leagues who have actually researched the matter find that video arcades do not cause perversion, or even acne.

After devoting several chapters to his observations of the purported ills foisted upon us by computers, Dr. Brod does give some careful thought to ways to make us capable of handling this technology, even though many of us never knew we had any problems.

Technostress is a book filled with quotable material, and it will probably be heralded as an important book by technophobes everywhere. It will probably receive a lot of press, and its author will probably be in great demand as a speaker, as he carries his message to the world. After all, as a society, we always seem to favor the bad news over the good, and seem to devote our energies to looking for only the real or imagined wrongs in our world.

If Dr. Brod wanted to perform a service to mankind, he might have devoted his energies to solving this problem, rather than extrapolating the quirks of his patients to the rest of society. ©

ONE PROGRAM YOU CAN'T AFFORD TO BE WITHOUT!

Now you can protect your investment with Broad Form, low cost protection from Markel.

Policy Limit	Annual Premium
up to \$2,500	\$22.50
\$ 2,501-\$5,000	\$32.50
\$ 5,001-\$15,000	\$47.50
\$15,001-\$25,000	\$62.5

(Higher limits are available upon request)
Call today toll free for immediate coverage or more information!

MARKEL SERVICE, IINC.
5310 Markel Road, Richmond, VA 23230
$1-800-446-6678$ or $1-800-552-3408$ (VA)

Are you getting as much out of your Commodore as Commodore put in?

Your Commodore has so much potential, it would be a shame to use just a small part of it.
To get more out of your Commodore, use New American Library computer books.

Mastering Sight and Sound on the

 Commodore ${ }^{8} 64^{\text {Tu }}$ by Kent Porter A crystal-clear guide on howyoucan create beautiful colorgraphics and music on your Commodore ${ }^{\circ} 64$. $^{\text {T }}$

The Computer Phone Book ${ }^{\text {™ }}$
by Mike Cane Adirectory of online computer systems. PublishersWeekly has called this"an institution in the making."

The Computer

 Phone Book ${ }^{\text {u }}$ Online Gulde ${ }^{\text {Tw }}$ to Commodore ${ }^{*}$ Computers by Mike Cane A completetelecommunications handbook forthe Commodore ${ }^{\circ} 644^{\text {,w }}$ SX64, ${ }^{\text {TM }}$ and Vic $20^{\text {™ }}$.

Porter's Programs for the Commodore ${ }^{8} 64^{\text {w }}$ byKentPorter A broad range of programs witten specifically for the Commodore ${ }^{6} 64^{\text {Tw }}$

```
New American Library P.O.Box999,Bergenfield,NJ 07621
```

Please send me:
Mastering Sight \& Sound on the Commodore ${ }^{6} 64^{\text {™ }}$ (Z5490) \$9.95 _The Computer Phone Book ${ }^{\text {™ }}$ Online Guide ${ }^{\text {u }}$ to Commodore ${ }^{\circ}$ Computers (XE2084) $\$ 9.95$ The Computer Phone Book ${ }^{\text {™ }}$ (Z5446) $\$ 9.95$ \qquad Porter's Programs for the Commodore ${ }^{\circ} 64^{\text {TM }}$ (XE2090) $\$ 6.95$. Please include $\$ 1.50$ shipping and handling per order.
l enclose \qquad check \qquad _ money order (noCOD's or cash), or charge \qquad Visa - Mastercard.

Card \# \quad Exp.Date
Signature
Name
Address
City StateAlowa minimum of 4 weeks for delivery. This offer, prices, and numbers are subject to change without notice. Offer expiresDec. $30,1984$.

The Computer Speaks, But Will It Listen?

Computer-generated speech, already used in some software, will be incorporated into many educational programs in the next few years. Spoken instructions and responses will be used in programs designed for prereading children and for students who have reading difficulties. Speech will be an integral component of programs which help students learn reading, spelling, and foreign languages, and will make many other types of educational programs more interesting and enjoyable.

Computerized speech can open new worlds for handicapped people. Special programs enable blind users to direct a speech synthesizer to read aloud the words on the computer screen. This makes computerized information bases, word processing, programming languages, and many other computer tools available to the blind. Computerized speech can also help provide communication aids for people with speech impairments.

Computerized speech recognition devices are also becoming less expensive and more readily available. These enable computers to recognize words people say, and can make programs easier to use and more appealing. More importantly, speech recognition devices make computers accessible to many people who have physical handicaps which prohibit them from using keyboards.

Two Types Of Computer Speech

There are two general types of computergenerated speech: stored vocabulary and unlimited vocabulary.

Dr. Glenn M. Kleiman is an educational psychologist and software developer. He is the author of Brave New Schools: How Computers Can Change Education (Reston/Prentice-Hall) and the designer of Square Pairs, an educational game program (Scholastic, Inc.).

Stored vocabulary speech is created by a person saying the words. Special devices and programs measure characteristics of the sound waveform (for example, intensity, pitch) as the person pronounces each word. Numbers representing the waveform at each fraction of a second are stored in the computer. That is, the speech waveform (an example of what is called analogiue information) is converted to a sequence of numbers (digitized information). The numbers are then used to recreate the sound of the word whenever it is needed.

Stored vocabulary speech can sound very human when individual words are produced. However, it usually sounds choppy and somewhat artificial when the words are combined into sentences. With this technique, the computer is limited to the words previously stored in its memory.

Each digitized word requires a large amount of memory-many numbers must be stored for the computer to recreate the spoken words clearly-so the vocabulary of a personal computer with digitized speech is limited. However, the possibilities for digitized speech will expand as larger-capacity computer memories become less expensive, and as more efficient techniques are developed for representing speech waveforms within the computer's memory.

Unlimited Vocabulary

With unlimited vocabulary speech, programs for generating the individual speech sound (phonemes) are stored in the computer, along with the rules for combining them into words, phrases, and sentences. This technique of speech synthesis enables the computer to produce any word from its component sounds. Synthesized speech does not sound as natural as digitized speech, but it has been greatly improved in recent years.

				DO:
		CBM 64 CALL		
800XL CALL		SX64		
		1701 MONITOR \$249	80 COLUMN BDS	
DISK DRIVES INTERFACES			Batteries 80 Col 5138 Video Pak 80. s129	DIRECT PRINTERS MPS 801 ${ }^{5219}$
	${ }_{\text {Axpe }}^{\text {Axiom }}$ B46 ${ }^{\text {ace }}$.......... Call			
	Atar 850 (1) Stock)... si199	*ASTRA 1620	$\xrightarrow[\text { RECORDERS }]{\text { Cardco Recorder }}$	${ }_{1520}$ Color Printer.... S129
	Mierobits 1150 …... Call		1530 Commodore ... Call	DIRECT MODEMS
	Axiom Butter .i..... Call	DISK DRIVE SYSTEM	Cassette interface ... 529	- 16550 Autemmodem
	DXRECT PRINTERS			m
MEMORIES		NSITY FOR		WARE
	Axior 700 AT	DOUBLE OR SINGLE DENSIT TWO DRIVES	CESS SOFTW	MCA
Intec $64 \mathrm{~K}(400)$.... sios				
Mosaic 644 (4001800) Call	MIRECT MODEMS	PECIAL \$499	one (CID) ... s24	Mailing List (0) \quad In....ss2
Atari $64 \mathrm{~K}(600 \times \mathrm{L}$)... Call Atari 1030 $\mathrm{S114}$			ster (D) 325	
			Ancrom. Conquest (i) ${ }^{\text {a }}$ S 14	AR(D)
keyboard Call	ATR-8000 (64K)		Midway Campaign(C) Comple $^{\text {com }}$	PARKER BROS ${ }_{\text {Pa }}$
	Alien Voice Box s98	ST		
			Moon Patrol (C)	
ATARI SOFTWARE adventure int'L optimized systems		Star Letter Qual. Call Printmaster		Worapro W/Spell (0) .. 568
				Quiktex
Diskey (D)	Basic XL(R) s65	${ }_{\text {Mx }} \times 80 \mathrm{FiT}$ (Quick Er.F.
Saga 1-12(each) (D) ... ${ }^{\text {a }}$ 27	C.65 (0) …......... ${ }_{\text {s }} 58$	SMMTH CORONA	Spell Pack (D)	File Assistant(0)
${ }_{\text {ATARI }}$ ATI	PARKER BROS		BLUE SKY	Spreassist Assisit. (D)
Paint (0) 530	Astrochase (R)		Calc Result Adr. 599	arborough
Microsort (basicili(R. 5 S64		MONITORS	BRODERBUND	
	${ }_{\text {Popeye (R) }}^{\text {PENGUIN }}$.......... ${ }^{\text {s }}$ S3	AMDEK	Bank St. Writer (D) $\ldots \ldots .5$	SEGA
	Graphics Magician (D) ${ }_{\text {S }} 339$			
	Spy idemise		CBS SoFTW	SofTSMITH
Robotron (R) ….... 535	Retur of Hercules (D) $\mathbf{s c z}_{522}$	sakata Call panasonic Call	Suceess with Math(0) 517	Touch
			Learring Bridge (() . . 555	Southern solutions
${ }_{\text {Close Assault (}}^{\text {(C) }} 20$ (0) ${ }^{23}$	Moviemaker (D) 545	hayes MODEN	co	Bill Payer (D) ${ }^{\text {a }}$
BROD	scarboroug	Sma		Paymaster (0) ….... 548
Arcade Machine (D) ... 539	Songwiter (D) .i... 527	Smartorem ${ }_{\text {Micromodem }}$		SPINNAKER
Baper. Whiriwind (i) \cdots. sti	SCHOOL WIZWARE	Micromodem lie s239	Easy Script $64(\mathrm{D})$.... 532	
	Star Trea		332	Kirs on Keys (0) $\ldots . . .320$
Cbs Software Call			Game Show (0) - ${ }^{\text {s27 }}$	Kindercomp(0) s20
CONTINENTAL	SIIERRA ON.LINE			Aphabetzoo(d) 220
Tax Advantage (0) . S45	Homeword(0) s46		CONTINENTAL S.W.	Delta Praving(R)....s27
${ }_{\text {DATASOFT }}$			Tax Advantage (D) ... 539	sublocic
${ }_{\text {Pooyan (CID) }}^{\text {Teletaik(D) }}$.......... 530	SPINNAKER		COUNTER POINT SW	Pintallicio
Basic Compilier (D) ${ }^{\text {sis }}$				FFt.APDPcalypee (CID) . 523
Graphic Master(D) ${ }^{\text {a }}$... s23			Moondust (R) (i.... 523	Necromancer (CID) ... 5_{523}
			Savenew rork(R) 523	
价	STRATEGIC SIM		Househdo finance (C) 520	zepplin (0) .
Monkey Wrenchill ...				
EDUCATIONAL SW			ENTECH	27
Trim	Eppidemic(0) (........ s23			Eagles (D) $10.1 . .5827$
	Cosmic Ball or II($($) .. 527		EPM	
Jumman (cli)	Flight simulator I(D) . $\mathbf{s c}_{\text {S26 }}$	727 BREA CANYON RD., SUITE 16		
${ }_{\text {FIRST }}$ PITSAR	Pinbal	ALNUT, CA 91789		Dungeon of Alg, (CID) s17
Boulder Dsh	Syn File	ER LINES OPEN MON-SAT 8 am - 8 pm		Money Mr (CID) …s st
Flipp Fiop (cib)	Filie Manager(i)			Data Manager (cidi)... $\mathbf{s l}^{17}$
	Dimension \times (1CIC) $\ldots . . .523$		Filip flop (CID) s20	Elec. Checkbook (Cid) ${ }_{\text {sil }} \mathbf{1 7}$
OCOM	Encounter (D/R) …... $\mathbf{s 2 3}^{2}$		Comp. ers. Account. ${ }^{\text {S }} 5$	
		pleaseror ordens on		
(earin	tronix	SORRY, NO COD'S		Rssco Asst. (C) S24(0) $\mathbf{5 2 7}$
pended(0)			Omniwriter (D) ${ }_{\text {Sas }}^{\text {S4 }}$	S.A.M. (D) ${ }^{\text {s39 }}$
planetralil() ${ }_{\text {s34 }}$	Juice (CDC)	CALIF. (714) 594-5204	64 Forth (A) ……... 539	
	Chaterbee (${ }^{\text {M }}$	FOR TECHNICAL INFO, ORDER INQUIRIES,		MISCELANEOUS
KRELL SAT Call		OR FOR CALIFORNIA ORDERS	infocom	
INTELL. STATEMENTS ${ }_{\text {P }}^{\text {Prof }}$	Mombies (CID) ${ }_{\text {s23 }}$	Add 52.50 stippoing per sottware order in continental U. S. Add 55.00		
LK.				
Lata Pertect (D) 574 574 5			Mini ${ }_{\text {M }}$	Castie Woltenstioin (D)
	${ }^{\text {Milias invoices (i) }}$..... 5657	Peesonal checrs sequire 4 weeks to clear	Mrachos	539
OPRose		sotwware only within continenalu U. 5.		
	ancial Wizara (i) ...		NCEPTS	
	tima III (D) 539			s(0) $\ldots . . .527$
$\text { Simpiler (D) . . . } \$ 5$		repair. Prices \& availability subject to change	Word P	

Phoneme synthesis techniques have been combined with text-to-speech conversion programs. These programs contain a set of rules which tell the computer how to change any sequence of letters into speech. Creating a program of this sort for English is difficult, since many letters and letter patterns are pronounced in various ways, depending on the context of their use. For example, the word read is pronounced differently depending upon whether it refers to the past or future (for example, John read the book versus John will read the book). The same aspects of English which cause difficulties for people in learning to read also cause difficulties in programming computers to convert written English to spoken English.

While text-to-speech programs do not produce human-sounding speech, most people understand it easily after a short time-much the way we can understand someone who has a foreign accent and mispronounces some words. Text-to-speech is valuable for people with impaired vision. However, it is not suitable for educational applications in which clear speech is essential.

A Talking Apple

The Echo II speech synthesizer, for Apple II computers, makes use of both stored and unlimited vocabulary techniques. The Echo II is a board that plugs into a slot in the Apple. A speaker or headphone then plugs into the board. The board has volume and pitch controls, but these can also be controlled from software. The basis of the Echo II is a speech synthesis chip made by Texas Instruments. This chip, an advanced version of the one used in the original Speak and Spell toy, is used in most of the available speech synthesizers.

The Echo II comes with a text-to-speech program. It also allows you to enter speech more directly by using symbols to represent each sound (for example, there are different symbols for the long e of Pete and the short e of bet). In addition, a disk containing 700 digitized words is available. These provide a good demonstration of the superior quality of digitized speech.

With the Echo II, it is easy to add speech to your own program. You can change the volume, pitch, and rate of speech, all under the control of your program. Produced by Street Electronics, the Echo II sells for about $\$ 150$. Street Electronics also produces speech synthesizers for the IBM PC and for other personal computers. Other speech synthesizers are available, including Type-'N-Talk from Votrax, Mockingboard from Sweet Micro Systems, and S.A.M. from Don't Ask Computer Software.

Computers That Listen

A great deal of research has been devoted to getting computers to recognize people's speech. This research has shown that speech is very complex and that we do not fully understand how people are able to recognize spoken words so easily. It is much more difficult to make computers recognize spoken words than it is to make them pronounce words. However, advances have been made and some usable, although limited, devices are now available.

Current systems for personal computers require the user to program the computer to distinguish among a number of spoken words. The technique is related to stored vocabulary speech. The individual selects a vocabulary to be used. He says each word, then the computer digitizes the sound patterns and stores a set of numbers representing the waveform of the word.

Once trained, the computer recognizes a spoken word by digitizing it and comparing the resulting pattern of numbers to the patterns stored in its memory. Since the pronunciation changes slightly each time an individual says a word, exact matches are not expected, but the computer is programmed to find the closest match. Since people differ widely in their speech patterns, these systems are reliable only in recognizing the words spoken by the person who spoke the original training set.

The digitized representation of each word uses up a lot of computer memory, and the matching process becomes progressively slower and less reliable as more words are added. Therefore, speech recognition systems work well only with limited vocabularies.

It Takes Dictation

One speech recognition device is the Voice Entry Terminal (VET-2), produced by Scott Instruments for Apple II computers. The VET-2 can be programmed for sets of up to 40 words. The Apple II can hold only one set in memory at a time, but others can be loaded from disk as needed.

One important characteristic of the VET-2 is that it functions as a keyboard emulator. It plugs into the computer in parallel with the keyboard, so both can be used together. Each spoken word is associated with a string of printed characters.

When the spoken word is recognized, the VET-2 sends the same signals to the computer that the keyboard sends when the associated keys are pressed. Therefore, you can have the VET-2 recognize a spoken name for each key and then "type" by saying the names of letters, numbers, and special characters. You can then use standard software with voice input replacing the keyboard.

What About Language?

Current technology for personal computers enables us to have computers speak and recognize individual words. But what about sentences and paragraphs? For speech production, we can have the computer string words together, but replicating the intonation and stress patterns of human voices is another, much more difficult, matter.

For speech recognition, anything more complex than the simplest sentence creates inordinate difficulties. Try listening to fluent speakers of a language you do not understand. Can you even tell where one word ends and the next begins? Recognizing the words in spoken sentences generally depends upon being able to understand meanings, something we have not yet learned to program personal computers to do.

Getting computers to produce and understand language is the focus of much of the effort of researchers in artificial intelligence. They have had only limited success, with very powerful computers. For the present, we will have to be content with personal computers which are at the single-word state of language development.

Street Electronics (Echo II)
1140 Mark Ave.
Carpinteria, CA 93013
Sweet Micro Systems (Mockingboard)
Cranston, RI 02910
Votrax (Type-'N-Talk)
500 Stephenson Highway
Troy, MI 48084
Don't Ask Computer Software (Software Automatic Mouth)
2265 Westwood Blvd
Los Angeles, CA 90064
Scott Instruments (Voice-Entry-Terminal)
1111 Willow Springs Drive
Denton, TX 76201
 TRY IT.
FAZE INTO YOUR COMPUTER WITH OUR NEW, AMAZING PERIPHERAL
YOU'LL BE BLOWN AWAY I! !
AVAILABLE FOR ALL THE ATARI COMPUTERS, COMMODORE 64, VIC 20, AND OTHERS
SPEECH PACKAGE $\$ 89.95$ (301) 792-2330, (301) 953-7373 1-800-752-8348 THOUGHT PACKAGE \$119.95 BROWNOUTS!

AEGIS ${ }^{\circledR}$. . . Power Conditioning Equipment . . . THE SOLUTION Protects From Damaging Voltage Surges, Lost Data, \& Costly Down Time

SPIKE-SPIKER ${ }^{\text {© }}$

Transient Voltage Suppressors \& Noise Filters Eleven Models - All Models Rated 120V, 15A
Deluxe Power Console-2-stage transient absorber; dual 5-stage filter; common \& differential mode protection: nano seconds response; clamping at $150 \mathrm{~V} ; 8$ individually switched sockets; fused; main switch; 7' cord and status lite. \$89.95.

Quad Power Console-6-stage transient absorber; dual 5-stage filter; common \& differential mode protection; pico second response; clamping at 131 V ; four outlets; fused, master switch; 7 ' cord and status light. $\$ 75.95$
Mini II-Direct AC Plug-In; 2-stage transient absorber; dual 3 -stage filter; common \& differential mode protection; nano second response; clamping at 150 V ; two outlets and status lite. \$44.95

LINE-SAVER ${ }^{\text {TM }}$
Standby Uninterruptible Power System -Clean Reliable Power SystemModel LS-240-240 watts-VA capacity, increased backup time: 11 min . full load, 27 min . $1 / 2 \mathrm{load}, 43 \mathrm{~min}$. 1/3 load; 4-AC outlets, 3 -staged transient protection; dual 4-staged RFI/EMI filter; sealed rechargeable internal battery; master control switch; test switch; external fuses; detachable 6^{\prime} cord; external DC connectors for mobil use and extended hold-up time; many more exclusive features. \$485.00

Call or write for free literature.

Dealer inquires invited.

6584 Ruch Rd., Dept.CP Bethlehem, PA 18107

INSTANT ORDER LINE
800-524-0400 TWX 501-651-2101 IN PENNA. 215-837-0700

PA Res. add 6% sales tax; for COD add $\$ 3.00+$ shipping \& handling. All pre-paid SPIKE-SPIKER shipping \& handing. All Pre-paid SPFE-SPIKER
orders, treight allowed. All LINE-SAVER orders add $\$ 10.00$ shipping \& handling.

STOP PLAYING GAME

- Calculate odds on HORSE RACES with ANY COMPUTER using BASIC.
- SCIENTIFICALLY DERIVED SYSTEM really works. TV Station WLKY of Louisville, Kentucky used this system to predict the odds of the 1980 Kentucky Derby. See Popular Computing (February, 1984) for a review of this program. This system was written and used by
 computer experts and is now being made available to home computer owners. This method is based on storing data from a large number of races on a high speed, large scale computer. 23 factors taken from the "Daily Racing Form" were then analyzed by the computer to see how they influenced race results. From these 23 facts, ten were found to be the most vital in determining winners. NUMERICAL PROBABILITIES of each of these 10 lactors were then computed and this forms the basis of this REVOLUTIONARY NEW PROGRAM.
- SIMPLE TO USE: Obtain "Daily Racing Form" the day before the races and answer the 10 questions about each horse. Run the program and your computer will print out the odds for all horses in each race. COMPUTER POWER gives you the advantage!
- YOU GET:
) Program on cassette or disk

2) Listing of BASIC programs for use with any computer
3) Instructions on how to get the needed data from the "Daily Racing Form."
4) Tips on using the odds generated by the program.
5) Sample form to simplify entering data for each race
--------MAIL COUPON OR CALL TODAY
3G COMPANY, INC. DEPT. CO
(503) $357 \cdot 5607$

RT. 3, BOX 28A, GASTON, OR 97119
Yes, I want to use my computer for FUN and PROFIT. Please send me "Play the Horses" for $\mathbf{\$ 2 9 . 9 5}$. Circle the cassette you need: PET/CBM. VIC-20, Color Computer, TRS-80. Sinclair Timex 1000. Atari Commodore 64 (disk or cassette), Apple (disk or cassette)
Enclosed is: \square check or money order \square masterCard \square visa

Card No.
Exp. date
NAME
ADDRESS
START USING YOUR COMPUTER FOR FUN and PROFIT!

This month we'll conclude our exploration of the source code of the program to load a binary file starting with the GET routine presented last month. Lines 600-619. GET is a special routine for two reasons. First, it assumes a buffer length of zero, thus forcing a single byte transfer into the A register (Atari I/O spec). Second, if the GET fails, it pops a level off the subroutine stack and goes directly to the end-of-file code at line 4000 (BASIC's line 400). This is a crude but effective simulation of the TRAP 400 code in the BASIC version.

For GET to be a general-purpose subroutine, it would have to simply return the status and let the caller do the error trapping.

The Main Section

This routine begins the real work. All object code is reasonably close to its BASIC parallel.
Lines 1200-1204, 1300-1304. Remember the calling requirements for the I/O routines? Channel in X, address in A and Y. Looks easy once you have built the subroutines.
Lines 1400-1407. Same as above. The only extra here is the need to specify a mode for OPEN. Here, we use mode 4 (just as in BASIC) to indicate we will only read the file.
Lines 2400-2405. Since we just stored the A register in HIGH, we test HIGH first by comparing A with 255 . If HIGH is equal to 255 , then A contains 255 and we can compare it to LOW. A tiny bit sneaky. Did you ever realize that BASIC has to implement THEN this way? By branching around the following code?
Lines 2600-2701. We used LOW and HIGH to get the START address, but we have already moved their contents to START. Now, they
won't be used again until we are through with QUIT, so why not share memory between QUIT, LOW, and HIGH? Again, a little bit sneaky, but not inordinately so.

We could have saved more memory (and code) by doing GETs into the low and high bytes of START directly, but I wanted to keep the code as close as reasonable to the original BASIC.
Lines 3100-3106. See the comments above about START and ADDR.

The FOR Loop

Lines 3300-3302. Remember, if a zero page location points to a desired memory location, use an offset of zero in the Y register to store, load, add, etc., to or from that location.
Lines 3403-3408. Since we are STEPping by one, we need check only for equality.
Lines 3411-3417. If the FOR loop had used a STEP, we would have had to add it on here. Since the step is implied to be one, we can use this simple two-byte increment.
Line 4103. If this routine is called from DOS or from BASIC, the RTS is all that is needed, thanks to the POP in the GET routine.

As I said, one could write this routine in better ways. The most obvious thought that comes to mind is to replace the FOR loop with a block get of the requisite bytes. Since that would produce significantly faster runtime (for large files, at least), we will make these changes next month.

To do so, though, we will also change the BASIC program to enable it to make a call to do block I/O. So, even if you are not into machine language, watch next month for a method of doing fast memory reads and writes to and from disk.

Load A Binary Object File-Program Completed

```
0990 BEGINWORK
    0991 ;
    l\emptyset\emptyset\emptyset ; BASIC: REM binary object file loader
    l\emptyset\emptysetl ; ---- just a comment ----
    11Ø\emptyset ; BASIC: DIM NAME$(3Ø)
    ll\emptyset1; (the NAME buffer is defined above)
    12\emptyset\emptyset ; BASIC: PRINT "WHAT FILE TO LOAD ";
```


凡 ATAR

ATARI 800XL.Call MOSAIC

Atari 1050
Disk Drive
Atari 1010
Recorder 77.00
Atari 1027 Printer. Call
Atari 850
Interface
Replacement Keyboard for Atari 400.54 .95
3rd Party Printer Interfaces
64K Ram/400 149.00 64 K Ram + Cable Kit
400/800 169.00
48K Ram Kit 94.00
16/32 Expander
32K Ram
Mosaic Adaptor .64 .95
77.95

Interfast
Apeface w/cable included
139.00

PRINTERS
Axiom AT-100 . . . 229.00 Gemini 10X
Axiom AT- 550
Epson.
329.00 Alphacom

Call Okidata 92A
69.95

Call for assorted Printer Packages

A T A	$S O F$	W A R E
ATARI	BR	PAR
Conversational Lang-T . 44.95	Arcade Machine-D. 41.95	Asrocher Cart 34.95
My First Alphabet-D . . . 26.95	Bank St. Writer-D. 49.95	Frogger-Cart. 34.95
Home Filing Mgr.-D 37.95	Lode Runner-D......... 23.95	Q-Bert-Cart 34.95
Star Raiders-Cart....... 32.95	Drol-D 23.95	
Mnvitation to Program I.T. 19.95	Mask of the Sun-D $\quad . . .2795$	OR
Basketball-Cart 26.95	Operation Whirlwind-D... 27.95	
Graph-it-T. 15.95	EPY	95
Dig Dug.Cart 32.95	Gat	27.95
	Pitstop-Cart 27.95	37.95
Ms. Pac-Man-Cart 39.95	Fun With Music.Cart 27.95	Zombies-D/T 23.95
Eastern Front-Cart 32.95	Jumpman Jr. Cart 27.95	Mr. Robot-D 23.95
Donkey Kong Jr. Cart . . 39.95	Dragonriders of Pern-D/T 27.95	River Raid-Cart 31.95
Pengo-Cart 3 35.95	Temple of Apshai-D/T . . 27.95	Diskey-D............. 34.95
Logo-Cart. 79.95	Hellire Warrior-D/T . . . 27.95	Ultima lil-D............ 41.95
Robitron-Cart............ 35.95	Summer Games-D....... 27.95	Scraper Caper-Cart 34.95
Microsoft Basic II-Cart . . 67.95	Puzzlemania-D......... 23.95	Basic XL-Cart......... 74.95
Paint-D 33.95	SSI	Monkey Wrench II-Cart . . 49.95
Caverns of Mars-Cart . . 33.95	Carrier Force-D 41.95	Omnimon
Joust-Cart............. 39.95	Combat Leader-D/T 27.95	
Jungle Hunt-Cart 35.95	Cosmic Balance-D...... 27.95	Flip Flop-D/T 20.95
Mario Bros.-Cart 35.95 Syncalc-D 74.95	Cosmic Balance II-D 27.95	Boulder Dash-DiT 20.95
Atari Music-D............ 29.95		Encounter-D/T. 23.95
SIERRA ON-LINE	Broadsides-D.......... 27.95	
Homeword-D 49.95	War In Russia-D........ 54.95	Compute Books Call
Dark Crystal-D 27.95	Questron-D............ 34.9	Pitfall-Cart 31.95
	SPINNAKER	Co
Quest For Tires-D 23.95	Up For Grabs-Cart 27.95	The Heist-D
Ultima 1-D............. 23.95	Cosmic Life-Cart 23.95	Mac 65XL-Cart. 74.9
Ultima II-D 41.95	Facemaker-Cart. 23.95	Jupiter Mission-D 34.95
Wizard/Princess-D 22.95		Nibbler-D 20.95
INFOCOM	Fraction Fever-Cart 23.95	Support-D/T 23.95
Deadline	Kids on Keys-Cart 23.95	Pogo Joe-D/T 20.9
Witness-D.............. 34.95	Delta Drawing-Cart 27.95	\log
Zork I, II, III-D 27.95	Story Machine-Cart 27.95	Movie Maker-D 41.95
Starcross-D 27.93	$\begin{aligned} & \text { Amazing Things-D } 27.95 \\ & \text { Hey Diddle Diddle-D... } 20.95 \end{aligned}$	Antica 4-D \qquad
	Snooper Troops 1 or 2-D. 30.95	
Enchanter-D. 34.95	Trains-D............. 27.95	the Atari a
Infidel-D 34.95		please call.
	A	

DISK DRIVES

Rana 1000
Trak
Call
Concorde
For
Indus GT Prices
TOUCH TABLETS
Koala Touch Tablet-D. . . 69.95
Koala Touch Tablet-Cart 74.95
RS232 Modem Adaptor
(Through serial port).... 39.95
MONITORS
USI...
Call
STIMUTECH SUBLIMINAL
SOFTWARE FOR ATARI
AND CBM 64
Expando-Vision Interface
w/one FREE Cart . . . 99.00
Weight Control
Study Habits
Stress Control
Drinking Control
Smoking Control
Career Success
Sexual Confidence
Addit'I Rom Carts 29.95 ea

COMMODORE 64 E
 CBM 64
 1541 Disk Drive 239.00
 152680 Column Printer 279.00
 66.00
 1530 Datasette .
 249.00
 1702 Color Monitor .
 89.00
 RS 232 Interface
 44.00

COMMODORE 64 SOFTWARE

Program Ref. Guide 19.95 Assembler-D. 17.95 Easy Finance
I, II, II, IV-D. 19.95 Easy Calc-D. 64.95 Easy Mail-D........ 17.95 Easy Script-D 39.95 Easy Spell-D 19.95
Logo-D 49.95 COMMODORE 64 SOFTWARE

ACCESS

Neutral Zone-D/T...... 23.95 Trains

Neutral Zone-D/T.......23.95
Spritemaster-D/T. 27.95 Beachhead-DIT....... 23.95
Music Composer-D.... 27.95 HES
Multiplan-D 64 Forth-Cart HES Writer-Cart HES Mon-Cart Turtle Graphics-Cart. Mutant Camels HES Modem.
Super Zaxxon SYNAPSE Blue Max-D/T
Zaxxon-D/T Zaxxon-D/T
Shamus II-DIT Sentinal-D/T. Pharoah's Curse-DiT Slamball-D/T CARDCO
Cardprint/A Cardprint/B Cardco + G Cardkey... Cardette 11 Cassette Recorder Printer Utility-DIT Printer Utility-D/
Write Now-Cart Mail Now-D..
HANDIC
64 Forth-Cart 64 Grat-Cart Stat 64-Cart 23.95 Calc Result Easy-Cart.......... 34.95 Calc Result Advanced-D74.95 The Diary-Cart 23.95 The Tool-Cart

CBS SOFTWARE

Call for items and prices.

LJK
Letter Perfect-D
Data Perfect-D
Spell Perfect-D Cart - Cartridge

To Order Call Toll Free
800-558-0003

ORDERING INFORMATION. For fast delivery send cashier's check, money order or direct bank transfers. Personal and company checks allow 2 weeks to clear. Charges for COD are $\$ 3.00$. School Purchase Orders welcome. In CONTINENTAL USA, include $\$ 3.00$ shipping per software order. Include 3% shipping on all Hardware orders, minimum $\$ 3.00$. Mastercard \& Visa please include card \# and expiration date. Wi residents please add 5% sales tax. HI, AK, FPO, APO, Canadian orders - add 5% shipping, minimum $\$ 5.00$. All other foreign orders, please add 15% shipping, minimum $\$ 10.00$. All goods are new and include factory warranty. Due to our low prices, all sales are
final. All defective returns must have a return autharization number. Please call $414-351-2007$ to obtain an RA\# or your return will NOT final. All defective returns must have a return authorization number. Please call 414-351-2007 to obta
be accepted for replacement or repair. Prices and availability are subject to change without notice.

COMPUTABILITY
P. O. Box 17882

Milwaukee, WI 53217
ORDER LINES OPEN
Mon-Fri $\quad 11$ AM - 7 PM CST $\begin{array}{ll}\text { Mat } & 12 \text { PM }-5 \text { PM CST }\end{array}$

A complete drawing package should allow the user to print characters on the bitmapped display. This month and next I will discuss this topic, and give more examples on the use of the drawing routines presented last month.

There are two methods for printing characters on a bitmapped display. We can POKE the dot patterns of the characters to the bitmapped RAM, or we can draw the characters onto the display.

Let's take a look at the first method, which is faster because no line-drawing routines are required.

