Apple PowerKey: Complete Progra. Inside

COMPUTEI

The Leading Magazine Of Home, Educational, And Recreational Computing

Beehive

An Irresistible Strategy Game For Commodore 64 And 128 IBM RC/PCji, Atari, Apple And Amiga

Dr. Sound For Then
 Easily Modify Soundsern

 While Music Is PlayingA Full-featured 5
Home Finomsidf Cald

Atail And 64

speedup Techniques
Get Your Programs Off To
A Fast Start

Solvions!

II
Packet Wiser 64 Word Processor

MAIL ORDERS:
CRYSTAL COMPUTER INC.
In Michigan 1-517-224-7667
Outside Michigan 1-800-245-7316

CANADIAN DEALER ENQUIRIES
INGRAM CANADA LTD.
1.416-738.1700

PW 128/64 Dictionary
also available at $\$ 14.95$ (U.S.)

Only The Name Is New

The professional, full-featured software line from Digital Solutions is now called Pocket Software.
Pocket Writer 128/64. Pocket Filer 128/64. Pocket Planner 128/64.
The names are new, but this super soffware is still the same.

From now on, when you hear the word Pocket, it means soffyare that's full-featured, handy and easy to use.

Pocket Software at prices
that won't pick your pocket.

> Serious software that's simple to use.

With Pocket 128 or 64 , you'll find all the features you can imagine . . . and then some. And Pocket $128 / 64$ is so easy to use, you won't even need the reference guide. On-screen and in memory instructions will have you up
and running in less than 30 minutes, even if you've never On-screen and in memory instructions will have you up used a computer before.

The price? It's as low as you'd expect for a line of software called 'Pocker'. Suggested Retail Price for the 64
software is $\$ 39.95$ (U.S.) and $\$ 49.95$ (U.S.) for the 128. soffware called 'Pocker'. Suggested Retail Price for the 64
software is $\$ 39.95$ (U.S.) and $\$ 49.95$ (U.S.) for the 128.
Any of the 64 products may be upgraded to their 128 Any of the 84 products may be upgraded to their
version for $\$ 15.00$ (U.S.) $\$ 3.00$ shipping and handling. (Available to registered owners from Digital Solutions Inc. only.)
Pocket Writer 128 or 64 , Pocket Planner 128 or 64 and
Pocket Filer 128 or $64 \ldots$ Solutions at sensible prices
Pocket Writer 128 or 64 , Pocket Planner 128 or 64 and
Pocket Filer 128 or 64 ...Solutions at sensible prices from Digital Solutions Inc.
International \& Distributor enquiries to:
Commodore 128 or 64 , right?
You want integrated soffware - word processing, database and spreadsheet applications - at a sensible price. But, you also want top-of the-line features. Well, our Pocket $128 / 64$ software goes one better.

Beswesting sofivere for rour commodore 128 or 64

You want the very best soffware you can find for your

4 U/W Digital
Solutions Inc.

30 Wertheim Court, Unit 2 Richmond Hill, Ontario Canada L4B 1'B9 telephone (416) 731-8775

Flight Simulator II Scenery Disks

The Challenge of Accomplished Flight

With a realism comparable to (and in some ways even surpassing) $\$ 100,000$ aircraft flight simulators, Flight Simulator II includes full flight instrumentation and avionics, and provides a full-color out-thewindow view. Instruments are arranged in the format standard to modern aircraft. All the radios needed for IFR flight are included. Front, rear, left, right, and diagonal views let you look in any direction. Program features are clearly documented in a 96-page Pilot's Operating Handbook.

For training in proper flight techniques, Flight Simulator II includes another 96 -page instruction manual, compiled by two professional flight instructors with over 8,000 hours flight time and 12,000 hours of aviation teaching experience. You'll learn correct FAArecommended flight procedures, from basic aircraft control through instrument approaches. To reward your accomplishments, the manual even includes a section on aerobatic maneuvers.

The Realism and Beauty of Flight

Go sight-seeing over detailed, realistic United States scenery. High-speed graphic drivers provide an animated out-the-window view in either day, dusk, or night flying modes.

Flight Simulator II features over 80 airports in four different scenery areas: New York, Chicago, Seattle, and Los Angeles. Six additional Scenery Disks covering the entire Western half of the United States are now available in IBM and C64/I28 disk formats.

Apple and Atari versions will be released soon. Each disk covers a geographical region of the country in detail, and is very reasonably priced.

The Pure Fun of "World War I Ace"

When you think you're ready, you can test your flying skills with the "World War I Ace" aerial battle game. This game sends you on a bombing run over heavily-defended enemy territory. Six enemy fighters will attempt to engage you in combat as soon as war is declared. Your aircraft can carry five bombs, and your machine guns are loaded with 100 rounds of ammunition.

See Your Dealer. Flight Simulator II is available on disk for the Apple II, Atari XL/XE, and Commodore 64/I 28 computers for $\$ 49.95$. Scenery Disks for the C64 and IBM PC (Jet or Microsoft Flight Simulator) are $\$ 19.95$ each. A complete Western U.S. Scenery six-disk set is also available for $\$ 99.95$. For additional product or ordering information, call (800) 637-4983.

Apple II is a trademark of Apple Computer. Inc. Atari XL and XE are trademarks of Atari Corp.
Commodore 64 and 128 are trademarks of Commodore Electronics L.d. IBM PC is a registered trademark of International Business Machines Corp.

\$10,000.00 Atari ST Programming Contest!

First Prize \$5,000.00

Second Prize \$2,500.00

Third Prize \$1,000.00
Three Honorable Mentions \$500.00 each

Abstract

COMPUTE! Publications, Inc. is looking for the very best original software for the Atari ST series computers. And to prove we're serious, we're offering a total of $\$ 10,000.00$ in prize money to the top six winners. That's $\$ 5,000.00$ for First Prize, $\$ 2,500.00$ for Second Prize, $\$ 1,000.00$ for Third Prize, and $\$ 500.00$ each for three Honorable Mentions. In addition, the winners will receive our standard royalties when their programs are published. And even if your program doesn't win a prize, you can still earn purchase fees and royalties if we accept your entry for publication.

Interested? If so, read these rules:

[^0]discretion of COMPUTE! Publications, Inc., and all decisions are final. This includes decisions regarding creativity, similarity among entries, and so forth.
10. Winners will be announced by COMPUTE! Publications, Inc. in late 1986.
11. This contest is void where prohibited by law. Full-time, part-time \& previous employees of COMPUTE! Publications, Inc., and Capital Cities/ American Broadcasting Corporation are ineligible for the contest, but may still submit work for publication at standard rates.

Every Contest Entry Must Contain This Form:

I warrant that the program presently entitled
is my own original work and that the work has not been submitted for consideration elsewhere, nor has it been previously published. If my work is accepted by you, I understand that your decision as to the selection of winners and awarding of prizes is final and without recourse on my part. I agree, should you select my submission, to sign your standard contract, which includes assignment of the copyright of the program to COMPUTE!, and to allow you to use my name and image in promotional materials and other forms. (If you are under age eighteen, your parent or legal guardian must sign for you.)

Address entries to:
ATARI ST CONTEST
COMPUTE! Publications, Inc.
P.O. Box 5406

Greensboro, NC 27403
COMPUTE! Publications,Inc.abc
Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies

A bimonthly magazine devoted exclusively to Atari ST enthusiasts that includes a disk containing all of the programs found in each issue.

Atari has proven the pessimists wrong. The Atari 520ST and 1040ST have become the bestsellers among the new generation of personal computers. Both are breakthroughs in price and performance, and the community of ST owners is growing by thousands each month.
That's one reason why COMPUTE! Publications is announcing a new magazine specially designed for ST users. At the same time, we recognize that the power of the ST presents a unique challenge to magazines which publish program listings. That's why we're including a $31 / 2$-inch disk that contains every program found in each issue-ready to load and run. No more typing!
Here's what you'll get in every issue of COMPUTE!'s Atari ST Disk \& Magazine:

- Top-quality programs. Utilities. Games. Educational programs for youngsters. Application programs for home and business. And since all the programs will be on disk, there are few limitations on length or languages. A typical disk might contain an elaborate adventure game written in BASIC, a programming utility written in machine language, a dazzling graphics demo in compiled Pascal, and a useful home or business application written in Forth or C.
- Neochrome of the Month. Take a look at what computer artists are doing with the Atari ST. Each issue's disk contains a Neochrome picture file ready for you to load and admire. Are you an artist yourself? Send us a picture of your own, and we'll pay you if it's published.
- Regular columns. If you're a programmer-or would like to be-you'll love our columns on ST programming techniques and the C language. Or check out our column on the latest events and happenings throughout the ST community. Or send your questions and helpful hints to our Reader's Feedback column.
- Reviews. Honest evaluations of the latest software and hardware for the Atari ST.
- News \& Products. A comprehensive listing of the newest releases for your ST.

- And more: Interviews with ST newsmakers, reports on the latest industry trade shows, and overviews of significant new product introductions.

Starting with the October issue (available September 1), COMPUTE!'s Atari ST Disk \& Magazine will be found on newsstands nationwide for only $\$ 12.95$ per copy, including disk. Or it can be delivered directly to your mailbox six times a year for only $\$ 59.95$-a savings of over 20 percent.

> As a special bonus, if you order a prepaid subscription before August 1 , you'll get the first issue absolutely free!

To order, call 800-346-6767. In NY 212-887-8525 or send check or money order to
COMPUTE!'s Atari ST Disk \& Magazine
ABC Consumer Magazines, Inc.
Circulation Dept./8th Floor
825 7th Avenue
New York, NY 10019
COMPUTEI Publications,linc.abc One of the ABC Publishing Componies

Ceitificate Maker Because accomplishmentsdeserve to be recognized.

Offer Congratulations!

 Say Thanks! Have Fun! Giving someone a certificate is a wonderful way to recognize an outstanding achievement. It's also a perfect way to have a little fun.Certificate Maker givives you over 200 professionally designed certificates. From strictly official to fun and witty, there's something for everyone and every occasion. So you can surprise a family member, praise a student, applaud an athlete and honor an employee with great looking certificates. And each one will be as personal, professional and special as you choose.

Personalized certificates in minutes.

Simply choose a certificate, select a border, type your message; add a date and signature ...then print! It's that quick and that easy.
You can even create a name file and automatically personalize certificates for everyone in your class or club!

Over 200 exciting Certificates,Awards, Diplomas, and Licenses.
 SEPTEMBER 1986 VOLUME 8 NUMBER 9 ISSUE 76

Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies
ABC Publishing. President, Robert G. Burton 1330 Avenue of the Americas, New York, New York 10019

COMPUTEI The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., 825 7th Ave., New York, NY 10019 USA. Phone: (212) 265-8360. Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, $\$ 24$. POSTMASTER: Send address changes to: COMPUTEI Magazine, P.O. Box 10955, Des Moines, IA 50950 . Second class postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1986 by COMPUTE! Publications, Inc. All rights reserved, ISSN 0194-357X.

Editor's Notes

It's always a pleasure here to launch a new magazine. It is something we pride ourselves on doing well, and our family of publications, both books and magazines, represents a significant and ongoing commitment to quality of product. We are a fluid group, at least internally, and have been fortunate in that we managed, as an editorial group, to avoid most of the pitfalls of overexpansion that befell many of our publishing colleagues in this industry's jarring setbacks of 1984 and 1985. Tom Halfhill, most recently editor of COMPUTE!, has now taken the reins of our newest publication, COMPUTE's Atari ST Disk \& Magazine. It's our most massive diskbased undertaking to date, and no publishing house in the history of this industry has ever dared place tens of thousands of bound-in disks into general newsstand distribution. Lance Elko, long our editor of COMPUTE's GAZETTE, is expanding his duties to encompass COMPUTE!. We are confident this move will strengthen COMPUTE!, and help us in our continuing efforts to provide you with a constantly growing, and improving, publication. We welcome Lance to his new responsibilities, and can assure him, from long experience, that you out there will be the first to let him know how things are going.

A Software Product Note

While on the subject of COMPUTE!'s Atari ST Disk \& Magazine, we'd like to mention an important concern. This is a truly integrated product-the magazine
documents, nurtures, and tutors the disk. The programs, likewise, appear only on the disk. In short, you need the two parts to make the whole. One of our vendors' biggest concerns for this magazine was that of removal of the disk. After all, they argued, this is an expensive item, and so on. It is of major concern to us that you, as potential readers, be able to handle the magazine and browse the printed pages. For this reason, you will find that the newest magazine we publish has a bound-in disk. And pages that open for previewing. We're relying on you to prove us right. And, as always, COMPUTE! disk products are produced so that you can immediately, and easily, create your own backup. We do not engage in copy-protection. We expect you to refuse to engage in copying.

A Rare Exception

We do not frequently participate, in these pages, in a hand wringing regarding the ebbs and flows of our staff page. This is not, after all, afternoon television.

Our rare exception usually regards the move hither or yon of an editor or two as mentioned earlier in this piece. This month we must make a far more notable exception. Mr. Charles Brannon, of our resident staff, has accepted new employment, and we want not only to wish him well, but to devote to him a few sentences on this page. Charles, known by many of you as the author of SpeedScript, an incredibly sophisticated piece of COM-

PUTE!'s "giftware," came to work for us in 1980 as a high school student, doing program listings after school. Over the yoars Charles grew and evolved into a very senior young member of our staff, achieving the position of program editor, and the person behind many, many of the significant programs we have developed and published here. We have many talented people, and would not wish these accolades for Charles to diminish that collective excellence. But there is, after all, only one SpeedScript and Superfont, and well, Charles, we'll miss you, and we appreciate all the tremendous service you have provided to the readers and users of these publications over the last few years. We wish you well in your new venture.

Until next time, enjoy your issue. And watch for COMPUTE's Atari ST Disk \& Magazine, appearing on your local newsstand in early September.

Robert C. Lock Editor in Chief

Use The Brans Your COMMODORE WASNT BORN WITH.

Right at Your Fingertips in CompuServe's Commodore ${ }^{8}$ Forums

Our Commodore Forums involve thousands of Commodore users worldwide. These Forums show you just how easy and fun it is to get the most from your Commodore Computer.

The Commodore Communications Forum provides the latest news on communications software and advice on how to effectively use your machine for online computing.

The Commodore Programming Forum supports programmers and developers of Commodore 8-bit computers.

The Commodore Arts and Games Forum is for all Commodore 8-bit computers. Compose or play music, create or retrieve colorful graphics, and download games software.

The Commodore Amiga ${ }^{\otimes}$ Forum is the national resource for all business
and entertainment applications in the Amiga community.

Easy access to free software.

- Download first-rate, non-commercial usersupported software and utility programs.
- Take advantage of CompuServe's inexpensive weeknight and weekend rates (when Forums are most active, and standard online charges are just 10c a minute).
- Go online in most major metropolitan areas with a local phone call.
- Receive a $\$ 25.00$ Introductory Usage Credit when you purchase your CompuServe Subscription Kit.

Information you simply can't find anywhere else.

Use the Forum Message Board to exchange mail with fellow members. Join ongoing, real-time discussions in a Forum Conference-with Commodore luminaries like Jim Butterfield, Jim Gracely, Bob Landwehr and Steve Punter. Scan Forum Data Libraries for free software, documentation and contributions from Commodore enthusiasts.

Enioy other useful services, too. Like electronic editions of your favorite magazines, newsletters and articles, including Family Computing, OMNI Online and the Electronic Gamer. ${ }^{\text {rm }}$

All you need is your Commodore computer and a modem...or almost any other personal computer.

To buy your Subscription Kit, see your nearest computer dealer. Suggested retail price is $\$ 39.95$. To receive our free brochure, or to order direct, call 800-848-8199 (in Ohio, call 614-457-0802). Ifyou're already a CompuServe subscriber, type GO CBMNET (the Commodore Users Network) at any ! prompt to see what you've been missing.

CompuServe ${ }^{\text { }}$

Publisher

Founder/Ediltor In Chiet Senior Editior Managing Editor
Executive Editor
Ediltor, COMPUTEI's Atarl ST Disk \& Magazine Assistant Ediltor, COMPUTEI Production Dlrector Production Ediltor Ediltor, COMPUTEI's GAZETTE Technical Editor Assistant Technical Ediltor Program Editior Assistant Editor, COMPUTEI's GAZETTE
Assistant Features Editor Programming Supervisor Editorial Programmers

Copy Edilor
Submissions Reviewer Programming Assistants

Executlve Assistant Administrative Assistants

Assoclate Editors
Contributing Editor

COMPUTE1's Book Division Editor
Assistant Ediltors
Director, Book Sales \& Marketing

Production Manager Art \& Design Director Assistant Editor, Art \& Design
Mechanical Art Supervisor Artists Typesetting
Illustrator
Director of Advertising Sales
Associate Advertising Director
Production Coordinator
Promotion Assistan
Customer Service Manager Diane Longo Dealer Sales Supervisor Orchid Tamayo Individual Order Supervisor Cassandra Green Receptionist Anita Armfield Warehouse Manager John Williams

James A. Casella, President
Richard J. Marino, Vice President, Advertising Sales Christopher M. Savine, Director, Finance \& Planning

COMPUTEI Publications, Inc. publishes:

COMPUTE

COMPUTE'S

COMPUTEI Books

COMPUTEI'S

COMPUTEI'S

Apple Applications Special

Editorial offices:	324 West Wendover Avenue Suite 200 Greensboro, NC 27408 USA
Corporate offices:	825 7th Avenue New York, NY 10019 $212-265-8360$
Customer Service:	800-346-6767 (In NY 212-887-8525)
Hours:	9:30 A.M.-4:30 P.M. Monday-Friday

Coming In Future Issues

> File Compressor And SpeedFile For The Commodore 64

TurboDisk For Apple DOS 3.3

Prisonball: A Captivating Game For Apple, Atari, And Commodore 64 Atari High-Speed String Sort IBM PC/PCjr Mini Assembler

Subscription Orders

COMPUTEI

P.O. Box 10954

Des Moines, IA 50340
TOLL FREE
Subscription Order Line
800-247-5470
In IA 800-532-1272

COMPUTE! Subscription Rates (12 Issue Year):

US (one yr.) $\$ 24$
(two yrs.) \$45
(three yrs.) \$65
Canada and Foreign
Surface Mail \$30
Foreign Air
Delivery
\$65

Advertising Sales

2. Mid Atlantic

Jonathan Just

Regional Manager
212-315-1665
3. Southeast
\& Foreign
Harry Blair
919-275-9809
4. Midwest

Gordon Benson
312-362-1821

5. Northwest/

 Mountain/Texas Phoebe Thompson Dani Nunes 408-354-55536. Southwest

Ed Winchell
213-378-8361

Director of Advertising Sales:
Peter Johnsmeyer
Assoclate Advertising Director:
Bernard J. Theobald, Jr.
COMPUTEI Home Office 212-887-8460.
Address all advertising materials to: Kathleen Hanlon
Advertising Production Coordinator COMPUTEI Magazine
324 West Wendover Avenue
Suite 200
Greensboro, NC 27408

The COMPUTEI subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our readers. If you prefer not to receive such mailings, please send an exact copy of your subscription label to: COMPUTEI P.O. Box 10955, Des Moines, IA 50950. Include a note indicating your preference to receive only your subscription.

Authors of manuscripts warrant that all materials submitted to COMPUTEI are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTEI, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of COMPUTE! Publications, Inc. No portion of this (c) 1986, COMPUTEI Publications, Inc. Rights to programs developed and submitted by authors are explained in our author contract. Unsolicited materials not accepted for publication in COMPUTEI will be returned if author provides a self-addressed, stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings are optional, but helpful. Articles should be furnished as typed copy (upper- and lowercase, please) with double spacing. Each page of your article should bear the title of the article, date and name of the author. COMPUTE assumes no liability for errors in articles or advertisements. Opinions expressed by authors are not necessarily those of COMPUTEI.

PET. CBM, VIC-20 and Commodore 64 are trademarks of Commodore
Business Machines, Inc. and/or Commodore Electronics Limited
Apple is a trademark of Apple Computer Compan
IBM PC and PCjr are trademarks of International Business Machines, Inc.

F-15 STRIKE EAGLE

For Fighter Pilots-Not Sightseers

Enjoyed by
over 200,000 satisfied computer fighter pilots!

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

STRING\$, SPACE\$, And CHR\$

I have a suggestion for people who submit or translate IBM PC/PCjr programs for publication in your magazine. Whenever a BASIC program line requires that I type a long series of spaces, I find it difficult to tell exactly how many spaces are needed. This can be frustrating, because the "Automatic Proofreader" keeps signaling an error until I finally get the right number by trial and error. The STRING\$ function can easily eliminate this problem. For instance, the statement PRINT STRING $\$(15,32)$ has exactly the same effect as PRINT "
" and
is much easier to type in. STRING\$ can be used where any long series of identical characters is needed. For instance, PRINT STRING $\$(40,46)$ prints a line consisting of 40 dots.

Richard J. Patton
This is an excellent suggestion, and the same general advice applies to every version of BASIC. Some versions include STRING\$, which works exactly as in IBM BASIC; Amiga BASIC even includes a specialized SPACE $\$$ function for creating a string of spaces. For BASICs that don't support either function, you can do the same job through concatenation. To create a string consisting of 30 spaces, for instance, use $S P \$=$ " ":FOR $J=1$ TO 30: $S P \$=S P \$+C H R \$(32):$ NEXT. This construction is easy to type and requires only a few more characters than printing the string in literal form.

For similar reasons, it's often preferable to express graphic characters or unusual symbols as CHR\$ values rather than as string literals. Here are two different versions of a typical Commodore BASIC line:

The first version of line 10 uses a
literal graphics character to test whether the 11 function key has been pressed. The second version performs the same test with CHRS. To alleviate the "mysterious character" problem, our listing conventions (see "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue) replace any unusual Commodore or Atari character with a sequence that's easier to read. Here's what the same line would look like in a COMPUTE! listing:
$1 \varnothing$ IF $\mathrm{X} \$="\{\mathrm{Fl}$ \}" THEN GOSUB $1 ø \varnothing$
That's an improvement over listing an indecipherable graphics symbol, but it still requires that you remember the listing convention or look it up when the time comes. Of these three alternatives, the line with CHR\$ is preferred in many cases, since it's easy to read and type, and doesn't require reference to anything but the listing. Of course, where large numbers of characters are involved, CHR\$ may not be practical.

Spaced Out Operators

I enjoyed Bill Boegelein's "Amiga Puzzle" article in the May 1986 issue of COMPUTE!. I did have one problem, however, that may be of interest to your readers. The mistake was mine, not yours or the author's, but the solution might help everyone type in programs more accurately. The Play subroutine of Amiga Puzzle contains a complex IF statement that begins like this:

IF (mouseX>rat($x, y, 0$) AND ...

I mistakenly entered that portion of the statement like this:

IF (mouseX.rat(x,y,0) AND ...

Notice my inadvertent use of a period in place of the greater-than operator ($>$). Clearly, I forgot to hold down the SHIFT key when typing the $>$ character. The problem arises because Amiga BASIC lets you include a period as part of a variable name. Instead of performing the logical comparison triggered by $>$, BASIC saw mouseX.rat as the name of an array. Of course, there is no such array or variable in the program, so its value was set to zero, like all other uninitialized variables. As a result, this part of the IF test is always false and the program's CheckCheat routine can never
be called.
Although I was lucky enough to find this error without much searching, similar mistakes could be very difficult to detect in other situations. As a precautionary measure, I suggest that programmers always place a blank space on either side of a logical operator, as shown here:
IF (mouseX $>$ rat $(x, y, 0)$ AND ...
If the original line had been written in this way, my typing error would have been much easier to spot. More to the point, BASIC itself would have detected the mistake and signaled a syntax error immediately. Again, the problem was mine, not Mr. Boegelein's or yours. But it could easily be prevented by following this simple rule.

Jack Purdum
Thanks for the suggestion.

SpeedScript File Resurrected?

I recently experienced an odd thing when using SpeedScript on my Commodore 128 in 64 mode. After writing a document, I pressed the RESET switch to go back to 128 mode. Then I decided to go back to 64 mode to finish up the document. When I reloaded and ran SpeedScript, I saw the same document that was in memory before I reset the computer. Shouldn't the memory have been cleared during this process? Does this mean that my 128 running in 64 mode isn't fully compatible with a normal 64?

Chris Hicks
To answer your last question first, this experience does not signal any sort of incompatibility. Your computer behaved exactly as a normal 64 with a RESET switch would under the same circumstances. The 64's reset routine does not erase or scramble everything in the computer's memory; that happens only when you turn the computer off and on again. (For more details, see "64 RAM Report" in the June 1986 installment of this column.)

SpeedScript erases all of its text storage space when you first run the program, but not if you rerun it during the same session. When you run SpeedScript, it checks to see whether a special memory

${ }^{\text {THE }}$ Premier Word Processing Package
 - CREATIVE COMPUTING

"PaperClip is easy to use, yet offers the advanced features of programs designed for the IBM PC. These include: block move, copy, delete, macros, automatic page numbering, headers, footers, underlining, boldface, super and subscripts, variable . character pitch, and custom character sets. The editing screen can be set up to 130 columns wide, \& text can be scrolled in any direction. A preview mode displays formatted text exactly as it will appear on the printed page. You may further define your own formatting parameters, including margins, line lengths, page length and spacing.
PaperClip contains over 30 printer files for all the current major models. The documentation is excellent and the disk itself unprotected, though keyed through a joystick port. This means you can make as many back-up copies as you like, but can use the program only when the key is inserted." - CREATIVE COMPUTING
"PaperClip is one of the easiest of the professional word processors to use, with a sensible manual and plenty of aids for the accident-prone." -COMPUTING NOW "a "must have" in an ideal software-library"-ELECTRONIC LEARNING
"PaperClip is the Cadillac of word processors" OMNI
"an excellent full-featured word processor"' THE BOOK OF CO, So clearly superior, ...State-of-the-art word processing". ANTIC
"the ultimate word processor..." ANALOG "...best professional word processor available" RUN "exceptional word processing" INPUT "hard to beat" ACE "You'll find yourself growing spoiled."- FAMILY COMPUTING superb word processor, ...the most sophisticated to date!' "...does exactly what it was intended to do...and more".. "...most powerful of packages"-COMMODORE MAGAZINE
"...facts attest to its excellence!".
"You will not find a word processing package superior to this
one! CREATIVE COMPUTING
location contains the "I was here before" flag. If this flag is present, SpeedScript concludes that it was used previously in this session and sets up without erasing any text. Resetting the computer doesn't disturb either the memory area where text is stored or the location that holds the flag. So when you reran SpeedScript, the text was still there.

This feature of SpeedScript permits you to exit to BASIC if necessary, then reactivate the word processor without losing all of your work. As long as you don't load a different program or perform operations that change the contents of BASIC program space (or the memory location where SpeedScript stores the flag), any previous text should remain intact. To play it safe, of course, you shouldn't exit to BASIC more often than necessary. SpeedScript permits you to view the disk directory and send commands to the disk drive without leaving the program.

1541 Disk Drive Ratile

I have seen a BASIC command that prevents the Commodore 1541 disk drive from knocking when protected software is loaded. Is there any way to prevent the knocking sound when you format a new disk? I am worried that too much knocking will force my drive out of alignment.

Tom Smith

While it's true that head-knocking isn't particularly good for the drive, there's no easy way to prevent it during the format process. The 1541 drive is often called an "intelligent" peripheral because it contains its own microprocessor, free RAM, and operating system in ROM. The knocking sound heard when you format a disk is deliberate. It's caused by the format routine itself, which is permanently recorded in the drive's ROM.

A Commodore 1541 disk contains 35 tracks, numbered 1-35. Track 35 is nearest the center hub, and track 1 is the outermost. The drive always begins formatting with track 1 and proceeds inward, formatting one track at a time. To locate the read/write head accurately for the beginning of this process, the drive steps the head outward a total of 46 tracks. Since the drive is designed to access only 35 tracks in normal use, this maneuver is guaranteed to cause a read/write error regardless of the read/write head's initial position. The rattle is caused when the read/write head pounds against a mechanical metal stopper. The stopper physically prevents the head from moving past the outer edge of the disk.

As you've seen, the command that prevents the head from knocking in other cases doesn't work when formatting. That method works by storing a smaller than usual number in location $\$ 6 \mathrm{~A}$ in the
drive's RAM. This location is a zero-page counter used to control how many times the drive should try to access a requested sector before giving $u p$ and signaling a read/write error.

The reason this trick doesn't work is that the ROM formatting routine, the relevant portion of which begins at \$FAC7 in ROM, pays no attention to what's in location \$6A. After stepping the head out 46 tracks, the ROM routine does set up a counter (at location \$0620), but that's used to keep track of the number of errors encountered after the head-knock takes place.

It is possible to format a disk without rattling the head, but the alternatives are fairly involved and may be less reliable than the usual method. The first catch is that you need the ability to write a machine language routine for the drive to execute, download that code into one of the drive's RAM buffers, then cause the drive's microprocessor to execute it in place of the ROM format routine.

For those who are up to that challenge, here's one possibility: If your drive is correctly aligned, then, rather than locating the read/write head in the usual way, why not use a commercially formatted disk for calibration? Mass-produced commercial disks such as the 1541 Test/ Demo disk are usually created on industrial equipment, not 1541 disk drives, and software companies have a strong incentive to keep such equipment in good alignment. So any commercial disk that doesn't contain deliberately implanted errors should be very close to the standard.

The idea is to insert the calibration disk, move the drive's read/write head to track 1 by reading track 1, sector 0, leave the read/write head stationary at that point, perform the other setup tasks required, then enter the ROM format routine at a point that bypasses the headknocking section. That's a fairly tall order for most programmers and requires a much longer program than we can include in this space. This scheme could also increase the risk of inconsistent results, since it relies on two critical assump-tions-that your drive is correctly aligned and that the calibration disk was accurately formatted in the first place-which may not be true in every case.

Loading Touch Tablet Screens In Atari BASIC

How can I write a BASIC program to display pictures drawn with the Touch Tablet and Atari Artist cartridge?

Peter Hinz
Loading Touch Tablet pictures in Atari BASIC is quite possible, and by calling an operating system routine, your BASIC program can load the images at machine language speed. But first, there are a few
important points to cover.
To begin with, the Atari Artist cartridge that comes with the Touch Tablet saves pictures in a special compacted format to conserve disk space. That's why, if you examine a disk directory of Atari Artist pictures, you'll notice that the files are usually of different lengths. Before you can load these pictures with a BASIC program, you have to convert them to uncompacted format.

Although some people have written conversion utilities for this purpose, there's an even simpler method. It's not mentioned anywhere in the Atari Artist manual, but if you hold down SHIFT and press the greater-than key (>), Atari Artist saves the current screen onto disk with the filename PICTURE. (Be aware that this replaces any existing file named PICTURE on the disk.) The file PICTURE is uncompacted and always takes up 62 disk sectors. This trick is useful in a couple of ways. It makes it possible to load Atari Artist pictures into other drawing programs for the Atari that use this format, including the Atari Light Pen's Atari Graphics cartridge and Datasoft's Micropainter. And it also makes it possible to load Atari Artist pictures into your own programs.

But first, another point: Before loading the picture with a BASIC program, you have to set up the proper graphics mode. Atari Artist (and most other drawing programs for the Atari) uses a special mode often known as GRAPHICS $71 / 2$. Of course, there's really no such thing as GRAPHICS 7112 , but the term refers to the fact that this mode has the same horizontal resolution as GRAPHICS 7 (160 pixels) and the same vertical resolution as GRAPHICS 8 (192 pixels, without a text window). Yet, it also offers the same number of simultaneous screen colors as GRAPHICS 7 (four), while GRAPHICS 8 is limited to only two colors. Because it combines the best of both modes, GRAPHICS $7^{1 / 2}$ has been the most popular mode for drawing programs.

GRAPHICS $71 / 2$ has always been supported by the Atari operating system. However, until the XL and XE series computers came out, it was not available from Atari BASIC without making some special POKEs to modify the display list. (The display list is an area of memory that tells the computer which graphics mode to display on the screen.) On an XL or XE, GRAPHICS $71 / 2$ is called GRAPHICS 15.

The following BASIC program shows how to load a 62 -sector screen file named PICTURE at machine language speed. It should work with any uncompacted screen files, including those created with Atari Artist, the Atari Light Pen, and Micropainter. This program is actually a slightly modified version of the program named MENU on the Atari COMPUTE!

COMPUTEI Books'

Logk for these COMPUTE! books at your local book or computer store.

You can order directly from COMPUTE! by calling 800-346-6767 (in NY call 212-887-8525) or by sending your payment to COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
Please include $\$ 2.00$ per book shipping and handling for U.S. and surface mail or $\$ 5.00$ for airmail. North Carolina residents add 4.5 percent sales tax.

Please allow 4-6 weeks for delivery from receipt of order.
COMPUTE! books are available in the U.K., Europe, the Middle East, and Africa from Holt Saunders, Ltd., 1 St. Anne's Road, Eastbourne, East Sussex BN21 3UN, England, and in Canada from McGraw-Hill, Ryerson Ltd., 330 Progress Ave., Scarborough, Ontario, Canada M1P 2 Z5.

COMPUTE!'s First Book of the Atari ST

Edited
A valuable collection of ready-to-type-in-and-use applications, games, and utilities. Graphics utilities like "ST Doodler," games like "Switchbox" and "Tug-a-War," and educational programs like "Hickory Dickory Dock" turn your Atari ST into everything from a business graphics machine to a powerful teaching tool. Tutorials show you how to add power to ST BASIC and how to add excitement to your own creations with sound effects. A disk is available for $\$ 15.95$ which includes all the programs in the book, 203BDSK.
(September release)
\$16.95 ISBN 0-87455-020-3
The Elementary Atari ST
William B. Sanders, 272 pages
A friendly, easy-to-use guide to the Atari ST, this book takes you through connecting your computer, loading programs, creating graphics and music, and writing your own programs.
\$16.95 ISBN 0-87455-024-6

Elementary ST BASIC

C. Regena, 208 pages

A tutorial and reference guide to the ST's impressive graphics, animation, and sound with complete descriptions of ST BASIC's commands, syntax, and organization. A disk is also available for $\$ 15.95$ which includes programs from the book, 343BDSK.
\$14.95 ISBN 0-87455-034-3
COMPUTE!'s Kids and the Atari ST
Edward H. Carlson, 238 pages
Easy-to-understand instructor notes, lessons, assignments, and lively illustrations help both kids and adults painlessly learn to program on the Atari ST. The latest in the bestselling series by this author.
\$14.95 ISBN 0-87455-038-6

COMPUTE!'s ST Programmer's Guide

Editors of COMPUTE, 356 pages
A comprehensive reference guide to the Atari ST, this book explores in detail Logo and BASIC, the advanced features of the ST such as GEM and TOS, and every aspect of programming from concepts to actual program writing. \$16.95 ISBN 0-87455-023-8

Introduction to Sound and Graphics on the Atari ST
Tim Knight, 197 pages
Thorough descriptions of the Atari ST's color graphics and sound abilities, plus all the information needed to create a complete sound and graphics system.
\$14.95 ISBN 0-87455-035-1

ANSA SOFTWARE
Paradox
ASHTON-TATE
Framework II.
CALL dBase III Plus................................. Isgur Portfolio....................
BORLAND Lightening.. $\$ 159.00$

Sidekick (unprotected) Reflex
. $\$ 59.99$
557.99

Travelling Sidekick.
Turbo Prolog

CENTRAL POINT

Copy II PC-Backup
. $\$ 29.99$
PC Option Board......................S
DECISION RESOURCES
Chartmaster................................. $\$ 229.00$ Signmaster.
Diagram Master . $\$ 159.00$

Map Master. $\$ 209.00$. $\$ 259.00$
FIFTH GENERATION
Fast Back................................
FUNK SOFTWARE
.$\$ 99.99$
FUNK SOFTWARE
Sideways.
.$\$ 44.99$

HARVARD SOFTWARE INC

Total Project Manager............... $\$ 269.00$
Presentation Graphics IMSI
PC Mouse/Dr. Halo... LIFETREE
Volkswriter III.

LIVING VIDEOTEXT

Think Tank
Ready.

LOTUS

Symphony........
MECA SOFTWARE
Managing Your Money 2.0......... $\$ 99.99$
Manage Your Market.......
MICROPRO

Easy.

WordStar 2000
WordStar $2000+$
. $\$ 289.00$ WordStar Pro. w/GL Demo...... $\$ 189.00$ MICRORIM SOFTWARE
R:Base 5000
$\$ 359.00$
Clout 2.0.
MICROSOFT
Flight Simulator
MultiPlan.
-
... $\$ 34.99$
Word 3.0.
$\$ 129.00$
Word 3.
$\$ 279.00$
$\$ 139.00$
Cros
Cros
Rem

MICROSTUF

Crosstalk Mark IV
.. $\$ 89.99$
$\$ 149.00$
. $\$ 89.99$

sublogic
Jet... $\$ 37.99$
AP/AR/GLINV/OE........(ea.) $\$ 299.00$
SuperCalc III..................... $\$ 199.00$
EasyWriter II System......... $\$ 239.00$

Canloll

A40,A50,A55.
ALLL
LBP-8A1 Laser CALL

CITIZEN

MSP-10 (80 col.) MSP-15 (132 col.). MSP-20 (80 col.). MSP-25 (132 col.)

C.ITOH

Prowriter 1550
...... Starwriter $10-30$ 3500 Tri Printer

corona	
Lazer LP-300.. $\mathbf{\$ 2 7 9 9 . 0 0}$
DIABLO	
D25 Daisywhe	el.................... $\$ 549.00$
635 Daisywhe	el...................\$1099.00
D80IF Daisywh	el.....................CALL

dsisywriter

2000
$\$ 699.00$
EPSON
Homewriter 10, LX-80...
FX-85, FX-286, RX-100. DX-10, DX-20, DX-35. CALLCALL SQ-2000, Hi-80, HS-80, AP-80.....CALL LQ-800, LQ-1000.

6000 Letter Quality.
6100 Letter Quality.
6200 Letter Quality.
6300 Letter Quality
$\$ 279.00$
. $\$ 419.00$
$\$ 349.00$. $\$ 509.00$
$\$ 299.00$. $\$ 299.00$ $\$ 1499.00$

6500 Letter Quality...

LEGEND
808 Dot Matrix 100 cps $\$ 179.00$
1080 Dot Matrix 100 cps
1380 Dot Matrix 130 cps .
1385 Dot Matrix 165 cps .
NEC
3000 Series............. $\$ 779.00$
8000 Series.
ELF 360 ..
P560, P660, P760
OKIDATA
182, 183, 192, 193, 2410, 84......CALL
Okimate 10 (Specify C64/Atari) \$189.00 Okimate 20(IBM), 282, 283 .. Okidata 93.

Panasonic
KX1080.
KX1091
$\$ 199.00$
KX1092.
KX1592 \$359.00 $\$ 359.00$ \$659.00

QUADRAM

Quadjet
$\$ 399.00$
Quad Laser CALL

(f) SIIVER-REED

500 Letter Quality..................... $\$ 189.00$ 550 Letter Quality.................... $\$ 299.00$ 800 Letter Quality. $\$ 299.00$
$\$ 69.00$

sitol

SG-10C (C64 Interface)................CALL SB/SD/NXISR Series. CALL
Powertype Letter Quality .CALL

Texas Instruments

TI850

T1855 ... $\$ 639.00$
T1865
TOSHIBA
P321 (80 column)
$\$ 499.00$
P341 (132 column) .$\$ 749.00$
P351 (132 column)................. $\$ 1049.00$

2010 AT Above Board
2110 AT-Above Board-PS

MYLEX

The Chairman
PARADISE
Color/Mono Card..
Multi Display Card
High Res Mono
Autoswitch EGA
Modular Graphics Card
PERSYST

Bob Board....................

Quadport-AT
The Gold Quadboard
The Silver Quadboard
Expanded Quadboard
Liberty...
QuadSprin
QuadLink..
QuadColor
Quadboard-AT
8600 E.G.A. card......
EGA Plus....................
Captain - 64........
Graphics Master.
VIDEO-7
EGA..

INTERFACES

AST
Multi I/O (Apple II)
DIGITAL DEVICES
Ape Face (Atari)........................ $\$ 49.99$
U-Print A (Atari)....
U-A16/Buffer (Atari).
U-Call Interface (Atari)...
U-Print C (C64).
P-16 Print Buffer.
U-Print 16 apple lic
MICRO R \& D
Apple lic Parallel. C64/128.

Grappler C (IIC).....

IBM PC SYSTEMS Confligurod to your speciffications. Call for Best Price! IBM-PC, IBM-XT, IBM-AT
Safari (7300) OAT

corona

PPC400 Dual Portable.

 PPCXT 10 meg Portable........ $\$ 1989.00$PC400-HD2 10 meg............... $\$ 1989.00$
ITT X-TRA ITI
256K, 2 Drive System .CALL
256K, 10 meg Hard Drive System CALL

KP-2000 Portable
CALL
Kaypro PC
PCTOO IBM clone
640K MB-256 installed, 150 Watt Power Supply, XT Keyboard, 360K Floppy, 20 Meg Hard Drive...

4
Sperry-AT. as low as $\$ 1749.00$ Sperry-IT...............as low as $\$ 2699.00$
Call for Specific Contig All Models.....................................CALL

Finzery

PC-138 Series, PC-148 Series, PC-158 Series, PC-160 Series, PC-171 Series,
MONITORS

AMDEK

Video 300A Amber $\$ 129.00$ Video 310A Amber TTL........... $\$ 159.00$
Color 600 Hi -Res. RGB.... $\$ 399.00$
Color 722 Dual Mode................... $\$ 529.00$

Color 725 .
Color 730..............................
515 RGB/Composite..................... $\$ 289.00$
613 TTL Green........................ $\$ 99.99$

623
$\$ 99.99$
623 TTL Amber..
教

JB1280G TTL Green...
JC1401 Multi Sync RGB

PRINCETON

MAX-12 Amber........................... $\$ 179.00$

HX-9 9" RGB........................... $\$ 469.00$
HX-9E Enhanced....................... $\$ 519.00$
HX-12 12" RGB
HX-12E Enhanced........................ $\$ 559.00$
SR-12 Hi-Res.............................. $\$ 599.00$
SR-12P Professional............... $\$ 699.00$

QUADRAM
8400 Quadchrome I.................. $\$ 499.00$
8420 Amberchrome................... $\$ 179.00$
8500 Quad Screen.................. $\$ 1449.00$

THXAN

\square
는

Kaypro 2000 Parallel.

OOrange micro

Grappler CD (C64)..................... $\$ 89.99$ Grappler Plus (IIe, IIc)................ $\$ 89.99$
. 889.99
Grappler 16K (Ile, II+)............. $\$ 139.00$

115 12" Green........................... $\$ 119.00$
116 12" Amber......................... $\$ 129.00$
121 TTL Green...................... $\$ 139.00$
122 TTL Amber........................ $\$ 149.00$
220 14" Color Composite....... $\$ 179.00$
620 640x200 RGB.................... $\$ 439.00$
630640×200 RGB.................. $\$ 489.00$
640 720x400 RGB.................... $\$ 539.00$

549.9 . $\$ 49.99$ $\$ 59.99$220 14" Color Composite.
620640×200 RGB..

DISK. It's easily adapted to your own BASIC programs. Briefly, here's how it works.

Lines 10 and 160 create a very short machine language routine that is used later to call a high-speed loading routine in the operating system. Lines 170-177 set up graphics mode $71 / 2$ on any Atari computer. If your program is intended only for XL and XE models, you can replace these lines with a single statement such as 170 GRAPHICS $15+16$. Line 190 opens the file PICTURE on disk and jumps to the subroutine at line 980. This subroutine, in turn, calls an operating system routine which loads the screen into memory at full speed. Line 200 simply loops endlessly so the picture stays on the screen. Press BREAK or SYSTEM RESET to end the program.
HC 1ø DIM CIO\$(7)
AC 16 CIOs="hhh":CIO\$(4)=CH R\$(179):CIO\&(5)="LV": CIO $\$(7)=$ CHR $\$(228)$
CO 17 ER GRAPHICS $8+16:$ DL=PEEK (566) +256*PEEK (561) +4

AJ 172 SETCOLOR 4, $\operatorname{D}, 12:$ SETCD LOR ஏ, 2, 1ø: SETCOLOR 1 ,2,6: SETCOLOR 2, \varnothing, \varnothing
NO 175 POKE DL-1, 14+64:FOR I $=2$ TO 194: IF PEEK(DL+ I) $=15$ THEN POKE DL+I, 14
6H 176 IF PEEK $(D L+I)=15+64$ T HEN POKE DL+I, $14+64$
CH 177 NEXT I
II 19 OPEN \#1, 4, \varnothing, "D:PICTUR E": ADL=PEEK (BB): ADH=P EEK(89): LN=7936: GOSUB 98ø:CLOSE W
FN 2øø воTO 2øø
EC 98ø $\mathrm{X}=16$: REM Filew2, $2 \boldsymbol{1}$
EF 990 ICCOM=834: ICBADR=836: ICBLEN=84D: $I C S T A T=835$
PL 1 øø \varnothing POKE ICBADR $+X$, ADL: PO KE ICBADR $+X+1$, ADH
LN 1ø1ø L=LN:H=INT(L/256):L= L-H\$256: POKE ICBLEN+ X, L: POKE ICBLEN $+x+1$, H
PB1ø2ø POKE ICCOM $+X, 7: A=U S R$ (ADR(CIO\$), x)
K1 1025 RETURN
When the picture appears, chances are the screen colors won't be right. You'll have to recreate the picture's original colors with four SETCOLOR statements inserted somewhere between lines 170 and 190. You can figure out what these SETCOLOR statements should be by looking at the Color Menu screen in Atari Artist. The four color register numbers along the bottom of the Color Menu screen-0,1,2, and 3-correspond to the first parameter in the SETCOLOR statement. Color $0=$ SETCOLOR 4, color $1=$ SETCOLOR 0, color $2=$ SETCOLOR 1, and color $3=$ SETCOLOR 2. The second parameter in SETCOLOR matches the color numbers along the vertical color bar on the Color Menu screen (0 to 15). And the third parameter in SETCOLOR is derived from the vertical luminance bar on the Color Menu screen (also 0 to 15, but use the even
numbers only). For example, if color 0 in Atari Artist is set to black, your program would need a statement such as SETCOLOR 4,0,0.

Incidentally, another undocumented trick makes it possible to load uncompacted-format pictures into Atari Artist, too. Simply hold down SHIFT and press the less-than key (<). This way, you can take 62 -sector pictures created with the Atari Light Pen, Micropainter, and other drawing programs and modify them with the Touch Tablet. If you then save this screen with Atari Artist in the usual way, it's converted to compacted format.

Commodore SHIFT-SPACE

Sometimes when typing in programs from your magazine on my 64, I've come across a SHIFT-SPACE. When I press SHIFT and the space bar, it doesn't appear any different on my screen from the normal space. What does the SHIFT-SPACE character do? Warren Frederick
There is a difference between the normal space character and shifted space. Although they appear the same on your screen, they are actually two separate ASCII characters. The normal space is $C H R \$(32)$ while the shifted space is CHR\$(160). This distinction is probably not significant in every Commodore program where a $\{$ SHIFT-SPACE\} appears. Many times, the programmer happens to be working in lowercase and types in an entire message with SHIFT LOCK down. When this happens, a shifted space appears in the listing, but an unshifted space would work just as well.

However, sometimes SHIFT-SPACE serves a special purpose. Certain programs use SHIFT-SPACE to mark a position on the screen that's invisible to the user. By PEEKing into screen memory, the program can distinguish between shifted and unshifted spaces even though both look identical on the screen.

You can also use SHIFT-SPACE to add short comments to disk filenames. If you include a shifted space as part of the filename, the disk drive treats that character as the end of the name and ignores any characters that come after it. But the extra characters are visible when you list the disk directory. For instance, you might want to save the current date to indicate when a program was last revised. This statement saves a program as FILE, followed by the date 9/22/86:

SAVE "FILE" + CHR\$(160) + " $/ 9 / 22 / 86$ ", 8

After you execute this statement, you can still load the program normally, with LOAD "FILE",8. But when you list the directory, the filename appears as FILE/9/22/86. This trick is frequently used when saving machine language pro-
grams, to indicate the SYS address used to start the program. Of course you are limited to a total of 16 characters, just as with any other disk filename.

IBM PriSc Problems

When using the PrtSc function with my PCjr in "IBM Pie Chart Maker" (COMPUTE!, January 1985), my Gemini 10X prints the chart, but with thin blank lines between each row of the chart, as if the printer were displaying text lines. I have tried resetting the line space command to the printer and tested it in immediate mode to verify that the line space has been changed. But as soon as I type the PrtSc command, it seems that this command initializes the printer. Rich Camaish

We've experienced the same problem when using PrtSc with anything except an Epson printer. Normally, pressing SHIFT-PrtSc just prints a text dump. In order to dump graphics with PrtSc, you need to enter the GRAPHICS command at the DOS command line to load the graphics print-screen driver. This driver was written specifically for the IBM Graphics Printer, a relabeled version of the Epson MX-80.

Apparently, the driver resets the printer completely before starting the graphics dump, as if the printer were turned off and on. (The Epson code for this is ESC-@.) It then sets the lines-per-inch to 8, corresponding to seamless eight-wire graphics printing. The code used for this function is different on the Gemini 10X and many other printers that are otherwise Epson compatible. Your printer accepts the reset sequence, though, throwing it back to nine lines per inch before starting the graphics dump. We've had the same problem with the IBM Color Printer.

The only way around this would be to modify the GRAPHICS driver. If you know something about 8088 machine language and have a working acquaintance with the DEBUG utility, you could search for the ESC-@ sequence (hex \$1F \$40) and replace it with two zeros to null it out. However, there are programs on the market and in the public domain that support graphics printing with PrtSc for many different printers. Check with your local IBM user group or nearest dealer to see if they've heard of these.

Apple HTAB In 80 Columns

I have an Apple IIe with an extended 80 -column card. I found out recently that the Applesoft BASIC HTAB command does not work properly. When I type the following line in 80 -column mode, I get an incorrect result:
HTAB 20:PRINT "THIS IS A TEST";: HTAB 1:PRINT "A"

fn expert system is like borrowing someone else's experience and expertise on a given subject. UNDERSTANDING COMPUTERS by TIME-LIFE BOOKS is exactly that, an expert system on the subject of computers.
l's not software based, so it can't crash. And since it's not machine-specific, it won't become outdated easily, which means you'll find it an invaluable, long-lived reference whether you have an IBM ${ }^{\oplus} \mathrm{PC}$, an Apple lle ${ }^{\oplus}$, a multimillion dollar Cray ${ }^{\circledR}$, or no computer at all right now.

A BRAND NEW SERIES THAT PRESENTS COMPUTERS IN A WHOLE NEW WAY.

UNDERSTANDING COMPUTERS is a new series of books that presents computers in a unique, broad-based way, unlike any other

On a digital record, sound is carried by pits and spaces, which are read by a laser beam. computer book you've ever seen. It gets "under the hood," right down to the nuts and bolts of computers to explain what you need to know about them in plain English.
The first volume, Computer Basics, unwraps the mystery of writing binary code ...the concept of logic gates ... how chips are designed.... how a light pen works for graphic effects...the sequence of events in a computer from the first clock pulse to the last. And much, much more.

Succeeding volumes cover Soffware. Input/ Output: Graphics. Networking. The entire gamut of computer topics.

EVERY IMPORTANT CONCEPT IS ILLUSTRATED TO HELP ASSURE YOU UNDERSTAND.

Not only does UNDERSTANDING COMPUTERS give you all the computer background you want that you won't find elsewhere, it also shows you
what it's all about. Full-color illustrations help make every concept crystal clear. And glossaries of terms help ensure your understanding. Each volume is a big $91 / 4^{\prime \prime} \times 111 / /^{\prime \prime}$ hardcover book with approximately 128 pages.

free 10 day examination. NO OBLIGATION.

Begin to expand your computer know-how now by examining Computer Basics for 10 days free. Keep it and pay only $\$ 12.95$ ($\$ 15.95$ in Canada), plus shipping and handling. Then you can continue to receive other volumes every other month, always
 with a 10 -day free trial. Keep only the books you want. And you can cancel any time. Or return Computer Basics and owe nothing.
Return the coupon today, and start to bridge the gap from computer buff to computer expert.
IBM is a registered trademark of International Business Machines Corporation. Apple lle is a registered trademark of Apple Computer, Inc. Cray is a registered trademark of Cray Research, Inc. (c) 1986. Time-Life Books Inc. Time \& Life Building, Chicago, IL $60672-2058$

UNDERSTANDING COMPUTERS
 STARIS MiE. Mail to TIME-LIFE BO
 Chicago, IL 60672 -2058

YESI Send me Computer Basics, as my introduction to the shelf-based expert system, UNDERSTANDING COMPUTERS. lagree to the terms outlined in this ad.

D1A3Y9
Name

Address

The computer prints this line preceded by 19 spaces:

THIS IS A TEST.A

Memory location 36 is supposed to contain the horizontal cursor position, but in 80 -column mode, it always contains 0 . The BASIC function POS(0) doesn't work either. How can I determine the current cursor position?

William Liao
Many older Apple II programs, especially those written in machine language, print to the screen by adding the horizontal cursor position (CH, location 36) to the address of the first character in the current row (BASL and BASH, locations 40 and 41), then storing a character at the address that results. When 80 -column hardware is in use, this technique could scramble the Apple's memory, since the organization of 80 -column screen memory is different.

As a precaution, whenever the $A p$ ple's I/O software accesses the 80 -column screen to move the cursor or print, it resets CH to 0 . This is why PEEK(36) and POS(0) no longer work. In IIe and IIc computers, the 80-column cursor position is kept in location 1403, called OURCH. (If you're familiar with the Apple II's memory arrangement, you'll remember that addresses between 1024 and 2047 are
reserved for screen display memory. Since the 40 -column screen is 40×24, that's a total of 960 bytes that are actually used. The 64 unused bytes are called screen holes and are used to store I/O variables. OURCH is one of these.)

The HTAB command changes the cursor's position by storing a new value in location 36. To keep this command operational, the enhanced I/O routines keep a copy of CH in another screen hole, location 1147 (OLDCH). Before each screen access, CH and OLDCH are compared. If they are different, CH must have been changed, so its value is made the current position by storing it in OURCH. The only time this doesn't work is when 80-column mode is active. Since CH and OLDCH are both set to zero at each screen access, an HTAB 1 command stores zero in CH , and there's no way to tell that anything happened. Since CH and OLDCH still contain the same value, OURCH is not altered.

One simple way to move the current screen position to the first column is to use a lone PRINT statement. All it does is move the cursor to the first column of the next line without disturbing the display at all. Another way to be certain of the cursor's position in any display mode is to POKE the new column value (0-79) into both CH and OURCH. In standard display mode (40 columns, checkerboard cur-
sor), OURCH is not used; POKEing a value there doesn't seem to have any undesirable side effects.

When the enhanced I/O firmware is active (block cursor in 40 or 80 columns), you can find the current cursor column with PEEK(1403). To find the current column regardless of display mode, PEEK the value in CH . Then, if it has a value of zero, PEEK at 1403. This should always give the correct position.

EduCalc Clarification

A statement concerning disk initialization in the review of Grolier's EduCalc spreadsheet (March 1986) requires clarification. When using an uninitialized data disk, the program will automatically ask if you wish to initialize the disk and then lead you through an initialization routine. When using a disk that's already initialized, EduCalc recognizes that and skips the routine.

Copyright 1986 by Billboard Publications, Inc. Complied by the Billboard Research Department and reprinted by permission. Data as of $7 / 5 / 86$ (entertainment) and 7/12/86 (education and home management).

DIGITIZE YOUR VOICE professtona In a band!

MIPEDSONATDR $\begin{gathered}\text { cartridge to disk } \\ \text { copy ssitem }\end{gathered}$

CARTRIDGE TODISK COPY SYSTEM Yes, for only 529.95 , you can make working copies of all your Atari computer car tridges (16 K or less). Our special package will let you save your cartridges to ordinary disk files. They will run exactly like the originals when used with the Impersonator. Each disk holds up to 12 cartridge programs. Now you can put all your real cartridges away for safe keeping and use the Impersonator for everything. YES, IT REALLY WORKS. The Impersonator does everything the high-priced cartridge back-up systems do ... and more. ONLY \$29.95

\square F STHRER

BOOK I + DISK: (The Original) Thoroughly explains the techniques used by advanced software pirates, and the copy protection methods sophisticated enough for software writers of any scale yet easy enough for a beginner just wanting to learn more about Atari computers. A MUST READ FOR ALL ATART OWNERS
BOOK INCLUDES: • Duplicate sectoring • Custorn disk formatting Creating "BAD" sectors • Hardware data keys • Legal protection like copyrights, trade secrets, patents • Protecting BASIC programs • Sel modifying Code - ROM + EPSOM cartridges • Hidden serial number - Self-destructing programs - Freeware - Misassigned sectoring MUCK, much mos.
DISK INCLUDES: - Directory mover - VTOC scanner - Duplicate sector finder • Sector mover • Bad sector writer • Sector data displaye - Autorun builder • Other useful programs.

This comprehensive book and disk package should not be confused
with low quality imitations offered elsewhere. with low quality imitations offered elsewhere.
BOOKII + DISK II: Advanced Software Protection. This all new seque starts where the highly acciaimed Book I leaves off. Book II is the most up-rodate resource available for the Atari owner. Includes reviews
and explanations of products such as: The Happy Enhancement:" The Impossible: The Sanalyzer" The Chip" The Pill* and Super Pill" 8 many other
Book II: Jells you specifically what they copy, what they won't, how they are used, and the details of how they work. Book II also include such topics as: - Transmitting protected programs • Copying disks with more than 19 sectors/track. Includes the newest protection methods by companies like Synapse* AND Electronic Arts** Data encryption Phreaking methods - Program worms - Logic bombs - Bank-select Sample BASIC + Assembler programs • On-line security • And much mor
DISK II INCLUDES: • Automatic program protector • Custom format detector - Newest protection demos

Book + Disk Packages only \$24.95 Speclal Offer both for only $\$ 39.95$

BONUS: Order any 3 programs and get FREE your choice
Delux Space Games or Disk Dak 1000
(U games on disk)
(Utility Package)

Promoting Computers In School

Kathy Yakal, Assistant Features Editor

Via free or discounted hardware and software, along with special teacher training, computer hardware manufacturers continue to promote their microcomputers in schools at every level. Here's an overview of recent efforts to increase the already impressive penetration of this technology into classrooms across the land.

Microcomputers now play a significant role in many areas of education. But getting computers into the classroom and deciding how they are best used continue to be subjects of much debate. A combination of factors has slowed the process even further: the problems of implementing a new, evolving technology; the chaotic atmosphere of the computer industry itself; the computer education of teachers and administrators; and the relatively
tight budgets of educational institutions.

Nevertheless, tremendous changes have occurred in teachers' attitudes toward microcomputers over the last couple of years. There are several reasons. First, software publishers have increasingly attempted to provide the kind of programs that teachers feel comfortable with-quantifiable, curriculumbased software. At the same time, innovative, nontraditional kinds of
learning aids have gained a wider acceptance. Second, the hardware and software shakeouts that have moved the computer industry toward maturity and greater stability have made educators feel more confident about making a financial commitment to microcomputers. Finally, teachers are generally less anxious about computers and more experienced at applying them, with a growing number of classroom success stories fueling increased computer use. It's not just the students and a few computer-wise teachers who are driving the movement anymore.

Each of the major computer manufacturers has made unique contributions to trigger the integration of computers into classrooms. Some offer educational discounts. Others provide special grants and develop efficient ways to exploit the hardware, such as networking. In addition to easing the financial burden, hardware manufacturers promote the general health of the educational computing industry by fostering quality software development and encouraging nontraditional applications of hardware to traditional curricula. Inservice training of teachers and special workshops sponsored by hardware companies have also been significant in creating a more upbeat attitude toward classroom computing in recent years.

Here's a company-by-company look at the variety of approaches.

Apple Computer

Officials at Apple Computer realized early on that a good software base was central to getting their hardware into schools. Apple made major efforts in the early 1980s to convince software developers to support its machines, offering them shared advertising, discounts on development machines, and technical support.

Currently, Apple has two educational discount programs. Step pricing gives buyers lower prices on larger orders, encouraging educators to buy in quantity whenever possible. And with the Volume Purchase Agreement, a school can elect to pay for its computers over a three-year time period. If a school involved in such an agreement finds that the hardware does not
meet its needs, it may return the equipment without making the remaining payments.

Support after the sale is also a key to Apple's success in the school market. Apple relies heavily on its local dealers to provide on-site support to educators. Ten days before an order of computers is scheduled to reach a school, Apple notifies a local dealer who is then responsible for installing the equipment and providing orientation and training for teachers and administrators. The dealer is also responsible for any follow-up repair and maintenance.

Apple has developed a fairly high profile on many college campuses across the country, thanks to the Apple University Consortium (AUC). A couple of years ago, 24 U.S. colleges and universities formed an organization whose purpose was to develop tools and resources for the Macintosh. Because of that, many campuses today maintain busy Macintosh labs and workstations. At least one institution, Drexel University, requires its freshmen to purchase Macintoshes.

Atari Corporation

Atari Corporation's change of ownership and revamped management have resulted in few formal educational programs currently in operation. Considering Atari's growing strength, however, that may soon change. Low-cost 8 -bit Ataris have already been the first kind of computer many students ever encountered in a class; their current availability and strong software base may even amplify this trend. And the low price of the powerful ST computers, as well as their strong graphics and music capabilities, may cause some educators to look twice, especially for use in creative applications.

Atari recently announced a marketing agreement with Montrealbased Arrakis, publisher of the Advantage series of educational software. ST versions of these programs, which have in the past been available for Apple, Commodore, and IBM, should be ready by the end of the year. The Arrakis series is known for its impressive graphics and cartoonlike animation, as well as a sophisticated parser which incorporates principles of artificial intelligence and
provides direct answers to students' questions.

Computer Curriculum Corporation (Palo Alto, CA) has announced a commitment to Atari equipment. CCC is packaging STs along with their minicomputers and a series of courses; that is, they bundle hardware and software and install the complete systems in schools.

Finally, a 10-percent discount is available to colleges and universities, with follow-up service and support provided by local dealers.

Commodore

Commodore's big draw for schools lies in its inexpensive hardware and broad base of third-party educational software. Many teachers, unable to get funds allocated for major hardware purchases, started out by buying a few Commodore 64s (or even bringing their own in from home). In many settings, this was all that was necessary to get students familiar with the fundamentals of microcomputers, while also providing workstations for wordprocessing, database management, and computer-aided learning. In other cases, some school administrators have been willing to make a financial commitment to microcomputers in the classroom, based on the excitement they've seen generated by a few hundred dollars'
worth of hardware and software.
Every major educational software publisher supports Commodore machines, so hundreds of titles have been developed for the Commodore 64 over the last few years. Though some are more appropriate for the less structured atmosphere of the home, many have been adopted for classroom use. A complete list of the more than 1500 packages will be available through distributors this fall.

Commodore has recognized that computer-aided education does not necessarily have to happen in a schoolroom, and has supported some unique opportunities for learning. Two of these involve telecommunications. QuantumLink, a year-old service that Commodore has backed with technical and marketing assistance, is an online forum for sharing information of all kinds. Though much of the earliest activity that went on there was computer-oriented, a variety of other special interests are now supported there. Education is one of them. The Resource Center, a relatively new forum in the Learning Center area of Q-Link, is composed of three sections. The Library includes curriculum guides, teaching strategies, software reviews, and articles about home and community education. In the Media Room, users can download software written

Each of the major computer manufacturers has made unique contributions to trigger the integration of computers into classrooms.

by teachers. The Lounge is an online conference area, a meeting place for teachers and parents to gather and discuss educational issues and plans. And the Resource Center's Message Boards keep everyone posted on what's happening in educational computing. (Quantum Computer Services, 8620 Westwood Center Dr., Vienna, VA 22180.)

Commodore is involved with another online educational venture: the Electronic University Network, operated by TeleLearning Systems, Inc., of San Francisco. By purchasing the $\$ 195$ enrollment package, you have access to online courses offered by 25 colleges and universities. You may either take selected courses or, if you have met the school's prerequisites, work toward an M.B.A. or undergraduate degree. Degrees are issued by the schools involved, not by the Electronic University Network. The system software also gives you access to online databases-libraries of information for research purposes-as well as counseling and online seminars. (Software allowing IBM and Apple owners to use the network is also available. For more information, write to TeleLearning Systems, Inc., 505 Beach St., San Francisco, CA 94133 , or call (800)22LEARN; in California, call (800)44LEARN.)

Commodore has, in the past, participated in more traditional outreach efforts to schools. Recent financial problems at the company have apparently forced cutbacks in ongoing educational support. That, too, may change if Commodore is able to weather remaining financial hurdles. The company has a strong history of major support to Canadian schools, and continues to maintain that presence.

IBM

IBM has made a major commitment to the basic skills of reading and writing with its Writing To Read program in the school market. Developed by educator Dr. John Henry Martin, Writing To Read was tested among 22,000 students and was evaluated in an independent two-year study by the Educational Testing Service before being introduced in the fall of 1984. The program has grown in use from 200 schools at the end of 1984 to 1100

Atari recently announced that 17 titles from the acclaimed Arrakis series will be available for the ST.
schools at the end of 1985. More than 125,000 students have participated in the program. The computer-based program allows students to advance at their own pace and offers positive reinforcement during a student's interaction with the computer.

Through Writing To Read, children learn the 42 phonemes (letter and sound combinations) that make up the English language. Using these phonemes, students are able to read and write everything they can say. Typically, students spend an assigned hour each day in a Writing To Read center or lab, a specially designed room made up of five learning stations. Work sessions in the lab are generally an hour long. Students alternate around the five stations: at the computer, with a work journal, at a listening library using specially

The Tandy 1000 computer is becoming an increasingly popular choice for educators.

taped lessons, and playing two phoneme-based games at the "make word" station.

IBM has made a significant commitment to developing curriculumbased software in many subject areas for elementary and secondary schools, programs that come bundled with several student disks and a teacher's guide for easy use in classrooms with multiple computer workstations. Many of the programs are also available individually. In addition, IBM has founded the National Disability Resource Center, a national technology resource that supports the needs of the disabled.

Tandy Corporation/ Radio Shack

The Tandy Corporation has had a longstanding commitment to computer use in the schools. In 1979, Tandy introduced the first low-cost classroom network system-Network 1. In 1980, the Radio Shack Education Division was formed to produce a line of educational courseware. In the years since, Tandy has offered free computer literacy training to teachers, provided formal support for educational software publishers, donated more than $\$ 1$ million in hardware and software products to support research and development activities, and sponsored conferences and associations to promote the further integration of computers into classrooms.

Currently, three major programs are in place in addition to these areas of ongoing support. In conjunction with Education Systems Technology Corporation (ESTC), Tandy offers an integrated learning system for elementary schools, consisting of three major components: a comprehensive $1500-$ lesson reading and mathematics curriculum for grades K-6; a computer laboratory composed of 1 Tandy 3000 host computer and up to 40 Tandy 1000 personal computer workstations, allowing an entire class to use the system at once; and an on-site facility management service, which includes an ESTC lab attendant and a complete com-puter-controlled student management and performance reporting system.

Frankie have sent you over 60 tasks in your journey from Mundanesville through the Pleasure Dome. Tasks ranging from the trivial, to heroic feats of skill and intelligence. Whenever you complete these challenges a bar-chart will show your increase in the various elements of your personality and Pleasure points will be awarded....

This combination awards you the minimum requirement (99% a complete person) to search for the Special Door - the Door to the Ulimate Experience - the heart of the Pleasure Dome.
Your goal is to become a complete person and to achieve this you must reach the top
on the Bar Charts (when the word BANG will light up above the personality factors) and achieve a score of 87,000 Pleasure Points.
"Best adventure game 1985" Commodore Computing International

Leyco Computer Marteeting \& Consultants

Л ATARI Л

apple

COMMODORE

BRODERBUND
 (Atari)

Printshop Aitilili.ili. 28.75
 Graphics Lib I, II, III.. 18.75
 Kaper reila
 Karateka.............. 19.75 Printshop comp

SUBLOGIC
(Atari)
Flight Simulator. $\quad . \quad29 .95$
Night Mission Pinbail.. 18.95 Night Mission Pinball... 18.95
Scenery Disks EA..... 14.95

SYNAPSE
 (Atari)

Synfile. 29.95

Syncalc.... 29.95
.14 .95

ACCESS

(Atari)
Leader board 24.75

FIREBIRD (Atari)
The pawn. 26.75
26.75

ACTIVISION (Atari)
Hacker.................... 15.75 Mindshad
Ghostbusters
Great Am Ra
Space Shuttle.........15.75
Printmaster........... 24.75
Art Gallery 18.75
MICROLEAGUE
GM disk
Team disk.............. 14.95

ACTIVISION

(520 st)

Borrowed Time. Music Studio.	

VIP
(520 st)

VIP Professional. VIP Lite.

