You never know who you will meet or what will be said when you're on American People/Link.

AMERICAN PEOPLE/LINK ${ }^{\top M}$ users meet a lot of different people. That's because PEOPLE/LINK - the nation's first all entertainment videotex
network - allows anyone with a word processor, personal computer or terminal, and a modem to communicate with other users throughout the country from the privacy of their own homes.

Sometimes these electronic conversations are serious...sometimes they're outrageous...but they will always keep your interest as you talk to friends and make new ones. PEOPLE/LINK's recreational programs include:
PARTYLINE - Meet people and talk live with other PEOPLE/LINK members throughout the country in groups or privately.

CLUB-LINK - Join or start a club or group devoted to a favorite hobby, rock group, lifestyle, etc.
WHO-IS-WHO - locate other users with similar interests.
And there's much more with programs like NETMAIL, our person-to-person electronic mail, PEOPLESCAN, the national bulletin board system, and play games such as poker, blackjack, checkers, chess, backgammon, and bridge (color graphics are available for most popular computers).
And the greatest thing is that you don't have to be a computer whiz or even know how to type to use PEOPLE/LINK...just be smart enough to subscribe now!

Talk live nationwide for $\$ 2.95 /$ hour* *. . . an exciting and inexpensive way to meet new friends.

All Machine Language Word Processor For Expanded VIC-20

yeur cyer

Charles Brannon, Program Editor

COMPUTE! continues its SpeedScript 3.0 series this month with our enhanced version for the Commodore VIC-20 (with at least 8 K memory expansion). Written entirely in machine language, SpeedScript contains nearly every command and convenience you'd expect from a quality word processor. First introduced in the January 1984 issue of our companion magazine, COMPUTE!'s GAZETTE, SpeedScript incorporates a year's worth of improvements, readers' suggestions, and additional debugging. Because the VIC version is so similar to the Commodore 64 version, refer to last month's article for a full tutorial-style explanation. This month's article is an abbreviated description. Look for the Atari and Apple versions of SpeedScript 3.0 in coming issues.

SpeedScript 3.0, though compact in size (6 K), has many features found on commercial word processors. SpeedScript is also very easy to learn and use. You type in everything first; preview and make corrections on the screen; insert and delete words, sentences, and paragraphs; then print out an error-free draft, letting SpeedScript take care of things like margins, centering, headers, and footers.

Entering SpeedScript

SpeedScript is one of the longest machine language programs we've ever published, but the MLX entry system helps you type it right the first time. MLX can detect most errors people make when entering numbers. (See the MLX article elsewhere in this issue.) MLX also lets you type SpeedScript in more than one sitting. (Unfortunately, if you have an earlier version of SpeedScript, you cannot just make certain changes to bring it up to version 3.0. You have to type it
from scratch.) Although the program listing is lengthy, we guarantee the effort will be worthwhile. Before you begin typing SpeedScript (or begin a subsequent session of typing if you enter SpeedScript in more than one sitting), you must enter the following POKEs before you load and run the MLX program. These POKEs are essential to protect SpeedScript from BASIC while you are typing it in. Again, these POKEs should be performed before you load MLX, but are not necessary to run the finished SpeedScript program:

POKE 44,42:POKE 10752,0:NEW

Now load and run the VIC version of MLX (remember that you need at least 8 K memory expansion to run VIC MLX). Answer the first two questions like this:

Starting Address? 4609
 Ending Address? 10482

The screen will then show the first prompt, the number 4609 followed by a colon. Type in each three-digit number shown in the listing. You do not need to type the comma shown in the listing. MLX inserts the comma automatically.

The last number you enter in each line is a checksum. It represents the values of the other numbers in the line summed together. If you make a mistake while entering the line, the checksum calculated by MLX and displayed on the screen should not match that of the listing, and you will have to retype the line. MLX is not foolproof, though. It's possible to fool the checksum by exchanging the position of the three-digit numbers. Also, an error in one number can be offset by an error in another (just as $3+4+7=1+4+9$). Keep this in mind. MLX will help catch your errors, but you still must be careful.

Typing In Multiple Sittings

If you want to stop typing the listing at some point and pick up later, press SHIFT-S and follow the screen prompts. Remember to note the line number of the last line you typed in. When you are ready to continue typing, enter the POKEs mentioned above, load MLX, answer the starting and ending address prompts, then press SHIFT-L. MLX asks for the filename you gave to the partially typed program. After the LOAD is complete, press SHIFT-N and tell MLX the line number you stopped at. Now continue typing as before. When you finish all typing, MLX automatically prompts you to save the program.

At this point MLX has saved a program file on tape or disk. If you load it and list it, you'll see that it looks like a normal oneline BASIC program, with a line number and a SYS command. The machine language program that is SpeedScript starts in memory just after the SYS command. The simulated BASIC line is included so you can load SpeedScript like any BASIC program and enter RUN to start it. You don't need to add the ", 1 " like you do when loading many machine language programs. Just LOAD "SPEEDSCRIPT" (or whatever filename you called it) for tape, or LOAD "SPEEDSCRIPT", 8 for disk, then enter RUN. Once SpeedScript is in memory, you can save it from BASIC like a BASIC program. If SpeedScript is running, press RUN/STOP-RESTORE to exit to BASIC.

Before using SpeedScript, you should generally unplug all cartridges such as the Super Expander. You must have a memory expansion cartridge plugged in that
provides at least an additional 8 K , although SpeedScript can take advantage of up to 24 K of memory. SpeedScript cannot take advantage of any custom hardware configurations except those that do not interfere with normal operations.

Entering Text

When you run SpeedScript, the screen colors change to black on white. The first two lines on the screen are black with white letters. SpeedScript presents all messages on these command lines. The remaining 21 lines of the screen are used to enter, edit, and display your document. The cursor shows where the next character you type will appear on the screen. SpeedScript lets you move the cursor anywhere within your document, making it easy to find and correct errors.

To begin using SpeedScript, just start typing. When the cursor reaches the right edge of the screen, it automatically jumps to the beginning of the next line, just as in BASIC. But unlike BASIC, SpeedScript never splits words at the right edge of the screen. If a word you're typing won't fit at the end of one line, it's instantly moved to the next line. This feature, called word wrap or sometimes parsing, makes it much easier to read your text on the screen.

Scrolling And Screen Formatting

When you finish typing on the last screen line, SpeedScript automatically scrolls the text upward to make room for a new line at the bottom. Imagine the screen as a 21line window on a long continuous document. In total, there's room for 3072 characters of text with an 8 K expander; up to 19,456 with a 24 K expander. To check at any time how much space is left, press CTRL- = (hold down the CTRL key while pressing the $=$ key). The number which appears in the command line indicates how much room remains for characters of text.

If you're used to a typewriter, you'll have to unlearn some habits. Since the screen is only 22 columns wide, and most printers have 80 column carriages, it doesn't make sense to press RETURN at the end of each line as you do on a type-
writer. SpeedScript's word wrap takes care of this automatically. Press RETURN only when you want to force a carriage return to end a paragraph or limit the length of a line. A return-mark appears on the screen as a left-pointing arrow.

Using The Keyboard

Most features are accessed with control-key commands-you hold down CTRL while pressing another key. In this article, control-key commands are abbreviated CTRLx (where x is the key you press in combination with CTRL). An example is the CTRL- = mentioned above to check on free memory. CTRL-E means hold down CTRL and press E. Sometimes you have to hold down both SHIFT and CTRL as you type the command key, as in SHIFT-CTRL-H. Other keys are referenced by name or function, such as back-arrow for the left-pointing arrow in the topleft corner of the keyboard, pound sign for the British pound sign (£), CLR/HOME for the home cursor key, SHIFT-CLR/HOME for the clear screen key, f1 for special function key 1 , and up-arrow for the upward-pointing arrow to the left of the RESTORE key. See Figure 1 for a complete quick-reference chart of all keyboard commands.

Some keys let you move the cursor to different places in the document to make corrections or scroll text into view. You can move the cursor by character, word, sentence, or paragraph. Here's how to control the cursor:

- The left/right cursor key works as usual; pressing this key by itself moves the cursor right (forward) one space, and pressing it with SHIFT moves the cursor left (backward) one space.
- The up/down cursor key moves the cursor forward to the beginning of the next sentence. Pressing it with SHIFT moves the cursor backward to the beginning of the previous sentence.

- The f1 special function

key moves the cursor forward to the beginning of the next word. The f2 key (hold down SHIFT and press f1) moves the cursor backward to the beginning of the previous word.

- The f3 special function key moves the cursor forward to the beginning of the next sentence (just like the up/down cursor key). The f4 key (hold down SHIFT and press f3) moves the cursor backward to the beginning of the previous sentence (just like pressing SHIFT and the up/down cursor key).
- The $f 5$ special function key moves the cursor forward to the beginning of the next paragraph. The f6 key (hold down SHIFT and press f5) moves the cursor backward to the beginning of the previous paragraph.
- The CLR/HOME key, pressed once by itself, moves the cursor to the top of the screen without scrolling. Pressed twice, it moves the cursor to the beginning of the document.
- CTRL-Z moves the cursor to the bottom of the document.

Correcting Your Typing

Sometimes you'll have to insert some characters to make a correction. Use SHIFT-INST/DEL to open up a single space, just as in BASIC. Merely position the cursor at the point where you want to insert a space, and press SHIFT-INST/DEL.

It can be tedious to use the SHIFT-INST/DEL key to open up enough space for a whole sentence or paragraph. For convenience, SpeedScript has an insert mode that automatically inserts space for each character you type. In this mode, you can't type over characters; everything is inserted at the cursor position. To enter insert mode, press CTRL-I. To cancel insert mode, press CTRL-I again. To let you know you're in insert mode, the normally black command lines at the top of the screen turn blue.

Insert mode is the easiest way to insert text, but it can become too slow when working with a very long document because it must move all the text following the cursor position. So SpeedScript has even more ways to insert blocks of text.

One way is to use the RUN/STOP key. It is programmed in SpeedScript to act as a five-space margin indent. To end a paragraph and start another, press

VIC SpeedScript 3.0 Keyboard Map

Quick Reference Chart to Editing Commands

* Notes commands changed or added since Version 2.0

RETURN twice and press RUN/ STOP. You can use RUN/STOP to open up more space than SHIFT-INST/DEL. No matter how much space you want to insert, each insertion takes the same amount of time. So the RUN/STOP key can insert five spaces five times
faster than pressing SHIFT-INST/ DEL five times.

There's an even better way, though. Press SHIFT-RUN/STOP to insert 255 spaces. You can press it several times to open up as much space as you need. And SHIFTRUN/STOP is fast. (You don't
want to be in insert mode when you use this trick; that would defeat its purpose.)

Since the INST/DEL key also is slow when working with large documents (it, too, must move all text following the cursor), you may prefer to use the back-arrow key to
backspace. The back-arrow key by itself moves the cursor left one space and blanks out that position. It's more like a backspace than a delete.

After you're done inserting with these methods, there will probably be some inserted spaces left over that you didn't use. Just press SHIFT-CTRL-back arrow. This instantly deletes all extra spaces between the cursor and the start of following text.

Erasing Text

Press the INST/DEL key by itself to erase the character to the left of the cursor. All the following text is pulled back to fill the vacant space.

Press CTRL-back arrow to delete the character on which the cursor is sitting. Again, all the following text is moved toward the cursor to fill the empty space.

These keys are fine for minor deletions, but it could take all day to delete a whole paragraph this way. So SpeedScript has two commands that can delete an entire word, sentence, or paragraph at a time. CTRL-E erases text after (to the right of the cursor position, and CTRL-D deletes text behind (to the left of) the cursor.

To use the CTRL-E erase mode, first place the curser at the beginning of the word, sentence, or paragraph you want to erase. Then press CTRL-E. The command line shows the message "Erase ($\mathrm{S}, \mathrm{W}, \mathrm{P}$): RETURN to exit." Press S to erase a sentence, W for a word, or P for a paragraph. Each time you press one of these letters, the text is quickly erased. You can keep pressing S, W, or P until you've erased all the text you wish. Then press RETURN to exit the erase mode.

The CTRL-D delete mode works similarly, but deletes only one word, sentence, or paragraph at a time. First place the cursor after the word, sentence, or paragraph you want to delete. Then press CTRL-D. Next, press S, W, or P for sentence, word, or paragraph. The text is immediately deleted and you return to editing. You don't need to press RETURN to exit the CTRL-D delete mode unless you pressed this key by mistake. (In general, you can escape from any command in SpeedScript by simply pressing RETURN.) CTRL-D is

Figure 2: Quick Reference Chart Format (Printer) Commands

Enter with CTRL-£

(h) SpeedScript/国

110『70 \mathbf{S}^{2-}
gD SpeedScript. $2 \leftarrow$
Centered Header with page number
Left margin 10 , right margin 70 , double spacing.

Goto and continue printing with filename ${ }^{-S p e e d S c r i p t .2-~}$

* Notes command changed or added since Version 2.0
most convenient when the cursor is already past what you've been typing.

The Text Buffer

When you erase or delete with CTRL-E and CTRL-D, the text isn't lost forever. SpeedScript remembers what you've removed by storing deletions in a separate area of memory called a buffer. The buffer is a fail-safe device. If you erase too much, or change your mind, just press CTRL-R to restore the deletion. However, be aware that SpeedScript remembers only the last erase or delete you performed.

Another, more powerful, use of this buffer is to move or copy sections of text. To move some text from one location in your document to another, first erase or delete it with CTRL-E or CTRL-D. Then move the cursor to where you want the text to appear and press CTRL-R. CTRL-R instantly inserts
the contents of the buffer at the cursor position. If you want to copy some text from one part of your document to another, just erase or delete it with CTRL-E or CTRL-D, restore it at the original position with CTRL-R, then move the cursor elsewhere and press CTRL-R to restore it again. You can retrieve the buffer with CTRL-R as many times as you like.

Important: The CTRL-E erase mode lets you erase up to the maximum size of the buffer (1 K , or 1024 characters), and CTRL-E also removes the previous contents of the buffer. Keep this in mind if there's something in the buffer you'd rather keep. If you don't want the buffer to be erased, press SHIFT-CTRL-E. This preserves the buffer contents and adds newly erased text to the buffer.

If you ever need to erase the contents of the buffer, press contents of the buffer,
CTRL-K (kill buffer).

The Wastebasket Command

If you want to start a new document, or simply obliterate all your text, press SHIFT-CLR/HOME.
SpeedScript asks, "ERASE ALL: Sure? Y/N." This is your last chance. If you don't want to erase the entire document, press N or any other key. Press Y to perform the irreversible deed. There is no way to recover text wiped out with Erase All.

If you press RUN/STOPRESTORE, you'll find yourself back to BASIC's READY prompt. Once in BASIC you still have one chance to reenter SpeedScript without losing your text-simply enter RUN (but your chances decrease if you execute other commands in BASIC).

Search And Replace

SpeedScript has a Hunt command that searches through your document to find a selected word or phrase. A Replace option lets you automatically change one word to another throughout the document.

SHIFT-CTRL-H activates the Hunt feature, SHIFT-CTRL-J (J is used because it's next to the H) lets you selectively hunt and replace, and CTRL-G (also next to the H) is for automatically searching and replacing.

Searching is a two-step process. First you need to tell SpeedScript what to search for, then you trigger the actual search. Press SHIFT-CTRL-H. The command lines say "Hunt for:". Type in what you'd like to search for, the search phrase. If you press RETURN alone without typing anything, the Hunt command is canceled.

When you are ready to search, press CTRL-H. SpeedScript looks for the next occurrence of the search phrase starting from the current cursor position. If you want to hunt through the entire document, press CLR/HOME twice to move the cursor to the very top before beginning the search. Each time you press CTRL-H, SpeedScript looks for the next occurrence of the search phrase and places the cursor at the start of the phrase. If the search fails, you'll see the message "Not Found."

CTRL-J (Replace) works to-
gether with CTRL-H. After you've specified the search phrase with SHIFT-CTRL-H, press SHIFT-CTRL-J to select the replace phrase. (You can press RETURN alone at the "Replace with:" prompt to select a null replace phrase. When you hunt and replace, this deletes the located phrase.) To manually search and replace, start by pressing CTRL-H. After SpeedScript finds the search phrase, press CTRL-J if you want to replace the phrase. If you don't want to replace the phrase, don't press CTRL-J. You are not in a special search and replace mode. You're free to continue writing at any time.

CTRL-G links CTRL-H and CTRL-J together. It first asks "Hunt for:", then "Replace with:", then automatically searches and replaces throughout the document starting at the cursor position.

Storing Your Document

Just press f8 (SHIFT-f7) to store a document. You'll see the prompt "Save:". Type in a filename up to 16 characters long, but do not use question marks or asterisks. You cannot use the same name for two different documents on a single disk. To replace a document already on disk using the same filename, precede your filename with the characters @0: or @:. You can also precede the filename with either 0 : or 1 : if you use a dual disk drive. SpeedScript cannot access a second disk drive with a device number of 9 .

After entering the filename, answer the prompt "Tape or Disk" by pressing either the T or \mathbf{D} key. You can cancel the SAVE command by pressing RETURN without typing anything else at either the "Save:" or "Tape or Disk?" prompt.

When the SAVE is complete, SpeedScript reports "No errors" if all is well, or reads and reports the disk error message if not. It is not possible to detect errors during a tape SAVE, so if you want peace of mind, use the Verify command. Rewind the tape, press CTRL-V, then type the filename. Press T for tape, then press PLAY on the recorder. SpeedScript compares the file on tape with that in memory and reports "No errors" if the ver-
ify succeeds, or "Verify Error" if not. You can also verify disk files.

Loading A Document

To recall a previously saved document, press f7. Answer the "Load:' prompt with the filename. Insert the tape or disk, rewind the tape, then answer T or D. Press PLAY on tape. SpeedScript loads the file and should display "No errors." Otherwise, SpeedScript reads the error channel of the disk drive or simply reports "Load error" for tape.

The position of the cursor is important before loading a file. SpeedScript starts loading at the cursor position, so be sure to press CLR/HOME twice or SHIFT-CLR/ HOME (Erase All) to move the cursor to the start of text space, unless you want to merge two documents. When you press $f 7$ to load, the command lines turn green to warn you if the cursor is not at the top of the text space.

To merge two or more files, simply load the first file, press CTRL-Z to move the cursor to the end of the document, and then load the file you want to merge. Do not place the cursor somewhere in the middle of your document before loading. A LOAD does not insert the text from tape or disk, but overwrites all text after the cursor position. The last character loaded becomes the new end-oftext pointer, and you cannot access any text that appears ahead of this pointer.

Disk Commands

Sometimes you forget the name of a file, or need to scratch or rename a file. SpeedScript gives you full control over the disk drive. Just press CTRL-up arrow, then type in a 1541 disk command. You don't need to type PRINT\#15 as you do in BASIC, just the actual command. If you press RETURN without typing a disk command, SpeedScript displays the disk status. It also displays the status after completing a disk command.

Additional Features

SpeedScript has a few commands that don't do much, but are nice to have. CTRL-X exchanges the character under the cursor with the character to the right of the cursor. Thus you can fix transposition er-
rors with a single keystroke.
CTRL-A changes the character under the cursor from uppercase to lowercase or vice versa.

Press CTRL-B to change the background and border colors. Each time you press CTRL-B, one of 16 different background colors appears. Press CTRL-L to cycle between the eight character (lettering) colors. The colors are preserved until you change them. If you resave SpeedScript from BASIC as described above, the program will load and run with your color choice in the future.

PRINT!

To begin printing, simply press CTRL-P. If your printer is attached, powered on, and selected (online), SpeedScript begins printing immediately. To cancel printing, hold down the RUN/STOP key until printing stops, then release it when the border color changes to white. SpeedScript assumes a left margin of five, a right margin of 75 , single-spacing, and continuous-feed paper. You can change these default settings if you want (see below).

Before printing, be sure the paper in your printer is adjusted to top-of-form (move the paper perforation just above the printing element). CTRL-P assumes a Commodore printer, so it's helpful if your interface simulates the modes and codes of the Commodore 1525, MPS-801, or 1526 printer. CTRL-P prints with a device number of 4 and a secondary address of 7 (uppercase/lowercase mode).

If CTRL-P doesn't work for you, try another variation, SHIFT-CTRL-P. Answer the prompt "Print to: Screen, Disk, Printer?" with the single letter \mathbf{S}, \mathbf{D}, or \mathbf{P}. Press any other key to cancel the command.

If you press P for printer, SpeedScript requests two more keystrokes. First answer "Device number" with a number from 4 to 7. This lets you print to one of several printers addressed with different device numbers. Next answer "Secondary Address?" with a number from 0 to 9 .

Printing To Screen And Disk

SHIFT-CTRL-P prints to the screen when you press S. The screen col-
ors change to white letters on a black background, and what appears on the screen is exactly what would print on the printer. It takes about four screen lines to hold one 80 -column printed line, of course. If you use double-spacing (see below), it's much easier to see how each line is printed. With this screen preview, you can see where lines and pages break. To freeze printing, hold down either SHIFT key or engage SHIFT LOCK. When printing is finished, press any key to return to editing.

SHIFT-CTRL-P prints to a disk file when you press D. Enter the filename when requested. SpeedScript sends out all printer information to a sequential file. You can use other programs to process this formatted file (see last month's SpeedScript article for details).

Formatting Commands

The print-formatting commands must be distinguished from normal text, so they appear onscreen in reverse field with the text and background colors switched. You enter these reverse-field letters by pressing CTRL-£ (pound sign). Answer the prompt "Enter format key:" by pressing a single key. This key is inserted into text in reversefield. All lettered printer commands should be entered in lowercase (unSHIFTed). During printing, SpeedScript treats these characters as printing commands.

There are two kinds of printing commands, which we'll call Stage 1 and Stage 2. Stage 1 commands usually control variables such as left margin and right margin. Most are followed by a number, with no space between the command and the number. Stage 1 commands are executed before a line is printed.

Stage 2 commands, like centering and underlining, are executed while the line is being printed. Usually Stage 1 commands must be on a line of their own, although you can group several Stage 1 commands together on a line. Stage 2 commands are by nature embedded within a line of text.

Stage 1 Commands

1 Left margin. Follow with a number from 0 to 255 . Use 0 for no margin. Defaults to 5 .
r Right margin position, a
number from 1 to 255 . Defaults to 75. Be sure the right margin value is greater than the left margin value, or SpeedScript will go bonkers.
\mathbf{t} Top margin. The position at which the first line of text is printed, relative to the top of the page. Defaults to 5 . The header (if any) is always printed on the first line of the page, before the first line of text.
b Bottom margin. The line at which printing stops before continuing to the next page. Standard $81 / 2 \times 11$-inch paper has 66 lines. Bottom margin defaults to the fiftyeighth line. The footer (if any) is always printed on the last line of the page, after the last line of text.
p Page length. Defaults to 66 . If your printer does not print six lines per inch, multiply lines-perinch by 11 to get the page length. European paper is usually longer than American paper- $115 / 8$ or 12 inches. Try a page length of 69 or 72.
s Spacing. Defaults to singlespacing. Follow with a number from 1 to 255 . Use 1 for singlespacing, 2 for double-spacing, 3 for triple-spacing.
@ Start numbering at page number given. Page numbering normally starts with 1.
? Disables printing until selected page number is reached. For example, a value of 3 would start printing the third page of your document. Normally, SpeedScript prints starting with the first page.
\mathbf{x} Sets the page width, in columns (think a cross). Defaults to 80. You need to change this for the sake of the centering command if you are printing in double-width or condensed type, or are using a 40column or wide-carriage printer.
n Forced paging. Normally, SpeedScript prints the footer and moves on to the next page only when it has finished a page, but you can force it to continue to the next page by issuing this command. It requires no numbers.
m Margin release. Disables the left margin for the next printed line. Remember that this executes before the line is printed. It's used for outdenting.
a True ASCII. Every character is assigned a number in the ASCII
(American Standard Code for Information Interchange) character set. Most printers use this true ASCII standard, but Commodore printers exchange the values for uppercase and lowercase to match Commodore's own variation of ASCII. Some printer interfaces do not translate Commodore ASCII into true ASCII, so you need to use this command to tell SpeedScript to translate. Also, you will sometimes want to intentionally disable your interface's emulation mode in order to control special printer features that would otherwise be rejected by emulation. Place this command as the first character in your document, even before the header and footer definitions. Don't follow it with a number.
w Page wait. Like the true ASCII command, this one should be placed at the beginning of your document before any text. With page wait turned on, SpeedScript prompts you to "Insert next sheet, press RETURN" when each page is finished printing. Insert the next sheet, line it up with the printhead, then press RETURN to continue. Page wait is ignored during disk or screen output.
j Select automatic linefeeds after carriage return. Like \mathbf{a} and \mathbf{w}, this command must be placed before any text. Don't use this command to achieve double-spacing, but only if all text prints on the same line.
i Information. This works like REM in BASIC. You follow the command with a line of text, up to 255 characters, ending in a returnmark. This line will be ignored during printing, and is handy for making notes to yourself such as the filename of the document.
h Header define and enable. The header must be a single line of text (up to 254 characters) ending in a return-mark. The header prints on the first line of each page. You can include Stage 2 commands such as centering and page numbering in a header. You can use a header by itself without a footer. The header and footer should be defined at the top of your document, before any text. If you want to prevent the header from printing on the first page, put a return-mark by itself at the top of your document before the header definition.
f Footer define and enable. The footer must be a single line of text (up to 254 characters) ending in a return-mark. The footer prints two lines prior to the last line of each page. As with the header, you can include Stage 2 printing commands, and you don't need to set the header to use a footer.
g GOTO (link) next file. Put this command as the last line in your document. Follow the command with the letter D for disk or T for tape, then a colon (:), then the name of the file to print next. After the text in memory is printed, the link command loads the next file into memory. You can continue linking in successive files, but don't include a link in the last file. Before you start printing a linked file, make sure the first of the linked files is in memory. When printing is finished, the last file linked to will be in memory.

Stage 2 Commands

These commands either precede a line of text, or are embedded within one.
c Centering. Put this at the beginning of a line you want to center. This will center only one line ending in a return-mark. Repeat this command at the beginning of every line you want centered. Centering uses the page-width setting (see above) to properly center the line. To center a double-width line, either set the page width to 40 or pad out the rest of the line with an equal number of spaces. If you use double width, remember that the spaces preceding the centered text will be double-wide spaces.
\# When SpeedScript encounters this command, it prints the current page number. You usually embed this within a header or footer.
u A simple form of underlining. It does not work on Commodore printers, but only on printers that recognize CHR\$(8) as a backspace and CHR $\$(95)$ as an underline character. Underlining works on spaces, too. Use the first \mathbf{u} to start underlining, and another one to turn off underlining.

Fonts And Styles

Most dot-matrix printers are capable of more than just printing text at ten characters per inch. The

Commodore MPS-801 can print in double width and reverse field. Some printers have several character sets, with italics and foreign language characters. Most can print in double width (40 characters per line), condensed (132 characters per line), and in either pica or elite. Other features include programmable characters, programmable tab stops, and graphics modes. Many word processors customize themselves to a particular printer, but SpeedScript was purposely designed not to be printer-specific. Instead, SpeedScript lets you define your own Stage 2 printing commands.

You define a programmable printkey by choosing any character that is not already used for other printer commands. The entire uppercase alphabet is available for printkeys, and you can choose letters that are related to their function (like D for double width). You enter these commands like printer commands, by first pressing CTRL-£.

To define a printkey, just press CTRL- $£$, then the key you want to assign as the printkey, then an equal sign ($=$), and finally the ASCII value to be substituted for the printkey during printing.

Here's how you could program reverse-video printed text. Reverseon, a value of 18 , prints all text in reverse video until canceled by reverse-off (a value of 146) or a carriage return. So define SHIFT-R as 18 and SHIFT-O as 146 (CTRL-£ SHIFT-R=18). Anywhere you want to print a word in reverse, bracket the word with printkey R and printkey O .

You can similarly define whatever codes your printer uses for features like double width or emphasized mode. For your convenience, four of the printkeys are predefined, though you can change them. The keys 1-4 are defined as $27,14,15$, and 18 , common values for most printers.

We hope SpeedScript is as valuable to you as it has been for thousands of existing users. Again, for more information, see the article accompanying the Commodore 64 version in the March 1985 issue of COMPUTE!. And keep sending in your suggestions and criticismssomeday they may help make SpeedScript 4.0 a reality.

SpeedScript 3．0 For VIC－20
Please refer to the＂MLX＂article before entering this listing．

4609
 4621 ：ø32，131，019，169，2Ø3，205，Ø04 4627 ：109，044，141，109，044，240，194 4633 ：øø3，ø32，ø50，019，Ø32，195，1ø0 4639 ：$\emptyset 19,076$, ， $38,020,165,038,131$ 4645 ： $141,067,018,165,039,141,096$ 4651 ：Ø68，Ø18，165，158，141，070，151 4657 ：Ø18，165，159，141，071，018，109 4663 ： $166,181,240,032,169$, øøø， 075 4669 ：141，øøø，041，16б，øøб，185，076
 4681 ：204，øøø，ø41，208，244，238，24ø 4687 ：Ø68，018，238，Ø71，Ø18，224，2ø4 4693 ：øøб，24の，øø7，202，2ø8，224，198 4699 ： $165,186,208,222,096,165,103$ $4705: 181,170,065,180,208,001,074$ 4711 ： $096,024,138,161,039,141,13 \varnothing$ 4717 ： $139,018,165,038,141,138,236$ 4723 ： $018,024,138,101,159,141,184$ $4729: 142,018,165,158,141,141,118$ 4735 ： $018,232,164,186,208,004,165$ 4741 ：240，Ø13，160，255，185，00ø，218 4747 ：øøø，153，øøø，øø $, 136,192,108$ $4753: 255,208,245,266,139,618,192$ $4759: 206,142,018,202,208,234,137$ 4765 ： $096,169,044,133,195,133,159$ 4771 ： $020,169,016,133,196,169,098$ 4777 ： $148,133,021,173,252,049,168$ 4783 ： $133,251,173,253,046,133,134$ 4789 ：252，173，255，04б，ø32，014，179 4795 ： $020,162, \boxed{1} 2,160,900,173,192$
 4807 ：153，øø8，ø41，20ø，Ø41，127，ø01 4813 ：2ø1，Ø31，24Ø，Ø19，192，Ø22， 142 4819 ：208，235，136，177，251，041，235 $4825: 127,201,032,240,005,136,190$ 4831 ：208，245，160，021，200，132，165 4837 ： $059,136,185,008,041,145,035$ 4843 ： $195,136, \varnothing 16,248,164,059,029$ 4849 ： $024,152,101,251,133,251,129$ $4855: 165,252,105$ ， $000,133,252,130$ 4861 ：224，øø2，208，ø03，140，251，057 4867 ：ø4ø，192，ø 22,24 ，ø0 ， 169,162 4873 ：032，145，195，200，076，004，149 4879 ： 019, Ø24，165，195，105，022，033 4885 ： $133,195,133,020,144,004,138$ 4891 ： $230,196,236,021,232,224,136$ 4897 ： $023,240,003,076,190,018,071$ 4903 ： $165,251,141$, ，006，041，165，040 $4909: 252,141, \varnothing 07,041,096,173,243$ 4915 ： 243,04 ， $133,251,141,252,087$ 4921 ：$\varnothing 40,141,002,041,133,057,215$ 4927 ：173，244，040，133，252，141，022 4933 ：253，ø40，141，Ø03，041，133，168 4939 ：658，056，173，246，640，237，117 $4945: 244$, ， $40,170,169,032,160,128$ 4951 ： $255,198,252,145,251,200,108$ 4957 ： $230,252,145,251,200,208,099$ 4963 ：251，236，252，2ø2，208，246， 208 $4969: 145,251,096,133,059,132,153$ 4975 ：ø6б，16ø，øøø，177，ஏ59，24б，б39 4981 ：øø6，ø32，21ø，255，2ø0，2ø8，øø4 4987 ：246，096，ø $32,228,255,24$ ， 2 ， 196 4993 ：251，ø96，169，øø0，141，255，Ø17 4999 ： $640,141,243,040,141,245,217$ 5065 ：๙40，141，247，04б，141，249，231 5011 ： $040,141,155,041,141,196,093$ 5017 ：Ø41，169，045，Ø24，105，001，026 $5023: 141,244,040,056,165,056,093$ $5029: 233,001,141,250,040,056,118$ $5035: 233,004,141,248,040,056,125$ $5041: 233$, ø01，141，246，ด40，169，239 5047 ：255，141，153，041，032，202，239 5053 ：Ø23，169，147，076，210，255，045 $5059: 169,128,141,138,002,133,138$ $5065: 157,173,005,023,032,241,064$ 5071 ： $022,173,243,040,133,057,107$ $5077: 173,244,040,133,058,032,125$ $5083: 234,019,169,072,160,039,144$ 5089 ： $032,108,019,238,254,040,148$ $5095: 076,134,021,032,250,019,251$ $5101: 169,054,160,039,032,108,031$
5107 ： $019,169,000,141,254,040,098$