POKEing To The Bitmap

The first step in POKEing characters to a bitmapped display is to choose the cell size, or dimensions, of our character set. The choice of the cell size can greatly affect the complexity of the routines which print the characters. If a convenient size is chosen, the routines will be simplified; if you are up for a challenge, you can write the routines to accept a variable cell size.

We will use a cell size of 8 dots high by 8 dots wide, for two reasons. First, a width of 8 dots is the number of dots which can be held in a byte. Second, there already exists a set of 8×8 characters in the 64's character ROM.

Actually, the 64's normal character display mode is very similar to what we want to accomplish in a bitmapped mode. The process involves character cells and some method of transferring the character dot patterns to the display. However, in the normal character display mode, the format is determined by the character codes found in a character array called screen memory. In screen memory, you can change only whole 8 $\times 8$ characters, so your effective resolution winds up being 40 columns by 25 lines.

Blending Characters And The Bitmap

When using a bitmap display, you can control each dot. This implies that you can place a character at any X, Y position on the screen. This can certainly be done, though it is more difficult
than placing a character code in screen memory. What complicates the task somewhat is that the 64's VIC-II chip organizes a bitmap display as groups of 8×8 dot cells.

It's possible for the 8×8 dot character pattern to span as many as four of the bitmap cells, two horizontally and two vertically. This doesn't create much of a problem vertically, but horizontally the bytes in the character dot pattern may have to be moved or shifted to span two bytes. In addition, when the bytes are added to the bitmap, the routine must not disturb the dots outside the shifted 8 dots of the character pattern.

Next, we must decide how to transfer the dot patterns so they will be visible against the bitmapped background.

Using Conditional Logic

One way of transferring the dot pattern is to add (logical OR) the dots in the pattern to the dots already in the display. Dots which are on in the character dot pattern are also turned on in the display. Dots which are on in the display remain on. This avoids erasing the background as a character is printed to the bitmapped display, but can result in illegible characters if there are too many dots already turned on in the background.

Another way to transfer the dot pattern is to flip (Exclusive-OR) the dots in the pattern into the bitmapped RAM. Dots in the bitmapped RAM which correspond to on dots in the dot pattern are flipped to the opposite state. The advantage of this technique is that it will make characters visible regardless of whether the background is on or off. However, characters can still be illegible if the background is not predominantly either on or off.

Or the transfer could be accomplished by writing the pattern directly into the bitmapped RAM. This type of transfer replaces the background with the character cell. We will use this technique.

A BASIC Example

Let's first demonstrate how the required routines might be implemented in BASIC. Unfortunately,

SOHIWAREFOR C-64	
Business	
Multiplan	89.00
WordPro $3+/ 64$ w/SpellRight Plus	S ... S 79.00
SpellRight Plus	55.00
Calc Result (Advanced)	95.00
Calc Result (Easy)	45.00
Mirage Concepts (data base)	\$ 95.00
Mirage Concepts (40 \& 80 clm W/P with Dictionary)	y) .. \$ 95.00
Home Accountant (Continental)	69.00
Tax Advantage (Continental)	49.00
Southern Solutions Accounting	
G/L, AR, AP, P/R, IM Utilities	each $\$ 69.95$
Super Basic 64	35.00
Super Copy 64	35.00
Sketch Pad 64.	75.00
64 Forth	45.00
MTS Terminal Package	
Simons Basic	\$ 19.95
80 Column Expand	55.00

ACCESSORIES	
Solo Flight (Simulator)	34
Oscar by Databar	
(Bar Code Reader)	. 79.95
CBM 1541 Disk Drive	. 249.00
Concord Parallel Disk Drive	S 345.00
Concord Slave Drive	Call
MSD Super Disk (Single)	\$ 395.00
MSD Super Disk (Dual)	\$ 695.00
Vic 1650 Automatic Modem	\$ 109.95
Hayes Smart 300 Modem	\$ 249.00
Hayes Smart 1200 Modem	\$ 629.00
Vic 1530 Datasette	\$ 65.00
CBM 1520 Printer Plotter	\$ 179.95
5 Slot Expander (64)	\$ 65.00
Printer Utility Program (Cardco)	\$ 19.95
64 Relay Cartridge	\$ 45.00
Numeric Key Pad	\$ 49.00
Alien Voice Box (Talks \& Sings)	\$ 119.00
When I'm 64 (Disk)	\$ 35.00
Texas Instruments LCD Programm	55.95
Verbatim Diskettes:	
Single Sided/Single Density	\$ 26.00
Single Sided/Double Density	\$ 30.00
Double Sided/Double Density	\$ 42.00
Vic 20:	
3-Slot Expander	\$ 39.00
6 -Slot Expander	\$ 79.95
16K Memory	$\text { \$ } 79.95$

CBM 4023 Ribbons	S 12.00
CBM 8023 Ribbons	14.95
Flip N ' File 10, 15, 25, 50	Call
Power Strips w/surge stopper	Call
Computer Care Kit	19.9

INTEREACES	
Interpod (full compatibility!!) (Intelligent IEEE \& RS232)	Cal
The Connection (By Tymac) (Commodore Graphics +2 K Buffer)	
Cardco + G Parallel Interface	\$ 79.00
Vic Switch.	S 149.95
ADA 1800 (Parallel-8032 only)	\$ 129.00
ADA 1450 (Serial-8032 only)	\$ 149.00
Pet-to-IEEE Cable	\$ 39.00
IEEE-to-IEEE Cable	\$ 49.00
4 Prong AV Cable.	\$ 15.00
Centronics Cable (male to male)	\$ 34.95
RS232 Cable (male to male)	\$ 31.95
Custom Computer Cables (we make to your specifications)	Call

MONITORS	
CBM 1702 Color Monitor	\$ 269.00
Panasonic CT-160 Color	Call
Panasonic TR-120 (Green)	Call
Panasonic TR-120 (Amber)	Call
Panasonic DT-1300 (RGB)	\$ 395.00
Monitor Stand (Tilt \& Swivel)	\$ 29.95
RGB Monitor Cable:	
ET-100C (Apple).	\$ 33.80
ET-101C (IBM)	\$ 33.80

LETTER QUAMTY PRINTERS	
Transtar 120 (80 column) .	\$ 535.00
Transtar 130 (132 column)	S 725.00
CBM 6400 Printer	. 51425.00
NEC Spinwriter	Call
Cardco LQ/1 Printer	\$ 565.00

DEALERS INQUIRIES WELCOME
Call to Order
1-800-527-1738
All Others Call
1-214-231-2645
Micro-Sys

Okidata 82A $\$ 4.812 .50$	
Okidata 83	635.00
Okidata 84P	S1165.0
kidata 92P	S 51
kidata 93P	S 810.0
Panasonic KX	
anasonic KX-P1091 Printer	
nasonic KX-P1092 Printer	
Panasonic KX-P1093 Printer	
Star Gemini 10X	S
Star Gemini 15	S 499.00
ar	
COMMODORE BUSINESS MACHINES	
Executive 64 portable (new) CallB128-80 128 k Bus. Machine (new) ... Call	
SuperPet (5 languages) S1059.00	
CBM 8032 S 625.	
CBM 2031 single disk	
CBM 8050 Dual Disk 1 meg. \$ 995.00	
CBM 8250 Dual Disk 2 meg. $\$ 1295.00$	
64 K Expansion Board \$ 275.00	
SuperPet Upgrade Kit . .	

TERMS

Orders under 50.00 add 10.00 Handling. fee
MasterCard, VISA, Money Order, Bank Check COD (add 5.00)
Add 3\% For Credit Cards
All Products In Stock Shipped Within 24 Hours
F.O.B. Dallas, Texas

All Products Shipped With Manufacturers
90 Day Warranty
PRICES ARE SUBJECT TO
CHANGE WITHOUT NOTICE.
like the drawing routines presented in earlier columns, the character routines are too slow to be really useful. To enhance their value as an example, we'll try to illustrate modular programming style as well.

One of the main aspects of modular programming is breaking main or primary tasks into smaller, more manageable tasks. Once the tasks have been broken down sufficiently, each may be implemented in a single routine. The more independent each of these separate routines is, the better. This allows you to concentrate on the details involved with the routine as it is written, without being distracted by the details involved with other routines. To show how printing to the bitmapped display might be broken into modules, let's take a look at the logical subdivisions of this task.

Although this program isn't really complex enough to justify a modular approach, I prefer to keep the functions or tasks in separate routines, so long as the routines don't become embarrassingly simple. This helps while debugging, since the symptoms of the bug often eliminate a majority of the routines from consideration. It also helps keep you from accidentally tangling functions together.

When functions get tangled or intertwined, making one change may require making other changes, leading to a snowball effect. And finally, it is good practice to keep functions divided into separate routines when you write a complex program. How well the tasks are divided up can greatly affect how much effort it takes to write and debug the program.

Breaking Down The Task

Putting a character in a bitmapped display will involve transferring bytes into bitmapped RAM, so we will need a routine which does the transferring. We need another routine to calculate the character's position. We also need to know what to write; this will require two routines. We need a routine which will find and read the appropriate bytes in the character ROM. However, the dot patterns are organized based on screen codes, which are different from the Commodore 64 ASCII codes you normally print. This means we need a routine to convert the ASCII code to the corresponding screen code.

Finally, we need a routine to do the horizontal shifting necessary when the character byte needs to span two bytes in the bitmapped RAM. This gives us five routines to be implemented:

1. Convert the character to screen code
2. Read the character's dot pattern
3. Calculate its position in the bitmap and amount of shift
4. Shift a dot-pattern byte
5. Put the dot-pattern byte in the bitmap

By dividing the tasks into well-defined and independent sections, it will be a little easier to implement them than if you tried to throw it all together in one routine. For example, converting the ASCII character code to a screen code can be done without concerning ourselves with where the ASCII code came from, or for what the screen code will be used. The shift section does not need to account for where the shift amount came from or what will be done with the shifted bytes.

Combining The Modules

Once we build the character print routine from these five sections, it is simple to build a string print routine using the character print routine. The result might be a BASIC program like the one that accompanies this article. The program uses the machine language routines discussed in this column in previous issues. Before running this program, you must run the BASIC loader presented in the May 1984 issue. The subroutine at line 100 converts ASCII code CH to the equivalent screen code SC. The subroutine at line 200 uses screen code CH to read the associated dot pattern into the array DP(). This subroutine also uses CP which points to the base of the character dot patterns in ROM.

The subroutine at line 300 uses the coordinates in X and Y to calculate an offset OF into the bitmap, and the shift amount SH. The subroutine at line 400 uses the shift amount SH to right-shift the byte in BY partially into B2. This means shifting dots out of the right end of the byte and into the left end of the other byte. This shift routine also makes the mask bytes, M1 and M2.

Finally, the subroutine at line 500 writes the bytes into the bitmap base of the offset OF, calculated earlier. This routine also uses the mask bytes to keep the necessary old bits from the bitmap bytes, before adding the new dot pattern bits. The subroutine at line 600 prints the character at the current coordinates specified by X and Y, and the subroutine at 700 prints a string at X, Y.

Logical Math

I have used logical operators (OR and AND) rather than division and the INT functions. For example, in line 320, the term (X AND -8) gives the same result as $\operatorname{INT}(X / 8)^{*} 8$. In the subroutine at line 200, the POKEs are required to turn off interrupts and make the character ROM accessible to the BASIC program.

The main routine uses the string-printing routine at line 700 to label the vertical axis for the plot of a sine wave. As you will see, the
character printing is pretty slow. This part of the program would be much more useful written in machine language. Next month I will discuss the drawing method of putting characters in the bitmapped display, and present machine language routines for both.

Characters On A Bitmapped Display

$1 \varnothing$ REM PRINT CHARACTERS TO BIT-MAP: rem 63 $2 \varnothing$ JV=49152:REM JUMP TABLE :rem 6 $3 \emptyset C P=53248$: REM LOC. OF CHAR. PATTERNS : rem 181 $4 \emptyset$ POKE $785, \operatorname{PEEK}(J V+28):$ REM SETUP USR() :rem 8 50 POKE 786, PEEK (JV+29) :rem 17 60 GOTO 1øøø :rem 96
$1 \varnothing \emptyset$ REM CONVERT CHAR. TO SCREEN CODE : rem 96
$11 \emptyset$ IF CH>31 AND CH<64 THEN SC=CH:RETURN
: rem 249
$12 \emptyset$ IF CH>63 AND CH<96 THEN SC=CH-64:RETU RN :rem 155
$13 \emptyset$ IF CH>95 AND CH<128 THEN SC=CH-32:RET URN :rem 2øØ
140 IF CH> 127 AND CH<192 THEN SC=CH-64: RE TURN
: rem 251
$15 \emptyset \mathrm{SC}=\mathrm{CH}-128:$ RETURN :rem 214
$2 \emptyset \emptyset$ REM GET CHARACTER DOT PATTERN: rem 232
210 POKE 56334, PEEK (56344) AND 254 :rem 221
220 POKE 1, PEEK (1) AND 251 :rem 5ø
$23 \emptyset$ FOR IX=ø TO 7 :rem 1øØ
$24 \varnothing$ DP (IX) $=\operatorname{PEEK}(C P+S C * 8+I X):$ NEXT : rem $2 \emptyset 2$
250 POKE 1, PEEK (1) OR 4 :rem 159
260 POKE 56334, PEEK (56334) OR 1 :rem 69
$27 \varnothing$ RETURN :rem 121
$3 \varnothing \varnothing$ REM CALC OFFSET AND SHIFT COUNT
:rem 43
$31 \varnothing$ TY=199-Y:SH=X AND 7 :rem 27
$32 \varnothing \mathrm{OF}=($ TYAND -8$) * 4 \emptyset+($ XAND -8$)+($ TYAND 7$)$:rem 1 106
$33 \varnothing$ RETURN :rem 118
4øØ REM SHIFT BYTE TO CORRECT POSITION : rem 84
$41 \varnothing$ B2 $=\varnothing:$ M1 $=\varnothing:$ M2 $=255:$ IF SH=Ø THEN RETURN
$42 \emptyset$ FOR $\mathrm{K}=1$ TO $\mathrm{SH}: \mathrm{B} 2=\mathrm{B} 2 / 2 \quad$:rem 52
$43 \emptyset$ IF BY AND 1 THEN B2=B2 OR 128 : rem 85
$44 \varnothing \mathrm{BY}=\mathrm{BY} / 2: \mathrm{Ml}=(\mathrm{Ml} / 2) \mathrm{OR} 128: \mathrm{M} 2=\mathrm{M} 2 / 2:$ NEXT
: rem 28
45 Ø RETURN
: rem 121
$5 \emptyset \emptyset$ REM PUT BYTE AT X,Y :rem 24
$51 \varnothing$ GOSUB $3 \varnothing \varnothing:$ REM CALCULATE OF \& SH
:rem 171
520 GOSUB 4øø:REM SHIFT OVER :rem 131
$53 \emptyset \mathrm{AD}=57344+\mathrm{OF}:$ REM GET ADDRESS FOR BY
: rem 167
$54 \emptyset$ POKE AD,USR(OF) AND MI OR BY : rem $23 \varnothing$
$55 \emptyset$ IF SH= \varnothing THEN RETURN :rem 64
560 POKE AD+8, USR (OF+8) AND M2 OR B2
: rem 136
576 RETURN
: rem 124
6øø REM PUT CHARACTER AT X,Y :rem 114
$61 \varnothing$ GOSUB 1øø:REM CONVERT CH :rem 114
$62 \emptyset$ GOSUB 2øø:REM READ DOT PATTERN
: rem 233
$63 \emptyset \mathrm{Y}=\mathrm{Y}+8$: REM PUT CHAR. FROM TOP DOWN
:rem 173
$64 \emptyset$ FOR IX=ø TO 7:Y=Y-1:BY=DP(IX): rem 136
650 GOSUB 5øø:REM PUT BYTE :rem 251
660 NEXT:RETURN :rem 245
7øØ REM PUT STRING S\$ AT X,Y :rem 52
$71 \varnothing$ FOR SP=1 TO LEN(S\$) :rem 218
$720 \mathrm{CH}=\mathrm{ASC}(\operatorname{MID}(\mathrm{S} \$, \mathrm{SP}, 1))$:rem 123
730 GOSUB 6øø:REM PUT THE CHARACTER
: rem 53
$740 \mathrm{X}=\mathrm{X}+8: \mathrm{NEXT}$:rem $1 \varnothing \varnothing$
750 RETURN :rem 124
1øøø REM MAIN ROUTINE :rem $24 \emptyset$
$1 \varnothing 1 \varnothing$ SYS JV:SYS JV+6, ø:SYS JV+9, ø,1
:rem 237
$1 \varnothing 2 \emptyset$ FOR $I=\emptyset$ TO $1 \varnothing$:rem $1 \varnothing \emptyset$
$1 \varnothing 30$ LB=-1+I*.2:S\$=STRS (LB) :rem 213
$1 \emptyset 5 \emptyset \mathrm{X}=5: \mathrm{Y}=46+1 \varnothing * \mathrm{I}: \mathrm{GOSUB} 7 \emptyset \emptyset:$ NEXT: rem 147
1 1ø6ø SYS JV+12,32,5ø:SYS JV+18,32,15ø
:rem 214
$1 \varnothing 7 \varnothing$ SYS JV+12,32,1øø:SYS JV+18,319,1øø
:rem 54
$1 \varnothing 8 \emptyset$ FOR $I=\emptyset$ TO $1 \varnothing \quad$:rem $1 \varnothing 6$
$1090 \mathrm{X}=3 \varnothing: \mathrm{Y}=5 \varnothing+1 \varnothing * I \quad$:rem 246
1100 SYS JV+12,X,Y:SYS JV+18,X+4,Y
: rem $2 ø 5$
$111 \varnothing$ NEXT :rem 2
$112 \emptyset$ SYS JV+12,32,1øø:PI=3.1416 :rem 124
$113 \varnothing$ SX=256/(2*PI):SY=5 \quad :rem 71
1140 FOR I=ø TO 2*PI STEP 2*PI/1øø
:rem 236
$115 \emptyset$ SYS JV+18,32+I*SX, $1 \varnothing \emptyset+S I N(I)$ *SY
: rem 22
1160 NEXT
: rem 7
9øøø GET Z\$:IF Z\$="" THEN 9øøø :rem 231
9010 SYS JV+3 :rem 199

Program Your Own EPROMS

VIC 20 C 64

PLUGS INTO USER PORT. NOTHING ELSE NEEDED. EASY TO USE. VERSATILE.

- Read or Program. One byte or 32K bytes!
OR Use like a disk drive. LOAD,
SAVE, GET, INPUT, PRINT, CMD,
OPEN, CLOSE-EPROM FILES!
Our software lets you use familiar BASIC commands to create, modify, scratch files on readily available EPROM chips. Adds a new dimension to your computing capability. Works with most ML Monitors too.
- Make Auto-Start Cartridges of your programs.
- The promenade ${ }^{\text {tu }} \mathrm{C} 1$ gives you 4 programming voltages, 2 EPROM supply voltages, 3 intelligent programming algorithms, 15 bit chip addressing, 3 LED's and NO switches. Your computer controls everything from software!
- Textool socket. Anti-static aluminum housing.
- EPROMS, cartridge PC boards, etc. at extra charge.
- Some EPROM types you can use with the promenade ${ }^{\text {tw }}$

Call Toll Free: 800-421-7731
In California: 800-421-7748
JASON-RANHEIM
580 Parrott St., San Jose, CA 95112

Decimal Mode Part 1

The 6502 has an option which affects only the add (ADC) and subtract (SBC) instructions: decimal mode.

Decimal mode is invoked with the Set Decimal (SED) command, and canceled with Clear Decimal (CLD). It may be affected by stack activities that pull the status register-PLP for Pull Processor status, and RTI-but this is unusual. In most computer environments you can assume that decimal mode is not in force when your program is invoked; but if you're not sure, it won't hurt to give a CLD.

Decimal mode is intended to help with certain types of numbers: Binary Coded Decimal (BCD) numbers. You might want to use this type of number system when the values are used mostly for input and output with little calculation involved.

Binary numbers-the computer's usual numeric values-are good for advanced calculations. Multiplication and division are easy to do in binary, and more advanced calculations can readily be developed. The only problem with binary numbers is this: They must be converted to decimal at the time of input or output.

Decimal numbers, or more accurately BCD numbers, are easy to input and output since they are held in the same decimal notation as was entered or will be seen by the user. With decimal mode, we may add or subtract these numbers without converting them to binary. But if we want to do more advanced mathematics, we'll certainly go to binary.

Accounting programs often use decimal mode. Similarly, many games keep scores in decimal format, since the only activities are adding points as they are scored and displaying the results.

What Is BCD?

The easiest way to describe a number held in Binary Coded Decimal is this: When you display it in hexadecimal format, you see the correct decimal value. Let's explain this with a few examples.

A value of 9 is held within a byte as binary 00001001 . This is true whether you are using binary or BCD numbering. If we print the contents of this byte in hexadecimal, it is displayed as 09. Now, this not only represents the value nine, it looks like nine.

If we are in binary mode and add one to the above value, we'll get 00001010 . The value is ten but the number displays in hex as 0A. This doesn't look like ten to those of us who are not trained to read hex. Worse: If we add six, we'll get a value of 16 , which prints as hex value 10 . This doesn't look like 16-if we didn't know it was a hexadecimal number, we might think it was ten.

Let's go back to our original value of nine, but switch to decimal mode. If we add one, using the ADC instruction, we'll end up with binary 00010000 . We know that the value must represent ten, and when we print the hexadecimal it shows up as 10 -which looks like ten. We must ignore the usual binary rules, which would tell us that binary 00010000 is equivalent to decimal 16. In BCD, this binary number has a value of 10. If we add a six in decimal mode, we'll get 00010110 which has a value of 16 and prints out as hexadecimal 16.

We've decided to use the bits in a different way. The four high bits-the high nybble, as it's sometimes called-represent a tens digit; the four low bits, or low nybble, represent units. Each nybble may have a value from 0 to 9 , but the six

Why Pay Retail?

Business

Commodore

Easy Script 64/D Easy Spell 64/D s 39 Easy Finance I, II ea./D Accts. Receivable/D 17 S 17 General Ledger/D
Payroll/Checkwriting/D Assembler 64/D Logo/D
Simon's Basic/CRT
Bank Street Writer/D
Home Accountant/D Tax Advantage. FCM
Paper Clip Word
Processor
Delphi's Oracle Practicale 64 Calc Result/Easy-CRT. Calc Result/Adianced-D Multiplan/D Data Manager/D Electronic Checkbook Swif tax/D
Quick Brown Fox/D

Atari

Atari

Chaterbee/D 529
Match Wits/D 522
Early Games/D 522

Early Games Music/D S22
Spellicopter S29

Creature Creator 529
Math Maze 529

Alien Addition/D 525
Meteor Multiplication. S25
Compu-Read/D 522
Compu-Math/Fractions ... 529
Compu-Math/Decimals . . . 529
Spelling Bee Games....... . 529

Speed Read +/D
Spider Eater/Koala 522 Bumble Bee/Learning Co. $\$ 29$ Snooper Troops 1, 2 ea 532 Face Maker/CRT 525 Kids on Keys/CRT 525 Alphabet Zoo/CRT S25 Kid W'riter/CRT S25 Delta Drawing/CRT S29

Commodore

 CBS Multiplication/ Division
Speed Reader II/D S49

Word Attack/D

Mathblaster/D
Spellakazan/D
Crypto Cube/D 229
Master Type/D-CRT 529
Songwriter/D S29 Alphabet Zoo/CRT 525
Fraction Fever/CRT. 525 Delta Drawing/CRT 529 Facemaker/CRT S25 Trains/D 529 Kidwтiter/CRT 525 Dungeons of Algebra Dragons Juggles Rainbow Bumble Bee 529 Early Games Piece of Cake $\$ 22$ Early Games Match Maker $\$ 22$

Specials of the
Atari 800XL $\$ 299$1027 Letter Quality Printer\$299
CommodoreSX64 Portable Computer\$269
Koala Touch Tablet 79.00Elephant Disks S/S
Recreation
highest combinations corresponding to hex A, B, $\mathrm{C}, \mathrm{D}, \mathrm{E}$, and F will never be used.

This makes BCD less efficient than binary for storing numbers. The highest $B C D$ number that we can store within a single byte is 99 , as compared to 255 for binary. We can use several bytes together to hold larger numbers, but BCD always holds less: A two-byte BCD number can go from 0000 to 9999 , compared to a two-byte unsigned binary number which can range from 0 to 65535 .

But it's convenient. When we wish to output such a number, we extract each digit, convert it to ASCII with an ORA $\# \$ 30$, and print it. (We get the left digit by using four LSR instructions, and the right digit with AND \#\$0F.) An equivalent binary number would need a divide-by-ten routine before it could be output.

Similarly, input is a snap. As each ASCII digit arrives, it has its high bits stripped (with AND \#\$0F) and gets packed together with another digit to generate the two-to-a-byte BCD value.

An Example

Here's a sample program to show the power of BCD numbers and ease of programming with them. We'll have the computer (PET, VIC, or 64) output a table of multiples of the number 142857. This is a favorite peculiar number of mine; you'll see why when we print the table.

C	A2	00		; set value to zero	
C	A2	0			
033E	8E	90	03	STX	LOW
0341	8E	91	03	STX	MED
0344	8E	92	03	STX	HIGH
				; do the addition	
0347	18			LOOP CLC	
0348	78			SEI	
0349	F8			SED	
034A	AD	90	03	LDA	LOW
034D	69	57		ADC	\#\$57
034F	8D	90	03	STA	LOW
0352	AD	91	03	LDA	MED
0355	69	28		ADC	\#\$28
0357	8D	91	03	STA	MED
035A	AD	92	03	LDA	HIGH
035D	69	14		ADC	\#\$14
035F	8D	92	03	STA	HIGH
0362	D8			CLD	
0363	58			CLI	
				; print the number	
0364	A0	02		LDY	\#\$02
0366	B9	90	03	LP LDA	LOW, Y
0369	4A			LSR	A
036A	4A			LSR	A
036B	4A			LSR	A
036C	4A			LSR	A
036D	09	30		ORA	\#\$30
036F	20	D2	FF	JSR	\$FFD2
0372	B9	90	03	LDA	LOW, Y
0375	29	0F		AND	\#\$0F
0377	09	30		ORA	\#\$30
0379	20	D2	FF	JSR	\$FFD2
114	OMPU	TEI	July 1		

037C	88		DEY	
037D	10	E7	BPL LP	
			; print RETURN and loop	
037 F	A9	0D	LDA \#\$0D	
0381	20	D2	FF	JSR
0384	E8		INX	
0385	E0	07	CPX \#\$07	
0387	D0	BE	BNE LOOP	
0389	60		RTS	

Note that we hold the value we are calculating in three bytes; called LOW, MED, and HIGH; we add starting at the low byte and working up. The Carry flag works the same way as is usual for addition. While we're in decimal mode, we lock out the interrupt so that the interrupt routines won't do their arithmetic in the wrong mode. The addition sequences could have been written as a loop; for the sake of clarity, it was done using "straight line" coding.

For printing, we start from the high byte, of course. The output routine for BCD is simple compared to what we would need to do with binary values.

If you'd rather enter the program from BASIC, here's the same program in DATA statements. It will work on all Commodore machines.

```
1ø\emptyset DATA 162, }0,142,144,3,142,145,
110 DATA 142,146,3,24,120,248,173,144,3
12\emptyset DATA 105,87,141,144,3,173,145,3
130 DATA 105,40,141,145,3,173,146,3
140 DATA 105,2\emptyset,141,146,3,216,88,160,2
150 DATA 185,144,3,74,74,74,74,9,48
160 DATA 32,210,255,185,144,3,41,15,9,48
17\emptyset DATA 32,210,255,136,16,231,169,13
18\emptyset DATA 32,210,255,232,224,7,2ø8,190,96
2ø\emptyset FORJ=828 TO 9ø5
210 READX:T=T+X
22Ø POKEJ,X
230 NEXT J
240 IF T<>8325 THEN STOP
250 SYS 828
```

You might like to examine the output of the program to see what's so special about the first seven multiples of the number 142857.

Next month, we'll discuss special features and wrinkles of decimal mode.

> MEMOREX hexible discs

WE WILL NOT BE UNDERSOLDI Call Free (800)235-4137 for prices and information. Dealer inquiries invited and C.O.D.s accepted

PACIFIC
EXCHANGES
100 Foothill Blvd
San Luis Obispo, CA 93401. In Cal. call (800) $592-5935$ or (805) 543-1037
vist

Atari Artist

Andrew S. Katz

Abstract

With this program, you can place shapes of any size, orientation, or color anywhere on the screen. Use the joystick to create the shape, and change its color with the press of a single key.

In spite of its simplicity, "Atari Artist" can be used to draw complex designs as well as realistic scenes. Draw a circle inside a triangle inside a circle, and so on. Piece together a house in the midst of a forest. Then store your art on disk or tape.

Atari Artist comes in two versions. Version 1, a four-color version, has a blue status window and runs in 16K. Version 2, a 16-color GTIA version, has a gray status window and needs 24 K to run.

To use this program, you'll need a joystick plugged into port 1 . Be sure to have a cassette recorder or disk drive attached if you wish to LOAD and SAVE copies of your designs. When you first RUN the program, the title screen will appear. It will give you information about the keys' uses. At this point, you may wish to select a version. Version 1 is set up by default. If you wish to use Version 2, press and release the joystick button. The number 2 should replace the 1 after the word version. Press the button again to return to Version 1.

Once you've selected the version, move the joystick. If you have selected Version 2 and the message ERROR 147 ON LINE 1000 is on the screen, your Atari does not have enough memory for Version 2. Type RUN again, and this time use Version 1.

Marking The Shape

After several seconds the play screen will appear. All three markers are on top of one another at the top of the screen. Notice the two-line status window at the bottom of the screen.

To move a marker, push the joystick in the direction you want the marker to go. It should respond instantly. The marker you are moving is called the current marker and is indicated by a pinkish tint. The other two markers are white. The markers may move anywhere on the screen, including the hidden area behind the status window. If you try to move it off the screen, the marker will stop at the screen's boundary.

To control the other markers, release the joystick and press the joystick button. Notice that MARKER \# lights up in the status window. This is to show you that you are in the process of picking a new current marker. Release the joystick button. MARKER \# is no longer lit up, but the number beneath it has changed. It has increased by one, or cycled back from 2 to 0 . Also, a different marker now has a pinkish tint. That's the marker that now responds to the joystick. Very soon, you will find the movement of the markers and the switching between them to be quite simple.

Change The Marker Speed

The speed at which the joystick moves the markers across the screen can be changed. Speeds range from 1 to 9 . Speed 1 is normal, Speed 2 is twice as fast, and so on up to Speed 9, which is nine times as fast as Speed 1. The higher speeds do not permit you to stop at every point on the screen. These high speeds are used to get across the screen quickly, or to assist in more advanced drawing. To change speed, press the joystick button and move the joystick.

Notice that the highlighted item in the status window changed from MARKER \# to SPEED. Move the joystick toward you to decrease speed or away from you to increase speed. You will see the number under SPEED in the status window change as you move the joystick. When you've
reached the desired speed, release the joystick button. Now when you use the joystick, it will move the current marker at the speed you set.

To change the color, release the joystick and press the OPTION key. Notice that in the status window COLOR has lit up. This is to show you that you are in the process of choosing the next color in the sequence. When you release the OPTION key, the next color is shown beneath COLOR. To step through the color sequence, repeatedly press and release OPTION. When the color sequence reaches the last color, it starts again from the first color (the one in effect when you first started). Each version has its own color sequence listed in the table. The colors you actually see may vary, depending upon your computer and the tint adjustment on your TV.

Drawing Colors

```
Version 1:
        ORANGE
        GREEN
        BLUE
        BLACK or erase
Version 2:
        GOLD
        ORANGE
        REDORG (red orange)
        PINK
        PURPLE
        VIOLET
        STBLUE (steel blue)
        BLUE
        BYBLUE (baby blue)
        TURQUO (turquoise)
        GRBLUE (green blue)
        GREEN
        YELGRE (yellow green)
        ORGGRE (orange green)
        LTGREN (light green)
        BLACK or erase
```


Two Fundamental Shapes

To change the shape, release the joystick and press the SELECT key. Notice that in the status window SHAPE has lit up. This is to show you that you are in the process of selecting the other fundamental shape. The two fundamental shapes are TRIANGL (triangle) and CIRCLE. Now, release the SELECT key. The shape underneath SHAPE has changed from TRIANGL to CIRCLE, or from CIRCLE to TRIANGL.

To draw a shape, just press START. The program will take control and draw the shape. When the drawing has completed, control over the keys and joystick returns to you. The amount of time it takes to draw a shape will depend upon its size. A circle takes more time than a triangle, and Version 2 is slower than Version 1. The shape shown under SHAPE is drawn and given the color shown under COLOR. If the shape is TRIANGL, the three markers are its corners. If the shape is

CIRCLE, it is drawn using the markers as points along its circumference. As the shape is drawn, it covers (or erases) anything that was in its position on the screen.

SAVEing The Screen

To store the screen display on cassette or disk, or to reload a previously stored screen, press the OPTION and SELECT keys at the same time. The status window is then replaced with the first level of prompt. If you press RETURN, you'll get the status window back. You must press L for LOAD or S for SAVE. Other keys will be rejected and a buzz will sound. Do not press BREAK or SYSTEM RESET.

When you press S or L, the second level of prompt will be shown. Now, you must type a filename such as C for cassette or D:ANDY.GRT for disk. You cannot type more than 15 letters for a filename. Any additional letters or invalid keystrokes will be ignored. Mistakes can be corrected with the backspace key. After typing a filename, press RETURN. If no filename is shown, you will get the status window back. If the filename is invalid, you will see ERROR DETECTED TRY AGAIN for several seconds before the status window returns.

