. Of course, your own style of play will have an impact on which combination you prefer.

## Dealing And Trump

This Euchre variation uses only 24 cards from the standard 52 -card deck. Each suit includes only the 9, 10 , jack, queen, king, and ace. (The ace is high.) Before actual play begins, the first dealer must be selected. This is done by dealing out cards until a black jack is thrown. The first person who receives a black jack becomes the first dealer. After each hand, the position of dealer passes to the next player in clockwise order.

The dealer deals out 5 cards to each player and then places 1 card, face up, on the center of the table. The program automatically deals the cards, as it handles many other details in this game. As a consequence of this scheme, only 21 of the 24 cards are in play for any given hand. (Three cards are always left unplayed.)

The next step is to choose trump; the trump suit is the most powerful of the four suits for the current hand. Trump is determined by moving around the table in clockwise order, giving each player an opportunity to choose whether the dealer should pick up the center card. Each player can either pass or order up-order the dealer to pick up the center card. When the dealer is forced to take the center card, that card's suit becomes trump, and the dealer discards one card. The computer players, of course, decide for themselves whether to pass or order up in this phase of the game.

"Euchre" for Atari 400, 800, XL, and $X E$ computers.

"Euchre" for the Commodore 64 (and 128 in 64 mode) reproduces the subtleties of the familiar card game.

"Euchre" for the Amiga uses fine color scaling on a 32-color screen to dress up the playing field.

If no player chooses to order up in the first circuit of the table, each player then has a chance to pick any other suit as trump. If no player chooses trump on the second circuit, the hand is thrown out completely, and another is dealt.

## Lone Hands

On certain occasions, a player may choose to exclude his partner from play, a tactic which is known as playing lonehand. The player who chooses trump must choose at the same time whether or not to play lonehand. If a player orders up a card into his partner's hand, the player who ordered up must play lonehand. (If your partner is the dealer and you order up, you must play lonehand).

For instance, you might want to play lonehand in a case where you hold most of the high cards in a suit, and your partner is the dealer, and the center card is a high card of your strong suit. By excluding your partner and playing lonehand, you are in a very strong position to take most or all of the tricks.

## Tricks And Hands

A hand consists of five tricks. A trick consists of all players laying down one card. The player to the left of the dealer throws down the first card in the first trick. Subsequent tricks are begun by the winner of the previous trick. Suit must be followed within a trick. That is, you must throw a card of the suit which was led, as long as you have any card of that suit.

If no trump cards are thrown in a trick, the trick is won by the player who laid the highest card of the leading suit. If trump is thrown, then the highest trump card takes the trick.

For all suits except the trump suit, the rank of the cards follows the usual order. (The 9 is low, and the ace is high.) For the trump suit, however, the jack is the highestranking card. The jack of the same color, but different suit, is considered part of the trump suit-and it is the second highest ranking card. For example, if the trump suit is chosen as clubs, it follows this ranking:
jack of clubs jack of spades ace of clubs king of clubs queen of clubs
10 of clubs
9 of clubs
A hand is won by the side which wins a majority of tricks (three or more). If you or your part-
ner orders up a card, your side must take the majority of tricks in that hand or else be euchred, meaning that the opposite side gets two extra points.

## Scoring

A game of Euchre ends when one side accumulates ten or more points. You score one point for winning a hand, two points for winning all the tricks in a hand, and four points for winning all the tricks lonehand.

## Commodore 64 Version

This version of Euchre (Program 1) can be played with either a joystick or the keyboard. To play with the keyboard, use the cursor keys to move the colored cursor, and press RETURN to make a selection.

## Atari Version

The Atari version of Euchre (Program 2) runs on any Atari 400, 800, XL, or XE computer. It requires a joystick. Plug the joystick into port 1 before you run the program. The suits are all the same color, so you must remember that hearts and diamonds are red, while clubs and spades are black.

## Apple II Version

Euchre for the Apple II runs on any computer in the Apple II series, under either ProDOS or DOS 3.3. The program consists of two files. The main program (Program 3) is written in Applesoft BASIC. It automatically loads a second file named EUCHRE.BIN which is used to create graphics. To create the EUCHRE.BIN file, enter the data from Program 4 using "Apple MLX," the machine language entry program printed elsewhere in this issue. When you run MLX, you'll be asked for a starting address and an ending address for the data. Here are the addresses you need for the EUCHRE.BIN file:
Starting address: 8CA8
Ending address: 91 CE
For Program 3 to function properly, you must save the data from Program 4 with the filename EUCHRE.BIN.

The game is played with keyboard controls. Use the arrow keys and Return key to move the cursor and make selections.

## IBM PC/PCjr Version

This version of Euchre (Program 5) requires color/graphics adapter hardware for the IBM PC and compatibles, and BASICA for the PC, or Cartridge BASIC for the PCjr. Move the cursor with the cursor keys, and press Enter to make selections.

## Amiga Version

Euchre for the Amiga (Program 6) requires 512 K of memory, and is played with keyboard controls, exactly like the IBM PC game.

For instructions on entering these programs, please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue.

## Program 1: Commodore 64 Euchre

SK $1 \varnothing$ GOSUB11øø:GOSUB1øøø:GOSU B27øø:GOSUB13øø:GOSUB1øø Øø
SG 25 GOSUB2øøø
MS $3 \emptyset$ IFTP<>4THEN7 7
QJ 35 POKEX,12:POKEY,30:SYSPLT :PRINT"\{BLK\}NO\{2 SPACES\} BIDS":
XQ 40 POKEX, 13:POKEY, 28:SYSPLT : PRINT"HAND 22 SPACES $\}$ DUM PED";
XG 5 Ø GOSUB14ØØ:FORI= $=$ TO4:POKE X, 19:POKEY, I*5+2:SYSPLT: PRINTECS; :NEXT
XP 51 DL=FNNP (DL) : POKEX, 7:POKE Y, 12:SYSPLT:PRINTECS;
DH 55 GOSUB19øø:GOTO25
FR 70 POKEX,12:POKEY,30:SYSPLT :PRINT"\{BLK\}TRUMP: "CO\$( TP)S (TP);
JJ 75 POKEX,13:POKEY,29:SYSPLT :PRINT"\{BLK\}BIDDER:";:IF BD= ØTHENPRINT"YOU"; :GOTO $9 \varnothing$
EF $8 \varnothing$ PRINT" P"RIGHT\$(STRS (BD) ,1);
ES 90 PRINT"\{BLU\}";:IFKU=øTHEN 135
AX 1øØ IFDL> ØTHEN125
KM 115 POKEX, 15: POKEY, 28:SYSPL T:PRINT"\{BLK\}PICK DISCA RD";
FD 121 GOSUB2200: POKEX, 15:POKE Y, 28:SYSPLT: PRINT" $\{$ BLU \} \{12 SPACES\}";:GOTO13Ø
XM 125 GOSUB23øø
JK $130 \mathrm{C}(\mathrm{DL}, \mathrm{F})=\mathrm{KC}: S(\mathrm{DL}, \mathrm{F})=\mathrm{KS}: G$ OSUB1220
QJ 135 POKEX,7:POKEY,12:SYSPLT :PRINTEC\$;
MK 14ø GOSUB25øø:GOSUB3øøø:IF ( $\operatorname{PW}(\varnothing)>9) \mathrm{OR}(\mathrm{PW}(1)>9)$ THEN 3øø
GS 15ø POKEX,21:POKEY,31:SYSPL $T: N=\varnothing$ : GOSUB1465
MP 151 POKEX, 21:POKEY, 35:SYSPL $\mathrm{T}: \mathrm{N}=\varnothing$ : GOSUB1465
AG 2øø POKEX,7:POKEY,31:SYSPLT : $\mathrm{N}=\mathrm{PW}(\varnothing)$ : GOSUB1465
BS 205 POKEX,7:POKEY,35:SYSPLT : $\mathrm{N}=\mathrm{PW}(1)$ : GOSUB1465
CD 210 DL=FNNP (DL): GOSUB1355:G OTO25
MP 3øø WT=ø:IFPW (1)>=1ØTHENWT= 1

PE $3 \varnothing 5$ POKEX，7：POKEY，29＋WT＊6：S YSPLT： $\mathrm{N}=1$ ：GOSUB1465
EQ 310 POKEX，7：POKEY， $31+W T * 6: S$ YSPLT： $\mathrm{N}=\mathrm{PW}(\mathrm{WT})-1 \varnothing$ ：GOSUB 1465
KM 315 FORDE $=1$ TO2øø0：NEXT
EM 32ø GOSUB1450：POKEX，13：POKE Y，30：SYSPLT：PRINT＂$\{$ RED $\}$ YOU＂；
DE 321 IFWT＝øTHENPRINT＂WIN！＂；
PQ 322 IFWT＝1THENPRINT＂LOSE＂；
PJ 325 POKEX，15：POKEY，11：SYSPL T：PRINT＂\｛RVS\}\{BLU\}PLAY \｛SPACE\}AGAIN?\{OFF\}";
BA $33 \varnothing$ LO＝11：HI＝12：XP＝15：YP＝23 ：GOSUB191ø
RG $34 \emptyset$ IFAN $=11$ THENRUN
AB $35 \emptyset$ PRINT＂\｛CLR\}";
GG 999 END
JH 1000 POKE53281，15：POKE53280 ，6：REM SETSCR
AR $1 \varnothing \varnothing 5$ PRINT＂\｛CLR\}\{BLU\}";
CE 1010 FORI＝1TO24：PRINT＂\｛RVS\}
\｛28 SPACES\}\{OFF\}
\｛12 SPACES ${ }^{\prime \prime}$ ；：NEXT
FB 1015 PRINT＂\｛RVS\}\{28 SPACES $\}$ \｛OFF\}\{HOME\}";
 CCCCCCCCCES习＂；
SG $1 \varnothing 25$ PRINTSPC（28）＂B\｛RED\}
\｛2 SPACES $\}$ EUCHRRE
\｛2 SPACES\}\{BLU\}B"; \｛32 SPACES\}
DD 1030 PRINTSPC（28）＂EZ CCCCEX习＂；
XF 1031 PRINTSPC（28）＂\｛RVS\} \｛12 SPACES\}";
XB 1032 PRINTSPC（28）＂
\｛3 SPACES $\}$ POINTS
\｛3 SPACES\}\{OFF\}";
CD 1035 PRINTSPC（28）＂\｛RED\} YOU \｛BLU\}EMシ®G习\{RED\}COMP \｛SPACE\}";
SB 1040 PRINTSPC（28）＂\｛BLU \}

GR 1045 FORI $=\overline{1 T 0} 04:$ PRINTSPC（28）

\｛5 SPACES\}": :NEXT
KQ 1050 PRINTSPC（28）＂E12 Y \｛5 DOWN\}";
AJ 1051 PRINTSPC（28）＂§12＠ヨ＂；
CP 1055 PRINTSPC（28）＂\｛RVS \}
\｛3 SPACES $\}$ TRICKS
\｛3 SPACES\}\{OFF\}";
AC $1060 \operatorname{PRINTSPC}(28) "\{R E D\}$ YOU \｛BLU\}EM彐]G习\{RED\}COMP \｛SPACE\}":
KE 1065 PRINTSPC（28）＂\｛BLU\}
85 Y $\mathrm{PPO}_{5} 5 \mathrm{Y}$ 习＂；
HR 1070 FORI＝$\overline{1 T O} 3: \operatorname{PRINTSPC}(28)$ ＂\｛5 SPACES\}EM录G \｛5 SPACES\}";:NEXT
DM 1075 PRINTSPC（28）＂
\｛5 SPACES \} EM 彐
\｛4 SPACES ${ }^{\circ}$＂；
ER 1ø8ø POKE2ø23，32：POKE56295， 6
XS 1081 POKEX，7：POKEY，31：SYSPL T：GOSUB1465：POKEX，7：PO KEY， 35 ：SYSPLT：GOSUB146 5
SB 1082 POKEX，21：POKEY，31：SYSP LT：GOSUB1465：POKEX， 21 ： POKEY， 35 ：SYSPLT：GOSUB1 465
QE 1090 RETURN
SS 1100 DIM Cl\＄（7），C2\＄（7），S\＄（3 ），DC（23），DS（23），C（3，4） $, S(3,4), \cos (3), \operatorname{cx}(3), c$ Y（3）
MS $1101 \operatorname{DIM} \mathrm{OB}(6), \mathrm{OU}(6), \mathrm{PU}(6)$ ， $\operatorname{MS}(6,3), G A(6), \operatorname{MES}(15)$ ， PX（3），PY（3）， $\operatorname{NMS}(9,2), N$ F（6）

SS 1102 DIM CL $(7,3)$
QS $1108 \mathrm{X}=\mathrm{RND}(-\mathrm{TI})$
GQ 1109 FORI $=\varnothing$ TO3： $\operatorname{READS} \$(I)$ ，CO \＄（I）：NEXT
EF $111 \varnothing$ DATA＂Z＂，＂\｛RED\}","X"," \｛BLK $\}^{"}$＂，$\underline{S}=$＂，＂\｛RED\}", "르" ，＂\｛BLK\}"
PE 1111 FORI $=\varnothing$ TO6：READNF（I）：NE XT：DATA $4, \varnothing, 1,2,3,4, \varnothing$
JH 1115 FORI＝ØTO7：READCl\＄（I），C 2 （I）：NEXT
GG 1120 DATA＂9＂，＂9＂，＂10＂，＂10 ＂，＂J＂，＂J＂，＂Q＂，＂Q＂， ＂K＂，＂K＂，＂A＂＇＂A＂
XJ 1125 DATA＂＇J＂，＂J＂，＂J＂，＂J
JS $113 \varnothing$ FORI $=251$ TO254：READQ：PO KEI，Q：NEXT
RK 1135 DATA $24,76,240,255$
EM 1140 PLT＝251： $\mathrm{X}=781: \mathrm{Y}=782$ ： SX ＝53248：BL $\$={ }^{\prime}$ \｛12 SPACES\}"
GQ 1145 EC $\$="\{4$ SPACES $\}\{D O W N\}$
\｛4 LEFT\}": ECS="\{RVS\}"+ ECS＋ECS＋EC\＄＋EC\＄＋ECS＋＂ \｛OFF\}"
Ks 115ø FORJ＝ØTO3：FORI＝ØTO5
AP $1155 \mathrm{DC}\left(\mathrm{J}^{\star} 6+\mathrm{I}\right)=\mathrm{I}: \mathrm{DS}(J * 6+I)=$ J
RF 1160 NEXTI：NEXTJ
EK 1161 FORI＝øTO3：READPX（I），PY （I）：NEXT：DATA13，12，7，7 ，1，12，7，17
PD 1165 FORI＝øTO3：READCX（I），CY （I）：NEXT
CF $117 \varnothing$ DATA17， $11,10,4,3,11,1 \varnothing$ ， 21
SQ 1171 FORI $=\varnothing$ TO2：FORJ＝$\varnothing$ TO9：RE ADNMS（ $J, I$ ）：NEXT：NEXT
BR 1172 DATA＂\｛RVS\} EF彐","\{RVS\} EKヨ\｛OFF\}EKヨ", "\{RVS\}EI尹 ＂，＂\｛RVS\}区工羽 ", "巨2 K ，＂\｛RVS\} 太I尹", "\{RVS\}
EI彐＂，＂\｛RVS\}EI彐","
\｛RVS\} EFZ", "\{RVS\}ED
BX 1173 DATA＂EKヨ＂，＂\｛RVS\}EKヨ \｛OFF\}EK习", " 区I彐", "EIヨ
\｛SPACE\}", "\{RVS\}E2 Cヨ",
＂EI彐＂，＂KF彐＂，＂\｛OFF\}
\｛RVS\} ", " EFヨ","EB"
DH 1174 DATA＂\｛RVS\}KVZ", "\{RVS\} ［Kㅋ́OFF\}\&K彐"," \{OFF\}
EI彐＂，＂\｛OFF\}EI彐\{RVS\} ",
＂\｛OFF\} EKヨ", "\{OFF\}EIZ
\｛RVS\} ", " EVヨ","\{OFF\}
\｛SPACE］（RVS\} "," EVヨ",
＂\｛OFF\}EI®(RVS\} "
EA 1175 DEF $\operatorname{FNNP}(X)=((X+1) / 4-I$ $\mathrm{NT}((\mathrm{x}+1) / 4)) * 4$
HH 1176 FORI $=\varnothing$ TO5： $\operatorname{READCP(I):NE~}$ XT：DATA1， $1,8,1,2,-1$
QA 1177 FORI $=\emptyset$ TO13： $\operatorname{README} \$(I):$ NEXT
XX 1178 DATA＂PASS\｛4 SPACES\}"," ORDER UP＂，＂PASS
\｛3 SPACES\}","PICK UP", ＂$\{2$ SPACES $\}$ PASS \｛4 SPACES \}"
EM 1179 DATA＂Z DIAMONDS＂，＂X CL UBS $\left\{3^{-}\right.$SPACES $\}$＂，＂S HEAR TS\｛2 SPACES\}","A SPADE S\｛2 SPACES\}", "NŌRMAL \｛4 SPACES ${ }^{\prime \prime}$
HH $118 \emptyset$ DATA＂AGGRESSIVE＂，＂YES＂ ，＂no＂，＂YeS＂
JD 1185 FORI＝1TO3：READMX（I），MY （I）：NEXT：DATA7， $2,1,1 \varnothing$ ， 7，19
BQ 1186 FORI＝øTO6：READOB（I），OU （I）， $\mathrm{PU}(\mathrm{I}), \mathrm{MS}(\mathrm{I}, \varnothing), \mathrm{MS}(\mathrm{I}$ ，1），MS（I，2），MS（I，3），GA （I）：NEXT
FF 1187 DATA $99,99,99,99,99,99$ ， 99，99

AF 1188 DATA99，99，99，99，99，99， 99，99
JX 1189 DATA99，99，14，14，14，13， 13，99
FQ $119 \emptyset$ DATA2ø， $12, \varnothing 8, \varnothing 8, \varnothing 8, \varnothing 8$ ， 07，19
CK 1191 DATA14，øø，øø，øø，øø，øø， Øø，16
ES 1192 DATA $\varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, ~$ øø，14
AK 1193 DATAøø，Øø，Øø，Øø，Øø，øø， ØØ，ØØ
XX 1199 RETURN
ER 12 IF $\mathrm{IF}(\mathrm{S}=\mathrm{TP})$ AND $(\mathrm{C}=6)$ THENS $=$ $S+2: S=(S / 4-\operatorname{INT}(S / 4)) * 4$
CH $12 \emptyset 5$ PRINTCO\＄（S）Cl\＄（C）＂
\｛2 SPACES \} \{DOWN \}
\｛4 LEFT\}"S\$(S)"
\｛3 SPACES \}\{DOWN \}
\｛4 LEFT\} \{4 SPACES \}
\｛DOWN\} \{4 LEFT \}
\｛3 SPACES ${ }^{\prime \prime} \mathrm{S} \$(\mathrm{~S})$＂
\｛DOWN\}\{4 LEFT\}
\｛2 SPACES $\}$＂C2\＄（C）；
XQ 1207 PRINT＂\｛BLU\}";
JM $121 \varnothing$ RETURN
AK 122ø FORU＝ØTO4：POKEX，19：POK EY，U＊5＋2：SYSPLT
$A B 1225 C=C(\varnothing, U): S=S(\varnothing, U): G O S U$ B12øø：NEXTU
CQ 1230 RETURN
XH 125 12 FORI $=\emptyset T O 23: J=I N T$（RND（ 1 ）＊24）
HA $1255 \mathrm{~T}=\mathrm{DC}(\mathrm{I}): \mathrm{DC}(\mathrm{I})=\mathrm{DC}(\mathrm{J}): \mathrm{DC}$ $(\mathrm{J})=\mathrm{T}$
$\mathrm{XQ} 1260 \mathrm{~T}=\mathrm{DS}(\mathrm{I}): \mathrm{DS}(\mathrm{I})=\mathrm{DS}(\mathrm{J}): \mathrm{DS}$ （ $J$ ）$=\mathrm{T}$
HC 1265 NEXT
DE 127 FORJ $=\emptyset$ TO3：FORI $=\emptyset T O 4$
AG $1275 \mathrm{C}(\mathrm{J}, \mathrm{I})=\mathrm{DC}(\mathrm{J} * 5+\mathrm{I}): S(\mathrm{~J}, \mathrm{I}$ $)=\mathrm{DS}(J * 5+I):$ NEXT $: N E X T:$ $\mathrm{KC}=\mathrm{DC}(2 \emptyset): \mathrm{KS}=\mathrm{DS}(2 \varnothing)$
CA $128 \emptyset$ RETURN
SD 1300 GOSUB1450：POKEX，12：POK EY， $28:$ SYSPLT
DF $13 \varnothing 5$ PRINT＂\｛BLK\}FIRST \｛2 SPACES $\}$ BLACK＂；
EX 1310 POKEX，13：POKEY，29：SYSP LT
GB 1315 PRINT＂JACK DEALS＂；
XD 1320 GOSUB125 $0: D L=\varnothing: C C=\varnothing$
SD 1325 POKEX，CX（DL）：POKEY，CY（ DL）：SYSPLT
EP $1330 \mathrm{C}=\mathrm{DC}(\mathrm{CC}): \mathrm{S}=\mathrm{DS}(\mathrm{CC}): \mathrm{GOSU}$ B12øø
PQ 1331 FORDE＝1TO5øø：NEXT
MH $1335 \mathrm{IF}(\mathrm{DC}(\mathrm{CC})=2)$ AND（（DS（CC ）AND253 ）＝1）THENGOTO135 5
JC 1336 POKEX，CX（DL）：POKEY，CY（ DL）：SYSPLT
RC 1337 FORDE＝1TO1 $00:$ NEXT
MS 1340 PRINTECS；：CC＝CC＋1：DL＝F NNP（DL）：GOTOl 325
JK 1355 GOSUB1450：PRINT＂$\left\{\right.$ BLK ${ }^{\prime \prime}$ ；：POKEX，12：POKEY，29：SY SPLT
RM 1356 IFDL＝ 0 THEN $137 \emptyset$
HH $136 \emptyset$ PRINT＂PLAYER＂DL；
RE 1362 POKEX，13：POKEY，31：SYSP LT
AG 1365 PRINT＂DEALS＂；：GOTO1375
KX $137 \emptyset$ PRINT＂YOUR\｛2 SPACES \}DE AL＂；
PR 1375 GOSUB14øø
EB 1376 POKEX，CX（DL）：POKEY，CY（ DL）：SYSPLT：PRINTEC\＄；
JG 1380 RETURN
JM 14øø POKEX，15：POKEY，28：SYSP LT
EE 1405 GOSUB6øøø：PRINT＂\｛BLK\} \｛RVS\} HIT BUTTON \{OFF\} ＂；：POKE198，Ø
RR 1410 GETWT $\$$ ：IF（WT $\$<>\operatorname{CHR} \$(13$
)) AND (PEEK (56320) <>111 ) THEN141б
DA 1415 PRINT"\{BLU\}";:GOSUB145 $\varnothing$
HP 1430 RETURN
EM 145 Ø FORR=12TO16:POKEX,R:PO KEY, 28 :SYSPLT
JB 1455 PRINT"\{12 SPACES\}";:NE XT
QR 1460 RETURN
AS 1465 PRINT"\{RED $\}$ ";:FORI=øTO 2:PRINTNMS (N,I)"\{DOWN\} \{2 LEFT\}";:NEXT:PRINT" \{OFF\}\{BLU\}";
DQ $147 \varnothing$ RETURN
KE 15øø FORI=ØTO3:SP(P,I)=FC(P AND253): NS (P, I) $=\varnothing$ :NEXT
RM 1505 FORI $=\emptyset T O 4: S=S(P, I): C=C$ ( $\mathrm{P}, \mathrm{I}$ ) : $\mathrm{SP}(\mathrm{P}, \mathrm{S})=\mathrm{SP}(\mathrm{P}, \mathrm{S})+$ $C P(C): N S(P, S)=N S(P, S)+$ 1
JH $151 \varnothing$ IFC=2THENS $=\mathrm{S}+2: \mathrm{S}=(\mathrm{S} / 4-$ $\operatorname{INT}(S / 4)) * 4: S P(P, S)=S P$ $(P, S)+6: N S(P, S)=N S(P, S$ )+1
XA 1515 IFC=5THENFORJ=ØTO3:SP ( $P, J)=S P(P, J)+4:$ NEXTJ
QJ 1520 NEXTI
SE 1525 SS= $\emptyset: F O R I=\emptyset T O 4: I F N S(P$, $I)=\emptyset$ THENS $P(P, I)=\varnothing: S S=S$ S+1
BJ $153 \varnothing$ NEXT:FORI=øTO3:SP(P,I) $=S P(P, I)+S S: N E X T$
EC 1535 IFP<>DLTHEN155
PX 1540 IFKC=5 THENSP ( $\mathrm{P}, \mathrm{KS}$ ) $=\mathrm{SP}$ ( P, KS ) +4
PP $1545 \mathrm{SP}(\mathrm{P}, \mathrm{KS})=\mathrm{SP}(\mathrm{P}, \mathrm{KS})+\mathrm{CP}(\mathrm{K}$ C) : $\mathrm{NS}(\mathrm{P}, \mathrm{KS})=\mathrm{NS}(\mathrm{P}, \mathrm{KS})+1$

ED 1550 RETURN
BM 1600 LO= $6: H I=1: X P=13: Y P=10$ : GOSUB191ø
RX 1605 IF AN=1THENTP=KS
CE 1610 RETURN
AB 1615 POKEX,13:POKEY,10:SYSP LT: PRINT"\{RVS\}LONEHAND ?\{OFF\}";
PJ 1616 LO=12:HI=13:XP=13:YP=2 Ø:GOSUB1910:LH=ø
SA 1618 IFAN=13THENLH=1: POKEX, $\mathrm{MX}(\mathrm{BD})+2$ : $\mathrm{POKEY}, \mathrm{MY}(\mathrm{BD})$ : SYSPLT:PRINT"\{RVS\}LONE HAND \{OFF\}";
CB 1619 POKEX,13:POKEY,10:SYSP LT: PRINT"\{RVS\} \{9 SPACES\}\{OFF\}";
HH $162 \emptyset$ RETURN
SP $1625 \mathrm{LH}=\varnothing$ : $\operatorname{IFSP}(\mathrm{P}, \mathrm{TP})>G A(\mathrm{NS}($ P, TP ) ) THENLH=1
JH 1630 RETURN
EX $1650 \operatorname{IFFNNP}(\operatorname{FNNP}(\mathrm{P}))=$ DLTHEN GOSUB1625:F=LH:GOTO168 5
GE $1654 \mathrm{~F}=\varnothing$ :IFKC=2THENGOTO166 $\varnothing$
HF $1655 \operatorname{IFSP}(\mathrm{P}, \mathrm{KS})>\mathrm{OU}(\mathrm{NS}(\mathrm{P}, \mathrm{KS})$ ) THENF=1
HS $166 \emptyset \operatorname{IFSP}(\mathrm{P}, \mathrm{KS})>\mathrm{OB}(\mathrm{NS}(\mathrm{P}, \mathrm{KS})$ ) THENF=1
AP $1665 \operatorname{IF}(F=\varnothing) O R(P<>\operatorname{FNNP}(D L))$ THEN1685
XJ $167 \varnothing \mathrm{SB}=\mathrm{CP}(\mathrm{KC}): I F K C=5$ THENSB =3
CX 1675 FORI=ØTO3:IFI<>KSTHENI $\operatorname{FSP}(P, I)>=(S P(P, K S)-S B$ ) THENF=ø
BR 1680 NEXT
DX 1685 IFF=1THENTP=KS
XX 1699 RETURN
SA 17øø LO=2:HI=3:XP=13:YP=11: GOSUB191ø
QH 1765 IF AN=3THENTP=KS
QM 1710 RETURN
GG 175 ■ $\operatorname{IFSP}(\mathrm{P}, \mathrm{KS})>\operatorname{PU}(\mathrm{NS}(\mathrm{P}, \mathrm{KS})$ ) THENTP=KS
AB 1755 RETURN

KE $18 ø$ ( $\mathrm{LO}=4: \mathrm{HI}=8: \mathrm{XP}=13: \mathrm{YP}=9: \mathrm{G}$ OSUB191ø
AS $18 \emptyset 1$ IFAN-5=KSTHEN18øø
AQ $18 \emptyset 5$ IFAN $>4$ THENTP $=A N-5$
HD 1810 RETURN
KA $185 \emptyset \mathrm{DF}=\varnothing$ :FORI $=\emptyset$ TO $3: \mathrm{IFI}=\mathrm{KST}$ HEN1865
GQ $1855 \operatorname{IFSP}(\mathrm{P}, \mathrm{I})-\mathrm{MS}(\mathrm{NS}(\mathrm{P}, \mathrm{I}), \mathrm{P}$ S) <DFTHEN1865

CS $1860 \mathrm{DF}=\mathrm{SP}(\mathrm{P}, \mathrm{I})-\mathrm{MS}(\mathrm{NS}(\mathrm{P}, \mathrm{I})$, PS) : $\mathrm{TP}=\mathrm{I}$
RK 1865 NEXT
KH $187 \varnothing$ RETURN
QH $19 \varnothing \varnothing$ FORI=1TO3:FORJ $=\emptyset$ TO2: PO KEX,MX(I)+J:POKEY,MY(I ): SYSPLT: PRINT" \{RVS \} \{8 SPACES\}";
PC 1905 NEXT:NEXT:PRINT"\{OFF\}" ;
PJ 1907 RETURN
ED 1910 POKE198, Ø:AN=LO
BD $1915 \mathrm{XI}=\mathrm{XP}: \mathrm{Yl}=\mathrm{YP}: \mathrm{FORI}=\mathrm{LOTOH}$ I:PRINT"\{RVS\}\{BLU\}";
BJ 192ø IFI<>ANTHEN1925
JC 1921 IF(AN=LO)OR(HI-LO=1)TH ENPRINT"\{RED\}"; :GOTO19 25
JM 1922 PRINTCO\$(I-LO-1);
HJ 1925 POKEX,X1:POKEY,Y1:SYSP LT:PRINTME (I) ; : Xl $=\mathrm{Xl}+$ 1:NEXT
BH 1930 GETR§:DR=PEEK (5632ø):I FNOT ( $(R \$="\{U P\} ")$ OR(DR= 126))THENGOTO194ø

RH 1935 AN=AN-1:IFAN <LOTHENAN $=$ HI
PJ 1940 IFNOT((R\$="\{DOWN\}")OR( DR=125)) THENGOTO195ø
GX 1945 AN=AN+1:IFAN>HITHENAN= LO
SB 1950 IFNOT( $(R \$=C H R \$(13)) O R($ DR=111)) THENGOTO1915
SG 1955 Xl=XP:Yl=YP:PRINT" \{RVS\}\{BLU\}"; :FORI=LOTO HI
HG 1960 POKEX,Xl:POKEY,Yl:SYSP LT: PRINTLEFT\$(BLS,LEN( ME (LO)));:X1=X1+1:NEX T
JK 1965 PRINT"\{OFF\}";:RETURN
FQ 2øøø GOSUB1250:GOSUB1220:P= $\operatorname{FNNP}(\mathrm{DL}): T P=4: B D=\varnothing: \mathrm{KU}=$ $\varnothing$
MK $2 ø \emptyset 5$ POKEX,7:POKEY,12:SYSPL T:C=KC:S=KS:GOSUB12øø
HX 2007 IFDL < > ØTHENPOKEX,MX(DL ): POKEY, MY(DL) 1 : SYSPL T:PRINT"\{RVS\}DEALER"
BA 2010 GOSUB15øø
XS $2 \varnothing 15$ IFP=øTHENGOSUB16øø:GOT 02ø4ø
BH $2 \varnothing 16$ IFABS (P-DL) <> 2 THEN $2 \varnothing 2 \varnothing$
RS 2017 GOSUB1625:IFLH=1THENTP =KS: GOTO2ø25
RG $2 \varnothing 2 \varnothing$ GOSUB165 ${ }^{2}$
XA 2025 POKEX,MX(P): POKEY,MY(P ):SYSPLT:PRINT"\{RVS\}";
RH $2 ø 3 \varnothing$ IFTP=4THENPRINT" \{2 SPACES\}PASS": GOTO2ø 40
FD 2035 BD=P:PRINT"ORDER UP";
AF $2 \varnothing 4 \varnothing \mathrm{P}=\mathrm{FNNP}(\mathrm{P}): I F(\mathrm{P}\langle>\mathrm{DL})$ AND (TP=4) THEN $2 \varnothing 1 \varnothing$
KM $2 \varnothing 45$ P=DL:GOSUB15øб:IFTP<>4 THEN2105
RM $2 \varnothing 5 \emptyset$ IFDL= $\varnothing$ THENGOSUB17øø:GO TO2ø7ø
PS $2 \varnothing 55$ GOSUB1750:POKEX,MX(DL) : POKEY,MY(DL):SYSPLT:P RINT"\{RVS\}\{BLU\}";
CQ $2 \varnothing 60$ IFTP $=4$ THENPRINT" TURNE D\{DOWN\}\{5 LEFT\}DOWN";: GOTO $2 \varnothing 7 \varnothing$
AJ 2065 BD=P:PRINT" PICKED
\{DOWN\}\{4 LEFT\}UP";
HM 2070 FORDE $=1$ TO2øø : NEXT
HR $2 \varnothing 71$ IF ( $\mathrm{BD}=\varnothing$ ) AND (TP<>4)THEN 2105
QE 2072 POKEX,7:POKEY,12:SYSPL T:PRINTECS;:IFTP<>4THE N2105
QC 2073 GOSUB19øø:PS $=\varnothing$
HX 2675 P=FNNP(P)
JS 2ø8ø IFP=øTHENGOSUB18øø: GOT 02ø9ø
PK $2 ø 85$ GOSUB1850:POKEX,MX(P): POKEY, MY(P):SYSPLT:PRI NT" $\{$ RVS $\}$ ";
RS 2086 FORDE $=1$ TO6øø:NEXT
FC $2 ø 88$ IFTP=4THENPRINT" \{2 SPACES\}PASS";:GOTO2 990
RS $2 ø 89$ BD=P:PRINTRIGHT\$(MES(T $\mathrm{P}+5), 8$ );
HD 2090 IF $(\mathrm{P} \ll \mathrm{DL})$ AND $(\mathrm{TP}=4)$ THEN PS=PS+1: GOTO2ø75
PK 21 Øø GOTO21ø9
KK $2105 \mathrm{KU}=1: \operatorname{IF}(\mathrm{BD}=\emptyset) \mathrm{AND}(\mathrm{DL}=2)$ THENLH=1: GOTO212ø
DR 2109 IFTP=4THEN214ø
RA $211 \varnothing$ IF $(\mathrm{LH}=1)$ AND $(\mathrm{BD}<>\varnothing)$ THEN $212 \varnothing$
DP 2111 IFBD=ØTHENGOSUB1615:GO TO214ø
RS 2112 GOSUB1625
MA 2115 IFLH= $\varnothing$ THEN $214 \varnothing$
EX $212 \varnothing$ POKEX,MX(BD)+2:POKEY,M Y(BD) :SYSPLT: PRINT"
\{RVS\} LONEHAND";
CF 2140 PRINT"\{OFF\}";:FORDE=1T 02000:NEXT
DX 2145 GOSUB19øø
PG 2150 RETURN
DF 2200 POKE198, $0: F=-1$
$\operatorname{GE} 2205 \mathrm{~F}=\mathrm{F}+1: \operatorname{IFC}(\varnothing, \mathrm{F})=-1$ THEN2 $2 \not 25$
PQ $2210 \mathrm{G}=\mathrm{F}$ : POKESX $+1,214$ : POKES $\mathrm{X},\left(\mathrm{F}^{*} 5+3\right) * 8+22$ : POKE 532 69,1
AG 2215 POKESX $+1,214$ : POKESX, ( $F$ * $5+3$ ) * $8+22$

QS $222 \varnothing$ GETR $:$ DR=PEEK (56320):I $\mathrm{F}(\mathrm{R} \$=" \mathrm{n})$ AND $(\mathrm{DR}=127) \mathrm{THE}$ N222ø
ES $2225 \mathrm{G}=\mathrm{F}:$ IFNOT ( $(\mathrm{R} \$=$ " $\{$ LEFT $\} "$ ) OR(DR=123))THEN225Ø
XF $223 \varnothing \mathrm{~F}=\mathrm{NF}(\mathrm{F}): \operatorname{IFC}(\varnothing, F)<\emptyset T H E N$ $223 \varnothing$
CA 2245 GOTO2215
BP 2250 IFNOT( $($ R $\$=$ " $\{$ RIGHT $\}$ ") OR ( $\mathrm{DR}=119$ ) ) THEN2275
DA $2255 \mathrm{~F}=\mathrm{NF}(\mathrm{F}+2): \operatorname{IFC}(\varnothing, F)<\varnothing \mathrm{TH}$ EN2255
QD 2276 GOTO2215
FH 2275 IFNOT( $\mathrm{R} \$=\mathrm{CHR}$ (13)) OR( DR=111) ) THEN2215
KB $228 \emptyset$ RETURN
DG 23øø FORI=øTO4:IF (S (P, I) =TP ) AND ( $C(P, I)=2)$ THENC ( $P$, I) $=7$ : GOTO231 $\varnothing$

HK $2305 \operatorname{IF}((S(P, I)$ AND253) $=($ TPA ND253)) AND (C (P, I) $=2$ ) TH $\operatorname{ENC}(P, I)=6: S(P, I)=T P$
SA 2310 NEXT
AH 2315 FORI=ØTO4:FORJ=ØTO3:IF $\mathrm{S}(\mathrm{P}, \mathrm{J})>\mathrm{S}(\mathrm{P}, \mathrm{J}+1)$ THENGOT 02331
QE $232 \varnothing \operatorname{IFS}(P, J)=S(P, J+1)$ THENI FC $(\mathrm{P}, \mathrm{J})>\mathrm{C}(\mathrm{P}, \mathrm{J}+1)$ THENGO TO2331
GC $2325 \mathrm{~T}=\mathrm{C}(\mathrm{P}, \mathrm{J}): C(\mathrm{P}, \mathrm{J})=\mathrm{C}(\mathrm{P}, \mathrm{J}+$ 1): $C(P, J+1)=T$

KP $233 \varnothing \mathrm{~T}=\mathrm{S}(\mathrm{P}, \mathrm{J}): \mathrm{S}(\mathrm{P}, \mathrm{J})=\mathrm{S}(\mathrm{P}, \mathrm{J}+$ 1) $: S(P, J+1)=T$

XC 2331 NEXT
SX 2335 FORI $=\emptyset T O 4: \operatorname{PT}(I)=\varnothing: I F S($ $P, I)=\operatorname{TPTHENPT}(I)=C(P, I$ )+1Ø: GOTO235

SF $2340 \operatorname{IFC}(P, I)=5$ THENPT $(I)=9:$ GOTO2350
QC $2345 \operatorname{IF}(S(P, I)<>S(P, N F(I)))$ $\operatorname{AND}(S(P, I)<>S(P, N F(I+2$ ))) THENPT ( $I$ ) $=-1$
CE 2350 NEXT
XM 2355 L=99:FORI=øTO4:IFPT(I) <LTHENF=I:L=PT (I)
SQ 2360 NEXT: RETURN
MJ 25øØ FORI=ØTO3:FORJ=ØTO3:NS $(I, J)=\varnothing:$ NEXT $: F O R J=\varnothing$ TO4 : IFC (I, J ) < > 2THEN2515
QH $2505 \operatorname{IFS}(I, J)=T P T H E N C(I, J)=$ 7: GOTO2515
RD $251 \varnothing \operatorname{IFABS}(S(I, J)-T P)=2$ THEN $C(I, J)=6: S(I, J)=T P$
GQ $2515 \mathrm{NS}(I, S(I, J))=N S(I, S(I$, J)) $+1:$ NEXT:NEXT

RX 252 RETURN
KJ 27øø PRINT" $\{$ HOME $\}$ \{2 DOWN $\}$ \{2 RIGHT\} \{RVS\} PARTNER? \{OFF\}"; :LO=9:HI=1 $0: \mathrm{XP}=$ 2: YP=12:GOSUB191ø
FK $27 \emptyset 5$ FC $(\varnothing)=\emptyset:$ IFAN $=1 \emptyset$ THENFC $($ Ø) $=2$
XM $271 \varnothing$ PRINT" $\{\mathrm{HOME}\}\{2$ DOWN \} \{2 RIGHT\} \{RVS\}OPPONENT S?\{OFF\}"; :LO=9:HI=1б:X $\mathrm{P}=2$ : $\mathrm{YP}=14$ : GOSUB191Ø
EG $2715 \mathrm{FC}(1)=\varnothing:$ IFAN $=1 \varnothing$ THENFC ( 1) $=2$

GG 2720 PRINT" $\{$ HOME $\}$ \{ 2 DOWN $\}$
\{2 RIGHT\} \{RVS $\}$
\{1ø SPACES\}\{OFF\}": :RET URN
FS 3øøø FORI=ØTO7:FORJ=ØTO3:CL ( $I, J$ ) $=\varnothing$ : NEXT $:$ NEXT $: C L(2$ ,TPAND253) $=1$
FF 3øø1 FORI $=\varnothing$ TO3: $\mathrm{SL}(I)=\varnothing:$ NEXT
XX 3øø2 LD=FNNP(DL): DM=4:TR(ø) $=\varnothing: T R(1)=\varnothing:$ IFLH=ØTHEN3 Ø15
QR 3øø5 IFBD=2THENFORI=øTO4:PO KEX, 19: POKEY, I*5+2:SYS PLT:PRINTECS; :NEXT
JE $3 \emptyset 1 \emptyset$ DM=FNNP (FNNP (BD))
BB $3 \emptyset 11$ IFLH=1THENIFLD=DMTHENL D=FNNP (LD)
EJ $3 \emptyset 15$ FORTK=øTO4:P=LD:PS= $\varnothing: T$ $\mathrm{L}=\varnothing:$ IFDM $=$ PTHENP $=$ FNNP ( P )
SP $3 \varnothing 2 \varnothing$ GOSUB35øø:WP=P:IFLH=1T HENPS $=$ PS +1
DX $3 \emptyset 21 \mathrm{SL}(\mathrm{S}(\mathrm{P}, \mathrm{PC}(\mathrm{P})))=1$
PP $3 \emptyset 25 \operatorname{IFS}(\mathrm{P}, \mathrm{PC}(\mathrm{P}))=$ TPTHENTL= 1
FH 3 Ø3 0 FORI $=1 \mathrm{TO} 3: \mathrm{P}=\mathrm{FNNP}(\mathrm{P}): I \mathrm{~F}$ P=DMTHEN3Ø6Ø
RS 3035 PS=PS $+1:$ GOSUB3500:IFTL $=\varnothing$ THEN $3 \varnothing 5 \varnothing$
XF $304 \emptyset \operatorname{IFS}(P, P C(P))=T P T H E N I F C$ ( $\mathrm{P}, \mathrm{PC}(\mathrm{P}))>C(W P, \mathrm{PC}(W P))$ THENWP $=P$
JD 3045 GOTO3ø6ø
GS $305 \emptyset \operatorname{IFS}(\mathrm{P}, \mathrm{PC}(\mathrm{P}))=$ TPTHENWP $=$ P:TL=1:GOTO3Ø6Ø
CK $3055 \operatorname{IFS}(P, P C(P))=S(W P, P C(W$ P)) THENIFC ( $\mathrm{P}, \mathrm{PC}(\mathrm{P}))>C$ ( WP, PC (WP) ) THENWP=P
DF 3060 NEXT:FORDE=1TO4øø:NEXT KQ 3065 POKESX+3, (PX(WP) +1)*8+ $52:$ POKESX +2 , (PY (WP) +1 ) *8+19: POKE53269, 2
GX 3071 FORDE=1TO3øøø:NEXT:LD= WP:WT=WPAND253:TR(WT)= TR(WT) +1
HG $3 \emptyset 72$ POKEX, 21:POKEY, $31+4$ *WT :SYSPLT:N=TR(WT) : GOSUB 1465: POKE53269, ø
QF 3675 FORI $=0$ TO3: POKEX, PX (I) : POKEY, PY (I):SYSPLT:PRI NTEC\$; : C (I, PC (I) ) =-1:N EXT: NEXT
KJ 3078 POKEX, MX(BD) +2 : POKEY,M

Y(BD) : SYSPLT:PRINT"
\{RVS $\}$ \{9 SPACES\}\{OFF\}";
DR 368ø BT=BDAND253: POKEX, 15: P OKEY, 28:SYSPLT
XA $3 \emptyset 85$ PRINT"\{BLK\}";:IFTR(BT) <3THEN3108
JP 3 Ø86 IFTR (BT) < 5THEN 3 Ø97
$\mathrm{AB} 3087 \mathrm{PW}(\mathrm{BT})=\mathrm{PW}(\mathrm{BT})+2+\mathrm{LH} * 2$
CF 3090 IFBT=ØTHENPRINT"
\{2 SPACES $\}$ YOU
\{2 SPACES \}WON \{DOWN \} \{9 LEFT\}ALL TRICKS";:G OTO32øØ
RB $3 \emptyset 95$ IFBT=1THENPRINT"COMPUT ER WON\{DOWN \}\{11 LEFT\}A LL TRICKS";:GOTO32øø
$\mathrm{FQ} 3097 \mathrm{PW}(\mathrm{BT})=\mathrm{PW}(\mathrm{BT})+1$
EA 31øø IFTR( $\varnothing)>2$ THENPRINT"YOU WON HAND"; :GOTO32øø
FP $31 \varnothing 5$ IFTR ( 1 ) $>2$ THENPRINT" \{2 SPACES $\}$ COMPUTER \{DOWN\}\{8 LEFT\}WON HAND ": : GOTO32øø
SR $31 \varnothing 8 \mathrm{PW}(1-\mathrm{BT})=\mathrm{PW}(1-\mathrm{BT})+2$
GE $311 \varnothing \operatorname{IFTR}(\varnothing)<3$ THENPRINT"YOU 'VE\{2 SPACES\}BEEN \{DOWN\}\{1ø LEFT\}EUCHRED $1^{\prime \prime}:$ GOTO 32 øø
QM 3115 IFTR(1)<3THENPRINT"
\{2 SPACES $\}$ COMPUTER
\{DOWN\} \{8 LEFT\} EUCHRED ! ";
GH 3119 FORDE=1TO4øøø:NEXT
EG 32øø FORDE=1TO4øøø:NEXT:PRI NT" $\{$ BLU $\}$ ";
GJ $32 \emptyset 5$ RETURN
JJ 35øø IFP>ØTHEN35Ø9
EG 3501 POKEX,15:POKEY, 28:SYSP LT
GK 3502 PRINT"\{BLK\}\{RVS\} YOUR \{2 SPACES\}PLAY \{OFF\} \{BLU\}";:GOSUB22øø
MA 3503 LS $=\mathrm{S}(\mathrm{LD}, \mathrm{PC}(\mathrm{LD})): I F(\mathrm{PS}=$ Ø) $\mathrm{OR}(\mathrm{S}(\mathrm{P}, \mathrm{F})=\mathrm{LS}) \mathrm{OR}$ (NS (P , LS ) = Ø) THEN 3507
QM 35ø4 GOSUB2215: GOTO3503
AF 35ø5 POKE53269, Ø: POKEX,19:P OKEY,F*5+2:SYSPLT:PRIN TECS;:GOTO353Ø
PE 3507 POKEX, 15:POKEY, 28:SYSP LT: PRINT" $\{12$ SPACES $\} "$
BG 3508 POKE53269, Ø:POKEX, 19:P OKEY,F*5+2:SYSPLT:PRIN TECS;:GOTO353Ø
FJ $35 \emptyset 9$ IFTK<5THEN3515
ER 351ø FORK=øTO4: $\operatorname{IFC}(P, J)>-1 T$ HENF=I
RH 3512 NEXT:GOTO353ø
MH 3515 ON(PS+1) GOSUB4øøø, 41øø ,42øø,42øø
QF 353 Ø $\mathrm{PC}(\mathrm{P})=\mathrm{F}: \operatorname{POKEX}, \mathrm{PX}(\mathrm{P}): \mathrm{PO}$ KEY, PY ( P$): \mathrm{SYSPLT}: C=C(P$ , $F): S=S(P, F)$ : GOSUB12øø
RG $3535 \mathrm{NS}(\mathrm{P}, \mathrm{S}(\mathrm{P}, \mathrm{F}))=\mathrm{NS}(\mathrm{P}, \mathrm{S}(\mathrm{P}$, F) $)-1: C L(C(P, F), S(P, F)$ )=1
MX 3540 RETURN
SH 4øøø $\operatorname{IFNOT}(N S(P, T P)=5-T K) T H$ EN4015
GR 4øø5 SP=TP:GOSUB52øø:IFF=1T HENGOTO515 $\varnothing$
MQ 4ø1Ø GOTO516ø
BA $4 \emptyset 15$ IFNOT $((L H=1) \operatorname{AND}(B D=P))$ THENGOTO4ø3Ø
SF $4 \emptyset 2 \varnothing$ IFNS $(\mathrm{P}, \mathrm{TP})>\emptyset$ THENSP $=T P$ : GOTO5150
RR 4 Ø25 GOTO5ø5
QF $4 \varnothing 3 \varnothing$ GOSUB5øøø:IF ( $F=1$ ) AND (A $\mathrm{BS}(\mathrm{BD}-\mathrm{P})=2)$ THENSP=TP:G OTO5150
CH 4 635 GOSUB525ø:IFNOT ( $(\mathrm{F}=1) \mathrm{A}$ ND ( $\mathrm{P}=\mathrm{BD}$ ) ) THENGOTO5ø5 0
CF $4 \varnothing 4 \varnothing$ GOSUB52øø:IFF=1THENSP= TP: GOTO515

FQ $4045 \operatorname{IFNS}(\mathrm{P}, \mathrm{TP})>2$ THENSP $=\mathrm{TP}$ : GOTO516ø
JC 4ø5ø GOTO5ø5ø
HF $41 \varnothing \emptyset \operatorname{IFNS}(P, S(L D, P C(L D)))=\varnothing$ THEN4115
RJ 4105 GOSUB53øø:SP=S(LD, PC(L D)) : IFF=1THEN515

DH $411 \emptyset$ GOTO516ø
XR 4115 IFNS $(\mathrm{P}, \mathrm{TP})=5-\mathrm{TKTHENS} \mathrm{P}=$ TP: GOTO516ø
SB $412 \emptyset$ IFNS $(P, T P)=\varnothing$ THEN $51 \varnothing \varnothing$
PD 4125 IFC(LD, PC(LD)) $=5$ THENSP =TP: GOTO5160
QC 4130 IFBD < > PTHENSP=TP:GOTO5 160
XM 4135 GOSUB525ø:IFF=1THENSP= TP:GOTO516Ø
EB $414 \emptyset$ GOTO51øø
SA $42 \emptyset \emptyset$ IFNS ( $\mathrm{P}, \mathrm{S}(L D, P C(L D)))=\varnothing$ THEN4235
MJ $4201 \quad \mathrm{SP}=\mathrm{S}(\mathrm{LD}, \mathrm{PC}(\mathrm{LD}))$
KH 42 IF $\mathrm{IF}(\mathrm{SP}<>\mathrm{TP}) \mathrm{AND}(\mathrm{TL}=1) \mathrm{THE}$ N5160
RS 4210 IFABS (WP-P) < > 2THEN4225
PR 4215 GOSUB5300:IFF=1THENGOS UB5350:IFF= $\emptyset$ THEN515 5
GS 4220 GOTO516ø
JK 4225 GOSUB53øø:IFF=1THEN515 Ø
DX 4230 GOTO516ø
BH 4235 IFNS ( $\mathrm{P}, \mathrm{TP}$ ) < 5-TKTHEN427 Ø
XG 4245 SP=TP:IFABS $(\mathrm{WP}-\mathrm{P})=2 \mathrm{THE}$ N516ø
XA 425 IFTL=ØTHEN516Ø
RQ 4255 GOSUB53ø0:IFF=1THENGOT 054øø
MR 4260 GOTO5160
BS 4270 IFNS $(\mathrm{P}, \mathrm{TP})=\emptyset$ THENGOTO51 Øø
KA 4275 IFABS (WP-P) < > 2THEN431ø
HD 428 IF (TL=1) OR (PS=3) THEN51 Øø
XP $4285 \operatorname{IFC}(W P, P C(W P))=5$ THEN5 1 Øø
HG $429 \varnothing$ IFC(WP, PC(WP)) <4THENSP =TP: GOTO5160
PD 43øø GOSUB525ø:IFF=1THENSP= TP:GOTO516Ø
FQ 4305 GOTO51øø
GE $431 \varnothing$ IFTL=øTHENSP=TP:GOTO51 60
BP 4315 GOSUB53øø: IFF=1THENSP= TP:GOTO54øø
MQ $432 \emptyset$ GOTO51øø
BQ 5øøø $\mathrm{F}=\varnothing: \mathrm{FORA}=\varnothing$ TO4: $\operatorname{IFC}(\mathrm{P}, \mathrm{A})$ $>5$ THENF=1
BA 5 øø5 NEXT: RETURN
QR 5ø50 $\mathrm{F}=-1: \mathrm{FORA}=\varnothing \mathrm{TO} 4: \mathrm{IF}(\mathrm{SL}(\mathrm{S}$ $(\mathrm{P}, \mathrm{A}))=\varnothing) \operatorname{AND}(\mathrm{S}(\mathrm{P}, \mathrm{A})<>\mathrm{T}$ P) $\operatorname{THENIFC}(\mathrm{P}, \mathrm{A})=5 \mathrm{THENF}=$ A
BD 5055 NEXT:IFF>-1THEN507ø
CS 506Ø LC=-1:FORA=ØTO4:IFS (P, A) <>TPTHENIFC $(\mathrm{P}, \mathrm{A})>\operatorname{LCT}$ $\operatorname{HENLC}=\mathrm{C}(\mathrm{P}, \mathrm{A}): \mathrm{F}=\mathrm{A}$
SB 5065 NEXT
BQ 5070 RETURN
GK 51øø IFNS (P,TP) $>$ ØTHEN5125
SD $5105 \mathrm{SP}=-1: \mathrm{FORA}=\emptyset \mathrm{TO} 4$
HM 5110 IFS ( $\mathrm{P}, \mathrm{A})<>$ TPTHENIF (C (P $, A)=5) \operatorname{AND}(N S(P, S(P, A))$ >1) THENSP $=\mathrm{S}(\mathrm{P}, \mathrm{A})$
EJ 5115 NEXT:IFSP>-1THEN516ø
PH 512ø GOTO518
FX $5125 \mathrm{~V}=4: \mathrm{F}=-1: \mathrm{FORA}=\emptyset \mathrm{TO} 4$
DG 5126 IFS $(P, A)=T P T H E N 5135$
XP $5130 \operatorname{IF}(\operatorname{NS}(P, S(P, A))<>1) O R($ SL $(S(P, A))=1)$ THEN5135
FH $5131 \operatorname{IF}(C(P, A)>=\varnothing)$ AND ( $C(P, A$ ) <V) THENV $=C(P, A): F=A$
HJ 5135 NEXT:IFF=-1THEN518ø
FA 5140 RETURN
BJ $515 \emptyset$ IFPS $=3$ THEN $54 \emptyset \emptyset$

