Formatted Printouts For Commodore

Todd Touris

Anyone who's written a BASIC program or typed one in from a magazine knows how difficult it can be to decipher the listing. This utility for Commodore computers makes those listings much easier to read. A printer and disk drive are required.

If you own a printer and a Commodore computer, you probably know how to print out a BASIC program listing. Just load the program into memory, type OPEN 4,4:CMD4: LIST and press RETURN. However, printed listings can be difficult to follow, particularly when program lines contain more than one statement. "Formatted Printouts" is a utility program which improves the readability of BASIC listings, making them easier for you and others to understand.

Type in the program below and save a copy before you run it. It's designed for Epson and Epsoncompatible printers. If you have a different printer (Commodore, etc.), minor changes may be needed. The first few lines of the program define several strings for sending control codes to the printer for special modes such as boldface, underlining, and so on. REM statements explain the purpose of each string. Your printer manual should explain which codes to substitute within these strings.

If you're using a VIC-20, you must have at least 8 K of memory expansion, and you must also change the following lines:

76 PRINTCHRS (14)"\{CLR\}\{wHT\}
\{RVS\} PRETTY PRINTER \{OFF\}"
:rem 55
$8 \varnothing$ PRINT"\{8 DOWJ\} $\}$ PLEASE WAIT 0 NE MOMENT
:rem 192
130 PRINT"FILENAME TO PRINT": I nPuTns
:rem 146
Commodore Plus/4 and 16 users should ignore the :rem statements at the end of each line. These are used with the VIC and 64 "Proofreader" program. Also, with those computers, you need to replace line 60 with this line:

60 COLOR 0,1:COLOR 4,1

The program is self-prompting and very simple to use. Insert the disk that contains the BASIC program you want to list, then enter the program filename when prompted. That's all it takes. When a program line contains multiple statements, each statement appears on a separate line. Every BASIC keyword (PRINT, GOTO, etc.) is capitalized and printed in boldface. REM lines are underlined, and special graphics characters within quotes are printed as a descriptive string within brackets. For example, the "cursor down" character is printed as [crsr down].

There's one final feature that should be appreciated by those who have used structured languages such as Pascal. All statements inside a FOR-NEXT loop, or after an IF-THEN conditional statement, are indented two spaces, making it much easier to follow the logic of each section. Since this program is written entirely in BASIC, it should not be difficult to add any other features you might desire.

Formatted Printouts For Commodore

For instructions on entering this listing, please refer to "COMPUTE!'s Guide to Typing In Programs" published bimonthly in COMPUTEI.

10 DIM CHARS (255), KEYWRD\$ (75)
: rem 77
20 NULL $\$=\operatorname{CHR} \$(\varnothing): E S C \$=C H R \(27)
:rem 177
$30 \mathrm{~S}=\mathrm{ESC}+$ +E": ES=ESCS+"F": REM EMPHASIZED PRINT MODE FOR \{SPACE\}KEYWORDS : rem 119
40 RS\$=ESC\$+" - " + CHRS (1): RES=ES C\$+"-"+NULLS: REM UNDERLINE \{SPACE\}FOR REM COMMENTS
:rem 255
50 SCS="[": ECS="]": REM BRACKET s FOR SPECIAL CHARACTER STR INGS
:rem 203
60 POKE53281,11:POKE53280,12
:rem 32
$7 \emptyset$ PRINTCHRS (14)"\{CLR\}\{WHT\}
\{RVS\}\{13 SPACES\}PRETTY PRIN
TER\{13 SPACES $\}\{\bar{F} F\} ": r e \bar{m} 55$
$8 \emptyset$ PRINT" 88 DOINN\}\{8 SPACES \}PLE ASE WAIT ONE MOMENT..."
:rem 108
90 FORL=øTO255: $\mathrm{CHARS}(\mathrm{L})=\mathrm{CHR} \$(L$) : NEXTL
: rem 1
100 FORL=ØTO31: READCHARS (L) :NE XTL: FORL $=129 \mathrm{TO} 59$: READCHAR \$ (L) : NEXTL
: rem 18Ø
110 FORL=ØTO75: READKEYWRDS (L) : NEXTL
:rem 243
$12 \varnothing$ PRINT"\{UP\}\{38 SPACES\}"
: rem 245
130 IINPUT"FILENAME TO PRINT"; N \$:rem 6 140 OPENR $, 8,8, N \varsigma+{ }^{\prime \prime}, \mathrm{P}, \mathrm{R}^{\prime \prime}:$ OPEN4, 4,7:GOSUB290 :rem 134
150 IFLN < > 2049 THENPRINT"THIS I S NOT A BASIC PROGRAM": CLO SE8:CLOSE4:GOTO1 30 :rem 91
$160 \mathrm{NSP}=\varnothing: \mathrm{FOF}=\emptyset \quad$:rem 119
170 REM MAIN ROUTINE : rem 199
180 GOSUB29の:IFLN=ØTHEN47ø
:rem 78
190 GOSUB29ø:LSS=STRS (LN) +" ": $\mathrm{NSP}=\mathrm{NSP}-\mathrm{COF}: \mathrm{COF}=\emptyset: \mathrm{LL}=\mathrm{LEN}(\mathrm{L}$ S\$):GOTO210 :rem 75
2 صの LS $=$ ="" : FORL=1TOLL: LS $\$=\mathrm{LS} \$+$ " ":NEXTL :rem 29
210 GOSUB310 :rem 167
220 IFB >127 THENGOSUB380:GOTO26 \emptyset
: rem 146

230 IFB $=34$ THENGOSUB330：GOTO270 rem 91 24 IFB $=$＂：＂THENA $\$=A S+B S: G O S U B$ 450：GOTO2の日 ：rem lø1
250 IFB＝øTHENGOSUB450：GOTO18 8 ：rem 41
$26 \emptyset$ IFB $=167$ THENGOSUB450：GOTO2 0 \emptyset rem 145 270 AS＝AS＋BS：GOTO210 ：rem 55 280 REM LINE NUMBER RETRIEVAL \｛SPACE\}ROUTINE :rem 67
290 GET $\# 8, \mathrm{~L}$ ：$:$ GET\＃ $8, \mathrm{H}$ S：LN $=$ ASC（L \＄＋NULL\＄）＋ASC（H\＄＋NULL\＄）＊ 256 ：RETURN
：rem 220
3ØØ REM CHARACTER RETRIEVAL RO UTINE
：rem 216
310 GET\＃8， $\mathrm{B} \$: \mathrm{B}=\mathrm{ASC}(\mathrm{B} \$+\mathrm{NULL} \$): \mathrm{R}$ ETURN
：rem 76
$32 \varnothing$ REM QUOTE STRING RETRIEVAL ROUTINE
：rem 178
$330 \operatorname{IF}(B<32)$ OR（ $(B<16 \varnothing)$ AND $(B>12$ 8））THENAS＝AS＋SCS＋CHARS（B）＋ ECS：GOTO35 \quad rem 237
340 AS＝AS＋BS ：rem 47
$35 \emptyset$ GOSUB310：IF $(B=34)$ OR $(B=\emptyset) \mathrm{TH}$ ENRETURN
：rem 92
360 GOTO33 ：rem 104
$37 \emptyset$ REM KEYWORD INTERPRETER
：rem 247
$380 \quad \mathrm{~A}=\mathrm{A} \$+\mathrm{S} \$+\mathrm{KEYWRD}(\mathrm{B}-128)+\mathrm{ES}$
：rem 88
390 IFB $=167 \mathrm{THENCOF}=\mathrm{COF}+2: \mathrm{GOTO} 4$ 30 ：rem 203 $4 \emptyset \emptyset \quad \mathrm{IFB}=129 \mathrm{THENFOF}=\mathrm{FOF}+2: \mathrm{GOTO} 4$ 30 ：rem 199
$41 \varnothing$ IFB $=13$ ØTHENFOF $=F O F-2: N S P=N$ SP－2：GOTO43ø ：rem 122
420 IFB $=143$ THENA $\$=A \$+$ RS $\$$
：rem 102
430 BS＝＂＂：RETURN ：rem 152
$44 \emptyset$ REM LINE PRINT ROUTINE
：rem 87
450 PRINT\＃4，LSSSPC（NSP）AS＋RES： $A \$=" ": N S P=F O F+C O F: R E T U R N$
：rem 95
460 REM END ROUTINE ：rem 123
$47 \varnothing$ PRINT＂FINISHED＂：CLOSE8：CLO SE4：END ：rem 19
$48 \emptyset$ REM SPECIAL CHARACTER DESC RIPTORS
：rem 96
490 DATA＂NULL＂，＂1＂，＂2＂，＂3＂，＂4＂ ，＂WHITE＂，＂6＂，＂7＂，＂SHFTC＝OF F＂：rem¹ 126
5 Øø DATA＂SHFTC＝ON＂，＂1Ø＂，＂11＂，＂ 12＂，＂CR＂，＂LOWERCASE＂，＂15＂， ＂16＂，＂CRSR DOWN＂：rem 228
510 DATA＂RVS ON＂，＂HOME＂，＂DELET E＂，＂21＂，＂22＂，＂23＂，＂24＂，＂25 ＂，＂26＂，＂27＂：rem 34
520 DATA＂RED＂，＂CRSR RIGHT＂，＂GR EEN＂，＂BLUE＂：rem 113
530 DATA＂ORANGE＂，＂＂，＂＂，＂＂，＂Fl＂ ，＂F3＂，＂F5＂，＂F7＂，＂F2＂，＂F4＂， ＂F6＂，＂F8＂：rem 86
540 DATA＂SHFT CR＂，＂UPPERCASE＂， ＂BLACK＂，＂＂，＂CRSR UP＂，＂RVS \｛SPACE\}OFF", "CLEAR", "INSER T＂：rem 199
$55 \emptyset$ DATA＂BROWN＂，＂LIGHT RED＂，＂G RAY 1＂，＂GRAY 2＂，＂LIGHT GRE

EN＂，＂LIGHT BLUE＂：rem 85 56 DATA＂GRAY 3＂，＂PURPLE＂，＂CRS R LEFT＂，＂YELLOW＂，＂CYAN＂
：rem 99
570 REM KEYWORDS ：rem 248
$58 \emptyset$ DATA＂END＂，＂FOR＂，＂NEXT＂，＂
DATA＂，＂INPUT\＃＂：rem 5
590 DATA＂INPUT＂，＂DIM＂，＂READ \｛SPACE\}", "LET ","GOTO" ：rem 224
6 6ø DATA＂RUN＂，＂IF＂，＂RESTORE＂， ＂GOSUB＂，＂RETURN＂：rem $6 \varnothing$ 610 DATA＂REM＂，＂STOP＂，＂ON＂，＂WA IT＂，＂LOAD ：rem 81
620 DATA＂SAVE＂，＂VERIFY＂，＂DEF \｛SPACE\}","POKE ", "PRINT\#", ＂PRINT＂，＂気＂ $63 \emptyset$ DATA＂CMD＂，＂SYS＂，＂OPEN＂， ＂CLOSE＂，＂GET＂，＂NEW＂，＂＂TAB 640 DATA＂THEN＂，＂NOT＂，＂STEP
 650 DATA＂AND＂，＂OR＂，＂＞＂，＂ $=", "$＜＂，＂SGN＂：rem $6 \varnothing$ 660 DATA＂INT＂，＂A $\overline{B S} ", " U S R ", ~ " F R E$ ＂，＂POS＂，＂SQR＂，＂RND＂，＂LOG＂， ＂EXP＂，＂COS＂，＂SIN＂：rem 22θ 670 DATA＂TAN＂，＂ATN＂，＂PEEK＂，＂LE

680 DATA＂MIDS＂，＂GO＂ $\begin{aligned} & \text { ：rem } 128\end{aligned}$

Atari Cassette Verify

Dan Stromberg

This short，relocatable machine lan－ guage routine verifies whether a tape save was successful on all Atari $400 / 800, X L$ ，and XE computers．

Atari BASIC provides no command for verifying whether a CSAVE or LIST to cassette was successful． ＂Atari Cassette Verify＂remedies that problem．Just type in the pro－ gram below，save it for future use， and run it．Only a few moments are required to POKE the machine lan－ guage（ML）routine into memory locations 1644－1746（near the top of page 6）．Since this routine is fully relocatable，you can change the ad－ dress values in line 100 to whatever other location is convenient．This should be a location which is not erased when other BASIC pro－ grams are CLOADed．

Once Cassette Verify is in memory，it＇s available for use at any time．To verify a program that you＇ve saved，simply type PRINT USR（1664）and press RETURN．（Of course，if you relocate the ML，you should change the 1664 to the new starting address．）You＇ll hear a buzzing sound，just like the one caused by typing a LOAD com－ mand．Position the tape at the file you want to verify，then press any key．

While the ML routine is verify－ ing，you＇ll hear the usual beeping sounds through the speaker of your TV or monitor．When the operation is complete，the computer prints a number on the screen．If that num－ ber is one，the verify was success－ ful－that is，the program on tape matches the program in memory．If you see any other number，consult
your BASIC manual to see what the error number means before at－ tempting to resave your program．

Atari Cassette Verify

For instructions on entering this listing，please refer to＂COMPUTE！＇s Guide to Typing In Programs＂published bimonthly in COMPUTEI

NF 1 øø FOR INC＝ 1664 TO 1746 IF $11 \varnothing$ READ BYTE：POKE INC，BY TE
KM $12 \boldsymbol{D}$ NEXT INC
FA 139 DATA $194,162,48,169,3$ ，157，66，3，169，29，157， $68,3,169,3,157,69,3,1$ $69,1,157,72,3,169$
OH 146 DATA $9,157,73,3,169,4$ ，157，74，3，169，128，157 ，75，3，32，86，228，48， 24 ，169，7，157，66，3
CE $15 \emptyset$ DATA $169,0,157,72,3,1$ $57,73,3,32,86,228,16$ ， $238,192,136,2 \emptyset 8,2,160$ ，1，132，195，132，212，16 9
HH 166 DATA $\emptyset, 133,213,169,12$ ，157，66，3，76，86，228 ©

ATARI
130XE 130XE

Computer Package 30XE Computer 1050 Disk Drive 1027 Printer

ONLY ${ }^{5} 399$ ATARI PRINTER INTERFACES

Uprint A
Uprint AW $16 \mathrm{~K} \ldots . . .5995$
999

DISK DRIVE...Call ATARI 130XE SUPER PRINTER PKGS.
and U-Print A
Panasonic. 1091
Super Printer Packages charges or creat card surcharges when ship ATARI 130XE SOFTWARE BRODERBUN
Print Shop
Karateka
Champ Loderunner
Print Shop
Graph 1. INFOCOM tion for items and prices ELECTRONIC ARTS Archon Seven Ci
Skytox Pinball Cons MICROPROSE Silent Ser
Gunship.
Accrojet.
Kenn

OSS

MAC 65 XL-Ca Action-Cart Allic Tool Kits BATTERIES INCLUDED Paper Clip B-Graph, SYNAPSE Syncalc.
Synfile..
Syntrend
Syncalc Templates
Loderunner Rescue
Mindwheel
Essex.
SSI
see Commodore 64 sec MISCELLANEOUS I30XE Hacker
Amer. Cross Ctry
Flight Simulator
Ultima II
Ultima III
Letter Perfect
Data Perfect
Halley Project Ultimal.

ATARI 520ST*
Atari 520ST-
RGB System...Call Atari 520ST-Monochrome Sys...Call SF314DS/DD 1 Megabyte Disk Drive Cal 520ST computers purchased from ninety days.
*Please call fo stock availability on Atari ST
products before ordering by mail. ATARI 520ST SOFTWARE HABA SYSTEMS
Hippo C
Haba Writ
Business Letters Wills. MISCELLANEOUS ST Sundog
Flio Sis Flip Side
Sottspool ViP Protessi
Ulitima II.
Perry Maso Degas Farenheit 451 Amazon
Hacker The Final
The
Deja V Keyboard Cad PC/Intercom Hex
Chat

Mudpies

 ExpressINFOCOM Deadline
Starcioss Starcioss
Zork 11
Witness Suspende
Planeitail Sorcerer Seastaker
Cuthroats Hitchiker Suspect
Wishbringer Intidel. Enchanter...
Spellbreaker AM
Ca
add
AMI
Arct AMIGA
Archon Artic Fox. Deluxe Paint One on One. Seven Cities Skyfox
Hacker
\qquad

- Please call for availability of Amiga products before

Computafbility

We stock hundreds of programs for the Apple, Atari, C-64 and IBM. If you don't see it listed here, don't hes
to call.

C-64 SUPER COMPUTER PACKAGE
-64 Computer Disk Driv
ONLY ${ }^{5} 399$ IBM PC IBM PC SYSTEMS specific needs Call for lowest price on BM-PC, IBM-XT Corona PC-400 Compatible . . Call Corona Portable PC Compatible .. Call PC Multifunction Boards

We carry the
 AST, Hercules,
 Paradise, STB,
 and Quadram
 Call for current prices

IBM PC SOFTWARE
Print Shop Graph
Bank Street Writer 4995
BORLAND
Sidekick....
Turbo Pascal
BLUE CHIP
Baron
Squire
Squire.....
Millionaire
DIGITAL RESEARCH Call for items and prices.
INFOCOM
See Atari 520ST for
and prices

LEADING

Nutshell ...
LE/WP Basic
LE/Word Proc
MICROPROSE
F-15 Strike Eagle ...
Kennedy Approach
Acrojet
Silent
Sient Service.
MICROSOFT
Flight Si
Word...
Multiplan
MINDSCAPE
items and tion

SIERRA

King's Quest 34.95
King s Quest II 3495

THOUGHTWARE
IBM MISCELLANEOUS
PFS
Wizardy
Strip Poker
Electric Desk
D-Base III
Sideway
Home Pak.
Sargon III
Peacht
Jet.
Jet Business
BPI
... 69.95

C-64 SUPER PRINTER PKGS.
SG-10 \&
G-Wiz........ 279
Panasonic 1091 \&
G-Wiz........ 309
Legend 1080 \&
G-Wiz..........282

Super Printer packages have no added shipping or charge card sur-
charges added when shipped in Continental USA
Westridge AA/AD
Modem . . 49.95
Cardco
G-Wiz . . . 54.95
COMMODORE 128
C-128 Computer. Call Buy both the C-128 \& 1571 Disk Drive \& receive a 25.00 gift certificate 1902 Monitor Westridge 6470 Direct
Connect 300/1200
Modem 179.95

COMMODORE

\section*{| 128 SOFTWARE |
| :--- |
| Consultant. 52.95 |} Paper Clip 59.95

Sideways

 49.95
Wordwriter

Data Mgr. II

GENERAL HARDWARE

PRINTER BUFFERS
MicrofazerFrom 169
Microfazer …...From 169
U-Buff 16K ….... 79.95
U-Buff 64K
99.95

MODEMS
US Robotics 2400
Volksmodem 1200 Prometheus 1200 Password 1200
PC Modems
. 469
.189
.319
.209
Call
Call
MONITORS
Technika MJ-22RGB 269
Sakata SC-100
Sakata SC-100
Commodore $1702 \ldots189$
Samsung $12^{\prime \prime}$ Green .. 79.95
Samsung $12^{\prime \prime}$ Amb ... 79.95
Taxan
Amdek
Amdek
COMMODORE 64 SOFTWARE

ACCESS

 Beach-Head21.95Beach-Head II.......24.95
Raid/Moscow24.95
Mach V-Cart 21.95
Mach V-Car
INFOCOM
Zork 1............ 24.95
Deadline

Starcross
Witness.

Planetfall
Enchanter.
Cutthroats
Sorcerer
Spellbreaker
SSI
Ba
ELECTRONIC ARTS
Adv. Construction.... 29.95

Mail Order Monster . . . 24.95
Racing Destruction . . 24.95

Ultima III.
Ultima IV
... 41.95
rest of items \& prices.
EPYX
World/Football
.24 .95
Eidolon.
Koronis Rift.
Apshai Trilogy...
MICROPROSE
$\ldots .24 .95$

Tor items and prices.
for items
MISCELLANEOUS
COMMODORE 64
COMMODOR
Antietnam.....
Fighter Command
(No Atari)
Norway 85
Panzer Grenidier 24.95
USAAF 37.95
Cal-Kit
Superbase 64 .
Karateka
Gamemake
Ulima II
Essex.
Breakthrough/
$\begin{aligned} & \text { Ardennes37. } 95 \\ & \text { Kampgruppe } 37\end{aligned}$
Phantasie
Explod Fis \qquad 20.95

Carrier Force

Comp. Ambush
Mech Brigad
(No Atari)
Field of Fire

Pro Tour Golt
(No Atari)
Gemstone Warrio
Imp. Galactum .
Computer Baseball.
Comp. Quarterback. . . 24.95

Apple Keyboard Customizer

Robert Buehler

With this program you can reconfigure your Apple keyboard and even save the changes on disk for future use. It works on any Apple II-series computer with DOS 3.3.

Are you frustrated with the Apple keyboard? Are you curious about why Apple arranged the keys in a particular manner? Do you yearn for a numeric keypad? If so, "Keyboard Customizer" may be for you. It lets you rearrange your keyboard any way you want.

For example, you could convert part of the regular keyboard into a numeric keypad-and even make a hexadecimal pad if you desire. This pad can be laid out using the keys of your choice. Do you keep missing the RETURN key and wish it were larger? No problem. Define three keys as RETURNs.

Besides such things as adding a numeric pad, Keyboard Customizer gives you the opportunity to eliminate pet annoyances. For instance, the colon (:) is commonly used when typing Applesoft BASIC programs. As the regular keyboard is set up, the semicolon and colon share the same key. To enter a colon, you must press SHIFT. With Customizer, the positions of these two characters could be reversed.

The question mark is another familiar character for Applesoft programmers as an abbreviation for PRINT. Using Keyboard Customizer, you could reposition the question mark to the semicolon key,
making it more accessible. All of these and any other modifications that fit your fancy are at your fingertips with Keyboard Customizer.

Typing The Program

To prepare Keyboard Customizer, you must type it in with "Apple MLX," COMPUTE!'s machine language entry program found elsewhere in this issue. MLX catches most typing mistakes as they happen and helps assure that you'll finish with an error-free copy. Read the MLX instructions carefully before you begin. When you run MLX, it asks for the starting and ending addresses of the listing you're about to enter. For Keyboard Customizer, respond with these addresses:
Starting address: 8000
Ending address: 81A7
When you finish typing the listing, MLX prompts you to save a copy on disk.

Four Customizer Commands

To run Keyboard Customizer, type BRUN KEYBOARD (or whatever filename you specified when you saved the program with MLX). The READY message should appear as usual.

Keyboard Customizer has four commands, which must be preceded by an ampersand (\&). Here's a brief summary:
\&0 Restores the keyboard to its original configuration (as does RESET or a reboot).
\&1 Activates the customized keyboard.
\&2 Enters the keyboard editor.
\& 3 Prints a list of key values in the format original key $=$ customized key value.

All these commands are pretty much self-explanatory except for \&2, which calls up the keyboard editor. This is the tool for altering the key values. The first thing you notice after typing \&2 is the message FIRST KEY:. This means the program is asking you to begin defining the range of keys you want to customize.

The editor looks at keys sequentially by their ASCII codes. ASCII (American Standard Code for Information Interchange) is a system which assigns numbers to standard characters which appear on teletype and computer keyboards. The ASCII code for an uppercase A, for example, is 65 ; B is $66 ; \mathrm{C}$ is 67 ; and so on. All letters, numbers, punctuation marks, and other symbols have an ASCII code, and a table of these codes can be found in the Apple II User's Guide or just about any other computer manual. You can also determine the ASCII value of a character in BASIC by typing PRINT ASC("A"), substituting the appropriate character for A.