If the filename was correct and you have the disk or cassette set up, the SAVE or LOAD should proceed as explained in the tape or disk manual. When the SAVE or LOAD is complete or interrupted, the status window returns.

Keep The Versions Separate

During a LOAD, the second prompt will come with a warning to use files saved under the current version. A Version 2 screen loaded into Version 1 will result in some striped colors and height distortion. A Version 1 screen loaded into Version 2 will result in different colors and height distortion. Also, it will attempt to LOAD past the end of the file. During a LOAD you will see the screen fill from top to bottom.

Feel free to interrupt a LOAD by pressing BREAK. This is a way to merge the top of a SAVEd screen with the bottom of the current screen. However, pressing BREAK or SYSTEM RESET may cause the program to crash. If this happens, press SYSTEM RESET and type RUN.

Before drawing the shape, the program calculates the numbers it needs from the positions of the markers. For the purpose of positioning, the screen is treated as an $X-Y$ grid with X, Y pairs for each separate point or pixel on the screen. The X can be thought of as column and the Y as row. The upper left corner of the screen is assigned 0,0 and the lower right corner is assigned 159,79 (79,159 in V2). Then it uses the numbers to draw the shape one row at a time.

Creating A Triangle

Lines 507-540 contain the triangle predrawing section. Line 510 finds the highest (A), middle (B), and lowest (C) markers by comparing the markers' Y coordinates. Line 1550 has the six possibilities for three markers listed out in advance. Lines 530-536 calculate the slopes of the imaginary lines connecting the markers. Lines $11-30$ contain the drawing routine. There are two sections divided by a horizontal line at B. In the first section, horizontal lines are drawn from line CA to line BA. In the second section, horizontal lines are drawn from line CA to line CB. The two special cases where $\mathrm{AY}=\mathrm{BY}$ or $\mathrm{BY}=\mathrm{CY}$ are also handled.

The circle predrawing section is lines 600-680. The two crucial factors here are the location of the center of the circle (RX, RY), and the radius of the circle (R). The center of the circle is found by using the bisectors rule from geometry. To apply that rule, connect points C and A and points B and A . Then, make lines which pass through the midpoints of lines CA and BA and are perpendicular to CA and BA. We can use the point-slope method to describe these lines. Finally, find where these lines intersect. That is done by solving simultaneous linear equations.

Plotting A Circle

To find the radius, calculate the distance from the center of the circle to point A. In the program, any of the three markers are used as points A, B, and C. The markers are tried in different orders in line 1550 until a center is found.

Notice line 650. The TRAP is there to test for the case where the slopes of the bisectors are equal. This will occur only when the three markers are in a straight line. You can't draw a circle on a straight line. The actual drawing is performed by lines $2-10$. It is done by drawing the upper half and the bottom half simultaneously, starting at the equator and going to the poles. X, Y pairs which are outside the screen range are converted to fit on the screen for partial horizontal lines.

Finally, an FT factor is used to make round circles. If you draw circles without using FT, they come out oval. This is because the height of a screen pixel is not equal to its width.

With careful planning, you can construct interesting designs or detailed scenes that have the quality of a watercolor painting. By combining the two fundamental shapes of nature-the circle and the triangle-you can form many other shapes such as rectangles, stars, diamonds, and crescents. The program teaches children drawing composition and the names of the colors.

Drawing A Rectangle

Let's draw a rectangle.

Step 1: Move the markers together until they are exactly on top of one another. This will be the lower left corner of the rectangle.
Step 2: Increase the speed (9 is OK).
Step 3: Move a marker right by tapping the joystick. Count how many taps you make.
Step 4: Do the same thing with another marker but in the up direction.
Step 5: Press START.
Step 6: Move the third marker right and then up the same number of times you counted in steps 3 and 4 .
Step 7: Press START and you'll have a rectangle. Now that you have the general idea, try drawing some shapes on your own.

Here's some advice about circles. Since the markers form the edge of the circle, lining up the markers in a straight line will form a very large circle. In fact, it may not form a circle at all, because you can't draw a curve on a straight line. The computer will buzz at you if you tell it to draw a straight line circle. Move one marker a little and try again. You will see that very large circle. Sometimes circles are partly off and partly on the screen. If the partly off part is drawn first, you may have to wait a few seconds before you see your circle being drawn. Be patient. Soon you will become familiar with how circles are made, so you will know in advance how one will come out before it's drawn.

The Background Comes First

When you draw a scene, remember to do the background first. It is just like painting: The new shape will cover the old. You may notice that certain colors contrast each other and certain colors blend into each other. This and other visual effects can and should be used to your advantage. Remember also that the same color can look different with . different backgrounds.

If you see the colors changing after you have been drawing for a while, your Atari is in attract mode. The purpose of attract mode is to protect your TV from permanent burn-in of colors. To get your normal colors back, just press the SPACE bar or a letter key.

There is no specific feature for clearing the screen, but it's easy to start with a clean slate. Just move the markers to three of the corners of the screen and draw a BLACK TRIANGL. Then move a marker to the fourth corner from the corner diagonally opposite and draw again.

You may want to modify the program. One simple modification is to use the 16 shades of the GTIA mode. In this mode, the names of the colors should be reinterpreted as shades of gray. In lines 1525 and 1530, change 623 to 65,87 to 9 , and 712 to 0 .

Refer to the "Automatic Proofreader" article before typing this program in.

Atari Artist

FL 1 GOTO 1 øøøø
IC 2 FQR $Y=\mathscr{D}$ TO R：$X=S Q R(R S-Y * Y): X 1=F T$＊ $(R X-X): X 2=F T *(R X+X): Y 1=R Y-Y: Y 2=R Y$ $+Y$
PO 3 IF $Y 1>Y M A X$ THEN $Y 1=Y M A X$
AB 4 IF Y2＞YMAX THEN Y2＝YMAX
BH $5 \times 1=\mathrm{X} 1 *(X 1>0): I F \quad \times 1>X M A X$ THEN $\quad \times 1=-$ 1
PP 6 IF $\times 2>X M A X$ THEN $\times 2=X M A X$
OC 7 IF $X 1<\varnothing$ OR $X 2<\emptyset$ THEN $1 . \emptyset$
PE 8 IF $Y 1>=\emptyset$ THEN PLOT $X 1, Y 1: D R A W T O X$ 2，Y 1
PI 9 IF Y2＞＝ø THEN PLOT $X 1, Y 2: D R A W T D ~ X$ 2，Y2
PN $1 \varnothing$ NEXT $Y=G O T O \quad 1 \varnothing \varnothing$
HB 11 IF $A Y=B Y$ THEN PLOT $A X, A Y: D R A W T O$ $B X, B Y=G O T D \quad 2 \emptyset$
IA 15 FOR $Y=A Y$ TO $B Y: P L O T ~ C X-(C Y-Y)$＊KC $A, Y: D R A W T O E X-(B Y-Y)$ 承KBA，$Y: N E X T$ Y
HI 2ø IF $B Y=C Y$ THEN PLOT $B X, B Y: D R A W T O$ CX，CY：GOTO ЗØ
IH 25 FOR $Y=B Y$ TO CY：PLOT $C X-(C Y-Y)$＊KC $A, Y: D R A W T O C X-(C Y-Y) * K C B, Y: N E X T$ Y
CH $3 \varnothing$ GOTO $1 \varnothing \varnothing$
NE 1 ØD REM MAIN LDOP
NI 110 IF PEEK $(53279)=6$ THEN $5 \emptyset \emptyset$
HG 12 ST S STICK（ \quad ）
$0813 \emptyset$ IF $S T=15$ THEN IF PEEK $(53279)=3$ THEN 7 Øめ
OD 132 IF $S T=15$ THEN IF $\operatorname{PEEK}(53279)=1$ THEN $90 \emptyset$
$0 J 135$ IF $S T=15$ THEN IF PEEK $(53279)=5$ THEN 8めめ
6F 140 IF $5 T=15$ THEN IF STRIG（ø）$=\varnothing$ THE N उøø
OD 15 Q $X M$（MARKER）$=X M$（MARKER）＋SPEED＊X（S $T): Y N E W=Y M$（MARKER）＋SPEED＊Y（ST）
HR 160 IF $X M(M A R K E R)>2 \emptyset 6$ THEN XM（MARKE F）$=206$
BH $17 \emptyset$ IF $X M(M A R K E R)<49$ THEN XM \quad MARKER $)=48$
CE 180 IF $Y N E W<16$ THEN $Y N E W=16$
HP 19 IF YNEW >111 THEN YNEW $=111$
JD $2 \emptyset 6$ POKE $53252+M A R K E R, X M$（MARKER）
CA 2 Ø4 IF YNEW＝YM（MARKER）THEN $21 \emptyset$
OA 205 POKE PMM＋YM（MARKER），PEEK（PMM＋YM （MARKER））－MK（MARKER）：POKE PMM＋Y NEW，PEEK（PMM＋YNEW）＋MK（MARKER）：Y $M(M A R K E R)=Y N E W$
FH 21 GOTO 1めめ
HK Зøø S\＄（ $3,1 \varnothing)=\operatorname{HEID} \$(1,8)$
BK $32 \emptyset$ IF STICK（ø）＜>15 THEN $5 \$(3,1 \emptyset)=H$ EAD $\$(1,8)=$ GOTO 4 Q
6A उЗ IF STRIG（ $)=\varnothing$ THEN $32 \emptyset$
OE 345 POKE $794+$ MARKER， 14
AO 35 O MARKER＝MARKER＋1：IF MARKER＝3 THE N MARKER＝め
of 355 S $\$(3,10)=\operatorname{HEAD} \$(1,8): 5 \$(46,46)=\mathrm{C}$ HR $\$($ MARKER＋16）：POKE $7 \emptyset 4$＋MARKER， 60
GD $36 \emptyset$ GOTD $1 \emptyset \emptyset$
0L 4 の日 $5 \$(11,18)=$ HEID $\$(9,16)$
BN $4 \emptyset 5$ FOR $W=1$ TO $5 \emptyset: N E X T \quad W$
EI 419 IF STICK $(\varnothing)=15$ THEN $S \$(11,18)=H$ EAD\＄$(9,16)=$ GOTO 1 ØØ
DH $42 \emptyset$ IF STICK $(\varnothing)=14$ THEN SPEED＝SPEED ＋1：IF SPEED＞9 THEN SPEED＝9
CH $43 \wp$ IF STICK $(\varnothing)=13$ THEN SFEED＝SPEED －1：IF SPEED＜1 THEN SPEED＝1

P6 435 S\＄$(55,55)=$ CHR\＄（SPEED＋ 16 ）
6K．44の GOTO 4＠5
6N $5 \emptyset \emptyset$ COLOR COLR：RESTORE $155 \varnothing$
鹏 505 IF SHAPE＝1 THEN Gめめ
$0 P 5 \emptyset 7$ TRAP $699: R E A D$ A，B, C
IJ $51 \varnothing$ IF $Y M(A)<=Y M(E) \quad A N D \quad Y M(B)<=Y M(C$ ）THEN $A Y=Y M(A): A X=X M(A): B Y=Y M$（ $B): B X=X M(B): C Y=Y M(C): C X=X M(C): G$ OTO 520
6M511 GOTO $5 め 7$
NJ 52ด $A X=(A X-48) * X T: B X=(B X-48) * X T: C X=$ $(C X-48) * X T=A Y=(A Y-16) * Y T: B Y=\langle B Y$ －16）＊YT：$C Y=(C Y-16) * Y T$
EE 5Зの
EF 532 TRAP $534: K B A=(B X-A X) /(B Y-A Y)$
$E P 534$ TRAP $536: K C B=(C X-B X) /(C Y-B Y)$
MJ 536 TRAP 4 ØЮøØ
DE 54 G GOTO 11
$0 J 6 \emptyset \emptyset$ TRAP $699: R E A D$ A，B，C
$D C 6 \varnothing 1 \quad A X=(X M(A)-48) * X T / F T: A Y=(Y M(A)-1$ 6）$* Y T$
DG 61 D $B X=(X M(B)-48) * X T / F T: B Y=(Y M(B)-1$ 6）$* Y T$
DL 62の $C X=(X M(C)-48) * X T / F T: C Y=(Y M(C)-1$ b）＊YT
II 625 IF $C Y=A Y$ OR $B Y=A Y$ OR $A X=B X$ THEN 6月も
DK $630 K C A=(A X-C X) /(C Y-A Y)$
DJ $632 \mathrm{~K}, \mathrm{BA}=(\mathrm{AX}-\mathrm{BX}) /(\mathrm{BY}-\mathrm{AY})$
PB 64 Ø LCA $=(C Y+A Y) / 2-K C A *(C X+A X) / 2$
$0 P 642 L B A=(B Y+A Y) / 2-K B A *(B X+A X) / 2$
PE 650 TRAP $699: R Y=(K B A * L C A-K C A * L B A) /($ $K B A-K C A)$

$A 667$ D $R S=(R Y-A Y) *(R Y-A Y)+(R X-A X) *(R X-$ AX）
NP $675 \mathrm{R}=5 \mathrm{SQR}(\mathrm{FS})=I F \mathrm{R} \geqslant 20 \varnothing$ THEN 699
AJ 68＠GOTO 2
EF 699 TRAP 4 Øめめめ：FOR I $=\varnothing$ TO उळ：POKE 5 З279，め：NEXT I：GOTO 1め＠
CD 7 Wめ S\＄（19，26）＝HEID\＄（17，24）
OA 72め IF PEEK（53279）＝ 3 THEN 72め
$6673 Q$ COLR $=C O L F+1:$ IF $C O L R=N C O L F S ~ T H E N ~$ COLR＝め
AJ 740 S $\$(19,26)=H E A D \$(17,24): 5 \$(69,65$ $)=$ COLRक（COLR＊ $6+1$ ，COLR＊ $6+6$ ）
66 $75 め$ GOTO 1 ＠ø
CA 80 § $5(27,34)=H E I D \$(25,32)$
OE 82め IF PEEK（53279）＝5 THEN 820
81 8डQ SHAPE $=1-5 \mathrm{HAPE}$
NE 84 § $5(27,34)=\operatorname{HEAD} \$(25,32): 5 \$(68,74$ $)=$ SHAPE $\$(S H A P E * 7+1$, SHAPE＊ $7+7$ ）
64859 GOTO $19!g$
6A 9 ＠ 5 S $=5$＝$=$ POKE 764，255：CLOSE \＃2：OP EN \＃2，4，＠，＂K：＂：POKE 7＠2，64：POKE 694，あ
HH 910 S市＝＂FRESS TO LOAD SCREEN FR OM FILE 8 SPACES？PRESS B TO SAV E SCREEN TO FILE 8 SPACES3＂
 S\＄（I，I．））－ $\mathbf{S Z}$ ）：NEXT I
10925 GOSUB 2めめ日：IF $A=155$ THEN 999
FN 926 IF $A=A S C$（＂L＂）THEN $W=4: E=7:$ GOTO 940
נE 927 IF $A=A S C(" S ")$ THEN $W=8: B=11:$ GOT 1－949
$0193 \wp$ FOR $I=1$ TO $25: F O K E$ 53279，$: N E X T$ I：GOTO 925
JD $940 \mathrm{~S} \$="$ FILE NAME ？亿 \quad S7 SPACES？＂$: F I$ LE $=5$（ $=14,28$ ）
BL 941 IF $W=4$ THEN $S \$(42,65)=" F I L E$ MUS T BE FOR VERSION＂：S\＄（67，67）$=\mathrm{CHF}$ \＄（ASC（＂＠＂）＋V）

JK 943 FOR $I=1$ TO 8め：S\＄（I，I）＝CHR\＄（ASC S\＄（I，I））－З2）：NEXT I
FE 950 I＝め
CK 955 GOSUB 2のめの：IF $A=155$ AND $I=\varnothing$ THE N 999
明960 IF $A=155$ THEN 98＠
KF 965 IF $A=126$ AND $I=6$ THEN 955
EF 968 IF $A=126$ THEN $A=A S C(")$＂）：GOSUB 978：I＝I－1：GOTO 955
0月 970 IF $I=15$ THEN 955
E1975 I＝I＋1：GOSUB 978：GOTO 955
CH 978 FILEक $(I, I)=C H R \$(A): S \$(14+I, 14+I$ ）＝CHR\＄（ $A-32$ ）：RETURN
IJ 989 TRAP 997：POKE 54286，64
PD 981 IF FILE $(1,1)=" C "$ THEN POKE 537 75，35：POKE 53768，40：POKE 53764， Ø：POKE 53766，Ø：POKE 53773，255
HI 982 OPEN \＃ 1 ，W，Ø，FILE $\$$
J 985 POKE 852，PEEK（88）：POKE 853，PEEK （89）：POKE 856，Ø：POKE 857，15＊V：F OKE 85め，B
LB 99め $B=U S R(A D R(C I O D)): G O T 0.999$
 ，67）＝＂ERROR DETECTED TRY AGAIN

NH 998 FOR $I=42$ T0 67：S\＄（I，I）＝CHR $\$(A S C$ （S\＄（I，I））－32）：NEXT I：FOR I＝1 TO 1のØロ：NEXT I
NC999 TRAF 4 日め曰ด：S\＄＝SS\＄：CLOSE \＃2：CLOS E \＃1：GOTO 152の
BN 1 Øゆø IF $V=2$ THEN GRAPHICS 24：PM＝PEE $K(106)-36:$ NCOLRS $=16: X T=\varnothing .5: Y T=$ 2：FT＝0．3125：XMAX＝79：YMAX＝191
BO $10 め 1$ IF $V=1$ THEN GRAPHICS 23：PM＝FEE $K(1 @ 6)-2 \mathscr{D}: \mathrm{NCOLRS}=4: X T=1: Y T=1: F$ $T=1.25: X M A X=159: Y M A X=95$
MH 1 1 ØS POKE 54279，PM：PMM＝PM＊256＋384：F OKE 559，38：POKE 53277，1
JP 1 פØ 4 POKE 623，1：FOF I＝PMM TO PMM＋12 7：POKE I，Ø：NEXT I
 TI
BH 1ø1め DIM XM（2），YM（2），MK（2），COLRक 96 ），SHAPE क（14）
LC 1 Ø11 FOR $I=$ O TO 2：XM（I）＝125：POKE 53 $252+I, 125: Y M(I)=16:$ NEXT I ：POKE PMM＋16，255
PC 1012 MK（Ø）＝S：$M K(1)=12: M K(2)=48:$ REM MISSILE MASKS
KP 1 D13 COLR $\$=$＂BLACK GOLD ORANGEREDOR GPINK PURPLEVIOLETSTBLUE BLUE BYBLUETURQUOGRBLUEGREEN YELGR EORGGRELTGREN＂
PG 1 O14 SHAPE $=$＂TRIANGLCIRCLE＂：IF $V=1$ THEN COLRक $(1,24)=$＂BLACK ORANG EGREEN BLUE
IC $1015 \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} 96: \operatorname{COLR}(\mathrm{D}, \mathrm{I})=\mathrm{CHR} \$($ ASC（COLR $\$(I, I))-32$ ）：NEXT I
PL 1 Ø16 FOR $I=1$ TD $14: S H A P E \$(I, I)=C H R \$$ （ASC（SHAPE\＄（I，I））－32）：NEXT I
נ 1 Ø2 5 SHAPE $=\varnothing:$ COLR $=1:$ MARKER＝Ø：SPEED $=$ 1：POKE 7 74 ，6月
 256）：SL＝S－SH＊256

MA 1023 FOR $I=1$ TO 8 g：S $\$(I, I)=\operatorname{CHR} \$(A S C$ （S\＄（I，I））－32）：NEXT I
MF 1 Ø25 DIM HEAD $\$(32)$ ：HEAD $=$＂MARKER \＃ SPEED COLOR£S SPACES3SHAPE

DP 1027 FOR $I=1$ TO $32: \operatorname{HEAD} \$(I, I)=C H R \$($

ASC（HEAD\＄（I，I））－32）：NEXT I
FA 1 Ø28 FOR $I=1$ TO 32： $\operatorname{HEID} \$(I, I)=C H R \$($ ASC（HEID\＄（I，I））－32）：NEXT I
DA 1 D29 S\＄（3，З4）$=$ HEAD $\$:$ S $\$(46,46)=$ CHR $\$($ MARKER＋16）：S $\$(55,55$ ）＝CHR $\$$（SPEE $\mathrm{D}+16$ ）：S $\$(6$（ 9,65$)=$ COLR $\$(C O L F * 6+1$ ，COLR＊ $6+6$ ）
EC 1 פS \varnothing S\＄$(68,74)=$ SHAPE $\$(S H A P E * 7+1$ ，SHA PE＊7＋7）
$0 P 1$＠ 34 DIM $X(15), Y(15): F O R \quad I=5$ TO 15： READ $A, B: X(I)=A: Y(I)=B: N E X T I$
LJ $1 \emptyset 35$ DATA $1,1,1,-1,1, \emptyset, \varnothing, ळ,-1,1,-1$ ， $-1,-1, \varnothing, \varnothing, \varnothing, \varnothing, 1, \varnothing,-1, \varnothing, \varnothing$
EE 11 ดの DIM CIO\＄（ 6$):$ FOR $I=1$ TO $6: R E A D$
A ：CIO\＄（I，I）$=\operatorname{CHR} \Phi(A): \operatorname{NEXT}$ I
MJ 11 DS DATA $104,162,16,76,86,228$
EH 111 D DIM SSक（8め），FILEक（15）
KC 1500 DIM DLI\＄（14）：FOR I＝1 TO 14：REA D A：DLI $\$(I, I)=C H R \$(A): N E X T$ I
KC 1501 DATA $72,173,111,2,41,3,141,10$ ， $212,141,27,208,104,64$
DR $1502 \mathrm{DL}=$ PEEK（56 $)+$ PEEK（561）＊256：IF $V=1$ THEN 1514
AD 1593 POKE DL $+182,143:$ POKE DL $+183,66$ ：POKE DL＋186，2：POKE DL＋187，PEE K（DL＋199）：POKE DL＋188，PEEK（DL＋ 2のด）
J6 1513 POKE DL＋ 189 ，PEEK（DL +201 ）：POKE DL $+184, \mathrm{SL}:$ POKE DL＋185，SH：GOTO 1520
LC 1514 FOKE DL＋93，66：POKE DL＋96，2：POK E DL +97 ，PEEK（DL +101 ）：POKE DL +9 8，PEEK（DL＋ 1 月2）
AJ 1515 POKE DL＋99，PEEK（DL +193 ）：POKE D $L+94, S L:$ POKE DL $+95,5 H=G O T O 152$ g
D0 1520 FOKE 513，INT（ADR（DLI\＄）／256）：PO KE 512，ADR（DLI $\$$ ）－256＊PEEK（513）
MJ 1521 POKE 54286， 192
EJ 1525 IF $V=2$ THEN POKE 623， $193:$ POKE 87，11
H1 153 IF $V=2$ THEN POKE 712 ， $8:$ POKE 71 5，8：POKE 709， 14
JE 154 GOTO 1 Øの
ED 155 D DATA $\varnothing, 1,2,2,1, \varnothing, \varnothing, 2,1,1,2, \varnothing, 1$ ，$\varnothing, 2,2, \emptyset, 1$
DL 2øøด $A=P E E K(764)$ ：IF $A=255$ OR $A=6 め \square$ R $A=39$ THEN 2めめg
BC 2095 GET \＃2，$A:$ IF $A=126$ OR $A=155$ THE N RETURN
P8 2の1ø IF $A<32$ OR $A>=96$ THEN 2Øøø K1 2915 RETURN
AK 1 Øøஜの GRAFHICS 17：POKE 752， $1: V=1$
NE 1 Øดด 1 DL＝PEEK（560）+256 ＊PEEK（561）
B1 10002 POKE DL＋S， $71: F O R \quad I=6$ TO $11: \mathrm{PO}$ KE DL＋I，7：NEXT I
F1 1 Ø日1日 POSITION 7，1：？\＃6；＂WELCOME＂
FM 1002 POSITION $10,3:$ ？\＃6；＂to＂
 CEIERS＂
 HANGE COLORS＂
 HANGE SHAFES＂
FP 10055 POSITION $0,12:$ ？\＃；＂EThREM〔S SPACES？TO DRAW＂
HH 1 ØめG日 POSITION $0,15:$ ？\＃b；＂move stic k to begin＂；
DI 1 $\boxed{065}$ POSITION $8,14:$ ？\＃6；＂button fo r version＂；V ；
FL 10066 IF STICK（の）＜>15 THEN 1 Øøめ
HM 10067 IF STRIG $(\varnothing)=\varnothing$ THEN $\quad V=3-V$

DF 10069 GOTO 19565

PROGRAMMING THE TI

Programming Techniques In TI BASIC

This month, by answering some of the common questions I have received from readers, I'm going to give you a variety of programming techniques that you can use in your own programs.
How do you clear part of a screen?
Let's say you have onscreen a nice picture with a description underneath. CALL CLEAR will clear the whole screen; but you want to clear the printing, not the picture. Use CALL HCHAR with the row and column parameters under the picture, and use the number of repetitions that will clear the section you want. For example, to clear the lower half of the screen, CALL $\operatorname{HCHAR}\left(13,1,32,32^{*} 12\right)$. We're starting with row 13, column 1, and clearing with the space (character code 32) for $32 * 12$ squares- 32 columns times 12 more rows.

To clear with a different color, redefine a character (in a color set you are not using) as a colored square, then use CALL HCHAR to put that character on the screen:
$3 \varnothing \emptyset$ CALL COLOR $(13,16,16)$
31 Ø CALL $\operatorname{HCHAR}(13,1,128,32 * 12)$
To clear a vertical section of the screen, use CALL VCHAR:

CALL VCHAR $\left(1,17,32,24^{*} 16\right)$

To try out this technique, try this sample program:
$1 \emptyset \emptyset$ CALL $\operatorname{HCHAR}(1,1,42,32 * 24)$
$11 \emptyset$ CALL $\operatorname{HCHAR}(13,1,32,32 * 12)$
$9 \emptyset \emptyset$
GOTO $9 \emptyset \emptyset$

Change line 110 to the CALL VCHAR statement above and try the program. Next take out line 110 and put in lines 300 and 310 listed above. Experiment with different numbers of repetitions.
How do you get a border around the screen?
CALL SCREEN(c), where c is a number from 1 to 16 , defines the screen color. When you use this
statement in a program, the whole screen instantly changes color. CALL COLOR (s, f, b) defines the character colors. The characters are divided into sets of eight characters each. The s in the parentheses is the set number and can be from 1 to 16 . The f is the foreground color of the character, b the background color, and they can be one of the 16 color numbers, from 1 to 16 .

Now take a look at the characters in set 1 . The space is code 32 in set 1 . The screen is filled with spaces wherever there isn't any printing or graphics. If you change the color of set 1 to something other than the screen color (background color 1), you'll get color where all the spaces are.

```
1\emptyset\emptyset CALL CLEAR
11\emptyset CALL SCREEN(14)
12\emptyset CALL COLOR(1,2,16)
9øø GOTO 9øø
```

Press FCTN 4 (CLEAR) to stop the program. You've got a border on the top and on the bottom, but you would like the sides also. When we PRINT messages we have a 28 -column line, but when we do graphics we actually have 32 columns-there are two columns on each side of the regular printing section. They currently have spaces in them. To get the screen color in those columns, add

```
115 PRINT ::::: : : : : : : : : : : : : : : : : : 
```

Or, as you print messages, those extra columns fill with the screen color. (As you PRINT, columns 1, 2, 31, and 32 will contain character 31.) A quicker way to get rid of the spaces in those columns is to fill the columns with a character in the screen color. You may add these lines instead:

```
115 CALL CHAR (152,"")
116 CALL VCHAR (1, 1, 152,48)
117 CALL VCHAR(1,31,152,48)
```

Now try a few PRINT messages, such as

$15 \emptyset$ PRINT "HELLO"

Notice that the letters have little squares of the screen color around them. All the color sets are automatically defined as CALL COLOR $(\mathrm{S}, 2,1)$, which is black with a transparent background. The color number 1, transparent, will be the screen color. If you want the printing to be black on your inner screen color (the color of the spaces), you need to define the sets with the background color that you used in set 1 . Change line 120 above to

```
12\emptyset FOR S=1 TO 12
13\emptyset CALL COLOR(S,2,16)
14Ø NEXT S
```

This defines a white background for the first 12 character sets, those sets which have letters and symbols. Now run the program and you will see that the message no longer has the screen color background.

How do you make a simple math drill with graphics?

I have had quite a few requests for an arithmetic drill program. Many readers would like to develop such programs on their own and want to know how to draw a certain number of pictures for the numbers chosen randomly in a simple math problem.

Here is a short program to give you the general idea of using the graphics. I defined character 128 to be the picture. The variables A and B can be numbers from zero to four. Lines 170-200 print the problem on the screen-a simple addition problem. Lines 210 and 220 draw the right number of characters for A and B.

Program 1: Simple Math Drill

$1 \varnothing \varnothing$	REM SIMPLE MATH
$11 \square$	CALL CLEAR
120	CALL CHAR (128, "øø24øø2418")
$13 \square$	CALL COLOR (13,2,11)
140	RANDOMIZE
$15 \emptyset$	A=INT (5 *RND)
$16 \square$	B=INT (5 *RND)
$17 \square$	$\operatorname{CALL} \operatorname{HCHAR}(8,1 \varnothing, A+48)$
$18 \emptyset$	CALL $\operatorname{HCHAR}(1 \varnothing, 8,43)$
199	CALL $\operatorname{HCHAR}(1 \varnothing, 1 \emptyset, B+48)$
$2 \emptyset \emptyset$	CALL $\operatorname{HCHAR}(11,8,95,3)$
21 ¢	CALL $\operatorname{HCHAR}(8,12,128, A)$
220	CALL $\operatorname{HCHAR}(1 \varnothing, 12,128, B)$
230	CALL SOUND (15ø, 1497,4)
24ø	CALL KEY (ø, K, S)
259	IF $\mathrm{S}<1$ THEN 24 Ø
269	IF $K=32$ THEN 4øø
$27 \emptyset$	IF $K=A+B+48$ THEN $31 \varnothing$
280	CALL SOUND (1øø, $33 \varnothing, 2$)
290	CALL SOUND (1øø, 262,2)
Зøø	GOTO 24.
319	CALL $\operatorname{HCHAR}(13,1 \varnothing, K)$

$32 \emptyset$ PRINT "CORRECT!"
33ø CALL SOUND (1øø,262,2)
$34 \emptyset$ CALL SOUND (1øø,33ø,2)
$35 \emptyset$ CALL SOUND $(1 \varnothing \varnothing, 392,2)$
36ø CALL SOUND (2øø,532,2)
$37 \emptyset$ CALL SOUND (1,9999,3ø)
38ø CALL CLEAR
39ø GOTO 14ø
$4 \emptyset \emptyset$ CALL CLEAR
41σ END
If you prefer to have a space between graphics characters, place a character in every other space. You can do this by changing lines 210 and 220 above to the following:
$21 \varnothing$ FOR C=12 TO 12+2*(A-1) STEP2
$212 \operatorname{CALL} \operatorname{HCHAR}(8, \mathrm{C}, 128)$
214 NEXT C
$22 \varnothing$ FOR C=12 TO 12+2*(B-1) STEP2
222 CALL $\operatorname{HCHAR}(1 \varnothing, \mathrm{C}, 128)$
224 NEXT C
In this sample program, an addition problem is presented and the student answers by pressing a number. If it is incorrect, there is an "uh-oh" sound. If it is correct, an arpeggio is played and the computer goes to the next problem. To stop, press the space bar.

How can you draw a bar graph?

This procedure is similar to the previous sample program. The easiest way to draw a bar graph is to use HCHAR with the appropriate number of repetitions (or VCHAR). You may need to scale the numbers. Take the highest number you'll need to graph, relate it to the greatest number of repetitions you can have in your HCHAR statement, and stay on that row.

Another method is to use PRINT and print the right number of characters for the bar. The following sample program segment demonstrates this method. Character 128 will be a red square. For purposes of illustration, I will use random numbers N up to 90 for the amounts to be graphed. You would probably have specific numbers that have been calculated or read in from DATA.

A is the scaled value (rounded) for N -for every four units one square can be drawn. Line 170 prints the number N then says to start the next printing in the fifth print column. Lines $180-200$ print the appropriate number of red squares.

