Wari: A challenging, ancient African strategy game

The Leading Magazine Of Home, Educational, And Recreational Computing
New Technologies:

Faster microprocessors, more memory, new operating systems, and lasers that read, write, and print

File Compressor For The 64 Crunch files for faster transfers and more disk space

Well-Behaved Batch Files More flexible, interactive batch processing for IBM PC/PCjr and compatibles

Amiga Jigsaw

An absorbing graphics puzzle

64 Label Master

Custom hi-res graphics for printer labels

Quick ProDOS Catalog For Apple II

Full-Screen Shell Sort For ST BASIC

Atari SpeedScript

Customizer

We just did something only the best can do! We made our award winning* sofitware for the Commodore ${ }^{\text {TM }} 128$ and 64 computers even betierd

Introducing ...

Pocket Writer 2
word processor
Pocket Planner 2
spreadsheet
Pocket Filer 2
database

New Fectures

Our new Pocket 2 series offers features usually found only in much more sophisticated applications soffware. Features that include: compatability with the new GEOS operating system t, ability to work with the Commodore RAM expander to allow a RAM disk, mouse support with pull down menus, 1571 burst mode for faster file loading, increased support for two single disk drives, automatic configuration for screen color, format and printer selection \dagger.

Sophisticated software, yes, and still easy to use. You can be up and running in under 30 minutes even if you haven't operated a computer before.

2 Programs in 1

Now, when you upgrade your Commodore ${ }^{\mathrm{TM}} 64$ to a 128, Pocket software helps make it a breeze. The new Pocket 2 software has both 128 and 64 applications on the same disk. So when you buy one you are actually buying two software packages. The cost only $\$ 59.95$ (U.S.).

6 Proerams in 1

The 180% Solution saves you money! You can buy all three Pocket 2 applications, Pocket Writer 2, Pocket Planner 2 and Pocket Filer 2 in one convenient Superpak for the low price of only $\$ 99.95$ (U.S.). A super way to discover all the integrated features of Pocket 2 software and save almost eighty dollars.

As a companion to Pocket Writer 2, a Dictionary Disk containing 32,000 words (expandable to 40,000) is available. The cost \$ 14.95 (U.S.).

For those of you who have already discovered the many benefits of owning Pocket software; we offer all registered owners an upgrade to Pocket 2 soffware for only $\$ 19.95$ (U.S.) plus 3.00 (U.S.) shipping and handling! Available only by writing to Digital Solutions Inc.

Pocket Writer 2 Word Processor
In oddition to the new fectures above...
Spelling Checker incorporated in program (requires a dictionary disk)
Spelling Checker now runs over 300\% faster than in original Pocket software Word wrap is now fully automatict Ability to move columns
Go To page number for finding information in long texts t
Fully automatic upper and lower case type conversiont
Enhanced Delete process for word, line or paragraph
Word Count feature for essays and assignments \dagger
Enhanced split memory mail merge option

Pocket Planner 2 Spreadsheet
 In oddition to the new fectures above...

Individual column width selection now availablet
Multiple files in memory with cut and paste capability

Scrious Sofinare Thai's Simple to Use

Able to print mathematical formulae as well as results of calculations \dagger Global formatting option
Enhanced row/column insert delete \dagger Logarithmic and XY graphing capability Increased file compatability with other spreadsheets \dagger
Number of rows increased from 99 to $250 t$
Pocketfler 2 Dchabase
In aditition to the new fertures obove...
Dynamic calculations during data entry Intelligent re entry to enter/edit mode Easier file conversion from other software \dagger Automatic index updating for constantly sorted file t
Enhanced mathematical language including loops and labelst High speed sort using dynamic buffering \dagger Automatic entry of repetative data \dagger

- Commodore's Microcomputers Magazine, independent reviewers, rated the original Pocket Writer 128/64 and Pocket Planner 128/64 software the "Annual Best of 1986 " in the productivity category.
Commodore is a registered trodemark of Commodore Business Machines Inc. tFeatures available for Commodore 64 TM . c 1986 Digital Solutions Inc.

Pocket Writer 2, Pocket Planner 2 and Pocket Filer 2 together
Convenient; get all three integrated applications at once
128/64 software on same disks Economical; $\$ 179.85$ (U.S.) worth of software for only
SO9.95 (U.S.)

Pocket Writer Dictionary

Makes Spelling Checker faster and simpler to use
More convenient than developing
personal disk
32,000 words available
Expandable to 40,000 words

International Distributor Enquiries to:

2-30 Wertheim Court Richmond Hill, Ontario Conada L4B 1B9
Telephone (416) 731-8775
Telex 06-964501
Fax (416) 731-8915

Super Solutions?

 pockrei

 pockrei

 whitier 2

 whitier 2

 Word Processor

 Word Processor}

Certificicate Maker: Because accomplishmentsdeserve to be recognized.

Offer Congratulations!

 Say Thanks! Have Fun!Giving someone a certificate is a wonderful way to recognize an outstanding achievement. It's also a perfect way to have a little fun.
Certificate Maker ${ }^{\text {™ }}$ gives you over 200 professionally designed certificates. From strictly official to fun and witty, there's something for everyone and every occasion. So you can surprise a family member, praise a student, applaud an athlete and honor an employee with great looking certificates. And each one will be as personal, professional and special as you choose.

Personalized certificates in minutes.

Simply choose a certificate, select a border, type your message; add a date and signature ...then print! It's that quick and that easy.
You can even create a name file and automatically personalize certificates for everyone in your class or club!

Over 200 exciting Certificates, Awards, Diplomas, and Licenses.

SPRINGBOARD

COMPUTE!
 FEBRUARY 1987
 VOLUME 9
 NUMBER 2
 ISSUE 81

COMPUTE! Publications,Inc.,6c
Part of ABC Consumer Magazines, Inc. One of the ABC Publishing Companies
ABC Publishing. President, Robert G. Burton
1330 Avenue of the Americas, New York, New York 10019

[^0]
Editor's Notes

This is the 81st issue of COMPUTE!, an effort now in its ninth year. Writing the "Editor's Notes" for all of those years has been a fascinating challenge. When you add to this the 43 issues of COMPUTE!'s Gazette (through January 1987), and a few assorted odds and ends such as Home and Educational Computing, COMPUTE!'s PC \& PCjr Magazine, COMPUTE!'s Apple Applications Special, and another special issue here and there, you discover a quiltwork of topics that extend back through much of the history of the home and consumer computing industry.

The topic for this issue is a highly personal one. This is my last set of notes as Editor in Chief of COMPUTE!. Beginning next issue, Richard Mansfield, presently Senior Editor and soon to become Vice President and Editorial Director, will take over the task of providing editorial leadership, and 'Editor's Notes," for all of COMPUTE! Publications. Richard has been very much a part of COMPUTE! and its vision and voice since he joined us in 1981.

My own relationship with COMPUTE!, as founder, President, Chief Executive Officer, and finally Editor in Chief, has been in a state of beneficial evolution since we sold the company to the American Broadcasting Companies in 1983. As my relationship has evolved, so too has the industry, and our present marketplace is far stronger than it was even two years ago. I remain very much a part of the ABC Consumer Magazines/

COMPUTE! Publications effort, and will continue to lend my voice and experience to this company. At the same time, my diminishing involvement in the day-to-day activities of the company and its management will allow me the time to explore new horizons-a challenge I can only look forward to.

COMPUTE! and ABC Publishing share a long tradition of customer enthusiasm and loyalty. We are at the forefront of product introductions that continue to keep us and our readers at a pace with the evolution of our industry. We were among the first of the publishing houses to commit to the validity and future of the home computer market, and you have never let us down. While we have been occasionally sharp in print over the ebbs and flows of certain manufacturers and their products, we have enjoyed a long and pleasant vantage point on this industry. When I wrote my very first COMPUTE! editorial, a company called Atari, Inc. had just introduced its first computers. Single-board computers were big. And Ohio Scientific was threatening to become one of the biggest players in the industry. Commodore had introduced a computer with a "real" keyboard (the CBM) and a thenincredible 32 K of memory. The top magazines in the industry had names like Kilobaud, Micro, Creative, Recreational Computing, and others. Only a few remain.

From the very first issue of this magazine, we've had a unique relationship with you,
our readers. You've been supportive; you've encouraged; you've sometimes grown angry, but usually for the best of reasons: We were late delivering your issue, or we stepped on the toes of your particular computer manufacturer. In all candor, I cannot imagine an industry with a more vital and resourceful readership than an industry such as ours. We have readers/ authors from ages 8-80, from all over the world, who are shaping the face of this industry and our future, and opportunities like that simply don't happen very often. Personal computing is a highly individual revolution, and its publishing shape and practices have in many ways reflected that.

So, I guess that's it. With this last editorial (oh, perhaps I'll write a guest one or so next year) I'd like to send a very personal thank-you to each and every one of you, our readers.

Until next time, enjoy your COMPUTE!.

Robert C. Lock
Founder, Editor in Chief

WE TOP APPLE AND COMMODORE BEAUTIFULLY

Publisher
Founder/Editor in Chlef Senlor Editor Managing Editor
Executive Editor
Editor, COMPUTEI
\& COMPUTEI'S GAZETTE
Assistant Editor, COMPUTEI Production Director
Editor, COMPUTEI's Atarl ST Disk \& Magazine Technical Editor
Assistant Technical Editors Assistant Editor, COMPUTEI's
Atari ST Disk \& Magazine
Assistant Editor, COMPUTEI's GAZETTE
Assistant Features Editor Programming Supervisor Editorial Programmers Copy Editors

Editorial Assistant Submissions Reviewer Programming Assistants Executive Assistant Administrative Assistants

Associate Editors

	Toronto, Canada Fred D'Ignazio Birmingham, AL
	David Thornburg Los Altos, CA
Contributing Editor	Bill Wilkinson

James A. Casella, President
Richard J. Marino, Vice President. Advertising Sales Christopher M. Savine, Vice President, Finance \& Planning

COMPUTEI Publications, Inc. publishes:
COMPUTEI
COMPUTEI's Gazette COMPUTEI's Gazette Disk COMPUTEI's Apple Applications Special COMPUTEI'S Atari ST Disk \& Magazine

Editorial offices:	324 West Wendover Avenue Suite 200 Greensboro, NC 27408 USA
Corporate offices:	825 7th Avenue New York, NY 10019 $212-265-8360$
Customer Service:	$\begin{aligned} & 800-346-6767 \\ & \text { (In NY 212-887-8525) } \end{aligned}$
Hours:	9:30 A.M.-4:30 P.M. Monday-Friday

324 West Wendover Avenue Greensboro. NC 27408 USA 8257 th Avenue 212-265-8360 (In NY 212-887-8525) Monday-Friday

James A. Casella
Robert C. Lock
Richard Mansfield Kathleen Martinek Selby Bateman

Lance Elko Philip I. Nelson Tony Roberts

Tom R. Haifhill
Ottis R. Cowper
George Miller, Dale McBane
Todd Heimarck
Rhett Anderson
Kathy Yakal
Patrick Parrish
Tim Victor, Tim Midikiff Tammie Taylor, Karen Unlendorf
Caroline Hanion
David Hensley
David Florance, Troy Tucker Debi Nash
Julia Fleming, Iris Brooks, Mary
Hunt, Sybil Agee
Jim Butterfield Toronto, Canada Fred D'Ignazio David Thornburg Los Altos, CA

Stephen Levy Gregg Kelzer, Ann Davies Steve Voyatzis Janice R. Far

Lee Noel
Dabney Ketrow, Robin Case Terry Cash, Carole Dunton Harry Blair

Bernard J. Theobald, Jr. Kathleen Hanlon

Diane Longo

$\begin{array}{ll}\text { Indlvidual Order Supervisor Cassandra Gre } \\ \text { Receptionist } & \text { Anita Armfield } \\ \text { Warehouse Manager } & \text { John Williams }\end{array}$	Indlvidual Order Supervisor Cassandra Gre
$\begin{array}{ll}\text { Receptlonist } & \text { Anita Armfield } \\ \text { Warehouse Manager } & \text { John Williams }\end{array}$	Warehouse Manager

Coming In Future Issues

Euchre 3.0: An Entertaining CardGame Simulation For The Commodore 64, Apple II, Atari, Amiga, and IBM PC
IBM PC DOS Menus

Amiga Banners

ROM Character Sets For The Atari XL/XE
DOSCalc For The Commodore 64
ST Math Graphics
80 Columns For Apple SpeedScript

Subscription Orders
COMPUTEI
P.O. Box 10954

Des Moines, IA 50340
TOLL FREE
Subscription Order Line
800-247-5470
In IA 800-532-1272

COMPUTE Subscription Rates (12 Issue Year):

US
(one yr.) \$24
(two yrs.) \$45
(three yrs.) \$65
Canada and Foreign
Surface Mail
Foreign Air
Delivery
\$65

of Circalation

Advertising Sales

212-315-1665
2. Southeast \& Foreign Harry Blair
919-275-9809

3. Midwest \&

Southwest

Jerry Thompson
312-726-6047 (Chicago)
713-731-2605 (Texas)
303-595-9299 (Colorado) 415-348-8222 (California)
Lucille Dennis
415-348-8222

Director of Advertising Sales:
Peter Johnsmeyer
Assoclate Advertising Director: Bernard J. Theobald, Jr.
COMPUTEI Sales Office 212-315-1665
Address all advertising materials to:
Kathleen Hanlon
Advertising Production Coordinator COMPUTEI Magazine
324 West Wendover Avenue
Suite 200
Greensboro, NC 27408

[^1]
FROM AMERICA'S NO1 SOFTWARE HOUSE

ELITE

Command your Cobra space ship in a

 fantastic voyage of discovery and adventure, a supreme test of your combat, navigational and entrepeneurial skills.Trade between countless planets, using the proceeds to equip your ship with heat-seeking missiles, beam lasers and other weapons - corporate states can be approached without risk, but unruly anarchies may be swarming with space pirates

Black market trading can be lucrative but could result in skirmishes with local police and a price on your head!
However you make your money, by fair means or foul, you must blast onwards through space annihilating pirate ships and hostile aliens as you strive to earn your reputation-
as one of the Elite!

A RARE SPECIES OF INTERACTIVE ILLUSTRATED FICTION FOR THE COMMODORE 64 ${ }^{\mathrm{TM}} / 128$, $^{\mathrm{TM}}$ AMIGA ${ }^{\mathrm{TM}}$ AND ATARI 520ST. ${ }^{\text {TM }}$

This illustrated adventure is destined to rival all the classics. Stunning graphics are the icing on the cake-but underneath lies the most advanced text operating system yet developed. The story is absorbing, humorous, lively, full of intrigue and puzzle. "The Pawn" and further adventures will be available for all leading personal computers. Guaranteed to make a major impact on the market.

Selby Bateman Features Editor

New Frontiers For

Abstract

Personal computer users dream of having machines with the power and speed of a mainframe, the print quality of a professional typesetter, and virtually unlimited disk storage. Now, a new generation of microprocessors, coupled with advances in laser-driven printers and optical disks, promise to make the dream a reality.

What single thing do computer users want? More.

More speed, more power, more flexibility, more storage capacity, more printing versatility, and more ease of use. During the past several years, computers have undergone explosive advances in each of those areas. But what's been occurring over the past year promises to move personal computing a quantum leap forward.

Before the end of the 1980s, personal computer systems may be available that will fulfill the wish list of even the most demanding power user. This is being accomplished by a combination of technological advances, ranging from refinements in low-power lasers to improvements in very large scale integration (VLSI) microchips.

Processor Power

One of the biggest computer-industry news stories during the latter half of 1986 was the emergence of the new 80386 microprocessor from the Intel Corporation. (See accompanying article, "Microprocessors: Leapfrogging Ahead.")

This new central processing unit (CPU), compatible with all previous members of the 8086/8088 microprocessor family found in earlier IBM PCs and compatibles, first caused a stir when released in the Deskpro 386 computer from Compaq. Almost immediately, however, other manufacturers announced 80386 computers, add-on boards, and plans for future 386 -compatible products. The Z-386
computer from Zenith Data Systems, Laser Digital's Pacer-386, Multitech's Model 1100, Gold Star's GS PC 386, and PC's Limited's 386-16 were among the first machines to jump into the 80386 future.

Because of the 80386's potential as a true 32-bit microprocessor, and its compatibility with earlier PCs, the new 386 computers promise an exciting new level of speed and power. However, much of the chip's powers will be hidden away until a new operating system is developed and marketed that can take advantage of the 386's special features. That should begin to occur later in 1987, as companies such as Microsoft race to provide the software that's equal to the new hardware. (See accompanying article, "Operating Systems: Micros Grow Up.")

The 80386 was not the only microprocessor to create excitement in 1986. Apple intro-

This Philips cartridge-loading device for optical disks protects the disc from direct handling, potentially extending a CD's life even further.

Personal Computers

duced the new IIGS, which uses the Western Design Center's 65C816 chip, a 16/32-bit descendant of the earlier 6502 series used in the most popular 8 -bit computers. And Motorola announced its 68020 and plans for the 68030 microprocessors, both of which could be used in future generations of the
abundantly clear that the future has a way of arriving far faster than anticipated. And these new 32-bit microprocessors will be the engines at the core of the new supermicros taking us into the 1990s.

Laser Magic

Laser printers are also evidence of onrushing technology. Hewlett-Packard introduced the first laser printer, the LaserJet, in 1984. Today, there are more than 60 models of laser printers from over 30 companies, with prices ranging from under $\$ 2,000$ for fairly slow text-only
laser printers to about $\$ 8,000$ for advanced graphics-and-text output that allows up to 300 dots per inch for graphic images. (See accompanying article, "Lasers That Read, Write, and Print.")

Apple's LaserWriter Plus; the QMS Kiss and Big Kiss; Okidata's Laserline 6 Basic and Advanced; and AST Research's Turbo Laser are but a few of the models currently available. Breaking the $\$ 2,000$ price barrier are the QMS Kiss from QMS at \$1,995 and the Laserpro Express from Office Automation Systems for $\$ 1,895$. And Toshiba's new $\$ 3,499$ PageLaser12, which prints 12 pages a minute, is 50 -percent faster than most laser printers being used.

More than 46,000 laser printers were reportedly sold during the first nine months of 1986, and the demand is steadily increasing as prices drop and quality improves. Dataquest, a market research firm, has reportedly estimated that more than a quarter-million laser printers will have been shipped by manufacturers when the dust settles from 1986. New laser printers have recently been introduced by Epson, Citizen-America, Ricoh, Printronix, and others, that are helping to spur even greater interest.

The development of versatile, relatively inexpensive laser printers is fueling the recent

LMS international's double-sided LaserDrive Media disc is typical of advances in laser technology, storing one gigabyte (1000 megabytes) per side, equivalent to 20,000 images or 500,000 pages of computer text.

upsurge of interest in desktop publishing, an industry that barely existed much more than a year ago. At recent computer industry trade shows, such as COMDEX, the show floors have been awash with new laser printers and desktop publishing software, often running at lightning speed on new 80386based personal computers. Companies like Apple Computer are selling computer and laser printer system combinations, often bundled with page definition and layout software, that offer a complete solution to virtually any kind of publishing effortfrom a newsletter to a book.

The CDS Are Coming

No other area of computer development is more potentially important than that of compact discs (CDs). The CD audio market has taken the music world by storm. For example, CD versions of the recent Bruce Springsteen five-album set, which is becoming one of the bestselling albums of all time, has been outselling the LP record version by a margin of almost 2 to 1 . And similar results are beginning to occur on many new music releases. The combination of high-quality digital sound and near indestructibility makes CDs a very attractive purchase. And prices for audio CDs are expected to continue to drop, soon reaching the same price points now found on record albums.

For many of the same reasons, the CD data market-either CD-ROM data storage and retrieval
or the new CD-I interactive media-is showing signs of becoming a multibillion-dollar market within the next few years. (See accompanying article, "Lasers That Read, Write, and Print.")

In early March, Microsoft Corporation, a leading developer of software, will sponsor the second International Conference on CD-ROM, to be held in Seattle, Washington. Last year's conference, which attracted over a thousand participants, included information on one of the most exciting developments in CD technology, CD-I, developed jointly by Sony and Philips, giants in the consumer electronics field. This year's conference will extend the boundaries of proposed applications and allow the many different companies interested in this technology to gauge the best directions for growth and to catch up on the latest technical advances.

Microsoft also recently announced the availability of the Microsoft MS-DOS CD-ROM Extensions, extensions to the MS-DOS standard operating system that support the use of CD-ROM disc drives with personal computers. Following the High Sierra CD-ROM file format that's been adopted by leaders in the CD-ROM field, the new Microsoft extensions mean that a way is now available for many of the already installed IBM PCs and compatibles (running MS-DOS 3.1 or 3.2) to use new CD-ROM products. That opens the door to a huge new market for CDROM companies.

The High Sierra file format was developed by a

Universal Printer Stand Save Space, Save Money...Only $\$ 19.95$
 Besides saving space, the PS-1 holds the printer at a slight

The new PS-1 Universal Printer Stand from Curtis holds any printer, standard carriage or wide, saves valuable workspace, and costs only S19.95. The PS-1 uses no more desktop space than the printer itself, and provides storage for input paper underneath the printer. Plus, a removable paper tray automatically stacks output.
pitch, to improve line of sight, saving you neck and eye strain. Give yourself more room to work, and a system setup that's more efficient and organized: The PS-1 Universal Printer Stand from Curtis - the experts in accessories. \#PS-1 Retail...S19.95

Curtis products are available nationally from leading Dealers, Distributors, and Retail Chains.
In Canada: Micro-Computer Products, P.O. Box 235, Ajax, ONT, Canada L1S 3C3, (416) 427-6612
For the Curtis dealer nearest you call (603) 924-3823

Fits all printers, standard carriage or wide.

Conveniently stores paper underneath, improves line of sight to printout, removable paper tray catches and folds printouts automatically.

Improves line of sight for portable computers too!

Totally universal. Heavily constructed components, colored and textured to match or complement all microcomputer systems.

group of industry companies that wanted a standard format for all CD-ROM development. This means that different computers with different operating systems can still use the same format for CD-ROM even with different brands of CD-ROM disc drives.

At the same time that CD-ROM is being standardized, many companies are lining up to promote future CD-I applications. One of the newest companies in the burgeoning CD-I field is American International Media (AIM), created by compact disc pioneers Philips International and Polygram B.V. International. Following the Sony/Philips CD-I standard, AIM's mission is to spearhead the development of software for CD-I. Philips, with Control Data, has also formed another company involved in the mass-storage arena, Laser Magnetic Storage (LMS) International, which will be involved in the design, manufacture, and marketing of optical disc and magnetic tape storage systems.

The formation of these companies is indicative of the confidence that major players in the computer and optical disk markets have in CD-ROM or CD-I technology. They want to be on the ground floor of whatever CD market is built. And they're betting that the CD-I market in the long run could be every bit as big as the CD audio market is becoming today.

More support for the CD-ROM mar-

Toshiba's new \$3,499 PageLaser12 laser printer

 costs less than half the price of the first generation of laser printers in 1984-85, and prints at double their speed-up to 12 pages per minute.The new Compaq Deskpro 386 is among the first personal computers to take advantage of Intel's 80386 32-bit microprocessor, a powerhouse ushering in a new level of personal computing.
ket has come from Reference Technology, a Colorado company that has announced support for major CDROM drives in conjunction with Microsoft's MSDOS CD-ROM Extensions. Reference Technology is providing the necessary device-driver software to operate with Hitachi, Sony, and Philips CD-ROM drives.

Another company, computer-disk giant Maxell, has introduced a new $5^{1 / 4}$-inch optical WORM (Write Once, Read Many) disc that's capable of storing 13,000 letter-size pages on its two sides. The Model OC-101 is housed in a protective cartridge designed to work with the Hitachi OD-101-1 optical disc drive. Designed to be used with a personal computer or office automation applications, the new WORM disc allows the user to write to the laser disc one time, storing huge amounts of data for archival use. Thereafter, the information can be accessed but not changed.

New CD media are emerging virtually every week as competing companies jockey for position in this potentially explosive market. While many computer owners may not directly use laser printers and optical discs for several years, it's clear that the technology is advancing much faster than anyone had expected. With powerful new microprocessors, versatile operating systems, and laser-driven products growing more practical for business and home users, the personal computer system of 1990 is likely to be as different from today's as our present machines are from those used in the late 1970s.©

Your day-to-day finances. Your financial future. And now, your investments, too.

Volume 1

Your Personal Financial Planner

Helps you track your day-to-day financial data, then combines this information with your future financial objectives to produce the most comprehensive and easily-understood financial planning program available.
For Your Day-to-Day Affairs:

- Maintains your electronic checkbook and credit card transactions.
- Writes your checks and balances your checkbook.
- Prepares and monitors your budget.
- Classifies and tracks your taxable income and expenses.
- Calculates your net worth and generates customized personal financial statements.
- Tracks your financial assets - and your insurance policies.
For Your Financial Future:
Leads you step-by-step through a series of questions regarding your financial goals, and your current financial condition. Your answers will enable your computer to determine and print a summary of the amounts you must save each year to meet your financial objectives - in both real and inflated dollars.

Each SYLVIA PORTER program:

- Interfaces with the others in the Series. You need to enter data only once.
- Generates unique graphic representations that display your data in colorful charts.
- Includes a Customized Report Writer that prints out any report you want, tailored to your specific needs.

MORE POWER FOR YOUR DOLLAR
Timeworks, Inc., 444 Lake Cook Rd., Deerfield, IL 60015 312-948-9200
-Registered trademarks of International Business Machines Corp., Apple Computer Systems Inc., and Commodore Electronics, Ltd.
©1984 Sylvia Porter's Personal Finance Magazine Co. \& Timeworks, Inc. All rights reserved.

Volume 2

Your Personal Investment Manager

Whether you're a first-time investor or a sophisticated one, this program enables you to efficiently organize, analyze, and manage up to 15 individual investment portfolios. (Unlimited on hard disk)

This Program:

- Manages your investment transactions: Records, organizes, and classifies all important data on your purchases, sales, and other types of investment transactions.
- Tracks your investment portfolios: Displays more than 35 kinds of vital statistical data, plus financial profiles on individual companies.
- Alerts you to investment deadlines: Transaction deadline dates for dividends and interest; buy and sell positions; bond maturities; and much, much more.
- Tracks your retirement investments
- Monitors your investment taxes: Tracks, organizes and classifies your interest and dividend income, and your capital gains or losses. Generates year-end reports.
- Includes Telecommunications Access to outside Database Sources: Lets you access all major outside databases for automatic price updates (modem required).
- Includes Investment Strategies and Fundamental \& Technical Analyzers

PLUS . . .

FREE

from DOW JONES News/Retrieval Your Password and 1 Hour of Prime Time (Value over \$120!)

Suggested Retail List Prices:
IBM (265K) - \$99.95 each Apple (256K) - $\$ 99.95$ each C128 (128K) - $\$ 69.95$ each C64 (64 K) - $\$ 49.95^{* *}$
At your favorite dealer now, or order from Timeworks today:
1-800-535-9497

Microprocessors: Leapfrogging Ahead

The history of the personal computer is really based on the evolution of the microprocessor, a tiny central processing unit (CPU) that can perform arithmetic and logical operations to execute ordered sets of instructions-in other words, to run programs.

A microprocessor is the brains of a computer, little more than a fingernail-sized chip of silicon with an intricate grid of microscopic transistorized circuits. As its name implies, a microprocessor processes information within the computer by organizing the flow of electrical signals. The computer uses a binary code of ones and zeros that match the on and off states of electricity. Each on or off position is defined as a binary digit, or bit, of information.

Examples of microprocessors are the 6502 -family chips found in the Apple II series and most Commodore and Atari computers; the 8088/8086 chips found in the IBM PC series and compatibles; the Z80 chips found in computers which run the CP/M operating system; the 68000 chips found in the Macintosh, Atari ST, and Amiga; and the 80286 chips found in IBM ATs and compatibles.

Each of these families of chips has, in its own way, contributed to the continuing development of personal computers. Now, however, new microprocessors have been announced that will give the next generation of computers the speed and power of today's mainframe computers.

A Burst Of Growth

The Intel Corporation brought out its successor to the 80286 , the powerful 80386, causing a phenomenal amount of publicity within the microcomputer industry. Next, Mo-
torola announced the successor to its 68020 chip, the 68030 . Why all the interest over announcements in the continuing battle between Intel and Motorola? To understand the furor over these chips, and the promise that they both offer, it's helpful to first understand how each new generation of microchips has meant an exponential growth in power and speed.

In 1972, Intel developed the first functioning microprocessor, the 4004, which was widely used in a generation of multifunction handheld calculators. The 4004 was a four-bit microprocessor, which simply means that the chip was capable of handling four bits of information at a time. Shortly after that, Intel introduced the first eightbit microprocessor, the 8008, followed by the 8080 . That chip was used in the first hobbyist computer, the MITS Altair, which was distributed in a do-it-yourself kit.

Soon, other companies were involved in creating 8 -bit microprocessors. For example, Zilog introduced the 8 -bit Z80 chip which was used in a variety of personal computers. And MOS Technology brought forward its 6502 chip, the basis for many of the most popular 8 -bit computers. These 8 -bit microprocessors function in much the same way. All of them fetch, execute, and store data 8 bits at a time within pathways that are called buses. The width of these pathways determines whether a microprocessor is called a 4 -bit, 8 -bit, 16 -bit, or a mixture of these.

When IBM introduced its PC computer in 1981, the company used Intel's 8088 chip (a descendant of the 8008), which is a hybrid microprocessor. That is, internal bus communications are handled

16 bits at a time while external bus communications are only handled 8 bits at a time. An 8/16 microprocessor, like the 8088, can access, or address, up to a megabyte of memory (1024 K , or $1,048,576$ bytes). By comparison, 8 -bit computers address only $64 \mathrm{~K}(64,536$ bytes) of memory.

When Apple Computer introduced the Macintosh computer in 1983, that system was based on Motorola's 68000 microprocessor, a 16/32-bit hybrid chip capable of addressing up to 16 megabytes of memory $(16,384 \mathrm{~K}$, or $16,777,220$ bytes) at one time. Obviously, such exponential growth can mean a staggering improvement in the speed and power of a computer system. Today, the Atari ST and the Commodore Amiga also each use the 68000 chip.

Motorola announced in 1984 the creation of the next step in the 68000 family, the 68020 microprocessor, a true 32-bit supermicro chip that's been called "the mainframe on a chip." The chip has the equivalent of 200,000 transistors crowded onto its surface. It can address up to four gigabytes of memory $(4,194,304 \mathrm{~K}$, or $4,294,967,296$ bytes.) And, importantly, it is upwardly compatible with the earlier 68000 chips. So, future Macintosh, Amiga, and ST computers will be able to use the 68020 .

Not to be outdone, Intel's 80286 appeared in the new-generation IBM PC-AT computers in 1985, and this past year the 80386 was created. This true 32 -bit microprocessor is upwardly compatible with the earlier 8088- and 80286based IBM and compatible computers. To keep the microprocessor race alive, Motorola has announced its next-generation candidate, the

Love at first write.

Commodore 64° and $128^{7 M}$ owners, meet the personal printer of your dreams
It's the Commodore-compatible OKIDATA 120. And it's got everything you've been looking for in a printer. Like a Near Letter Quality speed of 30 characters per second. A Utility mode speed of 120 cps . And high-resolution graphics.

The OKIDATA 120 is built for long-term relationships. With a full one-year warranty, and a printhead life of 200 million characters.
You'll love the very affordable price, too.
The OKIDATA 120 comes complete with everything you need to start printing. Including its own interface cable, paper and self-inking "Clean

Hands" ribbon cartridge. Simply plug it in and you're ready to go. Meet the printer of your dreams at your OKIDATA retailer now. For the name of the OKIDATA retailer nearest you, call 1-800-OKIDATA.
The OKIDATA 120. To you, it's a great printer. To your Commodore, it's Mr. Write.

68030 chip, which should be ready for use this year.

The addressing capabilities of these new microprocessors are only one part of the story. The clock speed, or how fast a chip can run, has also continued to grow. For example, the 68030 can run up to 20 megahertz (MHz) clock speed. By comparison, the Commodore 64 runs at 1 MHz , the Atari $S T$ runs at 8 MHz , and the 68020 chip can run at about 14 MHz . Intel's 80386 is capa-
ble of running more than ten times faster than today's computers.

Despite these amazing leaps forward, there are some roadblocks that will have to be overcome before these new microprocessors are capable of reaching their potential. The chief problem now is that the industry-standard MS-DOS operating system wasn't built to handle such super-fast hardware. It will take time for the operating system software to catch up to the Intel

80286 and 80386 chips. And then it will take time for applications software to really take advantage of the operating system and the hardware.

But in spite of the inevitable delays, the advances in microprocessor speed and power are driving personal computers to previously unheard-of levels of performance. And as hardware and software manufacturers race to the edge of technology, computer users will reap the benefits.

Tom R. Halfhill, Staff Editor

Operating Systems: Micros Grow Up

When talk turns to the latest trends in computing, new and exciting hardware usually gets most of the attention. But more people are beginning to recognize the importance of another part of the equation: the operating system. Without a suitable operating system, the most state-of-the-art hardware can seem to be ensnared in a strait jacket. This has become a particular concern in the IBM PC community, where hardware advances have outgrown the dominant operating system.

To begin with, exactly what is an operating system? Briefly, it's a program which performs or controls the routine tasks that are necessary for any computer to operate. A useful analogy is that of an operating system as an autonomous nervous system. If you had to consciously control such automatic bodily functions as your heartbeat, breathing, digestion, blood production, and so forth, you'd be so preoccupied with keeping yourself alive that there would be very little capacity left over for any other kind of thought or action. In effect, you'd be a plant.

Computers have a number of routine tasks that must be constantly performed in order to function,
too. At any given moment, a computer may be scanning its keyboard for keypresses, displaying text or graphics on the screen, waiting for input from a mouse or joystick, communicating with peripherals, updating a realtime clock, and so on. The operating system is a program that takes care of these mundane jobs "in the background"that is, invisibly. This makes it possible for you to run an application program-a word processor, a spreadsheet, a game, or whatever.

Another useful function performed by an operating system is that it saves application programmers the trouble of reinventing the wheel, so to speak. When a word processor needs to save a document on disk, for instance, it can simply call a subprogram within the operating system that transfers a block of memory to the disk drive. The word processing program itself doesn't have to include a subprogram for this purpose.

A disk operating system (DOS) is an extension of an operating system that provides commands for manipulating disk files. Usually there are commands for deleting, copying, and renaming files, as well as for performing many other functions.

A Parade Of Standards

Until the late 1970s, operating systems on microcomputers were so primitive as to be almost nonexistent. Then one fairly powerful operating system emerged as an early standard: CP/M (Control Program / Microcomputers). Designed by Digital Research for computers with the Z 80 microprocessor chip, CP/M soon became very popular among small business users. Thousands of programs were written to run with CP / M and were compatible with nearly every CP/M computer.

In 1981, IBM introduced the PC-but without a standard DOS. PC users could choose from CP/M-86, a version of CP/M redesigned for the PC, or a newcomer from Microsoft called MS-DOS. A battle ensued, and when the smoke cleared, MS-DOS had won. Today, MS-DOS (or a slightly customized version for the PC, PC-DOS) is the dominant operating system among business users. All IBM PC and AT computers, plus dozens of PC compatibles and clones, use some version of MS-DOS. Programs properly written for MS-DOS should run on any MS-DOS computer.

Operating systems which do not adhere to an industry standard and are unique to a certain brand of

GET UPTO 200 FUNFFILIED PROCRAMS EACHYEARwhen you shbsaribe nowt co cowrule

Subscribe to COMPUTE! today through this special introductory money-saving offer, and you'll be getting a lot more than just another computer magazine. That's because each issue of COMPUTE! comes complete with up to 20 all-new, action-packed programs.

Subscribe now and you can depend on a steady supply of high quality, fun-filled programs like Hickory Dickory Dock, Switchbox, TurboDisk, Home Financial
 Calculator, Turbo Tape, SpeedScript, SpeedCalc, and hundreds of other educational, home finance, and game programs the entire family can use all year long.

The superb programs you'll find in each issue are worth much, much more than the low subscription price.

And there's more to COMPUTE! than just exciting new programs. Month after month, COMPUTE!'s superb articles deliver the latest inside word on everything from languages to interfaces...from programming to disk drives.

Whether you're a novice or an experienced user, COMPUTE! is the magazine for you. So subscribe today. Return the enclosed card or call 1-800-247-5470 (in lowa, 1-800-532-1272).

Do it now.

 treres owh nel at yhe usting of insic

 delete anything fron the first pontion

computer are often called proprietary operating systems. A program written for a proprietary operating system generally won't work on any other brand of computer. Machines with proprietary operating systems include nearly all Apples, Ataris, and Commodores, although the Commodore 128 does have a Z80 chip for running $C P / M$, and hardware is available to convert Apple II and Atari eight-bit computers for use with $C P / M$. In the past year, software emulators have appeared which allow the Commodore Amiga to run some MS-DOS software, and the Atari ST to run CP/M software.

One of the latest trends in operating systems is the shell program. This is a further DOS extension that's intended to make the computer easier to learn and use. One example is Digital Research's GEM (Graphics Environment Manager), which is sold for IBM compatibles and is built into the Atari ST operating system. GEM is a graphics-oriented shell that lets you copy disk files by dragging them with a mouse between direc-
tory windows, delete files by dragging them to a trash-can icon, and so forth. The idea is to reduce the number of DOS commands that must be memorized and typed. Other shell-type programs include IBM's Topview, Microsoft's Windows, Quarterdeck Office Systems' Desquiew, Berkeley Softworks' GEOS (Graphics Environment Operating System) for the Commodore 64, and the Amiga Workbench.

Sometimes a shell program fills a performance gap between rapidly advancing hardware and a lagging operating system. For instance, Windows and Desquiew both permit some form of multitasking (the ability to run more than one application program simultaneously) on MS-DOS computers. MSDOS itself wasn't designed with multitasking in mind. MS-DOS also limits system memory to 640 K RAM. Five years ago, 640 K seemed a reasonable limit; today, computers with a megabyte or more are becoming commonplace. In addition, MS-DOS has trouble handling multiple RAM-resident programs
(sometimes called desk accessories), and it doesn't take full advantage of the faster processing speeds offered by the 80286 and 80386 chips now appearing in AT-compatible computers. New versions of MS-DOS which address these shortcomings are expected in 1987 and 1988.

What's to come? As microcomputers grow more powerful, the clear trend is toward operating systems which resemble those on high-end workstations, minicomputers, and mainframes. That means Bell Labs' UNIX is a strong contender in the near future, and it's likely that tomorrow's personal computers will be running operating systems such as MS-DOS as individual tasks under a multitasking UNIX umbrella. Proprietary operating systems such as the Atari ST's TOS and AmigaDOS also may end up within the UNIX shell. And the screens are almost sure to resemble those now found on highend workstations: a resolution of about 1000×1000 pixels, with multiple windows and a graphicsoriented user interface.

Attention all FX80, FX100, JX, RX, \& MX owners: You already own half of a great printer Now 0n5 579.95 Dealer inquiries welcome.

Now for $\$ 79.95$ you can own the rest. You see, today's new dot matrix printers offer a lot more.
Like an NLQ mode that makes their letters print almost as sharp as a daisy wheel. And font switching at the touch of a button in over 160 styles. But now, a Dots-Perfect
upgrade kit will make your printer work like the new models in minutes - at a fraction of their cost.

And FX, JX and MX models will print the IBM character set, too.

So, call now and use your Visa, MasterCard, or AmerEx. Don't replace your printer, upgrade it!

> 1-800-368-7737
> In California: 1-800-831-9772
dressellhams
837 E. Alosta Ave., Glendora, CA 91740 Tel: (818) 914-5831 An upgrade kit for EPSON FX, JX, RX, \& MX printers

Sample of letter without Dots-Perfect

COMPUTE! Disk Subscriptions

COMPUTE! Disks are available for the following computers:

- Apple II series
- Commodore 64 and 128
- Atarl 400/800 /XL/XE
- IBM PC and PCjr

Each error-free disk contains all the programs from the previous three issues of COMPUTE!. With a disk subscription, you'll receive one disk-for the machine you specify-every three months. To subscribe, call toll free 800-247-5470 (in lowa 800-532-1272).

enter theworldof Riodle Earzth

HEREIN LIES THE KEY TO MAGICAT SOPTWARE ADVENTURE

36 Cross the bridgeon - Ola South Road... bear right at the fork. . . take a leff at East Road, past Weathertop Mountain. . . then. . . enter the world of J.R.R. Tolkien's classic fantasy novels. Roam about in this captivating, imaginary world, filled with creatures and situations beyond your wildest dreams. Become Bilbo Baggins!
This season, Addison-Wesley and Melbourne House Software take a step beyond THE HOBBIT to bring you Tolkien's THE FELLOW. SHIP OF THE RING. In addition to the features and exceptional graphics that made THE HOBBIT a software

You can assume the role of any bestseller, THE FELLOWSHIP OFTHE RING contains two complete, consecutive adventures. This program has over 100 graphic locations, which allow you to see Middle-earth through the eyes of Frodo, Sam, Merry, and Pippin.

one of these characters-or play with up to 3 friends, each of whom can become a different Hobbit.
THE FELLOWSHIP OF THE RING and THE HOBBIT are available now at your local computer store, bookstore, or wherever software is sold. Your opportunity to live a few hours of your life as a Hobbit is here!

THE FELLOWSHIP OF THE RING and THE HOBBIT are available for the Apple IIe/IIc, the Commodore 64/128, and the IBM PC/PC jr.

人 Addison-Wesley

 Reading, Massachusetts 01867
More Bytes Per Buck

One of the prime forces driving the microcomputer revolution of the past decade has been the exploding technology of memory chips. Every couple of years, memory capacity has been quadrupling while prices keep plunging.

Don't confuse memory chips with microprocessor chips. Memory chips are quite different. Although they share the same microelectronic technology as their microprocessor cousins, memory chips are designed to store-not process-information. One important kind of information they store is the set of program instructions which is executed by the microprocessor. A microprocessor has a tiny amount of memory of its own, but it depends on memory chips to hold the thousands of instructions required to run even the simplest program. When you load a program into a computer from disk or tape, you're copying these program instructions into the memory chips, where they can be quickly accessed by the microprocessor. Memory chips are also the temporary repository for information created with the program - the text you write with a word processor, for instance, or the numbers generated with a spreadsheet.

There are two general types of memory chips: random access memory (RAM) and read-only memory (ROM). RAM chips hold information only as long as electricity is supplied. When the power goes off, they forget everything. That's why you have to save your work on disk or tape before ending a session with a computer.

ROM chips, on the other hand, hold their information even when the computer is switched off. The data is permanently burned into the circuitry of the ROM chips and cannot be altered. That's why ROM chips are used to store information that the computer always needssuch as how to display characters
and graphics on the screen, or how to transfer data from RAM chips to disk when you issue the appropriate command.

Better And Cheaper

The miracle of microcomputing is that RAM chips keep getting better and cheaper. In the late 1970 s, you were considered lucky if your personal computer had as much as 16 K of RAM. In the early 1980s, the new status symbol was 64 K of RAM. This was the maximum amount of memory that could be directly addressed by most of the microprocessors then in use, such as the 6502 and Z80. Now, in the mid1980s, most computers come with at least 128 K or 256 K of RAM, and machines with a megabyte (1024 K) or more are becoming commonplace. Yet, today's one-megabyte computer may cost less than the 16 K computer of ten years ago.

The reason is that engineers are continually finding ways of packing more microcircuitry into smaller and smaller spaces. Ten years ago, a typical RAM chip could hold four kilobits of data. A kilobit is 1024 bits. It takes 8 of these bits to make 1 byte-which is roughly equivalent to one character-and it takes 8 kilobits to make 1 kilobyte. Therefore, it takes 8 of these 4kilobit chips to equal 4 kilobytes of memory, which is commonly abbreviated as 4 K or 4 KB .

By the late 1970 s, 4 K memory chips were supplanted by 16 K memory chips. Eight of these chips provided 16 K of RAM. In contrast, it would take 32 of the 4 K chips to yield the same 16 K of RAM. By increasing the memory capacity without increasing the chip count, engineers could build computers that were smaller, less expensive, less power-hungry, and more reliable than their predecessors.

In the early 1980 s , the 16 K chips were in turn superseded by

64 K chips. Eight of these chips provided 64 K of RAM. It would take 32 of the 16 K chips or 128 of the 4 K chips to provide the same 64 K .

In the mid-1980s, 64 K chips are now being phased out in favor of 256 K chips. Again, the progress has been exponential. Eight 256K chips yield 256 K of RAM, while the same 256 K would require 32 of the 64 K chips, or 128 of the 16 K chips, or 512 of the 4 K chips. If you tried to build a one-megabyte computer with the old 4 K RAM technology, it would take a whopping 2048 memory chips-not to mention a power transformer the size of a concrete block and an air-conditioning unit, to keep the whole mess from melting itself down.

The next step is the one-megabit RAM chip. Only eight of these chips are needed to provide one megabyte of RAM, and they should start appearing at reasonable prices within a year or two. The onemegabit chip will make it possible for engineers to exhaust the capacity of microprocessors like the 68000, which can directly address up to 16 megabytes of memory. Beyond that are microprocessors such as the 68010, 68020, 68030, and 80386 , which can address several gigabytes of RAM (a gigabyte equals 1024 megabytes).

Is there a limit to how much memory can be packed on a chip? Scientists may be getting fairly close. If circuits grow too dense, there is some fear that they'll be vulnerable to interference from cosmic rays. And there are weird effects that happen at subatomic levels, such as electron tunneling, which could cause electricity to "leak" from one circuit to another. But most scientists seem confident that we won't encounter any major roadblocks in the near future. And even if we do, there's always hope for the next technological breakthrough.

"The \#1 Best Selling Word Processing Package" - bluboards computre sofiware chart.

PAPERCLIP II
 FOR THE COMMODORE 128

- Compatible with C-64 PaperClip files: the natural choice for $\mathrm{C}-128$ upgrades
- Includes integrated 38,000-word spelling checker
- Built-in telecommunications module: access on-line services, incorporate on-line data in your work, and send text to other users
- New editing features include multiple columns, reverse video scroll, chaptering, powerful macros
- Maximum document size expanded to

999 lines
PAPERCLIP FOR THE APPLE IIe, c

- Insert/Delete, Move \& Copy, Cut \& Paste, Global Search \& Replace
- Automatic page numbering, headers and footers
- Simplified columns, tabbing and scrolling
- Form letter and mailing label functions
- Unique new capabilities for Apple: dual text windows, automatic text protection, macro commands and more

PAPERCLIP

FOR ATARI HOME COMPUTERS

 (WITH SPELLPACK FOR THE 130 XE)- All the high-productivity editing features plus: Dual Text Windows, Automatic Paging, Macros and much more
- Fully-integrated SpellPack spelling checker on the same disk
- 36000 words in the SpellPack dictionary plus you can add thousands more
- Memory-resident for speed and convenience: no need to quit the word processor to check a document

PAPERCLIP with SPELLPAK
 FOR THE COMMODORE 64

- Built-in spelling checker
- All the high-productivity text editing features
- Move, Copy, Insert, Delete - words, sentences or entire blocks of text
- Macro power: define \& store up to 52 repetitive words/phrases, then enter them with just one keystroke
- Includes 80-column Print Preview display, requires no extra hardware
- Sophisticated Global Search \& Replace, Mail Merge and Mailing Label functions
PAPERCLIP ELITE FOR THE ATARI ST and COMMODORE AMIGA
- Go beyond word-processing, with idea processing, text/graphics integration, real-time spell checking, independent variable columns and so much more. Look for PaperClip Elite.
Coming soon.

"you can't go wrong choosing Paper Clip"
- THE GUIDE TO COMPUTER LIVING
"the Cadillac of word processors."
- OMNI MAGAZINE
"best professional word processor available" - RUN MAGAZINE
"by far the best word processor ever available
So clearly superior, ... State-of-the-art word processing"
- ANTIC
"as far as we are concerned, PaperClip is the top word processor running on a micro computer."

- HOME APPLICATIONS FOR THE C-64

"Performance: excellent. Error-handling: excellent. Value: excellent. . . You'll find yourself growing spoiled."

- FAMILY COMPUTING
"Exceptional word processing. .."
- INPUT
"many features ... easy to use"
- ATARI EXPLORER
"A superb word processor . . . the most sophisticated to date."
- COMPUTE MAGAZINE
". . . the ultimate word processor
- ANALOG MAGAZINE
"One of the easiest of the professional word processors . . . a sensible manual . . . plenty of aids for the accident prone."

- COMPUTING NOW

"An excellent word processor . . . well designed . . . many advanced features." - INFOWORLD
"a "must have" in an ideal software library"

- ELECTRONIC LEARNING
"... most powerful of packages"
- COMMODORE MAGAZINE
"PaperClip is a logical evolutionary step forward."
- AHOY
". . facts attest to its excellence!"
- FAMILY COMPUTING

COMING
SOON!

Lasers That Read, Write, And Print

There was a time in the not-toodistant past when the word laser conjured up images of space-age weapons, colorful light shows, and little else. But today, lasers are grabbing the spotlight in fields ranging from delicate eye surgery to the very popular audio compact disc (CD) players that are rivaling standard vinyl records.

Lasers (Light Amplification by Stimulated Emission of Radioactivity) are also red-hot items in the microcomputer marketplace, chiefly in two areas: laser printers and digital compact discs for data storage, sometimes called CD-ROM (Read-Only Memory) or CD-I (Interactive). Although neither of these technologies has yet reached the price/performance point to enter the home computer market, advancing technology and decreasing prices indicate that it's just a matter of time.

A laser printer shares some of the same technology that's found in the typical office photocopy machine. But instead of using a lightreflecting mechanism to form patterns on a rotating cylindrical drum, the laser actually writes on the drum. The image on the drum is then fused onto the paper using electrically charged particles.

A laser printer is a page print-er-forming one page at a timecloser to a photocopy machine than dot-matrix and daisywheel printers that form parts of the page or individual characters in different stages. The crispness and clarity of the new laser printers has given rise to the quickly growing field of desktop publishing, or personal publishing. With a computer, a laser printer, and the appropriate software, a computer user can turn out printed pages that rival typeset
quality.
Laser printers have already begun to drop in price in just the past two years. While advanced laser printers, capable of printing both text and graphics, still cost at least several thousand dollars, some text-only laser printers are now available for just under $\$ 2,000$. While still in their infancy, laser printers are advancing so rapidly that some observers believe they may supplant daisywheel printers completely in the future.

CD Technology

Even more in its infancy is the laser-driven compact disc (CD) technology that has been emerging, first with audio and now with computer data. The basics of CD technology are the same, whether it's in audio or simply digital information. A low-power laser beam reads microscopic pits that have been burned into a disc. The pits, which represent the digital ones and zeros that the computer can process, contain encoded data. When connected with a computer and the appropriate software, the compact disc offers a unique combination of massive data storage and instantaneous access.

The first generation of compact discs used with computers, called CD-ROMs, each hold 550 megabytes of information. That would be the equivalent of almost 4000 Apple II disks and about 1500 IBM PC disks. All of that data is packed onto a small plastic disc less than five inches across. In fact, the text of an entire set of encyclopedias can be placed on a CD-ROM disc, taking up less than a third of the space. Sophisticated cross-referencing and indexing of topics can also be placed on the disc.

This specialized CD format is all-text, but a number of companies are already working on more interactive forms of CD technology. CD players, or viewers, are being developed that will serve as both audio and computer-peripheral players. And at the cutting edge of CD technology is CD-I (Interactive), which holds out the promise that future disc players will be able to reproduce high-quality video and audio as well as text.

For example, imagine being able to turn on a CD-I player in your home and take a self-guided tour of parts of San Francisco or New York City or Williamsburg. All of the sights and sounds of those locations would be captured, and you would be able to decide where you wanted to go and what you wanted to see step by step.

The search-and-delivery speed of the laser, plus the massive storage capacity of future CD-I players, will offer an amazing amount of digital information to be manipulated in a variety of ways. And since CD-I system specifications require that the new players "piggyback" on the current success of CD audio, users will be able to play existing audio CDs on the CD-I units.

Also being developed are writable CDs, those that allow the user to store new information on a compact disc just as a computer user today can store information magnetically on floppy disks or in hard disk drives. Until recently, CDs were written to only when they were created at the factory. No further modification of the information was possible. But now, with WORM (Write Once, Read Many) technology and similar experiments, reusable CDs are becoming a possibility for the future.

The time: 1400 hours. Somewhere in the Pacific. Some ill-fated coordinates in World War II.
the starboard side. Send in Alpha,
eyeball to eyeball action. This time around you'll be right in the middle of it all. You knew it wouldn't be pretty. But how tough could it Damage Control reports a hit on

Will it be the twin 40 mm Bofors anti-
guns? Or the $5^{\prime \prime}$ lead-spewers guns? Or the $5^{\prime \prime}$ lead-spewers aft? Depth charges or torpedoes? Autopilot or guts?

Menlemetraitile haprinesorpursuli

Radar spots inbound Zeroes. Ready forward gunnery positions. Man the firepo ever put in a lightweight fighter. The deadly Fletcher Class Destroyer.
You've embarked on the
first simulation that actually combines the intricate, large-scale strategy of
wargaming with large-scale strategy of
wargaming with the intensity of furious, furious,
You're at the helm, commanding the greatestconcentration of frepower

It sure seemed a lot easier than shelling islands, escorting a convoy or hunting subs.

Or so you thought. But now look what you've got. Thirteen fully-operational, earbursting battle stations to worry about, all armed to the gills. Not to mention radar. Navigation. Sonar.

And half the Japanese fleet crawling up your spine.

Time to make some tactical decisions.

YOU'VE ALWAYS DREAMED OF BEAUTIFUL MODELS. Now you can pick up an entire assault fleet, including a replica Fletcher Class Destroyer, from Revell. Or win an authentic scrambled eggs flight deck cap. Sweepstakes details are in every box, or write for an entry coupon. No purchase necessary Sweepstakes ends June 15, 1987. Official rules are available at participating dealers.

Any choice could be your last, so make it good.

Suddenly, you hear the
ominous rumble of incoming Zeroes. You fire, and send one plummeting to the sea, trailing a plume of smoke.
Oninstinct, you instruct the bridge to commenceevasivemaneuvers.
Even though, by where to run.
EDYX
: Apple II \& compatibles,

The new Apple IIGs is close in price to both existing Apple computer lines. At $\$ 995$ without a monitor or disk drive, it's only a little more expensive than the IIc and IIe and a little less so than the 512 K Macintosh. Before the IIGS came out, many industry analysts were suggesting that its introduction would mean drastic price cuts in the current Apple II line, perhaps causing Apple to start selling them through massmarket distribution channels. Discussing why that hasn't happened may shed some light on the current state of the microcomputer market.

For one thing, it no longer seems inevitable that computer prices will always keep going down. When Commodore brought out the 64C, effectively raising the price of the Commodore 64 for the first time since its introduction, that signaled that the home computer wars were really over. Undoubtedly, one of the reasons the survivors seem less enthusiastic about price cutting is that there is no longer much room for prices to go down. But another factor may be that consumers don't now seem to have the same thirst for ever-lower prices. Now that many have gotten their feet wet with low-cost computers, they've learned some important lessons. They've learned that in order to make a cheap computer do everything you want it to do, you've got to buy some not-socheap peripherals. By the time you've bought a monitor, printer, disk drives, and software, the price of the computer itself has become a lot less important. They've also learned that while a bare-bones system will get the job done, spending a little more money can save a lot of time and inconvenience.

Experience has made computer buyers more solution-oriented. They know that while newer computers may offer more performance,
they often have less software than the older, established models. So, though the Apple II is ancient in comparison to the less expensive Atari ST, there are many people who prefer to buy the Apple simply because they know it has loads of available software. Even the Commodore 64 has developed such a following that people continue to buy it despite its close pricing to more advanced machines like Commodore's own 128.

Of course, market forces and the desires of the consumer aren't the only factors that control computer pricing. There are very good reasons why a computer manufacturer offers different types of computers which appear to compete with each other in price. For one thing, the relatively high price of the GS makes the low-end Macintosh look like a bargain by comparison. A lot of current Apple II owners are going to think "Why buy a IIGS when I can get a Mac for the same money?" This is probably just what Apple wants, since a customer starting at the low end of the Mac line will eventually spend more than the customer who has reached the end of the Apple II line. And no matter how heroic an effort manufacturers make, at some point 8 -bit computers will be truly dead. This provides additional incentive to move as many current customers as possible up to the 16 -bit lines. Apple is not the only company using this strategy. The lowestpriced Atari 520 ST system with monochrome monitor ($\$ 500-\$ 600$ on sale) is not much more than a high-end 130XE system (about $\$ 400$ with monitor and drive). And Commodore is expected to soon introduce a low-end Amiga that should be priced similarly to a 128 system.

Atari once again had the most crowded booth at the November

COMDEX (Computer Dealers' Exposition). The only piece of new hardware shown by Atari was a 1200 -bps modem for $\$ 99$, but its display of third-party software, including some very inexpensive desktop publishing ST software, packed them in for the entire show. Though no new ST models were on display, there were rumors of a reconfigured 1040 for the business market. This machine would be introduced to support the efforts of the newly announced Fortune 500/ OEM department, which will be headed by former software chief Sig Hartmann. In addition to a new blitter chip and ROMs and an expansion bus that gives access to the 68000 processor, the cosmetic appearance of the machine has been improved by a detached keyboard and modular, stackable CPU.

Rumors persist that Commodore is going to downplay or even quietly drop the 128 after Christmas. Although the machine has sold fairly well in its first year it hasn't replaced the 64 in the hearts of the computer-buying public. More importantly, Commodore isn't making nearly as big a profit margin on the 128 as it is on the 64C. And apparently, making the 128 compatible with the 64 wasn't enough for some owners, who wanted the expanded features of the machine to be compatible with the 64 as well. These people will get their wish in the form of a $\$ 150256 \mathrm{~K}$ RAM expansion for the 64 that will be introduced soon. If that proves to be popular, you may see the C256, a 64 with 256 K RAM expansion built-in. And 1987 may be the year that frees 64 owners of the horrendous 1541 disk drive. Expect to see the 1581 , a $31 / 2$-inch drive, appear sometime early in '87 at a price somewhere between that of the 1541 and the 1571.

Make Any Computer Do Exactly What You Want With McGraw-Hill's

 Writing Your Own Programs to $\begin{aligned} & \text { Make no mistake. Almost all books and courses on "programming" } \\ & \text { teach you only the final 5\% of the total programming process- } \\ & \text { namely, how to code in a specific language... information of little } \\ & \text { value if you don't know how to reach the point in the programming } \\ & \text { process when you are ready to code. } \\ & \text { With the Series, however, you'll learn to create your own programs } \\ & \text { from scratch, even modify off-the-shelf programs. You'll learn enough }\end{aligned}$ BASIC and machine language to get you started on the remaining 5% of the programming process.From Writing Your Own Programs to
Modifying Existing Software, Here's the New, Easy, and Low Cost Way to Unlock the Secrets of Your Computer

Whether you use computers for business, for personal applications, or for fun, off-the-shelf programs will never do everything you want them to do for you. That's because they were written by programmers to satisfy what they perceived as the needs of the greatest number of potential users-cften missing some or many of your specific needs.

That's why McGraw-Hill's new Contemporary Programming and Software Design Series teaches you how to create your own software . . .either from scratch or by making key modifications to existing programs.
There is nothing magical about it. You learn the process of building a computer program step-bystep with McGraw-Hill Concept Modules sent to you one at a time, once a month. Each of the ten modules in the Series takes you through an important step in the development of the structure and detailed logic of a program, including testing, debugging, and documentation.

Unique Interactive Hands-On Instruction

Each module includes an easy-to-understand guide PLUS a $51 / 4^{\prime \prime}$ floppy disk containing typical programs and interactive instruction that you can run on Commodore 64 and 128 computers, IBM PCs and PC compatibles for hands-on experience.
In the first Module, for example, when your sample program (Declining Interest Loans) appears on your screen, you'll find errors on certain program lines. You'll also see that the program is only three-quarters completed.

Now comes the fun part. You'll discover how this program is built, and in the process you'll learn how to identify and correct errors. And by the end of Module 1, you'll actually have completed this program yourself.

But there's more. Special graphics on your screen work in conjunction with the accompanying guide to amplify, illustrate, and deepen your understanding of software design principles.

\qquad

Build Your Own Personal Software Library

The sample programs you work with throughout the Series are excellent learning tools. But they're more than that. By combining the sample programs onto one master disk, you'll have the start of your own personal software library. In addition to the programs you've written and modified throughout the Series, you'll also receive dozens of the most popular public domain and user-supported programs, such as data base manager, word processor, calendar generator, appointments reminder and much, much more.