5113 5119 5125 ： $019,032,21 \varnothing, 255,169,018,196$ 5131 ： $076,210,255,141,134,002,061$ 5137 ：162，043，157，øøø，148，202，217 5143 ： $016,250,096,072,041,128,114$ 5149 ： $074,133,059,104,041,063,247$
 5161 ： 657,133, ø02，16Ø，ø0ø，177，Ø58 5167 ： $657, \boxed{7}, 128,145,057,032, \boxed{27}$ 5173 ：158，ด18，173，141，ø02，041，074 5179 ： $004,240,009,165,197,201,107$ 5185 ： $064,240,003,076,216,020,172$ 5191 ： $032,228,255,208,013,165,204$ 5197 ： $162,041,016,240,229,169,166$ 52の3 ：øøø，133，162，Ø76，Ø44，Ø2ø，Øø6 $5209: 170,160$, ø0б，165，øб2，145，219 5215 ： $657,224,095,208,012, \boxed{62}, 211$ 5221 ：ø69，ด22，169，ø32，16Ø，øø0，Ø41 5227 ：145，057， $076,038,020,173,104$ 5233 ：254，040，240，007，138，072，096 5239 ： $032,234,019,104,170,138,048$ $5245: 201,013,2 \varnothing 8, \varnothing 02,162,095,038$ 5251 ： $138,041,127,201,032,144,046$ 5257 ：1øの，224，16б，2ø8，Øб2，162，225 5263 ： $032,138, \emptyset 72,16 \emptyset, \emptyset \emptyset 0,177,21 \emptyset$ 5269 ： $057,2 ø 1,931,24 \varnothing$ ，ø0 $5,173, \varnothing 88$ $5275: 255,040,240$, ， $03, \varnothing 32, \varnothing 15,228$ 5281 ： $026,1 \varnothing 4, \varnothing 32,026, \varnothing 20,160,017$ 5287 ：Ø00，145，057，032，158，Ø18，065 5293 ：Ø56，165，ø57，237，øø2，ø41，219 $5299: 133,059,165,058,237,003,066$ 5305 ： 041, ，Ø5，059，144，014，165，1Ø1 5311 ： $057,105, \varnothing 00,141,002,041,025$ 5317 ：165，058，105，000，141，øø3，157 5323 ：Ø41，230，057，2ø8，Ø02，230，203 5329 ：058，032，134，021，076，038，056 5335 ：ஏ2の，160，ஏの0，165，Ø02，145，195 5341 ：Ø57，Ø24，165，197，165，Ø64，Ø65 5347 ：170，132，162，165，162，201，195 5353 ：$\varnothing 10,208,250,132,198,138,145$ $5359: 174,016,021,221,016,021,196$ $5365: 24 \emptyset, \varnothing \emptyset 6,2 ब 2,2 \emptyset 8,248, \boxed{6} 6,2 \emptyset 1$ 5371 ：$\varnothing 38, \varnothing 2 \emptyset, 2 \varnothing 2,138, \varnothing 10,17 \varnothing, \varnothing 61$ 5377 ：169， $020,072,169,037,072,028$ $5383: 189,057, \boxed{21,072,189,056,079}$ 5389 ： 021, ， 72, ， $96,039,029,157,171$ $5395: 137,133,099,085,138,134,233$ $54 \varnothing 1$ ：$\varnothing 2 \varnothing, 148,082,019,076,147, \varnothing 05$ $5407: 135,139,113,136,140,091,017$ $5413: 145,017,121,074,090,097,069$ 5419 ： $077,076,118,072,081,108,057$ $5425: 107,110, \emptyset \emptyset 3,131,084,141,113$ 5431 ： $083,059,022,068,022,079,132$ 5437 ：Ø22，133，ø22，229，Ø22，Øø5，238 5443 ：023，020，023，122，023，175，197 5449 ：Ø24，Ø14，Ø26，227，ø24，Ø39，171 5455 ：$\varnothing 25,116, \emptyset 26,146, \emptyset 26,181, \emptyset 87$ 5461 ： $026,214, \emptyset 26,049, \varnothing 27,063,234$ 5467 ：Ø29，ø48，028，148，Ø29，020，137 5473 ：023，122，023，191，029，203，176 5479 ： $030,095,031,201,022,235,205$ 5485 ：ø31，ø29，ø29，131，036，202，055 5491 ：ø $24,111,031,201,023,028,021$ 5497 ：$\varnothing 37,027,039,203,025,195,135$ 5503 ：025，191，037，243，025，251，131 5509 ：Ø36，ø 32,228 ，б $21,056,165,159$ 5515 ： $957,237,252,040,165,058,18 \emptyset$ $5521: 237,253,040,176,032,056,171$ 5527 ：173，252，ø40，237，243，640，112 $5533: 133,059,173,253,040,237,028$ 5539 ：244，Ø4б，Ø05，059，24б，Ø13，252 $5545: 165,057,141,252,040,165,221$ 5551 ： $658,141,253,040,032,158,089$ 5557 ：Ø18，Ø56，173，Øø6，Ø41，229，192 5563 ： $657,133,251,173,007,041,081$ 5569 ：229，Ø58，133，252，Ø05，251，Ø97 5575 ：24ø，Øø2，176，Ø24，Ø24，173，ஏ7ø $5581: 252,040,109,251,040,141,014$ 5587 ：252，ø40，173，253，Ø40，105，05ø 5593 ：ø00，141，253，ø40，ஏ32，158， 073 5599 ： $018,076,182,021,096,056,160$ $5605: 173,002,041,237,245,040,199$ 5611 ：133，059，173，003，041，237，113 5617 ： $246,040,005,059,144,012,235$ $5623: 173,245,040,141,002,041,121$ $5629: 173,246,040,141,003,041,129$ 5635 ： $956,165,057,237,243,040,033$
$5641: 133,059,165,058,237,244,137$ 5647 ： $040, \varnothing 05,059,176,011,173,223$ $5653: 243,040,133,057,173,244,143$ 5659 ： $040,133,058,096,056,165,063$ 5665 ： $057,237,002,041,133,059,050$ $5671: 165,058,237$ ，ø63，Ø41，Ø05，Ø36
 5683 ： $041,133,057,173,003,041,243$ $5689: 133,658,096,230,057,208,071$ 5695 ：øø2，230，ø58，076，134，021，072 $57 \varnothing 1$ ：165，Ø57，2ø8，øб2，198，ด58，245 $57 \varnothing 7$ ：198，057，076，134，021，165，214 5713 ： $657,133,251,165,658,133,110$ 5719 ：252，198，252，160，255，177，101 $5725: 251,2 \varnothing 1$, Ø32，240，Ø04，201，254 5731 ： $631,208,063,136,268,243,160$ 5737 ：177，251，201，ø32，240，ø08，246 5743 ：201，Ø31，24ø，øø4，136，208，163 $5749: 243, \varnothing 96, \boxed{5} 6,152,101,251,248$ 5755 ：133，057，165，252，105，000，067 $5761: 133,058,076,134,021,160,199$ 5767 ：øøø，177，ø57，201，032，240，074 5773 ：Øø8，2ø1，Ø31，24ø，Ø64，2øб，Ø57 5779 ：208，243， $996,200,208,011$, ， 89 5785 ：230，Ø58，165，Ø58，205，003，104 5791 ： $041,144,002,208,025,177,244$ 5797 ： $057,2 \varnothing 1,032,24 \varnothing, 236,201,108$ 5803 ： $031,240,232,024,152,101,183$ 5809 ： $657,133,057,165,058,105,240$ 5815 ：øøø，133，Ø58，Ø76，134，021，Ø93 $5821: 173,002,041,133,057,173$ ，ø日ด 5827 ：øø $0,041,133,058,076,134,128$ 5833 ：Ø21，169，øøø，141，252，ø40，Ø56 5839 ：173，ø03，Ø41，Ø56，233，Øø4，205 5845 ：2ø5，244，Ø4ஏ，176，Ø03，173，ø30 5851 ：244，ø4の，141，253，Ø4の，Ø32，2ø1 5857 ：158，ø18，ஏ76，189，Ø22，238，158 5863 ：Øด $5, \emptyset 23,173$, ， $05, \emptyset 23, \emptyset 41,245$ 5869 ：Ø15，141，Ø65，Ø23，Ø1ø，Ø1ø，185 5875 ： $010,010,133,059,173,005,121$ 5881 ：Ø23，Ø $41, \varnothing \varnothing 7,024,105, \varnothing \varnothing 8,201$ 5887 ：101，Ø59，141，Ø15，144，096，043 5893 ：Ø01，238，ø20，Ø23，173，Ø20， 224 5899 ：Ø23，Ø41，Øø7，141，Ø20，023，ø10 $59 \emptyset 5$ ：Ø76，158，ø18，øøø，165，Ø57，235 $5911: 133,251,165,058,133,252,247$
5917 ：198，252，160，255，177，251，ø42 5923 ：201，ø46，240，Ø12，2Ø1，Ø33，øøø 5929 ：24ø，øø8，2ø1，Ø63，24ø，Øø4，Ø29 5935 ：201，Ø31，208，004，136，208，067 $5941: 235,096,177,251,201,046,035$ 5947 ：240，Ø27，201，Ø33，240，Ø23，055 5953 ：201，Ø63，240，019，201，031，Ø52 $5959: 240,015,136,208,235,198,079$ $5965: 252,165,252,205,243,040,210$ $5971: 176,226,076,110,023,132,058$ 5977 ：Ø59，198，Ø59，200，240，01ø，ø87 5983 ： $177,251,261,032,240,247,219$ $5989: 136,076,119,022,164,059,165$ 5995 ： $076,655,923,173,243,040,205$ 6 ดø1 ： $133,057,173,244,640,133,125$ 6 607 ：058，076，134，021，160，øøø，056 $6013: 177,057,201,046,240,029,107$ 6019 ：201，ø33，240，025，201，063，126 $6 \varnothing 25$ ：24ø，Ø21，201，Ø31，240，Ø17，119 6031 ：2б6，2ø8，235，236，658，165，215 6037 ： $058,205,003,041,240,226,154$ 6043 ：144，224，Ø76，189，Ø22，2Øб，242 6049 ：208，014，230，058，165，058，126 $6055: 205,003,041,144,005,240,037$ 6061 ：Ø03，076，189，ø22，177，657，185 6067 ：201，032，246，233，201，046，1日8 6073 ： $24 \varnothing, 229,201, \boxed{ } 33,240,225,073$ 6079 ：201，063，24の，221，201，031，124 $6085: 240,217,076,174,022,173,075$ 6091 ：247，040，141，119，041，173，196 6097 ：248， $040,141,12 \emptyset, \emptyset 41,032,063$ $6103: 250,019,169,093,160,039,177$ 6109 ： $032,108,019,169,001,141,179$ $6115: 254, \varnothing 40,096,056,165,057,127$ 6121 ：237，243， $440,133,059,165,086$ 6127 ：958，237，244，040，005，659，114 6133 ：2ø8，øø3，104，104，096，165，157 6139 ： $057,133,038,165,058,133,067$ 6145 ： $039,096,056,165,057,133$ ，ด 35 6151 ：158，073，255，101，038，141，005 6157 ：123，041，165，058，133，159，180 6163 ： $073,255,101,039,141,124,240$
$6169: 041,165,038,141,125,041,064$ $6175: 165,039,141,126,041,165,196$ $6181: 158,141,127,041,133,038,163$ $6187: 165,159,141,128,041,133,042$ 6193 ： $039,056,173,124,041,109,079$ $6199: 120,041,205,250,040,144,087$ 6205 ：Ø20，032，250，019，169，108，147 6211 ：160，039， $932,108,019,169,082$ 6217 ：Øø1，141，254，040，169，øøø，166 $6223: 133,198,096,173,119,041,071$ $6229: 133,158,173,120,041,133,075$ $6235: 159,173,123,041,133,180,132$ 6241 ： $024,109,119,041,141,119,138$ 6247 ： $041,173,124,041,133,181,028$ 6253 ：109，120，041，141，120，041，169 6259 ：Ø32，Ø35，Ø18，173，125，041，027 $6265: 133,038,173,126,041,133,253$ 6271 ： $039,173,127,041,133,158,030$ $6277: 173,128,041,133,159,056,055$ $6283: 173$, Øø $2, \emptyset 41,229,158,133,107$ $6289: 180,173,003,041,229,159,162$ $6295: 133,181,032,035,018,056,094$ $6301: 173, \emptyset \emptyset 2,041,237,123,041, \emptyset 06$ 6307 ：141，øø2，Ø41，173，Øø3，Ø41，Ø52 $6313: 237,124,041,141,003,041,244$ $6319: 096,032,230,023,032,069,145$ 6325 ：Ø22，ø32，ø03，ஏ24，056，173，235 $6331: 119,041,233,001,141,119,073$ 6337 ：Ø41，173，120，Ø41，233，øø0，ø33 $6343: 141,120,041,096,173,141,143$ 6349 ：ØØ2，2Ø1，ØØ5，2Ø8，Øø3，Ø76，188 6355 ：Ø81，Ø25，Ø32，Ø6Ø，Ø22，Ø32，207 $6361: 230,023, \emptyset 32,069,022,032,113$ 6367 ：Øø $0, \varnothing 24, \varnothing 76,185, \varnothing 24,032,055$ $6373: 202, \varnothing 23,169, \varnothing 02, \emptyset 32,014,159$ $6379: 020,032,250,019,169,120,077$ 6385 ：160，Ø39，032，108，019，032，119 $6391: 125,019,072,032,234,019,236$ 6397 ：104，Ø41，191，201，Ø23，208，253 6403 ：ஏø9，Ø32，230，Ø23，032，ø80，153 6409：Ø22，076，Ø03，024，201，019，098 6415 ：208，ø09，032，230，023，032，037 6421 ：Ø21，Ø23，Ø76，Ø03，Ø24，201，113 6427 ：Ø16，2Ø8，ØØ9，Ø32，23Ø，Ø23，ஏ33 6433 ：Ø32，215，Ø26，ஏ76，øø $3,024,153$ $6439: ø 96,056,165,057,237,252,134$ 6445 ：Ø40，133，059，165，Ø58，237，225 6451 ： $253,040,005,059,24$ ，$, 011,147$ $6457: 173,252, \emptyset 40,133,057,173,117$ $6463: 253,040,133,058,096,173,948$ $6469: 243,040,133,057,173,244,191$ $6475=040,133,058,076,134,021,025$ $6481: 165,057,133,251,133,158,210$ $6487: 165,058,133,252,133,159,219$ $6493: 16 \emptyset$, Øøø，177，251，201，Ø32，146 6499 ：208，Ø3 ，2Ø0，208，247，165，133 $6505: 252,205, \varnothing \varnothing 3, \varnothing 41,144,015,253$ $6511: 173$, Øø $2,041,133,251,173,116$ 6517 ：ØØ3，Ø41，133，252，16Ø，Øøø，194 6523 ： $076,131,025,230,252,076,145$ 6529 ： $095,025,024,152,101,251, \boxed{1} 99$ $6535=133,038,169$, ， $00,101,252,060$ $6541: 133, \varnothing 39,056,173, \boxed{1} 2, \boxed{141,073}$ $6547: 229,158,133,180,173,003,255$ 6553 ：Ø41，229，159，133，181，Ø56，184 $6559: 165,038,229,158,141,123,245$ 6565 ：$\emptyset 41,165,039,229,159,141,171$ $6571: 124,041,032,035,018,056,221$ 6577 ：173，Ø02，Ø41，237，123，Ø41，Ø26 $6583: 141$, Øø2，Ø41，173，øø3，Ø41，ஏ72 $6589: 237,124, \emptyset 41,141$, ØØ $2, \emptyset 41$, ，Ø8 $6595: 096,169,255,141,148,041,021$ $6601: 076,222,025,169,005,141,071$ $6607: 148,041,032,222,025,177,084$ 6613 ：Ø57，201，032，208，Ø01，200，144 $6619: \boxed{76}, 174,022,169$, ，ø0，141，033 $6625: 149,041, \emptyset 32, \boxed{ } 37, \emptyset 26,169,167$ 6631 ： $32,174,148,041,160, \emptyset \emptyset \emptyset, 018$ $6637: 145,057,200,202,208,250,019$ 6643 ：Ø96，Ø32，Ø15，Ø26，Ø32，015，2Ø3 6649 ：Ø26，169，Ø31，16の，øøø，145，Ø12 6655 ： $057,200,145,057,032,158,136$ 6661 ：Ø18，Ø32，Ø60，022，032，Ø60， 229 6667 ： $022,076,204,025,169$, ，001，252 $6673: 141,148,041,169$, Ø0Ø，141，145 $6679: 149,041$ ，Ø32，Ø37，026，169，221 6685 ：ஏ32，16ด，øøø，145，Ø57，076，243 $6691: 134,021,024,173$, ， $02,041,174$
$6697: 109,148,041,173,003,041,044$ $6703: 109,149,041,205,246,040, \emptyset 69$ $6709: 144,005,104,104,076,116,090$ $6715: 626,024,165,057,133,038,246$ $6721: 109,148,041,133,158,165$, Ø51 6727 ：Ø58，133，Ø39，109，149，041，ø88 $6733: 133,159,056,173, \varnothing 62,041,129$ $6739: 229,038,133,180,173,003,071$ $6745: \varnothing 41,229, \emptyset 39,133,181,032,232$ 6751 ： $093,018,024,173,002,041,193$ 6757 ：199，148，041，141，002，041，071
$6763: 173$, 曰б3，041，109，149，041，111 $6769: 141, \emptyset \emptyset 3,041,096,173,255,054$ $6775: 040,073,006,141,255,040,162$ 6781 ： $096,169,135,160,039,032,244$ 6787 ：108，019，032，228，255，24ด， 245 $6793: 251,291,147,240,247,041,240$ $6799: 127,201,089,096,169,002$ ， 059 6805 ：Ø32，Ø14，Ø20，032，250，019，Ø04 $6811: 169,148,160,039,032,108,043$ 6817 ： $019, \emptyset 32,126, \emptyset 26,24 \emptyset, \emptyset \emptyset 3,095$ $6823: 076,234,019,162,25 \emptyset, 154,038$ $6829: ø 32, \emptyset 50,919, \emptyset 32,195, \emptyset 19,0 \emptyset 8$ 6835 ： $076, \emptyset 38, \emptyset 20,160, \emptyset \emptyset 0,177,138$ 6841 ： $057,201,031,240,017,200,163$ $6847: 208,247,230,058,165,058,133$ 6853 ： $205,003,041,144,238,240,044$ $6859: 236,076,189,022,200,208,110$ 6865 ：Ø02，230，058，076，174，Ø22，Ø03 $6871: 165,057,133,251,165,058,020$ $6877: 133,252,198,252,160,255,191$ $6883: 177,251,201,031,240,017,120$ $6889: 136,192,255,208,245,198,187$ $6895: 252,165,252,205,244,040,117$ $6901: 176,236,076,110,023,056,154$ $6907: 152,101,251,133,251,169,028$ 6913 ：Ø00，101，252，133，252，056，Ø27 $6919: 165,251,229,057,133,059,133$ $6925: 165,252,229,058,005,059,013$ 6931 ：208，018，132，059，Ø24，165，113 6937 ： $251,229,059,133,251,165$, ， 89 $6943: 252,233$, Øøø，133，252，076，209 $6949: 233,026,165,251,133,057,134$ $6955: 165,252,133,058,076,134,093$ 6961 ：Ø21，173，141，Ø02，041，001，172 6967 ：208，Øø3，032，202，023，032，Ø43 $6973: 250,019,169,158,160,039,088$ 6979 ： 032,1 1日8，Ø19，160，øø0，177，Ø51 6985 ： $057,073,128,145,057,832,053$ 6991 ：158，Ø18，160，Øø0，177，Ø57，137 6997 ： $073,128,145,057,169, \emptyset 02,147$ 7003 ： $032,014,020,032,125,019,077$ $7 \varnothing 09$ ：Øø9，．064，201，Ø87，208，Ø09，163 7815 ： $032,144,027,032,134,022,238$ 7021 ：Ø76，159，027，201，Ø83，208，095 7027 ： $009,032,144,027,032,123,226$ $7033: 023,076,159,027,201,080,175$ $7039: 208,009,032,144,027,032,067$ $7045: 182,026,076,159,027,032,123$ 7 Ø51： $134, \boxed{21,076,234,019,165,020}$ $7057: 057,133,158,141,113,041,020$ $7063: 165,058,133,159,141,114,153$ $7069: 041,096,056,165,057,133,193$ $7975: 038,237,113,041,141,123,088$ 7081 ： $041,165,058,133,039,237,074$ $7087: 114,041,141,124,041,032,156$ $7093: 026,024,173,113,041,133,179$ $7099: 057,173,114,041,133,058,251$ 7105 ： $032,158,018,076,070,027,062$ $7111: 169,044,229,211,141,004,229$ 7117 ：Ø41，160，Øøø，169，166，Ø32，Øø5 $7123: 21$ ， $255,169,157,032,210,220$
$7129: 255,140$, Ø05，Ø41，Ø32，125，Ø47 7135 ： $019,172,005,041,133,059,140$ $7141: 169,032,032,210,255,169,072$ $7147: 157$, Ø32，210，255，165，059，ø89 $7153: 201,013,240,050,201,020,198$ $7159: 208,015,136,016,004,200,058$ $7165: 076,208,027,169,157,032,154$ $7171: 210,255,076,208,027,165,176$ 7177 ： $059,041,127,201,032,144,101$ $7183: 192,204,004,041,240,187,115$ $7189: 165,059,153,048,041,032,007$ $7195: 210,255,169$ ，øøø，133，212，238 $7201: 133,216,2$ Ø0，Ø76，208，Ø27，125
 7213 ： $048,041,152,096,032,250,152$ 7219 ：Ø19，169，214，16Ø，Ø39，Ø32，172
$7225: 108,019,032,148,028,176,056$ $7231: 632,173,243,040,133,251,167$ $7237: 173,244, \emptyset 401133,252,174,061$ 7243 ：Øø2，Ø41，172，Ø03，Ø41，169，247 7249 ：251，Ø32，216，255，176，Øø9， 252 7255 ：165，144，Ø41，191，208，Øø3，Ø71 7261 ： $076,13 \emptyset, 029,240, \emptyset 36,173,0 \emptyset 9$ 7267 ：147，Ø28，201，øø8，144，Øø6，121 7273 ：Ø32，2Ø2，Ø36，Ø76，128，Ø28，Ø95 $7279: 173,147, \emptyset 28,2 \emptyset 1, \emptyset 01,240,133$ 7285 ：249，ஏ32，250，Ø19，169，22ஏ，ஏ32 $7291: 160,039,032,108,019,169,138$ 7297 ：Ø01，141，254，Ø40，Ø96，Ø32，181 $7303: 25$ ，019，169，231，160，039，235 7309 ： $032,108,019,076,128, \varnothing 28, \varnothing 20$ 7315 ：øøØ， $632,199, \boxed{67,240,622,155}$
7321 ：169，Øø6，160，Ø4Ø，ஏ32，1Ø8，156 7327 ：$\varnothing 19, ~ Ø 32,125,019,162, \boxed{1}, \boxed{12}$ $7333: 201, \emptyset 68,240,012,162,001,081$ $7339: 201$, ， 84,240, Øø6，Ø32，234，200 7345 ： $019,104,104,096,142,147,021$ 7351 ：Ø28，169，Øø1，16Ø，Øøロ，Ø32，Ø61 7357 ：186，255，16Ø，Øбб，224，Øб1，247 $7363: 24 \emptyset, 049,185,048,041,2 \emptyset 1,191$ 7369 ：Ø64，2ø8， $014,185,049, \emptyset 41,250$ $7375: 201,058,240,035,185,050,208$ 7381 ：Ø41，2Ø1，Ø58，24の，Ø28，169，182 7387 ： $048,141,088,041,169,058,252$ $7393: 141,089, \emptyset 41,185,048,041, \emptyset \emptyset 2$ $7399: 153, \varnothing 9 \emptyset, \emptyset 41,2 \emptyset \emptyset, 2 \emptyset 4$, Øด5，156 74 Ø5 ：Ø41，144，244，24ø，242，2øø，Ø68 7411 ：Ø76，Øø2，Ø29，185，048，Ø41，112 $7417: 153,088,041,200,204,005,172$ 7423 ：$\emptyset 41,208,244,140,112,041, \emptyset 17$ 7429 ：Ø32，25Ø，Ø19，169，048，160，171 7435 ：Ø41，Ø32，108，Ø19，173，112，24Ø 7441 ：Ø41，162，ஏ88，16Ø，Ø41，ஏ32，Ø29 $7447=189,255,169,013,076,210,167$ $7453: 255,032,250,019,169,196,182$ $7459: 160,039, \varnothing 32,108,019,032,169$ $7465: 125,019,032,026, \emptyset 20,009,016$ $7471: 128,072,173,255,040,240,187$ 7477 ：Øø3，Ø32，015，026，032，234，139 7483 ： $019,104,076,166,020,056,244$ $7489: 165,057,237,243,040,133,172$ $7495=251,165,058,237,244,040,042$ 7501 ：Øø5，251，240，Øø7，169，Øø5，242 $7507: 133,251,032,014,020,032,053$ $7513: 250,019,169, \varnothing 26,160,040,241$ $7519: \boxed{62}, 108,019,032,148, \varnothing 28,206$ $7525: 165,251,201,005,240,003,198$ 7531 ：Ø32，Ø50，Ø19，169，øø0，166，031 $7537: \boxed{5}, 164,058, \boxed{ } 32,213,255,124$ $7543=144$, ，03，Ø76，Ø96，ஏ28，142， $996 ~$ 7549 ：Ø02，Ø41，140，Øø3，Ø41，ஏ32，128
$7555: 234,251,032,231,255,032,142$ 7561 ：250，019，169，252，160，039，002 7567 ：Ø32，1ø8，Ø19，Ø76，128，Ø28，ø22 7573 ： $032,25 \emptyset, 019,169, \emptyset 32,16 \emptyset, 043$ 7579 ：ஏ4б，Ø32，1ø8，Ø19，ஏ32，148，Ø22 7585 ：Ø28，169，Øø1，174，243，Ø4Ø，Ø48 $7591: 172,244,040,032,213,255,099$ $7597: 165,144,041,191,246,267,137$ 7603 ：Ø32，250，019，169，239，160，Ø24 $7609: 039,032,108,019,076,128,075$ 7615 ：Ø28，169，147，Ø32，210，255，Øø8 $7621: 169,013,032,210,255,032,140$ $7627: 236,029,169,013,032,210,124$ $7633: 255,169, \varnothing 40,16 \emptyset, \varnothing 40, \varnothing 32,137$ $7639: 108, \emptyset 19,032,228,255,201,034$ 7645 ：$\varnothing 13,208,249, \boxed{6} 6,234,019,252$ 7651 ：Ø32，2Ø4，255，169，Ø01，Ø32，152 $7657: 195,255,096,032,231,255,017$ 7663 ：169，øø1，162，øø8，160，øøø， 227 7669 ：Ø32，186，255，169，Ø01，162，Ø26 7675 ：Ø69，16Ø，Ø4Ø，Ø32，189，255， 228 7681 ： $032,192,255,176,221,162,015$ 7687 ：Øø1，Ø32，198，255，Ø32，Ø81，Ø94 7693 ：Ø30，Ø32，Ø81，Ø30，Ø32，081，Ø43
 $77 \emptyset 5$ ：ด $32,204,255,032,228,255$ ，øø 7 $7711: 201, \varnothing 32,208, \emptyset 03,032,125,120$ 7717 ：Ø19，162，Øø1，Ø32，198，255，192 7723 ： $032, \varnothing 81, \varnothing 30,072, \varnothing 32,081,115$ 7729 ：Ø30，168，104，17Ø，152，Ø32，193 $7735: 205,221,169, \emptyset 32,032,210,156$ $7741: 255,032,081,030,240,006,193$ 7747 ：Ø32，210，255，076，ø62，ஏ3ø，22の
$7753: 169,013,032,210,255,076,060$ 7759 : $017,030,032,207,255,072,180$ $7765: 165,144,041,191,24$, ศб6,104 $7771: 104,104,104,076,227,629,223$ 7777 : 104, 096,162,000,142,115,204 7783 : $041,142,116,041,142,117,190$ 7789 : $041,142,118,041,056,177,172$ $7795: 251,233,048,144,042,201,010$ 7801 : $010,176,038,014,115,041,003$ 7807 : 046,116,041,014,115,041,244 $7813: 046,116,041,014,115,041,250$ $7819: 046,116,041,014,115,041,000$ 7825 : 046,116,041,013,115,041,005 7831 : 141,115,041,200,208,212, 044 7837 : 230,252,076,113, ø3б,248, ø82 $7843: 173,115,041,013,116,041,150$ 7849 : 240, Ø28, 056,173,115, 041, Ø54 $7855: 233,001,141,115,641,173,111$ $7861: 116,041,233,000,141,116,060$ 7867 : $941,238,117,041,2 ø 8,003, ø 67$ $7873: 238,118,041,076,163,030,091$ $7879: 173,117,041,216,696,056,130$ $7885: 173,119,041,237,247,040,038$ $7891: 141,121,041,173,120,041,080$ 7897 : 237,248, 040,141,122,041,022 7903 : 013,121,041,208,016,032,142 $7909: 250,019,169,078,160,040,177$ 7915 : Ø32,1Ø8, ØI9,169,001,141,193 $7921: 254,040,096,024,165,057,109$ 7927 : 133,038,109,121,041,133,054 $7933: 158,165,058,133,039,109,147$ 7939 : 122, 041,133,159,056,173,175 7945 : ø62, ø41,229, Ø38,133,180,12Ø 7951 : 173, 003,041,229,039,133,121 7957 : 181, ø24,101,159,205,246,169 7963 : $040,144,016,032,250,019,016$
 7975 : $019,169,001,141,254,040,151$ 7981 : $096, ~ Ø 32,096,018,024,173,228$ 7987 : 121, 041,133,180,109, 062,125 7993 : $041,141, \varnothing 02,041,173,122,065$ 7999 : $041,133,181,109$, Ø0 $3,041,059$ $8005: 141,003,041,165,057,133,897$ $8011: 158,165,058,133,159,173,153$ 8017 : 247, ø4の, 133, ø38, 173, 248, 192 8023 : $040,133,039,032,035,018,128$ 8029 : $076,134,021,16 \emptyset, 000,177,149$ $8035: 057,170,200,177,057,136,128$ $8041: 145,057,200,138,145,057,079$ 8047 : $096,160,0 \emptyset 0,177,057,041,13 \emptyset$
 8059 : 006,177,057, 073,064,145,133 $8 \emptyset 65$: $057,076,060,022,133,059,024$ 8071 : Ø41, 063, 006, 059, Ø36,059,143 $8 \emptyset 77$: Ø16, øø2, øø9,128,112, øø2,154 $8 \emptyset 83$: Ø09, Ø64,133,059, 096, ø05, ø01 $8089: \boxed{75}, 066,005,058,001,001,103$ 8095 : $0 \emptyset 1, \varnothing \varnothing \varnothing, 001, \boxed{0}, 080,027,012$ 8101 : $014, \emptyset 15,018,141,154,041$, Ø36 $3107=138,072,152, \boxed{6} 2,056,173,066$ $8113: 138,041,237,140,041,173,179$ $8119: 139,641,237,141,041,144,158$ $8125: 025,173,154,041, \varnothing 32,210,056$ $8131=255,173,141, \varnothing 02,041$, øø1, 040 8137 : 208,249,165,145,201,127,016 $8143: 208,006,032,136,034,076,187$ $8149: 168,033,104,168,104,170,192$ $8155: 173,154,041, \boxed{6}, 032,250,197$ 8161 : $019,169,173,160,040,076,094$ 8167 : $108,019,076,168,033,169,036$ 8173 : $\varnothing \varnothing 0,032,189,255,173,020,138$ 8179 : $623,141,134$, , ø 2,169, øø4,204 $8185: 141,149,041,160,007,173,152$ $8191: 141,002,041, \varnothing 01,208,003,139$ 8197 : $076,152,032,032,250,019,054$ 8203 : $169,097,160,040,032,108,105$ 82ø9: $019,032,125, \varnothing 19,041,127,124$ 8215 : 162, øø3,142,149, $041,201,209$ 8221 : $\emptyset 83,24 \emptyset, \emptyset 86,162$, øø8,142,238 8227 : 149, 041,201, 068,240, 034, øбø $8233: 201, \emptyset 8 \emptyset, 2 \varnothing 8,188,032,250,232$ 8239 : $019,169,127,160,040,032,082$ 8245 : 1 108, Ø19, ø32,125, Ø19,056,156 8251 : 233, $448,201,064,144,168,089$ 8257 : 201, 080,176,164,141,149,208 8263 : $041,076,118, ø 32,032,250,108$ 8269 : $019,169,163,160,040,032,148$ $8275: 108,019,032,199,027,240,196$
$8281: 143,172,005,041,169,044,151$ 8287 : 153, 048, 041, 200,169, 087, 025 8293 : 153, $648,041,200,140,005,176$ 8299 : $041,173,005,041,162,048,065$ 8305 : $160,641,632,189,255,173,195$ $8311: 149,041,168,201,004,144,058$ 8317 : $026,201,008,176,022,032,078$ 8323 : $250,019,169,142,160,640,143$ 8329 : Ø32,1ø8, Ø19, ø32,125,019,216 8335 : $056,233,048,168,016,003,155$ 8341 : $076,233,031,169$, Ø01,174,065 8347 : 149, ø41, 032,186,255, 032,082 8353 : 223, 031,169,001, 032,195,044 $8359: 255,032,192,255,162,001,040$ 8365 : $632,261,255,144,063,076,116$ $8371: 168$, ด 33,162 , øб0, 142,13 , 046 8377 : $041,142,129,041,142,15 \emptyset, 062$ 8383 : 041,142,151,041,142,110,050 8389 : $045,189,152,031,157,131,134$ 8395 : $041,232,224,912,208,245,141$ 8401 : $169,255,141,145,041,141,077$ 8407 : 143, 041,162, 004,189,163,149 8413 : Ø31,157, 029, 042,202,208,122 $8419: 247,173,243,040,133,251,034$ $8425: 173,244,640,133,252,160,211$ 8431 : øøø,140,144, 041,204,143,143 8437 : 041,240, , $66,173,131,641,169$ 8443 : 141,144,041,177,251,016,253 8449 : $003,076,150,034,201$, 0 31,240 8455 : 240, 044,153,109,042,200,027 $8461: 238,144,041,173,144,041$, , 26 8467 : 205,132,041,144,230,140,143 8473 : $001,041,177,251,201,032,216$ 8479 : 240, 020, 206,144,041,136,050 8485 : 208,244,172,001,041,076,011 8491 : $056,033,200,177,251,201,193$ 8497 : $032,240,001,136,140,001,087$ 8503 : $941,152,056,101,251,133,021$ $8509: 251,165,252,105,000,133,199$ $8515: 252,160$, øø0,173,145,041, $07 \varnothing$ 8521 : 201,255,208, 003,032,057,061 8527 : $034,173,143,041,240,003,201$ 8533 : Ø32,101, 034, 056,046,143,241 8539 : $041,173,001,041,141$, ø00, 232 8545 : $041,169,109,133,253,169,293$ 8551 : $042,133,254,032,103,038,193$ 8557 : $032,118,034,173,145,041,140$ 8563 : 205,135,041,144, П03, ஏ32,163 8569 : 199,033, 056,165,251,237, 038 8575 : ø02, 041,133,059,165,252,011 $8581: 237,003,041,005,059,240,206$ 8587 : $056,144,054,173,130,041,225$ 8593 : 240,011,169, ø00,141,129,067 8599 : $041,141,134,041$, Ø32,199,227 8605 : $033,173,149,041,201,003,245$ 8611 : 208, 003, 032,125,019,032,070 8617 : 225,255,24の,251,173,255,032 8623 : $040,141,134,002,169,001,150$ 8629 : ø32,195,255,032,231,255,157 $8635: 162,250,154,032,234,019,014$ 8641 : $\varnothing 76,038,020,076,238,032,161$ 8647 : $056,173,133,041,237,145,216$ 8653 : $\varnothing 41,168,136,136,240$, øø8, 166 8659 : $\varnothing 48, \varnothing 06, \boxed{62}, 136, \boxed{64}, 136,091$ 8665 : 208,250,173,130,041,240,235 8671 : $017,141,000,041,169,110,189$ 8677 : $133,253,169,044,133,254,191$ 8683 : $\varnothing 32,101,034,032,103,038,063$ 8689 : $032,136,034,032,136,034,133$ 8695 : $\varnothing 32,136,034,238,138,041,098$ 8701 : 208, 003, 238,139, 041,173, 031 8707 : 137, 041,208, 050,173,149,249 8713 : $041,2 \varnothing 1, \varnothing 03,24 \varnothing, 043,201,226$ 8719 : $008,240,039,056,173,138,157$ 8725 : $041,237,140,041,173,139,024$ 8731 : $041,237,141,041,144,024,143$ 8737 : Ø32,204,255, 032,250, Ø19, Ø57 $8743: 169,188,160,040,032,108,224$ 8749 : $\varnothing 19,032,125,019,032,223,239$ 8755 : $031,162,001,032,201,255,221$ $8761: 173,129,041,240,017,141$, ø3б 8767 : $000,041,169,109,133,253,000$ 8773 : 169, 043,133,254,032,101,033 8779 : $034,032,103,038,032,136,194$ 8785 : $034,172,134,041,140,145,235$ 8791 : $041,136,136,240,008,048,184$ 8797 : Ø66, 032,136,034,136,208,133 8803 : 250,096,169,032,172,131,181
$88 \emptyset 9: 041,14 \varnothing, 144,041,24 \varnothing, 006,205$ 8815 : $032,168,031,136,208,250,168$ 8821 : $096,172,136,041,024,152,226$ 8827 : 109,145,041,141,145,041,233 8833 : $032,136,034,136,208,250,157$ 8839 : $096,169,013,032,168,031,132$ $8845: 173,110,045,240,003,032,232$ 8851 : 168, , $31,096,141,147,041,003$ 8857 : $041,127,032,133,031,174,179$ 8863 : 225 , 034, 221, 225, 034, 240, 114
 8875 : $041,076,242,035,202,138,137$ 8881 : $010,170,140,146,041,169,085$ 8887 : $034,072,169,196,072,189,147$ 8893 : 245, Ø34,072,189,244, 034,239 8899 : $672,096,656,173,146,641,611$ $8905: 101,251,133,251,165,252,074$ 8911 : 165, ø0ø,133,252,076,238,243 8917 : $632,177,251,201,031,240,121$ 8923 : $061,136,140,146,041,096,011$ 8929 : $018,087,065,076,082,084,125$ 8935 : $066, ~ \boxed{8} 3,078,072,070,064,152$ 8941 : $080,063,088,077,073,071,177$ 8947 : $074, \emptyset 84,035,102,035,111,172$ 8953 : 035,121,035,131,035,141,235 8959 : $035,151,035,161,035,176,080$ 8965 : 035,210,035,058,035,074,196 8971 : Ø35, 042, 035, 032, Ø35, 023, 213 8977 : $\emptyset 35,235,035,026,036,093,215$ 8983 : 035,2 20,169, Øø0,141,143,199 8989 : Ø41, ø76, 214, ø34, 200, Ø32, 114 8995 : $099, \varnothing 30,141,142,041,076,052$ $9001: 214,034,200,032,099,030,138$ 9007 : 141, 140, 041,173,118,041,189 $9013: 141,141,041,076,214,034,188$ 9019 : 200, 032, $999,030,141,138,187$ $9025: 041,173,118,041,141,139,206$ $9031: 041,076,214,034,200,032,156$ 9ø37 : 099, 030,141,133, Ø41, Ø76,085 9043 : 214, ம34,169,000,141,137,010 $9 \varnothing 49: 041,200,076,214,034,169,055$ 9055 : $\varnothing 10,141,110,045,200,076,165$ $9 \emptyset 61: 214,034,200,169,001,141,092$ 9067 : 150,041, $076,214,034,200,054$ 9073 : $032,099, \varnothing 30,141,131,041,075$ 9079 : $076,214, \boxed{ } 34,200,032,099,006$ 9085 : $\varnothing 30,141,132,041,076,214,247$ 9091 : $034,200,032,099,030,141,155$ 9097 : 134, 041,076,214, Ø34,20ø, 068 9103 : $032,099,030,141,135,041,109$ 9109:076,214, ø34,200, ø32,099, 036 9115 : $030,141,136,041,076,214,025$ 9121 : $034,172,146,041,206,152,138$ 9127 : $072,032,199,033,104,168,007$ $9133: 140,146,041,096, \emptyset 32,2 \emptyset 3, \varnothing 63$ $9139: 035,136,140,129,041,16 \emptyset, 052$ 9145 : $001,177,251,153,108,043,150$ 9151 : 200, 204, 129, 041, 144, 245,130 9157 : 240, 243,20ø, $076,214,034,180$ 9163 : 2ø0,177,251,2ø1, Ø31,2ø8,247 $9169: 249,096,032,203,035,136,192$ $9175: 140,130,641,160,061,177,096$ $9181: 251,153,169,044,206,264,158$ 9187 : $130,041,144,245,240,243,246$ $9193: 076,214,034,032,203,035,059$ $9199: 076,214,034,200,177,251,167$ 9205 : 201, Ø61,24ø, ø07,136,173, Ø39 9211 : 147, 041, 076,009,033,200,245 9217 : Ø32, Ø99, 030, 072,173,147, 042 9223 : $641,041,127,170,104,157,135$ 9229 : 237, Ø41, ø32, 214, 034, 076,135 9235 : 197, 034, 200, 162, Ø08, 177, 029 9241 : 251, Ø41, ø63,201, Ø04,240, 057 9247 : 0 - 9,162, , $01,201, \varnothing 20,240,152$ 9253 : $003,076,233,031,142,147,157$ 9259 : $028,200,177,251,201,058,190$ $9265: 240,003,076,233, \varnothing 31,200, \varnothing 64$ 9271 : 177, 251,201,031,240,009,196 9277 : 032,133,031,153,085,041,024 9283 : $076,954,036,152,056,233,162$ 9289 : Ø0 , 162, ø88, 160, 041, Ø32, ø47 $9295: 189,255,032,204,255,169,159$ 93ø1 : øб2, ø32,195,255,169, Øб2,228 $9307: 174,147$, Ø28,160, Øøø,032,12Ø $9313: 186,255,032,050,019,169, \emptyset 4 \varnothing$ 9319 : Øøø,166, 057,164,058,032,068 $9325: 213,255,144,063, \varnothing 76,233,009$ 9331 : Ø31,142, 002, ø41,140, ஏ03,218

9337 ：Ø41，104，104，162，001，Ø32，053 $9343: 261,255,076,228,032,032,183$ $9349: 231,255,169,0 \varnothing \varnothing, 032,189,241$ $9355: 255,169,015,162,008,160,140$ 9361 ： $015, \varnothing 32,186,255, \varnothing 32,192,089$ $9367: 255,144,011,169,015,032,009$ $9373: 195,255,032,231,255,076,177$ $9379: 234,019,032,250,019,169,118$ $9385: 055,160,040,032,108,019,071$ 9391 ：Ø32，199，ø27，240，022，162，ø89 9397 ：Ø15，Ø32，201，255，176，223，059 $9403: 169,048,160,041,032,108,233$ $9409: 019,169,013,032,210,255,123$ 9415 ： $032,204,255,032,231,255,184$ 9421 ：169，øøø，ø $32,189,255,169,251$ 9427 ：015，162，Ø08，160，Ø15，032，Ø91 $9433: 186,255,032,192,255,176,033$ $9439: 186$, ø $32,250,019,162,015,119$ 9445 ：ø $32,198,255,032,199,027,204$ 9451 ： $032,204,255,169,015,032,174$ $9457: 195,255,032,231,255,169,098$ 9463 9469 ，036， $037,173,155,041,240,167$ 9475 ：Ø22，Ø32，199，Ø37，Ø32，Ø74，143 9481 ：037，173，153，041，201，255，101 9487 ：240，009，032，234，037，032，ø87 $9493: 158,018,076,007,037,076,137$ 9499 ：234，Ø19，173，141，ø02，201，ø29 9505 ：Ø05，208，038，Ø32，250，019，073 $9511: 169,209,160,040,032,108,245$ 9517 ：019，Ø32，199，Ø27，141，155，106 9523 ： $041,208,003,076,234,019,120$ 9529 ：160，øøø，185，048，041，153，132 $9535: 156,041,200,204,005,041,198$ 9541 ：208，244，076，234，019，165，247 9547 ： $057,133,251,165,058,133,184$ $9553: 252,169,255,141,153,041,068$ 9559 ：160，øø1，162，Øøб，173，155，226 9565 ： 041,240, ， $80,189,156,041,072$ 9571 ：ø $32,026,02 \emptyset, 209,251,240,109$ 9577 ：Øø2，162，255，200，208，011，175 $9583: 230,252,165,252,205,003,194$ 9589 ： $041,240,002,176,054,232,094$ 9595 ：236，155，Ø41，208，224，024，243 9601 ：152，161，251，133，059，165，222 9607 ：252，105，ø00，133， 660,173, ， 90 9613 ：Ø02，Ø41，197，059，173，003，104 9619 ：041，229，060，144，024，056，189 $9625: 165,059,237,155,041,133,175$ 9631 ： $057,141,152,041,165,060,007$ 9637 ：233，ø00，133，058，141，153，115 9643 ：Ø41，ø32，134，021，096，032，015 9649 ：250，Ø19，169，219，160，040，01ø 9655 ：032，108，019，169，001，141，141 $9661: 254,040,096,173,141,002,127$ 9667 ：201，ø0 5，208，Ø35，ø32，250， 158 9673 ： $019,169,229,160,040,032$, ， 82 $9679: 108,019,032,199,027,141,221$ $9685: 196,041,24 \emptyset, 014,160$, ，Øø， 096 9691 ：185，048，041，153，197，041，116 9697 ：2øø，204，øø $5,041,208,244,103$ $9703: 076,234,019,056,165,057,070$ $9709: 133,158,237,152,041,133,067$ $9715: 059,165,058,133,159,237,036$
$9721: 153,041,005,059,208,101,048$ $9727: 169,255,141,153,041,024,014$ $9733: 173,155,041,101,057,133,153$ 9739 ：Ø38，169，ø00，101，058，133，254 9745 ：039，056，173，Ø02，041，229，045 $9751: 158,133,180,173,003,041,199$

9757 9763 9769 9775 9781 9787 9793 9799 9805 9811 9817 9823 9829 9835 9841 9847 9853 9859 9865 9871 9877 9883 9889 9895 9901 9907 9913 9919 9925 9931 9937 994 994 995 996 996 9973 9979 998 999 9997 1ののロ 1 日のロ 10015 1092 1 Øø27 ：ஏø3，ஏ41，Ø32，205，221，169，202 10033 ：ø01，141，254，040，096，008，077 $1 \varnothing \varnothing 39: 014,211,080,069,069,068,054$ $10 \emptyset 45: 211, \boxed{67}, \varnothing 82, \boxed{6} 3, \varnothing 8 \emptyset, 084,146$ 10ø51： $032,051,046,048,000,013,001$ 1 1ø057： $018,066,089,032,195,072,033$ 1ดø63： $065,082,076,069,083,032,230$ 10069：194，Ø82，Ø65，078，078，ø79，149 1ศø75 ： $078, ~ \boxed{0,194,085,070,070,076 ~}$ 10081 ：069，082，032，195，076，069，108 1øø87 ：Ø65，ø82，Ø69，Ø68，øøø，194，ø69 $10093: 085,070,070,069,082,032,005$

10099 10105 10111 10117 10123 16129 10135 10141 10147 10153
10159
10165
10171
10177 10183
10189
16195 10201
10207
10213
10219
16225
16231
10237
1 Ø243
10249
10255
10261
10267
10273
$1 \varnothing 279$
10285
16291
10297
10303
10369
1 Ø315
10321
1 6327
10333
6339
Ø． 345
10351
1 Ø357
10363
－ 0369
16375
1 10381
10387
10393
10399
10465
10411
16417
10423
10429
10435
10441
10447
10453
10459
10465
10471
18477
$198,085,076,076,000,196,234$ Ø69，076，Ø69，084，Ø69，．ø32，øø8 Ø40，211，044，215，044，208，121 Ø41，Øøø，058，Ø32，211，ø85，ஏ48 Ø82，069，063，032，217，047，137 206，Ø58，ббб，197，210，193，241 $211,197,032,193,204,204,168$ øø0，197，082，065，083，069，141 ，032，040，211，044，215，044，237 208，041，013，018，208，ஏ82，227 Ø69，083，083，032，146，210，ø3ø 197，212，213，210，206，018，213 032，084，079，032，069，088，059 Ø73，084，ø0 ，208，082，069，197 Ø83，Ø83，Ø32， $07 \emptyset, 079,082,116$ 077，065，084，032，075，069，095 Ø89，058，000，211，065，086，208 ，069，058，000，212，065，080，189 Ø69，032，197，210，210，207，124 210，Ø0ø，211，Ø84，Ø79，Ø8Ø，125 ： $080,069,068,000,214,069,223$ Ø82，073，070，089，032，197，016 082， $082,079,082,000,206,010$ 079，032，069，082，082，079，164 ，ஏ82，ø83，øøø，147，ஏ32，ø18，109 212，146，065，080，069，032，101 079，Ø82，032，018，196，146，056 073，083，075，063，ø0ø，204，007 ，079，065，068，058，000，214，255 Ø69，ø82，073，070，089，058，218 øø0，208，ø82，069，083，ø83，052 032，Ø18，210，197，212，213，159 210，206，146，000，196， 073,114 083， $075,032,067,079,077,214$ 977，065，078，068，058，000，153 ：036，206，079，032，210，079，199 079，077，000，206，079，032，036 Ø84，069，088，084，ø32，ø73，255 ， $78,032,066,085,076,070,232$ Ø69，Ø82，046，øøø，147，Ø18，199 211，146，067，ø82，069，069，231 Ø78，044，032，018，196，146，107 Ø73，083，075，044，032， 018,180 $208,146,082,073,078,084,02 \emptyset$
 Ø86， $073,067,069,032, \boxed{6}, 022$
 ロ00，211，069，067，079，078，133 $: ø 68, \boxed{65}, \boxed{62, ~ Ø 89, ~} 032,1,13,164$ ， $68,068,082,069,083,603,094$

 658，Ø0 ，147，208，082，072，227 Ø78， $084,073,078,071,046,095$ ：046，046，013，013，006，206，251 ： $069, ø 88,084, \boxed{ } 32,083,072,105$ Ø69，Ø69，Ø84，044，032，146，127 210，197，212，213，210，206，169
 Ø32，070，079，Ø82，058，000，022 ：206，079，084，032，198，079，129 Ø85，078，068，ø00，210，069，223 Ø80，076，065，067，069，058，134 øøロ，2ø9，213，2ø1，212，ஏøø，ஏ48 ©

VIDEO BASIC－64－add 50＋graphic and sound commands to your programs with this super development package．You can distribute free RUNTIME version without paying royalties！
$\$ 59.95$
BASIC COMPILER－64－compiles the com－ plete BASIC language into either fast 6510 machine language and／or compact speedcode．Get your programs into high gear and protect them by compiling．$\$ 39.95$

MASTER－64－professional development package for serious applicants．Indexed file system，full screen management，programmer＇s aid，BASIC extensions， 100 commands
$\$ 39.95$
PASCAL－64－full Pascal with extensions for graphics，sprites，file management，more．Compiles to 6510 machine code and can link to Assembler／Monitor routines．
$\$ 39.95$
ADA TRAINING COURSE－teaches you the language of the future．Comprehensive subset of the language，editor，syntax checker／compiler，assembler， disassembler， $120+$ page guide
$\$ 59.95$

FORTRAN－64－based on Fortran 77．Common． Data，Dimension，Equivalence，External，Implicit，Goto，Else If，Do，Continue，Stop，Subroutine，Call，Write，Read，For－ mat．more April 1985
$\$ 39.95$
C－LANGUAGE COMPILER－a full C language compiler．Conforms to the Kernighan \＆Ritchie standard，but without bit fields．Package includes editor， compiler and linker

April 1985
$\$ 79.95$

Other titles available：Write or call：
 PHONE：（616）241－5510

For postage and handling include $\$ 4.00$ （\＄8．00 foreign）per order．Money order and checks in U．S．dollars only．mastercard， VISA and American Express accepted． Michigan residents incl 4% sales tax．

Abacus
． ．ininind
Grand Rapids，MI 49510

IBM Graphics Printer Switch Settings

Michael A. Covington

Abstract

Although neither the IBM PC reference manuals nor the instructions that come with the printer mention them, the IBM Graphics Printer has a set of internal DIP switches which allow you to control how it operates.