To specify a range of keys, first find the ASCII value of the lowestnumbered character you want to customize. Enter this value at the FIRST KEY: prompt. Then find the

ASCII value of the highest－ numbered character you want to customize．Enter this value at the following prompt，which is LAST KEY：．（Therefore，the value you en－ ter at the FIRST KEY：prompt should always be equal to or less than the value you enter at the LAST KEY：prompt．）Any character can begin or end the range，includ－ ing ESCape or control characters． You＇ll notice that control characters along with ESCape are displayed in inverse video for easier identifi－ cation．

After entering the range of keys you wish to edit，you＇ll see the message ENTER THE NEW RE－ PLACEMENT VALUE FOR EACH KEY．The program displays the first character in the range you speci－ fied，followed by a colon．Next，en－ ter the new replacement character． Do not press RETURN－Keyboard Customizer automatically enters a carriage return and then prompts you with the next key to be edited．

When you＇ve assigned new values to all the keys in the range， the program returns to BASIC．Try typing one of the keys you have altered．It should return the reas－ signed character．Enter a command using that key，or write a program using the key．Even in PRINT and INPUT statements，the key yields its new character value．

How It Works

It seems as though Keyboard Cus－ tomizer brings about some drastic changes．Actually，it doesn＇t．To un－ derstand how the program works， let＇s review how the Apple handles keyboard input．

Every time a key is pressed， Applesoft BASIC looks at memory locations \＄38－\＄39，its input hook． These locations normally contain the address of KEYIN（\＄FD1B），a
routine in Read Only Memory （ROM）that gets the keypress from the keyboard．However，the input hook can be made to point to an alternate input routine．This is the case with Keyboard Customizer． Control passes not to the KEYIN routine in ROM，but rather to a routine within Customizer．This routine calls KEYIN to get the char－ acter code for the keypress，but checks to see if the code belongs to a character that was altered．If so， Customizer replaces it with the cus－ tomized value．

The part of Customizer which replaces the old key values is actu－ ally very short（only five bytes）．A much larger part of the program is the buffer it uses to store the modi－ fied values．Along with the editor， the buffer comprises the majority of the program．The buffer is so large because it stores the values for all the keys sequentially，even if they equal the original values．As a re－ sult，the buffer size is constant：half a page of memory（ 128 bytes）．It may seem like a waste of memory to store the values of keys which haven＇t been changed．But if only modified keys were stored in the buffer，the routine that replaces the character values would be much longer and more complicated．

This brings up another impor－ tant point．Keyboard Customizer＇s improvements are temporary，since the input hook at \＄38－\＄39 is initial－ ized during a reset or reboot．But there＇s a way to save the keyboard changes you＇ve made．First，enter the Apple＇s built－in machine lan－ guage monitor by typing CALL－151．Then type this line and press RETURN：

8016：EA EA EA

This stops Keyboard Custom－ izer from clearing the buffer by

Keyboard Customizer Routines and Important Locations

AMPERV	\＄3F5	Holds JMP instruction to S／R for \＆commands
CH	\＄24	Cursor horizontal displacement
COUT	\＄FDF0	Prints byte in accumulator on screen
CRDO	\＄DAFB	Prints a carriage return
CV	\＄25	Cursor vertical position
DOSHOOK	\＄3EA	Connects I／O hooks to DOS
GETBYT	\＄E6F8	Evaluates formula at TXTPTR
KEYIN	\＄FD1B	Gets next key input from keyboard
KSWL	\＄38－\＄39	DOS input hook
RDKEY	\＄FD0C	Call KEYIN via KSWL

overwriting three machine lan－ guage instructions with NOPs（No Operation，similar to REM in BASIC）．Second，you＇ll need to save the buffer that holds all the modifi－ cations，along with the original pro－ gram．Enter this command：
BSAVE KEYBOARD1，A\＄8000，L\＄23C
To run this new version，sim－ ply type BRUN KEYBOARD1．You could also include the command BRUN KEYBOARD1 in the HELLO program so the customized key－ board automatically loads every time you boot the system．

Please refer to the＂MLX＂article in this issue before entering the following listing．

Apple Keyboard Customizer

START ADDRESS： $8 \emptyset \emptyset \emptyset$
END ADDRESS： $81 \mathrm{A1}$
8øøø：A2 4C Aø 2F A9 8ø 8E FS CE 8øø8：$\emptyset 3$ 8C F6 ø3 日D F7 Ø3 AØ AF 8ø1ø：4C A9 $812 \emptyset$ 3B $812 \emptyset 2 B 1 F$ 8ø18： $812 \emptyset 6 F$ FB Aø 27 A9 $8 \emptyset \emptyset 5$ 8ø20： $8438 \quad 8539$ 4C EA 0320 E9 8ø28：1B FD A8 B9 $21816 \emptyset 2 \emptyset$ D6 8Ø3Ø：F8 EG EØ ØØ DØ ØA AØ 57 CA
 8ø4Ø：EØ Ø2 Dø $692 \emptyset 1981$ Aø EB 8ø48：86 A9 $81 \quad 20$ 3B $81 \quad 20$ ØC 55 8ø5ø：FD 8D 9E $81202381205 \emptyset$ 8ø58：FØ FD Aø 91 A9 81 2ø 3B 4D 8ø66： 8120 ØC FD 8D Aø 812090 8ø68： 238120 Fø FD Aø 5C A9 43 8ø70： $812 \emptyset 3 B 81201981 \mathrm{AD}$ CF
8078：9E $812023812 \emptyset$ Fø FD CB 8ø8ๆ：A9 BA $2 \emptyset F \emptyset$ FD A9 Aø $2 \emptyset 1 \emptyset$ 8ø88：Fø FD $2 \emptyset$ ØC FD 8D 9F 81 2D 8ø9ø： $2 \emptyset 238120$ FØ FD AC 9E 14 8ø98： 81 AD 9F $8199 \quad 2181 \quad 2046$ 8øAØ：FB DA CC AØ $81 \mathrm{~F} \mathrm{\emptyset} 6 \emptyset$ EE 79
 8øBø：4B $2 \emptyset 58$ FC $2 \emptyset$ FB DA AD 8E 8øB8：9F 818524 AD 9E 8120 E7 8øCØ： 238126 Fg FD A9 BD 20 FB 8øC8：FØ FD AE 9E 81 BD 218148 8øDØ： $2 \emptyset 238120$ FØ FD EE 9E DB 8øDB： 8120 FB DA $A D$ 9E 81 C9 84 8øEØ：DF FØ 24 AS 25 C9 14 DØ 36 8øE8：CE A9 øø 8525 A9 ø8 18 øC 8øFØ：6D 9F 81 日D 9F $812 \emptyset$ FB D8 8øF8：DA 4C B7 8ø AØ 54 A9 81 A4 81øø：2ø 3B 81 4C 1C 8Ø 6Ø A9 24 81ø8：øø 8D 9F 81 A9 8ø 8D 9E 83 811ø： 81 A9 DE BD AØ 81 4C 1C B2 8118： $8 \emptyset 2089$ FE 2093 FE 20 F 1
8120：EA Ø3 6ø C9 Aø $10 \square 3 \quad 3885$
8128：E9 8ø $6 \emptyset$ A9 8ø A2 øø 9D 13
813Ø：A1 81 E8 A8 C8 98 C9 FF 48 8138：DØ F5 $6084 \quad 968597$ AØ 6A 814ø：Øø B1 Ø6 FØ Ø6 $2 \emptyset$ FØ FD $1 \varnothing$ 8148：C8 Dの F6 60 8D D2 C5 C1 CD 815 ：C4 D9 8D ஏø CF CE $\emptyset \emptyset$ CF 67 8158：C6 C6 87 Øø 8D 8D C5 CE 5E 816ø：D4 C5 D2 Aø D4 C8 C5 Aø 99 8168：CE C5 D7 AØ D2 C5 DØ CC 65 817ø：C1 C3 C5 CD C5 CE D4 8D 7B 8178：C6 CF D2 Aø．C5 C1 C3 C8 BC 818ø：AØ CB C5 D9 8D ØØ C6 C9 EØ 8188：D2 D3 D4 Aø CB C5 D9 BA 72 819ø：Øø AØ AØ AØ CC C1 D3 D4 C3 8198：Aø CB C5 D9 BA Øø 8ø øø øC 81Aø：DE Øø Øø Øø FF FF Øø Øø 13

IBM Advanced Function Key Techniques

Peter F. Nicholson, Jr

Restoring original key definitions, extending definitions for certain keys beyond the default limits, and saving definitions to disk for later use are among the techniques covered in this revealing article. For the IBM PC and PCjr and most compatibles.

Anyone who has ever redefined the function keys in an IBM BASIC program probably has wondered why there's no command to restore the keys' original definitions when the program ends. Usually you end up disabling them or redefining them again to their default values. But there is an alternative, and the secret lies within something called the soft key buffer. Locating and examining this buffer can yield some interesting results.

Finding the buffer is easy if you have an IBM PC, XT, or PCjr. It starts at memory location 1619 in the default memory segment. But this is not necessarily true if you have an IBM-compatible computer. Therefore, if you're using a compatible, you should run Program 1. This program attempts to locate the soft key buffer for you. When you find it, you should alter the buffer address (1619) in the IBM programs before running them on your compatible. The lines where this address can be found are indicated in REMark statements within each program.

[^0]of memory which stores the definitions for the function keys. When a key is assigned a different function, its definition within the buffer is altered. A key definition can contain up to 15 characters. If you PEEK into the buffer's memory locations, you may be surprised to find that each key is assigned not 15, but 16 positions. We'll explain why in a moment. In the meantime, knowing the number of positions allotted for each function key makes it easy to save the buffer's contents-and therefore to preserve the keys' definitions.

Program 2 does this by reading the contents of the buffer into an array. Then it assigns new functions to the keys (nonsense definitions for this example). Finally, the program lets you restore the original functions by POKEing the contents of the array back into the soft key buffer. You can use this technique in your own programs to restore the function keys.

Now, if you're still wondering why each key is assigned 16 positions in the buffer when its definition can be only 15 characters long, disabling the keys will provide the answer. If you PEEK at the 16 positions reserved for F1 (originally defined as LIST) and print out the ASCII values, this is what you'll see:
LIS T 000000000000
When you disable F1, the buffer looks like this:
0 I S T 000000000000

This seems to indicate that BASIC marks the end of a function key definition with a zero. To prove this, run Program 3. It demonstrates that you can restore the function keys after disabling them by merely saving the first character of each key definition (assuming, of course, that the keys have been disabled by overwriting only the first character of the definition). That's why Program 3 needs to save only 10 bytes instead of the 160 bytes saved by Program 2.

Exłended Definitions

Knowing that you can restore the disabled function keys by saving only the first character of each definition may be interesting, but the difference between 10 and 160 bytes probably is of little concern to you. The real power in this knowledge is that you can extend the number of characters available for a function key's definition by altering the sixteenth position in the buffer for that key. This lets you assign a longer definition to a function key (at the expense of the following key, however).

For instance, I prefer to edit programs in SCREEN 0,0,0 and WIDTH 80. Using Program 4, I can set F9 to execute these commands even though they exceed 15 characters. F10 becomes useless, since we haven't increased the size of the soft key buffer-just the length of F9's definition within that buffer.

Program 4 also lets you save the new function key definitions as

The Sider "10 MB hard disk onns sso hme

from First Class Peripherals

Decisions, decisions. First you had to choose between Apple and IBM. Now you have to decide which hard disk subsystem to purchase-and they all seem about the same. But are they?

First Class Peripherals can make your hard disk decision a lot easier. Because whether you use an Apple II + or IIe...or IBM PC* or XT...we offer a Sider 10 MB hard disk subsystem just right for all your storage needs.

The most reliable, affordable 10 MB hard disk on the market

The Sider features state-of-the-art Winchester disk technology. Direct booting without floppies. Self-contained power supply. And compatibility with the most popular Apple or IBM software.

In addition, the Sider is plug and play. Everything you need for quick, easy installation is included: cable, host adapter, software and manual.

Built to last by Xebec

The Sider has won rave reviews for its
-Must contain hard disk ROM.

3579 Highway 50 East, Carson City, NV 89701
performance and reliability. That's beca:ase it's manufactured exclusively for First Class Peripherals by Xebec, the industry's leading manufacturer of computer disk drives and controllers. And it's sold direct to you, so there are no dealers or distributors to hike up the cost.

Full guarantee and free tech hotline

You can choose your Apple or IBM Sider with confidence. Simply order and use your Sider for 15 days. If you're not 100% satisfied, return it for a full refund. Keep it, and you'll enjoy a full one-year limited warranty... plus access to our toll-free hot-
line, should you ever have a technical or service question.

It's easy to order your Sider

The Sider is priced at just $\$ 595$ for the Apple model... $\$ 595$ for the IBM. That's bundreds of dollars less than what you'd expect to pay for the comparable "big name" models. To order, use the coupon below...or for faster service, order by phone using Visa, MasterCard or American Express. Call toll-free:

1800538-1307

Extension 702

YeS, please send me the Sider, including 10 megabyte hard disk drive, host adapter card, cable, complete installation software and documentation for my: \square Apple II+ or IIe \square IBM PC or XT I prefer to pay as follows:
\square I've enclosed my check or money order for $\$ 595^{*}$ plus $\$ 15$ shipping and handling, payable to First Class Peripherals.
\square Please bill the following credit card account for $\$ 595 *$ plus $\$ 15$ shipping and handling:
\square VISA \square MasterCard \square American Express
Card \#
Exp. Date

[^1]
a file which can be BLOADed from another program．If you try this， don＇t omit the buffer address（1619） when BLOADing the file，since there is no way to insure that BASIC＇s segment will be the same as when you originally created the file．

For instructions on entering these listings please refer to＂COMPUTEI＇s Guide to Typing In Programs＂published bimonthly in COMPUTE！．

Program 1：Buffer Finder For Compatibles

PC 1øø DEF SEG：SCREEN Ø：WIDTH 8ø ： $\mathrm{X}=\varnothing$
OH $11 \varnothing$ CLS：PRINT＂MEMORY LOCATIO N＂；：LOCATE ，2ø
IO 126 KEY 1，＂LIST＂：A＝ASC（＂L＂）
D6 $13 \emptyset$ IF PEEK $(X)=A$ THEN GOSUB 1 $5 \emptyset$ ELSE PRINT X ；：LOCATE 1 ， 26
Js $14 \emptyset \quad \mathrm{X}=\mathrm{X}+1$ ：GOTO $13 \emptyset$
OK $15 \emptyset$ IF CHR\＄$(\operatorname{PEEK}(X+1))<>" I$＂T HEN RETURN
P6 $16 \emptyset$ IF CHR $\$(\operatorname{PEEK}(X+2))<>" S$＂T HEN RETURN
C6 $17 \emptyset$ IF CHR\＄（PEEK $(X+3))<>" T$＂T HEN RETURN
JK $18 \emptyset$ CLS：PRINT＂MEMORY LOCATIO N＂；X
NH $19 \varnothing$ FOR $J=1$ TO 1ø：PRINT＂F＂；J ；：FDR K＝ø TO 15
AH 2øø IF PEEK $(X+16 \ddagger(J-1)+K)>\emptyset T$ HEN PRINT CHR $\$$（PEEK $(x+16$＊ （ $J-1$ ）$+K$ ））；ELSE $22 \emptyset$
$0021 \emptyset$ NEXT K
PP 220 PRINT：NEXT J
66230 BEEP：INPUT＂IS THIS IT＂； Q
ND 24ø IF $\mathbf{Q} \$=" Y$＂QR $Q \$=" y "$ THEN END ELSE $X=X+1$ ：CLS：GOTO 1 $1 \varnothing$

Program 2：Restoring Function Definitions

HO 90 REM LINES WHICH USE 16190 FFSET ARE $14 \emptyset$ AND $25 \emptyset$
DB 1øø SCREEN ஏ：WIDTH 8ஏ：CLS：DEF SEG：OPTION BASE 1
QM $11 \varnothing$ KEY ON：DIM K $\$(1 \emptyset)$ ：FOR $X=1$ TO 1ø：K\＄$(X)=$ STRING $\$(16, \emptyset$ ）：NEXT X ：＇STORAGE AREA F OR FUNCTION KEYS
B6 $12 \emptyset$ REM SAVE FUNCTION KEYS
HL $13 \emptyset$ FOR $X=1$ TO 1ø：FOR $J=\emptyset$ TO 15
EH $14 \emptyset$ MID $\$(K \$(x), J+1,1)=$ CHR $\$(P E$ EK（1619＋16 $(x-1)+J))$
OP $15 \emptyset$ NEXT J，X
HA $16 \emptyset$ REM REDEFINE FUNCTION KEY 5 WITH LETTERS（THIS IS 0 NLY AN EXAMPLE）
JC $17 \emptyset$ FOR $X=1$ TO 1ø：KEY X ，CHR\＄（ $X+64$ ）：NEXT X：KEY LIST
EO $18 \emptyset$ PRINT＂Function keys are redefined＂：PRINT＂Press a ny key to restore＂
NP 190 KB $=$ INKEY ${ }^{2}$ ：IF KB $=$＝＂＂THEN $19 \varnothing$
PF $2 \emptyset \emptyset$ REM RESTORE FUNCTION KEYS
of $21 \varnothing$ FOR $X=1$ TO $1 \varnothing$
CC $22 \emptyset$ KEY $X, K \$(X)$
HM 230 NEXT X ：CLS
PL $24 \emptyset$ FOR $X=1$ TO $1 \varnothing$
NE $25 \emptyset J=A S C(\operatorname{MID} \$(K \$(X), 16,1)): I$

F $J>\varnothing$ THEN POKE $1619+16$（ $\mathrm{X}-1)+15, \mathrm{~J}$
HC 26 N NEXT X：CLS
EL $27 \emptyset$ KEY LIST

Program 3：Restoring Function Definitions

OL 96 REM LINES WHICH USE 16190 FFSET ARE $14 \emptyset$ AND $22 \emptyset$
EK 1øø SCREEN Ø：WIDTH 8ஏ：CLS：DEF SEG
06 $11 \varnothing$ KEY ON： $\mathrm{K} \$=\operatorname{STRING} \$(1 \varnothing, \varnothing)$ ：， STORAGE AREA FOR FUNCTIU N KEYS
B6 120 REM SAVE FUNCTION KEYS
PI $13 \varnothing$ FOR $X=1$ TO $1 \varnothing$
DJ 14σ MID $\$(K \$, X, 1)=\operatorname{CHR} \$($ PEEK $(16$ $19+16$（ $\mathrm{X}-1$ ））
6H $15 \emptyset$ NEXT X
NJ $16 \emptyset$ REM DISABLE FUNCTION KEYS
HE $17 \emptyset$ FOR $X=1$ TO 1ø：KEY X ，＂＂：NE XT X：KEY LIST
MA $18 \emptyset$ PRINT＂Function keys are disabled＂：PRINT＂Press an y key to restore＂
NP $19 \emptyset \mathrm{~KB} \$=$ INKEY $\$$ ：IF KB $\$=" \|$ THEN $19 \varnothing$
PF $26 \emptyset$ REM RESTORE FUNCTIUN KEYS OF 210 FOR $X=1$ TO $1 \varnothing$
PO 226 POKE $1619+16$＊$(X-1)$ ，ASC（MI D\＄（K\＄， $\mathrm{X}, 1)$ ）
HM 236 NEXT X：CLS
DF $\mathbf{2 4 6}$ KEY LIST

Program 4：Extending Definitions

OC 96 REM LINES WHICH USE THE 16 19 OFFSET ARE 18ø，29ø，39б， 44ø，47ø
If $10 \emptyset$ DEF SEG：STK $\$=$ STRING $\$(128$ ， ø）：SCR $\$=$ STRING $\$(37, \varnothing):$ RES TORE 11ø：FOR $X=1$ TO 37：RE AD J：MID $\$$（SCR\＄$, x, 1$ ）$=$ CHR\＄$($ J）：NEXT X：SCR！＝PEEK（VARPT R（SCR\＄）+1 ）+256 （\＃PEEK（VARPT R（SCR\＄）+2 ）
L6 110 DATA $85,137,229,139,118,6$ $, 41,192,138,4,139,116,1$
NB $12 \emptyset$ DATA $1,24 \emptyset, 137,196,184, \emptyset$, 6，187，ஏ，7，185，ஏ， 2
FP $13 \emptyset$ DATA 186，89，24，85，295，16， 92，93，262，2， 6
CE $14 \emptyset$ SCREEN Ø：WIDTH 8ø：CLS
HI $15 \emptyset \mathrm{~T} \$=$＂Function Key Definiti on＂
FH $16 \emptyset$ LOCATE 2，（4の－．5＊LEN（T\＄））： PRINT T\＄
QP $17 \emptyset$ PRINT：PRINT
HE 18ø $X=1: J=1: K=1619$
EF $19 \varnothing \mathrm{~K} \$=$ STRING $(16 \emptyset, \emptyset): K N \$=S T R$ ING $\$(16 \emptyset, \emptyset): K=K-1$
CP $20 \square$ L＝PEEK（ $\mathrm{J}+\mathrm{K}$ ）
PN $21 \emptyset$ WHILE Lく＞ø
PH 22σ MID\＄（K\＄，J， 1 ）$=$ CHR $\$(L)$
OK $230 \mathrm{~J}=\mathrm{J}+1$ ：L＝PEEK（ $\mathrm{J}+\mathrm{K}$ ）
EM $24 \varnothing$ WEND
ID $25 \emptyset$ PRINT＂Function Key＂；x ；＂ ：＂；MID\＄（K\＄，1，J－1）
LI $26 \emptyset$ PRINT：PRINT＂Enter new de finition or press ENTER t －leave unchanged＂
DB $27 \emptyset$ LINE INPUT Q\＄：IF LEN（Q\＄）$>$ Ø THEN GOSUB 3øø：IF ER＝1 THEN ER＝ø：GOTO 25ø
LF $28 \emptyset$ IF $X+F I X(J / 16)>9$ THEN GOT － $38 \emptyset$
so $296 \mathrm{X}=\mathrm{X}+1+\mathrm{FIX}(\mathrm{J} / 16): \mathrm{K}=1619+16$ （ $(X-1)-1: J=1$ ：CALL SCR！（ST K\＄）：LOCATE 5，1：GOTO 296

DD $3 \varnothing \varnothing$ INPUT＂Do you want a carr iage return（Y／N）＂；Q1\＄
6F 31ø IF Q1\＄＝＂Y＂OR Q1\＄＝＂y＂THE N Q $\$=$ Q $\$+C H R \$$（13）
JJ 320 IF LEN $(Q \$)<16$ THEN $J=L E N$（ Q\＄）：KEY X，Q\＄：RETURN
－ 33 （ $M=1$ ：$N=16$（ $(X-1)+1$ ：IF $N+L E N$ （Q＊）＞16も THEN BEEP：PRINT ＂Too long＂：ER＝1：RETURN
PC 34Ø MID\＄（KN\＄，N，1）＝MID\＄（Q\＄，M， 1 ）
BF $35 \emptyset M=M+1: N=1+N:$ IF $M<=L E N(Q \$)$ THEN 34g
QN 36 Ø IF LEN（Q $\$$ ）＞J THEN $J=L E N(Q$ \＄）
NL $37 \emptyset$ RETURN
PE 38Ø FOR $X=1$ TO 10
NP 39Ø IF ASC（MID\＄（KN\＄，16等（ $\mathrm{X}-1$ ）＋ $1,1))>\sigma$ THEN FOR $\mathrm{J}=16$（ $\mathrm{X}-$ 1）+1 TD 16＊X：POKE 1619＋J－ 1，ASC（MID\＄（KN\＄，J，1））：NEXT J
FA 4øø NEXT X：CLS：KEY LIST
JE 41 g KB\＄＝INKEY\＄：IF KB\＄＝＂＂THEN $42 \emptyset$ ELSE $41 \varnothing$
If 42σ PRINT：INPUT＂Do you want to save function keys as a BLOADable file（Y／N）＂；Q \＄
6J 43 IF $Q \$=" Y "$ QR $Q \$=" y "$ THEN INPUT＂Filename＂；F\＄ELSE END
OH 440 BSAVE $\mathrm{F} \$, 1619,159$ ：PRINT
EN $45 \varnothing$ PRINT＂To load your funct ion key file，use these c ommands：＇
AA $46 \emptyset$ PRINT：PRINT
NF 47ø PRINT＂DEF SEG：BLOAD＂；CH R\＄（34）；F\＄；CHR\＄（34）；＂，1619 ：CLS＂：END

COMPUTE！

Subscriber Services

Please help us serve you better．If you need to contact us for any of the reasons listed below，write to us at：

COMPUTEI Magazine

P．O．Box 10954
Des Moines，IA 50340
or call the Toll Free number listed below．
Change Of Address．Please allow us 6－8 weeks to effect the change；send your current mailing label along with your new address．
Renewal．Should you wish to renew your COMPUTEI subscription before we remind you to，send your current mailing label with payment or charge number or call the Toll Free number listed below．
New Subscription．A one year（12
month）US subscription to COMPUTEI is $\$ 24.00$（2 years，$\$ 45.00 ; 3$ years，$\$ 65.00$ ． For subscription rates outside the US， see staff page）．Send us your name and address or call the Toll Free number listed below．
Dellvery Problems．If you receive dupli－ cate issues of COMPUTEI，if you experi－ ence late delivery or if you have prob－ lems with your subscription，please call the Toll Free number listed below．

COMPUTE！

1－800－247－5470 In IA 1－800－532－1272

Commodore 64 SpeedScript Fontmaker

Charles Brannon, Program Editor

Special fonts add character to any screen display. This article shows how to use custom character sets with any version 3.0 or higher of Commodore 64 SpeedScript. This month's premiere edition of the Commodore COMPUTE! DISK includes the Fontmaker programs and sample font listed here, plus version 3.2 of SpeedScript.

Writing with a word processor often means staring for hours at a video screen. For word processing, screen clarity is especially vital. It's best to have a good-quality color or monochrome monitor, but a clear, readable character set helps, too. Commodore's built-in character set works well and is especially designed for the low resolution of the average TV. However, it can be improved. Besides, it's just plain fun to use your own custom character set. A custom font personalizes your computer and sets it apart from the crowd. There are many font editor programs to design character sets for use with BASIC, but until now there was no way to use them with SpeedScript.

Type in Program 1, "Fontmaker Boot," and save it to diskpreferably as the very first program on the directory (this lets you conveniently LOAD "*", 8 to start the process). Program 1 configures memory for Program 2, "Fontmaker," which does the actual work. Fontmaker won't do its job unless you've run Program 1 first. You must save Program 2 with the
name FONTMAKER, since this is the name Program 1 looks for when it runs. To use another name, change line 20 of Program 1.

Fontmaker only installs a character set that has been previously created; it has no provisions for creating the custom characters. You can easily define your own fonts or edit the supplied ones with a character editor such as "Ultrafont" (COMPUTE!'s First Book of Commodore 64 Sound and Graphics). This article includes one sample character set that you can type in. Also, this month's premiere of the COMpuTE! DISK includes SpeedScript 3.2, Fontmaker Boot, Fontmaker, and the sample font listed below.

When you run Fontmaker, it prompts you for the name of the character set you'd like to use. By default, the cursor blinks on the filename SPEED.SET. If you'd like to use a font with that name, just press RETURN. Otherwise, type in a new name, overwriting SPEED. SET. If you want to run SpeedScript without a custom set, just type X at the prompt (you don't need to erase SPEED.SET; just enter an X).

The character set you've previously created with a font editor program must be on the same disk as the SpeedScript program. Fontmaker looks for SpeedScript under the filename SS. Either insert a different filename in line 140 of Program 2 or rename your copy of SpeedScript to SS. Fontmaker loads in SpeedScript, bumps up the start of text space (reducing available mem-
ory by about 11 K), loads the character set into that gap, switches the screen to the new character set, then runs SpeedScript.

It's Only Temporary

Fontmaker does not permanently change SpeedScript unless you resave the word processor at this point (not recommended). In other words, Fontmaker installs the custom character set only for the current session. If you exit SpeedScript by pressing the RESTORE key, type POKE 53272,26 to restore the set before you type RUN to reenter SpeedScript.

When designing your custom character set, remember that vertical lines appear thinner and fuzzier than horizontal lines. Notice that every vertical line is doubled on the normal Commodore character set, making characters appear bold. You'll probably want to follow the same rule when designing your own sets. This is not a problem with crisp monochrome monitors. You can use the full 8×8 resolution of the character grid to design clean, well-formed characters.