15-Day No-Risk Trial

To order your first module without risk, send the postage-paid card today. Examine the first module for 15 days and see how the Series will help you make your computer do exactly what you want it to do!

If someone has beaten you to the card, write to us for ordering information about the Contemporary Programming and Software Design Series.

The Crucial 95\%-Learn the Foundation of Computer Programming

While the Series includes interactive disks that run on specific computers, everything you learn you can apply to any language or machine. Why is thispossible? Because McGraw-Hill knows programming is far more than coding a program into the computer using a specific language. In the real world of computers, 95% of the programming process is carried out using design techniques that are independent of specific language or machine. It is this crucial 95% that you thoroughly understand and master in the Series.

McGraw-Hill Continuing Education Center

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

Time For BASIC

When using my Commodore 64 I have found that the variable TI changes to a higher number each time I print its value. When I type $\mathrm{TI}=0$ and press RETURN, I get a syntax error. What does TI have to do with my computer? Have I discovered some sort of bug?

Tim Hamel
Your question pertains to a Commodore computer, but the answer applies to almost all home computers. In Commodore BASIC, TI stands for time; it is a reserved variable, one that BASIC sets aside for a special, limited purpose. The related variable TI\$ is also reserved. Together, these variables let you read the value of the 64's internal clock or reset it to a new value. It's a bit misleading to call TI and TI\$ variables, since they're not stored in memory along with the "real" variables. However, they behave like variables in the sense that you can discover the values assigned to them and, in some cases, assign new values.

Let's look at how timer variables work on various computers, beginning with Commodore. When you use TI in a Commodore BASIC statement, TI equals the number of jiffies ($1 / 60$-second units) that have elapsed since the computer's internal clock was reset. Like many personal computers, the 64 has an internal clock that's updated every $1 / 60$ second. Turning the computer on sets the clock to 0 automatically.

As you have discovered, you cannot assign a new value to TI-it's a read-only variable. To change the time, you must use the related variable TI\$. Whereas TI returns a numeric value, TI\$ returns a. six-character string which represents the time in hours/minutes/seconds format instead of in jiffies. Unlike TI, TI\$ can be assigned a new value. Type and run this program to see TIS in operation:

1 TIS="øøøøøø"

$2 \varnothing$ PRINT TI\$:GOTO $2 \varnothing$
The first two digits represent hours, the second two show the minutes, and the last two show the seconds. For Commodore computers, this statement prints the time in more readable form:

$\mathrm{T} \$=\mathrm{TIS}: \operatorname{PRINT} \operatorname{LEFT}(\mathrm{T} \$, 2) \mathrm{n}: \mathrm{"m}^{\mathrm{M}}$ ID\$(T\$,3,2) ":" RIGHT\$(T\$,2)

The clock is maintained at addresses 160-162 in the Commodore 64, 128, and VIC-20. PEEKing or POKEing those locations has the same effect as reading or resetting the clock with TI or TI\$. Though the internal clock is accurate enough for most normal applications, it doesn't keep perfect time (interrupts don't happen at exactly $1 / 60$-second intervals except in. the 128). The time can be off by as much as a couple of minutes a day and may vary slightly from one computer to the next as well as in different countries. Because tape operations change the computer's interrupt rate, they disrupt the clock drastically.

IBM BASICA for the PC and Cartridge BASIC for the PCjr provide timer functions with the reserved variables TIMER and TIME\$. TIMER returns the number of seconds which have elapsed since the computer was turned on or reset. Like TI in Commodore BASIC, TIMER can be read but not reassigned. ($T=$ TIMER is a legal statement, but TIMER $=0$ is not.) When you use TIME\$ to display the time, BASICA automatically prints colons (:) between the hours, minutes, and seconds values to make them more readable. You must also separate the values with colons when resetting the clock with TIME\$.

Amiga BASIC also provides TIMER and TIME\$, which work much like their counterparts in IBM BASIC. However, you cannot reset the clock from BASIC by assigning TIME\$ a new value. This is consistent with the Amiga's multitasking operating system, which maintains a single clock for all applications. Since the computer might be running more than one application at any given time, it's not desirable to allow one application (BASIC, in this case) to reset the clock arbitrarily.

Amiga BASIC and IBM BASICA and Cartridge BASIC also provide an ON TIMER GOSUB statement which allows you to monitor the timer in the background (while other BASIC statements are
being executed) and branch to a specified subroutine when a certain time period has elapsed. The period is specified in seconds, in the range 1-86400 (86400 seconds equal 24 hours).

Atari ST BASIC has no timer functions. Eight-bit Atari computers lack BASIC timer functions but they maintain an internal jiffy clock which you can access with PEEKs and POKEs. The clock is found in locations 18-20. This program demonstrates the Atari BASIC timer:
$1 \varnothing$ FOR J=18 TO 2ø:POKE J, $0:$ NEX T J
$2 \emptyset \mathrm{~T}=\operatorname{INT}((\operatorname{PEEK}(18) * 65536+\operatorname{PEE}$
$\mathrm{K}(19) * 256+\operatorname{PEEK}(2 \emptyset)) / 60)$
$3 \emptyset$ PRINT T:GOTO $2 \emptyset$
Apple II computers (excluding the IIGS) have no BASIC timer functions or internal clock.

Your version of BASIC may have other reserved variables. For example, Commodore BASIC 2.0 (used in the Commodore 64) also provides ST, a status indicator for input/output operations. In addition to ST, BASIC 7.0 for the Commodore 128 adds DS and DS\$, disk status indicators, and ER and EL, BASIC error status indicators. IBM and Amiga BASICs provide ERR and ERL, BASIC error indicators, and DATE\$, which functions for the date as TIME\$ does for time. Refer to your BASIC manual for more information on reserved variables.

Monochrome in St BASIC

I own an Atari 520ST with a monochrome monitor. When you publish programs designed to run in low or medium resolution on a color monitor, I have difficulty converting them to work in monochrome. I bought a book about ST BASIC, but it does not explain what I need to know.

Thomas S. Despain
Anyone converting an ST BASIC program from color to monochrome faces two basic problems: screen size and colors. Figures 1-3 illustrate the effect of running the following program in low, medium, and high resolution.

10	fullw 2:clearw 2
20	linef 0,0,303, 66
30	gotoxy 15,8
40	print "hi"
50	$x=i n p(2)$

Fly to Florida!

Scenery Disk \# 7 covers the entire East Coast area from Philadelphia to Miami. The Florida coastline, from Cape Canaveral to Miami, is perfect for concentrated sight-seeing. Or fly to Washington DC, where scenery details include the Capitol Building, Pentagon, and Washington Monument. Whether seeking the intellectual challenge of Flight Simulator or the bruteforce fun of Jet, you'll find this latest evolution of SubLOGIC scenery absolutely breath-taking!

Scenery Disks now available: Areas 1-7
San Francisco 'STAR'
Central Japan
See your dealer. SubLOGIC Scenery Disks are available individually for $\$ 19.95$. The six-disk Western U.S. set is available for $\$ 99.95$. For additional product ordering information or the name of the dealer nearest you, call

Figure 1. Low Resolution

Figure 2. Medium Resolution

Figure 3. High Resolution

Notice the difference in screen output. The difference in the line's position derives from the fact that the three screens contain different numbers of pixels. LINEF draws to the same endpoint in every case, but since the three screens are different sizes, the endpoint is in different positions relative to the total screen area. The same is true of other graphics commands that rely on screen coordinates. Thus, if you run a lo-res program in high resolution, the graphics appear in the upper left quadrant of the screen. If you run a medium-res program in hi-res, the graphics appear in the upper half of the screen. By adjusting the coordinates used in LINEF and other graphics commands, you can eliminate such distortions.

Text output may also require adjustment when you change resolution. The ST uses the same 8×8 character font in both lo res and medium res. In medium resolution, you have twice as many columns as in low resolution. But the number of rows is not doubled when you go from medium to high resolution. Instead, the ST automatically switches to a double-height (8 $\times 16$) character font. Although the screen
contains twice as many vertical pixels in this resolution, it has the same number of character rows because each character is twice as high.

The ideal, at least for programs that aren't wholly color-dependent, would be for everyone to write programs that automatically adjust screen output for any resolution. You can easily discover the current resolution with the statement PEEK(SYSTAB), which returns the values 1, 2, and 4 in low, medium, and high resolution, respectively. Once it has determined the resolution, a program can adjust graphics and text output to fit. (Here's a hint for positioning text: Although you wouldn't expect it to do so, GOTOXY accepts fractional values, allowing you to put characters in positions that overlap normal row and column locations.)

Color presents a stickier problem for conversion, since colors that look different in low or medium resolution often look identical in hi res, where the computer displays only black and white. One solution is to replace colors with different fill patterns for high resolution. This program displays all the built-in patterns, which are selected by the last two parameters in the COLOR statement.
100 fullw 2: for $j=2$ to 3 ifor $\mathrm{k}=1$ to 24
110 color 1, 1, 1,k,j:clearw 2: gotoxy 2,3
120 if $j=2$ then print "Patter n"; else print "Hatch";
130 print k:circle $150,80,50$
140 if $j=3$ and $k=12$ then $k=24$ 150 fill 150, 80 : nextinext

Amiga Knows IBM BASICA

I own an Amiga computer and I am very happy to see you publishing typein programs that even beginners can use. But do you have a program like "ST Softball Statistics" (COMPUTE!, August 1986) for the Amiga? I keep track of statistics for several softball teams. I nearly fell over when I saw that program, since it's exactly what I need. Michael P. Schmidt
"Softball Statistics" originally appeared in the July 1985 issue of COMPUTE!, in versions for several computers. The program was written in generic Microsoft BASIC to simplify the task of translating it to different machines. The ST translation of this program is based on the Microsoft version, but many changes were needed to make it run in ST BASIC, which differs from Microsoft BASIC in a variety of ways.

We suggest that, rather than convert the ST program, you obtain the July 1985 issue of COMPUTE! and type in the IBM PC/PCjr version of "Softball Statistics." Amiga BASIC is essentially a superset of IBM BASICA: It contains virtually every-

To buy your CompuServe Subscription Kit, see your nearest computer dealer. Suggested retail price $\mathbf{\$ 3 9 . 9 5}$.

To request our free brochure or order direct, call or write: 800-848-8199 (In Ohio, call 614-457-0802)
CompuServe
5000 Arlington Centre Biva.
Columbus, OH 43220
thing in BASICA plus additional commands to take advantage of unique Amiga features. Only one line in the IBM program appears to need modification. Replace line 90 with this line:
90 WIDTH (WINDOW(2)/8)
The reason you can't use the statement WIDTH 80 is that Amiga BASIC does not allow a full 80-column window (BASIC doesn't permit a completely borderless window, and the border always takes up a few pixels). To determine the number of characters that will fit in the window, we use WINDOW(2) to find the number of current pixels in the current window and divide by 8. WIDTH ignores any fractional component in the result.

Original Amiga programs are usually written without line numbers, but Amiga BASIC permits line numbers as an option (a line number is treated as a label). This makes it quite easy to translate programs that were originally written for some other machine with Microsoft BASIC. After you have typed in and saved the program, you may wish to eliminate superfluous line numbers or replace all referenced line numbers with meaningful labels. The latter procedure is quite simple if you have a word processor such as Textcraft with search-and-replace capabilities. If you save the program as an ASCII file from BASIC (add, A to a normal SAVE command), the word processor can load it for editing like any other ASCII text file.

When using a word processor to replace line numbers with labels, you should do one replacement at a time to avoid replacing numbers used as constants. For instance, if you're replacing the line number 100 with the label MAIN:, you do want to replace the 100 in statements like GOTO 100, but you don't want to replace the 100 embedded in statements like $M=X / 1000$. (The result in this case would be the nonsense statement $M=X / M A I N: 0$.) When you've finished editing the file with the word processor, be sure to save it as a plain ASCII file so that BASIC can load it correctly.

Atari CX21 Keypad

I have an Atari 800 XL . Can you tell me how to read the keypad controller (CX21)? Neither the STICK or PADDLE functions seem to follow the button presses.

Bob Klemenc
There are a multitude of input devices for the controller ports of Atari eight-bit computers. We know of video tablets, joysticks, paddles, light pens, trackballs, a mouse, and two keypads. Some companies even sell modems and printers which interface through these ports.

Of the two keypads available, the

CX85 is the more serious. It's a full-size keypad complete with cursor keys and its own ENTER key. This keypad is suitable for data entry in spreadsheets and similar programs. It comes with software in the form of an AUTORUN.SYS file which makes the new keys appear to be keys on the keyboard.

The other keypad, the CX21, was originally designed for the Atari 2600 VCS game system. Although the CX21 was marketed as a game controller for the Atari 800 computer, to our knowledge no commercial software has used this device. Here is an example program to read the CX21 key pad; it's adapted from an example in the original Atari BASIC manual.

```
1 GRAPHICS O
10 DIM ROW(3), I$(13), BUTT
    ON&(1)
30 GOSUB 6000
6O POSITION 2,7:PRINT "CO
    NTROLLER # 1:";
80 GOSUB 7000:POSITION 19
    ,7:PRINT BUTTON$;
120 GOTO 8O
6000 REM
6010 POKE 54018,48:POKE 5
        4016,255:POKE 54018,
        52:POKE 54016,221
6030 ROW (0)=238:ROW (1)=22
        1:ROW(2)=187:ROW(3)=
        119
6040 I $=" 123456789*O#"
6 0 5 0 ~ R E T U R N
7000 PORT=54016
7010 P=1:PAD=0
7 0 2 0 ~ F O R ~ J = 0 ~ T O ~ 3 ~
7 0 3 0 ~ P O K E ~ P O R T , R O W ~ ( J ) ~
7040 FOR I=1 TO 1O:NEXT I
7050 IF PADDLE (PAD+1)>10
        THEN P=J +J+J+2:GOTO
        7 0 9 0
7060 IF PADDLE (PAD)>10 TH
        EN P=J+J+J+3:GOTO 70
        90
7070 IF STRIG(O)=0 THEN P
        = J + J +J + 4 : GOTO 7090
7 0 8 0 ~ N E X T ~ J ~
7090 BUTTON$=I$(P,P)
7100 RETURN
```


Interrupts And De Re Atari

We are writing a game for the Atari 800 and we intend to use vertical and horizontal blank interrupt routines for a hires arcade sequence with extensive keyboard input. However, we heard that the keyboard click routine messes up the VBI. How is the keyboard click turned off? We have found several references to a book called De Re Atari which supposedly addresses this problem and several others. We can't find it and we don't know who published it. Can you help?

Richard Power Timothy Power David Lanphear

First, a bit of explanation. Vertical blank routines and horizontal blank routines have some important differences. Since
the electron beam which displays graphics moves more quickly across the screen than it does down the screen, a horizontal blank interrupt routine is shorter and more sensitive to time variations than a vertical blank interrupt routine is. Thus, keyboard clicks (which time their sound by waiting for horizontal syncs) throw off horizontal blank interrupts but they do not disrupt vertical blank interrupts, or VBIs. If you can manage with only using VBIs, you don't have to worry about this problem.

It's only the key-click sound, not the keypress itself, which disrupts the horizontal blank interrupt. One solution is to avoid the keyboard handler and read the keys with PEEK. Location 764 (\$2FC) holds the value of the last key pressed. The value in 764 is a keyscan code which differs from both screen codes and ATASCII codes. POKE 764,255 to clear this location.

The book De Re Atari was published by Atari; it was written by the Software Development Support Group, which included Chris Crawford, Lane Winner, Jim Cox, Amy Chen, Jim Dunion, Kathleen Pitta, Bob Fraser, and Gus Makreas. This book appears to be out of print and is no longer sold by Atari. However, at the time of this writing (November, 1986) we confirmed that copies are still available for $\$ 9.95$ from San Jose Computer, 1844 Almaden Road, Unit E, San Jose, CA 95125. This company states that they have many copies left, but you may want to call first before you order one. The phone number is (408) 723-2025.

COMPUTE! Disk Information

All the programs in this issue are available on the ready-to-load COMPUTE! Disk. For more information or to order an individual issue of COMPUTE! Disk, call toll free 800-346-6767 (in NY 212-887-8525). To order a one-year (fourdisk) subscription, call toll free 800-247-5470 (in lowa 800-532-1272). Please specify which computer you are using.

And you don't even have to leave your room.

The Russians have The Doomsday Papers ${ }^{\text {m }}$ locked deep in a Siberian stronghold. With them, they can bring the world to its knees.

The U.S. government needs your help. Using their satellite you can get into the complex with your computer. All you have to do is locate the combinations to the safe, find and open it, and get the documents out.

Sounds simple enough. Unfortunately, it's not that easy. There are video cameras and monitors to be avoided. Guard patrols. And something called...The Annihilator: Plus, your only map is the one you've got to make while not being discovered by all of the above.

Your reputation got you into this mess. Your hacking skill is the only thing that can get you out. Bon Voyage.
For more information and the dealer nearest you call 800/ 227-9759 (in California, call 415/960-0410) weekdays 10:00 a.m. to 4:00 p.m. Pacific time.

Hacker II: The Doomsday Papers designed by Steve Cartwright, who brought you the award winning challenge of Hacker. ${ }^{\text {M }}$

Hacker II for Commodore 64/128, Apple II, IBM PC/PCjr and Tandy 1000, Amiga, Atari ST and Macintosh computers.

ACTIVISION

Commodore 64, 128 and Amiga are trademarks of Commodore Electronics Limited. IBM is a trademark of International Business Machines Corporation. Tandy is a trademark of Tandy Corporation. Atari and ST are trademarks of Atari Corp. Apple and Macintosh are trademarks of Apple Computer. Activision is the registered trademark of Activision, Inc. 1966 Aftivisipineommondore.ca

Shanghai

Ervin Bobo

Requirements: Apple II-series, Commodore 64 and Amiga, Atari ST, IBM PC/PCjr and compatible, Macintosh, and Tandy 1000-series computers.

When Activision previewed Shanghai at a private gathering, I was initially not impressed with what I saw.

And when my wife looked over my shoulder as I was trying out the game on my Commodore 64, she expressed the same feelings. (Though I must admit she is more easily "underwhelmed" than I.) Before too many minutes had gone by, she was helping to solve the puzzle, and we were both hooked.

Two days later, I found the Amiga version and we were both overwhelmed. Then the children were similarly affected. As of this writing, our Shanghai mania is of such proportions that I am beginning to fear for our health.

For those of you who may know nothing of mah-jongg, from which this computer game is derived, it's an ancient Chinese pastime that is part game, part puzzle, and all challenge. It's played with a number of pieces called tiles, which are stacked in the shape of a dragon. As with playing cards, there are several suits, and within these suits are numbers. To play the game, you remove matching tiles, one pair at a time, until all are gone or until no more matches can be made. On the face of it, that sounds rather simple. It is not.

Because there are four of each tile, the game holds elements of strategy. If, for instance, you have the East, West, and South Wind tiles free, which two will you remove on this turn? In a game of Solitaire, you'd want to remove the two that are blocking the most other tiles, while in Challenge play, against another opponent, your strategy would be the opposite.

An Advantage In Perspective

In Shanghai, there are 144 tiles in five suits. At the beginning of each game, the computer stacks these tiles in a

The Amiga version of Shanghai from Activision.
random fashion. Because your view is from above the stack, it won't look like a dragon, but it will give you an advantage over those who use real tiles in mah-jongg, for you can see all sides of the stack at once. Tiles can be removed only when they are at the sides of the stack. When bordered on both sides by other tiles that are on the same level, the tiles are not "free" and thus cannot be moved.

Because you would be viewing a stack of small objects from above and because your success in the game would be dependent upon the status of the different stack levels, it was necessary to give the playing screen an illusion of depth. On the Amiga, this illusion is astounding. Not only do the "ivory" tiles have yellowed edges to help in differentiating them; they also cast transparent shadows.

And because it is important to identify matching tiles, the designs and the (presumably) Chinese characters as well as the numbers on each tile are done to a sharp perfection. You'll especially appreciate the attention to detail when you're racing against the clock in tournament play.
[Ed. Note: The clarity and visual depth vary from one computer version to another. For example, the Amiga, ST, and Macintosh versions offer greater clarity than the Commodore 64 and Apple II versions.]

Game Choices

Pull-down menus at the top of the screen give you choices between games of Solitaire, Tournaments, Team Play, and Challenge. Solitaire and Team Play
are the same game, the difference being that in Team Play turns are passed from one team to another and a different strategy will be involved; in either of them, you have an unlimited amount of time in which to attempt to clear the board, and the number of tiles remaining is displayed at lower left of the screen. Should you get hopelessly stuck, one of the pull-down menus allows you a request to See All Moves. Select it and the next matching pair is illuminated-or, alternatively, you are told that there are no more matches.

Tournaments allows you to race against a clock that you set for 5,10 , or 20 minutes. Scores are on the basis of the number of tiles removed during that time. To keep you apprised of the time-or the lack of it-a digital clock appears at the lower right of the screen, and when a minute is ticked off you'll hear the sound of a faraway gong. As might be expected, no hints are available for the Tournament mode.

Your score for this is stored on the master disk and there are two tournaments that can be played again and again-giving you the same arrangement of tiles each time-just in case you wish to try to beat your best score. Perhaps it should be noted here that not all arrangements of the tiles can be solved and, in keeping with the puzzle aspect of the game, you have no clues as to whether the two tournaments are insoluble.

Should you begin to have doubts, however, it is also possible to play in tournaments where each game can be a new and random arrangement. Since the possibilities here are endless, scores are not written to the disk-unless you elect to play the same arrangement again.

In Challenge Play, each player is given a timed turn, during which he or she is to remove a pair of tiles. If none are found, play reverts to the challenger and the same rules apply. This form of play will support the use of two mice, and you may find that easier than passing one mouse back and forth.

To remove tiles, place the handshaped cursor on the first of the pair and click once; then move to the second tile and double-click. If your move is

Increase your knowledge about all aspects of computers

An absolutely no-risk guarantee.

Select 5 Books for only $\${ }^{35}$

More programs, projects, and ways to use your micro.
Keep well-informed about the latest books available-and get the original publishers' editions at a discount of up to $\mathbf{5 0} \%$ off the publisher's price!

2650 \$21.95

$2692 \quad \$ 27.95$

$2751 \quad \$ 27.95$

$2736 \quad \$ 25.00$

$1988 \quad \$ 23.95$

2671 \$18.95

$1970 \quad \$ 22.95$

1993 \$21.95
1427P $\$ 12.95$

If card is missing, use this address to join: THE COMPUTER BOOK CLUB ${ }^{\text { }}$

$2748 \quad \$ 21.95$

$1160 \quad \$ 15.95$

$1407 \quad \$ 17.95$

1884P. ABASE $\|^{0}$-A Comprehensive
Paper \$18.95
1908. Framework ${ }^{\text {TM }}$ Applications
$\$ 24.95$
2623. MultiMate User's Guide $\mathbf{\$ 2 1 . 9 5}$
2734. Samna: Luxury Word Processing
\$24.95
2694. SuperCalc ${ }^{\text {© }}$ 3: Learning, Using and Mastering $\$ 22.95$
2743. Practical Paradox: Applications and Programming Techniques \$27.95

2622. Supercomputers of Today and Tomorrow: The Parallel Processing Revolution
\$21.95
2688. The Illustrated Dictionary of Microcomputers-2nd Edition \$24.95
(Publisher's Prices Shown)
(c) 1987 The COMPUTER BOOK CLUB*

-ROTHGTO
 ENTERPRIZES "The Computer Experts"

22292 N. Pepper Rd, Barrington IL 60010

- OUIR MMAREAMGTO

All our products carry a minimum 90 day warranty from the date of purchase. If problems arise, simply send your product to us via U.P.S. prepaid. We will IMMEDIATELY send you a replacement at no charge via U.P.S. prepaid. This warranty proves once again that... II e I.onc ()ur (instomers!

COMMODORE 64c

Includes the GEOS program.

> SALEST50.95
> List \$299

BIG BLUE PRINTER

This is the affordable printer you've waited for! $81 / 2^{\prime \prime}$ letter size, 80 column dot matrix, heat transfer printer features upper and lower case, underline, graphics, word processing, and much more.

SALE \$ 39.95
 List \$199

150-170 CPS

COMSTAR AERO 160 PRINTER
The Comstar Aero 160 has a $10^{\prime \prime}$ carriage, 9×9 dot matrix with double strike capability for 18×18 dot matrix (near letter quality), high resolution bit image (120×144 dot matrix), underline, back spacing, left and right margin setting, true lower descenders with super/subscripts, prints standard, block graphics and special characters. Same features as printers costing twice as much! (Centronics Parrallel Interface)

[^2]1541 DISK DRIVE

> SALE $\$ 179.95$
> List \$249

PRINTER \& TYPEWRITER COMBINATION

Superb Silver Reed letter quality daisy wheel printer/typewriter, just a flick of the switch to interchange. Extra large carriage, typewriter keyboard, automatic margin control, compact, lightweight, drop in cassette ribbon! Includes Centronics Parrallel Interface

SALE\$] 99.95 List $\$ 299$

COMSTAR 1000

 PRINTER

Print letters, documents, ect., at 100 cps . Works in Near Letter Quality mode. Features are dot addressable graphics, adjustable tractor and friction feed, margin settings, pica, elite, condensed, italics, super/subscript, underline, \& more. Interface Included.
SALE\$]7

13" COLOR MONITOR

High Resolution, clear screen, 40 col. $\times 24$ lines. Audio hookup. One year Ltd. warranty.

SALE \$159.95

List $\$ 329$

12'' 80 COLUMN MONITOR

High Resolution green screen monitor. 80 col. x 24 lines.

> SALE \$ 89.95
> List $\$ 129$

1571 DISK DRIVE

SALE $\mathbf{2 5 9 . 0 0}$
List \$349

TV TUNER

Now switch your computer monitor into a television set with the flick of a switch. This Tuner has dual UHF/VHF selector switches, mute, automatic fine tuning and computer/TV selector switches. Hooks up between your computer and monitor! Inputs included for 300 ohm, 75 ohm , and UHF.

SALE $\$ 49.95$

List $\$ 130$

14' RGB \& COMPOSITE COLOR MONITOR

High Resolution, 80 column Monitor. Switch from RGB to Composite. (C128 - IBM -Apple) RGB cable $\$ 19.95$. Add $\$ 14.50$ shipping.
SALE $\$ 237.00$
List \$399

BEST SERVIGE IN THE USA • ONE DAY EXPRESS MAIL • 15 DAY FREE
 TRIAL • VOLUME DISCOUNIS• OVER 500 PROGRAMS GUSTOMER LIST OF OVER 3,000,000 - LARGEST IN THE USA

FOR FREE GATALOG GALL (312) 382-5244 CALL BEFORE YOU ORDER: PRICES MAY BE LOWER \& WE OFFER SPECIAL SYSTEM DEALS

MUSICAL KEYBOARD

This sturdy 40 key professional guage spring loaded keyboard gives the feel and response of a real keyboard instrument. (Conductor software required)
sale 69.00
List $\$ 159.95$

COMPUTER CLEANERS

TV/Monitor Screen Restorer \& Cleaning Kit, Disk Drive Cleaner, Anti-Static Keyboard Cleaner
*Choose any of these three computer cleaners for only $\$ 9.95$ each!

SALE \$9.95* List $\$ 19.95$

1200 BAUD MODEM

Save time and money with this 1200 Baud modem. It has many features you expect a modem to have plus 4 times the speed!
SALE \$79.95
List \$199
SUPER AUTO DIAL MODEM

Features on-line clock, dialing from keyboard, capture and display high resolution characters, and much more.
SALE \$29.95
List \$99

SINGLE SIDED DOUBLE DENSITY DISKS

100% Certified $51 /{ }^{\prime \prime}$ floppy disks. Lifetime Warranty. 1 Box of $100 \$ 29.00$ List $\$ 1.99$ each $.29^{c}$ ea.

SPECIAL BONUS COUPON

We pack a special software discount coupon with every Computer, Disk Drive, Printer, or Monitor we sell! This coupon allows you to SAVE OVER \$250 off sale prices!

(EXAMPLES)			
Name	List	Sale	Coupo
B. I. Homepak	\$49.95	\$19.95	\$17.95
Super Huey II	\$19.95	\$12.95	S11.95
Flight Control Joystick	\$19.95	\$12.95	\$10.00
Newsroom	\$49.95	\$32.95	\$29.95
Leader Board	\$39.95	\$23.95	\$22.95
TV Tuner	599.95	549.95	\$39.95
Commando	\$34.95	\$21.95	\$21.95
Create with Garfield	\$29.95	\$16.95	\$14.95
Geos	\$59.95	\$39.95	537.95
SAT The Perfect Score	\$69.95	\$42.95	\$39.95
World Games	\$39.95	\$24.95	\$22.95
Trinity	\$34.95	\$24.95	\$22.95
C128 Partner	\$69.95	\$49.95	\$44.95
Robotics Workshop	\$149.95	\$124.95	\$114.95
C128 Programmers Reference Guide	\$21.95	\$12.95	\$9.95

(See over 100 coupon items in our catalog.)

BRODERBUND	
PRINT SHOP (D)	525,95
GRAPHICS LIB. 1,2 or 3 (D)	15.\%5
COMPANION (D).	22.95
TOY SHOP (D).	38.95
WHERE IS CARMEN SANDIEGO (D)	21.55
GRAPHICS LIB. HOLIDAY ED. (D). .	15.95

EHEECTRONIC ARTS

HEART OF AFRICA (D) 59.95	
ONE ON ONE (D). .	
PINBALL CONTRUCTION (D).	9.95
MUSIC CONSTRUCTION (D)	9.95
RACING DESTRUCTION (D)	9.95
MARBLE MADNESS (D)	. 22.95
CHESSMASTER (D).	. 25.95
BATTLEFRONT (D)	. 25.95
LORDS OF CONQUEST (D)	22.95

HITECH EXPRESSIONS

[^3]legal, both tiles disappear and reveal the tiles below them. If the move is illegal because a tile is not free, a polite message informs you of that fact.

Documentation for Shanghai is contained on the disk, with the rules for the four game variations as well as the overall strategy being presented in the form of what looks like very old parchment manuscripts. Having the rules so close at hand is a nicety-not really necessary, for the rules are simple and easy to remember. That they have been done up in such fine style when they might have been fluffed off is another tribute to the computer craftsmanship that has gone into the making of this version. As a devoted player of mahjongg might cherish a set of finely engraved ivory tiles, so we who deal with computers can appreciate the craft of Shanghai.

As it turns out, there are good reasons why this game has survived the centuries and why it seems to crop up anew with each new generation: It is a good game-simple to play, difficult to master, and providing endless challenge. In its current incarnation as a computer game, it remains just as challenging and just as much fun.

Shanghai
 Activision

2350 Bayshore Frontage Rd.
Mountain View, CA 94043
\$44.95 Macintosh, Atari ST,
Amiga versions
\$39.95 IBM, Tandy, Apple II versions
$\$ 34.95$ Commodore 64 version

OGRE

James V. Trunzo
Requirements: Apple II-series computers (with a 64 K minimum of memory) and Commodore 64 computer; Atari eight-bit and ST versions should be available by publication date of this issue.

One definition for the term ogre, found in my trusty old Webster's, is "a dreaded person or object: someone or something very difficult to cope with." In reference to a new release from Origins software, titled OGRE, both definitions fit. In this case the Ogre is a cybernetic tank devised to be the ultimate weapon of destruction and, indeed, it is both dreaded and difficult to cope with.

If the title of this game sounds familiar to some of you, it should. Before the advent of the personal computer, board games were the gamer's medium, and within this genre there was the minigame: a game whose scope
was confined and which could be played in a relatively short span of time. Steve Jackson developed a number of very entertaining and very involved minigames, one of which was titled OGRE. That same minigame has now made the transition from paper map and cardboard counters to hi-res graphics and pull-down windows. And very successfully, I might add.

The goal of OGRE is simple, regardless of which side you play. If you command the Ogre Mark III or the superior Ogre Mark IV, you have two objectives: Your primary goal is to destroy the opposition's command post; your secondary goal is to eradicate all enemy units. If you command the various tanks, GEVs (Ground Effective Vehicles), howitzers, and infantry that comprise the forces that must oppose the cybertanks, your primary goal is to protect the command post and, failing that, prevent the Mark III or Mark IV from exiting the combat area. In both cases, achieving your objective means destroying the Ogre

The factors that made OGRE, the board game, so popular are exactly the same ones that make OGRE, the computer game, an excellent product. OGRE allows the player to focus on a single objective while providing either side with numerous ways of reaching or preventing that objective, depending on the player's perspective.

Different Strategies

Playing the Ogre presents the player with a choice of approaches as the Ogre battles its way inexorably up the battlefield. Using its massive armament (it has numerous weapons, ranging from antipersonnel guns to long-range mis-siles-it wasn't nicknamed Ogre because it was cute), the cybertank can seek and destroy, attempting to eliminate all units opposing it first, and then proceeding, unimpeded, toward the defenseless command post. The Ogre player can, however, select an alternative plan, employing the Ogre's massive speed and ability to take punishment, and strike out singlemindedly for the command post, confronting only those units that it cannot initially avoid.

Opponents of these futuristic tanks can also choose their poison. Depending on the make-up of their forces, those protecting the command post might wish to use guerilla tactics, harassing the Ogre with hit-and-run at-tacks-or they might elect to amass all their most powerful armor up front and fight a battle of attrition. In any case, opponents of the Ogre must decide whether to concentrate on attacking the tank's treads in order to slow its move-
ment or whether to concentrate on knocking out its long-range weapons. One hint: Like the pawn in chess, the seemingly weak and unimportant infantry are essential to the destruction of the Ogre. Also like the pawn, the infantry units must often be sacrificed for the good of the cause.

Tactics and strategy aside, OGRE is a fascinating piece of work simply due to the mechanics employed in the game's play. Using what is rapidly becoming standard operating procedure, OGRE employs liberal use of pull-down windows, "dragging," and clickingterms usually associated with the Macintosh. These techniques and all other commands can be implemented by using a joystick, mouse, or keyboard. The fact that a joystick can be used as easily as a mouse to move pieces or issue attack orders speaks for itself when you analyze the programming ability that went into OGRE's design.

The game is further enhanced by its ability to design its own scenarios. While many options are automatically included, like the opportunity to select a pre-made battlefield using pre-made forces, or to select a particular skill level, thus altering the depth of the artifi-cial-intelligence routines of the computer opponent, the built-in editor allows the user to create his or her own terrain and force to oppose the Ogre. The simplicity with which this can be accomplished is directly attributed to the use of the aforementioned techniques of dragging and clicking. Place the cursor on a crater and drag it into a new position. Click it permanently into place. That's all there is to it. Of course, customized battlefields and forces can be saved to disk for future use.

OGRE faithfully recreates its board-game predecessor and offers game players an exciting, quick-playing challenge. Its use of Macintosh-style techniques enriches an already excellent game and makes this product a standout among current arcade/strategy war games.

OGRE

Origin Systems
340 Harvey Road
Manchester, NH 03103
Distributed by Electronic Arts
1820 Gateway Dr.
San Mateo, CA 94404
$\$ 39.95$
©

THE FOUR LETTER WORD WE KNOW YOU'L LOVE..

Buy
 Batteries Included Software Program \& get another one

Buy One, Get One FREE!
It's that easy. Buy any of our products and choose another from the following list FREE!!! HERE'S ALL YOU HAVE TO DO:
*Buy any Batteries Included product from your dealer
between Nov. 1, 1986 and February 28th, 1987;
Mail us the following four items in an envelope:

1) This coupon indicating the free product
2) you have selected;
3) $\$ 5.00$ in check or money order to cover shipping and handling - make checks payable to Batteries Included.
Do not send cash.
4) The dated receipt from your new BI

Software purchase;
4) The completed warranty card
from your purchased product

- Envelopes must be postmarked by February 28, 1987 to receive free products.
Sorry, there can be no product substitutions.
- Send the items listed above to:

Batteries Included,
Free Product Promotion
30 Mural St., Richmond Hill, Ontario Canada LAB 1B5

- This offer expires February 28, 1987.

\section*{| THE PRODUCT I WANT IS: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| System | C-64 | Atari | Apple | IBM | Mac |
| ST | | | | | |
| HomePak | \square | \square | \square | \square | |
| B/Graph | \square | \square | | | |
| TimeLink | | | | \square | \square |
| I*S Talk | | | \square | | \square |
| CalKit | \square | | | | |
| Keys To Typing | | | | | |}

Name

(Pese Print)
Address
City State/Prov,
Zip
Phone
Qualifying nofiware purchase must be mack by 278s89, This compleced coupon, required proof of purchas, completed warnarty card and 55.00 mast sccormpay your rqquest.

Batteries Included Software has won many awards and has had many reviewers gushing with praise. Here's your chance to find out why - quickly, easily and inexpensively. Buy any BI software program and we'll give you another program for free. No strings. It's a real deal, for software you'll use right away - and every day.
the award winning easy-to-use spreadsheet for the Commodore 64/128

the total telecommunications program with spelling checker for the IBML and Atari ST

$1411 \approx 8$

the time management, electronic diary and database program for the Macintosh and Atari ST

3-in-1, telecommunicatiogs, word-processing and information manager software program
for. IBM. Macinfosh and Apple computers

Keys to Iypine

the electronic typing teacher for the Commodore 64/128

Lyco COMPUTER

תATARI' system special!

* Atari 130 XE Computer
$\star 1050$ Drive
\star Star NX-10 Printer
REG. \$697 NOW \$459
Full Manufacturer's Warranty.

COMMODORE= SYSTEM SPECIAL!

\star Commoaore 64 C Computer $\star 1541$ C Drive
\star Seikosha SP-1000 VC Printer ฝ 2 Joysticks

90 Day Warranty.
REG. $\$ 789$
SALE $\$ 525$

EPSON

LX 86.
FX 85
EX 800
EX 800.
EX 1000
FX 286.
FX 286
LO 800
LQ 1000

SEIKOSHA SP-1000 A centronics SP-1000 VC (C-64) SP- 1000 IBM SP-1000 AS RS-232 SP- 1000 AP, APIIC BP. 1300 Al BP. 5420 Color Kit. BP-5420 ribbon BP- 5420 ribbon
SP-1000 ribbon

TOSHIBA	
321 P/S	479
351 sheet feeder	529
P341P.	669
P341S	699
P351+	999
DIABLO	
D25	549
P.32 CQ1	699
635.	$\begin{array}{r}1029 \\ \hline 2395\end{array}$

JUKI	
Juki 6100	
Juki 5510	
Juki 6300	

STAR MICRONICS
NX 10 C
$\mathrm{NL}-10$
NX-10
NB-15
RS-232 serial board

LYCO'S WAREHOUSE PROVIDES YOU ACCESS

TO THE NATION'S SILVER REED LARGEST INVENTORY! Exp 420 P 209
 $\operatorname{EXP} 800 \mathrm{P}$
$\operatorname{EXP} 770$ LEGEND 808.
1080 1380.

OKIDATA

Okimate	189
292	449
293	599
120 NLQ	225
182	214
192+	365
$193+$	55

CITIZEN
120-D
MSP-10
MSP-15
MSP-20
Premier 35
COLOR RIBBONS NOW AVAILABLE!!

POWERTYPE

\star letter quality
\star daisywheel
$\star 18 \mathrm{cps}$
\star centronics parallel

EPSON

INTERFACING			
ORANGE MI		XETEC	
Grappler + (Ap)	75	Super Graphix 64	64
Grappler 16 K (Ap)	119	Super Graphix JJ 64	45
Orange (AP)	45	Xetec AT	39.95
Grappler C Grappler (lllc)	79		
Grappler CD	69	ICD	
DSI		PR Connection	59.95
PPI (C-64)	44.95	SUPRA	
TYMAC		Super G	49.95
Connection (C-64)		Microprint	
Tackler (AP)	45	1150	$\begin{array}{r}49.95 \\ \hline 39\end{array}$
PPC 100 (AP)	39	Gee Wiz	39.95

DRIVES

 indusGT Atari 179
GT C-64 179

COMTEL Enhancer 2000 (C-64) 149

COMMODORE
1571.
1541 C

239
175

51⁄4 DISKETTES MAXELL
SSDD
SSDD BONUS
DSDD
SSDD SKC $\quad 8.50$
${ }_{9}^{8.50}$ SSDD VERBATIM
SSDD VERBATIM
DSDD 8.95 OS
3.5 DISKETTES
 3M
\qquad

CALL TOLL FREE 1-800-233-8760

IN PA 717-494-1030 CUSTOMER SERVICE 717-494-1670

$$
\begin{aligned}
& \text { or send to } \\
& \text { Lyco Computer } \\
& \text { P.O. Box } 5088 \\
& \text { Jersey Shore, PA }
\end{aligned}
$$ VISA

HOURS Mon-Thur 9 AM. 8 PM Fri 9 AM-6 PM Sat 10 AM- 6 PM

Rish .fiee .Palicy

in-stock items shipped within 24 hrs of order. No deposit on C O D orders. Free ship. ping on prepaid cash orders within the continental US. Volume discounts available. PA residents add sales tax. APO. FPO and international orders add $\$ 5.00$ plus 3% for privority mail. Advertised prices show 4\% discount for cash, add 4% for Master Card and VISA. Personal checks require 4 weeks clearance betore shipping. We cannol and red label shipping All merchandise carried under manutacturer's warranty Return restriction applicable Return authorization required. All items subject to change without notice

Lyco COMPUTER

MARKETING \& CONSULTANTS INC.

LYCO'S PRINTERS OF THE MONTH!

W SUPER SPECIAL

ATARI 1040 MONO SYSTEM! with
Seikosha SP-1000 A printer $\$ 969.00$
Full warranty applies.

Panasonic. Industrial Company

1080 i

* 120 cps Draft Mode
$\star 24 \mathrm{cps}$ NLQ
* Word Process
\star Friction Feed
2-year warranty.

COMPLETE COMMODORE 128 SYSTEM!

LYCO PACKAGE DEAL!

SYSTEM INCLUDES:

\star Commodore 1902 A monitor \star Commodore 1571 Disk Drive \star Commodore 128 Computer

$\$ 755.00$

\star FACTORY FRESH \star

\mathbb{L}

LYCO COMPUTER

MARKETING \& CONSULTANTS INC.

WE CARRY THE BEST PRINTERS AT THE BEST PRICES!

SEIKOSHA

2 YEAR WARRANTY

SP-1000 VC

$\star 100$ cps Draft Mode
$\star 20 \mathrm{cps}$ NLQ
\star Direct Connect C-64/128
Dot-Matrix Printer

> \$165.00

EPSON

FX-85
$\star 80$ column $\star 160 \mathrm{cps}$ Draft Mode

$\$ 355.00$

COMMODORE HARDWARE
128 Computer . . $\$ 249$
1571 Disk Drive . $\$ 239$
64C Computer . . \$175 1541 C
Disk Drive $\$ 185$
1902 Monitor . . . \$289
1802 Monitor . . . \$215 C-1700 128K
RAM \$109.95
1750 \$169.95

ЛATARI「520 St COLOR SYSTEM!

* 520 KEYboARD
* SF-354 DISK DRIVE
* SC-1224 COLOR MONITOR

OWN TOTAL PERFORMANCE...

FULL MANUFACTURER'S WARRANTY APPLIES.
(Monochrome Monitor Systems Available.)

$\$ 775.00$

FACTORY DIRECT \star
TOLL FREE 1-800-233-8760

Ll LYCO COMPUTER

MARKETING \& CONSULTANTS INC.

爪 ATAR1 爪
 capple
 ($=$ commodore

ACTIVISION	BRODERBUND
Mindshadow $\$ 15.75$	Loderunner . . . ${ }^{\text {S26.75 }}$
Hacker .	Champ Loderunner . . ${ }^{24.95}$
Ghostbusters . $\quad 15.75$	Bank St. Writer ${ }^{39} 9.95$
Great AM Race . $\quad 1 \begin{aligned} & \text { 15.75 }\end{aligned}$	Print Shop 1-. ${ }^{26.75}$
Music Studio 22.75	
MICROPROSE	
Silent Service ${ }_{\text {S }}$ S21.95	FIREBIRD
t in NAM Top Gunner 3 Games	${ }_{\text {MRCA }}$
SUBLOGIC	EPYX
	Champ Karate Apshai Trilogy
Pinball	
Flight Sim	
	O.S.S
Flight Sim Jet	
	Basic XL $\quad 32.95$
SSI	${ }_{\text {Action }} \begin{aligned} & \text { Act } \\ & \end{aligned}$
	Tool Kits 16.95
Warship	
Wizard's Crown Gettysburg	JOYSTICKS
${ }_{\text {Gemstone }}$ Healer 24.75	
Phantasie	
	Super 3-way 19.99
ACCESS	INFOCOM
Triple Pak ${ }^{\text {a }}$ S17.95	Leather Go
Leader Board 24.75	Moonmist 20.
Tournament Dsk 1 . . . 15.75	Trinity …1..... 20.7
Action Pak	Hitchhiker's Guide 20.7

ACTIVISION		BRODERBUND	
Term Paper . .i. ${ }_{\text {S }}$ 44.75		Toyshop	\$49.95
	24.75	Loderunner	26.95
Transtorme	22.75	Bank St. Series EA	42.95
Aller Ego		On Balance	69.95
Little Peor	$\begin{array}{r}24.75 \\ \hline 245\end{array}$	Printshop	$\begin{array}{r}31.50 \\ 1675 \\ \hline\end{array}$
Hacker II	$\begin{array}{r}24.75 \\ \hline 245 \\ \hline\end{array}$	Graphic Lib. EA	
Shanghai	24.75	Carmen Sandiego	$\begin{array}{r}22.75 \\ \hline 22.75 \\ \hline\end{array}$
Rocky Horror		Captain Goodnight	. 75
FIREBIRD		P. Muppet Cru	(e)25.75 24.75
Colussous s		Scienc	.95
Elite.	22.75		
		SSI	
MICROPROSE		Carrier Force	
Crusade in Eu	\$24.75	Broad	
$\substack{\text { Decisision in } \\ \text { F. }}_{\text {D }}$		Gettys NAM	$\begin{array}{r}32.75 \\ \\ 22.75 \\ \hline\end{array}$
${ }_{\text {F }}^{\text {FATO }}$ - ${ }^{\text {a }}$ Commar	2195	Shard of Spria	${ }_{22.75}^{22.75}$
Silent Service		War in Russia	${ }^{22.75}$
Solo Flight	16.95	Road War 2000	24.75
EPYX			
Destroyer		SUBLO	
World Games		Jet SUBLOC	
Movie Monster	24.75	Scenery Disk	$\begin{array}{r}\text { \$2,.95 } \\ \hline 17.95\end{array}$
Champ Karate	24.75	Flight Sim II.	29.95

ACTIVISION		BRODERBUND	
Labrynth	\$22.75	Printshop	
Titantic.		Graphics Lit	
Aliens.	24.75	P.S. paper	${ }^{12.95}$
Hacker	18.75	Bank St. Writer 128k	42.75 22.75
Hacker	20.75 20.75	Karateka	${ }_{2}^{22.75}$
Game Maker	24.75	P. S. Comp	24.75
Library		Science Kit	35.95
Spor	13.75		
${ }_{\text {che }}^{\text {Scii.Fi, }}$	13.75	SSI	
Masketball	${ }_{22.75}$	Computer Quarterback	\$22.75
Tass Times	22.75	Field of Fire	
Rocky Horror	18.75	Gemstoone Hea	18.95
Spin Dizzy	18.75	Phantasie II	22.75
Baseball	24.75		22.75 22.75
SUBLOGIC			
Jet,	\$22.75	MICROPROSE	
Scenery Dsk			
(light $\begin{aligned} & \text { Flimalm } \\ & \text { Football }\end{aligned}$	25.95	Silent Service	21.95
Baseball	32.75		21.95
		Top Gunner	18.95
FIREBIRD			
PawnPealClialTaking Tea	\$22.75	EPYX	
	28.75	Movie Monster	
	28.75	Vorpol Kit	
		Fast Load	24.75
		Summer Gam	24.75
ACCESS		Super Cycle	24.75 24.75
Leader Board	\$24.75	Football.	${ }_{24.75}$
Tournament Dsk		Mutti Plan	
Executive Dsk	15.75	Winter Games	
Triple Pak	15.75	Champ Karate	20.75 24.75
Mach 128 10it Frame	29.75 24.75	Destroyer	24.75 24.75

AMIGA

ACTIVISION	BRODERBUND
Term Paper ${ }^{\text {S }} 34.95$	Printshop $\$ 34.95$
Hacker II 24.95	P.S. Companion 30.95
Music Studio 29.95	Wizard of Wall St. . . . 24.95
Pebble Beach Golf 29.95	Bank St. Writer . . . 48.95
Shanghai 24.95	Graphics Lib. EA . . . 22.95
SUBLOGIC	Karateka 22.95
SUBLOGIC ${ }_{\text {\$32.75 }}$	Toyshop 39.95
Scenery Disk $\quad 17.95$	SSI
INFOCOM	Battle of Antihiem,.... $\$ 38.75$
Leather Goddess \$24.75	Computer Baseball. . . . 14.75
Moonmist 24.75	Tigers in the Snow 22.95
Trinity 24.75	
UNISON WORLD	HI TECH
Printmaster...... $\$ 35.95$	Cardware $\$ 8.95$
Art Gallery 24.95	Partyware 8.9 .95
	Heartware
EPYX	
Destroyer $\$ 24.75$	MICROLEAGUE
Movie Monster 24.75	
World Games 24.75	Baseball \$24.75
Winter Games . $\quad 24.75$	General Mgr 24.75
Champ Karate . . . 24.75	Team Disk 14.75
Rouge 19.75	Stat Compiler 18.75

When You're Ready to Mouse Around...

Do it for
less with a Lisa

Runs Macintosh Software

The Lisa Professional. You'll find it nowhere else! A powerful computer with up to a full megabyte of RAM, 40 Mb internal hard disk capacity, 400 K internal disk drive, large $12^{\prime \prime}$ screen and keyboard complete with numeric keypad. And, powerful as it is, it's as easy to run as any Macintosh ${ }^{T M}$ and a whole lot easier to afford!

RAM	DRTVF	Price	
512 K	400 K Internal	$\mathbf{7 9 9 . 0 0}$	
1 Mb	400 K Internal	$\mathbf{9 9 5 . 0 0}$	
1 Mb	5 Mb ProFile	$\mathbf{1 4 9 5 . 0 0}$	
1 Mb	10 Mb Internal HD	$\mathbf{1 5 9 5 . 0 0}$	
1 Mb	20 Mb Internal HD	$\mathbf{1 7 9 5 . 0 0}$	
1 Mb	10 Mb Internal HD	$\mathbf{1 7 9 5 . 0 0}$	New
1 Mb	20 Mb Internal HD	$\mathbf{1 9 9 5 . 0 0}$	New
Lisa Oflice System (7/7)	295.00		

$-$
-Apple || -Apple III •Macintosh ${ }^{\text {TM }}$ Hard Disk Drives
Guark(8) 10 mb \$795 II, /// \& Mac Guark 20mb \$895 II, /// \& Mac ProFile ${ }^{\text {TM }} 5 \mathrm{mb} \$ 595 \mathrm{II}, / / / \& \mathrm{XL}$ ProFiles Reconditioned-Warranted

Apple ${ }^{*}$ Modem

- Hayes Compatible
- 300 Baud - New

- With Apple Aic. Kit

Limited Supply

Specializing in Remarketed and Obsolete Apple Products..

Apple (8) Macintosh ${ }^{\text {TM }}$
400K Disk Drives
Original External Drives!
Reconditioned - Warranted

SPECIAL PURCHASE

MacWrite ${ }^{\text {M }}$
 MacPaint ${ }^{\text {TM }}{ }^{\text {Write }}$ ver. 2.20 - Paint ver. 1.3

Comrex ${ }^{\circledR}$
 Deluxe Joysticks INEW
 - Works on Apple and Franaklin Atari 2600, 400/800, Vic 20 Commodore 64, Sears Arcade $\$ 1495$ and ColecoVision

- Can be "fine tuned" II Adapter 2.00 additional

Over 200 products for the

 Apple /// in stock and ready to ship!
\qquad

ORDERLINE -

\int_{C}^{1}
1-800-821-3221
For a complete lisiting of products CALL FOR OUR LATEST CATALOG
(501-952-7631 Visa

Apple ${ }^{*} / / /$

- 256K - full-function keybaord - CPU, Monitor, Disk Drive
- 4 Expansion slots
- Great for acent/business

Warranted

With 5mb ProFile $\$ 999$

$$
4
$$

> Introduce yourself to a fresh new concept called Remarketing. Sun is the nation's largest support center for obsolete Apple® products. For questions FULL service and support call Sun. Each
> SERVICE satisfaction guarantee.
> AND SUPPORT $\begin{gathered}\text { Weare not } \\ \text { satisfied until you are }\end{gathered}$

Quick ProDOS Catalog For Apple II

Larry Sholl

This enhanced ProDOS CATALOG command automatically displays a disk catalog in the correct format for the current screen.

Have you ever typed a CATALOG command for a ProDOS disk when your Apple II was set for a 40column screen? The result contains plenty of good information, but it's difficult to read 80 columns of information on a 40 -column screen. Conversely, you miss a lot of information if you use a 40 -column cata\log command with an 80 -column screen. "Quick ProDOS Catalog" for the Apple II automatically selects the correct CATALOG format for your screen. To view the disk's contents, simply type CC and press RETURN.

BASIC Filemaker

Type in the BASIC filemaker and save a copy to disk. When you run the program, it creates a file named QUICK.CATALOG on disk. Because the filemaker creates a file with this name, do not use this name-QUICK.CATALOG-for the BASIC program. If you do, you'll get a FILE TYPE MISMATCH error when you run the BASIC program. To install the utility, first boot the system with a disk that contains both the PRODOS and BASIC.SYS-

TEM files, then insert a disk containing the QUICK.CATALOG file, type BRUN QUICK.CATALOG, and
press RETURN. You can also perform a ProDOS smart run with QUICK.CATALOG. Quick Catalog prints a brief message to tell you that it's in place. You may run or install other programs without disturbing this one.

To catalog the active drive, type CC and press RETURN. Quick Cata\log also accepts any syntax that works with a normal catalog command. Here are some examples:
Command
CC,D2
CC,D1
CC/RAM

Purpose

catalog disk in drive 2 catalog disk in drive 1 catalog RAM drive if it's active

CC/HACK/FUN
 CC,S6,D1 FUN on disk HACK catalog disk in drive 1 of slot 6

If Quick Catalog can't find the indicated drive/path, it prints the message ProDOS VOLUME NOT FOUND IN THAT DRIVE/PATH. Should you get that error message, you can display the default path by entering the command PREFIX. You can change the default ProDOS prefix at any time. Here are some typical PREFIX commands:

> Command Purpose
> PREFIX,D2 sets drive 2 as default drive
> PREFIX,D1 sets drive 1 as default drive
> PREFIX/RAM sets ProDOS volume RAM as default path

ProDOS Notes

Unlike DOS 3.3, ProDOS has welldefined entry points and includes a
mechanism for adding new, external commands to its vocabulary. A properly installed external command is as resistant to crashes as ProDOS itself. Pressing CON-TROL-RESET has no effect on a new command because the new program and the vector which points to it are both in memory areas protected by ProDOS.

Under normal circumstances, all keyboard input is passed to the BASIC.SYSTEM routine. If BASIC.SYSTEM doesn't recognize the input string as a valid ProDOS command, it passes the input to Applesoft BASIC, which gets a chance to identify it. If Applesoft doesn't recognize the string as a valid BASIC keyword, a syntax error occurs. However, ProDOS allows you to add a detour so that all unclaimed commands are passed to a routine of your own instead of to the usual error handler. An external routine may either claim the command and act on it or pass it to any other external command handler whose address is linked to the first. If no external command claims the input, it is passed to Applesoft. This scheme permits you to add multiple external commands while preserving normal error handling.

The technique for attaching an external command to BASIC.SYSTEM is described in "Apple ProDOS Technical Notes" numbers 6 and 9. Briefly, the process involves requesting memory space from ProDOS, putting your program's new
address into BASIC．SYSTEM，and relocating your program．

Inside Quick Catalog

Here＇s an outline of what Quick Catalog does．The program first checks to see whether ProDOS is active．If ProDOS is absent，the pro－ gram prints an error message and returns to BASIC．Once installed as an external command，Quick Cata－ \log waits to receive any command that starts with the characters CC， converting lowercase to uppercase if necessary．When this command appears，the program checks for $40-$ column or 80 －column mode and is－ sues the appropriate CATALOG command along with any addition－ al parameters．If a catalog activity does not follow，an error message is displayed．

If you＇re familiar with assem－ bly language，you may find it in－ structive to examine Quick Catalog． BLOAD the file from BASIC，then enter the monitor with the com－ mand CALL－151．Type 2000L and press RETURN to disassemble the beginning of the file．The program is located in the area \＄2000－\＄21FF． The code at $\$ 2000-\$ 20 \mathrm{FF}$ prepares the code at $\$ 2100-\$ 21 \mathrm{FF}$ and relo－ cates it in the area specified by a ProDOS call．After relocation，the code at $\$ 2000$ is abandoned．

QUICK．CATALOG Filemaker

For instructions on entering this program， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEIcp7．

3F 7Ø TEXT ：HOME ：PRINT＂LOADI NG ML．．．＂
718 F FOR $1=8192$ TO $8192+511$ ：READ A：POKE I，A：$X=X+$ A：NEXT
P9 98 IF X ＜＞ 71906 THEN PRINT ＂ERROR IN DATA STATEMENTS． ＂：STOP
ic 95 PRINT CHR\＄（4）＂BSAVE QUICK ．CATALOG，A\＄2øøø，L\＄2øの＂
4E 1øØ DATA 173， $0,191,291,76,24 \varnothing$ ，15，32，221，251，173
A3 110 DATA $247,32,141,129,32,32$ ，116，32，76， 113,32
उC 129 DATA $169,1,32,245,199,176$ ，9，141，172，32， 141
ID $13 \emptyset$ DATA $98,32,76,44,32,32,11$ 6，32，76，298， 3
15140 DATA $173,7,190,141,186,33$ ，173，8，19ஏ，141，187
23159 DATA $33,169,9,141,7,195,1$ $73,172,32,141,8$
IF $16 \emptyset$ DATA $190,173,172,32,141,6$ ， $33,141,12,33,141$
BJ 179 DATA $83,33,141,2 ø \emptyset, 33,141$ ，72，33，141，2ø3， 33
7A $18 \emptyset$ DATA $141,166,33,162,9,189$ ，$\varnothing, 33,157, \varnothing, 255$
$6319 \emptyset$ DATA $232,224,255,298,245$ ， $173,297,32,141,129,32$
9C $2 ø \emptyset$ DATA $32,116,32,76,2 ø 8,3,3$ 2，251，218，173， 155
9C 210 DATA 32，141，169，32，173，12 פ，32，141，14ø，32， 173
D6 220 DATA $121,32,141,141,32,1 \in$ 2，1，189，155，32， 32
C4 230 DATA $237,253,232,236,169$ ， $32,144,244,32,251,218$
BE 24 Ø DATA 96，13，211，217，211，21 $2,197,265,169,197,216$
6E $25 \emptyset$ DATA $21 \varnothing, 2 \emptyset 7,21 \emptyset, 16 \emptyset, 174$ ， 195，2ø7，196，81，32，299
$6926 \emptyset$ DATA $213,201,195,293,174$ ， 195，193，212，193，294，2ø7
79270 DATA $199,169,291,211,160$ ， $206,207,215,160,2 \emptyset 1,206$
86289 DATA $211,212,193,294,204$ ， $197,196,174,165,174,32$
F7 290 DATA 37，269，213，291，195， 2 ø3，174，195，193，212， 193
BC 3øø DATA $2 \emptyset 4,2 \emptyset 7,199,16 \emptyset, 21 \emptyset$ ， 213，266，211，169，297，296
9A 319 DATA $294,217,169,215,291$ ， 212，2øø，16ஏ，2ø8，21ø， 297
AF $32 \emptyset$ DATA $196,297,211,174,16 \emptyset$ ， 2ø9，32，234，ø，ø，
F7 336 DATA $9,183,255,216,173,19$ $8,199,141,16,33,173$
7A $34 \varnothing$ DATA $169,19 \varnothing, 141,17,33,16$ 2，1，189，179，170，291
93 359 DATA 67，2ø8，195，232，224， 3 ，2ø8，244，162，ஏ， 189
A2 $36 \emptyset$ DATA $9,2,232,221,9,2,2 \emptyset 8$ ， 247，42，42， 42
FB $37 \emptyset$ DATA 24，1ø6，106，1ø6，201， 1 95，2ø8，236，232，16ஏ，\varnothing
$8538 \emptyset$ DATA $189, \emptyset, 2,153,224,2,23$ 2，2øø，224，15，24ø
4 F 39 DATA $4,2 \emptyset 1,141,2 \emptyset 8,24 \varnothing, 16$ 9，3，141，89，33， 173
CC 4øø DATA 24，192，16，176，117， 16 2， $5,189,188,33,157$
D1 $41 \emptyset$ DATA $\emptyset, 2,232,224,3,268,24$ 5，16ø，$, 185,224$
1142 DATA $2,42,42,144,21,42,24$ ，156，156，106，157
AB $43 \varnothing$ DATA $\varnothing, 2,232,26 \varnothing, 192,15,2$ $4 \emptyset, 15,2 \emptyset 1,141,2 \emptyset 8$
D5 44ø DATA 231，24，144，8，1ø6， 196 ，24，144，235，24，144
59456 DATA $54,169,255,141,38,2$ ， 169，$\emptyset, 141,15,19 \varnothing$
F8 46 DATA $32,3,19 \varnothing, 169, \emptyset, 141,1$ 5，199，141，84，19ஏ
$5047 \emptyset$ DATA $141,85,19 \varnothing, 24,173,38$ ，2，201，255，208， 19
F9 48ø DATA $162, \emptyset, 189,2 ø 4,33,32$ ， 237，253，232，224，38
7A 490 DATA $2 \emptyset 8,245,32,221,251,3$ 2，251，218，76，268， 3
IC $5 \emptyset \emptyset$ DATA $56,76,298,3,195,193$ ， 212，193，2ø4，297， 199
$5951 \emptyset$ DATA $160,169,7,141,89,33$ ， 76，79，33，298，21ø
©F 52の DATA 297，196，297，211，16ø， $214,2 \emptyset 7,294,213,265,197$
DA 530 DATA $160,266,267,212,169$ ， $291,296,169,212,299,193$
CC 54の DATA $212,16 \varnothing, 196,210,261$ ， $214,197,175,268,193,212$
5B 55ø DATA 2øø，174，16ஏ，211，232， $239,236,236,175,195,297$
E9 569 DATA 295，208，213，212，197， 193
©

Behaved Batch Files

COPY CON: YESNO.BAT
ECHO OFF
CLS
:START
ECHO THIS IS A TEST BATCH FILE FOR YORN.COM
YORN PLEASE PRESS N TO CONTINUE...
IF ERRORLEVEL 255 GOTO WRONG ECHO
ECHO YOU PRESSED THE N KEY
GOTO END
:WRONG
ECHO
ECHO YOU DIDN'T PRESS THE N KEY
GOTO START
:END
ECHO
ECHO ...ENDING
After you have typed every line, press the F6 function key to write the batch file to disk. When the drive stops, you should have the file YESNO.BAT on the current disk. Make sure you also have a copy of YORN.COM on the same disk.