The switch settings within the IBM Graphics Printer determine the defaults that apply when the printer is first turned on; almost all of them can be overridden by sending appropriate escape codes to the printer. But there may be situations in which you'll want to change the defaults.

To get at the switches, unplug the printer, disconnect the interface cable, remove the plastic cover and wire-grid paper guide, and turn the printer upside down. Unscrew the four Phillipshead screws at the corners, then put tape over the deep holes they sit in so they won't fall out. Now turn the printer right side up, pull off the paper advance knob, and carefully lift off the cover, maneuvering it clear of the knob shaft.

On the main circuit board you should find two sets of DIP switches under removable plastic dust covers. Using a ballpoint pen or similar tool, set them according to your preference (see accompanying table), put the dust covers back in place, and reassemble the printer.

The most useful thing the switches can do for you is give you access to the full character set. The IBM PC Guide to Operations lists two character sets for the printer; in character set 1 , ASCII codes 128 to 159 are duplicates of codes 0 to 31 , but in character set 2 , they are accented letters for foreign languages. (Both character sets include a variety of mathematical symbols and box-drawing characters.)

A few programs may not work properly with character set 2; if you have this problem, you can either set the switch back to its original setting,
or set the printer back into character set 1 by sending it ASCII codes 27 and 55 as an initialization sequence.

IBM Graphics Printer Internal Switch Settings

 Asterisks mark how switches are set at the factory.A. Large set of 8 switches:

1 Not used; normally on.
2 Off: Printer generates a linefeed of its own after every carriage return.
*On: Printer does not advance to next line until it receives a linefeed character (ASCII 10).
3 *Off: When more characters are received than will fit on a line, printer begins a new line.
On: When more characters are received than will fit on a line, printer overprints on same line.
4 *Off: ASCII code 24 clears the printer buffer. On: ASCII code 24 has no effect.
5 Not used; normally on.
6 Off: Buzzer on printer will not sound.
*On: Buzzer sounds when out of paper or when ASCII code 7 is received.
7 *Off: Character set 1.
On: Character set 2.
8 Off: Computer sends "Select" signal to activate printer.
*On: Printer is always ready to receive input.
B. Small set of 4 switches:

1 *Off: Paper length is 11 inches.
On: Paper length is 12 inches.
2 *Off: Lines are spaced 6 to the inch.
On: Lines are spaced 8 to the inch.
3 *Off: Paper feeding is controlled by computer.
On: Paper automatically advances after printing.
4 *Off: Printer does not skip over the perforation where pages join.
On: Printer skips 1 inch where pages join. ©

Creating Atari Machine Language Strings

Tom Sak

Abstract

This clever utility program converts a machine language subroutine into fast-executing BASIC string statements and stores them on disk for later use. Requires at least 16 K RAM.

The most common way to use a machine language subroutine in a BASIC program is to convert the object code into decimal numbers, put the numbers into DATA statements, then READ the numbers and POKE them into memory.

However, if you'd like your programs to initialize faster, or if you're running short of memory, there's a better technique you should consider: converting the machine language into strings. Using string assignment statements instead of DATA statements not only saves the time required to POKE the numbers into memory, it also consumes only about one-third as much RAM. The main limitation of this technique is that the machine language routine must be completely relocatable-not a serious handicap for short (under 256-byte) routines.

The listing following this article, "ML String Creator," is a self-modifying BASIC program that automatically creates string assignment statements from your object code and LISTs them to disk for inclusion in other BASIC programs.

Direct Execution From A String

The string technique works because, essentially, these statements are equivalent:

```
CJ 10 DATA 33,37,106,47,122,65
OD З\emptyset A$="!%j/zA"
```

If your subroutine contains internal JMPs or JSRs, which are not relocatable, you must use the conventional DATA statement technique. Until a BASIC program runs, you don't know where a certain string will end up in memory; therefore, if you encode your machine language (ML) into a string, it will end up at an unpredictable memory address. However, when the ML is relocatable, it
is possible to execute the subroutine directly from the string with a statement like this:

$50 \mathrm{X}=\mathrm{USR}(\mathrm{ADR}(\mathrm{A} \$))$

The $\operatorname{ADR}()$ function lets you find the beginning address of the string (and therefore of your subroutine). Of course, this assumes you have previously encoded the ML into the string variable A\$ with ML String Creator.

The string assignment statement also is preferable when you're trying to squeeze a few more bytes into limited memory. Each ML byte has a decimal value in the range of $0-255$. Representing this in a decimal DATA statement requires as many as three bytes, plus a comma to separate the entries. In a string assignment, each ML byte is represented as a single character.

There are a few other limitations, however. It's not possible to represent the decimal values 155 or 34 inside quotes in a string assignment. The value 155 represents a carriage return or end-of-line marker which cannot be embedded in the assignment statement, even as part of an escape sequence. The value 34 represents the double-quote character used as a delimiter in the assignment statement.

Stringing It All Together

Keeping these limitations in mind, you can use ML String Creator to locate an ML subroutine somewhere in memory, turn it into one or more string assignment statements, and LIST the statements to disk. It is your responsibility to initially load the ML into memory. If you're using an assembler that lets you switch back to BASIC without erasing memory, you can assemble directly to memory and then load ML String Creator to convert the object code into strings.

The program begins by requesting that you supply the first and last memory addresses (in decimal) of your routine, the name of the string variable to be created, and a line number for the first string assignment statement. A maximum of 80 bytes can be contained in a single statement
string, and the maximum ML program length accommodated by the program is 256 bytes.

The string variable name is limited to seven characters, including the trailing \$ symbol which must be present. Finally, the line number for the first string assignment statement must be greater than 190. Subsequent lines are numbered in increments of ten.

ML String Creator is self-modifying; the string assignment statements become a part of the program. However, the part of the program which is taking care of business protects itself from modification. The program can be used repeatedly without being reloaded, but it will grow in size.

The self-modification feature is also used to produce a LIST statement at line 150. In the listing below it appears as a REM statement, but after the string assignment statements are created it will be modified.

Finally, ML String Creator will prompt you for the filename of the disk file in which it will store the assignment statements. This filename and the first and last statement numbers of the created statements are concatenated with 150 LIST, in addition to the appropriate commas and double quotes, to form a genuine LIST statement.

Checking For Quotes And Carriage Returns

Before retiring, the program will indicate the memory locations, if any, at which a decimal value of either 155 or 34 was encountered. The program substitutes a value of zero in these instances. If more than ten occurrences of 155 or 34 are detected, the program stops with an error message.

The technique used to create the strings consists of printing string assignment statements on a previously cleared screen, just as you would do from the keyboard if you were typing in a BASIC program. After the last string assignment statement is placed on the screen, a CONT statement is written on the screen in immediate mode (that is, with no statement number).

Another feature of the program is its automatic RETURN. Normally when you press RETURN after typing a BASIC statement, the statement is either immediately executed (for example, LIST) or incorporated into your BASIC program (for example, $10 \mathrm{~A}=\mathrm{B}^{*} \mathrm{C}$). The Atari has a switch which makes pressing the RETURN key optional. The switch is location 842 , which usually contains a 12 . POKE 842,13 switches to automatic RETURN.

Brace Yourself For Fast Action

Processing takes place rapidly when the computer presses RETURN, so be prepared. The
commands to be processed must be both correct and in the right place on the screen, and the cursor must be positioned on or above the first statement. If an error is detected, a message will be written on the screen, but the Atari, using the automatic RETURN, will process the error message as a command and a syntax error will result.

Lines 50 and 70 write the string assignment statements onto the screen. Line 85 places CONT on the screen and positions the cursor at the top, well above the first statement to be processed. The switch at location 842 is set at line 90 . Then the program is stopped. When you are entering BASIC statements from the keyboard, you don't have one of your BASIC programs executing, and that is what is happening here, except that the text is "typed," the cursor is positioned, and RETURN supplied by the computer.

Watching The Atari Type

If you want to watch this action, you can see most of it by looking at the screen carefully. Insert the following statement to see what the screen looks like immediately before processing:

86 GOTO 86

Press BREAK to regain control; a STOPPED AT LINE 86 message will be displayed, destroying portions of the information which you are attempting to view.

The figure below depicts a typical screen image immediately following the STOP statement in line 90 and just before the automatic RETURN. (Of course, the actual string characters will vary depending on the ML subroutine you are reading.) Don't forget to delete line 86 when you've seen enough.

The CONT statement is the last one executed by the flying cursor before it returns control to your program. (The immediate execution of GOTO 100 would have the same effect.) The same technique is used to create and incorporate the LIST statement.

With a little imagination, you can modify this program to accept other forms of input of decimal or hexadecimal values to be converted to character strings, or to accept an ML object file from disk.

If you are interested in adapting some of
these techniques to your own programs，there are a few things to watch out for．First，when placing the cursor at the top of the screen prior to activating the automatic RETURN，be sure to allow sufficient room so the screen text produced by the STOP statement won＇t overwrite the statements which your program placed on the screen．Second，be sure to turn off the automatic RETURN（POKE 842，12）when you＇re done．

ML String Creator

Please refer to＂COMPUTE！＇s Guide To Typing in Programs＂before entering this listing．
PF 1 REM ML STRING MAKER
HA 2 REM Writes string assignment sta tements from up to 256 memory 10 cations and LISTs them on disk．
AJ $1 \varnothing$ DIM NAME $\$(1 \varnothing)$ ，RTN（11），RTN1（11）
EC 2ø ？CHR\＄（125）；＂ENTER－＂：？＂START ADDRESS＂；：INPUT FBA：？＂END ADD RESS＂：：INPUT LBA
JN 25 ？＂STRING NAME＂；：INPUT NAME\＄：？ ＂FIRST STATEMENT NUMBER＂；：INP UT FSN：SN＝FSN－1 $\emptyset: I=L E N$（NAME $\$$ ）
$C C 3 \emptyset$ IF LBAくFBA OR LBA－FBAン255 OR I＜ 2 OR I＞7 OR NAME $\$(I, I)\rangle " \$ " O R$ FSN＜191 THEN ？CHR\＄（253）：GOTO 2 Ø
OK 35 ？CHR\＄（125）：？：DISP＝－79：FBA＝FBA $-8 \varnothing$
0 U $4 \varnothing S N=S N+1 \varnothing: F B A=F B A+8 \emptyset: D I S P=D I S P+8$⿹：IF FBA＞LBA THEN GOTO 85
FL 45 RANGE $=79$ ：IF LBA－FBAく79 THEN RAN $G E=L B A-F B A$
FO $5 \emptyset$ ？SN；＂＂；NAME\＄；＂（＂；DISP；＂）＝＂；CH R\＄（34）：：FOR I＝FBA TO FBA＋RANGE： J＝PEEK（I）
DC $6 \emptyset$ IF $J=155$ THEN $J=\emptyset: K=K+1: R T N(K)=$ I：IF K＝11 THEN 190
D1 65 IF $\mathrm{J}=34$ THEN $\mathrm{J}=\varnothing: \mathrm{L}=\mathrm{L}+1: \operatorname{RTN} 1(\mathrm{~L})=$ I：IF L＝11 THEN 19 Ø
AL $7 \varnothing$ ？＂\｛ESC\}"; CHR $\$(J) ;$ NEXT I：？CHR \＄（34）
AJ 75 GOTO 49
FP 85 ？＂CONT＂：POSITION Ø，\varnothing
EG 9ø POKE 842，13：STOP
ON 1 Øの POKE 842， 12
CN 11 ？CHRक（125）；＂ENTER－＂：？＂FILE NAME＂；：INPUT NAME $\$$
LA 120 ？CHR $\$(125): ?: ?: ? ~ " 15 ด$ LIST＂ ；CHRक（З4）；＂D：＂；NAMEक；CHR\＄（34）； ＂，＂；FSN；＂，＂；SN－1ø：？＂CONT＂：POS ITION \varnothing, \varnothing
HB 130 POKE 842，13：STOP
PB $14 \varnothing$ POKE 842， 12
NM 145 ？CHR $\$(125)$ ；＂LISTING＂；NAME
DK $15 \varnothing$ REM LIST statement will be ins erted here．
LP 16め ？CHR\＄（125）：IF K＞ o substituted for 155 a＂：FOR I $=1$ TO K：？＂＂；RTN（I）；：NEXT I
NF $17 \emptyset$ IF L $>\emptyset$ THEN ？？＂7ero substit uted for 34 ＠＂：FOR I＝1 TO L：？ ＂＂；RTNI（I）；：NEXT I
HA 180 END
ED 190 ？CHR $\ddagger(125):$ ？TOO MANY 155s A ND／OR 345＂：END

MAXIMIZE STORAGE CAPACITY ON YOUR ATARI 1050＊DISK DRIVE WITH THE HAPPY 1050 MAXIMIZER＂

Now you can store twice as much data on your ATARI 1050 disk drive with this easy to install high quality plug in adapter．Requires no soldering and no permanent modifications．Runs all popular true double density programs，utilities，and operating systems．

You can upgrade your HAPPY 1050 MAXIMIZER to a WARP SPEED HAPPY 1050 ENHANCEMENT ${ }^{\text {™ }}$ ． Improves reading and writing speed 500% and comes with the HAPPY COMPUTERS WARP SPEED SOFTWARE ${ }^{\text {w }}$ package．Makes your ATARI 1050 the most powerful disk drive available．Easy plug in installa－ tion lets you upgrade your HAPPY 1050 MAXI－ MIZER to WARP SPEED at any time．

Take COMMAND with the HAPPY 1050 CONTROLLER ${ }^{\text {w }}$

When used with the ENHANCEMENT or MAXI－ MIZER allows writing on the flip side of disks without punching holes．Selects protection from writing on valuable disks．Selection can be made both from software commands and a three position switch． When used with the ENHANCEMENT allows both switch and software control of reading and writing speeds．Plug in installation requires no soldering．May be used without ENHANCEMENT or MAXIMIZER with manual control of write protection．

> Discount prices through Dec．31，1984：
> HAPPY 1050 MAXIMIZER complete．．．．．．．．．．．．．．．．．$\$ 124.95$
> MAXIMIZER to ENHANCEMENT UPGRADE ．．．．．．\＄129．95 （You must already have a Happy 1050 Maximizer） HAPPY 1050 MAXIMIZER with factory installed
> MAXIMIZER to ENHANCEMENT upgrade，same as
> WARP SPEED HAPPY 1050 ENHANCEMENT ．．．．$\$ 249.95$ HAPPY 1050 CONTROLLER．．
> $\$ 49.95$
> WARP SPEED HAPPY 810 ENHANCEMENT＊
> for 810 disk drive（supports high speed single density）．
> $\$ 249.95$

Price above include free delivery in the USA． California residents add 6.5% sales tax．
＊Note：ATARI 1050 is a trademark of Atari，Inc．
HAPPY COMPUTERS，INC． P．O．Box 1268，Morgan Hill，CA 95037 （408）779－3830

Commodore File Protector

John Dearinger

Abstract

You won't have to worry about accidentally erasing important files off your disks with "Commodore File Protector." It lets you protect individual files or entire disks. The program works on any Commodore 64, VIC-20 with at least 3K RAM expansion, Plus/4, or 16 with a 1541 or 1541-compatible disk drive.

Have you ever scratched a program on a disk and then realized you just deleted the wrong one? Perhaps it was a mental error, or maybe you used a filename with a wild card (* or ?) and got rid of more than you bargained for.

Some computers, such as Apple and Atari, allow you to lock and unlock disk files, offering some protection. Commodore computers, however, don't have any such commands. Neither does the Commodore 1541 disk drive. Yet, interestingly enough, the 1541 does have the routine built into its Disk Operating System (DOS). In fact, the disk drive actually uses the routine to check for a locked file during a write operation.

Here's what happens. Whenever the 1541 starts to scratch a file, it first must find the file on the disk to make sure it exists. Once it is found, the disk drive knows several things about the file, because this information is stored with the filename in the directory on track 18. It knows the track and sector where the first block of the file is stored on the disk. It knows how long the file is and the file type (PRG, SEQ, etc.) by reading the byte stored in the first location of each file entry. The first byte normally is a number from 128 to 132 decimal. (See the charts on pages 56 and 57 of the 1541 User Guide.) Another DOS routine also checks this location to tell if a file is locked or not. If bit 6 is set, DOS knows the file is locked and won't modify it in any way. For example, if the 1541 finds the number 194 decimal instead of 130 decimal, it knows that a PRG file is locked.
"Commodore File Protector" uses the direct access disk commands to lock the files on a disk so they cannot be deleted-until, of course, they've been unlocked.

Disk Command Menu

To make File Protector compatible with your
computer, only one line must be added to the program listing. If you have a Commodore 64, add this line:
$2 \varnothing$ Fl=4:F7=3:POKE53281,12:POKE5328ø,6
If you have a VIC-20, add this line:
$2 \emptyset \mathrm{Fl}=39: \mathrm{F} 7=63: \mathrm{NS}=4: \mathrm{U} \$=\mathrm{LEFT} \$(\mathrm{U} \$, 23)$
If you have a Plus/ 4 or 16 , add this line:

```
2\emptyset FORA=1TO8:KEYA,"":NEXT:KB=239:SF=1347:
    KL=198:Fl=4:F7=3
```

Once File Protector is running, you'll have several options on a menu. First, you can view a directory. This option is offered within several of the routines as well.

You have the option to lock all the files on a disk at once. This will save you a great deal of typing and time when you first use the program on a disk.

You can choose to lock or unlock one specific file at a time, in case you later want to scratch a file or modify a file and replace the old version.

When a file is locked, a less-than sign appears to the right of the file type whenever you list the directory-whether you LOAD " $\$$ ", 8 , use DOS 5.1, or choose option 1 on the File Protector menu.

Scratching a file is another option on the menu, and the only one that allows wild cards (* or ?). All the other options require you to enter the exact filename. Some interesting possibilities arise from this. For example, by locking some files and not others, you could clear a disk of unwanted files with many different names (and save a lot of typing) just by specifying an asterisk (*) for a filename to delete.

The last option on the File Protector menu allows you to lock or unlock the entire disk itself. It's best to use this command only on full or completed disks, though, because once the disk is locked, it cannot be written on again until it is unlocked. Locked files on a disk don't prevent the rest of the disk from being used.

Not Tołally Foolproof

There are three normal ways to remove files from a disk:

1. Scratch the file
2. Clear the directory with OPEN15,8,15,"N0:filename"
3. Reformat the disk with OPEN15,8,15,"N0:filename, ID\#"

Files locked with Commodore File Protector will withstand number 1 but not numbers 2 and 3. A locked disk will withstand numbers 1 and 2 but not number 3 .

One final word of warning: I strongly recommend that you do not use this program on any commercial software. These programs often use parts of track 18 in their copy protection, and since File Protector alters that track, it may change something that shouldn't have been changed.

No More Sticky Tabs

The method for locking the entire disk is similar to that for locking a file. In track 18 , sector 0 , the Block Allocation Map (BAM) is stored. The first two locations (bytes 0 and 1) tell the 1541 where it can find the first directory block containing the first eight filenames on the disk. The third location (byte 2) denotes on which drive this particular disk was formatted. This location should contain the hexadecimal number \$41 (65 decimal), which indicates 1541 and 4040 format. If it doesn't, the 1541 will assume that the disk was formatted on a different disk drive and will read the disk, but refuse to write on it.

So, by writing a different number at this location, the disk can be effectively write-
protected. No more of those sticky little tabs that are always coming off anyway.

The program also changes location 166 from a $\$ 41$ (65 decimal) to a $\$ 42$ (66 decimal). This has no effect on whether the disk is writeprotected or not, but is done only to visually indicate a locked disk. The directory header will read 0 "Diskname" ID 2B—note the 2B instead of the normal 2A.

Commodore File Protector

Please refer to "COMPUTE!'s Guide To Typing In Programs" before entering this listing.

$1 \varnothing \mathrm{U} \$=$ " $\{$ RVS $\}\{4 \varnothing$ SPACES $\} ": \mathrm{KB}=198: \mathrm{SF}=653: \mathrm{KL}$
=2ø3:NS=12

160 PRINT\#15,"B-P";2;P+32*I:PRINT\#2,CHR\$(AOR64) ;
:rem 248
$17 \varnothing$ NEXT:GOSUB7ø:IFETHENRETURN : rem 21
$18 \emptyset$ PRINT"TRACK"T"SECTOR"S"IS LOCKED":T=T 1:S=Sl:IFTTHENII \varnothing
:rem 168
$19 \emptyset$ GOSUB730:GOSUB74ø:RETURN :rem 35
$2 ø \emptyset$ REM:::READ DIRECTORY:: : :rem 163
$210 \mathrm{H}=\mathrm{CHR} \$(18): \operatorname{PRINT} "\{\mathrm{CLR}\}\{\mathrm{RVS}\}$ HOLD [SHI FT] TO PAUSE\{DOWN\} :rem $2 \varnothing$
220 GOSUB660:PRINT\#15,"M-R"CHRS (144)CHR\$ (7) CHRS (23)
:rem 103
230 FORI $=\varnothing$ TO22 : GET\#15, AS: $\mathrm{H} \$=\mathrm{H} \$+(\mathrm{A} \$+\mathrm{CHR} \$(\varnothing$)) : NEXT: PRINTH\$"\{BLK\}":POKE14Ø, $1: T=18$: $\mathrm{S}=1$
: rem 84
240 GOSUB6Ø:SYS828:GOSUB8Ø:IFPEEK (SF)THEN WAITSF,1,1
:rem 8
250 IFTTHEN24の :rem 63
260 PRINT\#15, "M-R"CHR\$ (250) CHR\$ (2): GET\#15 ,LOS:PRINT\#15, "M-R"CHR\$ (252) CHR\$ (2)
:rem 224
270 GET\#15,HI\$:PRINTASC(LOS+CHR\$($\varnothing))+256 *$ ASC(HIS+CHRS(\varnothing))" BLOCKS FREE: rem 188 $28 \varnothing$ GOSUB73ø:GOSUB740:POKE14ø, Ø:RETURN
:rem 125
$29 \varnothing$ REM:::INPUT NAME:: : : rem 140
3øø PRINT"\{DOWN\}[F1] EXIT\{13 SPACES\}[F7] \{SPACE\}DIRECTORY
: rem 166
$31 \varnothing$ PRINT" $\{$ DOWN $\}$ FILENAME? "CUS; :POKEKB, \varnothing : F\$=""
:rem 1øø
$320 \mathrm{KQ}=\mathrm{PEEK}(\mathrm{KL}):$ GETAS:IFAS=" "ANDKQ=64THEN $32 \varnothing$
:rem 131
$33 \varnothing$ IFKQ $=$ FlORKQ $=$ F7THENPRINTCHR $\left(20^{\circ}\right):$ RETUR $\mathrm{N} \quad: \mathrm{rem} 246$
340 IFAS=CHR\$ (2Ø) ANDF $\$="$ "THEN32ø : rem 254
$35 \emptyset$ IFAS=CHR\$ (13)ANDF\$ <>" "THENPRINTCHR\$ (2 Ø) : RETURN :rem 4
$36 \varnothing$ IFA $=\operatorname{CHR} \$(13)$ ANDF $\$=$ " "THEN32の : rem 2
$37 \varnothing$ IFAS=CHR\$ (2ø)THENPRINTCHR\$ (2Ø)A\$CU\$; : $\mathrm{F} \$=\operatorname{LEFT}(\mathrm{F} \$, \operatorname{LEN}(\mathrm{~F} \$)-1):$ GOTO $320:$ rem 98
$38 \emptyset$ PRINTCHR $(2 \emptyset) A \$ C U \$;: F \$=F \$+A \$: G O T O 32 \varnothing$
:rem 27
390 REM:: $:$ LOCK A FILE:: : \quad rem 102
4øø PRINT"\{CLR\}"; :rem 51
405 PRINTSPC(NS)"LOCK A FILE":PRINTUS : rem 12
$41 \varnothing$ GOSUB3øø:IFKQ=F1THENRETURN :rem $2 \varnothing 8$
$42 \emptyset$ IFKQ=F7THENGOSUB21 \varnothing :GOTO4ø5 :rem $2 \varnothing 1$
430 POKE679,1:GOSUB780:GOSUB66 $: T=18: S=1$
:rem 167
$44 \varnothing$ GOSUB6 \varnothing :SYS828:A=PEEK (252):IFATHEN47 \varnothing
:rem 244
450 GOSUB8 $0:$ IFTTHEN44 4 :rem $1 \varnothing 1$
460 PRINT" \{DOWN \} \{RED\}FILE NOT FOUND\{BLK\} \{DOWN\}":GOTO41ø :rem $2 ø 6$
$47 \varnothing$ IF (AAND64) THENPRINTF\$:PRINT" IS ALREA DY LOCKED": GOSUB73ø:GOSUB74 : GOTO51 \varnothing
: rem 44
$480 \mathrm{P}=\operatorname{PEEK}(255)$: GOSUB60:PRINT\#15, "B-P"; 2 ; P:PRINT\#2,CHRS (AOR64); :rem 243
$49 \varnothing$ GOSUB7 7 :IFETHEN4øØ :rem 85
5øø GOSUB73ø:PRINTF\$:PRINT"IS LOCKED":GOS UB74 \quad :rem 142
$51 \varnothing$ POKE679, $0: G O T O 4 \varnothing \varnothing$:rem $2 \varnothing 6$
520 REM: : : UNLOCK A FILE: : : rem 4
530 PRINT"\{CLR\}"; :rem 55
535 PRINTSPC(NS)"UNLOCK A FILE": PRINTU\$
:rem 179
540 GOSUB3øø:IFKQ=F1THENRETURN :rem 212
550 IFKQ=F7THENGOSUB21Ø:GOTO535 :rem $2 \emptyset 9$
560 POKE679,1:GOSUB780:GOSUB660:T=18:S=1
:rem 171

57Ø GOSUB6Ø：SYS828：A＝PEEK（252）：IFATHEN6øø
：rem 243
580 GOSUB8ø：IFTTHEN570
：rem 109
590 PRINT＂\｛DOWN\} \{RED\}FILE NOT FOUND \{BLK\} \｛DOWN\}":GOTO54ø
：rem 214
6 6ø IF（AAND64）＝．THENPRINTF\＄Q\＄＂IS ALREADY \｛SPACE \}UNLOCKED": GOSUB730:GOSUB74 : GO T064ø
：rem 231
$610 \mathrm{P}=\mathrm{PEEK}(255)$ ：GOSUB60：PRINT\＃15，＂B－P＂；2； P：PRINT\＃2，CHRS（AAND135）；：rem 79
$62 \emptyset$ GOSUB7 \varnothing ：IFETHEN53 $:$ rem 84
630 GOSUB730：PRINTF\＄：PRINT＂IS UNLOCKED＂：G OSUB74ø
640 POKE679， $0: G O T O 53 \varnothing$
：rem 53
65 Ø REM：：：OPEN FILE：：
：rem 214
：rem 45
$66 \emptyset$ CLOSE2：CLOSE15：OPEN15，8，15，＂Iø＂：OPEN2 ，8，2，＂\＃＂
：rem 254
$67 \varnothing$ INPUT\＃15，E，EMS，ET，ES ：rem 146
$68 \emptyset$ IFE $=730 \mathrm{RE}=26$ THENGOSUB 730 ：GOTO71 \varnothing
：rem 248
690 IFETHENPRINT＂\｛RED\}\{RVS\}ERROR: ": PRINTE ＂，＂EMS＂，＂ET＂，＂ES＂\｛BLK\}":GOSUB73ø:END
：rem 225
$7 \emptyset \emptyset$ RETURN
：rem 119
$71 \varnothing$ IFE＝73THENPRINT＂DISK IS LOCKED＂：GOSUB 740 ：RETURN
：rem 251
720 PRINT＂REMOVE WRITE PROTECT TAB＂：GOSUB 740 ：RETURN
：rem 42
73ø CLOSE2：CLOSE15：RETURN
：rem 114
740 PRINT＂\｛RVS\} \{DOWN\}PRESS ANY KEY\{DOWN\}" ：POKEKB，\varnothing
：rem 8ø
$750 \mathrm{KQ}=\mathrm{PEEK}(\mathrm{KL}): \mathrm{GETA} \$:$ IFA\＄＝＂＂ANDKQ＝64THEN 750
：rem 145
760 RETURN ：rem 125
770 REM：：：STORE NAME FOR ML：：： rem 12
$78 \emptyset \operatorname{IFLEN}(\mathrm{~F} \$)<16$ THENF $\$=\mathrm{F} \$+\operatorname{CHR} \$(160)$ ：GOTO7 $8 \emptyset$
：rem 2の9
790 FORI＝1TOLEN（F\＄）：POKE683＋I，ASC（MID\＄（F\＄ ， 1,1$)$ ）：NEXT：POKE7ØØ， $0:$ RETURN ：rem 199
$8 \emptyset \emptyset$ REM：：：LOCK ENTIRE DISK：：：\quad rem 243
$81 \varnothing$ PRINT＂\｛CLR\}"SPC(NS)"LOCK ENTIRE DISK" ：PRINTU\＄
：rem 116
82ø PRINT＂\｛DOWN\}INSERT DISK IN DRIVE
\｛2 SPACES\}[F1] TO ABORT":FORTD=1TO9øø ：NEXT：GOSUB74ø
：rem 8
$83 \varnothing$ IFKQ＝F1THENRETURN
：rem 137
840 GOSUB660：T＝18：S＝Ø：GOSUB60：PRINT\＃15，＂B －P $22^{\prime \prime}$
：rem 233
850 PRINT\＃2，CHR\＄（66）；：PRINT\＃15，＂B－P 2166 ＂：PRINT\＃2，CHR\＄（66）；：GOSUB7ø：IFETHEN81 \emptyset
860 GOSUB730：GOSUB660：GOSUB730 ：rem 98
$87 \emptyset$ PRINT＂THE DISK IS NOW WRITE PROTECTED ＂：GOSUB740：RETURN
880 REM：：：SCRATCH A FILE：：：rem 73
890 PRINT＂\｛CLR\}"; :rem 64
895 PRINTSPC（NS）＂SCRATCH A FILE＂：PRINTUS
：rem 248
$9 \varnothing \varnothing$ GOSUB3ØØ：IFKQ＝F1THENRETURN ：rem 212
910 IFKQ＝F7THENGOSUB210：GOTO895 ：rem 218
920 INPUT＂\｛DOWN\}ARE YOU SURE";A\$:IFA\$<>"Y ＂THEN89の
：rem 73
930 GOSUB660：PRINT\＃15，＂S $0: "+F \$:$ INPUT\＃15，E ，EMS，ET，ES：IFE＞ 1 THENGOSUB68ø：GOTO89ø
：rem 215
940 GOSUB730：IFET＝．THENPRINT＂\｛RED\}FILE IS LOCKED OR NOT ON DISK\｛BLK\}":GOSUB74ø ：GOTO89ø
：rem 97
950 IFET＞1THENPRINTET；EM\＄：GOSUB740：GOTO89 Ø
：rem 228
960 PRINTF\＄：PRINT＂IS SCRATCHED＂：GOSUB740：

GOT089ø
：rem 55
$97 \varnothing$ REM：：：UNLOCK A DISK：：：：rem 24
$98 \varnothing$ PRINT＂\｛CLR\}"SPC(NS)" UNLOCK\{2 SPACES\} DISK＂：PRINTU\＄
：rem 88
$99 \varnothing$ PRINT＂\｛DOWN\}INSERT DISK IN DRIVE
\｛3 SPACES\}[F1] TO ABORT":FORTD=1TO9øø ：NEXT：GOSUB74の
：rem 16
1øøø IFKQ＝F1THENRETURN ：rem 175
$1 \emptyset 1 \varnothing$ GOSUB66ø：T＝18：S＝\varnothing ：GOSUB6 1 ：rem 44
1 1ø2ø PRINT\＃15，＂M－W＂；CHR\＄（1）；CHR\＄（1）；CHR\＄（ 1）；CHR (65) ；
：rem 135
1 Ø3 0 PRINT\＃15，＂B－P 2 2＂：PRINT\＃2，CHR\＄（65）；
：PRINT\＃15，＂B－P 2 166＂
：rem 251
$1 \varnothing 4 \emptyset$ PRINT\＃ 2 ，CHRS（65）；：GOSUB7 $0:$ IFETHEN98 9
：rem $2 ø 2$
1ø50 GOSUB60：GOSUB730：PRINT＂DISK IS UNLOC KED
：rem 5
1060 GOSUB740：RETURN ：rem 252
1070 REM：：：MAIN MENU：：：\quad ：rem 98
$1 ø 8 \emptyset$ PRINT＂$\{C L R\}$ \｛BLK \} \{DOWN\}"SPC (NS-2) " \ll F ILE PROTECTOR＞＞＂：rem 31
$1 ø 9 \emptyset$ PRINT＂\｛DOWN\} 1) DIRECTORY :rem 153
$11 \varnothing \varnothing$ PRINT＂2）LOCK ALL FILES ：rem 65
1110 PRINT＂3）LOCK A FILE ：rem 88
$112 \emptyset$ PRINT＂4）UNLOCK A FILE ：rem 253
1130 PRINT＂5）LOCK ENTIRE DISK ：rem 237
1140 PRINT＂6）UNLOCK A DISK ：rem 12
$115 \emptyset$ PRINT＂7）SCRATCH A FILE ：rem 63
1160 PRINT＂8）QUIT ：rem 27
$117 \varnothing$ PRINT＂$\{2$ DOWN $\}$ ENTER YOUR CHOICE＂
：rem 52
1180 GETA\＄：IFA\＄＝＂＂THEN1180 ：rem 183
$1190 \mathrm{C}=\mathrm{VAL}(\mathrm{A} \$):$ IFC＜1ORC＞8THEN1180：rem 176
$12 \varnothing \varnothing$ ONCGOSUB21ø，1øø，4øø，53ø，81ø，98ø，89ø， $122 \emptyset$ ：rem 71
$121 \varnothing$ GOTO1ø8ø ：rem 198
1220 CLOSE2：CLOSE15：END ：rem 148
1230 REM：：：VARIABLES \＆M／L：：：：rem 141
1240 POKE679， $0:$ POKE14 $0, \varnothing:$ CU\＄$=$ CHR $\$(31)+$ CHR $\$(161)+$ CHR $(144) \quad:$ rem $1 \emptyset 2$
1250 FORQZ＝828TO1øø6：READZQ：POKEQZ，ZQ：NEX T：RETURN
：rem 34
1260 DATA $169,0,141,168,2,133,253,162,2,3$ $2,198,255,32 \quad: r e m 46$
$127 \emptyset$ DATA $228,255,141,169,2,32,228,255,14$ $1,170,2,230,253 \quad: r e m 192$
1280 DATA $230,253,32,228,255,133,252,165$ ， $253,133,255,32,228:$ rem 91
1290 DATA $255,32,228,255,230,253,230,253$ ， $160,0,32,228,255 \quad:$ rem 241
1300 DATA $230,253,153,189,2,200,24,192,16$ ，144，242，160，243 ：rem 230
1310 DATA $32,228,255,230,253,165,144,24 \varnothing$ ， 3，141，168，2，2øø ：rem 178
$132 \emptyset$ DATA $2 ø 8,241,165,252,208,7,173,168,2$ $, 2 \emptyset 8,22,240,191 \quad:$ rem 194
1330 DATA $165,140,240,3,32,199,3,173,167$ ， 2，240，3，32
：rem 191
1340 DATA $175,3,173,168,2,240,171,32,2 \varnothing 4$ ， $255,96,160,0 \quad$ ：rem 42
$135 \emptyset$ DATA $185,172,2,240,8,217,189,2,2 \emptyset 8,7$ ，2øø，2ø8，243
：rem 47
$136 \emptyset$ DATA $238,168,2,96,169, \varnothing, 133,252$
：rem 245
$137 \emptyset$ DATA $96,16 \emptyset, \varnothing, 185,189,2,24 \emptyset, 6,32,21 \varnothing$ ，255，2øø，2ø8 ：rem 41
$138 \emptyset$ DATA $245,165,252,41,64,240,10,169,14$ $4,32,21 \varnothing, 255,169,60,32,21 \varnothing, 255,169$
：rem 111
1390 DATA $13,32,210,255,169,144,32,210,25$ 5，96

PROGRAMMING THE TI

Matching Quiz

This month's column presents a general matchingquiz program that can be adapted to any topic. It contains no graphics or sound, so it should be easy to translate to other computers. Feel free to add your own graphics and sound to enhance your particular quiz.

The sample program is a quiz of terms and their definitions. This particular quiz can be used in a computer literacy class for learning general computer terminology.

First the program prints a definition on the screen followed by 12 possible terms. The user must press the letter corresponding to the term defined. If the answer is correct, the program continues and that definition will not appear again. If the answer is incorrect, the program gives the correct answer and the definition will appear again.

The score is kept by keeping track of how many times an answer is attempted. A perfect score in this case would be 12. Each time a definition is shown, the score is incremented.

If you want to use this matching quiz for several different topics, type in and save the program consisting of lines 100 through 710. Now, to build a custom program, start with this basic structure and then add DATA statements starting at line 720. Then save the quiz on a different tape or with a different name on the disk. Different quizzes will simply have different DATA statements. You may also need to change the instructions.

Creating DATA Statements

Notice that each DATA statement contains two items separated by a comma. The first item is the term, and the second item is the corresponding definition. If the definition contains a comma, it must be surrounded by quotation marks. Otherwise, the computer will mistake the characters
after the comma for another DATA element.
On a quiz for a different topic, use the same idea-put matching parts in the same DATA statement.

