68000: The Powerhouse Behind The Macintosh, Atari ST, \& Amiga

The Leading Magazine Of Home, Educational, And Recreational Computing

Apple speedCole A Powerful Spreadsheet Programs Inside For II + , Ile, Ilc

High Rise

Exceptional Arcade Game For Commodore 64, 128, Atari, And Apple

Commodore Speedy Strings A New Technique For Fast-Loading Data

ST Doodler

A Drawing Program For 520ST Logo

IBM Screen Swapping Instant Animation With Page-Flipping

High-Speed Search

For Atari BASIC

Introduction To

AmigaDOS, Part 2

$\begin{array}{lllllllllll}I & N & T & R & O & D & U & C & I & N & G\end{array}$
 Discovery Software from World Book

Great Gifts for your child

Settling America

A survival simulation program
featuring

- practice in making value
judgements
- practice in making
decisions
- helps expand knowledge of post-Revolutionary America

Data Hurdles
 A data use skills review
 program featuring
 - ten activities that review ordering, rounding, sets, totals, fast math, time money, percentages, measuring, and comparing
 - on-screen tutorial skill reviews
 - three levels of difficulty

Spell Bound
A critical thinking skills review
program featuring

- vocabulary reinforcement through use of verbal
analogies
- four levels of difficulty

Fast Break

A punctuation skills review program featuring

- explanation of commonly
used punctuation marks
- practice in using punctuation marks in
context
- four levels of difficulty

WhizCalc I
An arithmetic skills review program featuring

- practice of basic arithmetic
operations
- nine levels of difficulty
- a "Create Your Own

Problems" option

Run for President
A social studies program
featuring

- review of geography facts
about the United States
- a review of U.S. state facts

Educational software that understands the learning process

Discovery Software from World Book
For Apple ${ }^{\ominus} \mathrm{IIe} / \mathrm{IIC}$

- Six programs now available (Intermediate - age 10 and up)
- Seven more programs available January, 1986 (Primary - age 6-10)

For other microcomputers:

- 21 programs available now (Seven each in Preschool age $3 \cdot 5$, Primary, and Intermediate)

When discovery occurs, learning begins.

Choose great software gifts from World Book-long a trusted name in educational information. Discovery Software from World Book reinforces your child's basic education in continually entertaining program formats.

Each program in Discovery Software from World Book has been tested and evaluated by educators, consultants, and children. Included with each program is a unique Discovery Workbook of activities and projects which you can use to strengthen learning skills presented in the software.

Give your child the gift of educational discovery. Give Discovery Software from World Book. See your local software dealer or call 1-800-292-9090.
(In Ohio call 1-800-423-7755).

We don't care

which computer you own.

 We'll help you

CompuServe puts a world of information, communications, and entertainment at your fingertips.

CompuServe is the world's largest information service designed for the personal computer user and managed by the communications professionals who provide business information services to over one quarter of the FORTUNE 500 companies.

Subscribers get a wealth of useful, profitable or just plain interesting information like national news wires, home
shopping and banking, travel and sophisticated financial data. Plus electronic mail, national bulletin boards, forums (special interest groups), and a multichannel CB simulator.

You get games and entertainment, too. Board, parlor, sports, space and educational games. Trivia and the first online TV-style game show played for real prizes.
To buy a CompuServe Subscription Kit,
see your nearest computer dealer. To receive our informative brochure or to order direct call or write:

CompuServe

Consumer Information Service, P. O. Box 20212 5000 Arlington Centre Bivd., Columbus. OH 43220 800-848-8199 in Ohio Call 614-457-0802

Trusted Software and

Language Software For Commodore Computers

ADA TRAINING COURSE

Teaches you the language of the future. Comprehensive subset of language. Includes: editor; syntax checker, compiler; assembler; disassembler, handbook.
\$39.95

ASSEMBLERMONTOR

Macro assembler and extended monitor. Supports all standard functions plus floating point constants. Monitor supports bank switching, quick trace, single step, more.
\$39.95

BASIC COMPILER
 Compiles complete BASIC language into either fast 6510 machine language and/or compact speedcode. Supports overlays and many extended BASIC commands. C-64 \$39.95
 C-128 \$59.95

> LDA JSA DEC INX INY TYA ROR BRK JMP TAX ROL BRK JMP INC PLA RTS CMP STX SEC PLP SED

SUPERPASCAL

Full Pascal supports graphics, sprites, file management, more Supports pointers, dynamic memory management, machine language. Compiles to fast 6510 machine code. C-64 \$59.95
C-128 \$59.95

FORTHLANGUAGE

Based on Forth 79 (+ parts o '83). Supports hires graphics and sound synthesizer. Full screen editor, programming tools, assembler, samples handbook.
\$39.95

> MASTER
> Professional development package for serious applications. Indexed file system, full screen \& printer management, programmer's aid, multiprecision math, royalty-free runtime, more.
> \$39.95

MASTER

Protessional Development Package
Abse filitit

Reference Books

ANATOMY OF C-64 Insider's guide to the '64 internals. Graphics, sound, VO, kernal, memory maps, and much more. Complete commented ROM listings. $\quad 300 \mathrm{pp}$ \$19.95

ANATOMY OF 1541 DRtYE Pest handbook on this drive, oxprains att जithed with many examples programs and tijities. Fully commented 1541 RqMi/istings. $\quad 500+\mathrm{pp} \$ 19.95$

MACHINE LANGUAGE FOR C-64 Learn 6510 code \& write fast programs. Many samples and listings for complete assembler, monitor and simulator.

200pp \$14.95
GRAPHICS BOOK FOR C-64 Best reference, covers basic and advanced graphics. Sprites, Hires, Multicolor, 3D-graphics, IRQ, CAD, projections, curves, more. 350pp \$19.95

TRICKS \& TIPS FOR C-64 Collection of easy-to-use techniques: advanced graphics, improved data input, enhanced BASIC, CP/M, data handling and more. 275pp \$19.95

1541 REPAIR \& MAINTENANCE Handbook on the drive's hardware. Includes schematics \& techniques to keep 1541 running. Align drive w/ \& w/o scope. Large handbook size. \$19.95

ADVANCED MACHINE LANGUAGE Subjects not covered elsewhere: video controller, interrupts, timers, I/O, extensions to BASIC. Tips for the serious programmer. 210pp \$14.95
PRINTER BOOK C-64/VIC-20 Understand Commodore, Epson compatible printers \& 1520 plotter. Utilities, screen dump, 3D-plot, commented MPS-801 ROM listings. 330pp \$19.95

SCIENCE/ENGINEERING ON C-64 Indepth introduction to computers in science. Some topics covered are chemistry, physics. astronomy, electronics \& others. 350pp $\$ 19.95$

CASSETTE BOOK C-64/VIC-20 Make your cassette run faster than a disk drivel Cassette data-base, disk to tape backup, tape to disk, FastTape operating system. 225pp \$14.95

Productivity Tools

TECHNICAL ANALYSISSYSTEM

A sophisticated charting and technical analysis system for serious investors. By charting and analyzing the past history of a stock, TAS can help pinpoint trends \& patterns and predict a stock's future. TAS lets you enter trading data from the keyboard or directly from online financial services. \$59.95

PERSONAL PORTFOLO MANAGER

Complete portfolio management system tor the individual or professional investor. Allows investors to easily manage their portfolios, obtain up-to-the minute quotes \& news, and .erform selected analysis.
$\$ 39.95$

CADPAK

A deluxe graphics design and drawing package. Use with or without an optional lightpen to create highly-detailed designs. With dimensioning, scaling, text, rotation object libraries, hardcopy and more. $\$ 39.95$

DATAMAT

Powerful, easy-to-use data management package using menu selections. Free-form design, 50 fields/record, 2000 records/disk Sort on multiple fields in any combination Complete selection and formatting for printing reports.
$\$ 39.95$
c

Add $50+$ graphic, sound and utility commands to your programs with this super development package. Free distribution of RUNTIME version -no royalties!
\$39.95

XREF-128 \& XREF-64

 BASIC cross-reference BASIC cross-referenceIndispensible tool for BASIC programmers. Finds all references to variables, constants \& line numbers. Sorts in alphabetical order. C-64 \$17.95 C-128 \$17.95

Authoritative Books

From Abacus Software ma name you can count on

IDEAS FOR USE ON C-64 Themes: auto expenses, calculator, recipe file, stock lists, diet planner, window advertising, others. Includes all program listings.

200pp \$12.95
COMPILER BOOK C-64/C-128 All you need to know about compilers: how they work, creating your own and generating the final machine code.

300pp \$19.95
Adventure Gamewriter's Handbook A step-by-step guide to designing and writing your own adventure games. Adventure game generator \& four example games. 200pp $\$ 14.95$

PEEKS \& POKES FOR THE C-64 Includes in-depth explanations of PEEK, POKE, USR, and other BASIC commands. Learn the "inside tricks about your '64.

200pp \$14.96

OPTIONAL DISKETTES FOR BOOKS For your convenience, the programs contained in each of our books are available on diskette. AH program thoroughly tested \& error-free. Specity titie of book when ordering.
$\$ 14.95$ each

C-128 INTERNALS Detailed guide presents the 128 's operating system, explains the graphics chips, Memory Management Unit, and commented listing of Kernal. $500+$ pp $\$ 19.95$

1571 INTERNALS Insiders' guide for novice and advanced users. Covers sequential \& relative files, and direct access commands. Describes important DOS routines. Commented DOS listings.

500+pp \$19.96
C-128 TRICKS \& TIPS Chock full of info for everyone. Covers 80 column hi-res graphics, windowing, memory layout, Kernal routines sprites and more.

300 pp \$19.95
CP/M ON THE C-128 Essential guide to using CP/M on your 128. Simple explanations of the operating system, memory usage, CP/M utility programs, submit files and more. $\$ 19.95$

COMPUTER AIDED DESIGN on your C-128 or 64. Create a CAD system using programs provided. Covers 3D objects \& rotation, MACROS, hatching, zooming, mirroring, line widths, dashed lines, more. 300 pages $\$ 19.95$

Special Feature

For school or software development, choose SUPER C. SUPER C's powerful screen editor is full-functioned with horizontal and vertical scrolling, copy and search/ replace for easy editing. Source files may be up to 41 K .

The SUPER C compiler is fast and creates link files. Up to seven separate modules may be linked into a ready-to-run object program. To maintain C's portability, SUPER C supports the Kernighan \& Ritchie standard (without bit fields), making it very complete. SUPER C also includes a complete I/O library.

Other features of the SUPER C package:

- convenient hexadecimal and octal input
- error file listed to diskette
- supports conditional compiling
- complete strings and arrays
- full mathematical functions

C-64 \$79.95

Ordering Information

XPER

Capture your information on XPER's knowledge base and let this first expert system for Commodore computers help you make important decisions. Large capacity. Complete with editing \& reporting.
$\$ 59.95$

POWERPLAN

One of the most powerful spreadsheets with integrated graphics for your Commodore computer. Includes menu or keyword selections, online help screens, field protection, windowing, trig functions and more. PowerGraph lets you create integrated graphs and charts from your spreadsheet data. $\$ 39.95$

QUICKCOPY V2.0

Back up your valuable data with the fastest disk copier we've seen to date. Copies an entire disk in two and a half minutes on two drives or three and a half on one. $\$ 19.95$

CHARTPAK

Make professional-quality pie, bar and line charts, and graphics from your data. Includes statistical functions. Accepts data from CalcResult and MultiPlan. C-128 has 3X the resolution of the C-64 version. Outputs to most printers.

C-64 \$39.95
C-128 \$39.95

Abacus Software

P.O Box 7211 Grand Rapids, Michigan 49510

For Postage and handling include $\$ 4.00$ per order. Foreign orders include $\$ 10.00$ per item. Money order and checks in U.S. Dollars only. MasterCard, VISA and American Express accected. Michigan residents please include 4% sales tax.

For fast service call (616) 241-5510 Telex 709-101
For free catalog, please return this coupon or a copy to:
Abacus Software, P.O. Box 7211, Grand Rapids, MI 49510

> PHONE: (616) 241-5510

Address	
City	
State	Zp

How to turn your computeron.

COMPUTE!
 FEBRUARY 1986
 VOLUME 8
 NUMBER 2
 ISSUE 69

FEATURES

18 Genealogy of a Chip:
The 68000 Yesterday, Today, and Tomorrow
34 A Quantum Leap: From 6502 to 68000
49 High Rise
88 SpeedCalc for Apple II Computers

Selby Bateman Richard Mansfield Charles McGuyer Kevin Martin

REVIEWS

36 Reach for the Stars for Commodore and Apple
36 PC/InterComm for Atari 520ST
38 Write 'n Spell
44 Microsoft BASIC 2.1 for Macintosh
45 Bank Street Mailer and Bank Street Filer
46 Psion Chess for IBM and Macintosh
46 Quest of the Space Beagle for Atari
47 Where in the World Is Carmen Sandiego for Apple

James V. Trunzo George Miller Tony Roberts Charles Brannon James V. Trunzo John Krause
Steve Hudson
Karen McCullough

64/128/AP ST PC/PCjr Mac AP PC/PCjr/Mac AT AP

COLUMNS AND DEPARTMENTS

6 The Editor's Notes
10 Readers' Feedback
87 HOTWARE
103 Telecomputing Today: Gadgets for Better Telecomputing
104 The Beginner's Page: The Hidden Numbers Behind Strings
105 Computers and Society:
The Human Side of Telecommuting
106 The World Inside the Computer:
Arjan Singh Khalsa-A Prophet of Bionic Man
107 INSIGHT: Atari-Avoiding Memory Confusion in Atari BASIC
. Fred D'Ignazio
109 Programming the TI: Computerized Messages
111 IBM Personal Computing: Compiling BASIC

Robert Lock
The Editors and Readers of COMPUTE!
\qquad Arlan R. Levitan Tom R. Halfhill David D. Thornburg Fred D'Ianazio Bill Wilkinson C. Regena

Donald B. Trivette

THE JOURNAL

58 High-Speed String Search for Atari BASIC
62 IBM Screen Swapping
64 Speedy Strings for Commodore
67 Introduction to AmigaDOS, Part 2
70 MessageMaker 64
72 Commodore 64 Program Profiler
74 Atari Typo Tool
\qquad
\qquad

.

Editor's Notes

As is usual at this time of year, we begin to think about what the new year holds. This process usually gets up to speed by early December. That happens to be when we're writing this particular set of editor's notes. It also means you'll be reading them in February. It happens every year like this, but what can we say? We simply can't get too pseudo-visionary in October.

Last year this time, we were confidently predicting great things to come from Commodore. This year, we're predicting great things to come from Commodore's new Amiga just as soon as it begins to ship in quantity and . . . You get the picture. In the editorial offices we call this hedging. It's a technique we've had to polish up on the last year or so. There was a time when this industry just grew and grew. In fact, it grew so fast that many marketing snafus, many less-than-polished products, were never recognized as such. Those times have passed. We no longer suspect that perhaps this is simply a pause in the phenomenal growth of years past. Times have truly changed, and our markets and marketeers have begun to adjust.

We won't try to offer any detailed predictions on 1986. This year, all we have are some reflections on the past, and a few on what we might expect from months ahead.

IBM's massive advertising campaign for the PCjr has been impressive for two reasons. It presents an opportunity to reap a reasonable savings on an adequately designed system, and it presents uninformed buyers with the opportunity to purchase a discontinued computer system six or more months after the announcement of its cessation. IBM does point out that it will continue to fully service and support the PCjr , and there's certainly no requirement that such merchandise
be identified as no longer in production. But one must wonder whether each and every buyer who responds to this robust advertising campaign is fully aware of the transitory state of their choice of hardware.

Has Jack Tramiel done it again? This headline has been increasingly frequent of late, in part we suspect because, in this rather boring downturn in the industry, Mr. Tramiel is reliably eccentric. We have saluted his successes several times over the years, and do so again. Regardless of what the future holds for Atari, he, his sons, and their colleagues have done a remarkable, from the bootstrings up, job.

While we're on the subject of phoenix rising, the folks Mr. Tramiel left behind at Commodore haven't been doing so badly themselves. Recent news reports indicate, or at least express hope for, a profitable quarter for the Christmas season. That's one present Commodore shareholders haven't seen lately. This upturn is projected to arrive on the extended wings of the 128 and resurging sales of the 64 . The Amiga has yet to begin to move in quantity, although we remain confident that it will, just as we're sure that more and more software developers will move to support it.

What else might the new year hold for us? Continuing consolidation, we're sure. Both corporate casualties and corporate successes. Everyone has become much more cautious now, so the flow of new materials will continue to diminish. Just as book publishers have become more selective about the type and quantity of titles brought to market, so, too, are the software publishers and the hardware manufacturers. Unfortunately, we can probably expect an increasing sameness, a growing presentation of products in new clothes. As the
industry matures, we'll see the caution that pervades such maturation begin to inhibit previous risktaking, so we suspect that we'll see less and less product breadth, and more and more "me-too-ness" in the market. Highly successful software will beget similar programs more rapidly. Etc. This is a kind of consolidation that markets engage in that we're not entirely comfortable with, but we're also hopeful that the rapid advances on the periphery of our technology will be sufficient to insure continued innovation. In fact, we have no doubt of it.

A belated new year to all of you, and we look forward to a pleasant 1986.

Robert C. Lock
Founder/Editor in Chief

STEPRIEN KIIG

TON FROM

The software program you'll play with all the lights on.

The setting is a quiet New England town. Or is it? Because when a mysterious mist descends upon it, anything can happen.

An enormous, bloodthirsty dragonfly removes heads with a snap. A mutant centipede attacks with razor-sharo legs. A giant presence paralyzes with the shriek of a curfew whistle from hell.

This could only be Stephen King's The Mist.m Although it's based on the novella of the same name, you can't turn to the last page in this frightening text adventure from Mindscape. ${ }^{\text {TM }}$

Your commands control the action. Those you

confront along the way react to your every move. Journey to your software dealer for Stephen King's The Mist.'M And while you're there, ask for Mindscape's ${ }^{\text {TM }}$ other new text adventures: James Bond 007: A View To A Kill TM Forbidden Castle ${ }^{\text {TM }}$ and Voodoo Island. ${ }^{\text {TM }}$ Each one is delightfully terrifying. Even with the lights on.

Mindscape

All of these text adventures are available for the Apple* |/ series and IBM PC* and PC ir. Stephen King's The Mist and James Bond 007: A View To A Kill are also avalable for the Macintosh!'m

If YOU CAN FIND A BETTER PROGRAM WE'LL BUY IT FOR YOU!

WORD WRITER ${ }^{\text {when }}$ Chell

Now with 85,000 word Spelling Checker

- An efficient, 80 -column professional word processing system which includes a spelling checker and built-in calculator.
- Contains all the features you'll need for everyday word processing, plus most of the sophisticated features found in more expensive programs: document chaining, form letter printout, page separations, horizontal and vertical scrolling, and more.

With Timeworks you get more power for your dollar

You can use each program alone. Or interface this trio - one at a time if you like - into a completely integrated productivity system that delivers all the power and features most of you will ever need ... at a cost that lets you enjoy their use.

Look for these and other Timeworks programs at your favorite dealer. Or contact Timeworks, 444 Lake Cook Road, Deerfield, IL 60015. Phone: (312) 948-9200.

DATA MANAGER 2

Faster, more efficient, more versutile

- A complete general information storage and retrieval system with report-writing, graphics, statistics, and label-making capabilities.
- Exclusive X-SEARCH, X-SORT, and X-CHART features allow you to crosssearch any category of information; sort items alphabetically, numerically, or by date; break down statistical information into categories; and graphically view your results.

With Timeworks you get more than software

You Get Our Customer Technical Support Team
At the other end of our toll-free hotline, you'll find our full-time Customer Technical Support Team. Free of charge to all registered users.

You Get Our Liberal Trade-Up Policy

 You'll find the details inside each package.
SWIFTCALC with SIDEWAYS

New easy-fo-use spreadsheef for home and small business use

- The SIDEWAYS option lets you print all your columns on one, continuous sheet . . . sideways.
- 250 rows and up to 250 columns (128 K version) provide up to 62,500 cells (locations on the spreadsheet) in which to place information.
- Performs mathematical functions up to 17 digits. Allows the use of minimum and maximum values, averages, sums, integers, absolute values and exponential notation.

* With Timeworks you gef our Money Back Guaranfee

If you can find anything that works better for you, simply send us your Timeworks program, your paid receipt, and the name of the program you want, along with your check or credit card number for any retail price difference. If it's available, we'll buy it for you."

For Apple, IBM,
Commodore 128 (128K) \& Commodore 64 Computers

Other Timeworks Programs:

- The Evelyn Wood Dynamic Reader - Sylvia Porter's Personal Finance Series - Swiftax $=$ Cave of the Word Wizard - Business Systems \quad Wall Street - The Electronic Checkbook - The Money Manager

[^0]If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

Can A Worm Have Artificial Intelligence?

Some time ago I read a description of "core war" games and their variations (Scientific American, March 1985). The game consists of two short programs placed in a memory area that loops around at the end. A special operating system runs the two battling programs by alternately performing one instruction from each; and the two programs attack and try to write over one another, while trying to avoid attacks and repairing themselves. Also mentioned was a "worm" program that replicates itself in a journey through the computer's memory. I am very interested in such programs and would like to see a self-replicating program for the Commodore 64.

Charles Willett
Like other eight-bit computers, the 64 isn't very well suited for conducting program wars. Most such games run on mainframe systems which are capable of multitasking-running several programs at once. Of the currently available personal computers, only the Commodore Amiga is designed for multitasking. It would require quite an elaborate machine language program to emulate even a simple form of multitasking on the 64. The battle programs must be written in machine language as well.

However, a "worm" program is quite easy to write. Following are two short examples for the 64 that reproduce themselves as they move upward in memory. By the time they're done, all of the space they've traveled through is filled with discarded copies of themselves-it's a bit like a snake shedding its skin.

The first version creates and activates an ML routine that begins at location 3000: It displays its current starting address as it goes, ending with a lockup
when it hits the 64's BASIC ROM at location 40960 (turn the computer off and on to regain control):
$1 \emptyset J=3 \emptyset \emptyset \emptyset$
$2 \emptyset$ READ X:IF X<>256 THEN CK=CK $+X:$ POKE $J, X: J=J+1:$ GOTO2 \varnothing
3ø IF CK<>9834 THEN PRINT"ERRO R IN DATA STATEMENTS--CHECK TYPING": END
$4 \varnothing$ SYS $3 \varnothing \emptyset \emptyset$
50 DATA 169,2øø,133,251,169,11 ,133,252,169,247,133
60 DATA $253,169,11,133,254,160$,47,177,251,145,253
70 DATA $136,16,249,24,165,251$, $165,47,133,251,165$
80 DATA $252,105, \varnothing, 133,252,24,1$ 65,253,105,47,133
90 DATA $253,165,254,1 \varnothing 5,0,133$, 254,166,251,165,252
1øø DATA $32,265,189,169,13,32$, 210,255,256

The second version is written entirely in BASIC, but does essentially the same thing. It repeatedly copies itself to a new memory area and then runs the copy, printing its beginning and ending addresses before each move.
$1 \varnothing$ CLR: $=\varnothing: E A=\varnothing: S A=\varnothing: H B=\emptyset: L B=\varnothing$ $: \mathrm{LN}=\varnothing: \mathrm{HN}=\varnothing$
$2 \emptyset \operatorname{SA}=\operatorname{PEEK}(43)+256 * \operatorname{PEEK}(44): \operatorname{PR}$ INT CHR\$ (147) "WORM CODE STA RTS AT "; SA
$3 \varnothing \operatorname{EA}=\operatorname{PEEK}(49)+256 * \operatorname{PEEK}(50): \operatorname{PR}$ INT "AND ENDS AT ";EA
$4 \varnothing$ FOR $J=\varnothing$ TO (EA-SA): POKE (EA $+J), \operatorname{PEEK}(S A+J): N E X T$
5 Ø $\mathrm{HN}=\mathrm{INT}(\mathrm{EA} / 256): \mathrm{LN}=\mathrm{EA}-(256$ * H N)
$60 \mathrm{HB}=\operatorname{INT}((\mathrm{EA}+(\mathrm{EA}-\mathrm{SA})) / 256): \mathrm{LB}$ $=(E A+(E A-S A))-(256 * H B)$
$7 \varnothing$ PRINT CHRS (147) "POKE "EA", Ø "

8 8 PRINT CHR\$ (17)CHR\$ (17) "POKE 43, "LN": POKE44, "HN
$9 \varnothing$ PRINT CHRS (17)CHR\$ (17)"POKE 45, "LB" : POKE46, "HB
1øø PRINT CHR\$(17)CHR\$(17)"SYS 42291"
110 PRINT CHRS (17)CHRS (17)"RUN
120 POKE 198,6:POKE 631,19:FOR $\mathrm{J}=\emptyset$ TO 6:POKE 632+J,13:NE XT

Locations 43-44 and 49-50 point to the beginning of program text and the end of simple variable storage, respectively. Line 40 does the actual duplication, copying everything between the starting and ending points into the addresses just above the end of the current program.

Once that's done, the worm executes a series of direct mode commands with the dynamic keyboard technique to set the start-of-program and end-of-variables pointers at the right positions for the new copy. SYS 42291 relinks the program lines so they'll run properly in their new location. The BASIC worm stops with an OUT OF MEMORY message when it travels so high that there's not enough RAM left to hold its variables (your BASIC program space is almost nil at this point; type SYS 64738 to reset the computer). With some modifications, these programs will run on other Commodore computers as well.

Of course, the results here are trivial. But exercises like these can form the basis of artificial intelligence experiments. Once you begin to view a program as a "being," all sorts of intriguing questions arise: What properties in addition to movement and self-replication characterize a living entity? How can a computer emulate those actions? What is intelligence? We're only beginning to see the fruits of these inquiries in such applications as expert systems and speech recognition.

Controlling IBM's NUM LOCK

I'm trying to read the IBM PC's cursor keys from within a BASICA program. But if the NUM LOCK key is set in the wrong mode, the numeric keypad generates number codes instead of cursor codes. How can I set NUM LOCK under program control?

Dennis Heckman When you first boot up an IBM PC, the numeric keypad keys act as cursor keys. Pressing NUM LOCK makes the computer read them as numeric keys. Memory location 1047 controls the status of NUM LOCK as well as several other special keys. Each bit of this location serves a different purpose:

Bit	Key
7	INSERT
6	CAPS LOCK
5	NUM LOCK
4	SCROLL LOCK
3	ALT
2	CTRL
1	Left SHIFT
0	Right SHIFT

In each case, a 1 in the bit position

From Origin comes the long-awaited sequel

> A state-of-the-art fantasy roleplaying game of unprecedented magnitude by Lord British ${ }^{\mathrm{mm}}$.

Drepare yourself for a grand adventure: Ultima ${ }^{\mathrm{m}} \mathrm{IV}$, sixteen times larger than Ultima III, is a milestone in computer gaming-one that challenges your physical and mental skills while testing the true fabric of your character.

Enter Britannia, kingdom of Lord British. Journey through terrain of infinite proportions, conversing with characters
 on hundreds of topics. Unravel the mysteries of a superior magic system. At each turn beware of daemons, dragons and long-dead wizards haunting the most tranquil of places. Encounters with parties of mixed enemy types test your strategic abilities. Shrewd use of terrain can lead to victory against seemingly impossible odds.

Survive this multi-quest fantasy, then begin the final conflict, your quest of the Avatar. The ultimate challenge-the self-awaits....

नthf systems inc. 340 HARVEY ROAD, MANCHESTER, NH 03103 (603) 644-3360

ULTIMA ${ }^{\text {TM }}$ III sends you on an incredible fantasy roleplaying journey through monster-plagued Sosaria in search of the elusive Exodus.

MOEBIUS ${ }^{\text {TM }}$ takes you through the elemental planes of a colorful Oriental world of fantasy and adventure in search of the Orb of Celestial Harmony.

AUTODUEL ${ }^{\text {TM }}$ is a futuristic, fast-paced strategy roleplaying game where the right of way goes to the biggest guns.

OGRE ${ }^{\mathrm{TM}}$ is a strategy game fought on the nuclear battlefield of tomorrow as an inhuman juggernaut Cybertank battles conventional forces.
shows that the corresponding key is pressed, and a 0 indicates that it's not pressed. Thus, after NUM LOCK has been pressed (when the keypad keys act like number keys), bit 5 of location 1047 contains a 1. When NUM LOCK is not in effect (when the keypad keys act like cursor keys), bit 5 contains a 0 . To change the NUM LOCK status from within a program, all you need to do is put a 1 or 0 in bit 5 of location 1047. In most cases you'll want to leave the rest of the keyboard in its current configuration; thus, it's preferable to PEEK the current value of 1047, AND that value with 223 (to set bit 5 to 0), and POKE the resulting value back into 1047. Put the-following statement at the beginning of your program to perform the entire operation:

10 DEF SEG $=0:$ POKE 1047, $\operatorname{PEEK}(1047)$ AND 223

After the computer executes line 10, the keypad keys work as cursor keys. If you need to reverse the NUM LOCK status, use the following statement to set bit 5 of location 1047 to 1:

DEF SEG $=0$:POKE 1047, $\operatorname{PEEK}(1047)$ OR

 32Of course, even after you've set the NUM LOCK status, the user can still change it back by hitting NUM LOCK. To be safe, you might want to set the status immediately before every operation requiring the keys.

Similar statements can be used to affect the other keyboard features controlled by location 1047. For instance, POKE 1047, PEEK(1047) AND 191 turns off CAPS LOCK, and POKE 1047, PEEK (1047) OR 64 turns it on.

Amiga Features

I can't wait to purchase an Amiga, but I need to know a few things. First, will your magazine support the Amiga (programs, columns, etc.)? Secondly, referring to your article about the Amiga's IBM compatibility ("Amiga Goes IBMCompatible," October 1985), can the Amiga handle IBM PC software that must be booted on a PC? Thirdly, can the Amiga do Macintosh-type graphics and text fonts?

Victor Swindell

COMPUTE! is supporting the Amiga with product reviews and tutorials, and will add programs when the final version of BASIC is released. The first Amigas were being shipped last fall with ABasiC, a BASIC interpreter written by MetaComCo, the British company which also wrote AmigaDOS. However, Commodore was making final preparations in November to ship an entirely different BASIC written by Microsoft. This BASIC reportedly was adapted from Microsoft BASIC for the Macintosh and has many more
features than ABasiC. The latest word we've received is that Microsoft BASIC is to replace $A B a s i C$ as the standard language shipped with the Amiga.

The IBM PC emulator softwarenow known as the Transformer-also was not available at this writing (early November), but demonstrations of preproduction versions show that it is capable of booting PC software directly off $5^{1} / 4$-inch IBM disks. (External 51/4-inch disk drives for the Amiga are optional.) Early reports indicate that an Amiga with the Transformer is not 100 percent IBM-compatible, but that it can run most of the best-selling PC software with a slight sacrifice of speed. Commodore is also working on an accelerator package that will improve the Transformer's performance. We'll report on the Transformer's degree of IBM compatibility and its speed when it becomes available.

The Amiga displays Macintosh-style graphics with its operating system interface, the Workbench, which resembles the Macintosh desktop. This screen mode has 640×200 resolution (128,000 pixels), less than the Mac's 512×384 resolution (196,608 pixels). However, the Amiga screen is in color. The Amiga also has a high-resolution mode with 640×400 resolution (256,000 pixels), but the Workbench doesn't work in that mode. A couple of graphics-drawing programs which are being released for the Amiga are similar to MacPaint, except they take advantage of the Amiga's palette of 4,096 colors. The Amiga also has various text fonts available like the Macintosh. You can try out some of these fonts by opening the Notepad from the Utilities drawer on the Workbench disk, then pulling down the Font and Style menus. There are several different fonts, type sizes, and styles.

Secret Apple Self-Test

While using my Apple IIc, I discovered something rather odd. I pressed CONTROL-RESET at the same time that I was unknowingly pressing one of the joystick buttons. First the screen went blank, then it filled up with colorful, constantly changing hi-res graphics patterns. I know this had nothing to do with the program I was using. What happened?

Sam Robison

On the Apple IIe and IIc, pressing a joystick button performs the same action as pressing the Open-Apple and ClosedApple keys on the keyboard. Pressing RESET while holding down both CONTROL and the Open-Apple key forces the computer to reboot, just as if the power switch had been turned on.

Something different happens on the IIe if you also hold down the ClosedApple key along with the other three (it
takes a bit of practice to reach all four at once). The computer performs a self-test of its circuitry, which takes about 20 seconds. While this is happening, a changing lo-res pattern fills the screen. If all is well, the screen clears and the message "System OK" appears. If any other message shows up, you should have your computer checked by a technician.

The Apple IIc does not have a builtin diagnostic program. According to the Apple IIc Reference Manual, pressing the same cluster of four keys activates "Teri's Memory and Soft Switch Exercise Program," which generates the hi-res display that you saw. The program runs for a few minutes, eventually locking up the system (no harm is done-simply reboot as usual). In the Reference Manual, Ap ple claims that this program is used only during manufacture and has no use after that point. By accessing RAM and the display circuitry, it may generate signals that Apple's test equipment can recognize. It's also quite pretty to watch.

Commodore Boot Programs

I have a PCjr and my boss recently purchased a Commodore 64 (his first computer). I would like to know how to write the equivalent of an IBM AUTOEXEC.BAT file for the 64 so my boss can load and activate certain programs (such as "TurboDisk" and the DOS Wedge) automatically, without having to type anything. Can this be done without installing a special ROM chip?

Steve Neeland
While an autoboot feature of this type is common in most computer systems, it is not built into the Commodore 64. However, it is possible to create a disk file that loads and runs automatically when you type LOAD"*",8,1 and press RETURN. Though it's too long to include here, there's a program called "Autoload" in COMPUTE!'s Third Book of Commodore 64 which creates such files for you.

If you don't mind two extra keystrokes, you can load and run any BASIC program from disk with a single command. Type the following, replacing FILENAME with the name of the BASIC program you want to run:

LOAD"FILENAME",8:

Don't forget the colon after the 8. With the cursor positioned in the space following the colon, press SHIFT-RUN/ STOP. The 64 prints LOAD after the colon and proceeds to load and run the program. (On the Commodore 128, you can achieve the same effect with RUN "FILENAME".) It's also relatively easy to load and activate a series of machine language programs from BASIC, provided they return to BASIC and don't perform a NEW when they set up. Here's a short program that

You know Temple of Apshai.
The classic. Best-seller for over four years.

You may have friends trapped forever in its dark recesses.

Players have dropped from sight for weeks at a time, searching for the treasures of Apshai.

Well now we've raised the stakes.
Introducing the new Apshai Trilogy. The combined wrath of the world famous Temple of Apshai®, Upper Reaches of Apshai®, and Curse of $\mathrm{Ra}^{\text {® }}$. All on a single disk. Twelve levels. 568 rooms to explore. More choices. More chances. Best of all, there's faster game play.

The graphics and sounds are new. The challenge of the dungeons is timeless.
Are you ready for the most involving role-playing game ever designed? Temple of Apshai is waiting. Silently lurking. Patiently waiting. For you. At your nearest Epyx dealer.

APPLE II MAC ATARI IBMPC C64/128
Temple of
Apshai Trilogy

-See specially marked boxes for details. purchase necessary. Sneepstakes ends at participating retailers. T-shirts available while supplies last.
loads the two utilities you mentioned. Be sure to save the program before you run it, since it performs NEW after installing "TurboDisk" and the DOS Wedge:
10 REM THIS PROGRAM ERASES
ITSELF--SAVE BEFORE YOU RUN
$20 \mathrm{IF} \mathrm{Z}=2$ THEN 60
30 IF $Z=1$ THEN 50
$40 \mathrm{Z}=1$:LOAD" ${ }^{\prime 2}$ DOS 5.1",8,1
$50 \mathrm{Z}=2$:LOAD" "TURBODISK.OBJ" 8,1 60 SYS 49152:SYS 52224:NEW

Along with many other new features, the Commodore 128 has the ability to perform a true autoboot. When you turn it on, the 128 searches track 1 , sector 0 of the disk in the drive for a special "signature" code consisting of the characters CBM. If that code is present, the system loads and runs the program specified in the autoboot sector. Since the autoboot program can in turn load and run a larger boot program, it's possible to create quite an elaborate boot sequence, which loads and activates your favorite utilities and otherwise configures the system exactly to your liking. Autobooting works with the 1541 disk drive (even for $C P / M$ disks) as well as the newer 1571. COMPUTE!'s Commodore 128 Programmer's Guide contains a detailed discussion of the autoboot process as well as a program that creates autobooting disks for the 128 .

More II Supplies

Sorry that we weren't able to be included in your September 1985 list in this column of Texas Instruments suppliers. We're a small business and work directly with various distributors across the country. Rather than stock items, we place orders with our distributors according to our customers' needs. We offer a delivery time of two weeks in most cases.

Mary Ann Holzer Creative Ideas

7062 South Tamarac Street Englewood, CO 80112
Please include us on your list of companies that support the TI-99/4A computer. We have been in business since 1982 and provide software, hardware, and peripherals for the TI-99/4A as well as other computers.

Bob Polizzotto
Multi Video Services
P.O. Box 246

East Amherst, NY 14051
Thank you for the information.

Custom Cursors For 64 SpeedScript

Even though I have used more elaborate word processors with my Commodore 64, I frequently prefer to use SpeedScript because of its speed and convenience. However, I find the inces-
santly blinking cursor a distraction. Can you tell me how to get rid of it?

Paul Newsom
Just as everyone seems to prefer different screen colors, some people like a blinking cursor while others find it maddening. Fortunately, it's easy to stop the blink or change its speed. Of course, you wouldn't want to eliminate the cursor altogether, since that would make it hard to find your way around inside a document. To defeat the blink, load SpeedScript into memory, type one of the following lines in direct mode (without a line number), and press RETURN. Be sure to use the correct POKEs for the version of Speedscript you're using, and type very carefullyeven a small error may have drastic consequences:
SpeedScript 2.0
POKE 2527,240:POKE 2528,246
SpeedScript 3.0 or 3.1 (Commodore 64 only)
POKE 2698,240:POKE 2699,246
Resave SpeedScript under a new filename to distinguish this version from the original. Now the reverse video cursor remains steady rather than blinking. Since SpeedScript blinks the cursor only during idle times (when you're not pressing any keys), this has no effect on the rest of the program. To restore the blink, enter one of these lines:
SpeedScript 2.0
POKE 2527,165:POKE 2528,162
SpeedScript 3.0 or 3.1
POKE 2698,165:POKE 2699,162
Changing the cursor's blink speed is even easier. To make the cursor blink at half its normal rate, enter POKE 2530,32 (SpeedScript 2.0) or POKE 2701,32 (SpeedScript 3.0 or 3.1). To make the cursor blink in double-time, POKE the same location with 8 instead of 32. Depending on your preferences, you may find one of these preferable to the default speed. POKE the same location with 16 to restore the normal blink rate. Because the blink is created by replacing the character under the cursor with its reverse video equivalent, there's no way to change the cursor's actual appearance without grafting a complete set of custom characters onto SpeedScript as well. (See "Commodore 64 SpeedScript Fontmaker," COMPUTE!, January 1986.)

Improving Atari CLOADs

I would like to respond to James Jenkins' letter in the October 1984 issue of COMPUTE! about Atari CLOAD errors 138 and 143. Here are a few suggestions:

When purchasing blank cassettes, buy only those whose cases are held together with five screws. Tape errors
are caused not so much by the quality of the tape as by the quality of the case. The Atari Program Recorders seem very susceptible to minor tape fluctuations caused by the tape binding in the case. Second, after using a tape for some time, it may become unevenly wound, causing it to bind and generate errors. To free the tape, slap it on the flat side of the cassette against a hard surface. This forces the tape against one side of the case and reduces errors. Finally, instead of pressing SYSTEM RESET to clear the screen, type GR. 0 or press SHIFT-CLEAR. SYSTEM RESET can disrupt operation of the POKEY chip, which controls input/output operations. Thus, pressing SYSTEM RESET before you do a CSAVE or CLOAD can cause tape errors. To recover from this situation, type LPRINT and press RETURN while your printer (if you have one) is offline or switched off. You'll see an ERROR 138, but this simply means the printer is not responding. This resets the POKEY chip and allows error-free tape operations.

Richard L. Baldwin Thanks for the advice. In a related letter, reader W. Byrom Dorsey points out that you can get similar information free of charge from Atari, 1265 Borregas Avenue, Sunnyvale, CA 94086. Just ask for the bulletin entitled " 410 Tech Tips."

Atari Keyboard Buzzer

When I type 107 characters on my Atari 800XL, the computer sounds a buzzer. Is this a Revision B operating system bug, or does Atari have a purpose for it?

John Lapetina
The buzzer effect is a deliberate design feature, not a bug. It happens in BASIC with all Atari $400 / 800$, XL, and XE computers with all versions of the operating system. (Incidentally, your 800XL has the XL operating system, not Revision B. Revision B fixed some bugs in the original Revision A operating system shipped with early 400 s and 800 s . It is available for XL and XE computers on the Atari Translator disk.)

The buzzer is analogous to the end-of-line bell on a typewriter: It warns when you are reaching the end of a BASIC logical line. A logical line is the maximum number of characters that can be typed after a line number. On the Atari, a logical line may be as long as three physical lines (screen lines). If a BASIC statement (or series of statements separated by colons) won't fit on a logical line, you must either shorten it or break it up into two logical lines.

The actual number of characters allowed in a logical line varies according to how the screen margins are set. Atari BASIC normally defaults to a 38-column

You've captured the gold in Summer Games ${ }^{\circledR}$ and Summer Games II ${ }^{\mathrm{T}}$. Now it's on to the Winter Games! And what an incredible setting-a completely realistic winter wonderland featuring seven action-packed events.
At the Ski Jump you control your form in mid-air, knees straight, leaning forward. Hot Dog Aerials challenges your courage and your sense of humor. In Figure Skating you leap into Double and Triple Lutz jumps-wow the crowd with a perfect Camel into a Sit Spin. It's timing and style that counts. Free Skating lets you choreograph your own routines. In Speed Skating it's you against a fellow speed demon-the fastest human beings on level earth! And the Bobsled-still faster as you fly around hairpin turns, leaning hard to stay in the tube. Finally the Biathlon, the ultimate challenge to your endurance in cross-country skiing and marksmanship.

All of this fun and excitement is easy to learn and play. You control the
action with the joystick, animating your player for style and rhythm. You choose the country you want to represent. Listen to its national anthem. Then it's practice, training and learning a winning strategy for each event. Now the Opening Ceremony and the competition begins-against your friends or the computer. Will you be the one who takes the gold at the Awards Ceremony? Will your name be etched amongst the World Record holders?
The quest for the gold continues.. And it's all here-the strategy, the challenge, the competition, and pageantry of Winter Games!

See specially marked boxes for details. No purchase necessary. Sweepstakes ends Dec. 31. 1985. Official rules available at participating dealers.

	APPLE	MAC	C64/128
Winter Games	\checkmark	\checkmark	\checkmark

Strategy Games for thexAdion Giantrelayense.ca

IS IT POSSIBLE TO MAKE THE BEST ANY BETTER?!

And it still has:

- Built-in Self Test with Status Report
- Microprocessor controlled emulation of Commodore printers for compatability with popular software

NEW INTRODUCTORY SALE!
 PRICE

OR
$\$ 79.00$ with trade in of your old interface

Universal Input/Output

Board for C-64 \& C-128

- 16 Channel 8 -bit A/D converter with 100 microsecond sampling time.
- 1 D/A output
- 16 high voltage/high current discrete output
- 1 EPROM socket
- Use multiple boards for additional channels up to 6 boards

MW-611
$\$ 225.00$

Dealer Inquiries invited

Micro World Computers, Inc. (303) 987-9531
3333 W. Wadsworth Blvd. \#C105
Lakewood. CO 80227

Save Your Copies of COMPUTE!

Protect your back issues of COMPUTE! in durable binders or library cases. Each binder or case is custom-made in flag-blue binding with embossed white lettering. Each holds a year of COMPUTE!, Order several and keep your issues of COMPUTE! neatly organized for quick reference. (These binders make great gifts, too!)

Cases:
$\$ 6.95$ each;
3 for $\$ 20.00$;
6 for $\$ 36.00$

Binders
$\$ 8.50$ each: 3 for $\$ 24.75$; 6 for $\$ 48.00$
(Please add $\$ 2.50$ per unit for orders outside the U.S.)

Send in your prepaid order with the attached coupon

Mail to: Jesse Jones Industries, P.O. Box 5120, Dept. Code COTE, Philadelphia, PA 19141

Please send me \qquad COMPUTE! \square cases \square binders. Enclosed is my check or money order for \$ \qquad (U.S. funds only.)
Name \qquad
Address
City
State \qquad Zip
Satisfaction guaranteed or money refunded.
Please allow 4-6 weeks for delivery
screen-38 characters per physical line. That means a logical line can be up to 114 characters long, and the warning buzzer sounds after 107 characters. But this can be adjusted by storing different numbers into two memory locations which control the screen margins. Location 82 sets the left margin and location 83 sets the right margin.

These locations usually contain the values 2 and 39, respectively. Atari presets the left margin at 2 because many people plug their computers into TV sets, and TVs often suffer from overscan-they display slightly less than the entire image area on their screens. Minor overscan is rarely noticeable when watching TV shows, but it can clip off a column or two of characters along the margins when you plug in a computer. By defaulting to a 38column screen instead of 40 columns, Atari computers automatically compensate for overscan. If your TV doesn't overscan, or if you have a computer monitor, you can reset the left margin to 40 columns with the statement POKE 82,0. This allows 40-character physical lines and 120-character logical lines. The warning buzzer won't sound until the 113th character. (SYSTEM RESET restores the default value.) On the other hand, if a TV suffers from extreme overscan, you can make the screen narrower by POKEing larger numbers into location 82 and smaller numbers into location 39. This, in turn, reduces the number of characters per physical line and logical line.

Keep in mind, however, that you can exceed the logical line limit by using abbreviated keywords. For example, type this line exactly as shown:

10 GR.7:SE.4,0,0:C.1:PL.20,20:DR.40,20 :DR.40,40:DR.20,40:DR.20,20:DR.40,40 :PL.40,20:DR.20,40

GR. is the abbreviation for GRAPHICS, SE. stands for SETCOLOR, C. is COLOR, PL. is PLOT, and DR. is DRAWTO. Abbreviated, these commands total 92 characters and fit comfortably in a logical line of three physical lines. But when you type LIST, Atari BASIC automatically expands the abbreviations and the statement overflows into four physical lines with a total of 136 characters. Ordinarily, you couldn't type a logical line that long. If you type RUN, the program executes perfectly, so this is one way of squeezing more statements into a logical line. However, the technique should be avoided for two reasons: Other people can't type this line without also using abbreviations, and any editing which changes the length of a statement also chops off all the characters following the third physical line.

Get the jump on the weatherman by accurately forecasting the local weather yourself?

The beautiful princess is held captive by deadly dragons. Only a knight in shining armor can save her now!

A time-saving organizer for coupons, receipts and more.

A scientifically proven way to develop an awesome memory.

Cut your energy costs by monitoring your phone, electric and gas bills.

School-age and pre-school children are rewarded for right answers, corrected on their wrong ones.

You are trapped in a fivestory, 125 -room structure made entirely of ice. Find the exit before you freeze!

Computerize car maintenance to improve auto performance, economy and resale value.

A real brainflexer. Deflect random balls into targets on a constantly changing playfield.

Take control of your personal finances in less than one hour a month.

Create multi-colored bar graphs with a surprisingly small amount of memory.

A fun way to dramatically increase typing speed and accuracy.

Get up to 30 new programs and games for less than 15 cents eachevery month in COMPUTE!

Every month, COMPUTE! readers enjoy up to 30 brand-new, ready-to-run computer programs, even arcade-quality games.

And when you subscribe to COMPUTE!, you'll get them all for less than 15 cents each!

You'll find programs to help you conserve time, energy and money. Programs like Cash Flow Manager, Retirement Planner, Coupon Filer, Dynamic Bookkeeping.

You'll enjoy games like Air Defense, Boggler, Slalom, and High Speed Mazer.

Your children will find learning fast and fun with First Math, Guess That Animal, and Mystery Spell.

Looking for a challenge? You can write your own games. Customize BASIC programs. Even make beautiful computer music and pictures.

It's all in COMPUTE!. All ready to type in and run on your Atari, Apple, Commodore, PET/CBM, TI-99/4A, Radio Shack Color Computer, IBM PC or IBM PCjr.

What's more, you get information-packed articles, product reviews, ideas and advice that add power and excitement to all your home computing.

And when it's time to shop for peripherals or hardware, check COMPUTE! first. Our product evaluations can save you money and costly mistakes. We'll even help you decide what to buy: Dot-matrix or daisy-wheel printer? Tape storage or disk drive? What about modems? Memory expansion kits? What's new in joysticks, paddles and track balls?

Order now! Mail the postpaid card attached to this ad and start receiving every issue of COMPUTE!.

For Faster Service
Call Toll-Free
1-800-247-5470
(in lowa
1-800-532-1272)

GENEALOGY of A CHIP

The 68000 Yesterday, Today, And Tomorrow

Selby Bateman, Features Editor

Motorola's 68000 microprocessor is the powerhouse beneath the hood of a new generation of leading-edge personal computersthe Commodore Amiga, Atari 520ST, and Apple Macintosh. With its hybrid 16/32-bit architecture and remarkable processing speed, the 68000 is helping to bring a new level of flexibility to personal computing.

8080, Z80, 6502, 8088, 68000-To a computer enthusiast, these strange numbers tell a fascinating story about the continuing development of the personal computer. They're the microprocessors that helped make millions of computers affordable to millions of people. At one time or another, these were the best brains-computer brains-our money could buy.

In the history of microelectronics, they'll be remembered as the first personal computer microprocessors to invade American homes, schools, and businesses in Apple, Atari, Commodore, IBM, and a flock of other computers. Each of these microprocessors has its own parents, cousins, and children. The family names come from companies called Intel, Zilog, MOS Technology, and Motorola.

Hidden beneath the computer's shell, a microprocessor is little more than a fingernail-sized wafer of silicon containing an intricate grid of almost microscopic transistorized circuits. But the tiny microprocessor is the central processing unit (CPU), or brain, that controls or coordinates virtually everything that goes on in the computer. It gathers instructions from the computer's memory, executes those instructions, and stores the resulting information back into memory.

A microprocessor does what its name implies-processes information. And that information is in the form of electrical signals. To make sense of the signals, the computer uses a binary code of ones and zeros that matches the on or off states of electricity. Each on or off position is defined as a binary digit, or bit, of data.

During the past several years, millions of people have become
acquainted with computers that have microprocessors capable of handling eight bits of information at a time. These eight-bit machines include many of the most popular computers first used in homes, schools, and small businesses. For example, the Commodore 64 is based on MOS Technology's 6510 microprocessor, a sibling of the earlier 6502 microprocessor used in the Commodore PET, VIC-20, Apple II/II + , and Atari 400/800/ XL computers. Other eight-bit 6502compatible microprocessors are the 6502B (Apple IIe), 6502C (Atari 130XE), 65C02 (Apple IIc), 7501 (Commodore Plus/4 and 16), and the 8502 (Commodore 128). The strengths and limitations of each of these chips have helped define the nature of the computers in which they're housed.

A microprocessor CPU in today's computers is usually but one of a number of integrated circuit chips carrying on the work. But the other chips, unlike a microprocessor, are dedicated to certain functions such as memory or special support functions. The Commodore 64 , for instance, also has a sophisticated programmable threevoice sound chip (the 6581 Sound Interface Device) and a versatile graphics chip (the 6567 Video Interface Chip). The Commodore 64's CPU, the 6510, coordinates the activities of these chips and others. Because the CPU itself doesn't have to carry out the duties of these support chips, it's freed to carry on its other activities without losing significant processing speed.

The latest personal computers to hit the market, such as the Amiga, advance this principle even further by making the CPU the conductor of a whole orchestra of support chips. At the same time, the latest CPU chips have grown so powerful that they're now capable of running several programs simultaneously. The newest micro-

[^1]processors emerging from today's laboratories pack the power of a large mainframe computer onto a tiny chip of silicon.

It was little more than a dozen years ago, in 1972, that Robert Noyce's Intel Corporation created the first functioning micro-processor-the four-bit 4004, developed by an engineer named Ted Hoff. Instead of "hard-wiring" several small chips together to accomplish certain tasks, engineers could now program the microprocessor to do a variety of operations. This four-bit chip found its most useful home in a generation of hand-held calculators.

Intel soon followed with the first eight-bit microprocessor, the 8008 , and then with the 8080 . The 8080A became the CPU for the first hobbyist computer, the MITS Altair, introduced as a do-it-yourself kit in 1975. Soon other companies joined in the race. Zilog introduced the eight-bit Z80, which became the CPU for a multitude of personal computers from Radio Shack, Osborne, Kaypro, Timex/Sinclair, and others. A Z80 chip is also one of the two microprocessors found in the Commodore 128. At about the same time, MOS Technology created the popular eight-bit 6502, and Motorola introduced the eight-bit 6800.

These microprocessors perform quite similarly, despite individual differences in the ways they handle such internal functions as addressing modes, memory registers, and other operations. All of them fetch, execute, and store data eight bits at a time within CPU pathways called buses. There are at least three basic kinds of buses in most microprocessors: a data bus, an address bus, and a control bus. The width of these buses determine whether a microprocessor is considered an eight-bit, 16-bit, or hybrid chip.

Today's microprocessors include a number of similar sections, each having specified duties. The components of a chip include an
instruction set, simple commands that are hard-wired into the microprocessor; registers for storing and manipulating instructions; buses for carrying data; an internal clock that helps organize the flow of data; a logic unit for mathematical calculations; and a decoder that interprets the instruction set.

There are also other functioning units and subunits within every CPU, such as accumulators, status registers, interrupt functions, and program counters. And every microprocessor has its own unique style of handling data.

In 1981, IBM introduced its first personal computer, the IBM PC, which uses Intel's 8088 microprocessor (a more sophisticated descendant of the earlier 8008). The 8088 is a hybrid chip, a mixedmode CPU that handles internal bus communications 16 bits at a time and external communications eight bits at a time. This $8 / 16$-bit microprocessor can address, or access, up to a megabyte of memory ($1,024 \mathrm{~K}$, or $1,048,576$ bytes). In contrast, an eight-bit chip like the 6502 or Z80 can address only 64 K (65,536 bytes) of memory.

In 1983, Apple introduced the Macintosh, the first popular personal computer based on the Motorola 68000, a hybrid chip even more powerful than the 8088. This 16/32-bit descendent of the 6800 processes 32 bits of information at a time on its internal buses and 16 bits in external communication. And it can directly address up to 16 megabytes of memory- $16,384 \mathrm{~K}$, or $16,777,220$ bytes.

Work began on the 68000 in the mid-1970s. Motorola formed a project team known within the company as MACSS (Motorola's Advanced Computer System on Silicon). The result of that effort was announced in 1979, when Motorola first demonstrated the new microprocessor.

In addition to the 68000's $16 / 32$-bit processing capability, it

All the exciting, entertaining, and educational games, applications, and utilities from COMPUTE! magazine are now available on disk

for your Commodore, Atari, Apple, or IBM personal computer.
 The COMPUTE! Disk

A new COMPUTE! Disk is published every month, rotating among the four major machines covered by COMPUTE!: Commodore 64 and 128; Atari 400/800, XL, and XE; Apple II-series; and IBM PC, PCjr, and compatibles.

Every three months you can receive a disk with all the quality programs from the previous three issues of COMPUTE! that will run on your brand of computer.

Like the popular COMPUTE!'s Gazette Disk, the COMPUTE! Disk is ready-to-load and error-free. It saves you valuable hours of typing time and eliminates typing errors.

With a subscription, you will receive one disk every three months for a total of four disks a year-for only $\$ 39.95$.
That saves you $\$ 20$ a year off the singleissue cost.

Or you can order individual issues of the Disk for $\$ 12.95$ a disk plus $\$ 2.00$ shipping and handling.

Remember to specify your type of computer when ordering the COMPUTE! Disk. You'll find more information about this month's COMPUTE! Disk in this issue. (Note: You'll need the corresponding issues of COMPUTE! magazine to use the Disk since the disk will have no documentation.)

For fastest service when ordering a subscription to the COMPUTE! Disk, call toll free 1-800-247-5470 (in lowa 1-800-532-1272).

For more details or to order individual issues of the COMPUTE! Disk, call our Customer Service Department toll free at 1-800-346-6767 (in New York 212-887-8525).
Please allow 4-6 weeks after placing an order for your first disk to arrive.

The 68020 microprocessor contains the equivalent of 200,000 transistors. Major functions of the chip shown here include Read Only Memory microcode and control sections; programmable logic array (PLA) units; data and address buffers; clock generators; function code (FC) logic and size logic sections; program counter, address, and data execution units; interrupt logic; bus controller; and instruction pipeline.
speed of 12.5 megahertz (MHz). The clock speed is essentially how fast a chip runs, based on the number of cycles an electrical signal can make through the chip per second. Hence, 1 Hz is equivalent to one cycle per second; 1 MHz equals one million cycles per second. The higher the clock speed, the more instructions a CPU can fetch and execute per second.

Compare the 68000's 6-12.5 MHz clock speed to the 1 MHz speed of a Commodore 64, or the 4.77 MHz clock speed of an IBM PC. The current crop of $68000-$ based personal computers generally have clock speeds in the 7 to 8 MHz range. The Macintosh has a clock speed of 7.8 MHz , the Amiga has a clock speed of 7.16 MHz , and the Atari 520 ST runs at 8 MHz . But
many other factors besides raw clock speed determine a computer's overall speed, including the efficiency of its operating system and other system software.

To date, the Amiga makes the most efficient use of the $68000 \mathrm{mi}-$ croprocessor because it incorporates three custom-designed VLSI (Very Large Scale Integration) chips for sophisticated support functions.

Shadow is a new and revolutionary piece of hardware that is used to duplicate even the most protected software. Fitting inside the disk drive (no soldering required), SHADOW takes complete control of all functions giving near 100% copies.

Being the best utility available today, it will even copy the other copy programs.

Because of the Shadow's unique abilities, we feel DOS protection is a thing of the past.

Shadow a disk while it loads, then read an exact list of:

- Track, sector, ID, check sum, drive status
- High and low track limits
- Density use on each track
- Half tracks that are used
- Command recorder shows commands that were sent to 1541 while program was loading
- RAM recorder records custom DOS

Shadow-scan any disk, then read exact list of:

- Valid tracks, half tracks, partial tracks and segments
- Sync mark link, header block links and data block links
- Track to track synchronization

Exclusive snap shot recorder will give you an exact copy of the 1541 RAM and can be viewed, saved or printed. Plus many more features included.
*Requires Shadow

Highly sophisticated and integrated piece of hardware that turns you 1541 into something you've always wanted.

- Track and sector display
- Drive reset switch
- Device number change
- Half track indicator
- Abnormal bit density indicator
- Shadow on-off indicator

The Shadow display will give you an accurate display of precisely what track you are accessing during a normal load even if the program does a read past track 35 .
-Requires Shadow

Order by phone 24 hrs. 17 days or send cashier's check/money order payable to Megasoft. Visa, MasterCard include card number and expiration date. Add $\$ 3.50$ shipping/handling for continental U.S., $\$ 5.50$ for UPS air. CODs add $\$ 7.50$, Canada add $\$ 10.00$. Other foreign orders add $\$ 15.00$ and remit certified U.S. funds only. Distributors invited and supported.

- THE BEST PRICES!

Next day shipping on all in stock items.
Free easy access order inquiry.
Orders from outside
Pennsylvania save state sales tax.

- Free technicial support with our factory trained technical staff.
There is no limit and no deposit on C.O.D. orders.
There's no extra charge for using your credit card. Your card is not charged until we ship.
No waiting period for cashiers checks.
- We accept purchase orders from qualified corporations. Subject to approval.
- Educational discounts available to qualified institutions.
FREE CATALOG MEMBERSHIP.
ORDER LINE CALL TOLL-FREE 1-800-233-8950
Educational Institutions Call Tolil-Free
1-800-221-4283 CUSTOMER SERVICE \& TECH SUPPORT

1-717-327-1450 Dept. A202

MAIIING ADDRESS

Computer Mail Order Dept. A202
477 East Third Street Williamsport, PA 17701

SHIPPING

Add 3%, minimum $\$ 5.00$ shipping and handling on all orders. Larger shipments may require additional charges.
All items subject to availability and price change.
Returned shipments may be subject to a restocking fee.
CANADIAN ORDERS
1-800-268-3974
OntariolQuebec
1-800-268-4559 Other Provinces

1-416-828-0866

In Toronto

TELEX: 06-218960

2505 Dunwin Drive, Mississauga, Ontario Canada L5L1T1
All prices shown are for U.S.A. orders.
Call The Canadian Office for
Canadian prices.

Czommodore

C128 Computer............................. $\mathbf{\$ 2 6 9 . 0 0}$ C1571 (Disk Drive for C128)..............SNEW C1902 (RGB 13" Monitor for C128)....SNEW C1670 (Modem for C128)..................SNEW CBM 64 .
C1541 Disk Drive...
CALL

C1541 Disk Drive...................... $\$ 199.00$
C1530 Datasette................... $\$ 39.99$ M-801 Dot Matrix Printer.......... $\$ 169.00$ MCS 803 Dot Matrix................ $\$ 179.00$ C1702 Color Monitor................ $\$ 189.00$ C1660 Auto Modem................... $\$ 59.99$ DPS 1101 Daisy Printer........... $\$ 339.00$

PORTABLE COMPUTERS

 $h p) \begin{aligned} & \text { HEWLETT } \\ & \text { PACKARD }\end{aligned}$

We stock the full line of HP calculator products

NEC

PC-8401 LS.

SHARP

PC-1350. $\$ 159.99$
PC-1261. $\$ 159.99$
PC-1260 $\$ 99.99$
PC-1500A \$169.99
PC-1250A	\$89.99
CE-125 Pr	Pinter/Cassette.......... \$129.99
CE-150 Color	olor Printer Cassette.\$159.99
CE-161 16	6K RAM................... $\$ 134.99$

ATARI 520-ST SOFTWARE

SIERRA ON LINE Ultima II
Gato INFOCOM Zork I, II, III.....................(ea.) \$29.99 Hitchiker's Guide.............................. $\$ 29.99$
Wishbringer \$29.99
Suspended.
HABA

MARK OF THE UNICORN
Final Word................................ $\$ 94.99$
Hex
. $\$ 29.99$
PC Intercom..989.99
Halley MINDSCAPE
. $\$ 34.99$

Volksmodem.................... Volksmodem 300/1200.. Signalman Express. Lightning 2400 Baud.
digital devices
AT300-300 Baud (Atari)...
.. 559.99

\$189.99 \$299.00 | ..$\$ 299.00$ |
| :--- |
| .. |

$\$ 99.99$

MacIntosh Software

Lotus Jazz...

Microsoft Excel...
Living Videotext
ThinkTank 512. \qquad $\$ 159.00$ Manhatten Ready, Set, Go..... $\$ 79.99$ Greighton Development Mac Spell.
.. $\$ 69.99$
Monogram Dollars \& Sense....\$99.99 Peachtree Back to Basics - GL\$109.00 PFS File \& Report (New Version) $\$ 119.00$
Silicon Beach Airborn............ $\$ 25.99$
Professional Software

Professional Software
Fleet System II w/Spellr(128) ... $\$ 49.99$ Trivia Fever............................... $\$ 29.99$ Word Pro 4 Plus/5 Plus each... $\$ 239.00$ Info Pro.................................. $\$ 179.00$
The Print Shop.......

OHayes

Smartmodem 300 .. Smartmodem 1200. Smartmodem 1200B. Smartmodem 2400. Micromodem Ile.. Smart Com II...
Chronograph..
Transet 1000
Reach 1200 AST
Reach 1200 Baud Half Card.... $\$ 399.00$
Mẹ MICROBITS
MPP-1064 AD/AA (C-64)....
. $\$ 69.99$

Novation 点

. $\$ 139.00$. $\$ 389.00$. $\$ 359.00$.. $\$ 599.00$. $\$ 149.00$... $\$ 89.99$. $\$ 199.00$. $\$ 309.00$
$31 / 2^{\prime \prime}$ SS/DD (10).
maxell
312" DS/DD (10).
$51 / 4^{" M D}-1$ w/Hardcases (10)..
$\$ 24.99$
..... $\$ 13.99$
$51 / 4^{\prime \prime}$ MD-2-HD for AT (10)......... $\$ 39.99$
31/2" 5 pack SS/DD................... $\$ 15.99$
V Verbatim.
5 $1 / 4^{\prime \prime}$ SS/DD.
\$19.99
5 $1 / 4^{\prime \prime}$ DS/DD.
\$24.99
Disk Analyzer.

Dennison

Elephant $31 / 2^{\prime \prime}$ SS/DD.
. $\$ 29.99$
Elephant $514^{\prime \prime}$ SS/SD.
Elephant $51_{4}{ }^{\prime \prime}$ SS/DD.
$\$ 13.99$
Elephant 514" DS/DD.
\$16.99
Elephant Premium DS/DD.
IBM
51/4" DS/DD floppy disks
(Box of 10).
\$26.99

DISK HOLDERS

INNOVATIVE CONCEPTS

Flip-in-File 10.

Flip-in-File 50 ..
Flip-in-File 50 w/lock.
Flip-in-File (400/800 ROM).
Flip-in-File 100.
AMARAY
50 Disk Tub $51 / 4$
30 Disk Tub 31/2'

Smart Cat Plus.
J-Cat..
Novation 2400 ..
Apple Cat II.
212 Apple Cat II
Apple Cat 212 Upgrade.
Macmodem

QUADRAM

Quadmodem II
300/1200.
300/1200/2400
telelearning
C64 300 Baud......(Closeout)...... $\$ 39.99$
everex
1200 Baud Internal (IBM/PC)...\$199.00

CRAPHICS
Polaroid

Palette.
$\$ 1299.00$

DRIVES
 HARD
 I. MEGA

$\$ 319.00$
.. $\$ 99.99$
$\$ 499.00$
$\$ 229.00$
$\$ 379.00$
\$229.00 . $\$ 279.00$
\$339.00
.
DRIVES
HARD
I•MEGA

10 meg Bernoulli Box............ $\$ 1899.00$
20 meg Bernoulli Box............ $\$ 2599.00$
5 meg "MacNoulli"
$25,35,50,80 \mathrm{meg}(\mathrm{PC})$
from \$1299.00
IRWIN
Tape Backup...

三EVEREX

60 Meg Internal Backup System $\$ 829.00$
u.sci

10 meg Internal IBM.
. $\$ 399.00$
20 meg Internal IBM. . $\$ 549.00$

FLOPPY
 INDUS

TEAC
$320 \mathrm{~K} 51 / 4$
$\$ 109.00$

..s2.9

. $\$ 2.99$ $\$ 24.99$
\$11.99
\$24.99
$\$ 9.99$
59.99
$\$ 8.99$

AMMEK
Video 300 Green．．．．．．．．．．．．．．．．．．．．．．．$\$ 129.00$
Video 300A Amber．．．．．．．．．．．．．．．．$\$ 139.00$
Video 310A Amber TTL．．．．．．．．$\$ 169.00$
Color 300 Composite．．．．．．．．．．．．$\$ 179.00$
Color 500 Composite／RGB．．．．．．$\$ 249.00$
Color 600 Hi－Res．RGB．．．．．．．．．．$\$ 399.00$
Color 710 Ultra Hi－Res．．．．．．．．．．．$\$ 489.00$
Color 722 Dual Mode．．．．．．．．．．．$\$ 549.00$

NEC	
JB1270G／1275A．	（ea．）$\$ 99.99$
JB1280G TTL．	．．．．．．．$\$ 129.00$
JB1285G TTL	．．．．．．$\$ 129.00$
JC1460 RGB．	．．．．．$\$ 249.00$
JC1225 Composit	．．．$\$ 179.00$

PRINCETON

Callon

A4
A40．．
CBPITIZEN

MSP－10（80 col．）．．．．．．．．．．．．．．．．．．．．．．$\$ 279.00$
MSP－15（132 col．）．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 389.00$
MSP－20（80 col．）．．．．．．．．．．．．．．．$\$ 349.00$
MSP－25（132 col

C．TTOH

Prowriter 7500
Prowriter 1550P
Starwriter $10-30$

coronc

Lazer LP－300．

D25 Daisywhee
635 Daisywheel
D80IF Daisywheel．
defisywriter
2000．．

EPSON

Homewriter 10，LX－80，LX－90．．．．．．．CALL
FX－85，FX－185，RX－100，JX－80．．．．．CALL DX－10，DX－20，DX－35，LQ－1500．．．．CALL SQ－2000，Hi－80，HS－80，AP－80．．．．．CALL LQ－800，LQ－1000．．．．．．．．．．．．．．．．．．．．．．．．CALL Epson／Comrex 220－Atari．．．．．．．．．．．．$\$ 89.99$

－HITK둡

6000 Letter Quality
6100 Letter Quality． 6200 Letter Quality． 6300 Letter Quality． 5510 Dot Matrix

LEGEND

808 Dot Matrix 100 cps ． 1080 Dot Matrix 100 cps 1380 Dot Matrix 130 cps 1385 Dot Matrix 165 cps ．
NEC
8027 Transportable． 3000 Series．
8000 Series．
ELF 360 ．
Pinwriter 560.

