2340	PRINT TAB（6）；＂（ENTER 1 TO 14 ：：
2350	INPUT K
2369	IF（K＜1）＋（K＞14）THEN 2359
2376	$S=\varnothing$
2389	$\mathrm{R}=14$
2390	GOTO 49ø
$240 \emptyset$	REM DRAW THE SHELL
2410	$\mathrm{R} 5=5$
2426	COL＝13
2430	FOR I＝1 TO 4
2440	CALL HCHAR（I，COL，96，R5）
$245 \emptyset$	$\mathrm{R} 5=\mathrm{R} 5+2$
2460	COL $=$ COL－1
2470	NEXT I
2480	CALL HCHAR（5，9，96，12）
2490	RETURN
2500	REM DRAW THE HEAD
2519	CALL HCHAR（3，21，97）
2520	CALL $\operatorname{HCHAR}(3,22,96,2)$
2530	CALL $\operatorname{HCHAR}(4,21,96,3)$
2549	CALL $\operatorname{HCHAR}(4,22,128)$
2550	CALL $\operatorname{HCHAR}(5,21,96,3)$
2560	RETURN
2570	REM DRAW THE FEET AND TAIL
2589	FOR I＝1 TO 8
259＠	READ RS，C
260¢	CALL HCHAR（R5，C，96）
2619	NEXT I
2629	RESTORE
2630	$\begin{aligned} & \text { DATA } 6,9,6,12,6,18,7,12,7,13,7 \\ & , 18,7,19,5,22 \end{aligned}$
2640	RETURN
2659	REM ERASE THE HEAD
2660	FOR I＝3 TO 5
2670	CALL HCHAR（I，21，32，3）
2680	NEXT I
2690	RETURN
27 ¢ワ	REM DEFINE CHARS \＆COLORS
2719	CALL CHAR（96，＂FFFFFFFFFFFFFFFFF
2729	CALL CHAR（97，＂ø1ø3פ7ØF
2730	
2749	CAL）CHAR（128，＂øøøøøøøøøFøFøFø
2750	CALL CHAR（136，＂3ø3ø18øCø7ø3øøø
2760	CALL $\operatorname{COLOR}(9,3,1)$
2779	CALL COLOR（ $13,6,16$ ）
2789	CALL $\operatorname{COLOR}(14,14,3)$
2790	CALL CHAR（112，＂øøøøøøøøFFFFFFF
28øø	CALL CHAR（ 113 ，＂FøFøFØFØFøFØFøF
2819	CAL 70
282の	CALL CHAR（115，＂FFFFFFFFFFFFFFF $F^{\prime \prime}$ ）
2839	RETURN
2840	IF LEN（F\＄）$=2$ THEN $289 \emptyset$
285ø	$\mathrm{P}=\mathrm{VAL}(\operatorname{SEG} \$(F \$, 1,1)$ ）
2869	$\mathrm{X}=\mathrm{W}+4$
287ø	GOSUB 143Ø
288ø	RETURN
2890	$P=\operatorname{VAL}(\operatorname{SEG} \$(F \$, 1,1)$ ）
290．	$\mathrm{X}=\mathrm{W}$
2910	GOSUB 1430
2920	$\mathrm{P}=\mathrm{VAL}(\operatorname{SEG} \$(F \$, 2,1))$
2930	$\mathrm{X}=\mathrm{W}+4$
2949	GOSUB 143ø

295 R RETURN
2960 CALL VCHAR（ $14,11,115,3$ ）
$297 \emptyset \operatorname{CALL} \operatorname{HCHAR}(15,10,115)$
2989 CALL $\operatorname{HCHAR}(15,12,115)$
299 IF $Q=2$ THEN $3 \varnothing 1 \emptyset$
उØøØ RETURN
$301 \varnothing$ CALL $\operatorname{HCHAR}(14,11,32)$
362 CALL $\operatorname{HCHAR}(16,11,32)$
$3 \emptyset 3 \emptyset$ RETURN
3640 CALL $\operatorname{HCHAR}(14,9,115)$
$305 \emptyset$ CALL $\operatorname{HCHAR}(14,11,115)$
$3 \varnothing 6 \varnothing$ CALL HCHAR $(15,1 \emptyset, 115)$
$307 \varnothing$ CALL $\operatorname{HCHAR}(16,9,115)$
उø8ø CALL $\operatorname{HCHAR}(16,11,115)$
309 RETURN

उ1Øø END

Program 5：Snertle For The Color Computer

1 Øの CLS（1）：B $\$=$ CHR $\$(32)$
11ϱ PRINT＠74，＂＊＊SNERTLE＊＊＂
120 PRINTO 138 ，＂SELECT 1 ＂
13 PRINTQ2ø2，＂1）ADDITION＂
14ϱ PRINTTAB（1ø）＂2）SUBTRACTION＂
$15 \emptyset$ PRINTTAB（1ø）＂उ）MULTIPLICATION＂
155 PRINTTAB（10）＂4）END＂
16の PRINTTAB（19）＂（ENTER 1，2，3 OR 4） $" ;:$ INFUTQ：IF $Q>4$ OR $Q<1$ THEN 16 Ø
$185 \mathrm{C}=14$ ：IF $\mathrm{Q}=1$ OR $\mathrm{Q}=2$ THEN $\mathrm{C}=99$
187 IF $Q=3$ THEN 1 פのØ
188 IF $Q=4$ THEN END
$19 \varnothing$ CLS（1）：PRINT®37，＂ENTER LARGEST VALUE＂
2øめ PRINTTAB（5）＂（MIN．： 1 MAX．：＂；C；＂ ）＂；：INPUTR：IF R＜1 OR R＞C THEN 2 Øø
$23 \emptyset$ PRINT®133，＂ENTER SMALLEST VALUE ＂
24 Ø PRINTTAB（5）＂（MIN．：\emptyset MAX．：＂；R；＂ ）＂；：INPUTS：IF $S<\varnothing$ OR $S>R$ THEN 2 $4 \varnothing$
263 CLS：PRINTQ227，＂PRESS E：TO RETUR N TO MENU＂；：FORI＝1TO75の：NEXTI：C LS（ø）
27の $\mathrm{Z}=\varnothing$ ： $\mathrm{ZZ}=\varnothing$
275 GOSUB 11øø：GOSUB 117ø：GOSUB123ø
$3 \varnothing 1 \quad T R=\varnothing: Z Z=Z Z+1$
3 Ø5 L＝INT（RND（R－S）＋S）
$31 \varnothing$ IF $Q=3$ ANDT $=1$ THEN $32 \emptyset$
$315 K=I N T(R N D(R-S)+S)$
$32 \emptyset$ F $\$=$ STR $\$(K): W=\varnothing$
325 IF $K<L$ AND $Q=2$ THEN TR＝ø：GOTOS $\boxed{ } 6$
उЗの W＝ø：GOSUBЗøøø
$335 W=64$
34の F\＄＝STR\＄（L）
$345 \mathrm{~W}=96$ ：GOSUB $3 \emptyset \emptyset \emptyset$
346 ON Q GOSUB 6øøø，6øøø，6øø4
$35 \emptyset$ IF $Q=1$ THEN $M=K+L$
355 IF $Q=2$ THEN $M=K-L$
$36 \mathscr{G}$ IF $Q=3$ THEN $M=K$ KL
$38 \emptyset \quad M M=1$ ：IF $M>9$ THEN $M M=2$
385 IF $M>99$ THEN MM $=3$
39ø GOSUB 74の
$393 V=\varnothing$ ：GOSUB 11øø
395 FOR J＝ø TO MM－1
397 POKE 1466－（4＊J）， 94
$399 \mathrm{HH} \$=$ INKEY $\$$
4のø H\＄＝INKEY\＄
4 95 IF H\＄＝＂＂THEN 4 Øø
$41 \varnothing$ IF $H \$=" x "$ AND $Z Z=1$ THEN 1 øø

411 IF $\mathrm{H} \$=$＂X＂THEN CLS（1）：PRINT＠68， ＂YOUR PERCENTAGE IS＂；INT（Z／（ZZ －1）＊ 1 Øø）：GOTO12Ø
413 IF $H \$\rangle " \emptyset "$ AND VAL $(H \$)=\varnothing$ THEN 4 Ø．
$415 \mathrm{P}=\mathrm{VAL}$（ $\mathrm{H} \$$ ）
42øV＝V＋（P＊1øへJ）：$X=1466-(4 * J)$ ：GOSUB 48の：NEXTJ
$45 \emptyset$ IF INT（M）＝INT（V）THEN 47ø
451 SOUND 8ø，6：FORI＝1TO2の：NEXTI：SOU ND 8ø，6：FORI＝1TO2D：NEXTI：SOUND6 Ø， 12
452 FOR $I=1439$ TO 1535：POKEI，128：NE XT I
456 IF TR＝1 THEN 469
458 TR＝1：GOSUB 15øø：GOSUB 77ø：GOTO3 93
46 の $M=S T R \$(M)$
461 FORI＝1 TO 11 －MM：READA：NEXTI
462 FOR OO＝1 TO MM
$464 \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(\mathrm{M} \$,(00+1), 1))$
465 READX：GOSUB 48ø：NEXT 00：RESTORE
47の GOSUB117の：IF TR＝øTHEN GOSUB 25ø ø：GOSUB 755： $\mathrm{Z}=\mathrm{Z}+1$ ：GOSUB 65øø
471 GOSUB 2225：GOTO301
$48 \emptyset$ IF $P=\varnothing$ THEN $72 \emptyset$
485 ON P GOSUB 5øø，525，555，585，61ø， 633，660，680， 7 Øø：RETURN
5øの POKEX， 143 ：POKEX $+32,143$ ：POKEX +64 ，140：RETURN
525 POKEX， 14 Ø：POKEX＋1， $143:$ POKEX＋33， 14 ：POKEX $+32,143$ ：POKEX $+64,140: P$ OKEX＋65， 14 ■
$53 \emptyset$ RETURN
555 POKEX， 14 6：POKEX +32 ， 14 Ø：POKEX +64 ，14の：POKEX＋65， 14 Ø
560 POKE $X+1,143$ ：POKEX $+33,143:$ RETUR N
585 POKEX，138：POKEX＋32， 14 Ø：POKEX＋ 1 ， 13Ø：POKEX＋33， 142
59ø POKEX＋64，128：POKEX＋65，136：RETUR N
$61 \emptyset$ POKEX， $143:$ POKEX $+32,14 \varnothing:$ POKEX +64 ， 14 Ø
615 POKEX＋1， $149:$ POKEX $+33,143:$ POKEX＋ 65，14פ：RETURN
633 POKEX， $143:$ POKEX $+32,143:$ POKEX +64 ， 14 Ø：POKEX $+1,14 \emptyset$
635 POKE $X+33,141:$ POKEX $+65,149:$ RETU RN
66Ø POKE X，149：POKEX＋32，129：POKEX＋6 4， 132
676 POKEX $+65,128:$ POKE $X+1,141$ ：POKEX ＋33，138：RETURN
689 POKEX， 142 ：POKEX $+32,142$ ：POKEX +64 ，14ø：POKEX＋65，14の
685 POKEX＋1， 141 ：POKEX $+33,141$ ：RETURN
7 7øø POKEX， 142 ：POKEX $+32,14$ Ø：POKEX＋ 64 ， 14 Ø
719 POKEX＋1， 141 ：POKEX +33 ， 141 ：POKEX＋ 65， 14 ： RETURN
$72 \emptyset$ POKEX， 142 ：POKEX＋1， 141 ：POKEX +32 ， 138 ：POKEX $+33,133$
 N
74 F FORI＝1392 TO 14＠4：POKEI，131：NEX TI：RETURN
755 PRINT＠ 1 Ø3，＂GOOD＂；：FORI＝1T05øø：N EXTI：RETURN
77 （ PRINT＠72，＂TRY＂；：PRINT＠1ø3，＂AGAI N＂；：FOR I＝1 TO 5øø：NEXTI：RETURN

＂Snertle，＂Color Computer version．
1 Øøø CLS（1）：PRINT，66，＂DO YOU WISH T 0：＂
$1 \varnothing 1 \varnothing$ PRINTQ13ø，＂1）PRACTICE TIMES T ABLES＂
1 Ø2ø PRINTa 162，＂2）RANDOM NUMBERS＂
1ø3ø PRINT＠224，＂（ENTER 1 OR 2）＂；：IN PUTT：IF $T<1$ OR T＞2 THEN $1 \emptyset 3 \emptyset$
$105 \emptyset$ IF $T=2$ THEN $109 \emptyset$
1 Ø6 6 CLS（1）：PRINT®66，＂ENTER TIMES T ABLE＂
$1 \varnothing 7 \emptyset$ PRINTa1øø，＂（1－14）＂；：INPUT K：IF Kく1 OR K＞14 THEN $197 \emptyset$
$199 \emptyset S=\varnothing: R=14$ ：GOTO 263
$11 ø \varnothing$ FOR I＝1ø56 TO 1152 STEP 32
$111 \varnothing$ READ A，B
$112 \emptyset$ FOR $J=1$ TOB
1136 POKEI＋J＋A， 143
$114 \emptyset$ NEXTJ：NEXTI ：RESTORE：RETURN
 E1168， 149
$118 \varnothing$ POKE $11 \varnothing 3,129:$ POKE $1194,131:$ POK E11ø5， 136
119 Ø POKE1135， 143 ：POKE1136， 142 ：POKE 1137，143：RETURN
1230 POKE 1196，143：POKE1197，143：POK E1189，143：POKE119ø， 143
1240 POKE 1228， 14 ：POKE1229， 14 月：POK E123ø，14 月：POKE1221， 14 ：POKE 122 2，14の：POKE1223， 14 Ø：RETURN
$15 \emptyset \emptyset$ FORI＝1193 TO 1167 STEP 32：FOR $\mathrm{J}=\varnothing$ TO $3:$ POKE $\mathrm{I}+\mathrm{J}, 128:$ NEXTJ：NE XTI：POKE 1167，143：RETURN
2225 FOR I＝114の TO 1236 STEP 32
$223 \varnothing$ FOR J＝1 TO $11:$ POKEJ＋I， $128:$ NEXT $\mathrm{J}: \mathrm{NEXTI}:$ FOR $\mathrm{I}=1260 \mathrm{TO} 1535$ STE P 32
2235 FOR J＝1 TO 16：POKE J＋I，128：NEX TJ：NEXTI：RETURN
25øø POKE 1167， $139:$ RETURN
$3 \emptyset \emptyset \emptyset$ IF LEN（F\＄）＞2 THEN $3 \emptyset 3 \emptyset$
$3 \varnothing 15 \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(F \$, 2,1)$ ）
$362 \emptyset \mathrm{X}=121$ ■ +W ：GOSUB48ø
$3 \emptyset 25$ RETURN
$3 \emptyset 3 \emptyset P=V A L(M I D \$(F \$, 2,1))$
$3035 \mathrm{X}=1206+\mathrm{W}$ ：GOSUB48ø
$3 \emptyset 4 \emptyset P=V A L(M I D \$(F \$, 3,1))$
$3 \emptyset 45 \mathrm{X}=121$ Ø W W：GOSUB48の
$3 \varrho 5 \emptyset$ RETURN
5øøø DATA 5，7，4，9，3，11，2，13，1458， 14 62，1466

POKE 1298， $143:$ POKE133 $14,143:$ POK E 1362， $140:$ POKE 1331，140：POKE1 329，146
$6 \emptyset \emptyset 1$ IF $Q=2$ THEN PQKE 1298，128：POKE 133 ， 14 ：POKE1362， 128
$6 \emptyset \emptyset 3$ RETURN
$6 \emptyset \emptyset 4$ POKE 1297，131：POKE1299，131：POK E133 ， 14 ：P POKE1329，131：POKE13 $1,131:$ RETURN
$65 \emptyset \emptyset$ SOUND $1 \varnothing \varnothing, 7=$ SOUND $13 \boxed{6}, 1 \varnothing$
651.6 RETURN

Program 6：Snertle For Apple

11ø TEXT ：HOME ：VTAB 2：HTAB 15：PRINT ＂章幺SNERTLEれま＂：VTAB 5
120 PRINT：VTAB 5：HTAB 1ø：PRINT＂SE LECT ONE：＂
$13 \varnothing$ PRINT ：PRINT ：HTAB 1ø：PRINT＂1） ADDITION＂
$14 \varnothing$ PRINT ：HTAB 1ø：PRINT＂ 2 ）SUBTRAC TION＂
150 PRINT ：HTAB 10：PRINT＂3）MULTIPL ICATION＂
155 PRINT ：HTAB 1ø：PRINT＂4）END PRO GRAM＂
$16 \emptyset$ PRINT ：PRINT ：HTAB 1ø：PRINT＂《E NTER 1，2，3 OR 4）＂；：INPUT Q：IF Q $\langle 1$ OR Q $\rangle 4$ THEN $16 \varnothing$
$185 C=14:$ IF $Q=1$ QR $Q=2$ THEN $C=$ 99
187 IF $Q=3$ THEN $1 \varnothing \varnothing \varnothing$
188 IF $Q=4$ THEN END
190 HOME ：VTAB 3：HTAB 1ø：PRINT＂ENT ER LARGEST VALUE＂
2øø HTAB 1ø：PRINT＂（MIN．： 1 MAX．：＂；C； ＂）＂；：INPUT R：IF $R<1$ QR $R>C$ THEN 2øØ
230 HTAB 1ø：UTAB 1ø：PRINT＂ENTER SMA LLEST VALUE＂
24ø HTAB 1ø：PRINT＂（MIN．：\varnothing MAX．：＂；R； ＂）＂；：INPUT $S:$ IF $S<\emptyset$ OR $S>R$ THEN 24ø
263 HOME ：VTAB 1ø：HTAB 7：PRINT＂TYP E＂；：INVERSE ：PRINT＂X＂；：NORMAL ：PRINT＂TO RETURN TO THE MENU＂
265 FOR I＝ 1 TO 2øøø：NEXT I：HOME
27ø $Z=\varnothing: Z Z=\varnothing:$ GR
275 GOSUB 11øø：COLOR＝12：GOSUB 117ø： GOSUB 1230
$301 T R=\varnothing: Z Z=Z Z+1$
$305 L=$ INT（RND（1）$\ddagger(R-S+1))+$ 5
310 IF $=3$ AND $T=1$ THEN 320
$315 K=$ INT $($ RND（1）$*(R-S+1))+$ 5
$32 \emptyset F \$=$ STR $\$(K): W=\varnothing$
325 IF $K<L$ AND $Q=2$ THEN 395
$33 \emptyset W=\varnothing$ ：GOSUB 3øøø
340 F \＄$=$ STR $\$(L)$
$345 \mathrm{~W}=6$ ：GOSUB 3 300
346 ON Q GOSUB 6øøø，6øøஜ，6øø4
35 IF $Q=1$ THEN $M=K+L$
355 IF $Q=2$ THEN $M=K-L$
365 IF $Q=3$ THEN $M=K \div L$
38ø GOSUB 74ø：MM $=1:$ IF $M>9$ THEN MM $=2$
385 IF $M>99$ THEN $M M=3$
$393 V=6:$ COLOR＝12：GOSUB 1170
395 FOR J $=\emptyset$ TO MM－ 1
397 COLOR＝1：PLOT $21-(5 * J), 34$
399 POKE－16368，
$4 \emptyset \emptyset \mathrm{H}=\mathrm{F}=\mathrm{":H}=\mathrm{PEEK}(\mathrm{H}$ 16384）－128： IF $H \geqslant \emptyset$ THEN $H \$=$ CHR $\$$（ H ）

＂Snertle，＂Apple version．

497 IF $H \$=$＂X＂AND $Z Z=1$ THEN POKE －16368，\varnothing ：GOTO 11ø
$41 \varnothing$ IF $H \$=$＂X＂THEN TEXT ：HOME ：HTAB 15：PRINT＂PERCENTAGE＝＂；INT（Z／ （ZZ－1）（ 1øø）：POKE－16368，ø：GOTO 120
412 IF $H<48$ OR $H>57$ THEN $4 \emptyset \emptyset$
$415 \mathrm{P}=\mathrm{VAL}$（H\＄）
$420 V=V+(P * 1 \varnothing \sim J): W=14: X=21-$ （5＊J）：GOSUB 48ø：NEXT J
450 IF $M=V$ THEN $47 \emptyset$
451 FOR $I=1$ TO 4ø：FOR $J=1$ TO 2：NEXT $J: L=$ PEEK（－16336）：NEXT I
452 COLOR＝$=$ FOR I $=33$ TO 38：HLIN 7 ， 34 AT I：NEXT I：COLOR＝ 1
456 IF TR $=1$ THEN 46め
458 TR＝1：COLOR＝Ø：GOSUB 117ø：GOSUB 770：V＝Ø：GOTO 395
$46 \emptyset \mathrm{M} \$=$ STR $\$$（M）
461 IF $M M<3$ THEN FOR $I=1$ TO $3-M$ M：READ X ：NEXT I
462 FOR OO $=1$ TO MM
$464 \mathrm{P}=\mathrm{VAL}$（MID\＄（M\＄，00，1））
465 READ X ：GOSUB 48Ø：NEXT OD：RESTORE
467 FOR I＝ 1 TO 9øØ：NEXT
47め COLOR＝12：GOSUB 117ø：IF TR $=\varnothing$ THEN GOSUB 259\％：GOSUB 755：$Z=Z+1:$ GOSUB 65øø：HOME
471 GOSUB 2225：GOTO 391
$48 \emptyset$ COLOR $=1$ ：IF $P=\varnothing$ THEN GOSUB 720
485 ON P GOSUB 5øø，525，555，585，61ø，633 ，660，68Ø，7ळø：RETURN
$5 \emptyset \emptyset$ VLIN $2 \emptyset+W, 24+W$ AT X ：VLIN $20+$ $W, 24+W$ AT $X+1:$ RETURN
525 HLIN $x, X+3$ AT $20+W:$ PLOT $x+2$ $, 21+W:$ PLOT $x+3,21+W:$ HLIN x $X+3$ AT $22+W$
$53 \varnothing$ VLIN $23+W, 24+W$ AT X：VLIN $23+$ $W, 24+W$ AT $X+1:$ PLOT $X+2,24+$ $W:$ PLOT $X+3,24+W:$ RETURN
555 VLIN $20+W, 24+W$ AT $X+2:$ PLOT $X, 2 \varnothing+W:$ PLOT $X, 22+W:$ PLOT $X, 24$ $+w$
560 PLOT $X+1,2 \varnothing+W:$ PLOT $X+1,22+$ W ：PLOT $x+1,24+W$ ：RETURN
585 VLIN $2 \varnothing+W, 22+W$ AT $X:$ PLOT $X+$ $1,22+W: V L I N 20+W, 24+W$ AT $X+$ 2：PLOT $X+3,22+W$ ：RETURN

61ø HLIN $X, X+3$ AT $20+W:$ HLIN $x, x+$ 3 AT $22+W:$ HLIN $X, X+3$ AT $24+$ W ：PLOT $x+2,23+W$ ：PLOT $x+3,2$ $3+W$
615 PLOT $\mathrm{X}, 21+W:$ PLOT $\mathrm{X}+1,21+W$ ：RETU RN
633 VLIN $2 \emptyset+W, 24+W$ AT $X:$ VLIN $2 \varnothing+$ $W, 24+W$ AT $X+1:$ VLIN $22+W, 24+$ W AT $X+3:$ HLIN $X+2, X+3$ AT $2 \emptyset$ $+W$
635 PLOT $X+2,22+W:$ PLOT $X+2,24+$ W：RETURN
$66 \varnothing$ HLIN $x+1, x+3$ AT $2 \emptyset+W$ ：PLOT x $+3,21+W:$ PLOT $X+2,22+W$
665 VLIN $23+W, 24+W$ AT $x+1$ ：RETURN
68ø GOSUB 72ø：HLIN $x+1, x+2$ AT $22+$ W ：RETURN
$7 \emptyset \emptyset$ HLIN $x, x+3$ AT $2 \emptyset+W:$ HLIN $x, x+$ 3 AT $22+W:$ HLIN $x, x+3$ AT $24+$ W：VLIN $2 \varnothing+W, 24+W$ AT $X+3$
705 VLIN $21+W, 22+W$ AT x ：RETURN
$72 \varnothing$ VLIN $2 \emptyset+W, 24+W$ AT X ：VLIN $2 \varnothing+$ W， $24+W$ AT $x+3:$ HLIN $x+1, x+$ 2 AT $2 \emptyset+W$ ：HLIN $X+1, X+2$ AT 2 4 ＋W：RETURN
74ø HLIN 1ø，27 AT 32：RETURN
755 VTAB 21：HTAB 19：PRINT＂GOOD！＂：FOR I＝ 1 TO 3øø：NEXT I：RETURN
$77 \emptyset$ VTAB 21：HTAB 16：PRINT＂TRY AGAIN ＂：FOR I＝ 1 TO 1øøø：NEXT I：HOME ：RETURN
1øøØ HOME ：UTAB 4：HTAB 13：PRINT＂DO YOU WISH TO：＂
1ø1ø PRINT ：HTAB 9：PRINT＂1）PRACTIC E TIMES TABLES＂
1ø2ø PRINT ：HTAB 9：PRINT＂2）PRACTIC E RANDOM NUMBERS＂
1 1030 PRINT ：HTAB 9：PRINT＂（ENTER 10 R 2）＂；：INPUT T：IF T＜Ø OR T＞ 2 THEN $193 \varnothing$
$105 \emptyset$ IF $T=2$ THEN 190
1 1ø6 HOME ：UTAB 5：HTAB 11：PRINT＂EN TER TIMES TABLE（1－14）＂
$1 \varnothing 7 \varnothing$ INPUT K：IF K＜ 1 OR K＞ 14 THEN 1 107ø
$1 \varnothing 9 \varnothing 5=\varnothing: R=14:$ GOTO 263
$11 \varnothing \varnothing \mathrm{~J}=12: \mathrm{JJ}=20:$ COLOR＝4：FOR I＝ Ø TO 8：HLIN J，JJ AT I：J＝J－1：J $J=J J+1$
111ø NEXT I：FOR I＝ 8 TO 11：HLIN J＋ 1，JJ－ 1 AT I：NEXT I：RETURN
1170 HLIN 30，32 AT 5：FOR I＝ 6 TO 1ø： HLIN 29，33 AT I：NEXT I：COLOR $=\varnothing$ ：PLOT 32，7：RETURN
123ø COLOR＝12：FOR I＝ 12 TO 15：HLIN $1 \varnothing, 12$ AT I：HLIN 21， 23 AT I：NEXT I

124ø FOR I $=16$ TO 17：HLIN 1の， 14 AT I ：HLIN 21，25 AT I：NEXT I：RETURN
2225 COLOR＝Ø：FOR I $=2 \varnothing$ TO 38：HLIN 1ø，39 AT I：NEXT I：COLOR＝1：RETURN
25øø COLOR＝の：PLOT 32，1ø：PLOT 31，9：COLO R＝1：RETURN
3øøø IF LEN（F $\$$ ）>1 THEN $3 \varnothing 3 \varnothing$
$3015 \mathrm{P}=$ VAL（ $\operatorname{MID} \$(F \$, 1,1)$ ）
$3 ø 20 \mathrm{X}=21$ ：GOSUB 480
3025 RETURN
$3 ø 30 \mathrm{P}=$ VAL（ $\mathrm{MID} \$(F \$, 1,1)$ ）
$3035 x=16$ ：GOSUB 489
$3 ø 4 \varnothing \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(F \$, 2,1)$ ）
$3 ø 45 \mathrm{X}=21$ ：GOSUB 48ø
3ø5ø RETURN
$50 ø \emptyset$ DATA 12，16，22

6øøD HLIN 11，14 AT 29：HLIN 11， 14 AT 2 8：IF $Q=1$ THEN VLIN 27，30 AT 12 ：VLIN 27，3ø AT 13
$6 \varnothing \varnothing 1$ RETURN
6ø日4 PLOT 12，27：PLOT 14，27：PLOT 13，2 8：PLOT 12，29：PLOT 14，29：RETURN
650ø FOR I＝ 1 TO 20：L＝PEEK（ -163 36）：NEXT I：FOR I＝ 1 TO 1ø：NEXT I：FOR I＝ 1 TO 40：L $=$ PEEK $(-1$ 6336）：NEXT I：RETURN

＂Snertle，＂PC／PCjr version．

Program 7：Snertle For PC／PCjr

10 DEF SEG＝0：POKE 1047， 192 20 SCREEN 0，1：WIDTH 40：KEY OFF
25 S\＄＝CHR\＄（219）：D\＄＝CHR\＄（31）：L\＄＝CHR\＄（29）： $R \$=\operatorname{CHR} \$(28): U \$=C H R \$(30): T B \$=C H R \$(223): B B$ \＄＝CHR $\$(220): L B \$=C H R \$(221): R B \$=C H R \$(222)$ ： SP\＄＝CHR $\$$（32）
$100 \mathrm{~B} \$=\mathrm{CHR} \$$（13）： $\mathrm{C} \$=\mathrm{CHR} \$$（9）
110 COLOR 12：CLS：LOCATE 24，9，0：PRINT＂戠音
＊＊＊＊SNERTLE＊＊＊＊＊＊＊＂
120 PRINT B\＄B\＄B\＄B\＄B\＄C\＄＂
SELECT ONE：
＂
$\begin{array}{lll}130 & C O L O R ~ 2: P R I N T ~ B \$ C \$ " 1) & \text { ADDITION＂} \\ \text { 140 COLOR 4：PRINT B\＄C\＄＂2）} & \text { SUBTRACTION＂} \\ \text { 150 COLOR 6：PRINT B\＄C\＄＂3）} & \text { MULTIPLICATION }\end{array}$ ，
155 COLOR 14：PRINT B\＄C\＄＂4）END PROGRAM＂ 160 PRINT B\＄B\＄B\＄B\＄C\＄＂（ENTER 1，2，3 OR 4）＂ ；

170 Q\＄＝INKEY\＄： $\mathrm{X}=\mathrm{RND}(1): Q=\mathrm{VAL}(\mathrm{Q} \$): \mathrm{IF} Q<1$
OR Q＞4 THEN 170
$175 \mathrm{C}=14$ ：IF $\mathrm{Q}=1$ OR $\mathrm{Q}=2$ THEN $\mathrm{C}=99$
$185 \mathrm{C}=14$ ：IF $\mathrm{Q}=1$ OR $\mathrm{Q}=2$ THEN $\mathrm{C}=99$
187 IF $Q=3$ THEN 1000
188 IF $Q=4$ THEN END
190 CLS：LOCATE 10，12：PRINT＂ENTER LARGES T VALUE＂
200 PRINT：PRINT＂（MIN．：O MAX．：＂；C；＂）＂； ：INPUT R：IF R＜O OR R＞C THEN PRINT U\＄U\＄U\＄ ：GOTO 200
230 PRINT：PRINT＂ENTER SMALLEST VALUE＂
240 PRINT：PRINT＂（MIN．：O MAX．：＂；R；＂）＂；
：INPUT S ：IF $S<0$ OR $S>R$ THEN PRINT U\＄U\＄U
\＄：GOTO 240
263 CLS：LOCATE 12，5：PRINT＂PRESS＊X ，T 0 RETURN TO MENU＂：FOR I＝1 TO 1000 ：NEXT