Program 2: Bar Graph Generator

```
1\emptyset\emptyset REM BAR GRAPH
11g CALL CLEAR
12\emptyset CALL COLOR(13,7,7)
13\emptyset FOR I=1 TO 1\emptyset
14ø RANDOMIZE
15ø N=INT (9ø*RND)
16g A=INT (N/4+.5)
17\emptyset PRINT N;TAB(5);
18\emptyset FOR B=1 TO A
19\emptyset PRINT CHR$(128);
```

2 Øø NEXT B
$21 \emptyset$ PRINT: :
$22 \emptyset$ NEXT I
$23 \emptyset$ GOTO 23ø
$24 \varnothing$ END
How do you print a list of items in more than two columns?
As you know, the comma in PRINT statements prints items in two columns-items start either in the first print position or the center position. To get three columns or more, use the TAB function. TAB works like the tab key on a typewriter. You may specify which column to start printing. $\mathrm{TAB}(7)$ would start the next print item in the seventh print column. Here's a sample that types three columns of names.

```
1\emptyset\emptyset CALL CLEAR
11\emptyset READ L$,M$,N$
12\emptyset IF L$="@" THEN 18\emptyset
13Ø PRINT L$;TAB(1\emptyset);M$;TAB(19);N$
14\emptyset GOTO 11\emptyset
15\emptyset DATA MIKE, BOB,DICK,RICH
16\emptyset DATA JIM, JERRY,MARY, PAULA
17\emptyset DATA CHRIS,KEVIN,KATHY,KIRK, a, a
    , ©
18\emptyset END
```

How can you print a screen without seeing the scrolling?
Some people don't like to see scrolling as they print. Messages on the TI are always printed on the twenty-fourth row then moved upward. To block this motion, change the screen to black first (because the printing is black), print the messages, then change the screen back to a different color so you can read the printing.
$1 \emptyset \emptyset$ CALL CLEAR
$11 \emptyset$ CALL SCREEN (2)
$12 \emptyset$ PRINT "THIS IS AN EXAMPLE"
$13 \emptyset$ PRINT : : "TO SEE A SCREEN"
$14 \varnothing$ PRINT : : "ALL AT ONCE.": : : :
$15 \emptyset$ CALL SCREEN (4)
$16 \varnothing$ GOTO $16 \varnothing$
How can you print what is on the screen to the printer?
I'm sorry, but I don't know how to do a screen dump of graphics because none of the printers I have right now has the graphics capabilities. You will need to look at your own brand printer manual to see how to use the dot-addressable graphics. If you have a screen of printing, however, with regular printed symbols, you can use the following procedure. The character in each row and column is determined, then that character is printed on the printer. You may need to change the OPEN statement in line 100 to suit your particular printer configuration.

```
1Ø\emptyset OPEN #1:"RS232.BA=6\emptyset\emptyset"
110 FOR ROW=1 TO 24
12\emptyset FOR COL=3 TO 3\emptyset
13\emptyset CALL GCHAR(ROW, COL,G)
```

```
14ø PRINT #1:CHR$(G);
15\emptyset NEXT COL
16\emptyset PRINT #1
17\emptyset NEXT ROW
18\emptyset CLOSE #1
19ø END
```

If you want everything you are printing to go both to the screen and to the printer, use both a PRINT statement and a PRINT \#1 statement for items printed.

```
1ø\emptyset OPEN #1:"RS232.BA=6ø\emptyset"
11\emptyset CALL CLEAR
12\emptyset PRINT #1:CHR$(12)
13\emptyset PRINT "HELLO"
14ø PRINT #1:"HELLO"
15\emptyset PRINT "ANY MESSAGE"
16\emptyset PRINT #1:"ANY MESSAGE"
17\emptyset CLDSE #1
18ø END
```

Line 120 above goes to the top of a page.
How can you simulate time on the TI?
If you need an exact time, use the CALL SOUND statement in which you can specify an exact duration in milliseconds. If you don't want to hear the sound, use a high frequency and the softest volume.

```
1ø\emptyset PRINT "START"
11ø CALL SOUND(1øø\emptyset,9999,3ø)
12\emptyset CALL SOUND(1,9999,3ø)
13\emptyset PRINT "END"
14\emptyset END
```

Line 120 is necessary to end the first sound.
If you want to time someone as they are pressing keys to move or are answering a question, use a counter in your CALL KEY loop. You can't relate this counter to an exact time because in each program it will be different-depending on how you do the programming, how long your program is, and how full the memory is. However, once you have your program working, you can print the counter value and use a stopwatch to figure out a formula that relates the actual time to the counter value. ("Type-ette Timer" in my Programmer's Reference Guide to the TI-99/4A from COMPUTE! Books uses this technique to time how fast you can type sentences.) Here is a sample:

```
1øø T=\emptyset
11\emptyset CALL KEY(ø,K,S)
12\emptyset T=T+1
13\emptyset IF S<1 THEN 11ø
14\emptyset PRINT T
15\emptyset GOTO 1ø\emptyset
16\emptyset END
```

The faster you press a key, the lower the value for T will be. The longer you wait, the more times the computer will go through the loop and increment T .

Other computers use PRINT AT; how can we do it?
In TI Extended BASIC you can specify a row and column to begin printing an item. However, we don't have that feature in regular console BASIC on the TI. There are several ways to accomplish this, though they're slower than regular printing. First, you can use the regular PRINT statement, perhaps with the TAB function, and then use colons to move the message up to the proper row.

PRINT TAB(9);"START PRINTING"::::::

The main problem with this method is that it scrolls the screen. If I am labeling graphics, I do all the printing first, then use CALL HCHAR and CALL VCHAR to put up the graphics.

Another method is to treat the letters in the printed message as graphics characters, and use CALL HCHAR to specify the row and column to place the letters on the screen. Here's a generalpurpose subroutine that you can use. $\mathrm{M} \$$ is the message you want printed, R is the row, and C is the column you want the message to start in.

```
3\emptyset\emptyset FOR L=1 TO LEN(M$)
310 CALL HCHAR(R,C-1+L,ASC(SEG$(M$,
    L,1)))
320 NEXT L
33\emptyset RETURN
```

Before you call the subroutine with a GOSUB, specify a row R and a column C and the message M :

```
9ø\emptyset M$="TEST PRINTING"
910 R=6
92\emptyset C=12
93ø GOSUB 3øø
```

How can I put a code in my program?
I have had lots of young people ask me how they can write a program so that whoever runs it must enter a code before the program continuesthey don't want their brothers and sisters using their program. The general idea is that you put a code name in the program as a string variable. Next, use INPUT for the user who is running the program to type in the code. Now compare the INPUT value with the code to see whether to continue or not.

```
1ஏ\emptyset CALL CLEAR
11\emptyset CODE$="RANDY"
12\emptyset INPUT "ENTER CODE NAME: ":A$
13Ø IF A$=CODE$ THEN 16\emptyset
14g PRINT ::"SORRY, INVALID CODE."
15g STOP
16g REM PROGRAM CONTINUES
```

The only problem with specifying the code in line 110 is that anyone can load the program, then LIST it to find out what the code name is. One method I use so people can't read the code name is to hold down the CTRL key (key with
the red dot) while you type your code message. Line 110 will now look like this:

110 CODE $\$=$ "
or you may get some funny-looking graphics characters between the quotes. Now when someone lists your program, they can't tell what the code name is. When you run the program, be sure to hold the CTRL key down when you INPUT the code name, and it will match the code in the program.

A Couple Of Warnings

Always use the SHIFT key on the left side of the keyboard to type the plus sign. You don't want to go for the right SHIFT key and accidentally hit the FCTN key-and quit!

Do not use TI Extended BASIC to run regular TI BASIC programs because they may not run properly. One reason is the double colon used in PRINT statements, and another reason is that I often use graphics in character sets 15 and 16, which are not available in Extended BASIC.

If you have a disk drive attached to your computer, the disk uses up some memory. For any of my published programs, type in CALL FILES(1) and press ENTER, then type NEW and press ENTER, then proceed normally (load a program or start typing a program). This procedure clears about 1000 bytes of memory so a program can fit.

Until Next Time ...

I hope these ideas help you in your programming. Your computer can be a lot of fun. Part of the joy of programming is getting that machine to do what you want it to do. As I continue these columns I hope to present a variety of programs so you can see that this computer is really quite versatile. Your suggestions and letters are always welcome.

$$
\begin{aligned}
& \text { Use the card } \\
& \text { in the back } \\
& \text { of this magazine } \\
& \text { to order your } \\
& \text { COMPUTE! } \\
& \text { Books }
\end{aligned}
$$

Programming 64 Sound Part 2

John Michael Lane

Last month in Part 1, we discussed sound and music in general. This month we examine some techniques for programming more complicated music using the 64's SID chip.

The control register is the most complex register in the chip. Each of the eight bits in this register has a different function. Dealing with individual bits within a one-byte register is often a problem for BASIC programmers. One very easy way to approach the problem is to use the following:

```
17\varnothing B(\varnothing)=1
18\varnothing B(1)=\varnothing
190 B(2)=1
2ø\emptyset B (3)=\emptyset
210 B(4)=\emptyset
22ø B(5)=\varnothing
230 B(6)=\emptyset
240 B (7)=1
250 FOR I=ø TO 7
260Q}Q=Q+B(I)*2\uparrow
27\emptyset NEXT I:POKE S+4,Q
```

This is not efficient programming, but by defining the bits we want (that is, $B(I)$ where $I=$ the bit number) in terms of a 1 and those we don't want in terms of a 0 , this segment will work. It will be somewhat slow and cannot be used in a loop that must execute quickly, which is usually the case when doing musical programming.

A quicker method is to think of the bits in terms of their value in an eight-bit binary number. Bit 0 has a value of 1 , bit $1=2$, bit $2=4$, bit $3=8$, bit $4=16$, bit $5=32$, bit $6=64$, and bit $7=128$. In the case above, we want to set bits 0 , 2 , and 7 on, so we simply add their values: $1+4+128=133$. Simply POKE 133 into the register to set those bits. It's much simpler, but requires you to add up the bit values before writing the program, so when you look back on
the program one month later you may not have the slightest idea why you chose 133.

The first bit of the control register, bit 0 , acts as the gate to turn the sound on and off. Remember that when the gate is opened (when bit 0 is set to 1), the attack phase of the volume envelope begins. When the gate is closed (bit 0 is set to 0), the release phase of the volume envelope is triggered. If the gate is closed prematurely, the sustain, decay, and even a portion of the attack phase may be omitted. Opening and closing the gate is actually very easy. Just remember that POKEing an odd value in register 4 turns the gate on and that POKEing an even value into the register turns the gate off.

Watch The Timing

Be careful of turning the gate off by POKEing zero into the register. That will also clear the waveform bits (which we'll discuss in a second) and will result in your volume envelope having no release phase.

The next bit, bit 1, is the sync bit. If this bit is on, the output from voice 1 will be synchronized with the output from voice 3. Sync in this case means that the output of voice 1 will be replaced with a logical AND of the output of voice 1 and voice 3 . Another way to think of it is that voice 1 is turned on and off with the frequency of voice 3 . In order for this bit to have any effect, oscillator three (voice 3) must be set to some frequency less than voice 1 . The best way to understand this effect is to listen to it. "Laser" (Program 4) contains a demonstration using the sync bit. When using sync, the lower frequency will predominate. The effect works best when the lower frequency is $1 / 10$ to $1 / 2$ of the higher.

The sync bit has a slightly different effect in the other two voices. In voice 2 it produces a
sync of voice 2 with voice 1 , and in voice 3 it produces a sync of voice 3 with voice 2 .

The next bit, bit 2 , is the ring modulation bit. When this bit is set on, it produces nonharmonic overtones that sound like a bell. In order for this effect to take place, the triangular waveform must be selected for voice 1 , and voice 3 must have a frequency other than zero.

Ring modulation in the other voices works like the sync bit; that is, for voice 2 to be ring modulated, voice 1 must have a nonzero frequency. For voice 3, voice 2 must be nonzero. In all cases the triangular waveform must be selected for the affected voice.

Bit 3 in the control register is the test bit. Setting the test bit to one will turn off the sound generator. This technique will generally be used only by machine language programmers.

Bits $4-7$ are the waveform bits. Turning on bit 4 will select the triangular waveform; bit 5 will select the sawtooth; bit 6 , the rectangular pulse; and bit 7, white noise (the hissing sound that you hear between stations on a radio).

At this point you must be asking yourself "What happens if more than one bit is selected?" The answer is that the two (or more) waveforms will be ANDed together (a logical AND will be done on the waveforms). Commodore cautions that selecting more than one waveform while using the white noise waveform could cause the oscillator to go silent, so don't combine waveforms using the white noise waveform. Even while avoiding the white noise waveform, it is still possible to generate four more waveform shapes using combinations of the sawtooth, triangular, and rectangular pulse waveforms. However, the volume declines significantly when combining waveforms.

Register 5 contains the attack and decay values for the sound envelope. The four-bit attack value is held in bits $7-4$. The four-bit decay value is held in bits $3-0$. The values can be loaded like this:

```
30\emptyset A=13:D=5: REM ATTACK=13,DECAY=5
31\emptyset POKE S+5,16*A+D
```

Register 6 contains the sustain level and the release value. As above, the sustain level is held in bits 7-4, and the release value in bits 3-0. Program them in the following manner:

```
32ø SU=13:R=4: REM SUSTAIN=13,RELEASE=4
33\emptyset POKE S+6,16*SU+R
```

Now we've completely covered the seven register groups and shown how to load them. "Twiddle" (Program 1) allows you to explore all possible combinations using these seven registers. The program allows you to set and change any of the values and then listen to an eight-note
scale governed by those values. If you can sit down and play with the program for a couple of hours, you'll gain a good understanding of how changing SID parameters affects a sound. The program is also useful for demonstrating how to play a tune within a basic program.

From Sound To Music

To play actual music, you generally write a program which will load all the parameters except the waveform and the frequency. At this point you select the note to be played and POKE the appropriate values into the frequency registers. Then you POKE the waveform value plus one ($16+1=17$ for triangular, 33 for sawtooth, 65 for the rectangular pulse, and 129 for white noise) into register 4 (the control register). Adding a 1 causes the gate bit (bit 0) to be turned on and the tone begins. The program waits a certain period of time and then POKEs the waveform value (16, 32,64 , or 128) into register 4 . By POKEing an even number into the register we turn the gate off, and the note begins its release phase and gradually dies out (according to the release value that you've set).

A simple way to time the note is to use a delay loop. An empty loop (like the one below) will execute 1000 cycles in just about one second.

400 FOR I=1 TO 1000:NEXT I

Therefore, each cycle is just about $1 / 1000$ second (or a millisecond). To turn the note on and off, the program line will look like this:

400 POKE $S+4,17$:FOR I=1 TO 250: NEXT:POKES+4,16

The above program line will play a note for about one quarter of a second.

This technique works well for a single voice, but it may not work at all for more than one voice. The problem is that while the computer is timing the duration of one note, it cannot be separately timing voices 2 and 3 . We could fill the empty loop with timing routines for voices 2 and 3 , but that would change the execution time for the loop and throw the timing off.

A second technique is to use the internal timer of the Commodore 64 through the use of the variable TI. The variable TI is updated automatically on the Commodore 64 and increases by a value of one every ${ }^{1 / 60}$ second. We can use this timer to time the duration of our notes:

[^0]The key to using this routine is to make sure that the subroutine executes quickly, at least while using multiple voices. "Tune" (Program 2) illustrates this technique using all three voices. But this method isn't problem-free either. We want to reproduce the rhythm of the original tune as accurately as possible. It's physically impossible to change the frequency of all three voices at once. Using BASIC, it's somewhat difficult to change all three voices in less than $1 / 6$ second. For that reason, we split all the frequencies into the higher and lower order bytes before the tune begins. We can then change the frequency of all three voices in about ${ }^{1} 110$ second. For most tunes that will be satisfactory. However, for a fast tempo, you might have to omit the second or third voice in order to maintain the rapid changes of the first voice.

Sound Effects

Now, let's briefly explore the sound of a laser firing, or an explosion, siren, or any other sound we need. How can we accomplish it?

There is no direct way. The best approach is trial and error. Listen to the sound carefully. Most sounds in nature cannot be duplicated simply by selecting the right waveform and envelope. Generally, the frequency is also actively changing during the sound's life. While you listen to (or think about) the sound you want, consider what is happening to the frequency. Is it rising or falling? How quickly?

Also consider the volume. Many volume envelopes cannot be duplicated using the attack/decay/sustain/release envelope on the Commodore SID. You will often have to change the volume level through program control, using the volume register (register 24) on the SID.

Programs 3 and 4, "Blast-off" and "Laser," illustrate one approach. In Blast-off, both the frequency and volume are modulated by the program. Laser demonstrates the sync feature and modulates the frequency to produce the laser sound. Both programs were written after much trial and error.

Many authors, when converting programs to the 64 , simply drop the sound effects or stop at a sound which is only vaguely like the one they want. Be persistent; the 64 can accurately produce almost any sound. As you gain experience, you will find that the trial and error phase will decrease significantly.

Twiddle illustrates the basic methods of loading the SID registers and lets you experiment by changing the waveform and ADSR envelope while listening to the musical scale.

Tune uses the three voices to play an English folk tune. Don't be discouraged by the long list of DATA statements. Voice 1 repeats the
same statements four times, and there is considerable repetition in voices 2 and 3 . Once you've typed in the few basic lines, you can simply change the line numbers with the screen editor to produce the remainder of the data statements.

Tune can be used to produce any melody by changing the values in the DATA statements. Each note is represented by a pair of values. The first represents the duration of the note (in sixtieths of a second). A value of $30-40$ is appropriate for a quarter note. The second value is the frequency of the note. Appendix E in the Commodore 64 Programmer's Reference Guide offers a good, simple frequency table. Below are the values for the 12 -semitone scale starting at middle C .

C-4291	C\#-4547
D-4817	D\#-5103
E-5407	
F-5728	F\#-6069
G-6430	G\#-6812
A-7217	A\# - 7647
B-8101	

Notes for other octaves can be calculated by doubling or halving these values, depending upon whether you're going one octave up (doubling) or one octave down (halving).

It is useful to convert one measure of music to one DATA statement if you can. This makes it easier to match the voices.

Voice 1 is the sound of a flute, voice 2 is a mandolin, and voice 3 is a guitar. Blast-off and Laser are supposed to produce the sound of their titles. They are pretty straightforward.

Program 1: Twiddle

Refer to the "Automatic Proofreader" article before typing this program in.
$5 \mathrm{~S}=54272 \quad$:rem 201
7 DIM A (15),D(15) :rem 48
$1 \emptyset$ FORL=STOS+24:POKEL, $\varnothing: N E X T$:rem 53
15 GOSUB løøø :rem 167
17 GOSUB 11øø :rem $17 \varnothing$
18 GOSUB 12øø :rem 172
$2 \emptyset$ PRINT"\{CLR\}";TAB(5);"TOUCH W FOR WAVEF ORM" :rem 5
$3 \emptyset$ PRINT TAB(5)"TOUCH A FOR ATTACK RATE"
:rem 32
$4 \emptyset$ PRINT TAB(5)"TOUCH S FOR SUSTAIN LEVEL

45 PRINT TAB(5)"TOUCH T FOR SUSTAIN TIME"
:rem 171
$5 \emptyset$ PRINT TAB(5) "TOUCH R FOR RELEASE"
:rem 8ø
$6 \emptyset$ PRINT TAB(5) "TOUCH D FOR DECAY"
:rem 168
$7 \emptyset$ PRINT TAB(5)"TOUCH P FOR PULSE WIDTH"
: rem 88
72 PRINT TAB(5)"TOUCH B TO SET DEAD TIME"
:rem 4ø
75 PRINT TAB(5) "TOUCH + OR - FOR FREQUENC
Y CHANGE"
:rem 85
$8 \emptyset$ GET AS:IF AS=""THEN8 \quad :rem 243
82 IF AS="W"THEN $2 \emptyset \varnothing \quad$:rem 247

84 IF $A \$=" A$ " THEN $25 \varnothing$
86 IF A\$="S" THEN 3øØ
88 IF AS="R" THEN 350
$9 \varnothing$ IF $\mathrm{A} \$=" \mathrm{D}$ " THEN $4 \varnothing \varnothing$
92 IF A\$="P" THEN $45 \emptyset$
94 IF A S=" T " THEN $5 \emptyset \emptyset$
96 IF $A \$="+"$ THEN GOSUB $14 \varnothing \varnothing$
97 IF A \$="B" THEN 55ø
98 IF AS="-" THEN GOSUB $145 \emptyset$
$10 \emptyset$ REM
$1 \emptyset 5$ POKE $S+24,15$
$11 \emptyset$ POKE $S+5,16 * A+D$
$12 \emptyset$ POKE $S+6,16 * S L+R$
$13 \emptyset$ POKE S+3,INT (P/256)
$14 \emptyset$ POKE $\mathrm{S}+2, \mathrm{P}-256 *$ INT $(\mathrm{P} / 256)$
150 FOR I=1 TO 8
$160 \operatorname{IFINT}(F(I))<=65536$ THENPOKE $S+1$, INT (F (I) $/ 256$)

170 POKE S,F(I)-256*INT(F(I)/256) :rem 2
$18 \emptyset$ IFINT $(F(I))<=65536$ THENPOKE $S+4,2 \uparrow(W+3$)+1
185 FORJ=1TOT:NEXT
187 POKE $\mathrm{S}+4,2 \uparrow(W+3)$
188 FORJ=1TOB:NEXT
$19 \emptyset$ NEXT I:GOTO $2 \emptyset$
$2 \emptyset \emptyset$ PRINT"WAVEFORM IS";" - ";W
202 PRINT"l=TRIANGLE"
$2 ø 4$ PRINT"2=SAWTOOTH"
$2 \varnothing 6$ PRINT"3=PULSE"
2 Ø8 PRINT" 4 =NOISE"
INPUT"ENTER WAVEFORM
215 IFW<1 ORW>4THEN21 \varnothing
220 GOTO $10 \varnothing$
$25 \emptyset$ PRINT"ATTACK RATE IS";A
$26 \emptyset$ INPUT"ENTER ATTACK RATE
265 IFA<ØORA > 15THEN26Ø
270 GOTO løø
PRINT"SUSTAIN LEVEL IS";SL
310 INPUT"ENTER SUSTAIN LEVEL ($\varnothing-15$)"; SL
:rem 115
315 IFSL < \varnothing ORSL > 15 THEN31 \varnothing
320 GOTO løø
350 PRINT"RELEASE RATE IS":R
$36 \emptyset$ INPUT"ENTER RELEASE RATE (Ø-15)";R
:rem 185
365 IFR<øORR>15THEN36Ø
$37 \emptyset$ GOTO $1 \varnothing \varnothing$
$4 \varnothing \varnothing$ PR
$41 \varnothing$ INPUT"ENTER DECAY RATE ($\varnothing-15$)";
415 IFD < ØORD > 15THEN41б
$42 \emptyset$ GOTO 1øø
$45 \emptyset$ PRINT"PULSE WIDTH IS"; 1øø*P/4ø95
:rem 86
$46 \varnothing$ INPUT"ENTER PULSE WIDTH (Ø-1øø)";
:rem 191
465 IFP<øORP>1ØØTHEN46Ø :rem 115
$47 \varnothing \mathrm{P}=\mathrm{P} * 4 \varnothing 95 / 1 \varnothing \varnothing$:rem 52
$48 \emptyset$ GOTO $1 \varnothing \varnothing \quad$:rem $1 \varnothing 2$
5øø PRINT"SUSTAIN TIME IS";T;"MILLISECOND S"
:rem 236
$51 \emptyset$ PRINT"MINIMUM TIME FOR ATTACK/DECAY C YCLE IS:"
:rem 44
515 PRINT $A(A)+D(D) ; " M I L L I S E C O N D S "$:rem 4
$52 \emptyset$ INPUT"ENTER TIME IN MILLISECONDS";T
:rem 196
530 GOTO 1øø : rem 98
$55 \emptyset$ PRINT"DEAD TIME IS"; $\mathrm{B} ;$ "MILLISECONDS"
:rem 232
:rem 248
:rem 254
:rem 229
:rem 248
:rem 25ø
:rem 131
:rem 24ø
:rem 14ø
:rem 117
:rem 59
:rem 225
:rem 79
:rem 248
:rem 60
:rem 244
:rem 173
:rem 67
: rem 158
:rem 247
:rem 164
:rem 41
:rem 79
:rem 98
:rem 9ø
:rem 218 :rem 95
: rem 74
:rem løø :rem 18
:rem 12 :rem 38 :rem 96

,
-
$5 \emptyset \emptyset \mathrm{~J}=\varnothing: \mathrm{K}=\varnothing: \mathrm{L}=\varnothing: \mathrm{Tl}=\mathrm{TI}: \mathrm{T} 2=\mathrm{Tl}: \mathrm{T} 3=\mathrm{Tl}:$ rem $2 \varnothing 7$
$6 \emptyset \emptyset$ IF $\mathrm{Tl}=<\mathrm{TI}$ THEN GOSUB $11 \varnothing \emptyset$:rem 49
$61 \varnothing$ IF T2=<TI THEN GOSUB $12 \emptyset \emptyset$:rem 52
620 IF T3=<TI THEN GOSUB $13 \emptyset \varnothing$:rem 55
$63 \emptyset$ GOTO 6øø
$1 \varnothing \varnothing \varnothing$ ON I GOTO $11 \varnothing \varnothing, 12 \varnothing \varnothing, 13 \varnothing \varnothing$:rem 129
$110 \emptyset \mathrm{~J}=\mathrm{J}+1: \mathrm{Tl}=\mathrm{Tl}+\mathrm{D}(1, \mathrm{~J}) \quad$:rem 215
$1115 \operatorname{IFD}(1, \mathrm{~J})=\varnothing$ THEN POKES $+4, \mathrm{Wl}:$ POKES +11 , W2: POKES+18, W3: END
:rem 217
1117 POKES+4,W1 :rem 95
$112 \emptyset$ POKES, $F(1, J):$ POKES $+1, G(1, J)$:rem 51
1140 POKES $+4, \mathrm{Wl}+1:$ RETURN :rem 209
$12 \varnothing \varnothing \mathrm{~K}=\mathrm{K}+1: \mathrm{T} 2=\mathrm{T} 2+\mathrm{D}(2, \mathrm{~K})$:rem 222

1210 POKE S+11,W2
:rem 136
1220 POKE $S+7, F(2, K):$ POKES $+8, G(2, K)$
:rem 161
1240 POKES+11,W2+1:RETURN :rem l
$13 \varnothing \varnothing \mathrm{~L}=\mathrm{L}+1: \mathrm{T} 3=\mathrm{T} 3+\mathrm{D}(3, \mathrm{~L})$
:rem 229
1310 POKES +18 ,W3 :rem 145
1320 POKES +14, F (3,L) : POKES +15 , G(3, L)
:rem 2
1340 POKES $+18, \mathrm{~W} 3+1:$ RETURN :rem $1 \varnothing$
$2 \emptyset \emptyset \emptyset$ REM NOTES FOR VOICE ONE :rem llø
$201 \emptyset$ DATA 30,4051
:rem 54
$2 \emptyset 2 \emptyset$ DATA $3 \varnothing, 54 \emptyset 7,3 \emptyset, 4 \emptyset 51,3 \varnothing, 6 \varnothing 69,3 \varnothing, 4 \varnothing 51$
:rem 215
$203 \emptyset$ DATA $30,643 \neq, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 5407,3 \emptyset, 4 \varnothing 5 \emptyset$
:rem 218
$2 \emptyset 40$ DATA $3 \varnothing, 5407,30,405 \emptyset, 30,6069,3 \varnothing, 4 \emptyset 5 \emptyset$:rem 215
$2 \emptyset 5 \emptyset$ DATA $3 \varnothing, 643 \emptyset, 3 \emptyset, 7217,3 \emptyset, 81 \emptyset 1,3 \varnothing, 4 \varnothing 5 \emptyset$
:rem $21 \varnothing$
$2 \emptyset 6 \emptyset$ DATA $3 \varnothing, 5407,3 \varnothing, 4 \emptyset 5 \varnothing, 3 \varnothing, 6 \emptyset 69,3 \varnothing, 4 \varnothing 5 \emptyset$
:rem 217
$207 \emptyset$ DATA $3 \varnothing, 643 \varnothing, 3 \varnothing, 6 \emptyset 69,3 \emptyset, 54 \emptyset 7,3 \emptyset, 4 \emptyset 5 \emptyset$:rem 222
$2 \emptyset 8 \emptyset$ DATA $3 \varnothing, 54 \varnothing 7,3 \varnothing, 405 \emptyset, 30,6 \varnothing 69,3 \varnothing, 4817$
:rem 230
$2 \emptyset 9 \emptyset$ DATA $6 \varnothing, 5407,30,5407,3 \varnothing, 4 \emptyset 50$:rem 86
2120 DATA $3 \emptyset, 54 \emptyset 7,30,4 \emptyset 51,3 \emptyset, 6 \emptyset 69,3 \emptyset, 4 \emptyset 51$:rem 216
$213 \emptyset$ DATA $3 \emptyset, 643 \emptyset, 3 \emptyset, 6 \varnothing 69,3 \emptyset, 54 \varnothing 7,3 \emptyset, 4 \emptyset 5 \emptyset$
:rem 219
$214 \varnothing$ DATA $3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \varnothing 5 \emptyset, 3 \varnothing, 6 \varnothing 69,3 \varnothing, 4 \varnothing 5 \emptyset$: rem 216
$215 \emptyset$ DATA $3 \varnothing, 6430,3 \emptyset, 7217,3 \emptyset, 81 \varnothing 1,3 \varnothing, 4 \varnothing 5 \emptyset$
:rem 211
$216 \emptyset$ DATA $3 \emptyset, 54 \emptyset 7,3 \emptyset, 4 \emptyset 5 \emptyset, 3 \emptyset, 6 \emptyset 69,3 \varnothing, 4 \emptyset 5 \emptyset$
:rem 218
$217 \varnothing$ DATA $3 \varnothing, 643 \varnothing, 3 \varnothing, 6069,3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \varnothing 5 \emptyset$
:rem 223
$218 \emptyset$ DATA $3 \varnothing, 5407,3 \varnothing, 4 \varnothing 5 \emptyset, 3 \emptyset, 6 \emptyset 69,3 \varnothing, 4817$
:rem 231
2190 DATA120,5407
:rem 117
2220 DATA $3 \varnothing, 54 \varnothing 7,3 \varnothing, 4051,3 \varnothing, 6 \varnothing 69,3 \varnothing, 4 \varnothing 51$:rem 217
$223 \varnothing$ DATA $3 \varnothing, 643 \varnothing, 3 \varnothing, 6 \varnothing 69,3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \emptyset 5 \varnothing$
:rem $22 \varnothing$
$224 \varnothing$ DATA $3 \emptyset, 54 \emptyset 7,3 \emptyset, 4 \varnothing 5 \varnothing, 3 \varnothing, 6 \emptyset 69,3 \varnothing, 4 \emptyset 5 \emptyset$:rem 217
$225 \emptyset$ DATA $3 \varnothing, 643 \varnothing, 3 \varnothing, 7217,30,81 \varnothing 1,30,4 \varnothing 5 \varnothing$
:rem 212
$226 \emptyset$ DATA $3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \varnothing 5 \emptyset, 3 \emptyset, 6 \emptyset 69,3 \varnothing, 4 \varnothing 5 \emptyset$
:rem 219
$227 \emptyset$ DATA $3 \varnothing, 643 \emptyset, 3 \emptyset, 6 \varnothing 69,3 \emptyset, 54 \emptyset 7,3 \varnothing, 4 \varnothing 5 \emptyset$
:rem 224
$228 \varnothing$ DATA $3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \varnothing 5 \varnothing, 3 \varnothing, 6 \varnothing 69,3 \varnothing, 4817$
:rem 232
2290 DATA1 20,5407
:rem 118
$232 \emptyset$ DATA $3 \varnothing, 54 \emptyset 7,30,4051,3 \varnothing, 6 \varnothing 69,3 \varnothing, 4 \emptyset 51$:rem 218 $233 \emptyset$ DATA $3 \varnothing, 643 \varnothing, 3 \emptyset, 6 \varnothing 69,3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \emptyset 5 \emptyset$:rem 221 $234 \emptyset$ DATA $3 \varnothing, 54 \emptyset 7,3 \emptyset, 4 \emptyset 5 \emptyset, 3 \varnothing, 6 \emptyset 69,3 \emptyset, 4 \emptyset 5 \emptyset$:rem 218
$235 \emptyset$ DATA $3 \varnothing, 643 \varnothing, 3 \varnothing, 7217,3 \varnothing, 81 \varnothing 1,3 \varnothing, 4 \emptyset 5 \emptyset$:rem 213
$236 \emptyset$ DATA $3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \emptyset 5 \emptyset, 3 \emptyset, 6 \emptyset 69,3 \varnothing, 4 \varnothing 5 \emptyset$:rem $22 \emptyset$
$237 \emptyset$ DATA $3 \varnothing, 643 \varnothing, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 54 \emptyset 7,3 \varnothing, 4 \emptyset 5 \emptyset$:rem 225
$238 \emptyset$ DАТА $3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \emptyset 5 \emptyset, 3 \emptyset, 6 \varnothing 69,3 \varnothing, 4817$
:rem 233