S199．00
59．00
\＄259．00 ．$\$ 289.00$ $\$ 339.00$

OKIDATA
182，183，192，193，2410，84．．．．．．．CALL Okimate 10 （Specify C64／Atari）\＄189．00 Okimate 20 （IBM）．．．．．．．．．．．．．．．．．．．．．．．．．CALL

Panasonic
1080 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．SNEW
X1091．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 259.00$
X1092．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 389.00$
KX1093．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＄479．00
QUADRAM
Quadjet．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 399.00$
Quad Laser．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．CALL
（f）SILVER－REED
500 Letter Quality．．．．．．．．．．．．．．．．．．$\$ 279.00$
550 Letter Quality．．．．．．．．．．．．．．．．．．$\$ 419.00$
770 Letter Quality．．．．．．．．．．．．．．．．．． $\mathbf{\$ 7 5 9 . 0 0}$
Interface）

Texas Instruments

T1855

T185
T185
TI865

TOSHIBA

1340 （ 80 column）．
．$\$ 469.00$
P341（132
．$\$ 949.00$
P351（132 column）．．．．．．．．．．．．．．．．．．．$\$ 1099.00$

IBM PC SYSTEMS
Configured to your specification．
Call for Best Price！
IBM－PC，IBM－PC II，IBM－XT，IBM－AT
KAYPRO
KP－2000 Portable．．．．．．．．．．．．．．．．．．．．．．．．CALL

SOFTWARE FOR IBM
 ASHTON－TATE

Framework
BORLAND
Turbo Pascal 3．0．．．．．．．．
Sidekick（unprotected） Sidekick
Reflex

CENTRAL POINT

 Copy II PC－Backup．．．．．．．．．．．．．．．．．．．DECISION RESOURCES
Chartmaster．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 229.00$ Signmaster．．．$\$ 169.00$ Diagram Master．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 219.00$

ENERTRONICS

Energraphics／Plot．．．．．．．．．．．．．．．．
FOX \＆GELLER
Quickcode III．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 169.00$
FUNK SOFTWARE Sideways \qquad Total Project Manager．．．．．．．．．．．．．．．$\$ 269.00$ INFOCOM
Cornerstone．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 279.00$ Volkswriter Deluxe LIVING VIDEOTEXT Think Tank ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 109.00$ Ready．．．$\$ 64.99$

Managing Your Money 2．0．．．．．．．$\$ 109.00$ MICROSTUF SOFTWARE
Crosstalk XVI．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 889.99
Crosstalk XVI．．
Crosstalk Mark IV．．．．．．．．
Remote．．$\$ 89.99$
MICRORIM SOFTWARE

$$
\begin{aligned}
& . . . \$ 249.00 \\
& . . . \$ 389.00
\end{aligned}
$$

$$
\$ 129.00
$$

$$
\begin{aligned}
& \text { WordStar } 2000 \ldots . \\
& \text { WordStar } 2000+
\end{aligned}
$$

$$
\begin{aligned}
& \text { WordStar Professional.............. } \$ 299.00 \\
& \text { Easy }
\end{aligned}
$$

MultiPlan．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 129.00$
MULTIMATE
Advantage．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 299.00$
Muti Mate Word Proc

Write．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 94.99$

NOUEMENON
Intuit ．．．$\$ 69.99$
NORTON
PEACHTREE SOFTWARE
Peachtext 5000．．．．．．．．．．．．．．．．．．．．．．．$\$ 179.00$
PFS：IBM
First Success．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 209.00$
File／Graph．．．．．．．．．．．．．．．．．．．．．．．．．．（ea．）$\$ 79.99$
Report．．．$\$ 74.99$

Write／Proof Combo．．．．．．．．．．．．．．．．．．．．．．$\$ 79.99$

PROFESSIONAL SOFTWARE

Wordplus－PC w／Boss．．．．．．．．．．．．．．．．．$\$ 249.00$
THE SOFTWARE GROUP
Enable ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 259.00$
SATELLITE SYSTEMS
Word Perfect 4．1．．．．．．．．．．．．．．．．．．．．．．$\$ 219.00$ SORCIMIIUS
Accounting
AP／AR／GLINV／OE．．．．．．．．（ea．）$\$ 295.00$
SuperCalc III．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 195.00$
EasyWriter II System．．．．．．．．．．．．．．$\$ 195.00$
Super Project．．．．．．．．．．．．．．．．．．．．．．$\$ 195.00$
SPI SOFTWARE
Open Access．．．．．．．．．．．．．．．．．．．．．．$\$ 379.00$
SUBLOGIC
Jet．．．$\$ 39.99$
5th GENERATION
Fast Back．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 119.00$

MBC 550－2 Single Drive． MBC 555－2 Dual Drive
MBC 675 Portable．
MBC 775
MBC 880 Desktop
．．．$\$ 649.00$

.$\$ 649.00$
.$\$ 949.00$

$\begin{array}{r}\text { ．．．．CALL } \\ \hline\end{array}$
．．．．CALL

Safari（7300）．
corona
PPC400 Dual Portable．．．．
PPCXT 10
PC40022 Dual Desktop
PC400－HD2 10 meg
ITT
ITT X－TRA
256K， 2 Drive System．．．．．．．．．．．．．．CALL
$256 \mathrm{~K}, 10 \mathrm{meg}$ Hard Drive System CALL XP5， 20 meg．

17 كाPERरY

Sperry－AT．
Sperry－IT．．
as low as $\$ 1749.00$
as low as $\$ 2699.00$
All Models．

MULTIFUNCTION CARDS

AST

Six Pack Plus．
Mega Plus II．．
Mega Plus II
I／O Plus II．．．．
Graph Pak／64K．
MonoGraph Plus，
Preview Mono．
PC Net Cards
5251／11 On－line
5251／12 Remote．．．．．．．．．．
IRMA 3270 ． $\boldsymbol{d} \mathbf{a l}$
IRMA Print
IRMA Smart Alec，

$\$ 999.00$ $\$ 779.00$
 $\$ 289.00$

HERCILLE

Graphics

\＄299．00
$\$ 159.00$
IDEA 5251.
あ敞ssociates
．．$\$ 589.00$

The Chairman．．．．．．．．．．．．．．．．．．．．
$\$ 469.00$

Color／Mono Card．
．$\$ 159.00$
Modular Graphics Card．．．．．．．．．．．．$\$ 279.00$
Multi Display Card．
Five Pack C．S．．．．．．．．．．．．．．．．．
PERSYST
Bob Board．．

Captain－ 64 $\$ 129.00$
$\$ 359.00$

Captain Jr．128K

Liberty－AT（128K）
The Gold Quadboard
The Silver Quadboard
Expanded Quadboard Liberty
QuadSprin
QuadColor
QuadJr．Expansion Chassis．．．．．．$\$ 469.00$
Expansion Chassis Memory
Chronagraph．
Parallel Interface Board
INTEL
PCNC8087 5MHz．
PCNC8087－2 8 MHz
PCNC80287 6 MHz ．
1010 PC－Above Board．
1110 PS－Above Board
2010 AT－Above Board．
．$\$ 1289.00$ $\$ 1989.00$
$\$ 1389.00$ $\$ 1989.00$

．．．．．．．．．$\$ 199.00$

$\$ 199.00$

 $\$ 199.00$$\$ 469.00$
$\$ 119.00$ $\$ 349.00$ $\$ 449.00$ $\$ 449.00$
$\$ 239.00$ ．$\$ 209.00$ \＄309．00 $\$ 499.00$
\＄499．00

－

The 65816 Chip

New Life For The 6502?

When Apple Computer introduced the Apple IIc in April 1984, the company slogan was "Apple II Forever!". But with the growing popularity of powerful 68000based $16 / 32$-bit computers like the Atari ST, Amiga, and Apple's own Macintosh, is the Apple II family eventually headed for the eight-bit scrap heap? And what about the future of other eight-bit computers, like the Commodore 64 and 128 and the Atari $400 / 800 /$ XL/XE computers, all of which are based on the 6502 chip or its offspring?

Veteran chip designer William Mensch believes there's still plenty of potential in the venerable 6502based machines. How about a 16 bit Apple II, one that's still compatible with the thousands of eight-bit Apples, but which also can address up to 16 megabytes of memory in sections of 64 K ?

Mensch, founder and director of the seven-year-old Western Design Center in Mesa, Arizona, has developed the $8 / 16$-bit 65816 , a hybrid 6502 which is rumored to be Apple Computer's choice for the future of the Apple II. Apple president John Sculley and Apple's executive vice president of product operations, Del Yocum, have already announced that 1986 is the year that the Apple II gets a new CPU.

At this writing (late November), all Mensch can say is that Apple Computer has had samples of his chip since March 1984. Atari bought some samples before Jack Tramiel acquired Atari from Warner Communications, but hasn't announced any plans for up-
grading the its eight-bit line with the 65816. Nor has Commodore, so far.

William Mensch is no stranger to new microprocessors. His company created the 65 C 02 chip that Apple uses in the IIc. And prior to that, Mensch was one of the original designers of the 6502 microprocessor. He also worked at Motorola on the design team that came up with the 6800 chip, the eight-bit predecessor to the 68000 .

The 65816 is compatible with the original 6502 (Apple II and II +), the 6502B (Apple IIe), and the 65C02 (Apple IIc). External bus communication is handled eight bits at a time, but the internal data bus handles data in 16-bit chunks. And the clock speed of the 65816 is about 4 megahertz (MHz), compared to 1 or 2 MHz for most 6502 chips. Mensch says his design efforts are pushing toward 6 and even 8 MHz within the next year.

Mensch says a 4 MHz 65816 could run from one to two million instructions per second, about half the speed of a VAX 780 minicomputer, at least for some operations. For word processing and spreadsheet data manipulation, the 65816 could approach the performance of a VAX, he says. Naturally, functions which depend on the eight-bit external bus structure of the 65816 would not be as fast.
"My goal is to elevate the Apple II to the equivalent of a mainframe for the single user," says Mensch.

Beyond that, Mensch is shooting for future-generation chips with clock speeds of 100 MHz . That kind of speed would almost certainly require the use of chips based on gallium arsenide crystals rather than silicon, since silicon chips tend to overheat at higher speeds. Gallium arsenide can reportedly handle speeds up to five times faster than today's fastest silicon chips. Mensch's Western Design Center already has two licensees, Northern Telecom and GTE, that are interested in gallium arsenide versions of the 6502 . Mensch may begin working toward that goal for the 6502 and 65816 sometime next year.

If a 16 -bit Apple II doesn't strike you as wild enough, how about a 32-bit Apple II? Mensch is also developing a 32 -bit chip, the 65 C 832 , which is ultimately meant to be a plug-in replacement for the 65816. Mensch says it will have built-in 32-bit floating point math and other operations. If an Apple II already has the 65816 , Mensch says it would be a simple matter to pull the 65816 board and plug in the 65C832 board without replacing any other boards or chips. At this point, Mensch expects the 32 -bit 65 C 832 to be available within two or three years.

A decision by Apple Computer on the future of the Apple II line and possible adoption of the 65816 chip may be announced early in 1986, perhaps as soon as the annual Apple stockholders' meeting in January.

NEW

COMPUTE! Books

 For KidsHelp your children learn the basics of computer programming with these two new entertaining and educational books from COMPUTEI.

0-87455-032-7
\$14.95
\$14.95

Each book contains easy-to-follow instructions, programming examples, quick reviews, and colorful illustrations. Written in COMPUTE!'s clear, easy-to-understand style, the books offer hours of entertainment while helping kids (and adults) learn to program in BASIC.

If you're acquainted with BASIC, you can easily write your own games and applications on Atari's ST or Commodore's 128 computers. Over 30 sections-all with instructor notes, lessons, assignments, and lively illustrations-entertain and amuse as you learn to use these powerful computers. COMPUTEI's Kids and the Atari ST and COMPUTEI's Kids and the Commodore 128, in the bestselling series from author Edward Carlson, are gentle introductions to programming your new computer. Clear writing and concise examples, both trademarks of this series, make it easy for anyone-child or adult -to learn BASIC painlessly.

Look for these and other books from COMPUTE! at your local book store or computer store. Or order directly from COMPUTE.

To order, call toll free in the US 1-800-346-6767 (in NY 212-265-8360) or mail the attached coupon with your payment to COMPUTEI Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
Please send me the following COMPUTE l books. My payment is enclosed.

- COMPUTEI's Kids and the Commodore 128, (032-7) \$14.95 each COMPUTEI's KIds and the Atari ST, (038-6) $\$ 14.95$ each

The chips handle most of the graphics, animation, and programmable sound features of the Amiga, leaving the 68000 unrestrained much of the time. This allows the Amiga to provide unusually powerful multitasking capabilities and fast high-resolution graphics.

Although many of us are just beginning to see the 68000 in action, the pace of technological progress in chip design has already leapfrogged to a new generation. In 1984, Motorola introduced the next step: the 68020 microprocessor, a true 32 -bit chip that's equivalent to yesterday's powerful mainframe computers. In fact, the 68020 is often called "the mainframe on a chip."

Packed onto the surface of this tiny microprocessor is the equivalent of 200,000 transistors. The chip is capable of executing two to three million computer instructions per second. And the 68020 can address up to a whopping four gigabytes of memory $(4,194,304 \mathrm{~K}$, or $4,294,967,296$ bytes).

Even more importantly, the 68020 is upwardly compatible with its ancestors in the 68000 family. This means that within a year or two, new generations of Macintoshes, Amigas, and STs may be using the 68020 chip-four times as powerful as the 68000 -while remaining compatible with earlier software and hardware. In fact, rumors have circulated for more than a year that Apple Computer may base the next generation of its Macintosh on the 68020. And officials at both Atari and Commodore speak of their STs and Amigas in terms of machines that will have future generations.

Although Motorola won't comment on who may be planning to use the 68020, upgrading from the 68000 would not be difficult, says Jeff Nutt, Motorola's technical marketing manager for the 68000 family. "In some cases it can be as simple as pulling out the [68000] processor board and plugging in

Technological advances in silicon-based computer circuitry give today's leading microprocessors the power and speed of mainframe computers for just a few dollars per chip.
the 68020 board. And I think you'll see a more rapid visibility with the 68020 than occurred with the 68000 because of the compatibility issue. Look at the normal desktop system; the biggest complaint is having to wait for something [to be processed by the computer]. Not so with the 68020."

Motorola has not been alone in developing such powerful new chips, of course. Intel, National Semiconductor, NCR Corp., and AT\&T are all competing in the 32-bit microprocessor arena. Motorola's jump with the 68020 and its compatibility with the 68000 , however, have given the company an edge with the latest personal computers.

As a result of this fierce compe-
tition, chip prices continue to decline sharply. The 68000, which cost about $\$ 450$ per unit early in its life, dropped to about $\$ 50$ in 1984. And, according to one report, in late 1985 Apple Computer was paying as little as $\$ 6$ per 68000 chip for each Macintosh computer.

Where will it all end? It won't. In fact, Motorola announced in late November that its 68020 has now been successfully tested at the previously unheard-of clock speed of 20 MHz . With such speed and memory potential, personal computers in the very near future will truly be the equivalent of today's mainframe computers.
"It still amazes me," says Motorola's Nutt. "It's incredible when you start thinking about what you can do with something that powerful."

Amplify your skills

WITH THESE NEW INTRODUCTORY BOOKS FROM COMPUTEI BOOKS.

These titles will help you unleash the power inside your computer. Whether you're an experienced programmer learning a new language or a beginner just starting out, these books will show you, clearly and quickly, how to get more than you ever thought possible from your computer.

THE AMAZING AMIGA

The Amiga: Your First Computer

Dan McNeill
Written in a lively and entertaining style, this book teaches everything a beginner needs to know to get started quickly with the Amiga from Commodore. You'll learn about setting up the system, some of the most popular types of software, and details about the hardware.
ISBN 0-87455-025-4
\$16.95

Using AmigaDOS

Arlan R. Levitan and Sheldon Leemon
A comprehensive reference guide and tutorial to the powerful AmigaDOS-the operating system underlying the Workbench and Intuition-this book offers information useful to every Amiga owner. AmigaDOS, the alternative to the icon-based Workbench, lets you control the computer directly. Using AmigaDOS defines and illustrates all DOS commands, and shows you how to create file directories, access peripherals, and run batch file programs. You'll learn why the system prompts you to swap disks, and how to avoid "disk shuffle." The screen- and line-oriented text editors, both overlooked in the user's guide which comes with the Amiga, are explained in detail. Numerous examples and techniques show you how to use AmigaDOS to make operating your computer even more convenient. A full reference section details each DOS command, giving you easy access to the complete AmigaDOS.
ISBN 0-87455-047-5
\$14.95

BRING THE ATARI ST ALIVE

Introduction to Sound and Graphics on the Atari ST

Tim Knight
The ST, Atari's powerful new computer, is an extraordinarily impressive sound and graphics machine. Easy to use, the ST can produce color graphics and sound. You'll find thorough descriptions of the computer's abilities, and the information needed to create a complete sound and graphics system. This is the perfect introductory reference to sound and graphics on the Atari ST.
ISBN 0-87455-035-1
\$14.95

LEARN C

From BASIC to C

Harley M. Templeton
This introduction to C takes you by the hand and shows how to move from BASIC to this increasingly popular language. BASIC programmers will find this approach designed just for them. Early chapters discuss C language equivalents for common BASIC statements and the similarities and differences between BASIC and C. Later chapters teach everything you need to know to write, debug, and compile programs in C .
ISBN 0-87455-026-2
\$16.95

> Visit your local bookstore or computer store to purchase any of these new, exciting books from COMPUTE! Publications. Or order directly from COMPUTE!. Call toll free 1-800-346-6767
> (in WY 212-265-8360) or mail your check or money order (including \$2.00 shipping and handling per book) to COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

LLyco Computer Marketing \& Consultants

介 ATARI π

ATARI
 800×1 130XE NEW 1050 Drive.. 1010 Recorder. ${ }^{1020} 1025$ Printer. 1027 Printer 850 Interface
 ATARI

VIP Professional
ATARI SOFTWARE (NEW)
Codewriter
Reportwriter
Menuwriter........ Small Bus. Inventory Salesman Expenses Accs Rec/Pay Retail Invoice. Adventure Writer Star Voyager
BRODERBUND (Atari)
The Print Shop. Graphics Library Graphics Library Bank St, Writer.....
Whistler's Brother. Spelunker
Stealth
Mask of the Sun

INFOCOM (520ST)

Wishbringe

Zork

Deadline
Starcross
Suspended
Cutthroats.
Sea Stalker
Sorcerer
Enchanter
Planestfall
SpellBreaker

SPINNAKER

Delta DPawn Room Up for Grabs Room 19.95

PERSONAL PERIPHERALS
Super Sketch C-64................... 14.95
Super Sketch Atari....................25.95
Super Sketch Apple/ilom.........55.00

MICROPROSE (Atari)

Q)

COMMODORE

SSI (Atari)
Colonial Conquest.....
Kampfgruppe........
Mbjective: Kursk.
Market Garden.
Six Gun Shootout
War in Russia........il.
Computer Quarterback Gemstone Warrior.
50 Mission Crush. 50 Mission Crush

HABA
10 Megabyte........
Hippo Compiler Check Minder..
Business Letters....
SOFTECHNIC
Timelink
Rhythm.
MIRAGE
SUB LOGIC (Atari)
Flight Simulator II...32.75
Night Mission Pinbail..... 20.75

US ROBOTICS	
${ }^{\text {Password }}$ 1200M	
Password 1200F	
Passwor 3000	
Autodil 212 A	35
${ }^{\text {PCM5 }}$	319
PCM256	76
S. 100	
Carrer	

RACAL-VADIC

2400PC 2400 PA

2400 V
1200 PC
300 V
300 PC

COMMODORE

1572 Drive..
1670 Moder..

SCARBOROUGH (Apple)
NET Word Mastertye........2. 22.7
mastertype Filer......... 22.7

BRODERBUND (Apple)

The Print Shop........... 31.50 MP4 18.50 MPS Privinter. 1702 Monitor. ssenm sasic
Super Expander
Logo 64
asy Caie
Easy Script....
CARDCO
3igitizer Camera......
SUB LOGIC (Apple)
Flight Simulator 11 I...32.75
Nignt Mission Pinbal.....20.7 S'Mor-s.siot Board (64
MICROPROSE (Apple) Write Now-64
Crusade in Europe...
25.75 Spell Now. 64

Decision in Desert........ 25.75 Pain NowNato Commander
Acradet.........
Silent Service.
Gunship.
SSI (Apple)
Mech Brigade
Norway 1985.
Marke Garden...
50 mission Crush
=lip-n-File 10
Flip-n-File 15

MODEMS

HAYES

SMARTMODEM $300 \ldots$ SMARTMODEM 1200
 SMARTMODEM 1200 B
 SMARTMODEM 2400. MICROMODEM IIE

ANCHOR
Volksmodem
Volksmodem 12
Mark 12

12.

TELE LEARNING

 Total Telecommúnications AP-250 (300 Baud Apple) 29.95 IB-250 (300 Baud IBM) $\quad 69.95$
NOVATION

BM 300/1200 MS-DOS ext IBM 300/1200 CPM-86 ext. IBM $300 / 1200 / 2400$ ext.
IBM $300 / 1200 / 2400$ MS-DOS IBM MSDOS int. BM CPM-86 int.
Macmodern $300 / 1200$

55 MICROBITS 319
319
529
.579
325
325
315

MICROPROSE (C-64)

Kennedy Approach.

 Decision in Europe. Nato Flight.................... Spitfire Ace. -15 Strike Eagle Hellcat Ace..

SSI (C-64)
Colonial Conque Computer Ambush ighter Command. Kampfgruppe.. Mech Brigade.
Market Garden.....
Six Gun Shootout.
Computer Quarterback Imperium Galactum.. Phantasie Cartels \& Cutthro....... 50 Mission Crush.

BATTERIES INCLUDED
Spell Pak.................................39.9.95 Consultant.
w/Spell Pak
Home Pak
(............ 34.95 80 Column Board........... 109.95

BRODERBUND
Graphics Library Graphics Library II
 Castles Dr. Creep Mask of the Sun. Spelunker.
erpent's Star aidBungeling

SUB LOGIC (C-64) Flight Simulator II....32.75

COMMODORE

MPS1000 Print
C1350 Mouse 128 K RAM
C1750 512K RAM
JANE..
Perfect Writer
Perfect Calc.
Perfect Filer

\section*{64)
 | 1.75 |
| :--- |
| 4.75 |}

 $\begin{array}{r}75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 7 \\ \hline\end{array}$

ZENITH ZVM 122A Amber ZVM 123 G Green.... ZVM 131 Color ZVM 133 RGB ZVM 135 Composite ZVM 136 Hi Res Color ZVM 1220.
ZVM 1230 ZVM 1230
ZVM 1240

TEKNIKA MJ. 10 Composite...

AMDEK

NEC
JB-1260 Green
B-1201 Green
JC 1215 Color

1216 RGB
1480 Color

 W. 22 RGB

MONITORS

TAXAN
1512^{2} Greeen Composite CALL DTI3000 13° EGBCComposte $11612^{\text {A }}$ Amber Composite CALL 122 12. Amber TTL

220 14* Color Composite

12* RGB Hi Res IBM. 420 12* RGB Super Hi IBM 329 44012^{*} RGB Ulitra Hi Res

PRINCETON GRAPHICS
MAX-12 Amber.................. 185
SR-12 RGB $\begin{array}{r} \\ \\ \hline 247 \\ .329 \\ \hline .395\end{array}$ $\begin{array}{r}.329 \\ .395 \\ \hline\end{array}$ DTS101 10^{-}Composite. DT1000G 10^{*} RGB... TX12H3P 12^{*} Color......
TR120M1PA 12^{*} Green TRi2OMBPA 12° Amber. TRi22M9P 12^{*} Amben IBM X-TRON

SAKATA

SG 1000 12". Green.... SG 150012^{*} Arber TT SA 150012^{*} Amber TTL SC STS1 Tilt Stand

C. 1 TOH ProWriter
1550 Sp StarWriter PrintMaster.

DUST COVERS

DRIVES

INDUS
GT ATAAIDU. ${ }^{\text {GT }}$ COMMO........ ${ }^{215}$
COMTEL
Enhancer 2000 (c.64)
TANDON
320k \%s 'M Mive
 MSD
SD1 Drive (C.64):

SG-10.......... $\$ 208$

PANASONIC

1091........................... 233
3131 (NEW)
1092

10933151 Letter ... 4264 K Buffer..............

SILVER REED

PRINTER INTERFACING

\section*{AXIOM | Ar846 (Atar) |
| :--- |
| Paralax (c:64) |
| $\quad 65$ |
 MICROBITS}

Mpp. $1150 \times$ (Atari) Mp. $1150 \times \mathrm{X}$ (Atar) ${ }_{64 \mathrm{~K}}$ KAM Aboard (600 xi)
$\begin{array}{r}54 \\ .59 \\ .35 \\ \hline 65\end{array}$

DIGITAL DEVICES

ApeFace XLP (Ata)
 $0 \cdot$ Print A AAtar)
U.Prini A16k Butter
u.Print A64K Butter -PPini API6k Apple) U.Pinn Apbik (Appole)

MICROTEK

Dumpling GX (Apple) Dumping 16k (Apple) TYMAC Connection (C.:64) Tackieer (Apple) C. 100 (Apple)

ORANGE MICRO

GRAPPLERE (Apple) .85 Raping Grappler CDP:C.64 CARDCO G. Wiz $(C .64)$

 Chat (Atar) CI?AP (Apple)

DISKETTES

DENNISON
ELEPHANT 51/4" SSSD 11.96 ELEPHANT 51/" SSDD...12.99 ELEPHANT 51/4" DSDD... 14.99 PREMIUM $5^{1 / 4}$ " DSDD 15.99

SUNKYONG
SKC $51 /{ }^{1 / 2}$ SSDD.
SKC $51 / 4^{\prime \prime}$ DSDD 11.99
13.99

51/4"MD1 MAXELL

- ……........ 13.9

5\%- VERBATIM

5\% BONUS
$51 / 4^{-}$DSDD
$\begin{array}{r}9.99 \\ \hline 1299\end{array}$
NO LABEL DISKETTES
 - Free Diskette Writer Pen! -Free Storage Case!

1BM-PC
 SOFT-WARE

 *LOTUSLotus 1-2-3 309.00
439.00

\author{

*QUADRAM

 Quad Jr. Exp. Chassis.... 519.00 Quad Jr. Exp. Memory.... 209.00Quad Memory Jr....... 209.00
 ITT XTRA XP Personal Computer! -256 K .2 Drive System CALL
-256 K .10 Meg Hard System. Call
}

IBM-PC COMPATABLE

*LEADING EDGE Nutshell......................69.95 LEWP Basic............. 65.00 E Spell Correction...... 169.00

SSI (IBM)

Battle for Normandy
Knights of Desert...
Tigers in Snow...
Computer Baseball.
Epidemic....

Graphics Library I
Ancient Ant of War
Champ Lode Runner

F-15 Strike Eagle
Solo Flight
Solo Flight.

Satari 7300 AT\&T
6300

SYNAPSE (IBM)
Synstock......................... 64.95
Essex.................... 28.95
Wizard of Wall St.......... 28
Wizard of Wall St............... 28.95
Brimstone 28.95
SUB LOGIC (IBM)
BRODERBUND (IBM)
Bank St. Writer............... 38.95
The Print Shop...........

MICROPROSE (IBM)
20.75
.2075
.2075
$\begin{array}{ll}\text { Spitfire Ace } & 1875\end{array}$

24.95

 24.9524.95 22.95

5

${ }_{4955}$ | 8.95 |
| :--- |
| 24.95 |
| 2.95 | 95

CALL

TOLL FREE 1-800-233-8760

TO ORDER

CALL TOLL FREE 800-233-8760
Customer Service 1-717-327-1825
or send order to Lyco Computer P.O. Box 5088 Jersey Shore, PA 17740

RISK FREE POLICY

In-stock items shipped within 24 hours of order. No depositon C D orders Free shipping on prepaid cash orders within the continental US. Volume discounts available. PA residents add sales tax. APO FPO and international orders add $\$ 5.00$ plus 3% for priority mail service. Advertised prices show 4% discount for before shipping Ask about UPS Ba Personalce chs require 4.veeks clearance carried under manufacturer's warranty Free chandise carried under manufacturer's warranty Free catalog with order. All items subject
to rhange without notice

Each book contains valuable tutorials, programming guides, personal and business applications, and games. Together, the books provide all the up-to-date, ready-to-use information and programs you need to get the most from your IBM personal computer.

COMPUTE!'s First Book of IBM
Edited, 326 pages Thirty of the best games, utilities, graphics and sound generators, and applications for the IBM PC and PCjr. A disk is also available which includes programs in the book, \$12.95, 0106BDSK.
ISBN 0-87455-010-6
\$14.95

Icons and Images: A Graphics Collection for the IBM PC and PCjr Elmer Larsen, 227 pages Ninety-four short routines to instantly enhance business, educational, and entertainment programs on either the IBM PC or PCji.
ISBN 0-942386-84-1
\$14.95

Easy BASIC Programs for the IBM PC and PCjr Brian Flynn, 359 pages Everything from games to home and office applications programs is included for the IBM PC and PCjr.
ISBN 0-942386-58-2
\$14.95

COMPUTE!'s

Telecomputing on the IBM Arlan R. Levitan and Sheldon Leemon, 274 pages
The ins and outs of telecomputing on the IBM PC or PCjr, from selecting a modem and evaluating terminal software to getting online with the major information services.
ISBN 0-942386-96-5
\$14.95

ORDER ALL FOUR BOOKS FOR \$49.95 AND SAVE OVER 15\% OFF THE RETAIL PRICE!

Take advantage of the great price savings and exceptional value of these bestselling books from COMPUTE! and order the four-book set today.
To order, call our toll free customer service number, 1-800-346-6767 (in NY 212-265-8360) and ask for COMPUTE!'s IBM Library. Or, mail the attached coupon with your payment to COMPUTE! Books, P.0. Box 5038, F.D.R. Station, New York, NY 10150.

You can also order individual copies of any of the above books at the stated retail price. Sorry, no substitutions. LIMITED TIME OFFER! You must order before March 15 to receive your 15-percent discount.

Please send me the books I have selected. My payment
Sets of CoMPUTEI's IBM Library (four books per set) S49.95
comPUTEI's First Book of IBM (010-6) \$14.95
comPUTEI's Telecomputing on the IBM (96-5) \$14.95
_ Easy BASIC Programs for the IBM PC and PCjr (58-2) \$14.95
Icons and Images: A Graphics Collection for the IBM PC and
PCjr (84-1) \$14.95

All orders must be prepaid.
\square Payment enclosed (check or money order)
\square Charge \square MasterCard \square Visa \square American Express
Subtotal
NC residents add 4.5\% sales tax
Shipping and handling
($\$ 2.00$ per book; $\$ 5.00$ per book airmail)
Total amount enclosed

Exp. Date \qquad
\qquad Zip

[^2]
Train for the Fastest Growing Job Skill in America

Only NRII teaches you to service and repair all computers as you build your own 16-bit IBM-compatible

 micro

As computers move into offices and homes by the millions, the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years-a faster growth than any other occupation.

Total System Training

As an NRI student, you'll get total hands-on training as you actually build your own Sanyo MBC-550 series computer from the keyboard up. Only a person who knows all the underlying fundamentals can cope with all the significant brands of computers. And as an NRI graduate, you'll possess the up-to-the-minute combination of theory and practical experience that will lead you to success on the job.

You learn at your own convenience, in your own home, at your own comfortable pace. Without classroom pressures, without rigid night-school schedules, without wasted time. Your own personal NRI instructor and NRI's complete technical staff will answer your questions, give you guidance and special help whenever you may need it.

The Exciting Sanyo 16-bit IBM-compatible Computer-Yours To Keep

Critics hail the new Sanyo as the "most intriguing" of all the IBM-PC compatible computers. It uses the same 8088 microprocessor as the IBM-PC and the MS/DOS operating system. So, you'll be able to choose thousands of off-the-shelf software programs to run on your completed Sanyo.

As you build the Sanyo from the keyboard up, you'll perform demonstrations and experiments that will give you a total mastery of computer operations and servicing techniques. You'll do programming in BASIC language. You'll prepare interfaces for peripherals such as printers and joysticks. Using utility programs, you'll check out 8088 functioning. NRI's easy step-by-step directions will guide you all the way right into one of today's fastest growing fields as a computer service technician. And the entire

NRI is the only home study school that trains you as you assemble a topbrand micro. computer. After building your own logic probe, you'll assemble the "intelligent" keyboard.
system, including all the bundled software and extensive data manuals, is yours to keep as part of your training.

100-Page Free Catalog Tells

 More. .then install the computer power supply, checking all the circuits and connections with NRI's Digital Multimeter. From there you'll move on to install the disk drive and monitor.

Send the postage-paid reply card today for NRI's big 100-page color catalog, which gives you all the facts about NRI training in Microcomputers, Robotics, Data Communications, TV/Video/Audio Servicing, and other growing high-tech career fields. If the card is missing write to NRI at the address below.

Your NRI course includes a Sanyo 16-bit microcomputer with 128 K RAM, monitor, double-density/ double-sided disk drive, and "Intelligent" Keyboard; The NRI Discovery Lab ${ }^{8}$, Teaching Circuit Design and Operations; a Digital Multimeter, Bundled Spread Sheet and Word Processing Software Worth over $\$ 1000$ at Retail-and More.

NRIsmons

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue, NW 텐 Washington, DC 20016

IHM
We'll Give You Tomorrow.
IBM is a Registered Trademark of Internationa

A
 Quantum Leap
 From 6502 To 68000

Richard Mansfield, Senior Editor

A new era is dawning for machine language programmers on personal computers. Thanks to the extra power of the 68000 microprocessor, the latest-generation computers can offer such advanced features as super highresolution graphics, multitasking, megabytes of main memory, and processing speed comparable to the mainframe computers of just a few years ago. Here's an introduction to this fascinating chip.

The venerable 6502 microprocessor chip, which has been the brain of the majority of personal computers for a decade, is in the twilight of its life. The new generation of machines-Commodore's Amiga, Atari's ST, and Apple's Macintosh-is built around the 68000 chip. Compared to the 6502 and its relatives, the 68000 is significantly more powerful in the two ways that count: memory and speed.

At their most elementary level, computers spend most of their time getting, sending, and manipulating numbers. Even characters of the alphabet are coded in the computer as numbers. To display a message, for example, the computer fetches a number from memory and sends it to the screen, then fetches the second number and sends it, repeating this get-and-store process until it has sent the entire message. Clearly, the more memory you can gulp at a time, the faster you can manipulate numbers and, by extension, the better you can compute.

Capable of directly addressing 16 megabytes $(16,384 \mathrm{~K}$ or 16,777,216 bytes), the Motorola 68000 greatly exceeds the addressing power of the MOS Technology 6502 , which can only address 64 K (65,536 bytes). Some computers
with 6502 or 6502 -compatible chips-such as the Commodore 128, Apple IIc, and Atari 130XEget around this limitation by switching back and forth between banks of memory, but at a cost in speed and programming flexibility.

The 68000 can also be driven at clock speeds of 8 megahertz (MHz) and higher, while most 6502 machines run at 1 MHz . (Again, the Commodore 128 and Atari computers are exceptions; the 128 can be switched to 2 MHz if no peripherals are being accessed, and Atari machines normally run at nearly 2 MHz .) Both the larger addressing and faster speed capabilities of the 68000 contribute to a significant gain in overall computing power. You can hold more data in a 68000 machine, and you can process it faster.

0ne of the first things anyone wants to know about a new computer language is what commands or instructions are available. The 68000 offers programmers plenty of power. If you're coming to this chip, as most of us are, from 6502 computersApples, Commodores, Ataris, and others-it's quite a liberating experience. The 68000 has roughly the -WWW.COMmodore.ca
same number of addressing modes as the 6502, but that's where the similarity ends.

For example, many of the 6502 instructions are contained in the single, multipurpose 68000 command MOVE. The 6502's LDA, LDX, LDY, STA, STX, STY, TAX, TAY, TXA, and TYA instructions are all subsumed into MOVE. What makes this work is that the addressing modes for many 68000 instructions are dual-purpose: They specify both the source and destination of a transfer. Since most computer activity involves moving values around and manipulating them, the efficiency of MOVE is most desirable.

Here's how it works: If you want to transfer the number held in address 8000 to address 9000 , the single instruction MOVE.B 8000,9000 fetches the value and stores it in the new location. There's no intermediate step as there would be when moving a byte with the 6502-LDA 8000:STA 9000.

Because the 6502 is an eightbit chip-it can handle only eight bits of information at a time-machine language on the Commodore 64 and other 6502 computers often requires the programmer to fabricate special subroutines to increment, decrement, compare, or perform math on double-byte (16bit) numbers. While there are only a few such routines necessary and they can be plugged into a program relatively easily, it is still desirable to have the 68000's single-instruction command over multibyte manipulations.

What's more, if you want a loop to access a whole range of memory, there are addressing modes which automatically increment and decrement in one-, two-, or four-byte steps. Specialized moving is also provided for with such instructions as EXG, which exchanges registers so you don't have to move A to C, B to A, and C to B just to exchange A with B. The SWAP instruction swaps the low and high words within a 32 -byte data register. MOVEM moves the values in a cluster of registers to or from memory which, among other things, allows you to save and restore all the data and address registers and flags with this single instruction.

More than a dozen of the 68000's instructions are the same as the 6502's: JSR, RTS, NOP, JMP, CMP, etc. On the 68000, they just work with larger numbers when necessary. But there are other instructions that, while named differently, accomplish tasks with which all programmers are familiar. ADD, SUB, MULS, and DIVS perform arithmetic. There are 14 branching instructions, ranging from old friends like BCC and BEQ to new ones like BLT (less than), BLE (less than or equal), and BGE (greater or equal). However, you can branch from -32766 to +32769 bytes rather than the -127 to +128 range of the 6502 .

Where the 6502 has only three eight-bit registers, A, Y, and X, the 68000 features eight data registers and seven address registers, each 32 bits large. What's more, these registers can be used in a variety of ways for a variety of purposes. What's possible with data register D0 is possible with any of the other seven data registers. That flexibility is not the case with A, Y, and X on the 6502 .

The 68000's data registers can work with bytes, words (two bytes ganged together), or long words (four bytes). The address registers work only with words and long words. The various addressing modes, in conjunction with the multiplicity of registers, allow for considerable speed and many modes of transport between registers or memory. In addition, such things as multiplication and division are built into the chip itself and do not have to be constructed as routines or macros as they do when working with the 6502 .

What do you need to get started with 68000 programming? If you're thinking of making the crossover from 6502 to 68000 , you'll find the instruction set and addressing modes described in detail in several books currently available. You'll also need an assembler. At this writing (late fall), assemblers are available only from the computer manufacturers, usually as part of professional software development packages. But by early 1986, alternative assemblers from independent companies should be available.

Because of such features as
multiple screen windows, multitasking operating systems, and other aspects of these new machines, memory allocation is not static as on earlier computers. The familiar technique of calling operating system hooks, like the Kernal on previous Commodore computers, does not work quite the same way on the ST, Amiga, and Macintosh. For example, on any Commodore, from the earliest PETs to the most recent Commodore 128 , you could always JSR \$FFD2 to print whatever was in the accumulator. On the new computers, however, your program needs to go through the operating system to make itself known to the screen.

For instance, if two Amiga windows are concurrently running two programs and you want to put something on the screen, you need to follow the rules of Intuition, the Amiga's operating system, to send your message. In this way, machine language begins to resemble aspects of C or other higher-level languages. You need to involve libraries and lists of equates to communicate with your computer, particularly when input/output is involved.

Another consequence of the dynamic memory allocation in these new computers is that you must write your machine language programs to be completely relocat-able-capable of floating about anywhere in memory, without being dependent on fixed memory addresses. Fortunately, the 68000 includes a powerful set of relocatable branching instructions, such as BSR (Branch to SubRoutine). Some assemblers can even change your address-specific source code into Program Counter-relative, and thus relocatable, object code. And since the computer's operating system determines where your program will reside, there is less worry about memory conflicts.

As our computers grow increasingly complex, there are some additional techniques to master in machine language programming. But the power-and, in a strange way, the simplicity - of the 68000 chip more than makes up for any temporary inconveniences. A new, larger world is opening up for the machine language programmer who wants to accept the challenge.

Reach For The Stars For Commodore And Apple

James V. Trunzo
Requirements: Commodore 64 or 128 with a disk drive; or an Apple II-series computer with at least 64 K RAM and a disk drive.

Galactic conquest is the theme of many a computer game, and quite a few of the more recent attempts have been solid efforts. A new title, Reach for the Stars, is a particularly fine simulation of galactic exploration, combat, and conquest.

Reach for the Stars can be played by up to four players in any combination of computer or human opponents. Each player must explore new star systems, colonize any planets that seem promising, allocate resources, and establish policies and strategies that take into consideration such diverse factors as environment, civil harmony, defense against inevitable alien attacks, and industrial expansion.

This game is special because players must maintain delicate balances to win. You can't build a huge armada at the expense of social programs, or else
your colonies will suffer riots, sabotage, disease, and a lower birth rate. Likewise, to be overly concerned with strengthening existing planets while ignoring exploration and colonization allows other players to establish strong bases near your home planet, bases which will eventually build warships and attack your home colony. Strategy is quite important in Reach for the Stars.

Beware The Plague

Each turn of the game involves a number of phases: production, movement, combat, planetary conquest, etc. Each phase is handled with full-screen displays and keyboard controls which are efficient and easy to use. To make the game easier to learn, there's a complete tutorial game as well as an excellent rule book.

Reach for the Stars is impressively realistic thanks in part to the great number of interacting options and factors. There are such events as the threat of a star going nova, obliterating everything in the star system; a sudden influx of solar debris, hampering your well-laid movement plans; or plague and famine,
weakening your key colony.
When played against the computer, Reach for the Stars demands that you remain constantly aware of all aspects of the game, allocating Production Points wisely in an effort to increase your technological level, to produce the best warships, and so on. When played against human opponents, the game makes the same demands, but brings out an additional element: diplomacy, and a nasty companion, treachery. Players may make agreements with each other, granting safe passage through their star systems; or they can gang together and declare war on an opponent who appears to be growing too powerful too quickly.

Reach for the Stars combines an extremely playable, efficient game structure with a sophisticated simulation. It's one of the better games on the market this year.
Reach for the Stars
Strategic Studies Group
Distributed by Electronic Arts
2755 Campus Drive
San Mateo, CA 94403
\$45

PC/InterComm For Atari 520ST

George Miller
Assistant Technical Editor
Requirements: Atari 520ST computer and a compatible modem.

PC/InterComm is more than the first commercial terminal program marketed for the Atari 520ST. It's also one of the most versatile and easiest terminal programs we've ever used. All types of communications are a snap, and the looseleaf manual is written in a very clear and concise manner.

With its wide range of features, PC/InterComm won't be quickly outdated. As well as easy communications with commercial information services,
remote databases, electronic bulletin boards, and other personal computers, its terminal emulation mode lets the 520ST emulate the popular DEC VT102 and VT100 terminals for linkups to DEC mainframes and any of the hundreds of machines running the Unix operating system with 3270 protocol converters.

PC/InterComm allows you to select baud rates from 50 to 19,200 bits per second (bps). Of course, the higher rates are beyond the capabilities of today's personal computer modems, but they do allow high-speed computer-tocomputer transfers of data via null modem cables. We did most of our testing on the CompuServe Information Service with a Hayes Smartmodem 1200.

If you have any telecomputing experience at all, you'll probably find yourself online and communicating within minutes of running PC/Inter-

Comm. It's not strictly necessary to thoroughly read the manual before getting started; help menus and on-screen instructions are available for every function in the program.

Automatic Telecomputing

Customizing PC/InterComm is easy, too. Just follow the instructions from the manual or the help menus to select baud rates, stop bits, parity, and other necessary settings. You can even customize your copy of $P C /$ InterComm to automatically dial your favorite bulletin board or service as soon as the program runs.

Once you've set up the parameters for communicating with a particular system, you can save the information in a special file on disk. In the future, you won't have to remember these settings or refer to the instructions each time.

For file transfers (uploading and

240K Apple Compatible - Computer System -

Complete System

Abstract

APlus 3000 computer system includes 192K RAM, 48K ROM (32K Microsoft Basic plus 16K ROM Emulafor), 160K Laser 5 $1 / 4^{\prime \prime}$ Disk Drive (Runs Apple II Software), Magic Window Wordprocessor, MagiCalc spreadsheet, Magic Memory Database. All for only $\$ \mathbf{3 9 9 . 0 0}$

Double Immediate Replacement Warranty
If any of the Aplus 3000 computer system equipment fails due to faulty workmanship or material within 180 days of purchase we will REPLACE it immediately with no service charge!!

- Centronics printer interface included - 240K (192K RAM, 48K ROM) - ArtSci's Magic Window II, Magic Memory, and MagiCalc included - 160K Laser 51/4" Disk Drive (Runs Apple II soffware) - RGB (80 columns in color) and composite included

SPECIFICATIONS

A plus 3000 is a complete, self-contained computer based on the popylar 6502A microprocessor and can tap into the tremendous software library of Apple II. Features include 192K Bytes RAM, 32KB Enhanced Microsoft BASIC, 80 column text, $560 \mathrm{H} \times 192 \mathrm{~V}$ color graphic display, 81 key sculptured keyboard and high efficiency switching power supply. Also included as standard are Centronics bus printer interface, Cassette interface, 4 channel sound generator, and $5 \frac{1}{4}{ }^{\prime \prime}$ Apple Compatible Disk Drive.

- text

- 40 columns $\times 24$ rows or 80 columns $\times 24$ rows software selectable.
-5×7 characters in 7×8 matrix.
- Upper and lower case characters.
- One of Eight colors for characters/graphics and background

Red, Green, Blue, Cyan, Magenta, Yellow, Black and White.

- Character set with normal, inverse and flashing capabilities.

- GRAPHICS

- $280 \mathrm{H} \times 192 \mathrm{~V} 8$ colors bit image - Black, White, Red, Green, Blue, Cyan, Magenta, Yellow.
- $560 \mathrm{H} \times 192 \mathrm{~V} 6$ colors - Black, White, Violet, Green, Blue, Orange. (High resolution color monitor required)
Super Apple Compatible Disk Drive Sale $\$ 149.95$. Quieter, Cooler, Better Disk Drives for your Apple II plus, IIe, IIc (specify when ordering). List $\$ 299.95$. Sale $\$ 149.95$.

[^3]More Feafures than Apple ${ }^{\circ}$ for less than Commodore ${ }^{\ominus}$

Features

RAM
Runs Apple II Software
Function Keys
4 Voice, 6 Octave Sound
Composite Video
Disk Drive
Numeric Keypad
Video Cable
RGB Color Card 80 Column Card Centronics Printer Interface Drive Controller $\$ 150$ Wordprocessor (Magic Window) \$150 Spreadsheet (MagiCalc) \$60 Database prg. (Magic Memory)
$\begin{array}{cc}\text { Aplus 3000 } & \text { Apple lle } \\ \mathbf{1 9 2 K} & 64 \mathrm{~K} \\ \text { Yes } & \text { Yes } \\ \mathbf{2 4} & \text { None } \\ \text { Yes } & \text { No } \\ \text { Yes } & \text { Yes }\end{array}$ included included included included included included included included included included
\$399.00

Extra Cost
Extra Cost Extra Cost Extra Cost Extra Cost Extra Cost Extra Cost Extra Cost Extra Cost Extra Cost $\$ 1745.00$

Commodore
C. 128

128K No 16 Yes Yes Extra Cost Included Extra Cost Included Included Extra Cost Included Extra Cost Extra Cost Extra Cost
$\$ 1117.90$

Your Cost | $\mathbf{\$ 3 9 9 . 0 0}$ | $\$ 1745.00 \quad \$ 1117.90$ |
| :--- | :--- | :--- | :--- |

Add $\mathbf{\$ 2 5 . 0 0}$ for shipping and handling!!

Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders. 1 day express mail! We accept Visa and MasterCard. We ship C.O.D. to continental U.S. addresses only. Add $\$ 10$ more if C.O.D

LIST	SALE
$\$ 299.95$	$\$ 149.95$
$\$ 39.95$	$\$ 24.95$
$\$ 99.95$	$\$ 59.95$
$\$ 99.95$	$\$ 59.95$
$\$ 29.95$	$\$ 19.95$
$\$ 24.95$	$\$ 19.95$
$\$ 34.95$	$\$ 24.95$
$\$ 29.95$	$\$ 19.95$
$\$ 399.00$	$\$ 179.00$
$\$ 199.00$	$\$ 89.95$
$\$ 399.00$	$\$ 259.00$

COMPUTER DIREGT

We Love Our Customers
downloading), several different errorchecking protocols are available. Modem7 or XMODEM is probably the most useful, since it has become practically a standard, but you can also select from Kermit, Kermit Image, ASCII, Raw, and a proprietary protocol called Inter-PC/InterComm for exchanging files with another computer running PC/InterComm. All of these protocols are explained in the manual. Screen messages keep you informed of what's happening during the file transfer.

PC/InterComm also lets the computer dial a database automatically at a predetermined time, then automatically upload or download files without human intervention. Just follow the easy instructions in the manual, then go to sleep if you like and let your ST do the work during the night when communications rates are lowest.

The only drawback to PC/InterComm is that you can't exit to the GEM desktop and then reenter the program without rebooting it. For example, it would be nice, before downloading, to view a disk directory from the desktop to make sure there's enough room on the disk. Since the program won't let you move back and forth from the desktop, and since it lacks a directory command of its own, you can't easily obtain this information.

In all other respects, however, PC/InterComm is a valuable program that's worth taking a look at.
PC/InterComm
Mark of the Unicorn
222 Third Street
Cambridge, MA 02142
\$124

Write 'n Spell

Tony Roberts, Production Director

Requirements: IBM PC, PCjr, or compatible with at least 256 K memory and one disk drive.

Finding a full-featured word processor for an IBM PC or PCjr that doesn't cost a fortune has been a difficult task. Home users of the IBM line have often been forced to pay business prices for good word processing software. Now, however, there's Write ' n Spell from Professional Software. This program provides considerable power at a moderate cost.

In addition to offering nearly every word processing feature imaginable, Write ' n Spell also includes a $90,000-$ word interactive dictionary, contextsensitive help screens, mail merge capability, and a preview function
which allows you to see how your text looks before you print it out.

Write ' n Spell is easy to use-so easy that with the help of only the brief instructions provided in the Quick Start folder, you'll be using the program effectively within minutes. The program disk contains several example files that lead you painlessly through many of Write ' n Spell's important functions. And the well-organized manual includes complete tutorial and reference sections so you can find pertinent information quickly.

No Need To Remember

Write ' n Spell makes extensive use of the IBM function keys for commands and continuously displays a help line at the top of the screen, so you needn't memorize what each key does.

F2, for example, is the DISK command. When you press F2, a window opens which lists your current disk options. To select an option, either indicate your choice with the cursor keys or simply type the first letter of the command.

Command windows are removed from the screen with a touch of the ESC key. In fact, Write ' n Spell is quite forgiving; the ESC key can be used to recover from almost any problem.

The program uses meaningful mnemonics for print formatting- $l m$ for left margin, $b m$ for bottom margin, etc.-and checks the formatting commands for syntax errors. When it encounters a formatting error, the program prints the problem line in the message window, helping you isolate and correct the problem quickly.

Misspellings Begone

The Spelling Checker is one of the most powerful features of Write ' n Spell, and it, too, is activated by pressing a function key. It rapidly compares your text with its dictionary and offers four options when it finds a word it doesn't recognize: Ignore, Add, Retype, or Suggest.

If you press I for Ignore, the program skips the word and continues its search. If you press A, the word is added to the supplemental dictionary, which eventually will contain all of the unusual words, names, and numbers you use in your writing. If you press R for Retype, you can correct the misspelled word.

When you press S for Suggest, the program provides a most useful feature for those who find spelling troublesome. It searches through the dictionary to locate up to eight words that it thinks might fit your meaning. It then opens a window displaying those suggestions. If one of them is the word you want, just press its number to replace
your misspelled word.
It's amazing how often the program comes up with the correct word, and even more amazing how often the correct word is the first one in its list of possibilities.

It took Write ' n Spell less than five minutes to check and correct the text for this article, which contained numerous misspellings (both intentional and unintentional).

Other Features

Write ' n Spell has a wide range of additional features. It can print one document while you work on another, it allows you to link files, and its sophisticated text-manipulation functions include block moves and copies. A setup program allows you to easily configure Write ' n Spell to work with more than 50 different kinds of printers.

The mail merge feature lets you insert names and addresses into a stack of form letters, and the program can also accept predefined information from spreadsheets such as Lotus 1-2-3 If you have a printer that supports IBM's extended graphics character set, you can print boxed text, complex mathematical formulas, and bar graphs

The program disk includes a conversion program which helps you transfer files created by other word processors into a format compatible with Write ' n Spell. This program is not documented in the manual, but instructions are provided on a loose sheet packed in the box.

Write ' n Spell does not store text files in standard ASCII format, so you must convert them to ASCII if you plan to upload the files via modem. Printing a file to disk converts it to ASCII, but this requires you to use the setup menu to define the disk drive as your printer Unless Write ' n Spell is set up this way, you'll have to save your document, exit the word processor, run the setup program, change the printer configuration, rerun Write ' n Spell, and then print the document to disk. The procedure is a little cumbersome, but it gets the job done.

Write ' n Spell does allow normal DOS functions-such as renaming files, erasing files, and copying the current document-without exiting to the system.

Overall, Write ' n Spell can handle nearly anything you'd ask of a word processor. Some of its complex operations may be a little cumbersome, but it's a small price to pay for such a powerful program

Write 'n Spell

Professional Software
51 Fremont Street
Needham, MA 02194

152K Lowest Price In The USA! 152K ATARI' Computer System Sale

 - Students - Word Processing • Home • Business

LOOK AT ALL YOU GET FOR ONLY \& LIMITED QUANTITIES SYSTEN PRICE
(1) Atari 130XE 152K Computer
(2) Atari 1050 127K Disk Drive
(3) Atari 1027 Letter Quality 20 CPS Printer Atari Writer Word Processer Atari BASIC Tutorial Manual All connecting cables \& T.V. interface included. 4. Monitors sold separetly.

LIST PRICE	INDIVIDUAL SALE PRICE	SAVE
\$249.00	\$13495	OVER \$100
299.00	$179{ }^{95}$	All 5 ONLY
299.00	17995	00
59.95	49^{95}	
16.95	12^{95}	SYSTEM
923.90	\$547.75	ALE P

CALL FOR 1027 PRINTER REPLACEMENT OPTIONS

15 DAY FREE TRIAL. We give you 15 days to try out this ATARI COMPUTER SYSTEM!! If it doesn't meet your expectations, just send it back to us prepaid and we will refund your purchase price!! 90 DAY IMMEDIATE REPLACEMENT WARRANTY. If any of the ATARI COMPUTER SYSTEM equipment or programs fail due to faulty workmanship or material within 90 days of purchase we will replace it IMMEDIATELY with no service charge!!
Best Prices• Over 1000 Programs and 500 Accessories Available - Best Service - One Day Express Mail • Programming Knowledge • Technical Support

Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders. 1 day express mail! We accept Visa and MasterCard. We ship C.O.D. to continental U.S. addresses only. Add $\$ 10$ more if C.O.D., add $\$ 25$ if Air Mail.

COMPUTER DIRECT

We Love Our Customers
22292 N. Pepper Rd., Barrington, III. 60010
312/382-5050 to order

13" Tenith complete color Monitor Scle

Modular TV Tuners
Video Games

- Composite

Home Computers

Excellent Color Reproduction \& Special "Green Screen Only" Option
True color reproduction is achieved by a Zenith designed state-of-the-art Solle integrated circuit chip that processes the composite video signal. A custom Zenith analog RGB direct drive gain control integrated circuit allows userpreference for the adjustment of picture drive and black level. Zenith's unique "Green Screen Only" feature eliminates all other colors so that monochromatic text material may be easily displayed in green on the black face screen.

Constant Intensity Character Definition Quality

Quality circuitry design generates crisp lines, pure colors, and sharp character definition for easy-toread displays. DC-coupling permits the video display to retain its color balance from a single dot to a full screen of data. Even when room lighting changes, a "special light sensor" automatically adjusts the display brightness.

List \$499.00
Sale \$139.95
Connection Cables
RGB Cable - $\$ 19.95$
C128, Aplus 3000 (Specify)

ZVM 131-Accessible by Many Popular Systems The ZVM 131 is designed to interface with most personal computers, VCRs, video discs, video games and modular TV tuners that have either composite video or RGB direct drive outputs.

The ZVM 131 Sound Of Quality

The output sound level is externally regulated by a user-adjustment volume control. Use the Zenith quality sound system to monitor the modern audio capabilities of the computer generation.

Easy-To-Reach Front Access

 ControlsZVM 131's 13" diagonal display screen can exhibit impressive graphics and intensely clear copy. Easy-to-reach front access user controls (picture, black level, color level, tint, sharpness, audio volume, background noise control) make display adjustment simple and fast. An LED power on indicator notifies the user when the monitor is operable.

Multiple Monitors On A Single Computer

 ALASKA, APO-FPO orders. Canadian orders must be in U.S. dollars WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA. Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! VISA - MASTER CARD - C.O.D.No C.O.D. to Canada, APO.FPO.

We Love Our Customers 22292 N. Pepper Rd., Barrington, Illinois 60010

* Commodore C128 Computer $\$ \mathbf{2 8 9 . 0 0}$. This all-new revolutionary 128K computer uses Commodore 64 computer software CPM Software, plus new advanced C-128 software. You pay only $\$ 289$ for the C128 computer! Less the value of the Special Software Discount Coupon (see page 14 of our 64 page catalog) we pack with your computer that allows you to Save Over $\$ 250$ off software sale prices!! With only $\$ 100$ of savings applied your net computer cost is $\$ 189.00$. PLUS FREE \$69.95 Word Processor. **
* 340K 1571 Commodore Disk Drive \$259.00. Double Sided, Single Disk Drive for C-128 allows you to use C-128 mode plus CPM mode. 17 times faster than the 1541, plus runs Commodore 64 software. You pay only $\$ 259.00$ for the 340 K 1571 Commodore Disk Drive. Less the value of the Special Software Discount Coupon (see page 14 of our 64 page catalog) we pack with your Disk Drive that allows you to Save Over $\$ \mathbf{2 5 0}$ off software sale prices! With only $\$ 100$ of savings applied your net Disk Drive cost is only $\$ 159.00$.

[^4]
PROTEGT®

We Love Our Customers 22292 N. Pepper Rd., Barrington, Illinois 60010

312/382-5240

EXTRA WIDE 15"

120-140 CPS

List \$499.00

- Tractor/Friction Printor - Dot Matrix, Impact, Prints Single Sheets or Continuous Feed Paper, $151 / 2^{\prime \prime}$ Carriage - Print Buffer -9 x 9 Dot Matrix, Double Strike - Near Letter Quality, High Resolution Dot Bit Image - Underlining, Left-Right Margin • True Low Descenders, Super and Subscript - Prints Standard, Block Graphics \& Italics Centronics Parallel Interface
(IBM - Commodore) COMSTAR $15 \frac{1}{2} \times$ SPECIFICATIONS (Apple - Atari - Etc.)

Print Size

10, 12, 17, 5, 6, 8.5 CPI
Number of Columns
136, 164, 232 (68, 82, 116 Double Width)

Character Fonts
Normal (10 CPI); Elite (12 CPI); Condensed (17 CPI); Enlarged (5, 6, 8.5 CPI); Emphasized; Double Strike; Super \& Sub Script

Character Sets
96 Standard ASCII, 32 Block Graphic, 96 Italics Characters
Cartridge RIbbon. List $\$ 6.95$. Sale $\$ \mathbf{4 . 9 5}$.

15' Printers use 10" and 15" Paper
CANON 15" Printer

Lisì $\$ 699.00$
160 CPS + Letter Quality Mode

- Programmable Characters - 2K Buffer - 15 Day Free Trial
(IBM - Commodore)
Printing Method Impact dot matrix Printing Speed
160 CPS at standard character printing 27 CPS at NLQ character printing Printing Characters
Standard 11×9 dot matrix NLQ 23×18 dot matrix
Character set: Full ASCII character set (96),
32 special European characters

CANON SPECIFICATIONS
(Apple - Atari - Etc.)

Print Buffer
2 K -byte utility buffer
Image Printing
Horizontal 120 dots/inch (double density) Horizontal 240 dots/inch (quadruple density) Interface
8-bit parallel interface (Centronics type)
Paper
Plain paper, Roll paper, Single sheet,
Fanfold, Multipart paper: max. 3 sheets

Ink Ribbon Cartridge - Sale $\$ 14.95$
Ribbon Life: 3 million characters/cartridge Maximum Number of Characters
Standard:
cp Condensed: $\quad 17.1 \mathrm{cpi} 136 \mathrm{cp}$
Condensed enlarged:
Elite:
Elite enlarged: $\quad \begin{array}{r}12 \mathrm{cpi} \\ \\ \end{array} \quad 6 \mathrm{cpi} 48 \mathrm{cpl}$ NLQ pica: $\quad 10 \mathrm{cpi} \quad 80 \mathrm{cpl}$ NLQ pica enlarged: $\quad 5 \mathrm{cpi} \quad 40 \mathrm{cpl}$

[^5]

We Love Our Customers 22292 N. Pepper Rd., Barrington, Illinois 60010
312/382-5244 to order

Famous Smith Corona National Brand

10" PRIMTRE SALIE

Below Wholesale Cost Prices!!!

- ONE YEAR IMMEDIATE REPLACEMENT WARRANTY

- Speed: 120 or 160 characters per second - Friction Feed/Tractor Feed - Standard
- 80 character print line at 10 CPI - 1 Line Buffer, 2K Buffer on 120/160 CPS Plus LQM
- Six pitches - Graphics capability - Centronics compatible parallel interface - Features Bidirectional Print, Shortline Seek, Vertical And Horizontal Tabs

This is a sample of our near-letter-quality print. emphasized

Check these features \& prices 120 CPS 10" Printer
List
$\$ 429.00$
SALE

120 CPS + Letter Quality Mode 10', Printer
List \$449.00
SALE

160 CPS + Letter Quality Mode 10" Printer $\begin{aligned} \text { italic print. } & \text { There is standard data } \\ & \text { processing quality print }\end{aligned}$

List List
(IBM - Commodore)

SIze/Woight

Height 5.04" Width 16.7"
Depth $13.4^{\prime \prime}$ Weight 18.7 lbs .
Internal Char. Coding
ASCII Plus ISO
Print Buffer Slze
120 CPS: 132 Bytes (1 line)
120/160 CPS Plus LQM: 2 K
No. of Char. In Char. Set
96 ASCII Plus International
Graphics Capabillity
Standard 60, 72, 120 DPI
Horizontal 72 DPI Vertical
Plich
10, 12, 16.7, 5, 6, 8.3, Proportional Spacing Printing Method
Impact Dot Matrix

SPECIFICATIONS

Char. Matrix Size
$9 \mathrm{H} \times 9 \mathrm{~V}$ (Standard) to $10 \mathrm{H} \times 9 \mathrm{~V}$
(Emphasized \& Elongate)
Printing Features
Bi-directional, Short line seeking, Vertical
Tabs, Horizontal Tabs
Forms Type
Fanfold, Cut Sheet, Roll (optional)
Max Paper WIdth
11"
Feeding Method
Friction Feed Std.; Tractor Feed Std.
Ribbon
Cassette - Fabric inked ribbon
Ribbon Life
4 million characters
(Apple - Atari - Etc.)

Inferfaces

Parallel 8 bit Centronics compatible
120/160 CPS Plus NLQ: RS232 Serial inc.

Character Mode

10×8 Emphasized; 9×8 Standard; 10×8
Elongated; 9×8 Super/Sub Script (1 pass) Character Sot
96 ASCII
11×7 International Char.
Line Spacing
6/8/12/72/144 LPI
Charactor Spacing
10 cpi normal; 5 cpi elongated normal; 12 cpi compressed; 6 cpi elongated compressed; 16.7 cpi condensed; 8.3 cpi elongated condensed; 5.12 .5 cpi elongated proportional
Cartridge Ribbon - List $\$ 19.95$. Sale $\$ 12.95$.

[^6]

We Love Our Customers 22292 N. Pepper Rd., Barrington, Illinois 60010 312/382-5244 to order Cwww.commodore.ca

Microsoft BASIC 2.1 For Macintosh

Charles Brannon, Program Editor

Requirements: Microsoft BASIC requires 128 K memory, but 512 K is recommended for best performance. (Amiga watchers take note-Microsoft AmigaBASIC is very similar in features to Macintosh Microsoft BASIC.)

When Apple unveiled its Macintosh in January 1984, it was received enthusiastically. Here was a machine with 128 K RAM, a 400 K disk drive, and a 16/32-bit 68000 microprocessor running at eight megahertz, one of the fastest, most powerful microprocessors in production. But what really attracted attention was the Macintosh's powerful, yet simple to learn, operating system.

Some critics, though, have questioned the utility of this flashy machine. Sure, it's easy to drag folders around to move or copy files. Certainly it's easier to point to a menu item than to type a cryptic stream of commands on a keyboard. But the glaring lack of a programming language seemed to stratify the market into two classes: users and programmers. Apple described the Macintosh as "the computer for the rest of us." Should that exclude those interested in writing their own programs?

With the first release of Microsoft BASIC, then enhanced BASIC 2.0 , and now the even speedier and debugged version 2.1 , this last obstacle has fallen. Anyone can now write their own Macintosh applications, whether for fun or profit. And this is no ordinary BASIC: It is one of the most sophisticated and full-featured BASICs available for any personal computer. If you're used to Microsoft BASIC on Apple, Commodore, or IBM machines, you'll instantly see some similarities, but just as quickly notice the differences.

Who Needs Numbers?

The core of Microsoft BASIC for the Macintosh is almost identical to IBM Advanced BASIC, but a major difference is that line numbers are now optional. Line numbers evolved from the simple line-oriented editors used on mainframe computers in the 1960 s , and they have survived right into the 1980s. With full-screen editing-including word processor-like up and down scrolling-line numbers become superfluous, except as targets for GOTO and GOSUB statements. Macintosh BASIC even makes line numbers optional in these cases by allowing you to reference GOTOs and GOSUBs with labels,
so you can write lines like this:
IF Balance $<=0$ THEN GOTO CheckBounce
\cdots
CheckBounce: PRINT "That'll be a $\$ 10$ service charge."

