JH 1692 DATA

JP 1698 4K $17 \varnothing 4$ 001719 JO 1716 6A 1722阴 1728 d 1734 NP 1740 PJ 13479 H6 13476 FE 13482 PP 13488 C6 13494 PI 135.50 CE 13506 Pl 13512 MC 13518 JF 13524 F6 13530 CI 13536 MF 13542 I6 13548驯 13554 PC 13560 BM 13566 MF 13572 6月 13578 MF 13584 JK $1359 \emptyset$ A6 13596 CH 136 ． 2 PK 13698 CF 13614 MF 13629 BH 13626 LN 13632 BC 13638 MB 13644 CJ 1365 ． DD 13656 NA 13662 If 13668 HO 13674 내 13689 AE 13686 fli 13692 OH 13698 PM 137.14 E1 13719 J6 13716 CK 13722 AG 13728

AD 13734
CL 1374 ．
JB 13746
PF 13752 FP 13758 JH 13764 ID 1377 g肘 13776 m 13782 CD 13788 NI 13794 MF 1389. PN 13896 PC 13812 161381
ML 13824 DATA $54,32,54,54,173,152$
$173,125,6,141,174,6$ $169,9,160,39,153,255$ $255,136,16,250,160,40$ $136,177,5,268,5,192$ ø，2ø8，247，96，2ø1，5 $176,242,169,6,141,152$ $52,169,1,141,153,52$ DATA 52,16
DATA $96,-1$
DATA $169,89,141,3,219,169$ DATA $1,141,152,52,165,45$ DATA $141,143,52,169,1$ øø， 141 DATA $144,52,169,0,141,146$ DATA $52,141,151,52,141,145$ DATA $52,141,153,52,165,88$ DATA 24，195，24，133，298，165 DATA 89，165，1，133，299，165 DATA $88,24,165,121,133,3$ DATA $165,89,165,2,133,4$ DATA $172,154,52,162,255,202$ DATA 224, ，$, 298,251,136,192$ DATA $0,298,246,173,5,298$
 DATA $54,32,54,54,174,143$ DATA $52,236,144,52,24.5,14$ DATA $144,2,2 \emptyset 2,2 \emptyset 2,232,142$ DATA $143,52,142,9,268,76$ DATA $199,53,160,129,136,177$ DATA 298，2ø1，$, 2 \emptyset 8,7,192$ DATA $\varnothing, 2$ ， $8,245,76,35,53$ DATA $201,5,176,238,76,134$ DATA $53,172,145,52,264,147$ DATA $52,16,222,238,145,52$ DATA $169,172,141,1,215,165$ DATA 67，141，3，219，169，55 DATA $141,2,219,169,129,141$ DATA $\emptyset, 219,173,143,52,56$ DATA $233,46,74,74,168,169$ DATA 1，145，298，169，2，2øø DATA 145，298，152，24，165，39 DATA $168,169,3,145,298,296$ DATA $169,4,145,268,173,5$ DATA 2 Ø8，2ø1，$, 24 \varnothing, 6,32$ DATA $166,54,32,54,54,165$ DATA 29,1 פ5， $2,24,141,149$ DATA $52,166,29,236,149,52$ DATA 298，249，169， $5,141,1$ DATA $21 \emptyset, 141,3,21 \emptyset, 173,1 \emptyset$ DATA $219,199,148,52,74,74$ DATA $170,173,1 \emptyset, 21 \emptyset, 2 \emptyset 5,143$ DATA $52,144,13,298,3,76$ DATA $134,53,138,24,109,144$ DATA $52,76,175,53,138,141$ DATA $149,52,173,144,52,56$ DATA $237,149,52,201,54,144$ DATA 211,2 Ø1， $198,176,297,14$ 1
DATA $144,52,173,5,208,201$ DATA $5,24 \emptyset, 6,32,196,54$ DATA $32,54,54,173,5,208$ DATA 2ø1， $0,249,6,32,196$ DATA $54,32,54,54,173,112$ DATA $2,73,255,261,42,144$ DATA $19,291,196,176,14,141$ DATA 1，298，76，244，53，169 DATA $47,141,1,298,76,244$ DATA $53,169,192,141,1,298$ DATA $141,159,52,173,5,298$ DATA $291, \emptyset, 240,6,32,196$
$173,124,6,141,173,6$

LK 13836 LK 13842 DATA $32,173,151,52,201,1$ NF 13872 DATA $52,194,96,76,218,52$ GI 13878 DATA $165,1,166,9,32,62$ HI 13896 DATA $160,5,132,2,177,243$ JH $139 \varnothing 2$ DATA $72,41,127,32,93,54$ JA 139 DA DATA DJ 13914
CP 13929 AI 13926 CD 13932 KI 13938 MK 13944 JA 13950 LN 13956 JE 13962 AJ 13968 Al 13974 IE 13980 If 13986 NF 13992 MC 13998 OP 14 の日 4 CE 14010 LJ 14016 KN 14022 6K 14028 OF 14034 JA 1404 C JD 14046 1014952 MH 14058 JA 14964 L 14979 MJ 14076
MG 14982
DK 14988
PK 14994 DAT
IM 14160 DAT
PC 14196 DAT

```
CP 13836 DATA \(145,52,294,147,52,298\) CN 13848 DATA \(249,11,238,151,52,165\) BP 13854 DATA \(2 \emptyset, 24,165,149,141,146\) PG 1386 DATA \(52,165,29,295,146,52\) DB 13866 DATA \(298,155,169,9,141,152\) DA 13884 DATA \(54,96,134,212,133,213\) CF 1389 DATA \(32,179,217,32,23 \emptyset, 216\)
52, 2\emptyset1, Ø, 24\emptyset, 38,172
145,52,294,147,52,298
32,173,151,52,201,1
ø,24,1ø5,14ஏ,141,146
5 2
04,48,5,164,2, 296
208,238,96,170,173,71
3,72,173,76,3,72
```



```
141,30,268,141,155,52
169,6,133,85,169,6
133,84,165,0,24,109
148,52,133,0,165,1
105,6,133,1,173,150
52,162, 5,56, 233,42
74,74,24,165,160,168
169, Ø, 141,149,52,177
3,201,1,240,45,201
2,24\emptyset,61,2\emptyset1,3,24\emptyset
77,201,4,240,93,169
\emptyset,145,3,2\emptyset\emptyset,232,224
13,144,228,162,1,238
149,52,173,149,52,201
5,240,10,152,56,233
52,168,169,0,76,155
54,96,169,9,145,3
209,145,3,152,24,195
39,152,169, ,, 145,3
20\emptyset,145,3,96,169,\emptyset
145,3,136,145,3,152
24,105,46,168,169,0
145,3,200,145,3,96
169,0,145,3,20\varnothing,145
3,152,56,233,40,168
169,0,145,3,136,145
3,96,169,6,145,3
136,145,3,152,56,233
40,168,169, 6,145,3
2@g, 145,3,96,-1
```


## Program 4：Atari Lightsaver

Version by Chris Poer，Editorial Programmer
Refer to the＂Automatic Proofreader＂article before typing this program in．
DL 2 POKE 13464，Ø：POKE 1ø6，64：GRAPHI CS Ø：OPEN \＃1，4，Ø，＂K：＂：HIGH＝$: Q=$ USR（1536）：DIM A\＄（3），Bक（1）
HK 5 GOSUR $7 \emptyset \varnothing:$ GRAPHICS $\emptyset: G O S U B ~ 8 \emptyset \varnothing: ~$ Bक＝＂＂
KG 1ø PUT \＃6，125：POKE 82，Ø
KE 13 POKE 752，1：SETCOLOR 2，$, \varnothing:$ GOSU B 6øØ：POKE 87，
PB 15 BUL $B=13459: M E N=3: L E V=13469: S C=$ g
IF $2 \varnothing$ POKE BULB， $2 \varnothing:$ POKE LEV， $1: E X=2 \varnothing \varnothing$ Ø：$X X=\varnothing: A M=2 \emptyset$
DG $1 \emptyset \varnothing$ IF SC $>H I G H$ THEN HIGH $=S C$
KL $11 \varnothing$ GOSUB $9 \emptyset \emptyset$
GM $130 \quad Q=$ USR（ 13479 ）
KL 135 SC＝PEEK（ $\emptyset)+\operatorname{PEEK}(1) * 256$

DL 137 IF SC＞EX THEN EX＝EX＋ $2 \varnothing \varnothing \varnothing: M E N=$ MEN＋1：FOR I＝1 TO $1 \emptyset \varnothing: S O U N D ~ \emptyset$, INT（RND（1）＊255），16， 14 ：NEXT I： SOUND Ø，Ø，Ø，Ø
EP 14 Ø IF PEEK $(13465)=1$ THEN GOSUB 5 ØØ
JH 145 IF $\mathrm{XX}=1$ THEN $\mathrm{XX}=\varnothing:$ GOTO $1 \varnothing \varnothing$
KC 15の SOUND Ø，14め，1ø，12：FOR I＝1 TO 12の：NEXT I ：SOUND $\varnothing, 9 \varnothing, 1 \emptyset, 14$
AJ 160 FOR $I=1$ TO $8 \varnothing$ ：NEXT $I=S O U N D ~ \curvearrowleft$, の，Ø，Ø
JE $18 \varnothing$ POKE LEV，PEEK（LEV）＋ 1
PJ 19月 $A M=A M+4: P O K E$ BULB，$A M+4$
KI 2のø POKE 13468 ，INT（PEEK（LEV）／5）+1 ：IF INT（PEEK（LEV）／5）$+1=7$ THEN POKE 13468，6
FN 21 G GOTO 1 曰め
DA 5øの SOUND ø，2の日，12，14：FOR $I=1$ TO 8ळ：NEXT I ：SOUND Ø，Ø，Ø，Ø：XX＝1
CB 5 ด5 IF PEEK（LEV）＞1 THEN POKE LEV， PEEK（LEV）－1
ND 510 MEN＝MEN－1：IF MEN＝ 0 THEN $85 \emptyset$
CH 515 POKE BULB，AM ：IF INT（PEEK（LEV） （5）$+1<7$ THEN POKE 13468 ，INT（ P EEK（LEV）／5）＋1
HK 55 の RETURN
DJ 6めの $A=56:$ POKE 54279，$A:$ PMBASE $=256$＊ A：POKE 756，56
BJ 615 POKE $\varnothing, \varnothing:$ POKE 1，$:$ POKE 13468， 1
60627 POKE 53249，90：POKE 53248，9の
HM 63Ø FOR I＝PMBASE +512 TO PMBASE +76 8：POKE I，Ø：NEXT I
PE 64の POKE 764，216：POKE 7פ5，118
CD 650 RESTORE 670：FOR I＝PMBASE＋550＋ $Y$ TO PMBASE $+562+Y:$ READ A：POKE I，A：NEXT I
DB G6，FOR I＝PMBASE $+739+Y$ TO PMBASE + $75 \emptyset+Y$ ：READ A：POKE I，A：NEXT I
FO 670 DATA $24,24,24,24,24,24,24,24$ ， 24，24，69，126，255
EB 68の DATA $255,255,255,255,255,255$ ， 126，126，126，60，60，6
HH 690 POKE 53256，1：POKE 53257，1：POK E 623，1：RETURN
HN 7øø GRAPHICS 18：POSITION 4，3：？\＃6 ；＂Li GहTs
PI71の FOR I＝1 TO 12ø：X＝INT（RND（1）＊2 55）：SOUND $\curvearrowleft, X, 1 \varnothing, 12:$ NEXT I
NC $72 \boldsymbol{0}$ SQUND $\curvearrowleft, 8 \emptyset, 19,14:$ FOR $I=1$ TO 1 Øø：NEXT I
LK $73 \varnothing$ SOUND $\varnothing, \emptyset, \varnothing, \varnothing:$ GRAPHICS 18：POK E 53248，22の：POKE 53249，22の
JD 74 Ø POSITION 1，4：？\＃6：＂EMTER leve Hof plar．
PK 759 POSITION 3，6：？\＃6；＂KI／9）REFIE RDEST＂
PO 769 GET \＃1，DIF：IF DIF $>57$ OR DIF＜4 9 THEN 75ด
PB77の DIF＝（DIF－48）：PDKE 13466 ，DIF：R ETURN
NJ 8 gの DL＝PEEK（569）＋4＋PEEK（561）＊256
PA 8 Ø1 FOR I＝2 TO 6：POKE DL＋I， $6:$ NEXT I：POKE DL－1，6＋64
FJ $81 \emptyset$ FOR I＝7 TO 24：POKE DL＋I，36：NE XT I：POKE 87，1：RETURN
JE 85の IF PEEK（の）＋PEEK（1）＊256＞HIGH T HEN HIGH＝PEEK（ $\varnothing$ ）＋PEEK（1）＊256
NH 855 POKE 53248，22ø：POKE 53249，22ø MC 86，POKE 53277，$:$ POSITION 1，2：？\＃

6；＂（E）TO END PROGRAM（P）TO PLAY AGAIN＂
DH 870 GET \＃ 1 ，$W$ ：IF $W=69$ THEN $Q=U S R(5$ 8484）
DE 88の IF Wく＞8の THEN $87 \emptyset$
J $89 \varnothing$ GOSUB $7 \emptyset \varnothing:$ GRAPHICS $\varnothing:$ GOSUB $8 \emptyset$ Ø：GOTO 1 Ø
DI 9øø POSITION ø，Ø：？\＃6；＂SCORE＂；SC
ED 91 D A\＄＝STR\＄（PEEK（LEV））：IF PEEK（LE $V)<16$ THEN $A \$(\operatorname{LEN}(A \$)+1)=B \$$
CN 92 Ø POSITION $\varnothing, 1:$ ？\＃6：＂HI SCORE＂ ；HIGH：POSITION 12，$:$ ：？ 6 ；＂LEV EL＂；A\＄
HP 93Ø POSITION 15， $1:$ ？\＃6；＂MEN＂；MEN ：POKE 53248，220：POKE 53249， 22 $\emptyset$
1094ø POKE 53277，Ø：FOR I＝1 TO 2øø：P OKE 13464，1：NEXT I：POKE 13464 ，$\emptyset$
EN 95ø POSITION $\varnothing, 2:$ ？\＃6；＂hit paddl e button\｛3 SPACES3to begin ro und＂
HB 96 IF PTRIG（ $\varnothing$ ）$=1$ THEN $96 \emptyset$
PE 970 POSITION $0,2: ?$ \＃6；＂
\｛35 SPACES\}"
CG 98＠POKE 559，46：POKE 53277，3：POKE 77，Ø：RETURN

## Program 5：IBM PC／PCjr Lightsaver

Version by Tim Victor，Editorial Programmer

## 5 CLEAR，\＆HDøøø

$1 \emptyset$ ON ERROR GOTO 2øøøø：GOSUB 8øøø
$65 \mathrm{NP}=1$ Øø： $\mathrm{DF}=15$ ：LEVEL＝1：MISSES＝ø
68 SC＝$=\mathrm{C}=$ の
7ø CLS：GOSUB 4øøø
$8 \emptyset \mathrm{BP}=\mathrm{JSF} *(5 T I C K(\varnothing)-3)$
$1 ø \emptyset$ CALL BLANK：PUT（BP，183），C\％
$11 \emptyset$ LF＝8ø：PUT（LF，Ø），L\％
114 FOR $\mathrm{X} \%=\emptyset$ TO 6：XP $(\mathrm{X} \%)=\varnothing$ ：NEXT
115 GOSUB 5øøø
$12 \varnothing \mathrm{X} \%=5$ ：CF＝1：Z＝STRIG（ø）
$13 \varnothing$ BNUM＝INT（ $1 \varnothing$＊RND（1）$)+1 \varnothing: \mathrm{BN}=1$
135 GOSUB 2øøø：IF CF＝ø THEN $31 \varnothing$
137 GOSUB 3øøぁ
138 IF BNKBNUM THEN GOSUB 1 1のøø ELSE XP（ $X$ $\%$ ）$=\emptyset: x \%=$ FNDEC $(x \%)$
139 IF $\mathrm{BN}<\mathrm{BNUM}+5$ THEN $\mathrm{BN}=\mathrm{BN}+1: \mathrm{X} \%=\mathrm{FNDEC}(\mathrm{x}$ $\%$ ）：GOTO 135
14ø DF＝DF＊1．1：GOTO 114
$31 \varnothing$ PUT（BB，153），B\％：PUT（BB，185），B\％
32の FOR I＝1 TO 2ø：SOUND 2øøø，．2：SOUND 32 767，2：NEXT
$325 \mathrm{DF}=\mathrm{DF} / 1.1:$ MISSES＝MISSES +1
33Ø IF MISSES＝4 THEN GOSUB 6øø冋：GOTO 65
उ4ø GOSUB 7øøø：GOTO 7ø
999 ＇move lamp and make new bulb
1 1øøø NP＝NP＋4＊INT（DF＊（RND（1）－．479））
$1 \emptyset 1 \varnothing$ IF NP＞2øø THEN NF＝2あぁ
$1 \emptyset 2 \emptyset$ IF NP $<\emptyset$ THEN NP＝ø
$1 ø 3 \emptyset$ CALL BLANK：PUT（LP，Ø），L\％：PUT（NP，Ø）
，L\％：LP＝NP
1ø4Ø XP $(X \%)=N P+12:$ PUT（ $X P(X \%), 28), B \%$
1645 SOUND 37，． 1
$1 ø 5 \varnothing \times \%=$ FNDEC $(X \%)$
1 166Ø RETURN
1999 ＇is bulb about to break？
$2 \boxed{\square}$（ $\mathrm{BB}=\mathrm{XP}(\mathrm{X} \%)$
$2 \emptyset 1 \emptyset$ IF $\mathrm{BB}<>\emptyset$ AND（ $\mathrm{BB}<\mathrm{BP}-3$ OR $\mathrm{BB}>\mathrm{BP}+26$ ）
THEN CF＝$\boxed{\text { ：RETURN }}$

2ø2Ø IF BB THEN PUT（BB，178）， $\mathrm{B} \%: \mathrm{C}=\mathrm{C}+1: \mathrm{SO}$ UND 2øのロ， 1
$2 \emptyset 25$ IF STRIG（ø）THEN GOSUB 7øøø：WHILE 5 TRIG（1）：WEND：Z＝STRIG（ळ）
$2 \emptyset 3 \emptyset$ RETURN
2999 ＇drop all bulbs
उøøø FOR $1 \%=153$ TO 23 STEF -25
$301 \varnothing \mathrm{XP}=\mathrm{XP}(\mathrm{X} \%)$
$3 \varnothing 2 \emptyset$ IF XP THEN PUT（ $\mathrm{XP}, \mathrm{I} \%$ ），B\％：FUT（ $\mathrm{XP}, \mathrm{I}$ $\%+25$ ）， $\mathrm{B} \%$
ЗØ3Ø NBP＝JSF＊（STICK（ø）－3）
$364 \emptyset$ CALL BLANK：PUT（BP，183），C\％：FUT（NBP
，183）， $\mathrm{C} \%$ ：BP＝NBP
3ø5Ø X\％＝FNDEC（X\％）：NEXT
3ø6Ø RETURN
3999 ＇draw scoreboard
4øøø LINE（ø，Ø）－（24の，199），3，B
$4 ø \emptyset 5 \operatorname{LINE}(24 \emptyset, \emptyset)-(319,199), 1, B$
$4 ø ø 6$ LINE $(242,2)-(317,45), 1$, B
4 4ø冋 LINE $(242,47)-(317,86), 1, B$
4 4øø LINE（ 242,88 ）－（317，127），1，B
4 9ø9 LINE $(242,129)-(317,168), 1, B$
461＠LOCATE 3，33：FRINT＂LEVEL：＂
4ø2の LOCATE 8，33：PRINT＂SCORE：＂
$4 \emptyset 3 \emptyset$ LOCATE 13，33：PRINT＂HIGH：＂
4ø4の LOCATE 18，33：PRINT＂BROKEN：＂
$43 \varnothing \emptyset$ RETURN
4999 ＂update score
5øøø SC＝SC＋C＊LEVEL：C＝ø
$50 \emptyset 5$ IF CF＝ø THEN LEVEL＝LEVEL－1 ELSE LEV

## EL＝LEVEL＋1

5øø6 IF LEVEL＝ø THEN LEVEL＝1
5910 LOCATE 5，34：PRINT LEVEL
$5 \varnothing 2 \emptyset$ LOCATE 1ø，34：PRINT FNFMT\＄（STR $\$$（SC））
5625 LOCATE 15，34：PRINT FNFMT\＄（STR $\$(H I)$ ）
5ø3Ø LOCATE 2ø，34：PRINT MISSES
$520 \emptyset$ RETURN
5999 ＇end of game
6ஏøø LOCATE 20，12：PRINT＂PRESS TRIGGER F
OR ANOTHER GAME＂
$6 \emptyset \emptyset 5$ GOSUB 5øøø
6ø1ø WHILE STRIG（1）＝ø：WEND
6ø2Ø IF SC＞HI THEN HI＝SC
$6 \emptyset 3 \emptyset$ RETURN
6999 ＇wait for button press
7פøø LOCATE 23，33：PRINT＂PRESS＂；
$7 \emptyset 1 \emptyset$ LOCATE 24，33：PRINT＂BUTTON＂；
762Ø WHILE STRIG（1）＝ø：IF INKEY $\$=" e "$ OR I
NKEY $\$=$＂E＂THEN END
$763 \emptyset$ WEND
7ø4ø LINE（256，176）－（318，191）， 6, BF
$705 \emptyset$ RETURN
7999 ＇initialize graphics
8øøø SCREEN 1：COLOR Ø，1：KEY OFF：CLS
8øø5 STRIG ON：RANDOMIZE TIMER
8ø1ø DIM B\％（25），C\％（47），L\％（119）
8 82Ø DEF FNDEC $(x \%)=x \%-1-7 *(x \%=\emptyset)$
$8 \emptyset 3 \emptyset$ DEF FNFMT $\$(A \$)=L E F T \$$（ $" \emptyset \emptyset \emptyset \emptyset ", 5-L E N(A$
\＄））＋RIGHT\＄（A\＄，LEN（A\＄）－1）
8ø4Ø BLANK＝\＆HDØøØ
8ø5ø FOR I＝BLANK TO BLANK＋9：READ A
8ø6Ø POKE I，A：NEXT
81øø DRAW＂bm117，1øc2ta45d2øtaø134＂
81ø5 DRAW＂ta－45u26bm117，15p2，2＂
$811 \emptyset \operatorname{LINE}(116, \emptyset)-(118,11), 3, B F$
8115 LINE $(1 \emptyset 6,24)-(134,25), 3$, BF
812ø GET（1øø，Ø）－（134，25），L\％
8125 LOCATE 11，6：PRINT＂THIS IS NO ORDIN ARY LAMP．＂
$813 \emptyset$ PRINT＂ANGERED BY ITS BORING AND ME

NIAL JOB，＂
8135 FOR $\mathrm{I}=1$ TO Gøø：NEXT
$814 \varnothing \operatorname{LINE}(115,31)-(119,4 \varnothing), 3, \mathrm{BF}$
$8145 \operatorname{LINE}(112,36)-(122,38), 3$, BF
$815 \emptyset$ LINE $(115,28)-(119,3 \varnothing), 1$, BF
$8155 \operatorname{LINE}(114,34)-(12 \emptyset, 34), 3$
816 LINE $(113,35)-(121,35), 3$
$8165 \operatorname{LINE}(113,39)-(121,39), 3$
$817 \emptyset$ PRESET $(115,28):$ PRESET $(119,28)$
$8175 \operatorname{LINE}(117,38)-(119,38), 1$
$8189 \operatorname{LINE}(119,37)-(120,37), 1$
8185 PSET $(120,36), 1$
$8187 \operatorname{GET}(112,28)-(122,4 \varnothing), B \%$
8190 LOCATE 14，4：FRINT＂IT IS DROFFING F
RAGILE，HELFLESS＂
8195 PRINT＂LIGHTBULBS TO THEIR CERTAIN
DESTRUCTION．＂
82øø DRAW＂CЗBM1ØS，183TAЗøD1ØTAळL12＂
8205 DRAW＂TA－ЗøU1øBM1ø3，187P3，3＂
8210 GET $(97,183)-(109,192), \mathrm{C} \%$
8215 FUT（ 97,183 ），C\％，FRESET
$822 \emptyset$ GET $(97,183)-(109,192)$, C\％
8225 FDR J＝3 TO 63 STEP 4
823ø LINE（J，182）－（J＋1ø，192）
$8235 \operatorname{LINE}(J, 182)-(J-10,192)$
8240 NEXT
8245 LINE $(39,182)-(63,182)$ ，6
8250 LINE（ 30,183 ）－（ 63,183 ）， 3
8255 LINE（ 36,192 ）－（ 63,192 ）， 3
826ळ DRAW＂BMЗळ，18STASØD1＠＂
8265 DRAW＂BM6S，183TA－3øD1ø＂
8270 PUT $(23,183), C \%$, AND
8275 PUT（ 58,183 ），C\％，AND
8286 GET（ 30,183$)-(63,192), \mathrm{C} \%$
$3285 \operatorname{LINE}(6,182)-(120,192)$ ， $0, B F$
829＠LOCATE 17，1：PRINT＂USING YOUR BASKE T，YOU MUST SAVE THE＂
8295 FRINT＂BULBS FROM THIS FSYCHOPATHIC AFPLIANCE．＂
830ด $\mathrm{BF}=2 *$（STICK（Ø）-3 ）
$83 \emptyset 5$ IF $B F>21 \emptyset$ THEN $B F=21 \emptyset$
$831 \varnothing$ CALL BLANK：FUT（BF，183）， $\mathrm{C} \%$
84のø LOCATE 2 1 ，FRINT＂TO BEGIN，MOVE T HE BASKET ALL THE WAY＂
841ø LOCATE 21，3：PRINT＂TO THE RIGHT AND
PRESS THE BUTTON．＂
842Ø WHILE STRIG（1）＝ø
$8425 \mathrm{NBP}=2 *($ STICK $(\varnothing)-3)$
$843 \varrho$ IF NBP $>21 \emptyset$ THEN NBF $=216$
8432 CALL BLANK：PUT（BP，183），C\％：FUT（NBP
，183）， $\mathrm{C} \%$ ： $\mathrm{BP}=\mathrm{NBP}$ ：WEND
8435 JSF $=216 /($ STICK（ 0$)-3)$
8440 RETURN
1 1曰øØ DATA $186,218,3,237,37$
1 1Ø1ळ DATA 8，Ø，116，25ø，2Ø3
2øøøø IF（ERR＝5 OR ERR＝6）AND（ERL＝3Ø40
OR ERL＝1øø）THEN BF＝216：PUT（BF，183）， $\mathrm{C} \%$
ELSE ON ERROR GOTO Ø
2øØ1ळ RESUME NEXT

## THE WORLD INSIDE THE COMPUTER

## Build A Computer In Your Mind <br> Fred D'Ignazio, Associate Editor



In my recent column, "The Morning After," in the May and June 1984 issues of СОмPUTE!, I wrote about a new kind of programming that I believe people are beginning to do on their computer. I called this "neoprogramming" to distinguish it from traditional programming in BASIC or Pascal and from "no programming" in which people treat the computer as a thinking machine and let it do their thinking for them.

In this month's column I'd like to explore neoprogramming and see how it can be related to computer activities that will help people develop thinking, learning, and communication skills that they can practice and refine using the computer, and that they can also take away from the computer and use, on their own, in all areas of their lives.

## Neoprogramming

Neoprogramming can be defined as borrowing the most powerful ideas from programming languages and turning them into thinking skills that people can use, inside their head, in their daily life.

Another way to look at neoprogramming is as a toolbox that has three kinds of tools inside:

Fred D'Ignazio is a computer enthusiast and author of several books on computers for young people. His books include Katie and the Computer (Creative Computing), Chip Mitchell: The Case of the Stolen Computer Brains (Dutton/Lodestar), The Star Wars Question and Answer Book About Computers (Random House), and How To Get Intimate With Your Computer (A 10-Step Plan To Conquer Computer Anxiety) (McGraw-Hill).

As the father of two young children, Fred has become concerned with introducing the computer to children as a wonderful tool rather than as a forbidding electronic device. His column appears monthly in COMPUTE!.
$\square$ Tools to Help You Think
$\square$ Tools to Help You Learn
$\square$ Tools to Help You Communicate
These are practical tools that will be valuable no matter what people's goals are. Mastering these tools is more worthwhile than simply learning how to operate a computer.

Thinking, learning, and communication tools can be found in many places-in textbooks, in courses, in jobs, etc. But they can also be found, in a concentrated form, in the computer. And through extensive use and familiarity with these tools on a computer, people can learn how to use the tools to think better without the computer.

## How Not To Use A Computer

Learning how to operate a computer, on its own, will not automatically guarantee people a successful career, help them learn how to use more advanced computers of the future, or give them thinking skills they can apply to other areas of their lives.

Also, it is possible to have a relationship with computers that actually deadens or stifles the ability to think. Many people, for example, use computers mechanically and passively. They spend their time in front of a computer entering information, making trivial, routine queries, or typing other people's documents.

## The Thinking Appliance

There is a strong assumption in many people's minds that computers are labor-saving appliances. People ask, "What can I do on a computer?" But what they mean is, "What can the computer do for me?" The labor that many people hope computers will save is not mechanical labor but thinking labor. For most of us, thinking is work-work that we would avoid if we had the chance.

Many people would be happy (though few would admit it) if computers would do their thinking for them. In the near future, with the
advent of expert systems and friendlier computers, there is a great risk that computers will take over more and more of the thinking that people do. As a result, people and organizations will become increasingly dependent on computers.

## Dumbo's Feather

For adults at work and at home, and for children in school, there is the risk that computers will become super calculators. When they want to do real work or thinking, they will, by habit, turn to the computer. The computer will become an adjunct to the person's mind. The computer will be like Dumbo's feather. Dumbo the elephant could fly because of his big ears, but he thought it was because of his magic feather. If he didn't hold on tight to his feather, he was afraid he couldn't fly. People may come to feel incapable of thought unless they do it using their computer.

## The Computer Crutch

There is a real risk that many people will use computers as a crutch. They will expect computers to do their thinking for them, or they will be afraid that they cannot think without the aid of the computer. Either way, they will be tied to computers to help them carry on their daily affairs.

Also, if people use computers (or anticipate using computers) as a crutch, they will not get the most out of them. They will be using computers' powerful computational, communications, and information handling functions sloppily, indiscriminately, and inefficiently.

## The Computer Lever

In fact, the computer is not a thinking machine, a magic feather, or a crutch. It is a complex lever. It amplifies our abilities to move information around, but we must position and guide it to get what we want.

In addition, we don't need to tie ourselves to the computer to use its lever. We can build the lever inside our head. The lever is, in fact, just an assortment of thinking skills embedded in generalpurpose (BASIC, Logo, Pascal, Assembler, etc.) procedural languages and special-purpose (word processing, spreadsheet, file handling) builder kit languages. Once we have acquired these skills, we can employ them on the computer, or we can use them inside our heads. If we recognize and master these skills, we can get more out of using the computer, and we can become less dependent on it and more skilled, on our own, to think, learn, and communicate.

## Building A Computer Inside Your Head

Burrell Smith, Apple's hardware wizard who
helped create the Macintosh, has written that he never just goes into a workshop and builds a new computer. Instead he first spends considerable time building mental prototypes inside his head. Burrell's prototypes are like a writer's rough drafts. Using mental prototypes, he takes a rough, simple idea and turns it into a cluster of complex ideas, and eventually into an advanced concept or design. Then he begins building the computer.

Burrell can create mental prototypes because he has a computer inside his head. Burrell has built this computer from an array of thinking skills he has learned from programming real computers and from his other experiences in life. These skills aren't mysterious, nor are they Burrell's alone. They can be mastered by anyone.

## Environments For Thinking

Programming languages offer an environment for thinking-a place in which these skills can be learned, practiced, mastered, and then used. Learning a programming language offers an opportunity to explore new avenues of thought.

For example, if taught properly, BASIC, Pascal, Logo, and other languages can help people learn algorithmic thinking, how to break complex problems into smaller, simpler problems, and how to organize large quantities of information.

A word processing program can give people a feeling for the fluidity and mobility of words, ideas, thoughts, and knowledge. It can help them learn how to create several rough drafts, in quick succession, that sharpen an image, refine a concept, or lead to new ideas.

A spreadsheet program can help break a complex situation down into lists and arrays of smaller parts. It can display the whole forest and the individual trees in the forest, all at the same time. It can also reveal the relationships between all the parts.

A file-handling (data base) program can teach how to organize thoughts, feelings, experiences, and information. It can show how to group facts according to categories of likeness, how to sort and prioritize, and how to cross-reference facts that have certain traits in common.

Graphing languages, word processing languages, and telecommunications languages, singly or together, can teach how to better communicate feelings, ideas, and desires. They can teach how to use visual images and symbols, page layout and design, and grammar and style to communicate more effectively.

## Magnets For Thinking, Learning, And Communication

Computers, like other media, can have a pushpull effect, depending on how people use them.

If computers are used inefficiently or inappropriately, they have to be pushed just to get meager, mediocre results.

On the other hand, computers can also exert a powerful pulling effect. They can be so attractive, so elegant that they will pull at the mind, like a magnet. They can almost seduce a person into performing a task or solving a problem.

## Magnets And Road Maps

Computer tools can pull you like a magnet to the computer, but they can also become magnets inside your head that draw related information and ideas toward them. They can help you make sense out of chaos. They can let you mentally map out individual facts in some kind of logical, coherent, and practical order.

For example, what happens if you think about two things: a paper route and a spreadsheet? What kind of associations can you make? How might you map the paper route onto a spreadsheet?

You don't need to use a computer to do this exercise. Instead, you can perform what Albert Einstein called a thought experiment. You can build a mental prototype of a paper-route spreadsheet inside your head.

Associating spreadsheets and paper routes is not a dull, artificial, or mechanical activity. If you have the proper image, appreciation, and passion for using spreadsheets as a thinking skill, you start mapping the paper route onto the spreadsheet even before you know it. The spreadsheet, as a thinking tool, or metaphor, will draw your thoughts playfully and automatically. When you begin thinking about the paper route, your mind will unconsciously make an association with spreadsheets and figure out how the two are related.

For example, you might start thinking of the different houses on the paper route as columns. You might think of the people's names, addresses, telephone numbers, amounts owed, and your last collection date as rows in the spreadsheet.

You might also think of mapping the spreadsheeted paper route into a data base in which you could quickly determine who owes you for the papers, who is the most overdue, and what might be the most effective collection route for you to follow on your bicycle or in your car.

In fact, you might never put all this information onto the computer. It might be too much trouble entering the information and keeping it up-to-date. But this doesn't matter as long as you have a model of the spreadsheet or the data base inside your head.

For many, many applications in life, building a mental prototype inside your head is enough.

It's not practical to go any further. The value of the computer skills is not that you use them on the computer, but that you can organize information, perform tasks, and solve problems better inside your head. This helps you become a better thinker, learner, and communicator on your own. You don't need a real computer around. You can carry one inside your head.

## Learning Through Play

One of our greatest joys in life comes when we play-or when we feel we are playing. We might be working, but if it feels like play, we will be more motivated, more intense, and do a better job.

Passion and joy are not attributes of work but of love. And when we love what we are doing, it is never work. No matter how difficult the activity is, it feels like play.

I think that people can use computers to think playfully, learn playfully, and communicate playfully. The real joy of computing doesn't come from getting a job done faster, easier, or cheaper; it comes from making the job more challenging and more fun while you're doing it.

## Are You A Neoprogrammer?

How is your relationship with your computer? Does your computer challenge you to think, learn, and communicate better? Does it make work more fun and interesting? Have you been able to take your computer skills with you when you leave the computer? Can you think on your own when your computer is turned off?

If you can, congratulations. Maybe you are a neoprogrammer and you don't even know it.

Whether you think you are a neoprogrammer or not, I'd like to hear your thoughts. What do you think about building a computer inside your head? Please write to me:

> Fred D'Ignazio
> 2117 Carter Road, SW
> Roanoke, VA 24015



Send for free monthly special sheet.
\$3 for software, hardware \& educational catalogs

8764 S.W. 133 STREET MIAMI, FL 33156

FREE any purchase.