Line 110 DIMensions arrays for the quiz. Since this quiz has 12 definitions and terms, the numbers in the DIM statement are 12. You will need to adjust this for the number of items in your own quiz. Line 120 sets the variable N to 12 for the 12 items in this example program. If you have a different number of items, be sure to change this line.

Lines 130-200 clear the screen and print the instructions. Lines 210-230 READ from the DATA the 12 words (W\$) and their corresponding definitions (D\$). Within the FOR-NEXT loop, a counter with the variable name A varies from 1 to 12. Line 220 looks for DATA statements and reads in order first a word $\mathrm{W} \$(\mathrm{~A})$, then the definition $\mathrm{D} \$(\mathrm{~A})$. The number A keeps them matched up properly. Make sure when you type your DATA statements that you have matched pairs of items (separated by commas).

Program Setup

Lines 240-270 wait for the user to press ENTER before clearing the screen to start the quiz. Line 280 initializes the score (SC) to zero at the beginning of each quiz.

Lines 290-310 set up a temporary word file array, $\mathrm{T} \$(\mathrm{~A})$, which is the same as the original W\$ array. This temporary array is used in choosing the terms for the quiz.

Lines 320-550 perform the quiz for the number of items to be matched, N , or in this case 12. Line 330 increments the score SC for each time a definition is shown.

Line 340 clears the screen. Lines $350-370$ randomly choose one of the terms which has not
previously been matched correctly．The term chosen is denoted by the number R．Line 380 prints the definition $D \$(R)$ corresponding to the term chosen．

Lines 390－420 print all of the terms possible for answers with a letter to indicate the answer． Line 430 sounds a prompting tone．Lines $440-460$ accept the user＇s answer，making sure the key pressed is an acceptable letter of one of the terms，then prints the letter chosen．

Evaluating The Answer

Line 470 tests the user＇s response with the cor－ rect answer stored in R．If the answer is in－ correct，lines 480－510 print the correct answer， wait for the user to press ENTER，then branch back to line 330 to increment the score and print the next definition．If the answer is correct，lines 520－540 print the message CORRECT！，set T\＄（R） equal to the null string so the term cannot be chosen again，and then wait for the user to press ENTER．Line 550 increments P for the loop counter to go to the next problem．

After the quiz is complete and all terms have been correctly matched，line 560 clears the screen．Lines 570－580 print the possible score and the user＇s score．Lines 590－600 print a mes－ sage if there is a perfect score．

Lines 610－670 present the option to try the quiz again or to end the program．

Lines 680－710 contain the subroutine to wait for the user to press the ENTER key before continuing the program．

Lines $720-840$ in this program contain the data for the quiz．Notice that some of the defi－ nitions contain extra spaces．These are used to print the definition on the 28 －column screen without splitting words．

Customizing The Quiz

Now to change the topic of the quiz．Decide how many items will need to be matched．Keep in mind how it will look when printed on the 24 －row screen．Change the DIMension statement of line 110 and the definition of N in line 120 to reflect the number of items．

Next add the DATA statements starting with line 720 ．For example，if you want a quiz on BASIC programming commands，a typical DATA statement might be：

720 DATA GOTO，Command to transfer program control
A history quiz might contain：
720 DATA 1492，Columbus discovered America．
An algebra quiz could use：
720 DATA $x=2, x+5=5 x-3$
A states and capitals quiz could use：
720 DATA Providence，Rhode Island

When typing the DATA statements，make sure there are matching pairs．If there are short words，you may put more than one matching pair in a DATA statement－just be sure to use commas to separate each item．With longer phrases，make sure you use spaces to print the phrase properly on the screen without splitting words．

Remember that you can add your own sound effects and graphics for positive reinforcements on correct answers．You may also wish to use graphics and sound as part of the matching process．

If you wish to save typing effort and obtain a copy of this program，send a blank cassette or disk，a stamped，self－addressed mailer，and $\$ 3$ to：

> C. Regena
> P.O. Box 1502
> Cedar City, UT 84720

Please be sure to specify the title of the program and the type of computer you use．

Matching Quiz For TI

Please refer to＂COMPUTE！＇s Guide To Typing In Programs＂before entering this listing．

```
1Ø\varnothing REM MATCHING QUIZ
110 DIM W$(12),T$(12),D$(12)
120 N=12
13\Omega CALL CLEAR
14ø PRINT TAB(9); "CHAPTER 1"
15Ø PRINT :::"A DEFINITION WILL BE
    GIVEN."
16\emptyset PRINT : "CHOOSE THE TERM WHICH"
17G PRINT : "MATCHES THE DEFINITION.
    "
189 PRINT : "PRESS THE LETTER OF THE
    "
190 PRINT :"ANSWER."
2øø PRINT :"THERE WILL BE";N;"PROBL
    EMS."
210 FOR A=1 TO N
22g READ W$(A),D$(A)
230 NEXT A
24贝 PRINT ::"PRESS <ENTER> TO START
        ."
250 CALL KEY(0,K,S)
26G IF K<>13 THEN 25@
27@ CALL CLEAR
28め SC=め
29@ FOR A=1 TO N
उ@@ Tक (A)=W$(A)
31@ NEXT A
326 FOR P=1 TO N
33g SC=SC+1
340 CALL CLEAR
359 RANDOMIZE
36@ R=INT (N*RND) +1
37@ IF T$(R)="" THEN 36D
39@ PRINT Dक(R)::
390 FOR A=1 TO N
40g FRINT CHR$(G4+A);" ";W$(A)
41\emptyset NEXT A
420 PRINT
430 CALL SOUND(150,15@@,2)
44@ CALL KEY(Ø,K,S)
```

```
450 IF (K<65)+(K>S4+N)THEN 440
46g PRINT CHR变(K)::
479 IF K-64=R THEN 52@
48g PRINT "THE CORFECT ANSWER IS"
49\emptyset PRINT CHK&(R+64);"--";Wま(R)
5øめ GOSUB 58%
510 GOTO उふめ
52@ PRINT "CORRECT!"
536 T$(R)=""
540 GOSUR 68多
55@ NEXT F
560 CALL CLEAR
57\emptyset PRINT "THERE WERE";N; "DEFINITIO
    NS."
58ø PRINT : "YOUR SCORE: ";SC;"ANSWE
    RS":: :
59@ IF SC<>N THEN 61@
6历\emptyset PRINT "GOOD WORK!":: :
61@ PRINT "PRESS 1 TO TRY AGAIN"
620 PRINT "{G SFACES}2 TO END FROGR
    AM"
6З@ CALL KEY(の,K,S)
640 IF K=49 THEN 270
65@ IF K<>5め THEN 63@
6G@ PRINT :: "2 END":: :
67g STOF
68# PRINT : "PRESS <ENTER>.";
69@ CALL KEY(@,K,S)
7@\emptyset IF Kく>13 THEN 69@
71@ RETURN
72@ DATA DOCUMENTATION,THE BOOKS AN
    D MANUALS THAT ACCOMPANY A COM
    PUTER-RELATEDPRODUCT
73@ DATA SYSTEM, A SET OR ARRANGEMEN
    T OF{S SFACES?PARTS ACTING TOGE
```

THER TO\｛4 SPACES3PERFOFM A FUNC TION
740 DATA INFORMATION SYSTEM，＂A SYST EM THAT TAKES INPUT，FROCESSES IT：AND PRODUCES INFORMATION AS OUTPUT＂
$75 \emptyset$ DATA COMMUNICATION SYSTEM，＂A SY STEM THAT CONSISTS OF A SENDER， A PHYSICAL CHANNEL，AND A RECE IVER＂
76Q DATA HARDWARE，THE FHYSICAL COMP ONENTSKS SFACESJASSOCIATED WITH A COMPUTER OR OTHER SYSTEM
$77 \varnothing$ DATA SOFTWARE，FROGRAMS THAT CON TROL THE\｛S SPACES？FUNCTIONS OF SYSTEMS
$78 \emptyset$ DATA NETWORK，TWO OR MOFE COMMUN ICATINGKS SPACES3DEVICES THAT A RE CONNECTED TOGETHER
790 DATA APPLICATION，WHAT IS DONE W ITH COMPUTERS
8母G DATA CIRCUIT，AN INTERCONNECTED SET OF 44 SPACESЗCOMPONENTS THAT FERFORM AN ELECTRONIC FUNCTION
319 DATA BINARY SIGNAL，A COMFUTEF C IRCUIT THAT IS REFRESENTED EY TWO DIFFERENTLEVELS OF CURRENT
82G DATA DATA，＂FACTS，NUMEERS，AND SYMBOLS PROCESSED BY A COMFUTER TO PRODUCE INFORMATION＂
8Зg DATA BINARY DIGIT（BIT），A BASIC BUILDING BLOCK ORES SPACES？UNI T OF INFORMATION USED IN COMPUT ER SYSTEMS
849 END

THE BEGINNER＇S PAGE

Tom R．Halfhill，Editor

Programs Within Programs

Imagine what your life would be like if every time you had to perform a routine task－such as starting your car or switching on a TV－you had to think really hard about it，almost as if you were learning the task for the first time．Starting a car doesn＇t seem too difficult，but it does re－ quire you to execute a number of smaller tasks in exactly the same sequence each time．You have to find the right key，unlock the door，grasp the handle，pull open the door，climb into the seat， stick the key into the ignition，twist the key，and
press the gas pedal．
Yet，unless the car is brand－new or belongs to someone else，you can probably do all of this with your eyes closed，like a blindfolded soldier reassembling his rifle．That＇s because you＇ve per－ formed the actions so many times that they＇re carved into your unconscious．You just think start the car，and a little＂program＂takes over．

When you think about it，your brain stores thousands of such tiny programs．They let you perform everyday tasks almost on autopilot． Without them，every routine action would be like
a new learning experience. Life might be more interesting, like a young child's, but you'd be a lot less efficient.

Computer programs can benefit from the same sort of efficiency. After all, a program at its most basic level is just a list of instructions telling the computer how to perform some kind of job. That job might be something as simple as adding two numbers or something as complex as modeling the economy of a large nation. Still, even simple jobs can often be broken down into several smaller tasks which are executed repeatedly. So why make the computer do things the hard way? Why not equip your programs with the same kind of subprograms that your brain seems to use to automate routine tasks?

This concept of smaller programs within larger programs is so powerful that virtually every computer language offers some way to do it. By identifying these repetitive tasks and turning them into subprograms or subroutines, you can write programs that run faster, consume less memory, and are easier to understand and modify.

When To Use A Subroutine

Your brain acquires a subroutine by rote-it subconsciously memorizes a task that you perform over and over again. Today's computers aren't quite intelligent enough to learn this way, so you have to spell it out for them more literally with BASIC commands.

First you have to decide when to take a piece of a program and make it into a subroutine. This judgment comes naturally after a while, but as a general rule, any small task which is performed more than once in a program is a candidate for a subroutine.

Once you've identified this task, you write the little routine and make the program detour to those lines whenever you need to perform that task. At the end of each subroutine, you use the command RETURN to automatically go back into the main program and proceed with other things.

Let's try an example. Assume you're writing a program that frequently pauses and asks the user to press a key. With no subroutines, this is how clumsy the program would be:

[^0]```
190 PRINT "but outmoded military tactics"
200 PRINT "were also to blame."
210 PRINT "PRESS C AND RETURN TO
 CONTINUE";
220 INPUT A$
230 IF A$<> "C" THEN GOTO 210
```

...

Notice how the lines which ask the user to press a key (lines 140-160 and 210-230) are simply repetitious; only the line number references are different.

In each case these lines keep printing the prompt PRESS C AND RETURN TO CONTINUE until the user presses the C key. (Make sure to press a capital C if you try running this example. If you have a TI-99/4A, change every occurrence of THEN GOTO to THEN in this and all following examples.) A little three-line routine like this one might not seem like much, but if it's repeated throughout a long program, considerable space and programming time would be wasted. This is an ideal candidate for a subroutine.

## Why Not GOTO?

At this point, you might be thinking about building a subroutine with the GOTO command. After all, a subroutine requires a detour from the main program, and GOTO is a programming detour (see last month's column). Why not just jump to the subroutine with GOTO and then exit from it the same way? The program might look like this:

```
90 DIM A$(1):REM This line for Atari only
100 PRINT "During the Civil War,"
110 PRINT "more American soldiers died"
120 PRINT "than in all other"
130 PRINT "American wars combined."
140 GOTO }100
150 PRINT "Poor medical care accounted"
160 PRINT "for many casualties,"
170 PRINT "but outmoded military tactics"
180 PRINT "were also to blame."
190 GOTO }100
200 PRINT "For instance, many battles"
210 PRINT "were fought with mass charges"
220 PRINT "of infantry and cavalry."
230 GOTO 1000
1000 PRINT "PRESS C AND RETURN TO
 CONTINUE";
1010 INPUT A$
1020 IF A$<>"C" THEN GOTO 1000
1030 GOTO 150
```

At first this seems to fit the bill. The lines which await the user's keystroke are grouped together in a neat subroutine at the end of the program. All it takes is a simple instruction-GOTO 1000 -to activate (or call) the subroutine.

If you try running the program, however, a problem soon becomes apparent. The subroutine works great the first time it's called. The first paragraph of text appears on the screen, followed by the prompt, and the program continues print-
ing when you press $C$. But after the second time the subroutine is called, the program prints the second paragraph all over again! In fact, it keeps printing the same paragraph no matter how many times you press C-it never reaches the third paragraph at all.

GOTO is the culprit. GOTO 1000 works okay for calling the subroutine, because the routine is always at line 1000. But GOTO doesn't work so well when returning from the subroutine. The line number in the routine's final GOTO statement is fixed (GOTO 150), but the line number where the program should continue after calling the routine keeps changing. What's needed is a substitute for GOTO that always knows how to pick up where the program left off. That substitute is the pair of commands GOSUB and RETURN.

## GOSUB: A GOTO With Brains

If you understood how the above programs work, you'll have no trouble at all grasping GOSUB and RETURN. GOSUB (which means GOto SUBroutine) is merely a smarter version of GOTO. The statement GOSUB 1000 does the same thing as GOTO 1000-it detours the program to line 1000. However, it also makes the computer remember where it detoured from. Then, when a RETURN statement is encountered, the program automatically returns from the subroutine and begins executing the statement which immediately follows the original GOSUB.

Here's how the previous example would look after GOSUB and RETURN are substituted for the GOTO statements that caused the problem:

```
90 DIM A$(1):REM This line for Atari only
100 PRINT "During the Civil War,"
110 PRINT "more American soldiers died"
120 PRINT "than in all other"
130 PRINT "American wars combined."
140 GOSUB }100
150 PRINT "Poor medical care accounted"
160 PRINT "for many casualties,"
170 PRINT "but outmoded military tactics"
180 PRINT "were also to blame."
190 GOSUB }100
200 PRINT "For instance, many battles"
210 PRINT "were fought with mass charges"
220 PRINT "of infantry and cavalry."
230 GOSUB }100
240 END
1000 PRINT "PRESS C AND RETURN TO CONTINUE";
1010 INPUT AS
1020 IF A\$<>"C" THEN GOTO 1000 1030 RETURN
```

Think how much memory (and programming time) you could save by simply inserting a GOSUB 1000 statement whenever you want the user to press a key to continue, instead of
redundantly entering the routine itself each time you need it. The memory savings are even more dramatic with longer subroutines.

For that reason alone, GOSUB and RETURN are worth their weight in RAM chips. Yet memory conservation is only one advantage of using subroutines in your programs. We already mentioned how they can increase execution speed and help make programs easier to understand and modify. But they can also drastically reduce the time you spend writing and debugging a program. Once you get a subroutine up and running without bugs, you can call it with confidence whenever necessary. If an error does result, you can be fairly certain that something outside the subroutine is causing the error. This narrows down your search for the elusive bug.

Subroutines can also make it less intimidating to write large, complex programs. By breaking a big job down into many smaller jobs, and then tackling them one at a time, the program seems to fall together much more easily. In fact, many programmers keep a library of frequently used subroutines and stick them into new programs wherever needed.

## Questions Beginners Ask

QIn manuals, books, and articles, I keep seeing the term "default." What does default mean?

ADefault means the way something starts out, its normal condition. For example, many computer games default to one-player mode. If there are two players, you have to let the game know by pressing a special key.

In computer terminology, default can refer to the standard setting of a switch, the screen colors when you first turn on the computer, the number stored in a memory location before it's altered by a program, and many other things. For example, the LOAD command on a Commodore 64 or VIC-20 defaults to tape instead of disk. If you type:

## LOAD"PROGRAM NAME"

the computer assumes you are loading from the cassette recorder and responds PRESS PLAY ON TAPE. To load a program from the disk drive, you have to add a device number to the command which overrides the default:

## LOAD"PROGRAM NAME", 8

Another example is a dot-matrix printer which defaults to a standard typeface. To print in a special typeface such as bold or italics, you must send the printer a command (usually from within a program) which overrides the default setting.

## Atari Acquires Apple!

As I write this, the Winter Consumer Electronics Show (CES) in Las Vegas has just ended. By now you have probably read in the papers and magazines just what real marvels the new Atari Corporation introduced at CES. While I didn't get a chance to attend CES (though others from my company were there), I did have the privilege of getting some preshow information about Atari's new products. Also, thanks to being just a bit nosey, I learned a little about how Atari developed their remarkable new computers and even a little bit of what's yet to come.

## Purchase Obvious In Retrospect

(An important aside: The issue of COMPUTE! which will carry this article is dated April 1985. However, since this issue will most likely appear on newsstands and in subscribers' mail by about mid-March, you might be reading this before April. If so, be sure to keep all of what I am about to reveal secret until at least the first of April.)

## Reveals Other Buys

Anyway, as I started to say, I was lucky enough to be privy to some early information and (thanks to my nosey nature) overhear even more. One thing I overheard was a simple question, "Should we take the Mac with us?" (An obvious reference to an Apple Macintosh.) It seems that in the process of designing the 130ST and 520ST computers, the engineers at Atari looked at several existing computers. Now, no rival companies were about to be so generous as to donate machines. So, looking back, it seems obvious that Atari had to go out and buy several-including the Mac, of course.

## IBM Failure Described

In the process of evaluating the various computers, Atari also was able to look at the microprocessors (CPUs) which they used. It comes as no surprise that the $8 / 16$ bit 8088 used by the IBM PC was rejected early on as being unable to achieve the speed Atari desired. So what processor got the nod for the 130ST and 520ST?

## Leonard Tramiel Departs Company

Although I have managed to enjoy Leonard Tramiel's company in several meetings, the one time we managed to get in a really interesting discussion of processors he had to depart early (for another meeting, probably). Before he left, he did seem to indicate that his personal choice for a CPU might be the National Semiconductor 32016 and 32032 processors. They are very powerful and very orthogonal machines, but (and this is speculation on my part) the fact that they are available only from National Semi probably makes choosing them difficult for any company.

In any case, Atari chose to go with the tried and true Motorola 68000 series of processors, the same one used in the Apple Macintosh and Lisa computers. (An aside: The official meaning of the ST designation is "Sixteen/Thirty-two" for the 16 -bit bus and 32 -bit registers of the 68000 chip. XE implies XL compatibility, but Extended.)

## Future Plans Fall Flat

What about all the loyal Atari 400/800/ 1200XL/600XL/800XL owners? Has Atari completely forgotten them? No way! Apple has Mac and Lisa, both built around a 68000 chip, in its "sort of 32 -bit" division, and the IIe and IIc, both using a $650 \times \mathrm{CPU}$, in its 8 -bit division.

Lo and behold! We already saw that Atari
has the 130ST and 520ST built around the 68000 . Does it really surprise you to learn that the 65 XE and 130 XE will be produced using a $650 x$ processor? And we were even given the privilege of having a set of drawings for a portable computer (in the 650x line) dropped flat on the table in front of us!

## Original Projections Unrealized

The same day we saw those plans for the portable, we also got to see some of the features that the new machines will be sporting. On that day I decided that my predictions of success for Atari, which I made in this column in December, could very well have been ridiculous underestimates.

## Operations Shut Down

What kind of features impressed me? I think it will be obvious to you when you read a spec sheet at your local dealer or the other CES coverage in this issue. In the meantime, I'll give a brief list of what I think are the best features of each machine at the end of this column. I tried to ask some of my contacts at Atari about a couple of things I am not quite clear on, but the lure of CES left the software and engineering departments virtually shut down for these four days.

## Long-Term Outlook Bright

If there is any area of concern to those of us here at Optimized Systems Software, it is about those products where our software sales overlap those of Atari Corporation. New prices on Atari software have made us rethink some of our plans, but we think that there will always be sophisticated and/or advanced users out there who will be willing to pay a little more for higher quality. And we are not alone: The number of companies showing Atari-compatible software or hardware at CES was almost amazing. Will we stay in the Atari software market? How could we not?

## At Last

"What the heck," you ask, "was all that about?" The answer: Every word that you just read was true. Even the subheadlines are properly explained in the text. Oh, I may have bent some words here and there to make the headlines more spectacular, but that was the whole purpose of this exercise. I always wanted to show how you can take an innocuous and/or positive review and generate sensational National Enquirer-type headlines.

If you're an acrostics fan, you may have already caught the significance of the first letter of each headline. (Go back and reread them if you want a minor laugh.) This is, of course, my annual attempt at some humor. It's not very subtle or well-hidden this year, because I thought it
would be fun to find out how many COMPUTE! readers actually plow through all my verbiage. If you got to here unscathed, congratulations. Time for a complete change of pace.

## New Machine Features

This is just a simple table of what I feel are the most important features of four of the new Atari machines. I am sure that more info will be avail able by the time you read this, but maybe these specs will whet your appetite.
65XE

- 6502 -series processor.
- 64 K of RAM.
- Very, very compatible with 800 XL .
- Nicely sculptured case and keyboard.
- Cartridge port on rear (where our ugly orange cartridges won't be so obtrusive).
- About $\$ 100$.

130XE

- Identical to 65XE plus:
- 128K of RAM (supported as a ramdisk by new DOS 2.5).
- Expansion port on rear (used in conjunction with cartridge slot).
- About $\$ 150$.


## 130ST

- 68000-series processor.
- 128 K of RAM.
- 192K of ROM.
- Uses Digital Research's GEM windowing and display system-virtually identical in form and function to Apple's Macintosh system.
- Built-in RS-232 interface.
- Built-in parallel printer interface.
- Built-in disk controller handles up to four floppy disk drives (designed to use very inexpensive 3.5 -inch drives, 360 K each-priced perhaps as low as $\$ 100!$ ).
- DMA-capable expansion port (designed for very fast hard disk drives).
- Three-voice sound chip.
- Color graphics ( $640 \times 400$ in black and white, $640 \times 200$ with four colors, $320 \times 200$ with 16 colors).
- Cartridge slot (up to 128 K ROM in cartridge).
- 10 special function keys.
- MIDI interface (for music synthesizers and ???).
- About \$400.


## 520ST

- All the features of the 130ST plus:
- 512 K of RAM instead of 128 K .
- About $\$ 600$ (Yep . . . that gives you a color "Fat Mac" at around $\$ 1,000$ ).


## Information Please

It's time, once again, to respond to some letters. I may have made a mistake in publishing the P.O. box where you can write me directly, since I find myself with about five or six times as much mail to answer as I had before. Until I get adjusted to answering this much correspondence, please bear
with me.
For this month, I have decided to select some letters which (I think) really need answers. Surprisingly, for such varied topics, the answers to all may be much the same.

Bob Dorn, of College Park, Georgia, was the first of three or four to ask me how to use an Atari 1030 direct-connect modem to upload and download files. Well, you got caught in the great Atari let's-protect-the-poor-dumb-user game. For reasons best understood only by now-extinct marketing people at the old Atari, neither the 835 or 1030 modem came with software support for uploading and downloading programs, text files, and so on. I guess those marketers never used a computer with a modem, so they couldn't see any use for the capabilities.

Luckily, many other people, including a few software gurus, found themselves in the same fix you are in. One commercial company which seems to be doing a lot of work with these modems is Gardner Computing, P.O. Box 388, Holbrook, NY 11741. I am not endorsing them (I have never used any of their products-I have only read their ads), and I apologize in advance for inadvertently slighting any other companies supplying similar software.

There are other solutions. See the "Readers' Feedback" letter headlined "Atari Modem Update" in the February 1985 issue of COMPUTE!. There are also some programs floating around in public domain user group libraries which allow upload/download and more. As a general rule, such programs come without documentation (or, at most, with a few paragraphs on the disk with the program), so you may need to do a little detective work to use them.

## Good Local Support

Again, though, there may be another solution. Join your local user group. Come on now, what will it cost you? One evening and a couple of dollars a month will probably be the best investment you ever made in computing. And so many user groups have people who know the answers. To almost anything you ask!

Another practical reason for joining such a group is that Atari has already announced that its primary means of providing programming support to users will be through the user group network. The toll-free phone lines are gone, and the support group is decimated. This may be the only way to get technical answers in the future (aside from writing to me or "Readers' Feedback').

All of this, and we haven't even mentioned the fact that most user groups have literally hundreds of programs available for next to nothing. Okay, okay. Some of the programs don't work
right, are poorly written, are too slow, etc. So what? You are getting what you paid for and more. If nothing else, a cruddy little Atari BASIC subroutine may lead your computer to uses you hadn't thought of yet.

So join, join, join. Why wait five months for my answer to appear in this magazine when help is available two miles from your home?

How do you know where/who/when/what your local group is? Well, try asking at local computer stores, even those that don't sell Atari products. Look in your local paper. Look in Atari-oriented magazines, which sometimes have listings of clubs. If you are really desperate, send me a self-addressed and stamped card or envelope. No guarantees, because I don't know where all the clubs are, but if there's one on my list I will tell you. Please use me only if all else fails, because (1) I'm always too busy, (2) it may take me some time to answer, and (3) if I ask my kids to help me with this, they will charge me.

## Deluged With Information

From going to users who can't find what they need, we go to a couple of readers who have found too much. Jamie Patterson, of Hooker, Oklahoma, sent me a well-argued plea for some help in choosing material about his three-monthold baby, an 800 XL computer. I quote: "How does a three-month-old know which books to choose?"

Darned good question. My usual answer, when I want to choose a new computer book, is to go to two or three bookstores that carry a couple of hundred computer books each and browse. This works because there are at least a dozen such bookstores within reasonable distance of my house. Now, I have to admit I don't know where Hooker, Oklahoma, is, but if it isn't within 20 miles of a major computer bookstore, my method won't work for Jamie. What can he do?

The editors of COMPUTE! might like me to answer, "Buy a COMPUTE! book." But whatever book you buy, you must choose one which is at the right level for you. From COMPUTE! Books, the most general material may be found in the First, Second, and Third Book of Atari, along with the two books on Atari Graphics. Some, but not all, of this material is relevant to someone who has learned the fundamentals of Atari BASIC.

Suppose, though, that you aren't even to that level yet. You don't know a PRINT from a PLOT statement. Where do you turn? Since Atari stopped shipping copies of Inside Atari BASIC with the XL computers, buyers have been left to choose their own tutorial. And what should they choose?

My trouble is that every time I look at a book that purports to teach BASIC (or word
processing or assembly language or . . . ), I find something wrong. I don't like the order of presentation of the topics. There are mistakes in the section on how to speed up your programs. The author encourages poor programming style. The list goes on and on. So I refuse to make a firm recommendation.

## The Great Book Survey

What, then, can Jamie Patterson and others like him do? What else? Join a user group. Ask other Atari owners. Ask to look at their books. Okay, so maybe none of the over-200 user groups is close enough to Jamie. And, besides, he asked me for an answer. I guess I should do something, right?

So here it comes. I am asking you, my readers, to make some comments on the books you have learned from. Don't stick to learning BASIC. Any aspect of Atari computers is eligible, even manufacturers' manuals. To make life easier for me, just send the title(s) of the book(s), the level ( 1 to 10 , with 1 being rank beginner), and your overall rating ( 0 for trash to 10 for perfection). A postcard will do fine.

I don't want any experts evaluating these books; I can mishandle that aspect myself. Instead, I want actual real-life experiences. Did or did not the book teach you what it said it would? If it did, was it an uphill battle or did the style make it downright easy for you? I can't respond personally to these rating cards, but I will report the results received by April 20 in the August or September issue (sorry, but that's the fastest turnaround possible).

## Translators, Again

Robert Glover, of Cleveland, Tennessee, has been the proud owner of an Atari 400, an 800, and now an 800XL. He asks me why he can't simply use the binary save option of Atari DOS to make a copy of the 800's operating system ROMs and then load that file into his 800 XL as a home-brew translator disk. He suggests that I perform this service in my column.

Well, in theory, and with some modifications to his method, I might be able to do so. Why won't I? First, there are several problems to overcome. Two of the simpler examples: (1) You can't write/save ROM directly with DOS 2.0 S ; you have to copy it down to RAM first. (2) Joystick ports 3 and 4 are used for output in an 800XL and for input in an 800.

Also, how many readers have access to both an 800 and 800 XL ? And, finally, why go to that kind of trouble when the translator disks are so available?

Ah, but that last point was raised by Mr. Glover. He says he cannot find the translator
disks anywhere. Hmmmm. Guess where I am going to suggest he look? Right. Ask your local user group. And that brings us back to the quandary of the last reader: What if there is no user group nearby?

I have a couple of partial solutions. First, there are a few mail-order organizations which, in addition to selling commercial software, sell public domain programs for reasonably low prices. Right now, LotsaBytes (15445 Ventura Blvd., Suite 10, Sherman Oaks, CA 91413) seems to be the leader in this category, but I should also mention DynaComp, Antic, and ANALOG (the latter two offer primarily games and BASIC utilities from their magazines).

Perhaps even better, many user groups (especially the larger ones) allow mail-order memberships. Since there are so many of these groups just crying for members, I hesitate to recommend one over another. But because their newsletter has been around the longest and may have the greatest number of readers, I will at least mention the very friendly people of ACE (3662 Vine Maple Dr., Eugene, OR 97405).

So my message this month is clear: Atari is very, very, very much alive and well. Keep your interest in your machine similarly healthy by joining a user group.


# IBM BASIC's Undocumented SHELL Command 

Michael A. Covington

With DOS 3.0, IBM has announced a number of new features for disk BASIC. At least one of them" is actually present in DOS 2.0 and 2.1 as well, though the manuals do not mention it. That feature is a command called SHELL that allows you to exccute DOS commands from within BASIC. (The technique does not work with PCjr Cartridge BASIC.)

The SHELL command in IBM BASIC takes one parameter, a character string containing the DOS command to be executed. SHELL works by loading, from drive A, a second copy of COMMAND.COM (the DOS command processor) and invoking it as a subprocess. (Note that this implies that COMMAND.COM must be present on the disk in drive A when the SHELL command is executed.) The top level COMMAND.COM and the BASIC interpreter are in suspended animation until the subprocess finishes; then control returns to BASIC.

SHELL handles the cursor somewhat awkwardly. When the SHELL command is executed, the screen is cleared from the current cursor position to the bottom; DOS writes its output there, scrolling as needed (the twenty-fifth line scrolls along with the others). But when control returns to BASIC, the cursor suddenly appears one line below where it was when the subprocess started, ignoring all screen activity that took place under the subprocess.

The best way to prevent chaos on the screen is to execute a CLS (clear-screen) immediately after each SHELL, or as soon afterward as you're done looking at the output.

## Not A Child

The one command that SHELL cannot issue, either directly or indirectly, is BASIC (or

BASICA). If you try to do this, you get the message "You cannot run Basic as a Child of Basic"-naturally enough, you can't run BASIC in the subprocess because most of BASIC is in ROM and there's only one copy of it in the machine. If you issue a SHELL and
COMMAND.COM is not on drive A, you get a "File not found" error within BASIC.

The most useful SHELL commands are probably:

```
SHELL "A:"
SHELL "B:"
```

and the like, to change logged disks. These are foolproof commands; they produce no messages to clutter up the screen, and they can't terminate abnormally.

You can also use SHELL without parameters, in immediate mode, to enter the DOS command mode. The advantage of this over SYSTEM is that when you're done issuing DOS commands, you can type EXIT and return to BASIC with your program undisturbed.

Most kinds of errors in the subprocess will return you to BASIC with no problem, but a few, such as typing A in response to "Abort, Retry, Ignore," will leave you in the DOS command level of the subprocess, in which case you must type EXIT to get back to BASIC.

## One At A Time

Don't issue several SHELL commands in succession if you can avoid it; each of them loads COMMAND.COM all over again. Instead, if you have a series of commands to issue, write them onto a BAT file from within BASIC, and give one command to run the whole file.

The accompanying program demonstrates
one way to use SHELL to create a menu-driven user interface for DOS. Naturally, a practical program would include many more options and more error-checking.


## Demo of SHELL Command

```
Gi 1\varnothing = COMMAND.COM must be on drive A
IA 2g , MORE.COM and CHKDSK.COM must be
ME 3. , on the current default disk
KN 4D CLS: KEY OFF
BD 5\emptyset PRINT "Welcome to menu-driven DOS."
FI 60 PRINT
L0 7\varnothing PRINT "Available functions are:"
NG 8D PRINT " 1 Directory of disk A"
AG 9\varnothing PRINT " 2 Directory of disk B"
QJ 1ø\varnothing PRINT " 3 Disk and memory inform
 ation"
BD 11D PRINT " 4 Copy a file"
AB 12g PRINT " 5 View a file"
JK 130 PRINT " 6 End this program"
```

```
|1 140 PRINT
KA 15Ø INPUT "Choose one...";N
BL 16\varnothing IF N=6 THEN CLS: END
OF 170 IF (N<1) OR (N>5) THEN BEEP: GOTO
15%
BN 18Ø CLS
KA 19\varnothing ON N GOTO 21\varnothing,24\varnothing,27\emptyset,32\varnothing,37\emptyset
MD 2øD * directory of A
AH 21D SHELL "dir a:"
CP 22ø GOTO 4øD
ON 23\varnothing : directory of B
CN 240 SHELL "dir b:"
CF 250 GOTO 4ø\varnothing
OG 26\varnothing : disk & memory info.
CG 27D INPUT "Drive to check ";A$
B1 280 IF A$="a"OR A$="A" THEN SHELL "chk
 dsk a:"
FG 29ø IF A$="b"OR A$="B" THEN SHELL "chk
 dsk b:"
CM 3øD GOTO 4øD
ML 31% * copy a file
MC 32Ø INPUT "File to copy from ";A$
CH 330 INPUT "File to copy onto ";B$
EO 34ø SHELL "copy "+A$+" "+B$
CG 35D GOTO 40Ø
KD 36, , view a file
OA 370 INPUT "Name of file ";A$
CG 38D SHELL "more<"+A$
U\ 39\varnothing = finish up
DN 40D LOCATE 25,1
MD 41\varnothing WHILE INKEY$<>"": WEND
OB 42Ø PRINT "(Press any key to continue.
 ..)";
LA 43D WHILE INKEY$="": WEND
OF 44D GOTO 4\curvearrowleft

\section*{DOUBLES DISKETTE STORAGE SPACE!}

REDUCES DISKETTE COST 50\%!

Now! The back of \(5^{1} / 4^{\prime \prime}\) Diskettes can be used for data storage even with single head disk drives.
- WIBREE NOTCH \({ }^{8}\) Tools make it easy.
- Adds the Precise notch where it's needed.
- Doubles Diskette Space or Money Back!

NIBHLE NVTCH I
Cuts Square Notch for
Apple, II, IIt, Ile, IIc, III,
Franklin \& Commodore.
NVHBLE IVTTCH II
Cuts Square Notch and \(1 / 4\) inch round \$14.95* than those shown to mempre motal

DISK OPTIMIZER SYSTEM
Software for Apple, II, II +, Ile, III and Franklin
- Certifies your "new" Disk 100\% Error Free
- \(469 \%\) FASTER THAN SIMILAR PROGRAMS!
- Removes Bad Sectors - Adds 36th Track
- Performs Disk Drive Speed Check
- Adds DOS and More only \$24.95*

\section*{SPECIAL PACKAGE PRICE - \\ NHMBLE NVTCH I and DISK OPTIMIZER} only \(\$ 29.95\) for Bотн *
* On all orders add \(\$ 2.00\) tor each item Postage \& Handling (\(\$ 5.00\) each foreign P\&H) -Florida Residents Add 5\% Sales Tax
SATISFACTION GUARANTEED OR YOUR MONEY BACK!
ORDERTEDEAME
Toll Free 1-800-642-2536
Florida 305-493-8355
or send Check or Money Order to:
NVIHBLE NOTCHE COIIPPUTEIP PIRODDICTS
4211 NW 75th TERRACE • DEPT. 66 • LAUDERHILL, FL 33319

\title{
Apple SuperFont Custom Character Set Graphics For The Apple
}

\author{
Tim Victor, Editorial Programmer
}

\begin{abstract}
Here's a significant enhancement for graphics on Apple II-family computers. With "Apple SuperFont," you can now place upper- and lowercase text anywhere on the high-resolution screen. In addition, you're not limited to the built-in character set, either-you can easily define foreign character sets, italics, boldface, and underline fonts, as well as shapes for high-speed animated games in BASIC. Apple SuperFont is an all-new, original version of the SuperFont series of programs published by COMPUTE! for Atari, Commodore 64, and TI computers and adds severäl new features especially for the Apple. It requires a 48 K or 64 K Apple II+, Apple IIe, or Apple IIc, with either DOS 3.3 or ProDOS.
\end{abstract}

Without resorting to machine language, programming high-speed graphics is difficult on the Apple. High-resolution graphics look nice, but shape tables are too slow for most animation purposes. One alternative is to use character graphics for animation. Characters can move a whole block (character position) at a time, and can be placed on the screen with a simple PRINT statement. Unfortunately, ordinary Apple characters aren't very suitable for games or even business charts.

But now there's a way around these problems. With "Apple SuperFont" and its accompanying utility programs, you can easily redefine a character into practically any shape you want and print it directly on the hi-res graphics screen. Custom character sets are a snap to design, and fast animation is as simple as printing a character, erasing it, and printing it again in a new location.

Several programs already exist for printing characters on the hi-res screen, including HRCG (High Resolution Character Generator), which is part of the Apple DOS Toolkit. The Apple

SuperFont HROUT program works much like HRCG, putting characters on the high-resolution screen from a table of character images, but the Apple SuperFont system is much more versatile.

The Apple SuperFont Editor makes it easy for you to create character sets (fonts) for use with HRCG or HROUT. Special features help you design multicharacter shapes and allow you to see the effects of the Apple's unusual use of color in hi-res graphics. Once you've created or customized a character set, you can easily use these fonts in your own programs.

\section*{Typing Apple SuperFont}

To run SuperFont, you need to have four files on the same disk: APPLEFONT, APPLEFONT2, HROUT, and NORMAL.SET. There are two different versions of APPLEFONT. Program 1 is for using SuperFont with DOS 3.3. Program 2 shows the changes necessary to use Program 1 with ProDOS. The other three files need no changes to be used with either disk operating system.

APPLEFONT2 (Program 3, the Apple SuperFont Editor), NORMAL.SET (Program 4), and HROUT (Program 5) are all machine language binary files and must be entered with the Apple's built-in machine language editor (monitor). It's easy; you don't need to understand machine language to use these programs.

Here's how to type them in. To enter the monitor, type CALL - 151. The Applesoft prompt (normally a]) will be replaced by the monitor's prompt, an asterisk (*). To enter a line from the listing, first type in the four-digit hexadecimal number, then type a colon (:) instead of the hyphen shown in the listing produced by the monitor. This is the address where you'll enter the rest of the line. Type in the rest of the line after the colon, leaving a space between each two-digit number. After eight numbers, press RETURN and enter the address for the next line.

Again, use a colon instead of the hyphen shown in the program listing. If you want to review what you've entered to check for accuracy, you can list a block of data by typing the address of the first location in the range, then a period, then the last address, and pressing RETURN.

Once you've entered one of the machine language programs, save it to disk using the BSAVE command. This command can be used either from BASIC or from the monitor (you can exit the monitor and return to BASIC by pressing CTRL-C, then RETURN). To BSAVE Program 3 (APPLEFONT2), the command is:

BSAVE APPLEFONT2,A\$1000,L\$FE0
Save Program 4 (NORMAL.SET) by entering:

\section*{BSAVE NORMAL.SET,A\$8D00,L\$300}

Save Program 5 (HROUT) by entering: BSAVE HROUT,A\$300,L\$58
Because of the length of APPLEFONT2, typing mistakes could be difficult to find. As a check, BLOAD APPLEFONT2 and enter the following line, then hit RETURN:
```

S=0: FOR I=4096 TO 8159:S = S + PEEK(I) : NEXT :
PRINT S

```

If the result of this calculation is not 365090 , there is at least one error in your copy of APPLEFONT2. To help locate errors, we've included a small checksum program (Program 6). To use it, BLOAD APPLEFONT2, then run Program 6. If you have mistyped some data, it will tell you where to look to find the mistake.