MQ $5151 \mathrm{~V}=-1:$ FORA＝ØTO4：IFS（P，A $)=\operatorname{SPTHENIFC}(\mathrm{P}, \mathrm{A})>\operatorname{VTHEN}$ $\mathrm{V}=\mathrm{C}(\mathrm{P}, \mathrm{A}): \mathrm{F}=\mathrm{A}$
MS 5155 NEXT：RETURN
SJ $516 \varnothing \mathrm{~V}=1 \varnothing: \mathrm{FORA}=\emptyset \mathrm{TO} 4$
EH $5161 \operatorname{IFS}(\mathrm{P}, \mathrm{A})=\operatorname{SPTHENIF}(\mathrm{C}(\mathrm{P}$ ， A）＞＝Ø）AND（ $\mathrm{C}(\mathrm{P}, \mathrm{A})<\mathrm{V})$ THE $\mathrm{NV}=\mathrm{C}(\mathrm{P}, \mathrm{A}): \mathrm{F}=\mathrm{A}$
RR 5165 NEXT：RETURN
SM 518ø V＝10：FORA＝øTO4：IFS（P，A ）＜＞TPTHENIFC（ $\mathrm{P}, \mathrm{A}$ ）＞－1TH $\operatorname{ENIFC}(P, A)<V T H E N V=C(P$, A）：$F=A$
QD 5185 NEXT：RETURN
XJ $52 \varnothing \varnothing \mathrm{HT}=8: \mathrm{F}=\varnothing$
QM $5205 \mathrm{HT}=\mathrm{HT}-1$ ：IFHT $>$ ØTHENIFCL （HT，TP）$=1$ THEN 5205
GJ $521 \varnothing$ IFHT＜$\quad$ THEN5 $24 \varnothing$
QS 5215 FORA $=\varnothing$ TO4：IFS $(P, A)=T P T$ $\operatorname{HENIFC}(\mathrm{P}, \mathrm{A})=\operatorname{HTTHENF}=1$
BG 5220 NEXT
DM 5240 RETURN
XG $525 \emptyset \mathrm{~F}=1: \mathrm{FORA}=\emptyset \mathrm{TO} 4: \operatorname{IFC}(\mathrm{P}, \mathrm{A})$ ＞－1THENIF（ $\mathrm{S}(\mathrm{P}, \mathrm{A})<>\mathrm{TP}$ ）A ND（ $\mathrm{C}(\mathrm{P}, \mathrm{A})<5)$ THENF $=\varnothing$
PH 5255 NEXT：RETURN
DD 53øø F＝ø：FORA＝øTO4：IFS（P，A） $=S(W P, P C(W P))$ THENIFC（P ， A$)>\mathrm{C}(\mathrm{WP}, \mathrm{PC}(\mathrm{WP})) \mathrm{THENF}=$ $i_{1}^{A}$
AF 5305 NEXT：RETURN
ES 535ø $\mathrm{F}=\varnothing$ ：FORA＝øTO4：IFS（P，A） $=S(W P, P C(W P))$ THENIFC（ $P$ ，A）$-\mathrm{C}(\mathrm{WP}, \mathrm{PC}(\mathrm{WP}))=1$ THEN $\mathrm{F}=1$
BK 5355 NEXT：RETURN
PH 54øø D＝10：FORA＝ 0 TO4
BC $5405 \operatorname{IFS}(P, A)=S(W P, P C(W P)) T$ HENE $=C(P, A)-C(W P, P C(W P$ ））：IF（E＜D）AND（E＞$)$ THEN $\mathrm{D}=\mathrm{E}: \mathrm{F}=\mathrm{A}$
MX 5410 NEXT：RETURN
QE 6øøø FORR＝54272TO54296：POKE R，$\varnothing$ ：NEXT：POKE54275，1
QC 6ø1Ø POKE54277，21：POKE54278 ，135：POKE54273，150：POK E54276，17
HX 6ø2б FORR＝15TOøSTEP－．2：POKE 54296，R：NEXT
FR 6ø3ø POKE54276，16：POKE54296 ， 0 ：RETURN
QG 1øøøø POKE53285，13：POKE5328 7，11：POKE53288，5：POKE 53276，2：POKE2ø4ø，13：P OKE2ø41，14
SX 1øø1ø SA＝832：FORJ＝ØTO1：SA＝S A + J＊ 64 ：FORI $=\emptyset$ TO 63 ：REA DA：POKESA $+1, A: N E X T: N E$ XT：RETURN
PJ $1 \varnothing \varnothing 5 \varnothing$ DATA $\varnothing, 96, \varnothing, 6,1 \varnothing 8, \varnothing, 6$ ， 108
SX $1 \varnothing 651$ DATA $\varnothing, 6,109,128,3,1 \varnothing$ 9，128，3
DF $1 \varnothing \varnothing 52$ DATA $253,128,27,255, \varnothing$ ，13，255，$\varnothing$
PF $10 \boxed{6} 3$ DATA $15,255, \varnothing, 7,254,0$ ，3，254
AX $10 \emptyset 54$ DATA $\varnothing, 1,252, \varnothing, \varnothing, 252$ ， $\varnothing, \varnothing$
GF $1 \varnothing 055$ DATA $252, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$ ， Ø
HS 1 Øø56 DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
RH 10057 DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 19$ Ø
PP 10060 DATA $10,170,168,10,14$ 9，168，10，85
SR 10661 DATA 1ø4，9，89，88，9，10 6，152，9
SG 10662 DATA $153,88,9,153,88$ ， 9，153，88
BB 1 1øø63 DATA $9,153,88,9,106,8$ 8，9，89
KH 1 Øб64 DATA $152,9,89,152,9,8$ 9，152，9

RX 10065 DATA 89，152，9，170，88， 9，89，88
DF $10 \varnothing 66$ DATA $10,85,104,10,149$ ，168，10，17ø
FX $1 \varnothing \emptyset 67$ DATA $168, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$ ， Ø

## Program 2：Euchre For Atari 400，800，XL，And XE

OH 1 GRAPHICS $\varnothing$ ：POKE 71の，6：P OKE 7ø9，Ø：POKE 712，112： PRINT＂PLEASE WAIT＂
E1 2 FOR I＝ø TO 11：READ A：PO KE $1664+\mathrm{I}, \mathrm{A}: \mathrm{NEXT}$ I
JB 5 DATA $1 \varnothing 4,165,2 ø 3,37,2 ø 4$ ，133，212，169， $9,133,213$ ， 96
ID $1 \varnothing$ POKE 752，1：GOSUB 11øø： GOSUB 1øøø：GOSUB 27øø： GOSUB $13 ø \varnothing$
kJ 25 GOSUB $2 ø ø \varnothing$
NK 30 IF TP＜＞4 THEN 79
JC 35 POSITION 29，11：？＂COM

KI 4ø POSITION 27，12：？＂HELEE minmida：＂
KK 5 Ø GOSUB 14øø：$X=19:$ FOR $I=$ Ø TO 4：Y＝I＊5＋ 1 ：GOSUB 9 øøø：NEXT I
AO $51 \mathrm{~J}=\mathrm{DL}: \mathrm{GOSUB} 81$ øø：DL＝K： X ＝7：$Y=12$ ：GOSUB 9øøø
1055 GOSUB 19øø：GOTO 25
CE 7 D POSITION 28，11：？＂URNIK PG＂；RS ${ }^{(1)}(T P+1, T P+1)$
NI 75 POSITION 28，12：？＂BemDe ERER＂；：IF BD＝ø THEN ？ ＂MOII＂；：GOTO 9ø
CK $8 \varnothing$ ？＂E＂；CHR\＄（ASC（STR\＄（BD ））+128 ）
M $9 \varnothing$ IF KU＝ø THEN 135
OF 1 Øの IF DL $>$ D THEN 125
OE 115 POSITION 27，14：？＂PIC K DISCARD＂
AA 121 GOSUB 22gの：POSITION 2 7，14：？＂\｛12 उमPMes\}"; GOTO $13 \varnothing$
NN 125 GOSUB $23 ø \varnothing$
CP $13 \varnothing C(D L, F)=K C: S(D L, F)=K S$ ：GOSUB 1220
BK $135 \mathrm{X}=7$ ： $\mathrm{Y}=11$ ：GOSUB 9øøø
66 140 GOSUB 25øø：GOSUB 3øøø ：IF（PW（ø）＞9）OR（PW（ 1）＞9）THEN $3 \varnothing \emptyset$
DP $15 \emptyset \quad X=3 \emptyset: Y=2 \emptyset: N=\varnothing:$ GOSUB 1 465
E6 $151 \mathrm{X}=36: Y=2 \varnothing: N=\varnothing$ ：GOSUB 1 465
AH 2øD $X=3 \varnothing: Y=6: N=P W(\curvearrowleft): G O S U$ B 1465
BD 2 ø5 $\mathrm{X}=36$ ： $\mathrm{Y}=6$ ： $\mathrm{N}=\mathrm{PW}(1)$ ：Gosu B 1465
OB $21 \varnothing \mathrm{~J}=\mathrm{DL}$ ：GOSUB 81 øの： $\mathrm{DL=K}$ ： GOSUB 1355：GOTO 25
MB $3 \varnothing \varnothing W T=\varnothing$ ：IF PW（1）$>=1 \varnothing$ THE $N W T=1$
FC 3 ø5 $X=27+W T$＊ $6: Y=6: N=1$ ：GOS UB 1465
E1 $310 \quad \mathrm{X}=3 \varnothing+W T * 6: Y=6$ ： $\mathrm{N}=\mathrm{PW}$（WT ）－10：GOSUB 1465
KN 315 FOR DE＝1 TO 1 Øø：NEXT DE
PO 32 g GOSUB 145の：POSITION 2 9，13：？＂MOI＂；


DB 325 POSITION 2，2：？＂PLAY AGAIN？＂
J6 33ø $L \square=11: H I=12: X P=2: Y P=1$ 4：G0SUB 191ø

H1 340 IF AN＝11 THEN RUN CK $35 \varnothing$ GRAPHICS $\varnothing$ ：END
OK 1 øøg ？CHR\＄（125）
IH 1 øø5 POSITION 27，ø：？＂

$001 \varnothing 1 \emptyset$ POSITION 27，1：？

JB $1 \varnothing 15$ POSITION 27，2：？

JJ $1 \varnothing 25$ POSITION 3ø，3：？＂POI NTS＂
60 103ø POSITION 27，4：？＂EYE

PN 1ø4ø FOR I＝ø TO 4：POSITIO N 27，5＋1：？＂

（5 Bम：M कn）＂：NEXT I
H1942 POSITION 27，1の：？＂ \｛12 ש ${ }^{(1)}$
HG $1 \emptyset 43$ POSITION 27，16：？＂

MD $1 \varnothing 45$ POSITION 3ø，17：？＂TR ICKS＂
JK 1ø5ø POSITION 27，18：？＂匿

HD 1055 FOR I＝ø TO 4：POSITIO N 27，19＋1：？

\｛5 BRAMAT］＂；：NEXT I
AJ $1 \varnothing 81 \mathrm{~N}=\varnothing: \mathrm{X}=3 \varnothing: \mathrm{Y}=6$ ：GOSUB 1 465：X＝36：GOSUB 1465
Ев 1 ø82 $X=3 \varnothing: Y=2 \varnothing$ ：GOSUB 1465 ：$X=36$ ：GOSUB 1465
CO 199 g GOSUB 1459：RETURN
KH 1100 DIM C1\＄（16），C2\＄（16）， ME\＄（1ஏ），TME\＄（14ø），BL \＄（1ø），FC（2），DC（23），D $S(23), E C \$(5), M X(3), M$ Y（3）
KD 1161 DIM CX（3），CY（3），C（3， 4），$S(3,4), A \$(1 \varnothing), S \$($ 4）， $\mathrm{OB}(6), \mathrm{JU}(6), \mathrm{PU}(6)$ ，MS（6，3），GA（6），PX（3） ， $\operatorname{PY}(3), N F(6), C L(7,3)$
KN $11 ø 2 \operatorname{DIM} \operatorname{SP}(3,5), \operatorname{NS}(3,5)$ ， CP（5），RS $\$(4)$ ，LTME（13 ），PT（4），SL（3），TR（1）， PC（3），NM1\＄（3の），NM2\＄（ 3ø），NM3\＄（3ø），PW（1）
d 1103 S $\$="\{\}.(P\}\{\},\{;\} ": R S$
 ＝＂\｛1ø SPACES\}":EC $\$="$ \｛5 SPACES\}"
CB 11 （55 FOR I＝ø TO 3：FOR J＝ TO 5：SP（I，J）＝ø：NS（I ，J）$=\varnothing$ ：NEXT J：NEXT I
DB111øC1\＄＝＂9 1øJ Q K A J J
DH $1115 \mathrm{C} 2 \$=" 91 \varnothing \mathrm{JQK}$（ J J＂
FF $112 \emptyset$ RESTORE 112ø：FOR I＝ø TO 6：READ A：NF（I）＝A ：NEXT I：DATA 4， $\boldsymbol{\varnothing}, 1,2$ ，3，4，$\varnothing$
OK $115 \emptyset$ FOR $J=\varnothing$ TO $3:$ FOR $I=\varnothing$ TO 5
AP $1155 \mathrm{DC}(\mathrm{J} * 6+\mathrm{I})=\mathrm{I}: \mathrm{DS}(\mathrm{J} * 6+\mathrm{I}$ ）＝J
LC $116 \varnothing$ NEXT I：NEXT J：PW（ø）＝ $\emptyset: \mathrm{PW}(1)=\varnothing$
AK 1161 RESTORE 1161：FOR $I=\varnothing$ TO 3：READ A，B：PX（I） ＝A：PY（I）＝B：NEXT I：DA TA 13，11，7，6，1，11，7， 16
DC 1163 RESTORE 1163：FOR $I=\varnothing$ TO 5：READ A：CP（I）＝A ：NEXT I：DATA $1,1,8,1$ ，2，－1
AK 1165 RESTORE 1170 ：FOR I＝ø TO 3：READ A，B：CX（I） ＝A：CY（I）＝B：NEXT I
HL $117 \varnothing$ DATA $12,11,7,6,2,11$ ， 7，16

AL 1172 NM1 $\$=$＂$\{I\}$ ■（U）（U）
 \｛I\} \{I\} "
J8 $1173 \mathrm{NM} 2 \$=$＂$\left\{\begin{array}{c}\text { G }\end{array}\right\}$ 回 $\{1\}\{2 \mathrm{U}\}$ \｛K\} \{U\} \{I\} 国\{I\} \｛U\} "
CA 1174 NM3\＄＝＂回（5 SPACES） （5 SPACES\}
\｛5 SPACES\}"
KH 1175 RESTORE 1178：FOR I＝ø TO 13：READ A $\$: J=$ LEN （ $\mathrm{A} \$$ ）： $\operatorname{LTME}(\mathrm{I})=\mathrm{J}-1: I F$ $\mathrm{J}<1 \varnothing$ THEN $\mathrm{A} \$(\mathrm{~J}+1)=\mathrm{BL}$ \＄
BK $1176 \mathrm{~J}=(\mathrm{I}) * 1 \varnothing+1: \operatorname{TME} \$(\mathrm{~J})=A$ \＄：NEXT I
AI 1178 DATA PASS，ORDER UP，P ASS，PICK UP，PASS， \｛．\} DIAMONDS
001179 DATA $\{P\}$ CLUBS，$\{$,$\} H$ EARTS，$\{;$ ；SPADES，NOR MAL，AGGRESSIVE，YES，N O，YES
MI 1185 RESTORE 1185：FOR I＝1 TO 3：READ A，B：MX（I） ＝A：MY（I）＝B：NEXT I：DA TA 7，1，1，9，7， 17
PA 1186 RESTORE 119ø：FOR I $=\varnothing$ TO 6：READ A，B，C，D，E ，$F, G, H: O B(I)=A: O U(I)$ $=\mathrm{B}: \mathrm{PU}(\mathrm{I})=\mathrm{C}$
IK 1187 MS $(I, ~ \varnothing)=D: M S(I, 1)=E:$ $\operatorname{MS}(I, 2)=F: \operatorname{MS}(I, 3)=G:$ GA（I）$=\mathrm{H}: \mathrm{NEXT}$ I
KJ 1190 DATA 99，99，99，99，99， 99，99，99
KK 1191 DATA 99，99，99，99，99， 99，99，99
611192 DATA 99，99，14，14，14， 13，13，99
6C 1193 DATA $29,12,8,8,8,8,7$ ， 19
AJ 1194 DATA 14，$, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$ ， 16
ND 1195 DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 1$ 4
JP 1196 DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
LE 1199 RETURN
$6012 \emptyset \varnothing$ IF $(S=T P)$ AND（ $C=6$ ） THEN $S=S+2: S=(S / 4-I N$ T（S／4））＊4
CC 1201 NC＝C＊2＋1：POSITION Y， X：？＂\｛口\}\{3 R\}\{E\}"
HF 1202 POSITION $\mathrm{Y}, \mathrm{X}+1$ ：？＂：＂ ；C1\＄（NC，NC＋1）；＂：＂
DG $12 \varnothing 3$ POSITION $Y, X+2: ? " ;$ ＂；S\＄（S＋1，S＋1）；＂：＂
HK 1204 POSITION $Y, X+3:$ ？＂ ＂；C2\＄（NC，NC＋1）；＂！＂
ME $12 \varnothing 5$ POSITION $Y, X+4: ?$ \｛Z\} $\{3$ R\}\{C\}";
KE 1216 RETURN
FO 122 （ FOR U＝ø TO 4： $\mathrm{Y}=\mathrm{U}: 5+1$ ： $\mathrm{x}=19$
PJ $1225 C=C(\varnothing, U): S=S(\varnothing, U): G O$ SUB 12のø：NEXT U
K6 1230 RETURN
6A 125 g FOR I＝g TO 23：J＝INT（ RND（1）＊24）
C6 $1255 \mathrm{~T}=\mathrm{DC}(\mathrm{I}): \mathrm{DC}(\mathrm{I})=\mathrm{DC}(\mathrm{J}):$ DC（J）$=T$
6C $1260 \mathrm{~T}=\mathrm{DS}(\mathrm{I}): \mathrm{DS}(\mathrm{I})=\mathrm{DS}(\mathrm{J}):$ DS（J）$=T$
FG 1265 NEXT I
OH 127 （ 120 O $J=\varnothing$ TO 3：FOR $I=\varnothing$ TO 4
FG $1275 \mathrm{C}(\mathrm{J}, \mathrm{I})=\mathrm{DC}(\mathrm{J} \# 5+\mathrm{I}): S(\mathrm{~J}$ ，I）$=\mathrm{DS}(\mathrm{J}$（ $5+\mathrm{I}):$ NEXT I ：NEXT J：KC＝DC（2ø）：KS ＝DS（2g）
KL 1280 RETURN
BC 13øø POSITION 27，11：？＂匱 RडST BIAACK＂

JC 1319 POSITION 28，12：？＂可E CKKDEAIS＂
HC 132ø GOSUB 125ø：DL＝ø：CC＝ø
PC $133 \varnothing \mathrm{Y}=\mathrm{CY}(\mathrm{DL}): \mathrm{X=CX}(\mathrm{DL}): C=$ DC（CC）：S＝DS（CC）：GOSU B 12øg
LA 1331 FQR DE＝1 TO 5Ø：NEXT DE
IH 1335 POKE 2ø3，DS（CC）：POKE 264，253：J＝USR（1664） ：IF（DC（CC）＝2）AND $\mathrm{J}=1$ ）THEN 1355
K0 $1336 \quad Y=C Y(D L): X=C X(D L): G 0$ SUB 9øøø
LC 1337 FOR DE＝1 TO 1ø：NEXT DE
NM 134 の $C C=C C+1: J=D L: G O S U B$ B 1ஏの：DL＝K：GOTO 133ø
LP 1355 GOSUB 145ø：POSITION 28， 11
fF 1356 IF DL＝g THEN $137 \varnothing$
N 1369 ？＂四PLIMERIM＂；CHR\＄（AS C（STR $\$(D L))+128)$
AC 1365 POSITION 29，12：？＂E EAIES＂；：GOTO 1375
N6 1379 POSITION 28，12：？＂KE UR DEAT＂；
BF 1375 GOSUB 14 øø
LC $1376 \quad Y=C Y(D L): X=C X(D L): G O$ SUB 9øøø
KH 1380 RETURN
ON 14øの POSITION 27，14：？＂H IT BUTTON＂；
MC 1410 IF STRIG $(\varnothing)=1$ THEN 1 $41 \varnothing$
BF 1415 GOSUB 145 ø
KI $143 \varnothing$ RETURN
EI 145 FOR I＝11 TO 15：POSIT ION 27，I：？＂
\｛12 उसमालक्रु\}": NEXT I:R ETURN
PH $1465 \mathrm{I}=\mathrm{N} * 2+1:$ POSITION $X, Y$ ：？NM1 ${ }^{(I, I+1) ; ~}$
IP 1466 POSITION $X, Y+1: ? ~ N M 2$ （ $\mathrm{I}, \mathrm{I}+1$ ）；
JC 1467 POSITION $X, Y+2: ? ~ N M 3$ \＄（I，I＋1）；
KH $147 \varnothing$ RETURN
FF 15ø日 FOR I＝ø TO 3：POKE 2ø 3，P：POKE 2ø4，253：J＝U SR（1664）
$A C 15 \varnothing 2 S P(P, I)=F C(J): N S(P, I$ ）$=\boldsymbol{g}:$ NEXT I
CN 1505 FOR $I=\varnothing$ TO 4：$S=S(P, I$ ）：$C=C(P, I): S P(P, S)=S$ $P(P, S)+C P(C): N S(P, S)$ $=\mathrm{NS}(\mathrm{P}, \mathrm{S})+1$
HI 1518 IF $C=2$ THEN $S=S+2: S=$ （S／4－INT（S／4））\＆4：SP（ $P, S)=S P(P, S)+6: N S(P$, S）$=\mathrm{NS}(P, S)+1$
MA 1515 IF $\mathrm{C}=5$ THEN FOR $\mathrm{J}=\varnothing$ TO 3：SP（P，J）＝SP（P，J） ＋4：NEXT J
FA 1520 NEXT I
OP 1525 SS＝ø：FOR I＝ø TO 4：IF NS $(P, I)=\varnothing$ THEN SP（P I）$=\varnothing: S S=S S+1$
HK 1530 NEXT I：FOR I＝ø TO 3： SP（P，I）$=S P(P, I)+S S: N$ EXT I
LB 1535 IF $P<>D L$ THEN $155 \varnothing$
EA 154ø IF KC＝5 THEN SP（P，KS ）$=\mathrm{SP}(\mathrm{P}, \mathrm{KS})+4$
LA 1545 SP $(P, K S)=S P(P, K S)+C P$ （KC）：NS（P，KS）$=N S(P, K$ S）+1
KL $155 \emptyset$ RETURN
JB 16 øø $L \square=\varnothing: H I=1: X P=13: Y P=1$ ø：GOSUB $191 \varnothing$
A6 1695 IF AN＝1 THEN TP＝KS
k！ 1610 RETURN
EL 1615 POSITION 8，13：？＂LON

EHAND＂；
EA 1616 LQ＝12：HI＝13：XP＝13：YP ＝17：GOSUB 191の：LH＝ø
NF 1618 IF $A N=13$ THEN LH＝1：P OSITION MY（BD），MX（BD ）：？＂LONEHAND＂；
A6 1619 POSITION 8，13：？＂
〔8 SPACES\}";
KJ 162ø RETURN
AG $1625 \mathrm{LH}=\varnothing$ ： IF SP $(P, T P)>G A($ NS（ $P, T P$ ））THEN LH＝1
KK 1630 RETURN
$\mathrm{KL} 1650 \mathrm{~J}=\mathrm{P}$ ：GOSUB 81 øø：J＝K：G OSUB 81øø：IF K＝DL TH EN GOSUB 1625：F＝LH：G वTO 1685
H0 1654 F＝$\quad$ ：IF KC＝2 THEN GOT 01660
JA 1655 IF SP（P，KS）＞OU（NS（P， KS））THEN $F=1$
HJ 166 I IF SP $(P, K S)>O B(N S(P$, KS））THEN $F=1$
ED $1665 \mathrm{~J}=\mathrm{DL}:$ ：GOSUB 81 D0：IF（ $F=\varnothing$ ）OR（ $P<>K$ ）THEN 1685
$A P 167$ D $\quad S B=C P(K C): I F \quad K C=5 \quad$ TH EN SB＝3
6F 1675 FOR $I=\emptyset$ TO 3：IF I＜＞K 5 THEN IF SP $(P, I)>=($ SP（P，KS）－SB）THEN $F=$ ø
FH 1689 NEXT I
MF 1685 IF $F=1$ THEN TP＝KS
LJ 1699 RETURN
JH 17 øø $L D=2: H I=3: X P=13: Y P=1$ 1：GOSUB 191ø
AJ $17 \varnothing 5$ IF $A N=3$ THEN TP＝KS
KJ $171 \varnothing$ RETURN
FI 175 IF IF $S P(P, K S)>P U(N S(P$, KS））THEN TP＝KS
LC 1755 RETURN
H6 18øø $L D=4: H I=8: X P=13: Y P=9$ ：GOSUB 191ø
BN $18 \varnothing 1$ IF AN－5 $=K$ K THEN $18 \varnothing \varnothing$
FP 1805 IF AN＞4 THEN TP＝AN－5
KK 1810 RETURN
6C 185ø DF＝ø：FOR I＝ø TO 3：IF $I=K S$ THEN 1865
111855 IF SP（P，I）－MS（NS（P，I ），PS） （DF THEN 1865
FH $186 \emptyset \mathrm{DF}=\mathrm{SP}(\mathrm{P}, \mathrm{I})-\mathrm{MS}(\mathrm{NS}(\mathrm{P}, \mathrm{I}$ ），$P S$ ）：$T P=I$
FK 1865 NEXT I
LA $187 \emptyset$ RETURN
LC 19øø FOR I＝1 TO 3：FOR J＝ø TO 2：POSITION MY（I） ，MX（I）＋J：？＂
\｛1ヵ SPACES\}";
BK 1905 NEXT J：NEXT I
LB 1907 RETURN
DC 1910 AN＝LO
CO 1915 POKE 77， $0: X 1=X P: Y 1=Y$ P：FOR I＝LO TO HI：GOS UB 日øøø：IF I＜＞AN THE N 1925
PM192ø FOR J＝1 TO LEN（ME\＄）： ME \＄$(J, J)=$ CHR $\$($ ASC（ME \＄（J，J）$)+128$ ）：NEXT J
J6 1925 POSITION Y1，X1：？ME $\$$ ；：X1＝X1＋1：NEXT I
NK 193 D DR＝STICK（ø）：IF DRく＞1 4 THEN 1940
E6 1935 AN＝AN－1：IF AN＜LO THE N AN＝HI
HP 1949 IF DRく＞13 THEN 1950
हᄐ 1945 AN＝AN＋1：IF AN＞HI THE N AN＝LD
NF $195 \varnothing$ IF STRIG（ $\varnothing=1$ THEN 1 915
0 © $1955 \times 1=X P: Y 1=Y P: F O R \quad I=L O$ TO HI：GOSUB 日øøø
JB 1960 POSITION Y1，X1：？BL\＄ ；：X $1=\mathrm{X} 1+1$ ：NEXT I

## LF 1965 RETURN

DC 2øøø GOSUB 125ø：GOSUB 122 Ø：J＝DL：GOSUB 81øø： $\mathrm{P}=$ $K: T P=4: B D=\emptyset: K U=\varnothing$
PC 2øø5 $X=7: Y=11: C=K C: S=K S: G$ OSUB $12 \emptyset \varnothing$
DF 2 Øø 7 IF DLく＞ø THEN POSITI ON MY（DL）＋1，MX（DL）：？ ＂DEALER＂
AJ $2 \emptyset 1 \emptyset$ GOSUB $15 \emptyset \emptyset$
MD $2 \emptyset 15$ IF $P=\varnothing$ THEN GOSUB 16 Øロ：GOTO 2ø4の
CL 2016 IF ABS $(P-D L)<>2$ THEN 2ø2ø
MN 2017 GOSUB 1625：IF LH＝1 T HEN TP＝KS：GOTO 2025
BA 2020 GOSUB 1650
PH 2 פ25 POSITION MY（P），MX（P）
IL 2פ3פ IF TP＝4 THEN ？＂PA SS＂：GOTO 2ø4の
U 2035 BD＝P：？＂ORDER UP＂
NB $2 \emptyset 4 \varnothing \mathrm{~J}=\mathrm{P}: G O S U B$ 81øø：$P=K: I$ $F(P<>D L)$ AND（ $T P=4$ ） THEN 2ø1ø
HK $2045 \mathrm{P}=\mathrm{DL}:$ GOSUB 150の：IF $T$ $P<>4$ THEN 21 Ø5
AG 2ø5ø IF DL＝ø THEN GOSUB 1 7øø：GOTO 2ø7ø
AB 2055 GOSUB 175の：POSITION MY（DL），MX（DL）
$6 F 2 \emptyset 6 \emptyset$ IF TP＝4 THEN ？＂TUR NED＂：POSITION MY（DL） ，$M X(D L)+1: ? ~ " D O W N "$ ：GOTO 2ø7の
PD 2065 BD＝P：？＂PICKED＂：POS ITION MY（DL），MX（DL）＋ 1：？＂\｛3 SPACES\}UP"
N $297 \emptyset$ FOR DE＝1 TO 1øD：NEXT DE
AK 2 Ø71 IF（ $B D=\varnothing$ ）AND（TP $<>4$ ）THEN 21.05
FO 2 Ø72 $\mathrm{X}=7$ ： $\mathrm{Y}=11$ ：GOSUB 9øøの： IF TP $<>4$ THEN 2105
6A 2073 GOSUB $19 \emptyset 0: P S=\emptyset$
DK $2975 \mathrm{~J}=\mathrm{P}:$ GOSUB 81 פの：$P=K$
M 2 Ø日 IF $P=\varnothing$ THEN GOSUB 18 のø：GOTO 2ஏ9の
IF 2985 GOSUB 185の：POSITION MY（P），MX（P）
L6 2986 FOR DE＝1 TO 3Ø：NEXT DE
NI 2988 IF TP＝4 THEN ？＂PA SS＂；：GOTO 2ø9ø
J6 $2989 \mathrm{BD}=\mathrm{P}: \mathrm{I}=\mathrm{TP}+5$ ：GOSUB $8 \varnothing$ Øロ：？ME\＄；
IN 269ø IF（ $P<>D L$ ）AND（ $T P=4$ ）THEN PS＝PS＋1：GOTO 2075
HI 21 øø GOTO 21 Ø9
6P 21 Ø5 $\mathrm{KU}=1$ ：IF（ $\mathrm{BD}=\varnothing$ ）AND（ DL＝2）THEN LH＝1：GOTO $212 \sigma$
$6621 \emptyset 9$ IF TP＝4 THEN $214 \emptyset$
$00211 \emptyset$ IF $(L H=1)$ AND（ $B D<>\varnothing$ ）THEN $212 \sigma$
PN 2111 IF $B D=\emptyset$ THEN GOSUB 1 615：GOTO 2140
BE 2112 GOSUB 1625
EP 2115 IF LH＝ø THEN $214 \varnothing$
FC $212 \boldsymbol{1}$ POSITION MY（BD），MX（B D）：？＂LONEHAND＂：POSI TION MY（BD），MX（BD）+1 ：？＂\｛8 SPACES\}"
NL 214 FOR DE＝1 TO 1 Øø：NEXT DE
B6 2145 GOSUB 19 פの
KI 215 RETURN
KF 22פの $F=-1$
IA $2205 \quad F=F+1$ ：IF $C(\varnothing, F)=-1 \quad T$ HEN 2205
If $2210 \quad G=F$
6N 2215 POSITION G＊5＋1，19：？
＂\｛Q\}\{3 R\}\{E\}":POSITI

ON G\＆5＋1，23：？＂\｛Z\} \｛3 R\}\{C\}";
FP 2218 POSITION F\＆5＋1，19：？ ＂\｛H\}\{3 R\}\{J\}":POSITI ON F $\mathrm{a} 5+1,23:$ ？＂\｛可\} \｛3 R\}\{[G\}";
ML $222 \emptyset$ DR＝STICK（ø）：POKE 77 ， $\varnothing$
HI 2225 G＝F：IF DR＜＞11 THEN 2 25ø
N6 223 Ø $F=N F(F): I F C(\varnothing, F)<\varnothing$ THEN 223ø
NA 2245 GOTO 2215
JO 225ø IF DRく＞7 THEN 2275
EB $2255 \mathrm{~F}=\mathrm{NF}(F+2)$ ：IF $\mathrm{C}(\emptyset, F)<$ $\emptyset$ THEN 2255
MO 227 G GOTO 2215
NA 2275 IF STRIG $(\varnothing)=1$ THEN 2 215
KM 228 R RETURN
LO 23Øの FOR I＝ø TO 4：IF（S（P $, I)=T P)$ AND $(C(P, I)=$ 2）THEN $C(P, I)=7: G O T$ － $231 \emptyset$
D6 2305 POKE 293，S（P，I）：POKE 2ø4，253：J＝USR（1664） ：POKE 2ø3，TP：POKE $2 \varnothing$ 4，253：K＝USR（1664）
OK 23 ø日 IF（ $J=K$ ）AND（ $C(P, I)$ ＝2）THEN $C(P, I)=6: S$（ $P, I)=T P$
EO 2310 NEXT I
BH 2315 FOR I＝ø TO 4：FOR $J=\varnothing$ TO 3：IF $S(P, J)>S(P$ ， J＋1）THEN 2331
MH 2320 IF $S(P, J)=S(P, J+1) T$ HEN IF $C(P, J)>C(P, J+$ 1）THEN 2331
$L P 2325 T=C(P, J): C(P, J)=C(P$, $J+1): C(P, J+1)=T$
PL 233 $\quad \mathrm{T}=\mathrm{S}(\mathrm{P}, \mathrm{J}): \mathrm{S}(\mathrm{P}, \mathrm{J})=\mathrm{S}(\mathrm{P}$ ， $J+1): S(P, J+1)=T$
BE 2331 NEXT J：NEXT I
AF 2335 FOR $I=\varnothing$ TO 4：PT（I）$=\varnothing$ ：IF $S(P, I)=T P$ THEN $P$ $T(I)=C(P, I)+1 \varnothing: G O T O$ $235 \emptyset$
ED 234 IF $C(P, I)=5$ THEN PT（ I）$=9$ ：GOTO 235の
JJ 2345 IF（S（P，I）＜$>\mathrm{S}(\mathrm{P}, \mathrm{NF}$（I ）））AND（S（ $\mathrm{P}, \mathrm{I})<>S(P$ ，NF（I＋2）））THEN PT（I ）$=-1$
FC 235の NEXT I
AD 2355 L＝99：FOR I＝ø T0 4：IF PT（I）＜L THEN F＝I：L＝ PT（I）
6N 236 の NEXT I ：RETURN
HG 25øø FOR I＝ø TO $3: F O R \quad J=\varnothing$ T0 3：NS $(I, J)=\emptyset: N E X T$ J：FOR J＝ø TO 4：IF C （I，J）＜＞ 2 THEN 2515
NF 25 פ5 IF $S(I, J)=T P$ THEN C I，J）＝7：GOTO 2515
JE $251 \emptyset$ IF $A B S(S(I, J)-T P)=2$ THEN C $(I, J)=6: S(I, J)$ ＝TP
$H P 2515$ NS（I，S（I，J））$=N S(I, S($ $I, J))+1:$ NEXT $J: N E X T$ I
KJ 2520 RETURN
CO 27øø POSITION 2，2：？＂PART NER？＂；：LO＝9：HI＝1 $9: X P$ ＝2：YP＝12：GOSUB 191ø
OD $27 \emptyset 5 \mathrm{FC}(\varnothing)=\varnothing:$ IF $A N=1 \emptyset \mathrm{THE}$ $N$ FC $(\varnothing)=2$
ML 271ø POSITION 2，2：？＂OPPO NENTS？＂；：LO＝9：HI＝1ø： $X P=2: Y P=14: G O S U B 191$ Ø
$062715 \mathrm{FC}(1)=\varnothing$ ：IF $\mathrm{AN}=1 \varnothing$ THE $\mathrm{NFC}(1)=2$
OC 272 P POSITION 2，2：？
\｛1ø SPACES\}";:RETURN
LD Зøøø FOR I＝ø TO 7：FOR J＝ø TO 3：CL $(I, J)=\varnothing: N E X T$ J：NEXT
HH 3øø1 POKE 2ø3，TP：POKE $2 \emptyset 4$ ，253：I＝USR（1664）：CL（ 2，I）＝1：FOR I＝ø TO 3： $S L(I)=\varnothing: N E X T I$
EM 3 øø2 J＝DL：GOSUB 81øø：LD＝K ： $\mathrm{DM}=4$ ： $\operatorname{TR}(\varnothing)=\varnothing: \operatorname{TR}(1)=$ Ø：IF LH＝ø THEN $3 \emptyset 15$
EB 3 Øø5 IF $B D=2$ THEN $X=19: F 0$ R I＝ø TO 4：Y＝I $\ddagger 5+1: G$ OSUB 9øøø：NEXT I
DG $3 \varnothing 1 \emptyset \mathrm{~J}=\mathrm{BD}: \mathrm{GOSUB} 81 \emptyset \varnothing: \mathrm{J}=\mathrm{K}:$ GOSUB 81øø：DM＝K
IN 3011 IF $L H=1$ THEN IF $L D=D$ $M$ THEN $J=L D: G O S U B 81$ Øø：LD＝K
PN 3ø15 FOR TK＝TO 4：P＝LD：P $S=\varnothing: T L=\varnothing: I F \quad D M=P \quad$ THE $N J=P: G O S U B$ B1øø：$P=K$
FE 3020 GOSUB $35 \varnothing 0: W P=P: I F L$ $H=1$ THEN PS＝PS +1
HI 3021 SL（S（P，PC（P）））＝1
HL 3025 IF $S(P, P C(P))=T P$ THE N TL＝1
LP 3ø3ø FOR I＝1 TO 3：J＝P：GOS UB 81øø：$P=K$ ：IF $P=D M$ THEN $3 \varnothing 6 \varnothing$
PJ 3035 PS＝PS＋1：GOSUB 35øø：I F TL＝ø THEN 3 ø5
$C A 3 \varnothing 4 \varnothing$ IF $S(P, P C(P))=T P \quad$ THE $N$ IF $C(P, P C(P))>C(W P$ ，$P C(W P)$ ）THEN WP＝P
MO 3045 GOTO $3 \varnothing 6 \emptyset$
HD 305 IF $S(P, P C(P))=T P$ THE N WP＝P：TL＝1：G0T0 3פ6 $\stackrel{N}{N}$

IE 3 Ø55 IF $S(P, P C(P))=S(W P, P$ C（WP））THEN IF C（P，P $C(P))>C(W P, P C(W P)) T$ HEN WP＝P
HA $3 \varnothing G \varnothing$ NEXT I：FQR DE＝1 TO 2 ø：NEXT DE
PL 3065 POSITION PY（WP），PX（W P）：？＂\｛C\}\{3 R\}\{Z\}";
FE 3 Ø66 POSITION PY（WP），PX（W P）＋4：？＂（E\}\{3 R\}\{Q\}" ；
II 3071 FOR DE＝1 TO 150：NEXT DE：LD＝WP：POKE 2ø3，W P：POKE 2ஏ4，253：J＝USR （1664）：WT＝J：TR（WT）＝T $R(\omega T)+1$
$B N 3 \emptyset 72 X=3 \varnothing+6$＊WT：$Y=2 \emptyset: N=T R($ WT）：GOSUB 1465
MO 3075 FOR $I=\varnothing$ TO $3: X=P X(I)$ ： $\mathrm{Y}=\mathrm{PY}(\mathrm{I}):$ GOSUB 9øøø： $\mathrm{C}(\mathrm{I}, \mathrm{PC}(\mathrm{I}))=-1: \operatorname{NEXT} \mathrm{I}$ ：NEXT TK
LC $3 \boxed{7}$ P POSITION MY（BD），MX（B D）：PRINT＂ \｛8 SPACES\}";
N1 3ø8ø POKE 2ø3，BD：POKE $2 \emptyset 4$ ，253：BT＝USR（1664）：PD SITION 27，14
F6 3085 IF TR（BT）＜ 3 THEN $31 \emptyset$ B
6 6月 366 IF TR $(B T)<5$ THEN 399 $7 \times(B T)=P W(B T)+2+L H * 2$
KD 3087 PW $(B T)=P W(B T)+2+L H * 2$
GJ $3 \emptyset 9 \emptyset$ IF $B T=\emptyset$ THEN ？＂YK
 7，15：？＂冨：THE ＂：вото 32øø
EB 3095 IF BT＝1 THEN ？＂MOME ［HEREMOK＂：POSITION 2
 ＂：GOTO $32 \emptyset 0$
$113 \emptyset 97 \mathrm{PW}(B T)=\mathrm{PW}(B T)+1$
FL 31 Øø IF TR（ 5$)>2$ THEN ？＂ E D1 WON FIGIE＂；：GOTO 3


NP 31 I 5 IF TR（1）＞2 THEN ？＂ EMMPUHER＂：POSITIO N 27，15：？＂स०N D ${ }^{\text {D }}$ ：GOTO 32gの
0031 ø日 $\mathrm{PW}(1-\mathrm{BT})=\mathrm{PW}(1-\mathrm{BT})+2$
PF $311 \varnothing$ IF TR（ $\varnothing)<3$ THEN ？＂ OHMUE BIEAE＂：POSITIO N 27，15：？＂EUMHREE ［1］＂：GOTO 32øø
J 3115 IF TR（1）＜3 THEN ？＂
 N 27，15：？＂त्यल H＂
NK 32øø FOR DE＝1 TO 2øの：NEXT DE

## KK 3205 RETURN

日F 35øø IF P＞の THEN 3599
DJ 35ø1 POSITION 27， 15
DE 35ø2 POSITION 27，14：？＂Y OUR PLAY＂；：GOSUB 2 2øø
ED 35 ø3 LS＝S（LD，PC（LD））：IF（ $P S=\varnothing$ ）$O R \quad(S(P, F)=L S)$ OR（NS（P，LS）＝g）THE N 3597
FE 35ø4 GOSUB 2215：GOTO 35ø3
F0 35g5 Y＝F＊5＋1：X＝19：GOSUB 9 øøø：GロTO 353ø
L6 35 ø7 POSITION 27，14：？＂ （12 उPRMEs］＂；
68 35ø8 $Y=F * 5+1: X=19$ ： 80 SUB 9 øøø：GOTO 353ø
$6 \mathbb{6 5} 39$ IF TK＜5 THEN 3515
PJ $351 \emptyset$ FOR $K=\emptyset$ TO 4：IF C（P， J）$>-1$ THEN $F=1$
JD 3512 NEXT K：GOTO 3530
NE 3515 ON（PS +1 ）GOSUB 4 øøø ，41øø，42øஜ，42øஜ
Нв 353 ø $P C(P)=F: Y=P Y(P): X=P X$ $(P): C=C(P, F): S=S(P, F$ ）：gosub $12 \boxed{ }$ ）
$103535 \mathrm{NS}(\mathrm{P}, \mathrm{S}(\mathrm{P}, \mathrm{F}))=\mathrm{NS}(\mathrm{P}, \mathrm{S}($ $P, F))-1: C L(C(P, F), S($ $P(F))=1$

## KH 354 g RETURN

N 4 $\ddagger$ øø IF NS $(P, T P)<>5-T K ~ T H$ EN 4 ø15
Но 4øø5 SP＝TP：GOSUB 52øø：IF $F=1$ THEN GOTO 515ø
MK 4ø1の вOTO 516ø
CB 4 Ø15 IF（ $\mathrm{LH}\langle>1$ ）$\quad \mathrm{OR}$（ $\mathrm{BD}\langle>P$ ）THEN 4ø3ø
MG 4ø2ø IF NS $(P, T P)>\varnothing$ THEN $S$ P＝TP：GOTO 515פ

II 4ø3g GOSUB 5øøø：IF $(F=1)$ AND（ABS（BD－P）$=2$ ）TH EN SP＝TP：GOTO 515ø
F0 4035 GOSUB 5259：IF（F＜＞1） OR（ $P<>B D$ ）THEN 595 ø
IA 4 6 4の GOSUB 52øの：IF $I=1 \quad \mathrm{TH}$ EN SP＝TP： $80 T 0$ 515ø
NA $4 \varnothing 45$ IF NS $(P, T P)>2$ THEN $S$ P＝TP：GOTO $516 \emptyset$

PN 41 Øg IF NS（P，S（LD，PC（LD）） ）$=\varnothing$ THEN 4115
HH 41 ø5 GOSUB 53gの：SP＝S（LD，$P$ C（LD））：IF F＝1 THEN 5 159
M411ø GOTO 516の
JM 4115 IF NS $(P, T P)=5-T K$ THE N SP＝TP：GOTO $516 \varnothing$
MK 412 IF $\operatorname{NS}(P, T P)=\varnothing$ THEN 5 1 øø
ID 4125 IF $C(L D, P C(L D))=5 \mathrm{TH}$ EN SP＝TP：GOTO 516ø
J 4130 IF BD $<>P$ THEN $S P=T P$ ： GOTO 5160
II 4135 GOSUB 5256：FF F＝1 TH EN SP＝TP：GOTO 516 g
M1 4140 GOTO $51 \varnothing \varnothing$

AB 42 øD IF NS（P，S（LD，PC（LD））
$1=\varnothing$ THEN 4235
HL $4201 \mathrm{SP}=\mathrm{S}(\mathrm{LD}, \mathrm{PC}(\mathrm{LD}))$
J 4205 IF （ $\mathrm{SP}\langle>\mathrm{TP}$ ）AND（TL＝ 1）THEN $516 \varnothing$
EJ 421ø IF ABS（WP－P）＜＞2 THEN 4225
ID 4215 GOSUB 5300：IF $F=1$ TH EN GOSUB 535ø：IF F＝ø THEN 515ø
NN 4220 GOTO 5160
If 4225 GOSUB 53øø：IF $F=1 \mathrm{TH}$ EN 5150
ко 423 曰 GOTO $516 \varnothing$
K1 4235 IF NS（P，TP）＜5－TK THE N $427 \varnothing$
NB 4245 SP＝TP：IF ABS（WP－P）$=2$ THEN 5160
6C 425ø IF TL＝ø THEN $516 \varnothing$
IN 4255 GOSUB 53øø：IF F＝1 TH EN 54øø
NB 4260 GOTO $516 \varnothing$
NA 427 Ø IF NS $(P, T P)=\varnothing$ THEN 5 1 1ø
EP 4275 IF ABS $(W P-P)<>2$ THEN 4310
L6 428ø IF（ $T L=1$ ）OR（ $\mathrm{PS}=3$ ） THEN $51 \varnothing \varnothing$
44285 IF $C(W P, P C(W P))=5$ TH EN 51 øø
LC 429ø IF C（WP，PC（WP））＜4 TH EN SP＝TP：GOTO 516ø
IC 430 g GOSUB 525ø：IF $F=1 \mathrm{TH}$ EN SP＝TP：GOTO 516ø
ML 43ø5 GOTO 51øø
F6431ø IF TL＝ø THEN SP＝TP：G OTO 5160
IB 4315 GOSUB 530．：IF $F=1$ TH EN SP＝TP：GOTO 54øg
M1432の GOTO 51gø
105øøの $F=\varnothing$ ：FOR $A=\varnothing$ TO 4：IF $C(P, A)>5$ THEN $F=1$
6E 5 øø5 NEXT A：RETURN
EA 5ø5ø $F=-1: F O R \quad A=\varnothing$ TO 4：IF （SL（S $(P, A))=\varnothing)$ AND （ $S(P, A)<>T P$ ）THEN IF $C(P, A)=5$ THEN $F=A$
PF $5 \varnothing 55$ NEXT A：IF F＞－1 THEN 5ø7ø
AJ 5ø6ø LC＝－1：FOR $A=\varnothing$ TO 4：I F $S(P, A)<>$ TP THEN IF $C(P, A)>L C$ THEN LC＝C $(P, A): F=A$
FA 5 g65 NEXT A
KM $5 \boxed{6} 7$ D RETURN
NB 51 ■ø IF NS $(P, T P)>\varnothing$ THEN 5 125
KP 51 （1）SP＝－1：FOR $A=\varnothing$ TO 4
HJ 5110 IF $S(P, A)<>T P$ THEN I F $(C(P, A)=5)$ AND（NS （ $P, S(P, A))>1$ ）THEN $S$ $P=S(P, A)$
EP 5115 NEXT A：IF SP＞－1 THEN 516ø
MP 512 の GOTO $518 \emptyset$
FF 5125 V＝4：F＝－1：FOR $A=\varnothing$ TO 4
JM 5126 IF $S(P, A)=T P$ THEN 51 35
NB 513 Ø IF $(N S(P, S(P, A))<>1)$ OR $(S L(S(P, A))=1) T$ HEN 5135
105131 IF $(C(P, A)>=\varnothing)$ AND（ $C(P, A)<V)$ THEN $V=C(P$ ，$A): F=A$
of 5135 NEXT A：IF $F=-1$ THEN 518ø
KK 514 g RETURN
6F515ø IF PS＝3 THEN 54øø
CB5151 V＝－1：FOR A＝ø TO 4：IF $S(P, A)=S P$ THEN IF C $(P, A)>V$ THEN $V=C(P, A$ ）：$F=A$

6K 5155 NEXT A：RETURN
66516ø V＝1ø：FOR A＝ø TO 4
MA 5161 IF $S(P, A)=S P$ THEN IF $(C(P, A)\rangle=g)$ AND（C） $P, A)(V)$ THEN $V=C(P, A$ ）：$F=A$
6L 5165 NEXT A：RET゙URN
AN 518ø $V=1 \varnothing: F O R \quad A=\varnothing$ TO 4：IF $S(P, A)<>T P$ THEN IF
$C(P, A)>-1$ THEN IF C $($ $P, A)<V$ THEN $V=C(P, A)$ $: F=A$
6N 5185 NEXT A：RETURN
MF 52øø $\mathrm{HT}=8: F=\varnothing$
OF $5205 \mathrm{HT}=\mathrm{HT}-1$ ：IF $\mathrm{HT}>\varnothing$ THEN IF CL（HT，TP）$=1$ THEN 5295
FJ 521ø IF HT＜g THEN 524ø
AP 5215 FOR $A=\emptyset$ TO 4：IF S（P， $A)=T P$ THEN IF $C(P, A)$ ＝HT THEN F＝1
EJ 522ø NEXT A
KL $524 \varnothing$ RETURN
DC 525 g $\mathrm{F}=1:$ FOR $\mathrm{A}=\varnothing$ TO 4：IF $C(P, A)>-1$ THEN IF（ $S$ $(P, A)<>T P)$ AND（ $C(P$ ， A）（5）THEN F＝ø
6L 5255 NEXT A：RETURN
KH 53øø F＝ø：FOR A＝ø TO 4：IF $S(P, A)=S(W P, P C(W P))$ THEN IF C $(P, A)>C(W P$ ， PC（WP））THEN F＝1
6H 5365 NEXT A：RETURN
A0 535ø F＝ø：FOR $A=\varnothing$ TO 4：IF $S(P, A)=S(W P, P C(W P))$ THEN IF C $(P, A)-C(W P$ ， $P C(W P))=1$ THEN $F=1$
6M 5355 NEXT A：RETURN
FB 54øø D＝1ø：FOR $A=\varnothing$ TO 4
MH 5405 IF $S(P, A)=S(W P, P C(W P$ 1）THEN $E=C(P, A)-C(W$ $P, P C(W P)): I F(E<D) A$ ND（E＞め）THEN $D=E: F=$ A
6E $541 \varnothing$ NEXT A：RETURN
N1 Bøøø J＝I \＃ $1 \varnothing+1:$ ME $\$=T M E \$(J$ ， J＋LTME（I））：RETURN
DH 81øø K＝（（J＋1）／4－INT（（J＋1） （4））\＃4：RETURN
PC 9øøø FOR J＝X TO $\mathrm{X}+4:$ POSIT ION Y，J：PRINT EC\＄；：N EXT J：RETURN

## Program 3：Apple II Euchre

IC 5 POKE 49232，$\varnothing$ ：POKE 49237， $0:$ POKE 49239，ø：POKE 23ø，64： PDKE 28，42：CALL 62454
उ3 8 GOSUB 11 øø
$911 \varnothing$ GOSUB 1のøø：GOSUB 27øø：GO SUB $13 \varnothing \varnothing$
9225 GOSUB 2øøø
C5 $3 \varnothing$ INVERSE ：IF TP＜＞ 4 THEN $7 \varnothing$
1335 VTAB 12：HTAB 36：PRINT＂N －BIDDERS＂
IF 40 VTAB 13：HTAB 29：PRINT＂H AND DUMPED＂
75 5ø NORMAL ：GOSUB 14øØ： $\mathrm{X}=2 \varnothing$ ：FOR $I=\varnothing$ TO 4： $\mathrm{Y}=\mathrm{I}$＊ 4 +5 ：GOSUB 9øø日：NEXT
$6751 \mathrm{DL}=\mathrm{FN} N P(\mathrm{DL}): X=8: Y=1$ 3：GOSUB 9øøø
A5 55 GOSUB 19øø：GOTO 25
0970 VTAB 12：HTAB 3ø：PRINT＂T RUMP ：＂；S\＄（TP）
4F 75 UTAB 13：HTAB 3ø：PRINT＂B IDDER：＂；：IF BD $=\varnothing$ THEN PRINT＂YOU＂；：GOTO 9ø
58 8ø PRINT＂P＂；BD
$159 \varnothing$ NORMAL ：IF KU $=\varnothing$ THEN 13 5
12 1øø IF DL＞$\emptyset$ THEN 125

A9 115 UTAB 15: HTAB 29: PRINT " PICK DISCARD"
IC 121 GOSUB 22ø0: UTAB 15: HTAB 29: PRINT EW\$: GOTO 139 DC 125 gasub $23 \varnothing \varnothing$
$2113 \varnothing \mathrm{C}(\mathrm{DL}, \mathrm{F})=\mathrm{KC}: \mathrm{S}(\mathrm{DL}, F)=\mathrm{KS}$ : GOSUB 1220
EA $135 \mathrm{X}=8: \mathrm{Y}=13$ : GOSUB 9øøø
A4 $14 \varnothing$ GOSUB 25øø: GOSUB 3øøø: I F (PW(Ø) > 9) OR (PW(1) > 9) THEN $3 \varnothing \varnothing$
$78159 \mathrm{X}=21: \mathrm{Y}=32: \mathrm{N}=\varnothing$ : Gusu B 1465
A4 $151 X=21: Y=38: N=\varnothing$ : GOSU B 1465
$70200 X=7: Y=32: N=P W(\varnothing): G$ osUb 1465
AB $265 X=7: Y=38: N=P W(1): G$ OSUB 1465
IA $21 \varnothing \mathrm{DL}=\mathrm{FN} N P(\mathrm{DL})$ : GUSUB 135 5: GOTO 25
8F 3øø WT = ø: IF PW(1) > = $1 \varnothing \mathrm{~T}$ HEN WT = 1
EF $3 \varnothing 5 \mathrm{X}=7: \mathrm{Y}=29+\mathrm{WT} * 6: \mathrm{N}=$ 1: GOSUB 1465
61 $310 \mathrm{X}=7: \mathrm{Y}=32+\mathrm{WT}$ * $6: \mathrm{N}=$ PW(WT) - 1の: GOSUB 1465
FB 312 FOR I = 7 TO 9: VTAB I: H TAB 29: PRINT "く": NEXT
CB 315 FOR DE $=1$ TO 2øøø: NEXT
$8132 \varnothing$ gosub 1450: UTAB 14: HTAB 29: INVERSE : PRINT " $Y$ OU";
E7 321 IF WT $=\varnothing$ THEN PRINT " WI N! IF " $=1$ THEN PRINT " Lo SE "
68325 VTAB 2: HTAB 2: PRINT "PL AY AGAIN?"
$42336 \mathrm{LO}=11: \mathrm{HI}=12: \mathrm{XP}=2: \mathrm{YP}$ = 14: GOSUB 1919
E9 34ø IF AN $=11$ THEN CALL 6245 4: GOTO 1ø
DA 359 TEXT : HOME : END
291 øøø HOME : HCOLOR $=3$
$201 ø ø 5$ VTAB 1: HTAB 29: PRINT " อออออออออออจ"
DD 1ø1ø VTAB 2: HTAB 29: PRINT " a EUCHRE จ"
उJ $1 ø 15$ VTAB 3: HTAB 29: PRINT " ออออออออออ"
F1 1625 VTAB 4: HTAB 29: PRINT " < POINTS ;"
921 פ28 VTAB 18: HTAB 29: PRINT " $<$ TRICKS ;
7A 1039 VTAB 5: HTAB 29: PRINT " <YOU ; COMP;"
F4 1ø4ø FOR I = Ø то 4: UTAB $6+$ I: HTAB 29: PRINT "<
; ;": NEXT
EJ $1 ø 42$ VTAB 11: HTAB 29: PRINT EW\$
F1 1643 VTAB 17: HTAB 29: PRINT EW\$
75 1ø5ø VTAB 19: HTAB 29: PRINT " $\angle Y O U$; COMP;"
891655 FOR I $=\varnothing$ TO 4: UTAB $2 \varnothing$ + I: HTAB 29: PRINT "< ; ;";: NEXT
791 166פ HPLOT 198, 49 TO 278,4ø
991065 HPLOT 198, 152 TO 278, 152 : HPLOT 198, 191 TO 278, 1 91
BA 1 ø81 $\mathrm{N}=\varnothing: \mathrm{X}=7: \mathrm{Y}=32$ : G0SU B 1465: $Y=38$ : GOSUB 146 5
11 $1082 \mathrm{X}=21: \mathrm{Y}=32$ : GOSUB 146 5: $Y=38:$ GOSUB 1465
$87169 \varnothing$ GOSUB $145 ø$
IE 1695 RETURN
59 11øø DIM $\mathrm{C}(3,4), \mathrm{S}(3,4), \mathrm{MS}(6,3$ ), CL (7,3), DC (23), DS (23), $\operatorname{SP}(3,5), N S(3,5), \operatorname{MES}(15)$, NM $(9,2)$