Invoke YESNO.BAT by typing YESNO at the DOS prompt. Note that YORN.COM displays a different prompt this time. Instead of Answer (Y)es or (N)o, it prints the message PLEASE PRESS N TO CONTINUE. If you answer "Yes" by pressing Y or y, one series of batch commands is executed. If you answer "No" by pressing N or n, the batch file branches to a different series of commands.

It's not difficult to see how this capability might be useful. For instance, say that you often boot up with an AUTOEXEC.BAT file that installs an accessory program such as SideKick. When you use memoryintensive software such as Framework on a machine with only a limited amount of RAM, you may find yourself running out of memory if SideKick or a similar accessory is resident. With YORN.COM, your AUTOEXEC.BAT file can ask you
whether or not to install the accessory and respond accordingly.

Error Codes

YORN.COM tells you which key is pressed by returning an error code. In the example file YESNO.BAT, it returns an error code of 255 when you press Y or y and an error code of 254 for N or n. You can check the error code with IF-ERRORLEVEL and branch to the desired destination with GOTO as shown in the sixth line of YESNO.BAT. When you're checking error codes, it is essential to begin with the highest code (255 in this case) and work downward to lower codes systematically.

Customizing YORN.COM

We have already noted how to change the prompt printed by YORN.COM: Simply supply the text of the new prompt after the word YORN in the batch file. If no such text is found, YORN.COM prints the default prompt.

For special purposes, you can also check for characters other than Y or N. For instance, a batch process that can send output to either the screen or a disk file might prompt you to press S for screen output or D for disk output.

The hex numbers \$59 and \$79 in lines 390 and 400 of the BASIC filemaker stand for the characters Y and y, respectively. The hex numbers $\$ 4 \mathrm{E}$ and $\$ 6 \mathrm{E}$ in lines 400 and 410 stand for N and n, respectively. To substitute other characters, replace these values with the values of the characters you wish to test for. Remember that these numbers must be in hexadecimal. (The BASIC function HEX\$ converts decimal values to hexadecimal: For instance, PRINT HEX\$(13) displays

0 D , the hex equivalent of decimal 13.) If you change any of these values, you must also change the checksum value (10731) in line 170 accordingly. Once this is done, rerun the BASIC filemaker to create a new version of YORN.COM.

YORN.COM Filemaker

For instructions on entering this program, please refer to "COMPUTEI's Guide to Typing In Programs" in this issue of COMPUTEI.
KJ $12 \emptyset$ PRINT "Checking your typi
ng - please wait ...";
61 $13 \emptyset$ FOR I=ø TO 109
EC 140 READ $A \$: A=V A L$ (" $\& H "+A \$$)
EE $15 \emptyset$ CKSUM=CKSUM + A
ND 160 NEXT I
HM 170 IF CKSUM $=1.0731$ THEN 210
AB $18 \emptyset$ PRINT:PRINT
IB $19 \emptyset$ PRINT "Error - please che ck your typing!"
OC 2øø STOP
HC 210 RESTORE 340
IB 220 OPEN "YORN. COM" AS \#1 LEN $=1$
PF 23ø FIELD \#1, 1 AS BYTE\$
6L 240 FOR I=ø TO 109
KD 250 READ A\$
HK 260 LSET BYTE $\$=$ CHR $\$$ (VAL (" $\& H$ "+A\$))
PJ 279 PUT \#1
01280 NEXT I
AG 290 CLOSE \#1
PD $3 ø \emptyset$ PRINT:PRINT
IJ 310 PRINT "YORN.COM created."
I6 320 PRINT
LC $33 \emptyset$ END
 , BE, $8 \varnothing, \emptyset \emptyset$
BE $35 \emptyset$ DATA BS, Øø, 8A, ØC, 83,F9, Øø , 75, ØA, BA
 ,19,95,46
KJ $37 \emptyset$ DATA $8 A, 5 C, \emptyset 1,8 \emptyset, F B, \emptyset D, 74$, ø8, 8A, D3
JE $38 \emptyset$ DATA $B 4, \emptyset 2, C D, 21, E 2, E F, B A$, 6D, $01, B 4$
JK $39 \emptyset$ DATA $99, C D, 15, B 4, \emptyset \emptyset, C D, 16$, 3C, 59, 74
DC $4 \emptyset \emptyset$ DATA $11,3 C, 79,74, \emptyset D, 3 C, 4 E$, 74, $04,3 C$
LN 41 DATA 6E, 75, EC, Bø, FE, EB, Ø3 , 9ø, Bø, FF
내 $42 \emptyset$ DATA B4, 4C, CD, 21, 41, 6E, 73 , 77, 65, 72
JE $43 \emptyset$ DATA $29,59,28,65,73,29,2 \emptyset$, 6F,72,2ø
BK 440 DATA $4 E, 28,6 F, 29,2 \emptyset, 2 E, 2 E$, 2E, 24, 24

Amiga Jigsaw

Walter Bulawa

This short, elegant program is not only an entertaining activity, but also a demonstration of valuable techniques for programming graphics in Amiga BASIC.
"Jigsaw" is a simple, but absorbing, BASIC game for the Amiga. The program requires you to put together a puzzle after its pieces have been scattered around the screen. The Amiga keeps track of the number of moves you make and the total amount of time you take to complete the puzzle.

Unshuffle The Pieces

Type in the program and save a copy to disk before you run it. The program begins by drawing a puzzle shape in a small window in the center of the screen. Wait until you see a shape that you like, then press the space bar. The Amiga then divides the picture into a number of equally sized pieces, capturing each piece in a small square on the screen. While this is being done, you should take advantage of the opportunity to memorize the puzzle's shape. After every piece has been captured, the computer shuffles them at random. Begin playing when the center of the screen is cleared.

Your goal is to reconstruct the picture by placing every piece in its original position, using the mouse to move pieces. To pick up a piece, move the mouse pointer over the
piece, then press the left button and hold it down. The piece blinks briefly, and the computer emits a beep to indicate that you have the piece. Continue to hold down the mouse button as you move the piece to its destination. When you have positioned the piece, release the button. The square blinks a second time to signal that it has been placed. Continue this process until the entire picture is constructed. When you solve the puzzle, the program lets you play again or quit.

The bottom of the screen contains two counters: a timer that updates continuously and a move counter that shows how many turns you have taken. To increase the game's difficulty and add to its visual appeal, the computer also continuously rotates the palette colors of the puzzle pieces.

You must place each piece reasonably close to the desired destination square, but you need not line it up exactly. If the piece is close enough for the computer to tell which location you intend, the program automatically "snaps" it into perfect alignment.

If you find yourself stumped, you can peek at the original puzzle for a moment, and then return to the puzzle screen. This is done with the back-window and front-window gadgets located at upper left of the window border. To peek at the original, unscrambled puzzle, click the left button once on the backwindow gadget. To return to the

"Amiga Jigsaw" is an absorbing challenge to puzzle fans of all ages.
puzzle screen, click the left button once on the front-window gadget. There is no penalty for peeking. However, keep in mind that the timer continues to tick while you study the original shape.

Beginning puzzlers should avoid puzzles that include large areas of blank space. Blank squares may look identical to you, but the computer remembers the original location of each piece and won't end the game until you place each one in the correct spot. Thus, a puzzle that contains mostly blank space can be nearly impossible to solve.

Bobs And OBJECT

Programmers may wish to study the way that this program moves and places graphic shapes on the screen. One technique that might have been used is to GET each shape into a variable and PUT it on

the screen wherever desired．But PUT and GET create slow，flickery animation in BASIC．Instead of PUT and GET，this program makes each puzzle piece into a $b o b$ and animates it with OBJECT com－ mands．The result is much smooth－ er animation．You can still notice slight jerkiness in the piece＇s mo－ tion when you carry it with the pointer，but this is due to delays created by background routines ac－ tivated by ON TIMER．

The process of creating a bob involves several steps．First，GET is used to capture all the graphic data for each shape in an integer array． This integer array is then converted into a string array．The string array， in turn，is concatenated into a gen－ eral string array that holds the bob＇s features and is used to animate the bob with OBJECT．DRAW com－ mands．This simple method of cre－ ating bobs and sprites has not，to my knowledge，been documented widely．

Amiga Jigsaw

For instructions on entering this program， please refer to＂COMPUTE！＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

FOR irow＝\emptyset TO rLast 4
FOR icoL＝$=$ TO clast 4
WINDOW OUTPUT 34
$x=$ FNXY fmRC（icoL +1 ，xwidth $): y=F N X Y$
fmRC（irow +1 ，ywidth）$\&$
GET $(x, y)-(x+x w i d t h-1, y+y w i d t h-1$ ），$a(\varnothing, \varnothing)<$
s\＄（icoL，irow）$=\| " 4$
iLast＝getsize－14
FOR i＝3 TO iLast：s（icoL，irow）＝s \＄（icol，irow）＋MKIS（a（i，ø））：NEXT \leqslant WINDOW OUTPUT 24
i＝icoL＋ncoLs．pzL＊irow4
$\mathrm{x}=\mathrm{FNXY} \mathrm{fmRC}($ coLs（i），xwidth）： $\mathrm{y}=\mathrm{FNX}$ YfmRC（rows（i），ywidth） 4
PUT $(x, y), a(\varnothing, \varnothing) \leftarrow$
pcoL（icoL，irow）$=$ coLs（i）：prow（ico L，irow）＝rows（i）$\&$
NEXT：NEXT 4
WINDOW 24
4
1 Shuffle the pieces 4
FOR i＝Ø TO 204
Pick．RC： 4
FOR j＝1 TO 24
$\operatorname{coL}(j)=\operatorname{INT}(\operatorname{ncoLs} \cdot p z L * R N D): \operatorname{row}(j)$
$=I N T$（nrows．pzL＊RND）\leftarrow
NEXT jヶ
IF $\operatorname{coL}(1)=\operatorname{coL}(2)$ AND row（1）$=$ row（ 2）THEN GOTO Pick．RC 4
FOR $j=1$ TO 24
$x(j)=\operatorname{FNXYfmRC}(\operatorname{pcoL}(\operatorname{coL}(j), \operatorname{row}(j)$ ），xwidth） 4
$y(j)=$ FNXY fmRC（prow（coL（ j ），row（ j ） ），ywidth） 4
$\operatorname{GET}(x(j), y(j))-(x(j)+x w i d t h-1, y$ （j）＋ywidth－1），a（ $\varnothing, j-1) \&$
LINE $(x(j), y(j))-(x(j)+x w i d t h-1$ ， $y(j)+y w i d t h-1), \emptyset, b f 4$
NEXT ${ }^{4}$
PUT $(x(1), y(1)), a(\varnothing, 1): \operatorname{PUT}(x(2)$ $, y(2)), a(\varnothing, \varnothing) 4$

SWAP $\operatorname{pcoL}(\operatorname{coL}(1)$ ，row（1））， $\operatorname{pcoL}(\operatorname{co}$ $\mathrm{L}(2)$ ，row（2）） 4
SWAP prow（coL（1），row（1）），prow（co $\mathrm{L}(2)$ ，row（2）） 4
NEXT
－Main loop
＇ 4
t！＝TIMER：ON TIMER（1）GOSUB Show ．Time：TIMER ON 4
done＝faLse：seLection．made＝faLse \notin GOSUB Beap
WHILE NOT done
IF MOUSE（ $\varnothing)=-1$ THEN 4
SeLect．Piece： 4
$x=$ MOUSE（5）：$y=$ MOUSE（6）＇get $x \& y$ of mouse 4
GOSUB Fit2Scn＇see if on screen 4 coL＝FNRCfmXY（ x ，xwidth ）：row＝FNRCf mXY（y，ywidth） 4
GOSUB WhatsThere 4
IF piece THEN 4
coL．piece＝cp：row \cdot piece $=r$ p 4
pcoL（coL．piece，row．piece）$=-14$
prow（coL．piece，row．piece）$=-14$
GOSUB Beap 4
$\mathrm{xp}=\mathrm{FNXY} \mathrm{fmRC}(\mathrm{coL}, \mathrm{xwidth}): y p=F N X Y f$ mRC（row，ywidth） 4
$x d i f=x p-x: y d i f=y p-y \&$
GET（xp，yp）－（xp＋xwidth－1，yp＋ywid th－1），a $(\varnothing, \varnothing) \&$
LINE（ $x p, y p$ ）$-(x p+x w i d t h-1, y p+y w i$ dth－1），$\varnothing, b f 4$
OBJECT．SHAPE $1, s 1 \$+s \$(c o L . p i e c e$, row．piece） 4
OBJECT．X $1, x p:$ OBJECT．Y $1, y p \notin$
OBJECT．ON 14
DEFINT $\mathrm{a}-\mathrm{z} \nless$
DEFSNG coLrs
DEF $\operatorname{FNXYfmRC}(\mathrm{cr}, \mathrm{w})=(\mathrm{cr}-1){ }^{*}{ }_{\mathrm{W}} \nmid$
DEF $\operatorname{FNRCfmXY}(x y, w)=\operatorname{INT}((x y+w) / w)$ 4
faLse＝$\emptyset:$ true＝$=14$
ncols．pzL＝5：nrows．pzL＝44
xmin． $\mathrm{pzL}=\varnothing$ ： $\mathrm{xmax} \cdot \mathrm{pzL}=149: y m i n \cdot p z L$ ＝\varnothing ：Move．piece＝994
xwidth＝（xmax．pzL－xmin．pzL＋1）／nco Ls．pzL孔
ywidth＝（Move．piece－ymin．pzL＋1）／n rows．pzL4
getsize＝3＋INT（（16＋xwidth－1）／16）＊ ywidth＊54
rmin＝1：$r \max =7: \mathrm{cmin}=1: \mathrm{cmax}=1 \emptyset 4$
xmin＝FNXY fmRC $($ cmin，xwidth $) \leftarrow$
xmax＝FNXYfmRC（cmax，xwidth $) \leftarrow$
ymin＝FNXY fmRC $(\mathrm{rmin}, \mathrm{ywidth}) \leftarrow$ ymax $=$ FNXY fmRC $($ rmax，ywidth $) ~ \&$
ncoLrs $=9$ ：coLrmin＝6：coLrmax $=$ coLrm in＋ncoLrs－14
vmin＝1：vmax $=34$
4
DIM coLrs（ncolrs， 3 ），a（getsize，1） ，b（getsize） 4
DIM pcoL（ncoLs．pzL－1，nrows．pzL－1 ），prow（ncoLs．pzL－1，nrows．pzL－1） 4 DIM coLs（ncoLs．pzL＊nrows．pzL－1）， rows（ncoLs．pzL＊nrows．pzL－1） 4
DIM s\＄（ncoLs．pzL－1，nrows．pzL－1） 4 4
PALETTE $\varnothing, \varnothing, .3, .64$
PALETTE 1，1，1，14
4
d＝54
sl $\$=\operatorname{STRING} \$(26, \varnothing) 4$
POKE SADD（ $\mathrm{sl} \$$ ）+11 ，d 4
POKE SADD（sl\＄）＋15，xwidth 4
POKE SADD（sl\＄）＋19，ywidth 4
POKE SADD（sl\＄）＋21，244
POKE SADD（sl\＄）＋23， $2^{\wedge} \mathrm{d}-14$
4
RESTORE Nu．CoLors 4
FOR i＝Ø TO ncolrs＇Get new pal ette colors from DATA 4 FOR j＝1 TO 34

READ coLrs（i，j）
NEXT j，i千
4
RESTORE COLs．ROWs 4
FOR $i=\emptyset$ TO ncoLs．pzL＊nrows．pzL－1
READ coLs（i）：READ rows（i）\leftarrow
NEXT 4
4
SCREEN $1,320,2 \emptyset \sigma, \mathrm{~d}, 14$
WINDOW 2，＂Jigsaw＂，，28，14
4
Restart：$\&$
CLS：RANDOMIZE TIMER：moves $=\varnothing \leqslant$ 4
coLr．index＝ncoLrs：GOSUB COLr．Shi ft 4
4
$\mathrm{p} \$=$＂Press space bar to stop puzz
le＂：LOCATE 23，2Ø－INT（LEN（p\＄）／2）：
PRINT p\＄； 4
WINDOW 3，＂Jigsaw＂，（8Ø，7Ø）－（229，1 69），16，14
PAINT $(10,10), 24$
GOSUB Make．PuzzLe 4
WINDOW OUTPUT 24
LOCATE 23，2б－INT（LEN（ps）／2）：PRIN
r STRING\＄（LEN（p\＄），＂＂）； 4
＇Make Bob strings and place piec es on the screen 4
cLast＝ncoLs．pzL－1：rLast＝nrows．pz $\mathrm{L}-14$
seLection．made＝true 4
END IF 4
END IF＇（mouse）\＆
WHILE seLection．made 4
WHILE $\operatorname{MOUSE}(\theta)=-14$
$x=\operatorname{MOUSE}(5): y=\operatorname{MOUSE}(6) 4$
GOSUB Fit2Scn 4
IF $x<>x p-x d i f$ OR $y<>y p-y d i f$ THEN
4
$x p=x+x d i f: y p=y+y d i f \kappa$
OBJECT．X 1，xp：OBJECT．Y 1，yp 4
END IF4
WEND 4
4
GOSUB Fit2Scn 4
coL＝FNRCfmXY（x，xwidth $) \&$
row＝FNRCfmXY $(y, y w i d t h) ~ 4$
GOSUB WhatsThere 4
IF NOT piece THEN 4
$\mathrm{x}=\mathrm{FNXY} \mathrm{fmRC}($ col，xwidth $)<$
$y=$ FNXY fmRC（row，ywidth）\＆

seLection．made＝faLse 4
pcoL（coL．piece，row．piece）$=$ coL 4
prow（coL．piece，row．piece）＝row 4 GOSUB Beap
moves＝moves＋1：LOCATE 23，13：PRINT
＂Moves：＂；moves； 4
r $\emptyset=\operatorname{prow}(\emptyset, \varnothing): c \emptyset=\operatorname{pcoL}(\varnothing, \varnothing):$ count $=$ 04
FOR $r=\emptyset$ TO nrows．pzL－14
FOR $\mathrm{c}=\varnothing$ TO ncoLs．pzL－14
IF $(\operatorname{prow}(c, r)-r \emptyset)=r$ THEN 4
IF $(\operatorname{pcoL}(c, r)-c \emptyset)=c$ THEN count $=c$
ount＋14
END IF 4
NEXT C，r 4
IF count＝nrows．pzL＊ncols．pzL THE N done＝true 4
END IF＇（not piece）$\&$
WEND＇（seLection）$\}$
WEND＇（done） 4
TIMER OFF4
FOR $i=\varnothing$ TO 1 $10:$ GOSUB Beap：NEXT 4 p \＄＝＂Again（ Y / N ）？＂ 4
COLOR 1， $0:$ LOCATE 23，25：PRINT p\＄； 4
$p \$=" ": F O R$ i＝ø TO 1øøठ：NEXT：WHILE
$\mathrm{p} \$=" \mathrm{n}: \mathrm{p}$＝$=$ INKEYS：WEND 4
IF $\mathrm{p} \$=$＂ y ＂OR $\mathrm{p} \$=" \mathrm{Y}$＂THEN GOTO Re start 4
SCREEN CLOSE 14
SOUND 8øø,1,1øø, $: S O U N D ~ 1 \varnothing \emptyset \emptyset, 1,1 ~$
Øø, Øム
RETURN 4
4
Fit2Scn:4
IF $x<x \min$ THEN $x=x \min \psi$
IF $x>x \max$ THEN $x=x \max 4$
IF $y<y m i n$ THEN $y=y m i n 4$
IF $\mathrm{y}>\mathrm{ymax}$ THEN $\mathrm{y}=\mathrm{ymax}\langle$
RETURN 4
4
WhatsThere: 4
piece=faLse:cLast=ncoLs.pzL-1:rL
ast=nrows.pzL-14
FOR $c=\emptyset$ TO cLast 4
FOR $r=\emptyset$ TO rLast 4
IF $\operatorname{pcoL}(c, r)=C O L$ THEN 4
IF $\operatorname{prow}(c, r)=$ row THEN piece=true
: $c p=c: r p=r:$ RETURN 4
END IF4
NEXT: NEXT 4
RETURN 4
4
Make.PuzzLe: 4
FOR i=ø TO 14
$x(i)=x m a x \cdot p z L^{*}$ RND: $y(i)=$ Move.piec
e*RND
v:4
vx(i) $=2^{*}$ vmax*RND-vmax:vy(i)=2*vm
ax*RND-vmax ${ }^{\star}$
IF $v x(i)=\emptyset$ OR $v y(i)=\emptyset$ THEN GOTO
v 4
NEXT4
coLr $=$ coLrmin 4
WHILE INKEY\$=""4
FOR i=ø TO 14
$x(i)=x(i)+v x(i) \nmid$
$y(i)=y(i)+v y(i)$
IF $x(i)<=x m i n$. pzL OR $x(i)>=x m a x$.
pzL THEN 4
$\mathrm{vx}(\mathrm{i})=-\mathrm{SGN}(\mathrm{vx}(\mathrm{i}))$ *(RND$(\mathrm{vmax})+\mathrm{vmi}$
n) 4
END IF4
IF $y(i)<=y m i n . p z L$ OR $y(i)>=$ Move.
piece THEN4
vy $(i)=-\operatorname{SGN}(v y(i))$ * (RND $(v m a x)+v m i$
n) 4
END IF4
NEXT4
coLr $=$ coLr r 1:IF coLr colrmax THEN
coLr $=$ coLrmin 4
$\operatorname{LINE}(x(\varnothing), y(\varnothing))-(x(1), y(1))$, coL
r 4
WEND 4
RETURN \leqslant
4
Show.Time: 4
T21=TIMER 4
LOCATE 23,1:PRINT "Time:"; CINT(T
21-t1); 4
GOSUB CoLr.Shift 4
RETURN4
4
Nu.CoLors: 4
DATA .99,.05,.034
DATA .99,. 70,..Ø34
DATA .59,.99,.034
DATA .03,.99,.114
DATA . $03, .99, .814$
DATA .03,.51,.994
DATA . 22,.03,.994
DATA .89,.Ø3,.994
DATA .99,.03,.404
4
CoLs.Rows: 4
DATA $1,1,2,2,1,3,2,4,1,5,2,6,1,7$
4
DATA $9,1,10,2,9,3,10,4,9,5,10,6$,
9,74
DATA $3,1,4,2,5,1,6,2,7,1,8,24$
4

Atari SpeedScript Customizer

David S. Bryant

This short utility allows Atari users to easily personalize SpeedScript 3.0.

This menu-driven program makes it possible to customize Atari SpeedScript 3.0 for your personal use. Using a convenient, onscreen menu, you can choose new screen colors or change the default disk drive, a feature that's very useful for 130XE owners. Type in the program and save it to disk. When you type RUN, an introduction screen appears. Press the space bar to continue to the first menu. Select one of the four choices by pressing the correct numeric key. Press 1 for screen changes, 2 for both changes, or 3 for the RAMdisk change alone. Press 4 to return to BASIC.

If you choose options 1 or 2, the program displays screens describing the method for selecting colors. To change the border color, enter a number from 0 to 127. Following is a list of possible values and their colors:

Black	0
Rust	8
Red	32
Cobalt	48
Green	88
Orange	120

You will also be prompted to enter a number from $0-7$ for the text luminance value. A 0 represents the lowest luminance value (dark text), and 7 the highest value (bright text). The screen changes to show your choices. If no text is visible, you have set both text and border luminance at the same values. Press Y to confirm the choices when you are satisfied with the colors.

To change the default disk drive, make sure that the file RAMDISK.COM is on the current disk. The available drives in the disk command menu are changed to 1 , 2, 3, and 8 (drive 8 has been exchanged with drive 4). You may not use the F option to format drive 8; however, all other features work as usual.

After you make your selections, insert the disk which contains a copy of SpeedScript 3.0. (You should make the changes on a copy of SpeedScript, not the original program.) Enter the filename under which SpeedScript was saved (AUTORUN.SYS or SCRIPT30.COM) and press RETURN. The program reads the file into memory, then prompts you to insert a
formatted disk and press the space bar．The program ends by returning you to BASIC ready mode．To pre－ vent filename conflicts，the custom－ ized version of SpeedScript is given the filename SCRIPT30．BAK．To use the program，perform a binary load from DOS or rename the file AUTORUN．SYS and reboot the system．

Atari SpeedScript Customizer

For instructions on entering this program， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

CL 2 REM＊＊＊＊＊ATARI＊＊＊＊ FJ 3 REM＊＊＊SPEEDSCRIPT＊＊＊ CJ 4 REM＊＊CUSTOMIZER＊＊＊
 CM 1 G GOTO 2øø
012 ？CHR\＄（125）：POSITION 4 ，8：？＂WILL CREATE FILE
 \｛4 SPACES\}ENTER ORIGIN AL FILENAME OF＂
KD 30 ？＂\｛4 SPACES\} EDPEADSLCE TPT KaS PROMETM ？：？＂$\{1 \varnothing$ SPACES\}"; : A\$ = ＂\｛15 SPACES\}": D\$=" \｛15 SPACES\}"
6M 4 \quad TRAP 2ø：INPUT $A \$:$ IF $A \$$ ＝＂＂THEN $2 \emptyset$
DK 50 POKE 752，255：？：IF LEN （A\＄）>2 THEN IF A\＄$(2,2)$ ＝＂：＂OR A $\$(3,3)=": "$ TH EN 7 ©
 $=A \$: A \$=D \$$
EE $7 \varnothing$ TRAP $71 \varnothing$ ：OPEN \＃2，4，,$~ A$ \＄
PA 8 D DM SS\＄（1øøøの），CIO\＄（7） ：CIO\＄＝＂hhh＊LV＂：CIO\＄（4， 4）$=\operatorname{CHR} \$(17 \varnothing): \operatorname{CIO} \$(7)=C$ HR\＄（228）
EK $9 \varnothing$ LET READ＝1：$X=32: S A D R=A$ DR（SS\＄）：MAXLEN＝9999：G0 SUB 63ø：SS\＄（TRUELEN）＝C HR \＄（Ø）：CLOSE \＃2
PK 1 øø IF SS $\$(7823,7833)<>" S$ peedScript＂THEN 7øø
OH $11 \varnothing$ IF NUM＜3 THEN SS\＄ $\mathbf{1 2 7}$ 5，27ø5）＝CHR\＄（SCRCOL）
JL 12 IF NUM＜3 THEN SS\＄（272 1，2721）＝CHR\＄（TEXCOLR＊ 2）
J0 $13 \varnothing$ IF NUM >1 THEN SS $\$$（49ø 9，49ø9）$=$ CHR $\$$（56）
MK 14ø IF NUM＞1 THEN SS\＄（827 $3,8273)=\operatorname{CHR} \(184)
BJ 15 ？ ？CHR（125）：POSITION 4，8：？＂WILL CREATE FI
 ？＂\｛G SPACES\}INSERT F ORMATTED DISK＂
EI 160 POSITION 2，18：？＂\＃＊p ress－spacebar－to co ntinue＊＊＂

OJ 170 GET \＃ 1 ，KEY：IF KEYく＞32 THEN $17 \square$
DH $18 \emptyset$ TRAP $71 \emptyset:$ OPEN \＃2，8，\varnothing ， ＂D1：SCRIPT3Ø．BAK＂
6E $19 \emptyset$ LET READ $=\varnothing$ ： $\mathrm{X}=32$ ：MAXLE $N=L E N$（SS\＄）：SADR＝ADR（S S\＄）：GOSUB 63ø：GOTO 72 g
 TRO TEXT＊
IO 210 SETCOLOR 1，$\quad 12:$ SETCO LOR 2，3，2：SETCOLOR 4， 3，2：DIM A（15），D\＄（15） ：POKE 752，255
AE 220 POSITION 4，3：？＂THIS PROGRAM WILL ALLOW YO U TQ＂：？＂CHANGE THE DEFAULT BORDER，AND＂
EH 230 ？＂TEXT LUMINANCE V ALUES，OR THE＂：？＂ DISK DRIVE SELECTIO N FOR THE＂
EH $24 \varnothing$ ？＂ $13 \varnothing X E$ RAMDISK DR IVE \＃B，IN THE＂：？
CJ 259 ？＂$\{3$ BPRCEST\} BPAEDS CRRइPT उ．3 PROURAK \｛4 SPRCES\}"
CA 260 ？＂ 55 EPRICEST\} BYB CER Empes Binannar （6 EPACE3\}"

L1 $28 \varnothing$ ？＂FOR THE ATARI 4ø Ø，8øø，XL，\＆XE＂：？？

k 290 ？？＂\＆press－space bar－to continue $\begin{gathered}\text {（\％＂；}\end{gathered}$
KE 3øø CLOSE \＃1：OPEN \＃1，4， $\begin{aligned} & \text { \＃，}\end{aligned}$ ＂K：＂：GET \＃，KEY：IF KE $Y<>32$ THEN $3 \varnothing \varnothing$
JH 31 ？CHR（125）：POSITION 4，3：？＂CHOOSE ROUTINE YOU WISH TO USE：＂：？ ：？
LB $32 \emptyset$ ？＂$\{4$ SPACES\} 1: CHAN GE LUMINANCE VALUES＂： ？：？＂ 44 SPACES\}2: B OTH CHANGES 11 \＆ 3 ）＂：？
HJ $33 \varnothing$ ？＂\｛4 SPACES\}3: CHAN GE FOR RAMDISK，DE：＂： ？
JJ 340 ？＂$\{4$ SPACES\}4: EXIT PROGRAM＂：POSITION 5， 18：？＂＊＊press number for choice＊＊＂：
OC 35 Ø GET \＃ 1 ，KEY：IF KEYく49 OR KEY >52 THEN 350
DG 360 NUM $=K E Y-48:$ ON NUM GOT

FM 370 ？CHR\＄（125）：POSITION 4，5：？＂YOU WILL BE ASKED TO ENTER A＂：？＂ VALUE FOR THE BORDE R COLOR AND＂
OA 380 ？＂THE TEXT LUMINA NCE，AND THE＂：？＂ SCREEN WILL CHANGE TO SHOW THE＂
HE 390 ？＂EFFECT OF YOUR C HOICE．＂：POSITION 2， 18 ：？＂＊＊press－spaceba r－to continue＊＊＂
DB 4 Øø GET \＃ 1 ，KEY：IF KEYく＞32 THEN $4 \varnothing \varnothing$
CB41ø ？CHR\＄（125）：PGKE 752， \emptyset
FH 42 TRAP 42ø：POSITION 5， 8 ：？＂ENTER VALUE FOR B ORDER COLOR＂：？
（4 SPACES\} (ø-127)
\｛3 SPACES\}"; : INPUT SC RCOL
FM 43 S SCRCOL $=$ INT（SCRCOL）：IF SCRCOLくø THEN 42ø
IK 440 IF SCRCOL >127 THEN 42 \emptyset
FM 45 ？CHR（ 125 ）：TRAP 450： POSITION 5，8：？＂ENTER VALUE FOR TEXT LUMIN

ANCE＂：？＂\｛4 SPACES\}(ø $-7)$（3 SPACES\}"; : INPUT TEXCOLR
HD 46 Ø TEXCOLR＝INT（TEXCOLR）： IF TEXCOLRくØ THEN $45 \varnothing$
1147 IF TEXCOLR >7 THEN 450
DA 48 © SCRCQL $=2$＊SCRCOL：COLR1 ＝PEEK（799）：COLR2＝PEEK （71の）：POKE 759，TEXCOL R＊2：POKE $71 \emptyset, S C R C O L: P$ OKE 712，SCRCOL
8049ø POKE 752，255：？CHR\＄（1 25）：POSITION 8，8：？＂T HESE ARE YOUR CHOICES ＂：？：？＂\｛G SPACES\}ARE COLORS ACCEPTABLE？＂
C65øø ？＂＜8 SPACES\} (Enter Y－or $-N-$ ）＂：GET \＃1，KE

BC $51 \emptyset$ POKE 7 Ø9，COLR1：POKE 7 1ø，COLR2：POKE 712，COL R2
10 520 IF KEY $<>89$ THEN 410
NK 530 ？CHR $\$(125)$ ：POSITION 7，8：？＂CHANGE LUMINAN CE VALUES＂
PE 54ø IF NUM $=1$ THEN POSITIO N 15，9：？＂ONLY＂
NJ 55 ？：IF NUM＝2 THEN ？＂ \｛15 SPACES\}\&"
HB 560 GOTO 580
MF 57ø ？CHR\＄（125）
CH 58 IF NUM >1 THEN POSITIO N 7，12：？＂CHANGE FOR RAMDISK，D8：＂
C659ø IF NUM＝3 THEN POSITIO N 15，13：？＂ONLY＂
IH $60 \emptyset$ POSITION 2， $16: ?$＂＊＊＊ MAKE CHANGES TO PROG RAM？＊＊＊＂：POSITION $1 \varnothing$ ，18：？＂（Enter－Y－or $-N-) "$
JC $61 \varnothing$ GET \＃1，KEY：IF KEYく＞89 THEN CLR ：GOTO $20 \varnothing$
J6 62ø POKE 752， $0:$ GOTO 2ø
on 630 ICCOM＝834：ICBADR＝836： ICBLEN＝84ø：$I C S T A T=835$
OE $640 \mathrm{H}=\mathrm{INT}(S A D R / 256): L=S A D$ $\mathrm{R}-\mathrm{H}$＊256：POKE ICBADR＋X ，L：POKE ICBADR $+X+1, H$
CL $650 \mathrm{H}=\mathrm{INT}($ MAXLEN $/ 256): L=M$ AXLEN－H＊256：POKE ICBL $E N+X, L:$ POKE ICBLEN $+X+$ 1，H
JH 66 D POKE ICCOM $+X, 11-4$＊REA $D: A=$ USR（ADR（CIO\＄），X ）
OP $67 \emptyset$ TRUELEN＝PEEK（ICBLEN $+X$ ）＋256＊PEEK（ICBLEN＋X＋1 ）+1
PA $68 \emptyset$ POKE 195，PEEK（ICSTAT） ：RETURN
IP 69 D REM＊＊＊ERROR \＆EXIT ROUTINE＊ $\begin{gathered}\text {＊}\end{gathered}$
IH $7 \emptyset \varnothing$ GRAPHICS $\varnothing: ?: ? " B Y$ TE COMPARISON FAILED＂ ：？＂INCORRECT SOURC EFILE＂：GOTO 740
KJ $71 \emptyset$ GRAPHICS $g: ?: ? * *$ FATAL ERROR $*="$ ；？ PEEK（195）：GOTO 749
DE $72 \emptyset$ GRAPHICS $\varnothing: ?: ?$
〔3 SPACES\}READ / WRITE SUCCESSFUL＂：GOTO 74 g
BL $73 \emptyset$ GRAPHICS \varnothing
DD 740 ？＂＊戠 PROGRAM STOPP ED＊\＆＊＂：CLOSE \＃1：CLOS E \＃2：TRAP 4øøøø：POKE 752， 0 ：END
©

Full-Screen Shell For ST BASIC

David Lindsley

Have you ever wanted to write an ST BASIC program that isn't confined to the BASIC output window? This program shows how to create full-screen graphics that don't depend on the usual window borders.

Windows are integral to the ST BASIC programming environment. Whether you're typing, listing, or running a program, everything occurs within a bordered window. Since ST BASIC provides no commands for monitoring gadgets such as the window scroll bar, the gadgets serve no real purpose in most programs. And in applications such as games, the ever-present borders prevent you from using the full area of the screen.

This program creates a full-screen shell for your own ST BASIC programs. By enclosing a program within this code, you can override BASIC's windowing environment and work with the entire screen surface.

For a demonstration, type in the program at the end of this article and save a copy; then run it. The screen is filled immediately with a graphic design. At the top of the screen, where the ST BASIC menu titles normally appear, is a title bar containing the name of this program. After a short pause, the screen clears and returns to normal, displaying the ST BASIC menu titles which were overdrawn while the program ran.

Enclosed In A Shell

The line numbering of this program is designed to make it easy to merge with your own programs. Lines $10-70$ check the current screen resolution and adjust several variables accordingly. Line 80 calls the subroutine PRGNAME which draws a title bar with the title you designate and fills the screen with the specified pattern.

COMMODORE APPLE

C64 COMPUTER

*WITH PURCHASE OF OUR SPECIALLY PRICED SOFTWARE

DISK DRIVES

MODEM

WITH PURCHASE OF 1571 DISK DRIVE

DISK DRIVES

MODEM

1200 BAUD HAYES COMPATIBLE

PRINTER
 MONITOR

RETAIL \$299
s138

RADAR DETECTOR

RETAIL
VALUE \$249.00
$\$ 78^{00}$

Lines 100－5000 are reserved for your program．In this demon－ stration，line 110 simply delays long enough for you to look at the screen．In a real program，of course， you would substitute your own code．Just remember that your por－ tion of the program should use only line numbers 100－5000．

Instead of terminating with END，your program should fall through to lines 5010－5030．These lines restore the usual ST BASIC menu titles，clear the output win－ dow，and reopen it so that you can use BASIC normally．Since the shell code draws on the entire screen，it erases the ST BASIC menu titles．（However，the menus are still active while the program runs，so that you can select Break to stop the program，and so on．）Thus， it＇s necessary to redraw the menu titles when the program ends．The string name\＄in line 5010 contains the text for these titles，which you can change if you wish．The END statement at the end of line 5030 terminates the program．

Merging

Unless you write your programs with this shell in mind，most pro－ grams will need some modification before you merge them with the shell．This is necessary in order to preserve the windowless screen． Once you have cleared the screen completely，you cannot use ordi－ nary BASIC graphics commands such as PCIRCLE，GOTOXY，LINEF， and CIRCLE．If you do，ST BASIC suddenly redraws the right and lower bars of the output window， even though these commands have nothing specifically to do with those window bars．

To avoid such unwanted ef－ fects，you must create all graphics with VDISYS commands which aren＇t tied to windows．This rule also includes text，which must be placed with VDISYS instead of PRINT．VDISYS commands are more complicated to use than most BASIC commands，but they can op－ erate much faster，giving your pro－ gram the appearance of something written in machine language．Any graphics or text that you create in ST BASIC can also be created with VDISYS commands．In fact，BASIC itself uses VDI routines to create
graphics in the first place．
The simplest way to use the shell program is to delete existing lines 100－110 and MERGE it with your own program code．Here are the steps to follow before you at－ tempt the merge：First，renumber your program if necessary，so that its line numbers fall in the range $100-5000$ ．Then substitute the name of your program in the string title\＄in line 5090．Delete any CLEARW 2 or FULLW 2 commands from the beginning of your pro－ gram and rename any variables that conflict with the variable names used in the shell code．Once this is done，you can perform the merge．

Program Notes

Lines 50－70 set several important variables used by subroutines in the shell．The variables $d c x$ and $d c y$ rep－ resent the screen size，and the vari－ ables c and s indicate colors．

The PRGNAME subroutine be－ ginning at line 5050 specifies the screen coordinates and color ac－ cording to the current resolution and passes those values to the RECT subroutine．Lines 5100－5120 draw the top menu bar in the color specified by the variable s ．

Lines 5130－5160 call a VDI routine which places text at the des－ ignated screen coordinates．Line 5150 centers the text on the screen． Line 5160 places the text 8 lines below the top border in low－and medium－resolution modes or 16 lines down in high－resolution mode．Lines 5170－5190 POKE the necessary information into memory prior to the VDISYS call．You can place the title lower on the screen by changing lines 5100 and 5160 ． You may want to include additional VDISYS calls to enlarge the letter－ ing or create special text effects．Or you can eliminate the title altogeth－ er by deleting lines 5090－5190．

The RECT subroutine calls a VDI routine which fills the speci－ fied screen rectangle with the desig－ nated color and pattern．

The MENU subroutine is simi－ lar to the PRGNAME routine，but it＇s designed to clear the screen back to white，the usual background color （5300）．The LEN function used in line 5150 is omitted in lines 5330 and 5360 because the number of characters in the string name\＄（in－
cluding spaces）is now known to be 28．If you change the length of name\＄，change the 27 in line 5360 to match the new length．

Full－Screen Shell For ST BASIC

，FULL SCREEN SHELL PROGR AM

ps＝peek（systab）

if $p s=1$ then dcx＝639：dcy＝ 399：c＝1：s＝1
if $p s=2$ then $d c x=639: d c y=$ 199：$c=2: 5=3$
if $p s=4$ then dcx＝319：dcy＝ 199：c＝4：s＝12
$8 \emptyset$ gosub PRGNAME
$1 \varnothing \varnothing$ YOUR PROGRAM STARTS HERE
119 for $j=1$ to 5øøø：next j ， delay loop for demonstrat ion
5ดØロ
5619
5ø26
$503 \varnothing$
5ø4の
5050
5ø60
5076
$5 ø 8 \varnothing$
5090
$51 \varnothing \varnothing \times 1=\varnothing: y 1=\varnothing: \times 2=d c x: y 2=\langle d c y /$ 2ळ）
5110 color $6,5,5,2,2$
$512 \varnothing$ gosub RECT
5130 poke contr1，8：poke contrl $+2,1$
5140 poke contrl＋6，len（title\＄）
5159 poke ptsin，（dcx－len（title \＄）$* 8) / 2$
5160 poke ptsin＋2，（dcy／25）
$517 \varnothing$ for $i=\varnothing$ to len（title $\$$ ）－1
5180 poke intin＋i＊2，asc（mid\＄（t itles，i＋1，1））
$519 \varnothing$ next i：vdisys（1）：return

5206
5210
RECT：
5220 poke contrl，11：poke contr $1+2,2$
523ø poke contrl＋6， 1 ：poke cont $r 1+1 \varnothing, 1$
524 poke ptsin，$\times 1$ ：poke ptsin＋ 2，y1
525ø poke ptsin＋4，x2：poke ptsi $n+6, y z$
5260 vdisys（1）：return
527ø
5280
5290 MENU：
$\times 1=\emptyset: y 1=\emptyset: \times 2=d c \times: y 2=d c y$
5Зøの color $1, \varnothing, \varnothing, 8,2$
5310 gosub RECT
5329 poke contr1，8：poke contrl $+2,1$
5330 poke contrl＋6，28
5340 poke ptsin，25
5356 poke ptsin＋2，（dey／25）
3360 for $i=\emptyset$ to 27
5379 poke intin＋i＊2，asc（mid\＄（n ame $\$, i+1,1$ ）
5380 next i：vdisys（1）：return ©

File Compressor

Chris Rogers

This Commodore 64 utility crunches BASIC programs and other files so that they occupy less room on a disk. Since smaller files load faster, compressed files can also transfer to and from disk faster than usual. A disk drive is required.

Using a clever programming technique, "File Compressor" makes it possible to squeeze disk files into a smaller space than usual, which conserves disk space and speeds up the transfer of data between the computer and the disk drive. Once you have installed File Compressor, it can automatically compress BASIC programs during any SAVE and decode compressed programs into normal form during a LOAD. You can also compress other data such as hi-res graphics screens.

Typing File Compressor

Type in the program and save a copy. Because File Compressor is written in machine language, you must enter it with the "MLX" machine language entry program listed elsewhere in this issue. Be sure to read the MLX article carefully before you attempt to use it. When you run MLX, you'll be asked for a starting address and an ending address for the data you'll be entering. Here are the correct addresses:
$\begin{array}{ll}\text { Starting address: } & \text { C200 } \\ \text { Ending address: } & \text { C617 }\end{array}$
After you save File Compressor, you can load it with the command LOAD "COMPRESSOR", 8,1 (replace COMPRESSOR with the filename you used when saving the program). After the program loads, type NEW and press RETURN to reset important BASIC pointers.

Compressing BASIC

File Compressor can be used two different ways. The first method al-
lows you to save and load a BASIC program in compressed form. To install File Compressor, load it into memory; then type SYS 50600 and press RETURN. To save a BASIC program in compressed form, type SAVE and press RETURN. When the computer prompts you to enter a filename, enter the desired name and press RETURN again. The program is saved to disk in compressed format. To load a compressed BASIC program, type LOAD and press RETURN; then enter the desired filename at the prompt.

To save or load BASIC programs in normal form, supply a filename with the LOAD or SAVE command. For instance, SAVE "TEST", 8,1 saves the program TEST to disk as usual. Because it intercepts LOAD and SAVE commands that don't include a filename, File Compressor doesn't save compressed files to tape. However, you can still save and load with tape in uncompressed form by including a filename and adding $, 1,1$ to the command. For instance, SAVE "TEST", 1,1 saves the program TEST to tape as a normal program file.
(Don't confuse File Compressor's crunching with normal program storage. You may have heard that the computer automatically crunches BASIC program lines. When you type in a line, the computer stores the line number in only two bytes and replaces every keyword with a one-byte symbol called a token. This process, usually called tokenization, reduces the size of the program significantly, since many BASIC keywords are four or five characters long. File Compressor begins with the already-tokenized BASIC program and crunches it even further.)

Compressing Daia

File Compressor also lets you
"crunch" and save the contents of any memory area, which may include a hi-res graphics screen, sprite shapes, or any other sort of data. Of course, it also allows you to reload the data in uncompressed form. This routine demonstrates how to save a memory area:
1øøøø REM COMPRESSED SAVE SA=S TART OF SAVE: EA=END OF SAV E: FL\$=FILENAME
1øøø2 POKE 68ø,SA/256:POKE 679 , SA-PEEK (680) *256
1øøø4 POKE 682,EA/256:POKE 681 , EA-PEEK (682) *256
 OR I=1 TO LEN(FL\$)
1 1øø8 POKE $831+\mathrm{I}$, ASC (MID\$(FL\$, I, 1) + CHR ((\emptyset)): NEXT
1øø1ø SYS 5ø689:RETURN
Before it calls File Compressor with SYS, the routine POKEs the starting and ending addresses of the desired memory area into locations 679-680 and 681-682, respectively. You must also store the ASCII characters for the disk filename in the zone beginning at location 832. Note that the filename must include the extension , P, W and end with a zero byte. This routine shows how to load a compressed file back into memory:
1 Øø12 REM COMPRESSED LOAD SA=S TART OF LOAD: FL $\$=$ FILENAME $1 ø \emptyset 14$ POKE 68ø,SA/256:POKE 679 , SA-PEEK (68Ø) * 256
1 Øø16 FLS=FLS+", P, R"+CHRS(Ø):F OR I=1 TO LEN(FL\$)
1 øø18 POKE 831+I,ASC(MID\$(FL\$, I, 1) + CHR $\$(\varnothing)):$ NEXT
1øø2ø SYS 5ø666:RETURN
This procedure is similar to the previous routine. However, you need only specify a beginning address for the load, and the filename should end with , P,R. When that preparation is complete, SYS 50666 calls File Compressor to decode the file data and put it back in memory.

Less Is More

You can use File Compressor without knowing how it works. However, you may be interested in a
brief explanation of the theory behind the program. The basic concept is to economize on the storage of often-repeated information. Nearly every collection of data involves a significant amount of repetition. For instance, the letter e appears very frequently in word processing documents, most graphics screens contain substantial amounts of blank space, and so forth. File Compressor saves space by storing the most frequently repeated data values in less space than usual. To understand how this is done, you'll need to know a little about how the computer usually stores information.

The 64 ordinarily stores all data as a series of byte-length codes. A byte consists of eight bits, and each bit is a binary digit (either 1 or 0). The binary number 00000000 equals 0 , and the binary number 11111111 equals decimal 255 , so a byte can store a number in the range $0-255$. Since every byte contains eight bits, the computer simply counts bits to determine where one code ends and the next
begins. When it reaches the eighth bit, it knows that the following bit is the first bit of the next code.
(Keep in mind that the meaning of a code depends entirely on the context in which it's used. For word processing, a code of 65 may represent the ASCII value for the character a. But for a sprite shape or hi-res graphics screen, the same code represents a pattern of dots. In a machine language program, 65 represents an EOR instruction, and so on.)

File Compressor saves space by storing the most often-used codes in fewer than eight bits. To illustrate, say that you wish to save a word processing document in compressed form. Before it saves the file, File Compressor scans the document to determine which seven characters appear most frequently. Let's say that those characters are e, a, d, t, r, n, and l. The program would create this coding table:

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\text { Code } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text { Character } & e & a & d & t & r & n & 1
\end{array}
$$

The decoding table is stored at
the beginning of the disk file as well as in memory. Note that the most frequently used character (e, in this example) is stored in one bit rather than the usual eight. Throughout the saving process, File Compressor substitutes these short codes in place of the usual eight-bit codes. To reload the compressed data, the program reads the decoding table from disk and stores it, then decodes the file bit by bit.

Decoding the compressed file is somewhat trickier than compressing it. Because the file contains codes of varying sizes (anywhere from one to eight bits in length), it's necessary to use a special method for detecting the end of one code and the beginning of the next. File Compressor does this by using a 0 bit as an end-of-code marker. As it reads in each bit from disk, the program increments a counter to keep track of how many 1 bits it has read. When it finds a 0 , it uses the counter value as an index to the decoding table. In this example, for instance, the decoding table indicates that six 1 bits stand for the ASCII

character n ．Whenever File Compressor reads six 1 bits in a row，it stores that character in memory．Then it sets the counter back to zero and begins counting bits again．Three consecutive 1 bits stand for the letter d ，and so on．

Since File Compressor crunches only the most often repeated codes，every compressed file also contains many normal eight－bit codes．A sequence of two consecutive 0 bits indicates that the program should read the next eight bits as an ordinary byte value．Thus，the 0 bit both marks the end of each compressed code and distinguishes between com－ pressed and uncompressed codes．

One general consequence of this storage scheme is that the more repetition your data contains，the more you stand to gain by compressing it．File Com－ pressor assumes that your disk drive is device 8，but you can change it to use device 9 if necessary．Load File Compressor into memory，then enter this line and press RETURN：
POKE 50599， 9

File Compressor

Please refer to the＂MLX＂article in this issue before entering the following listing．
C2øø：A5 2B 85 FB A5 2C 85 FC 79 C2Ø8：A \emptyset Øの B1 FB 2Ø 1F C2 C8 9F C21ø：DØ Ø2 E6 FC A5 FC C5 2E Ø6 C218：9 F C C4 2D 9Ø EC 6084 ØB C22Ø：Ø2 85 FD A9 $0 \emptyset 85 \mathrm{FE}$ Ø6 7C C228：FD 26 FE A5 FE 1869 Cø 5C C23Ø：85 FE AØ Øø B1 FD 1869 6B C238：01 90 ØB C8 B1 FD 1869 6F C24Ø：ø1 91 FD 88 A9 Øø 91 FD 61 C248：A4 Ø2 6Ø A9 ØØ A8 AA 85 C4 C250：FB 85 FD 85 FE A9 C 85 F 2 C258：FC 2067 C2 C8 DØ Ø2 E6 F1 C260：FC E8 D 0 F5 A5 FF 60 B1 B7 C268：FB 8514 C8 B1 FB $85 \quad 15$ F9 C27Ø：C5 FE Bø Ø1 $6 \emptyset$ DØ $\emptyset 7$ A5 B8 C278：14 C5 FD BØ Ø1 6Ø A5 14 2D C280：85 FD A5 1585 FE 86 FF 83 C288：6Ø AØ ØØ $84 \quad 97$ 2Ø 4 AB C2 45 C290：A4 9799 CB C2 85 FB A9 ØC C298：ØØ 85 FC Ø6 FB 26 FC A5 97 C2AØ：FC 1869 CØ 85 FC A9 Øø 57 C2A8：A8 91 FB C8 91 FB A4 9750 C2BØ：C8 CØ $\varnothing 7$ D \emptyset D6 $6 \emptyset$ A9 ØØ 44 C2 B8：A8 99 Øø Cø 99 Øб C1 C8 1E C2CØ：DØ F7 Aø Ø6 99 CB C2 88 2B C2C8：3Ø FA 6Ø Øø Øø Øø Øø Øø 31 C2Dø：øø øø Ø2 Ø6 ØE 1E 3E 7E DA C2D8：FE A9 ØØ 85 FB A5 2C 85 F4 C2E0：FC A9 ø8 85 15 A4 2B B1 EB C2E8：FB 84 D7 20125 C3 20 4A 4 D C2Fø：C3 A5 Ø2 Dø 99 A9 Ø8 8593 C2F8：FE A5 97 2ø 4A C3 A4 D7 DE C3øø：C8 Dø Ø2 E6 FC A5 FC C5 ØD C3ø8：2E 9ø DC C4 2D Fの D8 9ø 22 C310：D6 A5 15 FØ ØF A9 ØØ 3875
 C32Ø：14 2Ø D2 FF 6Ø A2 Ø6 DD 8B C328：CB C2 DØ ØC A9 8Ø 85 ø2 7D C33Ø：BD D2 C2 E8 E8 86 FE $6 \emptyset$ F1 C338：CA $1 \varnothing$ EC 48 A9 Øø 85 Ø2 A5 C340：A9 Ø1 85 FE $68 \quad 85 \quad 97$ A9 AF C348：Øø 6ø 85 FD A4 FE 46 FD 24 C350：66 FF 88 D \emptyset F9 Ø6 FF 2637 C358：14 C6 FE C6 15 DØ Ø3 $2 \emptyset$ F9 C360：67 C3 A5 FE DØ EF 60 A5 DD C368：14 $2 \emptyset$ D2 FF A9 $\varnothing 885 \quad 15$ E9 C37Ø：6Ø A2 Ø2 $2 \emptyset$ C9 FF $2 \emptyset$ B6 58
 C380：1F C4 2の D9 C2 2Ø CC FF 9A C388：A9 Ø2 2ø C3 FF AD AB Ø2 B5

Bestselling Books

from a name you can count on

C－128 INTERNALS
Detailed guide on the 128 ＇s Vital 1571 INTERNALS operating system．Explains Sequential，relative files，and graphic chips．Memory direct access commands． Management Unit，input and Describes DOS routines． output， 80 column graphics Discusses the various disk and fully－commented ROM formats．Fully－commented
listings．more． 500 pp $\$ 19.95$ ROM listings． $450 \mathrm{pp} \$ 19.95$

C－128 TRICKS \＆TIPS Filled with fascinating and practical info on the C－128．
Create multiple screens，
80 colute mutiple screens， 80
column hires graphics，learn bank switching． 300 pages of useful information for every－ one．

C－128 CP／M User＇s Gulde submit fies．300pp $\$ 19.95$

C－128 BASIC 7．0Internals Get all the inside information on BASIC 7．0．This exhaustive handbook is complete with fully com． mented BASIC 7.0 ROM listings，processor control，

C－ 128 PEEKS \＆POKES Take a revealing look into Presents dozens of pro－ CPIM on your＇128．Essential gramming，quick－hitters．faci－ explanation of the operating on the operating system explanation of the operating on the operating system，
system，memory usage，stacks，zero page，pointers system，memory usage，stacks，zero page，pointers，
CP／M the BASIC interpreter，and
more． $240 p \mathrm{p}$ \＄16．95

C－128 BASIC Trainling Guide
Your essential introduction to program－
ming in BASIC ming in BASIC on your C－128．Chapter quizzes to test your knowledge on what
your learning． your eearning．Discusses problem commands with many examples；monitor commands；utilites；much more．\＄16．95

128／64 Computer Alded Design Learn the fundamentals of CAD while developing your own system on the 128 or 64 with Simon＇s Basic．Create objects on－screen to dump to a printer．3D tech－ niques，mirroring and duplicating images， create a mini－CAD system．300pp $\$ 19.95$

For the most complete series of C－128 or C－64 books available， call for the name of your nearest bookstore or dealer．Or order direct by calling 616／241－5510．Add $\$ 4.00$ per order for S\＆H． Foreign add $\$ 10.00$ per book．Call or write for your free catalog of books and software．Dealers inquires welcome． Over 1500 dealers nationwide．

Phone（616）241－5510 Abacus

Telex 709－101 • Fax 616／241－5021 P．O．Box 7219 Dept．C2 Grand Rapids，MI 49510

C3AD:60 øD 4352554 E 4348 DB
C3A8:49 4E 47 2ø 43 4F 4D $5 \varnothing 95$
СЗВØ:4C 455445 2E øø АØ øø 41
C3B8: B9 97 C4 Fø 67 2ø D2 FF E4
C3C8:E7 FF Aø $\begin{array}{lllllll} & \text { O } & 2 \emptyset & \mathrm{CF} & \mathrm{FF} & \mathrm{C9} & 62\end{array}$
C3DØ:øD FØ 9799 4б Ø3 C8 4C 81
C3D: CC C3 A9 2C 9940.6399 1D
C3E8:С8 С8 А9 $57994 \varnothing$ ø3 C8 4E
C3FØ:98 AØ Ø3 A2 $4 \emptyset 2 \emptyset$ BD FF 75
C3F8:A9 02 AE A7 C5 A8 $2 \varnothing$ BA F1
C408:41 4 D - 45 C 46 20 46 A7
C410:49 4C $45 \quad 2 \varnothing 544 \mathrm{~F} \quad 2 \varnothing 435 \mathrm{~F}$
C418:52 554 E 4348 3A øø Aø E9
C42ø:øø B9 CB C2 $2 \varnothing$ D2 FF C8 D2
C428:Cの 97 D \varnothing F5 60 A5 62 C9 75
C430:ø8 Fø 05 E6 62 Ø6 6360 5B
C438:2Ø 47 C4 $2 \varnothing$ CF FF 8563 2B
C448:9 90 D 616068 2D C4 A5 68
C450:68 68 4C Al C4 A9 øø 85 1E
C458:65 2ø 2D C4 9ø ø5 E6 65 5A
C460:4C 59 C4 A5 65 FØ 66 A8 FC
C468:88 B9 CB C2 60 A9 $\varnothing \varnothing 8579$
C47ø:64 Aø ø8 2ø 2D C4 266484
C478:88 DØ F8 A5 $646 \emptyset$ A2 0^{2} DF
C480:20 C6 FF A5 2B 85 FB A5 33
C488:2C 85 FC $2 \varnothing 71$ C5 AØ ØØ ØF
C49の:84 Ø2 2 Ø 55 C4 A4 Ø2 9184
C498:FB C8 DØ ø2 E6 FC 4C 9ø Eø
C4AD:C4 2ø CC FF A9 ø2 $2 \varnothing$ C3 87
C4A8:FF AD AB ø2 106160 A5 1 E
C4BØ:ø2 85 2D A5 FC 85 2E Aø 97
C4B8: $\varnothing \varnothing$ B9 EB C4 FØ $\varnothing 7$ 2ø D2 31
C4CD:FF C8 4C B9 C4 A5 2C 85 3C
C4C8:FC A9 6085 FB A4 2B A2 FE

C4EØ:DØ Ø2 E6 FC 84 2D A5 FC 21
C4E8:85 2E 60 øD 4649 4C 45 D2
C4FD:2ø 444543 4F 4449 4E E4
C4F8:47 2ø 43 4F 4D $504 \mathrm{C} 45 \quad 15$
508:54 45 2E 60 AD 50 B9 59 9E
508:C5 FØ 67 2ø D2 FF C8 4C ØA
C510: 6 C
C52ø:07 99 4Ø 63 C8 4C 1A C5 3F
C528:A9 2C 99 4ø Ø3 9942 ø3 Dø
C530:C8 A9 5ø 9940 Ø3 C8 C8 96
C538: A9 529940 Ø3 C8 98 A2 73
C54ø:4の AØ Ø3 $2 \varnothing$ BD FF A9 Ø2 B9
C548:AE A7 C5 A8 $2 \varnothing$ BA FF 2064
C55:C FF A9 0885624 C 7 E BE
C560:20 $46494 \mathrm{C} 45 \quad 2 \varnothing 544 \mathrm{~F}$ le
C568:20 4445434 F 4445 3A 42
C57ø:øø Aø øø 2ø CF FF 99 CB A3

C580:A5 B7 Dø 998 DAB Ø2 68 FE
C588:20 B6 C3 18 60 68 4C ED F6
C590:F5 48 A5 B7 Dg 698 BD AB CA
C598:ø2 $68 \quad 2 \varnothing 64$ C5 186068 3B
C5Aø:4C A5 F4 7F C5 91 C5 ø8 5A
C5A8:AD A5 C5 8D $3 \varnothing$ Ø3 AD A6 95
C5B0:C5 8D 31 Ø3 AD A3 C5 8D ED
C5B8:32 ø3 AD A4 C5 8D 33 ø3 EB
C5Cø:6Ø AD A7 Ø2 A4 2B 85 2B 05
C5C8:8C A7 Ø2 AD A8 ø2 A4 2C 62
C5D0:85 2C 8C A8 ø2 AD A9 9262
C5D8:A4 2D 85 2D 8C A9 ø2 AD 42
C5E0:AA 62 A4 2 E 85 2E 8C AA 62
C5E8: $\varnothing 2$ 6Ø 20 Cl C5 A9 8 8 8D 11
C5F0:AB Ø2 AØ FF C8 B9 4ø 0397
C5F8:Dの FA 9820 3F C5 4C Cl 2C
C6ø日:C5 2ø Cl C5 A9 8ø 8D AB 23
C610:FA 98 2ø F1 C3 4C C1 C5 FC

Many label－printing programs are available，but how many of them allow you to put custom high－resolution graphics designs on your labels？＂La－ bel Master，＂an all machine language utility program for the Commodore 64，does exactly that．A joystick and Commodore 1525／801／803 or com－ patible printer are required．
＂Label Master＂lets you add a per－ sonal touch to printed labels by mixing high－resolution graphics designs with text．Although Label Master is as easy to use as a BASIC program，it＇s written entirely in ma－ chine language for maximum speed． Thus，you＇ll need to enter the pro－ gram with the＂MLX＂machine lan－ guage entry program listed elsewhere in this issue．Follow the MLX instructions carefully．When you run MLX，you＇ll be asked for a starting address and an ending ad－ dress for the data you＇ll be entering． Here are the addresses required for Label Master：

Starting address： 0801 Ending address：OEF8

Label Master is designed to save and load high－res graphics files from disk．If you use tape in－ stead of disk，follow these steps to convert Label Master to work with a cassette drive：

1．Enter and save Program 1 with MLX．
2．Load Program 1 into memory．
3．Type the following line in direct mode（without a line number） and press RETURN：

POKE 2738，1：POKE 2786，1

4．Save Label Master under a new name．
No matter whether you use disk or tape，Label Master loads and runs like an ordinary BASIC program．

High－Res Graphics Labels

Plug a joystick into port 2 before you run Label Master．When you run the program，it displays a grid 40 dots wide and 21 dots high．The letter T in the upper right corner of the screen reminds you that this is the top half of the graphics design grid．To switch to the bottom half， press the f1 function key．The screen now displays a B in the up－ per right corner．To return to the top half，simply press f1 again．

The reverse－video dot in the upper left corner of the grid is the graphics cursor，which you can move with the joystick．To create a dot at the current location，press the plus（＋）key．To erase a dot，press the minus $(-)$ key．With these sim－ ple controls，you can draw a hi－res design that occupies the full design grid．

Make Your Choice C-64 or C-128

BASIC Compiler Complete BASIC compiler and development package. Speed up your programs $5 x$ to 35x. Compile to machine code, compact p-code or both. ' 128 version: 40 or 80 col. monitor output and FAST-mode operation. '128 version includes extensive 80-page programer's guide. A great package that no software library should be without. C-64 $\quad \$ 39.95$ C-128 \$59.95

Super C Compiler

For school or software development. Learn the C language on the '64 or ' 128. Compiles into fast machine code. Added ' 128 features: CP/M-like operating system; 60 K RAM disk. Combine M/L \& C using CALL; 51 K available for object code; Fast loading: Two standard I/O librarys plus math \& graphic libraries. C-64 \$59.95 C-128 \$59.95 New C-64
Version! speedterm
Let your 64 or 128 communicate with the outside world. Obtain information from various computer networks. Flexible, command driven terminal software package. Supports most modems. Xmodem and Punter transfer protocol. VT52 terminal emulation with cursor keys, large 45 K capture buffer \& user definable function keys.
New! C-64 $\quad \$ 39.95$
C-128 \$39.95

Chartpak

Create professional quality charts fast- without programming. Enter, edit, save and recall data. Interactively build pie, bar, line or scatter graph. Set scaling, labeling and positioning. Draw charts 8 different formats. Statistical routines for average, standard deviation, least squares and forecasting. Use data from spreadsheets. Output to most printers. C-64 $\$ 39.95$ C-128 \$39.95

Speeds up your BASIC programs by 3 to 20 times. For C-64 and C-128

Super C
 Language Compiler

Learn the the language of the 80's and beyond on your ' 64 and ' 128

COBOL
Now you can learn COBOL the most widely used commercial programming language, on your 128 or 64. COBOL Compiler package comes complete with syntaxchecking editor, interpreter and symbolic debugging aids. New ' 128 version works with 40/80 column monitors and is quicker than the ' 64 version. C-64 \$39.95

C-128 $\$ 59.95$

New C-128 Verslon!
Super Pascal Compilor Complete system for developing applications in Pascal. Extensive editor. Standard J \& W compiler. Graphics library. Added ' 128 features: RAM disk; 100K source/one drive or $250 \mathrm{~K} /$ two; 80/40 column. If you want to learn Pascal or develop software using the best tool available, Super Pascal is your first choice. C-64 \$59.95 Now! C-128 $\mathbf{\$ 5 9 . 9 5}$

Super Pascal language Compler
 Expath fort programming: hotzzits on your 64 and 128

Cadpak

Easy-to-use interactive drawing package for accurate graphic designs. Dimensioning features to create exac scaled output to all majo dot-matrix printers. Input via keyboard or lightpen. Two graphic screens for COPYing from one to the other. DRAW BOX, ARC, ELLIPSE, etc. available. Define your own library of symbols/objectsstore up to 104 separate objects. C-64 $\$ 39.95$ C-128 $\$ 59.95$ PPM
Comprehensive portfolio management system for the 64 and 128. Manage stocks, bonds, mutual funds, T-bills; record taxable or non-taxable dividends \& interest income; reconcile each brokerage account cash balance with the YTD transaction file; on-line quotes through Dow Jones or Warner. Produces any type of report needed to analyze a portfolio or security. C-64 \$39.95 C-128 \$59.95

Call now for the name of the dealer nearest you. Or order directly form Abacus using your MC, Visa or Amex card. Add $\$ 4.00$ per order for shipping. Foreign orders add $\$ 10.00$ per item. Call (616) 241-5510 or write for your free catalog. 30-day money back software guarantee. Dealers inquires welcome-over 1500 dealers nationwide.