270	$\mathrm{Z}=0: \mathrm{ZZ}=0$
275	COLOR 2:GOSUB 1100:G0SUB 1170:G0SUB
1230	0: GOSUB 1260: COLOR Q *2
301	TR=0: $\mathrm{ZZ}=\mathrm{ZZ}+1$
305	$\mathrm{L}=\mathrm{INT}(\mathrm{RND}(1) *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}$
310	IF $Q=3$ AND $T=1$ THEN 320
315	$\mathrm{K}=\mathrm{INT}(\mathrm{RND}(1) *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}$
320	F \$ $=$ STR $\$(K): W=0$
325	IF K<L THEN W=5
330	GOSUB 3000
335	$\mathrm{W}=5$
337	IF L>K THEN $\mathbf{W}=0$
340	F \$ $=$ STR\$ (L)
345	GOSUB 3000
346	ON Q GOSUB 6000,6000,6004
350	IF $Q=1$ THEN $M=K+L$
355	IF $Q=2$ AND $K>=L$ THEN $M=K-L$
360	IF $Q=2$ AND $K<L$ THEN $M=L-K$
365	IF $Q=3$ THEN $M=K * L$
380	GOSUB 740: $\mathrm{MM}=1$: IF M >9 THEN MM=2
385	IF M>99 THEN MM=3
390	GOSUB 740
393	V=0:COLOR 2 : GOSUB 1100:COLOR Q*2
394	FOR $A=1$ TO 10: B $=$ =INKEY\$ ${ }^{\text {d }}$ NEXT
395	FOR $\mathrm{J}=0$ TO (MM-1)
397	LOCATE 24,30-4*J:PRINT"へ";
400	H\$=INKEY\$
405	IF $\mathrm{H} \$=$ " X "AND $\mathrm{ZZ}=1$ THEN 100
406	IF $\mathrm{H} \$=$ " X " THEN CLS:PRINT B\$ ${ }^{\text {P P PERCENTA }}$
GE: ${ }^{\prime}$	"; INT (Z/ $(Z Z-1) * 100):$ GOTO 120
	IF H \$="" OR H\$<"O" OR H\$>"g" THEN 40
\bigcirc	
	FOR I= 21 TO 31:LOCATE 24, I:FRINT SP
\$;	NEXT
	$P=V A L \quad(H \$): Y=20$
$\begin{gathered} 420 \\ \mathrm{~J} \end{gathered}$	$V=V+\left(P * 10^{\wedge} \mathrm{J}\right): \mathrm{X}=29-\mathrm{J} * 4:$ GOSUB 475: NEXT
450	IF $M=V$ THEN 470
	FOR I = 20 TO 23: LOCATE I, 21:FOR J=1
T0 1	11:PRINT SP\$; : NEXT J, I
456	IF TR $=1$ THEN 460
458	TK =1:GOSUB 1500:GOSUB 770:G0TO 393
	M $\$=$ STR $\$(M): X=33: Y=20$
	FOR OO=MM TO 1 STEP -1
	$P=$ VAL (MID\$ (M\$, $(00+1), 1)$)
465	X $=\mathrm{X}-4$: GOSUB 475: NEXT OO:RESTORE
	FOR I=1 TO 750: NEXT:GOSUB 1230: IF
$\mathrm{R}=0$	THEN GOSUB 2500: : GOSUB 755: $\mathrm{Z}=\mathrm{Z}+1$: GO
SUB	6500
	GOSUB 2225: GOTO 301
	LOCATE Y, X
	IF $P=0$ THEN GOSUB 720
485	ON P GOSUB 500,525,555,585,610,633,6
60,6	680, 700: RETURN
500	PRINT R\$R\$; FOR I=1 T0 4 :PRINT S\$D\$
L\$;	: NEXT : RETURN
525	PRINT S\$S $\$$ S\$D\$L\$S\$D\$L\$TB\$L\$L\$TB\$L\$L\$
S\$D\$	\$L\$S\$S\$S\$: RETURN
555	PRINT S\$S $\$$ S $\$ \mathrm{D}$ \$L\$S\$D\$L\$S\$L\$L\$TB\$D\$L\$L
\$S\$S	S\$S\$: RETURN
585	PRINT LB\$R\$S\$D\$L\$L\$L\$S\$S\$S\$D\$L\$S\$D\$L/20.0
\$5\$:	: RETURN
610	PRINT S\$S
L\$L\$	\$L\$S\$S\$S\$: RETURN
633	PRINT S\$S ${ }^{\text {S }}$ (\$D\$L\$L\$L\$S\$BB\$BB\$D\$L\$L\$L\$
S\$R\$	\$S\$D\$L\$L\$L\$S\$S\$S\$: RETURN
660	PRINT S\$S\$S\$D\$L\$S\$D\$L\$L\$S\$D\$L\$L\$S\$:R
ETUR	
	PRINT S\$S\$S\$D\$L\$L\$L\$S\$BE\$S\$D\$L\$L\$L\$S

265 CLS
270 Z=0: ZZ=0
275 COLOR 2:GOSUB 1100:GOSUB 1170:GOSUB
230: GOSUB 1260: COLOR Q *2
$305 \mathrm{~L}=\mathrm{INT}(\operatorname{RND}(1) *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}$
310 IF $Q=3$ AND $T=1$ THEN 320
$315 \mathrm{~K}=\mathrm{INT}($ RND (1) * $(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}$
320 F\$=STR\$ (K) : W=0
TF
3000
337 IF L>K THEN W=0
340 F\$= STR\$(L)
34 GOSUB 3000
350 IF $Q=1$ THEN $M=K+L$
355 IF $Q=2$ AND $K>=L$ THEN $M=K-L$
360 IF $Q=2$ AND $K<L$ THEN $M=L-K$
365 IF $Q=3$ THEN $M=K * L$
S80 GOSUB 740: MM=1:IF M>9 THEN MM=2
THEN MM=3

393 V=O:COLOR 2 : GOSUB 1100:COLOR Q*2
394 FOR $A=1$ TO 10: $\mathrm{B} \$=$ INKEY $\$$: NEXT
395 FOR J=0 TO (MM-1)
(

405 IF $\mathrm{H} \$=$ "X"AND $Z Z=1$ THEN 100
406 IF $\mathrm{H} \$=" \mathrm{X"}$ THEN CLS: PRINT B\$"PERCENTA GE: "; INT (Z/(ZZ-1)*100): GOTO 120
407 IF $H \$="$ OR $\mathrm{H} \$<" \mathrm{O}$ " OR H\$>"9" THEN 40
412 FOR $\mathrm{I}=21$ TO $31:$ LOCATE 24, I:FRINT SP \$; : NEXT
(H\$) : $Y=20$
$420 V=V+\left(P * 10^{\wedge} \mathrm{J}\right): X=29-J * 4$:GOSUB 475: NEXT

450 IF $M=V$ THEN 470
452 FOR I= 20 TO 23:LOCATE I, 21:FOR J=1
TO 11:PRINT SP\$; : NEXT J, I
456 IF TR $=1$ THEN 460
TR =1:GOSUB 1500:GOSUB 770:GOTO 393
462 FOR OO MM TO 1
$464 \mathrm{P}=$ VAL (MID\$ (M\$, (OO+1), 1))
$465 \mathrm{X}=\mathrm{X}-4$: GOSUB 475: NEXT OO:RESTORE
470 FOR I=1 TO 750: NEXT:GOSUB 1230: IF T
R=0 THEN GOSUB 2500::GOSUB 755: Z=Z+1:GO

471 GOSUB 2225: GOTO 301
475 LOCATE Y, X
480 IF P=0 THEN GOSUB 720
485 ON P GOSUB 500,525,555,585,610,633,6 680, 700 : RETURN

L\$;: NEXT : RETURN
PRINT S\$S\$S\$D\$L\$S\$D\$L\$TB\$L\$L\$TB\$L\$L\$

555 PRINT S\$S\$S\$D\$L\$S\$D\$L\$S\$L\$L\$TB\$D\$L\$L \$S\$S\$S\$: RETURN
585 PRINT LB\$R\$S\$D\$L\$L\$L\$S\$5\$S\$D\$L\$S\$D\$L \$S\$: RETURN

LT\&S\$BB\$BR\&D\$L\$S\$D\$
633 PRINT S\$S $\$ 5 \$ \mathrm{D} \$ \mathrm{~L} \$ \mathrm{~L} \$ \mathrm{~L} \$ \mathrm{~S} \$ \mathrm{BB} \$ \mathrm{BB} \$ \mathrm{D} \$ \mathrm{~L} \$ \mathrm{~L} \$ \mathrm{~L} \$$
S\$R\$S\$D\$L\$L\$L\$S\$S\$S\$:RETURN

ETURN
680 PRINT S\$S\$S\$D\$L\$L\$L\$S\$BB\$S\$D\$L\$L\$L\$S
\$R\$S\$D\$L\$L\$L\$S\$S\$S\$:RETURN
700 PRINT S\$S\$S\$D\$L\$L\$L\$S\$BB\$S\$D\$L\$S\$D\$L \$S\$: RETURN
720 PRINT S\$S\$S\$D\$L\$L\$L\$S\$R\$S\$D\$L\$L\$L\$S\$ R\$S\$D\$L\$L\$L\$S\$S\$S\$:RETURN
740 LOCATE 18, 21:FOR I=1 TO 11:PRINT BB $\$$;:NEXT:RETURN
755 LOCATE 4,7:PRINT "GOOD!":RETURN
770 LOCATE 3,8:PRINT "TRY" D\$L\$L\$L\$L\$ "A GAIN"
780 FOR $I=1000$ TO 500 STEP -250:SOUND I, 4:NEXT:FOR TD=1 TO 500: NEXT:RETURN
960 FOR I=1 TO 4:LOCATE X,I:PRINT S\$:NEX T: RETURN
1000 CLS:LOCATE 7,10:PRINT"DO YOU WISH T 0: "
1010 PRINT:PRINT:PRINT C末"1) PRACTICE TI MES TABLE"
1020 PRINT:PRINT C\$"2) RANDOM NUMBERS
1030 PRINT:PRINT:PRINT C\$" (ENTER 1 OR 2)
";:INPUT T:IF T<1 OR T>2 THEN PRINT U\$U\$ U\$U\$:GOTO 1030
1050 IF $\mathrm{T}=2$ THEN GOTO 190
1060 CLS:PRINT:PRINT:PRINT C\$"ENTER TIME 5 TABLE"
1070 PRINT:PRINT C\$" (1-14)";:INPUT K: IF
K<1 OR K>14 THEN PRINT U\$U\$U\$:GOTO 1070
1090 S=0:R=14: GOTO 263
1100 FOR I = 2 TO 6
1110 READ A : READ B
1120 FOR J= 1 TD B
1130 LOCATE I, J+A : PRINT CHR\$ (176)
1140 NEXT J:NEXT I:RESTORE:RETURN
1170 LOCATE 7, 4:FOR I= 1 TO 11 :PRINT TB \$;:NEXT :RETURN
1230 COLOR 2:LOCATE 5,15:PRINT CHR\$(47)U \$BB\$BB\$D\$L\$CHR\$(249)LB\$D\$L\$LB\$D\$L\$L\$L\$L\$ TB\$TB\$TB\$:COLOR Q*2:RETURN
1240 LOCATE 7,5:PRINT S $\$$:LOCATE 7,14:PR INT S $\$$
1250 RETURN
1260 COLOR 2:GOSUB 1240:LOCATE 8,5:PRINT
TB\$TB\$:LOCATE 8,14:PRINT TB\$TB\$:RETURN:
COLOR Q *2
1270 RETURN
1500 FOR I=4 TO 7:LOCATE I, 15:FOR J=1 TO 4: PRINT SP\$;:NEXT J,I:RETURN
2225 FOR I= 9 TO 23:LOCATE I, 21: FOR J=
1 TO 11 :PRINT SP\$; :NEXT J, I:RETURN
2500 COLOR 2:LOCATE 6,17:PRINT CHR\$(126)
: RETURN: COLOR Q*2
3000 COLOR Q*2: $X=29:$ IF LEN (F $\$$) >2 THEN 3 030
$3015 \mathrm{P}=\mathrm{VAL}$ (MID\$(F\$,2,1))
3020 Y=9+W: GOSUB 475
3025 RETURN
$3030 \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(F \$, 3,1))$
$3035 \mathrm{Y}=9+\mathrm{W}$: GOSUB 475
$3040 \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(F \$, 2,1))$
$3045 \mathrm{X}=\mathrm{X}-4$: GOSUB 475
3050 RETURN
5000 DATA 6,5,5, 7, 4, 9, 3, 11, 3, 11
6000 LOCATE 14,22:PRINT S\$D\$L\$L\$S\$S\$S\$D\$ L\$L\$S\$;
6002 IF Q=2 THEN PRINT L\$SP\$U\$U\$L\$SP\$
6003 RETURN
6004 LOCATE 14,21:PRINT S\$D\$S\$U\$S\$D\$D\$L L\$L\$S\$R\$S\$: RETURN
6500 FOR $I=500$ TO 1000 STEP 250:SOUND I, 4: NEXT: RETURN

PENTOMINOS A Puzzle-Solving Program

Jim Butterfield, Associate Editor

Computers can solve puzzles. With the right set of instructions, a program will follow the same logic as humans, trying things to see if they fit. It's interesting to watch the computer working in this way.

This famous puzzle is dealt with at some length in Arthur C. Clarke's novel Imperial Earth. The characters of the novel don't use a computer to solve the puzzle.

The original program works on all Commodore computers. Additional versions are included here for the Atari, IBM PC and PCjr, T1-99/4A, Radio Shack Color Computer, and Apple.
NOTE: IBM, TI, Color Computer, and Apple users should insert lines 110-860 from Program 1, the Commodore version, into their programs. The rem statements at the ends of these lines should be ignored.

Pentominos are like dominos, except that they are made up of five elements rather than two. If we put five squares end to end and glued them together, we'd get a long strip, often called the I pentomino. On the other hand, if we took a central square and glued the other four squares to the sides, top, and bottom, we'd get something that looks like a plus sign, which many people call the X pentomino.

Allowing for the differences that are caused by rotating or turning over a piece, there are 12 different pentominos. They are shown in Figure 1; but you might find it fun to try discovering them yourself by drawing them out on a piece of paper. Most of them look a little like letters-you can see a T, an X , and a W among them, for example.

What's The Puzzle?

The 12 different pentominos, each with an area of 5 squares, give a total of 60 squares. Suppose you had to cut these pentominos out of a rectangle

Figure 1: The 12 Pentominos

without wasting any space: How big would the rectangle need to be?

We know two things: The total area is 60 squares; and the rectangle must be at least three wide (otherwise, we couldn't cut out the plus sign). So it might be possible to get all the pentominos from a rectangle that is 3×20, or 4×15, or 5×12, or 6×10. As it turns out, we can do it in any of these ways.

We can turn the question inside out and put it this way: Can you fit all 12 pentominos into a rectangle of size: 3×20, or 4×15, or 5×12, or 6×10 ?

The Brain Bender

Don't let the following computer program take the fun out of the puzzle for you. Cut the pieces out of cardboard and try your hand at the puzzle.

4 Color
 80 COLUMN Letter Quality PRINTER/PLOTTER
 Super SALE
 Special
 - LOWEST PRICE IN U.S.A.

- List your programs - High resolution graphics for bar charts and geometric figures (like spirograph) • Plugs directly into VIC 20 and Commodore 64 - Interface included • Lowest cost letter quality printer in the country.

At last you can list your programs (even control characters) and make beautiful high resolution graphics at an affordable price. This 80 column letter quality printer/plotter is great for making complex bar charts for business plus fancy greeting cards and geometric designs. Great for homework too. Everyone must have a 4 color printer plotter for their VIC-20 or Commodore-64. List \$199.00. Sale \$99.00.

80 COLUMN PRINTER SALE-\$149.00*

*STX-80 COLUMN
PRINTER-\$149.00
Prints full 80 columns. Super silent operation, 60 CPS, prints Hi-resolution graphics and block graphics, expanded character set, exceptionally clear characters, fantastic print quality, uses inexpensive thermal paper! Best thermal printer in the U.S.A.! (Centronics Parallel Interface).

**DELUXE COMSTAR T/F 80 CPS PRINTER- $\$ 199.00$

 The COMSTAR T/F (Tractor Friction) PRINTER is exceptionally versatile. It prints $8^{1 / 2 "} \times 11^{\prime \prime}$ standard size single sheet stationary or continuous feed computer paper. Bi-directional, impact dot matrix, 80 CPS, 224 characters. (Centronics Parallel Interface).Premium Quality-120 CPS
COMSTAR T/F SUPER-10X PRINTER—\$289.00 COMSTAR T/F (Tractor Friction) SUPER10X PRINTER gives you all the features of the COMSTAR T/F PRINTER plus a $10^{\prime \prime}$ carriage, 120 CPS, 9×9 dot matrix with double strike capability for 18×18 dot matrix (near letter quality), high resolution bit image (120×144 dot matrix), underlining, back spacing, left and right margin settings, true lower decenders with super and subscripts, prints standard, italic, block graphics
and special characters, plus 2 K of user definable characters! The COMSTAR T/F SUPER-10X PRINTER was Rated No. 1 by "Popular Science Magazine." It gives you print quality and features found on printers costing twice as much!! (Centronics Parallel Interface) (Better than Ep. son FX 80).

$$
\begin{aligned}
& \text { Premium Quality-120 CPS } \\
& \text { COMSTAR T/F SUPER-151/2" } \\
& \text { PRINTER-\$379.00 }
\end{aligned}
$$

COMSTAR T/F SUPER $151 / 2^{\prime \prime}$ PRINTER has all the features of the COMSTAR T/F SUPER-10X PRINTER plus a $15^{1} /^{\prime \prime}$ carriage and more powerful electronics components to handle large ledger business forms! (Better than Epson FX 100).

Superior Quality

SUPER HIGH SPEED-160 CPS

> COMSTAR T/F $10 "$
> PRINTER- $\$ 489.00$

SUPER HIGH SPEED COMSTAR T/F (Tractor Friction) PRINTER has all the features of the COMSTAR SUPER-10X PRINTER plus SUPER HIGH SPEED PRINTING-160 CPS, 100% duty cycle, 8 K buffer, diverse character fonts, special symbols and true decenders, vertical and horizontal tabs. RED HOT BUSINESS PRINTER at an unbelievable low price!! (Serial or Centronics Parallel Interface)

Superior Quality
SUPER HIGH SPEED-160 CPS
COMSTAR T/F $151 / 2 "$
PRINTER-\$579.00
SUPER HIGH SPEED COMSTAR T/F $151 / 2^{\prime \prime}$ PRINTER has all the features of the SUPER HIGH SPEED COMSTAR T/F 10" PRINTER plus a $151_{2}{ }^{\prime \prime}$ carriage and more powerful electronics to handle larger ledger business forms! Exclusive bottom paper feed!!

PARALLEL INTERFACES

For VIC-20 and COM-64-\$49.00
For All Apple Computers- $\$ 79.00$
NOTE: Other printer interfaces are available at computer stores!

Double Immediate Replacement Warranty

We have doubled the normal 90 day warranty to 180 days. Therefore if your printer fails within " 180 days" from the date of purchase you simply send your printer to us via United Parcel Service, prepaid. We will IMMEDIATELY send you a replacement printer at no charge, prepaid. This warranty, once again, proves that WE LOVE OUR CUSTOMERS!

(1) Olympia

- SUPERB COMPUTER PRINTER COMBINED WITH WORLD'S FINEST ELECTRONIC TYPEWRITER!
- BETTER THAN IBM SELECTRIC - USED BY WORLD'S LARGEST CORPORATIONS!
- TWO MACHINES IN ONE - JUST A FLICK OF THE SWITCH!
- SUPERB EXECUTIVE CORRESPONDENCE - HOME, OFFICE, WORD PROCESSING!
- EXTRA LARGE CARRIAGE - ALLOWS 14-1/8" PAPER USAGE!
- DROP IN CASSETTE RIBBON - EXPRESS LIFT OFF CORRECTION OR ERASER UP TO 46 CHARACTERS!
- PRECISION DAISY WHEEL PRINTING - MANY TYPE STYLES!
- PITCH SELECTOR - 10, 12, 15 CPS, AUTOMATIC RELOCATE KEY!
- AUTOMATIC MARGIN CONTROL AND SETTING! KEY IN BUFFER!
- ELECTRONIC RELIABILITY, BUILT IN DIAGNOSTIC TEST!
- CENTRONICS PARALLEL INTERFACE BUILT-IN (SERIAL OPTIONAL)!
- 15 DAY FREE TRIAL - 90 DAY FREE REPLACEMENT WARRANTY!

[^0]
PROTECTO

 ENTERPRIZESBOX 550, BARRINGTON, ILLINOIS 60010 Phone 312/382-5244 to order

ONE CALL GETS IT ALL!

TELECOMMUNICATIONS SALE! $\$ 49$

DELUXE 40 CHARACTER MODEM SALE $\$ 49.00$

(List S99.00)

- Saves on-line time; Easier to read!
- Direct connect, originate/answer, half and full duplex!
- Terminal program (tape included) Disk-Add $\$ 5.00$!
- One year free access to Compuserve, 2 hours free on-line time!
- 15 day free trial - 180 day free replacement warranty!
- Instruction manual!

80 COLUMN TERMINAL CARTRIDGE SALE $\$ 59.00$

- No cassette or disk drive needed!
- VIC-20 40-80 Column . . .
$\$ 59.00$ (List \$99.00)
- COM-64 80 Column Board \$99.00 (List \$199.00)

Converts your computer screen to 40 or 80 columns! You can add a 40-80 column word processor, mailmerge and electronic spreadsheet for only $\$ 24.95$ (tape or disk).

SMART 64 MODEM PROGRAM SALE \$26.95

(LIst S39.95)

- One key password automatic entry!
(DISK)
- On-line alarm timer!
- Prints out all information received!
- Record and send programs on disk!
- Use with Protecto 40-80 column terminal!
- LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY
- BEST SERVICE IN U.S.A. • ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

Add $\$ 3.00$ for postage Add $\$ 6.00$ tor CANADA. PUERTO RICO. HAWAII I orders. WE DO NOT EXPORT TO OTHER COUNTRIES
Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada orders must be in US dollars. We accept Visa and Master-
Card. We ship C.O.D.

9" Data Monitor

- 80 Columns $\times 24$ lines
- Green text display
- Easy to read - no eye strain
- Up front brightness control
- High resolution graphics
- Quick start - no preheating
- Regulated power supply
- Attractive metal cabinet
- UL and FCC approved

- 15 Day Free Trial - 90 Day Immediate Replacement Warranty

9" Screen - Green Text Display
12" Screen - Green Text Display (anti-reflective screen) 12" Screen - Amber Text Display (anti-reflective screen) 14" Screen - Color Monitor (national brand) *PLUS $\$ 9.95$ for Connecting Cable.
*\$ 69.00
*\$ 99.00
*\$ 99.00
*\$249.00

Display Monitors From Sanyo

With the need for computing power growing every day, Sanyo has stepped in to meet the demand with a whole new line of low cost, high quality data monitors. Designed for commercial and personal computer use. All models come with an array of features, including upfront brightness and contrast controls. The capacity 5×7 dot characters as the input is 24 lines of characters with up to 80 characters per line.
Equally important, all are built with Sanyo's commitment to technological excellence. In the world of Audio/Video, Sanyo is synonymous with reliability and performance. And Sanyo quality is reflected in our reputation. Unlike some suppliers, Sanyo designs, manufactures and tests virtually all the parts that go into our products,
 from cameras to stereos. That's an assurance not everybody can give you!

It's an interesting way to wile away the hours. 6×10 and 5×12 are not too hard; 4×15 will make you work; and 3×20, which seems at first to be the easiest, proves to be a real brain bender.

A sample solution to the 4×15 problem is given in Figure 2.

Figure 2: A 4×15 Solution

If humans can waste time trying to fit the pieces, computers can do it too. "Pentominos" does not run at blinding speed; it tries the pieces at about the same speed as humans do. It's dumber than human puzzle solvers: It will try to make a piece fit in places we know instinctively are hopeless. But the computer has no intuition: It will plod along, making dumb moves until it finds a combination that fits.

The program tries the pieces "visibly"-that is, you can see it putting the pieces in place, thinking about its next move, and then taking a piece back out when it becomes obvious (even to the dumb computer) that it can't work there.

In a moment we'll get to more detail on how it works. The computer always thinks about fitting the upper-leftmost empty square, and it will tell you which piece it is trying to fit there; that piece's identity will be shown in a corner of the screen. So you can track the computer's thoughts if you wish.

It can take a few minutes or several hours to find the next solution. This program is a good one to set up for an overnight run. You might want to turn off your TV set or monitor and let the computer hum away quietly all by itself.

When a solution is found, you can type CONT at any blank place on the screen, and the computer will go after the next solution.

How It Works

The pentominos and all their possible rotations are stored in DATA statements. Only four squares need to be described for each pentomino rotation, since the information gives coordinates based upon the starting square.

After reading in the data, the computer uses the following logic. Line numbers are given for those who would like to try examining the program.

1. (Line 2010) The computer looks through the list of pieces to find the first one that isn't being used. Then it searches the board for a blank square, starting at the left and searching each
column top to bottom. That's the next place it will try to fit a piece. If it can't find a blank, we have a solution and will go to step 5 .
2. (Line 2030) The piece just picked is set to its first rotation.
3. (Line 2060) The computer tries to fit the piece starting at the square it has identified. If it doesn't fit, it will skip ahead to step 7.
4. (Line 2120) The piece fits, so the computer puts it onto the board, onto the screen, and marks off the piece as used. It then goes back to step 1 to look for a new place to fit pieces.
5. (Line 2170) We have a solution! Stop and wait for the user to admire us. If the user types CONT, we'll keep going into step 6.
6. (Line 2190) We've reached a dead end, so we go back and remove the last piece placed on the board. If there are no pieces left, we quit; at this point we will have found all the solutions.
7. (Line 2260) Let's rotate the current piece so that we can try it in a different way. If we can find a new rotation, we go back to step 3 to try the piece. If not, we continue to step 8.
8. (Line 2300) The computer looks through the list of pieces to find the next piece to be tried. Then it goes back to step 2.

Variables And Arrays

If you're trying to read the program, it will be worthwhile to have some information on variables and arrays. Here are some useful ones:

Array $B(X, Y)$ is the board. If the value is zero, that part of the board is blank. When a board square is used, the appropriate value in this array is set to the number of the occupying piece; but the important thing to remember is that it's set to nonzero.

The DATA statements show all rotations of all pieces. They are transferred to arrays X and Y :

Arrays $X($ rotation, C) and $Y($ rotation, $C)$ tell where to find the squares (X and Y) of each piece's rotation. The rotation is taken from the DATA statements.

Array P(rotation) tells which piece is involved for each rotation of the above table.

Each Piece Has Data

Array $\mathrm{P} \$$ (piece) is the name of the piece.
Array S(piece) tells where to find the starting rotation for piece X.

Array T(piece) tells which rotation is currently being used (or tried) for piece X.

Arrays X 2 (piece) and X 2 (piece) list the starting square where piece A has been placed.

Tracking The Moves

Array U (move) lists the pieces in the order in which we tried them.

The piece under consideration is designated

aninuark Lid.

VIDEO ADVENTURES ${ }^{\text {" }}$

QUEST - A different kind of Graphic Adventure, it is played on a computer generated mape of Alesia. You'll have to build an army and feed them through combat, bargaining, exploration of ruins and temples, and outright banditry! Takes 2-5 hours to play and is different each time.
Available On: TRS8OC 16K, CMD64, VICOO 13K, MC10 16K. TI99 (EXT. BASIC), IBMPC
TAPE $\$ 14.95$
DISK \$19.95

MARS - Your ship crashed on the Red Plane and you have to get home. You will have to explore a Martian City, repair your ship, and deal with possibly hostile aliens to get home again. This is recommended as a first Adventure. It is in no way simple - playing time normally runs from 30 to 50 hours, but it lets you try out Adventuring before you battle the really tough ones. Full Graphics Adventure.
Available On: TRSEOC, CMD 64, IBM PC
TAPE $\$ 19.95$
DISK $\$ 24.95$
STARFIRE - If you enjoyed StarRaiders or StarWars, you will love Starfire. It is not a copy, but the best shoot-em-up, see them in the window space game on the CMD64 or TRS80C. The fantastic graphics will put you right in the control room as you hyperspace from quadrant to quadrant fighting the aliens and protecting your bases.
Available On: TRS80C 16K, CMD64
TAPE $\$ 19.95$ DISK $\$ 24.95$

PYRAMID - ONE OF THE TOUGHEST ADVENTURES. Average time through the pyramid is 50 70 hours. Clues are everywhere and some ingenious problems make this popular around the world. FULL GRAPHIC ADVENTURE.
Available On: TRSSOC 16K, CMD64, MC10 16K, IBM PC
TAPE S19.95
DISK \$24.55

NEWI GRAPHIC ADVENTURES

> AARDVARK offers over 120 original high quality programs. Send one dollar for a current catalog and receive a $\$ 1.00$ gift certificate good towards your next purchase.

Authors - AARDVARK pays top dollar for high quality programs. Send a copy today for a personal review and editorial help.

TO ORDER: Send amount indicated plus $\$ 2.00$ shipping. per order. Include quantity desired and your preference of tape or disk. Be sure to indicate type of system and amount of memory. When using charge card to order by mail, be sure to include expiration date.

Figure 3: Partial Solution. The Program Will Be Trying To Fit The Point Marked X.

by P ; its current rotation, of course, will be $\mathrm{T}(\mathrm{P})$.
When we place a piece, we \log it into array U and use P1 to keep track of how many pieces have been used.

Program Variations

The program could be speeded up significantly by using a compiler or by converting it to machine language. I have chosen not to do that for two reasons: compatibility and readability.

A machine language version would nevertheless be quite straightforward to write. No special math or other logic is involved. Such a program would be very fast. But it would not be universal, since different machines would need to load the program into different memory locations.

If you go for many solutions, you should realize that some of the solutions are transformations of others. Given one solution, others can be found by inverting it left to right or top to bottom. This means that each solution is really four solutions; but the computer will find each of the four as it works. If this is not desired, the extra solutions can be eliminated by removing all but two of the rotations of a single eight-rotation piece. That way, the reflected solutions couldn't happen: That piece can appear in only one orientation.

For example, we could eliminate reflected solutions by changing line 770 to DATA R, 2 and then deleting lines 800 to 850 inclusive.

Making It Smarter

The program would run faster if it didn't show its moves on the screen, but watching it work is most of the fun. For one thing, it may remind you of an important aspect of computers: They're dumb, but they're faithful.

The computer will lumber along, trying dumb moves. But it won't get tired, and it will eventually reach the solution.

Yes, we could add extra logic to make the computer smarter. We could ask the computer to scan for some of the obviously impossible situations that it does not recognize at all with the present program. But there's a danger: The computer could waste more time being smart than it does being dumb.
Copyright © 1984 Jim Butterfield

Program 1: Pentominos For Commodore

Refer to the "Automatic Proofreader" article before typing this program in.

$1 \varnothing \varnothing$	PRINT CHR\$ (142)"\{CLR\} \{5	RIGHT \} PENTOMI
	NOS [DOWN ${ }^{\text {" }}$:rem 140
110	DATA I, 2	:rem 83
120	data ø, 1, $0,2, \varnothing, 3, \varnothing, 4$	rem 107
130	DATA 1, $0,2, \varnothing, 3, \varnothing, 4, \varnothing$:rem 108
140	DATA $\mathrm{X}, 1$	rem 1øø
150	DATA $1,-1,1, \varnothing, 2,0,1,1$:rem 152
160	DATA V,4	rem 103
$17 \varnothing$	DATA $\varnothing, 1, \varnothing, 2,1, \varnothing, 2, \varnothing$:rem 108
$18 \emptyset$	DATA $\varnothing, 1, \varnothing, 2,1,2,2,2$	m 113
$19 \varnothing$	DATA $1, \varnothing, 2, \varnothing, 2,1,2,2$:rem 114
$2 ø \varnothing$	DATA $1, \varnothing, 2, \varnothing, 2,-1,2,-2$: rem 196
210	DATA T, 4	rem 97
$22 \varnothing$	DATA $\varnothing, 1, \varnothing, 2,1,1,2,1$:rem 106
230	DATA $1, \varnothing, 1,1,2, \varnothing, 1,2$:rem 107
240	DATA $1, \varnothing, 2, \varnothing, 1,-1,1,-2$:rem 198
250	DATA $2,-1,2, \varnothing, 2,1,1, \varnothing$	em 155
260	DATA W, 4	rem 105
270	DATA $\varnothing, 1,1,1,1,2,2,2$:rem 113
$28 \varnothing$	DATA $1, \varnothing, 1,1,2,1,2,2$	rem 114
$29 \varnothing$	DATA $\varnothing, 1,1,-1,1, \varnothing, 2,-1$:rem 202
$3 \varnothing \square$	DATA $1,-1,1, \varnothing, 2,-2,2,-1$:rem 242
310	DATA U, 4	:rem 99
$32 \square$	DATA $\varnothing, 2,1, \varnothing, 1,1,1,2$:rem 107
330	DATA $2, \varnothing, \varnothing, 1,1,1,2,1$	em 108
340	DATA $\varnothing, 1,1, \varnothing, 2, \varnothing, 2,1$:rem 108
350	DATA $1, \varnothing, \varnothing, 1, \varnothing, 2,1,2$:rem 109
360	DATA $\mathrm{F}, 8$:rem 93
370	DATA $\varnothing, 1,1,-1,1, \varnothing, 2, \varnothing$:rem 155
380	DATA $1,-1,2,-1,1,0,1,1$	rem 203
390	DATA $1,-1,1, \emptyset, 1,1,2,1$:rem 159
$4 \varnothing \emptyset$	DATA $1,-1,1, \varnothing, 2, \varnothing, 2,1$:rem 151
410	DATA $\varnothing, 1,1,1,1,2,2,1$	rem 108
420	DATA $1, \varnothing, 1,1,2,1,1,2$:rem 109
430	DATA $1,0,1,1,2,-1,2, \varnothing$:rem 154
440	DATA $1,-2,1,-1,2,-1,1,0$:rem 246
450	DATA L, 8	:rem 99
460	DATA $1, \varnothing, 2, \varnothing, 3, \varnothing, 3,1$:rem 114
470	DATA $\varnothing, 1, \varnothing, 2, \varnothing, 3,1,3$:rem 115
480	DATA $1,-3,1,-2,1,-1,1,0$:rem 251
490	DATA $1, \varnothing, 2, \varnothing, 3, \varnothing, 3,-1$:rem 162
	DATA $1, \varnothing, 2, \varnothing, 3, \varnothing, \varnothing, 1$:rem 106
510	DATA $\varnothing, 1, \varnothing, 2, \varnothing, 3,1, \varnothing$	em 107
520	DATA $\varnothing, 1,1,1,2,1,3,1$:rem 111
530	DATA $1, \varnothing, 1,1,1,2,1,3$:rem 112
540	DATA Y,8	:rem 112
550	DATA $\varnothing, 1, \varnothing, 2, \varnothing, 3,1,1$:rem 112
560	DATA $1, \varnothing, 2, \varnothing, 3, \varnothing, 1,1$:rem 113
$57 \varnothing$	DATA $1,-1,1, \varnothing, 1,1,1,2$:rem 159
580	DATA $1,-1,1, \varnothing, 2, \varnothing, 3, \varnothing$:rem 160
590	DATA $\varnothing, 1, \varnothing, 2, \varnothing, 3,1,2$:rem 117
$60 \emptyset$	DATA $1,0,2,0,3,0,2,1$:rem 109
610	DATA $1,-2,1,-1,1,0,1,1$:rem 199
620	DATA 1, $0,2, \varnothing, 3, \varnothing, 2,-1$: rem 156
636	DATA $\mathrm{Z}, 4$:rem 109
640	DATA $\varnothing, 1,1,1,2,1,2,2$: rem 114
650	DATA 1, $1,1,1,1,2,2,2$:rem 115
660	DATA $1,-2,1,-1,1,0,2,-2$:rem 251
679	DATA $2,-1,1, \varnothing, 2, \varnothing, \varnothing, 1$:rem 159
680	DATA $\mathrm{P}, 8$:rem 108
690	DATA $\varnothing, 1,1, \varnothing, 1,1,2, \varnothing$:rem 115
$7 \varnothing \varnothing$	DATA $1, \varnothing, \varnothing, 1,1,1, \varnothing, 2$:rem 107
710	DATA $\varnothing, 1,1, \varnothing, 1,1,1,2$:rem 109
720	DATA $1, \varnothing, \varnothing, 1,1,1,2,1$:rem 110
736	DATA $1,-1,1,0,2,-1,2,0$:rem 202
740	DATA $1,-1,1,0,0,1,1,1$:rem 156
750	DATA $\varnothing, 1, \varnothing, 2,1,1,1,2$	rem 114

PBOSNS

The Professional Systems People And (DCBO WOBX

Present Products From commodore And

The Software That Makes Them Work!