B8 11 Ø2 DEF FN B1 $(x)=$ NOT ( INT $(x / 2)=x / 2)$
F5 1165 DEF FN NP $(x)=((x+1)$ 14 - INT $((x+1) / 4))$ +4
$311110 \mathrm{BL} \$=" / .1 .1 .1 .1 . ": E W \$=$ "อออออออฉอออ"
E4 1115 FOR I = $\varnothing$ TO 3: READ S\$( I) : NEXT : DATA \% \& (1, *+ ,", -"
B2 $112 \emptyset$ FOR I $=\varnothing$ TO 6: READ NF ( I) : NEXT : DATA 4, $\varnothing, 1,2$, 3,4,ø
A9 1125 FOR $1=\varnothing$ TO 2: FOR $J=$ $\emptyset$ TO 9: READ NM\$ (J, I) : N EXT J, I
9E 1127 DATA \#ఎ," ఎ", >ล, >ఎ, =ఎ, \#> ,\#>,\#จ,\#จ,\#จ
C1 1128 DATA =a," จ",\#>, >a, \$వ, >a ,\#จ," ఎ",\#ఎ,>ఎ
451129 DATA อఎ," จ", อఎ, ออ," ఎ", ఎอ, ఎอ," อ", อఎ," ఎ"
DJ 1159 FOR $J=\varnothing$ TO 3: FOR $I=$ ๑ TO 5: DC(J \# $6+1)=1$ :DS(J \# $6+1)=\mathrm{J}: ~ N E X T$ I, J
391161 FOR I $=\varnothing$ TO 3: READ PY I), PX(I): NEXT : DATA 13 , 14, 7, 8, 13, 2, 19, 8
501165 FOR I = $\varnothing$ TO 3: READ CX ( I), CY(I): NEXT : DATA 18 ,13, 11,5,4, 13, 11, 21
30 $117 \varnothing$ FOR I $=\varnothing$ TO 5: READ CP ( I) : NEXT : DATA $1,1,8,1$, 2,-1
B7 1175 FOR $\mathrm{I}=\varnothing$ TO 13: READ ME \$(I): NEXT
DF 1178 DATA "PASS R UP "," PASS ","" PRDE K UP "," PASS
AMONDS "," $", "$ DI AMONDS "," CLUBS d DATA " HEARTS "," SPAD SSIVE"," YES "," NO "," YES "
6F 1185 FOR $\mathrm{I}=\varnothing$ TO 3: READ $\mathrm{MX}($ I), MY(I): NEXT : DATA 1, 2,8,2,2,1ஏ,8, 18
A4 1186 FOR I $=\varnothing$ TO 6: READ OB ( I), $\mathrm{OU}(\mathrm{I}), \mathrm{PU}(\mathrm{I}), \mathrm{MS}(\mathrm{I}$, ( ) , M S(I,1),MS(I, 2),MS(I,3),G A(I) : NEXT
C5 1199 DATA 99,99,99,99,99,99,9 9,99
CD 1191 DATA 99,99,99,99,99,99,9 9,99
B1 1192 DATA 99,99, 14, 14, 14, 13, 1 3,99
${ }^{82} 1193$ DATA $2 \varnothing, 12,8,8,8,8,7,19$
D5 1194 DATA 14, $, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, 16$
331195 DATA $\varnothing, \varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 14$
Aß 1196 DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \emptyset, \varnothing ~$
481199 RETURN
C5 120ø IF $(S=T P)$ AND $(C=6)$ THEN $S=S+2: S=(S)$ 4 - INT (S / 4)) \#4
AA $12 \mathrm{D}_{1} \mathrm{C} 1=\mathrm{C}: \mathrm{IF} \mathrm{C1}>5$ THEN C $1=2$
901292 CALL 36568, $5 * 6+C 1+$ $1, Y * 7-2, x * 8$
D9 1215 RETURN
$21122 \Phi \mathrm{X}=2 \varnothing$ : FOR $U=\varnothing$ тО 4: $Y$ $=\mathrm{U}$ \# $4+5$
$751225 C=C(\varnothing, U): S=S(\varnothing, U): G$ OSUB 12øפ: NEXT
E1 1230 RETURN
111250 FOR I = $\varnothing$ TO 23: J = INT ( RND (1) * 24):T = DC(I ): DC(I) $=D C(J): D C(J)=$ ${ }^{T}$
57126 © $T=D S(I): D S(I)=D S(J):$ DS(J) $=\mathrm{T}:$ NEXT
$76127 \varnothing$ FOR $\mathrm{J}=\varnothing$ TO 3: FOR $\mathrm{I}=$

AD $1275 \mathrm{C}(\mathrm{J}, \mathrm{I})=\mathrm{DC}(\mathrm{J} * 5+\mathrm{I}): \mathrm{S}$ $(\mathrm{J}, \mathrm{I})=\mathrm{DS}(\mathrm{J} * 5+\mathrm{I}): \mathrm{N}$ EXT I,J:KC = DC(2ø):KS = DS (20)

## F5 1289 RETURN

2F $13 \varnothing \varnothing$ INVERSE : VTAB 13: HTAB 29: PRINT "FIRST BLACK" : VTAB 14: HTAB 3ø: PRIN T "JACK DEALS"
CD 1320 NORMAL : GOSUB 1250: DL $=$ Ø: CC = $\quad$
$481330 \mathrm{C}=\mathrm{DC}(\mathrm{CC}): S=\mathrm{DS}(C C): \mathrm{x}$ $=C X(D L): Y=C Y(D L): G O S$ UB $12 ø \sigma$
50 1331 FOR DE $=1$ TO 5øø: NEXT
$351335 \mathrm{IF}(\mathrm{DC}(\mathrm{CC})=2)$ AND ( FN B1 (DS(CC))) THEN 1355
$411336 \mathrm{X}=\mathrm{CX}(\mathrm{DL}): Y=\mathrm{CY}(\mathrm{DL}): \mathrm{G}$ OSUB 9øøø
0D 1337 FOR DE $=1$ TO 1ø0: NEXT
$9 \mathrm{~A} 134 \varnothing \mathrm{CC}=\mathrm{CC}+1: \mathrm{DL}=\mathrm{FN} N P(\mathrm{D}$ L): GOTO 1330

881355 GOSUB 1459: VTAB 12: HTA B $3 \varnothing$
711356 INVERSE : IF DL $=\varnothing$ THEN 137ø
2F $136 \varnothing$ PRINT " PLAYER "; STR\$ ( DL)

Q3 1365 VTAB 13: HTAB 31: PRINT " DEALS";: GOTO 1375
$4 E 137 \varnothing$ PRINT "YOUR DEAL";
5E 1375 NORMAL : GOSUB $14 ø \varnothing$
51 $1376 \mathrm{X}=\mathrm{CX}(\mathrm{DL}): \mathrm{Y}=\mathrm{CY}(\mathrm{DL}): \mathrm{G}$ 0SUB 9øøø
F7 $138 \emptyset$ RETURN
BC 14øø VTAB 15: HTAB 29: PRINT " HIT RETURN "; CHR\$ (7) g'k
$451419 \mathrm{~K}=\operatorname{PEEK}$ (49152): IF K > 127 THEN POKE 49168, $\varnothing$
671412 IF K < > 141 THEN 1410
971415 GOSUB 145 ø
E5 1430 RETURN
E4 1450 FOR I $=12$ TO 16: VTAB I : HTAB 29: PRINT EW\$: NE XT : RETURN
EB 1465 FOR I = ø TO 2: VTAB X + I: HTAB Y: PRINT NM\$ (N, I) : NEXT : RETURN

E9 $15 ø \varnothing$ FOR $I=\varnothing$ TO $3: \operatorname{SP}(P, I)=$ FC( $\operatorname{FNB}$ B1 (P) ): $\operatorname{NS}(P, I)=$ Ø: NEXT
6A 1505 FOR $I=\varnothing$ TO 4:S $=S(P, I$ ): $C=C(P, I): S P(P, S)=S$ $P(P, S)+C P(C): N S(P, S)=$ $\mathrm{NS}(\mathrm{P}, \mathrm{S})+1$
501510 IF $C=2$ THEN $s=s+2$ :
$S=(S / 4-$ INT $(S / 4)$
) \# 4: SP $(P, S)=S P(P, S)$
$+6: N S(P, S)=N S(P, S)+$
E1 1515 IF C $=5$ THEN FOR $\mathrm{J}=\varnothing$ TO $3: \operatorname{SP}(P, J)=S P(P, J)+$ 4: NEXT
B3 1520 NEXT
F8 1525 SS = Ø: FOR I = $\varnothing$ TO 4: IF NS $(\mathrm{P}, \mathrm{I})=\varnothing$ THEN SP(P , I$)=\varnothing: S S=S S+1$
A5 153ø NEXT : FOR $I=\varnothing$ TO 3:SP $(P, I)=S P(P, I)+S S: N E$ XT
791535 IF P < > DL THEN 1550
34 154ø IF KC $=5$ THEN SP (P, KS) $=S P(P, K S)+4$
$8 D 1545 \mathrm{SP}(\mathrm{P}, \mathrm{KS})=\mathrm{SP}(\mathrm{P}, \mathrm{KS})+\mathrm{CP}$ (KC):NS $(P, K S)=N S(P, K S)$ $+1$
EF 1550 RETURN
$5716 \varnothing \varnothing \mathrm{LO}=\varnothing: \mathrm{HI}=1: \mathrm{XP}=14: \mathrm{YP}$ = 10: GOSUB 1910
$1616 \boxed{5}$ IF AN $=1$ THEN TP $=K S$
E1 1610 RETURN
D7 1615 VTAB 14: HTAB 8: PRINT " LONEHAND";
$051616 \mathrm{LO}=12: \mathrm{HI}=13: \mathrm{XP}=14$ $Y P=18:$ BOSUB 191ø: $\mathrm{LH}=$ Ø
CE 1618 IF AN $=13$ THEN LH $=1$ : VTAB MX(BD): HTAB MY(BD) : PRINT "LONEHAND";
A5 1619 VTAB 14: HTAB 8: PRINT B L\$
E5 $162 \varnothing$ RETURN
E9 $1625 \mathrm{LH}=\varnothing$ : IF $\mathrm{SP}(\mathrm{P}, \mathrm{TP})>\mathrm{GA}$ (NS (P,TP)) THEN LH $=1$
E9 1639 RETURN
65165 g IF FN NP ( FN NP (P) ) $=\mathrm{DL}$ THEN GOSUB 1625: $\mathrm{F}=\mathrm{LH}$ : вOTO 1685
E1 $1654 \mathrm{~F}=\varnothing$ : IF KC $=2$ THEN GO TO 1660
$841655 \mathrm{IF} \mathrm{SP}(\mathrm{P}, \mathrm{KS})>\mathrm{OU}(\mathrm{NS}(\mathrm{P}, \mathrm{KS}$ )) $\operatorname{THEN} F=1$
401660 IF SP(P,KS) $>0 B(N S(P, K S$ )) THEN $F=1$
$341665 \mathrm{IF}(\mathrm{F}=\emptyset) \mathrm{OR}(\mathrm{P}<>\mathrm{FN}$ NP (DL)) THEN 1685
C6 $167 \emptyset \mathrm{SB}=\mathrm{CP}(\mathrm{KC}): \mathrm{IF} \mathrm{KC}=5 \mathrm{~T}$ HEN SB $=3$
BB 1675 FOR $\mathrm{I}=\varnothing$ TO 3: IF I < > KS THEN IF SP $(P, I)>=$ ( $\mathrm{SP}(\mathrm{P}, \mathrm{KS})$ - SB$)$ THEN $F=$ $\emptyset$
CD 1689 NEXT
761685 IF F $=1$ THEN TP $=$ KS
4A 1699 RETURN
7A 17gg LO $=2: \mathrm{HI}=3: \mathrm{XP}=14: \mathrm{YP}$ $=1 \varnothing$ : GOSUB 1910
161795 IF AN $=3$ THEN TP $=K S$
EJ 1710 RETURN
DE $175 \emptyset$ IF SP(P,KS) $>\operatorname{PU}(N S(P, K S$ )) THEN TP $=K S$
ic 1755 RETURN
CD 18øg LO $=4: \mathrm{HI}=8: \mathrm{XP}=14: \mathrm{YP}$ = 10: GOSUB 1910
C1 1801 IF AN $-5=K S$ THEN $18 ø \varnothing$
㫙 1895 IF AN $>4$ THEN TP $=$ AN -
E5 181ø RETURN
$12185 \emptyset \mathrm{DF}=\varnothing$ : FOR I $=\varnothing$ TO 3: IF I = KS THEN 1865
$991855 \mathrm{IF} \operatorname{SP}(\mathrm{P}, \mathrm{I})-\operatorname{MS}(\mathrm{NS}(\mathrm{P}, \mathrm{I})$, PS) < DF THEN 1865
6A $186 \emptyset \mathrm{DF}=\mathrm{SP}(\mathrm{P}, \mathrm{I})-\mathrm{MS}(\mathrm{NS}(\mathrm{P}, \mathrm{I}$ ),PS):TP = I
F1 1865 NEXT
FD $187 \varnothing$ RETURN
96 $19 \varnothing \square$ FOR $\mathrm{I}=1$ TO 3: FOR $\mathrm{J}=$ Ø TO 2: VTAB MX(I) + J: HTAB MY(I): PRINT BL\$
$2719 \varnothing 5$ NEXT J, I
ic 1907 RETURN
6D $1910 \mathrm{AN}=\mathrm{LO}$
$541915 \mathrm{X}_{1}=\mathrm{XP}: \mathrm{Y}_{1}=\mathrm{YP}: \operatorname{FOR} \mathrm{I}=$ LO TO HI: NORMAL : IF I = AN THEN INVERSE
B8 1925 VTAB X1: HTAB Y1: PRINT $\operatorname{ME\$ (I)} ;: \mathrm{X}_{1}=\mathrm{X}_{1}+1:$ NEX T
E1 $1930 \mathrm{~K}=\operatorname{PEEK}$ (49152): $\mathrm{J}=$ RND (1): IF K > 127 THEN PO KE 49168, $\varnothing$
BJ 1932 IF K < > 136 THEN $194 \emptyset$
CD 1935 AN = AN - 1: IF AN < LO THEN AN $=\mathrm{HI}$
C7 1940 IF K < > 149 THEN 1950
EF 1945 AN = AN + 1: IF AN > HI THEN AN $=$ LO
DC 1950 IF K < > 141 THEN GOTO 1 915
$421955 \mathrm{X}_{1}=\mathrm{XP}: \mathrm{Y}_{1}=\mathrm{YP}:$ NORMAL : FOR I = LO TO HI: VTAB X1: HTAB Y1: PRINT BL\$; : $\mathrm{X}_{1}=\mathrm{X}_{1}+1:$ NEXT
241965 RETURN
16 2øøg GOSUB 1259: GOSUB 1220:P $=F N N P(D L): T P=4: B D=$ ø: KU $=\varnothing$

A3 $2005 \mathrm{X}=8: \mathrm{Y}=13: \mathrm{C}=\mathrm{KC}: \mathrm{S}=$ KS: GOSUB $12 ø \varnothing$
712607 IF DL < > $\quad$ THEN VTAB MX (DL) : HTAB MY(DL) : PRINT " DEALER
$442 \varnothing 10$ GOSUB $15 \varnothing \varnothing$
282015 IF P $=\varnothing$ THEN GOSUB $16 \varnothing \varnothing$ : GOTO 2ø4ø
692016 IF ABS ( $\mathrm{P}-\mathrm{DL}$ ) < > 2 TH EN $2 \varnothing 2 \varnothing$
112917 GOSUB 1625: IF LH $=1 \mathrm{TH}$ EN TP = KS: GOTO $2 \varnothing 25$
742620 GOSUB 1650
F9 2025 VTAB $M X(P)$ : HTAB MY(P)
IC $263 \varnothing$ IF TP $=4$ THEN PRINT " PASS ": GOTO 2ø4ø
$652 ø 35 \mathrm{BD}=\mathrm{P}:$ PRINT " ORDER UP
$72204 \varnothing \mathrm{P}=\mathrm{FN} N \mathrm{~N}(\mathrm{P}): \mathrm{IF}(\mathrm{P}<$ > DL) AND (TP = 4) THEN $2 \varnothing$ $1 \varnothing$
$942045 \mathrm{P}=\mathrm{DL}$ : GOSUB 1500: IF T $P$ < > 4 THEN 2105
3A $265 \emptyset$ IF DL $=\varnothing$ THEN GOSUB $17 \varnothing$ g: GOTO 2ø7g
F7 $2 \varnothing 55$ GOSUB 1759: VTAB MX(DL): HTAB MY (DL)
EB $266 \emptyset$ IF TP $=4$ THEN PRINT " TURNED ": VTAB MX(DL) + 1: $\operatorname{HTAB}$ MY(DL): PRINT DOWN ": GOTO 2ø7ø
E9 2665 BD = P: PRINT " PICKED ": VTAB MX(DL) + 1: HTA B MY(DL): PRINT "

34 2ø7ø FOR DE $=1$ TO 2øøø: NEXT
$442 ø 71$ IF (BD $=\varnothing$ ) AND (TP < > 4) THEN 2165
$452 \boxed{72} \mathrm{X}=8: \mathrm{Y}=13$ : GOSUB 9øøø : IF TP < > 4 THEN 2105
192073 GOSUB 19øø:PS = ø
B2 $2675 \mathrm{P}=\mathrm{FN} N \mathrm{P}(\mathrm{P})$
cC $2 \varnothing 8 \emptyset$ IF $P=\varnothing$ THEN GOSUB $18 \emptyset \emptyset$ : GOTO 2ø9ø
C9 2085 GOSUB 185ø: VTAB MX(P): HTAB MY (P)
842986 FOR DE $=1$ TO 6øø: NEXT
672.88 IF TP $=4$ THEN PRINT PASS ";: GOTO 2ø9ø
BE 2989 BD $=P:$ PRINT ME $\$(T P+5$ );
FC $299 \varnothing$ IF ( $P$ < > DL) AND (TP $=$ 4) THEN PS $=$ PS + 1: GOT 0 2075
982100 GOTO 2109
BB $2105 \mathrm{KU}=1:$ IF (BD = ø) AND ( $\mathrm{DL}=2$ ) THEN LH = 1: GO TO 2129
$4 C 2109$ IF TP $=4$ THEN 214ø
482110 IF ( $\mathrm{LH}=1$ ) AND (BD < > g) THEN $212 \varnothing$

662111 IF BD $=\varnothing$ THEN GOSUB 161 5: GOTO 214ø
BA 2112 GUSUB $16 \div 5$
222115 IF LH $=\varnothing$ THEN $214 \varnothing$
JA 2120 VTAB 1: HTAB 2: PRINT "L ONEHAND"
2A 214ø FOR DE $=1$ TO 2øøø: NEXT
8A 2145 GOSUB 19øø
E8 2150 RETURN
CB 22 øø $F=-1$
B5 22ø5 $F=F+1$ : IF $C(\emptyset, F)=-$ 1 THEN 2295
4A $2210 \mathrm{G}=\mathrm{F}$
$952215 \mathrm{X}=(\mathrm{G} * 4+5) * 7-5$ : $Y=158: X_{1}=X+22: Y 1=$ $Y+27:$ HCOLOR $=1:$ HPLO $\mathrm{T} X, Y$ TO $\mathrm{X} 1, \mathrm{Y}$ TO $\mathrm{X} 1, \mathrm{Y} 1 \mathrm{~T}$ $0 \quad X, Y 1$ TO $X, Y$
2E $2218 \mathrm{X}=(\mathrm{F} * 4+5) * 7-5$ : $Y=158: X_{1}=X+22: Y_{1}=$ $Y+27:$ HCOLOR= 3: HPLO T $X, Y$ то $X_{1, Y} Y$ то $X_{1, Y}, Y_{1} T$ ○ $X, Y_{1}$ то $X, Y$
$462220 \mathrm{~K}=\operatorname{PEEK}$ (49152): IF K > 127 THEN POKE 49168, $\varnothing$
892223 IF K $=141$ THEN 2289
E5 $2225 \mathrm{G}=\mathrm{F}:$ IF $\mathrm{K}<>136$ THEN 225ø
$18223 \varnothing \mathrm{~F}=\mathrm{NF}(F): \mathrm{IF} \mathrm{C}(\emptyset, F)<\emptyset$ THEN 223ø
вв 2245 GOTO 2215
E1 2250 IF K < > 149 THEN 2275
$3 E 2255 \mathrm{~F}=\mathrm{NF}(\mathrm{F}+2)$ : IF $\mathrm{C}(\emptyset, F)$ < $\varnothing$ THEN 2255
9C 2270 GOTO 2215
A 2275 GOTO 2220
$892280 X=(G * 4+5) * 7-5:$ $Y=158: X_{1}=X+22: Y_{1}=$ $Y+27:$ HCOLOR $=1$ : HPLO T $X, Y$ т $X_{1}, Y$ TO $X 1, Y 1$ T - $X, Y_{1}$ TO $X, Y$

IF 2285 RETURN
AF $23 \varnothing \varnothing$ FOR $I=\varnothing$ TO 4: IF (S (P, I) $=T P)$ AND $(C(P, I)=2$ ) THEN C(P,I) = 7: GOTO 2310
FE 2305 IF ( FN B1 (S (P, I) ) $=\mathrm{FN}$ B1 (TP)) AND ( $C(P, I)=2)$ THEN C(P, I) $=6: S(P, I)$ $=T P$
AC 2310 NEXT
28 2315 FOR $1=\varnothing$ TO 4: FOR J $=$ g TO 3: IF $S(P, J)>S(P$, $\mathrm{J}+1)$ THEN 2331
672320 IF $S(P, J)=S(P, J+1) T$ HEN IF C $(P, J)>C(P, J+$ 1) THEN 2331

DB $2325 \mathrm{~T}=\mathrm{C}(\mathrm{P}, \mathrm{J}): \mathrm{C}(\mathrm{P}, \mathrm{J})=\mathrm{C}(\mathrm{P}$, $J+1): C(P, J+1)=T$
C6 $2330 \mathrm{~T}=\mathrm{S}(\mathrm{P}, \mathrm{J}): \mathrm{S}(\mathrm{P}, \mathrm{J})=\mathrm{S}(\mathrm{P}$, $\mathrm{J}+1): S(\mathrm{P}, \mathrm{J}+1)=\mathrm{T}$
88 2331 NEXT J, I
AS 2335 FOR I $=\varnothing$ TO 4:PT(I) $=\varnothing$ : IF $S(P, I)=$ TP THEN PT (I) $=C(P, I) /$ 1の: GOTO 2350
642340 IF $C(P, I)=5$ THEN PT (I) = 9: GOTO 235ø
182345 IF ( $\mathrm{S}(\mathrm{P}, \mathrm{I}$ ) < > S (P,NF (I) )) AND ( $\mathrm{S}(\mathrm{P}, \mathrm{I})<>\mathrm{S}(\mathrm{P}, \mathrm{N}$ $\mathrm{F}(\mathrm{I}+2))$ ) THEN PT(I) = - 1

BC 2350 NEXT
F4 $2355 \mathrm{~L}=99:$ FOR $I=\varnothing$ TO 4: IF PT(I) < L THEN F = I: $\mathrm{L}=\mathrm{PT}(\mathrm{I})$
4A $236 \emptyset$ NEXT : RETURN
7 25 øø FOR $1=\varnothing$ TO 3: FOR J = $\emptyset$ TO 3:NS $(1, \mathrm{~J})=\varnothing$ : NEXT : FOR J = ø TO 4: IF C( $I, J)<>2$ THEN 2515
fF 2505 IF $S(I, J)=$ TP THEN C(I, J) $=7$ : GOTO 2515

522510 IF ABS $(S(I, J)-T P)=2$ THEN C(I,J) $=6: S(I, J)$ $=T P$
AB $2515 \operatorname{NS}(I, S(I, J))=N S(I, S(I$, J)) + 1: NEXT J, I

E4 2520 RETURN
66 $27 \emptyset \emptyset$ UTAB 2: HTAB 2: PRINT "P ARTNER?";:LO = 9:HI = 10 : XP = 2: YP = 12: GOSUB 1 910
$4327 \varnothing 5$ FC $(\varnothing)=\varnothing:$ IF AN $=1 \varnothing \mathrm{TH}$ $\mathrm{EN} F \mathrm{FC}(\varnothing)=2$
712710 VTAB 2: HTAB 2: PRINT "O PPONENTS?";:LO = 9:HI = $1 \varnothing: X P=2: Y P=14:$ GOSUB $191 \varnothing$
CB $2715 \mathrm{FC}(1)=\varnothing$ : IF $\mathrm{AN}=1 \varnothing \mathrm{TH}$ $\operatorname{ENFC}(1)=2$
85 272ø VTAB 2: HTAB 2: PRINT BL \$: RETURN
F9 3øøø FOR I = ø TO 7: FOR J = $\emptyset$ TO 3:CL(I,J) $=\emptyset:$ NEXT $\mathrm{J}, \mathrm{I}: \mathrm{CL}(2, \mathrm{FN}$ B1 (TP) ) $=$

B7 3øø1 FOR I $=\emptyset$ TO 3：SL $(I)=\emptyset$ ：NEXT I
4E 3øø2 LD $=\mathrm{FN} N P(D L): D M=4: T R$ （Ø）$=\varnothing:$ TR $(1)=\varnothing:$ IF LH $=\emptyset$ THEN $3 \varnothing 15$
$2 B$ 3øø5 IF $B D=2$ THEN $X=2 \emptyset: F$ OR I $=\emptyset$ TO 4：Y＝I \＆ 4 $+5:$ GOSUB 9øøg：NEXT
$B A 3 \emptyset 1 \emptyset \mathrm{DM}=\mathrm{FN} \operatorname{NP}(\mathrm{FN} N P(B D))$
AB 3911 IF LH $=1$ THEN IF LD $=\mathrm{D}$ $M$ THEN LD $=$ FN NP（LD）
F5 $3 \emptyset 15 \mathrm{FOR}$ TK $=\varnothing$ TO 4： $\mathrm{P}=\mathrm{LD}: \mathrm{P}$ $S=\varnothing: T L=\varnothing:$ IF $D M=P$ THEN $P=F N$ NP（P）
EE 3ø2の GOSUB 35øø：WP＝P：IF LH $=1$ THEN PS $=P S+1$
B7 $3 ø 21 \mathrm{SL}(S(P, P C(P)))=1$
$7 F 3 g 25$ IF $S(P, P C(P))=$ TP THEN $T L=1$
F5 3ø3Ø FOR I $=1$ TO 3：P $=\mathrm{FN} N P$ （P）：IF $P=$ DM THEN $3 \varnothing 6 \emptyset$
$693 \emptyset 35 \mathrm{PS}=\mathrm{PS}+1$ ：GOSUB 35øø： IF TL $=\emptyset$ THEN 3ø5ø
B9 3ø4ø IF $S(P, P C(P))=$ TP THEN IF $C(P, P C(P))>C(W P, P C($ WP））THEN WP $=P$
9E 3945 GOTO 3ø6の
463659 IF $S(P, P C(P))=$ TP THEN $W P=P: T L=1:$ GOTO 3פ6Ø
983055 IF $S(P, P C(P))=S(W P, P C($ WP））THEN IF $C(P, P C(P))$ $>C(W P, P C(W P))$ THEN WP $=$ P
$6 F 3$ 66Ø NEXT ：FOR DE $=1$ TO 4øø ：NEXT
1E 3065 FOR J $=1$ TO 15：FOR I $=$ 3 TO 1 STEP－1：Y $=P \mathrm{PX}($ WP）＊$B-2: X=P Y(W P)$＊ $Y^{7}-5: X 1=X+22: Y 1=$ $Y+27$
$273 \emptyset 7 \emptyset$ HCOLOR $=I:$ HPLOT $X, Y$ TO $X 1, Y$ TO $X 1, Y 1$ TO $X, Y 1$ TO $X, Y:$ FOR DE $=1$ TO 5：$N$ EXT DE，I，J
EA $3 \emptyset 71$ LD $=W P: W T=F N B 1(W P): T$ $R(W T)=T R(W T)+1$
BB $3072 \mathrm{X}=21: Y=32+6$＊WT：N $=$ TR $(W T)$ ：GOSUB 1465
AF $3 \varnothing 75$ FOR $I=\emptyset$ TO $3: X=P X(I)$ $: Y=P Y(I):$ GOSUB 9øøஜ：$C$ $(I, P C(I))=-1:$ NEXT I， TK
423978 VTAB 1：HTAB 2：PRINT BL
IB $3 \emptyset 8 \emptyset \mathrm{BT}=\mathrm{FN} \mathrm{B1}(\mathrm{BD}):$ UTAB 15： HTAB 29
463085 IF TR（BT）＜ 3 THEN 3198
F6 3ø86 IF TR（BT）＜ 5 THEN $3 ø 97$
AF $3 ø 87 \mathrm{PW}(\mathrm{BT})=\mathrm{PW}(\mathrm{BT})+2+\mathrm{LH}$ ＊ 2
E5 $3 \varnothing 9 \varnothing$ IF BT $=\emptyset$ THEN PRINT＂ YOU WON＂：VTAB 16：HT AB 29：PRINT＂ALL TRICK S＂：GOTO 32øø
253995 IF BT $=1$ THEN PRINT＂CO MPUTER WON＂：VTAB 16：HT AB 29：PRINT＂ALL TRICK $S$＂：GOTO 32gø
$683097 \mathrm{PW}(\mathrm{BT})=\mathrm{PW}(\mathrm{BT})+1$
17 31øø IF TR（ø）$>2$ THEN PRINT ＂YOU WON HAND＂；：GOTO 32 øø
B6 3105 IF TR（1）$>2$ THEN PRINT COMPUTER＂：VTAB 16： HTAB 29：PRINT＂WON H AND＂：GOTO 32פø
$3 A 31 \boxminus 8 P W(1-B T)=P W(1-B T)$ $+2$
DA $311 \emptyset$ IF TR（ø）＜ 3 THEN PRINT ＂YOU＇VE BEEN＂：VTAB 16： HTAB 29：PRINT＂EUCHR ED！＂：GOTO $32 \emptyset \emptyset$
853115 IF TR（1）＜ 3 THEN PRINT
＂COMPUTER＂：VTAB 16： HTAB 29：PRINT＂EUCHR ED ！
5D 32ஏの FOR DE $=1$ TO 4øøø：NEXT FF 3265 RETURN
FE $359 \emptyset$ IF $P>\emptyset$ THEN 3599
92 3562 VTAB 15：HTAB 29：PRINT ＂YOUR PLAY＂；：GOSUB 2 2øø
653593 LS $=S(L D, P C(L D)):$ IF（P $S=\emptyset) \quad$ OR $(S(P, F)=L S)$ QR（NS $(P, L S)=$ g）THEN 3 $5 \emptyset 7$
5D $35 \emptyset 4$ GOSUB 2215：GOTO $35 \emptyset 3$
A1 $3565 X=20: Y=F * 4+5: 60$ SUB 9øøø：GOTO 353ø
103597 VTAB 15：HTAB 29：PRINT EW\＄
B9 $3508 X=20: Y=F * 4+5: G 0$ SUB 9øøø：G0TO 353Ø
1D 3569 IF TK＜ 5 THEN 3515
C2 $351 \emptyset$ FOR $K=\varnothing$ TO 4：IF C（P，J ，$>-1$ THEN $F=I$
5D 3512 NEXT ：GOTO $353 \emptyset$
उE 3515 ON（PS＋1）GOSUB 4øøø， 4

$5 B 353 \emptyset P C(P)=F: Y=P Y(P): X=$ $P X(P): C=C(P, F): S=S(P$ ，F）：GOSUB 12øø
$703535 \operatorname{NS}(P, S(P, F))=\operatorname{NS}(P, S(P$, F））－1：CL（C $(P, F), S(P, F)$ ，$=1$

## ED 354 Ø RETURN

72 4øøø IF NS $(P, T P)<>5-T K T$ HEN 4Ø15
7D 4øø5 SP＝TP：GOSUB 52øø：IF $F=1$ THEN GOTO $515 \varnothing$
6F 4ø1ø GOTO $516 \emptyset$
174915 IF（ $\mathrm{LH}<>1$ ）OR（BD＜＞ P）THEN 4ø3ø
15 4ø2g IF NS $(P, T P)>\emptyset$ THEN SP ＝TP：GOTO 515ø
95 4ø25 GOTO 565ø
D4 4ø3Ø GOSUB 5øøø：IF $(F=1) A$ ND $(A B S(B D-P)=2) T$ HEN SP＝TP：GOTO $515 \emptyset$
BC 4 Ø 35 GOSUB 525ø：IF（ $F<>1$ ） OR（ $P<>$ BD）THEN 595
F4 4ø4ø GOSUB 52øø：IF $I=1$ THE N SP＝TP：GOTO 5159
474645 IF NS $(P, T P)>2$ THEN SP ＝TP：GOTO 516g
79 4ø5ø GOTO 5ø5ø
EE 41 ஏø IF NS（P，S（LD，PC（LD）））＝ g THEN 4115
5541 G5 GOSUB 53øø： $\mathrm{SP}=\mathrm{S}(L D, P C($ LD））：IF $F=1$ THEN $515 \emptyset$
$71411 \varnothing$ GOTO $516 \varnothing$
CB 4115 IF NS $(P, T P)=5-$ TK THE N SP＝TP：GOTO 516g
$33412 \emptyset$ IF NS $(P, T P)=\emptyset$ THEN $51 \emptyset$ ロ
$4 E 4125$ IF $C(L D, P C(L D))=5$ THEN $S P=T P:$ GOTO $516 \emptyset$
E7 4130 IF $B D<>P$ THEN $S P=T P$ ：GOTO 5160
484135 GOSUB 5250：IF F $=1$ THE N SP＝TP：GOTO 516ø
654149 GOTO 51 øø
73 42øø IF NS（P，S（LD，PC（LD）））＝ $\emptyset$ THEN 4235
$A A 42 \emptyset 1 S P=S(L D, P C(L D))$
2C 4265 IF（ $\mathrm{SP}<>$ TP）AND（ $\mathrm{TL}=$ 1）THEN 5169
of 4210 IF ABS（WP－P）$<>2$ TH EN 4225
DD 4215 GOSUB 53øø：IF $F=1$ ．THE $N$ GOSUB 535ø：IF $F=\varnothing \mathrm{T}$ HEN 515ø
77 422ø GOTO 516ø
87 4225 GOSUB 53øø：IF F $=1$ THE N 5150
7B 4230 GOTO 5160
FE 4235 IF NS $(P, T P)<5-$ TK THE

N 4270
A8 4245 SP $=$ TP：IF ABS（WP－P） $=2$ THEN $516 \emptyset$
D4 425 IF TL $=\varnothing$ THEN $516 \emptyset$
©C 4255 GOSUB 53øø：IF F $=1$ THE N 54øø
87 426ø GOTO 516ø
$49427 \emptyset$ IF NS $(P$, TP $)=\emptyset$ THEN $51 \varnothing$ ロ
C4 4275 IF ABS（WP－P）＜＞ 2 TH EN 4310
DE 4289 IF $(T L=1)$ OR $(P S=3)$ THEN $51 \emptyset \varnothing$
$0 A 4285$ IF $C(W P, P C(W P))=5$ THEN 51 øø
$24429 \emptyset$ IF $C(W P, P C(W P))<4$ THEN SP＝TP：GOTO 516g
184300 GOSUB 5250：IF $F=1$ THE N SP＝TP：GOTO 516 g
$8143 \emptyset 5$ GOTO 51 Øø
$53431 \emptyset$ IF TL $=\varnothing$ THEN SP $=$ TP： GOTO 516Ø
FB 4315 GOSUB 53øø：IF $F=1$ THE $\mathrm{N} \mathrm{SP}=\mathrm{TP}:$ GOTO 54øø
61 432の GOTO 51øø
45 5øøø $F=\emptyset:$ FOR $A=\emptyset$ TO 4：I $F C(P, A)>5$ THEN $F=1$
$575 \emptyset \emptyset 5$ NEXT ：RETURN
DF 5 Ø5 $F=-1:$ FOR $A=\emptyset$ TO 4： IF $(S L(S(P, A))=\emptyset)$ AND $(S(P, A)<>$ TP）THEN IF $C(P, A)=5$ THEN $F=A$
$655 \emptyset 55$ NEXT ：IF F $>-1$ THEN 5 ø7ロ
10 $5 \emptyset 6$ L LC $=-1:$ FOR $A=\emptyset$ TO 4 ：IF $S(P, A)<>$ TP THEN IF $C(P, A)>$ LC THEN LC $=$ $C(P, A): F=A$
E5 5665 NEXT
F1 $597 \emptyset$ RETURN
6F 51øø IF NS $(P, T P)>\emptyset$ THEN 512 5
5C 51g5 SP＝－1：FOR $A=\emptyset$ TO 4
855110 IF $S(P, A)<>$ TP THEN IF $(C(P, A)=5)$ AND（NS $(P$ ， $S(P, A))>1)$ THEN $S P=S$ （ $P, A$ ）
6F 5115 NEXT A：IF SP $>-1$ THEN 5169
7E $512 \emptyset$ GOTO 518の
EJ $5125 V=4: F=-1:$ FOR $A=\varnothing$ TO 4
285126 IF $S(P, A)=$ TP THEN 5135
ED 5130 IF $(N S(P, S(P, A))<>1)$ OR $(S L(S(P, A))=1)$ THEN 5135
205131 IF $(C(P, A)>=\varnothing)$ AND（C $(P, A)<V)$ THEN $V=C(P$ ， A）：$F=A$
7F 5135 NEXT ：IF F $=-1$ THEN 5 $18 \emptyset$
E7 514 Ø RETURN
D7 $515 \emptyset$ IF PS $=3$ THEN $540 \emptyset$
8F $5151 V=-1:$ FOR $A=\emptyset$ TO 4： IF $S(P, A)=S P$ THEN IF $C(P, A)>V$ THEN $V=C(P$ ， A）$: F=A$
6D 5155 NEXT ：RETURN
$25516 \emptyset V=1 \emptyset:$ FOR $A=\emptyset$ TO 4
$9 E 5161$ IF $S(P, A)=S P$ THEN IF $($ $C(P, A)\rangle=\varnothing)$ AND $(C(P, A$ ）$(V)$ THEN $V=C(P, A): F$ $=A$
715165 NEXT ：RETURN
$65518 \emptyset V=1 \emptyset:$ FOR $A=\varnothing$ TO 4： IF $S(P, A)<>$ TP THEN IF $C(P, A)>-1$ THEN IF C $($ $P, A)<V$ THEN $V=C(P, A)$ $: F=A$
C4 5185 NEXT A：RETURN
1B 52øø HT $=8: F=\emptyset$
$4352 \emptyset 5 \mathrm{HT}=\mathrm{HT}-1:$ IF HT $>\emptyset \mathrm{T}$ HEN IF CL（HT，TP）$=1$ THE N 5295

```
44 521\emptyset IF HT < \emptyset THEN 524\emptyset
F1 5215 FOR A = Ø TO 4: IF S(P,A
        ) = TP THEN IF C(P,A) =
        HT THEN F = 1
B1 5220 NEXT
E9 5240 RETURN
85 525ø F=1: FOR A = Ø TO 4: I
        FC(P,A) > - }1\mathrm{ THEN IF (
        S(P,A)<>TP) AND (C(P,
        A) < 5) THEN F = \emptyset
6F 5255 NEXT : RETURN
A1 530\emptyset F=\emptyset: FOR A = Ø TO 4: I
        FS(P,A)=S(WP,PC(WP))
        THEN IF C(P,A)>C(WP,PC
        (WP)) THEN F = 1
5D 5365 NEXT : RETURN
DB 535\emptyset F = Ø: FOR A = Ø TO 4: I
        FS(P,A)=S(WP,PC(WP))
        THEN IF C(P,A) - C(WP,PC
        (WP)) = 1 THEN F = 1
715355 NEXT : RETURN
F1 54ø\emptyset D = 10: FOR A = Ø TO 4
85 54g5 IF S(P,A) = S(WP,PC(WP))
        THEN E = C(P,A) - C(WP,
        PC(WP)): IF (E < D) AND
        (E > g) THEN D = E:F = A
3B 541g NEXT : RETURN
46 9ø\emptyset\emptyset CALL 36568,\emptyset,Y * 7 - 1,X
        * 8: RETURN
```


## Program 4：Graphics File For Apple Euchre

```
Refer to the instructions in the article before
``` entering this lising．

BCAB：DB \(78 \quad 85 \quad 4586468447\) EE 8CBØ：A6 \(\emptyset 7\) ØA ØA Bø \(\emptyset 41 \emptyset\) उE B4
 BCCØ：1B \(18 \quad 65 \quad \emptyset 6 \quad 85 \quad 1 A 9 \emptyset \quad 92 \quad 32\) 8CCE：E6 1B A5 28 85 ø日 A5 2914 8CDø： 29 ø3 ø5 E6 85 ø9 A2 ø日 EB
 BCED： 49 7F A4 2491 ø8 E6 1A E9 8CE8：Dg ஏ2 E6 1B A5 99186964日CFø： 948599 CA DØ E2 A5 45 DD 8CF9：A6 46 A4 4758 4C Fg FD D3
 8Dø日：\(\emptyset \emptyset 3 \emptyset 3 \emptyset 3 \emptyset 3 \varnothing \emptyset \emptyset 3 \emptyset \quad \emptyset \emptyset 1 A\)
 8D18：FF FF FF FF 8787878787日D2ø： 87878787 FF FF FF FF 4A




日D5ø：Øø Øø 1ø \(54545 \emptyset 4 \emptyset\) Øø 17


 8D79： \(2 A \quad 2 A \quad 8 B\) 8D78： \(55 \quad 55 \quad 55 \quad 55 \quad 55 \quad 55 \quad 55 \quad 5593\) 8D8ø：80 BC E6 F6 EE E6 BC 8ø 64 8D88： \(80989 \mathrm{C} 98 \quad 98 \quad 98 \mathrm{BC}\) 80 48 8D9ø：8ø BC E6 Bø BC E6 FE \(8 \emptyset 81\) 8D98：8Ø BC E6 Bø EØ E6 BC 8ø A7 8DAØ： \(8 \emptyset \quad \mathrm{~B} \emptyset \quad \mathrm{B8}\) B4 FE Bø Bø \(8 \emptyset 27\) 8DAB： \(8 \emptyset \mathrm{FE} 86 \mathrm{BE}\) EØ E6 BC \(8 \emptyset 1 \mathrm{D}\)日DBø： \(8 \emptyset \mathrm{BC} 86 \mathrm{BE}\) E6 E6 BC \(8 \emptyset \mathrm{C} 4\) 8DBE： \(8 \emptyset\) FE Eg Bg 98 8C 8C 8ø 8B 8DCØ：Bø BC E6 BC E6 E6 BC 8ø Cø 8DCE： \(8 \emptyset \mathrm{BC}\) E6 E6 FC BØ 988 FA 8DDø：8ஏ 8ஏ 8С 8Ø 8Ø 8С 8Ø 8Ø 9D 8DD日：\(F \emptyset\) Fg FØ FØ Fg Fg Fg Fg FJ 8DEØ： \(83 \quad 83838383838383 \mathrm{FB}\) 8DE8： \(\begin{array}{llllllllll}87 & 87 & 87 & 87 & 87 & 87 & 87 & 87 & 64\end{array}\) 8DFø：7F 7F 7F 7F øø øø øø øø 93日DF8： \(8 \emptyset\) BC E6 Bø 98 日ø 98 8ø E3 8EØø：FF FF FF FF FF FF FF FF 1D 8Eø日：8 8 FC E6 E6 FE E6 E6 BØ D1 8E1ø：8Ø BE E6 E6 BE E6 FE \(8 \emptyset 78\) 8E18： \(8 \emptyset \mathrm{BC}\) E6 8686 E6 BE 89 B7

8E2の：8Ø BE EG E6 E6 EG BE \(8 \emptyset 49\) 8E28： \(8 \emptyset\) FE 8686 BE 86 FE \(8 \emptyset\) ØD 8E3Ø： \(8 \emptyset\) FE 8686 BE 8686 8ø 24 8E38： \(8 \emptyset\) BC E6 86 F6 E6 BE 8ø 5B 8E4ø：8Ø E6 E6 E6 FE E6 E6 8Ø 84 BE48： \(8 \emptyset \quad 9898989898988041\) 8E5Ø：Bø EØ EØ EØ EØ E6 BC 8Ø AC 8E58：8ø E6 E6 B6 9E E6 E6 8Ø 96 8E6ø：8ஏ 86 86 86 8686 FE 8965 8E68： \(8 \emptyset\) EG FE E6 E6 E6 E6 \(8 \emptyset\) EE 8E7の：89 BE E6 E6 E6 E6 E6 8g E9 8E78： \(8 \emptyset \mathrm{BC}\) E6 E6 E6 E6 BC \(8 \emptyset 1 D\) 8E8ø： \(8 \emptyset\) BE E6 E6 BE \(86868 \emptyset 76\) 8E88： \(8 \emptyset \mathrm{BC}\) E6 E6 EG B6 EC \(8 \emptyset\) CC 8E9ø：8ø BE E6 E6 BE E6 E6 8 8 CB BE98：8Ø BC E6 8C BØ E6 BE Bø E9 BEAØ： \(8 \emptyset\) FE 98989898988033 BEAB： \(8 \emptyset\) E6 E6 E6 E6 E6 BE 80 DB 8EBø： 89 E6 E6 E6 E6 E6 98 89 97 8EB8： \(8 \emptyset\) E6 E6 E6 E6 FE E6 8 890 8ECØ：8ஏ E6 E6 E6 BC E6 E6 8ø F2 BEC8： \(8 \emptyset\) E6 E6 E6 BC 98 98 日ø 25 8EDø： \(8 \emptyset\) FE Bø 98 8C 86 FE 8Ø 8A 8ED8： \(2 \emptyset\) DØ 8F Bø 7E \(2 \emptyset E 49 \emptyset\) Ø6 BEEØ： \(\mathrm{B} \emptyset 79294991 \mathrm{Bg} 74 \mathrm{AD} 33\) 8EE8：D9 91 Fg ØF A9 7F 8D Eg AD 8EFø： 91 8D E1 91 A9 97 8D E2 F6 8EF8： 91 Dø GF A9 2A 8D EØ 91 6A 8Føø：A9 55 8D E： 91 A9 92 日D DD 8Fø8：E2 91 A9 ø3 8D Dø 91 A9 DE 8F10： 62 8D D7 91 AD DC 91 8D 39 8F18：D6 \(91 \mathrm{AD} D \mathrm{DB} 91\) 8D D5 91 7A 8F20：2ø ED 8F A9 18 8D D1 9183 8F28： 29 7C 96 29 49 96 EE D4 81 8F3D： 91 CE D1 91 Dg F2 AD D9 AG
 8F4ø： 20 6C 8F \(A \emptyset \emptyset 4\) AD DA 91 A4 8F48： \(206 C\) BF \(A \emptyset\) gB AD D9 91 CA 8F5ø： \(2 \emptyset\) 6C 8F Ag ØC AD D9 91 F2 8F58： 20 6C 8F \(6 \emptyset 6991 \quad \emptyset 3\) g8 F1 8F6Ø：8Ø 91 ØA Ø8 9891 Ø1 Ø1 FЗ 8F68：98 91 ØA פF ØA ØA ØA 8D 84 8F7ø：DE 91 B9 5C 8F 85 FC C8 B5 8F78：B9 5C 8F 85 FD C8 AD DB 20 8F8ø： 91 日D D5 91 B9 5C 8F CB C6 8F8日： 18 6D DC 91 C9 \(\quad 679 \varnothing \quad 97 \quad 56\) 8F9ø：E9 97 EE D5 91 Bø F5 8D 6A 8F98：D6 91 B9 5C 8F 18 6D DD 1 A 8FAø： 91 8D D4 91 A9 91 BD DØ DC 8FAB： 91 A9 97 8D D7 91 A9 ø8 15 BFBø：8D D1 91 AC DE 91 B1 FC AS 8FBB：8D EØ 9120 ED 8F 20 7C 75 8FCØ： \(9 \varnothing 204090 \mathrm{EE}\) D4 91 EE 1 E 8FCB：DE 91 CE D1 91 DØ E4 \(6 \emptyset\) AC BFDø：2Ø 55 91 C9 19 9Ø 916991 8FD8：A2 \(\varnothing \square\) 8E DA 91 C9 97901 D BFEØ： 97 E9 Ø6 EE DA 91 BØ F5 22 8FE8：8D D9 911860 AD D 91 ES 8FFø：8D D2 91 AB A9 ØØ 99 EØ A9 8FF8： 91 AD D6 91 18 6D D7 91 F7 9øøø：C9 Ø7 9ø Ø5 E9 Ø7 EE D2 46 9øø8： 91 日D D8 91 AD EØ \(91 \quad \emptyset 9\) A6 9ø1ø：7F 8D D3 91 AC D6 91 FD BC 9ø18： 15 A2 Øø ØE EØ 91 BD EØ FG 9ø2Ø： 91 ØA उE E1 91 E8 EC D2 4F 9028： \(91 \mathrm{D} \emptyset F 388 \mathrm{D}\)（ FB AC D2 AF 9ø3ø： 91 B9 Eø 91 Ø9 8ø 2D D3 36 9ø38： \(91 \quad 99\) EØ 918810 F2 \(6 \emptyset 88\) 9ø4ø：AC D8 91 B9 6E 9ø AC D2 9D 9048： 918831 FE 19 EØ 9191 6B 9ø50：FE 88 3Ø ØA \(F \emptyset\) Ø8 B9 Eø B5 9ø58： 9191 FE 88 DØ F8 AC D6 A9 9ø60： 91 B9 \(759 \emptyset\) Aø Øø 31 FE D6 9ø68：ØD Eø 9191 FE 6Ø 7F 7E BA
 9ø78： 97 ØF 1F 3F AD D4 9129 C5 9ø8Ø： 3 F A8 B9 A4 \(9 \emptyset\) ø5 E6 85 D8 9ø88：FF AD D4 \(91 \quad 29 \quad \emptyset 8\) Fø \(\emptyset 216\) 9ø9ø：A9 8ø 18 2C D4 91 7ø Ø4 3E 9ø98： \(19 \quad 04 \quad 69 \quad 28 \quad 69 \quad 28 \quad 6 \mathrm{D}\) D5 øF 9øAØ： 9185 FE 6ø Øø ø4 ø8 øC FD 9øAB： 101418 1C Øの Ø4 Ø8 ØC C7 9øBø： \(1 \varnothing 14181 \mathrm{C} \quad 91 \quad \emptyset 5 \quad 99\) ØD DE 9øB8： 11151919 1D 151 Ø5 99 ØD D7 9øCø： \(1115191 \mathrm{D} \quad\) Ø2 Ø6 ØA ØE EE
 9øDø： 1216 1A 1E 93 פ7 øB ØF FE
 9øEの： \(13171 \mathrm{1B} 1 \mathrm{~F}\) A9 ஏø 8D DB EA 9øE8： 91 8D DC 91205591 CØ 25
 9øF8：9Ø Ø1 6ø A9 24 8D DB 91 E9 91øø：A9 94 8D DC 91 8D 1191 EE 9198：A9 \(908 \mathrm{DD} \quad \mathrm{DF} 91\) A2 9418 E6 911ø： 69 øø 6A 6E DF 91 4A 6E 64 9118：DF 91 4A 6E DF 91 CA DØ 6B 9120：EE AA AD DF \(912 A 2 A 2 A C C\)

913Ø：ஏø E8 18 6D DC 91 C9 97 2F 9138： \(9 \varnothing\) Ø3 A9 \(\emptyset \emptyset\) E8 8D DC 9162 914Ø：8A 18 6D DB 91 8D DB 9126 9148：6ஏ 205591 8D D4 91 8D D7 915ø：DD 91 C9 Cø \(6 \emptyset 2 \emptyset\) B1 Øø F2 9158： \(2 \emptyset\) פ5 E1 AS A1 A4 Aத 6ø A4 916 ：7F 7F \(5 \mathrm{~F} \quad 5755 \quad 57\) 5F 7F CA
9168：7F 7F 4747 Ø1 Ø1 47 7F A2
9170：7F 7F 77555557 5F 7F BD 9178：7F 7F 5F פ7 פ1 Ø1 פF 7F 41 918ఏ：7F 7F 7F 7E 7A 7E 7F 7F 67 9188：7F 7F 7F 7F 7E 7E 7F 7F 9F 919ஏ：7F 7F 7E 7A 7A 7E 7F 7F 17 9198：7F 7F 7F 7E 78 78 7F 7F 57 91Ag： 63 1C 1C 1C 93 1F 1C 63 F1 91A8： 4073737373737373 91Bg：1F 1F 1F 1F 1F 1F 1C 6312 91B8： 63 1C 1C 1 C 1C \(194413 \quad 96\) 91Cg：1C 1C 1C 6ヵ 1C 1C 1C 1C 28 91C8： 6349 1C 1C ØD 1C 1C 5D 2E

\section*{Program 5：IBM PC／PCjr Euchre}

NJ 5 KEY OFF：DEF SEG＝ø：DEFINT A－ Z：POKE 1ø47，PEEK（1ø47）OR 6 4：RANDOMIZE TIMER
KP \(1 \emptyset\) GOSUB 11øø：GOSUB 1øøø：GOSU B 27øの：G0SUB 13øø
MD 25 GOSUB 2øøø：COLOR 1，7
PC \(3 \emptyset\) IF TP \(\langle>4\) THEN \(7 \emptyset\)
MA 35 LOCATE 12，29：PRINT＂NO BID DERS＂
MP 4 LO LOCATE 13，28：PRINT＂HAND DUMPED＂
J 5 G GOSUB 14øø：\(X=2 \emptyset:\) FOR \(I=\emptyset\) TO 4：\(Y=1 * 5+3\) ：GOSUB 9øøø：NEXT I
EP 51 DL＝FNNP（DL）：\(X=8: Y=13\) ：GOSUB \(9 \emptyset \emptyset \emptyset\)
DA 55 GOSUB 19øø：GOTO 25
L0 \(7 \emptyset\) COLOR 9，7：LOCATE 12，29：PRI NT＂TRUMP ：＂；COLOR CO（TP ）：PRINT \(5 \$(T P):\) COLOR 9
JB 75 LOCATE 13，29：PRINT＂BIDDER \(" ;: I F B D=\emptyset\) THEN PRINT＂\(y\) －＂＂；：GOTO 9ø
Jo 8 ด PRINT＂p＂；RIGHT\＄（STR\＄（BD）， 1）
BL \(9 \emptyset\) IF \(K U=\emptyset\) THEN 135
OF 1 Øø IF DL＞Ø THEN 125
FH 115 COLOR 14，Ø：LOCATE 15，28：P RINT＂PICK DISCARD
CG 121 GOSUB 22øø：LOCATE 15，28：P RINT
；：GOTO \(13 \varnothing\)
BK 125 GOSUB 23øø
H1 \(136 \mathrm{C}(\mathrm{DL}, \mathrm{F})=\mathrm{KC}: S(\mathrm{DL}, \mathrm{F})=\mathrm{KS}: \mathrm{GOS}\) UB \(122 \emptyset\)
\(61135 \mathrm{X}=8: \mathrm{Y}=13\) ：GOSUB 9øøø
PP 149 GOSUB 25øø：GOSUB 3øøø：COL OR Ø，4：IF（PW（Ø）＞9）OR（P \(W(1)>9)\) THEN \(3 \emptyset \emptyset\)
KI 159 \(X=21: Y=31: N=\emptyset:\) GOSUB 1465
PJ \(151 X=21: Y=37: N=\varnothing:\) GOSUB 1465
GK 2øø \(X=7: Y=31: N=P W(\varnothing):\) GOSUB 14 65
ME \(205 \mathrm{X}=7\) ： \(\mathrm{Y}=37: \mathrm{N}=\mathrm{PW}(1)\) ：GOSUB 14 65
BM 216 DL＝FNNP（DL）：GUSUB 1355：GO TO 25

LL \(3 \emptyset \emptyset W T=\emptyset:\) IF PW（1）\(>=1 \varnothing\) THEN WT \(=1\)
PD \(3 \emptyset 5 \mathrm{X}=7\) ： \(\mathrm{Y}=28+W\) W＊ \(6: \mathrm{N}=1\) ：GOSUB 1 465
KL \(31 \emptyset \quad \mathrm{X}=7: \mathrm{Y}=31+\mathrm{WT} * 6: \mathrm{N}=\mathrm{PW}(\mathrm{WT})-1 \emptyset\) ：GOSUB 1465
BC 315 FOR DE＝1 TO 1øøø：NEXT
JF \(32 \emptyset\) GOSUB 145 1 ：COLOR \(\emptyset, 4\) ：LOCA TE 13，28：PRINT＂YOU＂；
60321 IF WT＝ø THEN PRINT＂WIN！
JA 322 IF WT＝1 THEN PRINT＂LOSE
J0 325 COLOR 7，1：LOCATE 2，2：PRIN T＂Play again？＂
LL \(330 L O=11: H I=12: X P=2: Y P=14: G 0\) SUB 191の
EJ \(34 \emptyset\) IF \(A N=11\) THEN RUN
LP 359 PRINT CHR\＄（125）：END
EF 1øøø SCREEN Ø，1：WIDTH 4ø：COLO R ，1，9：CLS
LB 1 Øø5 COLOR ø，6：LOCATE 1，28，\(\emptyset:\) PRINT＂MHMHMMH
EH 1ø1ø LOCATE 2，28：PRINT \({ }^{4}\) ．EU CHRE
CH 1015 LOCATE 3，28：PRINT＂PMAM MMロ日＂
AF 1 Ø25 COLOR I \(\varnothing, \emptyset:\) LOCATE 4，28：P RINT＂－－－POINTS－－－＂
0J 1928 LOCATE 18，28：PRINT＂－－－T RICKS－－－＂
FG 1939 COLOR 2， \(0:\) LOCATE 5，28：PR INT＂YOU COMP
LM 1940 FOR I＝Ø TO 4：LOCATE 6＋I， 28：PRINT＂ NEXT
P！ 1942 COLOR 5，7：LOCATE 11，28：P RINT＂
OM 1043 LOCATE 17，28：PRINT＂
of \(105 \emptyset\) COLOR 2，\(:\) LOCATE 19，28： F RINT＂YOU COMP＂
HJ 1955 FOR I＝ø TO 4：LOCATE 20＋I ，28：PRINT＂
；：NEXT I
MC 1960 FOR I＝ø TO 5：LOCATE 19＋I ，33：PRINT＂\({ }^{\prime \prime}\) ；：NEXT
If 1 1ø7 FOR \(\mathrm{I}=\emptyset\) TO 5 ：LOCATE \(5+\mathrm{I}\) ， 33：PRINT＂＂；：NEXT
CD 1 Ø81 COLOR \(\emptyset, 4: N=\varnothing: X=7: Y=31: G\) OSUB 1465：\(Y=37\) ：GOSUB 146 5
PL \(1082 \mathrm{X}=21: \mathrm{Y}=31\) ：GOSUB 1465： \(\mathrm{Y}=3\) 7：GOSUB 1465
KB 1ø9ø GOSUB 145の：COLOR 7，1：RET URN
DB 1160 DIM \(C(3,4), S(3,4), M S(6,3\) ），CL（7，3），DC（23），DS（23）， SP \((3,5), \operatorname{NS}(3,5), \operatorname{ME} \$(15)\)
JP 1105 DEF FNNP \((x)=((x+1) / 4-\) INT \(((X+1) / 4)) * 4\)
MA \(1110 \mathrm{BL} \$=\mathrm{SPACE} \$(10): \mathrm{C} \$=" 910 \mathrm{~J}\) QKA J J 91ø J QKA Ј J＂
YA \(1111 \mathrm{~T} \$=\mathrm{SPACE} \$(4): C D \$=\mathrm{CHR} \$(31\)
 TRING\＄\((4,29)\)
MD \(1112 \mathrm{~N} \$(\square)="\)