# Exodus: Ulitima III For Commodore 64 Dovidx R Peacek 

Exodus: Ultima III ushers in an exciting new era of fantasy role playing. The combination of superb graphics, music, and excellent playability makes Exodus a modern-day masterpiece. The game presents challenges requiring clear, creative thinking plus the patience and determination to thwart hundreds of monsters during a quest to defeat the ultimate foe: Exodus.

## An Adventure In The Box

Just opening the box is an adventure. Inside, you discover such magical items as a book of wizard spells, another full of incantations, a comprehensive playbook along with a quick reference guide, and a colorful cloth map of the realm to be explored. Also included is a key in the form of a black disk which, once booted, opens the way to the universe of Sosaria, where your dreams and fears materialize and your wits are your only hope.

After making a copy of the master side of the disk, you are ready to begin your journey. First you must create several characters to do your bidding. Up to 20 characters may reside per disk, and up to 4 may travel together at one time. Each character has a name, sex, race, profession, and the four attributes of strength, dexterity, intelligence, and wisdom. Take your time and choose wisely among the five possible races and eleven professions. Also, consider which attributes are important for different characters while using up as few points as pos-
sible. Because there are so many options and tradeoffs involved, don't be surprised if some of your characters just don't cut it and you have to create new ones. The opportunity for multiple characters, with varying personalities and abilities, enhances the playing environment over the single character allowed in Ultima II.

## Sosaria Awaits You

Once your party is formed, the quest begins. The disk spins for a moment, and you find yourself in the magical realm of Sosaria where the waves lap the shores and banners atop towns flap in the breeze. Walking along, you notice open grassy plains, tall mountains, and dark forests. Your ears are treated to enchanting medieval tunes throughout. Suddenly, a band of nasty orcs appear heading straight for you. You duck behind a range of hills where the monsters can't find you.

Now is the time to seek a town and outfit your party with much-needed supplies such as weapons and armor. Even though all your characters begin with cloth armor and a dagger apiece, better equipment could be a lifesaver. Remember, at the beginning, your characters are weak in every respect and must be nurtured until they have grown strong in body and mind and have gained knowledge along with experience. Until then, on to the safety of a town.

## Weapon Trading

When you enter a town you'll
find many citizens roaming the streets. These people are worth getting to know, for only by speaking to everyone will you learn secrets to help guide you along. Also, clues can be found only with extensive exploration.

One major improvement of Ultima III upon its precursor concerns the weapons and armor shops. In Ultima II, you were limited to buying; now, in this game, you can buy and sell. The variety of weapons and armor is better than ever. In fact, there's a rumor that some weapons are effective over a great distance-that might be worth even a steep price.

As in Ultima II, there are places to buy food and several pubs whose bartenders hear tales and could give you a tip or two. There are also stables with sturdy horses. Occasionally your party will come across an oracle, a man of wisdom and divine insight who might impart some of his knowledge for part of your gold. Two new and useful places to visit are the thieves ${ }^{\prime}$ guild shops and the houses of healing. You'll find this and more in towns, not to mention a couple of castles and enough dungeons to make your head spin.

Dungeons. The word conjures up images of dark, twisting passages, sounds of funeral organ music, and thoughts of impending doom. This is the mood of the endless dungeons of Ultima III. These 3-D dungeons represent a significant improvement over the simple underground mazes in Ultima II. Exploring your first dungeon is thrilling as you attempt to overcome pesky gremlins, howling winds, foul traps, dozens of monster groups, and enough twists and turns to make getting lost no problem at all.

Reaching the lower depthswhere the goodies are-requires careful planning and a working knowledge of the layout of each level. Once the treasures are lo-

## DAVE MORE THAN EVER ON. зm scotch ${ }^{\text {DISKETTES }}$ AND OTHER COMPUTER NEEDS! <br> NEW! <br> Lower <br> Prices

LIFETIME WARRANTY!

## 3M BULK DISKETTES

 AT TREMENDOUS SAVINGS!These are genuine 3 M diskettes with a lifetime warranty. But they are bulk packed in cartons of 50 with separate white Tyvec envelopes. No identification labels, write protect tabs or cartons are provided! A great buy for volume users.


All have reinforced hub.
SOFT SECTOR ONLY!
(for IBM, APPLE, KAYPRO, DEC and about $99 \%$ of all computers.) Must be ordered in multiples of 50 !

## BOXED 3M DISKETTES WITH ALL THE TRIMMINGS!

Factory-fresh 3 M packaging with envelopes, 3 M logo labels, ID labels and write-protect tabs.


Minimum order of $\mathbf{2 0}$ diskettes. Additional diskettes in multiples of 10.

3M HEADCLEANING KITS
Stop swearing and start cleaning. This non-abrasive cleaning kit has everything you need for thirty applications.
$\mathbf{\$ 2 3 . 0 0}+\mathbf{\$ 1 . 5 0}$ Shpng
SAVE MONEY WITH A CLEAN COMPUTER! INTRODUCING MINI-VAC


Most computer malfunctions are caused by dust. MINIVAC is ideal for cleaning keyboards, screens, drives and printers. (Great for photo equipment, too!) Equipped with an easy-empty bag, two directional wands and two fine-brush nozzles. Don't compute without it. (Requires 9 -volt battery which is not included.)

AT LAST: A DISK DRIVE DIAGNOSTICS SYSTEM THAT WORKS!
The Dymek Recording Interchange Diagnostic (RID) is a professional, but easy to use, drive diagnostic disk. It tests drive speed, radial position, hysteresis, write function, erase crosstalk, signal-to-noise and clamping. In short, it's a professional's system that will help you keep your machine in prime condition... and avoid the evils of data loss.


## MEDIA-MATE 50:

A REVOLUTION IN DISKETTE STORAGE Every once in a while, someone takes the simple. and makes it elegant. This unit holds $5051 / 4^{\text {d }}$ diskettes, has grooves for easy stacking, nipples to keep diskettes from slipping in the case and several other features. We like it.
$\$ 10.95+\$ 200$ Shpng


PRINTER RIBBONS AT BARGAIN PRICES.

| AT BARGAIN PRICES. |  |
| ---: | ---: |
| EPSON MX-70/80 | $\mathbf{\$ 3 . 5 8}+25$ Snpng |
| EPSON MX-100 | $\mathbf{\$ 6 . 9 9}+25$ Snppg |
| Okidata Micro 84 | $\mathbf{\$ 3 . 6 6}+25$ Snnng |
| Diablo 630 Mylar | $\mathbf{\$ 2 . 6 0}+25$ Snpng |
| Diablo 630 Nylon | $\mathbf{\$ 2 . 9 3}+25$ Snngg |
| Okidata Micro 83 | $\mathbf{\$ 1 . 4 8}+25$ Shong |


cated, it will take cunning to get your party back out alive. If all the treasures had been packed into one or two dungeons, the game would have been almost perfect. Instead, vital things were spread out among many dungeons, decreasing the enjoyment of each one. After you've conquered one dungeon, the rest can become tedious. Of course, a true dungeon lover might see things differently.

A Four-Player Battlefield
A new combat routine has been implemented to accommodate up to four players. When a monster group is encountered, the scene shifts to a battlefield where all the monsters and all the players can be seen. Each player gets a turn in which he may reposition himself, attack an oncoming monster, or cast a spell. Then each of the monsters performs a similar act. The battle

## Monkey WrencíI

Cut your programming time from hours to seconds, and have 33 direct mode commands and functions. All at your fingertips and all made easy by the MONKEY WRENCH II.
The MONKEY WRENCH II plugs easily into your ATARI and works with the ATARI BASIC. Order your MONKEY WRENCH II today and enjoy the conveniences of these 33 features:

- Line numbering
- Deletion of line numbers
- String exchange
- Move lines
- Copy lines
- Disk directory display
- Margins change
- Home key functions
- Cursor exchange
- Upper case lock
- Hex conversion
- Decimal conversion
- DOS functions
- Renumbering basic line numbers
- Machine language monitor
- Function keys
- Variable and current value display
- Location of every string occurrence
- Up and down scrolling of basic programs

The MONKEY WRENCH II also contains a machine language monitor with 16 commands that can be used to interact with the powerful features of the 6502 microprocessor.

## c91) Rabbit"

 for your VIC 20 or CBM 64If you own a VIC 20 or CBM 64 and have been concerned about the high cost of a disk to store your programs on. worry yourself no longer. Now there's the RABBIT. The RABBIT comes in a cartridge and at a much, much
lower price than the average disk. And speed... this is one fast RABBIT. With the RABBIT you can load and store on your CBM datasette an 8 K program in almost 30 seconds, compared to the current 3 minutes of a VIC 20 or CBM 64, almost as fast as the 1541 disk drive. The RABBIT is easy to install. allows one to Append Basic Programs, works with or without Expansion Memory, and provides two data file modes. The RABBIT is not only fast but reliable.
(The Rabbit for the VIC 20 contains an expansion connector so you can simultaneously use your memory board, etc.)

# MAE THE BEST FOR LESS 

Please for your own protection consider the MAE first before you buy that other assembler. We've had numerous customers who wasted their money on some cheaper off brand assembler tell us how much better the MAE is. The most powerful Macro Assembler/Editor available for the Commodore 64 and other CBM/PET computers, and also for the ATARI 800 IXL and Apple IIIIE.
MAE includes an Assembler, Editor, Word Processor. Relocating loader, and more all for just $\$ 59.95$.
We could go on and describe the MAE but we thought you would like to read our customers' comments. The following are actual unedited comments from correspondence about the MAE:
"Excellent Development Package"
"Compares to DEC and INTEL."
"My Compliments to Carl Moser and EHS." "It is a superb program."
\$59.95

rages on, turn by turn, round by round-gone are the days of instant destruction.

Though the combat sequence is well conceived, it is simply too slow considering the number of monster groups which must be dealt with. Granted, the pace does quicken once the characters' attributes have been raised, but most of the game is spent slugging it out. Then, for the effort, your party garners a single chest containing barely enough gold to sustain everyone. On rare occasions, a small weapon or cheap armor may be locked inside. If more items were found more of the time, agonizing money problems would diminish and the party could proceed with more interesting tasks.

## Wizards And Clerics

One of the best aspects of $U l$ tima III involves the extensive use of magic. Now wizards and clerics can demonstrate their true value as they cleverly choose just the right spell to save the party from a slew of poisonous balrons. At first, your spell casters will be limited and somewhat ineffective, but as time passes and they grow smarter and wiser, they will become indispensable. The wizards' spells mainly center on harming evil creatures, while the clerical spells are good for healing and resurrection. Both sets include very handy spells for maneuvering in dungeons. The two books of magic provide wonderful insights into the workings of each spell, making the game even more bewitching. Overall, the use of magic in Ultima III is well integrated with the obstacles to be overcome.

## Moon Gates

Time affects many aspects of the game. If, for example, a member of the party is poisoned, the passage of time slowly brings about his death. Otherwise, wounds heal with time and spell points increase to their Cowww.commodore.ca
maximum. Also, if your party has fought pirates and gained control of their ship, only time will allow the winds to shift in your favor so that you may explore new lands. Perhaps the most important effect of time concerns the ever-present moons, Trammel and Felucca. As they pass through their cycles, strange events take place. Warps in space, called moon gates, appear only at certain times. Somehow, the moons and gates are thought to be connected, hence the name. There is a rumor of a city hidden in a vast forest. Not only hidden, but also not always there. Time, moons, cities, gates-all interwoven to challenge the best adventurers. Such is the spell Exodus weaves about its players.

Game designer Lord British has outdone himself with his latest work of art. Ultima II was a fantastic game, but Exodus: Ultima III makes it seem like child's play in comparison. Exodus has achieved an unparalleled blend of setting, multicharacter development, magic, plus a strongly integrated plot. The animated graphics sparkle with speed and color, and the sound effects achieve nothing less than a complete, evocative sound track. Except for a few places that tend to drag, Exodus is a delight to play, and I eagerly await the perils and pleasures of the fourth installment in the ultimate series.
Exodus: Ultima III
Origin Systems
1545 Osgood St.
North Andover, MA 01845
(617) 681-0609
$\$ 59.95$
Apple II family, Atari 400, 800, Commodore 64, IBM PC \& PCjr versions

## The Seven Cities Of Gold

James V. Trunzo
There is nothing quite as fright-ening-or exciting-as the un-

急BASF DISKETTES \$1.75 WITH LIBRARY CASEIIII DIGITAL CASSETTES C-10 for 35c (100 Lot)!!!! FOR YOUR COMPUTER
ALL DISKS AND CASSETTES ARE .

- $100 \%$ ERROR FREE (Diskettes Fully Certified) -- LIFETIME GUARANTEED-
- CUSTOM LENGTHS AVAILABLE-

COMPUTER TAPE PRICES

|  | 25 LOT | 100 LOT | 1000 LOT |
| :---: | :---: | :---: | :---: |
| C-10 | .50/12.50 | .35/35.00 | . $30 / 300.00$ |
| C-20 | .50/13.75 | . $40 / 40.00$ | . $35 / 350.00$ |
| C-30 | .60/15.00 | .45/45.00 | . $40 / 400.00$ |
|  | BASF DPS | GRADE TAPES |  |
| C-10 | .55/13.75 | . $40 / 40.00$ | .35/350.00 |
| C-20 | .60/15.00 | .45/45.00 | . $40 / 400.00$ |
| C-30 | .65/16.25 | .50/50.00 | .45/450.00 |

QUALITY NORELCO CASSETTE CASE... AND LABEL PRICES
[WITH CASSETTE ORDERS ONLY
$25-249$ Cases $/ .20 \mathrm{Ea}$. $250 / .13 \mathrm{Ea}$. $1000 / .11 \mathrm{Ea}$. $\begin{array}{llll}\text { Labels - Sheet } 20 & 12 / .20 & 120 / 1.70 & 1200 / 14.50\end{array}$ Tractor Feed Cassette Labels (1 up) 1000/14.50
-INTRODUCTORY OFFER-
BASF $51 / 4$ Single Side Double Density Diskettes with...Hub Ring, Label, Jacket, W/Protect Stickers - Free Hard Library Case with Every 10 Disks-

10 LOT 20 LOT 50 LOT 100 LOT
2.00/20.00 $1.95 / 39.00 \quad 1.80 / 90.00 \quad 1.75 / 175.00$ All Prices Include U.S. Shipping \& Handling - Write For Volume Prices-
-Phone Orders Add \$2.50 C.O.D. Fee(Canadian Customers May Call or Write for Shipping Costs)
Send Cashier's Checks, Money Orders, \& Checks to:
CASS-A-TAPES BOX 8123-C KANSAS CITY, MO. 64112 816-444-4651


## ISOBAR...cleans up your line power! The most complete computer protection available

More features to prevent errors, false printout, disc skips! Only ISOBAR has 3-way spike protection, noise suppression for RFI PLUS isolated filter banks! Individual filter banks isolate each load from other loads minimizing data errors of any kind. MOV surge suppressors arrest both common mode and differential mode surges. L/C filter network rejects radio frequency noise at any amplitude. Toroidal coils!

| Model IBAR 2-6 (2 outlets, 6 ft . cord) Only $\$ 54.95$ | Model IBAR 4-6 (4 outlets, 6 ft . cord) Only $\$ 79.95$ |
| :---: | :---: |
| Model IBAR 8-15 (8 outlets, 15 ft . cord)Only $\$ 97.95$ |  |
| Order toll free 1-800-662-5021 IN ILINOIS, CALL 1-312-642-6871 OR MAIL COUPON |  |
| Iñouss-tōol, 325 W . Huron. Dept. CPT, Chicago, IL 60610 |  |
| Enclosed is $\$$ $\qquad$ or charge on <br> $\square$ MasterCard or Visa Expires $\qquad$ |  |
| Card no. |  |
| Send model \# |  |
| Name |  |
| Company |  |
| Address |  |
| city | State __ Zip |



BROADWAY
423 Broadway, New York, NY 10013 from NY, Alaska, Hawaii call 212-219-2333
known. Imagine, then, what it must have felt like to be with Pizarro, Cortez, Ponce de León, or Columbus and to sail away from the familiarity of Spain in search of discovery, gold, and fame.

The ocean was wide and uncharted, and the lands were filled with strangely painted natives who were often hostile. The storms were fierce and could easily blow the ship far off course. Starvation and a slow and painful death would follow if land was not sighted. Yet even in the face of such obstacles, the conquistadors were lured by the promise of gold and treasure. The ship's captain just had to be brave, smart, and lucky enough to discover a new world.

## Gold For Spain

One after one, the would-be explorers visited the court and on bended knees requested a grant to buy ships and hire men. In return they promised to establish missions for the church, forts to prove Spain's sovereignty, and gold to fill Spain's coffers.

Now you can experience the thrill of sighting land after a long, arduous sea voyage. You can also experience the pride in returning to Spain after having explored the Mayan Peninsula and discovered rich and fertile lands; or the shame of returning home after having lost most of your crew, several ships, and having no gold to show for your efforts.

## Graphics And Strategy

Ozark Softscape, in conjunction with Electronic Arts, has produced a riveting new adventure game entitled The Seven Cities of Gold that places you at the helm of a fleet of ships and allows you to venture forth from Spain in search of a new world, wealth, and fame.

As in their award-winning game M.U.L.E., the Bunten brothers have designed a graph-
ically enhanced strategy game that challenges and educates as well as entertains. Upon booting The Seven Cities of Gold, the player finds himself in front of a palace in Spain. He has just been given a commission by the Spanish court; and as captain of a fleet of four newly outfitted ships, he is ready for his first voyage.

## Leaving The Old World

After scrolling past a pub, his home, and an outfitters building (all important places when returning home from an expedition), the player leaves the Old World and ventures forth in search of the new. Sailing is controlled by the joystick, as are all actions and options. While at sea, the player may navigate the ship, view the map, and keep track of how many days have elapsed. The latter is especially important for several reasons. For one thing, your food supply isn't unlimited.

Eventually you will sight land. At this point, you will have to decide how much of the on-board supplies, goods, and men you want to take to explore the uncharted mass into which you have just bumped. Now the real fun begins. There will be lush jungles, fertile plains, intimidating mountain ranges, dangerous swamps, major rivers, and natives.

## Jungles And Swamps

Accomplishing all your objectives is no easy task. Ambushes in the thick jungles will take their toll as will sickness in the swamps. Food is a constant source of worry; men won't travel on an empty stomach, let alone fight on one. And as the land grows cold with the approach of winter, food becomes scarcer.

Once you decide that it is time to return home (a decision often made easy by the loss of men, goods, etc.), you must navigate back to Spain. Assuming that you make it back,
thwarting the best efforts of nature's storms, a trip to your home will provide you with a tally of what areas you have discovered, what forts and missions have been established, and how much wealth has been obtained. A trip to the court will give you a rating based upon your successes or failures. More gold, a promotion, or chastisement awaits you in the court. Finally, a trip to the pub allows you to record (save to disk) maps for future voyages. The outfitter? Most assuredly, it will be your first stop before weighing anchor for the next excursion. There you will buy food and goods, hire more men, and perhaps even purchase more ships.

## Historical Accuracy

The mechanics of The Seven Cities of Gold are easily implemented and well-done. All movement, both on land or at sea, is handled by use of the joystick, as are all option selections and even combat. The graphics are well-done, and Cities contains over 2800 screens that represent the lands you will explore. The computer literally draws the map as you move about North, South, and Central America, all accurately depicted.

Your expedition is represented by an arrow moving over a variety of easily identified terrain. Symbols are used in various places to represent hundreds of different types of settlements, ranging from farmers and hunters to wealthy Aztec strongholds. It is upon entering one of these settlements that another of Seven Cities' delights is discovered.

Once the player has moved the arrow onto a settlement symbol, the screen symbol begins to magnify, increasing in size until it is replaced by a detailed graphic screen. The arrow is replaced by a conquistador who represents the expedition, and you find yourself in the middle of the settlement, rapidly
surrounded by natives. Find their chief and begin trading, or draw your sword.

## An Enchanting Challenge

There are many more surprises in The Seven Cities of Gold. The program both challenges and enchants. It forces you to consider various strategies: What is the best way to outfit an expedition? Do you have enough men to establish forts? When should you return home for more supplies? Even the time of year can be an important factor.

And what happens after the player discovers the Mississippi or the Amazon, gold mines, the Fountain of Youth, and all the mysteries of the Americas? Is the game over? Not a chance. Aside from the fact that the game could be played again using different strategies and achieving higher rankings, Seven Cities of Gold provides a utility that randomly generates entire continents; no two are ever the same. Furthermore, all games can be played at one of three levels: novice, journeyman, or master.
Seven Cities of Gold
Electronic Arts
2755 Campus Drive
San Mateo, CA 94403
(415) 571-7171
\$39.95
Available for Atari now and for Commodore 64 soon.
Word Flyer
Steve Hudson, Assistant Editor, COMPUTE! Books

Dozens of educational programs have been released-some good, some less than good-but one of the most interesting is Word Flyer.

Best known for dynamic and challenging games like Archon, Pinball Construction Set, and Worms?, Electronic Arts has developed a reputation for sophisticated programs. Word Flyer is no exception. Like most educational programs, it uses graph-


## SAVE BIG ON COMPUTER PRODUGTS

|  | SAVE 31\%-43\% OFF MFR. SUGG. RETAIL PRICES ON <br> PRINTERS <br> EPSON•OKIDATA•DIABLO SCM - DELTA - GEMINI•TTX RADIX•COMPUTE-MATE MANNESMANN TALLY | HEWLETT-PACKARD <br> CALCULATORS <br> all software E accessories too <br> PORTABLE COMPUTERS <br> HP-71B. <br> 399 <br> HP-75D <br> 789 <br> series $\mathbf{7 0}$ softwars $\mathbf{E}$ peripherala discounted too <br> HP-2225B ThinkJet Printer [HPIL]. 375 |
| :---: | :---: | :---: |
|  | CALL FOR PRICES <br> NA <br> 23.00 <br> 30.00 <br> - <br> Dysan <br> NA <br> 32.00 <br> 37.00 CALL FOR QUANTITY PRICING ON 10 OR MORE BOXES OF DIBKETTES <br> HUGE DISCOUNTS all <br> RIBBONS• BUST COVERS PAPER•POST CARDS•LABELS <br> for almost every make and model | SHARP <br> CALCULATORS <br> EL 5100. <br> EL 5500 T <br> EL 512 T. <br> 28 <br> SHARP <br> HAND HELD COMPUTERS <br> CABLES - INTERFACES <br> accessorias for Computer Printers <br> GRAPPLER PLUS. <br> 18K BUFFERED GRAPPLER <br> Apple Dumpling $\mathbf{G X}$ <br> Cardea 0 <br> CBSB0s 10 ft . Par. Cabie for IBM: <br> CB5622 $10 \mathrm{ft} .38 \times 36$ Parallal. <br> CB5618 G ft . T1-99/4A parallal .... 25 <br> CB5629 10 ft . $25 \times 25 \mathrm{R8}-232$. <br> CB5820 8 ft . par. TR880 mod. l-III-IV22 <br> ALL OTHER CABLES. | CALL TOLL FREE 800-621-1269 EXCEPT Illinois, Alaska, Hawaii

Corp. Accts. Invited. Min. Ord. 815.00. Mastercard or Visa by mail or phone. Mail Cashier's Check, Mon. Ord. Pers. Check [2 wks. to cir] Add
 to change. WRITE for free catalog. RETURN POLICY: Dafectives Only: Most products replaced within 30 daye of purchase with identical
marchandiss only. Computer and large paripherals raplaced only when defoctive on arrival (within 3 work daye of delivery). Other prob-

ELEKTEK, inc: …
ics and sound to reinforce learning, but uses them in a way that's both new and refreshing.

Word Flyer was developed by ChildWare, a programming group within Electronic Arts. Typically, ChildWare programs combine proven educational psychology with captivating programming, and Word Flyer is no exception.

The object of the game is straightforward: Use your joystick to maneuver word flyers and match zooming letters or words. It's a challenging and exciting game for young children. But there's learning amidst the laughter. Without realizing it, players are practicing valuable reading and vocabulary-building skills. On lower levels, the emphasis is on recognizing the letters of the alphabet; that makes the program valuable even for children who have not yet learned to read. Higher levels introduce words chosen from a built-in list of over 2000 entries. The approach is both original and nonviolent.

## Booting The Birds

Two towers-built of the word towers-dominate the screen, one on the left and one on the right. Atop each tower sits a remarkably realistic-looking bird. A control panel runs across the bottom of the screen; it consists of flight level and speed indicators, a score bar, a timer, and a number-of-players indicator. On higher levels an alphabet bar appears too.

Play starts on flight 1 , where emphasis is on the alphabet and on two-letter words. Flight 2 comes next, giving you the chance to match three-letter flyers. Subsequent flights introduce you to three- and fourletter flyers and faster speeds.

On flights 2 and above, you also gain access to the "alphabet bar." That allows you to select the first letter of your flyers. On levels 4 and 5 you can also change the color of your flyer to
match the color of various zooming words.

If you're playing a twoplayer game, the hourglass timer will clock each player's turn. Need to take a break? At any time, on any level, you can move your flyer to the "rest nest" (an unmistakable mass of sticks and twigs) and press the joystick button to stop the timer. Also, at the beginning of each game (and at any point during play), you have the option of entering the "control panel" and changing any of the game parameters.

Although it takes a few minutes to get the hang of it, game play is fundamentally simple. Use your joystick to select a word from either word tower-the chosen word will be highlighted for you-and then press the button to send the chosen word flyer soaring into the air. Move it into position to match one of the soaring words, and press the joystick button again. If the match is correct, one of the birds will nod approval. If your match is incorrect, the bird will pronounce the avian equivalent of "uh-oh!"

## Cooperative Scoring

In either case, your score will change appropriately. The score is increased when a player matches the flyer with the correct letter or word. On higher levels, additional points are awarded if the words' colors match too. Incorrect matches lower the score slightly and return you to the word tower. In two-player games, an incorrect match ends that player's turn.

Many parents will be pleased with this departure from the winner/loser approach of other multiplayer games. Word Flyer emphasizes constructive cooperation instead of conflict and destruction. The total score increases whenever either player correctly matches a letter or word. By working together, two players can move through the different levels more quickly
than either could alone.
Parent and child can play together, working toward a common goal, and the child will learn to recognize letters, words, and colors. But he or she can learn the importance of cooperation too.

## Where's The Word?

Word Flyer's graphics and sound are effective without being overpowering. Joystick control is responsive. The constantly changing list of letters or words holds interest, assuring many hours of satisfying and challenging play.

However, after several sessions, one odd quirk does become evident. In some cases, while exuberantly chasing down a zoomer, the flyer would fly off the top edge of the playing field. However, you can move the joystick to maneuver the flyer back onto the screen. Bothersome? A little, at first, and it might confuse very young children.

Also, at several points in the otherwise excellent manual, the reader is told that something will be described under a subsequent heading. It is mildly confusing (and occasionally annoying) to have to skip ahead to figure something out; in the case of instructions, at least, necessary redundancy is a feature that many software manuals still lack.

But once you figure it outand it won't take long-control is simple and straightforward. Selecting flyers, colors, levels, and speeds quickly becomes second nature, allowing players to concentrate on the game itself. The educational goals underlying this game are pleasantly and effectively achieved. All in all, a deft piece of work.
Word Flyer
Electronic Arts
2755 Campus Drive
San Mateo, CA 94403
Atari 400/800/600XL/800XL/1200XL $\$ 35$ (48K disk)

## BIG NAME, NO NAME DISKETTES: <br> the best buy YOU GAN FIND!

## LIFETIME WARRANTYI <br> \$1 19 ".asso $\$ 159^{\prime \prime}$ <br> \$189: <br> S214 <br> soment reinforced hubs and separate white Tyvec sleeves. (Add $\$ 3.00$ shipping per 100 diskettes For C.O.D orders. add another $\$ 3.00$ handling charge.)

## SPECIAL!

Act now and you can get a special bonus: an Amaray Media-Mate 50 disk storage unit. Extremely well designed with grooves for stacking. Normally $\$ 14.95$. When ordered with 50 BIG
NAME, NO NAME diskettes, you can get one for $\$ 9.99$ (Shipping Included).

WELL, OUR SEARCH OF MORE THAN A YEAR HAS PAID OFF

We found a diskette that you ve used a hundred imes... but have never heard of, It's the one used by a ot of major software houses for their copy-protected originals .the kind of diskettes that receive a lot of heavy use.

These BIG NAME, NO NAME diskettes exceed al ANSI and IBM standards. They are individually tested track by track. sector by sector and certified 100\% error-free.

Moreover, the company that makes them has the own proprietary coating formulation which results in a super-smooth, anti-static surface

If they weren't. we wouldn't be selling them
LIFETIME WARRANTY
As with every diskette we sell, BIG NAME, NO NAME diskettes are covered by a LIFETIME WAR RANTY by us and the manufacturer

If you have any problems with them at any time because of materials or workmanship, just call us to arrange a return

DON'T SAY NO!
Sure, you've never heard of BIG NAME, NO NAME diskettes.

But a lot of software manufacturers who use hun dreds of thousands of diskettes for their copy protected originals have... and a lot of them use BIG NAME, NO NAME diskettes.
DISKETTE HEAVEN GUARANTEED!
Order your supply of BIG NAME, NO NAME disk ettes today.
If you re not totally happy with them at the end of 30 days, we'll give you a refund, credit or exchange

That s contidence
That s DISK WORLD!..the nice people who se s a month
TO ORDER:
Call DISK WORLD between 9AM-5PM. Central Time, Monday through Friday at:

1-800-621-6827
or in Illinois, at:
1-312-944-2788
Or write us
DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street • Chicago, Illinois 6061 DISKETTES

RATED \# 1 FOR SERVICE \& REUABILTY
CALL TOLL FREE
800-221-8180
IN NEW YORK STATE
CALL (212) 732 -8600
VRWUSIC
23 PARK ROW NEW YORK CITY, NEW YORK 10038
THIS MONTH'S SUPER SPECIALS
COMMODORE 64 : Gax zam $\$ 199^{95}$ COMMODORE 64 SOFTWARE


MONITORS




FLOPPY DISKS





WRITE or CALL for FREE 288 PAGE AUDIO/VIDEO/COMPUTER CATALOG

## 

## FAMILY TRIVIA

NOW THE WHOLE FAMILY CAN PLAY TRIVIA AT THE SAME TIME Adults, teenagers and children can all play - each one answering questions geared to their age level. No more parents getting bored with children's games, no more chiidren getting frustrated at the difficulty of adult games. BRING THE FAMILY TOGETHER TO PLAY - GET FAMILY TRIVIA TODAY

## SPANISH VERB TUTOR

- Helps Beginners or Advanced Stu-
dents in conjugations and transla-
tions.
- Over 650 verbs (including those tricky irregular verbs).
If it isn't here, maybe you shouldn't say it. Fast dictionary listing, trans lation from English or Spanish. Conjugations in 8 tenses, includes examples. IDEAL FOR CLASSROOMS.


Make Checks Payable to:

15 MEIKLEM ST.. FORESTVILLE, CT 06010

# Lightning Sort <br> Russ Gaspard 


#### Abstract

Last September COMPUTE! published "Ultrasort," and we called it the fastest sorting program ever published for any home computer. It would sort a 1000-element array in less than eight seconds.

It's been improved. Here's "Lightning Sort." It does the same thing in a breathtaking 2.1 seconds. Add this extraordinarily powerful subroutine to any of your BASIC programs where you need to alphabetize something. For the VIC, 64, and PC/PCjr. Atari users should refer to the accompanying sidebar and program "Bulldozer Sort."


The "Ultrasort" routine for Commodore computers (COMPUTE!, September 1983, p. 194) isn't as fast as it could be. After disassembling the code to study the algorithm, I found several opportunities to compact the code (mainly to reduce disk loading time) and to speed up the execution time. Using the "Sort Test" program from the original article as a benchmark, my "Lightning Sort" routine sorts a 1000 -element array in an average of 2.1 seconds, versus 7.8 seconds for Ultrasort. That few seconds savings isn't much. But when I tried it on random 4000element arrays the routine took an average of 10 seconds, versus 40 seconds for Ultrasort. A 400 percent speedup in execution time can be significant in applications where the sort routine is called repeatedly, or in sorting very large arrays.

The time for this type of algorithm to sort an N -element array is $\mathrm{T}^{*} \mathrm{~N}^{*} \log _{2} \mathrm{~N}$ on the average, where T is about .21 milliseconds for the modified routine and .8 milliseconds for the original. Actual running time depends on the starting order of the array. Interestingly, whereas many sort algorithms run fastest when the original array is already in order, Hoare's Quicksort runs fastest on randomly ordered data. If you try it on an array which is already in correct order you'll find that it takes much longer (proportional to $\mathrm{N}^{2}$ ).

Besides speeding up the execution, I was also able to reduce the amount of RAM needed from 908 bytes to 418 bytes. By storing the variables in RAM space above the actual sorting routine rather than within the routine, the actual program storage needed on disk is only 338 bytes. This means the saved program uses only two disk blocks, rather than the four required for the original.

Program 1 is a BASIC program which loads the machine language Lightning Sort routine for the Commodore 64. The routine is loaded into RAM from $\$$ C000 to $\$ \mathrm{C} 152$ (decimal 49152 to 49490), and writes variable data up to \$C1A2 (decimal 49570). It is used in exactly the same way as Ultrasort. However, I prefer to define the call address 49152 as variable QS (either within the BASIC program or in direct mode) and then call the routine with:

SYS QS,N,AA\$(K)
where K and N are the first element and the number of elements to sort, and AA\$ is the array variable name, as in the Ultrasort article.

Program 2 is a BASIC loader for the VIC version of Lightning Sort. It automatically relocates the machine language to the top of available memory, regardless of the amount of expansion installed, and protects the sort routine from BASIC. The program also tells you the proper SYS to use to start the sorting.

Although Program 2 will run on an unexpanded VIC, we recommend that at least 8 K expansion be used. With less than this, only a very few items can be sorted.

Program 3, the Sort Test program from the original Ultrasort article, can be used as a demonstration of Lightning Sort. The program creates an array, AA\$, of 1000 random elements, then sorts them into order. If you are using a VIC with limited memory, you'll need to reduce the number of elements.