When all the files are entered and saved to disk, type RUN APPLEFONT. APPLEFONT first checks to see which operating system is in your Apple. If the correct operating system for this version of APPLEFONT is present, it will BLOAD the other three files, and connect HROUT to the standard character output routine. APPLEFONT2, the SuperFont Editor, is started with a CALL to 4096 . From then on, the SuperFont Editor is in complete control except when it needs to access the disk drive. If you ask to load or save a character set, control returns to the BASIC program, the file is transferred using BASIC's disk access commands, and the SuperFont Editor program is CALLed again.

\section*{Using The SuperFont Editor}

Characters are designed and edited on a grid that represents 32 (vertical) \(\times 55\) (horizontal) pixels. Each cell in the grid is a fourfold enlargement of actual size. Individual cells can be turned on (white) or off (black) with the bit-editing functions, and blocks of cells can be copied from one place to another on the screen. Patterns of \(7 \times 8\) cells can be saved from the screen to the character set being edited with the Put command. The

The main editing screen of "Apple SuperFont," showing the design grid, an option menu, and the Apple's built-in character set (NORMAL.SET).

Get command does just the reverse, pulling a character from the character set onto the editing screen.

All of the features of the Editor are controlled with a series of four menus, entitled Bit Edit, Charsets, Utility, and Display. Each of these menus contains three to six selections. Only one menu is displayed on the screen at a time.

To change menus, press the space bar. The next menu title will be printed on the screen, along with its menu selections. The top selection will be printed in inverse characters to indicate that it has been chosen. To select a different menu item, use the left- and right-arrow keys. The large cursor bar moves up or down the menu to show you which selection is active.

Some menu items, like Clear Screen or Save Set, wait for you to press the RETURN key before performing their functions.

\section*{Three Cursors}

You will be using three visually distinctive cursors in the SuperFont Editor: the bit cursor, the box cursor, and the character cursor. When a menu item is selected, one of the cursors may begin to flash, indicating that it can be moved. The cursors are controlled by a keypad centered on the D key:

\section*{昜}

Using the Copy command, you can duplicate shapes on the editing grid quickly and easily, as demonstrated with this Space Invaders-type character.

The bit cursor is a \(1 \times 1\) cell box displayed on the editing screen. It flashes whenever the Bit Edit menu is displayed. Moving the bit cursor around on the editing screen sets (white) or clears (black) the cells that the cursor passes over. In other words, the bit cursor leaves a trail of black or white behind it. Selecting Black or White changes the color drawn when the bit cursor is moved. If you want to move the bit cursor without drawing on the screen, select the Move option.

The box cursor is a box displayed on the editing screen, but its size can be changed. It can be as small as a \(1 \times 1\) cell, or as large as the entire editing screen. When you're using a utility such as Copy or Flip, the box cursor outlines the area on which the utility will operate. These utilities can be used on a character, part of a character, on shapes made up of several characters, or on a portion of a character, simply by changing the size of the box. Pressing the RETURN key when Flip is selected turns the contents of the box cursor upside down, and the Mirror function reverses left and right sides of the box. The Invert function changes all of the white cells inside the box to black cells, and all black cells to white. When Copy is selected, the cursor pad controls a second box cursor, which initially appears on top of the original box. Pressing the RETURN key copies the contents of the original box to the second box.

You can also use the box cursor to select the \(7 \times 8\) cell character pattern for the Put and Get functions. The character cursor, located in the character set displayed at the bottom of the screen, flashes when the Get or Put function is selected. Use it to select the character that is the source of the Get or the destination of the Put.

The contents of the box cursor are displayed at actual size (one cell \(=\) one pixel) in the upperright corner of the screen. Two parameters, HB and PX, affect how colors are presented. Pressing the RETURN key when the High Bit menu entry is selected changes the setting of HB. In Apple hi-res graphics, the status of seven one-bit pixels is stored in the lower seven bits of a byte in memory. The eighth bit, the most significant bit, controls the colors in which these bits will be drawn. When drawing on the high-resolution screen in BASIC, the high bit is clear when HCOLOR is between zero and three, and is set when HCOLOR is between four and seven. The display is in blue and orange when the high bit is set, or green and violet when the high bit is clear.

The Even/Odd menu entry controls whether this display starts on an even or an odd pixel (PX). When a shape is shifted by one bit, the colors in the display are reversed (blue for orange or green for violet). The alignment of the shape is changed by pressing RETURN when Even/Odd is selected.

At the bottom of the screen, all of the characters in a 96 -character set are shown. With the RAM/ROM function in the Display menu, the character set displayed can be either the set you are currently editing or the hardware character set in your Apple. Get and Put operate only on the RAM character set no matter which set is being displayed.

\section*{HROUT, The Character Generator}

Apple SuperFont uses a machine language graphics utility called HROUT, for highresolution output. HROUT links into the standard character output vector and permits text to be displayed on either hi-res screen. Because the standard text output routine also remains active, the PRINT command, and any other text commands, can be used to create hi-res text. HROUT's only limitation is that it cannot perform screen scrolls at the bottom of the screen.

To use HROUT in your own programs, BLOAD it into memory. It can be loaded anywhere in memory, but to make things simpler, we'll use location \(\$ 300\). First, let HROUT know which character set to use by POKEing the address of the character set into locations 6 and 7, low byte first. If you put your character set at \$8D00, the POKEs are:

\section*{POKE 6,0 : POKE 7,141}

If you are using DOS 3.3, you can activate HROUT by entering:

\section*{POKE 54,0 : POKE 55,3: CALL 1002}

When in immediate mode, these commands have to be entered together on a multistatement
line (separated by colons). They can be on separate lines in a BASIC program, but the three commands should be executed one after another. Since locations 54 and 55 are being POKEd with the low and high bytes of the address of HROUT, these POKEs will be different if you put HROUT somewhere other than \(\$ 300\).

From ProDOS, it's easier to turn on HROUT. Just type

PR\# A\$300

\section*{Avoiding Screen Scrolls}

Since HROUT concludes by calling the standard ROM routine for displaying a character on the text screen, all cursor control remains the same. You can move to any location on the screen by using the HTAB and VTAB commands. HOME still moves the cursor to the upper left of the screen, but will not clear the hi-res screen. To get the equivalent of a text HOME, use HOME : CALL -3092 . The routine at -3092 clears the current hi-res screen and turns on hi-res graphics.

If you need to know what's where on the screen, you can PEEK to the text screen. By taking a couple of precautions, both text and hi-res screens should be the same. First of all, make sure that you clear both screens at the same time, as mentioned above. Second, don't let the text screen scroll. In order to make HROUT as small (88 bytes) and fast as possible, no provision was made for scrolling the screen. This could even be to your advantage for many applications, but you have to be careful if you want the text and graphics screens to agree.

The biggest problem arises when you print to the last character on the twenty-fourth line. Even if you follow the PRINT statement with a semicolon, the cursor will wrap onto the twentyfifth line and the screen will scroll. There is a solution: Fool the computer into thinking the screen has 25 lines by using POKE 35,25. The output routine will then have no qualms at all about advancing the cursor to the twenty-fifth line, leaving it there, and even printing there. A lot of responsibility now rests on your shoulders, because the twenty-fifth line doesn't really exist. Printing something there is the same thing as POKEing out of the range of the text screen. That could cause significant problems.

If you change the text attribute with the INVERSE or FLASH commands, the bit patterns will be reversed before they are plotted on the screen, inverting the character. The NORMAL command also works, canceling inverted printing.

Now you can label high-resolution charts and graphs with a choice of any font, and you
can design these fonts yourself with the Apple SuperFont Editor. Also, letters of the alphabet can become detailed shapes, permitting fast highresolution game graphics in BASIC. In fact, we've started using this technique ourselves for some of the Apple games published in COMPUTE!.

\section*{Program 1: Apple SuperFont For DOS 3.3 (APPLEFONT)}

\section*{Program 2: Apple SuperFont ProDOS Modifications}
```

100 IF PEEK (978) < > 190 THEN PRINT
"PRODOS NOT FOUND": END
160 PRINT D\&;"PR***S300"

```

\section*{Program 3: Apple SuperFont Editor (APPLEFONT2)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & 12 & 4 C & & & & \\
\hline 100 & 00 & 05 & 05 & 07 & 08 & 00 & 00 & 0 \\
\hline 1010 & 00 & 07 & 08 & 0 & 01 & 00 & 0 & \\
\hline 1018 & 04 & 03 & 05 & & & & & \\
\hline 1020 & 82 & 00 & 01 & 00 & 00 & 00 & 00 & \\
\hline 1028 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & \\
\hline 1030 & 00 & 00 & 00 & A9 & 00 & 85 & 1 C & \\
\hline 1038 & 20 & 85 & E6 & 20 & F6 & F3 & A 9 & \\
\hline 104 & 20 & 09 & 1D & AO & 0 & A2 & 00 & \\
\hline 1048 & 20 & & 1 D & A2 & DC & , & 03 & \\
\hline 1050 & C8 & C8 & C8 & C8 & CO & 84 & 90 & ED \\
\hline 1058 & A2 & 00 & AO & 00 & 18 & 20 & 00 & \\
\hline 1060 & A0 & 80 & 20 & 06 & 1 D & E 8 & E8 & E8 \\
\hline 1068 - & E8 & EO & EO & 90 & ED & 60 & A9 & FF \\
\hline \(1070-\) & 85 & 32 & A9 & 8 A & 85 & 07 & A9 & AO \\
\hline 1078 - & 8D & 23 & 10 & AO & 15 & 98 & 20 & \\
\hline
\end{tabular}

1080- FB A2 00 AD 23108624 1088-20 ED FD EE 2310 E8 EO 1090-20 DO FO C8 CO 18 DO E5 1098-A9 8D 8507602056 1C 10AO- B9 OO OC CE 2D 103005 10A8- 1D BA 1C DO 03 3D B2 1C 10B0-99 00 OC EE 2D 10 AD 2D 10B8-10 FO 02 A9 0320 O9 1D 10C0-18 AD 2A 10 OA OA AA E8 10C8-AD 2C 10 OA OA A8 C8 18 10D0-8A \(20021120 \quad 021120\) 10D8- 0211 AD 2A 10 CD 0910 10E0-90 1F ED OB 109005 CD 10E8- 09 10 BO 15 AD 2C 10 CD 10F0- OA 1090 OD ED OC 1090 10F8- 05 CD OA 10 BO 0320 2B 1100-1160 2000 1D E8 E8 20 1108- 03 1D AA C8 60 A9 00 A8 1110-99 00 OC C8 DO FA 2056 1118-1160 2056 1C B9 00 OC 1120-3D BA 1C FO 02 A9 018 D 1128-2D 1060 AD 2D 10 FO 02 1130-A9 0318 6D 2F 102009 1138-1D AD 2C 1038 ED OA 10 1140-A8 A9 E0 38 ED 091018 1148-6D 2E 10 6D 2A 10 AA 20 1150-00 1D 2003 1D 60 AC OA 1158-10 8C 2C 10 AO 00 8C 23 1160-10 AE 0910 8E 2A 10 A2 1168-00 8E 241020 1A 1120 1170-2B 11 EE 2A 10 EE 2410 1178- AE 2410 EC OB 10 DO EC 1180-EE 2C 10 EE 2310 AC 23 1188-10 CC OC 10 DO D3 60 AD 1190-27 10 FO 503028 AD O9 1198-10 18 6D OB 10 E9 00 8D 11A0- 2A 10 AD OA 10 8D 2C 10 11A8- AC OC 10 8C 231020 1A 11B0-11 20 2B 11 EE 2C 10 CE 11B8- 2310 DO F2 FO 26 AD 09 11C0-10 18 6D OB 10 8D 2A 10 11C8- AD OA 10 8D 2C 10 AC OC 11D0-10 8C 23 10 A9 00 8D 2D 11D8-10 20 2B 11 EE 2C 10 CE 11E0-23 1010 F5 AD 2810 FO 11E8-4F 3027 AD OA 1018 6D 11F0- OC 10 E9 00 8D 2C 10 AD 11F8-09 108 D 2A 10 AC OB 10 1200-8C 231020 1A \(11202 B\) 1208-11 EE 2A 10 CE 2310 DO 1210- F2 60 AD OA 1018 6D OC 1218-10 8D 2C 10 AD 0910 8D 1220-2A 10 AC OB 10 8C 2310 1228-A9 00 8D 2D 1020 2B 11 1230-EE 2A 10 CE 231010 F5 1238-60 AD 2F 102009 1D AO 1240-00 A2 EO 182000 1D A2 1248-17 382003 1D C8 CO 20 1250-90 EF 602058 FC 2033 1258-10 20 1A 19 2C 52 CO 20 1260- OD 11 A9 C1 8D 061020 1268-9E 1A 20 DA 1B 20 6E 10 1270-A9 00 8D \(13108 \mathrm{Cl} \quad 2710\)

1278-8D 281020 7D 19 AD 13 1280-10 4902 8D 1310 A2 00 1288- AO 80 AD OO CO 3008 E 8 1290- DO F8 C8 DO F5 10 E4 48 1298-AO 02 8C \(1310207 D 19\) 12AO- 68 2C 10 CO C9 AO DO 1B 12A8-AD \(21 \quad 10386900\) CD 18 12B0-10 DO 02 A9 00 8D 2110 12B8-A9 018 D 221020 9E 1A 12C0-4C 0113 C9 88 DO 17 AD 12C8-22 1018 E9 00 DO 06 AC 12DO- \(21 \quad 10\) B9 \(19108 \mathrm{D} \quad 2210\) 12D8- 20 9E 1A 4C 0113 C9 95 12E0- DO 1F AD \(221038 \quad 6900\) 12E8-8D 2210 AC \(21 \quad 10\) B9 19 12F0-10 CD 2210 BO 05 A9 01 12F8-8D 221020 9E 1A 4C 01 1300-13 C9 D7 DO O9 CE 2710 1308- CE 28 10 4C 5A 13 C9 C5 1310- DO 06 CE 2810 4C 5A 13 1318-C9 D2 Do 09 CE 2810 EE 1320-27 10 4C 5A 13 C9 D3 DO 1328-06 CE 2710 4C 5A 13 C9 1330-C6 DO 06 EE 2710 4C 5A 1338-13 C9 D8 DO O9 CE 2710 \(1340-\) EE \(28104 C 5 A 13\) C9 C3 1348- DO 06 EE 2810 4C 5A 13 1350-C9 D6 DO 06 EE 2810 EE 1358-27 10 AE 2110 DO 03 4C 1360-75 13 CA DO 03 4C D5 13 1368-CA DO 03 4C C5 15 CA DO \(1370-034 C \quad 3718 \quad 6048 \quad 20 \quad 31\) 1378-19 A9 01 8D 141068 Cs 1380-C4 FO 08 AD 2710 OD 28 1388-10 FO 47 AD 2210 C9 03 1390- FO 1469 FF 8D 2D 10 AD 1398-07 10 8D 2A 10 AD 0810 13AO- 8D 2C \(10209 D 10\) AD 07 13A8-10 18 6D 2710 C9 FF DO 13B0- 02 A9 36 C9 37 DO 02 A9 13B8-00 8D 0710 AD 081018 13C0-6D 2810 C9 FF DO 02 A9 13C8- 1F C9 20 DO 02 A9 00 8D 13D0- 08104 C 701248 AE 22 13D8- 10 CA DO 03 4C F8 13 CA 13E0- DO 03 4C 7414 CA DO 03 13E8- 4C DA 14 CA DO 03 4C 55 13F0- 15 CA DO 034 C 641500 13F8-20 3119 A9 018 D 1510 1400-20 3F 1968 4C 701220 1408-31 19 A9 01 8D 16 10 AD 1410- OB 10 CD 1110 DO 08 AD 1418- OC 10 CD 1210 FO 2A AD 1420-11 10 8D OB 10 AD 1210 1428-8D OC 102039122056 1430-11 AD 0910 C9 319005 1438- A9 30 8D 0910 AD OA 10 1440-C9 199005 A9 18 8D OA 1448-10 AD 2710 OD 2810 FO 1450-22 AD 2810 FO 05 OA OA 1458- OA OA OA 18 6D 271018 1460-6D 06 10 C9 AO 100269

1468-60 C9 00 30 03 38 E9 60 1470-8D \(0610 \quad 60 \quad 20 \quad 0714 \quad 68\) 1478-C9 8D DO 5B 203815 AD \(1480-0 A 108 D \quad 2 C 10\) AD OC 10 1488- 8D 24 10 A9 00 8D 3110 1490-AD 0910 8D 2A 10 AD \(O B\) 1498-10 8D 23 10 A9 00 8D 32 14A0-10 \(20 \quad 1 \mathrm{~A} \quad 11\) AD 2D 10 FO 14A8- \(0238 \quad 24 \quad 18\) 6E \(32 \quad 10\) EE 14B0-2A 10 CE 2310 DO EA AD 14B8- 2F 10 F0 02 A9 80 6E 32 \(14 C 0-10\) OD \(32 \quad 10\) AC \(31 \quad 10 \quad 91\) 14C8-1A EE 2C 10 EE 3110 CE 14DO- 2410 DO BC 20 6E 10 4C 14D8-70 12 20 07 14 68 C9 8D 14EO-DO \(5320 \quad 38 \quad 15\) AD OA 10 14E8-8D 2C 10 AD OC 10 8D 24 14F0-10 A9 00 8D 3110 AD 09 14F8-10 8D 2A 10 AD OB 10 8D 1500-23 10 AC 31 10 B1 1A 8D 1508-32 10 4E 32 10 A9 00 69 1510-00 8D 2D 1020 9D 10 EE 1518-2A 10 CE 2310 DO EB AD 1520-32 10 OA OA 8D 2F 10 EE 1528-2C 10 EE 3110 CE 2410 1530-DO C4 20 DA 1B 4C 7012 1538-AD 06 10 38 E9 AO 85 1A 1540-A9 0085 1B A2 0306 1A 1548-26 1B CA DO F9 A5 1B 18 1550-698A 85 1B 60 \(20 \quad 31 \quad 19\) 1558-68 C9 8D DO 04 A9 00 FO 1560-124C \(7012 \quad 20 \quad 31 \quad 1968\) 1568-C9 8D DO 04 A9 01 DO 03 \(1570-4 C 7012\) 8D 20 OE A9 AO 1578- A2 1F 9D 00 OE CA 10 FA 1580-A9 FF 8532 A9 1120 5B 1588- FB A9 008524 A0 00 B9 1590-A7 15 F0 0620 ED FD C8 1598- DO F5 20 6A FD BD 0002 15A0-9D 00 OE CA 10 F7 60 C5 15A8- CE D4 C5 D2 AO CE C1 CD 15B0-C5 AO CF C6 AO C3 C8 C1 15B8-D2 C1 C3 D4 C5 D2 AO D3 15CO-C5 D4 BA 8D 0048 AE 22 15C8-10 CA DO 03 4C F8 13 CA 15D0-DO 03 4C EE 15 CA DO 03 15D8- 4C 3716 CA DO 03 4C EB 15E0-16 CA DO 03 4C 6617 CA 15E8-DO 03 4C E1 \(170020 \quad 31\) \(15 \mathrm{FO}-19\) A9 01 8D 151068 AD 15F8-27 10 OD \(28 \quad 10\) FO 35 AD 1600-27 10 18 6D OB 10 DO 02 1608-A9 01 8D OB 1018 6D 09 1610-10 C9 38 DO 03 CE OB 10 1618-AD \(28 \quad 10 \quad 18\) 6D OC 10 DO 1620-02 A9 01 8D OC 1018 6D 1628-OA 10 C9 21 DO 03 CE OC \(1630-10208 F 114 C 70 \quad 1220\) 1638- 31 19 A9 01 8D 1710 AD 1640-27 10 OD 2810 F0 32 AD 1648-27 10 18 6D OD \(1010 \quad 02\) 1650-A9 00 8D OD 1018 6D OF 1658-10 C9 38 DO 03 CE OD 10

1660-AD \(28 \quad 10 \quad 18 \quad 6 \mathrm{D} \quad\) OE \(10 \quad 10\) 1668- 02 A9 00 8D OE 1018 6D 1670-10 10 C9 21 DO 03 CE OE 1678-1068 C9 8D DO 6A 2070 1680-1C AD OA 10 8D 2310 AD 1688- OE 10 8D 2510 AD 0910 \(1690-8 D 2410\) AD OD \(108 D 26\) 1698-10 AD 23 10 8D 2C 10 AD 16AO- 2410 8D 2A \(10 \quad 2056 \quad 1 C\) 16A8-B9 00 OD 3D BA 1C F0 02 16B0-A9 01 8D 2D 10 AD 2510 16B8-8D 2C 10 AD 26 10 8D 2A \(16 \mathrm{CO}-1020\) 9D 10 EE 2410 EE 16C8-26 10 AD \(0910 \quad 18\) 6D OB 16DO-10 CD 2410 DO C3 EE 23 16D8-10 EE 2510 AD OA 1018 16E0-6D OC 10 CD 2310 DO A5 16E8-4C \(701220 \quad 31 \quad 19\) A9 01 16FO- 8D 15 10 20 3F \(19 \quad 68\) C9 16F8- 8D DO \(68 \quad 20 \quad 70\) 1C AD OA 1700-10 8D 23 10 8D 25 10 AD 1708-09 10 8D 24 10 18 6D \(0 B\) 1710-10 E9 00 8D 2610 AD 23 1718-10 8D 2C 10 AD 2410 8D 1720-2A 102056 1C B9 00 OD 1728- 3D BA 1C F0 02 A9 01 8D 1730-2D 10 AD 2510 8D 2C 10 1738-AD 26 10 8D 2A 1020 9D 1740-10 EE 2410 AD \(26 \quad 10\) CD 1748-09 10 FO O5 CE 26 10 BO 1750-C5 EE 2310 EE 2510 AD 1758- OA 1018 6D OC 10 CD 25 1760-10 DO A4 4C \(7012 \quad 20 \quad 31\) 1768-19 A9 01 8D \(1510 \quad 20\) 3F 1770-1968C9 8D DO 682070 1778-1C AD OA 10 8D 2310 1780-6D OC 10 E9 00 8D \(25 \quad 10\) 1788-AD 0910 8D \(24 \quad 10\) 8D 26 1790-10 AD 2310 8D 2C 10 AD 1798-24 10 8D 2A \(1020 \quad 56\) 1C 17A0-B9 00 OD 3D BA 1C FO 02 17A8-A9 01 8D 2D 10 AD 2510 17B0-8D 2C 10 AD 26 10 8D 2A 17B8-10 20 9D 10 EE 2410 EE \(17 \mathrm{CO}-2610\) AD 091018 6D OB 17C8-10 CD 2410 DO C3 EE 23 17DO-10 AD 2510 CD OA 10 FO 17D8- 05 CE 2510 BO AA 4C 70 17EO- 12203119 A9 018 D 15 17E8-10 20 3F 1968 C9 8D DO \(17 \mathrm{FO}-43 \quad 20 \quad 70 \quad 1 \mathrm{CAD} O A \quad 10 \quad 8 \mathrm{D}\) 17F8-2C 10 AD 0910 8D 2A 10 1800-2056 1C B9 00 OD 3D BA 1808-1C DO 03 A9 01 2C A9 00 1810-8D 2D 1020 9D 10 EE 2A 1818-10 AD 0910 18 6D OB 10 1820-CD 2A 10 DO DB EE 2C 10 1828-AD OA 1018 6D OC 10 CD 1830-2C 10 DO C6 4C 701248 1838-20 31 19 AE 22 10 CA DO \(1840-03\) 4C 6318 CA DO 03 4C 1848-7A 18 CA DO 03 4C 9418 1850-CA DO 03 4C B2 18 CA DO

1858-03 4C F2 18 CA DO 03 4C 1860- OC 190068 C9 8D DO OF 1868-A9 0438 ED 2F 10 8D 2F 1870-10 20561120 DA 1B 4C 1878-70 12 68 C9 8D DO 12 A9 1880-0138 ED 2E 10 8D 2E 10 1888-20 \(3912 \quad 2056 \quad 11 \quad 20\) DA 1890-1B 4C 701268 C9 8D DO 1898-16 A9 01 38 ED 30 10 8D 18AO- \(30 \quad 10\) FO O5 2C 53 CO BO 18A8-06 2C 52 CO 20 DA 1B 4C 18B0-70 12 A9 018 D 151020 18B8- 3 F 1968 C9 8D DO 30 A9 18C0- 00 8D 2D 10 AD OA 10 8D 18C8-2C 10 AD OC 10 8D 2310 18DO-AD 09 10 8D 2A 10 AD \(0 B\) 18D8-10 8D \(241020 \quad 9 \mathrm{D} \quad 10\) EE 18E0-2A 10 CE 2410 DO F5 EE 18E8-2C 10 CE 2310 DO E1 4C 18F0-70 1268 C9 8D DO 1220 18F8-58 FC \(20 \quad 3310 \quad 20\) 9E 1 A 1900-20 6E 1020 DA 1B 20 0D 1908-11 4C 701268 C9 8D DO 1910-06 20 1A \(1920 \quad 6 \mathrm{E} \quad 10 \quad 4 \mathrm{C}\) 1918-70 12 A9 8A 85 1B A9 00 1920-85 1A A2 03 AO 00 91 1A 1928-C8 DO FB E6 1B CA DO F6 1930-60 48 A2 00 8A 9D 1410 1938-E8 EO 0490 F8 6860 AD 1940-27 10 OD 2810 F0 35 AD 1948-27 10 18 6D \(091010 \quad 02\) 1950-A9 00 8D 09 10 18 6D \(0 B\) 1958-10 C9 38 DO 03 CE 0910 \(1960-A D \quad 28 \quad 10 \quad 18 \quad 6 D \quad 0 A \quad 10 \quad 10\) 1968- 02 A9 00 8D OA 10 18 6D 1970- OC 10 C9 21 DO 03 CE OA 1978-10 20561160 A9 0020 1980-09 1D AD 1410 F0 06 AD 1988-13 10 2009 1D AD 0710 1990- OA OA AA AD 08 10 OA OA 1998-A8 \(1820 \quad 001 D 8 A \quad 6904\) \(19 A 0-A A \quad 20 \quad 031 D \quad 98 \quad 69 \quad 04\) A8 19A8-20 06 1D 8A 38 E9 0418 19B0-AA 2003 1D \(98 \quad 38\) E9 04 19B8-A8 2006 1D A9 \(0020 \quad 09\) 19C0-1D AD 1510 FO 06 AD 13 19C8-10 2009 1D AD \(0910 \quad 0 A\) 19DO- OA AA AD OA 10 OA OA A8 19D8-18 2000 1D AD 0910 6D 19E0- OB 10 OA OA AA 2003 1D 19E8- AD OA 10 6D OC 10 OA OA 19F0-A8 2006 1D AD 0910 OA 19F8- OA AA 2003 1D AD OA 10 1AOO- OA OA A8 2006 1D A9 3F 1A08-85 32 A9 8A 8507 AD 06 1A10-10 29 1F 8524 AD 0610 1A18-29 60 A2 05 4A CA DO FC 1A20-69 1420 5B FB AD 1610 1A28-F0 09 AD 1310 F0 04 A9 1A30-FF 8532 AD 061020 ED 1A38-FD A9 8D 8507 AD 1710 1A40-FO 43 AD \(131020 \quad 09\) 1D 1A48-AD OD 10 OA OA AA AD OE

1A50-10 OA OA A8 182000 1D 1A58- AD OD 10 6D OF 10 OA OA 1A60-AA 2003 1D AD OE 10 6D 1A68-10 10 OA OA A8 \(20 \quad 06\) 1D 1A70-AD OD 10 OA OA AA 2003 1A78- 1D AD OE 10 OA OA A8 20 1A80-06 1D 4C 9D 1A AD 0910 1A88- 8D OD 10 AD OA 10 8D OE 1A90-10 AD OB 10 8D OF 10 AD 1A98- OC 10 8D \(10 \quad 10 \quad 60\) A9 08 1AAO- 20 5B FB A9 3F 8532 AC 1AA8-21 10 B9 1910 8D 2310 \(1 A B 0-18690138\) ED 2210 8D 1AB8-24 10 B9 1D 10 A8 20 FF 1ACO- 1A A9 8D 20 ED FD A9 FF 1AC8-85 32 AD 2410 CD 2310 1ADO-D0 04 A9 3F 853220 FF 1AD8-1A CE 2310 DO E8 A9 FF 1AE0-85 32 AC 2110 AD 1910 1AE8- 8D 2310 A2 08 A9 2085 1AFO- \(2420 \quad 11\) 1B EE 2310 A9 1AF8- 08 CD 2310 DO ED 60 A2 1B00- 08 A9 208524 B9 1F 1B 1B08- FO 0720 ED FD CA C8 DO 1B10-F4 C8 EO 00 F0 08 A9 AO 1B18-20 ED FD CA DO FA 60 C2 1B20-C9 D4 AO C5 C4 C9 D4 00 1B28-C2 CC C1 C3 CB 00 D7 C8 1B30-C9 D4 C5 00 CD CF D6 C5 1B38- 00 C3 C8 C1 D2 D3 C5 D4 1B40-D3 00 CD CF D6 C5 AO C2 1B48- CF D8 00 DO D5 D4 AO C3 1B50-C8 C1 D2 00 C7 C5 D4 AO 1B58-C3 C8 C1 D2 00 CC CF C1 1B60-C4 AO D3 C5 D4 00 D3 C1 1B68- D6 C5 AO D3 C5 D4 00 D5 1B70-D4 C9 CC C9 D4 D9 00 CD 1B78- CF D6 C5 AO C2 CF D8 00 1B80-C2 CF D8 AO D3 C9 DA C5 1B88- 00 C3 CF DO D9 00 CD C9 1B90- D2 D2 CF D2 00 C6 CC C9 1B98- D0 00 C9 CE D6 C5 D2 D4 1BAO- 00 C4 C9 D3 DO CC C1 D9 1BA8- 00 C8 C9 AO C2 C9 D4 00 1BBO- C5 D6 C5 CE AF CF C4 C4 1BB8- 00 D2 C1 CD AF D2 CF CD 1BC0- 00 C3 CC D2 AO C2 CF D8 1BC8- 00 C3 CC D2 AO D3 C3 D2 1BDO- CE 00 C3 CC D2 AO D3 C5 1BD8- D4 00 A9 05 20 5B FB A9 1BEO-20 8524 A9 FF 8532 AO 1BE8- 00 A9 0420 2C 1C AD 2F 1BF0-10 DO 09 AO 04 A9 0320 1BF8-2C 1C F0 07 A0 07 A9 03 \(1 \mathrm{COO}-20\) 2C 1C A9 8D 20 ED FD 1C08-A9 208524 AO OA A9 04 1C10-20 2C 1C AD 2E 10 DO 09 1C18- AO OE A9 0420 2C 1C FO 1C20- OA AO 12 A9 O4 20 2C 1C 1C28-AD 2E 1060 8D 2910 A2 1C30- 00 B9 3F 1C 20 ED FD C8 1C38-E8 EC 2910 DO F3 60 C8 1C40- C2 BA AO C3 CC D2 D3 C5

1C48- D4 DO D8 BA AO C5 D6 C5 1C50- CE CF C4 C4 AO 00 AD 2A 1C58- 10 OA OA 8D 2B 10 AD 2C 1C60-10 2907 AA AD 2C 10 4A 1C68-4A 4A 18 6D 2B 10 A8 60 1C70-AD OA 10 8D 2C 10 AD OC 1C78-10 8D 23 10 AD 09 10 8D 1C80-2A 10 AD OB \(108 D \quad 24 \quad 10\) 1C88-20 1A 11 B9 00 OD CE 2D 1C90-10 3005 1D BA 1C DO 03 1C98- 3D B2 1C 99 OO OD EE 2D 1CAO- 10 EE 2A 10 CE 2410 DO 1CA8- DF EE 2C 10 CE 2310 DO 1CB0-CB 60 FE FD FB F7 EF DF 1CB8- BF 7F \(0102040810 \quad 20\) 1CCO- 4080 8D AO AO AO AO AO 1CC8- AO AO AO AO AO AO AO AO 1CDO- AO AO AO AO AO AO AO AO 1CD8- AO AO AO AO AO AO AO AO 1CEO- AO AO OO FF 00 FF 00 FF 1CE8- 00 FF B7 FF 00 FF 00 FF 1CF0- 00 FF 00 FF 00 FF 00 FF 1CF 8- 00 FF 00 FF 00 FF 00 FF 1D00-4C 05 1F 4C 22 1E 4C C4 1D08- 1D 4C F6 1E 00000000 1D10- CO 00000000 A5 1C 51 1D18-26 25305126912660 1D20-85 \(45 \quad 86 \quad 4684 \quad 47 \quad 60 \quad A 5\) 1D28-45 A6 46 A4 \(47 \quad 60\) A5 1C 1D30- 4 A 4A 4A 4C 40 1D A5 1C 1D38-4A 4C 40 1D A5 1C 4A 4A 1D40-29 OF A8 B9 4F 1D \(24 \quad 1 \mathrm{C}\) 1D48-10 \(02098085 \quad 1 \mathrm{C} \quad 60 \quad 00\) 1D50-11 22 33 \(4455 \quad 6677 \quad 08\) 1D58-19 2A 3B 4C 5D 6E 7F 00 1D60-04 08 OC 10 14 18 1C 00 1D68-04 08 OC 10 14 18 1C 01 1D70- 0509 OD 11151919 1D 01 1D78- 0509 OD 111519 1D 02 1D80- 06 OA OE 12 16 1A \(1 E \quad 02\) 1D88- O6 OA OE 12 16 1A 12 O3 1D90- 07 OB OF 13 1.7 1B 1F 03 1D98- 07 OB OF 13 17 1B 1F 81 1DAO- \(828488 \quad 80\) AO CO 8183 1DA8-878F 9F BF FF FF FE FC 1DBO-F8 FO EO CO OO 2A 55 7F 1DB8-80 AA D5 FF 221177 5D 1DC0-A2 91 F7 BB 082020 1D 1DC8- CO CO \(90 \quad 03\) 4C B8 1F AC 1DDO- OD 1D B9 9F 1D \(85 \quad 30\) A5 1DD8- 2729 1F 05 E6 \(85 \quad 27\) A5 1DE0- 4738 ED 10 1D AA 6E 11 1DE8- 1D 10 17 E8 AC OC 1D 20 1DFO- 15 1D CA FO 23 AD 11 1D 1DF8-18 20 D3 F4 20 3C 1D 4C 1E00-EC 1D CA AC OC 1D 2015 1E08-1DE8 FO OC AD 11 1D 20 1E10-D3 F4 20 3C 1D 4C 03 1E 1E18-A5 47 8D 10 1D 2027 1D 1E20-28 60 08 2020 1D \(90 \quad 07\) 1E28-EO 189003 4C B8 1F AO 1E30- 00 8C OE 1D 8E OF 1D 28 1E38-08 90 O3 EE OE 1D A5 27

1E40-29 1F 05 E6 8527 AD OF 1E48- 1D A2 EO 8E 12 1D AE OE 1E50-1D 8E 13 1D 4E 13 1D A2 1E58- 06 90 03 69 1F 38 2E 13 1E60-1D CD 12 1D 9006 EE 13 1E68-1D ED 12 1D 4E 12 1D CA 1E70- DO EC 8D 14 1D AE OD 1D 1E78-AC OC 1D CC 13 1D DO 1E 1E80-EC 14 1D 90 OB BD A6 1D 1E88-AE 14 1D 3D AD 1D B0 09 1E90-BD AD 1D AE 14 1D 3D A6 1E98- 1D 8530 4C EB 1E 9027 1EAO- BD A6 1D \(85 \quad 30 \quad 20 \quad 15\) 1D 1EA8-20 36 1D CE OC 1D AC OC 1EB0- 1D CC 13 1D FO 06 A5 1C 1EB8-91 26 BO EC AE 14 1D BD 1ECO- AD 1D 8530 4C EB 1E BD 1EC8-AD 1D \(85 \quad 30 \quad 20 \quad 15\) 1D 20 1EDO- 2E 1D EE OC 1D AC OC 1D 1ED8- CC 13 1D FO 06 A5 1C 91 1EEO- 2690 EC AE 14 1D BD A6 1EE8- 1D 85302015 1D 8E OD 1EFO- 1D 2027 1D \(28 \quad 60 \quad 08 \quad 20\) 1EF8- 20 1D 29 OF A8 B9 B4 1D 1F00-85 1C 4C 9B 1F 082020 1F08-1D \(90 \quad 07\) EO \(1890 \quad 03\) 4C 1F10-B8 1F CO CO 900320 B8 1F18-1F A9 01 2D 10 1D F0 03 1F20-20 3C 1D A9 03 2D OC 1D 1F28-F0 07 AA 2036 1D CA DO 1F30-FA A5 47 8D 10 1D A5 46 1F38- 8D OF 1D AO 00 8C OE 1D 1F40-28 \(0890 \quad 03\) EE OE 1D 2C 1F48-10 1D 1002 AO \(5050 \quad 02\) 1F50-AO 288426 A9 08 2D 10 1F58- 1D FO 06 A9 \(80 \quad 052685\) 1F60-26AD 10 1D 29 3F A8 B9 1F68-5F 1D 8527 AD OF 1D A2 1F70-EO 8E 12 1D AE OE 1D 8E 1F78- OC 1D 4E OC 1D A2 0690 1F80-03 69 1F 38 2E OC 1D CD 1F88-12 1D 9006 EE OC 1D ED 1F90-12 1D 4E 12 1D CA DO EC 1F98- 8D OD 1D A9 01 2D 10 1D 1FAO-FO 0320 3C 1D A9 03 2D 1FA8- OC 1D F0 07 AA 20 2E 1D 1FBO-CA DO FA 2027 1D 2860 1FB8-A0 00 B9 C6 1F 20 ED FD 1FCO-C8 CO 19 DO F5 00 D3 C3 1FC8- D2 C5 C5 CE AO C2 CF D5 1FD0- CE C4 C1 D2 D9 AO C5 D8 1FD8- C3 C5 C5 C4 C5 C4 8D 00

\section*{Program 4: Apple SuperFont NORMAL.SET}

8DOO- 00000000000000000 8D08-08 08080808000800 8D10-14 \(141400 \quad 00 \quad 000000\) 8D18-14 14 3E 14 3E \(1414 \quad 00\) 8D20-08 3C OA 1C 28 1E 0800 8D28-06 26 10 08 04 32 30 00 8D30-04 OA OA O4 2A 12 2C 00 8D38-08 08080000000000 8D40-08 04020202040800

8D48- \(08 \quad 10 \quad 20 \quad 20 \quad 20 \quad 10 \quad 08 \quad 00\) 8D50-08 2A 1C 08 1C 2A 0800 8D58- 000808 3E 08080000 8D60-00 00000008080400 8D68- \(0000003 E 00000000\) 8D70-00 00000000000800 8D78-00 20100804020000 8D80-1C 2232 2A 2622 1C 00 8D88-08 0C 08080808 1C 00 8D90-1C \(22201804023 E 00\) 8D98- 3E \(20101820 \quad 22\) 1C 00 8DAO- \(\begin{array}{lllllllll}10 & 18 & 14 & 12 & 3 E & 10 & 10 & 00\end{array}\) 8DA8- \(3 \mathrm{E} \quad 02\) 1E \(20 \quad 20 \quad 22\) 1C 00 8DBO- \(3804021 E 22 \quad 22\) 1C 00 8DB8- 3E 20100804040400 8DCO- 1C 2222 1C 2222 1C 00 8DC8-1C 2222 3C 2010 OE OO 3DDO- 0000080008000000 8DD8- 0000080008080400 8DEO- 1008040204081000 8DE8- 0000 3E 00 3E \(00 \quad 0000\) 8DFO- \(0408 \quad 10 \quad 20 \quad 10 \quad 08 \quad 0400\) 8DF8-1C 22100808000800 8E00-1C 22 2A 3A 1A 02 3C 00 8E08-08 142222 3E 222200 \(8 \mathrm{E} 10-1 \mathrm{E} 22221 \mathrm{E} 22221 \mathrm{E} 00\) 8E18-1C 2202020222 1C 00 8E20-1E \(22222222221 E 00\) 8E28- 3 E 02021 E 02023 O 00 \(8 E 30-3 E 02021 E 02020200\) \(8 \mathrm{E} 38-3 \mathrm{C} 0202023222\) 3C 00 \(8 E 40-222222\) 3E 22222200 8 E 48 - 1C 08080808081 C 00 \(8 \mathrm{E} 50-2020202020221 \mathrm{C} 00\) 8E58-22 12 OA O6 OA 122200 \(8 \mathrm{E} 60-020202020202\) 3E 00 8E68-22 36 2A 2A 22222200 8E70-22 2226 2A 32222200 8E78-1C 2222222222 1C 00 \(8 \mathrm{E} 80-1 \mathrm{E} 22221 \mathrm{E} 02020200\) 8E88-1C 222222 2A 12 2C 00 8E90-1E 2222 1E OA 122200 8E98-1C 2202 1C 2022 1C 00 8EAO- 3E 08080808080800 8EAB- \(2222222222 \quad 22\) 1C 00 8EBO- \(222222 \quad 2222140800\) 8EB8-22 \(22 \quad 22\) 2A 2 A 362200 8 ECO- \(222214 \begin{array}{llllll}14 & 22 & 22 & 00\end{array}\) 8EC8-22 22140808080800 8EDO- 3E 2010080402 3E 00 8ED8- 3E 0606060606 3E 00 8EEO- 0002040810200000 \(8 E E 8-3 E 30303030303 E 00\) 8EFO- 0000081422000000 8EF8- \(000000000000007 F\) 8F00- 0408100000000000 8F08- 0000 1C 20 3C \(223 C 00\) \(8 F 10-02021 E 2222221 E 00\) 8 F18-00 00 3C 020202 3C 00 8F20-20 20 3C \(22 \quad 22 \quad 22 \quad 3 \mathrm{C} 00\) 8F28- \(00001 \mathrm{C} \quad 22\) 3E 023 C 00 8F30-18 \(24041 E 04040400\) 8F38-00 00 1C 2222 3C 20 1C,

8F40-02 02 1E 2222222200
\(8 F 48-08000 C 0808081 C 00\)
\(8 F 50-10 \quad 00 \quad 18 \quad 10 \quad 10 \quad 10 \quad 12 \quad 0 C\) 8F58-02 022212 OE 122200 8F60- 0 C 08080808081 C 00 8F68-00 00 36 2A 2A 2A 2200 8F70-00 00 1E 2222222200 8F78-00 00 1C \(2222 \quad 22\) 1C 00 \(8 F 80-00001 E 22221 E \quad 0202\) 8F88-00 00 3C 2222 3C 2020 \(8 F 90-0000\) 3A 0602020200 8F98- 0000 3C 021 C 20 1E 00 \(8 F A O-04041 E \quad 0404241800\) \(8 F A 8-0000222222322 C 00\) 8 FBO- 0000222222140800 8 FB8- \(000022 \quad 22\) 2A \(2 \mathrm{~A} \quad 3600\) 8 FCO- \(000022 \begin{array}{llllll}14 & 08 & 14 & 22 & 00\end{array}\) 8FC8-00 \(0022 \quad 22 \quad 22\) 3C 20 1C \(8 F D 0-00 \quad 003 E 1008043 E 00\) 8FD8- 38 OC OC 06 OC OC 3800 8 FEO- 0808080808080808 8 FE8- OE 18 18 18 30 1818 OE 00 \(8 F F O-2 C 1 A 00 \quad 0000000000\) 8FF8- 00 2A \(14 \begin{array}{lllllll} & 2 A & 14 & 2 A & 00 & 00\end{array}\)

\section*{Program 5: Apple SuperFont hrout}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(300-\) & D8 & 78 & 85 & 45 & 86 & 46 & 84 & 47 \\
\hline 0308 - & A6 & 07 & OA & OA & B0 & 04 & 10 & 3E \\
\hline \(0310-\) & 30 & 04 & 10 & 01 & E 8 & E8 & OA & 86 \\
\hline 0318 - & 18 & 18 & 65 & 06 & 85 & 1A & 90 & 02 \\
\hline \(0320-\) & E6 & 1B & A5 & 28 & 85 & 08 & A5 & 29 \\
\hline 0328 - & 29 & 03 & 05 & E 6 & 85 & 09 & A2 & 08 \\
\hline \(0330-\) & AO & 00 & B1 & 1 A & 24 & 32 & 30 & 02 \\
\hline 0338 - & 49 & 7 F & A4 & 24 & 91 & 08 & E 6 & 1 A \\
\hline \(0340-\) & DO & 02 & E6 & 1 B & A 5 & 09 & 18 & 69 \\
\hline 0348 - & 04 & 85 & 09 & CA & DO & E2 & A5 & 45 \\
\hline 350 & A6 & 46 & & 47 & & & & \\
\hline
\end{tabular}

\section*{Program 6: APPLEFONT2 Checksum}

100 PRINT "CHECK THESE BLOCKS:";
110 FOR I \(=8160\) TO 8191: POKE I, \(0:\) NEXT 120 FOR I \(=0\) TO 63:S \(=0\)
130 PRINT ".":
140 FOR \(J=0\) TO 63:S \(=S+\operatorname{PEEK}\) (409) \(6+1 * 64+J): N E X T\)
150 READ A:S = \(\mathrm{S}-256 *\) INT CS / 256
\(160 \mathrm{AD}=4096+1 \pm 64:\) GOSUB 200:A1s= H\$
\(170 \mathrm{AD}=4096+1 \pm 64+63:\) GOSUB 200: A2s = H8
180 IF \(\langle\gg S\) THEN PRINT : PRINT " \(\$\) ";A18;" TO \$";A2\$;
190 NEXT : END
\(200 \mathrm{HS}=1 ":\) FOR K \(=0\) TO \(3: X=\) INT (A D / 16) : HS = MID\$ ("0123456789ABC \(D E F\) ", AD \(-X * 16+1,1 J+H \$: A D=\) X: NEXT : RETURN
210 DATA \(33,162,119,1,233,214,30,118\)
220 DATA \(36,37,152,145,189,208,216,189\) 230 DATA \(80,127,70,70,155,173,185,120\)
240 DATA \(74,176,171,163,153,216,210,18\) 250 DATA 191, 187,202,174,159,187,87,125
260 DATA \(41,199,222,202,111,195,52,127\)
270 DATA \(178,145,237,85,215,171,8,97\)
280 DATA 123,137,102,120,22,29,223,142 ©

\title{
THE WORLD INSIDE THE COMPUTER
}

\title{
The Home Computer Revolution: Another False Start?
}

\author{
Fred D'Ignazio. Associate Editor
}

In my recent columns I have written about the overselling of the home computer. (See "The Morning After: Anti-Computer Backlash And The Arrival Of The Mass-Market Home Computer," COMPUTE!, May and June 1984; and "Is The Computer A Home Appliance?," COMPUTE!, August 1984.)