ACTIVISION (Apple)
Alter Ego...................28.75 Little People..
Mindsha
Hacker......
Gamemaker
BRODERBUND (Apple) The Print Shop 31.50 Graphic Librarys EA... 18.50 Bank St. Writer 128K.. 42.75
Bank St. Speller......... 42.75 Carmen Sandiego. Karateka
Captain Goodnight. Muppet Cruise. P.S.Companion Science Kit................... 35.95

MICROPROSE (Apple)
Crusade in Europe...24.75 Decision in Desert....24.75 $\mathrm{F}-15$ Strike Eagle..... 20.75
NATO Commander .. 20.75 NATO Commander.. 20.75 Silent Sevice 20.75
Solo Flight.......... 20.75

SSI (Apple)
Phantasie II..............24.75 Wizard's Crown 24.75 Rings of Zilfin........... 24.75 Colonial Conquest.... 24.75 Battlegroup.............. 35.75
NAM 29.75

MICROLEAGUE (Apple)
M L Baseball........... 24.95
Writer (520 st) 35.95
\square
DIGITAL DEVICES
Pocket Modem AT.......Call
Compuserve.........18.95
zoom

PC 1200 XLIPFS.......... 279
US ROBOTICS
password 1200M........ 189 Courier 2400................ 395

COMMODORE
 CAL

${ }^{128}$

C 1571 Drive C 1541 Drive C 1670 Modem
C 1350 Mouse C 1350 Mouse
CALL

JANE

Perfect Writer
Perfect Calc
Perfect Filer

BATTERIES INCLUDED
Paper clip...............35.95

Paper clip
w/ spelipak
35.95

EPYX-64

Movie Monster........ 24.75
Vorpol Kit Vorpol Kit
Fast Load .ames III. Super Cycle. World Ga 22.75
24.75
24.75
24.75
24.75 Football.....................24.75

SUBLOGIC

Nightmission Pinball.... 18.95

 Flight Simulator......... 29.95Jet Simulator Jet Simulator. Football. Scenery Disk......EA....... 14.95 Set 1-6.................... 69.95

CARDCO

CB/2 2-slot Board.....19.95
S'More Basic Rom... 39.95
Freeze Frame

ACTIVISION

(C-64/128)

BRODERBUND
The Print Shop … 24.75
Graphics Library
I, II, III
Karateka
Bank St. Writer
Lode Runner
Printshop Companion
Bank St. Speller
Bank St. Filer
Bank St. Mailer
Bank St. Mailer
Championship
Loderunner
19.75

UNISON WORLD

Print Master (Amiga)....22.75
Print Master (C.64/128) ... 22.75

FIREBIRD
Elite 19

Elite	
Colossus iv	$\cdots \cdots . .$.
21.95	
1.95	

ACCESS

(C-64-Amiga)
Leader Board
Leader Board Amiga 24.75

Leader Board Amiga a 2.75	
Tournament I	1275

MACH 128
10th Frame

XETEC
Font Master II 64 . . 28.95

MONITORS

HITACHI

MM-1218 12", Green........... 99
MM-1220 12" TTL Amber.. 129
CM-1406C $13^{\prime \prime}$ color
w/ cable.
CM-1409 13, RGB
CM- 1216 D 12", RGB $\ldots . . \begin{aligned} & 305 \\ & \text { CM-1455S 13", } 720 \times 350 \ldots \\ & \text { CM-1457A 13" RGB }\end{aligned}$
720×460 O $\quad 679$

ZENITH

MAX-12 Amber 175
HX-12 RGB 458
SR-12 RGB

MODEMS

SUPRA

DSI
Messenger 64/128 ... 39.95

SUPRA

 1064 Modem (C.64) 49.95
ANCHOR

Volksmodem
12 .
COMPUSERVE . . 18.95

COMMODORE
1670 Modem 155

NEC
Multisync..............CALL

Lyco Computer Marketing \& Consultants

NEW HOURS! Mon-Thur 9AM-8PM Fri9AM-6PM Sat 10AM-6PM

AMERICA'S MAILORDER HEADQUARTERS

Q ON THESE ON THESE in STOCK

 PRINTERSNEW HOURS:
Mon-Thur 9AM-8PM
Fri 9AM-6PM
Sat 10AM-6PM

1080 \qquad \$199

PANASONIC

1080

1092
1092
3135
3
3
$\begin{array}{r}3151 \\ 159 \\ 1595 \\ \hline\end{array}$

SEIKOSHA	
SP. 1000 A Centronics	
Sp. 1000 AS	
P. 520001	

SILVER REED	

EPSON

OKIDATA

C. ITOH

1550 SP-

${ }^{1} 1040$

Prowitier it
Prowniter 8510 SP+

TOSHIBA

${ }_{P 351+}{ }^{2}$
 ${ }_{P}^{\mathrm{P} 3441 \mathrm{P}}$

351 she
321
3TS

CITIZEN	
Premier 35.............	
MSP-15	
SP. 20	
D.	

DIABLO

D25
D80......
P32CQ1
P-38.....

635 .

COLOR RIBBONS NOW AVAILABLE!!

NX-10....CALL STAR MICRONICS
 $\begin{array}{lll}\text { NB.15 (NEW) } & \text { CALL } \\ \text { N- } \\ \text { SG-15 (NEW) } & \text { CALL } \\ \text { SG }\end{array}$

Powertype.

BROTHER

In PA 717-494-1030
Customer Service 717-494-1670
 visi Jersey Shore, PA

17740

RISK FREE POLICY

Tandy offers special pricing on educational network systems. Educational customers purchasing two Model 4 computer/Network 4 Student Stations at the regular price of $\$ 1,099$ each will receive a third station free. Other network configurations are available at substantial discount. Network 4 is Tandy's newest and most powerful classroom network. Students at individual stations can sign on to teachercreated network accounts to share software stored on the hard disk drives at a central disk server. The system supports multiple disk and printer servers, which saves money by eliminating the need for peripherals at each workstation. (This promotion is good through September 30, 1986; interested customers may contact a Regional Education Coordinator by calling 800/433-5628.)

Finally, topics for the third and fourth quarter Grants Program have been announced. All nonprofit educational institutions and professional educators are eligible to submit proposals for these project grants. Proposals for "Creative Uses of Microcomputers in Education" should be submitted by September 30, 1986, and proposals for "Using Computers for Instructional Management" should be submitted by December 31, 1986. (Information packets required for use in order to submit proposals can be obtained by writing to Tandy Educational Grants Program, 1400 One Tandy Center, Fort Worth, TX 76102.)

For further information on any of the products or programs mentioned here, please contact:
Apple Computer
20525 Mariani Ave.
Cupertino, CA 95014
Atari Corporation
1196 Borregas Ave.
P.O. Box 3427

Sunnyvale, CA 94088
Commodore Business Machines
1200 Wilson Dr.
West Chester, PA 19380
IBM Educational Systems
P.O. Box 2150

Atlanta, GA 30055
Tandy Corporation/Radio Shack
1800 One Tandy Center
Fort Worth, TX 76102

THE REFERENCE

Library of the future

Kathy Yakal, Assistant Features Editor

Traditional classroom education has already undergone some major changes with the continuing integration of microcomputers into schools. But there's a relatively new technological development with far-reaching educational implications-CDROM (Compact Disc-Read Only Memory). By connecting a personal computer to a compact disc containing digital information, you can easily store and cross-reference an entire encyclopedia, with plenty of room to spare. Similar to the laserdriven audio compact discs that now hold an hour or so of recorded music, these new computer peripherals will surely alter many of our current approaches to education. Here's a look at what this might mean for the classroom of the future.

Your grandchild's sixth-grade history homework assignment: Turn in a report on the first manned space flight to the moon. Though the topic may sound typical, the research won't involve trudging to the school library or home encyclopedia to haul down 15 different books and stare at reams of text and a static photo of the moon.

Instead, with a few keystrokes:

- A laser-driven compact disc feeds through a computer system the digitized voice of Neil Armstrong as he steps down onto the moon's surface-That's one small step for
- A full-color animated sequence shows the touchdown of the lunar lander and the planting of the American flag. Another sequence displays the liftoff, orbital rotation, and space flight while the process is explained through speech synthesis and onscreen text.
- A few more keystrokes and the voice of President John F. Kennedy can be heard as, earlier in the decade, he set a national goal to reach the moon.
- A series of articles-all with voice, color animation, and printout

Give your BASIC programs the speed and performance they deserve

The complete compiler and development package. Speed up your programs 5 x to 35 x . Many options: flexible memory management; choice of compiling to machine code, compact p-code or both. '128 version: 40 or 80 column monitor output and FAST-mode operation. '128 Compiler's extensive 80 -page programmer's guide covers compiler directives and options, two levels of optimization, memory usage, VO handling, 80 column hi-res graphics, faster, higher precision math functions, speed and space saving tips, more. A great package that no software library should be without. 128 Compiler $\$ 59.95$ 64 Compiler $\$ 39.95$

For school or software development. Learn C on your Commodore with our indepth tutorial. Compile C programs into fast machine language. $\mathrm{C}-128$ version has added features: Unix ${ }^{\text {TN }}$-like operating system; 60K RAM disk for fast editing and compiling Linker combines up to 10 modules; Combine M/L and C using CALL; 51K available for object code Fast loading ($8 \mathrm{sec} .1571,18 \mathrm{sec}$. 1541); Two standard I/O librarys plus two additional libraries-math functions (sin, cos, sqrt, etc.) \& $20+$ graphic commands (line, fill, dot, etc.).
$\begin{array}{ll}\text { C-128 } & \$ 59.95 \\ \text { C-64 } & \$ 59.95\end{array}$

$$
\text { C-64 } \$ 59.95
$$

Easily create professional high quality charts and graphs without programming. You can immediately change the scaling, labeling, axis bar filling, etc. to suit your needs. Accepts data from CalcResult and MultiPlan. C -128 version has 3 X the resolution of the '64 version. Outputs to most printers.

$$
\begin{array}{ll}
\text { C-128 } & \$ 39.95 \\
\text { C-64 } & \$ 39.95
\end{array}
$$

Remarkably easy-to-use interactive drawing package for accurate graphic designs. New dimensioning features to create exact scaled output to all major dot-matrix printers. Enhanced version allows you to input via keyboard or high quality lightpen. Two graphic screens for COPYing from one to the other. DRAW, LINE, BOX, CIRCLE, ARC, ELLIPSE available. FILL objects with preselected PATTERNS; add TEXT; SAVE and RECALL designs to/from disk. Define your own library of symbols/objects with the easy-to-use OBJECT MANAGEMENT SYSTEM-store up to 104 separate objects.

C-128 \$59.95
C-64 \$39.95

Let your '128 or '64 speak Pascal

Not just a compiler, but a complete system for developing applications in Pascal with graphics and sound features. Extensive editor with search, replace, auto, renumber, etc. Standard J \& W compiler that generates fast machine code. If you want to learn Pascal or to develop software using the best tools available-SUPER Pascal is your first choice. C-64 \$59.95

OTHER TITLES AVAILABLE:

COBOL Compiler

Now you can learn COBOL, the most widely used commercial programing language, and tearncobol on your 64. COBOL is easy to learn because its gasyto read. COBOL Compiler package comes completes 10 Ed Editor, Compiler, Interpreter and Symbolic Debugger.

C-64 \$39.95

Personal Portfolio Manager

Complete portfolio management system for the individual or professional investor. Easily manage your portfolios, obtain up-to-the-minute quotes and news, and perform selected analysis. Enter quotes manually or automatically through Warner Computer Systems.

C-64 \$39.95

Xper

XPER is the first "expert system" for the C-128 and C-64. While ordinary data base systems are good for reproducing facts, XPER can derive knowledge from a mountain of facts and help you make expert decisions. Large capacity. Complete with editing and reporting.

C-64 \$59.95
C. 128 and C .64 are trademarks ol Commodare Business Machines inc.

Unix is a trademark of Bet Laboratries

Abacus

capabilities-reveal the early attempts at space flight, including a revolving three-dimensional overview of Sputnik; the voice of rocket expert Werner Von Braun; a cross-section of a typical rocket system, revealing how the physical configurations have changed over time; and a brief explanation of early V-1 and V-2 rockets during World War II.

Dozens of additional topics offer themselves almost magically to the young researcher-from Andy Williams singing Moon River to an animated demonstration of the moon's effects on the Earth's tides.

Although such examples may sound farfetched today, the development of this technology is already under way. The interactive nature of research in tomorrow's schools will be a far cry from the traditional approach.

For schoolchildren today, finding information is, in many ways, similar to the process that was followed by their parents and grandparents. The millions of available books can be a fascinating but often frightening and frustrating world for young students. And crossreferencing information from one source to another is even more daunting. The search process itself can sometimes be discouraging enough to thwart many students ${ }^{\prime}$ early efforts at learning.

In the next few years, however, laser technology in the form of compact disc players interfaced with personal computers are expected to have a major impact on how students research. Called CDROM, this configuration of digital technology embodies three elements that offer tremendous power for educational research. First, speed: Using a CD-ROM system, a student can find the most trivial fact contained in a multivolume reference work in the time it would take to remove a book from the shelf and flip it open to the index. Second, durability: Because the search functions of CD-ROM are driven by a laser beam reading a disc, the hardware and software, given reasonable care, could last hundreds of
years. And third, tremendous storage capability: A compact disc can hold over 550 megabytes of data. That's roughly a quarter of a million pages of text on a disc smaller than a 45 rpm record.

A Long Time Coming

The power of lasers was harnessed over twenty years ago and has potential applications in many industries. Engineers at many consumer electronics companies worldwide have been experimenting with consumer and business applications for almost as long as the technology has been available. We saw some of the first results of this experimentation in 1980, when Sony and N.V. Philips of the Netherlands announced specifications for a new kind of home stereo system: compact disc-audio. Compact disc players use laser beams to read music digitally encoded in microscopic pits on the disc. Since nothing actually touches the disc itself in the playing process, there is no wear on the disc. And the recording is free of the hisses and pops and other distortions we've grown accustomed to hearing on albums. CD players began appearing on the market in 1983 and, thanks to market acceptance, are now a very reasonably priced alternative to traditional stereo systems.

In that same year, Sony and Philips announced specifications for another way to use CD technology: Compact Disc-Read Only Memory (CD-ROM). Slightly modified CD players interfaced with personal computers are capable of holding the data that would require hundreds of the floppy disks that we've grown accustomed to using for data storage. And with the right search software, access to that data is almost instantaneous.

Reference material is an obvious first application for CD-ROM. Consequently, the first hardware/ software configuration actually available for the consumer market was a joint venture between Philips, which provided the player, and Grolier Electronic Publishing, which offered its online Academic American Encyclopedia on a compact disc. The package, sold in limited outlets across the country, retails for \$1,495.

Amazing Searches

Many now claim that the CD-ROM is superior to any previous reference tool. To see why, let's take a brief walk through a search using the Philips/Grolier package.

Installation of the system involves plugging a board into the IBM-PC, connecting the CD player cable to the PC, and turning everything on. Once you've loaded the search software (Knowledge Retrieval System, by Knowledge Set) from a floppy disk, put the CD into the drive and turned it on, you're ready to go.

Here is the opening screen of the CD-ROM search software developed by Knowledge Set (formerly Activenture).

The opening screen offers you the options of finding out more about the system itself, moving directly into a search, or entering the system. All commands are issued by simply pressing the desired function key.

Step 1: Set your search and relation parameters and enter the words or phrases you want to explore.

The first working screen of the system presents two sets of options. Search options let you look for desired words or phrases within article titles, bibliographies, fact boxes, article text itself-or anywhere in

Detailed guide presents the 128 ＇s operating system，explains graphic chips，Memory Management Unit， 80 | ROM listings． |
| :--- |
| Roles |
| $500 \mathrm{pp} \$ 19.95$ |

Abacus 㶾相相 Software
Get all the inside information on BASIC 7．0．This exhaustive hand－ book is complete with commented Summer＇ 86 ．ROM listings．Coming
$\$ 19.95$

Filled with info for everyone．Covers 80 column hi－res graphics，win－ dowing，memory layout，Kernal outines，sprites，software pro－ tection，autostarting．300pp \＄19．95

Abacus ilililil Software
Insiders＇guide for novice \＆ad－ vanced users，Covers sequential \＆ relative files，\＆direct access com－ mands．Describes DOS routines． Commented listings，$\quad \$ 19.95$

Learn fundamentals of CAD while developing your own system．Design objects on your screen to dump to a printer．Includes listings for＇ 64 with Simon＇s Basic．$\quad 300$ pp $\$ 19.95$

Introduction to programing；problem analysis；thorough description of all BASIC commands with hundreds of examples；monitor commands；util－

COMMOOOEG］［ \＆80
PEEKS \＆POKES

Presents dozens of programming quick－hitters．Easy and useful echniques on the operating system， BASkS，zero－page，pointers，the

ssential quide for everyone inter ested in CP／M on the 128．Simple explanation of the operating system， memory usage，CP／M utility pro
grams，submit files \＆more．

ANATOMY OF C－64 Insider＇s guide to the 64 internals．Graphics，sound，VO，kernal， memory maps，more．Complete commented ROM listings．

ANATOMY OF 1541 \＆DRIVE Bes handbook on floppySexplains all．Many examples and Et JitiosNEUTH commented 1541 ROM listings． $500 \mathrm{pp} \$ 19.95$ MACHINE LANGUAGE C． 64 Learn 6510 code write fast programs．Many sam－ ples and listings for complete assembler， monitor，\＆simulator．200pp \＄14．95 GRAPHICS BOOK C－64－best reference covers basic and advanced graphics． Sprites，animation，Hires，Multicolor， lightpen，3D－graphics，IRQ，CAD，pro jections，curves，more．350pp \＄19．95

TRICKS \＆TIPS FOR C． 64 Collection of easy－to－use techniques：advanced graphics， improved data input，enhanced BASIC CP／M，more． 275pp \＄19．95 1541 REPAIR \＆MAINTENANCE Handbook describes the disk drive hard－ ware．Includes schematics and techniques to keep 1541 running．200pp \＄19．95 ADVANCED MACHINE LANGUAGE Not covered elsewhere：－video controller， interrupts，timers，clocks，VO，real time， extended BASIC，more．210pp $\$ 14.95$ PRINTER BOOK C－64／VIC－20 Under－ stand Commodore，Epson－compatible print ers and 1520 plotter．Packed；utilities；gra－ phics dump；3D－plot；commented MPS801 ROM listings，more． 330pp \＄19．95

SCIENCE／ENGINEERING ON C－64 In depth intro to computers in science．Topics： chemistry，physics，biology，astronomy， electronics，others．$\quad 350 \mathrm{pp} \$ 19.95$ CASSETTE BOOK C－64／VIC－20 Comprehensive guide；many sample programs．High speed operating system fast file loading and saving． 225 pp \＄14．95 IDEAS FOR USE ON C－64 Themes： auto expenses，calculator，recipe file，stock lists，diet planner，window advertising， others．Includes listings．200pp $\$ 12.95$ COMPILER BOOK C－64／C－128 All you need to know about compilers：how they work；designing and writing your own； generating machine code．With working example compiler．$\quad 300 \mathrm{pp} \$ 19.95$

Adventure Gamewriter＇s Handbook Step－by－step guide to designing and writing your own adventure games．With automated adventure game generator．200pp \＄14．95 PEEKS \＆POKES FOR THE C－ 64 Includes in－depth explanations of PEEK， POKE，USR，and other BASIC commands． Learn the＂inside＂tricks to get the most out of your＇ 64 ．

200pp \＄14．95
Optlonal Diskettes for books
For your convenience，the programs contained in each of our books are avail－ able on diskette to save you time entering them from your keyboard．Specify name of book when ordering．

Abacus

Optional diskettes available for all book titles $-\$ 14.95$ each．Other books \＆software also available．Call for the name of your nearest dealer．Or order directly from ABACUS using your MC，Visa or Amex card．Add $\$ 4.00$ per order for shipping．Foreign orders add $\$ 10.00$ per book．Call now or write for your free catalog．Dealer inquires welcome oyery 400 dealerinationvidore．ca
the encyclopedia. If you're crossreferencing two words or phrases to see if they have any relationship to each other, you can choose from several Relation options. For instance, you can find out if your selected words or phrases appear in the same article, the same paragraph, within a certain number of words of each other, or in the exact order. The fifth option here, which can save you some time, lets you negate a word that might appear within the phrase you're looking for, but which is actually another subject entirely. If you are doing a report on Martin Luther, negating the word King will prevent you from pulling articles you don't need to read.

Step 2: After getting a list of entries, decide which you'd like to look at.

Let's say you're doing a research project on Indo-European culture. Upon entering that phrase, you'll find that there are 162 occurrences of that phrase in 65 articles. After asking to see a list of the articles, you can choose to read and even print out any of them. Moving around from article to article and in and out of searches is made quite simple by the function key menu that remains along the left side of the screen (and changes depending on what area of the software you're using).

To save you some time, if you don't want to skim through entire articles, every time your selected search word or phrase appears in an article or bibliography, it shows up as highlighted print.

The system's real power is quite evident the first time you sit down to conduct a search. The incredibly fast search capabilities were made possible by the software developers at Knowledge Set (formerly Activenture). In order to

The top screen shows (in highlighted text) where your selected phrase appears within a bibliography; the bottom screen shows it within an actual article about the topic. From here, you can print out a copy, continue your search, or begin a new search.
make referencing accurate and thorough, every unique word in the Academic American Encyclopedia was identified. Then the VAX minicomputer which compiled the list created an index that cross-referenced every entry. This accounts for the system's speed, as well as its ability to make connections between seemingly unrelated items that might never occur to the user, but which might make for some very interesting research.

Graphics And Sound, Too

Libraries and other institutions that have major information storage and retrieval needs have, understandably, shown a great deal of interest in CD-ROM. But there are still a few things that need to be worked out before CD-ROM becomes as commonplace as microfiche. First, compatibility: Ideally, CD-ROM should be a market similar to that of CD-audio; that is, any CD you buy will run on any manufacturer's CDROM player. Negotiations over standards are currently under way.

Second, where will the software come from? Many software publishers are very interested in de-
veloping for CD-ROM, though few have publicly committed to it. Part of the problem here stems from the old chicken-and-egg problem. Businesses are hesitant to buy a system unless there is a lot of software available, but software publishers are hesitant to put a lot of development money into a product unless there is a solid installed base of the hardware.

Sony and Philips recently announced specifications for a specialized kind of CD-ROM perhaps better suited to the home market. CD-I (Compact Disc-Interactive) suggests an environment that will allow the mixing of text, graphics, sound, and limited animation. It's described as a system, as opposed to CD-ROM, which is considered a peripheral. CD-I hardware may be available in several different configurations from several different companies, but the general idea is to get away from the need for any extensive technical knowledge to operate it. Several companies in the entertainment field have announced intentions to develop home entertainment products for the system.

Microsoft recently showed a prototype of the Multimedia Encyclopedia, a CD-I product.

Of course, better research tools won't necessarily mean better, smarter students. Motivation and the desire to learn are always key factors. But this new generation of electronic equipment will do much more than simply make it easier to find facts. Just as the computer age has so far sparked previously undreamed-of applications, so also may CD-ROM and CD-I technology lead to uses that we, at this early stage, can hardly -imagine. ©

alternate turns, filling in cells of the honeycomb one at a time. While attempting to complete your own course, you must also try to block your opponent's way, and this requires strategic thinking. The first player to connect both borders wins the game. As a reward, tiny bee faces appear along the line of connection, clearly marking the path to victory.

Entering The Game

Type in the program listing for your computer, referring to the special notes below. When you have saved a copy of the game, type RUN and press RETURN. Beehive begins by asking for the name of each player. After both players have entered their names, the beehive grid is drawn and play begins. In the Amiga and IBM PC/PCjr versions, the computer determines randomly which player should take the first turn; in other versions, player 1 always goes first. In the Amiga version, each player takes a turn by moving the mouse pointer to the desired cell and pressing the left mouse button once. Other versions substitute joystick or keyboard controls for the mouse (see below).

When you choose a cell, it is filled with a solid circle and your turn ends. While connecting your own borders, you should also be trying to prevent the other player from making a connection. Play continues until one player or the other completes a continuous line from one border to the other. At this point a victor is declared, and bee faces replace the circles along the entire winning route.

Winning Strafegies

Like most two-player games, Beehive adjusts itself to the skill of the players. The basic concept is simple enough that even small children can enjoy playing. But when two knowledgeable players are matched, play proceeds at a much higher level. The flexibility of the game allows many different strategies.

Here are some important points for beginners to keep in mind. To begin with, your first move does not have to occur in one of your border rows. In fact, you can often establish a better strategic position by starting somewhere near the middle of the playing field. In a typical game you will have to swing back and forth between an expanding, offensive posture and a defensive, blocking posture. The middle areas accommodate both strategies well.

Second, it is not necessary that all of your cells be connected. That is, a new cell doesn't necessarily have to touch one of your existing cells. Any empty cell in the hive is fair game for either player, and it's often advantageous to space out your cells to allow multiple paths between borders. Starting multiple pathways makes it harder for an opponent to block your progress completely.

Finally, keep in mind that the hexagonal shape of each cell permits you to move in six different directions. Try not to get locked into a strict, straight-line strategy too often. Any pathway that connects both borders is legal, and in many cases the winning path will be quite roundabout.

Amiga Version

Before you begin typing in the Amiga version (Program 1), notice the small arrows marking the end of the line. They are not intended to be typed (in fact, we deliberately chose a character that's not available from the Amiga's keyboard). Instead, wherever you see an arrow in the listing, press RETURN or move the cursor off the line to enter it into memory.

The Amiga version of Beehive includes synthesized speech. Either player can toggle the speech effects on or off at any time. Press the left button once: A small box appears, indicating the current speech status. If speech was turned on, it is now turned off, and vice versa. Press the left button again to erase the speech box and resume the game.

Commodore 64/128 Version

The Commodore version (Program 2) runs on a Commodore 64 or Commodore 128 in 64 mode; it requires a joystick. Plug the joystick into port 1 and use it to move the bee-shaped pointer onto the desired cell. To select a cell, press the fire button.

Atari Version

Atari Beehive (Program 3) requires a joystick and runs on any Atari 400, $800, \mathrm{XL}$, or XE computer with at least 32 K of memory. Plug the joystick into port 1. Move the pointer over the cell you wish to occupy, then press the fire button to select it.

Apple II Version

The Apple II version of Beehive (Program 4) runs on any Apple IIseries computer, under DOS 3.3 or ProDOS. A color monitor and joystick are required. To select a cell, move the pointer onto it, then press the button.

IBM PC/PCjr Version

IBM Beehive (Program 5) requires a color/graphics card and BASICA for the IBM PC, and Cartridge BASIC for the PCjr. Keyboard controls are used to move the beeshaped pointer around the playing field and to select a cell. Use the arrow keys to move left, right, up, or down. When the pointer is above the desired cell, press the space bar to select it.

Program 1: Beehive For Amiga

Please refer to the typing instructions in the article before entering this listing.
$\stackrel{4}{C L S} 4$
talk\$="n: GOSUB talk
GOSUB init4
GOSUB getnames 4
start: 4
CLS: RANDOMIZE TIMER 4
markers $=\varnothing$: winner $=\varnothing$: prev.pl ayer $=04$
player $=\operatorname{INT}\left(2^{*}\right.$ RND $\left.(1)+1\right) 4$
FOR $j=1$ TO 11: FOR $k=1$ TO 31: hiver $(j, k)=\emptyset: ~ N E X T ~ k: ~ N E X T ~ j ~ « ~$
FOR $j=1$ TO 2ø: pathlen $(j)=\varnothing$:
NEXT j 4
FOR $j=1$ TO 65: path\% (j) = ø: u
sed\% $(j)=\varnothing:$ node\% $(j)=\varnothing:$ NEXT j4
GOSUB drawscreen
BREAK ON: ON BREAK GOSUB closeup
4
main:4
IF prev.player <> player THEN \langle COLOR 44
LOCATE 1,2: PRINT "Player:
"4
LOCATE 1,2: PRINT "Player: ";4
COLOR colr(player): PRINT LEFT\$(player\$(player),15)
talk\$=player\$(player) : GOSUB tal k 4
prev.player $=$ player 4
END IF4
WHILE MOUSE ($\varnothing)=\varnothing 4$
$\mathrm{x}=\mathrm{MOUSE}(\varnothing) 4$
$a \$=I N K E Y S: I F ~ a \$="$ " THEN GOSUB r eadkey ${ }^{4}$
WEND 4
GOSUB checkmouse 4
IF used THEN main 4
GOSUB checkline 4
IF possible $=1$ THEN GOSUB check winner 4
LOCATE 3,2: PRINT"
4
IF winner $=1$ THEN drawpath 4
IF player $=1$ THEN 4
player $=2$
ELSE 4
player $=1$
END IF4
GOTO main 4
4
init: 4
CLS: $\operatorname{colr}(1)=2: \operatorname{colr}(2)=34$
DIM colcori(11): FOR $j=1$ TO 11
: READ colcori (j) : NEXT $j 4$
DATA $5,4,4,3,3,2,2,1,1,6,64$
DIM row.inc\%(6), col.inc\%(6)
FOR $j=1$ TO 6: READ row.inc\% (j)
, col.inci(j): NEXT j 4
DATA $-1,-1, \varnothing, 1,1,1,1, \varnothing, \varnothing,-1,-1,-$ 14
DIM hives (11,31) 4
DIM used\% (65), node\%(65), path\%(65), pathlen(2θ) 4

SCREEN 1,64の,2のø,3,24
WINDOW 1, "BEE HIVE", 16,14
GOSUB setcolor 4
DIM hexa (1øø), ball1 (1øø), ball2 (1
øб) , eyes $1(1 \varnothing \varnothing)$, eyes $2(1 \varnothing \varnothing) 4$
LINE $(3 \varnothing, 1 \emptyset)-(12,15), 7:$ LINE - S
$\operatorname{TEP}(\varnothing, 1 \varnothing), 7:$ LINE - STEP $(18,5)$
, 74
LINE - STEP ($18,-5$), 7: LINE - ST
EP $(\varnothing,-1 \varnothing), 7: \operatorname{LINE}-\operatorname{STEP}(-18,-$ 5), 74
$\operatorname{LINE}(30,11)-(13,15), 6:$ LINE - S
$\operatorname{TEP}(\emptyset, 9), 6: \operatorname{LINE}-\operatorname{STEP}(17,5)$, 64

LINE - STEP $(16,-4), 6$: LINE - ST EP $(\varnothing,-1 \varnothing), 6:$ LINE - STEP (-17,4),64

GET $(12,1 \varnothing)-(48,3 \varnothing)$, hexa 4
CLS: CIRCLE $(3 \varnothing, 2 \varnothing), 11, \operatorname{colr}(1)$:
PAINT $(3 \varnothing, 2 \varnothing), \operatorname{colr}(1): \operatorname{GET}(2 \sigma, 9$)-(40,31), balll4
GOSUB parts: $\operatorname{GET}(18,12)-(42,3 \varnothing)$, eyesl 4
CLS: CIRCLE $(30,2 \varnothing), 11, \operatorname{colr}(2)$:
PAINT (3ø,2ø), colr(2): GET (2ø,9) $-(40,31)$, ball24
GOSUB parts: $\operatorname{GET}(18,12)-(42,3 \emptyset)$
, eyes2: CLS 4
RETURN 4
4
parts: 4
$\operatorname{CIRCLE}(25,19), 4,1: \operatorname{CIRCLE}(35,1$
9) 14,14

PAINT $(25,19), 1:$ PAINT $(35,19), 1$
$\operatorname{PSET}(29,17): \operatorname{LINE}-\operatorname{STEP}(-5,-5$
): LINE - $\operatorname{STEP}(-5,3) 4$
$\operatorname{PSET}(31,17): \operatorname{LINE}-\operatorname{STEP}(5,-5)$
: LINE - $\operatorname{STEP}(5,3) 4$
CIRCLE $(3 \varnothing, 24), 2,1: \operatorname{PAINT}(30,24$
),14
RETURN 4
4
getnames:4
COLOR 44
CLS: talk\$="WELCOME TO BEEE HIVE ": GOSUB talk
$\mathrm{a} \$=$ " What is the name of playe r 1 ": PRINT 4
PRINT a\$;: talk $\$=\mathrm{a}$: GOSUB talk: INPUT player\$(1)4
$\mathrm{a} \$=$ " What is the name of playe r 2 ": PRINT 4
PRINT a\$;: talk\$=a§: GOSUB talk: INPUT player\$(2)4
talk $\$=$ "Press space bar to turn s
peech off or on during game." 4
LOCATE 15,14: PRINT talk\$4
GOSUB talk:CLS: RETURN 4
4
drawscreen:4
CLS: $y=74$
FOR $\mathrm{r}=1$ TO 114
$\mathrm{x}=180-\mathrm{r}$ * 184
FOR $c=1$ TO 114
$\mathrm{x}=\mathrm{x}+364$
PUT (x, y), hexa, OR
NEXT C 4
$\mathrm{y}=\mathrm{y}+154$
NEXT r 4
PSET $(595,12), 2$: GOSUB upndown:
LINE -STEP ($\varnothing, 1 \varnothing$), 24
PSET (596,12),2: GOSUB upndown:
LINE -STEP ($\varnothing, 1 \varnothing$), 24
PSET $(597,12), 2:$ GOSUB upndown: LINE -STEP ($\varnothing, 1 \varnothing$), 24
PSET $(194,12), 2$: GOSUB upndown: LINE -STEP $(\varnothing, 1 \varnothing), 24$
PSET $(195,12), 2$: GOSUB upndown:
LINE -STEP $(\varnothing, 1 \emptyset), 24$
PSET $(196,12), 2:$ GOSUB upndown:
LINE -STEP ($\varnothing, 1 \varnothing$), 24
Yl=-5: Y2=5: $\operatorname{PSET}(198,9), 3:$ GOS
UB across
PSET $(198,16), 3:$ GOSUB across 4
PSET (199,11),3: GOSUB across 4
$\mathrm{y} 1=5: \mathrm{y} 2=-5: \operatorname{PSET}(19,173), 3:$ GO
SUB across 4
PSET $(19,174), 3:$ GOSUB across 4
PSET $(19,175), 3:$ GOSUB across 4
RETURN4
4
upndown: 4
FOR $\mathrm{j}=1$ TO 104
LINE -STEP $(\varnothing, 1 \varnothing)$, colr(1)4
LINE -STEP $(-18,5)$, colr $(1) 4$
NEXT ${ }^{j}$
RETURN 4

GET UPTO 2OO FUNFFILED PROGRAMS EACHYEAR-

Subscribe to COMPUTE! today through this

special introductory money-saving offer, and you'll be getting a lot more than just another computer magazine. That's because each issue of COMPUTE! comes complete with up to 20 all-new, action-packed programs.

Subscribe now and you can depend on a steady supply of high quality, fun-filled programs like Hickory Dickory Dock, Switchbox, TurboDisk, Home Financial Calculator, Turbo Tape, SpeedScript, SpeedCalc, and hundreds of other educational, home finance, and game programs the entire family can use all year long.

The superb programs you'll find in each issue are worth much, much more than the low subscription price.

And there's more to COMPUTE! than just exciting new programs. Month after month, COMPUTEI's superb articles deliver the latest inside word on everything from languages to interfaces...from programming to disk drives.

Whether you're a novice or an experienced user, COMPUTE! is the magazine for you. So subscribe today. Return the enclosed card or call 1-800-247-5470 (in lowa, 1-800-532-1272).

Do it now.

COMPUTE

COMPUTE! Publications, Inc. abc

across: 4
FOR $j=1$ TO 114
LINE -STEP ($18, \mathrm{yl}$), colr(2) 4
LINE -STEP ($18, \mathrm{y} 2$), colr(2) 4
NEXT j 4
RETURN 4
4
checkmouse:
$x=\operatorname{MOUSE}(3): y=\operatorname{MOUSE}(4) 4$
offset $=\varnothing$: used $=\varnothing 4$
$\mathrm{yr}=\operatorname{INT}(\mathrm{y} / 15+.5):$ row $=\mathrm{yr}: \mathrm{yr}$ $=\mathrm{yr}$ * 15 4
IF INT $(\mathrm{yr} / 2)=\mathrm{yr} / 2$ THEN offset $=184$
$\mathrm{xr}=$ INT $((\mathrm{x}$-offset $) / 36+.5):$ col $=\mathrm{xr}: \mathrm{xr}=\mathrm{xr} * 36+$ offset 4
IF row < 1 OR row > 11 THEN 4
used $=14$
RETURN 4
END IF4
col $=\operatorname{col}-\operatorname{colcor}$ (row) 4
IF col < 1 OR col > 11 THEN4
used $=14$
RETURN 4
END IF4
rowhive $=$ row: colhive $=1 \varnothing+2^{*} \mathrm{co}$ 1-row 4
IF hive?(row, colhive) <> Ø THEN
used $=14$
RETURN4
END IF 4
markers $=$ markers +14
hive\% (row, colhive) = player 4
IF player $=1$ THEN \leftarrow
PUT (xr-10,yr-9), balll,OR 4
ELSE 4
PUT ($x r-1 \varnothing, y r-9$), ball2,OR 4
END IF4
RETURN 4
checkline: 4
possible=14
IF player $=2$ THEN 4
FOR row $=1$ TO 6: ff= $\emptyset: \quad \mathrm{fb}=\varnothing 4$
FOR col = 1 TO 11: colhive=16+2*
col-row 4
IF hive\% (row, colhive)=player THE N ff=l4
colhive $=1 \sigma+2$ * (col) $-(12-$ row $) 4$
IF hive\%(12-row, colhive)=player
THEN $\mathrm{fb}=14$
NEXT col 4
IF $f f=\emptyset$ OR $f b=\emptyset$ THEN $<$
possible $=04$
row $=1 \mathrm{E}+\varnothing 94$
END IF4
NEXT row 4
ELSE4
FOR col $=1$ TO 6: $\mathrm{ff}=\emptyset: \quad \mathrm{fb}=\emptyset 4$
FOR row $=1$ TO 11: colhive=1 $\sigma+2$ * col-row4
IF hiver (row, colhive)=player THE N ff=l4
colhive $=1 \varnothing+2$ * $(12-\operatorname{col})-$ row 4
IF hiver (row, colhive)=player THE N $\mathrm{fb}=14$
NEXT row 4
IF $f f=\emptyset$ OR $f b=\emptyset$ THEN 4
possible $=04$
col $=1 \mathrm{E}+094$
END IF4
NEXT col 4
END IF4
RETURN 4
checkwinner: 4
LOCATE 3,2: COLOR 4: PRINT "Chec king..."4
used.cntr $=\varnothing$: winner $=\varnothing$: node.
cntr $=\varnothing$: node. total $=\varnothing$: counte
$r=04$
IF player $=1$ THEN checkl 4
FOR col $=1$ TO 11: row $=14$
IF hive\% (row, 1б+2* col-row) <> pl
ayer THEN skip24
noderow $=$ row: nodecol $=$ col: GO SUB usedlookup
IF used.flag $=1$ THEN skip2 4
node.total $=1$: path. total $=1: c$
ounter $=14$
patho (1) $=1 \varnothing \varnothing$ * noderow + nodec ol4
GOSUB checkpath 4
IF winner $=1$ THEN col $=1 \mathrm{E}+\varnothing 94$
skip2:4
NEXT col 4
RETURN 4
4
checkl: 4
FOR row $=1$ TO 11: col $=14$
IF hive\% (row, 1 $\varnothing+2$ *col-row) <> pl ayer THEN skipl4
noderow $=$ row: nodecol $=$ col: $G O$ SUB usedlookup 4
IF used.flag $=1$ THEN skipl 4
node.total $=1:$ path.total $=1:$ counter $=14$
path\% $(1)=1 \varnothing \emptyset *$ noderow + nodec 014
GOSUB checkpath 4
IF winner $=1$ THEN row $=1 \mathrm{E}+\emptyset 94$
skipl: 4
NEXT row 4
RETURN4
4
usedlookup: 4
used.flag $=\varnothing$: search $=1 \varnothing \varnothing$ * no derow + nodecol 4
$1 \mathrm{k}=\varnothing$: IF used.cntr $=\emptyset$ THEN sk ipsearch4
FOR $1 \mathrm{k}=1 \mathrm{TO}$ used. cntr 4
IF search $=$ usedio (lk) THEN 4
used.flag $=14$
$1 \mathrm{k}=1 \mathrm{E}+094$
END IF
NEXT 1 k 4
skipsearch:4
IF used.flag $=\emptyset$ THEN 4
used. cntr $=$ used.cntr +14
usedi(used.cntr) $=$ search 4
END IF4
RETURN4
checkpath: $ヶ$
node.cntr $=\varnothing 4$
FOR nc $=1$ TO 64
noderow $=$ noderow + row.inct(nc)
: nodecol $=$ nodecol + col.incti(n

c) 4

IF noderow < 1 OR noderow > 110 R nodecol < 1 OR nodecol > 11 TH EN skipnode
4
IF hives (noderow, 1 $\varnothing+2$ * nodecol-no derow) <> player THEN skipnode 4 GOSUB usedlookup: IF used.flag = 1 THEN skipnode 4
node.cntr $=$ node.cntr +14
node.total $=$ node.total $+1:$ nod e\%(node.total) $=1 \emptyset \emptyset$ * noderow + nodecol4
IF (player $=2$ AND noderow $=11$)
$\mathrm{OR}($ player $=1$ AND nodecol $=11$) THEN 4
winner $=14$
path.total $=$ path.total +14
path\% (path.total) $=1 \varnothing \emptyset$ * nodero $\mathrm{w}+$ nodecol 4
$\mathrm{nc}=1 \mathrm{E}+094$
END IF 4
skipnode: 4
NEXT nc 4
IF winner $=1$ THEN RETURN4
IF node. cntr $=\varnothing$ AND node.total $=\varnothing$ THEN RETURN4
IF node.cntr $=\varnothing$ THEN 4
path.total $=$ path.total - pathle
n(counter)4
pathlen(counter) $=\varnothing 4$
counter $=$ counter -14
END IF 4
IF node.cntr >1 THEN counter $=$ counter + node. cntr - 14
noderow $=$ INT(nodez(node.total)/ 1øø) 4
nodecol $=$ node $\%($ node.total $)-1 \varnothing$ Ø * noderow 4
path. total $=$ path. total +14
pathlen(counter) = pathlen(count er) +14
pathi (path \cdot total) $=$ node\% (node.t otal)4
node.total $=$ node.total -14
GOTO checkpath \leqslant
4
drawpath: 4
LOCATE 1,1: PRINT "
": COLOR 44
LOCATE 1, l: PRINT "THE WINNER: " ;:COLOR colr(player): PRINT play er\$(player); 4
$\mathrm{a} \$=$ "THE WINNER IS " + player\$(player): talk\$=a\$: GOSUB talk FOR $j=1$ TO path.total: offset $=04$
row $=\operatorname{INT}($ path\% $(j) / 1 \varnothing \varnothing): \operatorname{col}=p$ ath\% (j) - 1ø日*row + colcor\% (row)

IF row $/ 2=$ INT(row/2) THEN offse $\mathrm{t}=184$
$\mathrm{xr}=\operatorname{col} * 36+$ offset: $\mathrm{yr}=$ row * 154

IF player $=1$ THEN 4
PUT ($x r-1 \varnothing, y r-9$), balll, XOR 4
PUT ($x r-12, y r-5$), eyesl, OR 4 ELSE4
PUT (xr-1Ø,yr-9), ball2, XOR4
PUT (xr-12,yr-5), eyes2, OR؛
END IF4
NEXT $j<$
4
goagain: 4
LINE (419, 139)-(625, 186), 7,b: LI NE $(42 \emptyset, 14 \emptyset)-(624,185), 7$, b 4
LINE (421,141)-(623,184),4,bf: C
OLOR 64
LOCATE 19,55: a \$ $=$ " WANT TO PLA Y AGAIN ? ": PRINT as; 4
LINE $(431,162)-(487,18 \emptyset), 7$, bf: L OCATE 22,56: PRINT " YES "; 4
LINE $(567,162)-(615,180), 7, b f: L$ OCATE 22,73: PRINT " NO "; 4
talk\$=a\$: GOSUB talk ${ }^{4}$
4
waiter: 4
WHILE MOUSE (\varnothing) <> 14
WEND 4
$x=\operatorname{MOUSE}(3): y=\operatorname{MOUSE}(4) 4$
IF $\mathrm{y}<162$ OR $\mathrm{y}>18 \emptyset$ THEN waite
r4
IF $x>43 \varnothing$ AND $x<488$ THEN star
t 4 x > 566 AND x < 616 THEN clos
eup4
GOTO waiter 4
4
setcolor: 4
PALETTE $\emptyset, .3, .3, .3$ 'grey 4
PALETTE $1, \varnothing, \varnothing, \varnothing \quad$ 'black 4
PALETTE 2, $0,1,0 \quad$ 'green 4
PALETTE $3, \varnothing, \varnothing, 1 \quad$ 'blue 4
PALETTE 4,1,1,1 'white4
PALETTE 5, $0,1,1$ 'aqua
PALETTE 6,1,1,0 'yellow4
PALETTE 7,.8,.2, $\quad ' r e d 4$
RETURN 4
closeup: 4
PALETTE $\varnothing, .1, .1,1$ 'blue
PALETTE 1,1,1,1 'white 4
PALETTE 2, $0, \varnothing, \varnothing$ 'black 4
PALETTE $3, .85, .2, \varnothing$ 'red
WINDOW CLOSE 14
SCREEN CLOSE 14

- Word Processing • Program Listings • Graphics• Quiet Operation• Upper and Lower case • All points addressable Graphics • Underline • Enhanced • Much much More

Super Quality

This printer was made by Canon ${ }^{\circledR}$ for one of the largest computer manufacturers in the world. The Big Blue printer comes ready to hook up to the serial port of the IBM®PC jr. Plus with low cost adapter cables you can connect the Big Blue printer to the IBM®PC, IBM ®XT, IBM®AT, Apple $®$ II, IIe, IIc, Commodore ${ }^{\circledR}$ 64,128, Atari®, plus many more.

- 15 Day Free Trial

- 90 Day Immediate Replacement Warranty

Now you can have a full fledged $81 / 2$ '" letter size 80 column printer for less than the cost of a large box of paper. This printer uses advanced thermal technology to print upper and lower case (with true lower descenders), underline, enhanced, all points addressable graphics (works with Printshop) plus More. Print out pictures, program listings, wordprocessing pages, graphics and more. Perfect for the homeowner or student and definitely affordable. Fantastic Printer at an unbeatable price. List \$199.00 Sale \$39.95

> Intelligent Commodore Interface-Allows you to connect the Big Blue printer to the printer port of the Commodore 64 and 128 computer. Print Commodore graphics, use Printshop, Word processors and more...
> List $\$ 49.95$ Sale $\$ \mathbf{2 4 . 9 5}$

Intelligent Atari Interface- Allows you to connect the Big Blue printer to Atari computers (except 1200). Print Atari graphics, Printshop, word processors, and more... List $\$ 49.95$ Sale $\$ 24.95$

IBM®, Apple® RS-232 Adapter-Adapts the Big Blue printer to be used with any RS-232 port.
List $\$ 19.95$ Sale $\$ 9.95$
Paper (2 Rolls) List $\$ 19.95$ Sale $\$ 9.95$
IBM, Apple, Canon, Commodore, Atari are trademarks of International Business Mochines. Apple Computer, Conon Inc, Commodore Business Machines, Atari Inc. Respectively.

[^1]
COMMODORE 64 COMPUTER

(Order Now)

- C128 Disks $79^{〔}$ ea.*
- Comstar Writer 64 \$19.95
- 13" Color Monitor \$139.95

CALL BEFORE YOU ORDER

COMMODORE 64 COMPUTER $\$ 149.95$ You pay only $\$ 149.95$ when you order the powerful 84K COMMODORE 64 COMPUTER! LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your computer that allows you to SAVE OVER $\$ 250$ off software sale prices!! With only $\$ 100$ of savings applied, your net computer cost is $\$ 49.95$!!

* C128 DOUBLE SIDED DISKS 79° EA. Get these $51 / 4^{\prime \prime}$ Double Sided Floppy Disks specially designed for the Commodore 128 Computer (1571 Disk Drive). 100\% Certified, LIfotime Warranty, Automatic Lint Cleaning Liner Included. 1 Box of 10 - $\$ 9.90$ (99° ea.), 5 Boxes of 10 - $\$ 44.50\left(89^{\circ} \mathrm{ea}.\right)$, 10 Boxes of 10 - $\$ 79.00$ ($79^{\prime} \mathrm{ea}$.).

13' COLOR MONITOR $\$ 139.95$ You pay only $\$ 139.95$ when you order this $13^{\prime \prime}$ COLOR MONITOR. LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your monitor that allows you to save over $\$ 250$ off software sale prices!! With only $\$ 100$ of savings applied, your net color monitor cost is only $\$ 39.95$. (16 Colors).

Premium Quality 150-170 CPS
Comstar A
The COMSTAR Aero 160 gives you a $10^{\prime \prime}$ carriage, 150-170 CPS, 9×9 dot matrix with double strike capability for 18×18 dot matrix (near letter quality), high resolution bit image (120×144 dot matrix), underlining, back spacing, left and right margin setting, true lower decenders with super and subscripts, prints standard, block graphics and special characters. It gives you print quality and features found on printers costing twice as much!! (Centronics Parallel Interface) List $\$ 499.00$ sale $\$ 199.00$.

9" SAMSUNG GREEN SCREEN MONITOR
Super High Resolution composite green screen monitor. Perfect for 80 column use with The Cl 28 computer (Req. $\$ 19.95$ Cable)
List \$129.95 Sale \$59.95.

80 COLUMNS IN COLOR

COMSTAR WRITER 64 WORD PROCESSOR $\$ 19.95$ This COMSTAR WRITER 64 WORD PROCESSOR is the finest available for the COMMODORE 64 computer! The ULTIMATE FOR PROFESSIONAL Word Processing, DISPLAYS 40 or 80 COLUMNS IN COLOR or black and white! Simple to operate, powerful text editing, complete cursor and insert/delete key controls line and paragraph Insertion, automatic deletion, centering, margin settings and output to all printers! List $\$ 99.00$. SALE \$19.95. Lid, Qty Closeout Ifem

COMMODORE 64 SYSTEM SALE

Commodore 64
Plus $\$ 30.00 \mathrm{~S} \& \mathrm{H}$ Com. 1541 Disk Drive

13' Color Monitor

(Ltd. Qty)

Cl28 Commodore Computer \& 1571 Disk Drive \$49900

- Voice Synthesizer $\$ 39.95$
- 12" Monitor $\$ 79.95$

PRICES MAY BE LOWER

We pack a SPECIAL SOFTWARE DISCOUNT COUPON with every COMMODORE 4 COMPUTER, DISK DRIVE, PRINTER, or MONITOR we selli this coupon allows you to SAVE OVER $\$ 250$ OFF SALE PRICESII
(Examples)
PROFESSIONAL SOFTWARE
COMMODORE 64

Name
PaperClip
Consultant
Leader Board
The Print Shop
Halley's Project
Practicale (spread sheet)
Volce Command
Volce Command Module Nine Princes in Amber Super Bowl Sunday Filp and File Disk Filer
Pro Joy Stick
PartyWare
Dust Cover
Financial Planner
Sylvia Porter Hardball
C64 Troubleshoot \&
Repair Guide
List Sale Coupon
$\begin{array}{llll}\$ 59.95 & \$ 34.95 & \$ 29.95\end{array}$
$\$ 59.95 \quad \$ 49.95 \quad \$ 39.95$
$\begin{array}{lll}\$ 39.95 & \$ 24.95 & \$ 22.95\end{array}$
$\begin{array}{lll}\$ 39.95 & \$ 24.95 & \$ 22.95 \\ \$ 44.95 & \$ 27.95 & \$ 26.95\end{array}$
$\begin{array}{lll}\$ 39.95 & \$ 27.95 & \$ 26.95 \\ \$ 39.95 & \$ 22.95 & \$ 19.95\end{array}$
$\begin{array}{lll}\$ 59.95 & \$ 19.95 & \$ 14.95\end{array}$
$\begin{array}{lll}\$ 59.95 & \$ 1.95 & \$ 14.95 \\ \$ 79.95 & \$ 39.95 & \$ 34.95\end{array}$
$\begin{array}{lll}\$ 32.95 & \$ 24.95 & \$ 21.95\end{array}$
$\begin{array}{lll}\$ 35.00 & \$ 22.95 & \$ 19.95\end{array}$
$\begin{array}{lll}\$ 24.95 & \$ 14.95 & \$ 12.95\end{array}$
$\begin{array}{lll}\$ 19.95 & \$ 12.95 & \$ 10.00 \\ & \$ 19.95 & \$ 14.95\end{array}$
$\begin{array}{lll}\$ 19.95 & \$ 14.95 & \$ 11.95 \\ \$ 8.95 & \$ 6.95 & \$ 4.60\end{array}$
$\begin{array}{llll}\$ 59.95 & \$ 38.95 & \$ 35.95\end{array}$
$\begin{array}{lll}\$ 29.95 & \$ 18.95 & \$ 16.95\end{array}$
$\begin{array}{llll}\mathbf{\$ 2 4 . 9 5} & \$ 15.95 & \$ 12.95\end{array}$
(See over 100 coupon Items in our catalog) Wrife or call for
Sample SPECIAL SOFTWARE COUPONI

ATTENTMON Computer Clubs

 We Offer Big Volume Discounts CALL TODAY!
PROTECTO WARRANTY

All Protecto's products carry a minimum 90 day warranty. If anything falls within 90 doys from the date of purchase, simply sond your product to us via United Parcel Service simply sond your product to Us via nited Parcal Sorrice prepaid. We wia United Parcel Sorvice propaid. This warranty proves once again that Wo Love Our Customers.

C128 COMPUTER \& 1571 \$499.00 Now you can get the Cl 28 Commodore computer \& the 1571 Disk Drive for one low price of only $\$ 199.00$. List $\$ 698.00$
SALE \$499.00.

340K 1571 COMMODORE

DISK DRIVE $\$ 259.00$
Double Sided, Single Disk Drive for C-128 allows you to use C-128 mode plus CPM mode. 17 times faster than 1541, plus runs all 1541 formats.
List \$349.00. Sale \$259.00.
SUPER AUTO DIAL MODEM $\$ 29.95$ Easy to use. Just plug into your Commodore 64 computer and you're ready to transmit and recelve messages. Easier to use than dialing your telephone, just push one key on your computer I Includes exclusive easy to use program for up and down loading to printer and disk drives.
Eest In U.S.A. List \$99.00. SALE \$29.95.
Coupon $\$ 24.95$.

VOICE SYNTHESIZER \$39.95

For Commodore-64 computers. Just plug it in and you can program words and sentences, odjust volume and pitch, make talking adventure games, sound action games and customized talkies II PLUS ($\$ 19.95$ value) TEXT TO SPEECH program Included FREE, just type a word and hear your computer talk - ADD SOUND TO "ZORK", SCOTT ADAMS AND OTHER ADVENTURE GAMES!! (Disk or tape.) List \$89.00. SALE $\$ 39.95$

12' SAMSUNG AMBER SCREEN MONITOR $\$ 79.95$
Super High Resolution amber screen monitor. 80 columns $\times 24$ lines, easy to read, a must for wordprocessing. Fantastlc value.
List \$129.00. Sale \$79.95.
(C128 cable $\$ 19.95$. C64, Atari cable $\$ 9.95$)

PRINTER/TYPEWRITER
 COMBINATION \$199.95

Superb letter quality, dalsy wheel printer/typewriter combination. Two machines in one - just a flick of the switch. Extra large carriage, typewriter keyboard, automatic margin control compact,lightwoight, drop in cassette ribbon! (90 day warranty) centronics paralle Interface Built -In. List $\$ 349.00$. SALE $\$ 199.95$.
(Lfd. ©ty.)
14" RGB \& COMPOSITE COLOR MONITOR \$239.95 Must be used to get 80 columns in color with 80 column computers (Cl 28 . IBM . Apple). (RGB Cable $\$ 19.95$) Add $\$ 14.50$ shipping. List $\$ 399.00$. SALE $\$ 239.95$.

- LOWEST PRICES • 15 DAY FREE TRIAL
- BEST SERVICE IN U.S.A. ${ }^{\circ}$ ONE DAY EXPRESS MAIL

PHONE ORDERS

8 a.m. -8 p.m. C.S.T. Weekdays
9 a.m. - 12 noon C.S.T. Saturdays

- و) DAY FREE REPLACEMENT WARRANTY
- OVER 500 PROGRAMS • FREE CATALOGS

> Add $\$ 10.00$ for shipping, handling and insurance. Illinois residents please add $61 / 4 \%$ tax. Add $\$ 20.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA, APO-FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA. Enclose Cashier Check, Money Order or Personal Check Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Prices \& Availability subject to change without notice. VISA - MASTER CARD - C.O.D. No. C.O.D. to Canada, APO-FPO

We Love Our Customers Box 550, Barrington, lllinois 60010
312/382-5244 to order

Famous Comstar National Brand

 ${ }^{1010}$ Includes commodore
Near Letter Quality

 InterfaceNear Letter Quality

Best Value in the USA

- 100 CPS draft/20CPS near-letter quality • Dot Addressable Graphics • Adjustable Tractor and Friction Feed • Automatic Paper Loading • Right and Left Margin settings • Pica, Elite, Condensed, Italics • Superscript • Subscript • Underline, Bold print, Double Strike • Superb NEAR LETTER QUALITY

Easy to Use

Fantastic
 Graphics

The Comstar 1000 is one of the best values in the United States today. Print your letters, documents, programs, pictures, and more at a blazing 100 Characters Per Second or 20 cps in the Near Letter quality mode. (Looks just like it came from a typewriter.) Plus, choose your printing mode (NLQ, Draft) from your wordprocessor or by simpiy pushing the controls on the front panel. Fantastic Quality at a Fantastic Price.List \$349.00 SALE $\$ 179.95$.

Print Method

Serial impact dot matrix (9 pin)
Print Speed
Draft-100 CPS NLQ- 20 CPS
Character Sets
96 ASCII Characters, Marker, Symbols (includes italic font)

Ribbon (Life exp.)
Black: cassette (2.5 million characters) Dimensions
$15.4(\mathrm{~W}) \times 10.9(\mathrm{D}) \times 4.7(\mathrm{H})$ inch
Weight
Approx. 10 lbs
Character Spacing
Fixed

Line Spacing

1/6, 1/8, 7/72, and 1/216 inch
Paper Feed
Adjustable tractor and friction feed Paper feeding Direction BI-directional
Copies
2 plus original

Sumply Iss mimmititecl so mervy Tedery

We Love Our Customers
22292 N. Pepper Rd., Barrington, Illinois 60010
312/382-5244 to order

＂Beehive＂for the 512K Amiga，a chal－ lenging strategy game．

STOP4

4
readkey：4
WINDOW 4，＂Speech＂$(250,7 \varnothing)-(39 \varnothing$ ， 110），16，14
IF TalkFlag＝1 THEN 4
talk\＄＝＂Now I can talk．＂\leqslant
PRINT talk\＄4
TalkFlag＝1－TalkFlag 4
GOSUB talk 4
GOTO clearmouse 4
END IF4
IF TalkFlag＝ø THEN 4
talk $\$=$＂OK，I＇ll be quiet．＂ 4
PRINT talk\＄4
GOSUB talk 4
TalkFlag＝1－TalkFlag
END IF4
clearmouse： 4
WHILE MOUSE（ \varnothing ）＜＞\varnothing ：WEND 4
PRINT＂Press button once＂ 4
PRINT＂to continue．．．＂4
WHILE MOUSE（ $\varnothing)<>1$ ：WEND4
WHILE INKEY\＄＜＞＂＂：WEND4
WINDOW CLOSE 44
RETURN 4
4
talk：4
IF TalkFlag＝\emptyset THEN SAY TRANSLATE \＄（talk\＄） 4
RETURN 4

4

Program 2：Commodore 64／128 Beehive

Version by Kevin Mykytyn，Editorial Programmer
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing in
Programs＂in this issue of COMPUTEI．
EF $1 \varnothing$ POKE56， 48 ：CLR：GOTO8 \varnothing
RK $2 \varnothing$ GOSUB56 6
QK 3ø JV＝15－（PEEK（56321）AND15） －128＊（（PEEK（56321）AND16） ＜＞16）：IFJV＞127THENRETURN

AX $4 \varnothing$ IFJV $=\varnothing$ THEN $3 \varnothing$

FF $50 \quad T X=X: T Y=Y: T X=T X+X(J V): T Y$ $=T Y+Y(J V)$
HK 60 IFTX＜1ORTX＞11ORTY＜1ORTY＞ 11 THEN3ø
BQ $7 \emptyset \mathrm{X}=\mathrm{TX}: \mathrm{Y}=\mathrm{TY}:$ GOSUB56 \varnothing ：GOTO3 \emptyset
XQ $8 \emptyset$ GOSUB17ø：GOSUB53 \varnothing
RM 9ø POKE5328ø，5：POKE53281，5： PRINT＂\｛CLR\}\{6 DOWN \}
\｛6 RIGHT\}";:GOSUB47ø:POK E53269，1
SC $1 \varnothing \varnothing$ INPUT＂$\{$ BLK $\}\{3$ DOWN $\}$ \｛2 RIGHT \}ENTER YOUR NAM E PLAYER ONE＂；PNS（1）
SR 116 INPUT＂$\{$ DOWN $\}\{2$ RIGHT $\}$ EN TER YOUR NAME PLAYER TW O＂；PNS（2）：POKE53269，\varnothing

The Commodore 64／128 version of ＂Beehive＂features a bee－shaped pointer．

QC 120 GOSUB4ø ： $\mathrm{FORA}=1 \mathrm{TO} 2: \mathrm{PN}$（ $A)=\operatorname{LEFT} \$(\operatorname{PNS}(A), 15): N E X$ $T: X=1: P=1: U N=1: Y=1$
HM $13 \varnothing$ B\＄＝＂YOUR TURN＂：GOSUBll 60
RM $14 \varnothing$ GOSUB2ø：$S P=1397+4 \varnothing$＊$Y+X *$ 2－Y
MM 15 15 IFPEEK（SP）＜＞32THENF＝1 0 ： GOSUB58Ø：GOTO14 9
AK $160 \mathrm{BD}(\mathrm{X}, \mathrm{Y})=\mathrm{UN}: \mathrm{POKESP}, 81: \mathrm{PO}$ KESP $+54272,7 *(\mathrm{P}-1)$ ：GOSU B590：GOSUB61ø：P＝3－P ：GOT $013 \varnothing$
KF $170 \mathrm{ML} \$=$＂EI我＂$+\mathrm{CHRS}(8)+{ }^{\text {＂} \mathrm{EX}} \mathrm{B}<$ ＂$+\mathrm{CHRS}(3)+$＂E 2 习 $\mathrm{XJ}^{n}+\mathrm{CHRS}($ 16）+ CHRS（ 248 ）+ ＂ $\bar{L} E B$ ETヨ＂ ：POKE835，\varnothing
SK 18ø POKE836，2ø8：POKE83ø，ø：P OKE831，216：POKE828， $0:$ PO KE829， 56 ：POKE56334，ø
SP 190 POKE1，51：ML $\$=\mathrm{ML}$ ：：SYS（PE EK（51）＋256＊PEEK（52））：PO KE1，55：POKE56334，1
GF 2øø FORI＝12568TO12631：READJ ：POKEI，J：NEXT：POKE53272 ， 28
AP $21 \varnothing$ FORA $=\varnothing$ TOl $\varnothing: \operatorname{READX}(A), Y(A$ ）：NEXTA：FORA $=832$ TO895：R EADB：POKEA，B：NEXT
JE 22ø POKE53276，1：POKE2ø4の，13 ：POKE53287， $7:$ POKE53285， Ø：RETURN
ER 23σ DATA231，126，24，24，24，24 ，126，231
RC $24 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 126,231$
SC $25 \varnothing$ DATA231， $126, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
HR $26 \emptyset$ DATA7，30，24，24，24，24，12 6，231
DA $27 \emptyset$ DATA7， $3 \varnothing, 24,24,24,24,3 \varnothing$ ， 7
MF 28 D DATA224，12ø，24，24，24，24 ，120． 224
RA 290 DATA231，126，24，24，24， 24 ，120， 224
JA 3øø DATA195，36，126，219，255， 126，36，24
PH $31 \varnothing$ DATA $\varnothing, \varnothing, \varnothing,-1, \varnothing, 1, \varnothing, \varnothing,-$ $1, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 1, \varnothing, \varnothing, \varnothing$ ， $0, \varnothing$
CQ $32 \emptyset$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 16$
CS $33 \varnothing$ DATA $0, \varnothing, 65,8 \varnothing, \varnothing, 65,164$ ， $2 \varnothing$
JR $34 \varnothing$ DATA7ø，1øø，1，15ø，1øø，1， 165，144
JM $35 \emptyset$ DATAø，1ø6，64，5，105， 0,26 ，170
GB 360 DATA64，21，153，144，26，86 ，8ø， 5
SE $37 \emptyset$ DATA5，144， $0,2,96,0,1,16$ σ
SH $38 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
JG $39 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 53$
GH 4øø PRINT＂\｛CLR\}\{8 DOWN\}"SPC （13）＂$\{$ RVS $\}$ \｛BLK $\} £\{$ YEL \} EJヨ\｛23 SPACES\}\{政K\}£"
CB 410 PRINTSPC（12）＂\｛BLK\}\{ $\bar{R} V S\}$
£\｛OFF\}£"; :FORA=1TO11: PRINT＂TWHT\} $\$$＂；：NEXTA：P RINT＂\｛BLK\}\{RVS\}£\{OFF\} £ $^{\prime \prime}$
BC $42 \emptyset$ FORA＝1TO11
QA 430 PRINTSPC（ $12-A$ ）＂$\{B L K\}$ \｛RVS $\} \underset{£}{£}\{O F F\} \underset{£}{ }\{W H T\} \& " ;$
 NEXT：PRINT＂${ }^{\prime \prime}$ \｛RVS\} \{BLK\} £\｛OFF\}£": NEXTA
GP $44 \emptyset \overline{\text { PRINT＂TBLK }\} \text { \｛RVS }\} £\{O F F\}}$ £\｛2 SPACES $\}$＂；：FORA＝1TO
I1：PRINT＂\｛WHT\}\% "; :NEXT ：PRINT＂\｛LEFT \} \{BLK\} \{RVS\} £\｛OFF\}£"
FM $45 \emptyset \overline{\text { PRINT＂}}$ \｛BLK \} $£\{$ YEL \} \{RVS \}
$\{23$ SPACES \}TOFF\}EHB
\｛BLK\}£": PRINT" \{HOME \}
$\{7 \mathrm{SP} \overline{\mathrm{A}} \mathrm{CES}$ \}";
XJ $46 \emptyset$ POKE1827，39：POKE56ø99，1 ：POKE1459，4の：POKE55731， 1
GH $47 \varnothing$ PRINT＂$\{$ BLK $\}$ \｛RVS \}EK
\｛ 2 SPACES $\}\{O F F\}$
\｛9 SPACES \} \{RVS\} $\mathbb{E K}$ 习\｛OFF\}
KKヨ\｛RVS\}EKヨ\{OFF\}EKヨ
\｛BLK\} "SPC(24)" \{RVS\}[KK
\｛OFF\}EKヨ\{RVS\}EKヨ\{OFF\}
［KㅋSPC（8）＂\｛RVS\}EKヨ
\｛OFF\}EK刃\{RVS\}EK刃\{OFF\}
KKシ＂SPC（24）；
 \｛RVS\} $K K \exists\{O F F\}[K \exists$ \｛RVS \}
EK
EKヨED彐EI习\｛OFF\}EVヨ\{RVS\}

\｛OFF\}[KK \{RVS\}EFBED
\｛OFF\} \{RVS\}EKヨ\{OFF\}EKヨ
\｛RVS\} $E K X\{O F F\}[K B$ \｛RVS \}

2）＂\｛RVS\}EKヨ \{2 SPACES \}
\｛OFF\} \{RVS\}区K习太C尹";
PP 49ø PRINT＂\｛OFF\}EFヨ \{RVS\}EKヨ KCヨ\｛OFF\}EFB \{RVS\}EKヨ
\｛2 SPACES $\}\{O F F\}$ KK
\｛RVS\}EKZ\{OFF\}EKB \{RVS\}

\｛OFF\}EKヨ\{RVS\}EKヨECヨ
\｛OFF\}EFZ\{YEL\}"SPC(13)"
\｛RVS\}EK习\{OFF\}EKヨ\{RVS\}
EKヨ\｛OFF\}EKヨ\{RVS\}EKヨ
\｛OFF\}EKB \{2 SPACES \} \{RVS\}
［KB\｛OFF\}区Kヨ\{2 SPACES $\}$
\｛RVS\}EK刃";
HD 5øø PRINT＂$\{O F F\}$ EKヨ \｛RVS \} EK
\｛OFF\}EKヨ \{RVS\}EKヨ\{OFF\}
KKヨ ECヨ\｛RVS\}ECヨEVヨ\{OFF\}
EVシ\｛RVS\}EKヨ\{OFF\}EKヨ
\｛BLK\}"SPC(14)"\{RVS\}EKヨ
\｛OFF\}EKヨ \{RVS\}EKヨ\{OFF\}

EVヨ\｛RVS\}EKヨ\{OFF\} KK
\｛RVS\}EKヨ\{OFF\}EKB \{RVS\}
E2 I解\｛OFF\}";
FC 510 PRINT＂ECヨEVヨ ECヨ\｛RVS\}
 \｛RVS\} $\mathbb{E} K \exists 2$ SPACES $\}\{O F F\}$ ＂SPC（9）＂\｛RVS\}EK刃\{OFF\}
EKヨ\｛RVS\} EKヨ\{OFF\} KKヨ":
SH 520 POKE53248，30：POKE53264，
1：POKE53249，150：RETURN
JF 530 FORA $=54272$ TO54295：POKEA
，$\varnothing:$ NEXT：POKE54296，15：PO KE54277， 25
MX $54 \varnothing$ DIMTA $(11,11,2), \mathrm{EH}(61), \mathrm{E}$ V（61）
SE $55 \emptyset$ DIMBD（ 11,11 ），SH（5 5 ），SV（ 5Ø）：SPS＝＂$\left\{\right.$ RVS ${ }^{\prime \prime}$ ：FORA＝1T O2の：SPS＝SP\＄＋＂＂：NEXT：RE TURN
KM $56 \emptyset$ POKE53249，ø：TX＝X＊ $16+(11$
$-\mathrm{Y}) * 8+36:$ POKE5 3248 ，TXAN D255

Another Fantastic Collection

> COMPUTE! Books continues the tradition of excellent Apple-II series coverage with COMPUTEI's Third Book of Apple, the follow-up to COMPUTEI's First and Second Book of Apple. These three programpacked books offer you in-depth futorials, valuable utilities, innovative applications, and terrific games to entertain the whole family.