2390 DATA120,5407
$290 \emptyset$ DATA Ø, \varnothing
$3 \emptyset \emptyset \emptyset$ REM NOTES FOR VOICE TWO
$301 \varnothing$ DATA99Ø, \varnothing
$3 \varnothing 2 \emptyset$ DATA6Ø, 27ø3,6Ø,24ø8
$3 \emptyset 3 \emptyset$ DATA $3 \emptyset, 2145,3 \varnothing, 2 \emptyset 25,6 \emptyset, 2145$
3Ø4Ø DATA6Ø, 2ø25,6ø,18Ø4
3050 DATA $30,1607,3 \varnothing, 1517,60,1351$
3060 DATA6Ø,27ø3,60,24ø8
3ø7Ø DATA3Ø, 2145,30,2Ø25,6Ø,2145
3Ø8Ø DATA6Ø,2ø25,6Ø,18ø4
3090 DATA $3 \varnothing, 1607,30,1517,60,1351$
3120 DATA60,27ø3,60,24ø8
$313 \emptyset$ DATA $3 \varnothing, 2145,3 \emptyset, 2 \emptyset 25,6 \emptyset, 2145$
3140 DATA60,2Ø25,60,1804
3150 DATA $30,1607,3 \varnothing, 1517,60,1351$
$316 \emptyset$ DATA6Ø, 27Ø3,6ø,24ø8
$317 \emptyset$ DATA $3 \varnothing, 2145,3 \emptyset, 2 \emptyset 25,6 \emptyset, 2145$
3180 DATA60, 2Ø25,60,1804
$319 \emptyset$ DATA $3 \varnothing, 16 \varnothing 7,3 \varnothing, 1517,60,1351$
3220 DATA6Ø, 27ø3,60,24ø8
323ø DATA30,2145,3ø,2ø25,60,2145
3240 DATA6Ø, 2ø25,60,18ø4
3250 DATA $30,1607,30,1517,60,1351$
3260 DATA60,27ø3,60,24ø8
$327 \emptyset$ DATA $3 \varnothing, 2145,3 \varnothing, 2 \emptyset 25,6 \emptyset, 2145$
3280 DATA60, 2ø25,60,1804
3290 DATA $30,1607,30,1517,60,1351$
$39 \varnothing \varnothing$ DATA Ø, \varnothing
4øøø REM NOTES FOR VOICE THREE
$401 \varnothing$ DATA195Ø, 0
4020 DATA $6 \emptyset, 27 \emptyset 3,60,2408$
4030 DATA $30,2703,15,2703,15,2703$
DAFA 30,2703,15,2703,15,2703,60,2025
:rem 215
$4 \emptyset 4 \emptyset$ DATA $3 \emptyset, 27 \emptyset 3,3 \emptyset, 27 \emptyset 3,3 \emptyset, 3 \emptyset 34,3 \varnothing, 3 \emptyset 34$
:rem $2 \varnothing 6$
4050 DATA $15,3215,15,3215,15,3215,15,3215$,6ø, 3 Ø34 :rem 99
4060 DATA $45,405 \emptyset, 15,3608,45,4050,15,36 \varnothing 8$:rem 234
$4 \emptyset 7 \varnothing$ DATA $45,405 \emptyset, 15,36 \emptyset 8,15,405 \emptyset, 15,36 \emptyset 8$,15,3215,15,3034
:rem 249
4080 DATA 60,2703,60,2408 :rem $2 \emptyset 8$
$4 \emptyset 9 \emptyset$ DATA $3 \emptyset, 27 \emptyset 3,15,27 \emptyset 3,15,27 \emptyset 3,6 \emptyset, 2 \emptyset 25$
:rem 221
$41 \varnothing \varnothing$ DATA $3 \varnothing, 27 \varnothing 3,3 \varnothing, 27 \emptyset 3,3 \emptyset, 3 \emptyset 34,3 \emptyset, 3 \emptyset 34$
:rem 2 Ø3
4110 DATA $15,3215,15,3215,15,3215,15,3215$ $, 60,3034 \quad:$ rem 96
$412 \emptyset$ DATA $45,4 \emptyset 5 \emptyset, 15,36 \emptyset 8,45,4 \emptyset 5 \emptyset, 15,36 \emptyset 8$
:rem 231
4130 DATA $45,405 \emptyset, 15,3608,15,4050,15,36 \varnothing 8$, 15, 3215,15,3034
:rem 246
4140 DATA 6ø,27ø3,6ø,24ø8 :rem $2 \emptyset 5$
4150 DATA $30,2703,15,27 \emptyset 3,15,27 \emptyset 3,60,2025$
:rem 218
4160 DATA 60,4050,60,4050 :rem 199
$417 \emptyset$ DATA $30,4 \emptyset 5 \emptyset, 15,4050,15,4050,6 \emptyset, 4 \emptyset 5 \emptyset$
:rem 211
$49 \varnothing \varnothing$ DATA $8 \emptyset \emptyset, \varnothing, \varnothing, \varnothing \quad$ rem 147

Program 3: Blast-off

Refer to the "Automatic Proofreader" article before typing this program in.
$1 \varnothing \mathrm{~S}=54272$
$2 \emptyset$ FOR I=STOS +24 : POKEI, \varnothing : NEXT
$3 \emptyset$ POKES $+24,15$
$4 \emptyset \mathrm{FR}=\emptyset 5 \emptyset \varnothing$
: rem 245
:rem 48 :rem 8
:rem 254
$5 \emptyset A=\varnothing: D=\varnothing: S S=15: R=\varnothing$
$60 \mathrm{~W}=128$: $\mathrm{P}=1$ Ø24
$7 \varnothing$ POKES +1 ,INT (FR/256)
8 (POKES,FR-256*INT(FR/256)
$9 \emptyset$ POKES $+3, \operatorname{INT}(\mathrm{P} / 256)$
1øø POKES+2, P-256*INT (P/256)
$11 \varnothing$ POKES $+5,16{ }^{*} \mathrm{~A}+\mathrm{D}$
$12 \emptyset$ POKES $+6,16 * S S+R$
2 の 0 POKES $+4, \mathrm{~W}+1$ •REM TURN SOUND
$21 \varnothing$ FORI=2øбTOI STEP-1
$22 \emptyset F R=F R+1 \varnothing \varnothing: R E M$ INCREASE FREQUENCY
:rem 215
222 IF I < 45 THEN POKES +24, I/3: REM NEAR T HE END TURN DOWN THE VOLUME
: rem 98
$225 \mathrm{~F} 2=\mathrm{INT}(\mathrm{FR} / 256): \mathrm{Fl}=\mathrm{FR}-256 * \mathrm{~F} 2$
230 POKES,F1:POKES+1,F2
240 NEXT I
:rem 224
:rem 118
:rem $3 \varnothing$
$25 \emptyset$ POKES+4,W:REM TURN SOUND OFF :rem 198

Program 4: Laser

Refer to the "Automatic Proofreader" article before typing this program in.
$1 \varnothing \mathrm{~S}=54272$
$2 \emptyset$ FOR I=STOS+24:POKEI, $\varnothing:$ NEXT
30 POKES+24,143
$4 \varnothing \mathrm{FR}=5$ Øøø
$5 \emptyset \mathrm{~A}=\varnothing$: $\mathrm{D}=8: \mathrm{SS}=15$: $\mathrm{R}=\varnothing 8$
$60 \mathrm{~W}=\varnothing 64$: $\mathrm{P}=1$ Ø 24
7 7 POKES +1 , INT (FR/256)
8 (POKES,FR-256*INT(FR/256)
$9 \emptyset$ POKES +3 , INT ($\mathrm{P} / 256$)
:rem 245
:rem 48
:rem 58
:rem 46
:rem 186
:rem 34
:rem 17
:rem 66
:rem $2 ø 5$


```
1ø\emptyset POKES+2,P-256*INT(P/256)
11\emptyset POKES+5,16*A+D
12\emptyset POKES+6,16*SS+R
130 POKES +145,75 :rem 63
    :rem 56
:rem 225
    :rem }8
155 POKES +4,W+3:REM USING W+3 TURNS ON
    {2 SPACES}GATE AND SYNC :rem 32
160 FORI=1TO25 :rem 63
17\emptyset POKES+15,12\emptyset-4*I:REM{2 SPACES}DECREAS
    E FREQ VOICE THREE :rem 18\emptyset
180 NEXT I
    :rem 33
185 POKES+4,W
                                :rem 2
```

> To receive additional information from advertisers in this issue, use the handy
ader service cards use the handy
reader service cards in the back of the magazine.

Applesoft Lister

David Dobrin
"Applesoft Lister" will give you more readable program listings, along with printer-oriented output, translated control characters, and indention of nested FOR-NEXT loops.

Would you like your Applesoft programs to look like this:

```
10 REM BASIC LISTING WITH APPLESOFT LIST
20 HOME
22 PRINT "ANT SCRAM[G][G][G]"
30 FOR J=0 TO 35
31 VTAB 2
    : HTAB J+1
40 PRINT " ;=;@"
5 0 ~ N E X T
E0 PRINT "[G][G][G]THAT IS ALL"
```

instead of this:

```
10 REM BASIC LISTING WITH APPLESOFT LIST
20 HOME
22 PRINT "ANT SCRAM"
30 FOR J = Ø TO 35
31 VTAB 2: HTAB J + 1
40 PRINT " ;=;@"
50 NEXT
ED PRINT "THAT IS ALL"
```

Applesoft programs are usually very difficult to read. The standard LIST function built into Applesoft is unsophisticated, having only the minimum logic necessary to list programs. Here's a program for the Apple that will list Applesoft programs in a nicely formatted fashion. Five major features distinguish "Applesoft Lister" from the standard format:

- There is intelligent spacing between
keywords, variables, and operands.
- Multiple statements with a single line number are listed one per line.
- FOR-NEXT constructs are nested.
- Output is oriented for a printer. This listing will not simply "wrap" when it runs out of space on a line.
- Control characters are shown with printable characters.

How Applesoft Lisfer Works

The program translates the Applesoft intermediate language (IL) into statement numbers and keywords. The keywords are taken from ROM at \$D0D0. If this program is to be used with Applesoft in RAM, this value must be changed.

The high byte of the keyword table address is at location $\$ 812$ C. The low byte is at $\$ 8130$.

When a colon (:) is encountered in the text, the lister starts a new line, indenting appropriately. No action is taken on colons inside double quotes or REM statements. FORs and NEXTs are observed to calculate a nest level.

If you would like to change the indentation of your FOR-NEXT constructs or multiple statements you can change the value at location 32771 with the POKE command. Putting a 0 there will turn indenting off, a 3 will indent three spaces per nest level, a 10 will indent ten spaces per nest level, and so on.

If you want to change the column width, change the value at 32772 with the POKE command. Putting a 39 there will give a screen width. You can also use 80, 132, or whatever your printer width is.

These POKEs can, of course, be made permanent by saving the program to disk or tape after changing.

Control characters are printed inside brackets; for example, CTRL-G appears as [G].

Loading The Program Into Your Apple

The lister program is written entirely in machine language. Program 1 is a BASIC program which READs the machine language from DATA statements and POKEs it into memory.

The program was assembled to load at location $\$ 8000$. If your machine has less than 48 K , the program will have to be relocated.

If you wish to enter the machine language, you can do so by using the Apple monitor (CALL -151). Enter the hex values as shown in Program 2. The Apple Reference Manual, Chapter 3, details the use of the resident monitor.

Once the program is entered into the Apple either by the loader or from the monitor, it should be saved to disk or tape before going any farther. This can be done by typing:

JBSAVE ALIST,A\$8000,L\$2F0
or
*8000.82FOW

Running Applesoft Lister

After the program has been stored, it can be utilized by loading the Applesoft program to be listed in the usual manner. The list program can then be loaded with:
]BLOAD ALIST
or
JCALL - 155
*8000.82F0R
*(CTRL-C)
The listing program can then be run by typing:
]PR\# x (where x is the slot for your printer interface, if you want the output to go to a printer)
JCALL 32768
Program 1: BASIC Loader For Applesoff Lister
$1 \varnothing \varnothing$
$12 \varnothing$ NEXT
$28 \emptyset$
$11 \varnothing$ READ A:CK $=C K+A:$ POKE I, A
13Ø IF CK < > 4788の THEN PRINT "ERRO R IN DATA STATEMENTS": STOP

275 DATA $16,24,248,165,6,191,6,133$
FOR $I=32768$ TO 33295
READ $A: C K=C K+A:$ POKE I,A
NEXT
IF CK $<>4788 \emptyset$ THEN PRINT "ERRO
R IN DATA STATEMENTS": STOP
PRINT "LISTER ML LOADED"
END
DATA $76,5,128,3,89,169,9,133$
DATA $1 \emptyset, 169,1,133,9,169,8,133$
DATA $1,169,141,32,157,129,32,96$
DATA $129,133,2,32,96,129,133,3$
DATA $5,2,298,1,96,32,96,129$
DATA $133,4,32,96,129,133,5,169$
DATA $9,133,6,133,7,133,8,162$
DATA $16,24,248,165,6,191,6,133$
DATA $6,165,7,191,7,133,7,165$

FOR I $=32768$ TO 33295

PRINT "LISTER ML LOADED"
END
DATA 76,5,128,3,89,169, 5,133
DATA $16,169,1,133,6,169,8,133$
$1,169,141,32,157,129,32,96$ $129,133,2,32,96,129,133,3$ DATA $5,2,298,1,96,32,96,129$ DATA $133,4,32,96,129,133,5,169$ DATA $6,165,7,101,7,133,7,165$

DATA
DAT DAT
DATA
DATA
DAT
DATA
DATA
213
DATA 9
DATA

DATA

DATA

DATA
DATA
DATA
DATA

DATA

DATA

DATA
DATA
29
DATA
DATA
dATA
DATA
dATA

DATA

DATA

DATA
DATA
9
DATA
DATA
DATA
DATA
DATA
DATA 8

DATA
DATA
DATA
7
DATA \varnothing DATA \emptyset
data

DATA

DATA
DATA

DATA

dATA
DATA
DATA
$8,161,8,133,8,216,6,4$
$38,5,144,2,239,6,292,298$
$224,162,5,169, \emptyset, 165,8,41$
$15,298,12,192, \varnothing, 298,8,224$
$1,240,4,169,169,298,4,169$
$1,9,176,32,157,129,152,72$
$166,4,6,6,38,7,38,8$
$136,298,247,194,168,202,268$,
$169,160,32,157,129,32,167,12$
$169,9,133,9,32,96,129,201$
פ, 298, 16, 169, 141, 32, 157, 129
$165,2,133, \emptyset, 165,3,133,1$
$76,22,128,166,14,236,4,128$
$48,18,72,162,9,189,149,129$
$240,6,32,157,129,232,298,245$
$32,1 ø 7,129,194,291,34,298,8$
$165,9,73,128,133,9,169,34$
$166,9,298,27,291,58,298,19$
162, , $, 189,141,129,24 \not, 6,32$
$157,129,232,298,245,32,107,1$
$76,148,128,291,128,16,26,41$
$127,251,32,16,14,72,169,91$
$32,157,129,154,9,64,32,157$
$129,169,93,32,157,129,76,148$
$128,72,2 ø 1,129,2 \emptyset 8,2,23 \varnothing, 1 \varnothing$
291, 13ø, 298, 2, 198, 1ø, 291, 178
$298,2,23 \varnothing, 9,170,188,37,129$
$132,11,36,11,16,5,169,169$
$32,157,129,169,208,133,13,16$

$16,16,177,12,239,12,298,2$
$239,13,291,128,16,241,48,242$
$16 \emptyset, \emptyset, 177,12,2 \boxed{1}, 17 \emptyset, 32,157$
$129,138,16,246,36,11,80,5$
$169,165,32,157,129,76,148,12$
$16 \emptyset, \emptyset, 177, \emptyset, 23 \varnothing, \varnothing, 2 \emptyset 8,2$
$230,1,96,162,13,134,14,166$
$15,16,2,162,0,224,6,48$
$2,162,6,202,48,14,172,3$
$128,136,48,247,169,169,32,15$
$129,76,129,129,96,141,160,16$
$166,169,160,186,0,141,16 \varnothing, 16$
$169,16 \varnothing, 16 \emptyset, 16 \emptyset, \varnothing, 9,128,32$
$237,253,230,14,96,64,64,64$
$64,64,64,64,64,64,64,6$
ø, 64,64, 64, 64, 64, 64, 0
$64,64,64,64,64, \varnothing, 0,64$
$64,64,64,64,64,6,64,64$
Ф, Ø, 64, 64, 64,64, 0,64
$64,64,64,64, \emptyset, 64,64, \varnothing$
$64,64,64,64,64,64,64,64$
$64,64,64,64,64,6,192,6$
Ø, 192, 192, 64,192, Ф, , Ø
$\varnothing, \varnothing, 192,192, \varnothing, \varnothing, \varnothing, \varnothing$
Ø, Ф, $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
ळ, $, \varnothing, \emptyset, \varnothing, \emptyset, \varnothing, \varnothing$
$\varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$

Program 2：Hex Dump Of Applesoft Lister Machine Language

8øøø－4C Ø5 8ஏ Ø3 5ø A9 øø 85
8øø8－øА А9 Ø1 85 øø А9 ø8 85
8ø1ø－Ø1 A9 8D 2ø 9D 812060
8ø18－81 85 ø2 29 60 8185 ø3
8ø2Ø－ø5 Ø2 Dø Ø1 69 2ø 6ø 81
8ø28－85 042069818595 A9
8ø3ø－øø 85 ø6 85 ø7 85 ø8 A2
8ø38－1 10 18 F8 A5 $96 \quad 65 \quad 9685$
8ø40－ø6 A5 9765978597 A5
8048－ø8 65 ø8 85 ø8 D8 $96 ~ 94 ~$
8ø5ø－ 26 Ø5 9Ø ø2 E6 ø6 CA Dø
8ø58－Eの A2 ø5 Aø øø A5 ø日 29
8ø6ø－ØF Dด øC CØ øø Dの ø日 EØ

$8 \emptyset 7 \emptyset-\emptyset 1$ の9 Bの 209 D 919848
8ø78－Aø $04 \quad \varnothing 6 \quad 06 \quad 26 \quad 07 \quad 26 \quad 98$
8ø8ø－ 88 Dø F7 68 A8 CA DØ D5
8ø88－A9 Aの 20 9D 81206881
8ø9øー A9 øø 8599206981 C9
8098－øø Dの $1 \varnothing$ A9 8D $2 \emptyset 9 D 81$
8øAø－A5 ø2 85 Øø A5 $0385 ~ Ø 1$
8のAB－4C 16 8Ø AG ØE EC $\emptyset 4$ 8Ø
8のBø－ 3 Ø 1248 A2 øの BD 9581
8øB8－Fめ Ø6 29 9D 81 E8 Dø FS
8øCØ－2の 6B 8168 C9 22 Dの ø8
8øC8－A5 ø9 49898599 A9 22
8øDø－A6 Ø9 Dø 1B C9 ЗA Dの13
8øD8－A2 øø BD 8D 81 Fø Ø6 2ø
8øEØ－9D 81 E8 Dø FS 2Ø 6B 81

8øFø－7F C9 $2 \emptyset 1 \emptyset$ ØE 48 A9 5B
8øF8－2の9D $81 \quad 68$ の9 40 20 9D

8100	81	A9	5 D	20	9D	81	4C	
81 ¢8－	8ø	48	C9	81	Dø	ø2	E6	A
$811 \square$	C9	82	DØ	Ø2	C6	ロA	C9	B2
8118－	Dø	ø2	E6	¢9	AA	BC	25	81
8129	84	øB	24	øВ	$1 \varnothing$	05	A9	Aפ
8128－	20	9 D	81	A9	Dg	85	のD	A9
8130－	Dø	85	øC	68	AA	Aø	Øø	CA
8138	$1 \varnothing$	$1 \varnothing$	B1	øC	E6	ロС	Dø	02
8140－	E6	øD	C9	$8 \square$	19	F1	$3 \emptyset$	F2
8148	Aø	øø	B1	øC	C8	AA	20	9D
8150	81	8A	$1 \varnothing$	F6	24	øB	59	¢5
8158－	A9	AØ	2ø	9 D	81	4C	94	$8 \emptyset$
8160	AD	øø	B1	øø	E6	øø	Dø	ø2
8168－	E6	01	60	A2	øD	86	פE	A6
817ø	$\emptyset A$	$1 \varnothing$	ø2	A2	Øø	Eø	g6	$3 \square$
8178－	ø2	A2	96	CA	$3 \emptyset$	פE	AC	93
818ø	$8 \square$	88	$3 \varnothing$	F7	A9	AØ	$2 \square$	9 D
8188－	81	4C	81	81	60	8D	A历	Aø
8190－	AD	AØ	AØ	BA	Øø	8D	Aø	AD
8198	AØ	Aø	Aø	A	Øロ	$\emptyset 9$	80	20
81 Ag－	ED	FD	E6	ØE	69	49	40	40
81 A8	40	40	40	40	$4 \emptyset$	40	40	60
818ø－	øø	40	4ø	$4 \square$	4ø	49	40	Øந
8188－	40	40	40	49	$4 \square$	¢ø	øø	40
81СØ－	40	40	40	$4 \square$	40	øø	4Ø	$4 \square$
8158－	øø	øø	$4 \varnothing$	4ø	40	46	øø	40
81 Dロ	40	40	40	$4 \square$	øø	40	40	0ワ
81D8－	40	40	40	40	$4 \emptyset$	40	4ø	40
81EØ－	40	$4 \varnothing$	$4 \square$	$4 \square$	40	øø	Сø	¢ø
81E8－	øø	C口	Cø	$4 \varnothing$	СØ	66	ம¢	00
81Fø－	øø	øø	Сø	Cø	øø	Фロ	ロด	Фø
81F8－	øø	øø	øø	øワ	Øロ	¢็	ต็	øø
829¢－	Фø	øø	øø	Øø	ØD	¢ø	ロロ	ø¢
8208－	øø	øø	øロ	øø	øø	øø	๑¢	øø

Program Conversion With Sinclair BASIC And TI BASIC

Julie Knott and Dave Prochnow

Abstract

Program conversion between BASIC dialects is often easier than imagined. This tutorial demonstrates the compatibility of TI BASIC and Sinclair BASIC and includes helpful tables and sample conversion programs.

Program conversion can be an easy and convenient operation. Virtually every home computer uses BASIC, which, because it's easy to learn and to manipulate, is ideal for ready-made language conversion. However, no two BASICs are created equal. For many years the industry's standard was Microsoft BASIC, then different dialects began to emerge. Manufacturers would use the Microsoft format and introduce nuances and subtleties in the structuring, labeling each of these alterations an "improvement" of BASIC. But many were only changes in the protocol-the manner in which a command is expressed. And it becomes relatively easy to convert BASIC dialects if the major differences are in protocol or syntax.

Two versions of BASIC which lend themselves to such a program conversion are Sinclair BASIC and TI BASIC. Sinclair BASIC, used in the Timex/Sinclair-1000, is unique in that all keywords are single-stroke entries. For example, the P key stands for the PRINT command. (The use of a touch-membrane keyboard dictates this procedural necessity.)

Texas Instruments TI-99/4 and 4A use TI BASIC, which is more conventional in that each individual letter has to be typed-PRINT would require five keystrokes.

There are only slight variations between Sinclair BASIC and TI BASIC, but their similarities allow for easy program conversion. By studying which statements and commands are equivalent for both BASICs, and what substitutions are necessary, program conversion can be relatively simple. Also, you can virtually double your software by translating programs published for the other machines.

For the sake of brevity, the following glossary does not contain all of the keywords in Sinclair BASIC and TI BASIC-only those words which are confusing, complicated, or not directly translatable have been listed. For a more com-
plete listing, consult the appropriate user's manual.

Sinclair BASIC

AND - a logical operator, often used in IFTHEN statements
ACS - function that gives the arc cosine of an angle in radians
ASN - function that gives the arc sine of an angle in radians
AT - used in a PRINT statement to give a location at which to PRINT
BREAK - stops program execution, key activated and may not be included as a command in a program
CLEAR - deletes all variables from memory
CLS - clears the screen
CODE - a string function used to obtain the numeric value of a given character
CONT - resumes execution of a program following a report code
COPY - copies the contents of the screen to printer
DELETE - erases keywords and characters while programming
FAST - fast mode, a time-saving mode for increased RUN speed
FUNCTION - function mode
GRAPHICS - graphics mode
INKEY\$ -used in IF-THEN statements as a conditional statement, executes exclusive of ENTER
LLIST - lists the contents of a program listing to a printer
LOAD - loads a prerecorded program from cassette tape to the computer's memory
LPRINT - PRINTs to printer
NOT - inverts the truth value of an expression
OR - a logical operator, used in conditional statements
PAUSE - creates a time delay while the program is RUNning
PEEK - gives the value of the byte at a specific address in memory

PI - gives the value of PI
PLOT - draws a pixel at a given location
POKE - puts a numeric value into memory at a specific address, erasing the previous one
SCROLL - scrolls the screen up one line, eliminating the top line
SLOW - slow mode, the standard operating mode
UNPLOT - erases a pixel at a given location USR - calls a machine language routine at a specific memory address

TI BASIC

APPEND - an open mode, allows data to be added at the end of the existing file
ASC - ASCII value or character code
BASE - option base
BREAK - sets breakpoints in a program, used for error checking
BYE - erases memory, returns to title screen
CALL - special subprogram to obtain color and sound
CLOSE - closes the association between a file and a program
CONTINUE (CON) - continues a program after a breakpoint
DATA - stores data
DEF - defines user-established functions in a program
DELETE - removes a program or data file from a filing system
DISPLAY - prints on screen only
ELSE - conditional part of IF-THEN/ELSE statement
END - terminates program, similar to STOP
EOF - End-Of-File, determines if the end of a file has been reached on an accessory device
FIXED - files with a specified length, used with RELATIVE or SEQUENTIAL
INTERNAL - file type recorded in machine language
NUMBER (NUM) - automatic line number generator
OLD — loads a previously SAVEd program ON - a conditional numeric expression, used with ON-GOTO or ON-GOSUB
OPEN - prepares to use data files stored in accessory device
OPTION - option base, sets lower limit of array subscripts to 1 instead of 0
OUTPUT - transfers data out of a program
PERMANENT - file life

POS - position
READ - reads data in DATA statements
REC - points to a specific record in a RELATIVE file
RELATIVE - defines a file with FIXED
RESEQUENCE (RES) - reassigns line numbers
RESTORE - identifies which DATA to use with the next READ
SEG\$ - string segment, substring
SEQUENTIAL - defines a file, used with FIXED or VARIABLE
SUB - part of GO SUB
TRACE - outlines the order that statements will be performed when the program is RUN
UNBREAK - removes breakpoints
UNTRACE - cancels TRACE
UPDATE - an open mode, for reading and writing into files
VARIABLE - defines a varying length file, used with SEQUENTIAL

Special Subprograms Used With Graphics And Sound In TI BASIC

Each subprogram is preceded by CALL (for example, CALL CLEAR)
CLEAR - erases the entire screen
COLOR - specifies screen character colors
SCREEN - changes screen color
CHAR - defines user-special graphic characters
HCHAR - places a character and repeats it horizontally
VCHAR - similar to HCHAR except repetition is vertical
SOUND - produces tones and noises of different duration, frequency, and volume
GCHAR - reads a character anywhere on the screen
KEY - transfers character directly from keyboard to program without ENTER
JOYST - inputs data with remote controllers

Easy Conversions

Many of the commands and statements of these two BASICs are directly translatable. Table 1 shows the direct BASIC equivalents for Sinclair BASIC and TI BASIC. The only major differences between these two dialects are in their nomenclature.

Several dialects of BASIC have an ON-GOTO statement expressed as:

ON x GOTO w,y,z

where x is the value of a numerical expression and w, y, and z are line numbers. This statement is available in TI BASIC, but not in Sinclair BASIC. Through the use of conditional expressions, the

Sinclair BASIC substitution is:
GOTO (w AND $x=1$) $+(y$ AND $x=2)+(z$ AND $x=3)$
The operators AND and OR would make this possible.

The translation of many program lines requires only the replacement or substitution of a word unique to that particular BASIC. Several of the more common functions and statements are evaluated in this manner in Table 2. The following Sinclair BASIC line will await the pressing of the Y key, exclusive of ENTER:
1 Øø IF INKEYक <> "Y" THEN GOTO 1 Dø To perform the same statement in TI BASIC, replace INKEY\$ with the KEY subprogram, as follows:

```
10日 CALL KEY( 
110 IF K<>89 THEN 100
```

The main difference is in the structuring. The KEY subprogram (subprograms are obtained with CALL) uses three variables to establish where the key is originating, its ASCII code, and its status. In this example the ASCII code of 89 represents the Y character.

TI BASIC has the ability to store expressions and assign values to these variables with the statements DATA, READ, and RESTORE (see the glossary). Vast arrays can be developed and initialized with this method. Sinclair BASIC is not directly convertible with DATA, READ, and RESTORE. A large battery of LET statements could crudely handle the data. Alternatively, a properly DIMensioned INPUT statement allows the creation of such an array. Upon completion, the INPUT statements are removed and a GOTO command is used for program starting (RUN erases the variable array).

String Handling

Strings can be equally bothersome. Slicing will supply usable substrings in Sinclair BASIC. A string expression's parameters govern the start and finish of the slice. No special statement is necessary:

$\mathrm{A} \$(\mathrm{x} \mathrm{TO} \mathrm{z})$

with x representing the starting number and z the finish. For example:

"COMPUTE" (4 TO 7) = "PUTE"

The statement SEG $\$(A \$, x, y)$ in TI BASIC has the same result, but, again, with different nomenclature. X is the number of the start for the substring and Y is the length of the substring. For example:

A $\$=$ "COMPUTE"
SEGS (A\$,4,4)="PUTE"
While string slicing is easily translated, the TI BASIC user-defined function is not. DEF allows the definition of functions within a program.

DEF $X \$=$ " Y "
The string function's name is X and the string expression is Y. VAL and string variables can be user-defined in Sinclair BASIC.

```
LET X$= "Y"
VAL X$=Y
```

This is a very limited and a "sometimes-maybe" proposition. DEF has the ability to also handle numeric functions. This ability, as well as using parameters in argument evaluation, is beyond VAL's means.

When attempting a program conversion you may run across a few Sinclair BASIC terms that are completely unfamiliar to you. The terms USR, PEEK, and POKE are not procedures for the examination of some strange alien creature. They are primarily associated with direct access to memory. To call a machine language routine that begins with a specific address, USR is used. This will start a machine language program running. POKE is used by the T/S-1000 to store a numeric value at a specific address in the computer's memory. For example:

POKE 17529, 38

POKEs the value 38 into address 17529. Conversely, the PEEK command is used to read certain addresses to see what is stored there. The PEEK command is followed by the address to be PEEKed.

PRINT PEEK 17529

would PRINT the number 38 . When you are translating a program from Sinclair BASIC which contains USR, PEEK, and POKE statements, you must find out what they accomplish and then interpret that into TI BASIC.

PRINTing on the screen is accomplished by a blending of line and row markers. Memory conservation techniques notwithstanding, PRINT can be used to move the PRINT line. For example:

PRINT

PRINT
PRINT "COMPUTE"
Sinclair BASIC also allows the movement of PRINT with AT and TAB.

```
PRINT AT }x,
```

and

PRINT TAB y

TAB moves the PRINT position a prescribed number of spaces to the right. Even though TAB is present in TI BASIC, the vocabulary is different. Line changes are accomplished with colons (:).
Duplicating the above examples,
PRINT::...(x) TAB (y)
and

PRINT TAB (y)

X is the number of colons necessary to equal the
value of the line number (x) in the Sinclair BASIC example.

The Timex/Sinclair lacks color and sound features, but these features are of importance on the TI-99/4. TI BASIC's color and sound statements are subprograms that begin with CALL. Clever usage of Sinclair BASIC's character set can duplicate some of these color combinations. As a rule, however, TI BASIC CALL subprograms should be removed and not directly substituted in a program conversion to Sinclair BASIC. This allows concentration on the program's more important graphics. Consultation with Texas Instruments' User's Reference Guide will provide the proper protocol for development and inclusion of color and sound subprograms in a Sinclair BASIC converted to TI BASIC program.

To illustrate the principles of program conversion, examine these sample programs. While each program is unique in its results, the approach is similar and convertible. The purpose of this program is to display the entire character set along with the character codes.

T/S-1000 Version

```
1\varnothing FORA=\varnothing TO 255
2ø LET A$ = CHR$ A
3\emptyset PRINT AT 10,13; A
4\emptyset PRINT AT 7,1\varnothing; A$;"{6 SPACES}"
50 PRINT AT 7,17; A$;"{6 SPACES}"
60 PRINT AT 13,1\varnothing; AS;"{6 SPACES}"
70 PRINT AT 13,17; A$;"{6 SPACES}"
80 NEXT A
```


T1-99/4 Version

```
1\emptyset\emptyset FOR A=32 TO 127
11\emptyset B$=CHRक(A)
12g CALL CLEAR
13@ CALL SCREEN(2)
149 PRINT TAB(1S); B$;TAB(1B);B$
15@ PRINT
16@ FRINT TAB(14);A
176 PRINT
180 PRINT TAE(13);B5;TAB(18);BS
19\emptyset FRINT : : : : : : : :
209 FOR S=3 TO 16
21g CALL SCREENIS)
220 CALL SOUND(40日,110+8历%(S-3),1)
2SQ NEXT S
249 NEXT A
```

In line 10 of the Timex/Sinclair example, a loop establishes the number of character codes to be examined (the entire character set is 0 to 255). Note that the characters with codes 67-127 cannot be printed and will show on the screen as question marks. Lines 20 and 30 PRINT the code or numeric value for each character. The arrangement of the printed characters is defined in lines $30-40$. In this way, you can easily interpret the delay, and read the code value and the character almost simultaneously. This program will RUN until BREAK is pressed.