SOFTWARE

SBSYS 8032, 8096 \& B-Series

 The Small Business System Available for twin 8250 systems. GL, AP, AR, INV. \& payroll modules all communicate.LEGISYS 8032, 8096 \& B-Series. The total legal office information, accounting and tickler system.

LOADSYS 8032, 8096 \& B-Series.

The total truck brokerage accounting system. Call for free intro consulting.

Call Toll-Free by dialing:
Outside Texas: 1-800-221-WORX
Inside Texas: 1-800-692-4265, wait for beep, then dial 008-3378, wait for tone and dial 993 or Lubbock 806/797-2623, Dallas/Ft. W. 817/589-2622.

Send $\$ 1$ for catalog, refundable on first order. VISA \& MasterCard. Add 3\% Surcharge.
Prices for mail order only, subject to change without notice.

760 DATA $1, \varnothing, 2,0,1,1,2,1$
770 DATA R， 8
$78 \emptyset$ DATA $\varnothing, 1, \emptyset, 2,1,2,1,3$
790 DATA $1, \emptyset, 2,0,2,1,3,1$
$8 \emptyset \emptyset$ DATA $1,-1,1, \varnothing, 2,-1,3,-1$
$81 \varnothing$ DATA $1,-1,1, \varnothing, \varnothing, 1, \varnothing, 2$
$82 \varnothing$ DATA $\varnothing, 1,1,1,1,2,1,3$
$83 \emptyset$ DATA $1, \emptyset, 1,1,2,1,3,1$
840 DATA $1,0,2,-1,2,0,3,-1$
850 DATA $1,-2,1,-1,1, \varnothing, \varnothing, 1$
$86 \emptyset$ DATA A，\varnothing
$87 \varnothing$ V\＄＝＂$\{$ HOME $\}\{13$ DOWN $\} "$
$88 \emptyset \mathrm{H}=$＝＂$\{23$ RIGHT $\} "$
：rem 40
1øøø DIM X（63，4），Y（63，4），P（64），P\＄（13），S（1 $3), \mathrm{T}(13), \mathrm{B}(6,20)$
：rem 36
1øø1 DIM X1（5），Y1（5），X2（12），Y2（12），U（12）
：rem 241
$1 \emptyset 1 \emptyset$ READ PS，N：IF N＝Ø GOTO $107 \emptyset$ ：rem 81
$1 \varnothing 2 \emptyset \mathrm{~T}=\mathrm{T}+1: \mathrm{P} \$(\mathrm{~T})=\mathrm{P} \$: \mathrm{S}(\mathrm{T})=\mathrm{V}+1 \quad$ ：rem 41
$103 \emptyset$ FOR $\mathrm{J}=\mathrm{V}+1$ TO $\mathrm{V}+\mathrm{N}: \mathrm{P}(\mathrm{J})=\mathrm{T} \quad$ ：rem 12
$1 \emptyset 4 \emptyset$ FOR $K=\emptyset$ TO $3:$ READ $X(J, K), Y(J, K):$ NEXT K，J
：rem 203
1 100 V＝V＋N：PRINT P\＄；：rem 158
1 1ø6 GOTO 1 1ø1ø ：rem 194
1ø7ø PRINTLEFT\＄（V\＄，5）；：PRINT＂CHOOSE： \｛DOWN\}" :rem 34
1ø8ø FOR J＝3 TO 6：PRINT J；＂BY＂；6ø／J；＂ \｛DOWN\}":NEXT J :rem 219
$1 \emptyset 9 \emptyset$ INPUT＂SELECT 3 THRU 6＂；Wl ：rem 205
11øø IF Wl＜3 OR Wl＞6 OR Wl＜＞INT（Wl）GOTO \｛SPAC E\} 1 0 7 ø ~
：rem 77
$1110 \mathrm{~W} 2=6 \varnothing / \mathrm{W} 1$
1120 PRINT＂\｛CLR\}"
2の日の REM FIND NEW SPACE TO FILL • 231
$2 ø 1 \varnothing$ GOSUB $3 \varnothing \varnothing \varnothing: P=J: G O S U B$ 32øø：IF Xl＞W2 G OTO $217 \varnothing$
：rem 178
$2 ø 2 \emptyset$ REM GET A NEW PIECE ：rem 25
$2 ø 3 \varnothing \mathrm{~T}(\mathrm{P})=\mathrm{S}(\mathrm{P})$
：rem 235
$2 ø 4 \emptyset$ PRINT＂\｛HOME\}";P\$(P);"\{11 DOWN\}"
：rem 52
2050 REM TRY FITTING PIECE ：rem 37
$2 \varnothing 6 \emptyset \mathrm{C} \$=\mathrm{P} \$(\mathrm{P}): \mathrm{Xl}(\varnothing)=\mathrm{Xl}: \mathrm{Yl}(\varnothing)=\mathrm{Yl}: \mathrm{FOR} \mathrm{J}=1 \mathrm{~T}$ 04
：rem 71
$2 \emptyset 7 \emptyset \mathrm{X}=\mathrm{X}(\mathrm{T}(\mathrm{P}), \mathrm{J}-1)+\mathrm{Xl}: \mathrm{Y}=\mathrm{Y}(\mathrm{T}(\mathrm{P}), \mathrm{J}-1)+\mathrm{Yl}: \mathrm{Xl}$ $(J)=X: Y 1(J)=Y \quad: r e m 1 \varnothing \varnothing$
$2 ø 8 \emptyset$ IF $\mathrm{X}<1$ OR $\mathrm{Y}<1$ OR $\mathrm{X}>\mathrm{W} 2$ OR Y＞Wl GOTO 2 260
2090 IF $\mathrm{B}(\mathrm{Y}, \mathrm{X})<>\varnothing$ GOTO $226 \varnothing$ ：rem 119
$21 \emptyset \emptyset$ NEXT J
2110 REM IT FITS－PUT PIECE IN PLACE
：rem 3
$212 \emptyset \mathrm{~B}=\mathrm{P}:$ FOR $\mathrm{J}=\emptyset$ TO 4 ：rem 67
$213 \varnothing \mathrm{X}=\mathrm{Xl}(\mathrm{J}): \mathrm{Y}=\mathrm{Yl}(\mathrm{J}):$ GOSUB 35øø ：rem 246
2140 NEXT J
：rem 80
$215 \emptyset \mathrm{X} 2(\mathrm{P})=\mathrm{Xl}: \mathrm{Y} 2(\mathrm{P})=\mathrm{Yl}: \mathrm{Pl}=\mathrm{Pl}+\mathrm{l}: \mathrm{U}(\mathrm{P} 1)=\mathrm{P}: \mathrm{GO}$ TO $2 \varnothing 10$
：rem 223
$216 \emptyset$ REM BOARD FILLED ：rem 197
$217 \emptyset$ PRINT＂\｛HO ME\} \ { 2 ~ S P A C E S \ } S O L U T I O N " ; : E N ~ D
：rem 119
$218 \emptyset$ REM UNDRAW LAST ONE ：rem $15 \emptyset$
$219 \varnothing \mathrm{P}=\mathrm{U}(\mathrm{Pl}): \mathrm{U}(\mathrm{Pl})=\varnothing: \mathrm{Pl}=\mathrm{Pl}-1: \mathrm{IF} \mathrm{Pl}<\emptyset$ THEN PRINT＂THAT＇S ALL＂：END ：rem 112
$2200 \mathrm{~B}=\varnothing: \mathrm{X}=\mathrm{X} 2(\mathrm{P}): \mathrm{Y}=\mathrm{Y} 2(\mathrm{P}): \mathrm{C} \$=\mathrm{"}$＂：GOSUB $35 \emptyset$ ：rem 13
$221 \varnothing \mathrm{Xl}=\mathrm{X}: \mathrm{Yl}=\mathrm{Y}:$ FOR $\mathrm{J}=1$ TO 4 ：rem 237
$222 \varnothing \mathrm{X}=\mathrm{X}(\mathrm{T}(\mathrm{P}), \mathrm{J}-1)+\mathrm{Xl}: \mathrm{Y}=\mathrm{Y}(\mathrm{T}(\mathrm{P}), \mathrm{J}-1)+\mathrm{Y} 1: \mathrm{Xl}$ $(J)=X: Y l(J)=Y$
：rem 97
2230 GOSUB $35 \emptyset \emptyset$
2240 NEXT J
2250 REM ROTATE THE PIECE ：rem 81
250 REM ROTATE THE PIECE ：rem 195
$226 \emptyset \mathrm{~T}(\mathrm{P})=\mathrm{T}(\mathrm{P})+1: \mathrm{IF} \mathrm{P}(\mathrm{T}(\mathrm{P}))=\mathrm{P}$ GOTO $2 \varnothing 6 \varnothing$
：rem 115
：rem $11 \varnothing$
：rem 119
：rem l2Ø
：rem 247
：rem 154
rem 114
：rem 115
：rem 206
：rem 204
：rem 85
：rem 138 rem 166

3010 RETURN
$321 \varnothing$ IF $\mathrm{B}(\mathrm{Yl}, \mathrm{XI})=\emptyset$ GOTO $323 \emptyset$ ：rem 149
3220 NEXT Y1，Xl
：rem 69
3230 RETURN ：rem 168
$35 ø \varnothing$ PRINT LEFT $(\mathrm{V} \$, \mathrm{Y}+2)$ ；LEFT $(\mathrm{H} \$, \mathrm{X}) ; \mathrm{C}$ ： B
$(Y, X)=B$
：rem 231
$351 \varnothing$ RETURN
：rem 169

Program 2：Pentominos For Atari

Refer to the＂Automatic Proofreader＂article before typing this program in．
FE $10 \varnothing$ PRINT＂\｛CLEAR\}PLEASE WAIT... I NITIALIZING ARRAYS＂：POKE 752，1： POSITION \varnothing, \varnothing
FD 110 DATA 1,2
$612 \varnothing$ DATA $\varnothing, 1, \varnothing, 2, \varnothing, 3, \varnothing, 4$
GM $13 \varnothing$ DATA $1, \varnothing, 2, \varnothing, З, \varnothing, 4$ ，
GE $14 \varnothing$ DATA $x, 1$
II $15 \emptyset$ DATA $1,-1,1, \varnothing, 2, \varnothing, 1,1$
$6 H 16 \varnothing$ DATA $v, 4$
GM $17 \varnothing$ DATA $\emptyset, 1, \varnothing, 2,1, \varnothing, 2, \varnothing$
HB $18 \varnothing$ DATA $\varnothing, 1, \varnothing, 2,1,2,2,2$
HL $19 \emptyset$ DATA $1, \emptyset, 2, \emptyset, 2,1,2,2$
HE 2 øø DATA $1, \varnothing, 2, \emptyset, 2,-1,2,-2$
GB $21 \varnothing$ DATA T， 4
GK $22 \emptyset$ DATA $\varnothing, 1, \varnothing, 2,1,1,2,1$
GL $23 \varnothing$ DATA $1, \varnothing, 1,1,2, \emptyset, 1,2$
GL $23 \emptyset$ DATA $1, \emptyset, 1,1,2, \emptyset, 1,2$
MG $24 \emptyset$ DATA $1, \emptyset, 2, \emptyset, 1,-1,1,-2$
J $25 \emptyset$ DATA $2,-1,2, \emptyset, 2,1,1, \emptyset$
oJ $26 \varnothing$ DATA W， 4
HB $27 \varnothing$ DATA $\emptyset, 1,1,1,1,2,2,2$
HL $28 \emptyset$ DATA $1, \varnothing, 1,1,2,1,2,2$
MK 29 DATA $\varnothing, 1,1,-1,1, \varnothing, 2,-1$
PC $3 \varnothing \varnothing$ DATA $1,-1,1, \emptyset, 2,-2,2,-1$
$6031 \varnothing$ DATA U， 4
GL 32 D DATA $\varnothing, 2,1, \emptyset, 1,1,1,2$
GK $33 \emptyset$ DATA $2, \varnothing, \emptyset, 1,1,1,2,1$
GK 34 D DATA $\varnothing, 1,1, \emptyset, 2, \varnothing, 2,1$
EN 35 D DATA $1, \varnothing, \varnothing, 1, \varnothing, 2,1,2$
EN $36 \emptyset$ DATA F ， 8
J $37 \emptyset$ DATA $\emptyset, 1,1,-1,1, \varnothing, 2, \emptyset$
hl $38 \emptyset$ DATA $1,-1,2,-1,1, \varnothing, 1,1$
JP $39 \varnothing$ DATA $1,-1,1, \varnothing, 1,1,2,1$
tH 4 Øø DATA $1,-1,1, \varnothing, 2, \emptyset, 2,1$
GM $41 \varnothing$ DATA $\varnothing, 1,1,1,1,2,2,1$
GK $42 \emptyset$ DATA $1, \emptyset, 1,1,2,1,1,2$
JR． $43 \varnothing$ DATA $1, \emptyset, 1,1,2,-1,2, \emptyset$
PG 44 Ø DATA $1,-2,1,-1,2,-1,1, \varnothing$
$6045 \emptyset$ DATA L， 8
HL $46 \emptyset$ DATA $1, \varnothing, 2, \varnothing, 3, \varnothing, 3,1$
HD $47 \emptyset$ DATA $\emptyset, 1, \emptyset, 2, \emptyset, 3,1,3$
PL $48 \emptyset$ DATA $1,-3,1,-2,1,-1,1, \emptyset$
KC $49 \emptyset$ DATA $1, \emptyset, 2, \emptyset, 3, \emptyset, 3,-1$
GK 5 Øø DATA $1, \varnothing, 2, \varnothing, 3, \emptyset, \varnothing, 1$
$6 L 51 \varnothing$ DATA $\varnothing, 1, \varnothing, 2, \varnothing, 3,1, \varnothing$
GP $52 \emptyset$ DATA $\emptyset, 1,1,1,2,1,3,1$
HA $53 \emptyset$ DATA $1, \emptyset, 1,1,1,2,1,3$
HA $54 \varnothing$ DATA Y ， 8
HA $55 \emptyset$ DATA $\emptyset, 1, \varnothing, 2, \emptyset, 3,1,1$
HB $56 \varnothing$ DATA $1, \varnothing, 2, \varnothing, 3, \varnothing, 1,1$
JP $57 \emptyset$ DATA $1,-1,1, \emptyset, 1,1,1,2$
KA $58 \varnothing$ DATA $1,-1,1, \varnothing, 2, \varnothing, 3, \varnothing$
HF $59 \emptyset$ DATA $\emptyset, 1, \emptyset, 2, \emptyset, 3,1,2$
：rem 58
：rem $13 \varnothing$
：rem 46
：rem 29
：rem 189
：rem 242
：rem 197
EN NEXT J
：rem 130
：rem 164
－
$227 \emptyset$ REM GIVE UP ON PIECE
万
$2280 \mathrm{~T}(\mathrm{P})=\emptyset$
290 REM
231の TF T（ P く＞の2320 GOTO 2ø3ø

1 ：rem 19
，
 $230 \varnothing \mathrm{P}=\mathrm{P}+1: \mathrm{IF} \mathrm{P}>12$ GOTO 21

3øøø FOR J＝1 TO 12：IF T（J）
\qquad 1
\qquad
\qquad

$$
2
$$

\qquad

\qquad

\square

116 COMPUTE！May 1984

A new concept in interactive visual learning. CodePro-64

Now you can learm to code in BASIC and develop advanced programming skills with graphics, sprites and music-visually. You leam by interacting with CodePro-64, a new concept in interactive visual learning.

SEE PROGRAM EXECUTION
Imagine actually seeing BASIC statements execute. CodePro-64 guides you through structured examples of BASIC program segments. You enter the requested data or let CodePro-64 do the typing for you. (It will not let you make a mistake.)

You step through and actually see the execution of sample program statements by simply pressing the space bar. CodePro- 64 does the rest. You see statements with corresponding graphics and variable value displays.

EXTENSIVE TUTORIAL

CodePro-64's extensive tutorial guides you through each BASIC command, program statement, and function. You get clear explanations. Where appropriate, you invoke BasicView to see examples execute and watch their flow charts and variables change.
By seeing graphic displays of program segment execution you learn by visual example. You learn faster and grasp programming concepts easier with CodePro-64 because you immediately see the results of your input.
You control your learning. You can go through the tutorial sequentially, or return to the main menu and select different topics, or use keywords to select language elements to study. You can page back and forth between screens within a topic at the touch of a function key.
Once you have practiced and mastered the BASIC language elements you move on to
more advanced concepts. You learn about sprite and music programming.

SPRITE GENERATOR

 \& DEMONSTRATORCodePro-64's sprite generator lets you define your own sprites on the screen. You learn how to define sprites and what data values corespond to your sprite definitions. (You can then save your sprite data to a diskette file for use in your own programs.) You can easily experiment with different definitions and make changes to immediately see the effects.

We also help you learn to program with sprites by giving you a sprite demonstrator so you can see the effect of changing register values. You can experiment by moving your sprite around in a screen segment, change its color and see the effects of your changes. You learn by visual examples.

MUSIC GENERATOR \& DEMONSTRATOR

Our Music Generator and Music Demonstrator will provide hours of instruction and creative enjoyment. From the beginning of your instruction you can compose simple tunes on the screen using the generator. Once you've completed a composition you can save the tune and its associated SID parameters to a diskette file. Our music sam-

OUR GUARANTEE

We guarantee your satisfaction. You must be satisfied with CodePro-64 for the Commodore-64. Try it for 10 days and if for any reason you are not satisfied return it to us (undamaged) for a full refund. No risk.
ple program can be used alone or incorporated into your own programs to read the saved music file and replay your songs.
Our music demonstrator lets you experiment with various combinations of music programming parameters and hear the results. All you do is enter rows of SID parameters on the screen to create a particular sound. Then you hear each sound by playing the "keyboard organ" in real time as you shift from row to row of SID parameters. By seeing your input and hearing the result you quickly learm how to create new musical sounds and special sound effects.

Whether you're a beginning programmer or an experienced professional, CodePro-64 will help you improve you Commodore 64 programming skills. We're sure because CodePro- 64 was developed by ateam of two professionals with over 25 years of software development experience.

CodePro-64 is a professional quality educational program for the serious student of personal computing. And it's fully guaranteed. Order yours today.

HOWTO ORDER

Order your copy of CodePro-64 today by mail or phone. Send only $\$ 59.95$ plus $\$ 3.00$ shipping and handling to:

SYSTEMS MANAGEMENT ASSOCIATES 3700 Computer Drive, Dept. G-1
 Raleigh, N.C. 27609

Available on diskette only. MasterCard/VISA accepted. For faster service on credit card orders, call toll free 1-800 SMA-RUSH. (1-800-762-7874). Dealer inquinies invited.

Commodore 64 is a trademark of Commodore Business Machines, Inc.

6N 6øø DATA $1, \varnothing, 2, \varnothing, 3, \emptyset, 2,1$
NH $61 \emptyset$ DATA $1,-2,1,-1,1, @, 1,1$
IM $62 \emptyset$ DATA $1, \varnothing, 2, \varnothing, 3, \varnothing, 2,-1$
6N 63Ø DATA $Z, 4$
HC 64 D DATA $\boxminus, 1,1,1,2,1,2,2$
HD 65 DATA $1, \varnothing, 1,1,1,2,2,2$
PL $66 \emptyset$ DATA $1,-2,1,-1,1, \emptyset, 2,-2$
JP $67 \emptyset$ DATA $2,-1,1, \emptyset, 2, \emptyset, \emptyset, 1$
6K 68 D DATA $F, 8$
HD 69 DATA $\varnothing, 1,1, \varnothing, 1,1,2, \varnothing$
$6 L 7 \emptyset \emptyset$ DATA $1, \varnothing, \varnothing, 1,1,1, \varnothing, 2$
6K $71 \varnothing$ DATA $\varnothing, 1,1, \varnothing, 1,1,1,2$
$6072 \emptyset$ DATA $1, \emptyset, \emptyset, 1,1,1,2,1$
KK $73 \varnothing$ DATA $1,-1,1, \varnothing, 2,-1,2, \varnothing$
JH 74 D D TA $1,-1,1, \varnothing, \varnothing, 1,1,1$
HC $75 \varnothing$ DATA $\emptyset, 1, \varnothing, 2,1,1,1,2$
HD 76 D DATA $1,6,2,0,1,1,2,1$
$6077 \emptyset$ DATA $R, 8$
HH 78＠DATA Ø，1，Ø，2，1，2，1，3
H $79 \emptyset$ DATA $1, \emptyset, 2, \varnothing, 2,1,3,1$
PH $8 \emptyset \emptyset$ DATA $1,-1,1, \emptyset, 2,-1,3,-1$
Јк $81 \emptyset$ DATA $1,-1,1, \varnothing, \emptyset, 1, \varnothing, 2$
HC $82 \boldsymbol{6}$ DATA $\varnothing, 1,1,1,1,2,1,3$
HO 83 D DATA $1, \varnothing, 1,1,2,1,3,1$
MO $84 \emptyset$ DATA $1, \emptyset, 2,-1,2, \emptyset, 3,-1$
MM $85 \emptyset$ DATA $1,-2,1,-1,1, \varnothing, \varnothing, 1$
FF $86 \emptyset$ DATA A, \emptyset
HE 1 Øøø DIM $\mathrm{X}(63,4), \mathrm{Y}(63,4), \mathrm{P}(64), \mathrm{PP} \$($ 13）， $\mathrm{S}(13), \mathrm{T}(13), \mathrm{B}(6,2 \emptyset)$
CI 1 פめ1 DIM X 1 （5），Y1（5），X2（12），Y2（12）， U（12），C\＄（1），F中（1）
MP 1 Øめ2 $Z=\emptyset: F O R \quad I=\emptyset$ TO 63：P（I）＝Z：FOR J $=\emptyset$ TO $4: X(I, J)=Z: Y(I, J)=Z: N E X T$ J ：NEXT I
Of 1 ＠ø $3 \quad F(64)=Z: F O F \quad I=\emptyset \quad$ TO $12: S(I)=Z: T$ （I）$=Z: X 2(I)=Z: Y 2(I)=Z: U(I)=Z: N$ EXT I：S（13）$=Z: T(13)=Z$
BK 1 øø 4
FOR I＝ø TO $\quad 6: F O R \quad J=\emptyset \quad$ TO $2 \emptyset: B$（I ，$J)=Z: N E X T \quad J=N E X T \quad I=F O R \quad I=\emptyset \quad T O$ $5: X 1(I)=Z: Y 1(I)=Z: N E X T \quad I$
601 1 øத FRINT＂\｛CLEAR3＂：FOSITION 15，ø： FRINT＂PENTOMINOS＂：FRINT

PJ 1 g 2 の $T=T+1: F P \$(T, T)=P \$: S(T)=V+1$
AK 1 ఏS FOR $J=V+1$ TO $V+N: P(J)=T$
01 1940 FOR $K=\emptyset$ TO $3: R E A D L, M: X(J, K)=L$ $: Y(J, K)=M: N E X T \quad K: N E X T \quad J$
10 165ø $V=V+N=$ FRINT P\＄；
MC 1 Ø6の GOTO 1 Ø1の
JM $1 \varnothing 7 \emptyset$ POSITION 1 ， $5:$ PRINT＂CHOOSE：＂：P RINT
EL 1 Ø8 8 FOR $J=3$ TO $6: P R I N T ~ J ; " B Y " ; 6 \emptyset$ ／J：NEXT J
JF 1 Øけø FRINT＝FRINT＂SELECT 3 THRU $6:$ ＂；：INPUT W1
HM 11 Øø IF $W 1<3$ OR W $1>6$ OR $W 1<>I N T(W 1)$ THEN GOTO $1 \varnothing 7 \emptyset$
K6 111 ■ W2＝6 の／W 1
BC 1120 PRINT＂\｛CLEAR\}"
OH $2 \varnothing \varnothing \emptyset$ REM FIND NEW SPACE TO FILL
OB 2ø1ø GOSUB उøøø：P＝J：GOSUB 32øø：IF X $1>W 2$ THEN GOTD $217 \varnothing$
BJ $2 \emptyset 2 \emptyset$ REM GET A NEW PIECE
OL $2 \emptyset 3 \emptyset \quad T(P)=S(P)$
NP $2 \emptyset 4 \emptyset$ FOSITION $1,1:$ PRINT $P P \$(P, P): P D$ SITION 0,12
CF 2050 REM TRY FITTING PIECE
$B D 2 \varnothing 6 \emptyset C \$=P P \$(P, P)=X 1(\varnothing)=X 1: Y 1(\varnothing)=Y 1:$ FOR $J=1$ TO 4
6E $2 \emptyset 7 \emptyset \quad X=X(T(P), J-1)+X 1: Y=Y(T(P), J-1)$ $+Y 1: X 1(J)=X: Y 1(J)=Y$
DH 2ø日ø IF $X<1$ QR $Y<1$ OR $X>W 2$ OR $Y>W 1$ THEN GOTO $226 \emptyset$
K6 2ø9の IF $B(Y, X)<\rangle \emptyset$ THEN GOTO $226 \emptyset$

EM 21 Øø NEXT J
AD $211 \emptyset$ REM IT FITS－PUT PIECE IN FLA CE
ED $212 \emptyset \quad B=P: F O R \quad J=\emptyset$ TO 4
PG $213 \varnothing \quad X=X 1(J): Y=Y 1(J): G O S U B \quad 35 \varnothing \varnothing$
FA $214 \emptyset$ NEXT J
NP $215 \emptyset \times 2(P)=X 1: Y 2(P)=Y 1: P 1=F 1+1: U\left(P_{1}\right.$ ）$=P=$ GOTO 2 Ø1の
MF $216 \emptyset$ REM BUARD FILLED
DF $217 \emptyset$ POSITION $\emptyset, 12: P R I N T$＂SOLUTION＂ ；：FOKE 752，ø：END
J6 $218 \emptyset$ REM UNDRAW LAST ONE
HA $219 \emptyset P=U(F 1): J(P 1)=\varnothing: P 1=P 1-1: I F P 1<$ \emptyset THEN PRINT＂THAT＂S ALL＂：END
AN $2206 \quad B=\varnothing: X=X 2(P): Y=Y 2(P): C \$=" \quad "=G O S$ UB $35 \emptyset \varnothing$
ON 221 Ø $\quad \times 1=X: Y 1=Y: F O F \quad J=1 \quad$ TO 4
SB 222ø $X=X(T(F), J-1)+X 1: Y=Y(T(P), J-1)$ $+Y 1: X 1(J)=X: Y 1(J)=Y$
AF $223 \varnothing$ GOSUB $35 \emptyset \emptyset$
FB 224＠NEXT J
MD 225 Ø FEM ROTATE THE PIECE
GJ $2260 \quad T(F)=T(P)+1$ ：IF $F(T(F))=P$ THEN GOTO $2 \emptyset 6 \emptyset$
IC 227 FEM GIVE UP ON FIECE
CO 228 の $T(F)=\varnothing$
BN 229 REM LOOK FOR NEW PIECE
OH 23Øの $P=P+1$ ：IF $P>12$ THEN GOTO $219 \emptyset$
$01231 \emptyset$ IF $T(F)<\rangle \emptyset$ THEN $23 \emptyset \emptyset$
MF 232の GOTO 2ø3ø
IC $3 \varnothing \emptyset \emptyset$ FOR $J=1$ TO $12: I F T(J)<\rangle \varnothing$ THEN NEXT J
KE $3 \lesssim 1 \emptyset$ RETURN
旳 $32 \emptyset \emptyset$ FOR $X 1=1$ TO W2：FOR Y1＝1 TO W 1
IL $321 \emptyset$ IF $B(Y 1, X 1)=\varnothing$ THEN $323 \varnothing$
J 3220 NEXT Y1：NEXT $X 1$
H 323 RETURN
MO 35øの POSITION $X, Y+2$ ：PRINT C\＄：B (Y, X) ＝B
i． 3510 RETURN

Program 3：Pentominos For IBM PC／PCjr

Insert lines 110－860 from the Commodore version（Program 1）．
100 CLS：PRINT＂PENTOMINOS＂：P RINT
1000 DIM X（63，4），Y（63，4），P（64），P\＄（13），S（ 13）， $\mathrm{T}(13), \mathrm{B}(6,20)$
1001 DIM X1（5），Y1（5），X2（12），Y2（12），U（12）
1010 READ P\＄，$N=$ IF $N=0$ GOTO 1070
$1020 \mathrm{~T}=\mathrm{T}+1: \mathrm{F} \Phi(\mathrm{T})=\mathrm{P} \$: \mathrm{S}(\mathrm{T})=\mathrm{V}+1$
1030 FOR $\mathrm{J}=\mathrm{V}+1$ TO $\mathrm{V}+\mathrm{N}: \mathrm{P}(\mathrm{J})=\mathrm{T}$
1040 FOR $K=0$ TO $3:$ READ $X(J, K), Y(J, K): N E X$
T K，J
$1050 \mathrm{~V}=\mathrm{V}+\mathrm{N}:$ PRINT F＇\＄；
1060 GDTO 1010
1070 LOCATE 5， 1 ：FRINT＂CHOOSE：＂：PRINT
1080 FOF J＝3 TO 6：PRINT J；＂BY＂； $60 / \mathrm{J} ; "$＂： F
FINT：NEXT J
1090 INFUT＂SELECT 3 THFU 6＂；W1
1100 IF $W 1<3$ OR $W 1 \geqslant 6$ OR $W 1<>I N T(W 1)$ GOTO 1070
$1110 \mathrm{~W} 2=60 / \mathrm{W} 1$
1120 CLS
2000 REM FIND NEW SFACE TO FILL
2010 GOSUB $3000: F=J=G O S U B \quad 3200: I F \times 1>W 2$
GOTO 2170
2020 REM GET A NEW FIECE
$2030 \mathrm{~T}(\mathrm{~F})=\mathrm{S}(\mathrm{F})$
2040 LOCATE 1，1：FRINT P\＄（F）
2050 REM TRY FITTING FIECE
$2060 \mathrm{C} \$=\mathrm{P} \Phi(\mathrm{F}): \mathrm{X} 1(0)=\mathrm{X} 1: \mathrm{Y} 1(0)=\mathrm{Y} 1:$ FOK $\mathrm{J}=1$ TO 4

Now you can get deep discounts on micro software by taking advantage of Software City's tremendous Purchasing Power. We buy from leading software publishers in wholesale quantities, so you benefit with substantial savings whether buying for home or business.
Low prices, great selection and friendly service have made us the nation's largest chain of software stores. Start putting our Purchasing Power to work for you today!

SOFTWARE ALWAYS DISCOUNTED

Programs, peripherals, disks, accessories, and of books and magazines.