Abacus

SPEEISCRIFT FILES
DISK \＃1．
$\bar{E}=64 \quad \bar{E}=1.541$

LAEEL MFSTER CONPITE！（C）1986 $E=E 4, E=E O H P R T I B L E$ FRIMTER

SFEEISERIFT 3.2
COMFUTE！（C） 1985
$\Gamma=64 \quad \mathrm{C}=1541$

Once the design is complete， press $f 5$ to save it．Label Master prompts you to enter a filename for the design file．After you enter a filename，Label Master saves the graphics information in a disk or tape file．If you change your mind and decide not to save the file，press f 1 without entering a filename．La－ bel Master returns you to the design screen．

You can also load a previously created design file．Press f3 and enter the desired filename when prompted．Again，press f1 to return to the design screen if you decide not to load a file．

Adding Text

Once you＇re satisfied with the graphics portion of the label，press f 7 to enter text mode．In this mode， Label Master displays a space in the middle of the screen where you may enter text．To allow some extra flexibility，Label Master provides slightly more text space than you＇ll need for a standard label（standard labels permit only about 24－character lines）．

The blinking cursor shows your position in the text entry space．Since this space is so small，

Label Master provides only a few simple editing functions．To enter text，simply type the desired char－ acters．The space bar moves the cursor forward，and DEL deletes a character．To move from the upper line to the lower line，press the cursor－down key．You may clear the text－entry space and home the cursor by pressing SHIFT－CLR／ HOME．Press f 1 if you wish to exit the text screen and return to the graphics design screen．

When all the text has been en－ tered，press f3．Label Master dis－ plays a prompt to remind you that you have two options．If you＇re ready to print the label，press f 3 a second time．If you change your mind and wish to reenter the text， press f1：The text area is cleared，and you may type in whatever you like．

Be sure that the printer is con－ nected and turned on before you attempt to print a label．Label Mas－ ter is designed to work with the Commodore 1525 and MPS－801 or 803 printer．It can also be used with third－party printers if your printer interface can duplicate $1525 / 801$／ 803 high－resolution printing（most interfaces can）．The program will not work with the Commodore 1526 or MPS－802 printer．

Label Master

Please refer to the＂MLX＂article in this issue before entering the following program．

 Ø811：øø øø øの øø øø А9 Ø2 85 51 Ø819：FD 8D $2 \emptyset$ Dø A9 $5 \emptyset \quad 85$ FB 32 Ø821：A9 0485 FC 18 A9 øØ 8D 7C Ø829：21 DØ A9 93 2Ø D2 FF AØ 59 Ø831：ØØ A9 2E AØ Øø 99 ØØ CØ A2 Ø839：99 FF CØ 99 FE Cl 99 FD F7 0841：C2 99 FC C3 99 FB C4 99 D4 Ø849：FA C5 99506499 4F 05 AA Ø851：99 4E Ø6 $99 \quad 98$ Ø6 88 DØ DA Ø859：DC Aø ØØ $2 \varnothing$ 7B ØB AØ Øø 4B Ø861：B1 FB 498091 FB AD Øø 52 6869：DC C9 7E Dø 20 38 A5 FB 6Ø Ø871：E9 2885 FE A5 FC E9 øø 16 Ø879：85 FF Aの Øø B1 FE C9 2ஏ 9D 0881：FØ 5D A5 FE 85 FB A5 FF 6D 6889：85 FC 4C Eの Ø8 C9 77 D 9 5A Ø891：11 AØ Ø1 B1 FB C9 2Ø FØ C5 6899：46 E6 FB DØ 42 E6 FC 4C 97 Ø8A1：EØ Ø8 C9 7B DØ $2 \emptyset 38$ A5 32 68A9：FB E9 6185 FE A5 FC E9 1D | Ø8B1：$\varnothing \emptyset$ | 85 | FF | $\mathrm{A} \emptyset$ | Øø | B 1 | FE | C 9 | BB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ø8B9： $2 \emptyset$ | F | 24 | A 5 | FE | 85 | FB | $\mathrm{A5}$ | A | Ø8B9： $2 \emptyset$ FØ 24 A5 FE 85 FB A5 A Ø8C1：FF 85 FC 4C EØ Ø8 C9 7D CF $\begin{array}{lllllllll}\text { Ø8C9：D } \\ \text { 日8D } & 15 & \mathrm{~A} & 28 & \mathrm{~B} 1 & \mathrm{FB} & \mathrm{C} 9 & 2 \emptyset & 4 \mathrm{~F}\end{array}$ Ø8D1：Fの ØD 18 A5 FB $6928 \quad 85 \quad 56$ Ø8D9 ：FB A5 FC 69 Øの 85 FC AØ 38 Ø8E1：$\emptyset \emptyset 18$ Bl FB $998 \emptyset 91$ FB 57 ø8E9：A5 C5 C9 ø4 Dø Ø6 2ø 38 CE Ø8F1：ø9 4C 2B ø9 C9 28 Dの Ø9 29 Ø8F9：A9 D1 Aø øø 91 FB 4C 2B A7 69ø1： 09 C9 2 B Dø 09 A9 $\mathrm{AE} \mathrm{A} \varnothing 69$

 6911：DØ Ø3 4C 1D ØВ C9 ø5 Dø ø2 Ø919：ø3 4C CD ØA C9 Ø6 DØ Ø3 25 6921：4C DF ø9 C9 ø3 Dø ø3 4C BC 0929：BF ØB A2 32 Aの ØØ 88 D \emptyset 3C 6931：FD CA Dの FA 4C 5F ø8 Aの 4F 6939：$\varnothing \emptyset$ B1 FB $498 \emptyset \quad 91$ FB A5 B3 6941：FD C9 Ø1 Fの 03 4C 93 б9 6D 9949：E6 FD AØ øø B9 5Ø 649913 6951：48 C3 B9 $4 \mathrm{~F} \quad 65 \quad 99 \quad 47 \mathrm{C} 486$ 6959：B9 4E $66 \quad 99 \quad 46$ C5 B9 98 8B 6961：ø6 99 9Ø C5 C8 DØ E5 Aø 41
 Ø971：FF Cø 99 4F Ø5 B9 FE C1 AA 6979：99 4E Ø6 B9 48 C2 $99 \quad 9861$ 6981： 66 C8 D 9 E5 A9 94 8D 2723 Ø989： 64 AØ ØØ B1 FB 99809177 Ø991：FB 6ø A9 Ø1 85 FD AØ øø 64 Ø999：B9 5Ø 0499 ØØ CØ 99 4F 7C
 69A9：FE C1 $\mathrm{B} 998 \quad 96 \quad 99 \quad 48$ C2 56 Ø9B1：C8 Dø E5 Aø ØØ B9 48 C3 5E Ø9B9：99 5ø 04 B9 47 C 4994 F 98
 Ø9C9：9Ø C5 9998 ø6 C8 DØ E5 2D Ø9D1：A9 82 8D 27 Ø4 AØ Øø B1 D1 09D9：FB 698091 FB 6010038 2F Ø9E1： 0920 E8 Ø9 4C AØ ØA A9 DØ Ø9E9：93 20 D2 FF Aø Øø B9 FD 9E Ø9F1： 09 C 9 ØØ FØ 1220 D 2 FF C C 69F9：C8 4C EF 09 1C 4649 4C EA ØAØ1：45 $4 \mathrm{E} 41 \mathrm{4D} 45$ 3A．Øø 18 73 ØAø9：A2 Øø Aの ØB $2 \emptyset$ FØ FF 86 7E ØA11：C6 A9 Øの 85 CC A9 $\begin{aligned} & \text { A } \\ & 85 \\ & \mathrm{DD}\end{aligned}$ ØA19：CF 2Ø E4 FF C9 ØØ FØ F5 DF ØA21：C9 11 FØ Fl C9 $13 \mathrm{~F} \emptyset \mathrm{ED}$ Ø6 ØA29：C9 1D FØ E9 C9 91 FØ E5 82 ØA31：C9 9D Fg E1 C9 ØD DØ 1B ØD
 ØA41：AØ FØ D2 AØ Ø1 84 CC 8882 ØA49：84 CF A9 $2 \emptyset$ 2Ø D2 FF $2 \emptyset 37$ ØA51：82 ØA 60 C9 85 DØ ØA AØ F5 ØA59：Ø1 84 CC $88 \quad 84 \mathrm{CF} 4 \mathrm{C}$ FØ 1 E ØA61：ØA C9 14 DØ ØE 38 2Ø FØ FE ØA69：FF C \emptyset ØB FØ A8 20 D2 FF 89
 ØA79：1B Fの 9A $2 \emptyset$ D2 FF 4C 16 F1 ØA81：ØA AØ ØØ 18 B9 ØB Ø4 C9 $1 \emptyset$ ØA89：1F 1Ø 0569 4Ø 4C 97 ØA D4 ØA91：C9 4Ø 3Ø Ø2 A9 2Ø 99 F3 B5 ØA99：$\emptyset E$ C8 CØ 1Ø DØ E5 6Ø $2 \emptyset$ FE ØAA1：CC FF $2 \emptyset 4 \mathrm{~F}$ ØB A9 1Ø A2 D6 ØAA9：F3 AØ ØE $2 \emptyset$ BD FF A9 Øø E4 $\emptyset A B 1: A 2$ Ø8 A $\varnothing \mathrm{FF} 85 \mathrm{FE} 2 \emptyset \mathrm{BA} 5 \emptyset$ ØAB9：FF A9 C $\emptyset 85$ FF A9 FE A2 EF ØACl：FA AØ C6 $2 \emptyset$ D8 FF $2 \emptyset$ CC $2 A$ ØAC9：FF 4C FØ ØA $2 \emptyset$ CC FF $2 \emptyset$ Ø4 ØAD1：E8 99 2ø 6A ØB A9 1Ø A2 $\emptyset 9$ ØAD9：F3 AØ ØE 2Ø BD FF A9 Øø 15
 ØAE9：$\emptyset \emptyset 2 \emptyset$ D5 FF $2 \emptyset$ CC FF A9 9E ЯAF1：93 2ø D2 FF $2 \emptyset$ 7B ØB A9 E ØAF9：$\emptyset 285$ FD Aø $0 \emptyset$ A9 $5 \emptyset 85 \quad \varnothing 7$ ØBø1：FB A9 Ø4 85 FC 2Ø 6A Ø9 9E ØВø9：4C 5F Ø8 13 1C 12535574 $\begin{array}{lllllllll}\text { ØBl1：52 } & 45 & 2 \emptyset & 28 & 59 & 2 \mathrm{~F} & 4 \mathrm{E} & 29 & 75\end{array}$ ØB19：2の 2Ø 92 ØØ AØ ØØ B9 ØС 1E ØB21：ØB C9 ØØ FØ Ø7 2Ø D2 FF 9C ØВ29：C8 4C 1F ØB A5 C5 C9 4063 ØB31：Fの FA C9 19 Dの Ø3 4C 16 8A

 ØB49：4E 47 2E 2E 2E ØØ Aø øØ B3 ØB51：B9 44 ØB C9 Øø Fø $6 \emptyset$ 2ø F7 ØB59：D2 FF C8 4C 51 ØB 13 4C DF $\begin{array}{llllllllll}\text { ØB61：} 4 \mathrm{~F} & 41 & 44 & 49 & 4 \mathrm{E} & 47 & 2 \mathrm{E} & 2 \mathrm{E} & \text { A6 }\end{array}$ ØВ69：Øб АØ ØØ B9 5F ØB C9 Øø FD ØB71：FØ 45 2ø D2 FF C8 4C 6C AA ØВ79：ØВ 6Ø Аø Øø B9 8B ØВ C9 1D ØB81：ØØ FØ F6 2Ø D2 FF C8 4C 29 ØB89：7D ØB 13 1C 12 4C 4142 CB ØB91：45 4C $2 \emptyset \quad 4 \mathrm{D} 41535445$ 7B

 ØBB9：Øø 6Ø ØØ Øø Øø ØØ $2 \varnothing 38$ 6Ø ØBCl：ø9 A9 Øø 8D BD ØB 8D BE 93 ØВC9：øB 85 FE 8D BB ØB A9 CØ 9D ØBD1：85 FF 8D BC ØB $2 \emptyset$ ØC ØC 25 ØBD9：EE BD ØB AC BD ØB CØ Ø6 A4 ØBE1：DØ Ø3 4C 91 ØC 18 AD BB 9B ØBE9：$\emptyset \mathrm{B} \quad 6918$ 8D BB ØB 85 FE CF ØBF1： AD BC ØB 69 Ø1 8D BC ØB C 8 ØBF9： 85 FF 4 C D6 ØB 18 A5 FE CC ØCØ1：69 $28 \quad 85 \mathrm{FE}$ A5 FF 69 ØØ 78 ØCø9：85 FF 6Ø AØ ØØ A2 ØØ B1 36 ØCl1：FE C9 2E FØ Ø1 E8 $2 \emptyset$ FE DA ØC19：ØB B1 FE C9 2E FØ Ø2 E8 C1 ØC21：E8 2Ø FE ØB B1 FE C9 2E 91 ØC29：FØ Ø4 E8 E8 E8 E8 $2 \emptyset$ FE 9Ø ØC31：ØB B1 FE C9 2E FØ Ø5 18 ØF ØС39：8A 69 ø8 AA $2 \emptyset$ FE ØB B1 61 ØC41：FE C9 2E FØ 0518 8A 6927 ØC49：1Ø AA 20 FE ØB Bl FE C9 EE ØC51：2E FØ Ø5 18 8A 69 2Ø AA C3 ØC59： $2 \emptyset$ FE ØB Bl FE C9 2E FØ 2A ØC61：ø5 18 8A 69 4Ø AA 18 8A 51 ØC69：69 8Ø 8С 8F ØС AC BE ØB 7C ØC71：99 3Ø 75 C8 8C BE ØB AC BF ØC79：8F ØC C8 Cø 28 F С 1 Ø AD 54 ØC81： BB ØB 85 FE AD BC ØB 85 D 6 ØC89：FF A2 Øø 4C 1ø ØC ஏø $6 \emptyset \quad 2 \emptyset$ ØC91：AØ ØØ B9 Al ØC C9 ØØ FØ C3 ØC99：34 2ø D2 FF C8 4C 93 øC D8 øCA1：93 1 C C $12 \begin{array}{lllllll} & 45 & 4 \mathrm{E} & 54 & 45 & 52 & \mathrm{Cl}\end{array}$ ØCA9：2Ø 54455854 3A $2 \emptyset 2 \emptyset \quad 1$

 $\begin{array}{lllllllll}\text { ØCC1 }: 27 & 46 & 33 & 27 & 20 & 2 D & 20 & 44 & 12\end{array}$ ØCC9：4F 4E 4592 Øø 18 Aø 9595 ØCD1：A2 ØA $2 \emptyset \mathrm{~F}$ Ø FF A9 75 8D EF ØCD9：94 Ø5 8D BC Ø5 8D E4 Ø5 28 ØCE1：AØ 1F $99 \begin{array}{llllll}94 & \boxed{ } & 99 & \mathrm{BC} & 05 & 9 B\end{array}$ ØCE9：99 E4 Ø5 A9 1E 8D 11 Ø6 92 ØCF1：8D 16 Ø6 8D 1B 06 8D $2 \emptyset$ 1C ØCF9：Ø6 8D 25 Ø6 8D 2A Ø6 A9 48 ØDø1：øø 85 CC 85 C6 A9 95 8D E2

ØDø9：3C ø3 8D 3D ø3 8D 3E ø3 55 ØD11：2の E4 FF C9 Øø FØ F9 AØ 69 ØD19：Øø 84 CF C9 86 DØ ØD 84 Ø1 ØD21：CF C8 84 CC A9 $2 \emptyset 20$ D2 93 ØD29：FF 4C F5 ØD C9 ØD FØ EØ 2B ØD31：C9 13 FØ DC C9 93 DØ Ø3 22 ØD39：4C 91 ØC C9 1D Fø D1 C9 16 ØD41：91 FØ CD C9 9D FØ C9 C9 C4 ØD49：14 DØ 1ø A9 2ø 2Ø D2 FF 65 øD51：A9 9D $2 \emptyset$ D2 FF $2 \emptyset$ D2 FF FE ØD59：4C AE ØD C9 11 DØ 3D A9 73 ØD61：2の $2 \emptyset$ D2 FF 3820 FØ FF 12 ØD69：88 EØ ØA DØ ØE 8C 3C Ø3 6C ØD71：AC 3D Ø3 E8 18 2Ø F O FF 43 ØD79：4C 11 ØD EØ ØB DØ ØE 8C F1 ØD81：3D Ø3 AC 3E 63 E8 18 2ø $8 \varnothing$ ØD89：FØ FF 4C 11 ØD 8C 3E Ø3 Dø ØD91：AC 3C Ø3 A2 ØA 18 2Ø FØ 7D ØD99：FF 4C 11 ØD C9 85 DØ ØA C9 ØDA1：AØ $\varnothing 185$ CC $88 \quad 85$ CF 4C 10 ØDA9：FØ ØA 2Ø D2 FF 38 2Ø FØ Ø2
 ØDB9：2Ø FØ FF CØ Ø5 1Ø Ø5 A9 48 ØDC1：B5 20 D2 FF 4C 11 ØD 13 EC ØDC9：1E $12 \begin{array}{llllllll}12 & 27 & 46 & 31 & 27 & 2 \emptyset & 2 D & 54\end{array}$ ØDD1：2の $52 \begin{array}{llllllll}52 & 43 & 4 F & 4 E & 53 & 49 & 11\end{array}$ ØDD9：44 $45 \begin{array}{lllllllll} & 52 & 2 \emptyset & 95\end{array}$ ØDE1：27 46 ØDE9：52 49 4E $54204 \mathrm{C} 4142 \quad 85$ ØDF1：45 4C 92 ØØ A9 Øø 85 C6 33 ØDF9：AØ ØØ B9 C8 ØD C9 ØØ FØ A8 ØE01： 07 2Ø D2 FF C8 4C FB ØD 7F ØEø9：2Ø E4 FF C9 ØØ FØ F9 C9 8C ØE11：86 FØ Ø7 C9 85 DØ F1 4C C9 ØE19：91 ØC A9 Ø4 85 B8 A9 Ø4 DC ØE21：85 BA A9 ØØ 85 B7 $2 \emptyset \mathrm{Cl}$ Fø ØE29：E1 2б CC FF A2 Ø4 $2 \emptyset$ C9 07 ØE31：FF A9 8D $2 \emptyset$ D2 FF 4C 8722 ØE39：ØE A9 Ø8 2Ø D2 FF A9 ØD Cø ØE41： $2 \emptyset$ D2 FF B1 FC $2 \varnothing$ D2 FF 4B ØE49：C8 CØ 28 DØ F6 $2 \emptyset$ 6F \quad ØE 31 ØE51：60 B1 FE $2 \emptyset 6 \emptyset$ ØE 2の D2 3A ØE59：FF C8 CØ 1E D \emptyset F3 $6 \emptyset 18$ DØ ØE61：C9 1F 10 Ø3 69 40 6Ø C9 33 ØE69：4Ø 3ø Ø2 69 2ø 6ø A9 8 0 DE ØE71：20 D2 FF A9 FF $2 \emptyset$ D2 FF 13 ØE79：A9 ØF 20 －D2 FF A9 $2 \emptyset 2 \emptyset 66$ ØE81：D2 FF 2ø D2 FF 6Ø A9 3Ø 3D ØE89：AØ 7585 FC 84 FD AØ ØØ 31 ØE91：2Ø 3A ØE A9 94 AØ Ø5 85 5F ØE99：FE 84 FF AØ ØØ $2 \emptyset 52$ ØE 93 ØEA1：A9 5885 FC AØ ØØ $2 \emptyset$ 3A A8 ØEA9 ：ØE A9 8Ø $85 \mathrm{FC} A \emptyset$ ØØ 2Ø 2A ØEBI：3A ØE A9 A8 85 FC AØ ØØ 8F ØEB9： $2 \emptyset$ 3A ØE A9 BC 85 FE AØ 6B ØECI：ØØ $2 \emptyset 52$ ØE A9 DØ 85 FC A9 ØEC9：AØ ØØ 2Ø 3A ØE A9 F8 85 6C ØED1：FC Aø Øø $2 \emptyset$ 3A ØE A9 E4 D8 ØED9：85 FE AØ Øø $2 \emptyset 52$ ØE A9 9C ØEE1：$\emptyset D 2 \emptyset$ D2 FF A9 Ø4 $2 \emptyset$ C3 48 ØEE9：FF 20 E7 FF $2 \emptyset$ CC FF 4C 8B ØEF1：91 ØC $2 \emptyset$ D3 CA Øø ØØ Øø 71

©

COMPUTE！ TOLL FREE Subscription Order Line 1－800－247－5470 In IA 1－800－532－1272

Looking for a Widget for your Okidata printer and need it now？ Call Precision！

Precision Images normally stocks most spare parts for your Okidata printer，from the Okimates to the Pacemarks including the new Microline and Laserline series． Anything and everything for your Okidata printer is only a phone call away．Precision Images is ＂your direct connection to genu－ ine Okidata parts and supplies．＂
for Visa／MasterCard orders call： 1－800－524－8338

Precision Images，Inc． P．O．Box 866 Mahwah，New Jersey 07430

CORDATA 400 DESKTOP....s909 CORDATA 400 PORTABLE*.... 909

 CORDATA 400XT

 CORDATA 400XT20 MEG**.20 MEG**. s1499 s1499 CORDATA 400XT PORTABLE 20 MEG**.. ${ }^{\text {s }} 1499$

*Contains 2-360K Disk Drives,
Memory, Green Monitor

*Contains	$1-360 \mathrm{~K}$ Disk Drive, 512 K Memory, 20MB
Hard Disk, Green Monitor	

THE PC CLONE YOU HAVE BEEN HEARING ABOUT

 BLUE CHIP PCs679
Contains 1-360K Disk Drive, 512K Memory, G Expansion Slots, Parallel \& Serial I/O. TTL Output
MS DOS 3.2 \& GIW BASIC '99.95
BLUE CHIP 360K DISK DRIVE'129
BLUE CHIP TTL GREEN MONITOR . .'99.95
ASEPR 28
COMPATIBLE COMPUTER

Includes • Spreadsheet
Database
- Word Processor

l

APPLE IIE AND IIC PRINTER PACKAGES
 NX-10 PRINTER \&
 GRAPPLER +/C
 s288
 PANASONIC 10811 \&
 GRAPPLER + C
 s298

Commodore 64C With Geos Commodore 1541 C
 Call

acces

$\begin{array}{lll}\text { Mach V-Cart } & . .21 .95 & \text { SSI } \\ \text { Battle/Antietam . } & 32.95 \\ \text { Leader Board }\end{array}$
Leader Board 24.95 Panzer Grenider.
Execnament Disk. 16.95 USAAF ..
Executive Disk. 16.95 Kampgruppe
Robotic Workshop Call Broadside
AHCROPROSE \quad Comp. Ambush for items and prices. ABACUS SORTWARE Chartpak......31.95 Imp. Galactu Cad-Pak...............31.95 Computer Powerplan 31.95 Baseball. $\begin{array}{lll}\text { Super C Compiler } & 44.95 & \text { Computer } \\ \text { Quarterback . . }\end{array}$ Basic Pascal 44.95 Wizards Crown Forth 31.95 Gettysburg BATTERIES NCLUDED Mech Brigade 81-80 Card.......59.95 Warship. Paperclip/Spell ... 29.95 SSI (NO ATARI) Consultant .. Home Pak. EPYX $\begin{array}{llll} & & \text { Battwar 200 } & 27.95 \\ \text { Fast Load } & 24.95 & \text { Roadwar } & 27.95 \\ \text { Summer Games II } & 24.95 & \text { Gemstone Healer. } 20.95\end{array}$

Wuper Cycle 24.95
See Apple Section for Rest of trems \& Prices
 XETEC Super Graphic 69.95

COMMODORE 64/128 SUPER PRINTER PKGS NX-10 \& Xetec Supergraphic Panasonic 1080i \& Xetec Supergraphic ... 259

ATARI 130XE COMPUTER

PACKAGE

130XE Computer
1050 Disk Drive 1027 Printer Atari Software
This is a shipped price anywhere in Continental USA

ATARI XE•XL

ATARI 130XE computer = 139
This is a shipped price any
in Continental USA.

ATARI 1050 DISK DRIVE Includes DOS 2.5 s135
This is a shipped price anywhere in Continental USA
-400/800 Atari XMM801
Printer . . .
A ATARI
 ATARI 850
INTERFACE
IN 195

Comput ${ }^{\text {Es5 }}$.192 - bility

O NO SURCHARGE FOR MASTERCARD \& VISA =تي

For Technical Info., Order Inquiries, or for Wisc. Orders 800-558-0003
ORDERING INFORMATION: Please specily system. For fast delivery send cashier's check or money order. Personal and company checks allow 14 business days to clear. School P.O's welcome. C.O.D. charges are $\$ 3.00$ In Continental U.S.A. include $\$ 3.00$ for software orders. 4% shipping for hardware, minimum $\$ 4.00$. Master Card and Visa orders please include card \#, expiration date and signature. WI residents please include 5% sales tax. HI, AK, FPO, APO, Puerto Rico and Canadian orders, please add 5% shipping, minimum $\$ 5.00$. All other foreign orders ado 15% shipping. minimum $\$ 10.00$. All orders shipped outside the Continental U.S.A. are shipped first class insured U.S. mail If foreign shipping charges exceed the minimum amount, you will be charged the additional amount to get your package to you quickly and safely. All goods are new and include factory warranty. Due to our low prices all sales are final. All defective returns must have a return authorization number. Please call (414) 351-2007 to obtain an R.A.\# or your return will not be accepted. Priced and availability subject to change without notice.

MISCELLANEOUS COMMODORE 64

. 19.95	Gunship
. 19.95	Champ
. 23.95	Baseball 86
. 34.95	Shangh
29.95	Tass Tim
. 23.95	Transf
. 20.95	Sub M
. 18.95	Tracke
. 23.95	Pet Speed
. 23.95	GEOS Desk Pak
27.95	GEOS Font Pak
. 27.95	Oxford Pascal
. 34.95	Bob ${ }^{\prime}$ ' Wrestle
34.95	Clip Art 1 or
34.95	

23.95 Certificate Maker .23.95 Ultima ll

Animation	
Station..........49.95	Fontmaster Print Shop

23.95 Tation...........49.95 Print Shop 23.95 Tag Team Superbase 64 23.95 Wrestling.......... 23.95 Karateka $\begin{array}{ll}\text { Ace of Aces } 19.95 & \text { Hacker ... } \\ \text { Disney Card }\end{array}$ Disney Card23.95 Gamemaker. Disney Comic23.95 Karate Champ. . Accolade Internat'I Hockey Prt. Shop Compan 27.95 Football. . WWF Micro Wrestling.. Commando Hacker II. Love Quest
39.95
.32 .95
28.95
.47 .95
.20 .95
20.95
.27 .95
25.95
19.95
27.95

.17 .95
29.95
21.95
34.95
.39 .95

HARDW REE
 PRINTER BUFFERS

27.95 Graphics 27.95 Jet
23.95
Printmaster 23.95 Newsroom.

Microbuffer/Mini	U-Buff	
64 K	.. .99 .95	64 K

 Samsung 14* Composite Commodore 19012 A Green or Amber ffi: MONHTORS MONBORS
rHOMSON
VM3107 IG FTH /GFen
 CM363:1-DD-RGBW/EGA CM3131 SLRGB Hikes.
 INTERFACES FOR OKIMATE 20 $\begin{array}{llll}\text { Atari ST . . . } 60 & \text { Apple IIE . . } 70 \\ \text { Amiga . . . } & 60 & \text { Apple IIC . } 77\end{array}$
ATARI XE/XL/400/800 SUPER PRINTER PACKAGES NX-10 \& SUPRA 1150 SURA 1150.259
PANASONIC 1080: \& 259

ATARI PRINTER INTERFACES

SUPRA 1150
59.95
P.R. CONNECTION
64.95

XETEC GRAPHIC AT
39.95

ATARI DIRECT-CONNECT MODEMS

SUPRA 1000E
39.95 ATARIXM-

AMIGA COMPUTER SYSTEM PACKAGE

- AMGGA COMPUER vAMGASIZRAMEXPANDER

 - AMHGA 1080MOHHFOR AAMGA 10103.5 DISK DRIVECALL FOR
PACKAGE PRICE

Wari

Don Donati

"Wari," based on an ancient strategy game, lets you match your wits against the computer. The original version of this program is written for the Commodore 64. We've included translations for the Apple II series, Atari 520ST and 1040ST, IBM PC/PCjr, Amiga, and Atari 400, 800, XL, and XE. The IBM PC/PCjr game requires a color/graphics card for the PC.
"Wari" is a strategy game which has been played for centuries in Africa and the Middle East. The object of the game is to capture as many of your opponent's pieces as you can, while trying to prevent the capture of your own pieces. Type in the version of Wari for your computer and read the specific instructions for your machine befcre you run the program.

Electronic Beans

Wari is played on a board which has 12 compartments arranged in two rows of 6 (the arrangement is similar to that of an egg carton). In the original versions of this game, the compartments were actual depressions in a board or simply holes scooped into the ground, and the game was played by moving counters (beans, pebbles, or other small objects) among the various compartments, In the computerized version of Wari, the compartments are rectangles drawn on the screen, and the counters are represented by
numbers. If the number 4 appears in a compartment, that compartment holds four counters, and so on.

Six of the compartments are yours and the other six belong to your opponent, which is always the computer. When the game begins, four counters are placed in each of the 12 compartments, for a total of 48 counters. Each player, then, starts the game with 24 counters. Once play begins, however, counters are considered yours when they rest in one of the six compartments on your side of the board. The program then asks whether you or the computer should make the first move.

Counterclockwise Movement

A move consists of taking all the counters from one compartment on your side of the board and sowing, or distributing, one counter into each of the adjacent compartments in a counterclockwise direction. In the original game, this was done by picking up the counters and sowing them by hand. In this version of Wari, you simply indicate which compartment you wish to sow by pressing the letter key printed by that compartment. The computer automatically sows that compartment's counters for you.

The figures illustrate the effect of making a move at the beginning of a game in which you have chosen to move first. Figure 1 shows the board
before a move is made. Each compartment contains four counters, represented by the number 4 .

Figure 1: Before The First Move

Figure 2 shows the board after you press the G key. The four counters from compartment G are sown in compartments $\mathrm{H}, \mathrm{I}, \mathrm{J}$, and K. Each of those compartments now contains five counters; the original compartment (G) is now empty.

Figure 2: After The First Move

Depending on which compartment you sow, the sowing can wrap around from one side of the board to the other. For instance, say that your next move sows the counters from compartment H: Compartments I, J, and K now contain 6 counters; compartment L contains 5 counters, and the fifth counter from compartment H is sown in compartment A. Should you sow 12 or more counters, you return to the compartment where you started: In that case the original compartment is skipped and sowing resumes in the next one.

Captures

You score points in Wari by capturing counters. A capture occurs when you sow your last counter in an opponent's compartment which
previously contained either one or two counters. The counters from that compartment are then removed from play. Each captured counter is equal to one point. If the previous compartment in line also contains two or three counters at the end of the move, its counters are captured, as well. This process continues until no more counters can be captured in that turn (in some cases, it's possible capture all of your opponent's counters in a single move).

The game can end in several different ways. Play must end whenever the board is empty (all counters have been captured) or whenever one player has no more counters to move. The game also ends when one player has captured more than half of the counters (if you have more than 24 counters, it's numerically impossible for your opponent to win the game). Wari also permits a stalemate, where each player chases the other around the board fruitlessly; a stalemate game should be ended by mutual agreement.

At the end of the game, your score is increased by the number of counters remaining on your side of the board. The computer automatically totals the score and announces the winner. You may end the game at any time by pressing the Q key.

Game Limits

At the beginning of each game, the computer also asks whether you wish to play a limited or unlimited game. A limited game consists of a set number of moves for each player; an unlimited game lasts until the game ends in one of the ways described above. Press L for a limited game or U for an unlimited game.

Limits of $25-35$ moves make for interesting games. In a very short limited game (say, five moves) it's usually more important to protect counters on your side of the board than to capture the opponent's counters (when the game ends, you are awarded all the counters on your side).

Commodore 64 Version

The Commodore version of Wari (Program 1) runs on any Commodore 64 (or 64C), and also in 64 mode on the Commodore 128.

Apple II Version

This version of Wari (Program 2) runs on any Apple II-series computer, under either ProDOS or DOS 3.3.

Atari ST Version

Wari for the ST (Program 3) looks best on a color monitor set to low resolution, but it can be played in any screen resolution, including high resolution on a monochrome monitor.

IBM PC/PCjr Version

A color/graphics card is required to play Wari on the IBM PC (Program 4).

Amiga Version

The Amiga version of Wari (Program 5) runs on any Amiga computer.

Atari 400, 800, XL, And XE Version

This version of Wari (Program 6) runs on any eight-bit Atari computer.

For instructions on entering these programs, please refer to "COMPUTE!'s Guide to Typing In Programs" in this issue of COMPUTEI.

Program 1: Commodore 64 Wari

EG 10 DIM $A(12), B(12), S C(12), I$ (12)

EM $2 \varnothing \mathrm{D} \$=$ " $\{\mathrm{HOME}\}\{22$ DOWN $\} "$
MK $3 \varnothing \mathrm{~S} \$="\{39$ SPACES $\} "$
MP $4 \varnothing$ DS $\$=\mathrm{D} \$+\mathrm{S} \$+\mathrm{D} \$$
RJ $5 \varnothing$ POKE 5328ø, \varnothing :POKE 53281, Ø:PRINT CHRS(147);
KM $6 \emptyset$ PRINT TAB (9)" $\{$ YEL $\} * * * * * * ~$
***************"
GD $7 \varnothing$ PRINT TAB (9)"*\{RVS\}E7
\{19 SPACES\}\{OFF\}\{YEL\}*"
FD $8 \emptyset$ PRINT TAB(9)"*\{RVS\}E73 C OMMODORE 64 WARI \{OFF\} \{YEL\}*"
AC $9 \varnothing$ PRINT TAB(9)"*\{RVS\}\&7 \{19 SPACES\}\{OFF\}\{YEL\}*"
AR 10ø PRINT TAB(9)"**********
BQ 110 PRINT:PRINT TAB(12)" \{CYN \}COMPUTER'S SIDE":C $\mathrm{P}=\varnothing$: $\mathrm{MC}=\varnothing$
AG 120 PRINT TAB(12)" $\{$ PUR $\}$ MOVE \#太7ヨ"MC:PRINT TAB(12)"

HK 13ø PRINT:PRINT" $\mathbb{6} 6$ § \{4 SPACES \} \ll F $\lll<E \lll<$ D <<<<C<<<< B<<<<A<<<"
SQ $14 \varnothing$ PRINT" $\mathrm{E} 7 \exists\{4$ SPACES $\}=$
\{4 SPACES $\}$ - $\{4$ SPACE $\bar{S}\}$ $\{4$ SPACES $\}=\{4$ SPACES $\}=$ \{4 SPACES $\}=\{4$ SPACES $\}="$
AC 150 PRINT" $\{4$ SP̄ACES $\}=$
$\{4$ SPACES $\}=\{4$ SP $\bar{A} C E S\}$ -
$\left\{\begin{array}{ll}4 & \text { SPACES }\}\end{array}\right\}=\left\{\begin{array}{ll}4 & \text { SPACES }\end{array}\right\}=$
\{4 SPACES $\}$ - $\{4 \text { SPACES }\}^{-" ~}$

The Commodore 64 version of＂Wari，＂ an ancient strategy game．

CK $16 \emptyset$ PRINT＂$\{4$ SPACES $\}$ EQ \exists CCCC $+\mathrm{CCCC}+\mathrm{CCCC}+\mathrm{CCCC}+\mathrm{CCCC}+\mathrm{CC}$ CCEW ${ }^{-1}$
JE 170 PRINT＂\｛4 SPACES \}$\{4$ SPACES $\}=\{4$ SPĀCES \} $\{4$ SPACES $\}=\{4$ SPACES $\}=$ $\{4$ SPACES $\}=\{4$ SPACES $\}="$
QH $18 \emptyset$ PRINT＂$\{4$ SPBACES $\}=$ $\{4$ SPACES $\}=\{4$ SPĀCES $\}=$ $\left\{\begin{array}{l}4 \\ \text { SPACES }\end{array}\right\}=\left\{\begin{array}{ll}4 & \text { SPACES }\end{array}\right\}$ \｛4 SPACES $\}$－\｛4 SPACES $\}="$
MF 190 PRINT＂$\{6\}\{\overline{4}$ SPACES $\} \gg \overline{\mathrm{G}}>$
＞＞＞H＞＞＞＞I＞＞＞＞Jゝ＞＞＞K＞＞＞＞ L＞＞＞＂
BD 2øø PRINT：PRINT TAB（12）＂ \｛WHT\}PLAYER'S SIDE": PL= $\varnothing: M P=\varnothing$
FS 210 PRINT TAB（12）＂\｛PUR\}MOVE \＃太7ヨ＂MP：PRINT TAB（12）＂ \｛PUR\}SCORE: $\{3$ 3＂ PL
XM 22 FOR $T=1$ TO $12: A(T)=4: B($ T）＝4：GOSUB 1196：NEXT T
GA 230 REM＊＊＊GAME TYPE \＆FIRS T TURN＊＊＊
QS $24 \varnothing$ PRINT DSŞ＂\｛YEL\}\{RVS\}L \｛OFF\}IMITED OR \{RVS\}U \｛OFF\}NLIMITED GAME? ";
XP 250 GOSUB 15ø0：IF B\＄く＞＂L＂A ND B S＜＞＂U＂THEN 250
HH $26 \varnothing$ PRINT BS：FOR TM＝1 TO $2 \emptyset$ $\emptyset: N E X T$ TM：ML＝ø
DD $27 \varnothing$ IF $B \$=$＂U＂THEN PRINT LE FT\＄（DS，4）TAB（15）＂\｛RVS \} K7 3 UNLIMITED $\{0 F F$ \}": GOTO $31 \varnothing$
AK $28 \emptyset$ PRINT DS\＄＂MOVE LIMIT＂；： INPUT ML
MM 290 ML＝INT（ML）：IF ML＜＝ø THE N $28 \varnothing$
XF $3 \varnothing 0$ PRINT LEFT $\$(D \$ 4)$ TAB（ 14 ）＂\｛RVS\}E7ヨLIMITED: "+STR S（ML）＋＂$\{$ OFF \}"
GX 310 PRINT DS\＄＂E8习WHO GOES F IRST：\｛RVS\}C\{OFF \}OMPUTE R OR \｛RVS\}P\{OFF\}LAYER? \｛SPACE\}";
BB 320 GOSUB 15øø：IF $\mathrm{B} \$<>" \mathrm{C"}$ A ND B ＜＜＞＂P＂THEN $32 \varnothing$
CJ 330 PRINT B\＄：FOR TM＝1 TO 20 Ø：NEXT TM
BJ $34 \varnothing$ IF $\mathrm{B} \$=$＂C＂THEN $52 \varnothing$
QC 350 REM＊＊＊PLAYER＇S MOVE＊＊＊
AK 360 P S＝＂P＂： $\mathrm{P}=\emptyset: \mathrm{SP}=\emptyset: M P=M P+1$
HM $37 \varnothing$ PRINT LEFT $\$(D \$, 2 \varnothing)$ TAB（ 1 8）＂ E 7 클MP
JB 380 FOR $F=7$ TO $12: \mathrm{P}=\mathrm{P}+\mathrm{A}(\mathrm{F})$ ： NEXT F
QP 390 PRINT DSS＂$\{$ WHT $\}$ PLAYER＇S TURN．MOVE COUNTERS（G －L）＂；

JB $4 \varnothing \varnothing$ IF $P=\varnothing$ THEN $91 \varnothing$
BA $41 \varnothing$ GOSUB $15 ø \varnothing: I=A S C(B \$)-64$ ：PRINT＂\｛CYN\}"B\$
PR 420 IF $\mathrm{B} \$=" \mathrm{Q}$＂THEN 1136
AP 43ø IF $\mathrm{B} \$>=" \mathrm{G}=\mathrm{AND} \mathrm{B}\langle<=" \mathrm{~L} "$ $\{$ SPACE \}THEN IF A $(I)<>\emptyset$ \｛SPACE］THEN $46 \varnothing$
MS $44 \varnothing$ PRINT DS\＄＂EIヨILLEGAL MO VE111＂
MD 450 FOR TM＝1 TO 9øø：NEXT TM ：GOTO $39 \varnothing$
GH 460 DS＝1：GOSUB 1280：FOR TM＝ 1 TO 9ø0：NEXT TM
PP $47 \varnothing$ PT＝$\varnothing: F O R \quad F=1$ TO $12: A(F)$ $=B(F): P T=P T+A(F): N E X T \quad F$
AX $48 \emptyset$ IF $M P=M L$ AND $M C=M L$ THEN 978
GR 49ø IF PT＝ø THEN $91 \varnothing$
KC 5 Øø IF PL＞ 24 THEN $97 \varnothing$
KJ 510 REM＊＊＊COMPUTER＇S MOVE＊
FR $52 \emptyset \mathrm{P} \$=" \mathrm{C}=\mathrm{PA}=\varnothing: \mathrm{PB}=\varnothing: I A=\varnothing: I$ $B=\emptyset: P=\emptyset: M C=M C+1$
RM $53 \emptyset$ PRINT LEFT $\$(D \$, 8)$ TAB（ 18 ）＂E7ヨ＂MC
PQ 54ø FOR $\mathrm{F}=1$ TO $6: \mathrm{P}=\mathrm{P}+\mathrm{A}(\mathrm{F}): \mathrm{N}$ EXT F
FF 550 PRINT DS§＂\｛CYN\}COMPUTER ＇S TURN．MOVES COUNTERS A－F．＂；
PM 560 IF $\mathrm{P}=\varnothing$ THEN $91 \varnothing$
AC 579 REM＊＊＊CHECK ALL MOVES＊ ＊＊
EA 580 FOR G＝1 TO 1.2
MM $590 \mathrm{SC}(\mathrm{G})=\emptyset: I(G)=\emptyset$
FX 6øø IF $G=7$ THEN $P \$=" P "$
AR 61.1 IF $\mathrm{A}(\mathrm{G})=\varnothing$ THEN 650
JP $620 \mathrm{SC}=\varnothing: \mathrm{SP}=\varnothing: \mathrm{I}=\mathrm{G}$
AJ 630 DS＝\varnothing ：GOSUB 1280
ER $64 \varnothing \mathrm{SC}(\mathrm{G})=\mathrm{S}$ ．OR S2：I（G）$=\mathrm{T} \varnothing$
DR 650 NEXT G
PG 660 PS＝＂C＂
CJ 67 REM＊＊＊PICK BEST MOVE＊＊ FOR $F=1$ TO 6
MD 680 FOR $F=1$ TO 6
CH 690 IF PA＞$=S C(F)$ THEN 710
BP $7 \emptyset \emptyset I A=F: P A=S C(F)$
CD 710 IF $\mathrm{PB}>=\mathrm{SC}(\mathrm{F}+6)$ OR $\mathrm{A}(\mathrm{I}(\mathrm{F}$ ＋6））＝ø THEN $73 \varnothing$
PP $72 \varnothing I B=I(F+6): P B=S C(F+6)$
KC 730 NEXT F
CE 740 IF $I A=\varnothing$ AND $I B=\emptyset$ THEN 7 $7 \varnothing$
SQ 750 I＝IA：IF PB＞PA THEN $I=I B$
SE 760 GOTO 830
MM $770 \mathrm{P}=\varnothing$ ：FOR $\mathrm{F}=7$ TO $12: \mathrm{P}=\mathrm{P}+\mathrm{A}$ （F）：NEXT F
RF 78 Ø IF $\mathrm{P}<>\emptyset$ THEN 820
FJ 790 FOR $F=1$ TO 5
BS 800 IF $A(F)<>\varnothing$ AND $A(F)<=6-$ F THEN I＝F：GOTO $83 \varnothing$
QH $81 \varnothing$ NEXT F
CH $82 \varnothing \mathrm{I}=\operatorname{INT}(\operatorname{RND}(\varnothing) * 6)+1: \operatorname{IF}$ A $($ I）$=\varnothing$ THEN $82 \varnothing$
XF $83 \varnothing$ PRINT＂\｛WHT\}"CHRS(I+64) ：SC＝ø：FOR TM＝1 TO 750：N EXT TM
EJ 84ø DS＝1：GOSUB 1280：FOR TM＝ 1 TO 900：NEXT TM
BD 850 PT＝Ø：FOR F＝1 TO 12：A（F） $=\mathrm{B}(\mathrm{F}): \mathrm{PT}=\mathrm{PT}+\mathrm{A}(\mathrm{F}): \mathrm{NEXT} \mathrm{F}$
SH 860 IF $\mathrm{MP}=\mathrm{ML}$ AND MC＝ML THEN $97 \varnothing$
EF 870 IF PT＝\varnothing THEN $91 \varnothing$
HH $88 \emptyset$ IF CP＞24 THEN $97 \varnothing$
MQ $89 \emptyset$ GOTO $36 \emptyset$
HP 9øø REM＊＊＊NO COUNTERS＊＊＊
JX 910 F́OR TM＝1 TO 4øø：NEXT TM
CH $92 \emptyset$ PRINT DSS＂EI彐NO COUNTER SIII＂；

MX $93 \varnothing$ IF PT＝ø THEN PRINT＂E1ヨ GAME OVER．＂
QF 940 FOR TM＝1 TO 9ø0：NEXT TM
HP 950 IF PT＝ø THEN 1630
EJ 960 REM＊＊＊AWARD COUNTERS＊＊ ＊
MG $97 \emptyset$ PRINT DSS＂E1ヨGAME OVER． \｛YEL\}AWARD COUNTERS."
EE 980 FOR $F=1$ TO 6
PH 990 PS＝＂C＂：SC＝A（F）：T＝F：B（T） $=\varnothing$ ：GOSUB $119 \varnothing$
HP 1 øø $\quad \mathrm{P} \$=" \mathrm{P}=\mathrm{SP}=\mathrm{A}(\mathrm{F}+6): \mathrm{T}=\mathrm{F}+6$ $: B(T)=\varnothing$ ：GOSUB 119ø
JG 1010 NEXT F
CR 1ø2ø REM＊＊＊WHO WON＊＊＊
QM 1030 PRINT DS $\$$ ；
PF $104 \emptyset$ IF PL＝CP THEN PRINT＂ \｛CYN\}A DRAW. ";:GOTO 1 ø8ø
XM 1050 IF PL＞CP THEN PRINT＂ ［63PLAYER WINS．＂；：GOT －1ø8ø
KK 1ø6Ø IF CP＞PL THEN PRINT＂ ［3彐COMPUTER WINS．＂
AX $167 \varnothing$ REM＊＊＊ANOTHER GAME＊＊＊
DH $108 \emptyset$ PRINT＂\｛WHT\}ANOTHER GA ME（Y／N）？＂；
CR 1090 GOSUB 1500：IF BS＜＞＂Y＂ \｛SPACE\}AND B\$<>"N" THE N $109 \varnothing$
DQ lløø PRINT BS：IF B\＄＝＂Y＂THE N $2 \varnothing$
PQ $111 \varnothing$ PRINT＂\｛CLR\}": END
RS $112 \emptyset$ REM＊＊＊QUIT GAME＊＊＊
PD 1130 FOR TM＝1 TO 100：NEXT T M
HS $114 \varnothing$ PRINT DS\＄＂区\习QUIT GAME －ARE YOU SURE（Y／N）？ \｛SPACE \}";
QB 1150 GOSUB 15øø：IF BS＜＞＂Y＂ \｛SPACE\}AND BS<<"N" THE N 1150
KA 1160 IF B \ll＞＂Y＂THEN $39 \emptyset$
RS 117ø PRINT DS\＄；：PT＝ø：GOTO 9 $3 \varnothing$
FH $118 \emptyset$ REM＊＊＊UPDATE DISPLAY＊
AJ 1190 PRINT LEFT $\$(\mathrm{D} \$, 13-2 *(\mathrm{~T}$ ＞6））＂$\{$ WHT $\}$＂
CJ 12 Øø IF $T<7$ THEN TB＝35－5＊T： GOTO $122 \varnothing$
HX 1210 IF $\mathrm{T}>6$ THEN TB＝5＊（T－6）
XJ $122 \emptyset$ PRINT TAB（TB）B（T）；：IF \｛SPACE\}B(T)<1ø THEN PR INT＂\｛LEFT\} "
RP 1230 FOR TM＝1 TO $300:$ NEXT T M
JH $124 \varnothing$ IF $\mathrm{B}(\mathrm{T})<>\varnothing$ THEN RETURN
KJ $125 \emptyset$ IF $\mathrm{P} \$=$＂ P ＂THEN GOSUB 1 540：RETURN
DJ 1260 IF $\mathrm{P} \$=$＂C＂THEN GOSUB 1 590：RETURN
PH $127 \varnothing$ REM＊＊＊MOVE COUNTERS＊＊ ＊
ER $128 \emptyset \mathrm{~T}=\mathrm{I}: \mathrm{Sl}=\varnothing: \mathrm{S} 2=\varnothing$
ED 1290 FOR $F=1$ TO 12：B（F）$=A(F$ ）：NEXT F
ES $13 \varnothing \varnothing \mathrm{~B}(\mathrm{~T})=\varnothing:$ IF DS THEN GOSU B 1190
BC 1310 FOR $F=1$ TO A（T）
PJ $132 \varnothing \mathrm{~T}=\mathrm{T}+1$
GX 1330 IF $T>12$ THEN $T=1$
MD $1340 \mathrm{~B}(\mathrm{~T})=\mathrm{B}(\mathrm{T})+1:$ IF DS THEN GOSUB 1190
SJ 1350 NEXT $F: T \varnothing=T$
FX 1360 REM＊＊＊ANY CAPTURES＊＊＊
CF $137 \varnothing$ IF $B(T \varnothing)<2$ OR $B(T \varnothing)>3$ \｛SPACE\}THEN RETURN
BA 1380 IF $P \$=" P$＂AND $T \varnothing<=6$ TH EN $142 \varnothing$

PH 1390 IF $\mathrm{P} \$=$＂C＂AND Tø＞＝7 TH EN 1420
SG 1400 RETURN
BF 1410 REM＊＊＊TOTAL CAPTURES＊ ＊＊
RC $142 \emptyset$ LS＝1：IF P $\$=$＂C＂THEN LS ＝7
SX 1430 FOR $F=T \varnothing$ TO LS STEP－ 1
XF 1440 IF $B(F)<2$ OR $B(F)>3$ TH EN RETURN
BG $145 \emptyset$ IF $P S=" P$＂THEN $S P=B(F)$ ：S2＝S2＋SP：GOTO 147ø
HK $146 \emptyset$ IF $\mathrm{P} \$=" \mathrm{C"} \mathrm{THEN} \mathrm{SC}=\mathrm{B}(\mathrm{F})$ ：Sl＝Sl＋SC
CF $1470 \mathrm{~B}(\mathrm{~F})=\varnothing: I F$ DS THEN $T=F$ ： GOSUB 1190
HC $148 \varnothing$ NEXT F：RETURN
RK 1490 REM＊＊＊GET A CHARACTER
SQ 1500 GET B ：$: I F$ BŞ＜＞＂＂THEN \｛SPACE\}15øø
KX 1510 GET B ： $\mathrm{IF} \mathrm{B} \$=" \mathrm{M}$ THEN 1 510
SS $152 \varnothing$ RETURN
PK 1530 REM＊＊＊DISPLAY PLAYER＇ S SCORE＊＊＊
CD $154 \emptyset$ IF $\operatorname{SP}=\varnothing$ THEN RETURN
DE 1550 FOR H＝PL＋1 TO PL＋SP
ES $156 \varnothing$ PRINT LEFTS（DS，21）TAB（ 18）＂E3ヨ＂H：GOSUB 164ø
GA 1570 NEXT H：PL＝PL＋SP：RETURN
JB $158 \emptyset$ REM＊＊＊DISPLAY COMPUTE R＇S SCORE＊＊＊
KA $159 \varnothing$ IF SC＝ø THEN RETURN
GJ 1600 FOR $\mathrm{H}=\mathrm{CP}+1$ TO CP＋SC
SM 1610 PRINT LEFT $\$(D \$, 9)$ TAB（ 1 8）＂E3习＂H：GOSUB $164 \varnothing$
GM 1620 NEXT H：CP＝CP + SC：RETURN
HG 1630 REM＊＊＊SOUND＊＊＊
AK 164 Ø $\mathrm{S}=54272: \mathrm{FOR}$ X＝S TO $\mathrm{S}+2$ 4：POKE X，\varnothing ：NEXT X
GJ $165 \emptyset$ POKE $\mathrm{S}+5, \varnothing$ ：POKES $+6,24 \varnothing$
ER 1660 IF $\mathrm{P} \$=$＂C＂THEN $168 \emptyset$
GJ 1670 POKE S＋1，45：POKE S， 135 ：POKE S＋4，17：GOTO $169 \varnothing$
AX 1680 POKE S＋1，8：POKE S，135： POKE S＋2，255：POKE S＋4， 65
BG 1690 POKE S＋24，15：FOR TM＝1 \｛SPACE\}TO 50:NEXT TM:P OKE S＋24，\varnothing
AK 17øø IF $\mathrm{P} \$=$＂C＂THEN POKE $\mathrm{S}+$ 4，64：RETURN
BX 1710 POKE S＋4，16：RETURN