## Program 1: <br> Lightning Sort Loader For The 64

Refer to the "Automatic Proofreader" article before typing this program in.
$1 \emptyset I=49152$ : $\mathrm{SUM}=\varnothing \quad$ : rem 136
$2 \emptyset$ READ A:IF A=256 THEN $4 \emptyset$ :rem 54
$3 \emptyset$ SUM=SUM+A:POKE I,A:I=I+1:GOTO $2 \emptyset$
: rem 79
40 IFSUM<>45295THENPRINT"ERROR IN DATA ST ATEMENTS": END
:rem 191
$5 \emptyset$ PRINT"LIGHTNING SORT READY.":END
: rem 214
49152 DATA $32,253,174,32,158,173$ :rem 52
49158 DATA $32,247,183,165,20,133$ :rem 52
49164 DATA $253,165,21,133,254,32$ :rem 46
49170 DATA 253,174,32,158,173,162:rem $1 \varnothing 4$
49176 DATA 1,165,71,157,85,193:rem 221
49182 DATA $157,125,193,165,72,157$ : rem 114

##  



| 16K Memory | 79.95 |
| :---: | :---: |
| CBM 4023 Ribbons | 9.95 |
| CBM 8023 Ribbons | 9.95 |
| Flip N' File 10, 15, 25, 50 | Call |
| Power Strips w/surge stopper | Call |
| Computer Care Kit | \$ 19.95 |
| Disk Cleaning Kit | 12.95 |


| INIERFACES |  |
| :---: | :---: |
| Superbox (Transparent IEEE, |  |
| 3-Slot, Reset) | \$ 139.95 |
| Interpod (Intelligent IEEE \& RS-232) | \$ 139.95 |
| The Connection (By Tymac) |  |
| (Commodore Graphics + 2K Buffer) | \$ 95.00 |
| Cardco + G Parallel Interface . . . . . . . S | \$ 89.00 |
| Vic Switch. . . . . . . . . . . . . . . . . . . S | \$ 149.95 |
| IEEE to Centroonics . . . . . . . . . . . . . S | \$ 149.95 |
| Pet-to-IEEE Cable | \$ 39.00 |
| IEEE-to-IEEE Cable . . . . . . . . . . . . . . S | S 49.00 |
| 4 Prong AV Cable. | 15.00 |
| Centronics Cable (male to male) | S 34.95 |
| RS232 Cable (male to male) . . . . . . . S | S 31.95 |
| Networking for C-64 \& CBM Equipment | Ca |


| MONITORS |  |
| :---: | :---: |
| CBM 1702 Color Monitor | \$ 269.00 |
| Panasonic TR-120 (Green) | \$ 142.00 |
| Panasonic TR-120 (Amber) | \$ 156.00 |
| Panasonic DT-1300 Color | \$ 425.00 |
| Monitor Stand (Tilt \& Swivel) | \$ 29.95 |
| RGB Monitor Cable: |  |
| ET-100C (Apple) | \$ 33.80 |
| ET-101C (IBM) | \$ 33.80 |
| Green \& Amber Monitors . | \$ 95.00 |


| HETTER QUALITY PRINIERS |  |
| :---: | :---: |
| CBM 6400 Printer | . $\$ 1425.00$ |
| Abati (20 CPS) | \$ 475.00 |
| Cardco LQ/1 Printer | \$ 495.00 |
| NEC Spinwriter . | Cal |

DOT MATRIX PRINTERS
CBM MPS-801 Printer (50cps) . ...... \$ 245.00

Call to Order
1-800-527-1738
All Others Call
1-214-231-2645
Micro-Sys

| CBM 4023 (100 CPS) | \$ 339.00 |
| :---: | :---: |
| CBM 8023 (160 CPS) | \$ 565.00 |
| Panasonic KX-P1090 (100 CPS) | \$ 285.00 |
| Panasonic KX-P1091 (120 CPS) | \$ 325.00 |
| Panasonic KX-P1092 (180 CPS) | Call |
| Panasonic KX-P1093 |  |

## COMMODORE BUSINESS MACHINES

| Execut | \$ 795.00 |
| :---: | :---: |
| B128-80 (128K 80 column) | \$ 695.00 |
| SuperPet (5 languages) | S1059.00 |
| CBM 8032 | \$ 595.00 |
| CBM 8096 | \$ 675.00 |
| CBM 2031 single disk | \$ 295.00 |
| CBM 8050 Dual Disk 1 meg | \$ 995.00 |
| CBM 8250 Dual Disk 2 meg. | \$1295.00 |
| CBM 9060 Hard Disk5 Meg | \$2195.00 |
| 64K Expansion Board | \$ 275.00 |
| SuperPet Upgrade Kit | \$ 695.00 |



| BUSINESS SOFIWARE - B128 |  |
| :---: | :---: |
| Superscript II (40K Dictionary) | 00 |
| Superbase (Data Base) | \$ 199.00 |
| Complete Accounting System (G/L,A/R,AP,O/E,P/R,IM) | \$ 199.00 |
| Calc Result | \$ 199.00 |

TERMS

Orders under 50.00 add 10.00 Handling fee MasterCard, VISA, Money Order, Bank Check COD (add 5.00)
Add 3\% For Credit Cards
All Products In Stock Shipped Within 24 Hours
F.O.B. Dallas, Texas

All Products Shipped With Manufacturers
90 Day Warranty
PRICES ARE SUBJECT TO
CHANGE WITHOUT NOTICE.
DEALERS INQUIRIES WELCOME

## Atari Bubble And Bulldozer Sorting

## Chisine C Cenel

While machine language data sorting is extremely fast, there still may be times you will want to insert a simple BASIC sorting routine into a program. When the list to be sorted is small, bubble sorting is a good method to use. For larger lists, a technique called bulldozer sorting may be better.

## Using The Bulldozer Sort Program

The program is a demonstration of the bulldozer sort. It asks how many numbers you want to sort and the value of the highest number in the list. It then generates random numbers in the desired range. When finished sorting, it prints all nonzero values to the screen.

To use the bulldozer sort as a subroutine, delete lines 70 through 85 and add a line to the beginning of the program defining the number of data elements (RN) and the maximum value of the data (MV). Also, change line 111 so that it will input the data in the way that is needed for your program. For example, to input data from the keyboard, change the line to read:

111 INPUT DT:IF DT $>$ MV THEN 111
If you would like the sorted list printed to the screen as part of your subroutine, change line 550 to read:

550 RETURN
If you don't want a screen print, delete lines 500 through 550 and add the following line:

200 RETURN

## How Bubble Sorting Works

The bubble sort is a commonly used method of sorting small lists of data into numerical or alphabetical order. While bubble sorts are easy to understand and use in programs, they are often too slow to use for large sorting tasks-bubble sorting requires many comparisons.

A bubble sort compares each item against the other unsorted items. If the item tested is larger than the one it is tested against, their positions are switched. This way, after all of the values have been tested once, the first position in the array contains the lowest number in the list.

Sorting A Stack Of Cards
Suppose we have a small stack of index
cards that are out of order. We have four cards (numbered 1 through 4) to sort, and they are in the following order: $3,2,4,1$. To begin, we compare the first card (3) with the second (2). Since 2 is less than 3 , we swap the cards and the order becomes: $2,3,4,1$.

Next we compare the first and third cards in the deck, and since 2 is less than 4 , no swap occurs. Comparing the first and fourth cards, we see that they should be swapped (since 2 is greater than 1) and our stack of cards reads $1,3,4,2$.

Now we have placed the lowest card in the first position, so we can start our second series of comparisons with the second card in the deck. We compare the second and third cards ( 3 and 4) and make no swap, then compare the second and fourth cards, swapping 3 with 2 . At this point, the first two positions in the deck are set and the order is $1,2,4,3$. Testing the third card is easy, since there is only one comparison left, and we switch the positions of 4 and 3 to finish our bubble sort with the array filled as follows: $1,2,3,4$.

Our mental sort took only six comparisons, and was pretty quick. But with longer lists, bubble sorting slows down greatly. The reason for this is that in any array with N elements, the number of comparisons required will be $N(N-1) / 2$. This means that while a bubble sort of 20 items will require 190 comparisons, a list only four times as long ( 80 items) will require over 16 times as many comparisons (3160). In order to speed things up, we need to reduce the number of comparisons as much as possible.

## A Faster Sort

An alternative is bulldozer sorting, first described by Isaac and Singleton, in JACM 3 (1956): 169-174. Bulldozer sorting uses address calculation to roughly position items in the array before sorting them. We bulldozer sort every time we use an index card filewe look for the correct section of files first, then sort the card into the specific place it belongs. On a computer, this sort works well for up to around 500 items and is faster than bubble sorting, although it uses more memory for the array.

Another feature of the bulldozer sort that makes it faster than the bubble sort is
that the bulldozer sort arranges the items one by one as the data is input－there is no long wait for the sort to finish after all of the data has been entered．

## Address Calculation

To successfully predict where the data should be placed in the array before sorting， keep two requirements in mind：

1．The array used for sorting and stor－ age of the data should be about 1.4 times as large as the data list，and
2．The formula for calculating the es－ timated address should be chosen to al－ low empty array spaces above，below， and between the sorted data elements．
The first requirement is easy to handle；just DIMension the data storage array to a value 1.4 times greater than the size of the data list．

## Borrowing An Equation

To satisfy the second requirement－leaving extra space in the array－we need an equa－ tion that predicts a position for the lowest data element about 10 percent of the way into the array，and estimates the highest data element＇s position to be about 10 per－ cent from the end of the array．Since the ac－ curacy of the predicting equation is not critical，we＇ll use a simple one borrowed from geometry－the equation for a line－to put the data in the correct general area of the array．Then we＇ll sort the data into the exact location．

For example，if we had 200 job num－ bers（or other data elements）ranging in value from 0 to 500 ，we would DIMension the array to 280 ．We would also want the lowest value to be placed by the equation in the 28th array position and the highest value to be sent to the 252 nd position．

The general equation for a line is $y=m x+b$ ，where $m$ is the slope and $b$ is the place where the line crosses the $y$－axis．The slope of a line is the rise（change in the value of $y$ ）divided by the run（change in the value of x ）．We want predicted points to be in the middle 80 percent of the array，so we multiply m in the above equation by 0.8 ． For the value of $b$ ，simply use 10 percent of the array size（28）．The estimated array position for $\mathrm{x}=250$ would be：

$$
y=m x+b=0.8(280 / 500) x+28=0.448(250)+28=140
$$

Note that of the 281 array positions created by DIMensioning，position 140 is very near
the center．Using the same equation to pre－ dict a position for $x=251$ ，though，yields a value of 140.448 ，which rounds to 140 ．

Obviously one array element can hold only one data value，and this is where sorting becomes necessary．When an array location is already being used，the bulldozer sort compares the two values and rearranges the list．It is this readjusting feature of the bulldozer sort that requires the 40 percent extra array storage．The program slows down as it sorts near the end of the data list because more of the predicted locations are filled and more sorting is necessary．

## Bulldozer Sort

EL 79 PRINT＂ECLEAR；HOW MANY RANDOM DATA ELEMENTS＂：
JN 75 INPUT RN
PF $8 \varrho$ ？＂WHAT MAXIMUM VALUE＂：
KA 85 INPUT MV
EL 9の AS＝INT（ $0.5+R N * 1.4): \operatorname{DIM}$ JN $(A S):$ $D N=9: I=6$
EP 95 PRINT＂CLEARING THE ARFAY＂：
0110 FOR $A=\emptyset$ TO AS：JN $(A)=\emptyset: N E X T$ A
NG 105 FRINT＂ARRAY CLEARED＂
L 1 1 $10 \mathrm{I}=\mathrm{I}+1$
 （ब）
F9 115 FFIINT＂DATA ELEMENT：＂：I：＂ \＆4 SPACES？VALUE：＂：DT
FN $130 \mathrm{APF}=\mathrm{INT}($（ $-8 * A S * D T / M V)+\emptyset .1 * A S$ $+6.5)$
EJ $135 \mathrm{C}=0$
FN 138 FEM＊＊＊＊＊＊Lines $140-160$ dete rmine which subroutine to ace ess to sort data correctly＊＊ ＊＊＊＊
DF 149 IF JN $(A P P)=\varnothing$ THEN JN $(A P F)=D T:$ GOTO 18 寅
If 159 IF JN（APF）：＝DT THEN GUSUR SMO ब：GOTO 18日
EF 160 IF JN（AFF）\＆DT THEN GQSUB bog日g ＝GOTO $18 \%$
A0 180 IF I RRN THEN 119
CB 5め月 REM＊＊＊＊PFINTING S日RTED NUME EF：S＊＊＊＊
日D 505 PRINT＂NUMEERS SORTED．NOW PR INTING．＂
JH 508 DN＝め
60510 FOR $B=0$ TO AS
EJ 515 REM＊＊＊Array positions witho ut numbers are not printed ou t＊＊＊
6f 519 FiEM＊＊＊＊Zeros are not printe d＊＊＊＊
16529 IF JN $(B)=6$ THEN 549
D0 53の $\mathrm{DN}=\mathrm{DN}+1$ ：？＂ARFIAY ELEMENT：＂：D N：＂\｛4 SPACES\}VALUE: "; JN(B)
B1． 549 NEXT B
H8 550 END
GE 50めめ REM＊＊＊＊Flacing numbers les 5 than job presently at loca tion＊＊＊＊
$C D 5019 \quad A P P=A F P-1$
$055020 \quad \mathrm{C}=\mathrm{C}+1$

```
H6 5030 IF JN (APP) = }0\mathrm{ THEN JN (APP) =DT
    : RETURN
IF 5040 IF JN (AFP)>=DT THEN C=C-1
CH 5050 APP=APP-1
015066 C=C+1
1] 5\varnothing7\emptyset IF JN(APP)=@ THEN 511@
MG 5ø8@ IF JN(AFP) \=DT THEN C=C-1:GO
    T0 5059
N& 5@90 GOTO 5050
C% 5190 IF E&=1 THEN JN(AFP)=DT:RETU
    RN
LQ 5105 REM **** Shifting ather numb
    ers to make room for new num
    ber ****
H) }5110\textrm{D}=
4D 5120 IF D=C THEN TN (APF) = DT : F(ETUR
    N
P6 5136 JN (APP) =JN (APF+1)
0t 5140 D=D +1
OG 515% AFP=APP+1
NN 5160 GOTO 5120
IA ba@\emptyset REM **** Flacling numbers gre
    ater than # presently at loc
    ation****
CC6の1の APP=AFP+1
OH602ด C=C+1
HHGOSの IF JN(APF)=Q THEN JN(APP) = DT
    : RETUFN
EH 6049 IF JN(APP) &DT THEN F=C-1
CG 6050 APP=APP +1
0. 6ब6\varnothing C=C+1
If 697% IF JN(AFP)=@ THEN G11@
116989 IF JN (AFP):DT THEN C=C-1:GOT
    0 6थ50
NE 6990 GOTO 6050
CL 619\varnothing IF C(:=1 THEN JN (AFF)=DT:RETU
    RN
LC6105 REM **** Shifting other numb
    ers to make room for new num
    ber ****
Hi*6110 D=1
AE G12% IF D=C THEN JN (APF) = DT:RETUR
    N
P] 6130 JN(APP)=JN(APP-1)
OM 6140 D=D +1
Q] }6150\mathrm{ APP=APP-1
MP6166 GOTO 6129
```

49188 DATA $165,193,157,145,193,165$
：rem 167
49194 DATA $253,2 \emptyset 8,2,198,254,198$ ：rem $7 \emptyset$ $492 \emptyset \emptyset$ DATA $253,160,3,24,189,125$ ：rem 249
49206 DATA 193，101，253，157，125，193
：rem $15 \varnothing$
49212 DATA 189，145，193，101，254，157
：rem 155
49218 DATA $145,193,136,208,236,189$
：rem 166
49224 DATA $85,193,133,80,189,105$ ：rem 60 49230 DATA 193，133，81，189，125，193：rem 108 49236 DATA $133,82,189,145,193,133$ ：rem 111
49242 DATA $83,32,21,193,144,4$ ：rem 152
49248 DATA $2 \emptyset 2,2 \emptyset 8,228,96,165,82$ ：rem 64
49254 DATA $133,78,165,83,133,79$ ：rem 18
49260 DATA $16 \emptyset, 2,177,78,153,250$ ：rem 2
49266 DATA $\emptyset, 136,16,248,48,11$ ：rem 158
49272 DATA $24,165,80,105,3,133$ ：rem $2 \emptyset \emptyset$
49278 DATA $80,144,2,230,81,160$ ：rem 204
49284 DATA $2,177,8 \emptyset, 153,247,0 \quad$ ：rem 160
4929 DATA $136,16,248,32,32,193$ ：rem 4

49296 DATA $144,230,56,165,82,233$
49362 DATA $3,133,82,176,2,198$ $493 ø 8$ DATA $83,32,21,193,176,31$
49314 DATA $160,2,177,82,153,247$
$4932 \emptyset$ DATA $\varnothing, 136,16,248,32,32$
49326 DATA $193,176,225,160,2,177$
49332 DATA $80,145,82,185,247, \varnothing$
49338 DATA $145,80,136,16,244,48$
49344 DATA $183,160,2,177,80,145$
49350 DATA $78,185,250, \emptyset, 145,8 \emptyset$
49356 DATA $136,16,244,24,189,85$ 49356 DATA $136,16,244,24,189,85$ ：rem 17
49362 DATA $193,125,125,193,133,82:$ rem 105 49368 DATA $189,165,193,125,145,193$

$$
\text { : rem } 168
$$

49374 DATA $133,83,102,83,102,82$ ：rem 254
4938 DATA $32,21,193,176,22,189$ ：rem 7
49386 DATA $85,193,157,86,193,189$ ：rem 88 49392 DATA 1ø5，193，157，106，193，32：rem 106 49398 DATA $53,193,232,32,69,193$ ：rem $2 \emptyset$ 49404 DATA $76,71,192,189,125,193$ ：rem 67 49410 DATA $157,126,193,189,145,193$
：rem 164
49416 DATA $157,146,193,32,69,193$ ：rem－68 49422 DATA $232,32,53,193,76,71$ ：rem 209 49428 DATA $192,165,81,197,83,2 ø 8$ ：rem 72 49434 DATA $4,165,8 \emptyset, 197,82,96$ ：rem 176 $4944 \varnothing$ DATA $16 \varnothing, 255,20 \varnothing, 196,247,176$
：rem 155
49446 DATA $11,196,250,176,6,177$ ：rem 13
49452 DATA $248,209,251,240,241,96$ ：rem 107
49458 DATA $196,250,96,24,165,8 \emptyset$ ：rem $2 \emptyset$
49464 DATA $165,3,157,85,193,165$ ：rem 13
49470 DATA $81,165,0,157,165,193$ ：rem 253
49476 DATA $96,56,165,80,233,3$ ：rem 173
49482 DATA $157,125,193,165,81,233$ ：rem 112
49488 DATA $\varnothing, 157,145,193,96,256$ ：rem 23

## Program 2： <br> Lightning Sort Loader For VIC

Refer to the＂Automatic Proofreader＂article before typing this program in．
$5 \mathrm{HI}=\operatorname{PEEK}(56)-2: \mathrm{S}=\mathrm{HI} * 256: \mathrm{Sl}=\mathrm{S}$
$1 \varnothing$ POKE 56，HI：POKE 55，$\varnothing$
20 READ A：IF A＝256 THEN PRINT＂TO
，USE：$\{5$ SPACES $\}$ SYS＂S1：END
：rem 179
：rem 231
RUN SORT
25 IF $A<\emptyset$ THEN POKE $S, A B S(A+2)+H I:$ rem 106 OTO $2 \varnothing$
$3 \varnothing$ POKE S，A：S＝S＋1：GOTO $2 \varnothing$
$46 \emptyset 8$ DATA $32,253,2 ø 6,32,158,2 ø 5$
4614 DATA $32,247,215,165,20,133$
4620 DATA $253,165,21,133,254,32$
4626 DATA $253,2 ø 6,32,158,2 ø 5,162$
4632 DATA $1,165,71,157,85,-3$
4638 DATA $157,125,-3,165,72,157$
4644 DATA $105,-3,157,145,-3,165$
465 DATA $253,2 \emptyset 8,2,198,254,198$
4656 DATA $253,160,3,24,189,125$
4662 DATA $-3,101,253,157,125,-3$
4668 DATA $189,145,-3,101,254,157$
4674 DATA $145,-3,136,208,236,189$
$468 \emptyset$ DATA $85,-3,133,80,189,1 \varnothing 5$
4686 DATA $-3,133,81,189,125,-3$
4692 DATA $133,82,189,145,-3,133$
4698 DATA $83,32,21,-3,144,4$
$47 \emptyset 4$ DATA $2 \emptyset 2,2 \emptyset 8,228,96,165,82$
4710 DATA $133,78,165,83,133,79$
4716 DATA $160,2,177,78,153,250$
4722 DATA $\varnothing, 136,16,248,48,11$
4728 DATA $24,165,80,105,3,133$
：rem 79
：rem 160
：rem 249
：rem 244
：rem 242
：rem 45
：rem $1 \varnothing \varnothing$ ：rem 2
：rem 241 ：rem 10
：rem 207
：rem 233
：rem 52
：rem 54
：rem $2 ø 4$
：rem 2øø
：rem 255
：rem 49 ：rem 4
：rem 214
：rem 207
：rem 98
：rem 149

|  | DA | 80,144,2,230,81,160 | m |
| :---: | :---: | :---: | :---: |
| 4740 | DATA | 2,177,8ø,153,247,0 | em $10 \emptyset$ |
| 4746 | DATA | 136,16,248, $32,32,-3$ | 8 |
| 4752 | DATA | 144,230,56,165,82,233 | 255 |
| 4758 | DATA | 3,133,82,176,2,198 | 116 |
| 764 | DATA | 83, 32, 21, $-3,176,31$ | 96 |
| 4770 | DATA | 160,2,177,82,153,247 | $2 \varnothing 8$ |
| 4776 | DATA | Ø, 136,16,248,32,32 | 103 |
| 4782 | DATA | $-3,176,225,160,2,17$ | 202 |
| 4788 | DATA | 80,145,82,185,247,0 | 168 |
| 4794 | DATA | 145,80,136,16,244,48 | 215 |
| $48 \varnothing \varnothing$ | DATA | 183,160,2,177,80,145 | 2øø |
| 4806 | DATA | 78,185,25ø, $0,145,8 \emptyset$ | 8 |
| 4812 | DATA | 136,16,244,24,189,85 | 213 |
| 4818 | DATA | $-3,125,125,-3,133,82$ | 88 |
| 824 | DATA | 189,165,-3,125,145,-3 | 242 |
| 4830 | DATA | $133,83,162,83,162,82$ | 194 |
| 36 | DATA | 32,21, $-3,176,22,189$ | 151 |
| 4842 | DATA | 85, $-3,157,86,-3,189$ | 162 |
| 48 | DATA | $105,-3,157,106,-3,32$ | m 189 |
| 4854 | DATA | 53, -3, 232, $32,69,-3$ | 94 |
| 4860 | DATA | 76,71,-2,189,125,-3 | 150 |
| 4866 | DATA | 157,126,-3,189,145,-3 | m |
| 4872 | DATA | 157,146, $-3,32,69,-3$ | em 151 |
| 4878 | DATA | $232,32,53,-3,76,71$ | m 106 |
| 4884 | DATA | -2,165,81,197,83,2ø8 | m 216 |
| 4890 | DATA | $4,165,80,197,82,96$ | 125 |
| 4896 | DATA | 160,255,200,196 | 1 |
| $49 \varnothing 2$ | DATA | 11,196,250,176,6,177 | :rem 209 |
| $49 \varnothing 8$ | DATA | 248,2ø9,251,24ø,241,96 | em |
| 4914 | DATA | 196,250,96,24,165,80 | 21 |
| 4920 | DATA | $105,3,157,85,-3,165$ | em 148 |
| 4926 | DATA | 81,105,0,157,105,-3 | m 14 |
| 4932 | DATA | 96,56,165,80,233,3 | em 113 |
| 4938 | DATA | 157,125,-3,165,81,233 | $\square$ |
| 49 | DA | Ø, 157,145,-3, |  |

## Program 3: Sort Test



## Programmer's Notes: PC And PCjir Version

Tim Victor, Editorial Programmer

## The PC and PCjr version of "Lightning

 Sort" (Program 4) is based on the same algorithm as the version for Commodore computers, but runs in about one-third the time, due to the greater speed and power of the 8088 microprocessor used in the IBM computers. There are a couple of differences in the way that this program is loaded and used.The BASIC loader program calculates a checksum from the DATA statements to help identify typing errors, then creates a disk file named "LSORT.BAS", containing the ML routine in binary form. The demonstration (Program 5) loads this file into memory using BLOAD and sets LSORT to the address of the sort routine. This variable is needed because IBM BASIC's CALL statement will only accept a variable name for the address of an ML routine.

Lightning Sort uses the first parameter in the CALL statement to find the array that it will sort. This is actually the address of the first string in the array, $\mathrm{AA} \$(1)$ in the demonstration program, not the address of the array itself. The second parameter, $\mathrm{N} \%$, tells Lightning Sort how many strings are in the array. Variable names also have to be used for parameters, which is the reason for using $\mathrm{N} \%$ instead of just plain 1000, and this version expects the length parameter to be an integer variable (a variable whose name ends with a percent sign).

Lightning Sort is loaded at address hex FF00 in BASIC's default segment. During a sort, the 256 bytes starting at hex FE00 are also used. To protect this memory, both programs start with the instruction CLEAR,\&HFE00, which sets the top of BASIC's workspace to hex FE00.

360 PRINT:PRINT N" ELEMENTS SORTED IN" (T2 -T1)/60"SECONDS"
: rem 181

## Program 4: <br> Lightning Sort Loader For PC/PCjr

100 CLEAR, \&HFEOO<br>110 ON ERROR GOTO 10000<br>120 DEF SEG<br>130 CHECKSUM $=0$<br>140 ADDRESS $=$ \&HFFOO<br>150 READ MLDATA<br>160 WHILE MLDATA <> -1<br>170 POKE ADDRESS, MLDATA

```
180 CHECKSUM = CHECKSUM + MLDATA
190 ADDRESS = ADDRESS + 1
2 0 0 ~ R E A D ~ M L D A T A ~
210 WEND
220 IF CHECKSUM <> 22937 THEN ERROR 200
230 BSAVE "lsort",&HFFOO,&HDC
240 END
1000 DATA 85, 137,229,139,118,6,139,4
1010 DATA 72,185,3,0,247,225,139,86
1020 DATA 8,1,208, 189,252,254,137,86
1030 DATA 2,137,70,0,252,41,192,80
1 0 4 0 \text { DATA 139,94,0,139,86,2,57,211}
1050 DATA 127,3, 233, 129,0, 135, 211, 232
1060 DATA 139,0,118,5,131,195,3,235
1070 DATA 246,135,211,57,211, 126,31,131
1080 DATA 235,3,232,120,0,114,244,138
1090 DATA 15,139,71,1,135,211,134,15
1100 DATA 135,71,1,135,211,136,15,137
1110 DATA 71, 1, 135,211, 235, 214,139,118
1120 DATA 0,138,4,134,7,136,4,139
1130 DATA 68,1,135,71,1,137,68,1
1140 DATA 139,86, 0,3,86,2,209,234
1150 DATA 57,218,114,23,139,70,2,131
1160 DATA 195,3,137,94,2,131, 237,4
1170 DATA 131,235,6,137,94,0,137,70
1180 DATA 2,235,21,139,70,0,131,235
1190 DATA 3,137,94,0,131, 237,4,131
1 2 0 0 ~ D A T A ~ 1 9 5 , ~ 6 , ~ 1 3 7 , 9 4 , ~ 2 , ~ 1 3 7 , 7 0 , 0 ~
1 2 1 0 \text { DATA 88, 54,80, 233,114, 255,88,72}
1220 DATA 124,7,80,131,197,4,233,103
1230 DATA 255,93,202,4,0,139,118,0
1240 DATA 181,0,138,12,139,116,1,58
1250 DATA 15,118,2,138,15,139,127,1
1260 DATA 243,166,116,1,195,139,126,0
1270 DATA 138,13,58,15,195,-1
10000 IF ERR <> 200 THEN ON ERROR GOTO O
10010 PRINT "Error in ML data: check for
    typo's"
10020 RESUME 240
```


## Program 5: PC/PCjr Sorting Demonstration

```
10 CLEAR,&HFEOO : DEF SEG : CLS
20 BLOAD "lsort", &HFFOO:LSORT=&HFFOO
30 N%=1000
4 0 ~ D I M ~ A A \$ ~ ( N \% ) ,
50 LOCATE 2,16 : PRINT "Creating ";N%;"r
andom strings"
60 DEF SEG=&H40: RANDOMIZE PEEK (&H6C)
70 FOR I=1 TO N%:LOCATE 3,16:PRINT I
80 J%=RND (1) + 10+1
90 A$="":FOR K=1 TO J%
100 A$=A$+CHR$ (INT (RND (1)$26+65))
1 1 0 ~ N E X T ~ K
120 AA$(I)=A$
1 3 0 ~ N E X T ~ I ~
1 4 0 ~ C L S : L O C A T E ~ 2 , 1 6 : P R I N T ~ " A n y ~ k e y ~ t o ~ s t
art sort:"
150 A$="":WHILE A$="":A$=INKEY$:WEND
160 LOCATE 3,16:PRINT "sorting- ";
170 SS=PEEK (&H6C) +256*PEEK (&H6D)
180 DEF SEG: CALL LSORT (AA$ (1),N%)
190 DEF SEG=&H40:FS=PEEK (&H6C) +256%PEEK (
&H6D)
200 PRINT "done"
210 LOCATE 5,16:PRINT "Any key to print
sorted strings"
215 A$="":WHILE A$="" : A$=INKEY$: WEND
220 FOR I=1 TO N%:PRINT AA$(I) : NEXT
230 PRINT N%;"elements sorted in"; (FS-SS
)/18;"seconds"
```


## Notes For Apple Version Of Lightning Sort

## Tim Victor, Editorial Programmer

The Apple version of "Lightning Sort," shown in Programs 6 and 7, requires an Apple II with at least 48 K of random access memory and one disk drive. It has been tested on an Apple II Plus under DOS 3.3 and on an Apple IIc under ProDOS as well as DOS 3.3. The Applesoft demonstration program in Program 7 uses the BLOAD command to load the file LIGHTNING.SORT. This is a binary file containing the Lightning Sort program that is entered from Program 6 using the Apple II's built-in ML monitor.

Boot your computer, then type "CALL-151" to use the monitor. When you hit RETURN, the Applesoft input prompt will be replaced by an asterisk ( ${ }^{(* \prime \prime}$ ), the monitor's prompt. To enter a line from the listing, replace the hyphen after the first four-digit hexadecimal number with a colon. The first line in the listing would be entered as

9400: 20 B1 002005 E1 A5 A0
Since no checksums are used in the listing, it's a good idea to make sure that the program in memory is correct. You can ask the monitor to display the contents of any memory location by typing its address as a hexadecimal number and hitting return. To examine a range of memory locations, type the address of the first location in the range, a period ("."), and then the address of the last location in the range. For example, Program 6 was made simply by entering " 9400.9551 " in response to the asterisk prompt.

When you're sure that the program is entered correctly, save it to disk using the BSAVE command. All DOS commands work in exactly the same way when entered from the monitor as when they are used in Applesoft. You can CATALOG, BLOAD, BSAVE, DELETE, and even LOAD and SAVE BASIC programs. To save the program you just entered, type "BSAVE LIGHTNING.SORT,A\$9400,L\$152" and hit RETURN. DOS will create a binary file named "LIGHTNING.SORT" and store in it \$152 (338 in decimal notation) bytes beginning at memory location $\$ 9400$ (decimal 37888).

## Program 6: Lightning Sort For The Apple

$\begin{array}{lllllllll}94 ø \varnothing-2 \emptyset & \text { B1 } & \text { Øø } & 2 \emptyset & \emptyset 5 & \text { E1 A5 Aø } \\ 94 \emptyset 8-85 & \text { FE A5 A1 } & 85 & \text { FD } & 2 \emptyset & \text { B1 }\end{array}$

| $9410-$ | $ø \emptyset$ | $2 \varnothing$ | E3 | DF | A2 | ø1 | A5 | 83 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9418- | 9D | 52 | 95 | 9D | 7A | 95 | A5 | 84 |
| 942の- | 9D | 66 | 95 | 9 D | 8 E | 95 | A5 | FD |
| 9428- | Dø | ø2 | C6 | FE | C6 | FD | AD | ¢3 |
| 9430- | 18 | BD | 7A | 95 | 65 | FD | 9 D | 7A |
| 9438- | 95 | BD | 8E | 95 | 65 | FE | 9 D | 8E |
| 9440- | 95 | 88 | Dø | EC | BD | 52 | 95 | 85 |
| 9448- | 15 | BD | 66 | 95 | 85 | 1D | BD | 7A |
| 9450- | 95 | 85 | 1 E | BD | 8E | 95 | 85 | 1F |
| 9458- | 29 | 12 | 95 | 90 | ¢4 | CA | Dø | E4 |
| 9460- | $6 \emptyset$ | A5 | 1 E | 85 | 1 A | A5 | 1 F | 85 |
| 9468- | 1 B | AD | $\emptyset 2$ | B1 | 1 A | 99 | FA | øø |
| 9470- | 88 | $1 \varnothing$ | F8 | $3 \emptyset$ | øB | 18 | A5 | 1C |
| 9478- | 69 | ¢3 | 85 | 1 C | $9 \varnothing$ | 02 | E6 | 1D |
| 948ø- | AD | ø2 | B1 | 1C | 99 | ED | øø | 88 |
| 9488- | $1 \varnothing$ | F8 | 20 | 1D | 95 | $9 \varnothing$ | E6 | 38 |
| 9490- | A5 | 1 E | E9 | ø3 | 85 | 1 E | Bø | ¢2 |
| 9498- | C6 | $1 F$ | $2 \varnothing$ | 12 | 95 | Bø | 1 F | Aø |
| 94AD- | ø2 | B1 | 1 E | 99 | ED | øø | 88 | $1 \varnothing$ |
| 94AB- | F8 | $2 \varnothing$ | 1D | 95 | Bø | E1 | A® | ø2 |
| 94Bø- | B1 | 1 C | 91 | 1 E | B9 | ED | $\varnothing \varnothing$ | 91 |
| 9488- | 1C | 88 | $1 \emptyset$ | F4 | $3 \varnothing$ | B7 | AD | $\emptyset 2$ |
| 94СØ- | B1 | 1 C | 91 | 1 A | B9 | FA | øø | 91 |
| 94C8- | 1 C | 88 | $1 \varnothing$ | F4 | 18 | BD | 52 | 95 |
| 94Dø- | 7D | 7A | 95 | 85 | 1 E | BD | 66 | 5 |
| 94D8- | 7D | 8E | 95 | 85 | 1 F | 66 | $1 F$ | 6 |
| 94ED- | 1 E | 20 | 12 | 95 | Bø | 16 | BD | 52 |
| 94E8- | 95 | 9 D | 53 | 95 | BD | 66 | 95 | 9D |
| 94Fø- | 67 | 95 | $2 \varnothing$ | 32 | 95 | E8 | 20 | 42 |
| 94F8- | 95 | 4C | 44 | 94 | BD | 7A | 95 | 9D |
| 95øø- | 7 B | 95 | BD | 8 E | 95 | 9 D | 8 | 95 |
| 95ø8- | $2 \varnothing$ | 42 | 95 | E8 | 20 | 32 | 95 | 4C |
| 9510- | 44 | 94 | AS | 1 D | C5 | $1 F$ | D0 | ø4 |
| 9518- | A5 | 1 C | C5 | 1 E | 60 | Aø | FF | C8 |
| 9520- | C4 | ED | Вø | ロB | C4 | FA | Bl | 66 |
| 9528- | B1 | EE | D1 | FB | Fg | F1 | 60 | C4 |
| 9530- | FA | $6 \varnothing$ | 18 | A5 | 1 C | 69 | g3 | 9D |
| 9538- | 52 | 95 | A5 | 1D | 69 | øø | 9D | 66 |
| 9540- | 95 | $6 \varnothing$ | 38 | A5 | 12 | E9 | ø | 9D |
| 9548- | 7A | 95 | A5 | 1 D | E9 | פø | 9 | 8E |
| 955ø- | 5 | $6 \emptyset$ |  |  |  |  |  |  |

## Program 7: Lightning Sort Loader For

 The Apple```
1\emptyset HIMEM: 384Ø\emptyset: HOME : HTAB 8: PRINT
    "APPLE LIGHTNING SORT DEMO"
2\emptyset HTAB 1ø: PRINT "LDADING LIGHTNING.SORT"
3\emptyset PRINT CHR$ (4) "BLDAD LIGHTNING. SORT"
4\emptyset HIMEM: 37887
5\emptysetN = 1Ø\emptyset\emptyset
6\emptyset DIM AA$ (N)
7\emptyset HOME : PRINT "CREATING "N" RANDO
        M STRINGS'
    8\emptyset FOR I = 1 TO N
    9Ø VTAB 2: PRINT I
    1\emptyset\emptysetN1 = INT ( RND (1) * 1\emptyset + 1)
    11\varnothingA$ = ""
    12\emptyset FOR J = 1 TO N1
    13Ø B$ = CHR$ (INT (RND (1)* 26 + 65))
    140 A$ = A$ + B$
    15Ø NEXT J
    160 AA$(I) = A$
    17\emptyset NEXT I
    18\emptyset PRINT "HIT ANY KEY TO START SORT"
    19\emptyset GET A$: IF A$ = "" THEN 19\varnothing
    2\emptyset\emptyset PRINT "SORTING..." CHR$ (7)
    21@ CALL 37888,N,AA$(1)
    22\emptyset PRINT "DONE" CHR$ (7)
    23\varnothing PRINT "HIT ANY KEY TO PRINT SOR
        TED STRINGS"
    24\varnothing GET A$: IF A$ = "" THEN 24\varnothing
    25ø FOR I = 1 TO N: PRINT I,AA$ (I): NEXT ©
```


## 