Now it seems that a genuine backlash against home computers has appeared. In publication after publication, and on TV and radio, we hear that the "home computer revolution" was a fluke. Commentators and reporters tell us that computers are still too difficult, too finicky, and too expensive to be a mass-market "appliance." And, unlike the TV, the telephone, and the toaster oven, there is no compelling reason to own a computer.

There is some truth to all of these charges, and, collectively, they have chipped away at the

Fred D'Ignazio is a computer enthusiast, the father of two children, and the author of several books on computers for young people. His books include Katie and the Computer (Creative Computing), Working Robots (Hayden), The Star Wars Question and Answer Book about Computers (Random House), and Computing Together: A Parents and Teachers Guide to Using Computers with Young Children (COMPUTE! Publications).

Fred appears regularly as the "family computing" commentator on "The New Tech Times," a half-hour public-TV program on consumer electronics that airs weekly on over 240 stations across the country.

Fred's column appears monthly in COMPUTE!.
glossy high-tech image that home computers have enjoyed for the last couple of years. As a result, the glamour has worn off the home computer, and this has caused the industry to sag.

\section*{History Repeats Itself}

But this is not the first time it's happened. In 1975, when the first computer kit (the Altair) appeared, there was a lot of discussion in the media about a "home computer revolution." This discussion was short-lived, however, because the first computers were strictly hobbyist devices. They had very little memory, almost no software, and were not built, distributed, serviced, or supported as consumer products.

The home computer hype started again in 1977 when Apple introduced its Apple II, Radio Shack came out with the TRS-80 Model I, and Commodore introduced its PET. Again we heard claims about how computers would soon be in everyone's homes. Unfortunately, these claims were just as premature as they were before. Like the machines before them, these new computers were suitable only for hobbyists and students as do-it-yourself educational devices.

We are now at the end of a third wave of claims that the home computer has arrived. This wave, like the others, has subsided and turned sour because our computer technology is still not mature enough to create a true, mass-market consumer product.

There have been three false starts in launching the home computer revolution, and there are sure to be more. Home computers are now in five million homes, but they're used daily in only a minority of those homes. It will be a long time before computers appear in 100 percent of people's homes and become a way of life like telephones or TV sets.

\section*{The Digital Utility Center}

Experts predict that a real home computer will not appear until computers are integrated into all aspects of people's lives, including banking, shopping, working, communicating, and entertainment. A real home computer will not sit alone on a desktop and look like a typewriter plugged into a TV set. Instead, it will be a hybrid machine-part TV, part telephone, part videocassette recorder, and part stereo system. It will be the brains of a general-purpose digital utility center that a family operates to hear music, watch movies and TV, make phone calls, control household appliances, and pay bills.

The home computer of the present is made up of awkward, ill-fitted, and confusing components. The day its components fuse together into a single digital utility center that is sold at discount supermarkets, it will truly become a massmarket device.

The digital utility center will come in a single box and plug into the wall with a single cord. The center's audio, video, and computer software will be uniform and standardized (in some kind of optical or magnetic format), and will play everything-from educational games to Bruce Springsteen to the latest Burt Reynolds movie.

All the recordings will be digital and capable of being stored on a single, high-density storage device. All programming will be in English and will consist of making simple choices from a menu of selections that appears on a screen and are read to the user aloud by the center's synthesized voice. Input will be from a keyboard, light pen, mouse, microphone, or touch screen, depending on the individual's preference. No technical knowledge whatsoever will be needed to operate the center. And the center will come with one- to five-year warranties, full service contracts, and modular, replaceable parts.

\section*{Like The Electric Motor}

When the digital utility center arrives, the home computer will really be a mass-market appliance. But when computers have become digital utility centers, they will no longer be computers. To paraphrase Joseph Weizenbaum, a digital utility center to a computer is the same as a vacuum cleaner to an electric motor.

Before we see consumers going wild over digital utility centers, a lot of separate developments have to take place. Audio, video, communications, and computer hardware must evolve much further and become more integrated, digital, compatible, and inexpensive. Software for the separate devices has to be integrated under a single multimedia operating system and has to adopt a standardized storage and data interchange format.

In addition, the software must have a friendly, human-like mouthpiece that deals with us in our natural, spoken language and is not only user-friendly but also user-forgiving. The software will have to fill in the gaps in people's commands, correct their typos and misspellings, not let them make any serious mistakes, hold their hand as they work their way through a task, and anticipate what they will want to do next.

Most important of all, a mass-market home computer will require a reliable, universal communications network that links the digital utility center into very-high-speed satellite channels that support two-way instantaneous transmission of voices, music, video images, computer-generated pictures, text, and numerical data. This network, too, must be standardized, instantly available at the push of a CALL button on the digital utility center, and invisible to the user.

Only when such a network is in place will the digital utility center become popular with a majority of consumers. Only then will all the pie-in-the-sky promises of computer enthusiasts become possible.

Such a network will make it possible to do home banking, telecommuting, shopping at home, and attending courses and classes at home. People will be able to purchase all the new records, movies, computer software, and books over the network and have them downloaded into their local mass-storage device or into a portable computer that they can detach from the main unit and carry with them when they travel.

\section*{The Computer As Translator And Terminal}

The lesson in all this is that our vision of the home computer has been too limited, and that's why we keep having false starts. Our vision has been limited by the fact that we are still too close to the computer's birth; we are still too familiar with the computer's early stages and functions to see what it may ultimately become.

We are only now beginning to move beyond the image of the computer as a computing engine that juggles numbers and processes paychecks. But we must go much further. We must see the computer as only a part of the digital revolution of all human media-voice, music, art, graphics, film, literature, and so on. As all science, art, technology, and communications are digitized, the computer assumes a central role as a translator among the media, and as a terminal linking human beings to the media and to each other.

The computer should enable the average person to enter information in any medium
(pictures, voice, text, whatever) and instantly translate it (at the discretion of the person) into any other medium-or into several different media. It should then enable the person to send the package to any other person. Likewise, anyone who uses a computer should have instant access to all media in any format they wish.

This sounds extremely abstract, so picture the home computer of the future as the United Nations Building. It will have two major func-
tions: translator and terminal. It will house all the disparate streams of digitized information representing all the different media, and it will translate them back and forth at the needs and whims of the user. And it will be plugged into the outside world (of cultures, peoples, nations, and institutions) and capable of vital two-way communication with that world in any language that is appropriate.
Next Month: Redefining Computer Literacy

\title{
CAPUTE!
}

Modifications Or Corrections To Previous Articles

\section*{Atari Chess}

Atari owners who use OSS DOS 2.20 from Optimized Systems Software must first select Q from the DOS menu to quit to DOS XL, then select T to go to cartridge before attempting to load this game from the December 1984 issue (p. 99).

\section*{Atari Acrobat}

Due to a printing error in line 2030 of this game from the February 1985 issue (p. 60), the STRIG function to read the joystick button appears as STPIG. Also, lines 20115, 23500, and 27035 are too long to type in as listed. To enter these lines, simply omit all spaces between BASIC statements and variables. For example, POKE BC,14 can be typed as POKEBC,14.

\section*{Machine Language Multiplication}

In Part 2 of the series on multiplication in the "Machine Language" column (p. 121, February 1985 issue), the high and low bytes of the product are switched in the example program. The last few instructions of the example should read as follows:
\begin{tabular}{lll}
& LDA & \(\$ 0380\) \\
& ADC & \(\$ 0382\) \\
& STA & \(\$ 0380\) \\
& LDA & \(\$ 0381\) \\
& ADC & \(\# \$ 00\) \\
& STA & \(\$ 0381\) \\
NOADD & DEX & \\
& BNE & NXBIT
\end{tabular}

Thanks to Karl Schmitt, Norman Sprock, and other readers who wrote in with the correction.

\section*{IBM Illegal Function Errors}

A number of readers have reported problems with illegal function call errors in COMPUTE!'s graphics games for the IBM, such as "Horse Racing" (October 1984) and "Paratrooper" (January 1985). If you receive an Illegal Function Call error message in a line containing a PUT statement (such as line 1220 of Paratrooper), it most likely means that you have made a typing error in the DATA statements that define the graphics displayed by the PUT. When you see that error message in a line involving PUT, check all your DATA items carefully.

\section*{Proofreading The IBM Proofreader}

Many readers have had problems getting the "IBM Automatic Proofreader" to work properly. The program is correct as listed, but if it's not typed in correctly, you may receive the cryptic message Error \#2. The Proofreader traps all errors, even syntax errors. Instead of getting the usual "Syntax error in ..." message, you get the error number (2 is syntax error) with no hint as to where the error might be. To help you find your typos, change the 650 in line 140 to 0 . This turns off the error trapping so you'll get the usual error messages if you have any errors.

Before using the Proofreader to type in programs, it's a good idea to test all the Proofreader commands, especially the SAVE command, just to make sure there are no bugs lurking in some obscure place in the program. To test the Proofreader's SAVE command, run the Proofreader and type in one line, say 10 REM. Now save this test program. If you didn't get an error message, you can safely type in a complete listing without fear of losing all your typing due to a bug in the SAVE command. When you think you have all the bugs out, type BASIC to exit the Proofreader, change line 140 back to normal, and save this bug-free version of the Proofreader.

\title{
Computers And Society
}

\title{
Visual Computing, Part 1
}

In January 1984 Apple launched the Macintosha computer that would accelerate a revolution in computing that had already been gathering momentum for some time. This revolution was not in the computer hardware itself, although this certainly played a role. The revolution was in the way we communicate with our computational technology.

The Macintosh was the first low-cost personal computer to incorporate a primarily pictorial user interface. Rather than having to deal with words and phrases to convey information or desires to the computer, you can select small images (icons) that represent the object with which you want to work. To edit a document with the word processor, for example, you simply place the cursor over the document (shown as a page with a label beneath it) using a pointing device called a mouse. Once the cursor is over the document, two clicks of the mouse is all that's needed to load the document (and the word processor!) into the computer.

The difference between loading a program or text file in this fashion and loading it in by typing commands from the keyboard is subtle. To understand the nature of this difference, and why the visual interface appeals to some users and not to others, we need to explore different ways that people "think."

David D. Thornburg feels comfortable working across the text-picture boundary, and has written a dozen books on computing, including the KoalaPad Book (Addison-Wesley) and 101 Ways to Use a Macintosh (Random House). His most recent book, Beyond Turtle Graphics, describes the nongraphics aspects of the computer language Logo. This book is an introduction to artificial intelligence and will be available soon from Addison-Wesley. Thornburg is currently working on his first novel.

\section*{The Two Brains}

Several years ago it was in vogue to think of human thinking style as being lateralized to the two hemispheres of the brain. Thinking that takes place in the left hemisphere is linear and analytical. Thinking that takes place in the right hemisphere is parallel, visual, and creative. This model of mental activity became so popular that we found ourselves referring to artists as "rightbrained" people and to analytical thinkers as being "left-brained."

In fact, we all have the ability to think with both sides of our brain-to be both analytical and to be creative-to think linearly and in parallel. It is true that many of us spend more time in one mode of thought than the other. It is also true that our society seems to develop and encourage our analytical linear thinking at the expense of our creative mind. But it is both unfair and inaccurate to suggest that any individual is purely "left-brained" or "right-brained."

When interactive computer systems were first developed for mass production, it was decided that people should communicate with these machines through the typewriter keyboard and that the computer should respond primarily through a text-based display. Interestingly, the dedicated videogame computers that were being developed at the same time chose to use nonkeyboard devices such as joysticks and game paddles instead of the keyboard, and to produce colorful graphic images rather than text displays.

Anyone who remembers the fads of the late 1970s will recall that videogame consoles outsold personal computers many times over. This extremely high ratio of game to computer sales was not based on price alone. The fact was that purchasers of game machines knew exactly what to do with them as soon as they were plugged in. The videogame was extremely easy to useintuitively easy, perhaps.

\section*{Nothing Automatic}

Personal computers, on the other hand, seemed designed for the linear analytical mode of thought. Nothing happened automatically-the keyboard had to be used for everything, including loading a program in the first place.

For example, suppose we look at the process of starting a game with the Atari 2600 Video Computer System and with the Commodore 64 computer. In the case of the Atari game machine, one needs only to insert the game cartridge and switch on the power. While this same process applies to the Commodore 64 with cartridge games, the story is quite different when the program is provided on disk. You then must enter:

\section*{LOAD "*", 8 \\ RUN}
to get the game into the computer.
This difference in the user interface has nothing to do with technology differences between the two machines. The fact that the Commodore 64 has more RAM, or a disk drive, or can be used with thousands of different programs, is not the issue. In fact, most personal computer users expect to have to type strings of textual information into their computer to make it do something useful.

\section*{Mainly The Keyboard}

For those of us who have used computers for a long time, none of this represents any hard-ship-it is simply "how things are done." Of course we are happy when the interface is simplified. Almost all Apple II owners, for example, equip their computers with "autostart ROMs" that will let a program boot from the disk automatically when the computer is turned on.

But still, the keyboard has maintained its role as the primary communication tool, even when the information to be communicated is nontextual.

This restriction in interface technology has kept many people from using computers. A major typing tutor program was promoted with the slogan "If you can't type you can't compute." For the vast majority of potential computer users in the world, this amounts to disfranchisement.

Fortunately, the slogan was wrong. Typing has nothing whatsoever to do with computing. All that is needed is a variety of communication tools across the man-machine interface to make computers accessible to any who would want to use them.

What made the Macintosh different was that it provided another type of interface-one that was primarily visual rather than textual.

\section*{A Step Back?}

Of course, there are critics who would argue that
the visual interface is a giant step backwardsthat we gave up iconographic writing many years ago in favor of building words from an alphabet of letters. These same people might argue that those cultures whose language is still recorded in iconographic form are burdened with a cumbersome writing system that has hampered their development.

The visual computer interface has nothing to do with how we write. I am not arguing that we should do away with our alphabet or with words or with writing. I am not suggesting that we should use nothing but pictures in our next letter to Aunt Elsinore. What I am suggesting is that, when we are referring to the operations to be performed by a computer, it is only a matter of convention that we refer to these operations in written form. The convention to build programming languages from a vocabulary of English words was completely arbitrary. It was done, in part, because computer systems were provided with keyboards.

In fact, the first computer programs devised by Lady Lovelace for Babbage's Analytical Engine were patterns of holes in punched cards.

\section*{Any Symbols Will Do}

Because most of us don't think of programming as a nontextual activity, it is hard for us to realize that one can communicate information to a computer in many different ways. A computer is, after all, just a symbol manipulation tool. The use of letters and numbers as symbols is ar-bitrary-it could work as easily with any other symbols we may devise.

The reason for exploring this topic at all is simple: Without being consciously aware of it, we have been overtaken by symbolic nontextual programming languages and have embraced them wholeheartedly. We have, in fact, become a nation of programmers without knowing it.

Anyone who builds a new level of Lode Runner, designs a new game with Pinball Construction Set, creates a new spreadsheet with Multiplan, or who works with any of the myriad construction set systems that represent one of the best-selling classes of software that has ever existed, is, in fact, creating computer programs with a minimum of typing. In fact, many of these programs are created by people with no typing whatsoever.

So, it is mildly amusing to hear many of these same construction set users suggest that programming is a "typing" activity.

\section*{Free Choice}

Again, it is not typing that is the issue. I will argue that the nature of our communication medium determines the nature of the ideas we
communicate. Some of us express ourselves quite well in linear textual form, and others of us are more comfortable with pictures and diagrams. There is nothing wrong with either approach to expression. What is important is that our technology has advanced to the point where people are free to choose their communication form, and even to switch back and forth between the two if they so desire. Any choice between the two has to be based on personal preference, not on the assumption that there is one "right" way to communicate.

Judging from the popularity of the visual interface (there is even a version of a Macintoshlike graphics program available for the PCjr!), the development of visual interfaces is opening up computer access to many thousands of people who would never have otherwise been interested in using this technology.

But, just because this new communication mode has been made available to the general public, this is no reason to think that we already know all of its consequences. As I gaze into my cloudy crystal ball, I see a future in which much of our programming will be done without the labor of typing-where we will write programs by constructing flow charts that indicate graphically what it is we want the computer to do for us.

These visual programming environments will let us express a goal without also requiring that we tell the computer how to achieve that goal.

Next month we will explore a visual programming environment in depth and compare it to text-based programming. Our visual programming language will be the database language HELIX, developed by Odesta for the Macintosh.

\title{
IBM Personal Computing
}

\title{
Spreadsheets For The Home
}

Remember when you were growing up and your pals used a word you'd never heard before? Were you too embarrassed to ask for a defi-nition-to admit you didn't know what they were talking about (and maybe even doing)? Did you fake it as best you could?

Now that you're an adult, are you still faking? Do you really know what a spreadsheet program is? Don't be embarrassed. There are lots of well-adjusted, computer-literate people who have only a vague notion of what spreadsheet software is all about. You may have thought that spreadsheets were something only an accountant could appreciate and understand. Not true. Although spreadsheets were born of the accounting
world, they have dozens of uses for those of us who have trouble balancing a checkbook. Yes, spreadsheets can actually be fun. First we'll look at their fascinating history, then at a typical numerical spreadsheet, and finally at some unusual nonnumerical applications.

\section*{Let There Be VisiCalc}

It can be argued that the personal computer era really began with the invention of spreadsheet software. Before then, a few personal computers were around, but most were owned and used by hobbyists and tinkerers. In general, personal computer software was primitive in those daysback in the late 1970s.

It was in 1978 that Dan Bricklin was sitting in a classroom at Harvard Business School watching his professor laboriously create a model budget on the blackboard. Every time the professor changed a number in one column, all the related numbers in the other columns had to be recalculated and changed, too. (This is a familiar concept to those who adjust their income tax returns until they fall into the lowest possible tax bracket.)

Suddenly, in a flash (lightning striking and all that), Bricklin imagined an electronic blackboard that would, when one number was changed, automatically recalculate all the other numbers derived from it. Was such a thing possible? Bricklin didn't know, but he took the idea to his neighbor and friend Robert Frankston. Frankston, an experienced computer programmer and designer, was at first reluctant but finally agreed to pursue the project along with Dan Fylstra, a fledgling software publisher. Thus was born VisiCalc, the visible calculator.

The first VisiCalc program was sold in January 1979; it ran on a 24 K RAM Apple II computer. The VisiCalc program was so useful that it helped sell Apple computers, and Apple in turn promoted VisiCalc-software that in essence turned a computer screen into an electronic blackboard for budget planning, financial forecasting, and virtually any task involving columns and rows of data. Nothing succeeds like a best-selling computer program, and it wasn't long before a dozen other companies were marketing spreadsheet programs, too. (Mercifully some are no longer with us.)

Today, there are spreadsheet programs for virtually every business, personal, and home computer. VisiCalc lives on in a much improved version that is available for several machines; Multiplan is another favorite; and Lotus 1-2-3, an integrated package that includes a spreadsheet, is one of the most popular computer programs of all time.

\section*{A Screenful Of Cells}

A look at an actual spreadsheet application will help you grasp what Bricklin hath wrought. All spreadsheet programs start with a screen that looks like the blank spreadsheet in Figure 1. The columns, across the top, are lettered; the rows, down the edge, are numbered. The maximum size of the spreadsheet-the number of rows and columns-depends on the program and the amount of memory in the computer.

Each combination of a row and column forms a cell or box where data may be entered. Thus, the upper-left cell is referred to as A1column A, row 1 . The current cell-the place the

Figure 1: Typical Spreadsheet Layout
A B C D

1
2
3
4
5
6
7
computer will put the data when you type-is usually shown as a white box. That box is the spreadsheet's cursor. Just like a regular cursor, it can be moved up and down, left and right, by the arrow keys on the computer's keyboard.

Let's create a supersimple spreadsheet for a make-believe company. An entry in a spreadsheet cell may be one of three types: characters, numbers, or a formula which the program will turn into numbers. By typing characters in some cells, you can create headings. In other cells-B3, B4, B5, B7-we'll put numbers to represent sales. As always when entering numbers in a computer program, omit the commas. (See Figure 2.)

To get the subtotal for divisional sales, you don't add the numbers manually and enter the result. That would defeat the purpose of the spreadsheet. Instead, you tell the computer to do it for you-to always add up column B, row 3, row 4 , and row 5 and then put the total in column B, row 6 . You do that by typing the formula-instead of a number-directly in the cell. The exact format differs slightly from one spreadsheet program to another, but generally you'd type B3 + B4 + B5 in cell B6. That is, B6 is always the sum of B3, B4, and B5. Makes sense, doesn't it?

\section*{Figure 2: A Sample Spreadsheet}
\begin{tabular}{|llcc|}
\hline \multicolumn{1}{|c}{ A } & B & C \\
\hline 1 & & January & February \\
2 & Sales & & \\
3 & Division 1 & 1000.00 & \\
4 & Division 2 & 1400.00 & \\
5 & Division 3 & 5000.00 & \\
6 & Subtotal & 7400.00 & \\
7 & Mail Order & 1200.00 & \\
8 & Grand Total & 8600.00 & \\
\hline & & & \\
\hline
\end{tabular}

Figure 2 doesn't show the formula in cell B6-it only shows the value that the formula has calculated. The actual formula for any cell may
be displayed at the top of the spreadsheet, but it is invisible in the spreadsheet itself. A similar formula is entered in cell B8 for the grand total.

Next, let's say you want to estimate the sales for February through December. Just enter a formula in the February cell C3. We'll project that each of the three divisions will sell a half-percent more than in the previous month. For example, C3 will be B3 multiplied by 1.005 . There's a way to enter a formula so that it's automatically repeated for every month that remains in the year. And there's a way to copy a formula from one row to another, so only a few keystrokes are needed to generate the spreadsheet in Figure 3.

Figure 3: Projecting Sales With A Spreadsheet
\begin{tabular}{llcc}
& A & B & C \\
\hline 1 & & January & February \\
2 & Sales & & \\
3 & Division 1 & 1000.00 & 1005.00 \\
4 & Division 2 & 1400.00 & 1407.00 \\
5 & Division 3 & 5000.00 & 5025.00 \\
6 & Subtotal & 7400.00 & 7437.00 \\
7 & Mail Order & 1200.00 & 1206.00 \\
8 & Grand Total & 8600.00 & 8643.00
\end{tabular}

\section*{Spreadsheets As Big As Bedsheets}

There's more to most spreadsheets than can be shown on a screen. In our sample, the columns for March through December will scroll into view when we move the cursor to the right side of the screen; similarly, rows below the "Grand Total" label can be scrolled into view. The screen is just a window onto a portion of the spreadsheet.

Most spreadsheet programs have commands to delete and insert rows and columns, to move entire rows and columns to other locations, to make hardcopy printouts, and to save the spreadsheet on disk.

Now, here's what makes spreadsheets so wonderful: To see how the numbers change when Division 2 sales increase, all you have to do is move the cursor to B4 and enter a new number. Instantly, the subtotal in B6 and the grand total in B8 are
recalculated and replaced in the spreadsheet. Since a change in B4 alters some of the numbers for February through December, the spreadsheet automatically recalculates those values, too.

This is a typical numerical spreadsheet. But spreadsheets can also be useful and fun even for those who hate math. I know one woman who uses a spreadsheet to record her family tree. Each cell represents one of her ancestors; each column is a generation. Her spreadsheet has no formulas or mathematical calculations-just lots of names and dates. (See Figure 4.)

Some folks use spreadsheets in place of word processing programs. My architect friend uses Lotus 1-2-3 to compose and print the schedules on his blueprints. He says it's much faster and easier than using a word processor. Once the schedule is entered, he prints it on a transparent film instead of paper and then sticks it to the drawing. He does schedules for doors, hardware, electrical fixtures, plumbing fixtures, and even shrubbery. Figure 5 shows part of a shrubbery schedule.

You could use a schedule like this to keep track of when you fertilized your plants, and what kind of fertilizer you used. Or to keep an inventory of your wine cellar. Or to record the expiration dates of your magazine subscriptions (especially if, like me, you think the magazines are always wrong). In fact, spreadsheet programs are ideal for any situation where you need to organize and record data in lists or tables.

Figure 4: Family Tree Spreadsheet

\section*{Figure 5: Shrubbery-Scheduling Spreadsheet}
\begin{tabular}{llccl}
\multicolumn{1}{c}{ A } & B & C & D \\
\hline 1 & Plant Name & Quantity & Height & Remarks \\
2 & Pittosporum tobria & 24 & \(6^{\prime} 0^{\prime \prime}\) & Plant on centers shown \\
3 & Juniperus conferta & 30 & \(12^{\prime} 15^{\prime \prime}\) & Plant on \(3^{\prime}\) centers \\
4 & Yeddo-Hawthorne & 10 & \(6^{\prime} 0^{\prime \prime}\) & Furnished by owner \\
5 & Yucca gloriosa & 15 & \(24^{\prime} 30^{\prime \prime}\) & Transplant from corner
\end{tabular}

\begin{abstract}
MLX is a labor-saving utility that allows almost fail-safe entry of machine language programs published in COMPUTE!. You need to know nothing about machine language to use MLX-it was designed for everyone. At least 8 K expansion memory is required.
\end{abstract}

MLX is a new way to enter long machine language (ML) programs with a minimum of fuss. MLX lets you enter the numbers from a special list that looks similar to BASIC DATA statements. It checks your typing on a line-by-line basis. It won't let you enter illegal characters when you should be typing numbers. It won't let you enter numbers greater than 255 (forbidden in ML). It won't let you enter the wrong numbers on the wrong line. In addition, MLX creates a ready-to-use tape or disk file.

\section*{Using MLX}

Type in and save the appropriate version of MLX (you'll want to use it in the future). When you're ready to type in an ML program, run MLX. MLX asks you for two numbers: the starting address and the ending address. These numbers are given in the article accompanying the ML program.

When you run MLX, you'll see a prompt corresponding to the starting address. The prompt is the current line you are entering from the listing. It increases by six each time you enter a line. That's because each line has seven num-bers-six actual data numbers plus a checksum number. The checksum verifies that you typed the previous six numbers correctly. If you enter any of the six numbers wrong, or enter the checksum wrong, the computer rings a buzzer and prompts you to reenter the line. If you enter it correctly, a bell tone sounds and you continue to the next line.

MLX accepts only numbers as input. If you make a typing error, press the INST/DEL key; the entire number is deleted. You can press it as many times as necessary back to the start of the line. If you enter three-digit numbers as listed, the computer automatically prints the comma and goes on to accept the next number. If you enter less than three digits, you can press either the space bar or RETURN key to advance to the next number. The checksum automatically appears in inverse video for emphasis.

To simplify your typing, MLX redefines part of the keyboard as a numeric keypad (lines 581-584):

\section*{MLX Commands}

When you finish typing an ML listing (assuming you type it all in one session), you can then save the completed program on tape or disk. Follow the screen instructions. If you get any errors while saving, you probably have a bad disk, or the disk is full, or you've made a typo when entering the MLX program itself.

You don't have to enter the whole ML program in one sitting. MLX lets you enter as much as you want, save it, and then reload the file from tape or disk later. MLX recognizes these commands:

SHIFT-S: Save
SHIFT-L: Load
SHIFT-N: New Address
SHIFT-D: Display
When you enter a command, MLX jumps out of the line you've been typing, so we recommend you do it at a new prompt. Use the Save command to save what you've been working on. It will save on tape or disk, as if you've finished, but the tape or disk won't work, of course, until you finish the typing. Remember what address you stop at. The next time you run MLX, answer all the prompts as you did before, then insert the disk or tape. When you get to the entry prompt, press SHIFT-L to reload the partly completed file into memory. Then use the New Address command to resume typing.

To use the New Address command, press SHIFT-N and enter the address where you previously stopped. The prompt will change, and you can then continue typing. Always enter a New Address that matches up with one of the line numbers in the special listing, or else the checksum won't work. The Display command lets you display a section of your typing. After you press SHIFT-D, enter two addresses within the line number range of the listing. You can abort the listing by pressing any key.

\section*{VIC MLX: Machine Language Entry}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Ø PRINT" \{CLR\} \{PUR\}"; CHR\$ (142) ; CHR\$ (8) ;}} \\
\hline & \\
\hline 101 & POKE 788,194:REM DISABLE RUN/STOP \\
\hline & :rem 174 \\
\hline 10 & \\
\hline \multirow[t]{3}{*}{120} & \\
\hline & \{RIGHT\} \{RIGHT\}\{2 SPACES\}E*उ\{OFF\}E*习 \\
\hline & £\{RVS\}£\{RVS\} " :rem 191 \\
\hline \multirow[t]{3}{*}{130} & \(\overline{\text { PRINT" }}\) [RVS \} \{RIGHT\} EG习\{RIGHT\} \\
\hline & \\
\hline & \{RVS\} " :rem 232 \\
\hline 140 & PRINT"\{RVS \(\}\) (14 SPACES \({ }^{\text {¢ }}\) " :rem \(12 \varnothing\) \\
\hline
\end{tabular}
\(2 ø \emptyset\) PRINT" 2 DOWN\}\{PUR\}\{BLK\}A FAILSAFE MA CHINE": PRINT"LANGUAGE EDITOR\{5 DOWN\}" : rem 141 \(21 \varnothing\) PRINT"\{BLK\}\{3 UP\}STARTING ADDRESS": IN PUTS: \(\mathrm{F}=1-\mathrm{F}: \mathrm{C} \$=\mathrm{CHR}(31+119 * \mathrm{~F})\) : rem 97 \(22 \varnothing\) IFS<256ORS>32767THENGOSUB3øøø:GOTO21ø

225 PRINT:PRINT:PRINT:PRINT
\(23 \varnothing\) PRINT"\{BLK\}\{3 UP\}ENDING ADDRESS": INPU \(\mathrm{TE}: \mathrm{F}=1-\mathrm{F}: \mathrm{C} \$=\mathrm{CHR}(31+119 * \mathrm{~F}) \quad:\) rem 158
240 IFE<256ORE>32767THENGOSUB3øøø:GOTO23ø :rem 234
250 IFE<STHENPRINTCS;"\{RVS\}ENDING < START \{2 SPACES\}":GOSUB1øøø:GOTO 23ø:rem 176 260 PRINT:PRINT:PRINT :rem 179
\(3 \varnothing \varnothing\) PRINT"\{CLR\}";CHR\$(14):AD=S :rem 56
\(31 \varnothing\) PRINTRIGHT\$("øøøø"+MIDS(STRS (AD), 2),5);":";:FORJ=1TO6
:rem 234
\(32 \varnothing\) GOSUB57 0 : IFN \(=-1\) THENJ \(=\mathrm{J}+\mathrm{N}:\) GOTO \(32 \varnothing\)
:rem 228
\(39 \varnothing\) IFN=-211THEN \(71 \varnothing\) :rem 62
\(4 \emptyset\) IFN \(=-204\) THEN \(79 \emptyset\) :rem 64
\(41 \varnothing\) IFN=-2ø6THENPRINT:INPUT" \(\{\) DOWN \(\}\) ENTER \(N\) EW ADDRESS"; ZZ
:rem \(4 \overline{4}\)
415 IFN \(=-2 \emptyset 6\) THENIFZZ < SORZZ > ETHENPRINT"
\{RVS\}OUT OF RANGE":GOSUBløøø:GOTO41ø
:rem 225
417 IFN \(=-206\) THENAD \(=Z Z:\) PRINT \(:\) GOTO31. \(\varnothing\)
:rem 238
420 IF \(\mathrm{N}<>-196\) THEN 480 :rem 133
430 PRINT:INPUT"DISPLAY:FROM"; F:PRINT, "TO ";:INPUTT
:rem \(2 \overline{3} 4\)
440 IFF < SORF > EORT < SORT > ETHENPRINT"AT LEAS T";S;"\{LEFT\}, NOT MORE THAN";E:GOTO43 Ø :rem 159
450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT\$("Øøø Ø"+MIDS(STR\$(I), 2),5);":"; :rem \(3 \varnothing\)
455 FORK=øTO5: \(\mathrm{N}=\mathrm{PEEK}(\mathrm{I}+\mathrm{K}): \mathrm{IFK}=3\) THENPRINTS PC(10); :rem 34
457 PRINTRIGHT\$("øø"+MIDS(STR\$(N),2),3);" ,"; :rem 157
\(46 \emptyset\) GETAS:IFA\$>""THENPRINT:PRINT:GOTO31Ø :rem 25
\(47 \varnothing\) NEXTK:PRINTCHR\$ (2 \(\varnothing\)) ; :NEXTI:PRINT:PRIN T: GOTO31 \(\varnothing\)
\(48 \varnothing\) IFN \(<\varnothing\) THEN PRINT:GOTO31Ø
490 A \((J)=N: N E X T J\) :rem 5ø
:rem 199
5のa్ CKSUM=AD-INT (AD/256)*256:FORI=1TO6:CK SUM \(=(\) CKSUM + A (\(I\))) AND255:NEXT :rem \(2 \emptyset \emptyset\)
\(51 \varnothing\) PRINTCHR (18);:GOSUB57 0 : PRINTCHR\$ (2ø)
:rem 234
515 IFN=CKSUMTHEN530
:rem 255
520 PRINT: PRINT"LINE ENTERED WRONG": PRINT "RE-ENTER": P \(\bar{R} I N T: \bar{G} O S U B 1 \varnothing \varnothing \bar{\emptyset}: G O T O 31 \varnothing\)

53ø GOSUB2øøø
:rem 129
:rem 218
\(54 \emptyset\) FORI=1TO6:POKEAD+I-1,A(I):NEXT: rem \(8 \varnothing\)
\(550 \mathrm{AD}=\mathrm{AD}+6: \mathrm{IF} \mathrm{AD}<\mathrm{E}\) THEN \(31 \varnothing\) :rem 212
560 GOTO \(71 \varnothing\) :rem 108
\(57 \varnothing \mathrm{~N}=\varnothing: \mathrm{Z}=\varnothing \quad\) :rem 88
580 PRINT"E + 习";
: rem 79
581 GETAS:IFA\$=""THEN581 :rem 95
585 PRINTCHR \((2 \emptyset) ;: A=\operatorname{ASC}(A S):\) IFA \(=130\) RA \(=44\) ORA=32THEN67б
: rem 229
590 IFA \(>128\) THENN \(=-\) A: RETURN :rem 137
\(60 \emptyset\) IFA \(<>2 \emptyset\) THEN \(63 \emptyset\)
:rem 10
610 GOSUB690:IFI=1ANDT=44THENN=-1:PRINT"
\{LEFT\} \{LEFT\}";:GOTO690 :rem 172
620 GOTO57Ø :rem 109
630 IFA<480RA>57THEN58ø
:rem 105
\(64 \varnothing\) PRINTAS; :N=N* \(1 \varnothing+A-48\) :rem \(1 \varnothing 6\)
650 IFN> 255 THEN \(A=2 \varnothing:\) GOSUB1 \(\varnothing \emptyset:\) GOTO6øø
\(660 \mathrm{Z}=\mathrm{Z}+1\) : \(\mathrm{IFZ}<3\) THEN58 0
:rem 229

680 PRINT","; :RETURN :rem \(24 \emptyset\)
\(69 \varnothing\) S\% \(=\operatorname{PEEK}(2 \varnothing 9)+256 * \operatorname{PEEK}(21 \varnothing)+\operatorname{PEEK}(211)\)
:rem 149
692 FORI \(=1\) TO3:T=PEEK (S\%-I) :rem 68
695 IFT < > 44ANDT < > 58THENPOKES\%-I, 32 : NEXT
:rem \(2 ø 5\)
\(7 \emptyset \emptyset\) PRINTLEFTS("\{3 LEFT \}", I-1);:RETURN
:rem 7
\(71 \varnothing\) PRINT"\{CLR\}\{RVS\}*** SAVE ***\{3 DOWN\}"
:rem 236
\(72 \varnothing\) INPUT"\{DOWN\} FILENAME"; FS :rem 228
\(73 \varnothing\) PRINT: PRINT" \(\{\overline{2}\) DOWN \} \{RVS \(\}\) T\{OFF \}APE OR

:rem 36
\(75 \emptyset \mathrm{DV}=1-7 *(\mathrm{~A} \$=" \mathrm{D} "):\) IFDV=8THENF \(\$=" \varnothing: "+\mathrm{F} \$\)
:rem 158
760 T\$=FS:ZK=PEEK (53) +256*PEEK (54)-LEN (T\$): POKE782, ZK/256
:rem 3
762 POKE781, ZK-PEEK (782)*256:POKE78ø, LEN (T\$):SYS65469
:rem 109
763 POKE78ø, 1:POKE781,DV:POKE782,1:SYS654 66 :rem 69
765 POKE 254,S/256:POKE253,S-PEEK (254)*256 : POKE78ø, 253
:rem 12
766 POKE782,E/256:POKE781,E-PEEK (782)*256 :SYS65496
:rem 124
\(77 \emptyset \operatorname{IF}(\operatorname{PEEK}(783)\) AND1) OR(ST AND191)THEN78Ø
:rem 111
775 PRINT" \{DOWN\} DONE. ": END :rem 106
\(78 \emptyset\) PRINT" \(\{\) DOWN \(\} \bar{E} R R O R\) ON SAVE. \(\{2\) SPACES \(\} T\) RY AGAIN." : I \(\bar{F} D V=1\) THEN \(\overline{7} 20\) :rem \(17 \overline{1}\)
781 OPEN15,8,15:INPUT\#15,E1\$,E2\$:PRINTE1\$; E2\$:CLOSE15: GOTO720
:rem 103
782 GOTO \(72 \varnothing\)
:rem 115
790 PRINT"\{CLR\}\{RVS\}*** LOAD ***\{2 DOWN \}" :rem 212
8øø INPUT"\{2 DOWN\} FILENAME";F\$:rem 244 810 PRINT: PRINT" \(\{2\) D̄फWN \} \{RVS\}TTOFF\}APE OR \{RVS\}D\{OFF\}ISK: (T/D)" :rem 227

:rem 34
\(83 \varnothing \mathrm{DV}=1-7 *(\mathrm{~A} \$=\) "D") : IFDV=8THENF \(\$=" \varnothing: "+\mathrm{F} \$\)
:rem 157
\(840 \mathrm{~T} \$=\mathrm{F} \$: \mathrm{ZK}=\operatorname{PEEK}(53)+256 * \operatorname{PEEK}(54)-\operatorname{LEN}(\mathrm{T} \$\)): POKE782,ZK/256
:rem 2
841 POKE 781 , ZK-PEEK (782) * 256 :POKE780, LEN (T\$):SYS65469
:rem 107
845 POKE78Ø, 1:POKE781,DV:POKE782, 1:SYS654 66
:rem 70
850 POKE78Ø, Ø:SYS65493
:rem 11
\(860 \operatorname{IF}(\operatorname{PEEK}(783)\) ANDI) OR (ST AND191) THEN87 \(\varnothing\)
:rem 111
865 PRINT" \{DOWN\} DONE. ": GOTO31ø :rem 96 \(87 \varnothing\) PRINT" \{DOWN\} ERROR ON LOAD. \{ 2 SPACES \}T RY AGAIN. \{DOW̄N \(":\) IFDV \(=1\) THEN8øø
:rem 172
880 OPEN15,8,15:INPUT\#15,E1\$,E2\$:PRINTE1\$; E2\$:CLOSE15:GOTO8øø
:rem 102
1øøø REM BUZZER
:rem 135
1 10ø1 POKE36878,15: POKE36874,19ø :rem 2 Ø6
1 Øø2 FORW=1TO3øø:NEXTW :rem 117
1øø3 POKE36878, \(0:\) POKE36874, \(\varnothing:\) RETURN : rem 74
\(2 \emptyset \emptyset \emptyset\) REM BELL SOUND :rem 78
\(2 ø \varnothing 1\) FORW=15TOøSTEP-1:POKE36878,W:POKE368 76,240: NEXTW :rem 22
\(2 \emptyset \emptyset 2\) POKE36876, \(:\) :RETURN :rem 119
3øøø PRINTC\$;"\{RVS\}NOT ZERO PAGE OR ROM": GOTO1øøø

\title{
COMPUTEI's Guide To Typing In Programs
}

Before typing in any program, you should familiarize yourself with your computer. Learn how to use the keyboard to type in and correct BASIC programs. Read your manuals to understand how to save and load BASIC programs to and from your disk drive or cassette unit. Computers are precise-take special care to type the program exactly as listed, including any necessary punctuation and symbols. To help you with this task, we have implemented a special listing convention as well as a program to help check your typing-the "Automatic Proofreader." Please read the following notes before typing in any programs from COMPUTE!. They can save you a lot of time and trouble.