VISIT A SOFTWARE CITY PROGRAM DISCOUNT CENTER NEAR YOU -
ALABAMA:Birmingham(205) 591-8314 • Huntsville (205) 536-9456 ARIZONA: Phoenix (602)264-1422 Tucson (602) $721-1008$ COLORADO: Westminster (303) $430-8708$ CONNECTICUT:
Hartford (coming soon) • Orange (203) $799-2119$ • Stamford (203) 359.1414 DELAWARE:
Wilmington (302) 478-4880 FLORIDA: Orange Park (904) 264-3102 • St. Peterșburg (813) 345-5132 Sarasota (813) 923-4040 - Tampa (813) 961-8081 GEORGIA: Atlanta (404) 257.1833 ILLINOIS: Arlington Heights (312)259-4260. Chicago (coming soon) INDIANA: Fort Wayne (coming soon) Indianapolis (coming soon) IOWA: Davenport (319) 386-2345 KENTUCKY:
Louisville (502) $893-3838$ MARYLAND: Bethesda (301) $468-1001$ MASSACHUSETTS: Lexington (617) 861-0116 - W. Springfield (413) 739-5101 MICHIGAN: Ann Arbor (313) 996-4500 Okemos (coming soon) - Southfield (313) 559-6966 - Sterling Hts. (313) 978-3700 MISSOURI: Independence (816) 461-1260 • St. Louis (coming soon) NEBRASKA: Omaha (coming soon) NEW JERSEY: Bergenfield (201) 387-8388 • Cherry Hill (609) 424-8155
Englishtown (201) 972.1150 • Fair Lawn (201) 791-8793 • Green Brook (201) 968.7780 Hamilton (609) 890-1066 • Linwood (609) 927-3393 • Little Falls (coming soon) Midland Park (201) 447.9794 • Montvale (201) 391.0931 • Morristown (201) 267.3353 Pine Brook (201) 575-4574 • Pompton Lakes (201) 831-1004 • Red Bank (201) 747.6490 Ridgefield (201) $943-9444$ • Summit (201) $273-7904$ • Teaneck (201) $692-8298$ NEW YORK: Albany (coming soon) • Brooklyn (coming soon) • Buffalo (coming soon) • Fairport (716) 223-3723 Forest Hills (212) 261-1141 • Great Neck (516) $482-4929$ • Long Island (coming soon) Manhattan (212) 832-0760 • Mt. Kisco (914) 666-6036 • North White Plains (914) 946-1800 Pomona (914) $354-3706$ - Poughkeepsie (coming soon) - Scarsdale (coming soon) Staten Island (212) 351.9217 - Syracuse (315) $445-2577$ NORTH CAROLINA: Charlotte (704) 366-5218 • Fayetteville (919) 864-7293 OHIO: Centerville (513) $439-1237$ Columbus (614) 888-6660 - Mayfield Hts. (216) 473-8124 OKLAHOMA:
Tulsa (918) 744-0558 PENNSYLVANIA: Bethel Park (412) 854-1777 • Exton (215) 524-1483 Fairless Hills (215) 943-4544 • King of Prussia (coming soon) • Pittsburgh (412) 367.0441 Whitehall (215) 434-3060 SOUTH CAROLINA: Spartanburg (803) $574-4713$ TEXAS:
Austin (512) $458-2101$ VERMONT: Burlington (802) $864-6981$ VIRGINIA: Fairfax (coming soon) Falls Church (703) 845-9393 • Richmond I (804) 740-8400 • Richmond II (804) 320-2244 Virginia Beach (804) $463-8220$ WASHINGTON: Bellevue (206) $451-1141$ CANADA: (coming soon) ENGLAND: London 013529220 PUERTO RICO: San Juan (809) 781-9357

BUSINESS SOFTWARE: Catalog at all stores.
RETAIL STORE FRANCHISES: $\$ 50,000$ estimated investment. Offering by prospectus only. Direct inquiries to SOFTWARE CITY FRANCHISE DEPT. - 1415 Queen Anne Road, Teaneck, NJ 07666

NEW!
Universal Input/Output Board for VIC-20/64

- 16 channel 8-bit A/D converter with 100 microsecond sampling time.
- 1 D/A output.
- 16 high voltage/high current discrete outputs.
- 1 EROM socket.
- Use multiple boards for additional channels up to 6 boards.
VIC-20 uses MW-311V \$205.00
CBM-64 uses MW-311C \$225.00

MW-302: VIC-20/64 Parallel Printer Interface.

Works with all centronics type parallel matrix \& letter printers and plottersEpson, C.Itoh, Okidata, Nec, Gemini 10, TP-I Smith Corona, and most others. Hardware driven; works off the serial port. Quality construction: Steel DIN connectors \& shielded cables. Has these switch selectable options: Device 4,5, 6 or 7; ASCII or PET ASCII; 7-bit or 8-bit output; upper \& lower case or upper only. Recommended by PROFESSIONAL SOFTWARE for WordPro 3 Plus for the 64, and by City Software for PaperClip.
MW-302
$\$ 119.95$

Dealer

 inquiries invited.
Micro World Electronix, Inc.

 3333 S. Wadsworth Blvd. \#C105, Lakewood, CO 80227(303) 987-9532 or 987-2671
$2070 X=X(T(F), J-1)+X 1: Y=Y(T(F), J-1)+Y 1: X$ $1(J)=X: Y 1(J)=Y$
2080 IF $X<1$ OF $Y<1$ OR $X>W 2$ OR $Y>W 1$ GOTO 2260
2090 IF $B(Y, X)<0$ GOTO 2260
2100 NEXT J
2110 REM IT FITS－FUT FIECE IN FLACE
$2120 \mathrm{~B}=\mathrm{F}:$ FOR $\mathrm{J}=0$ TO 4
$2130 \mathrm{X}=\mathrm{X} 1(\mathrm{~J}): \mathrm{Y}=\mathrm{Y} 1(\mathrm{~J}):$ GOSUB 3500
2140 NEXT J
$2150 \times 2(F)=X 1: Y 2(F)=Y 1: F 1=F 1+1: U(F 1)=F: G$ OTO 2010
2160 REM BOARD FILLED
2170 LOCATE 15，1：PRINT＂SOLUTION＂；：END 2180 REM UNDRAW LAST ONE
$2190 \mathrm{~F}=\mathrm{U}(\mathrm{P} 1): \mathrm{U}(\mathrm{P} 1)=0: \mathrm{F} 1=\mathrm{P} 1-1$ ：IF $\mathrm{F} 1<0$ THE N FRINT＂THAT＇S ALL＂：END
$2200 \mathrm{~B}=0: \mathrm{X}=\mathrm{X} 2(\mathrm{~F}): \mathrm{Y}=\mathrm{Y} 2(\mathrm{P}): \mathrm{C}=\mathrm{F}=\mathrm{n}: \mathrm{GOSUB} \mathrm{3} 5$ 00
$2210 \times 1=X: Y 1=Y: F O R \quad J=1$ TO 4
$2220 \mathrm{X}=\mathrm{X}(\mathrm{T}(\mathrm{F}), \mathrm{J}-1)+\mathrm{X} 1: \mathrm{Y}=\mathrm{Y}(\mathrm{T}(\mathrm{F}), \mathrm{J}-1)+\mathrm{Y} 1: X$ $1(J)=X: Y 1(J)=Y$
2230 GOSUB 3500
2240 NEXT J
2250 REM FOTATE THE FIECE
$2260 \mathrm{~T}\left(\mathrm{~F}^{*}\right)=\mathrm{T}\left(\mathrm{F}^{\circ}\right)+1$ ：IF $\mathrm{P}(\mathrm{T}(\mathrm{F}))=\mathrm{F}$ GOTO 2060
2270 REM GIVE UP ON PIECE
$2280 \mathrm{~T}\left(\mathrm{~F}^{\prime}\right)=0$
2290 REM LOOK FOR NEW FIECE
$2300 \mathrm{~F}=\mathrm{F}+1$ ：IF F＞12 GOTO 2190
2310 IF $T(F)<>0$ GOTO 2300
2320 GOTO 2030
3000 FOR $\mathrm{J}=1$ TO 12：IF $\mathrm{T}(\mathrm{J})<>0$ THEN NEXT J
3010 FETURN
3200 FOF $X_{1}=1$ TO W2：FOF Y1＝1 TO W1
3210 IF $B(Y 1, X 1)=0$ GOTO 3230
3220 NEXT Y1，X1
3230 RETURN
3500 LOCATE $Y+2, X:$ PRINT $C \$: B(Y, X)=B$
SE10 RETURN

Program 4：Pentominos For TI－99／4A

Insert lines 110－860 from the Commodore version（Program 1）．
（Note：If using a disk drive，type CALL FILES（1）before loading and running this program．）

```
4@ CALL CLEAR
5@ FRINT "{8 SPACES}PENTOMINOS": :
60 GOTO 870
7\emptyset FOR I=1 TO LEN(A$)
8\emptyset CALL HCHAR(ROW, COL +I, ASC(SEG$(A$
    , I, 1)))
90 NEXT I
15Q RETUFN
87\emptyset DIM XX(63,4), YY(63,4),PP(64),PP
        $(13),SS(13),TT(13), BE (6,2\emptyset)
880 DIM XX1(5),YY1(5),XX2(12),YYZ(1
        2),UU(12)
890 CT=5
9\emptyset\emptyset READ F$,N
91ø IF N=\emptyset THEN 104\emptyset
920 T=T+1
936 PF$(T)=P$
940 SS(T)=V+1
959 FOR J=V+1 TO V+N
96ø PP(J)=T
97\emptyset FOR K=ø TO 3
98\emptyset READ XX(J,K),YY(J,K)
990 NEXT K
1ØØ\emptyset NEXT J
1010V=V+N
1Ø2\emptyset PRINT P$;
```

```
1 Ø3Ø GOTO 9øø
1940 CALL CLEAR
\(1 \emptyset 5 \emptyset\) PRINT " CHOOSE:": :
\(1 \varnothing 6 \emptyset\) FOR J=3 TO 6
1076 PRINT J;"BY "; \(6 \emptyset / \mathrm{J}\)
1 1日8ø NEXT J
1 Ø \(9 \varnothing\) PRINT
\(11 \varnothing \varnothing\) INPUT " SELECT 3 THRU 6: ": W1
\(111 \varnothing\) IF \(\left(W_{1}<3\right)+(W 1>6)+(W 1<\searrow\) NT \((W 1))\)
\(11 \varnothing \varnothing\) INPUT " SELECT 3 THRU 6: ": W 1
\(111 \varnothing\) IF \((W 1<3)+(W 1>6)+(W 1<>I N T(W 1))\)
    THEN 1640
\(112 \emptyset \mathrm{~W} 2=6 \emptyset / \mathrm{W} 1\)
1130 CALL CLEAR
1140 FEM FIND NEW SFACE TO FILL
\(115 \varnothing\) GOSUB \(193 \varnothing\)
\(116 \emptyset \quad P=J\)
\(117 \emptyset\) GOSUB \(197 \emptyset\)
\(118 \emptyset\) IF \(X 1\) ンW2 THEN \(15 \emptyset \varnothing\)
119 D REM GET A NEW FIECE
\(12 \emptyset \emptyset \mathrm{TT}(\mathrm{P})=\mathrm{SS}(\mathrm{P})\)
121 Ø ROW=CT
\(1220 \mathrm{COL}=5+\mathrm{CT}\)
\(123 \varnothing\) A\$ \(=P P \Phi(P)\)
124 GOSUB \(7 \emptyset\)
\(125 \emptyset\) REM TRY FITTING PIECE
126 D \(\mathrm{C}=\mathrm{PP}\) \$( P )
\(127 \emptyset \times \times 1(\varnothing)=X 1\)
\(128 \varnothing Y Y 1(\emptyset)=Y 1\)
\(129 \varnothing\) FOR J=1 TO 4
\(13 \varnothing \varnothing \mathrm{X}=\mathrm{XX}(\mathrm{TT}(\mathrm{P}), \mathrm{J}-1)+\mathrm{X} 1\)
131 Ø \(Y=Y Y(T T(P), J-1)+Y 1\)
\(1320 \times X 1(J)=X\)
1330 YY1 (J) \(=Y\)
\(134 \varnothing\) IF \((X<1)+(Y<1)+(X>W 2)+(Y>W 1)\) TH
        EN 184 Ø
\(135 \emptyset\) IF \(B B(Y, X)<>\emptyset\) THEN \(184 \varnothing\)
1360 NEXT J
1370 REM IT FITS - PUT PIECE IN PLA
    CE
\(138 \emptyset \quad \mathrm{~B}=\mathrm{P}\)
139の FOR J=ø TO 4
14 あぁ \(X=X \times 1\) ( \(J\) )
141 Ø \(\mathrm{Y}=\mathrm{YY} 1\) (J)
\(142 \emptyset\) GOSUB \(2 \emptyset 3 \emptyset\)
\(143 \emptyset\) NEXT J
\(1440 \times \times 2(F)=\times 1\)
\(145 \varnothing Y Y 2(F)=Y 1\)
\(1460 \mathrm{~F} 1=\mathrm{F} 1+1\)
\(147 \emptyset\) UU ( F 1 ) \(=\mathrm{F}\)
\(148 \emptyset\) GOTO \(115 \varnothing\)
149 Ø FEM BOARD FILLED
1500 ROW \(=15\)
\(1510 \mathrm{COL}=5+\mathrm{CT}\)
1520 A\$="SOLUTION"
1530 GOSUB 70
\(154 \varnothing\) ROW \(=17\)
\(1550 \mathrm{COL}=5\)
1560 A\$="FIND ANOTHER SOLUTION?"
1578 GOSUB 70
\(158 \emptyset\) CALL KEY ( \(3, K, S\) )
\(159 \emptyset\) IF \(S<>1\) THEN \(158 \varnothing\)
16 ØØ IF CHR \(\$(K)=" Y "\) THEN 1620
1610 END
\(162 \emptyset\) REM UNDRAW LAST ONE
163 Ø \(F=U U\left(P_{1}\right)\)
164 Ø UU( P 1 ) \(=\) Ø
\(1650 \mathrm{~F} 1=\mathrm{P} 1-1\)
166 IF \(P 1>=\varnothing\) THEN \(169 \emptyset\)
167 Ø PRINT "THAT'S ALL"
1680 STOP
\(1690 \mathrm{~B}=\varnothing\)
17 の日 \(\mathrm{X}=\mathrm{X} \times 2\) (F)
1 Ø3Ø GOTO 9Øø
1040 CALL CLEAR
```

1710	$Y=Y Y Z(F)$
1720	C\＄＝＂＂
1730	GOSUB 2030
1740	$\mathrm{X} 1=\mathrm{X}$
1750	$Y 1=Y$
1760	FOR $J=1$ TO 4
1770	$\mathrm{X}=\mathrm{XX} \times \mathrm{T} T(\mathrm{P}), \mathrm{J}-1)+\mathrm{X} 1$
1780	$Y=Y Y(T T(F), J-1)+Y 1$
1790	$X \times 1(J)=X$
$18 \emptyset \emptyset$	$Y Y 1(J)=Y$
1810	GOSUB 2øろø
1829	NEXT J
1830	Rem＇rotate the piece
1840	$\mathrm{TT}(\mathrm{F})=\mathrm{T} T(\mathrm{~F})+1$
1859	IF PF（TT $(P))=P$ THEN 1260
1869	REM GIVE UF ON PIECE
1879	TT $(\mathrm{P})=\emptyset$
$188 \emptyset$	REM LOOK FOR NEW FIECE
1896	$\mathrm{F}=\mathrm{P}+1$
1900	IF $\mathrm{P}>12$ IHEN 1630
1910	IF TT（P）＜＞の THEN $189 \emptyset$
1920	GOTO 12＠め
1930	FOR J＝1 TO 12
1940	IF TT（J）＝ø THEN 196Ø
195\％	NEXT J
1960	RETURN
1970	FOR $\mathrm{X}^{1}=1$ TO W2
1980	FOR Y $1=1$ TO W 1
199ø	IF BB $\left(Y_{1}, X_{1}\right)=\emptyset$ THEN $2 \emptyset 2 \emptyset$
$2 \emptyset 0 \square$	NEXT Y1
$2 \emptyset 1 \varnothing$	NEXT X 1
2ø2Ø	RETURN
2036	$\mathrm{ROW}=\mathrm{Y}+1+\mathrm{CT}$
2ø4ø	$\mathrm{COL}=\mathrm{X}+\mathrm{CT}$
2650	$A \$=C$ \＄
2960	GOSUB $7 \emptyset$
$2 \mathscr{6 0}$	$\mathrm{BB}(\mathrm{Y}, \mathrm{X})=\mathrm{B}$
2ø8ø	RETURN
Program 5：	
Pentominos For The Color Computer	
Insert lin	s 110－860 from the Commodore version（Prozal

1 Øø CLS：PRINT＂\｛11 SPACES\}PENTOMINOS" 999 PCLEAR 1
1 Øøø DIM $\mathrm{X}(63,4), \mathrm{Y}(63,4), \mathrm{P}(64), \mathrm{P} \Phi(1$ 3），$S(13), T(13), B(6,26)$
1 Øの1 DIM X1（5），Y1（5），X2（12），Y2（12）， U（12）
$1 \emptyset 1 \emptyset$ READ $P \$$ ，N：IF $N=\emptyset$ GOTO 1 Ø7＠
$1 \varnothing 2 \varnothing T=T+1: P \$(T)=P \$: S(T)=V+1$
$1 \emptyset 3 \emptyset$ FOR $J=V+1$ TO $V+N: P(J)=T$
$1 \sqsubseteq 4$ FOR $K=\emptyset$ TO $3: \operatorname{READ} X(J, K), Y(J, K$ ）：NEXT K，J
$1 \emptyset 5 \emptyset V=V+N:$ PRINT $F \$$ ；
1 Ø6Ø GOTO 1 Ø1ø
1 107 7 FRINTจ64，＂CHOOSE：＂
$1 \emptyset 8 \emptyset$ FOR J＝3 TO 6：PRINT J；＂BY＂；6ø／ J：NEXT J
$199 \emptyset$ INPUT＂SELECT 3 THRU 6＂；W1
$11 \varnothing \varnothing$ IF W $1<3$ OR $W 1 \geqslant 6$ OR $W 1<>I N T(W 1)$ BOTO 1 ＠7
$111 \varnothing \mathrm{~W} 2=6$ の／W 1
112 CLS
$2 \emptyset \emptyset \emptyset$ REM FIND NEW SFACE TO FILL
2ø1ø GOSUB $3 \varnothing \varnothing \varnothing: P=J: G O S U B$ 32øø：IF X $1>W 2$ GOTO $217 \emptyset$
$202 \boldsymbol{0}$ REM GET A NEW FIECE
$2030 \mathrm{~T}(\mathrm{~F})=\mathrm{S}(\mathrm{P})$
2046 FRINT＠ड3，P\＄（P）
2950 REM TRY FITTING PIECE
$2 \emptyset 6 \emptyset C \$=P \$(F): X 1(\varnothing)=X 1: Y 1(\emptyset)=Y 1: F O R$

J＝1 TO 4
$2 \emptyset 7 \emptyset \quad X=X(T(F), J-1)+X 1: Y=Y(T(P), J-1)$
$+Y 1: X 1(J)=X: Y 1(J)=Y$
$268 \varnothing$ IF $X<1$ OR $Y<1$ OF $X>W 2 \quad O R \quad Y>W 1$ GOTO 2260
$209 \emptyset$ IF $B(Y, X)<>\varnothing$ GOTO $226 \emptyset$
2100 NEXT J
2110 REM IT FITS－FUT PIECE IN PLA CE
$2120 \mathrm{~B}=\mathrm{P}: \mathrm{FOR} \mathrm{J}=\mathrm{Q}$ TO 4
$2136 \mathrm{X}=\mathrm{X} 1(\mathrm{~J}): Y=Y 1(\mathrm{~J}): G O S U B \quad 35 \emptyset \emptyset$
214 ＠NEXT J
$2156 \times 2(F)=X 1: Y 2(P)=Y 1: P 1=P 1+1: U(P 1$

2160 REM BOARD FILLED
217 のFRINTa385，＂SOLUTION＂：END
2189 REM UNDRAW LAST ONE
$219 \emptyset \mathrm{~F}=\mathrm{U}(\mathrm{F} 1): \mathrm{U}(\mathrm{P} 1)=\varnothing: \mathrm{F} 1=\mathrm{P} 1-1: \mathrm{IF} \mathrm{P} 1<$ ＠THEN PRINT＂THAT＇S ALL＂：END
$22 \varnothing 0 \mathrm{~B}=\varnothing: \mathrm{X}=\mathrm{X} 2(\mathrm{P}): \mathrm{Y}=\mathrm{Y} 2(\mathrm{P}): \mathrm{C} \$=" \quad ": G O S$ UB $35 \emptyset 9$
221 Ø $\times 1=\mathrm{X}: \mathrm{Y} 1=\mathrm{Y}: \mathrm{FOR} \quad \mathrm{J}=1$ TO 4
$222 \emptyset X=X(T(F), J-1)+X 1: Y=Y(T(F), J-1)$
$+Y 1: X 1(J)=X: Y 1(J)=Y$
$223 \varnothing$ GOSUB $35 \varnothing \varnothing$
224ø NEXT J
$225 \emptyset$ REM ROTATE THE PIECE
$226 \emptyset T(P)=T(P)+1: I F P(T(P))=P$ GOTO 2ø6ロ
$227 \emptyset$ REM GIVE UP ON PIECE
$228 \emptyset \mathrm{~T}(\mathrm{P})=\varnothing$
$229 \varnothing$ REM LOOK FOR NEW PIECE
$23 \emptyset \emptyset P=P+1$ ：IF $P>12$ GOTO $219 \emptyset$
$231 \emptyset$ IF $T(P)<>\emptyset$ GOTO $23 \emptyset \emptyset$
232め GOTO 2øЗめ
3ØØØ FOR $J=1$ TO 12：IF $T(J)<\rangle \varnothing$ THEN NEXT J
3ø1ø RETURN
$32 \emptyset \varnothing$ FOR $X 1=1$ TO W2：FOR Y1＝1 TO W1
$321 \varnothing$ IF $B\left(Y_{1}, X_{1}\right)=\varnothing$ GOTO $323 \emptyset$
$322 \emptyset$ NEXT Y1，X1
3236 RETURN
$35 \emptyset \emptyset$ PRINT $จ X+(Y+2) * 32, C \$;: B(Y, X)=B$
$351 \varnothing$ RETURN

Program 6：Pentominos For The Apple

Insert lines 110－860 from the Commodore version（Program 1）．
$1 ø \varnothing \varnothing$ DIM $\mathrm{X}(63,4), Y(63,4), \mathrm{P}(64), \mathrm{P}(13)$ ， $\mathrm{S}(13), \mathrm{T}(13), \mathrm{B}(6,2 \varnothing)$
$1 ø \varnothing 1$ DIM X1（5），Y1（5），X2（12），Y2（12），U（1 2）
$1 ø \emptyset 3$ HOME ：HTAB 16：PRINT＂PENTOMINOS ＂：PRINT
$1 \varnothing 1 \varnothing$ READ P\＄，N：IF N $=\varnothing$ GOTO $1 \varnothing 7 \emptyset$
$1 \varnothing 20 T=T+1: P \$(T)=P \$: S(T)=V+1$
1 103ø FOR $J=V+1 T O V+N: P(J)=T$
$104 \varnothing$ FOR K $=\varnothing$ TO 3：READ $X(J, K), Y(J, K$ ）：NEXT K，J
$1 ø 5 \emptyset V=V+N:$ PRINT P\＄；
$1 \varnothing 6 \varnothing$ GOTO $1 \varnothing 1 \varnothing$
$1 ø 7 \emptyset$ PRINT ：VTAB（5）：PRINT＂CHOOSE：＂ ：PRINT
1ø8ø FOR J＝ 3 TO 6：PRINT J；＂BY＂；6ø ／J：PRINT ：NEXT J
$109 \emptyset$ INPUT＂SELECT 3 THRU 6 ？＂；W1
1100 IF W $1<3$ OR W $1>6$ OR W $1 \ll$ INT （W1）GOTO 1ø7ø
$1110 \mathrm{~W} 2=60 / \mathrm{W} 1$
1120 HOME
$2 ø ø \emptyset$ REM FIND NEW SPACE TO FILL
2ø1ø GOSUB 3øøø：P＝J：GOSUB 32øø：IF $X_{1}>$ W2 GOTO $217 \varnothing$

```
202ø REM GET A NEW PIECE
2030 T(P) = S(P)
2040 VTAB 1: PRINT P$(P): VTAB 12
2050 REM TRY FITTING PIECE
```



```
    J = 1 TO 4
2@7\emptysetX=X(T(P),J - 1) + X1:Y = Y(T(P),
    J - 1) + Y1:X1(J) = X:Y1(J) = Y
2ø8\emptyset IF X < 1 OR Y< 1 OR X > W2 OR Y >
    W1 GOTO 2260
2g9\emptyset IF B (Y,X) < > D GOTO 226\emptyset
21øD NEXT J
2110 REM IT FITS - PUT PIECE IN PLACE
212\emptyset B = P: FOR J = Ø TO 4
213\emptyset X= X1(J):Y=Y1(J): GOSUB 35ø\emptyset
2140 NEXT J
2150 X2(P)= X1:Y2(P)=Y1:P1 = P1 + 1:
    U(P1) = P: GOTO 201ø
2160 REM BOARD FILLED
217@ VTAB 1: PRINT " SOLUTION";: END
218\emptyset REM UNDRAW LAST ONE
219ø P = U(P1):U(P1) = D:P1 = P1 - 1: IF
    P1 < \emptyset THEN PRINT "THAT'S ALL": END
22ø\varnothingB = \emptyset:X = X2(P):Y = Y2(P):C$ = ""
    : GOSUB 35ø0
221ø X1 = X:Y1 = Y: FOR J = 1 TO 4
2220 X = X(T (P),J - 1) + X1:Y = Y(T (P),
    J - 1) + Y1:X1(J) = X:Y1(J) = Y
2230 GOSUB 3500
2240 NEXT J
2250 REM ROTATE THE PIECE
2260T(P)=T(P) + 1: IF P(T (P)) = P GOTO
    2060
```

```
2270 REM GIVE UP ON PIECE
228\emptyset T (P) = Ø
229\emptyset REM LOOK FOR NEW PIECE
23ø\emptysetP=P + 1: IF P > 12 GOTO 219\emptyset
231\varnothing IF T(P)< > \emptyset GOTO 23\emptyset\emptyset
232@ GOTO 2@30
3ø\emptyset\emptyset FOR J = 1 TO 12: IF T(J) < > Ø THEN
    NEXT J
3\emptyset1\varnothing RETURN
32ø\varnothing FOR X1 = 1 TO W2: FOR Y1 = 1 TO W
    1
321\emptyset IF B(Y1,X1) = Ø GOTO 323\emptyset
3220 NEXT Y1,X1
323@ RETURN
35@\varnothing UTAB Y + 4: HTAB X: PRINT C$:B(Y,
    X) = B
351\emptyset RETURN
```

```
\(227 \emptyset\) REM GIVE UP ON PIECE
\(228 \emptyset T(P)=\varnothing\)
229め REM LOOK FOR NEW PIECE
\(231 \varnothing\) IF \(T(P)\)＜\(>\varnothing\) GOTO 23øø
उøøø FOR \(\mathrm{J}=1\) TO 12：IF \(T(\mathrm{~J})<>\emptyset\) THEN NEXT J
3ø1ø RETURN
32のळ FOR X1＝ 1 TO W2：FOR Y1＝ 1 TO W 1
\(321 \varnothing\) IF \(\mathrm{B}(\mathrm{Y} 1, \mathrm{X} 1)=\varnothing\) GOTO \(323 \emptyset\)
3220 NEXT Y1，X1
\(323 \varnothing\) RETURN
359め VTAB \(Y+4:\) HTAB \(X:\) PRINT C \(\$: B(Y\) ， \(X)=B\)
351ø RETURN
```


Put a Monkey Wrench into your ATARI 800

Cut your programming time from hours to seconds，and have 18 direct mode commands．All at your finger tips and all made easy by the MONKEY WRENCH II．
The MONKEY WRENCH II plugs easily into the right slot of your ATARI and works with the ATARI BASIC cartridge．
Order your MONKEY WRENCH II today and enjoy the conveniences of these 18 modes： －Line numbering
－Renumbering basic line numbers
－Deletion of line numbers
－Variable and current value display
－Up and down scrolling of basic programs
－Location of every string occurrence
－String exchange
ove line
－Copy lines
－Special line formats and page numbering
－Disk directory display
－Margins change
－Memory test
－Cursor exchange
－Upper case lock
－Hex conversion
－Decimal conversion
－Machine language monitor
The MONKEY WRENCH II also contains a machine language monitor with 16 commands that can be used to interact with the powerful features of the 6502 microprocessot

Cles）

8 K in 30 Seconds

for your VIC 20 or CBM 64
If you own a VIC 20 or a CBM 64 and have been concerned about the high cost of a disk to store yout progiams on worry yourself no longer Now theres the RABBI．The RABBB comes in a cartridge and ar a much much iower price With the RABBIT You win he RABB you can locdand sore on you com dasene an tast as the 1541 disk dive fast as the 1541 disk drive
The RABBIT is easy to install，allows one to Append Basic Programs，works with or without Exponsion Memory，and provides two data file modes The RABBIT is not only fast but reliable
（The Rabbit tor the VIC 20 contains an expansion con－ nector so you can simulitaneously use your memory board，etc）\＄39．95

For CBM 64，PET，APPLE，and ATARI Now，you can have the same protessionally designed Macro Assembler／Editor as used on Spoce Shutlle projects
－Designed to improve Programmer Productivity．
－Similar syntox and commands－No need to relearn peculia sintaxes and commands when you go from PET to APPLE to atarl
－Coresident Assembler／Edito－Noneed to load the Editor then the Assemblet then the Edito，etc
－Also includes Word Processot Relocating Loader，and much
－Powerful Editor．Macros．Conditional and interactive Assembly，and Auto－zero page addressing
Still not convinced：send for our tree spec sheet！

3239 Linda Dr．
Winston－Salem，N．C． 27106
（919）924－2889（919）748－8446 Send for free catalog！

REVIEWS

Pitstop

Shay Addams
Racing games are nothing new, but Pitstop from Epyx incorporates a realistic element of the sport that sets it apart from everything else on the track. In addition to zooming around the course as fast as possible, you must develop a solid plan for maneuvering your three-man pit crew when you're forced to pull in for fresh tires and refueling. The game is available on cartridge for Atari, Commodore 64, and Coleco Adam computers.

The action takes place on one of six speedways, all based on genuine tracks such as Le Mans and Monaco. You can race at any one, or opt for the "MiniCircuit," in which the program picks three courses at random for you to complete, one after the other. Hardcore speed demons will prefer the "Grand Circuit"-it requires you to cover all six tracks in succession, a grueling marathon event. The number of laps per race can be set to three, six, or nine; skill levels include Rookie, Semi-Pro, and Pro. Up to four players can compete by taking turns.

The race kicks off as you push forward on the stick to accelerate. The perspective and graphics are similar to Enduro, but unfortunately not as detailed as Pole Position. While you accelerate, the gears shift automatically, accompanied by authentic sound effects. The screen scrolls vertically, with a green background and yellow cars. Your speed, elapsed time, and current lap are constantly displayed.

No more than two other
cars are on the track simultaneously, but they are programmed to swerve into your path or travel side by side to prevent your passing them. The main thing to watch out for is bumping into other cars or the sides of the road. An accident won't cause a colorful explosion the way it does in Pole Position, but it will reduce your speed as in Baja Buggies.

Trouble With Tires

This is where Pitstop takes a detour from the familiar "race around the track" scenario of similar games. When you smash into another car or the railing alongside the road, the corresponding tire is damaged. Starting off a deep blue, the tires change to a different hue each time you have an accident. Sustain too much damage and the tire explodes, knocking you out of the race. You've got to keep an eye on the color of all four tires and be ready to pull into the pits when they turn a bright red (indicating that they'll burst on the next collision).

The pit area is located to the right of the finish line. An inset map on the left displays an overhead view of the course, with your car's current position and the finish line prominently marked. Turn into the off-ramp on the right as you pass the finish line, and the scene cuts to a threequarter perspective of your car sitting in the pits. Now your vehicle is revealed as one of those low-slung, Indy 500-type racers, and is larger and much more detailed.

Action In The Pits

A member of your pit crew waits on each side of the car, standing
by to change the tires. Another is behind you, gas hose in hand. If the horizontal fuel gauge says you're running low, it's best to get the gas pumping immediately. This is done by using the joystick to move a cursor over the man, then hitting the fire button. Now you can steer him into place, where he automatically starts refilling your tank.