COMPUTE!'s First Book of Apple
 Edited

228 pages

A collection of 35 exciting games, educational programs, home applications, and graphics routines for owners of Apple II, lle, and lic computers.
$\$ 12.95$, ISBN 0-942386-69-8

COMPUTE!'s Second Book of Apple

Edited

271 pages
Over 30 arcade-style games, applications, educational and logic games, graphics generators, and programming utilities for the Apple IIt, lle, and IIc. A disk is also available for $\$ 12.95$ which includes programs in the book, 0084BDSK.
\$12.95, ISBN 0-87455-008-4
Edited

Our best applications, games, tutoriak, and prograrming utitities for the Apple 1. 1+, te. and arcade games, comprehensivo financial took, arcade games, and more.

A Compura Books Pubication

COMPUTEI's Third Book of Apple

The best Apple applications, games, tutorials, and utilities from COMPUTEI magazine and COMPUTEI's Apple Applications Special have been brought together for the third volume in this bestselling series. Understandable tutorials help you get the most out of your Apple II, II+, lle, or Ilc personal computer. Ready-to-type-in games-from vivid, exciting arcade games such as "High Rise" to thought-provoking strategy games like "Switchbox"-make the Apple an entertainment delight. Practical applications, like "Apple SpeedCalc," an impressive spreadsheet program, and "Your Personal Ledger," a complete financial tool, put the power in your Apple. Also included are utilities that will make programming easier and faster. All programs have been thoroughly tested and are ready to type in. Error-checking utilities insure that each program is typed in correctly the first time. A disk is available for $\$ 12.95$ which includes all the programs in the book, 637BDSK.
\$14.95, ISBN 0-87455-063-7

Your whole family will enjoy and use the business, educational, and recreational programs and tutorials in our three books of Apple.
Order one, two, or all three books today.
Call toll-free 800-346-6767 (In NY 212-887-8525), or write COMPUTEI Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
All orders must be prepaid in U.S. funds. NC residents add 4.5 percent sales tax. NY residents add 8.25 percent sales tax. Please include $\$ 2.00$ shipping per book for U.S. and surface mail; $\$ 5.00$ airmail.
Please allow 4-6 weeks for delivery.

PS 57ø POKE53264，－（TX＞255）：POK E53249， $\mathrm{Y}^{*} 8+12$ 2 ：POKE5 326 9，1：RETURN
BM 58ø POKE54273，F：POKE54276，1 6：POKE54276，17：RETURN
XQ 59ø POKE54273，10：POKE54276， 64：POKE54276，65：FORZZ＝1 5TOLSTEP－．3：POKE54275，z Z：NEXT
HP $60 \emptyset$ RETURN
PG $61 \varnothing \mathrm{CH}=\mathrm{X}: \mathrm{CV}=\mathrm{Y}: \mathrm{LC}=\varnothing: \mathrm{RC}=\varnothing: \mathrm{FOR}$ $\mathrm{X}=-1 \mathrm{TO1}: \mathrm{TH}=\mathrm{CH}+\mathrm{X}$
JK $62 \varnothing$ TV＝CV－1－（X＝1）：GOSUB78ø
JG $63 \varnothing \mathrm{TV}=\mathrm{CV}-(\mathrm{X}>-1)$ ：GOSUB78ø
BK $64 \varnothing$ NEXT
PM $65 \varnothing$ IFP＝1ANDCH＝1ORP＝2ANDCV＝ 1 THENLC $=1$
EK $66 \emptyset I F P=1$ ANDCH $=11$ ORP＝2ANDCV ＝11THENRC＝2
QJ $67 \varnothing$ CC＝LC＋RC：IFCC＝3THENBD（C H，CV ）＝UN＋1：GOTOB5Ø
JA 680 IFCC＝ 0 THEN77
BS 69ø $\mathrm{SP}=\varnothing$ ： $\mathrm{SH}(\varnothing)=\mathrm{CH}: \mathrm{SV}(\varnothing)=\mathrm{CV}$
AM 7øø IFSP＝－1 THEN77ø
RC $710 \mathrm{DH}=\mathrm{SH}(\mathrm{SP}): \mathrm{DV}=\mathrm{SV}(\mathrm{SP}): \mathrm{SP}=$ SP－1
$\mathrm{CH} 720 \mathrm{BD}(\mathrm{DH}, \mathrm{DV})=\mathrm{UN}+\mathrm{CC}$
EP 736 FORX $=-1 \mathrm{TO}:$ ：TH＝DH＋X
FJ 740 TV＝DV－1－（X＝1）：GOSUB82 \varnothing
JH 750 TV＝DV－（X＞－1）：GOSUB82 \varnothing
MC 760 NEXT：GOTO7øø
ED $778 \mathrm{X}=\mathrm{CH}: \mathrm{Y}=\mathrm{CV}: \mathrm{UN}=5-\mathrm{UN}:$ RETUR N
DD 788 IFTH＜1ORTH＞11ORTV＜1ORTV ＞11THENRETURN
DP $790 \operatorname{IFBD}(\mathrm{TH}, \mathrm{TV})=\mathrm{UN}+1 \mathrm{THENLC}=$ 1
PS $8 \varnothing \varnothing \operatorname{IFBD}(\mathrm{TH}, \mathrm{TV})=\mathrm{UN}+2$ THENRC $=$ 2
SK 816 RETURN
SA 820 IFTH＜1ORTH＞11ORTV＜1ORTV ＞11THENRETURN
FP $83 \varnothing \operatorname{IFBD}(T H, T V)=U N T H E N S P=S P$ $+1: S H(S P)=T H: S V(S P)=T V$
CM $84 \emptyset$ RETURN
PM 850 POKE53248，33：POKE53264， 1：POKE53249，195
PS 86ø FORZZ＝1TO2ø：POKE646，ZZ： B\＄＝＂YOU WIN＂：GOSUB117 Ø：NEXT：GOSUB1160
CQ 87ø FORCC＝1TO2：FE＝1：LE＝1：EH （1）$=\mathrm{CH}: \mathrm{EV}(1)=\mathrm{CV}: \mathrm{EF}=\varnothing: \mathrm{L}=$ 1
HA $880 \mathrm{CD}=\mathrm{CH}: I F P=2$ THENCD $=C V$
KF 890 IFCC＝1ANDCD＝1ORCC＝2ANDC D＝11 THENHH（CC）$=\varnothing$ ：GOTO99 ஏ
HB 9øø NE＝LE：E＝FE
RA $91 \varnothing \mathrm{DH}=\mathrm{EH}(\mathrm{E}): \mathrm{DV}=\mathrm{EV}(\mathrm{E})$
JQ $92 \varnothing$ FORX＝－1 TOl：TH＝DH＋X：TV＝D $\mathrm{V}-1-(\mathrm{x}=1)$ ：GOSUB1ø9ø：TV＝ DV－（X＞－1）：GOSUB1ø9ø：NEX T
GM 930 IFEF＝1THEN99ø
XS $940 \mathrm{IF}(\mathrm{E}=\mathrm{LE})$ THEN97 \varnothing
EK $950 \mathrm{E}=\mathrm{E}+1: \mathrm{IFE}=61$ THENE＝1
XA 960 GOTO91ø
CM $970 \mathrm{FE}=\mathrm{LE}+1: \mathrm{LE}=\mathrm{NE}: \mathrm{IFFE}=61 \mathrm{TH}$ ENFE＝1
EC 98ø L＝L＋1：GOTO9øø
AE 990 NEXT：FORCC＝1TO2：DH＝HH（C C）： $\mathrm{DV}=\mathrm{VV}(\mathrm{CC}): \mathrm{L}=\mathrm{TA}(\mathrm{DH}, \mathrm{DV}$ ，CC）：IFDH＝ØTHEN164Ø
BF 1øøø POKE781，DV＋9：POKE782，D H＊2－DV＋13：POKE783， $6: S Y$ S65520：PRINT＂\｛OFF\}R6ヨ* ＂：GOSUB59ø
ED $101 \varnothing$ IFL＝1THEN1 $04 \varnothing$
QQ $162 \varnothing$ FORX＝－1TOI：TH＝DH＋X：TV＝ DV－1－（X＝1）：GOSUB1ø60：T $\mathrm{V}=\mathrm{DV}-(\mathrm{X}>-1)$ ：GOSUB1ø6ø： NEXT
KM $1 \varnothing 3 \varnothing$ L＝L－1：DH＝AH：DV＝AV：GOTO 1øøø
EA 1ø40 NEXT：POKE781，CV＋9：POKE

782，CH＊2－CV＋13：POKE783 ，\varnothing ：SYS6552の：PRINT＂E6ヨ＊ ＂：GOSUB59ø
HH 105ø GOTOL19ø
AC $106 \emptyset$ IFTH＜10RTH＞110RTV＜1ORT v＞ 11 THENRETURN
MF $167 \varnothing$ IFTA（TH，TV，CC）$=\mathrm{L}-1$ THEN $\mathrm{AH}=\mathrm{TH}: \mathrm{AV}=\mathrm{TV}$
XF 1 Ø8Ø RETURN
KB $109 \varnothing$ IFTH＜1ORTH＞11ORTV＜1ORT V＞11THENRETURN
QJ $11 \varnothing \varnothing$ IFBD（TH，TV）＜＞UN＋CCORTA （TH，TV，CC）＜＞ ©THENRETUR N
FB $1110 \mathrm{TA}(\mathrm{TH}, \mathrm{TV}, \mathrm{CC})=\mathrm{L}: \mathrm{NE}=\mathrm{NE}+1$ ： I $\mathrm{FNE}=61$ THENNE $=1$
FF $1120 \mathrm{EH}(\mathrm{NE})=\mathrm{TH}: \mathrm{EV}(\mathrm{NE})=\mathrm{TV}$
SD $1130 \mathrm{CD}=\mathrm{TH}: \mathrm{IFP}=2$ THEN $C D=T V$
DP 1140 IFCC＝1ANDCD＝1ORCC＝2AND $\mathrm{CD}=11 \mathrm{THENE} \mathrm{F}=1: \mathrm{HH}(\mathrm{CC})=\mathrm{T}$ $\mathrm{H}: \mathrm{VV}(\mathrm{CC})=\mathrm{TV}$
SK 1150 RETURN
KH 1160 POKE646，7＊（P－1）
FR $117 \varnothing$ POKE214，23：PRINT：A $=$ LE FT \＄（SP\＄，（16－LEN（PN\＄（P） ）／2））+ BS + PN (P)
JA $118 \emptyset$ PRINT＂＂AS；LEFT\＄（SP\＄，4 g－LEN（AS））；：RETURN
CQ 119ø POKE214，23：PRINT：PRINT ＂$\{$ WHT \} \{13 SPACES $\}$（RVS \} press firebutton\｛off\} \｛10 SPACES\}";
PE 1200 WAIT56321，16，16：POKE21 4，23：PRINT：PRINTSPC（12 ）＂\｛OFF\}\{2ø SPACES\}";
AR 1216 FORA＝1TO11：FORB＝1TOI1： FORC $=1$ TO2 ：TA（A，B，C）$=\varnothing$ ： $B D(A, B)=\emptyset$
XA 1220 NEXTC，$B, A:$ POKE53269，\varnothing ： GOTO12ø

Program 3：Atari Beehive

Version by Kevin Mykytyn，Editorial Programmer
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing in Programs＂in this issue of COMPUTEI．
BJ $1 \varnothing$ POKE 1ø6，96：GOSUB 2øøø ：ВOTO 8ø
L6 $2 \varnothing \mathrm{FL}=\varnothing$ ： $\mathrm{BOSUB} 56 \varnothing$
MK 3 3 JV＝15－STICK（ \varnothing ）+128 （ST RIE（ø）＝ø）：IF JV＞127 TH EN RETURN
JC $4 \varnothing$ IF $J V=\varnothing$ THEN $3 \varnothing$
NP 5 ø POKE 77，ø：TX＝X：TY＝Y：TX $=T X+X(J V): T Y=T Y+Y(J V)$
DG 6 D IF $T X<1$ OR $T X>11$ OR TY ＜ 1 OR TY＞11 THEN 3ø
If $7 \varnothing X=T X: Y=T Y: F L=\varnothing:$ BOSUB 5 6ø：BOTO $3 \varnothing$
FK8g bosub 530：BOSUB 170：PR INT＂CCLEAR\}"
OC 9ø DIM T\＄（3ø），TM（3ळ），NAM E（40），LENGTH（2）：FOR A $=1$ TO 4ø：NAME $\$(A, A)="$ ＂：NEXT A：POSITION 17，1 ø：PRINT＂BEEHIVE＂
HE 1 øø FOR $A=1$ TO 2：PRINT＂ （2 DOWN\}ENTER YOUR NA ME PLAYER＂；A；＂＂；：IN PUT T\＄
EC 1 ø1 IF T\＄＝＂＂THEN T\＄n＂＂
OB 105 IF LEN（T\＄）>15 THEN T \＄ $=T(1,15)$
NA 1 ø6 LENBTH（A）$=\operatorname{LEN}(T$（ $)$
EC $11 \varnothing$ NAME $((A-1) * 15+1,(A-1$ ）$\ddagger 15+\operatorname{LEN}(T \$))=T$（ NEXT $A: O Y=1$
OL $12 \varnothing$ BOSUB 4øø： $\mathrm{X}=1: \mathrm{P}=1: \mathrm{UN}=$ $1: Y=1$
EB 140 T\＄＝＂YOUR TURN＂：GOSUB 4øøø：POKE 712，15ø－98 ＊（ $\mathrm{P}=2$ ）

A日 145 GOSUB 2б：LOCATE X $\mathrm{K} 2-Y$ $+14, Y+5$, SP：POSITION X ＊2－Y＋14，$Y+5:$ PRINT CHR （SP）
LO 15 I IF SP＜＞32 THEN SOUND 1，1øø，12，15：FOR TD＝1 TO 5ø：NEXT TD：SOUND 1 ，\varnothing ，\varnothing ：ВОTO 14%
N． $16 \varnothing$ BD $(X, Y)=U N: P O S I T I O N X$ ＊2－Y＋14，$Y+5:$ PRINT CHR （42＋P）：日0sub 59ø
CP 162 日OSUB 610：P＝3－P：BOTO 14.

EC 17ø FOR $A=\varnothing$ TO 1ø23：POKE $24576+A$ ，PEEK（57344＋A） ：NEXT A
6M175 FOR A＝256øø TO 25856： POKE A，g：NEXT A
 READ J：POKE I，J：NEXT I
III21ø FOR $A=\varnothing$ TO 1ヵ：READ X ， $Y: X(A)=X: Y(A)=Y: N E X T$ A
KP 22の POKE 54279，64：POKE 53 277，3：POKE 559，62：POK E 623，1：POKE 7ø4， $6:$ RE TURN
W 23ø DATA 231，126，24，24， 24 ，24，126，231
DD 24ø DATA ø，$\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 126$, 231
DE $25 \varnothing$ DATA $231,126, \varnothing, \varnothing, \varnothing, \varnothing$ ， D，
DATA
7，3 ，126，231
LD 27 D DATA $7,3 \varnothing, 24,24,24,24$ ，3ø， 7
ME 28ø DATA 224，12ø，24，24， 24 ，24，128，224
ML．29ø DATA 231，126，24，24， 24 ，24，129，224
CC 3ø® DATA $195,36,126,219,2$ 55，126，36， 24
6K $3 \varnothing 1$ DATA $\varnothing, 4 \varnothing, 17 \varnothing, 17 \oplus, 17 \emptyset$ ，17ø，4ø，\varnothing
แ $3 \varnothing 2$ DATA $\varnothing, 2 \varnothing, 85,85,85,85$ ，26，\varnothing
LI 303 DATA $2,2,8,8,32,32,12$ B， 128
KC $3 \varnothing 4$ DATA $85, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
K0 $3 \varnothing 5$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 85$
MI $31 \varnothing$ DATA $\varnothing, \varnothing, \varnothing,-1, \varnothing, 1, \varnothing$ ，\varnothing $,-\overline{,}, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 1, \varnothing$ ， $\boldsymbol{\sigma}, \boldsymbol{\square}, \varnothing, \varnothing$
KE 4øø BOSUB 2øøø：POKE 756，9 6：POKE 752，1：DL＝PEEK（ 560）＋256＊PEEK（561）：PO KE DL＋6，7：POKE DL＋3，7 1
NO 4 55 POSITION 5，D：PRINT＂ BEEHIVE \＃＂：POSITION 15，4：PRINT＂／／／／／／／／／ ／／／／／／／／／／／／／／／＂
FF41ø PRINT SPC $(1,12) ; "-" ;$ ：FOR $A=1$ TO 11：PRINT ＂${ }^{*}$＂； NEXT A：PRINT＂ －＂
DB 420 FOR $A=1$ TO 11
HO 43ø PRINT SPC（1，12－A）；＂－ \＆＂；：FOR B＝1 TO 1ヵ：PR INT＊＂；：NEXT B：PRIN T＂）－＂：NEXT A
CB44D PRINT＂－＂；：FOR A＝1 TO 11：PRINT＂\％＂；：NEX T A：PRINT＂（LEFT\}-"
CJ 450 PRINT＂．．．．．．．．．．．．．．．．． ．．．．．．．．．．．．：$:$ POSITION 4，16：PRINT＂；＂：POSITI ON 36，6：PRINT＂（＂：RET URN
DH $53 \varnothing$ DIM TA $(11,35)$ ，EH（61）， EV（61），BD（11，11），SH（5 ø），SV（5ø），SP\＄（2ø），X（1
ø），$Y(1 \Xi), \operatorname{SPC}(2 \sigma), \mathrm{HH}($ 15），VV（15）
6C 535 POKE 752，1：POSITION 1 4，10：PRINT＂PLEASE WA IT＂
PH54の GOSUB 3øøø：FOR $A=1$ TO 25：BP象（A，A）＝＂－＂：SPC $(A, A)=" \quad ": N E X T$ A：RETU RN
EK 56 L LB＝PEEK（88）： $\mathrm{HB}=\operatorname{PEEK}$（ 8 9）：POKE 752，1：POKE 89 ，1øø：POKE 8日，QY\＆8＋99： POSITION ø， $\operatorname{D:PRINT}$＂ \｛8 SPACES\}": IF FL THE N 575
ID 57 月 POKE 53248，X 8 8＋（11－Y） 44＋61：POKE 88，Y 8 8＋99： POSITION छ，D：PRINT＂区 \｛風\} [PE, \& "
BK 575 POKE 88，LB：POKE 89，HB ：$Q Y=Y$ ：RETURN
OP $59 \emptyset$ FOR T＝15 TO GTEP－\emptyset ．4：SOUND 1，1øø，1ø，T：N EXT T：RETURN
JL61ø CH＝X：CV＝Y：LC＝g：RC＝ø：F QR $X=-1$ TO 1：$T H=C H+X$
BB 62ø TV $=C V-1+(X=1)$ ：GOSUB 7 8 8
OC 63ø TV＝CV＋（x＞－1）：GOSUB 78 NEXT $\quad x$
DB 64ø NEXT X
BK 65g IF $P=1$ AND $C H=1$ $Q R \quad P=$ 2 AND $C V=1$ THEN LC $=1$
IE 66g．IF $P=1$ AND $C H=11$ QR P $=2$ AND $C V=11$ THEN RC $=$ 2

BA $67 \boldsymbol{D}$ CC＝LC＋RC：IF CC＝3 THEN $B D(C H, C V)=U N+1: G O T O$ 850
OH 689 IF CC＝g THEN $77 \boldsymbol{\square}$
 v
DB 7 Øø IF SP＝－1 THEN $77 \boldsymbol{1}$
LJ $710 \mathrm{DH}=\mathrm{SH}(\mathrm{SP}): \mathrm{DV}=\mathrm{SV}(S P): S$ $P=S P-1$
FD 72． $\mathrm{BD}(\mathrm{DH}, \mathrm{DV})=\mathrm{UN}+\mathrm{CC}$
GK 73 FOR $X=-1$ TO 1：$T H=D H+X$
BA 74 ．$T V=D V-1+(X=1):$ GOSUB $日$ 29
OB 75ø TV＝DV＋（x＞－1）：GOSUB 82 NEXT $X:$ 日ロTO $7 \boldsymbol{\square}$ g
DO 76 NEXT $X:$ EOTO 7 Øø
BA $77 \boldsymbol{g} \quad \mathrm{X}=\mathrm{CH}: Y=C V: U N=5-U N: R E T$ URN
M6 78g IF TH＜1 OR TH＞11 OR T $V<1$ OR TV＞11 THEN RET URN
OA 79 I IF $B D(T H, T V)=U N+1$ THE N LC＝1
OAB』IF BD（TH，TV）$=U N+2$ THE N RC＝2
HJ 819 RETURN
MB 日2ø IF TH＜1 OR TH 111 OR T $V<1$ QR TV＞11 THEN RET URN
MB 日3ø IF BD（TH，TV）$=$ UN THEN SP＝SP＋1：SH（SP）＝TH：SV（ $S P)=T V$
HH B4！RETURN
6A 85 FL＝1：GOSUB 56ø：T\＄＝＂YO U WIN＂：GOSUB 4øøø：FO R $A=255$ TO σ STEP－1： POKE 712，A：NEXT A
HA 86ø POSITION $\varnothing, 2 \emptyset:$ PRINT＂ \｛15 SPACES\}SEARCHING \｛13 SPACES\}"
BP 日7ø FOR CC＝1 TO 2：FE＝1：LE m1：EH（1）$=\mathrm{CH}: E V(1)=C V:$ $E F=\varnothing: L=1$
AD 88ø $C D=C H: I F P=2$ THEN $C D=$ CV
JD B9ø IF CC＝1 AND CD＝1 OR C $C=2$ AND $C D=11$ THEN HH （CC）＝ந：EOTO 99\％

EB 9øg NE＝LE：E＝FE
MI 91ø DH＝EH（E）：DV＝EV（E）
HK 920 FOR $X=-1$ TD 1：$T H=D H+X$ ：TV＝DV－1 $+(X=1)$ ：EOSUB 1095：TV＝DV＋（x＞－1）：G0S UB 1．09\％：NEXT X
PF 93g IF EF＝1 THEN 996
FP 94 IF（ $E=L E$ ）THEN $97 \boldsymbol{1}$
FF $959 \mathrm{E}=\mathrm{E}+1$ ：IF E＝61 THEN E＝ 1
HC 960 GOTO 919
BA 97 g FE＝LE＋1：LE＝NE：IF FE＝6 1 THEN $\mathrm{FE}=1$
N09日の $\mathrm{L}=\mathrm{L}+1$ ：日ロT0 9øø
AO 990 NEXT CC：FOR CC＝1 TO 2 ：DH＝HH（CC）：DV＝VV（CC）： $L=T A(D H, D V \& 3+C C): I F D$ $H=\varnothing$ THEN 1 ■4ø
CI 1 øøø POSITION DH\＆2－DV＋14， DV＋5：PRINT＂率＂：EOSUB 59ø
PP 1 Ø1ø IF $L=1$ THEN $194 \varnothing$
OH 1．g2ø FOR $X=-1$ TO 1：TH＝DH＋ $X: T V=D V-1+(X=1):$ GOSU B 1ø6ø：TV＝DV＋（X）－1）： GOSUB 1ø6ஏ：NEXT X
FP 1 ø3 $\quad L=L-1: D H=A H: D V=A V: B D$ TO 1 Øぁஜ
CI 1 184ø NEXT CC：POSITION CH\％ $2-C V+14, C V+5: P R I N T$＂実：：BOSUB 59の
肘105® GOTO 116%
00106 IF $T H<1$ QR TH＞11 OR TVく1 QR TV＞11 THEN R ETURN
 1 THEN $A H=T H: A V=T V$
KJ 1 曰日g RETURN
PB $109 \varnothing$ IF TH＜1 OR TH＞11 OR TV＜1 OR TV＞11 THEN R ETURN
CI 11 1月g IF BD $(T H, T V)<\rangle U N+C C$ QR TA（TH，TV\＆ $3+C C) K>\varnothing$ THEN RETURN
NL 111 m $T A(T H$ ，TV高 $3+C C)=L: N E=$ NE＋1：IF NE＝61 THEN N $E=1$
$K 0112 \sigma E H(N E)=T H: E V(N E)=T V$
EK 113 Ø $C D=T H: I F P=2$ THEN $C D$ ＝TV
06114σ IF CC＝1 AND CD＝1 OR $C C=2$ AND $C D=11$ THEN $E F=1: H H(C C)=T H: V V(C C$ ）$=T V$
KH 1159 RETURN
JF 116 （ 16 POSITION $5,26:$ PRINT ＂\｛12 SPACES\}PRESS FIR EBUTTONCB SPACES\}"
AR 1165 IF STRI日（ \varnothing ）＜＞\quad THEN 1165
IK 1176 PQSITION $5,26:$ PRINT ＂\｛36 SPACES\}": BOSUB 3 ஏøぁ：日ロT0 12
 15：POKE 769，月：POKE 7 68，45：POKE 54279，96： POKE 559，62：POKE 7 ©4 ，162：RETURN
DI 3øøø FOR $A=1$ TO 11：FQR $B=$ 1 TO 35：TA $(A, B)=5: N E$ XT B：NEXT A：FOR A＝1 TO 11：FOR $B=1$ TO 11： $B D(A, B)=\varnothing: \operatorname{NEXT} B: N E X$ TA
KE 3 ®1』 RETURN
 ， $\operatorname{LEN}(T \xi)+\operatorname{LENETH}(\mathrm{P}))=$ NAME（ $(P-1)$ 象 $15+1$ ，（ P－ 1） $15+$ LENGTH（P））
AJ 4965 PQSITION 2，2छ：PRINT ＂\｛33 SPACES\}"
FL 4 の1g POSITION 19－LEN（TM\％） 12，2あ：PRINT TM RN

＂Beehive＂for Atari 400，800，XL，and XE computers．

Apple II version of＂Beehive．＂
Program 4：Apple II Beehive
Version by Tim Victor，Editorial

Programmer

For instructions on entering this listing，please refer to＂COMPUTE！＇s Guide to Typing in
Programs＂in this issue of COMPUTE！．
（1）1øø LOMEM：16384：DIM BD（11，1 1）， $\mathrm{SH}(5 \emptyset), \mathrm{SV}(5 \emptyset), \mathrm{TA}(11,11$ ，2），EH（61），EV（61）
6F $11 \emptyset$ FOR $A=768 \mathrm{TO} A+88:$ RE AD D：POKE $A, D:$ NEXT ：RE $A D$ D：IF $D<>-1$ THEN 1 ロ7ஜ
A6 120 FOR $A=35328$ TO $A+7: P$ OKE A， ：NEXT
38130 FOR $A=3584 \emptyset$ TO $A+79:$ READ D：POKE A，D：NEXT ： READ D：IF $D<>-1$ THEN 197ロ
44 140 TEXT ：HOME ：FOR I＝ 1 T 02
3D 150 PRINT＂PLAYER＂I＂＇S NAME： ＂；：INPUT＂＂；A\＄：NN（I）＝ LEFT\＄（A\＄，24）：NEXT
87 16Ø POKE 6，Ø：POKE 7，138：IF PEEK（ 196 \＆ 256 ）$<>76$ T HEN POKE 54， $0:$ POKE 55，3： CALL 1छछ2：GOTO 18ந
 59 18ø GOSUB 85ø
FD $190 \mathrm{P}=1: \mathrm{UN}=1: \mathrm{NH}=6: \mathrm{NV}=$ $6: C H=6: C V=6:$ GOSUB 93 Ø
7A 26ø HTAB 1：VTAB 21：CALL－ 8 68：PRINT NN\＄（P）＂；＂；：S＝ ASC（ RIGHT\＆（NN $\$(P), 1))$ ： IF $\mathrm{S}-32$（ 3 ＞96）〈＞ 83 THEN PRINT＂S＂；
C9 21ø PRINT＂TURN＂：UTAB 2ø：H TAB 1：PRINT CHR象 $196+P$ ）
99 220 IF PEEK（49249）＞ 127 THE N 296
A3 $23 \emptyset$ IF PDL（ \varnothing ）$<9 \varnothing$ THEN $\mathrm{NH}=$ NH－1：IF NH＜ 1 THEN N $H=1$
23 24ø IF PDL（g）>165 THEN NH $=\mathrm{NH}+1:$ IF $\mathrm{NH}>11$ THEN $\mathrm{NH}=11$

21259 IF PDL（1）＜ $9 \varnothing$ THEN NV $=$ NV－1：IF NV＜ 1 THEN N $V=1$
98266 IF PDL（1）>165 THEN NV $=N V+1:$ IF NV >11 THEN NV $=11$
EC 27 © IF CH＜＞NH OR CV＜＞NV THEN GOSUB 96ø：CH $=\mathrm{NH}: \mathrm{C}$ $V=N V:$ Bosub 93ø
1E $28 \varnothing$ GOTO $22 \varnothing$
FE $29 \varnothing$ IF $\mathrm{BD}(\mathrm{CH}, \mathrm{CV})$＜$>\boldsymbol{\square}$ THEN P RINT CHR（7）；：BOTO 23ø
$\mathrm{CB} 3 \varnothing \varnothing \mathrm{BD}(\mathrm{CH}, \mathrm{CV})=\mathrm{UN}$
17310 GOSUB 960：GOSUB 930
8D 329 IF PEEK（49249）＞ 127 THE N $32 \emptyset$
D7 33ø LC $=$ ø：RC $=$ ø：FOR $X=-$ $1 \mathrm{TO} 1: \mathrm{TH}=\mathrm{CH}+\mathrm{x}$
E7 34ø TV $=C V-1+(X=1): 80$ SUB 50.
6） $35 \varnothing$ TV $=C V+(x>-1)$ ： $805 \cup$ B 5øø
97 360 NEXT
58 37ø IF $P=1$ AND $C H=1$ OR P $=2$ AND CV $=1$ THEN LC $=$ 1
9C $38 \varnothing$ IF $P=1$ AND CH $=11$ OR P $=2$ AND CV $=11$ THEN RC $=2$
$7 \mathrm{E} 39 \mathrm{CC}=\mathrm{LC}+\mathrm{RC}: \mathrm{IF} \mathrm{CC}=3 \mathrm{~T}$ HEN 57ø
D1 $4 \varnothing \varnothing$ IF CC $=\varnothing$ THEN $49 \varnothing$
$6841 \varnothing \mathrm{SP}=\varnothing: \mathrm{SH}(\varnothing)=\mathrm{CH}: \mathrm{SV}(\varnothing)=$
cs 420 IF SP $=-1$ THEN $49 \varnothing$
2D $436 \mathrm{DH}=\mathrm{SH}(\mathrm{SP}): \mathrm{DV}=\mathrm{SV}(\mathrm{SP}): S$ $P=S P-1$
$3844 \varnothing \mathrm{BD}(\mathrm{DH}, \mathrm{DV})=\mathrm{UN}+\mathrm{CC}$
C9 450 FOR $x=-1$ TO 1：TH $=\mathrm{DH}$ $+\mathrm{x}$
2F 46ø TV $=$ DV $-1+(X=1): 60$ sub 54ø
4C 47 Ø TV $=D V+(X>-1)$ ：BOSU B 54ø
11480 NEXT ：GOTO 42ø
10 49ø $P=3-P: U N=5-U N: G O$ TO 206
FE 5øø IF TH＜ 1 OR TH＞ 11 OR T $V<1$ OR TV＞ 11 THEN RET URN
$2 A 51 \varnothing \mathrm{IF} \mathrm{BD}(\mathrm{TH}, \mathrm{TV})=\mathrm{UN}+1 \mathrm{THE}$ $\mathrm{N} L C=1$
37520 IF BD $(T H, T V)=U N+2$ THE $\mathrm{NRC}=2$
IB 530 RETURN
$1754 \varnothing \mathrm{IF}$ TH＜ 1 OR TH＞ $11 \mathrm{OR} T$ $V<1$ OR TV＞ 11 THEN RET URN
D5 55 Ø IF BD（TH，TV）$=$ UN THEN SP $=S P+1: S H(S P)=T H: S V S$ $S P)=T V$
21560 RETURN
85 570 GOSUB 969：VTAB 21：HTAB 1：CALL－86B：PRINT NN（ P）＂WINS！＂：PRINT＂CHECKI NG BOARD＂
1E 58ø FOR CC＝ 1 TO 2：FE＝1：LE $=1: E H(1)=\operatorname{CH}: E V(1)=C$ $V: E F=\varnothing: L=1$
C1 $596 \mathrm{CD}=\mathrm{CH}: \mathrm{IF} P=2$ THEN CD $=\mathrm{CV}$
CD $6 \varnothing \varnothing$ IF CC $=1$ AND CD $=1$ OR C $C=2$ AND CD $=11$ THEN HH $(C C)=\varnothing$ ：воTO 7øø
$40610 \mathrm{NE}=\mathrm{LE}: \mathrm{E}=\mathrm{FE}$
D5 62ø DH $=E H(E): D V=E V(E)$
D9 630 FOR $\mathrm{x}=-1$ TO $1: \mathrm{TH}=\mathrm{DH}$
$+X: T V=D V-1+(X=1)$
：GOsub 789：TV $=\mathrm{DV}+(\mathrm{X}$
＞－1）：GOSUB 789：NEXT
FB 64ø IF EF $=1$ THEN 7øø
$1965 \emptyset$ IF（ $E=$ LE）THEN $68 \emptyset$
$5 E 660 E=E+1: I F E=61$ THEN $E=1$
$2267 \varnothing$ GOTO $62 \varnothing$

F1 $689 \mathrm{FE}=\mathrm{LE}+1: \mathrm{LE}=\mathrm{NE}: \mathrm{IF} \mathrm{F}$ $E=61$ THEN $F E=1$
$5569 \mathrm{~L}=\mathrm{L}+1$ ：воTO $61 \varnothing$
OB 7øø NEXT ：FOR CC＝ 1 TO 2：DH $=H H(C C): D V=V V(C C): L=$ TA $(D H, D V, C C): I F D H=g$ THEN 746
B6 716 HTAB DH＊ $2-D V+14: V T$ $A B D V+5:$ PRINT CHR（ $1 \varnothing$ 5）；：IF L $=1$ THEN 74ø
C9 72ø FOR $x=-1$ TO 1：TH $=$ DH $+X: T V=D V-1+(X=1)$ ：BOSUB 756：TV $=$ DV $+(X$ ＞－1）：GOSUB 759：NEXT
JC $73 \varnothing \mathrm{~L}=\mathrm{L}-1: \mathrm{DH}=\mathrm{AH}: \mathrm{DV}=\mathrm{AV}$ ：BOTO 71ø
IC $74 \varnothing$ NEXT ：HTAB CH $2-\mathrm{CV}+$ 14：VTAB CV＋5：PRINT C HR\＄（165）；：EOSUB 1ø1ஏ：O OTO 18g
OB 759 IF TH＜ 1 OR TH＞ 11 OR T V＜ 1 OR TV＞ 11 THEN RET URN
DD 760 IF TA $T \mathrm{TH}, \mathrm{TV}, \mathrm{CC})=\mathrm{L}-1 \mathrm{~T}$ HEN AH $=$ TH：AV $=T V$
25779 RETURN
11789 IF TH＜ 1 OR TH＞ 11 OR T $\vee<1$ OR TV＞ 11 THEN RET URN
9F $79 \boldsymbol{\circ}$ IF BD（TH，TV）＜＞UN＋CC OR TA $(T H, T V, C C)$＜THE N RETURN
$7689 \varnothing \mathrm{TA}(\mathrm{TH}, \mathrm{TV}, \mathrm{CC})=\mathrm{L}: \mathrm{NE}=\mathrm{NE}$ +1 ：IF NE $=61$ THEN NE＝ 1
$89810 \mathrm{EH}(\mathrm{NE})=\mathrm{TH}: E V(\mathrm{NE})=\mathrm{TV}$
$10826 \mathrm{CD}=\mathrm{TH}:$ IF $\mathrm{P}=2$ THEN $C D$ －TV
1183 IF CC $=1$ AND CD $=1$ OR C $C=2$ AND CD $=11$ THEN EF $=1: \mathrm{HH}(C C)=\mathrm{TH}: \mathrm{VV}(C C)=$ TV
26848 RETURN
F9 85ø HGR ：HOME ：FOR I＝ 6 TO 16：VTAB I：HTAB 2ø－I
9586 FOR $\mathrm{J}=1$ TO 11：PRINT CH R（96）；CHR\＄（32）；：NEXT ：PRINT CHR（96）；
B6 87ø FOR $\mathrm{J}=\varnothing$ TO 1： $\mathrm{HTAB} 18-$ I＋Ji PRINT CHR 199 ＋ $\mathrm{J}+2$（I＜＞2 INT（I （2））I；：HTAB 43－I＋J ：PRINT CHR $(99+J+2$
＊（I＝ 2 （INT（I／2）））； ：NEXT
6A 88ø NEXT ：HCOLOR＝4：FOR $I=$ б TO 4：HPLOT $92+1,38$ TO 14 ＋I，127：HPLOT 255 ＋I， 38 TO $177+\mathrm{I}, 127$ ： NE XT
$8889 \varnothing$ VTAB 5：HTAB 13：PRINT CH R ${ }^{\text {B }}$（161）；
E6 9øø FOR $\mathrm{J}=1$ TO 12：PRINT CH R\＄（103）；CHR（1ø4）；：NE XT ：PRINT CHR（99）；
22910 VTAB 17：HTAB 2：PRINT CH R（ ${ }^{\text {（102）}}$
IE 92ø FOR $J=1$ TO 12：PRINT CH R\＄（164）；CHR（1ø3）；：NE XT ：PRINT CHR\＄（1øの）；：R ETURN
A8 $93 \varnothing$ HCOLOR $=7$
F4 940 GV $=\mathrm{CV} * \mathrm{~B}+32: \mathrm{GH}=92$ +7 （ CH ： $2-\mathrm{CV}$ ）
日F $95 \varnothing$ HPLOT GH，BV TO GH＋4，BV $\mathrm{TO} \mathrm{GH}+7, \mathrm{BV}+4 \mathrm{TO} \mathrm{OH}+$ 4， $\mathrm{EV}+7$ TO $\mathrm{EH}, \mathrm{BV}+7 \mathrm{TO}$ BH－3，GV＋ 3 TO GH，BV：R ETURN
50960 HCOLOR $=4$ ：GOSUB 940
$5 A 97 \varnothing$ VTAB CV＋5：HTAB $14+\mathrm{CH}$ ＊ 2 －CV：A\＄$=$ CHR（32）
F2 980 IF $\mathrm{BD}(\mathrm{CH}, \mathrm{CV})>3$ THEN A\＄
 INT（CV／2）））：воTO 1øøg

E2 990 IF $\mathrm{BD}(\mathrm{CH}, \mathrm{CV})>\emptyset$ THEN $\mathrm{A} \$$ $=$ CHR（ 98 －（CV＜＞ 2 ： INT（CV／2）））
FD 1 1øø FRINT A\＄；：RETURN
85 1ø1ø VTAB 22：HTAB 1：PRINT＂ PRESS KEY TO QUIT，BUTTO N TO PLAY AGAIN＂
ED 1 ø2ø IF PEEK（49249）＞ 127 TH EN 1 165
82 103ø IF PEEK（49152）＜ 128 TH EN 1 102
5F 1ø4ø POKE 49168，ø：NORMAL ：E ND
EA 1 ø5ø HGR ：FOR I＝ 1 TO 11：F OR $J=1$ TO 11： $\operatorname{BD}(I, J)=$ Ø：TA（I，J，1）$=$ Ø：TA（I，J， 2）$=\emptyset_{:}$NEXT ：NEXT
E9 1 106g RETURN
2F 1 1ø7ø PRINT＂ERROR IN DATA STA TEMENTS＂：END
B2 1 ø8ஏ DATA 216，129，133，69，134， 76，132，71，166，7，1ø
FA 1 1ø9ø DATA $16,176,4,16,62,48,4$ ，16，1，232， 232
Fb 11 gø DATA $1 \varnothing, 134,27,24,1 \varnothing 1,6$ ， 133，26，144，2， 236
931116 DATA $27,165,49,133,8,165$ ，41，41，3，5，23ஜ
BA $112 \emptyset$ DATA $133,9,162,8,169, \varnothing, 1$ 77，26，36，5ø，48
$31113 \emptyset$ DATA 2，73，127，164，36， 145 ， $1,23 \boxminus, 26,298,2$
C2 $114 \varnothing$ DATA 23ø，27，165，9，24， 195 ，4，133，9，292，268
691159 DATA $226,165,69,166,76,1$ 64，71，88，76，246， 253
651160 DATA 255
251170 DATA－1
CE 1189 DATA $193,182,156,156,156$ ，156，182，193，129，136， 179
UA $119 \varnothing$ DATA $17 \Phi, 17 \varnothing, 17 \emptyset, 136,128$ ，128，148，213，213，213， 213
FC 12øø DATA 148，128，128，128， 192 ，192，192，268，268，148， 138
$44121 \varnothing$ DATA $138,136,136,128,128$ ，128，128，128，128，128， 128
EA 122Φ DATA $16 \varnothing_{2} 169,168,168,148$ ，133，133，129，129，129， 128
BB $123 \varnothing$ DATA $128,128,128,17 \boxminus, 17 \varnothing$ ，179，17ø，128，128，128， 128
C7 $124 \varnothing$ DATA $213,213,213,213,128$ ，128，193，162，156，201， 261
251259 DATA 19ø，156， 136
$23126 \varnothing$ DATA－1

Program 5：IBM PC／PCjr Beehive

Version by Patrick Parrish，
Programming Supervisor
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTE！．
HI 1 （1 KEY OFF：DEF SEG＝ø：POKE 104 7，PEEK（1ø47）OR 64：日OTO 2ø JD $2 \varnothing$ gosub $35 ø$
LC $3 \varnothing$ gosub $65 ø$
MP 40 REM START
QL $5 \varnothing$ RANDOMIZE TIMER
HB $6 \varnothing$ WINNER＝ø：PREV．PLAYER＝ø：ROW ＝6：$C D L=6: C B=146: R B=89$
HC $7 \varnothing$ PLAYER＝INT（ 2 ＊RND +1 ）
J 80 LOCATE 12，11：PRINT＂Please wait a moment＂
KJ 9ø FOR $J=1$ TO 11：FOR $K=1$ TO 1 1：HIVE\％（J，K）$=$ Ø：NEXT K：NEXT J
HG 1øø FOR $\mathrm{J}=1$ TO 2ø： $\operatorname{PATHLEN}(J)=$ ø：NEXT J
AA 110 FOR $J=1$ TO 65：PATH\％（ J ）$=\varnothing$ ： USEDK（J）$=$ Ø： $\operatorname{NODEX}(\mathrm{J})=\varnothing$ ：NEX T J
I1 126 GOSUB 7פø：LOCATE 24，1：PRI NT＂Player：＂；

Keyboard controls are used in the IBM PC／PCjr version of＂Beehive．＂

AE 136 REM MAIN
PC 14σ IF PREV．PLAYER＝PLAYER THE N $17 \boldsymbol{1}$
EP $15 \varnothing$ LOCATE 24，B：PRINT＂
＂；：LOCATE 24，8：P RINT PLAYER\＄（PLAYER）；：IF PLAYER＝1 THEN PUT（270， 13 g），EYES1，PSET ELSE PUT（2 7ø，13（），EYES2，PSET
NH $16 \varnothing$ PREV．PLAYER＝PLAYER
MK 17ø PUT（CB，RB），BEE
DK 189 DEF SEG＝ø：POKE 1ø5ø，PEEK（ 1052）
OK $19 \varnothing$ A\＄＝RIGHT\＄（INKEY\＄，1）：IF LE $N(A \$)=\emptyset$ THEN $19 \varnothing$
PO $2 ø \varnothing$ PUT（CB，RB），BEE：OCOL＝COL： OROW＝ROW
M $21 \varnothing$ IF $A \$=C H R \(77) THEN ROW＝R $\mathrm{OW}+1$ ： $\mathrm{COL}=\mathrm{COL}+1$ ：IF ROW >11 OR COL >11 THEN ROW＝OROW：C OL＝OCOL ELSE RB＝RB＋15：CB＝ CB＋9
CB 226 IF A $=$ CHR $\$(75$ ）THEN ROW＝R OW－1：COL $=$ COL－1：IF ROW 10 R COL＜1 THEN ROW＝OROW：COL ＝OCOL ELSE RB＝RB－15：CB＝CB -9
CH $23 \varnothing$ IF A $\$=C H R \(72) THEN ROW＝R OW－1－（ROW＝1）：IF ROW ＞OROW THEN CB＝CB +9 ：RB＝RB－15
HD $24 \varnothing$ IF A $=$ CHR $\$(8 \varnothing)$ THEN ROW＝R OW $+1+($ ROW $=11)$ ：IF ROW $<$ ORO W THEN $\mathrm{CB}=\mathrm{CB}-9: \mathrm{RB}=\mathrm{RB}+15$
MK $25 \varnothing$ PUT（CB，RB），BEE
PA 260 IF A $\$="$＂＂THEN GOSUB $165 \varnothing$ ELSE $18 \emptyset$
BB $27 \varnothing$ IF USED THEN PUT（CB，RB）， BEE：BOTO 140
$0628 \varnothing$ OROW＝ROW：OCOL＝COL：GOSUB 1 110
N6 29ø IF POSSIbLE＝1 THEN GOSUB 129ø
IH $3 \varnothing \varnothing$ IF WINNER $=1$ THEN $188 \emptyset$
PD 316 LOCATE 24，1：PRINT＂Player ：＂；
CC 32σ IF PLAYER $=1$ THEN PLAYER $=2$ ELSE PLAYER＝1
BC $33 \varnothing$ ROW＝OROW：COL＝OCOL：GOTO 14 Ø
10340 REM INIT
AC 35 Ø CLS： $\operatorname{COLR}(1)=2: \operatorname{COLR}(2)=3$
EA $36 \emptyset$ DIM ROW．INC\％（ 6 ），COL．INC\％（ b）
DH $37 \varnothing$ FOR J＝1 TO 6：READ ROW．INC \％（J），COL．INC\％（J）：NEXT J
NK $38 \varnothing$ DATA $-1,-1, \varnothing, 1,1,1,1, \varnothing, \varnothing$ ， $-1,-1,-1$
6P 396 DIM HIVE\％$(11,11)$
EA 4 øø DIM USED\％（65），NODE\％（65），P ATH\％（65），PATHLEN（26）
HK $41 \varnothing$ SCREEN 1：COLOR 1，2：DEFINT B
IN 42σ DIM HEXA（1øø），BALL 1 （1øб）， BALL2（1øø），EYES1（1øஜ），EYE S2（16ø）
NH $43 \varnothing \operatorname{LINE}(3 \varnothing, 1 \varnothing)-(21,15), 3: \operatorname{LI}$

NE－STEP（ $\varnothing, 1 \varnothing$ ），3：LINE－STE P $(9,5), 3$
PB 44ø LINE－STEP $(9,-5)$ ，3：LINE－S TEP（ $\varnothing,-1 \varnothing), 3:$ LINE－STEP $($ $-9,-5), 3$
WI $45 \varnothing \operatorname{LINE}(3 \varnothing, 11)-(22,16), 2$ ：LI NE－STEP（ $\varpi, 9), 2:$ LINE－STEP $(8,4), 2$
JB $46 \varnothing$ LINE－STEP $(7,-4), 6:$ LINE－S TEP（ $\varnothing,-1 \varnothing$ ），6：LINE－STEP（ $-7,-4), 6$
FP $47 \varnothing$ GET $(21,1 \varnothing)-(39,36)$ ，HEXA
HE 489 CLS：CIRCLE $(3 \varnothing, 2 \varnothing), 5$ ，COLR （1）：PAINT（3ø，2ø），COLR（1） ：GET $(25,16)-(35,24)$, BALL 1
H6 496 GOSUB 58ø：GET $(23,12)-(37$ ，25），EYES1
BJ $5 \varnothing \varnothing$ CLS：CIRCLE $(3 \varnothing, 2 \varnothing), 5$, COLR （2）：PAINT $(3 \varnothing, 2 \sigma)$, COLR（2） ：BET $(25,16)-(35,24)$ ，BALL 2
MC 51ø GOSUB 58ø：GET $(23,12)-(37$ ，25），EYES2：CLS
OA $52 \emptyset$ READ $X, Y: E=(4+$ INT $((x+7) / 8$ ） \＆$^{(1) / 2: D I M ~ B E E(E): B E E(\varnothing)=~}$ X： $\operatorname{BEE}(1)=Y: F O R \quad I=2$ TO E：R EAD As：BEE（I）＝VAL（＂\＆H＂＋A\＄ ）：NEXT
JL $53 \varnothing$ DATA $26,8,828, A, 5 A A, 8 ø 2 A$ ， 95AA，BøAA
HK 54ø DATA 952A，AA，8øø2，Aø，15øø ，$, \varnothing, \varnothing$
NP $55 \varnothing$ DATA 5øø，ø，ø
ML． $56 \emptyset$ RETURN
BM $57 \varnothing$ REM PARTS
KF 58 © CIRCLE $(26,19), 2,1$ ：CIRCLE （34，19），2， 1
EF $59 \varnothing$ PAINT $(26,19), 1:$ PAINT（ 34 ，19）， 1
IE 6øø PSET $(29,17)$ ：LINE－STEP（ -$2.5,-5):$ LINE－STEP（－2．5，3 ）
OC 610 PSET（ 31,17 ）：LINE－STEP（ 2 ． $5,-5$ ）：LINE－STEP $(2.5,3)$
AA $62 \emptyset$ CIRCLE $(3 \varnothing, 24), 1,1:$ PAINT $(3 \varnothing, 24), 1$
M 630 RETURN
DE 640 REM GETNAMES
6B $65 \emptyset$ LOCATE 12，16：PRINT＂BeeHi ve＂：PUT（84，84），EYES1：PUT （192，86），EYES2
HC 66® FOR I＝1 TO 2：LOCATE 19＋I＊ 2－1，6：PRINT＂Playar＂I＂＇s name＂；
HI $67 \varnothing$ INPUT PLAYER（I）：PLAYER\＄（ I）$=$ LEFT \＄（PLAYER\＄（I），15）： N EXT I
IH 689 CLS：RETURN
JC 690 REM DRAWSCREEN
LD 7øø CLS： $\mathrm{Y}=7$
MF 71g FOR R＝1 TO 11
CD $720 \mathrm{X}=9$ の－Rも9
EC 730 FOR $\mathrm{C}=1$ TO 11
$10740 \mathrm{X}=\mathrm{x}+18$
BM $75 \mathscr{\square}$ PUT（ X, Y ），HEXA，OR
KN 760 NEXT C
HC $77 \varnothing \mathrm{Y}=\mathrm{Y}+15$
DH 78 n NEXT R
6L 79ø PSET（297，12），2：GOSUB $93 \varnothing$ ：LINE－STEP（ $(6,1 \varnothing), 2$
FH 8øø PSET（298，12），2：GOSUB 930 ：LINE－STEP（ $\varnothing, 1 \varnothing$ ）， 2
68 81ø PSET $(299,12), 2$ ：GOSUB $93 \varnothing$ ：LINE－STEP（ $\varnothing, 1 \varnothing$ ）， 2
NJ 820 PSET $(96,12), 2:$ GOSUB 930： LINE－STEP（ $\varnothing, 1 \sigma$ ）， 2
NH $83 \varnothing$ PSET（97，12），2：GOSUB 930： LINE－STEP（ $\curvearrowleft, 1 \varnothing$ ）， 2
OF $84 \varnothing \operatorname{PSET}(98,12), 2$ ：GOSUB 93ø： LINE－STEP（ $\varnothing, 1 \varnothing$ ）， 2
CB $85 ø$ Y1 $=-5$ ：Y2 $=5$ ：PSET $(99,9), 3$ ： BOSUB 990
KL． 869 PSET（99，1ø），3：GOSUB 99ø
CK 87ø PSET $(1 \varnothing \varnothing, 11), 3:$ GOSUB $99 \varnothing$

CO 88ø Y1＝5：Y2＝－5：PSET $(9,173), 3$ ：BOSUB 99ø
AG $89 \varnothing \operatorname{PSET}(9,174), 3:$ GOSUB $99 \varnothing$
AE 9øø PSET（9，175），3：GOSUB 99ø
MF 910 RETURN
80926 REM UPNDOWN
HC $93 \varnothing$ FOR $\mathrm{J}=1$ TO $1 \varnothing$
HC $94 \varnothing$ LINE－STEP（ $\varnothing, 1 \varnothing$ ），COLR（1）
C6 $95 \emptyset$ LINE－STEP $(-9,5)$ ，COLR（1）
OF 960 NEXT J
NB $97 \varnothing$ RETURN
PO $98 \varnothing$ REM ACROSS
6F 996 FOR $\mathrm{J}=1$ TO 11
KA 1 øøø LINE－STEP（ $9, Y 1$ ），COLR（2）
내 1 101ø LINE－STEP（ $9, \mathrm{Y} 2$ ）， $\operatorname{COLR}(2)$
6A 1 ø2ø NEXT J
IE 1030 RETURN
PM 1g4ø REM SET PIECE
KB $165 \varnothing$ USED $=\varnothing$
LF 1 1の6Ø IF HIVE\％（ROW，COL）＜＞ø THE N USED＝1：RETURN
LI $107 \varnothing$ HIVE\％（ROW，COL）＝PLAYER
FA 1 1ø®ø PUT（CB，RB），BEE：IF PLAYE $\mathrm{R}=1$ THEN PUT（CB $+1, \mathrm{RB}-1$ ）， BALLI ELSE PUT（CB＋1，RB－1 ），BALL2

JE 1090 RETURN

8J 11 Øg REM CHECKLINE
BI $111 \varnothing$ POSSIBLE $=1$
CJ $112 \varnothing$ IF PLAYER＝1 THEN $12 ø \varnothing$
EL $113 \varnothing$ FOR ROW＝1 TO 6：FF＝ø：FB＝ø
If 1140 FOR COL＝1 TO 11
6J 115 IF HIVE\％（ROW，COL）＝PLAYER THEN $F F=1$
JC $116 \varnothing$ IF HIVE\％（12－ROW，COL）＝PLA YER THEN FB＝1
LE $117 \emptyset$ NEXT COL
HM $118 \emptyset$ IF $F F=\varnothing$ OR $F B=\varnothing$ THEN POS SIBLE $=$ Ø：ROW＝6
PE 1196 NEXT ROW：RETURN
CK $120 \emptyset$ FOR COL＝1 TO 6： $\mathrm{FF}=\emptyset: \mathrm{FB}=\varnothing$
JP 1210 FOR ROW＝1 TO 11
FC 122σ IF HIVE\％（ROW，COL）＝PLAYER THEN $F F=1$
GP $123 \varnothing$ IF HIVE\％（ROW，12－COL）＝PLA YER THEN FB＝1
OB 124ø NEXT ROW
HD $125 \emptyset$ IF $F F=\varnothing$ OR FB $=\varnothing$ THEN POS SIBLE $=$ g： $\mathrm{COL}=6$
LD $126 \boxed{0}$ NEXT COL
JE $127 \varnothing$ RETURN
EB 1289 REM CHECKWINNER
OA $129 \varnothing$ LOCATE 24，1：PRINT＂Check ing．．．
＂；
ED 13øø USED．CNTR＝ø：WINNER＝ø：NOD E．CNTR＝ø： NODE. TOTAL＝ø：$=0$ UNTER＝ø
L0 1310 IF PLAYER＝1 THEN $144 \varnothing$
II 1320 FOR COL＝1 TO 11：ROW＝1
JF $133 \varnothing$ IF HIVE\％（ROW，COL ）＜＞PLAYE R THEN $141 \varnothing$
NO 1349 NODEROW＝ROW：NODECOL＝COL： basub 1569
$6 D 1359$ IF USED．FLAG $=1$ THEN 1410
E日 $136 \varnothing$ NODE． TOTAL $=1$ ：PATH． TOTAL $=$ 1：COUNTER＝1
 ECOL
ML $138 \varnothing$ GOSUB $165 \varnothing$
FJ 1390 IF WINNER $=1$ THEN COL $=11$
JP $149 \varnothing$ REM SKIP2
LI $141 \varnothing$ NEXT COL
JJ 1420 RETURN
EL 1430 REM CHECK 1
FI 1440 FOR ROW＝1 TO 11：COL＝1
BB $145 \varnothing$ IF HIVE\％（ROW，COL）＜＞PLAYE R THEN $153 \varnothing$
N6 1469 NODEROW＝ROW：NODECOL＝COL： BOSUB 156ø
H0 $147 \varnothing$ IF USED．$F L A B=1$ THEN $153 \varnothing$
FO $148 \varnothing$ NODE．TOTAL $=1:$ PATH．TOTAL $=$ 1：COUNTER＝1
OD $149 \varnothing$ PATH\％（ 1 ）$=1$ 1бø＊NODEROW＋NOD ECOL
KH 15 gø GOSUB $165 ø$

COMMODORI PLUS／4E cOMPLETE COMPUTER SYSTEM

 AT BELOW DEALER COST！

 AT BELOW DEALER COST！}

NOTE：Monitor not
available．The Plus／4 ${ }^{\text {TM }}$

Ideal for home or business！Perfect for programmers！

Factory new！

Factory warranted by Commodore ${ }^{\circledR}$ ．Built－in software for word processing，data process－ ing，spreadsheets and 128 color graphics！
Commodore ${ }^{88}$ designed this Plus／4 $4^{\text {Tu }}$ specifically for program－ mers and small businesses！And then they made it VERY EASY to learn and use for novices．Popular business software is available for a variety of purposes．For programmers，this machine has easy－to－use powerful commands and 60K of usable memory．Can hook up as many as four disk drives．
Team up the computer with our compatible units of famous brand，factory reconditioned and warranted DISK DRIVE and DOT MATRIX PRINTER！Sorry，we can＇t print the brand name of the disk drive and printer．But phone us Toll－Free and we can tel you．With Disk Drive for data storage and Printer for＂hard copies＂，you＇ll have a complete system．．．at low liquidation prices．Order TODAY！

Units sold individually or in any combination you desire．	Original List Price	$\begin{aligned} & \text { YOUR } \\ & \text { COST } \end{aligned}$
PLUS／4 COMPUTER Item H－1402－5035－001 Ship，hand：$\$ 8.00$	\＄299．00	$\$ 7$
DISK DRIVE Item H－1402－3553－013 Ship，hand：$\$ 8.00$	\＄269．00	\＄ 140
PRINTER Item H－1402－3831－005 Ship，hand：\＄7．00	\＄200．00	\＄
TOTAL Ship，hand：$\$ 23.00$	\＄768．00	$\$ 347$

KB 1510 IF WINNER＝1 THEN ROW＝11
JJ 1520 REM SKIP1
OE 1536 NEXT ROW
JB 1549 RETURN
cC 1559 REM USEDLOOKUP
QK $156 \varnothing$ USED．$F L A G=\varnothing$ ： $\operatorname{SEARCH}=1 \varnothing \sigma * \mathrm{~N}$ ODEROW＋NODECOL
Mo $157 \varnothing$ LK＝ø：IF USED．CNTR＝ø THEN 1629
FC 1589 FOR LK＝1 TO USED．CNTR
KL $159 \varnothing$ IF SEARCH＝USEDK（LK）THEN USED．FLAB＝1：LK＝USED．CNT R
AA $16 \not 60$ NEXT LK
AP 1610 REM SKIPSEARCH
OA 1620 IF USED．FLAB $=\varnothing$ THEN USED ．CNTR＝USED．CNTR +1 ：USED\％（ USED．CNTR）$=$ SEARCH
JA 1630 RETURN
\＃H 1649 REM CHECKPATH
M0 1659 NODE．CNTR $=\varnothing$
PK 166 g FOR NC＝1 TO 6
AD 1678 NODEROW＝NODEROW＋ROW．INC\％ （NC）：NODECOL＝NODECOL＋COL －INCX（NC）
PI 1689 IF NODEROW＜ 1 OR NODERON $>$ 11 OR NODECOL <1 OR NODEC OL >11 THEN $175{ }^{17}$
JL $169{ }^{6}$ IF HIVEK（NODEROW，NODECOL ）＜＞PLAYER THEN 1756
OA 176% GOSUB 156 $\%$ ：IF USED．FLAB＝ 1 THEN $175 \varnothing$
D 0 171ø NODE．CNTR＝NODE．CNTR +1
OH $172 \boldsymbol{\sigma}$ NODE．TOTAL $=$ NODE． TOTAL +1 ： NODEX（NODE．TOTAL）$=1$ 109＊NO DEROW＋NODECOL
JA 1736 IF（PLAYER $=2$ AND NODEROW ＝11）DR（PLAYER＝1 AND NO DECOL＝11）THEN WINNER＝1： PATH．TOTAL＝PATH．TOTAL＋1： PATH\％（PATH．TOTAL）$=1$ ©の＊NO DEROW＋NODECOL：NC＝6
KP 1749 REM SKIPNODE
肘 1759 NEXT NC
JA 1769 IF WINNER $=1$ THEN RETURN
00 177ø IF NODE．CNTR $=\varnothing$ AND NODE． TOTAL＝ø THEN RETURN
MK 1789 IF NODE．CNTR＝』 THEN PATH ．TOTAL＝PATH．TOTAL－PATHLE N（COUNTER）：PATHLEN（COUNT ER）$=$ © $:$ COUNTER＝COUNTER－1
AG $179{ }^{6}$ IF NODE．CNTR >1 THEN COUN TER＝COUNTER＋NODE．CNTR－1
KP 1BEO NODEROW＝INT（NODEX（NODE．T OTAL）／1ஜ（ ）
E月 1816 NODECOL＝NODEX（NODE．TOTAL ）－1⿷匚\＆NODEROW
ED 1829 PATH．TOTAL＝PATH．TOTAL +1
BA $183 \varnothing$ PATHLEN（COUNTER）＝PATHLEN （CDUNTER）+1
6A 184ø PATHZ（PATH．TOTAL）$=$ NODEX（ NODE．TOTAL）
Ll 1859 NODE．TOTAL＝NODE．TOTAL－1
B8 1869 вOTO 1659
of $187 \varnothing$ REM DRAWPATH
IF 188 LOCATE 1，1：PRINT＂THE WI NNER：＂；IPRINT PLAYER（P LAYER）：
JH 1899 FOR $\mathrm{J}=1$ TO PATH．TOTAL
If 1969 ROW＝INT（PATHX（J）／1שg）：$C 0$ L＝PATHZ（J）-1 Ggi ROW：$C B=C O$ L $18+38+(6-R O W): 9: R B=R O W$ 15－1
FI 191ø IF PLAYER $=1$ THEN PUT（CB + 1，RB－1），BALL 1 ，XORIPUT（C B，RB－3），EYES1，OR ELSE PU T（CB $+1, R B-1)$ ，BALL 2，XOR 3 UT（CB，RB－3），EYES2，OR
HC 1926 NEXT J
IK 1938 REM BOABAIN
JH 1949 LOCATE 24,1 ：PRINT＂Want to play again（Y／N）？＂；
 A $\langle>$＂N＂THEN $195 \emptyset$
LO 1966 IF As＝＂N＂THEN SCREEN 9 ， ©，©i WIDTH BøIEND ELSE CL 8：вото 5ø

Analyze!
 For Amiga

David Powell

Analyze!, unlike some other spreadsheets for the Amiga, is a true Amiga software product, making full use of windows, drop-down menus, icons, color, and the Amiga mouse. You insert the Analyze! disk when the Amiga asks for the Workbench. When you select the disk icon, a window appears containing icons for an Empty Drawer, a Trashcan, and the Analyze! program itself. By using the Empty Drawer and Trashcan, you can organize a spreadsheet into directories and subdirectories, and "clean house" easily when the disk gets too full.

When you select the spreadsheet icon, Analyze! opens a dialog window through which you can partition off memory for your spreadsheet. The default partition is 128 K . If you enter a larger value (one that's reasonable for your configuration, of course), the computer reserves that amount of memory, then displays the spreadsheet screen itself. The memory partitioning scheme lets you use most, but not quite all, of the system's free memory. On my 512 K system, there were 400 K bytes of memory available after Analyze! was loaded. However, I couldn't partition off more than about 300 K .

Compression Yields Extra Room

I was curious to see how big a spreadsheet I could cram into the 128 K default partition. Theoretically, at one byte per cell, a square 128 K spreadsheet would have about 362 cells per side (or one could just fit a one-column spreadsheet 128 K cells long.) However, Analyze! employs the sparse-matrix technique to permit much bigger spreadsheets than would otherwise be possible. Only cells holding text, data, or formulae are actually stored in memory. Empty cells, such as spaces added to improve readability, are not.

So, 128 K of memory holds 128 K of actual data, text, and formulae-no matter how large the spreadsheet's ge-
ography grows. For example, a onecolumn, 128 K spreadsheet could actually be 256 K cells long if data cells alternated with empty cells. This permits you to arrange the spreadsheet in an attractive manner without worrying about wasted memory.

Intuitive Operation

From within the spreadsheet screen, you reveal Analyze!'s main menu bar by holding down the right mouse button. The menu bar contains five menus: Project, Range, Worksheet, Print, and Recalculate. While holding the right button down, move the mouse pointer to one of these options; a menu of its commands drops into view. You select a command by sliding the mouse cursor to it and releasing the mouse button. In short, Analyze! handles menus and other program options in the usual Amiga fashion, which will seem natural to Amiga owners. It's easy to take these intuitive, easy-to-use features for granted until you try operating an Amiga program that lacks them. (It's still possible to buy an Amiga program that doesn't look or act like Amiga software at all. Amiga programs that ignore the mouse and visual icons, operating chiefly through keyboard controls, are usually quick translations of software written for an older machine such as the IBM PC.)

Commands within the Project menu display a Worksheet's current formatting parameters and allow you to load, store, delete, and update spreadsheets stored on internal or external disk drives. (Spreadsheets can be stored on disks used by other programs, because Analyze! only looks for files with the extension .SHT.)

The Range menu offers commands that name, format, label, copy, move, erase, and write-protect individual cells or groups of cells. People building spreadsheets will use these functions frequently, and it's nice to have them all in one place.

Moving And Copying Cells

An example will show you how easy the Range command-and Amiga's mouse-make the task of moving or copying a block of cells to a new loca-
tion. This requires only three steps:

1. Select the Range option's Move (or Copy) command. A prompt appears on the screen asking for the range of cells you want to move.
2. Position the mouse cursor at the upper-left cell of this range, press the left mouse button, and drag the cursor to the lower-right cell. Release the mouse button; a prompt appears on the screen asking for the move destination.
3. Move the mouse pointer to the upperleft cell of this destination; then click the left button. Analyze! repositions the entire block of cells so that its upper-left corner coincides with the destination cell.

I like the fact that such operations can be done without touching the keyboard. However, you can't use the mouse to define ranges that go beyond the visible screen. So Analyze! also offers simple keyboard procedures for selecting ranges and jumping to different places in a spreadsheet.

When you copy cells to a new location, Analyze! can copy formulae in the cells in absolute form (with row and column references transferred verbatim), in relative form (with references adjusted for the new location), or in a combination of both. (However, all cell references are kept verbatim when you transfer formulae to a new location with a Move command.)