Another guideline for readability is that uppercase characters are of uniform height. All lowercase characters are the same height, except for tall characters such as b, d, $\mathrm{f}, \mathrm{h}, \mathrm{i}, \mathrm{k}, \mathrm{l}$, and t , which are the same height as uppercase letters. Normally you'll keep the rightmost column and the lowest row blank to keep characters from running into each other and to reserve room for
the lowercase descenders on the g ， j，p，q，and y．Naturally，an excep－ tion is when you design cursive or script characters that should link together．

You＇ll also want to customize the punctuation marks and sym－ bols．SpeedScript uses the back－ arrow symbol as the carriage－return mark．If you don＇t like to see return－ marks，just blank out that character． You can put a tiny dot in the SHIFT－SPACE character to distin－ guish it from a real space．It can also be convenient to define some of the graphics characters to their printing equivalent on the printer．For ex－ ample，some graphics characters print as italic or foreign－language characters．Just edit the graphics characters to look like their printing equivalents．

You can also create your own custom cursor．SpeedScript＇s cursor just alternates between the normal and reverse－video version of what－ ever character it＇s sitting on．The last 128 characters of a character set are the reverse－video ones．If you want an underline cursor，just copy the normal set down to the reverse－ video area and draw a line through the bottom row of every character． Special characters can even have a unique cursor．

A Free Sample

The final listing below is a sample character set for you to type in．To do this，you must use our machine language entry program＂MLX．＂Be sure you read and understand the instructions for using MLX before you begin entering the data．（In case you missed its introduction last month，COMPUTE！now has an en－ hanced version of MLX．See the article for details．）Unlike most list－ ings you enter with MLX，this listing is not a machine language program－ it＇s pure character definition data． However，that fact doesn＇t matter to MLX，nor does it affect the way MLX operates．MLX still asks you for starting and ending addresses． For the character data，here are the proper values：

Starting address： 7000
 Ending address：77FF

When you finish entering the character set data，be sure to save a copy on the same disk with Font－ maker，Fontmaker Boot，and Speed－

Script．If you wish this to be the default character set for the Font－ maker program，save the character data with the filename SPEED．SET． This is the default name used in Program 2 （line 170）．

For instructions on entering these listings， please refer to＂COMPUTE！＇s Guide to Typing In Programs＂published bimonthly in COMPUTEI．

Program 1：Fontmaker Boot

10 PRINT＂\｛CLR\}\{3 DOWN\}POKE44,4 8：POKE12288， $0: N E W^{\prime \prime}$ ：rem 21
20 PRINT＂\｛2 DOWN \} LOAD "CHR\$ (34) ＂FONTMAKER＂CHR\＄（34）＂，8＂
：rem 122
$3 \emptyset$ PRINT＂\｛4 DOWN\}RUN \{HOME \}": PO KE198，3：POKE631，13：POKE632， 13：POKE633，13：END ：rem 183

Program 2：Fontmaker

$1 \emptyset \emptyset$ REM DO NOT RUN THIS PROGRA M UNTIL YOU SAVE IT
：rem 147
110 POKE53280，6：POKE53281，14：S PS＝＂\｛RVS\}区4ø @z" :rem 86
$12 \emptyset$ PRINT＂\｛CLR\}\{N\}\{4 DOWN\} \｛YEL \}"SPS"\{RED\} "SPS"\{PUR\}" SPS＂\｛CYN\}"SP\$:PRINTTAB (8)" \｛WHT \} \{2 DOWN \}LOADING SPEED SCRIPT．．．＂：$\overline{\text { rem }} 6$
130 PRINT＂\｛5 DOWN\}\{CYN\}"SPS" \｛PUR\}"SPS"\{RED\}"SPS"\{YEL\}" SP\＄
：rem 151
$14 \emptyset \mathrm{~F} \$=$＂SS＂：ADR＝2ø49：GOSUB21 \varnothing
：rem 144
$150 \mathrm{~F} \$=" \mathrm{"}: \operatorname{PRINT} "\{B L K\}\{11 \mathrm{UP}\} \mathrm{WH}$ ICH CHARACTER SET WOULD YO U LIKE？＂
：rem 175
160 PRINT＂（ENTER X FOR ROM SET
$17 \emptyset$ PRINT＂६2尹？SPEED．SET
\｛11 LEFT \}";:INPUT FS:IFLEF T\＄（F\＄，1）＝＂X＂THEN19ø
：rem 200
180 ADR＝1ø240：GOSUB21ø：POKE532 72，26：POKE 2473，48：rem 194
190 POKE44，8：SYS2ø61 ：rem 151
$20 \emptyset$ END
：rem 105
210 OPENI， $8, \varnothing, F \$$ ：rem 76
$22 \emptyset$ POKE78Ø，1：POKE781，8：POKE78 2， 0 ：SYS65466 ：rem 214
23ø POKE78ø，Ø：POKE782，ADR／256： POKE781，ADR－PEEK（782）＊256： SYS65493 ：rem 243
24ø CLOSE1：RETURN ：rem 87

Sample Character Set

The character set data must be entered with the MLX machine lan－ guage entry program elsewhere in this issue．Refer to the the MLX article before entering this listing．

[^2]7ø40：Eø $60 \quad 6 \mathrm{C} \quad 76 \quad 66 \quad 66$ E6 7ø48：18 øø $\begin{array}{llllllll} & 38 & 18 & 18 & 18 & 3 C & \emptyset \emptyset & 57\end{array}$ 7ø50：ØС ØØ ØС ØС ØС СС СС 78 1F 7ø58：EØ 6066 6C 78 6C E6 \quad Ø0 98 7060：70 $30 \quad 30 \quad 30 \quad 30 \quad 30 \quad 78$ øø Cl 7ø68：øø Øø CC FE D6 C6 C6 Øø 32
 7ø78：Øø øø 3C $66 \quad 6666$ 3C Øø 8C
 7ø88：Ø0 Øø 76 CC CC 7C ØC 1E 93 7090：øの Øø DC 766060 F0 Øø DA 7ø98：Øø Øø 7C Cø 7C Ø6 FC Øø ØB
 7øA8：ØØ ØØ CC CC CC CC 7E ØØ 86
 7øB8：ØØ ØØ C6 D6 FE FE 6C ØØ AC 7øCø：øØ Øø C6 6C 38 6C C6 $\begin{array}{lllllll} & 42\end{array}$ 7øC8：Ø0 Øの $66 \quad 66 \quad 66$ 3E 66 7C 91
 7øD8：7C $60 \quad 606060607 C \quad$ 60 9F 7øEØ：ØC 12 3Ø 7C 3062 FC ØØ 12 F

 7øF8：Øの Øø ØС ØС $58 \quad 6070 \quad$ Øの 41

 7110：66 $66 \quad 66 \quad 24$ Øø Øø øø Øø CE 7118：6C 6C FE 6C FE 6C 6C ØØ 75 $7120: 18$ 3E 6Ø 3C Ø6 7C 18 ØØ Cø
 $7130: 38 \quad 6 \mathrm{C} \quad 38 \quad 76$ CC CC 76 ØØ $\quad 3 \mathrm{~F}$

 7148：3018 ØС ØС ØС 18 3ø Øの AC 7150：øの 66 3C FF 3C 66 Øø Øø CF

 717ø：øø øø øø øø øø 18 18 øø ЕЗ 7178：Øの Ø6 ØС 18 3ø 6Ø Сø Øø 64 7180：7C C6 CE DE F6 C6 7C Øø E6 $7188: 18 \quad 38 \quad 18 \quad 18 \quad 18 \quad 18 \quad 7 \mathrm{E}$ Øø $\quad 28$ 7190：3C 66 Ø6 1C $30 \quad 66$ 7E 日ø C5
 71Aの：1C 3C 6C CC FE 日C 日C 日も 3B 71A8：7E 60 7C $\quad 06 \quad 06 \quad 66$ 3C \quad Ø0 15

 71C0：3C 6666 3C $66 \quad 66$ 3C $6 \emptyset \quad 31$ 71C8：3C $66 \quad 66$ 3E 66 ØC 38 Øø 14

 71Fの：70 18 ØC \quad Ø6 71F8：3C 66 Ø6 øC 18 Øø 18 Øø 06
 72ø8：18 3 3C $\quad 66 \quad 66$ 7E $66 \quad 66 \quad \emptyset 0 \quad 95$ 7210：FC $66 \quad 66$ 7C $66 \quad 66$ FC $6 \emptyset 68$ 7218：3C 66 CØ CØ CØ 66 3C ØØ $\mathrm{F} \mathrm{\emptyset}$ 7220：F8 6C $66 \quad 66 \quad 66$ 6C F8 øø A6 7228：FE $62 \quad 68 \quad 78 \quad 68 \quad 62 \mathrm{FE}$ Øø 84 7230：FE $\quad 6268 \quad 78 \quad 68 \quad 60$ FØ $\begin{array}{lllllll} & 68 & 68\end{array}$ 7238：3C 66 CØ Cø CE 66 3E Øø 85 7240：C6 C6 C6 FE C6 C6 C6 Øø E1 7248：3C 18 18 18 18 18 18 3 C Ø0 $\quad 6 \mathrm{~F}$ 7250：1E ØС ӨС ØС СС СС 78 ØØ 14 7258：E6 66 6C 78 6C 66 E6 $6 \emptyset ~ 2 A$ $7260: \mathrm{FO} 6 \emptyset 60606266 \mathrm{FE} \quad$ Øø 92 7268：C6 EE FE FE D6 C6 C6 Øø 9B 727ø：C6 E6 F6 DE CE C6 C6 Øø 5E 7278：38 6C C6 C6 C6 6C 38 Øø 32 7280：FC $66 \quad 66$ 7C $60 \quad 60$ Fø 9078 7288：78 CC CC CC DC 78 1C ØØ 44 7290：FC 6666 7C 6C 66 F6 Øの ØD 7298：3C 66 7Ø $\begin{array}{llllllll} & 38 & \text { ØE } & 66 & \text { 3C } & \text { ØØ } & 49\end{array}$

 72 B ：С6 66 C6 C6 C6 7 C C 38 øø 88 72 B8：C6 C6 C6 D6 FE EE C6 Øø 3A

 72D ：FE C6 8C $18 \quad 32 \quad 66 \mathrm{FE}$ ØØ 23
72D8:1C $30306030301 \mathrm{C} \quad 005 \mathrm{E}$
72EØ:18 18 18 18 Øø 18 18 18 Øø 2 C
72E8:38 øС øC ø6 øС øС 38 øø CF

72F8: 0 6 6C 8A 8C 8A 8A 6C $\varnothing \varnothing$ 6A
73ø日: øø øø øø 1ø øø øø øø øø Е7
7308:FØ FØ FØ FØ FØ FØ FØ FØ EE
7310: 日б Øठ Øø Øø FF FF FF FF F6
7318:FF øб Øø øø øø øø øø øø FE
7320:øø øø øø øø øø øø øø 1F 26

7330: СС CC $33 \quad 33$ CC CC $33 \quad 33$ 7D
7338: Ø3 ø3 ø3 ø3 ø3 ø3 ø3 ø3 1F
7340:øø øø øø øø CC CC 33 33 5A
7348:FF FE FC F8 FØ EØ Cø 8ø 2B
7350:ø3 ø3 ø3 ø3 ø3 ø3 ø3 ø3 37
7358:18 18 18 18 F $1 \mathrm{FF} 18 \quad 18 \quad 18$ E7
7360:øØ Øø Øø Øø ØF ØF ØF ØF 29
7368:18 18 18 1F 1F øø øø Øø 4F
7370:øø øø øø F8 F8 18181857

7380: øø øø øø 1F 1F 181818 FA
7388:18 1818 FF FF øø ø0 ø0 84

7398:18 18 18 F8 F8 18 18 18 18 94

73A8: EØ EØ EØ EØ EØ EØ EØ EØ 8F
73B0: 07 07 0707070707070797
73B8:FF FF øø øø øø øø øø øø 9F

73C8: øø øø øø øø Øø FF FF FF AF
73Dø:ø3 ø3 ø3 ø3 ø3 ø3 FF FF AE
73D8: øø øø Øø Øø FØ FØ FØ FØ DD

73E8:18 18 18 F8 F8 øø øø øø 3 C

73F8:FØ FØ FØ FØ ØF ØF ØF OF A3
7400:82 $39 \begin{array}{lllllllll} & 21 & 21 & 3 E & 38 & 84 & 78 & ø 3\end{array}$
7408:øø 7C 86
7410:DØ 50 5C 42 59 D9 82 FC 59
7418:ø0 3C 4299969942 3C CD
7420:11 $09 \quad 394199 \quad 9941$ lE E2
7428:ø0 3C 42 99 81 9E 41 3E 49
$7430: 22 \quad 49 \quad 4 \mathrm{E} \quad 84 \quad 48 \quad 48 \quad 84 \quad 3 \mathrm{C} 37$

7440:10 90928999991966 øC
7448:24 18 44 $24 \begin{array}{lllll}24 & 24 & 42 & 7 E & C 8\end{array}$
7450:12 $\begin{array}{llllllll} & \text { OC } & 12 & 12 & \text { D2 } & 92 & \text { B2 } & 44 \\ 33\end{array}$
7458:10 $9799 \quad 92849219$ E6 13
7460:78 $88 \quad 48484848 \quad 84781 \mathrm{~A}$
7468:ø0 cc $\begin{array}{lllllllll}33 & \text { Ø1 } & 29 & 39 & 29 & \text { C6 } & 42\end{array}$
7470:00 7C $8299999999662 F$

7480:00 DC $2299998298 \quad 64$ 8A
7488:øø $77 \quad 89 \quad 32 \quad 32 \quad 82 \quad 32 \quad 21 \quad C 4$
749ø:øø DC $2289 \begin{array}{llllllll} & 96 & 9 \varnothing & \text { Ø8 } & \mathrm{F} \emptyset & 85\end{array}$
7498:ø日 7C 82 3C 8279 ø2 FC AF
$74 \mathrm{AD}: 28$ 4C 82 4C $4 \mathrm{C} 40 \quad 22$ 1C 89
74A8:øø CE $\quad 32 \begin{array}{lllllll}32 & 32 & 32 & 81 & 7 \mathrm{E} & 8 \mathrm{~A}\end{array}$
74Bも:øø 66

$\begin{array}{lllllllll}74 \mathrm{CD}: ø \emptyset & \text { C7 } & 29 & 92 & 44 & 92 & 29 & \text { C7 } & 7 \varnothing\end{array}$
74C8:ø0 $669999994179825 F$
74DØ:øø 7 FE 81 B2 2449817 E 7C
74D8:82 9 E 9ø $9 \varnothing 909 \mathrm{E} 82 \mathrm{FE}$ C8
$74 \mathrm{ED}: 12$ 2D 4C 82 4C 99827 C 1A
74E8:41 79 Ø9 $69 \quad 697941 \mathrm{FF} 33$
$74 \mathrm{FD}: 10 \quad 28 \quad 4482$ EE $28 \quad 28 \quad 38$ 3D
74F8: Øø 1E 1E DE FE F8 FØ F8 Dl
7500:øø $\begin{array}{llllllllll}750 & 3 C & 24 & 24 & 24 & \text { 3C } & \text { øø } & \text { DE }\end{array}$
7508:24 $42 \begin{array}{llllllll} & 42 & 24 & 24 & 18 & 24 & 18 & 92\end{array}$
7510:99 99 99 DB 24 øø øø øø $4 \varnothing$
7518:92 92 Ø1 92 Ø1 92 92 $6 \mathrm{EE} 2 \varnothing$
7520:24 42 9C $42 \quad 39 \quad 82 \quad 64$ 1C 1 E
7528: C6 39 F2 24 4E $99 \begin{array}{llllll} & 29 & \text { C6 } & 57\end{array}$
7530:44 $52 \begin{array}{llllllll}76 & 89 & 32 & 32 & 89 & 76 & 17\end{array}$
7538:1E $12 \begin{array}{lllllll}32 & 24 & 18 & \text { Øø } & \text { øø } & \text { Øø } & \mathrm{FF}\end{array}$
$\begin{array}{llllllll}7540: 12 & 12 & 32 & 24 & 18 & 60 & \text { Ø0 } & \text { ØØ } \\ 75 F \\ 754 & 24 & 48 & 48 & 48 & 64 & 32 & \text { ØE } \\ 11\end{array}$
7548:48 $24 \begin{array}{llllllll}12 & 12 & 12 & 26 & 4 C & 70 & \text { F5 }\end{array}$
7550:66 18 С3 øø С3 $18 \quad 66$ øø 38

7560:øø ø0 øø $3 \mathrm{C} \quad 24 \quad 24 \quad 24 \quad 4851$
7568:øø øø 7E 81 7E øø øø øø 2 F
72D8：1C $30306030301 \mathrm{C} \quad 005 \mathrm{E}$ 72E8：38 øС øС ø6 øС øС 38 øø CF
 72F8： 0 6 6C 8A 8C 8A 8A 6C 006 A
 7310：Øø Øø øø øø FF FF FF FF F6 7318：FF øø ø日 øø øø øø øø øø FE 7328：Сø Cø Cø Cø Cø Cø CØ CØ ØF 7330：СС CC 3333 CC CC 33337 D 7338：ø3 Ø3 Ø3 Ø3 ø3 Ø3 Ø3 Ø3 1F 7348：FF FE FC F8 FØ EØ Cø 8Ø 2B 7350：ø3 Ø3 ø3 Ø3 Ø3 Ø3 Ø3 Ø3 37 7358：18 18 18 18 1F $1 \mathrm{FF} 18 \quad 18 \quad 18$ E7 $7368: 18 \quad 18 \quad 18$ 1F 1 F Øø øø øø 4 F
 7380： 00 øø øø 1F 1 F 181818 FA 7388：18 18 18 FF FF 06 Ø0 0084 7398：18 $18 \quad 18$ F8 F8 $18 \quad 18 \quad 18 \quad 94$ 73Aの：Сø Сø Сø Сø Сø Сø СØ СØ 87
 73B8：FF FF øø øø øø øø øø øø 9F
 73C8：Øø ØØ Øø Øø ØØ FF FF FF AF 73D8：Øø øø Øø Øø FØ FØ FØ Fø DD 73EØ：ØF ØF ØF ØF øø Øø Øø Øø E5
 73F8：FØ FØ FØ FØ ØF ØF ØF OF A3
 $\begin{array}{llllllll}7408: ø 0 & \text { C } & 86 & 72 & 82 & 32 & 89 & 36 \\ 741 \varnothing: D \emptyset & 5 \emptyset & 5 C & 42 & 59 & \text { D9 } & 82 & \text { FC } \\ 59\end{array}$ 7418：ø0 3C 4299969942 3C CD 7420：11 $69 \begin{array}{lllllll} & 39 & 41 & 99 & 99 & 41 & \text { 1E E2 }\end{array}$ 7430：22 $49 \begin{array}{llllllll} & 4 \mathrm{E} & 84 & 48 & 48 & 84 & 3 C & 37\end{array}$ 7438：øø $76 \quad 89 \quad 32 \quad 32$ Ø2 F2 86496 7440：10 90 928999991966 6C 7448：24 18 44 242424427 E C8 7450：12 øC 1212 D2 92 B2 4433 7460：78 88 7468：øø CC 33 Ø1 29 39 29 C6 42 $\begin{array}{lllllllll}7478: ø \emptyset & 3 C & 42 & 99 & 99 & 99 & 42 & 3 C & 46\end{array}$ 7480：00 DC $2299998298 \quad 64$ 8A 7488：ø0 $77 \begin{array}{llllllll}79 & 32 & 32 & 82 & 32 & 21 & C 4\end{array}$
 7498：00 7C 82 3C 8279 Ø2 FC AF $\begin{array}{lllllllll}74 \mathrm{AD}: 28 & 4 \mathrm{C} & 82 & 4 \mathrm{C} & 4 \mathrm{C} & 40 & 22 & 1 \mathrm{C} & 89 \\ 74 \mathrm{AB}: \varnothing \varnothing & \mathrm{CE} & 32 & 32 & 32 & 32 & 81 & 7 \mathrm{E} & 8 \mathrm{~A}\end{array}$ 74Bも：øØ $66 \quad 99 \quad 99 \quad 9942 \quad 24 \quad 18 \quad 36$ 74B8：øø C7 2928 øø øø 93 6E Dø 74C8： $0 \varnothing 66 \quad 99 \quad 99 \quad 99417982 \quad 5 \mathrm{~F}$ 74DØ：øø 7 E 81 B2 2449817 E 7 C $74 \mathrm{ED}: 12$ 2D 4 C 824 C 99827 C 1A 74E8：41 79 Ø9 $69 \quad 097941 \mathrm{FF} 33$ 74F8：$\emptyset \emptyset \quad 1 \mathrm{E}$ 1E DE FE F8 FØ F8 D1
 7508：24 $42 \begin{array}{llllllll}72 & 24 & 24 & 18 & 24 & 18 & 62\end{array}$ 7518：92 92 Ø1 92 Ø1 92 92 $6 \mathrm{6E} 20$ 7520：24 42 9C 42398264 1C 1 E 7528：C6 39 F2 24 4E $99 \begin{array}{llllll} & 29 & \text { C6 } & 57\end{array}$
 7540：12 $24 \begin{array}{llllllll}78 & 48 & 48 & 64 & 32 & \text { ØE } & 11\end{array}$ 7548：48 $24 \begin{array}{llllllll}12 & 12 & 12 & 26 & 4 C & 7 \varnothing & \text { F5 }\end{array}$ 7550：66 18 C3 øø C3 18 66 øø 38 7560：øø ø0 øø $3 \mathrm{C} \quad 24 \quad 24 \quad 24 \quad 4851$ 7568：Øø ø日 7E 81 7E Øø øø øø 2F

7570：00 Ø0 日の 日の $18 \quad 24 \quad 2418$ ØD 7578：ø6 Ø9 $12 \begin{array}{lllllll}124 & 48 & 9 \emptyset & 2 \emptyset & 4 \emptyset & 32\end{array}$ $7580: 82 \quad 39 \quad 31 \quad 21 \quad 09 \quad 39827 C$ E1 7588：24 $44 \begin{array}{llllllll} & 44 & 24 & 24 & 66 & 81 & 7 E & 99\end{array}$ 7590：42 $99 \begin{array}{llllllll}79 & 22 & 4 C & 99 & 81 & 7 E & 9 E\end{array}$ 7598：42 $99 \begin{array}{lllllll}79 & 22 & 39 & 99 & 82 & 7 \mathrm{C} & \text { ØE }\end{array}$ 75AD：22 $42 \quad 92 \quad 32$ Ø1 F2 12 IE B8 $75 \mathrm{~A} 8: 81$ 9E 8279 F9 9942 3C DA $75 \mathrm{~B} \emptyset: 22 \quad 4 \mathrm{C} 9 \mathrm{C} 82 \quad 99 \quad 99 \quad 42 \quad 3 \mathrm{C} \quad 6 \mathrm{~F}$ $\begin{array}{lllllllll}75 \mathrm{~B} 8 & : 81 & 99 & 79 & 32 & 24 & 24 & 24 & 3 \mathrm{C} \\ 53\end{array}$
 75C8：42 $99 \begin{array}{llllllll}99 & 41 & 39 & 32 & 44 & 78 & 16\end{array}$
 75D8：3C 24 3C øø 3C $24 \quad 24 \quad 78$ A5
 75E8：øØ 7E 81 7E 81 7E ØØ Øø 91 $75 \mathrm{Fg}: 88 \quad 64 \quad 32 \quad 19 \quad 32 \quad 64 \quad 88 \mathrm{~F} \mathrm{\emptyset} \quad 36$ 75F8：42 $99 \begin{array}{llllllll}59 & 12 & 24 & 18 & 24 & 18 & 99\end{array}$ 7600：78 48 4C 2418 Øの Øø Øø C7 $76 \emptyset 8: 24 \quad 42 \quad 99 \quad 9981 \quad 99 \quad 99 \quad 66 \quad 76$ 7610：02 $99 \quad 99829999 \quad$ Ø2 FC F3 7618：42 9926 20 $26 \quad 99 \quad 42$ 3C AB
 7628：01 9D 968496 9D Ø1 8444 7630：01 9D $96849498 \quad 08$ FØ 98 7638：41 99 3E 3 E 31 $9941 \quad 3 \mathrm{E} ~ 88$ 7640：66 $99 \quad 998199999966 \quad D E$ 7648：42 $24 \begin{array}{llllllll}74 & 24 & 24 & 24 & 42 & 3 C & 98\end{array}$ 7650：21 $121212 \quad 9212 \quad 32 \quad 84 \quad 78$ 7658：1F $91 \quad 9284 \quad 92 \quad 99 \quad 19$ E6 87 7660：08 90 90 929599 Ø1 FE C4 7668：29 11 Ø1 Ø1 29 39 29 C6 A5 $7670: 2414 \quad$ ØD $21 \quad 31 \quad 29 \quad 29$ C6 6 F 7678：44 $92 \begin{array}{llllllll}39 & 39 & 39 & 92 & 44 & 38 & \mathrm{BB}\end{array}$ 7680：02 $99 \quad 99 \quad 82$ 9С 90 Ø8 $\mathrm{F} \mathrm{\emptyset} 58$ 7688：04 $\quad 32 \quad 32 \quad 32 \quad 22 \quad 84 \quad 62$ 1C 71 $7690: 92 \quad 99 \quad 99 \quad 82 \quad 92 \quad 99$ Ø9 F6 44 7698：42 99 8E 46 71 99 C2 $7 \mathrm{7C} \quad 37$ $\begin{array}{lllllllll}76 \mathrm{~A} \emptyset: 81 & \text { A5 } & 66 & 24 & 24 & 26 & 42 & 3 C & 41\end{array}$ 76A8：29 $29 \begin{array}{llllllll}29 & 29 & 29 & 29 & 39 & 82 & 7 C & D B\end{array}$ $\begin{array}{llllllllll}76 \mathrm{~B} \emptyset: 29 & 29 & 29 & 29 & 39 & 82 & 44 & 38 & \mathrm{C} 8\end{array}$ $76 \mathrm{~B} 8: 29 \quad 29 \quad 39 \quad 28 \quad 00 \quad 11 \quad 29 \quad \mathrm{C} 6 \quad 8 \mathrm{~B}$ 76C0：29 $29 \begin{array}{llllllll}72 & 44 & 44 & 92 & 29 & \text { C7 } & \text { A9 }\end{array}$ $\begin{array}{llllllllll}76 \mathrm{C} 8: 99 & 99 & 99 & 42 & 24 & 24 & 42 & 3 C & \text { B2 }\end{array}$ 76D ：Ø1 F9 $12 \quad 24$ 4C 9 F Ø1 FE 23 76D8：22 4C C8 90 C8 4C 22 IE E5 $\begin{array}{lllllllll}76 \mathrm{E} 0: 3 \mathrm{C} & 24 & 24 & 3 C & 3 C & 24 & 24 & 3 C & 34\end{array}$ 76E8：44 $\begin{array}{llllllllll}32 & 13 & 09 & 13 & 32 & 44 & 78 & \mathrm{D} 9\end{array}$