``` HTAB 1ø: PRINT "LOADING LIGHTNING.SORT" PRINT CHR\$ (4) "BLDAD LIGHTNING. SORT" HIMEM: 37887
\(5 \emptyset \mathrm{~N}=1 \varnothing \emptyset \emptyset\)
\(6 \emptyset\) DIM AA\$ (N)
\(7 \emptyset\) HOME : PRINT "CREATING "N" RANDD M STRINGS'
8ø FOR I = 1 TO N
\(9 \varnothing\) VTAB 2: PRINT I
\(1 \varnothing \varnothing N 1=I N T(\) RND (1) * \(1 \varnothing+1)\)
\(11 \varnothing A \$=" "\)
\(12 \emptyset\) FOR \(J=1\) TO N1
\(13 \varnothing \mathrm{~B} \$=\) CHR \(\$\) (INT (RND (1) * \(26+65\) ))
\(14 \emptyset \mathrm{~A} \$=A \$+B \$\)
NEXT J
160 AA \(\ddagger(I)=A \$\)
\(17 \emptyset\) NEXT I
\(18 \emptyset\) PRINT "HIT ANY KEY TO START SORT"
\(19 \varnothing\) GET A\$: IF A\$ \(=" "\) THEN 19ø
\(2 \emptyset \emptyset\) PRINT "SDRTING..." CHR\$ (7)
CALL 37888,N,AA\$ (1)
\(22 \emptyset\) PRINT "DONE" CHR \(\$\) (7)
23Ø PRINT "HIT ANY KEY TO PRINT SOR TED STRINGS"
\(25 \varnothing\) FOR I \(=1\) TO N: PRINT I,AA\$ (I): NEXT ©
```


## For the <br> Commodore 64

SuperTerm - the only software that communicates with them all! Information networks such as CompuServe; business and university mainframes; free hobby bulletin boards.

Professionals and students: SuperTerm's VT102 emulation gets you on-line in style. Advanced video features, graphics, full-screen editing, 80/132 column through sidescrolling. extended keyboard - perfect for EDT, DECMail, etc. Even download your workfiles and edit off-line! Full printer and editor support; other emulations available.
Researchers and writers: SuperTerm's built-in text editor helps you create, edit, print, save, send and receive text files - articles, stories, reports, inventories, bibliographies - in short, it's your information work station. Access
CompuServe, Dow Jones Information Network,
Dialog/Knowledge Index, Western Union's Easylink, The Source, and many more. Optional Sprinter accessory saves printing time and S (see below).

Computer hobbyists: Join in the fun of accessing hundreds of free bulletin board systems (BBS) for Commodore, Apple, TRS-80, etc. Text mode with all BBS systems; up/downloading with Commodore BBS systems (Punter protocol). Special protocol for up/downloading with other SuperTerm owners. Popular "redial-if-busy" feature for use with automodems.

Get the information you need, for business or for fun, with the software that communicates with them all!

Requires: Commodore 64, disk drive, and suitable manual- or auto-modem. Printer optional. Software on disk w/free backup copy. Extensive manual in deluxe binder.

## SuperTerm's

SPRINTER Accessory
With the Sprinter accessory, SuperTerm can perform concurrent printing - as text appears on your screen, it's simultaneously printed on your printer. Includes all necessary hardware for connecting your parallel printer and computer via the cartridge port. Simply plug-in and go. Free utility software for printing and listing as a stand-alone interface.

Requires: parallel printer such as Epson, Gemini, Microline, C.Itoh. (Min. speed 35 cps.)

Commodore 64 is a trademark of Commodore Electronics, Ltd.

# Aids For The Blind 

Computers provide new and powerful aids for blind people. With special input and output devices and programs, computers enable blind people to more effectively substitute hearing and touch for sight and to use books, magazines, and newspapers that would otherwise be inaccessible to them. Computers can help blind people enjoy new opportunities for education, employment, social interaction, and recreation.

Much of this information about aids for the blind has been provided by the staff of the Sensory Aids Foundation of Palo Alto, California. They train blind people in job skills and help them find suitable jobs. They receive support from some of the major computer and electronics companies in Silicon Valley, and have placed workers at these companies. Other information has been provided by Telesensory Systems, Inc., the developers of Optacon and VersaBraille.

## Computer Speech Synthesis

Speech synthesizers and text-to-speech conversion programs make it possible for computers to pronounce any word. The speech is not perfect, but people understand it easily after they get accustomed to it. During a visit to the Sensory Aids Foundation, I watched a demonstration of a talking terminal-a computer terminal combined with a speech synthesizer.

The blind user of the talking terminal has a control that lets him move a pointer to any line on the display screen. He can have the computer

[^0]announce what line the pointer is on and speak the words on that line. He can have it repeat any words or read letter by letter. He can use the keyboard to edit the line.

Talking terminals make almost all the capabilities of a computer accessible to blind people. At Sensory Aids, blind people learn to use talking terminals for data entry, information retrieval, word processing, and programming.

Many educational programs could be used by blind people if the computer spoke what appears on the display screen. Staff members at Sensory Aids are revising some popular programs so that blind people can use them. During my visit, I saw a version of MasterType that was adapted for the blind. In the MasterType program, letters and words "attack" a central station. The user defends the station by typing the letters and words before they reach the station. In the adapted version of this program, the computer says the letters and words to be typed, and announces whether they have been typed correctly and quickly enough to defend the station.

## Large Print Displays

Many people with impaired vision cannot read normal print, but can read large, high-contrast print. There are several ways to create large letters on the computer screen with standard equipment. One is to simply use a television or video monitor with a large display screen. Another is to use the computer's graphics capability to create large letters. In addition, many computer printers can produce large type on paper. With a suitable printer, any information stored in the computer can be printed in large letters.

A special large-print display processor, manufactured by Visualtek, magnifies letters on personal computer screens up to 16 times their
usual size. A control panel lets the user set the scanning rate at which the letters move across the display screen.

## Tactile Forms

Many people cannot see any letters, no matter how large. But these people can read when the letters are converted to a tactile form. One device which does that, Optacon, is already used by many blind people.

Optacon consists of a small camera, an electronics unit, and a stimulator array. The array is composed of 144 miniature rods. The electronics unit interprets the light pattern received by the camera and sends signals that cause certain rods to vibrate, thereby producing a tactile analogue to the light pattern. Some training is necessary to learn to read the vibrating patterns, but once this is mastered the blind person has access to all printed materials. Special adapters are available so that Optacon can be used to read computer screens and calculator displays.

Other devices use Braille, a system of writing in which each letter is represented by a pattern of raised dots in a $2 \times 3$ grid. Blind people read by feeling the dot patterns.

Although widely used, Braille has several disadvantages. Braille books are extremely bulky: A standard student dictionary fills a three-footsquare box. Braille typewriters are noisy and slow. Errors in Braille type cannot be corrected, since the raised dots cannot be erased. Braille books are therefore expensive, and most books, newspapers, and magazines are never made available in Braille.

## Braille Word Processing

Special Braille printers can be interfaced to computers so that any information in the computer can be transformed to Braille. This provides a remedy for the problem of Braille not being correctable. A word processing program can be used to produce a Braille text after all corrections have been made on the computer screen.

Other Braille output devices can be interfaced to computers. One example is a device that contains sets of pins arranged in the $2 \times 3$ Braille grid. Each pin can be raised or lowered, thereby providing a mechanical Braille display. This device can be controlled by computer programs to produce instant Braille for a blind computer user.

A special device called VersaBraille incorporates recent advances in computer technology. VersaBraille is composed of a mechanical Braille display, a cassette information storage component, and a specially designed Braille keyboard, all under the control of a built-in computer.
Information can be entered from the keyboard,
revised and corrected (editing capabilities are built-in), stored on cassette, and transformed to Braille whenever needed.

VersaBraille provides a solution to the bulkiness of Braille. It is a self-contained unit that is easy to carry and can store 400 pages of Braille on a standard cassette tape.

A major advantage of VersaBraille is that it can be linked to a computer via a standard serial interface. A blind person can connect VersaBraille to a computer and quickly transfer information from the computer to VersaBraille's cassette storage system. The VersaBraille can then be taken away from the computer and read where and when convenient. A VersaBraille user can also take notes during class lectures, write reports, or enter any other information. He or she can then connect VersaBraille to a computer, transfer the information to the computer's memory, and use the computer to print the information, store it, or send it to others via an electronic mail system.

## Compułerized Letter Recognition

Speech synthesizers and text-to-speech programs can convert any words stored in a computer to speech. Other devices can convert information stored in a computer to large letter displays or to Braille or other tactile signals. However, much of the information people need is in books, not computers. To fully use the capability of computers to convert text to speech, Braille, or large print, we need efficient ways of transferring text from books to computers.

Special cameras and pattern recognition programs have been used for some time to recognize specially designed letters and numbers, such as the account numbers on checks. The camera converts the pattern of each letter into a binary code. A computer is programmed to process the binary code and determine which letter it represents.

In the last few years, devices and programs have been developed which make it possible for computers to recognize most typewritten characters and to adjust automatically for different type styles and sizes. In the next few years, this technology is likely to be perfected and become more widely available. (Only very limited success can be expected with handwritten letters, due to the large variations found in even one person's handwriting.)

Letter-recognition devices can be combined with appropriate output devices to produce large size displays, speech or Braille. Letter-recognition devices can also be combined with Braille printers to expedite the production of Braille books.

## Converting Print To Speech

One impressive example of technology which serves the visually handicapped is the Kurzweil

Reading Machine that converts print to speech. This machine combines sophisticated pattern recognition, speech synthesis, and text-to-speech conversion capabilities. It lets blind users control how the material is read. They can set the speed of reading and adjust the tonality of the voice. They can stop the reading at any time, have the last few words or lines repeated, request the machine to spell out words or announce punctuation and capitalization, and mark certain words or phrases for later reference. This reading machine is currently a very expensive device. But as the technology advances and prices decrease, machines with these capabilities should become available to all blind people.

## Technology For The Blind

Of 51 blind people who were assisted by the Sensory Aids Foundation during a one-year period, fifteen are now programmers, computer operators, or systems analysts. Other occupations include design engineer, word processor, medical transcriber, account clerk, attorney, cashier, clerktypist, physicist, and college professor. Their employers include Apple, Hewlett-Packard, Pacific Telephone, Stanford Linear Accelerator, Department of Immigration, Internal Revenue Service, and other businesses, educational institutions, and government agencies.


Current technological aids include Optacon, VersaBraille, talking terminals, talking calculators, and closed circuit television systems that produce enlarged images of print on a television screen. These devices, and others now in development, can dramatically increase the opportunities available to blind people.

Kurzweil Computer Products, Inc. 33 Cambridge Parkway Cambridge, MA 02142<br>Sensory Aids Foundation 399 Sherman Ave., Suite 12 Palo Alto, CA 94306<br>Telesensory Systems, Inc. 3408 Hillview Ave. P.O. Box 10099 Palo Alto, CA 94303<br>Visualtek 1610 26th Street Santa Monica, CA 90404



OR Use like a disk drive. LOAD,
 SAVE, GET, INPUT, PRINT, CMD, OPEN, CLOSE-EPROM FILES!
Our software lets you use familiar BASIC commands to create, modify, scratch files on readily available EPROM chips. Adds a new dimension to your computing capability. Works with most ML Monitors too.

- Make Auto-Start Cartridges of your programs.
- The promenade ${ }^{\text {tw }} \mathrm{C} 1$ gives you 4 programming voltages, 2 EPROM supply voltages, 3 intelligent programming algorithms, 15 bit chip addressing, 3 LED's and NO switches. Your computer controls everything from software!
- Textool socket. Anti-static aluminum housing.
- EPROMS, cartridge PC boards, etc. at extra charge.
- Some EPROM types you can use with the promenade ${ }^{\text {tM }}$.


Call Toll Free: 800-421-7731

## In California: 800-421-7748

Last month we discussed how to make programs designed for the Atari 400 and 800 load and run automatically on the new XL series without having to hold the option key down. We also looked at a way to make patches into Atari DOS 2.0s to enable it to work with the new enhanced density 1050 disk drive. The procedure is easy, but requires two disk drives. Just type in the source code (the portion printed last month and the continuation found in this issue) using an assembler capable of placing its object code directly in memory. Assemble it after LISTing or SAVEing the source code to disk. After assembling it once, change line number 1000 to read:

1000 .OPT NOLIST,OBJ
and assemble the code once more.
DOS should now be patched. Hit the SYSTEM RESET key and give the DOS command from your assembler. You should now be in the DOS menu (if you're not, something has gone wrong). Format a new disk using option I and then write the DOS files using option H . This will insure that everything is right and will give
you a safe copy of your newly patched DOS.

## The Tricky Part

There's one more step necessary to finish the procedure. Turn off your computer, put your BASIC (or BASIC XL) cartridge into your machine, and turn the power back on, thus booting the disk that was just formatted. Place a blank diskette into the 1050 drive that you are using as drive 2 and, from BASIC, type the following command:

```
XIO 254,#1,0,34,"D2:"
```

Drive 2 should now contain an enhanced-density diskette. Now hit the SYSTEM RESET key so that DOS will recognize the new density. Finally, go into DOS and write the DOS files to the new diskette (D2), using option H from the menu.

If everything has been done properly, drive 2 should now have an enhanced-density diskette containing the patched DOS. Once you have this master completed, creating others is simple and can be done with the I and H options in the DOS menu.

Patches To Atari DOS 2.0s






# Commodore Autoboot 

David W．Martin

This utility makes loading and running programs quick and easy，and can also be used as a form of copy protection．For the VIC－20 and Commodore 64 with a disk drive．

Have you ever wondered how some commercial programs run automatically after they＇re loaded？ ＂Autoboot＂enables you to add this convenient feature to your own programs．

Type in and SAVE Autoboot．VIC users should substitute the following for lines 481 and 491 before saving：

```
481 DATA 165,175,133,46,165,174,133,45,32
    ,89,198,32 :rem 234
4 9 1 ~ D A T A ~ 1 4 2 , 1 9 8 , 7 6 , 1 7 4 , 1 9 9 ~ : r e m ~ 7 7 ~
```

To use Autoboot，first load the BASIC pro－ gram that you want to make bootable．Then enter POKE 43，0：POKE 44，1 and SAVE the pro－ gram using a different filename．This version of the program will be used by Autoboot．Now load and run Autoboot and enter the name of the modified version when prompted．Autoboot will then turn it into an autoboot program by directly changing certain disk sectors．The sector numbers are displayed on the screen as Autoboot runs．

Since the VIC and 64 automatically relocate programs when loading，all autobooted programs must be loaded using a nonrelocatable load as follows：

## LOAD＂filename＂，8，1

Of course，any BASIC program can be made to load and run from disk just by typing：

LOAD＂filename＂，8：
and pressing SHIFT－RUN／STOP instead of RETURN．But the power of Autoboot lies in the copy protection it provides．To copy protect your autorun programs，add POKE 808，100（VIC），or

POKE 808，234（64）as the first line in your pro－ gram before saving the modified version to be used by Autoboot．This will disable the RUN／ STOP key，the RESTORE key，and the LIST command as soon as the program runs．Since the autobooted program will run as soon as it＇s loaded，the user won＇t be able to break out of the program to SAVE it．

## Autoboot

Refer to the＂Automatic Proofreader＂article before typing this program in．

| $10 \emptyset$ | PRINT＂\｛CLR\} AUTOBOOT ":T=18:S ＂：OPEN15，8，15，＂I＂＋D\＄ | $": T=18: S=1: D \$=" \varnothing$ |
| :---: | :---: | :---: |
| 10 | OPEN2，8，2，＂\＃＂＋＂Ø＂ | m 234 |
| 120 | REM＊＊＊＊LOCATE TARGET | GET ：rem 158 |
| 130 | INPUT＂FILENAME＂；NA\＄：LN＝LEN（NAS） |  |
|  |  | ：rem 139 |
| $14 \varnothing$ | GOSUB21ø：GOSUB3øø | ：rem 245 |
| 150 | IFT＝øTHENPRINTNAS＂NOT FOUND＂ |  |
|  |  |  |
| 160 | GOTO14ø | ：rem 1ø1 |
| 170 | GOTO54ø | em 106 |
| 180 | REM＊＊＊POINT TO BYTE AND GE | E AND GET IT INTO |
|  | \｛SPACE \}X. | 8 |
| 190 | PRINT\＃15，＂B－P：＂2，L：GET\＃2，AS： 1 |  |
|  | ENA\＄$=$ CHR\＄（ $\varnothing$ ） |  |
| $2 \varnothing \emptyset$ | $\mathrm{X}=\mathrm{ASC}(\mathrm{A}$ ）：RETURN |  |
| 210 | PRINT＂TRACK＂T＂SECTOR＂S |  |
| 220 | PRINT\＃15，＂Ul：＂2；D\＄；T； | T；S ：rem 204 |
| 230 | L＝$\varnothing$ ：GOSUB18 1 ： $\mathrm{T}=\mathrm{X}: \mathrm{L}=1: \mathrm{GOSUB18}$（ $\mathrm{S}=\mathrm{X}:$ RET |  |
|  | URN |  |
| 24ø | REM＊＊＊CHECK FOR FULL MATCH | ULL MATCH ：rem 221 |
| 250 | FORJ $=1 T O I+L N: L=J: G O S U B 18 \emptyset: I F X=\emptyset O R X=16$ |  |
|  | ØTHEN27Ø | ：rem 130 |
| 260 | X\＄$=\mathrm{X}$ \＄＋CHR\＄（ X$)$ ： NEXTJ | ：rem 101 |
| 270 | IFX\＄＜＞NASTHENX $=$＂＂：RETURN | RETURN ：rem 23 |
| 280 | L＝I－2：GOSUB18Ø：TT＝X：L＝I－1：GOSU$=\mathrm{X}:$ PRINT |  |
|  |  |  |
| 290 | GOTO34ø | ：rem 107 |
| $3 \varnothing \square$ | REM＊＊＊CHECK THROUGH ONE BLOC AME MATCH |  |
|  |  |  |
| 310 | FORI＝5TO23ØSTEP32 | ：rem 15 |
| $32 \varnothing$ | L＝I ：GOSUB180 ： $\operatorname{IFCHR}$ \＄（X）＝LEFT\＄（ | $(\mathrm{X})=\mathrm{LEFT}$ \＄（NAS， 1 ）TH |
|  | ENGOSUB24ø | ：rem 95 |

110 OPEN2，8，2，＂キ＂＋＂の＂
$12 \emptyset$ REM＊＊＊＊LOCATE TARGET ：rem 158
$13 \varnothing$ INPUT＂FILENAME＂；NA\＄：LN＝LEN（NA\＄）
：rem 139
$14 \varnothing$ GOSUB21ø：GOSUB3øø ：rem 245
$15 \emptyset$ IFT＝ØTHENPRINTNAS＂NOT FOUND＂：GOTO54ø
：rem 18
$16 \varnothing$ GOTO14ø ：rem 1 101
$17 \varnothing$ GOTO54の ：rem 106
$18 \emptyset$ REM＊＊＊POINT TO BYTE AND GET IT INTO
 ENA $=$ CHR $(\varnothing)$ ：rem 197
$2 \emptyset \emptyset \mathrm{X}=\mathrm{ASC}(\mathrm{A} \$):$ RETURN ：rem $2 \varnothing 6$
$21 \varnothing$ PRINT＂TRACK＂T＂SECTOR＂S ：rem 148
22ø PRINT\＃15，＂Ul：＂2；D\＄；T；S ：rem 2ø4
$23 \varnothing \mathrm{~L}=\varnothing$ ：GOSUB18ø：T＝X：L＝1：GOSUB18 $0: S=X: R E T$ URN ：rem 71
$24 \emptyset$ REM＊＊＊CHECK FOR FULL MATCH ：rem 221
250 FORJ＝ITOI＋LN：L＝J：GOSUB18ø：IFX＝ØORX＝16 ØTHEN27 0
：rem 130
$26 \varnothing \mathrm{X}=\mathrm{X} \$+\operatorname{CHR} \$(\mathrm{X}):$ NEXTJ ：rem $1 \varnothing 1$
$27 \varnothing$ IFX\＄＜＞NASTHENX\＄＝＂＂：RETURN ：rem 23
280 L＝I－2：GOSUB180：TT＝X：L＝I－1：GOSUB180：SS ＝X：PRINT ：rem 142
290 GOTO34ø ：rem $1 \varnothing 7$
3øØ REM＊＊＊CHECK THROUGH ONE BLOCK FOR N AME MATCH ：rem 54
310 FORI＝5TO23ØSTEP32 ：rem 15
$32 \varnothing$ L＝I ：GOSUB18 ：IFCHR $(\mathrm{X})=\mathrm{LEFT} \$(\mathrm{NA} \$, 1) \mathrm{TH}$ ENGOSUB24ø

|  | NEXTI : RETURN | m 56 |
| :---: | :---: | :---: |
| 40 | REM *** ACCESS 1ST SECTOR OF | RGET $P$ |
|  | ROGRAM | : rem 199 |
| ¢ | $\mathrm{T}=\mathrm{TT}$ : S=SS : GOSUB21ø | m 142 |
| $36 \varnothing$ | L=2: GOSUB180: AL=X: | Ø: $\mathrm{AH}=\mathrm{X}: \mathrm{S}$ |
|  | $A=A L+A H * 256$ | :rem 183 |
| 370 | IFSA<>256THENPRINT:PRINTNAS" | IS NOT P |
|  | REPARED FOR AUTOBOOT":GOTO54 | :rem 142 |
| $38 \emptyset$ | REM *** ESTABLISH FALSE STAC | : rem 125 |
| $4 \varnothing \varnothing$ | PRINT\#15, "Ul: 2 ; DR;TT |  |
|  |  | m 104 |
| 410 | FORPB $=173 \mathrm{TO} 254 \mathrm{ST}$ | B-P: " 2 ; |
|  | PB | rem 74 |
| 420 | PRINT\#2, CHR\$(96) ; | :rem 160 |
| $43 \varnothing$ | PRINT\#15, "B-P: "2; PB+1 | : rem 113 |
| 440 |  | XT: PRINT |
|  |  | :rem 22 |
| 450 | PRINT\#15, "U2: ".2; DR; TT; SS | :rem 167 |
| $46 \square$ | GOSUB21 $\emptyset: P R$ INT | :rem 116 |
| 470 | REM ***PUT AUTOBOOT CODE ONT | PAGE 3 <br> : rem 14 |
| 481 | DATAl65,175,133,46,165 | , 45,32, |
|  | 89,166,32 | :rem 229 |
| 491 | DATA 142,166,76,174,167 | :rem 67 |
| 5 ¢ø | PRINT\#15, "Ul: 2 ; DR;T; | :rem 251 |
| 510 | FORPB=165TO121: READBY:PRINT\# | 5, "B-P: " |
|  | 2; PB | :rem 194 |
| 520 | PRINT\#2, CHR\$ (BY) ; : PRINT". | NEXT: PRI |
|  | NT:PRINTNA\$" CAN NOW BOOT ITS | ELF" |
|  |  |  |
| 540 | PRINT\#15, U2: ${ }^{\text {2; DR; }}$; S | :rem 255 |
| 540 | CLOSE2:CLOSE15 | rem 87 © |

## ATTENTION COMMODORE 64 OWNERS: "Is THE CLONE MACHINE really dead?"

Yes, there comes a time when a product grows old and isn't the latest state of the art. Thank goodness we understand that here at Micro-W. Our all new version (known as SUPER CLONE) will surely prove that we are still number one in the back-up business. You'll still get the old reliable Clone Machine but we've added the following: 1) A fast clone copy (approx. 14 minutes) that's simple to use 2) A Super Unguard utilility that quickly handles errors 20 thru 29 (and you don't even have to disassemble your drive like some of our competitors suggest) 3) A new unique way to back-up formerty uncopyable software.
Don't worry if you are a registered owner of our earlier version, we've got you on file and this upgrade will only cost you $\$ 10$ plus shipping and handling. Dealers, call us for stock balancing on old merchandise.
STILI ONLY \$49.95*


Should've made back-ups with Super Clone

# Atari Paddle Fixer 

William Griner

Here's a quick fix for the Atari paddle jitters that still preserves the paddles' range.

The Atari paddles are so sensitive that the heat of a hand or any jarring can change their value. Some paddle-based games don't take the sensitivity into account, causing their characters to flicker annoyingly. Try this:

[^1]
## Centered Values

The above subroutine keeps the paddle centered between the adjacent values. It takes a difference of two steps or more to change the paddle value. This is not to say that the paddle will use only all even or all odd values. For example, if the paddle is at value 77, it will not be allowed to move directly to 76 or 78 . If you want to move from 77 to 78 , you will have to move to 80 or 75 , then to 78 .

## Better Than Brackets

This method is better than dividing the paddle range by a number since doing so creates fixed brackets of possible values and does nothing to keep the paddle value from straddling the bracket boundaries. This method could also be used to keep the paddle in a wide bracket, allowing only for coarse movement, yet giving access to the entire range of the paddle's values.

# Apple Editing Hints 

Patrick Moyer


#### Abstract

Most computer owners develop a love-hate relationship with at least one feature of their machines. For Apple owners, this feature is often the editing functions. Here is a review of Apple editing controls and protocols and some tips on making the process easier and more effective.


The Apple uses a combination of screen editing and line editing. Changes are made by moving the cursor to a particular line which has been listed on the screen and retyping that line. This retyping is usually accomplished with the right arrow key. As the right arrow is pressed, the cursor moves to the right, reentering all it passes over. A change is made by typing over what is already there, or by inserting the correction through a combination of cursor moves.

## Physical, Logical

Therefore, to make a change, we must specify the line to be changed. In this case, we are talking about a line of BASIC, not a line displayed on the screen. The BASIC line is called a logical line, as opposed to the physical line that is displayed on the screen. A logical line may contain multiple BASIC commands and may be up to 255 characters long. The physical display line is the 40 -letter width of the screen.

Before a BASIC line can be changed, it must be listed. It is best to clear the screen with the HOME command initially. This eliminates confusion about what was changed and what wasn't.

When a line is listed, the computer puts one space between words or variables, two spaces after the line number, seven spaces at the end of the first physical line, and five spaces on the right and left sides of the remaining physical lines.

Most of the time, these extra spaces and lines are of little consequence. One can just merrily right-arrow over them with no harm. The one exception occurs in string information (characters in quotes). This causes a problem. If a string is broken between two or more physical lines during the listing process, and you rightarrow to retype, 12 additional spaces will be inserted between the last character on the first line and the first character on the next line. Certainly not what's wanted. The common solution is to
avoid the right arrow and use the cursor with the $<\mathrm{ESC}>\mathrm{K}$ sequence instead.

## Simplified Cursor Control

There's an even simpler solution. Let's edit a line step by step to demonstrate this technique (<ESC> is the ESC KEY, <RET> is the RETURN KEY):
Here's the line as originally typed:

## 10PRINT"THIS IS A LONG LINE OF STRING DATA" $<$ RET $>$

List the line. It looks like this:
LIST10<RET>
10 PRINT "THIS IS A LONG LINE OF STR ING DATA"

We then type $<$ ESC $>$ I, repeating the I key until the cursor is over the second digit of the line number; J is pressed to move the cursor one space to the left. (This J keypress is important. If you forget it and continue the editing process, you will gain a line in your program. Line 0 will be created, but more about that later.)

Once you've moved left, leave <ESC> mode. This is done by pressing any key not having meaning in <ESC> mode. Because some keys not normally used for cursor movement do have special meaning, it's best to press the space bar. Remember, this will not move the cursor.

We can now use the right arrow to "retype" the line to the place of the change. The repeat key can be used to speed this process. Let's say you've used the right arrow until it appears after the last quote. The line on the screen looks no ${ }^{\circ}$ different. However, if we LIST the line, we now see this:

## 10 PRINT "THIS IS A LONG LINE OF STR ING DATA"

If we type RUN we get:

## RUN<RET>

THIS IS A LONG LINE OF STR ING DAT A

## Eliminating Problem Margins

The common solution, again, is to right-arrow to the R in STR, then type <ESC> and press K repeatedly to move the cursor until you reach the I in ING. Anyone who has done this often will know how easy it is to forget $<\mathrm{ESC}>\mathrm{K}$, and end up with a string of K's.

The solution is simply to eliminate those extra margins unless you need them. Let's start
with the same original line: 10PRINT"THIS IS A LONG LINE OF STRING DATA" $<$ RET $>$

To edit the line we type:
HOME:POKE33,30:LIST10<RET>
The HOME gives us a clean screen to work with; the LIST puts the line to be edited on the screen. A POKE instruction places a single number into an "address" in the computer's memory. Address 33 controls the width of the screen display. Placing the number 30 in it reduces the size of the screen to 30 characters wide rather than 40.

Caution: The POKE must be done before the LIST for this method to work. The HOME is optional, but prevents a very confusing screen. (Try it. You'll see what I mean.) The screen will erase and display:

## 10 PRINT"THIS IS A LONG LINE OF S TRING DATA"

As you can see, the line is 30 characters wide without the extra margin spaces. Move the cursor to the line number as usual. The right arrow may be used without ill effect. It will go directly from the $S$ on the first display line to the $T$ on the second line without inserting any blanks. This eliminates the need to use the <ESC> K sequence.

Once you have finished editing, you will need to type TEXT. This command will return you to normal 40-character screen mode.

## Duplicating Lines

One strength of Apple II editing is the ability to duplicate lines. Let's try an example:

## HOME: POKE33,30:LIST10<RET> 10 PRINT"THIS IS A LINE TO BE DUPLICATED"

Next move the cursor up to the line using the normal $<\mathrm{ESC}>\mathrm{I}$. When the cursor arrives over the number, move it left until it is over the first digit of the number. Then press the space bar as before; but prior to using the right arrow, retype the line number, say, 20 . Then use the right arrow to "retype" the line as described above until you reach the end of the logical line. At this point, press RETURN. If you LIST the program, you'll see:

## HOME:POKE33,30:LIST<ret> <br> 10 PRINT"THIS IS A LINE TO BE <br> DUPLICATED" <br> 20 PRINT"THIS IS A LINE TO BE DUPLICATED"

Once you have moved your cursor up to the number and changed it, you do not have to reuse the entire line. You can treat it like any line to be edited further if necessary.

## Easy Program Merge

This technique can also be used on a limited scale to merge two programs. Let's say you have a favorite subroutine of three or four lines which you wish to add to a program. You could use the merge function of the Renumber program on the Systems Master, or the program that is part of the Programmer's Toolkit. If you don't have these programs or you don't have them handy, here is a simple procedure:

1. Save the program you are working on.
2. Load the program which contains the lines to be copied to your new program.
3. Clear the screen, change width, and list lines (using HOME:POKE33,30:LIST statements).
4. Now, load the program the lines are to be added to.
5. Using the normal $<\mathrm{ESC}>$ and right-arrow commands, edit each line without changes. It's best to edit the last line first and work up the screen, entering each line one at a time. This is because when multiple lines are listed and edited, once $<$ RET $>$ is pressed, the line number below it is partially destroyed and has to be retyped by hand. There's nothing wrong with changing the line numbers to fit your new program if the current line numbers are a problem.
6. Once all lines are edited, save the program. If you list it, you'll find the lines are now part of your program.
Finally, if you want to cancel a particular change as long as you have not pressed $<$ RET $>$ yet, cancel the editing of the line by typing <CTL> X. Be sure that you press the <CTL> key first, then $X$. The machine will answer with a backward slash. If you list the line, it will be unchanged.

## wabash

When it comes to Flexible Disks, nobody does it better than Wabash.

MasterCard, Visa Accepted.
Call Free: (800) 235-4137


## PACIFIC EXCHANGES

100 Foothill Blvd San Luis Obispo, CA 93401 . (In Cal. call (805) 543-1037)

# Math And Tables 

I'm frequently asked for addresses within ROM that do certain operations, usually mathematical functions. I do my best to talk programmers out of this approach if possible.

For one thing, the addresses of the ROM routines vary from machine to machine. I'd prefer to see a programmer borrow the code from the ROMs and include it in the program. At least that way, transportability is not a problem.

Using ROM math routines is often awkward. They often call for one or more values to be placed into floating point accumulators before calling, and return values in the same areas. A floating point number is often an inconvenient format and takes a fair-sized conversion routine to bring back to the more convenient "fixed point" notation used by most machine language programmers. The total effort can turn out to be greater than programming it yourself.

But the main reason that I try to discourage use of these routines is this: They are designed for a certain number of digits of accuracy, and your program usually wants either greater or less accuracy. If you need less, you're wasting processor time working out the extra places. If you need more, the built-in routine will not do the job for you.

## A Question

I was recently asked by a user to supply the address of the logarithm routine within a certain computer. It would have been easy to just answer the question, but I balked. I asked the user to define his objective.

This makes an interesting case history, since the objectives were changed partway through the exercise. We have a chance to see a couple of approaches to avoiding the built-in routines.

My first thought was to replace the ROM log routine with a streamlined machine language version. There are several efficient ways of calculating a logarithm; any book on numerical analysis (or an encyclopedia) will supply information on this.

## First Approach

After questioning the user closely, the objective appeared to be this: An eight-bit reading was being taken from a remote device. He desired to convert this reading to a base ten logarithm (with appropriate scaling) for display purposes, and the accuracy of the result was to be 16 bits.

My concept of the approach changed. The magic words, "eight bits," had been spoken. The objectives were still a bit fuzzy, since it's hard to get a full 16 bits of useful data when your original data was only 8 bits accurate; but not to worry on that score for the moment.

Here's the pitch: If you have an eight-bit value to work through any mathematical function, use a table. There are only 256 possible values to be worked out, 256 questions and 256 corresponding answers.

We'll need to have two tables-one for the low part of the answer and one for the high part-but that's no problem: 512 bytes of storage is usually not hard to come by.

Looking up things in a table of 256 values is the ultimate in simplicity. It's sometimes called a "list type lookup," and the principle is very simple. Put the original value into an index register, and read out the indexed answer. Our code might read something like the following:

```
LDX -input register-
LDA LOWTABLE,X
STA LOWRESULT
LDA HIGHTABLE,X
STA HIGHRESULT
```

No loops, no math, no complexity: Five instructions and it's done. We must be sure to prepare the table in advance, but that's a one-shot task. In fact, BASIC could do the job for us and POKE the values into the table.

## Second Approach

When the requirement was examined more closely, the rules changed and the problem was inverted: Given a 16 -bit reading, compute the base ten logarithm to 8 bits of accuracy. The eight bits, by the way, were to be used to draw a high-resolution graph; 256 points were quite sufficient for the resolution required.

This requirement makes a little more sense: Converting 16 bits into 8 involves a loss of accuracy, but that was compatible with the display objective.

We still have the magic words "eight bits" embedded in the problem, but this time they describe the result. We can still use our table approach if we invert the way we use the table.

Let's build our table this way: For each of the 256 entries, we'll put the corresponding "anti logarithm" in the table. When we search the table to find the closest match to our original value, the answer will turn out to be the number of the table entry.

An example might illustrate what I mean here. Suppose the 16 -bit input number has a value of 2000. The desired result, allowing for the scale, will be 165 . In slot 165 of the tables (high and low), I'll find a value that's quite close to 2000. My task: search the table to find the closest value.

## Binary Splitting

This isn't hard to do. Most of us have learned to search a table by using a "binary split" method, splitting the table in half again and again until we find the value we want. And on a table of size 256 , a computer can do a very efficient job of binary splitting. Eight comparisons and it's all over.

The code would follow these lines:
LDA \#\$80
STA MASK

This says, "we're going to split the table into chunks of 128 (hex 80) this time around."