Since line numbers are optional, Macintosh Microsoft BASIC gives you the freedom to scroll anywhere in a listing and edit any line. The mouse is used to scroll up and down, and to set the insertion point (cursor position). You edit your program in a window called List. You can have two List windows open at once, showing different parts of your program. Familiar Macintosh features such as Cut and Paste are supported.

When you run your program, all input and output takes place in the Output window. A fourth window, called Command, lets you try out di-rect-statement lines and execute some commands. All these windows can be moved and resized. It's easy to have all four on the screen at once. When you double-click (press the mouse button twice in rapid succession) on a title bar, the corresponding window instantly fills the screen. Another double-click returns the window to its original size.

Microsoft BASIC fits in well with the Macintosh philosophy. It can read and write to the Clipboard, making it easy to transfer data between applications. For example, you can draw a picture with MacPaint, then grab and animate the picture in BASIC. Pulldown menus let you save, load, run, stop, and trace programs. The trace feature is especially powerful. While your program is running in the Output window, you can watch the program execute line by line in the List window. In the single-step mode, you can trace the program in one window, watch the output in the Output window, and enter commands in the Command windowall simultaneously.

Add Your Own Commands

Variable names can be up to 40 characters long, and all characters are significant (CHANGE and CHANGENAME would be different variables). Advanced structures include IF-THENELSE and WHILE-WEND. Deviceindependent input/output lets you use the same I/O commands with all devices (screen, keyboard, printer, clipboard, etc.). Sequential and randomaccess disk files are supported. Another feature not to be ignored is subprograms. A subprogram is a miniature program with its own independent
variables. In effect, you can create your own BASIC commands in BASIC. Subprograms are much more flexible than mere subroutines.

Also, note that there are two versions of BASIC 2.1 included in the package. One does its math in BCD (Binary Coded Decimal), which never makes rounding errors-a vital feature for business programming. The other BASIC uses standard binary floating point, and runs faster.

The Macintosh is known for its superb high-resolution graphics. Microsoft BASIC is no slouch here. It has commands for drawing points, lines, boxes, filled boxes, circles, ovals, and arcs. PUT and GET let you grab and animate rectangular sections of the screen. Pictures can also be stored in strings as a sequence of commands. Just use PICTURE ON, and all graphics calls will be stored until PICTURE OFF is executed. You can then display the picture anywhere on the screen, in any dimension, and enlarge or contract the picture. Microsoft BASIC also lets you use many of the powerful QuickDraw routines in the Macintosh ROM Toolbox.

With Microsoft BASIC, you can write programs that look and act like commercial software, taking advantage of pull-down menus, windows, and dialog boxes. The WINDOW command creates a variety of window styles and shapes. BUTTON creates a square box that is sensitive to mouse selection. MENU and DIALOG let you read the status of menus, windows, and dialog boxes. You can even trap certain events. Your program could be busy drawing a figure, then interrupted when the user selects a menu. This transfers control to your menu subroutine. When the menu action is fulfilled, the program continues drawing the figure.

Speed And Memory

Like many applications, Microsoft BASIC drives the Macintosh to the limits of its hardware. Keeping in mind the great power of this BASIC, there are still some inadequacies. There just isn't enough memory to hold the operating system, your BASIC program, and the Microsoft BASIC interpreter all at once. To get around this, BASIC loads itself in pieces, swapping sections in and out as needed. This can slow you down to a crawl, though, especially when you're switching between windows. It's possible to increase the size of the heap space (where the swapped portions of BASIC reside) at the cost of program space, and this seems to help some.

Still, Microsoft BASIC for the Macintosh runs faster than comparable Microsoft BASICs on other microcomputers. As with many other

The 1050 DUPLICATOR IS HERE...

THE 1050 \& 810 DUPLICATOR: The most powerful diskdrive copy system ever developed for the ATARI.

The only Copy System You will ever need!
 What will it do?

The main purpose of the Dupllcator is to copy dlsksl You will be able to copy just about any diskt The copies you make will run on any Atari drive. The Duplicator need not be present to run your backup copies. The Duplicator is fully automatic. You need only insert source and destination disks. Custom formats will be read and in turn reproduced on the backup copy disk. Our device will reproduce any custom format or heavily copy guarded scheme, bad sectors, double sectors, 19 through 24 sector format will present no problem 19 through 24 sector
to the Duplicator.

- You will still have single density, and double density. When you have a Duplicator installed in a 1050 drive that drive will be turned into true double density. You will have twice the disk storage. Your drive will be compatible with other double density drives as the Rana Indus. Percom, etc.

HARDWARE POWER

\qquad

Fully Compatible with the XL \& New XE Series.
-High speed read \& write. Your disk drive will read and load all of your software, saving wear and tear on your drive. The 810 and 1050 drives now read one sector at a time. This is slow and inefficient. With the duplicator installed you will be able to read eighteen sectors in the time it takes standard, unenhanced drives to read one.

- Included with every Duplicator will be user friendly disk software. A simple, menu driven program will allow you to copy all of your software. A Duplicator enhanced drive will be a SMART drive. We plan to write many new and exciting programs that can only be run on an enhanced drive. eg. sending a copy-guarded disk over the phone. Since the drive is now fully programmable, future upgrades can be made available to you on disks, should the need arise. No further hardware changes will ever be needed. The Duplicator comes with a full hardware and software guarantee.
\$14995
Specify the 810 or 1050 when ordering
Puus \$2.50 for shipping handling
N. Y State Residents add 7/2\% Sales Tax.
- Dealer inquires are welcome. call for quantity price quote.

Macintosh programs, Microsoft BASIC needs a second disk drive and more memory to live up to its full potential, but works well with a 128 K , one-drive system. If you have a Fat Mac (the only type now being manufactured), Microsoft BASIC runs at full speed with no
delays and minimal disk access.
Now that a powerful and easy to use BASIC is available, we're beginning to see hundreds of new programs for the Macintosh as eager programmers churn out code for this two-year-old computer. All we need now is an equal-

ly powerful BASIC compiler.

Microsoft BASIC 2.1
Microsoft Corporation
10700 Northup Way
Box 97200
Bellevue, WA 98009
\$150

Bank Street Mailer Bank Street Filer

James V. Trunzo

Requirements: 128 K 80-column version available for Apple IIc or 128 K IIe (with extended 80 -column card); 64 K 40 -column versions available for Apple $I I+$ and Commodore 64; one disk drive, printer.

Brøderbund Software continues to enhance its reputation and its home productivity line with the release of Bank Street Filer and Bank Street Mailer. Both products reflect Brøderbund's effort to provide products with power, flexibility, and ease-of-use. Filer and Mailer offer a wide variety of options and can be integrated with one another and with Bank Street Writer, Brøderbund's word processor.

Both programs are available in 40or 80 -column versions (Apple only);
come with simple but thorough tutorial programs; have on-screen menus; let you make backups; offer a dual-drive option; and include a utility program that performs a variety of functions including disk formatting, printer setup, and report-formatting options.

Bank Street Mailer is so versatile that you can not only create mailing lists, but also write and edit a letter without using Bank Street Writer. In fact, the letter-writing option contains almost all the features you'd expect to find in a word processor. You can move, copy, center, set page breaks, and use up to 16 printer format commands. In addition, Mailer provides a somewhat unique and useful option known as boilerplating. You can store commonly used phrases (inside addresses, greetings, etc.) on the Mailer
disk and insert them in the letters that you compose simply by hitting a key. The only limitation when writing with Mailer is a 1,000 -word limit per letter.

Of course, the main purpose of Bank Street Mailer is to create, edit, and print mailing lists and merge the data into prepared letters. Mailer does this admirably. Creating and editing a mailing list is a snap, and all programs of this type are, on the surface, very similar. Mailer goes one step beyond by including a powerful data-searching routine which allows you to extract as much or as little information as desired. Furthermore, all data entered into Mailer can be sorted alphabetically or numerically.

Merging data with Mailer is also easy and can range from simply inserting addresses to customizing form letters by inserting stored messages (reminders, reference material, etc.) selected from disk. If you're only writing a single letter, Mailer lets you retrieve
an entire name and address simply by typing a person's last name while composing the letter.

Mailer can print labels and envelopes, too. In fact, this program boasts many additional options which are a delight to use and discover for yourself.

Flexible Report Formatting

Bank Street Filer is no less impressive than its sister programs. It includes all the features common to most database managers, so let's focus on Filer's special features.

For one thing, Bank Street Filer makes ample use of screen windows, overlaying one block of information atop another. This is especially handy
when working with Filer's powerful search procedures. Filer also provides an on-screen notepad that lets you jot down comments (which can be used later when writing a report) without interrupting your work with the database itself.

Speaking of reports, Bank Street Filer can generate a variety of report types: It is already set up to generate four types of "quick" report formats, printing out your data in a selected report style with a few simple keystrokes. However, you can customize either table reports or page reports in almost any way you choose.

Creating forms is also quite flexi-

Psion Chess For IBM And Macintosh

John Krause, Assistant Technical Editor
Requirements: Apple Macintosh; IBM PC with color/graphics card and at least 128 K RAM; or an Enhanced Model IBM PCjr.

So you think computer chess programs are a pushover? There's a new kid on the block. Joint winner of the 1984 World Microcomputer Chess Championship, Psion Chess provides a challenge for even the most experienced chess player.

Choose from 14 levels of difficulty, Novice to Infinite. The Novice level responds almost instantly and senses the strength of your play, playing more gently against weak opponents. Still, it's difficult to tame such a powerful beast, and some beginners may be unable to win even on this level. On the Infinite level, the computer keeps thinking until you stop it, at which point it plays the best move it has found. On the Equal level, the computer takes the same amount of time to think as you do. The longer you think, the better the computer plays.

On all levels, after the computer makes a move, it guesses what your next move will be and continues to think while waiting for your move. If it guesses correctly, it responds quickly with its next move and plays better since it can think longer. This feature can be turned off by selecting Handicap, effectively doubling the number of levels.

The program has a thorough knowledge of all the subtleties of chess. Sure, it has the usual library of opening moves, but even if you take it out of its
library by making unusual moves, it understands the basic ideas well enough to offer a strong opening without relying on the library. It excels in the middle game, and even in the end game it won't get lost like so many other chess programs.

Psion Chess is quite impressive visually as well. The chess board and pieces can be displayed in either the conventional two-dimensional representation or a spectacular threedimensional view as if you were seated at a real board. To make a move with the Macintosh version, you use the mouse to pick up the piece and drop it on the destination square. The piece moves smoothly, and in the 3-D view, it realistically passes in front of or behind the other pieces.

The program has almost every feature imaginable. You can take moves back, set up any position, change sides with the computer, replay all the moves of the current game from the beginning, save a game on disk, print out the move list and current position, ask the computer to suggest a move for you, and set up a checkmate problem as complex as mate-in-eight for the computer to solve. Play against the computer, against another player, or watch the computer play itself.

During a game, the computer records a list of the moves that have been made, keeps track of the time spent by each player, displays its analysis of the game indicating which side it thinks is winning, and predicts the next few moves. There's also a selection of 50 classic games drawn from 150 years of international chess which can be replayed move by move.

As if all that weren't enough, the
ble: You can position your fields anywhere you like. Filer also recognizes special fields like DATE and TIME. You can even call a full-featured calculator to the screen, perform your calculations, and insert them, if you want, into a data field. These are only a few of the many built-in functions that make Bank Street Filer an excellent tool and a worthy addition to the Bank Street software series.

Bank Street Mailer
Bank Street Filer
Broderbund Software
17 Paul Drive
San Rafael, CA 94903-2101
$\$ 69.95$

drop-down menus can be displayed in English, French, German, Italian, Spanish, and Swedish. The 23-page manual contains only three pages of English, but the program has several help screens which explain the features in greater detail. You can use the program quite easily without the manual.

Psion Chess is an impressive programming achievement. It may well be the best chess program ever written for a microcomputer.
Psion Chess
Psion, Inc.
40 Lindeman Drive
Trumbull, CT 06611
$\$ 59.95$

Quest Of The Space Beagle For Atari

Steve Hudson
Requirements: Atari 400/800, XL, or XE computer with at least 48 K RAM and a disk drive.

First came Jupiter Mission 1999, a package that combined several interwoven
games under one title. Now there's Quest of the Space Beagle. Despite the fact that it's a sequel, it also stands alone-admirably-and if you're an interactive fantasy fan it's sure to become one of your favorites.

In Jupiter Mission, you left Earth and became lost in space. Now you're the sole survivor of that mission, and you're trying to-get home. As luck would have it, you've been adopted by the Faunians, who are about to be invaded by the barbaric Gentuzians. For some reason, the Faunians have decided that you are the only one in the entire universe who can save them-so it's you and the Faunian fighters against the entire Gentuzian fleet.

You've won the big battle and have been named emperor. But to see if you've got the right stuff, emperorwise, the Faunians dump you into the smoothly scrolling, multicolored, threedimensional Labyrinths of Kamerra. Find your way out, they say, and you've not only proven your emperor-
hood, but you're also free to head for home. What's another labyrinth to a seasoned adventurer like yourself? Don't worry. It only holds pits and puzzles and Ardillian Whipstingers and Quardish Sycophants.

With practice, those, too, will prove no match for your consummate cosmic skills. You'll be hailed by Faunians far and wide, given a ship and plenty of supplies, and sent on your way. To help you out, you've got star maps-real star maps that show an accurate view from any location. You've also got a captured Gentuzian hyperdrive which will get you home fast if you can overcome those pesky "temporal perturbations" that get in the way every time you try to make a hyperspace jump.

Did anyone say this was going to be easy? Maybe not, but it will surely be spectacular. The game's programmers have used some pretty fancy techniques to jazz up an already exciting game. For instance, the graphics display that you
see during the space battle is actually multiple displays combined into one. The multiple displays alternate 60 times a second, treating you to visuals that would otherwise be impossible to achieve. This is an incredibly realistic display. Don't be surprised if you jump away from the screen every time one of the bad guys comes swooping in.

As noted in the instructions, the price you pay for such graphics excitement is a slight amount of flicker. The flicker is more pronounced on lowerquality monitors or TV sets. However, on each of the monitors tested (including a $\$ 59$ black-and-white TV) the flicker was all but eliminated by tweaking the color and contrast controls. A little extra effort is required, but it's well worth it.

Quest of the Space Beagle
Avalon Hill Microcomputer Games
4517 Hartford Road
Baltimore, MD 21214
\$35

Where In The World Is Carmen Sandiego? For Apple

Karen G. McCullough

Requirements: Apple II-series computer with at least 64 K RAM and a disk drive.

FLASH FROM INTERPOL: A national treasure, Aladdin's Lamp, has been stolen from Baghdad. It looks like the work of the Carmen Sandiego gang. Your assignment: track the thief to his/her hideout and recover the treasure. You'll have to work quickly and carefully, though. There's not much time and this gang plays for keeps. If you're the detective you think you are, you should be able to gather clues and decipher them, identify the thief, and track him down. You must've thought you were pretty good, or you wouldn't have signed up with the agency, right? Crack this case and you'll be in line for a promotion.

Where in the World is Carmen Sandiego?, a mystery/adventure game from Brøderbund makes you the detective, chasing an international crook from one exotic city to another, gathering clues to help identify the suspect, and finally cornering him in his hideout. To help you crack the case, you have the services of Interpol's crime computer to identify suspects and the detective's best friend-a copy of the World Alma-
nac and Book of Facts (included in the package). Everyone knows that good research skills are as important to a detective as his shoulder holster, and you get plenty of opportunity to put yours to the test. When an informant tells you the suspect converted all her money to yen, can you figure out where she's going? If not, you're in the wrong business.

Starting the game is as easy as booting the disk and entering your name into Interpol's computer. Once the computer has identified you, it gives you the background of the case and whisks you off to the scene of the crime to start your investigation. When you arrive in a city, you have four options: you can see the connections (those are the places the suspect could have gone); depart by plane for one of those destinations; investigate; or visit Interpol to use the crime computer.

You'll want to start by doing some investigation. In each city, there are three places you can go to gather information about the suspect and where he/she was going. Once you've collected some facts about the thief, the crime computer helps you identify the guilty party and issue an arrest warrant if you've gathered sufficient data for a positive identification. You've got to have a warrant or the suspect will slip
through your fingers on a legal technicality.

The Carmen Sandiego gang is a wily bunch, and they don't sit still for long. You'll have to track them through a number of cities in all parts of the world, and for that the Almanac is essential. The clues can be as subtle as the color of the flag flying on the car in which the suspect is believed to have departed.

Where in the World is Carmen Sandiego? is an entertaining game for anyone from fourth grade up, and even adults will learn something new. The puzzles are different each time you play, and become even tougher as you work your way up through the ranks. There are 10 possible suspects, 30 different cities, and nearly 1,000 clues to provide a variety of challenges. The program also has terrific graphics, clever animation, and some of the best music and sound effects around.

Attention to detail is what has made Brøderbund a leader in the home/ entertainment software business; Carmen Sandiego reflects that level of care. That it helps teach research skills and fundamentals of geography as well seems almost too good to be true. This is an educational game, but the emphasis is on the game; it's entertaining enough to disguise the fact that you might be learning something while you play.
Where in the World Is Carmen Sandiego? Broderbund Software
17 Paul Drive
San Rafael, CA 94903
$\$ 39.95$

Relax and Play the

Prizewinning Computer Bridge Programs

For Apple, C64, IBM Compatibles

Tom Throop's Bridge Baron ${ }^{\text {(®0) }}$
Winner of the First Computer Bridge Tournament
Bid, play, or bid and play over a million random deals in the strongest computer bridge playing program available on major computers.
C64 \$39.95 All others 49.95
Play Bridge with Sheinwold
Winner of the Consumer Electronic Software Award 1985
Improve your declarer play as you are guided along correct play in 91 challenging deals designed by Alfred Sheinwold and accompanied by an 185 page book written in his entertaining style. $\quad \mathbf{2 9 . 9 5}$
Please add $\$ 2.50$ for postage/handling VISA, MasterCard Accepted
(Include card \# and exp. date)
Great Game Products 8804 Chalon Drive Bethesda, MD 20817 1-800-426-3748

LEARN PROGRAMMING

MASTER COMPUTERS IN YOUR OWN HOME Now you can write programs and get a
computer to do just what you want Get the computer to do Just what you want Get the
most out of any computer, and avoid having most out of any computer, and avoid having
to pay the high price of pre-packaged sotware.

LEARN AT YOUR OWN PACE IN YOUR SPARE TIME Our independent study program allows you 1o learn about cormputers, operations, appir catons and progranming in your spare ime one-on-one counseling.

LEARN EVEN BEFORE YOU DECIDE ON A COMPUTER Everything is explained in simple language. You will enjoy leaming to use a computer-EVEN IF YOU DONT OWN ONE. Learn to program on any personal computer, IBM, APPLE, COMMOOORE, TRS, and more.

BE YOUR OWN COMPUTER EXPERT
Programming is the best way to learn to use computers. and we can show you the best-and most economical-way to learn programming! Send today for your free information package. No obligation. No salesman will call.
halix CENTER FOR COMPUTER EDUCATION
INSTITUTE 1543 W . Oympc $=226$ Los Angeles. CA $90015 \cdot 3894$

Save Your Copies of COMPUTE!

Protect your back issues of COMPUTE! in durable binders or library cases. Each binder or case is custom-made in flag-blue binding with embossed white lettering. Each holds a year of COMPUTE!. Order several and keep your issues of COMPUTE! neatly organized for quick reference. (These binders make great gifts, too!)

Binders

\$8.50 each;
Cases: 3 for \$24.75; 6 for $\$ 48.00$ \$6.95 each: 3 for \$20.00; 6 for $\$ 36.00$
(Please add $\$ 2.50$ per unit for orders outside the U.S.)

Send in your prepaid order with the attached coupon

Mail to: Jesse Jones Industries P.O. Box 5120 Dept. Code COTE Philadelphia, PA 19141
Please send me \qquad COMPUTE! \square cases \square binders. Enclosed is my check or money order for $\$$ \qquad . (U.S. funds only.)
Name
Address
City
State \qquad Zip
Satisfaction guaranteed or money refunded. Please allow 4-6 weeks for delivery.

23 PARK ROW, NEW YORK, N.Y. 10038

ALL PRODUCTS CARRY U.S. WARRANTIES ALL DEFECTIVE PRODUCTS EXCHANGED WITHIN 30 DAYS

HIGHRISE

Charles McGuyer

You're a construction worker, trapped in a partially completed high-rise building after dark. Can you make it safely to the ground floor without being snared by a giant bird or zapped by the patrol robot? This unique game was originally written in machine language for the Commodore 64. We've added new versions, also written completely in machine language, for Atari and Apple II-series computers. It's one of the best arcade-style games we've ever published, particularly for the Apple. A joystick is required to play the 64 version. The Atari version also requires a joystick and runs on any 400/800, XL, or XE with at least 48K RAM.

The time is the not-too-distant future, and the place is a downtown high-rise building under construction. You're just finishing the day's work when you realize that it's already dark. Everyone else has gone home, leaving you alone in a shadowy, multistory maze of naked girders and bare concrete. A chill creeps down your spine as you think about the recently installed antitheft robot. It patrols the structure from dusk to dawn, automatically disposing of any intruder it might find. Even worse, the halfcompleted building's shell is infested with nocturnal birds of prey. They're big enough to carry you away, and so hungry that they roam the empty structure all night long, swooping easily from one floor to the next.

Your only hope is to use the temporary elevators. They move randomly during the night hours, going up and down, stopping at some floors, skipping others. With skill and a little luck, you just might evade the dangers around you and make it safely to the ground floorbut it won't be a cakewalk.

Since all three versions of "High Rise" are similar, follow the general game rules under the Commodore 64 instructions. Then refer to the specific section for your computer for additional information and typing instructions.

Commodore 64 Version

Because the 64 version of High Rise is written entirely in machine language, you'll need to type it in with
' MLX ," the machine language entry program listed elsewhere in this issue. Read the MLX instructions carefully before you type in and save the program. Here's the information you'll need for MLX:
Starting address: C000
Ending address: CE7F
After you save High Rise, turn the computer off, plug a joystick into port 2, then turn it on again. Load the game with LOAD"filename" $, 8,1$ for disk or LOAD"filename ${ }^{\prime \prime}, 1,1$ for tape, and enter SYS 49152 to start it up (substitute your own filename, of course).

The object of High Rise is to make your way to the ground floor via the elevators while evading the birds and patrol robot. When the game begins, you'll see several floors of the building and a number of elevators moving up and down. You can jump on any elevator that comes to your floor (move into the elevator; it picks you up automatically), but there's no way to control its direction or how far it goes. They're just temporary elevators, used to transport materials and workers during daytime hours. The trick is to catch one that's moving in the direction you want, and get off to catch another before it starts moving in an unwanted direction.

When you reach the lowest floor shown, the screen scrolls up one floor, revealing the next lower level. Once you reach ground floor, the player sprints off the screen to safety and you can play another game.

The patrol robot always starts
on an upper floor and moves sys－ tematically through the building， traveling up and down through special shafts that are closed to you． Designed to discourage theft and vandalism，its technique is simple and effective：It pushes any intrud－ ers（including you）off the building． If it runs into an elevator and de－ tects you inside，it sends a high－ voltage charge through the elevator shell until you drop．

Meanwhile，the birds of prey have no trouble moving from one floor to the next，and they＇ll carry you away whenever they get a chance．Stay as far from an ap－ proaching bird as you can，since they can take you even when you＇re inside an elevator．The birds present another hazard as well． Whenever one of them hits the pa－ trol robot，the hapless fowl is im－ mediately zapped and plummets straight to earth．If you＇re caught in the path of a falling bird，you＇ll be knocked down，too．

When the game begins，you have five players．Each time you＇re zapped or fall from the building， you lose a player；play ends when all five have been lost．When the game starts，you＇re on the 10th floor of the building．Moving down a level earns you 100 points．If you reach the bottom safely，you＇ll have another chance to play，beginning at a higher floor．High Rise keeps track of the highest score attained in the current session，as well as your score in the current game．

Atari Version

The Atari version of High Rise must be typed in with＂Atari MLX，＂list－ ed elsewhere in this issue．Be sure to read the MLX instructions care－ fully before entering and saving the program．When you＇re ready to save the program，choose the MLX option to make a boot disk or tape． Here are the addresses you＇ll need for MLX：

Starting address： 12288
 Ending address： 14663
 Run／init address： 12288

Once you＇ve made a boot disk or tape，follow the instructions in MLX for activating the program． This version of High Rise is quite similar to the Commodore 64 game． However，you begin at the 15th floor of the building rather than the 10th，and the birds aren＇t zapped
when they meet the robot．Also，in this version the robot does not shock the elevator．

Apple Version

High Rise for the Apple II－series computers must be entered with the＂Apple MLX＂machine lan－ guage entry program found else－ where in this issue．Since High Rise loads into the memory area normal－ ly used by BASIC programs，you must relocate the start of BASIC memory before loading MLX to type High Rise．To do this，enter the following line in direct mode（with－ out a line number）and press RETURN：
POKE 104，28：POKE 7168，0：NEW
Then load and run MLX．Follow the MLX instructions carefully，using these addresses：
Starting address： 0801
Ending address：1BD8
After you finish typing High Rise，save at least one copy on disk． Once that＇s done，you can activate High Rise by typing BRUN filename （substituting your own filename，of course）．

The Apple version doesn＇t in－ clude birds，so the patrol robot is the only hazard you need to avoid． Move your player with keyboard controls：Press the left－arrow key to move left，right－arrow to move right，and the space bar to stop．

Please refer to the＂MLX＂articles in this issue before entering the following listings．

＂High Rise＂for the Commodore 64 fea－ tures smooth machine language anima－ tion and eerie sound effects．

Program 1：Commodore 64 High Rise

Cøø日：A9 øø A8 85 FB A9 2085 1ø Cøø8：FC A9 Øø 85 FD A9 CB 85 7E Cø10：FE B1 FD 91 FB C8 DØ F9 F4 Cø18：E6 FE E6 FC A5 FC C9 2452 CØ2Ø：DØ EF AØ 18 B9 EE C9 9952 Cø28：Øø D4 88 1Ø F7 AØ Ø4 A9 E4

Cø30：30 9988 CA 88 10 FA $2 \varnothing 88$ Cø38：E7 C8 $2 ø 44$ E5 A9 05 8D 95 Cø40：51 CA A9 31 8D 5F CA A9 8E Cø48：3ø 8D 60 CA A9 øø 8D $2 \varnothing 86$ Cø5ø：Dø 8D 21 Dø 8D EB C9 8D øC Cø58：88 C9 Aø $\varnothing 4$ B9 88 CA $99 \quad ø 4$ Cø6ø：91 9788 10 F7 20 A7 C7 D5 Cø68：2ø DE C6 AD 97 C9 85 FB $5 \varnothing$ Cø7ø：2ø 8B Cø 18 AD 97 C9 6947 Cø78：07 8D 97 C9 C9 24 FØ Ø3 34 Cø80：4C 6B CØ A9 Ø1 8D 97 C9 EC Cø88：4C AB Cø A9 9485 FC A2 Aø Cø90：19 Aø øø A9 1C 91 FB CA 4B Cø98：FØ 1018 A5 FB $6928 \quad 854 \mathrm{~F}$ CøAD：FB A5 FC 69 øø 85 FC 4 C 1C CøA8：93 Cø 60 A2 øø A9 1D 9D D8
 CøB8：9D F8 Ø6 9D Cø 67 E8 EØ B6 CøCø：1F DØ EA AC BØ C9 Cø ØA 66 CøC8：Fø 2D B9 A6 C9 85 FB C8 D4 CøDø：B9 A6 C9 85 FC C8 8C Bø 3 F CøD8：C9 A2 Ø4 Aø øø A9 1B 91 Eø CøEØ：FB CA FØ 10 18 A5 FB 69 EA CØE8： $28 \quad 85$ FB A5 FC 69 ø日 85 CC CøFø：FC 4C DD Cø 4C C3 Cø Aø 5F
 C1øø：9D F8 97 E8 Eø 65 D 0 F8 B5 C1ø8：A9 FF 8D 15 D 0 A2 øø AD 22 C116：86 C9 9D bl DØ E8 E8 18 21 C118：AD 86 C9 6920 8D 86 C9 Fl C120：EØ ØA FØ Ø3 4C ØF Cl A9 BØ C128：32 8D 86 C9 A9 FF 8D 1C 1A C13ø：Dø A9 ØF 8D 25 DØ A9 ø2 ø3 C138：8D 26 D6 A2 øø AD 87 C9 DF C140：9D øб DØ E8 E8 18 AD 87 C5 C148：C9 6938 8D 87 C9 Eø ØA 1A C150：Fø ø3 4C 3D Cl A9 18 8D DC C158：87 C9 Aø Ø1 B9 5F CA 99 Bø
 C168：EB C9 A9 FØ 8D ØA DØ A9 78 C170：B8 8D ØB DØ A9 7C 8D øC 88 C178：Dø AD 1E Dø A9 68 8D øD B7 C180：DØ A9 14 8D ØE DØ 8D ØF 10 C188：Dø A9 8A 8D FF 07 4C D8 96 C190：C1 8A 48 A2 Ø4 Aø øø 88 F5
 C1AD：AC 98 C9 B9 92 C9 DD 01 ED ClA8：DØ FØ Ø9 C8 CØ 65 FØ ØD 87 ClBØ：8C 98 C9 60 A9 02 9D 88 F8
 C1C0：98 C9 6Ø A5 C5 C9 3F FØ 2E C1C8： 05 C9 Ø4 FØ 0760 A9 øø DD

 ClEØ： $2 \varnothing 69$ C4 $2 \varnothing$ ЗВ C3 $2 \varnothing$ AØ 33 ClE8：C1 206 B C2 20 C3 C1 $2 \varnothing$ A2 ClF0：1B C5 $2 \varnothing$ B2 C4 20 BD C2 87 ClF8：2ø 2F C8 BD 88 C9 C9 01 4D C2øø：Fø $419 \varnothing$ Ø2 Bø 10 FE Ø1 45 C2ø8：Dの BD 11 DØ C9 EØ Fø 25 6B C210：20 61 C 24 C DA C1 DE Cø 77 C218：C9 BD Cø C9 Fø Ø3 4C DA AD C220：C1 BD 89 C9 9D 88 C9 2086 C228：61 C2 2б 9A C8 29 1F 9D 83 C230：Cø C9 4C DA C1 A9 Ø1 9D 14 C238：88 C9 9D 89 C9 2061 C2 15 C240：4C DA C1 DE 01 D $\begin{array}{ll}\text { DD } & \text { Ø1 } 90\end{array}$ C248：DØ C9 4Ø Fの Ø6 $2 \varnothing 61$ C2 F5 C250：4C DA Cl A9 øø 9D 88 C9 D6 C258：9D 89 C9 2661 C2 4C DA D3 C260：C1 E8 E8 Eの ØA FØ 1160 A2 C268：A2 Øø 60 Aø 65 B9 92 C9 53 C270：CD ØB DØ FØ 048810 F5 21 C278：60 AD $\varnothing 6$ DC 29 日F C9 øB 8B C280：Fø 1D C9 97 Fø ØВ А9 øø 76 C288：8D 0 B D4 A9 85 8D FD $67 \quad 32$ C290：6Ø AD ØA DØ C9 F5 Fø F8 Ø1 C298：2ø F4 C2 $2 \varnothing$ AD C2 $6 \varnothing$ AD AC C2AD：$\varnothing \mathrm{A}$ D \varnothing C9 $17 \mathrm{~F} \mathrm{\emptyset}$ EA $2 \varnothing 11 \mathrm{BE}$ C2A8：C3 2Ø AD C2 $6 \varnothing$ A9 81 8D 34 C2Bも：日B D4 A9 22 8D 日8 D4 A9 28 C2B8：8ø 8D ØB D4 $6 \emptyset$ CE 54 CA 42
 C2C8：CA B9 0B CA 8D øø D4 B9 FF C2Dø：øC CA 8D 61 D4 A9 11 8D CD C2D8： 04 D4 C8 C8 Cø $2 \varnothing$ Fø 69 AC C2E0：8C 52 CA A9 23 8D 54 CA F7

From the publishers of COMPUTE!

February 1986 COMPUTE! Disk

All the exciting programs from the past three issues of COMPUTE! are on one timesaving, error-free floppy disk that is ready to load on your Apple II, II + , IIe, and IIc computers. The February 1986 COMPUTE! Disk contains the entertaining and useful Apple II programs from the December 1985 and January and February 1986 issues of COMPUTE!. This easy-to-use disk also features SpeedCalc, the spectacular new spreadsheet program written entirely in machine language for the Apple II-series, and the latest version of SpeedScript, the bestselling word processing program.

The February 1986 COMPUTE! Disk costs $\$ 12.95$ plus $\$ 2.00$ shipping and handling and is available only from COMPUTE! Publications.

For added savings and convenience, you may also subscribe to the COMPUTE! Disk. At a cost of only $\$ 39.95$ a year (a $\$ 12.00$ savings), you'll receive four disks, one every three months. Each disk will contain all the programs for your Apple II machine from the previous three issues of COMPUTE!.

This is an excellent way to build your software library while you enjoy the quality programs from COMPUTE!.

Disks and subscriptions are available for Apple, Atari, Commodore 64 and 128, and IBM personal computers. Call for details.

To subscribe to the COMPUTE! Disk, call toll free 1-800-247-5470 or write COMPUTE! Disk, P.O. Box 10036, Des Moines, Iowa 50950.

C2E8：6Ø Aの øØ 8C． 52 CA A9 23 C3 C2FØ：8D 54 CA 6Ø EE ØA D $A D$ A C2F8：EA C9 C9 14 F6 65 C9 $28 \quad 38$ C3ØØ：Fの 66 6Ø A9 88 4C ØD C3 7B C3ø8：A9 89 4C ØD C3 8D FD 9778 C310：60 CE ØA DØ AD EA C9 C9 4ø C318：14 FG 65 C9 28 FG $06 \quad 6094$ C320：A9 86 4C ØD C3 A9 87 4C 98 C328：øD C3 20 91 Cl CE 65 CA 23 C330：AD 65 CA D F F A9 øø 8D 32 C338：65 CA 60 AD 1E DØ 8D 1E 79 C340：DØ 602091 Cl EE ØB Dø 16 C348：20 22 C9 AD ØB Dø C9 F5 Al C350：DØ FØ A9 Øø 8D Ø4 D4 A9 81 C358：Bø 8D 6E CA AC 51 CA A9 FF C360：20 99 D8 $0588 \mathrm{FO} \quad 28$ 8C AE C368：51 CA 20 2A C3 AD 1E Dの D3 C370：A9 B8 8D 日B DØ A9 40 8D 98 C378：ØD DØ 8D ØC Dø A9 14 8D 1ø C380：ØF Dø A9 Øø 8D EB C9 8D 36 C388：64 CA 6868 4C D8 Cl 18 E9 C39Ø：A2 ØB AØ Ø5 $2 \emptyset$ FØ FF A9 FE C398：FF 8D 1B Dø Aの øØ B9 8D F9 C3AD：CA FØ $67 \quad 20$ D2 FF C8 $4 \mathrm{C} ~ 21$ C3A8：9E C3 $2 \varnothing$ B7 C3 A9 Øø 8D 42 C3BØ：1B D 6868 4C 3A C 6 A9 $\quad 64$ C3B8：øб 8D 18 D4 AD øø DC 2944 C3C0：1Ø DØ F4 A9 7F 8D 18 D4 F4 C3C8：60 AD 1E Dø 8D 9E C9 Dø Ø8
 C3D8：9E C9 D9 Al C9 Fø 49 C9 E5 C3EØ：6Ø FØ EF 88 10 F1 AØ ØØ E4 C3E8：AD ØA DØ D9 Øø DØ 9ø 25 ØB C3FØ：38 F9 ØØ DØ C9 $04 \mathrm{~B} \mathrm{\emptyset} 16 \mathrm{~F} 5$ C3F8：AD ØB Dø D9 ø1 Dø $9 \emptyset$ 1F 5D C4øø：38 F9 Ø1 DØ C9 ØA Bø Ø6 2F C4ø8：B9 Ø1 DØ 8D ØB DØ C8 C8 97
 C418：D \emptyset ED ØA DØ 4C F4 C3 B9 4 B C42Ø：Ø1 Dø ED ØB DØ 4C 94 C4 51 C428：8A 48 A2 32 A9 8199 F8 FF C430：07 8C EC C9 2ø 9A C8 8D 25 C438：ø8 D4 A9 81 8D ØB D4 2ø AA C440：91 Cl AC EC C9 A9 8299 FA C448：F8 67 8C EC C9 20 9A C8 3D C450：8D $\quad 8$ D4 $2 \emptyset 91 \mathrm{Cl}$ AC EC 19 C458：C9 CA 1ø Dø A9 8Ø 99 F8 94 C460：ø7 8D ØB D4 68 AA 4C 4248 C468：C3 AD ED C9 CE ED C9 Fø 4C C47ø：ø1 6Ø A9 Ø3 8D ED C9 $2 \emptyset \mathrm{CF}$
 C480：92 C9 CD ØD Dø $\mathrm{F} \emptyset \quad \emptyset 488 \quad 2 \mathrm{~B}$ C488：1Ø F5 $6 \emptyset \mathrm{AD} 9 \mathrm{~F}$ C9 D Ø 1155 C490：AD ØC DØ C9 F8 FØ Ø4 EE 2D C498：øC DØ 60 A9 Ø1 8D 9F C9 4A C4AØ：6Ø AD ØC DØ C9 $18 \mathrm{~F} \emptyset \emptyset 4 \mathrm{E}$ C4A8：CE ØC DØ 6Ø A9 ØØ 8D 9F C4 C4BØ：C9 60 CE EA C9 AD EA C9 64 C4B8：FØ 65 C9 14 FØ 45 6Ø A9 7 D $\mathrm{C} 4 \mathrm{C} 0: 83$ 8D FE $67 \mathrm{A9}$ 8B 8D FF 56 C4C8：ø7 A9 29 8D EA C9 AD ØF 27 C4DØ：D 0 C9 32 9Ø 28 C9 78 BØ 8 E C4D8：24 AC 50 CA B9 67 CA 8D 63 C4EØ：0E D4 B9 Ø8 CA 8D ØF D4 DD C4E8：A9 11 8D 12 D4 C8 C8 Cø 7A C4FØ：Ø4 F O $94 \mathrm{BC} 50 \mathrm{CA} 6 \emptyset \mathrm{AD} 11$ C4F8：$\emptyset \emptyset 8 \mathrm{C} 5 \emptyset \mathrm{CA} 6 \emptyset$ A9 $2 \emptyset$ 8D D3 C5øø：12 D4 60 A9 84 8D FE 97 CF C5ø8：A9 8A 8D FF 9760 A9 40 ØA C510：8D ØD DØ A9 ஏø 8D EB C9 32 C518：4C 5Ø C5 AD ØB DØ C9 EØ 81
 $\mathrm{C} 528: 8 \mathrm{D}$ Ø1 D4 $2 \emptyset 91 \mathrm{Cl} 38 \mathrm{AD}$ ø9 C530：øB DØ E9 Ø8 8D ØB DØ AD 1B C538：ØF DØ C9 32 90 Ø5 E9 ø8 50 C540：8D ØF DØ AD ØD DØ C9 48 D2 C548：9の C4 38 E9 ø8 8D ØD Dの 54 C550：20 DE C6 2011 C7 AØ Øø 67 C558：A9 Cl 85 FB A9 9785 FC \quad 日B C560：B9 4B CA 8D 61 D4 A9 11 8D C568：8D 64 D4 A9 1C 91 FB 1828 C570：A5 FB $69 \quad 67 \quad 85 \mathrm{FB}$ C9 E 4 FF C578：Fの 03 4C 6B C5 EE 61 CA F4 C580：AD Aø C9 CE AD C9 10 9D 1B C588：A9 94 8D Ag C9 AD 1E D9 B7 C59ø：A2 Øø A9 1D 9D Cø 97 E8 5B C598：EØ 1F DØ F6 A9 04 8D AØ FE

C5A0：C9 AD 1E Dø A9 øø 8D $61 \quad 17$ C5A8：CA A2 61 DE A2 06 BD A2 9B
 C5B8：3B A2 02 FE 11 Ø5 BD 11 E 3 C5C0： 65 C9 3A Fの 4D A2 Øø BD 4A C5C8：11 65 DD $91 \quad 67$ Fø 18 90 AF C5D0：øE BD 11 Ø5 9D 91 Ø7 9D 24 C5D8：88 CA E8 EØ 65 D 6 F2 AD 85 C5EØ：53 CA Dø 3F 68 AA 6Ø E8 6E C5E8：EØ 65 DØ DB AD 53 CA D Ø 1 F C5FØ：32 68 AA 6Ø A9 39 9D A2 1B
 C600：B8 DE A2 06 4C B9 C5 CA F5 C6ø8：BD A2 Ø6 C9 3Ø FØ ØC 4C 24 C610：B9 C5 A9 30 9D 1105 CA 2A C618：4C BB C5 A9 ø1 8D 53 CA BD C620：4C B9 C5 A9 øø 8D 53 CA 3D C628：18 AD $6 \emptyset$ CA 69 65 8D 60 C \varnothing C630：CA C9 3A F0 Ø3 4C 40 C6 7C C638：A9 30 8D 60 CA EE 5F CA F9 C640：18 AØ Ø4 A2 ØB $2 \emptyset$ FØ FF 67 C648：Aの ØØ B9 C3 CA FØ $\emptyset 7$ 2Ø E1 C650：D2 FF C8 4C 4A C6 A9 E6 C6 C658：8D ØB Dø 8D ØA Dの A9 86 CF C660：8D FD 07 CE ØA DØ 209167 C668：Cl 20 91 Cl A9 87 8D FD B1 C670：ø7 CE ØA DØ A9 Øø 8D Ø4 EF C678：D4 8D 12 D4 2б AD C2 $2 \emptyset \mathrm{C} \varnothing$ C680：91 Cl $2 \emptyset 91 \mathrm{Cl}$ AD ØA DØ ØE C688：C9 Ø2 Dø D2 26 C6 66 C690：Aの Ø4 A2 ØB $2 \emptyset$ FØ FF Aø D9 C698：Øø B9 DC CA FØ 07 2ø D2 93 C6AD：FF C8 4C 99 C6 2ø 2A C3 52 C6A8：A $\emptyset 18$ A9 2699 BC $\quad 6588 \quad 16$ C6BØ：1Ø FA A9 1C 8D Cø 05 8D Ø3 C6B8：C7 Ø5 8D CE 65 2Ø DE C6 37 C6CØ：68 $68 \quad 68$ 4C 5A Cl Aの $\varnothing \varnothing 89$ C6C8：B9 D9 65 C9 $2 \emptyset$ FØ 66 C8 $8 \emptyset$ C6DØ：CØ Ø5 Dø F4 $6 \varnothing$ A9 1E 99 E8 C6D8：D9 $05 \mathrm{EE} 51 \mathrm{CA} 6 \emptyset$ A9 $9 \emptyset$ B2 C6E0：85 FB A9 D8 85 FC 8A 48 7 7 C6E8：A2 19 Aの ØØ A9 6291 FB 96 C6F0：C8 Cの 1F Dの F9 A9 ØA 91 2Ø C6F8：FB C8 Cø 27 D6 F9 18 A5 85 C7日0：FB $69 \quad 28 \quad 85$ FB A5 FC 69 1F C7ø8：øø 85 FC CA DØ DC 68 AA BA C710：60 AD $13 \quad 07 \mathrm{C} 9$ 1B $\mathrm{F} \emptyset \quad 06 \mathrm{~B} \mathrm{\emptyset}$ C718：A9 1B 8D DB 9760 A9 1B DA
 C728：C9 CD ØC DØ F Ø $67 \quad 88 \quad 1063$ C730：F5 AD 1F Dの 60 AD BF C9 1A C738：DØ 38 AD ØD DØ C9 EØ FØ 25 C740：52 AD EB C9 DØ $14 \mathrm{~A} \varnothing$ Ø3 99 C748：AD 1F DØ D9 B7 C9 FØ 64 F8 C750：88 10 F8 60 A9 61 8D EB A5 C758：C9 6Ø EE ØD DØ 2Ø 9C C7 9B C760：60 A9 ØØ 8D EB C9 AD 1F 64 C768：D6 AD 9F C9 49 Ø1 8D 9F 65
 C778：1A AD EB C9 DØ ØE AØ 03 9D C780：AD 1F Dの D9 BB C9 FØ CC 1A C788：88 10 F8 6Ø CE ØD DØ 20 F1 C790：9C C7 6Ø AD BF C9 49 Ø1 FF C798：8D BF C9 6Ø EE EB C9 AD 86 C7AØ：EB C9 C9 29 FØ BB $6 \varnothing$ AØ 3C C7A8： $04 \mathrm{~B} 9 \quad 6 \mathrm{~F}$ CA $99 \mathrm{Cl} \quad 64 \mathrm{B9} \mathrm{D} 8$ С7B0：74 CA $9989 \quad 65$ B9 79 CA C5 C7B8：99 51 Ø6 B9 7E CA $9919 \begin{array}{llllll} & 19\end{array}$ C7CØ：ø7 B9 $83 \mathrm{CA} 9941 \quad 67$ A9 E8 C7C8：1E 99 D9 65 A9 $30 \quad 9911$ AB こ7D0：ø5 88 10 D5 60 AD 64 CA B1 C7D8：D 15 AD ØF D Ø CD ØB $\mathrm{D} \emptyset 61$ C7EØ：B $\quad 37 \mathrm{AD} 62 \mathrm{CA}$ DØ ØE $2 \emptyset 48$ C7E8：9A C8 C9 BF F0 07 60 A9 3B C7FØ：8D 8D FF 0760 A9 018 D 54 C7F8：62 CA AD ØF DØ CD ØB DØ 77 $\mathrm{C} 8 \emptyset \emptyset: \mathrm{F}$ Ø 1 B EE ØF DØ AD ØE DØ C9 C8ø8：CD ØA D D F $10 \mathrm{~B} \emptyset \emptyset 6 \mathrm{EE}$ 6A C81Ø：ØE DØ EE ØE DØ CE ØE DØ 4A C818：6Ø C9 FØ FØ $\emptyset 7$ CE ØE DØ D9 C820：EE ØF DØ 6Ø A9 Øø 8D 62 D7 C828：CA A9 20 8D ØF DØ 60 AD 90 C830：64 CA D $\quad 35 \mathrm{AD}$ ØF D $\emptyset \mathrm{CD}$ 2D $\mathrm{C} 838: \emptyset \mathrm{B}$ D $\emptyset \mathrm{B} \emptyset 1 \mathrm{~B} A D$ ØA D D CD $5 \emptyset$
 C848： C 9 Ø8 $\mathrm{B} \emptyset \quad$ ØB 38 AD ØB DØ E6 C850：ED ØF \quad D \varnothing C9 $97 \quad 90$ 4D AD 16
 C86Ø：AD ØE DØ ED ØA DØ 4C 48 B9 C868：C8 A9 01 8D 64 CA EE $0 F$ FC C870：D 20 9A C8 8D ØF D4 A9 4E C878：15 8D 12 D 4 AD 1 E D 0 C9 D8 C880：A A FØ 14 AD ØF DØ C9 F5 41 C888：FØ Ø1 6Ø A9 ØØ 8D ØF DØ 9E C890：8D 64 CA AD 1E D 60 4C 77 C898：42 C3 8A 48 2Ø 9E EØ 68 B7 C8AØ：AA A5 $62 \quad 60$ A9 $1 \varnothing$ 8D 64 EF C8A8：D4 A9 8A 8D FF 07 A9 8831 C8B0：8D FD 07 20 91 Cl AD $0 \mathrm{~F} \quad 69$ C8B8：D \varnothing 8D ØB DØ AD ØE DØ 8D 59 C8C0：ØA DØ CE ØF DØ A9 8B 8D 28 C8C8：FF $\begin{array}{lllllllll} & 67 & 2 \emptyset & 91 & \text { Cl } & 2 \emptyset & 9 A & C 8 & C 5\end{array}$ C8Dø：8D ØF D4 A9 11 8D 12 D4 D9 C8D8：AD ØF DØ C9 19 DØ C5 A9 FC C8Eの：10 8D 12 D4 4 C 5C C3 7841 C8E8：A9 $3385 \quad$ Ø1 A9 $\varnothing \emptyset 85$ FB 31 C8F0：85 FD A9 D6 85 FC A9 30 AA C8F8：85 FE A2 Ø2 AØ ØØ B1 FB E5 C900：91 FD 88 DØ F9 E6 FC E6 46
 C910：58 A9 1C 8D 18 DG Aの 1F FA C918：B9 CA C9 99 D8 $30 \quad 88 \quad 10$ B6 C920：F7 60 AC 6E CA 8C 61 D4 A3 C928：A9 11 8D 94 D4 $88 \quad 8 \mathrm{C}$ 6E 17 C930：CA A9 ø0 8D ØB D4 8D 1245 C938：D4 60 A9 6485 FC A9 0037 C940：85 FB A2 1E 18 A5 FB 6984 C948：28 85 FD A5 FC 69 øø 85 7E C950：FE AØ øØ B1 FD 91 FB E6 BB C958：FB A5 FB D8 82 E6 FC CA 58 C960：10 E2 18 A5 FB $69 \quad 9985 \quad 2 \mathrm{~F}$ C968：FB A5 FC 69 Øø 85 FC A5 4 F C970：FB C9 Cø DØ CD A5 FC C9 62 C978：$\varnothing 7$ D \emptyset C7 A9 $2 \emptyset$ AØ 1 E 99 B 9 C980：C0 078810 FA 604018 3A

 C998：Øø $21222428 \quad 3 \varnothing$ Øø ØØ FC

 C9B8：9F 3F 1F FF DF 7F 5F Øø 8B

 C9D0：82 $\begin{array}{lllllllll}54 & 2 \varnothing & 10 & 2 \varnothing & 10 & 2 \varnothing & 10 & 51\end{array}$ C9D8： $2 \varnothing 10$ ØØ Øø 10 Øø FF C3 44 C9E0：C3 FF 081 C ø8 1C 2A 5D 7B C9E8：14 1415 øø Øの 14 Øø Øø 7E
 C9F8：øø øø 45 Fø øø øø øø øø 44 CAØロ：11 5858 ØØ Øの 027 F 1E 64 CAØ8：19 $1 \mathrm{~F} \quad 15 \quad 47 \quad 95 \quad 47 \quad$ Ø5 ED 46 CA10：Ø5 $47 \begin{array}{llllllll} & 47 & 05 & 47 & 06 & 47 & 05 & \text { ØC } \\ 72\end{array}$ CA18： $0747 \quad \emptyset 6 \quad 47 \quad \emptyset 5 \quad 47 \quad \emptyset 5$ ED 75 CA20：Ø5 $47 \quad 0547 \quad$ Ø6 47 Ø5 øC 82

 CA30：15 1 F 15 $\begin{array}{lllllll}\text { C5 } & 17 & \text { B5 } & 17 & \text { B5 } & 89\end{array}$ CA38：17 B5 17 | 19 | 19 | $1 E$ | 19 | $1 E$ | $1 D$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | CA40：19 1 E 19 B5 17 B5 17 B5 DB

 CA50： $0 \varnothing$ Ø5 00 øø 19 Øø F7 DC BC CA58：C $\begin{array}{lllllllll} & \text { A4 } & 88 & 6 \mathrm{C} & 5 \emptyset & 34 & 18 & 31 & \emptyset 4\end{array}$
 CA68：Ø6 Ø5 ØE ØB ØA 99 A1 137 F CA7ø：ø3 ØF 12 Ø5 ØD Ø5 ØE $2 \varnothing 96$ CA78：20 ø6 ØC ØF ØF 12 Ø8 Ø9 EB CA8ø：$\varnothing 7$ Ø8 $2 \varnothing 13$ Ø3 ØF 12 Ø5 4E
 CA90：55 $27 \begin{array}{llllllll}56 & 45 & 20 & 52 & 55 & 4 E & F C\end{array}$ CA98：20 $4 \mathrm{~F} \quad 55 \quad 54204 \mathrm{~F} 46$ 2ø EC CAA ： 4 D 45 4E ØD ØD 1D 1D 1D FC CAAB：1D 1 D 50 $52 \begin{array}{llllll}52 & 45 & 53 & 53 & 20 & 81\end{array}$ $C A B \emptyset: 46 \quad 49 \quad 52 \quad 45 \quad 20 \quad 54 \quad 4 \mathrm{~F} \quad 20 \quad 6 \mathrm{~B}$ CAB8：50 4 C САСØ：49 4 E ØØ $\quad 47524 \mathrm{~F} 554 \mathrm{E}$ CB CAC8：44 20.464 C 4 F 4 F 52 C C 9 E CAD0：59 4F $5527 \begin{array}{llllll}52 & 45 & 2 \varnothing & 53 & 3 F\end{array}$ CAD8： 414645 Øø $4 \mathrm{E} 4 \mathrm{~F} 5720 \mathrm{C7}$
 CAE8：4C $4954544 \mathrm{C} 45 \quad 2048$ C6
 CAF8：EC Øø EE Øø 6E $62 \quad 62 \quad 6246$
 CBø8：Øø Øø ØØ Øø ØА АА $8 \emptyset$ Ø8 A3

CB10：øø 80 Ø8 9080 Ø8 øø 80 6D CB18：ø8 øø 8 ø8 øø 8 ø ø øø 56 CB2Ø：8ø ø8 øø 8ø ø8 øø 8ø ø8 4B CB28：øø 8ø ø8 øø $8 \varnothing$ ø8 øø $8 \varnothing 85$
 CB38：80 ø8 øø 80 ØA AA $8 \varnothing 8399$
 CB48：ø4 Ø4 Ø1 Ø4 ØA AA $9 \varnothing 0867$

 CB60：9ø 48 øб 84 ø8 øø $8 \varnothing$ ø8 Е3 CB68：ø日 $81 \quad 18$ øø $84 \begin{array}{llllll}48 & \text { Øø } & 81 & 2 A\end{array}$ $\begin{array}{lllllllll}\text { CB7Ø：} 18 & \text { øø } & 84 & 48 & \text { Øø } & 9 \varnothing & 48 & \text { øø } & \mathrm{FB}\end{array}$ CB78：84 ø8 øø 81 ØA AA 8483 F3

 CB9 ：$\varnothing \varnothing 8418$ øø 8148 øø 84 FD
 CBAळ：8ø 18 øø $8 \varnothing 48$ øø $9 \varnothing 18 \quad 92$

 CBB8：84 48 øø $9 \varnothing$ 4A AA $8 \emptyset 83$ 2F CBCØ：øø øø øø øø øø øø øø øø 58 CBC8：øø øø øø øø øø øø øø 1171 CBD ： 1110 øø øø øø 111110 6B CBD8：$\varnothing \varnothing$ A8 $\varnothing \varnothing$ øø 88 øø øø 10 EE

 CBF8：øø Ø2 8A øø Ø2 AA øø FF 1D

 CC1Ø：44 $4 \varnothing 1 \varnothing$ øø $1864 \begin{array}{llllll} & 44 & 4 \varnothing & 37\end{array}$

 CC28：20 30 ØC CC Cの øø 20 ø0 72 СС3Ø：øØ $2 \varnothing$ øø Øø А8 Øø Øø 88 9F CC38： 00 Ø2 8A 00 б2 AA 00 FF 5 E CC4ø：øø øø øø øø øø øø øø øø D9

 CC58：$\varnothing \varnothing$ Ø4 øø øø 2 A Øø Øø A2 E6

 CC78：øø ø日 11 øの øø FF Cの FF B5 cc8日：øの øø øø øø øø øø øø øø 1A Cc88：øø øø øø øø øø øø øø øø 22 CC9ø：øC øø øø 33 øø øø ø4 øø 6B

 CCAB： 05 øø øø 15 øø øø 44 øø 9E CCBØ：Øø 44 øø øø 41 Øø øø $4 \varnothing$ A5

 ccc8：$\varnothing \varnothing$ Øø øø øø Øø Øø Øø Øø 62 CCDØ：øC Øø øø 33 øø Øø Ø4 Øø AB CCD8：Øø Ø4 øø øø ØА Øø øø ØА CD

 CCFロ：øの 05 øø øø 14 øø øø 1581
 CDøø：øø øø øø øø øø øø øø øø 9B
 CD10：3の øб øø CC øø øø $1 \varnothing$ øø Bø
 CD20：Cの 08 A2 øø ø2 E8 øø øø 26 CD28：5Ø øø øø 54 øø øø 11 øø 53
 CD38：øø øС ø3 øø ø3 øø Сø øø Dø
 CD48：øø øø øø øø øø øø øø øø E3

 CD68：50 øø øø 4C øø øø $4 \varnothing$ øø 71
 CD78：$\varnothing \varnothing$ Ø3 1ø øø øø DC Øø FF 4A
 CD88：ØA CØ Øø Ø3 $3 \varnothing$ Øø ØC FC $2 \varnothing$

CDC8：ø0 øø øø øø øø øø øø øø 64
 CDD8：CF 14 F3 $3 \varnothing 82$ 日C $\mathrm{F} \varnothing 141 \mathrm{l}$ CDEØ：$\because F=8 \varnothing 82$ Ø2 82 Øø $82 \quad$ ø2 AF

 CЕø8：ø2 øø с3 ø3 øø øø øС øø 67 CE1Ø：Ø0 ØF FØ 82 ØF ØF 28 FØ AD

 CE28：3ø 80 ø8 8ø $2 \varnothing$ øø øø ø8 1ø
 CE 38 ：øø øø øø øø øø øø øø øø D5
 CE48：ø日 øも øø øø Cø øø Cø øø 6D
 CE58：Cの 14 F3 $3 \varnothing$ Ø2 ØC C3 14 B8

 CE78：øø 毋の øø øø øø øø øø øø 16

You must avoid hungry birds as well as an automatic patrol robot in the Atari version of＂High Rise．

Program 2：Atari High Rise

Version by Kevin Mykytyn，Editorial Programmer
12288：032，139，052，032，018，ø52，069 $12294: 932,643,654,169,006,141,189$ $123 \varnothing 0: 249$ ， $055,032,014, \varnothing 51, \emptyset 32,189$ 12306：199，051，032，124，051，032，251 $12312: 935,057,206,254,654,208,070$ $12318: 620,173,255,054,141,254,159$ $12324: 954,932,115,950,173,065,013$ $12330: 906,073,001,141,965,006,078$ $12336: 032,252,055,162,000,160,197$
$12342: 002,202,208,253,136,208,039$ $12348: 25 \emptyset, 032,172,053,032,212,043$ 12354： $054,173,242,055,208, \emptyset 42,072$ $12360: 160,014,185,214,055,153$ ， 085 12366： $022,032,136,016,247,173,192$ $12372: 251,055,024,105,005,141,153$ $12378: 251,655,141,244,055,238, \emptyset 58$ $12384: 241,655,632,172,053,169,050$ 12390： $129,141,250,055,173,256,067$ 12396： $055,268,251, \varnothing 76, \varnothing 14, \emptyset 48,248$ 12402：173，øø6， $055,208,607,173,224$ 124ø日： $12,20 日, \varnothing 41,0 \varnothing 2,208,017,996$ $12414: 206,247,655,208,145,173,136$ $12420: 248,055,141,247,655,032,142$ $12426: 142, \varnothing 56,076,926,048,162,130$ 12432 ： $006,136,208,253,202,298,133$ $12438: 25 \varnothing, 238, \varnothing 32, \emptyset 66,173,932,113$
 $12456: 266,238,055,268,206,238,027$ 12456 ： $249,655,632,172,653,166,121$ 12462 ： $068,185,189,055,153,626,922$ $12468: 832,136,816,247,169,100,112$ $12474: 141,250,055,173,250,055,986$ $12480: 268,251,168,815,185,198,185$ $12486: 955,153, \varnothing 22,932,136,916,160$ $12492: 247,173,132, \varnothing 62,2 \boxed{ }, 251,193$ $12498: 932, \emptyset \varnothing \varnothing, \emptyset 53,976,006, \varnothing 48,169$ $125 \varnothing 4: 216,266,256,055,173,249$ ， 085 $12510: 055,206,110,169,0 \varnothing 0,133,129$ $12516: 977,165,217,246,6 \boxed{ } 19,976,238$ $12522: 973,649,932,685,852,174,187$ $12528: 250,654,189, \emptyset 35,955,240, \emptyset 39$ $12534: 968, \varnothing 16,928,189,980, \varnothing \varnothing 6,113$ $12540: 956,233,940,157,686, \varnothing 66, \varnothing 56$ $12546: 189,681,906,233,906,157,156$

12558： $036,032,082,049,076,051,084$ 12564 ： $949,189,986, \varnothing 66,024,1 \varnothing 5,217$ 1257ø： $44 \varnothing, 157, \varnothing 8 \emptyset, \varnothing \varnothing 6,189,081, \emptyset 67$ 12576 ：Øø6，1 ø5，øøø，157，Ø日 1，Øø6， 131 $12582: 254,645,655,189,045,055,169$ $12588: 2 \varnothing 1, \varnothing 7 \varnothing, 268, \emptyset 63, \emptyset 32, \varnothing 82,128$ 12594 ： $649,632,685,652,206,256,212$ $12600: 654,206,250,054,616,068,132$ 126ø6：169，Øø日，141，250， $054, ~ \boxed{32,204 ~}$ $12612: 047,650,032,181,049,032,203$ $12618: 991,949,032,237,056,976,103$ 12624 ： $098,228,189,635,955,973,246$ $12636: 128,157,935,655,696,162,207$ $12636: 002,138,024,195,116,133,698$ 12642 ： $206,169,606,133,205,189,232$ $12648: \varnothing 48, \varnothing \varnothing 6,168,169, \emptyset 67,141,131$ $12654: 248,054,169, \emptyset \emptyset \emptyset, 145,205,163$ 12660：200，206，248， $054,016,248,064$ 12666：189，ø32，Øø6，201，180，176，13日 12672： $042,201,630,144,038,168,239$ $12678: 138,141,249,054,189,664,201$ 12684 ：$\varnothing 6, \emptyset 1 \emptyset, \varnothing 1 \emptyset, \varnothing 1 \emptyset, 17 \emptyset, 169, \emptyset \emptyset 3$ $12690: \varnothing 07,141,248, \boxed{54,189, \varnothing 69 \text { ，} \varnothing 86}$ 12696： $055,145,265,232,206,206,171$ $12702: 248,954,816,244,174,249,119$ 1279日： $654,189,616,906,157,606,674$ $12714: 208,189,632,066,157,048,042$ 12720 ： $066,202,016,169, \varnothing 96,173$ ， $07 \emptyset$ 12726：øø日，Ø55，208，Ø81，173，Øø6， 193 $12732: 655,268,676,173,12 \emptyset, \emptyset 62,654$ $12738: 674,674,674,176,624,173, \emptyset 21$ 12744 ：$\varnothing 16, \varnothing \varnothing 6,201, \varnothing 55,240, \varnothing 42,248$ $12750: 206,916,066,173, \varnothing 64,096,165$ 12756 ：201， $088,208,932,169, \varnothing 06, \varnothing 68$ $12762: 141,964,066,208,625,674,224$ 12768：176， $071,173, \varnothing 16, \varnothing 06,201, \varnothing 99$ $12774: 196,240,815,238,016, \varnothing \varnothing 6,167$ $12780: 173,664,906,201,908,208,128$ 12786： $005,169,004,141,064,806,119$ 12792：266， $603,855,208, \varnothing 13,169,134$ 12798： $603,141,6 \varnothing 3,955,173,664,181$ $128 \varnothing 4: \varnothing \varnothing 6, \varnothing 73, \varnothing \varnothing 1,141, \varnothing 64, \varnothing \varnothing 6, \varnothing 39$ $12810: \varnothing 96,173,006, \varnothing 55,240, \varnothing 11,079$ $12816: 173,034,006,924,105,001,103$ 12822：141，Ø32，Ø06，26日， 014,174 ， 085 12828： $001, \emptyset 55,189,045,655, \varnothing 10,127$ $12834: 624,105,639,141,032,006,125$ $12840: 996,169,008,141,664,0 \boxed{6}, 612$ 12846： $096,160,908,185,935,055,673$ 12852：208， $13,173, \emptyset 10,210,291, \emptyset 99$ 12858： $19,176, \varnothing 19,185, \varnothing \varnothing \varnothing, \varnothing \varnothing 6,198$ $12864: 153,635,655,185,645,655,680$ 12870：162， $064,221,619,655,240,903$ 12876： $068,202,616,248,136,136,054$ $12882: 016,221,096,173,010,210,040$ 12888： $201,1 \varnothing 0,176,244,185, \emptyset 35, \emptyset \emptyset 5$ 12894： $055,153,000, \varnothing 06,169, \varnothing 00,221$ $12900: 153,035,055,204,001,055,091$ 12906：298，228，169，øøø，141，øøø，ø日4 $12912: 655,249,221,173,253,654,684$ 12918：208，109，173， $177,606,024,143$ 12924：1ø9，251，054，141，ø17，Øø6，190 12930：201，190，240，004，201，055，253 $12936: 206,912,173,251,654,073,139$ $12942: 255,024,105,601,141,251,151$ $12948: 054,996,141,082,055,162,146$ $12954: 255,173, \emptyset 32,006,205, \emptyset 33, \varnothing 96$ 1296ø：øø6，249，Ø65，144，Ø14，162，Ø23 12966：øø1，169，ø5日，141，214，ø5ø，ø31 12972：169，186，141，220， $050,208,122$ 12978： $110,169,058,141,220,050, \emptyset 58$ 12984：169，186，141，214，050，142，062 1299ø：252，ø54，173，øø2，ø55，174，132 12996： $033, \emptyset 06,236,025,055,246,023$ $130 \varnothing 2: \varnothing 10,236, \varnothing 27, \varnothing 55,240, \boxed{0}, \boxed{1}, \boxed{ }$ 13008：236， $229,055,268,006,201,175$ $13614: 658,268,611,240, \varnothing 64,261,168$ $13020: 186,208, \varnothing 05,169,001,141,162$ $13026: 253,654,696,173, \emptyset 33$ ， 666,673 $13032: 024,109,252,054,141,033,977$ $13 \varnothing 38: \emptyset 06,162, \emptyset \varnothing 4,221, \emptyset 25,655,199$ $13044: 240,004,202,016,248,096,026$ $13050: 162,001,173,016,216,016,054$ $13056: 902,162,255,142,251,954,998$ 13062：169， $606,141,253,654,976,187$ 13068：126，ø59，160，ø02，185， $659, ~ 676 ~$ $13674: 955,153, \varnothing 16, \varnothing 66,185,662,239$ $13 \varnothing 80: 655,153, \varnothing 32, \varnothing 06,153,848,215$ $13086: 086,185,665,655,153,064,646$ 13092： $086,136,016,232,169,008,883$ 13098：141，253， $654,141,866,655,174$ $13104: 141,066,655,169,001,141,849$ $13110: 251,654,169,610,141,255,166$ $13116: 654,141,254,654,169,606,226$ 3122：133，217，169， $694,133,215,169$ $13128: 169,610,141,063,655,169,167$ $13134: 665,141,247,655,141,248,147$ $13140: 655,169,606,141,608,210,155$ $13146: 141,005,655,169,603,141,992$ $13152: \varnothing 15,210,169,163,141, \varnothing \varnothing 1,027$ $13158: 216,169,616,141,004,655,179$ 13164：169， $900,141,936,208,169,948$ $13179: 619,169,960,153, \varnothing 20,632,251$