 $7700: \mathrm{FF}$ FF FF EF FF FF FF FF ED 77ø8：ØF ØF ØF ØF ØF ØF ØF ØF F6 $771 \varnothing: F F$ FF FF FF $\varnothing \emptyset$ ØØ ØØ ØØ FE 7718：ØØ FF FF FF FF FF FF FF Ø7 $7720: F F$ FF FF FF FF FF FF Øø ØF $7728: 3 \mathrm{~F} \quad 17$ 7730：33 33 CC CC 3333 CC CC B8 $7738: F C$ FC FC FC FC FC FC FC 27 $7740: \mathrm{FF}$ FF FF FF 3333 CC CC FB 7748：Øø Ø1 Ø3 Ø7 ØF 1F 3F 7F 3B 7750：FC FC FC FC FC FC FC FC 3 F 7758：E7 E7 E7 EØ EØ E7 E7 E7 9E $7760: F F$ FF FF FF FØ FØ FØ FØ 6D 7768：E7 E7 E7 EØ EØ FF FF FF 57 $7770: \mathrm{FF}$ FF FF 07 Ø7 E7 E7 E7 5F 7778：FF FF FF FF FF FF Øø ØØ 67 $7780: \mathrm{FF}$ FF FF EØ EØ E7 E7 E7 DB 7788：E7 E7 E7 ØØ ØØ FF FF FF 62 7790：FF FF FF Øø Øø E7 E7 E7 D6 7798：E7 E7 E7 07 Ø7 E7 E7 E7 72 $77 \mathrm{~A} 0: 3 \mathrm{~F} \quad 3 \mathrm{~F} \quad 3 \mathrm{~F} 3 \mathrm{~F} 3 \mathrm{~F} \quad 3 \mathrm{~F} \quad 3 \mathrm{~F} 3 \mathrm{~F} \quad 8 \mathrm{~F}$ $77 \mathrm{~A} 8: 1 \mathrm{~F} \quad 1 \mathrm{~F}$ 1F 97 77B6：F8 F8 F8 F8 F8 F8 F8 F8 9F $77 \mathrm{~B} 8: \emptyset \emptyset$ Ø $\emptyset \mathrm{FF} \mathrm{FF} \mathrm{FF} \mathrm{FF} \mathrm{FF}$ FF A7

 77Dø：FC FC FC FC FC FC Øø ØØ C8 $77 \mathrm{D} 8: \mathrm{FF} \mathrm{FF} \mathrm{FF} \mathrm{FF}$ ØF ØF ØF ØF A9 $77 \mathrm{E} \emptyset: \mathrm{F} \emptyset \mathrm{F} \emptyset \mathrm{F} \emptyset \mathrm{F} \emptyset \mathrm{FF} F F \mathrm{FF}$ FF Bl 77E8：E7 E7 E7 07 07 FF FF FF 6B $77 \mathrm{~F} \emptyset: \emptyset \mathrm{F}$ ØF $\emptyset \mathrm{F}$ ØF FF FF FF FF FD $77 \mathrm{FB}: \emptyset F$ ØF ØF ØF FØ FØ FØ ØØ 33

Atari RESET Controller

Torben Pedersen

Here is a short machine language rou－ tine that traps the Atari SYSTEM RE－ SET button in any BASIC program． An example program shows how disks can be protected with a password sys－ tem that ignores BREAK and RESET． The routine works on any 400／800， XL ，or XE with a disk drive．

A well－designed program should accept any input without crashing． This can be done to some extent by screening input and disabling the BREAK key．However，if a person happens to hit the Atari SYSTEM RESET button，the program abrupt－ ly halts．The solution to this prob－ lem is to disable RESET．Unfortu－ nately，although BREAK can be turned off with only a couple of POKEs，the RESET button cannot be disabled．It can，however，be trapped－meaning that you can di－ vert it from resetting the system to doing something else．But this job requires a machine language（ML） routine．
＂Atari RESET Controller＂lets you trap RESET in any BASIC pro－ gram even if you don＇t know any－ thing about machine language． Here are the steps to follow：
1．Type in and save Programs 1，2， and 3.
2．Load and run Program 1．It prints six program lines－one of which
contains strange graphics charac－ ters－on the screen．The odd－ looking string（ML\＄）actually contains the encoded ML routine． The lines are numbered from 60－110 so they＇ll fit into Program 2.
3．Without disturbing lines $60-110$ on the screen，type NEW and press RETURN，then move the cursor over line 60 and press RETURN six times，entering lines $60-110$ into memory．
4．LIST the lines to disk by typing LIST＂D：TEMP＂and pressing RE－ TURN．This stores the lines in ASCII form so they can be merged later with Program 2.
5．Load Program 2 into memory， then type ENTER＂D：TEMP＂and press RETURN．This merges lines 60－110 back into memory without disturbing the rest of Program 2.
6．Resave Program 2 by typing SAVE＂D：LOGON＂and pressing RETURN．The program is saved to disk under the filename LOGON， and you have saved yourself the trouble of trying to type in the odd－ looking string that contains the ML routine．Don＇t run Program 2 yet． 7．Load Program 3，insert the disk that contains the LOGON file，then run the program．Program 3 creates an AUTORUN．SYS file that auto－ matically loads and runs LOGON whenever you boot the disk．

What＇s The Password？

Now that the package is complete， reboot the system by turning the computer off and on．The AUTO－ RUN．SYS file loads and runs the LOGON program without any fur－ ther action on your part．

When LOGON begins，it dis－ ables BREAK，traps RESET，and asks for a password．Until you type the right password，there＇s no way to break out of the program or pro－ ceed any further．In this case we know the password is SECRET（see line 300 of Program 2）．Once it identifies you as an authorized user，LOGON restores BREAK and RESET，permitting the computer to work normally again．At this point， it＇s very important to reset the sys－ tem by pressing RESET．If you omit this step，you won＇t be able to use the disk drive．

To use LOGON for your own programs，replace SECRET in line

300 with a password of your own． After that＇s done，the disk is effec－ tively protected from use by any－ one who doesn＇t know your pass－ word．Of course，somebody can circumvent this security system by booting from another disk，but this method should be sufficient for many purposes．

You might also want to trap RESET in a program intended for young children，or in any situation where a reset would cause prob－ lems．The ML routine created by Program 1 is actually quite simple． It diverts the computer from its nor－ mal reset routine to the custom rou－ tine stored in ML\＄．When you press RESET，the custom routine changes the character color from white to blue（to conceal printing），then prints RUN followed by a carriage return．As a result，pressing RESET reruns the program in memory．

For instructions on entering these listings， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂published bimonthly in COMPUTEI．

Program 1：Atari RESET Controller

BD 10 REM \＆PROGRAM TO CRE ATE THE
CD 2 Ø REM \ddagger \＆MACHINE LANGUA GE ROUTINE
6H3g REM \＆IN STRING FORM
EI 4 Ø REM
LI 5ø DIM ML\＄（65）
PA $6 \emptyset$ PRINT＂ $6 \emptyset$ DIM ML\＄（65）＂
HI $7 \emptyset$ PRINT＂ $7 \emptyset$ ML $\$="$ ；CHR $\$(3$ 4）；
BE E \varnothing FOR I＝1 TO 65
H6 9ø READ A
OH $1 \varnothing \varnothing$ PRINT CHR $\$(A)$ ；
BK $11 \varnothing$ NEXT I
NJ $12 \emptyset$ PRINT CHR\＄（34）
AK $13 \varnothing$ PRINT＂ $8 \emptyset$ ADDR＝ADR（ML \＄）＂
EP 14 PRINT＂9ø HIGH＝INT（AD DR／256）＂
F6 $15 \emptyset$ PRINT＂ 1 Øø LOW＝ADDR－H IGH\＄256＂
MD $16 \varnothing$ PRINT＂ 110 POKE 12 ，LO W：POKE 13，HIGH＂
BJ $17 \emptyset$ DATA $169,46,72,169,53$ $, 72,169,56,72,169,148$ ，141，197，2，169， 9,141 ， $68,2,169,1,133,9$
EA 1 日ø DATA $173,48,2,133,293$ ，173，49，2，133，264， 166 ，4，177，263，133，265
OA 190 DATA 2øø，177，293，133， $2 \emptyset 6,162, \varnothing, 16 \varnothing, 82,1 \emptyset 4$ ， 145，205， 232
HP 2øø DATA 2øø，224，3，2ø8， 24 $7,169,12,141,252,2,1 \varnothing$ 8，250，191

Program 2：Logon

LP 15 D DIM PASSWORD\＄（25）
MO $16 \emptyset$ OPEN \＃1，4，\varnothing ，＂K：＂
KC 2øø GRAPHICS Ø：SETCQLQR 2 ，Б，ஏ
JK $21 \varnothing$ POSITION 2，5：PRINT＂L OGON：＂；
AK 220 POKE 16，64：POKE 53774 ，64：REM DISABLE THE B REAK KEY
B6 26 G GET \＃1，CHAR
C6 27 IF CHAR $=155$ OR LEN（PA SSWORD\＄）>25 THEN GOTO 3Øロ
FC 28ø PASSWORD\＄（LEN（PASSWOR D\＄）＋1）＝CHR\＄（CHAR）
6H 29 G GOTO 26 G
PP 3 Øø IF PASSWORD\＄＝＂SECRET＂ THEN GOTO $34 \emptyset$
KH 31.9 PASSWORD $\$=" "$
6H $32 \emptyset$ GOTO $18 \emptyset$
JB 36ø POKE 12，64：POKE 13， 21 ：REM RESET VECTOR
E6 370 POKE 16，192：POKE 5377 4，192：REM ENABLE BREA K KEY
B $38 \varnothing$ GRAPHICS \varnothing
HD $39 \varnothing$ END

Program 3：AUTORUN．SYS Maker

MB $1 \varnothing$ REM \＆\＆ ATE AN
 LE TO
HK $3 \varnothing$ REM \＆\＆EXECUTE LOGON ON BOOT UP
EI 4 Ø REM
PF $5 \emptyset$ OPEN \＃2， $8, \varnothing, " D: A U T O R U N$ ．SYS＂
MM 6 6 PUT \＃2，255：PUT \＃2， 255
PL $7 \varnothing$ PUT \＃2， ：PUT \＃2，6
DL 8ø PUT \＃2，69：PUT \＃2，6
BB 9 の FOR $I=1$ TO $7 \emptyset$
$001 \varnothing \varnothing$ READ A：PUT \＃2，A
BK $11 \varnothing$ NEXT I
IN 126 PUT \＃2，226：PUT \＃2， 2
IP 130 PUT \＃2，227：PUT \＃2，2
CJ 140 PUT \＃2， $0:$ PUT \＃2， 6
6B 150 CLDSE \＃2
DK $16 \emptyset$ DATA $169,148,141,197$ ， $2,169,9,141,68,2,169$ ， 1，133，9
DP $17 \emptyset$ DATA $173,48,2,133,2 \emptyset 3$ ，173，49，2，133，294，169 ，4，177，2ø3，133，2ø5
OH $18 \emptyset$ DATA $2 \emptyset \emptyset, 177,2 \emptyset 3,133$ ， $266,162,9,169,82,189$ ， $58,6,145,205,232$
LF 190 DATA $2 \emptyset \emptyset, 224,12,2 ø 8,2$ $45,169,12,141,252,2,1$ Ф8，259，191
BA 2øø DATA 5 פ，53，46，2，36， 26 $, 44,47,39,47,46,2$ ©

To receive additional information from advertisers in this issue，use the handy reader service cards in the back of the magazine．

Moving Marquee For Commodore 64

David W. Martin

Have you ever seen commercial software that scrolls a message across the screen? Here is a short routine you can add to any BASIC program to achieve the same effect.

How many times have you stared at the message PRESS ANY KEY TO CONTINUE? After using your computer for a while, you may become a bit tired of the same old screen displays. "Moving Marquee" lets you scroll any text message sideways across the top of the screen. Type in the program and save a copy, then run it to see how the marquee works.

Line 10 calls a subroutine at line 30000 which puts a machine language routine in memory. This needs to be done only once, when your program is performing setup tasks. Line 20 clears the top line of the screen and sets the corresponding area of color memory to white. Of course, you can use whatever color you like: To change the character color to red, change the 1 in line 20 to 2 , and so on.

Line 30 lets you input the message of your choice. You may create the string any way that you like (for instance, A $=$ "MESSAGE"), and the name of the string variable is not critical. However, you must add CHR\$(0) to the end of the string (line 40) so the marquee routine knows where the message ends. In addition, since the routine always displays the last-defined string, you must not define any other strings before calling the routine with SYS.

Once you call the routine, it scrolls the entire string across the screen from right to left. Since this is done as a background task during the computer's hardware interrupt, the marquee display does not slow down the rest of your BASIC program. You may change the scrolling speed by POKEing a value from 0 to 128 into location 866 (the normal value is 5$)$.

Moving Marquee

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing in Programs" published bimonthly in COMPUTEI.
$1 \varnothing$ GOSUB3øøøø:PRINTCHR\$ (147) CH RS (17)
:rem 67
2 FORJ=39TOØSTEP-1:POKE1ø24+J
, 32:POKE55296+J, 1:NEXT
:rem 158
30 INPUT"ENTER MESSAGE";AS
:rem 90
$4 \emptyset \mathrm{~A}=\mathrm{A} \$+\mathrm{CHRS}(\varnothing) \quad$: rem 24
5 5 POKEløø9, PEEK (PEEK (71) +PEEK
(72)*256+2)
:rem 12
$6 \emptyset$ POKE1Ø11, PEEK (PEEK (71) + PEEK
$(72) * 256+1) \quad$ rem 5
$7 \emptyset$ SYS1øø8: END
:rem 64
3øøøø FOR ADR=864 TO 1Ø15:READ
BYT:POKE ADR, BYT:NEXT: R ETURN
:rem 45
3øø1Ø DATA $4 \varnothing, 0,5,49,234,15,5$,
$40,160,1,185,0,4,153,255$,3,2øø,2ø4,96,3 :rem 28
3øø2ø DATA 2ø8,244,32,161,3,20 $5,97,3,240,15,192,255,24$ Ø,11,2øø,140,101:rem 82
30ø30 DATA 3,172,96,3,153,255, 3,96,172,96,3,169,32,153 $, 255,3,238,103,3$: rem 123
30040 DATA $173,103,3,205,96,3$, $176,48,96,172,101,3,177$, 251,41,191,96:rem 234 3øø5ø DATA $141,251,0,142,252, \varnothing$,169, $0,141,103,3,141,101$,3,173,20,3,141 :rem 10 3øø6Ø DATA 99,3,173,21,3,141,1 øø, 3,120,169,223,141,2の, $3,169,3,141,21,3=$ rem 79
3øø7Ø DATA $88,96,12 \emptyset, 173,99,3$, $141,2 \sigma, 3,173,1 \varnothing 6,3,141,2$ $1,3,88,96,206$:rem 223
3øø8ø DATA $162,3,16,9,32,164,3$, 173,98,3,141,102,3,108, 99,3,162,151,169:rem 1 Ø5
$30 \emptyset 9 \emptyset$ DATA $2 \emptyset 5,32,169,3,96,0,3$ $2,32,32,32, \varnothing \quad$:rem \varnothing

Line Deleter For Atari

Bryce Wray

Here's a short, simple programming utility that quickly deletes any range of lines within an Atari BASIC program. It works on all 400/800, XL, and XE computers.

If you do much BASIC programming, you've undoubtedly needed "Line Deleter" at one time or another. There are only two other ways to delete a range of lines in Atari BASIC: the slow, manual method of typing each line number and pressing RETURN; and the roundabout method of listing to disk or tape the blocks of lines you want to keep, typing NEW, and then reentering the blocks into memory. Both techniques are cumbersome.

Line Deleter offers a better way. It's a little seven-line BASIC routine that takes advantage of forced-read mode-the Atari's ability to read information straight off its screen without any human intervention whatsoever. When needed, Line Deleter can be loaded from disk or tape and executed with a single command. As long as your program uses line numbers less than 32760, Line Deleter won't erase any part of it when loaded into memory.

Using Line Deleter

Follow these steps:

1. Type in the listing below and save it on disk or tape with the LIST command, not SAVE or CSAVE. That is, LIST"C:" for cassette or LIST"D:filename.ext" for disk.
2. When you're ready to use Line Deleter, load it by typing ENTER"C:" for cassette or ENTER"D: filename.ext" for disk.
3. Type GOTO 32761 and press RETURN.
4. Screen prompts ask for three
numbers: the beginning line number of the segment to be deleted; the ending line number of the segment; and the intervals between the lines. For example, if your program is numbered by tens, specify ten as the interval. If the program isn't so neatly numbered, you'll need to specify a different interval-perhaps even one. There's no problem if some of the line numbers are nonexistent.

That's it. Just sit back and watch Line Deleter do its stuff. Although it contains no machine language, it's pretty quick-on my 800XL, I've timed it at faster than 3.5 lines per second.

If you're unfamiliar with how the forced-read mode works, don't be disturbed by the STOPPED AT LINE 32764 messages you'll see flashing on the screen. The STOP statement in that line merely keeps the forced-read mode from running amok. You'll also see a CONT statement flashing onscreen; it keeps the routine going.

When Line Deleter is finished, the screen settles down and the usual READY message appears. At this point, you can resume working or use Line Deleter to erase another block of lines in your program. Since Line Deleter is still in memory, you can start with step 3.

Eliminating Interference

Line Deleter uses so little RAM that you may want to keep it in memory at all times while programming. If so, I recommend inserting this line to keep it from interfering with your own program:

32760 END

This makes absolutely sure that your program won't accidentally run into Line Deleter. However, if you're pushing your Atari's RAM to its limits, you'll want to delete Line Deleter itself. Unfortunately, Line Deleter can't
be used for this purpose. If you try, it devours the beginning of its critical FOR-NEXT loop and grinds to a halt. You'll have to erase it using one of the old-fashioned ways described above.

One note of caution: If you're using revision A or revision B Atari BASIC, Line Deleter can trigger the Atari lockup bug. This bug, which has plagued Atari programmers for years, can strike whenever any part of a BASIC program (even a single character) is deleted. There's no practical way to predict when it's going to happen, and usually the only cure is to switch the computer off and back on again-erasing your program, of course. Line Deleter neither increases nor decreases the chances of being bitten by the lockup bug.

If you're unsure which version of BASIC you have, type PRINT PEEK(43234) and press RETURN. If the result is 162 , you have revision A; if the result is 96 , you have revision B; if the result is 234, you have revision C. The only version free from the lockup bug (and a few other bugs, as well) is revision C, which is built into the 130XE or available as a cartridge for earlier Atari computers.

Line Deleter

For instructions on entering this listing, please refer to "COMPUTE!'s Guide to Typing In Programs" published bimonthly in COMPUTEI.

Music Hath Charms

Whenever I attend a computer trade show I always look to see which exhibits seem to draw the most people. Generally, companies displaying musical products attract the biggest crowds.

Human beings have a continuing love affair with music that probably started when the first human heard a bird chirping. Each generation develops its own musical tastes, but there is a common thread that runs throughout the life of each of us-we love music.

Given the captivating power of music, it's little wonder that those of us who work with personal computers should want to use them to help us create music of our own. As I recall, the first peripheral I added to my Commodore PET in 1978 was a small amplifier I wired to the serial port of the PIA chip. By running a bit pattern through this port at different speeds, I was able to create simple musical tones. As crude as the sounds were by today's standards, they were musical enough to make the computer play a few compositions.

I was reminded of this project a few weeks ago when I came across my old PET lying in a corner of a closet. If I could have found the issue of the PET Gazette that showed how the hookup worked I might have brought the system out again, but my computer music tools have improved a lot since then.

The Ideal Music Interface

When I bought my Apple II in 1979, I played with the sounds I could program through the Apple's builtin speaker. While the sound quality wasn't any better than what I could get with my PET, the built-in speaker in the Apple II motivated software developers to create music programs for this computer.

By the time the Atari 400 and 800 computers came out, musical support was getting much better. Programmers now had four voices
to play with, each with independent control of volume and timbre. Even with this improved capability, I wanted more. As I played with the Atari (and, later, the Commodore 64), I remember being excited and frustrated at the same time. I was excited because inexpensive personal computers were capable of generating complex sounds, and frustrated because the tone quality was not as good as I wanted and musical data could not be captured simply by playing it in.

Entering musical notes by typing is cumbersome, and using a joystick is not much of an improvement. To my way of thinking, the personal computer was a wonderful tool for musical expression, but it was missing a natural user interface. Custom keyboards like those from Alpha Syntauri were a step in the right direction, but their cost kept all but professional, or diehard amateur, musicians from achieving first-rate sounds with their computers.

I moved away from creating music on my personal computers and became more interested in the low-cost synthesizers that were appearing from companies like Casio. While these instruments didn't have the capacity to save my performance or to let me edit and print out a score, they did provide a natural user interface-a piano key-board-and provided very high quality sound.

The MIDI Breakthrough

Improvements in this field over the last three years have been spectacular. Now, for less than the price of a printer, you can purchase a polyphonic synthesizer that with one press of a button can change from a sixteenth century harpsichord to a space-age tone that sounds like a cross between a Chinese gong and a perturbed elephant.

Synthesizers have extraordinary sound generation capabilities,
but they don't have the editing and storage facilities of a personal computer. To bring electronic music to its logical fruition, it seemed that someone would have to find a way to connect synthesizers to computers. Several inventive developers worked on this problem, and the invention of the MIDI interface marked the coming of age for computer-based music systems. Through a high-speed serial port, the MIDI interface allows personal computers to control, and be controlled by, special models of synthesizers. Yamaha and Casio were among the first synthesizer manufacturers to jump on the MIDI bandwagon, and numerous other companies (like Lowrey, Baldwin, and Wurlitzer) have adopted this standard as well.

The inexpensive CZ-101 synthesizer from Casio is one of the most popular MIDI instruments to date. With the CZ-101 (reviewed in this issue), you can create an extraordinary collection of sounds and can save sound libraries on removable cartridges. I have had this synthesizer connected to my Commodore SX-64 through the Passport MIDI card for quite some time. I now enjoy the power and expressive qualities of electronic music without the frustration I had with earlier systems.

Of all the ways personal computers can help people express themselves, the marriage of computers and music may end up being among the most important. Each of us has a song in our hearts, but only a few of us can write music well enough to get this song on paper. Through the interface between the synthesizer and the personal computer, anyone can pick out melodies on a keyboard, see them appear on the display screen, and then edit and refine them until they are just the way we want them. ©

The Ultimate Personal Computer

As a result of my work on a new book, I think I have stumbled onto the ultimate personal computer. It's a robot!

I'm working on a sciencefiction trilogy for children based on the popular computer game Robot Odyssey I from the Learning Company. It's about a 19 -year-old boy named Homer Pierce who is kidnapped by robot miners and carried down into Robotropolis, a robot world deep beneath the surface of the earth.

In the year 2005, human beings are surrounded by dozens of intelligent, aware, communicating machines. These artificial minds make all their decisions based on a narrow, specialist (I call it a "littlepicture") perspective of the world. None of the machines sees the world from a broader, human perspective.

On his odyssey, the hero, Homer, comes to believe that personal robots can dramatically improve this situation. Homer would like to see people's primary relationship with machines (and technology) be through a robot friend. The robot would be a perfect middleman. It deals with the human on a cognitive, logical, and intellectual level, but is also aware of the human's physical, emotional, psychological, ethical, and spiritual nature. And it tries to advise and respond to the human with all these elements in mind. (This makes it a bigpicture machine.) Then the robot translates what the human wants into commands and requests for all the specialist little-picture machines.

The robot friend has a humanlike body because the human body is the best-engineered device for general-purpose mobility, sensing, and manipulating the environment. The robot is mobile, therefore, portable. It has immense storage and processing capabilities, but is also a computer terminal (with a built-in
video screen and keyboard) that links a human (through electronic, digital, microwave communications) to the gigantic network of messages, pictures, voices, information, and music which is broadcast and relayed by satellite around the globe. The robot is a personalized, customized interface between the human and this network.

Each robot is fine-tuned to mirror and respond to the needs of its human friend. It becomes that human's private, personal agent. But it is not merely a machine; it's a hightech, twenty-first century Man Friday.

The Primary Robot Friend

As the primary robot becomes more attuned to the needs, personality, and humanity of its human friend, it spreads this awareness to all the little-picture machines it deals with. The primary robot acts as the human's agent, representing the human in all the dimensions of his or her professional and personal life. The robot encourages the machines to personalize their response to the human accordingly.

Also, the robot searches the global network for items of interest to the human being. It keeps these items in storage in the human's personal database (its robot memoryonboard and offboard in a storage closet in the home) and relates the items in newspaper, magazine, or conversational format whenever appropriate. In fact, the personal robot is an excellent conversationalist because: (1) It is extremely interested in anything its human friend has to say, so it is a good listener; (2) It loves to talk about things the human friend is interested in; and (3) It is an inexhaustible source of useful information.

Secondary Robot Friends

The primary robot friend can accompany the human in the car, around town, at the office, and at
home. But there are times when this becomes inappropriate or too costly. For those occasions, the human has small secondary robot friends to carry around. These robots are usually laptop or pocket robots which communicate directly with the primary robot friend and act as terminals between the human and the primary robot.