Tires are changed by activating one of the other men and moving him to the tire you want removed. He'll latch onto it, and you can guide him to a stack of fresh tires. When he touches the stack, the tire he's holding turns a deep blue to indicate that he's got a new tire, which he can then attach to the car. But keep your eyes on the gas gauge, because if you don't remove the nozzle when the tank's topped off, the gas spills over and you have to fill it up again.

While all this is going on, a timer at the top right of the screen shows the seconds ticking away to remind you how much time you're losing in the pits. Another digital display at bottom left tells you how much overall time has elapsed since the race began. To underscore the urgency of getting out of the pits as quickly as possible, the rest of the cars keep racing past in the background, their engines buzzing as they gain distance on you. When you're ready to roll, position the cursor over the man in front of the car and he'll raise his flag to wave you back onto the track.

Multiplayer Competition

You can make it through three laps around most tracks without
a stop for gas or tire changes, but the only fun involved in this is trying to beat your best time for the same course. Pitstop's more enjoyable in group play. When one driver completes the set number of laps, the next one takes a whirl around the track. After the race, each player's time is posted, along with his portion of the $\$ 94,000$ prize money. If you're competing in a Mini- or Grand circuit, the overall winnings are displayed at the bottom. If two or more players tie, the one who started first wins, so flip a coin to determine who goes first.

In addition to the exciting competition and action, Pitstop requires strategy and split-
second decision-making that are missing in other racing games. Should you try to finish the race in spite of a severely damaged tire, or pull into the pits and at least insure that you complete the race? Is there time to change all four tires? Situations like these put a real edge on the game play. Since veteran race car drivers agree that many professional races are won in the pits, not on the track, Pitstop has to be one of the most realistic and playable racing simulations available. Pitstop
Epyx Computer Software
1043 Kiel Court
Sunnyvale, CA 94089
Atari, 64 versions, $\$ 39.95$
Coleco Adam version, $\$ 53$
becomes progressively more challenging to complete your minimum order as the conveyor belts move faster and the number of objects you must assemble within the two-minute limit increases. After completing the second screen, you have a muchawaited opportunity to fling a pie into your boss's face-but that is not what gets you fired.

Panic Button breaks away from the three-man tradition and provides you with only one worker. Should he fail to fulfill his minimum order of assembled items, the boss spares no time in firing him (where's another pie?).

You have only one thing going for you in this game-the "panic button." You activate it by using the joystick button to move your character over to the operating switch. This slows the conveyors to a halt, allowing you to freely gather the objects around the factory. (Unfortunately, it has no effect on the clock, which continues to run down.) But your enraged boss soon comes to restart the conveyor belt, and you continue your frantic race against time.

An "external" panic button not mentioned in the rather skimpy documentation is the space bar: Pressed at any time during the game, it pauses the action indefinitely. I found myself using this panic button more than the other.

First Star's decision to develop a game with a unique concept is refreshing, but an original game is not always a good game. With Panic Button, however, First Star has succeeded. I recommend it to anyone who enjoys nonstop action-and even to those who do not. After all, that is the reason the "panic button" exists.
Panic Button First Star Software, Inc. 22 East 41st Street New York, NY 10017
Color Computer or VIC (8K expansion) tape, \$24.95
VIC cartridge $\$ 34.95$
Color Computer cartridge $\$ 39.95$
"rejected" objects (obviously thrown by your boss in anger) begin to fly around the screen, at times bumping into you and making your job even more difficult. I almost found it more than I could handle, having to race around the screen to retrieve objects moving nearly as quickly as I was.

Houses, Telephones, And Lamps

In later screens, you will find three-layered cakes, houses, telephones, televisions, and finally lamps dropping from the chutes. After every screen, it

600XL			
800XL			
1200XL		efiects $\mathbf{S 1 0 0}$ A	09**
1050 DRIVE	\$335	MICROBITS INFC	\$78
1025 PRINTER	\$399	80 COLUMN BD	\$249
1020 COLOR PTR	\$219	TECHNICAL NOTES	\$25
1027 PRINTER	\$279	REAL TIME CLK	\$38
1010 RECORDER	\$72	810 DRIVE	\$419

Gemini 15X Printer

Axiom AT-100 Printer (with interface $\$ 399$ Astra Double Density Dual Drive ... Rana 1000 Drive Bit-3 80 Column Board Mannesmann Talley 160 L Printer Atari 400 Keyboard (In Home) Programmer Kit .. \$48 Entertainer Kit Wico Joystick ... \$23 Wico Trackball DRIVES
ASTRA 1620 $\$ 469$
$\$ 295$
$\$ 298$
$\$ 418$
$\$ 718$
$\$ 510$
$\$ 929$

MEMORIES		
48K RAM (INTEC)	..	$\mathbf{S 9 5}$
64K RAM (INTEC)	.	$\mathbf{S 1 1 9}$
48K RAM (MOSAIC)	$\mathbf{\$ 1 0 9}$	
64K RAM (MOSAIC)	$\mathbf{\$ 1 4 5}$	
128K RAM DISK	.	$\$ 299$
32K RAM (MOSAIC)	.	$\$ 68$

ATARI SOFTWARE

ADVENTUREINT'L

Adv. 12 each
Preppie (CID) Preppie II (CID) Diskey (D) Sea Dragon (COB) ...
\ldots
\ldots

. APX
Eastern Front (C/D)
747 Land Sim. (C/D) 747 Land Sim
Fig-Forth (C)
ATARI INC.
Microsoft Basic II (R) Mickey in
Outdo
Paint (D) Speed
Six (R) Dig Dug (B) Atari Writer (R) Donkey Kong (R) Visicalc (D) Juggles House (CID) Pilot (Home) Galaxian Defender ET.
Microsoft Basic (D) Macro Ass. \& Edit (D) Basic Cartridge (R) Pac Man (R) Centipede (R) Caverns of Mars (D) Star Raiders (R) Conv. Lang. Ea. (C) Super Breakout (A) My First Alphabet (D) Prog. 2 \& 3 (ea.)(C) Word Processor (D) Pilot (Educ.) Touch Typing (C)

AUTOMATED SIMUL Hellfire Warrior (CID) Kng Arthr's Heir (C/D
Invasion Orion (C/D) Temple of Aps. (CID)
Star Warrior (C/D) Dragon's Eye (D) Crush Crumble (CID) . . \$

AVALON HILL
VC(D).
B-1 Nuc. Bomber (C) . . . $\$ 12$
Legionnaire (C)
BRODERBUND
Sky Blazer (D)
Bank St. Writer (D)
A.E. (D)

Arcade Machine (D)
Choplifter (D)
CBS
Mountain King (R) . .. $\$ 27$
Krazy (each) \$34
CONTINENTAL SOFT.
Home Accountant (D) \$ Tax Advantage (D)
DATASOFT
Text Wizard (D) Graphic Master (D) Micro Painter (D). Lisp Interpreter (D) Graphics Gen.(D) Basic Compiler (D) Zaxxon (C/D)
DON'T ASK
Sam (D)
P.M. Animator (D)

Teletari (D)

EDU.WARE
Prisoner II (D) Spelling Bee (D) Compu-Read (D) Compu-Math Fr. (D)
Compu-Math Dec. (D) EDUCATIONAL SOFT EDUCATIONAL SOFT.

Tricky Tutorial

 Tricky Tutorial5,6 or 7 (C/D) INFOCOM

INFOCOM

Suspended (D)
ZorkI, II or III (D)
Zork I, II or III (D)
Starcross (D)
Deadline (D)
JV SOFTWARE
JV SOFTWARE
Jrny to PInts (C/D Jrny to Pints (C/D)
Action Quest (CID) Action Quest (C/D)
Ghost Encount. (C/D) LJK
Letter Perfect (D)
Data Perfect (D)
ON-LINE
Ultima II (D)
Marauder (D)
Lunar Leeper (D)
Wiz \& Princess (D)
Frogger (C/D)
OPTIMIZED SYSTEMS

C-65 (D)

Bug-65 (D)
Max-65 (D)
Basic A+ (D)
ROKLAN
Gorf (D)
Wizard of Wor (D)
Wizard of Wor (R)
Wizard
SIRIUS
Alpha Shield (R)
Wavy Navy (D)
Bandits (D)
SPINNAKER
Snooper Troop 12 (D)
Kindercomp (D) Rhymes \& Riddles (D) Hey Diddle Diddle (D) Srch Amzng Thngs (D) Story Machine (D). Face Maker (D) STRATEGIC SIM. Cosmic Balance (D) Cosmic Balance il (D) Tigers In Snow (C/D) Battle of Shiloh (C/D) Battle of Norm. (CID) Galactic Gladiator (D) Cytron Masters (D) SYNAPSE SOFTWARE File Mngr 800 + Protector II (D) $\$ 23$ (R) $\$ 29$ Shamus ... (D) \$23 (R) \$29 Fort Apocalypse (CID) $\$ 23$ Shamus II (C/D)
Necromancer (C/D) Pharoh's Curse (C/D) ${ }^{\prime}$ THORN EM
Soccer (R)
Jumbo Jet (R)
Submarine Com....... \$34 USA
Atari World (D) 3-D Sprgrphcs (CID) MISCELLANEOUS Fingoncial Wizard $\mathbf{~} 20$ (D) $\$ 23$ Financial Wizard (D) .. $\$ 41$
Castle Wolfenstein (D) Castle Wolfenstein (D) $\$ 20$
Master Type (D) $\$ 27$ Master Type (D)
Millionaire (D) Millionaire (D) Astro Chase (D) Ali Baba (D). Miner 2040r (R) \$22 Sammy Sea Serp. (C) . \$13
$\$ 27$
$\$ 27$
$\$ 27$
$\$ 27$
$\$ 20$
$\$ 15$
22
$\$ 34$
$\$ 27$
$\$ 27$
$\$ 34$

$\$ 20$
$\$ 20$
$\$ 7$
$\$ 74$
$\$ 20$
$\$ 20$
$\$ 20$
$\$ 39$
$\$ 23$
$\$ 20$
$\$ 22$
$\$ 23$
$\$ 23$

$\$ 58$ $\$ 23$

がNiN
$\$ 27$
$\$ 30$
$\$ 27$
$\$ 30$

$\$ 27$
$\$ 23$
$\$ 23$

$\$ 30$
$\$ 20$
$\$ 20$
$\$ 20$
$\$ 27$
$\$ 23$
$\$ 23$
$\$ 27$

GEMINI 10X $\begin{array}{ll}\text { GORILLA } \ldots . . \$ 199 & \text { SMITH TPI . . . } \$ 488 \\ \text { CITOH } & \text { SILVER REED P } \$ 669\end{array}$
Prowriter $\$ 345$ QUME 11/40 + $\$ 1299$

727 BREA CANYON RD., SUITE 16 WALNUT, CA 91789
ORDER LINES OPEN MON-SAT 8 am - 8 pm
(800) 626-7642
pleass for orobes only SORRY, NO COD'S (714) 594-5204

FOR TECHNICAL INFO, ORDER INQUIRIES,

 OR FOR CALIFORNIA ORDERSAdd $\$ 2.50$ shipping per software order in continental U.S. Add $\$ 5.00$ shipping per software order for AK, HI, FPO-APO. Add $\$ 10.00$ or 15% whichever is greater) per software order for non-U.S. Call for cost of hardware shipping. Calif. residents add $61 / 2 \%$ sales tax. Cashiers checks or money orders filled within 24 hours for items in stock. Personal checks require 4 weeks to clear. MasterCard and Visa Slock. software only within continental software only within continental U.S., add 3\% surcharge. Include card final. All defective returns must have a return low prices, all sales are Please call to obtain one must have a return authorization number. Please call to obtain one before returning goods for replacement or

COMMODORE CBM 64 CALL 1541 DISK DRIVE \$239

1701 Color Monitor	\$255	1530 Recorder	\$59
1525 Printer	\$239	1600 Modem	\$59
1520 Color Ptr	\$169	1650 Auto Modem	\$89
Card ? (Infc)	\$60	CMB 64 Ref Guide	\$18
Light Pen	\$29	The Connection (Infc)	\$85
Cassette Infc	\$29	MSD Disk Drive	\$339
Card? Software	\$16	PTI 45 Lot Board	\$59

64

SOFTWARE
64
S
Multiplan
CALL
Script 64.
$\$ 77$
Calc Result Prof.
\$114
Calc Result Easy
The Home Accountant
$\$ 48$
Delphis Oracle
\$89
Word Pro 3 with Spell
ACCESS SOFTWARE
Neutral Zone (C/D) ... $\$ 26$ Payroll System Sprite Master (CID) \$27 Inventory Pkg (D) AVALON HILL General Ledger (D) Nukewar (C)
Planet Miners (C) Androm. Conquest (C)
Midway Campaign (C) Midway Campaign (C)
North Atl. Convoy (C) Comp. Stcks/Bnds (C) Computer Football (C) Telengard (C) BATTERIES INCLUDED Paper Clip (D) Delphis Oracle(D
BRODERBUND
Choplifter (R) Choplifter (R) Serpentine
Seafox (R)
David's Midnight (D)
COMMODORE
Easy File (D)
Easy Finance (D)
Easy Mail (D)
Easy Script (D)
Easy Schedule (D)
Logo (R)
Pilot (D)
Assembler (D)
Music Machine (D)
Music Composer (D)
Meza Music (D)
Video/Music Supt. (D) Jupiter Lander (R).....
Radar Rat Race (R) Rea Wolf (R)
Kickman (R) COMM-DATA
Pakacuda . (C) $\$ 14$ (D) $\$ 18$
Pakacuda: (C) $\$ 14$ (D) $\$ 18$
Escp. MCP: $\mathbf{~ (C) ~} \$ 14$ (D) $\$ 18$
$\begin{array}{ll}\text { Escp. MCP. } & \text { (C) } \$ 14 \text { (D) } \$ 18 \\ \text { Centropods } & \text { (C) } \$ 14 \text { (D) } \$ 18\end{array}$

COMPUTERMAT

Arcade-Pak (C)
Education-Pak (C) \$18
CREATIVE SOFTWARE

Moondust (R) $\$ 2$

Trashman (R)
12 Disk Data Mgr (D)
2 Mail List Mgr (D)
M-SOFT
M-File (D)
ON-LINE
Frogger (D)
Jawbreaker (D)
$\$ 23$
PACIFIC COAST SOFT
PCS (80 Col BD, Word Proc
D.Base,Spreadsheet) CALL

Account PAC (C/D)
File PAC (D)
Editor PAC (D)
Inquire PAC (D) $\$ 397$
Happy Tutor Typig (D) $\$ 18$
Happy Tutor Typng (D) $\$ 18$
PROFESS. SOFTWARE
Wordpro $3+/ 64$ (D) ... $\$$
QUICK BROWN FOX
Prof.Word Proc. (R) .
RAINBOW
Writers Assistant \$95
Spreadsheet Assist. . . . \$95
Spreadsheet Assist. . . $\$ 95$
File Assistant $\$ 95$
SIRIUS
Blade/Blackpoodle (D) $\$ 27$
Type Attack (D)
Repton (D)
Snake Byte (D)
Sitical
Fast Eddie (D)
Fast Eddie (D)
Spider City (D)
Squish'Em (D)
Alpha Shield (D)
Alpha Shield (D) $\ldots \ldots . \$ 27$
SKYLES ELEC WORKS
SKYLES ELEC. WORKS
Busicalc (C/D) $\$ 52$
Busicalc (C/D)
Busiwriter (D) $\$ 52$
$\$ 72$
SPINNAKER
Snooper Troops 1 (D) . \$29
Facemaker (D) $\$ 23$
Kindercomp (D) \$20
Kindercomp (D) \$20
Hey Diddle (D) $\$ 20$
Most Amaz. Thing (D) . \$27
Astroblitz (R) $\$ 25$ SYNAPSE
Household Fin. (D)
DATA 20
Video Pak 80 $\$ 139$
Z80 Video Pak \$139
EN-TECH
Finance Calc 64 : $\$ 34$
Data Base $64 \ldots$.

EPYX

(CID) \$23
Survivor (CID)
Dreibs (C/D) \$23
Protector II (D) (C/D) .
Morgal (D)
Shamus (D)
TAYLORMADE
Touch Typing Tutor
3.0 (D)
$\begin{array}{lr}\text { Temple of APS (D) } & \text {... } \\ \text { \$27 } \\ \text { Upper Reach. APS (D) } & \$ 14 \\ \text { Jumpman (D) } \ldots & \$ 27\end{array}$
Jump
HES Modem
6502 Prof Dev. Sys. $\$ 59$
Hesmon 64 (R)
Turtle Grapics II (R)
Heswriter 64 (R)
Gridrunner
Retroball (R)
INFOCOM
ZorkI, II or III (D)
Starcross (D)

JIN SAM

Mini-Jini (R)
Pro.Mail.List (C)\$22 (D)\$25 Stockmaster
(Inventory) (C)\$25 (D) $\$ 28$
Rbbrs/Lost Tomb (C/D) \$21
$\begin{array}{ll}\text { Wall Street (C/D) (C/D) } & \$ 21 \\ \text { W21 }\end{array}$
$\begin{array}{lr}\text { Money Manager (CID) } & \mathbf{\$ 2 1} \\ \text { Data Master (CID) } & \text { \$21 }\end{array}$
Dungeons of Ald
Dragons (CID)
Dragons (C/D)
. $\$ 21$
Text 2.6
(C) $\$ 32$ (D) $\$ 34$

Label $2.6 \ldots$ (C) $\$ 15$ (D) $\$ 17$
Time Manager 2.6 (C).$\$ 24$
Time Manager 2.6 (D) . $\$ 27$

Resrch Assist. $2.0(\mathrm{C}) \cdot \$ 24$
Resrch Assist. $2.0(\mathrm{D})$

UMI
Motor Mania (C) $\$ 20$
Renaissance (C)
VICTORY
Annihilator (CID) \$16
Kongo Kong (C/D)
Trek (C/D)

Questions Beginners Ask

Are you thinking about buying a computer for the first time, but you don't know much about computers? Or maybe you just purchased a computer and are still a bit baffled. Each month in this column, COMPUTE! will answer questions frequently asked by beginners.

0

What is a motherboard?

AA motherboard is the main circuit board of a computer. All other boards are connected to the motherboard.

The most important component on the motherboard is the central processing unit (CPU)-the central brain of the computer. The CPU is a microprocessor chip which performs or supervises all computer operations. It fetches each program instruction one at a time, executes it, stores the result, and then fetches the next instruction.

The motherboard also contains support chips required by the CPU: usually a video chip to control the TV display; input/output chips to handle the exchange of data with such peripherals as the disk drive, tape recorder, or printer; and perhaps a sound chip for music and sound effects.

In some computers-such as the Apple, Atari 800, and IBM PC/PCjr-the motherboard has long, narrow sockets called slots into which accessory boards can be plugged. Memory boards full of RAM chips (Random Access Memory) often fit into these slots. Other accessory boards (or cards) might include operating systems, disk drive controllers, printer interfaces, direct-connect modems, 80 -column video expanders, graphics expanders, and even piggyback processors (boards with another CPU to allow the computer to run different types of software). That's why motherboards with several internal slots make a computer more versatile.

Some computers, including most home computers these days, contain only one circuit boardthe motherboard. All the components are contained on this main board: the CPU, support chips, RAM chips, and ROM chips (Read Only Memory).

Consolidating all the boards into one motherboard makes the computer smaller, lighter, and-most important from the manufacturer's point of viewcheaper to produce. For example, original Atari 800s contain six boards, and that's even before all the slots are filled with accessory boards. But the new Atari 800XL, which replaces the 800, contains only one board, even though it has more memory (64 K RAM versus $8 \mathrm{~K}-48 \mathrm{~K}$). Obviously, the 800 XL costs less to manufacture.

Of course, a computer without slots for accessory boards would not be as versatile. So singleboard computers generally have an expansion slot or system bus on the rear. This allows accessory boards to be added externally. The accessory boards resemble large cartridges because they are enclosed in protective plastic or metal housings.

This still leaves one problem. How can more than one accessory board be plugged in at once? Naturally, there's a solution-an expansion box or motherboard extender. Both devices convert a lone expansion slot into several slots. For instance, you can expand a Commodore VIC-20 from the standard 5K RAM to 24 K RAM by plugging a motherboard extender into the rear expansion slot, and then plugging 3 K and 16 K expanders into the motherboard extender.

Occasionally this is necessary even on computers with internal slots on the motherboard, such as the IBM PC. To fully equip a PC, sometimes the five internal slots just aren't enough.

ATTENTION PROGRAMMERS

Our company is small enough that you won't get lost in the shuffle and our distribution is large enough for you to make significant royalties. One of our outside programmers made over $\$ 18,000.00$ in royalties from our first sale of his program to one mass merchandiser! (Our royalties are generous.) His program wasn't quite finished when it was submitted to us, but we could see its possibilities and aided in its completion.
If you have an exceptional original program for the Commodore 64 that would appeal to a wide audience, contact our new program manager.

ACADEMY SOFTWARE
P.O. Box 6277, San Rafael, CA 94903 (415) 499-0850

Anchor Automation Signalman MODEMS

FREE SOURCE MEMBERSHIP WITH SIGNALMAN All Signalman Modems are Direct Connect, and provide the best price-performance values. Dealer and OEM inquiries invited

Volksmodem with computer cable	68
Mark VII Auto Dial/Auto Answer	99
Mark XII Smart Model'1200/300	279
DC HAYES Smartmodem	219
DC Hayes Smartmodem $1200 / 300$	519

PROM QUEEN for C64 or VIC
Apple Emulator for Commodore 64 STAT Statistics Package for C64 Solid Oak 2 Level Stand for C64 or VIC C64NIC Switch (networking)
BACKUP V1.0 tape copier for C64 or VIC CARDBOARD/6 Motherboard - VIC CARDBOARD/5 Motherboard - C64 CARD PRINT G Printer Int. with Graphics CARD PRINT B Printer Interface-C64NIC CARDBOARD/3s Motherboard - VIC CARDCO C64/VIC Calculator Keypad CARDRAM/16 RAM Expansion - VIC Complete CARDCO Line in stock CIE and VIE IEEE Interfaces in stock MSD SuperDrive for C64 or IEEE MAE Assembler for C64 Koala Pad Touch Tablet-C64 or VIC CBC $4 / 12$ Analog to Digital 4 chan/12 bit Call

MULTIPLAN for C64

dem with computer cable 99 Mark XII Smart Model''1200/300 219
DC Hayes Smartmodem 1200/300 519

Dust Cover for C64 or VIC
Grand Master Chess for C64
COMAL Language for C64
with sprites, color graphics, sound, turtle graphics. BusCard II from Batteries Included ULTRA BASIC - 64 with Turtle Graphics Super Disk Utility - C64 - includes backup
MicroChess - C64-8 levels of play
HES MODEM with software for C64
Commodore 64 Programmers Reference Guide WordPro $3+/ 64$ with Spellight VIController (also C64) - BSR Controller COM VOICE Synthesizer for C64 or VIC 95 29

VIC products in stock - call for extra discounts.
Victory Software for VIC and C64 in stock.

APPLE-FRANKLIN ITEMS

FRANKLIN-complete line in stock
QUENTIN Drives for Apple/Franklin
189
Swapper Stopper
26
autormatic switch between paddles and joystick KRAFT Apple Joystick
Kraft Apple Paddle Pair
40
Koala Pad Touch Tablet-Apple/Franklin
SPINNAKER Software in stock
Broderbund Software in stock
16K RAM Card for Apple
Multiplan-Microsoft
Solid Oak 2 Level Stand for Apple Serial Card for Apple
MPC RAM/80 column card for Ile (AP/TXT)
Z80 Softcard and CP/M (Microsoft) RANA Elite I with Controller Parallel Printer Interface/Cable Microtek and MPC Interfaces in stock Grappier + Interface
DC Hayes Micromodem II, Ile with Smartcom
PFS: File or PFS: Report or PFS: Graph
Videx 80 Column Card
30

Apple Blue Book

ceonniodore

See us for Personal, Business, and Educational requirements. Educational Discounts available.
PETSCAN I \$245 base price
Allows you to connect up to $30 \mathrm{CBM} / \mathrm{PET}$ Computers to shared disk drives and printers. Completely transparent to the user. Perfect for schools or multiple word processing configurations. Base configuration supports 2 computers. Additional computer hookups $\$ 100$ each.

COMPACK/STCP \$115

Intelligent Terminal Package for PET, CBM, C64
Includes ACIA Hardware / STCP Software
SCREEN MAKER 80 Column Adapter for C64 139
Provide big screen capability for business applications.
Copy-Writer Word Processor for C64
49
Full-featured package with 800 lines of text in memory. Includes double column printing, graphic capability, full printer support.
Special Screenmaker/Copy-Writer Combo 179

VICTORY Software for VIC and C64

Metamorphosis 16 Creator's Revenge
16
$\begin{array}{llll}\text { Labyrinth of Creator } & 16 & \text { Galactic Conquest } & 16\end{array}$
Kongo Kong
16 Annihilator
Chomper Man 16 Grave Robbers
Bounty Hunter 16 Adventure Pack I or II 16
PAPER CLIP Word Processor - CBM/C64 60
ORACLE Data Base from Batteries Included
SPINNAKER Software C64, Apple, IBM, Atari
Compute!'s First Book of PET/CBM
POWER ROM Utilities for PET/CBM
WordPro 4+-8032, disk, printer
VISICALC for PET, ATARI, or Apple
Compute's First Book of 64 Sound \& Graphics
SM-KIT enhanced PET/CBM ROM Utilities
PET Spacemaker II ROM Switch

DISK SPECIALS

Scotch (3M) $5^{\prime \prime}$ ss/dd Scotch (3M) 5" ds/dd Scotch (3M) 8" ss/sd Scotch (3M) $8^{\prime \prime \prime}$ ss/dd

10/2.10 50/1.90 100/1.86
10/ $2.6550 / 2.45100 / 2.40$ 10/2.20 50/2.00 100/1.98

We stock VERBATIM DISKS
Write for Dealer and OEM prices.
Sentinal 5" ss/dd $\quad 10 / 1.8050 / 1.75$ 100/1.65
Sentinal $5^{\prime \prime}$ ds/dd 10/2.40 50/2.35 100/2.25

We stock Dysan disks

| Wabash $5^{\prime \prime}$ ss/sd | $10 / 1.50$ | $50 / 1.45$ | $100 / 1.40$ |
| :--- | :--- | :--- | :--- | :--- |
| Wabash $5^{\prime \prime}$ ss/dd | $10 / 1.80$ | $50 / 1.75$ | $100 / 1.65$ |
| Wabash $5^{\prime \prime}$ ds/dd | $10 / 2.50$ | $50 / 2.45$ | $100 / 2.35$ |

We stock MAXELL DISKS

Write for dealer and OEM prices.

Disk Storage Pages 10 for $\$ 4$ Hub Rings 50 for $\$ 6$ Disk Library Cases $8^{\prime \prime}-3.00 \quad 5^{\prime \prime}-2.25$
Head Disk Cleaning Kits 12
AMARAY Disk Storage Systems in stock
Innovative Concepts FLIP 'N' FILES in stock.
CASSETTE TAPES—AGFA PE-611 PREMIUM

$\mathrm{C}-10$	$10 / .61$	$50 / .58$	$100 / .50$
$\mathrm{C}-30$	$10 / .85$	$50 / .82$	$100 / .70$

5HMEN
 data systems

ZVM-122A	99	ZVM-123G	89
ZVM-131	300	ZVM-135	490
ZI00 16-bit/8-bit System		CALL	
Z29 Terminal (DEC and ADM compatible)	680		
Z-150 IBM PC COMPATIBLE	CALL		
Z-160 PORTABLE PC	CALL		
We stock entire Zenith line.			
USI Video Monitors - Green or AMBER $\mathbf{2 0}$ MHz hi-res			
Dealer and OEM inquiries invited			

WRITE FOR IBM PC COMPATIBLE PRICES

MultiPlan-IBM or Apple
185
Quadboard for IBM available
KOALA PAD Touch Tablets-Apple, Atari, IBM, CBM
Peachtext 5000 Software Package
PFS Software for IBM and Apple in stock
SPINNAKER Software C64/VIC, Apple, IBM, Atari
VOTRAX Personal Speech System
BMC 9191 Color Monitor
BMC 12A 12" Green Monitor
Dynax (Brother) DX-15 Daisy Wheel Printer
Brother HR-25 Daisy Wheel Printer (25 cps)
Itoh Prowriter Parallel Printer
Panasonic 1090 Printer with Correspondence Mode Gemini 10X
EPSON, Okidata, Star Micronics printers in stock USI CompuMOD 4 RF Modulator
We Stock AMDEK Monitors
A P Products
15% OFF
COMPUTER COVERUPS IN STOCK
BROOKS 6 Outlet Surge Suppressor/Woise Filter Surge Suppressor-6 outlet
Electrohome 1302-2 13" Hi-res RGB Monitor
Panasonic 12" Monitor (20 MHz) with audio 29 335

Synertek SYM-1 Microcomputer
189

Hewlett Packard

Write or call for prices.

DATASHIELD BACKUP POWER SOURCE $\$ 265$ Battery back up Uninterruptible Power Supply with surge and noise filtering. The answer to your power problems.

ATARI - WE STOCK ENTIRE LINE SPINNAKER and Broderbund Software in stock.

Computers And Society

Computers In The Workplace

I can't remember the exact occasion, but about three years ago my son (who was then seven years old) was being taken to lunch by a friend of mine in downtown Palo Alto. As the two of them walked down the street, my boy looked in the window of an office where he saw a woman typing some correspondence. "What is she doing?" my son asked. "She is typing a letter," my friend replied. At that, my son looked again and said, "That's funny; I thought only men typed."

I thought it was pretty funny too-for a while. My son knows that I spend a lot of time at a keyboard, much of it writing articles and books. In fact, I am happy he sees that keyboards are not the sole domain of female typists, but are becoming increasingly used by men. But any stereotype is dangerous; it is as dangerous for my son to think of men as typists as it is for women to be typecast in that role.

A Difference In Use

As I thought about the incident some more, it became apparent that there was perhaps a distinction in the ways that keyboards were being used by men and women, especially in business. In most businesses it appears that male keyboard users are using spreadsheet programs, or performing other analytical or forecasting activities with computers, while the majority of women employees are using keyboards connected to

[^1]nothing more sophisticated (or career-enhancing) than an electric typewriter. In general, it appears that men compute and women type.

Because those who compute tend to earn more than those who type, it is worth exploring the potential of the business computer in eliminating sex-stereotyped jobs. I refer to sex stereotypes rather than discrimination because, as we shall see, a good portion of the job-selection process is induced by the very people who end up perpetuating the stereotype of women as typists.

No Access To The Professions

It is one of my pleasures to spend part of my time as a teacher. Sometimes my students range from third to sixth grade, and other times they are firstyear graduate students in product design. In my graduate classes, I will often have only four or five women among my 40 students. Since product design is among the more "artsy" of the engineering fields, you would expect this number to be higher (assuming that you believe women are more interested in the arts than men).

In fact, I find it quite disappointing that there's such a small percentage of women. But the reasons for it are not hard to discern. In order to gain entrance to graduate school in an engineering field, students must have majored in engineering or the physical sciences in college. This, of course, requires a very solid background in mathematics.

As I look at the younger children I sometimes work with, I find that many of the girls are turned off to mathematics by the time they reach fourth grade, and that those who are not turned off have spent time with teachers who have a deep love and understanding of mathematics themselves. The mathphobia that sets in at an early age has a significant destructive power.

To allow any group to consider itself incapable of mastering mathematics is to essentially deny that group access to the professions. For whatever reasons, most of the high-paying technical, business, and medical professions require a significant number of advanced mathematics courses in col-

SOFIWAREFORC-64	
Business	
Multiplan	\$ 89.00
WordPro $3+164$ w/SpellRight Plus	\$ 79.00
Spellinight Plus	S 55.00
Calc Result (Advanced)	S 95.00
Calc Result (Easy)	S 45.00
Mirage Concepts (data base)	S 95.00
Mirage Concepts (40 \& 80 clm W/P with Dictionary)	y) . . $\$ 95.00$
Home Accountant (Continental)	\$ 69.00
Tax Advantage (Continental)	S 49.00
Southern Solutions Accounting	
Utilities	
Super Basic 64	\$ 35.00
Super Copy 64	S 35.00
Sketch Pad 64.	S 75.00
64 Forth .	\$ 45.00
MTS Terminal Package	
Simons Basic .	\$ 19.95
80 Column Expander	S 55.00

ACCESSORIES	
Solo Flight (Simulator)	S 34.
Oscar by Databar	
(Bar Code Reader)	79.95
CBM 1541 Disk Drive	S 249.00
Concord Parallel Disk Drive	\$ 345.00
Concord Slave Drive	Call
MSD Super Disk (Single)	S 395.00
MSD Super Disk (Dual).	S 695.00
Vic 1650 Automatic Modem	\$ 109.95
Hayes Smart 300 Modem	\$ 249.00
Hayes Smart 1200 Modem	\$ 629.00
Vic 1530 Datasette	S 65.00
CBM 1520 Printer Plotter	S 179.95
5 Slot Expander (64)	\$ 65.00
Printer Utility Program (Cardco)	S 19.95
64 Relay Cartridge	\$ 45.00
Numeric Key Pad	\$ 49.00
Alien Voice Box (Talks \& Sings)	\$ 119.00
When I'm 64 (Disk)	35.00
Texas Instruments LCD Progra	55.95
Verbatim Diskettes:	
Single Sided/Single Density	26.00
Single Sided/Double Density	30.00
Double Sided/Double Density	42.00
Vic 20:	
3-Slot Expander	\$ 39.00
6 -Slot Expander	\$ 79.95
16K Memory	79.95

CBM 4023 Ribbons	\$ 12.00
CBM 8023 Ribbons	\$ 14.95
Flip ${ }^{\prime}$ ' File 10, 15, 25, 50	Call
Power Strips w/surge stoppe	Call
Computer Care Kit	19.