Table 1:
Reference Chart Of BASIC Equivalencies

Sinclair BASIC	-TIBASIC
ABS	ABS
ATN	ATN
CHR\$	CHRS
CODE	ASC
COS	COS
DIM	DIM
EXP	EXP
FOR	FOR
GOSUB	GOSUB orGOSUB
GOTO	GOTO GOTO TO
IF	IF
INPUT	INPUT
INT	INT
LEN	LEN
LET	LET
LN	LOG
LOAD	OLD
NEW	NEW
NEXT	NEXT
PRINT	PRINT
RAND	RANDOMIZE
REM	REM
RETURN	RETURN
RND	RND
RUN	RUN
SAVE	SAVE
SGN	SGN
SIN	SIN
SQR	SQR
STEP	STEP
STOP	STOP
STR\$	STR\$
TAN	TAB
THEN	TAN
TO	THEN
VAL	TO
CLS	VAL
	CALLCLEAR

Table 2:
Substitution Chart For BASIC Nonequivalents

Sinclair BASIC	- TI BASIC
NEW	BYE
PRINT	DISPLAY
$\begin{aligned} & \text { GOTO (W AND } X=1) \\ & +(Y \text { AND } X=2)+(Z \text { AND } X=3) \\ & \hline \end{aligned}$	ON X GOTO W, Y, Z
IF X THEN GOTO Y	If X THEN (Y)
LET $X=Y+Z$	LET $X=Y+Z$ or $X=Y+Z$
PAUSE or FOR $X=Z$ TO Y NEXT X	$\begin{aligned} & \text { FOR } X-z \text { TO } Y \\ & \text { NEXI } x \end{aligned}$
INKEYS	CALL KEY
AS (TO Z)	SEGS(AS, X, Y)
PI	4*ATN (1)
LET $X \$=$ " $Y^{\prime \prime}$ VAL $X S=Y$	DEF $X=Y$
STOP	END or STOP
PRINT AT X, Y	PRINT:... (X) TAB(Y)
PRINT TAB Y	PRINT TAB(Y)
ASN 1	$\pi / 2$ or $4^{*} \operatorname{ATN}(1) / 2$ or $2^{*} \operatorname{ATN}(1)$
IF $X=Y$ THEN GOTO A GOTO Z	IF $X=Y$ THEN A ELSE Z ©

Commodore 64 ROM Generations

Jim Butterfield, Associate Editor

Abstract

Commodore products are often subject to changes in logic. Not marketing logic or pricing logic (although they change too), but the internal logic that drives the machines: the programs in ROM. This has been true of PET/CBM and various disk systems. This article traces differences in two major ROM releases of the Commodore 64 computer, plus a third released with the SX-64 portable computer.

Two Environments

The first 64 s used ROM set 1 . Before releasing a European version of the 64, Commodore developed ROM set 2. ROM 2 is unique in that it's the same for North America and Europe, yet recognizes and copes with differences between the two environments. More on that later.

Programs developed on ROM set 1 sometimes didn't seem to work on ROM set 2 . This was particularly true when the screen was set up using a POKE statement. For example, a user clearing the screen and then typing the command POKE 1500,1 will print a letter A around the middle of the screen, but with ROM 2 this letter is "invisible." Many games and educational programs using the screen this way couldn't make the transition from ROM 1 to ROM 2; attractive graphics would become invisible and the effect would be lost.

I have met a third ROM recently; it's used in the SX-64 portable computer. There are small differences: For example, disk activities are given preference over tape, and screen POKEs are once again legal.

In all cases, the BASIC language in ROM is not changed (addresses $\$ \mathrm{~A} 000$ to $\$ \mathrm{BFFF}$). All changes are in the Kernal ROM, which resides at addresses \$E000 to \$FFFF.

All three ROM sets are very similar; the dif-
ferences are largely cosmetic. Sometimes, of course, cosmetic differences are enough to prevent a particular program from working in a satisfactory manner; but there's a strong bond between all models I have examined.

The Tape Pause

When you give a tape LOAD command, the computer blanks the screen and searches for a program "header" on the tape. When it finds a program, it reports the name with a message, FOUND $X X X X X$, unblanks the screen, and waits. When you touch a key (preferably the Commodore Logo key), the screen blanks once again and the program starts to load.

ROM 1 waits forever. If you don't press a key, it keeps waiting. ROM 2, however, waits only a few seconds and then proceeds with the program load activity. ROM3 for the SX-64 doesn't have a cassette tape connection, so it doesn't do either.

Why does the screen need to blank? Here's the reason: The screen interferes very slightly with the processor. Roughly once every $1 / 2000$ second, the processor chip is stopped briefly to allow the video chip to get extra information from memory. This is no hardship except when we need to read or write tape.

When cassette tape is active, the processor needs to time events precisely. It can't afford to miss even the brief time lapse that the video chip might cause. So it turns the screen off in order to get the most efficient timing "edge."

Technical note: The "Find Tape Header" subroutine at $\$$ F761 is changed in ROM 2 so that it calls a new subroutine at \$E4E0 to allow time-out. The same coding is used in the SX-64 ROM, but it's not useful since this machine can't use tape.

Screen Clear

When ROM 1 clears the screen, it sets the foreground color of all screen locations to white. As a result, it's easy to POKE screen memory and have white characters appear.

ROM 2 changed all that. When the screen clears, the foreground color of all characters is set to the background color. If you POKE to an unused location, you'll end up printing blue on blue, which makes it invisible. The character is indeed there: You can see it if you place the cursor over that position. But it's not much use to the viewer.

Commodore may have done this to reduce screen "sparkle"- colored or white flashes that appear randomly on the screen. Whatever the reasoning, it caused writers of software some anguish if their existing programs POKEd the screen a good deal. Many Commodore demonstration programs lost their appeal on the new machines. All programs would still run, but the screen wouldn't look right.

With the new SX-64 ROM, we're back to allowing screen POKEs. It may be too late for software writers, but when the SX-64 clears the screen, it sets the foreground color of all screen locations to the cursor color. That's better than ROM 1, which sets white only-you have a chance to choose the POKE color.

Technical note: The Clear-a-Line subroutine at \$E9FF was changed slightly to call a new subroutine at \$E4DA; this sets character color to background color on ROM 2. On SX-64 ROM, character color is set to the value from $\$ 0286$, the current "cursor" color.

Different Crystal Speeds

ROM 1 was designed for North American use. ROM 2 was designed for worldwide use, and considerable thought was put into creating a universal design. When power is applied to the computer, ROM 2 does some interesting detective work.

Very early in the game, ROM 2 set the raster interrupt to fire at scan line 622. Here's the trick: There is no line 622 on North American sets; if the interrupt signal fires, we must be elsewhere.

Depending on the continent, the ROM sets up timing for the clock and RS-232 transmission. What's happening here is that the two different types of machine are driven at different "crystal" speeds, and the program must compensate for this to allow consistent overall speed.

The programmer on a ROM 2 system must keep in mind that the raster interrupt register in the video chip has already been used by the system; it cannot be assumed to be zero.

Technical note: The table at \$ECB9 which sets up the video chip has been changed to include the raster interrupt. The Power-Up Reset program
itself has been changed at $\$$ FCFB by the insertion of a call to a new subroutine at $\$$ FF5B. If line 622 (Europe) is detected, address \$02A6 is set to 1 to signal "European System." This new location, \$02A6, is used to set up the timer which creates "jiffies" $-1 / 60$-second interrupts. It will also be checked if the RS-232 channel is opened, and timing information extracted from the appropriate table.

Small Stuff

ROM 1 had troubles if you tried to PRINT\# to a device that wasn't there; ROM2 has its act together a little better.

SX-64 ROM identifies itself with a new message: SX-64 BASIC V2.0, in case you didn't notice that it was an SX-64 you had.

If you hold down SHIFT and press RUN/STOP on the SX-64, you'll get a load/run from disk; the screen reads LOAD":"*", $8 \ldots$ RUN. This data is stored in an area of memory that usually contains the message PRESS PLAY, but you won't be using the cassette this time so you won't miss that message. Any attempt to use a cassette on the SX-64, by the way, will result in an ILLEGAL DEVICE NUMBER message.

The differences are not great. Most users will spot only the tape pause and the screen POKE as operational differences.

Serious programmers will appreciate the fact that changes have been made as "patches," which means that previous entry points have not moved; they are still in the same places that they used to be. A call to a machine language subroutine at a given location will still be good.

There are still things that many users would like to see improved in Commodore 64 BASIC and Kernal. In particular: The INPUT statement is uncomfortable at times, and certain types of screen editing work awkwardly. You may have a wish list of your own. It seems quite likely that we'll see another ROM system one of these days.

Coming Soon

Commodore is said to be working on new ROM systems for the 64 and its peripherals. Compatibility is expected to be retained with previous ROMs, but certain operational annoyances will be eliminated.

Watch for a new Kernal ROM-we expect it to be coded $901227-03$. It will fix up a couple of problems associated with screen usage.

The Commodore 64 , like the VIC-20, behaves oddly if an INPUT statement is written with a lengthy prompt; if the prompting message is long enough, the user input will need to be typed onto the next line of the screen. In such a case, the computer receives a peculiar input: As well as reading what the user has typed in, it reads its own prompt message.

A more serious problem arises if a user types in a line longer than 80 characters, and then backs up using the Delete key. The too-long line goes beyond two rows on the screen, of course; but when the user backs up, the computer might stop working.

The above problems are expected to be fixed
when the new version 3 chip is released. In addition, some of the above-noted changes for the SX64 will also be implemented-for example, screen POKEs.

Commodore is also said to be working on new logic for printers and disk units. Watch for them, too.

Commodore 1541 Generations

Tracking the generations of Commodore's 1541 disk drive is not unlike reading a mystery novel. Unfortunately for 1541 owners, Commodore so far has not written the last page in which the mystery is revealed, so we can only examine the clues and speculate.

Clue No. 1: The original 1541 had a "long" circuit board which extended the length of the drive. This board probably was the same as was in the 1540 drive, predecessor to the 1541.

Clue No. 2: Both the 1540 and the original version of the 1541 had white cases.

Clue No. 3: Later versions of the 1541 have brown cases, and a "short" board which extends about half the length of the drive. Our sources tell us that the short board is a redesigned long board and that when the circuit board was redesigned, timing problems showed up in the drive.

Clue No. 4: ROM chips bearing four different part numbers have been seen in 1541 drives. During a teleconference on the Commedore Information Network on March 29, 1984, a Commodore Research \& Development representative gave the part number of the latest ROM as 901229-05. (The suffix 05 indicates the ROM version.) ROM chips with suffixes 01,02 , and 03 also have been seen in 1541 drives.

Clue No. 5: During the teleconference, the Commodore representative said that one of the changes incorporated into the 05 ROM version had to do with the serial bus. (Peripherals such as the 1541 and the 1525 printer connect to the Commodore 64 through the serial bus.)

Clue No. 6: Owners of the 1541 have reported problems when trying to use two 1541s; occasionally, when a program accesses one of the drives, the system locks up. Problems also have been reported involving lockup on systems with one 1541 drive and the Commodore 1526 and MPS-801 printers.

Clue No. 7: 1541 users report an intermittent problem when saving files to disk using the replace option (SAVE "@0:filename",8). Instead of replacing the intended file, the
drive's operating system writes over another file on the disk, and changes the directory pointers so that the intended file is no longer accessible. A similar problem has been reported in the Commodore 4040 drives. At the teleconference, the Commodore representative said he'd never experienced this problem. However, he also said that the 4040 and 1541 used the same basic operating system.

Clue No. 8: A technical representative with Integrated Computer Repairs (ICR), of Santa Mesa, California, told us that his company repairs and updates the 1540 and 1541 drives. ICR claims that merely replacing the ROM chip with an 05 version is not enough; they also make hardware changes, modifying the short circuit board.

Clue No. 9: Overheating problems have been reported with the 1541. After the drive has been on for several hours, some users report input-output errors and other problems.

Clue No. 10: In the past, Commodore representatives have said that the 1541 ROM changes were "mainly cosmetic."

Clue No. 11: ICR claims that the drives they have updated no longer have lockup problems. It is not clear whether their update solves the save-with-replace problem.

Clue No. 12: COMPUTE! made several telephone calls to Commodore Business Machines, Inc., asking Commodore to respond to the above items. Ms. Susan West, of the Public Relations Department, promised to find a technical representative who could answer our questions. We never heard from a technical representative, and Ms. West failed to return our subsequent calls, the last placed as this article was going to press.

So, it seems that Commodore has issued at least four different versions of the 1541 disk drive, for reasons which are known only to them. And problems may exist (or have existed) not only in the ROM chips, but also in the board circuitry. Finally, it appears that Commodore is unwilling to help us solve the mystery.

Last month we introduced＂Atari MacroDOS＂ and presented a BASIC program which loads the MacroDOS machine language．This month we＇ll look at some technical details of MacroDOS and present a disassembly of the program．

Assembler users can alter the MacroDOS commands table（CMDTAB）if they so desire． Just remember to change lines which check for command input to reflect the new command let－ ter．Also，revise TAB1 if necessary．

You can append another AUTORUN．SYS program to the end of MacroDOS，such as a menu loader for BASIC．

Assuming you have MacroDOS up and run－ ning as AUTORUN．SYS，enter DOS，then load the other AUTORUN．SYS from another disk． SAVE with APPEND（＂D：AUTORUN．SYS＂）．En－ ter the beginning and ending addresses at the＠ prompts．If necessary，return to the cartridge and POKE or otherwise change the INIT and RUN addresses．Return to DOS and SAVE with ap－ pend again to pick up the addresses just altered．

Finding Load Addresses

If you can＇t figure out the load addresses，use this program：

```
1ø OPEN#2,4,ø,"D: YOURFROG.OBJ
2ø FOR I=1 TO 6
3\emptyset GET#2,A
40 FRINT A
5g NEXT A
6\emptyset CLOSE#2
```

The first two bytes should be a header of 255 （\＄FF）．The next four bytes will be the beginning and ending addresses of the load（two－byte num－ bers in low byte，high byte format）．

If the file loads to multiple address areas （including RUN and INIT）after the first block of
memory is loaded，OS checks for a new header of 255,255 ．If it is there，the header is ignored， and the next four bytes will be the new from－to load addresses．

Loading With Page 6

Loading RUN with page 6 （1536）would look like：
$\$ \mathrm{EO}(224), \$ 02(2), \$ \mathrm{EO}(224), \$ 02(2), \$ 00(0), \$ 06(6)$
（without the header）．With a little math and modification of the program，you could find all the load addresses of any compound load file．

If you don＇t want to type the programs in， send $\$ 3$ ，and a disk or tape with an SASE mailer．

Jerry Allen

1906 Carnegie \＃E
Redondo Beach，CA 90278

MacroDOS，Machine Language Source Code

Refer to the＂Automatic Proofreader＂article before typing this program in．

Ø2øø	；EQUATES
Ø21ø	ICBC $=\$ 342$
ø22ø	ICBAL $=\$ 344$
ø23ø	ICBAH $=\$ 345$
Ø24の	ICBLL $=\$ 348$
ø25ø	ICBLH $=\$ 349$
626ø	ICBAX $=\$ 34 \mathrm{~A}+16$
Ø270	MEMLO $=$ \＄2E7
ø28ø	LBUF $=$ \＄58ø
ø29ø	INBUF $=$ \＄F3
øろøø	CIX $=$ \＄F2
のЗ19	$F R \emptyset=\$ D 4$
Ø32の	FR1＝\＄Eg
ø33ø	GETR $=\$ 05$
の34ø	GETC $=\$ \emptyset 7$
ø35ø	PUTC $=\$ \emptyset \mathrm{~B}$
Ø36ø	PUTR $=\$ \emptyset 9$
Ф370	OPEN $=\$ \square 3$
ஏ38ø	CLOSE $=$ \＄øC
ø39ø	AXIO $=$ \＄\quad C

Ø4．ø	AXOUT $=\$ \square 8$
$\square 410$	AXAP $=$ \＄ 09
Ø42ø	$A \times D R=\$ \emptyset 6$
¢430	FRøZ $=$ \＄DA44
¢44ø	IFP $=$ \＄D9AA
の45ø	FPI $=$ \＄D9D2
¢46ø	FPASC＝\＄D8E6
Ø479	FMOVE $=$ \＄DDB6
の48ø	ASCFP $=$ \＄D8øø
Ø49ø	LO＝\＄øøFF
ø5øø	$\mathrm{HI}=\$ \emptyset 1 \varnothing \square$
Ø51ø	CID $=$ \＄E456
ø52ø	WARMST $=$ \＄E474
ø530	DOSVEC $=\$ \emptyset A$
ø54ø	DOSINI $=\$ \emptyset C$
ஏ55ø	OLDDOS $=\$ 179 \mathrm{~F}$
956ø	JMPINI $=\$ 1795$
の57ø	JMPRUN $=\$ 1708$
Ø58ø	；
Ø59ø	；
Ø6øø	＊$=$ \＄1CFC ；change this addr for
Ø610	；larger versions of DOS2．gS
6620	；
0630	；
Ø64ø	ST JSR CLSE ；to be sure
665ø	STY CIX ；set f．p．pointer
6660	DEY
ロ670	STY \＄2E3；clear INIT／RUN
Ø68ø	STY \＄2E1
Ø69ø	STY \＄FF ；reset load flag
Ø7ロロ	LDX \＃LBUF\＆LO ；init flt．pt
Ø71ø	LDY \＃LBUF／HI
ロ729	STX INBUF
Ø73ø	STY INBUF＋ 1
Ø740	DISCMD LDY \＃TAB1－CMDTAB－1
ø75ø	L1 TYA ；DISPLAY COMMANDS
の76ø	PHA
の77の	LDA CMDTAB，Y
の78ø	JSR PRINT
Ø79ø	PLA
Øロøø	TAY
Ø81ø	DEY
ø820	BPL L1
の83の	LDA \＃AXOUT ；init aux
Ø84の	STA ICBAX
ø85の	JSR GTREC ；get command
Ø86ø	LDY \＃4 ；GET COMMAND
Ø87ø	LDA LBUF
ø88ø	L2 CMP TAB1，Y
Ø89ø	BEQ SPECMD
Ø $9 \varnothing \emptyset ~$	DEY
6910	BPL L2
Ø920	DIR CMP \＃＇D ；DIRECTORY
Ø93ø	BNE WDS
の940	LDA \＃ø6
Ø95ø	STA ICBAX
の96ø	JSR ASKDN ；drive \＃？
の97ø	JSR OPN ；open
Ø98ø	L3 LDX \＃\＄10
ø99ø	ine JSR GTREC ；get formatted
$1 \varnothing \square \square$	JSR PTRECø ；print it
1 Ø1ワ	BPL LJ
1 Ø2ø	SPECMD LDA TAB2，Y ；SPECIAL C MDS
1 Ø3Ø	PHA ；save cmd
$1 \emptyset 4 \emptyset$	CMP \＃कFE ；check if format
$1 \emptyset 5 \emptyset$	BEQ FMT
1 ロ6ø	JSR PFN
1970	EX PLA ；retrieve command
1 ¢8ø	JSR EXCMD ；do it
$1 \varnothing 9 \square$	BPL ST

Ø4øø AXOUT $=\$ \boxed{ }$
$\$ 09$
Ø43Ø FRøZ $=$ \$DA44
Ø45ø FPI = \$D9D2
Ø46ø FPASC $=$ \$D8E6
Ø47ø FMOVE $=$ \$DDB6
Ø48ø ASCFP $=$ \$D8 6
の5のg HI = \$の1gの
Ø51ø CIO = \$E456
Ø52ø WARMST $=$ \$E474
DOSVEC = \$øA
Ø55 0 OLDDOS $=\$ 179 \mathrm{~F}$
Ø56ø JMPINI $=\$ 1795$
Ø57ø JMPRUN = $\$ 17$ Ø8
Ø58ø ;
Ø59Ø ;
6620
6630
Ø65ø
6660
ஏ68の
Ø69の
Ø71ø
Ø729
ø7Зの
9750
Ø76ø
Ø77の
Ø79ø
ஏ8øø
ø82の
Ø83の
$085 \varnothing$
SR GTREC ; get command
LDA LBUF
L2 CMP TAB1, Y
BEQ SPECMD
BPL L2
DIR CMP \#'D ; DIRECTORY
BNE WDS
LDA \#ø6
JSR ASKDN ; drive \#?
;open
JSR GTREC ; get formatted 1
JSR PTRECø ; print it
SPECMD LDA TAB2,Y ; SPECIAL C
MDS
1 Ø4ø CMP \#\$FE ; check if format
BEQ FMT
PLA ; retrieve command
1 ■9ø BPL ST
$1 ø 3 \emptyset$ PHA ;save cmd
1 Ø6 \quad JSR PFN
1 ■8ஏ JSR EXCMD ; do it

0	BNE SK4
$18 \emptyset \emptyset$	INC ICBAX ；9＝append
1810	LDA \＃\＄9B
1820	STA（INBUF），Y
$183 \varnothing$	SK4 CMP \＃\＄9B
1840	BNE L7
$185 \emptyset$	JSR OPN ；open for write
1860	LDA \＃\＄FF ；start headr
1870	STA FRø
1889	STA FRø＋1
1890	JSR PUTCR2 ；write it
1900	JSR INPCON ；get from\＃
1910	JSR PUTCR2 ；write it
1920	JSR FMOVE ；store it
1930	JSR INPCON ；get to\＃
1940	JSR PUTCR2 ；write it
1950	JSR SUBTR ；find len and
	ave
196ø	BPL B2 ；the rest
1970	RUN CMP \＃＇${ }^{\text {a }}$ ；RUN
198ø	BNE CART
$199 \square$	JSR INPCON ；get \＃
2øøø	JMP（FRø）；jump indirectl
	Y
$2 \varnothing 1$ ø	CART CMP \＃＇C ；CARTRIDGE
2ø2ø	BNE ADOS
2ø3ø	JMP WARMST
2ø4ø	ADOS CMP \＃＇！；ESC TO ATARI D UP
205ø	BNE HEX
2ø6ø	LDA \＃\＄4ø ；reset DOSINI for
	no－
$2 \emptyset 7 \emptyset$	STA DOSINI ；trouble later
2ø8ø	LDA \＃\＄15
2ø9の	STA DOSINI＋1
21 øø	JSR \＄154ø ；fast reset DOSV
	EC
2110	JMP OLDDOS
2129	HEX CMP \＃＇\＄；HEX TO DEC
2130	BNE DEC
2140	JSR HASCI ；hex to int
2159	JSR IASC ；int to dec
2169	BPL B2
2170	DEC CMP \＃＇．；DEC TO HEX
$218 \emptyset$	BNE B2
2190	JSR DASCI ；dec to int
22øø	JSR IHASC ；int to hex
2210	B2 BPL LSTCNC＋2
2220	OPN LDA \＃OPEN ；IOCB MAIN SET UPS
2230	EXCMD LDX \＃\＄1ø
2240	BNE GTR2
225ø	PTRECø LDX \＃ø
2260	PTREC LDA \＃PUTR
2270	BNE GTR2
228ø	GETRECø
229ø	GTREC LDA \＃GETR
23øø	GTR2 STA ICBC， X
2319	LDA \＃\＄1E ；max rec length
2320	STA ICBLL，X
2330	LDA \＃LbuF／HI
2340	STA ICBAH，X
2350	LDA \＃LBUF\＆LO
2360	PGIN STA ICBAL， X
2370	LDA \＃Ø
238ø	STA ICBLH，X
239ø	ICB JSR CIO；let the OS take over
$24 \varnothing \varnothing$	BMI ERR
2410	RTN2 RTS
2420	PUTCR2 LDA \＃PUTC
2430	BNE GETC2
2446	GETCR2 LDA \＃GETC
245ø	GETC2 LDX \＃\＄1ø

2460
2470
248ø
249.

25øø
$251 ø$
2520
$253 \varnothing$
254 の
255ø
256ø
257ø
2589
259の
2690
2610
262の
2630
2640
2650
2669
2679
2689
$269 \emptyset$
$270 \emptyset$
271 の
2720
2736
274 Ø
275 ø
276 ロ
277 ＠
2789
279 の
$28 \emptyset \emptyset$
281 の
2829
283 5
2840
285ø
286ø
287の
288ø
289ø
29 のø
2910
2920
2930
2949
$295 \emptyset$
2960
2970
$298 \emptyset$
2990
उøøø
3019
$3 \curvearrowleft 2 \emptyset$
3 $\varnothing 3 \curvearrowleft ~$
3949
$3 \emptyset 5 \emptyset$ L
3960
$307 \emptyset$
3ø8ø
3990
31 øの
3110
3129
3130

STA ICBC，X
LDA \＃2
JG STA ICBLL，x
LDA \＃Ø
STA ICBAH，X
LDA \＃FRø
BNE PGIN
clse lda \＃close
BPL EXCMD
PRINT STA FRø
LDX \＃Ø
LDA \＃FUTC
STA ICBC，X
LDA \＃1
BPL JG
ERR CPY \＃\＄øड ；ERR next read OK

BEQ RTN2
CPY \＃\＄88；ERR EOF OK too
BEQ CINI
TYA ；store ERR
PHA
LDA \＃कCS ；inverted E for e
rror

JSR PRINT
JSR FRøZ ；clear FPø
PLA ；retrieve ERR
STA FRø
JSR IASC ；int to dec
LSTCNC PLA ；clr stack of ret urn

PLA
JMP ST ；do not pass GO
CINI LDA \＄FF
BEQ LSTCNC
JSR CHKIN
JRUN LDA \＄2E1
BEQ LSTCNC
JSR JMPRUN
BNE LSTCNC
INPCON LDA \＃＇a ；HEX OR DEC\＃ TYPE

JSR PRINT ；the a means AT／ TO

JSR GTREC
LDY LBUF
CPY \＃＇．
BEQ DASCI
CPY \＃＇${ }^{\text {B }}$
BEQ HASCI
BNE ERR ；bad input
DASCI JSR ASCFP ；DEC TO INT JMP FPI
HASCI JSR FRgZ ；HEX TO INT
LDY \＃1
LB LDA（INBUF），Y
CMP \＃\＄9B
BEQ RTN
SEC ；convert each digit
SBC \＃\＄3
CMP \＃\＄øA
BMI SK7
SBC \＃7
SK7 LDX \＃4 ；times 16
LA ASL FRø
ROL FRØ＋1
DEX
BNE LA
ORA FRg ；add in new bits STA FRø
INY
BPL LB
RTN RTS

3149	IHASC LDY \＃ø ；INT TO HEX SUB RT
3159	LDX \＃ 1
3169	LC LDA \＃\＄Fg ；hi mask
3179	AND FRø， X
3189	LSR A ；roll into low b
	its
3199	LSR A
329の	LSR A
3210	LSR A
3229	JSR CONVH ；go conv to dig
	it
3230	LDA \＃\＄0F ；lo mask
3240	AND FRø， X
3259	JSR CONVH
3269	DEX
3279	BPL LC ；one more time
3289	BMI LE ；set eol and rtn
3290	CONVH CMP \＃\＄øA ；INT TO HEX D
3309	BMI SK9
3310	ADC \＃6 ；carry set
3320	SK9 ADC \＃\＄3ø ；carry clr
333ø	STA（INBUF），Y
3340	INY
3350	RTS
3360	IASC JSR IFP ；INT TO DEC
3379	JSR FPASC
3389	AREC LDY \＃ REC
$339 \emptyset$	L9 LDA（INBUF），Y
34øø	INY
3410	CMP \＃\＄8ף ；find hi bit char
3420	BMI L9
3430	AND \＃\＄7F ；mask it
3440	DEY
3459	STA（INBUF），Y
3460	INY
3470	LE LDA \＃\＄9B ；set EOL
3489	STA（INBUF），Y
3490	JMP PTRECD
3590	SUBTR INC FRØ ；inclusive so inc
3510	BNE SKS ；TO address
3520	INC FRØ＋1
3530	SK5 LDX \＃\＄1ø
3540	LDA FR1
3550	STA ICBAL，X
3569	LDA FR1＋1
3570	STA ICBAH，X
3580	SEC ；CALC LENGTH
3590	LDA FRg
3690	SBC FR1
3619	STA ICBLL，X ；STORE AT IOC
	B
3620	LDA FRø＋1
3630	SBC FR $1+1$
3640	JMP ICB－3 ；exec same cmd as last
3659	；
3660	
3679	INIT JSR \＄154ø ；SRESET INIT
3689	JI LDA \＃END\＆LO
3690	STA MEMLO
37 ¢ø	LDA \＃END／HI
3710	STA MEMLO＋1
3729	LDA \＃ST\＆LO
3730	STA DOSVEC
3740	LDA \＃ST／HI
3750	STA DOSVEC＋1
3760	RTS
3779	；
3789	；
379 ¢	CMDTAB ；all spaces are one

pace
$4 \varnothing \emptyset \varnothing$
$4 \varnothing 1$ Ø
$402 \emptyset$
$493 \emptyset$
4 Ø4
4 $55 ワ$
4969
$407 \emptyset$
4 Ø8
- BYTE ">", \$9B, \$9B,"SD", \$A
1
-BYTE " \$>",\$AE," . >",\$A4
. BYTE " SD", \$D7," NR", \$Cø
. BYTE " DO", \$CC," VA", \$D3
, $\$ 9 \mathrm{~B}$

. BYTE " SR",\$C5," MN",\$D2
. BYTE " *N",\$D5," KL",\$AA
.BYTE "RI",\$C4,\$9B
TAB 1
-BYTE "RE*UF"
TAB2
- BYTE $\$ 29, \$ 21, \$ 23, \$ 24, \$ F E$
ADRDIR
. BYTE "D1:*.*", \$9B
ADRDOS
-BYTE "D1: DOS.SYS",\$9B
END ; end after boot init exe
cuted
;
INIT1 LDA \#INIT\&LO ; BOOT INI
T
STA DOSINI
LDA \#INIT/HI
STA DOSINI+1
JMP JI
;

* $=\$ 2 E 2$; LQAD AND GO INIT
ADR
. WORD INIT1
. END

COMPUTE！

Subscriber Services

Please help us serve you better．If you need to contact us for any of the reasons listed below，write to us at：

COMPUTE！Magazine

P．O．Box 914

Farmingdale，NY 11737 or call the Toll Free number listed below．
Change Of Address．Please allow us $6-8$ weeks to effect the change；send your current mailing label along with your new address．
Renewal．Should you wish to renew your COMPUTE！subscription before we remind you to，send your current mailing label with payment or charge number or call the Toll Free number listed below．
New Subscription．A one year（ 12 month） US subscription to COMPUTE！is $\$ 24.00$（2 years，$\$ 45.00 ; 3$ years，$\$ 65.00$ ．For sub－ scription rates outside the US，see staff page）．Send us your name and address or call the Toll Free number listed below． Delivery Problems．If you receive dupli－ cate issues of COMPUTE！，if you experi－ ence late delivery or if you have prob－ lems with your subscription，please call the Toll Free number listed below．

Commodore Garbage Collection Part 2
 Jim Butterfield, Associate Editor

Last month, we looked into some of the causes of garbage collection delays, and investigated some of its working mechanisms. It's time to put our knowledge to work by developing some rules.

The following program will help us see the rules by means of examples:

```
1Ø\varnothing DIM AS(8ø\emptyset)
11\varnothing FOR J=1 TO 8\emptyset\emptyset
12\emptyset A$(J)="A"
13\emptyset NEXT J
140 PRINT "X"
15\emptyset PRINT FRE(\varnothing)
16\emptyset PRINT "Y"
```


Rules of Garbage Collection

Rule 1: There are static (in place) strings and $d y$ namic (created) strings. Only dynamic strings have garbage collection consequences.
Proof: RUN the above program which contains only static strings. There will be no significant delay between the printing of X and Y. Now change line 120 to read:

$$
120 \mathrm{~A} \$(\mathrm{~J})=\mathrm{CHR} \$(65)
$$

RUN once again; there will be a significant pause between the printing of X and Y.
Rule 2: Garbage collection time depends on the number of dynamic strings you keep, not what you throw away.
Proof: Change line 120 to read:

$$
120 \mathrm{~A} \$(\mathrm{~J})=\mathrm{CHR} \$(65): \mathrm{A} \$(\mathrm{~J})=" \mathrm{~A} \text { " }
$$

RUN the program. Even though we're throwing
away a large amount of garbage (the first $A \$(J)=)$, there's no significant delay.
Rule 3: Performing a garbage collection saves you no time on the next one.
Proof: Enter line 120 as:
$120 \mathrm{~A} \$(\mathrm{~J})=\mathrm{CHR} \(65)
RUN and note the delay. Now type: GOTO 140. Note that the delay is exactly the same as before; the previous collection saved us no time.
Rule 4: Doubling the number of strings will multiply the delay by 4 . Mathematically, we can say that the time varies as the square of the number of strings.
Proof: Change the value of 800 in lines 100 and 110 to 400 . RUN and note that the delay between the printing of X and Y drops to onequarter of the previous time.

This last rule is the killer. You might work out a test program using ten strings, and when your program works satisfactorily expand to one thousand items. But your garbage collection time doesn't increase by a factor of 100 ; it jumps to 10,000 times the original delay. This could become crippling.

Fixing The Problem

If you know what to look for, you can usually avoid massive garbage collection delays. There's no single technique that will do the job. It's best to investigate what's causing the garbage and decide on the appropriate action to eliminate the problem.

Here's a list of techniques to get around the

SUPER FORTH 64.

TOTAL CONTROL OVER YOUR COMMODORE-64 ${ }^{\text {T}}$ USING ONLY WORDS
MAKING PROGRAMMING FAST, FUN AND EASY! MORE THAN JUST A LANGUAGE.
A complete, fully-integrated program development system Home Use, Fast Games, Graphics, Data Acquisition, Business Home Use, Fast Gomes, Graphics, Data Acquisition, Business
Real Time Process Control, Communications, Robotics, Scientific, Artificial Intelligence A Powerful Superset of MVPFORTH/FORTH $79+$ Ext. for the beginner or professional

- 20 to $600 \times$ faster than Basic
- $1 / 4 \times$ the programming time
- Easy full control of all sound, hi res. graphics, color, sprite, plotting line \& circle
- Controllable SPLIT-SCREEN Display
- Includes interactive interpreter \& compiler - Forth virtual memory
- Full cursor Screen Editor
- Provision for application program distribution without licensing
- FORTH equivalent Kernal Routines
- Conditional Macro Assembler
- Meets all Forth 79 standards+
- Source screens provided
- Compatible with the book "Starting Forth"
by Leo Brodie
- Access to all I/O ports RS232, IEEE,
including memory $\&$ interrupts
- ROMABLE code generator
- MUSIC-EDITOR

SUPER FORTH 64 ${ }^{\boldsymbol{*}}$ is more
 - SPRITE-EDITOR

- Access all C- 64 peripherals including 4040
drive
- Single disk drive backup utility
- Disk \& Cassette based. Disk included
- Full disk usage - 680 Sectors
- Supports all Commodore file types and

Forth Virtual disk

- Access to 20K RAM underneath ROM areas
- Vectored kernal words
- TRACE facility
- DECOMPIER facility
- Full String Handling
- ASCll error messages
- FLOATING POINT MATH SIN/COS \& SQRT
- Conversational user defined Commands
- Tutorial examples provided, in extensive manual
- INTERRUPT routines provide easy control of hardware timers, alarms and devices - USER Support

SUPER FORTH 64 ${ }^{\text {² }}$ compiled code becomes more compoct than eren assembly code!