```
LDX #$00
STX POINTER
```

We'll kick off starting at position zero in the table. Here comes the loop:

## LOOP LDA POINTER ORA MASK TAX

We've added our offset of 128 to the starting position of zero, so our first comparison will be at the midpoint of the 256 table.

## COMPARE .....

Let's fudge the COMPARE coding for the moment. We'll need to load our high and low bytes into A, compare to the table high and low (indexed, of course) and decide whether our value is higher or lower than the table entry. If our value is LOW, we'll branch ahead to LOW; otherwise, we continue with HIGH:

## HIGH STX POINTER

If our value is high, we store the index. If not, we skip this instruction and continue with the old value in POINTER.

## LOW LSR MASK

Our mask contained 128, the size of the "split." Now we are dividing it by two so that it becomes 64 , and 32 the next time, followed by 16, and so on. Eventually, we'll end up with zero as the bit rolls out of the end of the byte.

BNE LOOP
We go back to do another comparison. Let's see what has happened. POINTER started at zero. If our input value is lower than table item 128 , POINTER will stay at zero and the next comparison will be with item 64 . On the other hand, if our input value is higher than table entry 128 , POINTER will be changed to 128 , and the next comparison will be with item 192. In other words, we'll split the upper half or the lower half depending on how the previous comparison went.

It's not hard to see how the program zeros in on the answer after eight comparisons. Finally, MASK becomes zero, the program stops looping, and the answer may be found in POINTER.

The user started out looking for a logarithm routine in ROM, and ended up with something much better: faster, more compact, and wellsuited to the application.

And there was a free bonus. After looking at this approach, the user discovered that he could do something he had previously thought impractical: switch to a new display scale-linear, split scale, or whatever-with no difficulty. It was just a matter of turning the tables.

# Commodore Disk Pattern Matching Part 1 

Jim Butterfield, Associate Editor

The flexible Commodore DOS allows the user to LOAD, Scratch, and obtain a directory of files using the symbols * and ? as pattern matchers. The quirks of these two symbols can, however, cause problems. For one thing, you might accidentally erase an entire diskette.

Commodore disk drives are versatile; sometimes we don't realize how versatile they are. In this article, we'll discuss pattern matching: how it works, and how to use it to get rid of an annoying "comma" file that sometimes appears on your disk directory.

First, a recommendation: Unless you have 4.0 BASIC (in the PET/CBM series of computers), learn how to use the Wedge or DOS Wedge utility program. It's a great convenience. We'll refer to wedge commands within this article. The DOS Wedge has many handy features, but the two most important are these: You can find out about a disk error at any time by typing the @ key followed by a RETURN; and you can examine a disk directory without disturbing the program within your computer's memory by typing @\$ followed by RETURN.

## Pattern Matching

It's possible to identify one or more programs on disk without specifying their full names. Match the missing part of the filename by using a pattern. The two characters used for this are:
? - to match any single character;

*     - to match any following characters.

If I have two files, one named DIG and the other, DOG, I can specify a name which matches both files with D ?G-the question mark matches any character. If I have files named HOUSE, HO, HOTDOG, and HORRIBLE, I can match them all with $\mathrm{HO}^{*}$-the asterisk matches any group of characters, including no character.

This is good if you can't remember a filename exactly. If you have a file that might be called CATFOOD or might be called CAT FOOD, but you can't remember which, you can load it regardless of name with LOAD "CAT*",8. The first file whose name begins with CAT will be loaded. Unfortunately, you might discover that instead of the program you wanted, you have loaded something else, such as CATCH-MICE. The first name in the directory that matches will be the one loaded.

We can use pattern matching to get around this problem. If you load the directory using pattern matching, you'll see all programs that fit the pattern. To examine CAT programs, type:

```
LOAD " \(\$ 0:\) CAT" \(^{*}, 8\)
```

or, with the wedge program:

## @\$0:CAT*

You'll see a list of all programs (if any) whose names begin with the characters CAT, which allows you to select the one you want.

## Command Variations

Note that LOAD picks the first program that matches, but the directory picks all programs that match.

It's probably obvious that SAVE must not al-
low pattern matching. You must save a real name, not an approximation. Thus, SAVE "CAT"", 8 will produce a syntax error from the disk.

The Scratch command does accept pattern matching; all files that match will be removed from the disk. Use pattern matching with great care when using Scratch; you could remove more files than you planned.

To scratch all files from a disk that begin with the letter M , you would type the following:

OPEN 15,8,15
PRINT\#15,"S0:M*"
or, using the wedge:

## @S0:M*

Be careful. There might be more files starting with M than you expected. Take a directory listing first (using pattern matching, of course).

Here's another example. Suppose you've been writing a BASIC program called DIS. As you write code, you save the program from time to time, creating DIS1 and DIS2. Then you start testing and correcting, saving new versions as you go, and create DIS3, DIS4, and DIS5. Finally, you're satisfied, and you save your final version as DISK/EDIT. How can you get rid of your five development programs, named DIS1 to DIS5? Easy. Scratch pattern DIS? and they will all go. DISK/EDIT will stay, since the ? character matches only a single character. Do not scratch pattern DIS* since that would definitely clobber DISK/EDIT.

But be careful. Just before you give the command to scratch pattern DIS?, take a directory with the same pattern. You might have other files called DISK or DISH that match the same pattern. So you might code:

## LOAD "\$0:DIS?"

LIST
or, with the wedge:
@\$0:DIS?
You'll see the programs that match the name pattern. If they are exactly the ones you want, type the Scratch command; or with the wedge, you can go back and type over the dollar sign with the letter S; pressing RETURN will scratch these files.

## New Patterns

There are other patterns that are less wellknown. For example, a filename is a pattern; it must be matched exactly. Thus, if I have a file named HOG and I want to see that it is in the directory, and perhaps check the number of blocks, I can type:

## LOAD " $\$ 0: \mathrm{HOG}^{\prime}, 8$ <br> LIST

or,
@\$0:HOG
The only item in the directory will be file HOG (if it exists).

Let's take this a step further. Suppose I don't want to see any file details. All I need is the title of the disk, its ID, and the number of blocks free. That's easy: Just specify a file that does not exist on the disk. The directory will then consist of the title line and the blocks free information. I often ask for a directory using a filename such as $0: \# \$ \&!\%$. This isn't an expletive; it's just a name that I know doesn't exist on the disk so that I'll get the blocks free count.

## The Lone Asterisk

You would think that a pattern consisting of only a single asterisk would mean "any file." Thus, a command such as LOAD "*", 8 would bring in the first file since anything will match. That's not quite correct: The asterisk often has a special meaning.

The single asterisk sometimes means "same name as last time." It may have been Commodore's intention to allow a user to load a program, and later save it with the same name with SAVE "*", 8 , the asterisk meaning "same name as before." This was never implemented fully, but you can see traces of this idea in the dual disk copy command. If you have a dual disk, type:
@C1:* $=0:$ PROGNAME
We can see that this command asks to copy a file called PROGNAME to drive 1; but what name will the new file be given? The destination name is *-which in this case means "same name." Thus, the new file will be named PROGNAME, too. It seems that it was originally Commodore's intention to allow copying to take place with pattern matching, so that $\mathrm{C} 1: *=0: \mathrm{RA}^{*}$ would copy all files whose names started with RA from drive 0 to drive 1 with the same name. If you have a dual drive, try it; it almost works correctly.

So it turns out that LOAD "*", 8 does not always load the first file on the disk. Sometimes it loads the same file that was previously loaded.

## Specifying Type

You may specify a file type by adding an equals sign to the pattern followed by the file designation: S for Sequential, P for Program, U for User, and R for Relative types. You may also type the three-letter designation such as SEQ or PRG if you wish. Thus, $0:^{*}=S$ will reference all sequential files, $0: B^{*}=P$ will reference all programs whose names start with $B$, and $0: ?=P$ will reference all programs with one-letter names.

Next month we'll look at a common disk error and a way to fix it.

# Writing An Educational Program 

I'm sure you already know or have read what a "good" educational program should contain. I'd like to discuss how you actually program an educational program. I decided that the best way I could describe the process was to write a program, then provide a step-by-step explanation of what I did.

The hardest part of writing any program is deciding the topic and the type of program-drill and practice, tutorial, simulation, game, etc. I picked a very popular topic for computer programs, the Morse code, and decided to do a drill-and-practice program. Quite a few readers have requested programs for secondary school students, so next month I'll present a tutorial on a high school subject.

## Memorization Quiz

A drill-and-practice program is useful for any subject that requires memorization. The usual procedure is to ask a question, then have the student input an answer. If you can avoid INPUT and use CALL KEY instead, there will be much less chance for errors or "crashing" the program. In the "Morse Code" program, the quiz will be to press the letter or number after the computer displays a code.

I decided to use the numbers from 0 to 9 and the whole alphabet in the quiz. Since each number and letter corresponds to a code, I set up the array $\mathrm{M} \$$ to contain the codes. $\mathrm{M} \$(0)$ through $\mathrm{M} \$(9)$ will hold the codes for the numbers in order from 0 through 9. The alphabet will be in $\mathrm{M} \$(10)$ through $\mathrm{M} \$(35)$. Since we need 36 elements for the array, line 160 dimensions M\$. Lines $170-190$ READ the codes for $\mathrm{M} \$$ from data in lines 200-250. The data items are in orderfirst the numbers then the alphabet-each item separated by a comma.

## Dots And Dashes

I started out using periods for dots and minus
signs for dashes, but decided it was too difficult to type periods with commas-too much chance for typing errors in the DATA statements. Also, the minus sign requires the SHIFT key and the period doesn't, so the typing was a little more complex. I looked on the ASCII character code chart to see what symbols I wouldn't be using in regular printing and decided to use the ampersand (\&) to represent a dash and the percent sign (\%) to represent a dot.

I borrowed my son's Morse code chart and converted the dots and dashes into \% and \& signs. These codes are in the DATA statements of lines 200-250. You may use longer DATA statements if you like (the TI accepts up to four screen lines for each numbered line), but I kept the statements shorter to make it a little easier to type and debug.

The next step was to design the graphicsthe dots and dashes. The \% sign represents a dot in the DATA statement codes and is redefined in line 140 using a CALL CHAR statement so that it will draw a dot on the screen. The \& sign is redefined as a bar-shaped figure in line 150 . When a dash is printed on the screen, it will actually be three \& signs placed together.

The subroutine in lines $360-470$ is the main section of coding that translates a code in $\mathrm{M} \$$ to the graphic representation on the screen. Looking at a code, if the symbol is \% we need to draw a dot, and if the symbol is \& we need to draw a dash. This process continues for the entire data, which can be from one to five dots and dashes. Line 360 instructs the computer to check from 1 to the length of the data (which will be from 1 to 5). Line 370 assigns a one-character value to $A \$$ for every increment of the FOR-NEXT loop in line 360 . This one-character value is the symbol in the Jth place of the string in the DATA statements. Lines 380-430 instruct the computer to print a dot if the symbol is \% and a dash (which
is \&\&\&) if the symbol is \&. I put a space after the dot or dash to separate them slightly on the screen. You could use CALL HCHAR instead if you wish, but I used PRINT. By printing with semicolons, everything will stay on the same line and be printed right after the previous printing.

## Making Some Noise

Since the TI has sound, we can use sound in our Morse code program. Besides that, real Morse code transmission is by sounds. Line 390 plays a sound for a dash, and line 420 plays a different sound for a dot. I used a sound duration of 300 for the dash and 60 for the dot. As you learn the Morse code, you'll probably want to shorten those durations. You should also try different frequencies instead of the one I chose (131) or combinations of frequencies and noise numbers to get a sound you like. Line 440 stops the sound so that dots and dashes are distinct. If you don't have this statement, dashes would run together and you wouldn't be able to tell how many dashes there should be.

Line 450 forces the loop to go to the next symbol in the code. Line 460 PRINTs to get off the present line (colon means "go to the next line ${ }^{\prime \prime}$ in printing) and add an extra line between codes. Line 470 returns program execution from this subroutine.

## Returning To The Menu

I thought it would be nice to review the numbers and letters before having to take the quiz, so there are three sections: Numbers, Alphabet, and Press a Key. Numbers will print each number and show the corresponding Morse code. Alphabet will go through the whole alphabet in order and print each letter with its code. In Press a Key the student can press any number or letter, and the computer will print the code. In any of these sections the student can at any time press ENTER, and the demonstration will stop and the program will return to the main menu screen.

The procedure to see the codes for the numbers is in lines $560-670$. Line 570 begins the FOR-NEXT loop with the counter I varying from 0 to 9 for the numbers. The number is printed (by printing I), then the subroutine at 360 is called which deciphers the code $\mathrm{M} \$(\mathrm{I})$ into the dots and dashes and prints the code on the screen while playing the tones. Line 600 calls subroutine 480 , which is simply a delay loop to create a slight pause between numbers. Lines $520-530$ check to see if the student has pressed ENTER to return to the main menu screen and stop the numbers section.

The Alphabet section, lines 680-790 is similar to the Numbers section. This time the loop
counter I varies from 10 to 35 , and the codes will go in order from $\mathrm{M} \$(10)$ to $\mathrm{M} \$(35)$, which are the letters from A to Z . To print the letters with the codes, line 700 uses the CHR\$ function. The ASCII codes of the letters are from 65 to 90.
Since the loop counter I varies from 10 to 35 , the ASCII codes for CHR\$ are $55+$ I.

In the Press a Key section, the student may press a letter or number and the computer will display the code. This section could be used as a quick review for students who want to study certain letters. The student may also spell words and phrases one letter at a time to see and hear the Morse code equivalent. Lines 840-920 detect which key is pressed. If the ENTER key ( $\mathrm{K}=13$ ) is pressed, the program branches back to the main menu screen. The IF-THEN statements make sure that only a number or a letter is pressed; all other keys are ignored. The variable K holds the ASCII value of the key pressed, and lines 900 and 930 relate K to the variable I which is used to print the code $\mathrm{M} \$(\mathrm{I})$.

The instructions are in lines 970-1040, and the quiz is contained in lines $1050-1490$. The quiz consists of all ten numbers and 26 letters. An array $N()$ is set up so each of the 36 elements from 0 to 35 is equal to 1 . This is in lines 1050-1070. Later as one of the numbers or letters is answered correctly, $\mathrm{N}(\mathrm{I})$ will be set to zero so it cannot be chosen again. Line 1080 initializes the number of guesses $G$ to zero for the scoring.

The quiz loop first chooses a random number (I) from 0 to 35 (line 1140). If the number has previously been answered correctly, N(I) will be zero and another number I is chosen. Lines 1160-1190 determine the correct answer L for the number I, which will be the ASCII code of the number or letter chosen. Line 1200 calls the subroutine to print and sound out the code chosen, and line 1210 increments the number of guesses.

Lines 1220-1290 detect the key the student presses; makes sure it is ENTER, a number, or a letter; and then prints the key pressed. If the key pressed is ENTER, the program branches back to the main menu and the quiz ends. Lines 1300-1390 determine if the key pressed is the correct answer. If the answer is incorrect, an "uhoh" sound is played and the program branches back to line 1200 to display and sound the code again and wait for another answer. If the answer is correct, an arpeggio is played. After the code is answered correctly, line 1400 sets $\mathrm{N}(\mathrm{I})$ to zero so that code cannot be chosen again, and line 1410 goes to the next problem. The student must get the right answer to continue the quiz.

## Quiz Variations

You can change the program to give the right
answer if the student misses．Instead of lines 1330 and 1340，print CHR\＄（L）or CALL HCHAR or CALL VCHAR and put L on the screen，then branch to line 1400 ．In this case you might want to keep a score of number correct and number incorrect．You might want to allow that missed letter or number to be shown again．Branch to line 1410 instead of 1400 ，and before you branch set $Z=Z-1$ ．Another way would be to GOTO 1140 instead of changing the loop counter $Z$ and going to the NEXT Z ．

If you prefer to let the student guess two or three times before the correct answer is given，set up a flag（ $\mathrm{FLAG}=0$ ）at line 1155 then at line 1340 increment the flag（FLAG＝FLAG＋1）．You could then branch，depending on the value of FLAG，either back for another guess or to give the answer and branch to the next problem．

You might prefer to have a quiz of a certain number of codes，say 10 ，rather than all 10 num－ bers and 26 letters．Change line 1130 to FOR $\mathrm{Z}=1 \mathrm{TO} 10$ ．Using lines 1150 and 1400 will still prevent the quiz from choosing the same number or letter more than once．

Another idea would be to have an infinite quiz．Take off the FOR－NEXT loop，lines 1130 and 1410．Also，you won＇t need lines 1150 and 1400 （and 1050－1070）because the numbers and letters can keep being chosen．Now the quiz keeps going until the student presses ENTER to return to the main menu screen．

In this type of quiz you may want to make sure the code is not the same as the previous one．We can use a variable PI for previous I cho－ sen，and add these two lines：

```
1150 IF PI=I THEN 1140
1155 FI=I
```

You can change the Numbers and Alphabet sections to fit your needs also．To change the de－ lay time between codes，change the upper limit in line 480．Instead of 200，put your own num－ ber；a larger number will be a longer delay．In－ stead of using a delay between numbers and letters，you can have the student press any key to continue，or press the appropriate number or letter．You can change the following lines：