Since programs can contain some hard-toread (and hard-to-type) special characters, we have developed a listing system that spells out in abbreviated form the function of these control characters. You will find these special characters within curly braces. For example, \{CLEAR \} or \(\{C L R\}\) instructs you to insert the symbol which clears the screen on the Atari or Commodore machines. A symbol by itself within curly braces is usually a control key or graphics key. If you see \(\{A\}\), hold down the CONTROL key and press A. Commodore machines have a special control key labeled with the Commodore logo. Graphics characters entered with the Commodore logo key are enclosed in a new kind of special bracket. A graphics character can be listed as \([<A\rangle]\). In this case, hold down the Commodore logo key as you type A. Our Commodore listings are in uppercase, so shifted symbols are underlined. A graphics heart symbol (SHIFT-S) would be listed as \(\underline{\underline{S}}\). One exception is \{SHIFT-SPACE\}. Hold down SHIFT and press the space bar.

If a number precedes a symbol, such as \(\{5\) RIGHT \(\},\{6 \underline{S}\}\), or \([<8 Q>]\), you would enter five cursor rights, six shifted S's, or eight Com-modore-Q's. On the Atari, inverse characters (printed in white on black) should be entered with the Atari logo key. Since spacing is sometimes important, any more than two spaces will be listed, for example, as: \(\{6\) SPACES \(\}\). A space is never left at the end of a line, but will be moved to the next printed line as \(\{\mathrm{SPACE}\}\). There are no special control characters found in our IBM PC/PCjr, TI-99/4A, and Apple program listings. For your convenience, we have prepared this quick-reference key for the Commodore and Atari special characters:

\section*{Atari 400/800/XL}

\section*{The Automatic Proofreader}

Also, we have developed a simple, yet effective program that can help check your typing. Type in the appropriate Proofreader program for your machine, then save it for future use. On the VIC, 64, or Atari, run the Proofreader to activate it, then enter NEW to erase the BASIC loader (the Proofreader will still be active, hidden in memory, as a machine language program). Pressing RUN/STOP-RESTORE or SYSTEM RESET deactivates the Proofreader. You can use SYS 886 to reactivate the VIC/64 Proofreader, or PRINT USR(1536) to reenable the Atari Proofreader. The IBM Proofreader is a BASIC program that lets you enter, edit, list, save, and load programs that you type. It simulates the IBM's BASIC line editor.

\section*{Using The Aufomatic Proofreader}

Once the Proofreader is active, try typing in a line. As soon as you press RETURN, either a number (on the Commodore) or a pair of letters
(Atari or IBM) appears. The number or pair of letters is called a checksum. Try making a change in the line, and notice how the checksum changes.

All you need to do is compare the value provided by the Proofreader with the checksum printed in the program listing in the magazine. In Commodore listings, the checksum is a number from 0 to 255 . It is set off from the rest of the line with rem. This prevents a syntax error if the checksum is typed in, but the REM statements and checksums need not be typed in. It is just there for your information.

In Atari and IBM listings, the checksum is given to the left of each line number. Just type in the program, a line at a time (without the printed checksum) and compare the checksum generated by the Proofreader to the checksum in the listing. If they match, go on to the next line. If not, check your typing: You've made a mistake. On the Commodore and Atari Proofreader, spaces are not counted as part of the checksum, and no check is made to see that you've typed in the characters in the right order. If characters are transposed, the checksum will still match the listing. Because of the checksum method used, do not use abbreviations, such as ? for PRINT. However, the Proofreader does catch the majority of typing errors most people make. The IBM Proofreader is even pickier; it will detect errors in spacing and transposition. Also, be sure you leave Caps Lock on, except when you need to enter lowercase characters.

\section*{Special Proofreader Notes For Commodore Cassette Users}

The Proofreader resides in the cassette buffer, which is used during tape LOADs and SAVEs. Be sure to press RUN/STOP-RESTORE before you save or load a program, to get the Proofreader out of the way. If you want to use the Proofreader with tape, run the Proofreader, then enter these two lines exactly as shown, pressing RETURN after each one:
\[
\begin{aligned}
& \mathrm{A} \$= \text { "PROOFREADER. } \mathrm{T}^{\prime \prime}: \mathrm{B} \$="\{10 \text { SPACES }\} \\
&: \mathrm{FORX}=1 \mathrm{TO} 4: \mathrm{A} \$=\mathrm{A} \$+\mathrm{B} \$: \mathrm{NEXT} \\
& \text { FOR } X=886 \mathrm{TO} 1018: \mathrm{A} \$=\mathrm{A} \$+\text { CHR } \$(\text { PEEK }(\mathrm{X})) \\
&: \text { NEXT:OPEN } 1,1,1, \mathrm{~A} \$: \text { CLOSE } 1
\end{aligned}
\]

Then press RECORD and PLAY on a blank tape, and a special version of the Proofreader will be saved to tape. Anytime you need to reload the Proofreader after it has been erased, just rewind the tape, type OPEN1:CLOSE1, then press PLAY. When READY comes back, enter SYS 886.

\section*{IBM Proofreader Commands}

Since the IBM Proofreader replaces the computer's normal BASIC line editor, it has to include
many of the direct-mode IBM BASIC commands. The syntax is identical to IBM BASIC. Commands simulated are LIST, LLIST, NEW, FILES, SAVE, and LOAD. When listing your program, press any key (except Ctrl-Break) to stop the listing. If you enter NEW, the Proofreader will prompt you to press \(Y\) to be especially sure you mean yes.

Two new commands are BASIC and CHECK: BASIC exits the Proofreader back to IBM BASIC, leaving the Proofreader in memory. CHECK works just like LIST, but shows the checksums along with the listing. After you have typed in a program, save it to disk. Then exit the Proofreader with the BASIC command, and load the program into the normal BASIC environment (this will replace the Proofreader in memory). You can now run the program, but you may want to resave it to disk. This will shorten it on disk and make it load faster, but it can no longer be edited with the Proofreader. If you want to convert a program to Proofreader format, save it to disk with SAVE "filename",A.

\section*{VIC/64 Proofreader}
\(10 \varnothing\) PRINT"\{CLR\}PLEASE WAIT...":FORI=886TOI \(\varnothing\) 18: READA: \(\mathrm{CK}=\mathrm{CK}+\mathrm{A}:\) POKEI, A: NEXT
\(11 \varnothing\) IF CK<>17539 THEN PRINT" \(\{\) DOWN \}YOU MADE \{SPACE\}AN ERROR":PRINT"IN DATA STATEMEN TS.": END
\(12 \emptyset\) SYS886:PRINT"\{CLR\}\{2 DOWN\}PROOFREADER A CTIVATED.": NEW
886 DATA \(173,036,003,201,150,2 ø 8\)
892 DATA \(001,096,141,151,003,173\)
898 DATA 037, Ø0 \(3,141,152,003,169\)
904 DATA \(150,141, \emptyset 36, \varnothing 03,169, \varnothing 03\)
910 DATA \(141,037, \emptyset 03,169, \varnothing 00,133\)
916 DATA \(254,096,032,087,241,133\)
922 DATA \(251,134,252,132,253, \varnothing ø 8\)
928 DATA 201, Ø13,240, Ø17,2ø1,ø32
934 DATA \(240, \varnothing 05, \varnothing 24,101,254,133\)
940 DATA \(254,165,251,166,252,164\)
946 DATA \(253, \varnothing 40,096,169, \varnothing 13, \varnothing 32\)
952 DATA \(210,255,165,214,141,251\)
958 DATA øø \(3,2 ø 6,251\), øø 3,169 , øøø
964 DATA \(133,216,169,019,032,210\)
970 DATA \(255,169, \varnothing 18,032,210,255\)
976 DATA \(169, \emptyset 58, \emptyset 32,210,255,166\)
982 DATA \(254,169, \varnothing \varnothing \varnothing, 133,254,172\)
988 DATA 151, Øø3,192, Ø87,208, Ø06
994 DATA \(\emptyset 32,205,189,076,235,003\)
1øøø DATA Ø32,2ø5,221,169, Ø32, ø32
1006 DATA \(210,255,032,210,255,173\)
1012 DATA 251, øø3,133,214, 076,173
\(1 \varnothing 18\) DATA Øø3

\section*{Atari Proofreader}
```

1\emptyset\emptyset GRAPHICS Ø
110 FOR I=1536 TO 170\emptyset:READ A:FOKE I
,A:CK=CK+A:NEXT I
12@ IF CK<>19@72 THEN ? "Error in DA
TA Statements. Check Typing.":E
ND
13g A=USR(1536)
14\varnothing ? :? "Automatic Proofreader Now
Activated."

```

110 FQR I=1536 TO 170ロ:READ A:FOKE I , \(A: C K=C K+A: N E X T\) I
120 IF CK<>19ด72 THEN? "Error in DA TA Statements. Check Typing.":E ND
\(13 \varnothing A=U S R(1536)\)
\(14 \emptyset\) ? :? "Automatic Proofreader Now Activated."

150 END
1536 DATA \(194,160,9,185,26,3\)
1542 DATA \(201,69,240,7,200,20 \varnothing\)
1548 DATA \(192,34,208,243,96,200\)
1554 DATA \(169,74,153,26,3,2606\)
156 DATA \(169,6,153,26,3,162\)
1566 DATA \(\emptyset, 189, \emptyset, 228,157,74\)
1572 DATA \(6,232,224,16,208,245\)
1578 DATA \(169,93,141,78,6,169\)
1584 DATA \(6,141,79,6,24,173\)
1590 DATA \(4,228,105,1,141,95\)
1596 DATA 6，173，5，228，105， 0
1602 DATA \(141,96,6,169,0,133\)
1608 DATA 203，96，247，238，125， 241
1614 DATA \(93,6,244,241,115,241\)
162 DATA \(124,241,76,295,238\) ，
1626 DATA \(\varnothing, \emptyset, \emptyset, \emptyset, 32,62\)
1632 DATA \(246,8,291,155,240,13\)
1638 DATA 261，32，24め，7，72，24
1644 DATA \(1 \not 01,2 \emptyset 3,133,2 ø 3,164,4 \varnothing\)
165 DATA \(96,72,152,72,138,72\)
1656 DATA \(169,0,169,128,145,88\)
1662 DATA \(200,192,40,208,249,165\)
1668 DATA \(2 \emptyset 3,74,74,74,74,24\)
1674 DATA \(105,161,169,3,145,88\)
168 DATA \(165,263,41,15,24,105\)
1686 DATA \(161,200,145,88,169, \emptyset\)
1692 DATA \(133,263,164,176,164,168\)
1698 DATA \(164,40,96\)

\section*{IBM Proofreader}
\(1 \varnothing\) ：Automatic Proofreader Version \(2 . \varnothing \varnothing\)（L ines \(27 \varnothing, 51 \varnothing, 515,517,62 \varnothing, 63 \varnothing\) changed \(f\) rom V1． \(\operatorname{D}\) ）
\(1 \varnothing \varnothing\) DIM L \(\$(59 \varnothing)\) ，LNUM（59の）：COLOR \(\emptyset, 7,7: K E Y\) OFF：CLS： \(\operatorname{MAX}=\varnothing\) ： \(\operatorname{LNUM}(\varnothing)=65536\) ！
110 ON ERROR GOTO \(12 \boldsymbol{2}\) ：KEY 15 ，CHR \(\$\)（4）+ CHR \(\$\) （79）：ON KEY（15）GOSUB 64ø：KEY（15）ON ：GOTO 13פ
129 RESUME \(13 \varnothing\)
\(13 \varnothing\) DEF SEG＝\＆H4D：W＝PEEK（ \(\& H 4 A)\)
140 ON ERROR GOTO \(65 \boxed{\text { ORRINT：PRINT＂Proofre }}\) ader Ready．＂
\(15 \varnothing\) LINE INPUT L\＄：\(Y=C S R L I N-I N T(L E N(L \$) / W)\) －1：LOCATE \(Y, 1\)
169 DEF SEG＝9：POKE 1959，30：POKE 1952，34：P OKE 1ø54， \(9:\) POKE 1ø55，79：POKE 1ø56，13： POKE 1957，28：LINE INPUT L \(\$:\) DEF SEG：IF L\＄＝＂＂THEN 15ø
\(17 \emptyset\) IF LEFT \(\$(L \$, 1)=" \quad "\) THEN L \(\$=M I D \$(L \$, 2)\) ：GOTO 170
18 ．IF VAL（LEFT \(\$(L \$, 2))=\emptyset\) AND MID \(\$(L \$, 3,1\) ）＝＂＂THEN L \(\$=\) MID \(\$(L \$, 4\) ）
\(19 \varnothing\) LNUM＝VAL（L\＄）：TEXT\＄＝MID\＄（L\＄，LEN（STR\＄（L N（M））＋1）
\(2 ø \emptyset\) IF ASC（L\＄）\(>57\) THEN \(26 \varnothing\)＇no line numbe \(r\) ，therefore command
21の IF TEXT \(\$=" "\) THEN GOSUB 54D：IF LNUM＝LN UM（P）THEN GOSUB 56\％：GOTO 159 ELSE 15 \(\square\)
22．CKSUM＝\(=\) ：FOR \(I=1\) TO LEN（L\＄）：CKSUM＝\(=\) CKS UM＋ASC（MID\＄（L\＄，I））＊I）AND 255：NEXT：LO CATE Y， 1 ：PRINT CHR \(\$(65+\) CKSUM／16）+ CHR \(\$\) （ \(65+\)（CKSUM AND 15）\()+" "+L \$\)
239 GOSUB 54．：IF LNUM \((P)=\) LNUM THEN L \(\$(P)=\) TEXT\＄：GOTO 15 ，replace line
24の GOSUB 58ø：GOTO 150＇insert the line
26（2 TEXT \(==":\) FOR \(I=1\) TO LEN（L\＄）：A＝ASC（MID \(\$(L \$, I)):\) TEXT \(\$=\) TEXT \(\$+\operatorname{CHR} \$(A+32 *(A\rangle 96\) AND \(A(123)\) ）：NEXT
\(27 \varnothing\) DELIMITER＝INSTR（TEXT\＄，＂＂）：COMMAND\＄＝T EXT\＄：ARG \(=="\) ：IF DELIMITER THEN COMMAN D \(\$=L E F T \$(\) TEXT \(\$\), DELIMITER－1）：ARG \(\$=M I D \$\) （TEXT \(\$\) ，DELIMITER＋1）ELSE DELIMITER＝IN STR（TEXT\＄，CHR\＄（34））：IF DELIMITER THEN COMMAND \(\$=\) LEFT \(\$(\) TEXT \(\$\) ，DELIMITER－1）：AR G\＄＝MID\＄（TEXT\＄，DELIMITER）
289 IF COMMAND\＄く＞＂LIST＂THEN \(41 \varnothing\)
\(29 \varnothing\) DPEN＂scrn：＂FOR OUTPUT AS \＃1
\(39 \varnothing\) IF ARG \(\$="\)＂THEN FIRST \(=\varnothing\) ：\(P=\) MAX -1 ：GOTO 349
\(31 \varnothing\) DELIMITER＝INSTR（ARG \(\$, "-"):\) IF DELIMITE R＝و THEN LNUM＝VAL（ARG\＄）：GOSUB 54D：FIR ST＝P：GOTO 340
320 FIRST＝VAL（LEFT\＄（ARG\＄，DELIMITER））：LAST \(=V A L(M I D \$(A R G \$, D E L I M I T E R+1)\) ）
339 LNUM＝FIRST：GOSUB 549：FIRST＝P：LNUM＝LAS T：GOSUB 549：IF \(P=\emptyset\) THEN \(P=M A X-1\)
340 FOR \(X=F I R S T\) TO P：N\＄＝MID\＄（STR \(\$\)（LNUM（ \(X\) ） ），2）＋＂＂
35 IF CKFLAG＝ø THEN A \(=="\) ：GOTO 379
36 CKSUM \(=\emptyset: A \$=N \$+L \$(X): F O R I=1\) TO LEN \((A \$\) \():\) CKSUM \(=(C K S U M+A S C(M I D \$(A \phi, I)) * I)\) AND 255：NEXT：A\＄＝CHR\＄\((65+\) CKSUM \(/ 16)+\) CHR \(\$(6\) \(5+(\) CKSUM AND 15）\()+" "\)
\(37 \varnothing\) PRINT \＃1，A \(\$+N \$+L \$(X)\)
389 IF INKEY\＄く＞＂＂THEN \(X=P\)
\(39 \varnothing\) NEXT ：CLOSE \＃1：CKFLAG＝\(\varnothing\)
490 GOTO 139
\(41 \varnothing\) IF COMMAND\＄＝＂LLIST＂THEN OPEN＂lpt1：＂ FOR OUTPUT AS \＃1：GOTO 3＠D
429 IF COMMAND \(\$=\)＂CHECK＂THEN CKFLAG＝1：GOT － 290
430 IF COMMAND \(\langle\gg\)＂SAVE＂THEN \(45 \varnothing\)
44ஜ GOSUB 6ФD：OPEN ARG\＄FOR OUTPUT AS \＃1： ARE \(=\)＂＂：GOTO \(3 \varnothing \varnothing\)
45ø IF COMMAND\＄く＞＂LOAD＂THEN \(49 \varnothing\)
460 GOSUB Gøg：OPEN ARG事 FOR INPUT AS \＃1：M \(A X=\varnothing: P=\varnothing\)
47ø WHILE NOT EOF（1）：LINE INPUT \＃1，L\＄：LNU \(M(P)=V A L(L \$): L \$(P)=M I D \$(L \$, L E N(S T R \$(V\) \(\mathrm{AL}(\mathrm{L}(\mathrm{)}))+1): \mathrm{P}=\mathrm{P}+1\) ：WEND
\(48 \emptyset\) MAX＝P：CLOSE \＃1：GOTO 13末
\(49 \varnothing\) IF COMMAND \(\$=\)＂NEW＂THEN INPUT＂Erase \(p\) rogram－Are you sure＂；L\＄：IF LEFT\＄（L\＄ ，1）＝＂y＂OR LEFT \(\$(L \$, 1)=" Y\)＂THEN MAX \(=\varnothing\) ：GOTO 139：ELSE 13ø
\(5 \emptyset \varnothing\) IF COMMAND\＄＝＂BASIC＂THEN COLOR 7，\(\emptyset, \emptyset:\) ON ERROR GOTO \(\mathscr{D}\) ：CLS：END
\(51 \varnothing\) IF COMMAND\＄＜＞＂FILES＂THEN 52．
515 IF ARG \(\$="\)＂THEN ARG \(\$=" A\) ：＂ELSE SEL＝1： GOSUB 6DD
517 FILES ARG \(\$\) ：GOTO \(13 \varnothing\)
520 PRINT＂Syntax error＂：GOTO 136
\(54 \varnothing P=\emptyset:\) WHILE LNUM \(>L N U M(P)\) AND \(P<M A X: P=P+\) 1：WEND：RETURN
\(56 \emptyset \operatorname{MAX}=\operatorname{MAX}-1:\) FOR \(X=P\) TO MAX： \(\operatorname{LNUM}(X)=\) LNUM \((X \div 1): L \$(X)=L \$(X+1):\) NEXT：RETURN
\(58 \varnothing\) MAX \(=\) MAX \(+1:\) FOR \(X=\) MAX TO P＋1 STEP－ \(1:\) LN \(\operatorname{UM}(X)=\operatorname{LNUM}(X-1): L \$(X)=L \$(X-1):\) NEXT：\(L \$\) \((P)=\) TEXT \(\$: \operatorname{LNUM}(P)=\) LNUM：RETURN
\(6 \emptyset \emptyset\) IF LEFT \(\$\)（ARG \(\$, 1\) ）＜＞CHR\＄（34）THEN \(52 \varnothing\) E LSE ARG \(=\) MID \(\$(\) ARG \(\$, 2)\)
\(61 \Phi\) IF RIGHT \(\$\)（ARG \(\$, 1\) ）\(=\) CHR \(\$\)（ 34 ）THEN ARG \(\$=\) LEFTक（ARG\＄，LEN（ARG\＄）－1）
620 IF SEL \(=\varnothing\) AND INSTR（ARE \(\$\) ：＂．＂）\(=\varnothing\) THEN A RG\＄＝ARG\＄＋＂．BAS＂
639 SEL＝ ：RETURN
64の CLOSE \＃1：CKFLAG＝ø：PRINT＂Stopped．＂：RET URN \(15 \%\)
650 PRINT＂Error \＃＂；ERR：RESUME 150

\section*{Lyco Computer Marketing \& Consultants TOLL FREE 800-233-8760}

\section*{appla}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Scarborough} \\
\hline Songwriter & 5 \\
\hline Picturewrit & \$24.75 \\
\hline Phi Beta F & \$32.75 \\
\hline Mastertype & \$24.75 \\
\hline Run f Money & \$32.75 \\
\hline Net Worth & \$54.75 \\
\hline \multicolumn{2}{|c|}{Microprose} \\
\hline Solo Flight & \$22.75 \\
\hline NATO & \$22.75 \\
\hline Spitfire & \$22.95 \\
\hline F-15 Strike & \$22.75 \\
\hline Air Rescue & \$22.75 \\
\hline \multicolumn{2}{|l|}{SSI} \\
\hline Baseball & \$22.75 \\
\hline Questron & \$26.75 \\
\hline Germany 1985 & \$32.75 \\
\hline 50 Missions & \$21.75 \\
\hline \multicolumn{2}{|c|}{Spinnaker} \\
\hline Alphabet & \$18.75 \\
\hline Story Machine & \$19.75 \\
\hline Kids on Keys & .. \$18.75 \\
\hline Grandma & \$19.75 \\
\hline Snooper Troop & \$2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Broderbund} \\
\hline Bank St. Writer & \$42.75 \\
\hline Bank St. Filer & \$42.75 \\
\hline Bank St. Mailer & \$42.75 \\
\hline Bank St. Spell & \$42.75 \\
\hline Mask of Sun & \$24.95 \\
\hline Print shop & 32.95 \\
\hline Lode Runner & \$22.95 \\
\hline
\end{tabular}

\section*{Graphics Tablet \\ Supersketch \\ Kolala \\ S49.95}

MONITORS
\begin{tabular}{|c|c|}
\hline TAXAN & AMDEK \\
\hline 210 Color RGB 255 & 300 Green 125 \\
\hline 100 Green 115 & 300 Amber 145 \\
\hline 105 Amber 125 & 310 Amber - IBM 159 \\
\hline 400 Color RGB 295 & Color 300-Audio 265 \\
\hline 410 Color RGB 349 & Color 500-Composite 379 \\
\hline 420 Color IBM 449 & Color 600 545 \\
\hline 121 Green IBM 145 & Color 700 635 \\
\hline 122 Amber IBM 149 & Colnr 710................ 675 \\
\hline ZENITH & NEC \\
\hline ZVM 122A Amber 86 & JB 1260 Green 99.00 \\
\hline ZVM 1236 Green 82 & JB 1201 Green 135.00 \\
\hline ZVM 124 Amber - IBM 129 & JC 1215 Color 255.00 \\
\hline ZVM 131 Color 275 & JC 1216 RGB 399.00 \\
\hline ZVM 133 RGB 389 & JC 460 Color 349.00 \\
\hline \begin{tabular}{l}
ZVM 135 Composite 449 \\
ZVM 136 Hi Res Color. 589
\end{tabular} & SAKATA \\
\hline & SC-100 Color 229 \\
\hline G-GRiLeen & STSI Tinstand 29 \\
\hline 12 Green \(\ldots\). s 8200
12 Amber......... s 88.00 & SG 1000 Green 99 \\
\hline 12 Amber \$ 88.00 & SA 1000 Amber 109 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 800XL COMPUTER CALL & DEADLINE & \$34.75 \\
\hline 1050 DRIVE CALL & ENCHANTER. & \$34.75 \\
\hline 1010 RECORDER 555.00 & INFIDEL & \$34.75 \\
\hline 1020 PRINTER \(\$ 559.00\) & PLANETFALL. & \$34.75 \\
\hline 1025 PRINTER S189.00 & STAR CROSS & \$34.75 \\
\hline 1027 PRINTER....... 5249.00 & SUSPENDED. & \$34.75 \\
\hline 1030 MODEM \(\$ 59.00\) & WITNESS & \$34.75 \\
\hline MONKEYWRENCHII... \(\$ 52.75\) & ZORK 1 & \$26.75 \\
\hline HOME ACCOUNT D \(\$ 44.75\) & ZORK II & \$26.75 \\
\hline TAX ADVANTAGE.......s35.75 & \multicolumn{2}{|l|}{Scarborough} \\
\hline SUB LOGIC & Songwriter ... & . 224.75 \\
\hline Flight SimulatorIIC-64 ... 32.75 & Net Worth & \$49.95 \\
\hline FlightSimulator IIAtari ... 32.75 & Mastertype & . \(\$ 24.75\) \\
\hline Flight Simulator IIApple ... 32.75 & Run f Money & . 224.75 \\
\hline & \multicolumn{2}{|c|}{Microprose} \\
\hline Shadowkeep \(\$ 26.75\) & Solo Flight & . \(\mathbf{} \mathbf{2 2 2 . 7 5}\) \\
\hline Fahrenheit 451 \(\$ 26.75\) & Spitfire & \$19.95 \\
\hline Amazon \$26.75 & F-15 Strike & . 222.75 \\
\hline Synapse & Air Rescue & \$22.75 \\
\hline Synfile \$48.95 & \multicolumn{2}{|c|}{SSI} \\
\hline Syncalc \$48.95 & Baseball & \$22.75 \\
\hline Syncomm \$29.95 & Questron & \$26.75 \\
\hline Syntrend \$48.95 & 50 Missions & 75 \\
\hline
\end{tabular}

Supersketch \(\$ 3295\) Kolala \(\$ 69.95\) THE ILLUSTRATOR SPIDER EATER. SPEEICOPTER

\section*{BUSINESS}

VISICALC \(\$ 159.75\)
LETTER PERFECT R ... 5900
DATA PERFECT
FILE MANAGER.
HOME FILE MGR

\(\$ 89.75\)
. \(\mathbf{5 6 9 . 7 5}\)
. \(\$ 69.75\)

\section*{Graphics Tablet Spinnaker}
. CALL DEADLINE . ENCHANTER. INFIDEL. STAR CROSS SUSPENDED. WITNESS. ZORK II Scarborough

Alphabet
Story Machine
Kids on Keys
Grandma
Snooper Troop
\(\$ 18.75\)
\(\$ 21.75\)
\$18.75
\$19.75
\(\$ 22.75\)

\section*{Broderbund}
Bank St. Writer \(\$ 42.75\)
Spellmaker \(\$ 19.95\)
Mask of Sun \(\mathbf{\$ 2 4 . 9 5}\)
Choplifter \(\$ 22.95\)
Lode Runner \(\$ 22.95\)

\section*{COMMODORE}

\section*{COMMODORE}

\section*{C64 COMPUTER......... CALL}

SX 64 COMPUTER....... CALL C1541 DISK DRIVE ... \(\$ 239.00\) C1526 PRINTER...... \(\$ 269.00\) MPS801 PRINTER \(\$ 215.00\) C1702 MONITOR. . . . \(\$ 249.00\) C64105 LOGO 64...... \(\$ 45.00\) C64106 PILOT 64....... \(\$ 35.00\) SIMON'S BASIC

SSI
Baseball \(\$ 22.75\)
Germany 1984 \(\$ 32.75\)
50 Missions \(\$ 21.75\)

PERSONAL

\section*{PERIPHEIALS}

Super Sketch-Atari........ 32.95
Super Sketch-C-64 37.95
Super Sketch-TI99/4A . . 37.95
Super Sketch-Apple 52.95
Super Sketch-IBM PC ... 52.95
Timeworks

\section*{Inventor}

Sales
Accts. Rec
Accts. Rec
G. Ledger

Data Mgr
Checkbook
Star Battle
Cave of Word

\section*{\(\$ 32.75\)}
\(\$ 32.75\)
\$32.75
\(\$ 32.75\)
\(\$ 39.75\)
\(\$ 14.75\)
\$14.75
\$14.75
\(\$ 18.75\)

\section*{CARDCO}

C/01 Write Now 29.95
C/02 Write Now - 64 ... 39.95
D/01 Mail Now - 64 29.00
D/04 Spell Now - 64 29.00
D/02 Utility Desk
CSD-1 Disk Drive (new) ... CALL

MOD-1 Modern (new) ... CALL D/03 Tax Payer (new) ... 2795 D/07 CalcNow/64 (new) ... 27.95 D/08 SUper Printer Utility D/08 Super Printer
Utility.
27.95

CK/1 Numeric Key Pao ... 34.95
DC/1 Data Cassette 39.95
CB/5 5 Slot
Board C-64
54.00

CR/1 Light Pen 29.75
CE/1 Cassette Interface . . 29.75
CB/3 3 Slot
Board Vic-20
24.95

CB/6 6 Slot
Board Vic-20.............. 65.00
Scarborough
Songwriter \(\$ 24.75\)
Phi Beta F \(\$ 29.95\)
Mastertype \(\$ 24.75\)
Run I Money \(\$ 24.75\)
Net Worth \(\$ 49.95\)

\section*{Batteries Included}

Paper Clip \(\$ 59.95\)
Spell Pak \(\$ 34.95\)
Consultant \(\$ 64.95\)
Paper Clip with
Spell Pak \(\$ 79.95\)
Home Pak \(\$ 34.95\)
BUS CARD \(\$ 139.95\)
80 Column Board \$109.95
Microprose
Solo Flight \(\$ 22.75\)
NATO \(\$ 22.75\)
Spitfire \(\$ 19.95\)
F-15 Strike \(\$ 22.75\)

\section*{ADVENTURE}

Ultra Disassembler 32.95

\section*{HES}

HES Games 84 22.95
Omni Writer/Spell 34.95 HES Mon 64 23.95 Microsoft Multiplan 55.00 Type N Write 19.95 Turtle Graphics II 23.95

Cell Defense 22.95
Faint Brush 12.95
Tri Math s................. 22.95
Graphics Basic 27.95
HES Kit 29.95
Millionaire 23.95
64 Forth 24.95

\section*{NOVATION}
\(\$ 89.00\)
Cat \(\quad\) \$129.00
Smart Cat 103/ \(\$ 16900\) Smart Cat 103/212 AutoCat
212 Auto Cat
Apple Cat II
212 Apple Cat
Apple Cat 212
(Upgrade)
Smart Cat Plus
\(\$ 35900\)
\(\$ 20900\)
\(\$ 539.00\)
\(\$ 239.00\)
\(\$ 43900\)
\(\$ 24900\)

MODEMS

Hayes
Smartmodem \(300 \quad \$ 199.00\) Smartmodem \(1200 \quad \$ 469.00\) Smartmodem 1200b \(\quad \$ 399.00\) Micromodem Ile. \(\quad \$ 249.00\) Micromodem \(100 \quad \$ 289.00\)
Chronograph ...bler \$179.00

\section*{ANCHOR}

Volksmodem \(\quad \$ 5599\)
Mark VII \(\quad\) SF 9599
(auto ans/dial
\$25900
(1200 band)
TELELEARNING
CM-250Commodore 64 . . . CALL AP-250 Apple CALL
\(113-250\) IBM CALL

Westridge C-64 ... Call
Total
Telecommunications
C-64
Mitey Mo C-64 ... Call

AMERICA'S MAIL ORDER HEADQUARTERS LYCO COMPUTER

CALL TOLL FREE
800-233-8760
In PA 1 717-327-1824
Lyco Computer
P.O. Box 5088

\section*{Lyco Computer Marketing \& Consultants}
"PEOPLE WHO KNOW WHAT THEY WANT AND KNOW HOW TO USE IT RECEIVE THE LOWEST PRICES AT LYCO"

\section*{OVER 2000 SOFTWARE TITLES IN STOCK}

\section*{COMPUTER CARE}

BIB
DISK DRIVE CLEANER.,.......... 512.75 COMPUTERCARE KIT \(\$ 19.75\)

\section*{NORTRONICS DISK DRIVE CLEANER} with software for IBM-PC, Atari, Vic, DISK DRIVE CLEANER with sotiware for IBM-PC. Atar. VIC. Apple. TI.
DISK CLEANER REFILL
\(\$ 1475\)
CASSDRIVECLEANER \(\$ 995\)
MEDIABULKERASER \$4675
NEC
PC8201 Portable NECB1 64 K Computer System
\(\$ 429\)
kiconer
System
. \(\$ 1049\)
\(\$ 1299\)
C8221 ThermalPrinter ... S 139
PCB2018KRAMChip S 99
PC820632KRAMCan S 299
PC300 Modem . . . 65
PC8801 MSDOS
16 Bit Card
\$ 339

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{O SHEETS} \\
\hline FANFOLD & \$42.75 \\
\hline \multicolumn{2}{|l|}{1000 SHEETS} \\
\hline FANFOLD & \$19.75 \\
\hline 1000 SHEETLETTER & \$21.95 \\
\hline 200 SHEETS LETTER & \$8.99 \\
\hline 150RAGSTATIONARY & . 10.99 \\
\hline MAILING LABELS (1in.) & S9.9 \\
\hline \multicolumn{2}{|l|}{\(14 \times 111000\)} \\
\hline FANFOLD & \\
\hline
\end{tabular}

\section*{INNOVATIVE} CONCEPTS
FLIP-N-FILE 10
\(\$ 375\)
FLIP-N.FILE 15 \$8.95
FLIP-N-FILE \(25 \quad \$ 18.95\)
FLIP-N-FILE 50 \$1775
FLIP-N-FILE
(ROM HOLDER)
51775

\section*{MSD}

SDI DRIVE \$259.00 . \(\$ 475.00\)

\section*{INDUS}
\begin{tabular}{|c|c|}
\hline T At & 69 \\
\hline GT Atari & 269 \\
\hline GT Commodore & CALL \\
\hline GT Apple w/controlle & 219 \\
\hline GT Apple & \\
\hline
\end{tabular}

SKC
(Box 10)

\$12.99
\$15.99
\(\$ 18.99\)

\section*{ELEPHANT}
(Box 10)
\begin{tabular}{|c|c|}
\hline 5'4.SSSD & \$14.99 \\
\hline 5': \({ }^{\text {SSSDD }}\) & \$16.99 \\
\hline 5'*"DSDD & \$21.99 \\
\hline
\end{tabular}

IBM-PC SOFT-WARE

Scarborough
Songwriter \(\$ 24.75\)
Picturewrite \(\$ 32.75\)
Phi Beta F \(\$ 32.75\)
Mastertype \(\$ 32.75\)
Run f Money \$32.75
Net Worth \(\$ 54.75\) Spinnaker
Alphabet .
Kids on Keys S18.75
. \(\$ 19.75\)
Kindercomp
Facemaker S19.75
Kidwriter \$19.75

\section*{IBM-PC \\ COMPATABLE}

CORONA
PPC22A
Portable 256K-Amber . . S1995 PPC22G
Portable 256K-Green... . \$1995 PPCXTA
Portable 256K-10Meg... \(\mathbf{\$ 3 2 9 5}\) COR128K 128K RAM ...S 159

\section*{Zenith}

2-150
Call
Columbia Data
1600
Call
Televideo
TS1605
Call
Leading Edge
PC Compatable
Call

\section*{Microprose}

Solo Flig
\(\$ 2275\)
Spitfire \(\$ 22.95\)
Graphics Tablet
Supersketch \$49.95
Kolala \(\$ 99.95\)
Illustrator \(\$ 99.95\)
Logo Design \$27.95
Grams Spell
\(\$ 27.95\)
\(\$ 27.95\)

\section*{TOLL FREE 1-800-233-8760}

TO ORDER
CALL TOLL FREE
or send order to Lyco Computer PO Box 5088
Customer Service 1-717-327-1825 Jersey Shore PA 17740

\section*{RISK FREE POLICY}

In-stock item shipped within 24 hours of order. No deposit on C.O.D orders. Free shipping on prepaid cash orders within the Continental U.S PA residents add sales tax. APO. FPO. and International orders add \$5.00 plus \(3 \%\) for priority mail service. Advertised prices show \(4 \%\) discount for cash, add \(4 \%\) for Master Card or Visa. Personal checks require 4 weeks clearance before shipping. All items subject to change without notice.