A Variety Of Formats

The main menu's Worksheet option includes commands that insert or delete blank rows and columns, erase a spreadsheet, enter titles, format all cells, set column widths, justify labels, and write-protect the entire spreadsheet. Of special interest is the Worksheet option's Format command, which differs from the Range option's Format command in scope. Worksheet formatting applies to every cell in the entire sheet, not to a specific block of cells.

Through Range-Format and Work-sheet-Format, you can display data in the following formats:

- fixed-point decimal
- scientific (exponential) notation
- dollars and cents

- percentages

- dates
- with commas (for instance, 2,123 instead of 2123)

Negative numbers are automatically displayed in red to distinguish them from positive numbers, which appear black on the paper-white background of the spreadsheet.

Another Worksheet-Format option (labeled as $+/-$) can convert positive and negative integers into crude bar charts. This option is designed to work only with integers (whole numbers), so it doesn't work as well with noninteger values.

Following Worksheet in the main menu is the Print command, which enables you to format a spreadsheet and send it to a printer. (However, you must still use Preferences to select the correct settings for your particular printer.) The Print feature allows you to set top-ofform, define page lengths, transmit linefeeds, print part or all of a spreadsheet, set all four page margins, define page headers and footers, pick rows or columns to use as page borders, and print calculated formula results or the formulae themselves. If you don't want to print directly to a printer, you may send the same output to an ASCII disk file for further formatting by a word processing program.

The last option in the main menu (Recalculate) lets you set your spreadsheet's calculation order. You can make recalculations automatic (after each cell change) or manual (as requested). The calculation order can be top-to-bottom or right-to-left. Or, it can be natural, in which case the system performs multiple passes to pull together complex data relationships the way a person would.

This offers more calculation flexibility than many spreadsheets I've seen, but there's even more. Analyze! also lets you create a spreadsheet that runs through as many as 50 iterations, or recalculations, before displaying its results. As a former mathematician, I value this feature highly.

Special Functions

Advanced users will also welcome the program's library of special functions. These include, but are not limited to, the following:

- comparisons and logical operators
- trigonometric functions
- statistical averages, standard deviations, and variances
- table lookups within a spreadsheet
- logarithms and exponentials
- present/future values of cash flows
- loan and annuity payments
- maxima/minima of values in a block
- modulus arithmetic
- random numbers

Analyze! is an effective, efficient spreadsheet, with very few apparent bugs. However, I do have some small complaints. It does not, for instance, offer a macro capability for writing spreadsheet-template programs (power users, take note). It could also handle formula input better. Some spreadsheets use a parser that looks at what you type and decides on its own whether you have entered data, text, or a formula. Analyze!, on the other hand, makes you begin every formula with a plus sign (+). This is a bit awkward.

The Analyze! user manual, like others of its type, suffers from too much text and too few illustrations. You should follow along with the computer as you read the manual. However, it does include very useful summaries of all system menus and special functions. However, since Analyze! is so well integrated with the Amiga's Workbench metaphor, you can learn to use the program almost without opening the manual.

Analyze!
Micro Systems Software
4301-18 Oak Circle
Boca Raton, FL 33431
$\$ 99.95$

The American Challenge: A Sailing Simulation

Tony Roberts

Requirements: Apple II-series computer with at least 64K RAM. IBM PC or PCjr with 128 K RAM and DOS 2.0 or above. Graphics card required for use with PC. Commodore 64 (available early fall).

The pleasures of sailboat racing are effectively recreated in The American Challenge: A Sailing Simulation from Mindscape and Tom Snyder Productions. Fashioned after the America's Cup races, the goal of the game is to win all the preliminary heats. This, in turn, gains you the right to challenge the Australians in an attempt to regain the Cup for the United States. Should you manage to beat Australia in the program's Cup Race, you become eligible for a contest that could win you a trip to Australia to watch the 1987 America's Cup races in person (the contest closes on October 30, 1986).

Taking The Challenge

To play the game, you choose a course;
the computer displays an overhead view of the course and shows you a suggested route around it. Sailing against a boat piloted by the computer, you jockey for position and attempt to cross the starting line just as the horn sounds.

The computer sails a pretty good race. It's possible, but not easy, to beat it, and there's little room for error if you hope to win. You control your boat's direction, sail trim, and centerboard position. At any time during the race, you can press the space bar to return to the overhead view, which shows the paths

The American Challenge: A Sailing Simulation recreates the challenge of competing in the America's Cup races.
both boats have taken. Press the space bar again and the race resumes. Other controls allow you to look right and left off your board and to zoom in on the competition or zoom back for a wider angle view.

Seven of the eight courses are based on the courses used in actual sailboat races. Each race becomes progressively more difficult as the currents become stronger and your compass is taken away.

You're not to sail the Cup Race until your boat has beaten the computer at all seven of the preliminary races. Even for someone familiar with sailboat racing, it will take quite a while to become that proficient.

Racing against the computer is a challenge, but also becomes predictable. The computer maintains a record of the best time for each course and sails a course the same way each time until it is beaten.

Two-Computer Version

One way to eliminate this predictability is to choose the two-player option. However, this choice requires that you have two computers connected by modem or a null modem cable, and both computers must be running the program. With this option, you can send messages to the other captain. This
communication becomes necessary to settle disputes regarding collisions or possible rules violations.

Sailing against another human adds to the enjoyment of the game, but it also slows things down a bit. If you are using 300 bit-per-second modems, the races take from five to twenty minutes each.

One other option allows you to race a high-speed motorboat around the courses. This can be fun, but don't expect to take on the Australians with anything but wind power.

While explaining the program, the manual also imparts quite a bit of information about sailing itself, including sailing basics, racing strategy, and right-of-way rules. The package even includes a 45 r.p.m. phono record with a sailing tutorial for novices.
The American Challenge: A Sailing Simulation
Mindscape
3444 Dundee Road
Northbrook, IL 60062
Apple II series/IBM flippy version
\$39.95
Commodore version (available early fall) $\$ 29.95$

Vorpal Utility Kit

N. Randall

Requirements: Commodore 1541 disk drive.

It has never been any secret that a major problem with a Commodore 64 system is the speed of the disk drive. It's slow. Several companies, understanding the impatience of the regular 1541 user, have released products that speed it up. One of the most popular has been Epyx's Fast Load cartridge, which many owners now swear they could scarcely do without. Following the success of Fast Load, Epyx has now released the Vorpal Utility Kit. For anyone who needs to manipulate files, copy disks, or make use of extremely fast loads and saves, the Vorpal package could quickly become indispensable.

The Vorpal Utility Kit is actually several utilities in one. With VFiler, you can load and save user-created programs at about 25 times the normal 1541 speed. Note that this does not apply to commercial software; the Fast Load cartridge takes care of those. What the Vorpal kit does is add a fifth file type to the 64's normal four (program, sequential, user, and relative). These files make use of the kit's greatly increased speed.

As a nonprogrammer, I must confess to a thorough disinterest in these
super-fast files, simply because I never create programs that could use them. They can be used, though, with any BASIC program (and some ML programs) which you receive from user groups or type in from a book or magazine, in addition to those you create yourself. Epyx makes it clear on the package that the high speed applies only to user-created software and BASIC programs.

20-Second Formatting

More exciting, for nonprogrammers at least, are the disk and file utilities. With the Vorpal Utility Kit, you can format a disk in 20 seconds rather than the usual two minutes. And you can copy an entire disk-including formatting-in less than three minutes. For those with two or more disk drives, the software allows you to renumber both the origin and the destination drives as needed.

File commands include Delete, Undelete, Protect, Unprotect, and Rename, in addition to the following special functions. You can change a file from one type to another. For example, if your old word processor stores documents as USR files, and you buy a new word processor that stores them as PRG files, the Vorpal Utility Kit lets you change them in seconds, without the tedium of reading a file into memory
and writing it back to disk in the new format. You can also copy files and convert them at the same time.

The final utility in the Vorpal Utility Kit is a hardware check. The program will check your 1541's head alignment and drive speed, and will even attempt to correct a minor alignment problem. Impressively, all the commands on the Vorpal kit respond to the touch of a single key, and the manual, although certainly complete, is practically superfluous. Even if you use only the 20second formatting or the three-minute disk copying, the Vorpal Utility Kit is one package you will not want to pass up.
Vorpal Utility Kit
Epyx
1043 Kiel Court
Sunnyvale, CA 94089
$\$ 34.95$

Lords Of Conquest

Todd Heimarck
Lords of Conquest from Electronic Arts is a lot like the popular board game Risk, and in some ways, it's even better.

What are the 5 ways a human being can react to a problem?

Read DIANETICS by L. Ron Hubbard, America's \#1 self-improvement bestseller. Over $71 / 2$ million copies sold. 26 weeks on the New York Times bestseller list in hardback. Now available wherever paperbacks are sold or call 1-800-367-8788.

Copyright ${ }^{\$ 1986}$ Bridge Publications, Inc. DLANETICS** is a trademark and service mark owned by RTC and is used with is permission.

All the exciting, entertaining, and educational games, applications, and utilities from COMPUTE! magazine are now available on disk

for your Commodore, Atari, Apple, or IBM personal computer.

The COMPUTE! Disk

A new COMPUTE! Disk is published every month, rotating among the four major machines covered by COMPUTE!: Commodore 64 and 128; Atari 400/800, XL, and XE; Apple II-series; and IBM PC, PCjr, and compatibles.

Every three months you can receive a disk with all the quality programs from the previous three issues of COMPUTE! that will run on your brand of computer.

Like the popular COMPUTE!'s Gazette Disk, the COMPUTE! Disk is ready-to-load and error-free. It saves you valuable hours of typing time and eliminates typing errors.

With a subscription, you will receive one disk every three months for a total of four disks a year-for only $\$ 39.95$. That saves you $\$ 20$ a year off the singleissue cost.

Or you can order individual issues of the Disk for $\$ 12.95$ a disk plus $\$ 2.00$ shipping and handling.

Remember to specify your type of computer when ordering the COMPUTE! Disk. You'll find more information about this month's COMPUTE! Disk in this issue. (Note: You'll need the corresponding issues of COMPUTE! magazine to use the Disk since the disk will have no documentation.)

For fastest service when ordering a subscription to the COMPUTE! Disk, call toll free 1-800-247-5470 (in Iowa 1-800-532-1272).

For more details or to order individual issues of the COMPUTE! Disk, call our Customer Service Department toll free at 1-800-346-6767 (in New York 212-887-8525).

Please allow 4-6 weeks after placing an order for your first disk to arrive.

King Of The World

A game of Risk begins with a world map divided into a number of countries owned by various players. By shaking the dice, you win and lose territories. Some countries are isolated (Eastern Australia, Japan, and Argentina), while others are busy crossroads (the Middle East and the Ukraine, to name a couple). The ultimate goal is to build up your armies and win enough battles to conquer the world.

In Lords of Conquest, the basic idea is to take over the world, but you win by building or capturing a certain number of cities-from three to six. Some of your territories produce raw materials such as gold, iron, coal, timber, and horses. When you've acquired certain combinations of materials, you can buy weapons or place a new city on the map.

Before the game starts, you split up the available territories. It's important to choose countries that contain coal mines, gold mines, forests, and the like, so you can start building up your stockpile of raw materials. At the same time, you should pick areas that are near each other, because your defenses will be stronger if you have friendly countries as neighbors.

Up To Four Players

You can play one-on-one against the computer, or you can involve as many as four human players. The disk contains 20 maps, including Europe, Africa, North America, the Middle East, South America, Japan, Australia, and the Mediterranean. If you're not satisfied with the built-in maps, you can ask the computer to generate a random battlefield from parameters you supply. You can also create your own map. It takes some time to build a map, but you can fine-tune it until it looks just the way you want. These new maps can be saved to disk for use in later games.

Select a level of play: beginner, intermediate, advanced, or expert. In the beginner level, there are only pastures (a source of horses) and gold mines; this level is suitable for playing with children. More challenging is the expert level, featuring horses, gold, timber, coal, and iron.

Should you choose to play the computer, you must also select a level of difficulty. Level 1 gives you a big advantage (four extra territories) and level 9 skews the game in favor of the computer.

After you divvy up the territory, the game begins. Each round has several phases. During development, you can use your gold and other commodities to create weapons, boats, or cities. Production comes next; more raw mate-
rials are added to your inventory. You then have a chance to move your stockpile to a new country. The stockpile is like an imperial treasury; if another player captures it, he or she will get all your gold, iron, coal, and timber. Finally, there's a combat phase during which each player can send forces against the other players. You're limited to two attacks per round.

To create a city, you have two choices: Spend one unit of iron, coal, timber, and gold, or use four gold units. In the advanced and expert games you can build a boat (a naval force) with three timber units, or buy one with three units of gold. A boat can carry a horse and a weapon, which makes it a valuable offensive force.

Offense Or Defense?

There's a lot to be said for building cities. The ultimate goal is to own three or more cities, so each one you build brings you one step closer to winning. Cities also increase production in the neighboring countries. If you place a city next to a gold mine, its output will double from one unit to two.

But cities are fairly expensive. And if you spend all your resources on cities while your opponents build up their horses, weapons, and boats, you may eventually lose the game. Your opponent will likely attack and conquer your cities. Ownership of a certain number of cities is the goal. It doesn't matter whether you build the cities or capture them.

Each game of Lords of Conquest has a definite rhythm. In the first couple of rounds, weak and isolated countries are overrun by invaders, especially if the country produces a valuable commodity. As the territories coalesce in the middle rounds, powerful armies build up along the borders between empires. When boats first appear, the complexion of the game changes. Suddenly, any coastal country is vulnerable to an attack from the sea. It's difficult to defend a coastal country from marauding Vikings.

The mechanics of the game are fairly simple; there are four commodities, three weapons, and the cities. But Lords of Conquest requires a good sense of strategy. On your way to the goal of building cities, you have to watch your resources and try to keep them from your opponents. If you own no country with a gold mine, you may have to develop a short-term strategy to capture one. You should spend your money wisely, occasionally forgoing a new weapon to save up for a city.

Geography and distribution of resources are also important factors. The strategy that works best on one map might fail miserably on another. Boats

WORDS TO THE WISE from DAVIDSON.

When you are choosing educational software, the word is Davidson. It Works! Thousands of teachers and parents have made the Davidson choice . . . the wise choice in performance-proven educational software.

NEW!

GRAMMAR GREMILINS

Students of all ages learn grammar basics. Over 700 sentences reinforce grammar rules. Students practice their skills in the animated, fast-moving game. Color graphics, editor and more, all make learning fun! Apple ${ }^{T M}$ II family. $\mathbf{\$ 4 9 . 9 5}$. (IBM ${ }^{\mathrm{TM}}$ available $8 / 86$.)
SPELL IT! Learn how to spell 1000 of the most commonly misspelled words. Animation, a lively arcade game and add-your-own words editor too! Apple ${ }^{\text {TM }}$ II family. Atari, ${ }^{T M}$ Commodore ${ }^{T M} 64 / 128$, IBM. ${ }^{\mathrm{mM}} \$ 49.95$.
WORD ATTACK! Discover the meanings and usages of 675 new words. Includes a fun, fast-action arcade game and add-your-own words editor. Apple ${ }^{\text {TM }}$ II family, Macintosh, ${ }^{\text {TM }}$ Atari, ${ }^{\text {TM }}$
Commodore ${ }^{\text {TM }} 64 / 128$, IBM: ${ }^{\text {TM }} \$ 49.95$.
More award winning educational software from Davidson:

MATH BLASTER! ALGE-BLASTER! SPEFD READER II CLASSMATE HOMEWORKERE

(800) 556-6141

In Calif. (213) 534-4070
Davidson \& Associates, Inc.
3135 Kashiwa St.
Torrance, CA 90505
Please send me a FREE COLOR BROCHURE. and the name of my nearest Davidson Dealer. Name
Address
City
State \qquad

Educational Software that Works

GREAT PRODUCTS FOR YOUR COMMODORE

promenade $\mathrm{C} 1^{\text {tm }}$

The Eprom Programmer. Thoughtfully designed, carefully constructed, the promenade $\mathrm{C}^{\text {™ }}$ is respected around the world for quality and value. The original software controlled programmer does away with personality modules and switches. Intelligent programming capability can cut programming time by 95% ! With Disk Software still just $\$ 99.50$

CARTRIDGE MATERIALS:

CAPTURE ${ }^{\text {™ }}$

Take control of your ' 64 or ' 128° ' with this easy to use cartridge. Lets you make a back-up disk of your memory-resident software. Your program is then fully accessible to you and your program can be re-booted from your disk 3-5 times faster. Or make an autostarting cartridge using the promenade C1 and a CPR cartridge kit. Its magic!
CAPTURE ${ }^{\text {Tu }}$ is a bargain at 39.95
CPR-3 - Three socket board, case and 3 eproms, for use with CAPTURE ${ }^{\text {w }}$ 29.95
PCC2 - Two 2732 (4K) or 2764 (8K) eproms. For ' 64 or ' 128 in 64 mode 4.95
PCC4 - Four sockets for 2764,27128 or 27256 (32K) eproms. Bank switching 17.95
PCC8 - Like the PCC4 but twice the capacity. For multiple programs 29.95
PRB4 - Four sockets, eprom \& battery backed RAM combination 24.95
PTM2 - Basic 128 mode cartridge board. Two 2764 or 27128 eproms $5.95 \dagger$
PTM4 - Four sockets, 27128 \& 27256 eproms. 128 mode bank switcher $19.95 \dagger$
PCCH2 - Plastic case for above cartridges (except PCC8) 2.25
Eproms - Always in stock at competitive prices.

EPROM ERASERS:

Datarase - Hobbyist eprom eraser, 2 at a time, 3 to 10 minutes 34.95
PE14 - Industrial quality eraser, 7 to 9 at a time 79.95
Starter Set - CAPTURE ${ }^{\text {w }}$, promenade C1 and one CPR3 kit 149.95
Deluxe Set - CAPTURE ${ }^{\text {Tu }}$, promenade C1, Datarase and two CPR3 kits 199.95
SHIPPING \& HANDLING: USA - UPS SURFACE $\$ 3.00$
JASON-RANHEIM
1805 INDUSTRIAL DRIVE
AUBURN, CA USA 95603
are valuable when islands are plentiful, but they're relatively unimportant when the map contains mostly land.

The Role Of Diplomacy

The computer plays a tough game; at the higher levels you won't often beat it. And when you play with other people, diplomacy plays a role: "I won't attack you if you won't attack me." The multiplayer game also allows for alliances. When more than two players are near a battle, the uninvolved players can send forces to the attacker or defender, or they can remain neutral. You also have a chance to trade commod-ities-a gold and an iron for two coal mines, for example.

If you're a Risk player, you'll enjoy Lords of Conquest, and if you get tired of conquering one world, you can easily find or build another. A second useful feature is the one-player game: When you want to play, but can't round up a group of opponents, you can test the computer's abilities. The only negative comments I've heard concern the graphics. There's nothing particularly wrong with them; they're just simple. The countries, for example, are made up of colored squares. This doesn't af-
fect the playability of the game, so it's a minor criticism.
Lords of Conquest
Electronic Arts
1820 Gateway Drive
San Mateo, CA 94404
Commodore version $\$ 32.95$
Apple II and Atari 8-bit versions soon
to be released; no prices available.

©

Attention Programmers

COMPUTEI magazine is currently looking for quality articles on Commodore, Atari, Apple, and IBM computers (including the Commodore Amiga and Atari ST). If you have an interesting home application, educational program, programming utility, or game, submit it to COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Or write for a copy of our "Writer's Guidelines."

This Publication is available in Microform.

University Microfilms International

300 North Zeeb Road

Dept. P.R.
Ann Arbor, Mi. 48106

Jacket Lister

Gregory Jackmond

The more disks you have, the more you'll enjoy this novel utility. It prints a disk jacket with an alphabetized directory of all the programs on a disk. The original version of "Jacket Lister" runs on the Commodore 64 and 128 (in 64 mode). We've added new versions for the IBM PC/PCjr, Apple II series (DOS 3.3 and ProDOS), and Atari $400,800, \mathrm{XL}$, and XE. A printer is required. The Atari version requires at least 32 K of memory.

How many times have you picked up a disk, only to realize that you can't remember which programs are on it? You can always get a disk directory in the usual way-by putting the disk in the drive and listing the directory on the screen-but that's slow and tedious when you're looking for a specific program.
"Jacket Lister" is a unique, time-saving solution to this perennial problem: It not only allows you to create a personalized jacket out of ordinary paper, but also lists an alphabetized directory on the jacket itself. In a glance, you can see which programs are on each of your disks. A date is also included so that you can tell whether the listing is obsolete. The jacket listing may include as many as 88 filenames, using the front and back of the jacket. (Some computers can store more than 88 files on a disk, but the jacket does not have room for more than that number.)

		APPLE SOFTWARE	Munch-A-Bug NATO Commander	$\begin{aligned} & 23.95 \\ & 19.45 \end{aligned}$
		Adv. Construction 30.50	PFS: Plan	69.95 44.00
	IBM	Algeblaster $\quad 27.00$	PFS: Write	69.95
		Alpha Plot $\quad 24.89$	PFS: File	69.95
Ability	299.95	ASC II Express $\quad 72.50$	PFS: Report	69.95
ASC II Express	132.95	Auto Works 27.95	PFS: Graph	69.95
Bank Street Writer	46.50	Bag of Tricks $2 \quad 28.00$	PFS: First Success	126.00
Clout	119.95	Bank Street Filer $\quad 38.95$	Piece of Cake Math	15.95
Copy II Option Bd.	74.00	Bank Street Mailer $\quad 38.95$	Pinpoint	39.95
Cornerstone	259.95	Bank Street Writer $\quad 38.95$	Prince	48.95
Crossstalk	94.95	Bank Street Speller 38.95	Printographer	23.95
dBase III-	419.95	Bard's Tale $\quad 27.50$	Print Shop	26.69
Deadline Manager	104.95	Beagle Bag $\quad 14.95$	Prt Shp Gr, =1.2. or 3	13.95
Dollars \& Sense	104.95	Beagle Basic $\quad 17.95$	Print Shop Comp.	21.95
Easy	97.50	Beagle Graphics 29.95	Probyter	17.95
Einstein Writer	118.95	Beneath Apple DOS 13.95	Pronto DOS	14.95
Electric Disk	214.95	Big U 16.95	Prof. tour golf	25.89
Fontrix 2.5	84.95	Bookends 64.95	Quicken	51.95
Fitpks 1 thru 13	ea. 13.00	Captain Goodnight 19.95	Report Card	32.95
Framework II	419.95	Carmen Sandiego 22.45	Rescue/Fractalus	23.50
Gamecard III	39.95	Chmpshp Ld. Runner 19.45	Reportworks	64.95
Gato	23.69	Chart'n Graph Tlbx 23.95	Rescue Raiders	24.95
In House Accountant	119.95	Computer Quarterback 27.95	Science tool kit	32.95
Jet	32.75	Complete Graphics 27.95	Sensible Grammar	52.95
Knowledgeman 2.0	319.95	Crypt of Medea $\quad 21.95$	Sensible Speller	64.95
Lotus	CALL	Database Toolbox 23.95	Shape Mechanic	20.00
Mngng Yr Money	104.95	Dazzle Draw 33.95	Sideways	29.95
Micro Cookbook	22.00	D-Code 19.95	Silicon Salad	12.69
Microsoft Chart 2.0	299.95	DiskQuick 14.95	Skyfox	24.25
Word	239.95	Dollars \& Sense 66.50	Spellworks	29.95
Windows	69.95	DOS Boss $\quad 11.95$	Spitfire Simulator	24.75
Norton Utilities	55.95	Double-Take $\quad 17.95$	Spy Hunter	26.00
Option Board	74.00	Eidolon 23.50	Sticky Bear ABC	23.75
PFS: Access	59.95	Essential Data Dup 41.95	Basket Bounce	23.75
PFS: Files	82.50	Extra K 19.95	Car Builder	23.75
PFS: First Success	229.95	Fantavision 26.95	Math	23.75
PFS: Graph	82.50	Fat Cat 17.95	Numbers	23.75
PFS: Plan	82.50	Flex Type 14.95	Opposites	23.75
PFS: Proof	59.95	Fontrix 1.5	Reading	23.75
PFS: Report	82.50	Fntpks 1 thru 13 ea. 13.00	Spellgrabber	23.75
PFS: Write	82.50	Font Works $\quad 34.95$	Townbuilder	23.75
Print Shop	36.95	Forecast $\quad 35.00$	Typing	23.75
Print Shop Gr. ${ }^{\text {a }}$	22.95	Frame-Up $\quad 14.95$	Summer Games I or II	22.45
Print Shop Refill	12.25	Gato 20.45	SuperCalc 3A	109.95
R:Base 5000	339.95	G I Joe 19.95	Terrapin Logo	54.50
Reflex	89.95	Graphics Department 64.95	Terrapin Utilities	14.95
Remote	92.00	Graphics Expander 21.95	Think Tank	88.89
Report Card	32.95	Graphic Magician 26.95	Thinkworks	64.95
Samma +	369.95	Graphworks 57.95	Time is Money	57.45
Sidekick protected	29.00	GPLE 24.95	Tip Disk $=1$	12.00
Sidekick not protected	ed 44.00	Handler Package 69.95	Transylvania	11.95
Sideways Ver. 73	42.00	Impossible Mission 23.50	Triple-Dump	18.95
Speedkey	104.95	I.O. Silver $\quad 14.95$	Turbo Database Tlbx	27.95
SuperCalc 3	239.95	Jeeves $\quad 29.95$	Turbo Pascal 3.0	34.95
Superkey	35.50	Karateka 19.45	Turbo Tutor	20.50
Symphony	CALL	Knight of Diamonds 19.50	Ultima III	33.25
Think Tank	99.95	Kids on Keys $\quad 17.95$	Ultima IV	33.25 33.25
Time Is Money	69.95	Kid Writer $\quad 18.89$	Understanding IIE	33.25 17.95
Traveling Sidekick	36.95	King's Quest I or II 28.009.95	Understanding IIE	17.95
Turbo Database TIbx	38.95	Koronis Rift $\quad 23.49$	Universal file conv	24.95
Turbo Lighting	54.50	Legacy of Llylgamyn 22.50	Utility City	15.25
Turbo Pascal 3.0	36.25	List Handler 39.95	Versaform	43.45
Turbo Pascal 8087	55.00	Locksmith 56.95	Video Toolbox	23.95
Turbo Prolog	69.95	Mngng Yr Money 101.95	Visable 6502	31.75
Turbo Tutor	19.00	Megaworks $\quad 64.95$	Wilderness	38.95
Ulitima III	34.95	$\begin{array}{ll}\text { Merlin } & 33.69\end{array}$	Winter Games	21.45
Visable 8088	35.95	Merlin Pro 54.95	Wizardry	26.50
Volkswriter DIx $=3$	141.00	Merlin Combo $\quad 63.95$	Wizard's Toolbox	23.95
Web. Spell Checker	41.95	Micro Cookbook $\quad 21.45$	Wizprint	14.25
Will Writer	27.95	Millionaire 22.50	Word Handler	39.95
Wizardry	36.00	Minipix $\quad 14.69$	Word Perfect	125.95
Word Perfect	219.95	Moebius 34.95	World's Grtst Ftball	22.45
Wordstar	214.95	MouseWrite $\quad 71.95$	Write Choice	26.45

SILICON EXPRESS

5955 E. Main St. Columbus, Ohio 43213

1-614-868-6868 | | |
| :--- | :--- |
| SLLCON | |
| EXPiASS | OR MAXEL 13.95 |
| SSIDD 16.95 | | \%

395.95

Type in the appropriate pro－ gram for your computer，then save a copy before you run it．The vari－ able NS\＄in line 420 （NAME\＄in line 15 for the Atari version）defines your personalized title for the jack－ et，which you can change to what－ ever you like．You may substitute any characters in the definition of NS\＄，but don＇t make the string longer than 26 characters．

Jacket Lister is a self－prompting program，so you don＇t need elabo－ rate instructions．Simply run the program，insert the disk that you want to catalog，then follow the screen prompts to create a custom jacket for that disk．When the jacket has finished printing，all that＇s left to do is to cut the cover to size，fold it along the printed fold lines，and glue the flaps．

Commodore 64 Version

Commodore Jacket Lister（Program 1）runs on a Commodore 64 or Commodore 128 in 64 mode．The program is written for standard Commodore printers（and for non－ Commodore printers that can emu－ late the standard Commodore graphics characters），but can easily be modified to work on other print－ ers as well．Simply change the graphics symbols to dashes（ - ）or exclamation points（！）in lines 510， 1100，and 1240．（Horizontal lines are formed from the dashes，and vertical lines from the exclamation points．）The program also uses characters 17 and 145 as control codes to set the printer for lower－ case／uppercase or uppercase／gra－ phics printing，respectively．You may need to substitute other con－ trol codes for these in lines 100 and 110.

If you have a Commodore Plus／4，16，PET／CBM，or VIC－20 with expansion memory，you should be able to make Jacket Lister work with only slight modifica－ tions．The POKEs that change the screen color and create sound ef－ fects are specific to the Commodore 64；if you delete these statements， the program should run on nearly any Commodore computer．

Atari Version

The Atari version（Program 2）runs on any Atari $400,800, \mathrm{XL}$ ，or XE computer with at least 32 K of mem－ ory，and should work with any
standard－width printer．No special instructions are required；simply follow the directions on the screen．

Apple II Version

With the Apple II version of Jacket Lister，all output is in uppercase．If you are using DOS 3．3，type in Program 3 as listed．For ProDOS， start with Program 3，but omit lines $80-200$ and add the lines listed as Program 4．In either case，you may have to modify line 450 to suit your particular printer configuration．

IBM PC／PCjr Version

In this version of Jacket Lister（Pro－ gram 5），all output is in uppercase．

Program 1：Commodore Jacket Lister

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

GD $1 \emptyset$ REM＊＊＊＊＊＊PROGRAM SET UP ＊＊＊＊＊＊
RH 2σ DIMTB（144）：DIMAB\＄（144）
KR 30 PRINT＂$\{$ CLR $\}$ E7ヨ＂：POKE5328 Ø，14：POKE53281，6
PS $4 \emptyset$ PRINT＂$\{4$ DOWN $\}\{9$ RIGHT $\}$ \｛RVS\} \{WHT\} WHAT IS TODAY ＇S DATE：＂：PRINT：
EK 50 PRINT＂\｛5 RIGHT $\}$ \｛RVS $\}$ \｛WHT\} ENTER MO/DY/YR THE N＜RETURN＞\｛OFF\}"
MD 6ø PRINT＂$\{2$ DOWN $\}$＂；SPC（11）； ：INPUT DTS
QA $7 \emptyset$ PRINT＂$\{C L R\}\{4$ DOWN $\}$ \｛9 RIGHT \} \{RVS \} \{CYN \} UPPE R AND LOWER CASE ？＂：PRI NT：
RC $8 \emptyset$ PRINT＂$\{1 \varnothing$ RIGHT $\}$ \｛RVS $\}$ \｛CYN\} \{WHT\}Y\{CYN\} OR \｛WHT\}N\{CYN\} THEN <RETURN $>\{\text { OFF }\}^{\prime \prime}$
CB 9ø PRINT＂\｛2 DOWN \}"; SPC(11); ：INPUT CCS
PR 1øØ IF CCS＝＂Y＂THEN CM\＄＝CHR \＄（17）：REM LOWER CASE
RC 110 IF CCS $\langle>$＂Y＂THEN CMS＝CH R\＄（145）：REM UPPER CASE
QF 120 PRINT＂\｛CLR\}E7习": POKE532 8Ø，14：POKE53281，6
SX 136 PRINT＂$\{4$ DOWN \} \{RIGHT \} \｛YEL\}WHICH DISK DRIVE D O YOU WANT TO LIST？＂
JC 140 PRINT＂$\{2$ DOWN $\} "$ ；SPC（11） ；：INPUT DI
MG $15 \emptyset$ REM＊＊＊＊＊READ DISK MEN U＊＊＊＊＊＊
XF $16 \varnothing$ PRINT＂$\{C L R\}\{C Y N\}$＂：POKE5 328ø，2：POKE53281，Ø
HK 170 PRINT＂$\{6$ DOWN $\}\{3$ RIGHT $\}$ \｛RVS\}\{2 SPACES \}READING \｛2 SPACES\}DATA : PLEASE STANDBY\｛2 SPACES\}"
ED $18 \emptyset$ GOSUB163ø
JD $19 \varnothing$ OPEN8，DI，ø，＂\＄Ø＂：FORC＝1T 08：GET\＃8，AS：NEXT：C＝1：DN \＄＝＂＂：FORC＝1TO16
JA 2øø GET\＃8，AS：DN $\$=\mathrm{DN} \$+\mathrm{A}$ ： NEX T：GET\＃8，AS ：GET\＃8，AS：DN\＄ $=$ DN\＄+ ＂$\{2$ SPACES $\} ":$ GET\＃ 8 ，A\＄

ED $21 \varnothing$ DNS＝DNS＋AS：GET\＃8，AS：DNS $=\mathrm{DN} \$+\mathrm{A} \$:$ GET\＃8，AS：GET\＃8， AS
GE 22σ GET\＃8，AS：GET\＃8，AS：C＝1
FH $23 \emptyset$ FORA＝1TO4：GET\＃8，AS ：NEXT ： PN \＄＝＂＂：TY\＄＝＂＂
PM 240 GET\＃8，A\＄：IFST＜＞ 1 THEN31 \varnothing
FP $25 \emptyset$ IFAS＝＂＂THEN31 \varnothing
MC $26 \emptyset$ IFASC（AS）＜＞34THEN $24 \emptyset$
BA 270 GET\＃8，AS：IFASC（AS）＜＞34T HENPN $\$=$ PN $\$+A \$:$ GOTO27Ø
FA $28 \emptyset$ GET\＃8，AS：IFASC $(A \$)=32 \mathrm{TH}$ EN28Ø
RR 29Ø TY\＄＝TY\＄＋AS：GET\＃8，AS：IFA \＄＜＞＂＂THEN29の
RD 3øø TB\＄（C）＝PN\＄：C＝C＋1：IFST＝ø THEN23Ø
XC $31 \emptyset$ CLOSE8
GH $32 \emptyset$ IF C＞88 THEN GOSUB1 $31 \emptyset$
JE $33 \emptyset$ REM＊＊＊ALPHABETIZE LIS TING＊＊＊
CA $34 \varnothing$ PRINT＂\｛CLR\}\{CYN\}":POKE5 328ø，4：POKE53281，ø
QX 35ø PRINT＂$\{6$ DOWN $\}\{3$ RIGHT $\}$ \｛RVS\} $\{2$ SPACES $\}$ SORTING $\{2$ SPACES $\}$ DATA ：PLEASE STANDBY $\left\{2\right.$ SPACES ${ }^{\prime \prime}$
JS 360 GOSUB157ø
HA $370 \mathrm{ZS}=$＂ZZZZZZZZZZZZZZZZ＂： E $=1$
GS 38 Ø FORA＝1TOC－1 $: C \$=Z \$: F O R B=$ 1TOC－1 ：IFC\＄＜TBS（B）THEN4 ØØ
JB 39 Ø $\mathrm{C} \$=\mathrm{TB} \$(\mathrm{~B}): \mathrm{D}=\mathrm{B}$
QF 4øØ NEXT：AB\＄（E）＝C\＄：E＝E＋1：TB $\$(D)=Z \$$ ：NEXT
BM $41 \emptyset$ REM\｛2 SPACES $\}$＊＊＊＊JACKE T NAME $=$ NS $\$ * * *$
MA 42 NS $\$=" * * * * *\{3$ SPACES $\}$ REF ERENCE $\{3$ SPACES $\} * * * * * "$
SJ $43 \emptyset$ REM＊＊＊＊＊PRINT ALPHA L IST＊＊＊＊＊
AA $44 \varnothing$ PRINT＂\｛CLR\}": POKE $5328 \emptyset$ ， 5 ：POKE53281，ø
GR 450 PRINT＂$\{6$ DOWN $\}\{2$ RIGHT $\}$ \｛RVS\}\{2 SPACES\}PRINTING JACKET ：PLEASE STANDB Y\｛2 SPACES $\}^{\prime \prime}$
MA 460 GOSUB151ø
EP $47 \emptyset \mathrm{DD}=\emptyset_{\leq} \mathrm{CD}=\operatorname{INT}(\mathrm{C} / 2):$ OPEN1， 4
JS 48 Ø FOR CR＝1TO2
FS $49 \varnothing$ PRINT\＃1，CHRS（1 \varnothing ）：REM LI NEFEED
XA 5ØØ NEXT CR
JE $51 \varnothing$ TLS＝＂KOヨ＂
FS 520 PRINT\＃1，TAB（2）；：FOR TL＝ 1 TO 72：PRINT\＃1，TL\＄；：NE XTTL：PRINT\＃1，＂CUT＂
KC 530 GOSUB113 30 ：GOSUB114 9
RE $54 \emptyset$ GOSUB113 10
DC 55 Ø PRINT\＃1，CHRS（14）；NS $\$$ ； CH R\＄（15）；：REM 14 DOUBLE W IDTH 15 SINGLE
JG 560 GOSUB114ø
PD 570 FOR LE＝1TO2
RG $58 \emptyset$ GOSUB113 9 ：GOSUB114 \varnothing
AD 590 NEXT LE
MK 6øø GOSUBl13
FX 610 PRINT\＃1，TAB（15）；CMS；DN\＄ ；SPC（5）；DT\＄；：GOSUB1140： GOSUB116Ø
CJ 620 IF C＞ 32 THEN79 7
QA $63 \emptyset$ REM＊＊PRINT ：＜ 32 PRO GRAMS＊＊
HC $64 \emptyset$ FORDD＝1TOCD：GOSUB113 10
JE 650 PRINT\＃1，CHRS（16）；CHR\＄（5 Ø）；CHRS（48）；CMS；AB\＄（DD） ；：REM PRINT HEAD POSITI ON
KS $66 \emptyset$ PRINT\＃1，CHRS（16）；CHRS（5 2）；CHRS（53）；CMS ；AB\＄（CD＋

Two Exeiting New Books

from COMPUIE

Electronic Computer Projects

for Commodore and Atani Personal Computers

COMPUTE!'s First Book of the Commodore 128

A spectacular collection of articles and programs exclusively for the Commodore 128 in 128 mode. Edited
The editors at COMPUTE! Publications have collected some of the best games, programs, and tutorials for the Commodore 128 from COMPUTE! and COMPUTE!'s Gazette, plus some never-beforepublished articles and programs. Learn how to create windows, program sound, and make disks autoload. You'll even find a map of all the important memory locations. There's something for every 128 user. All programs run in 128 mode. A disk is available which includes programs in the book, \$12.95. \$14.95 ISBN 0-87455-059-9

Electronic Computer Projects

Learn how to build all kinds of new devices to interface with your computer from inexpensive, available parts.
For the Commodore 64, 128, VIC, and any eight-bit Atari personal computer.
Soori Sivakumaran
This introduction to digital electronics and computer interfacing is the easy way to learn how computers interact with the outside world. Using a Commodore 64,128 , VIC, or any eight-bit Atari computer and Electronic Computer Projects, you'll be guided through the steps to building a joystick, light pen, game paddle, and numerous other devices. And since each project is independent from the others, you can choose only those projects that interest you. All the projects can be built at home and most require fewer than half a dozen parts.
\$9.95 ISBN 0-87455-052-1

Visit your local book or computer store for these new titles. Or order directly from COMPUTE! Books. Call toll-free 800-346-6767 (in NY 212-887-8525) or write COMPUTE! Books, P.O, Box 5038, F.D.R. Station, New York, NY 10150.
Please include $\$ 2.00$ per book ($\$ 5.00$ air mail) for shipping and handling. NC residents add 4.5 percent sales tax. Allow 4-6 weeks from receipt of order for delivery.
 Part of ABC Consumer Magaznes, inc One of the ABC Publisting Companes
825.7 th Avenve oth Fioor. New York NY 825 7th Avenue oth Fioor New York NY 10010

DD）：：GOSUB114ø
MC 670 REM PRINT HEAD POSITION AE 680 NEXT DD
KB 69ø GOSUB1130：GOSUB1140：DD＝ DD＋1
FR 7 Øб IF DD＞17 THEN72Ø
JF 710 GOTO69ø
XB 72ø GOSUB122ø
QF 730 FOR SL＝1TO29
FK 740 GOSUB12ø 0 ：GOSUB1210
AE 750 NEXT SL
FE 760 GOSUB1240
HG 77ø GOSUBl26ø
SE 780 REM＊＊PRINT ：＞ 32 PRO GRAMS＊＊
BB 79ø FORDD＝1TO16：GOSUB113 0
 Ø）； $\operatorname{CHRS}(48)$ ； CMS ； AB （ DD ） ；：REM PRINT HEAD POSITI ON
QM $81 \varnothing$ PRINT\＃1，CHR\＄（16）；CHR\＄（5 2）； CHRS （53）；CMS；ABS（DD＋ 16）；：GOSUB114ø
KF 820 REM PRINT HEAD POSITION
CR 830 NEXT DD
BB 84ø GOSUB1130：GOSUB114ø
GJ 85ø GOSUB122ø
HG 860 GOSUB1200：GOSUB121ø
FM $870 \mathrm{CX}=(\mathrm{C}-33) / 2: \mathrm{CZ}=\mathrm{CX}+32$
QD 880 FORDD＝33 TOCZ：GOSUBl2ø0
BE $89 \varnothing$ PRINT\＃1，CHRS（16）；CHRS（5 Ø）；CHR\＄（48）；CMS ；AB\＄（DD） ；：REM PRINT HEAD POSITI ON
JQ 9 Øб PRINT\＃1，CHRS（16）；CHRS（5 2）；CHRS（48）；CMS；AB\＄（DD＋ CX）；：GOSUB121ø
AD 910 REM PRINT HEAD POSITION GC 920 NEXT DD
XH 930 GOSUB12ø0：GOSUB1210：DD＝ DD＋1
JB 940 IF DD＞6Ø THEN960
FD 950 GOTO93ø
AG 960 GOSUB1240：GOSUB1260
RG 970 REM＊＊＊CLOSING REMARKS
PA 980 PRINT＂\｛CLR\}\{CYN\}":POKE5 3280，9：POKE53281，\varnothing
CC 99ø PRINT＂\｛6 DOWN\}\{2 RIGHT\} \｛RVS\}\{2 SPACES\}ALPHABET IZED DISK COVER COMPLET E\｛2 SPACES\}"
MH 1 10ø GOSUB1460
QC 1 Ø1Ø PRINT＂ 55 DOWN $\}$
\｛2 RIGHT\}\{2 SPACES\}DO \｛SPACE\}YOU WANT ANOTHE R DISK COVER ：＂
RX 1ø2ø INPUT＂\｛6 RIGHT\}'Y' OR \｛SPACE\}'N' THEN <RETUR N＞＂；AGS
 ＂＂：NEXTDD
BX $104 \varnothing$ IF AG $\$<>" Y$＂THEN $1 \varnothing 7 \varnothing$
EP 1050 PRINT＂\｛CLR\}E7ヨ": POKE53 280，14：POKE53281，6：GOT $07 \varnothing$
FP 1660 REM＊＊TERMINATE PROGR AM＊＊
HC 1070 PRINT＂\｛CLR\}\{CYN\}": POKE 53280，7：POKE53281，11
BP $108 \varnothing$ PRINT＂$\{8$ DOWN $\}$
\｛8 RIGHT\} $\{$ WHT $\}$ \｛RVS \} \｛2 SPACES\}PROGRAM TERM INATED 1 \｛2 SPACES $\} "$
FJ $109 \emptyset$ GOSUB1410
EJ 11øø FOR WT＝1TO 1øøø：NEXT W T
GE 111 Ø PRINT＂\｛CLR\}K7才": POKE53 280，14：POKE53281，6：END
RS $112 \emptyset$ REM＊＊＊DISK JACKET OU TLINE＊＊＊

SA 113Ø PRINT\＃1，＂\｛2 SPACES\}EJ彐 $\{7$ SPACES\}EG习*";:RETUR N．
EM 1140 PRINT\＃1，CHRS（16）；CHRS（ 54）；CHRS（52）；＂＊®Mヨ
\｛7 SPACES\}EL彐": RETURN
KE 1150 REM PRINT HEAD POSITIO N
JB 1160 PRINT\＃1，＂\｛2 SPACES\}EJヨ \｛7 SPACES\}EG习*";
HQ $117 \emptyset$ PRINT\＃1，TAB（15）；＂ を2Ø Uヨ＂；
JS 1180 PRINT\＃1，CHRS（16）；CHR\＄（ 54）；CHR\＄（52）；＂＊ \｛7 SPACES\}ELヨ": RETURN
FB 1190 REM PRINT HEAD POSITIO N
MP $12 \varnothing \varnothing$ PRINT\＃1，＂$\{1 \varnothing$ SPACES $\}$ EJ习＂；：RETURN：
CS 1210 PRINT\＃1，CHRS（16）；CHR\＄（ 54）；CHRS（53）；＂EL彐＂：RET URN：REM PRINT HEAD POS ITION
GS 1220 CLS＝＂C＂
BD 1230 PRINT $\# 1, \mathrm{TAB}(2)$ ；：FOR CL $=1$ TO 72：PRINT\＃1，CLS；： NEXTCL：PRINT\＃1，＂FOLD＂ ：RETURN
XR 1240 LLS＝＂EU习＂
DS 1250 PRINT\＃1，TAB（10）；：FOR L L＝1 TO 56：PRINT\＃1，LL\＄； ：NEXTLL：PRINT\＃1，＂CUT＂ ：RETURN
MR 1260 PRINT\＃1：FOR CR＝1TO3
KM 127 PRINT $\# 1$, CHR $\$(10)$
DG 1280 NEXT CR：CLOSEl：GOTO98ø
DE 1290 REM $\star *$ MENU TOO LONG T －LIST＊＊
FS $130 \emptyset$ REM＊＊CAN ONLY LIST 8 8 PGMS＊＊
HR 1310 PRINT＂\｛CLR\}\{CYN\}":POKE 5328ø，1：POKE53281，7
BJ $132 \varnothing$ PRINT＂$\{5$ DOWN $\} " ; \operatorname{SPC}(1 \varnothing$ ）；＂\｛CYN\}TOO\{2 SPACES\}M ANY $\{2$ SPACES $\}$ PROGRAMS＂
CA 1330 PRINT $\operatorname{SPC}(10) ; "\{C Y N\} T$ －LIST ON JACKET＂
DR $134 \varnothing$ GOSUB146ø
JG 1350 PRINT＂\｛3 DOWN \}"; SPC(8) ；＂\｛RED\}PRINT\{2 SPACES\} THOSE\｛2 SPACES \}THAT \｛2 SPACES \}FIT?"
MC 1360 PRINT SPC（9）；＂（\｛RVS\}Y \｛OFF\} OR \{RVS\}N\{OFF\} T HEN＜RETURN＞）
HE 1376 PRINT＂\｛2 DOWN $\}$＂；SPC（15 ）；：INPUT AW\＄
FX 138 IF AWS＜＞＂Y＂THEN $1 \varnothing 7 \varnothing$
XR 1390 C＝88：RETURN
SG $140 \varnothing$ REM\｛ 2 SPACES\}**** SOUN D SUBROUTINES＊＊＊
SA 141 R REM\｛2 SPACES $\} \# \# \# \#$ BUZ ZER \＃\＃\＃\＃\＃
KR $142 \emptyset$ POKES， $24 \varnothing$
GF $1430 \mathrm{H}=54273: \mathrm{S}=54278$ ： $\mathrm{W}=5427$ $6: V=54296$
BK 144Ø POKEV，15：POKEH，5：POKEW ， 33 ：FORT＝øTO5øø：NEXT
CP $145 \emptyset$ FORT＝H－1TOV：POKET，$\varnothing: N E$ XT：RETURN
QM 1460 REM\｛ 2 SPACES $\} \# \# \# \#$ DON G \＃\＃\＃\＃\＃
MG $147 \varnothing \mathrm{H}=54273: \mathrm{S}=54278$ ： $\mathrm{W}=5427$ $6: V=54296$
QG 148ø POKES－1，9：POKEH，36：POK ES $+9,16:$ POKEV $, 15:$ FORU $=$ 1TO4：POKEW， $21:$ FORT＝øTO 5øø
EM 1490 NEXT：POKEW， 20 ：NEXT
KJ 1500 FORT＝H－1 TOV：POKET，\varnothing ：NE XT：RETURN

XF $151 \varnothing$ REM $\{2$ SPACES $\} \# \# \# \# \#$ DIN
G \＃\＃\＃\＃\＃
MJ $1520 \mathrm{H}=54273$ ： $\mathrm{S}=54278: \mathrm{W}=5427$
$6: V=54296$
XQ 1530 FOR AA＝1TO3
CE 1540 POKEV， $15:$ POKEH， $40:$ POKE S－1，9：POKEW， 17 ：FORT＝1T 05øø：NEXTT
AK 1550 FORT＝H－1 TOV：POKET，$\varnothing: N E$ XT
SX 1560 NEXTAA：RETURN
JD $157 \emptyset$ REM\｛2 SPACES $\} \# \# \# \#$ BIN G－BONG \＃\＃\＃\＃\＃
JX 158 Ø $\mathrm{H}=54273: \mathrm{S}=54278: \mathrm{W}=5427$ $6: V=54296$
DE 1590 POKEV，15：POKES－1，88：PO KES， 89 ：POKEW－1， $1:$ FORU $=$ 1TO6：POKEW， 65
XR 16øØ POKEH，2の：FORT＝ØTO12Ø：N EXT
BG 161ø POKEW，64：POKEH，50：POKE W， $65:$ FORT $=\varnothing$ TO1 $2 \varnothing:$ NEXT： POKEW， $64: N E X T$
KA 1620 FORT＝H－1TOV ：POKET，$\varnothing: N E$ XT：RETURN
JD 163 REM\｛2 SPACES $\} \# \# \# \#$ BEL LS \＃\＃\＃\＃\＃
XS $1640 \mathrm{~V}=54296: \mathrm{W}=54276$ ：POKEW + 1，96
BQ $165 \emptyset$ POKEW＋1，9
DM 1660 POKEV， 15 ：FORL＝1TO5：POK EW， 21
PX 167Ø POKEW－3，99＊RND（1）：POKE W＋11，99＊RND（1）
XK 168Ø FORT＝1TO6ØØ：NEXT：POKEW ， $2 \varnothing$ ：NEXT
XD $169 \varnothing$ FORI $=W-4$ TOV：POKEI，$\varnothing: N E$ XT：RETURN

Program 2：Jacket Lister for Atari 400，800，XL，and XE

Version by Kevin Mykytyn，Editorial Programmer
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In
Programs＂in this issue of COMPUTEI．
DC $1 \varnothing$ DIM DATE $\$(12)$ ，UPPER $\$(1$ ），K\＄（1），DN\＄（1Ø），DIR\＄（1 7＊B8），T\＄（20），NAME\＄（26） ，SPC\＄（8ø）
FB 15 FOR $A=1$ TO 8ø：SPC\＄（A，A ）＝＂＂：NEXT A：NAME $=$＝＊＊ ＊＊＊REFERENCE DISK＊＊＊ ＊＊＂：REM THIS MUST BE 2 6 CHARACTERS
JM $2 \emptyset$ OPEN \＃4， $4, \varnothing$ ，＂K：＂
KD 1 Øø GRAPHICS $\emptyset:$ POKE $71 \varnothing, 1$ 5：POKE 7ø9，Ø：POKE 712 ， 55
FO $11 \varnothing$ POSITION $1 \varnothing, 6:$ PRINT＂ Whit is TDDAY回＂
J6 120 POSITION 6，8：PRINT＂ GNTAR MOZDYRYR MHIEN ［RETURN＞＂
PH 130 POSITION 15， 13 ：INPUT DATE\＄：PRINT＂\｛CLEAR\}" ：POKE 752，1
6A $16 \emptyset$ PRINT＂\｛CLEAR\}": POSIT ION 2，5：PRINT＂WHICH DISK DRIVE DO YOU WAN T TO LIST＂：POSITION 1 7，7：PRINT＂（1－9）＂
FE $17 \varnothing$ GOSUB 1 Øøø：IF K $\$<" 1 "$ OR K\＄＞＂9＂THEN $17 \emptyset$
HO 18 D DN\＄＝＂D 1：＊．＊＂：DN\＄$(2,2)$ ＝K\＄
JP 190 PRINT＂\｛CLEAR\}": POSIT ION 3，8：PRINT＂EJAIE

IDETY＂：POKE 712，136
If 20ø TRAP 22ø：FILE＝1：OPEN \＃1，6，ø，DN\＄
FH $21 \varnothing$ INPUT \＃1，T\＄：DIR\＄（（FIL $\mathrm{E}-1) *(7+1$ ， $\mathrm{FILE} * 17)=\mathrm{T} \$$ ：FILE＝FILE＋1：IF FILEく $9 \varnothing$ THEN $21 \varnothing$
M 22 FILE＝FILE－2：TRAP 65øø Ø：CLOSE \＃1：IF PEEK（19 5）$=136$ OR FILE 888 THE N $25 \emptyset$
L6 23 Ø PRINT＂\｛CLEAR\}":POSIT ION 12，11：PRINT＂DISK ERROR \＃＂；PEEK（195）
PN 240 POSITION 8， 13 ：PRINT＂ PRESS ANY KEY TO RETR $Y^{\prime \prime}:$ GOSUB 1øøø：GOTO 19 \emptyset

BH 250 POSITION 5，8：PRINT＇＂ 3 DR更耳，
NJ $260 \mathrm{G}=\mathrm{INT}(F I L E / 2)$
6H $265 \mathrm{~N}=\varnothing$ ：FOR I＝1 TO FILE－G
CC 27ø IF DIR\＄（（I－1）＊17＋1，I＊ 17）＜＝DIR\＄（（I＋G－1）\＆ $17+$ 1，（I＋G）＊ 17 ）THEN 29.
BJ $280 \quad \mathrm{~T} \$=\mathrm{DIR} \$((\mathrm{I}-1) * 17+1$ ，I＊ 17）：DIR\＄（（I－1）\＃17＋1，I ＊ 17$)=\mathrm{DIR} \$((\mathrm{I}+\mathrm{G}-1) * 17+$ $1,(I+G) * 17): D I R \$((I+G$ $-1) * 17+1,(I+G) * 17)=T \$$ ：$N=1$
HE $29 \varnothing$ NEXT I：IF $N=1$ THEN 26 5
ID 3 Øø $G=I N T(G / 2): I F G>=1 \quad$ TH EN 265
AO $31 \emptyset$ POSITION 2，8：PRINT＂

 712，1ø4：OPEN \＃1，4，4，＂ P：＂
MH 320 FOR $A=1$ TO 3：PRINT \＃1 ；CHR $\$(13)$ ：NEXT A
66330 GOSUB 3ø7ø：PRINT \＃1；＂ CUT＂
NH $34 \varnothing$ GOSUB उøøø：GOSUB $3 \varnothing 1 \varnothing$ ：GOSUB 3ø2ø
NO $35 \varnothing$ GOSUB 3 Øøø：PRINT \＃1；C HR\＄（14）；NAME \＄CHR\＄（2の ）；：GOSUB 3ø2ø：REM 14 IS DQUBLE WIDTH， 26 I S NORMAL WIDTH
DI 36 FOR $A=1$ TO 2：GOSUB $3 \emptyset$ Øロ：GOSUB 3 Ø1ø：GOSUB 3 ஏ2の：NEXT A
HL $37 \emptyset$ GOSUB 3øøø：PRINT \＃1；S PC\＄（1，22）；DATE\＄；SPC\＄ 1，उØ－LEN（DATE\＄））；：GOS UB $3 \varnothing 2 \emptyset$
HD $38 \varnothing \quad C D=I N T(F I L E / 2): I F F I L$ E >32 THEN $48 \emptyset$
CA 390 FOR DD＝1 TO CD：GOSUB 3Øのø
JK 4 Øø PRINT \＃1； $\operatorname{SPC}(1,8)$ ；DI R\＄（（DD－1）\＆ $17+1$ ，$D \mathrm{D}$ \＆ $17-$ 3）； $\operatorname{SPC} \$(1,9)$ ；DIR\＄（（CD $+D D-1) * 17+1,(C D+D D) * 1$ 7－3）；SPC\＄（1，7）；
NL 419 GOSUB $3 \varnothing 2 \emptyset: N E X T$ DD
LJ $42 \emptyset$ GOSUB उøøø：GOSUB $3 \emptyset 1 \emptyset$ ：GOSUB 3ø2ø：DD＝DD＋1
明 43 IF DD >17 THEN $45 \emptyset$
6H 44 Ø GOTO $42 \varnothing$
KC 45ø GOSUB 3ø7ø：PRINT \＃1； FOLD＂
CJ 460 FOR SL＝1 TO 29：GOSUB उø5ø：GOSUB उø6ø：GOSUB 3065
LK 476 NEXT SL：GOSUB 3ø9ø：PR INT \＃1；＂CUT＂：GOTO 2ø ■ø
AA 48の FOR DD＝1 TO 16：GOSUB 3Øのロ

6D $49 \varnothing$ PRINT $1 ; \operatorname{SPC} \$(1,8)$ ；DI $\mathrm{R} \$((\mathrm{DD}-1) \neq 17+1$ ， DD \＆ $17-$ 3）；SPC\＄（1，9）；DIR\＄（ 16 ＋DD－1）\＆ $17+1,(16+D D) * 1$ $7-3) ; \operatorname{SPC} \$(1,7)$ ；
NL 5øø GOSUB 3ø2ø：NEXT DD
NG $51 \varnothing$ GOSUB उøøø：GOSUB $3 \varnothing 1 \varnothing$ ：GOSUB $3 \varnothing 2 \varnothing$
CN 520 EOSUB $3 \varnothing 7 \varnothing:$ PRINT \＃1；＂ FOLD＂：GOSUB 3ø5ø：GOS UB 3פ6の：GOSUB 3965
FA $530 \quad$ CX＝INT（ $($ FILE－33）／2）：C $Z=C X+32$
6M54ø FOR DD＝33 TO CZ：GOSUB 305の
F6 55の PRINT \＃1；SPC\＄$(1,9)$ ；DI R\＄（（DD－1）\＆ $17+1$ ，$D D \$ 17-$ 3）；SPC $\$(1,6)$ ；DIR\＄（（DD $+C X-1)$＊ $17+1$ ，（ $D D+C X)$ ） 1 $7-3) ; \operatorname{SPC}(1,11) ; "!"$
$6 C 56 \emptyset$ NEXT DD
NC 57ø GOSUB 365の：GOSUB $396 \emptyset$ ：GOSUB 3ø65：DD＝DD＋1
CC 58ø IF DD 661 THEN $57 \emptyset$
KF 59ø GOSUB 3g9ø：PRINT \＃1；＂ CUT＂：GOTO 2gøの
HA 1 Бøg POKE 752，1：GET \＃4，K： K $\$=$ CHR $\$(K):$ RETURN
KA 2ஏøø FOR CR＝1 TO 3：PRINT \＃1；CHR（13）：NEXT CR： CLOSE \＃ 1
PL $2 \varnothing 1 \varnothing$ PRINT＂\｛CLEAR\}": POSI TION 3，1ø：PRINT＂ALP HABETIZED DISK COVER COMPLETE＂
ML 2ø20 POSITION 3，13：PRINT ＂DO YOU WANT ANOTHER DISK COVER？＂
 THEN RUN
ME 2ø4ø IF K\＄く〉＂N＂THEN 2ø3ø
KD $2 \emptyset 5 \emptyset$ PRINT＂\｛CLEAR\} \｛2 DOWN\} BYE": POKE 75 2，\varnothing ：END
OE Зøøø PRINT \＃1；＂！ \｛8 SPACES\}!*";:RETUR N
FE $3 \boxed{1}$（ PRINT \＃1；SPC $\$(1,52)$ ； ：RETURN
KL 3ø2の PRINT \＃1；＂豈！ \｛B SPACES\}!": RETURN
30 3ø5ø PRINT \＃1；＂
\｛1Ø SPACES\}:";:RETURN
FL 3ø6g PRINT \＃1；SPC\＄（1，54）； ：RETURN
6J 3 g65 PRINT \＃1；＂！＂：RETURN
BH 3 ø 7 Ø PRINT \＃1；＂＂；：FOR A ＝1 TO 72：PRINT \＃1；＂－ ＂；：NEXT A：RETURN
BJ 3 Ø9の PRINT \＃1；＂ \｛11 SPACES\}"; :FOR $A=1$ T0 54：PRINT \＃1；＂－＂； ：NEXT A：RETURN

Program 3：Apple II Jackef Lister

Version by Tim Midkiff，Editorial Programmer
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

$602 \emptyset$ DIM TB $\$(144)$, AB $\$(144)$ ，WS（1 Øøø）
CA $3 \emptyset$ HOME ：PRINT ：PRINT＂WHAT IS TODAY＇S DATE（MO／DY／YR ）＂；：INPUT DT\＄
5F $4 \varnothing$ HOME ：PRINT ：PRINT＂WHIC

H DRIVE DO YOU WANT TO LIS T $(1 / 2) " ;$ INPUT D1
AC 5 Ø IF D1＜ 1 QR D1＞ 2 THEN 4 \varnothing
草家事室
$377 \emptyset$ GOSUB 132ø：HOME ：PRINT＂ READING DATA ：PLEASE STAN DBY＂
78 8 9 FOR $I=768$ TO 779：READ A $:$ POKE I，A：NEXT ：P1 $=\varnothing: P$ $2=\varnothing: A \$=" n: C=\varnothing$
609 P1＝WS（ $) ~-~ W S ~(\varnothing) ~+~ P E E K ~$ $(131): P 2=W S(\varnothing)-W S(\varnothing)+$ PEEK（132）
34 1øø POKE 769，P1：POKE 77ø，P2
AE 110 POKE 54，$\emptyset: ~ P O K E ~ 55,3: ~ P O K ~$ E 56，11：POKE 57，3：CALL 1 Øロ2
9A 126 PRINT CHR\＄（4）；＂CATALOG，D ＂；D1
Fg 125 PRINT
15130 POKE 768，173：POKE 769，P1 ：POKE 770，P2
41 14ø POKE 54，11：POKE 55，3：PO KE 56，$\emptyset: ~ P O K E ~ 57,3: ~ C A L L ~$ 1 1ロロ2
$7115 \emptyset$ FOR I $=1$ TO 4：INPUT A\＄： NEXT ： $\mathrm{C}=1$
B8 $16 \emptyset$ INPUT $A \$:$ IF $A \$=\cdots "$ THEN $17 \varnothing$
C2 165 IF LEFT $\$(A \$, 1)=$＂＊＂THE N A\＄$=$ RIGHT\＄（A\＄，LEN（A \＄）－1）
$38167 \mathrm{~TB} \$(C)=\operatorname{MID} \$(A \$, 7,18): C$ $=C+1:$ GOTD $16 \emptyset$
D7 17ø POKE 54，24ø：POKE 55，253： POKE 56，27：POKE 57，253： CALL 1 øø2
3C 189 FOR I $=1$ TO C $-1:$ PRINT TB\＄（I）：NEXT
$7119 \emptyset$ DATA $141, \emptyset, 64,238,1,3,2 \emptyset 8$ ， 3
EA 260 DATA $238,2,3,96$
CF $34 \emptyset$ IF $C>88$ THEN GOSUB $126 \emptyset$
12 35ø REM 䋨 ALPHABETIZE LISTI NG 章室室
F9 360 GOSUB 1320：HOME ：PRINT ＂SORTING DATA ：PLEASE ST ANDBY＂
4A 370 Z $\$=$ CHR $\$(255): E=1$
70380 FOR $A=1$ TO $C-1: C \$=Z$ \＄：FOR B＝ 1 TO C－1：IF C $\$$＜TB\＄（B）THEN 4øø
$6439 \emptyset C \$=T B \$(B): D=B$
52 4øØ NEXT ：AB\＄（E）$=C \$: E=E+$ 1：TB\＄（D）$=$ Z\＄：NEXT
$0741 \varnothing$ REM＊ま\＆

62430 REM＊＊＊＊＊PRINT ALPHA LIS

CB $44 \varnothing$ GOSUB 1326：HOME ：PRINT ＂PRINTING JACKET ：PLEASE STANDBY＂
A2 $45 \emptyset \mathrm{DD}=\varnothing: \mathrm{CD}=\mathrm{INT}(\mathrm{C} / 2):$ PRINT CHR\＄（4）；＂PR\＃1＂：PR INT CHR\＄（9）；＂8פN＂
EA $46 \emptyset$ FOR CR $=1$ TO 2
8B $47 \emptyset$ PRINT CHR $\$$（1ø）：REM LINE FEED
6C 48ø NEXT
97 51ø TL\＄＝＂－＂
7A $52 \emptyset$ PRINT TAB（ 4）；：FOR TL＝ 1 TO 71：PRINT TL\＄；：NEXT ：PRINT＂CUT＂
2D $53 \emptyset$ GOSUB 11øø：GOSUB $111 \varnothing$
CB $54 \emptyset$ GOSUB 11 øø
D6 $55 \emptyset$ POKE 36，INT（ $4 \emptyset$－LEN（N S\＄）（ 2）：PRINT NS\＄；
DJ 560 GOSUB $111 \varnothing$
A9 570 FOR LE $=1$ TO 2

37580 GOSUB 11øø：GOSUB 1110
日F $59 \varnothing$ NEXT
C4 $6 \varnothing \varnothing$ GOSUB 11 øø
D1 619 POKE 36，36：PRINT DT\＄；：G OSUB 111ø：GOSUB $112 \varnothing$
FJ 620 IF C >32 THEN $79 \varnothing$
A6 630 REM＊＊＊PRINT ：＜ 32 PROG RAMS＊＊＊
19640 FOR DD $=1$ TO CD：GOSUB 1 1 1ø
$9665 \varnothing$ POKE 36，2ø：PRINT AB\＄（DD） ；
B8 660 POKE 36，45：PRINT AB\＄（CD ＋DD）；
D6 $67 \varnothing$ GOSUB $111 \varnothing$
6E $68 \emptyset$ NEXT
B5 69ø GOSUB 1106：GOSUB 111ø：DD $=D D+1$
A8 760 IF DD＞ 17 THEN 720
1E 710 GOTO 696
E5 720 GOSUB $117 \varnothing$
28730 FOR SL $=1$ TO 29
$9574 \varnothing$ GOSUB 1150：GOSUB $116 \varnothing$
99 750 NEXT
F5 $76 \varnothing$ GOSUB 1190
D9 77ø GOSUB 1210
B2 780 REM＊＊＊PRINT ：＞ 32 PROG RAMS＊＊
41790 FOR DD $=1$ TO 16：GOSUB 1 $10 \varnothing$
8E 8øø PDKE 36，20：PRINT AB\＄（DD） ；
$9281 \varnothing$ POKE 36，45：PRINT AB\＄（DD +16 ）；
CE $82 \varnothing$ GOSUB 1110
66830 NEXT
$3284 \varnothing$ GOSUB 11øø：GOSUB $111 \varnothing$
EC $85 \varnothing$ GOSUB $117 \varnothing$
9A $86 \varnothing$ GOSUB 115ø：GOSUB $116 \varnothing$
$7187 \emptyset c x=(C-33) / 2: C z=c x$ $+32$
F1 88ø FOR DD $=33$ TO CZ：GOSUB $115 \varnothing$
A $89 \varnothing$ PDKE 36，2ø：PRINT AB\＄（DD） ；
$169 \varnothing \varnothing$ POKE $36,4 \varnothing$ ：PRINT AB\＄（DD $+\mathrm{CX})$ ；
E1 910 GOSUB 1160
65920 NEXT
1193ø GOSUB 115ø：GOSUB 116ø：DD $=\mathrm{DD}+1$
2094 IF DD >60 THEN $96 \varnothing$
A3 950 GOTO 93ø
63 960 GOSUB 119ø：GOSUB 121ø
1F $97 \varnothing$ REM＊＊＊CLOSING REMARKS＊ ＊＊
34989 PRINT CHR\＄（4）；＂PR\＃Ø＂
36990 GOSUB 1320：HOME ：PRINT ＂ALPHABETIZED DISK COVER COMPLETE＂
131 1øøø PRINT ：PRINT＂DO YOU WA NT ANOTHER DISK COVER Y ／N）＂；：INPUT AG\＄
$71101 \varnothing$ FOR DD $=\varnothing$ TO 144：ABS（DD ，＝＂＂：NEXT ：RESTORE
$68162 \varnothing$ IF AG\＄＜＞＂Y＂THEN $165 \varnothing$
111030 GOTO 4ø
5A $194 \varnothing$ REM＊＊TERMINATE PROGRAM ＊＊
2A $165 \emptyset$ HOME ：PRINT＂pROGRAM TE RMINATED＂
$5 F 106 \varnothing$ GOSUB $132 \varnothing$
AB 1 ब7ø FOR WT $=1$ TO 1øøø：NEXT
FF 1680 HOME ：END
1A $169 \varnothing$ REM＊＊＊DISK JACKET OUTL INE＊＊＊
FE 1160 PRINT＂！！＊＂； RETURN
F9 1110 POKE 36，64：PRINT＂＊！ ！＂：RETURN
421120 PRINT＂！！＂；
FC 1130 PDKE 36，29：PRINT＂－－－