13182：055，2ø日，ø25，16ø，ø64，173，239 $1318 日: 916, \varnothing \varnothing 6,956,249, \varnothing 3 \varnothing, 955, \emptyset 32$ $13194: 261,903,144,913,261,254,186$ 132øø：176， $969,136,616,238,169,129$
 $13212: 247,654,169,904,956,237,155$ 13218：247， $654,61 \varnothing, 176,189,645,169$ 13224： $155, \varnothing 16, \varnothing 24,105, \emptyset 38,656,200$ $13230: 237,632,006,201,004,144,036$ 13236：994，261，255，29日，220，189， 233 13242 ： $035,655,240,215,169,961,133$ 1324日：141， $6 \varnothing \varnothing, 655,142,0 \varnothing 1,655$ ， 674 13254 ： $996,169,962,141,947,962,203$ $13266: 169,601,141,111,902,166, \boxed{60}$ 13266： $6 \boxed{3}, 185,655,855,153,192$ ， 985 13272： $6 \boxed{2}, 169,6 \boxed{ }, 153,968,268,244$ 1327日：136， $16,242,169,112,141,614$ 13284： $967,212,133,266,169,693,190$ 1329 ： $141,929,298,169$ ，øøø， 133,146 13296：205，162，øø日， $169, \emptyset \varnothing \varnothing, 168,184$ 13392：145，205， $136,208,251,230,141$ 13368：206，292， $616,246,696,160,154$ 13314 ： $664,177,267 ; 624,165,640,647$ $13326: 145,267,269,177,267,195,625$ $13326: 986,145,297,696,632,199,181$ $13332: 651,169,968,165,989,133,113$ $13338: 205,165,989,133,206,165,221$ 13344 ：2ø5， $24,195, \varnothing \varnothing 6,153, \varnothing 8 \varnothing, \varnothing 93$ $13350: 606,133,265,165,2 \varnothing 6,165,690$ $13356:$ ： $06,153, \varnothing 81, \varnothing \varnothing 6,133,206,111$ $13362: 136,136,916,233,169,998,236$ $13368: 141,259,654,632$ ，$\varnothing 85,652,158$ 13374：266，25ø，654，266，256，654， $058 ~$ 133日6： $616,245,169,668,141,256,129$ 13386： $954,166,216,162,648,169,115$ 13392： $087,632,992,228,096,172,195$ 13398：259， 654,185 ， $689,696,133,626$ $13494: 203,185,981,906,133,294,136$ $1341 \emptyset: 185, \emptyset \emptyset 9, \boxed{5}, \varnothing 1 \emptyset, \varnothing 1 \varnothing, \emptyset 1 \emptyset, 121$ $13416: 610,176,169,067,141,245,678$
$13422: 954,166,060,189,112,853,166$ 1342日： $981,2 ø 3,145,293,290,232,156$ 13434 ：189， $112,653, \varnothing 81,263,145,137$ $13446: 263,632,998,653,232,266,184$ $13446: 245,054,916,229,996,032,93 日$ $13452: 975,954,932,199,956,932,242$ $13458: 133,656,169,096,141,647,190$
 $13479: 169,635,141,049,602,169,211$ 3476： $134,141,947,062,169, \varnothing 99,945$ 3488：169， $1619,169,969,163,689,978$ $13488: 160,619,169,096,162,602,167$
13494 ： $632, \varnothing 27,953,232,224,637,919$ $13509: 208,248,152,024,165, \emptyset 16,173$ $13506: 168,261,122,268,235,162,610$ $13512: 603,160,614,169,962,141,177$ $13518: 246,854,169, \varnothing 82,032,027,224$ 13524 ： $953,206,20 \varnothing, 2 \varnothing \varnothing, 2 \varnothing 0,2 \varnothing 6,247$ $13530: 246,054,916,244,152,024,186$ $13536: 165,620,168,261,118,144,212$ $13542: 228,169,902,138,024,165,119$
$13548: 632,179,201,667,249,094,182$ 13554 ： $169, \varnothing \varnothing 1,208,215,173, \varnothing 48, \varnothing 32$ 13560：602，133，207，173， $049,002,046$ 13566：133，208，169， $090,168,153,061$ 13572 ： $0 \varnothing 0,932,136,208,250,160,022$ $13578: \varnothing 19,185,149,655,153,606,659$ 13584： $032,185,169,655,153,040,138$ $13590: 932,136,016,241,096,072,193$ $13596: 910,016,141,245,054,138,114$ $136 \varnothing 日: 203,165, \varnothing 89,133,204,192, \varnothing 02$ 13614 ：$\varnothing \varnothing \varnothing, 24 \varnothing, \varnothing \varnothing 6, \emptyset 32, \varnothing 98, \varnothing 53,219$ $13614: 006,246, \varnothing 06,032, \varnothing 98,953,219$
$13626: 136,208,259,138, \varnothing 24,191,141$ 13626 ： $203,133,203,165,284,195,847$ 13632： $600,133,204,173,245,954,105$ 13638：179，169， $063,141,245,654,684$ 13644 ： $166,6 \boxed{ }, 189,169,653,145,615$ 13650：263， $032,998,953,232,206,138$ $13656: 245,054,616,242,104,168,149$ $13662: 104,179,104,996,165,293,168$
 13674：204，165，$\varnothing 00,133,204,696, \emptyset 80$ 13680：176，176，128，øø2，128， $092,2 \varnothing 0$ $13686: 128,862,128,602,128,062,252$ 13692：128，ø62， $176,176,255,255$ ，ஏ86 $13698: 192,003,192,003,192,003,203$ $13794: 192,693,192,963,192,693,299$ $13719: 255,255, \varnothing 85,685,664,691,119$ $13716: 064, \varnothing \varnothing 1, \varnothing 64, \varnothing \varnothing 1, \varnothing 64, \varnothing 61, \varnothing 87$ 13722： $064, \varnothing 01, \varnothing 64, \varnothing 01,085, \varnothing 85,198$ 13728：255，195，195，255， $112,648,696$ $13734: 812,648,195,255,195,255,102$ 13749：173，239， $655,174,246,655,684$ 13746 ：166， $697,632,216,853,173,845$ 13752：238， $655,162,666,166,615,646$ 13758： $632,216,653,173,241,655,186$ $13764: 162,966,169,945,932,219,937$ $13770: 653,173,242,655,162,606,119$ $13776: 166,655,141,667,655,142,600$ 137日2： $698,655,140,237,655,169,110$ $13788: ø 6 \varnothing, 141,243,655,162,603,656$
$13794: 166,255,269,173,607,655,652$ 1उ8øø：656，253，229，655，141，øø7，265

13日ø6：655，173，øø8，ø55，253，233，247 13812： $655,141,608,655,176,234,145$ $13818: 173,967,655,924,125,229,995$ $13824: 955,141,6 \varnothing 7,955,173,698,183$ $13839: 655,125,233,955,141,968,111$ $13836: 655,152,268,969,224,962,159$ $13842: 144,695,172,243,655,248,109$ 13848：ø11，øø9，ø16，238，243， $055, ø 84 ~$ 13854：172，237，055，153，ø00，032，167 $13860: 238,237,055,202,016,184,299$ 3日66，996，169，900，141，239，955，230 3872，141，240， $055,169,239,055,230$ $13872: 141,240,055,169,981,141,627$ $13878: 241,655,169,810,141,242,144$
$13884: 655,169,605,141,238,655,211$ $1389 \varnothing: 169,914,141,251,955,141,669$ 13896：244， $655,696,932,133,056,176$ 13902：169， $000,169,112,153,000,160$ 1399日： $035,209,192, \emptyset 03,208,248,202$ $13914: 169,677,153,906,935,165,177$ $13920: 210,2 \varnothing \varnothing, 153, \varnothing \varnothing \varnothing, \emptyset 35,2 \varnothing \varnothing, 126$ 13926：165，211，153，øøø， $135,165,963$ 13932： $210,024,195,040,133,210,062$ 13938：165，211，195， $690,133,211,171$ 3944：26ø，192，243，268，221，169， 873 $13950: 979,153, \varnothing \varnothing \varnothing, \varnothing 35,2 \varnothing \varnothing, 169,241$ 13956：日6 ，153，ø日0，835，20日，169，177 13962：$\boxed{32}, 153, \varnothing \varnothing \varnothing, \varnothing 35,2 \varnothing 9,169,215$ 13968： $066,153, \varnothing \varnothing \varnothing, 635,209,192,218$ $13974: 248,298,248,169,965,153,217$ 13980：$\varnothing \varnothing \varnothing, ~ \varnothing 35,200,169, \varnothing \varnothing \varnothing, 153,201$ 13986：$\boxed{0} 9,635,200,169,935,153,242$ 13992：$\boxed{0 \varnothing, ~} 935, ~ 696,165,210,133,639$ 13998：212，165，211，133，213，168，244 140ஏ4：ஏø4，165，212，153，øø日，ø35，237 14610：2øø，165，213，153，øøø， 635,184 14616： $165,212,624,165,949,133,163$ 4ब22：212， $165,213,195,9 \varnothing 9,133, \varnothing \varnothing 2$ $14628: 213,2 \varnothing \varnothing, 2 \varnothing \varnothing, 192,241,2 \varnothing 日, 178$ $14934: 226,696,173,606,655,208,206$ $14 \varnothing 49: \varnothing 27,173, \varnothing 32, \varnothing \varnothing 6, \varnothing 56,233,231$ 4ø46： $940,974, \varnothing 74,674, \varnothing 74,874,126$ 14ø52：141，245， $055,169,065,056,131$ $14058: 237,245,055,024,109,244,124$ 4064： $655,141,242,955,896,960,061$

 4196： $672,164,136,168,672,696,162$ $4112: 12 \emptyset, 144,168, \varnothing \varnothing 1, \varnothing \varnothing 1, \varnothing \varnothing 1,211$

 $14136: 655,626,255,169,160,106,180$ $14142: 144,10 \varnothing, \varnothing 日 \sigma, \varnothing 日 8, \varnothing 日 2,906, \varnothing 6 \sigma$
 14154 ：ஏøø，øøの，ஏøの，ஏøø，195，ஏ36，ஏ49
 14166： $652,255,245,255,96 \emptyset, \varnothing 60,245$ 14172 ： $624,96 \emptyset, 644,255,175,255,137$ 1417日： $668, \varnothing 69,624,816,956,816,974$ 14184： $048,656,816,024,048,916,656$ $14196: 656,616,652,656,168,968,614$ 14196： $964,016,056,016,024,056,032$ $14202: 916,048,824,916,856,916,842$ 142ø8： $888,956, \varnothing 42, \varnothing 68, \varnothing 64, \varnothing 16,206$ 4214： $656, \emptyset 16,124,124, \emptyset 40,040,922$ $14220: 046,243,243,217,243,204$ ， 056 14226：243，193，217，051， $035,647,164$ 14232：ø56，ø37，øøø，ø16，ø16，Ø16，ø31 4238： $16, \emptyset 16, \varnothing \varnothing \varnothing, \varnothing \varnothing \emptyset, \emptyset 45, \emptyset 37, \varnothing 16$

 14262： $047, \emptyset 47, \varnothing 5 \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing 7 \emptyset$ 14268： $006,167,161,173,165,128,214$ 14274：175，182，165，178，112，114， 096 $14289: 101,115,115,064,102,105,034$ 14286： $114,101, \varnothing 98,117,116,116,106$ 4292：111，116，161，128，172，169， 039 14298 ： $186,186,172,165,128,168,187$ $14304: 169,167,168,165,178,901,648$ 431ø： $11 \varnothing, 1 \varnothing \varnothing, 232, \emptyset \varnothing \varnothing, \emptyset \varnothing \varnothing, \emptyset \varnothing \emptyset, \varnothing 6 \emptyset$

 1432日：øøø，øøø，øøø，øøø，173，ø32，197 14334： $066,201,172,144,104,173,030$ 14340 ： $606,655,26 日, 699,144,697,101$ 14346 ： $162,932,169, \varnothing 61,133,217,212$ 4352 ： $166,002,185,632,096,248,129$ 4358： $610,261,180,176,066,656,139$ $14364: 233,802,153,032,096,136,678$ $14370: 616,238,165,216,624,195,024$ $14376: 646,133,210,165,211,165,136$ 14382 ： $600,133,211,932,171,954,135$ $14388: 169,620,133,213,160,900,235$ 14394 ： $136,298,253,198,213,268,258$ $14400: 249,202,208,204,032,133,068$ $14406: 956,032,149,951,932,171,049$ 14412： 654,169 ，øøø，133，217，206， 087 $14418: 244,655,266,244,955,206,668$ 14424 ： $244,655,173,239,655,624,110$
$14430: 105,160,141,239,055,173,139$ $14436: 240,655,105,906,141,240,113$ 4442 ： $655,996,996,169,800,133,143$ $14448: 205,169,864,133,206,162,927$ 4454 ： $631,169,969,152,145,265,943$ 4466：136，298，251，230，206，202， 677 4466：616，246，696，169， $090,133,822$ 4472：216，169， $664,133,211,996,251$ 4478：173， $034,006,208,007,173,231$ 14484 ：Ø1 $1,21 \varnothing, 261,603,176,022, \varnothing 02$ 4490：173，ø06，055，249，014，206， 080 4496： $034, \varnothing \varnothing 6,173, \varnothing 34,066,141,642$ 45ø2：Øøø， $21 \varnothing, 2 \emptyset 8, \varnothing \varnothing 6, \varnothing 76, \varnothing 3 \varnothing, 184$ 459日： $657,238,634,906,165,216,120$ 4514： $973,128,133,216, \varnothing 16,652,928$ 4526：198，215，20日， $012,169,063,221$ 14526：133，215，173，ø66，øø6，ø73，ø日日 14532： $001,141, \varnothing 66, \varnothing 06,173,018$ ，ø89 14538：øø6，2ø5，ø16，øø6，2ø日，Ø17，14日 4544：173， $14,208, \emptyset 41,601,240,117$ 4550 ： $021,169, \varnothing 01,141,006,055,095$ 4556：141， $000,655,208,011,176,043$ 4562：$\varnothing \varnothing 6,238, \varnothing 18, \varnothing \varnothing 6, \varnothing 76,236, \emptyset 38$ 4568： $056,206,018,006,096,206,052$ 14574： $064,055,240,814,173,004,216$ 14580： $055,201,603,208,036,169,148$
 4592：169， $12,141,804,955,174$ ， 943 4598： $005,655,189,141,655,141, \varnothing 80$ 4694 ：øøø， $210,238, \emptyset 05,055,173,181$ 4610： $095, \emptyset 55,2 \emptyset 1,9 \varnothing 日, 2 ø 日, \varnothing \varnothing 5,244$ $14616: 169,900,141,905,055,996,234$ 14622 ： $164,194,676,162,848,173,185$ 14628： $060,655,268,029,173,006,251$ 4634 ： $055,208,624,162,005,202,186$ $4649: 189,924,955,924,105,910,199$ 4646 ： $295,632, \varnothing 86,176,244,232,181$ 14652 ：189， $024,655,924,105,603,264$ 14658：141，Ø32，Øø6，Ø96，Øøø，ஜøø，ஏ85

The Apple version of＂High Rise＂is an exceptional arcade－style game．

Program 3：Apple High Rise

Version by Tim Victor，Editorial Programmer

START ADDRESS：ø日ø1

END ADDRESS：1BDB

ø8D9：Fø 1B AD FJ 1B AC F4 1B AE ØロE1：8C FJ 1B $6 A$ 9Ø ØD EE FS C9 g8E9：1B A9 7C 8D ES 1B A9 39 82 Ø8F1：8D EE 1B A9 FF 日D E9 1B A7 ø8F9：A9 øø 8D F7 1B 29 A4 14 C6 Ø9ø1： 20 3C øD 2045 øC $2 \varnothing 81$ F1 ø9ø9：øD $2 \varnothing 61$ 1A 20 5A $172 \varnothing 30$ 6911：33 6926 Cø 0920 A4 1435 ø919： $206 \mathrm{D} \quad 15 \quad 20$ B1 19 20 A7 15 ø921：øB 20 ø9 ØB 2ø BD ØA 20 BE 9929：7B ØA AD F7 1B Fø CE 4C 37 ø931： 94 ø8 AD E5 1B AB ØØ C9 CB ø939：A2 Bø ø6 69 26 C8 4 C 38 45 ø941： 69 98 18 6D FS 1B CD E8 68 9949：1B Fø 73 8D ES 1B A2 0267 ø951：BE B4 ØE C9 ØA 9ø Ø8 EE C7 ø959：B4 øE E9 ØA 4C $54 \emptyset 96956$ ø961：ø2 8D B5 øE A9 øø 8D B1 89 ๆ969：ge 98 Dg 52 A2 g2 FE 8487 ø971：ØE BD 84 ØE C9 ØС DØ ø8 93 ø979：A9 Ø2 9D 84 øE CA 1ø EE 87 6981：A9 øø 日D 81 øE $2 \varnothing 35$ 1B A日 ø989：AD F3 1B Dø 2B 20 ø5 gE D1 ø991：AD F4 1B 18 $69 \quad 648 \mathrm{~F}$ F $\varnothing 8$ ø999：1B EE CC øE AD CC ØE C9 FS ø9A1：ØC DØ øB A9 ø2 8D CC ØE 77 פ9A9：EE CB ØE A9 Øロ SD C8 ØE 58 99B1：A9 Ø1 8D F7 1B 4C Ø1 ØA $2 \varnothing$ 99B9：CE F3 1B 20 EA 1560 AD AF 99C1：ES 1B 38 ED EE 1B C9 98 F2 ø9C9： 1035 C9 EE 3031 AD E6 E1 ø9D1：1B 38 ED EF 1B C9 $\varnothing 21050$ ø9D9： 26 C9 FF 30222047 1B AF 69E1： 20 CA $0 D$ A9 $\emptyset_{1} 8 D$ F7 1B 3C Ø9E9：CE 9E ØE A9 øD 8D 9B ØE E2 Ø9F1：A9 62 CD 9 E ØE D6 65 A9 64 ø9F9：Ø1 8D F6 1B $2 \varnothing$ Ø1 øA 69 F9 ØAØ1：A9 1B 日D ØF ØA $2 \varnothing 6 \varnothing$ gA 2E ØAø9：CE ØF ØA DØ FB $6 \varnothing$ Øの A9 B9 ØA11：ØA AØ 4920 FC 1 A A9 $8 \varnothing$ A1 ØA19：8D 4D ØA $2 \varnothing 6 \varnothing$ ØA 2C $101 E$ $\emptyset A 21: C \varnothing A D \square \varnothing C \varnothing 1 \varnothing \mathrm{FB} 2 \mathrm{C} 1 \varnothing \mathrm{ES}$ ØA29：Cø C9 CE FØ 12 C9 EE Fø 7F ØA31：ØE A9 4ø 日D 4D ØA $2 \varnothing 6 \varnothing C A$ øA39：ØA $2 \emptyset 6 \emptyset \emptyset A ~ 4 C ~ Ø F ~ Ø 8 ~ 2 C ~ E 1 ~$ ØA41： 54 Cø 2C 51 Cø 4C Dø 0326 øA49： $2 \varnothing 2 E 2 \varnothing 532 E 34 \varnothing 71 B 9 D$ gA51：1D 1ø 1E 1E $\emptyset_{1} 190_{1} 1 \mathrm{~F}$ 2B ØA59： $1 \mathrm{~A} \emptyset_{1} 1 \mathrm{C} 20141 F$ Øの 207 D ØA61：A4 $14206 \mathrm{D} 15 \quad 20$ B1 19 4D ØA69： $2 \varnothing$ A7 ØB $2 \varnothing$ A4 14 2の $3 C$ CC ØA71：$\varnothing D 2 \varnothing 81$ øD $2 \varnothing 611 A 4 C$ 1C ØA79：5A 17 AD E2 1B Fø 3610 7D ØAB1：1B AD E6 1B Dø 67 AD E7 93 øAB9：1B C9 $029 \varnothing 29$ AD E7 1B D1万A91： 38 E9 92 Bg 1D $69 \quad 67$ CE F2 ØA99：E6 1B 1016 AD E6 1B C9 54 ØAA1：1C Bø 13 AD E7 1B 186972 øAA9：$\varnothing 2$ C9 ø7 9ø ø5 EE E6 1B E7 øAB1：E9 Ø7 8D E7 1B $6 \emptyset$ A9 ØØ 5A ØAB9：8D E2 1B 6ø 2C E9 1B 3026 ØAC1：øD AD ES 1B 1869 1C 38 øD ФAC9：E9 $269 \varnothing 2 F D \varnothing F A$ AD øø $2 F$ ØAD1：Cø $1 \varnothing 28$ 8D $1 \varnothing$ Cø C9 8D CC ØAD9：Fø 22 C9 Aø Fø 13 C9 8822 ØAE1：Fø $\emptyset 7$ C9 $95 \mathrm{D} \emptyset 15$ A9 $\emptyset_{1} \mathrm{~F} 1$ ØAE9：2C A9 FF AØ FF 8C E9 1B A9 ØAF1：2C A9 øø 8D E2 1B A9 $\emptyset_{1} 37$
 øBø1：Øø Cø 10 FB 2C $1 \varnothing$ Cø $6 \varnothing 8 C$ øBø9：AD EA 1BFø 034 C 94 ØB $8 \emptyset$ ØB11：AD E5 1B $1869 \quad 69$ CD EE 56 øB19：1B Dø ØA AD E6 1B CD EF $3 C$
 øB29：$\varnothing 22 C$ A9 FE BD EB 1B AD 7ø øB31：F1 1B 4A A9 øB 2C EB 1B E6 øB39： $10 \emptyset 49 \varnothing \emptyset 6 \mathrm{~B} \varnothing \varnothing 2 \mathrm{~B} \varnothing \square 2 \mathrm{BB}$ gB41：A9 F5 1869 ØE CD EF 1B ES øB49：Dø øF A9 øड CD Fø 1B Dの 2A øB51：øA AD EB 1B 8D EA 1B Dg 25 øB59： $2 A 90$ ø3 A9 ø2 2C A9 FE B6 gB61：$\beta \mathrm{D}$ EB 1B 18 6D Fø 1B C9 4D øB69：$\varnothing 79 \varnothing 14$ 2C EB 1B $10 \quad 9961$ ØB71： $1869 \quad 67$ CE EF 1B 4C 80 C0 g日79：øB 38 E9 97 EE EF 1B 8D CB gBE1：Fg 1B 60 18 6D EE 1B 8D 4F øB89：EE 1B $186913 \quad 38$ E9 26 EA
 gB99：1B 2C EB 1B 1004 CE F1 97
 ØBA9：8C FC 1B B9 C5 ØD $30991 \varnothing$ øBB1：AA CA 8A 99 CS øD 4C 39 EE øBB9：øC 18 B9 B1 øD 79 C \emptyset ØD øB øBC1： 99 B1 øD C9 Ø6 FØ 04 C9 15 øBC9：9E Dø $\varnothing 9$ 38 A9 ØØ F9 Cø ØA øBD1：øD 99 Cø ØD CC E9 1B Dø D2 øBD9：øB B9 B1 øD 1869 ø4 8D E6 ØBE1：E5 1B Dø 33 B9 B1 ØD 18 C5 øBE9： 69 ø6 CD E5 1B $9 \varnothing 28$ E9 A3 øBF1：ø5 CD ES 1B Bø 21 B9 B6 Aø øBF9：øD CD E6 1B Dø 19 B9 BB B2 øCø1：øD CD E7 1B Dø 11 A9 øø DF øCø9：8D E2 1B 8C E9 1B B9 B1 AD øC11：øD $1869 \quad 04$ 日D ES 1B B9 17 øC19：B1 øD C9 9E FØ 12 38 E9 9A ØC21：Ø6 Fø øD E9 26 9Ø 11 Dø 1F øC29：FA 20 C6 18 29 Eø Dø 9897 øC31： 20 C6 18 4A 4A 99 C5 øD 94 øC39：C8 8C FC 1B Cø 65 Fø 0329 ØC41：4C AC ØB 6Ø CE ES 1B D \varnothing 1F øC49：1C AD E2 1B Fø ø3 A9 02 D1 øC51：2C A9 3ø 8D E3 1B EE E4 17 øC59：1B AD E4 1B C9 ø4 Dø ø5 BD gC61：A9 Øの 8D E4 1B AD E4 1B C2 øC69：ØA ØA ØA AE E2 1B Fø 1C B6 øC71：3ø ØD 69 FC 85 FA A9 Øø 4D øC79： 69 øC 85 FB 4 C 97 øC 69 FB øC81：1C 85 FA A9 $9 \varnothing 69$ gD 8548 øC89：FB 4C 97 øC 69 DC 85 FA 2B øC91：A9 $9 \varnothing 69$ øC $85 \mathrm{FB} A \varnothing \varnothing \varnothing C 9$ gC99：8C FC 1B AD FC 1B gA gA E7 øCA1：AB B1 FA 85 EE C8 B1 FA 2B øCA9： 85 EF CB 18 AD ES 1B 71 C 7 øCB1：FA BD D7 1B CB 18 AD E6 4ø øCB9：1B 8D D6 1B AD E7 1B 71 g4 øCC1：FA C9 079095 EE D6 1B $6 \varnothing$ øCC9：E9 Ø7 日D D5 1B $2 \varnothing$ Cø 1496 ØCD1：EE FC 1B AD FC 1B C9 02 CB
 øCE1： 12 ø9 ø1 Bø $12 g_{1} \emptyset_{1} 9299$ øCE9： 12 ø9 ø1 $7412 \emptyset_{1} ø_{1} 92$ DD øCF1： 12 ø9 Ø1 Bø 12 Ø1 0192 A9 øCF9： 12 ø9 ø1 $7412 \emptyset 2 \emptyset_{1}$ CE 2E ØDø1： 12 øA Øø 7412 Ø1 Ø1 EC 71 øDø9： 12 ø9 ø4 7412 ø2 ø1 ØA DA ØD11： 13 ØA øø 7412 Ø1 Ø1 EC Ø2 øD19： 12 ø9 ø4 Bø 12 ø2 ø1 28 CC
 øD29： 13 ø9 ø5 Bø 12 ø2 $0164 \quad$ B9 øD31： 13 ØA Ø4 Bø $12 \emptyset_{1} \emptyset_{1} 46 \mathrm{BF}$ øD39： 13 ø9 ø5 CE EC 1B Dø øD 2F gD41：A9 14 日D EC 1B A9 Ø1 4 D 84 gD49：ED 1B BD ED 1B AD ED 1B 38 ØD51：Fø ø2 A9 1E 18 $6982856 C$ gD59：EE A9 1385 EF 90 Ø2 E6 BC gD61：EF AD EF 1B 8D D6 1B AD 3A gD69：Fø 1B BD D5 1B AD EE 1B SA gD71： 38 ED ED 1B ED ED 1B 6959 øD79：Ø1 8D D7 1B 2ø Cø 14 6ø Bø øD81：A9 ø0 8D FC 1B A9 BE 8574 gDa9：EE A9 1385 EF AC FC 1B 87 øD91：Cø ø5 Fø 1B B9 B1 øD 8D 59 øD99：D7 1B B9 B6 øD 8D D6 1B 7ø øDA1：B9 BB $\emptyset D$ BD DS 1B $2 \varnothing$ C $\varnothing 1 E$ øDA9： 14 EE FC 1B 4C 8E $\emptyset D 6 \emptyset$ F1 øDB1： $1 \varnothing 3 \varnothing 5 \varnothing 7 \varnothing 9 \varnothing \varnothing \varnothing \varnothing 7$ ØE 91
 ØDC1：$\emptyset 2$ FE 02 FE FF FF FF FF CC øDC9：FF $2 \varnothing$ A4 1420 6D 1520 C2 gDD1：B1 19 A9 FF 日D E9 1B AD 38 øDD9：E5 1B 1869 g8 日D ES 1B A4 øDE1： $2 \varnothing$ A7 øB $2 \varnothing$ A4 1420 3C 4B ØDE9：øD AD E5 1B C9 AB Bø ØЗ B9 gDF1： $2 \varnothing 45$ øC $2 \varnothing$ 日1 øD $2 \varnothing 61$ D2 gDF9： 1 A 20 5A 17 AD E5 1B C9 EA øEø1：AB 9ø C6 6ø A9 FF BD E2 BF øEø9：1B A9 Ø1 8D E3 1B Aø 59 3C øE11：A9 ØE 20 FC 1 A A9 Bの 8 D 5 S øE19：5D øE $2 \varnothing$ A4 1420 6D 15 C6 ØE21：2ø B1 19 2g A7 øB A9 FF 9B ØE29：8D E9 1B 2ø 7B ØA 2ø A4 D4 gE31： 1420 3C gD AD E2 1B Fg D7 øE39：ø3 2045 øC 2081 øD 2089 gE41： 61 1A $2 \varnothing$ SA 17 AD E2 1B 8 E

ØE49：Dø Dø A9 ØA 8D F3 1B AD F7 ØE51：5D ØE Ø9 40 8D 5D ØE 6023 gE59：4F 7F $5545 \quad 20 \quad 34 \quad 97$ 1D F\＆ ØE61：1A 2019 ØF 01 ØE 1A 1833 øE69：1B 17 10 1F 10 ØF øø 7D 97 ØE71：ØE F8 1B Øø ØE 20 1E ØE 71 øE79： 1 A 1D 10 Øø 8 A ØE 7ø ØE 67
 øE89：øø 97 øE 7D øE øø 3C 20 2E ØE91： $171421101 E$ ØD A 17 ØE A3 פЕ99：8A øE øø 4822 ø2 øø AD C9 ØEA1：ØE 97 ØE Øø $6 A 20111779$ øEA9： 1 A 1A 1D Øø B7 ØE Aø ØE 42
 øEB9：AD øE øø 982017102158 ØEC1： $1 \varnothing 17$ Øø Øø Øロ B7 DE ØD AG øEC9：A4 22 ø2 ø3 øø Aø $818 \emptyset 37$ ØED1：Bø． 83 8ø Bø $8 D 8 \emptyset E \emptyset 83$ FS øED9：8ø Bø 81 8ø Fø 83 日ø Eø 12 ØEE1：8ø 8ø Cø $818 \emptyset$ АØ $818 \emptyset 98$ ØEE9：Bø 83 Bø AC $838 \emptyset$ Fø 81 9B ØEF1：8ø Aø 83 日Ø Fø 83 8ø Cø 46 øEF9： 8180 EØ 8ø 8Ø 9С BE 8ø 2F øFø1：BE 9F $8 \emptyset$ F6 9B $8 \varnothing$ F6 9B 4E øFø9：8ø E6 99 8ø 8С 8С Вø Eø D4 ØF11： $818 \emptyset$ Fø 83 8ø Bø $838 \varnothing$ B4 ØF19：Bø $8389 \mathrm{Bg} 8389 \mathrm{~B} \mathrm{\emptyset} 83 \mathrm{BE}$ நF21： $8 \emptyset$ Bø $838 \emptyset B \emptyset 838 \emptyset 9 \varnothing 49$
 øF31：D8 83 8ø Bø 83 8ø C 62 D9 øF39： $8 \varnothing$ Fø 83 8ø Fø 8180 EB C3 ØF41： 8180 D8 838090878999 øF49：8E 8780 C4 $838 \varnothing 9881 \mathrm{BD}$ ØF51： 89808689 EØ 8080 FØ A3 øF59： $8180 \mathrm{D} \varnothing 83 \mathrm{~B} \mathrm{\emptyset} \mathrm{~B} \mathrm{\emptyset} 8380 \mathrm{FB}$ ØF61：Cø 84 日ø Fø 83 8ø FØ 81 A øF69： $8 \emptyset$ F8 $818 \varnothing$ FB $828 \varnothing 9 C$ AD ØF71： 87808 BE 87 日ø C4 83 8ø 5 C ØF79： $98 \quad 818 \emptyset 80868 \varnothing$ Bø 8ø 74
 øF89：8ø 8ø $928 \varnothing 8 \emptyset$ FC $8 \varnothing 8 \varnothing$ DB øF91：F8 80 8ø F8 81 日g F4 8165 وF99：8ø CE 8380 日E 87 8ø 9C 54
øFA1： 8289 C日 818986 8ø 8ø F1 ØFA9：Eø 8ø 8ø D8 8180 DC 81 3F øFB1： $8 \varnothing$ EC $8 \emptyset 8 \emptyset 948 \emptyset 8 \varnothing$ FC Ø日 øFB9： $8 \varnothing 8 \varnothing \mathrm{FB} 8 \emptyset 8 \varnothing$ B8 81 8ø C9 øFC1：DC $818 \emptyset$ CE $838 \emptyset 8 \mathrm{E} 876 \mathrm{E}$ øFC9：8ø 9С $828 \emptyset$ C8 8180867 B פFD1： 898086 日ø 8F 909 B 80 5F ØFD9： 968095809 B 80 BF 807 D øFE1： $8 \mathrm{~F} 8 \emptyset 8 \mathrm{~F} 8 \emptyset 8 \mathrm{~F} 8 \emptyset \mathrm{BF} 8 \emptyset \mathrm{FF}$ øFE9： $8780878 \varnothing 82808 \mathrm{8C} 94$ øFF1： 9880 BC $8 \emptyset$ B6 $8 \emptyset 9 A 8089$ øFF9： $8 \mathrm{E} 8 \varnothing \mathrm{BC} 8 \varnothing \mathrm{BC} 8 \varnothing \mathrm{BC} 8 \varnothing 4 \varnothing$ 1øø1：BC 8ø BC $8 \varnothing$ BC $8 \varnothing$ B $8 \varnothing 19$ 19ø9：B8 8ø 9ø 80 8C 89 Fø 83 8B 1011： $8 \varnothing$ F8 $878 \varnothing$ F8 $9 F 8 \varnothing$ Fø $E \varnothing$ 1ø19： $878 \varnothing$ F8 8780 FB 87802 C 1021：FØ 8380 Eの 8380 F0 83 3C 1ø29：Bø F8 $878 \varnothing$ FE 8780 F8 Dø 1931： 8380 F8 8780 F8 878042 1039：Fg 8380 Fの 8180 FE 9F 7D 1ø41：8ø FF BF 8ø FF BF Bø FF A1 1ø49：BF $8 \varnothing$ FF BF $8 \varnothing$ FE 9F 8025 1ø51：Fø 83 8ø F8 87 89 F8 8722 1ø59：8ø F8 $87 \mathrm{~B} \mathrm{\emptyset} \mathrm{F8} 87 \mathrm{~B} \mathrm{\emptyset} \mathrm{F8} \mathrm{Dø}$ 1ø61： $878 \emptyset$ F8 $878 \emptyset \mathrm{FB} 878 \emptyset 74$ 1069：B8 87 8ø FC $8 \emptyset 8 \varnothing$ FC 83 2B 1ø71：8ø FC 8780 F8 8780 F8 E9 1ø79： 8789 F8 $878 \emptyset$ F8 838984 1ø81：FC $838 \varnothing$ FC 87 8ø FE BF AC 1ø日9：Sø DF 8F 8ø EE 87 8ø FC $6 F$ 1ø91： $83898 \emptyset 8 F 8 \emptyset$ Fg 8180 E7 1ø99：F8 $838 \varnothing$ F8 87 89 FB 87 6E 18A1：8ø FB 8F 8ø F8 8789 FB 1 A 1øA9： 83 8ø FC 83 80 FC 87 日の øВ 16B1：FE BF $8 \varnothing$ DF $8 F 8 \emptyset E E 8727$ 1øB9：8ø FC $83808 \varnothing 8 F 8 \varnothing$ F8 gE 1øC1：8ø 8ø FC 81 8ø FE $818 \emptyset 7 \mathrm{D}$ 1øC9：FE 8189 FF 8189 FE 8167 10D1： 89 FC 8180 FC 8389 FE 9F 1øD9： 8389 FF 87 8ø DF $8 F 8077$
 1øE9：89 Fg $818 \emptyset$ FC $838 \varnothing$ FE B4 1øF1： 8389 FE 8189 FE $81896 F$ 1øF9：FE 81 8ø FC 81 8ஏ FC 8365

11ø1： $8 \emptyset$ FE 83 日ø FF 8780 DF 9A 11ø9： 8 F 8ø BE 87 8ø FC 83 8ø E2 1111： $8 F 8 \emptyset 8 \emptyset 9 E 8 \emptyset$ BF $8 \emptyset$ FF 19 1119：8ø FE 8Ø FC $8 \emptyset$ FF $8 \emptyset$ BF DF 1121： $8 \emptyset \mathrm{BF} 8 \emptyset \mathrm{BF} 8 \emptyset \mathrm{BF} 8 \emptyset \mathrm{BF} 43$ 1129： $8 \emptyset$ 9F $8 \emptyset$ 9F $8 \emptyset$ 日E $8 \emptyset$ BC 79
 1139： $8 \varnothing$ 8E $8 \emptyset$ B6 $8 \emptyset \mathrm{BC}$ 日Ø BC 6 F 1141： $8 \emptyset \mathrm{BC}$ 日の $\mathrm{BC} 8 \emptyset \mathrm{BC} 8 \emptyset \mathrm{BB} 5 \mathrm{~F}$ 1149： $8 \varnothing$ B9 8ø $9 \varnothing$ 日ø 8C $8 \emptyset 94 \mathrm{BE}$ 1151： 89 9С $8 \emptyset$ A2 $8 \emptyset$ 9С 89 9С 29 1159：8ø AA 8Ø 9C $8 \emptyset$ AA $8 \emptyset$ 9C 8C 1161： $8 \emptyset$ AA $8 \emptyset$ 9C $8 \emptyset$ AA $8 \varnothing 948 C$ 1169： $8 \emptyset \mathrm{BE} 8 \emptyset \mathrm{BE}$ 8ø $\mathrm{FF} 8 \emptyset \mathrm{BE}$ 3B 1171： $89 \mathrm{BE} 8 \emptyset \mathrm{FF}$ 日g BE $8 \emptyset$ FF 93 1179： $8 \emptyset \mathrm{BE} 8 \emptyset \mathrm{FF} 8 \emptyset \mathrm{BE} 8 \emptyset \mathrm{FF} 9 \mathrm{~B}$ 1181： $8 \emptyset$ BE 899489 9C 89 A2 67 1189：8ø 9C 89 88 8 88 80 9C 6F 1191： $8 \emptyset$ AA $8 \emptyset 9 C 8 \emptyset$ AA $8 \emptyset$ 9С C4 1199： $8 \emptyset$ AA $8 \varnothing$ 9C $8 \emptyset$ AA $8 \emptyset 94$ C4 11A1： $8 \emptyset \mathrm{BE} 8 \emptyset \mathrm{BE} 8 \emptyset \mathrm{FF} 8 \emptyset \mathrm{BE} 73$ 11A9： 89 9C 30 9C 8 B BE BD FF 9D 11B1： $8 \emptyset \mathrm{BE} 8 \emptyset \mathrm{FF} 8 \emptyset \mathrm{BE} 8 \emptyset \mathrm{FF} \mathrm{D} 3$ 11B9： $8 \varnothing$ BE $8 \emptyset$ FF $8 \emptyset \mathrm{BE} 8 \emptyset 7 E 5 A$ 11C1：7F ØØ 7E 7F ØØ Ø6 $6 \emptyset$ Øந 44
 11D1：ØØ $\emptyset 6 \quad 6 \emptyset \quad \emptyset \emptyset \quad \emptyset 6 \quad 6 \emptyset \quad \emptyset \emptyset \emptyset 6 \quad 39$ 11D9： $6 \emptyset \emptyset \emptyset \emptyset 6 ~ 6 \emptyset \emptyset \emptyset \emptyset 6 ~ 6 \emptyset \emptyset \emptyset C B$ 11E1：$\emptyset 6 \quad 6 \emptyset \emptyset \emptyset \emptyset 6 ~ 6 \emptyset \emptyset \emptyset \emptyset 6 ~ 6 \emptyset ~ E E ~$ 11E9：ஏø Ø6 6Ø Øø Ø6 $6 \emptyset \emptyset \emptyset \emptyset 651$
 11F9：$\emptyset 6 \quad 6 \emptyset \emptyset \emptyset \quad 66 \quad 69 \quad \emptyset \emptyset \quad \emptyset 6 \quad 60 \quad 97$ 12ø1：$\emptyset \emptyset \quad \emptyset 6 \quad 6 \emptyset \quad \emptyset \emptyset \quad \emptyset 6 \quad 6 \emptyset \quad \emptyset \emptyset \quad \emptyset 6 \quad 6 A$
 1211：$\emptyset 6 ~ 6 \emptyset ~ \emptyset \emptyset ~ 7 E ~ 7 F ~ \emptyset \emptyset ~ 7 E ~ 7 F ~ E \emptyset ~$ 1219：øø 7F 7F Ø1 7F 7F Ø1 ØF 28 1221：7Ø Ø1 $\emptyset F 7 \emptyset \emptyset 1 ~ \emptyset F ~ 7 \emptyset ~ \emptyset 1 ~ C C ~$ 1229：ØF $7 \emptyset \emptyset 1$ ØF $7 \varnothing$ Ø1 ØF $7 \varnothing 18$ 1231：$\emptyset 1$ ØF $7 \emptyset$ Ø1 ØF $7 \emptyset \emptyset 1$ ØF Ø3 1239： $7 \emptyset \quad \emptyset 1$ ØF $7 \emptyset \quad \emptyset 1$ ØF $7 \emptyset$ Ø1 E4
 1249：Ø1 ØF $7 \varnothing$ Ø1 ØF $7 \emptyset$ Ø1 ØF 1B 1251： $7 \emptyset$ Ø1 $\emptyset F 7 \emptyset \emptyset 1 ~ \emptyset F ~ 7 \emptyset ~ \emptyset 1 ~ F C ~$ 1259：ØF 7ø Ø1 ØF $7 \emptyset$ Ø1 ØF 7ø 48 1261：Ø1 ØF 7Ø Ø1 ØF $7 \emptyset$ Ø1 ØF 33 1269： $7 \emptyset$ Ø1 ØF $7 \emptyset$ ø1 7F 7F \emptyset_{1} F4 1271：7F 7F Ø1 CE ØE 20202093 1279： $20 \quad 20 \quad 20 \quad 2 E \quad 20 \quad 53 \quad 2 E \quad 20 \quad 67$ 1281： 20 ø3 $08 \quad 2710$ 2E 2053 B6 1289： 52 20 7F 54202020 Øø D5 1291： 20 FE פE $2053 \quad 2020$ 3A DE
 12A1： $6 F \quad 3 F 1653 \quad 20 \quad 26 \quad 26 \quad 5369$ 12A9： $2 \emptyset \quad 2 \emptyset 5 \emptyset$ 2E $2 \emptyset \emptyset \emptyset 44$ E6 43 12B1：ØE $\varnothing \varnothing 2 \emptyset \quad 2 \emptyset 45$ 2E $2 \emptyset 2 \emptyset 26$ 12B9： $20 \quad 2 \emptyset \quad 26 \quad 20 \quad 20 \quad \emptyset 3$ ø日 $9 \mathrm{~F} \quad 28$ 12C1： $102053204 A \quad 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset 95$ 12C9： $2 \emptyset \quad 41202 \emptyset \quad 2 \emptyset \quad 2 B \quad \emptyset F \quad 2 \emptyset 4 \emptyset$ 12D1： $\begin{array}{lllllllll}53 & 2 \emptyset & 4 A & 2 \emptyset & 41 & 53 & 2 \emptyset & 56 \\ \text { E } & \end{array}$
 12E1： $2 \emptyset \quad 20 \quad 20 \quad 2 \emptyset \quad 20 \quad 2 \emptyset \quad 36 \quad 20 \quad 32$ 12E9： 20 2E $2 \emptyset$ D \quad gF $2 \emptyset \quad 2 \emptyset 2 \emptyset 44$ 12F1： $2 \varnothing \quad 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad 7 \mathrm{~F} \quad 2 \emptyset \quad 204 \mathrm{~F} 4 \varnothing$ 12F9： $2 \emptyset \quad \sigma 2$ ØF $1411 \quad 2 \emptyset \quad 2 \emptyset \quad 20$ 3B 13ø1：$\varnothing 6 \quad 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad 5 \emptyset \quad 33 \quad 2 \emptyset \quad 33 \mathrm{F7}$ 13ø9： 2055 ØF 452020 Øø 41 8D 1311：7F $2 \emptyset \quad 2049 \quad 2044 \quad 20$ פ了 EC 1319：बE $96 \quad 10 \quad 20 \quad 324 E \quad 20 \quad 201 B$ 1321： $20 \quad 20 \quad 2020 \quad 20 \quad 20 \quad 207 F$ A6 1329：ØF $43 \quad 2 \emptyset \quad 2 \emptyset \quad \emptyset 3 \quad 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset$ A6 1331： $29 \quad 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad \emptyset 3$ פE Cø $5 F$ 1339： $102033202 \emptyset 2 \emptyset 2041 \mathrm{DA}$ 1341： $2 \emptyset \quad 3320 \quad 33$ 2ø F1 ØF 20 日2 1349： $53 \quad 43 \quad 20 \quad \emptyset \emptyset \quad 55 \quad 2 \emptyset \quad 2049$ A2 1351：7F 20 Øø 62 gF 321120 E2 1359： $2 \emptyset$ Øø $2 \emptyset 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset 4953 \mathrm{FC}$ 1361： 20 20 20 A9 ØF $2 \emptyset$ 2E 20 B3 1369： 52 2E $2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad 20 \quad 2 \emptyset \quad 2 C$ 1371： 20 Ø3 ØE EA 1ø 2ø 7F 54 2D 1379：2ø 2ø 48 øø $2 \emptyset 7 F 2 \emptyset 5252$ 1381： $20 \quad 5 \emptyset 112020 \quad 20 \quad 2020$ D1 1389： $20 \quad 2 \emptyset \quad 53 \quad 53 \quad 45 \quad 20 \quad 45 \quad \emptyset 2 \quad 9 E$ 1391：$\emptyset D \quad 6 A 11 \quad 322 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \mathrm{FF}$ 1399： 3 B $2 \emptyset \quad 20 \quad 2 \emptyset 2 \emptyset \quad 53 \quad 2 \mathrm{E} \quad 849 \mathrm{~A}$ 13A1： $112 \emptyset 2 \emptyset 2 \emptyset \emptyset \emptyset 532 \emptyset 20$ ØC 13A9： $2 \emptyset 7 F 2 \emptyset 7 F 2 \emptyset \emptyset 2$ ØF A2 85 13B1： 11 20 $53 \quad 4352 \quad 20 \quad 20 \quad 53 \mathrm{AD}$

13RO： 2020 ดの 20 ＠CA $1: 20$ उF 13C1： $20 \quad 20$ 7F 20 7F $2 \emptyset 52$ 2E 41 13C9： $20 \quad 33 \quad 20 \quad 03$ IE 1A 12209 9E 13D1： $2 \emptyset 2 \emptyset 202020202 E 2 \emptyset 14$ 13D9： 52 2E 20 A9 $\varnothing \emptyset$ 8D FC 1B 9E 13E1：A9 7485 EE A9 1285 EF 2A 13E9：$A D$ FC 1B C9 gC Fg 2F AØ 49 13F1：ØE B1 EE 8D DD 1B C8 B1 EØ 13F9：EE 8D DE $1 \mathrm{~B} \quad 20 \quad 2014$ AS 14 14g1：EE $18691085 \mathrm{EE} 90 \quad 62 \mathrm{DF}$ 1499：E6 EF 20201418 AS EE E1 1411： 69 ØE 85 EE 90 g2 E6 EF 5B 1419：EE FC 1B 4C E9 $13 \quad 60$ A9 26 1421：$\emptyset 1$ 8D D5 1B AD D5 1B \quad 1 9 A 1429：AB AS EC 91 EE CB AS ED 99 1431： 91 EE AØ ØØ B1 EE 85 FC 43 1439：C8 B1 EE 85 FD AD DE 1B E7 1441： $8 D \mathrm{DF} 1 \mathrm{~B} A \emptyset \emptyset \varnothing$ BC DB 1B 9 A 1449：A9 øø 8D DC 1B B1 FC 8D EC 1451：D4 1B GA AE D5 1B פA 2E 34 1459：DC 1B CA D \varnothing F9 2C D4 1B 62 1461： $1 \varnothing$ Ø2 $38 \quad 2418 \quad 6 \mathrm{~A}$ ØD DB BB 1469：1B $91 \mathrm{EC} A D \quad D C 1 B \quad 8 D \mathrm{DB} 46$ 1471：1B C8 CC DD 1B Dø D1 18 AB 1479：A5 FC 6D DD 1B 85 FC 9ø B8 1481： 62 EG FD 18 AS EC 6D DD 3F 1489：1B 85 EC $9 \varnothing$ Ø2 E6 ED CE 9D 1491：DF 1B Dø AF AC D5 1B C8 41 1499：8C D5 1B Cø Ø7 Fø Ø3 4C 3B 14A1： 2514 GD AS E6 C9 2ஏ DØ 37 14A9：ø8 A9 $\emptyset 3$ AØ 1C A2 Øø Fg $\emptyset 7$ 14B1： 66 A9 53 Ag 1C A2 Ø1 8E B7 14B9：FD 1B 85 1E 84 1F $6 \varnothing$ Ag 3C 14C1：ØE B1 EE 8D DD 1B C8 B1 B2 14C9：EE 8D DE 1B Aø Øø AD D7 92 14D1：1B 91 1E CB AD D6 1B 91 CC 14D9：1E CB AD DS 1B 91 1E C8 7A 14E1：A5 EE 91 1E C8 AS EF 91 FA 14E9：1E C8 AD DE 1B 91 1E C8 1B 14F1：AD DD 1B 91 1E AS 1E 18 C 14F9： 69 ø8 $851 E 90 \quad$ 15 E6 1F E4 15פ1：AE FD 1B FE FE 1B AD DS EA 1599：1B ØA 65 EE 85 FC A5 EF 3 A 1511： 69 gø 85 FD 18 AS FC 69 3B 1519： $1 \emptyset 85$ 1A A5 FD 69 Øø 8565 1521：1B Aø Øø B1 FC AA CB B1 F1 1529：FC 86 FC 85 FD Aø øø B1 8F 1531： $1 \mathrm{~A} A \mathrm{~A}$ CB B1 1A 86 1A 85 EB 1539：1B AD D7 1B 8D DA 1B AD C4 1541：DE 1B 8D DF 1B 2Ø EC 16 9A 1549： 20 BS 15 EE DA 1B AS FC gE 1551： 18 6D DD 1B 85 FC $90 \quad 6293$ 1559：E6 FD A5 1A $18 \quad 6 \mathrm{D}$ DD 1B 1 A 1561： 85 1A 9ø ஏ2 E6 1B CE DF 28 1569：1B Dø DA $6 \varnothing$ AE FD 1B BD 18 1571：FE 1B Fø $3 F$ Ag Øø B1 1E 7A 1579：8D D7 1B C8 B1 1E 8D D6 48 1581：1B C8 B1 1E 8D D5 1B C8 46 1589：B1 1E 85 EE C8 B1 1E 8582 1591：EF C8 B1 1E 8D DE 1B C8 E4 1599：B1 1E 8D DD 1B 20 C7 15 B1 15A1：AS 1E 1869 ø8 $851 \mathrm{E} 9 \varnothing \mathrm{E} 2$ 15A9： 92 E6 1F AE FD 1B DE FE 76 15B1：1B D \varnothing C1 $6 \varnothing$ AC DD 1B 8877 15B9：B1 FE 311 A 51 FE 11 FC E9 15C1： 91 FE 8810 F3 60 AD D7 DA 15C9：1B QD DA 1B AD DE 1B 8D 9E 15D1：DF 1B 20 EC 16 AC DD 1B BF 15D9： 88 B1 1C 91 FE 8810 F9 85 15E1：EE DA 1B CE DF 1B Dø EA 82 15E9：6ø A9 øø 8D F5 1B A9 Ø4 FA 15F1：8D D8 1B AD D8 1B 8D D7 7D 15F9：1B A9 øø 8D D9 1B A9 BE 42 1601： 38 ED DB 1B BD DE 1B 26 CF 16ø9：B2 16 A9 26 8D D7 1B 38 ES 1611：A9 BE ED D8 1B 8D D9 1B EA 1619：AD D8 1B BD DE 1B 28 B2 E4 1621： 16 AD F5 1B FØ 23 A9 $\varnothing \varnothing$ 9B 1629：8D DA 1B BD D6 1B A9 Cø 46 1631：8D DF 1B $2 \varnothing$ EC 16 Aø 1D 9F 1639：B1 FE 91 1C 8810 F9 EE 59 1641：DA 1B CE DF 1B Dø EC Fø 6ø 1649： 12 38 AD E5 1B E9 94 8D B6 1651：E5 1B 38 AD EE 1B E9 94 D4 1659：BD EE 1B $2 \varnothing$ A4 14 AE FD $3 E$ 1661：1B A9 $\emptyset \emptyset$ 9D FE 1B $2 \emptyset$ 3C $4 \varnothing$ 1669：ØD 20 45 øC 2081 øD 2Ø CE

1671： 61 1A 205 5A 17 AD D8 1B BA 1679：C9 26 Bø $22 \quad 69 \quad 948 D \quad$ D8 9B 1681：18 38 E9 $26 \quad 9015 \quad 48 \quad 186 \mathrm{~A}$ 1689：6D E5 1B 8D E5 1B 68 18 A6 1691：6D EE 1B 8D EE 1B A9 26 C9 1699：8D DB 1B 4C F4 15 AD FS 38
 16A9：4C F4 15 A9 FF 8D E9 1B 9B 16B1： 69 AD DE 1B 日D DF 1B A9 D2 16B9： $9 \varnothing$ 9D D6 1B AD D7 1B 8D 66 16C1：DA 1B 26 EC 16 A5 1C 85 Fq 16C9：FC AS 1D 85 FD AD D9 1B 4 F 16D1：8D DA 1B 26 EC 16 Ag 1D FE 16D9：B1 FC 91 FE 88 10 F9 EE A7 16E1：D7 1B EE D9 1B CE DF 1B 2B 16E9：Dø D2 6ø AD DA 1B 29 3F EE 16F1：AB B9 1A $17 \quad 65$ E6 85 FF 64 16F9： 996085 1D AD DA 1B 297 D 17ø1：ø8 Fø $\varnothing 2$ A9 $8 \varnothing 18$ 2C DA E1 17ø9：1B $7 \varnothing 641064 \quad 69 \quad 28 \quad 69$ E1 1711： 28 6D D6 1B 85 FE 85 1C 8A 1719：6ø øø ø4 ø日 øС 10141859 1721：1C øø 04 ø日 øC $1 \varnothing 1418$ 3F 1729：1C Ø1 65 ø9 ØD 111519 C 1731：1D ø1 65 g9 øD $1115194 F$ 1739：1D $\varnothing 2$ Ø6 ØA ØE 1216 1A D6 1741：1E Ø2 Ø6 ØA ØE 1216 1A 5 F 1749：1E øЗ $\varnothing 7$ øB ØF 1317 1B E6 1751：1F ø3 67 gB øF 1317 1B $6 F$ 1759：1F A5 E6 C9 4ø A9 øø 2A CC 1761：AA BD 54 CO AS E6 8D Eの AF 1769：18 49 b0 85 E6 69 A9 6049 1771： 85 E6 29 F2 F3 A9 63 GD 23 1779：DA 1B 8D D6 1B 20 EC 1644 1781：A9 Ø0 日D FC 1B 20 B0 17 D7 1789：C9 ø5 D 9 F9 EE DA 18 EE OF 1791：DA 1B 20 EC 1620 Bø 1770 1799：C9 gA Dø F9 EE DA 1B EE FØ 17A1：DA 1B AD DA 1B C9 BA Bø BD 17A9： 93 4C $7 E 17$ 4C D9 17 AC 52 17B1：FC 1B B9 C5 1748 B9 CF D5 17B9： 17 A8 $6891 \mathrm{FE} E E$ FC 1 B 8 C 17C1：AD FC 1B $6008 \quad 0140 \quad 2054$
 17D1：ØE 15 1C O1 Ø8 OF 16 1C A4 17D9：A응 29 OD DE 18 SD FC IB 20 17E1：AC FC 1B Cø 05 FO 18 B9 EA 17E9： 5918 8D DA 18 $2 \varnothing$ Øु 18 A1 17F1： $2015 \quad 18 \quad 2015 \quad 18 \quad 20 \quad 03 \quad \mathrm{C} 6$ 17F9： 18 EE FC 1B 4C E1 17 4C AS 1801：5E 18 20 EC 16 A 16 OD B9 26 1809：4F 1891 FE C8 C 02 Dg 27 1811：FG 4 C 24 18 20 EC 16 Ag 57 1819：Øø B9 511391 FE CB CØ $3 E$ 1821：GE DO F6 AS FE AG FF 85 DA 1829：FC 86 FD 981865 FE 85 9C 1831：FE AØ Ø0 B1 FC 91 FE C8 19 1839： 98 18 65 FE 29 7F C9 1E 51 1841：Fø $\varnothing 8$ C9 46 Fø $\emptyset 4$ C9 GE 23 1849：Dø E9 EE DA 1B $6 \varnothing$ DS AA 98 1851：DØ AØ C1 82858 A 94 AB 9A 1859： $2248 \quad 6 E 94$ BA A9 19 BD FF 1861：D6 1B A9 ø日 8D FC 1B 8D 1D 1869：DA 1B AC FC 1B CØ Ø5 FØ $\emptyset A$ 1871：1B 2092 18 38 A9 1C ED 99 1879：D6 1B 8D D6 1B 18 AD DA 6A 1881：1B 6966 8D DA 1B EE FC 51 1889：1B 4C $6818 \quad 608482 \quad D \varnothing 34$ 1891：8Ø A2 60 A9 BE 85 FC A9 73 1899： 18 85 FD A9 01 GD DE 1B A8 18A1： $2 g$ EC 16 A \varnothing D1 B1 FC 9144 18A9：FE 8810 F9 18 AS FC 69 D7 18B1： 6285 FC $9 \varnothing 02$ E6 FD EE 83 18B9：DA 1B CE DE 1B $1 \varnothing$ E 1 E8 AB 18C1：EØ 10 D $\varnothing C F$ C \varnothing AD E1 1B 16 18C9：$\subseteq A$ ØA 38 6D E1 1B 8D E1 D7 18D1：1B $6 \varnothing 80 \quad B C 98 \quad B C B C B 65$ 18D9：FE BC FE BC BC FC BE BC 78 18E1：BE FE FE BC E6 98 ED E6 1F 18E9： 86 EG BE BC BE BC BE BC DD 18F1：FE E6 EG E6 E6 EG FE Bø F7 18F9：E6 9C E6 E6 B8 86 86 EØ DD 19ø1：E6 E6 E6 E6 E6 E6 868612 1909：E6 E6 98 Eø E6 86 FE E6 BF 1911：E6 E6 E6 E6 E6 98 E6 E6 øA 1919：E6 E6 E6 Bø 89 F6 98 Bø 22 1921：Bø B4 BE BE BØ BC E6 E6 C9

1929: E6 86 E6 868686 E6 $98 \quad 6 \mathrm{~A}$ 1931: EØ B6 86 E6 E6 EG E6 EG 48 1939: E6 8C 98 E6 E6 E6 E6 E6 ØB 1941: 98 8ø EE 98 BC EØ FE EØ gE 1949: E6 98 E6 FC FE BE 86 E6 A8 1951: BE BE F6 FE 98 EØ 9E 86 6D 1959: E6 E6 E6 BE E6 BE Bø 98 AD 1961: E6 E6 E6 BC BC 8C 8ø E6 69 1969: 98 E6 E6 BØ E6 E6 8C E6 5C 1971: Bø E6 E6 E6 E6 8686 E6 46 1979: E6 98 E6 E6 86 E6 E6 E6 15 1981: 86 B6 E6 E6 98 E6 E6 FE 1D 1989: E6 9886 8ø BC BC FE BC C1 1991: $\mathrm{B} \emptyset \quad \mathrm{BC} \mathrm{BC} \quad \mathrm{BC} \mathrm{BC} 98 \mathrm{E} 6 \mathrm{FE} C \emptyset$ 1999: BE BE FE 86 BE E6 98 BC A2 19A1: E6 FE E6 E6 BC 86 EC E6 13 19A9: BE 98 BE 98 EG E 698 FE C5 19B1: AD FG 1B $85 \mathrm{EE} A D \mathrm{Fg}$ 1B F1 19B9: 85 EF A5 EE $\emptyset 5 \mathrm{EF}$ DØ 01 D
 19C9: Fø Ø1 ØA 31 EE Fø 4B B1 8C 19D1: EE $30 \quad 05$ 2C 34 1B FØ 4D 28 19D9: C8 B1 EE 8D DA 1B CB B1 1A 19E1: EE 8D D6 1B A5 EE 1869 FD 19E9: 67 85 FC AS EF 69 ag 85 AS 19F1: FD A9 $068 D \mathrm{DF}$ 1B 20 EC BF 19F9: 16 Aø Øø B1 1C 91 FE CB 68 1Aø1: B1 FC DØ F7 EE DA 1B CE CE 1Aø9: DF 1B Dø EA A9 $\varnothing 1$ AE FD 69 1A11: 1B FØ $\emptyset 1 \emptyset A ~ A \emptyset \emptyset 451 \mathrm{EE} 76$ 1A19: 91 EE B1 EE 2C 341 B F $5 \emptyset$ 1A21: $\emptyset 429 \quad \emptyset 3 \mathrm{~F} \emptyset \emptyset 6 \quad 2 \emptyset E F \quad 1 \mathrm{~A}$ BB 1A29: 4C BB 19 AD Ø2 B1 EE 85 D 9 1A31: FC C8 B1 EE 85 FD 20 EF BF 1A39: 1 A Ag $6 \emptyset$ A5 EE 91 FC C8 7D 1A41: A5 EF 91 FC C8 65 EE DØ 4 F 1A49: ØB A5 FC 8D FA 1B AS FD 72 1A51: $8 D \mathrm{FB}$ 1B 6 D AS FC 91 EE E7 1A59: C8 A5 FD 91 EE 4C BB 19 6D 1A61: AD F8 1B 85 EE AD F9 1B A3 1A69: 85 EF AS EE ø5 EF Dø $\mathrm{g}_{1} 8 \mathrm{~A}$ 1A71: $6 \emptyset$ Ag $\emptyset 4$ B1 EE 2C 34 1B 45 1A79: DØ 6E C9 Øø $3 \emptyset$ ØC A9 $\varnothing 1 ~ F \emptyset ~$ 1AB1: AE FD 1B Fø $\emptyset 1$ ØA 31 EE $8 \emptyset$ 1A89: DD 5E C8 B1 EE 8D DA 1B $7 \emptyset$ 1A91: C8 B1 EE 8D D6 1B A9 D2 96 1A99: 8D BE 1A A9 18 8D BF 1 A B2 1AA1: A9 66 8D DF 1B A5 EE 1841 1AA9: $69 \quad 0785$ FC A5 EF $69 \quad 9 \varnothing 94$ 1AB1: $85 \mathrm{FD} 2 \emptyset \mathrm{EC} 16 \mathrm{~A} 16 \varnothing \mathrm{~B} 1 \mathrm{DF}$ 1AB9: FC Fg 99 AA BD FF FF 91 F3 1AC1: FE CB D \emptyset F3 EE DA 1B AD C7 1AC9: BE 1A $18 \quad 69 \quad 25$ 8D BE $1 \mathrm{~A} \quad 74$ 1AD1: $9 \mathscr{\square}$ Ø3 EE BF 1A CE DF 1B CF 1AD9: DØ D8 A9 $\varnothing 1$ AE FD 1B FØ 86 1AE1: $\emptyset 1$ ØA AØ $\emptyset 411 \mathrm{EE} 91 \mathrm{EE}$ C3 1AE9: 2ø EF 1A 4C 6B 1A Aø ØØ 37 1AF1: B1 EE AA CB B1 EE 86 EE E1 1AF9: 85 EF 60489848 AD FA B9 1BD1: 1B $85 \mathrm{EE} \mathrm{AD} \mathrm{FB} \mathrm{1B} 85 \mathrm{EF} 26$ 1Bø9: AØ ØØ 68 91 EE C8 $6891 \mathrm{B2}$ 1B11: EE 2ØEF 1A A9 ØØ A8 9196 1B19: EE C8 $91 \mathrm{EE} \mathrm{CB} A D \mathrm{FA}$ 1B 28 1B21: 91 EE C8 $\mathrm{AD} F \mathrm{FB} 1 \mathrm{~B} 91 \mathrm{EE} 2 \mathrm{E}$ 1B29: A5 EE 8D FA 1B A5 EF 8D 2C 1B31: FB 1B $6 \emptyset 40$ A9 E8 8D 87 CF 1B39: 1B A9 F4 8D 7D 1B A9 1E AB 1B41: $8 D \quad 6 A 1 B 4 C 561 B$ A9 EØ 54 1B49: 8D 87 1B A9 E8 8D 7D 1B B9 1B51: A9 1F 8D 6A 1B A9 Ø1 8D 8B 1B59: øø 1C Aø øø AD $871 B 8 D \mathrm{F9}$ 1B61: $\varnothing 2$ 1C 4 E Øø 1C $9 \varnothing$ ØC $\quad \mathrm{B} 95 \mathrm{SE}$ 1B69: Øø 1E C8 8D Ø1 1C A9 8ø 65 1B71: 8D øø 1C 4E Ø1 1C 9ø Ø3 73 1B79: AD 3Ø CØ A2 FF ES DØ FD 18 1B81: 90.03 AD $3 \emptyset \mathrm{C} \emptyset \mathrm{A} 2 \mathrm{FF} \mathrm{EB}$ F2 1B89: Dø FD EE Ø2 1C Dø D3 1889 1B91: AD 87 1B E9 $\quad 1$ 8D 87 1B EA 1B99: $A D$ 7D 1B 69 Ø1 8D 7D 1B 54 1BA1: 9Ø BA 6Ø A9 88 8D ØØ 1E ØE 1BA9: $A \varnothing \emptyset 1$ B9 FF 1D 99 øø 1E 15 1BB1: C8 Dø F7 A9 8ø AØ Ø3 $994 \varnothing$ 1BB9: $\emptyset \emptyset 1 F 881 \varnothing \mathrm{FA} A 9 A A \mathrm{~A} \quad 3 \mathrm{E}$ 1BC1: $\emptyset 399 \quad \emptyset 41 F 881 \emptyset F A A \emptyset 6 D$ 1BC9: $\varnothing 8$ B9 F8 1E 99 ØD 1F C8 47

THE AMAZING VOICE MASTER®
Speech and Music Processor

Your computer can talk in your own
voice. Not a synthesizer but a true digitizer that records your natural voice quality-and in any language or accent. Words and phrases can be expanded without limit from disk.
Asnd it will understand what you say. A real word recognizer for groups of 32 words or phrases with unlimited expansion from disk memory. Now you can have a two way conversation with your computer!
Easy for the beginning programmer with new BASIC commands. Machine language programs and memory locations for the more experienced software author.
Exciting Music Bonus lets you hum or whistle to write and perform. Notes literally scroll by as you hum! Your composition can be edited, saved, and printed out. You don't have to know one note from another in order to write and compose!
Based upon new technologies invented by Covox. One low price buys you the complete system-even a voice controlled black-jack game! In addition, you will receive a subscription to COVOX NEWS, a periodic newsletter about speech technology, applications, new products, up-dates, and user contributions. You will never find a better value for your computer.
ONLY \$89.95
includes all hardware and software.
For telephone demonstration or additional information, call (503) $342 \cdot 1271$. FREE audio demo tape and brochure available.

Available from your dealer or by mail. When ordering by mail add $\$ 4.00$ shipping and handling ($\$ 10.00$ for foreign, $\$ 6.00$ Canada).
The Voice Master is available for the C64, C128, all Apple II's, and Atari 800, 800 XL and 130XE. Specify model when ordering.
vish wo..cor For Faster Service on Credit Card Orders only:
ORDER TOLL FREE 1-800-523-9230

High-Speed String Search For Atari BASIC

Tom R. Halfhill, Editor

Here's a short machine language routine that adds a valuable new function to Atari BASIC-a high-speed search that can find any string of characters within a larger string almost instantly. It lets you add machine language speed to BASIC databases and sorts, and a sample address book program shows how. For all $400 / 800, \mathrm{XL}$, and XE computers.

Have you ever dreamed up a wish list of new commands for the ultimate BASIC language? Ideally, this super-BASIC would combine in a single package the best features that all BASICs have to offer.

A sure way to collect ideas for this wish list is to look at other BASICs. For instance, IBM BASIC, Amiga BASIC, Atari ST BASIC, and other large BASIC languages have a function called INSTR (pronounced "in-string"). INSTR rapidly searches through a character string and returns the position of any substring you specify. Once you know the position of the substring, it's a simple matter to retrieve it with the usual BASIC string statements.