INIEREACES	
Interpod (full compatibility!!) (Intelligent IEEE \& RS232)	Call
The Connection (By Tymac) (Commodore Graphics +2 K Buffer)	S 95.00
Cardco +G Parallel Interface S	S 79.00
Vic Switch.	\$ 149.95
ADA 1800 (Parallel-8032 only)	\$ 129.00
ADA 1450 (Serial-8032 only)	\$ 149.00
Pet-to-IEEE Cable	\$ 39.00
IEEE-to-IEEE Cable	\$ 49.00
4 Prong AV Cable.	\$ 15.00
Centronics Cable (male to male)	\$ 34.95
RS232 Cable (male to male)	\$ 31.95
Custom Computer Cables (we make to your specifications)	Call

MONITORS	
CBM 1702 Color Monitor	\$ 269.00
Panasonic CT-160 Color	Call
Panasonic TR-120 (Green)	Call
Panasonic TR-120 (Amber)	Call
Panasonic DT-1300 (RGB)	\$ 395.00
Monitor Stand (Tilt \& Swivel)	§ 29.95
RGB Monitor Cable:	
ET-100C (Apple).	\$ 33.80
ET-101C (IBM)	S 33.80

LETTER QUALITY PRINIERS	
Transtar 120 (80 column)	. 535.00
Transtar 130 (132 column)	. 725.00
CBM 6400 Printer	. 51425.00
NEC Spinwriter	Call
Cardco LQ/1 Printer	\$ 565.00

[^2]DEALERS INQUIRIES WEICOME Call to Order
1-800-527-1738
All Others Call
1-214-231-2645
Micro-Sys

Okidata 82A	\$ 412.50
Okidata 83	S 635.00
Okidata 84P	\$1165.00
Okidata 92P	\$ 519.00
Okidata 93P	\$ 810.00
Panasonic KX-P1090 Printer.	Call
Panasonic KX-P1091 Printer	Call
Panasonic KX-P1092 Printer.	Call
Panasonic KX-P1093 Printer	Call
Star Gemini 10X	\$ 295.00
Star Gemini 15	\$ 499.00
Star Gemini Delta 10	

COMMODORE BUSINESS MACHINES

Executive 64 portable (new)	
B128-80 128k Bus. Machine (new)	
SuperPet (5 languages)	S1059.00
CBM 8032	. 625.00
CBM 2031 single disk	. 295.00
CBM 8050 Dual Disk 1 meg.	. 9959.00
CBM 8250 Dual Disk 2 meg.	\$1295.00
64 K Expansion Board	\$ 275.00
SuperPet Upgrade Kit	69

BUSINESS SOFIWARE-8032	
WordPro 4+ or $5+$	\$ 305.00
Calc Result	\$ 199.95
The Manager.	\$ 199.00
BPI Accounting System	
(5 separate modules)	\$ 325.00
Southern Solutions Accounting	
System III (Per/Module)	\$ 285.00
McTerm Communications Packag	S 175.00

BLSINESS SOFTWARE - B128-80

Superscript IISuperbaseSuperofficeComplete Accounting SMailing List Manager .Order Entry/Point ofCalc Result	

TERMS

Orders under 50.00 add 10.00 Handling fee
MasterCard, VISA, Money Order, Bank Check
COD (add 5.00)
Add 3\% For Credit Cards
All Products In Stock Shipped Within 24 Hours
F.O.B. Dallas, Texas

All Products Shipped With Manufacturers
90 Day Warranty
PRICES ARE SUBJECT TO
CHANGE WITHOUT NOTICE.
lege. By allowing some of our youngsters to become math illiterate, we are confining them to the lower end of the wage scale years before they seek their first jobs.

Working In A Man's Field

Unfortunately, mathematics is generally considered a man's field. In an attempt to counter this perception, Teri Perl wrote a book several years ago that should be on the shelves of every bookstore in the nation. This book is Math Equals (Addison-Wesley), a brief history of women in mathematics. Rather than presenting a dry historical treatise, Teri Perl portrays the women of her study as complete human beings and talks about their frustrations of being good in a man's field when they were expected instead to tend to matters of the home.

Of all the people who should read this book, among the most important would be the teachers of grammar school who pass on their own frustration and fear of mathematics to their female students, who in turn embrace them as their own.

But what does mathphobia have to do with men using computers while women type? The answer can be found in a myth that is as wrong as the belief that women aren't good at mathema-tics-that you need to be good at math in order to use computers. I would venture a guess that many

of you are "good at computers," but are probably not "good at math." You already know that mathematics is not a prime requisite for computer literacy. And yet you are viewing the problem from the other side of the bridge-you have already made the passage.

Reinforcing The Myth

Imagine the plight of the woman with a degree in the arts or the humanities who wants to find a job in business. When offered an opportunity to learn about computers, many women say, "Oh, I couldn't learn how to use computers, I never was good at math"; or "I never was good at technical subjects." By making statements of this sort, these women are removing themselves from career paths that lead to high-paying jobs.

Because these fears are, in fact, unfounded, those who express them are allowing the persistence of a myth to restrict their professional growth.

While I don't know a sure-fire way to break through to people who hold themselves back in this way, two authors have done a marvelous job in trying to show working women the road to computer confidence and higher-paying jobs.

These authors are Dorothy Heller and June Bower, and their book is Computer Confidence- A Woman's Guide, published by Acropolis Books (\$9.95 paperback). Because of the timeliness of its topic and its lucid style, this book deserves a wide readership. You could do your community a favor by seeing that your local bookstore has plenty of copies in stock.

A Highly Personal Book

As women who entered the computer field from backgrounds in the humanities, the authors have the rare perspective of those who have walked both sides of the street. The book is a highly personal account; in fact, it is the book they wish they had had (but couldn't find) when they entered the computer field. Topics range from a short history of women who "made it big" in computers, to case histories of working women who use computers without knowing how to solve partial differential equations. By blending case histories with enough technical data to make the reader a savvy shopper for computer technology the authors prepare the reader for the main goal of the book: to show women how they can enter career paths with unlimited upward potential.

This assistance covers the spectrum from worksheets to help the reader identify appropriate career choices, to practical tips on how to handle job interviews, and especially how to handle the inevitable objections that arise when the interviewer finds that the educational and work background of the applicant doesn't include the "right" degrees from the "right" schools.

On The Road With Fred D'Ignazio

The Morning After: Anti-Computer Backlash And The Arrival Of The Mass-Market Home Computer

Part 1

Abstract

This is the text of the speech Fred delivered at the West Coast Computer Faire in late March. We are printing the speech in two parts.

We are at a watershed in home computing. The watershed has been caused by the computer price wars of 1983, the introduction of simple and inexpensive, yet powerful, new computer programs and peripherals, and the entry of IBM into the home computer market.

Over the next year, home computing users, vendors, and enthusiasts will divide into two major camps: the computer intimates and the computer literates. By the end of 1986 these two groups will have fused into a third camp: the neoprogrammers, who will represent the bulk of the users of home computers through the next decade.

Literates Vs. Intimates

Hackers, computer professionals, old-line computer educators, programming teenagers, and computer hobbyists will make up the bulk of computer literates. Computer literates will stress the importance of learning how to program and learning how computers work. The computer itself will continue to be the prime concern of this group.

Computer intimates will far outnumber the computer literates. Computer intimates will consist of all the millions of Americans who were roped or forced into using computers and who demand
that they be easier to use and more practical.
Computer intimates will believe that software and computer input devices are far more important than the computer itself. As a group they will preach ignorance of computer programming and ignorance of the computer's insides as virtues. The motto of the computer intimates will be: "You don't have to know how a computer works, only how to make it do work for you."

The Computer Freight Train

On December 6, 1983, I appeared on ABC's Good Morning America TV show as a computer expert. My task was to advise families on the type of computer they should purchase for Christmas. In less than seven and a half minutes I led the show's viewers and its two hosts, David Hartman and Joan Lunden, through a bewildering array of computer hardware and computer programs.

I am sure that when the segment was over, most viewers still couldn't tell the difference between a disk drive, a program recorder, or a touch pad. But I'll wager that they did have a better feeling for the risk involved in investing in a personal computer, for the daunting complexity of becoming a first-time user, and for the flood of computer products and the dearth of reliable guidelines for making a purchase.
"Most consumers see personal computers as a high-speed freight train," I told viewers. "They feel they have to take the risk of hopping on now,

(NITEPMATPIE Software that's priced UNDER the competitions'

COMMODORE 64
 \& ATARI
 COMPUTER CLASSICS

ENTERTANMENT Just for You!
emple of Apshai (D\&C) $\$ 26$Upper Reaches Apshai (D\&C)....... \$16Gateway to Apshai (CT) \$26
DragonRiders of Pern (CT) $\$ 26$
umpman (CT) $\$ 26$itstop (CT)$\$ 26$
$\$ 26$
Broderbund Choplifter (CT). $\$ 29$
Broderbund Lode Runner (D) \$26First Star Flip Flop (D\&C).First Star Bristles (D\&C)$\$ 22$HesWare Gridrunner (CT)
$\$ 19$
infocom Zork I, II, III (D) ea. $\$ 26$
infocom Witness (D)infocom PlanetFall (D)PARKER$\$ 33$
$\$ 33$
Parker Q Bert (CI) $\$ 37$
Parker Star Wars (CT) $\$ 37$
Parker James Bond (CT) $\$ 37$
$\$ 37$Parker Gyruss (CT)
Parker Popeye (CT) $\begin{array}{r}537 \\ \hline\end{array}$
Parker Frogger (CT) $\$ 37$
SYNAPSESynapse Blue Max (D\&C)\$22
Synapse fort Apocalypse (D\&C) $\$ 22$
ynapse Necromancer (D\&C) 522
ynapse Pharh Curse (D\&C)$\$ 22$Synapse Zeppelin (D\&C)Sega Star Trek (CT)sega Congo Bongo (CT) \$25Sega Buck Rogers (CT).Screenplay DunZhin (D)sublogic Pinball (D\&CSublogic Flight Simulator
EDUCAIION

SPINNAKER

Alf Color Caves (CT) ages 3-6 \$26Alphabet Zoo (CT) ages 3-8Delta Music (CT)(CI)Delta Drawing (CT)face Maker (CT) ages 3-8
3.Kids On Keys (CT) ages 3-9KinderComp (CT) ages 3-8Bubble Burst (CT) ages 4-8Bubble Burst (CI) ages 4-8
Grandma's House (D) ages 4-8Story Machine (CT) ages 5-9Ranch West (CT) ages 5-10Fraction Fever (CT) ages 7-12JukeBox (CT) ages 8-adultAegean Voyage (CT) ages 8 -adultUp for Grabs (CT) ages 8 -adultAdventure Create (CT) ages 12 \& up $\$ 2$HAYDEN (ages 4-10)MicroAddition (D\&C)MicroSubtraction (D\&C)MicroDivision (D\&C)C)
MicroMultiplication (D\&C) \$20Monev See-Spell (D\&C)AMERICAN EDUCATIONAL COMPUTER
(DISK ONLY
Learn About Sounds (grades K-3) $\$ 39$
Words in Reading I (grades 1-3)Words in Reading II (grades 1-3).Reading Compreh I (grades (1-4)Reading Compreh II (grades 3-7)Reading Compreh III (grades 6-8) ...Vocabul Word Bider (grades 2-8)Grammer Word Skill (grades 2-8)US Geography Facts (grades 2-8)World Geography (grades 2-8)Spanish Vocabulary (grades 2-8).
HOME APPLICATIONS
Spinnaker Aerobics (D) $\$ 33$
CodeWriter Dialog (D) $\$ 45$

PEBEONAL FINANCE

Continental Home Accountant (D) .. \$47 Continental Tax Advantage (D) \$33 Continental FCM First Class Mail $\$ 33$

ELECIRONIC ARIS

Pinball Construction Set (D) $\$ 39$
M.U.LE (D)

Worms? (D\&C)
Archon (D\&C)
. 39
Hard Hat Mack (D\&C) \$34
Murder on the Zinderneuf (D) $\$ 39$
The Cut \& Paste Word Processor (D) . \$49
D Bug (D)
Axis Assassin (D)
$\$ 34$
Music Construction Set (D)........... \$39

FREE DISKEIIE
 with each purchase of Electronic Arts sofiware
 COM 64 EXCLUSIVES!
 PERSONAL FINANCE

limeworks Swiflax (D)

$\$ 39$
Creative Household Finance (D)..... \$23
Creative Household Finance (C) \$19 HesWare Finance Manager (D) Cardco Tax Survival Program (D)$\$ 49$
WORD PROCESSINE

Cardco Write Now! (D) \$39 Timeworks Word Writer (D) \$39 On-Line HomeWord (D). Creative Joe's Writer (D) HesWare OmniWriter \& Spell (D) \$49 Blue Sky Script 64 \& Spell (D) WordPro 3 Plus Spelligight (D)$\$ 69$

SPREADSHEETS

HesWare Multiplan (D) \$75
HesWare Omnicalc (D) \$37
MSI Practicalc (D\&C)
MSI Programmable Spreadsheet (D). \$55
Sim Home Calc (D\&C)............... \$26
Creative Jack's Calc (D)
Handic Calc Result Advanced (D)... \$75

DATABASES

Creative Fred's Filer (D) $\$ 42$
TimeWorks Data Manager (D\&C) \$19
TimeWorks Data Manager II (D\&C) .. \$39 codeWriter Home Filewriter (D)
Entech Data Base 64 (D).
MSI Practifile (D)

$\$ 55$

BUSINESS SOTH/ARE
Cymbal General Ledger (D)
Cymbal Accounts Receivable (D) ... \$45
Cymbal Accounts Payable (D)
Cymbal Inventory Control (D) Cymbal Invoice Writer (D)

$\$ 45$

LANGUAGES \& UIILIIIES

HesWare Hesmon 64 (CT) HesWare 64 Forth (CT)
Acess Spritemaster (D\&C) Tmewks Programg Kit liliin........ \$23 Blue Shy Last One (D) (DaC) ea. $\$ 79$ Blue Sky Las One(D) Blue Sky 80 Column (D). Blue Sky Graphic Designer (D) Blue Sky 64 Statistics (D) Blue Sky Super Basic (D) Blue Sky Add On Basic (D) Blue Sky Super Copy (D) HesWare Graphics Basic (CT) HesWare HES CAT (D). HesWare HES FONT (CT) HesWare HES KIT (CT) .

GAVES
Acess Beach Head (D\&C).
Avalon Hill TelenGuard (C).
Just for You! Avalon Hill B-1 Bomber (C) $\$ 12$ Creative Crisis Mountain (CT).......... $\$ 25$ Synapse Sentinel (D\&C) \$22 Synapse ZAXXON (D\&C) \$28 ScreenPlay Pogo Joe (D\&C) \$19 ScreenPlay Asylum (D\&C)... $\$ 19$
$\$ 23$ ScreenPlay K Uston BlackJack (D) ... \$57 Quick Silva Ring Power (D\&C) \$23
Quick Silva AquaPlane (D). First Star Boulder Dash (D\&C) $\$ 23$
$\$ 23$

VIC 20 HITS

Creative Home Office (D) $\$ 22$
Creative Home Office (C)
Creative Home Office (C) $\$ 19$
MSI Practical Pus (D)35
MSI Practicalc Plus (T). \$33
MSI Practicalc (D) \$32
MSI Practicalc (T) $\$ 29$
HesWare Hesmon (CI) $\$ 39$
$\$ 26$Cardco Write Now$\$ 27$
Epyx Fun with At (CT) $\$ 26$
Epyx Fun with Music (CT)
\$23
Story Machine (CT) \$23
Face Maker (CT)\$23
Kids On Keys (CI) $\$ 23$
Alphabet Zoo (CT) $\$ 23$
HesWare Turtle Graphics (CT). $\$ 26$
$\$ 19$
Creative Choplifter (CT). $\$ 19$
Epyx Tempe of Apshai (C) $\$ 24$
Sega Congo Bongo (CT)$\$ 25$
$\$ 25$
Sega Star Trek (CT)
 ERAPHICS TABLE
CHALKBOARD POWERPAD $\$ 79$(C64 \& Atari)
Software Packages $\$ 27$
ogic Master 527
Programmers Kit $\$ 19$
BearJam $\$ 25$MONITORS
BMC 13" Composite Color Plus $\$ 229$
$\$ 85$
BMC 12" Low Res Green $\$ 85$
$\$ 129$
USI 12" Green Hi-Hi Res $\$ 139$
TAXAN $12^{\prime \prime}$ Green $\$ 99$
NEC JB 1205 \$155
Amdek Color I \$287
PRINTERS
NEC 8023A $\$ 379$
ALPHA COM 81 $\$ 287$
Cable with AlphaCom $\$ 169$
Okidata 82A $\$ 389$
Iranstar 1315 Color \$489
WICO JOYSTICKS
Bat Stick $\$ 14$
$\$ 19$
Red Ball. \$21
Track Ball. $\$ 31$
MODEMS
Anchor Mark 7300 baud.
Anchor Mark 7300 baud. \$129 \$129
Novation J-Cat 300 baud
or they feel they will be run over or left behind."

The Hottest Thing Under The Christmas Tree

More computers were sold as Christmas gifts this year than in any year prior to 1983. By early 1984 over eight million Americans had personal computers.

Unfortunately, soon after Christmas, many of these Americans began suffering from "morning after" regrets and resentments. Too many Americans who had seen the slick commercials on TV and who had heard the daily press reports about the computer revolution were now wondering what they had gotten themselves into.

Most Americans have heard the word software but have only a vague idea what the word means. They have no understanding of what comprises a "complete" computer system. They have no appreciation of what operating or programming a computer entails.

Most Americans don't even know how to hook up a computer's cables, plug it in, or turn it off. I know of one family who finally turned their computer off at one in the morning, but who only did so after hours of agonized, fruitless searching of the manual. They were afraid they might break the computer if they turned it off the wrong way.

The Computer Kit

Why do people buy computers? Most Americans buy computers out of curiosity, for their work, to play games, or as an educational aid and tool for their children.

Most Americans buy computers at bargainbasement prices, usually at discount houses. Most Americans get their basic knowledge about computers from news stories and TV commercials.

When a person buys a computer, he thinks he has bought something equivalent to what he has seen on TV. He expects his computer to be able to do roughly the same things as the TV computer.

The average new-computer purchaser brings his computer home, struggles with the manuals, cables, and plugs, and finally powers the computer up. After all this effort, what does he get?

A blank screen.
After still more struggling with his manual, the astute newcomer finally realizes that what he has bought is a kit-like a bicycle or a puzzle that comes in a million pieces. Only it's worse. The kit's pieces are invisible. You don't get to see them until they appear on the computer's display screen after you have typed them in at the keyboard.

The pieces, of course, are the commands in the computer's BASIC programming language. Computer commands are more difficult to use than puzzle pieces for two reasons. First, puzzle
pieces are combined in some sort of visual order to make up a picture. Second, pieces in a puzzle can usually be combined in only one way. And the picture fragment on each piece is a clue to where the piece belongs.

But computer commands are different. They carry no picture fragment that helps you see where in a picture (or a program) they belong. And they can be combined in an infinite number of ways. There is no set order to reach any given solution.

Most kits-for a bicycle, a lawn chair, a toaster oven, a sandbox, or swing set-come with explicit, printed directions. Computer kits don't usually come with printed directions. Instead, they come with a dictionary of commands organized, alphabetically, from A to Z . You get all the building blocks, but little or no help in how to put them together. And, before long, you realize, with a sinking feeling, that they can be put together in a million ways.

But where do you start?

Buying Half A Computer

It finally dawns on the consumer that what he has bought is only half a computer. Until he buys some software and some more equipment-a program recorder or disk drive, cassettes, disks, cartridges, and a printer-he can't do anything useful.

Of course this isn't exactly true. He can always assemble the kit himself. There are dozens of magazines and hundreds of books with prerecorded programs for his kind of computer. All he has to do is follow the blueprints-the listingsin the books and magazines, and soon he will be the proud owner of a real computer.

Of course he will need to spend dozens of hours entering in the programs, and dozens of hours more poring over the listings, trying to figure out why his programs don't work.

And he will have to invest in a storage device, so he can save his delicate, precious programs.

And he still needs a printer if he plans to use the computer as an electronic typewriter, bookkeeper, or filing cabinet, the three most popular home computer applications.

Voting No To The Home Computer

After the average consumer has forked over from $\$ 50$ to $\$ 300$, is he likely to invest another $\$ 100$ to $\$ 1000$ for additional hardware and software to "finish off" his computer?

After the consumer has made his purchase and found that he has only half a computer, is he likely to feel positively toward computers and computer companies?

After the average consumer has realized that he has bought a kit, is he likely to roll up his sleeves, master a programming language, or pa-
tiently enter in hundreds of lines of unintelligible commands?

The answer to all these questions, for the average consumer, is no.

The After-Christmas Backlash

Under these circumstances, the average person who bought or received a computer for Christmas is not likely to become a computer enthusiast.
Instead, he is likely to become part of a growing anticomputer backlash.

More and more individuals and groups in society are coming to the conclusion that personal computers have not lived up to their promise. At the very least, they have not lived up to their commercials.

These individuals and groups are becoming more organized and outspoken. Like me, they see personal computers as a high-speed freight train, and they are set on derailing that train.

The other night I was listening to National Public Radio's "All Things Considered." A socalled computer expert was on the show decrying the use of computers in education. In his opinion, most people were using computers as fancy, expensive, electronic flash cards. He warned American parents and teachers that the computer industry was deceiving them in a major way.

Two nights later I read in USA Today that the American Academy of Pediatricians was warning against using computers with small children. The Academy reaffirmed its decade-old statement that "Advertising that promotes ... learning environments, programs, or systems is often guiltproducing, misleading and potentially destructive of human development and values." The Academy scolded parents who create a "superbaby syndrome" in which parents buy computers for small children and enroll them in computer classes even before they are toilet-trained.

Fighting Back

The American public has been dazzled by the glamour and high-tech chic of personal computers. On the surface, the public's attitude toward computers seems to have undergone a dramatic change. On the surface, it appears that most Americans approve of computers, if not for themselves, at least for their children. And even if they don't approve of them, they see them as inevitable.

This is, indeed, how Americans feel-on the surface. But what is going on beneath the surface?

I submit that the public's current attitude toward computers is superficial and can easily be changed. I further submit that the situation is becoming increasingly ripe for public opinion to take a swing in the opposite direction. This swing may be dramatic and quick.

The American public has been put on the defensive by the rapid spread of personal computers. But the public is likely to regain the offensive at the first opportunity. Beneath the thin veneer of approval lurk people's old prejudices and stereotypes against computers. These prejudices and stereotypes are fortified and aggravated by the bad experiences millions of people are having, firsthand, with computers.

The American public just needs a champion. As soon as groups and individuals appear who can articulate the public's feelings against computers, the public will rally around them. And then a major backlash against computers will begin.

A Consumer Uprising

People who are alienated by computers are not ignorant Luddites who oppose computers just because they are new and different.

Many people already oppose computers out of ignorance and prejudice. But many more may soon oppose computers because they feel computers have been misrepresented and oversold.

An anticomputer backlash may be in the cards. If so, it should not be viewed by those of us in the computer industry as an ignorant neoLuddite rebellion. We should see it for what it is: a legitimate uprising by irate, unhappy consumers.

VIC SOFTWARE 64

More Games, Challenging Problems and Programs Than You Can Shake A Joystick At!

FREE PROGRAMS
Write for Details.
ComputerMat •P.O. Box 1664C • Lake Havasu City, Anzona 86403

Learning With Computers

Ready-to-Run Magazines

We met our first personal computer, an 8K PET, back in 1978. Soon thereafter we purchased one of the "new" PETs-a-state-of-the-art machine with 16 K RAM memory, a full-size keyboard and a cassette recorder for external memory.

In those long gone days of almost six years ago, we eagerly sought information about our new machine, but little was available. It came with very little documentation, and what was provided was barely understandable. Today almost every bookstore has a large selection of computer books and even some drugstores carry computer magazines, but no books or magazines were readily available back then.

One source of valuable information was Cursor magazine, published by Ron Jeffries. Not a traditional magazine, Cursor arrived, somewhat irregularly, on a cassette tape. Each issue contained six programs that we could load and run right away. The programs were a mix of graphics and sound demonstrations, games, puzzles, programming utilities, educational programs, and simple applications programs (for example, for calculating mortgage rates). All the programs were at least reasonable; some were true gems.

A First Look

The programs in Cursor magazine gave us our first sense of the potential uses of personal computers. In addition, we could list and analyze the programs to learn new programming techniques. Cursor also has claim to being the all-time best buy in the personal computer industry. The price of a six-issue subscription was originally $\$ 20$.

Cursor magazine continued publishing through May 1982. Copies of all 30 back issues are still available, and some of the programs have been made available for the Commodore 64. Another early cassette magazine for TRS-80 computers, CLOAD, continues to publish and is now available on disk also.

The idea of "magazines" of ready-to-run pro-

Dr. Glenn M. Kleiman is an educational psychologist and software developer. He is the author of Brave New Schools: How Computers Can Change Education (Reston/ Prentice Hall) and the designer of Square Pairs, an educational game program (Scholastic, Inc.).
grams has grown. Two new magazines on disk have recently appeared, both focusing on education about and with computers. In this column, we review and compare Microzine and Window. Our reviews are based on the first three issues of Microzine and the second and third issues of Window. Both magazines are now available for Apple computers, and versions for other computers are being developed.

Microzine, Captivating For Children

Microzine, published five times a year by Scholastic, Inc., is designed for children ages 10 and up. Each issue contains four programs and a 48 -page printed manual that supplements the onscreen instructions and provides additional ideas for using some of the programs.

One of the four programs in each issue is a Twistaplot story. These are stories in which the plot details and outcome are controlled by decisions the reader makes. For example, one issue contains a crime-solving adventure called "Mystery at Pinecrest Manor." This is an old-fashioned whodunit which makes the reader an active participant in the story. As the reader and participant, you study files containing background information about each of the suspects, search for clues, and spy on suspects. You play the part of a character in the story, deciding where to go and what to do at each choice point. You can reread the story many times, changing your responses and thereby encountering different events and outcomes each time.

The flexibility of the stories, excellent graphics, and the active role played by the reader make Twistaplots captivating for children. Interactive stories are an exciting new genre of fiction, and Twistaplots demonstrate some of the advantages of using computers to present these stories.

Educational Programs

Each Microzine also contains one or two computer tool programs. These provide a means for children to explore and learn about different uses of computers.

A Poster program provides a simple computer language for creating colorful, low-resolution

Specials Of The Month

Atari 600XL $\$ 189$
Atari 800XL $\$ 299$
Atari 1030 Modem $\$ 115$
Rana 1000 Disk Drive $\$ 339$
1027 Letter Quality Printer \$299
CommodoreSX64 Portable Computer $\$ 959$Commodore Automodem $\$ 95$Commodore Graphics Printer $\$ 269$Verbatim Twin Pak \$ 5.25
Elephant Disks S/S \$19.50

Hardware Specials

Printers

Leading Edge GorillaS189 NEC 8023A S459 Okidata ML 82A........ Call Okidata ML 83A........ Call Okidata ML 84P Okidata ML 92P Call
C. ITOH 8510 Prowriter Call
C. ITOH 8510 SP $\$ 665$

Mannesmann Tally 160L $\$ 629$
Gemini 10X $\$ 315$
Mannesmann Tally
Spirit $\$ 345$
Alphacom 81 $\$ 189$

Monitors

Leading Edge Green
Hi-Res $12^{\prime \prime}$. $\$ 89$
USI Amber $\$ 169$
NEC Green Screen $\$ 169$
Leading Edge Amber
Hi-Res $12^{\prime \prime}$
.S 89
Amdek Color ${ }^{+}+$ \$315

Recreation

Q Bert/CRT	S 35
Frogger/CRT	S 35
Popeye/CRT	S 35
Witness	S 36
Planetfall	S 36
Deadline	S 36
Zork I, II, III	\$ 29
Enchanter Infidel	$\begin{aligned} & 536 \\ & 536 \end{aligned}$
Temple of Apshai	S 27
Pitstop	S 27
Starleague Baseball	S 23
Starleague Football	\$ 23
Blue Max	S 23
Joust	S 43
Robotron 2084	S 33
Pole Position	S 36
Ms. Pac Man	S 36
B-1 Nuclear Bomber (C)	S 12
Midway Campaign (C)	S 12
Nukewar (C)	S 12
Telengard (C)	S 16
Jumpman Jr./CRT	S 27
Pitstop/CRT	S 27
Flight Simulator II/D.	S 39
Night Mission Pinball.	. 520
Sammy Light Foot (CRT	S 20
Apple Cider Spider .	S 2.3

Business

EDUCATION

Commodore

CBS Addition/Subt.S17
CBS Multiplication/
Division
.517
Speed Reader II/D S49
Word Attack/D 536
Mathblaster/D 536
Spellakazan/D 529
Crypto Cube/D $\mathbf{S 2 9}$
Master Type/D-CRT $\mathbf{S 2 9}$
Songwriter/D $\mathbf{S 2 9}$
Alphabet Zoo/CRT 522
Fraction Fever/CRT....... 522
Delta Drawing/CRT 522
Facemaker/CRT $\$ 25$
Trains/D 529
Kidwriter/CRT 525
Dungeons of Algebra
Dragons
S17
Juggles Rainbow 522
Bumble Bee 529
Early Games Piece of Cake $\$ 22$
Early Games Match Maker $\$ 22$

Commodore

Easy Script 64/D S 35
Easy Spell 64/D S 16
Easy Finance I, II ea./D
Accts. Receivable/D S 35
Payroll/Checkwriting/D
Assembler 64/D
Logo/D
............ . S 49
Bank Street Writer/D S 49
Home Accountant/D S 48
Tax Advantage $\$ 45$
FCM
S 35
Paper Clip Word
Processor
Delphi's Oracle
S 89
Practicalc 64.
S 89
S 40
Caic Result/Easy-CRT \$ 59
Calc Result/Advanced-D $\$ 109$
Multiplan/D
S 65
General Ledger/D S 59
Data Manager/D
. 517
Electronic Checkbook
Swif tax/D
S 17
Quick Brown Fox/D .is 59
Quick Brown Fox/CRT... S 56

Information and Inquiries: (702) 796-0296 Order Status: (702) 369-5523.

Computer Outlet

1095 East Twain, Las Vegas, NV 89109 Mon.-Fri. 8 a.m.to 6 p.m., Sat. 9 a.m. to 5 p.m.

SHIPPING: For fast delivery, cashier checks, money orders or direct bank wires. Personal and company checks, allow 3 weeks to clear. C.O.D. charges: $\$ 3$ minimum or 1% on orders over $\$ 300$. Nevada residents add $5 \% \%$ sales tax. Shipping charges based on weight $\$ 3$ minimum. APO and FPO orders: $\$ 10$ minimum and 15% on all orders over $\$ 100$. School and business purchase orders welcome. All returns must be accompanied by return authorization number. Call (702) 369-5523 before returning goods for replacement. Prices reflect cash discount only and are subject to change. patalogs $50 \mathrm{~s} .5 \mathrm{~S} . \$ 1.08$ forejing goods
pictures. This program is a good introduction to both computer graphics and some rudimentary programming concepts.

An Electronic Card Filer program demonstrates how computers can be used to store, sort, and retrieve information. This program is well designed for introducing data base and information retrieval concepts, but it is limited to small amounts of information. Each card, or record, can contain only five fields of information, with up to 25 letters or numbers per field.

Another tool program, Melody Maker, is for creating music on the computer. With Melody Maker you can enter notes over a two-octave range and have the computer play your song. You can also have the computer create a visual display to go with your music. One type of display shows a musical staff and the notes; other types of displays create colorful patterns. You can save your songs on disk to play again later.

No Editing Feature

The Melody Maker program can be very useful in helping children learn about reading music. Its main drawback is that it is difficult to change a song once you have entered it. You can go back and change any note to another note, but you cannot insert or delete new notes. Therefore, if you want to insert or delete a note at the beginning, you have to reenter the entire song.