66 1140 POKE 36，64：PRINT＂＊： ！＂：RETURN
551159 PRINT＂ TURN
DC $116 \varnothing$ PDKE 36，66：PRINT $n!n: ~ R$ ETURN
DF 1170 CL\＄＝＂－＂
6E 1180 PRINT TAB（ 4）；：FOR CL＝ 1 TO 71：PRINT CL\＄；：NE XT ：PRINT＂FOLD＂：RETU RN
781190 LL\＄＝＂－＂
D3 1200 PRINT TAB（ 12）；：FOR LL $=1$ TO 55：PRINT LL\＄；：N EXT ：PRINT＂CUT＂：RETU RN
F9 1210 PRINT ：FOR CR $=1$ TO 3
暗 $122 \varnothing$ PRINT CHR\＄（1ø）：REM LIN EFEED
9C $123 \varnothing$ NEXT ：GOTO 98ø
F2 $124 \varnothing$ REM＊＊＊MENU TOO LONG TO LIST＊＊＊
7C 1250 REM＊＊＊CAN ONLY LIST 88 PGMS＊＊＊
IF 1260 GOSUB 1320：HOME ：PRINT ＂TOD MANY PROGRAMS TO L IST ON JACKET＂
F6 $127 \emptyset$ PRINT ：PRINT＂PRINT THO SE THAT FIT（Y／N）＂；：INP UT AW\＄
2C 1289 IF AW\＄＜＞＂Y＂THEN 1ø5
8B $129 \varnothing \mathrm{C}=88$ ：RETURN
471360 RE
48 131の REM＊＊＊＊＊SOUND ROUTINE ＊＊＊＊
AB 1320 FOR $I=1$ TO 1ø：A $=$ PEEK （－16336）：NEXT ：RETU RN

Program 4：ProDOS

Modifications for Program 3

Refer to the article for instructions on adding these replacement lines．
BJ 8 © $\mathrm{D} \$=$ CHR $\$(4)$ ：PRINT D\＄；＂P REFIX，D＂；D1：PRINT D\＄；＂PRE FIX＂
C2 96 INPUT P\＄
CJ 1 Øø PRINT D\＄；＂OPEN＂；P\＄；＂，TDI $\mathrm{R}^{\prime \prime}$
36 $11 \varnothing$ PRINT D\＄；＂READ＂；P\＄
63 $12 \varnothing$ FOR I $=1$ TO 3：INPUT AS： NEXT ： $\mathrm{C}=1$
DC $13 \varnothing$ INPUT A\＄：IF LEN $(A \$)>\varnothing$ THEN TB\＄（C）$=$ MID $\$(A \$, 2$ ，15）：PRINT TB\＄（C）：C＝C ＋1：GOTO 13ø
79 14Ø PRINT D\＄；＂CLOSE＂；P\＄

Program 5：IBM PC／PCjr Jackeł Lister

Version by Tim Midkiff，Editorial Programmer
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing in Programs＂in this issue of COMPUTE．

DF $1 \varnothing$ KEY OFF：WIDTH 8ø：DEF SEG＝ø ：POKE 1ø47，PEEK（1ø47）OR 6 4
OB $2 \varnothing$ DIM TB\＄（144）：DIM AB\＄（144）
EJ $3 \varnothing$ CLS：PRINT：PRINT＂What is t oday＇s date（Mo／Dy／Yr）＂；：I NPUT DT\＄
8F $4 \varnothing$ CLS：PRINT：PRINT＂Which dis k drive do you want to lis t（A／B）＂；：INPUT DI\＃：IF DI\＄ ＜＞＂A＂AND DI\＄＜＞＂B＂THEN 4ø

L6 $5 \emptyset$ REM＊＊＊READ DISK MENU＊＊＊
KL $6 \varnothing$ BEEP：CLS：PRINT＂READING DA TA ：PLEASE STANDBY＂
CP 7 Ø FSPEC $\$=D 1 \$+": * . * "$
E6 $8 \varnothing$ HEAD $=195 \varnothing$ ：TAIL $=1 \varnothing 52$ ：BUFFER $=1$ 1054： $\mathrm{C}=\varnothing$
LK $9 \varnothing$ ON ERROR GOTO 110
OC 1 øø FILES FSPEC\＄：ON ERROR GOT －ø：GOTO $12 \varnothing$
IM $11 \varnothing$ BEEP：CLS：PRINT＂CANNOT RE AD DIRECTORY＂：ON ERROR GO TO ø：END
6K $12 \varnothing$ DIM TT\＄（24）：LOCATE 3，1：RO WS＝ø
OH $13 \varnothing$ POKE HEAD，3Ø：POKE TAIL， 34 ：PDKE BUFFER，$\varnothing:$ POKE BUFFE R＋1，79：POKE BUFFER $+2,13: P$ OKE BUFFER $+3,28$
HC 14ø LINE INPUT TT\＄（ROWS）：IF T T\＄（ROWS）＜＞＂＂THEN ROWS＝RO WS＋1：GOTO $13 \varnothing$
태 $15 \varnothing$ ROWS＝ROWS－1：FOR I＝ø TO RO WS：FOR J＝ø TO 3
$6816 \emptyset \mathrm{~T} \$=\mathrm{MID} \$(T T \$(\mathrm{I}), \mathrm{J} * 18+1,12)$
KC $17 \varnothing$ IF T\＄＜＞＂＂THEN TB（C）$=$ T\＄： $\mathrm{C}=\mathrm{C}+1$
PK $18 \emptyset$ NEXT J：NEXT I：ERASE TT\＄
CD 190 IF C＞88 THEN GOSUB 1269
CL $2 ø \varnothing$ REM＊＊＊ALPHABETIZE LISTI NG \ddagger ：
EB 21ø BEEP：CLS：PRINT＂SORTING D ATA ：PLEASE STANDDY＂
fF 220 Z $\$=$ CHR $\$(255): E=1$
QK 236 FOR $A=\emptyset$ TO C－1：C\＄＝Z\＄：FOR $\mathrm{B}=\varnothing$ TO $\mathrm{C}-1:$ IF C\＄＜TB（B）T HEN 250
BF $240 \mathrm{C}=\mathrm{F}=\mathrm{TB} \$(\mathrm{~B}): \mathrm{D}=\mathrm{B}$
FE 250 NEXT：AB（E）$=\mathrm{C} \$: \mathrm{E}=\mathrm{E}+1$ ：TB\＄（ D）$=\mathrm{Z}$ \＄：NEXT
IE 416 REM $\$$ ：事莫
CN 42 NS $\$=$＂＊＊＊＊＊REFERENCE＊＊䋨事＂
PD 430 REM \＃\＃\＃PRINT ALPHA LIST ＊＊＊
60 44ø BEEP：CLS：PRINT＂PRINTING JACKET ：PLEASE STANDBY＂
EF $459 \mathrm{DD}=\varnothing$ ： $\mathrm{CD}=\mathrm{INT}$（C／2）
ML $46 \emptyset$ FOR CR＝1 TO 2
CA $47 \varnothing$ LPRINT CHR $\$(1 \varnothing):$ REM LINEF EED
CE 48ø NEXT CR
68510 TL\＄＝＂－＂
OC $52 \emptyset$ LPRINT TAB（3）；：FOR TL＝1 T 0 71：LPRINT TL\＄；：NEXT TL： LPRINT＂CUT＂
MF $53 \varnothing$ GOSUB 11øø：GOSUB $111 \varnothing$
OA $54 \varnothing$ GOSUB $11 \varnothing \varnothing$
IA $55 \emptyset$ LPRINT TAB（INT（39－LEN（NS $\$$ ）／2））；NS\＄；
PB 56ø GOSUB $111 \varnothing$
KN $57 \varnothing$ FOR LE＝1 TO 2
NP 58 g GOSUB 11 øø：GOSUB $111 \varnothing$
PC 59ø NEXT LE
0J $6 \varnothing \varnothing$ gosub $11 ø \varnothing$
EA $61 \varnothing$ LPRINT TAB（36）；CM\＄；DT\＄；：G OSUB 111ø：GOSUB 112ø
KN 62の IF C＞32 THEN 790
BK 630 REM＊＊＊PRINT ：＜ 32 PROG RAMS＊
HO 64ø FOR DD＝1 TO CD：GOSUB 11 øø
FB 65 LPRINT TAB（2Ø）；AB\＄（DD）；
NG $66 \varnothing$ LPRINT TAB（45）；$A B \$(C D+D D)$ ；
PE $67 \varnothing$ GOSUB $111 \varnothing$
J6 $68 \emptyset$ NEXT DD
CA $69 \varnothing$ GOSUB 11øø：GOSUB 1119：DD＝ DD＋1
FC 7 Øø IF DD >17 THEN $72 \varnothing$
KJ 710 GOTO $69 \varnothing$
EJ 720 GOSUB $117 \emptyset$
CO 736 FOR SL＝1 TO 29
IC 740 GOSUB 1156：GOSUB 1160

IP	750	NEXT SL	\％			URN		
6 L	760	GOSUB $119 \emptyset$		989	BEEP：CLS：PRINT＂ALPHABETI		$116 \emptyset$	LPRINT TAB（66）；＂：＂：RETUR
AB	770	GOSUB 1210			ZED DISK COVER COMPLETE＂			N
EB	$78 \emptyset$	REM＊＊＊PRINT ：＞ 32 PROG	PI	990	PRINT：PRINT＂Do you want		1170	CL\＄＝＂－＂
					another disk cover（Y／N）＂		$118 \emptyset$	LPRINT TAB（3）；：FOR CL＝1 TO 71：LPRINT CL\＄：NEXT C
FJ	8øØ	LPRINT TAB（2ø）；AB\＄（DD）；	IN	$160 \square$	FOR DD＝ø TO			L：LPRINT＂FOLD＂：RETURN
$6 \times$	810	LPRINT TAB（45）；AB\＄（DD＋16）			＂＂：NEXT DD		1190	LL\＄＝＂－＂
		；	LT	1010	IF AG\＄＜＞＂Y＂THEN 1ø4ø		1200	LPRINT TAB（11）；：FOR LL＝1
PM	$82 \varnothing$	G0SUB 1119	MJ	1629	CLS：GOTO $4 \varnothing$			TO 55：LPRINT LLe；：NEXT
Jo	836	NEXT DD	QK	103ø	REM＊${ }_{\text {a }}$（ERMINATE PROGRAM			LL：LPRINT＂CUT＂：RETURN
NK	$84 \varnothing$	GOSUB 11øø：GOSUB 111ஏ			亩宴		$121 \varnothing$	LPRINT：FOR CR＝1 TO 3
EA	$85 \emptyset$	GOSUB 117ø	HF	1040	BEEP：CLS：PRINT＂PROGRAM	CP	1220	LPRINT CHR\＄（1ø）：REM LINE
IH	$86 \emptyset$	GOSUB 115ø：GOSUB 116ø			TERMINATED＂			FEED
KA	87ø	$C X=(C-33) / 2: C Z=C X+32$	NE	$165 \square$	FOR WT＝1 TO 16øø：NEXT WT	LB	1230	NEXT CR：GOTO 989
6 A	880	FOR DD＝33 TO CZ：GOSUB 115 ø	$\begin{aligned} & B H \\ & O A \end{aligned}$	$\begin{aligned} & 1 ø 6 \emptyset \\ & 169 \emptyset \end{aligned}$	CLS：END	DF	124ø	REM＊ LIST 家
6 L	$89 \varnothing$	LPRINT TAB（2Ø）；AB\＄（DD）；			INE 安家豈	IE	$125 \emptyset$	REM（\％CAN ONLY LIST 88
Q ${ }^{\text {K }}$		LPRINT TAB（45）； AB \＄（DD＋CX）	IP	11.9	LPRINT＂：			PGMS \＆
DH	910	GOSUB 1160	DC	1116	ETURN LPRINT TAB（64）；＂	DK	$126 \varnothing$	BEEP：CLS：PRINT＂TOO MANY programs to list on jac
JN	920	NEXT DD			I＂：RETURN			KET＂
NA	930	GOSUB 115ø：GOSUB 116ø：DD＝ DD＋1	BD	1126	LPRINT＂： LPRINT TAB（29）；＂ ：＊＂；	CC	$127 \emptyset$	PRINT：PRINT＂Print those that fit（Y／N）＂；INPUT
LF	940	IF DD＞6＠THEN 969			LPRINT TAB（2）			AW\＄
IP	950	GOTO 936	EL	1140	LPRINT TAB（64）；＂${ }_{\text {（ }}$（	66	$128 \emptyset$	IF AW\＄く＞＂Y＂THEN 194ø
6 L	960	GOSUB 119ø：GOSUB 121ø			I＂：RETURN	DD	$129 \emptyset$	C＝88：RETURN ©
EA	970	REM \＃\％CLOSING REMARKS \％	CC	$115 \square$	LPRINT＂${ }^{\prime \prime \prime}$ ；RET			

64 Encryptor

James Pettus

This BASIC utility will hide your pro－ grams from prying eyes．It encrypts a BASIC program in memory so that it can be neither stopped while running nor listed．The program also includes an option for restoring things back to normal if you wish．A secret ID code even prevents people who have the Encryptor program themselves from unlocking your secrets．

Part of the fun of computing is shar－ ing one of your programs with oth－ ers．At times，however，you may want to keep things confidential． For example，you might have writ－ ten a finance program which con－ tains DATA statements revealing your entire personal portfolio．You might want to prevent others from looking at this information．The LIST command ordinarily displays the contents of any BASIC program．

However，you can use＂64 En－ cryptor＂to encrypt any BASIC pro－ gram to prevent other people from deciphering it．Though the encrypted program can＇t be listed or exam－ ined，it still runs normally．And since each copy of Encryptor has a unique ID code，your protected pro－ gram should be safe even from oth－ ers who have 64 Encryptor them－ selves．

A Special Random Identifier

Type in and save the BASIC loader program listed below．You may save it with any filename you like， except ENCRYPTOR（that＇s what the BASIC loader will name the machine language file that it cre－ ates）．When the program runs，it spends a few seconds creating the Encryptor machine language rou－ tine in the memory area starting at

49152，then it saves the machine language to disk．To have the En－ cryptor file saved to tape instead， change the $\mathrm{DV}=8$ in line 80 to $\mathrm{DV}=1$ ．

When the loader writes En－ cryptor into high memory，it em－ beds an identifier mark within the program．The identifier is randomly selected and will be different each time you run the loader．This fea－ ture makes a program encrypted with one copy of Encryptor incom－ patible with any other copy of En－ cryptor－even another copy created on the same 64．As a result，you don＇t have to worry that other peo－ ple with this program can decrypt your programs．

To encrypt or decrypt a BASIC program，follow these steps：
－Load Encryptor with LOAD＂EN－ CRYPTOR＂， 8,1 for disk or LOAD ＂ENCRYPTOR＂，1，1 for tape．

- Type NEW and press RETURN.
- Load the BASIC program you wish to encrypt or decrypt.
- To encrypt a program, type SYS 49152 and press RETURN. When the cursor returns, be sure to immediately save a copy of the encrypted version using a different filename. - To decrypt a program, type SYS 49155 and press RETURN.

An encrypted program runs normally, but cannot easily be examined by the person using it. When you run an encrypted program, a built-in machine language subroutine is called to decrypt the actual program data and run it. At the same time, Encryptor disables the LIST command and the RUN/ STOP-RESTORE key combination. You should make sure that the program being encrypted does not contain any references to the ROM routine at 65505 (\$FFE1), which tests to see whether the RUN/ STOP key has been pressed. The program to be protected also should not offer the user the option of exiting the program.

Because the BASIC loader program creates a different Encryptor each time it is run, you should take care to make a backup copy of each Encryptor that you create. (You should also keep an unprotected copy of any important programs you encrypt.) If you accidentally erase your only copy of Encryptor, you will not be able to decrypt any programs protected with that version. Of course, to keep your programs secure, you should not give anyone else a copy of your version of Encryptor.

Works With BASIC/ Machine Language Combinations

Some BASIC programs require that you relocate the start of BASIC text before you load and run them, others leave little memory for variables (meaning you should not enlarge the program), and some BASIC programs cannot be relocated because they have ML routines appended to the end of BASIC text. Encryptor has been designed with all these conditions in mind. The ML routine included in an encrypted program contains no absolute addresses, and it moves
program data down in memory after it has done its work, so nonrelocating BASIC programs can still be safely encrypted.

64 Encrypior

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing in
Programs" in this issue of COMPUTEI.
GH $1 \varnothing$ PRINTCHR\$ (147)CHR\$(155)" PLEASE WAIT": $I=49152$
HG $2 \varnothing$ READA:IFA $=256$ THEN4 0
HJ $3 \varnothing$ POKEI,A:CK=CK $+\mathrm{A}: \mathrm{I}=\mathrm{I}+1: \mathrm{GO}$ то2б
MC $4 \varnothing$ IFCK < > 66816THENPRINT"ERR or in data statements. ": STOP
JG 5 Ø POKEI $+4574,255$
FQ 60 POKEI $+4577,128: F O R A=I-31$ 7TOI-3ø8: POKEA, PEEK ($I+45$ 86) : NEXT: POKEI +4577, б

DB 70 POKEI $+4574, \varnothing$
HB $8 \emptyset$ DV=8:SYS57812"ENCRYPTOR" , DV
XG $9 \varnothing$ PRINT"SAVING ENCRYPTOR"
JM 1øø POKE251,Ø:POKE252,192:P OKE780, 251: POKE782,I/25 6 : POKE781, I-PEEK (782) *2 56
PH $11 \varnothing$ SYS65496:PRINT "ENCRYPTO R CREATED.": END
EE $12 \emptyset$ DATA76, 254,192,76,28,19 3,167,43
RH $13 \emptyset$ DATAl $35,251,135,253,167$,44,135,254
EE 140 DATA232,134,252,160, Ø,1 77,251,145
AF $15 \emptyset$ DATA253,230,251,230,253 ,2ø8,4,23ø
KH $16 \emptyset$ DATA252,23Ø, 254, 167,252 ,197,46,2ø8
SQ $17 \emptyset$ DATA2 $36,167,251,197,45$, 2ø8,230,198
RF $18 \emptyset$ DATA46,96,167,44,135,17 5,167,43
AM $19 \emptyset$ DATA56,233,1,176,2,198, 175,133
SF 2øø DATAl74,167,46,135,252, 232,134,254
AJ $21 \emptyset$ DATA167,45,56,233,1,176 ,4,198
GC 22ø DATA252,198,254,133,251 ,133,253,160
HC 23ø DATAØ, 177, 251, 145, 253,1 98,251,198
GA 240 DATA $253,167,251,201,255$,2ø8,4,198
MB $25 \emptyset$ DATA $252,198,254,167,252$,197,175,2ø8
KC 260 DATA232,167,251,197,174 , 2ø8, 226, 23Ø
QH $27 \emptyset$ DATA46,96,167,43,135,25 $1,167,44$
RJ 28ø DATA232,134,252,160, Ø1,1 62,8,177
FR 290 DATA251,10,1ø2,255,2ø2, 2ø8,250,167
EQ 3øø DATA255,145,251,230,251 ,208,2,23ø
EQ $31 \varnothing$ DATA252,167,252,197,46, 2ø8, 23Ø, 167
CD $32 \emptyset$ DATA251,197,45,2ø8,224, 96,169, \varnothing
CX 33ø DATA133,255,16Ø,165,191 ,79,192,69
RC $34 \emptyset$ DATA $255,133,255,209,43$, 2ஏ8,6,2øб
PB $35 \emptyset$ DATA192,175,2ø8,240,96, 169,199,160

QX $36 \emptyset$ DATA192,32,3Ø,171,1ø8,2 ,16Ø,69
KP $37 \emptyset$ DATA78, $67,82,89,8 \emptyset, 84,7$ 9,82
DQ $38 \emptyset$ DATA $32,73,46,68,46,32,7$ 7,73
AK 39ø DATA83,77,65,84,67,72,ø , 169
DR 4øø DATAØ,133,255,16ø,165,1 91,79,192
GM $41 \emptyset$ DATA69, 255,133,255,145, 43,2øø,192
CX $42 \emptyset$ DATAl75,2ø8,242,96, \varnothing, \varnothing, Ø, Ø
GC $43 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 32,5 \varnothing$
JC $44 \emptyset$ DATA192,32,122,192,16ø, Ø,191,48
GG $45 \emptyset$ DATAl93, $145,43,2 \emptyset 0,2 \emptyset 8$, 248, 32, 223
QM $46 \emptyset$ DATA192,32,89,166,32,51 ,165,1ø4
FD 470 DATA104, $108,2,160,32,16$ 6,192,32
EA $48 \emptyset$ DATAl22, $192,32,6,192,32$,89,166
AC 49 Ø DATA $32,51,165,104,1 \emptyset 4,1$ Ø8,2,160
RR 5øø DATA25,8, ø, Ø, 158, 194,4ø , 52
MS $51 \varnothing$ DATA51, $41,17 \emptyset, 5 \emptyset, 53,54$, 172,194
JA 52ø DATA4Ø, 52,52,41,17Ø,50, 54, \varnothing
XF $53 \emptyset$ DATAØ, $, 167,43,135,251$, 167,44
BJ 540 DATA232,134,252,16Ø, 0,1 62,8,177
FR 55ø DATA251,1ø,1ø2,255,2ø2, 2ø8,25ø,167
PR $56 \emptyset$ DATA255,145,251,230,251 ,2ø8,2,23б
HR $57 \emptyset$ DATA252, 167,252,197,46, 2ø8,23ø,167
JR 58ø DATA251, 197,45,208,224, 160,84,177
MQ 59ø DATA43,153,172,1,2øø,19 2,165,2ø8
AH 6øø DATA246,76, $0,2,167,43,1$ 35,251
DP 61ø DATA135,253,167,44,135, 254, 232, 134
RS $62 \emptyset$ DATA252,16ø, $0,177,251,1$ 45,253,23ø
XB $63 \emptyset$ DATA $251,23 \varnothing, 253,2 \emptyset 8,4,2$ 3ø,252,23ø
PX 64ø DATA254,167,252,197,46, 2ø8,236, 167
DF 65 D DATA $251,197,45,2 \emptyset 8,230$, 198,46,32
PB 660 DATA89,166,32,51,165,12 Ø, 162, 255
JJ $67 \emptyset$ DATA169,182,143,6,3,169 , 234,143
AG $68 \emptyset$ DATA4 $0,3,169,246,143,41$,3,169
FK 69ø DATA193,143,24,3,169,25 4,143,25
PG 7øØ DATA3,88,76,174,167, $0, \emptyset$. \varnothing
RP $71 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
KM $72 \varnothing$ DATA $0, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing ~$
FK 73ø DATAø, $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
BJ $74 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
RJ $75 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing ~$
KX $76 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
FS 77ø DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
BR $78 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
RR $79 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$

GQ $81 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
HF $82 \emptyset$ DATAの,256

With ANIMATE you can create rapidly moving 3-D graphics within a BASIC program. This series of photos shows only 4 of the 95 screens used for the CUBE display, which creates a rotating cube that moves toward and away from the viewer.

Easy IBM Full-Screen Animation

Paul W. Carlson

Now you can write BASIC programs with smooth, flicker-free animated displays that move at machine language speeds. For the IBM PC/PCjr. BASICA and a color/graphics card are required to use the program on the PC. Cartridge BASIC is required for the PCjr.

Full-screen animation is achieved by rapidly displaying a series of high-resolution screens on the video display. Producing realistic animation using BASIC is very difficult because of the time required to create the screen images. The creation of a high-resolution screen image usually consists of two processes repeated many times. First, the coordinates of the endpoints of a line segment are computed. Second, the line segment is displayed on the screen.

The method of animation presented here is unusual in that it completely separates the two pro-
cesses. The computation of the coordinates of every line segment for every screen image is done by a BASIC program which writes the coordinates to disk as a binary (non-ASCII) file. This file of line segment coordinates is then input to a machine language program which displays the screens in rapid succession to produce the animation.

To begin, type in and save Program 1. Before you run this program, make sure you have a disk in the active drive with at least 60,000 bytes of available space. Now run Program 1; it creates a disk file named ANIMATE.OBJ containing the machine language animation routine. The DOS LINK utility must then be used to generate an executable version of this file. To do this, first exit DOS by typing SYSTEM and pressing Enter. Place a DOS system disk containing the file LINK .EXE in the active drive (check the master disk that came with your copy of DOS), type LINK, then press Enter. When you are prompt-
ed for the object modules, remove the DOS system disk and replace it with the disk containing ANIMATE .OBJ. At this point you should type ANIMATE,,NUL,NUL and press Enter. After a minute or so the DOS prompt will reappear. Your disk now contains a new file named ANIMATE.EXE, the usable version of the machine language program that creates animated displays from the files produced by Programs 2 or 3.

A Rotating Demo

Now you are ready to type in and save Program 2 (this program can be saved on any disk). When you run the program, you will be prompted for an output filename. Enter any legal filename. Program 2 creates images of the word LOVE rotating in three-dimensions. After you press Enter, the program begins computing the line segment coordinates for each screen and writing them to the specified disk file. The display will show which screen is currently being computed.

Program 2 computes 71 screens．Do not remove the disk from the drive until you see the message that the file is complete．

When the BASIC Ok prompt reappears，type SYSTEM and press Enter to exit to DOS．Put the disk containing ANIMATE．EXE in the active drive，then type ANIMATE and press Enter．When you are asked for the name of the input file， put the disk containing the file cre－ ated by Program 2 in the active drive and enter the name you speci－ fied for that file．The disk drive light will go on for a few seconds，and then the animated image should appear on the screen．Press the Q key to terminate the display．

Once you have used Program 2 to create the animation data file， you won＇t need it again．However， before you delete it，notice that lines 430－520 also occur in Pro－ gram 3．In fact，you＇ll find these lines in every program that you write that produces data files for the ANIMATE program．To save your－ self a lot of typing，load Program 2 and delete all lines except 430－520； save the shortened program with a name you＇ll remember－you will probably use it as a template pro－ gram many times．

To enter Program 3，first load the file containing lines 430－520 of Program 2．Then type in the other lines listed as Program 3 and save the file．At this point you should follow the same procedure as for Program 2．Program 3 computes 95 screens．The computation for each screen takes longer than those in Program 2 because of computations to remove hidden lines from the display．Now run the animate pro－ gram using this data file as input． You will see a rotating cube repeat－ edly coming toward and going away from you（see photos）．

Make Your Own Art

Writing your own programs with ANIMATE is not difficult．Just fol－ low these steps：
1．Load the template file containing the lines 430－520．
2．All DIM statements and initial－ ization of variables should be per－ formed prior to line 430．If there is not enough room in the program to do this，you can GOSUB to a rou－
tine located further down in the program．DATA statements，of course，can be placed anywhere in the program．
3．The variable NUMSCNS should be assigned a value equal to the number of screens to be displayed． This assignment must also be done prior to line 430.
4．The subroutine that does the computation for each screen must begin at line 1000 ．For each line segment，the program must com－ pute the segment endpoint coordi－ nates（the variables X1，Y1，X2，and Y2）and execute a GOSUB 500.

The ANIMATE program can handle up to 4000 line segments． This means that the number of screens times the number of line segments per screen cannot exceed 4000.

Programs 2 and 3 both pro－ duced 3－D images，but this doesn＇t mean that you need to know 3－D geometry to create impressive dis－ plays．Two－dimensional animation， when it＇s fast and smooth，can be truly spectacular as well．

For instructions on entering these listings， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

Program 1：ANIMATE．OBJ File Maker

KK 1ø T＝g：OPEN＂ANIMATE．OBJ＂FOR OUTPUT AS 1
KL 20 FOR $\mathrm{J}=1$ TO 1976：READ A ${ }^{\text {it }} \mathrm{N}=$ VAL（＂\＆H＂＋A\＄）
FA $3 \varnothing$ T＝T＋N：PRINT＊1，CHR（N）；：NEX T：CLOSE 1
PL 46 IF $T=84992$ ！THEN PRINT＂FIL E SUCCESSFULLY CREATED！＂：E ND
（H） $5 \varnothing$ PRINT CHR\＄（7）；＂＊＊＊＊＊ERRDR IN DATA STATEMENTS＊＊＊＊＊＂ ：END
BE 1 øø DATA 8ø，Ø3，øø， $1,41,3 B, 96$ ，11，øø，øø
OD $11 \varnothing$ DATA $\varnothing 4,43,53,45,47,64,44$ ，53，45，47
BI $12 \emptyset$ DATA $94,53,53,45,47, \mathrm{D} 6,98$ ，$\varnothing 7, \varnothing \varnothing, 6 \varnothing$
OH $13 \varnothing$ DATA $E 1, \not 1, \varnothing 2, ø 1, ø 1,1 B, 98$ ，ø7，øø， $6 \varnothing$
NB $14 \varnothing$ DATA 9D，$B F, \varnothing 3, ø 1, \varnothing 1, A \varnothing, 98$ ， $07, \varnothing \varnothing, 74$
LH $15 \emptyset$ DATA $8 \varnothing, \varnothing \varnothing, \varnothing 4, \varnothing 1, \varnothing 1,67, A \varnothing$ ，\varnothing C，$\varnothing \varnothing, \varnothing 2$
AA $16 \varnothing$ DATA $\varnothing \varnothing, \varnothing \varnothing, 8 \varnothing, 4 \varnothing, 2 \varnothing, 1 \varnothing, \varnothing 日$ ， $64, \boldsymbol{6 2},{ }^{1} 1$
JL $17 \varnothing$ DATA 53，A2，øF，øø，ø2，ø日，øø ，øø，4ø， 1
 ，øø，ø1，A2
BO $19 \varnothing$ DATA øF，$\varnothing \varnothing, \varnothing 2, \varnothing 8, ~ 日 \varnothing, ~ A \varnothing, 1 F$ ， $\boldsymbol{D}_{1}, 6 \varnothing, \sigma_{1}$
P\＆ $2 ø \varnothing$ DATA øø，øø，øø，ø2，øø，øø，ø2 ，Aø， 1 A, Øø
积 $21 \varnothing$ DATA $\varnothing 2,48, \mathrm{BF}, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing$
，øø，๗๓，øø
BE 22ø DATA $\varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing$

JH $23 \varnothing$ DATA $\varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, 14, \varnothing \varnothing, 29, A 2$ ， $\operatorname{DE}, 60,62$

OC $25 \varnothing$ DATA $1,2 \varnothing, F A, A \varnothing, 2 F, \varnothing \varnothing, \varnothing 2$ ，72，BF， 68
WK 266 DATA $\operatorname{\sigma 6}, 45,6 E, 74,65,72,2 \varnothing$ ，69，6E，7ø
DF $27 \varnothing$ DATA $75,74,2 \varnothing, 66,69,6 C, 65$ ，26，6E， 61
 ，46，69，6C
DP $29 \varnothing$ DATA 65，26，6E，6F，74，29， 66 ，6F，75，6E
II $3 \varnothing \varnothing$ DATA $64,24,49, A \varnothing, \varnothing 1, \varnothing 1, \varnothing 1$ ， $09,09,1 E$
HI $31 \varnothing$ DATA 33, Cø， $5 \varnothing, B 8, \varnothing \varnothing, \varnothing \varnothing, 8 E$ ，DE，B8， $0 \varnothing$
D8 $32 \varnothing$ DATA $66, B 7, \varnothing 7, B 9, \varnothing \varnothing, \boxed{ }$, BA ，4F，18，CD
DJ $33 \varnothing$ DATA $1 \varnothing, 33, D 2, B 7,00, B 4,62$ ，CD，16，BD
10 34ø DATA $16, ø \varnothing, \varnothing \varnothing, B 4, \varnothing 9, C D, 21$ ，日D，16，$\varnothing \square$
dL $35 \varnothing$ DATA $\varnothing \varnothing, B 4, \emptyset A, C D, 21, B 7, \varnothing \varnothing$ ，BA，1E， 0
6C 36ø DATA øø，C6，87，øø，øø，øø，8D ，16，\varnothing ，$\varnothing \varnothing$
MK $37 \varnothing$ DATA $\mathrm{BD}, \varnothing 0, \mathrm{B4}, 3 \mathrm{D}, \mathrm{CD}, 21,73$
IA $38 \varnothing$ DATA $\varnothing \varnothing, \varnothing \varnothing, B 4, \varnothing 9, C D, 21, C B$ ，A3， $6 \boxed{1}$, ®ø
If $39 \varnothing$ DATA $8 B, 1 E, ø \varnothing, \varnothing \varnothing, 8 D, 16, ø \varnothing$ ， $6 \boxed{6}, 52,89$
PQ $4 \varnothing \varnothing$ DATA 日ø，$\varnothing \varnothing, B 4,3 F, C D, 21,5 A$ ， 81, C2， 8 ø
OB $41 \varnothing$ DATA $\varnothing \varnothing, 3 D, \varnothing \varnothing, \varnothing \varnothing, 75, E E, B 8$ ，66，6®，CD
PI $42 \varnothing$ DATA $1 \varnothing, E B, \varnothing \varnothing, \varnothing \varnothing, 8 D, 1 E, \varnothing \varnothing$ ，\varnothing の日，日电
FJ $43 \varnothing$ DATA 3D，9D，FF，74，2F，3D， 19 ，FC，75， 65
FI $44 \varnothing$ DATA EB，$\varnothing \varnothing, \varnothing \varnothing, E B, E B, A З, \varnothing \varnothing$ ，60， $83, C 3$
JK $45 \varnothing$ DATA $\varnothing 2,8 B, \varnothing 7, A 3, \varnothing \varnothing, \varnothing \varnothing, 83$ ，C3，62，8B
$0046 \emptyset$ DATA $97, A 3, \varnothing \varnothing, \varnothing \varnothing, 83, C 3, \varnothing 2$ ，日B， 07, A3
BK 47ø DATA øø，øø，83，C3，ø2，53，E8 ， $09,80,5 B$
6C 48ø DATA EB，CA，E8，øø，øø，B4，ø6 ，B2，FF，CD
NE $49 \varnothing$ DATA $21,3 C, 71,74,64,3 C, 51$ ，75，1B， 32
BB 5øø DATA FF，B8，øø，ø6，33，C9，BA ，4F，18，CD
$1051 \varnothing$ DATA $19, \mathrm{BB}, \varnothing \varnothing, \boxed{6}, 33, \mathrm{DB}, 33$ ，D2，CD， 1 ©
ML $52 \varnothing$ DATA B8，ø2，øø，CD，1ø，CB，E日 ， $0 \boxed{6}, \boxed{1}, 83$
 ，DE，BE，Cø
PB 54ø DATA 8D，उE，øø，øø，B8，øø，B8 ， $\mathrm{BE}, \mathrm{DE}, 33$
DN $55 \varnothing$ DATA $F 6, B 9, A \varnothing, 1 F, F C, F 3, A 5$ ，07，1F， $\mathrm{C3}$
IB $56 \varnothing$ DATA $96,88,45,9 C, 94,90, C 8$ ，65，øø， 02
BB $57 \varnothing$ DATA ø2，9D，BF，C4，2ø，øø，$\varnothing 2 ~$ ， 62,74 ， BF
태 $58 \emptyset$ DATA $C 4,28, \varnothing \varnothing, \varnothing 2, \varnothing 2,5 C, B F$ ， 44,32, ，\varnothing
FL $59 \varnothing$ DATA ø2，ø2，5D，BF，C4，36，øø ， 62, 62，5E
E1 $6 ø \varnothing$ DATA $B F, C 4,3 B, \varnothing \varnothing, \varnothing 2, \varnothing 2,5 E$ ，BF，C4，47
LB $61 \varnothing$ DATA $\varnothing \varnothing, \boxed{ }, ~ \boxed{~ D}, 8 C, B F, C 4,4 F$ ，øø，ø2，ø2
OF $62 \varnothing$ DATA 72，BF，C4，53，øø，ø2，$\varnothing 2 ~$ ，72， $\mathrm{BF}, \mathrm{C} 4$
$8063 \varnothing$ DATA 57，øø，ø2，ø2，ø日，øø， 84 ，71，øø，ø1
KO 64ø DATA ø1，E1，øø，C4，75，øø， 62 ， $2, \varnothing 8, \varnothing \varnothing$
NG $65 \varnothing$ DATA $84,84, \varnothing \varnothing, \emptyset 1, \varnothing 1, \emptyset F, \varnothing 1$ ，C4，日9，\varnothing б
MB 66ø DATA ø2，ø2，48，BF，C4，91，øø ，ø2， $22,4 A$
LE $67 \varnothing$ DATA BF，C4，99，øø，ø2，ø2，4C ，BF，C4，A1
BF $68 \varnothing$ DATA $\varnothing \varnothing, \varnothing 2, \varnothing 2,4 E, B F, 84, A 8$ ，ஜø，ஜ1，ø1
PK 69ø DATA 22， $61,84, A E, \varnothing \varnothing, \varnothing 1, \varnothing 1$ ，FB，øø， 84
FA 7øø DATA DA，øø，ø1，ø1，øF，ø1，C4 ，E9，øø，ø2
LD $71 \varnothing$ DATA $\varnothing 2, \varnothing 8,8 \varnothing, 1 B, A \varnothing, E 8, \varnothing \varnothing$ ，$\varnothing 1, F D, ø \varnothing$
DK $72 \varnothing$ DATA $\varnothing \varnothing, B 8,8 E, C \emptyset, B 9, A \varnothing, 1 F$ ，33，FF， 8 D
DB 736 DATA $36, \emptyset \varnothing, \emptyset \varnothing, F C, F 3, A 5,67$ ，C3， $66,8 \mathrm{C}$
PB 74ø DATA DB， $\mathrm{BE}, \mathrm{CD}, \mathrm{B}, \mathrm{AD}, 1 \mathrm{~F}, 8 \mathrm{D}$ ， 3 E, øø，øø
J1 $75 \varnothing$ DATA $33, C ø, F C, F 3, A B, 97, C 3$ ，ø6，BC，DB
 ．$ø \varnothing, 8 \mathrm{~B}, 16$
JB 77ø DATA øø，øø，2B，16，øø，øø，7D ， $84, F 7, D F$
MA 78ø DATA F7，DA，89，उE，øø，øø， 8 B ，ఐЕ，øø，øø
FP $79 \varnothing$ DATA 2B，øE，øø，øø，7D，ø4，F7 ，DE，F7，D9
AE $8 \varnothing \varnothing$ DATA 89， $36, \varnothing \varnothing, \varnothing \varnothing, 3 B, C A, 7 D$ ，ø日，BE，øø
6L 日1ø DATA øø，87，CA，EB，$\varnothing 4,9 \varnothing, B F$ ， $6 \boxed{10,6 ®, 89}$
N $82 \varnothing$ DATA 36，$\varnothing \varnothing, \varnothing \varnothing, 89,3 E, \varnothing \varnothing, \varnothing \varnothing ~$ ，8B，C2，D1
เJ $83 \varnothing$ DATA EØ，AЗ，øø，Øø，2B，C1， 8 B ，D8，2B，C1
DC 84ø DATA A3，øø，øø，8B，36，øø，øø ，BB， $\mathrm{JE}, 6 \varnothing$
DJ $85 \varnothing$ DATA $ø \varnothing, 41,56,53,8 B, C 7,8 A$ Eø，25，FE
 ，BB，D8，8ø
 DB，8D， 6
OK 88ø DATA øø，øø，ø3，D日，日B，C6，D1 ， $\mathrm{FB}, \mathrm{D} 1, \mathrm{FB}$
D6 $89 \varnothing$ DATA D1，FB，ø3，D8，81，E6， 67 ，ஜ®，BA， 84
 ， $67,5 \mathrm{~B}, 5 \mathrm{E}$
II 91ø DATA 83，FB，øø，7D，11，ø3，36

KC 92ø DATA उE，øø，øø，øЗ，1E，øø，øø ，E2，B3，EB
 ， 3 E, ®の，$\varnothing \varnothing$
EJ 94ø DATA ø3，1E，øø，$\boxed{6, E 2, A 2, ~} \varnothing 7$ ，C3，82，9C
JP 95ø DATA 99，øø，С4，øВ，øø，ø2，ø2 ， $68,8 \varnothing, C 4$
EJ $96 \emptyset$ DATA 1C，øø，ø2，ø2，ø日，8ø，C4 ，32， $6 \boxed{1}, 62$
OD $97 \varnothing$ DATA $\varnothing 2,4 \mathrm{E}, \mathrm{BF}, \mathrm{C4}, 36, \boxed{1}, \boldsymbol{6} 2$ ， $62,4 A, B F$
K0 $98 \varnothing$ DATA C4，4ø，øø，ø2，ø2，52，BF ，C4，44，øø
HI 99ø DATA ø2，ø2，4C，BF，C4，48，øø ，ஜ2， 62,48
OP 1 øøø DATA BF，C4，52，øø，ø2，ø2，5 ©，BF，C4， 65
 9，øø，ø2，ø2
HK $1 ø 2 \varnothing$ DATA $56, \mathrm{BF}, \mathrm{C} 4,7 \varnothing, \varnothing \varnothing, \varnothing 2, \varnothing$ 2，5B，BF，C4
 4，7D，ஜீ，ஜ2
CL 1 1ø4ø DATA $\varnothing 2,48, \mathrm{BF}, \mathrm{C4}, 81, \varnothing \varnothing, \varnothing$

2， $\operatorname{D2}, 4 \mathrm{~A}, \mathrm{BF}$
BD $1 \varnothing 5 \varnothing$ DATA $C 4, A \varnothing, \varnothing \varnothing, \varnothing 2, \varnothing 2, \varnothing 8,8$ $\emptyset, C 4, B 4, \varnothing 4$
 2，54，BF，C4
 4，CD，ø6，ஜ2
IA 1 ■8ø DATA ø2，5日，BF，C4，D6，øø， 2， $12,5 \varnothing, B F$
PH $199 \varnothing$ DATA C4，DA，øø，ø2，ø2，52，B F，C4，DE， $6 \sqrt{0}$
 E，øø，øø，ø1
HH $111 \varnothing$ DATA $97,41,52,52,59,53,4$ 3，4E，FB， $6 \varnothing$
 1，65，45，52
If $113 \varnothing$ DATA $41,53,45,9 F, \varnothing 1, ø \varnothing, D$ E，9ø，øE，øø
JO $114 \varnothing$ DATA $\varnothing \varnothing, \emptyset 1,67,4 \mathrm{D}, 45,4 \mathrm{D}, 4$ C，49，4E， 45
 ø，øø，ø1，ø7
CH $116 \varnothing$ DATA $53,43,4 \mathrm{E}, 41,52,52,5$ 9，E1，øø，øø
HE $117 \varnothing$ DATA 57，8A，ø2，øø，øø， 74

Program 2：LOVE File Maker

DJ 10 DIM $\mathrm{BX}(11), \mathrm{BY}(11), \mathrm{EX}(11), \mathrm{E}$ $Y(11)$
PH 26 FOR $N=\emptyset$ TO 11：READ BX（N），B $\mathrm{Y}(\mathrm{N}), \mathrm{EX}(\mathrm{N}), \mathrm{EY}(\mathrm{N}): \operatorname{NEXT}$
DC 36 DATA $-22,3,-22,-3,-22,-3,-$ 14，－3
OA 4ø DATA $-1 \varnothing, 3,-1 \varnothing,-3,-1 \varnothing,-3,-$ 2，－3
EL $5 \varnothing$ DATA $-2,-3,-2,3,-2,3,-19,3$
J\＆ 69 DATA 2， $3,6,-3,6,-3,19,3$
${ }^{F 6} 7 \boldsymbol{\sigma}$ DATA $22,3,14,3,14,3,14,-3$
OJ $8 \varnothing$ DATA $14,-3,22,-3,2 \varnothing, \varnothing, 14, \varnothing$
8А 9ø CX＝326：$C Y=1$ 166：$A=6.2831853 *$
CF 1 gø NUMSCNS＝71
JI $43 \varnothing$ INPUT＂OUTPUT FILE NAME＂；F \＄：OPEN F FOR OUTPUT AS 1
EE $44 \varnothing$ PRINT＂COMPUTING SCREEN NU MBER：＂；
HB 45 Ø FOR SCRN $=1$ TO NUMSCNS：PRI NT SCRN；
NH $46 \varnothing$ BOSUB 1 øøø
IE 47あ PRINTW1，CHR\＄（157）；CHR\＄（25 5）；：NEXT SCRN
FO 48 g PRINT＊1，CHR（25）；CHR $\$(252$ ）：CLOSE 1：PRINT
BJ $49 \varnothing$ PRINT＂ANIMATION DATA FILE ＂；CHR（34）；F\＄；CHR\＄（34）；＂ Is COMPLETE＂：END
CL 5 Øø PRINT\＃1，CHR\＄（INT（X1）AND 255）；CHR（INT（X1／256））；CH R\＄（INT（Y1））；CHR（（た）；
KA 51Φ PRINT\＃1，CHR\＄（INT（X2）AND 255）；CHR（INT（X2／256））；CH R（INT（Y2））；CHR（あ）；
MD $52 \varnothing$ RETURN
HF 1 Øg 9 FDR $\mathrm{N}=\varnothing$ TO 11
KL 1ø1ø $\mathrm{ZE}=-\mathrm{BX}(\mathrm{N}) \approx \operatorname{SIN}(\mathrm{A})+3 \varnothing$
PO 1 162ø $\times 1=1 \varnothing \varnothing * B X(N) * \operatorname{COS}(A) / Z E+C$ $X: Y 1=-1$（1）$\%$ B（N）$/ Z E+C Y$
MP $103 \varnothing \mathrm{ZE}=-E X(N) * \operatorname{SIN}(A)+3 \varnothing$
ML 1ø4ø X2＝1øø末EX（N）＊ $\operatorname{COS}(A) / Z E+C$

II 1 ø5ø gosub $5 ø \varnothing$
Di $1 \varnothing 6 \varnothing$ NEXT $N: A=A-8.726646 E-62$
JA $197 \varnothing$ RETURN
Program 3：CUBE File Maker
bF 1 ，program 3
OH 2 ，
WH 16 DIM $V(8,3), S V(8,2), 5(6,5)$ ，
$N(6,3), E(12,3)$
FE 2ø FOR $I=1$ TO 8：FOR $J=1$ TO 3： READ $V(I, J)$ ：NEXT J，I
A6 3ø FOR $I=1$ TO 6：FOR $J=1$ TO 5： READ S（I，J）：NEXT J，I

PJ 5 Ø DATA $-4 \varnothing,-4 \varnothing,-4 \varnothing,-4 \varrho,-4 \varnothing, 4$ ø，－4ø，4ø，4ø，－4ø，4ø，－4ø
LE $6 \varnothing$ DATA $1,2,3,4,1,1,8,7,2,1,8$ ，5，6，7，8
NE $7 \varnothing$ DATA $5,4,3,6,5,2,7,6,3,2,4$ ，5，8，1，4
KP 9ø $\mathrm{CX}=32$ Ø： $\mathrm{CY}=1$ øø： $\mathrm{TH}=.2: \mathrm{PH}=.8$ ： PPD＝2øøø：DIST $=2$ 2øøø
HH 100 NUMSCNS＝95
JI 430 INPUT＂OUTPUT FILE NAME＂；F \＃：OPEN F F FOR OUTPUT AS 1
EE 44ø PRINT＂COMPUTING SCREEN NU MBER：＂；
MB 45ø FOR SCRN＝1 TO NUMSCNS：PRI NT SCRN；
NH 460 bosub 1 øgø
IE 476 PRINT并1，CHR $\$(157)$ ；CHR\＄（25 5）；：NEXT SCRN
FO 48ø PRINT\＃1，CHR\＄（25）；CHR\＄（252 ）：CLOSE 1：PRINT
BJ $49 \varnothing$ PRINT＂ANIMATION DATA FILE ＂；CHR（34）；F\＄；CHR\＄（34）；＂ Is COMPLETE＂：END
CL $5 \nsubseteq \emptyset$ PRINT\＃1，CHR\＄（INT（X1）AND 255）；CHR\＄（INT（X1／256））；CH R末（INT（Y1））；CHR（ ${ }^{(\sigma)}$ ；
KA 51ø PRINTH1，CHR\＄（INT（X2）AND 255）；CHR（INT（X2／256））；CH R＊（INT（Y2））；CHR（ \quad ）；
MD 520 RETURN
KC 1 1øø $\operatorname{S1}=\operatorname{SIN}(T H): C 1=\operatorname{COS}(T H): S 2$ $=\operatorname{SIN}(P H): C 2=C O S(P H)$
PP 1 ब1ø FOR $I=1$ TO $8: X=V(I, 1): Y=$ $V(I, 2): Z=V(1,3): S X=-X \$ 31$ +Y C1

 2＋DIST
 $+C X: S V(I, 2)=-P P D z(S Y / S Z)$ ＋CY：NEXT
10 1 ． 64 FOR $I=1$ TO $6: F=S(I, 1): G=$ S（I，2）： $\mathrm{H}=\mathrm{S}(\mathrm{I}, 3): \mathrm{Ul}=\mathrm{V}(\mathrm{B}, 1$ ）$-V(F, 1): U 2=V(B, 2)-V(F, 2$ ，
FL 1 ． $65 \emptyset \mathrm{UK}=\mathrm{V}(\mathrm{B}, 3)-\mathrm{V}(\mathrm{F}, 3): V 1=V(\mathrm{H}$ ， 1）$-V(F, 1): V 2=V(H, 2)-V(F$ ， 2）：$V 3=V(H, 3)-V(F, 3)$
 ）＝UЗะV1－V3＊U1：N（I，3）＝U1＊ V2－V1＊U2：NEXT
 ＊S1：ZE＝DIST ${ }^{\text {\＃}}$ C2：$M=1$
JO 1 曰日ø FOR $I=1$ TO 6：E2＝S（I，1）：W $X=X E-V(E 2,1) ; W Y=Y E-V(E 2$, 2）：$W Z=Z E-V(E 2,3)$
 $N(I, 3) * W Z)<=\varnothing$ THEN $114 \varnothing$
DI $1106 \mathrm{E}=\mathrm{S}(\mathrm{I}, 1):$ FOR $\mathrm{J}=2$ TO 5：E 2＝S（I，J）：FOR $K=1$ TO M
KH 1110 IF $E(K, 1)=E 2$ AND $E(K, 2)=$ E1 THEN E（K，3）＝2：BOTO 11 30
EP 1120 NEXT $K: E(M, 1)=E 1: E(M, 2)=$ $E 2: E(M, 3)=1: M=M+1$
В $\mathrm{BH} 113 \varnothing \mathrm{E}=\mathrm{E} 2$ ： NEXT J
CB 114ø NEXT I：FOR I＝1 TO 12：IF $E(I, 3)=\varnothing$ THEN $116 \varnothing$
CH $115 \varnothing \mathrm{~J}=\mathrm{E}(\mathrm{I}, 1): \mathrm{K}=\mathrm{E}(\mathrm{I}, 2): \mathrm{X} 1=\mathrm{SV}($ J，1）：Y1＝5V（J，2）：$\times 2=5 V(K$, 1）：$Y 2=5 V(K, 2):$ gasub $5 ø \varnothing$
PC 116ø NEXT：TH＝TH＋6．544985E－62： PH $=\mathrm{PH}+6.544985 E-62$ ：IF SC RN＜48 THEN PPD＝PPD +583.3 ：RETURN
IA 117% PPD＝PPD－583．3：RETURN

COMPUTEI's All New Apple Applications Special

COMPUTE!'s latest Apple Applications Special features in-depth articles and interviews, all the inside news about Apple, clearly written tutorials, software buyer's guides, new product information, and valuable ready-to-type-in programs for all Apple users.

Apple owners find these special Apple issues the most understandable, complete, and valuable resources available today.

pus

All the programs in COMPUTE!'s Apple Applications Special are also available on a timesaving disk, ready to run on your Apple II, II +, IIe, and IIc. The Disk costs only $\$ 12.95$ (plus $\$ 2.00$ shipping and handling) and gives you immediate access to all the great programs in this special issue.

Look for the Fall/Winter 1986 issue of COMPUTE!'s Apple Applications Special on sale where you buy other COMPUTE! publications, or order directly from COMPUTE!. This special issue goes on sale October 7, 1986.
Send in the attached order card or call toll free 800-346-6767 (in NY call 212-887-8525).

Features

The Latest At Apple

An inside look at the newest products from Apple. Impressive hardware, sophisticated software.
Interview: William Mensch
A fascinating talk with the designer of the chips inside the millions of Apple computers. What we can expect in the coming years.

Business Applications

Mastering The Macintosh

Power software for the Macintosh takes Apple's innovative computer to new heights. Complete tutorial and application ideas.

New On The Wire

Telecommunications keeps exploding-witness the new information services, new software, and powerhouse 2400 baud modems. Our telecommunications specialists look at all this and more.

At School

Experts At The Table

A panel of well-known software developers, educators, and computerists explain where educational computing has been, where it's going, and why.

The Story Machine

Children of all ages can write, read, and print stories up to 20 pages long with this easy-to-use word processor for all Apple II computers.

Solarpix

Educational software that entertains, this tour of the solar system is a dazzling display of the Apple's graphics power.

Hi-Res Poster Printer

Print hi-res drawings in poster size for banners, signs, and business presentations. Two sizes and a simple-to-use menu make it a snap.

At Home

Your Graphics Primer

Tips, techniques, and more show how to create impressive graphics on the Apple II.

Power Sketch

This hi-res sketching program for the Apple II puts paint, draw, fill, air brush, and other tools in every artist's hands. Save and load screens to disk.

High Rise

This unique game of elevators and an out-of-control robot is written entirely in machine language. Easily one of the best Apple arcade-style games we've ever published.
DOS Adjust
Customize DOS 3.3 with this comprehensive program that's easy to use: no programming knowledge required.

Apple User Groups

A complete list of all Apple user groups.

And much more

Including reviews, buyer's guides, new products, and useful programs.

Powerkey For Apple

Patrick Parrish, Programming Supervisor

This valuable utility puts 52 customized strings or keywords instantly at your fingertips. You can even create several sets of custom commands for use with different applications. For all Apple II series computers with DOS 3.3 or ProDOS.

Using an Apple II computer usually involves a considerable amount of typing, and most of us-good typists or not-would be happy to automate the process of commmunicating with our machine. Have you ever wished you could just strike one key and produce a directory, run a program, or perform some common task?
"PowerKey" provides a selection of 52 different one-touch keywords which you can customize to your own liking. It lets you access up to 52 keywords or other strings of your own by pressing either the Open Apple or Solid Apple key (or paddle buttons for those who have an Apple II + , which lacks these keys) along with one of the letter keys (A-Z). Although the program relies on a short machine language routine, you can use it without understanding machine language at all.

Entering The Program

This utility is written in three parts. Program 1, POWERKEY.CUSTOM, is a BASIC program that lets you create and save tables of your custom strings or keywords to disk. Program 2, POWERKEY.LOADER, is a BASIC loader which POKEs the machine language driver routine into memory and saves a copy of this code to disk in the form of a binary file. (Since Program 2 uses the name POWERKEY.BINARY for the file it creates, you must not use that name for Program 2 itself. If you do, you'll get a FILE TYPE MISMATCH error when Program 2 is run.) Program 3, POWERKEY.SYSTEM, is a short BASIC program which loads both the keyword table and the driver routine, and then activates PowerKey. Before going any further, carefully type in these three programs and save a copy of each to disk.

Creating Customized Keys

After entering Programs 1-3, load and run Program 1, which creates a customized table of keywords and strings. The first prompt asks if you want to load a keyword table from disk. Since this is the first time you've run the program, no tables yet exist, so you should press N for no. In the future, after creating one or more tables, you could also press
Y to gain access to a preexisting table. If you press Y, the program displays a directory and asks you to enter the filename of the table to load. If you press RETURN at this prompt without entering a name, PowerKey looks for a default file named TABLE.

If you've specified that no keyword table is to be loaded, Program 1 reads in its 52 default keywords (see lines 910-960). The first 26 keywords can be accessed with the Open Apple key (or the paddle 0 button), and the second 26 keywords by the Solid Apple key (or the paddle 1 button). You can change or rearrange the keywords in the DATA statements if you like, but make sure not to add or delete any keywords. You'll get an OUT OF DATA error if there aren't at least 52 DATA items.

Now PowerKey displays keywords $1-26$ on the screen. To the left of each keyword is the letter that will access it. For instance, the keyword AND is represented by A. Each keyword or string in the table can be up to 16 characters long, but they can be combined for longer commands. A table can occupy a maximum of 832 bytes and unused characters are signified by dots.

At the bottom of the screen, you are given three options. You can press A to Alter a keyword, the

Solid Apple key (or paddle 1 button) to look at the second 26keyword set, or W to write the completed table to a disk file. You can switch back and forth between keyword sets by pressing the Solid Apple key (or paddle 1 button) and Open Apple key (or paddle 0 button).

For practice, let's change CATALOG, the current default keyword accessed with Open Apple-C. Select the Open Apple keyword set, then press A and the program prompts you for the letter of the keyword you wish to change. Enter C for the keyword CATALOG. Let's add a carriage return to this keyword so that you'll be able to examine the disk directory from immediate mode with only one keystroke. Type CATALOG followed by a backslash (\backslash), then press RETURN. The backslash always stands for a carriage return character.

The screen should now reflect the change you've made. Notice that the backslash is shown as a control character (CTRL-M is equivalent to RETURN). Other keywords or strings in the table can be altered in the same manner. In fact, if you anticipate repeatedly using a phrase longer than 16 characters in your programming, stretch it out over two or more 16-character strings.

Once the table suits you, press W (for Write) to save it to disk. At this point, the 52 strings in your table are converted to their ASCII equivalents and POKEd into memory at 37376 . To distinguish a string from the one that follows, the last character of each string has its high bit set (128 is added to its ASCII value). Before the program saves the table, you are allowed once more to look at the directory on the target disk. After this, a filename for your table is requested. Again, if you strike RETURN, the default filename TABLE is chosen for you. Before the program ends, you are given a chance to put a copy of this file on other disks as well.

Installing The Driver

With the keyword table safely on disk as well as in memory, run Program 2. Line 110 of this program POKEs the PowerKey ML driver routine into memory at 768. This
area is safe from BASIC, so PowerKey should not interfere with, or be overwritten by, most programs. Line 130 saves a copy to disk using the filename POWERKEY.BINARY.

PowerKey is now ready to be activated. Type CALL -768 and press RETURN. Then, press Open Apple (or paddle button 0) along with the A key. The keyword AND should appear on the screen. Press RETURN and try another one. Hit Open Apple and C for CATALOG. Immediately, a directory of your disk appears on the screen (recall that we added a carriage return to CATALOG).

Try out some more keywords, using the Solid Apple (paddle button 1) set as well. The computer recognizes your keywords and strings from immediate and program mode as well as from the monitor.

Putting it All Together

Because PowerKey is on your disk as a binary file, it can easily be loaded and run by other programs. In fact, this is just what Program 3 does. It sets HIMEM to protect the reserve space for the keyword table, then asks you to specify the name of the table to be loaded from disk (press RETURN alone at the prompt to load the default file TABLE). The POWERKEY.BINARY machine language file created by Program 2 is loaded into memory, and activated with the appropriate CALL. You can even have PowerKey automatically loaded when you boot your disk if you use DOS 3.3. Simply save Program 3 as the HELLO file on the desired disk.

You can also load PowerKey from immediate mode. With DOS 3.3 , type in the following line (substitute the appropriate table filename for TABLE):

HIMEM:37376:PRINT CHR\$(4)"BLOAD
 TABLE,A37376":PRINT CHR\$(4)
 "BLOAD POWERKEY.BINARY":CALL 768

If you are using ProDOS, substitute this line:
HIMEM:36352:PRINT CHR\$(4)"BLOAD TABLE,A37376":PRINT CHR\$(4) "BLOAD POWERKEY.BINARY":CALL 768

How It Works

PowerKey works basically the same
whether you are using DOS 3.3 or ProDOS. In either operating system, it relies on a method known as a wedge. The input vector that normally points to the keyboard input subroutine (KEYIN) at \$FD1B, is rerouted to point instead to the starting location of our machine language code. Once this is done, the program checks a flag to see whether it is already in the process of printing a keyword. If not, it checks the Open and Solid Apple keys. The routine also responds to paddle button presses, since the Open and Solid Apple keys are read by the same circuitry that reads the buttons.

If one of the special keys is pressed, PowerKey begins printing the one-touch keyword. First, the relative number $(0-51)$ of the desired keyword is determined, a flag is set, and the keyword is located in the table. The first character of the word is then put in the accumulator, the table location is updated, and we return to BASIC. The operating system then prints the character in the accumulator and returns to the program for another character. The next time through the program, another character is loaded into the accumulator since the flag is set. This process continues until the last character of the keyword or phrase is detected (this character has the high bit set). The flag is then set to zero and we're returned to BASIC.

Before all this can happen, however, the program must go through a short initialization routine to determine which operating system is installed. This is done by looking at the starting location for ProDOS's global page (\$BF). When ProDOS has been booted, the value in location \$BF00 is always 76 (representing the JMP command). If this is the case, then the vector that points to KEYIN (CHIN1 at \$BE32\$BE33) is loaded in low-byte/highbyte format with the starting address for our routine, and the program returns to BASIC.