Atari BASIC lacks an INSTR function, yet needs it much more than most other BASICs do. Many BASIC languages don't allow strings longer than 255 characters, so you can write a search routine in BASIC that's not significantly slower than BASIC's own INSTR function. But Atari BASIC allows character strings of virtually any length, up to the limit of available memory. Although you can write a
search routine in Atari BASIC that simulates INSTR, it would take ages to find a substring hidden near the end of a really long string.

The answer, as usual, is to mix BASIC with a dash of machine language: an ML routine that duplicates INSTR and works in a flash.

When this powerful function is combined with the megastring capability of Atari BASIC, all kinds of possibilities arise-database and sorting programs written in BASIC that perform at near-ML speeds, and simulated string arrays that really let you retrieve any substring as fast as true Microsoft-style string arrays. With the INSTR routine accompanying this article, it's a snap.

No Memory Confusion

Take a look at Program 1. It's a BASIC loader that encodes the machine language INSTR routine in DATA statements, ready to merge with your own programs. Because the ML is written to be completely relocatable, you can add this routine to any BASIC program without worrying about memory conflictsit avoids such overused memory areas as page 6. Line 10, which should be near the beginning of your program, reads the machine language into a string, ML\$. Then it uses Atari BASIC's string-address function (ADR) to set the variable ML equal to the starting address of ML\$. After this setup, all it takes to call the INSTR routine is a simple USR statement with a few arguments arranged in this format:
$\operatorname{INSTR}=\mathrm{USR}(\mathrm{ML}, \mathrm{ADR}(X X S)$)LEN($X X \$$), ADR(SUBS),LEN(SUBS),START)
where $\mathrm{XX} \$$ is the larger character string you're searching through, and SUB\$ is the smaller substring you want to find. The result, returned in the variable INSTR, is the position within $\mathrm{XX} \$$ of the first character in SUB\$. (Of course, you may use any variable names you prefer in the USR statement, as long as the statement conforms to this general format.)

For instance, if $\mathrm{XX} \$$ contains these characters:

ABCDEFGHELLOABCDEFG

and if SUB\$ contains these characters:

hello

the result of calling the INSTR routine would be $\operatorname{INSTR}=8$, because the substring HELLO begins at the eighth character position in $X X \$$. If you redefine SUB\$-say, SUB $\$=$ "DEF"-and call the routine again, the result would be $\operatorname{INSTR}=4$, because the substring DEF begins at the fourth character position in XX\$.

The rest is easy. Once you know a substring's position within a larger string, you can retrieve it with a statement like this:
PRINT XX\$(INSTR,INSTR + LEN

(SUB\$)-1)

To make the Atari INSTR routine even more useful, it has one additional feature. Looking again at the USR statement above, you'll notice another argument that wasn't mentioned. This argument, START, also was inspired by the INSTR function in larger BASICs. It lets you specify the starting point of the search within $\mathrm{XX} \$$.

Normally, if you're searching through the entire string, you'd set START=1 before calling the INSTR routine. But there may be times when you want to start the search elsewhere within $X X \$$. A prime example is when you're searching for more than one occurrence of a substring. If the search always began at the first character in $X X \$$, the INSTR routine would find only the first occurrence of SUB\$ every time. To get around this, all you have to do is call the routine again after executing a statement such as START= INSTR+1. This starts the next search at a position which is one character past the point where the previous search stopped. You can repeat this procedure to find as many occurrences of the substring as you want.

A Speed Test

When programming in BASIC, it's nearly impossible to cause a system crash or lockup unless you're guilty of a wayward POKE. But in machine language, unrecoverable crashes are much more common. Therefore, the INSTR routine is carefully error-trapped. If it does not find the substring you specify, it returns a zero. If you include the wrong number of arguments in the USR statement, the routine clears the 6502 stack of all faulty arguments before returning to BASIC, then returns a zero.

The only limitation to keep in mind when using the INSTR routine is that the substring you're looking for cannot be longer than 255 characters-not a serious limitation. The string you're searching through can be any length, of course.

So, just how fast is the INSTR routine? Wickedly fast. For a demonstration, enter Program 2. It creates a monster string that is 30,000 characters long-almost all of the usable program memory that's left in a 48 K or 64 K Atari when DOS and BASIC are active. (There may not be enough memory to run this program if you're using a non-Atari DOS that uses more RAM.) This string is filled entirely with X 's, except for a Z at the thirty-thousandth position. When you run Program 2, it uses a search routine written in

BASIC to find the Z. Prepare yourself for a long wait. It takes almost eight minutes.

Now add the lines in Program 3 to the INSTR routine in Program 1 and repeat the test. INSTR finds the Z and prints it on the screen in about two seconds. With strings of any normal length, INSTR works almost instantly.

Personal Address Book

For a more practical demonstration of INSTR, delete line 10 from Program 1 and add the lines in Program 4, "Personal Address Book." This is a simple address book program that uses INSTR in two ways: to retrieve any entry in the blink of an eye, and to alphabetically sort the entries when dumping the whole list to a printer. Actually, Personal Address Book is a skeleton program that with some more work could be turned into a full-fledged, general-purpose filer. And thanks to INSTR, it works nearly as fast as programs written entirely in machine language.

When you run Personal Address Book, it automatically adjusts itself to hold the maximum number of address entries practical with the memory available in your computer. In a 48 K or 64 K machine running DOS 2.5 , there's room for more than 24,700 characters of data. In a 16 K machine with tape, there's room for more than 5,600 characters. You can check how much room is left at any time by selecting option 2 on the main menu, "Enter a new name."

Other menu options let you retrieve any entry, including multiple entries of people with the same last name; delete any entry; call a disk directory; print out the entire list in alphabetical order; and save/load address files with disk or tape (when you see the prompt DEVICE: FILENAME, respond D:filename.ext for disk or C: for tape). Screen prompts make all these options self-explanatory, and the program is error-trapped against common mistakes.

Most programs of this type written in Atari BASIC simulate string arrays by dividing a large string into many substrings of equal length, allocating a substring for each record. This makes it easier to
retrieve an individual record, because the position of its substring within the larger string can be readily calculated. Unfortunately, there are two drawbacks with this method: records can't be longer than the substrings, and shorter records waste memory because they're padded out with blanks. But Personal Address Book gives you the freedom to enter as many lines for each address entry as you want. You can even include short notes to yourself as part of the entry, such as SAM'S COUSIN WHO IS A LAWYER.

Since Personal Address Book is a bare-bones demo program, it does have a few limitations. First, the search routines are case-sensitive. If the names are entered in uppercase/ lowercase format, such as "Smith, Margaret," a search for all-uppercase "SMITH" results in a NOT FOUND message. Second, if you search for a keyword that isn't the first word in the record-such as "Margaret" in the previous ex-ample-the program retrieves only the fraction of the record which starts with that keyword. This means you should type in your entries using the format in which you plan to retrieve them, like this:
Smith, Margaret
604 Geronimo Avenue
Hometown, New York 10000
(212) 555-1212

To retrieve this record, you'd select option 1 and type "Smith" or "Smith, Margaret."

And finally, the print option sorts the names alphabetically by the first character only, so "Smith, Margaret" might not be printed before "Smith, Zelda" or even "Szabo, Martin." This was done to keep the demo program as short as possible.

Programming Notes

To see how easily search routines are written with INSTR, examine lines $360-450$ and 600-660. Notice how the START argument is updated after each search to find any following occurrences of the same keyword (if the user so desires).

Since Personal Address Book accepts records of any size, you may be wondering how it figures out the length of each record after it finds the specified keyword. The
answer is a string called EOR\＄（End Of Record）．EOR $\$$ consists of two carriage returns，and it＇s tagged onto the end of each record you enter with Personal Address Book． After the INSTR routine finds the keyword，it searches for the next occurrence of EOR\＄．Then it re－ trieves the substring between those two points．

BASIC programmers should note the subroutines starting at lines 760,850 ，and 1170 ．By calling the Central Input／Output（CIO） routine built into the Atari operat－ ing system，these BASIC subrou－ tines can load and save to tape or disk at machine language speed．If you study the REM statements and descriptive variable names，it isn＇t too difficult to figure out how these subroutines work．Just be sure to read the machine language data in line 1270 into CIO\＄before calling the CIO subroutine in your own programs．

As mentioned above，Personal Address Book is a skeleton program intended mainly for demo pur－ poses．You can add more options of your own to transform it into a mailing－label generator，a general－ purpose filer，or even a full－ featured database manager．With help from the lightning－fast INSTR routine，the results can be impressive．

For instructions on entering these listings， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂published in this issue of COMPUTEI．

Program 1：INSTR Routine BASIC Loader

NA $1 \emptyset$ DIM ML\＄（26Ø）：FOR $X=1 \quad$ T 0 26D：READ $A: M L \$(X)=C H$ $R \$(A)$ ：NEXT $X: M L=A D R(M L$ \＄）
PC 1275 REM＊＊＊INSTR ML DAT A＊＊
OK 128 DATA $169, \emptyset, 133,212,1$ 33， 213
LE 129 DATA 1 Ø4，2ø1，5，24ø， 1 8， 141
LC $13 \varnothing \emptyset$ DATA $\emptyset, 4,162, \emptyset, 236, \emptyset$
FD 1310 DATA 4，2ø8，1，96，164， $1 \emptyset 4$
OH 132 DATA $232,169,6,246,2$ 43，1ø4
BL 133ø DATA $141,5,4,194,141$ ， 4
BJ $134 \emptyset$ DATA $4,1 \emptyset 4,141,3,4,1$ Ø4
OP $135 \emptyset$ DATA 24，1ø9，4，4，141， 2
NF 136 DATA $4,173,3,4,199,5$
BO $137 \emptyset$ DATA $4,141,3,4,1.94,1$ 33
ED 1389 DATA 2ø4，104，133，2ø3
，1ø4，1ø4
IC 1390 DATA $141,1,4,1 \emptyset 4,133$ ， 2 Ø6
EP 14øの DATA $1 \varnothing 4,24,109,4,4$ ， 133
IK 1410 DATA 205，165，206，109 ，5， 4
CC 142 D DATA 133,2 66，165， 205 ，56， 233
OJ $143 \emptyset$ DATA $1,133,2 \emptyset 5,165,2$ 66， 233
HO 144 DATA $\varnothing, 133,2 \emptyset 6,162, \emptyset$ ， 160
OH $145 \emptyset$ DATA $\varnothing, 177,2 \emptyset 5,2 \emptyset 9,2$ の3，24の
DE 146 D DATA $37,173,2,4,56,2$ 29
CB 147 D DATA 2ø5，141， $0,4,173$ ， 3
PE $148 \emptyset$ DATA $4,229,2 \emptyset 6,13, \varnothing$ ， 4
JH 149 D DATA 2 Ø8，1，96，165，2ø 5， 24
OF 15øø DATA 1 Ø5，1，133，2ø5， 1 65，206
IC $151 \emptyset$ DATA $165, \emptyset, 133,206,1$ 69， 0
$16152 \emptyset$ DATA $240,299,232,236$ ，1， 4
FM 153 DATA $208,4,169, \emptyset, 240$ ， 54
EO 154ø DATA 2øø，177，2ø5，2ø9 ，2ø3，24ø
DE 155 D DATA $37,173,2,4,56,2$ 29
CB 156 D DATA $205,141, \emptyset, 4,173$ ， 3
PE 157 D DATA $4,229,2 \emptyset 6,13, \emptyset$ ，
JH 158 Ø DATA $208,1,96,165,2 \emptyset$ 5， 24
$00159 \emptyset$ DATA $1 \emptyset 5,1,133,2 \emptyset 5,1$ 65，206
IC $16 \emptyset \emptyset$ DATA $1 \emptyset 5, \emptyset, 133,2 \emptyset 6,1$ 69，\varnothing
I6 161ø DATA 24ø，155，232，236 ，1， 4
ID 1620 DATA $24 \emptyset, 4,169, \emptyset, 24 \emptyset$ ， $2 \emptyset 2$
6A $163 \emptyset$ DATA $173,2,4,56,229$ ， 2.05

LN $164 \emptyset$ DATA $141, \emptyset, 4,173,3,4$
FI $165 \emptyset$ DATA 229，2ø6，13， 9,4 ， 144
ME $166 \emptyset$ DATA $30,24 \emptyset, 28,165,2$ Ø5， 56
JA 167 D DATA $237,4,4,133,212$ ， 165
IP 168 D DATA $206,237,5,4,133$ ， 213
L 1690 DATA $165,212,24,105$ ， 1， 133
OC 17øø DATA 212，165，213，1ø5 ，Ø， 133
BE 171 D DATA 213，96

Program 2：BASIC Search Demo

DP $1 \varnothing$ DIM $\mathrm{XX} \$(3 \varnothing \varnothing \varnothing \varnothing)$ ，SUB $\$(1 \varnothing$ ）
EB $2 \varnothing \times X \$=" \mathrm{X"}: \mathrm{XX} \$(3 \varnothing \square \emptyset \emptyset)=\mathrm{xX} \$$ $: X X \$(2)=x X \$: X X \$(3 \varnothing \varnothing \emptyset \emptyset)$ ＝＂Z＂
EM 3 Ø SUB $\$=" Z "$
LI 4 FOR $X=1$ TO LEN（ $X X \$$ ）
BP $5 \varnothing$ IF $X X \$(X, X+$ LEN（SUB $\$)-1$ ）＝SUB\＄THEN ？$x:$ ？$x \times \$$（ $X, X+\operatorname{LEN}(S \cup B \$)-1): E N D$
PN $6 \emptyset$ NEXT X
L6 $7 \emptyset$ PRINT＂NOT FQUND＂：END

Program 3：INSTR Search Demo

EA 2 D DIM XX\＄（3øøøø），SUB\＄（1の ）
 $: X X \$(2)=X X \$: X X \$(3 \varnothing \varnothing \varnothing \varnothing)$ ＝＂Z＂
If 4の SUB\＄＝＂Z＂：START＝1：？＂PR ESS ANY KEY TO START S EARCH＂
HI 5ø IF PEEK（764） $\mathbf{= 2 5 5}$ THEN 50
PF 6 Ø INSTR $=$ USR（ML， $\operatorname{ADR}(X X \$)$ ， LEN（ $x \times$ ）），ADR（SUB\＄），LEN （SUB\＄），START）
NO 7 ø ？XX（INSTR，INSTR + LEN（ SUB $\$$ ）-1 ）
BD Bø IF INSTR＝ø THEN ？＂NOT FQUND＂
EA 90 END

Program 4：Personal Address Book

MC $11 \varnothing$ FILELEN＝FRE（ $\varnothing)-1 \emptyset \emptyset \partial: D$ IM FILE $\$$（FILELEN）
$6612 \emptyset$ DIM SUB $\$(255)$ ，ML $\$(26 \emptyset$ ），FILENAME $\$(14)$ ，EOR $\$($ 2），ALPHA\＄（3），PROMPT\＄（ 28），CIO\＄（7），DATE\＄（4Ø） ，BOOK\＄（21）
PI 130 BOOK $\$=$＂PERSONAL ADDRE SS BOOK＂
HH 140 OPEN \＃ $1,4, \varnothing$ ，＂K：＂：GRAP HICS 2：SETCOLOR 2，\varnothing, \varnothing ：POKE 752，1
EN 150 POSITION 2，2：？\＃6；BOO K\＄$(1,16)$ ：POSITION 8,3 ：？\＃6； $\operatorname{BOOK}(18,21): ?$ ＂Please wait．．．＂
6N $16 \varnothing$ EOR $\$(1)=C H R \$(155): E O R$ $\$(2)=$ CHR $\$(155):$ PROMPT

DJ 170 FOR $X=1$ TO 7：READ $A: C$ $\operatorname{IO} \$(X)=\operatorname{CHR} \$(A): N E X T \quad X$
E0 18 ® FOR $X=1$ TO 26の：READ A $: \operatorname{ML} \$(X)=\operatorname{CHR} \$(A): N E X T$ $X: M L=A D R(M L \$)$
EC $19 \varnothing$ ？CHR\＄（125）：？PROMPT\＄
NJ 2 Øø GET \＃1，A：IF $A=155$ THE N 230
FP 21 G GOTO $21 \emptyset$
MO 22 R REM＊＊＊MAIN MENU＊＊＊
KJ $23 \emptyset$ POKE 82，Ø：GRAPHICS $\emptyset:$ POKE 752，1
ON 240 FOR $X=1$ TO 9：？CHR\＄（1 8）；：NEXT $X: ?$ BOOK\＄；：F OR $X=1$ TO 1ø：？CHR\＄（1 8）；：NEXT $X:$ POKE 82，1ø
BD $25 \emptyset$ POKE $82,1 \emptyset: ?:$ ？＂ $1>R$ etrieve a name＂：？：？ ＂2）Enter a new name＂ ：？
MA 26の？＂3＞Delete an old n ame＂：？：？＂4＞Load ad dress book＂：？
AC 27ø ？＂S＞Save address bo ok＂：？：？＂b＞Print ad dress book＂：？：？＂7＞ Disk directory＂
AD 286 POKE 82，8：？：？＂

FO 29ø CLOSE \＃1：OPEN \＃1，4，\varnothing ， ＂K：＂：GET \＃1，A：IF $A=25$ 5 THEN $29 \varnothing$
ル $3 \emptyset \emptyset$ ON $A-48$ GOTO $330,47 \varnothing$ ， 589，770，860，950，1130
61 31 GOTO 29の
DN 32 REM＊＊＊RETRIEVE A NA

ME＊＊＊
€ 330 POKE 82，2：POKE 752， $9:$ ？CHR\＄（125）：POSITION 5，20：？PROMPT\＄
6F 34ø POSITION 2，1ø：？＂Name to retrieve＂；：INPUT SUB\＄
JF $35 \emptyset$ IF LEN（SUB $\$$ ）$=\varnothing$ THEN 2 20
JF 360 START $=1$
AJ $37 \varnothing$ INSTR＝USR（ML，ADR（FILE \＄），LEN（FILE\＄），ADR（SUB \＄），LEN（SUB\＄），START）
$\mathrm{KI} 38 \varnothing$ IF INSTR $=\varnothing$ THEN POKE 752，1：？CHR\＄（125）：POS ITION 5，1ø：？＂NAME NO T FOUND＂：GOTO 42の
LN $39 \varnothing$ RECORD＝INSTR：START＝IN STR
PL 4DD INSTR＝USR（ML，ADR（FILE \＄），LEN（FILE\＄），ADR（EOR \＄），LEN（EOR\＄），START）
OK 41 ？CHR\＄（125）：？：？FILE \＄（RECORD，INSTR＋1）：？： ？＂PRESS SPACE BAR TO RETRIEVE＂：？＂NEXT OC CURRENCE OF SAME NAME
$1142 \varnothing$ POKE 752，1：？：？PROMP T\＄
NO 43 Ø GET \＃1，A：IF A＝155 THE N 23.
PL 44ø IF $A=32$ THEN START＝ST ART＋1：GOTO $37 \varnothing$
6J $45 \emptyset$ GOTO 430
FK 46ø REM＊＊＊ENTER A NAME ＊＊＊
KL 47ø ？CHR\＄（125）：POKE 752， Ø：POKE 82，2：？：？FILE LEN－LEN（FILE\＄）；＂CHAR ACTERS FREE IN MEMORY
 THIS PROMPT＂：？＂WITH QUT INPUT FOR MAIN ME NU＂
HB 49ø ？：？＂PRESS ANY NEXT PROMPT＂：？＂ WITHOUT INPUT TO END ENTRY＂
MF 5 øø ？：？＂NAME＂；：INPUT SU B\＄LEN（SUB $\$$ ）$=\emptyset$ THEN 2 $3 \varnothing$
0 52ø IF LEN（FILE $\$$ ）$=\varnothing$ THEN FILE （LEN（FILE $\$$ ）+1 ）＝E OR\＄
B8 $53 \emptyset$ FILE $\$($ LEN $(F I L E \$)+1)=5$ UB\＄：FILE\＄（LEN（FILE\＄）＋ 1）$=$ CHR $\$$（155）
kK 540 ？：？＂NEXT LINE OF AD DRESS＂；：INPUT SUB\＄
JK 55ø IF LEN $(S U B \$)=\varnothing$ THEN F ILE $\$($ LEN $(F I L E \$)+1)=C H$ R\＄（155）：GOTO 23ø
6 560 GOTO 530
JB57ø REM＊＊＊DELETE A NAME ＊＊＊
FC 58ø ？CHR $\$(125)$ ：POKE 752， ø：POKE 82，2：？：？PROM PT\＄
FM 590 ？：？＂NAME TO DELETE＂ ；：INPUT SUB\＄：IF LEN（S UB $\$$ ）$=\varnothing$ THEN $23 \varnothing$
DL 6 øø $\operatorname{START}=1$ ：INSTR＝USR（ML， ADR（FILE\＄），LEN（FILE\＄） ，ADR（SUB\＄），LEN（SUB\＄）， START）
CK $61 \varnothing$ IF INSTR $\langle>\varnothing$ THEN $65 \emptyset$
N 620 POKE 752，1：？CHR\＄（125 ）：POSITION 5，1ø：？＂NA ME NOT FOUND＂：？：？PR OMPT\＄

OA 630 GET \＃1，A：IF A＝155 THE N 230
64640 GOTO 630
LH 659 RECORD＝INSTR：START＝IN STR
AD 668 INSTR＝USR（ML，ADR（FILE \＄），LEN（FILE\＄），ADR（EOR \＄），LEN（EOR\＄），START）
MC 670 ？CHR（125）：POKE 752， 1：？：？FILE\＄（RECORD，I NSTR＋1）：？：？＂PRESS RRME BIR胃TO DELETE＂
11 $68 \emptyset$ ？：？＂PRESS \quad RETURLI $F 0$ R MAIN MENU＂
$0669 \varnothing$ GET \＃1，A：IF $A=155$ THE N 230
NB 7 Ø \varnothing IF $A=32$ THEN $72 \varnothing$
HA 710 GOTO 690
IH 728 GAP $=$ INSTR－RECORD +2
OP 730 FILE（RECORD－2，LEN（FI LE\＄））＝FILE（INSTR，LEN （FILE\＄））
IH 74 © FILE $\$=$ FILE（ 1 ，LEN（FIL E（S）－GAP）
6K 750 GOTO 230
LI 760 REM＊＊＊LOAD FILE＊＊＊
B 770 ？CHR\＄（125）：POKE 752， ©IPOSITION 5，20：？PRO MPT
OK 78ø POSITION 1，1ø：？＂DEVI CEIFILENAME TO LOAD＂； IINPUT FILENAME\＄
PF $79 \varnothing$ IF LEN（FILENAME $\$)=\varnothing$ T HEN 230
CF 日øø TRAP 日2øICLOSE \＃2：OPE
 T READ＝1： $\mathrm{X}=32$ ：MAXLEN $=$ FILELEN：SADR＝ADR（FILE

OJ 81 D CLOSE W2：FILE（TRUELE $N)=C H R(155):$ TRAP $4 \varnothing \varnothing$ の日：GOTO 23ø
HE 日2ø ？CHR $\$(125):$ POKE 752， 1：POSITION 5，10：？＂I／ O ERROR＂＂；PEEK（195）： POSITION 5，2ø：？PROMP T\＄：CLOSE \＃2：TRAP 4øøø \emptyset

OC $83 \varnothing$ GET \＃1，A：IF $A=155$ THE N 230
HA 日4ø GOTO 日3ø
MH 850 REM＊＊
BL 日6 6 POKE 752， $9:$ ？CHR\＄（125 1：POSITION 5，2ø：？PRO MPT
PG日7ø POSITION 1，10：？＂DEVI CE：FILENAME TO SAVE＂； ：INPUT FILENAME $\$$
PF 日Bø IF LEN（FILENAME $\$$ ）$=\emptyset \mathrm{T}$ HEN 236
k6 89ø TRAP 91ø：CLOSE \＃2：OPE N \＃2，θ, \varnothing ，FILENAME $\$$ ：LE T READ＝$\varnothing: X=32$ ：MAXLEN $=$ LEN（FILE ）：SADR＝ADR（F ILE $\$$ ）：GOSUB $118 \varnothing$
NB 9 øø CLOSE \＃2：TRAP 4øøøø：G OTO 23ø
HE 910 POKE 752，1：？CHR（125 ）：POSITION 5，10：？＂I／ －ERROR \＃＂；PEEK（195）： POSITION 5，20：？PROMP T\＄：CLOSE \＃2：TRAP $4 \varnothing \varnothing \varnothing$ \varnothing
OC 92 g GET \＃1，A：IF $A=155$ THE N 230
HA 930 GOTO 920
CK 94の REM＊＊＊PRINT FILE＊＊ ＊
FL 95ø POKE 82，2：POKE 752，$\varnothing:$ ？CHR\＄（125）
06960 ？：＂BE SURE PRINTER IS ONLINE＂
PE 97ø ？：？PROMPTक：？：？＂TO

DAY＇S DATE＂；：INPUT DA TE\＄
ND 98ø IF LEN（DATE $\$$ ）$=\varnothing$ THEN 230
EP99ø TRAP 1øøø：CLOSE \＃2：OP EN \＃2，в，ø，＂P：＂：GOTO 1 010
6A 1øøの ？CHR\＄（125）：？：？＂I／ O ERROR \＃＂；PEEK（195） ：TRAP 4øøøø：CLOSE \＃2 ：GOTO 96ø
AE 1ø1ø ALPHA\＄（1）＝CHR\＄（155）： ALPHA $\$(2)=$ CHR $\$(155)$ ： START＝1：TRAP 4øøøø
II 1 ø2ø PRINT \＃2；BOOK\＄：PRINT \＃2；＂UPDATED＂；DATE\＄ ： $\mathrm{X}=65$
ID 1030 ALPHA $\$(3)=$ CHR $\$(x):$ IF X＞9の THEN CLOSE \＃2： GOTO $23 \varnothing$
$\mathrm{CH} 1 \varnothing 4 \varnothing$ INSTR＝USR（ML，ADR（FIL E\＄），LEN（FILE\＄），ADR（A LPHA\＄），LEN（ALPHA\＄），S TART）
EK 1 ø5 $1 F$ INSTR $>\varnothing$ THEN $1 \varnothing 7 \varnothing$
HK 1 ø6 $\mathrm{X}=\mathrm{X}+1$ ：START＝1：GOTO 1 øろø
E6 $1 \varnothing 7 \varnothing$ RECORD $=I N S T R: S T A R T=I$ NSTR＋2
DA 1 ø8ø INSTR＝USR（ML，ADR（FIL E\＄），LEN（FILE\＄），ADR（E OR\＄），LEN（EOR\＄），START

DP 1 ø日5 IF INSTR $=\varnothing$ THEN $\mathrm{X}=\mathrm{X}+$ 1：START＝1：GOTO 1ø3ø
KC 1 øのø PRINT \＃2，FILE ${ }^{(R E C O R}$ D +1 ，INSTR－1）
OH 11 Øø IF INSTR $+2<=$ LEN（FILE \＄）THEN START＝INSTR： GOTO 103ø
HJ 111 Ø $\mathrm{X}=\mathrm{X}+1:$ START＝1：GOTO 1 ø $3 \varnothing$
IE $112 \varnothing$ REM＊＊＊DISK DIRECTO RY＊＊＊
II 113 1 TRAP 114の：？CHR\＄（125 ）：CLOSE \＃2：OPEN \＃2，6 ，ロ，＂D：＊．＊＂：FOR X＝1 T －1øøøø：GET \＃2，A：？C HR \＄$(A):$ ：NEXT X
HF 1140 CLOSE \＃2：？PROMPT\＄：T RAP 4øøøø
HK 115 g GET \＃1，A：IF A＜＞155 T HEN 1150
J6 1160 GOTO $23 \varnothing$
AC 117 （ REM＊＊＊CIO LOAD／SAV E＊＊＊
CP 118 D REM CIO LOAD／SAVE re quires file\＃2 opened ，READ＝ø for save，R $E A D=1$ for load
f6 1190 REM file\＃2，$\$ 2 \varnothing$
661200 ICCOM＝834： ICBADR＝836 ：$I C B L E N=84 \emptyset:$ ICSTAT $=8$ 35
AO 121ø $\mathrm{H}=\mathrm{INT}(\mathrm{SADR} / 256): L=S A$ DR－H＊256：POKE ICBADR $+X, L:$ POKE ICBADR $+X+1$ ，H
ff 1220 $\mathrm{H}=\mathrm{INT}($ MAXLEN／256）：L＝ MAXLEN－H＊256：POKE IC BLEN $+X$ ，L：POKE ICBLEN $+\mathrm{X}+1, \mathrm{H}$
M6 123 Ø POKE ICCOM $+\mathrm{X}, 11-4$＊RE $A D: A=\operatorname{USR}(A D R(C I O \$), X$ ）

LN 124 （TRUELEN＝PEEK（ICBLEN + X）＋256＊PEEK（ICBLEN＋X ＋1）
KI $125 ø$ RETURN
DH 126 REM＊＊＊CIO ML DATA ＊＊＊
LK 127ø DATA 1ø4，1ø4，1ø4，17ø ，76，86，228

IBM Screen Swapping

Paul W. Carlson

If you've ever needed to temporarily store a graphics screen for later recall in a program, or load screens from disk and flash them on the monitor whenever you want, this article shows you how. The programs work on any IBM PC with color/graphics adapter and BASICA or Enhanced Model PCjr with Cartridge BASIC.

You can achieve many interesting effects, including animation, by rapidly switching between several graphics screens stored in memory. Unfortunately, this capability isn't a standard feature on the IBM PC. With help from two very short machine language subroutines, however, you can write programs that swap screens almost instantly. The subroutines copy the video bitmap to or from an array in about five thousandths of a second, much too fast for the eye to see. In fact, this is even faster than the video monitor can display a frame, so the effect is truly instantaneous.

To get started, type in Program 1 below. It creates two files, SCRNARRY.BAS and ARRYSCRN.BAS, which contain the two machine language subroutines. The first routine copies the video bitmap to an array, and the second copies the contents of an array to the video bitmap. The routines achieve their speed by treating the bitmap as a continuous string of 16,192 bytes.

For an example of how to use these routines in your own programs, type in Program 2 and save it on the same disk with SCRNARRY.BAS and ARRYSCRN.BAS. Before running Program 2, make sure the disk is in the active drive; it accesses the two routines as it runs. After typing RUN, don't press any keys until you want to halt the program.

You should see three multicolored spirals drawn on the screen. The first two disappear as soon as they're completed, and the third seems to rotate. The rotation, of course, is an illusion. Here's what happens: In the split-second between the time the first two spirals are completed and then erased, each screen is copied into an array by SCRNARRY.BAS. The third spiral is also copied into an array. Finally, the contents of all three arrays are repeatedly copied to the
screen by ARRYSCRN.BAS to get the rotating effect. Actually, the program requires a time-delay loop to keep the screen-flipping from happening too fast.

See the figure below for an explanation of Program 2.

Compułerized Slide Show

You can load a graphics screen from disk directly into an array the same way Program 2 loads the machine language into arrays. Why would you want to do this? Suppose you had saved graphics screens from three different programs on disk using statements such as this:

DEF SEG=\&HB800:BSAVE"filename" ,0,16192

with filenames of PIC1, PIC2, and PIC3. You could then use Program 3 to display a "slide show" of your creations.

Explanation of Program 2

Line Description

20,30 Loads the machine language subroutines into the STOA and ATOS arrays. 40-140 Draws and paints three spirals, each one with the colors shifted.
150 GETSCRN is the entry point for the subroutine that copies the screen to an array. Important: No new simple variables can be assigned from the point GETSCRN is computed to the point it is used in a CALL statement. Assigning simple variables causes array addresses to move.
160-200 Copies the screen to array SCRN1, SCRN2, or SCRN3 after each spiral is complete.
210 PUTSCRN is the entry point for the subroutine that copies an array to the screen. The same note for line 150 applies here also.
220-250 Repeatedly copies the arrays SCRN1, SCRN2, and SCRN3 to the screen until a key is pressed.
www.commodore.ca

This interesting program displays one screen while loading another. Pressing the space bar (after giving the next screen time to load) displays the next picture. The program could be extended to accommodate any number of screens, even prompting you to change disks if necessary. It needs only one array to store the screens no matter how many you want to display, since it stores only one screen at any moment.

Notice that the statement $\mathrm{LA}=0$ in line 10 of Program 3 prevents the address of the ATOS array from changing after it is assigned a value for PUTSCRN in line 30. (See the note for line 150 in the breakdown of Program 2.)

Programs 4 and 5 show the source code for the SCRNARRY and ARRYSCRN subroutines. They aren't required for use with Programs 1-3; they're listed so machine language programmers can observe the techniques involved. An assembler is required to enter these listings.

For instructions on entering these listings, please refer to "COMPUTEI's Guide to Typing In Programs" in this issue of COMPUTEI.

Program 1: Screen
 Swapping Routines

6H 10 DIM $M(7)$, J (6): DEF SEG
FK $2 \emptyset$ FOR $N=\emptyset$ TO 26: READ B
NI $3 \emptyset$ POKE VARPTR (M($(\square))+N$, B: NEXT
$004 \emptyset$ BSAVE"SCRNARRY", VARPTR (M (ø)),27
BN $5 \emptyset$ FOR $N=\emptyset$ TO 22: READ B
KL $6 \emptyset$ POKE VARPTR (J (ø)) $+\mathrm{N}, \mathrm{B}:$ NEXT
BI $7 \emptyset$ BSAVE"ARRYSCRN", VARPTR (J (\varnothing)), 23: END
KE $8 \emptyset$ DATA $6,3 \emptyset, 7,3 \emptyset, 139,236,184$, \varnothing
PO $9 \emptyset$ DATA $184,142,216,185,169,3$ 1,51,246
DH 1 Øø DATA $139,126,8,252,243,16$ 5,31,7
KN $11 \emptyset$ DATA $2 \emptyset 2,2, \emptyset, 6,139,236,18$ 4, \varnothing
KF $12 \emptyset$ DATA $184,142,192,185,16 \emptyset$, 31,51,255
OE $13 \emptyset$ DATA $139,118,6,252,243,16$ 5,7,2ø2
BP $14 \emptyset$ DATA 2, \varnothing

Program 2: Spiral Demo

MK $1 \varnothing$ DIM SCRN1 (4ø48), SCRN2 4.498), SCRN3 (4ø48), STOA (7), ATOS (6)

GJ 20 DEF SEG: BLOAD"SCRNARRY", VA RPTR (STOA (ø))
NK $3 \emptyset$ BLOAD"ARRYSCRN", VARPTR (ATO $S(\varnothing))$
HJ $4 \varnothing$ KEY OFF: SCREEN 1:COLOR \varnothing, \varnothing
FJ $5 \emptyset$ FOR C=1 TO $3: W=C: C L S$

NK 6ø TP $=6.283185: F=8 \emptyset / T P: D A=T P /$ 9: $D B=T P / 2 \varnothing: A=\varnothing$
PM $7 \emptyset$ FOR $I=1$ TO 9: $B=\emptyset: A=A+D A: P S$ ET (16ø,1øø)
6J $8 \emptyset$ FOR $J=1$ TO 2ø: $B=B+D B: R=F * B$
LN 9 Ø $X=16 \emptyset+1,2 * R * S I N(A+B): Y=1 \emptyset \emptyset$

LD $1 ø \emptyset$ LINE $-(X, Y), 3:$ NEXT J, I
JK $11 \varnothing$ CIRCLE $(16 \emptyset, 1 \emptyset \emptyset), 96,3: A=D A$ 12
PM $12 \emptyset$ FOR $I=1$ TO 9: $A=A+D A$
FL $13 \emptyset X=16 \emptyset+1.18$ *R*SIN $(A): Y=1 \emptyset \varnothing$ $+.96 * R * \cos (A)$
FA $140 \mathrm{C}=\mathrm{C}$ MOD $3+1$: $\operatorname{PAINT}(X, Y), \mathrm{C}$, 3: NEXT I
FN $15 \emptyset$ GETSCRN=VARPTR (STOA (ø))
GD $16 \emptyset$ ON W GOTO 17Ø,18Ø,19Ø
LC $17 \emptyset$ CALL GETSCRN (SCRN1 ($\varnothing)$): GO TO 2øø
NK $18 \emptyset$ CALL GETSCRN (SCRN2 (ø)) : GO TO 2øø
EC $19 \emptyset$ CALL GETSCRN(SCRN3 (Ø))
JM 2øø NEXT C
BJ $21 \emptyset$ PUTSCRN=VARPTR(ATOS((\emptyset))
NB 220 CALL PUTSCRN (SCRN $1(\varnothing)):$ FO R J=ø TO 1øø:NEXT
PJ $23 \varnothing$ CALL PUTSCRN (SCRN2 (ø)) : FO $R \mathrm{~J}=\emptyset$ TO 1øø: NEXT

AB $24 \varnothing$ CALL PUTSCRN(SCRNJ (\varnothing)) : FO $R \mathrm{~J}=\emptyset$ TO 1øø: NEXT
ME $25 \emptyset$ IF INKEY $\$="$ " THEN $22 \emptyset$
MO $26 \emptyset$ CLS: SCREEN $\emptyset: W I D T H$ 8ø: KEY ON: END

Program 3: Slide Show Demo

FE $1 \varnothing$ DIM SCRN(4ø4B), ATOS(6):LA= D
HP $2 \emptyset$ DEF SEG: BLOAD"ARRYSCRN", VA RPTR(ATOS (\varnothing))
$D D 3 \emptyset \operatorname{PUTSCRN}=\operatorname{VARPTR}(A T O S(\varnothing)): L A$ $=\operatorname{VARPTR}$ (SCRN (Ø))
NA $4 \emptyset$ BLOAD"PIC1", LA
FD $5 \emptyset$ KEY OFF:CLS: SCREEN 1:COLOR Ø, 1
AB $6 \varnothing$ CALL PUTSCRN (SCRN ($\varnothing)$): BLOA D"PIC2", LA
$687 \emptyset$ IF INKEY\$<>" " THEN $7 \varnothing$
C6 $8 \emptyset$ CALL PUTSCRN (SCRN ($\varnothing)$): BLOA D"PIC3", LA
JD 90 IF INKEY\$<>" " THEN $9 \varnothing$
DO 1 Øø CALL PUTSCRN(SCRN (Ø))
LI 110 IF INKEY\$く>" " THEN $11 \emptyset$
LF 12ø CLS: SCREEN Ø:WIDTH 8ø: KEY ON: END

Program 4: SCRNARRY Source Code

Note: This source code is provided for information only. It is not required for Programs 1-3. An assembler is required to enter this listing.

CSEG STOA	SEGMENT PROC	FAR	
	ASSUME	CS: CSEG	
	PUSH	ES	;Save extra segment
	PUSH	DS	; Set the extra segment
	POP	ES	; eqaul to the data segment
	PUSH	DS	; Save the data segment
	MOV	BP, SP	; Make BP point to the stack
	MOV	AX, øВ8øøН	; Set data segment to beginning
	MOV	DS, AX	; of video RAM.
	MOV	CX,8996	; Initialize move counter
	XOR	SI,SI	; Initialize source index
	MOV CLD	DI, 8[BP]	; Init. dest. index to array offset ; Set direction flag
REP	MOVSW POP	DS	; Move the display to the array ; Restore the data segment
	POP	ES	; Restore the extra segment
	RET	2	; Clean up the stack
STOA	ENDP		
CSEG	ENDS		
	END		

Program 5: ARRYSCRN Source Code

Note: This source code is provided for information only. It is not required for Programs 1-3. An assembler is required to enter this listing.

CSEE ATOS	SEGMENT		
	PROC	FAR	
	ASSUME	CS: CSEG	
	PUSH	ES	;Save extra segment
	MOV	BP, SP	; Make BP point to stack
	MOV	AX, øВ8øбН	; Set extra segment to beginning
	MOV	ES, AX	; of video RAM.
	MOV	CX,8996	; Initialize move counter
	XOR	DI, DI	; Init. source index to array offset
	MOV	SI, 6[BP]	
REP	MOVSW		; Move the array to the screen
	POP	ES	; Restore extra segment
	RET	2	; Clean up stack
ATOS	ENDP		
CSEG	ENDS		
END			

Speedy Strings For Commodore

Tibor Friedman

Here's a fast machine language routine that lets you load large amounts of data into memory very quickly. You can use it without knowing anything about machine language, and the demonstration programs include two handy disk utilities. A disk drive is required, and a printer is optional.

In Commodore BASIC, the conventional ways to retrieve information from a disk are the GET\# or INPUT\# commands. Though GET\# is the more flexible of the two, INPUT\# is much faster, since it pulls in an entire string at once rather than reading one character at a time. Even with INPUT\#, however, reading large files from BASIC can be a slow and tedious process.
"Speedy Strings" offers a faster alternative which you may find useful in a variety of applications. Here's the idea: First, you create a string array in memory, making every individual array element the same length. Then you load the array data from disk with a fast machine language (ML) routine, putting it directly into the alreadyestablished array elements. Don't worry if that sounds a bit confus-ing-the examples show you how much time the technique can save. And you don't need to understand
machine language to use the routine in your own programs.

Type in and save Programs 1, 2 , and 3 on disk before doing anything else. Then load and run Program 1, which demonstrates the speed difference between ordinary string retrieval and the Speedy Strings technique. The program begins by creating a 600 -element string array and filling each element with a string that consists of 20 spaces (lines 100-120). Then it POKEs the ML routine into memory (line 130) and creates a disk file of string data (line 140). Then the program calls a subroutine that retrieves the data from disk and stores it in the string array using INPUT\# statements within a conventional FOR-NEXT loop. After displaying the time elapsed during that operation, it retrieves the data using the Speedy Strings technique. As you'll see, the second method is considerably faster.

Before you can call the ML routine to load the data from disk, you must have created a string array in memory to receive the data. And the array elements must all be of equal length so the ML routine knows where to put each piece of data. When creating the array, you must make sure that every string begins with a space (character code
32) as shown in line 120 of Program 1. Otherwise the ML routine won't work properly.

Fast Disk Menu

Program 2, "Fast Disk Menu," demonstrates a practical application of this technique. Even if you're not interested in the technique itself, you may find this a valuable addition to your program library. It lets you quickly scan the directory of a disk, sort it alphabetically if you like, and quickly load any program shown on the screen.

When you run Fast Disk Menu, it reads the directory of the current disk and displays a screenful of information in much the same format as if you had entered LOAD " $\$ 0$ ", 8 followed by LIST. Each program is listed by name, with the familiar PRG, SEQ, or REL type indicator at the right. Non-PRG files are highlighted in a different color. At the left of each filename is a number. If the disk contains more programs than the screen can hold, you can press the space bar to view the rest of the directory.

To load and run a program from the directory, simply press the f1 key and enter the number of the program you want to run. It automatically loads and runs, replacing Fast Disk Menu in memory (note that this works only for conventional BASIC programs that you can start with LOAD and RUN). You can also dump the directory on a printer by pressing f5. Before doing this, you may want to sort the filenames into alphabetical order by pressing f 3 .

In its present form, Fast Disk Menu POKEs the ML code into memory every time you run it. By making some slight modifications, you can resave the program with the ML routine "pasted onto" the end of the BASIC program itself. The routine beginning at line 620 does most of the work for you. Execute this routine by typing GOTO 630 and pressing RETURN. Replace line 120 with $120 \mathrm{QQ}=$ (PEEK(45) $+256 * \operatorname{PEEK}(46)-73)$. Then delete every line from 560 to the end of the program and resave it as you would any other BASIC program. When you reload and run the program, it already includes the ML routine.

Fast Disk Catalog

Program 3 uses the same technique to speed up the process of cataloging a number of disk directories. It catalogs and alphabetizes as many as 600 filenames for you and prints the results on a printer, aligning all the information into three neat columns.

When you first run Program 3, it indicates that 600 records are available for storing directory information. To read a disk directory, simply place a disk in the drive and press R. Afterward, the program shows how many records are still available for storage; how many files have been recorded. in total; how many files were found on the disk; and the disk ID.

You can continue this process, inserting new disks and pressing R to read their directories, as long as the display shows there is record space available (or until you run out of disks). If you need more than 600 entries, increase the value of MM in line 40 . Be sure you have enough space allocated, since attempting to add entries when no more space is available will crash the program.

Once you've read as many directories as you want, press Q to exit this portion of the program and proceed to the next. Just as in Program 2, the filenames are displayed on the screen with non-PRG names highlighted in a different color. If the screen cannot hold all the filenames you've recorded, press the space bar to view the next screenful of names.

At this point you can print out the disk directory. Before doing so, you may want to press the f5 key to alphabetize the master directory. Then press f 1 to dump the directory on a printer. The master catalog is printed in three columns, with the first column indented a few spaces so you can insert the printout in a three-ring binder.

For instructions on entering these listings, please refer to "COMPUTE!'s Guide to Typing In Programs" in this issue of COMPUTE.

Program 1: Speedy Strings Demonstration

1øØ MM=6øб:REM MAX. MEMORY
: rem 9
$11 \varnothing$ DIMFS(MM):PRINT"\{CLR\} SETT ING UP STRINGS IN BASIC"
:rem 69
$12 \varnothing$ FORI $=\varnothing$ TOMM: $\mathrm{F} \$(\mathrm{I})=\operatorname{CHR} \$(32)+$ "\{19 SPACES\}":NEXT:REM* 19 SPACES=LEN $2 \varnothing$:rem 118
13ø GOSUB6øø:REM LOAD ML
:rem 129
14ø GOSUB3øø:REM CREATE A FILE OF STRINGS ON DISK:rem 98
$15 \varnothing$ GOSUB4øø:REM CONVENTIONAL \{SPACE\}RETRIEVAL AND TIME
:rem 8
$16 \varnothing$ GOSUB2øø:REM SPEEDY STRING METHOD :rem 41
$17 \varnothing$ END :rem 111
2øø PRINT"\{2 DOWN \} SPEEDY RETR IEVAL" :rem 253
210 TIS="øøøøøø": OPEN15,8,15:0 PEN1, $8, \varnothing, " \varnothing: T E S T \quad \varnothing, S, R^{\prime}: S Y$ S(832):CLOSE1:CLOSE15
: rem 127
$22 \varnothing$ C=PEEK (98ø) +256 * $\operatorname{PEEK}(981)$: rem 53
$23 \varnothing \mathrm{~T}=\mathrm{TI} \$$:rem 11
240 FORI $=\varnothing$ TOC-1:PRINTI;FS(I):N EXT
: rem 63
$25 \varnothing$ PRINT, MID $(T \$, 3,2)$ ": "RIGHT \$(T\$,2)
:rem 27
260 RETURN
:rem $12 \varnothing$
290 REM CREATE FILE :rem 83
3øø PRINT"\{2 DOWN \}CREATING A T EST FILE AND SAVING TO DIS ${ }^{\prime \prime}$
: rem 221
31ø FORI $=\varnothing$ TOMM: $\mathrm{F} \$(\mathrm{I})=" * 1234567$ 89ø123456789":NEXT:REM * 2 \emptyset CHARACTERS
:rem 68
32ø OPEN2,8,2,"@ø:TEST Ø, S,W"
: rem 71
33ø FORI $=\varnothing$ TOMM: PRINT\#2,F\$(I):N EXT:CLOSE2:RETURN :rem 49
$4 \varnothing \emptyset$ PRINT"\{2 DOWN \} CONVENTIONA L RETRIEVAL" :rem 197
41ø TIS="øøøøøø": OPEN15,8,15:0

$42 \varnothing$ IFST=64THEN44 \quad :rem 78
430 NPUT* $\mathrm{FS}(\mathrm{C}) \mathrm{C}=\mathrm{C}+1:$ rem 58 ø :rem 8
$44 \varnothing$ CLOSE2:CLOSE15:T\$=TI\$:rem 6
$45 \emptyset$ FORI $=\varnothing$ TOC-1 $:$ PRINTI; $F \$(I): N$ EXT
:rem 66
46ø PRINT, MID\$(T\$,3,2)": "RIGHT $\$(T \$, 2) \quad:$ rem $3 \varnothing$
480 RETURN :rem 124
$59 \emptyset$ REM *M/L STRING UPLOAD*
\{2 SPACES \}RELOCATABLE/*SET \# OF CHARACTERS IN STRING * :rem $2 ø 5$ $6 \emptyset 0$ PRINT" $\{2$ DOWN $\}$ LOADING ML"
610 $\mathrm{AD}=832$: $\mathrm{FORI}=\varnothing \mathrm{TO} 9$: : rem 32
$610 \mathrm{AD}=832$: $\mathrm{FORI}=\varnothing$ TO79: READD: PO KEI +AD, D: NEXT: RETURN
: rem 223
620 DATA169,255,141,212,3,141, 213,3,165,55 :rem 61
630 DATA1 $33,252,165,56,133,253$,162,1,32,198,255 : rem 64
640 DATA174,212,3,232,142,212, 3,208,3,238,213,3,216,56,1 65,252,233 :rem 21ø
650 DATA21:REM STRING LEN +1
:rem 72
660 DATA1 $33,252,176,5,166,253$, 2ø2,134,253,32,2ø7,255
:rem 52
$67 \varnothing$ DATA164,144,2ø8,18,2ø1,13, 24б,245,160, $0,145,252,2 \varnothing \varnothing$, 192
: rem 122
$68 \emptyset$ DATA2ø:REM STRING LEN
: rem 238
690 DATA24ø,209,32,2ø7,255,208
,244,32,2ø4,255,96, $\varnothing, \varnothing, \varnothing ~$
:rem 138

Program 2: Fast Disk Menu

1øø POKE5328ø,6:POKE53281,6
: rem 242
$11 \varnothing$ PRINTCHR (14)CHR\$ (8):PRINT "\{CLR\}\{BLK\}\{1ø DOWN\}\{YEL\}" SPC(12)"FAST DISK MENU :rem $16 \varnothing$
$12 \varnothing \operatorname{REM}\{2$ SPACES $\} Q=\operatorname{PEEK}(45)+2$ 56*PEEK (46) -73:rem 158
$13 \varnothing$ GOSUB57 $0: Q Q=A D$:rem 78
$14 \varnothing \operatorname{DIMF}$ (12ø):FORI $=\varnothing$ TO12 $2 \varnothing$:rem $2 ø 2$
$150 \mathrm{FS}(\mathrm{I})=\operatorname{CHR} \$(32)+"$
$\{2 \varnothing$ SPACES $\} ":$ NEXT: Y $\$=$ CHR $\$($ 34): $\mathrm{Z} \$=\operatorname{CHR} \$(19 \varnothing) \quad: r e m 4$

160 OPEN1, $8, \varnothing, " \$ ": S Y S Q Q: C L O S E 1$: rem $1 \varnothing$
$17 \varnothing C=\operatorname{PEEK}(\varnothing): A=1 \quad:$ rem 167
180 IFA $=>$ CTHENA $=1$:rem 5
$19 \emptyset$ PRINT"\{CLR\}\{DOWN\}
\{7 SPACES\}\{RVS\}E8习"Y\$LEFT \$ (F\$(ø),16)Y\$"\{3 SPACES\}"MI $\mathrm{D} \$(\mathrm{FS}(\varnothing), 18,2) \quad:$ rem 69
$2 ø \varnothing$ PRINT:FORI $=A T O A+8: I F I=>C T H$ ENPRINT:GOTO27ø : rem $23 \varnothing$
$210 \operatorname{IFLEFT} \$(F \$(I), 1)=Z \$$ THENE $=2$: GOTO23ø
:rem $2 ø 1$
$220 \mathrm{E}=1: \operatorname{IFMIDS}(\mathrm{F} \$(\mathrm{I}), 18,3)<>" \mathrm{P}$ RG"THENE $=2:$ F $\$(I)=Z \$+$ LEFT $\$($ FS(I), 2ø)
: rem 55
$23 \varnothing$ IFE $=2$ THENPOKE646,3:GOTO25 0 :rem 63
240 POKE646,7 :rem $2 \varnothing \varnothing$
$25 \emptyset$ PRINTTAB(5)I;Y\$MID\$(F\$(I), E, 16) Y\$;
:rem 145
260 PRINT" $\{3$ SPACES $\}$ "MIDS (FS (I), 17+E, 3) :rem 31
$27 \varnothing$ PRINT:NEXT :rem 159
280 PRINT" $\{$ DOWN $\}$ E8习 $\{5$ SPACES $\}$ 1-LOAD \{ 3 SPACES \}F3-SORT
\{3 SPACES \}F5-PRINTT": POKE19 8, \varnothing :WAIT19 $\overline{8}, 1$:rem 211
$29 \varnothing \operatorname{IFPEEK}(197)=4$ THEN34 \varnothing
:rem $12 \varnothing$
$3 \varnothing \varnothing \operatorname{IFPEEK}(197)=5$ THEN $39 \varnothing$
:rem 118
$31 \varnothing \operatorname{IFPEEK}(197)=6$ THEN $46 \varnothing$
:rem 118
$32 \varnothing \operatorname{IFPEEK}(197)=6 \varnothing$ THENA $=A+9: G O$ TO18ø
:rem 60
33ø PRINT"\{3 UP\}":GOTO28ø

$$
\text { : rem } 39
$$

$34 \varnothing$ INPUT"\{DOWN\}\{5 SPACES\}PROG RAM \#"; NS:N=VAL (NS):IF $\bar{N}<10$ RN> CTHEN19 9
:rem 12
$35 \emptyset \mathrm{~F} \$=\operatorname{LEFT} \$(\mathrm{~F} \$(\mathrm{~N}), 16):$ rem 123
$360 \operatorname{IFRIGHT} \$(F \$, 1)="$ "THENF $\$=$ L EFT\$(F\$,LEN(F\$)-1):GOTO36ø
:rem 115
$37 \varnothing$ PRINT"\{CLR\}LOAD"Y\$FSY\$",8
:rem 8
38ø POKE631,19:POKE632,13:POKE 633,82: POKE634,117: POKE635 ,13:POKE198,5:END
:rem 8
39ø PRINT"\{CLR\}\{5 DOWN \}
$\{8$ SPACES $\}$ S $\{2$ SPACES $\}$ O
(2 SPACES $\} \overline{\mathrm{R}}\{2$ SPACES $\} \bar{T}$
(2 SPACES $\} \bar{I}\{2$ SPACES $\} \bar{N}$
(2 SPACES \} $\bar{G} \quad: r e \bar{m} 217$
4øø FORI=1TOC- $\overline{2}: I F F \$(I)<F \$(I+1$)THEN45ø
:rem 168
$410 \mathrm{Q} \$=\mathrm{F} \$(\mathrm{I}+1) \quad:$ rem 167
$42 \varnothing$ FORJ $=1$ TOISTEP-1: $\operatorname{IFF} \$(J)<Q \$$

THENF $\$(\mathrm{~J}+1)=$ Q ：GOTO45
：rem 136 $43 \varnothing \mathrm{~F} \$(\mathrm{~J}+1)=\mathrm{F} \$(\mathrm{~J}):$ NEXT：rem 179 44σ FS（1）$=\mathrm{Q} \$$
：rem 54 450 NEXTI：A＝1：GOTO19ø ：rem 23 460 PRINT＂\｛CLR\} \{DOWN\}IS PRINT ER ON？＂：POKE198，$\varnothing: \bar{W} A I T 198$, 1：GETMT\＄：IFMT\＄＜＞＂Y＂THEN19Ø
：rem 77
47Ø OPEN4，4，7
：rem 196
$48 \emptyset$ PRINT\＃4，Y\＄LEFT（FS（ \varnothing ），16）Y \＄＂$\{3$ SPACES $\}$＂MID（FS（ \varnothing ）， 18 ，2）：PRINT\＃4，CHRS（2б）CHRS（1 5）；
：rem 38
$49 \varnothing \mathrm{U}=\mathrm{C}-1: \mathrm{V}=\operatorname{INT}(\mathrm{U} / 3)+1$ ：rem 236
50ø FORI＝1TOV：FORJ＝ØTO3： $\mathrm{Q}=\mathrm{I}+\mathrm{J}$＊ V ：IFQ＞UTHEN53 \quad ：rem 84 $51 \emptyset \mathrm{E}=1: \operatorname{IFLEFT} \$(\mathrm{~F} \$(Q), 1)=\mathrm{Z} \$ \mathrm{THE}$ $\mathrm{NE}=2 \quad:$ rem 185 $52 \emptyset$ PRINT\＃4，YSMIDS（FS（Q），E，16） YS；：IFE＝2THENPRINT\＃4，ZS；
：rem 176
530 PRINT\＃4，＂\｛5 SPACES $\}$＂；：NEXT ：PRINT\＃4 ：rem 19ø
$54 \emptyset$ NEXT：CLOSE4：A＝1：GOTO19ø
：rem 178
550 END
：rem 113
560 REM LOAD ML ：rem 56
$57 \emptyset \mathrm{AD}=83 \emptyset: \mathrm{FORI}=\emptyset \mathrm{TO} 72$ ：READD：PO KEI＋AD，D：NEXT：RETURN
：rem 219
$58 \emptyset$ DATA169，255，133，0，165，55，1 $33,71,165,56,133,72,162,1$ ， 32，198，255，166，Ø，232
：rem 219
$59 \emptyset$ DATA1 $34, \varnothing, 216,56,165,71,23$ $3,22,133,71,176,5,166,72,2$ Ø2，134，72，32，2ø7， 255
：rem 207
6øØ DATA164，144，2ø8，22，2ø1，34， $2 \varnothing 8,245,16 \emptyset, \emptyset, 32,207,255,2$ 61，34，24の，249，145，71
：rem 187
610 DATA2øØ，192，21，2ø8，242，24Ø ，207，32，204，255，96，ø，Ø，ø
：rem 117
$62 \emptyset$ REM＊TO TACK M／L TO END OF THE PRGR． 88 SPACES $\}$＊
\｛2 SPACES $\}$ FIRST：RUN 630
$\{2$ SPACES \}*
：rem 49
630 POKE45，（（PEEK（45）＋73）AND25 5）：POKE46，PEEK（46）－（PEEK（4 5）＜ 72 ）
：rem 195
640 POKE47， $\operatorname{PEEK}(45): \operatorname{POKE} 48, \mathrm{PEE}$ $\mathrm{K}(46)$ ： $\operatorname{POKE} 49$ ， $\operatorname{PEEK}(45)$ ： POKE 5ø，PEEK（46）
：rem 219
$65 \emptyset \mathrm{AD}=\operatorname{PEEK}(45)+256 * \operatorname{PEEK}(46)-7$ 3：RESTORE
：rem 3
$66 \emptyset$ FORI $=\emptyset T O 72$ ：READD：POKEI $+A D$ ， D：NEXT
：rem 42

Program 3：Fast Disk Catalog

$1 \varnothing$ POKE56，PEEK（56）－1 ：CLR：POKE5 3281，6：POKE5328Ø，6 ：rem 28
$2 \emptyset$ PRINTCHRS（14）CHRS（8）：PRINT＂ \｛CLR\} \{8 DOWN \}", "\{CYN\} FAST \｛SPACE\}DISK CATALOG": rem 57
25 PRINT，＂T8 DOW̄N \} "TAB (14)"PLE ASE WAIT＂：GOSUB1ø1ø：rem 168
30 AS＝＂\｛DOWN \} \{CYN \} \{2 SPACES \} \｛RVS\}R\{OFF\}EAD A DISK OR \｛RVS\} $\bar{Q}\{O F F\} U I T ": X S="$ \｛UP\} \｛24 SPACES \}\{2 UP\} " :rem 151
$4 \emptyset$ MM＝6ØØ ：REM MAX．MEM．－UP TO \｛SPACE \} 16øøø
：rem 124
$5 \emptyset$ DIMF $(\mathrm{MM}): A=\varnothing: \operatorname{EA}=\operatorname{PEEK}(45)+2$ 56＊PEEK（46）：AD＝EA－373
：rem 118
$6 \emptyset$ FORI $=\emptyset T O M M: F S(I)=\operatorname{CHR}(32)+"$ \｛2ø SPACES\}":NEXT :rem 9ø
$7 \emptyset$ PRINT，＂\｛CLR\}", " $\{$ RVS $\}$ ROOM F OR＂MM＂\｛LEFT\} RECORDS
：rem $18 \varnothing$
75 PRINT＂\｛YEL\}K2 @ヨIDK5 @习\#COU NTK5＠ヨTOTALE3＠उAVVAIL．SPAC Ek＠
：rem 61
8ø PRINTA\＄：POKE198，Ø：WAIT198，1 $: \operatorname{IFPEEK}(197)=62$ THEN1 $3 \varnothing$ ：rem 119
82 IFPEEK（ 197 ）＜＞17THENPRINTX\＄： GOT08ø ：rem 5
85 PRINT＂\｛UP \} \{ 5 SPACES \}READING \｛9 SPACES ${ }^{\prime \prime}$
：rem 73
$9 \emptyset$ OPEN15，8，15，＂IØ ：rem 19Ø
$1 \emptyset \emptyset$ OPENL，8，$\varnothing, " \$ \varnothing ": S Y S(A D): C L O$ SE1：CLOSE15 ：rem 126
$11 \varnothing \operatorname{C=}=\operatorname{PEEK}(98 \emptyset)+256 * \operatorname{PEEK}$（ 981 ） ：rem 51
$12 \emptyset$ PRINTXS：PRINT＂\｛CYN \}
$\{2$ SPACES \}"RIGHT\$(F\$(C-1), 2），$C-B, C, M M-C: B=C: A D=E A-35$ 7 ：GOTO8Ø
：rem 155
130 IFA $=>$ CTHENA $=$ ．：I FC＝ATHENPOK E198， $0:$ END
：rem 244
140 PRINT＂$\{$ CLR $\}$＂$:$ FORI＝ATOA +16 ：
IFI＞＝CTHENPRINT：GOTO149
：rem 244
143 PRINTTAB（5）＂\｛CYN\}";:IFMIDS （FS（I），18，1）＜＞＂P＂THENPRINT ＂\｛YEL\}";
：rem 149
145 PRINTCHRS（34）LEFTS（FS（I），1 6）CHRS（34）；
：rem 11
147 IFMIDS（FS（I），18，1）＜＞＂P＂THE NPRINTTAB（25）MIDS（FS（I）， 18 ，2）：
：rem 74
148 PRINTTAB（31）RIGHT\＄（F\＄（I）， 2 ） ：rem 11
149 NEXT ：rem 221
150 PRINT，＂\｛3 DOWN \} \{RVS \}F5
\｛OFF \}-SORT \{ 3 SPACES \} TRVS \}F I\｛OFF\}-PRINT": POKE1 98, ø:WA IT198，1
：rem 132
16Ø $\operatorname{IFPEEK}(197)=6$ ANDFL＝ 1 THEN1 9 の ：rem 75
$170 \operatorname{IFPEEK}(197)=4$ THEN26 6 ：rem 118
$18 \emptyset \mathrm{~A}=\mathrm{A}+17$ ：GOTO13Ø ：rem 242
190 FL＝1：PRINT＂\｛CLR\}"SPC(25ø)" S $\{2$ SPACES $\}$ O $\{2$ SPACES $\}$ R $\{2$ SPACES $\} T\{2$ SPACES $\}$ I
$\{2$ SPACES $\} \underline{\mathrm{N}}\{2$ SPACES $\} \overline{\mathrm{G}}$ ：rem $2 ø 6$
2øø POKE987，7ø：POKE988，Ø：SYS（E A－261） ：rem 64
$22 \emptyset A=\emptyset: G O T O 14 \emptyset \quad$ ：rem 74
260 PRINT＂\｛CLR\} \{CYN\}\{RVS \}
\｛2 SPACES\}IS THE PRINTER O N？＂：POKE198，\varnothing ：WAIT198，1
：rem 127
270 OPEN4，4，7：rem 194
$28 \varnothing$ PRINT\＃4，＂\｛5 SPACES \}C A T A L O G＂：PRINT\＃ 4 ，CHR $\overline{\$}(\overline{2} \sigma) \mathrm{CH}$ R§（15）；
：rem 90
$29 \varnothing \mathrm{U}=\mathrm{C}: \mathrm{V}=\operatorname{INT}(\mathrm{U} / 3)+1$ ：rem $14 \varnothing$
3 Øの FORI＝1TOV：FORJ＝ØTO3： $\mathrm{Q}=\mathrm{I}+\mathrm{J}$＊ V ：rem 222
$305 \operatorname{IFQ}>\operatorname{UORLEFT}(F S(Q), 1)=" \quad " T$ HEN32 σ
：rem 25ø
$31 \emptyset$ PRINT\＃4，CHR\＄（34）LEFT\＄（F\＄（Q ），16）CHRS（34）＂＂RIGHTS（FS（ Q），2）＂\｛3 SPACES $\}$＂；rem 117 $32 \emptyset$ NEXT：PRINT\＃4 ：rem 242
$33 \emptyset$ NEXT：PRINT\＃4：CLOSE4：A＝．：GO TO14ø ：rem 197 1øøø REM ML LOADER ：rem 245 1010 AA＝832：FORI＝øTO110：READD： POKEAA + I，D：NEXT ：rem 12
$1620 \mathrm{AD}=\operatorname{PEEK}(55)+256 * \operatorname{PEEK}(56)$ ：rem 56

1 103ø FORI＝ 0 TO2 55 ：READD：POKEAD + I，D：NEXT：RETURN ：rem 159
1 104Ø REM\｛2 SPACES\}*READ DISK*
：rem 68
$1 ø 5 \emptyset$ DATA169，Ø，141，212，3，141，2 $13,3,165,55,133,252,165,5$ $6,133,253,234,162,1,32$
rem 231
1 166Ø DATA198，255，160，26，32，207 $, 255,136,208,25 \emptyset, 32,207,2$ 55，133，254，32，2ø7，255
rem 213
1070 DATA1 33，255，32，2ø7，255，16 $4,144,2 ø 8,6 \emptyset, 2 \emptyset 1,34,2$ ø8，2 $45,174,212,3,232,142,212$
：rem 81
1 108 DATA3，2ø8，3，238，213，3，216 ，56，165，252，233，22，133，25 $2,176,5,166,253,262,134$
：rem 40
$109 \emptyset$ DATA253，160，$\varnothing, 32,207,255$ ， 2ø1，34，24の，249，145，252，2ø Ø，192，19，2ø8，242 ：rem $2 \emptyset 3$
11øø DATAl65，254，145，252，20ø，1 65，255，145，252，192，0，208， 189，32，204，255，96 ：rem 17 1110 REM＊SORT＊：rem 67
1120 DATA173，219，3，41，127，141， 219，3，173，22ø ：rem 103
$113 \varnothing$ DATA3，9，128，141，22ø，3，165 ，47，133，254，165 ：rem 208
1140 DATA48，133，255，160， 0,177 ， 254，2ø5，219，3，2ø8，8，2øø，1 77，254，2ø5，22ø，3，24ø，3ø
：rem 31
1150 DATAl6 ，2，177，254，141，216 ，3，2ø0，177，254，141，217，3， $24,165,254,109,216,3,133$
：rem 83
1160 DATA254，165，255，109，217，3 ，133，255，144，209，24，165，2 $54,165,7,141,216,3,165$
：rem 3
$117 \emptyset$ DATA255，1ø5，Ø，141，217，3，5 $6,173,212,3,233,1,141,212$ ，3，173，213，3，233，0，141
：rem 267
118 DATA213，3，174，213，3，208，7 ，173，212，3，2ø1，ø，240，23，1 $73,216,3,133,254,173,217$
：rem 66
1190 DATA3，133，255，169，0，141，2 $18,3,141,214,3,141,215,3$ ， $24 \varnothing, 19,32,95,229,96,208$ ：rem 41
12 Øø DATA198，24，165，254，1ø5，3， $133,254,165,255,165,0,133$ ，255，160，1，177，254，133
：rem 249
121 DATA218，2øø，177，254，133，2 19，2øø，2のø，177，254，133，22 8，2øø，177，254，133，229
rem $2 ø 1$
$122 \emptyset$ DATAl6ø， $0,177,218,209,228$ $, 24 \sigma, 4,144,36,176,7,2 \emptyset \varnothing, 1$ 92，16，24б，29，144，239，16ஏ
：rem 96
$123 \emptyset$ DATA1，165，228，145，254，2のø ，165，229，145，254，2ø0，2ø0， 165，218，145，254，2øø，165
：rem 40
124 D DATA219，145，254，169，1，141 ，218，3，238，214，3，298，3，23 8，215，3，173，214，3，205
：rem 195
$125 \emptyset$ DATA212，3，208，159，173，215 ，3，2ø5，213，3，2ø8，151，174， $218,3,24 \varnothing, 14 \emptyset, 2 \emptyset 8,142$
：rem 184

Introduction To AmigaDOS Part 2

Charles Brannon, Program Editor

Last month, Part 1 covered the conventions of AmigaDOS and explained its most useful commands. This month's article wraps up the reference guide to AmigaDOS's interactive commands. A future article will cover the use of batch files and batch programming in AmigaDOS.