Program 2：Apple II Wari
 Version by Patrick Parrish，
 Programming Supervisor

BA 10 2） $\operatorname{DIM} A(12), B(12), S C(12), I(1$
5820 TEXT ：HOME ：PRINT＂LOADI NG ML．PLEASE WAIT．．．＂：GO SUB 167ஏ：gasub 1819
IF 36 IF PEEK（196＊256）$=76 \mathrm{~T}$ HEN PRINT CHR\＄（4）＂PR\＃A768 ＂：GOTO 5ø
84 4ø POKE 54，ø：POKE 55，3：CALL 19.2

E6 $5 \emptyset$ POKE 6，\varnothing ：POKE 7，138：POKE 230，64
F6 $6 \varnothing$ HGR2 ：GOTO 1 صø
 ＊＊＊＊＊＊＊＊＊＊＊＂：RETURN
$7 E 8 \varnothing$ PRINT TAB（ 1ø）＂＊＂；：INVERS E ：PRINT SPC（ 19）；：NORMA L ：PRINT＂＊＂：RETURN

＂Wari＂for Apple II computers．

8090 VTAB 23：PRINT $\operatorname{SPC}(39): H$ TAB 1：RETURN
5A 1 صø HIME ：VTAB 1
70 110 gosub $7 \varnothing$
86129 GOSUB $8 \varnothing$
28130 PRINT TAB（ 1ø）＂』＂；：INVER SE ：PRINT＂＂；：NORMAL ：PRINT＂APPLE ］［ WARI＂； ：INVERSE ：PRINT＂＂； NORMAL ：PRINT＂\＃＂
84146 gosub 89
$8515 \varnothing$ GOSUB $7 \varnothing$
$0416 \mathscr{}$ PRINT ：PRINT TAB（ 13）＂CO MPUTER＇S SIDE＂：CP＝$\boxed{\text { P }}$ MC $=g$
CA $17 \varnothing$ PRINT TAB（ 13）＂MOVE \＃＂MC ：PRINT TAB（ 13）＂SCORE：＂ CP
a3 189 PRINT ：PRINT＂$\ll \angle \lll<$ $\langle E \lll<D \lll<C \lll<B \lll<A \lll$

BJ $19 \varnothing$ FOR $\mathrm{J}=1$ TO 2：FOR I $=1$ TO 7：PRINT＂\＄＂；NE XT ：PRINT ：NEXT
$6820 \varnothing$ PRINT＂\％ヘヘヘ＾＂；：FOR I ＝ 1 TO 5：PRINT＂\＆＾＾＾＾＂； ：NEXT ：PRINT＂』＂
A4 $21 \varnothing$ FOR $\mathrm{J}=1$ TO 2：FOR $\mathrm{I}=1$ TO 7：PRINT＂\＄＂；NE XT ：PRINT ：NEXT
B7 $22 \varnothing$ PRINT＂＞＞G＞＞＞＞H＞＞＞＞I＞ ＞＞＞J＞＞＞＞K＞＞＞＞L＞＞＞＂
21230 PRINT ：PRINT TAB（ 13）＂PL AYER＇S SIDE＂：PL＝Ø：MP＝ g
EC $24 \varnothing$ PRINT TAB（ 13）＂MOVE \＃＂MP ：PRINT TAB（ 13）＂SCORE：＂ PL
$7525 ø$ FOR $T=1$ TO 12： $\mathrm{A}(\mathrm{T})=4$ ： $\mathrm{B}(\mathrm{T})=4$ ：GOSUB 122\％：NEX ${ }_{\mathrm{T}}^{\mathrm{B}}$
E4 266 REM ${ }^{2} * *$ GAME TYPE \＆FIRST TURN 紋
F8 27ϱ PRINT ：VTAB 23：INVERSE ：PRINT＂L＂；：NORMAL ：PR INT＂IMITED OR＂；：INVERS E ：PRINT＂U＂；：NORMAL ： PRINT＂NLIMITED GAME？＂；
36280 GOSUB 1530：IF B\＄＜＞＂L＂ AND B\＄＜＞＂U＂THEN 289
DE $29 \varnothing$ PRINT B\＄：FOR TM $=1$ TO 2 øø： NEXT ：ML $=\varnothing$
$343 \varnothing \varnothing$ IF B\＄$=$＂U＂THEN VTAB 4： HTAB 16：PRINT＂UNLIMITED ＂：GOTO 34ø
9E 310 gosub 99：HTAB 1：PRINT＂ MOVE LIMIT＂；：INPUT ML
B9 $326 \mathrm{ML}=$ INT（ML）：IF ML $<=$ \varnothing THEN $31 \varnothing$
6C 330 HTAB 15：VTAB 4：PRINT＂L IMITED：＂＋STR $\$$（ML）
38 346 VTAB 23：PRINT＂WHO GOES FIRST：＂；：INVERSE ：PRIN T＂C＂；：NORMAL ：PRINT＂O

MPUTER OR＂；：INVERSE ：P RINT＂P＂；：NORMAL ：PRINT ＂LAYER？＂；
26359 Gosub 1536：IF B\＄＜＞＂C＂ AND B\＄＜＞＂P＂THEN 2Φ
B1 366 PRINT B\＄：FOR TM $=1$ TO 2 ø日：NEXT
$4737 \varnothing$ IF B\＄＝＂C＂THEN $55 \varnothing$
56 389 REM＊＊PLAYER＇S MOVE＊＊
3 39ø P\＄＝＂P＂： $\mathrm{P}=\varnothing$ ： $\mathrm{SP}=\varnothing$＝ MP
$=M P+1$
a1 406 VTAB 26：HTAB 26：PRINT M
E9 410 FOR $F=7$ TO 12：$P=P+A$ （F）：NEXT F
dB 420 GOSUB 9 98 ：PRINT＂PLAYER＇S TURN．MOVE COUNTERS（G－L ）？＂；
CD 438 IF $\mathrm{P}=\varnothing$ THEN 94の
24440 GOSUB 1536： $\mathrm{I}=\mathrm{ASC}$（B\＄）－ 64：PRINT B\＄
29450 IF B\＄＝＂Q＂THEN 1160
76468 IF B\＄＞$=$＂G＂AND B\＄＜＝ ＂L＂THEN IF A（I）＜＞ \boldsymbol{D} TH EN 498
7f 478 gosub 99：PRINT＂ILLEEAL MOVE！！！＂
$5 E 48 \varnothing$ FOR TM $=1$ TO 9øø：NEXT T M：вото 42ø
A1 $49 \varnothing$ DS＝1：GOSUB 1319：FOR T $M=1$ TO 9ø日：NEXT
DF 500 PT $=0$ ：FOR $F=1$ TO 12：A $(F)=B(F): P T=P T+A(F)$ ：NEXT
26510 IF MP $=M L$ AND MC $=M L T H$ EN 1 øøø
IC $52 \varnothing$ IF PT $=\varnothing$ THEN $94 \varnothing$
日月 $53 \varnothing$ IF PL＞ 24 THEN $100 \varnothing$
AD 540 REM＊＊COMPUTER＇S MOVE＊＊
${ }^{23} 55 \varnothing \mathrm{P} \$=" \mathrm{C}=\mathrm{PA}=\varnothing: \mathrm{PB}=\varnothing: \mathrm{IA}$ $=\varnothing: I B=\varnothing: P=\varnothing: M C=M C$ $+1$
F4 560 VTAB 8：HTAB 20：PRINT MC
22570 FOR $F=1$ TO 6：P $=P+A C$ F）：NEXT F
F2 $58 \varnothing$ GOSUB 9ø：PRINT＂COMPUTER ＇s TURN．MOVES COUNTERS A －F．＂；
DA 59 Ø IF $P=\varnothing$ THEN $94 \varnothing$
04600 REM＊＊CHECK ALL MOVES＊＊
$8 E 61 \varnothing$ FOR G $=1$ TO 12
$6862 \varnothing \mathrm{SC}(\mathrm{G})=\varnothing: \mathrm{I}(\mathrm{G})=\varnothing$
$4063 \varnothing$ IF G $=7$ THEN P $\$=" P "$
£ 649 IF $A(G)=\varnothing$ THEN 689
$2865 \emptyset$ SC $=\varnothing: S P=\varnothing: I=G$
c9 $66 \varnothing$ DS $=\varnothing$ ：GOSUB 1319
14 67ø POKE 254，S1：POKE 255，52： CALL 856：SC $(\mathrm{G})=$ PEEK $(2$ 54）：$I(G)=T \varnothing$
F1 $68 \emptyset$ NEXT G
A2 $690 \mathrm{P} \$=$＂C＂
95790 REM＊＊PICK BEST MOVE＊＊
4C 710 FOR $F=1$ TO 6
6C 72 IF $P A>=S C(F)$ THEN $74 \varnothing$
D4 730 IA $=F: P A=S C(F)$
09740 IF PB $>=\operatorname{SC}(F+6) O R A($ $I(F+6))=\varnothing$ THEN $76 \varnothing$
$A A 75 \emptyset I B=I(F+6): P B=S C(F+$ 6）
6E 760 NEXT F
$4177 \varnothing$ IF IA $=\varnothing$ AND IB $=\varnothing$ THEN 8øø
$9878 \emptyset I=I A: I F(P B>P A)$ THEN $I=I B$
2C $79 \varnothing$ в0TO 869
F4 8øØ $P=$ Ø：FOR $F=7$ TO 12：P $=P+A(F):$ NEXT F
B7 81の IF $P<>\emptyset$ THEN $85 \emptyset$
47 B20 FOR $F=1$ TO 5
72830 IF $A(F)<>\emptyset$ AND $A(F)<$ $=6-F$ THEN I＝F：GOTO $86 \varnothing$

6B 849 NEXT F
$7 E 85 \emptyset$ I $=$ INT（ RND（1）（6）+ 1：IF $A(I)=\varnothing$ THEN B5ø
$3986 \emptyset$ PRINT CHR $\$(I+64): S C=$ g：FOR TM $=1$ TO Bgŋ：NEX T TM
A1 $870 \mathrm{DS}=1:$ GOSUB 1316：FOR T $M=1$ TO 9øø：NEXT
5F 88Ø PT $=$ Ø：F OR $F=1$ TO 12：A $(F)=B(F): P T=P T+A(F)$ ：NEXT F
$3 F 899$ IF $M P=M L$ AND $M C=M L T H$ EN 1 ロøø
IC 96 IF PT $=\varnothing$ THEN 94ø
69910 IF CP >24 THEN 1 1øø
A 920 GOTO $39 \emptyset$
56930 REM＊NO COUNTERS＊
01946 FOR TM $=1$ TO 4ஏØ：NEXT
95950 GOSUB 9ø：PRINT＂NO COUNT ERS！！！＂；
DC $96 \emptyset$ IF PT $=\varnothing$ THEN PRINT＂GAM E DVER．＂
62979 FOR TM $=1$ TO 15פø：NEXT
DD 989 IF PT $=\varnothing$ THEN $166 \emptyset$
$8299 \emptyset$ REM＊AWARD COUNTERS＊
42 1gøg PRINT ：GOSUB 96：PRINT ＂GAME QVER．AWARD COUNTE RS．
उC 1 （10 FOR F $=1$ TO 6
$6 A 1 \sigma 20 \mathrm{P} \$=" C ": S C=A(F): T=F$ $: B(T)=\varnothing:$ GOSUB 122ø
$F A 1$ 103ø $P \$=" P ": S P=A(F+6): T$ $=F+6: B(T)=g:$ GOSUB 1229
78 1ஏ4ø NEXT F
45165 REM（\％WHO WON \＆
C2 1．66Ø GOSUB 9ø
851 1070 IF PL $=C P$ THEN PRINT＂A DRAW．＂；：BOTO $111 \varnothing$
6F 1 ø8ø IF PL $>$ CP THEN PRINT＂P LAYER WINS．＂；：GOTO 111 Ø
$49199 \varnothing$ IF CP＞PL THEN PRINT＂C QMPUTER WINS．＂；
E5 11 gø REM \＆
$7111 \varnothing$ PRINT＂ANOTHER GAME（Y／N ）？＂；
E5 1120 GOSUB 1536：IF B\＄＜＞＂Y ＂AND B $<\gg$＂N＂THEN 11 26
5C 1130 PRINT B\＄：IF B\＄$=$＂Y＂TH EN HGR2 ：GOTO 1øØ
$5 F 114 \varnothing$ TEXT ：HOME ：END
$77115 \emptyset$ REM＊
EC 116 FOR TM $=1$ TO 19Ø：NEXT
CI 1170 GOSUB 9ø：PRINT＂QUIT GA ME．ARE YOU SURE（Y／N）？

01 118ø GOSUB 153ø：IF B\＄＜＞＂Y ＂AND B\＄＜＞＂N＂THEN 11 89
EF $119 \varnothing$ IF $\mathrm{B} \$$＜＞＂Y＂THEN 420
5E $129 \varnothing$ GOSUB 9ø：PT $=$ Ø：GOTO 96 D

CE 1210 REM＊UPDATE DISPLAY 率
FC 1220 VTAB $13+2$（ $T>6$ ）
F1 123ø IF $T<7$ THEN TB $=37-$ 5 T：BOTO 125g
3B 124ø IF $T>6$ THEN TB $=5:($ $T-6)+2$
CE 1259 HTAB TB：PRINT SPC（ 2）；： HTAB TB：PRINT $B(T)$ ；
4F $126 \emptyset$ FOR $T M=1$ TO 4øø：NEXT
$5 F 127 \emptyset$ IF $\mathrm{B}(\mathrm{T})<>\emptyset$ THEN RETUR N
6A 1280 IF P\＄$=$＂P＂THEN GOSUB 1 56Ø：RETURN
F7 1296 IF $P \$=$＂C＂THEN GOSUB 1 619：RETURN
$6313 \emptyset \varnothing$ REM＊MOVE COUNTERS＊
$5131 \emptyset T=I: S 1=\varnothing: S 2=\varnothing$
3B 1320 FOR $F=1$ TO 12：$B(F)=A$
（F）：NEXT F
F8 $1330 \mathrm{~B}(\mathrm{~T})=\emptyset:$ IF DS THEN GOS UB $122 \emptyset$
IE $134 \varnothing$ FOR $F=1$ TO A（T）
$371350 \mathrm{~T}=\mathrm{T}+1$
361369 IF $T>12$ THEN $T=1$
$F 5137 \emptyset B(T)=B(T)+1: I F D S T$ HEN GOSUB $122 \varnothing$
53 138Ø NEXT F：Tø $=T$
B6 $139 \emptyset$ REM＊ANY CAPTURES＊＊
3B 14øØ IF $B(T \emptyset)<2$ OR B（TØ）＞ 3 THEN RETURN
DD $141 \varnothing$ IF $P \$=" P$＂AND $T \varnothing<=6$ THEN $145 \varnothing$
B9 $142 \emptyset$ IF $P \$=" C "$ AND $T \emptyset>=7$ THEN $145 \emptyset$
E5 1430 RETURN
231440 REM＊＊TOTAL CAPTURES＊＊
$33145 \emptyset \mathrm{LS}=1$ ：IF P\＄＝＂C＂THEN $L S=7$
6C $146 \emptyset$ FOR F $=$ TØ TO LS STEP－
521470 IF $B(F)<2$ OR $B(F)>3$ THEN RETURN
6E 148 g IF $P \$=$＂P＂THEN SP $=B$ F）$: S 2=52+S P:$ GOTO 15 øø
B1 1490 IF $P \$=" C$＂THEN $S C=B C$ $F): S 1=51+S C$
C2 15øø $\mathrm{B}(F)=\varnothing$ ：IF DS THEN $T=$ F：GOSUB 1220
89 151ø NEXT F：RETURN
7E 1520 REM＊GET A CHARACTER＊高
$291530 \mathrm{~K}=$ PEEK $(-16384):$ IF $K<=127$ THEN 1530
F4 154の POKE－1636日，Ø：B\＄＝CHR $\$$ （K－128）：RETURN
$7 E 1559$ REM＊ SCORE \＆
19156 IF SP $=\emptyset$ THEN RETURN
FC $157 \emptyset$ FOR $H=P L+1 \mathrm{TOPL}+5$ P
03 1580 VTAB 21：HTAB 20：PRINT H：GOSUB 1650
52 159ø NEXT H：PL＝PL＋SP：RET URN
8D $16 \boxed{ }$ R REM＊ S SCORE 草亲
86 161ø IF SC $=\varnothing$ THEN RETURN
F5 1620 FOR H $=C P+1 \mathrm{TO} \mathrm{CP}+5$ C
CD 1630 VTAB 9：HTAB 2ø：PRINT H ：GOSUB 1650
71 164ø NEXT H：CP $=C P+5 C:$ RET URN
BD 1650 FOR I $=1$ TO 1ø：$A=$ PEEK （－16336）：NEXT ：RETU RN
D5 $166 \emptyset$ REM DATA STATEMENT SET \＃ 1 －HRQUT
791670 FOR I $=768$ TO 862：READ $A: C S=C S+A: P O K E I, A$ ：NEXT
$46168 \emptyset$ IF CS＜＞ $932 \emptyset$ THEN PRIN T＂ERROR IN DATA STATEME NT SET \＃1＂：STOP
$12169 \emptyset$ RETURN
Aी $179 \emptyset$ DATA $216,129,133,69,134$ ， 76，132，71，166，7，16
E8 171 DATA $16,176,4,16,62,48,4$ ，16，1，232， 232
© $172 \emptyset$ DATA $10,134,27,24,161,6$ ， $133,26,144,2,23 \emptyset$
A7 1736 DATA $27,165,49,133,8,165$ $, 41,41,3,5,230$
CE $174 \varnothing$ DATA $133,9,162,8,16 \emptyset, 9,1$ 77，26，36，59，48
$45175 \emptyset$ DATA $2,73,127,164,36,145$ ，8，230，26，268， 2
D6 $176 \emptyset$ DATA $236,27,165,9,24,165$ ，4，133，9，2ø2，298

70 177ø DATA 226，165，69，166，76，1 $64,71,88,76,24 \varnothing, 253$
I3 178ø REM NEXT LINE IS BITWISE OR
D7 $179 \emptyset$ DATA $165,254,5,255,133,2$ 54，96
E5 18øø REM DATA STATEMENT SET \＃ 2 －CHARACTER SET DATA
19 181ø CS $=\emptyset:$ FOR $I=35328$ TO 35839：READ A：CS＝CS＋ A：POKE I，A：NEXT ：IF CS＜＞ 9833 THEIN PRINT＂ ERROR IN DATA STATEMENT SET \＃2＂：STOP
E9 $182 \emptyset$ RETURN
$66183 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
9D $184 \varnothing$ DATA $8,8,8,8,8, \varnothing, 8, \varnothing$
D4 $185 \emptyset$ DATA $2 \emptyset, 2 \emptyset, 2 \emptyset, \varnothing, \emptyset, \varnothing, \emptyset, \emptyset$
DD 1860 DATA 20，20，62，20，62，20，2 Ø，Ø
CB $187 \emptyset$ DATA $8,8,8,8,8,8,8,8$
€7 $188 \emptyset$ DATA $8,8,8,120,12 \emptyset, 8,8,8$ $63189 \emptyset$ DATA $8,8,8,127,127,8,8,8$
$6519 \emptyset \emptyset$ DATA 8，B，B，ø，ஜ，Ø，ø，Ø
$A B 191 \emptyset$ DATA $8,4,2,2,2,4,8, \emptyset$
2B 1920 DATA $8,16,32,32,32,16,8$ ，
$11193 \emptyset$ DATA $8,42,28,8,28,42,8, \varnothing$
BD $194 \varnothing$ DATA $\varnothing, 8,8,62,8,8, \varnothing, \emptyset$
D8 $195 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, 8,8,4$ ，\varnothing
A4 $196 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, 62, \varnothing, \varnothing, \varnothing, \varnothing$
F8 $197 \emptyset$ DATA $\varnothing, \emptyset, \emptyset, \emptyset, \varnothing, \varnothing, 8, \varnothing$
D9 $198 \emptyset$ DATA $\emptyset, 32,16,8,4,2, \varnothing, \varnothing$
$64199 \emptyset$ DATA $28,34,59,42,38,34,2$ B，\varnothing
㫙2øøø DATA $8,12,8,8,8,8,28, \varnothing$
$19261 \emptyset$ DATA $28,34,32,24,4,2,62$ ， \varnothing
54 2ø2ø DATA 62，32，16，24，32，34， 2 B，\varnothing
DB $2 ø 3 \emptyset$ DATA $16,24,29,18,62,16,1$ 6，\varnothing
$66204 \varnothing$ DATA 62，2，3ø，32，32，34， 28 ，\varnothing
4C $265 \emptyset$ DATA $56,4,2,36,34,34,28$ ， Ø
6F $266 \emptyset$ DATA $62,32,16,8,4,4,4,9$
662976 DATA $28,34,34,28,34,34,2$ $8, \varnothing$
E8 268Ø DATA $28,34,34,69,32,16,1$ 4， 9
F7 $2 \boldsymbol{2} 9$ DATA $\varnothing, \varnothing, 日, \varnothing, 日, \varnothing, \varnothing, \varnothing$
$3621 ø \varnothing$ DATA $\varnothing, \varnothing, 8, \varnothing, 8,8,4, \varnothing$
BE $211 \emptyset$ DATA $16,8,4,2,4,8,16, \varnothing$
if $212 \emptyset$ DATA $\varnothing, \emptyset, 62, \emptyset, 62, \varnothing, \emptyset, \emptyset$
$56213 \emptyset$ DATA $4,8,16,32,16,8,4, \emptyset$
उ3 $214 \emptyset$ DATA $28,34,16,8,8, \emptyset, 8, \varnothing$
7A $215 \emptyset$ DATA $8,8,8,15,15,8,8,8$
ID $216 \emptyset$ DATA $8,29,34,34,62,34,34$ ，\emptyset
F8 $217 \emptyset$ DATA $36,34,34,3 \emptyset, 34,34,3$ Ø，Ø
D8 $218 \emptyset$ DATA $28,34,2,2,2,34,28, \varnothing$
11 2190 DATA $3 \emptyset, 34,34,34,34,34,3$ \varnothing, \varnothing
$9522 \emptyset \emptyset$ DATA $62,2,2,36,2,2,62, \varnothing$
382210 DATA 62，2，2，36，2，2，2，\emptyset
6E $222 \emptyset$ DATA 6ø，2，2，2，5ø，34，6ø，Ø
212230 DATA $34,34,34,62,34,34,3$ 4，\varnothing
FD $224 \varnothing$ DATA $28,8,8,8,8,8,28, \emptyset$
D9 $225 \emptyset$ DATA $32,32,32,32,32,34,2$ 8，\varnothing
712260 DATA $34,18,19,6,10,18,34$ ，\varnothing
$98227 \emptyset$ DATA $2,2,2,2,2,2,62, \emptyset$
$86228 \emptyset$ DATA $34,54,42,42,34,34,3$ 4，\varnothing
D6 2290 DATA $34,34,38,42,50,34,3$ 4，\square
उC 23øø DATA $28,34,34,34,34,34,2$ 8，\varnothing

The Atari ST version of＂Wari＂runs in any screen resolution，on a color or monochrome monitor．

Program 3：Atari ST Wari

Version by Patrick Parrish，
Programming Supervisor
10 RANDOMIZE O：FOR $I=0$ TO 14 ：READ A\＄：FOR J＝0 TO 3：REM SET COLORS
$20 C \$=M I D \$(A \$, J, 1): C D=V A L(C \$$ ）\＆125：POKE INTIN＋J＊2，CD：N EXT
30 POKE INTIN，I：POKE CONTRL， 14：POKE CONTRL＋6，4：UDISYS （0）：NEXT
40 DATA 000，007，050，077，500， $507,000,555,000,000,000,0$ 00，000，000， 770
50 REM Title Page
60 DIM $A(12), B(12), S C(12), I($ 12）
70 FOR $I=1$ TO 6：READ $P(I): N E$ XT
80 DATA 27，22．9，18．0，13．9，9． 2，4．7
90 FULLW 2：CLEARW 2：COLOR 14
100 PRINT TAB（10）；：PRINT STRI NG $\ddagger(21,42)$
110 PRINT TAB（10）＂安＂；：CDLOR 1 ：PRINT＂Atari ST Wari ＂；：COLOR 14：PRINT＂宗＂
120 PRINT TAB（10）；：PRINT STRI NG\＄$(21,42)$
130 COLQR 3：PRINT TAB（13）＂Com puter＇s Side＂：$C P=0: M C=0$

GOTOXY 11，1：COLOR 1：PRINT ＂Limited：＂＋STR\＄（ML）＋＂

350 GOSUB 1650：COLOR 3：PRINT ＂Who goes first：＂；
360 COLOR 1：PRINT＂C＂；：COLOR 3
370 PRINT＂omputer or＂；：COLO R 1：PRINT＂P＂；：COLOR 3：PR INT＂layer？＂；

PRINT B\＄：FOR TM＝1 TO 200： NEXT TM
400 IF $\mathrm{B} \$=$＂C＂THEN 580
410 REM＊PLAYER＇S MOVE＊
$420 \quad P \$=" P ": P=0: S P=0: M P=M P+1$
430 COLOR 1：GOTOXY 16，14：PRIN T MP
440

470 GOSUB 1540：I＝ASC（B $\$$ ）$-64: C$ OLOR 2：PRINT B\＄
IF B $\$=$＂$Q$＂THEN 1190
490 IF B $\$>=" G "$ AND B $\$<=" L "$ TH EN IF $A(I)<>0$ THEN 520
COLOR 5：PRINT TAB（13）＂Mov e \＃＂；：COLOR 1：PRINT MC COLOR 5：PRINT TAB（13）＂Sco re：＂；：COLDR 4：PRINT CP
COLOR 2：PRINT＂$\langle<F \lll$ $\langle E \lll<D \lll<C \lll<B \lll<A \lll$ COLOR 1：FOR I＝1 TO 2：FOR J＝1 TO 7：PRINT＂＂CHR （124）；：NEXT J：PRINT NEXT I
PRINT＂＂STRING\＄ 31,45
FOR I＝1 TO 2：FOR J＝1 TO 7 ：PRINT＂＂CHR\＄（124）；：N EXT：PRINT：NEXT
COLOR 2：PRINT＂＞＞G＞＞＞

COLOR 7：PRINT TAB（13）＂Pla yer＇s Side＂：PL＝0：MP＝0
COLOR 5：PRINT TAB（13）＂Mov e \＃＂； COLOR 1：PRINT MP COLOR 5：PRINT TAB（13）＂Sco re：＂；：COLOR 4：PRINT PL PRINT：FOR T＝1 TO 12：A（T）＝ 4： $\mathrm{B}(\mathrm{T})=4$ ：GOSUB 1250：NEXT T
REM＊GAME TYPE \＆FIRST T URN

UB 1650：COLOR 5：PRINT
＂L＂；：COLOR 14：PRINT＂imit ed or＂；
COLOR 5：PRINT＂U＂；：COLDR 14：PRINT＂nlimited game？ ＂；
GOSUB 1540：IF B\＄＜＞＂L＂AND B\＄く＞＂U＂THEN 290
PRINT B\＄：FOR TM＝1 TO 200： NEXT TM：ML＝O
IF $\$=$＂U＂THEN COLOR 1：G0 TOXY 11，1：PRINT＂Unlim ited＂：GOTO 350 GOSUB 1650：PRINT＂Move Li mit＂；：INPUT ML
ML＝INT（ML）：IF ML $<=0$ THEN 320
XT F
GOSUB 1650: COLOR 7:PRINT
"Player's turn. Move coun
ters (G-L)? ";
IF $P=0$ THEN 960
OLOR 2:PRINT B\$
EN IF $A(I)<>0$ THEN 520
"Illegal move!!!"
FOR TM=1 TO 900: NEXT TM:G
OTD 450
DS=1: GOSUB 1320:FOR TM=1

TO 900：NEXT TM
$P T=0: F O R \quad F=1$ TO 12：$A(F)=B$ （F）：$P T=P T+A(F): N E X T$
540 IF MP＝ML AND MC＝ML THEN 1 020
IF PT＝0 THEN 960
560 IF PL＞24 THEN 1020
570 REM＊COMPUTER＇S MOVE＊
$580 \quad P \$=" C ": P A=0: P B=0: I A=0: I B=$
$0: P=0: M C=M C+1$
COLOR 1：GOTOXY 16，4：PRINT MC
600 FOR $F=1$ TO 6：P＝P＋A（F）：NEX T F
COLOR 3：GOSUB 1650：PRINT
＂Computer＇s turn（Moves A
－F）．＂
620 IF $P=0$ THEN 960
630 FOR G＝1 TO 12
$640 \quad S C(G)=0: I(G)=0$
650 IF $G=7$ THEN $P \$=" P "$
660 IF $A(G)=0$ THEN 700
$670 \quad S C=0: S P=0: I=G$

680

690
700
710
720
730
740
750
760
770
780
790
800
810
820 P＝0：FOR F＝7 TO 12：$P=P+A(F$ ）：NEXT
IF $P<>0$ THEN 870
840 FOR $F=1$ TO 5
850 IF $A(F)<>0$ AND $A(F)<=6-F$ THEN I＝F：GOTO 880
NEXT F
$870 \quad \mathrm{I}=\mathrm{INT}($ RND $\ddagger 6)+1:$ IF $\mathrm{A}(\mathrm{I})=0$ THEN 870
COLOR 2：PRINT CHR（I +64 ）： SC＝O：FOR TM＝1 TO 900：NEXT TM
DS＝1：GOSUB 1320：FOR TM＝1
TO 900：NEXT TM
$\mathrm{PT}=0: F 0 \mathrm{~F} \quad \mathrm{~F}=1$ TO 12： $\mathrm{A}(\mathrm{F})=\mathrm{B}$ （F）： $\mathrm{PT}=\mathrm{PT}+\mathrm{A}(F): \mathrm{NEXT}$
IF MP＝ML AND MC＝ML THEN 1 020
IF $P T=0$ THEN 960
IF CP＞24 THEN 1020
GOTO 420
REM＊ND COUNTERS＊
FOR TM＝1 TO 400：NEXT TM GOSUB 1650：COLOR 4：PRINT
＂No counters！！！＂；
IF PT＝0 THEN PRINT＂Game over．＂
990 FOR TM $=1$ TO 1600：NEXT
1000 IF PT $=0$ THEN 1090
1010 REM \＆AWARD COUNTERS \＆
1020 COLOR 4：GOSUB 1650：PRINT
＂Game over．＂；：COLOR 14
1030 PRINT＂Award counters．＂
1040 FOR F＝1 TO 6
$1050 P \$=" C ": S C=A(F): T=F: B(T)=0$
IGOSUB 1250
1060 P\＄＝＂P＂：SP＝A（F＋6）：T＝F＋6：B（ T）＝0：GOSUB 1250
1070 NEXT
1080 REM＊WHO WON \＃
1090 GOSUB 1650
1100 IF PL＝CP THEN COLOR 3：PRI NT＂A draw．＂： E GOTO 1140

IF PL＞CP THEN COLOR 2：PRI NT＂Player wins．＂；：GOTO 1140
1120 COLOR 4：PRINT＂Computer w ins．＂；
1130 REM＊ANOTHER GAME＊
1140 COLOR 7：PRINT＂Another ga me（ Y / N ）？＂
1150 GOSUB 1540：IF B\＄く＞＂Y＂AND B解く〉＂N＂THEN 1150
1160 PRINT B $\$$ ：IF $\mathrm{B} \$=$＂Y＂THEN 9 0

1170 CLEARW 2：CLOSEW 2：END
1180 REM＊QUIT GAME \＆
1190 FOR TM＝1 TO 100：NEXT
1200 COLOR 4：GOSUB 1650：PRINT ＂Quit game．Are you sure （ Y / N ）？＂；
1210 GOSUB 1540：IF B\＄く＞＂Y＂AND B\＄く〉＂N＂THEN 1210
1220 IF $B \$\rangle " Y$＂THEN 450
1230 GOSUB 1650：PT＝0：GOTO 980
1240 REM＊UPDATE DISPLAY＊
1250 COLOR 7
1260 GOTOXY $P(T+(T>6)+(T>7)$ \＃ 2 \＆ （ $T-7$ ））， $8-2 *(T>6):$ PRINT B（ T）；
1270 FOR TM＝1 TO 600：NEXT
1280 IF $B(T)<>0$ THEN RETURN
1290 IF $P \$=" P$＂THEN GOSUB 1560 ：RETURN
1300 IF P $\$=$＂C＂THEN GOSUB 1610 ：RETURN
1310 REM＊MOVE COUNTERS＊
$1320 \mathrm{~T}=\mathrm{I}: \mathrm{S} 1=0$ ：S2＝0
1330 FOR $F=1$ TO 12：$B(F)=A(F): N$ EXT
$1340 \mathrm{~B}(\mathrm{~T})=0$ ：IF DS THEN GOSUB 1 250
1350 FOR $F=1$ TO $A(T)$
$1360 \mathrm{~T}=\mathrm{T}+1$
1370 IF $T>12$ THEN $T=1$
$1380 \mathrm{~B}(\mathrm{~T})=\mathrm{B}(\mathrm{T})+1$ ：IF DS THEN GO SUB 1250
1390 NEXT F：TO＝T
1400 REM＊ANY CAPTURES＊
1410 IF $\mathrm{B}(\mathrm{TO})<2 \mathrm{DR} \mathrm{B}(\mathrm{TO})>3$ THE N RETURN
1420 IF $P \$=" P$＂AND TO $<=6$ THEN 1460
1430 IF $P \$=" C$＂AND TO $>=7$ THEN 1460
1440 RETURN
1450 REM＊TOTAL CAPTURES
1460 LS＝1：IF P $\$=$＂C＂THEN LS $=7$
1470 FOR F＝TO TO LS STEP -1
1480 IF $\mathrm{B}(\mathrm{F})<2$ QR $\mathrm{B}(F)>3$ THEN RETURN
1490 IF $P \$=" P$＂THEN $S P=B(F): S 2$ ＝S2＋SP：GOTO 1510
1500 IF P\＄＝＂C＂THEN SC＝B（F）：S1 $=S 1+$ SC
$1510 \quad B(F)=0:$ IF DS THEN T＝F：GOS UB 1250
1520 NEXT F：RETURN
1530 REM＊GET A CHARACTER＊
1540 B在＝［HR
1550 REM＊DISPLAY PLAYER＇S SC ORE＊
1560 IF $S P=0$ THEN RETURN
1570 FOR $H=P L+1$ TO PL＋SP
1580 COLOR 4：GOTOXY 16，15：PRIN T H：PRINT CHR（7）：FDR TM＝ 1 TO 300：NEXT
1590 NEXT H：PL＝PL＋SP：RETURN
1600 REM＊DISPLAY COMPUTER＇S SCORE
1610 IF SC＝0 THEN RETURN
1620 FOR H＝CP＋1 TO CP＋SC：COLOR 4
1630 GOTOXY 16，5：PRINT H：SOUND $1,12,1,2,20$

1640 SOUND 1，0，2，2：NEXT H：CP＝C P＋SC：RETURN
1650 GOTOXY 0，15：PRINT：PRINT 5 TRING\＄（39，32）：GOTOXY 0，15 ：PRINT：RETURN

IBM PC／PCjr version of＂Wari．＂

Program 4：IBM PC／PCjr Wari

Version by Patrick Parrish，
Programming Supervisor
FI $1 \varnothing$ KEY OFF：DEF SEG＝ø：POKE 1 © 7，PEEK（1947）OR 64：WIDTH 4 \square
FH $2 \emptyset$ DIM $A(12), B(12), S C(12), I(1$ 2）：RANDOMIZE TIMER
OF 3 D $\$=$ STRING $\$(1,11)+$ STRING $\$(2$ 2，31）：E\＄＝CHR（179）：F $=$ CHR $\$$ （195）： $\mathbf{~} \$=$ CHR $\$(196)$ ：H\＄＝CHR $\$$ （18ஏ）：I\＄＝CHR（197）
JP $4 \varnothing$ DS $\$=D \$+$ STRING $\$(39,32)+D \$$
PF 5 Ø COLOR ，Ø，Ø：CLS：SCREEN $\varnothing, \emptyset, ~$ Ø
BF 6 Ø COLOR 14：LOCATE 1，1ø， $6: P R I ~$ NT STRING $\$(21,42)$
CF $7 \varnothing$ PRINT TAB（1ø）＂家＂；$: \operatorname{COLOR~} \varnothing$ ， 1：PRINT＂
＂；：COLOR 14，Ø：PRINT＂妾＂
M1 8 Ø PRINT TAB（1ø）＂ま＂；：COLOR Ø， 1：PRINT＂IBM PC／PCir War i＂；：COLOR 14，Ø：PRINT＂ま＂
CH 9ø PRINT TAB（1ø）＂字＂；：COLOR \varnothing ， 1：PRINT＂
＂；：COLOR 14，\quad ：PRINT＂高＂
CE 1 1øø PRINT TAB（1ø）STRING\＄（21，4 2）
BC 110 PRINT：COLOR 3：PRINT TAB（1 3）＂Computer＂s Side＂：CP＝ø： $M C=\varnothing$
PA 129 COLOR 5：PRINT TAB（13）＂Mov e＂；：COLOR 1：PRINT MC：CO LOR 5：PRINT TAB（13）＂Score ：＂；：COLOR 4：PRINT CP
OH $13 \emptyset$ COLOR 2：PRINT：PRINT＂
$\langle<F \lll<E \lll<D \lll<C \lll<B \ll$ ＜$\angle A \lll<1$
6C 14ø COLOR 1：FOR J＝1 TO 2：FOR I＝1 TO 7：PRINT＂＂E\＄；： NEXT：PRINT：NEXT
MF $15 \emptyset$ PRINT＂＂F\＄STRING\＄（4， 1 96）；：FOR $I=1$ TO 5：PRINT I \＄STRINE（4，196）；：NEXT：PRI NT H\＄
FH 160 FOR $J=1$ TO 2：FOR $I=1$ TO 7 ：PRINT＂＂E\＄；：NEXT：PRI NT：NEXT
AF 170 COLOR 2：PRINT＂＞＞G＞＞＞ ＞H

EC 18Ø PRINT：COLOR 7：PRINT TAB（1 3）＂Player＇s Side＂：PL＝Ø：MP $=\varnothing$
AD $19 \emptyset$ COLOR 5：PRINT TAB（13）＂Mov
－＂＂；：COLOR 1：PRINT MP：CO LOR 5：PRINT TAB（13）＂Score ：＂；：COLOR 4：PRINT PL
EC 29ø FOR $T=1$ TO 12：$A(T)=4: B(T)$ ＝4：EOSUB 116あ：NEXT T
PE 210 REM 家豙GAME TYPE \＆FIRST TURN事言童
FC 226 PRINT DS\＄；：COLOR \varnothing ，14：PRI NT＂L＂；：COLOR 14， $6:$ PRINT＂ imited or＂； COLOR ©，14：P RINT＂U＂；：COLOR 14，Ø：PRIN T＂nlimited game？＂；
PB 230 GOSUB 147 ：IF B $3<>$＂L＂AND B象く〉＂U＂THEN 230
FH $24 \varnothing$ PRINT B\＄：FOR TM＝1 TO 2øø： NEXT：ML＝ø
KC 25 IF $\mathrm{B} \$=" \mathrm{U}$＂THEN COLOR $\emptyset, 1$ ： LOCATE 4，16：PRINT＂Unlimi ted＂：GOTO 29ø
HD $26 \emptyset$ PRINT DS\＄＂Move Limit＂；：IN PUT ML
L8 $27 \emptyset$ ML＝INT（ML）：IF ML $<=\emptyset$ THEN $26 \square$
LN $28 \emptyset$ LOCATE 4，15：COLOR $9,1:$ PRI NT＂Limited：＂＋STR（ML）
HA 290 COLOR 3，Ø：PRINT DS\＄＂Who g oes first：＂；：COLOR ø，З： P RINT＂C＂；：COLOR 3，$:$ PRINT ＂omputer or＂；：COLOR 6，3 ：PRINT＂P＂；：COLOR 3，Ø：PRI NT＂layer？＂；
AF 3øø GOSUB 147ø：IF B\＄＜＞＂C＂AND B\＄＜＞＂P＂THEN 3！
AG $31 \emptyset$ PRINT B\＄：FOR TM：＝1 TO 2øø： NEXT TM
HD 320 IF $B \$=" C "$ THEN $5 \emptyset \emptyset$
CD 330 REM＊PLAYER＇S MOVE＊＊
HO $34 \varnothing \mathrm{P} \$=" \mathrm{P}$＂：$P=\varnothing: S P=\emptyset: M P=M P+1$
KJ 350 COLOR 1：LOCATE 29，19：PRIN T MP
FH 360 FOR $F=7$ TO 12：$P=P+A(F): N E$ XT F
BO 370 COLOR 7：PRINT DS\＄＂P1 ayer＂ 5 turn．Move counters（G－ L）？＂；
LB $38 \emptyset$ IF $P=\varnothing$ THEN $88 \emptyset$
OA 39ø GOSUB 147פ：I＝ASC（B\＄）－64：C OLOR 2：PRINT B\＄
DN 4øø IF B $\$=$＂$Q$＂THEN 11 Øø
IK 410 IF $B \$>=" G$＂AND $B \$<=" L "$ TH EN IF $A(I)<>\varnothing$ THEN $44 \varnothing$
QP 420 COLOR 4：PRINT DS\＄＂Illegal move！！！＂
IM $43 \varnothing$ FOR TM＝1 TO 9øø：NEXT：GOTO 37ø
If 44 DS $=1$ ：GOSUB 125 ：FOR TM＝1 TO 9øø：NEXT
PA $45 \emptyset$ PT＝ø：FOR $F=1$ TO 12：$A(F)=B$ （F）：PT＝PT＋A（F）：NEXT
CL 46 IF $M P=M L$ AND $M C=M L$ THEN 9 49
CA $47 \varnothing$ IF PT $=\emptyset$ THEN $88 \varnothing$
ह月 480 IF PL＞24 THEN 940

IE $5 \emptyset \emptyset$ P\＄＝＂C＂： $\mathrm{PA}=\varnothing: P B=\varnothing: I A=\varnothing:$ IB＝ Ø：$P=\emptyset: M C=M C+1$
6B 510 COLOR 1：LOCATE B，19：PRINT MC
BJ 52 F FOR $F=1$ TO 6：$P=P+A(F): N E X$ T F
6A 530 COLOR 3：PRINT DS\＄＂Compute r＇s turn（Moves counters A－F）．＂；
OB 54ø IF $P=0$ THEN $88 \emptyset$
IJ 559 FOR $G=1$ TO 12
$0156 \emptyset \operatorname{SC}(G)=\emptyset: I(G)=\emptyset$
QK $57 \emptyset$ IF $G=7$ THEN $P \$=" P "$
QK $58 \emptyset$ IF $A(G)=\emptyset$ THEN $62 \emptyset$
BB $59 \emptyset \mathrm{SC}=\varnothing: S P=\varnothing: I=G$
เJ 6øØ DS＝ø：GOSUB 1250
IP $61 \varnothing \mathrm{SC}(\mathrm{G})=\mathrm{S} 1$ OR S2：I $(\mathrm{G})=\mathrm{T} \varnothing$
H 620 NEXT G
$10630 \mathrm{P} \$=" \mathrm{C"}$
6C 64ø REM＊＊PICK BEST MOVE＊＊
HP 659 FOR $F=1$ TO 6
FA $66 \emptyset$ IF PA＞$=S C(F)$ THEN $68 \emptyset$
KF $67 \varnothing$ IA $=F: P A=S C(F)$
FJ $68 \varnothing$ IF $P B>=S C(F+6)$ OR $A(I(F+6$ ））$=\varnothing$ THEN $7 \emptyset \varnothing$
61 $69 \varnothing 1 B=I(F+6): P B=S C(F+6)$
ND $7 \varnothing 6$ NEXT
AB $71 \varnothing$ IF IA $=\varnothing$ AND $1 B=\varnothing$ THEN $74 \varnothing$
Cl 729 I＝IA：IF PB＞PA THEN I＝IB
FO 736 GOTO 896
KH $740 \mathrm{P}=\emptyset:$ FOR $F=7$ TO 12： $\mathrm{P}=\mathrm{P}+\mathrm{A}$（F ）：NEXT
FC 759 IF P＜＞פ THEN $79 \emptyset$
＊C $76 \emptyset$ FOR $F=1$ TO 5
AC $77 \varnothing$ IF $A(F)<>\varnothing$ AND $A(F)<=6-F$ THEN I＝F：GOTO Bøø
HP 780 NEXT F
CE 79ø I＝INT（RND＊6）+1 ：IF A（I）$=\varnothing$ THEN 79ø
JP 日øø COLOR 2：PRINT CHR\＄（I＋64）： SC＝ø：FOR TM＝1 TO 9øø：NEXT TM
IK B1ø DS＝1：GOSUB 125ø：FOR TM＝1 TO 9øø：NEXT
PO 826 PT＝ø：FOR F＝1 TO 12：A（F）＝B （F）：PT＝PT＋A（F）：NEXT
CS $83 \varnothing$ IF $M P=M L$ AND MC＝ML THEN 9 46
CO 84の IF PT＝ø THEN B8ø
PG $85 \emptyset$ IF CP＞24 THEN 94ø
FP $86 \emptyset$ gato $34 \varnothing$
F8 879 REM \＆NO COUNTERS＊＊
PA 88Ø FOR TM＝1 TO 49Ø：NEXT
CL 89ø COLOR 4：PRINT DS\＄＂No coun ters！！！＂；
แ 9øø IF PT＝ø THEN PRINT＂Game over．＂
E1 910 FOR TM＝1 TO 9øø：NEXT
PF 926 IF PT＝ø THEN 1 1øø
NH 936 REM＊＊AWARD COUNTERS \ddagger \％
HI 940 COLOR 4：PRINT DS\＄＂Game ov er．＂；：COLOR 14：PRINT＂Aw ard counters．＂
HC 956 FOR $F=1$ TO 6
IC $96 \emptyset \mathrm{P} \$=$＂C＂： $\mathrm{SC=A}(F): T=F: B(T)=\varnothing$ ：GOSUB $116 \varnothing$
JM 97ø P\＄＝＂P＂：SP＝A（F＋6）：T＝F＋6：B（ T）＝ø：GOSUB $116 \emptyset$
of 980 NEXT
MP $99 \varnothing$ REM＊＊WHO WON＊＊
CB 1 Øøの PRINT DS $\$$
NI 1010 IF PL＝CP THEN COLOR 3：PR INT＂A draw．＂；：GOTO 165 g
6E 1 ø2ø IF PL＞CP THEN COLOR 2：PR INT＂Player wins．＂；：BOT 01659
JN 1 ø3ø COLOR 4：PRINT＂Computer wins．＂；
CO 194ø REM＊＊ANOTHER GAME＊＊
CC 165ø COLOR 7：PRINT＂Another 9 ame（Y／N）？＂；
 D B \ll＞＂N＂THEN 1 1ø6ø
M 1 1ø7ø PRINT B\＄：IF B\＄＝＂Y＂THEN 5ø
CN 1 ø8g CLS：END

小 11 gø FOR TM＝1 TO 1øø：NEXT
明 1110 COLOR 4：PRINT DS\＄＂Quit g ame．Are you sure（Y／N）？ ＂；
E0 1120 GOSUB 147 1 ：IF B\＄＜＞＂Y＂AN D B\＄＜＞＂N＂THEN 112σ
EG 1130 IF B\＄＜＞＂Y＂THEN $37 \varnothing$
NM 114ø PRINT DS\＄；：PT＝ø：GOTO 9øø

KP 1169 COLOR 7
EG $117 \emptyset$ IF $T<7$ THEN TB $=36-5 * T: G 0$ TO $119 \varnothing$

CA 1189 IF T＞6 THEN TB＝5＊$(T-6)+1$
CL 1199 LOCATE 13－2＊（T＞6），TB：PRI NT $B(T)$ ；
MD $12 \emptyset 9$ FOR TM＝1 TO 4øø：NEXT
EH 1210 IF $\mathrm{B}(\mathrm{T})<>\varnothing$ THEN RETURN
BF 1220 IF $P \$=" P "$ THEN GOSUB $15 \varnothing$ ø：RETURN
AA 1230 IF $P \$=" C "$ THEN GOSUB 155 Ø：RETURN
BC $124 \varnothing$ REM MOVE COUNTERS
ME 1259 T＝I：S1＝ø：S2＝ø
LO 1269 FOR $F=1$ TO 12：$B(F)=A(F):$ NEXT
DH $127 \varnothing \mathrm{~B}(\mathrm{~T})=\varnothing$ ：IF DS THEN GOSUB 1160
d． 1289 FOR $F=1$ TO $A(T)$
FA $1290 \mathrm{~T}=\mathrm{T}+1$
DN 1398 IF $T>12$ THEN $T=1$
JH $1310 \mathrm{~B}(\mathrm{~T})=\mathrm{B}(\mathrm{T})+1: \mathrm{IF}$ DS THEN G OSUB $116 \emptyset$
LJ 1320 NEXT F：Tø＝T
Q1 1330 REM＊＊ANY CAPTURES＊＊
IF $134 \varnothing$ IF $B(T \varnothing)<2$ OR $B(T \varnothing)>3$ TH EN RETURN
HE 1350 IF $P \$=" P{ }^{2}$ AND $T \varnothing<=6$ THEN 139ø
BC 1369 IF $P \$=" C "$ AND Tø＞＝7 THEN 139ø
J6 1370 RETURN
ND 1380 REM＊＊TOTAL CAPTURES＊＊
AA $139 \varnothing$ LS＝1：IF $P \$=" C$＂THEN LS＝7
BF 14 Øø FOR $F=T \varnothing$ TO LS STEP -1
C6 1410 IF $B(F)<2$ OR $B(F)>3$ THEN RETURN
FB 1420 IF $P \$=" P{ }^{2}$ THEN $S P=B(F): S$ 2＝S2＋SP：GOTO 144ø
JP $143 \varnothing$ IF $P \$=" C "$ THEN $S C=B(F): S$ $1=S 1+S C$
HB $144 \emptyset B(F)=\emptyset: I F D S$ THEN T＝F：GO SUB 1169
BH $145 \emptyset$ NEXT F：RETURN
OF 1460 REM＊GET A CHARACTER＊ ＋
PF $147 \varnothing$ B\＄＝INKEY\＄：IF B\＄＜＞＂＂THEN $147 \varnothing$
JA $148 \emptyset \mathrm{~B}=\mathrm{INKEY} \$: \mathrm{IF} \mathrm{B} \$="$＂THEN 148ø ELSE RETURN
PL $149 \varnothing$ REM＊＊DISPLAY PLAYER＇S SCORE＊＊
KN $15 \emptyset 6$ IF $S P=\emptyset$ THEN RETURN
PE 1510 FOR H＝PL＋1 TO PL＋SP
OK 1526 COLOR 4：LOCATE 21，19：PRI NT H：SOUND 44ஏ，2：FOR TM＝ 1 TO 366：NEXT
BB 1539 NEXT H：PL＝PL＋SP：RETURN
6C $154 \emptyset$ REM＊＊DISPLAY COMPUTER＇ 5 SCORE t＊
DK $155 \emptyset$ IF $S C=\emptyset$ THEN RETURN
LD 1560 FOR $\mathrm{H}=\mathrm{CP}+1$ TO $\mathrm{CP}+\mathrm{SC}$
IJ 1579 COLOR 4：LOCATE 9，19：PRIN T H：SOUND 116，2：FOR TM＝1 TO 366：NEXT
CP $158 \emptyset$ NEXT H：CP＝CP＋SC：RETURN

Program 5：Amiga Wari
Version by Patrick Parrish，
Programming Supervisor
setup： 4
CLEAR ，250004
CLEAR ，65536\＆4
SCREEN 1，32ø，2øø，3，1：WINDOW 3，＂＇
，$(\varnothing, \varnothing)-(311,186), 16,14$
WINDOW OUTPUT 34
PALETTE $\varnothing, \varnothing, \varnothing, \varnothing:$ PALETTE $1, .1, .2$ ， ． 8 ＇black，blue
PALETTE 2，．33，．9， $0:$ PALETTE 3,0 ，．
93，．87 green，aqua4
PALETTE 4，1，．1，． 27 ：PALETTE 5，．8，
$0, .93$＇red，purple

＂Wari＂for the Amiga computer．

PALETTE 6，1，1，．13：PALETTE 7，1，1， 1 ＇yellow，white4
DIM $a(12), b(12), s c(80), i(80) 4$
RANDOMIZE TIMER：ds\＄＝STRING\＄（39，3 2） 4
DIM waveformb（255）＜
wavedata＝－1284
FOR $n=\emptyset$ TO 255：waveformz（ n ）＝wave data
wavedata＝wavedata＋1：NEXT4
WAVE \varnothing ，waveform\％
restart： 4
CLS：LOCATE 1，10：COLOR 6， $0:$ PRINT STRING $(21,42)$ 4
PRINT TAB（1 \varnothing ）＂＊＂；：COLOR $\varnothing, 1$ ：PRIN T STRING $(19,32)$ ；
COLOR 6，ø：PRINT＂＊＂4
PRINT TAB（1ø）＂＊＂；：COLOR $\varnothing, 1:$ PRIN T＂Amiga Wari＂；
COLOR 6，\varnothing ：PRINT＂＊＂«
PRINT TAB（1ø）＂＊＂；：COLOR $\varnothing, 1$ ：PRIN T STRING\＄（19，32）；4
COLOR 6，\varnothing ：PRINT＂＊＂
PRINT TAB（1б）STRING\＄$(21,42) \&$
PRINT：COLOR 3：PRINT TAB（13）＂Comp
uter＇s Side＂： $\mathrm{cp}=\varnothing$ ： $\mathrm{mc}=\varnothing$ 《
COLOR 5：PRINT TAB（13）＂Move \＃＂；：C OLOR 1：PRINT mc 4
COLOR 5：PRINT TAB（13）＂Score：＂；：C OLOR 4：PRINT CP4
COLOR 2：PRINT：PRINT＂＜＜F＜＜＜＜ E $\lll \ll$ D $\lll<$ C $\lll \ll B \lll<$ A $\lll " 4$
GOSUB dash：PRINT＂＂；4
FOR i＝1 TO 6：PRINT CHRS（124）＂－－－ －＂；：NEXT：PRINT CHRS（124）4
GOSUB dash
COLOR 2：PRINT＂＞＞G＞＞＞＞H＞＞＞＞I
＞＞＞＞J＞＞＞＞K＞＞＞＞L＞＞＞＂4
PRINT：COLOR 7：PRINT TAB（13）＂Play er＇s Side＂： $\mathrm{pl}=\varnothing$ ： $\mathrm{mp}=\varnothing 4$
COLOR 5：PRINT TAB（13）＂Move \＃＂；：C OLOR 1：PRINT mp
COLOR 5：PRINT TAB（13）＂Score：＂；C OLOR 4：PRINT pl4
FOR $t=1$ TO 12：a（ t ）$=4: b(t)=4: G O S U$ B placepieces：NEXT t4
4
gametype： 4
LOCATE 23，1：COLOR Ø，6：PRINT＂L＂；： COLOR 6，04
PRINT＂imited or＂；：COLOR $\varnothing, 6:$ PR INT＂U＂； 4
COLOR 6，Ø：PRINT＂nlimited game？ ＂；
4
type： 4
GOSUB getchar：IF bṢ＜＞＂L＂AND b\＄s ＞＂U＂THEN type
PRINT b\＄：FOR tm＝1 TO 4ø0：NEXT：ml $=04$
IF $\mathrm{b} \$=$＂U＂THEN COLOR $\varnothing, 1:$ LOCATE
4，16：PRINT＂Unlimited＂：GOTO firs
t 4

moves: 4

GOSUB cline:PRINT "Move Limit";: INPUT ml 4
$\mathrm{ml}=\mathrm{INT}(\mathrm{ml}): I F \mathrm{ml}<=\varnothing$ THEN moves \measuredangle
LOCATE 4,15:COLOR Ø,1:PRINT "Lim
ited: "+STRS (ml) 4
fir
first: 4
LOCATE 23,1:COLOR 3, Ø:PRINT "Who goes first: ";:4
COLOR $\varnothing, 3:$ PRINT "C";:COLOR 3, $0: P$ RINT "omputer or ";
COLOR Ø, 3:PRINT "P"; :COLOR 3, Ø: P RINT "layer? ";
4
getfirst: 4
GOSUB getchar:IF $\mathrm{b} \$<>$ " C " AND $\mathrm{b} \$<$ >"P" THEN getfirst4
PRINT b\$:FOR tm=1 TO 4øø:NEXT tm 4

```
IF b$="C" THEN computer*
```

4
player: 4
$\mathrm{p} \$=" \mathrm{p}$ ": $\mathrm{p}=\varnothing$: $\mathrm{sp}=\varnothing: m p=m p+14$
COLOR 1:LOCATE 26,19:PRINT mp FOR $f=7$ TO $12: p=p+a(f): N E X T$ f 4 entry: 4
COLOR 7:LOCATE 23,1:PRINT ds\$:LO CATE 23,14
PRINT "Player's turn. Move count ers (G-L)? ";4
IF $p=\emptyset$ THEN nocounters 4
GOSUB getchar: $i=A S C(b \$)-64$:COLOR 3:PRINT b\$4
IF $\mathrm{b} \$=$ " Q " THEN quit 4
IF $\mathrm{b} \$>=$ " $\mathrm{G} "$ AND $\mathrm{b} \$<=" \mathrm{~L} "$ THEN IF a (i) $<>$ Ø THEN okmove 4

COLOR 4:GOSUB cline:PRINT "Illeg al movel!1"4
FOR tm=1 TO 1500:NEXT:GOTO entry
okmove: 4
ds=1:GOSUB movecounters:FOR tm=1 TO 9øØ:NEXT tm 4
$\mathrm{pt}=\emptyset:$ FOR $\mathrm{f}=1$ TO 12:a(f)=b(f):pt= pt+a(f): NEXT f 4
IF $m p=m l$ AND $m c=m l$ THEN award 4
IF pt=ø THEN nocounters 4
IF pl>24 THEN award 4
4
computer: 4
$p \$=" c ": p a=\varnothing: p b=\varnothing: i a=\varnothing: i b=\varnothing: p=\varnothing: m$ $\mathrm{c}=\mathrm{mc}+14$
COLOR 1:LOCATE 8,19:PRINT mc 4
FOR $f=1$ TO $6: p=p+a(f): N E X T$ f 4
COLOR 3:GOSUB cline 4
PRINT "Computer's turn (Move cou nters A-F). "; 4
IF $p=\emptyset$ THEN nocounters 4
checkmoves: 4
FOR $g=1$ TO 124
$\operatorname{sc}(\mathrm{g})=\varnothing: i(\mathrm{~g})=\varnothing 4$
IF $\mathrm{g}=7$ THEN $\mathrm{p} \$=" \mathrm{P}$ " 4
IF $\mathrm{a}(\mathrm{g})=\varnothing$ THEN skip
$s c=\emptyset: s p=\emptyset: i=g 4$
$\mathrm{ds}=\varnothing$: GOSUB movecounters 4
$\operatorname{sc}(\mathrm{g})=\mathrm{sl}$ OR s2:i(g)=tø
skip: 4
NEXT g ${ }^{4}$
$\mathrm{p} \$=\mathrm{Cl} \mathrm{C}^{2} 4$
4
pickbest: 4
FOR $f=1$ TO 64
IF pa>=sc(f) THEN ahead 4
ia=f:pa=sc $(f) 4$
ahead: 4
IF $p b>=s c(f+6)$ OR $a(i(f+6))=\varnothing$ TH
EN skip24
$i b=i(f+6): p b=s c(f+6) \nleftarrow$
skip2:4
NEXT $f 4$
IF $i a=\emptyset$ AND $i b=\emptyset$ THEN skip34
$i=i a: I F p b>p a$ THEN $i=i b\langle$