KO 1115 RESTORE 1115 ：FOR \(I=\emptyset\) TO 3：READ S，CO（I）：S \(\$(I)=\) CHR \(\$(5):\) NEXT：DATA 4，4，5，, 3 ，4，6， 6
60 1120 RESTORE 1120：FOR \(I=\emptyset\) TO 6：READ NF（I）：NEXT：DATA 4 ，Ø，1，2，3，4，Ø
PB \(115 \emptyset\) FOR \(J=\emptyset\) TO \(3: F O R \quad I=\emptyset\) TO 5：DC（J＊6＋I）\(=\mathrm{I}: \mathrm{DS}(\mathrm{J} * 6+\mathrm{I})=\) J：NEXT I，J
ME 1161 RESTORE 1161：FOR \(I=\emptyset\) TO 3：READ PY（I），PX（I）：NEXT： DATA \(13,14,8,8,13,2,18,8\)
HA 1165 RESTORE 1165：FOR \(\mathrm{I}=\emptyset\) TO

3：READ CX（I），CY（I）：NEXT： DATA \(18,12,11,5,4,12,11\) ， 19
JK \(117 \emptyset\) RESTORE 117 1 ：FOR \(I=\emptyset\) TO 5：READ CP（I）：NEXT：DATA ，1，8，1，2，－1
OP 1175 RESTORE 1178：FOR \(I=\emptyset\) TO 13：READ ME\＄（I）：NEXT：ME\＄（ 5）\(=\) CHR \(\$\)（4）+ ME \(\$\)（5）：ME\＄（6） \(=\operatorname{CHR} \$(5)+\operatorname{ME} \$(6): \operatorname{ME} \$(7)=C\) HR\＄（3）\(+\mathrm{ME} \$(7): \operatorname{ME} \$(8)=\mathrm{CHR}\) \＄（6）＋ME \＄（8）
JM 1178 DATA＂pass＂，＂order \(u\) p＂，＂pass＂，＂pick up＂，＂ PASS＂，＂diamonds＂， ＂clubs＂，＂hearts＂， ＂spades＂，＂normal＂，＂ag gressive＂，＂yes＂，＂no＂，＂y es＂
IF 1185 RESTORE 1185：FOR \(I=\emptyset\) TO 3：READ MX（I），MY（I）：NEXT： DATA \(1,1,8,4,2,12,8,2 \emptyset\)
C6 1186 RESTORE 119ø：FOR \(I=\emptyset\) TO 6：READ OB（I），OU（I），PU（I） ，MS（I，Ø），MS（I，1），MS（I，2） ，MS（I，3），GA（I）：NEXT
Q0 1190 DATA 99，99，99，99，99，99，9 9，99
AC 1191 DATA 99，99，99，99，99，99，9 9，99
ON 1192 DATA 99，99，14，14，14，13， 1 3，99
601193 DATA 20，12，8，8，8，8，7， 19
LJ 1194 DATA 14，Ø，Ø，Ø，Ø，Ø，Ø，16
ED 1195 DATA Ø，Ø，Ø，Ø，Ø，Ø，Ø， 14
OG 1196 DATA \(\varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\)
EK 1199 RETURN
EA \(12 \emptyset \emptyset\) IF \((S=T P)\) AND \((C=6)\) THEN \(\mathrm{S}=\mathrm{S}+2: \mathrm{S}=(\mathrm{S} / 4-\mathrm{INT}(\mathrm{S} / 4))\)＊ 4
U \(1201 \mathrm{NC}=\mathrm{C} * 2+1: \mathrm{COLOR} \mathrm{CO}(\mathrm{S}), 7: \mathrm{L}\) OCATE X，Y
II \(12 \emptyset 2\) PRINT MID\＄（C\＄，NC，2）；＂＂ ；NL\＄；S\＄（S）；＂＂；NL\＄；T\＄； NL\＄；＂＂；S\＄（S）；NL\＄；＂＂ ；MID\＄（C\＄，NC＋16，2）；
AC 1210 RETURN
6！ \(122 \emptyset\) FOR U＝ø TO 4：\(X=2 \emptyset: Y=U * 5+\) 3
PM \(1225 \mathrm{C}=\mathrm{C}(\varnothing, \mathrm{U}): \mathrm{S}=\mathrm{S}(\varnothing, \mathrm{U}):\) GOSUB 12ஏø：NEXT
B1 1230 RETURN
QK \(125 \emptyset\) FOR \(I=\emptyset\) TO 23：J＝INT（RND 1）＊24）：T＝DC（I）：DC（I）＝DC（ J）\(=D C(J)=T\)
NJ \(1260 \mathrm{~T}=\mathrm{DS}(\mathrm{I})=\mathrm{DS}(\mathrm{I})=\mathrm{DS}(\mathrm{J}): \mathrm{DS}(\mathrm{J}\) ）＝T：NEXT
HB 127ø FOR \(J=\emptyset\) TO \(3:\) FOR \(I=\emptyset\) TO 4
CJ \(1275 \mathrm{C}(\mathrm{J}, \mathrm{I})=\mathrm{DC}(\mathrm{J} * 5+\mathrm{I}): \mathrm{S}(\mathrm{J}, \mathrm{I})=\) DS（J＊S＋I）：NEXT I，J：KC＝DC （2Ø）：KS＝DS（2Ø）
BH \(128 \emptyset\) RETURN
HM 13Øø COLOR 1，7：LOCATE 12，28：P RINT＂FIRST BLACK＂：LOCA TE 13，29：PRINT＂JACK DEA LS＂
DJ 1320 GOSUB 125ø：DL＝ø：CC＝ø
AG \(1330 \mathrm{C}=\mathrm{DC}(\mathrm{CC}): \mathrm{S}=\mathrm{DS}(\mathrm{CC}): \mathrm{X}=\mathrm{CX}(\mathrm{D}\) L）：\(Y=C Y(D L):\) GUSUB \(12 \emptyset \emptyset\)
PM 1331 FOR DE＝1 TO 5פø：NEXT
ND 1335 IF（DC（CC）＝2）AND（（DS（C C）AND 253）＝1）THEN 1355
CG \(1336 \mathrm{X}=\mathrm{CX}(\mathrm{DL}): \mathrm{Y}=\mathrm{CY}(\mathrm{DL}):\) GOSUB 9øøø
MM 1337 FOR DE＝1 TO 1øØ：NEXT
EA 134 Ø CC＝CC＋1：DL＝FNNP（DL）：GOTO 1330
GC 1355 GOSUB 1450：COLOR 1，7：LOC ATE 12，29
＠s 1356 IF DL＝ø THEN \(137 \emptyset\)
PM \(136 \emptyset\) PRINT＂PLAYER＂；STR\＄（DL）
CM 1365 LOCATE 13，3ø：PRINT＂DEA LS＂；：GOTO 1375
DF \(137 \emptyset\) PRINT＂YOUR DEAL＂；

HM 1375 GOSUB \(149 \varnothing\)
DC \(1376 \mathrm{X}=\mathrm{CX}(\mathrm{DL}): \mathrm{Y}=\mathrm{CY}(\mathrm{DL}):\) GOSUB 9øロロ
LD \(138 \emptyset\) COLOR 7，1：RETURN
MD \(146 \emptyset\) COLOR 4， \(9:\) LOCATE 15，28：\(P\) RINT＂HIT RETURN＂；CHR \(\$\) （7）；
JC \(141 \emptyset\) WHILE INKEY\＄＜＞CHR\＄（13）：W END
KC 1415 GOSUB \(145 \emptyset\)
K6 1430 COLOR 7，1：RETURN
MK \(145 \emptyset\) COLOR \(\emptyset, 7:\) FOR \(I=12\) TO 16 ：LOCATE I，28：PRINT SPC（1 2）：NEXT：RETURN
H1 \(1465 \mathrm{I}=\mathrm{N}\) ： \(2+1:\) FOR \(\mathrm{J}=\varnothing\) ØO 2：LOC ATE \(X+J, Y:\) PRINT MID \(\$\)（N\＄（ J），I，2）：NEXT：RETURN
\(1015 \emptyset \emptyset\) FOR \(I=\emptyset\) TO \(3: S P(P, I)=F C(\) \(P\) AND 253）：NS（ \(P, I\) ）＝Ø：NEX T
Q1 1505 FOR \(I=\emptyset\) TO 4：S＝S \((P, I): C=\) \(C(P, I): S P(P, S)=S P(P, S)+C\) \(P(C): N S(P, S)=N S(P, S)+1\)
on 1510 IF \(\mathrm{C}=2\) THEN \(\mathrm{S}=\mathrm{S}+2: \mathrm{S}=(\mathrm{S} / 4\) \(-I N T(S / 4)) * 4: S P(P, S)=S P(\) \(P, S)+6: N S(P, S)=N S(P, S)+1\)
KN 1515 IF \(C=5\) THEN FOR \(J=\emptyset\) TO 3 \(: S P(P, J)=S P(P, J)+4: \operatorname{NEXT}\)
QM 1520 NEXT
HC 1525 SS＝Ø：FOR I＝ø TO 4：IF NS（ \(P, I)=\emptyset \operatorname{THEN} \operatorname{SP}(P, I)=\emptyset: S S\) ＝SS＋1
AF 1536 NEXT：FOR I＝ø TO 3：SP（P，I \()=S P(P, I)+S S:\) NEXT
NO 1535 IF \(P\langle>D L\) THEN \(155 \emptyset\)
OC \(154 \varnothing\) IF \(K C=5\) THEN SP \((P, K S)=S P\) （ \(\mathrm{P}, \mathrm{KS}\) ）+4
BA \(1545 \mathrm{SP}(\mathrm{P}, \mathrm{KS})=\mathrm{SP}(\mathrm{P}, \mathrm{KS})+\mathrm{CP}(\mathrm{KC})\) \(: \operatorname{NS}(P, K S)=N S(P, K S)+1\)
BE \(155 \emptyset\) RETURN
EG \(16 \emptyset \emptyset L O=\emptyset: H I=1: X P=14: Y P=11: G O\) SUB 1910
BD \(16 \emptyset 5\) IF \(A N=1\) THEN \(T P=K S\)
BK 1610 RETURN
NI 1615 LOCATE 14，9：PRINT＂loneh and＂；
HM 1616 LD＝12： \(\mathrm{HI}=13\) ：\(X P=14\) ： \(\mathrm{YP}=18\) ： GOSUB 1919：LH＝ø
DC 1618 IF AN＝13 THEN LH＝1：LOCAT E MX（BD），\(M Y\)（BD）：PRINT＂1 onehand＂；
PI 1619 LOCATE 14，9：PRINT＂
＂；
BN 1620 RETURN
JJ 1625 LH＝ø：IF SP（ \(P\), TP）＞GA（NS（P ，TP））THEN LH＝1
BA \(163 \emptyset\) RETURN
NH \(165 \emptyset\) IF \(\operatorname{FNNP}(F N N P(P))=D L\) THEN GOSUB 1625：F＝LH：GOTO 16 85
Q1 \(1654 \mathrm{~F}=\varnothing\) ：IF \(K C=2\) THEN GOTO 16 \(6 \emptyset\)
KJ 1655 IF \(\operatorname{SP}(P, K S)>O U(N S(P, K S))\) THEN \(F=1\)
CP \(166 \emptyset\) IF SP（ \(P, K S\) ）＞OB（NS（ \(P, K S\) ）） THEN \(F=1\)
KM 1665 IF \((F=\emptyset)\) OR（ \(\mathrm{P}\rangle \mathrm{FNNP}(\mathrm{DL})\) ）THEN 1685
F1 \(167 \emptyset \mathrm{SB}=\mathrm{CP}(\mathrm{KC})\) ：IF \(K C=5\) THEN \(S\) \(\mathrm{B}=3\)
CC 1675 FOR \(I=\emptyset\) TO 3：IF \(I<>K S\) TH EN IF SP \((P, I)\rangle=(S P(P, K S)\) －SB）THEN \(F=\emptyset\)
HD 1680 NEXT I
PA 1685 IF \(F=1\) THEN TP＝KS
EG 1699 RETURN
HG \(1790 \mathrm{LO}=2: \mathrm{HI}=3: \mathrm{XF}=14: \mathrm{YP}=11: \mathrm{GO}\) SUB 1910
DN \(17 \emptyset 5\) IF \(A N=3\) THEN TP＝KS
M 1710 RETURN
IN \(175 \emptyset\) IF \(S P(P, K S)>P U(N S(P, K S))\) THEN TP＝KS
DK 1755 RETURN
HA 18øØ LO＝4：HI＝8：XP＝14：YP＝11：GO SUB 1910

PO \(18 \emptyset 1\) IF AN－5＝KS THEN \(18 \emptyset \emptyset\)
GM 1895 IF AN＞4 THEN TP＝AN－5
BO 1819 RETURN
\(20185 \emptyset\) DF＝Ø：FOR \(I=\emptyset\) TO 3 ：IF \(I=K\) S THEN 1865
DE 1855 IF \(S P(P, I)-M S(N S(P, I), P S\) ）\(\angle D F\) THEN 1865
\(6 C 1869 \mathrm{DF}=\mathrm{SP}(\mathrm{P}, \mathrm{I})-\mathrm{MS}(\mathrm{NS}(\mathrm{P}, \mathrm{I}), \mathrm{PS}\) ）：\(T P=I\)
CC 1865 NEXT
KA 1879 RETURN
DN \(190 \emptyset\) FOR \(I=1\) TO \(3: F O R \quad J=\emptyset\) TO 2：LOCATE \(M X(I)+J, M Y(I): P\) RINT SPACE \(\$(8)\) ；
K0 1995 NEXT J：NEXT I
DJ 1967 RETURN
PI 1919 AN＝LO
LP \(1915 \times 1=X P: Y 1=Y P: F O R \quad I=L O T O\) HI ：COLOR 7，1：IF Iく＞AN TH EN 1925
IM \(192 \emptyset\) IF（ \(A N=L O\) ）OR（ \(\mathrm{HI}-\mathrm{LO}=1\) ） THEN COLOR 1，7：GOTO 1925 ELSE COLOR，CO（I－LO－1）
LE 1925 LOCATE X1，Y1：PRINT ME\＄（I ）；：X1＝X1＋1：NEXT
Of \(1930 \mathrm{~K} \$=I N K E Y \$\) ：IF \(K \$="\)＂THEN \(193 \emptyset\) ELSE IF \(K \$=\operatorname{CHR} \$(13)\) THEN 1955
DK \(1932 \mathrm{~K}=\mathrm{ASC}(\mathrm{RIGHT} \$(\mathrm{~K} \$, 1))\) ：IF K \(<>72\) THEN 1940
JL 1935 AN＝AN－1：IF ANKLO THEN AN ＝HI
PA 1949 IF \(K<>8 \emptyset\) THEN \(195 \emptyset\)
BM 1945 AN＝AN＋1：IF AN＞HI THEN AN \(=\mathrm{LO}\)
EG \(195 \emptyset\) GOTO 1915
O6 \(1955 \times 1=X P: Y 1=Y P: C O L O R 7,1: F 0\) R I＝LO TO HI：LOCATE X1，Y 1：PRINT BL\＄；：X1＝X1＋1：NEX T
L0． 1965 RETURN
JG 2øøø GOSUB 125ø：GOSUB 122ø： \(\mathrm{P}=\) FNNP（DL）：TP＝4：BD＝\(\emptyset: K U=\varnothing\)
LK 2 Øø5 \(X=8: Y=13: C=K C: S=K S: G O S U B\) 12gஏ：COLOR 7，1
EJ \(2 \emptyset \emptyset 7\) IF DL＜＜ø THEN LOCATE MX（ DL），MY（DL）：PRINT＂dealer

FO 2610 GOSUB 15øø
DJ 2015 IF \(P=\emptyset\) THEN GOSUB 16øø：G OTO 2ø4ø
LG 2916 IF ABS \((P-D L)<>2\) THEN 292 \(\emptyset\)
C6 2017 GOSUB 1625：IF LH＝1 THEN TP＝KS：GOTO 2625
KE 2920 GOSUB \(165 \emptyset\)
BB 2025 LOCATE \(M X(P)\) ，\(M Y(P)\)
QJ \(2 \emptyset 3 \emptyset\) COLOR 7，1：IF TP＝4 THEN \(P\) RINT＂pass＂：GOTO 2ø4ø
NH \(2 \emptyset 35\) BD＝P：PRINT＂order up＂
HE 2ø4ø \(P=F N N P(P): I F(P<\rangle D L)\) AND （TP＝4）THEN 2פ1ø
IH \(2045 \mathrm{P}=\mathrm{DL}\) ：GOSUB 15øØ：IF TP＜＞4 THEN 2195
NC 2ø5ø IF DL＝ø THEN GOSUB 17øø： GOTO \(2 \emptyset 7 \emptyset\)
ML 2655 GOSUB 1759：LOCATE MX（DL） ，MY（DL）
LB 2660 IF TP＝4 THEN PRINT＂turn ed＂：LOCATE MX（DL）+1, MY（D L）：PRINT＂down＂：GOTO 2Ø \(7 \emptyset\)
CB 2665 BD＝P：PRINT＂picked＂：LOCA TE \(M X(D L)+1, M Y(D L):\) PRINT ＂up＂
BA 2ø7ロ FOR DE＝1 TO 1øøØ：NEXT
IB 2671 IF（ \(\mathrm{BD}=\varnothing\) ）AND（TP \(\langle>4\) ）TH EN 21 Ø5
DA \(2072 \mathrm{X}=8: \mathrm{Y}=13\) ：GOSUB 9øøø：IF T \(P<>4\) THEN 2165
LN 2073 GOSUB 19øø：PS＝ø
NO 2075 P＝FNNP（P）
BA \(2 \emptyset 8 \emptyset\) IF \(P=\emptyset\) THEN GOSUB 18øø：G OTO 2ø96

DE \(2 ø 85\) GOSUB 185ø：LOCATE MX（P）， MY（P）
062086 FOR DE＝1 TO 3øø：NEXT
002088 IF TP＝4 THEN PRINT＂pa 5s＂；：GOTO 209ø
BJ \(2 ø 89 \mathrm{BD}=\mathrm{P}:\) PRINT RIGHT\＄（ME\＄（TP ＋5），8）；
EO 2990 IF \((P\rangle D L)\) AND（TP＝4）TH EN PS＝PS＋1：GOTO 2975
021 20 GOTO 21 Ø9
DD \(21 \emptyset 5 \mathrm{KU}=1\) ：IF \((\mathrm{BD}=\emptyset) \quad\) AND \((\mathrm{DL}=2\) ）THEN LH＝1：GOTO \(212 \emptyset\)
IH 2109 IF TP＝4 THEN 2140
L6 2110 IF（ \(\mathrm{LH}=1\) ）AND（ \(\mathrm{BD}\langle>\emptyset\) ）TH EN 2120
LM 2111 IF \(B D=\emptyset\) THEN GOSUB 1615： GOTO \(214 \varnothing\)
NM 2112 GOSUB 1625
LC 2115 IF LH＝ø THEN \(214 \emptyset\)
LP \(212 \emptyset\) LOCATE 1，1：PRINT＂loneha nd＂
BJ 2149 FOR DE＝1 TO 1øøø：NEXT
KB 2145 GOSUB 19øø
JN 2159 RETURN
PG 229 g \(F=-1\)
NB \(2205 \mathrm{~F}=\mathrm{F}+1\) ：IF \(\mathrm{C}(\emptyset, F)=-1\) THEN 2205
BO 2210 G＝F
OB 2215 COLOR ， \(7: Y=G * 5+4\) ：LOCATE \(21, Y:\) PRINT＂＂：LOCATE 2 2，Y：PRINT＂＂：LOCATE 23 ，Y：PRINT＂＂；
KK 2218 COLOR 10，2： \(\mathrm{Y}=\mathrm{F} * 5+4\) ：LOCAT E 21，Y：PRINT＂R＂：LOCATE 22，\(Y\) ：PRINT＂In＂LOCATE 23，Y：PRINT＂F＂；＂．＂THEN
BL \(2220 \begin{aligned} \mathrm{K} \$=I N K E Y \$: \text { IF } K \$=" " \text { THEN } \\ 222 \emptyset \text { ELSE IF } K \$=\operatorname{CHR} \$(13)\end{aligned}\) \(222 \emptyset\) ELSE IF \(K \$=C H R \$(13)\)
THEN 228ø
CD \(2223 \mathrm{~K}=\mathrm{ASC}(\mathrm{RIGHT} \$(\mathrm{~K} \$, 1)\) ）
J6 \(2225 \mathrm{G}=\mathrm{F}:\) IF \(K<>75\) THEN \(225 \emptyset\)
6． \(223 \emptyset \mathrm{~F}=\mathrm{NF}(F): \operatorname{IF} \mathrm{C}(\emptyset, F)<\emptyset\) THEN \(223 \varnothing\)
AB 2245 GOTO 2215
FF \(225 \emptyset\) IF \(K<>77\) THEN 2275
NA \(2255 \mathrm{~F}=\mathrm{NF}(F+2)\) ：IF \(\mathrm{C}(\emptyset, F)<\emptyset \mathrm{TH}\) EN 2255
PG 2270 GOTO 2215
NB 2275 GOTO 2220
MO 228ø COLOR 1，7：RETURN
HM \(23 \emptyset \emptyset\) FOR \(I=\emptyset\) TO \(4: I F \quad(S(P, I)=\) TP）AND \((C(P, I)=2)\) THEN \(C(P, I)=7\) ：GOTO 231ø
AG 2395 IF \(((S(P, I)\) AND 253\()=(T P\) AND 253））AND \((C(P, I)=2\) ）THEN \(C(P, I)=6: S(P, I)=T P\)
GJ \(231 \emptyset\) NEXT I
e1 2315 FOR \(I=\emptyset\) TO 4：FOR \(J=\emptyset\) TO 3：IF \(S(P, J)>S(P, J+1)\) THE N 2331
0 2320 IF \(S(P, J)=S(P, J+1)\) THEN IF \(C(P, J)>C(P, J+1)\) THEN 2331
BP \(2325 \mathrm{~T}=\mathrm{C}(\mathrm{P}, \mathrm{J})=\mathrm{C}(\mathrm{P}, \mathrm{J})=\mathrm{C}(\mathrm{P}, \mathrm{J}+1)\) \(: C(P, J+1)=T\)
M0 \(2330 \mathrm{~T}=\mathrm{S}(\mathrm{P}, \mathrm{J}): \mathrm{S}(\mathrm{P}, \mathrm{J})=\mathrm{S}(\mathrm{P}, \mathrm{J}+1)\) \(: S(P, J+1)=T\)
JM 2331 NEXT J：NEXT I
PS 2335 FOR I＝ø TO 4：PT（I）＝ந：IF \(S(P, I)=T P\) THEN PT \((I)=C(P\) ，I）＋1ø：GOTO 235Ø
MB 2340 IF \(C(P, I)=5\) THEN PT \((I)=9\) ：GOTO 235ø
FB 2345 IF（ \(\mathrm{S}(\mathrm{P}, \mathrm{I})<>\mathrm{S}(\mathrm{P}, \mathrm{NF}(\mathrm{I})))\) AND \((S(P, I)<>S(P, N F(I+2)\) ））THEN PT（I）\(=-1\)
6F 235ø NEXT I
LF 2355 L＝99：FOR I＝ø TO 4：IF PT（ I）\(<L\) THEN \(F=I=L=P T\)（ \(I\) ）
KK \(236 \emptyset\) NEXT I ：RETURN
DB 25øø FOR I＝ø TO \(3: F O R \quad J=\emptyset\) TO 3：NS（I，J）＝Ø：NEXT J：FOR J \(=\emptyset\) TO 4：IF \(C(I, J)<>2\) THE N 2515

PF 2505 IF \(S(I, J)=T P\) THEN \(C(I, J)\) ＝7：GOTO 2515
EJ 2510 IF \(\operatorname{ABS}(S(I, J)-T P)=2\) THEN \(C(I, J)=6: S(I, J)=T P\)
MH 2515 NS（I，S（I，J））\(=\) NS（I，S（I，J） ）＋1：NEXT J：NEXT I
BM 2529 RETURN
AH 27øø LOCATE 2，2：PRINT＂Partne \(r ?^{\prime \prime} ;: L O=9: H I=1 \emptyset: X P=2: Y P=\) 12：GOSUB \(191 \emptyset\)
（N \(27 \emptyset 5\) FC \((\varnothing)=\varnothing\) ：IF AN＝1Ø THEN FC （Ø）\(=2\)
k6 2719 LOCATE 2，2：PRINT＂Oppone nts？＂；：LO＝9：HI＝10：XP＝2：Y P＝14：G0SUB 191の
F！ 2715 FC（1）\(=\varnothing\) ：IF \(A N=1 \emptyset\) THEN FC （1）\(=2\)
OH 272 g LOCATE 2，2：PRINT＂
"; : RETURN

AH 3øøの FOR I＝ø TO 7：FOR \(J=\emptyset\) TO 3：CL（I，J）＝ø：NEXT J，I：CL 2，TP AND 253）\(=1\)
EF \(3 \varnothing \varnothing 1\) FOR \(I=\emptyset\) TO \(3: S L(I)=\varnothing:\) NEX T I
BB \(3 \emptyset \emptyset 2\) LD＝FNNP（DL）：DM＝4：TR \((\emptyset)=\emptyset\) \(:\) TR \((1)=\emptyset:\) IF LH＝ø THEN \(3 \varnothing\) 15
F0 3øø5 IF \(B D=2\) ．THEN \(X=2 \emptyset: F O R ~ I=\) Ø TO 4： \(\mathrm{Y}=\mathrm{I} * 5+3\) ：GOSUB 9øø Ø：NEXT I
EE \(3 \emptyset 1 \varnothing\) DM＝FNNP（FNNP（BD））
013011 IF \(L H=1\) THEN IF \(L D=D M\) TH EN LD＝FNNP（LD）
EM 3 315 FOR TK＝ø TO 4：P＝LD：PS＝ø： \(T L=\emptyset:\) IF \(D M=P\) THEN \(P=F N N P\) （P）
LC 3920 GOSUB 3590：WP＝P：IF LH＝1 THEN PS＝PS +1
FP \(3021 \operatorname{SL}(S(P, P C(P)))=1\)
IC 3025 IF \(S(P, P C(P))=T P\) THEN TL \(=1\)
ul \(393 \emptyset\) FOR \(I=1\) TO \(3: P=F N N P(P): I\) F P＝DM THEN \(3 \emptyset 6 \emptyset\)
AH \(3035 \mathrm{PS}=\mathrm{PS}+1\) ：GOSUB 35øø：IF TL \(=\emptyset\) THEN 3ø5 \(\varnothing\)
ED 3940 IF \(S(P, P C(P))=T P\) THEN．IF \(C(P, P C(P))>C(W P, P C(W \dot{P}))\) THEN WP＝P
PM 3045 GOTO \(3 \emptyset 60\)
FC \(395 \emptyset\) IF \(S(P, P C(P))=T P\) THEN WP \(=\mathrm{F}: \mathrm{TL}=1:\) GOTO 3ø6ø
BJ 3055 IF \(S(P, P C(P))=S(W P, P C(W P\) ））THEN IF \(C(P, F C(P))>C(\) WP，PC（WP））THEN WP＝P
AE 3960 NEXT：FOR DE＝1 TO 2øø：NEX T
EH 3065 COLOR 4， \(\boldsymbol{0}\) ：LOCATE PX（WP）， PY（WP）+2
of 3670 PRINT＂M＂；CD\＄；CL\＄；＂』＂；N L\＄；CD\＄；＂J＂；CD\＄；CL\＄；＂＂M＂；
FOR DE＝1＂TO 2øøø：NEXT：LD ＝WP：WT＝WP AND 253：TR（WT） \(=T R(W T)+1\)
103672 COLOR \(\emptyset, 4: X=21: Y=31+6 * W T\) ：\(N=\) TR（WT）：GOSUB 1465
PA \(3 \emptyset 75\) FOR \(I=\emptyset\) TO \(3: X=P X(I): Y=P\) Y（I）：GOSUE 9øøø：C（I，PC（I ））＝－1：NEXT I，TK
NB 3078 LOCATE 1，1：PRINT＂
FA \(3 \emptyset 8 \emptyset \mathrm{BT}=\mathrm{BD}\) AND 253：LOCATE 15， 28
CA 3685 COLOR ©，4：IF TR（BT）＜3 TH EN 3108
NH 3086 IF TR（BT）＜ 5 THEN 3097
\(\mathrm{KD} 3 \emptyset 87 \mathrm{PW}(\mathrm{BT})=\mathrm{PW}(\mathrm{BT})+2+\mathrm{LH} * 2\)
CN \(3 \varnothing 9 \emptyset\) IF \(B T=\emptyset\) THEN PRINT＂YO \(U\) WON＂：LOCATE 16，28：P RINT＂ALL TRICKS＂：GOTO 32øø
BD 3695 IF BT＝1 THEN PRINT＂COMP UTER WON＂：LOCATE 16，28：P RINT＂ALL TRICKS＂：GOTO 3260

EJ \(3 \varnothing 97\) PW（BT）\(=\) PW \((B T)+1\)
PB \(31 \varnothing \varnothing\) IF TR \((\varnothing)>2\) THEN PRINT＂\(Y\) OU WON HAND＂；：GOTO 32øø
BA 3105 IF TR（1）＞2 THEN PRINT＂ COMPUTER＂：LOCATE 16，2 8：PRINT＂WON HAND＂：G वTO 32øø
IC \(3108 \mathrm{PW}(1-\mathrm{BT})=\mathrm{PW}(1-\mathrm{BT})+2\)
JK \(311 \varnothing\) IF TR（ \(\varnothing\) ）＜ 3 THEN PRINT＂\(Y\) OU＇VE BEEN＂：LOCATE 16，2 8：PRINT＂EUCHRED！＂：G OTO 32øø
FO 3115 IF TR（1）＜3 THEN PRINT COMPUTER＂：LOCATE 16，2 8：PRINT＂EUCHRED！＂
BC 32øø FOR DE＝1 TO 2øøø：NEXT
BF 3265 RETURN
DK \(35 ø \varnothing\) IF \(P>\emptyset\) THEN 3599
HD \(35 ø 2\) COLOR 14，\(\varnothing\) ：LOCATE 15，28： PRINT＂YOUR PLAY＂；：GO SUB 22øø
CP \(35 ø 3\) LS＝S（LD，PC（LD））：IF（PS＝ø ）\(O R(S(P, F)=L S)\) OR（NS（ P，（S）\(=\varnothing\) ）THEN \(35 \varnothing 7\)
DB 3504 GOSUB 2215：GOTO 3503
ह1 35 ฮ5 \(\mathrm{X}=2 \varnothing\) ： \(\mathrm{Y}=\mathrm{F} * 5+3\) ：GOSUB 9 9øø： GOTO \(353 \emptyset\)
KJ \(35 \emptyset 7\) COLOR 7：LOCATE 15，28：PRI NT＂
EE \(35 ø 8 \quad X=2 \varnothing: Y=F * 5+3\) ：GOSUB 9øøの： G0TO 353 ø
PB 3599 IF TK＜5 THEN 3515
KB 351ø FOR K＝ø TO 4：IF C（P，J）＞－ 1 THEN \(\mathrm{F}=\mathrm{I}\)
J0 3512 NEXT K：GOTO \(353 \varnothing\)
HC 3515 ON（PS +1 ）GOSUB 4øøø， \(41 \varnothing\) Ø，42øø，42øø
JD \(3530 \mathrm{PC}(\mathrm{P})=\mathrm{F}: \mathrm{Y}=\mathrm{PY}(\mathrm{P}): \mathrm{X}=\mathrm{PX}(\mathrm{P})\) ： \(C=C(P, F): S=S(P, F)\) ：GOSUB \(12 \varnothing \square\)
OC \(3535 \mathrm{NS}(P, S(P, F))=N S(P, S(P, F)\) ）－1： \(\operatorname{CL}(C(P, F), S(P, F))=1\)
BD \(354 \varnothing\) RETURN
\(6 E 4 \emptyset \varnothing \varnothing\) IF NS（P，TP）＜\(>5-T K\) THEN 4 015
CC 4 øø5 SP＝TP：G0SUB 5200：IF F＝1 THEN GOTO 5150
PC \(4 \varnothing 10\) GOTO \(516 \emptyset\)
M0 4015 IF（ \(L H<>1\) ）OR（ \(\mathrm{BD}\langle>\mathrm{P}\) ）TH EN 4 Ø3 1
JA \(4 ø 2 \emptyset\) IF NS \((P, T P)>\varnothing\) THEN \(S P=T P\) ：GOTO 515ø
PA \(4 ø 25\) GOTO 5ø5ø
LN \(4 ø 3 \varnothing\) GOSUB 5øøø：IF（ \(F=1\) ）AND （ABS（BD－P）\(=2\) ）THEN SP＝TP ：GOTO 515ø
EM 4035 GOSUB 5250：IF（F＜＞1）OR （P＜＞BD）THEN 5ø5ø
L6 4ø4ø GOSUB S2のø：IF I＝1 THEN S P＝TP：GOTO \(515 \emptyset\)
PE 4645 IF NS（P，TP）＞2 THEN SP＝TP ：GOTO 516』
OF \(4 ø 5 \emptyset\) GOTO 5ø5ø
PP 41 øø IF NS（P，S（LD，PC（LD）））＝ø THEN 4115
IM \(41 \varnothing 5\) GOSUB 5300：SP＝S（LD，PC（LD 1）：IF \(F=1\) THEN 5159
PE 4110 GOTO \(516 \varnothing\)
BG 4115 IF NS（P，TP）\(=5-\) TK THEN SP ＝TP：GOTO \(516 \mathscr{}\)
6A \(412 \emptyset\) IF \(N S(P, T P)=\varnothing\) THEN \(51 ø \emptyset\)
Cl 4125 IF \(C(L D, P C(L D))=5\) THEN \(S\) \(\mathrm{P}=\mathrm{TP}:\) GOTO \(516 \varnothing\)
KB \(413 \emptyset\) IF BD＜＞P THEN SP＝TP：GOTO \(516 \varnothing\)
an 4135 gosub 525g：IF \(F=1\) THEN \(S\) P＝TP：GOTO 5160
LP 414の GOTO 51øø
GP \(42 ø \varnothing\) IF NS（P，S（LD，PC（LD）））＝ø THEN 4235
KB 4201 SP＝S（LD，PC（LD））
004205 IF（SP＜＞TP）AND（TL＝1）T HEN 5160
NE 4210 IF ABS（WP－P）＜＞2 THEN 422

LH 4215 GOSUB 53øø：IF F＝1 THEN G OSUB 535ø：IF F＝ø THEN 51 \(5 \varnothing\)
QJ 4220 GOTO 5160
KD 4225 GOSUB 5309：IF F＝1 THEN 5 \(15 \emptyset\)
an 4230 GOTO \(516 \varnothing\)
EC 4235 IF NS（ \(P\), TP）＜ 5 －TK THEN 42 \(7 \varnothing\)
FN 4245 SP＝TP：IF ABS（WP－P）\(=2\) THE N 5160
If 4250 IF TL＝ø THEN \(516 \emptyset\)
HL 4255 GOSUB S300：IF F＝1 THEN 5 \(40 \varnothing\)
AF 4260 GOTO 5169
HB \(427 \emptyset\) IF NS（P，TP）\(=\varnothing\) THEN 5100
604275 IF ABS（WP－P）＜＞2 THEN 431 ø
IM 4280 IF（ \(T L=1\) ）OR（ \(\mathrm{PS}=3\) ）THEN \(51 ø \square\)
BN 4285 IF C（WP，PC（WP））\(=5\) THEN 5 1 1ø
JK \(429 \varnothing\) IF C（WP，PC（WP））＜ 4 THEN S P＝TP：GOTO \(516 \emptyset\)
0F \(43 \varnothing \varnothing\) GOSUB 525 ：IF \(F=1\) THEN \(S\) P＝TP：GOTO 5160
ML 43 ต5 GOTO \(51 ø \emptyset\)
JC \(431 \varnothing\) IF TL＝ø THEN SP＝TP：GOTO 5160
EB 4315 GOSUB 53øø：IF F＝1 THEN \(S\) P＝TP：GOTO 54øø
LN 4329 GOTO 5190
PA \(5 \emptyset \emptyset \emptyset\) F＝ø：FOR \(A=\emptyset\) TO 4：IF C（P， A）\(>5\) THEN \(F=1\)
Eb 5005 NEXT A：RETURN
BA \(5 ø 5 \varnothing \mathrm{~F}=-1\) ：FOR \(\mathrm{A}=\varnothing\) TO 4：IF（SL \((S(P, A))=\varnothing)\) AND（ \(S(P, A)<\) ＞TP）THEN IF \(C(P, A)=5 \mathrm{TH}\) EN F＝A
KH \(5 ø 55\) NEXT A：IF F＞－1 THEN \(567 \varnothing\)
CF 5øbø LC＝－1：FOR A＝ø TO 4：IF S（ \(P, A)\langle>\) TP THEN IF \(C(P, A)>\) LC THEN LC＝C \((P, A): F=A\)
CB 5065 NEXT A
BE 5 67ø RETURN
D0 51 פø IF NS（P，TP）＞の THEN 5125
kN 5105 SP＝－1：FOR \(A=\varnothing\) TO 4
NM 5110 IF \(\mathrm{S}(\mathrm{P}, \mathrm{A})<>\) TP THEN IF（ C \((P, A)=5)\) AND（NS \((P, S(P, A\) ））\(>1\) ）THEN \(\mathrm{SP}=\mathrm{S}(\mathrm{P}, \mathrm{A})\)
JD 5115 NEXT A：IF SP＞－1 THEN 516 ø
BC 5120 GOTO \(518 \square\)
If \(5125 \mathrm{~V}=4\) ：\(F=-1\) ：FOR \(A=\emptyset\) TO 4
N 5126 IF \(S(P, A)=T P\) THEN 5135
MF 5130 IF（ \(N S(P, S(P, A))<>1)\) OR （ \(\operatorname{SL}(\mathrm{S}(\mathrm{P}, \mathrm{A}))=1)\) THEN 5135
IA 5131 IF（C（ \(P, A\) ）＞＝ø）AND（C（P， \(A)(V)\) THEN \(V=C(P, A): F=A\)
NJ 5135 NEXT A：IF F＝－1 THEN 5189
8N \(514 \emptyset\) RETURN
IE \(515 \varnothing\) IF PS＝3 THEN \(540 \varnothing\)
MG 5151 V＝－1：FOR A＝ø TO 4：IF S（P ，\(A)=S P\) THEN \(\operatorname{IF} C(P, A)>V\) THEN \(V=C(P, A): F=A\)
FC 5155 NEXT A：RETURN
PD \(516 \emptyset V=19: F O R A=\emptyset\) TO 4
I0 5161 IF \(S(P, A)=S P\) THEN IF（C \((\) \(P, A)\rangle=\varnothing)\) AND \((C(P, A)<V)\) THEN \(V=C(P, A): F=A\)
fF 5165 NEXT A：RETURN
\(00518 \varnothing \mathrm{~V}=1 \varnothing\) ：FOR \(A=\emptyset\) TO 4：IF S（P ，A）\(\langle>\) TP THEN IF \(C(P, A)\rangle-\) 1 THEN IF \(C(F, A)<V\) THEN \(V=C(P, A): F=A\)
6L 5185 NEXT A：RETURN
PH \(52 \varnothing \emptyset \mathrm{HT}=8\) ： \(\mathrm{F}=\varnothing\)
CD \(5205 \mathrm{HT}=\mathrm{HT}-1\) ：IF \(\mathrm{HT}>\varnothing\) THEN IF CL（HT，TP）\(=1\) THEN 5205
EJ 5210 IF HT＜g THEN 5240
AC 5215 FOR \(A=\varnothing\) TO 4：IF \(S(P, A)=T\) \(P\) THEN IF \(C(P, A)=H T\) THEN \(\mathrm{F}=1\)

AF 5220 NEXT A
BP \(524 \varnothing\) RETURN
D6 \(525 \emptyset \mathrm{~F}=1\) ：FOR \(\mathrm{A}=\emptyset\) TO 4：IF C（P， A）＞－1 THEN IF \((S(P, A)<>\) T P）AND（ \(C(P, A)(5)\) THEN F \(=\varnothing\)
FE 5255 NEXT A：RETURN
ह1 53øø \(F=\emptyset: F O R A=\emptyset\) TO 4：IF S（P， A）\(=S(W P, P C(W P))\) THEN IF \(C(P, A)>C(W P, P C(W P))\) THEN \(\mathrm{F}=1\)
EH 53ø5 NEXT A：RETURN
CA \(535 \emptyset\) F＝ø：FOR \(A=\emptyset\) TO 4 ：IF S（P， \(A)=S(W P, P C(W P))\) THEN IF \(C(P, A)-C(W P, P C(W P))=1 T H\) EN \(\mathrm{F}=1\)
FG 5355 NEXT A：RETURN
（1）540ø D＝19：FOR \(A=\emptyset\) TO 4
PH 5405 IF \(S(P, A)=S(W P, P C(W P)) T\) HEN \(E=C(P, A)-C(W P, P C(W P)\) ）：IF（ \(\mathrm{E}<\mathrm{D}\) ）AND（ \(\mathrm{E}>\varnothing\) ）THE \(N\) \(D=E: F=A\)
6！ 5410 NEXT A：RETURN
FL \(8100 \mathrm{~K}=((\mathrm{J}+1) / 4-\mathrm{INT}((\mathrm{J}+1) / 4))\) ＊4：RETURN
189000 COLOR ，1：LOCATE \(X, Y:\) PRIN T T\＄NL\＄TकNL \(\$ T \$ N L \$ T \$ N L \$ T \$\) ；：RETURN

\section*{Program 6：Amiga Euchre}

\section*{Euchre： 4}

DEFINT a－z：DEFSNG r，g，b，cy：RANDO MIZE TIMER
SCREEN 1，320，2ø0，4，1：WINDOW 3，＂＂ ，（ 0,0\()-(311,186), 16,1\) ：WINDOW OUT PUT 3：COLOR 3，04
RESTORE PaLetteData：FOR i＝ø TO 1 5：READ \(\mathrm{r}, \mathrm{g}, \mathrm{b}:\) PALETTE \(\mathrm{i}, \mathrm{r}, \mathrm{g}, \mathrm{b}:\) NEX T4
PaLetteData：
DATA \(.2, .2, .9, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, .8, \varnothing, \varnothing\) \(\stackrel{4}{4}\)
DATA ． \(8, .8, .8, \varnothing, 0,1,1,1,0, .93, .9\) 3， 04
DATA ． \(87, .87, \varnothing, \varnothing, .8, \varnothing, 0,1, \varnothing, 1,1\) ， 04
DATA \(.3, .3, .3, .5, .5, .5, .6, .6, .6\) ， ．7，．7，．74
GOSUB Initialize：GOSUB Display：G OSUB PLayers：GOSUB PickDeaLer 4 NewHand：
GOSUB Bidding 4
IF \(\mathrm{tp}=4\) THEN 4
COLOR \(\emptyset, 4\) ：LOCATE 12，29：PRINT＂NO BIDDERS＂\({ }^{4}\)
LOCATE 13，28：PRINT＂HAND DUMPED ＂4
GOSUB WaitKey： \(\mathrm{x}=2 \varnothing\) ：FOR \(\mathrm{i}=\varnothing\) TO 4： \(\mathrm{y}=\mathrm{i} * 5+2\) ：GOSUB EraseCard：NEXT \(~<~\)
\(\mathrm{dL}=\mathrm{FNnp}(\mathrm{dL}): \mathrm{x}=8: \mathrm{y}=12\) ：GOSUB Erase Card4
COLOR ，\(\varnothing:\) GOSUB CLRMess：GOTO NewH and 4
END IF：COLOR 5，4：LOCATE 12，29：PR INT＂TRUMP ：＂ 4
LOCATE 13，29：PRINT＂BIDDER：＂； IF bd＝ø THEN 4
PRINT＂you＂； 4
ELSE4
PRINT＂p＂；RIGHTS（STRS（bd），1）\＆
END IF：PUT \((288,88), \operatorname{sb}(\varnothing, t p), \operatorname{PSET}\)
IF ku＜＞め THEN 4
IF \(\mathrm{dL}<=\emptyset\) THEN 4
COLOR 11，2：LOCATE 15，28：PRINT＂P ICK DISCARD＂ 4
GOSUB UPickCard：COLOR ，4：LOCATE 15，28：PRINT＂

\section*{ELSE 4}

GOSUB UDiscard
END \(I F: c(d L, f)=k c: s(d L, f)=k s: G O S\)

UB Puthand
END IF: \(\mathrm{x}=8\) : \(\mathrm{y}=12\) : GOSUB EraseCard 4 GOSUB ResetHand:GOSUB PLayHand:C OLOR 0,44
IF \(\operatorname{NOT}((\operatorname{pw}(\varnothing)>9)\) OR \((\mathrm{pw}(1)>9)) \mathrm{T}\) HEN 4
\(\mathrm{x}=21: \mathrm{y}=31: \mathrm{n}=\varnothing\) : GOSUB PrintScore 4 \(\mathrm{x}=21: \mathrm{y}=37: \mathrm{n}=\varnothing\) : GOSUB PrintScore 4 \(x=7: y=31: n=p w(\varnothing):\) GOSUB PrintScor e4
\(x=7: y=37: n=p w(1):\) GOSUB PrintScor e4
dL=FNnp(dL):GOSUB ExitLoopPD:GOT O NewHand 4
END IF: wt= \(\varnothing\) :IF \(\mathrm{pw}(1)>=1 \emptyset\) THEN wt \(=14\)
\(\mathrm{x}=7: \mathrm{y}=28+\mathrm{wt}\) * \(6: \mathrm{n}=1\) : GOSUB PrintSco res
\(x=7: y=31+w t * 6: n=p w(w t)-1 \varnothing:\) GOSUB PrintScore 4
FOR de=1 TO 2øøø:NEXT 4
GOSUB CLearWindow: COLOR 11, 3: LOC ATE 13,28:PRINT " YOU"; 4
IF wt=ø THEN PRINT " WIN! " \(\&\)
IF wt=1 THEN PRINT " LOSE " 4
COLOR 4, \(:\) LOCATE 2,2:PRINT "Play again?"4
Lo=11: \(\mathrm{hi}=12: \mathrm{xp}=2: y p=14\) :GOSUB SeL ection 4
SCREEN CLOSE 1:WINDOW CLOSE 34 IF an=11 THEN RUN 4

\section*{END 4}

4
DispLay: 4
GOSUB InitShapes:WIDTH 40:CLS:CO LOR , 04
\(\operatorname{LINE}(\varnothing, \varnothing)-(3,3), 2, \mathrm{bf}: \operatorname{GET}(\varnothing, \varnothing)-(3\) , 3), en 4
\(\operatorname{LINE}(\varnothing, \varnothing)-(3,3), 11, \mathrm{bf}: \operatorname{GET}(\varnothing, \varnothing)-\) ( 3,3), nb4
\(\operatorname{GET}(4,4)-(4 \emptyset, 44)\), ec \(: \operatorname{LINE}(4,4)-(4\) \(\emptyset, 44), 4, \mathrm{bf} 4\)
\(\operatorname{GET}(4,4)-(4 \varnothing, 44), \mathrm{cb}: \operatorname{GET}(4,4)-(17\) ,21), eh: CLS 4
FOR \(i=\emptyset\) TO \(3: j=i * 2: \operatorname{LINE}(216+j, j)\) \(-(311-j, 23-j), i+12, b f: N E X T \nleftarrow\)
COLOR 2, 4:FOR i=ø TO 6 STEP 2:LI NE \((224,7+i)-(3 \oslash 3,7+i): \operatorname{NEXT}^{4}\)
LOCATE 2,31:PRINT "EUCHRE":LINE(
\(224,15)-(303,15) 4\)
COLOR 1 \(\varnothing, 2:\) LOCATE 4,28:PRINT " POINTS
LOCATE 18,28:PRINT " TRICKS
" 4
COLOR 9,2:LOCATE 5,28:PRINT " YO U COMP " 4
LOCATE 19,28:PRINT " YOU COMP " 4
FOR \(i=\emptyset\) TO 4:LOCATE 6+i, 28:PRINT w\$: LOCATE \(2 \emptyset+i, 28:\) PRINT \(w \$ ;:\) NEXT
\(\operatorname{LINE}(216,4 \varnothing)-(311,4 \varnothing), 9: \operatorname{LINE}(216\) ,152)-(311,152),94
\(\operatorname{LINE}(262,32)-(262,79), 9: \operatorname{LINE}(262\)
, 144)-(262,191),94
COLOR , 4:LOCATE 11, 28:PRINT w\$:L OCATE 17,28:PRINT w\$:GOSUB CLear Window 4
FOR \(i=\emptyset\) TO \(3: \operatorname{LINE}(216,8 \emptyset+i)-(311\) \(, 80+i), i+124\)
LINE ( \(216,132+i)-(311,132+i), 15-i\) :NEXT 4
\(\mathrm{n}=\varnothing: \mathrm{x}=7: \mathrm{y}=31\) : GOSUB PrintScore \(: \mathrm{y}=\) 37: GOSUB PrintScore 4
\(x=21: y=31\) : GOSUB PrintScore: \(y=37\) : GOSUB PrintScore 4
COLOR 4, Ø: RETURN 4
4
InitiaLize: 4
DIM \(\mathrm{c}(3,4), \mathrm{s}(3,4), \mathrm{ms}(6,3), \mathrm{cL}(7,3\) ), dc(23), ds \((23), \mathrm{sp}(3,5), \mathrm{ns}(3,5)\), mes (15) \&
DIM en(19), nb(19), eh (75), hb (75), \(\mathrm{ec}(507), \operatorname{cb}(507), \operatorname{sb}(30,3) 4\)

DEF \(\operatorname{FNnp}(x)=((x+1) / 4-\operatorname{INT}((x+1) / 4\) )) * 44
bL \(\$=\operatorname{SPACE}(10): w \$=\operatorname{SPACE}(12): c \$=\) "9 1 9 J Q K A J J 910 J Q K A J
Ј"4
FOR \(i=\emptyset\) TO \(3:\) READ \(C O(i):\) NEXT:DAT
A \(3,2,3,24\)
FOR \(i=\emptyset\) TO 6:READ \(n f(i): N E X T: D A T\) A \(4,0,1,2,3,4,04\)
FOR \(j=\emptyset\) TO 3:FOR \(i=\emptyset\) TO \(5: d c(j * 6\) \(+i)=i: d s(j * 6+i)=j:\) NEXT \(i, j \nless\)
FOR i=ø TO 3:READ px(i), py(i):NE XT: DATA \(14,12,8,7,2,12,8,174\)
FOR \(i=\emptyset\) TO 3:READ cx(i), cy(i):NE XT: DATA \(18,11,11,4,4,11,11,184\)
FOR \(i=\emptyset\) TO 5:READ \(c p(i): N E X T: D A T\) A \(1,1,8,1,2,-14\)
FOR \(i=\emptyset\) TO 13: READ meS(i):NEXT 4 DATA "pass ","order up","pass ","pick up"," PASS ","diamonds

DATA "clubs ","hearts ","spad es ","normal ","aggressive", "yes", "no ", "yes" 4
FOR i=ø TO 3: READ mx (i), my (i) : NE XT: DATA \(1,1,8,3,2,11,8,194\)
FOR i=Ø TO 6:READ ob(i),ou(i), PU (i), ms (i, Ø), ms (i,1), ms (i, 2), ms (i , 3), ga(i): NEXT 4
DATA 99,99,99,99,99,99,99,994
DATA \(99,99,99,99,99,99,99,994\)
DATA \(99,99,14,14,14,13,13,994\)
DATA \(20,12,8,8,8,8,7,194\)
DATA \(14, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 164\)
DATA \(\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 144\)
DATA \(\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing 4\)
FOR \(i=\emptyset\) TO 9:READ pt\&(i):NEXT 4
DATA \(16768479 \&, 13421772 \&, 1671982\) \(3 \&, 16764879 \&, 13434333 \& 4\)
DATA \(16764703 \&, 16768799 \&, 1342179\)
1\&,16768991\&,13422559\& \&
RETURN 4
PutCard: 4
IF ( \(s=t p\) ) AND ( \(c=6\) ) THEN \(s=s+2: s\) \(=(s / 4-\operatorname{INT}(s / 4)) * 44\)
\(\mathrm{NC}=\mathrm{c}^{*} 2+1\) : COLOR \(\mathrm{co}(\mathrm{s}), 4: \mathrm{px}=(\mathrm{y}-1)\) * \(8-2\) : \(p y=(x-1) * 8-14\)
\(\operatorname{PUT}(p x, p y), c b, \operatorname{PSET}:: p x=p x+1: p y=p\) \(\mathrm{y}+2: \operatorname{PUT}(\mathrm{px}, \mathrm{py}+8), \mathrm{sb}(\varnothing, \mathrm{s}), \operatorname{PSET} 4\)
\(p x=p x+2: p y=p y-1: \operatorname{PUT}(p x+22, p y+21)\) \(, \operatorname{sb}(\theta, s), \operatorname{PSET} 4\)
LOCATE \(\mathrm{x}, \mathrm{y}:\) PRINT \(\operatorname{MID}(\mathrm{c} \$, \mathrm{NC}, 2): \mathrm{L}\) OCATE \(\mathrm{x}+4, \mathrm{Y}+2\) : PRINT MIDS ( \(\mathrm{c} \$, \mathrm{NC}+1\) 6,2); \({ }^{4}\)
RETURN 4
4
PutHand: FOR \(u=\emptyset\) TO \(4: x=2 \varnothing: y=u * 5\) \(+24\)
\(\mathrm{c}=\mathrm{c}(\varnothing, \mathrm{u}): \mathrm{s}=\mathrm{s}(\varnothing, \mathrm{u}):\) GOSUB Putcard: NEXT: RETURN 4
4
DeaLCards: FOR \(i=\emptyset\) TO \(23: j=I N T(R\) \(N D(1) * 24): t=\operatorname{dc}(i): d c(i)=\operatorname{dc}(j): d c\) ( \(j\) ) \(=\mathrm{t} 4\)
\(t=d s(i): d s(i)=d s(j): d s(j)=t: N E X T\) :FOR \(j=\emptyset\) TO 3:FOR \(i=\emptyset\) TO 44
\(c(j, i)=d c(j * 5+i): s(j, i)=d s(j * 5+i\) ): NEXT \(i, j: k c=d c(2 \theta): k s=d s(2 \theta): R\) ETURN4
4
PickDeaLer: 4
COLOR Ø, 4: LOCATE 13, 28:PRINT "FI
RST BLACK":LOCATE 14,29:PRINT " JACK DEALS" 4
GOSUB DeaLCards: \(\mathrm{dL}=\varnothing\) : cc \(=\varnothing 4\)
LoopPD: \(c=d c(c c): s=d s(c c): x=c x(d\) L) : \(y=c y(d L)\) : GOSUB PutCard

FOR de=1 TO 5øø:NEXT \&
IF \((\mathrm{dc}(\mathrm{cc})=2)\) AND ( \((\mathrm{ds}(\mathrm{cc})\) AND 2 53) =1) THEN ExitLoopPD4
\(\mathrm{x}=\mathrm{cx}(\mathrm{dL}): \mathrm{y}=\mathrm{cy}(\mathrm{dL})\) : GOSUB EraseCar d 4
FOR de=1 TO 1øø:NEXT
\(\mathrm{cc}=\mathrm{cc}+1: \mathrm{dL}=\mathrm{FNnp}(\mathrm{dL}):\) GOTO LOOpPD4 ExitLoopPD: GOSUB CLearWindow: CO LOR \(\varnothing, 4\) : LOCATE 12,294
IF \(\mathrm{dL}<>\) Ø THEN 4
PRINT ". PLAYER"; STR\$ (dL) \&
LOCATE 13,30:PRINT " DEALS"; 4
ELSE4
PRINT "YOUR DEAL"; 4
END IF:GOSUB WaitKey \({ }^{4}\)
\(x=c x(d L): y=c y(d L): G O S U B\) EraseCar d:COLOR 7,1:RETURN 4

WaitKey: COLOR 3,2:LOCATE 15,28: PRINT " HIT RETURN ":SOUND 2øøø, 64
WHILE INKEYS < > CHRS (13):WEND:GOSU B CLearWindow: COLOR 7,1:RETURN4 4
CLearWindow: COLOR , 4:FOR \(i=12 \mathrm{~T}\) O 16:LOCATE i, 28:PRINT w\$:NEXT:R ETURN 4

PrintScore: 4
\(t \mathrm{x}=(\mathrm{y}-1) \star 8: \mathrm{py}=(\mathrm{x}-1) * 8: \mathrm{bt} \&=1: \mathrm{i} \&=\mathrm{p}\) t\& \((n) 4\)
FOR \(q=\emptyset\) TO 5:FOR \(p=\emptyset\) TO 3:px=tx+ \(p^{*} 44\)
IF (bt\& AND i\&) <> \(\quad\) THEN PUT \((p x, p\) \(y), n b, P S E T\) ELSE PUT(px,py), en, PS ET4
\(\mathrm{px}=\mathrm{tx}+\mathrm{p} * 4: \mathrm{bt} \&=\mathrm{bt} \& * 2: \mathrm{NEXT}\) p:py=py +4 : NEXT: RETURN \(\leqslant\)

SetPoints: 4
FOR \(i=\emptyset\) TO \(3: s p(p, i)=f c(p\) AND 25 3): ns \((p, i)=\emptyset: \operatorname{NEXT} 4\)