A SUPERIOR PRODUCT
in every way! At a low price of only \$96

Call:
(415) 651-3160

PARSEC RESEARCH
Drawer 1776, Fremont, CA 94538

For the
Commodore 64

Nony $\$ 119$
Telecomputing
with a difference!

SuperTerm - the only software that communicates with them all! Information networks such as CompuServe; business and university mainframes; free hobby bulletin boards.

Professionals and students: SuperTerm's VT102 emulation gets you on-line in style. Advanced video features, graphics, full-screen editing, 80/132 column through sidescrolling, extended keyboard - perfect for EDT, DECMail, etc. Even download your workfiles and edit off-line! Full printer and editor support; other emulations available.
Researchers and writers: SuperTerm's built-in text editor helps you create, edit, print, save, send and receive text files - articles, stories, reports, inventories, bibliographies - in short, it's your information work station. Access CompuServe, Dow Jones Information Network, Dialog/Knowledge Index, Western Union's Easylink, The Source, and many more. Optional Sprinter accessory saves printing time and s (see below).
Computer hobbyists: Join in the fun of accessing hundreds of free bulletin board systems (BBS) for Commodore, Apple, TRS-80, etc. Text mode with all BBS systems; up/downloading with Commodore BBS systems (Punter protocol). Special protocol for up/downloading with other SuperTerm owners. Popular "redial-if-busy" feature for use with automodems.

Get the information you need, for business or for fun, with the software that communicates with them all!

Requires: Commodore 64, disk drive, and suitable manual- or auto-modem. Printer optional. Software on disk w/free backup copy. Extensive manual in deluxe binder.

SuperTerm's

SPRINTER Accessory $\$ 69^{95}$

With the Sprinter accessory, SuperTerm can perform concurrent printing - as text appears on your screen, it's simultaneously printed on your printer. Includes all necessary hardware for connecting your parallel printer and computer via the cartridge port. Simply plug-in and go. Free utility software for printing and listing as a stand-alone interface.
Requires: parallel printer such as Epson, Gemini, Microline. C.Itoh. (Min. speed 35 cps.)

Commodore 64 is a trademark of Commodore Electronics, Ltd.

garbage collection hang-up.

1. Don't Move Strings Around

Suppose we are writing a program to input several names and sort them into alphabetical order. It would seem logical to move the names so as to put them into the right place. Don't. Use an index array, which contains only numbers: Move the index values, not the strings.

A simple example:

```
1øø PRINT "INPUT TEN NAMES"
11\varnothing DIM N$(1\varnothing),I%(10)
12\emptyset FOR J=1 TO 1\varnothing
13ø PRINT "NAME";J;
140 INPUT N$(J)
150 I%(J)=J
160 NEXT J
17\varnothing PRINT "SORTING..."
18\emptyset FOR J=9 TO l STEP -1
190 FOR K=1 TO J
2øø IF N$(I%(K)) <= N$(I%(K+1)) GOTO 22ø
210 I=I% (K):I%(K)=I%(K+1):I% (K+1)=I
22\emptyset NEXT K,J
23\emptyset FOR J=1 TO 1\varnothing
24ø PRINT N$(I%(J))
250 NEXT J
```

The above program uses a bubble sort technique, which is notoriously inefficient; but the point here is that the strings $\mathrm{N} \$(.$.$) are never moved.$ Thus, there can be no garbage collection. Note that the index array must be initialized before use-see line 150.

2. Clean Up Between Blocks

Suppose you're reading in a large file of students from various classes. For a number of reasonsespecially processing convenience and shortage of memory-you don't read in all the students. Instead, you read and process a class at a time.

Before reading in the next class, set all student names, to null strings. Now, force a garbage collection with a statement such as $Z=F R E(0)$. There will be few or no strings to keep, so garbage collection will be fast. When the next block of data-the next class-comes in, it will have freshly cleaned memory to use.

3. Do Local Cleanups

Many programs like to build strings from GET statements. The code often looks like this:

```
5\emptyset\emptyset PRINT "TYPE IN YOUR NAME"
530 N=""
54ø GET K$:IF K$="" GOTO 54ø
550 IF K$=CHR$(13) GOTO 6\emptyset\emptyset
560 N$=N$+K$
57ø GOTO 54ø
6\emptyset\emptyset REM CONTINUE .....
```

This sort of thing creates a lot of garbage. Every time line 550 is executed, a new $\mathrm{N} \$$ is created and the old one is thrown away; and $\mathrm{N} \$$ gets bigger and bigger all the time. There's also gar-

Configuration Of BASIC Memory

bage from $\mathrm{K} \$$, but it's only a single character at a time.

If $N \$$ and $K \$$ were our only strings, we'd have no problem. Garbage collection time depends only on what you keep, not what you throw away; and keeping two strings isn't much work. However, if this were part of a program which also had a thousand names and addresses, we'd be in trouble; everything would need to be reclaimed, and the delays would become impractically long.

Local Collection

If we're careful, we can get around this problem by setting the stage for a "local" collection. We might reason as follows: During the above code, N\$ and K\$ are our only working strings. If we make all the other strings disappear momentarily, we may generate all the garbage we like, since garbage collections will be virtually instantaneous. When we're finished, we must carefully force one last collection to get rid of any leftover garbage, and then make these missing strings reappear.

We can do this by temporarily moving the top-of-BASIC pointer down to match the dynamic string pointer. This will fool the garbage collection routine into thinking that there are no dynamic strings except the ones we have just created. But we must remember to put the top-ofBASIC pointer back when the job is finished, or we'll suffer permanent loss of memory.

The top-of-BASIC pointer may be found on the VIC and 64 at addresses 55 and 56. We must save the values there so that we can replace them later, and then use the contents of the string pointer (51 and 52) to change the top-ofBASIC pointer. (In the PET/CBM, the top-ofBASIC pointer is at 52 and 53 , and the string pointer is at 48 and 49 . We'll show the programming for the VIC/ 64 below, but you may adjust it for your machine.)

Here's how we would change the above coding to eliminate garbage collection dangers:

```
5\emptyset\emptyset PRINT"TYPE IN YOUR NAME"
51\varnothing Al=PEEK (55):A2=PEEK(56)
52\emptyset POKE 55,PEEK(51):POKE 56,PEEK(52)
530 N=""
54ø GET K$:IF K$="" GOTO 54\emptyset
55\emptyset IF K$=CHR$(13) GOTO 58\emptyset
560 N$=N$+K$
57ø GOTO 54ø
5 8 \emptyset ~ Z = F R E ( \varnothing )
590 POKE 55,A1:POKE 56,A2
6ø\emptyset REM CONTINUE.....
```

It seems complex, and you must indeed program with great care. But it solves the problem.

4. Use Numeric Values

Who says that everything that seems alphabetic must be a string? A month can be coded 1 to 12; a grade of A to F can be a numeric from 1 to 6 .

Where the number of possible strings is limited-a class, a region, an airline-using a numeric system is quite feasible. You can always look up the string you want by using the number as an index and getting the name out of an array.

I wouldn't recommend that we all lose our names and become numbers within the computer. But a little sensible data reduction can save a lot of garbage collection.

5. Brute Force

Sometimes conventional methods fail. Your data consists of a large number of names which have been read in from a file. You need to make changes to a substantial number of these names. There seems to be no way you can control the amount of garbage. What then?

Use The Disk

When all else fails, write out all your strings to disk. Set the strings to null values and force a garbage collection-this will take place instantaneously. Now read them back in to the newly cleaned-up memory.

You can watch the string pointer (addresses 51 and 52 on the VIC/64), and when it seems to be getting near the danger point, initiate this whole operation. At least it will be under your control; you can print a message to the user (TAKE A BREAK WHILE I UNSCRAMBLE MY BRAINS), and may even get the bonus of having generated a data backup or checkpoint in case of loss of power.

And it's a lot better than having the machine go dead for twenty minutes or more.

Copyright © 1983 Jim Butterfield

This Publication is available in Microform.

University Microfilms International

wabash

When it comes to Flexible Disks, nobody does it better than Wabash.

MasterCard, Visa Accepted. Call Free: (800) 235-4137

Stress Reduction Software

Relax, a computer-controlled biofeedback system aimed at stress reduction, is available from Synapse Software for the Atari, Commodore, Apple, and IBM personal computers.

The system allows the user to observe and measure his or her stress levels on a video monitor or television set, and provides a method to attempt to reduce those levels.

A headband with three electromyograph (EMG) sensors measures tension in the forehead's frontalis muscle. The software converts these measurements into visual patterns designed to monitor the stress level. An audio tape has a program of therapeutic relaxation exercises, and a workbook provides guidelines for reducing stress and establishing a personal stress management profile.

Relax is available for \$139.95.
Synapse Software
5221 Central Avenue
Richmond, CA 94804
(415) 527-7751

Apple Educational Games

Methods and Solutions, Inc., has announced its Mindplay line of educational software games that teach children from four years of age and up skills in measurement, following directions, memory, map reading, tactics, vocabulary, grammar, art, and mathematics.

The six educational games in the series include Bake \mathcal{E} Taste, programs that teach youngsters to measure and follow directions; Dyno-Quest, a game of memory, map reading, tactics, and the discovery of dinosaurs; Picture Perfect, a joystick-based game that teaches children to draw and to color shapes, designs, and animals; Race the Clock, a matching game of words and hidden pictures; Cat ' n Mouse, a maze game using word and picture associations; and Math Magic, a monsterfilled arcade game that teaches addition and subtraction.

The games are priced from $\$ 34.95$, and are available for the Apple II family of computers and for the IBM PC and PCjr. They will be available for the Commodore 64 this fall.
Methods and Solutions, Inc. 300 Unicorn Park
Woburn, MA 01801
(617) 933-3298

Coleco Adam Data Packs

Victory Software has introduced blank data packs for the Coleco Adam computer. The blank, preformatted tapes store about 250 pages of information.

The tapes are available for a suggested price of $\$ 3.98$.

Victory Software has also announced its new line of games for the Adam, including Bounty Hunter (\$19.95), an Old West text adventure game.
Victory Software Corporation
1410 Russell Road
Paoli, PA 19301
(800) 243-1515
(215) 296-3787

Apple, IBM Classroom Software

Classmate, a classroom grading and attendance software package, has been released by Davidson \& Associates for the Apple II, IIe and II + , and the IBM PC, PCjr and XT.

The program allows users to enter, modify, and store an unlimited number of class lists for up to 51 students. It stores grades, attendance records and teacher comments, and computes weighted averages, graphs grade distribution, class rankings and final grades, and displays or prints out all records.

The program also can sort by student name or class designation, and can display or print out individual scores, either on a particular assignment or for all assignments.

The program will give out either a single student's or a full class's complete or partial record.

In addition, the program can generate individualized parent and student reports.

Classmate is available for $\$ 49.95$.
Davidson \& Associates 6069 Groveoak Place, \#12 Rancho Palos Verdes, CA 90274 (213) 383-9473

Foreign Language Tutorials

Soflight Software, a division of M. P. Computer Services Corporation, has introduced a new product line of foreign language development software.

The programs were de-
signed for the Apple II and IIe, with software for the Atari and IBM PC and PCjr to be available in the future.

One disk drive is required to run the program.

All programs teach 1000 of the most common words in the target language. Where words have more than one meaning, the program allows for those other meanings, along with English translation.

The package retails for \$56.95. Languages currently available include Spanish, French, German, Italian, Biblical Hebrew, modern Hebrew, and Arabic. Latin, Russian, Polish, Swedish, and classical Greek will be available in the near future.

Each language program is menu-driven with sequential review, random review, and quiz options.
Soflight Software
2223 Encinal Station
Sunnyvale, CA 94087
(408) 735-0871

Personal Finances Software

A software product designed to help consumers make personal financial decisions has been announced by Electronic Arts. Called Financial Cookbook, the program contains "recipes," or formulas, that produce answers about money matters.

Through the program's 32 different recipes, users can figure such data as returns on investments, effective tax shelters and IRAs, effects of inflation, mortgage calculations, and tax rates.

Each recipe asks the user to enter variables, such as interest or inflation rates, and then makes calculations based on those numbers.

Calculations for 11 basic tax shelters available to most consumers are found in the recipes. The instruction manual includes
a tutorial, recipe instructions, and index.

Financial Cookbook is available for the entire Apple II line, the IBM PC and PCjr, Commodore 64, and Atari 800.

Suggested retail price is $\$ 50$.
Electronic Arts
2755 Campus Drive
San Mateo, CA 94403 (415) 571-7171

Text Adventure For Youngsters

Infocom has announced Seastalker, an interactive text adventure game for ages 9 and up.

In it, players aboard the specially equipped submarine Scimitar must save the Aquadome, earth's first undersea research station.

Unfortunately, the Scimitar hasn't been tested in deep water, and the crew of the Aquadome may have a traitor in its ranks. If the right course isn't charted, players might end up as shark bait.

Solving hints are included in the game package.

Seastalker is available for the Apple II, Atari, Commodore 64, IBM PC and PCjr, and TI$99 / 4 \mathrm{~A}$ at a cost of $\$ 39.95$.
Infocom, Inc.
55 Wheeler St.
Cambridge, MA 02138
(617) 492-1031

New Product releases are selected from submissions for reasons of timeliness, available space, and general interest to our readers. We regret that we are unable to select all new product submissions for publication. Readers should be aware that we present here some edited version of material submitted by vendors and are unable to vouch for its accuracy at time of publication.

COMPUTE! welcomes notices of upcoming events and requests that the sponsors send a short description, their name and phone number, and an address to which interested readers may write for further information. Please send notices at least three months before the date of the event, to: Calendar, P.O. Box 5406, Greensboro, NC 27403.

> COMMODORE 64 HACKERS ONLY

* BOOKWARE FROM ABACUS*

$\bullet \bullet$ Unravel the mysteries of the misunderstood floppy disk. $300+$ pages of in-depth information. Sequential, relative random files. Many useful utilities. 1541 ROM listing fully commented. $\$ 19.95$
\because - A machine language reference guide specifically to the Commodore 64. All instructions fully explained. With these complete program listings for an ASSEMBLER, DISASSEMBLER \& 6510 sim ulator. $\mathbf{2 0 0 +}$ pages. $\mathbf{\$ 1 9 . 9 5}$
- - $300+$ page detailed guide to the internals of your favorite computer. Covers graphics, synthesizer, kernal, BASIC. Includes full commented ROM listings. $\quad \$ 19.95$
OTHER TITLES COMING SOON! ASK FOR FREE CATALOG FOR QUICK SERVICE PHONE 616-241-5510位 Abacus
P.0. Box 7211 Grand Rapids, MI 49510 Add $\$ 2.00$ postage and handling. Foreign add $\$ 4.00$. Michigan residence add 4%. MC, VISA, AMEX accepted.

\section*{EBASF DISKETTES \$1.75 WITH LIBRARY CASEIIII DIGITAL CASSETTES C-10 for 35c (100 Lot)!!!! FOR YOUR COMPUTER
 ALL DISKS AND CASSETTES ARE. . -100% ERROR FREE (Diskettes Fully Certified)-- LIFETIME GUARANTEED-

 COMPUTER TAPE PRICES

$25-249$ Cases/. $20 \mathrm{Ea} . \quad 250 / .13 \mathrm{Ea}$. $\quad 1000 / .11 \mathrm{Ea}$. $\begin{array}{llll}\text { Labels - Sheet } 20 & 12 / .20 & 120 / 1.70 & 1200 / 14.50\end{array}$ Tractor Feed Cassette Labels (1 up) 1000/14.50

-INTRODUCTORY OFFER-

BASF $51 / 4$ Single Side Double Density Diskettes with...Hub Ring, Label, Jacket, W/Protect Stickers - Free Hard Library Case with Every 10 Disks-

10 LOT 20 LOT 50 LOT 100 LOT

$2.00 / 20.00$	$1.95 / 39.00$	$1.80 / 90.00$	$1.75 / 175.00$
All Prices Include U.S. Shipping \& Handling			

- Phone Orders Add \$2.50 C.O.D. Fee -
(Canadian Customers May Call or Write for Shipping Costs)
Send Cashier's Checks, Money Orders, \& Checks to:
CASS-A-TAPES
BOX 8123 -C
KANSAS CITY, MO. 64112 816-444-4651

The Automatic Proofreader For VIC, 64, And Atari

Charles Brannon, Program Editor

Abstract

At last there's a way for your computer to help you check your typing. "The Automatic Proofreader" will make entering programs faster, easier, and more accurate.

The strong point of computers is that they excel at tedious, exacting tasks. So why not get your computer to check your typing for you?

With "The Automatic Proofreader" nestled in your VIC-20, Commodore 64, or Atari computer, every line you type in will be verified. It displays a special code, called a checksum, at the top of the screen. The checksum, either a number (VIC/64) or a pair of letters (Atari), corresponds to the line you've just typed. It represents every character in the line summed together. A matching code in the program listing lets you compare it to the checksum which the Proofreader displays. A glance is all it takes to confirm that you've typed the line correctly.

Entering The Automatic Proofreader

Commodore (VIC/64) owners should type in Program 1. Program 2 is for Atari users. Since the Proofreader is a machine language program, be especially diligent. Watch out for typing extra commas, or a letter O for a zero, and check every number carefully. If you make a mistake when typing in the DATA statements, you'll get the message "Error in DATA statements" when you RUN the program. Check your typing and try again.

When you've typed in The Automatic Proofreader, SAVE it to tape or disk at least twice before running it for the first time. If you mistype the Proofreader, it may cause a system crash when you first run it. By SAVEing a copy beforehand, you can reLOAD it and hunt for your error. Also, you'll want a backup copy of the Proofreader because you'll use it again and againevery time you enter a program from COMPUTE!.

When you RUN the Proofreader, the program will be POKEd safely into memory, then it will activate itself. If you ever need to reactivate it (RUN/STOP-RESTORE or SYSTEM RESET will disable it), just enter the command SYS 886 (VIC/64) or PRINT USR(1536) for the Atari.

Using The Proofreader

Now, let's see how it works. LIST the Proofreader program, move the cursor up to one of the lines, and press RETURN. If you've entered the Proofreader correctly, a checksum will appear in the top-left corner of your screen.

Try making a change in the line and hit RETURN. Notice that the checksum has changed. All VIC and 64 listings in COMPUTE! now have a number appended to the end of each line, for example, :rem 123. Don't
enter this statement. It is just for your information. The rem is used to make the number harmless if someone does type it in. It will, however, use up memory if you enter it, and it will cause the checksum displayed at the top of the screen to be different, even if you entered the rest of the line correctly.

The Atari checksum is found immediately to the left of each line number. This makes it impossible to type in the checksum accidentally, since a program line must start with a number.

Just type in each line (without the printed checksum), and check the checksum displayed at the top of the screen against the checksum in the listing. If they match, go on to the next line. If they don't, there's a mistake. You can correct the line immediately, instead of waiting to find the error when you RUN the program.

The Proofreader is not picky with spaces. It will not notice extra spaces or missing ones. This is for your convenience, since spacing is generally not important. Occasionally proper spacing is important, but the article describing the program will warn you to be careful in these cases.

Nobody's Perfect

Although the Proofreader is an important aid, there are a few things to watch out for. If you enter a line by using abbreviations for commands, the checksum will not match up. This is because the Proofreader is very literal: It looks at the individual letters in a line, not at tokens such as PRINT. There is a way to make the Proofreader check such a line. After entering the line, LIST it. This makes the computer spell out the abbreviations. Then move the cursor up to the line and press RETURN. It should now match the checksum. You can check whole groups of lines this way. Atari users should beware of using ? as an abbreviation for PRINTthey're not the same thing in the Proofreader's eyes.

The checksum is a sum of the ASCII values of the characters in a line. VIC and 64 owners may wonder why the numbers are so small, never exceeding 255. This is because the addition is done only in eight bits. A result over 255 will roll over past zero, like an odometer past 99999. On the Atari, the number is turned into two letters, both for increased convenience and to make the Proofreader shorter. For the curious, the letters correspond to the values of the left and right nybbles added to 33 (to offset them into the alphabet). This number is then stored directly into screen memory.

Due to the nature of a checksum, the Proofreader will not catch all errors. Since $1+3+5=3+1+5$, the Proofreader cannot catch errors of transposition. In fact, you could type in the line in any order, and the Proofreader wouldn't notice. Anytime the Proofreader
seems to act strange，keep this in mind．Since the ASCII values of the number $18(49+56)$ and $63(54+51)$ both equal 105，these numbers are equal according to the Proofreader．There really is no simple way to catch these kinds of errors．Fortunately，the Proofreader will catch the majority of the typing mistakes most people make．

If you want the Proofreader out of your way，just press SYSTEM RESET or RUN／STOP－RESTORE．If you need it again，enter SYS 828 （VIC／64）or PRINT USR（1536）（Atari）．You must disable the Proofreader before doing any tape operations on the VIC or 64.

Hidden Perils

The Proofreader＇s home in the VIC and 64 is not a very safe haven．Since the cassette buffer is wiped out during tape operations，you need to disable the Proofreader with RUN／STOP－RESTORE before you SAVE your program．This applies only to tape use．Disk users or Atari owners have nothing to worry about．

Not so for VIC and 64 owners with tape drives． What if you type in a program in several sittings？The next day，you come to your computer，LOAD and RUN the Proofreader，then try to LOAD the partially completed program so you can add to it．But since the Proofreader is trying to hide in the cassette buffer，it is wiped out！

What you need is a way to LOAD the Proofreader after you＇ve LOADed the partial program．The problem is，a tape load to the buffer destroys what it＇s supposed to load．

After you＇ve typed in and RUN the Proofreader， enter the following lines in direct mode（without line numbers）exactly as shown：

AS＝＂PROOFREADER．T＂：B\＄＝＂\｛1 $1 \varnothing$ SPACES $\}$＂：FOR $\mathrm{X}=1$ TO 4：A\＄＝A\＄＋B\＄：NEXTX
FOR $\mathrm{X}=886$ TO 1ø18：A $\$=\mathrm{A} \$+\mathrm{CHR}(\operatorname{PEEK}(\mathrm{X}))$ ： NEXTX
OPEN 1，1，1，AS：CLOSE1
After you enter the last line，you will be asked to press record and play on your cassette recorder．Put this program at the beginning of a new tape．This gives you a new way to load the Proofreader．Anytime you want to bring the Proofreader into memory without disturbing anything else，put the cassette in the tape drive，rewind，and enter：

OPEN1：CLOSE1

You can now start the Proofreader by typing SYS 886．To test this，PRINT PEEK（886）should return the number 173．If it does not，repeat the steps above， making sure that A\＄（＂PROOFREADER．T＂）contains 13 characters and that B\＄contains 10 spaces．

You can now reload the Proofreader into memory whenever LOAD or SAVE destroys it，restoring your personal typing helper．

Incidentally，you can protect the cassette buffer on the Commodore 64 with POKE 178，165．This POKE should work on the VIC，but it has caused numerous problems，probably due to a bug in the VIC operating system．With this POKE，the 64 will not wipe out the cassette buffer during tape LOADs and SAVEs．

Program 1：VIC／64 Proofreader

$1 \varnothing \varnothing$ PRINT＂\｛CLR\}PLEASE WAIT...":FORI=886TO 1ø18：READA：CK＝CK＋A：POKEI，A：NEXT
$11 \varnothing$ IF CK＜＞17539 THEN PRINT＂\｛DOWN\}YOU MAD E AN ERROR＂：PRINT＂IN DATA STATEMENTS． ＂：END
120 SYS886：PRINT＂\｛CLR\}\{2 DOWN\}PROOFREADER ACTIVATED．＂：NEW
886 DATA $173, \varnothing 36, \varnothing \emptyset 3,2 \emptyset 1,15 \emptyset, 2 \varnothing 8$
892 DATA Øø1，Ø96，141，151，Øø3，173
898 DATA Ø37，Øø3，141，152，øø3，169
$9 \varnothing 4$ DATA 15ø，141，Ø36，øø3，169，øø3
$91 \varnothing$ DATA 141，Ø37，Øø3，169，Øøø，133
916 DATA 254，Ø96，Ø32，Ø87，241，133
922 DATA $251,134,252,132,253, \varnothing \varnothing 8$
928 DATA 2ø1，Ø13，24ø，Ø17，2ø1，ø32
934 DATA $24 \emptyset, \emptyset \emptyset 5, \varnothing 24,1 \varnothing 1,254,133$
940 DATA $254,165,251,166,252,164$
946 DATA $253, \varnothing 40, \emptyset 96,169, \varnothing 13, \varnothing 32$
952 DATA $210,255,165,214,141,251$
958 DATA Øø3，2ø6，251，øø3，169，øøø
964 DATA $133,216,169, \emptyset 19, \emptyset 32,21 \emptyset$
$97 \emptyset$ DATA $255,169, \varnothing 18, \varnothing 32,21 \varnothing, 255$
976 DATA $169, \varnothing 58, \varnothing 32,21 \varnothing, 255,166$
982 DATA $254,169, \varnothing 00,133,254,172$
988 DATA 151，Øø3，192，Ø87，2ø8，Øø6
994 DATA Ø32，2ø5，189，ø76，235，øØ3
1øøø DATA Ø $32,2 \emptyset 5,221,169, \varnothing 32, \varnothing 32$
$1 \emptyset \emptyset 6$ DATA $21 \varnothing, 255, \varnothing 32,21 \varnothing, 255,173$
1012 DATA 251，Øø3，133，214，076，173
1018 DATA øø3

Program 2：Atari Proofreader

1 Øロ GRAPHICS \emptyset
110 FOR I＝1536 TO $17 \emptyset \emptyset:$ READ A：POKE I ，$A: C K=C K+A: N E X T$ I
120 IF CKく＞19め72 THEN ？＂Error in DA TA statements．Check typing＂：END
$139 A=$ USR（ 1536 ）
140 ？？＂Automatic Proofreader now activated．＂
150 END
1536 DATA $164,160,0,185,26,3$
1542 DATA $201,69,24$ 月， $7,20 \varnothing, 20 め$
1548 DATA $192,34,208,243,96,209$
1554 DATA $169,74,153,26,3,2$ פЮ
1560 DATA $169,6,153,26,3,162$
1566 DATA $\wp, 189,0,228,157,74$
1572 DATA $6,232,224,16,208,245$
1578 DATA $169,93,141,78,6,169$
1584 DATA $6,141,79,6,24,173$
159 DATA $4,228,105,1,0141,95$
1596 DATA $5,173,5,228,105$ ，
1692 DATA $141,96,6,169,0,133$
1698 DATA $203,96,247,238,125,241$
1614 DATA $93,6,244,241,115,241$
$162 \emptyset$ DATA $124,241,76,205,233$ ，
1626 DATA $9,0, \varnothing, \boxed{6}, 32,62$
1632 DATA $246,8,201,155,240,13$
1638 DATA $261,32,249,7,72,24$
1644 DATA $1 \varnothing 1,2 \emptyset 3,133,2 \emptyset 3,1 \varnothing 4,4 め$
1659 DATA $96,72,152,72,138,72$
1656 DATA $169,9,169,128,145,88$
1662 DATA $299,192,49,208,249,165$
1668 DATA $2 \boxminus 3,74,74,74,74,24$
1674 DATA $195,161,160,3,145,88$
1680 DATA $165,203,41,15,24,165$
1686 DATA $161,206,145,88,169,0$
1692 DATA $133,203,1 \emptyset 4,17 \varnothing, 104,168$
1698 DATA $194,40,96$

How To Type COMPUTE!'s Programs

Many of the programs which are listed in COMPUTE! contain special control characters (cursor control, color keys, inverse video, etc.). To make it easy to tell exactly what to type when entering one of these programs into your computer, we have established the following listing conventions. There is a separate key for each computer. Refer to the appropriate tables when you come across an unusual symbol in a program listing. If you are unsure how to actually enter a control character, consult your computer's manuals.

Atari 400/800

Characters in inverse video will appear like: mobamespermase. Enter these characters with the Atari logo key. [风].

When you see	Type	See	
(CLEAR)	ESC SHIFT <	5	Clear Screen
(UP)	ESC CTRL -	4	Cursor Up
CDOHN3	ESC CTRL =	4	Cursor Down
(LEFT)	ESC CTRL +	${ }^{*}$	Cursor Left
(RIGHT)	ESC CTRL *	,	Cursor Right
(BACK S)	ESC DELETE	,	Backspace
(DELETE)	ESC CTRL DELETE	cI	Delete character
(INSERT)	ESC CTRL INSERT	13	Insert character
(DEL LINE)	ESC SHIFT DELETE	E	Delete line
(INS LINE)	ESC SHIFT INSERT	53	Insert line
(TAB)	ESC TAB	,	TAB key
(CLR TAB)	ESC CTRL TAB	E	Clear tab
(SET TAB)	ESC SHIFT TAB	θ	Set tab stop
(BELC)	ESC ETRL 2	(5)	Ring buzzer
(ESC)	ESC ESC	E	ESCape key

Graphics characters, such as CTRL-T, the ball character e will appear as the "normal" letter enclosed in braces, e.g. (T).

A series of identical control characters, such as 10 spaces, three cursor-lefts, or 20 CTRL-R's, will appear as 110 SPACES 1 , 3 LEFT), 120 R 1, etc. If the character in braces is in inverse video, that character or characters should be entered with the Atari logo key. For example, (m) means to enter a reverse-field heart with CTRL-comma, $(5 \mathrm{~m})$) means to enter five inverse-video CIRL-U's.

Commodore PET/CBMNIC/64

Generally, any PET/CBM/VIC/64 program listings will contain words within braces which spell out any special characters: (DOWN) would mean to press the cursor down key. 15 SPACES ; would mean to press the space bar five times.

To indicate that a key should be shifted (hold down the SHIFT key while pressing the other key), the key would be underlined in our listings. For example, S would mean to type the S key while holding the shift key. If you find an underlined key enclosed in braces (e.g., $\{10 \mathrm{~N}\}$), you should type the key as many times as indicated (in our example, you would enter ten shifted N 's). Some graphics characters are inaccessible from the keyboard on CBM Business models ($32 \mathrm{~N}, 8032$).

For the VIC and 64, if a key is enclosed in special brackets, $k \geqslant$, you should hold down the Commodore key while pressing the key inside the special brackets. (The Commodore key is the key in the lower left corner of the keyboard.) Again, if the key is preceded by a number, you should press the key as many times as indicated.

Rarely, you'll see in a Commodore 64 program a solitary letter of the alphabet enclosed in braces. These characters can be entered by holding down the CTRL key while typing the letter in the braces. For example, (A) would indicate that you should press CTRL-A.

About the quote mode: you know that you can move the cursor around the screen with the CRSR keys. Sometimes a programmer will want to move the cursor under program control. That's why you see all the (IEFFI's, (HOME)'s, and fBLU)'s in our programs. The only way the computer
can tell the difference between direct and programmed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you are in the quote mode. If you type something and then try to change it by moving the cursor left, you'll only get a bunch of reverse-video lines. These are the symbols for cursor left. The only editing key that isn't programmable is the DEL key; you can still use DEL to back up and edit the line. Once you type another quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces into a line. In any case, the easiest way to get out of quote mode is to lust press RETURN. You'll then be out of quote mode and you can cursor up to the mistyped line and fix it.

Use the following tables when entering special characters:
VIC And 64
When You

All Commodore Machines

Clear Screen (CLR)
Home Cursor (HOME
Cursor Up \{UP\}
Cursor Down \{DOWN\}
Cursor Right (RIGHT)

Cursor Left (LEEFT) Insert Character (INST)
Delete Character (DEL)
Reverse Field On (RVS)
Reverse Field Off $($ OFF $)$

Apple II / Apple II Plus

All programs are in Applesoft BASIC, unless otherwise stated. Control characters are printed as the "normal" character enclosed in braces, such as iDI for CTRL -D. Hold down CTRL while pressing the control key. You will not see the special character on the screen.

Texas Instruments 99/4

The only special characters used are in PRINT statements to indicate where two or more spaces should be left between words. For example, ENERGY $\{10$ SPACES $\}$ MANAGEMENT means that ten spaces should be left between the words ENERGY and MANAGEMENT. Do not type in the braces or the words 10 SPACES. Enter all programs with the ALPHA LOCK on (in the down position). Release the ALPHA LOCK to enter lowercase text.