GOTO printit4
skip3: 4
$p=\emptyset: F O R \quad f=7$ TO $12: p=p+a(f):$ NEXT f4
IF $p<>\varnothing$ THEN random 4
FOR f=1 TO 54
IF $a(f)<>\varnothing$ AND $a(f)<=6-f$ THEN $i=$
f:GOTO printit 4
NEXT f 4
random: 4
$i=I N T(R N D * 6)+1: I F a(i)=\varnothing$ THEN ra ndom 4
4
printit: 4
COLOR 7:PRINT CHRS ($i+64$): sc= $\varnothing 4$
ds=1:GOSUB movecounters:FOR tm=1
TO 15øø:NEXT tm 4
$p t=\emptyset: F O R \quad f=1$ TO 12:a(f) $=b(f): p t=$
pt+a(f): NEXT f 4
IF $\mathrm{mp}=\mathrm{ml}$ AND mc=ml THEN award 4
IF pt=ø THEN nocounters 4
IF cp> 24 THEN award 4
GOTO player 4
4
nocounters: 4
FOR tm=1 TO 6øø:NEXT 4
COLOR 4:GOSUB cline:PRINT "No co
unters!l! ";
gameend: 4
IF pt=ø THEN PRINT "Game over." \langle
FOR $\mathrm{tm}=1$ TO 15ø日: NEXT 4
IF $\mathrm{pt}=\emptyset$ THEN winner 4
4
award: 4
COLOR 4:GOSUB cline:PRINT "Game
over. ";4
COLOR 6:PRINT "Award counters." 4 FOR f=1 TO 64
$p \$=" C ": s c=a(f): t=f: b(t)=\varnothing:$ GOSUB placepieces 4
$p \$=" P ": s p=a(f+6): t=f+6: b(t)=\varnothing: G O$
SUB placepieces 4
NEXT ${ }^{4}$
4
winner: 4
GOSUB cline 4
COLOR 3:IF pl=cp THEN PRINT "A d raw. ";:GOTO another 4
IF pl>cp THEN COLOR 2:PRINT "Pla yer wins. ";:GOTO another 4
COLOR 4:PRINT "Computer wins. ";
4
another: 4
COLOR 7:PRINT "Another game (Y/N
)? "; 4
another2: 4
GOSUB getchar: IF b\$<> "Y" AND b\$<
$>$ "N" THEN another 24
PRINT bS:IF b\$="Y" THEN restart 4
WINDOW CLOSE 34
SCREEN CLOSE 14
WINDOW 1,"Wari", ,31,-14
CLEAR , 25øøø4
END 4
quit: 4
FOR $\mathrm{tm}=1$ TO 2øø: NEXT 4
COLOR 4:GOSUB cline 4
PRINT "Quit game. Are you sure (
Y/N)? ";4
again: 4
GOSUB getchar:IF b\$<>"Y" AND b\$< >"N" THEN again 4
IF b\$<>"Y" THEN entry ${ }^{4}$
GOSUB cline:pt= \varnothing : GOTO gameend 4
4
placepieces: 4
COLOR 74
IF $t<7$ THEN $t b=36-5^{*} t$:GOTO place
IF $t>6$ THEN $t b=5 *(t-6)+14$
place: 4
LOCATE $13-2^{*}(t>6), t b:$ PRINT $b(t) \nleftarrow$

FOR tm=1 TO 1øøø:NEXT tm
IF $b(t)<>\emptyset$ THEN RETURN 4
IF $\mathrm{p} \$=$ " P " THEN GOSUB playerscore : RETURN 4
IF $\mathrm{p} \$=$ "C" THEN GOSUB computersco re: RETURN 4
4
movecounters:4
$\mathrm{t}=\mathrm{i}: \mathrm{sl}=\emptyset: \mathrm{s} 2=\emptyset 4$
FOR $f=1$ TO 12:b(f)=a(f):NEXT 4
$b(t)=\varnothing$:IF ds THEN GOSUB placepie ces 4
FOR $f=1$ TO $a(t) \leftarrow$
$t=t+14$
IF $t>12$ THEN $t=14$
$\mathrm{b}(\mathrm{t})=\mathrm{b}(\mathrm{t})+1:$ IF ds THEN GOSUB pla cepieces 4
NEXT $\mathrm{f}: \mathrm{t} \emptyset=\mathrm{t} 4$
4
captures: 4
IF $\mathrm{b}(\mathrm{t} \varnothing)<2$ OR $\mathrm{b}(\mathrm{t} \varnothing)>3$ THEN RETUR N4
IF $p \$=" P$ " AND $t \emptyset<=6$ THEN total 4 IF $p \$=" \mathrm{C}$ " AND tø>=7 THEN total 4 RETURN 4
4
total: 4
ls=l:IF $\mathrm{p} \$=" \mathrm{C}$ " THEN $1 \mathrm{~s}=7 ६$
FOR $f=t \emptyset$ TO $1 s$ STEP -14
IF $b(f)<2$ OR $b(f)>3$ THEN RETURN 4
IF $p \$=" P$ " THEN $s p=b(f): s 2=s 2+s p$: GOTO total24
IF $\mathrm{p} \$=" \mathrm{C}$ " THEN $\mathrm{sc}=\mathrm{b}(\mathrm{f}): \mathrm{sl}=\mathrm{s} 1+\mathrm{sc} 4$ total2:4
$b(f)=\varnothing: I F$ ds THEN $t=f: G O S U B$ plac epieces 4
NEXT f:RETURN 4
4
getchar: 4
bS=UCASES(INKEY\$):IF b\$<>"" THEN getchar ${ }^{4}$
getchar2: 4
b\$=UCASE\$(INKEY\$):IF b\$="" THEN
getchar2 ELSE RETURN 4
4
playerscore: 4
IF $\mathrm{sp}=\emptyset$ THEN RETURN 4
FOR h=pl+1 TO pl+sp 4
COLOR 4:LOCATE 21,19:PRINT h 4
SOUND 440,2,255, $0:$ FOR $\operatorname{tm}=1$ TO 50 Ø: NEXT 4
NEXT $\mathrm{h}: \mathrm{pl}=\mathrm{pl}+\mathrm{sp}:$ RETURN \leqslant
4
computerscore: 4
IF $\mathrm{sc}=\varnothing$ THEN RETURN 4
FOR $\mathrm{h}=\mathrm{cp}+1$ TO $\mathrm{cp}+\mathrm{sc} 4$
COLOR 4:LOCATE 9,19:PRINT h4
SOUND 22ø,2,255, $0:$ FOR $\mathrm{tm}=1$ TO $5 \varnothing$ Ø: NEXT 4
NEXT $\mathrm{h}: \mathrm{cp}=\mathrm{cp}+\mathrm{sc}:$ RETURN $~ 4$
4
dash: 4
COLOR 1:FOR j=1 TO 2:FOR i=1 TO
7:PRINT " "CHRS(124); 4
NEXT: PRINT: NEXT: RETURN \leqslant

4

cline: 4
LOCATE 23,1:PRINT ds\$:LOCATE 23, 1: RETURN 4

Program 6: Wari For Atari
 400, 800, XL, And XE:

Version by Patrick Parrish,
Programming Supervisor
IH $1 \varnothing$ QPEN \#1,4,, , "K: ": DIM A (12), $\mathrm{B}(12), \mathrm{SC}(12), \mathrm{I}(12$), A\$(3), X\$(3), B\$(1), P\$ (1), SP\$(37)

HI $2 \emptyset$ FOR $I=\emptyset$ TO 11: READ A: P
OKE 1664+I, A: NEXT I
IK 39 DATA $164,165,203,5,204$

＂Wari＂for Atari 400，800，XL，and XE computers．
，133，212，169， $0,133,213$ ， 96

KI 5ø GRAPHICS ø：POKE 752，1： SETCOLOR 4，6，6：SETCOLO R 2，10，1

LB 7 © POSITION 9，1：PRINT＂ \｛19 हRAMEs $\}$＊＂
BH 日ø POSITION 9，2：PRINT＂
 \｛4 Brames \} \%"
LF9ø POSITION 9，3：PRINT＂ \｛19 BRAME 3 \}" "
B 1 1 Ø POSITION 9，4：PRINT＂＊

FG11ø POSITION 12，b：PRINT＂ CCinMzeross sicg＂：CP＝ø ：$M C=\emptyset$
DH 12ø POSITION 12，7：PRINT＂
 B0SUB 959
JI $13 \emptyset$ POSITION 12，B：PRINT＂
 G0SUB 95ø
태 14Φ POSITION 4，1』：PRINT＂ ＜\langle F $\lll \ll E \lll<D \lll<C \lll$

OE 150 FOR $J=1$ TO 2：POSITION Ø，1の＋J：FOR I＝1 TO 7： PRINT＂\｛4 SPACES\}:";: NEXT I：NEXT J
MF 16 g PRINT ：PRINT＂\｛A\}"; ：FOR I＝1 TO 5：PRINT＂ \｛4 R\}\{S\}";: NEXT I:PRI NT＂$\{4$ R\} $C D\}$
0J 176 FOR $J=1$ TO 2：POSITION Ø，13＋J：FOR I＝1 TO 7： PRINT＂\｛4 SPACES\}:";: NEXT I：NEXT J
PI $18 \emptyset$ PRINT ：PRINT＂＞＞G＞＞
 ＞L＞＞＞＂
CF $19 \varnothing$ POSITION 12，18：PRINT ＂Player＇s Side＂：PL＝ø： $M P=\varnothing$
5F 2 øø POSITION 12，19：PRINT ＂Move \＃＂；MP：POSITION 12，2ø：PRINT＂Score：＂； PL
LH 210 FOR $T=1$ TO 12：$A(T)=4$ ： $B(T)=4$ ：GOSUB 1190：NEX T T
BO 22ø POSITION 2，22：PRINT Cimited or Unlimited Game？＂；
CL 230 GOSUB 148の：IF B\＄＜＞＂L＂ AND B\＄く＞＂U＂THEN 236
K $24 \varnothing$ PRINT $B \$: M L=\varnothing$
AP 259 IF B\＄＝＂U＂THEN POSITI ON 15，3：PRINT＂OREFTE

HEE＂：ВОTO 290
9P 260 e Limit＂；：INPUT ML
B6 $27 \boldsymbol{m L}=\mathrm{INT}(M L): I F \quad M L<=\emptyset T$ HEN 26 g
AN 28ø POSITION 14，3：PRINT＂
 L）：G0SUB 95ø
ED 290 GOSUB 1610：PRINT＂Who goes first：Computer or Elayer？＂；
 AND B乌く＞＂P＂THEN 3øø
IH 31 PRINT B
BC 326 IF B $\%=" C "$ THEN $5 \varnothing \sigma$
PI 33 R REM PLAYER＇S MQVE
 $+1$
HA 35 POSITION 18，19：PRINT MP
BJ 36ø FOR $F=7$ TD 12：$P=P+A(F$ ）：NEXT F
IA 370 GOSUB 1610：PRINT＂P1a yer＇s turn．Move caun ters（ $\mathrm{E}-\mathrm{L}$ ）？＂；
내 389 IF $P=\varnothing$ THEN 899
PH 396 GOSUB 148ø：$I=A S C$（B\＄）－ 64：PRINT CHR（ $I+192$ ）
EP 4の日 IF B $=$＂Q＂THEN 1130
N 4 41ø IF B $\$>=$＂G＂AND B $\$<=" L$ ＂THEN IF $A(I)<>\varnothing$ THE N 44 ø
JM 420 EOSUB 1619：PRINT＂I11 egal Move ！！！＂
OK $43 \varnothing$ FOR TM＝1 TO 3פø：NEXT TM：GOTO $37 \emptyset$

JP 44ø DS＝1：GOSUB 127ø：FOR T $M=1$ TO 1øø：NEXT TM
CO 45ø $P T=\emptyset: F Q R \quad F=1$ TO 12：A $F)=B(F): P T=P T+A(F): N E$ $X T$ F
nE 460 IF $M P=M L$ AND $M C=M L \quad T H$ EN 97ø
AL 47ø IF $P T=\emptyset$ THEN $89 \varnothing$
DK 48ø IF PL＞24 THEN $97 \emptyset$
KB 49 R REM COMPUTER＇S MOVE
 ：$I B=\varnothing: P=\emptyset: M C=M C+1$
CA 510 POSITION 18，7：X $\$=$ STR （MC）：GOSUB 95ø
DE 52ø FQR $F=1$ TO $6: P=P+A(F)$ ：NEXT F
4F 53ø GOSUB 161ø：PRINT＂CRE RUKEC＇S पUND KMOUESE E防空＂；
LF 54 IF $P=\emptyset$ THEN $89 \varnothing$
DP 556 REM CHECK ALL MOVES
DN 56も FDR G＝1 TO 12
$\angle P 57 \emptyset \quad S C(E)=\varnothing: I(E)=\varnothing$
FL58g IF $G=7$ THEN $P \$=" P$＂
D 59 IF $A(B)=\varnothing$ THEN 636
OK 6øø SC＝ø：SP＝ø：I＝G
BP 61ø DS＝ø：GOSUB 127．
FJ 62ø POKE 2ø3，S1：PQKE 2ø4， S2：SC（G）＝USR（1664）：I（ E）$=T \varnothing$
BP 63פ NEXT E
HC 649 P （\＃＂C＂
AL 65 REM PICK BEST MQVE
$B A 66$ FOR $F=1$ TO 6
DD 670 IF $P A>=S C(F)$ THEN $69 \emptyset$ OA 68ø I $A=F: P A=S C(F)$
HB 690 IF $P B>=S C(F+6) \quad O R A(I$ $(F+6))=\varnothing$ THEN 716
DH 7 ．\quad I $B=I(F+6): P B=S C(F+6)$
BN 71ø NEXT F
LF $72 \boldsymbol{2}$ IF I $A=\varnothing$ AND I $B=\varnothing$ THEN $75 \varnothing$
BE $730 \quad I=I A: I F$ PB $>P A$ THEN $I=$ IB
日 74 日 GOTO B1』

BD $756 \mathrm{P}=6$ ：FOR $F=7$ TO 12： $\mathrm{P}=\mathrm{P}$ $+A(F): N E X T$ F
ON 76ळ IF $P<>\emptyset$ THEN $8 \emptyset \varnothing$
BR $77 \boldsymbol{0}$ FQR $F=1$ TO 5
IE 78 IF $A(F)<>\varnothing$ AND $A(F)<=$ G－F THEN I＝F：GOTO 8iø
CF 79ø NEXT F
FD Bøø I＝INT（RND（ø）$\ddagger 6$ ）+1 ：IF $A(I)=\varnothing$ THEN Bøø
BB 81ø PRINTCHR $\$(I+64): S C=\varnothing$ ：FOR TM＝1 TO 1פの：NEXT TM
KB 82ø DS＝1：GOSUB 127ø：FOR T $M=1$ TO 1øø：NEXT TM
DA 日3ø $\mathrm{PT}=$ Ø：FOR $F=1$ TO 12：A
$F)=B(F): P T=P T+A(F): N E$ $X T F$
KE 84』 IF MP＝ML AND MC＝ML TH EN 956
AN 85ø IF PT $=\varnothing$ THEN $89 \emptyset$
DD 86 IF CP＞24 THEN 970
6P 日7ø GOTO 34 Ø
JE 88ø REM NO COUNTERS
OF 89ø FOR TM＝1 TO 1øø：NEXT TM
LK 9øø GOSUB 1619：PRINT＂No counters ！！！＂；
J091ø IF PT＝g THEN PRINT＂G ame over．＂
NP92ø FOR TM＝1 TO 1øø：NEXT TM

H6 946 GOTO 979
NA 95ø FOR NUM＝1 TO LEN（X\＄）： PRINT CHR\＄（ASC（X \＄（NUM ，NUM））＋128）；：NEXT NUM ：RETURN
GF $96 \emptyset$ REM AWARD COUNTERS
J 970 GOSUB 161g：PRINT＂Gam e over．Award counter s．＂
BF 98ø FOR $F=1$ TO 6
$00990 \mathrm{P} \ddagger=4 \mathrm{C}=\mathrm{SC=A}(F): T=F: B($ T）$=\varnothing$ ：GOSUB $119 \varnothing$
NO 1 Øøø $P \$=" P ": S P=A(F+6): T=F$ $+6: B(T)=\varnothing:$ GOSUB 1190
EH $1 \varnothing 1 \varnothing$ NEXT F
IJ $1 \varnothing 2 \emptyset$ REM WHO WON
AM 1930 GOSUB $161 \varnothing$
FE $104 \varnothing$ IF PL＝CP THEN PRINT ＂A draw．＂；：GOTD 1ø日 g

JF 105 IF PL＞CP THEN PRINT ＂Player wins．＂；：GOT －1ø8ø
OH 1 ØGの IF CP $>P$ THEN PRINT ＂Computer wins．＂；
NH $197 \emptyset$ REM ANDTHER GAME
KG 1 ø日ø PRINT＂Another game （Y／N）？＂；
J 1 ø9ø GOSUB 148ø：IF B\＄く＞＂Y ＂AND $B \$<\rangle " N "$ THEN 1 ஏ9ø
FC 11 ■の PRINT B\＄：IF B\＄＝＂Y＂T HEN 5ø

FF 1115 GRAPHICS $\varnothing: E N D$
AF $112 \emptyset$ REM QUIT GAME
AN 1130 FOR TM＝1 TO 1øの：NEXT TM
FJ 114 G GOSUB 161ø：PRINT＂Qu it game．Are you sur e（Y／N）？＂；
JF 115 GOSUB 148 ：IF B\＄く＞＂Y ＂AND Bあく〉＂N＂THEN 1 159
JN 116 IF $B \$\rangle " Y$ THEN 370
SN 1170 GOSUB 1615：PT＝ø：GOTO 910
IH $118 \emptyset$ REM UPDATE DISPLAY
KC 119 IF $T<7$ THEN TB＝35－5＊ T：GOTO 121.

TUST LIQUIDATE LIMTED SUPPLY Of ULTRA FAMOUS 64K coNPUTERS AT FAR BELOW DEALER COST！

－64K Computer
Disk drive
ROM cartridge port －COLOR monitor

ALL in ONE easy－ to－carry system！

Factory Reconditioned with Factory Warranty！

Their 64K home computer is such a HUGE SUCCESS， the famous U．S．manufacturer decided to introduce this all－in－one TRANSPORTABLE model！
Sorry，we＇re NOT permitted to print the famous brand name．But we can provide additional details by phone：Toll－Free：1－800－328－0609

FOR BUSINESS！Ideal entry level computer for word processing，data base，accounts payable／re－ ceivable，general ledger，payroll，inventory，tax accounting，spreadsheets，mailing lists ．．．and much more！
FOR EDUCATION！Perfect for everyone from Ph．D． candidates to pre－school youngsters．A large se－ lection of programs are available．
FOR HOME！Use for analysis of personal invest－ ments，income tax planning，household data ．．．AND fast－paced arcade games！Can hook up to your TV with use of RF modulator（not incl．）
SNAP－ON COMPUTER： 64 K RAM and 20 K ROM．Full size typewriter keyboard with upper and lower case letters，numerals，symbols，re－ verse characters． 2 cursor control keys． 4 func－ tion keys，programmable to 8 ．Music synthesizer with 3 independent voices，each with range of 9 octaves．Input and output ports for：User，serial， ROM cartridge， 2 joysticks，external monitor modem．
BUILT－IN DISK DRIVE：Intelligent，high－ speed． $51 / 4^{\prime \prime}$ disk recorder．170K formatted data storage； 35 tracks， 16 K ROM．Uses single side， single density disks．Serial interface．Second port to chain second drive or printer

Toll－Free：1－800－328－0609
COME
Direct Marketing Corp． Authorized Liquidator 1405 Xenium Lane North
Minneapolis，Minnesota 55441－4494

BUILT－IN COLOR MONITOR：Color moni－ tor displays 40 columns $\times 25$ lines of text on $5^{\prime \prime}$ screen．High resolution， 320×200 pixels． 16 back－ ground and character colors．

BUILT－IN ROM CARTRIDGE PORT：

Just slip in a ROM program cartridge．A huge va riety of subjects are available．

Now available at FAR BELOW dealer cost of new models！

Original List
Price

Liquidation

Price

Now Only

Item H－2093－3631－009 Ship，handling：\＄20．00 ea．

are subjec

 special conditions．Please call or write to inquire．C．O．M．B．Direct Marketing Corp 1405 Xenium Lane N／Minneapolis，MN 55441－4494 Send 64 K Computer（s）item H－2093－3631－009 at \＄388 each， plus $\$ 20$ each for ship，handling．（Minnesota residents add 6\％ sales tax．Sorry，no C．O．D．orders．）
\square My check or money order is enclosed．（No delays in processing orders paid by check．）
Charge：\square VISA \square MasterCard \square American Express ${ }^{\text {e }}$ Acct．No． PLEASE
Name
Address
｜City
State
Phone
Sign here

ID $120 \emptyset$ IF $T>6$ THEN $T B=5$＊（ $T-$ 6）
ML 1219 POSITION TB＋1，$(T>6)$（ 2＋12：PRINT B（T）；：IF $B(T)<1 g$ THEN PRINT

NN $122 \emptyset$ FOR TM＝1 TO 5ø：NEXT TM
PF $123 \varnothing$ IF $\mathrm{B}(\mathrm{T})<>\emptyset$ THEN RETU RN
CH 124 IF $P \$=" P$＂THEN GOSUB 152ø：RETURN
CF 125 IF $\mathrm{P} \$=$＂C＂THEN GQSUB 1575：RETURN
FH 126 R REM MOVE COUNTERS
PL $127 \emptyset T=I: S 1=\varnothing: S 2=\varnothing$
FD 128 F FOR $F=1$ TO 12：$B(F)=A$ （F）：NEXT F
PK $129 \emptyset \mathrm{~B}(\mathrm{~T})=\varnothing$ ：IF DS THEN GO SUB 1190
01 13 Øø FOR $F=1$ TO $A(T)$
A6 $131 \varnothing \mathrm{~T}=\mathrm{T}+1$
DL 132 IF $T>12$ THEN $T=1$
AI $1330 \mathrm{~B}(\mathrm{~T})=\mathrm{B}(\mathrm{T})+1: I F$ DS TH EN GOSUB $119 \varnothing$
JH 134 NEXT F：Tg $=$ T
PH 135 REM ANY CAPTURES
B6 $136 \emptyset$ IF $B(T \emptyset)<2$ QR $B(T \emptyset)>$ 3 THEN RETURN
JK137ø IF P\＄＝＂P＂AND Tøく＝6 THEN 141 ．
JB 138ø IF P\＄＝＂C＂AND Tø＞＝7 THEN 1416
KN $139 \emptyset$ RETURN
JE 14 Øø REM TOTAL CAPTURES
B8 $1410 \mathrm{LB}=1$ ：IF $\mathrm{P}=$＝＂C＂THEN LS $=7$
JB 142 G FQR $F=T \emptyset$ TO LS STEP -1
SI 1430 IF $B(F)<2$ QR $B(F)>3$ THEN RETURN
BC 144 I $1 F P$ 象 $=$＂P＂THEN $S P=B$（ F）：S2＝S2＋SP：GOTO 146 g
KH 145\％IF P\＄＝＂C＂THEN SC＝B（ F）：S1＝S1＋SC
PM 146 D $B(F)=\emptyset: I F$ DS THEN $T=$ F：GOSUB 1196
6L $147 \boldsymbol{g}$ NEXT F：RETURN

 IF B \＆＜＞＂＂THEN 7
II 149 R REM GET 解 1 ， $\mathrm{B}: \mathrm{B} \$=\mathrm{STR} \$$ （B）：IF B\＄＝＂＂THEN 7 1 ®
K\＆ 15 历ø RETURN
IE 151 ． REM DISPLAY PLAYER＇S SCORE
HE $152 \emptyset$ IF $S P=\varnothing$ THEN RETURN
DK 153 F FQR $H=P L+1$ TD PL＋SP
JA 1540 POSITION 18， $20:$ PRINT H：SOUND 1，53，15，12： FOR I＝1 TO 2ø：NEXT I SOUND 1， $5, \varnothing, \varnothing$
OJ 155 の NEXT $H: P L=P L+S P: R E T U$ RN
CL 156 R REM DISPLAY COMPUTER ＇S SCORE
60 157 IF SC＝ø THEN RETURN
CA 158 FOR $H=C P+1$ TQ $C P+S C$
JB 159 P POSITION 18 ， $8: X *=S T R$ \＄（H）：GOSUB 950：SUUND $1,255,15,12:$ FOR $I=1$ TO 2ø：NEXT I：SQUND $1, \varnothing, \varnothing, \varnothing$
MG 16 Øø NEXT $\mathrm{H}: \mathrm{CP}=\mathrm{CP}+\mathrm{SC}:$ RETU RN
B1 1610 POSITION 2，22：PRINT SP\＄：POSITION 2，22：RE TURN

Number-Base Conversions

This column was prompted by a letter in COMPUTE!'s letters column, in which the author asked for a program to convert decimal numbers to binary. "Why," I asked myself, "do all these conversion programs work with only one pair of bases (for example, base 10 to base 2)?" Answer: because few realize that a more general program is almost as easy these specific ones. Don't believe me? Keep reading.

Number Bases

You probably learned about number bases back in third or fourth grade, though you might not have realized that's what you were learning. Specifically, you likely were taught that the number 735 represented "seven hundreds, three tens, and five ones." The fact that digits in a number represent powers of ten is kind of an accident. If humans were normally born with only three fingers and a thumb on each hand, you can bet that 735 would have meant "seven sixty-fours, three eights, and five ones" (that is, we would have used base 8).

Since computers are "born" with only two "fingers," their natural tendency is to use base 2 , also known as binary numbers or notation. (A computer's "fingers" are its memory cells, but each cell can remember only off or on, equivalent in function to counting on two human fingers.) Yet you seldom see a computer memory dump printed in binary, simply because such a printout would be gigantic! Binary numbers take up a lot of room compared to equivalent decimal numbers. Instead, because of the neat way that powers of two can be grouped together, we tend to see computer memory represented in either octal (base 8) or hexadecimal (base 16) notation.

One thing you may have noticed is that a base's number is the
same as the number of counting symbols needed to represent it. Thus base 10 uses $0-9$. Base 8 uses only $0-7$. What about bases beyond 10 , such as base 16 , the hexadecimal base most often used in microcomputer work? Doesn't it need 16 counting symbols? Yes, indeed, and the symbols most commonly used are $0-9$, followed by A-F. (Why not use completely new symbols for the digits beyond 9? Simple: Early computer printers had only 64 different symbols available, so uppercase letters were used.)

Why Hex?

Sidelight: Since we are working on computers that tend to work with bytes, and since a byte can have a value from 0 to 255 (decimal), base 256 notation would seem to be a logical choice. But now we can see why it is not used-humans would be forced to learn 256 unique digit symbols! Still, there are two "nybbles" in each byte, and a nybble can have a value from 0 to 15 (decimal), so hexadecimal (base 16) notation is a very logical alternative.

Now, when you see a hexadecimal number such as A88C, what does it mean? Well, you can read that as "A four-thousand-ninetysixes, 8 two-hundred-fifty-sixes, 8 sixteens, and C ones." In turn though, A and C may be read in decimal as 10 and 12 , respectively. Whew! Now how about base 19?

Confused? Don't worry, help is at hand. Program 1 consists of a short main program followed by two special-purpose subroutines. These routines are designed to make it easy to allow entry and display of any number using any base or pair of bases. The first one (from line 9200 to line 9330) takes a number in variable N and converts it to a string in variable N\$ using the number base given by the variable BASE. The second routine
(lines 9400-9560) performs the reverse operation, converting a string in N\$ (which is supposed to be a number in BASE notation) and converting it to N for use as a number anywhere in BASIC.

Try it. Type in the main code and the subroutines and try the various options. And use some bizarre number bases, such as 13 or 37 or 53. In keeping with the tradition of hexadecimal numbering, the digit symbols used are 0-9 (same as decimal for the first ten symbols), followed by A-Z, and then a-z (good enough for anything up to base 62!).

So now I have one set of routines which take care of all conversions. And it's kind of fun. You could even make a game of it: Try to make two English words "equal" by changing bases! For example, RIB base 35 equals some animal (which happens to enjoy ribs) in some other base. Can you find the animal word and its base? Maybe tricks like this could make a hard-to-break encryption scheme? (This can really cause you to lose sleep!)

Be Just A Bit Wiser

I couldn't quit with simple number conversions, of course. One of the handy features of most higher-level languages is (usually) the presence of operators which do bitwise operations. I like such operators so much I put them into the first of the advanced Atari-compatible BASICs we did, way back in 1981. Unfortunately, Atari BASIC does not have bitwise operators. In Atari BASIC, operators such as AND and OR always perform logical comparisons rather than bitwise comparisons. Though, in fairness, I should point out that there are occasions where Atari's logical operators are worth as much as or more than bitwise operators. Some authors have agreed with me to the extent that they have written machine
language USR calls for use in their BASIC programs．But this is beyond the ken of most BASIC users．

Fortunately，bitwise operators can be implemented in Atari BASIC． And that＇s exactly the purpose of the subroutines of lines 9000 through 9090 （bitwise AND）and lines 9100 through 9190 （bitwise OR）in Pro－ gram 2．I don＇t have space in this column to explain the theory and operation of bitwise operators，but we can quickly look at one example of their use．

Suppose you want to perform some subroutine only when the user of your program hits the SE－ LECT key．Further，suppose that in your program it is legitimate and possible that the user may be push－ ing down either（or both）the START and OPTION keys at that same time as SELECT．If you look in most any good reference book （COMPUTE！＇s Mapping the Atari， for example），you will find a little table something like this：

Push this key	PEEK（53279） decimal	shows this binary
none	7	111
START	6	110
SELECT	5	101
OPTION	3	011

Here we have listed the binary values（even though you could have run Program 1 to convert the decimal values yourself）to show clearly what the console keys are doing：Each of those three keys changes a single bit of the specified address from 1 to 0 when it is pushed．So，we would like a way to isolate the state of the middle bit（of the three）to test for SELECT being pressed．No sooner said than done．

In most languages，you would use something equivalent to this：
SELECTPUSHED $=\operatorname{NOT}(\operatorname{PEEK}(53279)$ AND 2 ）
In Atari BASIC，you can do it the way I did it in Program 2．Enough said？

Finally，there is Program 3．You can not use this program by itself． You must first add all four of the subroutines（on lines numbered 9000 or greater）from Programs 1 and 2．Be sure to keep those subroutines handy so they can be used by Program 3 or， I hope，by some of your own pro－ grams．（Remember，if you LIST a range of lines to disk or cassette，you
can use ENTER to merge them with a program in memory．）

Program 3 is a catchall．It al－ lows you to enter two numbers using two（optionally）different number bases．It then allows you to choose a number base for display purposes and shows you the con－ versions of the two numbers along with the results of bitwise ANDing them and bitwise ORing them．For a thorough understanding of bitwise operations，you might choose base 2 （binary）for all input and output．Happy hacking．

Program 1：Base Converter

 DEMONSTRATE
 CONVERSION
HH 120 REM
EH 130 DIM N\＄（4の）：REM（MUST BE AT LEAST 32）
HJ 140 REM
JO 2øø ？：？：PRINT＂BASE FOR INPUT＂；：INPUT BASEIN
KE $21 \varnothing$ PRINT＂NUMBER＂；：INP UT N
NJ 22ø BASE＝BASEIN：GOSUB 94． Ø：DECIMAL $=N$
CE 23 IF $\operatorname{N}<\boldsymbol{\varnothing}$ THEN PRINT＂OO PS＂：日OTO $2 ø \varnothing$
HK 24% PRINT＂BASE FOR OUTPU T＂；：INPUT BASE
CE 250 PRINT
MK 26 © PRINT N\＄；＂BASE＂；BAS EIN；＂＝＂
N 27ø GOSUB 92øの：PRINT N\＄；＂ BASE＂；BASE；＂＝＂
BB 28ø PRINT DECIMAL；＂BASE $1{ }^{10}$
в 29 ø вотロ 2øø
BP92øø REM＊＊＊＊＊CONVERT N TO N\＄USING GIVEN BA SE
PN $921 \varnothing$ REM ENTER：N，BASE
JB922פ REM USES：\｛3 SPACES\}D IG\＄，DIEIT，WORK，TEMP
NF $923 \varnothing$ TRAP 925 g
FK 924ø DIM DIG\＄（62）
FE 925 DIG $=$＝＂ 123456789 ABCD EFGHIJKLMNOPQRSTUUWX YZabcdefghijklmnopqr stuvwxyz＂

KA 927 © W ORK $=N$
d．928ø FOR DIEIT＝32 TO 1 ST EP－ 1
LF 929ø TEMP＝INT（WORK／BASE）： WORK＝WORK - TEMP ＊BASE
HC 93øø N\＄（DIGIT，DIGIT）＝DIG\＄ （WORK＋1）
609310 WORK＝TEMP：IF WORK TH EN NEXT DIGIT
HD 932』 IF $N(1,1)=" \emptyset "$ THEN N\＄＝N\＄（2）：GOTO 9320
KP 9330 RETURN
 TO N USING GIVEN BA SE
119410 REM ENTER：N $\$$ HAS P RESUMED NUMBER IN ST RING FORM

ED 9420 REM－ 17 SPACES\} BASE IS BASE TO USE
BJ 943 ® REM EXIT：\｛3 SPACES3N HAS NUMBER IN INTER NAL FORM（＜曰 IF ERRO R）
AC 944ø REM USES：© 3 SPACES3D IEIT，TEMP
0） 945 ® REM NOTE：$\{3$ SPACES\} D IEITS GO TO BASE 66， IN ORDER
PA 946 REM－$\{7$ SPACES 3 ．． 9 ， A．．Z，A．．Z
HP 947 IF $\mathrm{N}(1,1)=" \mathrm{~g}$＂THEN $N \$=N \$(2):$ GOTO 947ø
JA 948 の $N=\varnothing$
0B949ø FOR DIGIT＝1 TO LEN（N \＄）
ND 95øø TEMP＝ASC（N\＄（DIGIT））－ 48：IF TEMP＜छ THEN $N=$ －1：RETURN
BF $951 \varnothing$ IF TEMP >9 THEN TEMP $=$ TEMP－7：IF TEMP＜1の TH EN $N=-1$ ：RETURN
EK 9520 IF TEMP >35 THEN TEMP ＝TEMP－6：IF TEMP 36 T HEN N＝－1：RETURN
F0 9530 IF TEMP $>=$ BASE THEN N ＝－1：RETURN
FB $9540 \mathrm{~N}=\mathrm{N} * \mathrm{BASE}+\mathrm{TE}$ IM
ID 955 NEXT DIGIT
LE 956 D RETURN

Program 2：Bitwise Operations

 SHOW STATE
 KEYS AND
 BITWISE AND
$A B 13 \varnothing \quad X=P E E K(53279)$ ：IF $X=7$ THEN $13 \varnothing$
NP 14 Ø $Y=1$ ：GOSUB 9 פøの
FE 15 IF NOT XANDY THEN PR INT＂START＂，
OC 16 Ø $Y=2$ ：GOSUB $9 \emptyset \emptyset \emptyset ~$
II 17 IF IF NOT XANDY THEN PR INT＂SELECT＂，
06 18ø $\mathrm{Y}=4$ ：GOSUB 9øøø
KD $19 \varnothing$ IF NOT XANDY THEN PR INT＂OPTION＂，
BP $2 \emptyset \emptyset$ PRINT
PJ $21 \varnothing$ IF PEEK $(53279)=x$ THEN 21.

FO 22 GOTO 1 Øø
CD 9øøø REM＊＊＊＊REM BITWISE AND
ED $9 \varnothing 1 \emptyset$ REM ENTER：$\quad X, Y$
MH 9 Ø2 2 REM EXIT：$\{3$ SPACES $\} X$ ANDY IS X AND Y
ML 9ø3ø REM USES：\｛3 SPACES\}T EMPX，TEMPY，MASK
E0 $9 \varnothing 4 \varnothing$ TEMPX $=X:$ TEMP $Y=Y: X A N D$ $Y=\emptyset: M A S K=1$
P6 9ø5ø TEMPX＝INT（TEMPX）／2：T $E M P Y=I N T(T E M P Y) / 2$
AF $9 \boxed{6} 6$ IF TEMPX＝ø DR TEMPY $=$ Ø THEN RETURN
KD 9 Ø7ø IF TEMPX＜$>$ INT（TEMPX） AND TEMPY $<>$ INT（TEMP Y）THEN XANDY＝XANDY＋ MASK
LN $9 \varnothing 8 \emptyset$ MASK＝MASK＋MASK
NJ 909 GOTO 9 の5

EE 9110 REM ENTER：X, Y
6E $912 \emptyset$ REM EXIT：\｛3 SPACES\}X QRY IS X OR Y
MM 9130 REM USES：\｛3 SPACES\}T

Public Domain \& User Supported Software
NEW TOP TEN FOR COMMODORE 64
The 64 GOLD Library
S5.00/DISK
$\square 105$ ARTIST SKETCHBOOK drawing programs
106 GREAT AMERICAN NOVEUSTS word processing
$\square 107$ PHONE CONNECTIONS communications
108 SPACE WARS space games
109 DUNGEONS \& DRAGONS text adventures
$\square 110$ HOME ORCHESTRA instrument simulation
111 JUKE BOX prerecorded songs
$\square 112$ EINSTEINS FAVORITES advanced math
$\square 113$ PONZO'S TUTOR programming from BASIC to machine
$\square 114$ ELECTRONIC SECRETARY filehandling utilities
NEW TOP TEN FOR IBM
\$6.00/DISK
PC-SIG Authorized Dealer
$\square 005$ PC-FILE III, V4 labels, forms, and more
$\square 078$ PC-WRITE v. 2165 popular and powerful
$\square 273$ BEST UTIUTIES print spooler, file search, more
$\square 274$ BEST GAMES packman, breakout, wizard, more
$\square 293$ ARCADE GAMES (color graphics required)
$\square 405$ DESKMATE more than a sidekick
$\square 457$ GREATEST ARCADE the best of the best games
$\square 528$ NEW YORK WORD sophisticated word processing: 1 of 2
$\square 529$ NEW YORK WORD 2 of 2
$\square 557$ PINBALL ALLEY from simple to complex pinball games

NEW TOP TEN FOR APPLE $\$ 5.00 / D I S K$
$\square 037$ FREEWRITER wordprocessor (Apple
II + needs paddles)
$\square 038$ BUSINESS/HOME MANAGEMENT checkbook, calculator, more
\square C39 BEST OF BUSINESS general ledger. payroll, much more
$\square 056$ BANK'n SYSTEM check balancer, write \& print checks
$\square 057$ OMNI FILE data base with instructions
$\square 064$ BEST OF EDUCATION math drills, spelling, typing, etc.
$\square 085$ BASIC MATH DRILLS fractions, multiple choice, work problems
118 GAMES fast action space arcade games
$\square 195$ PASSIONS nude women, game
$\square 213$ BEST UTIUTIES diskcat, krunch diskcheck, diskmap, etc.
NEW TOP TEN FOR MAC \$S.00/DISK $\square 005$ CODE CRACKING, FEDIT edit file blocks in ASCll or hex
$\square 006$ ResED and ReED edit menu bars, icons and LD. numbers
$\square 007$ SWITCHER edit multiple Microsoft BASIC files
$\square 029$ COMMUNICATIONS Red Ryder, Mactep
$\square 039$ FONTS Font catalog
$\square 045$ DESK ACCESSORIES Minifinder, timer 062 GAMES Dungeons of doom, baseball $\square 067$ GAMES Billiards, volleyball, juggling 086 BEST OF MAC MaCWorld 86

PUBLIC DOMAIN SOFTWARE EXCHANGE Authorized Dealer
Add $\$ 4$ shipping \& handling per order. CA residents add 6.5% sales tax

Call toll free 800-431-6249
Amount enclosed \$ \qquad Π Check Π VISA \sqcap MasterCard
Card No.
Signature \qquad - Exp. Date

Phone (
Name \qquad BLACKSHIP
Address
City \qquad
State __ Zip COMPUTER SUPPLY P.O. Box 883362 Pan Francisco. CA 94188

CAPUTE!

Atari DOS Switcher

This utility program from the December 1986 issue (p. 71) does not work as published because the final five lines of the listing are missing. To create a working version, add the following lines:
NA 1140 DATA $238,1 \emptyset 7,23,238$, $111,23,238,114,23,23$ 8
KA 115 D DATA $118,23,173,107$, $23,261,52,298,218,76$
L6 116 DATA $66,25,63,25,82$, 25, 76, 76, 23, 173
JJ 1170 DATA $1,211,9,1,141,1$, $211,169,64,141$
LN 1180 DATA $14,212,88,160,1$,96,

Fontier 128

Line 1890 of this program from the December 1986 issue (p. 82) cannot be typed in as listed. Unlike the Commodore 64, the 128 always
prints the key definitions rather than characters when the function keys are pressed. Replace the line with the following:
HD 1890 K § $=$ " + -\{UP \} \{DOWN \} \{LEFT \}
$\{$ RIGHT \}" + CHRS $(137)+$ CHR
$\$(139)+\mathrm{CHR}(133)+\mathrm{CHRS}($
$135)+\mathrm{CHR}(138)+\mathrm{CHR} \$(14$
Ø) $+\mathrm{CHR} \$(134)+\mathrm{CHR} \(136)

Laser Strike

Line 700 of the Apple version of this game from the December 1986 issue (Program 2, p. 52) ends with an incomplete statement-there is nothing following the THEN. The IF statement was never executed during our extensive testing of the game, so this should not cause a problem. However, you may want to delete the bad statement. Remove everything in that line following (and including) the last colon.

Biker Dave For Atari

The corrections in last month's CAPUTE! column fix the bugs in the Atari version of this program from the November 1986 issue. However, we have discovered that the program will not function properly if you stop the program with the BREAK key and then restart it with RUN. If you ever have cause to break out of this program, you'll need to reset the computer and reload the program before continuing.

Lumpies Of Lotis IV

A comma was inadvertantly removed during printing in line 260 of this IBM game from the October 1986 issue (p. 53). The line should begin with IF ABS(Z(X,Y,LEV-1)).

Strong Showing At Fall COMDEX

As this issue goes to press (November) the Fall COMDEX (Computer Dealer Expo) is just ending in Las Vegas, with a strong showing by the Atari ST. Atari's large exhibit was packed throughout the show, and new products were present in abundance-including some of the mature, professional-quality software that the ST will need in order to remain viable over the long term. Here are a few highlights.

Publishing

Desktop publishing was a major theme at this year's show. One of the strongest new entries in this field is Publishing Partner, a Post-script-compatible package marketed by SoftLogik (Postscript is a page-description language used by laser printers and commercial typesetters). The program combines page layout, forms creation, and word processing in an integrated package. Publishing Partner operates on a "what you see is what you get" basis, letting you perform page design and composition right on the screen. You can also load NEOchrome or DEGAS graphic screens and then crop, reduce, enlarge, or squeeze the images as needed.

From Mirrorsoft in Great Britain comes the Fleet Street series of publishing programs. Fleet Street Editor is designed for novice and small-volume users, while Fleet Street Publisher comes in two different versions aimed at the middle and high ends of the desktop publishing market. The high-end package, scheduled for mid-1987 release, is also Postscript-compatible.

Graphics And Sound

Aegis Development is featuring Aegis Animator, styled as a "metamorphic cel animation system" for the ST. This program can handle NEOchrome images and it supports page flipping, color cycling, cinematic effects such as fades and wipes, and
tweening, a means of creating intermediate forms to smooth the flow of animation from one frame to the next.

Digital Vision attracted lots of attention with its Computereyes color video digitizer. The hardware component of this $\$ 249.95$ system plugs into the ST's cartridge port. Using a slow-scan process, Computereyes can capture video images from an NTSC composite video source such as a video camera or VCR.

The Video Digitizer Expert system, scheduled as a January 1987 release from MichTron, is a German import which promises a su-per-high 1024×512 resolution in addition to the usual ST screen modes. Another MichTron import is Sound Expert, a sound digitizer for the ST with a claimed sampling rate of 40 kHz . (The sound digitizer sends output to an internal speaker in the hardware interface rather than to the ST's audio output-a possible limitation.)

Entertainment

In the games category, Jez San's Star Glider, distributed by Firebird, is still one of the hottest tickets in town. Flight simulator fans will be glad to hear that SubLOGIC now offers Flight Simulator II for the ST, Amiga, and Macintosh. The 16-bit versions of this popular program feature greatly improved graphics and several functions not available on 8 -bit versions. Multiple viewing windows let you watch your progress from more than one vantage point at a time, and the program supports a multiplayer option that allows two ST owners to "fly together" if their computers are linked through the modem port.

Hardware

Atari continues to keep major hardware projects under wraps, but it did show its new SX212 modem, a

Hayes-compatible $300 / 1200 \mathrm{bps}$ unit to be priced under $\$ 100$. In addition to a standard RS-232 connector (for the ST) the modem has an extra connector for plugging directly into any eight-bit Atari machine as well.

Another attractive hardware product is The Monitor Box from JNL Technologies, which converts the ST's video output to standard composite video. This $\$ 59.95$ device allows you to connect any ST to a TV, composite monitor, or VCR.

For power users, one of the more interesting utilities comes from Beckemeyer Development. Their Hard Disk Accelerator software works in the background and speeds up hard-disk access by a factor of 100-300 percent through the use of a caching system in RAM.
Aegis Development
2115 Pico Blvd.
Santa Monica, CA 90405
Beckemeyer Development Tools
478 Santa Clara Ave.
Oakland, CA 94610
Digital Vision
14 Oak St., Suite 2
Needham, MA 02192
Firebird Licensees
P.O Box 49

Ramsey, NJ 07446
JNL Technologies
3460 Harold St.
Oceanside, NY 11572
MichTron
576 S. Telegraph
Pontiac, MI 48053
Mirrorsoft
Maxwell House
74 Worship St.
London EC2A 2EN
SoftLogik
4129 Old Baumgartner
St. Louis, MO 63129
SubLOGIC
713 Edgebrook Dr.
Champaign, IL 61820

AmigaView
Sheldon Leemon

The Latest Amiga Products

I just returned from the Second Annual Amiga Developers' Conference sponsored by Commodore-Amiga, a three-day gathering of those who live, breathe, eat, and sleep Amiga. It's impossible to describe everything so I'll just touch on the final eight hours, the Faire, where developers showed their products.

On the hardware side, Computer System Associates was showing its Turbo Amiga expansion box, containing a 68020 microprocessor running at 14 MHz with 512 K or 16 bit static RAM and a 68881 math coprocessor. Benchmarks showed this $\$ 5000$ system to be five times as fast as a VAX- $11 / 780$, when running a program compiled with Absoft's 68020 Fortran 77 compiler (Absoft's Microsoft BASIC compiler, which should be ready soon, was also shown). The Turbo Amiga even ran an ABASIC version of the test program faster than the PC/AT with math coprocessor could run a Fortran version.

There were a number of manufacturers showing hard disks and RAM expansion modules (at last). C Ltd. (formerly CardCo) was showing the first under- $\$ 1000$ 20-megabyte hard drive. Microbotics and Byte by Byte had $20-\mathrm{meg}$ units which were a little more costly, and Xebec, a well-known maker of IBM PC hard disk controllers, was showing off a very attractive $\$ 895$ 10-megabyte hard disk as well as a \$1295 20-meg version.

RAM Expansion

There was even more activity in the RAM-expansion field. C Ltd. offered a $\$ 500$ 1-megabyte card, and ASDG had a 2 -meg board in a small card cage which allows a RAM disk to survive a warm reboot. Pacific Cypress was showing the Xpander II, a 2 -meg box for $\$ 700$. Microbotics brought the Starboard II, a 512 K 2-meg expansion module, with a socket for a multifunction
board containing a clock/calendar, 68881 coprocessor socket, and re-set-protection for the RAM disk. And Alegra was showing its $\$ 350$ 512 K expander. All of these units auto-configure, which means that when using the 1.2 operating system (which was officially released during the conference) the system automatically recognizes the extra memory at power-on time. Except for the Alegra, all pass on the expansion bus, and all of them work with one another. Though not shown, the U.S. distributor had flyers for the Alphatron internal 1meg expansion. This $\$ 350$ German board mounts inside the Amiga, and plugs into the 68000 socket.

So many outstanding products were shown that it's hard to single any out, but Tim Jennison's DigiView video digitizer and DigiPaint software deserve special mention. This low-budget, high-quality system has been living in the shadow of A-Squared's unreleased frame grabber, since it takes about half a minute to capture a color picture while Live! is reported to capture about 20 frames a second. But the quality of images captured by the Digi-View system is outstanding, the product is constantly being improved through software upgrades, and it's available. The latest hi-res program digitizes a color image in 640×400 resolution with 16 colors (if you have $1.5-\mathrm{meg}$ of memory). By the way, A-Squared once again showed Live! and though much delayed, it's by no means down for the count.

New Music Software

The long wait for powerful music software appears to be almost over. Electronic Arts' Deluxe Music Construction Set, due any day, is an excellent note-entry system according to the fortunate few who have used it. And Mimetic's Pro Midi Studio software has been substantially improved, making it an im-
pressive keyboard-entry system. The best part is that both use IFF music files, so they can trade data back and forth. Aegis surprised everyone by announcing that it has picked up the long-delayed Musicraft program, and will be releasing it as Sonix. The enhanced package now features support for IFF files and MIDI instruments.

EA also is ready to release Deluxe Paint II, which marks yet another giant step forward. Among its outstanding features are perspective fill, anti-aliasing, and display screens up to 1008×1008 for those blessed with extra memory. It also allows the user to change easily between resolution modes, and will convert the picture in memory to the new resolution.

Product Awards

On the final night of the conference, the First Amiga Users Group (FAUG) held a banquet, and gave out awards for outstanding Amiga products. Electronic Arts won the most awards, but a partisan programmers' crowd gave the second biggest round of applause to Jim Goodnow II for his Aztec C compiler (Jim said that he was just glad that EA didn't write compilers). The biggest hand of the evening went to Fred Fish, who took upon himself the burden of collecting and distributing free software for the Amiga. Fred's compilation of programs and source code has become a vital resource for Amiga programmers and users alike. Information about the contents of the 40 Fish disks can be found on many bulletin boards and information services.

If nothing else, this gathering of a couple hundred determined Amiga fans showed that the machine has attracted enthusiastic support among developers, and that those developers are busy translating that enthusiasm into exceptional products for the Amiga.©

Making Movies With Print Shop And Magic Slate

"I don't belong here!" cried the teacher, shaking her head and frowning. "My principal made me come to this course to learn word processing. But this isn't a computer course at all."

As I looked around the room, I had to agree with her. I had taken over the elementary school's library to conduct my summer workshops on how to set up a multimedia classroom. There were computers. But they were dwarfed by an array of other high-tech equipment which surrounded them. There were electronic keyboards, tape decks, turntables, huge stereo speakers and amplifiers, video cameras, tripods, VCRs, and boom boxes. The room was littered with stacks of videotapes, audio cassettes, boxes of disks, and record albums. Dozens of gray and black cables snaked their way across the floor. On the walls were colorful Print Shop banners proclaiming, "Fred's MultiMedia Sandbox" and "Imagination, Creativity, and Storytelling."

The room was a twenty-firstcentury street bazaar raucous with exotic, high-tech sounds.

Beatles music blared from one speaker, punctuated by helicopter noises and the gut-thumping vibrations from a temple gong produced by a synthesizer. One teacher had digitized her voice and was playing it back on our Mirage sampling keyboard: "Welcome ... Well Well ... Well ... Welcome ... to Fred's sandbox," she sang-in a chorus of voices accompanied by a marimba and a hammer dulcimer.

20-Column Word Processing

I agreed with the disgruntled teacher that she had perhaps been sent to the wrong workshop. "Look, Cherry," I said optimistically, "Now that you're here, let's try to make the best of it."

I steered her over to one of the workshop's several Apple computers, sat her down, and got her started using the Magic Slate word processor from Sunburst Communications. Since she had never used a computer before, I chose the word processor's 20 -column mode. Only 20 letters fit on a line, and each of the letters is really big. In 20column mode, it was easy to fill an entire screen quickly.

I left Cherry searching for letters on the keyboard and went to help a teacher who was trying to plug her computer into a VCR. For the next half-day I was so busy I didn't even think about how Cherry was doing.

The next morning while I was training a teacher on Brøderbund's Fantavision program, someone grabbed me, spun me around, and gave me a bear hug. It was Cherry! But she was smiling-delirious, even. "Come with me," she said, taking my hand and pulling me over to her computer. "See what I've done!'

We went over to her computer and looked at the screen. She had written a wicked-witch story called Gundala-all on one screen. "That's my daughter, Gundala," she said, beaming. "What do you think?"

A New Movie

Before I could answer, one of my other teachers, Mike Roberts, said, "Let's set it to music." "And we can videotape it," said another teacher. "And Cherry can read it aloud," suggested another.

In five minutes the teachers had it all arranged. Mike made haunted-house sounds on the Yamaha DX100 keyboard. Beverley shot the Apple picture screen with the video camera, and Cherry sat right beneath the camera reading her story aloud. Beverley was so small she had to stand on a chair
while she did the videotaping.
We turned off all the lights, played back the tape, and watched our little movie on the library's TV. It was great! The big, bright Magic Slate letters appeared on the TV screen as if they were floating in a black, nighttime sky. Mike's music was spooky and funereal. And Cherry had really hammed it up when she read the story.

We all applauded Cherry, and she stood up and took a little bow. "Now that I know word processing," she said, "I want to learn Print Shop."

I had to make a phone call, so I assigned another teacher to work with Cherry for a while.

I returned to the room 45 min utes later. "How's everything go...." "Silence!" shouted Mara, a kindergarten teacher from Cahaba Heights Community School. "We're taping Cherry's Print Shop movie."

Cherry's Print Shop MOVIE? I wondered. I groped my way into the darkened room and sat down in one of the kid-sized library chairs. There at the front of the library, centered in a bright spotlight, was Cherry. Over her head, taped to one of the bookshelves, was a Print Shop sign. "Fun in the sun!" it said. "Cherry Norman." In the middle was a happy little sun, peeking out of a cloud and grinning.

Our workshop had gotten off to a rocky beginning. Cherry had led a revolt among several of the teachers who had come to the workshop expecting a basic primer on computers, keyboards, and word processing. I had visions of the whole workshop collapsing even before it got started.

But once Cherry began creating stories, poems, and movies on Magic Slate and Print Shop, she was on a roll. And the other teachers followed her. It was amazing to see how much progress they made in only two days.

Demons And Events, Part 1

The feature of the Macintosh that has attracted the most attention is its user interface-menus, mice, windows, dialog boxes, and all the other distinguishing features of this computer have now taken their place in the lexicon of most computer users.

Features that were introduced to the public on the Macintosh have now appeared on numerous other computers as well. One can hardly walk past a display of Atari, Commodore, Apple II, or IBM computers without seeing some aspects of a highly visual user interface. Apple's commitment to this interface is so complete that the Apple IIGs contains ToolBox routines to facilitate the creation of Mac-like programs.

But just as the Macintosh looks "different" from the user's perspective, it also looks different from the programmer's perspective. Programming for computers like the Macintosh is very different from programming for other computers. If the user interface of this computer is changing the way we use computers, it may well change how we program them as well.

Computational
 Metaphors

Every programming language supports a computational metaphor. For example, LISP programs are sets of functions to be evaluated, PROLOG programs are sets of theorems to be proved, Pascal programs are sets of commands to be carried out, and so on. The reason we have so many different kinds of programming languages is because different programming tasks are better expressed in one metaphor than another.

But metaphoric differences aside, programs in most languages consist of strings of text containing sequences of instructions to be car-
ried out by the computer. In many languages the order of program execution is the same as the order of the instructions in the program. When the user wants to change the order (by calling a subroutine, for example) a special branching instruction is explicitly invoked to cause the program to jump from one set of instructions to another set.

Event-Driven Programs

There is another model of program construction that works differently: It breaks a program into two parts. The first part is a traditional program that is executed unconditionally. The program also includes the definition of other parts of the program (collected subroutines) that are executed whenever certain events occur.

In other words, if you wanted to have a subroutine executed whenever a joystick button was held down, you would include a line somewhere in your program indicating that, whenever the button is pressed, the program is to stop whatever it is doing at that time and execute another routine instead. This command lets the program know that, in addition to its other tasks, it is to check for a "button" event. Let's pretend that, later on, the program starts to draw a complex picture on the screen. While it is drawing this picture, you decide to press the joystick button. As soon as you do, the program automatically detects this "event" (without being "told" to by a special instruction) and execution is automatically transferred to a subroutine. Once this routine is finished, control is returned to the original picture-drawing task.

This is the programming model that is used in creating programs for the Macintosh, although I first encountered it with Atari Logo.

Atari Logo (for the Atari 800
and 400 computers) has a special feature called a WHEN demon. A WHEN demon is a special object that continuously monitors the computer, looking for any of 21 special events to occur. Whenever one of these events takes place, the demon associated with the event executes its own set of Logo instructions, no matter what other instructions or procedures are being used at the time. When these demon instructions are finished and the WHEN condition is no longer satisfied, Logo goes back to doing whatever it was doing before the WHEN demon was activated.

Demon programs can be thought of as sets of code that are just lying asleep in the computer waiting for a certain condition to become true. Whenever the condition is satisfied, the appropriate routine wakes up, does its task, and then goes to sleep again. Each demon procedure is independent of the others and is executed only when its chosen condition or event occurs.

Notice how different this is from our traditional method of programming. Normally, if we wanted to test for a certain number of events, we would write a program that spent the bulk of its time in a loop checking for each event on a case-by-case basis.

Next month we'll explore this topic some more by taking apart a Macintosh program-"peering under the hood," so to speak-to see just what it is that makes programs for this computer appear to be so responsive to the whims of the user.
Dr. Thornburg's most recent product is Calliope ${ }^{\mathrm{TM}}$, a nonlinear idea processor for the Apple IIe, c,GS, Macintosh, and MS-DOS computers. He welcomes letters from readers and can be reached in care of this magazine.©

The RESTORE Statement

Last month we talked about READ and DATA statements. A often used associated statement is RESTORE, which can be used with READ and DATA. RESTORE forces the computer to start READing the very first item in the first DATA statement in the program. You thus can reuse DATA statements if necessary. Here is a simple example:
10 READ A,B,C
20 DATA $2,4,3,8,2,7$
30 PRINT A $+\mathrm{B}+\mathrm{C}$
40 READ D,E
50 PRINT D*E
60 END
When this program is run, line 10 reads data (from line 20) for the variables A, B, and C. A will equal 2 , B will be 4 , and C will have the value 3 . Line 30 prints the sum. Line 40 is another READ statement which reads the next two data items for D and E . D will have the value 8 and E will be 2 . Line 50 prints the product. (Remember that you can put the DATA statement of line 20 anywhere in the program and the results will be the same.)

Now add a line:

35 RESTORE

This line says to restore the data, or to start the list of data items over again with the very next READ statement. This time the values for D and E will be 2 and 4 because the data pointer starts with the very first data item in the program.

Restoring DATA Lines

Many versions of BASIC even allow you to RESTORE a certain data line. For example, RESTORE 200 means "With the very next READ statement encountered, start the data with the DATA statement in line 200." This feature makes programming with DATA statements much easier because you can make sure the READ statements start with certain DATA statements. It's particularly helpful in
long programs with many DATA statements.

The RESTORE statement need not appear right next to the READ statement. It simply resets the data pointer.

Here is a way you can make use of DATA, READ, and RESTORE. Write a short program to read numbers for musical note values, and then play those notes. Place this in a subroutine at line 900. An example for the Atari ST might be:

900 FOR C=1 TO X

910 READ NOTE,OCTAVE
920 SOUND 1,15,NOTE,OCTAVE,10
930 NEXT C
940 RETURN
Now in your main program you can have DATA statements containing numbers for musical phrases. The variable X in this example is the number of notes in the phrase. Using RESTORE you can play phrases more than once without retyping DATA statements. For example:
$100 X=35$
110 GOSUB 900
120 DATA ...(numbers for music)
130 DATA ...(more note numbers)
140 DATA ...(more note numbers)
$150 \mathrm{X}=14$
160 RESTORE 130
170 GOSUB 900
$180 \mathrm{X}=7$
190 RESTORE 140
200 GOSUB 900
210 RESTORE
220 GOSUB 900 230 END

First, X is set to 35 , and the subroutine will read and play 35 notes from the data starting at line 120. Line 160 says to start the data over beginning with line 130 . Fourteen notes will be played-a chorus, for example. Line 190 then says to start the data over with line 140 and play 7 notes-repeating a musical phrase. Line 210 says to restore the data completely, or to start with the very first line of data. The value of
X is still 7 , so 7 notes will be played and the rest of the data will be ignored.