There is also a program called Amazing Robot that is intended to introduce programming concepts. As you might expect, the commands the robot follows are like those of turtle graphics. You can instruct the robot to move forward or back a number of steps, or turn left or right a number of degrees. However, this robot does not draw with a pen, as turtles do. Instead, you command it to maneuver through different mazes and patterns displayed on the screen. This aspect of Amazing Robot is similar to Karel the Robot, which was reviewed in this column in January 1983.

Amazing Robot does introduce some programming concepts. But we found it to be awkward to enter and edit procedures. For example, if you make a typing mistake while entering a procedure or accidentally direct the robot to touch a wall, you are thrown out of the edit mode and have to use a reedit command. Amazing Robot does not encourage learning and exploration nearly as well as more complete programs such as Scholastic's Turtle Tracks, Spinnaker's Delta Drawing, or any of the available versions of Logo.

The remaining programs include one in which you select questions to see the answers actor Robert Macnaughton gave; a tutorial and simulation game about hot air balloons; a word game; and a chase game. None of these will teach children much or draw their attention away from Pac-

Man, Frogger, or whatever videogame is their current favorite.

Window Is A Screen Magazine

Window, intended for adults as well as children, takes seriously its status as a magazine using the new medium of computers. No print materials are provided, except for a note about booting the disk and accessing the help screens. Everything else you need to know is shown on the computer screen.

Window provides a great deal of flexibility. It lets you take a guided tour of each issue. This is similar to skimming through a printed magazine. You control the speed of progress through the screens and you can stop, back up, or continue at any time. You can choose to explore any program further. While working with a program you can always stop and return to skimming or to the table of contents.

Each issue of Window has a central theme which is the focus of a feature program, one or more other programs related to the theme, several software reviews, columns, and some smaller programs called "window dressing." The themes of the two issues we have reviewed are data base programs and music programs.

Sample Data Bases

The feature program of the data base issue is called Notebook. It allows up to 20 fields in each record, and it lets you obtain hard copies if you have a printer.

Window also provides a variety of sample data bases for you to explore and extend. Several are examples of data bases students and teachers have created. There is also a data base called clues. This is used in conjunction with another program called Adventurefile, which is a computer mystery. To solve the mystery, you have to use the Notebook program and the clue data base. The sample data bases provide a good starting point for novices learning about data base programs and the varied functions they can serve.

The same issue contains reviews of two software packages, Geography Search and Dueling Digits. Magazines on disk are an ideal vehicle for software reviews. Not only are the programs described and evaluated, but you also get to see actual screen displays and use interactive demonstrations of parts of the programs. These reviews gave us a much better sense of the programs than any written review ever could.

Some Fun Features

The disk also contains two games, one a variation of Monopoly and the other a variation of Simon. The games are appropriately referred to as "window dressing," as they do not add a great deal to
the magazine. Finally, there is a VisiCalc column. This provides a template for multiplication tables, but you have to have VisiCalc to use it.

The feature program on the music issue of Window is called Mini-Songwriter. This program overlaps in function with Microzine's Melody Maker, but is different in style. You enter notes by moving a marker on a piano-like keyboard displayed on the screen and specifying the length of each note. You can play your songs, varying the speed as you go. You can easily edit and save songs. Window also provides sample songs and another program that uses the Mini-Songwriter. This is a Mystery Melody program that presents "name that tune" riddles.

There are comprehensive reviews of MECC's Music Theory program, Spinnaker's Snooper Troops, and Earthware's Volcanoes program. In the reviews, you get to try a set of "which note is wrong" problems like those presented by the MECC program; search for clues as you would in the actual Snooper Troops program; and see the type of data you would collect in the Volcanoes simulation program.

The rest of the disk contains an editorial about work with computer music and Logo at MIT; a sample of music created with the Songwriter program (the full version of the Mini-Songwriter, available from Scarborough Software); and a graphic demonstration of sorting algorithms. These are all interesting additions to the main features. There are also columns that provide VisiCalc templates and Logo procedures. These columns can be used only by people who have VisiCalc or MIT Logo.

Comparison of Microzine And Window

Both Microzine and Window are exploring new terrain. So far, Window has been more innovative in its attempt to use the new medium of the computer without support of any printed materials. We had no difficulty using any of their programs with the information available on disk. We enjoyed skimming through the programs and viewing Window's experiments with different formats of displaying information on the computer screen. Window is inventively interactive-you interact with the computer in flexible ways with several programs.

Microzine is more conservative in its approach and depends upon printed materials to provide the instructions necessary for many programs. However, the print materials also provide useful suggestions for extending the computer activities.

In their first few issues, Microzine and Window have each provided simple data base and music programs, so these programs provide a good basis for direct comparisons. The programs in both
magazines are suitable for introducing novices to using computers for data bases and for creating music. However, none of the programs can replace full data base or music creating programs.

Overall, the programs in the two magazines are comparable. Window has an edge in the flexibility of its data base program and the ease of editing in the music program. Microzine's music program has more visual display options than Window's.

While we do not find major advantages in either magazine's programs, there are important differences in the overall presentations of how computers can be used for data bases and music. Window provides sample data bases, songs, and games that use the data base and music programs; Microzine does not. These extras provide good demonstrations, help people get started, and show how each program can be used in many ways. So we tend to favor Window's presentations of data base and music programs.

As for the other programs, Microzine's Twistaplots provide good examples of interactive fiction and contain excellent graphics. There is nothing in Window that is directly comparable. On the other hand, Window contains useful reviews of programs and ongoing columns for VisiCalc and Logo users.

The producers of both magazines can be expected to continue to experiment, explore, and improve. In fact, improvements are already evident within the first few issues. Our reviews and comparison should be read as a report on the status of these magazines as of the first few issues. Exciting prospects lie ahead for both, and we expect to see many more ready-to-run magazines in the near future.

Cursor Magazine
The Code Works
P.O. Box 6905
Santa Barbara, CA 93160
CLOAD Magazine
P.O. Box 1448
Santa Barbara, CA 93102
Microzine
Scholastic, Inc.
P.O. Box 641
Lyndhurst, NJ 07071
Window, Inc.
469 Pleasant St.
Watertown, MA 02172

[^3]
THE BEGINNER'S PAGE

A Random Leap

One of the enjoyable things you can do with a computer is simulate real events: things which might be too dangerous, too expensive, or too time-consuming to try in real life. The Air Force and some commercial airlines use a flight simulator so true-to-life that it can serve for all but the most advanced pilot training.

We don't have enough RAM memory, or the computation speed, or the ultrahigh resolution screens necessary to create a flight simulation of breathtaking realism. But we can try a simple simulation and get a feel for how they are programmed. The basis of the simulation will be accidental, unpredictable events created by the RND (random) command in BASIC.

Lurching Across A Bridge

Imagine a frog, lurching across a bridge. Every time he leaps, you don't know if it will be to the left or to the right. He doesn't know either. The one thing you can count on is that he will never leap straight ahead.

There are three possibilities in this game. He will either fall off the left or right side of the bridge, or safely reach the other side of the river. For this simulation, we're going to assume that the bridge is as wide as your computer screen and that the frog starts his journey midway between the left and right sides. That gives him a fair chance to make it across.

By setting up this simulation, we'll learn how to make use of the RND command as well as a way to animate characters on the screen. Let's look at the program line by line, to see what each BASIC command contributes to the overall effect. (Atari computers don't have a TAB command, so the animation technique discussed below will not work on them.)

First, we've got to define the size of the bridge, its width. Leave line 100 as it is if you have a Commodore 64 or any other computer which allows 40 characters per screen line. If you have a VIC, you should change line 100 to read: COLS $=22$. The VIC has 22 characters per screen line. If you have a TI, change it to: $C O L S=32$.

The variable Y in line 110 is going to signify the position of the frog each time it leaps. If Y is raised to a higher number, the frog will appear further to the right on the screen (and be nearer the right side of the "bridge"). If Y goes down, if something is subtracted from Y , the frog moves left. At the start of the game, though, we want to put the frog in the middle between the left and right sides of the bridge so we divide COLS by 2 . If you've got a 40 -column screen, Y starts off equaling 20. That means that the frog is 20 from the right edge and 20 from the left-smack in the middle.

Rounding Numbers

The variable X in line 130 will tell us whether the frog should leap to the right or the left each time he leaps. This is the only complicated-looking line in the program, but it contains an important trick: the INT command. It "rounds off" a decimal number. INT (12.3) becomes 12. INT (12.7) becomes 12. Wait a minute. That's not rounding off as we usually think of it. 12.7 should become 13 since .7 is closer to 13 than to 12 .

In fact, INT merely throws away anything to the right of the decimal point. This isn't true rounding. That's why we need to add the +.5 in line 120. By adding .5, we force a number to be rounded correctly by INT. $12.7+.5$ would be 13.2 and INT (13.2) would give us the right answer:
13. Likewise, $12.3+.5$ would be 12.8 and INT (12.8)
would give us the correctly rounded answer: 12 .
It's not important to remember why you need to add .5 to any number you want rounded by INT; just remember to do it. In line 120 we're not rounding off 12 or 13 , all we want is an answer that tells us to go in one of two directions, to go either left or right. This is like tossing a coin, you get heads or tails. So here X will be either a 0 or a 1 after INT gets through rounding off $\operatorname{RND}(0)$. But what does RND(0) do for us? It creates a random number. But, by itself, the random number is a decimal fraction between 0 and 1 . Try this:

10 PRINT RND(0):GOTO 10

When you RUN this, you'll see a series of decimal fractions, all kinds of different numbers. How would you get higher random numbers? Just multiply RND(0) by something. Try: PRINT $\operatorname{RND}(0)$ * 10 . If you just want whole numbers (called integers), use INT.

Anyway, in our frog simulation we don't need these higher random numbers. If X becomes a 0 in line 120, we move the frog to the left (in line 160). If X becomes a 1 in line 120, we move the frog to the right (in line 140). Line 130 is the test to see which number is in X .

Notice that we don't need to write a line like: IF $X=1$ THEN 140 . You could write that test and put it in line 135 if you wanted to. It wouldn't do any harm. But you don't need to. The computer will go to line 140 all by itself if X is anything other than a 0 when it's tested in line 130 . The computer always performs each action in the order listed unless you force it not to with a GOTO, IF, or GOSUB command. If it doesn't come across one of those commands, it will go from line 140 to 150 to 160 and on up the list in simple line-number order.

Also on line 120 is another counter, the variable C. It will keep track of the total number of leaps the frog has made (either left or right). This lets us know how far he got before he fell off. It also sometimes shows that he's won the game. If he manages to leap a certain distance without falling, he's crossed the bridge.

But back to our simulation. After lines 130-160 make an adjustment to variable Y (our "position-of-the-frog" counter) we come to a series of tests in lines 170-190. Each of these tests will end the program in a different way. In 170, if the frog position is greater than (>) the total number of columns, he has fallen off the right side. In 180, if his position is less than 1 , he has fallen off the left side. And, finally, in line 190, if he has taken more leaps than the width of the bridge, he made it across. You can change this line if you want to make it harder for him to cross the bridge. Just replace COLS with a higher number.

Line 200 prints the frog symbol on the screen to show us his position. The TAB command is
just like a TAB key on a typewriter: It moves over a certain number of spaces from the left side of the screen. In this case, the number of spaces is controlled by the position variable Y .

Finally, to slow the frog down a bit, we put in line 210. This is often called a delay loop or a donothing loop because it simply takes up some time and serves no other purpose. Here we're asking the computer to count from 1 to 10 before going back down to line 120 and figuring out the frog's next leap.

START USING YOUR COMPUTER FOR FUN and PROFIT!

BASIC Style Program Evolution

Jim Butterfield, Associate Editor

Abstract

Sometimes you see programs that are so crisp and neat that you wonder how the programmer's mind can be so orderly. The statements come out in an elegant, incisive style. Every line zeros in on exactly the right thing to do.

How does a programmer develop an elegant style? Why can't you write like that? Sometimes a lowly hacker can feel inferior when facing such immaculate programming style. Yet the program you see is often a matter of evolution-rewriting and tidying up. It's not always written that way from the beginning.

I have been accused of writing "squeaky clean" programs. It seems to me that you might like to see how my murky first programs get reworked and tightened up into their final version. In some ways, programming style isn't what you write (at least at first)-it's knowing what to look for when you clean up.

A Simple Lister

I needed to do an almost trivial job: list a file from disk to the printer. I had a minor extra feature to add: I wanted individual pages, so that the lines needed to be counted; I needed a title on each page; and at the end of the run, for the sake of neatness, I wanted the printer to eject the page.

It's not a demanding task, but I'd like to show you how I went about it. Even a simple job like that can be revised and tightened up extensively.

Here's my first program: I'll talk my way through the listing.

1øØ OPEN 4,3
Open file number four to the screen. Why? So I can send the program's output to the screen and see that it's working right. After the program looks good, I'll change the above line to OPEN 4,4.

105 OPEN 1,8,3,"CONTROL"

That's my input file to be listed.

```
11\emptyset REM START OF PAGE
12\emptyset FOR J=l TO 2:PRINT#4:L=L+l:NEXT J
13\emptyset PRINT#4,"{5 SPACES}TITLE{3 SPACES}":L
    =L+1
140 PRINT#4:L=L+l
```

This prints the page title. I know I'll come back here for each new page, so I'm placing a REM statement here to mark the place. I rigorously add 1 to the line count, L , each time I print a line.

```
150 INPUT#l,AS:SW=ST
17\emptyset PRINT#4,A$:L=L+1
```

Here's where I input from disk and output (to the screen first, later to the printer). I need to save the value of ST (the status variable) so that later I can check to see if this is the last line from the file. ST will be changed by the PRINT\# command, so I save its input value in variable SW.
$18 \emptyset$ IF L<62 GOTO 250
190 IF L=66 THEN L=Ø: GOTO 25ø
200 PRINT\#4:L=L+1:GOTO 190
If I have printed the maximum number of lines desired, I want to eject the paper by printing until the line count L equals 66 . Since each page has 66 lines, I'm now at the start of the next page and can set L back to zero.

```
25\emptyset IF SW<>\emptyset GOTO 3\emptyset\emptyset
26\emptyset IF L=\emptyset GOTO 11\varnothing
27\emptyset GOTO 15ø
```

If I'm at the end of the input file ($\mathrm{SW}=0$), I'll go to line 300 and wind things up. Otherwise, I want to go back.

Here's a cute touch-perhaps too cute for some tastes. Variable L can only be equal to zero if I've just ejected a page. If so, I want to go back

ULTRABASIC-64...Add 50 commands: graphics, music, TURTLE and game features. Tutorial, demo plus. TAPE \$39.95 DISK \$42.95
ASSEMBLER-MONITOR-64 High speed language development. Eleven function monitor. Screen editing of source file.DISK $\$ 32.95$

MERCURE-64...Simple, powerful file management with fast design, entry search report capabilities. Tutorial. DISK $\$ 32.95$

SYNTHY-64... Sets the standard for all of the rest. Best 64 -synthesizer anywhere. Samples and manual. CASSETTE $\$ 29.95$ DISK $\$ 32.95$. Also available: 3 great companion music albums; Classical, Christmas, and Ragtime Sing-Along. DISK \$12.95 Each.
GRAPHICS DESIGNER-64... TINY FORTH-64/20...EX-
Menu-driven drawings, floor citing language-low price. plans and illustrations etc.. Powerful, extensible, $200+$ Slide program capability. DISK $\$ 32.95$
CHECMOOOK MAMAGERBA AMATOMY OF A COMMOSimple check account main- DORE-6A Complete guide. tainance. Optional screen or Full comment ROMS list, deprinter report and backup. tailed intemals, descriptions. DISK \$22.95

CHARTPAK-64...Professional qualtiy pie, line and bar charts. Menu driven, interactive, hardcopy. DISK \$42.95

ZOOM PASCAL-64...PRO- SUPER DISK UTILTTY-64 duces 6502 machine code Speed copy 4 ways: Total, for speed. Foating point, In- Bam, Append or File. Dump tegers, strings File handling. or modify sectors. More. DISK \$39.95

DISK $\mathbf{\$ 2 2 . 9 5}$
POOL-64/20...Play Fullrack SCREEN GRAPHICS-6AAdds features as CHARTPAK-64 or nine ball using hires 24 hires, multicolor, sprite with high quality output to graphics. Vic-20 required 8 K commands to 64 -BASIC. plotters.
DISK
$\$ 84.95$
$\$ 84.95$ expander. Demo, tutorial and manual. TAPE' \$24.95 DISK \$27.95

FREE CATALOG Ask for a listing of other Abacus Software for Commodore-64 or Vic-20
ISTRIBUTORS
ireat Britain:
ADAMSOFT
8 Norwich Ave Rochdale, Lancs 11-788-8963
Nest Germany: ATA BECKER 1erowingerstr 30
000 Dusseldorf 000 Dusseld
$211 / 312085$

Belaium

Inter. Services AVGuillaume 30 Brussel 1160, Belgium 2-660-1447

Sweden:

TIAL TRADING PO 516 34300 Almhult 476-12304

France:

Micro Application
147 Avenue Paul-Doumer Rueill Malmaison, France 1.732.9254

Australia: CW ELECTRONICS 416 Logan Road Brisbane. Queens 07-397-0808

Canada East:
KING MICROWARE LTD. 5950 Cote des Neiges Montreal, Quebec H3S 126 514/737-9335

New Zealand:

 VISCOUNT ELECTRONICS 306-308 Church Street Palmerston North 63-86-696
AVAILABLE AT COMPUTER STORES, OR WRITE:

 Abacus …iniwill Software
P.O. BOX 7211 GRAND RAPIDS, MICH. 49510 FT2
 For postage \& handling, add $\$ 1.50$ (U.S. and Canada), add $\$ 3.00$

 for foreign. Make payment in U.S. dollars by check, money order or charge card. (Michigan Residents add 4\% sales tax).FOR QUICK SERVIOE/PHONE 161624 p5519a
to 110 and print a new title. If not, get another line from the input file starting at line 150.

$3 \varnothing \varnothing$ IF L<>Ø GOTO 19ø

Here's a supercute trick. I pondered this one for a while, since it's almost too clever; that sort of thing can trip up your logic. Here's the objective: If we're finished, but the paper hasn't been ejected, go back to line 190 and eject the paper. The program will branch back here again, but this time variable L will be zero and we can finish the job by closing the files.

310 CLOSE 1
 $32 \emptyset$ CLOSE 4

That's it. It's really rather messy. It works, and for a temporary job that's all we would need.

But it doesn't feel right. The code feels messy: It seems to jump around, and I don't get a feeling of smoothness in the program. It's time to pick at the coding.

First Revision

The first awkward spot is around lines 190 and 200. The routine to eject the paper works but looks clumsy. Besides, we call it twice (once at 62 lines, and again at end of file).

I have feelings about this part of the program, too. It's a unit to do a particular job. I would feel

better moving it to a separate subroutine where it can stand out as an identifiable action. Sometimes I create a subroutine out of some in-line code and then move it back later; it helps me identify the modules that make up the program. Let's move the eject routine to a subroutine at line 500, clean it up a bit, and see what we get:
1øø OPEN 4,3
$1 \emptyset 5$ OPEN $1,8,3$, "CONTROL"
$11 \varnothing$ REM START OF PAGE
$12 \emptyset$ FOR $\mathrm{J}=1$ TO 2:PRINT\#4:L=L+1:NEXT J
$13 \varnothing$ PRINT\#4," 45 SPACES $\}$ TITLE $\{3$ SPACES $\} ": L$ $=\mathrm{L}+1$
140 PRINT\#4:L=L+1
150 INPUT\#1,AS:SW=ST
$17 \emptyset$ PRINT\#4, A $: ~ \mathrm{~L}=\mathrm{L}+1$
$18 \emptyset$ IF L<62 GOTO 250
190 GOSUB 5øø:GOTO $25 \emptyset$
$25 \emptyset$ IF SW<> \quad GOTO $3 \varnothing \varnothing$
$26 \emptyset$ IF L=ø GOTO 11ø
$27 \emptyset$ GOTO 150
$3 \varnothing \varnothing$ IF L<>ø GOTO 190
$31 \varnothing$ CLOSE 1
320 CLOSE 4
330 END
5øø FOR J=L TO 66:PRINT\#4:NEXT J
$51 \varnothing$ L= \varnothing : RETURN
We can see that the GOTO 250 on line 190 is now redundant since we'll go there anyway. But we have other things to do. We're still trimming the program and have some distance to go yet.

Digging Deeper

Around lines 250 to 270, we jump around a lot. We have one jump forward to 300 and two jumps back to 110 or 150 . The logic seems scattered.

I have a thing about loops: I like to see them neatly nested, with short jumps entirely within longer jumps. It might even be summarized as a rule of thumb: Where possible, make short jumps as short as possible.

Using this rule, I want to get the loop back to 150 into logical order first. Then we'll work in the longer loop to 110 and finally the forward branch to 300 . We'll need to expand the logic using an AND operator, but that's not too hard.

As the routine is written, certain logical things start to fall together. For example, we don't have to GOTO forward to line 300. When we're finished writing the two loops, we'll fall into 300 naturally. ("Naturally" seems to be a key word in how programs seem to come together as you tighten them up.)

We can also tighten up the page eject conditions. If we write line 180 correctly, there will be no need to go back to get a page ejection. One option would be to call the subroutine at 500 twice. But if we think of what our objective really is at line 180, we can do it all correctly the first time through. Inverting the logic and adding an OR connective does the trick nicely.

Look at how far the original program has come:
$1 \varnothing \varnothing$ OPEN 4,4
$1 \emptyset 5$ OPEN $1,8,3$, "CONTROL"
$11 \varnothing$ REM START OF PAGE
120 FOR J=1 TO 2:PRINT\#4:L=L+1:NEXT J
$13 \emptyset$ PRINT\#4,"\{5 SPACES\}TITLE\{3 SPACES\}":L = L +1
140 PRINT\#4:L=L+1
150 INPUT\#l,AS:SW=ST
$17 \emptyset$ PRINT\#4,AS:L=L+1
$18 \emptyset$ IF L>61 OR SW $<>\varnothing$ THEN GOSUB $5 \emptyset \emptyset$
$25 \emptyset$ IF SW=ø AND L>Ø GOTO $15 \emptyset$
260 IF SW=Ø GOTO $11 \varnothing$
310 CLOSE 1
320 CLOSE 4
330 END
5øø FOR J=L TO 66:PRINT\#4:NEXT J
$51 \varnothing$ L= \varnothing : RETURN
This is pleasing, but we can do even more.
The repeated SW $=0$ test in lines 250 and 260 still irks a little: It seems clumsy. The whole business is tied up with whether to print a title or not. Is there a better way? Could the test of $L>0$ be somehow shuttled up to the top of the loop instead of sitting at the bottom?

The Header Module

While we're thinking about it, that whole business of printing a header is really a module-we must do the whole thing, title and all, or nothing. If we move it out to a subroutine, we might see the

logic flow more clearly. Let's do it and work on the logic flow. We end up with this:
$1 \emptyset \emptyset$ OPEN 4,3
$1 \emptyset 5$ OPEN $1,8,3$,"CONTROL"
l1ø IF L=ø THEN GOSUB 6øø
150 INPUT\#1,A\$:SW=ST
$17 \emptyset$ PRINT\#4,AS:L=L+1
$18 \emptyset$ IF L>61 OR SW<> \quad THEN GOSUB $5 \emptyset \emptyset$
$26 \emptyset$ IF SW=Ø GOTO $11 \varnothing$
310 CLOSE 1
320 CLOSE 4
330 END
5øø FOR J=L TO 66:PRINT\#4:NEXT J
$51 \varnothing$ L= \varnothing : RETURN
$6 \emptyset \emptyset$ FOR $\mathrm{J}=\mathrm{L}$ TO 2:PRINT\#4:L=L+1:NEXT J
$61 \varnothing$ PRINT\#4,"\{5 SPACES\}TITLE\{3 SPACES\}":L $=\mathrm{L}+1$
620 PRINT\# $4: \mathrm{L}=\mathrm{L}+1$
630 RETURN
Look at that main section from lines 100 to 330. It now seems tight and concise like a finely tuned instrument.

Both subroutines-at lines 500 and 600-are called only once. If it seemed important, we could put them back into the main program stream. But I'm happy to see them as clearly isolated modules. At this stage I would add comments (line 499: REM PAGE EJECT and line 599: REM PAGE TITLE) to neaten things up.

Moral

First, what you see published is not always the first idea that popped into the author's head. The programmer is not always smarter than you. Time has been taken to groom the program into its final shape. When many people are going to read your code, you like to take a few extra pains with its appearance.

Second, don't be afraid to revise your programs, even if they work correctly. Sure, a oneshot program often doesn't warrant picking over; use it and forget it. But sometimes the exercise can reveal, almost accidentally, powerful and effective programming methods.

Third, style isn't an inborn talent that some people have and some don't. You learn it as you go. Some things you will discover for yourself, and others you'll pick up by looking at other people's programs.

The odd thing is that we instinctively recognize better writing when we have written it. You may not know exactly why, but you often feel good about a certain piece of programming. Usually, it's because it has style.
Copyright © 1983 Jim Butterfield

COMPUTE!
 The Resource.

VIC／64 Memdata

Michael M．Milligan

Abstract

＂Memdata＂converts a machine language routine into DATA statements and then erases itself，allowing you to save the DATA to disk or tape for later use．

Transferring a machine language routine into DATA statements involves a lot of work．To sim－ plify the job，＂Memdata＂takes memory bytes between two addresses，inclusively，and returns DATA statements complete with BASIC line num－ bers．Once the program has generated those state－ ments，it automatically erases itself，leaving only the DATA－as you will see by typing LIST after the program is run．

The first part of Memdata is a modified ver－ sion of Jim Wilcox＇s＂Automatic Line Numbers＂ （COMPUTE！＇s First Book of VIC）．The line numbers are the decimal value for the address of the first byte in each line．This serves as a marker to be sure that every location is accounted for．Also， because many machine language subroutines are located at the top of RAM，it makes the data line numbers high enough to be appended to an exist－ ing BASIC program．The appending can be done with the Datassette or disk files，thus eliminating a lot of typing．

Once you save the DATA statements you have created，enter NEW and PRINT PEEK （43），PEEK（44）．Write down these two numbers． LOAD the program to which you wish to append the DATA．Next，enter POKE 43，PEEK（45）－2：POKE 44，PEEK（46）．Then，LOAD the DATA statements right in there with the first program．When it is loaded，POKE 43 and 44 with the numbers you wrote down after the earlier $\operatorname{PEEK}(43)$ and PEEK（44）．This will merge the two programs if the DATA statement line numbers are higher than the highest line numbers in the original program．

Memdata erases itself in a novel way．Because line numbers used in Memdata are so high，the DATA statements will be the first lines in the BASIC program area．After the DATA statements are created，Memdata searches memory for DATA （token 131）following a line number．When it finds something besides a DATA token，it POKEs zeros into the high and low bytes of the link address for that line．These two zeros，plus the zero byte that
signals end－of－line，make up the three zero bytes that convince the LIST and SAVE functions that the end of the BASIC program has been reached． Because of this，it＇s important to save the program before you run it for the first time．

Memdata

Refer to the＂Automatic Proofreader＂article before typing this program in．
63720 PRINT＂\｛CLR\}太21 I彐":PRINT"\{RVS\}TO
\｛SPACE\}CONVERT MEMORY TO \{OFF\}"
：rem 159
63723 PRINT＂\｛RVS\}DATA STATEMENTS ENTER \｛OFF\}":PRINT"E21 U习" :rem 61
$6373 \emptyset$ PRINT＂INCLUSIVE DECIMAL＂：PRINT＂MEMO RY LOCATIONS＂：PRINT：INPUT＂FROM＂；A
：rem 138
63733 PRINT：INPUT＂TO＂；C：PRINT：INPUT＂BYTES PER LINE＂； B
：rem 17ø
$63735 \mathrm{C}=\mathrm{C} / 256$ ：POKE251，（C－INT（C））＊256：POKE 252，C ：rem 6ø
63740 POKE2，B：PRINT＂\｛CLR\}"; :rem 172
63750 B＝A／256：POKE253，（B－INT（B））＊256：POKE 254，B ：rem 55
63755 PRINT：PRINTMID\＄（STR\＄（A），2，LEN（STR\＄（ A））－1）；＂DATA＂；
：rem 247
6376 б FORI＝ØTOPEEK（2）-1
：rem 76
63763 AS＝STRS（PEEK（A＋I））＋＂，＂：rem 223
63765 IFA + I $>\operatorname{PEEK}(251)+256 * \operatorname{PEEK}(252)$ GOTO63 $78 \emptyset$
：rem 221
63768 PRINTMID\＄（AS，2，LEN（AS）－1）；：rem 7
6377 Ø IFA $+\mathrm{I}=\operatorname{PEEK}(251)+256$＊PEEK（252）GOTO63 $83 \varnothing$ ：rem 212
63775 NEXTI：GOTO6383ø ：rem 11
$6378 \emptyset$ PRINT＂\｛LEFT\} ":GOTO 6387ø :rem 241
63830 PRINT＂\｛LEFT\} ": POKE631+PEEK (198), 13 ：rem 72
63840 PRINT＂GO6385ø＂：FORA＝631TO634：POKEA， 145 ：NEX $\bar{T}:$ POKEA， 13 ：POKE636，13：POKE19 8，6 ：rem 147
63841 END ：rem 221
63850 PRINT＂\｛2 UP\}":FORA=1TO3:PRINT"
\｛8 SPACES\}":NEXT:PRINT"\{3 UP\}"; ：rem 28
63860 A $=\operatorname{PEEK}(253)+256 * \operatorname{PEEK}(254)+\operatorname{PEEK}(2): G$ OTO6375ø
：rem 227
$6387 \varnothing$ Q $=\operatorname{PEEK}(43): \mathrm{U}=\operatorname{PEEK}(44) \quad$ ：rem 29
6388 Ø $\operatorname{IFPEEK}(Q+4+256 * U)<>131 G O T O 639 \emptyset \emptyset$ ：rem 79
$6389 \emptyset \mathrm{Ql}=\operatorname{PEEK}(\mathrm{Q}+256 * \mathrm{U}): \mathrm{Ul}=\operatorname{PEEK}(\mathrm{Q}+1+256 * \mathrm{U})$
： $\mathrm{Q}=\mathrm{Ql}: \mathrm{U}=\mathrm{Ul}: \mathrm{GOTO} 388 \varnothing$ ：rem 86
639 øø $\mathrm{P}=\mathrm{Q}+256 * \mathrm{U}$ ：POKEP，\varnothing ：POKEP +1 ，\varnothing ：rem 173
63910 PRINT＂\｛CLR\}区21 I习" :rem 177
63920 PRINT＂\｛RVS\}TYPE LIST TO SEE DATA \｛OFF\}"
：rem 145
63930 PRINT＂E21 U习＂

Learning How

A month or two ago, I stated that I couldn't possibly teach beginning machine language programming in this column-it would consume my entire output for a year or more. And yet I continue to get letters that ask me "How do you learn to write programs?"

I believe that those who ask the question are not asking for a tutorial on the foibles and pitfalls of the FOR-NEXT loop. Nor are they really asking about the intricacies of the 6502 instruction set. Most of them have already mastered the tutoriallevel material on their chosen language. What these perplexed people are really asking is "What good is all this programming stuff, anyway?"

And that is not really surprising. So many tutorials tell you how to write a program to do such and such. So few discuss why. Too often, learning to program is approached like learning a foreign language. Memorize the conjugations and punctuation; put sentences together like this; and if someone asks you "G'dye moya k'neega?" you know what to answer (providing you were studying Russian instead of Spanish).

Computer Conversations

But the need to learn human languages is obvious: The first time you feel hungry in Paris, you can ask for directions to a restaurant in your best Berlitz French. You don't have to "design" a conversation. Not so with learning to program: "Okay, now I know all these neat keywords and syntax and punctuation. How do I start a conversation?" Well, as I hinted above, the secret is that you must design a program.

To some, this design process is simple and obvious. Others never really get the hang of it. (Would it surprise you to learn that many professional programmers never become expert at designing? They make their living implementing other people's designs.) And many, like myself, become somewhat proficient at a few kinds of designs while remaining incompetent at others. (My lament: I don't think I will ever achieve the level of creativity necessary to design a really good game.)

Now, all the above philosophizing surely has some purpose, you hope. Indeed, I think it does.

Kibitzing

I have been promising for a few months now that I would provide patches to allow the Atari 1050 drive to work in enhanced mode with good old Atari DOS 2.0s. Well, I finally gathered enough information to begin the task, and I thought you might enjoy looking over my shoulder while I tackle the problem.

This will be a kind of short diary of what I have gone through. There have been more sidetracks and bugs and flat-out boo-boos than I can find room for here. And I won't even tell you how many assemblies I have made (though I will say I made about 10 or 12 just looking for the best of several possibilities for a series of shift instructions).

Even though I admire and strive for a "clean" design, I am apt to take the course of least resistance if I am confident it will work properly. With that in mind, then, let us begin tackling our task.