If the value at $\$$ BF00 is some other value, then the program assumes we are in DOS 3.3. In this case, the input vectors (KSW for KeySWitch) at \$38-\$39, which normally point to KEYIN, are loaded in a likewise manner with the starting
address of our program．We then jump to a routine at \＄3EA which updates the input pointers with these new values，reconnects DOS， and returns us to BASIC．Hence－ forth，with either operating system， our routine gets called so we can print our keywords．

Program 1：Keyword Table Customizer

For instructions on entering these listings， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

971 1øø REM OMNIKEY．CUSTOM
C6 116 TEXT ：TL＝ 37376
9A $12 \emptyset$ HIMEM：TL：IF PEEK（48896 ）$=76$ THEN HIMEM：TL -1 Ø24：REM TL IS TABLE LOCA TION；IF PRODOS，HIMEM IS MOVED DOWN 1K MORE
2B 13ø FOR I $=768$ TO 777：READ A：POKE I，A：NEXT ：DATA $1 ø 4,168,1 ø 4,166,223,154,7$ 2，152，72，96：REM ONERR FI x
69 14ø DIM $A \$(52): F \$=" . .$. ．．．．．．．．＂： $\mathrm{R} \$(\varnothing)=$＂OPEN－A PPLE＂：R\＄（1）＝＂SOLID－APPL $E^{\prime \prime}: P=\emptyset:$ REM APPLE KEYS CORRESPOND TO PADDLE BUTT ONS
D5 15ø HOME ：HTAB 11：UTAB 6：I NVERSE ：PRINT＂KEYWORD C USTOMIZER＂：NORMAL
C1 160 VTAB 19：PRINT＂WANT TO L OAD A TABLE FROM DISK＂； GOSUB $79 \emptyset$
F9 $17 \emptyset$ IF $\mathrm{x}<>89$ THEN 2øø
$5518 \emptyset$ GOSUB $83 \emptyset$
E7 19ø $W=\emptyset: V=13$ ：GOSUB 48ø： GOTO 21ø
7F 2øø FOR I＝ 1 TO 52：READ A\＄（ I）：NEXT
4． $21 \emptyset$ GOSUB 28ø
50 $220 \mathrm{X}=$ PEEK $(-16384): Y=P$ EEK $(-16287): Z=$ PEEK（ －16286）：IF $X<=127 \mathrm{~A}$ ND $Y<=127$ AND $Z<=12$ 7 THEN 229
5A 230 POKE－16368，Ø：$X=x-12$ 8：IF $X=87$ THEN $57 \emptyset$
94 24ø IF $Z>127$ AND $P=\emptyset$ THEN $P=1:$ GOTO 210
B6 25ø IF $Y>127$ AND $P=1$ THEN $P=$ ■：GOTO 21ø
90260 IF $\mathrm{X}=65$ THEN $36 \emptyset$
iC $27 \emptyset$ GOTO $22 \emptyset$
$3028 \emptyset$ HOME ：VTAB 2：HTAB 11：I NVERSE ：PRINT R\＄（P）；：ND RMAL ：PRINT＂KEYWORDS：＂ ：PRINT
9A $29 \varnothing$ PRINT $: L=1: H=13:$ FOR $J=1$ TO 22 STEP 21：FOR
$I=L$ TO $H:$ INVERSE ：HTA B J：PRINT CHR\＄$(64+I)$ ； ：NORMAL ：PRINT＂＂；
C4 3Øø D\＄$=A \$(I+(P=1) * 26)$ ：FOR $Z=1$ TO LEN（D\＄）：X $=\operatorname{ASC}(\operatorname{MID} \$(D \$, Z, 1)):$ IF $x<32$ THEN INVERSE ： PRINT CHR $\$(X+64)$ ；：NOR MAL ：GOTO 32ø
$9831 \emptyset$ PRINT CHR\＄（X）；
5A 32ø NEXT Z：PRINT MID\＄（F\＄， 1 ， 16 －LEN（A\＄（I＋（P＝1）
（26）））：NEXT ：L＝14：H＝
26：VTAB 5：NEXT
FA 330 VTAB 20：PRINT＂PRESS：＂； ：INVERSE ：PRINT＂A＂；：N ORMAL ：PRINT＂TO＂；IN VERSE ：PRINT＂ALTER＂；：N ORMAL ：PRINT＂A KEYWORD

BA 34ø VTAB 21：HTAB 8：INVERSE ：PRINT R\＄$(P=\varnothing)$ ；：NORMA L ：PRINT＂FOR＂；：INVER SE ：PRINT R\＄$(P=\varnothing)$ ；：NO RMAL ：PRINT＂SET，＂：HTA B 8：INVERSE ：PRINT＂W＂； ：NORMAL ：PRINT＂TO＂； INVERSE ：PRINT＂WRITE＂； ：NORMAL ：PRINT＂TABLE TO DISK．＂
$6835 \emptyset$ REM INPUT KEYWORD
91 36ø VTAB 2ø：HTAB 28：PRINT＂ ＂：HTAB 8：PRINT
＂：HTAB 8：PRINT＂
$2837 \emptyset$ UTAB 2Ø1 PRINT＂ENTER KEY （ $A-Z$ ）TO CHANGE＂：：INPU $T L \$: L=A S C$（L\＄）－64：I FL＜$<$ ORL＞ 26 OR LEN （L\＄）>1 THEN $37 \emptyset$
71380 VTAB 22：PRINT＂NEW KEYWO RD FOR＂；：INVERSE ：PRIN T L\＄；：NORMAL ：PRINT＂？ ＂；：PRINT F\＄
86390 VTAB 24：PRINT＂（＂）WILL EMBED A CARRIAGE RETURN） ＂；：HTAB 2ø：VTAB 22：C＝ Ø：D\＄＝＂＂
C7 4 Øø $X=$ PEEK (-16384) ：IF X $<=127$ THEN 4øø
5B 41 POKE－16368，$\curvearrowleft X=X-12$ 8：IF $X=13$ THEN 469
Bg $42 \emptyset$ IF $X=92$ THEN $X=13$
$6943 \emptyset C=C+1: D \$=D \$+C H R \$$ (X) ：IF $X<32$ THEN INVER SE ：PRINT CHR\＄$(X+64)$ ； ：NORMAL ：GOTD 45D
9F $44 \varnothing$ PRINT CHR $\$(X)$ ；
D7 45 I IF C＜ 16 THEN 4øの
B6 46 D $\mathrm{A}(\mathrm{L}+(P=1)$ 26）$=\mathrm{D} \$$ ：FOR I＝ 1 TO 4øØ：NEXT ：GOTO 210
$9247 \emptyset$ REM LOAD TABLE
C2 489 ONERR GOTO $75 \emptyset$
$4749 \emptyset$ HOME ：HTAB 6：VTAB 1ø：G OSUB 69Ø：PRINT ：PRINT C HR\＄（4）＂BLOAD＂FL\＄：POKE 216，\varnothing
$575 \emptyset \emptyset$ VTAB 16：HTAB 1ø：PRINT＂ READING TABLE．．．＂
$7451 \emptyset \mathrm{C}=\varnothing$ ：FOR I＝ 1 TO 52：EF $=\varnothing$
E9 $52 \emptyset A=$ PEEK（TL＋C）：IF $A>$ 127 THEN $A=A-128: E F$ $=1$
3E 530 A\＄（I）$=A \$(I)+\operatorname{CHR} \$(A):$ $\mathrm{C}=\mathrm{C}+1:$ IF EF THEN NEX T I
37540 IF I＜ 53 THEN 520
IF $55 \emptyset$ RETURN
63569 REM SAVE TABLE
EF 57ø HOME ：VTAB 7：HTAB 9：NO RMAL ：PRINT＂．．．SETTING UP TABLE＂
2F 58ø C $=\emptyset: A=\varnothing:$ FOR $I=1$ TO 52：$C=C+A: A=$ LEN $(A \$$ （I））：FOR J＝ 1 TO $A-1$
2E $59 \varnothing \mathrm{G}=\mathrm{ASC}$（ MID\＄（A\＄（I），J， 1 ））：：IF $G=92$ THEN $G=1$ 3
EA GøØ POKE TL＋C＋J－1，G：NE XT J
$\begin{aligned} & 6061 \emptyset \mathrm{~B}=\mathrm{ASC} \text {（ RIGHT\＄（A\＄（I），} 1 \\ &\text { ）})+128: \text { IF } B=22 \emptyset \text { THEN }\end{aligned}$
$B=141$
19629 POKE TL＋C＋A－1，B：NE XT I
$5463 \emptyset$ VTAB 1ø：HTAB 6：PRINT＂R EADY TO SAVE TABLE TO DIS K．＂：GOSUB 83ø：W＝1：HOM E
BC 64ø ONERR GOTO $75 \emptyset$
B1 65 VTAB 1ø：HTAB 6：V $=13: G$ OSUB 69：PRINT ：PRINT C HR\＄（4）＂BSAVE＂FL\＄＂，A＂ST R\＄（TL）＂，L日32＂：POKE 216， ஏ
55669 VTAB 16：HTAB 6：PRINT＂A NOTHER COPY＂；：GOSUB 79ø
F8 679 IF $X=89$ THEN HOME ：GOT O 64D
$9 E 68 \emptyset$ END
58690 PRINT＂TABLE FILENAME：＂； ：INPUT FL\＄：IF FL\＄$=$＂＂ THEN FL\＄$=$＂TABLE＂
CA 7øØ VTAB V：PRINT＂PUT PROPER DISK IN DRIVE \＆HIT＜RET URN＞．＂；
日E 71の $\mathrm{X}=$ PEEK (-16384) ：IF X $<=127$ THEN $71 \varnothing$
2E $72 \emptyset$ POKE－16368，$: ~ X=X-12$ 8：IF $X<>13$ THEN $71 \varnothing$
10 730 RETURN
C7 746 REM DISK ERROR ROUTINE
9F $75 \emptyset$ PRINT ：HTAB 8：PRINT＂DI SK ERROR \＃＂STR\＄（ PEEK（ 222））＂．＂
FD $76 \emptyset$ CALL 768：UTAB 18：UTAB 2 g：HTAB 8：PRINT＂TYPE＇C ＂TO CONTINUE＂；：GET S\＄： IF $\omega=\varnothing$ THEN 48ø
$4277 \emptyset$ IF $W=1$ THEN HOME ：GOTO 640
18 $78 \emptyset$ HOME $: V=15$ ：GOTO $84 \emptyset$
DD 79 PRINT＂（＂；：INVERSE ：PR INT＂Y＂；：NORMAL ：PRINT ＂／＂；：INVERSE ：PRINT＂N＂ ；：NORMAL ：PRINT＂）？＂
CC 8øø $\mathrm{X}=$ PEEK (-16384) ：IF X $<=127$ THEN 8øø
25 81ø GET S\＄：POKE－16368，$\varnothing \mathrm{X}$ $=x-128:$ IF $x<>78 \mathrm{AN}$ D $x<>89$ THEN 8øø
IC 826 RETURN
$1183 \emptyset V=16:$ VTAB 13：PRINT＂N EED A LOOK AT THE CATALOG FIRST＂；：GOSUB 79Ø：IF X $=78$ THEN RETURN
2284 W＝2：ONERR GOTO 75 I
4F 85ø GOSUB 7øø
B6 86ø POKE 34，$: ~ H O M E: ~ H T A B ~ 12 ~$ ：PRINT＂DISK CATALOG：＂： HTAB 8：PRINT

DE 87ø POKE 34，2：PRINT ：PRINT CHR\＄（4）＂CATALOG＂：POKE 2 16，\emptyset
76 88ø HTAB 8：PRINT ：PRINT＂CA TALDG ANOTHER DISK＂；：GOS UB 79ø：IF $X=89$ THEN V $=23:$ GOTO B5ø
$3389 \varnothing$ PRINT ：PRINT＂PRESS RETU RN TO CONTINUE＂：GOSUB 71 g
43 9øø POKE 34，$: ~ R E T U R N ~$
C5 916 REM PADDLE \emptyset OR OPEN APPL E KEY WDRDS
96920 DATA AND，日LDAD，CATALOG，D ATA ，END，FOR，GOSUB，HOME；I NPUT，GET，READ，LOAD ，MID\＄（
AJ $93 \emptyset$ DATA NEXT，QR，PRINT，STOP，R UN ，SAVE ，THEN，TEXT，VTAB， WRITE，PEEK，REM，CONT
26 94ø REM PADDLE 1 OR CLOSED AP PLE KEY WORDS
$0295 \emptyset$ DATA ASC（，BRUN ，CLOSE，DEL ，DIM，FLASH，GOTO，HTAB，INVE

FA $96 \varnothing$ DATA LEFT\＄ C，NEW，OPEN，POKE ，RIGHT\＄（，RETURN，STR\＄ （，STE P，TAB C，VERIFY，INT C，CALL ，L ENC，CLEAR

Program 2：PowerKey Binary File Creator

A4 1 Øø REM OMNIKEY．LOADER
DJ 110 FOR I $=768$ TO 939：READ A：POKE I，A：X＝X＋A：NE XT
A2 $12 \varnothing$ IF $\mathrm{X}<>18 \emptyset 1 \varnothing$ THEN PRINT ＂ERROR IN DATA STATEMENT s．＂：STOP
E2 130 PRINT CHR\＄（4）＂BSAVE OMNI KEY．BINARY，A768，L172＂
$8114 \varnothing$ DATA $162,146,134,7,16 \emptyset, \emptyset$ ， 132，6
A4 $15 \varnothing$ DATA $162,33,16 \varnothing, 3,173, \varnothing, 1$ 91，2ø1
16160 DATA $76,2 ø 8,7,142,50,19 \varnothing$ ， 140，51
If $17 \varnothing$ DATA $19 \varnothing, 96,134,56,132,57$ ，76，234
IA $18 \emptyset$ DATA $3,44,169,3,48,94,32$ ， 27
28190 DATA $253,72,32,74,255,173$ ，97，192
AJ $20 \varnothing$ DATA $16,7,169,9,141,17 \emptyset, 3$ ，24ø
FA $21 \varnothing$ DATA $16,173,98,192,16,65$ ， 169， 26
F7 $22 \emptyset$ DATA $141,17 \emptyset, 3,164,56,233$ ，193，48
CI 236 DATA $55,261,26,176,51,24$ ， 109，17ø
4A $24 \varnothing$ DATA $3,141,17 \varnothing, 3,169,255$ ， 141， 169
F9 $25 \emptyset$ DATA $3,173,17 \emptyset, 3,24 \emptyset, 38,1$ 60，\varnothing
F4 $26 \emptyset$ DATA $162, \emptyset, 23 \varnothing, 6,2 ø 8,2,23$ ロ， 7
$9127 \varnothing$ DATA $177,6,48,2,16,244,23$ 2，236
10 $28 \emptyset$ DATA $179,3,2 ø 8,238,32,63$ ， 255， 236
DB 29ø DATA 6，2ø日，9，23ø，7，2ø8，5， 1.64
of $36 \varnothing$ DATA $32,63,255,96,16 \varnothing, \varnothing, 1$ 77，6
6C $31 \varnothing$ DATA $141,171,3,23 \varnothing, 6,2 ø 日$ ， 2，23ø
$8832 \varnothing$ DATA $7,173,171,3,48,4,24$ ， 1.05

57336 DATA $128,96,169, \varnothing, 141,169$ ，3，133
23346 DATA $6,169,146,133,7,173$ ， 171，3
$1135 \emptyset$ DATA $96, \emptyset, \emptyset, \varnothing$

Program 3：PowerKey Loader

751 10ø REM OMNIKEY．SYSTEM

C6 110 TEXT ：TL $=37376$
IA $12 \varnothing$ HIMEM：TL：IF PEEK（48896 ）$=76$ THEN HIMEM：TL－ 1 ø24
AA $13 \varnothing$ HOME ：PRINT＂ENTER KEYWO RD TABLE NAME＂；：INPUT N\＄ ：IF N\＄＝＂＂THEN N $\$=" T$ ABLE＂
A5 $14 \varnothing$ PRINT CHR\＄（4）＂BLOAD＂N\＄＂ ，A＂STR\＄（TL）
Af 150 PRINT CHR\＄（4）＂BLOAD OMNI KEY．BINARY＂
$6816 \emptyset$ CALL 768：PRINT ：PRINT＂ OMNIKEY IS ACTIVATED．＂：E ND

Atari 130XE Automated RAM Disk

Stephen J．Rockower

Offering high speed and instanta－ neous access to programs and files， the Atari 130XE＇s RAM disk is one of its most attractive features．Now it＇s even more effective with this utility that moves selected programs and files into the RAM disk automatically whenever you boot the system．Your system will be custom configured on power up．A floppy disk drive and Atari DOS 2.5 are required．

If you own an Atari 130XE，you may have a number of BASIC pro－ grams or other files which you like to put on the RAM disk whenever you boot up．Once in the RAM disk， those files are available almost in－ stantly，but it＇s a tedious process to copy each file to RAM manually． ＂RAM Disk Loader＂for the Atari 130XE automates that chore with a custom AUTORUN．SYS file．When you boot the system，it automatical－ ly transfers selected BASIC pro－ grams and text files from the default drive（D1：）to the RAM disk（D8：）．

Typing Instructions

Here＇s how to create the RAM Disk Loader．First，boot your computer with DOS 2．5．Go to the DOS menu to select option L；then load SET－ UP．COM．Use option 2 to create an AUTORUN．SYS file named D1TOD8．SAV．Now go back to BASIC and type in the program．

Note that the DATA statement in line 30 should contain the names of the BASIC programs or text files that you want to transfer to the RAM disk on power－up．When add－ ing these names，include the full name and extender（such as PROG－ ．BAS），but not the drive specifier （don＇t put D1：at the beginning of the name）．Every extender must be exactly three characters long；add extra spaces if necessary to pad the extender to the correct length．The last DATA item in this series must be END which acts as a marker for the end of the list of filenames．

When you type line 40 ，substi－ tute the name of the program you want to run when the system boots． For example，if you want to run MYPROG．BAS from drive D1：，line 40 should look like this：

40 READ F\＄：IF F\＄＝＂END＂THEN RUN ＂D1：MYPROG．BAS＂

Note that this program can be one of the programs you just put on the RAM disk（to run such a program， use the D8：drive prefix）．

Be very careful when typing lines 290 and 560 ，which contain tiny machine language routines stored in strings．These strings must be typed correctly，or the computer will probably crash．The REM state－ ments at the end of each line ex－ plain exactly which characters to type in the strings．After you finish typing in the program，be sure to save a copy to disk．For the program
to work properly，you must use the same filename you specified when you created the AUTORUN．SYS file（D1TOD8．SAV）．Now you are ready to boot up again．This time， all your programs and data will be on D8．

With only slight modifications， you can use this program to transfer programs from D1：to D2：（rather than to D8：）without having to copy each file manually．This modifica－ tion allows you to do batch file copies from one drive to another．A second possibility is to eliminate the DATA line altogether and read the filenames from a previously created disk file rather than from DATA．With a statement like IN－ PUT\＃1，STRING\＄，you can bring in the name of each file to be trans－ ferred．The file could terminate with the name of the next program to run（IF STRING\＄＝＂END＂THEN INPUT\＃1，STRING\＄：RUN STRING\＄）．

Program Techniques

The program begins by READing filenames one at a time from the DATA statements in line 30 ．If the name is not END，the program loops through the directory sectors （361－368）one at a time in search of the file．When the file is found， FLEN holds its length．

The subroutine named GET－ BYTES determines whether this is a BASIC program or a file containing text or other data．Since the file header for a BASIC program always starts with two zeros，we assume that anything lacking two zeros in the header is not BASIC．The next six pairs of header bytes contain information about the size and lo－ cation of certain memory pointers． We are interested in the last two bytes，which tell us how many more bytes must be loaded to find the end of the file（DEND）．The computation in line 680 adjusts the total number for BASIC program files．

At this point，the program opens an IOCB（Input／Output Control Block）to read the bytes from FROM\＄into the string $\mathrm{ZZ} \$$ ． Then ZZ \＄is manipulated to allow for text／data（FLEN＊125）or a BASIC program（actually held as a string of length BYTES）．Before writing the string，we must find the
true end of the data．If you think about it，a text file of FLEN charac－ ters will have fewer than FLEN＊125 bytes．By eliminating the zero bytes－CHR\＄（0），the heart sym－ bol－we arrive at the true length of the file．This feature，incidentally， makes the program unsuitable for use with machine language files， since ML programs often contain one or more zero bytes．

Once you have this program working，you＇re likely to find many uses for it．I use it to move a main menu program onto the RAM disk， along with a number of programs and files I use to manage our house－ hold accounts．This method takes 20 to 30 percent less time than load－ ing in the same files manually．

Atari 130XE RAM Disk Loader

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

CK 15 PDKE 712，148：POKE 559， 6：POKE 8，255：POKE 731， 1
PP 2g DIM A（128），ZZ末（125 15 b）， F （ 15 ）， $\mathrm{FROM}(15), \mathrm{RD}$ ISK（15），B\＄（16），FNAME （16）
D6 25 TRAP 710
KI $3 \varnothing$ DATA JUNK． 1 ，JUNK． 2 ，D1TODB．BXE，END
 EN RUN＂D1：NEXTPROE．SA V＂
$K K$ FOD SNUM $=361$ TO 368
PM G σ CLDSE 1 ：FLEN＝$=0$
JJ 7 Ø $A \$=\operatorname{CHR}(\curvearrowleft): A \$(128)=$ CHR （ \ddagger（ $): A$（ 2 ）$=A$（
FC 9ø DRIVE＝1：TYPE＝82：BUF＝AD R（A\％）：GOSUB 26ø：REM＂D ISC＂ROUTINE
ND 1 Øø EOSUB उ3छ：REM＂．DECODE ＂ROUTINE
J\＆ $11 \boldsymbol{1}$ IF FLEN THEN SNUM $=368$
BF 126 NEXT SNUM
HI 130 REM
HA 14 F FROM $=$＝D 1：＂：FROM（LEN （FROM ）+1 ）$=$ F \＆：RDI SK $=$ FROM象：RDISK $(2,2)=" 8 "$
HF 15 EOSUB 6øб：REM＂GETBYT ES＂

If 18日 ZZ末＝＂＂：ZZ末（1）＝CHR（

KO $19 \varnothing$ OPEN $2, B, \varnothing, R D I S K \$: O P$ EN $1,4, \varnothing, F R O M$（
DC 2øø I OCB＝1：TYPE＝7：BUF＝ADR （ZZ ）：GOSUB 5øø：REM＂ IOCB＂FOR READ
MK 21 IF BYTES 1 THEN $22 \boldsymbol{\square}$
EK211 IF ZZ末（LEN（ZZ\＄））＝CHR （Ø）THEN ZZ末＝ZZ末（1，LE N（ZZ末）－1）：GOTO 211
FC 212 INDEX＝LEN（ZZ\＃）
HP 22ø IDCB＝2：TYPE＝11：BUF＝AD R（ZZ⿻）：GOSUB 5øの：REM ＂IOCB＂FOR WRITE
日E 23ø CLOSE \＃1：CLOSE \＃2

DD 24 EOTO 46

60250 END
IH 260 REM PROCEDURE＂DISC＂
KD 276 POKE 779，INT（SNUM／256 ）：POKE 778，SNUM－256家I NT（SNUM／256）
JA 28ø POKE 769，DRIVE：POKE 7 73，INT（BUF／256）：POKE 772 ，BUF－256事INT（BUF／2 56）：POKE $77 \boldsymbol{5}$ ，TYPE
NC 29ø $\mathrm{X}=\mathrm{USR}$（ADR（＂h SER．3＂）） ：REM D．194，32，83，228， 96 or smali h ，space， Cap．S，inverse small d，ctrl－．
HD उøø RETURN
HB 310 REM TYPE $=82$ FOR READ， 87 FOR WRITE
HJ 329 REM
AL 336 REM PROCEDURE＂DECODE ＂

CJ 34 FLEN＝の
AJ $35 \emptyset$ FOR $A=1$ TO B
 ）：IF $\operatorname{ASC}(\operatorname{B}(1,1))>127$ THEN GOTO 46g
 SC（B）（3））
MF 38ø FSTART＝ASC（B\＆（4））＋256

OB 39 FNAME $\$=B \$(6,13)$
KD 394 IF FNAME（LEN（FNAME \＄） ）$=$＂＂THEN FNAME $\$=$ FNA ME（1，LEN（FNAME ）-1 ）： GOTD 394
EP 4 Øø FNAME \＄（LEN（FNAME \＄）＋1） ＝＂．＂：FNAME（LEN（FNAME \＄）+1$)=\mathrm{B}(14,16)$
EJ 41 IF FNAME $\$=F$ THEN $A=8$ ：BOTO 47 g
CK $449 \quad \mathrm{FLEN}=\varnothing$
BL 47 NEXT A
HM 48g RETURN
IB 490 REM
ID 5øø REM Procedure＂IOCB＂
BL $51 \varnothing$ REM ASSUMES IOCB ALRE ADY OPEN FOR READ OR WRITE
LF 529 BLOCK＝832＋IOCB音 16
AB 530 POKE BLOCK＋2，TYPE：REM READ $=7$ ，WRITE $=11$
LJ 540 POKE BLQCK＋5，INT（BUF／ 256）：POKE BLOCK＋4，BUF －256事INT（BUF／256）
JD 550 POKE BLOCK +9 ，INT（INDE $x / 256)$ ：POKE BLOCK＋8，I NDEX－256\％INT（INDEX／25 6）
KA 560 I＝USR（ADR（＂hhh Five＂）。 IOCB $\ddagger 16$ ）：REM h, h, h ，in verse t，L，V，inverse d
FC 57 © CLDSE IOCB
HK 58g RETURN
IC 590 REM
HO GøD REM PROCEDURE＂GETBYT ES＂
FN 61 QPEN \＃ $1,4, \varnothing$ ，FROM
CF 62 g EET \＃1，I：GET \＃1，J
OF 6 З IF I $\langle>\varnothing$ QR $J<>\emptyset$ THEN BYTES＝ø：GOTO 69ø
CA 64 Ø FOR $X=1$ TO 6
CI 656 EET W1，I：BET \＃1，J
DD 66 NEXT X
HK 67ø DEND $=256$＊ $\mathrm{J}+\mathrm{I}$
NH 68ø BYTES＝DEND－256＋14
时 69 CLOSE \＃1
HH 7 Øø RETURN
HH 710 REM
PO 720 POKE 559，34
IL 730 ？＂ERROR＂；PEEK（195）； ＂AT LINE＂；PEEK（186） ＋256＊PEEK（187）

IF-THEN-ELSE For SpeedCalc

Anthony Chandler

This tutorial shows you how to get more out of SpeedCalc. By using clever formulas, you can set up a spreadsheet to perform different computations based on the result of logical IF tests. The techniques apply to any version of SpeedCalc, COMpuTE!'s powerful machine language spreadsheet program. (The Commodore 64/128 version of SpeedCalc appeared in the January, 1986 issue of compute.. The Apple II and Atari versions were published in February 1986 and March 1986, respectively.)

SpeedCalc, the versatile spreadsheet program published in the JanuaryMarch, 1986 issues of COMPUTE!, offers a great variety of built-in functions. It supports all the math operations of BASIC, as well as two new ones (@ave and @sum), but there is no specific mention of how the program can perform conditional operations and make decisions. Here are techniques to make SpeedCalc calculate based on the outcome of logical tests modeled after the IF-THEN-ELSE construction in BASIC.

More Than A
 Glorified Calculator

Many people use a spreadsheet as little more than a glorified calculator: Once a sheet has been set up, you punch a button and the program performs a large number of related calculations. While the re-
sult of one calculation frequently serves as input for another, the process doesn't involve anything resembling intelligence on the part of the program. Nevertheless, the SpeedCalc spreadsheet program can test conditions and take action based on the results. The process works very much like the familiar IF-THEN-ELSE construction in BASIC.

In plain English, a typical IF-THEN-ELSE construction would be translated as, "IF a certain condition is true, THEN do the first task. ELSE if the condition is false, do the second task." A computer can't work with abstract concepts such as truth or falsity, but it's very good at telling the difference between one numeric value and another. When the computer performs an IF test in BASIC, it uses numeric values (usually -1 and 0) to represent true and false, respectively. You can verify this by entering the following statements in BASIC direct mode:
$\mathrm{A}=1$:PRINT $(\mathrm{A}=1)$
$A=0:$ PRINT $(A=1)$
In Microsoft BASIC and most other versions, the computer prints -1 and 0 , indicating that it uses -1 to represent a true condition and 0 to represent a false condition. The BASICs on Apple II and eight-bit Atari computers use 1 instead of -1 to represent true. To implement IF-THEN-ELSE with a formula in SpeedCalc, we can take advantage of the fact that true and false are represented as simple numeric values.

How Many Tesis Do You Need?

If you give the matter some thought, you'll discover that only two basic IF tests are needed to cover all possible cases. Here they are:

IF A>B THEN (this cell=) C ELSE (this cell=) D
IF A $<>$ B THEN (this cell=) C ELSE (this cell=) D
In these examples the letters A, B, C, and D represent the values contained in particular cells within the spreadsheet. A cell, of course, can contain a simple numeric value such as 2500 , a reference to another cell, or a complex expression such as (ab2*(@sqr(2))) or (12*ac24+ 52*11).

Other IF tests can be achieved by varying one of the preceding constructions. For example, these two statements are logically equivalent:
IF $\mathrm{A}=<\mathrm{B}$ THEN C ELSE D
IF B > A THEN C ELSE D
Likewise, these two statements are equivalent:
IF A = B THEN C ELSE D
IF A <> B THEN D ELSE C

IF-THEN-ELSE Formulas

Every IF-THEN-ELSE statement can be broken into two separate parts-the IF test and its consequence. The first portion (for example, IF $A=B$) tests a logical condition. The second portion (for example, THEN C ELSE D) states the consequence of the test. The

THEN portion of the consequence is performed when the IF test is true, and the ELSE portion is performed when the IF test is false. Table 1 shows SpeedCalc formulas for the two IF tests described in the preceding section.

The consequence (THENELSE) portion of the formula will always be the same expression-$\mathrm{D}+(\mathrm{C}-\mathrm{D})^{*}(\ldots)$-which represents the logical statement ELSE + (THEN - ELSE)*(...). When the ELSE portion of the consequence is to be 0 , the expression reduces to a simple $C^{*}(\ldots)$. When the THEN portion of the consequence is to be 0 , all you need is the expression D - D*(...).

To express a complete IF-THEN-ELSE statement in a SpeedCalc formula, you need to multiply the consequence portion of the statement by the IF portion. For example, say that you wish to use this statement:

IF A>B THEN C ELSE D

The SpeedCalc equivalent is expressed by this formula:
D+(C-D) * @int((@sgn(A-B)+1)/2)
Note that we have placed the consequence portion- $D+(C-D)$ first and the IF portion-@int($(@ \operatorname{sgn}(\mathrm{~A}-\mathrm{B})+1) / 2)$-last. The multiplication operator (*) separates the two portions of the statement.

Inside The IF Test

Recall that the computer ordinarily makes a decision based on an IF test by comparing two numbers. More specifically, it subtracts one number from the other, then determines whether the result is positive (true), or zero or negative (false). For example, to perform the statement IF $A>B$, we want to know whether the result of $(A-B)$ is positive or not. If it is positive, then A is greater than B. If $i t$ is zero, then A equals B. If it is negative, A is less than B. In other words, after subtracting the two numbers, we then need to know the sign of the remainder.

SpeedCalc, of course, has no difficulty performing the subtraction. To determine the sign of the result, you need only enclose the expression in a @sgn() function, using the formula @sgn(A-B). When the result of $A-B$ is positive,
$@ \operatorname{sgn}(A-B)$ resolves to 1 . When the result of $A-B$ is negative, it resolves to -1 , and when the subtraction yields 0, @sgn(A-B) yields 0 .

Now let's build on this basic expression to perform specific IF tests. To select only cases where A is greater than $B(\operatorname{IF} A>B)$, you need to select only the positive result. To do this, add the value of 1 , divide by 2 , and make the result an integer with the @int() function:
@int((@sgn(A-B)+1)/2)
This formula yields 1 when A is greater than B , and 0 in all other cases.

To select only cases where A is unequal to B (IF $A<>B$), you need to include negative as well as positive results (in other words, all nonzero results). The @abs() function easily converts any negative value into a positive value:
@abs(@sgn(A-B))

This formula yields 1 whenever A is unequal to B, and 0 only when A equals B.

Now we have formulas which resolve to the value 1 when the desired condition is true or the value 0 when it is false. Table 2 shows the complete formulas.

For both formulas in Table 2, when the IF test is true (resolves to 1), the cell is made equal to $\mathrm{D}+$ (C-D)*1. This performs the THEN part of the IF-THEN-ELSE statement, making the cell equal to C. When the IF test is false (resolves to 0), the cell is made equal to $D+$ (C-D)*0. This performs the ELSE part of the IF-THEN-ELSE statement by making the cell equal to D.

To take a more realistic example, say that you want SpeedCalc to compute the equivalent of the following statement:
IF $\mathbf{Q}>9$ THEN (this cell=) $Q^{* P *} .85$ ELSE (this cell=) $\mathbf{Q}^{* P}$
Now assume that the value Q is in

Table 1: IF Formulas

IF Test	SpeedCalc formula
IF A > B	@int((@sgn(A-B)+1)/2)
IF A <> B	@abs(@sgn(A-B))

Table 3: Quantity Discounts

Unit price $\ldots \ldots \ldots \ldots \ldots$	
Quantity discounts:	1 to $9-$ net
	10 to $99-10 \%$
	100 up -15%

Table 2: IF-THEN-ELSE Formulas

Logical expression

IF $\mathrm{A}>\mathrm{B}$ THEN C ELSE D IF A $<>$ B THEN C ELSE D

SpeedCalc Formula

$=D+(C-D)^{*} @ \operatorname{int}((@ \operatorname{sgn}(A-B)+1) / 2)$
$=\mathrm{D}+(\mathrm{C}-\mathrm{D})^{*} @ \operatorname{abs}(@ \operatorname{sgn}(\mathrm{~A}-\mathrm{B}))$

Table 4: Quantity Discounts

Quantity	1	9	10	99	100	1000
Tot. list	10	90	100	990	1000	10000
Disc 10	0	0	10	99	0	0
Disc 100	0	0	0	0	150	1500
Tot amt	10	90	90	891	850	8500

Sample Spreadsheet

	AA	AB
001	price p	10.00
002	qty q	0.00
003	tot list	= ab1*ab2
004	disc 10	$\begin{array}{r} =\mathrm{ab} 3^{*} \cdot 1^{*} @ \operatorname{int}((@ \operatorname{sgn}(a b 2-9)+1) / 2)^{*} \\ \text { @int((@sgn}(100-\mathrm{ab} 2)+1) / 2) \end{array}$
005	disc 100	$=\mathrm{ab3} \mathbf{3}^{\left.\text {. } 15^{*} @ i n t(@ s g n(a b 2-99)+1) / 2\right) ~}$
006	tot amt t	=ab3-ab4-ab5

cell $A B 1$ and the value P is in cell $A B 2$. This formula produces the desired result:

```
= ab1*ab2+(ab1*ab2*.85-ab1*ab2)*@int
    ((@sgn(ab1-9)+1)/2)
```


Boolean Operators

In certain cases the Boolean operator OR, NOT, or AND is required to perform a conditional test. The easiest of these to implement is NOT. If the value of A is 1 , then the expression NOT A yields 0 . If A equals 0 , then NOT A equals 1. Both alternatives can be handled with this SpeedCalc expression:

$$
\mathrm{abs}(1-\mathrm{A})
$$

The AND and OR operations can be simulated by combining two

IF tests. For an AND operation, the results of both IF tests are multiplied:
[consequence] * [IF test 1] * [IF test 2]
For an OR operation, the results of both IF tests are added together:
[consequence] * (IF test 1] + [IF test 2])

A Practical Illustration

For example, say that your business wants to calculate the quantity discounts diagrammed in Table 3. When you sell items in quantities of 9 or fewer, no discount is given. A 10 percent discount is given on purchases of 10 to 99 items, and purchases of 100 or more items qualify for a 15 percent discount.

To calculate the discounts
within SpeedCalc, you need to set up a sheet with two conditional calculations; the first one requires an AND function. Run SpeedCalc and enter the sheet as shown in the figure.

To test whether the sheet performs as expected, enter some test results in cell AB2. You should get the results shown in Table 4.

Although the algorithms are simple, it is easy to make mistakes in logic when setting up such involved formulas. It often helps to write the statements on paper before entering the actual formula. Before using the formula for serious purposes, you should test it with some sample values to make sure it works correctly.

Amiga BASIC Style

Jim Butterfield, Associate Editor

Here's how to manage custom menus and output windows, read mouse input, trap background events, and master other techniques which give Amiga BASIC its unique character. The article also highlights some of the differences between Amiga BASIC and earlier BASICs, and includes a useful program for calculating mortgages.

There's a different style to BASIC programming on the Amiga. You should take a close look at new features; you'll discover concepts that lead to a radically different style of programming and user interaction.

To illustrate some of these con-
cepts, let's construct a simple Amiga BASIC program which analyzes the five important variables in a home mortgage: principal (amount borrowed), interest rate, period of loan, monthly payment, and balance due. Since interestcompounding schedules are different in Canada than in the United States, the program includes an option for choosing either schedule. We'll discuss elements of the program as we go through it.
[Editor's note: In the following listing we have used the \& character to indicate the end of a program line. Don't try to type this characterwe've deliberately chosen one that's not on the Amiga keyboard. The 4 character merely shows where you should press RETURN to end one program line and start another.]

Initialization

REM Mortgage (Version 1)4 DIM titles(6), sites(2), pudef\$(5) , value\# (5), peryear (2), compound (2) 4
cal $=4:$ site $=14$
The REM identifies the program and version. The DIM statement defines the six arrays used in the program, which we'll discuss as we go along. Note that there are no line numbers in Amiga BASIC. They are not needed. Even with GOTO or GOSUB, it's usual to identify a line with a label, not a number. (You may include line numbers if you like-a feature included for the sake of compatibility with other BASICs-but since the line numbers are treated simply as labels, numeric order is irrelevant.)

Also, notice that we use descriptive words for variable names.

In the versions of BASIC on earlier Commodore computers, only the first two characters of the variable name were significant (HO\$ and HOUSEHOLD\$ would be considered the same name). In Amiga BASIC, names can be up to 40 characters long with every character significant (Householdbudget1 and Householdbudget2 are recognized as distinct names). Descriptive variable names make the program much easier to understand and reduce the need for explanatory REM statements. We also set the default value of the two variables that determine which menu items are selected. The loan variable to be calculated (cal) is 4, the payment amount. The default interest compounding schedule (site) is that for country 1, Canada. Change either of these if you wish.

DATA Principal, Rate, Years, Paymen t, Balance, Quit4
MENU 5, $\varnothing, 1$,"Calculate" 4
FOR $j=1$ TO 6: READ titleS $(j) 4$
MENU 5,j,1-($j=$ cal $), " \quad$ +titleS(j
): NEXT ${ }^{4}$
The DATA statement contains the items for the first of our custom menus, as well as the captions for the output window (the array title\$). One of the most significant features of Amiga BASIC is that the programmer can easily construct custom menus.

We'll choose menu 5 for our first custom menu so that menus 1-4 can retain their default uses: Project, Edit, Run, and Windows. The first MENU statement sets Calculate as the title for the menu, then the FOR-NEXT loop reads the DATA items into the corresponding menu slots. Note the expression $1-(j=c a l)$ for the third parameter of the MENU statement in the loop. Just like earlier Commodore BASICs, Amiga BASIC interprets a true expression as -1 and a false expression as 0 , so $1-(\mathrm{j}=\mathrm{cal})$ will evaluate to $1-(-1)=2$ when the value of j equals the value of cal, and $1-(0)=1$, otherwise. A value of 2 for this parameter puts a check to the left of the menu item, so this feature is used to indicate which calculation option is currently selected. A value of 1 displays the menu item without a checkmark, but still makes it active; a value of 0 would deactivate the menu item,
leaving it dimmed, or ghosted, and impossible to select.
DATA Canada, 2, 6, USA, 12,14
MENU 6, $\varnothing, 1$,"Country" 4
FOR $j=1$ TO 2: READ site\$(j), perye $\operatorname{ar}(j)$, compound $(j) \leftarrow$
MENU $6, j, 1-(j=s i t e), " \quad "+s i t e \$(j$): NEXT j^{4}

Different rules are used in the U.S. and Canada to work out a monthly interest rate based on the annual interest figure. In the U.S., the annual amount is simply divided by 12. In Canada, semiannual compounding is used, which involves dividing by two to get the semiannual rate and then using a more complex formula. The user will be able to pick the appropriate system from menu 6, which is titled Country. It would not be too hard to add extra menu items, such as compounding quarterly (the numeric DATA items would be 4,3). The FOR-NEXT loop here uses the same technique for flagging the current menu selection as the one above.

Format With PRINT USING

These are the PRINT USING templates that tell how the numeric values of the five loan variables are to be printed. The principal amount, for example, is printed as a dollars-and-cents value. The annual interest rate, in contrast, will be shown to three decimal places with a percent sign.
DATA 1øøøø,1Ø,1Ø, Ø, Ø
FOR $j=1$ TO $5:$ READ value\# $(j):$ NEXT ${ }^{3}$

These are just arbitrary figures to appear on the initial screen. I've picked a principal amount of $\$ 10,000$ at 10 percent over ten years. You could substitute your own default values if you like. Once the program is running, any of these values can easily be changed.

An important point: Note that the array into which the values are read, value\#, has an extra symbol at the end. The \# sign (pound sign, hash mark, or whatever you want to call it) indicates that these variables are double precision. If you've worked with previous Commodore
machines which offered only one level of numeric precision, you might be unclear about this issue. Here's the story: In earlier Commodore BASICs, variables worked to about ten digits of accuracy. That was enough-just barely enoughto do most home finance calculations. Normal (single-precision) Amiga BASIC variables-the type you usually get if you don't add a type identifier after the variable name-are reliable to only about seven digits. This means that it can't handle amounts of over about $\$ 167,000$ without losing pennies.

Computer scientists will tell you that single-precision Amiga BASIC variables have a 24 -bit mantissa, as opposed to the 32-bit mantissa in earlier Commodore BASICs. What it means to you is this: Whenever you need to deal with dollars-and-cents values-or with other values requiring a high accuracy-you need to call for a double-precision variable. Such a variable will have more accuracyenough to cover a federal budget and still be exact on the pennies. To specify double precision, add a \# sign to the end of the variable name. Be careful to include the sign each time you use the variable name, however. Amiga BASIC will consider value and value\# to be two different variables.

A Custom Window

WINDOW 2,"Mortgage", $(10,10)-(4 \varnothing \varnothing$,1ø0),84
WINDOW OUTPUT 24
GOSUB calc:GOSUB showval 4
LOCATE 7,14
PRINT "Use menu buttons to selec
t option." 4
PRINT "Click on existing values
to change." ${ }^{4}$
GOSUB hang 4
WINDOW CLOSE 24
END4
Now we open a new window in which the calculations will appear. The only gadget we put on the window is the closing gadget (code 8). It's there so that the user can still put away the window manually in case the program is stopped. The window is not only created, but also selected for output. Then the initial calculations are displayed, along with brief instructions near the bottom of the window.

The program's main job is a subroutine called hang. We'll stay in that subroutine until the user
wants to quit, at which time the window will be closed. Here is the hang subroutine:
hang: 4
ON MENU GOSUB event 4
ON MOUSE GOSUB event 4
MOUSE ON 4
MENU ON4
kwit=04
WHILE kwit<>1:WEND4
MOUSE OFF4
MENU OFF4
MENU RESET 4
RETURN 4
We define an action for the mouse and for the menus we previously defined. Clicking the left mouse button or selecting a menu item invokes the event subroutine. These two activities are interrupts or event traps. After they are activated with MENU ON and MOUSE ON, they will remain in place, waiting for the appropriate event to happen, until they are canceled or turned off. While they are active, it doesn't matter what the program is doing; a suitable stimulus will immediately cause the program to jump to the specified subroutine.

A variable called kwit is used by the program to tell when it's time to quit. As long as it's zero, the program stays in the WHILE-WEND loop. How does it ever get out of this seemingly endless loop? Remember the event traps we just enabled. Pressing the left mouse button or selecting a menu item will trigger a GOSUB to the event routine, which in turn calls subroutines to process the button click or menu selection. One menu selection, the Quit option from the Calculate menu, will change the value of $k w i$ to one to end the loop. After exiting the loop, we'll shut off the menu and mouse, disconnect the event traps, and return to the main program which ties things up.

A Major Event

event: 4
$\mathrm{ms}=\operatorname{MOUSE}(\varnothing): \mathrm{mn}=\operatorname{MENU}(\varnothing) \leftharpoonup$
IF mn THEN GOSUB menuhit 4
IF ms THEN GOSUB eek 4
IF kwit= \emptyset THEN GOSUB calc: GOSUB showval4
RETURN4
Now let's look at the routine where the real action takes place. When we arrive at the event subroutine, we know that one of two things has happened. Either the left mouse button has been clicked or a menu item has been selected by using the right mouse button. The MOUSE
and MENU functions are used to check which, and the appropriate service subroutine is called. Once the new value for cal or site has been established, we're ready to calculate new values, but first we check that kwit is still zero-we don't want to calculate values if the Quit option from the Calculate menu was selected. The new financial values are determined by calling the subroutine calc, then displayed using the showval subroutine. Keep in mind that we'll come back to this routine to recalculate anytime the data elementsor the rules-are changed.

calc: 4

ON ERROR GOTO Oops 4
principal\#=value\#(1) 4
rl\#=(value\#(2)/1øø/peryear(site)
$+1)^{\wedge}(1 / \text { compound }(\text { site }))^{4}$
rate\#=rl\#-14
months=value\# (3)*124
payment\#=value\# (4) 4
balance\#=value\# (5) 4
ON cal GOSUB fprin, fintr, fper, fp ay,fbal4
scale=1øø:IF cal=2 OR cal=3 THEN scale=1øøø
value\# (cal)=INT(value\#(cal)*scal
e+.99)/scale4
ON ERROR GOTO 04
RETURN4
The calc subroutine is where the dirty work begins. The principal, interest rate, number of periods, payment amount, and final balance are extracted from the val$u e \#$ array so that they can be used by the various calculation programs more easily. Note that in most cases, we retain double-precision accuracy with the \# sign. The monthly interest rate is worked out by a fairly complex formula, and the number of months equals the number of years times 12 .

The variable cal tells us what to calculate. Depending on its value, we'll call fprin (find principal), fintr (find interest rate), fper (find period), fpay (find payment), or fbal (find balance). The calculation with scale rounds any calculated value to the next highest penny, or, if not a money figure, to three decimal places.

The calculation subroutine also includes an error trap, since some calculations are impossible or ridiculous (for example, how long would it take to pay off a $\$ 1,000$ mortgage with a payment of $\$ 0 \mathrm{per}$ month?). Problems are directed to an event trap named oops.

00ps:4
value\# (cal) $=04$
RESUME oops 24
oops 2 : 4
WINDOW 24
RETURN4
If there's any calculation problem, we set the calculated value to zero and give up. We do not go back to the detailed calculation program. Instead, using oops2, we return to the main calc routine. But, first, it's necessary to reopen WINDOW 2, since the Amiga always closes any secondary windows when an error occurs. Notice that the message at the bottom of the window is not reprinted. So if you see the window blink, then reappear minus the message and with the value being calculated set to zero, an error has been trapped. If this occurs when you enter what seem to be legitimate values, it may indicate that you made an error while entering the program. For this reason you may want to omit the ON ERROR statements until you are confident that you have eliminated all typing mistakes in the program.

Here are the five calculation routines. We won't plunge into details of the math here, since it's rather complex.
fprin: 4
value\# (1) = (balance\#+payment\#* (rl \#"months-1)/rate\#)/rl\#"months RETURN4
4
fintr: 4
rø\#=ø: rl\#=EXP(75/months):IF rl\#>
2 THEN $r 1 \#=24$
rate\#=rl\#-1: r9\#=rate\#*1004
pø\#=balance\#+payment\#*months-pri ncipal\#4
p9\#=(balance\#+payment\#* (rl\#^mont hs-1)/rate\#)/rl\#"months-principa 1\#4
IF $p \emptyset \#<\varnothing$ OR p9\#> THEN \leqslant
r2\# = Ø 4
ELSE4
flop\% $=04$
WHILE ABS (r9\#-rø\#) >. ØØ14
flops\%=1-f10p\% 4
IF flop\%>ø THEN 4
r2\#=(rø\#+r9\#)/24
ELSE4
r2\#=rø\#-pø\#* (r9\#-rø\#) / (p9\#-pø\#) <
END IF4
$r 1 \#=(1+r 2 \# / 1 ø \varnothing /$ peryear (site)) ^(1
/compound(site)) \&
rate\#=rl\#-14
p2\# = (balance\#+payment\#*(rl\#^mont hs-1)/rate\#)/rl\# ^months-principa 1\#4
IF p2\#> THEN 4
rø\#=r2\#:pØ\#=p2\#4
ELSE 4
r9\#=r2\#:p9\#=p2\#4
END IF4
WEND 4
END IF4
value\# (2) =r2\# 4

```
RETURN
4
fper:4
value#(3)=LOG ( (payment#-rate#*ba
lance#)/(payment#-rate#*principa
l#))/LOG(rl#)/12#4
RETURN4
4
fpay:4
value#(4)=rate#*(principal#*rl#^
months-balance#)/(rl#^months-1)&
RETURN4
4
fbal:4
value#(5)=principal#*rl#^months-
payment#*(rl#^months-1)/rate#&
RETURN4
```

The only one of the above routines that's lengthy is fintr. There's no simple formula for the interest rate, so we must zero in on the correct value by repeated calculations.

Displaying Results

Now to display the calculated values:
showval: \langle
FOR $j=1$ TO 54
LOCATE j,14
IF $j=c a l$ THEN 4
PRINT "*";
ELSE4
PRINT " "; 4
END IF4
PRINT title\$(j);SPACES(2ø) 4
LOCATE j, 124
PRINT USING pudef\$(j);value\# $(j) \&$ NEXT j 4
RETURN 4
For a good human interface, I wanted to distinguish between the calculated item and the entered values. The title for the value being calculated will be preceded by an asterisk. SPACE \$ is used to generate a string of blanks to wipe out any old values.

A Choice Is Made

menuhit: 4
$\mathrm{ms}=04$
IF mn>4 THEN 4
$\mathrm{mnl}=\mathrm{MENU}(1) 4$
ON mn-4 GOSUB newcalc,style 4
END IF4
RETURN4
Here's the routine to handle menu selections. The value $m n$, given the value of MENU(0) in the calling routine, is used to determine which menu is involved. MENU(1) tells us which item from the menu has been selected. We then subtract 4 from $m n$ to get an offset of 1 or 2 for the ON-GOSUB statement.

```
eek:4
x=MOUSE(3): y=MOUSE (4) 4
IF x>5 AND x<19\emptyset THEN 
v=INT((y+8)/8)4
IF v>\emptyset AND v<6 AND v<>Cal THEN<
LOCATE v,12:PRINT SPACE$(2\emptyset)&
LOCATE v,12:INPUT value#(v) 4
```

LOCATE $v, 12:$ PRINT USING pudef\$(v); value\# (v) 4
END IF4
END IF4
RETURN 4
The newcalc subroutine is called when menu 5 , the Calculate menu, is selected. If the item selected from that menu is $1-5$, the previously selected menu item has its checkmark removed, and a checkmark is placed beside the newly selected item. The value of cal is updated to show which variable is now being calculated. If menu item 6, Quit, was chosen, we instead set the value of kwit accordingly. The style subroutine sets site to the selected country when an item is selected from menu 6, the Country menu.
newcalc: 4
IF mnl < 6 THEN 4
MENU 5, cal,14
cal=mnl4
MENU 5, cal, 24
ELSE 4
IF mnl=6 THEN kwit=14
END IF4
RETURN 4
style:4
IF mnl < 3 THEN 4
MENU 6,site,14
site=mnl4
MENU 6,site,24
END IF4
RETURN4
When the left mouse button is clicked, the eek subroutine allows entry of a new value. It's important to read MOUSE(0) before reading the mouse's position, but in this case, that's already been done in the event routine that calls eek. The x and y coordinates of the mouse pointer's current position come from MOUSE(3) and MOUSE(4), since those functions return the position of the mouse when the button was clicked. MOUSE(1) and MOUSE(2) return the mouse's position at the time of the MOUSE(0) call, so either would probably give comparable results in this case. Remember that we are reading pixel positions, not character positions. Before recognizing a click as a request to enter input, we check that the pointer was reasonably close to one of the displayed values. One more limitation is that we won't allow an entry for the cal variable: The computer calculates that value.

Once we know it's a valid variable, we clear the old value using SPACE\$, input a new value, and then print it neatly formatted in the space provided.

Maiden Voyage

Let's give the program a trial run. You'll see the window appear. If you have used the initial values suggested, you'll notice that the program has calculated a payment of $\$ 131.04$. That's the Canadian computation. Now press the right button, slide the mouse pointer up to the Country menu, and move down to USA before you release the button. The payment should change to $\$ 132.16$.

This is a ten-year mortgage. Let's see what the balance would be after five years. Use the right button (also called the menu button, for obvious reasons) to select the Balance option from the Calculate menu. The balance will show a slightly negative amount. That's okay (each payment is rounded up a fraction of a penny, so the final payment will be slightly less than zero). Next, move the pointer up to the Years value in the display window menu and click the left button. The computer is inviting you to enter a new value: Enter 5 for five years. Observe that the balance still due after five years is a little over \$6,000.00.

How long to pay it off at $\$ 150$ a month? Select Years from the Calculate menu. Change the Balance value to 0 and the Payment value to 150. The answer is a little over eight years. If you change the interest rate to 12 percent, you'll see that it would take over nine years to pay off the loan. At 18 percent, you wouldn't live long enough to pay it off at \$150 a month, and at 20 percent, it's impossible (note the Years value is set to zero to indicate the error). When you've snooped through the combinations enough to satisfy yourself, select Quit. And don't forget to save the program. If your answers don't match these, check the formulae for typographical errors.

After running through this exercise, think how different things would be on any eight-bit computer. It's not just the mortgage calculation; it's the style of the machine. With a fresh approach, you can make your Amiga more flexible and useful than any computer you've used before.

Home Financial Calculator For Atari ST

Patrick Parrish, Programming Supervisor

Rarely has there been a program integrating as many useful loan and investment features as "Home Financial Calculator." It is versatile, easy to use, and flexible. Rapid recalculation features make it an ideal tool for "what if" projections. A calculator mode with memory lets you solve problems not directly supported by the program, and you can pass values generated by one calculation to another. Home Financial calculator was originally published in the May 1985 issue of COMPUTE!. This new version is for any Atari ST computer which has TOS in ROM.
"Home Financial Calculator" integrates a number of common financial calculations in a menu-driven package. It also features a calculator mode or scratch pad area where program variables can be manipulated using common mathematical operations.

Be particularly careful when typing the long lines in this program which contain financial formulae. A mistyped program may still run, but the results it gives could be inaccurate.

When you run the program, a main menu offers you a choice of Investment or Loan calculations. Type I or L to reach the appropriate submenu.

Easy "What If" Projections
Before looking at any calculations, let's consider some basics of the program. Home Financial Calculator uses some parameters or variables repeatedly in the calculations. These variables are Total (also referred to as Future Value, Total Owed, and so forth, depending on
the calculation); Present Value (principal); Interest Rate; Years; Months; Number of Periods (of either compounding, deposits, withdrawals, or payments, depending on the application); Deposits; and Withdrawals. When in the calculator mode (explained below), you'll reference these eight variables with the single letters T, P, I, Y, M, N, D, and W.

As you work with Home Financial Calculator, the values of the eight variables are preserved until you change them. Whenever the program asks you for an input (for example, Interest), the current value of that variable is displayed (zero if no value has been entered yet). If you want to keep the current value, just press Return. Otherwise, enter the new value and press Return.

With this feature, Home Financial Calculator makes it easy for you to generate "what if" projections. Simply run the same calculation repeatedly, each time changing a previously entered value. Press Return to keep a value, and change only one or two values to see the effect on the final result.

You can also store the current value into the calculator mode's Memory Register or recall a value from the Memory Register. To see how all this works, let's take a closer look at your options.

Your Investment Menu

Here is the Investment submenu that appears when you type I from the main menu:

1) Future Value with Periodic Interest
2) Future Value with Interest

Compounded Continuously
3) Future Value with Regular Deposits
4) Future Value with Cash Flows
5) Withdrawal of Funds
6) Net Present Value
7) Calculator Mode
8) Return to Main Menu.

Determine which option you want and press the appropriate key.

Each option displays screen prompts which ask you to input several values. These values are stored in the eight variables mentioned above: T for Total (Future Value), P for Present Value (principal), I for Interest Rate, Y for Years, M for Months, N for Number of Periods, D for Deposits, and W for Withdrawals. Of course, not all calculations require you to enter all these values, while others may ask for additional information.

Most calculations can be solved for any one of the variables. To solve for a variable, enter an uppercase X at the corresponding input prompt. For example, you could enter values for everything except the Interest Rate, typing X at the Interest Rate prompt. Home Financial Calculator then solves for the Interest Rate.

Remember, however, that the program can solve for only one variable during each calculation. If you enter an X at more than one prompt, the program does not have enough information to calculate an answer.

Future Value With Periodic Interest

Home Financial Calculator's options are fairly self-explanatory when you run the program, but let's try an example. We'll calculate the future value of an investment drawing periodic interest. This kind
of investment could be a savings account, interest-bearing checking account, bonds, or a money market account. Choose this option by entering 1 at the Investment submenu.

After the screen clears, the program asks for the first input-Future Value, which appears with an asterisk (*). Below this is a zero (the current value of this variable in memory; all variables start out with a value of zero). Following this is an input prompt.

The asterisk preceding Future Value means that this is one of the variables you can solve for. (A variable not preceded by an asterisk means that variable cannot be solved for in that particular calculation, so X would be an illegal response.) If you'd like to calculate the Future Value, enter an X here, and answer all the other prompts with the appropriate values.

Let's calculate the future value of a $\$ 1,000$ investment drawing 8 percent interest for two years and three months, with four compounding periods each year. Enter an X for Future Value, since we'll be solving for this total. Answer Present Value with 1000 (the principal you're investing); Annual Int Rate (\%) with 8 (enter the percentage, not a fraction); For \# Of Years with 2; For \# Of Months with 3; and \# Of Periods (Compounding) with 4. After you enter the last value, Home Financial Calculator figures the Total Future Value and displays the an-swer-\$1195.09.

Now suppose you wish to know the future value of the same $\$ 1,000$ investment if you make 9 percent interest. Choose option 1 on the Investment submenu again and rerun the calculation. Notice how Home Financial Calculator automatically prints the current value of each variable at each prompt. The Future Value prompt shows a current value of 1195.09 from the previous calculation. Type an X at this prompt, 9 for Interest Rate, and Return at all other prompts to preserve their values. The result should be $\$ 1221.71$.

The versatility of Home Financial Calculator becomes apparent when you realize how many different ways you can run this calculation. Using this same menu option,
you can calculate the initial investment (or present value) necessary to accrue a certain future value with periodic interest; the interest rate necessary to accrue a future value from a present value; or the time (in years and months) it would take to accumulate a future amount from an initial investment with periodic interest payments. Just enter an X for the unknown value you're seeking and fill in all the other prompts.

Future Value With Interest Compounded Continuously

Option 2, a variation of option 1, handles investments paying a continuous interest rate. Like option 1, option 2 can handle a number of calculations-just place an X in the slot you'd like to solve for.

Here, after entering all other parameters, you can calculate the future value of an investment; the initial investment required to reach a certain future value; the interest required to reach a desired future value; or the time required to reach a certain future value at a specified interest rate.

Notice that any variables used in option 1 will be displayed with their current values when running option 2. Recall that the eight major variables in Home Financial Calculator retain their values throughout the program until you change them. This feature is convenient when going from one option to another on the Investment or Loan submenus.

In addition, the values are preserved for use in the calculator mode. For instance, you could compare the effect of continuously compounded interest to periodic interest (option. 1) without having to retype the input.

Future Value With Regular Deposits

If you're interested in setting up an annuity, you'd choose option 3 on the Investment submenu. You can determine the future value of an account (such as a savings account, Individual Retirement Account, or college or vacation fund) with regular deposits where interest is compounded with each deposit.

Option 3 can also tell you the amount of each deposit necessary
to accrue a future value; the interest rate needed to provide some future value with regular deposits; or the time it would take to amass a future value with regular deposits.

Future Value With
 Cash Flows

Option 4 does a single calcula-tion-it always solves for Future Value, so don't enter an X anywhere. It calculates the future value of an investment with yearly cash flows (either positive or negative). The Annual Interest Rate you input here is the growth rate on the money you've invested.

As an example, suppose you wish to determine the value of a vacation fund collected over four years. You're asked for the number of years, then for the deposit or withdrawal each year. You deposit $\$ 500$ in the fund the first year and $\$ 200$ the second. The third year you are forced to withdraw $\$ 300$ (entered as -300), and the fourth year, you put in $\$ 400$. The fund has a growth rate of 12 percent. Its value after four years will be $\$ 1,017.34$.

A future value determination can also tell you whether an investment is worthwhile. If the future value of all cash flows is positive or zero, the investment is profitable. A negative future value, on the other hand, represents a losing investment.

Withdrawal Of Funds

If you intend to open an account from which you can regularly withdraw funds, choose option 5 . With this option, you can determine the initial deposit required in the account to cover your withdrawals; the amount you can withdraw regularly from this account; the rate of interest you must make on funds in the account; or the period of time over which you can make withdrawals.

Net Present Value

Option 6 lets you determine the feasibility of a prospective investment by calculating its net present value. Net present value is the current value of all future yearly cash flows to an investment along with any initial cash requirement. The interest rate you input here is the rate of return you require on your investment. A positive net present
value indicates a profitable investment, while a negative result signifies a losing investment.

As an example, suppose you have the opportunity to make a $\$ 2,000$ investment which would return \$1,500 the first year, cost you $\$ 750$ the second year, and return $\$ 1,900$ the third year. You hope to make 13 percent on your money. With option 6, you would determine a net present value of $\$ 56.87$, representing a profitable investment.

The Calculator Mode

Option 7 puts you in the calculator mode (also available from the Loan submenu). Calculator mode works very much like a hand-held calculator with a single memory. You can type in a value or recall one from a variable by entering its symbolT(otal), P(resent Value), I(nterest Rate), Y(ears), M(onths), N(umber of Periods), D(eposits), and W(ithdrawals). You can perform simple math on values stored in the Memory Register using reverse Polish notation. And you can use the results in future calculations.

When you enter calculator mode, the calculator command line appears on the screen:

V S HR M + M- \mathbf{M}^{*} M/ MR MC MEM=0

Here are the commands:
V View the values of the eight primary variables
S Store Memory Register into a variable
H Help-prints the command line
R Return to main menu, exit calculator mode
M+ Add the last input to the Memory Register
M- Subtract the last input from the value in the Memory Register and store the result in the Register
$\mathrm{M}^{*} \quad$ Multiply the last input times the value in the Memory Register and store the result in the Register
M/ Divide the last input into the value in the Memory Register and store the result in the Register
MR Memory Recall
MC Memory Clear to zero
MEM $=$ Memory Register's current value
If you've run through a sample investment calculation, you now have some variables in memory. Enter V in the calculator mode to see them. The screen displays the eight values currently in memory for the eight variables.

To work with one of these variables, enter one of their letters (T, P, I, Y, M, N, D, or W) and press Return. Then type $\mathrm{M}+$ to add it to the Memory Register (all variables must be stored in the Register before you can perform any operations on them). Suppose you put the current value for T into the Register and now wish to add $\$ 229$ to this value. Enter 229, press Return, then type M+ and press Return. The addition is performed and the result displayed. To store this value back into the T variable, enter S for Store. A prompt appears, requesting the variable in which you intend to store the value. Type T to store the value into the variable T.

You can also use the Memory Register to hold a value not represented by any of the eight variables. To do this, determine a value using the calculator mode and store it into the Memory Register with M+. Then, when you're running a calculation elsewhere in the program, you can substitute this value for any of the eight primary variables by typing MR (Memory Recall) at the appropriate prompt. MR can be used both in the calculator mode and at any prompt where the previous value is displayed.

Finally, option 8 on the Investment submenu returns you to the main menu. Once there, you can perform some loan calculations by typing L .

Loan Calculations

Here is the Loan calculations submenu:

1) Regular Loan Payments
2) Remaining Loan Liability
3) Final Loan Payment
4) Single Payment Loan
5) Loan Amortization Schedule
6) Calculator Mode
7) Return to Main Menu

Regular Loan Payments

Option 1 handles a number of calculations for equal payment loans. You can figure the principal of a loan; the amount of each regular payment necessary to repay a loan; the annual interest rate on a loan with regular payments; or the term of the loan.

Remaining Loan Liability
 With option 2, you can determine

the remaining balance on a loan with regular payments after a number of payments have been made. Enter the principal on the loan, the amount of each payment, the annual interest rate, the number of payments yearly, and the last payment number.

Final Loan Payment

Option 3 calculates the amount of the final payment on a loan. In many cases, the last payment of a loan will vary from the amount of the regular payment. This option handles situations where the final payment is greater than ("balloon payments") or less than the regular payment.

Single Payment Loan

Option 4 calculates the amount owed on a loan that is paid off with a single payment. You must input the principal on the loan, its annual interest rate, its term in years and months, and the number of times a year the interest on the principal is compounded.

Loan Amortization Schedule

Option 5 displays a loan amortization schedule. Enter the principal on the loan, the amount of each payment, the annual interest rate, the term of the loan, and the number of payments yearly. Then enter the period of the year in which the loan began (for instance, 10 for October) and the range in years of the amortization schedule you'd like to examine.

Because of the complexity of these calculations, there may be a delay before the output appears on the screen, especially if you have chosen to look at the latter years in a long-term loan repayment schedule (such as a home mortgage). When the amortization table appears, it displays the payment number, the beginning balance for the period, the amount paid toward the loan principal, the amount paid in interest, and the ending balance. To keep the information from scrolling off the screen, the program shows only a few payment periods at a time. Press Return to view another screenful. When the end of a year is reached, the program gives the total amounts paid on the principal and
in interest for the year．In addition， when the last period of the loan is reached，the program displays the final payment for the loan．

The last two options on the Loan submenu are the same as those on the Investment submenu．

Modifying The Program

Home Financial Calculator is writ－ ten in a modular format for easy modification．For many routines，it uses common input labels（lines 4590－4960）and some output labels （lines 4970－5050）．If you want to add an investment or loan calcula－ tion routine，choose the labels from these lines that fit your application．

Also，you may wish to add a printer option to the loan amortiza－ tion schedule．Examine lines 3140－ 3840．Here，variable D5（defined in line 140）determines the number of loan payments considered on each screen．Variables S1，S2，S3，and S4 （defined in lines 150－180）format the output horizontally on the screen．

Home Financial Calculaior For Atari ST

Version by George Miller，Assistant Technical Editor

10	GOSUB 5340
29	RES $=$ PEEK（SYSTAB $+\varnothing$ ）
36	IF RES $\langle>4$ THEN 6®
40	？＂Please switch to Medium or High＂
50	？＂Resolution．＂：STOP
60	COLOR 1，1
70	DIM V（B）
80	V象＝＂TPIYMNDW＂
90	C\＄＝＂VSHR＂
169	C6\＄＝＂V S H R＂
110	C1\＄＝＂M＋M－M\％M／MR MC＂
120	C2\％＝＂M＋M－M＊M／MRMC＂
130	
140	D5 $=12$
$15 \square$	S1＝10
168	S2＝25
176	S3 $=40$
189	S4＝55
19ø	TITLE $=$＂Home Financial C alculator＂＋CHR（ （ σ ）
206	GOSUB 534\％：GOSUB TITLEBAR
210	PRINT＂INVESTMENTS OR LOA NS？（Select＇I＇or＇L＇）＂
226	A\＄$=$ CHR ${ }^{\text {（ }}$（ INP（2））
236	IF A\＄＝＂I＂OR A\＄＝＂i＂THE N 260
240	IF A\＄＝＂L＂OR A\＄＝＂1＂THE N 2120
25\％	GOTO 220
26®	GOSUB 5349
276	TITLE象＝＂INVESTMENTS＂：GO SUB TITLEBAR
28®	GOTOXY 1ø，5：PRINT＂1）FUT URE VALUE WITH PERIODIC I
	NTEREST＂
290	GOTOXY 1ø，6：PRINT＂2）FUT
	URE VALUE WITH INTEREST C

OMPQUNDED CONTINUOUSLY＂

315 GOTOXY 1ヵ，8：PRINT＂4）FUT URE VALUE WITH CASH FLOWS

329 BOTOXY 16，9：PRINT＂5）WIT HDRAWAL OF FUNDS＂
GOTOXY 1ஏ，1ø：PRINT＂6）NE T PRESENT VALUE＂
34ø GOTOXY 19，11：PRINT＂7）CA LCULATOR MODE＂
35\％GOTOXY 1\％，12：PRINT＂日）RE TURN TO MAIN MENU＂
36 GOTOXY 19，14：PRINT＂YOUR CHOICE？＂
37ø $A=I N P(2)-48$
389 IF $A<1$ OR $A>B$ THEN 379
39\％ON A GOTO 420，68ø，920， 131

46の GOSUB 466
410 GOTO 19ø
420 GOSUB 5340
430 TITLE ${ }^{\circ}$＂ H PERIODIC INTEREST＂：GOS UB TITLEBAR
44．PRINT
45\％B0SUB 4596
46ः GOSUB 463ः
47ஏ PRINT＂ま＂；
489 GOSUB 472の
49ஏ PRINT＂事＂；
5פø GOSUB 476』
$51 \varnothing$ IF E＝4 THEN 530
526 GOSUB 48øの
530 BOSUB 485
540
550
568
570
57
$580 \quad V(2)=$ INT $(V(1) /((1+V(3) / V($

59ø GOSUB 5øøぁ
690 IF E＜＞3 THEN 630
61ஏ $V(3)=$ INT（ $(V(6) \&(V(1) / V(2)$
 Ø＋．5）／16ぁぁぁ
629 GOSUB 5ø3ø
63ø IF E＜＞4 THEN 66ø
$64 \varnothing \quad V(4)=\operatorname{LOG}(V(1) / V(2)) /(V(6)$
鄅OE（1＋V（3）／V（6）））
65% GOSUB 5060
66% GOSUB 5210
670 GOTO 26ø
68ø GOSUB 5340
69ø TITLE ${ }^{6}=$＂FUTURE VALUE WIT H INTEREST COMPQUNDED CON TINUOUSLY＂：GOSUB TITLEBA R