```
65Q IF K<>I+48 THEN S 10
6 5 5 ~ N E X T ~ I ~
77@ IF K&`I+55 THEN 730
775 NEXT I
```

The program is flexible enough that you can change it to do exactly what you want it to do． You can even change the graphics and make it a quiz to learn Braille，or sign language，or some other type of code．You can use words instead of the alphabet and make a quiz for reviewing a foreign language，or perhaps vocabulary words．

## Structuring Your Programs

A couple of readers have suggested that I include flowcharts with my programs．My secret is that I haven＇t touched a flowchart since it was required in my college FORTRAN class years ago．In an－ swer to your questions of how I plan a program， I just sit down at the computer and start typing． With this program，I got to line 350 and typed
 の，ちの曰め
then worked on a section at a time，not necessar－ ily in order．The Numbers section started with line 1000，Alphabet with line 2000，Press a Key with line 3000，the quiz with line 4000 ，and 5000 was END．

As I realized I needed subroutines，I num－ bered them 400,600 ，and 700 ，making sure I didn＇t get to line 1000 ．On the TI it doesn＇t really matter where you put the subroutines；you can put them all at the end if you prefer．Anyway， after everything was running properly and each section was tested，I used the RES command to get all the line numbers to look nice．Each pro－ grammer has his or her own way of planning， and there＇s really no right way or wrong way．I say if it works，you＇re successful．

If you wish to save typing effort，you may obtain a copy of Morse Code by sending \＄3，a blank cassette or disk，and a stamped，self－ addressed mailer to：

## C．Regena

P．O．Box 1502
Cedar City，UT 84720
Be sure to specify the title and that you need the TI version．

## Morse Code


－•••
32の CALL KEY（ด，K．S）
उЗめ IF（Kく49）＋（Kン53）THEN 32め
उ4月 CALL CLEAR
उ5め ON K－48 GOTO 56め，68め，8めめ， 870,15 めめ
उ6め FOR J＝1 TO LEN（M\＄（I））
З7の A $=$ SEG\＄（M末（I），J，1）
उ8め IF $A \$=" \% "$ THEN 42め
उ9め CALL SOUND（Зめ以，1 ड1，め）
4 毋め PRINT＂\＆\＆\＆＂：
419 GOTO 44め
42め CALL SOUND（6 $6.131, \infty)$
43め PRINT＂\％＂；
$44 め$ CALL SOUND（1，9999，З日）
45め NEXT J
46Q FRINT：：
47め FETURN
489 FOR D＝1 TO $2 め$ Ø
49め NEXT D
5めめ RETURN
519 FRINT：＂FRESS＜ENTER＂
52ด CALL KEY（ด，K．S）
53 IF $K<>13$ THEN 529
549 CALL CLEAR
550 RETUFN
56め PRINT TAB（7）：＂＊＊NUMEERS＊＊＂：
$57 め$ FOR I＝め TO 9
58日 PRINT TAB（4）：I：＂＂
596 GOSUB $36 \%$
おめ GOSUB 48め
61め CALL KEY（Ø，K，S）
62月 IF Kく〉13 THEN 65Q
6 CO CALL CLEAR
64日 GOTO 26め
65め NEXT I
らGめ GOSUK 51め
67め GOTO 26め
68め PRINT TAB（6）：＂＊＊ALPHABET＊＊＂：：
FQR I＝1g TO उ5
$7 \varnothing \varnothing$ PRINT TAB（4）；CHR $\$(55+I) ; " \quad " ;$
$71 G$ GOSUB उんG
72の GOSUB 48め
7ミめ CALL KEY（め，K，S）
740 IF Kく〉13 THEN 770
750 CALL CLEAR
76の GOTO 26め
77日 NEXT I
780 GOSUB 51め
79め GOTO 26め
8øめ PRINT＂PRESS A LETTER OR A NUME ER．＂
81GPRINT：＂ITS CODE WILL BE GIVEN． ．

82G FRINT ：＂TO GET BACK TO THE MAIN ＂

8ЗQ FRINT：＂MENU SCREEN，FRESS＜ENT ER ${ }^{-1}$ ：：：
840 CALL KEY（日，K，S）
859 IF K＜ 13 THEN 88め
86の CALL CLEAR
87め GOTO 26め
88 IF K＜48 THEN 840

NUMBERS＂
ALFHABET＂
PRESS A KEY＂
QUIZ＂
END FROGRAM＂：

890 IF K＞57 THEN 920
9めの $\quad$＝K -48
91め GOTO 94め
$92 め$ IF（Kく65）＋（Kン9め）THEN 84め
93Q I＝K－ 55
940 PRINT CHR韦（K）：＂＂：
95め GOSUB 36ø
96め GOTO 84め
97め FRINT＂＊＊MOFSE CODE QUIZ＊＊＂
$98 \varnothing$ FRINT $:=" Y O U$ WILL HEAR AND SEE $A^{\prime \prime}$
99Ø FRINT ：＂MORSE CODE FOF ONE OF T HE＂
1めめめ FRINT：＂LETTERS OR NUMEERS．＂
1め1めFRINT ：＂TYPE THE TRANSLATION．＂
1＠2＠FRINT ：＂PFESS 《ENTEF〉 TO END T HE＂
1 OSQ PRINT：＂QUIZ AND RETURN TO THE ＂
$1 @ 4 め$ PRINT：＂MAIN MENU SCREEN．＂
$1 め 5 め$ FOR I＝め TO उ5
1め6めN（I）＝1
1 ＠7め NEXT I
1 ＠8め G＝め
1 风9め FRINT ：：＂FRESS 《ENTER〉 TO STAR T．＂：：：
11 Øめ CALL KEY（め，K，S）
1110 IF $S<1$ THEN $11 \oiint め$
$112 め$ RANDOMIZE
$1130 \mathrm{FOR} \mathrm{Z}=\mathrm{Q}$ TO 35
114 日 $I=I N T$（ $36 * R N D$ ）
$115 め$ IF $N(I)=め$ THEN 1140
1160 IF I＞9 THEN 119 Ø
$1170 \quad L=I+48$
1180 GOTO 12めめ
$1190 \mathrm{~L}=\mathrm{I}+55$
12めめ GOSUB 36め
$1210 \mathrm{G}=\mathrm{G}+1$
1220 CALL KEY（ $5, K, S$ ）
$123 め$ IF $K<>13$ THEN $126 \varnothing$
1240 CALL CLEAR
$125 め$ GOTO 26め
126め IF Kく48 THEN 122日
127 IF K＜58 THEN 129 ＠
1280 IF（Kく65）＋（K＞9め）THEN 1226
129＠CALL HCHAR（22．28．K）
$13 め$ IF $K=L$ THEN $135 め$
1310 CALL SOUND（8日，330，2）
132め CALL SDUND（8め，262，2）
1उЗめ GOSUH 48め
$134 め$ GOTO $12 め め$
$135 め$ CALL SOUND（ $106,262,2$ ）
$136 め$ CALL SOUND（ $10 め, ~ उ З \boxed{2}, 2$ ）
1370 CALL SOUND（1＠め，392，2）
138＠CALL SOUND（2め日，524，2）
139め CALL SOUND（1，9999，Зめ）
14め日 N（I）＝め
1416 NEXT Z
142 FFINT $:=:$＂OUT OF 36 NUMEERS AN D＂
$143 \varrho$ PRINT＂LETTERS，YOUF NUMEER OF ＂

1440 PRINT＂GUESSES WAS＂；G：：
145 FOR $I=1$ TO 25
1460 CALL SOUND $(-99$ ．INT（40め＊FND）＋50 （1，2）
147＠NEXT I
1480 GOSUB 510
1496 GOTO 26め
1506 END

This month let's discuss a few more things concerning the line-drawing and characterdrawing routines presented in the last couple of columns. Some of you may have noted that the character-drawing routines did not support the multicolor mode. This could be done with some additional time and effort. However, because of the increased complexities of handling multicolor mode, there probably won't be room for the routines in the $\$$ C000 to $\$$ C7FF region of RAM where the other routines were located.

## Multiuse Vector Bytes

There were some other things which were not implemented as well. First, vector byte strings were provided only for the uppercase character set. The remaining characters weren't implemented due to the space they would require. You could implement the remaining characters yourself, or even create an entire character set of your own design. Also, you are not restricted to drawing characters. The vector byte strings could be used to draw almost any design.

If you have studied the machine language listing for the character-drawing routines, you may have noticed there was some provision made for additional special function vector bytes. One I had in mind, but didn't get around to implementing, was a "clear character cell" special function code. This would clear a character cell of a specified size. The function would be useful if you wanted to draw characters on top of some other design. Another useful function would be contour fill function-that is, fill the area inside a boundary. With this, large solid characters could be made much more easily. Unfortunately, I doubt there is enough room in the code to have such a routine. Perhaps we can discuss contour filling in a future article.

As you might guess, there are lots of other things which could be implemented. Unfortunately, there isn't enough room to implement them all. This is where the machine language source code listing should come in handy. You can combine routines from various sources to construct the set of routines you require.

## Easy To Understand

I hope the comments provided in the source code are sufficient to make most of the routines understandable. The thoroughness of the comments is not consistent throughout the source code. The variation is largely due to an effort to keep the source code from growing too large.

Having good comments in a program can be extremely useful. Unfortunately, there are a couple of factors which tend to discourage commenting. The first factor is that it makes the source code longer. With the speed of the 1541 disk drive, the extra size can noticeably affect the length of time it takes to edit or assemble the source file. The second factor is that it takes extra time to write the comments. Usually, writing the comments will be less interesting than writing the program.

However, if the machine language you plan to write will be of some importance, I highly recommend thoroughly commenting the program. You can use comments to understand how the program was intended to work after you've forgotten. You'd be surprised how fast you can forget.

## Comment Fields

There are two basic places to put your comments. One is to the side of the machine language instructions, on the same line as the instructions. The other is between routines, where the comments would document the routine which follows. It is here that the extra effort commenting pays off the best. Ideally, the comments should include a description of what the routine is supposed to do, plus the entry and exit conditions that apply. This would allow you to use the routine, once it is written, without having to study the routine itself to determine what it does. In the long run, such comments can actually save a lot of time. Especially if someone else has to make use of your source code. In the source code I've provided so far, most of the time I've included the entry and exit conditions, but have omitted the description to conserve space.

Program 2 and Program 3 which follow are continuations of last month's column on drawing characters to the bitmap. They facilitate the drawing of letters to a hi-res screen.

Refer to the "Automatic Proofreader" article before typing these programs in.

## Program 2: <br> Data For Character Routines

1 READ LN, SA, EA: LN $=\mathrm{LN}+3 \varnothing$
:rem 146
$1 \varnothing$ FOR $I=\emptyset$ TO EA-SA
:rem 232
$2 \emptyset$ READ BY:POKE SA+I,BY:SUM=SUM+BY
:rem 120
$3 \varnothing$ IF INT $((I+1) / 8) * 8<>(I+1)$ THEN $6 \varnothing$
:rem 242
$4 \varnothing$ READ CS:IF CS <>SUM THEN $9 \varnothing$
:rem 124
$5 \emptyset$ SUM= $\varnothing: L N=L N+1 \emptyset$
60 NEXT
:rem 254
:rem 165
7 $\dot{\varnothing} \operatorname{IF} \operatorname{INT}(I / 8) * 8<>I$ THEN READ CS:IF CS < > S UM THEN $9 \varnothing$
:rem 78
$8 \emptyset$ PRINT "SUCCESSFUL LOAD":END
:rem 106
$9 \varnothing$ PRINT "ERROR IN LINE"; LN:END
$50 \emptyset$ DATA 5øØ
510 DATA 50176
:rem 105 :rem 68
:rem 179
520 DATA $5109 \emptyset$
:rem 176
530 DATA $76,220,197,76,230,197,76,99,1171$ :rem Ø
540 DATA $199,76,109,199,76,138,199,76,107$ 2
:rem 67
550 DATA $24,196,76,24,196,76,24,196,812$
:rem 155
560 DATA $96, \varnothing, 2 \varnothing 8, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 3 \varnothing 4$
$57 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
:rem 213
$58 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
:rem 198
:rem 199
$59 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 32,32$
:rem $5 \emptyset$
$6 \emptyset \emptyset$ DATA $253,174,32,138,173,32,247,183,12$ 32
:rem 72
$61 \varnothing$ DATA $165,101,164,1 \varnothing 0,96,32,253,174,1 \varnothing$ 85
:rem 67
620 DATA $32,158,173,36,13,48,3,76,539$
:rem 42
$63 \emptyset$ DATA 240,192,160, $0,177,1 \varnothing 0,141,30,1 \varnothing 4$ $\emptyset$
:rem 25ø
64ø DATA $196,2 \emptyset \emptyset, 177,1 \varnothing 0,133,20,2 \varnothing 0,177,1$ $2 ø 3$
:rem lø2
650 DATA $1 \emptyset \emptyset, 133,21,76,163,182,72,162,9 \emptyset 9$
:rem 23ø
660 DATA $\emptyset, 2 \emptyset 1,32,144,5,233,32,232,879$
:rem 72
$67 \varnothing$ DATA 2ø8,247,104,24,125,121,196,17ø,1 195
:rem 125
$68 \emptyset$ DATA $96,128,0,192,224,192,192,128,115$
2 :rem 34
690 DATA $128,133,253,173,14,220,41,254,12$ 16
:rem 67
$7 \emptyset \emptyset$ DATA $141,14,220,165,1,41,251,133,966$
:rem 166
$71 \varnothing$ DATA $1,169, \varnothing, 6,253,42,6,253,73 \varnothing$
:rem 179
720 DATA $42,6,253,42,133,254,24,173,927$
:rem 132
$73 \varnothing$ DATA $25,196,101,253,133,253,173,26,11$ 60
:rem 67
740 DATA $196,1 \emptyset 1,254,133,254,162,0,160,12$ $6 \varnothing$
:rem 61
750 DATA $7,177,253,153,32,196,138,153,110$ 9
:rem 36

760 DATA $41,196,136,16,244,165,1,9,8 \emptyset 8$
: rem 93
770 DATA 4,133,1,173,14,220,9,1,555
:rem 177
$78 \emptyset$ DATA $141,14,220,96,160,7,162,7,8 \varnothing 7$
:rem 84
$79 \varnothing$ DATA $30,41,196,106,2 \emptyset 2,16,249,153,993$
:rem 241
8 8ø DATA $32,196,136,16,241,96,169,7,893$
: rem 153
810 DATA $133,251,162,0,160,7,30,41,784$ :rem 68
$82 \emptyset$ DATA $196,106,136,16,249,164,251,153,1$ 271
:rem 13ø
830 DATA $32,196,232,198,251,16,237,96,125$
$8 \quad$ :rem 45
840 DATA $160,7,162,7,94,41,196,42,7 \emptyset 9$ : rem 44
$85 \emptyset$ DATA $2 \emptyset 2,16,249,153,32,196,136,16,1 \emptyset \emptyset$
$\emptyset \quad$ :rem 17
$86 \emptyset$ DATA $241,96,172,29,196,208,1,96,1039$
:rem 202
870 DATA $162,7,189,32,196,157,41,196,980$
:rem 211
$88 \emptyset$ DATA $2 \emptyset 2,16,247,136,2 \emptyset 8,3,76,2 \emptyset 4,1 \emptyset 92$
:rem 232
$89 \emptyset$ DATA $196,136,208,3,76,222,196,76,1113$
:rem 248
$9 \emptyset \emptyset$ DATA $248,196,160,8,169, \varnothing, 153,41,975$
:rem 147
$91 \emptyset$ DATA $196,136,16,250,169,255,141,40,12$
Ø3 :rem 72
$92 \emptyset$ DATA $196,138,240,15,168,162,8,94,1021$
:rem 238
$93 \varnothing$ DATA $32,196,126,41,196,2 \sigma 2,16,247,165$
$6 \quad:$ rem 29
$94 \emptyset$ DATA $136,2 ø 8,242,96,32,97,192,173,117$
6 :rem 45
950 DATA $32,192,41,7,133,253,162,0,82 \emptyset$
: rem 73
$96 \emptyset$ DATA $16 \emptyset, \emptyset, 177,251,45,49,196,29,9 \emptyset 7$
:rem 152
$97 \emptyset$ DATA $32,196,145,251,160,8,177,251,122$
$\emptyset \quad$ :rem 28
980 DATA $45,40,196,29,41,196,145,251,943$
:rem $2 ø 2$
990 DATA $232,224,8,240,31,198,253,48,1234$
:rem 239
1øøø DATA $8,23 \emptyset, 251,2 \emptyset 8,219,23 \emptyset, 252,2 \emptyset 8,1$
$606 \quad:$ rem 107
$1 \emptyset 1 \emptyset$ DATA $215,169,7,133,253,24,165,251,12$
17 :rem 65
$1 \varnothing 2 \emptyset$ DATA $165,57,133,251,165,252,165,1,1 \varnothing$ 69
:rem 58
$1 \emptyset 3 \emptyset$ DATA $133,252,2 \emptyset 8,196,76,114,192,140$, $1311:$ rem 162
$1 \emptyset 4 \emptyset$ DATA $31,196,32,1 \varnothing 2,196,32,129,196,91$
$4 \quad:$ rem 26
$1 ø 5 \emptyset$ DATA $32,10,197,32,171,193,32,42,769$
:rem 173
1 Ø6ø DATA $197,32,76,197,24,169,8,160,863$
:rem 203
$1 \varnothing 7 \varnothing$ DATA $\varnothing, 174,29,196,240,12,2 \emptyset 2,24 \varnothing, 1 \varnothing 9$ 3 :rem 9
$1 \emptyset 8 \emptyset$ DATA $25,169,248,160,255,2 \emptyset 2,240,2,13$ $\emptyset 1$
:rem 60
1090 DATA $208,16,109,30,192,141,30,192,91$
8 :rem 21
$11 \emptyset \emptyset$ DATA $152,109,31,192,141,31,192,76,92$ 4
:rem 16

1110 DATA $216,197,109,32,192,141,32,192,1$ $111:$ rem $1 \varnothing 9$
1120 DATA $172,31,196,96,32,55,196,141,919$ :rem 243
$113 \varnothing$ DATA $25,196,140,26,196,96,32,69,78 \emptyset$
:rem 197
1140 DATA $196,36,13,48,3,76,151,197,720$
:rem 138
1150 DATA $173,30,196,240,13,160,0,177,989$
:rem 233
$116 \emptyset$ DATA $2 \emptyset, 32,151,197,2 \emptyset 0,2 \emptyset 4,3 \emptyset, 196,1 \varnothing$
$3 \varnothing$
:rem 48
1170 DATA $144,245,96,41,127,10,168,173,10$ Ø4
:rem 69
1180 DATA $27,196,133,251,173,28,196,133,1$ 137 :rem 132 1190 DATA $252,177,251,141,50,196,2 \varnothing 0,177$, 1444 :rem 174
$12 \emptyset \emptyset$ DATA $251,141,51,196,96,173,50,196,11$ 54 :rem 75 1210 DATA $133,251,173,51,196,133,252,160$, 1349 :rem 166 $122 \emptyset$ DATA $\varnothing, 177,251,72,238,5 \emptyset, 196,2 \emptyset 8,119$ 2 :rem 24 1230 DATA $3,238,51,196,104,201,143,240,11$ 76
:rem 59
$124 \varnothing$ DATA $1,24,96,72,41,15,201,8,458$
:rem 231
1250 DATA $144,2,9,240,141,54,196,169,955$
:rem 19ø
$126 \emptyset$ DATA $\emptyset, 141,53,196,104,74,74,74,716$
:rem 133
$127 \emptyset$ DATA $74,2 \emptyset 1,8,144,7,9,240,162,845$
:rem 83
1280 DATA $255,142,53,196,141,52,196,96,11$
$31 \quad:$ rem 82
1290 DATA $56,169,0,237,52,196,141,52,9 \varnothing 3$
:rem 189
$13 \varnothing \emptyset$ DATA $196,169, \varnothing, 237,53,196,141,53,1 \varnothing 4$
$5 \quad:$ rem 26
$131 \emptyset$ DATA $196,96,56,169,0,237,54,196,1 \varnothing \emptyset 4$
:rem 243
$132 \emptyset$ DATA $141,54,196,96,169, \varnothing, 141,53,850$
:rem 185
1330 DATA $196,173,52,196,174,54,196,141,1$ 182
:rem 138
$134 \emptyset$ DATA $54,196,142,52,196,16,5,169,830$
:rem 192
1350 DATA $255,141,53,196,96,174,29,196,11$
$40 \quad:$ rem 89
 :rem 132
$137 \emptyset$ DATA $198,76,96,198,202,2 \emptyset 8,6,32,1016$
:rem 246
1380 DATA $96,198,76,114,198,32,124,198,10$
36 :rem $10 \emptyset$
1390 DATA $76,114,198,32,149,198,24,173,96$ $4 \quad$ :rem 53
14ØØ DATA $32,192,109,54,196,141,36,192,95$ 2 :rem 30 1410 DATA $24,173,30,192,109,52,196,141,91$ 7 :rem 24 1420 DATA $34,192,173,31,192,109,53,196,98$ $\emptyset \quad$ :rem 34
$143 \emptyset$ DATA $141,35,192,96,169, \varnothing, 141,53,827$
:rem 186
1440 DATA $196,32,29,198,141,52,196,201,1 \emptyset$
$45 \quad: r e m 79$
$145 \emptyset$ DATA $\emptyset, 16,5,169,255,141,53,196,835$
:rem 138

1460 DATA $32,29,198,141,54,196,76,179,905$ :rem 2
$147 \emptyset$ DATA $198,140,31,196,32,3,198,32,830$
:rem 187
$148 \varnothing$ DATA $29,198,176,99,32,59,198,2 \varnothing 1,992$
:rem 16
1490 DATA $248,240,9,32,179,198,32,195,113$
$3 \quad:$ rem 41
$150 \emptyset$ DATA $194,76,247,198,174,54,196,208,1$ 347
:rem 152
$151 \emptyset$ DATA $15,32,29,198,32,59,198,32,595$
:rem 150
1520 DATA $179,198,32,159,193,76,247,198,1$ 282
:rem 159
1530 DATA $2 \emptyset 2,2 \emptyset 8,9,32,212,198,32,195,1 \emptyset 8$ 8
:rem 27
1540 DATA $194,76,247,198,2 ø 2,2 ø 8,9,32,116$ 6
:rem 40
1550 DATA $212,198,32,159,193,76,247,198,1$ 315
:rem 147
1560 DATA $2 \emptyset 2,2 \emptyset 8,6,32,24,196,76,247,991$
:rem 194
$157 \emptyset$ DATA $198,2 \emptyset 2,2 \emptyset 8,6,32,24,196,76,942$
:rem 196
$158 \emptyset$ DATA $247,198,2 \emptyset 2,208,6,32,24,196,111$ $3 \quad$ :rem 28 1590 DATA $76,247,198,202,2 \emptyset 8,6,32,24,993$
:rem $2 ø 1$
1600 DATA $196,76,247,198,76,247,198,172,1$ $41 \varnothing$
:rem 153
1610 DATA $31,196,96,32,55,196,141,27,774$
:rem 197 1620 DATA $196,140,28,196,96,32,69,196,953$
:rem 6
1630 DATA $36,13,48,3,76,241,198,173,788$
:rem 152
1640 DATA $30,196,240,13,160, \varnothing, 177,2 \emptyset, 836$
:rem 171
1650 DATA $32,241,198,200,204,30,196,144,1$
245 :rem 116
1660 DATA $245,96,32,234,192,41,3,141,984$
$167 \varnothing$ DATA $29,196,96,321$
:rem 190

## Program 3: <br> Illustration Of Character Routines

$1 \varnothing$ REM DRAW CHARACTERS IN BIT-MAP: rem 212
20 POKE 56,156:CLR :rem 223
$3 \emptyset \mathrm{CT}=\operatorname{PEEK}(56) * 256+\operatorname{PEEK}(55): \operatorname{REM}$ CHAR DATA PTR :rem 54
$4 \emptyset$ Jl=49152:REM DRAWING JUMP TABLE
:rem 239
5Ø J2=5Ø176:REM CHAR. JUMP TABLE :rem 47
60 GOTO 1 Øøø
1øøØ REM MAIN ROUTINE :rem 96
:rem 240
$1 \varnothing 1 \varnothing$ GOSUB løøøø:SYS J2+6,CT :rem 12
$1 \varnothing 2 \emptyset$ SYS Jl:SYS Jl+6, Ø:SYS J1+9,6,14
:rem 185
$1 \varnothing 30$ SYS Jl+12,1ø,180:REM MOVE :rem 115 $1 \varnothing 4 \emptyset$ SYS J $2+3$, "EXAMPLE USE OF PUT "
:rem 149
1050 SYS J $2+3$, "CHARACTER ROUTINE."
:rem $24 \varnothing$
$1 \varnothing 60$ SYS J1+12,1ø,160:REM MOVE :rem 116
$107 \emptyset$ FOR CH=32 TO 63
:rem 232
$1 \varnothing 8 \emptyset$ SYS J $2+3, \mathrm{CH}:$ NEXT
:rem 210
1090 SYS J1+12,257,140
$11 \varnothing 0$ SYS $J 2+12,2:$ REM ROTATE $18 \emptyset$ DEG.
:rem 173
1110 FOR CH=64 TO 95
1120 SYS J $2+3, \mathrm{CH}:$ NEXT
$113 \emptyset$ SYS J $2+12,0 \cdot$ REM NO ROTATIO
$200 \emptyset$ SYS Jl+12, 80 .REM MOVE
$2 \emptyset 1 \varnothing$ SYS J $2+9$, "EXAMPLE USE OF DRAW "
:rem $2 ø 6$
$2 \emptyset 2 \emptyset$ SYS J2+9,"CHARACTER ROUTINE":rem 198
2030 SYS Jl+12,1ø,60:REM MOVE :rem 65
2040 FOR CH=64 TO 90
2050 SYS J2+9,CH:NEXT
$206 \emptyset$ SYS Jl+12,217,4ø:REM MOVE :rem 123
2070 SYS J2+12,2:REM ROTATE $18 \emptyset$ DEG.
:rem 180
$208 \emptyset$ FOR CH=9Ø TO 64 STEP -1 :rem 137
2ø9ø SYS J2+9,CH:NEXT
$21 \varnothing \emptyset$ SYS J $2+12, \varnothing:$ REM NO ROTATION
:rem 218
9øøø GET Z\$:IF Z\$="" THEN 9øøø :rem 231
$9 \emptyset 1 \varnothing$ SYS Jl+3
:rem 162
9020 END
1 Øøøø REM
1øØ10 C=Ø: PT=CT+256:REM INIT POINTER
:rem 143
1øØ2ø READ CH:IF CH<Ø THEN RETURN: rem lø5 $1 \varnothing \varnothing 3 \emptyset \mathrm{HB}=\mathrm{INT}(\mathrm{PT} / 256): \mathrm{LB}=\mathrm{PT}-\mathrm{HB} * 256$ : rem 142 1øø4の POKE CT+CH*2,LB: POKE CT+CH* $2+1, \mathrm{HB}$
:rem 171
10Ø50 GOSUB 1øløø:REM LOAD VB DATA:rem 88 $10 \emptyset 60$ GOTO 1øø2ø
1Ø1ØØ REM LOAD CHAR. DATA AT PT 10110 READ VB
:rem 35
:rem 149
:rem 167

$1 \varnothing 12 \emptyset$ IF $C>\varnothing$ THEN C=C-1:GOTO $1 \varnothing 18 \emptyset$
:rem 241
10130 IF ABS (VB) $>7$ THEN 10160 :rem 223
10140 READ DY:VB=(VB*16+(DYAND15))
:rem 138
10150 GOTO 1018Ø :rem 42
10160 IF VB=143 THEN $1 \varnothing 19 \varnothing$ :rem $3 \varnothing$
10170 IF VB<>128 THEN C=2 :rem 22
1ø18Ø POKE PT,VBAND255:PT=PT+l:GOTO 1ø11ø
:rem 129
10190 POKE PT,VBAND255: PT=PT+1:RETURN
:rem 54
$111 \varnothing \emptyset$ REM ADD CHARACTER DATA FROM PROGRAM
1 IN LAST MONTH'S ISSUE :rem 24

> To receive additional information from advertisers in this issue, use the handy reader service cards in the back of the magazine.
Here comes the new generation of SM's
program series for the 64.
The famous programming tool with powerful basic extentions like merge, find, renumber, dump, trace, enhanced floppy-monitor (disc-doctor) and high efficient machine-languagemonitor with built-in assembler, diassembler, trace and lots of more helpful features-really a golden tool!
PLACE YOUR CHECK OR MONEY ORDER NOW!


## SYSound

Mike Steed

The Commodore 64 has an amazing sound chip, and anyone who has heard it knows this. However, anyone who has tried to program it may have been surprised or discouraged, because everything had to be done with POKEs. That is, until now. "SYSound" will make creating sounds much easier, using absolutely no POKEs at all. Also included is an example program to show how easy programming 64 music can be.

Type in Program 1 and be sure to save a copy before running it. Program 1 loads in SYSound, which is a machine language program, and one typing mistake can crash SYSound when you use it. You may wish to save a copy of just the machine language once it's loaded, if you have a machine language monitor. Program 1 will specify the start and end addresses.

To use SYSound, all you need to do is type SYS 49152 followed by any of several possible parameters, each separated by a comma. The

number 49152 could (and probably should) be put into a variable, such as $S$ or SOUND.

A list of possible parameters for the SYS statement and their meanings follows:

- $\mathrm{V} x$, where $x$ is the voice number used for the note (one, two, or three). More than one voice may be used at the same time.
- A $x$, where $x$ is the attack rate of the note. This is the time it takes the sound to reach its highest volume. The value of $x$ must be between 0 and 15 ; the larger the number, the more time it takes. (See the figure for a further description of attack, decay, sustain, and release.)
- $\mathrm{D} x$, where $x$ is the decay rate of the note ( $0-15$ ). This is the time it takes the sound to soften to the sustain volume.
- $\mathrm{S} x$, where $x$ is the sustain level of the note ( $0-15$ ). The sound remains at this volume until the release starts.
- $\mathrm{R} x$, where $x$ is the release rate of the note $(0-15)$. The release rate is the time it takes the sound to drop from the sustain volume to silence.
- Wy[x], where $y$ is a letter representing the waveform used for the sound. This can be N (noise), S (sawtooth), T (triangle), or P (pulse). If the pulse waveform is chosen, then a pulse rate $x$ ( $0-4095$ ) must be entered after the waveform letter, such as WP2048 for a square wave.
- $\mathrm{F} x$, where $x$ is the frequency of the note (0-65535). Higher frequencies will produce higher notes.
- $\mathrm{L} x$, where $x$ is the volume (loudness) of the note ( $0-15$ ). Note that this is the overall volume, so all the voices will be affected by this setting.
- C clears the sound chip. This is equivalent to the following in BASIC:
$10 \mathrm{~S}=54272: \mathrm{FOR} \mathrm{I}=0$ TO 24:POKE S + I $, 0:$ NEXT
Once a parameter has been entered, it need
not be entered the next time the routine is used. For example, if all your sound effects are going to be done with voice 1 , at volume 15 , with the sawtooth waveform, attack 0 , decay 9 , and sustain and release 0 , you could set all these at the beginning of your program:

10 S = 49152:SYS S,C,V1,L15,WS,D9
(All parameters default to zero initially, so A, S, and $R$ needn't be entered.) Then all that would need to be done to play a note would be:

## 20 SYS S,F5000

(Any valid numeric expression may be used after the parameter letter.) Also, if a parameter is entered more than once, only the last case will be considered. For example, SYS S,WS,WT,A0,A6 is effectively the same as SYS S,WT,A6.

Program 2 provides an example of SYSound in action, and shows how much simpler music programming can be accomplished.

If you would rather not type all those DATA statements, I will send you a copy of the program. Send a stamped, self-addressed mailer, a blank tape or disk (1540/1541), and $\$ 3$ to:

Mike Steed
712 W. 1280 S.
Provo, UT 84601

## Program 1: SYSound

Refer to the "Automatic Proofreader" article before typing this program in.

| $\emptyset$ | DATA 32 |
| :---: | :---: |
| 110 | DATA $241,192,2 \emptyset 1,44,240,3$ |
| 120 | DATA $76,67,193,32,115, \emptyset$ |
| 130 | DATA $162,8,221,76,193,240$ |
| 140 | DATA 6,2Ø2,16,248,76,67 |
| 15¢ | DATA 193,138,10,170,189,85 |
| 160 | DATA 193,133,251,189,86,193 |
| 170 | DATA 133,252,32,50,192,76 |
| 180 | DATA $0,192,1 \varnothing 8,251,0,32$ |
| 190 | DATA $55,193,201,1,144,4$ |
| $2 \varnothing \varnothing$ | DATA 201,4,144,3,76,72 |
| 210 | DATA 193,262,142,114,193,96 |
| 220 | DATA $32,55,193,10,10,10$ |
| 230 | DATA 10,141,123,193,173,120 |
| 240 | DATA 193,41,15,13,123,193 |
| 250 | DATA 141,120,193,96,32,55 |
| 260 | DATA $193,141,123,193,173,120$ |
| 278 | DATA $193,41,240,13,123,193$ |
| 280 | DATA $141,12 \emptyset, 193,96,32,55$ |
| 296 | DATA $193,10,10,10,10,141$ |
| $3 \varnothing \square$ | DATA 123,193,173,121,193,41 |
| 310 | DATA $15,13,123,193,141,121$ |
| $32 \varnothing$ | DATA 193,96,32,55,193,141 |
| 330 | DATA 123,193,173,121,193,41 |
| 340 | DATA $240,13,123,193,141,121$ |
| 350 | DATA $193,96,32,115,0,162$ |
| 360 | DATA $3,221,103,193,240,6$ |
| 370 | DATA $2 \emptyset 2,16,248,76,67,193$ |
| 380 | DATA $224,1,240,6,32,115$ |
| $39 \varnothing$ | DATA $\varnothing, 76,196,192,32,44$ |
| $4 \varnothing \varnothing$ | DATA $193,192,16,144,3,76$ |

$1 \emptyset \emptyset$ DATA $32,121, \varnothing, 2 \varnothing 8,3,76$
$11 \emptyset$ DATA $241,192,2 \emptyset 1,44,24 \emptyset, 3$
120 DATA $76,67,193,32,115, \varnothing$
$13 \emptyset$ DATA $162,8,221,76,193,24 \varnothing$
$14 \emptyset$ DATA 6,2ø2,16,248,76,67
150 DATA $193,138,10,170,189,85$
160 DATA 193,133,251,189,86,193
$17 \varnothing$ DATA $133,252,32,50,192,76$
180 DATA $0,192,108,251,0,32$
190 DATA $55,193,201,1,144,4$
DATA 201,4,144,3,76,72
$22 \emptyset$ DATA $32,55,193,10,10,1 \varnothing$
230 DATA $10,141,123,193,173,120$
240 DATA $193,41,15,13,123,193$
250 DATA $141,120,193,96,32,55$
DATA 193,141,123,193,173,120
$27 \emptyset$ DATA $193,41,240,13,123,193$
280 DATA $141,120,193,96,32,55$
290 DATA $193,10,10,10,10,141$
3øø DATA $123,193,173,121,193,41$
310 DATA $15,13,123,193,141,121$
DATA 193,96,32,55,193,141
340
350 DATA $193,96,32,115,0,162$
360 DATA 3,221,103,193,240,6
$37 \emptyset$ DATA $262,16,248,76,67,193$
$39 \varnothing$ DATA $\varnothing, 76,196,192,32,44$
4 Dø DATA $193,192,16,144,3,76$
:rem 234
:rem 127
: rem 44
: rem 144
: rem 52
:rem 205 :rem 6
:rem 145
: rem 33
:rem 40
: rem 241
: rem 243
:rem 25
: rem 227
:rem 139
:rem 145
: rem 34
: rem 19ø
:rem 148
: rem 72
: rem 237
:rem 177
:rem 153
:rem 240
:rem 228
: rem 95
:rem 84
:rem 160
: rem 34
:rem 56

|  |  |  |
| :---: | :---: | :---: |
| $42 \varnothing$ | DATA 118,193,162,1,189,107 | m 199 |
| 430 | DATA 193,141,119,193,96,32 | 204 |
| 440 | DATA $44,193,142,115,193,14$ | 243 |
| 450 | DATA $116,193,96,32,55,193$ | 159 |
| 60 | DATA 141,122,193,96,169, 0 | 151 |
| $47 \varnothing$ | DATA $162,24,157,0,212,2 \varnothing 2$ | 134 |
| 80 | DATA $16,250,169,0,141,115$ | 14 |
| 490 | DATA 193,141,116,193,76,11 | 255 |
| $5 \square \square$ | DATA Ø, 173,115,193,2ø8,5 | 89 |
| 510 | DATA $173,116,193,240,37$, | m 248 |
| $52 \varnothing$ | DATA $114,193,189,111,193,133$ | 1 |
| 530 | DATA 251,169,212,133,252,160 | em 34 |
| 540 | DATA $6,185,115,193,145,251$ | :rem 201 |
| 550 | DATA $136,16,248,160,4,173$ | m 149 |
| $6 \square$ | DATA 119,193,9,1,145,251 | 101 |
| 570 | DATA $173,122,193,141,24,21$ | m 240 |
| 580 | DATA $96,165,122,208,2,198$ | 161 |
| 590 | DATA $123,198,122,76,121,0$ | m 146 |
| 600 | DATA $32,166,173,32,247,183$ | 199 |
| 610 | DATA $166,20,164,21,96,32$ | em 94 |
| 620 | DATA $44,193,152,2 \varnothing 8,11,22$ | m 191 |
| 630 | DATA $16,176,7,138,96,162$ | em 111 |
| 640 | DATA $11,76,58,164,162,14$ | 101 |
| 650 | DATA 2ø8,249,86,65,68,83 | 124 |
| 660 | DATA $82,87,70,76,67,53$ | em $2 \varnothing$ |
| 670 | DATA $192,72,192,94,192,112$ | : rem 209 |
| 680 | DATA 192,134,192,152,192,203 | 45 |
| 695 | DATA 192,213,192,220,192,78 | em 2 |
| $7 \varnothing 0$ | DATA $80,83,84,128,64,32$ | m 54 |
| 71 | DATA $16,0,7,14, \varnothing, \varnothing$ | em 33 |
| 720 | DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$ | : rem 175 |
| 730 | DATA $\varnothing, \emptyset$ | rem 64 |
| 740 | FORI $=49152 \mathrm{TO} 49531$ : READJ : POK : NEXT | $\text { , } \mathrm{J}: \mathrm{K}=\mathrm{K}+\mathrm{J}$ <br> :rem 121 |
| 750 | IFK<>44621 THENPRINT "ERROR | DATA STA |
|  | TEMENTS": STOP | em $18 \emptyset$ |
| 760 | PRINT" ${ }^{\text {a }}$ CLR\} \{3 DOWN\}SYS | OWN $\}$ |
|  | \{9 LEFT\}区9 Tヲ": Q \$ $=\operatorname{CHR}$ ( 34 ) | rem 178 |
| 770 | PRINT"TO SAVE IN MONITOR:" | " |
|  | \{DOWN\}.S "Q\$"SYS SOUND"Q\$", $\varnothing$ | сøøø, C1 |
|  | 7 C | : rem 85 |
| 780 | PRINTSPC(15)" $\uparrow \uparrow$ ": PRINTSPC(15 | \{DOWN \} $\varnothing$ |
|  | 1 FOR TAPE, ": PRINTSPC(15)"ø8 | $\begin{aligned} & \text { FOR DISK } \\ & : \text { rem } 32 \end{aligned}$ |

## Program 2: Sample Program Using SYSound

Refer to the "Automatic Proofreader" article before typing this program in.
$120 \mathrm{~S}=49152$ :SYS S,C,Ll5:T=TIME : rem 251
$13 \emptyset$ READ $D: I F D=\emptyset$ THEN SYS $S, C: E N D$
:rem lll
140 READ F1,F2,F3 :rem 113
150 SYS S,V1,F(F1),WT,Aø,D9,S0, Rø:rem 79
$16 \emptyset$ SYS S,V2,F(F2),WS,A2,D4,S2, R2:rem 82
$17 \emptyset$ SYS S,V3,F(F3),WT,A1,D2,S1 , R1 $\varnothing$
: rem 177
$180 \mathrm{~T}=\mathrm{T}+1 \boldsymbol{\theta}^{2} \mathrm{D} \quad$ :rem $12 \varnothing$
190 IF T>TIME GOTO $19 \emptyset$ :rem 189
$2 \emptyset \emptyset$ GOTO $13 \varnothing \quad$ :rem 95
$30 \emptyset$ DATA $1,13153,0, \emptyset \quad$ :rem 191
310 DATA 1,11ø60, $0,0 \quad$ rem 187
320 DATA 2,8779,5530,2195 :rem 226
330 DATA $2,8779,6577,0$
340 DATA $1,8779,4389,1644$
350 DATA 1,9854, Ø, $\varnothing$
:rem 161
370 DATA 1,11060,6577,0
370 DATA 1,11718, $0, \varnothing$
$40 \emptyset$ DATA 2,13153,5530,2195
$41 \emptyset$ DATA 2,13153,6577, $\varnothing$
rem 107
$42 \emptyset$ DATA 2,13153,4389,2463
430 DATA 2,11660,6577,2765
440 DATA 2,14764,5859,2930
45 D DATA 2,14764,8779, 0
460 DATA $2,14764,7382,2195$
$47 \varnothing$ DATA 1, $0,8779, \varnothing$
480 DATA 1,13153, $0, \emptyset$
5øø DATA 2,14764,5859,2930
$51 \varnothing$ DATA 1, $0,8779, \varnothing$
$52 \emptyset$ DATA 1,13153, $0, \varnothing$
530 DATA $1,14764,7382,2765$
$54 \emptyset$ DATA 1,16572,Ø, $\varnothing$
$55 \emptyset$ DATA 1,17557,8779,2463
$56 \emptyset$ DATA 1,197ø8, Ø, $\varnothing$
$6 \emptyset \emptyset$ DATA 2,22121,5530,2195
610 DATA $2, \varnothing, 6577, \varnothing$
$62 \emptyset$ DATA 2, $0,4389,1644$
630 DATA 1,17557,6577, 0
640 DATA 1,13153, Ø, $\varnothing$
650 DATA 2,17557,5530,2195
$66 \emptyset$ DATA 2, $0,6577, \varnothing$
$67 \emptyset$ DATA 2, $0,4389,2 \emptyset 71$
680 DATA $1,13153,6577,1845$
$69 \emptyset$ DATA 1,11Ø60,0,0
7øØ DATA 2,13153,5859,1644
710 DATA 2, $0,6577, \varnothing$
$72 \emptyset$ DATA 2, $0,4927,2463$
730 DATA $1,9854,6577,0$
740 DATA 1,111ø8, $0, \varnothing$
750 DATA 2,8779,5530,2195
760 DATA $2, \varnothing, 6577,1644$
$77 \emptyset$ DATA 2, $0,553 \emptyset, 1097$
$78 \varnothing$ DATA 2, Ø, Ø, Ø
790 DATA
:rem 10
:rem 12
:rem 23
:rem 126
: rem 21
:rem 169
:rem $2 \varnothing 0$
: rem 20
: rem 164
:rem 195
: rem 21
: rem $2 \not 05$
:rem 32
: rem 211
: rem 252
: rem 160
: rem 63
:rem 122
: rem 198
:rem 18
: rem 165
:rem 63
:rem 21
: rem 198
: rem 14
:rem 161
: rem 62
: rem 76
: rem 197
:rem 233
: rem 69
:rem 60
:rem 255
: rem 234 ©

> COMMODORE 64 HACKERS ONLY * BOOKWARE FROM ABACUS*
$\frac{\text { THE }}{} \because \circ$ Unravel the mysteries of the $300+$ pages of in-depth information. Sequential, relative random files. Many useful utilities. 1541 ROM listing fully commented. $\quad \$ 19.95$
-0. A machine language reterence guide specifically to the Commodore 64 All instructions fully explained. With these complete program listings for an ASSEMBLER,, DISASSEMBLER \& 6510 sim ulator. $200+$ pages. $\mathbf{\$ 1 9 . 9 5}$
$300+$ page detailed guide to the internals of your favorite computer. Covers graphics, synthesizer, kernal, BASIC. Includes full commented ROM listings. $\$ 19.95$

OTHER TITLES COMING SOON! ASK FOR FREE CATALOG FOR QUICK SERVICE PHONE 616-241-5510

P.O. Box 7211 Grand Rapids, MI 49510 Add $\$ 2.00$ postage and handling. Foreign add $\$ 4.00$. Michigan residence add 4\%. MC, VISA, AMEX accepted.

# Musical TI Keyboard 

Randal J. Reifsnider

The TI music chip has long been regarded as an excellent sound chip, but few programs have yet demonstrated its capabilities. "Musical TI Keyboard" changes all that by turning your TI's keys into simulated piano keys.

In the book Beginner's BASIC that comes with the TI-99/4A computer, there is a short demonstration program illustrating how you can use the computer's keyboard to make musical tones. When you run this program and press the A key, the musical tone A will sound. The tone will continue as long as you hold down the key, with a slight gap of silence between repetitions of the tone. This sounds like a musical machine gun. It is an interesting program, but very limited. Since it uses only seven letters of the alphabet to represent musical notes, you could play only seven notes on the computer in this fashion (A
through G, with no sharps or flats).
Also, if you play the piano and are familiar with its keyboard arrangement, you'll find that looking for letters feels unnatural and difficult. Hence, "Musical TI Keyboard," which makes the computer's keyboard more closely resemble that of a piano.

This program first READs frequency values from DATA statements into an array, then mathematically converts the ASCII code returned by the CALL KEY statement, and uses that value in the CALL SOUND statement to locate the corresponding frequency value within the array. The figure shows the arrangement of the keyboard. Since not all the keys are used, the program includes a check to silence any unwanted keys. ASCII code numbers of silenced keys which fall within the array are assigned a DATA value of 1 as a filler. This allows the array to be easily filled and insures that the ASCII code for a given key corresponds to the proper frequency.


## Program Variations

One variation of this program you may want to try would be:

90 CALL SOUND (100,NOTE(Q),1,1.26*NOTE(Q),5, 1.5*NOTE(Q),5)

This would produce a major chord for each key pressed. To create minor chords, try:

## 90 CALL SOUND (100, NOTE(Q),1,1.19*NOTE(Q),5, 1.5*NOTE(Q),5)

If you change the duration from 100 to -150 , the computer will play continuous tones. A value for a noise ( -1 through -8 ) could be added to the CALL SOUND statement for an interesting effect. The space bar could be assigned a noise value for use as percussion. Since this program requires that the ALPHA LOCK be on, additional tones or noises could be assigned to what would be the lowercase letters.

Even though we do have a piano, our four-year-old daughter would rather play the computer. However, you can take the program further. You could include a routine within the program to print out the duration, frequency, and sequence of the notes you play on the computer's keyboard. This could be extremely helpful when tackling the laborious task of transposing sheet music so that it can be played by the computer. You could also try creating a routine that would play back any song played on the computer.

To make playing your computer/piano keyboard easier, you might want to buy two different colors of small gummed labels, like those sold in office supply stores. These may be placed on the computer keys to distinguish the white keys from the black keys. Novice musicians may
also wish to write the name of the note on the label as an aid to playing. These labels can be easily removed when you are ready to let the computer go back to its regular keyboard functions.

## Musical TI Keyboard

```
10 CALL CLEAF
2g DIM NOTE (47)
3G FOF C=1 TO 47
4\emptyset FEAD NOTE (C)
50 NEXT C
60 CALL KEY(\emptyset,N,S)
70 IF (N<44)+(N=45)+(N=49)+(N=52)+(
    N=56)+((N>57)* (N<66)) +(N=68)+(N=
    72)+(N>9@)THEN 6@
8@ Q=N-43
90 CALL SOUND (10%,NOTE (Q),1)
10日 GOTO 6\emptyset
116 DATA 220,1,247,698,622,1,277,31
        1,1,379,415,466,1,554,1,1,1,1,1
        ,1,1,1,165,131,1,336,139,156,1
120 DATA 523, 185, 208, 233,196,175,58
        7,659, 262,349,117,392,494,147,2
        94,125,444,116
```

> To receive additional information from advertisers in this issue, use the handy reader service cards in the back of the magazine.

# CAPUTE! 

Modifications Or Corrections To Previous Articles

## 64 Jackpot

The 64 version of this game from the August issue (Program 3, p. 89) requires the following two lines, which were accidentally omitted from the original listing:

5 PRINT"\{CLR\}";:POKE51, $\varnothing:$ POKE55, $\varnothing:$ POKE52, 48: POKE 56,48 :CLR:GOSUB $6 \varnothing$
:rem 61
$1 \varnothing \mathrm{TT}=5 \emptyset: \mathrm{S}=54272:$ FORL=STOS+24:POKEL, $\varnothing:$ NEX T :rem 135

## IBM PC/PCjr Blueberries

The IBM version (Program 3, p. 88) of this game in the July issue should work as published, but reader Michael Saletnik points out that the programmer used the VARPTR statement incorrectly in line 5000. VARPTR returns the starting address for the descriptor of the specified string variable. The descriptor is three bytes of data; the first byte tells the length of the string, and the other two hold the starting address within the current segment of memory where the characters that make up the string are stored. Thus, if you use a statement like $\mathrm{V}=\operatorname{VARPTR}(\mathrm{ML} \$)$, then PRINT PEEK (V) will show the length of ML\$, and PRINT PEEK $(\mathrm{V}+1)+256$ *PEEK $(\mathrm{V}+2)$ will give the starting address of the characters in ML\$.

In line 5000, the calculated address ZZ does not point to the start of ML\$ as intended, but rather off into some other part of the variable area. "Blueberries" works as printed because the
programmer uses the computed address to POKE the machine language directly into memory in line 5010. A more standard way of transferring the machine language from DATA statements into ML\$ would have been:
READ A: ML\$=ML\$+CHR\$(A)

If the technique used in line 5010 had not been used, then the program would not have performed correctly. To place the machine language data properly into ML\$, line 5000 should be changed to read:

```
5øø\emptyset DEF SEG:ML$=SPACE$(48):V=VARPTR(ML$)
    :ZZ=PEEK ( V+1)+256*PEEK(V+2)
```


## Bunny Hop For The 64

Characters were omitted in two lines of the Commodore 64 version (Program 1, p. 74) of this game from the July issue. The final number in line 35 should be 208 instead of just 2, and the final number in line 200 should be 33 instead of 3. The corrected lines should read as follows:

35 DATA $40,169,32,145,253,96,160,41,177,25$ 3,136,145,253,2øø,200,192,81,2ø8
2øø POKEP, 32: POKE37154,127:Y=PEEK (56320)A $\operatorname{NDPEEK}(Q Q): \operatorname{IF}($ YAND8 $)=\emptyset$ THENP $=P+1: D=33$

## VIC Olympiad

There is an error in one of the PRINT statements which defines the arena in the VIC version (Program 2, p. 56) of this game from the June issue. Ed Eyerman notes that there should be two spaces following the five SHIFTed spaces in line 3080. The line should read as follows:

```
3ø8\emptyset PRINT"-{2 SHIFT-SPACE}{5 SPACES}U&W习
    {2 SPA\overline{CES } &Q 任{5 SHIFT-SPACE}}
    {2 SPACES}_";
```

Also, line 1045 in the VIC version is an unintentional carryover from the original Commodore 64 version, and can be deleted.

MEMOREX
WE WILL NOT BE UNDERSOLDI Call Free (800)235-4137 for prices and information. Dealer inquiries invited and C.O.D's accepted

PACIFIC
EXCHANGES
100 Foothill Blud San Luis Obispo, CA 93401 . In Cal. call (800) $592-5935$ or (805) 543-1037

# TIN V／Machine Language <br> Entry Program 


#### Abstract

MLX is a labor－saving utility that allows almost fail－safe entry of machine language programs published in COM－ PUTE！．You need to know nothing about machine lan－ guage to use MLX－it was designed for everyone．＂Tiny MLX＂is a special version for the unexpanded VIC．


MLX is a new way to enter long machine language （ML）programs with a minimum of fuss．MLX lets you enter the numbers from a special list that looks similar to BASIC DATA statements．It checks your typing on a line－by－line basis．It won＇t let you enter illegal characters when you should be typing numbers．It won＇t let you enter numbers greater than 255 （forbid－ den in ML）．It won＇t let you enter the wrong numbers on the wrong line．In addition，MLX creates a ready－ to－use tape or disk file．

## Using MLX

Type in and save＂Tiny MLX＂（you＇ll want to use it in the future）．When you＇re ready to type in an ML pro－ gram，run Tiny MLX．Unlike regular MLX，Tiny MLX does not ask for the starting and ending address of the program to be entered．Instead，this information must be included in line 210．The values currently shown in line 210 are for the＂Lightsaver＂program in this issue．

You＇ll see a prompt corresponding to the starting address．The prompt is the current line you are enter－ ing from the listing．It increases by six each time you enter a line．That＇s because each line has seven num－ bers－six actual data numbers plus a checksum num－ ber．The checksum verifies that you typed the previous six numbers correctly．If you enter any of the six numbers wrong，or enter the checksum wrong，the computer rings a buzzer and prompts you to reenter the line．If you enter it correctly，a bell tone sounds and you continue to the next line．

MLX accepts only numbers as input．If you make a typing error，press the INST／DEL key；the entire number is deleted．You can press it as many times as necessary back to the start of the line．If you enter three－digit numbers as listed，the computer automati－ cally prints the comma and goes on to accept the next number．If you enter less than three digits，you can press either the comma，space bar，or RETURN key to advance to the next number．The checksum automati－ cally appears in reverse video for emphasis．

## MLX Commands

When you finish typing an ML listing，you can then save the completed program on tape or disk．Follow the screen instructions．If you get any errors while saving，you probably have a bad disk，or the disk is full，or you made a typo when entering the MLX pro－ gram itself．

Since Tiny MLX has no provisions for reloading a partially completed program，you must enter the ML program all in one sitting．

## Tiny MLX

$\begin{array}{lll}100 & \text { POKE55，} 174: \text { POKE } 56,23: C L R: P O K E 788,194 & \text { ：rem } 76 \\ 210 & S=6063: E=7658 & \text { ：rem } 136 \\ 39 \emptyset & \text { PRINT＂}\{\mathrm{CLR}\}^{\prime \prime} ; \operatorname{CHRS}(14): A D=S & \text { ：rem } 56\end{array}$
$31 \varnothing$ PRINTRIGHTS（＂Øøøø＂+ MIDS $(S T R S(A D), 2), 5) ; ": " ;$ FO RJ＝1T06
：rem 234
320 GOSUB57 $:$ IFN $=-1$ THENJ $=J+N:$ GOTO $320 \quad$ ：rem 228
480 IFN＜बTHENPRINT：GOTO310 5 ：rem 168
$490 \mathrm{~A}(\mathrm{~J})=\mathrm{N}: \mathrm{NEXTJ}$
：rem 199
500 CKSUM $=\mathrm{AD}-\operatorname{INT}(\mathrm{AD} / 256) * 256: \mathrm{FORI}=1 \mathrm{TO}: \mathrm{CKSUM}=(\mathrm{CKSU}$ $M+A(I)) A N D 255: N E X T \quad$ ：rem 200
516 PRINTCHRS（18）；：GOSUB570：PRINTCHRS（20）：rem 234
515 IFN＝CKSUMTHEN530
：rem 255
520 PRINT：PRINT＂LINE ENTERED WRONG＂：PRINT＂RE－ENTER
＂：PRINT：GOSUB $10 \emptyset \emptyset: G O T O 310^{-} \quad$ Erem 129
536 GOSUB2のбの 218
540 FORI $=1$ TO6：POKEAD $+I-1, A(I): N E X T$ ：rem 80
$550 \mathrm{AD}=\mathrm{AD}+6: I \mathrm{FAD}<E T H E N 310 \quad$ ：rem 212
560 GOTO71の 5 irem 108
$57 \emptyset \mathrm{~N}=\emptyset: \mathrm{Z}=\varnothing \quad$ ，irem 88
580 PRINT ${ }^{\prime \prime} \mathrm{E}+\mathrm{Z}^{\prime \prime}$ ；
：rem 88
：rem 79
581 GETAS：IEAS＝${ }^{\prime \prime}$＂THEN581 $\quad$ irem 95
585 PRINTCHRS $(20) ;: A=A S C(A S): I P A=130 R A=440 R A=32 T H E$ N670
：rem 229
$59 \varnothing$ IFA＞128THENN $=-A:$ RETURN $\quad$ ：rem 137
$6 \emptyset \emptyset I F A<>2 \emptyset$ THEN 630 ：rem 10
610 GOSUB690：IFI＝1ANDT $=44 \mathrm{THENN}=-1:$ PRINTH $\{\mathrm{LEFT}$ ）
\｛LEFT\}"; :GOTO690 $\quad$ ：rem 172
620 GOTO570
trem 189
630 IFA＜480RA $>57$ THEN 580
arem 189
：rem 105
640 PRINTAS；$: N=N * 10+A-48$
650 IFN $>255$ THEN $A=20: G O S U B 10 \emptyset 0: G O T O 60 \emptyset$ ：rem 229
$660^{\circ} \mathrm{Z}=\mathrm{Z}+1$ ：IFZ＜3THEN58
：rem 71
$67 \varnothing$ IFZ＝øTHENGOSUB1Øøø：GOTO570 ：rem 114
680 PRINT＂，＂：：RETURN 246
$690 \operatorname{So}$ 영 $\operatorname{PEEK}(269)+256 * \operatorname{PEEK}(21 \varnothing)+\operatorname{PEEK}(211)$ irem 149
692 FORI $=1$ TO3：T＝PEEK $(S \%-I) \quad$ ：rem 68
695 IET $\langle>44$ ANDT $\langle>58$ THENPOKES\％－I，32：NEXT ：rem 205
7 7の PRINTLEFTS（＂$\left.[3 \text { LEFT }]^{\prime \prime}, I-1\right)$ ；RETURN
：rem 7
710 PRINT ${ }^{\prime \prime}\{$ CLR $\}$［RVS $\} * * * S A V E * * *\{3 \text { DOWN }\}^{\prime \prime}$ ：rem 236
720 INPUT＂\｛DOWN\} FILENAME ${ }^{\circ \prime} ; F S$ ：rem 228
736 PRINT：PRINT＂$\{\overline{2}$ DOWN $\}\{R V S\}$ T \｛OFE\}APE OR \{RVS\}D ［OFF］ISK：$(T / D)^{\prime \prime}$
：rem $\overline{2} 28$
$74 \emptyset$ GETAS ：IFAS $\left\rangle\right.$＂$\frac{\mathrm{T}}{} 7$ ANDAS $\rangle$＂D＂THEN 740 ：rem 36
$750 \mathrm{DV}=1-7 *\left(\mathrm{AS}={ }^{11} \mathrm{D}^{\prime \prime}\right): I F D V=8 T H E N F S={ }^{14} \mathrm{~g}: "+\mathrm{FS}$ ：rem 158
760 TS $=\mathrm{FS}: \mathrm{ZK}=$ PEEK $(53)+256 * \operatorname{PEEK}(54)-$ LEN $(T S):$ POKE 782 ， $2 \mathrm{KK} / 256$
：rem 3
762 POKE 781, ZK－PEEK $(782) * 256$ ；POKE780，LEN（T\＄）：SYS65 469 ：rem 109
763 POKE780，1：POKE781，DV ：POKE782，1：SYS65466：rem 69
765 POKE254，S／256：POKE253，S－PEEK（254）＊256：POKE780，
253
：rem 12
766 POKE782，E／256：POKE781，E－PEEK（782）＊256：SYS 65496
：rem 124
770 IF（PEEK（783）AND1）OR（ST AND191）THEN780 ：rem 111
775 PRINT＂\｛DOWN\} DONE. ": END
：rem 106
780 PRINT＂\｛DOWN\}巨̄RROR ON SAVE. $\{2$ SPACES \}TRY AGAIN. ＂：IFDV＝1THEN7̄20
：rem 171
781 OPEN15，8，15：INPUT\＃15，E1S，E2S：PRINTE1\＄；E2\＄：CLOS
E15：GOTO720 ：rem 163
782 GOTOT20 ：rem 115
845 POKE780，1：POKE781，DV：POKE782，1：SYS65466：rem 70
1 Øøø REM BELL TONE
：rem 250
$10 \varnothing 1$ POKE36878，15：POKE36874，190 ：rem 206
$10 \varnothing 2$ FORW＝1TO3のø ：NEXTW ：rem 117
1øø3 POKE36878，Ø：POKE36874，Ø：RETURN ：rem 74
$20 \varnothing$ REM BELL SOUND ：rem 78
2001 FORW $=15$ TOøSTEP－1 ：POKE36878，W：POKE36876，240：NE XTW
：rem 22
2002 POKE $36876, \varnothing$ ：RETURN
：rem 119

# 1 Machine Language Entry Program For VIC-20 


#### Abstract

MLX is a labor-saving utility that allows almost fail-safe entry of machine language programs published in COMPUTEI. You need to know nothing about machine language to use MLX-it was designed for everyone.


MLX is a new way to enter long machine language (ML) programs with a minimum of fuss. MLX lets you enter the numbers from a special list that looks similar to BASIC DATA statements. It checks your typing on a line-by-line basis. It won't let you enter illegal characters when you should be typing numbers. It won't let you enter numbers greater than 255 (forbidden in ML). It won't let you enter the wrong numbers on the wrong line. In addition, MLX creates a ready-to-use tape or disk file. You can then use the LOAD command to read the program into the computer:

$$
\begin{array}{ll}
\text { LOAD "filename" }, 1,1 & \text { (for tape) } \\
\text { LOAD "filename" }, 8,1 & \text { (for disk) }
\end{array}
$$

To start the program, you enter a SYS command that transfers control from BASIC to machine language. The starting SYS number appears in the article.

## Using MLX

Type in and save MLX for your 64 (you'll want to use it in the future). When you're ready to type in an ML program, run MLX. MLX asks you for two numbers: the starting address and the ending address. These numbers are given in the article accompanying the ML program.

You'll see a prompt corresponding to the starting address. The prompt is the current line you are entering from the listing. It increases by six each time you enter a line. That's because each line has seven numbers-six actual data numbers plus a checksum number. The checksum verifies that you typed the previous six numbers correctly. If you enter any of the six numbers wrong, or enter the checksum wrong, the computer rings a buzzer and prompts you to reenter the line. If you enter it correctly, a bell tone sounds and you continue to the next line.

MLX accepts only numbers as input. If you make a typing error, press the INST/DEL key; the entire number is deleted. You can press it as many times as necessary back to the start of the line. If you enter three-digit numbers as listed, the computer automatically prints the comma and goes on to accept the next number. If you enter less than three digits, you can press either the SPACE bar, or RETURN key to advance to the next number. The checksum automatically appears in inverse video for emphasis.

To simplify your typing, MLX redefines part of the keyboard as a numeric keypad (lines 581-584):

## MLX Commands

When you finish typing an ML listing (assuming you type it all in one session), you can then save the completed program on tape or disk. Follow the screen instructions. If you get any errors while saving, you probably have a bad disk, or the disk is full, or you've made a typo when entering the MLX program itself.

You don't have to enter the whole ML program in one sitting. MLX lets you enter as much as you want, save it, and then reload the file from tape or disk later. MLX recognizes these commands:

## SHIFT-S: Save <br> SHIFT-L: Load <br> SHIFT-N: New Address <br> SHIFT-D: Display

When you enter a command, MLX jumps out of the line you've been typing, so we recommend you do it at a new prompt. Use the Save command to save what you've been working on. It will save on tape or disk as if you've finished, but the tape or disk won't work, of course, until you finish the typing. Remember what address you stop at. The next time you run MLX, answer all the prompts as you did before, then insert the disk or tape. When you get to the entry prompt, press SHIFT-L to reload the partly completed file into memory. Then use the New Address command to resume typing.

To use the New Address command, press SHIFT-N and enter the address where you previously stopped. The prompt will change, and you can then continue typing. Always enter a New Address that matches up with one of the line numbers in the special listing, or else the checksum won't work. The Display command lets you display a section of your typing. After you press SHIFT-D, enter two addresses within the line number range of the listing. You can abort the listing by pressing any key.

What if you forgot where you stopped typing? Use the Display command to scan memory from the beginning to the end of the program. When you reach the end of your typing, the lines will contain a random pattern of numbers. When you see the end of your typing, press any key to stop the listing. Use the New Address command to continue typing from the proper location.

## MLX: Machine Language Eniry

100 PRINT" \{CLR\}\{PUR\}";CHRS (142);CHR\$ (8); :rem 181
101 POKE 788,194 :REM DISABLE RUN/STOP :rem 174
110 PRINT $^{n}\{$ RVS $\}\left\{14\right.$ SPACES ${ }^{n} \quad:$ rem 117
120 PRINT" $\{$ RVS $\}$ \{RIGHT\}\{OFF\} ${ }^{*} * \exists £\{$ RVS \}
 $\left.£^{\text {f }} \mathrm{RVS}\right\} £\{R V S\}$ " :rem 191
130 PRINT" ${ }^{\text {TRVS }}$ \} \{RIGHT\} EG习\{RIGHT\}
$\{2$ RIGHT $\}\{O F F\} £\{R V S\} £ E * \exists\{O F F\} E * \exists$
\｛RVS \} "
140 PRINT＂${ }^{\prime 2}$ RVS\}\{14 SPACES\}" :rem 120
2øб PRINT＂ 2 DOWN\}\{PUR\}\{BLK\}A FAILSAFE MA CHINE＂：PRINT＂LANGUAGE EDITOR\｛5 DOWN\}"
：rem 141
$21 \varnothing$ PRINT＂\｛BLK\}\{3 UP\}STARTING ADDRESS": IN PUTS：F＝1－F：C\＄＝CHRS（31＋119＊F）：rem 97
220 IFS＜256ORS＞32767THENGOSUB3øøø：GOTO21ø ：rem 2
225 PRINT：PRINT：PRINT：PRINT ：rem 123
230 PRINT＂\｛BLK\}\{3 UP\}ENDING ADDRESS":INPU $\mathrm{TE}: \mathrm{F}=1-\mathrm{F}: \mathrm{C} \$=\mathrm{CHR} \$(31+119 * \mathrm{~F}) \quad: \mathrm{rem} 158$
$24 \varnothing$ IFE＜256ORE＞32767THENGOSUB3øøø：GOTO23ø ：rem 234
250 IFE＜STHENPRINTC\＄；${ }^{n}\{$ RVS $\}$ ENDING＜START \｛2 SPACES\}":GOSUBløøø:GOTO 23ø
：rem 176
$26 \emptyset$ PRINT：PRINT：PRINT
：rem 179
$3 ø \varnothing$ PRINT＂$\{$ CLR $\}$＂； $\operatorname{CHR} \$(14): A D=S: r e m ~ 56$
$31 \varnothing$ PRINTRIGHT\＄（＂øøøø＂＋MID\＄（STRS（AD），2），5 ）；＂：＂：FORJ＝1TO6
：rem 234
32ø GOSUB57ø：IFN＝－1THENJ＝J＋N：GOTO32Ø
：rem 228
$39 \varnothing$ IFN＝－211THEN $71 \varnothing$ ：rem 62
$40 \varnothing$ IFN $=-204$ THEN $79 \emptyset$ ：rem 64
$41 \varnothing$ IFN＝－2ø6THENPRINT：INPUT＂\｛DOWN\}ENTER N EW ADDRESS＂；ZZ ミrem 4
415 IFN＝－2ø6THENIFZZ＜SORZZ＞ETHENPRINT＂ \｛RVS\}OUT OF RANGE":GOSUB1øøø:GOTO41ø
：rem 225
417 IFN＝－2ø6THENAD＝ZZ：PRINT：GOTO31ø
：rem 238
$42 \emptyset$ IF N＜＞－196 THEN $48 \emptyset$ ：rem 133
$43 \varnothing$ PRINT：INPUT＂DISPLAY：FROM＂；F：PRINT，＂TO ＂；：INPUTT－：rem $2 \overline{3} 4$
44б IFF＜SORF＞EORT＜SORT＞ETHENPRINT＂AT LEAS T＂；S；＂\｛LEFT\}, NOT MORE THAN";E:GOTO43 Ø ：rem 159
$45 \varnothing$ FORI＝FTOTSTEP6：PRINT：PRINTRIGHTS（＂øøø Ø＂$+\operatorname{MID}$（STR（I），2），5）；＂：＂；：rem $3 \emptyset$
455 FORK＝ ）TO5： $\mathrm{N}=\mathrm{PEEK}(\mathrm{I}+\mathrm{K})$ ： $\mathrm{IFK}=3$ THENPRINTS PC（1б）；：rem 34
457 PRINTRIGHT\＄（＂øø＂＋MID\＄（STRS（N），2），3）；＂ ，＂；：rem 157
$46 \emptyset$ GETA\＄：IFA\＄＞＂＂THENPRINT：PRINT：GOTO31ø ：rem 25
47ø NEXTK：PRINTCHR（2Ø）；：NEXTI：PRINT：PRIN T：GOTO31 $\varnothing$
$48 \emptyset$ IFN $<\varnothing$ THEN PRINT：GOTO31Ø
$49 \varnothing$ A $(J)=N: N E X T J$ ：rem 50

A（J）＝N：NEXTJ ：rem 199
5øの CKSUM＝AD－INT（AD／256）＊256：FORI＝1TO6：CK SUM $=($ CKSUM + A（I））AND255：NEXT ：rem 2øø
$51 \varnothing$ PRINTCHR\＄（18）；：GOSUB57 0 ：PRINTCHR\＄（2ø）
：rem 234
515 IFN＝CKSUMTHEN53 $\varnothing$
：rem 255
$52 \emptyset$ PRINT：PRINT＂LINE ENTERED WRONG＂：PRINT ＂RE－ENTER＂：P $\bar{R} I N T: \overline{G O S U B} 1 \varnothing \varnothing \bar{\emptyset}: G O T O 31 \varnothing$
：rem 129
530 GOSUB2øøø
：rem 218
$54 \varnothing$ FORI＝1TO6：POKEAD＋I－1，A（I）：NEXT：rem $8 \varnothing$
$550 \mathrm{AD}=\mathrm{AD}+6: I F \mathrm{AD}<\mathrm{E}$ THEN $31 \varnothing$ ：rem 212
560 GOTO 710
：rem $1 \varnothing 8$
$57 \varnothing \mathrm{~N}=\varnothing$ ： $\mathrm{Z}=\varnothing$ ：rem 88
$58 \emptyset$ PRINT＂E + 习＂；
581 GETAS：IFAS＝＂＂THEN581 ：rem 95
585 PRINTCHR（ $2 \emptyset$ ）；：A＝ASC（A\＄）： $\operatorname{IFA}=130 \mathrm{RA}=44$ ORA＝32THEN67 $\varnothing$
：rem 229
59ø IFA＞ 128 THENN $=-$ A：RETURN
：rem 137
$6 \emptyset \emptyset$ IFA＜＞2の THEN 63Ø ：rem 10
$61 \varnothing$ GOSUB690：IFI＝1ANDT＝44THENN＝－1：PRINT＂
\｛LEFT\} \{LEFT\}"; :GOTO69ø :rem 172
$62 \emptyset$ GOTO57ø
$63 \emptyset$ IFA $<480$ RA $>57$ THEN $58 \emptyset$
：rem 109
$64 \varnothing$ PRINTAS；：N＝N＊ $1 \varnothing+A-48$
：rem 105
：rem 1ø6
$65 \emptyset$ IFN $>255$ THEN A＝2ø：GOSUB1øøø：GOTO6øø
：rem 229
$660 \mathrm{Z}=\mathrm{Z}+1$ ： IFZ ＜3THEN58 $\varnothing$
：rem 71
67ø IFZ＝øTHENGOSUB1øøø：GOTO57ø ：rem 114
$68 \emptyset$ PRINT＂，＂；：RETURN
：rem $24 \varnothing$
$69 \emptyset \mathrm{~S} \%=\operatorname{PEEK}(2 \varnothing 9)+256 * \operatorname{PEEK}(21 \varnothing)+\operatorname{PEEK}(211)$
：rem 149
692 FORI＝1TO3：T＝PEEK（S\％－I）：rem 68
695 IFT＜＞44ANDT＜＞ 58 THENPOKES\％－I， 32 ：NEXT
：rem 205
$7 \emptyset \emptyset$ PRINTLEFT\＄（＂\｛3 LEFT\}", I-1);:RETURN ：rem 7
71ø PRINT＂\｛CLR\}\{RVS\}*** SAVE ***\{3 DOWN \}"
：rem 236
$72 \varnothing$ INPUT＂$\{D O W N\}$ FILENAME＂； F ：$\quad$ rem 228
$73 \varnothing$ PRINT：PRINT＂$\{\overline{2}$ DOWN \} \{RVS $\}$ T $\{O F F\} A P E$ OR \｛RVS\}D\{OFF\}ISK: (T/D)" :rem 228
74ø GETAS： $\bar{I} F A S<>" T " A N D \bar{A}\langle\bar{\ll} " D " T H E N 74 \varnothing$
：rem 36
$75 \emptyset \mathrm{DV}=1-7 *(A \$=" \mathrm{D} "): I F D V=8 T H E N F \$=" \varnothing: "+F \$$
：rem 158
760 T\＄＝FS：ZK＝PEEK（53）＋256＊PEEK（54）－LEN（T\＄ ）：POKE782，ZK／256 ：rem 3
762 POKE781，ZK－PEEK（782）＊256：POKE78ø，LEN（ T\＄）：SYS65469 ：rem 109
763 POKE78ø，1：POKE781，DV：POKE782，1：SYS654 66 ：rem 69
765 POKE254，S／256：POKE253，S－PEEK（254）＊256 ：POKE78ø， 253 ：rem 12
766 POKE782，E／256：POKE781，E－PEEK（782）＊256 ：SYS65496
：rem 124
$77 \varnothing \operatorname{IF}(\operatorname{PEEK}(783)$ AND1）OR（ST AND191）THEN78Ø ：rem 111
775 PRINT＂${ }^{2}$ DOWN\} DONE.": END :rem 106
$78 \emptyset$ PRINT＂$\{D O W N\} \bar{E} R R O R$ ON SAVE．$\{2$ SPACES $\} T$ RY AGAIN．＂：IFDV＝1THEN $\overline{7} 2 \emptyset$ ：rem 17 $\overline{1}$
781 OPEN15，8，15：INPUT\＃15，E1\＄，E2\＄：PRINTE1\＄ ；E2\＄：CLOSE15：GOTO72ø ：rem 1ø3
782 GOTO72ø ：rem 115
79 PRINT＂$\{$ CLR $\}$ \｛RVS \}*** LOAD *** $\{2$ DOWN \}" ：rem 212
8øø INPUT＂\｛2 DOWN\} FILENAME"; FS :rem 244 81ø PRINT：PRINT＂$\{2$ DOWN \} \{RVS \}T $\{$ OFF \}APE OR \｛RVS\}D\{OFF\}ISK: (T/D)" - :rem 227 82ø GETAS： $\bar{I} F A S<>" T$＂AND $\bar{A} S \overline{<}>" D " T H E N 82 \varnothing$ ：rem 34
$83 \emptyset \mathrm{DV}=1-7 *(\mathrm{~A}=$＝＂D＂）：IFDV＝8THENF $=$＂Ø：＂+F \＄
：rem 157
$84 \varnothing \mathrm{~T} \$=\mathrm{F} \$: \mathrm{ZK}=\operatorname{PEEK}(53)+256 * \operatorname{PEEK}(54)-\operatorname{LEN}$（ $\mathrm{T} \$$ ）：POKE782，ZK／256
：rem 2
841 POKE781，ZK－PEEK（782）＊256：POKE780，LEN（ T\＄）：SYS65469 ：rem 107
845 POKE780，1：POKE781，DV：POKE782，1：SYS654 66
：rem 7ø
$85 \emptyset$ POKE78ø，$:$ ：SYS65493 ：rem 11
$86 \emptyset \operatorname{IF}(\operatorname{PEEK}(783)$ AND1）OR（ST AND191）THEN87ø
：rem 111
865 PRINT＂$\{$ DOWN $\}$ DONE．＂：GOTO31ø ：rem 96
$87 \varnothing$ PRINT＂$\{D O W N\} \overline{E R R O R}$ ON LOAD．$\{2$ SPACES $\}$ RY AGAIN．$\{D 0 \bar{N} N$ \}": IFDV $=1$ THEN8øø
：rem 172
$88 \emptyset$ OPEN15， $8,15:$ INPUT\＃15，E1\＄，E2\＄：PRINTE1\＄ ；E2\＄：CLOSE15：GOTO8øø ：rem $1 \not \subset 2$
1øøø REM BUZZER
：rem 135
1øø1 POKE36878，15：POKE36874，19ø ：rem $2 \varnothing 6$
1øø2 FORW＝1TO3øø：NEXTW ：rem 117
1øø3 POKE36878，$:$ POKE36874，ø：RETURN
：rem 74
$2 ø \emptyset \emptyset$ REM BELL SOUND ：rem 78
$2 ø \emptyset 1$ FORW＝15TOøSTEP－1：POKE36878，W：POKE368 76，240：NEXTW
：rem 22
2øø2 POKE36876，Ø：RETURN ：rem 119
3øøø PRINTC\＄；＂\｛RVS\}NOT ZERO PAGE OR ROM": GOTOIøøø

# It all adds up <br> HOME COMPUTTRRS <br> PRIMTERS 


WHILE SUPPLY LASTS
600XL.....................CALL
800XL.................ALL

Call for new low pricing 1200XL
.......... 1450XL

CALL
850 Interface. $\$ 159.00$
$\$ 71.99$
1020 Color Printer. 871.99
$\$ 21900$

1025 Dot Matrix Printer......... $\$ 299.00$
1027 Letter Quality Printer.. $\$ 269.00$ 1027 Letter Quality Printer.. 1030 Direct Connect Modem... 1030 Direct Connect Modem.... $\$ 99.99$
1050 Disk Drive..................... $\$ 349.00$

CX30 Paddles.
CALL

1064 Mernory Module. Touch Tablet/Software Light Pen/Software CX22 Track Ball 4018 Pilot (Home). 405 Pilot (Bduc.). 8036 Atari Pllot. 5049 VisiCalc..............
488 Communicator II.
$\$ 125.004025$ Defender $\$ 11.99$ Communicator II................ $\$ 119.99$ 8126 Microsoft Basic I or II.............. $\$ 44.999$

| Axiom |  |
| :---: | :---: |
| AT-100 Atari Interface Printer\$199.00 | 160L ................................... \$589.00 |
| GP-100 Parallel Interface....... $\$ 189.00$ | 180L .................................... $\$ 799.00$ |
| GP-550 Atari Bidirectional.... \$319.00 | Spirit 80.............................. \$289.00 |
| GP-700 Atari Color Printer.... \$489.00 | NEC |
| GP-550 Parallel Printer....... \$269.00 | 8027 Dot Matrix ................... $\$ 389.00$ |
| BMC | Pinwriter ................................ CALL |
| 401 Letter Quality ................ $\$ 589.00$ | 2010/15/30 ............................. $\$ 749.00$ |
| BX-80 Dot Matrix................. \$269.00 | 3510/15/30 .......................... $\$ 1369.00$ |
| c.ITOH | 7710/15/30 ......................... $\$ 1799.00$ |
| Gorilla Banana..................... $\$ 149.00$ | OKIDATA |
| Prowriter 8510P.................... $\$ 379.00$ | 82, 83, 84, 92, 93, 2350, 2410...CALL |
| Prowriter 1550P.................. $\$ 589.00$ | OLYMPIA |
| Al0 (18 cps) Son of Starwriter\$569.00 | Compact 2............................ \$479.00 |
| Hot Dot Matrix.........................CALL | Compact RO....... ................. $\$ 509.00$ |
| F10-40 Starwriter ............... $\$ 999.00$ | ESW 3000 ......................... $\$ 1449.00$ |
| F10-55 Printmaster............ $\$ 1349.00$ | SMITH CORONA |
| COMREX | TP.1000 ................................ $\$ 449.00$ |
| ComWriter II Letter Quality . \$449.00 | Tractor Feed......................... $\$ 119.00$ |
| DIABLO | SILVER REED |
| 620 Letter Quality............... $\$ 949.00$ | 500 Letter Quality............... $\mathbf{\$ 4 4 9 . 0 0}$ |
| 630 Letter Quality ............... $\$ 1749.00$ | 580 Letter Quality............... $\$ 549.00$ |
| DAISYWRITER | 770 Letter Quality............... $\$ 869.00$ |
| 2000................................... \$999.00 | Stan |
| Tractor Feed (Uni) ............. \$109.00 | Gernini 10X ...................... $\$ 279.00$ |
| EPSON | Gemini 15X .......................... $\$ 389.00$ |
| RX-80, RX-80FT. RX-100...........CALL | Serial Board............................ $\$ 75.00$ |
| FX-80, FX-100 .........................CALL | Radix 10.............................. $\$ 599.00$ |
| LQ 1500..................................CALL | Radix 15........................... $\$ 699.00$ |
| IDS | TOSHIBA |
| Prism 80...For Configuration.....CALL | 1340.................................... $\$ 829.00$ |
| Prism 32...For Configuration.....CALL | 1351.................................... $\$ 1499.00$ |
| 6100..................................... $\$ 469.00$ | 120P ................................... \$469.00 |
|  | 130P .................................... \$649.00 |
|  | 315 Cclor............................. $\$ 459.00$ |

## DISK DRIVES FOR ATARI PERCOM

A
AT 88-S1 $\ldots$.
AT $88-$ S1 PD
GT Drive......
Axion 32 K
Axion 48 K

Axion 48 K Axion 128 K



| Axtom |  |
| :---: | :---: |
| AT-100 Atari Interface Printer $\$ 199.00$ | 160L ...................................... \$889.00 |
| GP-100 Parallel Interface........ $\$ 189.00$ | 180L ....................................... \$799.00 |
| GP-560 Atari Bidirectional..... $\$ 319.00$ | Spirit 80............................... \$289.00 |
| GP-700 Atari Color Printer.... \$489.00 | HEC |
| GP-550 Parallel Printer....... \$269.00 | 8027 Dot Matrix.................... $\$ 389.00$ |
| BMC | Pinwriter .................................. CALL |
| 401 Letter Quality ................ $\$ 589.00$ | 2010/15/30 .............................. $\$ 749.00$ |
| BX-80 Dot Matrix .................. \$269.00 | 3510/15/30 ........................... $\$ 1369.00$ |
| C.ITOH | 7710/15/30 .......................... \$1799.00 |
| Gorilla Banana..................... $\$ 149.00$ | OKIDATA |
| Prowriter 8510P.................... $\$ 379.00$ | 82, 83, 84, 92, 93, 2350, 2410...CALL |
| Prowriter 1550P................... \$589.00 | OLYMETA |
| Al0 (18 cps) Son of Starwriter\$569.00 | Compact 2............................. $\$ 479.00$ |
| Hot Dot Matrix.........................CALL | Compact RO........ .................. \$509.00 |
| F10.40 Starwriter .................. $\$ 999.00$ | ESW 3000.......................... $\$ 1449.00$ |
| F10-55 Printmaster............ \$1349.00 | SMITH CORONA |
| COMREX | TP.1000 ................................. $\$ 449.00$ |
| ComWriter II Letter Quality .. $\$ 449.00$ | Tractor Feed.......................... $\$ 119.00$ |
| 620 Letter Quality ................ $\$ 949.00$ | 500 Letter Quality............... $\mathbf{\$ 4 4 9 . 0 0}$ |
| 630 Letter Quality .............. $\$ 1749.00$ | 550 Letter Quality ................. $\$ 549.00$ |
| DAISYWRITER | 770 Letter Quality ................ $\$ 869.00$ |
| 2000..................................... $\$ 999.00$ | STAR |
| Tractor Feed (Uni)................ \$109.00 | Gernini 10X ........................... \$279.00 |
| EPSON | Gemini 15X.......................... $\$ 389.00$ |
| RX-80, RX-80FT. RX-100..........CALL | Serial Board............................. $\$ 75.00$ |
| FX-80, FX-100.........................CALL | Radix 10............................... \$599.00 |
| LQ 1500..................................CALL | Radix 15............................ $\$ 699.00$ |
| IDS | TOSHIBA |
| Prism 80...For Configuration.....CALL | 1340 ................................... 8829.00 |
| Prism 32...For Configuration.....CALL JUKI | 1351..................................... $\$ 1499.00$ |
| 6100...................................... $\$ 469.00$ | 120P ...................................... \$469.00 |
|  | 130P ...................................... \$649.00 |
|  | 315 Cclor.............................. $\$ 459.00$ |


| ANCHOR | NOVATION |
| :---: | :---: |
| Volksmodern........................... \$59.99 | J-Cat..................................... $\mathbf{\$ 9 9 . 9 9}$ |
| Mark IL Serial...................... \$79.99 | Cat .................................. $\$ 139.00$ |
| Mark VII (Auto Ans/Auto Dial)\$99.99 | Smart Cat 103........................ $\$ 179.00$ |
| Mark XII ( 1200 Baud)........... $\$ 269.99$ | Smart Cat 103/212.................. $\$ 399.00$ |
| Mark TRS-80.......................... $\$ 99.99$ | AutoCat ................................. \$219.00 |
| 9 Volt Power Supply................. $\$ 9.99$ | 212 AutoCat........................... $\$ 549.00$ |
| Hayns | Apple Cat II.......................... \$249.00 |
| Smartmodem 300................... $\$ 199.00$ | 212 Apple Cat ..................... $\$ 449.00$ |
| Smartmodem 1200................. \$499.00 | Apple Cat 212 Upgrade........ \$259.00 |
| Smartmodem 1200B ............. \$449.00 | Smart Cat Plus................... $\$ 369.00$ |
| Micromodem IIe................... \$269.00 | ZENITH |
| Micromodern 100................. $\$ 299.00$ | ZT.1....................................... $\$ 339.00$ |
| Smart Com II........................... $\$ 89.99$ | 2T10....................................... \$309.00 |
| Chronograph ........................... $\$ 199.00$ | 2T-11....................................... $\$ 369.00$ |
| TOETT | 8 |
| AYEDEX | 8AEATA |
| 300 Green............................ \$149.00 | SC-100 Color......................... \$269.00 |
| 300 Amber.......................... $\$ 159.00$ | SG-1000 Green....................... $\$ 129.00$ |
| 310 Amber.......................... $\$ 169.00$ | SA-1000 Amber.................... $\$ 139.00$ |
| Color 1................................. $\mathbf{\$ 2 6 9 . 0 0}$ | TAXAN |
| Color 1 Plus........................... \$289.00 | 210 Color RGB..................... $\$ 269.00$ |
| Color 2 Plus......................... $\$ 389.00$ | 400 Med-Res RGGB................. $\$ 319.00$ |
| New Color 300,400,500,600,700...Call | 415 Hi-Res RGB ..................... $\$ 439.00$ |
| Color 4T IBM......................... $\$ 899.00$ | 420 Hi-Res RGB (IBM) ........... $\$ 469.00$ |
| Bytc | 100 12" Green....................... $\$ 126.00$ |
| 1201 (12" Green)................... $\$ 88.99$ | 108 12" Amber........................ $\$ 135.00$ |
| 1201 Plus (12' Green H1-Res). 898.99 | UEI |
| 9191 Plus............................ $\$ 249.00$ | P1 1. 9* Green........................ \$99.99 |
| GORILLA | Pi 2. 12 Green .................... $\$ 119.99$ |
| $12^{\prime \prime}$ Green............................. $\$ 88.99$ | Pi 3. 12" Amber................... $\$ 129.99$ |
| 12" Amber............................. $\$ 95.99$ | Pi 4, 9* Amber..................... $\$ 119.99$ |
| N EC | 1400 Color.......................... \$269.99 |
| JB 1260 Green...................... $\$ 109.00$ | QUADRAM |
| JB 1201 Greén....................... $\$ 149.99$ | Quadchrome 8400 Color........ $\$ 499.00$ |
| JB 1205 Amber.......................... $\$ 159.99$ | SEMXPH |
| JB 1215 Color....................... $\$ 259.00$ |  |
| JC 1216 RGB...................... $\$ 489.00$ | ZVM122 Amber.......................... $\$ 89.989$ |
| JC 1460 Color................. $\$ 359.00$ PRINCETON GRAPHICS | ZVM124 IBM-Amber.............. $\$ 149.00$ |
| MAX-12 Amber................... $\$ 199.00$ | ZVM 131 Color..................... $\$ 309.00$ |
| HX-12 RGB .......................... $\$ 499.00$ | ZVM133 RGB ........................ \$429.00 |
| SRT-2 RGB........................... $\$ 649.00$ | ZVM135 RGB/Composite........ \$469.00 |

## COMPUTER MAM OROER <br> west

In NV call (702)588-5654. Dept. 105 Order Status Number: 588-5654 P.O.Box 6689 Stateline, NV 89449

# the best prices <br> FRANKLIN 

## APPLE/FRANKLIN

 DISK DRIVES

## APPLE IIE BTARTER PACK

64 K Apple IIe. Disk Drive \& Controller. 80 Column Card. Monitor II \&e DOS 3.3 COMPLETE.
Call on all other Apple Models


|  |  |
| :---: | :---: |
| NEC 2050............................ $\$ 899.00$ |  |
| NEC 3580.......................... $\$ 1599.00$ |  |
| PERCOM/TAEDDOH |  |