FOR \(i=\emptyset\) TO \(4: s=s(p, i): c=c(p, i): s\) \(p(p, s)=s p(p, s)+c p(c): n s(p, s)=n s(\) \(\mathrm{p}, \mathrm{s})+14\)
IF \(c=2\) THEN \(s=s+2: s=(s / 4-\) INT \((\mathrm{s} / 4\) )) * \(4: \operatorname{sp}(p, s)=s p(p, s)+6: n s(p, s)=n\) \(s(p, s)+14\)
IF \(\mathrm{c}=5\) THEN 4
FOR \(j=\emptyset\) TO \(3: \operatorname{sp}(p, j)=\operatorname{sp}(p, j)+4: N\) EXT 4
END IF:NEXT:ss= \(\varnothing: F O R\) i= \(\emptyset ~ T O ~ 4: I F ~\) \(\mathrm{ns}(\mathrm{p}, \mathrm{i})=\emptyset\) THEN \(\mathrm{sp}(\mathrm{p}, \mathrm{i})=\emptyset: \mathrm{ss}=\mathrm{ss}+1\)

NEXT:FOR \(i=\emptyset\) TO \(3: s p(p, i)=s p(p, i\) )+ss:NEXT 4
IF \(\mathrm{p}=\mathrm{dL}\) THEN 4
IF \(k c=5\) THEN \(s p(p, k s)=s p(p, k s)+4\)
\(s p(p, k s)=s p(p, k s)+c p(k c): n s(p, k s\)
\()=n s(p, k s)+14\)
END IF: RETURN 4
4
UOrderUp: Lo= \(\varnothing: h i=1: x p=14: y p=1 \varnothing\) : GOSUB SeLection 4
IF an=1 THEN tp=ks 4
RETURN 4
ULoneHand: LOCATE 14,9:PRINT "Lo nehand"; 4
Lo=12:hi=13: \(x p=14: y p=18:\) GOSUB Se Lection: Lh=ø4
IF \(a n=13\) THEN Lh=1:LOCATE mx(bd) ,my(bd): PRINT "Lonehand"; 4
LOCATE 14,9:PRINT
RETURN
CGoALone: \(L h=\emptyset: I F \operatorname{sp}(p, t p)>g a(n s\) ( \(p, t p\) )) THEN Lh=1 4
RETURN 4
CorderUp: IF \(\operatorname{FNnp}(\operatorname{FNnp}(p))=\mathrm{dL} \mathrm{TH}\) EN GOSUB CGoALone: \(\mathrm{f}=\mathrm{Lh}:\) GOTO Exit

\section*{COU4}
\(\mathrm{f}=\varnothing\) : \(\mathrm{IF} \mathrm{kc} \ll 2\) THEN \(\langle\)
IF \(s p(p, k s)>o u(n s(p, k s))\) THEN \(f=\)

\section*{14}

END IF:IF \(s p(p, k s)>o b(n s(p, k s))\) THEN \(\mathrm{f}=1 \lessdot\)
IF \((f=\varnothing)\) OR ( \(p<>\) FNnp (dL)) THEN E
xitCOU 4
\(\mathrm{sb}=\mathrm{cp}(\mathrm{kc}):\) IF \(\mathrm{kc}=5\) THEN \(\mathrm{sb}=34\) FOR \(i=\emptyset\) TO \(3: I F i<>k s\) THEN IF \(s p\) \((p, i)>=(s p(p, k s)-s b)\) THEN \(f=\emptyset 孔\) NEXT 4
ExitCOU: IF \(f=1\) THEN \(t p=k s ~ \&\) RETURN 4
4
UPickUp: Lo=2:hi=3:xp=14:yp=10:G OSUB SeLection 4
IF an=3 THEN tp=ks 4
RETURN 4
CPickUp: IF \(\operatorname{sp}(p, k s)>\operatorname{PU}(\mathrm{ns}(\mathrm{p}, \mathrm{ks})\) ) THEN \(\mathrm{tp}=\mathrm{ks} \stackrel{1}{ }\)
RETURN 4
4
UMake: Lo=4:hi=8:xp=14:yp=10:GOS UB SeLection 4
IF an \(-5=\mathrm{ks}\) THEN UMake 4
IF an>4 THEN tp=an-54
RETURN 4
4
CMake: df=Ø:FOR \(i=\varnothing\) TO 34
IF \(i<>k s\) THEN 4
IF \(s p(p, i)-m s(n s(p, i), p s)>=d f \quad T H\) EN \(d f=s p(p, i)-m s(n s(p, i), p s): t p=\) i 4
END IF: NEXT 4
RETURN 4
4
CLRMESS: FOR \(i=1\) TO 3:FOR \(j=\varnothing\) TO 2:LOCATE mx(i) \(+j\), my (i): PRINT SPA CES(8); 4
NEXT j,i:RETURN 4
Selection: 4
an=LO: k\$="":WHILE k\$<>CHRS (13) 4 \(x \mathrm{l}=\mathrm{xp}: \mathrm{yl}=\mathrm{yp}: F O R \mathrm{i}=\mathrm{Lo}\) TO hi:COLOR 4,04
IF \(i=a n\) THEN \(\leqslant\)
IF (an=Lo) OR (hi-Lo=1) THEN COL OR \(\emptyset, 4\) ELSE COLOR , cO (i-LO-1) \(\leftarrow\) END IF:LOCATE \(x l, y l: P R I N T\) mes (i) ; : xl=xl+1:NEXT 4
WaitS: \(\mathrm{k} \$=\) INKEY \(:\) IF \(\mathrm{k} \$=" \mathrm{"}\) THEN W aits 4
IF \(\mathrm{k} \$=\mathrm{CHR} \$(28)\) THEN 4
an=an-l:IF an<Lo THEN an=hi 4
ELSEIF K\$=CHRS (29) THEN \&
an=an+1:IF an>hi THEN an=LO4
END IF:WEND: \(\mathrm{xl}=\mathrm{xp}: \mathrm{yl}=\mathrm{yp}:\) COLOR 4, 04
FOR i=Lo TO hi:LOCATE \(x l, y l: P R I N\) T bLS;:xl=xl+1:NEXT 4
RETURN 4
Bidding: 4
GOSUB DeaLCards:GOSUB PutHand: \(p=\) FNnp(dL) : tp=4:bd= \(0: k u=\varnothing 4\)
\(x=8: y=12: c=k c: s=k s: G O S U B\) Putcard
: COLOR 4,04
IF \(d L<>\emptyset\) THEN LOCATE mx \((d L)\), my ( \(d\) L) : PRINT "dealer" \(\leqslant\)

5 GOSUB SetPoints 4
IF \(p=\varnothing\) THEN GOSUB UOrderUp: GOTO 204
IF \(A B S(p-d L)<>2\) THEN \(7 \leqslant\)
GOSUB CGoALone: IF Lh=1 THEN tp=k s: GOTO 104
7 GOSUB COrderUp 4
\(1 \emptyset\) LOCATE mx \((p), m y(p):\) COLOR \(4, \varnothing 4\) IF tp=4 THEN PRINT "1 pass": GOTO 204
\(b d=p: P R I N T\) "order up" \(\&\)
\(2 \varnothing p=\operatorname{FNnp}(p): I F(p<>d L)\) AND ( \(t p=\) 4) THEN 54
\(\mathrm{p}=\mathrm{dL}:\) GOSUB SetPoints:IF \(\mathrm{tp}\langle>4 \mathrm{TH}\) EN 454
IF \(d L=\varnothing\) THEN GOSUB UPickUp:GOTO 304
GOSUB CPickUp:LOCATE mx(dL), my (d L) 4

IF tp=4 THEN PRINT "turned":LOCA

TE mx(dL) +1,my(dL):PRINT " down" :GOTO 3ø4
bd=p:PRINT "picked":LOCATE mx(dL ) +1 ,my(dL):PRINT " up" \(\leqslant\)
3ø FOR de=1 TO 2øøø:NEXT 4
IF ( \(\mathrm{bd}=\varnothing\) ) AND ( t < \(<4\) ) THEN 454 \(x=8: y=12\) : GOSUB EraseCard:IF tp<> 4 THEN 454
GOSUB CLRMess: \(\mathrm{ps}=\varnothing \nless\)
\(35 \mathrm{p}=\mathrm{FNnp}(\mathrm{p}) 4\)
IF \(p=\emptyset\) THEN GOSUB UMake:GOTO \(4 \varnothing 4\) GOSUB CMake:LOCATE mx(p),my(p) \(\leftarrow\) FOR de=1 TO 6øø:NEXT \({ }^{4}\)
IF tp=4 THEN PRINT " pass";:GOT 0404
\(b d=p:\) PRINT meS \((t p+5) ; 4\)
40 IF \((p<>d L)\) AND \((t p=4)\) THEN \(p s\) =ps+1: GOTO 354
GOTO 504
\(45 \mathrm{ku}=1\) : IF \((\mathrm{bd}=\varnothing)\) AND \((\mathrm{dL}=2)\) THE N Lh=1:GOTO 604
50 IF \(\mathrm{tp}=4\) THEN 704
IF (Lh=1) AND (bd<>ø) THEN \(6 \emptyset 4\)
IF \(b d=\varnothing\) THEN GOSUB ULoneHand: GOT 0704
GOSUB CGOALONE 4
IF Lh= \(\emptyset\) THEN 704
60 LOCATE 1,1:PRINT "Lonehand" 4
70 FOR de=1 TO 2øøø:NEXT 4
GOSUB CLRMEss: RETURN 4
UPickCard: 4
\(f=\varnothing\) : WHILE \(c(\varnothing, f)=-1: f=f+1\) : WEND: \(g\) =f 4
PrintHand: \(x=(g * 5+2) * 8+1: \operatorname{PUT}(x, 1\) 67), eh, PSET: \(x=\left(f^{*} 5+2\right) * 8+1: \operatorname{PUT}(x\), 167), hb, PSET 4

GetKeyUPC: \(k \$=I N K E Y \$: I F ~ k \$=" "\) TH EN GetKeyUPC ELSE IF \(\mathrm{k} \$=\mathrm{CHR} \$(13)\) THEN ExitUPC 4
\(g=f: I F \mathrm{k} \$<>\operatorname{CHR} \$(31)\) THEN \(100 \leqslant\)
\(9 \varnothing f=n f(f): I F \quad c(\varnothing, f)<\emptyset\) THEN \(9 \emptyset<\) GOTO PrintHand 4
\(1 \varnothing \varnothing\) IF \(k \$<>C H R \$(3 \varnothing)\) THEN GetKeyU PC 4
\(11 \varnothing \mathrm{f}=\mathrm{nf}(\mathrm{f}+2): \operatorname{IF} \mathrm{c}(\varnothing, f)<\emptyset\) THEN 1
104
GOTO PrintHand 4
GOTO GetKeyUPC 4
ExituPC: RETURN4
4
UDiscard: 4
FOR \(i=\emptyset\) TO 44
IF \((s(p, i)=t p)\) AND \((c(p, i)=2)\) TH EN 4
\(c(p, i)=74\)
ELSE «
IF \(((s(p, i)\) AND 253\()=(t p\) AND 253
)) AND \((c(p, i)=2)\) THEN \(c(p, i)=6: s\)
\((p, i)=t p 4\)
END IF:NEXT «
FOR \(i=\emptyset\) TO 4:FOR \(j=\emptyset\) TO 34
IF \(\operatorname{NOT}(s(p, j)>s(p, j+1))\) THEN 4
IF \(s(p, j)=s(p, j+1)\) THEN IF NOT ( \(c\)
\((p, j)>c(p, j+1))\) THEN 4
\(t=c(p, j): c(p, j)=c(p, j+1): c(p, j+1\)
) \(=t 4\)
\(t=s(p, j): s(p, j)=s(p, j+1): s(p, j+1\) ) \(=\mathrm{t} 4\)
END IF4
END IF:NEXT j,i\&
FOR \(i=\emptyset\) TO 4:pt(i)=ø
IF \(s(p, i)=t p\) THEN \(\leftarrow\)
\(p t(i)=c(p, i)+1 \varnothing 4\)
ELSE4
IF \(c(p, i)=5\) THEN 4
pt (i) \(=94\)
ELSE4
IF \((s(p, i)<>s(p, n f(i)))\) AND ( \(s(p\) ,i)<>s(p,nf(i+2))) THEN pt(i)=-1 4

END IF4
END IF:NEXT 4
L=99:FOR i=ø TO 4:IF pt(i) <L THE

N \(f=i: L=p t(i) \nmid\)
NEXT: RETURN 4
4
ResetHand: 4
FOR i=ø TO 3:FOR j=ø TO \(3: n s(i, j\)
) \(=\varnothing\) : NEXT:FOR \(j=\varnothing\) TO 44
IF \(c(i, j)=2\) THEN 4
IF \(s(i, j)=t p\) THEN 4
\(c(i, j)=74\)
ELSE 4
IF \(A B S(s(i, j)-t p)=2\) THEN \(c(i, j)=\) 6:s \((i, j)=t p 4\)
END IF4
END IF:ns \((i, s(i, j))=n s(i, s(i, j))\) +1:NEXT j,i 4
RETURN 4
PLayers: 4
LOCATE 2,2:PRINT "Partner?";:LO= 9:hi=10:xp=2:yp=12:GOSUB SeLecti on 4
\(\mathrm{fc}(\varnothing)=\varnothing:\) IF an=1 \(\varnothing\) THEN \(\mathrm{fc}(\varnothing)=24\) LOCATE 2,2:PRINT "Opponents?";:L \(0=9: h i=1 \varnothing: x p=2: y p=14:\) GOSUB SeLec tion 4
\(\mathrm{fc}(1)=\varnothing:\) IF an=1 \(\varnothing\) THEN \(\mathrm{fc}(1)=24\)
LOCATE 2,2:PRINT "

\section*{ETURN 4}

PLayHand: 4
FOR \(i=\varnothing\) TO \(7:\) FOR \(j=\varnothing\) TO \(3: C L(i, j\)
\()=\emptyset: \operatorname{NEXT}\) j,i:cL (2,tp AND 253) \(=14\)
FOR \(i=\emptyset\) TO \(3: s L(i)=\emptyset: N E X T \leqslant\)
\(\mathrm{Ld}=\mathrm{FNnp}(\mathrm{dL}): \mathrm{dm}=4: \operatorname{tr}(\varnothing)=\varnothing: \operatorname{tr}(1)=\varnothing\) :IF Lh<>ø THEN 4
IF \(b d=2\) THEN \(x=2 \emptyset:\) FOR \(i=\emptyset\) TO \(4: y\) \(=\mathrm{i} * 5+2\) : GOSUB EraseCard:NEXT 4 \(\mathrm{dm}=\mathrm{FNnp}(\mathrm{FNnp}(\mathrm{bd})) \leftarrow\)
IF \(L h=1\) THEN IF \(L d=d m\) THEN Ld=FN np(Ld) 4
END IF:FOR \(\mathrm{tk}=\varnothing\) TO \(4: \mathrm{p}=\mathrm{Ld}: \mathrm{ps}=\varnothing: \mathrm{t}\) \(\mathrm{L}=\varnothing\) : IF dm=p THEN \(p=\operatorname{FNnp}(p) \nmid\)
GOSUB PLayCard:wp=p:IF Lh=1 THEN \(\mathrm{ps}=\mathrm{ps}+14\)
\(\operatorname{sL}(\mathrm{s}(\mathrm{p}, \mathrm{pc}(\mathrm{p})))=14\)
IF \(s(p, p c(p))=t p\) THEN \(t L=1 \leftharpoonup\)
FOR \(i=1\) TO \(3: p=F N n p(p): I F p=d m T\) HEN 1304
ps=ps+1: GOSUB PLayCard:IF \(t L=\emptyset \quad T\) HEN 1204
IF \(s(p, p c(p))=t p\) THEN IF \(c(p, p c(\) \(p))>c(w p, p c(w p))\) THEN \(w p=p 4\)
GOTO 1304
\(12 \emptyset\) IF \(s(p, p c(p))=t p\) THEN \(w p=p: t\) \(\mathrm{L}=1\) : GOTO 1304
IF \(s(p, p c(p))=s(w p, p c(w p))\) THEN
IF \(c(p, p c(p))>c(w p, p c(w p))\) THEN \(\mathrm{wp}=\mathrm{p} 4\)
\(13 \varnothing\) NEXT:FOR de=1 TO \(4 \emptyset \emptyset: N E X T 4\) \(x=p x(w p): y=p y(w p):\) GOSUB Winner 4 FOR de=1 TO 3øøø:NEXT:Ld=wp:wt=w p AND 253:tr(wt)=tr(wt)+14
COLOR 2, 3: \(x=21: y=31+6 * w t: n=t r\) (wt ): GOSUB PrintScore
FOR \(i=\emptyset\) TO \(3: x=p x(i): y=p y(i): G O S\) UB EraseCard:c(i,pc(i))=-1:NEXT i, tk \({ }^{4}\)
COLOR , \(0: L O C A T E 1,1: P R I N T\) "
"; 4
bt=bd AND 253:LOCATE 15,284
COLOR 2, 3:IF NOT \((\operatorname{tr}(b t)<3)\) THEN 4 IF NOT \((\operatorname{tr}(b t)<5)\) THEN 4
pw \((b t)=p w(b t)+2+L h * 24\)
IF \(b t=\emptyset\) THEN PRINT " YOU WON
":LOCATE 16,28:PRINT " ALL TRICK S ":GOTO 1404
IF bt=1 THEN PRINT "COMPUTER WON
": LOCATE 16, 28:PRINT " ALL TRICK S ":GOTO 1404
END IF: pw \((\mathrm{bt})=\mathrm{pw}(\mathrm{b} t)+1 \leftarrow\)
IF \(\operatorname{tr}(\varnothing)>2\) THEN PRINT "YOU WON H AND";:GOTO 1404
IF \(\operatorname{tr}(1)>2\) THEN PRINT " COMPUTE R ":LOCATE 16,28:PRINT" WON H

AND＂：GOTO 1404
END \(I F: p w(1-b t)=p w(1-b t)+24\)
IF \(\operatorname{tr}(\emptyset)<3\) THEN PRINT＂YOU＇VE B
EEN＂：LOCATE 16，28：PRINT＂EUCHR
EDI＂：GOTO \(14 \varnothing 4\)
IF \(\operatorname{tr}(1)<3\) THEN PRINT＂COMPUTE R＂：LOCATE 16，28：PRINT＂EUCHR ED1＂ 4
140 FOR de＝1 TO 4øø日：NEXT 4
RETURN4
PLayCard： 4
IF \(\mathrm{p}<=\emptyset\) THEN 4
COLOR 11，2：LOCATE 15，28：PRINT＂ YOUR PLAY＂；：GOSUB UPickCard 4 \(150 \mathrm{Ls}=\mathrm{s}(\mathrm{Ld}, \mathrm{pc}(\mathrm{Ld})) \leftarrow\)
IF \(\operatorname{NOT}((p s=\emptyset)\) OR \((s(p, f)=L s) \quad O R\)
（ns（p，Ls）＝\(\varnothing\) ））THEN 4
GOSUB PrintHand：GOTO 1504
\(\mathrm{x}=2 \emptyset: \mathrm{y}=\mathrm{f}\)＊ \(5+2\) ：GOSUB EraseCard：GOT －1604
END IF：COLOR ，4：LOCATE 15，28：PRI NT＂
＂；
\(x=2 \emptyset: y=f^{\star} 5+2\) ：GOSUB EraseCard：GOT 01604
END IF：IF \(t k>=5\) THEN 4
FOR \(k=\emptyset\) TO \(4: I F c(p, j)>-1\) THEN \(f\) \(=14\)
NEXT：GOTO 1604
END IF：ON（ps＋1）GOSUB \(4 \varnothing \varnothing \varnothing, 41 \varnothing \varnothing\) ，4200．42004
\(16 \emptyset p c(p)=f: y=p y(p): x=p x(p): c=c(\) \(p, f): s=s(p, f):\) GOSUB PutCard 4
\(\mathrm{ns}(\mathrm{p}, \mathrm{s}(\mathrm{p}, \mathrm{f}))=\mathrm{ns}(\mathrm{p}, \mathrm{s}(\mathrm{p}, \mathrm{f}))-1: \mathrm{cL}(\mathrm{c}\) \((p, f), s(p, f))=14\)
RETURN 4
\(4 \emptyset \emptyset \emptyset\) IF \(\mathrm{ns}(\mathrm{p}, \mathrm{tp})<>5-\mathrm{tk}\) THEN \(4 \emptyset 15\) 4
\(\mathrm{sp}=\mathrm{tp}\) ：GOSUB 5200：IF \(\mathrm{f}=1\) THEN GOT － 51504
GOTO 51604
4015 IF（Lh \(<>1\) ）OR（ \(\mathrm{bd}<>\mathrm{p}\) ）THEN 40304
IF \(n s(p, t p)>\varnothing\) THEN \(s p=t p\) ：GOTO 51 504
GOTO 50504
\(4 \varnothing 30\) GOSUB 5øøø：IF（ \(f=1\) ）AND（AB \(\mathrm{S}(\mathrm{bd}-\mathrm{p})=2\) ）THEN \(\mathrm{sp}=\mathrm{tp}\) ：GOTO 515ø4 GOSUB 5250：IF（ \(f<>1\) ）OR（ \(p<>b d\) ） THEN 50504
GOSUB 52øø：IF \(i=1\) THEN \(s p=t p: G O T\) O 51504
IF \(\mathrm{ns}(\mathrm{p}, \mathrm{tp})>2\) THEN \(\mathrm{sp}=\mathrm{tp}\) ：GOTO 51 604

\section*{GOTO 50504}
\(41 \varnothing 0 \operatorname{IF} \mathrm{~ns}(\mathrm{p}, \mathrm{s}(\mathrm{Ld}, \mathrm{pc}(\mathrm{Ld})))=\emptyset\) THE N 41154
GOSUB 5300：sp＝s（Ld，pc（Ld））：IF \(\mathrm{f}=\) 1 THEN 51504
GOTO 51604
4115 IF ns \((p, t p)=5-t k\) THEN \(s p=t p\) ：GOTO 51604
IF \(\mathrm{ns}(\mathrm{p}, \mathrm{tp})=\varnothing\) THEN \(5100 \&\)
IF \(c(L d, p c(L d))=5\) THEN \(s p=t p: G O T\) O 51604
IF \(b d<>p\) THEN \(s p=t p\) ：GOTO 51604
GOSUB 5250：IF \(f=1\) THEN \(s p=t p: G O T\) － 51604
GOTO 51Øロ4
\(42 \emptyset \emptyset \mathrm{IF} \mathrm{ns}(\mathrm{p}, \mathrm{s}(\mathrm{Ld}, \mathrm{pc}(\mathrm{Ld})))=\emptyset \mathrm{THE}\) N 42354
\(\mathrm{sp}=\mathrm{s}(\mathrm{Ld}, \mathrm{pc}(\mathrm{Ld})) 4\)
IF（ \(s p<>t p\) ）AND（ \(t \mathrm{~L}=1\) ）THEN 5160 4
IF ABS \((w p-p)<>2\) THEN 42254
GOSUB 53øø：IF f＝1 THEN GOSUB 535 Ø：IF \(\mathrm{f}=\emptyset\) THEN \(515 \emptyset 4\)
GOTO 51604
4225 GOSUB 530ø：IF f＝1 THEN 5150 \(\stackrel{4}{4}\)
GOTO 51604
4235 IF ns \((p, t p)<5-t k\) THEN 42704 \(\mathrm{sp}=\mathrm{tp}: \operatorname{IF} \mathrm{ABS}(\mathrm{wp}-\mathrm{p})=2\) THEN \(516 \emptyset 4\)

IF \(\mathrm{tL}=\emptyset\) THEN 51604
GOSUB 5300：IF f＝1 THEN 54004
GOTO 51604
427 IF ns \((p, t p)=\emptyset\) THEN \(510 \emptyset 4\)
IF ABS（wp－p）\(<>2\) THEN 43104
IF（ \(\mathrm{tL}=1\) ）OR（ \(\mathrm{ps}=3\) ）THEN \(51 \varnothing \varnothing 4\)
IF \(c(w p, p c(w p))=5\) THEN \(51 ø \emptyset 4\)
IF \(c(w p, p c(w p))<4\) THEN \(s p=t p: G O T\) －51604
GOSUB 5250：IF \(f=1\) THEN \(s p=t p: G O T\) － 51604

\section*{GOTO 51004}
\(431 \emptyset\) IF \(t L=\varnothing\) THEN \(s p=t p:\) GOTO 516 04
GOSUB \(53 \varnothing \varnothing:\) IF \(f=1\) THEN \(s p=t p: G O T\) －540ø4
GOTO 51004
5øøØ \(f=\emptyset: F O R a=\varnothing\) TO 4：IF \(c(p, a)>\)
5 THEN \(\mathrm{f}=14\)
NEXT：RETURN \(\leqslant\)
505ø f＝－1：FOR \(a=\emptyset\) TO 4：IF（ \(s L(s\)（ \(p, a))=\varnothing\) ）AND \((s(p, a)<>t p)\) THEN \(I\) \(\mathrm{F} \mathrm{c}(\mathrm{p}, \mathrm{a})=5\) THEN \(\mathrm{f}=\mathrm{a} 4\)
NEXT：IF \(f>-1\) THEN 50704
\(\mathrm{Lc}=-1:\) FOR \(a=\varnothing\) TO \(4: I F \quad s(p, a)<>t p\) THEN IF \(c(p, a)>L c\) THEN \(L c=c(p, a)\) ： \(\mathrm{f}=\mathrm{a} 4\)
NEXT 4
\(507 \emptyset\) RETURN 4
\(510 \emptyset\) IF ns \((p, t p)>\emptyset\) THEN 51254
\(\mathrm{sp}=-1\) ：FOR \(\mathrm{a}=\emptyset\) TO 44
IF \(s(p, a)<>\operatorname{tp}\) THEN IF \((c(p, a)=5)\) AND \((\mathrm{ns}(\mathrm{p}, \mathrm{s}(\mathrm{p}, \mathrm{a}))>1)\) THEN \(\mathrm{sp=s}(\mathrm{p}\) ，a） 4
NEXT：IF sp＞－1 THEN 51604
GOTO 51804
\(5125 \mathrm{v}=4: \mathrm{f}=-1\) ：FOR \(\mathrm{a}=\emptyset\) TO 44
IF \(s(p, a)=t p\) THEN 51354
\(\operatorname{IF}(\mathrm{ns}(\mathrm{p}, \mathrm{s}(\mathrm{p}, \mathrm{a}))<>1)\) OR \((\mathrm{sL}(\mathrm{s}(\mathrm{p}\) ， a））\(=1\) ）THEN 51354
IF \((c(p, a)>=\emptyset)\) AND \((c(p, a)<v)\) TH EN \(v=c(p, a): f=a\)
5135 NEXT：IF f＝－1 THEN 51804

\section*{RETURN 4}

5150 IF ps＝3 THEN 54øø 4
\(v=-1: F O R \quad a=\emptyset\) TO \(4: I F \quad s(p, a)=s p\) T HEN IF \(c(p, a)>v\) THEN \(v=c(p, a): f=\) a

\section*{NEXT：RETURN \(<\)}
\(5160 \mathrm{v}=1 \varnothing\) ：FOR \(\mathrm{a}=\varnothing\) TO 44
IF \(s(p, a)=s p\) THEN IF \((c(p, a)>=\varnothing)\) AND \((c(p, a)<v)\) THEN \(v=c(p, a): f=a\) 4
NEXT：RETURN \(<\)
\(518 \emptyset \mathrm{v}=1 \varnothing\) ：FOR \(\mathrm{a}=\emptyset\) TO 4：IF \(\mathrm{s}(\mathrm{p}, \mathrm{a})\) ＜＞tp THEN IF \(c(p, a)>-1\) THEN IF \(c\) \((p, a)<v\) THEN \(v=c(p, a): f=a<\)
NEXT：RETURN 4
52øØ ht＝8：f＝ø
\(52 \emptyset 5 \mathrm{ht} \mathrm{h}=\mathrm{ht}-1:\) IF \(\mathrm{ht}>\varnothing\) THEN IF \(\mathrm{cL}(\) \(h t, t p)=1\) THEN 52054
IF \(h t<\emptyset\) THEN \(524 \emptyset 4\)
FOR \(a=\emptyset\) TO \(4: I F s(p, a)=t p\) THEN I \(F c(p, a)=h t\) THEN \(f=1 \nleftarrow\)
NEXT 4
5240 RETURN 4
\(525 \emptyset\) f＝1：FOR \(a=\emptyset\) TO 4：IF \(c(p, a)>\)
-1 THEN IF \((s(p, a)<>t p)\) AND \((c(p\) ，a）＜5）THEN \(f=\emptyset 4\)
NEXT：RETURN «
\(53 \emptyset \emptyset \mathrm{f}=\emptyset: \mathrm{FOR} \mathrm{a}=\varnothing\) TO \(4: I F \mathrm{~s}(\mathrm{p}, \mathrm{a})=\) \(s(w p, p c(w p))\) THEN IF \(c(p, a)>c(w p\) ，pc（wp））THEN \(f=14\)
NEXT：RETURN 4
\(535 \emptyset \mathrm{f}=\emptyset: F O R \quad \mathrm{a}=\emptyset\) TO \(4:\) IF \(\mathrm{s}(\mathrm{p}, \mathrm{a})=\) \(s(w p, p c(w p))\) THEN IF \(c(p, a)-c(w p\) ， \(\mathrm{pc}(\mathrm{wp}))=1\) THEN \(\mathrm{f}=1 \leftarrow\)
NEXT：RETURN 4
54øø d＝1Ø：FOR \(a=\varnothing\) TO 44
IF \(s(p, a)=s(w p, p c(w p))\) THEN \(e=c\)（
\(p, a)-c(w p, p c(w p)): I F \quad(e<d)\) AND（
e＞ø）THEN \(d=e: f=a<\)
NEXT：RETURN \(\leftarrow\)

EraseCard： \(\operatorname{PuT}((y-1) * 8-2,(x-1) * 8\) \(-1)\) ，ec，PSET：RETURN 4
4
Winner： 4
\(\mathrm{xl}=\mathrm{y}-1: \mathrm{yl}=\mathrm{x}-1: \mathrm{x}=(\mathrm{xl}+2) * 8: \mathrm{y}=(\mathrm{yl}+2\)
\() * 8+3: x 1=x 1 * 8-3: y l=y 1 * 8-24\)
\(\operatorname{CIRCLE}(x, y), 8, \varnothing: \operatorname{PAINT}(x, y), \varnothing 4\)
FOR \(i=1\) TO 1øø：NEXT \(\leftarrow\)
FOR \(i=1\) TO \(3: \operatorname{LINE}(x l-i, y l-i)-(x\) \(1+i+38, y l+i+42), i+5, b: N E X T 4\)
FOR \(i=3\) TO 1 STEP -1 ：CIRCLE（ \(x, y\) ），\(i * 2, i+5: \operatorname{PAINT}(x, y), i+5:\) NEXT 4 \(r=1:\) FOR \(i=\emptyset\) TO 5：r＝r－． \(07: c y(i)=r\) ：NEXT 4
FOR \(i=1\) TO 50：FOR p＝1 TO 2øø：NEX T：j＝i MOD 64
PALETTE（ \(i \operatorname{MOD} 3\) ）\(+6, \mathrm{cy}(j), \mathrm{Cy}(j)\) ， Ø：NEXT 4
FOR \(i=3\) TO 1 STEP -1 ：LINE（ \(x 1-i\) ， \(y l-i)-(x l+i+38, y l+i+42), \varnothing, b: F O R\) \(j=1\) TO 50：NEXT \(j, i\)
CIRCLE \((x, y), 8,4\) ：PAINT \((x, y), 44\) RETURN 4

InitShapes： 4
RESTORE InitShapes 4
FOR \(j=\emptyset\) TO 3：FOR \(i=\emptyset\) TO \(3 \emptyset: 4\)
READ \(a \$: s b(i, j)=V A L(" \& H "+a \$): N E X\) T i，j 4
RESTORE Hand：FOR \(i=\varnothing\) TO 75：4
READ a\＄：hb（i）＝VAL（＂\＆H＂＋a\＄）：NEXT： RETURN 4

Diamond：DATA B， \(9,3,4 \varnothing \varnothing, E \emptyset \emptyset, 1 F \varnothing \varnothing\) ，3F80，7FCØ4
 Fø日，3F804
DATA 7FCØ，3F8 ，1FØØ，EØØ，4ØØ，FBEØ ，F1EØ，EØEØ4
 E®，Ø4
4
CLub：DATA B， \(9,3, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing 4\)
DATA \(\varnothing, \varnothing, \varnothing, \varnothing\), E \(\varnothing, 1 \mathrm{~F} \varnothing, 1 \mathrm{~F} \varnothing, 7 \mathrm{FC} \square\) DATA FFEØ，FFEØ，75CØ，EØØ，1FØØ，F1E Ø，EØEØ，EØEØム
DATA \(8 \emptyset 2 \emptyset, \emptyset, \varnothing, 8 A 2 \emptyset, F 1 E \emptyset, E \emptyset E \emptyset, \varnothing 4\)
4
Heart：DATA B，9，3，71C \(\varnothing, F B E \emptyset, F F E \emptyset\) ，FFEØ，7FCØ4
 ，FFED，FFED 4
DATA \(7 \mathrm{FC}, 3 \mathrm{~F} 8 \emptyset, 1 \mathrm{~F} \emptyset \emptyset, \mathrm{E} \emptyset \emptyset, 4 \emptyset \varnothing, 8 \mathrm{E} 2 \emptyset\) ，4øø，\(\varnothing 4\)
DATA Ø，8Ø2Ø，CØ6Ø，EØEØ，F1EØ，FBEØ， 04

Spade：DATA B， \(9,3, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing 4\)
DATA \(\varnothing, \varnothing, \varnothing, \varnothing, 4 \emptyset \emptyset, 4 \emptyset \emptyset, E \emptyset \emptyset, 1 \mathrm{~F} \emptyset \angle\)
DATA 3F8Ø，7FCD，75C ，Eøø，1FøØ，FBE \(\emptyset\) ，FBE \(\varnothing\) ，FlE \(\emptyset 4\)
DATA EØEØ，CØ6Ø，8Ø2Ø，8A2Ø，F1EØ，EØ EØ，Øム
4
Hand： 4
DATA E，12，4，Ø，2CØ，960，15AØ， 5884
DATA A3C， \(23 \mathrm{C}, 2 \emptyset \mathrm{C}, 413 \mathrm{C}, 2054,1168\) ， 58，1204
DATA \(4 \varnothing, 14 \varnothing, 2 A \varnothing, 54 \varnothing\), AA \(, 6 \varnothing \varnothing, 34 \varnothing\) ， 19604
DATA CAØ，CA8，46AC，66A4，66A4，37EC ，1FFC，FF8 4
DATA FF8，FFØ，FFø，17EØ，7EØ，F60，AA Ø，FFFC 4
DATA FFFC，FFFC，FFFC，FFFC，FFFC，FF FC，FFFC，FFFC 4
DATA FFFC，FFFC，FFFC，FFFC，FFFC，FF FC，FFFC，FFFC 4
DATA FFFC，6ØØ，FCØ，3FEØ，3FEØ，1FF8 ，DFFC，EFFC 4
DATA EFFC，FFFC， \(7 \mathrm{FFC}, 3 \mathrm{FF} 8,1 \mathrm{FF} 8,1 \mathrm{~F}\) \(\mathrm{FD}, 1 \mathrm{FF}, 1 \mathrm{FED} 4\)
DATA FEØ，F6Ø，AA ，\(\varnothing<\)

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

\section*{Overseas Telecomputing}

In reference to M. H. Trenker's letter in the November 1986 issue of COMPUTE!, I would like to provide some additional information. I have been using American-built Commodore and Zenith computer systems in West Germany without any modifications except for suitable stepdown power transformers. Some people might think that they will no longer have access to the CompuServe information service after they move to Europe. That's not true. Here in Germany, you can access CompuServe through a German telephone system called Datex-P.

> Charles H. Pease, Jr.

Thanks for the advice. Mr. Trenker's letter about using a U.S. computer system in Poland has generated a blizzard of mail from COMPUTE! readers who use Commodores, Apples, Ataris, IBM PCs, and many other systems in virtually every corner of the globe. The next two letters contain additional information about telecomputing outside the United States and Canada.

Your readers should know that directconnect modems purchased in the United States do not work in Germany, since the phones use a different current and do not have modular jacks. The simplest solution is to use a modem with acoustic couplers rather than direct-line connections.

> Sgt. Randall Harper

This letter is based on my own experience and that of many members of my users group who have bought Commodore computers in the United States and brought them to countries with \(220 \mathrm{~V} / 50 \mathrm{~Hz}\) current. Basiçally, all of your explanations are right. A complete system will work flawlessly with only a stepdown transformer. Beware of voltage converters, however; I have dam-
aged a printer beyond repair with such a device. Two points should be added. First, a U.S. Commodore computer (except the Amiga) can use a 220 V 1541 or 1571 disk drive without harm. Second, many European countries do not provide grounded outlets; since the 1541/1571 disk drive may not work correctly unless grounded, you may need to ground the device yourself.

For telecommunications, most European countries use the CCIT rather than the Bell standard. This may make a Bell-standard modem useless except for communicating with a BBS back in the United States. In some countries, the use of a modem not supplied by the local telephone company is a felony. An exception is Israel, where the Bell standard is accepted. The phone outlets are different, but you can purchase Bell phone connectors at electronics stores.

Dr. Alexander Burcat
Technion Commodore User's Group Haifa, Israel

\section*{Cleaner Than Clean}

This is in reference to the letters about the Atari BASIC INPUT statement in the October and December 1986 issues. One disadvantage of substituting INPUT \#16 for INPUT in an existing program is that you have to edit every INPUT statement manually. For anyone who has BASIC XL, there's an easier way. The SET statement allows you to specify what character BASIC uses for the INPUT prompt. Thus, SET 2,32 replaces the question mark with a space, character 32. The second number is the ATASCII value of the character you want to use.

\section*{Garry Kaiser}

Thank you for the information. Atari owners should note that this method works only with BASIC XL, the extended BASIC from OSS Precision Software. If you have BASIC XL, you can put a single SET statement at the beginning of a program without having to change every INPUT statement in the code.

\section*{More Amiga BASIC Tips}

In the December 1986 installment of "Readers' Feedback," you answered a reader's question about the LIBRARY
command and .bmap files in Amiga BASIC. Your answer is correct. However, there is an easier way to take care of the problem without changing directories with CHDIR or always putting the .bmap file in the current directory. When Amiga BASIC encounters a LIBRARY statement, it first looks in the current directory to find the designated bmap file. If the file is not found, BASIC then looks in the LIBS subdirectory of the disk that you booted with. Thus, you can simply copy all the needed .bmap files to the LIBS subdirectory of the disk you use to boot the computer. The system automatically prompts you to insert the correct disk if it isn't currently in the drive.
David Grothe

Thank you for the additional information. To minimize disk-swapping, particularly on single-drive systems, many Amiga owners make a special work disk for use with BASIC. Here's how to do it: Make a copy of the Workbench disk and rename the disk; then copy Amiga BASIC onto it. Finally, copy the .bmap files you need into the LIBS subdirectory of your work disk. If you boot up with that disk, BASIC and the .bmap files can all be accessed without swapping disks.

A slight disadvantage of this method is that the whole-disk copy includes many files that are rarely, if ever, needed for BASIC programming. If you get rid of nonessential files, you'll have much more space for BASIC programs. For instance, you can gain about 160,000 bytes of free space by deleting the clock and the DEMOS, SYSTEM, and UTILITIES subdirectories. The DEVS/PRINTERS subdirectory contains 13 different printer drivers, which range anywhere from 1084 to 5248 bytes in size: You can free up even more disk space by eliminating unneeded driver files from this subdirectory. The command subdirectory (C) contains DOS commands that few people use in connection with BASIC: For example, the ED, EDIT, and SAY commands take up nearly 47,000 bytes of extra space in all.

To delete a file, open a CLI window from the Workbench and type DELETE followed by the name of the file you want to eliminate. The ALL command lets you DELETE everything in a designated subdirectory. For instance, DELETE DEMOS

\section*{CORDATA 400 DESKTOP....s909} CORDATA 400 PORTABLE*...S909
\begin{tabular}{|c|}
\hline *Contains 2-360K Disk Drives, 512K \\
Memory, Green Monitor
\end{tabular}

CORDATA 400XT-
20 MEG**
CORDATA 400XT
PORTABLE 20 MEG**. 51499
**Contains 1-360K Disk Drive, 512K Memory, 20MB Hard Disk, Green Monitor

\section*{THE PC CLONE YOU HAVE BEEN HEARNG ABOUT}

BLUE CHIP PC . . 5679
Contains 1-360K Disk Drive, 512K Memory, G Expansion Slots, Parallel \& Serial I/O, TTL Output MS DOS 3.2 \& GWW BASIC . . . . . . . . \({ }^{3} 99.95\)
BLUE CHIP 360K DISK DRIVE . .'129
BLUE CHIP TTL GREEN MONITOR
'99.95

\section*{MODEM PRACTCAL MODEM 1200 SPECIAL intemal Harl Card/ Hyes Como \\ \(\$ 159\)}

\section*{APPLE IIE AND IIC PRINTER PACKAGES NX-10 PRINTER \& \\ GRAPPLER \(+/ C\) s288 \\ PANASONIC \(1081 i \&\) \\ GRAPPLER + C}

Commodore 1541C . . . . Call XETEC Super Graphic . . . . . . . . . . . 69.95

COMMODORE 64/128 SUPER PRINTER PKGS. NX-10 \& Xetec Supergraphic ......... \({ }^{\mathbf{5}} \mathbf{2 6 9}\) Panasonic 1080i \& Xetec Supergraphic. '259
and
 Home Pak. \(\begin{array}{ll}\text { EPYX } & . . . . \cdot 16.95 \\ \text { Phantasie II } \\ \text { Battle Group }\end{array}\)
 \(\begin{array}{lll}\text { Summer Games II } & 24.95 & \text { Gemstone Heale } \\ \text { Whard of Spring }\end{array}\) Super Cycle . . . . . 24.95 See Apple Section for Rest of Items \(\&\) Prices

AVATEX 1200 HC External Hayes-Compatible
\begin{tabular}{|c|}
\hline  \\
\hline STAR MICRONICS \\
\hline NX-10. . . . . . . . . . . . 209 \\
\hline NL-10C . . . . . . . . . . . . 279 \\
\hline NL-10. . . . . . . . . . . Call \\
\hline NX-15 . . . . . . . . . . 339 \\
\hline SD-10 . . . . . . . . . . . . 309 \\
\hline ND-15 . . . . . . . . . . . Call \\
\hline SR-10 . . . . . . . . . . . . 459 \\
\hline NR-15 . . . . . . . . . . . Call \\
\hline NB-24/15 . . . . . . . . . Call \\
\hline Powertype . . . . . . . . . 222 \\
\hline
\end{tabular}

\section*{PRINTERS}

\section*{Seikosha 1000VC .... Call} Panasonic 10801 Panasonic 1091
Okimate 20. Citizen \(1200^{\circ}\) Okidata 120 Panasonic 1092 Canon P
Brother

ATARI 130XE COMPUTER PACKAGE

ATARI XE
Powertype.

ATARI 1050
ATARI
130XE
COMPUTER Includes two
free epro-
grams our
choice. choice.
This is a shipped price arywhere
in Continental USA.

DISK DRIVE Includes
135
This is a shipped price anywhere
in Continental USA.

\section*{.400/800 ATARI
1027} 1027
PRINTER .... \(\$ 99\) [LMMTEDTO SUPPGOONHAND] ATAR:
XMM80i
PRINTER... 199 \begin{tabular}{l} 
ATARI 850 S 115 \\
INTERFACE \\
\hline 15
\end{tabular}

\section*{Computability. \\ P0. Box 17882 Milwaukee. Wi 53217 \\ ORDER LINES OPEN \\ }

\section*{To Order Call Toll Free}

NO SURCHARGE FOR MASTERCABD \& VISA =
For Technical Info., Order Inquiries, or for Wisc. Orders 414-351-2007
TELEX NUMBER 9102406440

\footnotetext{
ORDERING INFORMATION: Please specify system. For fast delivery send cashier's check or money ordet. Per sonal and company checks allow 14 business days to clear. School P P's welcome C. C.O. charges are \(\$ 3.00\) In Continental U.S. A include S 3.00 for software.orders. \(4^{\circ \prime}\). shipping tor hardware. minimum \(\$ 4.00\). Master Card and Visa orders please include card \#. expiration date and signature. WI residents please include \(5^{\prime \prime}\), sales tax. HI, AK, FPO, APO. Puerto Rico and Canadian orders. please add \(5^{\circ}\), shipping, minimum \(\$ 5.00\). All other foreign orders add \(15^{\circ}\) oshipping. minimum S10.00. All orders shipped outside the Continental U.S.A. are shipped first class insured US mail. If foreign shipping charges exceed the minimum amount. you will be charged the additional amount to get your package to you quickly and safely. All goods are new and include factory warranty. Due to our low prices all sales are final. All defective returns must have a return authorization number. Please call (414) 351-2007 to obtain an R.A.\# or your return will not be accepted. Priced and availability subject to chanqe without notice.
}

\section*{PRINTER BUFFERS}

MONITORS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{MONITORS} \\
\hline \multicolumn{2}{|l|}{Magnovax Amber , ..... . . . . . . . . 89} \\
\hline Magnovox 9582 7GBCCOMP & 269 \\
\hline Samsung t4" Comportie . & 149 \\
\hline Commodore 1902.... & 279 \\
\hline een or Amber TIL & \\
\hline
\end{tabular}



INTERFACES FOR OKIMATE 20
Atari ST .... 60 Apple IIE ... 70
Amiga.... 60 . Apple IIC . 77

\section*{ATARI XE/XL/400/800} SUPER PRINTER PACKAGES NX-10 \& SUPRA 1150 . . . . . . . . . . . . . . 259 PANASONIC 1080i \& SURRA 1150 . . . . 259

\section*{ATARI PRINTER INTERFACES}

\section*{SUPRA 1150 \\ PR. CONNECIION \\ 59.95}

XETEC GRAPHIC AT
64.95
39.95

ATARI DIRECT-CONNECT MODEMS SUPRA 1000 E ATARI XM-30 MODEM .... 39.95 MODEM
.39 .95

\section*{AMIGA COMPUTER SYSTEM PACKAGE}
- AMIGACOMPUIER AMHGASIZK RAMEXPANDER - AMHGA IOEOMONTOR. AMHGA 1010 3 SDISK DRIVE

\section*{CALL FOR PACKAGE PRICE}

\section*{IEMA SCFITYYRE}


\section*{BRODERBUND}

EPYX
SEE APPLE SECTION
\begin{tabular}{|c|c|c|}
\hline Karateka & 21.95 & \multirow[t]{2}{*}{FORITEMS \& PRICES} \\
\hline Print Shop & 37.95 & \\
\hline Graphic & & Amblk \\
\hline Librery 1 or 2 & 21.95 & Grand Slam \\
\hline Print Shop & & Bridge \(\quad 39.95\) \\
\hline Companion & 31.95 & Murder Party \(\quad 27.95\) \\
\hline Toy Shop & 42.95 & Radio Baseball 27.95 \\
\hline Type & 31.95 & Starflight \({ }^{\text {W }}\) \\
\hline Variable Feast & 39.95 & \begin{tabular}{ll} 
Ultima III & \\
Worlf & 39.95 \\
\hline
\end{tabular} \\
\hline \multicolumn{2}{|l|}{UNISONWORLD} & Ultima IV \(\quad 39.95\) \\
\hline Printmaster & 36.95 & \multirow[t]{3}{*}{SIMON \& SCHUSTER SEE APPLE SECTION} \\
\hline Art Gallery 2 & 18.95 & \\
\hline Hard Disk & & \\
\hline Backup & 54.95 & FORITEMS \& PRICES \\
\hline
\end{tabular}

INFOCOM
MISCELLANEOUS 18 A
\begin{tabular}{|c|c|c|c|c|}
\hline Forever Voyaging . 29.95 & G & 25.95 & Hacker . . . . . . . . 29.95 & Cru \\
\hline Bally Hoo ...... 25.95 & Alternate Reality & 95 & Hacker ii ......... 25.95 & Silent Service \\
\hline  & Ogre & 27.95 & Shanghai.........25.95 & Micro League \\
\hline Hitchiker . . . . . . 25.95 & Cadd 2.0 & 64.95 & Tass Times . . . . 25.25 .95 & Baseball \\
\hline Infidel .. . . . . 28.28 .95 & Star Trek & 25.95 & Strip Poker . . . . 25.95 & Universe \\
\hline Leather Goddess . 25.95 & & & Isgur Portfolio . . . 164.95 & Universe \\
\hline Moonmist . . . . . . 25.95 & Flight Sim. & & Starfleet I . . . . . 34 & \\
\hline Planetfall........ 25.95 & SFL & 34.95
25.95 & Alternate Reality . 31.95 & cntasy \\
\hline Seastalker . . . . . . 25.95 & 2 O 2 2 Basket & & Math Blaster
Alge-Blaster
- & Gato \\
\hline  & Champ Baseball & 25.95 & OS'Backup .......44.95 & \\
\hline Wishbringer . . . . 25.95 & & & Orbiter . . . . . . . . 31.95 & Subi \\
\hline  & & & & \\
\hline Zork II or III ...... 28.95 & SIERRA & & & \\
\hline Hollywood Hijinx . . Call & King's & & & Rings \\
\hline Enchanter Trilogy . 52.95 & Quest 1, II, or III & & Learning Company Call & Gettysburg ..... 39 \\
\hline & & 52.95 & Conflict Vietnam . 25.95 & Oper. Market Gard 32 \\
\hline & Space Quest & 31.95 &  & Term Paper Writer . 38 \\
\hline
\end{tabular}

\section*{}


C-128 Computer . . . . Call 1571 Disk Drive . Call 1902 Monitor ...... 279 1351 Mouse 1750512 K

\section*{SUPER 128 PACKAGE}

Commodore 128
1571 Disk Drive
1902 Monitor CALL
COMMODORE 128 SOFTWARE Basic Compiler 12839.95 Cobol 128. Super C Compil
Chart Pak 128. Chart Pak 128.
Speed Term 128 Superbase 128 Superscript. Data Manager 12 Fleet System III Pocket Filer 2 Pocket Writer 2 Pocket Planner 2 . Mach 128. Visastar 128
Visawrite 128 Partner 128 Super Pascal 128
Super Pak 128
ATARI ST
 System Atari 1040StMonochrome Sys
Atari 520St-RGB System Atari 520STMonochrome Sys Call WE WARRANTY ALL PUACHASED FROM
NINETY OAYS
SF314 DS-DD Disk
Drive
Supra 20 MEG 3.5
Inch Hard Drive 679

\section*{AMIIGA ARCADE \\ GAMES}

Microleagu
The Pawn Flight Simulato
Kings Quest II. Kings
Jet ..
Silent Servic Leader Board Tenth Frame Winter Games Strip Poker.
World Games Deep Space. Arena...
Publisher Starglider Gr. Slam Tennis Harrier Strike
Kampgruppe

\section*{EIFCTRONIC ARTS}
\begin{tabular}{|c|c|}
\hline ACTIVISION & ERODERBUND \\
\hline Gamemaker. . . . . 31.95 & Airheart . . . . . . . 222.95 \\
\hline Hacker II . . . . . . 25.95 & Ancient Art War . 25.95 \\
\hline Labyrinth........ 25.95 & Animate......... 44.95 \\
\hline People . . . . . . . . 25.95 & Bank Street \\
\hline Shanghai . . . . . . . . 25.25 .95 & Series (Ea) . . . . . 44.95 \\
\hline Tass Times . . . . . 25.95 & Fantavision ......31.95
Holiday Graphics \\
\hline Spindizzy . . . . . . 222.95 & Library...... . . . . 16.95 \\
\hline Rocky Horror . . . 22.95 & Print Shop...... . . 31.95 \\
\hline Zoids . . . . . . . . 22.95 & Graphics Library \\
\hline Champ Baseball . . 25.95 & I, II or III. . . . . . . . 16.965 \\
\hline GFL Football . . . . 25.95 & Karateka ........ 21.95 \\
\hline Greeting Card . . . 25.95 & Print Shop \\
\hline SMON AND SCHUSTER & Companion . . . . 25.95 \\
\hline Chem Lab \(\quad 25.95\) & Science Tool Kit . . 44.95 \\
\hline Lovejoy Sat 39.95 & Toy Shop . . . . . . . . 39.95 \\
\hline Real Estate Invest 64.95 & Variable Feast . . . . 38.95 \\
\hline \(\begin{array}{ll}\text { Typing Tutor } & 31.95 \\ \text { Wing }\end{array}\) & Carmen Sandiego ..Call \\
\hline Wine Cellar \(\quad 44.95\) & Camen Sandego ..Call \\
\hline Lasser Money Mgr. 57.95 & \\
\hline SPRTNC & R \\
\hline Certificate Maker . 31.95 & Games/Children 22.95 \\
\hline Clip Art 1 or 3 . . . 19.95 & Graphics Expander 25.95 \\
\hline Clip Art 2 . . . . . . 25.95 & Newsroom 37.95 \\
\hline Certificate Lib \(1 . .22 .95\) & Piece of Cake Math 22.95 \\
\hline \multicolumn{2}{|l|}{APPHE ACEESSORIES} \\
\hline Mach \#l Joystick 27.95 & Mockingboard 日 59.95 \\
\hline Mach Ill loystick 34.95 & Mockingboard C 114.95 \\
\hline Paddiesticks: 27.95 & Mockingboard D 124.95 \\
\hline Mockingboard A 64.95 & Fac 10 Joystick: 24.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Amnesia & 29.95 \\
\hline Artic Fox & 27.95 \\
\hline Bard's Tale & 29.95 \\
\hline Bard's Tale II & 34.95 \\
\hline Battle Front & 27.95 \\
\hline Chessmaster & \\
\hline 2000 & 29.95 \\
\hline Dark Lord & 23.95 \\
\hline Lords of & \\
\hline Conquest & 27.95 \\
\hline Murder Party & 27.95 \\
\hline Robot Rascals & 27.95 \\
\hline Ultima I & 27.95 \\
\hline Ultima III & 39.95 \\
\hline Ultima IV & 39.95 \\
\hline Ogre & 27.95 \\
\hline Moebius & 39.95 \\
\hline Skyfox & 27.95 \\
\hline Music & \\
\hline Construction & 11.95 \\
\hline Marble Madness & 23.95 \\
\hline 7 Cities of Gold & 11.95 \\
\hline Scrabble & 27 \\
\hline EPYX & \\
\hline Championship & \\
\hline Wrestling & 24.95 \\
\hline World Games & 24.95 \\
\hline Destroyer & 24.95 \\
\hline Apshai Trilogy & 24.95 \\
\hline Movie Monster & 24.95 \\
\hline Winter Games & 24.95 \\
\hline
\end{tabular}
INFOCOM
SEEIBM SECTION FOR
ITEMS ANDPPRICES
SSI
SEECOMMODORE G4FOR
ITEMS AND PRICES
\begin{tabular}{llll} 
& & & \\
Sub Mission & 25.95 & James Bond & 25.95 \\
Infiltrator & 20.95 & Rambo & 25.95 \\
Bob N' Wrestie & 20.95 & The Mist & 25.95 \\
Color Me & 19.95 & Perfect Score & 44.95 \\
Dick Francis & 25.95 & Balance of Power & 31.95
\end{tabular}
\begin{tabular}{lrlr} 
Starfleet I & 34.95 & & \\
Karate Champ & 22.95 & Sense \& & \\
Kung Fu Master & 22.95 & Superbase & 74.95 \\
Math Blaster & 31.95 & Random House & R4.95 \\
Alternate Reality & 24.95 & Scholastic & Call \\
Alge-Blaster & 31.95 & Kings Quest III & 31.95 \\
Homeworker & 59.95 & Black Cauldron & 25.95 \\
Spell-It & 31.95 & Space Quest & 31.95 \\
Word Attack & 31.95 & Smart Money & 49.95 \\
DLM Software & Call & Land of the Dead & 29.95 \\
Designware & Call & Usurper & 29.95 \\
Computer Sat & 54.95 & Wizardry-Proving & 31.95 \\
Elite & 23.95 & Wizardry-Legacy & 25.95 \\
Pawn & 29.95 & Wizardry-Diamonds & 21.95 \\
Sargon III & 25.95 & VIP & \\
Writer Rabbit & 25.95 & Professional & 169.95 \\
Math Rabbit & 25.95 & Gato & 24.95 \\
Frogger & 9.95 & T-Shirt Shop & 31.95 \\
Managing Your & & Sublogic & \\
Money & 129.95 & Baseball & 34.95 \\
F-15Strike Eagle & 22.95 & Sublogic Football & 34.95 \\
Gunship & 25.95 & Flight Simulator II & 34.95 \\
Silent Service & 22.95 & Animation & 27.95 \\
Microleague & 25.95 & Station & \\
Baseball & 259.95 \\
Howard the Duck & 25.95 & Agatha Christie & 25.95 \\
Sticky Bear (Ea) & 25.95 \\
\hline
\end{tabular}