\title{
TAKE THE FEAROUT OF USING THE TOOLS O F MODERN MAN.
}

You're a modern person who wants to use a computer. But primitive training methods don't fill your needs. You need a solid training system that shows you, in the privacy of your own home, office... or cave, how to get the most out of your computer and software.

\section*{introducing CompuTutorw}

CompuTutor, developed by Chase Scientific, is a remarkable series of plain language computer training programs on videocassette. By providing real life personal computing applications, Compulutor gives you an immediate hands-on experience. The method is simple. Using your TV and videocassette recorder side by side with your personal computer, you set the pace. Start and stop the video program at any point. Skip sections you already know and review others as many times as you want. Within minutes you'll begin to
use your computer with ease and confidence.
As entertaining as they are informative, Compulutor hardware and software training systems are designed specifically for your IBM \({ }^{\oplus}\)-PC. ...Apple \({ }^{\oplus} \| \mathrm{le} \ldots\) TRS-80 Model 4 and many compatibles. Popular
 ...WordStar \({ }^{\oplus}\)...SuperSCRIPSITT" and VisiCalc \({ }^{\circledR}\) perform even better because Compulutor makes them easier to understand, through state-of-the-art video technology-with a warm, human touch.

Start learning today...Start using tonight, with CompuTutor from Chase Scientific. And put the tools of modern man to work for you.

Order CompuTutor Now. For Visa and MasterCard orders Call Toll Free: (In California) 1 (800) 528-2554. (Outside California) Call Collect: 1 (213) 395-7884. Or, if more convenient fill in the order form below.

PLEASE SELECT PROGRAMS:
\begin{tabular}{ll}
\multicolumn{2}{c}{ Title } \\
Using Your Machine & Qty \\
Using VISICALC \\
Using WORDSTAR \\
Using SuperSCRIPSIT \\
(for TRS-80, Model 4 only) \\
Using dBASE II \\
(for Apple lle only) \\
Using dBASE III \\
(For IBM PC only) \\
Using LOTUS 1-2-3 \\
(For IBMPC only)
\end{tabular}

\section*{CompưTutor Programs at \(\$ 69.95\) each (Please add \(\$ 5\) shipping and} Total enclosed \$
\(\square\) I am interested, but send further information:
(Program Titles)
\(\square\) Check \(\square\) Money Order \(\square\) Visa \(\square\) MasterCard Exp. Date \(\qquad\)
Name
Address
City
State
Zip \(\qquad\)
Signature:
Send Check or Money Order Payable To:
CHASE SCIENTIFIC 1311 Colorado Ave., Santa Monica, CA 90404
(Dealer and Distributor inquiries Weicome) Allow 4.6 weeks for delivery.

Compulutor is a trademark of Chase Scientific Inc. IBM-PC is a registered tradeis a registered radeBusiness Machine Corporation. Apple lle is a registered trademark of Apple Computer Inc. TRS-80 Model 4 is a registered trademark and SuperSCRIPSIT is a trademark of the Tandy Corporation. Lotus and \(1-2 \cdot 3\) are trademarks of Lotus development Corporation. dBASE II is a registered trademark of Ashton-Tate. dBASE III is a trademark of Ashton-Tate. WORD. STAR is a registered trademark of Micro Pro International Inc. VisiCalc is a regis. tered trademark of Software Arts, Inc. c) 1985 Chase Scientific Inc.

\title{
NOW! YOU CAN GET THOUSANDS OF FREE PROGRAMS, AND PUT YOUR TELEPHONE TO WORK With The New ATARI Modem/Software Package For Only \$72.95!
}

To get more out of your ATARI, whether you're a brand-new owner or a database expert - this offer is for you. The ATARI 1030 is the easiest-to-use modem on the market. And since the experts at ATARI designed it, you're guaranteed that it works with your ATARI Computer System.

The perfect modem package for everyone, it has all the necessary software built right in. All you need is a 16K ATARI computer and a telephone line to get started! If you're a disk drive owner, this package includes additional software (on disk - selected by ANTIC Magazine) that will give your 1030 all the power you'll ever need!

\section*{NEW!}
- Upload/Download Files With Your Disk Drive
- Auto Dial Telephone Number Database
- Easy Downloading Of Programs From Compuserve's ATARI SIG.
- Easy Access To All Bulletin Board Systems
- Simple ATARI-To-ATARI "MacIntoshLike" Terminal Software

and more...
You'll love the hi-tech design of the 1030 modem. It'll look great next to your computer and peripherals! And hidden inside is the most sophisticated circuitry on the market. This means \(100 \%\) accurate file transmissions the first time - even over voice-grade phone lines anywhere in the country. Your 1030 modem is built almost to military specs - guaranteed to have less than 1 bit-error out of every 100,000 bitsthe lowest in the industry.

And, you'll also receive free introductory subscriptions to Compuserve laccess to hundreds of great free programs), and Dow Jones

News Retrieval Service (get stock quotes as fast as your stock broker), with FREE TIME ON EACH!

Now ATARI quality at a lower price THAN ANY OTHER MODEM!

The suggested retail value is \(\$ 199.95\) MY PRICE IS ONLY \(\$ 79.95\)
Send me number of packages at \(\$ 79.95\) per package to:
\(\qquad\)
Adoress

Please make check payable to ADD-ON Systems. Payment enclosed \(\square\) check \(\square\) money order Bill my \(\square\) Mastercard \(\square\) Visa

Credit Card Orders Only Call Toll Free
\(8002271617 \times 133\)
\(8007723545 \times 133\) (inside CA)
California residents add \(61 / 2 \%\) sales tax. Add shipping charges of \(\$ 2.75\) per modem.
Canadian residents please send U.S. dollars. Allow \(2-4\) weeks for delwery - Prices subject to change without notice - Delivery subject to availability.
Send coupon to:
ADD-ON Systems
524 2nd St.
San Francisco, CA 94107

\section*{ATAR1030}

Your Computer's Worst Enemy Lives In Your Wall
Power Outiets Send Harmful Spikes And
Surges To Your Equipment Right Now Your
 Surges to Your Equipment Right Now Your \(1 \rightarrow 2\) Clean Break Join The Clean Family And Stop This Damage Today Complete Three Stage Surge Suppression Drect From Manufacturer -
No Middleman Exceptional Value Don't Spend More And Get Less.

CLEAN MACHINE - Converts Wall Outiet. To \(\$ 16 .{ }^{95}\) EA
SX Protected Outiets
SAVE \$3.00 (3 or More \(\$ 15.95 \mathrm{Ea}\))
EXTRA CLEAN MACHINE - Same As Above With These Extra Features
Wi (Correct Wiring Indicator) 101 (intertect Wiring Ovaload Indicaton) SAVE \(\$ 600\) (3 or More \(\$ 17.95\) Ea)
CLEAN STRIP - Six Protected Outiets On A Strip Indicator Light
15 Amp Crucuit Breaker
SAVE S900 On/OH Swith \(\$ 19 .{ }^{95} \mathrm{EA}\) or \(\$ 26.95 \mathrm{Ea}\)) Mix And Match Any Three For
Protect TVs. Stereo's. VCR's
Join Our Family Now. Our Operators Are Waiting For Your Call
24 Hour Order Line \(-1.800-253\)-400 24 Hour Order Line - 1-800-253-4001 We Pay Postage Shipped Within 48 Hours. Oklahoma and for Intormation 405-243-1559

\section*{VISA Innovative Technology Ltd} movative Technology (xintran

\section*{MEMOREX} FLEXIBLE DISCS

WE WILL NOT BE UNDERSOLDII Call Free (800)235-4137 for prices and information. Dealer inquiries invited and C.O.D.s accepted

Lifetime Warranty! Hub Rings! 100\% Error-Free!
\(514^{\prime \prime}\) Diskettes Soft or Hard Sector - Boxed
SS SD... \$. 99 Each*
SS DD
\$1.20 Each*
R DD (Flippy)
\(\$ 1.45\) Each.
Similar savings on \(8^{\prime \prime}\), quad density and special format diskettes.
Bulk Diskettes, with envelopes deduct 5 C per diskette.
Minimum order - 50 Diskettes Quantity Discounts Available MI Residents, add 4\% Sales Tax Shipping \& Handling \(\$ 3.00 / 100\) Diskettes TO ORDER: Call or Write

\section*{Precision D} P.O. Box 8367

OC Grand Rapids. MI 49508 Michigan 1-800-632-2468 00-258.0028
C.O.D.

\section*{USE YOUR HOME COMPUTER TO TRACE YOUR FAMILY ROOTS WITH}

MICROTROOTS
7411 Riggs Road, Suite A 104 Adelphi, MD 20783 • 301-460-0754
- The bi-monthly newsletter for the personal/home micro computer user. - Details cost, source and availability of 57 genealogical programs \& features for 21 different personal/home computers. - Articles written by other users and professionaas. Clearmo Busetin Board Systems (RBBS) Bullestions answered problems solved, information and experiences shared. - Ideal newslet.隹ioul for the user at any level including beginners.

Cut out, place in an envelope and mail to:

\section*{MICRO: 深ROOTS}

7411 Riggs Road, Suite B 104 Adelphi, Maryland 20783 Yes, enclosed is my check or money order for \(\$ 24.95\). Please send me a subscription for Microroots.

Name
Address
City \(\qquad\) State Z Zip

\section*{TAPE WORLD}
 maxell.

\section*{- Dysan}
 \begin{tabular}{llll}
10.2 & \(\ldots 5 \% \%\) \\
\hline
\end{tabular} FD-1.... 8". SSDD 2.69 3740/10 .. \(8^{\prime \prime}\). SSDD ... 2.69
 MEMOREX IBM 54." SSDD
\(\qquad\) 2.3
\(\begin{array}{ll}1.79 & 5 \% \\ 2.39 & 5 \%\end{array}\)
SDD. 1.99
2.59
\(5 \% "\) DSDD.
BASF \(54 \%\) SSDD
\(1.495 \%\) SSDD
SCOTCH
54" DSDD1.99 5\%"DSDD
ELEPHANT
5\%" SSOD
\(1.695 \%\) E
2.39 5\%"DSDD
2.19

WE WILL BEAT ANY PRICE BY 3\%
Sold in 10 Packs. Shipping 3.75 any size order
Pre-paid, COD, or credit card. COD add 1.95 SCHOOLS \& GOVT. ON PO.
Also, TDK, and Maxell audio and video cassettes. 220 SPRING ST. BOX 361 BUTLER, PA 16001
412-283-8621
M-Fri. 8:30-5:00

\section*{3M Diskettes \\ Lifetime Warranty}

\section*{maxell DISKS}

LIFETIME WARRANTY
Think you're getting the best price on Maxell Diskettes?
You're right . . . BUT ONLY IF You're buying from NORTH HILLS CORP
We will beat any nationally advertised price* or give you a 15 disk library case FREE!
Call us last-TOLL FREE-for our best shot every time.
\[
1-800-328-3472
\]

Formatted and hard sectored disks in stock
Dear mumnes mvenaeob and charge cards accepled. All orders shipped from stock within 24 \(4 A_{1} \mathrm{~N}\)

North Hills Corporation 3564 Rolling View Dr MN Call Collect ! 612770 0485

Think you're getting the best price on 3M Diskettes?
You're right . . . BUT ONLY IF You're buying from NORTH HILLS CORP.
We will beat any nationally advertised price* or give you a 15 disk library case FREE!

Call us last-TOLL FREE-for our best shot every time.

1-800-328-3472
Formatted and hard sectored disks in stock.
Dealer inquiries invited. COD's and charge cards accepted. All orders shipped from stock within 24 hours. Why watt 10 days to be shipped?

\section*{(2) \\ Dysan}

Solve your disc problems, buy \(100 \%\) surface tested Dysan diskettes. All orders shipped from stock, within 24 hours. Call toll FREE (800) 235-4137 for prices and information. Visa and Master Card accepted All orders sent postage pald

\section*{Save 20\% to 60\% Or More}

\section*{On all your}

OFFICE \& COMPUTER SUPPLIES!
Now, you can enjoy DISK WORLD! savings on more than 21,000 office and computer supply products! You name it, we got
Everything from Scotch \({ }^{*}\) Tape to Post-lt Notes* to paper clips and rubber bands..., and thousands of computer products as well Our catalog is huge...more than 700 pages, listing more than 21,000 items.
We have to charge for it: \(\$ 10.00\) to be exact.
But we include a \(\$ 50.00\) worth of discount coupons that you can use on future orders.
Now, it's DISK WORLD! for every office or computer supply need ..and always at tremendous savings!

This offer supercedes all prior catalog offers.
FOR ORDERS ONLY: INFORMATION \&
1-800-621-6827
INQUIRIES:
1-800-621-6827
1-312-944-2788
HOURS 8AM-5PM Central Time, Monday-Friday WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES! DISK WORLD!, Inc.

DISK
WORLD!

FANTASTIC LOW PRICES ON BASF QUALIMETRIC DISKETTES!

\section*{\$141 \\ \\ DSDD Qty. 20}

PACKED IN PLASTIC LIBRARY CASES
BASF QUALIMETRIC DISKEITES have a LIFETIME WARRANTY and are packed in PLASTIC LIBRARY CASES with Tyvek sleeves, reinforced hubs, user identification labels and write protect tabs.

SOFT SECTOR ONLY! MINIMUM ORDER: 20 DISKETTES BASF \(3.5^{*}\) MICRO-FLOPPIES BASF \(5 \%^{*}\) "HIGH DENSITY SSDD-135 TPI \(\rightarrow\) S3.02ea. DSDD-HD \(\rightarrow\) S4.72ea. FOR ORDERS ONLY: DSDD-HD \(\rightarrow\) S4.72ea
INFORMATION \&
1-800-621-6827 INQUIRIES:
(In Illinois: 1-312-944-2788) 1-312-944-2788
HOURS: 8AM-5PM Central Time, Monday-Friday WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE

ON THE SAME PRODUCTS AND QUANTITIES!
Dí Authorized Reseller
BASF

\section*{WORLD! Media}

\section*{DSK WORLD. Ordering \& Shipping Instructions}

Shipping: \(51^{*} \& 3.5^{\circ}\) DISKETTES-Add \(\$ 3.00\) per each 100 or fewer diskettes. Other Items: Add shipping charges as shown in addition to other shipping charges. Payment: VISA and MASTER CARD accepted. COD Orders: Add additional \(\$ 3.00\) Special Handling charge. APO, FPO, AK, HI \& PR Orders: Include shipping charges as shown and additional \(2 \%\) of total order amount to cover PAL and insurance. Taxes: !''nois residents only, add \(8 \%\) sales tax.

Prices subject to change without notice This ad supercedes all other ads. Not responsible for typographical errors

\section*{OR ORDERS ONLY}

INFORMATION \&
1-800-621-6827
INQUIRIES:
(In Illinois: 1-312-944-2788) 1-312-944-2788
HOURS: 8AM-5PM Central Time Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES! DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street • Chicago, Illinos 60611 DISK WORLD!

\section*{PRINTER RIBBONS:}

\section*{at \\ extraordinary prices!}

Brand new ribbons, manufactured to Original Equipment Manufacturer's specifications, in housings. (Not re-inked or spools only.)

LIFETIME WARRANTY!
Epson MX-70/80 . . \$3.58 ea. + 25c Shpng. Epson MX-100 \(\$ 4.95\) ea. +25 c Shpng. Okidata Micro83 . . \(\$ 1.48\) ea. +25 c Shpng. Okidata Micro84 .. \(\$ 3.66\) ea. +25 C Shpng.

FOR ORDERS ONLY: INFORMATION \&
In lllinois: 1-312-944-2788) 1-312-944-2788 HOURS: 8AM-5PM Central Time, Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES! DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street •Chicago, Illinos 60611
DISK
WORLD!

Incredible value!
Nashua Diskettes

\section*{LIFETIME WARAANTYI} S105 51/4" SSDD \$115
Qty. \(50 \quad 51 / 4\) " DSDD Qty. 50
These are poly-bagged diskettes packaged with Tyvek sleeves, einforced hubs, user identification labels and write-protect tabs NASHUA Corporation is a half-billion dollar corporation and a cognized leader in magnetic media

SOFT SECTOR ONLY! Sold in multiples of 50 only!
FOR ORDERS ONLY: INFORMATION \&
1-800-621-6827 INQUIRIES:
In Illinois: 1-312-944-2788) 1-312-944-2788
HOURS: 8AM-5PM Central Time, Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES! DISK WORLD!, Inc. Suite 4806 • 30 East Huron Street •Chicago, Illinos 60611

\section*{DISK}

WORLD!

\author{
Authorized Distributor MASHUA, METIC
}

\section*{AHANA \\ DISKETTES \\ The great unknown! \\ 99 C-5w ssoo Qty. 50 51/4"D S109}

You've used these diskettes hundreds of times....as copy-protected originals on some of the most popular software packages. They're packed in poly-bags of 25 with Tyvek sleeves, reinforced hubs, user identification labels and write-protect tabs.

\section*{LIFETIME WARRANTY!}

SOFT SECTOR ONLY! Sold in multiples of 50 only.
FOR ORDERS ONLY: INFORMATION \&
1-800-621-6827 INQUIRIES:
(In illinois: 1-312-944-2788) 1-312-944-2788
HOURS: 8AM-5PM Central Time, Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES!

DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street •'Chicago, Illinos 60611
DSK WORLD!

Authorized Distributor
ATHANA
MEDIA

\section*{PAPER: \\ Save 50\% or more!}

We buy paper by the TRUCKLOAD from the two biggest mills in the country.
Therefore, we charge a lot less than you've been paying!

For the complete DISK WORLD paper catalogs and price lists, call 1-312-944-2788 or write us. (Please do not use the " 800 " line for paper catalog requests, unless you are also placing an order
Don't spend more than you have to for topquality computer printer paper. Call DISK WORLD! today.

INFORMATION \& INQUIRIES:
1-312-944-2788
HOURS: 8AM-5PM Central Time
Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES! DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street •'Chicago, Illinos 60611

\section*{DSK}

Moind
Where paper
Costslass

\section*{STOP SOFTWARE PIRACY . . .}
with one of our new, sophisticated copy prevention products.

\section*{for Disk Security}

\section*{- SAFEGUARD DISK*}
for IBM PC/Compatibles

\section*{- SAFEGUARD 64 DISK*}
for Commodore 64
*Renders Bit and Nibbler Copiers Ineffective Software is encrypted and protected on each disk.
for Data Security
- DATA PADLOCK
- PC CRYPT

\section*{for Telecommunication Security}

\section*{PRIVATE TALK}

Why should your valuable data or useful software program become available in the Public Domain?

\section*{GLENCO}

ENGINEERING INC.
3920 Ridge / Arlington Hts., IL 60004
(312) 392-2492

PRICE
BU
USTER

software * books * supplies apple \({ }^{\star \star}\) atari \(\star \star\) camodore \(\star \star\) ibn-pc \(* * p c-j r\) games * education * hame managenent business * utilities * systams
disks cartridges cassettes our prices are \(25 \%\) to \(50 \%\) or more below retail. He have thousands of different computer itens. Please call or write for our curent price list.
>CODE for this PRICELISTく
A=Apple II \(+\quad D=\) Atari Disk \(G=C / 64\) Disk \(J=I B N p C\) \(B=\) Apple IIC \(E=A t a r i\) Cart \(H=C / 64\) Cart \(K=P C j r\) \(\mathrm{C}=\) Apple IIE \(\mathrm{F}=\) Atari Tape \(\mathrm{I}=\mathrm{C} / 64\) Tape
\(e=\) Educational \(h=\) Home Use \(r=\) Recreational \(\begin{array}{ll}\text { Type of } & \text { Store Our } \\ \text { Computer: } & \text { Price Price }\end{array}\) \(\qquad\) Name of Computer: Price Price Progran/Item
ABCDE.GH.JK \(\$ 33\) e \(\$ 23\) Alphabet Zoo (Spinnaker) ABCD..G..JK \(\$ 40\) e \(\$ 26\) Agent USA. 48k(Atari \(\$ 22\)) ABCD..G..JK \(\$ 40 r\) S28 Archon (Electronic Arts) ABCD..G.... \(\$ 40 r\) r \(\$ 28\) Archon II: Adept (E.Art
ABC...G.... \(\$ 35 r\) \(\$ 23\) Beyond Castle hol fenstein \(\begin{array}{ll}\text { ABC...G.... } & \$ 35 r \\ \text { ABCD..G.... } \$ 40 & \mathrm{r} \\ \$ 26 & \text { Beyond } \\ \text { Bruce Lee. } 48 \mathrm{~K}\end{array}\) ABCD..G...J. \(\$ 30 r\) \(\$ 20\) Castle hoi fenstein (32k) ABC.E.CH.J. \(\$ 35 r\) \$16 Centipede (IBM \$21)
.BCD. G. .JK \(\$ 50 \mathrm{~h} \$ 35\) Cut \& Paste hord Process ABCD.G..JK \(\$ 50\) r \(\$ 32\) Deadline (Infocan)
ABC.E.H.J. \(\$ 35 \mathrm{r} \$ 16\) Dorkey Kong (IE \(\$ \$ 21\)) ABCD..G. JK \(\$ 35\) e \(\$ 23\) Early Games-Young Chidm ABCJ. G. JK \(\$ 50\) h \(\$ 35\) Financial Cookbook
ABCD..G.IJK \(\$ 50\) r \(\$ 35\) Flight Simulator II
AB.DEFGHIJ. \(\$ 35 \mathrm{r} \$ 23\) Frogger (Cartridges 530)
ABCD..G..JK \(\$ 35\) r \(\$ 25\) Hard Hat Mac (Elec.Arts) ABCD..G.... 575 h 549 Hane Acct. (Arrays/Cont) ABC......JK \(\$ 150\) h \(\$ 99\) Home Acct. Plus (Array/C) ...D......... \(\$ 70 \mathrm{~h} \$ 45\) Honeword (Sierra On Line) ABCDE.GH.J. CALL \(h\) CALL Koala Pad + Software ABCD. GH.JK \(\$ 35\) r \(\$ 23\) Lode Runner (Cart. \(\$ 27\)) ABCD..G.JK \(\$ 40\) e \(\$ 26\) MasterType (Scarborough) ABC...G.JK \(\$ 50\) e \(\$ 32\) Math Blaster (Davidson) ABCD.FG.I.. \(\$ 25\) e \(\$ 18\) Nemory Bldr:Concentration ...D..G.... \(\$ 40\) r \(\$ 28\) M.U.L.E (Electronic Arts) ABCD. G.... CALL e CALL Muppet Learning Keys ABCD. GG..JK \(\$ 40 \mathrm{r} \$ 28\) wider on the Zindemeuf ABCD. G. JK \(\$ 40 \mathrm{r} \$ 28\) Music Construction Set ABCD..G. JK \(\$ 40 r \$ 28\) 1 on 1: L.Bird \& J.Erving ABC....H.J. \(\$ 35 \mathrm{r} \$ 16 \mathrm{PaC}\) Man (IBM \$21) ABCD..G. JK \(\$ 40 r \$ 28\) Pinball Construction Set ABCD..G.... \(550 \mathrm{~h} \$ 32\) Print Shog (Broderbund) AB.E..H.J. \(\$ 35 \mathrm{r} \$ 19\) Robocion (IBM \$21) ABCD.FG. I. \(\$ 20 r \$ 15\) Sargon II (Hayden) ABC....G..JK \(\$ 90\) e \(\$ 60\) SAT: Barron's Study Prog. ABCD..G..JK 540 r \(\$ 287\) Cities of Gold (64k)
 ABCD..G..JK \(\$ 40\) e \(\$ 26\) Spellicopter (Desigmare) ABCD..G. JK \(\$ 40\) e \(\$ 26\) Sumer Ganes (Epyx) ABC...G. .JK \(\$ 40\) r \(\$ 26\) Trivia Fever (48k) ABCD..G. JJ \(\$ 60\) r \(\$ 39\) Ul tima II, III. (each) . 48 k ABCD..G.... \(580 \mathrm{~h} \$ 52\) Your Personal Net Worth ABCD.......JK \(\$ 100 \mathrm{n}\) S \(\$ 40 \mathrm{r}\) \$26 Your Personal \(1,2,3\). (Apple \(\$ 29\))ea.

\section*{* THE FINE PRINT *}

Califormia Buyers: Please add \(6 \%\) Sales Tax. Shipping cost for Software within Cont. 48 states: UPS Ground: 1 Item \(=\$ 3\). Thereafter, \(\$ 1.50\) ea. UPS Air : 1 Iten \(=\$ 5\). Thereafter, \(\$ 2.00\) ea. Air Mail \(: 1\) Item \(=\$ 5\). Thereafter, \(\$ 3.00\) ea. Alaska, Hawaii, FPO/APO, Canada: Same as Air Mail VISA \& ' \(M\) CARD: Please add \(3 \%\) to the above cash prices. Also include: Card i; Expiration Date; and Cardholder's signature. Somy, no credit cards if outside the continental USA.
Cashier Check/Credit Card/Fbney Orders usually shipped out within 24 hrs . Other checks: 2 ws . Public/Parochial School Purchase Orders Accepted. This ad was suanitted on January 10th, therefore, Price/Availabilty subject to change. In case of problens, your phone \#will help us notify you.

FAMILY DISCOUNT
\(250-2\) So. 0range Ave, \(\# 540\) ESCondido, CA 92025 phone: (619)489-1040

He REBATESL. on Phoneorders

Na0 6100 LITTEP OUaurt 1309.95
 ACAI 1027 LITRER OUAUTY 289.95 \(\begin{array}{lr}\text { Siver feed Expsoop } & 3319.95 \\ \text { oxidata } 92 p^{20} \text { so columin } & 31905\end{array}\) Commocore messol Matrix Cemin 10x montion Tracto 2299.95
 T0P 10 COW

\subsection*{9.95}

Head 5y." DISK DRNE CLENE 4795
 Acturitiong wids sioss als Martan emostuusitig

 s24.95

\section*{WHAT}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{TH AX PAS GG3 ER2 LI PAS IH BS PAS FF IV PA3 0122 IH NE PAS BB1} \\
\hline \\
\hline A1001 PAs TT2 U \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{- \({ }^{\text {e }}\)} \\
\hline \\
\hline
\end{tabular}

You can now have your computer speak to you . . . with the inevitable "Kilobaud Monster." This remarkable breakthrough in engineering is now being offered to the general public by Computel, and is made possible at a fraction of the cost you'd expect to pay anywhere else. You will also learn how computers speak, what speech synthesis is, and the basics behind phonemics. It's a great educational tool for the individual and for the institution alike!
The Kilobaud Monster is a revolutionary item for the hobbyist, because now you can have many new resources available for experimentation. No longer is this field of science limited to the lab, and no longer is its cost limited to governmental research projects. You can make your computer speak with little effort, a lot easier than you think!
The quality of speech pronunciation is excellent. Anything imaginable may be spoken, from scientific thru slang words-we include detailed instructions showing you exactly how to do this. You can now have all the satisfaction of doing this yourself, at a fraction of the cost, and having something really useful to show for your efforts!

Devant

\section*{YOUR COMPUTER WILL TELL YOU! DON'T THEY ALL NOW "SPEAK ?"}
- Able to work with any computer! - Complete instructions included! - User-programmable vocabulary of virtually unlimited size!

regular price* Introductory package includes everything you need to get started!
* SAVE-Computel members only \(\$ 7.95\).

The Kilobaud Monster is the basis of a series of projects that can make your computer talk, and is necessary for later projects. The Kilobaud Monster will set you up with everything you need to know in order to attach it to your computer and enable it to speak words. All additional information is included with this beginner's package. The built-in editor in the Wordmaker enables you to easily "fine tune" every word you create to make it sound exactly as you wish. Or you can set up a "word bank" with the Message Talker that includes all the phrases and statements that you'll ever need! The Artificial Intelligence accessory will permit your computer to produce totally random sentences, following all the rules of correct grammar within a pre-defined vocabulary-set, all day long!
If you're new to the computer field, or if you're an old-time "hacker," you'll want to subscribe to our publication "Computel," which covers everything that YOU want to see! Encompassing the subjects of Computers, Electronics, and Telecommunications, this publication gives you a "new meaning" of the free enterprise system and the monopoly of existing organizations. You'll need to become part of this international hobbyist phenomenon really soon. SAVE \(\$ 2.00\) on EACH ITEM you buy if you subscribe to Computel now! And this is IN ADDITION to the total package price for the Complete KILOBAUD MONSTER Collectionyou'll SAVE OVER \$18. Dealer and educational institution inquiries invited. Circle our Reader Service Number for additional information.
You may order these products from us by sending a check, money order, postage or cash in U.S. negotiable funds only, to the address indicated below. Or you may charge your order to your Visa or Master Card. Please include \(\$ 2.00\) shipping and handling on all orders. California residents please add sales tax. Allow three weeks for delivery. Add \(\$ 5.00\) for next-day shipment by U.P.S.; \(\$ 15.00\) for next-day delivery by U.S.P.S. We guarantee your satisfaction for 90 days with our products, and offer a money-back guarantee if not fully satisfied during that period.

\footnotetext{
COMPUTEL PUBLISHING SOCIETY
6354 VAN NUYS BLVD., SUITE 161 / VAN NUYS, CA 91401-2696
}

YES, I'm interested in making my computer talk. Please send me the following items:
INTRODUCTORY PACKAGE \$9.95
\(\square\) WORDMAKER
. 19.95
MESSAGE TALKER \(\$ 14.95\)ARTIFICIAL INTELLIGENCE. \(\$ 24.95\)COMPLETE COLLECTION SET (SANVE s.0) \$ 59.50One year subscription to Computel,. \$ 14.00 \(\square\) in cluding all Kilobaud Monster items \(\mathbf{\$ 6 5 . 5 0}\) CREDIT EXP.
CARD

NAME
ADDRESS
CITY \(\qquad\) STATE ZIP

\section*{Your Computer}

SEND ALL PAYMENT IN U.S. FUNDS DRAWN ON U.S. BANKS - SORRY, NO C.O.D.'S Make checks payable to: COMPUTEL PUBLISHING SOCIETY Post Office Drawer 7765 / VAN NUYS, CA 91409-7765
Reader
Service
Service Page
102 Abacus Software 58
103 Abacus Software 65
104 Abacus Software 110
105 AB Computers 39
106 Access Software Incorporated 35
107 ADD ON Systems 155
108 American PEOPLE/LINK 99
Apropos Technology 13
Batteries Included 37
109 Cardco, Inc. IBC
CBS Software 2,3
110 Chase Scientific 154
Commodore BC
111 CompuServe 29
ComputAbility 51
112 Computel Publishing Society 159
113 Computer Mail Order 88,89
114 Cosmic Computers 151
115 Davidson \& Associates, Inc. 4
116 DesignWare, Inc. 7
Disk World! 157
Eastman Kodak Company 14,15
117 Family Discount Computer Products 158
118 General Electric 21
119 Glenco Engineering Inc. 158
Happy Computers, Inc. 114
120 Harmony Video \& Computers 126
121 Indus Systems 47
122 Inforunner Corporation IFC, 1
123 Innovative Technology Ltd. 156
124 Insight 62
ITT Systems, Inc. 27
125 J \& R Music World 158
Jason-Ranheim 94
126 Legend Peripheral Products 87
127 Lyco Computer 152,153
128 Micro Roots 156
129 Mimic Systems, Inc. 23
130 Mindscape, Inc. 41
131 Nibble Notch Computer Products 128
Reader
Service
Number Advertiser Page
North Hills Corporation 156
North Hills Corporation 156
NRI Schools 39
Oberon International 31
Ortho Information Services 19
132 Pacific Exchanges 156
132 Pacific Exchanges 156
133 Precision Data Products 156
134 Protecto Enterprizes 66
135 Protecto Enterprizes 67
136 Protecto Enterprizes 68-81
136 Protecto Enterprizes 83
137 Protecto Enterprizes 85
138 PSI 11
139 Quinsept, Inc. 65
140 SubLOGIC Corporation 45
141 Tape World 156
142 Timeworks, Inc 9
143 Witt's End 94
COMPUTE! Back Issues 96,97
COMPUTE! Books 55
COMPUTE! Commodore Collection 49
COMPUTE!'s First, Second \& Third Book of Commodore 64
COMPUTE!'s Programming the VIC 53
COMPUTE! Subscriber Services 65

\section*{PLUG INTO COMPUTE! AND TURN ON THE POWER.}
Accomplish more-enjoy more-with less effort! That's the beauty of your computer and COMPUTE!, the leading magazine of home, educational and recreational computing, filled with up to 30 games and programs each month.
Enjoy 1 year (12 issues) for only \(\$ 24\). Save \(32 \%\) off the cover price!
Save even more! Enjoy 2 years (24 issues) for only \(\$ 45\).
Name
(please print)
Address
City
State \(\qquad\) Zip \(\qquad\) 354101
Indicate make and model of computer you use:
\begin{tabular}{ccccc}
APPLE \(\square 01\) & ATARI \(\square 02\) & \(64 \square 03\) & VIC \(20 \square 04\) & IBM \(\square 05\) \\
TEXINS \(\square 06\) & OTHER
\end{tabular}

NO POSTAGE NECESSARY
IF MAILED
INTHE
UNITED STATES

POSTAGE WIIL BE PAID BY ADDRESSEE

\author{
COMPUTE! \\ P.O. Box 914 \\ Farmingdale, NY 11737
}

\section*{COMPUIEI'S APPLE APPLICATIONS ISSUE}
\(\square\) Volume 1 \$3.95 (magazine only)
al would like to order the companion Disk for Volume 1 \$12.95
(Add \(\$ 1.00\) shipping/handling inside U.S. Add \(\$ 2.00\) shipping/handling outside U.S.) All orders must be prepaid. To order send in this card with your payment or call toll-free 1-800-334-0868.

NAME \(\qquad\)
ADDRESS
CITY \(\qquad\) STATE \(\qquad\) ZIP \(\qquad\)
\(\square\) Payment enclosed. Charge: \(\square\) Visa \(\square\) MasterCard \(\square\) American Express

Acct. \#
Exp. Date
```

NO POSTAGE NECESSARY IF MAILED IN THE

# BUSINESS REPLY CARD <br> FIRST CLASS PERMIT NO 2312 GREENSBORO. NC 

POSTAGE WILL BE PAID BY ADDRESSEE

## COMPUTEI's APPLE APPLICATIONS ISSUE <br> Post Office Box 5058 Greensboro, NC 27403



Ewww.commodore.ca

## The Editor's Feedback:

Computer: $\square$ PET $\square$ Apple $\square$ Atari $\square$ VIC-20 $\square$ Commodore 64 - T1-99/4A $\square$ Timex/Sinclair $\square$ Radio Shack Color Computer

- Other $\qquad$ - D

Are you a computel Subcriber?
口 Yes$\square$ No

I would like to see:


Specific applications programs.

- BASIC programs
- Machine language programs.
$\begin{array}{lll}\square & \square & \square \\ \square & \square & \square \\ \square & \square & \square\end{array}$
- Tutorials.

E Educational articles. Just
More Right Fewer

| $\square$ | $\square$ | $\square$ | Games, <br> Reviews of game <br> software |
| :--- | :--- | :--- | :--- |


| $\square$ | $\square$ | $\square$ | BASIC programs |
| :--- | :--- | :--- | :--- |
| $\square$ | $\square$ | $\square$ | Machine language |

software

Detailed explanations of programs.

ㅁ Reviews of business software.
$\square$
ㅁ
ㅁ Reviews of educational software.

- Reviews of hardware.

What do you like best about computel?

What do you like least?

# COMPUTE! Magazine P.O. Box 5406 Greensboro, NC 27435-0406 

## COMPUTEI's

## FREE Reader Information Service

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.
Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTEI cannot be responsible if advertisers do not provide literature to readers.
Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTEI, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.

## Use these cards and this address only for COMPUTEI's Reader Information Service. Do not send with payment in any form.

## COMPUTE!

| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 |
| 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 |
| 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 |
| 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 |
| 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 |
| 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |
| 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 |
| 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 |

Circle 101 for a one year new U.S. subscription to computel: you will be billed for $\$ 24$.


Please print or type name and address. Limit one card per person.

Name
Address
City
State/Province Zip

Country
Please include zip code. Expiration $8 / 30 / 85$.
C0485

## SUBSCRIBE TO COMPUTE!

My Computer Is:
$01 \square$ Apple
$02 \square$ AtariCommodore 64
$04 \square$ VIC-20
05 - IBM
06 $\square$ TI-99/4A
$\infty \square$ Other $\qquad$ - Don't yet have one.

For Fastest Service, Call Our Toll-Free US Order Line 800-334-0868
In NC call 919-275-9809

- \$24.00 One Year US Subscription
- \$45.00 Two Year US Subscription
(Readers outside of the US, please see our foreign readers subscription card or inquire for rates).

Name
Address


# COMPUTEI Reader Service P.O. Box 2141 Radnor, PA 19089 



POSTAGE WILL BE PAID BY ADDRESSEE
COMPUTE!
P.O. Box 914

Farmingdale, NY 11737

# CARDCO "NOW" SOFTWARE available now for your Commodore-64 $4^{\text {TW }}$ and more! 

A fine line of software developed by CARDCO for your Commodore-64 computer with all the features you should expect in much more costly software. CARDCO's "NOW" Series provides many unique and exclusive features and are packaged for easy reference, simple storage, instant recognition.
QWRIIE NOW" . . WORD PROCESSOR SOFWARE . . . An excellent time saver, CARDCO offers the "Write Now" C/ 92 word processor program with built-in 80 column display. You see exactly what will print. All special codes can be transmilted to printers maintaining justification. Easy full-screen ediling; works with any printer.
"MAIL NOW" . . MAIUNG UST SOFWARE . . . CARDCO'S D/ 91 "Mail Now" quickly (in memory) sorts by zip, caiegory, name and state; fully compatible with "Write Now'. Other fine features include: user-oriented; menu-driven operation; each disk supports 600 entries. Format can print single, double or triple labels across.
"SPE:L NOW" . . Cardware D/ $94 .$. a fine program designed as a spell checker for use with "Write Now" on the Commodore-64. A 34,000 word dictionary with two addlitional user constructed dictionaries. Menu-driven operation for ease of use. And "Spell Now" allows you to see each misspelled word in the context of your document for correction.
"FIL NOW" . . D/ 45 . . is a totally integrated, menu-driven database sofiware package which interfaces with both the "Write Now" for the 64 and the "Spell Now". 40K of working storage space is available with "File Now". "Fle Now"
appears on the screen as index cards for easier manipulation of your data base; you see 5 index cards at a time. Cards are user defineable, i.e., user determines what goes where on the "index cards" and can sort by any given field. Every card has a general topic field which allows for quick sorting through cards.
"GRAPH NOW" INCLUDING . . "PANT NOW" . . D/ $\varnothing 6$
. This disk-based graphic/logo generator is totally menudriven. Allows for the development of pies, charts, bar graphs and other vivid graphic illustrations. Also has the ability to design, and print logos and high resolution pictures. "Commodore-ready"; interfaces with CARDCO'S "Write Now" Word Processor, "Mail Now", "Spell Now" and "File Now".

Write for illustraied literature and prices or see CARDCO Computer Accessories and Software wherever Computers are sold.


cardco, inc.
300 S. Topeka Wichita, Kansas 67202 (316) 267-6525 "The world's largest manuiacturer of Commodore accessories."


The computer at the top has a 64 K memory.

It has the initials I, B, and M. And you pay for those initials.

The Commodore $64^{\text {TM }}$ has a 64K memory.

But you don't pay for the initials, you just pay for the computer. About one third the price of the IBM PCjr.'T

The Commodore 64 also has a typewriter-type
keyboard with 66 typewritertype keys. (Not rubber chicklet keys like the IBM PCjr.)

It has high resolution graphics with $320 \times 200$ pixel resolution, 16 available colors and eight 3 -dimensional sprites.

It has 9 -octave high fidelity sound.

The Commodore 64 is capable of running thousands of programs for home and office. And if you add a printer
or color monitor, disk drive and a modem-all together it just about equals the price of the IBM PCjr all alone. With no peripherals.

So you can buy a computer for a lot of money.

Or buy a lot of computer for the money.

## COMMODORE 64:

IT'S NOT HOW LITTLE IT COSTS, IT'S HOW MUCH YOU GET.


[^0]:    90 DIM A\$(1):REM This line for Atari only 100 PRINT "During the Civil War," 110 PRINT "more American soldiers died" 120 PRINT "than in all other"
    130 PRINT "American wars combined."
    140 PRINT "PRESS C AND RETURN TO CONTINUE";
    150 INPUT A $\$$
    160 IF AS<>" "C" THEN GOTO 140
    170 PRINT "Poor medical care accounted" 180 PRINT "for many casualties,"