CAPUTE

 Modifications Or Corrections To Previous Articles
Atari Snertle

Program 3 (p. 94) of this math tutorial from the May issue has a bug in its subtraction routine. In those cases when the answer to the displayed problem should be zero, a zero will not be accepted as the correct result. Donald Carlson points out that line 362 should read as follows:

362 IF $\mathrm{Q}=2$ AND $\mathrm{K}<=\mathrm{L}$ THEN M=L-K

64 Hi-Res Graphics Editor

The notes to this program (May issue, p. 82) failed to state the required starting and ending addresses to use when typing the MLX portion of the editor (Program 2). The values are 49152 for the start and 51553 for the end. Also, the series
of steps required to set up the program may seem cumbersome. Andy Van Duyne has provided this short program, which will perform all the steps for you:

```
1\varnothing IF FL=ø THEN FL=1:LOAD"HIRES/ML",8,1
2ø PRINT"{CLR}{2 DOWN}POKE642,128: POKE44,
    128:POKE32768,ø:NEW"
3ø PRINT"{3 DOWN}LOAD"CHR$(34)"HIRES/BAS"
    CHR$(34)",8"
40 PRINT"{HOME}";
5ø POKE 198,6:POKE 631,13:POKE 632,13:POK
    E 633,13
60 POKE 634,82:POKE 635,213:POKE 636,13
```

The program assumes you have used the filenames HIRES/ML for the machine language portion (typed in with MLX) and HIRES/BAS for the BASIC portion (Program 3). Change these names in lines 10 and 30 to match the names you used. To use the program with tape, change the 8 to a 1 in lines 10 and 30 . You must have the BASIC portion saved on the tape immediately following the machine language portion.

The screen dump feature of the editor will not work with the new Commodore 1526 printer, since this model does not have the dot-addressable graphics feature of the Commodore 1525 printer.

YOU CAN'T TELL A DISK DRIVE BY ITS COVER!!

WITH A HAPPY ENHANCEMENT INSTALLED THESE ARE THE MOST POWERFUL DISK DRIVES FOR YOUR ATARI COMPUTER
WARP SPEED SOFTWARE DISK READING AND WRITING 500% FASTER

> HAPPY BACKUP - Easy to use backup of even the most heavily protected disks
> HAPPY COMPACTOR - Combines 8 disks into 1 disk with a menu
> WARP SPEED DOS - Improved Atari DOS 2.0 with WARP SPEED reading \& writing
> SECTOR COPIER - Whole disk read, write and verify in 105 seconds
> 1050 ENHANCEMENT - Supports single, 1050 double, and true double density $\mathbf{8 1 0}$ ENHANCEMENT - Supports single density

SPECIAL SUGGESTED RETAIL PRICE: Get the HAPPY ENHANCEMENT 810 or 1050 version with the HAPPY BACKUP PROGRAM, plus the multi drive HAPPY BACKUP PROGRAM, plus the HAPPY COMPACTOR PROGRAM, plus the HAPPY DRIVE DOS, plus the HAPPY SECTOR COPY, all with WARP DRIVE SPEED, including our diagnostic, a $\$ 350.00$ value for only $\$ 249.95$, for a limited time only! Price includes shipping by air mail to U.S.A. and Canada. Foreign orders add $\$ 10.00$ and send an international money order payable through a U.S.A. bank. California orders add $\$ 16.25$ state sales tax. Cashiers check or money order for immediate shipment from stock. Personal checks require $2-3$ weeks to clear. Cash COD available by phone order and charges will be added. No credit card orders accepted. ENHANCEMENTS for other ATARI compatible drives coming soon, call for information. Specify 1050 or 810 ENHANCEMENT, all 1050s use the same ENHANCEMENT. Please specify - H model for all 810 disk drives purchased new after February 1982, call for help in 810 ENHANCEMENT model selection. Dealers now throughout the world, call for the number of the dealer closest to you.

COMPUTER MAIL ORDER

ALIEN VOICE BOX
Atari.
-119.00
Apple

AXIOM
AT. 100 Atar intertace Printer GP-100 Paralle Interfface. AT. 845 Itrerface for Atari

BMC
401 Letter Quaity EX-80 Dot Marrix

CENTRONICS
122 Parsile
....
39-1 Paralid.
739-3 Serial
C.ITOH

Gorila Banana
Aowniter 8510
Aownter 8510P
Prowniter 1550 P
A10 (18 PDS).
A10 18
8600
$\mathrm{~F} 10-40$
P
F10.40.
F10-55.
COMREX
ComWriter 11 Letter Qualty...
DIABLO
620 Letter Quaity.
DIABLO
630 Letter Quaity...............
Trector Feed
RX-80, RX-80FT, RX- 100
RX-80, RX-80
FX-80, $7 \mathrm{PX}-100$

Pnsm 80 For Corriguration
Atism 32 for Configurstion
JUKI

PRINTERS

-23900
239.00
.19900 199.00 1589.00 $\cdot 269.00$
299.00 199.00 249.00
.209 .00
.379 .00
.599 .00
569.00
.929 .00
929.00
.999 .00
-1349.00
.499 .00
.949 .00
.1749 .00

1949.00

...CALL
CALL
.CALL
...CALL
CALL
.499 .00

MANNESMAN TALLY 160 L. 180L.....

O23 Dat Matrix NEC 8025 Dat Matrix. 2010/15/30. 3510/15/30
\qquad
EC 589.00 -799.00 . 309.00 $* 379.00$
$* 69900$ $\begin{array}{r}* 669.00 \\ \hline 749.00\end{array}$ 1369.00 -1799.00
OKIDATA
82, 83, 84, 92, 93, 2350, 2410.........CALL OLYMPIA
Compect 2.
479.00

Compect RO
509.00

8MITH CORONA Tr-1000......
$\cdot 399.00$
SILVER REED
500 Letter Quality
.449 .00 550 Letter Quality
*569.00 $\bullet 899.00$
-299.00
299.00
$\cdot 399.00$
-449.00
475.00
+599.00
599.00
$\cdot 699.00$

TOSHIBA
-869.00
1699.00
. 489.00
120 P
TRANSTAR
-689.00

MEMORY BOARDS
Axjon 32 K
Axlon 48K
Axion 128K
.59 .00 . 99.00 299.00

Intec 32 K
Intec 48 K Intec 64 K Intec Real Time Clock 85.00 -29.00

DISK DRIVES FOR ATARI

 PERCOM
$\begin{array}{r}1369.00 \\ \hline 259.00\end{array}$

RFD 44-S1
259.00
-449.00
$* 369.00$
$* 699.00$
-539.00

GT Drive
INDUS
RANA
AT-D2.................. TRAK
379.00
.329 .00
$\cdot 389.00$

ANCHOR
Volksmodem.
Mark IL.
Mark VII [Auto Ans/Auto Dial]
Mark XII [1200 Beud]..................................
TRS-80 Color Computer..... 9 Volt Power Supply...........
HAYES
Smartmodem 300 Smartmodern 1200 Smartmodern 1200 Micromodern lle... Micromodern 1 Smart Com

MODEMS

	NOVATION	
. 59.00	J-Cat	-99.99
. 79.00	Cat	-139.00
. 1119.00	Smart Cax 103	-179.00
*299.00	Smart Cat 103/212	*399,00
...999.00	AutaCat.	*219.00
..... 9.00	212 AutoCat	-549.00
	Apple Cat Il.	-249.00
-209.00	212 Apple Cat.	*449.00
.499.00	Apple Cat 212 Upgrade.	*269.00
. 449.00		
.269.00	ZENITH	
-299,00	ZT-1................................	*339.00
-89.00	ZT-10	-309.00
-199.00	2T-11	-369.00

DISKETTES

MONITORS

:149.00 HX-12 RGB
. 149.00
.159 .00
159.00
$\cdot 169.00$
169.00
$\cdot 279.00$
279.00
.299 .00
299.00
$\cdot 419.00$
-349.00 400 Med-Res RGB
-749.00

AMDEK

BMC

12" Green H -fe
9191 -13" Color.
GORILLA
12" Green.
$12 "$ Amber
NEC
JB 1260 Green.
JB 1260 Green JB 1201 Areen. JB 1215 Anber JC 1216 RGB... JC 1460 Color

canada

Ontario/Cuabec
800-268-3974
Other Provinces800-268-4558
In Toronto call (416)328-0866,Dopt 105
Ordar Status Numbar: 828-0866
2505 Dunwin Drive, Unit 38 Mississauga, Ontario, Canada L5L1T1

PRINCETON GRAPHICS
-
. 88.99
-119.99
$\cdot 249.00$
-88. 99 .95 .99
109.00
$\mathbf{1 4 9 . 9 9}$
•149.99
•159.99
'159.99
-259.00
259.00
$\cdot 429.00$
$* 359.00$

210 Color PGB TAXAN
529.00
$\cdot 269.00$
299.00
400 Med-Res RGB $\quad 319.00$
415 Hi-Res RGB.......................... 439.00

420 Hi-fes RGB [IBM]489.00

Pi 1, 9" Green USI
Pi 1, 9" Green..................................999.99

Pi 3, 12" Amber
A 4, 9" Anber $\quad 139.99$

QUADRAM
Quadchrome 8400 Color
ZENITH
ZVM 122 Amber.
ZVM 123 Green........
ZVM 135 Color/RGB.
$\cdot 89.99$
west
800-648-3311
In NV call (702)588-5654, Dept. 105
Order Status Numbar: 588-5654
P.0.Box 6689

Stateline, NV 89449

Customer Service Number: 327-1450
477 E. 3rd St., Williamsport, PA 17701

COMPUTERMAIL ORDER

east
800-233-8950
In PA call (717)327-9575, Dapt. 105
Order Status Number: 327-9576
Customar Service Number: 327-1450
477 E. 3rd St., Williamsport, PA 17701
\section*{canada}
Ontario/Cuebec 800-268-3974
Other Provinces800-268-4558
In Toronto call (416)328-0866, Dapt. 105 Order Status Number: 828-0866 2505 Dunwin Drive, Unit 3B
\section*{west

800-648-3311}
In NV call (702)588-5654, Dept. 105
Order Status Number: 588-5654
P.O.Box 6589
Stateline, NV 89449
INTERNATIONAL ORDERS: All shipments outside the Continental United States must be pre-paid by certified check only. Include 3\% (minimum 55) shipping and handling.
EDUCATIONAL DISCOUNTS: Additional discounts are available to qualified Educational Institutions.
APO \& FPO: Add 3\% (minimum ${ }^{5}$) shipping and handing.

Lyco Computer Marketing \& Consultants TO ORDER
 CALL US TOLL FREE 800-233-8760

DISK DRIVES

ATARI ATB8.PD $\$ 329.00$

 AT-88 DOUBLER $\$ 129.00$ ADD-ON DRIVES.........S CALL| HARD | FOR | 5 MEG |
| :---: | :---: | :---: |
| DISK | APPLE | 10 MEG |
| DRIVES | IBM.PC | 15 |
| AVAILABLE | | 20 M |

(1) BOMO

 VIC 64VIC 1541 S CALL SSI
KNIGHTS OF DESERT . EAGLES. TIGERS IN SNOW COMBAT LEADER BATTLE FOR N EPYX 64
JUMPMAN C/D JUMPMAN
PITSTOP R. TEMPLE ASPHAI GATE T ASPHAI CRUSH. C\&C C/D. INFOCOM 64 ENCHANTER
PLANETFALL
$\$ 239.00$
\$26.75 \$26.75 \$26.75 \$26.75 \$26.75
\$27.75 $\$ 27.75$ $\$ 27.75$ $\$ 27.75$ S27.75 S21.75
\$34.75
S34.75

TRAK DISK DRIVES
AT-D1 $\$ 379.00$ AT-D2 $\$ 399.00$ AT-D2 TURBO PAK $\$ 22.95$ PRINTER CABLE $\$ 22.95$

CONCORD DISK DRIVES

APPLE 163K DRIVE $\$ 199.00$ APPLE 326K DRIVE $\$ 229.00$ APPLE CONTROLLER 522.00
CARD..................... $\mathbf{5 6 9 . 0 0}$

COMMODORE VIC 174 K ... $\$ 289.00$ COMMODORE VIC 348 K . . $\$ 359.00$

ATARI 176K MASTER...S289.00 ATARI 348 K MASTER ... $\$ 369.00$ ATARI ADD-ON DRIVES...SCALL
DATASOFT
POOYAN C/D............ $\$ 21.75$
O'RILEYS MINE $\$ 21.75$
PARKER 20
FROGGER $\$ 33.75$ PROFESSIONAL SOFTWARE
WORD PRO 3 559.75 SPELL RIGHT 539.75 BOTH TOGETHER $\$ 79.75$ EASTERN-HOUSE
RABBIT 20 ROM $\$ 34.75$
RABBIT 64 ROM 534.75

KOALA

oall tablet.
. 884.75 GEOMETRIC DESIGNS ... $\mathbf{S 2 2} 75$ LOGO DESIGN............. $\mathbf{S 2 7 . 7 5}$ ILLUSTRATOR. 599.75 ONG WRITER D $\$ 27.75$ MASTER TYPE $\$ 27.75$

CONTINEN	
HOME ACCOUNT D $\$ 44.75$	
TAX ADVANTAGE.	
BOOK OF APPLE	
SOFTWARE	S16.95
GENERAL LEDGER	\$179.95
ACCOUNTS PAY	\$179.95
ACCOUNTS REC	\$179.95
PAYROLL	\$179
MT	\$329.95

PEACHTREE SOFTWARE

LIST MANAGER $\$ 199.00$ BUSINESS GRAPHICS $\mathbf{\$ 2 2 5 . 0 0}$ GRAPHICS LANGUAGE... $\mathbf{\$ 2 9 9 . 0 0}$ REQUIRES COBAL RUNTIME

ACCTS PAYABLE I $\$ 495.00$ ACCTS PAYABLE II.... $\$ 1695.00$ PAYROLL I................. $\$ 495.00$ PAYROLL II $\$ 1695.00$ GENERAL LEDGER I.... $\$ 495.00$ GENERAL LEDGER II ...S1695.00

CP/M VERSION

PEACHPACK 4 ACCTS PAYABLE III. ACCTS PAYABLE IV. ACCTS REC III
\qquad ACCTS REC IV GENERALLEDGERIV... $\$ 899.00$ INVENTORY MGMT I.... $\$ 549.00$ INVENTORY MGMT II... $\mathbf{S 8 9 9 . 0 0}$ PAYROLL III. III..... . 5499.00 PAYROLLIV ICING I... $\$ 899.00$ SALES INVOICING I $\$ 549.00$ SALES INVOICING....... $\$ 899.00$

(mostercord TO ORDER

CALL TOLL FREE 800-233-8760
or send order to Lyco Computer P.O. Box 5088

Jersey Shore. PA 1774 C

DISKETTES

 ELEPHANTSINGLE SIDE SD (10) $\$ 17.75$ SD (100)S16.75/10 SINGLE SIDE DD (10) $\$ 21.75$ DD (100).............S20.75/10 DOUBLE SIDE DD (10) ... $\$ 26.75$ DD (100) S24.75/10

MAXELL

MD1 (10)
$\$ 27.75$ MD2 (10) $\$ 37.75$

CERTRON
 CASSETTES

CC-10 (12)
\$15.9y
CC-20 (12)
$\$ 17.99$

inNovative CONCEPTS

$\begin{aligned} & \text { DIS } \\ & \text { DIS } \\ & \text { DI } \end{aligned}$

MODEMS

ANCHOR MARK I $\$ 45.75$ ANCHOR MARK II $\$ 79.75$ HAYES SMART $\$ 239.00$ HAYES MICRO II $\$ 309.00$
MICROBIT 1000 C $\$ 129.00$ CAT. D-CAT J-CAT
APPLE CAT II. AT.... INFOCOM
DEADLINE $\$ 34.75$ ZORK 1.2, or 3 $\$ 34.75$ ENCHANTER 334.75 PLANETFALL $\$ 34.75$ SPINNAKER
KINDERCOMP D............ $\mathbf{\$ 2 1 . 7 5}$
STORY MACH D $\mathbf{S 2 3 . 7 5}$ FACE MAKER D $\$ 23.75$ SNOOPER TR D............. $\$ 29.75$ SNOOPER T2 D............. $\$ 29.75$ DELTA DRAW D.............. $\$ 32.75$ FRACTION F D............. $\$ 23.75$ ALPHABET ZOO D......... \$21.75 MOST AMAZING D $\$ 26.75$ RHYMES \& RID D......... $\$ 21.75$APPLE DUMPLING GX.$\$ 99.75$ APPLE DUMPLING

16K BUFFER
$\$ 179.75$
TEXT PRINTER
INTERFACE
$\$ 79.75$

ATARI

INFOCOM

DEADLINE
$\$ 34.75$

ZORK 1.2, or 3
ENCHANTER.

EDUFUN

GULP ARROW
GRAPHICS.
FACE FLASH
\$24.75

CONTINENTAL
HOME ACCOUNT D $\$ 44.75$ TAX ADVANTAGE.......... $\mathbf{\$ 3 5} 75$ BOOK OF ATARI
SOFTWARE
$\$ 26.75$ $\$ 34.75$
,
\qquad

COMPUTER CARE

BIB

DISK DRIVE CLEANER... $\$ 12.75$ COMPUTER CARE KIT ... $\$ 19.75$

NORTRONICS

DISK DRIVE CLEANER WITH SOFTWARE FOR IBM-PC. ATARI, VIC. APPLE. \& TI.
\$29.75
DISK CLEANER REFILLS... $\$ 14.75$ CASS DRIVE CLEANER.... $\$ 9.95$ MEDIA BULK ERASER ... $\$ 46.75$

MONITORS

SAKATA COLOR.......... $\$ 249.00$ TAXAN GREEN $\$ 119.00$ TAXAN AMBER.......... $\$ 129.00$ TAXAN RGB
COMPOSITE.
ZENITH AMBER $\$ 105.00$ ORILLA GREEN $\$ 95.00$ GORILLA GREEN $\mathbf{\$ 8 8 . 0 0}$ GORILLA AMBER 595.00 NEC JB1260................. $\$ 99.00$ NEC JB1 205 $\$ 145.00$ NEC JB1215 COLOR ... $\$ 269.00$ AMDEK GREEN $\$ 145.00$ AMDEK AMBER $\$ 149.00$
AMDEK COLOR 1 $\$ 289.00$
SSI
KNIGHTS OF DESERT ...S26.75
EAGLES.................... $\$ 26.75$
TIGERS IN SNOW $\$ 26.75$
GERMANY $1985 \ldots \ldots \ldots .$. . $\$ 36.75$
BATTLE FOR
NORMANDY
SHATTERED ALLIANCE... $\mathbf{\$ 3 9 . 7 5}$
SIERRA ON-LINE
ULTIMA II.
......... 539.75

ATARISOFT

PACMAN
$\$ 25.75$
DONKEY KONG............ $\$ 25.75$
DIG DUG $\$ 25.75$
CENTIPEDE $\$ 25.75$
ROBOTRON.................. $\$ 25.75$
PROGRAM DESIGN
ANALOGIES $\$ 18.50$
PREP FOR SATS $\$ 79.75$
PRESCHOOLIO
BUILDER
$\$ 18.75$
READING COMP.......... $\$ 18.75$
VOCABULARY BUILDER... $\$ 18.75$

SCARBOROUGH

SONG WRITER D......... $\mathbf{\$ 2 7 . 7 5}$
MASTER TYPE $\$ 27.75$
EASTERN HOUSE
MONKEY WRENCH II $\$ 52.75$ DON'T ASK SOFTWARE SAM.
. $\$ 39.75$ ABUSE .75 WORD RACE $\$ 24.75$ PROGRAM DESIGN ANALOGIES $\$ 14.50$ PREP FOR SAT'S $\$ 79.75$ PRESCHOOL IQ
BUILDER.
$\$ 16.75$
READING COMP........... $\$ 16.75$
VOCABULARY BUILDER... $\$ 16.75$

Lyco Computer Marketing \& Consultants TO ORDER
 CALL US TOLL FREE 800-233-8760

MANNESMANN TALLY

NEC8025 $\$ 369.00$

PRINTER

INTERFACING

AVAILABLE FOR COMMODORE
VIC, APPLE, ATARI, IBM-PC
TRS-80. TI. AND OTHERS
stai SAVE
ON THESE ON THESE
IN-STOCK

Сітон MICRONTICS

GEMINI 10X........	.. \$259.00
GEMINI 15X........	.. $\$ 379.00$
DELTA 10.	. $\$ 449.00$
DELTA 15.	. 5525.00
RADIX 10	. 5575.00
RADIX 15	. 5675.00
POWERTYPESCALL
SWEET P(Model 100)	... $\$ 549.00$
STX80	. $\$ 149.00$

GORILLA GX-100	"\$169.00
GORILLA SERIAL .	\$199.00
PROWRITER 8510	. 5335.00
PROWRITER II	. 5535.00
8600	. 5899.00
STARWRITER	\$999.00
PRINTMASTER	\$1299.00
SHEET FEEDER.	. 5425.00
620	. 5929.00
630	\$1699.00
8510 SP	. 5499.00
8510 SCP.	. 5559.00
A10 LETTER QUAL	. $\$ 499.00$

PRINTING PAPER

3000 SHEETS
FANFOLD.
1000 SHEETS
FANFOLD. \qquad
$\$ 42.75$

1000 SHEETS LETTER 200 SHEETS LETTER 88.99 150 RAG STATIONERY... $\$ 10.99$ MAILING LABELS (1 in) ... $\$ 9.75$ 14×111000 FANFOLD ... $\$ 24.75$

WICO

COMMODORE \& ATARI JOYSTICKS16.75 RED BALL..................... ${ }^{\text {S1 }} 18.75$
BOSS JOYSTICK $\$ 12.75$ TRACK BALL............... 532.75 12 FT EXT CORD.............. 56.95 TI ADAPTER................... 59.95
APPLE ANALOG 534.75
IBM-PC ANALOG $\$ 34.75$

HES 64

MINER 2049 ROM . $\mathbf{S 2 9 . 7 5}$ MASTER TYPE...... $\mathbf{S 2 7 . 7 5}$

TO ORDER

POLICY

In-stock items shipped within 24 hours of order. Personal checks require four weeks clearance before shipping. No deposit on C O.D. orders. Freeshipping on prepaid cash orders within the continental U.S. PA residents add sales tax. All products subject to availability and price change Advertised prices show $4^{\text {an }}$ discount offered for cash add $4^{\text {a }}$ for Master Card or VIsa DEALER INQUIRIES INVITED.

C-64 ${ }^{\text {M }}$ and ATARI 400 ${ }^{\text {m }}$ OWNERS

SOLVE YOUR TRIGONOMETRY PROBLEMS THE EASY WAY AND SEE RESULTS

$\$ 10.00$ (DISK ONLY)

Check, Money Orders, VISA and MASTERCARD accepted. Please specify C-64 ${ }^{\text {ru }}$ or Atari-400 ${ }^{\text {ru }}$

Just Fun Software P.O. Box 25854
Colorado Springs, CO 80917 (303) 597-1965

C. 64 is a trademark of Commodore Electronics, Ltd. Atari is a trademark of Atari Corporation.

WHERE DID THAT

*@ \# \% VALUE COME FROM? Xref HELPER ${ }^{\text {T }}$

HELPS YOU FIND OUT!

From your Commodore 64 BASIC program on diskette, Xref HELPER sorts and lists the variables, constants, GOTOs, and GOSUBs with the line number of each occurrence. Fast, Xref HELPER scans most programs in one to five minutes. Printer required.
VISA $\$ 25.00$ plus $\$ 1.25$ shipping mosterctron
Canadian residents may pay CDN $\$ 32.40$ plus CDN $\$ 1.60$ shipping
(M)agreeable software, inc.

5925 Magnolia Lane • Plymouth, MN 55442 (612) 559-1108

HELPER is a trademark of (M)agreeable Software, Inc. Commodore is a trademark of Commodore Electronics Ltd.

BREAK-THRU

ONLY

\$3495

SHIPPING \& HANDLING ADD \$2.50
Dealer Inquiries welcome
A compact and inexpensive Eprom eraser for the hacker. It erases two chips per exposure, so if you are one of those smart people who only makes little mistakes and only needs to erase two Eproms at a time, this eraser is for you.

7755 E. Evans • Suite $400 \cdot$ Scottsdale, AZ 85260 (602) 998-7550

Aspen Ribbons* brand replacements for
Tally ${ }^{\circledR}$ MT80 "Spirit" Microprinter Ribbons

Buy directly from a manufacturer and save! These ribbons are manufactured by Aspen Ribbons, Inc., as replacement ribbons for use on printers manufactured by other companies. ${ }^{*}$ Standard ink color is black. Red, green, blue, brown, and purple colors are available for $\$ 2.00$ extra per ribbon.
CALL FOR FREE CATALOG
PRICES (BLACK NYLON)

Tallys "Spirit" $\$ 4.25$ to $\$ 7.75$ ea.

 Price depends on quantity ordered.-Aspen Ribbons, Inc., is not affiliated with or licensed by any other company.

Aspen Ribbons, Inc. - 1700 N. 55th St.
Boulder, CO 80301-2796 - (303)444-4054
Telex: 45-0055 • End User: 800-525-0646
Wholesale: 800-525-9966

HIDEO \& COMPUTER REVOLUTION

 BSD ENTERPRISES

 BSD ENTERPRISES
 $800-346-5001$ on $212-438-4111$

ALL PRODUCTS ARE IN ALPHABETICAL ORDER. WE CARRY A FULL LINE OF LISTED BRANDS IF YOU DO NOT SEE WHAT YOU WANT, CALL AND ASK FOR IT

WHOLESALERS, DEALERS AND OTHER DISTRIBUTORS INQUIRIES INVITED. 212-438-4111 ext. \#18
 800-346-5001 212-438-4111

Advertisers Index

Reader Service Number/Advertiser Page
Abacus Software 67
Abacus Software 149
101 AB Computers 97
ABC Ware 79
Artworx 75
102 Aspen Ribbons, Inc 158
Atari, Inc. 4
103 The Avalon Hill Game Company 9
104 Batteries Included 43
105 Batteries Included 51
106 Brooktronix 103
BSD Enterprises 159
107 Cal-Abco/Peripherals Division 45
108 Cardco, Inc. IBC
Cass-A-Tapes 149
The CHF Company 69
Commodore Computers BC
CompuServe 36
109 CompuServe 37
ComputAbility 105
110 Computer Mail Order 154,155
111 Computer Outlet 113
Computer Warehouse 147
Cosmic Computers Unlimited 101
Dennison Computer Supplies, Inc. IFC
Discount Data Supply 158
112 Disk World!, Inc 91
Disk World!, Inc. 158
Disk World!, Inc. 158
Disk World!, Inc. 158
113 Eastern House 70
Electronic Arts 23
Epyx 35
Frontrunner Computer Industries 107
114 Gardner Computing Company 71
115 General Electric Company 41
Happy Computers, Inc. 153
116 Harmony Video And Electronics 132
Reader Service Number/Advertiser Page
Hytec Systems 25
BM 2,3
inmac 69
117 Jamware Computer Store 132
J \& R Music World 79
Jason-Ranheim 111
Juki Industries of America, Inc 31
Just Fun Software 158
118 Kalglo 103
119 Lyco Computer Marketing \&
Consultants 156,157
(M)agreeable software, inc. 158
Markel Service, Inc. 99
Maxell 11
Micro-Sys Distributors 109
120 Micro Ware 48
Midwest Micro Inc. 145
New American Library 99
121 Nibble Notch 145
Official Olympic Guide to Los Angeles 49
122 Orbyte Software 19
Pacific Exchanges 95
Pacific Exchanges 107
Pacific Exchanges 114
Pacific Exchanges 147
123 Parsec Research 145
Powersoft, Inc. 79
124 Precision Software, Inc 53
125 Professional Software Inc. 1
126 Protecto Enterprizes 82,83
127 Reader's Digest 13
128 Reston Computer Group 21
Scarborough Systems, Inc 7
129 Sentinel Technologies 66
SM Software Inc. 129
SM Software Inc. 129
130 SoftPeople Inc 55
Reader Service Number/Advertiser Page
Software City 95
131 Software Unlimited 158
Spinnaker 73
Strategic Simulations Inc. 29
132 sublOGIC Corporation 27
133 Such A Deal 91
134 Swintec Corporation 15
3G Company, Inc 103
Walling Co 158
York 10 71
COMPUTE! Books 32,33
COMPUTEI's Subscriber Services .. 143 COMPUTEI's Subscription 17

Save $\frac{\text { UP }}{\text { Ti }} 40 \%$ on COMPUTE!

Every issue of COMPUTE! contains up to 30 new programs and games. And a year's subscription brings them to you for less than 15 cents each! Plus you'll enjoy the most useful home computer advice, ideas and information anywhere! Subscribe now at up to 40% off the newsstand price. At less than 15 cents per program, this COMPUTE! offer is too good to pass up!
$\square 1$ year $\$ 24$-Save 32% ! $\square 2$ years $\$ 45$-Save 36% !
$\square 3$ years $\$ 65$-Save 40% !
Name \qquad
Address \qquad
City \qquad State Zip \qquad
\square Payment enclosed Charge my \square Visa \square MasterCard \square American Express Account No. Exp. date

COMPUTE! brings you programs and games for the following machines: Atari, PET/CBM, VIC-20, TI 99/4A, Apple, Commodore 64, Radio Shrek Color Computer.IBM PC and IBMPCir.

The Editor's Feedback:

Computer: \square PET \square Apple \square Atari \square VIC-2O \square Commodore 64 \square TI-99/4A \square Timex/Sinclair \square Radio Shack Color Computer
\square Other \qquad \square Don't yet have one ...

Are you a COMPUTE: Subscriber?Yes \square No I would like to see: Just
More Right Fewer

Specific applications programs.
 BASIC programs. Machine language programs.
 Tutorials.
Educational articles.
Detailed explanations of programs.
What do you like best about COMPUTE! ?

What do you like least?

COMPUTE! Magazine P.O. Box 5406 (Greensboro, NC 27435-0406

COMPUTE!'s
 FREE Reader Information Service

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.

Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.

Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTEI, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.
Use these cards and this address only for computer's Reader Information Service. Do not send with payment in any form.

COMPUTE!

101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122
123	124	125	126	127	128	129	130	131	132	133
134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155
156	157	158	159	160	161	162	163	164	165	166
167	168	169	170	171	172	173	174	175	176	177
178	179	180	181	182	183	184	185	186	187	188
189	190	191	192	193	194	195	196	197	198	199
200	201	202	203	204	205	206	207	208	209	210
211	212	213	214	215	216	217	218	219	220	221
222	223	224	225	226	227	228	229	230	231	232
233	234	235	236	237	238	239	240	241	242	243
244	245	246	247	248	249	250	251	252	253	254
255	256	257	258	259	260	261	262	263	264	265
266	267	268	269	270	271	272	273	274	275	276
277	278	279	280	281	282	283	284	285	286	287
288	289	290	291	292	293	294	295	296	297	298
299	300	301	302	303	304	305	306	307	308	309
310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331
332	333	334	335	336	337	338	339	340	341	342
343	344	345	346	347	348	349	350			

Circle 101 for a one year new U.S. subscription to COMPUTE! you will be billed for $\$ 24$.

Please print or type your full name and address. Limit one card per person.

Name
Address
City
State/Province Zip

Country

C=www.commodore.ca

"The Complete CARDCO Line" ... and still growing:

CARDCO provides "Commodore-ready" computer accessories that will enhance your utilization of Commodore-64 and VIC-20 Computers, increase their capability, and add to your enjoyment and skill. AND, they're available for use with oither personal computers, too.

Designed with the user in mind, CARDCO offers fine accessories including Printer Interfaces with and without graphics, Expansion Interfaces, Memory Expansions, Cassette Interfaces, Numeric Keypads PLUS "NOW" Software for your VIC-20 and C-64. These programs include the "WRITE NOW" Word Processor, "MAIL NOW" Mailing List, PRINIER UTILITY PROGRAMS on Tape and on Disk, "SPEL NOW" Spell Checker, "GRAPH NOW" including "PAINTNOW", and "FILENOW".
CARDCO has three new Letter Quality PRINTERS with your choice of drumhead design (8 1/2" carriage), Daisy Wheel Design (13 inch carriage) and Daisy

Wheel Design (11 inch carriage). "Commodoreready" . . plus; with compatible input for PC, PC jr., TRS-80 and many more personal computers. CARDCO'S NEW "DATA CASSEITE RECORDER/PLAYER" is also "Commodore-ready" and ready for instant shipment at prices that will amaze you.
CARDCO will constanty increase its line with unique and new products to enhance the enjoyment of computer owners.
Write for illustrated literature and prices or see CARDCO Computer Accessories and Software wherever Computers are sold.

commodore 64

 gicpeskl

 gicpeskl

 odore-The Excite

 odore-The Excite

 hent and Si

 hent and Si} implicity of Magic Desk!
 MAGIC DESK commands are PICTURES. (like the TYPEWRIER) the picture of the feature you wa ready to go.
 and screen animation make typing feature makes or memos...and the builtin tiling addresses, home inventory
keeping name MAGIC DESK are

Your COMMODORE 64, COn. Filing operations to know any somatically saved on
an unbeatable combination but you don and your text is is k an each drawer and diskette. There alder.

To PRINT a page you've typed, just pod on your COMM Move typed, the WASTE NIGITAL

BASKET under the which helps you keep track just press
MAGIC DESK easy to use... it's hard to man ely menus" appears to telly torture
Not only is MAGIC DESK and one of several messages show you how. Help messages ans the COMMODORE Key and Special messag make make a mist do next ck and waste basket.
show you how to number one in the world of microcomputers

[^0]: 5øø Tø=TI: REM INITIALIZE THE VARIABLE "T Ø"
 $51 \varnothing \mathrm{~T} \varnothing=\mathrm{T} \varnothing+\mathrm{D}:$ REM INCREASE "TØ" BY DURATIO N OF THE FIRST NOTE - D
 $52 \emptyset$ IF $T \emptyset<=T I$ THEN GOSUB $11 \varnothing \varnothing$: REM CHECK \{SPACE\} IF THE TIME IS UP
 525 REM IF SO SUBROUTINE $11 \varnothing \emptyset$ WILL CHANGE NOTES
 $53 \varnothing$ GOTO 52ø: REM IF NOT CHECK TIME AGAIN