After working with the powerful AmigaDOS commands covered last month, you may decide that you prefer working with the AmigaDOS Command Line Interface (CLI) instead of the Workbench. If so, you may want to do away with the Workbench altogether. It wastes time and memory to load the Workbench every session merely to open a CLI if all you want to use is AmigaDOS anyway.

Fortunately, it's fairly simple to create an AmigaDOS-only disk. This disk can be used whenever the system asks for a Workbench disk. You probably won't want to modify your original Workbench disk, however; it's better to modify a copy of it and set aside the original for safekeeping. You can make several copies of your AmigaDOS disk for future use, if you want. Just follow these steps:

A Custom DOS Disk

1. Open the System drawer on the Workbench disk. If you don't see the CLI icon-a small cube labeled with a $1>$ symbol-run Preferences. (Otherwise continue to step 2.) One of the settings on the first Preferences screen is labeled CLI [ON] [OFF]. Click it ON, then click on the Save box to save the change to disk. Return to the Workbench
and reopen the System folder. You should now see the CLI icon.
2. Double-click on the CLI icon. A window titled "New CLI Window" appears. Click inside the window to make the CLI active.
3. At the $1>$ prompt, type ED S/Startup-Sequence and press RETURN. This loads a program called ED, a full-screen editor, and loads the file Startup-Sequence from the S subdirectory. Startup-Sequence is the batch file that makes AmigaDOS automatically start the Workbench when you boot the Workbench disk. After ED starts, you should see something like this on the screen:
ECHO "WorkBench Disk. Version 1.00 " ECHO ""
ECHO "Use Preferences tool to set date" ECHO ""
LoadWb
endcli > nil:
These are the batch file commands that AmigaDOS executes each time you boot up the Workbench disk. The ECHO commands are similar to PRINT statements in BASIC; they merely display messages on the screen. It's the last two commands in this file that we're interested in changing.
4. Using the cursor keys, move the cursor to the line with the LoadWb command and press CTRL-B twice to erase the last two lines. The batch file should now consist of the four ECHO commands only. If you wish, you can change the text in the ECHO commands to give your boot disk that "personal touch."
5. Press the ESC key. An asterisk prompt (*) appears at the bottom of the screen. Type X at this prompt
and press RETURN. This exits the ED program and saves the new Startup-Sequence file to disk. If you've made a mistake and would like to start over, press ESC-Q to quit the editor without changing the file.
6. After the disk busy light goes off, simultaneously press CTRL and both Amiga keys on each side of the space bar to reboot the system. This time, and from now on whenever you boot with this disk, AmigaDOS ends up in memory instead of the Workbench.

The Workbench Option

To conserve space on your new AmigaDOS disk, you may want to erase some files used by the Workbench, such as the LOADWB command in the C subdirectory, the Notepad, the clock, and all INFO files. However, it's convenient to have the Workbench available when you need it. You could use the editor to create another batch file that includes LOADWB and ENDCLI > NIL:. You would then type EXECUTE WB at a CLI prompt to bring up the Workbench (assuming you named the batch file WB by typing ED WB to create the batch file). ED is useful for creating all kinds of simple batch files, in fact. We'll examine the editor in more detail in a future article on batch file programming.

Last month's article presented a tutorial on AmigaDOS along with a reference of the most often-used commands. Following is a reference to additional commands that, although useful, are not likely to be used casually. This list excludes commands such as ECHO that are
really useful only in batch files.
When experimenting with AmigaDOS commands, it's safest to use a copy of your DOS disk in case you accidentally erase a file or even the entire disk.

Advanced AmigaDOS Commands

< and > (Input/output redirection.) These symbols redirect the normal input/output flow of a command. For example, a program that normally accepts input from the keyboard and prints its output on the screen could be coerced into accepting input from a file or to send its output to the printer. The < and > symbols are used to point in the direction that I/O should flow; the less-than sign (<) redirects input, and the greater-than sign ($>$) redirects output. When using $<$ to redirect input, you may need to use a question mark for the parameter that the redirection file is replacing.
Examples:
DIR > DIRFILE
This redirection of the DIR command sends the disk directory to the file DIRFILE instead of to the screen. To confirm this, you can enter TYPE DIRFILE to display the contents of DIRFILE.

STACK < BASIC.STACK ?

The stack command normally accepts a command line parameter. Here, a file (BASIC.STACK) containing the number 8000 can be substituted. In order for the file to replace the command line parameter, you must use a question mark to hold that parameter's position.
FILENOTE This command attaches a comment to a file. Although AmigaDOS's 30-character filenames let you be quite descriptive, an optional FILENOTE lets you attach an additional 80 -character comment to a file. This comment is displayed beneath the filename when you use the LIST (not DIR) command. Follow FILENOTE with the name of the file you're describing, then the comment. You must enclose the comment in quotes if it includes spaces. The FILENOTE command also lets you include two optional keywords, FILE and COMMENT, presumably for the sake of readability.

Files have no comment by default. The comment is retained if the file is changed or overwritten. However, if you copy a file, its filenote does not get copied with it.

Examples:

FILENOTE waver.bas "Program lets you create sound waves."
After you attach this comment to the file waver.bas, LIST waver.bas yields this result:

waver.bas 2272 rwed 11-Oct-85 10:09:53

: Program lets you create sound waves
Second example:
FILENOTE FILE waver.bas COMMENT
"Program lets you create sound waves."
This is identical to the first example, except for the optional keywords FILE and COMMENT.
INFO This command shows a disk report. INFO displays the size of each mounted drive (normally 880 K , except for the RAM disk), the number of sectors used, number of sectors free, percentage of capacity used, number of disk errors that have occurred, the read/write status, and the disk's name. INFO also separately displays the names of the currently inserted disks. INFO has no additional parameters. Use LIST to display information about a particular file or directory.
INSTALL This command makes a disk bootable. In other words, an INSTALLed disk can be inserted at the Workbench prompt to bring up the system. Just follow INSTALL with the optional keyword DRIVE and the drive number. If you want to be able to execute AmigaDOS commands after booting, you must copy the C subdirectory from your master disk onto the copy. (All AmigaDOS commands are extrinsic and contained in the C subdirectory.)

Example:

INSTALL DRIVE DF1:

This makes the disk currently mounted in the external drive bootable.
JOIN This command combines two or more files. Follow JOIN with up to ten filenames separated by spaces. The destination file, holding the conglomerate, is specified with the keyword AS. The original files are unchanged.

Example:
JOIN Checks/Oct Checks/Nov Checks/ Dec AS "Checks/4th Quarter"
This combines the files Oct, Nov, and Dec from the subdirectory Checks into a single file called "4th Quarter" to be created in the Checks subdirectory. The destination filename is enclosed in quotes because it contains a space character.
PROMPT Defines a new CLI prompt. Follow PROMPT with a message, enclosing it in quotes if the message contains any spaces. The message is a replacement for the normal $1>$ or $2>$ prompt of AmigaDOS. You can imbed the characters $\% \mathrm{~N}$ to display the current task number.
Examples:
PROMPT "\%N>"
Displays the default prompt.
PROMPT "Ready, Master:"
Displays Ready, Master: as the new AmigaDOS prompt.
SEARCH Finds text within files. This command searches for the target string through any directories you specify. Follow SEARCH with the optional keyword FROM, the pathname of the directories to be searched, the optional keyword SEARCH followed by the search string, and the optional keyword ALL, which forces SEARCH to look through all subdirectories contained in the specified directory. When SEARCH finds the target string, it displays the line containing the string as well as the line number of the line containing the string. If you're searching through a directory, SEARCH also displays the filename of each file it's searching through.

SEARCH is not case-sensitive; it matches regardless of upper- or lowercase. You can cancel the command with CTRL-C. To force SEARCH to abandon the current file and begin searching the next, press CTRL-D. During a search, you may see the message "Line $x x$ truncated." This isn't anything to worry about; it just indicates that the line was too long to be searched, so if your search string was contained somewhere near the end of a too-long line, the search program could not find it.

Examples:

SEARCH FROM DFO: SEARCH LoadWb ALL

This looks for the phrase "LoadWb". The entire contents of the internal drive are searched, including all subdirectories, so this command takes a long time to finish.

SEARCH Progs/Tempfile LIBRARY

This looks for the word LIBRARY in the file Tempfile within the subdirectory Progs.
SORT This command alphabetically sorts a file you specify. Each record in the file to be sorted must end with a carriage return. Use SORT followed by the optional keyword FROM, the file to be sorted, the optional keyword TO, and the name of the file where the sorted output should be stored. SORT collates based on the entire line unless you include the keyword COLSTART and a column number. The sort comparison then starts by comparing two lines from that column to the end of the line. If that partial comparison succeeds, the first portion of the line is compared. This lets you specify two levels of sorting (see example).

Unless the file to be sorted is less than about 200 lines, increase the stack size with STACK to prevent a crash (see below). It's better to use too much stack space than too little.

Example:

If you have a list of first and last names, with the first name and initial in columns 1-19, and the last name always starting in column 20, you could use:

SORT FROM Route TO Sorted.Route COLSTART 20

The files are sorted by last name, and each group of identical last names is subsorted by first name.
STACK Sets the stack size. Follow STACK with the new stack size in bytes. The normal stack size is 4,000 , sufficient for most commands. When using SORT, MetaComCo ABasiC, programs with lots of nested subroutines, or programs using flood-fill, you may need to increase the stack size to prevent a crash. A value from 8,000 to 10,000 is usually generous enough for these cases.

WAIT This makes AmigaDOS pause and do nothing for a span of time. Although this might seem like a dumb command, WAIT has certain advantages over walking away from the computer or simply turning the machine off. Only the current CLI is frozen; multitasked processes continue. WAIT by itself pauses for one second; you can follow WAIT with a number of seconds, followed by either SEC or SECS, and a number of minutes, followed by either MIN or MINS. You can optionally include the keyword UNTIL followed by a time of day, specified as HH:MM (as measured by the Amiga's internal clock, so make sure it's set correctly). WAIT is useful within batch files to allow time for a message to be read, or as a background task to wait until a particular time before executing another command.

Examples:

WAIT 10 MINS 20 SECS

Waits for 10 minutes, 20 seconds.

WAIT UNTIL 17:00

Waits until the current time is 5 p.m.

RUN WAIT 10 SECS +

DIR +

ECHO "All done."
Waits for ten seconds, calls a directory as a second CLI task, then prints the message "All done."
WHY This interesting command calls up an additional explanation of what caused the most recent error. When an AmigaDOS command fails, you'll usually get a terse error message. If you want a more detailed, technical description, ask WHY. However, many times WHY isn't any more helpful-it just explains in more detail why a command failed.
Example:

waIt 10 SECONDS

AmigaDOS responds with the error message "Bad Args" because the correct notation is WAIT 10 SECS, not WAIT 10 SECONDS. If you type WHY, you get this answer:
Last command failed because argument line invalid or too long.

Although more descriptive, it still doesn't explain that SECS should be SECONDS-but it does point you in the right direction. ©

Davidson is $1,1,1, \& 1$ in Eduction

For math, speed reading, spelling and vocabulary. Davidson's award winning software outsells all others. Why? Because enough people choose to buy the educational software that works.

MATH BLASTERR makes it more fun to add, subtract, multiply, divide, and learn fractions, decimals
 and percents. First through sixth graders master 600 math facts with exciting graphics, animation, sound effects...even an arcade game. Apple ${ }^{\text {me }}$. Macintosh $h^{\text {"w }}$, BMM $^{\text {m }}$. Commodore 64/228". Atari". 49.95.

> SPEED READER II can quadruple your reading speed and improve your comprehension. Develop good reading habits, chart your progress, and have fun! For high school age through adult. Apple
Commodore 64/228". 69.95

WORD ATTACK lets students ten through adult discover the meanings and usages of 675 new words.
 Includes a fun. fastaction arcade game and add-your-own-words editor. Apple ${ }^{\text {rw }}$, IBM $^{\text {™ }}$. Commodore 64/28 "'. Atari". 49.95

SPALL II teaches ten year olds and older how to spell a thousand and one of our most commonly
 misspelled words. Vivid graphics, animation, sound effects, a lively arcade game and add-your-ownwords editor, too! Apple ${ }^{\text {™ }}$. IBM ${ }^{\text {wW }}$ Commodore 64/28 ${ }^{\text {w }}$. Atariw. 49.95

Davidson \& Associates, Inc. 800-556-6141
(In Calif, 213-534-4070)

MessageMaker 64

Erik Larsen

Create attractive, attention-grabbing displays for the Commodore 64 (or Commodore 128 in 64 mode) by choosing from eight different sets of oversize letters. The program even works with custom character sets and lets you dump the screens to a Commodore printer. It's easy to use and adds impact to virtually any BASIC application.

Have you ever wished that your Commodore 64 could display bigger screen characters? Though obviously handy for children's educational programs, jumbo characters are useful for many other purposes as well. Nearly every program starts with a title of some sort: Large letters can emphasize it. For anyone who's visually impaired, oversize characters are an invaluable aid to using and understanding computers. And if you have something to sell or trade, what better way to gain attention than by printing your message in giant script?
"MessageMaker 64" answers all of these needs by offering a set of eight different oversize character fonts, ranging from characters four times the normal size to characters that fill the entire screen. All the fonts can be used at any time, and the entire Commodore character set is available for enlargement. That includes all of the normal uppercase/ graphics and lowercase/uppercase characters-alphabetic letters, numbers, punctuation, and graph-
ics symbols-in reverse video as well as the normal form.

Using MessageMaker

The first thing to do is type in and save a copy of MessageMaker 64. Before you run the program, disable any programming aids or utilities that use the function keys (f1-f8). Since MessageMaker uses the function keys, this would only lead to conflicts.

As soon as you run MessageMaker, it blacks out the screen and waits for you to press a key. Though you don't see the familiar blinking cursor, the keyboard works as usual in most other respects. If you type $A-B-C$, it prints $A B C$ on the screen. To print the heart-shaped graphics character, press SHIFT-S. You can activate reverse video with CTRL-9, turn the characters red by pressing CTRL-2, and so on. To select a new font, press one of the eight function keys as shown in the accompanying table.

The eight available fonts are described in terms of width and height. Thus, 4×4 characters are four times wider and four times higher than normal; 4×8 characters are four times wider and eight times higher. You can mix different fonts freely on the same screen. For instance, you might want to print 8 $\times 16$ characters at the top of the screen, and 4×4 characters further down. Of course, the bigger the font, the fewer letters you'll be able to fit on the screen before it begins
to scroll. Press CTRL-L to switch to lowercase/uppercase mode, or CTRL-U to switch to uppercase/ graphics mode.

MessageMaker Function Keys

Font	Key
4×4	$f 1$
4×8	f2 (SHIFT-f1)
4×16	$f 3$
4×24	$f 4$ (SHIFT-f3)
8×8	$f 5$
8×16	$f 6$ (SHIFT-f5)
8×24	$f 7$
32×24	$f 8$ (SHIFT-f7)

Note that the cursor keys move one normal character space at a time (not the width of an oversize character). If you accidentally print the wrong character, you must press CRSR-LEFT to back up to the beginning of the character, then replace it with a new one. You can create some interesting effects by printing a character, moving the cursor back near the same position, and printing the same character again.

Signs And Banners

MessageMaker lets you dump a screen to any printer that can handle Commodore graphics characters (specifically, the reverse video space character). This lets you record your screens for posterity, make signs and banners, and so on. Press CTRL-P to print the screen in normal width, or CTRL-X to print
in double－width characters．Since double width prints all the way to the margins，you may prefer this mode for signs．However，note that the symmetrical fonts（ 4×4 and 8 $\times 8$ ）look squashed when printed in double width；use the taller fonts （ 4×8 and 8×16 ）to alleviate this problem．

The program works as pub－ lished with the odd－numbered Commodore printers－the 1525， 801 ，and 803 ．To use the program with the even－numbered Commo－ dore printers－the 1526 and 802－ add the following new line 5：

5 OPEN 6，4，6：PRINT\＃6，CHR\＄（22）： CLOSE 6

You also need to change the SI $\$=\operatorname{CHR} \(15) in line 890 to SI $\$=" \prime \prime$ and the GR $\$=\operatorname{CHR} \(8) in line 900 to GR\＄＝＂＇＂＇（in both cases， type the null string－nothing be－ tween the quotes）．

MessageMaker also works with custom character sets．Of course，this assumes you have al－ ready designed the characters and stored their definitions in an appro－ priate memory area．Only one change is needed：Replace the val－ ue 53248 in line 30 with the memo－ ry location where your character definitions start．

Integrating MessageMaker Screens

The simplest way to add a Message－ Maker screen to an existing pro－ gram is with＂Commodore 64 AutoPRINT，＂found on page 80 of the July 1985 issue of COMPUTE！． Load and run AutoPRINT，then an－ swer the question about line incre－ ments as described in that article． Do not type SYS 51000 at this point． Instead，load and run Message－ Maker，then create the screen you want．You can use the RETURN key as usual，since AutoPRINT is not yet active．However，you must leave enough blank screen space to enter a few direct－mode commands．

When your title screen is com－ plete，press RUN／STOP to break out of MessageMaker，then erase the BREAK IN（line number）and READY messages．Now load the program to which you want to add the screen，and erase the SEARCH－ ING and LOADING messages．At this point the screen should contain
nothing but the screen you de－ signed．Type SYS 51000 and press RETURN，then erase that message from the screen．Now press RE－ TURN anywhere on the screen． AutoPRINT adds the screen to your program as a series of PRINT state－ ments．At this time you can resave the program，renumber it，or modi－ fy it in any other way．

MessageMaker 64

For instructions on entering these listings， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

10 GOSUB61ø
：rem $12 \varnothing$
$2 \varnothing$ PRINT＂\｛CLR\}\{DOWN\}\{BLU\}";:FO KE53281，Ø：POKE5328ø，ø
：rem 192
$3 \varnothing \operatorname{SE}(1)=53248: \operatorname{SE}(2)=\operatorname{SE}(1)+1 \varnothing 2$ $4: \operatorname{SE}(3)=\operatorname{SE}(1)+2 ø 48: \operatorname{SE}(4)=S E$ （2）$+2 ø 48$ ：rem 172
$4 \emptyset \mathrm{SO}=\mathrm{SE}(1): \mathrm{SR}=\mathrm{SE}(2): \mathrm{IS}=\mathrm{SO}$ ：rem 73
5ø GETDS：IFD $=$＂＂THEN5 \varnothing ：rem 243
60 AA＝256：GOSUBl3ø ：rem 16
$7 \varnothing$ IFAA $=256$ THEN5 \varnothing ：rem $23 \varnothing$
$8 \emptyset \operatorname{IFS}(4)=1$ THENFORJJ $=\emptyset$ TOS（1）ST EPS（2）：FORI I＝1TOS（5）：GOSUB2 7ø：GOSUB32ø：NEXTII，JJ
：rem 232
$9 \emptyset \operatorname{IFS}(4)=2$ THENFORJJ $=\emptyset$ TO7：GOSU B27ø：FORII＝1TOS（5）：GOSUB39ø ：NEXTII，JJ ：rem 65
100 GOSUB51ø ：rem 167
$11 \varnothing \operatorname{IFPEEK}(211)>38$ THENGOSUB58ø ：rem 32
120 GOTO5Ø ：rem 49
$13 \varnothing$ REMARK－CHANGE ASCII TO POK E VALUE\｛14 SPACES\}-OR- PRI NT SPECIAL CHAR ：rem 136
$14 \emptyset \mathrm{BB}=\mathrm{ASC}(\mathrm{D} \$):$ IFBB >143 THEN $23 \varnothing$ ：rem 205
$15 \emptyset$ IFBB $=16$ THENGOSUB88 \varnothing ：RETUR $\mathrm{N} \quad:$ rem 182 $16 \varnothing$ IFBB $=24$ THENGOSUB1 $\varnothing 7 \varnothing$ ：RETUR N ：remi 222
$17 \varnothing$ IFBB＝21THENSO＝SE（1）：SR＝SE（ 2）：IS＝SO
：rem 95
$18 \emptyset$ IFBB $=12$ THENSO $=\mathrm{SE}(3): \mathrm{SR}=\mathrm{SE}($ 4）：IS＝SO ：rem løø
190 IFBB＞132THENIFBB＜ 141 THENGO SUB850：RETURN ：rem 251
$2 ø 0$ IFBB $=13$ ORBB $=141$ THENGOSUB55 Ø：RETURN ：rem 161
$21 \varnothing$ IFBB＝18THENIS＝SR：RETURN ：rem 19
220 IFBB＝129THENPRINT＂E1习＂；：RE TURN
：rem 86
$23 \varnothing$ IFBB $=146$ THENIS $=$ SO $:$ RETURN
：rem 68
$24 \varnothing$ IFBB＜32THENPRINTMIDS（＂ \｛5 OFF\} \{WHT\}\{11 OFF\} \{DOWN\} \｛OFF\} \{HOME \} \{8 OFF\}\{RED\} \｛RIGHT\} \{GRN\}\{BLU\} ", BB+1,1) ；：RETURN ：rem 56
$25 \emptyset$ IFBB $>=144$ AND $\mathrm{BB}<16 \emptyset$ THENPR INTMIDS（＂\｛BLK\} \{UP\} \{OFF\}
 K7羽8习\｛PUR\}\{LEFT\}\{YEL\} \｛CYN\}", BB-143,1); :RETURN
：rem 212
$26 \emptyset$ AA $=($ BBAND31）$)+0.5$＊（BBAND1 28 $): \operatorname{IF}($ BBAND 64$)=\emptyset$ THENAA $=A A+3$

2：RETURN REMARK－FIND CHAR IN
$\{27$ SPACES $\}$ MEMORY ：rem 55 $28 \emptyset$ POKE56334，\varnothing ：POKE1，51
：rem 86
$29 \varnothing \mathrm{KK}=\mathrm{PEEK}\left(\mathrm{IS}+8^{*} \mathrm{AA}+\mathrm{JJ}\right): \mathrm{LL}=\mathrm{PEE}$
$K\left(I S+S(3)+8^{*} A A+J J\right)$ ：rem 63
3øø POKE1，55：POKE56334，1
：rem 84
$31 \varnothing$ RETURN
：rem 116
$32 \emptyset$ REMARK－PRINT BINARY REPRES ENTATION $\{13$ SPACES $\}$ FOSR TI MES AS LARGE ：rem 196
$33 \varnothing \mathrm{NN}=64$ ： $\mathrm{FORMM}=\emptyset \mathrm{TO} 3$ ：rem 215
$34 \emptyset \mathrm{PP}=1+8^{*} \operatorname{INT}(\mathrm{KK} / \mathrm{NN})+2^{*} \operatorname{INT}(\mathrm{LL}$ ／NN）
：rem 245
$35 \emptyset$ KK＝KK－INT（KK／NN）＊NN：LL＝LL－ INT（LL／NN）＊NN：rem $2 \varnothing 2$
360 PRINTMIDS（＂\｛OFF\} \{OFF\}ED习 \｛OFF\}EFヨ\{OFF\}EIヨ\{OFF\}ECヨ \｛RVS\}EKヨ\{RVS\}EB习\{RVS\}EVヨ \｛OFF\}EVヨ\{OFF\}EBヨ\{OFF\}区K \｛RVS\}ECヨ\{RVS\}EIヨ\{RVS\}EFヨ \｛RVS\}ED彐\{RVS\} ", PP, 2);
：rem 4
$37 \varnothing$ NN＝INT（NN／4）：NEXT MM
：rem 193
$38 \emptyset$ PRINT＂$\{$ DOWN $\}$ \｛4 LEFT\}"; : RET URN ：rem $7 \varnothing$
$39 \emptyset$ REMARK－PRINT BINARY REPRES ENTATION\｛13 SPACES\}EIGHT T IMES AS LARGE ：rem 2
$4 ø \varnothing$ SP\＄＝RIGHT\＄（＂\｛5 SPACES \}", S(1б））
：rem \varnothing
$410 \mathrm{XX}=\mathrm{KK} \quad$ ：rem 24
420 YY＝256：FORXI＝1TO8 ：rem 21
$43 \emptyset \mathrm{YY}=\mathrm{YY} / 2 \quad$ ：rem 153
$44 \varnothing$ IFXX $>=Y Y T H E N X X=X X-Y Y:$ PRINT ＂\｛RVS\}"SPS"\{OFF\}"; :GOTO46ø
：rem 177
$45 \emptyset$ PRINTSPS；：rem 40
460 NEXTXI ：rem 98
$47 \varnothing \operatorname{IFS}(9)=\emptyset$ THENIFJJ $=7$ THENIFS $($ 1Ø）$=1$ THENGOTO49ø ：rem 112
480 PRINT＂$\{$ DOWN $\}$＂； ：rem 185
$49 \varnothing$ FORT＝1TOLEN（SP\＄）：PRINT＂
\｛8 LEFT\}"; :NEXTT :rem 219
$5 \emptyset$ RETURN ：rem 117
$51 \varnothing$ REMARK－ADVANCE TO NEXT POS ITION
：rem $2 ø 6$
$52 \emptyset \operatorname{IFS}(6)>\emptyset T H E N F O R T=1$ TOS（ 6 ）：P RINT＂\｛UP\}"; :NEXTT : rem 103
$53 \varnothing \operatorname{IFS}(7)>\varnothing$ THENFORT＝1TOS（7）：P RINT＂\｛RIGHT\}"; :NEXTT
：rem 246
$54 \varnothing$ RETURN
：rem 121
$55 \emptyset$ REMARK－PRINT RETURN
：rem 246
$56 \varnothing$ IFS（ 8 ）$>$ ØTHENFORT $=1$ TOS（ 8 ）： P RINT＂\｛DOWN\}":NEXTT: rem $18 \emptyset$
570 RETURN
：rem 124
$58 \emptyset$ REMARK－PRINT TO NEW LINE
：rem $2 ø 6$
$59 \emptyset \operatorname{IFS}(9)>\emptyset T H E N F O R T=1$ TOS（ 9 ）：P
RINT＂\｛DOWN\}":NEXTT: rem 185
60 RETURN ：rem 118
610 REMARK－DATA FOR 4X4：rem 71
$620 \mathrm{~S}(1)=6: S(2)=2: S(3)=1: S(4)=$ $1: S(5)=\emptyset: S(6)=4: S(7)=4: S($ 8）$=2: S(9)=1: S(10)=1$

$$
\text { :rem } 160
$$

630 RETURN ：rem 121
640 REMARK－DATA FOR 4X8：rem 78
$65 \emptyset \mathrm{~S}(1)=7: S(2)=1: S(3)=\varnothing: S(4)=$ $1: S(5)=\varnothing: S(6)=8: S(7)=4: S($ 8）$=4: S(9)=3: S(1 \varnothing)=1$
：rem 170
：rem 124

$67 \varnothing$ REMARK-DATA FOR 4 Xl6 :rem 128	
$68 \emptyset$	$\mathrm{S}(1)=7: S(2)=1: S(3)=\emptyset: S(4)=$
	$1: S(5)=2: S(6)=16: S(7)=4: S($
	8) $=4: \mathrm{S}(9)=3: \mathrm{S}(10)=1$
	:rem 222
690	RETURN :rem 127
$7 \varnothing \square$	REMARK-DATA FOR 4X24
	m 121
710	$S(1)=6: S(2)=1: S(3)=\varnothing$: $S(4)=$
	$1: S(5)=3: S(6)=24: S(7)=4: S($
	$=\emptyset: S(9)=\varnothing$: $\mathrm{S}(1 \varnothing)=1$
	:rem 208
720	RETURN :rem 121
730	REMARK-DATA FOR 8X8:rem 82
740	$S(4)=2: S(5)=1: S(6)=8: S(7)$
	$=8: S(8)=4: S(9)=3: S(10)=1$
	:rem 49
750	RETURN : rem 124
760	REMARK-DATA FOR 8X16
	:rem 132
770	$S(4)=2: S(5)=2: S(6)=16: S(7)$
	$=8: S(8)=8: S(9)=7: S(10)=1$
	:rem 108
780	RETURN :rem 127
790	REMARK-DATA FOR 8X24
	:rem 134
$80 \square 5$	$S(4)=2: S(5)=3: S(6)=24: S(7)$
	$=8: S(8)=\varnothing$: $S(9)=\varnothing: S(1 \varnothing)=1$
	:rem 87
810	RETURN :rem 121
$82 \varnothing$	REMARK-DATA FOR 32×24
	:rem 173
830	$S(4)=2: S(5)=3: S(6)=32: S(7)$
	= $\varnothing: S(8)=\varnothing$: $S(9)=\varnothing: S(1 \varnothing)=4$
	:rem 84
840	RETURN : rem 124
850	REMARK-CHANGE FONTS
	:rem 188
860	ONBB-1 32GOSUB610,67ø,730,7
	90,640,7øø,760,82ø : rem 12
$87 \varnothing$	RETURN : rem 127
880	REMARK-PRINT SCREEN TO PRI
	NTER :rem 163
890	SIS $=$ CHR (15) : rem 86
$9 \varnothing \varnothing$	RV \$ $=\mathrm{CHR} \$(18): \mathrm{RO} \$=\mathrm{CHR} \$(146)$
	:GRS=CHRS (8) :rem 68
910	$\mathrm{VR}=1 \varnothing 24$: rem 7ø
920	OPEN4,4:PRINT\#4 : rem 127
936	FORCL=øTO24:AS $=$ SI $\$: Q F=\varnothing$: F
	ORRO=øTO39 : rem 243
940	$\mathrm{SC}=\mathrm{PEEK}\left(\mathrm{VR}+4 \square^{*} \mathrm{CL}+\mathrm{RO}\right)$
	:rem 162
950	GOSUBløøø :rem 223
960	AS\$=AS\$+CHR\$(AS) : rem 93
976	NEXTRO :rem 128
$98 \varnothing$	PRINT\#4, SIS+AS\$+RO\$+GR\$
	:rem 44
990	NEXTCL: PRINT\#4,SIS:CLOSE4:
	RETURN : rem $12 \emptyset$
$1 \varnothing \varnothing \square$	REMARK-CONVERT PEEK TO AS
	CII :rem 2
1010	IFSC> $=128$ THENSC=SC-128:AS
	\$=AS\$+RV\$ \quad :rem 59
$1 \varnothing 2 \varnothing$	IFSC<320RSC>95THENAS=SC+6
	4:GOTO1ø5ø : rem 208
1030	IFSC>31 ANDSC<64 THENAS=SC:
	GOTO1ø50 : rem 105
1040	IFSC>63ANDSC<96THENAS $=$ SC+
	32 :rem 2 ø3
1050	IFRIGHT\$ (AS\$,1) < > RV\$ THENA
	S\$=AS\$+RO\$:rem 111
1060	RETURN :rem 167
1070	REMARK-EXTENDED MODE
	SIS=CHRS (14) : GOTO :rem 45
1080	:rem 137

Commodore 64 Program Profiler

D.E. Walker

Interested in speeding up your Commodore 64 BASIC programs? This convenient utility tells you which program lines take the most time to execute so you can rewrite them to run faster. The utility is written entirely in machine language, but you don't need to understand machine language to use it.

BASIC 2.0, the version of BASIC used by the Commodore 64, is what purists call an unstructured programming language. While some other languages (like Pascal) force you to write every program in a predefined structure, BASIC gives you the freedom to create whatever structure you like. That can be an advantage, but it can also result in slow, inefficient code if the program spends a lot of time performing unnecessary GOTOs or GOSUBs or is otherwise poorly structured.

If you want to improve a program's efficiency, you could examine it line by line, looking for superfluous REMs, a group of sin-gle-statement lines that could be combined into one multiple-statement line, and so on. But that would probably produce uneven results. Many parts of the program are performed only once, or so in-
frequently that it doesn't matter whether they're efficient or not. What you want to look for are the heavily used routines-FOR-NEXT loops, subroutines that are called frequently with GOSUB, long sequences of IF-THEN tests, and so on-where the program itself spends the most time.
"64 Program Profiler" generates an automatic time report for any 64 BASIC program, making it easy to identify the areas where time savings may be possible. Though it's written in machine language, you can use it without knowing machine language at all. First, type in the program as shown below, then save it on disk or tape.

A Resident Efficiency Expert

When you run the BASIC loader program, it puts the Profiler ML code in memory beginning at location 49152. Now you're ready to put your built-in efficiency expert to work. Enter SYS 49152 and press RETURN. Profiler asks three questions. First, you can choose to print the profile information on the screen or the printer. Second, you can decide whether to output the report in numeric form or in graphic form as a simple bar chart. Finally, enter the sampling rate you want Profiler to use in evaluating your program. This value (a number
from 1-9) determines how frequently Profiler looks at your program as it runs. The lower the sampling rate, the more frequently the program is checked.

At this point you can load and run the BASIC program you want to profile. While the program is running, the Profiler keeps track of which line is being executed according to the sampling rate you selected. After the program ends, there will be a short delay. Then the Profiler prints out its report. In each case you'll see a series of line numbers, followed by numeric values (if you chose a numeric display) or a series of asterisks (if you chose the bar chart).

It's important to understand exactly what the report means. The Profiler doesn't merely count the number of times that a particular line executed. Instead, it tells you how many times it saw the line being executed at the designated sampling rate. Thus, program lines that execute very quickly may not show up on the report at all. That's fine: If a program line executes too fast to be detected, you don't need to worry that it's slowing down your program. What you're concerned with are the lines that show big time values-they mark the places where the program is doing most of its work.

Adjustable Sampling Rate

Depending on what your program does, you may need to adjust the sampling rate to get a useful report. The largest possible time value is 255. If nearly every line in the report shows a value of 255 , then the sampling rate is too small (Profiler is looking at the program too frequently). Reactivate Profiler with SYS 49152, select a larger sample rate, and rerun the program. This time Profiler looks at the program less often, which results in smaller time values and a more useful basis for comparison.

On the other hand, if every line in the program has a time value under ten, and many important lines are missing altogether, the sampling rate is too large; you'll get a more meaningful report by using a smaller rate. Remember, the time values are meaningful only in rela-
tive terms. The most meaningful report is one that shows a wide distribution of values, rather than a cluster of extreme values at one end of the scale.

Of course, common sense comes into play as well. If you have a massive database program that takes six days to run, don't expect Profiler to report anything smaller than 255 for every line, even at the slowest sampling rate. However, you can call Profiler from within a program, just as you can from direct mode. Thus, you could profile an individual subroutine in a large program by inserting SYS 49152 at the beginning of the subroutine, and putting a STOP or END statement just before the subroutine terminates with RETURN. If you then activate the subroutine with an appropriate GOTO, Profiler treats it like a separate program.

Commodore 64 Program Profiler

For instructions on entering this listing, please refer to "COMPUTE|'s Guide to Typing In Programs" in this issue of COMPUTE!.
$1 \varnothing \varnothing$ PRINT"\{CLR\}\{CYN\}PROFILER": PRINT"\{3 DOWN\}PLEASE WAIT. :rem 174
110 A=49152:CS= $\varnothing:$ FORI $=A T O A+55 \varnothing$: READB: POKEI,B:CS=CS+B:NEX T T \quad rem 36
$12 \varnothing$ IFCS<>68166THENPRINT "ERROR IN DATA STATEMENTS.":STOP :rem 46
$13 \varnothing$ DATA $169,131,160,192,32,3 \varnothing$,171,32,207,255:rem 157
140 DATA $162,129,160,192,32,96$,192,176,237,169:rem 237
150 DATA 179,160,192,32,30,171 ,32,2ø7,255,162:rem 164
160 DATA $130,160,192,32,96,192$ 176,218,169,2ø9 :rem 232
$17 \varnothing$ DATA $160,192,32,30,171, ? 32$ 207,255,2ø1,13:rem 99
$18 \varnothing$ DATA $24 \varnothing, 1 \varnothing, 201,48,144,2 \varnothing \varnothing$,2ø1,58,176,196:rem 158
190 DATA $144,2,169,53,56,233,4$ 8,10,141,126 :rem 18
200 DATA $192,120,169,234,141,2$ 0,3,169,192,141 :rem 157
210 DATA $21,3,169,0,133,251,13$ 3,253,169,195 :rem 62
226 DATA $133,252,133,254,88,96$,134,251,132,252 :rem 218
$23 \varnothing$ DATA $2 \varnothing 1,78,240,10,201,13$, $240,6,201,89$:rem 251
24ø DATA $24 \varnothing, 6,56,96,169, \varnothing, 24 \varnothing$,2,169,1 :rem 75
$25 \emptyset$ DATA $160, \varnothing, 145,251,24,96, \varnothing$, $0, \varnothing, \varnothing \quad:$ rem $2 \varnothing 3$
260 DATA $\varnothing, 147,80,82,79,7 \varnothing, 73$, 76,69,82 :rem 99
$27 \varnothing$ DATA $32,32,32,32,32,32,32$, 13,13,79 :rem 58
$28 \emptyset$ DATA $85,84,80,85,84,32,84$,

79, 32,80
290 DATA $82,73,78,84,69,82,63$, 32,40,89 :rem 108
$3 \varnothing \varnothing$ DATA $44,78,47,67,82,41,58$, $32,0,13 \quad:$ rem 29
$31 \varnothing$ DATA $79,85,84,80,85,84,32$, 72,73,83 :rem 103
$32 \emptyset$ DATA $84,79,71,82,65,77,63$, 32,40,89 : rem 101
$33 \varnothing$ DATA $44,78,47,67,82,41,58$, 32, $0,13 \quad:$ rem 32
$34 \varnothing$ DATA $83,69,84,32,83,65,77$, 80,76,69 : rem 112
$35 \emptyset$ DATA $32,82,65,84,69,32,40$, 49,45,57 :rem 94
$36 \emptyset$ DATA $41,58,32, \varnothing, 173,127,19$ 2,2ø8,78,173 :rem 27
$37 \varnothing$ DATA $126,192,141,127, ? 192$, 65,157,2ø8,1ø6,169 :rem 75
38 D DATA $1,141,128,192,165,57$, $160, \varnothing, 209,251 \quad$ rem 65
$39 \varnothing$ DATA $2 \varnothing 8,7,2 ø 0,165,58,209$, $251,240,28,165$: rem 125
4øø DATA 251,197,253,2ø8,6,165 ,252,197,254,240 :rem 228
410 DATA $42,24,165,251,165,3,1$ $33,251,165,252$: rem 104
$42 \varnothing$ DATA $165, \varnothing, 133,252,24,144$, 213,2øø,177,251 : rem 144
430 DATA $2 ø 1,255,240,5,24,105$, $1,145,251,169$:rem 54
440 DATA $3,133,251,169,195,133$,252,206,127,192 :rem 221
450 DATA $76,49,234,24,165,253$, 105,3,133,253 :rem 72
460 DATA $165,254,105, \varnothing, 133,254$,160, $0,165,57$:rem 62
$47 \varnothing$ DATA $145,253,165,58,200,14$ 5,253,2ø0,169,1 :rem 167
480 DATA $145,253,24,144,210,17$ $3,128,192,240,213$:rem 6
$49 \varnothing$ DATA $169,0,141,128,192,169$,131,141,2,3 :rem 16
500 DATA $169,193,141,3,3,169,1$ 3,141,119,2 :rem 219
510 DATA $169,1,133,198,24,144$, 178,120,169,49:rem 133
520 DATA $141,20,3,169,234,141$, $21,3,88,169 \quad$:rem 221
$53 \varnothing$ DATA $131,141,2,3,169,164,1$ $41,3,3,173 \quad:$ rem 160
$54 \varnothing$ DATA $129,192,2 \varnothing 8,103,160, \varnothing$ 177,251,17ø,200 :rem 205
55ø DATA $177,251,32,2 ø 5,189,17$ 3,13ø,192,2ø8,66:rem 23ø
560 DATA $169,32,32,210,255,56$, $32,240,255,160 \quad$:rem 115
$57 \varnothing$ DATA $6,24,32,240,255,160,2$,177,251,170 :rem 13
580 DATA $169, \varnothing, 32,2 ø 5,189,169$, $13,32,210,255$: rem 73
590 DATA $165,251,197,253,208,6$,165,252,197,254 :rem 244
6 6ø DATA $240,16,24,165,251,105$,3,133,251,165 :rem 103
610 DATA $252,105,0,133,252,24$, 144,182,173,129: rem 157
$62 \varnothing$ DATA $192,2 \varnothing 8,43,76,131,164$,169,32,32,210 :rem 117
630 DATA $255,160,2,177,251,17 \varnothing$,169,42,32,21ø :rem 113
640 DATA $255,202,208,250,24,14$ 4,194,169,4,17ø :rem 17б
650 DATA $160,255,32,186,255,32$,192,255,162,4:rem 126
660 DATA $32,2 ø 1,255,24,144,134$,32,204,255,76:rem 113
670 DATA $131,164, \varnothing, 0,255,255, \varnothing$, $0,255,255, \varnothing$:rem 255

Atari Typo Tool

Patrick Dell'Era

Correcting typing mistakes is much easier with this multifunction utility. It lists your program a line at a time, and separately displays the items in critical DATA statements. It also contains a machine language subroutine that quickly deletes any range of lines from a BASIC program. For all 400/ 800, XL, and XE computers with at least 16 K RAM (tape) or 24 K RAM (disk).

How many times have you burned the midnight oil searching for a typo in a program you've typed in? Although COMPUTE!'s "Automatic Proofreader" greatly reduces the chances of typos, it won't catch transposition errors, and it can't be used with listings published in other magazines or user group newsletters. Now there's help-"Atari Typo Tool."

This program individually lists on the screen the lines of your freshly typed-in program, ignoring DATA statements and lines that begin with REM. Because DATA statements can be the most critical parts of a BASIC program-they often contain the decimal numbers of machine language subroutinesTypo Tool displays DATA elements one by one in large-size characters.

At any time, when you spot a typo, you can enter edit mode to make corrections, then continue where you left off. After you've weeded out all the typos in a program, you can tell Typo Tool that you're finished. It then erases itself from memory, leaving only your program in RAM.

Preparing Typo Tool

To get started, the first thing to do is type in Typo Tool and make sure it doesn't contain any typos. It can't be used to check itself. Use the Automatic Proofreader and be extra careful to avoid transposition errors (such as DATA 196 instead of DATA 169).

Store a copy of Typo Tool on disk or tape with the LIST command, not SAVE or CSAVE. That is, LIST"D:filename.ext" for disk or LIST"C:" for cassette. It's important to use the LIST format because this lets you merge Typo Tool in memory with the errant program you'll be checking. It's also vital to save a copy of Typo Tool before running it for the first time, because it erases part of itself when you type RUN.

Now you're ready. Type in or load the program you want to examine for typos. Make sure this program doesn't use line number 0 or line numbers from 32100 up-ward-Typo Tool uses these line numbers, and it will replace the lines in the other program if there's a conflict. Then load Typo Tool, using ENTER"D:filename.ext" for disk or ENTER"C:" for cassette. Finally, type RUN. There's a short pause as Typo Tool loads a machine language subroutine into memory. Then you'll see the main menu on the screen.

The menu offers three choices: Line Lister, Data Reader, and Finished. You need to type only the first letter of your choice. When you type L or D, you'll be asked for a
starting line number. If you want to begin checking lines or data from the beginning of your program, just press RETURN. If, however, you want to start at another point, type in the appropriate line number and press RETURN.

In the Line Lister mode, Typo Tool displays a single line of the program you're checking. Pressing the cursor up-arrow (without CTRL) lists the next higher line number. Pressing the cursor downarrow lists the next lower line number. Pressing RETURN brings you back to the main menu. And pressing E enters the edit mode.

You'll notice that at the bottom of each line listed on the screen is the command CONT. As we'll show in a moment, this lets you leave edit mode and continue with the Line Lister mode.

Making Corrections

When you press E to enter edit mode, the message STOPPED AT LINE 32180 appears. Disregard this. To fix a typo in the listed line, cursor up to the line as usual and make your corrections. Press RETURN on the line to enter it into memory. Then press RETURN on the CONT command to continue with the Line Lister mode. Typo Tool relists the corrected line on the screen so you can verify that it contains no additional errors.

Since typos in lines beginning with REM do not affect a program's operation, Typo Tool ignores these lines. However, it does list lines in which REM follows another statement.

The Line Lister mode also ignores DATA lines. Since DATA numbers are especially susceptible to typos, Typo Tool has a special mode for checking these important statements. Enter the Data Reader mode from the main menu by pressing D. In this mode, Typo Tool displays each individual DATA item in double-size (GRAPHICS 2) characters in the middle of the screen. Just below, it displays the DATA line number and DATA item number. If the DATA item is longer than eight characters, the item is broken into pairs and displayed one pair at a time. The pair number of the item is shown below the DATA item number.

Typo Tool automatically displays each DATA item in sequence for a few seconds so you can sit back with the source listing and check for mistakes. Each time Typo Tool advances to the next DATA item, it sounds a buzzer. If you want the display to pause, press any key except RETURN or E. The RETURN key exits the Data Reader mode and returns you to the main menu. The E key enters the Data Reader's edit mode.

This mode is similar to the Line Lister's edit mode. The DATA line you were checking is listed on the screen followed by a CONT command. Below that is the line number, DATA item number, and, if appropriate, the DATA pair number. You'll also see the message STOPPED AT LINE 32325, which you can disregard. To fix the typo, cursor up to the DATA line and make your corrections as usual, then press RETURN to enter the line into memory. Press RETURN over the CONT command to leave edit mode and continue with the Data Reader mode.

When Typo Tool has listed the last line of your program or read the last item in the DATA statements, it displays the message THAT'S ALL THERE IS! and returns to the main menu. If you have no further checking to do, press F to tell Typo Tool you're finished. Instantly, Typo Tool erases itself from memory, leaving your corrected program behind. You can then save the program and try running it. If everything works OK, your mission is accomplished. Otherwise, you
may have to reENTER Typo Tool and search for further mistakes.

Squeezing Memory

If you have 16 K RAM and a cassette drive, you'll find you can use Typo Tool with programs that are about twice as long as itself before running out of memory. On a 24 K computer with a disk drive, you'll be able to work on programs about five times as long as Typo Tool. If you're having memory problems, there are a few things you can do to squeeze more room out of your available RAM.

Typo Tool includes a machine language subroutine that deletes blocks of BASIC lines (that's how it erases itself when you type F). Typo Tool also uses this routine to delete the block of DATA statements within it, freeing up a little more RAM. If you see an ERROR 2 (insufficient memory) message when you try to use Typo Tool with your program, follow these steps:

1. Type NEW to clear memory, LOAD the program to be checked, and LIST it to disk or cassette.
2. ENTER Typo Tool from disk or cassette and type RUN. After the menu appears, press BREAK. If you type LIST now, you'll see that all the DATA statements are gone, as are the lines that POKEd them into memory.
3. ENTER the program you want to check from disk or cassette. Type RUN. With any luck at all, everything should work.
4. If you still get an ERROR 2 message, you'll have to start over and LIST your program in two or more parts to disk or cassette. To do this, type LIST"D:filename.ext",FIRST,LAST or LIST"C:",FIRST,LAST where FIRST is the first line number of the block to be saved and LAST is the last line number of the block. For each part of your program, type NEW and repeat steps 2 and 3 above. When you've corrected all the parts, you can reunite them by ENTERing each block of lines into RAM. Then save the whole program onto disk or tape.

Bonus Block Deleter

As mentioned above, Typo Tool includes a machine language subroutine that instantly deletes any range
of BASIC lines. The routine is stored in memory page 6, beginning at location 1536 decimal. This memory area is not erased when you type NEW, although it's frequently used by other programs for storing machine language routines, which may cause a conflict.

To use the block deleter on any program in memory, type the following line and press RETURN:
$\mathrm{A}=\mathrm{USR}(1536, \mathrm{FIRST}, \mathrm{LAST}$)
where FIRST is the first line number of the block to be deleted, and LAST is the last line number of the block. Be sure of these numbers before you press RETURN.

For instructions on entering these listings, please refer to "COMPLTEI's Guide to Typing In Programs" in this issue of COMPUTEI.

Atari Typo Tool

FP g GOTO 321 פの
LD 321 Dø DIM A\$(1ஏ6), TITLE $\$($ 23), T\$(4), BLANK\$ (2ø): $N 7=9: N U L=1536: M R G$ =82: CURS=752
M0 321 פ5 BLANK\$=" ": BLANK\$ (2 $\emptyset)=" \quad$: BLANK $\$(2)=B L$ ANK\$: GOSUB 32389
DK $3211 \emptyset$ GRAPHICS N7: OPEN \#3 , 4, N7, "K: ": OPEN \#2, 4,N7,"E: ": POKE MRG, 15: POKE CURS, 1
LJ 32115 POSITION 3, 19:? "SE LECT: $\{5$ SPACES? [Li ne Lister":? :? "E Data Reader": ? ? " [Einished\{DOWN\}"
CF $3212 \emptyset$ POKE MRG, 2 : GET \#3, A : IF $A=76$ THEN $3214 \varnothing$
KD 32125 IF $A=68$ THEN 32259
JK 3213 IF $A=7 \emptyset$ THEN 3254 I
CP 32135 GOTO 32129
 ": GOSUB 324 Øø
HH 32145 GOSUB 3221 Ø
PJ $3215 \emptyset$ IF LINE $\angle A$ THEN GOSU B 322ø5: GOSUB 322øø :GOTO 32159
BE 32155 IF LINE=321 $\emptyset \emptyset ~ T H E N ~$ 3224 g
IL 3216 IF LINE =N7 OR TYPE THEN 32195
LH 32165 ? "\{CLEAR\}": POSITIO N 2, 1g:LIST LINE:? "CONT": GOSUB 325 g5
CO 32176 GET \#3, S: IF $5<>45 \mathrm{~A}$ ND $S<>61$ AND $S<>155$ AND $5<>69$ THEN 321 $7 \emptyset$
KH 32175 IF $S=61$ THEN GOSUB 32215: GOTO 32155
$A B 3218$ Ø IF $S=69$ THEN STOP
HB 32185 IF $S=69$ THEN 32165
OI $3219 \emptyset$ IF $S=155$ THEN 32245
KE 32195 GOSUB 322ø5: GOSUB 3 22øø: GOTO 32155
E0 322 L 1 D $=$ PEEK (PRGM) +PEE $K(P R G M+1) * 256$: TYPE $=$ PEEK (PRGM+4) <2: RETU RN
$00322 \emptyset 5$ B=PEEK (PRGM+2): PRGM

32210 ＝PRGM＋B：RETURN
PRGM＝PEEK（136）＋PEEK （137）\＆256：GOSUB 322 のø：RETURN
MG 32215 PRGM＝PRGM－B：GOSUB 3 2200
FB 3222 D $A=L$ INE：GOSUB $3221 \varnothing$
PP 32225 IF LINE $\angle A$ THEN GOSU B 322ø5：GOSUB 322øø ：GOTO 32225
PH 3223 IF TYPE THEN 32215
NP 32235 RETURN
LJ $3224 \varnothing$ GRAPHICS N7：POKE CU RS，1：POSITION $1 \varnothing, 1 \varnothing$ ：？＂THAT＇S ALL THER E IS！＂：FQR I＝1 TO 5 Øロ：NEXT I
PG 32245 CLOSE \＃2：CLOSE \＃3：P DKE 188，N7：GOTO 321 10
내 3225 TITLE $=$＝＂DRTG READEE： ＂：GOSUB 324øø：GOSUB 32435：GOSUB 325פ5
NH 32255 RESTORE A：TRAP 3233 5
OJ 3226 POKE 764，255：READ A \＄：DITEM＝PEEK（182）：D LINE＝PEEK（183）＋PEEK （184）＊256：IF DLINE＞ 32999 THEN 32249
MJ 32265 TYPE＝LEN（A\＄）：IF TYP E＞8 THEN 32275
애 $\mathbf{3 2 2 7}$ GOSUB 3244 ：POSITIO N INT（ $B-(L E N(A \$) / 2)$ $+\varnothing .5), 3:$ FQR I＝N7 TO 20：POKE 53279，N7：N EXT I：？\＃6；A\＄：GOSUB 32295：GOTO 3226D
LJ 32275 IF TYPE／2＜ 2 INT（TYPE 12）THEN A\＄（TYPE＋1） $=\operatorname{BLANK} \$(1,1)$
BL 3228 g GOSUB 3244 ø：FOR $A=1$ TO LEN（A\＄）STEP 2： POSITION 7，3：FOR I＝ N7 TO 20：POKE 53279 ，N7：NEXT I：？\＃6；A\＄（ $A, A+1)$
IN 32285 POSITION 12，9：？\＃6； INT（A／2＋ø．4）＋1：GOSU B 32295：NEXT A：POSI TION 1，9：？\＃6；BLANK \＄：POSITION 12，9：？\＃ 6；BLANK\＄（1，3）
DE 3229 GOTO 3226 Ø
CI 32295 FOR I＝N7 TO 2פの：ON $\operatorname{PEEK}(764)<>255$ GOTO 32305：NEXT I
AE 323øø POSITION N7，3：？\＃6； BLANK\＄：RETURN
N6 323 Ø5 POP ：GET \＃3，B：IF B＜ >155 AND $\mathrm{B}<>69$ THEN GET \＃3，B：IF $B<>69$ THEN 323øø
DD 32310 IF $B=155$ THEN POP ： GOTO 32245
EN 32315 GRAPHICS $0:$ POSITION 2，7：LIST DLINE：？＂ CONT＂：GOSUB $3244 \varnothing$
EM 3232 IF TYPE＞B THEN POSI TION 13，16：？INT（A／ $2+\varnothing$ ．4）＋1
EF 32325 STOP
AG 3233ø GOSUB 32435：GOSUB 3 25ø5：GOSUB 3244 ：RE TURN
EB 32335 IF PEEK（195）$=6$ THEN $3224 \emptyset$
KH 3234 GRAPHICS N7：？＂ERRO R－＂；PEEK（195）：END

AN 32345 DATA $216,164,164,14$ $1,185,6,164,141,184$ ，6，165，136，133，293，
$165,137,133,294,32$ ， $136,6,165,203,133,2$ 65，165，2ø4，133
1632350 DATA 2ø6，1ø4，141，18 $5,6,1$ Ø4，24，1ø5，1， 14 $1,184,6,144,3,238,1$ $85,6,32,136,6,56,16$ 5，144，229，2ø3，141，1 $82,6,165,145$
PJ 32355 DATA $229,204,141,18$ 3，6，56，165，203，229， $265,141,186,6,165,2$ ø4，229，2ø6，141，187， $6,160,0,174,183,6,2$ 4の，14，177，2ஏ3
MJ 3236 D DATA $145,2 \emptyset 5,2 \emptyset \varnothing, 2 \emptyset$ 8，249，23ø，2ø4，23ø， 2 Ø6，2ø2，298，242，2ø4， $182,6,240,7,177,293$ ，145，2ø5，2øø，2ø8， 24 4，162，Ø，16ø，4
IN 32365 DATA 56，181，138， 237 ，186，6，149，138，181， $139,237,187,6,149,1$ $39,232,232,136,298$ ， 236，96，169，2，177，29 $3,141,188,6,136$
I6 3237 DATA $177,203,136,20$ $1,128,24 \varnothing, 3 \varnothing, 295,18$ $5,6,249,4,176,23,14$ $4,7,177,283,265,184$ ，6，176，14，24，173，18 8，6，1ø1，2ø3
CH 32375 DATA $133,263,144,21$ 5，23ø，2ø4，2ø8，211，9 $6, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
PK 3238 IF PEEK（NUL）$=216 \mathrm{TH}$ EN 3239 g
KJ 32385 RESTORE $32345:$ FOR I ＝NUL TO 1724：READ A ：POKE I，A：NEXT I
BD $3239 \varnothing$
$A=$ USR（NUL， 32345,323 9の）
0632395
AL 324 Øø POKE CURS，N7：？TITL
RETURN E\＄；：FOR I＝N7 TO 1øø ：NEXT I：？
BA 324ø5 IF TITLE\＄（8）＝＂E＂TH EN RETURN
HC 3241 ■＂CUP\}Press REMDRF t\｛DOWN\}*\&OR*\&\{UP\} \｛6 LEFT\}o start at first line＂
NJ 32415 ？？＂Enter specifi c line number to st art．＂：？：？＂$=\gg$＂；
JC $3242 \varnothing$ 32425：INPUT \＃2 ，A：TRAP 4øøøø：GOTO 32436
AD 32425 A＝N7
NH 32439 RETURN
DI 32435 GRAPHICS 2：POKE 712 ，148：POKE 7ø8，154：R ETURN
LF 3244 の $Q=\operatorname{PEEK}(87): B=2: B=B+$ （TYPE＞B）：FOR $X=1$ TO B：RESTORE 32485：RE AD TITLE\＄：POKE 182， X：READ T\＄：TITLE\＄（6， $1 \varnothing)=T \$$
LD 32445 POSITION $1+(Q=\varnothing), 6+$ $X+((Q=\varnothing) * 7)$
MB 3245ø IF Q THEN ？\＃6；TITL E\＄；
CD 32455 IF NOT Q THEN ？TI TLE ${ }^{\text {；}}$
$003246 \varnothing$ GOSUB $32475+X+$（ $Q Q=\varnothing$ ）\＃1ø）：NEXT X
FB 32465 RESTORE DLINE：POKE 182，DITEM：RETURN
E0 32476 ？\＃6；BLANK\＄（1，3）：PO SITION 12，7：？\＃6；DL INE：RETURN

FH 32477	？\＃6；BLANK\＄（1，3）：PO SITION 12，8：？\＃6；DI TEM：RETURN
0132478	RETURN
OE 32485	DATA DATA
	\｛6 SPACES\}\#,line, it em，pair
MH 32486	？DLINE：RETURN
NE 32487	？DITEM：RETURN
OJ 32488	RETURN
OE32595	Q＝PEEK（87）：POKE CUR
	POSITIUN 2，20
IE 32510	？＂\｛5 SPACES\}\{ESC\}
	\｛TAB\}", "REEDR: FOR MENU＂
HL 32515	IF NOT Q THEN ？
	\｛5 SPACES\} \{ESC\}
	\｛TAB\}", "\{ESC\} \{UP\} N
	EXT HIGHEST LINE＂：？
	\｛TAB\}", "\{ESC\}\{DOWN\} NEXT LOWEST LINE＂
6032520	IF Q THEN ？＂
	¢5 SPACES\} \{ESC\}
	\｛TAB\} \{3 SPACES\}ANY
	KEY TO PAUSE／RESTAR
	T＂
0632525	？＂ 22 UP\}PRESS
	\｛2 DOWN\} \{ESC\} \{TAB\}
	\｛3 SPACES\}E TO EDIT
	＂；
D1 32530	IF NOT Q THEN POSI
	TION 5， 14
DJ 32535	POKE CURS，N7：RETURN
AN 32540	TITLE\＄＝＂Ficintise＂：G
	OSUB 324øの：GRAPHICS
	N7：CLR ： $\mathrm{X}=\mathrm{USR}$（ 1536
	，N7，N7）： $\mathrm{X}=\mathrm{USR}$（1536，
	321øø，3254ø）©

Attention Programmers

COMPUTE！magazine is currently looking for quality articles on Commodore，Atari，Apple， and IBM computers（including the Commodore Amiga and Atari ST）．If you have an interesting home application， educational program， programming utility，or game， submit it to COMPUTEI，P．O． Box 5406，Greensboro，NC 27403．Or write for a copy of our＂Writer＇s Guidelines．＂

COMPUTE！ TOLL FREE Subscription Order Line 1－800－247－5470

In IA 1－800－532－1272

ST Doodler
 D.W. Neuendorf

This short, simple drawing program for the Atari ST demonstrates how to write a Logo program that takes advantage of GEM's built-in features and user interface. It works on any Atari ST with Logo.

When Atari first started shipping the 520ST last summer, ST BASIC wasn't quite ready, so the only programming language supplied was Digital Research's Logo. While borrowing a friend's 520ST, I decided to put Logo to work in a drawing program. This version of Logo, however, was translated from Digital's Logo for the IBM PC and doesn't run particularly fast on the Atari ST. After some experimenting, I realized it was too slow to support a full-fledged drawing utility.

Not yet ready to write off the ST/Logo combination, I considered alternatives. Calls to the operating system were out, since there was only a limited memory map and no CALL statement. Furthermore, Logo restricts the areas of memory accessible to the EXAMINE and DEPOSIT commands (similar to BASIC's PEEK and POKE). Even hand-assembled machine language routines are useless without a way to call them.

Then I remembered GEMDigital Research's Graphics Environment Manager, which sits as a shell on TOS, the ST's operating system. In Logo, GEM has a Settings menu that lets you change line-drawing colors, line-drawing widths, fill colors and patterns, and other parameters. There must have been some reason why Atari included all these settings in a dropdown menu, duplicating many of
the Logo commands. One very good reason, I concluded, was to avoid forcing someone like me to code a complex user interface in Logo, which would bog down the program. After all, the Settings menu is quite similar to the menu I planned to include in my drawing program.

Therefore, I took a hard look at what's really needed to draw pictures on the ST. Letting GEM handle the fancy features via its Settings menu, all we need is an easy way to fill areas and draw lines, circles, and boxes. Providing these functions are well within the capabilities of Logo. "ST Doodler" is the result.

Drawing With Doodler

To use ST Doodler, run Logo and type in the listing below. Be sure to save at least one copy before you try to use Doodler for the first time. Next, you should decide which screen resolution mode you wish to use. The monochrome screen gives you the highest resolution-and thus the capability to draw finely detailed pictures-but allows only black and white. The low-resolution mode allows 16 different colors, but with the loss of some detail. The medium-resolution mode offers more detail than low resolution, with up to four colors. If you wish to draw in a mode other than the one currently selected, you must quit Logo and return to the GEM desktop, then select Set Preferences from the Options menu. After making your selection, run Logo again.

To begin drawing with Doodler, clear the Graphics window by typing CS and pressing RETURN at a Logo top-level ? prompt, then type SKETCH. You'll probably

This picture was created by the author using "ST Doodler."
want to expand the Logo Graphics window to full-screen size to give yourself more room to work. Doodler's pen color can be altered at any time, along with the background color, line width, fill color, and fill pattern settings, by dropping down the Settings menu and selecting the Graphics option. Click the pointer on the setting you want to change, then type in the appropriate number and click on the OK box.

To draw with Doodler, you connect a series of lines end to end. Choose the beginning of a series of line segments by moving the mouse pointer to the first desired endpoint and pressing the left button. (For all button presses in ST Doodler, hold down the button for at least a second or two; Logo cannot detect a faster press. If a Doodler command doesn't respond, you're probably not holding down the button long enough.)

You can specify subsequent endpoints the same way. You can draw a continuous line by holding down the left button while moving the mouse. However, because Logo isn't too adept at reading the buttons, you must move the mouse very slowly to draw smooth lines. To end the series of connected line segments, move the pointer outside the drawing area and press the left button. If you're using a full-size Graphics window, the best place outside the drawing area is the upper-right corner of the screen beyond the menu bar.

To fill an area with color, place the mouse pointer inside the area and press the right button. Be sure
the area you're trying to fill is completely enclosed by lines. If there are any holes, the fill "spills out" and colors the entire background.

To draw circles or boxes, press the right button while the pointer is outside the drawing area. A prompt asks you to press the C or B keys for a circle or box, respectively. Pressing any other key exits the circle/ box mode. After pressing C to choose a circle, point to the desired center and press the left button; then move the pointer to the desired radius and press the button again. If you pressed B to choose a box, point first to its lower-left corner and press the left button; then point to its upper-right corner and press the button again.

You can erase portions of your drawing by dropping down the Settings menu, selecting the Graphics option, changing the line color to match the background color, then drawing over the parts you want to erase. You may also want to widen the line setting for this purpose.

How It Works

The top-level procedure, SKETCH, does a little initializing before invoking the main procedure, PT, which executes repeatedly. PT stores the current mouse status in the variable T, then analyzes it for the state of the left and right mouse buttons. Each mouse button has two functions, depending on whether the pointer is inside or outside the drawing area when the button is pressed.

Pressing the left button (indicated in ITEM 3 of MOUSE) specifies the endpoints in a series of connected line segments. DRAW? sets a flag, depending on whether ITEM 5 of MOUSE is TRUE (pointer inside the drawing area) or FALSE (pointer outside the drawing area). This flag, in turn, controls whether DR draws another line segment or sets a new starting point.

Pressing the right button (indicated in ITEM 4 of MOUSE) fills an area with the current fill pattern if the pointer is within the Graphics window boundaries (ITEM 5 of MOUSE is TRUE), or initiates circle or box drawing if the pointer is outside the Graphics window (ITEM 5 of MOUSE is FALSE). The
circle and box prompts are drawn in the pen-reversed mode, then selectively erased by redrawing them in the same place. Although it can be hard to read these prompts over existing screen graphics, the alter-native-printing to the Dialog win-dow-stops the program.

You can save your artwork using the Save Pic option in the File menu, and reload previous drawings with the Load Pic option in that menu. When reloading pictures, you must set the screen for the same resolution that was in effect when the picture was saved. For example, you cannot load a picture drawn on the low-resolution screen into a medium-resolution Graphics window.

The lesson for programmers here is that programming on the ST will be very different than programming on earlier computers with traditional operating systems. Whether you're using Logo or a very fast compiled language, it would be a mistake to ignore the high-level tools available in GEM and TOS. Not only is it a waste of effort to write everything from scratch, but it's also wise to stick to the user interface which is already thoroughly familiar to every ST owner.

ST Doodler in Logo

```
TO SKETCH
    HIDETURTLE
    PENUP
    MAKE "GFILL "TRUE
    MAKE "TF 0
    PT
END
```


TO PT

MAKE "T MOUSE
IF (ITEM 3 :T) [DRAW?]
IF (ITEM 4 :T) [BCORF]
PT
END

```
TO DRAW?
IF (ITEM 5 :T) [DR] [MAKE "TF 0] END
```

TO DR
IF $(: T F=0)$
[PENUP SETPOS :T MAKE "TF 1] [PENDOWN SETPOS :T PENUP]
END
TO BCORF
IF (ITEM 5 :T)
SETPOS PIECE 12 :T FILL] [BORC]

TO BORC
MAKE "PCOL ITEM 5 TURTLEFACTS BCMSG
MAKE "CH READCHAR
BCMSG
SETPC :PCOL
IF $\left(: \mathrm{CH}={ }^{\prime \prime} \mathrm{B}\right)[\mathrm{BX}]$
IF (:CH = "C) [CIRC]
MAKE "TF 0
END
TO BCMSG
SETPOS [-70 80]
SETHEADING 0
TMSG [Circle: Press C]
TMSG [Box: Press B]
TMSG [Abort: Press any]
TMSG [\# \# \# \# other key]
END
TO TMSG :MESSAGE
PENREVERSE
TURTLETEXT :MESSAGE
PENUP
BACK 18
END
TO BX
MAKE "GFILL "FALSE
BOX MBP
MAKE "GFILL "TRUE
END
TO CIRC
MAKE "GFILL "FALSE
CIRCLE MCP
MAKE "GFILL "TRUE
END
TO MBP
GETPOINTS
MAKE "PAR3 ABS ((FIRST :PAR2) (FIRST :PAR1))
MAKE "PAR4 ABS ((LAST :PAR2) (LAST :PAR1))
OUTPUT (SENTENCE :PAR1 :PAR3 :PAR4)
END
TO MCP
GETPOINTS
MAKE "PAR3 (ABS ((FIRST :PAR2) (FIRST :PAR1))) ${ }^{2}{ }^{2}$
MAKE "PAR4 (ABS (LLAST :PAR2) (LAST :PAR1))) ${ }^{2}$
OUTPUT SENTENCE :PAR1 SQRT (:PAR3 + :PAR4)
END
TO GETPOINTS
MAKE "PAR1 GETPOS
DELAY
MAKE "PAR2 GETPOS
END
TO GETPOS
MAKE "T MOUSE
IF (ITEM 3 :T) [OUTPUT PIECE 12 :T] GETPOS
END
TO DELAY
REPEAT 10 [MAKE "JUNK SIN 5]
END

Instant Apple Help Screens

Kent Brewster

With this short utility you can design and save your own custom help screens to disk, then quickly call them into BASIC programs. For all Apple II-series computers with DOS 3.3 or ProDOS.