\section*{ST ADVENTURES}
\begin{tabular}{|c|c|c|c|}
\hline ABACUS & MICHTRON & ST LANGUAGES & \multirow[t]{2}{*}{} \\
\hline  & & Personal Pascal 49.95 & \\
\hline Text Designer . . . 34.95 & Cornerman ...... 34.95 & Mark Williams C 129.95 & Ultima II or III \(\ldots\) O 3139.95 \\
\hline PC Bo & M-Disk . . . . . . . . 27.95 & Metacomco & Sundog. . . . . . 24.95 \\
\hline Designer . . . . . . 16.96 .95 & Major Motion . . . . 27.95 & Pascal 74.95 & Black Cauldron ... 27.95 \\
\hline Assempro & Pers Money Man . 34.95 & Macroassembler 59.95 & Apshal Trilogy . . . 27.95 \\
\hline & Pinball Factor . . . 27.95 & Lattice C \(\quad 99.95\) & Dungeonmaster . . 27.95 \\
\hline ST GRAPHICS & Eight Ball ....... 20.95 & Modula II 54.95 & Deep Space . . . . 229.95 \\
\hline Degas \({ }^{\text {der }}\) & Animaior ......... 27.95
Cards....... 27.95 & ST BUSINESS & \\
\hline Super Graphics 33.95 & Michtron Uutilities . 39.95 & VIP Prof . . . . . . 169.95 & \\
\hline Degas Elite \(\quad 52.95\) & Dot Driver ....... 34.95 & & COMMUNICATION \\
\hline Easy Draw \(\quad 54.95\) & Laser Driver . . . . 34.95 & Dac Easy . . . . . . . 49.95 & COMMUNICATION \\
\hline Graphic Artist 149.95 & Super Conductor . 49.95 & Dac Payroil ...... 39.95 & \(\begin{array}{ll}\text { PC intercom } \\ \text { IS Talk } & 84.95 \\ & 39.95\end{array}\) \\
\hline INFOCOM ST & & & Home Pak 33.95 \\
\hline SEEIBM SECTN FOR & St utilities & Bts Spreadsheet . . 44.95 & Michtron BBS 2.049 .95 \\
\hline ITEMS AND PRICES &  & ST PRINTI UTALTES & 17.95 \\
\hline ST WGORD & Music Box .... 34.95 & Typesetter . . . . . . 24.95 & SE \\
\hline PROCESSORS & Time Link \(\ldots\). \({ }^{\text {a }}\). . 34.95 & Rubber Stamp . . . . 24.95 & \\
\hline & M & Printmaster . . . . . 24.95 & Zoomracks il .......99.95 \\
\hline Wordwriter ST . . . 52.95 & Publisher ......... \({ }^{\text {call }}\) & 19.95 & Datamanager St. . . 52.95 \\
\hline 5 & Cal & 27.95 & Regent Base .....64.95 \\
\hline Regent Word II . . . 64.95 & & Megafont ST \(\ldots . . .24 .95\)
Typeset Elite \(\ldots . .32 .95\) & Renl \\
\hline
\end{tabular}
\begin{tabular}{l} 
Megafont ST \\
Typeset Elite \(\ldots . . .24 .3295\) \\
\hline
\end{tabular}

Tass Time Alternate Reality...33.9 Autoduel . . . . . . . 34.95 Ogre ..............27.95
Defender/Crown . 33.95 Balance of Power ..33.95 Harrier Strike.....34.95 \(\begin{array}{ll}\text { Balance of Power . 33.95 } & \text { Balance Of Power.33.95 } \\ \text { Space Quest . . . .33.95 } & \text { Bard's Tale ........ Call }\end{array}\)


SI ARCADE GANES
Phantasie .......27.95 Tenth Frame Phantasie II .......27.95 Shanghai. .
Mean \(18 \ldots . . . .29 .95\) 3-D Helicop \(\begin{array}{ll}\text { Mean } 18, \ldots . . .29 .95 & \text { Seader Board } \\ \text { Lelicopter. }\end{array}\) \begin{tabular}{ll} 
Leader Board... & .24 .95 \\
Brattacus. Micro League BB . . . . 33.95 \\
\hline
\end{tabular} Silent Service .... 27.95 Skyfox. \(\begin{array}{ll}\text { Championship } & \begin{array}{l}\text { Super Cycle } \\ \text { Indoor Sports }\end{array} \\ \text { Wremplole }\end{array}\) Wrestling . .........24.95 High Roller Simulato World Games \(\ldots .24 .95\) Two/Two Basketball29.95 Chessmaster \(2000 \quad 32.95\) Star Raiders II Starglider
Little Comp People 33.95 Space Station \(\begin{array}{ll}\text { ST Karate } . . . . . .24 .95 & \text { GFL Football. } \\ 5-15 \text { Strike Eagle... } 27.95 & \text { Champ Baseball }\end{array}\)

\section*{}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ELECTRONIC ARTS} \\
\hline Archon & 11.95 & Age of Adventure & 5 \\
\hline Seven Cit. of Gold & 11.95 & Archon li & 24.95 \\
\hline Pinball & & Lords of Conquest & 24.95 \\
\hline Construction & 11.95 & Ogre & 27.95 \\
\hline One on One & 11.95 & Chessmaster 200 & 27.95 \\
\hline Super Boulderdash & 11.95 & Ultimal & 27.95 \\
\hline Racing Destruction & 11.95 & Ulitima III & 34.95 \\
\hline T-Down Football & 11.95 & Ultimalv & 41.95 \\
\hline Mule & 11.95 & Autoduel & 34.95 \\
\hline Music Construction & 11.95 & Starfleet 1 & 34.95 \\
\hline WFOCOM & & SSt & \\
\hline Commodor & & \multicolumn{2}{|l|}{See Com} \\
\hline
\end{tabular}

\section*{microprose}
\begin{tabular}{|c|c|}
\hline ent Service & 23 \\
\hline F-15 Strike Eagle & 23.9 \\
\hline Decisio & \\
\hline Desert & \\
\hline Conflict in & \\
\hline Vietnam & 27.9 \\
\hline Ken Approach & 19.9 \\
\hline Top Gunner & 19.9 \\
\hline BRODER & \\
\hline Grap & \\
\hline Library I, & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Mac 65XL}

Action
Action All Tool Kits Syncalc Leader Board Tourn Disk/ Music Studio Basic XE Executive/Lead. Bd16.95
Fighter Command . 39.95

MASCELLANEOUS ATAR
47.95 Atariwriter Plus... 39.95
47.95 Megafont II Pus...39.95 Flight Simulator II. 34.95
37.95 Page Designer .... 17.95 Universe \(\ldots \ldots . .59 .95\)

Page Designer ...21.95 Fight Night
Typesetter.......24.95 Hardball. .
Rubber Stamp.....21.95 Tenth Frame
P.S. Interface. \(\begin{array}{ll}\text { P.S. Interface..... } 19.95 & \text { Super Huey, } \\ \text { Alternate Reality, } 24.95 & \text { Fooblitzs }\end{array}\) Alternate Reality..24.95 Fooblitzsky Alt.
Real Reality/Dungeon . :24.95 \(\begin{array}{ll}\text { Home Planetarium } 27 \\ \text { Mail Order Monst }\end{array}\) Mercenary ....... 18.95 Infiltrator \(\begin{array}{ll}\text { Home Pak } \\ \text { Paper Clip/Spell } & .16 .95 \\ \text { Bop N' Wrestle }\end{array}\) Paper Clip/Spell . . 37.95 Wargame Constr. 20.95 \(\begin{array}{llll}8 \text { Graph } \\ \text { Rommel vs Patton } & 27.95 & \begin{array}{ll}\text { Spy vs Spy } \\ \text { Chickamaug }\end{array}\end{array}\)

\section*{AMICA sOFTVYARE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ACTIVISION & MINDSCAPE & \multicolumn{4}{|c|}{ELECTROMEC ARTS} \\
\hline Hacker . . . . . . . . . 29.95 & Mastertype 27.95 & Skyfox & 27.95 & One on One & 27.95 \\
\hline Mindshadow . . . 29.95 & Halley's Project 29.95 & Artic Fox & 27.95 & 7 Cities of Gold & 27.95 \\
\hline Borrowed Time . . 29.95 & Brataccus 34.95 & Marble Madness & 34.95 & Starfleet One & 38.95 \\
\hline Little Computer 34.95 & Racter 29.95 & Return/Atlantis & 29.95 & Art Disk/ & \\
\hline People . . . . . . . . 34.95
Borrowed
Time & \(\begin{array}{ll}\text { SDI } & 34.95\end{array}\) & Financial & & Deluxe Print & 20.95 \\
\hline Borrowed Time . .
Music Studio . . .
29.95

M & King of Chicago 34.95 & Cookbook & 34.95 & Art Disk/Deluxe & \\
\hline Shanghai . . . . . . . . 29.929 .95 & Defender of the Crown 34.95 & Adventure & & Paint & 20.95 \\
\hline Hacker II . . . . . . . 34.95 & \(\begin{array}{ll}\text { the Crown } & 34.95 \\ \text { Sinbad }\end{array}\) & Construction. & 27.95 & Bard's Tale & 34.95 \\
\hline Tass Times . . . . 29.95 & Sinbad 34.95 & Chessmaster 2000 & 32.95 & Music Const. 2.0 & 69.95 \\
\hline GBA Basketball... 29.95 & Balance of Power 34.95 & Instant Music & 34.95 & Autoduel & 34.95 \\
\hline Champ. Baseball. . 29.95 & INFOCOM & Deluxe Print & 69.95 & Ulitima III & 41.95 \\
\hline GFA Football . . . . 29.95 & SEE IBM SECTION FOR & Deluxe Video & 69.95 & Deluxe Paint II & 84.95 \\
\hline Portal. . . . . . . . . . 34.95 & ITEMS AND TITLES & Deluxe Paint & 69.95 & Grand Prix & Call \\
\hline & & Archon I or II & 27.95 & Earl Weaver Ba & Call \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{AMAIGA PRODUCTIVITY} \\
\hline VIP Professional . 169.95 & Maxiplan & 99.95 \\
\hline Analyze 2.0 . . . . . 94.95 & Maxicom & 34.95 \\
\hline On-Line . . . . . . . . 44.95 & Maxidesk & 47.95 \\
\hline Scribble . . . . . . . 64.95 & Paperclip Elite & 84.95 \\
\hline Organize . . . . . . . 64.95 & Degas Elite & 52.95 \\
\hline Printmaster . . . . . 32.95 & LDP Planner & 79.95 \\
\hline Art Gallery I or II . 19.95 & LPD Writer & 79.95 \\
\hline Impact . . . . . . . . 129.95 & LPD Filer & 79.95 \\
\hline Aegis Draw . . . . . 74.95 & Logistixs & 159.95 \\
\hline Aegis & Modula II & 64.95 \\
\hline Animator/Images . 84.95 & Gizmo & 34.95 \\
\hline Aegis Art . . . . . . . 23.95 & Superbase Amiga & 99.95 \\
\hline Page Setter . . . . . 99.95 & DB Man & 99.95 \\
\hline
\end{tabular}

ALL gets rid of everything in DEMOS, including the subdirectory itself and all associated info files. If you don't know what a file does, it's best to leave it on the disk. Many of the files and subdirectories on the Workbench disk are needed to boot the system and use BASIC.

\section*{Seeing Double}

I have just recently purchased an Atari 520ST. When I turned it on and loaded BASIC, I typed ?FRE(0) to find out how much memory I had for programming. The computer printed the number 186704. As I began to write a program, I noticed the bytes being whittled away very quickly. I also own a Commodore 64 and have noticed that it's quite efficient when storing a BASIC program. What does the ST do with memory when it stores BASIC? On the ST, this line takes up 68 bytes of memory:
10 ?'I'm your faithful computer"
Dale Zwicker
ST BASIC stores two copies of the program in memory concurrently. The first copy is tokenized, meaning that keywords are compressed into one- or two-byte tokens. The second copy is in ASCII form and consists of the characters which you typed in when entering each line. It's difficult to imagine a justification for keeping a complete untokenized copy of the program in memory. Virtually every other version of BASIC stores the program only in the more compact tokenized form, expanding the tokens into BASIC words like PRINT only when you LIST the program or save it in ASCII form.

When we entered the example line on various STs around our office, BASIC consistently required 70 bytes to store the line. Out of curiousity, we booted up GFA BASIC, the new BASIC from Germany, now marketed by MichTron (see "ST Outlook" elsewhere in this issue), and entered the same line. That version of BASIC stores the same line in only 32 bytes. A few bytes can be accounted for by the fact that GFA BASIC doesn't use line numbers. But the major difference clearly derives from the fact that GFA BASIC stores only one copy of the program, not two.

By the way, the example line you chose illustrates one of the worst possible cases. Counting the quotation marks, the line contains 28 ASCII characters which aren't compressed even in the tokenized copy of the program. Thus, the tokenized version of the line is only slightly smaller than the ASCII version. Many BASIC lines consist mainly of keywords, however, which would tend to make the tokenized version considerably smaller.

We found another puzzling anomaly while testing ST BASIC's memory consumption. Enter NEW, then go to the EDIT
window and type in the example line and press RETURN. Go to the COMMAND window and enter ?FRE(0). If you return to the EDIT window and press RETURN over the same line, BASIC loses a few more bytes, even though nothing new has been added to the program. If you continue to reenter the same line, BASIC uses up more and more memory, even though the program is functionally identical. Each reentry of the line uses up anywhere from five to seven bytes of memory.

\section*{Copying Machine Language Programs}

I subscribe to the COMPUTE! Commodore disk and find that I have several programs that I can't copy to another disk. All of them must be loaded with \(, 8,1\) rather than, 8 . The 64 user's manual is no help, and Commodore 64 BASIC has no special command for saving machine language programs. My grandsons spent a lot of time during their last visit playing "High Rise" and "Miami Ice." They are not as careful with disks as I am, and I shudder to think what they would say if one of those programs were lost and I had no backup copy. Can you help?

Elmer O. Pease
Before you attempt to copy any machine language program, you must find out where it loads into memory. The article accompanying each COMPUTE! program indicates whether it is a nonrelocating program that needs special handling or a program like SpeedScript, which can be handled like a BASIC program.

Some Commodore 64 ML programs can be copied without any special tricks because they are designed to load at the same address as a BASIC program (2049 decimal, \$0801 hexadecimal). SpeedScript is one such program: It can be loaded with LOAD "SPEEDSCRIPT", 8 and saved with SAVE "SPEEDSCRIPT",8. As a rule, if the instructions for a program indicate that you can load it with, 8 and start it by typing RUN, it can be handled like a BASIC program. Simply load it as usual, insert a new disk, and save it as you would any BASIC program. If you LIST a program of this type, you will usually see a line like 10 SYS2061.

Other machine language programs need to load at a different address. Such programs are called nonrelocating because the computer automatically loads them back into the same memory area they were saved from. You can identify this type of program because the instructions tell you to load it with ,8,1 instead of ,8. A nonrelocating program also starts with a SYS command rather than RUN.

Commodore 64 BASIC does not include a BSAVE command for saving a relocating program. But there is an easy
way to make new copies of such programs, using "MLX," the machine language entry program published frequently in COM-
PUTE!. Simply load the program into MLX, insert a new disk, and save the program exactly as you would when typing it in from MLX., MLX is included on every COMPUTE! disk and also appears in issues of COMPUTE! that contain programs to be typed in with MLX. This procedure requires that you know the beginning and ending addresses for the program; that information is contained in the accompanying article.

If you don't know the starting and ending addresses for a program, run this program and enter the name of the file when prompted. It reads the program's load address and calculates its ending address based on the number of bytes in the file. Once you know the addresses, you can make a copy of the program with MLX as described above.
100 PRINT "ENTER FILENAME": INP UT F\$
\(11 \varnothing \mathrm{~F} \$=" \varnothing: "+F \$: T \$=", P, R ":\) OPEN \{SPACE \} \(15,8,15\), "Iø": GOSUB 2 øø
\(12 \varnothing\) IF ER AND ER<>62 THEN PRIN T ER; ERS; TR; SE:CLOSE 3:C LOSE 15:END
130 IF ER=62 THEN T\$=",S,R":GO SUB \(2 ø \varnothing\)
140 IF ER=62 THEN \(T \$=", \mathrm{U}, \mathrm{R} ": G O\) SUB \(2 ø \varnothing\)
\(15 \emptyset\) IF ER THEN PRINT "CAN'T OP EN ";FS;" FOR READING":CLOS E 15:END
160 GET\#3,LOS:GET\#3,HIS:SA=ASC (LOS+CHRS ( \(\varnothing\) )) \(+256 *\) ASC (HIS +C HRS( \(\varnothing\) ))
\(17 \emptyset\) PRINT "STARTING ADDRESS:";SA
\(18 \emptyset \mathrm{GET} \# 3, \mathrm{X}\) : \(\mathrm{IF} \mathrm{ST}=\emptyset\) THEN \(\mathrm{SA}=\mathrm{S}\) A+1: GOTO \(18 \varnothing\)
190 PRINT "ENDING ADDRESS: \{2 SPACES\}"; SA:CLOSE 3:CLOS E 15:END
2øø CLOSE 3 :OPEN \(3,8,3, F \$+T \$: I\) NPUT\#15, ER, ERS, TR, SE:RE TURN

BASIC 7.0, the BASIC used on the Commodore 128, includes a BSAVE command that lets you save the contents of any memory area. Again, you must know the starting and ending addresses of the area to save. Here is the general syntax for BSAVE:
BSAVE "filename", Ddrive number,
Bbank number,Pstart address TO Pend address

This command takes several parameters. The parameters for drive number and bank number are optional. If you omit them, BASIC uses drive 0 and memory bank 15 as defaults. You must always supply the start address and end address. For example, this statement BSAVEs the block of memory in locations 3584-4096 (in bank 0) in a disk file named "SAMPLE":
BSAVE "SAMPLE", B0, P3584 TO P4096

\section*{80-Column Hi-Res Graphics For 128}

The 128 Programmer's Reference Guide states that it is possible to do multicolor bitmapping on the 80 -column screen if you reduce the size of the screen by 2000 bytes. Could you publish a program that does this and that plots both screen and color pixels?
L. K. Snyder

Although the 128's BASIC 7.0 uses only the VIC (40-column) video chip for highresolution graphics, the VDC chip that generates the 80 -column screen display can also produce bitmapped displays. This feature isn't mentioned in the System Guide that comes with the 128, although it is covered briefly in the 128 Programmer's Reference Guide. In the example provided in the Programmer's Reference Guide, the foreground and background colors are the same for the entire screen, so the display can have only two different colors. The VDC can't produce a multicolor bitmapped (hi-res) display in the same sense that the VIC chip can-the VIC multicolor bitmapped display can use up to four different colors within each \(4 \times 8\)-pixel area, while the VDC chip's bitmapped display can use only two different colors within each \(8 \times 8\)-pixel areabut the VDC bitmapped display can have more than just two different colors.

To understand why the two-color bitmapped display is easier to set up, you need to know a little about how VDC bitmapped displays work. The standard VDC bitmapped screen is 640 pixels wide by 200 pixels tall. Each pixel is controlled by a single bit in the area of VDC memory known as the bitmap. Thus, 128,000 bits ( \(640 * 200\) ), or 16,000 bytes, are required to bitmap the entire screen. When a bit in the bitmap is set to 0 , the corresponding pixel takes the background color. When a bit in the bitmap is set to 1, the pixel takes the foreground color. The layout of the bitmap is much more straightforward than the VIC's arrangement. The first byte of bitmap memory controls the leftmost eight pixels on the top screen line. The next byte controls the next eight pixels to the right, and so on.

For controlling colors, the pixels are grouped into an array of \(8 \times 8\)-pixel character positions. Each character position has a corresponding location in the area of VDC RAM called attribute memory. In bitmapped mode, the lower four bits of each attribute memory location specify the foreground color for the corresponding character position, while the upper four bits specify the background color for the position. Thus, even though a character position can have only 2 different colors, each position can have independent colors, and all 16 available colors can be used in the display. Here's the
problem with that system: The standard VDC display has 25 horizontal rows of 80 character positions per row, so attribute memory normally occupies 2000 ( 80 * 25) bytes. However, the 16,000-byte bitmap requires nearly all of the \(16 \mathrm{~K}(16,384\) bytes) of available VDC RAM. There's not enough room for attribute memory in addition to the bitmap. The Programmer's Reference Guide example offers the easiest solution to this dilemma. The VDC allows attribute memory to be disabled, in which case the foreground and background colors for all screen positions can be specified in VDC internal register 26 . Although this limits you to only 2 different colors in the display, it does allow a full 128,000-pixel screen.

The alternative solution, alluded to in the Programmer's Reference Guide, is to reduce the size of the bitmap sufficiently to make room for attribute memory. The VDC is a highly programmable chip. Although the standard VDC screen is 80 columns by 25 rows ( 640 dots by 200 lines), you change the display to any height and width by changing the appropriate VDC internal registers. For example, if you reduce the display size to 80 columns wide by 22 rows tall \((640 \times 176\) pixels), then 14,080 bytes will be required for the bitmap and 1760 bytes will be required for attribute memory, so both will fit in the available 16 K . The VDC register system is too complex to explain in detail here, but the following program illustrates the necessary steps to create full-color bitmapped graphics on the 80column screen. The program is adapted from one in Mapping the Commodore 128, from COMPUTE! Books, which provides a thorough discussion of VDC register operations.

Operate this drawing program with a joystick plugged into port 2. Press the fire button to move without drawing. Press B to change the background color and F to change the foreground color. The color changes affect all pixels in each subsequent character position you move through. You can press \(H\) to home the drawing point to the center of the screen, \(C\) to clear the screen, and \(P\) to change the border color.
(For instructions on entering this program, please refer to "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue.)

EE \(1 \varnothing \varnothing\) GRAPHIC Ø:FAST
QP 105 REM ** SCREEN EDITOR RO M ROUTINES
RQ \(11 \varnothing\) WR=DEC("CDCC") : RR=DEC(" CDDA")
PX 115 REM ** SET DEFAULT COLO RS
MF \(12 \varnothing \mathrm{BC}=2: \mathrm{FC}=11: \mathrm{PC}=9: \mathrm{SYS}\) WR, PC, 26
CC 125 REM ** SET SCREEN HEIGH \(T\) TO 22 ROWS
XB 130 SYS WR, 22,6

PH 135 REM ** MOVE ATTRIBUTE M EMORY TO ADDRESS 10480
ME \(14 \varnothing\) CM=14ø8ø: \(\mathrm{CH}=\mathrm{INT}\) ( \(\mathrm{CM} / 256\) ) : CL \(=\mathrm{CM}-(\mathrm{CH} * 256)\) : SYS WR, CH, \(2 \varnothing\) : SYS WR,CL, 21
PH 145 REM ** TURN ON BITMAPPE D DISPLAY
HE 15ø SYS RR, , 25:RREG A:SYS W R, (A AND 63) OR 192,25
FD 155 REM ** CLEAR BITMAP AND ATTRIBUTES
MJ \(16 \varnothing\) SYS RR,,24:RREG A:SYS W R, A AND 127, 24
DH \(17 \varnothing\) SYS WR, \(\varnothing, 18: S Y S\) WR, \(\varnothing, 19\) :SYS WR, \(\varnothing, 31\)
FK \(18 \varnothing\) FOR I=1 TO 56:SYS WR, 25 5,30:NEXT
KG 190 SYS WR,CH,18:SYS WR,CL, 19:SYS WR,BC*16,31
JP 2 Øø FOR I=1 TO 7:SYS WR, 255 30:NEXT
DR \(2 \varnothing 5\) REM ** SET HOME COORDIN ATES
EC \(210 \mathrm{X}=320\) : \(\mathrm{Y}=88\)
GH 215 REM ** CHECK FOR KEYPRE SS
JS \(22 \varnothing\) GET K\$:ON INSTR("BFPCH" , K\$) GOTO 230,240,250,1 60,210:GOTO 260
DC \(23 \varnothing \mathrm{BC}=(\mathrm{BC}+1)\) AND 15:GOTO 3 30
HS \(240 \mathrm{FC}=(\mathrm{FC}+1)\) AND 15:GOTO 3 \(3 \varnothing\)
AR \(250 \mathrm{PC}=(\mathrm{PC}+1)\) AND 15:SYS WR , PC, 26
JJ 255 REM ** READ JOYSTICK
GP \(26 \emptyset \mathrm{D}=\mathrm{JOY}(2): I F \mathrm{D}=\emptyset\) THEN 22 Ø:ELSE \(B=D\) AND 128: \(D=D\) \{SPACE \(\}\) AND 15
GG 265 REM ** CALCULATE NEW PO SITION
RD \(27 \varnothing \mathrm{Y}=\mathrm{Y}+(\mathrm{D}<3\) OR \(\mathrm{D}=8)-(\mathrm{D}>3 \mathrm{~A}\) ND \(\mathrm{D}<7\) ): \(\mathrm{IF} \mathrm{Y}<\varnothing\) THEN \(\mathrm{Y}=1\) 75: ELSE IF Y>175 THEN Y \(=\varnothing\)
KG \(28 \varnothing \mathrm{X}=\mathrm{X}-(\mathrm{D}>1\) AND \(\mathrm{D}<5)+(\mathrm{D}>5)\) :IF \(\quad\) I \(<\varnothing\) THEN \(X=639\) : ELSE
KH 290 IF B THEN \(33 \emptyset\)
XP 295 REM ** SET PIXEL
\(Q R 3 \varnothing \varnothing A D=I N T(X / 8)+8 \emptyset * Y: A H=I N T\) ( \(\mathrm{AD} / 256\) ) : \(\mathrm{AL}=\mathrm{AD}-(\mathrm{AH} * 256)\)
HJ \(31 \varnothing\) SYS WR,AH,18:SYS WR,AL, 19:SYS RR, 31 : RREG A
BA \(32 \varnothing\) SYS WR,AH,18:SYS WR,AL, 19: SYS WR, A OR \(2 \uparrow(7-(\mathrm{X}\) (SPACE\}AND 7)), 31
SJ 325 REM ** SET FOREGROUND A ND BACKGROUND COLORS
RJ \(33 \varnothing \mathrm{AD}=\mathrm{CM}+\mathrm{INT}(\mathrm{X} / 8)+8 \emptyset\) * (INT ( \(\mathrm{Y} / \mathrm{8}\) ) ) : \(\mathrm{AH}=\mathrm{INT}(\mathrm{AD} / 256): \mathrm{AL}\) \(=\mathrm{AD}-\left(\mathrm{AH}^{*} 256\right)\)
PE \(34 \varnothing\) SYS WR,AH,18:SYS WR,AL, 19:SYS WR, (BC*16)+FC, 31
PJ 350 GOTO \(22 \varnothing\)

\title{
COMPUTE! TOLL FREE Subscription Order Line 1-800-247-5470 In IA 1-800-532-1272
}

\title{
Little Computer People
}

\author{
Neil Randall
}

Requirements: Atari ST, Apple II-series (64K minimum), Amiga, and Commodore 64 computers.

In 1985, Activision introduced a unique concept in computer gaming. The original version of Little Computer People, available for the Commodore 64, Atari eight-bit machines, and Apple II series, was so popular that many people bought several copies. In 1986, versions for the Amiga and Atari ST were released. Neither a game nor an applications program, Little Computer People is as purely entertaining as anything on the market. Its greatest appeal is undoubtedly to children, but in its short lifetime it has managed to capture many adult imaginations as well.

The premise behind Little Computer People is extremely simple. Inside every computer live several small people. They do not speak our language, but they live a day-to-day existence that resembles ours. The problem is, they have no home. What Little Computer People does, therefore, is provide them with a house to live in and someone to take care of them.

That someone, as you might expect, is you. When you first start the program, you are asked to sign a very attractive guestbook and provide the current time and date. Then a house appears on the screen, cut away to reveal the contents of several rooms. On the ground floor is a kitchen, with table, chair, refrigerator, sink, and water cooler , and a living room with fireplace and telephone. The second floor has a bedroom, bathroom, and computer room. Up the stairs to the top floor there is a large room with a television and stereo, a piano, a desk with typewriter, and a filing cabinet.

\section*{Keeping Him Happy}

After a short wait, your LCP (Little Computer Person) appears. He will enter the front door, check the place out,
then leave. Shortly, he will return with his luggage and his dog. Your job, now that you've provided him with a home, is to keep him happy. To do so, you must make sure he has food and water, provide food for his dog, and pay attention to him. The first three are easy. Control-F (in the Atari ST version, the one used for this review) drops food at the front door, Control-W adds a glass of water to the cooler, and Control-D leaves food for the dog. Your LCP will feed himself and the dog without your prompting.

Your LCP will be in one of four states. Happy means just that. Content means his life is okay, but it could be better. If his face is sad, you should cheer him up immediately, and if you don't feed him or give him water, he will turn green and lie sick in bed. To boost your LCP's mood, you can call him on the phone (but be prepared not to understand a word he says), you can "pet" him, or you can leave a record for him at the front door. When he retrieves the record, he will take it up to the stereo and play it. You can listen with him.

Another mood booster is playing games. You can either ask him to play, by typing in the request, or wait for him to knock on your screen. He will then offer to play one of several games. Anagrams is a word-unscrambling game, with you doing the descrambling. Card War is the children's card game "War." If you play 5-Card-Draw Poker against him, he will let you win just often enough to think you can beat him. The same applies to Blackjack. Finally, Word Puzzles has you fill in the blanks to a word in a sentence he prints on the screen. All the games are fun to play, and the LCP appreciates the attention.

Again in response to your request, or purely on his own, the LCP will either play the piano (he's pretty good) or sit at the typewriter and send you a letter. The letter is always addressed to you, and you will quickly discover how well-mannered your LCP really is. You can, at any time, type in a request to the LCP, to which he may or may not respond. If he does, he nods his head and does as he is asked. Writing is the only way to communicate with him, though, since he does not speak English.

\section*{An Everyday World}

What you do most of the time, though, is watch your LCP spend his day. He will light a fire and read a book in the living room, or he will feed the dog in the kitchen. He works in the computer room and sleeps in the bedroom, and when he closes the bathroom door he will emerge to the sound of a toilet flushing. Much of his time he spends watching television or playing music, and he seems to spend an inordinate percentage of his life walking up and down the stairs. He eats, drinks, sleeps, reads, entertains himself, and takes care of his dog. In other words, his days are much like many of ours: not very exciting, but pleasant and, if you are good to him, fulfilling.

By now I'm sure you see the enormous and subtle educational appeal of Little Computer People. To watch a child care for the LCP, writing letters to it and playing games with it, is a marvelous way to pass a few hours a week. To a child, a sick LCP is a matter of life or death; a happy one is cause for rejoicing. The program provides neither the competitiveness of computer games nor the unrealistic time distortion of television, as the LCP lives a pretty normal life in a pretty normal house. The child will learn to care for and about the LCP, and there's not much more you could ask of a computer program.

Activision has included one other brilliant feature in Little Computer People, but I suspect that most people, like me, will take a while to appreciate it. There is only one Little Computer Person on the disk. To get another, you have to go buy a new disk. Now, to those of us used to starting a game over from scratch when something goes wrong, or when we grow tired of it, this feature is initially disappointing. At least I found it so. But when I thought about it, I began to realize that this is solidly in keeping with the rest of the design. You can't change LCPs, because you have made a commitment to caring for the one you already have. The LCP simulates a little person inside the computer, one which the child must take care of even if he would like to have somebody else. One of the criticisms about simulations as a whole is that they encourage noncommitment be-

\section*{Authorized}

\section*{XEROX`ㅡ․ COMPUTER FOR BUSINESS, AND PERSONAL USE!}

\section*{XEROX \({ }^{\oplus}\).. The Name You Can Trust!}

Since 1906 Xerox \({ }^{\circledR}\) has been the world leader in office automation and copying equipment. They have set standards that others can only imitate. The Xerox® 6064 Personal Computer was designed to meet the demands of business, professional, and personal computing today, and into the future! We are proud to offer this complete Xerox \({ }^{\circledR}\) System at a remarkably LOW price. Compare for yourself...then buy your Xerox 6064 from C.O.M.B.!
Get the Xerox \({ }^{\text {® }}\) Advantage! The Xerox \({ }^{\text {® }}\) PC offers you the advantage of running IBM \({ }^{+4}\) compatible MS \({ }^{\text {TW }}\)-DOS, so you can run the hundreds of business and professional software programs available today! And the Xerox \({ }^{\odot} P C\) is easy to use! It's designed to get you up and running as quickly as possible with computer-aided instruction and superior documentation covering all aspects of personal computing.
Xerox \({ }^{\circledR}\)... Service You Can Count On! if you're considering an \(\mathrm{IBM}^{\top}{ }^{\text {w- }}\)-compatible, don't be misled by price alone! The system we are offering is a complete system...very easy to hook up and use...and very affordable. But more than that, each system we sell is backed by Xerox \({ }^{\circledR}\) service and support. When you buy this system, your name and computer's serial number is automatically registered with Xerox \({ }^{\text {© }}\). Should you need service or advice, a network of over 150 service centers stands ready to help you. Before you buy...compare! Xerox® is your best value! Check all these features:
- IBM \({ }^{\text {u- }}\)-PC Compatibility.
- Standard 83-Key PC Keyboard with Mouse Interface (Mouse Not Included.)
- High-Resolution Monochrome Monitor, with 10 " Diagonal Non-Glare Screen, Swivel and Tilt Housing.
- Two 51/4" Floppy Disk Drives.
- 256KB Memory. 8MHz Intel 8086-2 Microprocessor for Faster Speed, Less Waiting Time.
- Seven Expansion Slots, Serial Port for Communications or Printer, and Parallel Printer Port
- Comes with ScreenMate \({ }^{\text {™ }}\), a User Friendly Guide to the Functions of the MS \({ }^{\text {TW }}\)-DOS Operating System.
- Menu Driven...No Need to Remember Complicated Commands! ScreenMate \({ }^{\text {w }}\)


Lets You Select from a Menu and Provides Clear On-Line Instructions If You're Confused About Your Next Step.

\section*{Complete Tutorial Software and} Manuals Included:
- "Getting Started" Booklet.
- Four Reference Guides.
- Four Software Programs: Two X-Cel \({ }^{\text {w }}\) Training Disks, Two Diagnostic Disks, GW \({ }^{\text {w }}\)-BASIC Interpreter, and MS \({ }^{\text {w }}\) DOS/ScreenMate \({ }^{\text {Tw }}\) Operator's Guide - Twenty Blank Disks.

Over 150 Service Centers Nationally.
Manufacturer's Limited 90-Day Warranty on Parts/Labor.

Item H-2185-7118-557 Shippped Freight Collect Ship Wt.: 79 Ibs. Xeroxs and the identitying numbers herein are trademarks ol XEROX \({ }^{\circ}\) CORPORATION.

Toll-Free: 1-800-328-0609

SEND ME THE ITEMS I HAVE LISTED BELOW
Sales outside 48 contiguous states are subject to special conditions Please call or write to inquire.
\begin{tabular}{|l|l|l|l|l|}
\hline Item No. & Qty. & Item & Price & S/H \\
\hline & & & & \\
\hline \multicolumn{5}{|c|}{ TOTAL (Products plus ship, handling) }
\end{tabular}


\section*{SEND TO}

C.O.M.B. Direct Marketing Corp.

1405 Xenium Lane N/Minneapolis, MN 55441-4494
Send the items indicated at left (Minnesota residents add \(6 \%\) sales tax. Sorry, no C.O.D.) \(\square\) My check or money order is enclosed. No delays in processing orders paid by check.)
Charge: \(\square\) VISA® \(\square\) MasterCard \(\square\) Discover \(\square\) American Express \({ }^{\ominus}\) Acct. No.

Exp /
PLEASE PRINT CLEARLY
Name
Address
City
State \(\qquad\) ZIP
Phone
Sign Here
cause nothing is irrevocable. Activision, in a flurry of brilliance, decided not to let that happen. As a design decision it is unusual, but it is one worth considerable praise.

Is Little Computer People for everyone? No, no more than any other computer product is. It is, however, for anyone seeking to encourage the growing trend in entertainment software towards real-life simulation. In the past year the people at Activision have given us Alter Ego and Little Computer People, and in doing so demonstrated a willingness to buck the trends and let entertainment software find its own course. They are to be applauded for this, because without the willingness, such innovations as Little Computer People would not exist. It is a delightful program.
Little Computer People Activision
2350 Bayshore Frontage Rd.
Mountain View, CA 94043
\$49.95 Atari ST and Commodore
Amiga versions
\$39.95 Apple II-series version
\$34.95 Commodore 64 version

\section*{PetPic3}

A view of the cutaway house in Little Computer People (Amiga version).


Attention all FX80, FX100, JX, RX, \& MX owners: You already own half of a great printer

Dealer inquiries welcome.

Looking for a Widget for your Okidata printer and need it now? Call Precision!

Precision Images normally stocks most spare parts for your Okidata printer, from the Okimates to the Pacemarks including the new Microline and Laserline series. Anything and everything for your Okidata printer is only a phone call away. Precision Images is "your direct connection to genuine Okidata parts and supplies."
for Visa/MasterCard orders call:
1-800-524-8338


Precision Images, Inc. P.O. Box 866

Mahwah, New Jersey 07430

\section*{Sensational Prices! On Our Most Popular Items!}

\section*{from microfar}

\section*{THE 49© DISKETTE!}

Are you paying too much for diskettes? Try our first quality, prime, \(51 / 4^{\text {" }}\) diskettes (no rejects, no seconds) at these fantastic sale prices and save, save, SAVE! Disks are packaged in boxes of 50 ; including diskettes in sleeves, labels, and write-protect tabs.

Each diskette is certified to be \(100 \%\) error free and comes with a lifetime warranty (if you have a problem, we'll replace the diskette). All diskettes include hub reinforcement rings and write-protect notch.

All diskettes are double density and work in either single or double density drives.

SS, DD Diskettes, Box of 50 32391
\$24.50-49c ea.!
DS, DD Diskettes, Box of 50 32403
\$29.50-59c ea.!

POWER and PROTECTION FOR YOUR C-64! \({ }^{\circ}\) POW'R PAK 64 \(\qquad\)
from MicroPa \({ }^{\circledR}\)
Pow'r Pak is a replacement power supply ( 1.5 amp ) for the Commodore \(64^{\circ}\). . . but that's not all! Pow'r Pak also supplies two additional surge protected outlets ( 120 V ) for monitor, disk drive, or other peripherals. On/off switch. Fuse protection. Sturdy all-metal casing is ventilated for heat dissipation. Full 1 year warranty.
34910
\(\$ 49.95\)

Our Lowest Price Ever On Diskette Storage!
 FLIP SORT 70
- Stores and files up to \(7051 / 4^{\prime \prime}\) diskettes. - Includes 5 index dividers for organization of filing and retrieval. - Molded from highly durable plastic.

Sug. Retail \(\$ 7.95\)
Regular Tenex Price \(\$ 6.95\)
SUPER SALE \(\$ 4.95\)

\section*{Lowest Cost, Best Performing Star Printer Ever!!}

NP-10. Ideal for school and home use, the newest printer in the Star line promises to be a best-seller due to its great features and unbeatable price! You get superb draft printing at 100 cps and its easy to switch to crisp, precise near letter quality at 25 cps . Easy front panel operation allows you to change modes at the simple touch of a button. Tractor and friction feeds standard. Printing is bidirectional in draft mode and unidirectional in bit image and NLQ modes. Five character sets are available in draft mode including italic and international characters, with three sets available in NLQ. 2K buffer. Standard parallel interface. Full one-year warranty. Sug. Retail \$279.00
64204 NP-10 Printer
SCALL FOR LOWEST PRICE!

\section*{* THE BEST PRICES *}
*THE BEST SEEVVCE * WHY SHOP ANYWHERE ELSE?

THE FAMOUS SLIK STIK \({ }^{\text {m }}\)
The Slik Stik \({ }^{\text {TM }}\) has been a favorite for years, an lor good reason. It's just the right combination of responsiveness and accuracy. And the price can't be beatt From Suncom. 90 day warranty. Connects directly to Commodore Computers. 42086

ONLY \$6.95!


\section*{Space Saving Printer Stand}

At last a printer stand priced for homes and small offices! This great stand from Suncom is elevated so you can place your paper underneath. Features heavy duty weloed steel wire construction and has a viny coating to reduce noise and vibraon. Another pius. the printer is held at an angle that makes it much easier 00 colum youtput as it is being printed. Available in two withs: \(12^{\prime \prime}\) for most \(3232{ }^{2}{ }^{2 \prime}\). \(332461^{12}\) " Printer Stand ............(Was \$14.95) ONLY S 6.95 Paper Tray
Ever wondered what to do with the printout that comes out of the printer and tends to spill all over the table and floon? The Suncom Paper Tray attaches to the rear of all Suncom stands and receives the printed paper as it comes out of the printer Helps to neatly fold and stack it! 42091

\section*{DUST COVER and "EVERYTHING BOOK" SPECIAL OFFER}

Get to know us by ordering this great dust cover for your \(\mathrm{C}-64\) or \(\mathrm{C}-128\) and our catalog, "The Everything Book for the C-64 and C-128, Home Computers," for \(\$ 2.95\) (no extra shipping and handling charges). Cover is antistatic, translucent 8 -gauge vinyl sewn to our exacting translacent with reinforced seams. Discover the
standards with rewn savings and easy shipping available from savings and easy shipping
TENEX Computer Express!

\$2.95
31627 C-64 Dust Cover and Catalog (K1A)
38464 C-128 Dust Cover and Catalog (K1A)

The Right Interface For All Your Printing Needs!!
作| \(\begin{aligned} & \text { ". a sound investment for you } \\ & \text { Commodore."RUN, Dec. "85 } \\ & \text { This high-performance graphic }\end{aligned}\) parallel printer intertace from DSI for C. 64 and VIC- 20 emulates a Commodore printer Comes with cables and user's manual.
33565
\$39.95
Super Graphix. Features 8 K butfer, 10 printing modes, 3 intermal screen dumps and top mounted dip swithes.
Supports superscript, subscript, underlining, bold face, and Supports superscript, subscript, underlining, bold face, and
a choice of 9 character widths. From Xetec a choice of 9 character widths. From Xetec.
41769
\(\$ 69.95\)
Super Graphix Jr. A more economical version of the Super Graphix, featuring graphics, normal and correspondence qualify printing. Compatble with all major printers. From Xetec.

41774
\(\$ 49.95\)

From Your Friends At


We gladly accept mail orders!
P.O. Box 6578 South Bend, IN 46660 less than \(\$ 20.00 \quad \$ 3.75\) \$20.00-\$39.99
\$40.00-\$74.99 \$75.00-\$149.99 \(\quad 6.75\) \(\$ 150.00\) \(\$ 300\) \& up

\title{
Certificate Maker And Walt Disney Card \& Party Shop
}

\author{
Karen McCullough
}

Requirements: Apple II series ( 64 K minimum) and Commodore 64. Certificate Maker also has an IBM PC (and compatibles) version.

Conceptually, Certificate Maker and Walt Disney Card \& Party Shop are indirect offspring of Brøderbund's classic home printing program, The Print Shop. They use a similar simple, menu-oriented approach to design and setup, with no decisions being final until you actually print. And they enable your computer to produce professional-looking items you couldn't otherwise create at home.

Certificate Maker's name says it all: The program prints certificates. That's the only thing it does, but it performs that function very well. Although it trades some flexibility for ease of use, it's difficult to think of an award the program couldn't handle.

The designers have broken the process of certificate creation into four steps. You begin by selecting a tem-
plate, or basic format, for the certificate. The template may include a headline and various graphic designs. With more than 200 available in the package, including several all-purpose and blank designs, there's a certificate for every imaginable occasion.

The second step is to choose a border. Each of the 24 available designs is displayed on screen as its title is highlighted, and there's an attractive assortment. Third, for templates that don't have a predesigned title, you enter title font style and the text. Five fonts (in two sizes) are available; they're acceptably good looking, but one could wish for a wider choice.

The last step is to choose a font for, and enter, the body text. How much body text is available depends on the font style and size chosen. That done, you enter a date and signature line and tell it to print. Printer setup follows a trend found today in many programs: You choose your equipment from the lists displayed, and the program configures itself.

Certificate Maker has several features worth mentioning. The names file option allows you to create a list of names and ask the program to print a certificate for each. Several lists of names can be edited and saved on a separate disk (be aware, though, that in
the Apple version this must be a ProDOS formatted disk). When you run the printer-setup test, it prints four blocks that represent the corners of the certificate to help you position the paper correctly.

\section*{Disney On Paper}

Walt Disney Card \& Party Shop has taken a different approach and added flexibility at the cost of some friendliness. The Card \& Party Shop lets you create a full line of paper goods for a child's party: invitations, place cards and mats, wrapping paper, banners, and so on, or cards and signs for other purposes.

For most items you can choose a predesigned layout or create your own. If you stick to predesigned pieces, the creation process is simple: Choose a design and print it. The variety is sufficient; you could have several different parties using just the designs available from the program.

Card \& Party Shop lets you do a great deal more, but you'll have to spend some time with the manual learning how. In general, the manual is clear, but it has a propensity for referring you to other pages for discussions of various features.

The program offers six typefaces, but that's misleading; the variety is more in size than style, and the style is

\section*{Personalized Computer Stationery} High Quality - Fast Service - Free Delivery


TYPE STYLES:
Andover Bold Avant Garde Book Colonial Bold Korinna Extra Bold Megaron Medium Megaron Bold Munay GHill Bold Times Roman Continuous Letterheads (Invisible Perf) \#10 Continuous Envelopes (Invisible Perf)
\(81 / 2^{\prime \prime} \times 11^{\prime \prime}\) Letterheads
\#10 Regular Envelopes
\begin{tabular}{|c|r|c|}
\hline 500 & 1000 & \multicolumn{1}{|c|}{ Add' 1,000 's } \\
\hline\(\$ 54.50\) & \(\$ 78.25\) & \(\$ 44.00\) \\
\hline 66.50 & 117.25 & 68.10 \\
\hline 44.00 & 51.00 & 38.00 \\
\hline 51.95 & 74.35 & 55.83 \\
\hline
\end{tabular}

Choice of Inks: Black, Red, Blue, Green, or Brown Paper Color: White. (Colors Available at Additional Charge) Custom type and colors with your company logo quoted on request.


\title{
HARDWARE
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{AMIGA} \\
\hline 512K RGB System & CALL \\
\hline 256 K Amiga & CALL \\
\hline A1010 31/2" Disk Drive. & CALL \\
\hline A1080 RGB Monitor. & CALL \\
\hline A1050 256K Expansion & CALL \\
\hline A1680 1200 Baud Modem . & CALL \\
\hline *CASIO WRIT & \\
\hline CW-20/CW-30. & CALL \\
\hline *AMSTRAD & \\
\hline
\end{tabular}

\section*{ATARI ST}

520 ST RGB or
Monochrome System SF314 DSDD Disk Drive SF354 SSDD Disk Drive SC1224 12" RGB Monitor SM124 12" Monochrome Monitor SH204 20 MB Hard Drive SMM 804 Printer Laser Printer 1200 Baud Modem

\section*{JVC}

Victor Champion Computer, IBM Compatible, 2 Drives, 640K, Software Included .....
Monochrome Monitor With Video Card
. \(\$ 695.00\)
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
JVC
Victor Champion Computer, IBM
Compatible, 2 Drives, 640 K,
Software Included \(\ldots \ldots \ldots . . \$ 695.00\)
Monochrome Monitor With
Video Card .................. \(\$ 139.00\)
COMMODORE
P.C. 10 Computer................CALL
P.C. 20 Computer...............CALL
MICRO SCIENCE
20 MB Drive with Controller ..... \(\$ 379.00\)

ATARI XLIXE
130 XE Computer
800 XL Computer
1050 Disk Drive
XMM 801 Printer
1020 Printer.
COMMODORE 64128
D64C Computer . . . . . . . . . . . . . . . . . . CALL
D1541C Disk Drive.
C-128 Computer
Vic-1571 Disk Drive
Vic-1581 Disk Drive
512K RAM Expansion.
. . . . . . . . \(\$ 24.00\)

CALL ON THESE AND OTHER PRODUCTS. WE CARRY A COMPLETE LINE OF SOFTWARE AND HARDWARE INCLUDING PRINTERS

\section*{TOP HITS}

\section*{AMIGA SOFTWARE}

Arctic Fox
Sky Fox
Deluxe Paint.
Art Disk Vol. I
Deluxe Print
Art Disk Vol. II
Deluxe Video
Instant Music
Marble Madness
Winter Games
Marauder II.
Grabbit
Little Computer People
Aegis Draw
Aegis Animator
On Line.
Music Studio
Analyze
Amiga Assembler
Amiga Pascal
Lattice "C"
Leader Board Golf
Deluxe Music
Scribble with Spell Checker
Defender of the Crown
dB Man

\section*{C64/128 SOFTWARE}

ALL ABACUS TITLES
ALL MASTERTRONICS
TITLES
Winter Games
The Toy Shop
Gettysburg: The Turning
Point
World Games.
Road War 2000
Gemstone Healer
Destroyer
Shard of Spring
Hardball

CALL
\$ 30
\(\$ 29\)
\$ 72
\$ 24
\begin{tabular}{l}
72 \\
72 \\
\hline
\end{tabular}
72
24
\$ 24
\begin{tabular}{l}
72 \\
\hline
\end{tabular}
\$ 39
\$ 32
\(\$ 32\)
32
32
32
32
24
29
\begin{tabular}{l}
\(\$ 159\) \\
\hline
\end{tabular}
99
99
\(\$ 39\)
\(\$ 69\)
\(\$ 39\)
\(\$ 69\)
\(\$ 79\)
\(\begin{array}{r}79 \\ \hline 79\end{array}\)
Temple of Apshai Trilogy
Tem
Winter Game
World Games .
VIP Professional
S.D.I.

Data Manager ST
LDW Basic
Leather Goddesses of Phobos
ATARI XEIXL SOFTWARE
Battle of Antietam
USAAF
M.U.LE.

Movie Maker
One On One .
Seven Cities of Gold
Silent Service
F-15 Strike Eagle
Music Studio
Printshop Companion
Temple of Apshai Trilogy
Flight Simulator II
Scenery Disk (1-6)
Star Disk - San Francisco
Star Disk - Japan
Karateka
Nam
Print Shop
Graphic Library
I, II \& III \(\qquad\)
Touchdown Football
Ogre
Computer Quarterback

\section*{ABBY'S SUPER BUYS}

AMIGA
COMMODORE
Text Craft
Graphic Craft
both for \(\$ 59.95\)

\section*{ATARI XLXE \\ DATASOFT}

Pooyan (DEC
\$ 5.95
Moon Shuttle (D\&C) . . . . . . . . . . . . \$ 5.95
ATARI INC.
States \& Capitals (C) ............. \$ 1.99
Basic (R) . . . . . ....................... \(\$ 2.99\)

APPLE
ATARI INC.
Pac Man
\$ 1.99
Centipede
Donkey Kong . . . . . . . . . . . . . . . . . \(\$ 1.99\)
VIC-20
ATARI INC.
Donkey Kong

COMMODORE
COMMODORE INC.

\section*{Gortek \& The Microchips (C)}

Clowns (R).
Tooth Invaders (R) Lazarian (R)
Frog Master (R) Easy Finance I, iII, IV \& V . . . . . . ea. \$ 2.99 Blue Print (R). Jupiter Lander (R) Music Composer (R) Sea Wolf (R) Screen Editor (D) Suspended (D) Kickman (R) Star Ranger (R) ine (D) . . . . . . . . \(\$ 2.99\) Speed/Bingo Math (R) TIMEWORKS
Money Manager (D\&C) Electronic Checkbook (D\&C) .... \(\$ 5.95\) Data Manager (DGC)
.ea. \$ 2.99


ABBY'S EXTRA BONUS: The first 25 to order the 1020 Printer will receive FREE the ATARI TIMEWISE PROGRAM. Retail Value \(\$ 29.95\).

The first 25 to order the 1027 Printer will receive FREE the ATARI HOME FILING MANAGER. Retail Value \$24.95.

ALL TITLES ON DISK UNLESS MARKED (R) FOR ROM CARTRIDGE \(\&\) (C) FOR CASSETTE TAPE Order Line WE CHECK FOR STOLEN VISA \& MASTERCARD Customer Service

1-800-282-0333
ORDERS ONLY! Sales Personnel Do Not Have Information on
Previous Orders or Product Specs.

M-F 10 a.m.-8 p.m.; Sat. 10-3 ET
37 S. Broad Street, Fairborn, OH 45324
\(\&\) Ohio Residents
1-513-879-9699
AD \#CP-037

\section*{}


Certificate Maker lets you select format, border, and text font to design your own certificates.


Building a note card in Walt Disney's Card \& Party Shop.
more serviceable than attractive. The real strength of the program is the graphics. Over 50 pictures and designs can be cut, flipped, moved around, and combined for infinite variety. Unlike in The Print Shop, you can't draw your own pictures, but you can combine graphics on a page and save your designs to disk (which The Print Shop doesn't allow).

Certificate Maker and Walt Disney Card \& Party Shop were designed to fill specialized printing needs, creating certificates or making cards and party items for children. Both perform their designated functions well, and will no doubt be used regularly in schools and homes with small children. They're fun to use as well as practical.
Certificate Maker
Springboard Software
7808 Creekridge Circle
Minneapolis, MN 55435
\$49.95 Apple II series, Commodore 64 \(\$ 59.95\) IBM PC and compatibles
Walt Disney Card \& Party Shop Bantam Electronic Publishing 666 Fifth Ave.
New York, NY 10103
\$39.95 Apple II-series version
\$34.95 Commodore 64 version

\section*{Attention Programmers}

COMPUTE! magazine is currently looking for quality articles on Commodore, Atari, Apple, and IBM computers (including the Commodore Amiga and Atari ST). If you have an interesting home application, educational program,
programming utility, or game, submit it to COMPUTEI, P.O. Box 5406, Greensboro, NC 27403. Or write for a copy of our "Writer's Guidelines.'

\section*{When You're Ready to Mouse Around...}

Do it for
less with a Lisa


\section*{Runs Macintosh Software}

The Lisa Professional. You'll find it nowhere else! A powerful computer with up to a full megabyte of RAM, 40 Mb internal hard disk capacity, 400 K internal disk drive, large \(12^{\prime \prime}\) screen and keyboard complete with numeric keypad. And, powerful as it is, it's as easy to run as any Macintosh \({ }^{T M}\) and a whole lot easier to afford!


\section*{}


\section*{ORDERLINE -}


\section*{Apple \({ }^{*} / / /\)}
- 256K - full-function keybaord
- CPU, Monitor, Disk Drive
- 4 Expansion slots
- Great for accnt/business


With 5mb ProFile \(\$ 999\)

Introduce yourself to a fresh new concept called Remarketing. Sun is the nation's largest support center for obsolete Apple® products. For questions
FULL service and support call Sun. Each
product we sell carries a
SERVICE satisfaction guarantee.
AND SUPPORT \(\begin{gathered}\text { Weare not } \\ \text { satisfied until you ared }\end{gathered}\)
orderline.

\section*{1-800-821-3221}

For a complete lisiting of products CALL FOR OUR LATEST CATALOG
돈 \({ }_{\text {Questions - Service }}^{801-752-7631}\)
Mcerlion is a 1 Hocemsin ot Mehtrest Luscratory inc

\title{
Roadwar 2000
}

\author{
James V. Trunzo
}

Requirements: Apple II-series computers, with a 48 K minimum, and Commodore 64 computer; versions under way for Atari ST and IBM PC and compatibles.

America has become a battleground; the word "civilization" is rapidly becoming as much an anachronism as the concept of peace. Bacterial warfare, insidiously brought into the country and spread by fanatics whose hatred of the United States was greater than their fear of death, has reduced this oncegreat nation into a state of anarchy where rule goes to whoever has the power to enforce it. In the year 2000, it is the road warriors who control the land. But there is hope.

Of course, in Roadwar 2000, a recent release from Strategic Simulations, you are that hope. A patriotic leader and one of the few people who know of the plan to cure the deadly bacteria and, in the process, return control of the country to what is left of the Federal Government, you must recruit a road gang, build it into a force, and begin taking over the major cities, one by one. By doing so, you will be able to locate the eight scientists who jointly hold part of the formula for the vaccine that will destroy the deadly microbes that have crippled a nation. It goes without saying that the job will be both dangerous and difficult.

\section*{A Sprawling Adventure}

Roadwar 2000 is a sprawling adventure game whose battleground covers the entire continental United States, Mexico, and the Bahama Islands. The idea for the game obviously grew out of the very popular Mad Max movies, but SSI has successfully expanded the concept of the road warrior into a full-fledged, multi-faceted adventure game. The game includes a wide variety of possibilities and requires the player to think just as shrewdly in noncombat situations as he or she does while fighting. Though combat will be both necessary and frequent, the player must never lose sight of the primary goal: locating the eight scientists hidden around the country.

As a leader of a road gang, you must not only direct your force in combat but also provide for them-which means arming and feeding each man. Therefore, you must know when, where, and how to forage for food, medicine, and weapons. You must make decisions on how and when to recruit more members into your road gang, particularly the "specialists" like
military advisors, politicians, and doctors. Each one of these specialists will perform a particular function. A topnotch drill sergeant, for example, will decrease desertions, train your men to fight better, and increase the chances of promotions for your lowly escorts.

Handling your forces is obviously an important task, but it is equally important to know how to handle your vehicles. As the title implies, if you control the highways, you control the country. Without well-equipped, wellfueled transportation, you won't survive. Roadwar 2000 offers 15 vehicle types with which to work, each rated individually in 24 different categories that run the gamut from number of tires to handling ability. Motorcycles and compacts are easy on gas and highly maneuverable, but are reduced to using hit-and-run tactics in combat. A bus, on the other hand, can be turned into a real war wagon and transporter, if you have a good supply of fuel and spare tires. Your decisions on the make-up of your road gang's vehicles spell the difference between success and failure in many cases.

\section*{Deadly Encounters}

As you crisscross the country, exploring 120 cities and dealing with over 30 types of terrain, you must learn to trade, talk, or fight with a truly eclectic group of people: Foot Gangs might take the form of mercenaries, street gangsters, armed rabble, mobs of the needy, or even cannibals; and any of these types can be found in what remains of once-thriving cites.