7øø	PRINT
71\％	GOSUB 459\％
720	GOSUB 463\％
730	PRINT＂事＂；
740	GOSUB 472ø
750	PRINT＂\％＂；
760	GOSUB 4760
776	IF E＝4 THEN 79ø
780	G0SUB 489\％
790	IF E＜＞1 THEN $82 \boldsymbol{1}$
	```V(1)=INT (V (2) &EXP (V (3) &Y) *1øø+.5)/1øø```
810	GOSUB 4976
829	IF E＜＞2 THEN 859
83Ø	```V(2)=INT (V(1)/EXP (V (3) &Y) (16g+.5)/16\emptyset```
840	G05UB 5øøø
856	IF Eく＞3 THEN 88ø
860	$\begin{aligned} & V(3)=\text { INT }(\operatorname{LOG}(V(1) / V(2)) / Y \\ & * 1 \emptyset \emptyset \varnothing \emptyset+.5) / 1 \emptyset \emptyset \varnothing \emptyset \end{aligned}$
876	GOSUB 5930

IF E<>4 THEN 660
$V(4)=I N T(\operatorname{LOG}(V(1) / V(2)) / V$
(3) \& 1 Øø +5 )/1øø
GOSUB 5ø6ø
GOTO 66ø
G0sub 5349
TITLEsㅍ" FUTURE VALUE WIT
H REGULAR DEPOSITS ": GOSU
B TITLEBAR
PRINT
GOSUB $459 \varnothing$
PRINT "\&REGULAR DEPOSIT *
$C=6$

98ø GOSUB 385ø
99Ø PRINT "事"1
1 ตøぁ GOSUB 472ø
1 1ヵ1ø PRINT "安"
1 162. GOSUB 476末
1 1.3 IF E=4 THEN 1 1ø5ø
1 194 GOSUB 48øø
1 105 GOSUB 485
106 IF E<>1 THEN 1 1月9ø
1 107』 $V(1)=$ INT $(V(7)$ \& $V(6)$ \& ( $(1+V($
3) $/ V(6)) \wedge(V(6) \& Y)-1) / V(3)$

1ø日ぁ GOSUB 497ø
$109 \emptyset$ IF E<>3 THEN 123ø
$1160 \quad V(3)=.99$
$1110 \mathrm{I}=\emptyset$
$112 \boldsymbol{T}=\mathrm{INT}(\mathrm{V}(7)$ \# ( $((1+\mathrm{V}(3) / \mathrm{V}(6)$
)^(V(6) \&Y)-1)/(V(3)/V(6))
) 1 ( 1 (ロ+.5)/1gø
$1136 \mathrm{TE}=\mathrm{ABS}(\mathrm{V}(3)-\mathrm{I}) / 2$
$1149 \quad I=V$ (3)
$115 \emptyset$ IF ABS (T-V(1))/V(1) <. 』øøø
5 THEN $121 \emptyset$
116 IF $T<V(1)$ THEN 1190
$1179 \quad V(3)=V(3)-T E$
1189 GOTO $112 \emptyset$
$119 \square \quad V(3)=V(3)+T E$
1260 GOTO 1120
121 ø $V(3)=$ INT $(V(3) \& 19 ø ø \sigma+.5) / 1$
ฮ๓ぁぁ
1220 GOSUB 5ø3ø
1239 IF E<>4 THEN 1260
124』 $V(4)=\operatorname{LOQ}(V(3) * V(1) /(V(6) *$
$V(7))+1) /(V(6)$ \& LOG ( $1+V$ (3)
(V(6)))
$125 \emptyset$ GOSUB 506ø
126 IF E<>7 THEN 66g
$127 \emptyset \quad V(7)=\operatorname{INT}(V(1)$ \& $(V(3) / V(6))$
$/((1+V(3) / V(6)) \wedge(V(6)$ \&Y) -
1) $\ddagger 16 \varnothing+.5) / 1$ ■
1289 PRINT
129 PRINT "REGULAR DEPOSITS R
EQUIRED: ${ }^{(1) V(7)}$
GOTO 66®
131 GOSUB 534
1329 TITLE争玉" FUTURE VALUE WIT
H CASH FLOWS ": GOSUB TITL
EBAR
1336 PRINT
1346 GOSUB 472の
$135 \%$ GOSUB 476ø
$136 \varnothing$ PRINT "CABH FLOW $(+/-)$ "
137ø PRINT
$138 \emptyset V(1)=\emptyset$
$139 \emptyset$ FOR $I=1$ TO $V(4)$
$14 \emptyset \varnothing$ PRINT "CASH FLOW - YEAR *
"; I
1416 INPUT A象
$1429 \mathrm{~A}=\mathrm{VAL}(\mathrm{A} \%)$
$1436 V(1)=V(1)+A$ 戠 $(1+V(3)) \wedge(V(4$
)-I)
1449 NEXT I

1469 GOSUB 4970
147 g TE=V(1)
148 GOSUB 515
$149 \varnothing$ GOTO 66פ
159 GOSUB 534

1510	TITLE $=$＝＂WITHDRAWAL OF FU NDS＂：GOSUB TITLEBAR	2150	ULAR LOAN PAYMENTS＂ GOTOXY 21，6：PRINT＂2）REM	$\begin{aligned} & 275 \emptyset \\ & 276 \varnothing \end{aligned}$	GOSUB 485ஏ   PRINT＂LAST PAYMENT＊WAS
1520	PRINT		AINING LOAN LIABILITY＂		
1530	GOSUB 4630	2160	GOTOXY 21，7：PRINT＂3）FIN	2779	INPUT A\＄
1546	PRINT＂\＆REGULAR WITHDRAWA		AL LOAN PAYMENT＂	2789	$A=V A L$（ $A$ ）
	L \＄＂	2170	GOTOXY 21，B：PRINT＂4）SIN	2790	FOR $J=1$ TO $A$
1550	$\mathrm{C}=7$		GLE PAYMENT LOAN＂	28øø	
1566	GOSUB 385ø	2180	GOTOXY 21，9：PRINT＂5）LOA		／1øø
1576	PRINT＂事＂；		N AMORTIZATION SCHEDULE＂	2810	$\mathrm{P}=\mathrm{P}+\mathrm{I}-\mathrm{V}$（7）
1580	GOSUB 472ø	2190	GOTOXY 21，1ヵ：PRINT＂6）CA	2820	NEXT J
1590	PRINT＂\％＂；		LCULATOR MODE＂	2830	$L I=I N T(P * 1 \varnothing \varnothing+.5) / 1 \varnothing \varnothing$
$16 \square 0$	GOSUB 476®	220ø	GOTOXY 21，11：PRINT＂7）RE	2849	PRINT
1610	IF E＝4 THEN 163 ¢		TURN TO MAIN MENU＂	2859	PRINT＂LIABILITY AFTER＂；
1620	G05UB 48øø	2210	GOTOXY 21，13：PRINT＂YOUR		A；＂PAYMENTS：${ }^{\text {＂；}}$ LI
1636	GOSUB 4859		CHOICE？＂	2869	GOTO 2670
1640	IF E＜＞2 THEN 1670	2220	$A=I N P(2)-48$	2876	GOSUB 5340
1656	$V(2)=I N T(V(8)$ \＆$V(6) / V(3)$ \＆$($   $1-(1+V(3) / V(6)) \wedge(-V(6)+Y)$	$\begin{aligned} & 2230 \\ & 2240 \end{aligned}$	IF $A<1$ OR $A>7$ THEN $222 g$ ON A GOTO 227．，269\％，287\％，	288\％	TITLE笋＂＂LAST LOAN PAYMEN T＂：gosub titlebar
				296．	GOSUB 467\％
1660	GOSUB 56ø®	2260	BOTO 19ø	2916	GOSUB 4890
1670	IF E＜＞3 THEN 181ø	2270	GOSUB 5340	2926	GOSUB 4720
1680	$V(3)=.99$	2286	TITLE衰＂REGULAR LOAN PAY	2930	G0SUB 493Ø
1690	$\mathrm{I}=\emptyset$			2946	GOSUB 4850
179\％		2290	PRINT	2950	FOR $J=1$ TO $V(6)$ \＃$Y$
	（1＋V（3）／V（6））へ（V（6）\＆ Y$)-1)$	23®0	PRINT＂\％＂	2969	$\mathrm{I}=\mathrm{INT}(\mathrm{P}+\mathrm{V}(3) / \mathrm{V}(6)$＋190＋．5）
		2310	GOSUB 467®		／160
1710	TE＝ABS（V） 3 ）-1 ）／2	2320	PRINT＂\％＂；	2976	$\mathrm{P}=\mathrm{P}+\mathrm{I}-\mathrm{V}$（ 7 ）
1729	$\mathrm{I}=\mathrm{V}$（3）	2336	BOBUB 489\％	2980	NEXT J
1739	IF ABS（R－V（B））／V（B）＜．$\square$（10．	2340	PRINT＂\％＂	2998	LP＝1NT（P\％ $16.5+.5) / 16 \emptyset+V(7)$
	5 THEN 1790	2350	GOSUB 472ø		
1740	IF R＜V（8）THEN 1779	2360	PRINT＂事＂	3060	PRINT
1759	$V(3)=V(3)-T E$	2370	B0SUB 476פ	3010	PRINT＂LAST PAYMENT：${ }^{\text {P／；LP }}$
1760	GOTO 17øø	2380	IF Em4 THEN 24ø®		
1770	$V(3)=V(3)+T E$	2390	GOSUB 48øØ	3020	GOTO 2670
1780	GOTO 17øø	2400	G0SUB 485\％	363ø	B0SUB 5340
1790	$V(3)=\operatorname{INT}(V(3) * 1 ø \varnothing \varnothing \varnothing+.5) / 1$	$241 \sigma$	IF E＜＞2 THEN 246 g	3640	TITLE ${ }^{(1)}$＂SINGLE PAYMENT L OAN＂：BOSUB TITLEBAR
$18 \emptyset \emptyset$	Gロ5UB 5ø3ø	2420	$1-(1+V(3) / V(6)) \wedge(-V(6)$	3059	PRINT
1810	IF E＜＞4 THEN 184ø			3069	GOSUB 4679
1820	$V(4)=\operatorname{LOG}(V(6)$ \％$V(8) /(V(6) *$	2436	PRINT	3676	GOSUB 4720
	$V(8)-V(3) * V(2))) /(V(6) * L \square$	2446	PRINT＂AMT OF PRINCIPAL：	3089	GOSUB 4930
	$\mathrm{G}(1+\mathrm{V}(3) / \mathrm{V}(6)))$		＂；V（2）	3090	B0SUB 4850
183ø	G0SUB 5ø6ø	245ø	GOTO 267\％	3106	$V(1)=$ INT（ $V(2)$ i $(1+V(3) / V(6$
1840	IF E＜＞8 THEN 660	2460	IF E＜＞3 THEN 260\％		
1850	$V(8)=$ INT（ $V(2)$ \＆$V(3) / V(6)$ \＆$($	2476	$V(3)=.99$	3119	PRINT
	$1 /((1+V(3) / V(6)) \wedge(V(6)$ \＆$Y$ ）	248б	$\mathrm{I}=\varnothing$	3126	PRINT＂TOTAL OWED：\％＂；V（1）
		249ø		3130	B0TO 267®
1869	PRINT		$(1+V(3) / V(6)) \wedge(-V(6) * Y))$ ）	3149	C5ma
187¢	PRINT＂REGULAR WITHDRAWAL		（1øぁ＋．5）／1øø	3150	N5 $=$ ¢
	S：\％＂；V（ 8 ）	25øø	TE＝ABS（V） 3 （ -1 ）／2	3169	$F=0$
$188 \emptyset$	GOTO 66ø	2510	$\mathrm{I}=\mathrm{V}$（3）	3176	$\mathrm{P} 1=0$
1896	GOSUB 5340	2520	IF ABS（P－V（2））／V（2）＜．$¢ \square$	3186	$11=\emptyset$
19øø	PRINT＂NET PRESENT VALUE：		ø65 THEN 258®	3190	GOSUB 5340
	\＄＂	2536	IF P＜V（2）THEN 2368	3260	TITLE¢＝＂LOAN AMORTIZATIO
1910	PRINT	2540	$V(3)=V(3)+T E$		N SCHEDULE＂：GOSUB TITLEB
1920	PRINT＂INITIAL INVESTMENT	25550	GOTO 2496		
		2566	$V(3)=V(3)-T E$	3210	GOSUB 4676
1930	$\mathrm{C}=1$	257\％	GOTO 2496	3220	B0SUB 4890
1946	G0sub 385ø	258\％	$V(3)=$ INT（V（3）+1 ¢G®®t． 5 ）／1	3230	B0SUB 4720
1959	GOSUB 4729		ตดถอ	3246	G0SUB 4930
1966	GOSUB 476』	2596	G08UB 5®3¢	325\％	PRINT＂\＃OF PAYMENTS YEAR
1976	PRINT＂CASH FLOW（＋／－）＂	2600	IF E＜＞4 THEN 2630		LY＇
1989	PRINT	2619	$V(4)=-\operatorname{LOG}(1-V(3)$ \＃V（2）／（V）	3266	GOSUB 385®
199\％	NV $=-V(2)$			3276	PRINT＂ENTER THE PERIOD 0
2ø6ロ	FOR I＝1 TO V（4）		$V(6)+1)$ ）		F THE YEAR IN WHICH THE L
2910	PRINT＂CASH FLOW－YEAR＊	2620	GOSUB 5ø6ø		OAN BEGAN＂
	$" ; I$	2630	IF E＜＞7 THEN 2670	3280	INPUT N
2029	INPUT A ${ }^{\text {S }}$	2640	$V(7)=$ INT $(V(3)$ \＆$V(2) /(V(6)$ t	3296	NE $=\mathrm{N}$
2639	$A=V A L$（ $A \$$ ）		$(1-(V)$	3366	$N P=(V(4) * 12+V(5)) /(12 / V(6)$
2940	$N V=N V+A /(1 V(3)+1) \wedge 1)$		））\％ 1 （øø＋．5）／1øø		
2659	NEXT I	2650	PRINT	3316	$N Y=$ INT $(() N-1)+N P) / V(6)+.9$
2960		2660	PRINT＂REQ PAYMENT：\＄＂；$V$（7		9）${ }^{\text {PRINT }}$－${ }^{\text {a }}$
267\％	PRINT		$1$	3329	PRINT＂ENTER THE RANGE OF
268\％	PRINT＂NET PRESENT VALUE：	267\％	GOSUB 5210		YEARS YOU＇D LIKE TO EXAM
	\＄＂；NV	2689	GOTO 2129		INE（FIRST，LAST）＂
2096	TE＝NV	269\％	GOSUB 534ø	3330	INPUT Fi， 1
2100	G0SUB 5159	27øø	TITLE $=$＝＂REMAINING LOAN L	3340	IF L1＜＝NY THEN 3366
2110	B0T0 669		IABILITY＂：GOSUB TITLEBAR	3356	L1mNY
2120	GOSUB 5340	2710	PRINT	336\％	FOR J1＝1 TO Li
2136	TITLE¢ $=$＂LOANS＂：GOSUB TI	2720	GOSUB 467ø	3370	IF J1＜F1 THEN 339\％
	TLEBAR	2730	GOSUB 4890	3380	G0SUB 525ø
2149	GOTOXY 21，5：PRINT＂1）REG	2746	GOSUB 4726	339\％	FOR $\mathrm{J}=1$ TO $V(6)-\mathrm{N}+1$


34øø	$\begin{aligned} & I=I N T(P+V(3) / V(6) * 1 ø \varnothing+.5) \\ & / 1 \emptyset \varnothing \end{aligned}$	$\begin{aligned} & 408 \varnothing \\ & 409 \varnothing \end{aligned}$	GOSUB 441ø   INPUT A\＄	$\begin{aligned} & 48 \varnothing \varnothing \\ & 481 \varnothing \end{aligned}$	PRINT＂FOR \＃OF MONTHS＂ $C=4$
3419	NS $=$ NS +1	41 ¢0	IF ASC（A ）＞57 THEN 4130	4826	G0SUB 385ø
3429	$\mathrm{PP}=\mathrm{V}(7)-\mathrm{I}$	4116	T＝VAL（ ${ }^{\text {S }}$ ）	4839	$Y=V(C-1)+V(C) / 12$
3430	IF 1 1く＞NY THEN 3470	4120	GOTO 499\％	4849	RETURN
3448	IF N5＜＞NP THEN 3479	4136	FOR I＝1 TO 8	4859	PRINT＂＊OF PERIODS（COMP
3459	$\mathrm{PP}=\mathrm{P}$	4140	IF A\＄＜＞MID ${ }^{(V \%, I, 1) ~ T H E N ~}$		OUNDING，DEPOSITS，WITHDR
3460	$\mathrm{F}=1$		417ø		AWALS，PAYMENTS）YEARLY＂
3470	IF $\mathrm{J} 1<\mathrm{F} 1$ THEN $35 \emptyset \square$	4150	PRINT V（I）	4860	$\mathrm{C}=5$
3480		4160	$\mathrm{T}=\mathrm{V}(\mathrm{I})$	487\％	GOSUB 385ø
	），2，LEN（STR象（N5））－1）：TAB（	4170	NEXT I	$4889$	RETURN
	S1）；INT（P\％1	4180	FOR $J=1$ TO 6	4899	PRINT＂PAYMENTS＊
3490	PRINT TAB（S2）；INT（PP\＄1øø＋ ．5）／1 $ø \emptyset ;$ Q ；TAB（S3）；	4190		4969 4916	$\begin{aligned} & C=6 \\ & \text { GOSUB } 385 \emptyset \end{aligned}$
3560	$\mathrm{P}=\mathrm{P}+\mathrm{I}-\mathrm{V}(7)$	4200	ON J GOSUB 446历，4480，45®®	4926	RETURN
3510	IF $F=\emptyset$ THEN $354 \emptyset$		，452б，454б，4560	4936	PRINT＂TERM OF LOAN：＂
3529	$\mathrm{P}=\square \mathrm{\square}$	4210	NEXT J	4946	GOSUB 476®
3530	$J=V(6)$	4220	FOR $K=1$ TO 4	4956	GOSUB 480¢
3540	IF J1 $<$ F1 THEN $357 \square$	423ø		496ø	RETURN PRINT
3559	PRINT I；TAB（S4）；INT（P \＆ 1 ■ ＋．5）／1øø；	424\％	425ø 0 K GOSUB 429ø，434ø，441ø	4976 $498 \emptyset$	PRINT＂FUTURE VALUE：\％＂；V   1）
3560	PRINT I $1=I 1+I$	4250	，${ }^{\text {44EXT }} \mathrm{K}$	4990	RETURN
3580	$11=11+1$ $P 1=P 1+P P$	4268	IF MS $=\emptyset$ THEN 469の	5ø®\％	PRINT
3590	$\mathrm{CS}=\mathrm{C} 5+1$	4270	M5＝${ }^{\text {g }}$	5610	PRINT＂REQUIRED INVESTMEN
3695	IF CS＜＞D5 THEN 367 D	4289	RETURN		T：${ }^{\text {＂}}$ ；$V(2)$
3610	IF $\mathrm{J} 1<\mathrm{F} 1$ THEN 367 D	4290	FOR I＝1 TO 8	502．	RETURN
3629	GOSUB 521ø	4300	PRINT MID ${ }^{(1)}$（V）， $\left.\mathrm{I}, 1\right)$ ；＂；V	503\％	PRINT
3630	GOSUB 5340		（I）	8	PRINT＂ANNUAL INT RATE（\％
3640	C5 $=$ ¢	4316	NEXT I		
3659	IF $\mathrm{J}=\mathrm{V}(6)-\mathrm{N}+1$ THEN $367 \emptyset$	4320	PRINT	505\％	RETURN
3660	GOSUB 525פ	4330	RETURN	5669	$V(5)=V(4)-I N T(V(4))$
3679	NEXT $J$	4340	PRINT＂IN WHAT VARIABLE	5ø7\％	$V(5)=$ INT（INT（12\％V（5）${ }^{\text {\％}} 10$.
3689	IF J1＜F1 THEN 379ø				5）／1币）
3690	IF F＝g THEN 3720	4359	INPUT A\＄	5080	$V(4)=$ INT $(V(4))$
37øø	GOTOXY $\varnothing, \varnothing 1$	4360	FOR $I=1$ TO 8	5990	IF $V(5)<>12$ THEN 512．
3710	PRINT＂FINAL PAYMENT ：\％＂；	4376		5169	$V(4)=V(4)+1$ $V(5)=9$
	INT（ $(P P+I) \div 1 \emptyset \emptyset+.5) / 1 \emptyset \emptyset$		$439 \emptyset$	5116	$V(5)=$ ¢
3729	PRINT	4380	$V(I)=M$	5120	PRINT
3739	PRINT＂TOTAL INT PAID IN	4390	NEXT I	5136	PRINT＂解 OF YEARS AND MON
	YR＂；J1；＂：${ }^{\text {¢ }}$ ；INT（I1＊1øøt．	44ஏø	RETURN	5149	THS：＂；V（4）；＂，＂）V（5） RETURN
	5）／1øø	4	COLOR 2，1：GOTOXY ஏ，$:$ PRIN T Cø\＃；＂＂；C1事；＂MEM＝＂；MiC	5150	PRINT
3748	PRINT＂TOTAL PRINC PAID I  		OLOR 1， 1 ，	5169	IF TE＞$=\varnothing$ THEN $519 \%$
	$+.5) / 1 \varnothing \varnothing$	4420	PRINT	5170	PRINT＂THIS IS A LOSING I
3759	IF $F=1$ THEN $383 \emptyset$	4430	RETURN		NVESTMENT．
3768	IF $\mathrm{J} 1=\mathrm{L} 1$ THEN $383 \emptyset$	444\％	$M 5=1$	5189	RETURN
3776	GOSUB 5210	4450	RETURN	5196	PRINT＂THIS IS A PROFITAB
3789	GOSUB 5340	4466	$\mathrm{M}=\mathrm{M}+\mathrm{T}$		LE INVESTMENT．＂
3796	$C 5=0$	4470	GOTO 4579	5260	RETURN
389ø	$P 1=0$	448ø	$M=M-T$	5210	PRINT
3810	$I 1=\emptyset$	4496	GOTO 4570	5220	COLOR 2，2：PRINT＂Press an
3829	$\mathrm{N}=1$	4596	$\mathrm{M}=\mathrm{M}$＊ T		y key to continue＂；${ }^{\text {color }}$
3836	NEXT J1	4510	GOTO 4570		1，1
3840	GOTO 2670	4520	$M=M / T$	5230	$A \equiv \operatorname{INP}(2)$
3850	$\mathrm{C}=\mathrm{C}+1$	4530	GOTO 457ø	5240	RETURN
3869	IF C＜＞3 THEN 3890	4540	$\mathrm{T}=\mathrm{M}$	5250	GOSUB 5346
3879	PRINT V（3）\＆ 1 ■ ${ }^{\text {a }}$	4550	GOTO 457ø	5266	PRINT＂LOAN AMORTIZATION
3889	B0TO 39øø	4560	$M=\emptyset$		SCHEDULE FOR YR＂${ }^{\text {PJ1 }}$
3896	PRINT V（C），	4579	PRINT＂MEM＝＂；${ }^{\text {P }}$	5270	PRINT＂PRIN \＃＂V（2）：＂RA
3969	INPUT A\＄	4586	RETURN		TE＂V（3）＊16®\％＂\％＂；＂PAYM
3910	IF LEN（A ）＜＞${ }^{\text {a }}$ THEN 3930	4596	PRINT＂＊FUTURE VALUE \＄＂		\＃＂：V（7）
3926	RETURN	4660	$\mathrm{C}=\square$	5280	PRINT
3936	IF A ${ }^{\text {S }}$＜＂MR＂THEN 399\％	4610	G0SUB 385ø	5296	COLOR 3，1
394ø	PRINT＂MEM＝＂；M；＂USE AS	4620	RETURN PRINT ＂zPRESENT VALUE \＄＂	536\％	PRINT TAB（5）；＂制＂；TAB（11）； ＂BEG BAL＂：TAB（26）＂PRINC＂
3956	VARIABLE HERE（Y／N）＂ INPUT As	4630 4640	PRINT＂zPRESENT VALUE \＄＂		＂BEG BAL＂！TAB（26）；＂PRINC＂ TTAB(41);"INT"
3969	IF A\＄$=$＂N＂THEN 3996	4650	GOSUB 385ø	5318	PRINT TAB（56）］${ }^{\text {END }}$ BAL＂
3979	$V(C)=M$	4660	RETURN	5326	COLOR 1，1
3980	RETURN	4679	PRINT＂PRINCIPAL \＄＂	5330	RETURN
3996	IF As＝＂X＂THEN E＝C：RETURN	4686	$\mathrm{C}=1$	5349	CLEARW 2：FULLW 2：GOTOXY $\emptyset$
		4690	g0sub 385ø		， （
4あぁø	IF A象＂$x$＂THEN E＝CIRETURN	4790	$\mathrm{P}=\mathrm{V}$（C）	5356	RETURN
		4710	RETURN	536\％	TITLEBAR：
4010	$V(C)=V A L$（ $A^{\text {c }}$ ）	4720	PRINT＂ANNUAL INT RATE（\％	5370	A $=$ OB ：GINTIN $=\operatorname{PEEK}$（ $A$
4026	IF C＜＞3 THEN 4ø40		）＂		\＃＋8）
4936	$V(C)=V(C) / 1.0 .0$	4730	$\mathrm{C}=2$	5389	POKE GINTIN＋ø，PEEK（SYSTAB
4940	RETURN	4740	G0SUB 385ø		＋B）：POKE GINTIN＋2，2
4．50	REM CALCULATOR MODE	4750	RETURN	5396	S ${ }_{\text {W }}=$ EINTIN＋4：TITLE $=$
4ஏ6Ø	GOSUB 534\％：TITLE象＝＂Calcu	4760	PRINT＂FOR \＃OF YEARS＂		
	lator Mode＂：GOSUB TITLEB	4770	$\mathrm{C}=3$	546\％	POKE S ${ }^{(1), V A R P T R(T I T L E \%) ~}$
	AR	4780	G0sub 3850		GEMSYS（105）
4976	$M 5=\square$	4790	RETURN	5410	RETURN ©

# Fast IBM Batch File Editor 

Tony Roberts, Production Director

Now it's quick and easy to edit and fine-tune batch files with this DOS utility. It works on any IBM PC or PCjr with an 80-column monitor.

The power of the batch file quickly becomes evident to anyone who works regularly in PC-DOS. The hardy AUTOEXEC.BAT handles a variety of chores each time the system is booted, and any number of other .BAT files stand by, ready to help with such tasks as initializing applications, sending out printer codes, and presenting program menus.

The problem with batch files is that to be effective and helpful, they need to be adjusted as your system grows and your applications change. Performing the necessary batch-file maintenance, however, is often so cumbersome that it's discouraging. Loading a full-blown word processor to edit a five- to tenline batch file can be a lot more time and trouble than it's worth.
"EdBat" solves this problem by focusing all its energy on your batch files. EdBat is without frills, but it's fast and easy to use.

## What EdBat Does

EdBat is a full-screen editor with very limited features. Because it is designed for speed, it limits itself to files of fewer than 512 bytes-adequate for most batch files. (If your file is longer, you're probably better off with a more sophisticated editor.)

When called, the program clears the screen and displays the file you want to edit. Using the cursor keys, you can move to the
appropriate place, make the necessary changes, and press Alt-S to save the edited file. It is not impossible to open a file, edit it, close it, and be back at the DOS prompt in as little as 15 seconds.

The price you pay for this fast operation is that EdBat has very few features. You're essentially limited to the regular character keys and the cursor keys. The Insert key does not work, the Delete key does not work, nor do the function keys perform any function. The Backspace key moves the cursor back a character, but it does not perform a delete.

If you were writing a novel, these restrictions would be serious, but in batch file editing, none of them is particularly restrictive. With batch files, you're usually just performing one or two simple operations such as adding, deleting, or correcting a line. EdBat can handle all these tasks efficiently.

## Using The Program

EdBat is a machine language program that is activated from the DOS prompt. The program listed below, "EdBat Loader," is a BASIC program that creates the file EDBAT.COM from the information in BASIC DATA statements. Type in EdBat Loader using the "IBM Automatic Proofreader," save a copy to disk, and then run it once to create EDBAT.COM.

To run EdBat, enter this line from the DOS prompt:

## EDBAT filename

(The EDBAT.COM file must be on the disk in the current drive when you enter this command.) Filename is the name of the file you wish to
edit. Full drive and subdirectory specifications are allowed when indicating a filename. If the file is too long or if EdBat is unable to open the file, the program will print a message and exit. If the file you have specified does not exist, EdBat assumes you are creating a new file.

In a matter of seconds, the file you are to edit is displayed on the screen below a line containing the program title and the name of the current file. If you have started a new file, the screen's work area will be blank.

Use the cursor keys to move around the file, editing as needed. Notice that a triangle signals the end of each line. If you decide to cut a line short, move to the appropriate spot and press Enter. A triangle is inserted and the cursor moves to the beginning of the next line. The screen may continue to show characters beyond the end-of-line marker, but they will be ignored when the file is saved.

To delete an entire line, simply move to the first position on that line and press Enter. An end-of-line marker appears at that spot, indicating that the line will be ignored.

Inserting a line is slightly more difficult since there is no insert function. Move the cursor to the end-of-line marker on the line that will precede your new line. Press $\mathrm{Ctrl}-\mathrm{Y}$ and a down-arrow character $(\downarrow)$ will replace the end-of-line marker. Add the new line right after the down arrow and press Enter as usual. When the file is saved, the lines will be adjusted.

## Saving The Changes

When you're finished editing, press

Alt－S to save the file．The program＇s save routine reads the screen and saves what it sees to your file．It begins with the first line of the text area and continues until it finds a space in the first position of any line．EdBat ignores any characters in a line which follow the first end－ of－line marker．

The only other option the pro－ gram offers is Alt－Q，the Quit op－ tion，which returns you to DOS without changing the original file． In nearly every case，your entire file will fit easily on the screen．If part of your file scrolls off the screen， use Alt－Q to quit and find another method of editing the file．EdBat cannot save what it cannot see．

Unlike many word processors， EdBat does not make a backup of your original file．In most cases， though，a backup of a very short file is superfluous．For years，EDLIN， the line editor included with PC－ DOS，had been my batch file editor． Eventually，though，I lost patience with it over the time it spent writing backup files and went to work on EdBat．

## EdBat Command Summary

## Alt－Q Quit

## Alt－S Save

Ctrl－Y Multistatement delimiter（prints as a down arrow）
Enter End－of－line（prints as left－pointing triangle）
Space Space in first position of line sig－ nals text end

## EdBat Loader

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing in
Programs＂in this issue of COMPUTEI．
HL $1 \emptyset$ CLS
EI $2 \emptyset$ OPEN＂EDBAT．COM＂AS 1 LEN
FC $3 \emptyset$ FIELD 1， 1 AS A $\$$
GP $4 \varnothing$ PRINT：PRINT＂Writing EDBAT． COM to disk．Please wait．＂
6C $5 \emptyset$ FOR $I=1$ TO 8：READ B\＄：GOSUB 13ø：NEXT I
CH 6 FOR $I=1$ TO 75：B\＄＝＂5F＂：GOSU B 13ø：NEXT I
6月 7 B B $=$＂ 24 ＂：GOSUB 130
OF $8 \emptyset$ FOR $I=1$ TO 74：B\＄＝＂ø＂：GOSUB 130：NEXT I
H月 96 FOR $I=1$ TO 648：READ B\＄：GO SUB 13פ：NEXT I
081 1ø CLOSE
HA $11 \emptyset$ PRINT：PRINT＂EDBAT．COM has bean created．＂
LO 126 END
MF 136 REM write byte to disk
QO $14 \varnothing$ LSET A\＄$=$ CHR $\$\left(V A L\right.$（＂$\& H^{\prime \prime}+B$ \＄）
LK $15 \emptyset$ PUT \＃1
MH $16 \emptyset$ RETURN

DN $17 \emptyset$ DATA E9，EØ， $6,45,64,4$ 2，61，74，2，$\quad$ g
CE $18 \emptyset$ DATA $2,5 \emptyset, 6 \mathrm{C}, 65,61,7$ $3,65,20,73,76,65,63$ ，69，66，79，26
EK $19 \varnothing$ DATA $66,69,6 C, 65,6 E$ ， 61， $6 \mathrm{D}, 65,2 \mathrm{E}, \mathrm{D}, \mathrm{A}, 24$ ， 45，72，72，6F
EM $26 \emptyset$ DATA $72,2 \emptyset, 6 F, 7 \emptyset, 65$ ， $6 E, 69,6 E, 67,29,66,6$ 9，6C，65，2E，D
BL 216 DATA A， $24,46,69,6 C, 6$ $5,2 \sigma, 74,6 F, 6 F, 2 \sigma, 6 C$ ，6F，6E，67，2E
BP 229 DATA $D, A, 24, F C, B F, 54$ ，1，$B E, B \emptyset, G, A C, A 2,9$ 9，1，FE，E
IJ 236 DATA 99， $1,3 C, 5,75,9$ ， $B A, A 1,1, E 8,7,2, E B$ ， 25，2，$A C$
FH $24 \mathscr{0}$ DATA $3 C, D, 74,3, A A$ ，EB ，$F B, E B, B A, 1,73, E, 3$ D，2，©， 74
日A 25 D DATA 3ø，BA，BC，1，EB，E $C, 1, E B, A, 2, B A, 26,4$ ，8B，1E，9A
QI 266 DATA $1,8 B, E, 9 F, 1, B 4$ ， 3F，CD，21，3B，6，9F， 1 ，75，C，EB
AD $27 \emptyset$ DATA $A \mathscr{}$ ， $1, B A, D 2,1$ ，E8 ，CB，1，E日，E9，1，A3， 9 6，1，EB， 91
HA $28 \emptyset$ DATA $1, E B, C B, 1, B A, 3$ ， $1, E 8, B 9,1, C 6,6,9 E$ ， $1,5, \mathrm{C} 6$
KF 290 DATA $6,9 \mathrm{D}, 1,14$ ，E8， $6 \emptyset$ ，1， $\mathrm{BE}, 55,1,33, \mathrm{C9}, 8$ $A, E, 99,1$
HP $3 ஜ \emptyset$ DATA $A C, 8 A$ ，$D \emptyset, 8 \emptyset, F A$ ，
61， $72,3,8 \varnothing, E 2, \mathrm{DF}, \mathrm{EB}$ ，9C，1，E2，FG
HL $31 \emptyset$ DATA C6， $6,9 E, 1,2, C 6$ ， $6,9 \mathrm{D}, 1, \mathrm{E}, \mathrm{EB}, 3 \mathrm{~A}, 1$ ，
日3，3E， 96
OJ 329 DATA $1, ~ \emptyset, 74,1 F, F C, B E$
，26，4， $8 B, E, 96,1, A C$ ，BA，DG， $8 \emptyset$
JN $33 \emptyset$ DATA $F A, D, 75,7, B 2,11$ ， $\mathrm{EB}, \mathrm{71}, 1, \mathrm{~B} 2, \mathrm{D}, \mathrm{EB}, 6$ C，1，E2，EC
H月 34ø DATA E8， $14,1, \mathrm{B4}, ~ Ð, \mathrm{CD}$ ，16，3C， $9,74,13,3 C$ ， D，74，A， SC
NO $35 \emptyset$ DATA $8, B 4,4 B, 74,1 \mathrm{C}, 3$ C， $19,72, E A, E B, 1 F, 1$ ， EB，ES，Bפ，FC
PE $36 \mathscr{D}$ DATA $48,75, \mathrm{E}, 8$ ， $8 \mathrm{E}, 9$ $E, 1,2,74, D 9, F E, E, 9$ $\mathrm{E}, 1, \mathrm{~EB}, \mathrm{E} 6$
$0837 \emptyset$ DATA $\varnothing, 8 \emptyset, F C, 4 B, 75, \mathrm{E}$ ， $8 \varnothing$ ， $3 \mathrm{E}, 9 \mathrm{D}, 1,5,74, \mathrm{C}$
6，$F E, E, 9 D$
D6 $38 \emptyset$ DATA 1 ，E8，D3，$\emptyset, 8 \emptyset, F C$ ， $4 \mathrm{D}, 75, E, 8 \emptyset, 3 E, 9 \mathrm{D}$, 1， $4 \mathrm{~F}, 74, \mathrm{B3}$
05 $39 \emptyset$ DATA FE，6，9D，1，E8，Cø ，$\emptyset, 8 \emptyset, F C, 5 \emptyset, 75, E, 8$
Ø，ЗE，9E， 1
M 4øø DATA $18,74, \mathrm{~A}, \mathrm{FE}, 6,9$ $E, 1, E B, A D, \varnothing, B D, F C$ ， $10,75,6, E B$
QK $41 \emptyset$ DATA FD，$\emptyset, E 8, F, 1,8 \varnothing$ ， FC， $1 \mathrm{~F}, 75,89, \mathrm{C} 7,6,9$ $6,1, \square, \square$
JD $42 \emptyset$ DATA $\mathrm{BF}, 26,4, \mathrm{C}, 6,6$ ， 9 E ，1，2， $\mathrm{C} 6,6,9 \mathrm{D}, 1,5$ ， $\mathrm{EB}, 87, \varnothing$
ML $43 \varnothing$ DATA C6， $6,95,1, ~ \emptyset, ~ B 4$ ， B，CD，1ø， $3 C, 2 \emptyset, 74,4$ E，3C，11， 75
㫙 44 Ø DATA 9，FE，6，9E，1，EB， $6 F, 9, E B, D E, 89,3 E, 9$ 5，1，59， 77

DJ $45 \emptyset$ DATA $18, B 4,8, C D, 1 \varnothing, 3$
C， $11,74,16,3 C, 19,75$ ， $1 \mathrm{C}, \mathrm{B}, \mathrm{D}, \mathrm{AA}$
DE $46 \emptyset$ DATA $F F, 6,96,1, B \emptyset, A$ ， $E B, 11,95, \mathrm{Bg}, \mathrm{D}, \mathrm{B4}, \mathrm{~A}$ ，$A B, 83,6$
AB 470 DATA 96， $1,2, \mathrm{FE}, 6,9 \mathrm{E}$ ， $1, E B, A F, A A, F F, 6,96$

LC $48 \emptyset$ DATA 95，1，FE，6，9D，1， $E B, 2 E, \varnothing, E B, B F, F B, B$ A，55，1，B4
CF $49 \varnothing$ DATA $3 \mathrm{C}, \mathrm{B9}, \boxed{ } 10, \mathrm{CD}, 21$ ， $73,9, B A, B C, 1, E B, 6$ 5，6，E8， 83
LA $5 \emptyset \emptyset$ DATA $\emptyset, 8 B, \mathrm{DB}, 8 \mathrm{~B}, \mathrm{E}, 96$ ，1， $\mathrm{BA}, 26,4, \mathrm{B4}, 46, \mathrm{C}$ D，21，EB， 21
HD $51 \varnothing$ DATA $\sigma, E B, 5 B, ~ Б, ~ E B, ~ 6 D ~$ ，$\emptyset, 8 A, 36,9 E, 1,8 A, 1$ 6，9D，1，B4
C8 $52 \emptyset$ DATA $2, C D, 1 \emptyset, C 3, F B, B$ $A, 55,1, B ⿹, 2, B 4,3 D$ ， CD，21，AJ，9A
LC 530 DATA $1, C 3,8 B, 1 E, 9 A, 1$ ，B4， $3 \mathrm{E}, \mathrm{CD}, 21, \mathrm{C}, \mathrm{BA}$ ， Dפ，8פ，FA，D
PH $54 \emptyset$ DATA 74， 8 ，E8， $25, \emptyset$ ，FE ， $6,9 \mathrm{D}, 1, \mathrm{CJ}, \mathrm{B2}, 11, \mathrm{E}$ $B, 1 B, D, B 2$
JD 550 DATA D，E8， $16,5, \mathrm{~B}, \mathrm{~A}$ ， $E B, 11,6, F E, 6,9 E, 1$ ， C6，6，9D
 $C D, 21,58, C 3, B 4,2, C$ D，21， $\mathrm{C} 3, \mathrm{B4}$
I6 57ø DATA $\mathrm{F}, \mathrm{CD}, 1 \emptyset, 88,3 \mathrm{~B}, 9$ C，1，B4，$\quad, \mathrm{B}, 2, \mathrm{CD}, 1$ Б，B4，5，Bø
BF 58ø DATA $\emptyset, C D, 1 \emptyset, C 3, C D, 2$


# 3-D Tic-Tac-Toe For Atari ST 

David Bohlke

This new rendition of an old favorite lets you match wits against the ST computer in a three-dimensional contest. You can even, if you like, make changes to the program which will make the computer play more aggressively or more cautiously. "3-D Tic-Tac-Toe" runs on any Atari 520ST or 1040ST computer with a color monitor.
"3-D Tic-Tac-Toe" is a strategy game where you take on the Atari ST in a battle of wits. The object of the game is similar to the traditional Tic-Tac-Toe game, except this version takes place in a simulated three-dimensional space containing four game boards. To win, you must place four pieces in a row. The row may extend across a single plane or vertically though all four planes. Though it's not a flawless player, the ST will provide you with a formidable opponent.

## Entering Tic-Tac-Toe

Type in the program as listed and save it to disk. The program works in either low- or medium-resolution modes. When you run the program, it randomly selects whether you or the computer should go first. The computer needs only a few seconds to pick its move and places a red uppercase $C$ at the selected square. (The ST takes less time to move if

"3-D Tic-Tac-Toe For Atari ST" challenges you to best the computer in a three-dimensional strategic simulation.
you refrain from moving the mouse pointer around while it is calculating; moving the pointer freezes normal BASIC operations. In addition, you should avoid moving the slider bars on the output window, since this may jumble part of the game board.)

It's your turn when the screen prompt appears. Use the mouse to move to the square of your choice, then click the left mouse button. Due to the slowness of ST BASIC, you may need to hold the button down for as long as one second before the computer recognizes your choice. A blue uppercase $H$ appears on the square you have chosen. The $H$, of course, stands for the Human, you, and the $C$ stands for Computer.

## Programmed Strategy

You may be interested in learning how the ST plays this simple strategy game. The computer does not use a "look-ahead" technique, but rather determines its move by assigning a numeric value to each empty square. This value is explained in the table, which shows a sample Tic-Tac-Toe combination of four squares in a row, along with the corresponding BASIC line number that assigns the value.

## Combination Values

Line	Pattern	Value
540	HHHH	human wins   computer wins
540	CCCC	33 points
550	H_HH	3 points
560	-H_H	5 points
570	CC_C	27 points
580	CC_C	6 points
590	C_CC	1 point

Each computer piece is stored with a value of 5 in the V() array, and each human piece has a value of 1 in the array. So if a row of four squares contains two computer pieces, that combination has a value of 10 . Lines 540-600 then convert these combination values into point values, which are evaluated to choose the next move. Note that the order of pieces in the table has no significance: What matters is the number of pieces and blanks. In the third entry, for instance, the se-
quence H_HH merely indicates that the row contains one blank and three human pieces, in any order. No value is assigned to a row that contains both computer pieces and human pieces since it's clearly impossible to win on that row.

This game is designed so that the computer plays a nearly equal balance of offense and defense. If you would like the computer to play more aggressively, increase the values for offensive moves in lines 590 and 600 . For a more conservative game, you can increase the values in lines 560 and 570 . With a little experience, you'll find that a change of just one or two points in these four lines will make a significant difference in the computer's move strategy.

## 3-D Tic-Tac-Toe

## 1øø fullw 2:clearw 2

dim $b(64), v(64), x(64), m(6$ 4,28 ) : gosub $67 \emptyset$
$12 \emptyset$ new game
136 clearw 2: color 1:print:fo r s=1 to 64:gosub 87 gotoxy $x-1, y: p r i n t " \ _$") : next
15ø for $i=1$ to 64:b(i) $=\varnothing: x(i)$ $=\emptyset: v(i)=\emptyset:$ next $: w(1)=\emptyset: m v=$ Ø
16ஏ randomize $\boldsymbol{6}:$ if rnd (1) $<.5$ then $s=i n t(\operatorname{rnd}(1) * 64)+1: g$ osub 84ø:coior 2:goto 37ø
$17 \emptyset$, human moves
18ø gosub 84б:color 4:print:g otoxy Ø, Ø: print"Point and Click to MOVE"
gosub mousexy:mx=int(msx/ 9) : my=int (msy/9.3)

2øø sq=ø:if msb<>1 then $19 \emptyset$
210 for $s=1$ to 64:gosub 879
220 if $y=m y-2$ and $a b s(x-m x)<=$ 1 then $5 q=5$
23ø next:if sq=ø then $19 \emptyset$
240 s=sq:gosub 87ø
$25 \varnothing$ if $b(s)<>\varnothing$ then $19 \varnothing$
$26 \emptyset \quad 5 x=1: g o t a x y x, y: p r i n t " H_{-} "$ ;:b $(5)=1: v(5)=\varnothing$ :gosub $5 \overline{2} \emptyset$ if $w(1)>\varnothing$ then $44 \varnothing$ , computer moves gosub 84ø:color 2:print:g otoxy $\Phi$, ø: print"Atari ST" 5 Mave
$306 \quad 5 x=9:$ for $s=1$ to 64:if b (s $)>\varnothing$ or $x(5)=\varnothing$ then $31 \emptyset$ el se $v(5)=\varnothing$ : gosub $52 \varnothing$
310 next
32ø s=ø: $h=\emptyset:$ for $i=1$ to 64
330 if $v(i)=h$ and rnd(1)<. 3 a nd $h>\sigma$ then $h=v(i): s=i$ if $v(i)>h$ then $h=v(i): s=i$

## 35g next

$36 \varnothing$ if $5=\varnothing$ then gotoxy $\varnothing, \emptyset: p r$ int" DRAW game
1:a\#m"D":color 1:w(1)=1: $w(2)=2: w(3)=3: w(4)=4$ : got -460
$55 \varnothing$ if $p=3$ then $q=33$ :goto 620
gosub B7ø:b $(5)=5: \vee(5)=\varnothing$ for $i=1$ to 4: gotoxy $x, y: p$ rint" ${ }^{\text {"; }}$ :sound $1,8,1,4,1$ $\square$
9ø gotoxy $x, y: p r i n t " C$ ";:sou nd $1,8,1,5,16:$ next: mound 1, Б, ஜ, Ø, ஜ
$50 \quad 5 x=1$ : for $i=1$ to $64: \times(i)=\varnothing$ anextsgosub 52g
if $w(1)>0$ then $45 \varnothing$
goto $17 \%$

- game over
gotoxy $\mathrm{g}_{\mathrm{g}}$ If print"You WIN
\$="H": goto 460
gotoxy ø, øs print"Computer WINS ";:a\$="C"
gotoxy $0,1: p r i n t " C L I C K ~ f o$ $r$ new game";
for $i=1$ to 4:s=w (i): gosub 870: gotaxy $x, y: p r i n t$ a\$; inext: for $i=1$ to 99 : next mound $1, B, 5,5,10$ : sound 1 , $\varnothing, \varnothing, \varnothing, \varnothing$
for $i=1$ to 4:s=w(i): gosub 870:gotoxy $x$, y:print" " : :next: for $i=1$ to 99:next gosub mousexy:if msb<>б $t$ hen $12 \emptyset$ else $47 \varnothing$
, adjust value array $V$ (64 , for computer move at sq uare 5
@g=ø: $j=1:$ for $i=1$ to $m(5, \emptyset$ )
$p=\boxed{2}$ for $k=1$ to 4:p=p+b (m) $5, j)): j=j+1:$ next: $q=\emptyset$
if $p=4$ or $p=2 \varnothing$ then for $k$ $=\emptyset$ to $3: w(k+1)=m(s, j+k-4)$ :next
if $p=2$ then $q=5$ : goto 620
if $p=1$ then $q=2$ : goto 620
if $p=15$ then $q=77$ : goto 62 $\emptyset$
if $p=1 \varnothing$ then $q=6$ : goto 629 if $p=5$ then $q=1$ :goto 620 if $s x=1$ then 620 else 660
$v(5)=v(s)+q$ iif $b(s)>\varnothing$ the ก $v(5)=\varnothing$
if $5 x=\varnothing$ then $66 \varnothing$
for $k=\emptyset$ to $3:$ if $b(m(5, j+k$ $-4))=\emptyset$ then $\times(m(5, j+k-4))$ $=1$
next
next:return
, load legal win combos i nto M(64,28)
clearw 2:color 1:print" L oading DATA ..."
for $i=1$ to $64: m(i, \emptyset)=\emptyset:$ ne $x t$
for $i=1$ to 16: $a=1$ *4-3: for $j=1$ to $4: w(j)=a: a=a+1: n e$ xt:gosub 82Ø: next
for $i=1$ to 4: for $j=i$ to $i$ +48 step 16:n=j
for $k=1$ to 4:w(k)=n:n=n+4 :next:gosub 82פ:next:next for $i=1$ to 16: for $j=\emptyset$ to 3:w(j+1)=j*16+i:next:gosu b 820:next
740 for $i=1$ to 28: for $j=1$ to 4iread a:w(j)=a:next:gosu b 820:next:return
$3,12,27,42,57,16,31,46,61$
789 data $13,25,37,49,14,26,38$ $, 59,15,27,39,51,16,28,4 \varnothing$,

79 data $1,6,11,16,17,22,27,3$ $2,33,38,43,48,49,54,59,64$
Bøø data $4,7,16,13,26,23,26,2$ $9,36,39,42,45,52,55,58,61$
81ø data $1,22,43,64,4,23,42,6$ $1,13,26,39,52,16,27,38,49$

826
830
$84 \varnothing$

B5ø
$86 \varnothing$, input s=square to move to, returns $x, y$ as print position
$870 \quad a=\operatorname{int}((s-1) / 16): y=a \$ 4+3: b$ =s-ala 16
88ø $c=i n t((b-1) / 4): y=y+c-2: x=$ (4-a) $4+c$
896
9øø $x=x+(b-c * 4)$ ) $3-1:$ return mousexy: poke contr1, 124:p oke contrl+2, $\emptyset$
poke contrl $1+6$, $\varnothing$ : vdisys ( $(\square)$
929 msx =peek (ptsout) :msy=peek (ptsout+2): msb=paek (intou t) : return

\footnotetext{
DUST COVERS
$\star$ CUSTOM MADE TO FIT
$\star$ HEAVY 32 -oz. VINYL ANTI-STATIC
$\star$ EXTENDS EQUIPMENT LIFE
$\star$ Choice of Colors Light Tan or Brown

MP	PRINTERS
C.64; Plus 4	C-MPS/803, C-1520 $\quad 8.00$
C. $128 \quad 13.00$	Panasonic 1090/91 ... 13.00
Datassette (C2N) ....... 5.00	Gemini 10 \& Star 10's 13.00
Amiga $1000 \quad 13.00$	Gemini 15 \& Star 15's 16.00
(W/Amigd Mon. Stacked) 28.00	Okidata $92 \quad 13.00$
Keyboard only $\quad 7.00$	Okidata 120/192 $\quad 13.00$
Atari 800XL, 130XE 10.00	Okimate 10/20 $\quad 8.00$
Atari 520 ST $\quad 14.00$	Epson MX/FX/RX80 13.00
520 Keyboard (only) 10.00	Epson LX80/C. $1000 \quad 13.00$
IBM PC XT 28.00	Seikosha SP-1000 13,00
IBM 5051 Keybaord 8.00	Comrex $220 \quad 13.00$
(Dimensions Required	C'Itoh $7500 \quad 13.00$
for IBM Clones)	Citizen MSP 10 .... 13.00
	$027 \quad 13.00$
DISK DRIVES	C/DPS $1101 \quad 16.00$
C.1541, C-1571	
Amiga $31 / 2^{\prime \prime} \mathrm{D} / \mathrm{Drv}$.... 8.00	MONITORS
Amiga $51 /{ }^{\prime \prime} \mathrm{D} / \mathrm{Drv} \quad 9.00$	C.1702, BMC Color 16.00
Indust GT, MSD SD-1 8.00	C.1902/Amiga $\quad 19.00$
MSD SD-2 10.00	Amdek 500-700 19.00
Enhancer $2000-8.00$	T:knika MJ 10/22 19.00
FSD. 108.00	CM-141 (C-1802) $\quad 19.00$
Atari 1050 8.00	Gold Star 13" Color 19.00
	Thompson CM 365.6619 .00
VIDEO RECORDERS $\quad 13.00$	C.1902A/Magnvx 4019.00
State Make	Magnavox $80 \quad 19.00$
Include Dimensions	NEC 1225 (19.00
	$20 \quad 19.00$
PRINTERS	Sakata SC-100 $\quad 19.00$
C. 1525 /MPS $801 \quad 10.00$	Zenitth 122/123
6 /MPS $802 \quad 13.00$	Zenith 131/133 $\quad 23.00$
Order by stating MAKE, MODEL and COLOR CHOLCE - TAN or BROWN with check or money order plus 51.50 per item ( 54.50 max.) shipping and handing (Foreign air extra). Calif. Res. Include $6.5 \%$ State Tar.	
SPECIAL COVERS WILL BE MADE TO YOUR DIMENSIONS. SEND YOUR REQUIREMENTS FOR OUR LOW PRICE QUOTES.	
Crown Cust   9606 SHELLYFIEL DOWNEY,   (213) 86	om Covers   RD., Dept. E   A 90240   -8391

# Rapid Transfer 

Buck Childress

The Commodore 64's BASIC has no built-in search-and-replace function, so renaming variables in a program can be a very time-consuming job. With this utility, you can easily rename any type of variable in a BASIC program. Though it's written in machine language for extra speed, no machine language knowledge is needed to use it.

No matter how well you plan ahead, nearly every BASIC programmer needs to modify his or her work from time to time. Renaming variables is one of the most tedious and exacting tasks you will face as a BASIC programmer. You must painstakingly comb every line of the program to insure that you have changed every reference to the variable involved. Should one reference be overlooked, the program will refuse to run correctly, if at all. The longer the program, the more tiresome the task becomes, and the greater the risk of introducing errors. The next time you find yourself in this situation, give "Rapid Transfer" a try. It automatically renames any variable you choose, whether string, numeric, integer, or array. It's easy to use, and gets the job done in a jiffy.

## Getting Started

Type in the program as listed, then save a copy to disk or tape. To install Rapid Transfer, simply type RUN and press RETURN. The program automatically loads a machine language routine into the memory area beginning at location 50000. Since this memory zone isn't part of BASIC program space, you can load and save BASIC programs without interference.

Next, load the BASIC program you want to work on. To activate Rapid Transfer, type SYS 50000 and press RETURN. It begins by asking you for the old variable name-the name of an existing variable which you want to change. Type in this name, then press RETURN. At this point, you're asked to supply a new name for the variable. Should you happen to make a mistake while answering a prompt, press the INST/DEL key (pressing it twice will start you at the beginning).

You can enter up to ten characters for each variable name, in case you like to use extended names such as HOUSE\$ or MATH\%. If the variable you want to change is an integer or string, you will not be able to enter any additional characters after pressing the \% or \$ key (BASIC syntax doesn't allow it). Also, you can enter a number only after you've entered a letter (another BASIC syntax rule). Should you enter different types of variables, such as renaming a numeric variable with a string variable, Rapid Transfer displays the message TYPE MISMATCH. You'll then be given the option of going ahead with the transfer or starting over.

If the variable you want to change is an array, press the asterisk (*) key. You can do this at any time while you are entering the variable names, and it has to be done only once. Note that Rapid Transfer can tell when a variable is an array and responds accordingly. It is not necessary to enter the parentheses which ordinarily indicate an array-just enter the name itself. For example, to enter an array that you DIMension as $\mathrm{A}(20)$, you would enter A, not A().

After you press the asterisk
key, the message ARRAY? begins flashing at the top of your screen. This is your prompt to enter the number of dimensions in the array. Enter 1, 2, or 3, depending on whether the array has one, two, or three dimensions. After you answer the prompt, the message stops flashing. If you make a mistake or want to cancel the array option, press the English pound ( $£$ ) key. Rapid Transfer will not change an array variable to a nonarray variable, or vice versa, nor will it change the number of dimensions in an array.

After entering the new variable name and pressing RETURN, you'll see the message ARE YOU SURE? $(\mathrm{Y} / \mathrm{N})$. Press Y to proceed or N if you wish to reenter your choices.

## Prescan For Name Conflicts

The first thing you'll notice when Rapid Transfer begins working is the line numbers of your program flashing at the top of the screen. Rapid Transfer is prescanning every line of the program to see whether it already contains a variable with the new name that you have chosen. If a name conflict is found, Rapid Transfer displays a warning message. If the variable is an array, an asterisk appears next to its name (a two-dimensional array has two asterisks, and so forth).

After it finishes the prescan, Rapid Transfer displays the prompt ARE YOU SURE? ( $\mathrm{Y} / \mathrm{N}$ ). If no name conflicts appeared, or if you wish to proceed despite the conflict, press Y. Press N if a conflict is found or if you simply change your mind.

Rapid Transfer now displays the lines of your program as it seeks out the old variables and renames
them. If the old variable doesn't exist in your program, Rapid Transfer displays a warning message indicating that the designated variable can't be found. Again, array variable names are displayed with one, two, or three asterisks, depending on the number of dimensions in the array. When it's done, the program lets you continue with another change (press Y ) or quit (press N).

## Safety Features

Rapid Transfer has several built-in safety features to insure accurate operation. It won't change anything enclosed within quotation marks or anything which appears on a line following a REM or DATA statement. While scanning each line, it also checks for excessive length. If, for example, you decide to change the variable CO\$ to COST\$ and, as a result, one of the program lines will exceed the 80-character logical length, Rapid Transfer aborts operation and displays the line number where the excessive length occurred. It also displays that line as it currently appears in the program so that you can make any necessary adjustments.

In addition, Rapid Transfer can tell the difference between different kinds of variables. For example, let's say that you want to rename the numeric variable A to A1. Rapid Transfer will rename only the numeric variable A. It will not rename any integer, string, or array variables of the same name, nor will it inadvertently change a variable which happens to begin with $A$, such as $A B$. The same holds true for the other types of variables, including arrays. If you have a onedimensional array named A, Rapid Transfer will not change a two- or three-dimensional array of the same name, or vice versa.

Rapid Transfer works equally well with extended variable names. If you have used HOUSE\$ in a home budget program, Rapid Transfer will recognize it as HO\$, exactly as the 64 does. The entire name is present in the program line, but only the first two characters are significant. So you can use and change extended variable names as much as you like, with variables of any type.

Rapid Transfer can be brought to a halt at any time by pressing the RUN/STOP key. Enter SYS 50000 to reactivate it.

## Rapid Transfer

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing in Programs" in this issue of COMPUTE!.
GD $1 \varnothing$ PRINTCHRS (147)CHRS (5)"LO ADING AND CHECKING DATA \{SPACE \}LINE: ": J=5øøøø:L= 45: C=11
GS $2 \emptyset$ PRINTCHRS (19)TAB (31)L:PR INT
CG $3 \emptyset$ FORB= $\quad$ TOC: READA: POKEJ $+B$, $\mathrm{A}: \mathrm{X}=\mathrm{X}+\mathrm{A}:$ NEXTB : READA
DR $4 \emptyset$ IFX < > ATHENPRINT "ERROR IN DATA LINE: "L: END
SJ 5 Ø $\mathrm{X}=\emptyset: \mathrm{J}=\mathrm{J}+12: \mathrm{L}=\mathrm{L}+5: \mathrm{IFL}<685$ THEN2ø
GQ 60 IFL=685 THENC=9:GOTO2の
EE $7 \emptyset$ PRINT"DATA OK AND LOADED ...":PRINT:PRINT"SYS 5øø øø TO ACTIVATE...": END
HM $8 \emptyset$ DATA32,59, 2øø,133,198,13 $3,253,162,96,134,251,142$ , 1793
GF $9 \varnothing$ DATAl $38,2,157,0,2 \emptyset 1,232$, 2ø8,250,2ø2,142,224,2ø1, 1957
PG 1øø DATA142,225,201,169,94; $133,252,141,247,201,162$ ,10,1977
HH 110 DATA $32,71,200,133,254,1$ $66,252,169,1$ бб,157, 6,4, 1538
JD 120 DATAl73,134,2,157, 0,216 ,32,162,2ø0,173,141,2,1 392
AC $13 \emptyset$ DATA2ø1, $2,176,246,32,22$ $8,255,201,13,208,3,76,1$ 641
DA 140 DATAl79,196,201,20,2ø8, $3,76,136,196,201,92,240$ , 1748
AS 150 DATA51, 201, 42, 208, 87, 14 $1,239,201,173,33,268,14$ 1,1725
GX $16 \emptyset$ DATA25,216, 32,36,2øø,2ø 6,221,2ø1,2ø8,17,32,36, $143 \varnothing$
ER $17 \emptyset$ DATA2øø, 238,222,2Ø1,48, $6,32,116,200,76,203,195$ , 1737
DJ 180 DATA32,110,2ø0,206,248, 2ø1,32,162,2ø0, 32,228,2 55,19ø6
QC 190 DATA2ø1,92,2ø8,11,169, $\varnothing$ ,141,239,2ø1,32,11ø,2øø , 1604
JD 2øø DATA76,247,195,2ø1,49,1 $44,2 \emptyset 6,2 \emptyset 1,52,176,2 \emptyset 2,1$ 41,189ø
JP $21 \emptyset$ DATA25, $4,56,233,49,141$, 234,2ø1,32,116,2øø,141, 1432
EK $22 \emptyset$ DATA25,216,140,222,2ø1, $76,134,195,2 \emptyset 1,36,240,4$ , 1690
EB 230 DATA2ø1,37,2ø8,31,166,2 $51,48,14,174,96,2 \emptyset 1,24 \emptyset$ , 1667
PA 240 DATA236,141,253,2ø1,141 ,254,2ø1,76,34,196,174, 192,2099
FR 25 DATA2Ø1,24ø,222,141,255 , 201,133,254,76,90,196,

166,2175
PC 260 DATA254,224,10,144,13,2 $40,2,176,204,162,88,32$, 1549
EM 270 DATA71, 2øб, 230,254,2б8, $195,201,48,144,191,2 \sigma 1$, 58,2øø1
BF 280 DATAl76, 16, 174,96,2ø1,1 64,251,16,3,174,192,2ø1 , 1664
KA $29 \emptyset$ DATA $224,0,24 \emptyset, 173,2 ø 8,8$ ,261,65,144,167,201,91, 1722
MA 30Ø DATA176,163,230,254,166 ,251,157, 0, 201,230,251, 48,2127
FM $31 \emptyset$ DATA12,174,236,201,224, $2,176,15,238,236,261,20$ 8,1923
XS 320 DATA1Ø, 174,237,201,224, 2,176,3,238,237,201,32,
BM $33 \emptyset \stackrel{1735}{\text { DATA } 21 \varnothing, 255,230,252,165}$ ,251,141,247,201,76,121 ,195,2344
XF $34 \emptyset$ DATA174,247,201,16,112, $166,211,32,21 \sigma, 255,2 \sigma 2$, 2ø8,2ø34
DA $35 \emptyset$ DATA250, 142,192,201,142 ,237,201,142,247,261,14 2,255,2352
CR 360 DATA2Ø1, $169,145,32,53,2$ Øø,169,192,162,27,16Ø,1 74, 1684
JM $37 \emptyset$ DATA1 $33,251,132,252,76$, $116,195,166,252,173,33$, 2ø8,1987
GC $38 \emptyset$ DATA157, $0,216,173,96,2 \emptyset$ $1,24 \varnothing, 197,166,251,16,22$ 6,1939
CD $39 \varnothing$ DATAl73,192,201,240,188 ,141,2ø8,2ø1,173,193,20 1,141,2252
RF 4øø DATA2ø9,2ø1,169, Ø, 141,1 $38,2,141,98,201,157,0,1$ 457
AA $41 \varnothing$ DATA2ø1,173,254,201,205 $, 255,2 ø 1,24 \varnothing, 5,162,44,3$ 2,1973
RC $42 \emptyset$ DATA71,2øø,162,64,32,71 ,2øø,32,162,2øø,32,42,1 268
CB $43 \varnothing$ DATA2øø,2ø1,25,240,67,2 Ø1,39,2ø8,242,76,8ø,195 , 1774
PB 440 DATA173,251,2ø1,2ø8,26, $162,96,32,82,200,173,25$ 4,1858
EM $45 \varnothing$ DATA2Ø1,24ø,8,205,97,2ø $1,240,3,32,210,255,32,1$ 724
RP 460 DATA93,2ø0,162,117,76,3 3,197,162,112,32,71,2øø , 1455
BM $47 \emptyset$ DATA162,130,32,71,20ø, 3 2,162,2øø,32,42,2øø,201 , 1464
JE $48 \emptyset$ DATA25, $240,2 \emptyset 2,2 \emptyset 1,39,2$ Ø8,242,169,0,133,198,96 , 1753
GX 49Ø DATA141,235,2ø1,169,1,1 $62,8,141,240,201,142,24$ 1,1882
DG 5øø DATA2ø1,32,59,2øø,133,1 98,168,173,24ø,201,174, 241,2ø20
RP 510 DATA2ø1,133,253,134,254 ,32,216,199,177,253,298 ,14,2ø74
EX 52ø DATAl73,243,2ø1,2ø8,155 $, 238,243,201,141,252,20$

EC $5301,76,2332$
EC 530 DATA60，197，32，216，199，1 77，253，17ø，32，216，199，1 77，1928
JA $54 \varnothing$ DATA253，142，249，2ø1，141 ，250，2ø1，32，205，189，169 ，32，2ø64
KD 550 DATA $32,21 \varnothing, 255,32,216,1$ 99，169，261，133，252，169， 96，1964
EP $56 \square$ DATA174，243，2．01，2ø8，2，1 69，2ø8，133，251，162， 0,14 2，1893
DK $57 \varnothing$ DATA228，2ø1，142，231，2ø1 ，142，242，201，173，232，20 1，246，2434
KM 580 DATA6，142，232，2ø1，142，2 52，2ø1，161，253，24б，28，3 2，1890
BJ 596 DATA $223,199,133,2,32,52$ ，199，165，2，162， $0,193,13$ 62
SR 600 DATA251，208，99，236，251， 161，251，24б，1ø2，32，216， 199，224б
RE 610 DATA76，175，197，142，216， 2ø1，142，244，2ø1，142，246 ，201，2183
CM $62 \varnothing$ DATA142，252，2ø1，32，62，2 9ø，173，245，2ø1，208，16，3 2，1764
RQ 630 DATA $216,199,165,253,166$ ，254，141，24ø，2ø1，142，24 1，201，2419
MG 640 DATA76，73，197，142，245，2 ø1，173，249，2ø1，172，25ø， 2ø1，218ø
FG $65 \emptyset$ DATA2ø5，224，2ø1，2ø8，5，2 ø4，225，201，240，221，141， 224，2299
XJ 660 DATA2ø1，146，225，261，32， 71，200，169，19，141，119，2 ， $152 \varnothing$
FA 676 DATA169，13，141，126，2，14 1，121，2，141，122，2，169，1 143
DG 680 DATA $4,133,198,76,49,168$ ，32，162，2øø，32，216，199， 1469
DD 690 DATA76，142，197，142，227， 2 21，142，228，261，142，233 ，201，2132
SC 760 DATA2б2，134，2，142，230，2 61，173，246，201，208，227， 173，2139
HF $71 \varnothing$ DATA $252,2 \varnothing 1,32,141,200$ ， 164，2，2øø，238，23ø，2ø1，1 77，2ø38
EX 720 DATA $253,2 ø 1,32,240,246$ ， 132，2，238，227，2б1，174，2 39，2185
RF 730 DATA2ø1，2ø8，53，201，40，2 40，195，32，223，199，173，2 28，1993
XC 740 DATA2ø1，2ø8， $7,173,252,2$ 61，2ø8，48，24б，15，164，2， 1719
MQ 750 DATA2ø日，177，253，201，32， 240，249，132，2，2ø1，40，24 の，1967
FR 760 DATA165，32，24，200，205，2 32，2ø1，2ø8，84，173，232，2 61，1957
JE $77 \varnothing$ DATA $2 ø 8,82,2 ø 6,23 \varnothing, 201$ ， 76，224，198，2ø1，46，240，3 2，1938
QA $78 \emptyset$ DATA $32,223,199,173,252$, 2ø1，240，61，173，227，201， 201，2183
DG 790 DATA2，144，162，173，97，2ø
$1,174,243,201,2 ø 8,3,173$ ， 1781
SJ 8 Øø DATA2ø9，2ø1，2ø1， $0,208,1$ 47，240，37，32，24，200，205 ，17ø4
RS $81 \varnothing$ DATA232，2ø1，2ø8，29，164， 2，200，177，253，240，22，20 1，1929
BD $82 \emptyset$ DATA $44,2 ø 8,3,238,233,2 \emptyset$ 1，2ø1，41，208，240，206，23 Ø， 2053
HM 830 DATA2ø1，173，233，201，2ø5 ，234，201，24ø，3，76，38，19 8，2003
PS 840 DATA173，242，2ø1，32，141， 2ø0，172，243，2ø1，2ø8，32， 173，2018
EG 850 DATA $216,201,208,237,169$ ，29，32，53，200，162，192，3 2，1731
JS $86 \emptyset$ DATA82，2ø日， $32,93,200,16$ 2，102，142，243，201，32，71 ， 1560
HG $87 \varnothing$ DATA2øø，141，252，201，76， 234，196，140，245，201，140 ，251，2277
HF $88 \emptyset$ DATA2ø1，174，236，201，2ø2 ，169，20，32，103，200，172， 230，194ø
PP 89ø DATA2ø1，24ø，1ø，48，6，32， 216，199，136，208，250，160 ，17ø6
KA $9 ø 0$ DATAø，185，192，201，240，1 75，32，120，199，200，208，2 45，1997
FE $91 \varnothing$ DATA2ø1，128，144，57，166， 212，2ø8，53，2ø1，131，2ø8， 2，1711
RR $92 \emptyset$ DATA2 $4 \varnothing, 4,201,143,208,3$ ，141，246，201，56，233，127 ，18ø3
RM 930 DATA17 $0,160,255,202,240$ ，8，2ø0，185，158，160，16，2 50，2004
HC 940 DATA $48,245,2 ø 0,185,158$ ， 160，48，14，238，238，201，3 2，1767
JE $95 \varnothing$ DATAL13，199，169， $0,141,2$ 38，201，76，90，199，56，233 ， 1715
EQ 960 DATA1 $28,201,32,240,3,23$ 8，242，201，174，244，201，4 8，1952
CC $97 \emptyset$ DATA11，208，30，166，211，2 24，79，144，3，238，244，2ø1 ， 1759
FH 980 DATA174，243，201，208，13， 2ø1，34，2ø8，8，173，216，2ø 1，188ø
PK $99 \varnothing$ DATA $73,1,141,216,261,96$ ，76，210，255，173，238，201 ． 1881
GH 10øø DATA24の，2，104，104，104， 104，162，148，142，244，2ø 1，32，1587
QS 1ø1ø DATA71，2ø日，174，249，2ø1 ，173，250，2ø1，32，205，18 9，169，2114
AE 1620 DATA $32,32,210,255,173$ ， 240，201，174，241，2ø1，13 3，253，2145
RF 1030 DATA134，254，169，4，133， 251，164，251，177，253，24 Ø，14，2044
MR 1040 DATA $32,52,199,230,251$ ， 76，2ø2，199，230，253，2ø8 ，2，1934
JG $1 \varnothing 50$ DATA230，254，96，164，212 ，240，5，160， $0,76,17,2 \varnothing 0$ ， 1654
PD 1060 DATA2ø1，32，240，242，2ø1
，36，240，4，201，37，208，9 ， 1651
SK $107 \emptyset$ DATAl41，228，2ø1，141，23 $2,2 \varnothing 1,76,13,2 ø \varnothing, 2 \varnothing 1,48$ ，144，1826
SC $1 \varnothing 8 \varnothing$ DATA16，2ø1，58，144，8，2ø $1,65,144,8,201,91,176$ ， 1313
KJ $109 \varnothing$ DATA4， $238,252,201,96,1$ 40，232，201，140，252，201 ，96，2053
RB $110 \varnothing$ DATA173，255，201，174，24 3，2ø1，240，3，173，254，2б 1，96，2214
HA $111 \varnothing$ DATA169，40，141，221，201 ，96，165，2ø3，2ø5，235，2ø 1，246，2117
FC $112 \varnothing$ DATA $249,141,235,201,96$ ，32，210，255，76，210，255 ，32，1992
SH 1130 DATA68，229，169， $0,133,1$ 99，133，212，133，216，96， 189，1777
JP 1140 DATA177，2øø，240，250，32 ，210，255，232，2ø8，245，1 89， 0,2238
QR 1150 DATA2ø1，240，239，32，21ø ，255，232，2ø8，245，173，2 39，2ø1，2475
GX 1160 DATA24ø，228，174，234，2ø 1，169，42，32，21б，255，2б 2，16，2øø3
KE $117 \varnothing$ DATA250， $96,173,33,268$ ， 76，119，2øб，173，134，2，1 33，1597
SD $118 \varnothing$ DATA2， $162,96,160,5,189$ ，177，2ø0，153，18，4，165， 1331
MK 1190 DATA2，153，18，216，232，1 36，16，241，96，172，243，2 Ø1，1726
PA 12 Øø DATA2ø8，6，2ø5，237，201， 76，155，2ø0，2ø5，236，2ø1 ，246， 2170
CJ $121 \varnothing$ DATA $239,104,164,76,38$ ， 198，32，225，255，2ø8，229 ，164，1812
EM $122 \varnothing$ DATA1ø4，169， $0,141,138$ ， $2,76,68,229,13,83,89,1$ 112
HE $123 \varnothing$ DATA83，53，48，53，48，53， ø，13，13，79，76，68，587
EF 1240 DATA $32,86,65,82,73,65$ ， 66，76，69，63，32， $6,7 ø 9$
AQ 1250 DATA13，13，78，69，87，32， $86,65,82,73,65,66,729$
AF 1260 DATA76，69，63，32， $1,13,1$ 3，18，84，89，80，69，606
RH 1270 DATA $32,77,73,83,77,65$ ， 84，67，72，46，46，46，768
ME $128 \emptyset$ DATAD， $13,13,18,65,82,6$ 9，32，89，79，85，32，577
KE 1290 DATA83， $85,82,69,63,32$ ， $4 \varnothing, 89,47,78,41, \varnothing, 7 \varnothing 9$
QP 1306 DATA $32,32,18,76,73,77$ ， 73，84， $0,191,153,129,93$ 8
FG $131 \varnothing$ DATA146，146，129，32，32， $18,69,88,73,83,84,83,9$ 83
FJ $132 \varnothing$ DATAø $, 68,79,78,69, \varnothing, 32$ ，32，18，78，79，84，617
EK $133 \varnothing$ DATA $32,70,79,85,78,68$ ， ø，13，13，67，79，78，662
PA 1346 DATA84， $73,78,85,69,63$ ， 32，40，89，47，78，41，779＇
HF $135 \emptyset$ DATAの， $13,18,69,88,67,6$ 9，83，83，73，86，69，718
QK $136 \emptyset$ DATA $32,76,69,78,71,84$ ， 72，13，13， $0,5 \varnothing 8$

# Dr. Sound For The 64 

Don Malone


#### Abstract

Music enthusiasts will have a field day with this Commodore 64 program, which allows you to experiment with a great variety of different sound parameters while the music plays. A disk drive is required.


"Dr. Sound" is an algorithmic note sequencer which plays notes according to parameters which you choose in realtime. Using the 64's built-in SID (Sound Interface Device) chip, it simulates a singlevoice electronic synthesizer with dynamic timbre (tone color) control. If you're familiar with conventional electronic synthesizers, you'll probably recognize the screen display as a flowchart of the synthesizer's current patch or configuration. By changing different elements of the patch, you can alter the character of the music dramatically. After you create a patch you like, you can save it to disk for later reloading and use within the program. If you're new to computer-generated music, you'll enjoy experimenting and you can also learn a good deal from this program. Experts will appreciate all the features available in Dr. Sound.

Type in the program as listed and save a copy before you try to run it. Dr. Sound always begins with a short pause while it initializes. Then you will see the main
display screen. The top portion of the screen contains a flowchart of the synthesizer's current patch. At the bottom are several prompts indicating parameters you can change by pressing various function keys. The bottom screen line is reserved for your input.

## Music In The Background

When the display screen appears, you'll notice that background music begins playing immediately. The music will continue to play at all times while the program runs, except during disk operations.

Using Dr. Sound involves changing various program parameters to alter the character of the music. As a rule, whenever you change the synthesizer's patch, the screen display changes color to indicate which part of the synthesizer you are affecting. The different program options are selected by pressing one of the eight special function keys, f1-f8. Once an option is selected, the bottom screen line changes color and displays the keys you may press to select a choice within that option. In some cases, pressing the indicated key increases the value associated with that parameter; for these options, pressing the SHIFT key along with the indicated key decreases the same value.

## Waveform And ADSR

One of the most fundamental changes involves waveforms. To
choose a different waveform, press the f1 key. The bottom screen line then indicates your choices. To change the waveform, press the W key. There are four wave shapes available. The triangle is the sweetest of these, containing only oddnumbered overtones decreasing in loudness exponentially. The sawtooth is the brightest, containing all of the harmonic overtones. The pulse wave depends on its width (duty cycle) for its harmonic content. The closer to 99 percent or 1 percent, the more nasal (oboe-like) the pulse wave sounds. The closer to a 50 percent duty cycle, the more hollow (clarinet-like) it will be. Press P to change the pulse width. The noise waveshape is the most unpitched.

Ring modulation is a special SID effect, which you can toggle on and off by pressing the M key. When an $M$ appears in the flowchart between the sound source and the modulator, you can see that modulation is on. Ring modulation is possibly the most sophisticated timbre control on the SID chip, making nonharmonic, bell-like overtones. The timbre of the sound depends on the frequency relationship between the sound source and the modulator. (Because of the way the SID chip circuitry is designed, only triangle waveshapes are available for this option.)

Pressing H toggles the harmony option on and off, which forces
the sound source to be harmonicthat is, synchronous at an exact integer multiple with the modulator. When the harmony option is selected, an $H$ appears in the display between the modulator and the sound source. This can be used to shift the A440 tuning of the sound source or to insure harmonic (more pitched) modulation. Modu-lation-like most of the other terms in this article-can be best understood by listening to the effect it has on different sounds.

The A, D, S, and R keys control attack, decay, sustain, and release, respectively. Attack is the amount of time it takes to begin the note. Decay is the amount of time it takes to drop to the sustain level, which is indicated as a percentage of the loudest sound possible. Release is the amount of time it takes to return to silence.

## Special Effects

The f3 key allows you to change the low-pass filter parameters. Q changes the electronic resonance, which at 100 percent almost whistles, indicating sonically the changes in the cutoff frequency. F changes the percentage of the envelope generator (ADSR) used to control the cutoff frequency, and therefore the timbre, during each note. The lower the percentage, the more muffled the sound will be.

The f5 key selects the modulator section. W and P work just like the sound source section. T toggles on and off a trigger that allows the modulator to be heard while also modulating the sound source. I toggles parallel/oblique modes of the interval relationship between the modulator and the sound source. In the parallel mode the frequency follows the sound source at an interval indicated as a percentage of the sound source frequency. M and L change this relationship in 10 percent and 1 percent increments, respectively. Note that there is a delay of about six seconds to calculate these increments. In the oblique mode the frequency of the modulator is always the same. That frequency is tunable from 1 to 3995 Hz (cycles per second). The F, Q, C, and $Y$ keys change the frequency in $1000 \mathrm{~Hz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz increments, respectively. The

ADSR articulation control for the modulator is apparent only when the modulator trigger is on.

The f7 key selects the control section. The W, P, F, Q, C, and Y keys work the same way here as they do in the modulator section. However, in this case the waveshape and the relationship of the frequency to the duration of the current note determine the next note. The triangle and sawtooth waveshapes will produce easily recognizable patterns. The pulse produces a more austere pattern, and the noise waveform produces a random pattern.

G and A change the gate length. During the gate, the attack, decay, and sustain portions of the envelope generators are active. The gate time does not necessarily need to be longer than the attack time plus the decay time, but if it isn't, strange effects, including complete silence, may occur. R and E change the release time. During the release time, the release portion of the envelope generators are active. After the gate and release time, it takes about 223 microseconds to look at the keyboard. This delay becomes much longer if a key has been pressed. It takes another 104-195 microseconds to calculate the next note. However, if the release time of the sound source envelope generator is long enough, these delays will not be apparent.

## Pitch Sets

The f2 key allows a choice of one of the 16 pitch sets. The patterns generated by Dr. Sound will be restricted to one of these sets at a time. They are defined as shown here:

0	Major scale
1	Tonic
2	Supertonic
3	Mediant
4	Subdominant
5	Dominant
6	Submediant
7	Diminished
8	Subtonic
9	Augmented
A	Chromatic
B	Whole tone
C	East
D	Harmonic minor
E	Pure minor
F	Phrygian

The f4 key allows control over the pitch range. The octaves are
labeled from 0 to 7 , with octave 0 being the lowest. The octave of each note is chosen from a set of eight possibilities, all of which are displayed on the screen. Pressing a number from 0 to 7 changes the next octave number in the set.

The f6 key allows control over the rhythm. This is also a set of eight, controlled like the octaves. The release time is multiplied by a factor from 1 to 8 .

The $f 8$ key permits you to save all of the current Dr. Sound settings with a filename of your choice, or to load a file of previously saved settings.

## Dr. Sound For The 64

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing in Programs" in this issue of COMPUTEI.

CB 10 POKE5328 $1, \varnothing:$ POKE5 3281, $\varnothing$ : PRINTCHR\$ ( 142 ) CHR (8):PR INT"E8习\{CLR\}": POKE214,1ø : PRINT
DM $2 \varnothing$ PRINTTAB (16) "DR. SOUND": PRINTTAB (13)" \{DOWN \}WILL \{SPACE\}BE RUNNING"
RK 3 - PRINTTAB (14)" $\{$ DOWN \} IN 24 SECONDS": C\$=CHR\$(13)
FD 40 DIMPI\$(11), PT\$(15),OC\$(7 ), RH\$ (7), PI (12), PM (12), A \$(15), R\$(16), S\$(15), P\$(1 5)

GS 50 FORC $=\varnothing$ TO7 : POKE4992 $\varnothing+$ C, 4 * 16 :NEXT: FORC= 0 TO7 : POKE49 $936+\mathrm{C}, 1: \mathrm{NEXT}: \mathrm{SI}=54272$
FJ 60 FORC=SITOSI $+24:$ POKEC, $\varnothing: N$ EXT: POKESI $+24,9 * 16+15$ :PO KE53236,31:POKE53239,128
CR $70 \mathrm{MS}(\varnothing)=" \mathrm{~B} ": \mathrm{MS}(1)=" \mathrm{M} ": \mathrm{H} \$(\varnothing$ $)=" \mathrm{~B} ": \mathrm{H} \$(1)=\mathrm{H}$ ": T $\$(\varnothing)=$ " OFF ${ }^{\star} ": T S(1)=" * * * * * "$
CG $8 \emptyset$ WS\$T $\varnothing)="$ TRIANGLE" $: W S \$(1$ )=" SAWTOOTH":WS\$(2)="
\{4 SPACES \}PULSE ":WS\$ (3)= " $\{2$ SPACES $\}$ NOISE $\{2 \text { SPACES }\}^{\prime \prime}$
SR $90 \mathrm{FS}(\varnothing)=" 1 \emptyset \emptyset \% \quad \mathrm{~F}: \mathrm{F}(1)=" 5 \emptyset \%$
$\{2 \text { SPACES }\}^{\prime \prime}: F \$(2)=" 25$ \%
\{2 SPACES $\}$ ": F\$ ( 3 ) =" $12.5 \%$
MB 1øø FORC=5Ø176TO5ø399: READD : POKEC, D: NEXT : FORC= ØTOI 2: READD: PI (C) =D: NEXT
AR $11 \emptyset$ FORI $=\emptyset T O 15: \operatorname{READPTS}(\mathrm{I}): F$ ORC=ØTO15 : READD: POKE496 64+I* $16+\mathrm{C}$, D: NEXT: NEXT
MF 120 FORC=øTO15: READAS (C) :NE $\mathrm{XT}: \mathrm{FORC}=\varnothing \mathrm{TO} 6:$ READR $(\mathrm{C})$ : NEXT: FORC=ØTO7:E $(C)=2 \uparrow$ C: NEXT
QQ 130 FORC=øTO15:S\$(C)=STRS (I NT (C*6.66666667)) :S\$(C) $=S \$(C)+" \%\{2$ SPACES $\} ": N E$ XT
KJ 140 FORC $=\emptyset T O 15: \mathrm{P} \$(\mathrm{C})=\mathrm{STRS}(\mathrm{I}$ NT(C*256/40.95)):PS(C)= P\$(C)+"?\% ":NEXT
KR 15ø ML=.99:GOSUB55 :GOSUB62 $\emptyset: C W=1: H=\varnothing: M=\varnothing: P C=\varnothing: A C=$
$\emptyset: D C=\emptyset: S C=15: R C=4$ : GOSUB 710
XK $160 \mathrm{RS}=4: \mathrm{FC}=1: \mathrm{AF}=7: \mathrm{DF}=3: \mathrm{SF}=$ $13: R F=5:$ GOSUB78 $0: \mathrm{PW}=\varnothing: \mathrm{P}$ $C=\varnothing: A P=\emptyset: D P=\varnothing: S P=8: R P=1$ 5
SD $17 \varnothing \mathrm{TP}=1: \mathrm{FM}=1: \mathrm{FP}=\varnothing:$ GOSUB8 $3 \varnothing$ $: W W=1: F Q=112: G G=20: R R=2$ 2:GOSUB940: PT=13
FP 180 IN\$="TRUMPET": POKE53232 ,PT*16:GOSUB1ø5ø:GOSUB1 ø8ø:GOSUB1120:GOSUB115ø
PB 19ø SYS5ø176:GETK\$:IFK\$く>"" THEN117ø
FB 2øø GOTO190
QF $21 \varnothing$ DATA $162, \varnothing, 173,27,212,4$ $1,7,170,189,16,195,17 \varnothing$, 173,244,207,2ø2
JP $22 \varnothing$ DATA $48,6,109,244,207,7$ 6,15,196,141,243,267,16 2, $0,173,27,212$
DP $23 \varnothing$ DATA $41,15,141,239,207$, 173,240,207,109,239,207 ,17ø,189, $0,194,17 \varnothing$
QC 240 DATA $173,27,212,41,7,16$ 8,185,0,195,141,238,207 ,138,109,238,2ø7
XH 250 DATA $170,189,0,192,141$, 7,212,189,128,192,141,8 ,212,173,248,207
GA 260 DATA $2 ø 8,12,189,0,193,1$ 41, $0,212,189,128,193,14$ $1,1,212,173,252$
BG $27 \varnothing$ DATA $207,165,1,141,18,2$ 12,173,251,207,105,1,14 1,11,212,173,25ø
SB $28 \varnothing$ DATA $207,109,249,207,14$ 1,4,212,173,247,207,141 ,255,207,173,246,207
KC 290 DATA $141,237,207,172,24$ 5,267,173,28,212,174,25 3,207,240,4,74,2ø2
HB $30 \emptyset$ DATA $2 ø 8,252,141,22,212$ ,136,208,238,2ø6,237,2ø 7,2ø8,230,2ø6,255,207
MS $31 \varnothing$ DATA $2 \varnothing 8,219,173,252,2 \varnothing$ 7,141,18,212,173,251,20 7,141,11,212,173,250
XQ $32 \varnothing$ DATA $207,141,4,212,173$, 243,207,141,254,207,173 ,242,207,141,237,207
PH $33 \varnothing$ DATA $172,241,207,173,28$ ,212,174,253,207,240,4, 74,2ø2,2ø8,252,141
KF 340 DATA $22,212,136,2 ø 8,238$ ,2ø6,237,207,2ø8,230,2ø 6,254,2ø7,2ø8,219,96
XG 359 DATA268,284,301,318,337 ,358,379,401,425,451,47 7,5ø6,536
BQ $36 \varnothing$ DATA"MAJOR\{1ø SPACES $\}$ ", $5,7,9,1 \varnothing, 12,5,4,2, \varnothing, \varnothing, 1$ 2,9,5,9,5, $\varnothing$
XS $37 \varnothing$ DATA"TONIC\{1ø SPACES\}", $5,9,12, \varnothing, 5,9,12, \varnothing, 5,9,1$ $2, \varnothing, 5,9,12, \varnothing$
GR $38 \emptyset$ DATA"SUPERTONIC 7TH ",7 $, 10,2,5,7,10,2,5,7,10,2$ ,5,7,10,2,5
HP 390 DATA"MEDIANT\{8 SPACES\}" , $9,12, \varnothing, 3,9,12, \varnothing, 3,9,12$ , $0,3,9,12,0,3$
XP $4 \varnothing \varnothing$ DATA"SUBDOMINANT
\{4 SPACES \}", 1ø,2,5,1ø,2 ,5,10,2,5,10,2,5,10,2,5 , 10
HS $41 \varnothing$ DATA"DOMINANT 7TH
\{3 SPACES $\}^{\prime \prime}, ~ \emptyset, 4,7,1 \varnothing, 12$ , $0,4,7,10,12,0,4,7,10,1$ 2, $\varnothing$

KC $42 \emptyset$ DATA"SUBMEDIANT
[ 5 SPACES.\}", 2,5,9,12, $\varnothing$, $2,5,9,2,5,9,2,5,9,12, \varnothing$
MC 430 DATA"DIMINISHED 7 TH ", 4 ,7,10,1,4,7,10,1,4,7,10 ,1,4,7,10,1
DJ 440 DATA"SUBTONIC\{7 SPACES $\}$ ", 3,7,10,3,7,10,3,7,10, 3,7,10,3,7,10,3
CE $45 \emptyset$ DATA "AUGMENTED
\{6 SPACES ${ }^{\prime \prime}, \varnothing, 4,8,12, \varnothing$,
$4,8,12, \varnothing, 4,8,12, \varnothing, 4,8,1$ 2
MG 460 DATA"CHROMATIC
$\{6$ SPACES $\}$ " $, \varnothing, 1,2,3,4,5$ ,6,7,8,9,10,11,12,0,12, 6
MJ $47 \emptyset$ DATA "WHOLETONE
\{6 SPACES \} " , $\varnothing, 2,4,6,8,1$ Ø, 12,10,8,6,4,2, $, 2,10$, 12
KD $48 \emptyset$ DATA"EAST\{11 SPACES\}", $\varnothing$ ,2,5,7,9,12, $0,2,5,7,9,1$ 2,5,2,5,7
EE 490 DATA "HARMONIC MINOR ",5 ,7,8,10,12,10,8,7,5,4,1 , $0,1,4,5,8$
CA $5 \emptyset \emptyset$ DATA"PURE MINOR
\{ 5 SPACES ${ }^{\prime \prime}, 5,7,8,10,12$ , 10,8,7,5,3,1, 0,1,3,5,8
JQ 510 DATA"PHRYGIAN\{7 SPACES\}
",5,6,8,10,12,10,8,6,5, $3,2, \varnothing, 2,3,5,8$
XF $52 \emptyset$ DATA. $\varnothing \emptyset 2 \mathrm{~S}, . ø ø 8 \mathrm{~S}, . \emptyset 16 \mathrm{~S}$, Ø24S, .038S, .056S, .068S, .ø8S ,.1S\{2 SPACES \},. 25 S ,.5S\{2 SPACES\},.8S
GE $53 \emptyset$ DATAIS\{3 SPACES\},3S
\{3 SPACES $\}$, 5 S\{ 3 SPACES \} ,8S\{3 SPACES\},. $\varnothing \varnothing 6 S, . . \varnothing 2$ 4S,.048S,..072S,.114S,. 1 68S, .204S
PS 540 DATA. $24 \mathrm{~S}, .3 \mathrm{~S}\{2$ SPACES\} $, .75 \mathrm{~S}, 1.5 \mathrm{~S}, 2.4 \mathrm{~S}, 3 \mathrm{~S}$
\{3 SPACES\}, 9S\{3 SPACES\} , 15S\{2 SPACES $\}, " 24 \mathrm{~S}$
\{2 SPACES\}","\{7 SPACES $\}$
EK 55ø FORC=øTO12:FORI=øTO7:PI $=\mathrm{PI}(\mathrm{C}) * \mathrm{E}(\mathrm{I}): \mathrm{HP}=\mathrm{INT}(\mathrm{PI} / 2$ 56) : IFHP $>255$ THENH $\mathrm{P}=255$

EM 560 POKE4928Ø + I* $16+\mathrm{C}$,HP:POK E49152+I*16+C,PI-256*HP AND255:NEXT:NEXT
GP 578 IFLEN(STRS(ML)) $>5$ THENML =INT(ML*1øø)/1øø
CP 580 FORC=øTO12:PM(C)=PI(C)* ML: NEXT
BX 590 FORC $=\varnothing$ TO12:FORI $=\varnothing$ TO7:PI $=\mathrm{PM}(\mathrm{C}) * \mathrm{E}(\mathrm{I}): \mathrm{HP}=\mathrm{INT}(\mathrm{PI} / 2$ 56) : IFHP $>255$ THENH $\mathrm{P}=255$

XP $6 \varnothing 0$ POKE49536+I*16+C,HP:Z=P I-256*HP:IFZ>255 THENZ $=2$ 55
SB 610 POKE494ø8+I* $16+\mathrm{C}, \mathrm{Z}:$ NEXT :NEXT: RETURN
CE 620 PRINT" $\{C L R\}\{2$ DOWN \}"SPC (1ø) "CCC>AMPC*CCCCES 3 "
BP 630 PRINTTAB (4)" $\uparrow$ "SPC(10)" $\uparrow$ " $\operatorname{SPC}(7)$ "B"
MB 640 PRINTTAB (4) "B"SPC(18)"B
GB 650 PRINTTAB(4)" $\underline{B}$ " $\operatorname{SPC}(18)$ " $\underline{B}$
JQ 660 PRINTTAB(4)"B"SPC(18)"

CR 670 PRINTTAB (4)" $\bar{B} " \operatorname{SPC}(18) " \underline{B}$ "SPC(5)" $\uparrow$ "
MQ 680 PRINTTAB(4)"B"SPC(18)"B

GQ 690 PRINTTAB(23)"B"SPC(5)" $\uparrow$ ": PRINTTAB (9)"***** $>$ AMP " $\operatorname{SPC}(5)$ " $\mathbb{E X}$ " $: ~ P \overline{\text { RINTTAB ( }} 1$ 6)" $\uparrow$ "

RA $70 \varnothing$ RETURN
CE 710 PRINT"\{HOME\}\{DOWN\}":IFM $=1$ THENCW= $\varnothing$
QH $72 \emptyset$ PRINTTAB(2)WS (CW):IFCW =2THENPRINT" $\{\mathrm{UP}\}$ " P (PC )
SG 730 PRINTTAB(7)"\{DOWN\}[F1]" $\operatorname{SPC}(3)$ "A "AS(AC):PRINTT $\mathrm{AB}(4) \mathrm{M} \$(\mathrm{M}) \operatorname{SPC}(9) \mathrm{D}$ " R ( DC)

XP 740 PRINTTAB(14)"S"S (SC): P RINTTAB (4) H\$ (H) SPC (9) "R "RS(RC)
PP $75 \emptyset W C=2 \uparrow(C W+4): I F M=1$ THENWC $=2 \varnothing$
SA 760 IFH=1THENWC=WC+2
CD 770 POKE53243,WC:POKESI +10 , PC: POKESI $+12, \mathrm{AC} * 16+\mathrm{DC}: \mathrm{P}$ OKESI+13,SC*16+RC:RETUR N
JE 780 POKE214,4:PRINT:PRINTTA B(28)" Q " $\mathrm{S} \$(\mathrm{RS})$
SG 790 PRINTTAB(28)" $\{2$ DOWN $\} " F$ \$(FC):PRINTTAB (34)" \{UP\} [F3]"
BJ $8 \varnothing \varnothing$ PRINTTAB(28)"\{DOWN\}A "A \$(AF):PRINTTAB(28)"D "R \$(DF)
FC $81 \varnothing$ PRINTTAB (28)"S"S (SF): P RINTTAB(28)"R "R\$(RF)
CB 820 POKESI $+23, R$ R $^{*} 16+3$ :POKE 5 3245, FC: POKESI +19, AF* 16 +DF:POKESI $+2 \emptyset, S F * 16+$ RF: RETURN
AH 83Ø POKE214,8:PRINT:IFM=1TH ENPW= $\varnothing$
CS $84 \varnothing$ PRINT"\{DOWN \} "WS\$(PW)SP $\mathrm{C}(8) \mathrm{T} \$(\mathrm{TP}):$ :IFPW=2THENPR INT"\{UP\}"P\$(PP)
QS $85 \emptyset$ IFFP=1THENPRINT" \{4 SPACES \}FQCY \{4 SPACES ${ }^{\prime \prime}$ :PRINTTAB(4) STRS (FM) + "HZ $\{3$ SPACES $\} "$
EJ 860 IFFP $=1$ THENZ $=F M / .06097$ : $P$ $\mathrm{H}=\mathrm{INT}(\mathrm{z} / 256): \mathrm{PL}=\mathrm{Z}-\mathrm{PH} * 25$ 6:POKESI,PL:POKESI+1, PH
JA $87 \varnothing$ IFFP=øTHENPRINT"
\{4 SPACES \}PARALLEL": PRI NTTAB (4) "ML "STRS (INT (ML *1øø+.5))+" $\%\{2$ SPACES $\} "$
GC $88 \emptyset$ IFTP=1THENPRINTTAB (15)" \{UP\}A "AS (AP): PRINTTAB( 15)"D "RS(DP)

RH 890 IFTP=øTHENPRINTTAB (15)" \{UP\} "RS(16):PRINTTAB (15 ) R\$(16)
PF $9 \varnothing 6$ IFTP=1THENPRINTTAB (9) " [ F5]"SPC (2)"S"S\$(SP):PRI NTTAB(15)"R "RS(RP)
SA $91 \varnothing$ IFTP=øTHENPRINTTAB (9)"[ F5] "SPC (2) RS (16) : PRINTT $\mathrm{AB}(15) \mathrm{R} \$(16)$
XQ $92 \varnothing \mathrm{WP}=2 \uparrow(\mathrm{PW}+4)$ : POKE53242, W P:POKESI +3 ,PP:POKE5 3241 ,TP: POKE5324ø, FP
FQ $93 \emptyset$ POKESI +5, AP* $16+$ DP: POKES $\mathrm{I}+6$,SP* $16+\mathrm{RP}:$ RETURN
QC 940 POKE214,16:PRINT
EC 950 PRINT"[F7] "WS\$(WW)SPC( 1) "FQCY"STRS (FQ) + "HZ \{3 SPACES $\}^{\prime \prime}$
RP 960 IFWW=2THENPRINTTAB (4)" \{UP\}" P (CP)
RF $97 \emptyset$ SS=2 $\uparrow(\mathrm{WW}+4)$ :POKE53244, S $\mathrm{S}:$ POKESI $+17, \mathrm{CP}: \mathrm{Z}=\mathrm{FQ} / . .66$

Ø97： $\mathrm{CH}=\mathrm{INT}(\mathrm{Z} / 256): \mathrm{CL}=\mathrm{Z}-$ CH＊ 256
FR 980 POKESI＋14，CL：POKESI＋15， $\mathrm{CH}: \mathrm{GY}=(\mathrm{GG}$ AND 127$)+1: \mathrm{GL}=1$ ：IFGG＞127 THENGL＝128
GG 99ø GT＝$=16+((18+1((4+1(18+1$ $(7 * \mathrm{FC})+2)+9)$＊GY）-1$)+9)$＊ （GL）-1 ）+9 ）＊ 128 （－1））／ 1 （б2б øøб
FF $10 \varnothing 0$ GT＝INT（GT＊1øøø）／1øø日：P RINTTAB（27）＂$\{2$ UP\}GA"S TRS（GT）＋＂S\｛2 SPACES\}"
CE $1010 \mathrm{RY}=($ RRAND1 27） $\mathrm{Cl}: \mathrm{RL}=1: \mathrm{I}$ FRR $>127$ THENRL $=128$
FG $1 \varnothing 2 \varnothing \mathrm{RT}=(32+(() 8+()(4+1((8+$ $((7 * \mathrm{FC})+2)+9) * \mathrm{RY})-1)+9$ ）＊RL）-1 ）+9 ）＊ 3()$-1)) / 1 \varnothing$ 2øøøø
KP 1ø30 RT＝INT（RT＊1øøб）／1øø ： P RINTTAB（27）＂RE＂STR\＄（RT ）＋＂S\｛2 SPACES $\}$
EX 1040 POKE53238，GL：POKE53237 ，GY：POKE53234，RL：POKE5 3233，RY：RETURN
CS 1ø5 10 POKE214，18：PRINT：PRINT ＂［F2］PITCH SET（ø－F）＂； ：IFPT＜1ØTHENPRINTPT；PT \＄（PT）
GD $106 \varnothing$ IFPT＞9THENPRINT＂＂CHR\＄ （PT＋55）＂＂PT\＄（PT）
FP 1076 POKE53232，PT＊16：RETURN
RJ 1ø80 POKE214，19：PRINT
AE 1ø9 10 FORC＝$=$ TO7：OC $\$(C)=$ RIGHT \＄（STRS（（PEEK（ $4992 \emptyset+$ C）） （16），1）：NEXT
AD 1106 PRINT＂［F4］OCTAVE（ $6-7$ ）＂；：FORC＝øTO7：PRINTOC \＄（C）；CHRS（44）；：NEXT：PR INT＂ ［LEFT \} "
CE 1110 RETURN
SF 1120 POKE214，20：PRINT：FORC＝ ØTO7：RH\＄（C）＝RIGHT\＄（STR \＄（ $(\operatorname{PEEK}(49936+C))+1), 1$ ）：NEXT
PG 1130 PRINT＂［F6］RHYTHM（1－8 ）＂；：FORC＝øTO7：PRINTRH \＄（C）；CHRS（44）；：NEXT：PR INT＂$\{$ LEFT\} \{HOME\}"
KG $114 \emptyset$ RETURN
XA $115 \emptyset$ POKE214，21：PRINT：PRINT ＂［F8］DISK ACCESS \｛HOME \}"
FX 1160 POKE214，$\varnothing:$ PRINT：PRINTT AB（27）IN\＄：RETURN
KX $117 \varnothing \mathrm{~K}=\mathrm{ASC}(\mathrm{K} \$+\mathrm{CHR} \$(\varnothing)):$ IFK $>$ $=132$ ANDK $<=14 \varnothing$ THENGOSUB 1190
GE $118 \emptyset$ ONJGOSUB1 23ø，138ø，152ø ，18øб，2ø4ø，2ø8ø，211б，2 140：GOTO19ø
KS $119 \emptyset$ IFJ $=\emptyset$ THEN $121 \varnothing$
RK 12øø PRINT＂E8习＂：ONJGOSUB123 ø，1380，1520，18ø0，2040， 2ø80，2110，2140
XP $121 \varnothing \mathrm{~J}=\mathrm{K}-132$ ：PRINT＂〔4ヨ＂：RET URN
RR 1220 RETURN
HJ 1230 POKE214，22：PRINT：PRINT ＂\｛RVS\} SOUND SOURCE
\｛5 SPACES \}W P M H A D \｛SPACE\}S R\{6 SPACES\} \｛OFF\}"
JQ 1240 IFK $\$=$＂ W ＂THENCW＝$(\mathrm{CW}+1) \mathrm{A}$ ND3
PP $125 \emptyset$ IFK $\$=$＂ H ＂THENH＝H＋1 AND1
EP 1260 IFK $\$=$＂M＂THENM＝M＋1 AND1
AM 1270 IFK $\$=" \mathrm{P}$＂ $\mathrm{THENPC}=\mathrm{PC}+1$ AND 15
JA 1280 IFK $\$=$＂${ }^{\text {＂}}$ THENPC＝ABS（PC－ 1）

EH 1290 IFK $=$＂A＂THENAC＝AC＋1AND 15
FX 1300 IFK $=$＂D＂THENDC＝DC＋1AND 15
KB 1310 IFK\＄＝＂S＂THENSC＝SC＋1AND 15
EC 132 IFK $\$=$＂$R$＂$T$ HENRC $=R C+1$ AND 15
EB 1330 IFK $\$=$＂A＂$T$ HENAC＝ABS（AC－ 1）
QE 1340 IFK $=$＂${ }^{\text {＂}}$＂THENDC＝ABS（DC－ 1）
CF 1350 IFK $\$=$＂ ＂$^{\text {THENSC }}=$ ABS（SC－ 1）
FH 1360 IFK $\$=$＂${ }^{\text {R }}$＂THENRC＝ABS（RC－ 1）
SJ $137 \varnothing \mathrm{~K} \$=" \mathrm{":GOTO71} \mathrm{\varnothing}$
SB $138 \emptyset$ POKE214，22：PRINT：PRINT ＂$\{$ RVS $\}$ FILTER
\｛4 SPACES \}Q F A D S R \｛17 SPACES\}\{OFF\}"
BG 1390 IFK $\$=$＂$Q$＂$T$ HENRS＝RS +1 AND 15
MP 1400 IFK $\$=$＂$Q$＂$T$ HENRS $=A B S$（RS－ 1）
BP $141 \varnothing$ IFK $\$=" F$＂THENFC＝FC＋1AND 3
AP 142 IFK $\$=$＂$F$＂$T H E N F C=A B S$（FC－ 1）
CG 143 Ø IFK $\$=$＂A＂THENAF＝AF＋1AND 15
FQ 1440 IFK $\$=$＂$D " T H E N D F=D F+1$ AND 15
FB 1450 IFK $\$=$＂$S$＂THENSF $=S F+1$ AND 15
GD 1460 IFK $\$=$＂$R$＂$T$ HENRF＝RF＋1AND 15
CX $147 \varnothing$ IFK $\$=$＂${ }^{A}$＂ $\mathrm{THENAF}=\mathrm{ABS}(\mathrm{AF}-$ 1）
MC $148 \emptyset$ IFK $\$=$＂${ }^{2}$＂THENDF＝ABS（DF－ 1）
ED 1490 IFK $\$=$＂ ＂$^{\prime T}$ THENSF＝ABS（SF－ 1）
KH 1500 IFK $\$=$＂${ }^{R}$＂THENRF＝ABS（RF－ 1）
RP $151 \varnothing \mathrm{~K} \$=" \mathrm{n}:$ GOTO78ø
EJ $152 \emptyset$ POKE214，22：PRINT：PRINT ＂$\{$ RVS $\}$ MODULATOR W P T I M／LF／Q／C／Y A D S R \｛OFF\}"
JQ 1530 IFK $\$=$＂W＂THENPW＝$(\mathrm{PW}+1) \mathrm{A}$ ND3
FM 1540 IFK $\$=$＂ P ＂ $\mathrm{THENPP}=\mathrm{PP}+1$ AND 15
BX 1550 IFK $\$=$＂ P ＂ $\mathrm{THENPP}=\mathrm{ABS}$（ $\mathrm{PP}-$ 1）
MP 1560 IFK $\$=" T$＂THENTP＝TP＋1AND 1
SA $157 \varnothing$ IFK $\$=$＂I＂THENFP＝FP＋1AND 1
AH $158 \emptyset$ IFK $\$=$＂$F$＂THENFM $=F M+1 \varnothing \varnothing \varnothing$
RK 1590 IFK $\$=" Q$＂THENFM＝FM＋1 00
PD $16 \varnothing$ IFK $\$=" C$＂THENFM $=F M+1 \varnothing$
SP 1610 IFK $\$=" Y " T H E N F M=F M+1$
HR 1620 IFFM＞ 3995 THENFM $=3995$
CF 1630 IFK $\$=" F " T H E N F M=A B S$（FM－ 1øøø）
BK 1640 IFK $\$=$＂$Q$＂$T H E N F M=A B S(F M-$ 1øø）
BP 1650 IFK $\$=$＂C＂THENFM＝ABS（FM－ 1ø）
HD 1660 IFK $\$=$＂$Y$＂THENFM＝ABS（FM－ 1）
RK 1678 IFK $\$=$＂M＂THENML＝ML＋．1：G OSUB576
RJ $168 \emptyset$ IFK $\$=$＂L＂THENML $=M L+. \emptyset 1$ ： GOSUB57ø
BD 1690 IFK $\$=$＂M＂THENML＝ABS（ML－ ．1）：GOS̄UB57ø
DA 17ø0 IFK\＄＝＂L＂THENML＝ABS（ML－ ．$\varnothing 1)$ ：GŌSUB5 $7 \varnothing$

MQ 1710 IFK $\$=$＂$A$＂THENAP $=A P+1$ AND 15
MC 172 IFK $=$＂$D$＂THENDP＝DP＋1AND 15
AH 1730 IFK $\$=$＂ S ＂THENSP＝SP＋1AND 15
GK 1740 IFK $\$=$＂R＂THENRP＝RP＋1AND 15
DD 1750 IFK $\$=$＂${ }^{\text {＂}}$＂$T H E N A P=A B S(A P-$ 1）
KG 1760 IFK $\$=$＂${ }^{\text {＂}}$ THENDP $=A B S$（DP－ 1）
BF 1770 IFK $\$=$＂$\underline{\text {＂}}$＂THENSP $=$ ABS（SP－ 1）
KJ 178 IFK $\$=$＂${ }^{\text {＂}}$＂THENRP $=$ ABS（RP－ 1）
RM $1790 \mathrm{~K} \$=" \mathrm{"}:$ GOTO83
RM 18øø POKE214，22：PRINT：PRINT ＂$\{$ RVS $\}$ CONTROL
\｛4 SPACES \}W P F/Q/C/Y
\｛2 SPACES\}G/A
\｛2 SPACES \}R/E
\｛6 SPACES\}\{OFF\}"
JM 1810 IFK $\$=$＂W＂THENWW＝（ $W W+1$ ）A ND3
SG 182 IFK $\$=$＂$P$＂THENCP $=C P+1$ AND 15
XQ 1830 IFK $\$=$＂$P^{\text {＂}}$ THENCP $=$ ABS（ $C P-$ 1）
PK 1840 IFK $\$=$＂$F$＂THENFQ $=F Q+1 \varnothing \varnothing \varnothing$
RD $185 \emptyset$ IFK $\$=" Q$＂$T H E N F Q=F Q+1 \varnothing \varnothing$
PH $186 \varnothing$ IFK $=" \mathrm{C}$＂THENFQ $=F Q+1 \varnothing$
GS 1870 IFK $\$=" Y$＂$T H E N F Q=F Q+1$
XF 1880 IFFQ＞3995THENFQ $=3995$
RJ 1890 IFK $\$=$＂$F$＂THENFQ $=A B S(F Q-$ 1øøø）
KS 1900 IFK $=$＂$Q$＂$T H E N F Q=A B S ~(F Q-$ 100）
KB 1910 IFK $\$=$＂$C$＂THENFQ＝ABS（FQ－ 1ø）
DH 1920 IFK $\$=$＂$\underline{"}$＂THENFQ $=A B S(F Q-$ 1）
PJ 1930 IFK $\$=" \mathrm{G} " \mathrm{THENGG}=\mathrm{GG}+25$
MQ 1940 IFK $\$=$＂ A ＂THENGG $=\mathrm{GG}+1$
QM 195 IFGG $>255$ THENGG $=255$
XJ $196 \emptyset$ IFK $=$＂G＂THENGG＝ABS（GG－ 25）
MR $197 \varnothing$ IFK $\$=$＂A＂ $\mathrm{THENGG}=\mathrm{ABS}$（GG－ 1）
BK 1980 IFK $\$=$＂ R ＂ $\mathrm{THENRR}=\mathrm{RR}+25$
XH 1990－IFK $\$=$＂ E ＂THENRR＝RR＋1
KG $200 \emptyset$ IFRR＞ 255 THENRR $=255$
PF $2 ø 10$ IFK $\$=$＂R＂THENRR＝ABS（RR－ 25）
AS $2 ø 2$ IFK $\$=$＂E＂THENRR＝ABS（RR－ 1）
QF $2 ø 3 \varnothing \mathrm{~K} \$=" \mathrm{C}:$ GOTO9 $4 \varnothing$
QD 2ø4ø POKE214，22：PRINT：PRINT ＂\｛RVS\} PITCH SET
$\{2$ SPACES\} $123 \ldots$ \｛SPACE\}9 A B C D E F \｛ 2 SPACES $\}$ \｛OFF \}"
HE $2 \varnothing 50$ IFK＜58ANDK＞47THENPT＝K－ 48
PM $2 ø 60$ IFK＜71ANDK＞64THENPT＝K－ 55
GJ $2070 \mathrm{~K} \$="$＂：GOTO1ø5 0
KR 208ø POKE214，22：PRINT：PRINT ＂\｛RVS\} OCTAVES $\{4$ SPACES \} $\varnothing, 1,2,3,4,5$ ， 6，7\｛12 SPACES\}\{OFF\}"
DJ $269 \emptyset$ IFK＜ 56 ANDK $>47$ THENK $=$ K－4 8：CT＝CT＋1AND7：POKE4992 $\emptyset+C T, K * 16$
JQ $21 \varnothing \varnothing \mathrm{~K} \$=" \mathrm{~F}:$ GOTO1ø8 $\varnothing$
AC 211ø POKE214，22：PRINT：PRINT ＂\｛RVS \} RHYTHMS \｛ 6 SPACES $\} 1,2,3,4,5,6$ ， $7,8\{1 \varnothing$ SPACES $\}\{O F F\} "$
RA $212 \sigma$ IFK＜ 57 ANDK＞48THENK $=K-4$ $9: Y T=Y T+1$ AND7 ：POKE4993
$6+Y \mathrm{~T}, \mathrm{~K}$
KK $2130 \mathrm{~K} \$="$ ": GOTO112
AS 2140 POKE214,22:PRINT:PRINT "\{RVS\}\{2 SPACES\}DISK A CCESS\{5 SPACES\}S L \{18 SPACES \}\{OFF\}"
SC 2150 IFK $\$=$ "S"THENGOSUB218 8
FR 2160 IFK\$="L "THENGOSUB23øø: GOSUB244ø
BD 217 K K ="": GOTOl15
AA 2180 POKE214,22:PRINT:PRINT " \{RVS\} SAVE FILE NAME \{21 SPACES\}\{OFF\}"
BS 2190 PRINTTAB (18)"\{UP\}\{RVS\} ";:INPUTIN\$:PRINT"\{UP\} $\{O F F\} ":$ IN $\$=L E F T \$($ INS, 1 2)

AX 22 Øø OPEN15,8,15:OPEN2,8,2, " $\emptyset: ~ "+I N \$+", S, W "$
QS 2210 GOSUB2410:IFEN > 1THENFO RC= ØTO5Øøø:NEXT:CLOSE2 : CLOSE15: RETURN
CD 222 Ø PRINT\#2,CW; C\$; H; C\$;M; C \$;PC; C\$;AC; C\$;DC; C\$;SC ; C\$; RC
EG 223 Ø PRINT\#2,RS; CS; FC; CS;AF ; CS;DF; C\$;SF; CS ; RF
AH $2240 \mathrm{MD}=\mathrm{ML}:$ PRINT\#2, PW; C\$; PP ; CS;MD; C\$;FM; CS;TP; C\$ ; FP; C\$;AP; CS;DP; C\$; SP; C \$; RP
SQ 225 (PRINT\#2,WW; C\$;CP; CS; FQ ; C\$;GG;C\$;RR;C\$;PT:GOS UB241ø
GF 2260 FORC $=\varnothing$ TO7 :PRINT\#2,PEEK (4992Ø+C)
GJ 2270 NEXT: FORC=øTO7:PRINT\# 2 , PEEK (49936+C)
ER 228 N NEXT:GOSUB241 1
XQ 2290 CLOSE2:CLOSE15:RETURN
EJ 23øø POKE214,22:PRINT:PRINT " \{RVS\} LOAD FILE NAME \{21 SPACES \}\{OFF\}"
FA 2310 PRINTTAB (18)"\{UP\}\{RVS\} ";:INPUTINS:PRINT"\{UP\} $\{O F F\}$ ": IN\$=LEFT\$(INS,1 2)

JP 232 OPEN15,8,15:OPEN2,8,2, "Ø: "+IN\$+",S,R"
RG 2330 GOSUB2410:IFEN $>1$ THENFO RC=ØTO5Øøø :NEXT:CLOSE2 : CLOSE15: RETURN
BF $234 \emptyset$ INPUT\# $2, C W, H, M, P C, A C, D$ C, SC, RC
GK 235 Ø INPUT\#2,RS,FC, AF, DF, SF , RF
JX 2360 INPUT\# 2, PW, PP, MD , FM, TP , FP, AP, DP, SP, RP
SE 237 Ø INPUT\# 2 ,WW, CP, FQ, GG, RR , PT:GOSUB241б
RQ 238 б $\mathrm{FORC}=\emptyset \mathrm{TO}$ : INPUT\#2, $\mathrm{X}: \mathrm{PO}$ KE ( $4992 \sigma+\mathrm{C}), \mathrm{X}:$ NEXT
QP 2390 FORC $=$ ØTO7:INPUT\# 2, X:PO KE ( $49936+\mathrm{C}), \mathrm{X}: \mathrm{NEXT}: \mathrm{GOS}$ UB241ø
HG 24øØ CLOSE2:CLOSE15:RETURN
KG 2410 INPUT\#15,EN,EMS,ET,ES
SH 242 Ø IFEN $>1$ THENPOKE214,22:P RINT:PRINTCHRS (18) ; EMS ; CHR\$(32);"\{5 SPACES\}"
CK 2430 RETURN
RK $244 \emptyset$ IFFP $=\emptyset$ THENIFMD $<>$ MLTHEN ML=MD: GOSUB5 $7 \varnothing$
RM 2450 PRINT"E8习\{HOME\}":GOSUB 710:GOSUB780:GOSUB830: GOSUB94ø
EG 2460 GOSUB1 $05 \emptyset: G O S U B 1$ ø8ø:GO SUB1120:PRINT"ㅌ43
\{HOME \}": GOSUB115ø:RETU RN

# Fast Data For 64 

## Bob Kodadek

This handy Commodore 64 routine offers a speedy alternative to READing large amounts of information from DATA statements and POKEing it into memory. By using this automatic technique, you can cut program initialization delays dramatically. Use it for new programs or convert all your old ones-either way, you'll be delighted at the difference it makes.

Have you ever waited for a BASIC program to READ loads of data from DATA statements and POKE it into memory? This has always been the traditional way to store data for sprite images or custom characters, to set up musical note tables, and for many other purposes. No matter what the goal, there are few experiences more tedious than staring at a PLEASE WAIT message while BASIC executes hundreds (or even thousands) of READ and POKE statements. "Fast Data For $64^{\prime \prime}$ can perform such operations in a flash, at the speed of machine language. Yet, it becomes part of your BASIC program and is simply called with a GOSUB. For example, 2000 bytes of data can be read and POKEd into memory in only $6 / 10$
second-about 3000 bytes per second. It takes BASIC over 27 full seconds to do the same job. Best of all, this routine automatically appends itself to any BASIC program and can be used even if you don't know anything about machine language.

## A Speedy Alternative

Type in and save the program as it appears in the listing. When you run it, the program installs a machine language routine in memory, then displays several instructions on the screen. Next, load the BASIC program you wish to convert. After the load is finished, enter SYS 49152 and press RETURN. When the word LIGHTNING appears on the screen, a special routine has been added to your program. If you list the program, you will notice that it now contains four extra lines, numbered 63996-63999. (These line numbers are used because the routine must be located at the very end of your program, and BASIC will not allow line numbers higher than 63999.)

Now locate the very last DATA statement in your program and add a comma followed by -1 . For instance, say that the last DATA line in the program looks like this:

## 5000 DATA 224,169,255,96

You'd change it to:
5000 DATA 224,169,255,96,-1
The value -1 marks the end of the data. (Because -1 is used as a marker, you cannot use this program for data that contains the value -1 elsewhere. This shouldn't pose any problems when the program is used for its intended purpose, since it's impossible to POKE a negative value into a memory location.)

To call the routine, add a line which sets the variable $D$ equal to the beginning of the memory area where you want to store the data and then executes GOSUB 63997. For example, to move a block of data into screen memory, which normally begins at location 1024, you could use this line:

## $100 \mathrm{D}=1024:$ GOSUB 63997

The same procedure is used whether you're writing a new program or enhancing an existing one. If you're updating an existing program, be sure to remove the old lines that previously did the POKEing. (Of course, you must not remove the DATA lines themselves, since the ML routine still needs something to read.) This routine uses the variable names $\mathrm{D}, \mathrm{D} \%$, and A , so you must not use those variables anywhere in your own program. When you're finished making the changes, save the modified version of the program with a new filename.

If you're interested in how all this works: Line 63997 of the conversion routine changes the variable D into a low-byte/high-byte address and sets up a pointer at 253-254 (\$FD-\$FE) for the machine language routine to use in storing the data. Line 63998 updates the DATA pointer at 65 (\$41) by reading and POKEing the first byte of data from BASIC. It then calculates the location of the machine language routine in BASIC memory and calls it with the resultant SYS number. Line 63999 contains the actual machine language in a REM statement. This technique works fine as long as the code is relocatable and does not contain any zero bytes or control characters. Note that this special line con-
tains more than the usual 80 characters. Do not attempt to edit or change this line in any way; the BASIC editor will shorten the line and scramble the machine language it contains.

## Fast Data For 64

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing in Programs" in this issue of COMPUTE!.

XB 10 PRINT" $\{C L R\}$ \{DOWN\}PLEASE \{SPACE \}WAIT":FOR I=ø TO \{SPACE \} 386: READ BY: POKE \{SPACE \} $49152+\mathrm{I}, \mathrm{BY}: \mathrm{CK}=\mathrm{CK}+$ BY: NEXT
RF $2 \emptyset$ IF CK <> 38541 THEN PRIN T"ERROR IN DATA STATEMEN Tl": END
GG $3 \varnothing$ DATA $162, \varnothing, 189,101,193,2$ 40,6,32
XC $4 \varnothing$ DATA $21 \varnothing, 255,232,208,245$ ,169,77,133
GS 50 DATA $17 \varnothing, 169,192,133,171$ , 32,51,165
FQ $6 \varnothing$ DATA $160, \varnothing, 177,17 \varnothing, 2 \varnothing 1,3$ ,24ø,18
EM $7 \varnothing$ DATA $145,34,230,34,2 \varnothing 8,2$ ,230,35
SD $8 \varnothing$ DATA $23 \varnothing, 17 \varnothing, 2 \varnothing 8,2,23 \varnothing, 1$ 71,160, $\varnothing$
MG $9 \varnothing$ DATA $240,232,32,51,165,1$ 65,34,24
QF 1 Øø DATA $1 \varnothing 5,2,144,2,230,35$ ,133,45
FJ $11 \varnothing$ DATA $133,47,133,49,165$, 35,133,46
GA $12 \varnothing$ DATA $133,48,133,50,96,5$ 8,8,252
MR $13 \emptyset$ DATA $249,128,58,143,32$, 82,38,8ø
SG $14 \varnothing$ DATA $32,82,79,85,84,73$, 78,69
BB $15 \emptyset$ DATA $46,7 \varnothing, 73,82,83,84$, 32,83
JP 160 DATA $69,84,32,68,61,84$, 79,32
QR $17 \varnothing$ DATA $68,69,83,84,32,84$, 72,69
FM $18 \emptyset$ DATA $78,32,71,79,83,85$, 66,32
DC 190 DATA $54,51,57,57,55,6,1$ Ø3, 8
DR $2 ø \emptyset$ DATA $253,249,68,37,178$, 68,173,5ø
KA $21 \varnothing$ DATA $53,54,58,151,50,53$ ,52,44
QX $22 \varnothing$ DATA $68,37,58,151,50,53$ ,51,44
CB 230 DATA $68,171,68,37,172,5$ Ø, 53,54
PM $24 \emptyset$ DATA $58,135,32,65,58,15$ 1,32,68
PB $25 \emptyset$ DATA $44,65, \varnothing, 156,8,254$, 249, 158
RD $26 \emptyset$ DATA $32,194,40,52,54,41$ ,172,5ø
JX $27 \varnothing$ DATA $53,54,17 \varnothing, 194,40,5$ 2,53,41
RJ 280 DATA $171,32,49,49,56,32$ ,58,142
KK 290 DATA $58,143,32,76,73,78$ ,68,32
CX 3øø DATA 49,83,84,32,66,89, 84,69
FK $31 \varnothing$ DATA $32,79,76,32,77,47$, 76,0

KG $32 \varnothing$ DATA $22,9,255,249,143,3$ 4,230,253
XR $33 \varnothing$ DATA 2ø8,2,230,254,160, 255,200,132
GP 340 DATA $98,132,99,132,100$, 23ø,65,2ø8
MS $35 \emptyset$ DATA $02,230,66,177,65,2$ ø8, ø14,165
CF 360 DATA $65,24,165,5,133,65$ ,144,44
MM $37 \varnothing$ DATA $23 \varnothing, 66,2 ø 8,40,234$, 2ø1,44,24ø
EK $38 \emptyset$ DATA $35,2 \varnothing 1,32,240,224$, 2ø1,45,2ø8
FK $39 \varnothing$ DATA $12,165,65,24,165,2$ ,133,65
RX 4 øø DATA $144,2,230,66,96,56$ ,233,48
QE $41 \emptyset$ DATA $166,99,134,98,166$, 1øø,134,99
FP $42 \varnothing$ DATA $133,106,176,193,16$ 2,100,165,98
FC $43 \varnothing$ DATA $24 \varnothing, 9,2 \varnothing 1,1,240,2$, 162,2ø0
BF 446 DATA $138,133,98,165,99$, 24б, 8,162
XX 450 DATA $9,24,101,99,202,20$ 8,250, 24
QR $46 \emptyset$ DATA $101,98,24,101,100$, $145,253,144$
JE $47 \varnothing$ DATA $141, \varnothing, \varnothing, \varnothing, 3,76,73$, 71
AF $48 \emptyset$ DATA $72,84,78,73,78,71$, 33,ø13
FJ $49 \varnothing$ DATA $\varnothing, 4 \varnothing, 67,41,49,57,5$ 6,54
DC $50 \emptyset$ DATA $66,79,66,75,79,68$, $65,68,69,75,8$

## COMPUTE! <br> Subscriber Serviにes

Please help us serve you better. If you need to contact us for cny of the reasons listed below, write to us at:

## COMPUTEI Magazine

## P.O. Box 10954

Des Moines, IA 50340
or call the Toll Free number listed below.
Change Of Address. Please allow us 6-8 weeks to effect the change; send your current mailing label along with your new address.
Renewal. Should you wish to renew your COMPUTEI subscription before we remind you to, send your current mailing label with payment or charge number or call the Toll Free number listed below.
New Subscriptlon. A one year (12 month) US subscription tc, COMPUTEI is $\$ 24.00$ (2 years, $\$ 45.00$; © years, $\$ 65.00$. For subscription rates outside the US, see staff page). Send us your name and address or call the Till Free number listed below.
Dellvery Problems. If you receive duplicate issues of COMPUTEI, if you experience late delivery or if you have problems with your subscription, please call the Toll Free number listed below.

COMPU'TE!
1-800-247-5470
in IA 1-800-532-1272

# Enhancements For Atari SpeedCalc 

Fred Chapman

Here are two enhancements for the Atari version of COMPUTE！＇s popular spreadsheed program SpeedCalc （published March 1986）．These new features give you greater control over printed output and allow you to copy or move blocks of cells without recal－ culating the entire spreadsheet．A disk drive is required．

Atari SpeedCalc is an excellent spreadsheet program，but even a good program can be improved here and there．＂Enhancements For Atari SpeedCalc＂makes several modifications to SpeedCalc to in－ crease its power and convenience． Type in the program and save it to disk or tape，then run it．

When the program begins，you are prompted to insert a disk con－ taining Atari SpeedCalc．Make sure you have a backup copy of SpeedCalc stored safely on another disk，in case you experience a disk error or change your mind about using the enhanced version of SpeedCalc．Press RE－ TURN when the disk is in place． The enhancement program auto－ matically appends the necessary code to the SpeedCalc AUTORUN． SYS file．After a few moments，the computer prints DONE．To enter SpeedCalc，remove or disable BASIC，then reboot the system．

## Selective Printing

When printing to a device（a print－ er，disk drive，or the screen），the original SpeedCalc always starts printing at the upper left cell in the spreadsheet（cell AA1）．This feature effectively limits the width of any printout to seven－or eight－cell col－ umns on an 80 －column printer．The enhanced version of SpeedCalc has the ability to send the contents of any block of cells to the device you select．

To print out a selected block of cells，move the cursor to the bottom right cell of the block that you want to print，then press CTRL－P（hold down CTRL，then press P）．When prompted for the output device，en－ ter P：to select the printer，E：to select the screen，or D：followed by a filename to print to a disk file． Now move the cursor to the top left cell of the block you wish to print， then press RETURN．SpeedCalc prints only the selected block．

## Improved Move And Copy

The new version of SpeedCalc also has the ability to copy or move blocks of cells without recalculat－ ing．This permits you to piece to－ gether sections of the spreadsheet for printing without causing calcu－ lation errors．For example，you may want to move a column of titles just to the left of the cells to be printed． Recalculation during copy and move operations is now consistent with SpeedCalc＇s automatic recalcu－ lation mode．If automatic recalcula－ tion is turned on，copy and move commands cause the entire spread－ sheet to be recalculated．If automat－ ic recalculation is turned off，copy and move simply move the contents of the selected block from one place to another within the sheet．Just as in the original version，you can tog－ gle automatic recalculation mode on or off by pressing CTRL－R．

## Enhancements For Atari SpeedCalc

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．
MH 19 REM PRINT ROUTINE ENHA NCEMENTS FOR SPEEDCALC BI 26 REM THIS PROGRAM APPEN DS SEVERAL PATCHES TO THE ORIGINAL SPEEDCALC

## DB 3月 TRAP 43 ．

NI $4 \varnothing$ CHECKSUM $=\varnothing$ ：NBYTES $=8 \varnothing$
JL $5 \%$ FOR BYTE＝1 TO NBYTES：R EAD ABYTE：CHECKSUM＝CHE