Selecting liems From
 A List

Computers which use line labels permit a RESTORE to target a particular label. For example, RESTORE UTAH tells the computer that with the very next READ statement start the data with the line labeled UTAH. The data might be information used by the program to draw the state using numbers for graphic coordinates.

RESTORE is also used if you have lots of information and the computer is supposed to select particular items from a list. Suppose you have names, addresses, phone numbers, and codes in data statements for a list of clients. You can first read each item and print only those with a certain zip code. Next, you can RESTORE the data, then read each item, and print only those with a certain phone prefix. Another time you could RESTORE the data, then read each item, and print only those with a certain code. You can let the computer do the work of searching through information in one data list and save your having to write several different programs.

This should get you started on understanding programs with DATA, READ, and RESTORE statements. You might not even consider yourself a beginner anymore if you can manipulate DATA statements, but I hope to see you again next month.

RUSH POSTAGE-PAID CARD FOR YOUR FREE CATALOG

- COMPUTER ELECTRONICS training prepares you to service all computers as you build your own 16-bit IBM PC compatible computer. Total system program includes disk drive, lest equipment, bundled software, and NRI Discovery Lab.
- TV/VIDEO/AUDIO SERVICING includes training with a state-of-the-art 27 " high resolution broadcast stereo TV for learning troubleshooting and professional bench techniques.
- SATELLITE ELECTRONICS training gives you the skills to service both consumer and commercial satellite earth station equipment as you assemble your own home satellite TV system.
- ROBOTICS training features remote-controlled, mobile, fully programmable robot you build, experiment with, and keep along with other test equipment.

Name	(Please Print)	
Street		
City		

Send me your free catalog on NRI Training in:
\square Computer Electronics
\square TV/Video/Audio Servicing
\square Robotics
\square Satellite Electronics
\square Digital Electronics Servicing
\square Data Communications
\square Electronic Design Technology
\square Industrial Electronics
\square Communications Electronics
\square Basic Electronics
\square Building Construction and Remodeling
\square Automotive Servicing
\square Small Engine Servicing
\square Electrician
\square Air Conditioning, Heating, and Refrigeration
\square Locksmithing and Electronic Security
\square Telephone Servicing
\square Appliance Servicing
\square Photography
\square Bookkeeping and Accounting