| DIsk Dhives | WordStar Professional Pack \$369.00 |
| 51/4"320K Floppy ............ \$199.00 | MICROMIM |
| 5 Meg Hard w/Controller | R:Base 4000 ..........................CALL |
| $10 \mathrm{Meg} \mathrm{Hard} \mathrm{w/Controller..} \$$. | MULTIMATE INT. |
| $20 \mathrm{Meg} \mathrm{Hard} \mathrm{w/Controller..} \$$. | Multi Mate......................... $\$ 289.00$ |
| VISICORP | MICROBTUF |
| VisiCaic IV ........................ $\$ 169.00$ | Crosstalk............................ $\$ 105.00$ |
| Visiword + ....................... $\$ 249.00$ | Mrrcmosorz |
| Visi-on 'Series'........................CALL | MultiPlan ........................ $\$ 159.00$ |
| Optical Mouse...................... $\$ 189.99$ | ABETOF-2AER |
| IDEAssociates | dBASE II........................... $\mathbf{\$ 2 9 9 . 0 0}$ |
| 5 MB to 45 MB Hard drives with | dBASE III .......................... \$429.00 |
| removable Cart. backupas low as\$1399 | Friday ! ........................... $\mathbf{\$ 1 7 9 . 0 0}$ |
| Ast research |  |
| Six Pak Plus..............from $\mathbf{\$ 2 4 9 . 0 0}$ |  |
| Combo Plus II.............from... $\$ 279.00$ | Easy F1er ............................. $\$ 829.00$ |
| Mega Plus.................from.. $\$ 299.00$ |  |
| I/O Plus...................from... $\$ 139.00$ | 1st Class Mail/Form Letter..... 879.99 |
| QUADRAX | Home Accountant Plus........... $\$ 88.99$ |
| Quadink............................ $\$ 479.00$ | zorus |
| Quadboard...........as low as... $\$ 309.00$ | Symphony ............................ \$519.00 |
| Quad 512 Plus......as low as $\$ 259.00$ | 1-2-3 ............................... $\$ 339.00$ |
| Quadcolor.............as low as ... $\$ 239.00$ | PROFESSIONAL SOTTWARE |
| Chronograph....................... \$89.99 | PC Plus/The Boss............... $\$ 309.00$ |
| Parallel Interface Board........ \$89,99 | SYNAPSE |
| 64K RAM Chips Kit............... $\$ 49.99$ |  |


| HP 110. | \$62.99 |
| :---: | :---: |
| HP 12C.. | \$92.99 |
| HP 15C. | \$82.99 |
| HP 16C. | \$82.99 |
| HP 75D. | \$879.99 |
| HPIL Module | \$98.99 |
| HPIL Cassette or Printer. | \$359.99 |
| Card Reader. | \$143.99 |
| Extended Function Mod | \$63.99 |
|  | $\$ 63 .$ |



## Lyco Computer Marketing \& Consultants

## TO ORDER

CALL US

## $\leftrightarrow$ <br> DISKETTES

ELEPHANT

5\%" DSDD.................... s25.95

MAXELL
5\%" MD-1................ 524.75
5\%"MD-2............... 534.75

## CERTRON CASSETTES

cc-10(12)
$\$ 15.99$
CC-20(12)
$\$ 17.99$

# apple 

## KOALA

KOALA TABLET. \$84.75 PROGRAMMERS GUIDE... $\mathbf{\$ 1 2 . 7 5}$ GEOMETRIC DESIGNS ... $\$ 22.75$ LOGO DESIGN............. $\$ 27.75$ ILLUSTRATOR .............. $\$ 99.75$ SONG WRITER D........... $\mathbf{\$ 2 7 . 7 5}$ MASTER TYPE.............. $\$ 27.75$

CONTINENTAL
HOME ACCOUNT D ...... $\$ 44.75$ TAX ADVANTAGE......... $\$ 35.75$ BOOK OF APPLE
SOFTWARE
. $\$ 16.95$
GENERAL LEDGER ..... $\$ 179.95$ ACCOUNTS PAY.......... $\$ 179.95$ ACCOUNTS REC ......... $\$ 179.95$ PAYROLL $\$ 179.95$ PROPERTY MGMT . ..... $\$ 329.95$

BRODERBUND

| BANK STREET D | . 544.75 |
| :---: | :---: |
| CHOPLIFTER D. | \$24.95 |
| DAVID'D MAGIC | S24.95 |
| DROL D | S24.95 |
| LODE RUN D. | . 24.95 |
| SEAFOX D | \$22.95 |
| SPARE CHANGE D | \$24.95 |
| AE D. | \$24.75 |
| SSI |  |
| KNIGHTS OF DESERT ... S26.75 |  |
| EAGLES.................. $\mathbf{S 2 6 . 7 5}$ |  |
| TIGERS IN SNOW ........ $\mathbf{S 2 6 . 7 5}$ |  |
| GERMANY 1985 .......... $\mathbf{S 3 6 . 7 5}$ |  |
| BATTLE FOR |  |
| NORMANDY | \$26.75 |
| SHATTERED ALLIANC | . 539.75 |

## TOLL FREE 800-233-8760 <br> In PA 1.717.327-1824

PRINTING PAPER
3000 SHEETS
FANFOLD.
FANFOLD
FANFOLD .............. $\$ 19.75$
1000 SHEETS LETTER... $\$ 21.95$
200 SHEETS LETTER ..... 88.99 150 RAG STATIONERY ... $\$ 10.99$ MAILING LABELS ( 1 in ) ... $\mathbf{\$ 9 . 7 5}$ 14×11 1000 FANFOLD ... $\$ 24.75$

SPINNAKER 64
KINDERCOMP D/R ..... $\mathbf{\$ 2 1 . 7 5}$ STORY MACH ROM...... $\mathbf{\$ 2 4 . 7 5}$ FACE MAKER D/R ....... $\mathbf{S 2 4 . 7 5}$ SNOOPER TR D.......... $\mathbf{S 2 6 . 7 5}$ SNOOPER T2 D..........S26.75 DELTA DRAW ROM .....S26.75 FRACTION F ROM ....... $\$ 24.75$ KIDS ON KEYS .......... $\mathbf{\$ 2 4 . 7 5}$

## EPYX

JUMPMAN C/D ..... $\$ 27.75$ JUMPMAN JR R .... $\mathbf{S 2 7 . 7 5}$ PITSTOP R.......... $\mathbf{S 2 7 . 7 5}$ TEMPLE ASPHAI ... $\mathbf{\$ 2 7 . 7 5}$ GATE T ASPHAI .... $\mathbf{S 2 7 . 7 5}$ CRUSH, C\&C C/D...S21.75

## HES 64

TURTLE TUTOR .... $\mathbf{\$ 2 2 . 7 5}$ TURTLE TRAINER .. $\mathbf{\$ 2 2 . 7 5}$ TURTLE GRAPHICS $\mathbf{\$ 3 7 . 7 5}$ SOUND BOX .......... 59.95 64 FORTH............. $\$ 39.95$ HESMON ............ $\$ 22.75$ GRIDRUNNER ...... $\$ 19.75$ ATTACK OF M C .... $\$ 22.75$ HESWRITER ......... $\$ 28.75$ OMNI WRITER...... $\$ 45.75$ TYPE N WRITER....S24.75 PAINT BRUSH . ..... $\$ 22.75$ BENJI................ $\$ 25.75$ HOME MANAGER .. $\$ 28.75$ TIME MONEY MGR. $\$ 44.75$ OMNI CALC.......... $\$ 33.75$ SWORD POINT ..... $\$ 19.95$ HES MODEM ....... 549.95 M. MULTIPLAN ..... 565.75

## OVER 2000

 SOFT-WARE TITLES IN STOCKCATALOG AVAILABLE
HARD DISK DRIVES

FOR.
IBM, APPLE, TRS80
10 MEG.................... $\$ 975.00$
20 MEG ................... $\$ 1399.00$
30 MEG.
D.O.S. EXTRA

## ATARI

800XL.
1450 XL....
1027 PRINTER
1025 PRINTER.
1020 PRINTER.... 1010 RECORDER.

ATARI
PACMAN
DONKEY KONG.
DIG DUG..
DEFENDER
CENTIPEDE
DEADLINE ENCHANTER INFIDEL.
PLANETFALL STAR CROSS SUSPENDED WITNESS. ZORK I. ZORK II ZORK III.

## ATARI

INFOCOM
DEADLINE .................. $\$ 34.75$ ZORK 1,2, or $3 \ldots \ldots \ldots .$. .......... $\mathbf{S 2 6 . 7 5}$ ENCHANTER .............. 534.75 EDUFUN
GULP ARROW
GRAPHICS.
$\$ 24.75$
FACE FLASH

CONTINENTAL
HOME ACCOUNT D ...... $\$ 44.75$ TAX ADVANTAGE. BOOK OF ATAR
SOFTWARE

## AMDEK

## VIDEO 300.

VIDEO 300A
$\$ 139.00$
. $\$ 149.00$
COLOR $1+\ldots \ldots . \$ 269.00$ COLOR $11+\ldots \ldots . . . . . .$.

## GORILLA

12" GREEN ................. $\$ 82.00$

12" AMBER
$\$ 82.00$
$\$ 89.00$
NEC
JB1260 GREEN
$\$ 99.00$
JB1201 GREEN
$\$ 145.00$
JB1205 ..... AMBER $\$ 145.00$
JC1215 COLOR
JC1216.
\$269.00

SAKATA
SC100 COLOR . . . $\$ 229.00$
SG1000 GREEN.
SA AMBER.

## BUSINESS

VISICALC
LETTER PERFECT. ........ $\$ 159.75$
CALL LEITER PERFECT R ........ $\$ 89.75$
CALL LEA PERFECT R ........ $\$ 89.75$
$\$ 299.00$ DATA PERFECT ............. $\$ 89.75$
CALL FILE MANAGER.............. $\$ 69.75$
$\$ 219.00$ BOOKKEEPER ................ $\$ 19.75$
$\$ 74.00$ C.R.IS
$\$ 119.75$
TEXT WIZZARD .............. $\$ 34.75$
SPELL WIZZARD............. $\$ 34.75$

## SPINNAKER

$\$ 29.75$
$\$ 29.75$
\$29.75
\$29.75
$\$ 29.75$
$\$ 34.75$
\$34.75
$\$ 34.75$
$\$ 34.75$
$\$ 34.75$
$\$ 34.75$
$\$ 34.75$
$\$ 34.75$
\$34.75
\$34.75
STORY MACHINE R.
FACE MAKER R
$\$ 26.75$
KINDEROMP R ............ $\$ 24.75$
FRACTION FEVER R ......... $\$ 24.75$
DELTA DRAWING R......... $\$ 26.75$
PARKER BROTHERS
TUTANKHAM R.............. $\$ 33.75$
SUPER COBRA R ............ $\$ 33.75$
ASTRO CHASE R............. $\$ 33.75$
FROGGER R .................. $\$ 33.75$
Q BERT R.
POPEYER
RISK R...
$\$ 33.75$
$\$ 33.75$
$\$ 42.75$

## SCARBOROUGH

SONG WRITER D .......... $\$ 27.75$
MASTER TYPE............. $\$ 27.75$
EASTERN HOUSE
MONKEY WRENCH II .... 552.75 DON'T ASK SOFTWARE
SAM.
$\$ 39.75$
ABUSE
$\$ 22.75$
WORD RACE . .............. $\$ 24.75$
PROGRAM DESIGN
ANALOGIES ............... $\$ 14.50$
PREP FOR SATS .......... $\$ 79.75$
PRESCHOOLIO
BUILDER.
.$\$ 16.75$
READING COMP $\$ 16.75$
VOCABULARY BUILDER... $\$ 16.75$
LET'S SPELL..
S14.75

## MONITORS

TAXAN
100 GREEN
$\$ 115.00$
105 AMBER.
$\$ 125.00$
210RGBCOMPOSITE. . $\$ 269.00$
400 RGB MEDRES. ....... $\$ 295.00$
410 RGB HI RES. ........ $\$ 349.00$
420 RGB HI RES (IBM) . . . $\$ 475.00$
121 GREEN ............. $\$ 145.00$
122 AMBER

## ZENITH

ZVM 122A AMBER
$\$ 95.00$
ZVM 123G GREEN ...... $\$ 85.00$
ZUM 124IBM-PC.......... $\$ 129.00$
ZUM COLOR.
ZUM 133 RGB
ZUM 135 RGB $\$ 275.00$ $\$ 389.00$

ZUM 136
$\$ 449.00$
$\$ 589.00$

# Lyco Computer <br> Marketing \& Consultants 

# Lyco Computer Marketing \& Consultants TO ORDER <br> CALL US TOLL FREE 800-233-8760 

## MANNESMANN TALLY

| SPIRIT 80 | \$299.00 |
| :---: | :---: |
| MTL-160L | . 5559.00 |
| MTL-180L | . $\$ 775.00$ |
|  |  |
| NEC8023. | \$369.00 |
| NEC8025 | 999.00 |



AVAILABLE FOR COMMODORE
VIC. APPLE. ATARI. BM.PC. GEMINI 10X $\$ \mathbf{2 5 9 . 0 0}$
TRS 80, TI, AND OTHERS
BLUE CHIP

CARDCO
LQ1
\$449.00
LQ2.......................... $\$ 279.00$ LQ3.......................... $\$ 339.00$ PRINTER INTERFACE ...... $\$ 39.75$ PRINTER INTERFACE WITH
FULL GRAPHICS. ......... $\$ 65.75$ LIGHT PEN. .................. $\$ 29.75$ 5 Slot Expansion 64 ...... $\$ 54.00$ 64 Write NOW. ............ $\$ 39.00$ 64 Mail NOW.............. $\$ 29.00$ 2. Write NOW. ............ $\$ 29.00$ 64 Keypad ................ $\$ 29.00$ Universal Cass. Int........ $\mathbf{\$ 2 9 . 7 5}$ Printer Utility............... $\$ 19.75$ 6 Slot Expansion.......... $\$ 79.95$ 3 Slot Expansion.......... $\mathbf{\$ 2 4 . 9 5}$

## JUKI

6100.............................CALL RITEMAN
INFO RUNNER

LJK
LETTER PERFECT. . \$69.75 DATA PERFECT .... $\mathbf{\$ 6 9 . 7 5}$ SPELL PERFECT ... $\mathbf{\$ 6 9 . 7 5}$

## STAR

MICRONICS

| GEMINI 15X | \$379.00 |
| :---: | :---: |
| DELTA 10. | \$449.00 |
| DELTA 15 | \$525.00 |
| RADIX 10 | \$575.00 |
| RADIX 15 | \$675.00 |
| POWERTYPE | SCALL |
| SWEET P(Mod | \$549.00 |
| STX80 | \$149.00 |



SAVE$=$ PRINTERS

CITOH

| GORILLA SERIAL | \$199.00 |
| :---: | :---: |
| PROWRITER 8510 | \$335.00 |
| PROWRITER II | \$575.00 |
| 8600 | S899.00 |
| STARWRIT | 929.00 |
| RINTMASTER | \$1 |
| HEET FEED | \$425 |
| 620 | \$929.00 |
| 630 | \$1699.00 |
| 8510 SP | \$499.00 |
| 8510 SCP | \$559.00 |
| A10 LETTER | \$499.00 |

PANASONIC
$1090 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \$ 279.00$
$1091 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \$ 459.00$
$1092 \ldots \ldots \ldots \ldots \ldots . . . \ldots$

## EPSON

. $\$ 269.00$ $\$ 299.00$ $\$ 299.00$
$\$ 43900$ $\$ 439.00$
$\$ 639.00$ . $\$ 639.00$

OKIDATA


## LEGEND




## INFOCOM


PLANETFALL \$34.75

## PEACHTREE SOFTWARE

LIST MANAGER .......... $\$ 199.00$ BUSINESS GRAPHICS $\$ \mathbf{\$ 2 5 . 0 0}$ GRAPHICS LANGUAGE... $\$ 299.00$ REQUIRES COBAL RUNTIME
ACCTS PAYABLE I ...... $\$ 495.00$ ACCTS PAYABLE II.... $\mathbf{\$ 1 6 9 5 . 0 0}$ PAYROLL I................. $\$ 495.00$ PAYROLL II ............. $\mathbf{\$ 1 6 9 5 . 0 0}$ GENERAL LEDGER I.... $\mathbf{\$ 4 9 5 . 0 0}$
GENERAL LEDGER II... $\$ 1695.00$

CP/M VERSION
PEACHPACK 4 ........... $\$ 295.00$ ACCTS PAYABLE III..... $\$ 549.00$ ACCTS PAYABLE IV...... $\$ 899.00$ ACCTS REC III ........... $\$ 549.00$ ACCTS REC IV ............ $\mathbf{\$ 8 9 9 . 0 0}$ GENERALLEDGER III.... $\$ 549.00$ GENERALLEDGERIV... $\mathbf{\$ 8 9 9 . 0 0}$ INVENTORY MGMT I.... $\$ 549.00$ INVENTORY MGMT II.... $\mathbf{\$ 8 9 9 . 0 0}$ PAYROLL III . .............. $\$ 549.00$ PAYROLL IV ................ $\$ 899.00$ SALES INVOICING I .... $\$ 549.00$ SALES INVOICING....... $\$ 899.00$


ADD-ON DRIVES............ CALL
AT 88 DOUBLER........ $\$ 119.00$ RANA 1000 . . . . $\$ 299$
INDUS GT..... $\$ 325$

## CONCORD

ATARI 176 K MASTER $\quad \$ 289.00$ ATARI 348 K MASTER $\quad \$ 369.00$ ATARI ADD-ON DRIVES ...SCALL

TRACK DRIVES

## ELIP-N-FILE

FLIP-N-FILE 15 \$8.95
FLIP-N-FILE 25............. $\$ 18.95$
FLIP-N-FILE 50............ $\$ 17.75$
FLIP-N-FILE(RomHolder) . . $\$ 17.75$

| AT-D2 | \$329.00 |
| :---: | :---: |
| AT-D2 TURBO PAK | . $\mathbf{\$ 2 2 . 9 5}$ |
| AT-DH. |  |
| PRINT | \$22.95 |

## POLICY

In stock items shipped within 24 hours of order Personal checks require four weeks clearance before shipping No deposit on C O D orders Freeshipping on prepaidcashorders within the continental US PA residents add sales tax All products subject to availability and price change Advertised prices show 4 - discount offered tor cash add 4. for Master Card or Visa DEALER INQUIRIES INVITED
or send order to
800-233-8760
Lyco Computer
PO Box 5088
Customer Service 1-717-327-1825 Jersey Shore PA 1774 C

## Verbatim Datalife Diskettes

Box of ten $5^{1 / 4^{\prime \prime}}$ Datalife diskettes with envel opes, labels and reinforced hub-rings. FREE PLASTIC LIBRARY CASE.

## 51/4" SS/DD <br> 51/4" DS/DD

MD525-01
MD525-10
MD525-16 $\$ 22.95$
MD525-16
51/4" SS/QD
MD577-01
MD577-10 $\$ 34.95$
MD577-16
MD550-01
MD550-10 \$31,95
MD550-16 5 $1 / 4^{\prime \prime}$ DS/QD
MD557-01
MD557-10
MD557-16
$\$ 43.95$

## Printers

Gorilla/Banana Parallel or
serial Dot Matrix 120CPS
Gemini 10X-120CPS Bi-Directional
$\$ 121.00$

Prowriter 8510AP 10" $\$ 259.00$

Color printer/ploter, C. Itoh CX4800.4 colors, $10^{\prime \prime}$ Parallel or Serial
$\$ 555.00$
Powertype, Daisywheel
Letter Quality
$\$ 365.00$
Shipping and Handling: $\$ 3.00$ for any order of diskettes. $\$ 9.00$ for printers. C. O. D. orders add \$1.65. We accept Visa. Mastercard and American Express credit cards at no extra charge. Illinois residents please add 7\% tax

Call us now toll free ANYWHERE in the U.S. Orders only: 1-800-227-3800 Ask for "Smart Data" 7 Days a Week, 24 Hours a Day Other information: (312) 256-4456
9 am to 8 pm (central), Mon. through Sat.


SMART DRTA IMC.
po Bor 297
Wimete 100091
(312)256-4456


## There is a road.

Many cancer patients need treatments. That's why the American Cancer Society has formed groups of volunteers across the United States who give a few hours of their time each month to drive them. The road to recovery can be a long and difficult one, but it can be that much easier when there are friends who can help along the way.

## COMMODORE 64E SOFTWARE

## Access

## Beach-Head

Neutral Z.one
Raid over Moscou
Master Composer
Atari Soft All Titles
Logo
Pilot
Pet Emulator
Intro to Basic I
Screen Editor
Super Expander VSP
The Manager
Simons Basic
Music Machine
Music Composer
Nevada Cobol
Nevada Fortran
Commodore
Assembler
Bonus Pack
CP M2.2 System
Easy Script
Easy Mail 64
Easy Spell 64
Easy Calc 64
Easy Lesson/Quiz
Easy Finance(1-5)
Magic Desk
Zork (1-3),
Suspended
Starcross
Deadline

| . (D)23.95 | Public Domain All Titles |
| :---: | :---: |
| . (D)23.95 | Accounting Seri |
| (D)26.95 | Continental |
| . (D) 26.95 | Home accountant |
| Call | Tax Advan |
| . (D) 59.95 | FCM ...... |
| . (d)42.95 | Creative Software |
| . (D)18.95 | Househol |
| . (T) 18.95 | Home Inv |
| . (D)18.95 | Loan Ana |
| . (D)37.95 | Cymbal |
| . (D)59.95 | English/Span |
| . (C)45.95 | Science........ |
| . (C)15.95 | History/Geogr |
| . (D)18.95 | Music Theory |
| . (D)49.95 | Mathematics |
| . (D)49.95 | Entertainment Tonight |
|  | Trivia |
| . (D) 37.95 | Epyx |
| (D.T)16.95 | Pitstop |
| (C.T)57.95 | Temple of A |
| . (D) 44.95 | Jumpman |
| . (D)18.95 | Gateway to Aps |
| . (D) 18.95 | Jumpman Jr. |
| . .(D)64.95 | Oil Baron |
| . (D)18.95 | Impossible Mission |
| (D)18.95 | Greatest Baseball |
| (D) 54.95 | Summer Games |
| (D) 30.95 | Silicone Warrior |
| (D) 37.95 | Hes Software |
| (D) 30.95 | Hes Mon 64 |
| (D)37.95 | Turtle Graphics II |

(D) 30.95 Hes Mon 64
(D) 37.95 Turtle Graphics II
(C) 59.95 Time Money Mgr. (D) 8.95 (D) 49.95

## (D) 50.75

(D) 40.60
(D) 76.50
(D.T) 19.95
(D.T) 19.95
(D.T) 19.95

## (D) 34.95 Nato Commander

(D) 34.95 F-15 Eagle
(D) 34.95 subLogle
(D) 34.95 Flight Simulatorll
(D) 34.95 Night Mission Pinball Splnnaker
(D) 25.95 Alf in the Color Caves Bubble Burst
(C) 27.00 Juke Box
(D)27.00 Kidwriter.
D. T) 27.00 Face Maker
(D) 27.00 Hey Diddle Diddle
(C) 27.00 Kindercomp (D) 39.95 Snooper Troops. (D) 25.95 Fraction Fever. (D)25.95 Amazing Thing (D)29.95 Alphabet Zoo (D) 25.95 Kids on Keys. (C) 27.00 Delta Drawings (C) 40.60 Cosmic Life
(D) 51.00 (D) 24.20 (D) 59.95 (C) 30.45 C) 30.45 (C)20.95 Songwriter. (C)49.95 Master Type (D) 27.95 Synapse (C) 20.45 Ft . Apocalypse (D) 46.95 Shamus
(D) $26.95 \quad \mathrm{SSI}$
(D)26.95 Combat Leader
(D) 26.95 Ring Side Seat
(C)27.95 Germany 1985 (C) 27.95 Golf
(C)27.95 Broadsides
(D)23.95 Electronic Arts
(D.C)23.65 One on One
(D,C)20.30 Sky Fox
(D)27.00 Miscellaneous
(C)23.65 Doodle
(D) 27.00 Word Pro $3+$
(D)23.65 Trivia Mania
(C)27.25 Orical
(C)27.25 Musicale
(C)23.65 Mr. Robot

Zaxxon (D) 36.95 Knights of the Desert. Computer Baseball.
Eagles RFD 1985
(D) 20.30 Music Construction
(D,C)23.65 Paper Clip /w Spell Pack
Story Machine
Trains Aerobics
carborough ue Max

## axxo

eat.
... ... ........ (C) 27.25
(D) 27.95 (D) 30.95
(D) 35.95
(D) 31.95

## (D.C)23.70

## (D.C) 23.70

(D,C) 23.70
(D) 27.95
(D) 29.00
(D) 29.00
(D) 29.00
(D) 29.00
(D) 29.00
(D) 29.95
(D) 34.95
(D) 29.95
(D) 31.95
(D) 37.00
(D) 37.00
(D) 37.00
(D) 31.95
(D) 76.95
(D) 33.95
(D) 89.95
(D) 79.95
(D) 41.95
(D) 26.95

To order, call toll free or send by mail. We accept Visa, Master Card. American Express or Money Orders. Personal checks allow two weeks to clear. Add 52.00 for shipping with an additional $\$ 1.65$ for C.O.D. orders. Other countries please call on shipping with a minimum of 510.00 . All prices are subject to change. Credit and exchange only please. For return authorization call [214] 759.8937.

## ATARI, APPLE, IBM, SOFTWARE LISTS AVAILABLE <br> For turther information and inquires call 214-759-8937 FOR ORDERS OMLY CALL TOLL FREE Outside Texas <br> $1-800-527-8688 \quad 1-800-42-8117$

PO. BOX 2511 LONGVIEW, TX. 75606

Only 10\% of Software we carn is listed on this ad. Call if there is a title you need for all computers. We are here to sence you



## 20 PROGRAMS <br> on 2 cassette tapes

for 16 K
TS1000,
TS1500,
\& ZX81
only
\$19.95.

*for TS2068, C-64, VIC-20, ATARI, TI99/4A, CoCo \& MC-10 only \$29.95 Save money, learn about the exciting world of home computing and have fun doing it with the new HOME-PAC ${ }^{\text {™ }}$.
The HOME-PAC ${ }^{\text {TM }}$ with 21 page user manual covers educational, graphics, recreational, home finance and utility applications.
Great tool for learning to program in BASIC Programs are listable and manual includes section on modification tips

10 DAY MONEY BACK GUARANTEE
Please add $\$ 2.00$ shipping and handling to order. Simplex Software, Dept C2

62 Crestview Drive
Willingboro, NJ 08046
MC, VISA \& Checks Accepted
Orders \& Inquiries State Computer Type Dealer Inquiries Invited


## $\$ 169$ <br>  <br> $\underset{\substack{51 / 80 \\(745) \rightarrow}}{\substack{0 \\ \hline}}$ <br> $\xrightarrow{(745) \rightarrow}$ <br> $\$ 223$

$51 /{ }^{1}$ SSQD- 96 TP ( 746 )
B. SSSD (
B
B SSDO
(741)

| 52.60 ea |
| :---: |
| $\$ 3.25$ |

$\$ 3.25 \mathrm{ea}$
$\mathbf{\$ 2} .05 \mathrm{ea}$
$\mathbf{~}$
8 - DSDD (743)
$\$ 2.05$ ea
$\$ 2.50$ ea
$\$ 3.10$
Shipping: $51 / 4$ DISKETTES-Add $\$ 3.00$ per 100 or fraction thereot. $8^{\circ}$ DISKETESES-Add $\$ 4.00$ per 100 or traction ind MasterCard COD orders only, add $\$ 3.00$. Taxes: llinois customers. please add $8 \%$.

Hours: 9 AM-5 PM Central Time For tast service call
Nationwide: 1-800-621-6827 In Illinois: 312-944-2788

DISK WORLD!
Sute $4806 \cdot 30$ East Huron Street • Chicago, llinois 60611
Authorized Distributor
Information Processing Products


A compact and inexpensive Eprom eraser for the hacker. It erases two chips per exposure, so if you are one of those smart people who only makes little mistakes and only needs to erase two Eproms at a time, this eraser is for you.


4401 S. Juniper e Tempe, AZ 85282
(602) 838-1277

Arizona residents add $6 \%$ tax

Features Precision Tools and


The low priced, high quality diskette with a LIFETIME WARRANTY Packed in polybags of 10 with Tyvek envelopes labels and reinforced hubs
One of the best buys we ve seen
9 39 ea. $5^{\frac{1}{4} 4^{\prime \prime} \text { SSDD }}$
LIFETIME WARRANTY

$\frac{1}{\text { OTY } 20}$

DISKETTE 70 -Holds $7051 / 4^{*}$ diskettes in dust free safety $\$ 14.95 \mathrm{ea} .+\$ 3.00$ Shpng
DISK CADDIES - Flip up style holds 10 5 $1 /{ }^{\prime \prime}$ diskettes \$1.65 ea. + 20 Shpng.
Shipping: $5 \%^{*}$ DISKETTES - Add $\$ 3.00$ per 100 or fraction thereof. OTHER ITEMS. Shipping charges as shown in addition to diskette shipping charges. Payment: VISA or MC COD order only, add $\$ 3.00$ taxes: illinois customers please add 8\%.

## Nationwide: 1-800-621-6827

 In Illinois: 1-312-944-2788WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE
Sute 4806 . 30 East DISK WORLD:
SYMcen

## Advertisers Index

Reader Service Number/Advertiser Page
Abacus Software ..... 42
Abacus Software ..... 148
102 AB Computers ..... 93
Atari Inc ..... 4
Atarisoft ..... 31
103 The Avalon Hill Game Company ..... 9
Axiom Corporation ..... 23
104 Batteries Included ..... 53
105 Broadway Computer Corporation ..... 109
106 Cal-Abco/Peripherals Division ..... 55
107 Cardco, Inc. ..... IBC
Cass-A-Tapes ..... 109
Commodore Computers ..... BC
108 CompuServe ..... 21
ComputAbility ..... 43
ComputAbility ..... 127
109 Computer Mail Order ..... 154,155
Computer Warehouse ..... 105
Cosmic Computers ..... 79
Creative Software ..... 26,27
Dennison ..... IFC
110 Digital Wizardry ..... 104
111 Disk World!, Inc. ..... 107
Disk World!, Inc. ..... 113
Disk World!, Inc ..... 159
Disk World!, Inc. ..... 159
Disk World!, Inc. ..... 159
112 Eastern House ..... 108
Elek-Tek, Inc ..... 111
E Mart, Inc. ..... 106
Epyx ..... 19
Frontrunner Computer Industries ..... 150
Harmony Video \& Computers ..... 113
113 Hayden Software Company, Inc ..... 34,35
114 Indus-Tool ..... 109
Infocom ..... 14,15
J \& R Music World ..... 113
Jason-Ranheim ..... 124
115 Jensen Tools Inc ..... 159
Juki Industries of America, Inc ..... 49
116 Lyco Computer Marketing \& Consultants ..... 156,157
117 Microlab, Inc ..... 13
Micro-Sys Distributors ..... 115
118 Micro-W Distributing, Inc. ..... 32
119 Micro-W Distributing, Inc. ..... 131
Micro World Electronix, Inc ..... 111
Midwest Micro Inc. ..... 121
120 Nibble Notch ..... 124
NRI Schools ..... 51
Reader Service Number/Advertiser Page
Pacific Exchanges ..... 32
Pacific Exchanges ..... 90
Pacific Exchanges ..... 133
Pacific Exchanges ..... 150
121 Parsec Research ..... 36
Powersoft Incorporated ..... 36
122 Pronto Software ..... 113
123 Protecto Enterprizes ..... 74
124 Protecto Enterprizes ..... 75
Protecto Enterprizes ..... 76,77
Psidac ..... 159
125 Quinsept, Inc ..... 57
Reston Computer Group ..... 45
The Scarborough System ..... 7
Scholastic Inc ..... 38,39
126 Simplex Software ..... 159
Smart Data Inc ..... 158
SMC Software Systems ..... 46,47
SM Software Inc ..... 145
SM Software Inc. ..... 145
127 Software Warehouse Outlet ..... 158
Spinnaker ..... 1
128 Sprout ..... 2,3
Strategic Simulations Inc. ..... 59
129 sublOGIC Corporation ..... 41
130 Swintec Corporation ..... 29
131 Systems Management Associates ..... 63
3G Company, Inc ..... 90
132 Timeworks, Inc ..... 25
21st Century Ind., Inc ..... 57
133 Vaisala Inc ..... 22
Walling Co ..... 159
134 John Wiley \& Sons, inc. ..... 57
Xerox Education Publications ..... 11
COMPUTE! Books ..... 60,61
COMPUTEI's Subscription ..... 17

## The Editor's Feedback:

Computer: $\square$ PET $\square$ Apple $\square$ Atari $\square$ VIC-2O $\square$ Commodore 64 $\square$ TI-99/4A $\square$ Timex/Sinclair $\square$ Radio Shack Color Computer $\square$ Other $\qquad$ $\square$ Don't yet have one ...
Are you a compure! Subscriber?
Just
More Right Fewer


Specific applications programs BASIC programs.
Machine language programs.
Tutorials.
Educational articles. Detailed explanations of programs.
$\square$ Yes $\square$ No I would like to see:

Just
More Right Fewer


Games. Reviews of game software. Reviews of business software.


Reviews of educational software.
Reviews of hardware.

What do you like best about computel?

What do you like least?

# COMPUTE! Magazine P.O. Box 5406 Greensboro, NC 27435-0406 



## COMPUTE!'s <br> FREE Reader Information Service

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.

Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.
Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.

## Use these cards and this address only for COMPUTE!'s Reader Information Service. Do not send with payment in any form.

## COMPUTE!

| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 |
| 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 |
| 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |
| 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 |
| 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 |
| 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 |
| 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 |
| 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 |
| 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 |
| 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 |
| 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 |
| 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 |
| 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 |
| 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 |
| 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 |
| 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 |
| 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 |
| 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 |
| 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 |
| 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 |
| 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 |
| 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 |  |  |  |

Circle 101 for a one year new U.S. subscription to COMPUTE: you will be billed for $\$ 24$.
Please print or type your full name and address. Limit one card per person.
Name
Address
City
State/Province Zip

Country



C=www.commodore.ca

## Turn your CRT Monitor into a television set with Cardco's new monitor tuners.

With a flick of the switch you can turn your computer monitor to provide the most vivid television pictures available. Receive a sharper, clearer television picture on your CRT monitor than you ever thought possible. Model MT// includes a full wireless remote control sixty-channel cable ready tuner with separate video and audio output. Completely compatible with your composite input computer monitor. For composite color or monochrome.

Also available to turn your CRT monitor into a television set is CARDCO Model MT/2, a full UHF/VHF TV tuner with


Write for illustrated literature and prices or see CARDCO Computer Accessories and Software wherever computers are sold.


## cardco, inc.

300S. Topeka Wichita, Kansas 67202 (316) 267-6525
"The world's largest manufacturer of Commodore accessories."


## ношто:есоие compurruitetiz.

| FEATURES | COMMODORE $64{ }^{\text {m }}$ | APPLE IIe ${ }^{\text {me }}$ | IBM PC j ${ }^{\text {m }}$ | ATARI 800 $\mathrm{XL}^{\text {m }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Price* | \$219 | \$699 | \$669 | \$299 |
| Built-in Memory | 64 K | 64K | 64 K | 64 K |
| Typewriter Keyboard | YES ( 66 Keys) | $\begin{aligned} & \text { YES } \\ & \text { (62 Keys) } \end{aligned}$ | "CHICKLET" (62 Keys) | YES <br> (61 Keys) |
| Upper/Lower Case | YES | YES | YES | YES |
| Programmable Function Keys | YES | NO | YES | NO |
| AUDIO |  |  |  |  |
| Polyphonic Tones | YES | NO | YES | YES |
| Music Synthesizer | YES | NO | NO | NO |
| Hi-Fi Output | YES | NO | YES | YES |
| VIDEO |  |  |  |  |
| TV Output | YES | EXTRA COST | EXTRA COST | YES |
| Video Monitor Output | YES | YES | EXTRA COST | YES |
| INPUT/OUTPUT |  |  |  |  |
| Intelligent.I/O Bus | YES | NO | NO | YES |
| RS-232 Communications | YES** | EXTRA COST | YES** | EXTRA COST |
| "Smart" Peripherals | YES | NO | NO | YES |
| - Prices shown are common retail and may <br> * Requires an adapter to operate. | ry slightly in different mark |  |  |  |

First you need the right input.
Like \$219. That's what the Commodore $64^{\mathrm{mm}}$ costs. It's about one third the price of the Apple $\mathrm{Il}^{T M}$ or the $\mathrm{IBM}^{\otimes}{ }^{\otimes} \mathrm{PCjr}^{T M}$

And 64 K . That's how much memory the Commodore 64 has. It's also how much memory Apple Ile and the IBM PCjr have.

This computer lesson is brought to you as a public service by Commodore (certainly not by Apple or IBM), the only computer company that can afford to show you a chart like the one above.

But what you can't see above are the

thousands of software programs that make the Commodore 64 fully capable of doing anything any "triple the price" computer can do; for fun or profit, for every member of the family; anything from soccer to spread sheets to space exploration.

Because the Commodore is so affordable, you can load up on Commodore peripherals. Like a disk drive, a printer or a telephone modem. All together they cost just a tad more than an IBM PCjr by itself. With no peripherals.

No wonder Commodore sells more computers than Apple and IBM combined.


[^0]:    Dr. Glenn M. Kleiman is an educational psychologist and software developer. He is the author of Brave New Schools: How Computers Can Change Education (Reston/Prentice-Hall) and the designer of Square Pairs, an educational game program (Scholastic, Inc.).

[^1]:    KN 1 ø日ø REM get the paddle value 16101ø PV=PADDLE(PN): IF ABS (PV-OPV ) >1 THẸN OPV=PV: RETURN
    LF 1ø2め PV=OPV: RETURN
    where:
    PN is the paddle number $(0-7)$
    PV is the value read from the paddle
    OPV is the old paddle value (initialized to whatever value you wish)