For example, if a human has a business meeting, he may want to take a secondary robot to the meeting and place the robot on the desktop in front of him. The secondary robot acts as a notebook or tape recorder and records the meeting. The human wears a cranial implant, a speaker/microphone biochip which enables him to be in direct, silent communication with the little robot at all times. He can ask the robot questions, have the little robot check with the big robot for advice, information, facts, statistics, and so on. Their "conversation" can be a lot like a conversation a human has with himself-stream of consciousness. It can include requests for facts pertinent to the meeting, items for a shopping list, or reminders to take an allergy pill or pick up the kids after school.

The robot is helpful to the human, but it does not take over his thinking. It is merely another voice, another "friend" the human can turn to. It is not to be used as a replacement for the human's own mind, imagination, judgment, or conscience. The robot plays Jiminy Cricket to the human's Pinocchio. The friend never has the authority to make decisions for the human, only to offer information and advice.

What do you think of my idea for the ultimate personal computer? What kind of robot friend or personal computer would you like to have? Write me c/o compute!, P.O. Box 5406, Greensboro, NC 27403.©

The Power Of Strings

Last issue we introduced the concept of string variables and briefly hinted at their power-that their ability to hold strings of characters can let your programs manipulate words and sentences instead of just numbers. Consider for a moment how many programs manipulate text in some way: text editors, word processors, database managers, telecommunications programs, educational software, adventure games, even spreadsheets to some extent. Because math isn't the only language humans use to communicate ideas and manipulate information, over the years we've devised ways to make computers handle our alphabets as well.

But keep in mind that digital computers are still number-crunchers at heart. The alphabetic characters which appear on their monitor screens are merely an illusion created for our convenience. Internally, computers see the whole universe in terms of numbers, and they're unaware of anything that can't be translated into numbers. We'll discover some implications of this as we explore the uses of strings in BASIC.

Reducing Redundancy

Probably the simplest way to begin taking advantage of strings in your programs is to use them to save memory and reduce typing. When you assign a string of characters to a string variable ($\mathrm{A} \$=$ "HELLO"), the computer stores the string in a safe place in memory. The string variable is like a bookmarker that reminds the computer where it is keeping the string. From then on, whenever you include that string variable in a BASIC statement, the computer looks up the string of characters in memory and carries out your command. If you print the variable, the entire string appears on the screen.

For example, if there are screen
messages that frequently appear in different parts of your programsuch as "PRESS ANY KEY TO CONTINUE" or "SELECT NUMBER OF MENU CHOICE"-it's a waste of memory and time to repeatedly type them in as separate PRINT statements. Instead, assign them to string variables like this:

10 AS = "PRESS ANY KEY TO

CONTINUE"

$20 \mathrm{~B} \$=$ "SELECT NUMBER OF MENU CHOICE"
and then print the appropriate variable when you need to display the message:

100 PRINT A\$

Here's another example: You've probably seen programs which draw horizontal rows of asterisks or dashes across the screen to make decorative borders, or to separate the screen into different sections for menus and so forth. Obviously it would waste memory to draw these lines with literal PRINT statements, since each PRINT would have to be followed by 40 or 80 characters (depending on the width of your computer's screen display). A better way is to use a FOR-NEXT loop, such as FOR X=1 TO 40:PRINT ""*"; N NXT X. But if your program draws these lines often, you might save even more memory by defining a string variable with asterisks or dashes and then just printing the variable whenever you need it. This also executes faster than a FOR-NEXT loop.

Strings With INPUT

Substituting string variables for literal PRINT statements is useful, but you really begin appreciating the power of string variables when you use them as variables. Like numeric variables, string variables can be manipulated in dozens of ways.

For instance, with an INPUT statement you can allow the user to assign and reassign characters to a
string variable as the program runs-something a literal string can never do. Here's the most common example:
10 PRINT "WHAT IS YOUR NAME"; 20 INPUT N\$
30 PRINT "HELLO, ";N\$
40 GOTO 10
(Make sure you type the semicolons outside the quotation marks in lines 10 and 30 , and include the space between the comma and closing quotes in line 30. On Atari computers, don't forget you must always dimension a string variable before its first reference-insert the statement DIM N\$(50) with a line number less than 10.)

When you run this program, it prints the message in line 10 and then waits at line 20 until the user types some characters and presses RETURN or ENTER. When the computer detects that RETURN or ENTER is pressed, it assigns whatever characters were typed to the string variable N\$. Then it continues to line 30 and prints the HELLO message followed by the characters in N\$. Finally, the computer returns to line 10 and lets the user assign a completely new string of characters to $\mathrm{N} \$$

Since the content of $N \$$ is determined by the user, not predetermined by the programmer, this little program can be the basis for a branching routine which takes different actions depending on the user's response. And that, in turn, is the basis for a wide variety of programs which tailor themselves to user input: educational programs that ask a question and evaluate the answer, programs that offer options and accept yes or no choices, programs that request you to specify a filename before loading or saving a data file-just about every kind of program, in fact. We'll take a closer look at these techniques and others in next month's column.

Do You Need A 16-Bit Computer?

There has been a disturbing trend in my reader mail for the last couple of months. On the one hand, more and more people are asking for help: Where can I find out how to work with player/missile graphics? How do I hook a model 2300 argon laser to an Atari's joystick ports and shoot down unfriendly flying saucers? (That's not as much an exaggeration of the original question as you may think.) At the same time, and all too often from the same people, I hear of grandiose plans to buy an Atari ST or an Amiga and make the world safe for computocracy. I hate to burst any bubbles, but let's reason together for a moment.

Over the past six years there have been at least 60 or 70 books published about the Atari 8 -bit computers. Some are great, some are terrible, and most are at least adequate. True, most of these books are hard to find. Three years ago, the bookshelves had a handful of books about dozens of different kinds of computers. Now, instead, we find dozens of books about a handful of computers. Still, your bookstore can usually order what you need. And if it can't, try an Atari dealer. If that doesn't work, try one of the bigger mail order places that specializes in Atari.

Anyway, here's my point: If you think information about the 8bit line is sparse, wait until you try to find out anything about the 16bit machines! As I write this, the only book published so far is called Presenting the Atari ST. But don't expect to learn much from it that isn't in Atari's own somewhat skimpy (though attractive) manual. Yes, I have heard of additional books that are "in the works." But how long do you think it will be before there are 60 or 70 titles?

So I'm asking: "Why buy one of the new machines? Why not buy an 800 XL or 130 XE ?" On the basis
of price alone, the 8 -bit machines win handily. Atari recently announced a special promotion: 130XE, 1050 disk drive, 1027 printer, AtariWriter, and DOS 2.5 for $\$ 399$. Use your TV for the video, throw in a better programming language or business package and a game or two, and you're ready to enjoy computing for about five bills. Try to do the same thing with a 520 ST , and you're going to spend about $\$ 1,300$ to $\$ 1,400$, presuming you want a color monitor. For an equivalent Amiga, add about $\$ 800$. What does this extra money buy?

Theory Versus Practice

In theory, the 16 -bit machines should run programs 4 to 20 times faster than the 8 -bit beasts. In truth, speed depends on the language and how well it is implemented. ST Logo is generally no faster than 8bit Atari Logo. And for anything except possibly heavy math and intensive disk operations, neither Amiga's ABasiC nor ST BASIC are significantly (i.e., more than 25 percent or so) faster than OSS BASIC XE running on an XL or $X E$ computer.

How about the theories that the new machines can run larger programs, display better graphics, use mouse control, and so on? As I write this, those are mostly just theories, waiting for people to write software and prove them. I have often told people contemplating the purchase of a computer that they should seek out a piece of software to fulfill their needs first, and only then ask what machine(s) it runs on. I cannot emphasize that advice enough for these new computers.

Does this mean that I think everyone should buy 8 -bit machines and forget the new ones? Not at all! I simply question whether most people can benefit from their as-yet unrealized potential. And even when their power finally
arrives, how many home users will need more than what they get with, say, a 130XE? Business, scientific, and other users may very well need the extra speed and power, but it's pretty hard to justify an extra $\$ 500$ to $\$ 1,500$ if all you do with your computer is write a few letters a month and balance your checkbook.

What about people who want to learn how to program? They are total novices on computers, but enthusiasm is a great emptier of the pocketbook. Aside from the fact that there are lots of books on learning how to program an 800 XL or 130XE, and none on how to use an ST or Amiga, how hard is it to learn to program on these new wonder machines? Well, writing plain-vanilla BASIC programs without graphics is reasonably easy. But that's easy on the XL and XE machines, also. Simple graphics, with lines and colors? Easy on both kinds of machines. Moving objects? Now we are getting to where it depends on the language: very easy with Atari 8 -bit Logo, BASIC XE, and Amiga ABasiC; nearly impossible for a beginner with Atari BASIC or ST BASIC.

I guess I've made my points. As for me, I am moving on to the 16-bit machines. I am ready to learn new and different things, such as how artificial intelligence programs work. Such as how to manipulate multiple screen windows when writing a business application in Pascal. Such as...well, you get the idea. But I still enjoy programming in BASIC. And I still have a library of dozens of programs (mostly public domain and therefore free, or nearly so) which I enjoy on my 130XE. So I won't abandon any of you soon. As for yourself, think hard and read a lot before you abandon your trusty 8 -bitter. ©

The Face Of Things To Come

Teleconferences via modem (COs) have been around on the various commercial information services for several years. Until recently, COs have typically looked something like this:
(Arlan L.): What kind of computer are you folks using?
(Big Blue): I can't comment on that publicly.
(Jack T.): I'm using an Atari 2600 with Graduate keyboard...I've got a million of 'em.
(T. Leary): I don't need a computer...I'm plugged directly into the network.

Pretty exciting, eh? Regular readers of this column are already aware that I am no great fan of participating in realtime teleconferencing. The complete transcripts of special "celebrity" COs are often available for perusal in the download sections. The complete text of a CO that went on for several hours can usually be downloaded in about ten minutes.

But now I have a confession to make. I participated in an online conference the other day and nearly split my sides in the process. Before you organize a lynch mob, let me explain.

The unique graphics and voice synthesis capabilities of Apple's Macintosh changed the face of teleconferencing via modem during the summer of 1985. Owners of modemequipped Macintoshes can participate in conferences in which the faces of the participants appear onscreen, speak, and react to the other conferees.

Visual conferencing was spawned on the Delphi information service when Harry Chesley, a member of IconTact, Delphi's Macintosh SIG, set out to write (in his
own words) "an insanely insane" program. Chesley wrote an interface between Apple's public domain MacinTalk speech synthesizer program and his own Visual Conference (VCO) telecommunications program. Visual/vocal conferencing was born.

The slickest and most recent incarnation of visual conferencing

Talk, replete with lip movement. The conferees may have voices of different pitches and speeds and may also change their faces during the conference to indicate varying emotions.

Getting started with VMCO is not without its difficulties. The system is memory-intensive, requiring a 512 K Mac. As of October 1985,
the only way to design your own face is with a program called a "Resource Editor," which is beyond the experience of most casual Mac users. Then there's the veritable slew of files required: VMCO, MacinTalk, the Face Files created by other users, and three or four others. If you can't find a friend who already has VMCO, you're in
software is Bob Perez's VMCO (Visual/Vocal MAUG Conferencing Utility). VMCO was written for use on the conference section of CompuServe's Macintosh forum. While the basic function of Chesley's original is still intact, Perez has polished his implementation into a smooth, multifeatured program.

It's hard to describe the experience of a VMCO conference in words, although the phrase "organized lunacy" comes fairly close. The accompanying screen dump shows a 19 -person conference in progress. All of the "chairs" in the "conference room" start out empty. As the conference starts to roll, VMCO checks the name of conference participants against the face files available on the disk from which $V M C O$ was started. If a conferee's face file is found, it is "seat$\mathrm{ed}^{\prime \prime}$ in one of the chairs. If no face file is found, a generic face is seated instead. As the conferees type away at their keyboards, the words are "spoken" by their faces via Macin-
 for a little over two hours of downloading. Interested? If you're a CompuServe subscriber, the documentation can be found in the telecommunications download section of the MAUG Mac Forum (page PCS-23).

Will visual/vocal conferencing become available on other computers? That's hard to say. The Fat Mac's large memory, icons, and the speed of its Motorola 68000 central processing unit are what makes VMCO tick. I doubt that the eightbit Commodore, Atari, and Apple computers have the oomph needed for visual conferencing. The IBM PC-AT has enough power, but when equipped with a suitable graphics adapter and display, you'll have spent more than eight thousand bucks. That leaves the Atari ST and Amiga as the most likely candidates for future visual conferencing. However, I'm not placing any bets at this time...if I'm wrong I might lose face.

Music And Sound On The TI

Music and sound on the TI can be a lot of fun and fairly easy to program. Some computers require several statements to even play one note, but the TI can play an entire chord with one statement. The best way to learn to program music and sound is to sit at the console and experiment. This month we'll look at a few techniques.

The basic sound statement is CALL $\operatorname{SOUND}(\mathrm{d}, \mathrm{f}, \mathrm{v})$ where d is duration, f is frequency, and v is volume. You may specify more than one frequency and volume for each statement to hear more voices.

The duration parameter tells the computer how many milliseconds (thousandths of a second) the sound should last. CALL SOUND ($1000,262,1$) plays middle C for exactly one second. You can use this feature for any kind of timing, with or without sound. For example, by setting the volume to the softest and using a high frequency out of hearing range, a program can silently count off seconds.

In music programs it's helpful to use a variable for the duration. For example, let T represent a quarter note. $\mathrm{T} / 2$ will be an eighth note, $\mathrm{T} / 3$ a triplet, $2^{*} \mathrm{~T}$ a half note, $4^{*} \mathrm{~T}$ a whole note, and so on. Before the sound statements, define a value for T .
$110 \mathrm{~T}=400$
120 CALL SOUND (T,262,2)
130 CALL SOUND(T/2,294,2)
140 CALL SOUND(T/2,330,2)
150 CALL SOUND $\left(2^{*}\right.$ T, 349,2)
160 CALL SOUND $(4 * T, 392,2)$ 170 END

To change the tempo, you won't need to change each sound statement, only line 110 . For example, change set $T=200$, then RUN. The tempo changes with all the notes in proportion.

The TI can execute other statements, such as calculations or graphics, while making sounds. Last month's Christmas program is an example of graphics commands
being executed among music commands. If another sound statement is encountered, the computer waits until the previous duration is finished. If you want the computer to execute a sound statement without waiting for the previous duration to finish, use a negative number for the duration:
110 CALL SOUND $(2000,440,2)$
120 CALL SOUND ($-400,262,2$) 130 END

The first note should be played for two seconds. However, line 120 includes a negative duration, so its sound starts as soon as the computer gets to line 120, and the sound continues for 400 milliseconds. Negative durations are often placed in a FOR-NEXT loop:
110 FOR $\mathrm{F}=262$ TO 392 STEP 12
120 CALL SOUND ($-200, \mathrm{~F}, 2$)
130 NEXT F
140 END
To determine frequency values for notes, consult the charts in the manuals that came with your computer. You can use these charts to translate sheet music. For example, CALL $\operatorname{SOUND}(1000,440,2)$ plays A at concert pitch. To play a chord, you can list three frequencies and volumes with one duration in a statement:

CALL SOUND $(\mathbf{1 2 0 0}, \mathbf{2 6 2}, \mathbf{2}, \mathbf{3 3 0}, \mathbf{2}, \mathbf{3 9 2}, \mathbf{2})$
But you're not limited to numbers on the chart. For example, the frequency for middle C is 262 , and the frequency for D is 294 . You can play any tone between these notes:
110 FOR F= 262 to 294
120 CALL SOUND $(300, \mathrm{~F}, 2)$
130 PRINT F
140 NEXT F
150 END
By varying the frequency in a FOR-NEXT loop, you can create interesting sound effects:
110 FOR F $=440$ TO 523 STEP 15
120 CALL SOUND $(-100, F, 2)$ 130 NEXT F
140 FOR F=262 TO 131 STEP -10
150 CALL SOUND ($-100, \mathrm{~F}, 2$)
160 NEXT F

170 END

Create noises by using negative frequencies from -1 to -8 . These noises can be fun to add to games. However, you're not limited to just these noises. You may combine up to three other frequencies with one noise-you can spend days experimenting with different combinations to make different noises. Try these examples:
CALL SOUND $(1000,-6,2,440,2)$
CALL SOUND $(1000,-6,2,262,2)$
CALL SOUND(1000,-6,2,131,2,165,2)
The volume parameter may be a value from 0 (loudest) to 30 (softest). You can assign different volumes to notes to create dynamics, such as a crescendo, or to make a melody more prominent.
110 CALL SOUND $(400,262,8)$
120 CALL SOUND $(400,294,6)$
130 CALL SOUND $(400,330,4)$
140 CALL SOUND $(400,349,2)$
150 CALL SOUND $(800,392,0)$
160 END
Try varying the volume in loops to create sound effects:
110 FOR V $=0$ TO 30
120 CALL SOUND $(-100,262, V)$
130 NEXT V
140 FOR V $=30$ TO 0 STEP - 1
150 CALL SOUND $(-100,-5$, V)
160 NEXT V
170 FOR V $=0$ TO 30
180 CALL SOUND $(-100,-6, V)$
190 NEXT V
200 FOR F $=262$ TO 330 STEP 34
210 FOR V=0 TO 30
220 CALL SOUND ($-100, \mathrm{~F}, \mathrm{~V},-6, \mathrm{~V}$)
230 NEXT V
240 NEXT F
250 END
CALL SOUND is quite versatile and can add a lot to your programs. Take the time to experiment and you'll discover that you can create all kinds of sounds with your TI.
©

Last Minute Gifts

This is the first column of 1986 and a good place to tell you about three products for the IBM PC and PCjr that didn't fit into last year's columns, but which make great gifts.

Realia (pronounced Ree-AL-ia) has a program called SpaceMaker that actually compresses the size of programs so you can get more on a disk. SpaceMaker reduces the size of most program files-those ending in .COM or .EXE-but cannot compress data files. For example, it reduces the size of the IBM spelling checker Word Proof, but cannot reduce the size of Word Proof's dictionary file.

At the technical level, SpaceMaker removes all the binary zeros from a program and writes them in a compact form. It then appends a little-bitty (pun intended) program to the beginning of the file. When DOS loads the file-when you type the name of the program-the tiny preprogram takes control and reconstructs the binary zeros as it loads and runs the bigger program. All this happens automatically.

SpaceMaker is so simple to use that you don't have to know anything about binary zeros or programming. All you need do is enter the input filename and the output filename and SpaceMaker does the rest. It generates a new, smaller program file which works just like the old one; the output filename is the new program name. As always, it's best to keep the original copy of a program on one disk and the SpaceMaker-squeezed copy on another.

Here are some typical space savings:

SpaceMaker retails for $\$ 75$ and is produced by Realia, Inc., 10 South Riverside Plaza, Chicago, IL, 60606. It requires a PC or PCjr with a disk drive.

A Hidden Typewriter

Even if you dislike desk-management software as much as I do, you might like ProType. It hides in memory like desk-management software until you need it, then is brought forth by pressing the ALT

Even if you dislike desk-management software as much as I do, you might like ProType.

key twice. A 1-2-3-like menu appears at the top of the screen. Selecting the Type option puts the program in typewriter mode. Any line typed on the computer goes to the printer. This is the mode I use most of the time: it's perfect for addressing envelopes and mailing labels. Pressing the ESC key sends ProType back into memory, where it occupies about 28,000 bytes, and returns you to your regularly scheduled program. I can whip out an envelope from the middle of 1-2-3 in 15 seconds!

But there's more to ProType than type mode. You can enter edit mode and compose and print (but
not save) a one-page memo or letter. You can also create a template and use ProType to type forms, such as invoices, statements, and checks. Another command sends escape codes to the printer.

I'm amazed that it works happily with all the other things I have hiding in memory, namely a print spooler, a screen-blank-after-fiveminutes program, a RAM disk, a keyboard enhancer, and a disk drive analyzer.

ProType retails for $\$ 69$ and is from Photon Software, 14021 NE 8th Street, Bellevue, WA, 98009. It requires a PC or PCjr with a disk drive.

Portable Sound

The third product is for PCjr owners who don't have a monitor with a built-in speaker and don't want to drag a stereo amp and hi-fi speakers to Junior's location. I'm in this group, so I've never been able to hear the wonderful sound effects, for example, in the King's Quest games. What I needed was an inexpensive amplifier-speaker that I could plug into the audio jack on Junior's backside.

I've found one. Radio Shack sells a battery-operated 200milliwatt amplifier-speaker (catalog number 277-1008B) that's perfect and costs only $\$ 12$. To hook it up to a PCjr, you'll need a cable (miniphono to RCA plug) which costs about \$2 at Radio Shack.

Program	Original size	New size	Reduction
IBM Personal Editor	45,696	41,728	8%
Word Proof PC-Talk III	27,056	24,616	9%
(compiled version)	81,408	66,880	17%
Lotus 1-2-3 (1A) BASICA.COM	89,984	80,000	11%
[Won't compress]			

COMPUTEI's Guide To Typing In Programs

Before typing in any program, you should familiarize yourself with your computer. Learn how to use the keyboard to type in and correct BASIC programs. Read your manuals to understand how to save and load BASIC programs to and from your disk drive or cassette unit. Computers are precisetake special care to type the program exactly as listed, including any necessary punctuation and symbols, except for special characters as noted below. To help you with this task, we have implemented a special listing convention as well as a program to help check your typing-the "Automatic Proofreader." Please read the following notes before typing in any programs from compute!. They can save you a lot of time and trouble.

Commodore, Apple, and Atari programs can contain some hard-toread (and hard-to-type) special characters, so we have developed a listing system that indicates the function of these control characters. (There are no special control characters in our IBM or TI-99/4A listings.) You will find Commodore and Atari special characters within curly braces; do not type the braces. For example, \{CLEAR\} or \{CLR\} instructs you to insert the symbol which clears the screen on the Atari or Commodore machines. For Commodore, Apple, and Atari, a symbol by itself within curly braces is usually a control key or graphics key. If you see $\{A\}$, hold down the CTRL key and press A. This will produce a reverse video character on the Commodore (in quote mode), a graphics character on the Atari, and an invisible control character on the Apple. Commodore computers also have a special control key labeled with the Commodore logo. Graphics characters entered with the Commodore logo key are enclosed in a special bracket that looks like this: KA \gg. In this case, you would hold down the Commodore logo key as you type A. Our Commodore listings are in uppercase, so shifted symbols are underlined. A graphics heart symbol (SHIFT-S) would be listed as \underline{S}. One exception is \{SHIFT-SPACE\}. When you see this, hold down SHIFT and press the space bar. If a number precedes a symbol, such as $\{5$ RIGHT $\},\{6$
$\underline{S}\}$, or $[<8 Q>]$, you would enter five cursor rights, six shifted S's, or eight Commodore-Q's. On the Atari, inverse characters (printed in white on black) should be entered after pressing the inverse video key.

Since spacing is sometimes important, any more than two spaces will be
listed. For example, $\{6$ SPACES $\}$ means to press the space bar six times. Our listings never leave a space at the end of a line, instead moving it to the next printed line as $\{S P A C E\}$. For your convenience, we have prepared this quick-reference chart for the Commodore and Atari special characters:

Atari 400/800/XL/XE

When you see	Type		See	
[CLEAR)	ESC	SHIFT <	$\boldsymbol{*}$	Clear Screen
\{UP\}	ESC	CTRL -	\pm	Cursor Up
\{DOWN\}	ESC	CTRL =	\downarrow	Cursor Down
\{LEFT\}	ESC	CTRL +	\leftarrow	Cursor Left
[RIGHT\}	ESC	CTRL *	\rightarrow	Cursor Right
\{BACK S\}	ESC	DELETE	4	Backspace
\{DELETE\}	ESC	CTRL DELETE	51	Delete character
\{INSERT\}	ESC	CTRL INSERT	1	Insert character
\{DEL LINE 3	ESC	SHIFT DELETE	5	Delete line
\{INS LINE	ESC	SHIFT INSERT	E3	Insert line
\{TAB)	ESC	TAB	-	TAB key
\{CLR TAB\}	ESC	CTRL TAB	R	Clear tab
\{SET TAB\}	ESC	SHIFT TAB	E	Set tab stop
\{BELL $\}$	ESC	CTRL 2	L	Ring buzzer
\{ESC $\}$	ESC	ESC	E	ESCape key

Commodore PET/CBM/VIC/64/128/16/+4

The Automatic Proofreader

We have developed a series of simple, yet effective programs that can help check your typing. Type in the appropriate Proofreader program listed below, then save it for future use. On the VIC, 64, or Atari, run the Proofreader to activate it, then enter NEW to erase the BASIC loader (the Proofreader remains active, hidden in memory, as a machine language program). Pressing RUN/ STOP-RESTORE or SYSTEM RESET deactivates the Proofreader. You can use SYS 886 to reactivate the VIC/ 64 Proofreader, or PRINT USR(1536) to reenable the Atari Proofreader. On the Apple, the Proofreader automatically erases the BASIC portion of itself after you activate it by typing RUN, leaving only the machine language portion in memory. It works with either DOS 3.3 or ProDOS. Disable the Apple Proofreader by pressing CTRL-RESET before running another BASIC program. The IBM Proofreader is a BASIC program that simulates the IBM BASIC line editor, letting you enter, edit, list, save, and load programs that you type. Type RUN to activate.

Once the Proofreader is active, try typing in a line. As soon as you press RETURN, either a decimal number (on the Commodore), a hexadecimal number (on the Apple), or a pair of letters (on the Atari or IBM) appears. The number or pair of letters is called a checksum. Try making a change in the line, and notice how the checksum changes.

All you need to do is compare the value provided by the Proofreader with the checksum printed in the program listing in the magazine. In Commodore listings, the checksum is a number from 0 to 255 . It is set off from the rest of the line with rem. This prevents a syntax error if the checksum is typed in, but the REM statements and checksums need not be typed in. It is just there for your information.