Residents, while more stable in most cases, aren't always what they seem either. Those National Guardsmen might be lawful or they might be renegades; those friendly masses awaiting your envoys might be The Reborn who want only peace, or Satanists waiting to bushwack you. Bureaucrats who control municipalities will want you to pay for the privilege of passing through their city or town, and Survivalists are notoriously trigger-happy and suspicious of strangers. And for every healer you meet, there's a diseased, psychotic Mutant, the result of nuclear explosions.

Not that the roads are any safer. Many of the "types" already mentioned have vehicles, too, and are more than willing to give you special attention as you cruise the highways.

When combat occurs, and it will, the fighting can be resolved in several ways. The player may opt for Abstract, Tactical, or Quick combat, each having its own advantages and disadvantages. If you choose to forego detailed road combat, the resolution of the encounter is Abstract. The computer rapidly com-


Roadwar 2000 is a futuristic battle adventure that takes you across the continental U.S. and into Mexico and the Bahamas.
pares all pertinent data of the opposite forces (number and type of vehicles, men involved, weapon availability, and so on) and displays the bloody results: number of men lost, vehicles lost and/ or damaged.

If you prefer detailed, graphic combat, you are given a subchoice of allowing the computer to handle deployment of vehicles and allocation of weapons or of taking care of these details yourself. Once this has been decided and acted upon, tactical combat begins. You are then required to choose movement and targets for each of your vehicles. Your options are many. Even ramming and boarding may occur.

A compromise choice is Quick combat. Here the player is given the flavor of full tactical combat, but sacrifices many of the options available under Tactical combat. No boarding or capturing of an enemy's vehicle may occur during Quick combat, for example.

Roadwar 2000 combines the excitement of individual combat with the strategy and tactics of a campaign to give the player the best of both worlds. Throw in the aesthetically pleasing graphics and the variety that guarantees a long shelf life, and you have yet another successful product from SSI.
Roadwar 2000
Strategic Simulations (SSI)
1046 N. Rengstorff Avenue
Mountain View, CA 94043
\$39.95
©

\section*{Demons And Events, Part 2}

Last month we started to explore the world of event-driven programming. As I mentioned at that time, event-driven programs are different from traditional computer programs in that the computer can be made to check the status of certain events automatically, without expressly checking for these events in a loop.

For example, a traditional computer program that searches for certain events may have a loop that looks something like this:
1000 if button-down then do-button-event 1010 if joystick then move-cursor
1020 if keypress then accept-text
1030 if end-of-line then word-wrap 1040 go to 1000
The program will run in this loop forever until one of the tested conditions comes true, at which point the appropriate subroutine gets executed.

In event-driven programs, various conditions are tested at the beginning of each line of the program, no matter where these lines are or what they are doing. Once an instruction turns on the checking of an event, that event is looked for all the time, unless the program specifically disables the event checking.

\section*{Events And The Mac}

Macintosh programming with languages like ZBASIC consists of setting up the starting windows and menus, creating subroutines to handle various events, turning on the event checking, and then spending the rest of the time running in a simple loop. An example might be:
```

1000 REM SAMPLE PROGRAM
1010 GOSUB "SETUP MENUS"
1020 GOSUB "SETUP START
WINDOW"'
1030 ON MENU GOSUB "HANDLE
MENUS"
1040 ON DIALOG GOSUB "HANDLE
DIALOG"
1050 ON MOUSE GOSUB "HANDLE
MOUSE"

```
```

1060 ON BREAK GOSUB "STOP
PROGRAM"
1070 MENU ON : DIALOG ON : MOUSE
ON : BREAK ON
1080 GOTO 1080
1090 END
.

```
...
2000 "SETUP MENUS"

\section*{...and so on}

When this program is run, the starting instructions are executed in sequence. Lines 1030 through 1060 indicate which subroutines are to be executed when a particular event occurs. The event checking is turned on in line 1070, and the program then enters a loop in line 1080.

At this point, the event checker looks to see what is happening from the user's perspective each time line 1080 is executed. If the user pulls down a menu and selects an item, the subroutine HANDLE MENUS is executed. This routine has the task of finding out which menu item has been selected and of taking the appropriate action. Once this task has been completed, the routine returns to line 1080 .

An interesting feature of eventdriven programming is that events are checked for at the beginning of each line, no matter where in the program the event takes place. For example, if the user has selected a menu item and then presses the "break" key, this event will be detected, even if the computer is running a routine for another event.

\section*{An Event-Handling Routine}

Once an event has occured and control is passed to a special subroutine, special functions can be used to tell what happened. For example, a menu-handling routine written in ZBASIC for the Macintosh may look something like this:
"HANDLE MENUS"
whichmen \(=\) MENU( 0 )
whichitem \(=\) MENU(1)
IF whichmen \(=1\) AND whichitem \(=1\)

\section*{THEN "open file"}

\section*{RETURN}

Each event (for example, selecting a menu item, moving the mouse, or clicking in a window) has its own special set of functions that can be used in subroutines to find out exactly what happened. Based on the output of these functions the programmer can make the program do what he or she wants it to do.

\section*{Events And Other Computers}

Event-driven programming is by no means limited to the Macintosh. As I mentioned last month, my first experience with this method of programming came through my exposure to Atari Logo on the old model 400. The Quick BASIC compiler from Microsoft for the MS-DOS computers supports events. Eventdriven programming languages are becoming available for most popular computers.

In fact, you probably have at least one event loop running in every program you write. If your computer lets you stop a program by pressing CTRL-C, you are experiencing the result of an event-the pressing of a special key. Typically this event is checked for automatically, even if you don't want it to be!

\section*{The Advantages Of Events}

Writing event-driven programs requires a slight philosophical shift in thinking from that used when writing traditional programs. Rather than thinking about the program from the programmer's perspective, the software author has to be constantly thinking about the user. The user is going to perform some activ-ities-typing on a keyboard, moving a mouse, and so forth. Each of
these activities is going to be initiated by the user, and it is the job of the program to respond appropriately to these external events.

This style of programming facilitates the creation of programs where the user can jump from activity to activity without having to be carried through a rigid sequence of steps dictated by the programmer.

\section*{Problems With Events}

Event-driven programs are tricky to debug when you first start learning how to write them. One of the disciplines I found essential was to disable events (with commands like MENU OFF) while they were being handled.

And, since you can't always know which line is being executed when an event is detected during the program run, the programmer gives up a certain amount of control over the ultimate interaction be-
tween the user and the program.

\section*{Why Bother?}

Event-driven programs have a special feel when you run them. It is as though the programmer has anticipated the user's every move and desire and is ready to do anything at any time. It is true that this same feel can be created by programmers using just about any language including hand-crafted machine code, but the special features of languages that support events make it easy to put the user in charge.

To my way of thinking, the central task facing any computer programmer is to write programs that make the computer disappear from the user's consciousness. A well-written program lets the computer fade into the background, allowing the user to touch the application itself rather than face a burdensome interaction with a
clumsy machine.
There are no easy rules that can be used to show how to create applications that meet this goal. A good programmer is a magician who suspends reality and creates the illusion that the user is interacting with a document, a magic kingdom, a drawing, a piece of music, a financial calculation, interstellar travel, or just about anything except the physical reality of the computer through which this fiction is being created.

We who write and design programs are in the fantasy and magic business. Languages that support events make our job just a bit easier.
Dr. Thornburg's most recent product is Calliope \({ }^{\mathrm{TM}}\) a "nonlinear" idea processor for the Apple IIe, c, GS, Macintosh and MS-DOS computers. He welcomes letters from readers and can be reached in care of this magazine.©

\section*{CAPUTE!}

\section*{Disk Fix For IBM}

This file recovery utility from the January 1987 issue (p. 77) is seriously flawed. Do not attempt to use this program. "Disk Fix" does not properly recover deleted files, and will in many cases scramble a portion of the disk directory. We regret any inconvenience that may have resulted from the use of this program, and we ask that you immediately delete any copies you may have made. The program is also on the COMPUTE! Disk for November, December, and Janu-
ary, and should be deleted from that disk as well.

Disk Fix will damage the disk directory when used on a disk containing more than 32 programs or one formatted other than double-sided with nine sectors per track. If you suspect that your disk directory has been damaged by this program, you can recover lost files using the DOS utility program RECOVER.COM, which is on your DOS master disk. Refer to your DOS manual for information on using RECOVER.

\section*{Using COMPUTEI's IBM Disk}

The label on the COMPUTE! Disk containing IBM programs from the November and December 1986 and January 1987 issues gives instructions for transferring the DOS system files to the disk. However, if you attempt to follow these instructions, you'll receive the following message:
No room for system on destination disk

This occurs because the disk was not properly formatted to accept the DOS files. However, the disk is still fully functional; this oversight in no way affects the operation of the programs on the disk. Simply boot using another disk, load BASIC, insert the COMPUTE! Disk, and enter

If you would prefer to have the COMPUTE! programs on a bootable disk, simply copy all the files from the COMPUTE! Disk to one that already contains the DOS system files. If you are unfamiliar with the syntax for the COPY command, refer to your DOS manual.

\section*{Amiga Jigsaw}

The listing for this program from the February 1987 issue (p. 48) was accidentally rearranged. The program should start with the line in the second column which reads DEFINT a-z. All lines prior to this one should appear between the line in the third column which reads cLast \(=\) nocoLs. \(p z L-1: \quad\) rLast \(=n-\) rows.pzL-1 and the following one, seLection.made \(=\) true. If you entered the program as listed, you can use the cut-and-paste features of the BASIC editor to move the block of lines to its proper position.

RUN "MENU"

Microscope
Sheldon Leemon

A reader has written to complain about inaccuracies in a recent column on the Apple IIGS, which stated that the computer can't use current, inexpensive \(51 / 4\)-inch Apple drives. Actually, the whole truth is that the GS comes with a built-in disk controller that doesn't work with the old drives, but it's possible to override it by plugging your old disk controller card into the proper slot. Of course, the old drives probably can't use ProDOS 16, so while you can run the old software with them, they may not do you much good for the new 16 -bit software.

While I hope this sets the record straight, I tend to doubt that the prior column did much to hurt Apple IIGS sales. For one thing, Apple hasn't been able to produce enough to send dealers more than a couple of units each. Rumor has it that one of the problems is that Ensoniq can't produce enough of the custom sound chips that provide one of the more innovative features of the new computer. One good thing about this delay is that it provides time for a lot of third-party support to develop . In fact, I've already seen ads for a \(\$ 20031 / 2\)-inch disk drive for the GS from Central Point. That should really put this "cheap disk" controversy to rest.

Although there was no official price reduction on the Apple IIc when the IIGS was introduced, price slashing at the dealer level has been almost frenzied as of late. One chain has been selling off its excess inventories through a discount outlet for about \(\$ 550\) retail, which is about \(\$ 400\) less than list price. And in view of Apple's strict enforcement of a ban on mail order sales of its computers, it was pretty shocking to see the Apple IIc and ImageWriter printer being offered for under \(\$ 1000\) in an ad on the back cover of the latest catalog from
C.O.M.B. liquidators. It looks like somebody doesn't believe that the "Apple II forever" slogan applies to the IIc.

A lot of industry "experts" have said that IBM "legitimized" the personal computer when it came out with the PC. What they may have meant is that IBM's contribution is so big, heavy, and expensive, that the businessman can buy one without fear that his associates will confuse his new personal productivity tool with the "toy" computers sold by mass merchandisers. If that's the case, those same experts may soon be saying that Hyundai has "illegitimized" the PC. The large Korean manufacturing concern, whose most visible marketing effort in this country so far has centered around an extremely inexpensive automobile, has now boldly gone where no PC has gone before-Toys " \(R\) " Us.

Hyundai's entry into the highly competitive and extremely crowded PC-compatible field is called the Blue Chip. The marketing strategy for the computer is simple, but likely to be effective: Take a solidly built machine with a oneyear warranty from a well-known company and sell it for a price that's just a little bit above what you'd pay to import the parts from the Far East and put it together yourself. This package is so attractive that Hyundai has already signed up hundreds of small independent computer retailers as Blue Chip dealers, as well as lining up quite a number of mass merchants and discounters. So it came as no great shock when I saw a full-page ad from Toys " \(R\) " Us in my Sunday newspaper advertising the Blue Chip, a fully IBM PC-compatible computer, for \(\$ 699\).

Being fortunate enough to live in Detroit, one of the four Toys " R " Us test markets for the Blue Chip, I
hurried over to see for myself. Just as I had assumed, there was the Blue Chip, sitting inside the same glass showcase as the Commodore 128 and 64 and the Atari 520 ST. Next to the case was a stack of brochures which listed the features of the machine, including a 512 K \(4.77-\mathrm{MHz}\) motherboard, one \(51 / 4-\) inch drive, an AT-style keyboard (with the left Shift key in its proper place), built-in serial and parallel ports, six full-size slots, and a 130watt power supply. Unlike most clones, the Blue Chip is packaged in an attractive case that is much smaller than that of the IBM PC, and it has the power switch right in front, where you can reach it. The \(\$ 700\) price includes a Herculescompatible monochrome graphics adapter, but not the monochrome monitor, which costs \(\$ 90\) extra. Still, for less than \(\$ 800\) you get a working PC system made by a reputable company and a money-back guarantee that it will run all of your IBM software-from a store where you can get a 30 -day over-the-counter-exchange if it doesn't work. For the money, only the Tandy 1000 series comes close.

While this is a pretty attractive package, it remains to be seen whether Toys " \(R\) " Us can sell a "real" PC. The price is certainly comparable to that of the other computers the store sells. A onedrive Commodore 128 system with color monitor sells there for \(\$ 820\), and the color Atari 520 ST system with one drive, for \(\$ 880\). But despite the store's assurances in a brochure that Toys " \(\mathrm{R}^{\prime}\) " Us has trained sales people and the largest selection of home computers, I still wasn't quite convinced. Maybe it was the fact that the brochure was covered with the logos of home computers like the Mattel Aquarius, the Coleco Adam, and the Texas Instruments 99/4A.

\section*{Packet-Switching Rule Changes}

This column is difficult for me to write. This particular one. Over the years regular readers of Telecomputing Today and I have learned more about telecommunications and laughed at ourselves in good measure along the way. I'm not laughing right now.

One of the fundamental building blocks of today's low-cost telecommunications is the availability of reasonably priced packet-switching services. Packet-switching networks, such as those run by Telenet, Tymnet, CompuServe, and General Electric, allow personal computer users to access remote computers with a local phone call. Telenet's popular PC Pursuit service, which gives computer hobbyists virtually unlimited access to BBSs all over the country for \(\$ 25\) a month, plus local phone charges, is possible only because it takes advantage of an existing packet network during off-hours.

The Federal Communications Commission is considering reregulating packet-switching networks. Among the changes being considered is the elimination of free local telephone access to those networks. Under the new rules, packet-switch providers would have to pay access fees to local telephone companies. A similar arrangement currently in place requires long-distance service providers such as AT\&T, MCI, and Sprint to pay access charges for connection to local phone networks.

\section*{Potentially A Major Impact}
"If this occurs, it might eventually double-or triple the costs to those using packet-switching networks to access commercial online databases and information services, and triple or quadruple the costs to those using Telenet's PC Pursuit," says Philip M. Walker, vice president and regulatory counsel for Telenet

\section*{Communications.}
"In terms of cost impact," Walker said, "if we had to pay local access charges, it would cost us about \(\$ 3.60\) an hour at the originating end, for calls made by users to online databases and information services like CompuServe and The Source.
"And with PC Pursuit, for which we have out-dial modems, we would have to pay not only \(\$ 3.60\) per hour access fees at the originating end, but also \(\$ 4.80\) at the terminating end, a total of about \(\$ 8\) or \(\$ 9\). Obviously, to survive, we would have to add those additional charges to our current fees and pass them on to our consumers," Walker said.

According to Walker, FCC approval of changes being considered under the reregulation initiative (called Computer III by the FCC) "would really have a major impact on anyone using a packet-switching service to access online bulletin boards, databases, or information services aimed at the residential user. They are just going to get creamed if this happens.'

Who's pushing for the new rules? It appears to be the local Bell Operating Companies (BOCs, a.k.a. your phone company). But to be fair, things may not be as gloomy as Walker paints them. The entry of the BOCs into the packet arena may bring cheap, high-speed packet service to the home user (such as that which is available via Pacific Telesys's project Victoria). The present packet switchers may fear that the cost of converting their current networks to new technology will be prohibitively expensive, making it difficult for them to compete with the BOCs.

\section*{Express Your Views}

Why is writing this so hard for me? I spent over eight years of my life
working for one of the Bell Operating Companies. My wife still does. Many of my friends have, as they say within the BOCs, "bellshaped" heads. I was proud of the quality of nation's phone system and how well the system worked. I, and many other Bell employees, had mixed feelings about divestiture of AT\&T. To me, the most positive aspect of deregulation of the phone system was the subsequent wave of cheap, high-quality telephones with lots of nifty features.

We already have cheap modems. Lots of them. I find it difficult to have a positive attitude about saddling the packet switchers, and in turn, their users, with additional tariffs that may add significant cost to accessing information services and bulletin boards (via services like Telenet's PC Pursuit).

I strongly feel that the changes engendered within the FCC's "Computer III" rules should not be rushed into law. We all need more information than is currently available in the public forum to make an intelligent, informed decision on this matter.

Even with the limited information that is currently available, I'm sure that some of the readers of this column feel the proposed changes would be a positive move. Others, at this time, may have difficulty seeing any benefit to the telecomputing hobbyist.

The FCC will reportedly vote on the new rules by the end of March 1987. Regardless of your feelings, I urge you to express your views to the Federal Communications Commission by writing:

\section*{The Honorable Mark Fowler} Chairman
Federal Communications
Commission
Washington, DC 20554

\section*{When Buying A New Computer: Don't Ask Me!}

I teach afternoon and evening teacher workshops at Cahaba Heights Elementary School in Birmingham, Alabama. One day before the workshops I had been teasing the secretaries in the school office about a phone call I expected to get from a "Mystery Personality." The secretaries' guesses about the personality ranged from Tom Selleck to Ronald Reagan. Rick Lazenby, the school's principal, made several visits to my classroom to try to trick me into divulging the mystery caller's name. But I wouldn't talk.

That night, right in the middle of my workshop, with teachers gathered all around me, Rick burst into the room and announced, " Da vid Hartman, from Good Morning America, just called you on the phone, and I hung up on him. You didn't tell me who was calling, so I thought it was a crank call."
"Aacck!!" I said.

\section*{Expert Advice}

Rick delighted in the look of panic on my face and said, "Ha! Ha! Just a joke! David's still on the phone. You can take it down in my office." I said goodbye to my startled teachers and flew out of the room, raced down the school corridors to Rick's office, and picked up the phone. Why was David calling me? Maybe he wanted to ask me back on his show. But I was wrong. "This is a personal call," said David, in his warm and very famous voice at the other end of the phone. "I want to buy my family a personal computer for Christmas. Any good ideas?"
"Sure!" I blurted. "The Apple IIGs!" I started to describe to David all the wonderful things about the new Apple computer, including its 4000 colors, its 15 musical instrument "voices," its 256 K memory, its compatibility with other Apple II computers, and its Macintosh interface. As I spoke, I heard David
agreeing at the other end, and I | dred dollars."
knew he was sold.
However, when my heart stopped racing and I had caught my breath, I suddenly had a quick flashback. Only the week before, I had been preparing for a press conference to launch my Multi-Media Classrooms project with 26 Alabama and Canadian schools. Apple's regional office in Nashville, Tennessee, had loaned us a IIGs for the press conference, but neither my efforts nor the efforts of the Apple officials and the local Apple dealers could make it work.

There was nothing wrong with the computer. It was just too new. No one was sure how to plug in the \(51 / 4\)-inch disk drives along with the (daisychained) \(31 / 2\)-inch drives. We had copies of lots of software, made at the dealers with an old IIc (ProDos) utilities disk, but it turned out the software was uncopyable, and we ended up with blank disks. The two Bose speakers promised some unbelievable sounds, but were strangely silent since we didn't have the right demo programs. And although we loved the new AppleColor RGB monitor, all we could put on it was a black-and-white "Meet Mr. Mouse" demo program.

No one was to blame. I was still in love with the IIGs. But I realized, talking to David Hartman, that it was not the computer I should be recommending for Christmas 1986.

\section*{A Quick Turnabout}

So I did a quick 180 -degree turn and started peddling the Apple IIe. "You've heard the Apple motto, 'Apple II Forever'?' I asked, still upbeat. "Well, you can get an Apple IIe, a veteran machine that runs over ten thousand programs; then early next year you can go to a dealer and have your IIe turned into a IIGS-for only about four hun-
"But what's wrong with the IIgs?" David asked, a little taken aback after my fancy footwork.
"Nothing," I said, torn between my great excitement about the IIGS and my teachers' continuing lack of success in finding special software to make it shine. "Remember," I said, "the IIGS is just a baby. Give it a few months to grow up."

David thanked me and hung up. And when I hung up at my end I felt great, because, for once, I didn't feel guilty about my "expert" advice.

It is the average consumer's misfortune that a "praise first, criticize later" cycle in some computer journals follows the introduction of almost every new computer. We journalists, editors, and experts have the responsibility to be watchdogs for our readers. After all, we get to see new machines weeks or months before they are on the market, and we get to hear the inside gossip of corporate executives and computer designers before it becomes public knowledge.

But, far too often, we fall down on the job. We accept manufacturers' hype on their machines as fact, and we unconditionally support a new computer launch with excited fanfare and warm accolades.

Are we journalists an unethical bunch, in secret conspiracy with computer vendors and software publishers? No. However, we are computer enthusiasts, and we are sometimes guilty of letting our enthusiasm and fascination with computers blind us to the shortcomings of some new products. I think in view of David's needs, I gave him balanced advice.

\title{
Getting Started With A Printer
}

A printer was the first peripheral I got for my computer. As a programmer I find a printer a necessity. I need listings to keep track of my program because I usually compose at the computer and I have always felt safer having a hardcopy listing of my program in addition to a disk or cassette copy.

After you have all the cables properly connected and the ribbon and paper loaded, you are ready to test your printer. To get a listing of a BASIC program on a printer, the standard command is LLIST. BASICs differ; you should check your manual. The LLIST and LPRINT commands described here work in IBM, Amiga, Atari ST BASICs, among others. LPRINT also works in eight-bit Atari BASIC. (See below for Apple, Commodore, TI, and other styles of printer access.) The command works just like the LIST command.

\section*{A Simple Example}

Now let's try having the computer print something on the printer. You may want to refer to my previous columns on PRINT statements. Instead of using the standard PRINT command, use LPRINT to go to a printer. (You may want to PRINT to the screen and LPRINT to the printer.) Anything your computer allows you to do with the PRINT command you can probably do with LPRINT—for example:
200 LPRINT "HELLO"
210 LPRINT TAB(9);"INDENT HERE"
220 LPRINT A,B,C\$
230 LPRINT \(\mathbf{X}^{\prime \prime}\) "PLUS"; \(\mathbf{Y} ;{ }^{\prime \prime}=\) "; \(\mathbf{X}+\mathbf{Y}\) 240 LPRINT USING "\#\#\#.\#\#";D

Now you can read in information from data or enter numbers from input, make a few calculations, and then print a report. You can print a simple message using the printer, then perhaps make a dozen copies of it by using a FORNEXT loop or running the program
several times. You can create printer graphics by using LPRINT statements with various symbols in quotation marks or string variables. And you can even print your own user-group letterhead, plus address labels for all the members. Using a printer adds much more to your use for a computer.

Here's a short example to print out some homework. Suppose you are given a homework assignment to calculate the areas of triangles. The formula for the area is \(1 / 2\) (base \(\times\) height). Once you know the formula the assignment is simply a matter of using different numbers for each problem. Let's have the computer do your homework.

\section*{100 REM TRIANGLES}

110 PRINT "WHAT IS YOUR NAME?"
120 INPUT N \(\$\)
130 LPRINT N\$:LPRINT:LPRINT
\(140 \mathrm{NP}=1\)
150 PRINT:PRINT
160 PRINT "ENTER 0 TO END"
170 INPUT" \({ }^{\text {BASE }}={ }^{\text {" }}\), B
180 IF B=0 THEN 280
190 INPUT "HEIGHT \(=\) ", H
200 AREA \(=\mathrm{B}^{*} \mathrm{H} / 2\)
210 PRINT:PRINT "AREA \(=\) ";AREA
220 LPRINT:LPRINT:LPRINT
230 LPRINT NP;TAB(8);"BASE \(=" ;\) B
240 LPRINT TAB(8);"HEIGHT ="; H
250 LPRINT TAB(8);"AREA \(=\) ";AREA
260 NP \(=\) NP +1
270 GOTO 150
280 LPRINT:LPRINT:LPRINT
290 END
This is just a simple program to get you started using a printer. You can get an idea of how LPRINT is used. LPRINT with nothing else in the statement will print a blank line to the printer. LPRINT \(\operatorname{TAB}(8)\) will indent eight columns before starting to print. You may either print a message in quotes or a variable.

\section*{Special Codes, Special Features}

Most printers have many features. You can probably change print styles (italics, boldface, compressed print, expanded print, underlining,
and so on). Again, consult your printer manuals to learn how to change print styles or to use special features of that particular printer.

Some of the ASCII character codes have special meanings for printers, and you can print the CHR\$() to perform those functions. For example, LPRINT CHR\$ (13) is like pressing the RETURN key to get to the next line. For most printers, LPRINT CHR\$(12) is top of form, which moves the paper to the top of the next page.

Most printers use a combination of escape sequences to change print styles. The ASCII code for ESC (escape) is 27, so you can LPRINT CHR\$(27) and the code for your particular style. For example, on some Epson printers you can select letter-quality printing with LPRINT CHRS(27) " \(x\) " CHR\$(1)

Within a program I like to set E \$ equal to CHR\$(27) to save typing if I am using a lot of escape codes:
\(100 \mathrm{E} \$=\mathrm{CHR} \$(27)\)

\section*{Printing Alternatives}

Not every version of BASIC provides the LLIST and LPRINT statements. Among those that do not are the Commodore and Apple. On Commodore computers you need to open a communication channel to the printer, then direct output to that channel. For example, Commodore computers use this sequence of commands in lieu of LLIST:
\begin{tabular}{ll} 
OPEN 4,4 & \begin{tabular}{l} 
open file 4 to printer \\
(device 4) \\
direct output to
\end{tabular} \\
CMD 4 & \begin{tabular}{l} 
printer \\
list program on \\
LIST
\end{tabular} \\
PRINT\#4:CLOSE 4 4 \begin{tabular}{l} 
printer \\
redirect output to \\
screen
\end{tabular}
\end{tabular}

In place of LPRINT, you open a channel to the printer, then print to that channel:

For the Apple II series, you would use the following sequence in lieu of LLIST (assuming that your printer interface was installed in slot 1 , the most common configuration):

PR\#1
LIST
PR\#0
direct output to printer list program on printer redirect output to screen
In place of LPRINT in programs, you must use CHR\$(4) to redirect output to the slot where the printer interface is installed:
10 PRINT CHR\$(4)"PR\#1"
20 PRINT "HELLO"
30 PRINT CHR\$(4)"PR\#0"
©

COMPUTE! TOLL FREE Subscription Order Line 1-800-247-5470

द97tH|x

\section*{ST Outlook}

\section*{Who Is That Man, And Why Is He Smiling?}

This month's program demonstrates a rarely mentioned graphics feature of the ST: software sprites. The program creates a file named SPRITE.PRG, an assembly language program that runs from the desktop. After you've run the filemaker, go to the desktop and dou-ble-click SPRITE.PRG. When the desktop returns to normal, press Alternate-Help. Three sprites-little men with pipes in their mouths-cruise effortlessly around the desktop, rebounding when they approach the screen borders. To get rid of the sprites, reboot with the reset button.

\section*{What's My Line?}

The ST has no special hardware to display sprites-independent, movable images-on the screen. However, the mouse pointer is an object that behaves much like a sprite, moving anywhere on the screen without disrupting images that lie in its path. The sprites in this demo program are created via the same system routines which the ST uses to display its mouse pointer. Specifically, an ST software sprite is a creature of the line A assembly language interface which provides graphics support for GEM.

Line A operations are handled in an interesting way. The 68000 microprocessor generates an exception, or error condition, under a variety of special circumstances. Some exceptions are true errors; on
the ST, these cause cherry bombs to appear on the screen. Others are purposely left undefined for the system programmer's use. In the ST's operating system, exception 10 (\$A) is used to implement 16 lowlevel graphics operations. These commands allow you to draw lines and polygons, plot and unplot points, copy text or other images, draw and erase a software sprite, and hide, show, or transform the shape of the mouse pointer.

The term line \(A\) refers to the fact that each opcode starts with \$A. The draw sprite operation (\$A00D) draws a sprite on the screen and saves an image of the underlying area in a buffer. The undraw sprite operation (\$A00C) restores a saved image from the buffer to its previous screen location, effectively erasing the sprite. Together, these commands allow you to move an object nondestructively by erasing and redrawing it in a series of locations.

\section*{Time Slices \\ And Transparency}

SPRITE.PRG moves the sprites as a background process during the ST's vertical blank interrupt, so they're largely invisible to GEM. You can open and close windows, make menu selections, and even run programs. There are some cosmetic conflicts, however, which we'll explain in a moment.

The vertical blank interruptthe interval during which the monitor's electron beam returns from the bottom to the top of the screengives the computer tiny slices of time in which to perform background chores such as reading its keyboard. The ST provides a simple means for installing a program as a task to be performed during the vertical blank interval. In the system variable area is a job queue with eight slots. Ordinarily, one slot is occupied and seven are vacant. During each vertical blank, the computer scans the queue and performs the tasks found in occupied slots. To install the working portion of SPRITE.PRG as a background task, we simply find a vacant slot in the queue and store our program's address there. Henceforth, the ST executes our code once each vertical blank. (This simple demo program takes some installation shortcuts, assuming that the queue appears in its usual location and that it contains at least one vacant slot.)

Running on the interrupt allows our sprites to operate with a reasonable degree of transparency. However, since GEM doesn't know that they're present, some conflicts are inevitable. SPRITE.PRG takes pains to insure that its sprites don't restore unwanted data to the underlying screen when their paths cross. But the system also redraws the mouse pointer-itself a software sprite-during each vertical
blank．The ST doesn＇t know when and where our sprites are drawn， and the sprites pay no attention to the mouse pointer＇s peregrinations． Thus，conflicts may occur when the sprites and the pointer move through the same turf simulta－ neously．The pointer can restore part of a sprite after the sprite has already moved to another spot，or a sprite can restore part of the pointer after the pointer has moved else－ where．Other screen changes（espe－ cially scrolling，which moves a big chunk of screen in a hurry）can also cause the sprites to deposit bits and pieces of themselves on the screen．

These conflicts are due entirely to the fact that SPRITE．PRG runs on the interrupt rather than as a conventional program．In an arcade－type game or other program that doesn＇t run in the background， you have control of all screen events and can easily prevent such occurrences．

By the way，please don＇t per－ form any important work－espe－ cially disk operations－while SPRITE．PRG is active．Driving a program on the interrupt slows the whole system to a certain extent， and disk drives are notoriously sen－ sitive to timing disruptions．

\section*{Ozymandias With A Pipe？}

Just who is the man with the pipe？I didn＇t draw the shape from scratch： It comes straight out of an example in the Atari development system documentation．If the face doesn＇t look familiar，run this ST BASIC program：

What＇s this jovial fellow doing in the ST＇s character set？I＇ve never seen an official explanation，but perhaps some pipe－smoking Ozy－ mandias at Atari simply decided to immortalize himself in ROM．Your guess is as good as mine．

\section*{More About BASIC}

Finally，here＇s a quick update on a couple of previous topics．GFA BASIC programs are not compiled， as implied in the January 1987 col－ umn，but interpreted．Chalk that one up to my misreading of a Ger－ man language user＇s manual．In the meantime，GFA has put the finish－
ing touches on its compiler，which transforms GFA BASIC programs into stand－alone assembly lan－ guage programs that run from the desktop．（Uncompiled GFA BASIC programs can run only from the editor／interpreter or the run－only interpreter．）The manufacturer claims that compiled GFA BASIC runs benchmarks like the Sieve of Eratosthenes as fast or faster than other compiled ST languages（Pas－ cal，C，and the like）．

English language versions of GFA BASIC and the GFA BASIC Compiler are now available in the United States from MichTron（576 S．Telegraph，Pontiac，MI 48053）． Meanwhile，Atari maintains a pro－ found silence on the subject of when－if ever－we might see an improved version of ST BASIC．

\section*{SPRITE．PRG Filemaker}

1 clog closezopen＂R＂，1，＂\SPRITE ．PRG＂， 8
110 field＊1， 8 as \(x\) 事：for \(j=1\) to BØ
\(120 \quad y\) yen＂ifor \(k=1\) to 8
130 read z \＆ibytmval（＂8 \(\mathrm{ch}^{\prime \prime}+z\) 象）： y象要y象＋chr象（byt）
\(140 \quad c=c+1\) ichkmchk＋c＋bytin next
15\％1set x next
160 close：if chk＝245927 then end
\(17 \varnothing\) print＂Typing arror in DA TA＂akill＂\SPRITE．PRG＂
DATA 66，1A， \(6, \varnothing, 1\), D6，\(\varnothing, \varnothing\) DATA \(5,66,6,6,3,4 \pi, 0,0\) DATA Ø， \(6, \varnothing, 6,6,6,6, \emptyset\) DATA \(\varnothing, 6,9,6,2 \varnothing, 6 F, 6,4\) DATA 2C， \(3 \mathrm{C}, 5, \varnothing, 1, \varnothing, D C, A B\) DATA 5，C，DC，AB， \(0,14, D C, A B\)

249 DATA \(\varnothing, 1 C, 42, A 7,3 F, 3 C, 9,2\) D
256 DATA \(4 E, 41,5 C, 8 F, 23, F C, 6\) ， g
DATA 1，7A，6，6，5，2，26，7C DATA \(6,6,4\), CE \(, 4 A, 9 \varnothing, 67,4\) DATA \(58,88,60, F 8,22,7 C\), ， 5

3ळळ DATA \(\varnothing, 6,2,3 C, 2 F, 6,3 F, 3 C\)
316 DATA \(5,2 \sigma_{2} 4 E, 41,5 C, 8 F, 42\), 67
329 DATA \(2 F, 6,3 F, 3 C, 6,31,4 E, 4\) 1
33．DATA 4B，E7，FE，F8，4A，79， 5,
\(34 \Phi\) DATA \(2,3 C, 67,2,6 \emptyset, 5 E, 4 A, 7\) \(\begin{array}{ll}35 \varnothing & \text { DATA } 6,6,4, E E, 66,6,1,4 \\ 365 & \text { DATA } 33, F C, 6,1,6,6,2,3 C \\ 379 & \text { DATA } 79,4,42,42,41, F 9,9,2\end{array}\)

उB6 DATA 2，42，43，F9， \(5,5,2,4 \mathrm{E}\)
396 DATA 72，64，D4，7C， 6,12, D2， 42
\(4 g \sigma\) DATA \(31,81,9,9,33,81,6,9\)
\(41 g\) DATA \(55,46,6 A, E C, 12,39,9\),

DATA 4，4C，E3，49，2ø，7C，\(\varnothing, \varnothing\)

430 446 450 460 479

DATA \(\wp, \wp, B 2,79,5,5,2,5 C\) DATA 6D，14，41，F9，ஜ，ஜ，1，DC

DATA \(32,3 \varnothing, 6,6, C 3, F C, F F, F\) F
\(59 \emptyset\) DATA \(\varnothing, \emptyset, 1, E 4,6 E, 2,6 \varnothing, E 2\)
DATA 1，E6， \(33, F \mathscr{F}, 1 \varnothing, \varnothing, \varnothing, \emptyset\) DATA 2，5A，26，7C， \(5,6,1, E C\) DATA \(33, F\) ， 1 ， \(6, \varnothing, \boxed{6}, 2,5 \mathrm{C}\) DATA \(6 \varnothing, 6, \varnothing, B \varnothing, 7 \varnothing, 4,61, \varnothing\) DATA \(\emptyset, F 4,55,4 \varnothing, 6 A, F 8,42\) ， 40
DATA \(41, F 9,6, \varnothing, 2,42,32,3 \varnothing\)
DATA \(\varnothing, \varnothing, B 2,79, \varnothing, \varnothing, 2,5 A\)
DATA \(6 \mathrm{D}, 14,41, \mathrm{F9}, 6,6,1, \mathrm{D} 6\)
DATA \(32,3 \mathscr{6}, \mathscr{6}, \mathrm{C}, F \mathrm{~F}, \mathrm{FF}, \mathrm{F}\) DATA \(31,81, \varnothing, \varnothing, 6 \varnothing, A, B 2,79\)



DATA \(31,81, \varnothing, \square, 6 \Phi, A, B 2,79\)

DATA \(\emptyset_{6}, 1, \mathrm{D} 6,32,36, \varnothing, \emptyset\)
DATA \(34,31,6,6\), D2， \(42,31,8\) 1
DATA \(\varnothing, \boxed{6}, 41, F 9, \varnothing, \varnothing, 2,4 E\)
DATA \(43, F 9, \emptyset, \emptyset, 1, D C, 32,3 \varnothing\)
DATA \(\varnothing, \varnothing, 34,31, \varnothing, 6\), D2， 42
DATA 31，81，Ø，\(, 61,12, B \emptyset, 7\) C
DATA \(6,4,67,6,54,46,6 \varnothing, \varnothing\)
DATA FF，6 \(6,4 \mathrm{C}, \mathrm{DF}, 1 \mathrm{~F}, 7 \mathrm{~F}, 4 \mathrm{E}\) ， 75
DATA 2F，ஜ，41，F9，ஜ，ஜ，2， 42
DATA \(33, F \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 2,3 E\)
DATA \(41, F 9, \emptyset, \varnothing, 2,4 E, 33, F \emptyset\)

DATA Ø，\(\varnothing, 2,5 E, 32,3 C, \varnothing, 85\)
DATA Cछ，C1，D5，Cø，41，FG， 5 ， Ø
DATA 1，F2，3פ，39，\(\varnothing, 9,2,3 E\)
DATA 32，39，ø，\(\varnothing, 2,4 \varnothing, A \emptyset\), D
DATA \(2 \emptyset, 1 F, 4 E, 75,2 F, 5,45\) ， F9
DATA \(\varnothing, \emptyset, 2,5 E, 32,3 C, \varnothing, 85\)
DATA Cळ，C1，D5，Cळ，Aछ，C，2ळ， 1F
DATA 4E，75，ø，2，\(, 2,6,2\)
DATA \(\varnothing, 2, \emptyset, 2, \emptyset, 2, \emptyset, A\)
DATA \(\emptyset, 1 E, 1,2 C, 2,6 C, 2,6 C\)
DATA \(\boxed{D}, \mathrm{B4}, \mathrm{D}_{0}, \mathrm{B4}, 1,76,0,0\)
DATA \(\varnothing, \varnothing, \varnothing, 1, \varnothing, \varnothing, \varnothing, F\)
DATA 7，Fळ，7，Fø，F，FB，F，FB
DATA 1F，FC， \(1 F, E C, 1 F, F C, 18\) ． 4
DATA \(1 F, F C, 1 B, 4,1 F, F C, 16\) ， 4
DATA \(1 F, F C, 1 E, 3 C, 1 F, F C, 17\) ， 54
DATA 1F，FC，11，4，F，FB，B， 28
DATA F，FB，\(D, D 8,7, F B, 6,28\)
DATA 7，Fø，7，Dஜ，2F，Fø，2E， 1 \(\emptyset\)
DATA 39，E9，39，E9，38，5，38， ■
DATA \(\sigma_{,}\)Ø，\(\varnothing, 22,18, A, 1 E, 16\)
DATA \(A, 6,22,8,6,8,16, A\)
DATA \(8,14, A, A, B, 14, A, 6\)
DATA \(14,6,2 A, B, 6, B, 6, E\)
DATA \(6,6, E, \varnothing, \varnothing, \boxminus, \varnothing, \varnothing\)

\section*{The Sidecar Arrives}

In what may be a record-breaking event for Commodore (or for any other computer company), the Sidecar has been delivered in the same year in which it was announced. A scant eight months after I first saw the earliest prototypes at Comdex, one has arrived at my local Amiga dealer. And I must say that I'm impressed, and even a little excited about this clonelet.

The Sidecar is an IBM PC addon for your Amiga. Unlike the Transformer, Commodore-Amiga's noble, flawed experiment with soft-ware-only emulation, the Sidecar isn't just an IBM PC emulator. It's an actual PC that plugs into your Amiga. It has an 8088 processor running at the standard 4.77 MHz speed, a socket for an 8087 math coprocessor, 256 K of PC RAM (expandable to 512 K on the motherboard), a built-in \(51 / 4\)-inch 360 K disk drive, three full-sized IBMtype expansion slots, and the Phoenix BIOS, famed for its close compatibility to IBM's BIOS. The box is physically about half as wide as the Amiga itself, a couple of inches higher, and a couple of inches deeper. It plugs into the expansion port on the Amiga's right side, but it's almost a complete standalone PC. The IBM applications it runs are loaded off the Sidecar disk drive into Sidecar RAM, and are executed by the Sidecar 8088 processor. The machine depends on the Amiga only for its screen display, which the Amiga manages and displays in a window on the Amiga monitor.

If the Sidecar is little more than a PC clone, why shouldn't the Amiga owner who wants PC compatibility just buy a cheap clone and be done with it? For the answer to this question, we turn to the \(S Y\) section of a dictionary, where we find the words symbiosis and syner\(g y\). Symbiosis is defined as "the
living together of two dissimilar organisms in close association, especially where this is advantageous to both." Synergy is defined as "the simultaneous action of separate agencies which, together, have greater total effect than the sum of their individual effects." Both of these terms apply to the Sidecar and its relationship to the Amiga.

A good example is the Sidecar's ability to share a hard disk with the Amiga. One of the first things I did with the Sidecar was to plug in a 21-megabyte hard disk on a card into one of the expansion slots. By using partitioning programs on the PC side, I put aside 9 megabytes of hard disk space for the Amiga, and 12 megs for PC DOS. The Amiga side mounts as device jh 0 :. The \(j\) is for Janus, the name which the Amiga operating system calls the Sidecar. Janus was the Roman god of beginnings and endings, and is pictured as having two faces, one in front and the other in back of his head, so that he's able to look in both directions at once.

By changing the startupsequence file, you can mount the hard disk automatically each time the Amiga boots up, but since the drive has to be mounted before it can be read, there's no way to boot the Amiga from the hard disk. The performance of the hard disk, while not blindingly fast, was respectable. Amiga BASIC, which loaded in ten seconds from the floppy, came up in five from the disk, about as fast the Micro Forge hard disk for the Amiga. And this was a slow hard disk card (about 85 milliseconds access time)-faster ones are available. Even without the speedup, though, the convenience of having all your system files at hand can't be beat.

\section*{A Full-Speed PC}

The Amiga also adds small, but
nice, enhancements to the PC side. The Amiga handles the Sidecar display like any other Amiga task. The display can run in a window, with horizontal or vertical scroll bars, or in a full-screen borderless display that looks just like a PC. Since the Amiga is handling the display, you aren't limited to the 16 colors of the IBM monitor. A menu on the PC window allows you to select anywhere from 2 to 16 colors for the PC display, and to choose those colors from any of the 4096 offered by the Amiga. Although two-color screens are updated the fastest, even the 16 -color screens seem to scroll as quickly as the standard PC screen. (All Sidecar operations checked out at full PC speed.)

If you choose a four-color screen, the PC window appears on the Workbench screen, where it can overlap other Amiga task windows. With any other color resolution, the display appears on its own screen. The Amiga provides emulation of both the monochrome and color displays, though only one can be active at a time. In addition, you may open up multiple windows on the same display. This allows you to bring up part of a spreadsheet display, freeze it in one window, and look at another part of the spreadsheet in another window at the same time. Of course, putting the Sidecar display on the Amiga doesn't make the PC multitasknot even Microsoft can do that.

And since both processors can communicate with one another through shared RAM, it's possible that in the future we'll see genuine hybrid programs that run on both processors simultaneously, or that use the Amiga for its great graphics display and the optional 8087 math coprocessor in the Sidecar for number crunching.

\section*{Two Winners And A Loser}

The Print Shop by Brøderbund Software is a nifty little program that lets you design greeting cards, signs, letterhead stationery, banners, and almost anything else involving graphics. The software comes with a "how-to" booklet, although you won't really need it to produce attractive results. The package also contains a small quantity of bright yellow fan-fold paper and equally bright envelopes most suitable for making YIELD signs.

I spent only 20 minutes putting together a handsome birthday card from the large assortment of canned borders, symbols, and fonts. More ambitious and artistically inclined users can create their own symbols and pictures. My card had a border of sea shells and the words "Happy Birthday" in an outlined Art Deco font superimposed over a penguin. It was attractive enough that I planned to send along a copy to be reproduced with this column. Only after I completed it did I realize that my letter-quality, formed-letter printer couldn't print graphics. If you have a dot-matrix printer that supports graphics, a PC or PCjr with 128 K , a double-sided disk, and \(\$ 60\), you've got all you need for The Print Shop. It's not desk-top publishing, but it is a winner.

\section*{For Jr. Only}

Here's a winner for PCjr owners. The Junior Report is a national newsletter published monthly just for PCjr users. The issue I saw was 18 pages long and had both a nice selection of letters to the editor as well as detailed reviews of programs and hardware designed just for the PCjr. One reader wrote in and related how he bought a new printer, identical to the one IBM sold for \(\$ 200\), from a TV auction for just \(\$ 37\). A short article reviewed a memory-expansion product for the PCjr that fits inside the original case
instead of in a sidecar. A year's subscription is \(\$ 18\) from The PCjr Club, P.O. Box 95067, Schaumburg, IL 60195.

\section*{Not So Delicious}

The ad is a real eye catcher: A wooden chopping board is arrayed with fresh vegetables, an IBM PC monitor in the background displays a tempting dish of shrimp on an elegant place setting. "Ah! Dinner at Eight," the ad promises, "A software collection offering instant access to the delectable recipes of the country's finest restaurants." The advertisement is a winner; unfortunately, the program is not.

Dinner at Eight claims to be a database program for recipessoftware to guide a cook to any of hundreds of dishes from outstanding restaurants. You begin by browsing through a list of basic food groups-vegetables, poultry, lamb, seafood-and then, once you've settled on a specific dish, the program is supposed to scale the proportions up or down to fit your needs and print out a shopping list as well as directions for the preparation of the meal. In addition, it offers a way to add your own recipes to its files, although that is not a sensible option in my own case.

The program is structured somewhat like a famous spreadsheet program-commands are displayed across the top of the screen, and you select an item by moving the cursor and pressing the Enter key. But the implementation is so poor that I was completely lost. The first command in the list is EDITION. This is the command you must select in order to read the master recipe file; in other words, this is the equivalent of File Retrieve. Since this command is usually used just once, it makes little sense for it to be in the first, the default, position.

Although that's a minor annoyance, Dinner at Eight has some major flaws. I finally figured out enough of the menu structure to select "Bay Shrimp in Sour Cream," but trying to adjust the recipe to serve two instead of four was needlessly cumbersome. Then I tried to print the ingredients and instructions, but for some reason the program refused to work with either my NEC 3550 printer or my Xerox 4045 laser printer. I can overlook incompatibility with the laser printer, which has some nonstandard commands, but cannot forgive a program that won't print on the NEC, which uses standard IBM/ Epson commands. Nor are the flaws limited to the program-the data is also questionable. The recipe did not tell me whether to cook the shrimp or mix them raw with the sour cream and other ingredients; it didn't even tell me whether to peel them or use them in the shells. The recipe, incidentally came from a good, but not nationally famous, restaurant in San Francisco. In fact, none of the restaurants I saw credited in the program would be on a list of the nation's top ten establishments.

The ad-"And may we suggest a companion wine with your meal?"-implies that the program includes a wine selection guide. I hoped that it might recommend a half dozen suitable types and vintages. No, selecting the Wines command displayed only a few screens of general information about various types of wines, but nothing specific for Bay Shrimp and Sour Cream.

Dinner at Eight, by Rubicon Publishing, is a good idea marred by defective data, bad design, and worse programming.

\section*{Corrected File Conversions}

Well，this month marks a historic occasion for those of us at Opti－ mized Systems Software．March 1981 was the month we introduced our first Atari－oriented products： BASIC A＋，EASMD，and OS／A＋ （called CP／A until a lawyer for DRI objected－maybe we could have fought them if we had had more than \(\$ 2.98\) in our checking ac－ count）．We finished those products off in record time and presented them at the West Coast Computer Faire．We managed to sell 17 （yes， that is 3 less than 20）packages at about \(\$ 120\) each（that was cheap in those days），and we decided then and there we could stay in business for another month（maybe even two）．

Well，the months kept passing like that．OSS has never been a wildly successful company－sell－ ing languages for a computer on which fewer than 10 percent of all owners actively program is not con－ ducive to instant wealth－but we have always had some loyal follow－ ers．As I have mentioned here before，I started writing this column because I saw some questions in COMPUTE！about Atari software in－ ternals that I thought needed some answers．But I wouldn＇t have even gotten interested in reading COM－ PUTE！if we hadn＇t started OSS．See？ All things are related when you look deep enough．

\section*{Unified We Stand}

Speaking of software internals and answers．．．．In the recent issues of COMPUTE！there are a pair of pro－ grams which purport to convert standard Atari binary object files into either strings（＂Stringing Atari Machine Language，＂September 1986）or DATA statements（＂ML Write for Atari，＂January 1987）． Both of these programs have a com－ mon limitation which was not men－ tioned in the articles accompanying
them：You must use them only with single－segment binary files．How do you know if a particular binary file consists of only a single seg－ ment？Glad you asked．

The program which accompa－ nies this article is a simple little utility that analyzes any standard Atari binary file，printing the first and last address of each segment as it goes．When the program asks for the complete file name，you should enter the name of a binary file， including the disk drive specifier and extension（for example， D1：RAMDISK．COM）．Watch the re－ sultant screen display．If addresses for more than one file segment are displayed，then you may not use the programs described in those articles for this file．

Exception：If the addresses are all contiguous（that is，if the starting address of a segment is exactly one more than the ending address of the prior segment and if this holds true for all segments），you can use this file if you unify it first．I dis－ cussed segmented files in my April 1986 column and presented a uni－ fying program there．Unfortunate－ ly，the program accompanying that article was misprinted，so you have to look in the article titled＂Custom Characters for Atari SpeedScript＂by Charles Brannon in the May 1986 issue（pages \(88-90\) ）for a corrected version of the file unifier．

If you are not comfortable with the hex addresses printed by the segment－checking program，you may view decimal addresses in－ stead by replacing lines 110 through 150 below with just this one line：

\section*{110 PRINT＂SEGMENT：＂；START；＂ \\ THROUGH＂；QUIT}

And one last caution：Though not mentioned in the article，ma－ chine language code placed in strings（as in the September 1986 article）must be intrinsically relocat－ able．Many of the routines floating
around on BBSs and in user－group libraries are indeed relocatable，but don＇t rely on this always being so． Test these routines in strings（or any machine language routines，for that matter）only after you have made sure you have saved your program and after you have put a junk dis－ kette in the drive．（If you have an Indus drive or other drive that you can protect from the front panel， setting the protection is another ad－ equate safeguard．）

\section*{Binary File Segment Checker}
\begin{tabular}{|c|c|}
\hline FI 10 & REM \＆\＆＊BINARY FILE 5 EGMENT CHECKER＊＊ \\
\hline I6 20 & DIM FILE（2の），HEX\＄（16） ：HEX \(\$=\)＝\(\curvearrowleft 123456789\) ABCDE \(F^{\prime \prime}\) \\
\hline OE 36 & GRAPHICS \(\emptyset\) \\
\hline B1 40 & PRINT＂COMPLETE FILE N AME＂；：INPUT FILE\＄ \\
\hline BH 50 & OPEN \＃1，4， 0, FILE\＄ \\
\hline 0660 & TRAP 2øø：GET \＃1，LDW：GE T \＃1，HI \\
\hline Kk 79 & IF \(H I=255\) AND LOW＝255 THEN GET \＃1，LOW：GET \＃1 ，HI \\
\hline K1 80 & START \(=\) LOW＋256＊ HI \\
\hline EL 90 & TRAP 4 Øøøø：GET \＃1，LOW： GET \＃1，HI \\
\hline If 1 Øø & QUIT \(=\) LOW＋256＊ HI \\
\hline AL 110 & PRINT＂FILE SEGMENT： ＂； \\
\hline JC \(12 \square\) & HEX＝START：GOSUB 23Ø \\
\hline MB 130 & PRINT＂THRQUGH＂； \\
\hline EJ 149 & HEX＝QUIT：GOSUB 23פ \\
\hline CD 150 & PRINT \\
\hline EK 169 & FOR ADDR＝START TO QUI T \\
\hline DA 17 D & GET \＃1，JUNK \\
\hline PD 18 E & NEXT ADDR \\
\hline DJ 190 & GOTO 6ø \\
\hline JP 200 & REM＊＊＊GET HERE ON E ND OF FILE＊＊＊ \\
\hline DN 21 ¢ & IF PEEK（195）＜＞136 THE \\
\hline & N PRINT＂UNEXPECTED E RROR \＃＂；PEEK（195） \\
\hline 6L 220 & END \\
\hline PH 230 & \begin{tabular}{l}
REM＊＊＊HEXPRINT SUBR \\

\end{tabular} \\
\hline If 240 & DIV \(=4.996\) \\
\hline BE 250 & \[
\begin{aligned}
& \text { FOR DIGIT=1 TO 4:TEMP } \\
& =\text { INT }(H E X / D I V)
\end{aligned}
\] \\
\hline AK 260 & PRINT HEX\＄（TEMP＋1，TEM \(\mathrm{P}+1)\) ； \\
\hline 00270 & \[
\begin{aligned}
& \text { HEX=HEX-DIV*TEMP: DIV= } \\
& \text { DIV/16 }
\end{aligned}
\] \\
\hline EK 28ø & NEXT DIGIT \\
\hline HL 290 & RETURN © \\
\hline
\end{tabular} EGMENT CHECKER＊＊
I6 20 DIM FILE\＄（2の），HEX\＄（16） ：HEX\＄＝＂ 123456789 ABCDE F
OE \(3 \emptyset\) GRAPHICS \(\varnothing\)
4D PRINT NOMPLETE FILE N AME＂；：INPUT FILE\＄
BH 5 Ø DPEN 1,4 ，\(\varnothing\) ，FILE \(\$\)
06 TRAP 2øø：GET \＃1，LOW：GE T \＃1，HI
KK 79 IF \(\mathrm{HI}=255\) AND LOW＝255 THEN GET \＃1，LOW：GET \＃1

KI 8ø START \(=\mathrm{LOW}+256\)＊ HI

IG 1 Øø QUIT＝LOW＋256＊HI
AL \(11 \varnothing\) PRINT＂FILE SEGMENT： ＂；

H130 PRINT THRUUGH ；
CD \(15 \emptyset\) PRINT
EK \(16 \emptyset\) FOR ADDR＝START TO QUI
A17ø GET \＃1，JUNK
PD \(18 \emptyset\) NEXT ADDR
9 GOTO 6Ø

DN 21 IF PEEK \((195)<>136\) THE N PRINT＂UNEXPECTED E END
6L 220
PH 23 REM＊\＃＊HEXPRINT SUBR OUTINE 戠戠
IJ 240 DIV＝4996
BE 25 FOR DIGIT＝1 TO 4：TEMP \(=I N T(H E X / D I V)\)
269 PRINT HEX\＄（TEMP＋1，TEM P＋1）；

HL 29ø RETURN

\title{
3-D Surfaces For Amiga
}

\author{
Martin Staley
}

Written entirely in Amiga BASIC, this graphically impressive program allows you to plot three-dimensional shapes on the screen in any color combination you like. By making small changes, you can view the object from any vantage point or plot an entirely different graph.

One of the most popular traditional applications for computer graphics is to plot three-dimensional graphs on the screen. That description may sound dull, but the resulting shapes are often quite beautiful in their own right as well as educational. The Amiga's outstanding graphics capabilities and fast processing speed make it ideal for such activity.
" 3 -D Surfaces for Amiga" provides a convenient, powerful tool for anyone interested in creating such pictures. It draws 3-D graphs as mesh perspectives. That is, the shapes appear as rectangular grids that have been pushed up or down in various places to create a variety of different shapes (see photos). The program permits you to change many different aspects of the picture, including the fineness of the mesh, screen resolution, observation angle, low and high bounds of
the function that creates the picture, and, of course, the function itself.

Type in and save the program. Before you run it, open the BASIC output window to the entire size of the screen and make sure you are using the high-resolution ( \(640 \times\) 400 ) screen. Since the program requires quite a bit of memory, it's best not to run any other programs while it's in operation.

\section*{Using The Program}

The program begins by computing all the data it needs to plot the current function. This process can take a while, depending on the complexity of the shape. To inform you of its progress, the program prints a counter value on the screen. When the calculations are complete, the program draws the shape on the screen.

Once the shape is finished, you can change any of the screen colors by moving the color sliders in the upper left corner of the screen with the mouse pointer. To move a slider, place the mouse pointer on the slider, hold down the left mouse button, then move the slider to the desired spot.

You can stop the program if necessary by selecting the Quit option from the Actions menu. This option automatically restores the
original palette colors and closes the hi-res screen for your convenience.

\section*{Creating New Shapes}

This program is designed to give you great flexibility in plotting your own 3-D pictures. Apart from color changes (see above), this is done by changing one or more of the parameters defined at the beginning of the program. The best way to learn about these parameters is to experiment on your own. All of the controlling parameters are located immediately following the labels Parameters and Equation. If you're familiar with this type of activity, the comments in these lines may give you enough information to plot your own graphs. The remainder of this article discusses in more detail the significance and use of these parameters.