```
 CKSUM+ABYTE:NEXT BYTE
OJ 6\emptyset IF CHECKSUM< >7369 THEN
 PRINT "ERROR IN DATA
 8TATEMENTS":GOTO 44%
CI7\emptyset DIM A$(1)
PM B\emptyset PRINT "{CLEAR}INSERT S
 PEEDCALC DISK & PRESS
 RETURN":INPUT A&
DD9\emptyset CLOSE #1
ID 1.g OPEN #1,9, ø, "D:AUTORU
 N.SYS":REM APPEND PAT
 CHES TU END OF ORIEIN
 AL FILE
EO11g RESTORE 170
BC 12g PRINT "WRITING...""
DF 130 FOR BYTE=1 TO NBYTES:
 READ ABYTE:PUT #1,ABY
 TE:NEXT BYTE
FP 14| CLOSE 曹1
JO 15% PRINT "DONE":END
C816% REM &1Føg-$1F2B, 1ST
 PATCH
HC 17@ DATA Ø, 31
KK 180 DATA 43,31
DD 199 DATA 162, ,,32,199,58,
 32
8120日 DATA 88,46,173,17,66,
 2.5
CB 21ø DATA 1,66,144,240,173
 ,1
JF 220 DATA 66,133, 295,173,1
 9,66
JE 230 DATA 265, 2,66,144,227
 ,169
CH24! DATA 65,160,79,162,9,
 32
HC 25@ DATA 199,58, 32, 89,33,
 162
IB 26% DATA 4,96
HM 27.0 REM
BK 28ø REM $1F4D-$1F4A, 2ND
 PATCH
KP 29ø DATA 64,31
KI 3øø DATA 74,31
MC 31. DATA 173,143,62,24!,3
FP 320 DATA 76,150,51,76,152
 ,33
HK 330 REM
CH34g REM $2CDB-$2CEg,REPL
 6 BYTES IN SPEEDCALC
 CODE
OC 35@ DATA 219,44
NP 36% DATA 224,44
PO 37! DATA 32,9,31,32,199,5
 8
HP 38% REM
PL 39ø REM $31C9-&31CB,COPY/
 MDVE PATCH
MK 4.0. DATA 2%1,49
MH 41% DATA 2.0,49
ED 42g DATA 76,64,31
LI 436 ERR=PEEK(195):PRINT "
 ERRQR- ";ERR
KD 44! PRINT "PROGRAM ABORTE
 D!"
80450 CLOSE 更1
```


# Commodore 128 Machine Language 

## Part 2

Jim Butterfield, Associate Editor

This second in a series of articles on programming the 128 computer in its 128 mode, explores the built-in machine language monitor and looks at ways to link machine language programs to BASIC.

## A Monitor At <br> Your Fingertips

Some of the earlier Commodore products had no built-in machine language monitor. To work on machine language on the VIC-20 or Commodore 64, for example, you had to load a machine language monitor from tape or disk, or rely on a plug-in cartridge. Other products had simple monitors: Many PET/CBM models had monitors which could display and change memory, save or load programs, and not much else. The built-in monitor on the Commodore 128 has many attractive features; the best way to learn them is to try them.

Type MONITOR and press RETURN. You'll see the familiar register display, with values under the titles: PC (program counter), SR (status register), AC (accumulator or A register), XR (X register), YR (Y register), and SP (stack pointer). They are all similar to what you may have met on other machines except that the value under PC
looks a little odd. It has five digits instead of four. The extra digit at the beginning is the bank number, and since it's an $F$, we're in bank 15.

We've noted previously that bank isn't quite the right term. We should more properly say configuration 15 , since each configuration consists of a mixture of memory elements. Figures 1 and 2 show the configurations for banks 15 (the default) and 0 . You'll notice that for addresses below $\$ 4000$, both bank 0 and bank 15 use exactly the same
memory. Thus, the contents of address $\$$ F1000 is exactly the same as the contents of address $\$ 01000$. In fact, it's the same memory. We'll look for ourselves in a few moments.

## Number Conversion

You may be quite comfortable with hexadecimal numbers. You may even be able to do hex-to-decimal conversions in your head and amaze your friends. I can't, however, and I like the number conversion features that are built into the monitor.


Figure 2: Bank 0


# Only NRI teaches you to service and repair all computers as you build your own 16-bit IBM-compatible 

 microNow that computers are firmly established in offices-and in homes, too-the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years-a faster growth rate than any other occupation.

## Total systems training

No computer stands alone
. it's part of a total system. And if you want to learn to service and repair computers, you have to understand computer systems. Only NRI includes a powerful computer system as part of your training, centered around the IBM-compatible Sanyo 550 Series computer.

As part of your training, you'll build this highly rated, 16 -bit IBM compatible computer system, assemble Sanyo's "intelligent" keyboard, install the power supply and disk drive, interface the highresolution monitor and dot matrix printer, even expand the memory from 128 K to 256 K RAM. It's confidence-building, real-world experience that includes training in programming, circuit design, and peripheral maintenance.

## No experience necessary- NRI builds it in

Even if you've never had any previous training in electronics, you can succeed with NRI training. You'll start with the basics, then rapidly build on them to master such concepts as digital logic, microprocessor design, and computer memory. You'll build and test advanced electronic circuits using the exclusive NRI Discovery Lab ${ }^{\otimes}$, professional digital multimeter, and logic probe. Like your computer system, they're all yours to keep as part of your training. You even get over $\$ 1,000$ worth of software, including the popular WordStar and CalcStar.

## Send for 100-page free catalog

Send the coupon today for NRI's 100-page full color catalog, with all the facts about


NRI is the only home
study school that study school that trains you on a total computer system check keyboard, power supply, disk power supply, disk
drive, printer, and monitor, following step-by-step directions.
computer training. Read detailed descriptions of each lesson, each experiment you perform. See each piece of hands-on equipment you'll work with and keep. And check out NRI training in other high-tech fields such as

Your NRI total
systems training includes
all of this - NRi Discovery
Lab to design and modify
circuits • Four-function digital
multimeter with audio cassette training • Digital logic probe for visual examination of computer circuits - Sanyo 550 Series computer with "intelligent" keyboard and 360 K double-density, double-sided disk drive - Highresolution monochrome monitor - RAM expansion module to give you powerful 256K memory - 120 CPS dot matrix printer with near-letter-quality mode - Easy Writer I, WordStar, CalcStar bundled software - Refer ence manuals, schematics, and bite-sized lessons.

Robotics, Data Communications, TV/Audio/Video Servicing, and more. Mail the coupon today, and see how NRI can prepare you for advancement and new careers in the exciting world of electronics. If the coupon has been used, write to NRI Schools, 3939 Wisconsin Ave., Washington, DC 20016.

## SEND COUPON TODAY FOR FREE NRI CATALOG!



We've talked about hexadecimal address $\$ 4000$ already. Let's find its value in decimal.

Type in the value $\$ 4000$ on a line by itself and press RETURN. You'll see a display of this number as it appears in various number bases. First, the hexadecimal number., The dollar sign means hex, of course, so the monitor simply echoes what you typed in: $\$ 4000$. The next line starts with a plus sign ( + ). To the 128 's monitor, the plus sign means decimal. So you can see that $\$ 4000$ equals decimal 16384. The following line starts with an ampersand (\&), which means octal, a notation that's rarely if ever used with Commodore machines. (Octal numbers are base 8 , so $\& 40000$ is equal to four times eight raised to the fourth power.) Finally, the number that starts with a percent $\operatorname{sign}(\%)$ is the binary representation of $\$ 4000$. Since the computer's internal code is always binary-not decimal or hexadecimal-it's sometimes useful to be able to look at a number this way.

You may also convert a decimal number to the other bases by typing it in, leading off with a plus sign. If you like, try entering +16384 and watch the computer figure out that it's the same as $\$ 4000$. And if you ever need to do so, you can convert from octal or binary the same way.

Conversions are convenient, but the monitor includes another bonus: Any number may be entered in any base, any time. If you put in a number without a prefix, the monitor will assume you mean it to be hexadecimal. But you can slip in a decimal number anywhere by prefixing it with the plus sign. We'll be doing this; you'll see how handy it is.

## Looking At Memory

You may display memory with the command M. If you follow $M$ with two addresses, the monitor displays all the values between them. Thus, to display the contents of addresses \$1000-\$1029, just type M 1000 1029 and press RETURN.

You'll get more than you bargained for. Depending on whether you are on a 40 -column or 80 column screen, the monitor will display 8 or 16 memory locations at
a time. Each group of locations is on a single line, with the address of the first item on the line showing at the left. We asked for 42 locations, but we got 48 , since the computer always finishes the line it's working on.

On the right, we see the ASCII character equivalent of the contents of the memory locations; some locations don't happen to have an alphanumeric equivalent, in which case a period is printed. If you display the addresses suggested above, you'll see some readable text in this area. The zone of memory we're looking at holds the function key definitions.

Just to confirm something that was said before, try using $M$ to display memory locations F1000F1029. That's bank 15 instead of bank 0, but you'll see that it is in fact the same memory. And you might like to try $\mathrm{M}+4096+4137$ which uses decimal addresses for the same locations.

If you follow an M command with only one address, you'll get a fixed number of memory locations. This can save you typing, and here's a tip for browsing through large amounts of memory: If you type M alone with no addresses, you'll get a continuation of the last memory display.

## Making Changes Directly

The simplest way to change memory is to display the area you're interested in, then move the cursor back and type over the values on the screen. When you press RETURN, the monitor enters all the values for that line. It's a bit like screen editing in BASIC.

Try it. If you have displayed memory as suggested above, you may see the word GRAPHIC on the right-hand side of the memory display. Let's change the $G$ stored in memory to a $T$ so that it says TRAPHIC. The code for a $G$ is $\$ 47$; it's found in the left-hand part of that line. Move the cursor over the 47 and type 54 , which is the code for $T$. Now press RETURN and the memory change is made.

Remember that you can't change the right-hand ASCII side of the display. And by the way, this is not the recommended way to change the function key definitions. It's easier (and better) to use

BASIC's KEY command.
You can't change locations in read only memory (ROM). Try this: M F4200 F4200 will show you part of the BASIC ROM. Move the cursor back, type over a value, and press RETURN. You'll see from the display that the original values have been restored and ROM has not changed. Here's a note for technical types: The values from the line have "poked through" into the RAM memory which lies beneath ROM, but the monitor shows only the ROM.

The first character on the memory display line is the greaterthan sign ( $>$ ). This is in fact a synonym for the change memory command. On rare occasions, yo:i might like to use this command directly.

Here's a typical case where the greater-than sign might be typed: You want to change a single location in an I/O chip. Using the "display and type over" method, you'd change 8 or 16 locations at a time. Usually, that's okay, but I/O chips are delicate and you don't want to change other registers accidentally. As a simple example, you might like to change the 40 -column border color to red, but you don't want to change anything else. You may type $>$ FD020 2 (remember that the I/O chips are in bank 15) and the border will change. The monitor will display a full line of memory locations, but you've changed only one. By the way, did you notice that the address you changed does not now contain the value 2 you put in? Funny things, I/O chips. If you're interested, you might type \$D020 to ask the computer what decimal address in bank 15 you have changed. You might recognize the answer, +53280 .

## Write A Simple ML Program

 Let's write a short program to print a line of asterisks. We'll use the built-in assembler. Here goes:
## A 1500 LDX \#0

The A means assemble. The address at which we will put this instruction is 1500 ; it's in hexadecimal (put a dollar sign in front if you like). The instruction itself is LDX \# 0 , load counter $X$ with a value (the \# character means a value, not an address) of zero. Press RETURN


[^0]:    1. Entries must be your original work, previously unpublished. All those whose programs are accepted will be required to affirm this in writing.
    2. You can submit as many entries as you want, but we cannot consider programs which have been entered in other contests or submitted for publication elsewhere at the same time.
    3. The deadline is October 1, 1986. All entries must be received at our offices by this date. Programs submitted after this date will still be considered for publication, but will not be entered in the contest.
    4. Entries are allowed (and encouraged) in virtually all software categories: home and business applications, education, recreation, telecommunications, graphics, sound and music, utilities, and desk accessories.
    5. Entries may be written in any programming language-including BASIC, Logo, C, machine language, Pascal, Modula-2, Forth, FORTRAN, and Prolog-as long as they meet two requirements. First, if you're using a compiled language, the compiled object or run-time code must be a selfstanding program that can be run by someone who doesn't own a copy of the language. (Exceptions are ST BASIC and Logo. Since these languages come with the ST, it can be assumed that everyone owns a copy.) Second, we must be able to legally distribute the program without incurring licensing fees or other obligations to the maker of the language. If you're not sure whether a certain language qualifies, contact its maker for clarification.
    6. Entries must be submitted on a single- or double-sided $31 / 2$-inch ST disk with both the run-time code and source code included.
    7. Entries must be accompanied by an article which explains how to use the program, what it does, and so on. If your program employs any new or unusual techniques that you think will be of interest to other ST programmers, you can also describe how the program works.
    8. Submissions which do not win a prize and are not accepted for publication will be returned only if accompanied by a self-addressed, stamped mailer.
    9. All judging will be handled by the staff of COMPUTE! Publications, Inc. All decisions regarding contest entries and acceptances will be solely at the
[^1]:    Add $\$ 10.00$ for shipping, handling, and insurance. Illinols residents please add $61 / \%$ sales tax. Add 20.00 for CANADA, PUERTO RICO, HAWAII, ALASKA, APO.FPO orders. All orders must be in U.S. Dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA. Enclose Cashier Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, I day express mail. Prices \& Availability subiect to change without notice.