For career courses approved

 under G.I. Bill \square Check for details.

```
NO POSTAGE

\section*{BUSINESS REPLY MAIL}

FIRST CLASS MAIL PERMIT NO. 10008 WASHINGTON, D.C.

POSTAGE WILL BE PAID BY ADDRESSEE

\section*{NRI Schools}

McGraw Hill Continuing
Education Center
 3939 Wisconsin Avenue Washington, D.C. 20077-9265


\section*{Get started now by building this fully IBM PC compatible computer}

Now you get it all . . training for America's fastest growing career opportunity . . training to service all computers. . . training on the newest total computer system, the Sanyo 880. Only NRI can give you the well-rounded training you need, because only NRI gives you a complete computer system. . . computer, monitor, disk drive, software, even test instruments like a digital multimeter and logic probe to work with and keep. It all adds up to training that builds the knowledge, competence, and ability you need to succeed as a computer service specialist.

\section*{Get inside the newest, fully IBM PC compatible Sanyo Microcomputer}

As an NRI student, you'll get total hands-on training as you actually build your own latest model Sanyo 880 Series computer from the keyboard up. It's fully IBM PC compatible and, best of all, it runs programs almost twice as fast as an IBM PC. As you assemble the Sanyo 880, you'll perform demonstrations and
experiments that will give you a total mastery of computer operation and servicing techniques. You'll do programming in BASIC language-even run and interpret essential diagnostic software.

\section*{Understanding you get only through experience}

You need no previous knowledge to succeed with NRI. You start with the basics, rapidly building on the fundamentals of electronics with bite-size lessons. You perform hands-on experiments with your NRI Discovery Lab and then move on to master advanced concepts like digital logic, microprocessors, and computer memories.

\section*{Learn at home in your spare time}

You train in your own home at your own convenience, backed at all times by your own NRI instructor and the entire NRI staff of educators and student service support people. They're always ready to give you guidance, follow your progress,
and help you over the rough spots to keep you moving toward your goal.

\section*{100 page free catalog tells more... send today}

Send the postage-paid reply card today for NRI's 100 page catalog that gives all the facts about computer training plus career training in robotics, data communications, TV/audio/ video servicing, and many other fields. If the card is missing, write to NRI at the address below.

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Washington, DC 20016
We'll give you tomorrow

\section*{New Products And Improved Services}

Life in the fast lane for telecomputers no longer requires a Ferrarilevel machine. At last November's COMDEX show in Las Vegas, U.S. Robotics introduced the \$995 Courier HST, an external \(9600-\mathrm{bps}\) modem, designed for use on standard dial-up telephone lines. In highspeed mode, the HST actually uses two communications channels, one a \(9600-\mathrm{bps}\) and the other a \(300-\mathrm{bps}\) data channel. The high-speed channel direction is automatically assigned according to data-flow demand. The \(9600-\mathrm{bps}\) channel is designed for fast downloading and uploading of files, and the lowspeed channel is suitable for manual data entry and error-control coding.

Confusing? Not really. Consider what the "typical" user of a BBS or information service usually does. Downloading or uploading files is usually a lopsided affair, with most of the data moving in one direction. The only data traffic sent to a BBS while a user is downloading a file is checksum or other error-detection information, often only one or two bytes of data per received block. Depending on the protocol being used, the ratio of received to sent data is somewhere in the range of \(100: 1\) to \(1000: 1\). Dividing the limited bandwidth of the phone line into a high- and low-speed channel makes perfect sense.

Dynamically assigning the 9600 -bps channel should also work well for reading and responding to messages on BBS message bases and information service SIGs. The high-speed channel will end up being assigned to the slew of messages that most users peruse. If the user wishes to reply to a message or reply to a prompted response, the \(300-\mathrm{bps}\) channel's maximum rate of 300 words per minute can still outrun even the speediest typists.

The HST also supports standard \(300-1200-\), and \(2400-\mathrm{bps}\) op-
eration. It is equipped with nonvolatile memory for storing settings and phone numbers, and uses a superset of the Hayes "AT" command set. At 9600 bps , the modem uses a proprietary error and flowcontrol protocol that's an enhanced version of MNP (Microcom Networking Protocol).

In all fairness, don't expect the commercial information services to jump on the HST bandwagon. At this point, most of the interest seems to be coming from the sysops of privately operated BBSs. As it has in the past, U.S. Robotics is offering special purchase terms for system operators of popular bulletin board systems.

For more information, contact U.S. Robotics, 8100 North McCormick Blvd., Skokie, IL 60076, (312) 982-5010.

\section*{PC Pursuit Expands}

Speaking of other high-speed surprises, CompuServe raised more than a few eyebrows last November when it removed connect-time premiums for \(2400-\) bps service. Subscribers now pay the same rate for both \(1200-\) and \(2400-\) bps connections (\$12.50 an hour, nonprime time).

GTE Telenet has announced a major expansion of its PC Pursuit Service. The addition of 11 new service areas by the end of 1986 will almost double PCP's coverage. Modem mavens can add access to remote systems in Portland (area code 503), San Jose (408), Glendale (818), Phoenix (602), Milwaukee (414), Minneapolis (612), Tampa (813), Miami (305), Cleveland (216), Salt Lake City (801), and North Carolina's Research Triangle Park (919).

Pursuit has also started offering direct access to selected public multi-user BBSs on a trial basis. The systems involved charge a yearly
subscription fee (usually \$25) for unlimited access and offer extensive download libraries. If the trial is successful we may see public BBSs on the PC Pursuit network putting even more pressure on the commercial services.

Pursuit has also announced delayed implementation of their 2400-bps service to March of ' 87. Implementation was originally announced for this past fall, but insiders at PCP say it may take well into the summer to work out noise and throughput problems that are being encountered in developing the higher speed service. For more information on PC Pursuit, call the PCP bulletin board at 1-800-835-3001.

\section*{Trintex In Trouble?}

CBS has ended its involvement in the Trintex videotex project. Announced in 1984, Trintex was a joint venture of CBS, Sears Roebuck, and IBM. Earlier this year Trintex officials announced that it would forgo a text-based information system in favor of a graph-ics-based system using the NAPLPS (North American Presentation Level Protocol Syntax) standard. Two other graphics-based systems, Knight-Ridder's Viewtron and Times Mirror's Gateway, folded early in 1986.

IBM maintains that it has made significant enhancements to NAPLPS that will make it more acceptable to the consumer market. Although the new service is supposed to debut in 1988, Sears is said to be getting cold feet as well and may soon pull out.

\section*{The CD-ROMs Are Coming}

Six years ago, when I bought an IBM PC, it came with two state-of-the-art floppy disk drives. A floppy back then was single-sided and held 180,000 characters of infor-mation-a lot, I thought. Two years later 180,000 bytes didn't seem like so much and I replaced one of the single-sided drives with two halfheight floppy drives-each capable of reading and writing double-sided disks. At that point, the three drives had a total capacity of 900,000 bytes. Last year I replaced the old singlesided floppy drive with a half-height hard disk. Capacity: 20 million bytes.

In November I upgraded again. To my six-year-old computer I added a storage device that wasn't even dreamed of in 1981. The Compact Disc-Read Only Memory, better known as a CD-ROM, has a capacity of half a billion characters. The CD-ROM player is smaller than its musical counterpart, although the electronics are almost identical. The unit I connected to my PC is a free-standing Sony CDU-100, about the size of a tele-phone-answering machine. Sony also makes a reader that slips right into one of the PC's disk cavities.

The computer compact disc is identical to the 4.7 -inch audio variety that records 60 minutes of music and has become the salvation of the record industry. Both record a digital "message" of zeros and ones, called lands and pits, on one side of the shiny aluminum platter. But unlike a floppy disk which has data recorded in concentric tracks, the CD records information on a continuous spiral track similar to a conventional phonograph record. Unrolled it would cover more than three miles; on the disc it packs to a density of 16,000 tracks per inch.

\section*{Bacterium-Sized Bits}

The high density is possible because the CD-ROM is an optical
device, not magnetic. The disc is recorded at the factory with a laser by burning pits about the size of a bacterium into the disc's surface.

CD-ROM disc advantages include its low production costSony says less than \(\$ 1\) per hun-dred-and its staggering capacity. The 550 million bytes available on a disc make the equivalent of 1500 double-sided floppies or approximately 275,000 manuscript pages. One disc can store the equivalent of 1000 books. And one disc could, and will, contain the telephone directories for an entire region of the country. Someday we may have a national telephone book recorded on three or four CD-ROMs. Once you understand the capacity of a CD-ROM, you begin to appreciate the complexity of converting music to a digital format: It takes the equivalent of 152,000 characters to produce one second of music; an hour of music uses the entire halfbillion characters of a disc.

One of the first home applications of CD-ROM technology is the Academic American Encyclopedia published by Grolier. This 20volume reference set takes more than two feet of shelf space in paper form, but fits nicely on a CD. In fact, the entire encyclopedia along with a huge index to speed up searches uses less than 20 percent of the disc's capacity-four more encyclopedia sets could be placed on this same CD.

In order to use the encyclopedia, you first load the informationretrieval software from a floppy disk into the PC. This works just like loading any computer software. Once the retrieval program is running, you can use a variety of search terms to find one, or dozens of articles on a topic. In less than ten seconds you can examine every word in the entire encyclopedia.

It's a delight to use. I entered

SURFING as a search word and in four seconds found there were 20 occurrences in six articles: 1 each in the Beach Boys, Hawaii, periodical, rock music, and skateboarding articles, and 15 in the article on surfing.

By moving the cursor to one of these topics and pressing a function key-the program operates from menus and function keys-I can have the article displayed on my screen. And by pressing another function key, I can have the article printed. I can even press a key and look at an outline of the article-a by-product of the extensive indexing system.

\section*{Special Searches}

Searches that would be impossible with a conventional encyclopedia take only a few seconds. By modifying the search conditions to select only articles where the word BORN appears within five words of JAN 31, I looked for people with whom I share a common birthday. Thirty seconds later the computer found 34 notables, ranging from André Antoine, a French theater director born in 1858 , to James G. Watt, secretary of the interior from 1981 to 1983.

The Grolier Academic American Encyclopedia sells for \(\$ 199\) and the Sony CD-ROM player is about \(\$ 900\) (but as low as \(\$ 600\) in quantity.) Volume and competition are sure to bring these prices down. About 18,000 CD-ROM discs were produced in 1986; industry sources estimate that more than 12 million will be produced in 1990.

And even now, it's technically practical to mix still-video, sound, and text on the same disk. Imagine an unabridged dictionary on a CDROM. Look up Beethoven, press a key, and hear a passage from his Fifth Symphony. Look up respiratory, press a key, and hear the correct pronunciation. Press another key, and hear the word spoken in French. In German. In Chinese. ©

\section*{Sylvia Porter Series: Swiftax}

Timeworks has announced the release of Swiftax, the third volume in its Sylvia Porter Personal Finance Series for the Apple II, IBM, and Atari ST computers.

Produced jointly by the editors of Sylvia Porter's Personal Finance Magazine and Timeworks, Swiftax enables you to prepare and complete the 1986 Federal income tax returns without prior knowledge of accounting or computers.

The package includes a copy of the 1987 edition of Porter's Income Tax Book.

Features include complete Schedules A, B, C, D, E, F, G, R, SE, W, and Forms 2106, 2441, 4562, 6251; income averaging and other tax alternatives; automatic entry of information onto Forms 1040, 1040A, and 1040EZ; printing of itemized lists of dividends, interest, etc., and amortization schedules; and a built-in memo pad and calculator


\section*{PROFESSIONAL HANDICAPPING SYSTEMS}

PROFESSIONAL SERIESTu (Tho/Grey/Trot) The all new Professional Series \({ }^{\text {TV }}\) represents the most advanced handicapping software available.

Analysis Module \({ }^{\text {tw }}\)


Complete bet analysis highlights this basic Professional Series \({ }^{\text {TM }}\) module. Full 50 tracks/kennels/etc. \(\$ 249.95\)

Factor Value/Multiple Regression Module \({ }^{\text {TM }}\)
Factor Value Weighting highlights this addition module \({ }^{\text {TM }}\) \(\$ 149.95\)

Data Base Manager Module \({ }^{\text {TM }}\)
Automatic storage of last 11 races highlights this module. (\$99.95 with Factor Value Module) \(\$ 149.95\)


GOLD EDITION™ (Tho/Grey/Trot)
The classic Gold Edition \({ }^{\text {TM }}\) from Prof. Jones offers flexibility, results, and ease of use.
Gold Edition \({ }^{\text {TM }}\) . \(\$ 159.95\)
Enhanced Gold Edition \({ }^{\text {TM }}\) \$199.95
Limited Gold Edition \({ }^{\text {M }}\)
\$299.95
Ultra Edition \({ }^{\text {™ }}\)
\(\$ 399.95\)

\section*{Professor Picks Footballiw}
\$99.95; with win/loss power ratings \(\$ 149.95\); Professional Series \({ }^{\text {tu }} \$ 199.95\)

Expanded Lottery/Lotto Analysis
Lottery: 3-4 digits \(\$ 79.95\); Lotto: max. of 99 digits \(\$ 99.95\); Enhanced Lottery/ Lotto \$129.95

PC-3 Portable Computer ( 4 k )
Choice of Thoroughbred/Greyhound/Trotter Gold Editiontw software. \$249.95

Model 100 Portable Computer (32k)
Choice of Thoroughbred/Greyhound/Trotter Gold Editiontw software with Master Bettor \({ }^{\text {TM }} \$ 649.95\)

Handicapper's Bulletin Board now available
VHS Training Tapes now available
Terms: Free shipping all software. Add \(\$ 6.00\) COD / \(\$ 6.00\) UPS Blue / \(\$ 9.00\) Out-of-country / ID residents add \(5 \% / 3\) weeks personal checks / cash price only add \(2 \%\) Visa, MC, AMEX. Prices subject to change.
that operate concurrently with Swiftax. The program is available for \(\$ 69.95\).
Timeworks, 444 Lake Cook Rd., Deerfield, IL 60015.

\section*{Circle Reader Service Number 208.}

\section*{New Activision Programs}

Portal: A Computer Novel, Titanic: The Recovery Mission, Aliens: The Computer Game, and Greeting Card Maker are among a variety of new entertainment and creativity programs recently released by Activision.

Portal is a multidisk graphics and text adventure game initially released for the Commodore 64 and 128, with versions for most major computer systems to follow. Returning to the earth in the year 2106, you find a world devoid of people. You tap into the Worldnet databases and begin scanning the records of the entire civilization, slowly uncovering the mysterious disappearance through the aid of a biological computer called Homer. Portal is priced at \(\$ 39.95\) for all versions.

Titanic is a combination adventure, strategy, and puzzle-solving game in which you attempt to raise the sunken ship. You also have to raise money for your ventures, keep media interest high, and explore and retrieve the ship. Available on the Commodore 64 and 128 , the game is priced at \(\$ 29.95\).

Based on the recent popular movie of the same name, Aliens is a Commodore \(64 / 128\) fast-action program that reproduces many of the elements in the motion picture through the use of simulation, mazes, karate sequences, and other arcade-style game features. Suggested retail price is \(\$ 34.95\).

Greeting Card Maker is a do-ityourself card generator for the Apple IIseries and Commodore 64/128 computers. Cards, invitations, and announcements for any occasion can be created and printed out with the program. There are six different card sizes, including pop-up cards; scores of pictures, designs, and scenes; two dozen background patterns and borders; eight type styles; and a wide variety of verses. The program is priced at \(\$ 39.95\) for the Apple version and \(\$ 34.95\) for the Commodore version.

Activision, 2350 Bayshore Parkway, Mountain View, CA 94043.
Circle Reader Service Number 209. ©

\section*{www.commodore.ca}

\title{
3M Diskettes
}

FREE!
CEI has an outstanding special on Flip ' \(n\) ' File* 15 storage cases. When you purchase a Flip ' \(n\) ' File 15 storage case from CEI, you'll get 10 3M SSDD Soft Sectored diskettes free. Limited quantities available so order today. Order\# FNF-KA ... \(\$ 9.99\) each. Minimum order 10 Flip 'n' File"/15.


\section*{Dysan Diskettes}

Now get wholesale pricing on Dysan diskettes from Communications Electronics Inc. while quantities last. Lifetime warranty and packed 10 to a carton with color coded diskette ID labels, write protect tabs, and heavy duty Tyvek \({ }^{\circ}\) tear resistant envelopes.
51/4" SSDD \(801187-\) KA...... \(\$ 1.69\) each 51/4" DSDD 802060-KA ..... \$1.99 each 51/4" DSDD96 TPI 802067-KA ... \$2.29 ea. Head cleaning kit DHCK-KA... \$9.99 each

\section*{Dysan Diskettes}

Credit card orders call
800-USA-DISK or 800-CA1-DISK in Canada For information call 313-973-8888

Communications Electronics Inc.
P.O. Box 1045 - Ann Arbor, Michigan 48106-1045

\section*{Verbatim Diskettes}

Take advantage of this Verbatim Valuelife triple special. As long as quantities last, you'll first get high quality Verbatim diskettes at only \(79 ¢\) each. Second, on your order of Verbatim \(51 / 4^{\prime \prime}\) single sided double density disks you'll get a FREE plastic storage case that holds 10 diskettes, and third, you'll also get a FREE head cleaning kit. Order Verbatim today. 5¼" SSDD 29633-KA ....... \(\$ 0.79\) each

\section*{Verbatim Value!}

\section*{Credit card orders call}

800-USA-DISK or 800-CA1-DISK in Canada For information call 313-973-8888

Communications Electronics Inc. P.O. Box \(1045 \square\) Ann Arbor, Michigan 48106-1045

\title{
Diskettes 25c ea.
}

CEI now offers a once in a lifetime offer on \(100 \%\) certified and error-free \(51 / 4^{\prime \prime}\) single sided double density diskettes for only 25 each in multiples of 500 diskettes. If you want double sided double density diskettes these are only 27 © each in multiples of 500 disks. Write protect labels included. Available only in multiples of 500 diskettes. Since quantities are limited, stock up now.
51/4" SSDD MAX1 D-KA...... \$0.25 each 51/4" DSDD MAX2D-KA...... \$0.27 each

\section*{BIG SAVINGS!}

\section*{Credit card orders call}

800-USA-DISK or 800-CA1-DISK in Canada For information call 313-973-8888

Communications Electronics Inc.
P.O. Box \(1045 \square\) Ann Arbor, Michigan 48106-1045

\section*{How to order}

To get the fastest delivery of your diskettes, phone your order directly to our order desk and charge it to your credit card. Written purchase orders are accepted from approved government agencies and most well rated firms at a \(10 \%\) surcharge for net 10 billing For maximum savings, your order should be prepaid All sales are subject to availability, acceptance and All sales are subject to availability, acceptance and verification. All sales are final. All prices are in U.S. dollars. Prices, terms and specifications are subjec to change without notice. No rainchecks on out of stock items. Not responsible for typographical errors A \(\$ 5.00\) additional handling fee will be charged for al orders with a merchandise total under \(\$ 50.00\). All shipments are F.O.B. CEI warehouse in Ann Arbor Michigan. No COD's. Non-certified checks require 3 weeks bank clearance. Michigan residents add 4\% sales tax or supply your tax ID number and reason for tax exemption.
For shipping charges add \(\$ 6.00\) per 100 diskettes and/or any fraction of \(1005 \frac{1}{4}\)-inch or \(3^{1 / 2}\)-inch diskettes. Add \(\$ 1.00\) per data cartridge or head cleaning kit for U.P.S. ground shipping and handling in the kit for U.P.S. ground Shipping and handing Hawaii, Alaska or APO/FPO delivery, shipping is three time the continental U.S. rate.

Mall orders to: Communications Electronics Inc. Box 1045, Ann Arbor, Michigan 48106-1045 U.S.A. If you have a Discover, Visa or Master Card, you may cal and place a credit card order. Order toll-free in the U.S. Dial 800-USA-DISK. In Canada, order toll-free by calling 800 -CA1-DISK. If you are outside the U.S. or in Michigan dial 313-973-8888. Telex anytime 671-0155 ( 6710155 CE UW). Order your disks from CEI now.
Copyright © 1986 CEI
Ad \#052486-KA

\section*{BASF Diskettes}

CEI has a super special deal from BASF. As long as quantities last, when you order BASF \(514^{\prime \prime}\) Single sided double density disks from CEI, you'll get a special price of only \(69 ¢\) each. And if you order promptly, as a further bonus while limited quantities last, you'll also get a free 10 pack plastic library case. Stock up now at this fantastic Iow price on BASF Qualimetric Diskettes with a BASF lifetime warranty.

51/4" SSDD 54974-KA ....... \$0.69 each
BASF SAVINGS!

\footnotetext{
Credit card orders call
800-USA-DISK or 800-CA1-DISK in Canada For information call 313-973-8888
Communications Electronics Inc. P.O. Box \(1045 \square\) Ann Arbor, Michigan 48106-1045
}

\title{
Super Disk Diskettes
}

Super Disk" celebrates their anniversary with super special pricing on Super Disk brand 100\% certified error- free and dropout free computer diskettes. Stock up now at these super special prices. Order only in multiples of 100 diskettes.


Credit card orders call 800-USA-DISK or 800-CA1-DISK in Canada For information call 313-973-8888
Communications Electronics Inc.
P.O. Box \(1045 \square\) Ann Arbor, Michigan 48106-1045

\title{
tok Diskettes 96 TPI
}

If you need a 96 tracks per inch diskette, CEI now has an excellent price on boxed TDK product. This product is designed to store up to 780 Kb . for non-AT systems. 300 oersteds. Lifetime warranty and packed 10 to a carton with color coded diskette ID labels, write protect tabs, and heavy duty Tyvek tear resistant envelopes. 51/4" SSDD96TPI M1 DX-S-KA... \$0.89 each 51/4" DSDD96TPI M2DX-S-KA... \$0.99 each

\section*{TDK Best Buy}

Credit card orders call 800-USA-DISK or 800-CA1-DISK in Canada For information call 313-973-8888

Communications Electronics Inc.
P.O. Box \(1045 \square\) Ann Arbor, Michigan 48106-1045

\section*{Fuji Diskettes}

Fuji diskettes imported from Japan, are now available from CEI at a special price while quanties last. Fuji diskettes are packaged 10 to a carton and come with color coded diskette ID labels, write protect tabs, and heavy duty Tyvek \({ }^{\circ}\) tear resistant envelope. Order your disks today. 5¼" SSDD MD1 D-KA . . . \$0.74 each 5¼" DSDD MD2D-KA . . \(\$ 0.84\) each
Fantastic Fuji!
Credit card orders call
800-USA-DISK or 800-CA1-DISK in Canada For information call 313-973-8888

Communications Electronics Inc.
O Box 1045 Ann Arbor, Michigan 48106-1045

\title{
COMPUTEI＇s Guide To Typing In Programs
}

Computers are precise－type the pro－ gram exactly as listed，including neces－ sary punctuation and symbols，except for special characters noted below．We have provided a special listing conven－ tion as well as a program to check your typing－＂The Automatic Proofreader．＂

Programs for the IBM，TI－99／4A， and Atari ST models should be typed exactly as listed；no special characters are used．Programs for Commodore， Apple，and Atari 400／800／XL／XE computers may contain some hard－to－ read special characters，so we have a listing system that indicates these con－ trol characters．You will find these Commodore and Atari characters in curly braces；do not type the braces．For example，\(\{\) CLEAR \(\}\) or \(\{C L R\}\) instructs you to insert the symbol which clears the screen on the Atari or Commodore machines．A complete list of these sym－ bols is shown in the tables below．For Commodore，Apple，and Atari，a single symbol by itself within curly braces is usually a control key or graphics key．If you see \｛A\}, hold down the CONTROL key and press A．This will produce a reverse video character on the Commo－ dore（in quote mode），a graphics char－ acter on the Atari，and an invisible control character on the Apple．

Graphics characters entered with the Commodore logo key are enclosed in a special bracket：KA＞1．In this case， you would hold down the Commodore logo key as you type A．Our Commo－ dore listings are in uppercase，so shifted symbols＇are underlined．A graphics heart symbol（SHIFT－S）would be listed as \(\underline{\mathrm{S}}\) ．One exception is \｛SHIFT－ SPACE\}. When you see this, hold down SHIFT and press the space bar．If a number precedes a symbol，such as \(\{5\) RIGHT\}, \{6 \(\}\) \}, or K 8 Q \(>\) ，you would enter five cursor rights，six shifted S＇s， or eight Commodore－Q＇s．On the Atari， inverse characters（white on black） should be entered with the inverse video

\section*{Atarl 400／800／XL／XE \\ \begin{tabular}{|c|c|c|c|}
\hline When you see & Type & See & \\
\hline ［CLEAR） & ESC SHIFT＜ & \(\cdots\) & Clear Screen \\
\hline CUP 3 & ESC CTRL－ & \(\pm\) & Cursor Up \\
\hline ［DOWN3 & ESC CTRL＝ & \(+\) & Cursor Down \\
\hline CLEFT 3 & ESC CTRL＋ & ＋ & Cursor Left \\
\hline ［RIGHT 3 & ESC CTRL＊ & \(\rightarrow\) & Cursor Right \\
\hline CBACK S \({ }^{\text {a }}\) & ESC DELETE & 4 & Backspace \\
\hline （DELETE \({ }^{\text {d }}\) & ESC CTRL DELETE & ¢ & Delete character \\
\hline ［INSERT］ & ESC CTRL INSERT & 1 & Insert character \\
\hline ［DEL LINE & ESC SHIFT DELETE & 5 & Delete line \\
\hline \｛INS LINE & ESC SHIFT INSERT & 5 & Insert line \\
\hline ［TAB） & ESC TAB &  & TAB key \\
\hline ［CLR TAB3 & ESC CTRL TAB & 1 & Clear tab \\
\hline （SET TAB） & ESC SHIFT TAB & \(\square\) & Set tab stop \\
\hline ［BELL 3 & ESC CTRL 2 & 4 & Ring buzzer \\
\hline （ESC） & ESC ESC & E & ESCape key \\
\hline
\end{tabular}

\section*{Commodore PET／CBM／VIC／64／128／16／＋4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
When You Read： \\
\｛CLR\} \\
\｛HOME
\end{tabular}} & \multicolumn{2}{|r|}{Press：} & \multirow[t]{2}{*}{See：} & \multirow[t]{2}{*}{When You Read：} & \multicolumn{3}{|l|}{Press：} & \multirow[t]{2}{*}{See：} \\
\hline & SHIFT & CLR／HOME & & & COMM & DORE & 1 & \\
\hline & & CLR／HOME & \(\cdots\) & ［20］ & COMM & DORE & 2 & \\
\hline \｛UP\} & SHIFT & \(\dagger\) CRSR & & ［3］ & COMM & DORE & 3 & \\
\hline \｛DOWN\} & & \(\dagger\) CRSR & 速 & E 4 习 & COMM & DORE & 4 & ［in \\
\hline \｛LEFT\} & SHIFT & \(\leftarrow\) CRSR \(\rightarrow\) & & ［ 5 习 & COMM & DORE & 5 & 단 \\
\hline \｛RIGHT\} & & \(\leftarrow\) CRSR \(\rightarrow\) & 1 & ［6］ & COMM & DORE & 6 & \\
\hline \｛RVS\} & CTRL & 9 & 里 & E73 & COMM & DORE & 7 & 4 \\
\hline \｛OFF\} & CTRL & 0 & & ［83 & COMM & DORE & 8 &  \\
\hline \｛BLK \} & CTRL & 1 & & \｛ F1 \} & & \(f 1\) & & \\
\hline \｛WHT\} & CTRL & 2 & E & \｛ F2 \} & SHIFT & \(f 1\) & & \\
\hline \｛RED \} & CTRL & 3 & \(\pm\) & \｛ F3 \} & & \(f 3\) & & \\
\hline \｛CYN \} & CTRL & 4 & 曲 & \｛ F4 \} & SHIFT & \(f 3\) & & \\
\hline \｛PUR\} & CTRL & 5 & 炎 & \｛ F5 \} & & \({ }^{5} 5\) & & \\
\hline \｛GRN \} & CTRL & 6 & H & \｛ F6 \} & SHIFT & \({ }_{5} 5\) & & \\
\hline \｛BLU\} & CTRL & 7 & 2 & \｛ F7 \} & & 87 & & \\
\hline \｛YEL\} & CTRL & 8 & TII & \｛ F8 \} & SHIFT & 87 & & \\
\hline & & & & 4 & \(\square\) & & & 險 \\
\hline
\end{tabular}
key (Atari logo key on \(400 / 800\) models).
Whenever more than two spaces appear in a row, they are listed in a special format. For example, \(\{6\) SPACES \(\}\) means press the space bar six times. Our Commodore listings never leave a single space at the end of a line, instead moving it to the next printed line as \(\{S P A C E\}\).

Amiga program listings contain only one special character, the left arrow \((\leftarrow)\) symbol. This character marks the end of each program line. Wherever you see a left arrow, press RETURN or move the cursor off the line to enter that line into memory. Don't try to type in the left arrow symbol; it's there only as a marker to indicate where each program line ends.

\section*{The Automatic Proofreader}

Type in the appropriate program listed below, then save it for future use. The Commodore Proofreader works on the Commodore 128,64 , Plus \(/ 4,16\), and VIC-20. Don't omit any lines, even if they contain unfamiliar commands or you think they don't apply to your computer. When you run the program, it installs a machine language program in memory and erases its BASIC portion automatically (so be sure to save several copies before running the program for the first time). If you're using a Commodore 128, Plus/4 or 16, do not use any GRAPHIC commands while the Proofreader is active. You should disable the Commodore Proofreader before running any other program. To do this, either turn the computer off and on or enter SYS 64738 (for the 64), SYS 65341 (128), SYS 64802 (VIC-20), or SYS 65526 (Plus \(/ 4\) or 16). To reenable the Proofreader, reload the program and run it as usual. Unlike the original VIC/ 64 Proofreader, this version works the same with disk or tape.

On the Atari, run the Proofreader to activate it (the Proofreader remains active in memory as a machine language program); you must then enter NEW to erase the BASIC loader. Pressing SYSTEM RESET deactivates the Atari Proofreader; enter PRINT \(\operatorname{USR}(1536)\) to reenable it.

The Apple Proofreader erases the BASIC portion of itself after you run it, leaving only the machine language portion in memory. It works with either DOS 3.3 or ProDOS. Disable the Apple Proofreader by pressing CTRL-RESET before running another BASIC program.

The IBM Proofreader is a BASIC program that simulates the IBM BASIC line editor, letting you enter, edit, list, save, and load programs that you type. Type RUN to activate. Be sure to leave Caps Lock on, except when typing lowercase characters.

Once the Proofreader is active, try typing in a line. As soon as you press RETURN, either a hexadecimal number (on the Apple) or a pair of letters (on the Commodore, Atari, or IBM) appears. The number or pair of letters is called a checksum.

Compare the value displayed on the screen by the Proofreader with the checksum printed in the program listing in the magazine. The checksum is given to the left of each line number. Just type in the program a line at a time (without the printed checksum), press RETURN or Enter, and compare the checksums. If they match, go on to the next line. If not, check your typing; you've made a mistake. Because of the checksum method used, do not type abbreviations, such as ? for PRINT. On the Atari and Apple Proofreaders, spaces are not counted as part of the checksum, so be sure you type the right number of spaces between quote marks. The Atari Proofreader does not check to see that you've typed the characters in the right order, so if characters are transposed, the checksum still matches the listing. The Commodore Proofreader catches transposition errors and ignores spaces unless they're enclosed in quotation marks. The IBM Proofreader detects errors in spacing and transposition.

\section*{IBM Proofreader Commands}

Since the IBM Proofreader replaces the computer's normal BASIC line editor, it has to include many of the direct-mode IBM BASIC commands. The syntax is identical to IBM BASIC. Commands simulated are LIST, LLIST, NEW, FILES, SAVE, and LOAD. When listing your program, press any key (except Ctrl-Break) to stop the listing. If you enter NEW, the Proofreader prompts you to press \(Y\) to be especially sure you mean yes.

Two new commands are BASIC and CHECK. BASIC exits the Proofreader back to IBM BASIC, leaving the Proofreader in memory. CHECK works just like LIST, but shows the checksums along with the listing. After you have typed in a program, save it to disk. Then exit the Proofreader with the BASIC command, and load the program as usual (this replaces the Proofreader in memory). You can now run the program, but you may want to resave it to disk. This will shorten it on disk and make it load faster, but it can no longer be edited with the Proofreader. If you want to convert an existing BASIC program to Proofreader format, save it to disk with SAVE "filename",A.

\section*{Program 1: Atarl \\ Proofreader}

By Charles Brannon, Program Editor
\(1 ø \varnothing\) GRAPHICS \(\varnothing\)
116 FOR I=1536 TO 1700:REA D \(A: P O K E\) I, \(A: C K=C K+A: N\) EXT I
\(12 \emptyset\) IF CK \(\langle>19 \varnothing 72\) THEN ? "E rror in DATA Statement s. Check Typing.":END
\(139 A=U S R(1536)\)
14ø ? : ? "Automatic Proofr eader Now Activated."
\(15 \emptyset\) END
\(16 \emptyset\) DATA \(194,16 \emptyset, \varnothing, 185,26\), 3,2ø1,69,24ø,7
17ø DATA 2øø, 2øø, 192,34,2ø 8,243,96,200, 169, 74
\(18 \varnothing\) DATA \(153,26,3,2 \varnothing 0,169\), 6, 153, 26, 3, 162
\(19 \varnothing\) DATA \(\emptyset, 189, \emptyset, 228,157,7\) 4,6,232, 224, 16
2øø DATA 2ø8,245,169,93,14 \(1,78,6,169,6,141\)
\(21 \emptyset\) DATA \(79,6,24,173,4,228\) ,165,1,141,95
\(22 \emptyset\) DATA \(6,173,5,228,165\), \(\varnothing\) ,141,96,6,169
\(23 \emptyset\) DATA \(\emptyset, 133,263,96,247\), 238, 125,241,93,6
24б DATA 244,241,115,241,1 \(24,241,76,265,238\)
\(25 \varnothing\) DATA \(\varnothing, \emptyset, \varnothing, \varnothing, \varnothing, 32,62,2\) 46, 8, 2ø1
\(26 \emptyset\) DATA \(155,24 \emptyset, 13,2 \emptyset 1,32\) ,24ø,7,72,24,1ø1
27ø DATA \(2 \emptyset 3,133,263,1 ø 4,4\) ஏ, 96, 72, 152, 72,138
28ø DATA 72,16ø, \(\emptyset, 169,128\), 145, 88, 2øø, 192,4ø
290 DATA 2ø8,249,165,203,7 4, 74, 74, 74, 24, 195
3øø DATA \(161,168,3,145,88\), 165,2ø3,41, 15, 24
\(31 \varnothing\) DATA \(165,161,2 \emptyset 0,145,8\) 8,169, \(\varnothing, 133,2 ø 3,1 \emptyset 4\)
\(32 \emptyset\) DATA \(17 \emptyset, 1 \varnothing 4,168,1 \varnothing 4,4\) ஏ, 96

\section*{Program 2: IBM Proofreader}

By Charles Brannon, Program Editor
10 'Automatic Proofreader Vers ion \(3 . \emptyset\) (Lines 205,206 adde d/19ø deleted/47ø,49ø chang ed from V2.g)
100 DIM L\$(5øø), LNUM (5øø): COLO R \(\varnothing, 7,7\) : KEY OFF: CLS: \(M A X=\emptyset:\) LNUM ( \(\varnothing\) ) \(=65536\) !
\(11 \sigma\) ON ERRDR GOTO 120:KEY 15, C HR \({ }^{\text {( }}\) (4) + CHR \(\$(7 \varnothing)\) : ON \(\operatorname{KEY}(15)\) GOSUB 640:KEY (15) ON: GOT -13 1
120 RESUME \(13 \emptyset\)
\(13 \varnothing\) DEF SEG=\&H4 \(=W=\operatorname{PEEK}(\& H 4 A)\)
14ø ON ERROR GOTO 65ø:PRINT:PR INT"Proofreader Ready."
\(15 \varnothing\) LINE INPUT L\$: \(Y=\) CSRLIN-INT (LEN (L\$)/W) -1 : LOCATE \(Y\), 1
16の DEF SEG= \(:\) POKE 1ø5 \(10,3 \varnothing:\) POK E 1652,34:POKE 1654, ø:POKE 1655,79: POKE 1056, 13: POKE 1ø57, 28: LINE INPUT L\$: DEF SEG: IF L \(\$="\) " THEN \(15 \emptyset\)
17ø IF LEFT \(\$(\) L \(\$, 1)="\) " THEN L \(\$\) =MID\$(L\$,2):GOTO 17ø
\(18 \emptyset\) IF VAL (LEFT \(\$(L \$, 2))=\emptyset\) AND MID \(\$(L \$, 3,1)="\) " THEN L \(\$=M\) ID\$ (L\$,4)
\(26 \emptyset\) IF ASC (L\$) \(>57\) THEN \(26 \emptyset\) 'no line number, therefore co mmand
\(265 \mathrm{BL}=\operatorname{INSTR}\left(\mathrm{L} \$,{ }^{\prime \prime}\right.\) ") : IF BL=ø T HEN BL \(\$=L \$\) : GOTO 266 ELSE B L\$=LEFT\$ (L\$, BL-1)
266 LNUM=VAL (BL \(\$\) ) : TEXT\$=MID\$ (L \$, LEN (STR\$ (LNUM) ) +1 )
21ø IF TEXT\$="" THEN GOSUB 54ø : IF LNUM=LNUM (P) THEN GOSU B 56ø: GOTO \(15 \emptyset\) ELSE \(15 \emptyset\)
220 CKSUM=Ø:FOR I=1 TO LEN(L\$) : CKSUM = (CKSUM+ASC (MID\$ (L\$, I) ) \& I) AND 255: NEXT: LOCATE Y, 1:PRINT CHR\$ ( \(65+\) CKSUM/ 1 6) + CHR\$ ( \(65+\) (CKSUM AND 15)) +" " + \$
230 GOSUB 546: IF LNUM \((P)=\) LNUM THEN L\$(P) =TEXT\$:GOTO 15Ø 'replace line
\(24 \varnothing\) GOSUB 58ø: GOTO \(15 \emptyset\) insert the line
26め TEXT\$="":FOR I=1 TO LEN(L\$ \(): A=\operatorname{ASC}(\operatorname{MID} \$(L \$, I)):\) TEXT \(\$=\) TEXT\$+CHR\$ (A+32* (A)96 AND A(123)) : NEXT
\(27 \emptyset\) DELIMITER=INSTR (TEXT\$," ") : COMMAND\$=TEXT\$: ARG\$="": IF DELIMITER THEN COMMAND \(\$=\) L EFT \(\$(\) TEXT \(\$\), DELIMITER-1) : AR G\$=MID\$(TEXT\$, DELIMITER+1) ELSE DELIMITER=INSTR (TEXT \$, CHR (34) ): IF DELIMITER T HEN COMMAND \(\$=L E F T \$(T E X T \$, D\) ELIMITER-1) : ARG\$=MID\$(TEXT \$, DELIMITER)
\(28 \emptyset\) IF COMMAND\$<>"LIST" THEN 4 10
\(29 \emptyset\) OPEN "scrn:" FOR OUTPUT AS \#1
3øø IF ARG \(\$="\) " THEN FIRST \(=\varnothing: \mathrm{P}=\) MAX-1: GOTO 34Ø
\(31 \emptyset\) DELIMITER=INSTR(ARG\$,"-"): IF DELIMITER=ø THEN LNUM \(=V\) AL (ARG\$) : GOSUB 54ø:FIRST=P : GOTO 340
\(32 \emptyset\) FIRST=VAL (LEFT\$ (ARG\$, DELIM ITER) ): LAST=VAL (MID\$ (ARG\$, DELIMITER+1))
\(33 \emptyset\) LNUM=FIRST: GOSUB 54ø:FIRST =P: LNUM=LAST: GOSUB 54ø: IF \(P=\varnothing\) THEN \(P=M A X-1\)
\(34 \emptyset\) FOR \(X=F\) IRST TO \(P: N \$=M I D \$(S\) \(\operatorname{TR} \$(\operatorname{LNUM}(X)), 2)+" \quad "\)
\(35 \emptyset\) IF CKFLAG= \(\varnothing\) THEN \(A \$="\) ": GOT - 379
\(36 \emptyset\) CKSUM=ø: \(A \$=N \$+L \$(X): F O R \quad I=\) 1 TO LEN \((A \$)\) : CKSUM \(=\) (CKSUM + ASC (MID\$ (A\$,I)) \&I) AND 255 : NEXT: A\$=CHR\$(65+CKSUM/16) +CHR\$ \((65+\) (CKSUM AND 15) \()+"\)
\(37 \emptyset\) PRINT \#1, A\$+N\$+L\$(X)
\(38 \emptyset\) IF INKEY \(\$<>"\) " THEN \(X=P\)
39 NEXT : CLOSE \#1:CKFLAG=ø
4 GП GOTO \(13 \emptyset\)
416 IF COMMAND \(\$=\) "LLIST" THEN 0 PEN "lpt1:" FOR QUTPUT AS \#1: GOTO 3øø
\(42 \emptyset\) IF COMMAND \(\$=\) "CHECK" THEN \(C\) KFLAG=1: GOTO \(29 \emptyset\)
\(43 \varnothing\) IF COMMAND\$<>"SAVE" THEN 4 \(5 \emptyset\)
44ø GOSUB 6øØ: OPEN ARG\$ FOR OU TPUT AS \#1:ARG\$="":GOTO \(3 \emptyset\) \(\emptyset\)
450 IF COMMAND \(\$<>\) "LOAD" THEN 4

46ø GOSUB 6øø: OPEN ARG\$ FOR IN PUT AS \#1: MAX \(=\varnothing: P=\emptyset\)
47ø WHILE NOT EOF (1): LINE INPU T \#1, L\$: BL=INSTR(L\$," "):B L\$=LEFT \(\$(L \$, B L-1): \operatorname{LNUM}(P)=\) VAL (BL\$):L\$(P)=MID\$(L\$,LEN (STR\$(VAL (BL\$))) +1\(): P=P+1\) : WEND
48Ø MAX=P:CLOSE \#1: GOTO \(13 \emptyset\)
490 IF COMMAND\$="NEW" THEN INP UT "Erase program - Are yo 4 sure"; L\$: IF LEFT\$(L\$,1)= " \(y\) " OR LEFT\$ (L\$, 1) ="Y" THE N \(\operatorname{MAX}=\varnothing:\) LNUM \((\varnothing)=65536\) !: GOT - 13Ø: ELSE 130

5øø IF COMMAND \(\$=\) "BASIC" THEN C OLOR 7,,\(\varnothing\) : ON ERROR GOTO \(\varnothing\) :CLS: END
510 IF COMMAND\$<>"FILES" THEN \(52 \emptyset\)
515 IF ARG\$="" THEN ARG \(\$=^{*} A \mathbf{A}^{\prime \prime}\) ELSE SEL=1: GOSUB GøØ
517 FILES ARG\$:GOTO \(13 \varnothing\)
529 PRINT"Syntax error":GOTO 1 3ø
\(54 \emptyset P=\emptyset:\) WHILE LNUM \(>\) LNUM ( \(P\) ) AND \(P<M A X: P=P+1\) : WEND : RETURN
566 MAX \(=\) MAX \(-1:\) FOR \(X=P\) TO MAX:L \(\operatorname{NUM}(X)=\operatorname{LNUM}(X+1): L \$(x)=\operatorname{L} \$(\) \(X+1)\) : NEXT: RETURN
\(58 \emptyset\) MAX \(=M A X+1\) : FOR \(X=\) MAX TO \(P+1\) \(\operatorname{STEP}-1: \operatorname{LNUM}(X)=\operatorname{LNUM}(x-1)\) \(: L \$(X)=L \$(X-1):\) NEXT: L\$(P) \(=\) TEXT\$:LNUM \((P)=\) LNUM: RETURN
6 6. IF LEFT \(\$\) (ARG \(\$, 1\) ) \(<>\operatorname{CHR} \$\) (34) THEN \(52 \varnothing\) ELSE ARG \(\$=\) MID \(\$(A\) RG\$, 2)
\(61 \emptyset\) IF RIGHT\$ (ARG \(\$, 1\) ) \(=\) CHR \(\$(34)\) THEN ARG \(\$=\) LEFT \(\$\) (ARG \(\$\), LEN ( ARG\$)-1)
\(62 \emptyset\) IF SEL \(=\emptyset\) AND INSTR (ARG \(\$\),". ") \(=\varnothing\) THEN ARG \(\$=A R G \$+"\) - BAS"
\(63 \emptyset\) SEL= \(=\) : RETURN
\(64 \varnothing\) CLOSE \#1:CKFLAE= \(\quad\) :PRINT"St opped. ": RETURN \(15 \varnothing\)
650 PRINT "Error \#"; ERR:RESUME \(15 \emptyset\)

\section*{Program 3: Commodore Proofreader}

By Philip Nelson, Assistant Editor
\(1 \varnothing \mathrm{VEC}=\operatorname{PEEK}(772)+256 * \operatorname{PEEK}(773)\) : \(\mathrm{LO}=43\) : \(\mathrm{HI}=44\)
\(2 \varnothing\) PRINT "AUTOMATIC PROOFREADE R FOR "; :IF VEC \(=42364\) THEN \{SPACE\}PRINT "C-64"
\(3 \emptyset\) IF VEC= 50556 THEN PRINT "VI \(C-2 \sigma^{\prime \prime}\)
\(4 \emptyset\) IF VEC \(=35158\) THEN GRAPHIC C LR:PRINT "PLUS/ 4 \& 16 "
5 (IF VEC \(=17165\) THEN LO \(=45: \mathrm{HI}=\) 46:GRAPHIC CLR:PRINT" 128 "
\(6 \emptyset\) SA \(=(\operatorname{PEEK}(\) LO \()+256\) * \(\operatorname{PEEK}(\mathrm{HI}))+\) \(6: A D R=S A\)
\(7 \emptyset\) FOR \(J=\emptyset\) TO \(166:\) READ BYT:POK E ADR, \(\mathrm{BYT}: \mathrm{ADR}=\mathrm{ADR}+1: \mathrm{CHK}=\mathrm{CHK}\) +BYT: NEXT
8 Ø IF CHK < \(>2057 \emptyset\) THEN PRINT "* ERROR* CHECK TYPING IN DATA STATEMENTS" : END
\(9 \emptyset\) FOR J=1 TO 5 : READ RF, LF, HF : RS \(=\mathrm{SA}+\mathrm{RF}: \mathrm{HB}=\mathrm{INT}(\mathrm{RS} / 256): \mathrm{LB}=\) RS \(-\left(256^{*} \mathrm{HB}\right)\)
1 ØØ \(\mathrm{CHK}=\mathrm{CHK}+\mathrm{RF}+\mathrm{LF}+\mathrm{HF}:\) POKE \(\mathrm{SA}+\mathrm{L}\) F,LB: POKE SA+HF, HB:NEXT
\(11 \varnothing\) IF CHK<>22054 THEN PRINT " *ERROR* RELOAD PROGRAM AND
\{SPACE\}CHECK FINAL LINE": EN D
\(12 \emptyset\) POKE SA+149, \(\operatorname{PEEK}(772): \operatorname{POKE}\) SA \(+15 \emptyset, \operatorname{PEEK}(773)\)
130 IF VEC \(=17165\) THEN POKE SA+ 14,22 : POKE SA \(+18,23:\) POKESA + 29,224 : POKESA \(+139,224\)
\(14 \varnothing\) PRINT CHRS (147);CHRS ( 177 );" PROOFREADER ACTIVE": SYS SA
\(15 \emptyset\) POKE HI, PEEK (HI) +1 : POKE ( P \(\operatorname{EEK}(\mathrm{LO})+256 * \operatorname{PEEK}(\mathrm{HI}))-1, \varnothing: \mathrm{N}\) EW
\(16 \emptyset\) DATA \(12 \emptyset, 169,73,141,4,3,16\) 9,3,141,5,3
\(17 \emptyset\) DATA \(88,96,165,20,133,167\). \(165,21,133,168,169\)
\(18 \emptyset\) DATA \(\emptyset, 141, \emptyset, 255,162,31,18\) \(1,199,157,227,3\)
190 DATA \(262,16,248,169,19,32\), \(21 \varnothing, 255,169,18,32\)
200 DATA \(210,255,160,0,132,180\) \(, 132,176,136,230,18 \emptyset\)
210 DATA \(2 \emptyset \emptyset, 185,0,2,24 \emptyset, 46,2 \emptyset\) \(1,34,208,8,72\)
220 DATA \(165,176,73,255,133,17\) \(6,1 \varnothing 4,72,261,32,2 \emptyset 8\)
230 DATA \(7,165,176,2 \emptyset 8,3,104,2\) Ø8, 226,1ø4,166,18ø
\(24 \emptyset\) DATA \(24,165,167,121,0,2,13\) \(3,167,165,168,105\)
\(25 \emptyset\) DATA \(0,133,168,202,208,239\) \(, 240,2 \emptyset 2,165,167,69\)
260 DATA \(168,72,41,15,168,185\), \(211,3,32,210,255\)
\(27 \emptyset\) DATA \(1 \varnothing 4,74,74,74,74,168,1\) \(85,211,3,32,210\)
280 DATA \(255,162,31,189,227,3\), \(149,199,2 \varnothing 2,16,248\)
290 DATA \(169,146,32,210,255,76\) \(, 86,137,65,66,67\)
\(3 \emptyset \emptyset\) DATA \(68,69,7 \emptyset, 71,72,74,75\), \(77,80,81,82,83,88\)
310 DATA \(13,2,7,167,31,32,151\), \(116,117,151,128,129,167,136\) ,137

\section*{Program 4: Apple Proofreader}

\author{
By Tim Victor, Editorial Programmer
}
\(1 \varnothing \mathrm{C}=\varnothing:\) FOR \(\mathrm{I}=768 \mathrm{TO} 768+\) 68: READ A:C \(=C+A:\) POKE I , A: NEXT
20 IF \(\mathrm{C}<>7258\) THEN PRINT "ER ROR IN PROOFREADER DATA STAT EMENTS": END
\(3 \varnothing\) IF PEEK \((19 \varnothing * 256)<>76 ~ T\) HEN POKE 56, \(: ~ P O K E ~ 57,3: ~ C A ~\) LL 1øø2: GOTO 5ø
\(4 \varnothing\) PRINT CHR\$ (4);"IN\#A\$3øø"
\(5 \emptyset\) POKE 34, Ø: HOME : POKE 34, 1: UTAB 2: PRINT "PRODFREADER INSTALLED"
GØ NEW
1 øø DATA \(216,32,27,253,261,141\)
\(11 \emptyset\) DATA 268,6ø,138,72,169, 6
120 DATA \(72,189,255,1,261,160\)
\(13 \emptyset\) DATA \(24 \emptyset, 8,1 \emptyset 4,1 \emptyset, 125,255\)
\(14 \emptyset\) DATA 1,1ø5, \(0,72,2 ø 2,2 \emptyset 8\)
\(15 \emptyset\) DATA \(238,164,176,41,15,9\)
\(16 \emptyset\) DATA \(48,201,58,144,2,233\)
\(17 \emptyset\) DATA \(57,141,1,4,138,74\)
\(18 \emptyset\) DATA \(74,74,74,41,15,9\)
\(19 \emptyset\) DATA \(48,2 \emptyset 1,58,144,2,233\)
\(2 \emptyset \emptyset\) DATA 57, 141, \(, 4,194,17 \emptyset\)
210 DATA \(169,141,96\) \(9 \emptyset\)

\title{
MLX Machine Language For Commodore 64
}
"MLX" is a labor-saving utility that allows almost fail-safe entry of Commodore 64 machine language programs.

Type in and save some copies of MLX you'll want to use it to enter future machine langauge (ML) programs from COMPUTE!. When you're ready to enter an ML program, load and run MLX. It asks you for a starting address and an ending address. These addresses appear in the article accompanying the MLXformat program listing you're typing.

If you're unfamiliar with machine language, the addresses (and all other values you enter in MLX ) may appear strange. Instead of the usual decimal numbers you're accustomed to, these numbers are in hexadecimal-a base 16 numbering system commonly used by ML programmers. Hexadecimal-hex for short-includes the numerals 0-9 and the letters A-F. But don't worryeven if you know nothing about ML or hex, you should have no trouble using MLX.

After you enter the starting and ending addresses, you'll be offered the option of clearing the workspace. Choose this option if you're starting to enter a new listing. If you're continuing a listing that's partially typed from a previous session, don't choose this option.

A functions menu will appear. The first option in the menu is ENTER DATA. If you're just starting to type in a program, pick this. Press the E key, and type the first number in the first line of the program listing. If you've already typed in part of a program, type the line number where you left off typing at the end of the previous session (be sure to load the partially completed program before you resume entry). In any case, make sure the address you enter corresponds to the address of a line in the listing you are entering. Otherwise, you'll be unable to enter the data correctly. If you pressed \(E\) by mistake, you can return to the command menu by pressing RETURN alone when asked for the address. (You can get back to the menu from most options by pressing RETURN with no other input.)

\section*{Entering A Listing}

Once you're in Enter mode, MLX prints the address for each program line for you. You then type in all nine numbers on that line, beginning with the first twodigit number after the colon ( \((\mathrm{i}\) ). Each line represents eight data bytes and a check-
sum. Although an MLX-format listing appears similar to the "hex dump" listings from a machine language monitor program, the extra checksum number on the end allows MLX to check your typing.

When you enter a line, MLX recalculates the checksum from the eight bytes and the address and compares this value to the number from the ninth column. If the values match, you'll hear a bell tone, the data will be added to the workspace area, and the prompt for the next line of data will appear. But if MLX detects a typing error, you'll hear a low buzz and see an error message. The line will then be redisplayed for editing.

\section*{Invalid Characters Banned}

Only a few keys are active while you're entering data, so you may have to unlearn some habits. You do not type spaces between the columns; MLX automatically inserts these for you. You do not press RETURN after typing the last number in a line; MLX automatically enters and checks the line after you type the last digit.

Only the numerals \(0-9\) and the letters A-F can be typed in. If you press any other key (with some exceptions noted below), you'll hear a warning buzz. To simplify typing, a numeric keypad is now incorporated in the listing. The keypad is active only while entering data. Addresses must be entered with the normal letter and number keys. The figure below shows the keypad configuration:


MLX checks for transposed characters. If you're supposed to type in A0 and instead enter 0A, MLX will catch your mistake. There is one error that can slip past MLX: Because of the checksum formula used, MLX won't notice if you accidentally type FF in place of 00 , and vice
versa. And there's a very slim chance that you could garble a line and still end up with a combination of characters that adds up to the proper checksum. However, these mistakes should not occur if you take reasonable care while entering data.

\section*{Editing Features}

To correct typing mistakes before finishing a line, use the INST/DEL key to delete the character to the left of the cursor. (The cursor-left key also deletes.) If you mess up a line really badly, press CLR/HOME to start the line over. The RETURN key is also active, but only before any data is typed on a line. Pressing RETURN at this point returns you to the command menu. After you type a character of data, MLX disables RETURN until the cursor returns to the start of a line. Remember, you can press CLR/ HOME to quickly get to a line number prompt.

More editing features are available when correcting lines in which MLX has detected an error. To make corrections in a line that MLX has redisplayed for editing, compare the line on the screen with the one printed in the listing, then move the cursor to the mistake and type the correct key. The cursor left and right keys provide the normal cursor controls. (The INST/DEL key now works as an alternative cursor-left key.) You cannot move left beyond the first character in the line. If you try to move beyond the rightmost character, you'll reenter the line. During editing, RETURN is active; pressing it tells MLX to recheck the line. You can press the CLR/HOME key to clear the entire line if you want to start from scratch, or if you want to get to a line number prompt to use RETURN to get back to the menu.

\section*{Display Daía}

The second menu choice, DISPLAY DATA, examines memory and shows the contents in the same format as the program listing (including the checksum). When you press D, MLX asks you for a starting address. Be sure that the starting address you give corresponds to a line number in the listing. Otherwise, the checksum display will be meaningless. MLX displays program lines until it reaches the end of the program, at which point the menu is redisplayed. You can pause the display by pressing the space bar. (MLX finishes printing the current line before halting.) Press space again to
restart the display. To break out of the display and get back to the menu before the ending address is reached, press RETURN.

\section*{Other Menu Options}

Two more menu selections let you save programs and load them back into the computer. These are SAVE FILE and LOAD FILE; their operation is quite straightforward. When you press S or L, MLX asks you for the filename. You'll then be asked to press either D or T to select disk or tape.

You'll notice the disk drive starting and stopping several times during a load or save. Don't panic; this is normal behavior. MLX opens and reads from or writes to the file instead of using the usual LOAD and SAVE commands. Disk users should also note that the drive prefix 0 : is automatically added to the filename (line 750), so this should not be included when entering the name. This also precludes the use of @ for Save-with-Replace, so remember to give each version you save a different name.

Remember that MLX saves the entire workspace area from the starting address to the ending address, so the save or load may take longer than you might expect if you've entered only a small amount of data from a long listing. When saving a partially completed listing, make sure to note the address where you stopped typing so you'll know where to resume entry when you reload.

MLX reports the standard disk or tape error messages if any problems are detected during the save or load. (Tape users should bear in mind that Commodore computers are never able to detect errors during a save to tape.) MLX also has three special load error messages: INCORRECT STARTING ADDRESS, which means the file you're trying to load does not have the starting address you specified when you ran MLX; LOAD ENDED AT address, which means the file you're trying to load ends before the ending address you specified when you started MLX; and TRUNCATED AT ENDING ADDRESS, which means the file you're trying to load extends beyond the ending address you specified when you started MLX. If you see one of these messages and feel certain that you've loaded the right file, exit and rerun MLX, being careful to enter the correct starting and ending addresses.

The QUIT menu option has the obvious effect-it stops MLX and enters BASIC. The RUN/STOP key is disabled, so the Q option lets you exit the program without turning off the computer. (Of course, RUN/STOP-RESTORE also gets you out.) You'll be asked for verification; press Y to exit to BASIC, or any other key to return to the menu. After quitting, you
can type RUN again and reenter MLX without losing your data, as long as you don't use the clear workspace option.

\section*{The Finished Product}

When you've finished typing all the data for an ML program and saved your work, you're ready to see the results. The instructions for loading and using the finished product vary from program to program. Some ML programs are designed to be loaded and run like BASIC programs, so all you need to type is LOAD "filename", 8 for disk or LOAD "filename" for tape, and then RUN. Such programs will usually have a starting address of 0801 for the 64 . Other programs must be reloaded to specific addresses with a command such as LOAD "filename", 8,1 for disk or LOAD "filename" \(, 1,1\) for tape, then started with a SYS to a particular memory address. On the Commodore 64, the most common starting address for such programs is 49152, which corresponds to MLX address C000. In either case, you should always refer to the article which accompanies the ML listing for information on loading and running the program.

\section*{An Ounce Of Prevention}

By the time you finish typing in the data for a long ML program, you may have several hours invested in the project. Don't take chances-use our "Automatic Proofreader" to type the new MLX, and then test your copy thoroughly before first using it to enter any significant amount of data. Make sure all the menu options work as they should. Enter fragments of the program starting at several different addresses, then use the Display option to verify that the data has been entered correctly. And be sure to test the Save and Load options several times to ensure that you can recall your work from disk or tape. Don't let a simple typing error in the new MLX cost you several nights of hard work.

\section*{MLX For Commodore 64}

SS \(1 \varnothing\) REM VERSION \(1.1:\) LINES 8 \(30,95 \emptyset\) MODIFIED, LINES 4 85-487 ADDED
EK 1øø POKE 56,50:CLR:DIM IN\$, \(I, J, A, B, A S, B \$, A(7), N \$\)
DM \(11 \varnothing C 4=48: C 6=16: C 7=7: Z 2=2: Z\) \(4=254: Z 5=255: Z 6=256: Z 7=\) 127
CJ \(12 \varnothing \mathrm{FA}=\operatorname{PEEK}(45)+\mathrm{Z} 6 * \operatorname{PEEK}(46)\) : BS = \(\operatorname{PEEK}(55)+Z 6 * \operatorname{PEEK}(56\) ) \(: \mathrm{H} \$=\) "ø123456789ABCDEF"
SB \(130 \mathrm{R} \$=\mathrm{CHR} \$(13): L \$="\{\) LEFT \(\} "\) : \(\mathrm{S} \$=" \mathrm{"}: \mathrm{D} \$=\mathrm{CHR}(2 \emptyset): \mathrm{Z} \$=\) CHRS ( \(\varnothing\) ): T\$="\{13 RIGHT\}"
CQ 140 SD=54272:FOR I=SD TO SD \(+23:\) POKE \(I, \varnothing:\) NEXT: POKE \{SPACE \}SD+24, 15 :POKE 78 8,52
FC 150 PRINT" \{CLR\}"CHR\$ (142) CH RS(8):POKE 53280,15:POK

EJ 160 PRINT TS" \{RED\}\{RVS\}
\(\{2\) SPACES \(\}\) E8 @
\(\{2\) SPACES \(\} " \operatorname{SPC}(28) "\)
\{2 SPACES \}\{OFF\}\{BLU\} ML
X II \{RED\}\{RVS \}
\{2 SPACES \}"SPC(28)"
\{12 SPACES\}\{BLU\}"
FR \(17 \emptyset\) PRINT" \{ 3 DOWN \}
\{3 SPACES \}COMPUTEI'S MA CHINE LANGUAGE EDITOR \{3 DOWN\}"
JB \(18 \emptyset\) PRINT" \(\{\) BLK \(\}\) STARTING ADD
 D:GOSUBlø4ø:IF F THEN18 \(\emptyset\)
GF 190 PRINT" \(\{\) BLK \(\}\{2\) SPACES \(\} E N\) DING ADDRESSE4 \({ }^{\prime \prime}\); :GOSUB \(3 \varnothing \varnothing\) : \(E A=A D: G O S U B 1 \varnothing 3 \varnothing: I F\) \{SPACE\}F THEN19ø
KR 2 Øø INPUT" \(\{3\) DOWN \(\}\{B L K\} C L E A\) R WORKSPACE [Y/N]E4ヨ";A \$: IF LEFT\$(AS,l)<>"Y"TH EN220
PG 210 PRINT" \(\{2\) DOWN \(\}\) \{BLU \(\}\) WORK ING..."; :FORI=BS TO BS + \(\mathrm{EA}-\mathrm{SA}+7\) : POKE \(\mathrm{I}, ~ \varnothing\) : NEXT: P RINT"DONE"
DR 220 PRINTTAB (10)" \(\{2\) DOWN \(\}\)
\{BLK\}\{RVS\} MLX COMMAND
\{SPACE\}MENU \{DOWN\}E4 \({ }^{\prime \prime}\) : PRINT TS"\{RVS\}E\{OFF\}NTE R DATA"
BD 230 PRINT TS"\{RVS\}D\{OFF\}ISP LAY DATA":PRINT TS"
\{RVS\}L\{OFF\}OAD FILE"
JS \(24 \emptyset\) PRINT TS"\{RVS\}S\{OFF\}AVE FILE": PRINT TS"\{RVS\}Q \{OFF\}UIT\{2 DOWN\}\{BLK\}"
JH 250 GET AS:IF AS=N\$ THEN250
HK 260 A=Ø:FOR \(I=1\) TO 5:IF AS= MIDS ("EDLSQ", I, 1)THEN A =I: \(I=5\)
FD \(27 \emptyset\) NEXT:ON A GOTO \(42 \emptyset, 610,6\) \(9 \varnothing, 7 \emptyset \emptyset, 28 \emptyset: G O S U B 1 \varnothing 6 \emptyset: G O\) TO250
EJ \(28 \emptyset\) PRINT" \{RVS\} QUIT ": INPU T" \(\{\) DOWN \(\}\) E4 \(\operatorname{JARE}\) YOU SURE [Y/N]";AS:IF LEFTS(AS, 1) \(<>\) " \(\mathrm{Y}^{\prime}\) THEN22 \(\varnothing\)

EM 290 POKE SD \(+24, \varnothing\) : END
JX \(3 \varnothing \emptyset\) IN \(=N \$: A D=\emptyset:\) INPUTIN \(:\) : \(F\) LEN (INS) \(<>4\) THENRETURN
KF \(31 \varnothing \mathrm{~B}\) = \(=\) INS: \(\operatorname{GOSUB} 320: A D=A: B S\) \(=\) MIDS (INS, 3) : GOSUB320:A D=AD*256+A: RETURN
PP 32ø A= \(1: F O R \quad J=1\) TO 2:AS=MID \(\$(B S, J, \lambda): B=A S C(A S)-C 4+\) ( \(A\) S>" (") *C7:A=A*C6+B
JA \(33 \varnothing\) IF \(B<\emptyset\) OR \(B>15\) THEN \(A D=\) \(\emptyset: A=-1: J=2\)
GX \(34 \varnothing\) NEXT: RETURN
CH \(350 \mathrm{~B}=\operatorname{INT}(\mathrm{A} / \mathrm{C} 6):\) PRINT MIDS( \(H \$, B+1,1) ;: B=A-B * C 6: P R I\) NT MIDS(H\$, B+l, 1 ) ; : RETU RN
RR \(360 \mathrm{~A}=\mathrm{INT}(\mathrm{AD} / \mathrm{Z} 6)\) : GOSUB35 \(0: A\) \(=A D-A * Z 6:\) GOSUB350:PRINT ": ";
BE \(370 \mathrm{CK}=\operatorname{INT}(\mathrm{AD} / \mathrm{Z} 6): \mathrm{CK}=\mathrm{AD}-\mathrm{Z4}\) * CK+Z5* (CK> Z7) : GOTO39ø
PX \(38 \varnothing\) CK \(=C K * Z 2+Z 5\) * \((C K>Z 7)+A\)
JC \(390 \mathrm{CK}=\mathrm{CK}+\mathrm{Z} 5\) * \((\mathrm{CK}>\mathrm{Z5})\) : RETURN
QS 4øø PRINT" \{DOWN\}STARTING AT〔4ㅋ";:GOSUB3øø:IF INS<> NS THEN GOSUB1ø3ø:IF F \{SPACE \}THEN4øø
EX \(41 \varnothing\) RETURN
HD 420 PRINT" \(\{\) RVS \} ENTER DATA \{SPACE\}": GOSUB4øØ:IF IN \(\$=\mathrm{N} \$\) THEN22ø
JK \(43 \varnothing\) OPEN3, \(3:\) PRINT
SK 440 POKEl \(98, \varnothing:\) GOSUB360:IF F E 53281,15
then print ins：Print＂ \｛UP\}\{5 RIGHT\}";
GC 450 FOR \(I=\emptyset\) TO 24 STEP \(3: B \$\) \(=S \$: F O R \quad J=1\) TO 2：IF F T HEN BS＝MIDS（INS，I＋J，I）
HA 460 PRINT＂\(\{\) RVS \(\}\)＂B\＄LS；：IF Is 24THEN PRINT＂\(\{\) OFF \(\}\)＂；
HD 470 GET AS：IF AS＝NS THEN470
FK 48 IF（AS＞＂／＂ANDAS＜＂：＂）OR（A \＄＞＂＠＂ANDAS＜＂G＂）THEN54 \(\varnothing\)
GS \(485 \mathrm{~A}=-(\mathrm{A} S=" \mathrm{M} ")-2 *(\mathrm{~A} S=", ")-\) 3＊\(\left(\mathrm{A} S={ }^{\prime \prime} \cdot n\right)-4\)＊\(\left(\mathrm{A} S=" /{ }^{\prime \prime}\right)-5\) ＊\((A S=" J ")-6 *(A S=" K ")\)
FX \(486 \mathrm{~A}=\mathrm{A}-7\)＊（ \(A S=" \mathrm{~L} ")-8\)＊（AS＝＂： ＂）\(-9 *(A S=" U ")-1 \sigma^{*}(A S=" I\) ＂）\(-11^{*}(A \$=" O\)＂\()-12^{*}(A \$="\) P＂）
CM \(487 \mathrm{~A}=\mathrm{A}-13^{*}(\mathrm{~A} \$=\mathrm{S} \$)\) ：IF A THE N AS＝MIDS（＂ABCD123E456F \(\left.\sigma^{\prime \prime}, A, 1\right):\) GOTO \(54 \emptyset\)
MP \(49 \varnothing\) IF AS＝RS AND（ \((I=\emptyset)\) AND（ \(J\) \(=1)\) OR F）THEN PRINT BS；： J＝2：NEXT：I＝24：GOTO55Ø
KC 5øø IF AS＝＂\(\{\) HOME \(\}\)＂THEN PRI NT \(B S: J=2: N E X T: I=24: N E X\) \(T: F=\varnothing:\) GOTO44Ø
MX \(51 \varnothing \operatorname{IF}(A S="\{\) RI GHT \(\} ")\) ANDF TH ENPRINT BSLS；：GOTO54の
GK 520 IF AS \(<>\) LS AND AS \(<>D S\) OR （（ \(I=\varnothing\) ）AND \((J=1)\) ）THEN GOS UB1ø60：GOTO47Ø
HG 530 AS \(=\mathrm{L} \$+\mathrm{S} \$+\mathrm{L} \$:\) PRINT \(\mathrm{B} \$ \mathrm{~L}\) ； \(: J=2-J: I F ~ J ~ T H E N ~ P R I N T ~\) \｛SPACE\}LS; : I=I-3
QS 540 PRINT AS；：NEXT J：PRINT \｛SPACE \}S\$:
PM 550 NEXT I：PRINT：PRINT＂\｛UP\} \｛5 RIGHT\}"; :INPUT\#3,IN\$ ：IF INS＝N\＄THEN CLOSE3： GOTO22ø
QC 560 FOR \(I=1\) TO 25 STEP3： \(\mathrm{BS}=\) MIDS（INS，I）：GOSUB320：IF I＜25 THEN GOSUB38 \(\varnothing\) ：A（I ／3）\(=A\)
PK 570 NEXT：IF \(A<>C K\) THEN GOSU Blø6Ø：PRINT＂\(\{\) BLK \} \{RVS \} \｛SPACE\}ERROR: REENTER L INE［ 4 ㅋ＂：F＝1：GOTO44Ø
HJ \(58 \emptyset\) GOSUBl \(\varnothing 8 \emptyset: B=B S+A D-S A: F O\) \(R \quad I=\varnothing\) TO \(7: P O K E \quad B+I, A\)（I ）：NEXT
QQ 590 AD \(=A D+8:\) IF \(A D>E A\) THEN \(C\) LOSE3：PRINT＂\｛DOWN \} \{BLU\} ＊＊END OF ENTRY＊＊\｛BLK\} \｛2 DOWN \} ":GOTO7øø
GQ 6øØ \(\mathrm{F}=\emptyset\) ：GOTO44ø
QA 610 PRINT＂\｛CLR\} \{DOWN\}\{RVS \} \｛SPACE\}DISPLAY DATA ":G OSUB4øØ：IF IN\＄＝NS THEN2 20
RJ \(62 \emptyset\) PRINT＂\(\{D O W N\}\{B L U\}\) PRESS： \｛RVS\}SPACE\{OFF\} TO PAU SE，\｛RVS \}RETURN\{OFF\} TO BREAKE4 4 \｛DOWN \}"
KS 630 GOSUB36 ：B＝BS \(+A D-S A: F O R\) \(\mathrm{I}=\mathrm{BTO} \quad \mathrm{B}+7: \mathrm{A}=\mathrm{PEEK}(\mathrm{I}): \mathrm{GOS}\) UB35 ：GOSUB38 ：PRINT S\＄

CC 640 NEXT：PRINT＂\(\{\) RVS \(\}\)＂：\(: A=C K\) ：GOSUB35Ø：PRINT
KH \(650 \mathrm{~F}=1: \mathrm{AD}=\mathrm{AD}+8:\) IF \(\mathrm{AD}>\mathrm{EA} T H\) ENP RINT＂\｛DOWN\} \{BLU\} ** \(E\) ND OF DATA＊＊＂：GOTO22の
KC 660 GET AS：IF AS＝RS THEN GO SUB1Ø8Ø：GOTO22ø
EQ 670 IF \(A S=S \$\) THEN \(F=F+1\) ：GOS UB1 180
AD \(68 \emptyset\) ONFGOTO63Ø，66Ø，63ø
CM 690 PRINT＂\｛DOWN\} \{RVS \} LOAD \｛SPACE\}DATA ": OP=1:GOTO 710
PC \(7 \emptyset \emptyset\) PRINT＂\(\{D O W N\}\) \｛RVS \(\}\) SAVE
\｛SPACE\}FILE ": OP= \(\varnothing\)
RX 710 INS＝NS：INPUT＂\(\{\) DOWN \}FILE NAME 4 4＂；INS：IF IN \(=\) NS \｛SPACE \}THEN22の
PR \(72 \varnothing \mathrm{~F}=\varnothing\) ：PRINT＂\(\{\mathrm{DOWN}\}\) \｛BLK \} \｛RVS\}T\{OFF\}APE OR \{RVS\} D\｛OFF\}ISK: E4 " ;
FP 730 GET AS：IF AS＝＂T＂THEN PR INT＂T \｛ DOWN \}": GOTO88ø
HQ 74 IF AS \(<>\)＂\(D\)＂THEN73 1
HH \(75 \emptyset\) PRINT＂D \(\{\) DOWN \}": OPEN15, 8 ，15，＂IØ：＂：B＝EA－SA：INS＝＂ Ø：＂＋IN\＄：IF OP THEN81ø
SQ 760 OPEN \(1,8,8\), INS＋＂，P，W＂：G OSUB86Ø：IF A THEN22 \(\varnothing\)
FJ \(776 \mathrm{AH}=\mathrm{INT}(\mathrm{SA} / 256): \mathrm{AL}=\mathrm{SA}-(\mathrm{A}\) H＊256）：PRINT\＃1，CHR\＄（AL） ；CHRS（AH）；
PE \(78 \emptyset\) FOR \(I=\emptyset\) TO B：PRINT\＃l，CH RS（PEEK（BS +I\()\) ）；：IF ST T HEN8øØ
FC 790 NEXT：CLOSE1：CLOSE15：GOT \(094 \varnothing\)
GS 8 Øø GOSUB1ø6Ø：PRINT＂\｛DOWN\} \｛BLK\}ERROR DURING SAVE: E47＂：GOSUB860：GOTO220
MA \(81 \sigma\) OPEN \(1,8,8\), INS \(+^{\prime \prime}, P, R^{\prime \prime}: G\) OSUB86Ø：IF A THEN22 \(\sigma\)
GE 820 GET\＃l， \(\mathrm{A}, \mathrm{B}, \mathrm{AD}=\mathrm{ASC}(\mathrm{A} \$+\mathrm{Z}\) \＄）\(+256^{*}\) ASC \((B \$+Z \$): I F A D\) ＜＞SA THEN \(\mathrm{F}=1\) ：GOTO85
RX 83Ø FOR I＝ø TO B：GET\＃l，AS：P OKE BS \(+I, \operatorname{ASC}(A S+Z S): I F(\) \(I\langle>B)\) AND \(S T\) THEN \(F=2: A D\) \(=I: I=B\)
FA 840 NEXT：IF ST＜＞64 THEN \(F=3\)
FQ 850 CLOSE1：CLOSE15：ON ABS（F \(>\varnothing)+1\) GOTO96Ø，97Ø
SA 860 INPUT\＃15，A，AS：IF A THEN CLOSE1：CLOSE15：GOSUBl \(\varnothing\) \(60:\) PRINT＂\(\{\) RVS \}ERROR: "A \＄
GQ \(87 \emptyset\) RETURN
EJ 880 POKEl 83，PEEK（FA＋2）：POKE 187，PEEK（FA＋3）：POKE188， PEEK（FA＋4）：IFOP＝ØTHEN92 \(\sigma\)
HJ 890 SYS 63466：IF（PEEK（783）A ND1）THEN GOSUBlø6Ø：PRIN T＂\(\{\) DOWN \} \{RVS\} FILE NOT \｛SPACE \}FOUND ": GOTO69ø
CS 9øø AD＝PEEK（829）\(+256 * \operatorname{PEEK}\)（ 8 \(3 \sigma)\) ：IF \(A D<>S A\) THEN \(F=1\) ： GOTO97ø
SC \(91 \emptyset \mathrm{~A}=\operatorname{PEEK}(831)+256\)＊ \(\operatorname{PEEK}\)（ 83 2）\(-1: F=F-2\)＊\((A<E A)-3 *(A>\) EA）：AD＝A－AD：GOTO93Ø
KM \(92 \emptyset A=S A: B=E A+1: G O S U B 1 \varnothing 1 \varnothing: P\) OKE780， 3 ：SYS 63338
JF \(930 \mathrm{~A}=\mathrm{BS}: \mathrm{B}=\mathrm{BS}+(\mathrm{EA}-\mathrm{SA})+1: G O S\) UB1Ø1Ø：ON OP GOTO950：SY S 63591
AE 940 GOSUB1 ø8ø：PRINT＂\｛BLU\}** SAVE COMPLETED＊＊＂：GOT 0220
XP \(95 \emptyset\) POKEI 47，Ø：SYS 63562：IF \｛SPACE \}ST> \(\varnothing\) THEN97ø
FR 960 GOSUBlø8ø：PRINT＂\(\{B L U\} * *\) LOAD COMPLETED＊＊＂：GOT 022Ø
DP 970 GOSUBlø6ø：PRINT＂\｛BLK\} \｛RVS\}ERROR DURING LOAD: \｛DOWN\}E43": ON F GOSUB98 Ø，99ø， \(1 \varnothing \varnothing \varnothing\) ：GOTO22ø
PP \(98 \emptyset\) PRINT＂INCORRECT STARTIN G ADDRESS（ \({ }^{\prime \prime}\) ；：GOSUB360： PRINT＂）＂：RETURN
GR \(99 \emptyset\) PRINT＂LOAD ENDED AT＂； \(A D=S A+A D: G O S U B 360:\) PRINT D\＄：RETURN
FD løøø PRINT＂TRUNCATED AT END ING ADDRESS＂：RETURN

RX \(1 \varnothing 1 \varnothing \mathrm{AH}=\operatorname{INT}(\mathrm{A} / 256): \mathrm{AL}=\mathrm{A}-(\mathrm{AH}\) ＊256）：POKEl 93，AL：POKE1 94，AH
FF \(1020 \mathrm{AH}=\operatorname{INT}(\mathrm{B} / 256): \mathrm{AL}=\mathrm{B}-(\mathrm{AH}\) ＊256）：POKE174，AL：POKEl 75，AH：RETURN
FX \(1 \varnothing 3 \varnothing\) IF \(A D<S A\) OR \(A D>E A\) THEN \(165 \varnothing\)
HA 1040 IF（AD＞511 AND AD＜40960 ）\(O R\)（ \(A D>49151\) AND \(A D<53\) 248）THEN GOSUB1ø8 \(0: F=\varnothing\) ：RETURN
HC 1 ．ø5ø GOSUBlø6ø：PRINT＂\｛RVS\} \｛SPACE \} INVALID ADDRESS
\｛DOWN\} \{BLK\}" : F=1 : RETU RN
AR \(106 \emptyset\) POKE \(S D+5,31: P O K E ~ S D+6\) ，2ø8：POKE SD，240：POKE \｛SPACE \}SD \(+1,4:\) POKE SD + 4，33
DX 1070 FOR \(S=1\) TO \(1 \varnothing \varnothing: N E X T: G O\) TO1ø9ø
PF \(1 \varnothing 8 \varnothing\) POKE \(S D+5,8: \mathrm{POKE} \mathrm{SD}+6\) ， 24ø：POKE SD，\(\varnothing:\) POKE SD + \(1,90:\) POKE SD \(+4,17\)
AC 1б9ø FOR S＝1 TO 1øø：NEXT：PO KE SD＋4，\(\varnothing: P O K E S D, ~ \varnothing: P O\) KE SD \(+1, \varnothing\) ：RETURN

\section*{LOTTG CIPNER．}

GET THE BEST ODDS ON ANY LOTTERY SIX NUMBER－PICK FOUR－DALLY GAME －produces foun comamatows of NUMBERS TO CHOOSE FRON BE PAOORAMMED． prints out past lotto numbers drawn PAST COMPUTEA PICKS，ANO NUMEEA DRAW FREOUENCY LIST．
RANDOM NUMBER OENERATOA MCLUDED.


\section*{Window Magic}

SUPER HI－RESOLUTION DRAWING IN MULTI OR MONO COLOR －copr －FIL－MARROR，FLP，ANO SCHOLLMGG Windows －ZOOU－EXPAROS A WNOOW TO DOUVLL SIZE
－SAVE ANO LOAO YOUA WNDOWS OH DISX －Bave nio load youn winoows on disx
－paints on stanoaro dot matrix phanten －Paints on stanoand dot
－cione colon attributes
－colon sounazs
－TTPES LETTERS NNO OMAPHCS
 －zOOU MLOT－DRUW ON AN EXP NNDEO WNCOW AND YOUR DRA WINO AT TME she time
\(324.05 \mathrm{Css} / 12 \mathrm{I}\)

\section*{STOCK BROKER．}

PROFITS GUARANTEED OR YOUR MONEY BACK

BuYing 0000 OUALITY，VOLATLE ISSUES ANO
 TO CASH AS THE STOCX MEVRS ITS PEAX．
－technecal tradna that wonks．
－san aruph prant－outs
－hecono ur to 144 stocks on a disk．
320 es C．4／128

ACORN OF INDIANA，INC．
2721 OHIO STREET MICHIGAN CITY，IN 46360

\title{
When you want to talk computers...
}

\section*{HOME COMPUTERS.}

\section*{Atari Computers}

520ST Monochrome System...... \(\$ 619.00\)
520ST Color System.................... 789.00
1040ST Color System.................. 999.00
800XL 64K Computer.................... 69.99
65XE 64K Computer.....................89.99
130XE 132K Computer................ 129.00
Atari Peripherals
1010 Cassette Drive...................... 49.99
1020 Color Printer..........................29.99
1050 Disk Drive........................... 129.00
835300 Baud Modem................... 24.99
850 Atari Interface....................... 109.00
M301 300 Baud Modem................39.99
XM801 80-Column Printer........... 179.00
XM804 ST Printer....................... 169.00
ICD PR Connection.......................59.99
Commodore Computers
Commodore-64C 64K Computer.. 199.00
Commodore-64 64K Computer..... 169.00
Commodore-64 Package System.479.00
Commodore-128 128K Computer.269.00
Commodore-128 Package System759.00
Amiga 1000 256K Computer....... 849.00
Commodore Peripherals
1530 Data Cassette.......................34.99
1660 Commodore Modem............59.99
1670 Commodore Modem........... 139.00
1541 Disk Drive.......................... 189.00
1541C Disk Drive........................ 199.00
1571 Disk Drive.......................... 249.00
1802 Color Monitor......................189.00
1902 Color Monitor......................299.00
Amiga 1010 3½" Ext. Drive........ 229.00
Amiga 1020 5¼" Ext. Drive........ 199.00
Amiga 1080 RGB Monitor............269.00
C128 512K Expansion Board....... 179.00
PPI Parallel Printer Interface...........34.99
Xetec S/Graphix 8K....................... 69.99
Micro R\&D MW350....................... 44.99

\section*{MSIDOS SYSTEMS.}
\begin{tabular}{|c|c|}
\hline AT\&T 6300 & from \$1699.00 \\
\hline Compaq & from \$1699.00 \\
\hline Cordata & from \$899.00 \\
\hline IBM-PC & ..from \$1099.00 \\
\hline IBM-XT & .from \$1699.00 \\
\hline IBM-AT & .from \$2699.00 \\
\hline Leading Edge & from \$999.00 \\
\hline Sperry & from \$1299.00 \\
\hline Zenith & from \$999.00 \\
\hline
\end{tabular}

\section*{MULTIFUNCTION CARDS.}

\section*{AST}

Six Pak Plus PC/XT................ \(\$ 169.00\)
Six Pak Premium PC/XT......... 349.00
Advantage-AT 128K.................. 339.00

\section*{Everex}

EV-221 Evergraphics Mono..... 139.00
EV-640 Edge Card.................... 259.00

\section*{Hercules}

Color Card................................ 159.00
Graphics Card Plus.................. 209.00
Fifth Generation
Logical Connection 256K......... 299.00
IDEAssociates
IDE-5251 Local Emulator......... 579.00 Intel
Intel Above Boards........................Call
8087, 80872, 80287, 802878........Call Paradise
Modular Graphics Card........... 269.00
Quadram
Quad Ega + Graphics Adapter339.00 Silver Quadboard......................239.00
Expanded Quadboard.............. 119.00
VIDEO 7
EGA Deluxe............................... 389.00
Zuckerboard
Color Card w/Parallel.................89.99
Monochrome Card w/Parallel.....99.99
576K Memory Card....................59.99

\section*{DRIVES.}

\section*{Allied Technology}

Apple Half-Heights....................... 109.00
CMS
Drive Plus 20MB Intemal Card.... 399.00 Everex
Stream 20 20MB Tape-Backup....669.00

\section*{Genie Technology}

210 H \(10+10\) subsystem....... 1749.00 Indus
Atari GT Disk Drive..................... 199.00
Commodore GT Disk Drive......... 199.00
lomega
A22OH 20 + 20 Bernoulli Box..... 2499.00

\section*{Irwin}

110 D 10MB Tape backup.......... 369.00
Mountain Computer
Drive Card 20MB Internal Card... 659.00 Racore Jr. Enhancements
Jr. Expansion Chassis w/DMA..... 319.00

\section*{Seagate}

ST-225 20MB w/Controller.

\section*{Canon}

LBP-8A1 Laser, 8 Page/Min..... \(\$ 1899.00\)

\section*{Citizen}

MSP-10 160 cps, 80-Column....... 319.00
MSP-15 160 cps, 132-Column..... 419.00
MSP-20 200 cps, 8K Buffer......... 349.00
MSP-25 200 cps , 132-Column.....539.00
Premier 3535 cps Daisywheel.... 499.00 C.Itoh

8510-SEP Epson/IBM 80-Column.....Call 310-SEP Epson/IBM 80-Column.......Call Cordata
The Desktop Printshop Laser..... 2199.00 Diablo
Model 635 RO Daisywheel.......... 895.00 Epson
LX-86 120 cps, 9-Wire Printhead. 239.00
FX-85 160 cps, 80-Column..............Call
FX-286 160 cps , 132-Column...........Call
EX-800 \(300 \mathrm{cps}, 80\)-Column............Call
LQ-800 180 cps , 24-Wire Printhead..Call
LQ-2500 324 cps, 24-Wire PrintheadCall
Juki
650050 cps Daisywheel..................Call
610010 cps Daisywheel.................Call
5510C Color Dot Matrix...................Call
NEC
P5, P6, P7 Pinwriter Series.............Call
355035 cps Spinwriter................ 779.00
885055 cps Spinwriter............ \(\$ 1099.00\)
Okidata
ML-182 120 cps, 80-Column........ 219.00
ML-192 160 cps, 80-Column........ 319.00
ML-193 + 200 cps , 132-Column.......Call
ML-292 200 cps, 80-Column............Call
ML-293 200 cps, 132-Column..........Call
Panasonic
KX-1080i 120 cps, 80-Column......219.00
KX-1092 180 cps, 7K Buffer........ 339.00
KX-1592 180 cps, 132-Column..... 439.00
Star Micronics
LV-1210 120 cps, 80-Column....... 189.00
SG-10C 120 cps , C64 Interface... 199.00
NX-10 120 cps, 80-Column......... 219.00
SG-15 120 cps, 132-Column........ 379.00

\section*{Texas Instrument}

T1-855 150 cps, 80-Column......... 599.00
Tl-865 150 cps , 132-Column........749.00

\section*{Toshiba}

P321 216 cps, 24-Pin Printhead... 479.00
P341 216 cps, 24-Pin Printhead... 589.00
P351 288 cps, 24-Pin Printhead. 1049.00


\section*{When you want to talk price.}
\begin{tabular}{|c|c|c|}
\hline MONIT0: & SOFMARE & C M \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Amdek \\
Video 310A Amber TTL............. \(\$ 149.00\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Ansa \\
Paradox \(\qquad\)
\end{tabular}} & PC-XT Compatible \\
\hline & & 360K Floppy Driv \\
\hline Video 410A Amber TTL & Ashton-Tate & 256K RAM \\
\hline \multirow[t]{2}{*}{Color 722 RGB, CGA/EGA.......... 499.00 Magnavox} & \multirow[t]{2}{*}{} & to 64 \\
\hline & & On \\
\hline 7BM623 PC Monitor-80.............. 99.99 & Reflex..................................... 99.99 & Epson (Free Tractor) \\
\hline NEC & \multirow[t]{2}{*}{Lightening/Word Wizard \(\qquad\) 99.99 Central Point Software} & Homewriter-10 Limited Time) \\
\hline \multirow[t]{2}{*}{12" TTL Green or Amber........... 129.00 JC-1401P3A Multi-Sync..............In Stock} & & Dot Matrix Printer \\
\hline & Copy II PC................................... 24.99 & \\
\hline Princeton Graphics & \multirow[t]{2}{*}{PC Option Board.......................... 84.99 5th Generation} & \\
\hline MAX-12 12" Amber TTL.............. 169.00 & & C M Only! \\
\hline HX-12E 12"RGB/EGA................499.00 & Funk Software & \\
\hline Quadram & \multirow[t]{2}{*}{Sideways \(\qquad\) 44.99 IMSI} & \\
\hline 8460 Quadchrome Enhanced..... 499.00 & & \\
\hline Taxan \({ }^{\text {640 }} 12^{\prime \prime} \mathrm{Hi}\) Res RGB 529.00 & Optimouse w/Dr. Halo...............119.00 & 1200 Baud Internal Mod \\
\hline 640 12" Hi-Res RGB.................. 529.00 & \multirow[t]{2}{*}{\begin{tabular}{l}
IUS-Sorcim \\
General \\
Ledger \(\qquad\) 299.00
\end{tabular}} & \\
\hline Teknika \({ }^{\prime \prime}\) MJ-22 13 RGB/Comp Hi-Res 279.00 & & , \\
\hline MJ-22 13" RGB/Comp. Hi-Res.... 279.00 & \multirow[t]{2}{*}{Supercalc IV........................................219.00
Super Project Plus..............299.0} & CM \\
\hline Zenith \({ }^{\text {2 }}\) ", Green Composite 99.99 & & \\
\hline ZVM-1230 12", Green Composite...99.99 & Lifetree & Multitech \\
\hline ZVM-1330 13" Color/RGB..........459.00 & Volkswriter III........................... 159.00 & \\
\hline N & Lotus Lotus 1-2-3.............................339.00 & Composi \\
\hline & Symphony .............................. 439.00 & C \\
\hline \begin{tabular}{l}
Anchor \\
6480 C64/128 1200 Baud....... \(\$ 119.00\)
\end{tabular} & Meca & \\
\hline Omega 80 Amiga.................... 129.00 & Managing Your Money \(\qquad\) 119.00 MicroPro & \\
\hline VM520 ST520/1040 1200 Baud... 139.00 & Wordstar 2000 Plus...................299.00 &  \\
\hline Expressi PC-1200 Half Card.......149.00 & Wordstar Prof. w/GL Demo.........189.00 & Word Perfect \\
\hline Everex & \multirow[t]{2}{*}{\begin{tabular}{l}
Microrim \\
R:Base System 5....................... 339.00
\end{tabular}} & Word Processor \\
\hline Evercom 1200 Baud Internal.......129.00 Hayes & & C M On \\
\hline Smartmodem 300 External......... 139.00 & MicroSoft & \\
\hline Smartmodem 1200B Internal.......359.00 & MicroSoft Mouse......................129.00 & \\
\hline Smartmodem 2400B Internal.......539.00 & Microstuf & 20 MB \\
\hline Practical Peripherals & Crosstalk XVI............................ 89.99 & Hard Driv \\
\hline \multirow[t]{2}{*}{Practical Modem 1200 External... 169.00 Quadram} & \multirow[t]{2}{*}{Remote \(\qquad\) 89.99} & w/Controller \\
\hline & & C \\
\hline Quadmodem II 1200 Baud.........299.00 & \begin{tabular}{l}
Multimate International \\
Multimate 3.3.............................. 269.00
\end{tabular} & \\
\hline \multirow[t]{3}{*}{Supra
MPP-1064 AD/AA C64.................. 69.99
1200AT 1200 Baud Atari........... 149.00} & Multimate Advantage...................319.00 & Atari 520S \\
\hline & Advantage Keyboard.................... 279.00 & 512K Computer \\
\hline & Norton Software & with Atari 12" \\
\hline DISKETES. & Norton Ultilities 3.1 \(\qquad\) 49.99 Software Publishing Group & \\
\hline Maxell & PFS: Professional Write............. 129.00 & C M Only \\
\hline MD-1 SS/DD 51/4"...................... \(\$ 9.99\) & \multirow[t]{2}{*}{PFS: Professional File.................. 159.00
Clickart Personal Publisher........129.00} & \\
\hline MD-2 DS/DD 5¼".................... 12.99 & & \\
\hline MD-2HD Hi-Density 51/4"............. 24.99 & Harvard Professional Publisher..... 439.00 & Amiga 1000512 K \\
\hline Verbatim & \multirow[t]{2}{*}{The Software Group
Enable....................................... 369.00} & Computer w/Amiga \\
\hline VE-1 SS/DD 51/4"........................ 7.99 & & 1080 RGB Monitor \\
\hline
\end{tabular}

In the U.S.A. and in Canada

\title{
Call toll-free: 1-800-233-8950.
}

Outside the U.S.A. call 717-327-9575 Telex 5106017898
Educational, Governmental and Corporate Organizations call toll-free 1-800-221-4283
CMO. 477 East Third Street, Dept. A202, Williamsport, PA 17701
ALL MAJOR CREDIT CARDS ACCEPTED.
POLICY: Add \(3 \%\) (minimum \(\$ 7.00\) ) shipping and handling. Larger shipments may require additional charges. Personal and company checks require 3 weeks to clear. For faster delivery use your credit card or send cashier's check or bank money order. Pennsylvania residents add 6\% sales tax. All prices are U.S.A. prices and are subject to change and all items are subject to availability. Defective software will be replaced with the same item only. Hardware will be replaced or repaired at our discretion within the terms and limits of the manufacturer's warranty. We cannot guarantee compatibility. All sales are final and returned shipments are subject to a restocking fee.

\section*{SOFTWARE}

MacBible KJV. O\&N test (text) 512+. \$100. For Mac, IBM-PC \& C64. Books of the Bible + Old \& New Test Quiz + Bible Pursuit. \(\$ 30\). Lewis Enterprises (405) 794-3953 Rt. 14, Box 45, Moore, OK 73165

\section*{FANTASTIC DAILY NUMBER FORECASTERI}

Not a R/N Gen. Guaranteed! Str. Hits. C/64, Ap, IBM, Atari. 1 Drive. OH add 5\% SASE for info. \(\$ 42.95\) on Disk only to: Z-Way, PO Box 9017-C, Canton, OH 44711

If you'd like information on the latest version of your software, please call or write: Batteries Included Customer Support, 30 Mural St., Richmond Hill, Ontario, Canada L4B 1B5 (416) 881-9816

COMMODORE: TRY BEFORE YOU BUY.
Best selling games, utilities, educational, + classics and new releases. 100's of titles. Visa/MC. Free brochure. RENT-A-DISC, Frederick Bldg. \#345, Hunt'n, WV 25701 (304) 529-3232

\section*{FREE APPLE SOFTWARE}

Over 1000 Public Domain Programs on 50 diskettes. \(\$ 5\) each plus \(\$ 1\) for shipping per order. Send \(\$ 1\) for catalog. Refundable with order. C\&H ENTERPRISES
PO Box 29243, Memphis, TN 38127
TI-99/4A QUALITY SOFTWARE for Business, Home and Entertainment ** Bonus Software Offer! \({ }^{* *}\) Send for FREE catalog to MICRO-BIZ HAWAII, BOX 1108, PEARL CITY, HI 96782

TI-99/4A Software/Hardware bargains. Hard to find items. Huge selection
Fast service. Free catalog.
D.E.C., Box 690, Hicksville, NY 11801

TANDY 1000 PROGRAMS AND NEWSLETTER Send for free information on educational \& entertainment programs \& newsletter. Soda Pop Software, POB 653, Kenosha, WI 53141

FREE SOFTWARE for C64, C128, IBM \& CPM send SASE for info (specify computer) to: PUBLIC DOMAIN USERS GROUP, PO Box 1442-A1, Orange Park, FL 32067
APPLE PUBLIC DOMAIN SOFTWARE (almost free) Send \(\$ 2\) for sample disk and catalog. (refunded w/order) Disks cost \(\$ 2.50\) and less. CALOKE IND., Box 18477, KC, MO 64133

DISCOUNT SOFTWARE for most computers. FREE CATALOG. Sale: 5.25" DSDD Disks 25 for \(\$ 13.95\) ppd. WMJ DATA SYSTEMS-C, 4 Butterfly Dr., Hauppauge, NY 11788


\section*{ATTENTION T.I.99/4A OWNERS - Over 1500 Accessories THE WORLD'S LARGEST COMPUTER ASSISTANCE GROUP}

Now serving over 35,000 members worldwide with the best in technical assistance, service, and products for the Texas Instrument 99/4A To become a member and receive newsletters, catalog, technical assistance and membership package, send \(\$ 10.00\) for a ONE Year Membership to: 99/4A National Assist Group National Headquarters P.O. Box 290812

Ft. Lauderdale, Florida 33329
Attention Membership Division
For Information Call (305) 583-0467

TAX SPREADSHEETS FOR ATARI, APPLE, IBM, C64, C128, Plus/4, TI99/4A: \$19.95 + \$2 s/h. Forms \(1040,1040 \mathrm{~A}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}, \mathrm{SE}, \mathrm{W}, 2106\), 2441. Yearly updates \(\$ 10\). Prints IRS Forms! TI w/XBasic; Apple II, Atari w/48K or more. Specify disk or tape. Steve Karasek, 855 Diversey, St. Louis, MO 63126, (314) 961-2052

BUY ONE GET ONE FREE. It's you against 1 to 6 other players and/or the computer in TANKGRID. Play via modems against friends anywhere in the USA. Includes a quarterly national users list for \(\$ 30.00\) \& TELE-CHESS. IBM, Tandy \& Commodore 64/128. Mental Imagery, PO Box 2072; Pontiac, MI 48056. (313) 332-8600
FREE HARDWARE/SOFTWARE CATALOGI XT Clone \(\$ 895\) and up, AT Clone \(\$ 1995\) and up. Call (201) 781-1902 or (800) 654-1318
Shamrock Computers, PO Box 311,
Peapack, NJ 07977 (Tue-Fri 9 to 5)
10,000 WORD DICTIONARY DISK
Dictionary Disk for SPEEDSCRIPT© on C64. (REQUIRES SPEEDCHECK©) FREE Utilities included. To order send check/m.o. for \(\$ 8.50\) to: BLENMAN ENTERPRISES, 254 East 94 St., Brooklyn, NY 11212 OCOMPUTE! Publications, Inc.

GET THIS DISK and be busy with your computer for endless hours. Very effective in taking time and making money. Once you get this you're a future man. To Order: Send \(\$ 10\) to: A.B.S.M., P.O. Box 2055, Kansas City, MO 64142. \(5^{1 / 4 \prime \prime}\) only.
CHEAP SOFTWARE FOR PC/MS-DOS/PCjr...
Games, Business, Educational and Utility Disk. For catalog write: Morning Star, P.O. Box 3095, Ann Arbor, MI 48106

C128 PROGRAMMERS AID. Commands: FIND (lists lines), CHANGE (w/verify), DMERGE, DAPPEND, EXEC, DCOMPARE, UNNEW +32 more. Takes the tedium out of BASIC programming. Easily add your own commands written in BASIC or ML! For prompt delivery send \(\$ 39\) M.O. to: Micro-MAK, 1695 Ca-tim Drive, Prescott, AZ 86301. Ten-day return privilege.

ATARIWARE: The Best PD Software from Atari enthusiasts across the US. 100 disks to choose from \(\$ 5\) each. Catalog with SASE. Gator-Ace, Box 1215, Gainesville, FL 32602 Specify ST or 8 Bit Computer, please!

NEW! ATARI 800/XL/XE SOFTWARE FROM \(\$ 8.95\) ! Practical home/personal applications, artificial intelligence, entertainment and more. Send for FREE CATALOG: 25TH CENTURY, PO Box 8042, Long Island, NY 11802

\section*{MISCELLANEOUS}

SHOP VIA CATALOG! Get the latest in over 2500 items all at wholesale prices! Free shipping! 68 p . color catalog \(\$ 2\) (refundable). FRANCO BUCCI, 2 Glenhaven, Glenolden, PA 19036

SAFEWARE INSURES COMPUTERS against
fire, theft, \& power surges for as little as \(\$ 39\). Call Safeware, The Insurance Agency Inc. at 800/848-3469, Columbus, Ohio.

DESKTOP PUBLISHING! For important technical management information contact: Socioeconomic Research Associates, Dept. C, P.O. Box 2054, San Jose, CA 95109 (408) 293-2304

\section*{COMPUTEI Classified is a low-cost way to tell over 350,000 microcomputer owners about your product or service.}

Rates: \(\$ 25\) per line, minimum of four lines. Any or all of the first line set in capital letters at no charge. Add \(\$ 15\) per line for boldface words, or \(\$ 50\) for the entire ad set in boldface (any number of lines.) Inquire about display rates.
Terms: Prepayment is required. Check, money order, American Express, Visa, or MasterCard is accepted. Make checks payable to COMPUTE! Publications.
Form: Ads are subject to publisher's approval and must be either typed or legibly printed. One line equals 40 letters and spaces between words. Please underline words to be set in boldface.
General Information: Advertisers using post office box numbers in their ads must supply permanent address and telephone numbers. Ad will appear in next available issue after receipt.
Closing: 10th of the third month preceding cover date (e.g., June issue closes March 10th). Send order and remittance to: Harry Blair, Classified Manager, COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. To place an ad by phone, call Harry Blair at (919) 275-9809.
Notice: COMPUTE! Publications cannot be responsible for offers or claims of advertisers, but will attempt to screen out misleading or questionable copy.

\title{
THE LOWEST \\ THE BEST PRICES \\ SERVICE \\ ELECTRONIC ONE* \\ LINES \\ OPEN \\ 10-6 E.S.T. \\ M-F
}

CALL (614) 864-9994•P.O. Box 13428 •COLUMBUS, OHIO 43213

\section*{SUPER LOW, LOW PRICES}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SOFTWARE} \\
\hline PRINT SHOP & 24.99 \\
\hline PRINT SHOP COMP. & 23.99 \\
\hline GRAPHIC LIB. & 13.99 \\
\hline PAPER CLIP WISPELL & 26.99 \\
\hline GEOS & 36.99 \\
\hline PRINT MASTER & 24.99 \\
\hline GRAPHIC SCRAPBOOK & 19.99 \\
\hline PAPER CLIP II & 44.99 \\
\hline FAST LOAD & 19.99 \\
\hline MACH 5 & 19.99 \\
\hline MACH 128 & 25.99 \\
\hline BETTER WORKING & \\
\hline WORD PRO W/TURBO & 29.99 \\
\hline TAG TEAM WRESTLING . & 17.99 \\
\hline BARD'S TAIL & 22.99 \\
\hline FOOTBALL (E.A.) & 9.99 \\
\hline STRIKE FORCE COBRA & 17.99 \\
\hline ZPILOT & 17.99 \\
\hline
\end{tabular}

HARDWARE ACCESSORIES FOR ATARI COMMODORE
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{HARDWARE ACCESSORIES FOR ATARI COMMODORE} \\
\hline PRINTERS & MONITORS* \\
\hline STAR NX10 . . . . . . . . . . . . . 199.99 & NAP (GREEN OR AMBER) . . . . . 59.99 \\
\hline STAR NX10C . . . . . . . . . . . . 219.92 & HITACHI 13" COLOR . . . . . . . . 169.99 \\
\hline STAR LU1210 . . . . . . . . . . . . . 159.99 & SAMPO 13" COLOR . . . . . . . . 159.99 \\
\hline STAR SG10C . . . . . . . . . . . . 179.99 & 1702 COLOR 14" . . . . . . . . . . 169.99 \\
\hline PANASONIC 10811. . . . . . . . . 189.99 & 1802C COLOR 13" . . . . . . . . . 179.99 \\
\hline PANASONIC 1091i........... 249.99 & *PLEASE SPECIFY SYSTEM \\
\hline SEIKOSHA 1000VE & WHEN ORDERING \\
\hline (BUILT IN C64 INTERFACE) . . 169.99 & TUNER BY MAGNAVOX \\
\hline \begin{tabular}{l}
SEIKOSHA 1000A \\
(ALL OTHER COMPUTERS). . 169.99
\end{tabular} & \\
\hline CITIZEN 120D................ 159.99 & 4 \\
\hline
\end{tabular}

\section*{HARDWARE} C128 COMPUTER 64 C (W/GEOS) 1541 C 1902 A 1802 C MONITOR 1702 MONITOR COMMODORE 1200 BAUD MODEM 128k RAM UPGRADE (C128) 512k RAM UPGRADE (C128) HES MODEM
XETEC JR. INTERFACE XETEC SR. INTERFACE CARTRIDGE PORT ADAPTER M-1 MOUSE 24.99 .99 13.99 26.99 24.99 19.99 44.99 19.99 25.99

\section*{תATARI}

Transfer time to emergency power 10 Milliseconds. Self-contained with enclosed gel cel battery. 425-Watt and 200-Watt 28 ampere models operate up to 35 minutes allowing ample time for safe shutdown! 3-Way AC line filter stops transient spikes and surges. 4 Receptacles. Automatic regulated battery charger. Output voltage \(117 \mathrm{vAC}, 60 \mathrm{hz}\). frequency controlled \(\pm 1 / 2\) cycle.
\(\square\) 200-Watt (10 ampere hours) only \$359
200-Watt ( 28 ampere hours) only \(\$ 429\)
\(\square\) 425-Watt (28 ampere hours) only \(\$ 599\)
Order toll free 1-800-662-5021
IN ILLINOIS, CALL 1-312-648-2191 OR MAIL COUPON inous̄-Tō̄- \(\overline{730} \overline{\mathrm{w}}\) - Lake Street INDUS-TOOL, 730 W . Lake Street
Dept. CI, Chicago, IL 60606
Enclosed is \$
or charge on
\(\square\) MasterCard or \(\square\) Visa Expires Card no.
Send model \#
Name

\section*{Company}

Address
City State__Zip
Reader Service Number/AdvertiserPage
102 Abacus54,55,57
103 Acorn of Indiana ..... 91
104 Activision ..... 31
105 Addison-Wesley ..... 19
Batteries Included ..... 21
Batteries Included ..... 37
106 Blackship Computer Supply ..... 75
C.O.M.B. Direct Marketing ..... 72
107 Communications Electronics Inc. ..... 85
108 CompuServe ..... 28,29
109 ComputAbility ..... 60-61
110 The Computer Book Club ..... 33
111 Computer Mail Order ..... 92,93
112 COVOX, Inc. ..... 54
113 Curtis Manufacturing Co., Inc.11
114 Digital Solutions Inc. ..... IFC-1
115 Dresselhaus ..... 18
116 Electronic One ..... 95
117 EPYX ..... 23
118 Firebird Licensees, Inc. ..... 7
119 Firebird Licensees, Inc. ..... IBC120 Indus-Tool96
Reader Service Number/AdvertiserPage
121 Jason Ranheim ..... 96
122 Lyco Computer ..... 38-41
McGraw Hill Continuing Education Center ..... 25
NRI Schools ..... 81
123 Okidata ..... 15
124 Origin Systems ..... BC
125 Precision Images ..... 59
126 Professor Jones ..... 84
127 Pro-Tech-Tronics ..... 51
128 Protecto ..... 34-35
129 Silicon Express ..... 47
130 Springboard ..... 2
131 subLOGIC Corporation ..... 27
132 Sun Remarketing Systems ..... 42
133 Thomson ..... 5
134 Timeworks ..... 13
135 Unitech, Inc. ..... 59
Classified Ads ..... 94
COMPUTE! Subscription ..... 17

\title{
GREAT PRODUCTS FOR YOUR COMMODORE \\ promenade \(\mathrm{C} 1^{\text {™ }}\) \\ \\ CAPTURE \({ }^{\text {T }}\)
} \\ \\ CAPTURE \({ }^{\text {T }}\)
}

The Eprom Programmer. Thoughtfully designed carefully constructed, the promenade \(\mathrm{C} 1^{\text {™ }}\) is respected around the world for quality and value. The original software controlled programmer does away with personality modules and switches. Intelligent programming capability can cut programming time by 95\%! With Disk Software \(\qquad\)
\(\qquad\) still just \(\$ 99.50\)

Take control of your '64 or ' \(128^{*}\) with this easy to use cartridge. Lets you make a back-up disk of your memory-resident software. Your program is then fully accessible to you and your program can be re-booted from your disk 3-5 times faster. Or make an autostarting cartridge using the promenade C1 and a CPR cartridge kit. Its magic!
CAPTURE \({ }^{\text {™ }}\) is a bargain at 39.95

\section*{CARTRIDGE MATERIALS:}

CPR-3 - Three socket board, case and 3 eproms, for use with CAPTURE \({ }^{\text {u }} \ldots \ldots\). . . . . . . . . . . . . . . . . . 29.95
PCC2 - Two 2732 (4K) or 2764 (8K) eproms. For '64 or '128 in 64 mode ................................... . . . 4.95
PCC4 - Four sockets for 2764,27128 or 27256 (32K) eproms. Bank switching........................... . . . 17.95
PCC8 - Like the PCC4 but twice the capacity. For multiple programs . .................................... 29.95
PRB4 - Four sockets, eprom \& battery backed RAM combination ........................................... . . 24.95
PTM2 - Basic 128 mode cartridge board. Two 2764 or 27128 eproms ...................................... . . . . \(5.95 \dagger\)
PTM4 - Four sockets, 27128 \& 27256 eproms. 128 mode bank switcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(19.95 \dagger\)
PCCH2 - Plastic case for above cartridges (except PCC8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25
Eproms - Always in stock at competitive prices.
\(\dagger\) available June '86
*when in 64 mode.

\section*{EPROM ERASERS:}

Datarase - Hobbyist eprom eraser, 2 at a time, 3 to 10 minutes ........................................ 34.95
PE14 - Industrial quality eraser, 7 to 9 at a time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79.95
Starter Set - CAPTURE \({ }^{\text {w }}\), promenade C1 and one CPR3 kit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149.95
Deluxe Set - CAPTURE \({ }^{\text {u }}\), promenade C1, Datarase and two CPR3 kits ................................. 199.95
SHIPPING \& HANDLING: USA - UPS SURFACE \(\mathbf{\$ 3 . 0 0}\) FOREIGN (AIR MAIL ONLY) \(\$ 13.00\)


1805 INDUSTRIAL DRIVE
AUBURN, CA USA 95603


The New Corrmodore Plus/4: A Hands-On Preview


The Parser's Tale:
How Adventure Gomes Work
Two Capllivating Games: Canyon Punner For Vic-20, And A.A.ari
The Number Oeme forminition Anor, Apple, n-99/ia,
simplo Apple
Screen Dump
Cornmodore Unleopy: Dack Up Single-Drive Disks Etifienily

\section*{Multiscreen Atard
Animatiort A Flevple} Oraphles Edifor


TRY COMPUTE! EVERY MONTH—12 ISSUES-AT 33\% OFF THE COVER PRICE.
\(\mathrm{Mr} / \mathrm{Ms}\) \(\qquad\)
Street \(\qquad\)
City
State \(\qquad\) Zip \(\qquad\)
\(\square\) I prefer 24 issues-2 years-at \(\$ 45.00\)
\(\square\) Bill Me \(\square\) Check Enclosed

Foreign and Canadia 1, slease add \(\$ 6(1)\) S. ner vear postage Offer subject to change vilhou notice.

\section*{NO POSTAGE} NECESSARY
IF MAILED IN THE UNITED STATES

\title{
BUSINESS REPLY MAIL \\ FIRST CLASS \\ PERMIT NO. 7478 \\ DES MOINES, IOWA
}

POSTAGE WILL BE PAID BY ADDRESSEE
COMPUTE
PO BOX 10954
DES MOINES, IOWA 50347

\section*{COMPUTEI's}

\section*{FREE Reader Information Service}

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.
Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.
Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: Computel, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.
Use these cards and this address only for computel's Reader Information Service. Do not send with payment in any form.

COMPUTE!
\begin{tabular}{lllllllllllllllll}
101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115 & 116 & 117 \\
118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 \\
135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 \\
152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 \\
169 & 170 & 171 & 172 & 173 & 174 & 175 & 176 & 177 & 178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 \\
186 & 187 & 188 & 189 & 190 & 191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 & 201 & 202 \\
203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 \\
220 & 221 & 222 & 223 & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235 & 236 \\
237 & 238 & 239 & 240 & 241 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 252 & 253
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Please let us know. Do you} \\
\hline \multicolumn{5}{|l|}{own: plan to buy:} \\
\hline \[
\underset{270}{\square}
\] & Apple & & & \[
\square_{271}
\] \\
\hline \[
\frac{\square}{272}
\] & Atari & & & \[
\underset{273}{\square}
\] \\
\hline \[
\square_{274}^{\square}
\] & Commo & dore & & \[
\underset{275}{\square}
\] \\
\hline \[
\underset{276}{\square}
\] & IBM & & & \[
\underset{277}{\square}
\] \\
\hline \[
\frac{\square}{278}
\] & T1-99/4A & & & \[
\square_{279}
\] \\
\hline \[
\begin{aligned}
& \square \\
& 280
\end{aligned}
\] & Other & (specify & ify model) & \[
\square
\] \\
\hline
\end{tabular}

Please print or type name and address. Limit one card per person.

Name
Address
City
State/Province Zip

Country
Phone
Please Include ZIP Code Expiration Date 3/31/87

For Fastest Service,
Call Our Toll-Free
US Order Line
800-247-5470
In IA call 1-800-532-1272
\(\square \$ 24.00\) One Year US Subscription
\(\square \$ 45.00\) Two Year US Subscription

Name
Address


\title{
COMPUTE! Reader Service P.O. Box 2141 Radnor, PA 19089
}


PERMIT NO. 7478
DES MOINES, IOWA
POSTAGE WILL BE PAID BY ADDRESSEE

PO BOX 10954
DES MOINES, IOWA 50347

\section*{DYNAMIC SPACE COMBAT} SIMULATION FOR YOUR


FACTSHEET/ORDER HOTLINE: 201.934.7373

\section*{From Origin comes an all new version}


Tis a dark time. The evil Wizard, Mondain, sends forth relentless hordes of his daemonic minions to ravage the lands of Britannia. Thou art the one of whom the Prophets speak. The champion who will track Mondain deep into the darkest depths of the earth, to the farthest reaches of space and time, to vanquish this immortal foe.

The original Ultima \({ }^{\oplus}\) I was a pioneering product that established new
 standards in fantasy roleplaying games and started what has become the best selling saga in the history of computer gaming. Now, Origin Systems brings you the new Ultima \({ }^{\oplus}\), I, completely rewritten in assembly language and employing state of the art graphics.

Journey back to the First Era of the Dark Ages and embark on the original quest of the Ultima \({ }^{\oplus}\) chronicles.


AUTODUELTM is a futuristic fast-paced strategy role-playing game where the right of way goes to the biggest guns.


RING QUESTTM is a graphic adventure where you must traverse a land fraught with perils in order to put an end to the havoc caused by the Ring of Chaos.


MOEBIUSTM takes you through the elemental planes of a colorful Oriental world of fantasy and adventure in search of the Orb of Celestial Harmony.


OGRETM is a strategy game fought on the nuclear battlefield of tomorrow as an inhumah juggernaut Cybertank battles conventional forces.```


[^0]:    COMPUTEI The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., 825 7th Ave., New York, NY 10019 USA. Phone: (212) 265-8360. Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, $\$ 24$. POSTMASTER: Send address changes to: COMPUTEl Magazine, P.O. Box 10955, Des Moines, IA 50950 . Second class postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright ©1987 by COMPUTE! Publications, Inc. All rights reserved, ISSN 0194-357X.

[^1]:    The COMPUTE! subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our readers. If you prefer not to receive such mailings, please send an exact copy of your subscription label to: COMPUTEI P.O. Box 10955, Des Moines, IA 50950. Include a note indicating your preference to receive only your subscription.

    Authors of manuscripts warrant that all materials submitted to COMPUTEI are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTEI, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of COMPUTEI Publications, Inc. No portion of this magazine may be reproduced in any form without written permission from the publisher. Entire contents copyright (c) 1987. COMPUTEI Publications, Inc. Rights to programs developed and submitted by authors are explained in our author contract. Unsolicited materials not accepted for publication in COMPUTEI will be returned if author provides a self-addressed, stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings are optional, but helpful. Articles should be furnished as typed copy (upper-and lowercase, please) with double spacing. Each page of your article should bear the title of the article, date and name of the author. COMPUTEI assumes no liability for errors in articles or advertisements. Opinions expressed by authors are not necessarily those of COMPUTEI.

    PET, CBM. VIC-20 and Commodore 64 are trademarks of Commodore
    Business Machines. Inc. and/or Commodore Electronics Limited
    Apple, Apple II, and Apple llss are trademarks of Apple Computer Compan
    IBM PC and PCjr are trademarks of International Business Machines, Inc.

    ATARR is a trademark of Atari, Inc
    Th-99/4A is a trademark of Texas Instruments, Inc Radio Shack Color Computer is a trademark of Tandy, Inc.

[^2]:    SALE \$199.00 List $\$ 499$

[^3]:    Add $\$ 3.00$ ( $\$ 10.00$ for hardware) for shipping, handling, and insurance. Illinois residents please add $61 / 2 \%$ sales tax. Add $\$ 6.00$ ( $\$ 20.00$ for hardware) for CANADA, PUERTO RICO, HAWAII, ALASKA, APO-FPO orders. All orders must be in U.S. Dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA. Enclose Cashier Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail. Prices \& Availability subject to change without VISA-MASTER CARD-C.O.D. notice. Hardware shipping prices vary according to weight. Please call for amount. No APO-FPO for Monitors. C.O.D. on phone orders only.