\section*{Change The Equation}

Each image created by this program is a two-dimensional representation of an equation or mathematical function. It is the equation, more than any other factor, which controls the ultimate appearance of the graph. It's defined with the DEF FN statement in the line immediately after the label Equation. DEF FN, as you may know, creates a userdefined function for later use in the
program in which it appears. To change the function, simply replace the portion on the right side of the equal sign ( \(=\) ). The result can be an entirely new shape. Here are some interesting functions to try:
\(\left(x^{\wedge} 2+5 * y^{\wedge} 2\right) \star \operatorname{EXP}\left(1-x^{\wedge} 2-y^{\wedge} 2\right) / 2-S I N\) \(\left(3^{*} x^{\wedge} 2 y^{\wedge} 2\right) /\left(x^{\wedge} 2+y^{\wedge} 2\right)<\)
\(-x^{\wedge} 3 / 1 \theta-\left(\operatorname{SIN}\left(1-x^{\wedge} 2-y^{\wedge} 2\right)+\operatorname{Cos}\left(1-x^{\wedge}\right.\right.\) \(\left.2-y^{\wedge} 2\right)\) )/24
\(\operatorname{SIN}(3 * x) * \operatorname{SIN}(3 * y) / 5+.7 * \operatorname{SIN}(2 * x \wedge 2\) \(\left.+3^{*} y^{\wedge} 2\right) /\left(x^{\wedge} 2+y^{\wedge} 2\right)<\)
\(\cos \left(3^{\star} x\right)+2^{*} \operatorname{SIN}\left(x^{\wedge} 2+y^{\wedge} 2\right) /\left(x^{\wedge} 2+y^{\wedge} 2\right.\) ) \(-\mathrm{x} / 24\)
. \(3^{*}\left(\sin \left(x^{\wedge} 2+y\right)+\cos \left(y^{\wedge} 2+x\right)\right) \leqslant\) \(\left(\operatorname{SIN}\left(4 * x^{\wedge} 2+y^{\wedge} 2\right)+2 * \operatorname{SIN}\left(x^{*} y\right)\right) /\left(4^{*} x\right.\) \({ }^{\wedge} 2+y^{\wedge} 2\) ) 4
```

SIN(3*x)+SIN(3*

```

In each case, the new function definition should be substituted for the portion of the DEF FN statement that lies on the right side of the equal sign. For instance, to use the last example definition, the line following the label Equation should read as follows:
\(\operatorname{DEF} \operatorname{FNz}(x, y)=\operatorname{SIN}\left(3^{*} x\right)+\operatorname{SIN}\left(3^{*} y\right)\)

\section*{The Plot Thickens}

The first two variables in the \(P a\) rameters section, \(m\) and \(n\), control the number of grid rectangles in the \(x\) (horizontal) and \(y\) (vertical) directions. Simply put, these values control the fineness of the rectangular mesh of which the graph is composed. If you increase the value of \(m\) and/or \(n\), the plot appears thicker and more finely detailed. The finer the resolution, the better the graph looks. However, more detailed plots take longer to create. Conversely, smaller values make the graph look coarser and less substantial. The coarser the mesh, the less time it takes to complete the necessary calculations. Setting both values to 31 is a reasonable tradeoff between time and accuracy.

Since the program utilizes two 2-dimensional arrays based on \(m\) and \(n\), the values of these two variables are limited by the amount of available memory. On a 512 K Amiga, I've used values as high as 75. At this degree of accuracy, the program requires about ten minutes for calculations; however, the results are worth it.

The values of \(m\) and \(n\) need not be equal. However, they should be set to an odd number. Both of these points are discussed in more detail below.


These photos illustrate some of the many three-dimensional plots you can create with " 3 -D Surfaces for Amiga."

\section*{Resolution}

The next variable, res, controls the screen resolution. If res equals 1 , the program draws the graph on Amiga BASIC's default \(640 \times 200\) output window. Before you run the program in this mode, be sure to stretch the window to the full screen size, since the image will fill nearly all the available space. If you set res to 2 , the program opens a custom output window in \(640 \times\) 400 resolution before it draws. The memory requirements of this window probably make it unusable on a 256K Amiga. Graphs drawn in the lower resolution always look coarser than those drawn in the highest res-
olution, particularly when the mesh size is small. However, even lower resolution screens look quite good.

\section*{Accuracy}

The variable \(g t\) stands for graph type. It controls the accuracy of the plot by selecting one of two drawing algorithms (formulas). The first algorithm draws a good estimate of the shape. The second algorithm draws the shape in actual, exact perspective from any direction, angle, and distance. Each method has advantages and disadvantages. The estimate method is less complex, more reliable, and faster. The exact perspective method is slower and requires many more intensive calculations (which can lead to error messages on rare occasions). However, drawing in exact perspective allows you to view a shape from different observation points. The estimate method causes some inaccuracy in the vertical scale, but exact perspective uses correct proportions, taking into account the fact that pixels (dots) on the Amiga screen are square, not round.

\section*{Aspect And Height}

Two of the parameter variables are used only with the estimate drawing method (see preceding section). The variable asp controls the apparent \(x-y\) ratio of the graph as it appears on the screen, regardless of the bounds you specify. Aspects that are too large or too small (say, larger than four or smaller than one-fourth) have the side effect of downgrading the quality of the estimate (the graph may look slightly distorted). The variable \(h\) controls the height factor, which affects the graph's vertical appearance. In general, height factors of less than 100 tend to make the apparent observation point higher in the \(z\) direction; as a result, graphs look a bit stubbier than expected. Larger height factors have the opposite effect (lower observation points and taller graphs). By enlarging the height factor, you can emphasize a graph's vertical qualities.

\section*{Observation Angle And Distance}

The graph's perspective is controlled by three parameter variables: theta, phi, and \(d\). The variable
theta equals the observation angle from the \(x-y\) axis moving counterclockwise in the \(x-y\) plane as viewed from the positive \(z\) direction. The variable \(p h i\) is the observation angle with respect to the \(x-y\) plane. This variable is set up for both angles to be in degrees; if you would rather use radians, remove the conversions in the second program line under the label Equations. Any observation angle is possible if you keep theta in the range -180 to 180 and keep phi in the range -90 to 90 . Other values may be used; however, it's usually best to keep the angle more than about \(1 / 10\) degree away from any positive or negative multiple of 90 degrees (including 0 ) to avoid overflow errors in the computation. Such extreme observation angles aren't very interesting, anyway, since you tend to lose most of the graph's threedimensional quality.

The variable \(d\) controls the distance of the observation point-in the direction of the direction an-gles-from the graph's center (the point whose coordinates are the average \(x, y\), and \(z\) coordinates of all the computed function values). The only formal restriction for \(d\) is that it cannot be zero. However, it should be large enough to place you a reasonable distance from the shape. Observing the graph from an extremely close location is a bit like viewing the Mona Lisa by putting your eye one millimeter away from the canvas. In addition, extremely small values for \(d\) can actually locate the observation point "inside" the graph. The program assumes that all graph points are within a 180-degree field of view while looking toward the center. If \(d\) is so close to the center that not all of the graph's points are within this view, the program's output is garbage. It's best to make \(d\) large enough so that the observation point is beyond the bounds of the function as specified by the four parameters discussed in the next section. Incidentally, specifying a very large distance won't make the graph look significantly smaller. As the distance becomes larger, perspective qualities such as the presence of a vanishing point become less pronounced. To avoid wasting screen resolution, the program always stretches the perspec-
tive until either the horizontal or vertical dimension becomes too large to fit on the screen.

\section*{Bounds}

The next four parameter variables set the low and high bounds of the graph in the \(x\) and \(y\) dimensions. This simply means that the four sides of the graph will be along those edges.

\section*{Equation Notes}

The most important parameter, of course, is the equation contained in the DEF FN statement. When defining new functions, keep in mind that the computer can't perform some operations, such as dividing by zero or taking the square root of a negative number. However, functions which have what's known as a limiting value on the interval can usually be plotted. There are many rational functions whose numerators become zero at the same time their denominators reach zero; and the ratio can be finite. But the computer doesn't know this and still generates a Division by zero error unless it just misses the coordinate in question.

To compute function values, the program increments between the low and high \(x\) bounds, and between the low and high \(y\) bounds, in step sizes such that a total of \(m+1\) different \(x\) values and \(n+1\) different \(y\) values are eventually put in the equation. If the increment sizes and the low and high bounds are such that the offending point is skipped, everything should work correctly. Odd values for \(m\) and \(n\) seem to work best, but problems are still rare when even values are used.

For instance, the function \(\mathrm{Z}=\) \(\operatorname{SIN}(X) / X+\operatorname{SIN}(Y) / Y\) should have a value of two when \(X\) and \(Y\) both equal zero; but the computer will generate an error message at that point. If you try this function with the \(x\) and \(y\) bounds both set between -10 and 10 , the computer tries to evaluate the function at coordinate \((0,0)\) if \(m\) and \(n\) are 20, but not if \(m\) and \(n\) are 21 . The computer simply happens to skip coordinate \((0,0)\) if it increments between -10 and 10 in step sizes needed to create a \(21 \times 21\) grid. But it lands on the point and tries to compute a
corresponding function value if the grid is \(20 \times 20\).

For some equations, the CLEAR,60000 statement in the second program line may cause an Out of memory error. You may be able to avoid this error by reducing the value in the CLEAR statement. That change reduces the amount of space available for BASIC arrays and variables, which may make it necessary to decrease the value of \(m\) and/or \(n\) as well.

\section*{3-D Surfaces For Amiga}

For instructions on entering this program. please refer to "COMPUTEI's Guide to Typing In Programs" in this issue of COMPUTEI.

CLEAR, 6øøøø\&:DEFINT \(i, j 4\)
\(\mathrm{pi}=3.1415927\) \# : \(\mathrm{e}=2.7182818 \# 4\)
Parameters:
\(\mathrm{m}=31\) : \(\mathrm{n}=31\)
mesh size
\(=\mathrm{m}^{\star} \mathrm{n}^{\star}\)
resolutio
res=1

gt=1 graph typ
e: l=estimate, 2=real
asp=1
\(y / x\) ratio
of graph (only for \(g t=1\) ) 4
\(h=150 \quad\) ' height fa
ctor (only for \(g t=1\) )
theta=3 :phi=2ø ' observati
on angles in degrees (only for \(g\) \(t=2) 4\)
d=1øб ' distance
from graph center (only for \(g\) \(t=2\) ) 4
lox=-3 :hix=3 ' low \& hig
\(h\) bounds in \(x\) direction 4
loy=-3 :hiy=3 low \& hig
\(h\) bounds in \(y\) direction 4
Equation:
\(\operatorname{DEF} \operatorname{FNz}(x, y)=\operatorname{SIN}\left(x^{\wedge} 2+3^{\star} y^{\wedge} 2\right) /\left(x^{\wedge} 2\right.\)
\(\left.+y^{\wedge} 2\right)+\left(x^{\wedge} 2+5^{\star} y^{\wedge} 2\right) * \operatorname{EXP}\left(1-x^{\wedge} 2-y^{\wedge} 2\right)\)
/2
theta=theta*pi/18ø:phi=phi*pi/18
\(\emptyset\), conversion: degrees to radi
ans
\(a=d^{*} \cos (p h i) * \cos (\) theta \() \&\)
\(b=d^{*} \operatorname{COS}(\) phi \() * \operatorname{SIN}(\) theta \() ~ \& ~\)
\(c=d^{*} \operatorname{SIN}(\) phi)
GOSUB Check 4
DIM \(\mathrm{xC}(\mathrm{m}+1, \mathrm{n}+1), \mathrm{yc}(\mathrm{m}+1, \mathrm{n}+1) \quad \leftarrow\)
\(\mathrm{tx}=(\mathrm{hix}-10 \mathrm{x}) / \mathrm{m}: \mathrm{ty}=(\mathrm{hiy}-10 \mathrm{y}) / \mathrm{n} 4\)
PRINT:PRINT "computing values... \(" 4\)
LOCATE 4, 7: PRINT m+1
IF \(\mathrm{gt}=1\) THEN GOSUB Estimate:ELSE GOSUB True4
Draw: 4
IF res \(=2\) THEN SCREEN \(1,64 \varnothing, 4 \emptyset \emptyset, 2\) ,4:WINDOW 2,"graph", 15,1:ELSE C LS 4
DIM \(v(15), \operatorname{rgb}(3,2) 4\)
\(\mathrm{p}=04\)
RC:
FOR \(\mathrm{C}=\emptyset\) TO 3
READ \(r, g, b:\) PALETTE \(c, r, g, b \nless\)
\(\operatorname{rgb}(c, \varnothing)=r: \operatorname{rgb}(c, 1)=g: \operatorname{rgb}(c, 2)=b\)
4
NEXT c
DATA \(\varnothing, \varnothing, \varnothing, .14, .14, .14, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing\) , 14
COLOR 2,34
FOR \(x=d f x\) TO dtx STEP sx
FOR \(y=d\) fy TO dty STEP sy 4
\(\mathrm{xl}=\mathrm{xc}(\mathrm{x}, \mathrm{y}): \mathrm{x} 2=\mathrm{xc}(\mathrm{x}, \mathrm{y}+1): \mathrm{x} 3=\mathrm{xc}(\mathrm{x}+\)
\(1, \mathrm{y}+1): \mathrm{x} 4=\mathrm{xc}(\mathrm{x}+1, \mathrm{y}) \nleftarrow\)
\(y l=y c(x, y): y 2=y c(x, y+1): y 3=y c(x+\) \(1, y+1): y^{4}=y c(x+1, y) 4\)
AREA ( \(\mathrm{xl}, \mathrm{y}\) ) : AREA ( \(\mathrm{x} 2, \mathrm{y} 2\) ): AREA ( \(\mathrm{x} 3, \mathrm{y} 3)\) : AREA \((\mathrm{x} 4, \mathrm{y} 4)\) : AREAFILL 4 LINE \((x 1, y 1)-(x 2, y 2), 3: \operatorname{LINE}(x 2\), \(\mathrm{y} 2)-(\mathrm{x} 3, \mathrm{y} 3), 34\)
LINE \((x 3, y 3)-(x 4, y 4), 3: \operatorname{LINE}(x 4\), \(\left.y^{4}\right)-(x 1, y l), 3\)
NEXT \(\mathrm{Y}^{4}\)
NEXT x
Colors:
FOR \(n=\emptyset\) TO 15:v(n) \(=11+7.54{ }^{*} n:\) NEX Thu
col= \(0: \times 1=11: \times 2=11: \times 3=114\)
IF res \(=1\) THEN WINDOW 3 ,"colors", \((\varnothing, \varnothing)-(13 \varnothing, 5 \emptyset), 18,-14\)
IF res \(=2\) THEN WINDOW 3 ,"colors", ( \(\varnothing, \varnothing)-(130,5 \emptyset), 18,14\)
WINDOW OUTPUT 34
PRINT "R":PRINT "G":PRINT "B":PR INT:PRINT "C"
LINE \((\varnothing, \varnothing)-(13 \varnothing, \varnothing): \operatorname{LINE}(\varnothing, 8)-(1\) 30,8)
\(\operatorname{LINE}(\varnothing, 16)-(13 \varnothing, 16): \operatorname{LINE}(\varnothing, 24)\) \(-(130,24) 4\)
LINE \((1 \varnothing, \varnothing)-(1 \varnothing, 5 \varnothing): \operatorname{LINE}(11,25)\) \(-(4 \varnothing, 5 \varnothing), \varnothing, b f 4\)
LINE \((4 \varnothing, 25)-(7 \varnothing, 5 \emptyset), 1, b f: L I N E\) ( 70,25)-(1ØØ,50),2,bf4
LINE \((1 \varnothing \varnothing, 25)-(13 \emptyset, 5 \emptyset), 3, b f: L I N E\) (11,1)-(19,7),3,bf <
LINE ( 11,9 )-( 19,15 ), 3,bf:LINE ( 1 \(1,17)-(19,23), 3, \mathrm{bf} 4\)
\(i=2 \emptyset: \operatorname{LINE}(2 \emptyset, 32)-(3 \varnothing, 42), 1, b f 4\) MENU \(1, \varnothing, 1, " A c t i o n ": M E N U 1,1,1, "\) Quit":MENU ON 4
Loop: 4
IF \(\operatorname{MENU}(\varnothing)=1\) AND \(\operatorname{MENU}(1)=1\) THEN \(\angle\) WINDOW CLOSE 3:MENU RESET:SCREEN CLOSE 1:STOP
END IF4
\(\mathrm{x}=\mathrm{MOUSE}(1): \mathrm{y}=\operatorname{MOUSE}(2): I F \operatorname{MOUSE}(\varnothing\) ) \(>=\varnothing\) THEN \(\mathrm{cl}=1: \mathrm{c} 2=1: \mathrm{c} 3=1\) :GOTO LO op4
IF \(x>10\) AND \(x<131\) THEN IF \(y>24\) A ND \(y<51\) THEN Getcol:ELSE GOTO Ch eckl 4
GOTO Loop 4
Checkl: 4
arg=.1260504*x-1.386551:IF \(y<10\) \(\mathrm{R} \mathrm{y}>7\) OR cl=ø THEN Check 24
LINE ( 11,1 )-( 136,7 ), \(\varnothing, b f:\) LINE ( \(v\) (arg) , 1)-(v(arg) \(+8,7\) ), 3,bf:xl=v( arg) 4
rgb (col, ø) \(=\mathrm{arg} / 15\) : PALETTE col, rg \(\mathrm{b}(\mathrm{col}, \theta), \mathrm{rgb}(\mathrm{col}, 1), \mathrm{rgb}(\mathrm{col}, 2) 4\) cl=1:c2= \(0: c 3=\varnothing\) : GOTO LOOp Check2: 4
IF \(y<9\) OR \(y>15\) OR c2=ø THEN Chec k34
LINE ( 11,9 )-( 130,15 ), Ø, bf:LINE ( \(\mathrm{v}(\mathrm{arg}), 9)-(\mathrm{v}(\mathrm{arg})+8,15), 3, \mathrm{bf}: \mathrm{x} 2=\) \(v(a r g) 4\)
rgb(col,1)=arg/15: PALETTE col,rg \(\mathrm{b}(\mathrm{col}, \varnothing), \mathrm{rgb}(\mathrm{col}, 1), \mathrm{rgb}(\operatorname{col}, 2) 4\) cl=ø:c2=1:c3=Ø:GOTO LOOp 4
Check3: 4
IF \(y<17\) OR \(y>23\) OR c3= \(\emptyset\) THEN LOO p
LINE \((11,17)-(130,23), \varnothing, b f: \operatorname{LINE}\) (v(arg), 17)-(v(arg)+8,23),3,bf:x \(3=v(\arg ) 4\)
\(\mathrm{rgb}(\mathrm{col}, 2)=\mathrm{arg} / 15\) : PALETTE col,rg \(\mathrm{b}(\mathrm{col}, \emptyset), \mathrm{rgb}(\operatorname{col}, 1), \mathrm{rgb}(\operatorname{col}, 2) \leftarrow\) cl=ø:c2=Ø:c3=1:GOTO Loop4
Getcol: 4
LINE (i, 32)-(i+10,42), col,bf 4 IF \(x<4 \varnothing\) THEN \(i=2 \varnothing\) :LINE \((i, 32)-\) \((3 \varnothing, 42), 1\), bf \(:\) col= \(\emptyset:\) GOTO Nst 4 IF \(x<7 \emptyset\) THEN \(i=5 \emptyset: \operatorname{LINE}(i, 32)-\) \((60,42), 2, \mathrm{bf}: \mathrm{col}=1\) : GOTO Nst 4 IF \(x<1 \emptyset \emptyset\) THEN \(i=8 \emptyset: \operatorname{LINE}(i, 32)-\) \((90,42), 3, \mathrm{bf}: \mathrm{col}=2: \mathrm{GOTO} \mathrm{Nst} 4\) \(i=11 \varnothing: \operatorname{LINE}(i, 32)-(12 \emptyset, 42), \varnothing, b f:\) col=34

Nst: 4
LINE \((11,1)-(130,23), \emptyset, b f: \operatorname{LINE}(\) \(10,8)-(13 \varnothing, 8): \operatorname{LINE}(10,16)-(13 \varnothing\), 16) 4
\(\mathrm{c}=14\)
FOR n=ø TO 2:tl=111*rgb(col,n)+1 14
LINE ( \(t 1, c)-(t 1+8, c+6), 3, b f: c=c+\) 84
NEXT n 4
GOTO Loop 4
Check: 4
\(\mathrm{m}=\operatorname{INT}(\mathrm{m}): \mathrm{n}=\operatorname{INT}(\mathrm{n}) \leftarrow\)
asp=ABS (asp): \(h=A B S(h) 4\)
IF res<>1 AND res<>2 THEN res=1 4
IF res \(=1\) THEN \(h t=186: h h t=93 \nleftarrow\)
IF res \(=2\) THEN ht=386:hht \(=1934\)
IF lox \(>\) hix THEN SWAP lox,hix 4
IF loy>hiy THEN SWAP loy,hiy
dfx=l:dtx=m:sx=1:dfy=1:dty=n:sy=
14
IF \(\mathrm{gt}\langle>2\) THEN \(\mathrm{gt}=14\)
IF res<> 2 THEN res=1 4
IF \(\mathrm{gt}=2\) THEN 4
IF \(a<\emptyset\) THEN \(d f x=m: d t x=1: s x=-1 \nLeftarrow\) IF \(b<\emptyset\) THEN \(d f y=n: d t y=1: s y=-14\)
END IF4
RETURN
Estimate: 4
\(\mathrm{ml}=31 \varnothing / \mathrm{m}: \mathrm{m} 2=16 \emptyset / \mathrm{m}: \mathrm{n} 1=31 \varnothing / \mathrm{n}: \mathrm{n} 2=16\) Ø/n:rd=18Ø/pi4
\(x=24 \varnothing / S Q R(1+a s p \wedge 2): y=24 \emptyset * a s p / S Q R\) (1+asp^2) 4
spx \(=31 \varnothing+.8886207^{*}(x-y): s p y=h h t-\). 4586429* \((x+y)<\)
\(\mathrm{x} 1=1.777241^{*} \mathrm{x} / \mathrm{m}: \mathrm{x} 2=1.777241^{*} \mathrm{y} / \mathrm{n}\) :
\(\mathrm{yl}=.9172858^{*} \mathrm{x} / \mathrm{m}: \mathrm{y}^{2}=.9172858^{*} \mathrm{y} / \mathrm{n}\)
\(i=\emptyset: x=10 x-t x^{4}\)
WHILE \(i<m+14\)
\(i=i+1\) :LOCATE 5,7:PRINT i; 4
\(x=x+t x: j=\emptyset: y=10 y-t y<\)
WHILE \(j<n+1 «\)
\(j=j+1 \nless\)
\(y=y+t y\)
\(x \mathrm{x}(i, j)=\left(\operatorname{spx}+x 2^{\star} j-x l^{*} i\right) \nless\)
\(y c(i, j)=s p y+y 2^{*} j+y l^{*} i-h * F N z(x, y)\)
IF \(y c(i, j)<\operatorname{smin}\) THEN smin=yc \((i, j\) 14

IF \(y c(i, j)>\operatorname{smax}\) THEN \(\operatorname{smax}=y c(i, j\)
) 4

\section*{WEND 4}

WEND 4
IF smax<ht AND smin>ø THEN RETUR N4
\(\operatorname{avg}=(\operatorname{sma} x+\operatorname{smin}) / 2: \operatorname{smax}=s m a x-a v g\) : smin=smin-avg:mult=ht/(smax-smin ) 4
FOR \(x=1\) TO \(m+14\)
FOR \(y=1\) TO \(n+14\)
\(\mathrm{yc}(\mathrm{x}, \mathrm{y})=\) mult* \((\mathrm{yc}(\mathrm{x}, \mathrm{y})-\mathrm{avg})+\mathrm{hht} 4\)
NEXT \(\mathrm{Y}^{4}\)
NEXT x
RETURN 4
True: 4
\(\operatorname{DEF} \operatorname{FNC}(a, b, c, x, y, z)=\left(x^{*}(b *(b-y)\right.\)
\(\left.\left.+c^{\star}(c-z)\right)+(x-a)^{\star}\left(b^{\star} y+c^{\star} z\right)\right) / d \leftarrow\)
DEF FNang \((x, y, z)=\left(p x^{*} x+p y^{*} y+p z^{\star} z\right.\)
\() /\left(d p^{*} \operatorname{SQR}\left(x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2\right)\right)\)
\(p x=F N c(a, b, c, \varnothing, \varnothing, 1 \varnothing): p y=F N c(b, a\),
\(c, \varnothing, \varnothing, 1 \varnothing): p z=F N c(c, b, a, 1 \varnothing, \varnothing, \varnothing) \leftarrow\)
\(d p=S Q R\left(p x^{\wedge} 2+p y^{\wedge} 2+p z^{\wedge} 2\right) 4\)
\(i=\emptyset: x=10 x-t x 4\)
WHILE \(i<m+14\)
\(i=i+1\) :LOCATE 5,7:PRINT i4
\(x=x+t x: j=\emptyset: y=10 y-t y 4\)
WHILE \(j<n+14\)
\(j=j+14\)
\(y=y+t y\)
\(\mathrm{xC}(\mathrm{i}, \mathrm{j})=\mathrm{FNz}(\mathrm{x}, \mathrm{y}):\) sum=sum+xC\((i, j)\) WEND
WEND 4
\(\operatorname{avg}=s u m /((m+1) *(n+1)): y m=1 o y-t y-\)
(loy+hiy)/24
\(i=\emptyset: x=10 x-t x-(10 x+h i x) / 24\)
WHILE \(1<\mathrm{m}+14\)
\(i=i+1\) :LOCATE 6,7:PRINT i4
\(x=x+t x: j=\varnothing: y=y m\)
WHILE \(j<n+14\)
\(j=j+1: y=y+t y: z=x c(i, j)-a v g ~ \& ~\)
\(d=a^{\star}(a-x)+b^{\star}(b-y)+c^{\star}(c-z) \&\)
\(x c=\operatorname{FNc}(a, b, c, x, y, z) 4\)
\(\mathrm{yc}=\mathrm{FNc}(\mathrm{b}, \mathrm{a}, \mathrm{c}, \mathrm{y}, \mathrm{x}, \mathrm{z}) \nless\)
\(\mathrm{zc}=\mathrm{FNc}(\mathrm{c}, \mathrm{b}, \mathrm{a}, \mathrm{z}, \mathrm{y}, \mathrm{x}) 4\)
rad=SQR \(\left(x c^{\wedge} 2+y^{\wedge}{ }^{\wedge} 2+z c^{\wedge} 2\right) 4\) s=14
IF SGN(a)<>SGN(yc*pz-zc*py) THEN \(\mathrm{s}=-14\)
ELSEIF SGN(b) <>SGN(zc*px-xc*pz)
THEN 4
\(\mathrm{s}=-14\)
ELSEIF SGN(c)<>SGN(xc*py-yc*px)
THEN 4
\(\mathrm{s}=-14\)
END IF\&
\(\mathrm{cs}=\mathrm{FNang}(\mathrm{xc}, \mathrm{yc}, \mathrm{zc}): \mathrm{sn}=\mathrm{SQR}(1 . \varnothing \varnothing \varnothing \emptyset\) \(\left.1-\operatorname{cs}^{\wedge} 2\right) 4\)
\(x c(i, j)=s^{*} r a d * s n: y c(i, j)=-r a d * c s\)
IF \(x c(i, j)>x \max\) THEN \(x \max =x c(i, j\)
IF \(x C(i, j)<x m i n\) THEN \(x m i n=x c(i, j\) IF \(y c(i, j)>y \max\) THEN \(y m a x=y c(i, j\)
)
IF \(y c(i, j)<y m i n\) THEN \(y m i n=y c(i, j\)
WEND 4
WEND4
\(a x=(x \max +x \min ) / 2: a y=(y \max +y \min ) /\)
24
IF res \(=1\) THEN 4
\(\mathrm{hzy}=934\)
IF \(((y \max -y \min ) /(x \max -x \min ))>(6\).
75/10.25) THEN4
\(m y=168 /(y \max -y \min ): m x=168 /(y \max -\) ymin) *2.2øø8994
ELSE4
my \(=602 /(x \max -x m i n) / 2 \cdot 20 ø 899: m x=6\)
ø2/(xmax-xmin) 4

\section*{END IF4}

\section*{ELSE}
hzy=1934
IF \(((y \max -y \min ) /(x \max -x \min ))>(6\). 875/10.25) THEN 4
my=368/(ymax-ymin) :mx=368/(ymax-
ymin)*1.092ஏ894
ELSE4
\(m y=6 ø 2 /(x \max -x \min ) / 1 . ø 92089: m x=6\)
ø \(2 /(x \max -x \min ) 4\)
END IF4
END IF4
FOR \(x=1\) TO m+14
FOR \(y=1\) TO \(n+14\)
\(\mathrm{xc}(\mathrm{x}, \mathrm{y})=315+\mathrm{mx} \mathrm{A}^{*}(\mathrm{xc}(\mathrm{x}, \mathrm{y})-\mathrm{ax})\)
\(y c(x, y)=h z y+m y^{*}(y c(x, y)-a y) \&\)
NEXT \(\mathrm{Y}^{4}\)
NEXT x
RETURN 4

\section*{COMPUTE! TOLL FREE Subscription Order Line 1-800-247-5470} In IA 1-800-532-1272

\title{
Fixing Atari Revision-B BASIC
}

\author{
Barry Hart
}

This article includes a fast, convenient way to fix the bugs in Revision \(B\) of Atari BASIC. The program works on all Atari 800 XL computers which have Revision-B BASIC, and on 600XL computers with memory expansion to 64 K . A disk drive is required.

As many people are aware, the version of Atari BASIC known as Revision B-the version built into most Atari 600 XL and 800 XL comput-ers-contains several serious bugs. The later, debugged version of Atari BASIC is known as Revision C. To find out which version you have, type

\section*{PRINT PEEK(43234)}
and press RETURN. If the computer prints 96, you have Revision B, the bad version of BASIC. If it prints 234, you have Revision C, so no fixes are required.

The programs included in this article eliminate all of the bugs in Revision-B BASIC. Enter and save Program 1; then run it. The program creates an AUTORUN.SYS file on disk. (Before you run this program, make sure that the disk in the drive does not already contain an AUTORUN.SYS file that you want to save. The AUTORUN.SYS file created by Program 1 will overwrite any existing AUTORUN.SYS file already on the disk.) When you boot the computer with a disk containing this file, the program first checks to see whether the XL's built-in BASIC is enabled. If an external cartridge is present, or if no
cartridge is present, the program does nothing at all. This feature prevents crashes when other cartridges are in use. If built-in BASIC is enabled, the program copies BASIC from ROM to underlying (normally unused) RAM, then makes the changes needed to fix all of the Revision-B bugs.

This program should cause no problems with the vast majority of BASIC programs. However, it may conflict with programs that modify CASINI (memory locations 2-3) or the microprocessor's stack at locations 256-511. Very few programs modify those areas. A program might also crash the system if it POKEs new values into the cartridge space at 40960-49151, since that is where the RAM copy of BASIC resides.

When you're using a RAMbased version of BASIC, it is advisable to lower the value in the RAMTOP pointer (location 106). Some graphics commands may attempt to alter memory above RAMTOP, which would disrupt the RAM version of BASIC. You can protect BASIC by using one of the following statements near the beginning of your program:
POKE 106, PEEK(106) - 4: GRAPHIC \(n\)
(for graphic modes 0-6)
POKE 106, PEEK(106)-16: GRAPHIC \(n\)
(for graphic modes 7-11)
In either case, \(n\) is the number of the mode you'll be using.

\section*{A Patch For DOS}

Program 2 is not necessary to use the special AUTORUN.SYS file,
but it can be handy if you use DOS 2.0 or 2.5 . Since the AUTORUN.SYS file works by switching out the ROM version of BASIC, you cannot normally return to the RAM version of BASIC from the DOS menu using option B (RUN CARTRIDGE). Selecting option B from the DOS menu generates an error message (NO CARTRIDGE). Program 2 makes a minor alternation to the DUP.SYS file which allows DOS option B to work normally with the file created by Program 1. Before you run Program 2, insert a disk containing the DOS 2.0 or 2.5 DUP.SYS file and the AUTORUN.SYS file created by Program 1. Do not use Program 2 to change the DUP.SYS file on any disk which doesn't contain the AUTORUN.SYS file created by Program 1. Use Program 2 only on copies of the DUP.SYS file, not on the version of DUP.SYS on your original DOS disk. If you ever delete the AUTORUN.SYS file that fixes BASIC, you'll need to replace the patched DUP.SYS file with a copy of the original version.

If you don't use Program 2, then you must press RESET or use DOS option M (RUN AT ADDRESS) to run the patched BASIC in RAM at location A000 (40960).

Note that Program 1 is intended only for 600 XL and 800 XL model Atari computers with Revision-B BASIC built in. Memory expansion to 64 K is required to use the program on the 600XL; otherwise there will be no RAM under ROM for the program to use. The program does
not work at all on the Atari 400, 800 , or 1200 XL , all of which use BASIC in a cartridge and do not include RAM under ROM. Although Program 1 will work on XE models, it is unnecessary, since all XE computers come with Revision-C BASIC built in. In addition, some of the last XLs produced use RevisionC BASIC instead of Revision B.

While these programs solve the Revision-B bugs, it is possible to obtain a cartridge containing Revi-sion-C BASIC, which would eliminate the need for the AUTORUN.SYS file. For information, write to:

\section*{Atari Customer Relations}
P. O. Box 61657

Sunnyvale, CA 94088

For instructions on entering these programs, please refer to "COMPUTEI's Guide to Typing In Programs" in this issue of COMPUTEI.

\section*{Program 1: AUTORUN.SYS Filemaker}
```

FH1\emptyset OPEN \#1,8, D,"D:AUTORUN .SYS":FOR I=1 TO $110: R$ EAD J:PUT \#1, J:NEXT I
BJ 29 DATA $255,255,9,1,97,1$, $173,1,211,9,2,141,1,21$ $1,76,64,21,165,6,74,14$ $4,81,173,250,3,298,76$, $168,133,214,169,160$
FD 39 DATA $133,215,169,32,13$ 3, 216, 173, 1, 211, 9, 2, 17 פ, 2ø2, 2ø2, 142, 1, 211, 17 $7,214,232,232,142,1,21$ $1,145,214,290,258,239$
AL $4 \varnothing$ DATA $23 \varnothing, 215,198,216,2$ Ø8, 233, 169, 234, 141, 223 , 168, 141, 226, 168, 169, 2 $40,141,224,168,169,17$, $141,225,168,149,41$
CO 5 D DATA $187,165,12,141,9$, $1,165,13,141,15,1,132$, $12,200,132,13,96,226,2$ , 227, 2, 11, 1

```

\section*{Program 2: DUP.SYS Paicher}
```

KF1g XIO 36,\#1, Ф, ஏ,"D:DUP.S
YS": QPEN \#1,12, Ø,"D:DU
P.SYS"
HA 2g FOR X=1 TO 2g26:GET \#1 , $Y$ : NEXT $X: F O R \quad X=1$ TO 5 5: READ Y:PUT \#1, Y:NEXT X
PL 3ø CLOSE \#1:XIO 35, \#1,,$~ \emptyset ~$ , "D:DUP.SYS"
LN 5ø DATA $164,6,136,24 \varnothing, 35$, $172,253,191,169,179,14$ $1,253,191,255,253,191$, $298,22,74,141,253,191$, 2ஏ5, 253, 191, 298, 13, 149
BC 6 D DATA $253,191,169,63,16$ $2,39,32,181,49,76,182$, $32,173,252,191,268,241$ , 173, 253, 191, 249, 236, 2 $34,234,234,234,234$

```

\title{
Custom Characters For Atari XL And XE
}

\author{
S. M. Baugh
}

This program demonstrates a short, elegant method of creating custom characters on Atari XL and XE computers (except for the 1200XL).

Many computer users have use for an alternate character set. Custom characters give any program a polished, professional look and they are an absolute necessity for foreign language applications. They can also be used to create graphics in games and educational programs. This program demonstrates an efficient technique for creating custom characters on the newer XL and XE Atari computers.

Type in the program and save a copy; then run it. After a short delay, the computer clears the screen and prints all the printable characters. To switch from normal characters to a set of Greek and Hebrew characters, press CTRL-4. Uppercase characters are changed to Greek letters and lowercase characters become Hebrew characters (the order is as logical as possible: \(A\) becomes alpha or aleph, \(F\) becomes
phi or pe, and so on). Press CTRL-4 again to switch back to the normal characters.

\section*{Alternate Character Sets}

A character set is simply a collection of patterns that define the shape of each character. The Atari's normal character set is contained in ROM (Read Only Memory). To create custom characters, you must put a new character set somewhere in memory, then tell the computer to use the new patterns in place of the old ones. The first order of business, then, is to decide where to put the new character set.

On older 400 and 800 Atari computers, the memory area from locations 49152-53247 (\$C000\$CFFF) is unused. On XL and XE models, this area is used by the operating system. Part of this memory, the zone from 52224-53247 (\$CC00-\$CFFF), contains an international character set which you can switch on with the statement POKE 756,204.

The international set is useful for certain purposes, but not if you want something like a complete set of foreign language characters. Ideally, you could just POKE your own
character set into locations 52224－ 53247 and perform the POKE to switch to the new set．On XL and XE computers，however，this area is ROM which you can＇t change with POKEs．

The answer is suggested in Ap－ pendix 12 of Mapping the Atari，by Ian Chadwick．The program copies the operating system from ROM into RAM and turns off the ROM so that the computer＂sees＂the un－ derlying RAM．Once this is done， we simply POKE the new character set into the area formerly occupied by the international characters．An advantage of this technique is that the new characters don＇t decrease the amount of memory available for your own programming．

Turning ROM into RAM per－ mits all sorts of customizing．There is actually room for four new char－ acter sets if you use the ROM space ordinarily used for graphics charac－ ters．Of course，you can also replace the Greek and Hebrew definitions with characters of your own．Map－ ping the Atari explains how to cre－ ate new character definitions．

To switch character sets under program control，use POKE 756，204． This program uses a little trick to let you do the same thing by pressing CTRL－4 when in immediate mode． Evidently，Atari used parts of the older 1200 XL operating system in the operating system for the newer XL and XE computers．The XL／XE keyboard scanning routine looks for function keys that exist only on the 1200 XL ．One of the 1200 XL ＇s function keys is used to switch character sets．The POKE in line 110 simply substitutes the CTRL－4 key combination for that function key．Once this has been done，the computer automatically toggles be－ tween the two character sets when you press CTRL－4，just as it would if you pressed the function key on a 1200XL．

\section*{Custom Characters For Atari XL And XE}

For instructions on entering this program． please refer to＂COMPUTEI＇s Guide to Typing in Programs＂elsewhere in this issue．

FB \(1 \varnothing\) REM Alternate characte \(r\) sets
PG 20 GRAPHICS \(2+16: ?\) \＃；＂ \｛6 SPACES\}ROM/RAM":? \# 6；＂\｛5 SPACES\}CHARACTER S＂

EC 3ø？\＃6；＂＂：？\＃；＂CONVE RTING ROM．．．＂＇
EJ 4 R RESTORE 1 Øøø
JK 5 FOR L＝1536 TO 1635：REA D D：POKE L，D：NEXT L
BC \(6 \emptyset \mathrm{U}=\mathrm{USR}\)（ 1536 ）
NH 7 Ø ？\＃6；＂＂：？\＃；＂
〔3 SPACES\}CHANGING SET S．．．＂
HP 日ø ？6；＂＂
BG 90 FOR \(L=52488\) TO 52695：R EAD D：POKE L，D：NEXT L
DE 1 Øø FOR L＝52992 TO 532ø7： READ D：POKE L，D：NEXT L
IN 110 POKE 64661， 152
KC 120 FOR \(J=32\) TO 252
PF 130 IF \((J<125\) OR \(J>127) A\) ND（ \(J<155\) OR \(J>159\) ）T HEN PRINT CHR（J）；
BO 146 NEXT J
AG \(15 \varnothing\) PRINT：PRINT ：PRINT＂＂ PRESS CTRL－4 TO SWITC H CHARACTER SET＂
MO 16 （ DEM MACHINE LANGUAGE DATA
FE 1 øøø DATA \(169,9,133,2 \emptyset 3,1\) \(33,265,169,192,133,2\) \(64,169,64,133,266,16\) \(6,6,177,263,145\)
HO \(101 \emptyset\) DATA \(265,209,268,249\) ，239，296，236，264，246 ，12，165，294，2ø1，2ø8， 268，237，169，216，133， 204
L 1 Ø2 DATA 2 D8，231，8，120， 1 \(73,14,212,72,169,9,1\) \(41,14,212,173,1,211\) ， 41
\(061 \emptyset 3 \emptyset\) DATA \(254,141,1,211,1\) \(69,192,133,266,169,6\) \(4,133,264,177,293\)
JL \(104 \varnothing\) DATA \(145,2 \varnothing 5,2 \emptyset \varnothing, 2 \emptyset 8\) ，249，236，264，230，206 ，24の，12，165，296，201， 2ø日，2ø8，237，169，216， 133． 296
PN 1 Ø5 DATA 298，231，104， 141 ，14，212，4ø，1ø4，96
EH 1998 REM GREEK DATA
DK 2 Øøø DATA \(\varnothing, \varnothing, 6 \emptyset, 1 \varnothing 8,1 \varnothing 8\) ， 1ø日，54，
AH \(2 \emptyset 1 \emptyset\) DATA \(\emptyset, 6 \emptyset, 1 \emptyset 8,126,1 \emptyset\) \(2,118,124,96\)
IH \(2 \emptyset 2 \emptyset\) DATA \(\varnothing, \varnothing, 99,182,24,2\) 4，1ø日， 199
DP \(2 \emptyset 3 \emptyset\) DATA \(\emptyset, 28,48,28,1 \varnothing 2\) ， 1 ■2，6ஏ，\(\varnothing\)
OF 264 DATA \(9,9,60,96,124,9\)

BH \(205 \emptyset\) DATA \(24,24,126,219,2\) \(19,126,24,24\)
OK \(266 \emptyset\) DATA \(\varnothing, \varnothing, 51,94,12,24\) ，48，48
JC \(2 ø 7 \emptyset\) DATA \(\emptyset, \emptyset, 252,1 ø 2,1 ø 2\) ，1曰2，1曰2，6
LI 2 Ø日 DATA \(5, \varnothing, 48,48,48,52\) ，28，\(\varnothing\)
JH \(269 \emptyset\) DATA \(\varnothing, 6 \varnothing, 1 \varnothing 2,126,1 \varnothing\) \(2,1 \varnothing 2,6 \varnothing, \emptyset\)
IH 21 Dø DATA \(\emptyset, \varnothing, 1 \varnothing 2,1 \varnothing 日, 12 \emptyset\) ，1ø8，1ø2，\(\varnothing\)
EL \(211 \emptyset\) DATA \(\varnothing, 192,96,48,24\) ， 44，153， 9
HI \(212 \emptyset\) DATA \(\varnothing, \varnothing, 1 \emptyset 2,1 \emptyset 2,1 \emptyset 2\) ，162，127，96
IK \(213 \varnothing\) DATA \(\varnothing, \varnothing, 23 \varnothing, 1 \varnothing 2,1 ø 2\) ，124，112，\(\emptyset\)
CK \(214 \varnothing\) DATA \(\varnothing, \varnothing, 6 \varnothing, 1 \varnothing 2,1 \varnothing 2\) ， 1 ®2，6ø，\(\varnothing\)
BG \(215 \emptyset\) DATA \(9,9,127,182,54\) ， \(54,54, \emptyset\)

AD \(216 \emptyset\) DATA \(\varnothing, \varnothing, 24,24, \varnothing, \varnothing, \varnothing\) ，\(\varnothing\)
KK 217 DATA \(\varnothing, \emptyset, 124,192,1 \varnothing 2\) ，124，96，96
E1 \(218 \emptyset\) DATA \(\emptyset, \emptyset, 63,1 \varnothing 8,1 \varnothing 8\) ， 1ø日，56，ø
AK 219 DATA \(\varnothing, \varnothing, 126,152,24\) ， 24，24，\(\varnothing\)
6J 22øø DATA \(\varnothing, \emptyset, 238,1 \varnothing 2,1 \emptyset 2\) ，iø8，56，
EH 2210 DATA \(0,24,219,90,90\) ， 9ø，6ø， 24
KH 222 DATA \(\varnothing, \emptyset, 1 \emptyset 2,195,219\) ，219，126，
FI 223 DATA \(48,28,48,30,48\) ， \(112,62,6\)
NK 224 DATA \(\varnothing, \emptyset, 6 \emptyset, 1 \emptyset 2,56,1\) 2，6，28
JE 225 DATA 96，3ø，112，96，96 ，56，12，56
AE \(226 \emptyset\) DATA \(\varnothing, \varnothing, 24,24, \varnothing, \varnothing, \varnothing\) ，\(\emptyset\)
JH 2998 REM HEBREW DATA
B6 Зøøø DATA \(\varnothing, 162,52,24,44\) ， 38，99，\({ }^{1}\)
HI \(3 \varnothing 1 \varnothing\) DATA \(9,126,6,6,6,6,1\) 27，\(\varnothing\)
ON \(3 \varnothing 2 \emptyset\) DATA \(\varnothing, 254,1 \varnothing 2,1 \emptyset 2,1\) ஏ2，1ø2，1ø2，\(\emptyset\)
NA \(3 \emptyset 3 \emptyset\) DATA \(\emptyset, 127,6,12,12,1\) 2，12， 6
BM \(3 \emptyset 4 \emptyset\) DATA \(9,124,82,66,66\) ， 36，6曰，\(\varnothing\)
HP \(395 \emptyset\) DATA \(\varnothing, 238,192,54,3 \varnothing\) ，12，56，96
AB 3ø6の DATA \(\varnothing, 6 \emptyset, 12,12,12,2\) 2，115，
J \(3 \varnothing 7 \emptyset\) DATA \(0,126,6,1 \varnothing 2,1 ø 2\) ，1ø2，1ø2，\(\emptyset\)
PH उø日ø DATA \(\Phi, 126,1 \emptyset 2,1 \emptyset 2,1\) Ø2，152，126， 0
BR \(3 \emptyset 9 \emptyset\) DATA \(\emptyset, 6 \emptyset, 12,24,24,2\) 4，24，24
HI 31 Dø DATA \(\quad, 126,6,6,6,6,1\) 26，\(\sigma\)
IB 3119 DATA \(192,64,126,126\) ， 6，4，24， 24
If 312 DATA \(6,96,62,76,134\) ， \(134,158, \sigma\)
MK \(313 \varnothing\) DATA \(\varnothing, 60,12,12,12,1\) 2， \(6 \emptyset, \emptyset\)
EL 314 DATA \(0,126,38,66,66\) ， 1 162，6历，\(\varnothing\)
BK \(315 \emptyset\) DATA \(9,126,38,118,6\) ， 6，126，\(\emptyset\)
LE 3160 DATA \(9,126,6,102,1 ø 8\) ，126，96，96
CA 3170 DATA \(0,126,6,6,6,6,6\) ，\(\emptyset\)
E0 318ø DATA \(9,214,82,82,82\) ， 126，6の， 5
HL 319 DATA \(\emptyset, 126,38,38,38\) ， \(1 \varnothing 2,1 \varnothing 2, \emptyset\)
LJ \(32 \emptyset \emptyset\) DATA \(\varnothing, 126,38,118,6\) ， 6，6， 6
AD \(321 \emptyset\) DATA \(0,119,18,22,12\) ， 6，126，5
HK 322 DATA \(9,6 \boxed{6}, 12,12,12,1\) 2，12，\(\emptyset\)
DN \(323 \emptyset\) DATA \(\varnothing, 119,5 \emptyset, 22,28\) ， 12，12，12
D6 324ø DATA \(\varnothing, 6 \varnothing, 12,24,9, \emptyset\) ， Ø，\(\square\)
KO 325 DATA \(\varnothing, 6 \emptyset, 8,24,24,24\) ，24， 0

\title{
Applecoder
}

\author{
Adam Levin
}

Are you concerned about file security? This Applesoft BASIC utility allows you to encode any sequential text file in a way that makes it almost impossible for someone to crack.
"Applecoder" is an Applesoft BASIC program which encodes any Apple sequential text file using a key supplied by you. This allows you to create securely encoded versions of text files which you can keep on disk, knowing that you are the only one able to make the file readable again. Or, if you share the key with a friend, you can both exchange encoded files on disks or over a modem. Using Applecoder makes it nearly impossible to decode a text file without knowing the exact steps taken to encode the file. With multiple encoding and other techniques, you can make it even more difficult for anyone else to decipher the contents of the file.

\section*{Using Applecoder}

Type in Applecoder (Program 1), save a copy to disk, and then run it. Applecoder begins by asking whether you want to encode or decode a file. Press E to encode or D to decode. Then you must enter the name of the file you wish to convert. If you're not sure of the file's name, press the question mark key
(?) to display a disk catalog. Once you have entered the name of the input file, you are prompted to enter the disk slot and drive number where the file is located. You must then repeat this procedure for the output file. To direct the output to the screen rather than to a disk file, enter SCR as the output filename. Screen output allows you to preview the results immediately without having to write the file to disk and view it later. Among other things, this is handy for reading a decoded letter.

Now you must supply a key to encode or decode the file. Of course, if you are decoding a file, you must supply the same key that was used to encode it previously. The key can be any rational number in the range \(1^{*} 10^{-38}\) to \(1^{*} 10^{38}\). (The last number is a one followed by 38 zeros.) If you like, the key value can be entered in scientific notation. In that notation, the same numeric range is expressed as \(1 \mathrm{E}-38\) to \(1 \mathrm{E}+38\).

This large numeric range gives you a multitude of keys from which to choose. It is suggested that you pick a key value that is easy for you to remember, but hard for others to guess.

Once you have entered the key, Applecoder prompts you to insert the disk in the drive. Press Return to begin the conversion. If you specified a disk filename for the
conversion, Applecoder displays the line which it is currently converting. If you have chosen SCR for screen output, the program directs all converted output to the monitor.

Because an encoded output file is the same size as the original file, Applecoder cannot handle a file that occupies more than one-half of a disk on a single-drive system. If you have two drives, Applecoder can handle any file that fits on a disk.

\section*{How Random Is Random?}

Applecoder relies on the fact that the RND function returns numbers that appear random, but are actually created with a predictable mathematical formula. A better name for such numbers is pseudorandom numbers. Whenever you supply a negative value with RND, that number is used to seed the random number generator routine. Subsequent uses of RND with a positive value will yield predictable numbers based on the value of the original seed.

The key which you supply to Applecoder is used to seed the random number generator. The program then reads the file one character at a time; for each noncontrol character in the file, Applecoder gets a pseudorandom number with the RND function and adds it to the character's ASCII value. This creates an output file which is the same length as the input file, but
where each noncontrol character is changed in a seemingly random fashion．The control characters （0－31 and 128－159）are not altered， thus the file can still be handled by word processing or telecommunica－ tions programs．

The best way to learn how this works is to go ahead and encode a text file with the SCR option，to display it on the screen．Note that any given word，though it may ap－ pear many times in the original file， will be different every time it ap－ pears in the encoded file．Since all Apple II computers use the same RND function，an encoded text file created with Applecoder can be de－ coded by any other Apple II run－ ning the same program－assuming， of course，that the other Apple user has the correct key．

\section*{Advanced Applecoding}

An encoded file of this type is ex－ tremely difficult to break，since you would have to run a program like Applecoder repeatedly and enter different keys until you happened upon one that yielded text instead of random garbage．

If you＇re still not convinced， enter and run Program 2，＂File－ maker，＂and try to decode the file by guessing the correct key value． Program 2 creates a short text file named STRANGE．After you create the STRANGE file，run Applecoder with the SCR option and try enter－ ing different keys．When you＇re convinced that it＇s not easy to dis－ cover a key through random guess－ ing，try the value 340.897 ．

To make a file even more ser cure，you can doubly encode it．For instance，say that you wish to en－ code a file named \(A B C D\) and pro－ duce a final output file named WXYZ．The first step is to encode it as usual，giving the output file a name like TEMP，since it is only a temporary，intermediate file．Then the TEMP file is encoded，giving the output file the name \(W X Y Z\) ． When that step is complete，the TEMP file can be deleted．

At this point the WXYZ file can be decoded only by someone who has both keys．In multiple decoding， it makes no difference which key you use first．For instance，say that the file was encoded with the keys 119 and 1206.41 ，in that order．The
file is decoded correctly if you de－ code with 119 and then decode with 1206.41 ，or if you use the reverse order．This rule applies no matter how many times the file has been encoded．

Multiple encoding makes a file virtually impossible to crack by ran－ dom guessing．Imagine yourself trying to crack the first stage of a triply encoded file．After the first attempt at decoding，there is no way to know whether the results are correct，since the product of the first decoding is another encoded file．And you have no rational way to tell how many decodings may be necessary．

Another useful method is to back－code the file．In this case，you select the decode（D）option for an unencoded file．Then，to recover the original text you must use the encode（E）option．A would－be snooper has no idea that it＇s neces－ sary to encode－rather than de－ code－the file in order to restore the original contents．

Applecoder works only with sequential text files．However，any Applesoft or Integer BASIC program that can be executed with EXEC is actually a text file which can be manipulated with Applecoder．

Of course，it＇s important to re－ member which key or keys you used to encode each file in the first place．And while Applecoder makes a file useless to others，it doesn＇t prevent them from deleting or garbling the file．To be absolute－ ly safe，you may want to keep an unmodified copy of the original file in some secure location．

\section*{Modifications}

Here are a few modifications which will make the program more convenient for some users．If you have only one disk drive，change lines 170,190 ，and 210 as shown here：
```

17\emptyset PRINT D\$ + "CATALOG": RET
URN
190 IS = 6:ID = 1
210 OS = 6:OD=1

```

This modification assumes that your drive is in slot 6 and drive 1．If your system is different，change the 6 and 1 in lines 190 and 210 accordingly．

Line 170 contains the only CATALOG command in the pro－
gram；if you have ProDOS and want to change it to CAT，this is the place．

Apple uses the null character， CHR \(\$(0)\) ，to indicate the end of data when reading and writing text files． Applecoder，like most programs that handle text files，knows it has reached the end of a file when the null character appears．Text files normally contain a null only as the last character in the file．You should avoid placing a null character－or CHR\＄（128），which is equivalent to a null－in text files．If the encoded version of a file is unexpectedly shorter than the original，check to make sure that the original doesn＇t contain a hidden null．

For instructions on entering these programs， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．

\section*{Program 1：Applecoder}

B1 1 （ 10 RTN \(=13:\) REM ASCII VALUE OF CHARACTER MEANING＇EN D OF LINE＇
D5 11 D D \(\$=\) CHR\＄（4）：BL\＄\(=\) CHR\＄ （7）：REM DISK ACCESS ：BE LL CHAR．
\(2212 \emptyset \mathrm{ZR}=\varnothing: \mathrm{PF}=-5: \mathrm{WN}=1: \mathrm{EI}\) \(=8: T W=20: T T=32: N F=\) 95：OH＝1øø：OTE＝128： \(5 x\) \(=160:\) TFF \(=255:\) REM THE USE OF THESE VARIABLES SP EEDS UP THE＇ENCODE／DECOD E＇LOOP．
\(613 \emptyset \mathrm{KY}=\varnothing\) ：ONERR GOTO 59ø
F2 \(14 \emptyset\) TEXT ：HOME ：HTAB（13）： PRINT＂APPLECODER＂：PDKE 34， 1
DF \(15 \emptyset\) REM \＆ GET USER INPUT ＊
\(4116 \emptyset E D=\operatorname{FRE}(\varnothing):\) HOME ：PRIN T ：HTAB（8）：PRINT＂\(\langle E\rangle N\) CODE OR 〈D＞ECODE＂；：GET A\＄：PRINT A\＄：ON A \(\$<>\)＂ E＂AND A \(\$<>\)＂D＂GOTD 16 Ø：ED \(=1: E D=E D-2 *(A\) \＄＝＂D＂）：GOTO 18ø
EC \(17 \varnothing\) INPUT＂SLOT \＃，DRIVE \＃FD R CATALOG：＂；S\＄，DR\＄：ON S \＄〈＂1＂OR S\＄〉＂7＂OR DR \＄＜＂1＂OR DR\＄＞＂2＂GOTD 17ø：PRINT D \(\$+\)＂CATALOG ， \(\mathrm{S}^{\prime \prime}+\mathrm{S} \$+\mathrm{F}, \mathrm{D} "+\mathrm{DR} \$: \mathrm{RE}\) TURN
DD \(18 \emptyset\) PRINT ：PRINT＂NAME OF IN PUT FILE：＇？＇FOR CATALD G．＂：INPUT IN\＄：ON IN\＄＝ ＂？＂GOSUB 17Ø：IF LEN（IN \＄）＞ 15 OR LEFT\＄（IN\＄，1） ＜＂A＂THEN 18ø
BB \(19 \varnothing\) PRINT＂SLOT＂，DRIVE\＃OF＂ ；IN\＄；＂：＂；：INPUT S\＄，DR\＄： ON S\＄＜＂1＂OR S\＄＞＂7＂ OR DR\＄＜＂1＂DR DR\＄＞＂2＂ GOTO 19ø：IS＝VAL（S\＄）：I \(D=\) VAL（DR\＄）
\(982 \emptyset \varnothing\) PRINT ：PRINT＂NAME OF OU TPUT FILE：＂：PRINT＂＇SCR －WILL SEND OUTPUT TO SCR EEN ONLY．＂：INPUT OT\＄：ON OT\＄＝＂？＂GOSUB 17ø：ON```


[^0]:    (Signature required to validate membership) Copyright 1986. PC NETWORK, INC