In Atari, Apple, and IBM listings, the checksum is given to the left of each line number. Just type in the program one line at a time (without the printed checksum) and compare the checksum generated by the Proofreader to the checksum in the listing. If they match, go on to the next line. If not, check your typing: You've made a mistake. On the Commodore, Atari, and Apple Proofreaders, spaces are not counted as part of the checksum, so be sure you type the right number of spaces between quote marks. The Commodore and Atari Proofreaders do not check to see that you've typed the characters in the right order, so if characters are transposed, the checksum still matches the listing. Because of the checksum meth-
od used, do not type abbreviations, such as ? for PRINT. The IBM Proofreader is the pickiest of all; it will detect errors in spacing and transposition. Be sure to leave Caps Lock on, except when typing lowercase characters.

IBM Proofreader Commands

Since the IBM Proofreader replaces the computer's normal BASIC line editor, it has to include many of the direct-mode IBM BASIC commands. The syntax is identical to IBM BASIC. Commands simulated are LIST, LLIST, NEW, FILES, SAVE, and LOAD. When listing your program, press any key (except Ctrl-Break) to stop the listing. If you type NEW, the Proofreader prompts you to press Y to be sure you mean yes.

Two new commands are BASIC and CHECK. BASIC exits the Proofreader back to IBM BASIC, leaving the Proofreader in memory. CHECK works just like LIST, but shows the checksums along with the listing. After you have typed in a program, save it to disk. Then exit the Proofreader with the BASIC command, and load the program in BASIC as usual (this replaces the Proofreader in memory). You can now run the program, but you may want to resave it to disk. The version of your program that you resave from BASIC will take up less space on disk and will load faster, but it can no longer be edited with the Proofreader. If you want to convert a program to Proofreader format, save it to disk with SAVE "filename",A.

Special Proofreader Notes For Commodore Cassette Users

The Proofreader resides in a section of memory called the cassette buffer, which is used during tape LOADs and SAVEs. Therefore, be sure to press RUN/STOP-RESTORE to get the Proofreader out of the way before saving or loading a program. If you want to use the Proofreader with tape, run the Proofreader, then enter these two lines exactly as shown, pressing RETURN after each one:

$$
\begin{aligned}
& \text { AS }=\text { "PROOFREADER.T": } \mathrm{B} \$=\text { " }\{10 \\
& \text { SPACES }\} ": \text { FOR } X=1 \text { TO } 4: \mathrm{AS}=\mathrm{A} \$ \\
& \text { +B\$:NEXT } \\
& \text { FOR } X=886 \text { TO 1018:AS }=\mathrm{AS}+\mathrm{CHR} \\
& \text { (PEEK }(X)) \text {):NEXT:OPEN } 1,1,1, \mathrm{AS}: \\
& \text { CLOSE1 }
\end{aligned}
$$

Then insert a blank tape and press RECORD and PLAY to save a special version of the Proofreader. Anytime you need to reload the Proofreader after it has been erased-for example, after you reload a paritally completed pro-gram-just rewind the tape, type OPEN1:CLOSE1, then press PLAY.

You'll see the message FOUND PROOFREADER.T, but not the familiar LOADING message. Don't worry; the Proofreader is in memory. When READY comes back, enter SYS 886.

Program 1: VIC/64 Proofreader

By Charles Brannon, Program Editor
$1 \varnothing$ PRINT"\{CLR\}PLEASE WAIT...": FORI=886TO1ø18: READA: $\mathrm{CK}=\mathrm{CK}+$ A: POKEI, A:NEXT
20 IF CK<< 17539 THEN PRINT" \{DOWN\}YOU MADE AN ERROR": PR INT"IN DATA STATEMENTS.":EN D
$3 \varnothing$ SYS886:PRINT"\{CLR\}\{2 DOWN\}P ROOFREADER ACTIVATED.": NEW
$4 \varnothing$ DATA $173, \varnothing 36, \varnothing 03,201,150,2 \varnothing$ 8, øø1, $096,141,151,003,173$
50 DATA Ø37, Ø03,141,152, øø3,16 9,150,141, 036, 003,169,003
60 DATA $141, \boxed{ } 07, \varnothing 03,169$, øø0, 13 $3,254,096,032,087,241,133$
70 DATA $251,134,252,132,253,00$ 8,2ø1, $13,240,017,201, \boxed{62}$
$8 \emptyset$ DATA $240,0 \varnothing 5,024,101,254,13$ 3,254,165,251,166,252,164
90 DATA $253,640,096,169,613,63$ $2,210,255,165,214,141,251$
1 1ø DATA øø3,206,251,0ø3,169,0 øø,133,216,169, ø19, ø32,21ø
110 DATA $255,169,018,032,210,2$ $55,169,58,032,210,255,166$
$12 \varnothing$ DATA $254,169,0 \boxed{ }, 133,254,1$ $72,151,003,192,087,2 \varnothing 8,0 \boxed{ }$
130 DATA Ø32,205,189,076,235, \varnothing Ø3, $832,2 \boxed{ }$, 221,169, $032, \boxed{2} 2$ 140 DATA $210,255,032,210,255,1$ $73,251, \varnothing 03,133,214,876,173$ 150 DATA $\varnothing \square 3$

Program 2: Atari Proofreader

By Charles Brannon, Program Editor

```
1ø\varnothing GRAPHICS 
100 GRAR I=1536 TO 1700IRE
        AD A:POKE I,A:CK=CK+A
        :NEXT I
12g IF CK<>19ø72 THEN ? "
        Error in DATA Stateme
        nts. Check Typing.":
        END
13g A=USR(1536)
140 ? 1? "Automatic Proof
        reader Now Activated.
    "
150 END
160 DATA 104,168,0,185,26
        ,3,201,69,24%,7
170 DATA 2बø, 2øø,192,34,2
        0日,243,96,2g9,169,74
1日0 DATA 153,26,3,200,169
        ,6,153,26,3,162
190 DATA 6,189, 0, 228,157,
    74,6,232,224,16
200 DATA 208,245,169,93,1
210 41,7B,6,169,6,141
21. 41,78,6,169,6,141
    B,105,1,141,95
```

```
220 DATA 6,173,5,228,165,
``` 6，141，96，6， 169
239 DATA \(9,133,263,96,247\) ，238，125，241，93，6
24 DATA \(244,241,115,241\) ， \(124,241,76,265,238\)
25 DATA \(\varnothing, \varnothing, \varnothing, 9, \varnothing, 32,62\) ， 246，日， 2 ø1
269 DATA \(155,249,13,291,3\) \(2,249,7,72,24,191\)
279 DATA \(263,133,203,104\) ， \(49,96,72,152,72,138\)
286 DATA \(72,165,6,169,128\) \(, 145,88,206,192,4 \%\)
296 DATA 20B，249，165，263， \(74,74,74,74,24,165\)
300 DATA \(161,166,3,145,8 B\) \(, 165,263,41,15,24\)
310 DATA \(195,161,260,145\), \(88,169,5,133,263,164\)
32円 DATA \(17 \%, 194,168,164\) ， 49，96

\section*{Program 3：IBM Proofreader}

By Charles Brannon，Program Editor
10 ＇Automatic Proofreader Ver sion 2．\(\emptyset \varnothing\)（Lines \(27 \emptyset, 51 \emptyset, 5\) \(15,517,62 \emptyset, 63 \varnothing\) changed fro m V1．©）
1 1月 DIM L\＄（5øの），LNUM（50の）：COL DR \(\varnothing, 7,7: K E Y\) OFF：CLS：\(M A X=\) Ø： \(\operatorname{LNUM}(\varnothing)=65536\) ！
110 ON ERROR GOTO 120：KEY 15， CHR\＄（4）＋CHR\＄（7ø）：ON KEY（1 5）GOSUB \(64 \varnothing:\) KEY（15）ON： GOTO 130
\(12 \varnothing\) RESUME \(13 \varnothing\)
\(13 \emptyset\) DEF SEG \(=\& H 4 \varnothing: W=\operatorname{PEEK}(\& H 4 A)\)
140 ON ERROR GOTO 650：PRINT：P RINT＂Proofreader Ready．＂
\(15 \emptyset\) LINE INPUT L \(\$: Y=\) CSRLIN－IN \(T(L E N(L \$) / W)-1:\) LOCATE \(Y, 1\)
\(16 \varnothing\) DEF SEG＝Ø：POKE 195の，3Ø：PO KE 1ø52，34：POKE 1054， \(0:\) PO KE 1ø55，79：POKE 1056，13：P OKE 1ø57，28：LINE INPUT L\＄ ：DEF SEG：IF L \(\$=" n\) THEN 15 \(\emptyset\)
\(17 \emptyset\) IF LEFT \(\$(L \$, 1)=" \|\) THEN L \＄＝MID\＄（L\＄，2）：GOTO \(17 \emptyset\)
\(18 \emptyset \operatorname{IF} \operatorname{VAL}(L E F T \$(L \$, 2))=\emptyset\) AND MID \(\$(L \$, 3,1)=" "\) THEN L \(\$\) \(=M I D \$(L \$, 4)\)
\(19 \varnothing\) LNUM＝VAL（L\＄）：TEXT\＄＝MID\＄（L \＄，LEN（STR \(\$(\) LNUM \())+1\) ）
\(26 \emptyset\) IF ASC（L\＄）\(>57\) THEN \(260^{\circ} n\) －line number，therefore command
210 IF TEXT \(\$=" "\) THEN GOSUB 54 Ø：IF LNUM \(=\) LNUM（P）THEN GO SUB 56ø：GOTD 15ø ELSE 150
22の CKSUM＝ø：FOR \(I=1\) TO LEN（L\＄ ）：CKSUM＝（CKSUM＋ASC（MID\＄（L \＄，I））\＆I）AND 255：NEXT：LOC ATE Y，1：PRINT CHR\＄\((65+\) CKS UM／16）＋CHR\＄\((65+\)（EKSUM AND 15））＋＂＂＋L
230 GOSUB 540：IF LNUM \((P)=\) LNUM THEN L \(\$(P)=\) TEXT \(\$\) ：GOTO 15 \(\emptyset\)＇replace line
240 GOSUB 58の：GOTO 150 ＇inser \(t\) the line
26 （EXT \(\$="\)＂：FOR \(\mathrm{I}=1\) TO LEN（L \＄）：\(A=A S C(M I D \$(L \$, I)):\) TEXT \(\$=\) TEXT \(\$+\) CHR \(\$(A+32\)＊\((A) 96\) A ND \(A(123)\) ）：NEXT
\(27 \varnothing\) DELIMITER＝INSTR（TEXT\＄，＂＂ ）：COMMAND \(\$=\) TEXT \(\$:\) ARG \(\$={ }^{\prime \prime}\)＂： IF DELIMITER THEN COMMAND \＄＝LEFT\＄（TEXT\＄，DELIMITER－1 ）：ARG\＄＝MID\＄（TEXT\＄，DELIMIT ER＋1）ELSE DELIMITER＝INST R（TEXT\＄，CHR\＄（34））：IF DELI MITER THEN COMMAND \(\$=\) LEFT \(\$\) （TEXT\＄，DELIMITER－1）：ARG\＄＝ MID\＄（TEXT\＄，DELIMITER）
280 IF COMMAND\＄く＞＂LIST＂THEN 410
290 OPEN＂scrn：＂FOR DUTPUT A 5 \＃1
\(3 \emptyset \emptyset\) IF ARG \(\$=" "\) THEN FIRST \(=\varnothing: P\) ＝MAX－1：GOTO 34の
\(31 \varnothing\) DELIMITER＝INSTR（ARG \(\$, "-")\) ：IF DELIMITER \(=\varnothing\) THEN LNUM ＝VAL（ARG\＄）：GOSUB 540：FIRS \(\mathrm{T}=\mathrm{P}\) ：GOTO \(34 \varnothing\)
326 FIRST＝VAL（LEFT\＄（ARG\＄，DEL I MITER））：LAST＝VAL（MID\＄（ARG \＄，DELIMITER＋1））
330 LNUM＝FIRST：GOSUB 54ø：FIRS \(T=P:\) LNUM \(=\) LAST：GOSUB 540：I \(F P=\emptyset\) THEN \(P=M A X-1\)
\(34 \emptyset\) FOR \(X=F\) IRST TO \(P: N \$=M I D \$(\) \(\operatorname{STR} \$(\operatorname{LNUM}(X)), 2)+"\)＂
\(35 \emptyset\) IF CKFLAG \(=\varnothing\) THEN \(A \$=" ": G 0\) TO 370
\(36 \emptyset\) CKSUM \(=\varnothing\) ：\(A \$=N \$+L \$(X):\) FOR I \(=1\) TO LEN \((A \$):\) CKSUM \(=\)（CKSU M＋ASC（MID\＄（A\＄，I））\＃I）AND 255：NEXT：A\＄＝CHR\＄（65＋CKSUM 116）＋CHR\＄（65＋（CKSUM AND 1 5））＋＂＂
\(37 \emptyset\) PRINT \＃1，\(A \$+N \$+L \$(X)\)
380 IF INKEY \(\$\rangle * "\) THEN \(X=P\)
\(39 \emptyset\) NEXT ：CLOSE \＃1：CKFLAG＝ø
\(4 \varnothing \varnothing\) GOTO \(13 \varnothing\)
410 IF COMMAND \(\$=\)＂LLIST＂THEN OPEN＂lpt1：＂FOR OUTPUT A S \＃1：GOTO 3øø
420 IF COMMAND \(\$=\)＂CHECK＂THEN CKFLAG＝1：GOTO 29Ø
\(43 \varnothing\) IF COMMAND \(\$<>\)＂SAVE＂THEN 450
\(44 \varnothing\) GOSUB 6øø：DPEN ARG\＄FOR \(\square\) UTPUT AS \＃1：ARG\＄＝＂＂：GOTD 3øø
450 IF COMMAND\＄＜＞＂LOAD＂THEN \(49 \varnothing\)
46』 GOSUB 6øø：IPEN ARG\＄FOR I NPUT AS \＃1：MAX＝\(: P=\varnothing\)
476 WHILE NOT EOF（ 1 ）：LINE INP UT \＃1，L\＄：LNUM \((P)=\) VAL（L\＄）： L\＄\((P)=M I D \$(L \$, L E N\)（STR \(\$(V A\) \(L(L \$)))+1): P=P+1\) ：WEND
\(48 \varnothing \mathrm{MAX}=\mathrm{P}:\) CLOSE \＃1：GOTO 130
\(49 \varnothing\) IF COMMAND \(\$=\)＂NEW＂THEN IN PUT＂Erase program－Are you sure＂；L\＄：IF LEFT\＄（L\＄， 1）\(=\)＂\(y\)＂OR LEFT \(\$(L \$, 1)=" Y\)＂ THEN MAX＝ø：GOTO 13Ø：ELSE 136
5øø IF CDMMAND \(\$=\)＂BASIC＂THEN COLOR 7，\(\varnothing, \varnothing:\) ON ERROR GOTO Ø：CLS：END
510 IF COMMAND\＄＜＞＂FILES＂THEN \(52 \varnothing\)
515 IF ARG \(\$="\)＂THEN ARG \(\$=" A: "\) ELSE SEL＝1：GOSUB GøØ
517 FILES ARG\＄：GOTO \(13 \emptyset\)
520 PRINT＂Syntax error＂：GOTO \(13 \varnothing\)
\(540 \mathrm{P}=\emptyset\) ：WHILE LNUM \(>\) LNUM（P）AN D \(P<M A X: P=P+1\) ：WEND：RETURN
566 MAX \(=\) MAX－1：FOR \(X=P\) TO MAX： \(\operatorname{LNUM}(X)=\operatorname{LNUM}(X+1): \operatorname{L} \$(x)=L\) \(\$(X+1)\) ：NEXT：RETURN
\(580 \operatorname{MAX}=M A X+1\) ：FOR \(X=\) MAX TO P＋ \(1 \operatorname{STEP}-1\) ：LNUM \((X)=\operatorname{LNUM}(X-\) 1）： \(\mathrm{L} \$(X)=\mathrm{L} \$(X-1):\) NEXT：L\＄（ \(P)=\) TEXT \(\$: \operatorname{LNUM}(P)=\) LNUM：RET URN
6 Gの IF LEFT\＄（ARG\＄，1）＜＞CHR\＄（34 ）THEN 520 ELSE ARG \(\$=\) MID \(\$\) （ARG\＄，2）
610 IF RIGHT\＄（ARG\＄，1）\(=\) CHR\＄（ 34 ）THEN ARG \(\ddagger=\) LEFT \(\$\)（ARG \(\$\) ，LE N（ARG\＄）－1）
620 IF \(S E L=\varnothing\) AND INSTR（ARG \(\$\) ，＂ ＂＂）\(=\varnothing\) THEN ARG \(\$=A R G \$+"\) ．BA \(5^{\prime \prime}\)
\(63 \varnothing\) SEL＝ø：RETURN
\(64 \emptyset\) CLOSE \＃1：CKFLAG＝ø：PRINT＂ S topped．＂：RETURN \(15 \varnothing\)
\(65 \emptyset\) PRINT＂Error＂；＂ERR：RESUM E \(15 \varnothing\)

\section*{Program 4：Apple Proofreader}

\section*{By Tim Victor，Editorial}

\section*{Programmer}
\(10 \mathrm{C}=\varnothing\) ：FOR I \(=768 \mathrm{TO} 768+\) 68：READ A：C＝\(C+A:\) POKE I ，A：NEXT
20 IF \(\mathrm{C}<>7258\) THEN PRINT＂ER ROR IN PROQFREADER DATA STAT EMENTS＂：END
30 IF PEEK \((190 * 256)<>76 \mathrm{~T}\) HEN POKE 56，\(\varnothing: ~ P O K E ~ 57,3: ~ C A ~\) LL 1øø2：GOTO 5ø
4ø RRINT CHR\＄（4）；＂IN\＃A\＄3øø＂
\(5 \emptyset\) POKE 34，\(\varnothing\) ：HOME ：POKE 34，1： VTAB 2：PRINT＂PROOFREADER INSTALLED＂
\(6 \emptyset\) NEW
1 10ø DATA \(216,32,27,253,201,141\)
\(11 \emptyset\) DATA 2øB， \(6 \varnothing, 138,72,169\) ，\(\varnothing\)
\(12 \emptyset\) DATA \(72,189,255,1,201,16 \emptyset\)
130 DATA \(24 \varnothing, 8,104,10,125,255\)
\(14 \emptyset\) DATA \(1,1 \emptyset 5, \emptyset, 72,2 \emptyset 2,2 \emptyset 8\)
\(15 \emptyset\) DATA \(238,1 \varnothing 4,17 \emptyset, 41,15,9\)
\(16 \emptyset\) DATA \(48,261,58,144,2,233\)
176 DATA \(57,141,1,4,138,74\)
\(18 \emptyset\) DATA \(74,74,74,41,15,9\)
190 DATA \(48,201,58,144,2,233\)
\(2 \emptyset \emptyset\) DATA \(57,141, \emptyset, 4,1 \emptyset 4,17 \emptyset\)
210 DATA \(169,141,96\)

\title{
Machine Language Entry Program For Commodore 64 and Apple
}
"MLX" allows almost failsafe entry of machine language (ML) programs published in COMPUTE!. The Apple version runs on all II-series computers with either DOS 3.3 or ProDOS. The current Commodore 64 version was introduced in the December 1985 issue; no version of 64 MLX published before that date can be used to enter the MLX-format listings published since then.

Type in and save some copies of the version of MLX for your computer (you'll need it for entering future ML programs in COMPUTE!). For Apple MLX, it doesn't matter whether you save the program on a disk formatted for DOS 3.3 or ProDOS. Programs entered with Apple MLX, however, must be saved to a disk formatted with the same operating system as MLX itself. If you have an Apple IIe or IIc, make sure the CAPS LOCK key is down.

When you're ready to enter an ML program, load and run MLX. It asks you for a starting address and ending address. These addresses appear in the article accompanying the MLX-format program listing you're typing. After you enter the addresses, 64 MLX offers you the option of clearing the workspace. Choose this option only if you're starting to enter a new listing.

A functions menu appears next. The first option is Enter Data. If you're just starting to type in a program, pick this. Begin by typing the first number in the first line of the program listing. If you've already typed in part of a program, type the line number where you left off typing at the end of the previous session. In any case, make sure the address you enter corresponds to the address of a line in the listing you are entering. Otherwise, you'll be unable to enter the data correctly. In 64 MLX, if you select Enter Data by mistake, you can return to the menu by pressing RETURN alone when asked for the address. (You can get back to the menu from most options by pressing RETURN with no other input.)

Once in Enter mode, MLX prints the address for each program line. You then type in all numbers on that line, beginning with the first two-digit number after the colon (:). Each line represents eight data bytes and a checksum. Although an MLX-format listing appears similar to the "hex dump" ML listings you may have seen, the extra checksum number on the end allows MLX to check your typing.

Only the numerals \(0-9\) and the
letters A-F can be typed. If you press any other key (with some exceptions noted below), nothing happens. When you enter a line correctly, MLX adds the data to the workspace area and prompts for the next line (the 64 version also beeps). But if MLX detects a typing error, it notifies you. 64 MLX buzzes and displays an error message, then redisplays the line for editing. Apple MLX beeps, erases the incorrect line, and prompts you to reenter it.

64 MLX formats your input for you, so you may have to unlearn some habits. Do not type spaces between the columns; 64 MLX automatically inserts them. Do not press RETURN after typing the last number in a line; 64 MLX automatically enters and checks the line after you type the last digit.

Apple MLX is a little different. You can put extra spaces between numbers or leave out the spaces entirely, compressing a line into 18 keypresses. But be careful not to put a space between two digits in the middle of a number. Apple MLX would read two single-digit numbers instead of one two-digit number. You must press RETURN to enter the line.

In 64 MLX, to correct typing mistakes before finishing a line, press INST/DEL to delete the character to the left of the cursor. (The cursor-left key also deletes.) If you mess up a whole line, press CLR/HOME to start the line over. The RETURN key is also active, but only before any data is typed on a line. Pressing RETURN at this point returns you to the command menu. After you type a character of data, 64 MLX disables RETURN until the cursor returns to the start of a line. You can press CLR/HOME to quickly get to a line number prompt.

When 64 MLX detects an error, more editing features become available. Compare the erroneous line on the screen with the one printed in the listing, then move the cursor to the mistake and type the correct key. The cursor-left and -right keys provide the normal cursor controls. (INST/DEL now works as an alternative cursor-left key.) You cannot move left beyond the first character in the line. If you try to move beyond the rightmost character, the line is reentered. During editing, RETURN is active; pressing it tells 64 MLX to recheck the line. You can press CLR/HOME to clear the entire line if you want to start over, or if you want to get to a line number prompt to use RETURN to get back to the menu.

Apple MLX also has editing features. The left- and right-arrow keys let you back up and go forward on the line you're entering so you can retype data. Pressing the CTRL and D keys simultaneously removes the character under the cursor, shortening the line by one character. Pressing CTRL-I inserts a space under the cursor and shifts the rest of the line to the right, making the line one character longer. If the cursor is at the right end of the line, neither CTRL-D nor CTRL-I has any effect. To leave Enter mode, press RETURN when MLX prompts you for a new line.

After you've entered the last number on the last line of the listing, Apple MLX returns to the menu. Immediately choose option S to save your data. 64 MLX automatically moves to the Save option after you type the last number.

Another menu choice, Display Data, shows the contents of memory in the same format as the listing (including the checksum). When you press D, MLX asks you for a starting address. Be sure the address you give matches a line number in the listing. Otherwise, the checksum display is meaningless. MLX displays lines until it reaches the end of the program, then redisplays the menu. With Apple MLX, you can stop the display and return to the menu by pressing any key. 64 MLX lets you stop the display and get back to the menu by pressing RETURN, or pause the display by pressing the space bar (press space again to unpause).

Two more menu selections let you save and load partially typed programs: Save File and Load File in Apple MLX, and Save Data and Load Data in 64 MLX. When you press S or L, MLX asks you for the filename. 64 MLX follows this by asking you to press either D or T for disk or tape. 64 MLX starts and stops the disk drive several times during a load or save; this is normal. Also, 64 MLX automatically adds the drive prefix 0 : to the filename, so do not include this when entering the filename.

Remember that MLX saves the entire workspace area from the starting address to the ending address, so the save or load may take longer than you might expect if you've entered only a small part of a long listing. When saving a partial listing, make sure to note the address where you stopped typing so you'll know where to resume when you reload.