As professional software designers have discovered, help screens are very popular features in all kinds of programs. Users don't have to fumble around with "handy" reference cards-they can just hit ESC or some other key and call up a screenful of instructions.
"Help Screen Editor," listed below, is a utility program that lets you create help screens of your own which are then saved to disk as binary files. Once saved, the file can be summoned back to the screen with a simple BLOAD command. If you BLOAD the file to an area of memory known as text page 2 with this statement:
BLOAD filename, $\mathrm{A} \$ 800$
your help screen can be viewed and swapped with text page 1 (the normal screen) with this statement:
POKE - 16299,0
The following statement will switch back to the normal screen display (text page 1):
POKE - 16300,0
By placing these lines in a loop, the screens can be swapped some 30 times per second. Pretty impressive for BASIC.

For even greater convenience, you can use the following statement, which displays your help screen until a key is pressed, then switches back to the normal screen: POKE - 16299,0:GET G\$:POKE - 16300,0

Other uses for BLOADed screens include interactive software demonstrations and adventure games that show a screen and offer several options, each leading to an-
other screen.

Designing A Help Screen

Any BASIC program that uses text page 2 must reserve space for that memory with POKE 104,12 and POKE 3072,0 . This is the purpose of Program 1, which changes the bottom of program memory and calls Program 2, Help Screen Editor. (Don't confuse this process with changing the value of LOMEM, which merely relocates the bottom of variable memory, not program memory.) If you want, you can save Program 1 on a new disk with the filename HELLO so it automatically boots the editor when the computer is turned on.

Type in and save Program 2 (use the filename SE if you want the program to work properly with Program 1). It's quite short for a full-featured editor.

The first time you run Help Screen Editor, obviously there will be no help screen on the disk for it to load. Your first project should be to create a help screen for the screen editor itself, so temporarily modify the program to skip loading a help screen by inserting this line:

15 GOTO 40

The help screen you make for Help Screen Editor should look something like the example in the accompanying screen photo. Here are the screen editor commands:
CTRL-I cursor up
CTRL-J cursor left (or use the left
CTRL-K cursor right (or use the right cursor key)
CTRL-M cursor down
CTRL-N normal text
CTRL-R reversed text
CTRL-F flashing text
CTRL-S save screen
CTRL-L load screen
CTRL-C clear screen
CTRL-P print screen
CTRL-T change title
CTRL-Q quit editor
ESC $=$ view help screen

Once you've created a help screen, save it to disk by pressing CTRL-S and specifying a filename. For the screen editor's help screen, use the filename SEHELP. (The program automatically appends the filename extender .SCR when saving or loading screen files.) Then delete the temporary line 15 we added above, and you're ready to go. From now on, you can call up this help screen of screen editor commands merely by pressing ESC. Press any key to switch from the help screen back to the editor.

"Help Screen Editor" lets you add custom help screens to your own programs. This sample screen was created for use with the editor program itself.

Programming Notes

To add help screens to your own programs, follow these steps:

1. Be sure your program reserves space for text page 2 just as Program 1 does, with POKE 104,12 and POKE 3072,0.
2. To load the help screen into memory, your program should execute the command BLOAD filename, $\mathrm{A} \$ 800$. Make sure the filename corresponds with the name of the screen file on the disk. 3. To swap text page 2 with text page 1 and make the help screen visible, your program should execute the statement POKE $-16299,0$.

To return to the original screen， your program should execute the statement POKE $-16300,0$ ．If you want to make the help screen visi－ ble until any key is pressed，use POKE－16299，0：GET G\＄：POKE －16300，0．

For instructions on entering these listings， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂published this month in COMPUTEI．

Program 1：Screen Edifor Loader

74 1ø HOME ：POKE 1ø4，12：POKE 3 Ø72，\varnothing ：PRINT CHR\＄（4）；＂RUN SE＂

Program 2：Help Screen Editor

9E 10 HOME ： $\mathrm{R}=1: \mathrm{C}=1$
$742 \emptyset$ PRINT CHR\＄（4）；＂BLOAD SEHE LP．SCR，A\＄8Ø冋＂
4A ЗØ POKE－16299，$: ~ G E T ~ G \$: ~ P O ~$ KE－163Øø，Ø
62 4ø ST\＄＝＂NEW SCREEN＂
DC 5 D DIM LS（23）：FOR $I=1$ TO 2 3：READ LS（I）：NEXT ：DATA $1624,1152,128 \emptyset, 1468,1536$ ， 1664，1792，1920，1064，1192， 1 32ø，1448，1576，17ø4，1832， 19 $6 \varnothing, 11 \varnothing 4,1232,136 \emptyset, 1489,161$ 6，1744， 1872
B9 66 DIM CV（3）：FOR I＝ 1 TO 3： READ CV（I）：NEXT ：DATA 3 ，6， 27
$5776 \mathrm{D} \$=$ CHR\＄（4）
5686 GOSUB 59Ø
DE $9 \varnothing$ VTAB R：HTAB C：GET G\＄：$G=$ ASC（G\＄）：IF $G>31$ THEN 56Ø
83 1øø FOR I＝ 1 TO 3：IF $G=C V$ （I）THEN 120
$8811 \emptyset$ NEXT I：GOTO $13 \emptyset$
65 12ø ON I GOSUB 15ø，17ø，18ø：G OTO 9Ø
$4913 \varnothing V=G-7: I F V<1$ OR V >14 THEN 9ø
E6 14ø ON \cup GOSUB 19Ø，21ø，23ø，24 Ø，26ø，3øø，32ø，33ø，34ø，43ø ，47ø，48ø，51ø，55ø：GOTO 9ø
32 150 VTAB 24：HTAB 1：PRINT＂C LEAR THE SCREEN？(Y / N)＂； GET G\＄：IF G\＄＝＂Y＂THEN HOME
A6 $16 \emptyset$ GUSUB 59Ø：RETURN
DB $17 \emptyset \mathrm{M}=2$ ：GOSUB 590：FLASH ： RETURN
76 18ø POKE－16299，Ø：GET G\＄：P OKE－163øの，Ø：RETURN
$71190 \mathrm{C}=\mathrm{C}-1$ ：IF C $=\varnothing$ THEN $C=46: R=R-1:$ IF $R=$ \emptyset THEN R $=23: C=4 \emptyset$
12 2øø RETURN
BJ $21 \emptyset R=R-1$ ：IF $R=\emptyset$ THEN $R=23$
16226 RETURN
90 23ø GOSUB 19の：RETURN
93 24ø $C=C+1$ ：IF $C=41$ THEN $C=1: R=R+1:$ IF $R=$ 24 THEN R $=1: C=1$
IC $25 \emptyset$ RETURN
17 26ø NORMAL ：M＝Ø：GOSUB 58ø： VTAB 24：HTAB 1：POKE 34 23：PRINT＂TITLE TO LOAD ？＜RET〉＝QUIT＂；：INPUT ＂＂；T\＄

E6 $27 \emptyset$ IF LEN（T\＄）＜ 1 THEN $29 \emptyset$
CB $28 \emptyset$ ST\＄$=$ T\＄：PRINT D\＄＂BLOAD ＂；ST\＄；＂．SCR＂
$8329 \emptyset$ POKE 34，Ø：GOSUB 58ø：GOS UB 596：RETURN
6 A $3 \emptyset \emptyset R=R+1$ ：IF $R=24$ THEN $R=1$
$1531 \varnothing$ RETURN
10 $320 \mathrm{M}=\varnothing$ ：GOSUB 59ø：NORMAL ：RETURN
$1933 \emptyset$ RETURN
D6 340 POKE 34，23：VTAB 24：HTAB 1：PRINT＂PRESS 〈RET＞TO PRINT，OTHER TO ABORT．＂；
A5 35 Ø GET G\＄：G $=$ ASC（G\＄）：IF G $=13$ THEN $37 \emptyset$
$8536 \emptyset$ PRINT D\＄＂PR\＃Ø＂：POKE 34， ：GOSUB 58ø：GOSUB 590：R ETURN
AF 37ø GOSUB 580：POKE 34，23
45 38ø PRINT D\＄＂PR\＃1＂：FOR I＝ 1 TO 23：FOR J＝\varnothing TO 39：P $=$ PEEK（LS（I）$+J$ ）
18 39Ø IF $P<192$ THEN $P=P+6$ 4：GOTO 39Ø
$8640 \emptyset P=P-128:$ IF $P>94 \mathrm{TH}$ $E N P=P-64$
98410 PRINT CHR\＄（P）；
AC 420 NEXT J：PRINT ：NEXT I：G OTO 36D
D3 430 GOSUB 58ø：FOKE 34，23：UT AB 24：HTAB 1：PRINT＂QUI T THE EDITOR？（Y／N）＂；
F！ 44 GET G\＄：IF G $\$=$＂Y＂THEN POKE 34，$:$ HOME ：END
66450 IF $G \$=$＂N＂THEN GOSUB 58 Ø：GOSUB 59ø：RETURN
If $46 \emptyset$ GOTO 44Ø
C9 $470 \mathrm{M}=1$ ：GOSUB 590：INVERSE ：RETURN
23480 IF LEN（ST\＄）＜ 1 OR ST\＄$=$ ＂NEW SCREEN＂THEN GOSUB 510
$2749 \emptyset$ NORMAL ：GOSUB 58ø：VTAB 24：HTAB 1：PRINT＂SAVE＂ ；ST\＄；＂？（Y／N）＂；：GET G\＄： IF G\＄$=$＂Y＂THEN GOSUB 58 Ø：PRINT D\＄＂BSAVE＂；ST\＄；＂ ．SCR，A\＄4øø，L\＄4øø＂
AF 5øø GOSUB 58ø：GOSUB 590：RET URN
EE $51 \emptyset$ NORMAL ：GOSUB 58ø：HTAB 1：VTAB 24：PRINT＂TITLE？ （＜＝1ø CHAR ）＂；：POKE 34，23：INPUT T\＄：IF LEN T\＄）＞ $1 \varnothing$ THEN PRINT CHR\＄ （7）：GOTO 51ø
C3 520 IF LEN（T\＄）＜ 1 THEN 540
DE $53 \emptyset$ ST $\$=T \$$
85 54ø GOSUB 58ø：POKE 34，Ø：GOS UB 59ø：R＝1：C＝1：M＝$:$ RETURN
9B 550 GOSUB 240：RETURN
90 56ø PRINT G\＄；：C＝C＋1：IF C $>4 \emptyset$ THEN $C=1: R=R+$ 1：IF $\mathrm{R}>23$ THEN $\mathrm{R}=1$
3F 570 GOTO 9Ø
6E 580 POKE 34，23：VTAB 24：HTAB 1：PRINT ：R＝1：C＝1： P OKE 34， $0:$ RETURN
03 590 NORMAL ：VTAB 24：HTAB 1： ON M＋ 1 GOSUB 61ø，62Ø，6 $3 \emptyset$
CA $6 \emptyset \emptyset$ PRINT＂EDITING＂；：INVER SE ：PRINT ST\＄；：NDRMAL ： VTAB 1：HTAB 1：PRINT CH R\＄（ PEEK（1ø24））：RETURN $6661 \emptyset$ PRINT＂NORMAL＂；：RETURN DJ $62 \emptyset$ PRINT＂REVERSED＂；：RETURN C3 630 PRINT＂FLASH＂；：RETURN

Attention Programmers

COMPUTE！magazine is currently looking for quality articles on Commodore，Atari，Apple， and IBM computers（including the Commodore Amiga and Atari ST）．If you have an interesting home application， educational program， programming utility，or game， submit it to COMPUTE！，P．O Box 5406，Greensboro，NC 27403．Or write for a copy of our＂Writer＇s Guidelines．＂

COMPUTEI Subscriber Services

Please help us serve you better．If you need to contact us for any of the reasons listed below，write to us at：

COMPUTEI Magazine

P．O．Box 10954

Des Moines，IA 50340
or call the Toll Free number listed below．
Change Of Address．Please allow us 6－8 weeks to effect the change；send your current mailing label along with your new address．
Renewal．Should you wish to renew your COMPUTEI subscription before we remind you to，send your current mailing label with payment or charge number or call the Toll Free number listed below．

Now Subscription．A one year（12 month）US subscription to COMPUTEI is $\$ 24.00$（2 years，$\$ 45.00 ; 3$ years，$\$ 65.00$ ． For subscription rates outside the US， see staff page）．Send us your name and address or call the Toll Free number listed below．
Dellvery Problems．If you receive dupli－ cate issues of COMPUTEI，if you experi－ ence late delivery or if you have prob－ lems with your subscription，please call the Toll Free number listed below．

COMPUTE！ 1－800－247－5470 In IA 1－800－532－1272

IBM PrtSc Protector

Marc Sugiyama

If you've ever hit Shift-PrtSc by mistake and accidentally dumped a screen to the printer, you'll appreciate this short keyboard patch program. It works on any IBM PC with PC-DOS 2.0 or higher.

IBM has taken a good deal of flak over the years about the layout of the PC keyboard. One major complaint is the position of the PrtSc (Print Screen) key: It's next to the righthand Shift key. (This has been corrected on the PCjr and PC-AT.) If your finger goes astray and accidentally hits both Shift and PrtSc, the PC suddenly dumps the screen to the printer. It's particularly annoying when you're printing a long document or when you don't have a printer attached. If there's no printer, the PC locks up until it figures out that there's nothing to print to.

On the other hand, it's nice to have the screen dump capability handy when you need it. You wouldn't want to completely disable the function, but it would be nice if it were a little harder to call by accident.
"PrtSc Protector" offers a good compromise. It's a short machine language program that patches into the PrtSc function and distinguishes between the two Shift keys. If you press the right Shift key with PrtSc, nothing happens. If you press the left Shift key with PrtSc, you get the screen dump you really wanted.

The program below is a BASIC loader that creates the machine language file NOPRTSC.COM for PrtSc Protector directly on disk. If the BASIC loader detects any errors in the DATA (highly unlikely if you enter the program using COMPUTE!'s Automatic Proofreader"), it reports the mistake and erases the incorrect file. Because the file has the extension .COM, you can activate the program simply by typing the filename at a DOS prompt:

A> NOPRTSC

The resident portion of NOPRTSC.COM takes only about 320 bytes of memory. If you want to dump graphics screens to the printer, install NOPRTSC.COM after installing GRAPHICS. Don't try to install GRAPHICS more than once, or the computer will crash. Likewise, don't try to install NOPRTSC.COM more than once (why would you want to?). When NOPRTSC.COM is installed successfully, it returns a zero in the ERRORLEVEL variable; otherwise, it returns a one.

IBM PriSc Protector

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing in Programs" in this issue of COMPUTEI.

[^7]OH $15 \emptyset$ IF CKSUM $\langle>25361$ THEN PR INT"** Error in DATA stat ements **":KILL "noprtsc. com": STOP
MK $16 \emptyset$ PRINT:PRINT"File for nopr tsc.com has been created. ": END
NK 2øø DATA $233,171, \varnothing, 8 \emptyset, 97,117$, 1ø8, 8ஏ, 83, 81, 82,86
KJ $21 \emptyset$ DATA $87,85,18 \emptyset, 2,2 \emptyset 5,22$, $168,2,116,6,156,154$
HK $22 \emptyset$ DATA $\varnothing, \emptyset, \emptyset, \emptyset, 93,95,94,9 \emptyset$, 89,91,88,297
LL $23 \emptyset$ DATA $8 \emptyset, 114,111,116,161$, $99,116,1 \emptyset 1,1 \emptyset \emptyset, 32,8 \emptyset, 114$
JB 24ø DATA $116,83,99,32,165,11$ Ø, 115, 116,97, 168, 168, 161
MM $25 \emptyset$ DATA $1 \emptyset \emptyset, 46,32,32,83,1 \emptyset 4$, 1ø5, 162, 116, 45, 8ø, 114
CL 26ø DATA $116,83,99,32,117,11$ $5,1 \emptyset 5,11 \emptyset, 1 \emptyset 3,32,114,1 \emptyset 5$
EI $27 \emptyset$ DATA $163,1 \emptyset 4,116,45,115$, $1 \varnothing 4,1 \varnothing 5,1 \varnothing 2,116,32,1 \varnothing \varnothing, 1 \varnothing$ 5
E6 $28 \emptyset$ DATA $115,97,98,1 ø 8,1 \emptyset 1,1$ Øø, 46, 13, 1ø, 36, 8ø, 114
BF $29 \emptyset$ DATA $111,116,161,99,116$, $1 \emptyset 1,1 \emptyset \emptyset, 32,8 \emptyset, 114,116,83$
LF $3 ø \emptyset$ DATA $99,32,97,1 ø 8,114,1 \emptyset$ $1,97,1 ø \varnothing, 121,32,1$ 1.5,11ø
$A B \quad 31 \emptyset$ DATA $115,116,97,1 ø 8,1 \emptyset 8$, $1 \varnothing 1,1 ø \emptyset, 46,13,1 \varnothing, 36,82$
BN 32ø DATA $1 \varnothing 1,113,117,1 \emptyset 5,114$, 1ø1, 115, 32, 68, 79, 83, 32
JE $33 \emptyset$ DATA $5 \emptyset, 46,48,32,111,114$,32,97,98, $111,118,1 \varnothing 1$
$6 E \quad 34 \emptyset$ DATA $46,13,1 \emptyset, 36, \emptyset, \emptyset, 18 \emptyset$,48, 2ø5, 33, 6ø, \emptyset
B6 $35 \emptyset$ DATA $117,9,186,143,1,186$, 9, 265, 33, 265, 32, 187
DJ $36 \emptyset$ DATA $36,1,177,4,211,235$, $67,137,3 \varnothing, 172,1,184$
HB $37 \emptyset$ DATA $5,53,2 \emptyset 5,33,137,3 \emptyset$, 24, 1, 14 , 6, 26, 1
EH $3 B \emptyset$ DATA $19 \emptyset, 3,1,141,127,252$, 185, 4, $\varnothing, 252,243,166$
IJ $39 \emptyset$ DATA $131,249, \emptyset, 116,33,18$ ஏ, 9, 186, 36, 1, 265, 33
FK 4øø DATA $184,5,37,186,7,1,2 \emptyset$ 5, 33, 161, 44, ஜ, 142
DD $41 \emptyset$ DATA $192,18 \emptyset, 73,295,33,1$ $84, \emptyset, 49,139,22,172,1$
FO 420 DATA $2 ø 5,33,186,106,1,18$ ø, 9, 2ø5, 33, 184, 1, 76
AB $43 \emptyset$ DATA $2 \emptyset 5,33, \emptyset$

Apple Error-Trapping

Ann Baldridge

Abstract

You can add the professional touch to your BASIC programs by checking for common user errors-such as mistyped filenames, attempts to save data files on write-protected disks, invalid input, and the like. This article shows how any Applesoft program can be improved with proper use of the ONERR statement. The techniques apply to all Apple II-series computers with either DOS 3.3 or ProDOS.

Computers can be impolite. If you make the tiniest little nit-picking mistake, they balk with an error message and interrupt what you were trying to do. Or worse, they sometimes decide to freeze up and challenge you to a staredown.

This is bad enough when it happens to you. But if you write software for other people to use, part of your job is to protect them against the computer's insistence on perfection. One tool you can employ is an Applesoft BASIC command that is underutilized and even mysterious to many Apple programmers: ONERR (on error).

Picture a typical user who has just spent a half-hour entering information into your program. The program asks, SAVE TO DISK?. He taps Y in response, watches the drive's busy light come on, and then reaches over and pops opens the drive to make sure he's saving to the right disk-thereby aborting
the save. A dumb mistake? Not for a beginner.

Although you may think he deserves to hear the drive's angry clacking sound and the error beep, and see the I/O ERROR warning and the now-mindless blinking cursor, you can keep all this from happening. If you inserted just one instruction before the save rou-tine-ONERR GOTO 500-your program could be recovering from this mistake in whatever way you planned in line 500 and beyond.

Just because computers can sometimes be impolite doesn't mean your programs must be, too.

ONERR Tools And Rules

To save you the trouble of plowing through piles of programming manuals and reference guides, not to mention the hours you might spend experimenting, I've compiled a list of rules to follow when trapping errors in Applesoft programs. These are the results of my own trial-and-error efforts.

1. The ONERR command must be paired with GOTO, not GOSUB. Here's the proper syntax:

10 ONERR GOTO 1000

assuming, of course, that your error-handling routine begins at line 1000. If you try pairing ONERR with GOSUB, you'll get a syntax error.
2. The ONERR command must precede the statement where you
anticipate an error may occur. For instance, if you want to protect against the disk drive input/output error described above, the ONERR command must be executed before the save routine. ONERR can be included in a multiple-statement line, but must be the last statement in the line. (I discovered that rule when some other statements following the ONERR command evaporated. Took me a while, too, because none of the books I read mentioned it.) Most programmers isolate ONERR GOTO on its own line. Now you know why.
3. When an error happens, the computer places a code number identifying the error into memory location 222. So ERRNUM $=$ PEEK (222) yields a number that helps you plan what to do next. For instance, the numbers between 1 and 15 indicate a disk operation error. Some of these error codes are listed in the table below.
4. The command RESUME returns the program to the beginning of the statement or instruction where the error occurred-but not necessarily to the beginning of the line. It acts kind of like RETURN, except that it doesn't come back to the statement or line after the statement which called it. Let's say your program contains a line like this:
10 PRINT A:PRINT B:PRINT C
and an error occurs while PRINT B is executed. RESUME returns to the

PRINT B statement-not PRINT A or PRINT C. You can determine the line number where the error happened with this statement:

LINERR $=\operatorname{PEEK}(218)+\operatorname{PEEK}(219) * 256$

5. You can turn off the ONERR command with POKE 216,0. If you do this too soon after an error occurs, however, the error code won't be stored in memory location 222.
6. There are some problems with ONERR in Applesoft. You get into a bunch of trouble if the error happens within a subroutine or a FOR-NEXT loop or, heaven forbid, both. For instance, suppose your program encounters a few errors while executing a load or save routine within a nested FOR-NEXT loop that is inside a nested subroutine. Boom. Reset City. There is a very short machine language fix that avoids these and other troubles. The routine is included (in the form of DATA statements) in lines 3000-3020 of Program 1. You must call this routine before you POKE 216,0 . (I spent two days chasing a phantom syntax error before discovering this rule.) To be safe, make POKE 216,0 the last command before returning from the errorhandling routine.
7. You can set a variable to either zero or one depending on whether the ONERR routine has been called. Known as setting a flag, this technique uses an IF-THEN statement to direct the route of the program.

Not A Cure-All

The purpose of ONERR, by the way, is to trap system errors which may occur as a program runs. You should not rely on it to trap your BASIC programming mistakeserrors like OUT OF DATA, TYPE MISMATCH, SYNTAX ERROR, and so on. Those kinds of errors should be caught when you test and debug the program. Too many lazy programmers use ONERR to cover their inability or unwillingness to find and correct their own errors.

The types of errors you should trap with ONERR are those which can be anticipated but not predicted: a data disk that is left out of the drive; a drive door that's left open; a mistyped filename; or a data disk
filled to capacity. In these cases, ONERR routines protect the user from himself.

Putting Theory To Practice

Program 1 shows how to apply these rules. Note that this program is for illustration only, not to be typed in and run. Notice these variables:
ER is the error flag. When set to zero, it means no error has occurred. The program resets the flag to one when a problem exists.
$E C$ is the error code number PEEKed from location 222.

Here's how the program works:

Line 10 sets up D\$ as the DOS selector code, which saves keystrokes later on.

Line 20 sets up the machine language fixer for ONERR. This subroutine is called only once.

Lines 100 and 200 set the error flag (ER) to zero and prepare the ONERR routine to be called if necessary. Tip: Put the ONERR GOTO command(s) into a REM statement (e.g., 100 ER $=0:$ REM ONERR GOTO 2000) until you've fixed all of your own errors. Otherwise, simple typos and logic mistakes will trigger ONERR and call your errorhandling routine. When you're satisfied the program works the way you intended, remove the REM to activate ONERR.

Lines 110 and 210 ask the user to enter a filename.

Lines 120 and 220 are the important ones. You must put your error flag and IF-THEN statements into the line where you expect trouble to occur. If no error routine is called, the line goes on to execute normally. If an error does occur, then line 2000 executes (ONERR GOTO 2000).

Line 2000 begins the errorhandling routine. It sets the error flag to one $(E R=1)$; examines the error code $(E C=\operatorname{PEEK}(222))$; calls the machine language fixer routine at memory location 768 in case the error was within a subroutine or FOR-NEXT loop (CALL 768); and tells the program to continue execution at the beginning of the statement where the error happened (RESUME).

What happens next is the key. When the program goes back to the appropriate statement (in this case either line 120 or 220), the error flag (ER) no longer equals zero. So, when the program reaches a statement that tests IF ER $=0$, execution drops to the next line (either 130 or 230). Lines 250 and 260 show how to use the error flag method in a multistatement line. Remember, RESUME returns to the beginning of the statement where the error was detected. So the flag must be set flag in a second location, too.

When execution drops through to line 130 or 230, GOSUB statements call subroutines which print specific information depending on the problem encountered. Then the ONERR function is turned off with POKE 216,0 before returning to let the user try again. You may wish to carry out this step just before the RESUME statement in the errorhandling routine. And you'll certainly want to include it at the end of each disk access routine to stay aware of any other problems which may crop up.

Eliminating Hostility

Program 2 shows the changes you could make to lines 200-240 of Program 1 if you wanted to save text rather than program files. The error flag appears in line 220, which writes to the disk, since a DISK FULL or similar error is more likely then. Note that you don't have to close the file when the program drops through to the next line. When the Apple detects an error, it clears all of its file buffers, which makes closing unnecessary.

You may want to add an error flag to line 15 , too. When the file is opened, an error could result if there's no disk in the drive or if the drive door is open. You could also precede each WRITE command with a trap, since a DISK FULL error bounces the program back to BASIC.

The error-message routines at lines 2100 and 2200 help the user find out what happened so he can correct the mistake before continuing. Although brief, they are written in a friendly tone. Frankly, beeping the computer and flashing I/O ERROR is not only hostile, but gives beginners no clue about how
to proceed.
This approach to error-trapping is quite flexible and adds a professional touch to any program. Don't overdo it, though. ONERR is best used to help people with problems you can't handle via skilled and careful programming.

Important DOS Error Codes

Code	Error Description
4	Write-protected disk
6	File not found
8	I/O error
9	Disk full
10	File locked

Note: A complete list of error codes is commonly found in many Apple manuals and books.

For instructions on entering this listing, please refer to "COMPUTE!'s Guide to Typing in Programs" published bimonthly in COMPUTE.

Program 1: ONERR Demo

$691 \varnothing \mathrm{D} \$=$ CHR $\$$ (4) : REM SET APP LE DOS SELECTOR 192 GOSUB उøøø
9A 1 Øø ER $=\varnothing$: ONERR GOTO $2 \emptyset \emptyset \emptyset$
$6211 \emptyset$ INPUT "WHAT FILE WOULD YO U LIKE TO SEE?";FILE\$

F7 120 IF ER $=\varnothing$ THEN PRINT D $\$$; " LOAD "FILE\$: GOTO 14ø
A9 $13 \emptyset$ GOSUB 21øø: POKE 216, $5: ~ G ~$ OTO 1øø: REM GO BACK TO T RY AGAIN
9C $14 \varnothing$ PRINT "HERE'S YOUR FILE."
D5 199 REM SAVE A FILE
9B $2 \emptyset \varnothing$ ER = Ø: ONERR GOTO 2øøø
87210 INPUT "WHAT FILENAME WOUL D YOU LIKE TO USE?";FILE\$
EA 220 IF ER $=\varnothing$ THEN PRINT D $\$$;" SAVE "FILE\$: GOTO $24 \varnothing$
B4 $23 \varnothing$ GOSUB 22øø: POKE 216, $: ~ G ~$ OTO 2øø: REM GO BACK TO T RY AGAIN
87240 PRINT "YOUR FILE HAS BEEN SAVED": GOTO 4ØøØ
7B 1999 REM ONERR ROUTINES
48 2бøб ER = 1:EC = PEEK (222): CALL 768: RESUME
792699 REM LOADING ERRDR MESSAG ES
EJ 21 gø IF EC $=6$ THEN PRINT "UN ABLE TO LOCATE FILE BY T HAT NAME. PLEASE CHE CK TO SEE IF YOU SPELLED IT CORRECTLY."
© $211 \emptyset$ IF EC $=8$ THEN PRINT "EI THER YOUR DISK DRIVE DOO R IS OPEN OR YOU DON'T HAVE A DISK IN THIS DRIV E."
$75212 \emptyset$ GOSUB 23øø: RETURN
C2 2199 REM SAVING ERROR MESSAGE 5
47 22øの IF EC $=4$ THEN PRINT "TH IS DISK IS WRITE-PROTECT ED. PLEASE REM QVE THE WRITE-PROTECT TA B OR PUT IN A NON-PROTE

CTED DISK. ${ }^{\prime}$
42 221ø IF EC $=8$ THEN PRINT "EI THER YOUR DISK DRIVE DOU R IS OPEN OR YOUR DISK: IS BAD."
402230 IF EC $=9$ THEN PRINT "TH IS DISK IS FULL. PLEASE INSERT A DIFFERENT DISK."
7F $224 \emptyset$ GOSUB 23øø: RETURN
ED $23 \emptyset \emptyset$ PRINT : PRINT "PRESS ANY KEY TO TRY AGAIN.": GET K\$: PRINT K\$: RETURN
CB $3 \emptyset \emptyset \emptyset$ FOR I $=\emptyset$ TO 9: READ MT: POKE 768 + I,MT: NEXT I
5F $3 \boxed{6} 1 \emptyset$ DATA $164,168,164,166,223$, 154, 72, 152, 72,96
DB 3ø2ø RETURN
C5 4øøø END

Program 2: Text Save Routine

AB 215 PRINT D\$; "OPEN "FILE\$
$6622 \emptyset$ IF ER $=\varnothing$ THEN PRINT D $\$$; " WRITE "FILE\$: GOTO 24ø
f3 $23 \varnothing$ GOSUB 22øø: POKE 216, Ø: G OTO 2øø
C6 $24 \emptyset$ PRINT "OKAY, I'M SAVING Y OUR FILE NOW."
$2225 \emptyset$ IF ER $=\emptyset$ THEN PRINT A $\$:$ PRINT B\$: PRINT C\$: PRINT A: PRINT B: PRINT C: IF $E R=\varnothing$ THEN 4 $4 \emptyset \emptyset$
f9 26ø GOSUB 22øø: POKE 216, Ø: G OTO 2øø

Nashua

Boxed in tens,
with envel-
opes, labels,
write protect
tabs and Limi-
ted Lifetime

Warranty.

Tax, Telecommunications Programs

Arrays, Inc., has released the 1985 version of Tax Advantage, an income tax preparation program for the Commodore 64 and 128; Apple II, II + , IIe, and IIc; Atari $800,800 \mathrm{XL}$, and 130 XE ; and IBM PC, XT, and AT computers. The package aids in preparing forms 1040, 6251, 2106, 2441, 4562, and schedules A, B, C, D, E, G, SE, and W. All information can be printed directly onto IRS forms and schedules. In addition, Tax Advantage performs income averaging, line itemization, and minimun tax calculations. The program is planned for ease of use, even for users new to computers and tax preparation, and works with Arrays' The Home Accountant.

Suggested retail price is $\$ 69.95$. For an additional $\$ 10$ warranty fee, users can purchase next year's update at a substantial price reduction.

Placing and answering calls on the Commodore 64 can be done automatically with PhoneCall, a new telecommunications program also from Arrays. It can be used to access online databases such as The Source or Compuserve, as well as other micro and mainframe computers. The program can send and receive both text and program files, and can convert CompuServe files to Commodore ASCII files.

PhoneCall's macro capability can store numbers, log on codes and billing information. It also includes a small bulletin board, and has a 26 K buffer. The program comes with a tutorial and quick reference manual. Suggested retail price is $\$ 59.95$.

Arrays, Inc./Continental Software, 6711 Valjean Avenue, Van Nuys, CA 91406.

Circle Reader Service Nuınber 190.

Filing Program For Atari ST

AtariSoft and Stoneware, creator of the original DB Master database management system for several different microcomputers, have introduced a filing system for the Atari 520ST that is easy enough for first-time computer users. Called DB Master One, the system enables users to create forms with different colors and typestyles, or engage ready-to-use templates. Reports can
also be easily generated. The program can hold up to 320 K files, with 100 fields per form, 3,000 characters per record, four report forms, and ten report designs. Suggested retail price, $\$ 49$.

Atari Corp., 1196 Borregas Ave., P.O. Box 3427, Sunnyvale, CA 94088-3427
Circle Reader Service Number 191.

Star Gazing On The Mac

Halley's Comet has been included in the new 512 K Macintosh version of Tellstar, Spectrum HoloByte's computer astronomy software package. The program can track the comet from any location and on any date and time from 1980 to 1991. Also included in the program are displays and astronomical data on solar bodies, constellations, and Messier objects. Tellstar Level I includes all basic functions and one star table and retails for $\$ 49.95$; Tellstar Level II comprises three detailed star tables and retails for $\$ 79.95$. Versions for IBM and Apple II computers are also available.

Orbiter, another new release from Spectrum HoloByte, is a space shuttle simulation and game with 3-D graphics and voice synthesis that puts the player at the helm of NASA operations. Players earn points based on missions completed and performance throughout the entire space flight. Orbiter runs on the 512 K Macintosh and sells for $\$ 49.95$.

Spectrum HoloByte Inc., 1050 Walnut, Suite 325, Boulder, CO 80302.
Circle Reader Service Number 192.

Commodore, Apple II Word Processor

 Better Working, the home productivity software brand from Spinnaker Software, has announced its Word Processor with Spellchecker for the Commodore $64 / 128$, the Apple II series, and the Atari ST computers. Word Processor is the third product in the Better Working line, joining Spreadsheet and File and Report.The new package combines a fullfeatured word processor with the 50,000-word American Heritage Dictionary Spellchecker. The three Better Working programs are integrated. Suggested retail for Word Processor with

Spellchecker is $\$ 59.95$ for the Apple II and ST versions and $\$ 49.95$ for the Commodore version.

Better Working, One Kendall Square, Cambridge, MA 02139.
Circle Reader Service Number 193.

Prime Printers

A new low cost dot-matrix printer has been released from the Japanese company Citizen America Corp. Called the 120D, it features 120 characters per second (cps) printing, graphics capability, switch selectable IBM and Epson compatibility; a 25 cps correspondence quality mode; and a standard 4 K buffer. List price is $\$ 249$.

Another new printer from Citizen America, the Premiere 35, is a letterquality daisywheel printer with a 35 cps printing speed and a low operating noise level of 55 decibels. It also has an 8 K buffer, an LCD display of print functions and error messages, and selectable proportional spacing for justified text. List price is $\$ 599$.

Citizen America Corp., 2425 Colorado Ave., Santa Monica, CA 90404.
Circle Reader Service Number 194.

New From Learning Well

Know Logo, an educational program for grades one and up, has been released by Learning Well. In a series of 50 games and discovery-based activities, Know Logo provides practice in turtle moves and turns, estimating angles, screen distances and positioning, and commands for circles and arcs. It requires a basic knowledge of Logo commands.

Also new from Learning Well is Typing Well, a typing tutor for children and adults. Players gobble up letters, create word pictures, and play table tennis as they sharpen their touch typing skills. The word-per-minute speed is automatically adjusted for each player, so that the program challenges without going beyond individual capabilities.

Each program runs on the Apple II series and lists for $\$ 49.95$

Learning Well, 200 S. Service Rd., Roslyn Heights, NY 11577.
Circle Reader Service Number 195.

Commodore 64 Talking Text

The Votalker C-64 speech synthesizer from Votrax offers three types of text vocalization: conversation mode, which reads text as it's spoken; verbatim mode, which reads text and pronounces symbols; and character mode, which spells each word and pronounces numbers and symbols. It also has a screen echo that allows all words, numbers, punctuation marks and other symbols to be automatically spoken as they are printed to the terminal screen.

The four-by-five inch unit plugs into the Commodore 64 expansion port and contains its own amplifier, speaker, and external speaker jack. Suggested retail price is $\$ 99$; and for a limited time, those who purchase the Votalker C-64 will receive a free copy of Trivia Talker II, Votrax's talking trivia game. Votrax, Inc., 1394 Rankin Rd., Troy, MI 48083.
Circle Reader Service Number 196.

The Votalker C-64 voice synthesizer speaks text automatically and sells for $\$ 99.95$.

Modula-2 Programming Language TDI Software has announced the release of Modula-2/ST programming language for the Atari ST, in addition to versions for the Amiga and Macintosh computers. TDI Modula-2/ST comes with a full screen editor linked to the compiler, and flags all errors during compilation. It also has a full GEM interface, which enables the user to access GEM routines including GEM DOS, windows, mice, menus, and graphics.

Suggested price is $\$ 69.95$.
TDI Software Inc., 10410 Markison Rd., Dallas, TX 75238.
Circle Reader Service Number 197.

Transparent Technology For Commodore

Transparent utilities-programs that run concurrently with other programs but only appear when called upon-are now possible for the Commodore 64
through Cardco, which recently introduced StealthTec, a transparent program interrupt technology on a cartridge.

Cardco's first product to use this technology is Freeze Frame, a transparent screen dump utility. A couple of keystrokes will send whatever is displayed on the computer screen to the printer. Freeze Frame is compatible with all programs and languages, and supports any printer or interface which emulates the Commodore 1525, as well as Epson- and Okidata-compatible printers. It retails for $\$ 49.95$.

A second program in this line (unnamed at press time) is similar to Borland's Sidekick for the IBM-PC. The product offers access to things like a calculator, appointment calendar, telephone directory/database, and a memo writer. Any of the functions can be called up while another program is running. Suggested retail price is $\$ 69.95$.

Cardco plans to make the StealthTec technology available for licensing by other software vendors.

Cardco, Inc., 300 S. Topeka, Wichita, KS 67202
Circle Reader Service Number 198.

Hippopotamus Introduces 14 ST Products

Hippopotamus Software has announced an initial line of 14 programs for the Atari ST. The products take advantage of the ST's GEM environment, incorporating pull-down menus, windows, and online help screens.

The line includes HippoWord, a mouse-based word processor (\$89.95); Hippo Concept, an idea organizer compatible with HippoWord (\$89.95); HippoSimple, a database manager (\$49.95); Hippo Disk Utilities, compatible with floppy and hard disks (\$49.95); HippoBackgammon, using full-color animated graphics (\$39.95); Hippo Computer Almanac, a combination game/reference tool that contains more than 35,000 facts ($\$ 34.95$); and HippoPixel, which allows users to create their own sprites and fonts ($\$ 39.95$).

Hippopotamus Software, Inc., 985 University Ave., Suite 12, Los Gatos, CA 95030
Circle Reader Service Number 199.

Classics On Computer For Apple II

 An educational game based on the book Treasure Island has been introduced by Classics On Computer. Appropriate for either home or classroom use, the program contains a highresolution graphics game board, a short review game, and a special manual for teachers.Treasure Island is designed to im-
prove reading skills and build vocabulary. It is recommended for grades 5-9. Available for the Apple II, II + , or Apple IIe with minimum 48 K memory, the program retails for $\$ 39.95$.

Classics On Computer, 5150 Wilshire Blvd., Suite 502, Los Angeles, CA 90036. Circle Reader Service Number 200.

Low-Cost Word Processor For IBM-PC

Dac Software, has announced Dac Easy Word, a versatile word processor for the IBM-PC.

The program features the ability to work on four different documents simultaneously (using DAC Windows); automatic hyphenation; file merges; automatic search; page numbering; and word count. It requires 256 K memory on the IBM-PC, and retails for $\$ 49.95$.

Dac Software, Inc., 4801 Spring Valley Rd., Building 110B, Dallas, TX 75244 Circle Reader Service Number 201.

SpeedScript Enhancer For 64

Upstart Publishing has released Speedpak, an enhancement to COMPUTE!'s popular SpeedScript word processor (Commodore 64 versions $3.0-3.2$). The program adds six new commands, three printer codes, and eight user-definable 31-character macro phrase keys.

Additional features include alternate screens, which enable switching between and editing two documents instantly; a help screen and onscreen font installer, 32-character encryption, code conversion to Commodore ASCII or screen codes; default selection to disk/tape storage, set printer device and secondary address; and a Dvorak keyboard option.

Speedpak comes with printed instructions and includes three diskbased tutorials and three sample files. Price, $\$ 15$.

Upstart Publishing, Dept. SP-NP2, P.O. Box 22022, Greensboro, NC 27420 Circle Reader Service Number 202.

Word Munchers On The Apple
A world of Munchers and Troggles awaits the player of Word Munchers, a new educational game for grades one through five, from Minnesota Educational Computing Corporation (MECC). Players move their Word Muncher around a game screen and direct it to eat words that have a particular vowel sound, while avoiding the enemy Troggles. Word Munchers becomes progressively more difficult at higher levels. Teachers can determine which vowel sounds are used and can control the level of word difficulty. About 1700 words of varying difficulty
can be used.
Word Munchers runs on all Apple II computers with at least 64 K memory. Use of a joystick is optional. A support manual is included. Suggested retail price, $\$ 49$.

Minnesota Educational Computing Corporation, 3490 Lexington Ave. North, St. Paul, Minnesota 55126-8097
Circle Reader Service Number 203.

HomePak, BatteryPak For Mac

Batteries Included's HomePak and BatteryPak programs have been developed for the Macintosh. HomePak is a three-in-one telecommunications/ word processing/database manager program with macro command capability. BatteryPak is a set of nine accessories: Calendar, with Daytimer, keeps track of appointments and deadlines; the 250page Phonepad stores and retrieves phone numbers; Automatic Modem/ Phone Dialer automatically dials any number listed in Phonepad or Calendar; Scientific Calculator includes statistical, logarithmic and trigonometric functions; RPM Calculator is for everyday calculating; a 7 -function disk utility includes Trash, Copy, and Rename commands; High-Speed Launcher transfers to and from any program; Print Text creates draft copies while continuing to use the Mac; Windows

Listing brings any window to the front of the screen.

Suggested retail price of HomePak is \$69.95; for BatteryPak, \$49.95.

Batteries Included, 17875 Sky Park North, Suite P, Irvine, CA 92714
Circle Reader Service Number 204.

ST Telecommunications

Online databases and bulletin boards can be accessed from the Atari 520ST using Atari's Fastcom telecommunications software. The program features integrated ASCII, VT100, and Viewdata modes; GEM drop down menus; transmission of text and binary files; macro commands; multi-tasking; full Prestel functions; printing of both graphics and text; and autodial and auto answer modem support.

The program comes with user guide and reference manual, and lists for $\$ 69$.

Atari Corp., 1196 Borregas Ave., P.O. Box 3427, Sunnyvale, CA 94088-3427
Circle Reader Service Number 205.

Electronic Word Book

Richard Scarry's Best Electronic Word Book Ever!, a new program from CBS Software, is a picture and word game from children's author and illustrator Richard Scarry. Word recognition, vocabulary building, and objects recogni-
tion are developed as players travel with Lowly Worm to six different colorful environments: a farm, a town, a park, a railroad yard, a construction site and a harbor. In each environment, players learn to identify objects and associate them with their printed names. Animated graphics and familiar childhood tunes are used in each of the game's four skill levels. For the Apple II family and the Commodore 64 and 128. Suggested retail price, $\$ 19.95$.

CBS Software, One Fawcett Place, Greenwich, CT 06836
Circle Reader Service Number 206.

ST Software From Spinnaker

Spinnaker Software has released Atari 520ST versions of several of their more popular programs. Homework Helper Math and Homework Helper Writing, two educational programs, sell for $\$ 49.95$ each; Amazon, Dragonworld, Fahrenheit 451, Nine Princes in Amber, and Perry Mason: The Case of the Mandarin Murder, all graphics-and-text adventure games also sell for $\$ 49.95$ each; Treasure Island and Wizard of Oz, from the Windham Classics series, sell for $\$ 39.95$ each; and Kung Fu: The Way of the Exploding Fist sells for $\$ 39.95$.

Spinnaker Software, One Kendall Square, Cambridge, MA 02139
Circle Reader Service Number 207.

HOTWARE: Software Best Sellers

Thls Month	Last Month	Titie	Publisher	Remarks	$\frac{9}{\circ}$	$\frac{5}{4}$	$\begin{aligned} & \text { o } \\ & 0 \\ & \text { E } \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	E	¢ ¢ ¢ ¢ O D
Entertainment									
		F-15 Strike Eagle	MicroProse	Air combat simulation	\bullet	\bullet	\bullet	-	
$\begin{aligned} & 2 . \\ & 3 \end{aligned}$	5. 3	Karateka	Broderbund Sublogic	Action karate game Flight simulation	\bullet	\bullet	\bullet		
4.	2.	Flight Simulator II	Sublogic	Aircraft simulation	-	-	-		
5.		Ulitima IIII	Origin Systems,	Fantasy game	-	-	-	\bullet	
Education									
1.	1.	Typing Tutor III	Simon \& Schuster	Typing instruction program Introductory math program, ages 6-12 Typing instruction program	-	\bullet	\bullet	\bullet	-
2.	2.	Math Blaster!	Davidson						
3.	3.	New Improved Mastertype	Scarborough		\bullet		-	-	-
4.		Music Construction Set	Electronic Arts	Music composition program	-	-	\bullet		
5.	5.	Sky Travel	Commodore	Astronomy learning program			-		
Home Management									
1.	1.	Print Shop	Broderbund Springboard Brederbund	Do-it-yourself print shop Do-it-yourself newspaper Upgraded graphics library	-	-	-	-	
2.	2.	The Newsroom					-		
3.	4.	Print Shop Graphics Llbrary II				\bullet	-		
4.	5.	Print Shop Graphics	Broderbund	100 additional graphics		-	-		
		Llbrary							
5.		Three-In-One Bundle	Timeworks	Word processor, spreadsheet, database manager			-		

Copyright 1985 by Billboard Publications, Inc. Complled by the Billboard Research Department and reprinted by permission. Data as of $11 / 23 / 85$ (entertainment) and 11/30/85 (education and home management).

SpeedCalc For Apple II Computers

Kevin Martin

In response to popular request, COMPUTE! presents this professional-quality spreadsheet program for all Apple IIseries computers with either DOS 3.3 or ProDOS. Written completely in high-speed machine language, Apple SpeedCalc has all the important features you'd expect from a commercial spreadsheet program. In addition, its data files can be merged into text files created with the Apple SpeedScript word processor published last year in COMPUTE!. Apple SpeedCalc requires a disk drive, and a printer is optional but recommended.

Have you ever planned a budget for your home or office? If so, you probably used some sort of worksheet divided into rows and columns. Perhaps you wrote the months of the year along the top of the sheet and listed categories for earnings and expenses along one side. After entering data for each category and month of the year, you could calculate total income figures by adding or subtracting numbers in each of the sheet's "cells."

That's a classic example of a worksheet. It lets you enter and organize data, then perform calculations that produce new information. A spreadsheet program is an electronic version of the familiar paper worksheet. Since it does all the calculations for you at lightning speed, an electronic spreadsheet is far more convenient than its paper
counterpart. And spreadsheet programs also offer editing features that let you enter and manipulate large amounts of data with a minimum of effort.

Apple SpeedCalc is an all machine language spreadsheet program for Apple II computers with either DOS 3.3 or ProDOS. Though relatively compact in size, SpeedCalc is fast, easy to use, and has many of the features found in commercial spreadsheet programs. Even better, the "SpeedScript File Convertor" program lets you merge your SpeedCalc files into word processing documents created with SpeedScript, COMPUTE!'s popular word processor (see COMPUTE!, July 1985, or SpeedScript: The Word Processor for Apple Personal Computers, published by COMPUTE! Books).

Working together, SpeedCalc and SpeedScript make a powerful team. You can merge a chart of sales figures into a company report, create a table of scientific data for a term paper, and manipulate numeric information in many other ways. In a sense, a spreadsheet program brings to arithmetic all of the flexibility and power that a word processor brings to writing.

Preparing The Program

Although Apple SpeedCalc is small in comparison to similar commercial programs, it is one of the longest programs COMPUTE! has ever published. Fortunately, the "Apple MLX" machine language entry utility makes it easier to type a program of this size. Be sure to
carefully read the Apple MLX article elsewhere in this issue before you begin.

We're publishing two separate versions of Apple SpeedCalc: Program 1 is for Apple computers with DOS 3.3, and Program 2 is for Apples with ProDOS. Be sure to type the correct version for your system, since the DOS 3.3 version doesn't work with ProDOS and vice versa.

Since the DOS 3.3 version of SpeedCalc resides in the same area of memory normally used by BASIC programs, you must relocate the BASIC program storage area before loading MLX to enter the data for SpeedCalc. If you're using DOS 3.3, enter the line below in direct mode (without a line number) and press RETURN:
POKE 104,38:POKE 9728,0:NEW
Then load and run MLX.
If you're using ProDOS, no special actions are required before loading and running MLX.

Here are the addresses you need to enter SpeedCalc with Apple MLX:
DOS 3.3:
Starting address: 07FA
Ending address: 24 F 9

ProDOS:

Starting address: 2000
Ending address: 3D67
After you finish typing, be sure to save at least one copy before attempting to run SpeedCalc for the first time. To start the DOS 3.3 version, first enter BLOAD SPEEDCALC (replace SPEEDCALC with the appropriate filename if you

From the publishers of COMPUTE!

February 1986 COMPUTE! Disk

All the exciting programs from the past three issues of COMPUTE! are on one timesaving, error-free floppy disk that is ready to load on your Apple II, II + , IIe, and IIc computers. The February 1986 COMPUTE! Disk contains the entertaining and useful Apple II programs from the December 1985 and January and February 1986 issues of COMPUTE!. This easy-to-use disk also features SpeedCalc, the spectacular new spreadsheet program written entirely in machine language for the Apple II-series, and the latest version of SpeedScript, the bestselling word processing program.

The February 1986 COMPUTE! Disk costs $\$ 12.95$ plus $\$ 2.00$ shipping and handling and is available only from COMPUTE! Publications.

For added savings and convenience, you may also subscribe to the COMPUTE! Disk. At a cost of only $\$ 39.95$ a year (a $\$ 12.00$ savings), you'll receive four disks, one every three months. Each disk will contain all the programs for your Apple II machine from the previous three issues of COMPUTE!.

This is an excellent way to build your software library while you enjoy the quality programs from COMPUTE!.

Disks and subscriptions are available for Apple, Atari, Commodore 64 and 128, and IBM personal computers. Call for details.

To subscribe to the COMPUTE! Disk, call toll free 1-800-247-5470 or write COMPUTE! Disk, P.O. Box 10036, Des Moines, Iowa 50950.
used some other name when saving the program). After the program loads, simply type RUN as you would for a BASIC program. To start the ProDOS version of SpeedCalc, first boot ProDOS, then enter -SPEEDCALC (replace SPEEDCALC with the appropriate filename if you used some other name when saving the program). This removes the BASIC interpreter and lets SpeedCalc take over the system.

If you're using an Apple IIe or IIc, be sure the Caps Lock key is down: SpeedCalc doesn't accept lowercase text input.

The Apple SpeedCalc Screen

SpeedCalc uses the top line of the screen as the command line. This is where SpeedCalc displays messages and asks you questions.

Screen lines 2-4 are the input buffer area. This is the work area where you enter and edit data. As you'll see in a moment, the input buffer also displays the data contained in the current cell. The work area cursor is an inverse less-than symbol ($<$). When the cursor is solid (nonblinking), SpeedCalc is waiting for a command or for data to be entered. After a character of data has been entered, the cursor begins blinking. While the cursor is blinking, most SpeedCalc commands (except for the cursor movement keys)
are deactivated until you press RETURN to enter the data into the worksheet.

The lower 20 screen lines are your window into the spreadsheet. Though the spreadsheet contains many rows and columns, only a few can fit on the screen at one time. By scrolling the screen back and forth with the cursor, you can move the display window to any part of the spreadsheet.

The SpeedCalc worksheet consists of 50 vertical columns labeled with letters ($\mathrm{AA}, \mathrm{AB} \ldots \mathrm{BX}$) and 200 horizontal rows numbered from $1-200$. The rectangle where a row and column intersect is called a cell. Cells are where you store data. With 50 columns and 200 rows, the SpeedCalc spreadsheet has a maximum of $10,000(50 * 200)$ cells. Due to memory limitations, however, only about a third of these can actually contain data. But you may spread out the data over all 10,000 cells if necessary, depending on the format you need.

Moving The Cursor

Each cell is identified with the letters of its column and the number of its row. For example, the cell at the extreme upper-left corner of the sheet is called AA1, since it's in column AA and row 1. The cell below that is AA2. Moving one cell to the right from AA2 puts you in
cell AB2, and so on.
Your current position in the spreadsheet is shown by the highlighted cursor. The simplest way to move around the sheet is with the cursor keys (on the Apple II or II+, use CTRL-K to move up and CTRLJ to move down). Another way to move the cursor is with CTRL-@ (CTRL-SHIFT-P for the Apple II or II + , or CTRL-2 for the Apple IIe and IIc.) Press CTRL-@ once to "home" the cursor on the current screen: The cursor moves to the upper-left cell. Press CTRL-@ twice in succession to move the cursor to cell AA1, the home position for the entire sheet.

SpeedCalc also has a goto command for moving the cursor over long distances. When you press CTRL-G, the command line displays GOTO: followed by an underline cursor. The underline cursor generally indicates that SpeedCalc is waiting for data-in this case it expects the name of the cell where you wish to go. If you enter BA188 at this point, SpeedCalc moves the cursor to the cell at column BA in row 188 , adjusting the screen window as needed. Take a few moments to practice moving around the spreadsheet with all three methods; you'll be using them a lot. In a later section, we'll discuss how to change the size and format of a cell.

SpeedCalc Keyboard Reference

Use Control or CTRL with most commands Apple llc Keyboard Shown. Apple lle, $\mathrm{II}+$ similar

Keyboard Commands

SpeedCalc offers many different commands, a few of which are entered by pressing one key. However, most commands are entered by pressing CTRL along with another key. CTRL-G, as you've seen, is the goto command. CTRL-A displays the amount of free memory available, and so on. The most drastic command is CTRL-X, which exits SpeedCalc and reboots the system. Since this effectively erases all data in memory, SpeedCalc prompts you with ARE YOU SURE Y/N? before it shuts down. To cancel the command, simply type N (or any key other than Y).

A few commands require you to press three keys at once. This sounds more awkward than it is in practice, since two of the three keys are Open Apple and CTRL. For instance, the relative copy command is performed by pressing Open Apple-CTRL-C (hold down Open Apple and CTRL, then press C).

The older Apple II and II+ models don't have an Open Apple key, so ESC is programmed to act as an Open Apple toggle. Pressing ESC once makes all following keypresses behave as if they were preceded by Open Apple. Pressing ESC again turns off this effect. In this article, wherever the instructions call for the Open Apple key, Apple II and II + owners should instead precede the keypress with ESC, then use ESC again afterwards to disable the Open Apple toggle. For example, the command to check the recalculation status is Open Apple-CTRL-R; Apple II and II + owners should instead press (and release) ESC, then press CTRL-R. There's no visible indication that the Open Apple toggle is in effect, so you must use ESC carefully or your keypresses will have unexpected results. For safety, always remember to press ESC again to toggle this function off after using a command that requires Open Apple. The table lists all the SpeedCalc commands, and the figure shows the keyboard layout with a description of what each key does. We'll be discussing each command in more detail below.

Three Data Types

Before entering any data, you must know what kind of data SpeedCalc
accepts. There are three different types: numbers, text, and formulas. Let's look at each type in turn.

1. Numeric data consists of num-bers-the basic stuff that spreadsheets work with. SpeedCalc has a few simple rules for numeric data: A number must be a decimal value (base 10, not hexadecimal) composed of one or more digits from $0-9$, with an optional plus or minus sign. A decimal point is also optional. If you include any other characters in numeric input, SpeedCalc treats the entire input as text data (as explained below). Thus, the numbers 123, .001, and -65535 are valid numeric data. The number 65,535 is invalid because it includes a comma.

The allowable range for numbers in Apple SpeedCalc is the same as for Applesoft, roughly -1.7E38 to +1.7 E 38 . If a calculation produces a number outside the allowable range, you'll see the message *ERROR" in the cell containing the formula. This doesn't happen very often, since SpeedCalc won't let you enter a number more than 36 digits long, and there's rarely a need to use such large numbers unless you're tracking the national debt.

Although an input value can be up to 36 digits long, numbers in SpeedCalc calculations are accurate only to nine digits. This must be taken into account when doing any calculation involving large values. For example, you can enter the value 1122334455.66 into a cell, and the cell holds the value with no rounding. However, if you use the value from that cell in a formula, the value is rounded to nine dig-its- 1122334460.00 -and the result of the calculation is accurate only for the first nine digits.

You can enter values in scientific notation by following a number with the letter E and the appropriate power of 10 . For example, you can enter $1,234,000$ as 1.234E06. However, SpeedCalc never uses scientific notation itself, no matter how big the number you enter. Scientific notation should generally be avoided, since values outside the Apple's maximum range will crash the program. (Press CTRL-RESET to recover.)

For example, let's enter the
number 123 in cell AA1. No special commands are required to enter data: Just move the cursor to AA1 and begin typing. The blinking inverse < symbol shows the end of the data. While you're entering the number, it appears only in the input buffer near the top of the screen (the blinking underline shows your cursor position). As soon as you press RETURN, the number appears in AA1 and the letter N appears at the upper right of the screen. The N signifies numéric, meaning that SpeedCalc has accepted the entry as valid numeric data. Move the cursor to a vacant cell, then move it back to AA1. The input buffer displays whatever data is found in the cell under the cursor. When the current cell is empty, the buffer is empty as well.

If you want to change anything during data entry, press the ESC key. ESC always deletes the character before the cursor (or has no effect if the cell is empty). Later on, we'll explain how to edit existing data. Use ESC carefully; remember that when you're not editing (when the cursor is not blinking), ESC acts as an Open Apple toggle. On the Apple IIe and IIc, you can (and should) use DELETE instead of ESC.

As you've seen, pressing RETURN enters a data item into the current cell. You can also end the input by pressing a cursor key. The data is entered as if you had pressed RETURN, and the cursor moves in the indicated direction. This feature is handy for entering a lot of data: Simply type the entry, move the cursor to the next cell, enter more data, and so on.
2. Text data is not "data" in the strict sense, since SpeedCalc doesn't use it in calculations as it does numbers and formulas. Text data is there only to help people understand what the other data means. Text may consist of comments, titles, column headings, subheadings, or whatever you need to interpret the numbers and formulas. As an example, move the cursor to cell AA2 (just under AA1) and type the following line.
this is a piece of text data.
You can use the ESC key (or DELETE on the Apple IIe and IIc) to erase mistakes while you're typing.

When you press RETURN, SpeedCalc displays T (for text) in the upper-right corner. In this example, the cell isn't long enough to accept all the text, so only the leftmost portion appears in AA2. But even though you can't see it, all of the text is there. Move the cursor to another cell, then move it back to AA2. As soon as you return to AA2, SpeedCalc displays all the text in the input buffer area.
3. Formula data is a mathematical expression or formula. It may be as simple as $2+2$ or as complex as your imagination (and mathematical prowess) allows. The first character in a formula must always be an equal sign ($=$). If you omit this symbol, SpeedCalc either signals an error or treats the data as text.

The true power of a spreadsheet is that a formula in one cell can refer to another cell. This is easier to demonstrate than to explain. Move the cursor to cell AA3 and type the following line:
$=A A 1 * 25.01+@ S Q R(4)$
As soon as you press RETURN, SpeedCalc displays F (for formula) in the upper-right corner and puts the result of the formula (not the formula itself) in AA3. If AA1 contains 123, the value 3078.23 appears in AA3. In plain English, this formula means "multiply the contents of cell AA1 by 25.01 and add the square root of 4 ." Before we examine the formula more closely, here's a quick demonstration of what makes a spreadsheet such a powerful tool. Move the cursor back to AA1 and press CTRL-R. The command line displays the message RECALCULATION IS ON, meaning SpeedCalc now automatically recalculates the entire sheet whenever you make a change. Now change the number in AA1 to 456 (simply move to the cell and start typing). The new result (11406.56) automatically appears in cell AA3. We'll explain more about automatic recalculation later.

Note that the referenced cell must contain data that SpeedCalc can evaluate: a number or another formula. If the formula refers to an empty cell, or one that contains text, SpeedCalc signals the error by printing *ERROR* in the cell containing the incorrect formula.

Mathematical Operators

These symbols can be used as operators in a formula:

Operator	Function
+	addition
-	subtraction
-	multiplication
/	division
$=$	exponentiation
	equality

One factor that affects formulas is precedence, or the order in which mathematical operations are performed. In SpeedCalc, formula operators have the same precedence as in ordinary math.

The first operators to be evalu-ated-those with the highest prece-dence-are those enclosed in parentheses. Where one set of parentheses encloses another, the expression in the innermost set is evaluated first. The next operators to be evaluated are exponents. Multiplication and division have equal precedence; both operations are lower than exponentiation. Addition and subtraction have the lowest precedence of all. To take one example, SpeedCalc evaluates the formula $=5^{*}\left(8+3^{*}-2\right)^{\wedge} 2-10 /+2$ as the value 15 , just as in ordinary math. Note how the result is affected by the plus and minus signs before the two 2 's.

Functions

Formulas may also include any of the functions listed here:

@ABS()	absolute value
@ATN()	arctangent
@AVE()	average of a block of cells
@COS()	cosine
@EXP()	natural exponent
@INT()	integer
@LOG()	natural logarithm
@SGN()	sign
@SIN()	sine
@SQR()	square root
@SUM()	sum of a block of cells
@TAN()	tangent
PI	value of pi (3.14159265)

All the functions except PI begin with the @ symbol and are followed by parentheses. The parentheses of a function may contain a number or formula. For example, the formula $=@ S Q R(4)$ generates the square root of 4 . The formula $=@ S Q R(A A 1)$ returns the square root of whatever value cell AA1 contains. Note that the argument (value within parentheses) of the functions @TAN(), @SIN() and
@COS() must be expressed in radians; the result of the function @ARC() is expressed in radians. The function @INT() generates an integer (whole number) by truncating (discarding the fractional part of a numeric value; note that this is different from rounding.

The function @AVE() calculates the mean average of the values in a block (group) of cells. The function @SUM() calculates the sum of a block. Both functions require you to define the block so SpeedCalc knows which cells to include in the calculation. This is done by putting two cell names separated by a colon in the parentheses. The first cell name defines the upper-left corner of the block, and the second defines the bottomright corner. For instance, @AVE(AA1:AD20) calculates the average of all the cells from AA1 to AD20. The function @SUM (AA1:AD20) calculates the sum of AA1 through AD20, and so on. An error results if any cell in the block is blank or contains text data.

Editing The Sheet

Editing is a very important spreadsheet function. The simplest way to change what a cell contains is to move to it and start typing. The old data in that cell is replaced by whatever you enter. For instance, to replace the contents of cell AA1 with the number 456 , move to that cell, type 456 , and press RETURN or exit with a cursor key. Press CTRL-B (think of blank) to erase what's in the current cell. To erase everything in the sheet, press CTRL-N (think of new). Before carrying out this drastic operation, SpeedCalc asks you to confirm it by pressing Y or N .

In some cases, only a minor change is needed. Edit mode lets you change the data in a cell without retyping the entire entry. To activate edit mode, move to the desired cell and press CTRL-E. In this mode, up and down cursor movement is disabled, and the left/right cursor keys move within the input buffer. Erase unwanted characters with the ESC key (or the DELETE key on the Apple IIe and IIc). Typing in edit mode inserts new characters in the line: Everything to the right of the new character moves right one space (unless the buffer is already full). Since the cursor keys
have a different function in edit mode, you cannot use them to end the input. Press RETURN to enter the new data and escape from edit mode.

SpeedCalc displays *ERROR* in a cell when you enter an erroneous formula. Usually this means you've made a typing error in that cell, or the formula refers to text or an empty cell. A line of asterisks (*********) signals that a number is too large to be printed in the cell. Though these messages appear in the cell area, no data is lost. You may move to the affected cell, view its contents in the input buffer, and make whatever correction is needed.

Recalculation

This feature is the very core of a spreadsheet. As you know, entering or editing a piece of data makes SpeedCalc perform a calculation and put the result in the cell under the cursor. In most cases, the new data relates to data in other cells, so you'll ultimately want to recalculate the entire spreadsheet as well. This can be done manually or automatically.

To recalculate the spreadsheet manually, enter an exclamation point (SHIFT-1). SpeedCalc begins at AA1 and recalculates every cell that contains data, placing fresh results wherever needed. If you switch to automatic recalculation mode, SpeedCalc automatically recalculates the entire spreadsheet each time you enter new data or edit what exists. When you press CTRL-R, SpeedCalc changes the recalculation status and displays it at the top of the screen. If automatic recalculation was turned off before, it is now on (and vice versa). If you aren't sure which mode you're in, press Open Apple-CTRL-R; SpeedCalc displays the mode without changing it.

Automatic recalculation can be fun to watch in a large spreadsheet: Every time you make a change, new results appear everywhere on the screen. However, the more data your spreadsheet contains, the longer it takes to update the entire sheet. For this reason, you may want to turn off automatic recalculation most of the time, recalculating manually whenever you need to view results.

One problem with recalculation arises from the order in which cells are calculated. Because only one cell can be calculated at a time, you must sometimes recalculate the entire spreadsheet two or three times to get correct results in every cell (this is common to all spreadsheet programs). For instance, say you have a formula in AA1 which refers to a formula in AB15. When SpeedCalc calculates AA1, it must use the existing data from AB 15 which is probably out of date, since the formula in AB15 hasn't been recalculated yet. To avoid this problem, you should always recalculate a sheet manually two or three times before printing or saving it to disk.

SpeedCalc offers a number of other features. Before experimenting with them, you should spend some time typing in a hypothetical spreadsheet-perhaps a fictitious yearly budget-to become thoroughly familiar with the basic commands covered so far. Most importantly, create formulas using all the operators in different combinations. Try doing things that you know will cause errors. Then correct the errors in edit mode, and so on. It takes a thorough grasp of the fundamentals to get the most out of SpeedCalc's advanced features.

Change Format

The default (normal) format for numeric data is flush right with rounding to two decimal places. In other words, the number is displayed in the rightmost part of the cell, with two numbers after the decimal point. Text and formulas are also displayed flush right. SpeedCalc offers several commands for changing cell formats. (Apple II and II + owners who are using the ESC toggle in place of the Open Apple key should be careful that ESC is not in effect when it's not desired; accidental global changes may be difficult to reverse.)
Change Format (CTRL-F). This command changes the location of data in the cell. When you press CTRL-F, the SpeedCalc command line displays the question FORMAT: LEFT, CENTER, OR RIGHT JUSTIFY?. Press L, C, or R to move the data to the left, center, or right of the cell.
Change Decimal Places (\#). SpeedCalc also lets you change the num-
ber of decimal places for any cell. The default number of decimal places is 2 , but you may change it to anything from $0-15$. Press \# (SHIFT-3) to change this value: SpeedCalc prompts you to enter a number from $0-15$. If you choose zero decimal places, any number in that cell is rounded off to the nearest integer (whole number). If you choose 15 , a number in that cell is not rounded off at all-SpeedCalc displays it exactly as you entered it or as it was calculated from a formula.
Width (CTRL-W). The width command changes the width of an entire column of cells. Move the cursor to any cell in the desired column, then press CTRL-W. When SpeedCalc.displays the prompt WIDTH:, respond with a number from 4-36. The entire screen is redrawn to accommodate the new format, and may look very different depending on what value you chose. For instance, if you increase a column's width, the rightmost column of the former display may disappear: SpeedCalc only displays as many complete columns as it can fit on the screen. If you decrease the width of a column, you may see asterisks where numbers used to be (indicating the cell is now too small to display the entire number). To get rid of the asterisks, expand the column as necessary.
Global Format (Open Apple-CTRL-F). This is the same as the ordinary format command, but operates globally, changing every cell in the sheet instead of just one.
Global Width (Open Apple-CTRL-W). This is a global version of the width command. Every column in the sheet changes to the designated width.