MLX reports any errors detected during the save or load. 64 MLX displays standard error messages and has
three special load error messages： INCORRECT STARTING ADDRESS， which means the file you＇re loading does not have the starting address you specified when you ran MLX；LOAD ENDED AT address，which means the file you＇re loading ends before the end－ ing address you specified when you started MLX；and TRUNCATED AT ENDING ADDRESS，which means the file you＇re loading extends beyond the ending address you specified when you started MLX．

Apple MLX simply displays the message DISK ERROR if it detects a problem during a Save or Load．If you＇re unsure what caused the error， check the drive．Make sure there＇s a disk formatted by the same operating system you＇re using for MLX（ProDOS or DOS 3．3）．You＇ll also see an error message if the disk is full．Either save the file on another disk or quit MLX by pressing the \(Q\) key，delete an old file or two，then rerun MLX．Your typing should still be safe in memory．If the error message appears during a Load， make sure the filename exists on disk． An error message when the program isn＇t trying to access the drive means you＇ve made a typing error in the MLX program itself．

The Quit option stops MLX and enters BASIC．（Of course，RUN／STOP－ RESTORE for the 64 or CTRL－RESET for the Apple also quits．） 64 MLX asks for verification；press \(Y\) to exit to BASIC，or any other key to return to the menu．After quitting，you can type RUN and reenter MLX without losing your data，as long as you don＇t use the clear workspace option in 64 MLX．

The instructions for loading and using the finished listing vary from pro－ gram to program．Some Commodore 64 ML programs are designed to be loaded and run like BASIC programs．Others must be reloaded to specific addresses， then started with a SYS．Always refer to the article which accompanies the ML listing for this information．For the Ap－ ple，you need to either BRUN the pro－ gram，or BLOAD and start the program with a CALL．Again，refer to the article accompanying the program．

For instructions on entering the following listings，please refer to＂COMPUTEI＇s Guide to Typing in Programs＂published in this issue of COMPUTEI．

\section*{Program 1：MLX For Commodore 64}

Version by Ottis Cowper，Technical Editor
1øø POKE 56，50：CLR：DIM INS，I，J ， \(\mathrm{A}, \mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{A}(7), \mathrm{N} \$\) ：rem 34
\(110 \mathrm{C} 4=4 \mathrm{~B}: \mathrm{C} 6=16: \mathrm{C} 7=7: \mathrm{Z} 2=2: \mathrm{Z} 4=2\) \(54: Z 5=255: Z 6=256: Z 7=127\)
：rem 238

120 EA \(=\operatorname{PEEK}(45)+26 * \operatorname{PEEK}(46): \operatorname{BS}\) \(=\operatorname{PEEK}(55)+Z 6 \star \operatorname{PEEK}(56): H \$="\) Ø123456789ABCDEF＂：rem 118
\(130 \mathrm{R} \$=\operatorname{CHR}(13): \mathrm{L} \$="\{\) LEFT \(\} ": S \$\) \(=" \quad ": D \$=\operatorname{CHR} \$(2 \varnothing): Z \$=\operatorname{CHR} \$(\varnothing\) ）：T\＄＝＂\｛13 RIGHT\}" :rem 173 \(140 \mathrm{SD}=54272\) ： \(\mathrm{FOR} \mathrm{I}=\mathrm{SD}\) TO SD＋23 ：POKE I，\(\varnothing\) ：NEXT：POKE SD +24 ， 15：POKE 788，52：rem 194
150 PRINT＂\(\{C L R\) \} "CHR\$ (142)CHRS (8）：POKE 53280，15：POKE 5328 1,15 ：rem 104
160 PRINT TS＂\｛RED\}\{RVS\} \｛2 SPACES \(\} \mathbb{E} 8\)＠\(\{2\) SPACES \(\}\)＂ \(\operatorname{SPC}(28)^{\prime \prime}\{2\) SPACES \(\}\{O F F\}\) \｛BLU\} MLX II \{RED\}\{RVS \} \(\left\{2\right.\) SPACES \({ }^{\prime \prime} \operatorname{SPC}(28) "\) \｛1．2 SPACES\}\{BLU\}" :rem 121 \(17 \emptyset\) PRINT＂\(\{3\) DOWN \(\}\) \｛ 3 SPACES \(\}\) CO MPUTEI＇S MACHINE LANGUAGE \｛SPACE\}EDITOR\{3 DOWN\}" ：rem 135
\(18 \emptyset\) PRINT＂\({ }^{\text {\｛BLK }}\) STARTING ADDRES SE4 크 ；：GOSUB 300 ：SA＝AD：GOSU B1ø40：IF F THEN 180 ：rem 113
\(19 \varnothing\) PRINT＂\(\{\) BLK \(\}\{2\) SPACES \(\}\) ENDIN G ADDRESSE4刃＂；：GOSUB3ØØ：EA \(=A D:\) GOSUB \(1 \varnothing 30:\) IF F THEN19 19
：rem 173
\(20 \emptyset\) INPUT＂\(\{3\) DOWN\} \{BLK\}CLEAR W ORKSPACE \([Y / N]\left[4 刃{ }^{\prime \prime} ; A S: I F L\right.\) EFTS（AS，1）＜＞＂Y＂THEN220
：rem 9
210 PRINT＂\(\{2\) DOWN \} \{BLU\}WORKING ．．．＂；：FORI＝BS TO BS＋EA－SA＋ 7：POKE I，\(\emptyset:\) NEXT：PRINT＂DONE
：rem 139
\(220 \operatorname{PRINTTAB}(10) "\{2\) DOWN \(\}\) \｛BLK \(\}\) \｛RVS\} MLX COMMAND MENU
［DOWN］ \(\mathbb{E} 4 \exists^{\prime \prime}:\) PRINT TS＂\｛RVS\}E \｛OFF\}NTER DATA" :rem 62
230 PRINT TS＂\｛RVS\}D\{OFF\}ISPLAY DATA＂：PRINT TS＂\｛RVS\}L \｛OFF\}OAD DATA" :rem 19
240 PRINT TS＂\｛RVS\}S\{OFF\}AVE FI LE＂：PRINT TS＂\｛RVS\}Q\{OFF\}UI T\｛2 DOWN\}\{BLK\}":rem 238
250 GET AS：IF AS＝NS THEN250
：rem 127
\(260 \mathrm{~A}=\varnothing\) ：FOR \(\mathrm{I}=1\) TO \(5: I F \quad \mathrm{~A} \$=\mathrm{MID}\) \＄（＂EDLSQ＂，\(I, 1\) ）THEN \(A=I: I=5\) ：rem 42
270 NEXT：ON A GOTO42 \(0,610,690\) ， 700,280 ：GOSUB 1060 ：GOTO 250
：rem 97
280 PRINT＂\｛RVS\} QUIT ":INPUT" \｛DOWN\} \(\mathbb{E} 4\) 习ARE YOU SURE［Y／N ］＂；AS：IF LEFT（AS，I）＜＂Y＂T HEN22の
：rem 189
290 POKE SD＋24，\(\varnothing\) ：END ：rem 95
\(30 \emptyset\) IN \(\$=N \$: A D=\varnothing\) ：INPUTINS：IFLEN （IN\＄）＜ 4 THENRETURN ：rem 31
\(31 \varnothing \mathrm{~B}\) \＄\(=\mathrm{IN} \$: G O S U B 320: A D=A: B \$=M I\) \(D \$(\) IN \(\$, 3)\) ：GOSUB \(32 \theta: A D=A D * 2\) \(56+\) A ：RETURN
：rem 225
\(320 \mathrm{~A}=\varnothing\) ：FOR \(\mathrm{J}=1\) TO 2：AS＝MID\＄（B \(\$, J, 1): B=A S C(A S)-C 4+(A \$>" @\) i）\(* \mathrm{C} 7: \mathrm{A}=\mathrm{A} * \mathrm{C} 6+\mathrm{B}\)
：rem 143
\(33 \emptyset\) IF \(\mathrm{B}<\varnothing\) OR \(\mathrm{B}>15\) THEN \(\mathrm{AD}=\emptyset: \mathrm{A}\) \(=-1: J=2\)
：rem 132
340 NEXT ：RETURN ：rem 240
\(350 \mathrm{~B}=\operatorname{INT}(\mathrm{A} / \mathrm{C} 6):\) PRINT MIDS（HS， \(B+1,1) ;: B=A-B^{*} C 6:\) PRINT MID \(\$(H \$, B+1,1) ;:\) RETURN ：rem 42
\(360 \mathrm{~A}=\operatorname{INT}(\mathrm{AD} / \mathrm{Z} 6)\) ：GOSUB \(350: \mathrm{A}=\mathrm{AD}\) －A＊Z6：GOSUB35 \({ }^{*}\) ：PRINT＂：＂；
：rem 32
\(37 \emptyset \mathrm{CK}=\mathrm{INT}(\mathrm{AD} / \mathrm{Z} 6): \mathrm{CK}=\mathrm{AD}-\mathrm{Z} 4^{*} \mathrm{CK}+\) Z5＊（CK＞Z7）：GOTO 390 ：rem 131
38 Ø CK＝CK＊Z2＋Z5＊\((C K>Z 7)+A\)
rem 168

390 CK＝CK +Z 5 ＊（CK \(>25\) ）：RETURN
：rem 159
400 PRINT＂\｛DOWN\}STARTING ATE4 ＂：：GOSUB 300 ：IF IN \(\$<>N \$\) THE N GOSUB1030：IF F THEN4øø
：rem 75
410 RETURN ：rem 117
420 PRINT＂\｛RVS\} ENTER DATA ":G OSUB4 \(0 \varnothing\) ：IF IN \(=\) NS THEN \(22 \varnothing\)
：rem 85
430 OPEN 3,3 ：PRINT ：rem 34
440 POKE198， 0 ：GOSUB 360 ：IF F TH EN PRINT INS：PRINT＂\｛UP\} \｛5 RIGHT\}";
：rem 6
450 FOR \(I=\emptyset\) TO 24 STEP \(3: B \$=S \$\) ：FOR \(J=1\) TO \(2: I F \quad F\) THEN \(B S\) \(=\) MIDS（INS，I \(+J, 1\) ）：rem 226
460 PRINT＂\｛RVS\}"BSLS;:IF I<24T HEN PRINT＂\｛OFF\}"; :rem 15
470 GET AS：IF AS＝N\＄THEN 476
：rem 135
480 IF（AS＞＂／＂ANDAS＜＂：＂）OR（AS＞＂ ＠＂ANDAS（＂G＂）THEN540
：rem 100
490 IF \(A S=R S\) AND \(((I=\emptyset)\) AND \((J=1)\) OR \(F\) ）THEN PRINT \(B S ;: J=2: N E\) \(\mathrm{XT}: \mathrm{I}=24\) ：GOTO55 \(\quad\) ：rem 46
\(50 \emptyset\) IF AS＝＂\｛HOME\}" THEN PRINT \｛SPACE\}BS: \(\mathrm{J}=2:\) NEXT： \(\mathrm{I}=24\) ：NE \(\mathrm{XT}: \mathrm{F}=\varnothing\) ：GOTO44 \(\varnothing\) ：rem 66
510 IF（AS＝＂\｛RIGHT\}")ANDF THENP RINT BSLS；：GOTO54の：rem 107
\(52 \emptyset\) IF AS＜＞LS AND AS＜＞DS OR（（I \(=\varnothing)\) AND \((J=1))\) THEN GOSUB1ø6Ø ：GOTO470 ：rem 232
530 AS＝LS＋S\＄＋LS：PRINT BSLS；：J＝ 2－J：IF J THEN PRINT LS；：I＝ I－3
：rem 12
540 PRINT AS；：NEXT J：PRINT S\＄；
：rem 2
550 NEXT I：PRINT：PRINT＂\(\{\) UP\} \｛5 RIGHT\}"; :INPUT\#3, INS:IF IN \(\$=\) N \(\$\) THEN CLOSE3：GOTO 22 \(\emptyset\)
：rem 1 Ø6
560 FOR I＝1 TO 25 STEP3：B\＄＝MID \(\$(I N S, I):\) GOSUB \(320: I F \quad I<25\) \｛SPACE\} THEN GOSUB380:A (I/3 ） \(\mathrm{A} \quad\) ：rem 81
\(57 \emptyset\) NEXT：IF \(A<>C K\) THEN GOSUBI \(\varnothing\) 6Ø：PRINT＂\(\{\) BLK \} \{RVS\} ERROR: REENTER LINE［4 4 ＂：F＝1：GOT 044ø
：rem 161
580 GOSUB1ø80：B＝BS \(+\mathrm{AD}-\mathrm{SA}: F O R\) I \(=\varnothing\) TO \(7:\) POKE \(B+I, A(I): N E X T\) ：rem 245
\(590 \mathrm{AD}=\mathrm{AD}+8\) ：IF \(\mathrm{AD}>E A\) THEN CLOS E3：PRINT＂\(\{D O W N\}\{B L U\} * *\) END OF ENTRY＊＊\｛BLK\}\{2 DOWN \(\}\)＂ ：GOTO
：rem 207
\(600 \mathrm{~F}=\varnothing\) ：GOTO 440
：rem 84
610 PRINT＂\｛CLR\} \{DOWN\} \{RVS\} DIS PLAY DATA＂：GOSUB4øø：IF IN \(\$=N \$\) THEN 220
：rem 146
620 PRINT＂\｛DOWN\} \{BLU\}PRESS: \｛RVS\}SPACE \{OFF\} TO PAUSE, \｛SPACE \(\{\) \｛RVS \}RETURN \{OFF\} TO BREAKE4 \(\exists\{\) DOWN \(\} "\) ：rem 241
630 GOSUB 360 ：\(B=B S+A D-S A: F O R I=B\) TO \(B+7: A=\operatorname{PEEK}(I): G O S U B 350\) ： GOSUB380：PRINT \(S \$\) ；：rem 56
\(64 \varnothing\) NEXT ：PRINT＂\(\{\text { RVS }\}^{\prime \prime} ;: A=C K: G O\) SUB350：PRINT ：rem 144
\(65 \emptyset \mathrm{~F}=1: \mathrm{AD}=\mathrm{AD}+8: I \mathrm{~F}\) AD \(>\) EA THENP RINT＂\｛DOWN\}\{BLU\}** END OF \｛SPACE\}DATA **": GOTO220 ：rem 170
660 GET AS：IF A \(\$=R \$\) THEN GOSUB 1ø8ø：GOTO22Ø：rem 65
670 IF \(A \$=S \$\) THEN \(F=F+1\) ：GOSUB 1 ஏ8ø ：rem 28
680 ONFGOTO630，660，630：rem 224

690 PRINT＂\｛DOWN\} \{RVS\} LOAD DAT A＂：OP＝1：GOTO710 ：rem 31
\(70 \varnothing\) PRINT＂\｛DOWN\} \{RVS\} SAVE FIL E＂：OP＝ø
：rem 32
710 IN \(\$=\mathrm{N} \$\) ：INPUT＂\(\{\) DOWN\} FILENAM EK4＂\(;\) INS：IF IN\＄＝N\＄THEN22 －
：rem 229
\(720 \mathrm{~F}=\varnothing\) ：PRINT＂\(\{\) DOWN\} \{BLK\} \{RVS \(\}\) T\｛OFF\}APE OR \{RVS\}D\{OFF\}IS K： k 4 习＂
：rem 66
730 GET AS：IF AS＝＂T＂THEN PRINT ＂T（DOWN）＂：GOTO880 ：rem \(9 \varnothing\)
\(74 \varnothing\) IF AS＜＜＞＂D＂THEN73 \(:\) rem \(9 \varnothing\)
750 PRINT＂D\｛DOWN \}":OPEN15,8,15 ，＂Iの：＂：B＝EA－SA：IN\＄＝＂\(\varnothing: "+I N\) \＄：IF OP THEN810 ：rem 163
760 OPEN \(1,8,8\) ，IN\＄＋＂，\(P, W^{\prime \prime}:\) GOSU B860：IF A THEN220 ：rem 66
\(770 \mathrm{AH}=\mathrm{INT}(\mathrm{SA} / 256): \mathrm{AL}=\mathrm{SA}-\left(\mathrm{AH}^{*} 2\right.\) 56）：PRINT\＃1，CHR\＄（AL）；CHRS（ AH）；
：rem 221
\(78 \varnothing\) FOR \(\mathrm{I}=\varnothing\) TO B：PRINT\＃1，CHRS（ PEEK（BS＋I））；：IF ST THEN8øø ：rem 171
790 NEXT：CLOSE1：CLOSE15：GOTO94 \(\emptyset \quad\) ：rem 230
800 GOSUB1ø60：PRINT＂\｛DOWN\} \｛BLK\}ERROR DURING SAVE: 84 B ＂：GOSUB860：GOTO22ø ：rem 61
810 OPEN \(1,8,8\), IN \(\$+", \mathrm{P}, \mathrm{R}^{\prime \prime}:\) GOSU B860：IF A THEN22ø ：rem 57
\(82 \varnothing \mathrm{GET} \# 1, \mathrm{~A}, \mathrm{~B}: \mathrm{AD}=\mathrm{ASC}(\mathrm{A} \$+\mathrm{Z} \$)+\) 256＊ASC \((B \$+2 S): I F \quad A D<>S A T\) HEN \(\mathrm{F}=1:\) GOTO850 ：rem 155
\(83 \varnothing\) FOR \(\mathrm{I}=\emptyset\) TO B：GET\＃1，AS：POKE \(\mathrm{BS}+\mathrm{I}, \mathrm{ASC}(\mathrm{A} \$+\mathrm{Z} \$): I F\) ST AND （ \(I<>B\) ）THEN \(F=2: A D=I: I=B\)
：rem 180
840 NEXT ：IF ST＜＞64 THEN \(\mathrm{F}=3\)
：rem \(2 \varnothing\)
850 CLOSE1：CLOSE15：ON ABS（F＞\(\varnothing\) ） ＋1 GOTO960，970
：rem 12
860 INPUT\＃15，A，AS：IF A THEN CL OSE1：CLOSE15：GOSUB1Ø60：PRI NT＂ \(\left.\mathrm{R}^{2} \mathrm{RS}\right\}\) ERROR：＂AS：rem 114
870 RETURN
：rem 127
880 POKE183，PEEK \((\mathrm{FA}+2):\) POKE 187 ， \(\operatorname{PEEK}(F A+3)\) ：POKE188， \(\operatorname{PEEK}(F\) \(\mathrm{A}+4):\) IFOP \(=\emptyset\) THEN 920 ：rem 178
890 SYS 63466：IF（PEEK（783）AND 1 ）THEN GOSUB1ø60：PRINT＂
\｛DOWN\} \{RVS\} FILE NOT FOUND ＂：GOTO69ø
：rem 34
\(9 \varnothing 0 \mathrm{AD}=\operatorname{PEEK}(829)+256 \star \operatorname{PEEK}(830)\) ：IF AD \(<>\) SA THEN \(\mathrm{F}=1\) ：GOTO97 \(\stackrel{\square}{\square}\)
：rem 201
\(910 \mathrm{~A}=\operatorname{PEEK}(831)+256 * \operatorname{PEEK}(832)-\) \(1: F=F-2^{*}(A<E A)-3^{*}(A>E A): A D\) ＝A－AD：GOTO93 \(\varnothing\)
：rem 75
\(920 \mathrm{~A}=\mathrm{SA}: \mathrm{B}=\mathrm{EA}+1: \mathrm{GOSUB} 1010:\) POKE 780，3：SYS 63338 ：rem 107
\(930 \mathrm{~A}=\mathrm{BS}: \mathrm{B}=\mathrm{BS}+(\mathrm{EA}-\mathrm{SA})+1\) ：GOSUB1 010：ON OP GOTO950：SYS 6359 1
940 GOSUB1ø8ø：PRINT＂\(\{\) BLU \(\} * *\) SA VE COMPLETED＊＊＂：GOTO22ø
：rem 139
950 POKE147，Ø：SYS 63562：IF ST＜ \(>64\) THEN97ø
：rem 39
960 GOSUB1ø8ø：PRINT＂\｛BLU \(\} * *\) LO AD COMPLETED＊＊＂：GOTO220
：rem 126
\(97 \varnothing\) GOSUB1ø60：PRINT＂\({ }^{\text {（BLK }}\)（RVS \(\}\) ERROR DURING LOAD：\｛DOWN\} 84习＂：ON F GOSUB980，990，100 Ø：GOTO22 \(\varnothing\)
：rem 233
980 PRINT＂INCORRECT STARTING A DDRESS（＂；：GOSUB36ø：PRINT＂ ）＂：RETURN
990 PRINT＂LOAD ENDED AT＂\(;: A D=\) SA + AD：GOSUB360：PRINT DS：RE

TURN
：rem 159
1000 PRINT＂TRUNCATED AT ENDING ADDRESS＂：RETURN ：rem 166 \(1010 \mathrm{AH}=\operatorname{INT}(\mathrm{A} / 256): \mathrm{AL}=\mathrm{A}-(\mathrm{AH} * 25\) 6）：POKE193，AL：POKE194，AH
：rem 95
\(1020 \mathrm{AH}=\mathrm{INT}(\mathrm{B} / 256): \mathrm{AL}=\mathrm{B}-(\mathrm{AH} * 25\) 6）：POKE174，AL：POKE175，AH： RETURN
：rem 122
1030 IF AD \(<S A\) OR AD＞EA THEN105 \(\varnothing\)
：rem 135
1040 IF（AD＞511 AND AD \(<40960\) ）OR （AD＞49151 AND AD＜53248）TH EN GOSUB1080：F＝ø：RETURN ：rem 104
1050 GOSUB1ø6ø：PRINT＂\｛RVS\} INV ALID ADDRESS \｛DOWN\}\{BLK\}" ：F＝1：RETURN
：rem 224
1060 POKE SD \(+5,31\) ：POKE \(\mathrm{SD}+6,2 \varnothing\) 8：POKE SD，240：POKE SD \(+1,4\) ：POKE SD \(+4,33\) ：rem 19
1070 FOR \(\mathrm{S}=1\) TO 100：NEXT：GOTO1 090 ：rem 90
\(1 \varnothing 80\) POKE SD \(+5,8:\) POKE \(S D+6,240\) ：POKE SD， \(0:\) POKE SD \(+1,90:\) P OKE SD＋4，17
：rem 182
1090 FOR S＝1 TO 100：NEXT：POKE \｛SPACE\} SD \(+4, ~ \varnothing:\) POKE SD，\(\varnothing: P\) OKE \(S D+1, \varnothing\) ：RETURN ：rem 8

\section*{Program 2：MLX For Apple}

Version by Tim Victor，Editorial Programmer
\(1 \varnothing \varnothing \mathrm{~N}=9\) ：HOME ：NORMAL ：PRIN T＂APPLE MLX＂：POKE 34，2：0 NERR GOTO \(61 \varnothing\)
110 VTAB 1：HTAB 29：PRINT＂STA RT ADDRESS＂；：GOSUB 53פ：IF \(A=\varnothing\) THEN PRINT CHR \(\$ 17\) ）：GOTO \(11 \varnothing\)
\(120 \mathrm{~S}=\mathrm{A}\)
130 VTAB 2：HTAB 20：PRINT＂END ADDRESS＂；：GOSUB 530：IF \(s>=A\) OR \(A=\varnothing\) THEN PR INT CHR\＄（7）：GOTO 136
\(14 \varnothing E=A\)
\(15 \varnothing\) PRINT ：PRINT＂CHOOSE：（E）NT ER DATA＂；：HTAB 22：PRINT＂ （D）ISPLAY DATA＂：HTAB 8：PR INT＂（L）DAD FILE（S）AVE FI LE（Q）UIT＂：PRINT
160 GET A\＄：FOR I＝ 1 TO 5：IF AS＜＞MID\＄（＂EDLSQ＂，I，1）T HEN NEXT ：GOTO \(16 \square\)
17ø ON I GOTO 27ø，22ø，18ø，2ø日： POKE 34，\(\varnothing\) ：END
18ø INPUT＂FILENAME：＂；A\＄：IF A \＄＜＞＂＂THEN PRINT CHR\＄ （4）；＂BLOAD＂；A\＄；＂，A＂；S
190 GOTO 150
2øø INPUT＂FILENAME：＂；A\＄：IF A \＄＜＞＂＂THEN PRINT CHR\＄ （4）；＂BSAVE＂；A\＄；＂，A＂；S；＂，L＂ ；E－S
210 GOTO \(15 \varnothing\)
220 GOSUB 596：IF \(B=\varnothing\) THEN 15 ．
230 FOR \(B=B\) TO E STEP B：L \(=4\) ：\(A=B:\) GOSUB 58D：PRINT A\＄ ；＂：＂；：L＝ 2
\(24 \varnothing\) FOR \(F=\emptyset\) TO 7：V（F＋1）\(=P\) EEK（B＋F）：NEXT ：GOSUB 5 60：V（9）＝C
250 FOR \(F=1\) TO \(N: A=V(F): G O\) SUB 58ø：PRINT A\＄＂＂；：NEXT ：PRINT ：IF PEEK（49152） ＜ 128 THEN NEXT
\(26 \varnothing\) POKE 49168，Ø：GOTO \(15 \emptyset\)
27ø GUSUB 59ø：IF \(\mathrm{B}=\varnothing\) THEN 15 g
\(28 \varnothing\) FOR B \(=\mathrm{B}\) TO E STEP B

290 HTAB \(1: A=B: L=4:\) GOSUB 5 8®：PRINT A\＄；＂：＂；：CALL 64 668：A\＄\(=" 11: P=\) ：GOSUB 33 \(\varnothing_{\text {：}}\) IF \(L=\varnothing\) THEN 150
309 GOSUB 479：IF \(F<>N\) THEN PRINT CHR \(\$\)（7）；：GOTO 29ø
310 IF \(N=9\) THEN GOSUB 560：IF c \(<\gg(9)\) THEN PRINT CHR \(\$\) （7）；：GOTO 290
329 FOR \(F=1\) TO B：POKE B＋F \(-1, V(F):\) NEXT ：PRINT ：NE XT ：GOTO \(15 \varnothing\)
330 IF LEN（A\＄）\(=33\) THEN AS \(=\) O\＄： \(\mathrm{P}=0\) ：PRINT CHR\＄（7）；
\(340 \mathrm{~L}=\operatorname{LEN}(\mathrm{A} \$): 0 \$=\mathrm{A}: 0=\mathrm{P}:\) \(\mathrm{L} \$=\mathrm{m}=\mathrm{IF} \mathrm{P}>\boldsymbol{\mathrm { I }}\) THEN L\＄＝ LEFT\＄（ \(\mathrm{A} \$, \mathrm{P}\) ）
\(350 \mathrm{R} \$=\mathrm{n}\)＂：IF \(P<L-1\) THEN R\＄\(=\) RIGHT \(\$(A \$, L-P-1)\)
360 HTAB 7：PRINT L \(\$\) ；：FLASH ： IF \(P\)＜L THEN PRINT MID \((A\) \＄， \(\mathrm{P}+1,1\) ；；NORMAL ：PRINT R\＄；
\(37 \otimes\) PRINT＂＂；：NORMAL
\(380 \mathrm{~K}=\operatorname{PEEK}\)（49152）：IF K＜ 12 8 THEN 389
398 POKE 49168， \(8: K=K-128\)
400 IF \(K=13\) THEN HTAB 7：PRIN T A\＄；＂＂；：RETURN
410 IF \(K=32\) OR K \(>47\) AND \(K<\) 58 OR K＞ 64 AND K＜ 71 TH
\(E N A \$=L \$+C H R \$(K)+R \$:\) \(P=P+1\)
420 IF \(K=4\) THEN \(A \$=L \$+R \$\)
430 IF \(K=9\) THEN \(A \$=L \$+\cdots\) \(+\operatorname{MID} \$(A \$, P+1,1)+R \$\)
440 IF \(K=B\) THEN \(P=P-(P)\) ø）
450 IF \(K=21\) THEN \(P=P+(P<\) L） 330
460 GOTO 330
\(479 \mathrm{~F}=1: \mathrm{D}\)
EN（A\＄）©：FOR \(P=1\) TB L IF \(F\) ） \(\mathrm{C} \$=\mathrm{MID} \$(A \$, P, 1)\) ： EN RETURN
480 IF C \(\$<>"\)＂THEN GOSUB 5 20：\(V(F)=J+16 *(D=1)\) ＊\(V(F): D=D+1\)
490 IF \(D>\infty\) AND \(C \$=" \|\) OR D \(=2\) THEN \(D=\varnothing: F=F+1\)
\(5 \emptyset \varnothing\) NEXT ：IF \(D=\varnothing\) THEN \(F=F\) － 1
510 RETURN
\(520 \mathrm{~J}=\mathrm{ASC}\)（Cs）： \(\mathrm{J}=\mathrm{J}-48-7\) （（ \(J \gg 6\) ）：RETURN
\(530 \mathrm{~A}=\varnothing\) ：INPUT A\＄：A\＄\(=\) LEFT \(\$\) （A\＄，4）：IF LEN（A\＄）\(=\varnothing\) THE N RETURN
540 FOR \(P=1\) TO LEN（A\＄）：C \(=\) MID\＄（A\＄，P，1）：IF C
 C \(\$>\)＂Z＂THEN \(A=\varnothing\) ：RETUR N
559 GOSUB 520：A \(=A * 16+J: N\) EXT ：RETURN
\(560 \mathrm{C}=\mathrm{INT}(\mathrm{B} / 256): \mathrm{C}=\mathrm{B}-2\) 54＊C－255＊（ \(C>127\) ）： C \(=\) C－255＊（ \(C>255\) ）
570 FOR \(F=1\) TO 8：C＝C 2 － 255 （ \((C>127)+V(F): C=\) C－255＊（ \(C>255\) ）：NEXT： RETURN
\(58 \varnothing 1=F R E(\varnothing): A \$=n "\) FOR \(I\) \(=1\) TO L：T \(=\) INT \((A \mid 16)\) ： A\＄＝MID\＄（＂ø123456789ABCD \(E F ", A-16 * T+1,1)+A A_{1}\) \(A=T:\) NEXT ：RETURN
59® PRINT＂FROM ADDRESS＂；：GOS UB 530：IF \(S>A O R E<A O\) R \(A=\varnothing\) THEN \(B=\varnothing\) RETURN
\(6 \varnothing \varnothing B=5+B \#\) INT（ \((A-S) /\) B）：RETURN
610 PRINT＂DISK ERROR＂：GOTD 15