Macro Editing

After typing in a large spreadsheet, you may decide to make a major change. You may want to add new data somewhere in the middle, delete a section, or move a group of cells from one location to another. SpeedCalc's macro (large-scale) editing commands simplify such operations, affecting an entire block of cells at once. A block is simply a group of cells connected in rectangular fashion. You can define it as a single cell, a row or column, or any
rectangular area within the spreadsheet.

There are two ways macro commands work: verbatim or relative. To take a simple example, say that cell AA2 contains the formula $=A A 1 * 5$ and you want to move its contents to cell AB 2 . When this is done in verbatim mode, $A B 2$ contains an exact copy of what was in AA2 (=AA1*5). Note that the cell name used in the formula does not change: The formula still refers to AA1. If you perform the same operation in relative mode, the cell name in the formula is adjusted to fit the new location. In this case, AB2 would contain the formula $=\mathrm{AB} 1 * 5$. (Apple II and II + owners who are using the ESC toggle in place of the Open Apple key should be careful that the toggle is not in effect when not desired; accidental relative changes can lead to problems that are difficult to detect and correct.)
Copy (CTRL-C). The copy command copies a block of cells into a different location without disturbing the original cells. Place the cursor on the upper-left corner of the block you want to copy, then press CTRL-C. SpeedCalc prompts you to move the cursor to the lower-right corner of the block you want to copy. Once the cursor is in place, press RETURN. Now SpeedCalc prompts you to move the cursor to the place where you want to put the block: This is the upper-left corner of the new position. Once the cursor is there, press RETURN again. The new data replaces whatever was contained in the designated cells. Note that if you define an impossible block (for instance, moving the cursor to the upper-left of the original position, rather than below and to the right), SpeedCalc does not copy any data. This provides a way to cancel the command if you press CTRL-C accidentally.
Move (CTRL-M). This command works like a copy, but it fills the original cells with blanks. Though SpeedCalc has no express insert command, you can use this command to make space for new data in the middle of a spreadsheet. Simply move everything below the insertion point down as far as you need.

Because RETURN generates the same character code as CTRLM, you may find when you first
begin using SpeedCalc that you accidentally invoke the move function by pressing RETURN when you shouldn't have. To cancel this, simply press RETURN twice more without moving the cursor.
Relative Copy (Open Apple-CTRL-C). This form of the copy command adjusts the cell names used in formulas within the copied block (see explanation above).
Relative Move (Open Apple-CTRL-M). This is the relative form of the move command. Cell names in formulas are adjusted to reflect the move.

Memory Management

The DOS 3.3 version of SpeedCalc makes about 12 K (over 12,000 characters) of memory available for data; the ProDOS version provides approximately 17 K . As noted earlier, SpeedCalc lets you spread your data out over a much larger number of cells than you can actually fill with data. The extra space is provided to give you full control over the final format of the spreadsheet and to leave some elbow room for move and copy operations.

Because memory is limited, you should keep careful track of
how much is free while using the program. Press CTRL-A to display the amount of free memory. We suggest limiting your spreadsheets to 1,600 cells (equivalent to 40 rows by 40 columns) when using the DOS 3.3 version, or 2,500 cells (a 50×50 worksheet) when using the ProDOS version. If you've filled nearly all of free memory, you may have to break the spreadsheet into two smaller sheets.

Although SpeedCalc checks the amount of available memory and displays an error message if you run out, you should be careful not to exhaust free memory. Any move or copy operation in process will be aborted if sufficient memory is not available.

Disk Operations

SpeedCalc has three disk commands which allow you to save a spreadsheet to disk, load it, and display the disk directory. The directory command is the simplest to use: Simply press CTRL-D. The spreadsheet disappears and a directory of the disk in drive 1 is displayed. Press RETURN to return to the spreadsheet.

To save a spreadsheet to disk, press CTRL-S. SpeedCalc prints

SpeedCalc Commands

Command	Action
CTRL-A	available memory check
CTRL-B	blank (erase) current cell
CTRL-C	copy block verbatim
disk directory	
CTRL-D	edit current cell
CTRL-E	change cell format
CTRL-F	goto selected cell
CTRL-G	load SpeedCalc file
CTRL-L	move block verbatim
CTRL-M	new (erase entire sheet)
CTRL-N	print file on printer
CTRL-P	turn recalculation on/off
CTRL-R	changeedCalc file
CTRL-S	exit SpeedCamn width
CTRL-W	home cursor
CTRL-X	copy block relative
CTRL-@	move block relative
Open Apple-CTRL-C	
Open Apple-CTRL-M	
Open Apple-CTRL-P	print to screen, disk, or printer
Open Apple-CTRL-R	check recalculation status
Open Apple-CTRL-W	change width of all columns
! (SHIFT-1)	recalculate sheet
\# (SHIFT-3)	change decimal places

[^8]SAVE: on the command line, followed by an underline cursor. Enter a valid Apple filename and press RETURN. (If you change your mind and decide not to save anything, press RETURN without typing a filename.) If no disk error occurs while the spreadsheet is being saved, SpeedCalc displays NO ERRORS in the command line and returns you to command mode. If there was an error, you'll hear a beep and see the message I/O ERROR in the command line.

To load a saved file from disk, press CTRL-L. Again, you can cancel the operation by pressing RETURN without entering a filename. SpeedCalc prompts you to enter the filename and displays the error status when the operation is complete.

When saving or loading SpeedCalc files with ProDOS, you must specify the prefix along with the name. If you don't want to type the prefix every time you enter a filename, simply call up a directory for the disk you want to use to save or load. This automatically sets the prefix to match the current disk, relieving you of the need to enter it with every name.

Printing

SpeedCalc lets you print data to three different devices: to the screen for previewing output, to a printer for permanent documentation, or to a disk file for integrating the data with a SpeedScript document.

To print a hardcopy of the spreadsheet to a printer in slot number 1, press CTRL-P. Before using this command, you must position the cursor below and to the right of the block of cells you wish to print. The upper-left corner of the printout starts at cell AA1.

To send output to a printer with a slot number other than 1, or to the screen or a disk, first position the cursor in the lower-right corner of the block you want to print. Then press Open Apple-CTRL-P (toggle ESC on the Apple II and II+). SpeedCalc asks if you want to print to the screen, to disk, or to the printer. Press S to preview output on the screen, D to print to disk, or P to select printer output. Pressing any other key cancels the command.

If you select the P option after
pressing Open Apple-CTRL-P, SpeedCalc asks you specify a slot number by pressing one of the number keys from $1-7$. This permits you to use a printer in any of those slots. If you change your mind at any point during this process, press RETURN without entering anything; SpeedCalc returns you to command mode.

You can also print SpeedCalc data to a disk file for use in a SpeedScript document. Select the D option after pressing Open Apple-CTRL-P, then enter a filename. The data is saved as a disk file of that name. Note that printing to disk creates a different type of file than saving to disk, and SpeedCalc cannot reload files in the print format. You should save files you wish to reload into SpeedCalc, and print files you wish to convert for SpeedScript. Unlike the SpeedCalc save and load commands, no error messages are provided if the spreadsheet cannot be printed to disk. Thus, you must ensure that the drive contains a write-enabled disk with sufficient space to hold the printed spreadsheet before you attempt to print to disk.

SpeedScript File Converter

SpeedCalc sends data to the printer in simple, plain vanilla form. That may be fine for personal use, but if you're creating a document for others to view, you may want special features such as boldface, underlining, etc. Since Apple SpeedScriptCOMPUTE!'s popular word proces-sor-already offers a way to access these features (and many more), no attempt has been made to include them in SpeedCalc. All that's needed is a simple program to convert SpeedCalc files into a form that SpeedScript can load. Then you can edit the file with SpeedScript as you would any other document-inserting printer control codes, reformatting the text, merging it with other text, and so on. The "SpeedScript File Converter" program published in the same issue as SpeedScript makes it easy to perform the conversion. Here are the steps to follow to convert a SpeedCalc file for SpeedScript:

1. After creating a spreadsheet with SpeedCalc, print it to disk as described above.
2. Exit SpeedCalc, then load and run SpeedScript File Converter. The program prompts you to enter the name of the SpeedCalc file you printed to disk. Then it asks you to enter the name of the SpeedScript file you want to create (of course, this name should be different from the first). The File Converter then constructs a SpeedScript-loadable disk file from the SpeedCalc file.
3. After the File Converter is finished, load and BRUN SpeedScript, then load the new SpeedScript file as you would any SpeedScript document. The data appears on the screen, ready to be edited in any way you wish.

Program 1: Apple SpeedCalc For DOS 3.3

Please refer to the "MLX" article in this issue before entering the following listing.

START ADDRESS: 07FA END ADDRESS: 24F9

07FA: 2065 D6 4C D2 D7 00 OA 12 0802: OB OA OO AS AB $3330007 D$ OBOA: 14 OB 14 OO BC $32 \quad 30 \quad 38 \quad 6 \mathrm{E}$ 0812: 3300 1E 08 1E 00 8C 32 3C OB1A: $30 \quad 38 \quad 30 \quad 00 \quad 00$ 00 4C 4D 3C 0822: 222058 FC AD 61 CO 8D 28 OB2A: 5925 A9 00 日D F2 O3 A9 4D 0832: 09 8D F3 0349 A5 BD F4 C9 083A: 03 A9 FD $8539 \quad 85 \quad 37$ A9 46 0842: 1B $85 \quad 38$ A9 FO $85 \quad 36$ A9 96 OB4A: $25 \quad 18 \quad 69 \quad 018 \mathrm{BD}$ FO $24 \quad 18 \mathrm{CO}$ 0852: 69 4F 85 6C A9 00 8D EF BA 085A: 24 BD F1 24 B5 6B 8D 69 BE 0862: 22 85 FF BD 5825 A9 AS OE 086A: BD F2 24 A9 $0920 \quad 61 \quad 09$ B1 0872: 20 D9 OA A9 23 AO $46 \quad 20$ 2D O87A: उE 0920 88 OD $20 \quad 2509$ B4 0882: 4820 7C 0968 AE AC 08 3E 088A: DD AC OB FO OA CA DO FB DA 0892: C9 2090 E6 4C 37 OC CA 32 O89A: BA OA AA A9 OB 48 A9 7B 92 OBA2: 48 BD D3 0848 BD D2 0828
 OBB2: $10 \quad 0313$ OC 18 OA OB 15 C 2 OBBA: $080205 \quad 21 \quad 01 \quad 1204$ OD 67
 O8CA: $3637 \quad 38 \quad 3930$ 2B $2 \mathrm{DD} 2 \mathrm{E} \quad 15$ OBD2: C4 OA DB 111310 AB OC BA OBDA: $4 \mathrm{E} \quad 11 \quad 3214 \mathrm{ED} 15 \mathrm{~A} 219 \mathrm{FF}$ OBE2: 40 1A D5 1E DD 10 FG 1063 OBEA: OD $11 \begin{array}{llllllll} & 11 & 94 & 1 C & D B & 1 C & A 6\end{array}$ OBF2: OB 1C O3 1E A7 1C CC 1B B2 O8FA: CB 150809 ED OC 2058 7E 0902: FC 2022 OB 4C 7508 AD 85 090A: $58 \quad 25 \quad 49$ FF BD $58 \quad 25 \quad 60 \quad 33$ 0912: 2C OO CO 10 OB AD OO CO 23 091A: 8D 10 CO 29 7F C9 FF 6025 0922: A9 0060 AS FF FO 074889 092A: A9 0085 FF 68602012 DB 0932: 09 FO FB 6020 F2 EB A5 D4 093A: AO A4 A1 6085 FC 84 FB 25 0942: 20 6F 092080 FE A9 00 B6 094A: $85 \quad 28 \quad 85 \quad 24 \quad 85 \quad 25$ A9 0434 0952: 8529 AO 00 B1 FB FO 06 EA 095A: 20 ED FD C8 DO F6 60 A2 OA 0962: 32 9D F6 24 CA DO FA A9 4F 096A: 28 日D 292560 AO OO A9 9A 0972: 20990004 C8 CO 28 DO AS 097A: F6 60 AD 0104 C9 10 DO 1 E 0982: OA AD OA 04 C9 02 FO 03 C 1

098A：4C 9409 A9 23 AO उC 20 D7 0992：3E $0938 \quad 20 \mathrm{C7}$ 1F 9003 ED 099A： 4 C 32 OF 4 C 40 OF 0980 D6 09A2：8D $80 \quad 02$ A9 3C 8D 810293 09AA：A2 76 A9 AO 9D 8102 CA AC 09B2：DO F8 AO O1 DO O2 AO OO 5F 09BA：B9 $80 \quad 02$ 日D 3C 25 A9 DF 8C 09C2： 99800220 AB OA 2012 DB 09CA： 09 DO 16 EE 3B 2510 OB DD 09D2：A9 DF $9980 \quad 02$ 4C C5 09 C2 09DA：AD 3C $259980 \quad 024 \mathrm{C}$ C5 7B 09E2： 090980 8D 3B 25 AD 3C AA 09EA： 25998002 AD 3B 25 AE 79 09F2： 95 OA DD 95 OA FO 2C CA 9E 09FA：DO FE C9 AO 90 BA BC 3C BB OAO2： 25 CE $3 C 25$ A2 77 BD 8025 OAOA： 02 C9 3C FO AB CA BD 80 AC OA12： 02 9D 8102 CA EC $3 C 2586$ OA1A：DO F4 AD 3B $259980 \quad 02$ CF OA22：C8 DO 95 CA BA OA AA BD BD OA2A：9E OA 48 BD 9 OD 4860 FA OA32：AO OO B9 80 O2 C9 3C FO 76 OA3A：OB 29 7F 990003 CB DO 94 OA42：F1 A9 $00 \quad 9900$ O3 8C 2C A4 OA4A： 2560 AD 6A 22 FO 20 CO 3B OA52： 00 FO 0188 4C BA 09 AD 58 OASA：6A 22 FO 13 B9 BO O2 C9 19 OA62：3C FO F1 C8 4C BA 09 AD AB OAGA： $6 A 22$ FO 03 4C BA 09 AD 97 OA72： $3 \mathrm{~B} \quad 25 \quad 29$ 7F $85 \mathrm{FF} \quad 4 \mathrm{C} \quad 32 \quad 81$ OA7A：OA CO OO FO D7 88 98 AA 8F OAB2：BD 8102 9D 8002 E8 C9 97 OABA： $3 C$ DO FS A9 AO 9D BO O2 CB OA92：4C BA 09078 CD 9 BA 8 BB 88 OA9A：8B 95 FF 31 OA 7 OA OA 6822 OAA2：$O A$ 6B OA 4B OA 58 OA 7A OC OAAA：OA A2 00 BD $80 \quad 02$ 9D $80 \quad 10$ OAB2： $04 \mathrm{BD} A 8 \quad 029 \mathrm{D} \quad 00$ O5 BD 22 OABA：DO 02 9D 80 O5 E8 EO 2829 OAC2：DO E9 60 A9 23 AO 6020 DC OACA：उE $0920 \quad 2509$ C9 59 DO 89 OAD2： 0320 D9 OA 4C 7C 0920 D2 OADA：FA OA A9 $0920 \quad 610920$ 6D OAE2： 22 OB 2088 OD A9 2C OD 4C OAEA：B4 22 A9 00 日D B3 22 A5 3C OAF 2： 6 B $85 \quad 6 F$ A5 $6 \mathrm{C} \quad 85 \quad 70 \quad 60 \quad 21$ OAFA：AD EF 2485 FB AD FO 24 5B OBO2： $85 \mathrm{FC} A O 009891 \mathrm{FB}$ C8 F9 OBOA：DO FB E6 FC A6 FC EC F2 2A OB12： 24 DO F2 A9 O1 8D F4 24 BJ OB1A：8D FS 2485 1D 85 1E 60 EC OB22： 2028 OB 4 C BO OB AO $O 570$ OB2A： $8 C \quad 3 B \quad 25 \quad B 9 \quad 83 \quad 22 \quad 85 \quad 28 \quad 6 \mathrm{D}$ OB32：B9 6B $2285 \quad 29 \mathrm{AO} O O$ AE 17 OB3A：F5 24 A9 OO BD $29 \quad 25$ BD 72 OB42：2A 25 F8 AD $29 \quad 2518 \quad 69 \quad 28$ OB4A： 01 8D 2925 AD 2A $25 \quad 6985$ OB52： 00 8D 2A 25 CA DO EC DB AF OBSA：A2 OO 20 日D OB FB AD 29 5F OB62： $25 \quad 18 \quad 69$ O1 BD $29 \quad 25$ AD 57 OB6A：2A $25 \quad 69$ OO 日D $2 A \quad 25$ D8 44 OB72：EE 3B 25 AC 3B 25 B9 83 A3 OB7A： $22 \quad 85 \quad 28$ B9 6B $2285 \quad 29$ BB OB82：AO OO E8 EO 12 DO DJ 20 AF OBBA：8D OB 60 AD 2A 25186990 OB92： $3091 \quad 28$ C8 AD $29 \quad 25 \quad 29$ 3C OB9A：FO 4A 4A 4A 4A 18 $69 \quad 30 \quad 5 F$ OBA2： $91 \quad 28$ CB AD $2925 \quad 29$ OF BE OBAA： $18 \quad 69 \quad 3091 \quad 28 \quad 60$ AO 044 AE OBB2：B9 $83 \quad 22 \quad 85 \quad 28$ B9 6 B 2244 OBBA： $85 \quad 29$ AO OO A9 $2091 \quad 28$ OB OBC2： C 89128 CB 9128 CB AE AO OBCA：F4 24 AG OO 日D FS 24 BD DB OBD2：F6 24 BE 2925 4A 6900 F6 OBDA：AA CA A9 $2091 \quad 28$ CB CA B9 OBE2：DO FA AD 2925 OA AA BD CC OBEA：B5 2229 3F 9128 CB BD F9 OBF2：B6 $22 \quad 29$ 3F 9128 CB AE 73 OBFA： 2925 BD F6 24 4A AA CA BO OCO2：CA A9 $2091 \quad 28$ CB CA 1011 OCOA：FA AE 2925 BD FG 24 18 EC OC12：6D F3 24 BD F3 24 EB BD FA OC1A：F6 24 18 6D F3 24 C9 2579 OC22： 90 AD CA BE $32 \quad 25$ A9 20 C9 OC2A：CO 28 DO 01609128 CB 39 OC32：CO 28 DO F9 6020 AO 09 3C OC3A：AD OO 03 FO 3F C9 3D FO 25

OC42： 26 AE C4 08 DD C4 08 FO 35 OC4A： 07 CA DO FB A9 O1 DO 19 4E OC52：AD 2C 25 C9 25 BO 25 AO 64 OC5A：OO A9 O3 2081 OC 20 B7 73 OC62： 00 DO E9 A9 OO FO O2 A9 F7 OC6A： 02 BD 2B 25 AD B4 22 8D BO OC72：2D 25 18 20 C7 1 1F $2027 \quad 91$ OC7A： 202003 1C 4C 7C OB 85 B6 OCB2：B9 84 B8 20 B7 00 4C 4A 52 OCBA：EC A2 32 A9 00 8D 3825 6E OC92：BD F6 2418 6D $38 \quad 25$ 8D 71 OC9A： 3825 C9 25 BO 03 CA DO 9B OCA2：EF E8 E8 8E 3C 2560 A9 D3 OCAA： 00 2C $59 \quad 25 \quad 3003$ AD 6195 OCB2：CO OD $58 \quad 25$ 8D $57 \quad 25$ AO 80 OCBA：A5 A9 2320 3E 092025 F1 OCC2： 09 C9 4C FO OF C9 43 FO 81 OCCA：OF C9 52 FO 03 4C 85 OD 97 OCD2：A2 OC DO O6 A2 08 DO 0292 OCDA：A2 04 AD B4 2229 FO 8 DD 6B OCE2： 3 B 25 BA OD 3 B 25 8D 3B C8 OCEA： 254 C 2 F OD A9 OO 2C 59 5E OCF2： 253003 AD 61 CO OD $58 \quad 65$ OCFA： 25 日D 5725 AO CE A9 23 FC ODO2： 20 3E 09207610 FO 7B 30 ODOA：AO OO A9 O2 $20 \quad 81$ OC $20 \quad 09$ OD12： 3609 C9 00 DO 6D CO 1090 OD1A：BO 69 AD B4 2229 OC 8D 43 OD22： $3 B 2598$ OA OA OA OA OD 70 OD2A：3B 25 日D $3 B 25$ AD $\begin{array}{llllll}57 & 25 & 44\end{array}$ OD32： 1041 AD 3B 25 BD B4 22 F8 ODSA：AD EF $24 \quad 85$ 1B AD FO 2499 OD42： 85 1C AO O1 B1 1B FO 11137 OD4A： 85 1A 88 B1 1B 8519 B1 AC OD52： 192903 OD B4 229119 DE OD5A：CB A5 1B $18 \quad 69 \quad 02 \quad 85$ 1B AO OD62：A5 1C 690085 1C A5 1C 87 OD6A：C5 6C DO DA $38 \quad 20 \quad \mathrm{C} 7 \quad 1 \mathrm{~F}$ 1B OD72：4C 85 OD 3820 C7 1F 9028 OD7A：OA AO OO AD 3B 25 OD 2B 50 OD82： $25 \quad 91 \quad 19 \quad 4 \mathrm{C}$ 7C O9 A5 1D EB ODBA：8D 3025 A5 1E 日D 312525 OD92：A9 03 BD F3 24 AE F4 24 1D OD9A： 86 1D AC F5 $24 \quad 84$ 1E $98 \quad 3 C$ ODA2： 186913 BD 2E 25 BD F6 D6 ODAA： 24 8D 3825 A9 FF EC 30 EA ODB2： 25 DO 07 CC 3125 DO 0203
 ODC2： 0538 ED F5 24 AB B9 6B 2D ODCA： $\begin{array}{lllllllllll}22 & 85 & 29 & B 9 & 83 & 22 & 85 & 28 & \mathrm{EF}\end{array}$ ODD2： $3820 \mathrm{C} 7 \mathrm{1F}$ BO 05 A9 AO 89 ODDA：4C 67 OE AD 2B 25 FO 70 D1 ODE2：C9 O2 FO 6C AD $38 \quad 25 \quad 3818$ ODEA：ED 2C 25 AA E8 3032 E8 AB ODF2：AD 2D 2529 OC C9 OB FO EE ODFA： 28 BO O5 BA 4A FO 22 AA AS OEO2：8E 3425 A9 AO 2D $33 \quad 25$ F6 OEOA：AC F3 249128 C8 CA DO E1 OE12：FA BC 3525 AD $38 \quad 25 \quad 3898$ OE1A：ED 3425 AA AO O2 4C 2E 5D OE22：OE AE 3825 AD F3 24 8D SD OE2A： 3525 AO O2 B1 19 8C 34 9D OE32： 25 AC $35250980 \quad 2 \mathrm{D} 33 \mathrm{DC}$ OESA： $25 \quad 91 \quad 28$ AC $34 \quad 25$ EE $35 \quad 66$ OE42： 25 CA FO 09 C8 CC 2C 2549 OE4A：DO E2 20 A9 OE 4C 76 OE C2 OE52： 20 4E OF AE 2C 25 CA CA 35 OESA：CA EC 3825 BO 03 4C E6 81 OE62：OD A9 2A O9 80 2D $33 \quad 2589$ OEGA：AC FJ 24 AE 38259128 EA OE72：C8 CA DO FA A4 1E A6 1D 77 OE7A：CB CC 2E 25 FO 0584 IE 09 OE82： 4 C A8 OD AC F5 2484 1E C2 OEBA：AD 382518 6D F3 24 日D C2 OE92：F3 24 E8 86 1D EO 33 FO FA OE9A： 27 BD FG 24 18 6D F3 24 5D OEA2：C9 28 BO 1C 4 C AB OD EO 85 OEAA：OO FO 14 AD F3 24 18 6D 2 E OEB2： 3825 A8 88 A9 AO 2 D 33 2F OEBA： 259128 88 CA DO FA 60 4B OEC2：A9 28 38 ED F3 24 8D 3827 OECA： 25 AO O5 B4 1E B9 $6 B \quad 22 \quad 5 B$ OED2： $85 \quad 29 \quad B 9 \quad 83 \quad 22 \quad 85 \quad 28 \mathrm{AC}$ 8F OEDA：F3 24 AE 3825 A9 AO 91 FS OEE2： 28 CB CA DO FA E6 1E A4 FF OEEA：1E CO 18 DO EO AD 302599 OEF2： 85 1D AD $31 \quad 25 \quad 85$ 1E AO FD

OEFA： 00 A9 AO 998002 CB CO 8D OFO2：78 DO F8 3820 C7 1F 9022 OFOA： 35 AO O2 A2 OO AD 2B $25 \quad 87$ OF12：C9 02 DO 09 AC 2C 25 B1 52 OF1A： 19 日D 2C 25 CB B1 190948 OF22： 80 9D $80 \quad 02$ E8 CB CC $2 \mathrm{C} ~ 48$ OF2A： 25 DO F2 A9 3C 9D $80 \quad 0263$ OF32：AE 2B 25 BD BO $22 \quad 29$ 3F 92 OF3A：BD 2704 4C AB OA A9 2027 OF42：8D 27 O4 A9 3C 8D $80 \quad 0227$ OF4A： 20 AB OA 60 A9 20 BD 0093 OF52： 02 AO 02 B1 19 C9 $2 A$ FO $2 A$ OF5A：F2 AD 2D 25 4A $4 A \quad 4 A \quad 4 A \quad A F$ OF62：8D 3625 A2 FF C9 OF FO D9 OF6A：E2 B1 19 C9 2E DO 09 AE 9B OF72： 3625 FO 10 E8 BE OO O2 97 OF7A： 99 FF 01 CB CC 2C 25 FO 64 OF82： 03 CA DO E5 AD 3625 FO CE OF8A：1E EO OO FO 1 A AD OO 02 B8 OF92：C9 20 DO OA A9 2E 99 FF 91 OF9A： 01 C8 AE 3625 E8 A9 30 F4 OFA2： 99 FF 01 CB CA DO F9 A9 71 OFAA： 20 BD 00 O2 CC 2C 25 FO AE OFB2：OC BO 3 F B1 19 C9 2E FO 43 OFBA：O8 C9 35 BO OC C8 4C F4 12 OFC2：OF C8 B1 19 C9 3590 2A DO OFCA： 8898 CB AA CA CA BD OO 14 OFD2： 02 C9 2E FO OB 90 OC C9 B5 OFDA： 39 DO 14 A9 30 9D 0002 EO OFE2：CA 10 EB CA 9D 000259 GE OFEA：A9 31 9D 0002 DO 03 FE 36
 OFFA：O2 C9 20 DO 09 A9 018514 1002：1A A9 FF 851960 A9 0190 100A： 85 1A A9 FE 8519 EE 2C 33 1012： 2560 A9 002 C 59253053 101A： 03 AD 61 CO OD $58258 D$ 01 1022： $57 \quad 25$ A9 23 AO 7920 3E OB 102A： $092076 \quad 10$ AO OO A9 O2 O1 1032： 2081 OC 203609 C9 00 AF 103A：DO 33 CO 0490 2F CO 25 CF 1042：BO 2B A5 1D 8D F4 24 AD 42 104A： $57 \quad 25100798 \quad 20 \quad 6109$ E2 1052：4C 5B 1098 A6 1D 9D F6 D6 105A： 2420 日B OC A5 1D CD 3C 40 1062： 259007 AC 3C 2588 8C F8 106A：F4 2420 BO OB 4C 7C O9 AB 1072：A9 01 DO 02 A9 00 8D 3781 107A： 25 AO 00 A9 1F 20 ED FD 43 1082：A9 8820 ED FD $20 \quad 250940$ 108A：C9 OD FO 3F C9 OB FO 26 5B 1092：C9 7F FO 22 C9 2090 ED 95 109A：AE 3725 DO O8 C9 3090 E9 10A2：E4 C9 3A BO EO A6 24 EO C4 1OAA： 26 FO DA 9900020980 A9 10B2： 20 ED FD C8 DO C5 CO OO C9 10BA：FO CB A9 AO 20 ED FD A9 E3 10C2： 8820 ED FD 20 ED FD 88 OA 10CA：4C 7D 10 A9 AO 20 ED FD 6C 10D2：A9 00 $9900 \quad 028 \mathrm{CC} 36 \quad 25$ CE ODA：AD OO O2 60 AS 1E C9 CB 1A 1OE2：FO 12 EG IE AD F5 $24 \quad 18 \quad 64$ 10EA： 6912 CS 1E BO O6 EE FS 50 10F2： 242028 OB 60 AS 1E C9 82 10FA：O1 FO 10 C6 1 E AC F5 24 Fg 1102：88 C4 1E 9006 CE F5 24 E1 110A： 2028 OB 60 AS 1D C9 3215 1112：FO 23 E6 1D AC $32 \quad 25$ C4 61 111A：1D BO 1A EE F4 24 AE F4 B3 1122： 24 A9 OO 18 7D F6 24 E8 3B 12A：C9 2590 F7 CA CA E4 1D 74 1132： 90 E9 20 BO OB 60 A5 1D 68 113A：C9 01 FO 10 C6 1D AC F4 99 1142： 2488 C4 1D 90 O6 CE F4 32 114A： $2420 \mathrm{BO} O B 60$ A9 23 AO DD 1152： $80 \quad 20$ 3E 09207210 A9 A9 115A： 0185 B9 A9 FF 85 B8 20 D7 1162：B1 00904 E 38 E9 413070 116A： 49 FO 06 C9 O2 BO 43 A9 CD 1172： 1 A 日D $3 \mathrm{~B} \quad 25 \quad 20 \mathrm{~B} 1 \quad 0090 \quad 17$ 117A： 39 38 E9 403034 FO 32 EE 1182：C9 1B BO 2E 18 6D 3B 25 5B 118A：C9 33 BO 26 8D 3B $25 \quad 20$ 9A 1192：B1 00 BO 1E 20 4A EC 20 A9 119A： 3609 C9 00 DO 14 CO OO AB 11A2：FO 10 CO C9 BO OC CO B7 E4 11AA： 90 OB A9 B6 8D F5 24 4C 51

11B2：BA 114 C 7 C 09 8C F5 2452 11BA： 84 1E 20 日B OC AD $3 B 2516$ 11C2：CD $3 C 2590$ OA AC $3 C 2529$ 11CA：88 8C F4 24 4C D4 11 8D 9A 11D2：F4 2485 1D 2022 OB 4C E6 11DA：7C 09 AD F4 24 C5 1D DO C5 11E2： 17 AD FS 24 C5 1E DO 1055 11EA：A9 01 日D F4 2485 1D 日D 22 11F2：E5 24 日5 1E 2022 OB 60 AB 11FA：AD F4 24 85 1D AD FS 24 BD 1202： 85 1E 6020 B1 00 BD $4 F 76$ 120A： 2520 B1 00 BD $50 \quad 25 \quad 20 \quad 17$ 1212：B1 00 BD 512520 B1 ．OO E2 121A：C9 28 FO O3 4C 4D 22 AE O6 1222： $6 A 12$ AD $4 F 25$ DD $6 A 12 \quad 32$ 122A：FO O6 CA DO F5 4C 4D 22 4C 1232：AD 5025 DD 7612 FO 02 A3 123A：DO FO AD 5125 DD 821285 1242：DO EB BE 2925 EO OB BO EO 124A：OC BA 48 A9 $00484 \mathrm{C} \quad 2296$ 1252： 21 68 8D 292520 B1 oo 72 125A：AE 2925 CA BA OA AA BD O1 1262： 901248 BD 8F $1248 \quad 60 \mathrm{ED}$ 126A：OC 41414345494 C 537 C 1272： $535354534142544 F$ DF 127A：5B 4E $4 \mathrm{~F} \quad 4749 \begin{array}{llll}51 & 41 & 55 & 24\end{array}$ 1282：56 $534 E 535054474 E 56$ 128A：4E $524 \mathrm{E} 4 \mathrm{D} 45 \mathrm{AE} E B 9 \mathrm{D} 63$ 1292：FO E9 EF OB EF 22 EC 404 A 129A：E9 8F EB FO EF BC EE 39 EC 12A2：FO A9 $13111 \begin{array}{llllll}14 & 20 & 64 & 13 & 1 A\end{array}$ 12AA：BE $52 \quad 25$ 日C $5425 \quad 20$ B7 47 12B2： 00 C9 3A DO $3 F 20$ B1 00 7B 12BA： 206413 日E 5325 BC 55 FO 12C2： 2520 B7 OO C9 29 DO 2C 39 12CA： 20 B1 00 AE 5225 CA EC FF 12D2： 532590 O3 4C 4D 22 AC B4 12DA： 5425 Ba CC 552590 O3 B3 12E2：4C 4D 22 EB CB AS 1D 8D F7 12EA： 3925 A5 1E BD 3 A 2586 B1 12F2：1D 84 1E $604 C$ 4D $2218 \quad 84$ 12FA： $20 \mathrm{C7} 1 \mathrm{~F} 9042 \mathrm{AO} 00 \mathrm{B1} 54$ 1302： 192903 C9 01 FO 38 C8 01 130A：B1 19 日D 3 C 25 A2 00 CB 41 1312：B1 19 9D 00 O2 EB CB CC 1D 131A：3C 25 DO F4 A5 B8 48 AS 57 1322：B9 48 A9 00 9D 00 O2 A9 07 132A： 02 AO OO 2081 OC 68 B5 OE 1332：B9 6885 B8 A5 1D CD 53 1C 133A： 25 FO 15 E6 1D 18 60 AD F7 1342： 392585 1D AD 3 A 25 85 FG 134A：1E 18 20 C7 1F 4C 4D 22 EC 1352：AD 522585 1D AS 1E CD GA 135A：55 25 FO 04 E6 1E 18 $60 \quad 13$ 1362： 3860 A2 0020 B7 00 C9 BA 136A： 41 FO O6 C9 42 DO DO A2 64 1372：1A 8E 3B $2520 \mathrm{B1} 00 \mathrm{C9} 94$ 137A： 4190 C4 C9 5B BO CO 38 F1 1382：E9 40 18 6D 3B 25 C9 33 BC 138A：BO B5 日D 3B 2520 B1 OO EB 1392：BO AD 20 4A EC 20360982 139A：C9 OO DO A3 CO OO FO 9F 81 13A2：CO C9 BO 9B AE 3 B 256078 13AA：A9 01 8D 2925 A9 00 8D 87 13B2：2A 2520 A7 1220 F9 12 CC 13BA：BO 472072 EB AS A2 48 B9 13C2：A5 A1 4B A5 AO 48 A5 9F 98 13CA：4B A5 9E 4B A5 9D 4B EE F9 13D2： 2925 DO 03 EE $2 A 2520 \mathrm{AB}$ 13DA：F9 12 o8 68 8D 3B 256816 13E2： 85 A5 6885 A6 6885 A7 24 13EA： 6885 AB 6885 A9 68 85 6B 13F2：AA 45 A2 85 AB A5 9 D 20 BB 13FA：C1 E7 AD $3 \mathrm{~B} \quad 2548 \quad 289090$ 1402：B9 AD 3925 85 1D AD 3 A 22 140A： 25 日S 1E 18 20 C7 1F 602 A 1412： 20 AA 13 A2 O6 B5 9C 9557 141A：A4 CA DO F9 AD 2A 25 AC OE 1422： 292520 F2 E2 AS AA 45 A3 142A：A2 85 AB A5 9D 20 F3 21 4B 1432： 602058 FC A9 01 日D 5630 143A： 25 A9 OO 2 C 59 2530 O3 E4 1442：AD 61 CO OD 58253003 3D 144A：4C A9 14 A9 24 AO 912007 1452：उE O9 $20 \quad 2509$ C9 53 FO 39 145A：OB C9 44 FO OE C9 50 FO 3B 1462：28 4C B2 15 A9 03 8D 5624 146A： 25 DO 3 C A9 OO 8D 562583

1472：AO B5 A9 $24 \quad 20$ 3E 0920 FB 147A： 72 10 A9 OO AA 20 OA 1B 1A 1482：FO 25 C9 O6 FO 21 4C A5 50 148A： 15 A9 24 AO BA 20 3E 0990 1492： $20 \quad 2509$ 38 E9 30 C9 00 5C 149A：BO O3 4C B2 15 C9 OB 90 O1 14A2： 03 4C B2 15 8D $56 \quad 25$ A9 CO 14AA： 24 AO $7 E 20$ 3E $092084 \mathrm{B9}$ 14B2：FE AD 5625 FO 14 C9 0351 14BA：DO OD AD O5 C3 18 6D 07 F4 14C2：C3 C9 50 DO O5 A9 O3 20 4B 14CA： 95 FE A5 1D 8D 5325 8D 95 14D2： 3025 AS 1E BD 5525 8D 8C 14DA： 3125 A9 O1 B5 1D 85 1E F3 14E2：A9 BD 20 BB 15 A6 1D BD 3E 14EA：FG 24 8D 3825 AA A9 OO FS 14F2：9D OO O3 CA A9 20 9D OO FF 14FA：O3 CA 10 FA $3820 \mathrm{C7}$ 1F F9 1502： $90 \quad 58$ AD 2B 25 C9 O1 DO 16 150A： 23 AD $38 \quad 25$ 38 ED $2 C 2581$ 1512：AA E8 3014 E8 AD 2D 2590 151A： 29 OC C9 OB FO OA BO 27 CD 1522：$B A \quad 4 A$ FO 04 AA $4 C 49 \quad 15$ BO 152A：A2 OO FO 1B $204 E$ OF AE 7C 1532：2C 25 CA CA CA EC 382561 153A： 90 CF AE 3825 A9 2A 9D BB 1542：FF O2 CA DO FA FO 13 AO B5 154A： 02 B1 19 9D 0003 EB C8 85 1552：EC 38 25 FO O5 CC 2C 25 8D 155A：DO EF A2 OO BD OO O3 FO 22 1562：OB 09 BO 20 BB 15 E8 DO B9 156A：F3 A5 1D CD 5325 FO 05 8E 1572：EG 1D 4C E7 14 A5 1E CD AO 157A： 5525 FO OE E6 1E A9 O1 9B 1582： 85 1D A9 BD 20 BB 15 4C 2B 158A：E7 14 A9 BD 20 BB 15 AD 83 1592： 5625 C9 O3 DO 03202592 159A： 09 A9 002095 FE AD 5610 15A2： 25 DO 032052 1B AD 3080 15AA： 25 85 1D AD 312585 1E 8E 15B2： 2058 FC 2022 OB 4C 7C F6 15BA： 0948 AD 5625 FO 0468 FS 15C2： $4 C$ ED FD $684 C 95$ 1B A9 6D 15CA： 00 2C 59253003 AD $61 \mathrm{C7}$ 15D2：CO OD 5825 8D 3F 25 A9 5B 15DA： 00 BD 4025 A5 1D 8D 41 CO 15E2： 25 AS 1E BD $42254 C$ OD F1 15EA： $164 C$ 7C 09 A9 002 C 5952 15F2： 2530 O3 AD 61 CO OD 5877 15FA： 25 8D 3F 25 A9 01 8D 4002 1602： 25 A5 1D BD 4125 AS 1E AE 160A：日D $42 \quad 25 \quad 204816$ AD 30 5A 1612： 25 日D 4525 AD 3125 日D 39 161A： $46 \quad 252052$ 16 AE 4125 EE 1622：CA EC 4525 BO 13 AE 42 5B 162A： 25 CA EC 4625 BO OA A9 47 1632： 23 AO FA 20 3E 09204414 163A：1B AD 4325 85 1D AD 44 DB 1642： 25 日5 1E 4C 7C 09 A9 24 6A 164A：AO 5920 3E 09 4C 591647 1652：A9 24 AO 3120 3E 0920 AF 165A：BB OD $20 \quad 2509$ AE BD 1698 1662：DD BD 16 FO OG CA DO FB AB 166A： $4 C 5916$ CA BA OA AA A9 FD 1672： 16 48 A9 5848 BD 9516 FO 167A：48 BD $941648 \quad 6068 \quad 68 \quad 2 B$ 1682：A5 1D 8D 4325 A5 1E 8D 38 168A： 4425 60 O6 OO OB OA OB DG 1692： 15 OD DB 11 FG 10 DD 10 DC 169A： 3711 OD 11 7F 16 AD 4952 16A2： 25 C9 33 BO 5B AD 4A 2590 16AA：C9 C9 BO 54 AD $472585 \mathrm{E3}$ 16B2：1D AD $48 \quad 25$ 85 1E 382069 16BA：C7 1F 9045 AO O2 AD 2B 8C 16C2： 25 C9 02 DO 09 AC 2C 25 B9 16CA：B1 19 8D 2C 25 CB A2 00 1C 16D2：B1 19 9D OO O3 EB CB CC EB 16DA：2C 25 DO F4 A9 00 9D 0058 16E2： 03 BE 2 C 25 202517 AD 7 D 16EA： 4025 DO 03201317 AD F3 16F2： $49 \quad 2585$ 1D AD 4 A 25 85 F5 16FA：1E 18 20 C7 1F $2027 \quad 20$ A4 1702： 60 AD 4925 85 1D AD 4A 8 D 170A： 25 日5 1E 18 20 C7 1F 9060 1712：EF $20 \quad 33$ 1E 18 $20 \mathrm{C7}$ 1F 78 171A：A9 00 AB 91 1B CB 91 1B 85 1722：4C 0217 AD $3 \mathrm{~F} \quad 25$ 30 01 A4

172A： 60 AD 2B 25 C9 02 FO O1 E4 1732：60 AD $4925 \quad 38$ ED 4725 A4 173A：8D 4D 25 AD 4A 25 38 ED 47 1742： $48 \quad 25 \quad 8 \mathrm{D} ~ 4 \mathrm{E} \quad 25 \mathrm{~A} 200 \mathrm{BE}$ B6 174A：2A 25 BD 0003 9D 800220 1752：E8 EC 2C 25 DO F4 A9 OO B5 175A：9D 80 O2 A9 80 85 B8 A9 87 1762： 0285 B9 A9 0085 FB A9 7 C 176A： 03 －85 FC 20 B7 00203752 1772：18 20 B1 00 C9 00 DO 03 DD 177A：4C 2C 18 C9 40 DO 03 4C 11 1782： 17 18 90 EA C9 43 BO E6 A6 178A：A2 00 C9 42 DO 02 A2 1A 55 1792：8E $29 \quad 25 \quad 20$ B1 00 C9 41 SB 179A： 9066 C9 5B BO 62 38 E9 03 17A2： 40 18 $6 \mathrm{D} 29 \quad 25$ C9 33 BO 9E 17AA： 57 1B 6D 4D 25 A2 41 C9 OD 17B2：1B 90 05 A2 4238 E9 1A 3E 17BA： $18 \quad 6940$ 8D 2925 BA 2043 17C2： 37 18 AD 2925203718 OB 17CA： 20 B1 00 BO 3320 4A EC 1C 17D2： $20 \quad 36 \quad 09$ C9 00 DO 29 CO B2 17DA：OO FO 25 CO C9 BO 2198 E1 17E2： 18 6D 4 E 25 AB A9 0020 AO 17EA：F2 E2 2034 ED A2 00 BD 4A 17F2： 00 O1 FO 06203718 EB D6 17FA：DO FS 20 B7 00 4C 7617 CS 1802：A2 OO BD BO 02 FO O6 9D CO 180A： 0003 E日 DO F5 A9 00 9D 19 1812： 00
 1822： $0020 \quad 37$ 18 20 B1 00 4C D6 182A： $70 \quad 17$ AC 2A 25 BC 2C 2569 1832：A9 0091 FB 60 AC 2A $25 \quad 58$ 183A：CO 78 FO 0591 FB EE 2A DB 1842： 2560 AD 4525 38 ED 414 E 184A： 25 18 $6 \mathrm{D} \quad 3025$ 日D 4B 25 DE 1852：AD 462538 ED 422518 ED 185A：6D $31 \quad 25$ BD 4C 25 AD 42 9F 1862： 25 CD 3125 BO 03 4C 0742 186A： 19 AD 4125 CD 30259017 1872：4A AD 4125 8D 4725 AD $2 F$ 187A： 4225 BD 4825 AD 3025 BO 1882：8D 4925 AD 3125 8D 4A CE 188A： 2520 AO 16 AD 4725 CD 6D 1892： 4525 FO OB EE 4725 EE 1B 189A： 4925 DO ED AD 4825 CD 58 18A2： $46 \quad 25$ FO 14 EE 4825 EE 70 18AA：4A 25 AD 4125 8D 472526 18B2：AD 3025 8D 4925 DO D1 95 18BA：4C AO 19 AD 4525 8D 4758 18C2： 25 AD 4B 25 BD 4925 AD 36 18CA： $42 \quad 25$ 日D 4825 AD 312503 18D2：BD 4A 2520 AO 16 AD 4703 18DA： 25 CD 4125 FO OB CE 4718 18E2： 25 CE 4925 DO ED AD 48 B6 18EA： 25 CD 4625 FO CA EE 4815 18F2： 25 EE 4A 25 AD 4525 日D 67 18FA： 4725 AD 4B 25 8D 492599 1902：DO D1 4 C AO 19 AD 4125 CB 190A：CD $3025904 A$ AD 4125 日D 1912：8D 4725 AD 4625 8D 4886 191A： 25 AD 3025 日D 4925 AD 2C 1922： 4 C 25 BD 4 A 2520 AO 16 1B 192A：AD 4725 CD 4525 FO OB 2 F 1932：EE 4725 EE 4925 DO ED AF 193A：AD 4825 CD 4225 FO 1473 1942：CE 4B 25 CE 4A 25 AD 4103 194A： 25 8D 4725 AD 3025 8D B3 1952： 4925 DO D1 4C AO 19 AD $6 E$ 195A： $45 \quad 25$ 日D 4725 AD 4B 25 3A 1962：8D $49 \quad 25$ AD $46 \quad 25$ 8D 4857 196A： 25 AD 4C 25 BD 4A 252076 1972：AO 16 AD 4725 CD 4125 AC 197A：FO OB CE 4725 CE 492591 1982：DO ED AD 4825 CD 4225 DC 198A：FO 14 CE 4825 CE 4A 25 B6 1992：AD 4525 8D 4725 AD $4 B$ DF 199A： 25 8D 4925 DO D1 4C 09 AD 19A2：1C A9 23 AO 9920 3E 09 BE 19AA： 207210 DO $034 C 7 C 09$ E3 19B2：A2 OO A9 OB 20 OA 1B FO $3 C$ 19BA： 07 C9 06 FO 034 C B7 1B 86 19C2：A9 FF 2095 1B A9 FF 20 C6 19CA： 95 1B A5 6F 2095 1B A5 6D 19D2： 702095 1B AO 32 B9 F6 E1

19E2：EF 2485 1B AD FO 248577 19EA：1C AO O1 B1 1B FO 16 AS FC 19F2：1B 2095 1B AS 1C 209592 19FA：1B 88 B1 1B $20 \quad 95$ 1B C8 1B 1AO2：B1 1B 2095 1B A5 1B 18 FO 1AOA： $69 \quad 02 \quad 85$ 1B A5 $1 \mathrm{C} \quad 690046$ 1A12： 85 1C AS 1C C5 6C DO D1 D9 1A1A：A9 FF 2095 1B A5 6B $854 C$ 1A22：1B A5 6C 85 1C AO OO B1 48 1A2A：1B 2095 1B CB DO FB E6 BA 1A32：1C AS 1C C5 7090 FO FO 56 1A3A：EE 2052 1B 4C CD 1A A9 61 1A42： 23 AO 9F 20 3E 092072 EE 1A4A： 10 DO 03 4C 7C O9 A2 O1 2E 1A52：A9 O8 20 OA 1B FO O3 4C FO 1A5A：B7 1B 2079 1B C9 FF DO 9D 1A62： 602079 1B C9 FF DO 59 F8 1AGA： 20 FA OA 2079 1B $85 \quad 6 \mathrm{~F} \quad 63$ 1A72： 2079 1B 8570 AO $32 \quad 20$ 5B 1A7A： 79 1B 99 F6 24 88 DO F7 B1 1A82： 2079 1B C9 FF FO 1885 9E 1ABA：1B 2079 1B 85 1C 2079 日B 1A92：1B AO 0091 1B 2079 1B FC 1A9A：AO O1 91 1B 4C 82 1A A5 89 1AA2： $6 B 85$ 1B A5 $6 C 85$ 1C AO FD 1AAA： $00 \quad 20 \quad 79$ 1B 911 A C8 DO 23 1AB2：F8 E6 1C A5 1C C5 709064 1ABA：FO FO EE 2052 1B 4C CD EB 1AC2：1A 2052 1B A9 24 AO DA $O 2$ 1ACA：4C 3E O9 AD C5 B5 DO OB 5F 1AD2：A9 24 AO BF 20 3E 096061 1ADA： $20 \quad 6 \mathrm{~F} 09$ A9 $0085 \quad 24859 \mathrm{~A}$ 1AE2： 28 A9 $04 \quad 85 \quad 29 \quad 20 \quad 80$ FE 38 1AEA：AE C5 B5 BD $3 F$ AA AA $8 E$ O3 1AF2： $29 \quad 25 \mathrm{BD} 71 \mathrm{A9} 48 \quad 0980 \mathrm{D} 4$ 1AFA： 20 ED FD AE 2925 EB 68 7D 1BO2： 10 ED A9 8720 FO FD 60 BA 1BOA：BD C2 B5 A9 O1 BD BB B5 74 1B12： $8 D$ CO B5 A9 00 BD BD B5 F7 1B1A：8D BE B5 8D BF B5 A9 0684 1B22：8D C1 B5 AO 3C A9 AO 99 B3 1B2A： 74 AA 88 DO FA AO OO B9 77 1B32： 0002 FO 0809809975 7A 1B3A：AA CB DO F3 A9 AA BD C4 29 1B42：B5 A9 75 BD CS B5 2060 DA 1B4A：1B 20 D6 03 AD C5 B5 $60 \quad 71$ 1B52：A9 O2 BD BB B5 20 60 1B 55 1B5A：A2 0120 D6 0360 A9 0080 1B62：8D C7 B5 8D C9 B5 8D CB EC 1B6A：B5 AO A6 8C CC B5 CB 8C 9C 1B72：CA B5 CB BC C8 B5 60 8D C8 1B7A：C3 B5 98 48 BA 48 A9 0363 1B82：BD BB B5 A9 018 BD BC B5 2D 1B8A： 2060 1B A2 0120 D6 o3 AF 1B92： 4 C AE 1B 8 D C3 $\mathrm{B5} 98 \quad 48 \quad 45$ 1B9A：8A 48 A9 04 8D BB B5 A9 OE 1BA2： 01 8D BC B5 $20 \quad 60$ 1B A2 OB 1BAA： 0120 D 6 O3 AD C5 B5 FO 55 1BB2： $1268 \quad 68 \quad 68 \quad 68$ AD C5 B5 DA 1BBA：48 $20 \quad 52$ 1B 68 日D C5 B5 D3 1BC2： $4 C$ CD 1A 68 AA 68 AB AD 52 1BCA：C3 B5 602058 FC 2084 D9 1BD2：FE A9 06 BD BB B5 BD C1 1E 1BDA：B5 A9 O1 8D CO B5 20 60 CC 1BE2：1B A2 0120 D6 O3 A9 23 AA 1BEA： 85 FC A9 EC 85 FB 2054 D7 1BF2： $09 \quad 20 \quad 12 \quad 09 \quad \mathrm{CG}$ OD DO FG AG 1BFA： 2058 FC 2022 OB 4C 7C 4B 1CO2： 09 AD B3 22 DO 0160 A9 B7 1COA： 24 AO C9 20 3E O9 AS 1D 36 1C12：8D 3025 A5 1E $8 D \quad 31 \quad 25 \mathrm{CA}$ 1C1A：A9 0185 1D 85 1E AD EF D9 1C22： $24 \quad 85$ 1B AD FO 2485 1C $4 B$ 1C2A：AO O1 B1 1B FO 35 85 1A 5 S 1C32： 88 B1 1B $85 \quad 19$ B1 $19 \quad 29 \quad \mathrm{C} 1$ 1C3A： 03 C9 O2 DO 26 38 20 C7 CD 1C42；1F A2 OO AC 2C $25 \mathrm{~B} 1 \quad 19 \mathrm{EF}$ 1C4A：BD 2C 25 C8 B1 19 9D 00 B2 1C52：O3 E8 C8 CC 2 C 25 DO F4 B8 1C5A：A9 OO 9D OO O3 8E 2C 25 EA 1C62： $20 \quad 27 \quad 20$ A5 1B $18 \quad 69 \quad 02$ EO 1C6A： 851 B 90 O2 E6 IC E6 IE F1 1C72：A5 1E C9 C9 DO B2 A9 0180 1C7A： 85 1E E6 1D A5 1D C9 3314 1C82：DO A6 AD 302585 1D AD AC 1CBA： $3125 \quad 85$ 1E $38 \quad 20$ C7 $1 \mathrm{~F} \quad 28$ 1C92：4C 7C $0920 \quad 33$ IE $18 \quad 20 \quad 95$

1C9A：C7 1F A9 00 AB 91 1B CB 3E 1CA2： 91 1B 20 O3 1C 60 A9 2377 1CAA：AO 8620 3E 09 A9 00 2C D7 1CB2： $59 \quad 25 \quad 3003$ AD 61 CO OD 98 1CBA： $\begin{array}{lllllllll}58 & 25 & 30 & 08 & A D & B 3 & 22 & 49 & B 8\end{array}$ 1CC2：FF 8D B3 22 AD B3 22 C9 41 1CCA： 00 FO 06 A9 CE 20 ED FD 6B 1CD2： 60 A9 C6 20 ED FD 20 ED 16 1CDA：FD 60 EE $6 A 2220 \mathrm{BB} 09 \mathrm{BA}$ 1CE2：CE 6A 22 AD 00 O3 FO 4 E 78 1CEA：C9 3D FO 27 AE C4 OB DD SE 1CF2：C4 OB FO O8 CA DO FB A9 63 1CFA： $014 C 17 \begin{array}{lllllll} & 17 & A D & 2 C & 25 & C 9 & A D\end{array}$ 1DO2： 25 BO 33 AO OO A9 O3 20 38 1DOA： 81 OC 20 B7 00 DO E8 A9 46 1D12： 00 FO O2 A9 O2 8D 2B 2525 1D1A： 1820 C7 1 F BO 09 AD B4 OD 1D22： 22 8D 2D 25 4C 32 1D AO CE 1D2A： 00 B1 1929 FC BD 2D $25 \quad 24$ 1D32： $20 \quad 27 \quad 20 \quad 20$ O3 1C 60 AE 44 1D3A： 3625 CA CA CA CA BD OO DB 1D42： 02 C9 45 DO 78 E8 BD 00 88 1D4A： 02 日D 3B 25 E8 BD 00 O2 E2 1D52： 38 E9 30 8D 2A 25 EB BD 77 1D5A： 0002 3B E9 30 AE 2A 2570 1D62：FO O6 1869 OA CA DO FA 48 1D6A：8D 2925 AD 3B 25 C9 2D 64 1D72：FO 4C A2 OO AO 00 BD 00 OD 1D7A： 02 C9 45 FO O8 E8 C9 2E 85 1D82：FO F4 C8 DO F1 88 8C 3B 9E 1DBA： 25 AD 2925 3B ED 3B $254 F$ 1D92：8D 2925 A2 O1 AO O1 BD F6 1D9A： 00 O2 E8 C9 2E FO F8 C9 FF 1DA2： 45 FO 06990002 C8 DO 80 IDAA：EE A9 30 AE $29 \quad 259900$ C8 1DB2： 02 C8 CA DO F9 A9 009996 1DBA： 00 1DC2： 25 A2 00 AO 00 BD 00 O2 3B 1DCA：EB C9 2E FO FB C9 45 FO 2B 1DD2： $06 \quad 99$ BO 02 C8 DC EE A9 B 7 1DDA： $00 \quad 99 \quad 80 \quad 02$ A9 2 E 日D OO CC 1DE2： 02 AE 2925 A9 30 9D 00 8A 1DEA： 02 CA DO FA A2 OO AC 29 3A 1DF2： 25 CB BD 8002990002 2A 1DFA：FO 04 EB C8 DO F4 BC $36 \quad 02$ 1E02： $25 \quad 60 \quad 20 \quad 6 F \quad 09$ A9 048560 1EOA： 29 A9 $0085 \quad 28$ 85 24 AD EA 1E12：F1 24 3B E5 6F AB AD F2 22 1E1A： 24 ES $70 \quad 2021$ 1E $60 \quad 2054$ 1E22：F2 E2 2034 ED A9 018575 1E2A：FC A9 0085 FB 205409 B9 1E32： 60 AO O1 B1 1B FO E7 A9 18 1E3A： 0091 1B 8891 1B B1 19 3C 1E42： 29 O3 C9 O2 DO O9 C8 B1 1B 1E4A： 19 AB B1 19 4C 54 1E C8 BD 1E52：B1 $1985 \mathrm{FB} \quad 18 \quad 65 \quad 19$ 8D 34 1E5A： 76 1E AS 19 8D 79 1E AS D3 1E62： 1 A 8D 7A 1E 6900 8D 77 1E 1E6A：1E A5 70 38 ED 77 1E AA E4 1E72：EB AO OO B9 FF FF 99 FF 1 A 1E7A：FF CB DO F7 EE 77 1E EE 03 1E82： 7 A 1E CA DO EE AS $6 F 38$ OF 1E8A：E5 FB 85 6F A5 70 E9 OO 23 1E92： 8570 AD EF 2485 FD AD 43 1E9A：FO 2485 FE AO 01 B1 FD 63 1EA2：FO 2238 B8 B1 FD ES 19 D9 1EAA：BD 2925 CB B1 FD ES 1 A 94 1EB2：OD 292590 OF 88 B1 FD 69 1EBA： 38 E5 FB 91 FD C8 B1 FD 99 1EC2：E9 0091 FD C8 FO 03 CB DE 1ECA：DO D4 E6 FE C8 AS FE C5 12 1ED2：6C DO CB 60 A9 23 AO 2236 1EDA： 20 3E 09202509 C9 5914 1EE2：DO 03 4C 00 C6 4C 7C 09 3B 1EEA：AD $3925 \quad 85$ 1D AD 3 A $25 \quad 82$ 1EF2： $851 \mathrm{E} \quad 18 \quad 20 \mathrm{C7} 1 \mathrm{~F}$ AD 3 BB CF 1EFA： 25 8D 2B 25 AD 3 D 25 8D $1 F$ 1FO2：2D 25 AD 3C 25 BD 2C 2576 1FOA：4C 4D 2248 A5 1D 8D 3980 1F12： 25 A5 1E 8D 3 A 25 AD 2B D5 1F1A： 25 8D 3B $25 A D 2 D \quad 25$ 8D 02 1F22：3D 25 AD 2 C 25 BD 3 C 25 BD 1F2A： 68 E9 41 30 BB FO O6 C9 B9 1F32： 02 BO B5 A9 1A 85 1D 2030 1F3A：B1 00 E9 40 30 AA FO AB 49 1F42：C9 1B BO A4 $18 \quad 65$ 1D C9 E6 1F4A： 33 BO 9D 85 1D 20 B1 0027

1F52：BO 96204 A EC $2036 \quad 0994$ 1F5A：C9 OO DO BC CO OO FO 8B DO 1F62：CO C9 BO 8484 1E 3820 FE 1F6A：C7 1F $9007 \mathrm{AD} 2 \mathrm{~B} 25 \mathrm{C9} 05$ 1F72： 01 DO 03 4C EA IE AO O2 9D 1F7A：A2 OO B1 19 C9 2A FO F3 9E 1F82：B1 19 9D 0002 C8 E8 CC 65 1FBA：2C 25 DO F4 A9 OO 9D 001 A 1F92： 02 A5 B8 48 A5 B9 48 AO 1C 1F9A： 00 A9 0220 B1 OC $68 \quad 8518$
 1FAA：1D AD $3 A \quad 25 \quad 85$ 1E $18 \quad 2071$ 1FB2：C7 1F AD 3B 25 8D 2B 25 EO 1FBA：AD $3 \mathrm{D} \quad 25$ 日D $2 \mathrm{D} \quad 25$ AD $3 \mathrm{C} \quad 32$ 1FC2： 25 8D 2C 256008 A6 1D 5C 1FCA：CA $861 B$ A9 C8 85 1C 18 BA 1FD2：A9 00 A2 $08 \quad 6 A \quad 66$ 1B $90 \quad 6 \mathrm{E}$ 1FDA： 031865 1C CA 10 FS 8517 1FE2：1C AG 1E CA BA $18 \quad 65$ 1B ES 1FEA： 85 1B A5 1C $690085 \quad 1 \mathrm{C} 9 \mathrm{~B}$ 1FF2： 06 1B 26 1C AS 1C 6D FO EA 1FFA： 2485 1C AO O1 B1 1B DO 10 2002： 03281860 AA 88 B1 1B CC 200A： $85 \quad 19 \quad 86 \quad 1 A \quad 28 \quad 90 \quad 14 \quad B 1 \quad 23$ 2012： 192903 8D 2B 25 B1 19 CC 201A： 29 FC 8D 2D 25 C8 B1 19 7B 2022：8D 2C $25 \quad 38 \quad 60 \quad 20 \quad 33 \quad 1 E \quad 64$ 202A：AD 2B 25 C9 O2 FO 32 EE 74 2032：2C 25 EE 2C 25 AO 00 AS C3 203A：6F 91 1B CB A5 7091 1B B3 2042： 88 AD 2B 25 OD 2D 2591 E2 204A：6F CB AD 2C 25916 F CB 04 2052：A2 00 BD 000391 bF CB A1 205A：E8 CC 2C 25 DO F4 4C B6 C3 2062： 2020 F2 20 EE 3625 EE A4 206A： $36 \quad 25 \quad 38$ AD $36 \quad 25$ 6D 2C 3E 2072： 25 8D 2C 25 AC 3625 AD B6 207A：2C $25916 F A 2$ 00 C8 BD A7 2082： 000391 6F C8 E8 CC 2C 5C 208A： 25 DO F4 AO 00 AS $6 F 9141$ 2092：1B CB AS 7091 1B 88 AD 06 209A：2B 25 OD 2D 2591 6F CB 45 20A2：AD 3625916 F C8 A2 02 EA 20AA：BD FE 0191 6F CB EB EC 20 20B2： $36 \quad 25$ DO F4 AS $6 F 18 \quad 6 \mathrm{D} 49$ 20BA：2C 2590 O6 A5 70 C9 A4 F3 20C2：FO OF AS 6F 18 6D 2C 25 DE 20CA： 85 GF A5 $70 \quad 6900 \quad 8570 \quad 2 \mathrm{C}$ 20D2： 60 A9 00 A8 91 1B C8 9154 20DA：1B A9 24 AO $13 \quad 20$ 3E 0940 20E2：A5 1D BD F4 24 A5 1E 8D BF 20EA：F5 24 A2 FD 9A 4C 7C OB 6A 20F2：BA BE $3 E 25$ A2 00 AO 00 A4 20FA：BD 0003 C9 28 DO 01 C8 66 2102：C9 29 DO 01 88 9D 0003 5B 210A：EG EC 2C 25 DO EA CO 0087 2112：FO 03 4C 4D 22 A9 0048 EB 211A：A9 0085 BB A9 $0385 \mathrm{B9}$ 8B 2122： 20 B1 009051 C9 2D FO E6 212A：4D C9 2B FO 49 C9 2E FO B8 2132： 45 C9 50 FO 25 C9 28 FO 34 213A： 15 C9 41 FO OB C9 42 FO AS 2142： 07 C9 40 FO OF 4C 4D 22 F7 214A： 20 OD 1F 4C 7B 21 A9 O1 3D 2152： $48 \quad 4 \mathrm{C} \quad 22 \quad 21 \quad 20 \quad 0512$ 4C A7 215A：7B 2120 B1 00 C9 49 FO 6C 2162： 03 4C 4D 22 A9 73 AO 2182 216A： 20 F9 EA 20 B1 004 C 7B 3C 2172： 218249 OF DA A1 20 4A E7 217A：EC 20 B7 00 FO 78 A2 02 E2 2182：C9 2B FO 35 EB C9 2D FO 9F 218A： 30 EB C9 2A FO 2B E8 C9 CA 2192：2F FO 26 E8 C9 5E FO 21 C6 219A：C9 29 FO 03 4C 4D 22 6B 9E 21A2：FO 14 C9 O1 FO 074820 FF 21AA： 1922 4C A1 21 E6 B8 DO BC 21B2： 02 E6 B9 4C 7B 21 4C 53 F7 21BA： 1286066848 A8 B9 9B E2 21C2： 22 DD 9B 229010201941 21CA： 22 A6 066848 AB B9 9B 03 21D2： 22 DD 9B 22 BO FO 2072 2F 21DA：EB A5 A2 48 A5 A1 48 A5 3F 21E2：AO 48 A5 9F 48 A5 9E 4894 21EA：A5 9D 48 A5 $06484 C \quad 22$ D6 21F2： 21 FO 584 C 69 EA 6848 E1 21FA：FO $062019 \quad 22$ 4C FB 2122 2202： $68 \quad 2034$ ED AO OO B9 0060

[^0]: Offer valid for 90 days from date of purchase.
 Registered trademarks of Apple Computer, Inc., International Business Machines Corporation, and Commodore Computer Systems
 1985 Timeworks, Inc. All rights reserved

[^1]: (Preceding page) A microscope's view of Motorola's new 68020 microprocessor.
 The chip's actual size is about the diameter of an adult's little fingernail.

[^2]: ehart, \& Winton, 55 H.

[^3]: 15 Day Free Trial - If it doesn't meet your expectations within 15 days of receipt, just send it back to us UPS prepaid and we will refund your purchase pricel!

[^4]: Add $\$ 10.00$ for shipping, handling and insurance. Illinois residents please add 6% tax. Add $\$ 20.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA, APO-FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA
 Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! VISA - MASTER CARD - C.O.D

 No C.O.D. to Canada, APO.FPO.

[^5]: Add $\$ 17.50$ for shipping, handling and insurance. Illinois residents please add 6% tax. Add $\$ 35.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA, APO-FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA.
 Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! VISA - MASTER CARD - C.O.D.

 No C.O.D. to Canada, APO-FPO.

[^6]: Add $\$ 14.50$ for shipping, handling and insurance. Illinois residents please add 6% tax. Add $\$ 29.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA. APO-FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA. Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days delivery. 2 to 7 days for phone orders. I day express mail! VISA - MASTERCARD - C.O.D. No C.O.D. to Canada or APO-FPO

[^7]: EF $1 \emptyset \varnothing$ CLS:LOCATE $1 \varnothing, 1 \emptyset:$ PRINT"Wr iting file..."
 JA $11 \varnothing$ DPEN "noprtsc.com" FOR OU TPUT AS \#1
 BP 120 FOR $I=1$ TO 279: READ BYTE: CKSUM=CKSUM+BYTE
 6H $13 \emptyset$ PRINT\#1, CHR\$ (BYTE);
 $6014 \varnothing$ NEXT I:CLOSE 1

[^8]: Note: The Apple II and II + have no Open Apple key, so ESC must be used as an Open Apple toggle. Pressing ESC once makes all following keypresses behave as if Open Apple were pressed. Press ESC again to turn off the Open Apple toggle.