\section*{SOFTWARE}

THE INVESTMENT MANAGER a program for the 64 guaranteed to out-perform any other method. Comes with two programs to help your investment plan. All three \(\$ 19.95\) or write for free details to: Author's Club Software, 6027 S. High, Suite 410, Oklahoma City, OK 73149

TI-99/4A QUALITY SOFTWARE for Business, Home and Entertainment ** BONUS Software Offer! **Send for FREE Catalog to MICRO-BIZ HAWAII, Box 1108 Pearl City, HI 96782

TI-99/4A Software/Hardware bargains Hard-to-find items. Huge selection. Fast service. Free catalog. D.E.C., Box 690, Hicksville, NY 11801

BIBLE QUIZ GAMES and other Bible software for the C64. Fun and learn for all ages. BIBLE-MATCH-WITS I (easy), II (hard). STAIRWAY TO HEAVEN 1, 2, 3. Colorful, animation, graphics, and sound. Each \(\$ 29.95\) Order or send SASE for brochure to COMPEDS, P.O. Box 147, Narrows, VA 24124

STAR TRADER a program for 2 to 5 players. Show off your 64 when guests come over. Gomuko compiled basic program 15 by 15 board, Unmove, load/save game user changable logic \(\$ 14.95\) each. Author's Club Software, 6027 S. High, Suite 410, Oklahoma City, OK 73149
/SPEEDPAK/-C64 Speedscript \(3.0+\) enhancer. Adds alt. screens, macros, encryption, help screen, chr. set, mail merge \& more! Disk. \$15 to: /SPEEDPAK/ P.O.B. 22022, Dept. C1, Greensboro, NC 27420
COMPUQUEST ADVENTURES, Direct for less! 48 K Atari (D), Apple (D), C64 (D or T), 48 K Spec trum (T). New Special: "Transported" \(\$ 12.95+\) \(\$ 3 \mathrm{~s} / \mathrm{h}\) (WI res. \(5 \%\) tax) to: COMPUQUEST, Box A492, St. Croix Falls, WI 54024. SASE for info.

MORSE CODE COURSE FOR COMMODORE 64 for the beginner as well as the AMATEUR who wants to improve speed. For info: F. Ardavin, 1254 Sweet Pine Dr., Norcross, Georgia 30093. Or send \(\$ 19.95\) for disk.
MEDICAL COMPUTER PROGRAMS in basic, \$20/booklet, Alan Kwasman, MD, 2844 Taurus, Riverside, CA 92503
(714) 785-8957

TI-99/4A - 130 PROGRAMS \(\$ 3\) EACH! Catalog \(\$ 1\), refunded. Nuts \& Bolts, diskfull of 100 mergeable utilities \(\$ 19.95\) ppd. Tigercub Tips, diskfull of 50 programs \& C \(\$ 15\) ppd. TIGERCUB, 156 Collingwood, Columbus, OH 43213

FANTASTIC DAILY NUMBER FORECASTER! Guaranteed Winners or Money Back! Picks up to 3 STRAIGHT WINNERS most every week, playing 1 to 3 a day! Apple, IBM, C64, Atari, 1 drive. Many reports of hitting for THOU\$AND\$. Send SASE for info. \(\$ 99.95\) on disk only to: Z-Way, P.O. Box 9017, Canton, OH 44711

APPLE, ATARI AND COMMODORE OWNERS!! DISCOUNT PRICES ON NAME BRAND SOFT-
WARE. SEND SASE FOR PRICE LISTING. SOFTWARE BROTHERS, POB 07095, MILW. WI 53207

TI-99/4A NEW STATES AND CAPITALS GAME
Hi-Res map of USA. Send \(\$ 12\) for cass. Or \(\$ 1\) for more info, to: TRINITY SYSTEMS 1022 Grandview, Pittsburgh, PA 15237

PROGRAMS FOR THE TANDY 1000
Send \(\$ 1\) for list of educat. \& entertain.
progs. Refundable with first purchase.
SODA POP SW, POB 653, Kenosha, WI 53141
MAILBOX - Fun, easy, efficient electronic mail for single station, multiuser C-64; passwords, printable output \& more;
also a great game for kids; disk only \(\$ 7.95\).
Pete Kvale, 3156 Choctaw, Memphis, TN 38111

\section*{HARDWARE}

IBM PC for Christmas? Build a compatible for a fraction of the cost. Easy to assemble. Write for free datalogue to JV Systems, P.O. Box 9807, Brook Park, OH 44142 or call (216) 842-4313

COMMODORE C128 80-CHARACTER CABLE. No need for RGB1 monitor. 80 char. on reg. monitor. Just \(\$ 9.95+\$ 2 \mathrm{~s} / \mathrm{h}\) to: UNITED RESEARCH, 7723 R'Horse Ln,, Boerne, TX 78006

\section*{MISCELLANEOUS}

64 AUTHOR'S CLUB - We get you published. Send for free demo-disk. Send \(\$ 5.00\) shipping and handling to: Author's Club, 6027 S. High, Suite 410, Oklahoma City, OK 73149

\section*{HELP IS ON THE WAY!}

Just call 1-800-334-0868 to get your free copy of the latest COMPUTE! Books Catalog! If you need help in getting information on all of the latest COMPUTE! book titles available plus all COMPUTE! backlist titles, call us today!
* MR. SOFTWARE CO. ALL POPULAR TITLES *
- Printers, Monitors, Drives, VISA, MC *
heavy discounts - Send \(\$ 1.00\) for catalog
11-9 Exton Complex, Somers Point, NJ 08244

HACKER'S HELPER holds magazine or book upright and keeps your place. It's like having three extra hands. Send \(\$ 24.95\) to John Keener, RD\#3, Butler, PA 16001

C64 USERS - FREE BROCHURE! Game and instructional programs, each include detailed analysis, beg. or int. level. SASE to:
C16 H.O.S, 19730 Ave 18, Madera, CA 93637
FREE CATALOG - TI-99, COMMODORE, IBM. SPECIFY. Hardware, Software, Accessories. Competition Computer, 2629 W. National, Milwaukee, WI 53204 (800) 662-9253

1541 PERMANENT ALIGNMENT \$35. C64 repair \$55, 1541 repair \$85. DI-TECH, 701 East North Ave., \#C Lompoc, CA 93436 (805) 736-9727

Maxell MD1, \$1.29-MD2, \$1.99. Dysan 104/1D, \$1.79-104/2D, \$2.39. Shipping \$3.75. Also Verbatim, IBM, 3M, BASF. TAPE WORLD, 220 Spring St., Butler, PA 16001, 1-800-245-6000. Visa, MC.

DISK SALE! - SS/DD \(35-\) trk for Apple w/sleeve \& label- \(10 / \$ 5.80\), bulk- \(100 / \$ 45\). Standard SS/DD w/sleeve \& label-10/\$7.50, bulk\(100 / \$ 59\). DS/DD \(w /\) sleeve \& label-10/\$8.50, bulk-100/\$67. \(3^{1 / 2 \prime} 2^{\prime \prime}\) SS for Mac-10/\$19.99. PREMIUM QUALITY, LIFETIME WARRANTY! Money-back satisfaction guarantee! Min. order \(\$ 20\). Send check or pay by MC/VISA/AE \(\$ 3\) shipping, \(+\$ 2\) if C.O.D. - UNITECH, 20 Hurley St., Cambridge, MA 02141. (800) 343-0472, in Mass. (617) "UNI-TECH".

\section*{COMPUTE! Classified is a low-cost way to tell over 350,000 microcomputer owners about your product or service.}

Rates: \(\$ 25\) per line, minimum of four lines. Any or all of the first line set in capital letters at no charge. Add \(\$ 15\) per line for boldface words, or \(\$ 50\) for the entire ad set in boldface (any number of lines.)
Terms: Prepayment is required. Check, money order, American Express, Visa, or MasterCard is accepted. Make checks payable to COMPUTE! Publications.
Form: Ads are subject to publisher's approval and must be either typed or legibly printed. One line equals 40 letters and spaces between words. Please underline words to be set in boldface.
General Information: Advertisers using post office box numbers in their ads must supply permanent address and telephone numbers. Orders will not be acknowledged. Ad will appear in next available issue after receipt.
Closing: 10th of the third month preceding cover date (e.g., June issue closes March 10 th). Send order and remittance to: Harry Blair, Classified Manager, COMPUTE!, P.O. Box 5406 , Greensboro, NC 27403. To place an ad by phone, call Harry Blair at (919) 275-9809.

Notice: COMPUTE! Publications cannot be responsible for offers or claims of advertisers, but will attempt to screen out misleading or questionable copy.

\section*{Statement of Ownership, Management, and Circulation as Required by 39 U.S.C. 3685}

1A. COMPUTE!
1B. 537250
2. \(9-27-85\)
3. Monthly

3A. Twelve
3B. \(\$ 24.00\)
4. 324 West Wendover Ave., Suite 200, Greensboro, NC 27408
5. Same
6. Publisher, James Casella, 825 Seventh Avenue, New York, NY 10019 Editor, Robert C. Lock, 324 W. Wendover Ave., Suite 200,
Greensboro, NC 27408
Managing Editor, Kathleen Martinek, 324 W. Wendover Ave., Suite 200, Greensboro, NC 27408
7. American Broadcasting Companies, Inc., 1330 Ave. of the Americas, New York, NY 10019
8. N/A
9. N/A
10. Extent and Nature of Circulation
\begin{tabular}{|c|c|c|}
\hline & Average no. of copies each issue during preceding 12 months & Actual no. copies of single issue published nearest to fliling date \\
\hline A. Total no. Copies (Net Press Run) & 552,208 & 535,075 \\
\hline \begin{tabular}{l}
B. Paid Circulation \\
1. Sales through dealers and carriers, street vendors, and counter sales
\end{tabular} & 138,289 & 105,889 \\
\hline 2. Mail subscriptions & 210,410 & 247,404 \\
\hline C. Total Paid Circulation & 348,699 & 353,293 \\
\hline D. Free Distribution by mail, carrier, or other means, samples, complimentary and other free copies & 440 & 1.049 \\
\hline E. Total Distribution & 349,139 & 354,342 \\
\hline \begin{tabular}{l}
F. Copies not Distributed \\
1. Office use, left over, unaccounted for, spoiled after printing
\end{tabular} & 18,453 & 7.232 \\
\hline 2. Returns from news agents & 184,616 & 173.501 \\
\hline G. Total & 552,208 & 535.075 \\
\hline
\end{tabular}

I certify that the statements made by me above are correct and complete, James Casella, Publisher.

\section*{IT'S IIKE TREE DSXKTIIS Your \(51 / 4^{\prime \prime}\) single side disks are usable on the other side. You paid for one side, why not use he other...IT'S FREE! \\ Nibble Notch will open your new disk. It's easy... won't harm existing data. Try it!}
nibble notch I nibble notch II

For Apple, Franklin, Commodore \& Atari (w/Atari Drives); square notch. only \({ }^{5} 4^{95^{\circ}}\) DISK OPTMMIERIC
Apple II Series Software Pro DOS • DOS 3.3•Pascal Examines your new disk, locks out bad sectors and certifies it 100\% ERROR-FREE in 30 seconds or less! Also checks drive speed... and more!

For all other computers; square notch \& index hole.

-add \(\$ 2\) (\(\$ 5 \mathrm{frgn})\) for P\& H.FI. Res add 5\% Sales Tax

4211 NW 75th TERRACE, • DEPT. 662 LAUDERHILL, FL 33319

\section*{IS IT POSSIBLE TO MAKE THE BEST ANY BETTER?!}

And it still has:
- Built-in Self Test with Status Report
- Microprocessor controlled emulation of Commodore printers for compatability with popular software

\section*{NEW INTRODUCTORY SALE!} PRICE
OR
\(\$ 79.00\) with trade in of your old interface
Universal Input/Output Board for C-64 \& C-128
- 16 Channel 8 -bit A/D converter with 100 microsecond sampling time.
- 1 D/A output
- 16 high voltage/high current discrete output
- 1 EPROM socket
- Use multiple boards for additional channels up to 6 boards

MW-611
\(\$ 225.00\)

Dealer Inquiries invited
VISA

Micro World Computers, Inc. (303) 987-9531
3333 W. Wadsworth Blvd. \#C105
Lakewood, CO 80227

The MW-350 is getting better with age because of these new additions:
- Standard 4K Buffer
- Special Software Modes
- Supports more printers

\section*{大 \(\boldsymbol{k} \boldsymbol{k} \boldsymbol{k} \boldsymbol{k} \boldsymbol{k} \boldsymbol{k} \boldsymbol{k} \boldsymbol{k} \boldsymbol{k}\)}
- Optional Transparent Mode
- External switch selectable Commodore graphics mode for Epson, Star Micronics, C. Itoh Prowriter, Okidata, Seikosha, Banana, BMC, Panasonic, MannesmanTalley. Think Jet \& others.
\(\$ 89.00\)

\section*{LEARN PROGRAMMING}

\section*{\(\sqrt{\text { Varwusic }}\)}

23 PARK ROW, NEW YORK, N.Y. 10038

NOTE:Cugry A PuL ure of AuDio Yoto ANO CONPUTES is

AIL PRODUCTS CARRY U.S. WARRANTIES ALL DEFECTIVE PRODUCTS EXCHANGED WITHIN 30 DAYS

\(\square\) anano noto aws orex whor atucas row wnt

23 PARK ROW, DEPT. C1, NYC, NY 10038
NAME:
ADDRESS: \(\qquad\)
CITY:
CITY
=Advertisers Index

Reader Service Number/Advertiser
Page
102 Abacus Software
55
103 Abacus Software Batteries Included 57 11 104 Blackship Computer Supply 128 105 Brederbund Software, Inc. . 41
106 Brederbund Software, Inc. IBC
CBS Video Club 35

\section*{Commodore}

BC
107 CompuServe IFC-1 ComputAbility 101

\section*{108 Computer Book Club}

65
109 Computer Direct
73
110 Computer Direct
75
111 Computer Mail Order . . .50-51
112 Electronic Arts
49
113 EPYX
29
114 EPYX 31
115 EPYX
33
First Class Peripherals 105
116 Future Systems Marketing Halix Institute 127 61

117 Heath Company
22
118 infocom 53
\(119 \mathrm{~J} \&\) R Music World
128
Lyco Computer
58-59
120 MegaSoft, Ltd.
9
121 Microprose Simulation Software

7
Micro World Computers, Inc.

127
122 Mimic Systems 43
123 Mindscape, Inc. 18-19
124 Mindscape, Inc.
\(\begin{array}{r}\text { 8-19 } \\ \hline 21\end{array}\)
125 Mindscape, Inc. 23Pago
Roador Sorvico Numbor/Advertisor
126 Nibble Notch Computer Products 127
127 99/4A National Assistance Group 87
NRI Schools 34
128 Okidata 2-3
129 Precision Data Products 128
130 Professor Jones 91
131 Protecto 70-71
132 Protecto 77
133 Quinsept, Inc. 84
134 Simon \& Schuster 22
135 Source Telecomputing Corporation 69
Spinnaker 12-13
Spinnaker 14-15
136 Strategic Simulations, Inc. 45
137 subLOGIC Corporation 39
138 Timeworks, Inc. 4
139 USA \(\star F L E X\) 91
140 Viewtron 96-97
141 White House Computer 84
Classified Ads 126
COMPUTEI Bestsellers 26-27
COMPUTEI's Disk 67
COMPUTEI's Programmer's Guides for the Amiga, Atari ST and Commodore 128 47
COMPUTE! Subscription 17

\[
\begin{equation*}
\text { Vol. } 2 \tag{63}
\end{equation*}
\]

Foolish to pay more. Dangerous to pay less.
ouality meia LHEETME heplacement guafantie Hub rimas Trwe eps. white pootects
\(5.25^{\prime \prime}\) SSDD
\(5.25^{\prime \prime}\) DSDD

1-100 101+
PC FORMATTED
AT \(1.2 \mathrm{MB} / 3.51 \mathrm{D}\) (Mac) \(\quad 1.99\) CALL P.O. Box 883362

BLACKSHIP San Francisco, CA 94188
COMPUTER SUPPLY USA USA orders 800-431-6249 In Canada 403-428-6229 Add \(\$ 3.00\) shipping and handing per 100 Diskettes. COD add \$1.95 (CA residents add \(6.5^{\circ}\) sales tax) VISA MC COD

\section*{COMPUTEI's}

\section*{FREE Reader Information Service}

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.
Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.
Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTEI, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.
Use these cards and this address only for computel's Reader Information Service. Do not send with payment in any form.

\section*{COMPUTE!}
\begin{tabular}{lllllllllllllllll}
101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115 & 116 & 117 \\
118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 \\
135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 \\
152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 \\
169 & 170 & 171 & 172 & 173 & 174 & 175 & 176 & 177 & 178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 \\
186 & 187 & 188 & 189 & 190 & 191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 & 201 & 202 \\
203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 \\
220 & 221 & 222 & 223 & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235 & 236 \\
237 & 238 & 239 & 240 & 241 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 252 & 253
\end{tabular}

Please print or type name and address. Limit one card per person.
\begin{tabular}{ll}
Name & \\
\hline Address & \\
\hline City & Zip \\
\hline State/Province & \\
\hline Country & \\
\hline Please Include ZIP Code & Expiration 2/28/86
\end{tabular}

\section*{SUBSCRIBE TO COMPUTE!}

For Fastest Service, Call Our Toll-Free
US Order Line
800-334-0868
in NC call 919-275-9809
\(01 \square\) Apple
02 \(\square\) Atari
\({ }_{03}\) Commodore 64
\(04 \square \mathrm{VIC}-20\)
\({ }_{05} \square\) IBM \(\square\) TI-99/4A - Don't yet have one.
\(\square \$ 18.00\) One Year US Subscription
-\$36.00 Two Year US Subscription
(Readers outside of the US, please see our foreign readers subscription card or inquire for rates).

Name
Address
\begin{tabular}{ll}
City & State \\
\hline\(\square\) Payment Enclosed \(\square\) Bill me & \\
Charge my: \(\square\) VISA \(\square\) MasterCard \(\square\) American Express \\
Account No. & Expires
\end{tabular}

\title{
COMPUTEI Reader Service P.O. Box 2141 Radnor, PA 19089
}

\section*{BUSINESS REPLY MAIL}

\title{
Reserve my FREE Hour and Rush my Viewtron Starter Kit \\ To order, mail this card or call anytime: 1 (800) 543-5500, Dept. 9014.
}

Name \(\qquad\)
(Ilease print)
Address \(\qquad\)
City/State/Zip
Phone Number ()
Credit cards only; sorry, no checks.

Signature:
Yes, send me one of the Viewtron products checked below.
Description
Cost Here
Viewtron Starter Kit for my:
Commodore 64 or 128
\$ 9.95
Apple IIe, II + or IIc
\$ 9.95
IBM PC or PC Compatible
\$ 9.95
Other type of computer. I already have communications
software which includes VT100 emulation, such as
"Crosstalk" or "MacTerminal"
\$ 9.95
MODEM PACKAGE FOR COMMODORE 64 or 128
300 Baud Volks 6420 by Anchor Automation with
FREE Viewtron Starter Kit
\$ 49.95
MODEM PACKAGES FOR APPLE IIs
I have an Apple \(\square\) IIe \(\square\) II \(+\square\) IIc
300 Baud Signalman Mark X with FREE Viewtron
Starter Kit
\$ 99.95
300 Baud Signalman Mark X, and Apricorn serial card
(for use with Apple II + or IIe) with FREE Viewtron
Starter Kit . \(\$ 159.90\)

Satisfaction Guaranteed or your money back. All modem offers include cable (where necessary). If for any reason you are not satisfied, send back the merchandise within 30 days to receive a full refund. Sorry, no C.O.D's. Allow \(2-4\) weeks for delivery. Shipping included. Florida, Illinois and New York residents willhayethe approgriate sales axa addedto odicir order. Offers expire February 28, 1986.

NO POSTAGE NECESSARY IF MAILED

IN THE UNITED STATES

\title{
BUSINESS REPLY CARD FIRST CLASS PERMIT NO. 19696 MIAMI, FL
}

Postage will be paid by addressee
Viewtron
The New, Easier-to-Use On-Line Service Viewdata Corporation of America, Inc. P.O. Box 317678

Cincinnati, Ohio 45231

\title{
ONE GOOD THING LEADS of ANOTHER.
}

RODUCTIVITY SOFTWARE
ISN'T VERY PRODUCTIVE IF it's so complicated to learn, so complicated to use, that it never is used.
So when we sat down to design the Bank Street Writer," we kept one important objective in mind: to combine all the powerful features that people need in an affordably-priced word processor and make it so easy to use that just about anyone will be productive in moments.
We must have succeeded. The Bank Street Writer is the number one word processing choice of over 300,000 users worldwide.
Now, that same philosophy can be found in a complete series of productivity software: the Bank Street Speller,,

THE BANK STREET WRITER lets you write letters, memos, articles or lengthy reports, better and faster. Continually enhanced and updated since its introduction three years ago, the Bank Street Writer is packed with features usually found only in far more expensive programs.
THE BANK STREET SPELLER finds and highlights spelling errors and suggests correct spellings; proofreads even the longest documents in seconds. The 31,000 word electronic dictionary can be amended with your own entries, including special terms, trademarks and proper names.

BANK STREET PRODUCTS FROM BRøDERBUND MAKE IT EASY TO MAKE YOUR COMPUTER WORK HARD.

Bank Street Filer" and Bank Street Mailer." All the features you'll ever need. None of the complications you don't need. The perfect complements to the Bank Street Writer.

THE BANK STREET FILER helps you organize information and print out custom reports in moments. Collect, explore, organize and manipulate data in a variety of natural and flexible ways. For stamp collections or small business record keeping... for home financial and tax data... for bibliog raphies and reference files... for just about any kind of information you want to store and retrieve, the Bank Street Filer is as simple as using a file cabinet - only much faster, more convenient and more flexible.

Bank Street products from Brøderbund give you more power for less money with less hassle. And when you think of it, that's the best kind of "productivity."

THE BANK STREET MAILER. Whether you write occasional letters, produce a monthly newsletter or send out mailings to a long list of clients, the Bank Street Mailer does it quickly, easily and efficiently. You can insert names or addresses into a form letter, or send a personalized mailing to customers sorted by zip code, street address or any other aspect of your files. The Mailer can be used by itself (with its own built-in letter-writer) or with letters and lists from the Bank Street Writer and Filer.

\section*{All you need to do this}

graph a spreadsheet

write a novel

fix an engine

compose a song

paint a picture

learn to fly

organize a data base

tell a story

forecast sales

When it comes to persönal computers, you want the smartest you can own. At a price that makes sense.

The new Commodore \(128^{\mathrm{mm}}\) system has a powerful 128 K memory, expandable to 512 K . An 80 -colurin display and 64, 128 and \(C P / M^{\oplus}\) modes for easy access to thousands of educational, business and home programs. And a keyboard, with built-in numeric
keypad, that operates with little effort.
Discover the personal computer
that does more.for you. At the price you've been waiting for
.From the company that sells
more personal computers
than IBM \({ }^{\ominus}\) - 0 Apple.

A Higher:ntelligènce```

[^0]: Saving Key Definitions
 The soft key buffer is just a section

[^1]: Signature

 - Residents of CA, NV and PA, please add appropriate sales tax.

[^2]: 7øø0：7C C6 DE DE CØ CØ 78 Øø 94 7øø8：øø Øø 78 ØС 7 C CC 76 Øの BC
 7ø18：Øø ØØ 3C $66 \quad 6066$ 3C ØØ FB 7ø20：ØE Ø6 Ø6 $3 \mathrm{E} 66 \quad 66$ 3F øø 79

 7ø38：Øø Øø 76 CC CC 7C ØC F8 1E