Note: I will make frequent reference to the listing of Atari DOS 2.0s as published in the book Inside Atari DOS from COMPUTE! Books. Page numbers and line numbers in square brackets [131: 1350] refer to the book.

It will not be necessary to own the book to understand most of what is going on, but having the book available will make it easier. Also, if you do not understand machine language, neither the book nor my explanations will be easy to follow, but you can still use the results (which will appear next month).

The 1050 And DOS 2.0s

The first thing we must always do is define the task. Here, that is deceptively simple to do: Make the enhanced density mode of the Atari 1050 drive work with Atari DOS 2.0s.

The next step is much harder: Design the implementation of the task. And, actually, this single step consists of many substeps. For example, let's first investigate the facts which I knew when I started.

The drives:
Item: An Atari 810 drive has 40 tracks of 18 sectors of 128 bytes each. That's a total of 720 sectors.

M ATARI, neil pacts
 ATARI is a trademark of ATARI, INC.

ATARI 800XL
Atari 1050

Disk Drive Call	MOSAIC
Atari 1010	64K Ram/400
Recorder 777.00	64 K Ram +Cable Kit
Atari 1027	400/800 169
Printer Call	16/32 Expan
Atari 850	32 K Ram
Interface Call	Mosaic Adaptor 49.9
Memory Expansion for Atari 600XL . . Call	

Interfast I
Apeface w/cable included
PRINTERS

100 . 229.00	
Axiom AT-550 . . 329.00	Alphacom
teman Call	Okidata 92A

$\frac{\mathrm{A}}{\mathrm{ATARI}}$

Conversational Lang. - T My First Alphabet - D Touch Typing - T 19 Home Filing Mgr - D . Star Raiders - Cart Assembly Editor - Cart
Macroassembler - D Invitation to Program 1 T Basketball - Cart. Graph-it Dig Dug - Cart Atariwriter - Cart Donkey Kong - Can Ms. Pac-Man - Cart Tennis - Cart 39 Eastern Front - Cart Donkey Kong Jr. - Cart . Pengo-Cart . Logo-Cart . . Pole Position - Ca Microsoft Basic II - C Paint - D Caverns of Mars - Cart Joust - Cart SIERRA ON-LINE Homeword - D. . Frogger - D/T Quest For Tires - D Ultima I - D Ultima II - D. Wizard/Princess - D.

INFOCOM

Deadline - D Witness - D . Zork I, II, III - D Starcross - D Planetfall - D Suspended - D Enchanter - D Infidel-D.
Sorcerer - D
BRODERBUND
AE - D
Arcade Macnine - D
Bank St. Writer - D
Lode Runner - D
Drol - D
Spare Change - D
Choplifter - D

PARKER BROS.

Astrochase - Car
Frogger - Cart
opeye - Cart
139.00
Indus GT

RS232 Modem

Adaptor (Through
Koala Touch Tablet
Cart or Disk . . 69.95

MONITORS

 USI . .AMDEK.
STIMUTECH SUBLIMINAL SOFTWARE FOR ATARI AND CBM 64
Expando-Vision Interface w/one Free Cart 99.00 Weight Control Study Habits Stress Control Drinking Control Smoking Contro Career Success Sexual Confidence
Addit'I. Rom Carts $\$ 29.95$ ea

COMMODORE 64E

CBM 64
1541 Disk Drive 249.00
152580 Column Printer 229.00 1530 Datasette 66.00 1702 Color Monitor 249.00 1650 AD/AA Modem 89.00 RS 232 Interface 44.00

COMMODORE 64 SOFTWARE

Program Ref. Guide. . . 19.95	The Manager-D. . 37.95
Assembler - D 17:95	General Ledger- . . 37.95
Easy Finance	Accts. Rec.-D . . . 37.95
I, II, III, IV-D. 19.95	Accts. Pay.-D . . . 37.95
Easy Calc-D 64.95	Code Writer-D . . 37.95
Easy Mail-D 17.95	Zork I,IIorIIID . . . 29.95
Easy Script-D 39.95	Suspended-D 29.95
Easy Spell-D 19.95	Starcross-D...... 29.95
Logo-D 39.95	Deadline-D 29.95

Item: An Atari 1050 drive has 40 tracks of 26 sectors of 128 bytes each, for a total of 1040 sectors.
Item: A 1050 will automatically read either density diskette (single or enhanced), but it formats a new diskette according to the format command it receives. In particular, a!command (\$21) causes single-density formatting, while a " command (\$22) causes enhanced density.

The software:
Item: DOS 2 is capable of accessing both 810 drives and their double-density equivalents (drives with 40 tracks of 18 sectors of 256 bytes each).
Item: There is an inherent limit of 1024 sectors in DOS 2, since it allows only a 10 -bit sector number in the link field of each sector. Also, on a single density diskette, DOS 2 accesses only 719 of the 720 sectors.
Item: The listing of Atari DOS. Actually, this is not a "known" item, and much of what follows is a discussion of what I learned and applied from reading the listing several times.

Finding The Format

Armed with these knowns, let's tackle the unknowns. It seemed to me that the first point to attack was the disparity between what the 1050 was capable of and what DOS 2 would request of it. All of a sudden, DOS 2 must be able to understand three different kinds of disk formats. Question: How can DOS tell what format a particular diskette is?

The answer is to be found in the DOS listing [66: 2213-2222]. During initialization, a status request is made of each drive. When the drive responds, one of the bytes it returns to the computer describes the drive's type. In particular, the listing makes it clear that a double-density disk has bit $5(\$ 20)$ set on. DOS 2 uses this bit to differentiate between 128 -byte and 256 -byte sectors.

All very well, even assuming that an enhanced mode 1050 returns a zero bit here (which it does, thus properly indicating 128-byte sectors). But what distinguishes an enhanced density diskette? I confess that I obtained the answer to this question through a simple experiment: I simply booted a system with an Indus 1050-compatible drive as D2 and looked at the status value it returned during DOS initialization. Lo and behold, it returned $\$ 80$. Not surprisingly, the high bit is off in 810 and double-density modes. Voilà.

Sector Limits

The second major question to investigate is "How many of the 1050 's sectors can we make DOS 2
utilize?" Well, we already know that 1024 is an upper limit. Is there any other limiting factor? The answer is in the layout of the Volume Table Of Contents (VTOC) under DOS 2. The VTOC contains a single bit for each accessible sector on the disk (a scheme known as a bitmap, though Atari literature often uses VTOC and bitmap interchangeably). If a bit is on (1), the corresponding sector is available. If a bit is off (0), the sector is in use. With eight bits per byte, then, there must be 90 bytes in the bitmap.

DOS 2 allows only a single sector (in this case, 128 bytes) for the VTOC of each diskette. While we could circumvent this restriction, it would require a lot of work, and might cause some secondary problems. (I don't want to go into this subject more now, but it cost me four to six hours of investigation before I decided against a two-sector VTOC.)

In 128 bytes, there are 1024 bits. So it would seem that the limit on number of sectors is indeed 1024. Alas, it is not to be. The description of the VTOC clearly calls out usages for the first six bytes (DOS type, maximum number of sectors, current number of sectors, write-required flag) and reserves the next four. So now we are down to 118 bytes and 944 sectors. Is that our limit?

A Final Of 976 Sectors

At first, I was inclined to say it is. But I pored over the listing a couple more times, checked every memory reference that was related, and finally concluded that we could use the four reserved bytes. Which gives us 122 bytes and a final maximum of 976 sectors. Well, that doesn't seem too bad. We are only 64 sectors away from the theoretical maximum and surely a lot better off than with a limit of 720 sectors.

So this is our plan: Use the upper bit (\$80) of the drive status to recognize an enhanced density diskette; allow 975 sectors (DOS 2 always throws away the first possible sector); displace the bitmap in the VTOC by 4 bytes on the low end and lengthen it to 122 bytes.

Implementing Our Plan

By the time I had decided on a plan, over half the time I had allotted to this project had elapsed. As I write this, all the allotted time is gone, and I am not done yet. Sounds like a typical software project. Anyway, this month I will tell you of the difficulties I faced. Next month we can decide how well I faced them. In any case, let's begin the next step.

Before I could start the actual coding of the modifications, I had to find all the places in DOS which would be affected by my scheme. While many parts of DOS are affected by a change in density (from 128 - to 256 -byte sectors), there are
only a few routines which actually care about such things as disk status, where the VTOC's bitmap is, and how many sectors are available.

Some of the routines I could successfully ignore. For example, when you delete a file and free up its sectors for later use, you must bump the count of free sectors. But if the rest of DOS is working, you don't have to check for validity of the bumped value. The same thing is true when we allocate a free sector and must decrement the count. And the boot process cares whether we are using 128 - or 256 -byte sectors, but it doesn't care how many sectors are on the disk.

Some Areas Need Patching

But there are several spots which definitely need attention, so let's discuss them now (next month we discuss the solutions).

1. In the BSIO (Basic Sector Input Output) routine, there is a check for a format command [65: 2144]. DOS 2 simply compares the current command with $\$ 21$ (!) and makes a decision according to an exact match. Now, though, we must allow for either \$21 or \$22 (") as format commands.
2. In DOS initialization [66: 2218], each accessible drive is checked for its status. DOS 2 ignores all bits of the status except bit 5 (\$20) and stores a 1 or 2 (single or double density) in the drive table (DRVTBL) for each drive so checked. We need to find a way to capture and use bit 7 (\$80), preferably by keeping it in DRVTBL, also. Fortunately, the only other routine which accesses DRVTBL is SETUP, which we discuss below.
3. In XFORMAT [79: 3510], the actual format command is stored in the DCB (for use by BSIO, as above). We need to allow for either $\$ 22$ or $\$ 21$, while DOS 2 allows only $\$ 21$.
4. Also in XFORMAT [79: 3547, 3552], the maximum number of sectors and number of sectors available are stored in the VTOC which is being created (for the newly formatted disk). Currently, DOS 2 simply uses LDA \# (load immediate value) to store what it thinks is the only possible count (707). We must provide for the enhanced density count as well.
5. Again in XFORMAT [80: 3559-3570], there are several assumptions made about how big the bitmap is and where the directory and boot sectors are to be represented in the map. Since we will move the base of the map down four bytes, we must provide for variable numbers here, as well.
6. In FRESECT [90:5166], the base of the bitmap is assumed to be byte $10(\$ 0 \mathrm{~A})$ of the VTOC. We must change the assumption.
7. In GETSECTOR [91: 5199, 5202, 5239], similar assumptions about the bitmap are coded via immediate loads.
8. In SETUP [92: 5288], which is called by
every major routine in DOS 2, the type byte stored in DRVTBL (see item 2, above) is simply transferred to a global location (DRVTYP) for use by other routines. If we change what is stored in DRVTBL, we need to change how and what we store in DRVTYP.

Keeping The Patches Small

And that's it. Not too bad, right? If only that were true. Remember, our goal here is to patch the standard version of DOS without affecting.its normal operations and without requiring a reassembly of the whole thing to make our patches fit. In general, then, the smaller and fewer the patches, the better.

The real problem here is the number of load immediate instructions, used to implement what are now to become invalid assumptions. If these were three-byte instructions (such as loads from a non-zero page memory location), we would have a simple task: Change the values in the locations being loaded.

Since they are load immediate instructions, though, our only choices are to either make large and cumbersome patches (generally JSRs to subroutines which will do the work, but remember that JSR occupies three bytes), use loads from zero page (a neat alternative, but we have no zero page available to us), or to continue to use load immediate.

Self-Modifying Routines

My choice? Continue to use load immediate. But how? By producing some (shudder at this next phrase, please) self-modifying routines. Remember how I said at the beginning that I sometimes took the path of least resistance? This is one of those sometimes.

The "trick" which allows my scheme to work is relatively simple: Every routine which needs a load immediate changed is only used by DOS 2 after a call has been made to SETUP. Basically, SETUP examines the disk number and drive type and produces various pointers and values in fixed locations for use by other, higher-level routines. What would be more appropriate than for SETUP to also set up the needed values which will be loaded in immediate mode?

And this is, indeed, the plan I tried. At the point where SETUP stores the drive type [92: 5288], I placed a JSR to my patch-it routine. And my patch-it routine used the disk type information to determine which of a pair of immediate values would be used in each of the cases noted above. It looked like it would work.

Fitting The Patch Into DOS.SYS

Except (You knew that was coming, didn't you?) where do I put the patch? I have discussed this subject before, so let me succinctly say that the only sizable patch area in DOS.SYS is at location
\$1501, in the gap between DOS.SYS and MiniDUP (the root of DUP.SYS). There are exactly 63 bytes available there. And my routine was about 85 bytes long.

The story of how I pared my patch down to fit (just barely) will have to wait for next month. Fortunately, it is a short patch. Also fortunately, there are a couple of small patch spaces still floating around in DOS.

Incidentally, if you were looking for the continuation of my notes on how to load saved binary files, keep looking. It turns out that the subject has direct bearing on what we are doing here, so it seemed not inappropriate to postpone it a month (or possibly two).

$$
\begin{aligned}
& \text { Use the handy } \\
& \text { reader service cards } \\
& \text { in the back of the } \\
& \text { magazine for } \\
& \text { information on } \\
& \text { products advertised in } \\
& \text { COMPUTE! }
\end{aligned}
$$

Program Your Own EPROMS

- $\begin{aligned} & \text { VIC } 20 \\ & \text { C } 64\end{aligned} \quad \$ 99.50$

PLUGS INTO USER PORT. NOTHING ELSE NEEDED. EASY TO USE. VERSATILE.

- Read or Program. One byte or 32K bytes!
OR Use like a disk drive. LOAD,
 SAVE, GET, INPUT, PRINT, CMD, OPEN, CLOSE-EPROM FILES!
Our software lets you use familiar BASIC commands to create, modify, scratch files on readily available EPROM chips. Adds a new dimension to your computing capability. Works with most ML Monitors too.
- Make Auto-Start Cartridges of your programs.
- The promenade ${ }^{\text {ru }} \mathrm{C} 1$ gives you 4 programming voltages, 2 EPROM supply voltages, 3 intelligent programming algorithms, 15 bit chip addressing, 3 LED's and NO switches. Your computer controls everything from software!
- Textool socket. Anti-static aluminum housing.
- EPROMS, cartridge PC boards, etc. at extra charge.
- Some EPROM types you can use with the promenade ${ }^{\text {tw }}$.

Call Toll Free: 800-421-7731
In California: 800-421-7748
JASON-RANHEIM
580 Parrott St., San Jose, CA 95112

Commodore 64 and VIC-20

$$
\$ 149^{95}
$$

Telecommunications with a difference!
Unexcelled communications power and compatibility, especially for professionals and serious computer users. Look us over; SuperTerm isn't just "another" terminal program. Like our famous Terminal-40, it's the one others will be judged by.

- EMULATION-Most popular terminal protocols: cursor addressing, clear, home, etc.
- EDITING-Full-screen editing of Receive Buffer
- UP/DOWNLOAD FORMATS - CBM, Xon-Xoff, ACK-NAK, CompuServe, etc.
- FLEXIBILITY-Select baud, duplex, parity, stopbits, etc. Even work off-line, then upload to system!
- DISPLAY MODES-40 column; 80/132 with side-scrolling
- FUNCTION KEYS-8 standard, 52 user-defined
- BUFFERS-Receive, Transmit, Program, and Screen
- PRINTING-Continuous printing with Smart ASCII interface and parallel printer; buffered printing otherwise
- DISK SUPPORT - Directory, Copy, Rename, Scratch

Options are selected by menus and EXEC file. Software on disk with special cartridge module. Compatible with CBM and HES Automodems; select ORIG/ANS mode, manual or autodial.

Write for the full story on SuperTerm; or, if you already want that difference, order today!
Requires: Commodore 64 or VIC-20, disk drive or Datasette, and compatible modem. VIC version requires 16 K memory expansion. Please specify VIC or 64 when ordering.

Smart ASCII Plus . . . \$599

The only interface which supports streaming - sending characters simultaneously to the screen and printer - with SuperTerm.
Also great for use with your own programs or most application programs, i.e., word processors. Print modes: CBM Graphics (w/many dot-addr printers), TRANSLATE, DaisyTRANSLATE, CBM/True ASCII, and PIPELINE
Complete with printer cable and manual. On disk or cassette.
VIC 20 and Commodore 64 are trademarks of Commodore Electronics, Ltd.
Send for a free brochure.
MAIL ORDER: Add $\$ 1.50$ shipping and handling (\$3.50 for C.O.D.); VISAMMastercard accepted (card\# and exp. date). MO residents add 5.625% sales tax. Foreign orders payable U.S.S. U.S. Bank ONLY; add $\$ 5$ shp/hndlg.

311 WEST $72 n d$ ST. • KANSAS CITY • MO • 64114

A BASIC Cross-Reference

Jim Butterfield, Associate Editor

Abstract

"Cross-Ref" is a valuable programming tool that serves several purposes. Not only does it locate all line number and variable references in a program, but it also helps you prepare documentation and even tighten up your program. It's for BASIC programs stored on disk and will output to the screen or printer. For PET/CBM (Upgrade and 4.0 BASIC) and Commodore 64.

"Cross-Ref" and "Cross-Ref64" will analyze a BASIC program stored on disk and give you information on all line number references and all variable references.

It works only with programs written in BASIC; it does not work with programs stored on tape. A program SAVEd on disk may be manipulated as if it were a data file; but a program on tape cannot be handled in that way.

All types of variables are detected and listed: regular variables, strings, integer variables, and arrays. This includes special variables such as TI, TI\$, or ST. If a variable name contains more than two characters, only the first two will be shown. (They're the only ones used by BASIC.) So HOUSE is the same variable as HONK.

While Everything Is Fresh In Your Mind

If you have completed writing a program, the Cross-Ref output will serve as a valuable piece of documentation. As each line and variable is listed, you may note its purpose while everything is fresh in your mind: "Line 300 is the start of the analysis: variable $\mathrm{A} \$$ is the name of the input file...."

Even if your program is not complete, CrossRef can be useful. In large programs, you may wonder what variable names have been used; you want to pick a fresh variable name that won't conflict with anything else. Alternatively, a test run may reveal a problem that shows up within the subroutine that starts at line 750: You can find all calls to that subroutine.

If you're thinking of tightening up your program, you may want to pack two or three lines of
code together into a single line. But you can't do this if some of the lines are referenced elsewhere in the program. Cross-Ref will tell you the story.

And if you're looking at somebody else's program, and don't know, say, what variable V3 is being used for, you can run Cross-Ref and find every occurrence of V3.

Running The Program

LOAD and RUN Cross-Ref. Be sure you place the disk with the program you want to cross-reference into the disk drive.

When Cross-Ref asks PROGRAM?, type in the name of the program you wish to analyze. You may use pattern matching if you wish: For example, BAG^{*} will match program name BAGELS.

Everything happens very fast. The disk runs for about the same amount of time that is needed to load the program in question. Then you are asked PRINTER? At that time, the cross-reference is complete; the program wants to know where to deliver the results. Answer Y or N.

Output may be to screen or printer. The line number cross-reference appears first. The referenced line number appears, followed by a colon, then the lines where it is used.

Then the variable cross-reference appears, in alphabetical order. Arrays are shown with a single left parenthesis, so that $A(M+N V \%)$ will be shown as A (-and there will also be other entries for M and $\mathrm{NV} \%$, of course.

Sometimes a variable or line number will be used more than once on a single line of your program, for example, " $100 \mathrm{X}=\mathrm{X}+7$: IF $\mathrm{X}>20$ THEN $X=0^{\prime \prime}$. In this case, the cross-reference for X will show line 100 only once.

Machine Language For Speed

It's written mostly in machine language for speed. An early BASIC version of this program appeared in COMPUTE!, May/June 1980 (that's Issue 4); being a BASIC program, it ran slo-o-o-owly. But it worked on identical principles to this version of Cross-Ref.

If you're interested in the mechanics, the next few paragraphs give an insight into the unusual logic of both the original BASIC version and the machine language program presented here.

Because of the plethora of characters to be analyzed, an unusual approach was taken. It might be called a "state transition" program.

Here's the general idea. When we begin the analysis of a BASIC line, we start in state A. In this state, we are interested in only a few characters: an alphabetic, which signals the start of a variable; a GOTO, THEN, or GOSUB, which signals that a line number may be coming; a REM, which indicates we should ignore everything up to the end of the line; quote marks, which tell us that the next few characters will not be of interest to us; and binary zero, which signals end of line.

If we don't see any of these characters, we remain in state A and get the next character, throwing the old one away. But if we do see a character of interest, we switch to a new state.

Suppose we're looking at a line that says:

$$
\text { FOR J = } 1 \text { TO 9:X35\$ = "HELLO":GOTO } 500
$$

We start in state A . The first thing we get is the FOR-it's not a character, but a specially coded token. Throw it away; it's not on our list. Continuing on our line, we see a space, which we trash, followed by the letter J. Aha! It's an alphabetic, which tells us "we're in a variable-start collecting characters." At this point we don't know if the variable is called J, J5, JEEPERS, or JR\$. We collect the J and switch to state B.

In state B, we are looking for a whole different set of characters. Alphabetic and numeric characters will be collected into our variable name and will move us to state C. On the other hand, a dollar or percent sign will also be collected, but will move us to state E , where we look for a possible array. Continuing the options: a left parenthesis would signal an array; collect it and wrap up this label. A space will be ignored. Almost anything else (in our example, the equals token) will cause the label to be wrapped up and put away, returning us to state A.

Back in state A again, we throw away the equals, the 1 character, the space, the TO token, the 9 , and the colon. Suddenly we hit the X : Collect it, and we're off to state B again. This time, state C finds a numeric, collects it, and switches us to state D. State D throws away the 5 . We stay in state D and discover the dollar sign, which is duly collected, and we flip to state E. The equals sign drops us back to state A; but we wrap up the collected characters X3\$ and enter them into the results table. And so on. Each individual state searches for its own set of characters which trigger an action and a movement to another state.

The program to do all this is surprisingly
small. The state transition table that directs the program from one state to another is surprisingly big.

There are tricky bits, some of which involve the strange syntax of the PRINT statement. It's possible to write BASIC lines such as:

PRINT A\$B\$C\%D(3)E

I'd much rather use semicolons to separate those variables, but since we're allowed to code that way, extra programming must be added to CrossRef to pick out the variables when they are mushed together like that.

Typing Cross Reference

Both the PET/CBM and 64 versions of this program use a special technique to attach the machine language to the BASIC portion of the program. The ML is located immediately following the end of the BASIC program, then the zero-page pointer to the end of the program is changed to point to the end of the ML. This fools the computer into treating the ML as part of the BASIC program.

To enter the PET/CBM version, first type in Program 1. You must enter it exactly as it is shown because the ML must begin at exactly the end of BASIC. You can check by typing the following line in direct mode:

PRINT PEEK(1261), PEEK(1262),PEEK(1263)

If you have entered Program 1 correctly, you'll see:
$58 \quad 160 \quad 52$
If these are not the values you get, check for spaces added or left out. When you have Program 1 entered correctly, type the following line in direct mode:

POKE 41,10:POKE 2560,0:NEW

Then type in and RUN Program 2. Program 2 will check for DATA statement errors as it POKEs the ML into the proper locations. If no errors are detected, the program will change the pointers in zero page to attach the ML to the BASIC from Program 1. When you type LIST after Program 2 is finished, you should see the lines from Program 1. Although it doesn't show, the ML POKEd by Program 2 is also in place. You should immediately SAVE a copy of the completed Cross-Ref program. You will not need the old Program 1 or 2 again.

The 64 Version

To enter the 64 version (Program 3), you must use the MLX machine language editor. If you have not already typed in MLX from a previous issue of COMPUTE!, there's a copy elsewhere in this issue. Be sure you read the accompanying article and understand how to use MLX before you begin typing in the data from Program 3. The MLX listing in Program 3 contains the BASIC as well as the ML portions of Cross-Ref, so no separate BASIC
program must be typed in. MLX makes things much easier-it's a program worth SAVEing for this, and future, programs.

Because Cross-Ref begins at the default start-of-BASIC address (where MLX would normally be located), you must adjust the 64 so that the BASIC area for MLX is above the area of memory which Cross-Ref will occupy. Do this by typing the following line in direct mode (no line number):

POKE 44,16:POKE 642,16:POKE 4096,0:NEW

If you do not finish typing all of Program 3 in one session, see the instructions in the MLX article on saving an unfinished version of your work. Note that you must also type the direct mode line above before loading MLX again to continue your work.

When MLX is first RUN, it will ask you for a starting and ending address. For Cross-Ref, the proper values are:

starting address	2049
ending address	3398

Use the MLX Save option to make a copy of your work. The version of Cross-Ref created by MLX can then be LOADed and RUN like a regular BASIC program.

An early version of Cross-Ref for PET/CBM, called XREF, was published in Cursor magazine (which came on cassette tape), issue 25. The details are different, but the program's general speed and other characteristics are about the same.

Could Cross-Ref be expanded to analyze other features? For example, FOR/NEXT loop matches or OPEN and CLOSE statements together with associated file usage? Perhaps, but I think not. Whether or not it's a good idea, BASIC allows a single FOR statement to be matched with more than one NEXT (and vice versa, for that matter). Files can be opened, closed and used with variable logical file numbers-for example, PRINT\#X, "HELLO"-so that a single file's activity is difficult to trace. Cross-Ref wasn't constructed to follow the logic of your program, only the mechanics. You should find Cross-Ref a very useful programming support tool. You might discover that it leads to better programming.

The programs are set up for normal Commodore printers. If you have a printer that specifically needs a line feed character to be sent, you should modify Cross-Ref64 only as follows:

> POKE 3181,10
> POKE 3223,10

Program 1: BASIC Portion Of PET/CBM Version løø PRINT"\{CLR\}CROSS REF":PRINT"
 \{SHIFT-SPACE\}\{4 SPACES\}JIM BUTTERFIEL D"
 $115 \mathrm{~W}=6: \operatorname{IFPEEK}(328 \emptyset 8)=32$ THENW $=11$
 $12 \emptyset$ CLOSE1:INPUT"NAME OF PROGRAM";N\$
 130 OPEN1, 8, 3, N\$+", P, R": GET\#1, X\$, Y\$: IFX\$ <
 >CHRS (1) GOTO12ø

190 SYS $1668:$ CLOSE1: INPUT"PRINTER"; $\mathrm{ZS}: \mathrm{P}=3$: IFASC $(\mathrm{ZS})=89 \mathrm{THENP}=4: \mathrm{W}=11$
$2 \emptyset \emptyset$ OPEN4,P:PRINT\#4,"CROSS-REF: ";N\$:POKE 2ø8,W:SYS21ø2:PRINT\#4:CLOSE4

Program 2: Loader For PET/CBM ML Portion

1øø SA=1267:SL=2øø
$11 \varnothing$ FOR $I=\emptyset$ TO 8
$12 \emptyset \mathrm{CK}=\varnothing: \mathrm{AD}=\mathrm{SA}+(\mathrm{I} * 12 \varnothing): \mathrm{LN}=\mathrm{SL}+(\mathrm{I} * 15 \emptyset)$
$13 \emptyset$ FOR J=ø TO 119
$14 \emptyset$ READ BY:CK=CK+BY: POKE AD+J, BY
$15 \emptyset$ NEXT J:READ CV:IF CK<>CV THEN $19 \emptyset$
160 NEXT I:PRINT "MACHINE LANGUAGE IS LOA DED"
17Ø POKE 4ø,1:POKE 41,4:POKE 42,43:POKE 4 3,9
$18 \emptyset$ POKE 44, $43:$ POKE 45,9:POKE 46, 43: POKE \{SPACE\} 47,9: END
$19 \varnothing$ PRINT "DATA ERROR IN LINES";LN;"-";LN +140:STOP
$2 \varnothing \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
$21 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 11,11$
22.0 DATA $11,11,11,11,11,11,11,11$

230 DATA $11,11,11,11,11,11,11,11$
$24 \emptyset$ DATA $11,11,11,11,11,11,11,11$
250 DATA $11,11,11,11,11,11,11,5$
260 DATA $11,3,3,3,11,4,11,11$
$27 \emptyset$ DATA $11,9,11,11,11,2,2,2$
280 DATA 2,2,2,2,2,2,2,8
290 DATA 11,11,11,11,11,11,1,1
$3 \emptyset \emptyset$ DATA $1,1,1,1,1,1,1,1$
$31 \emptyset$ DATA $1,1,1,1,1,1,1,1$
320 DATA $1,1,1,1,1,1,1,1$
$33 \emptyset$ DATA $11,11,11,11,11,11,11,11$
340 DATA $11,11,11,11,11,11,11,11$
345 DATA 774
$35 \emptyset$ DATA $11,11,11,11,11,11,11,11$
360 DATA $11,11,11,11,11,11,11,11$
$37 \emptyset$ DATA $11,11,11,11,11,11,11,11$
380 DATA $7,11,11,11,11,11,10,10$
$39 \varnothing$ DATA $11,11,10,11,6,11,11,11$
$40 \emptyset$ DATA $11,11,11,11,11,11,11,11$
$41 \varnothing$ DATA $11,11,11,11,11,11,11,11$
420 DATA $11,9,11,11,10,11,11,11$
430 DATA $11,11,11,11,11,11,11,11$
$44 \varnothing$ DATA $11,11,11,11,11,11,11,11$
450 DATA $11,11,11,11,11,11,11,11$
460 DATA $11,11,11,11,11,11,11,11$
470
$48 \emptyset$ DATA $11,11,11,11,11,11,11,11$
490 DATA $11,11,11,11,11,11,11,11$
495 DATA $13 \emptyset 4$
500 DATA $11,11,11,11,11,11,11,11$
510 DATA $11,11,11,11,11,11,11,11$
520 DATA $11,11,11,11,11,11,11,11$
$53 \emptyset$ DATA $11,11,11,11,11,0,12,12$
540 DATA $12,12,12,12,12,12,12,12$
$55 \emptyset$ DATA $12, \varnothing, 224,72,12,12,24,36$
$56 \emptyset$ DATA $48,12,12,6 \emptyset, 12,0,24,24$
$57 \emptyset$ DATA $24,24,12,24,24,24,24,24$
$58 \emptyset$ DATA $24, \varnothing, 36,36,36,36,36,36$
$59 \emptyset$ DATA $36,36,36,36,36,0,48,48$
$6 \emptyset$ DATA $48,48,48,48,48,12,48,48$
$61 \emptyset$ DATA $48,0,224,212,12,12,24,36$
$62 \emptyset$ DATA $48,12,6 \emptyset, 6 \emptyset, 12, \varnothing, 72,72$
$63 \emptyset$ DATA $12,12,24,36,48,12,12,60$
640 DATA $12, \varnothing, 12,212,12,12,24,36$
645 DATA $35 \emptyset 7$
$65 \emptyset$ DATA $48,12,6 \emptyset, 6 \varnothing, 12,0,236,236$
$66 \emptyset$ DATA $248,140,24,36,48,12,12,6 \emptyset$
$67 \emptyset$ DATA $12, \varnothing, 1 \varnothing 8,1 \varnothing 8,248,14 \varnothing, 24,36$
$68 \emptyset$ DATA $48,12,12,60,12,0,120,12$
$69 \emptyset$ DATA $12,140,24,36,48,12,12,60$
$7 \emptyset \emptyset$ DATA $12,162,1,32,198,255,32,54$
710 DATA 7,169, $0,133,190,169,11,133$
720 DATA 191,169,6,133,185,162,13,189
730 DATA $29,9,157,249,10,202,16,247$
740 DATA $48,7,32,204,255,96,32,179$
$75 \emptyset$ DATA $7,32,228,255,32,228,255,240$
760 DATA $241,169,0,133,192,169,10,133$
$77 \emptyset$ DATA $193,32,228,255,133,9 \emptyset, 32,228$
$78 \emptyset$ DATA $255,133,89,162,12,134,184,32$
$79 \emptyset$ DATA $228,255,2 \emptyset 1,32,24 \emptyset, 249,17 \emptyset, 189$
795 DATA 12998
$8 \emptyset \emptyset$ DATA $0,5,168,177,184,16,3,32$
810 DATA $11,7,41,127,164,184,133,184$
$82 \emptyset$ DATA $2 \emptyset 1,84,176,7,192,84,144,3$
$83 \emptyset$ DATA $32,64,7,2 \emptyset 1,12 \emptyset, 2 \emptyset 8,19,192$
$84 \emptyset$ DATA $120,208,15,142,122,2,32,64$
850 DATA 7,174,122,2,169,12,133,184
$86 \emptyset$ DATA $2 \emptyset 8,2 \emptyset 5,2 \emptyset 1, \emptyset, 24 \emptyset, 16 \emptyset, 2 \emptyset 8,191$
$87 \emptyset$ DATA $41,127,72,2 \emptyset 1,84,240,2 \emptyset, 138$
$88 \emptyset$ DATA $162, \varnothing, 18 \emptyset, 84,192,32,24 \emptyset, 7$
890 DATA $232,224,5,208,245,240,18,149$
9øø DATA $84,240,14,138,162,0,18 \emptyset, 85$
$91 \varnothing$ DATA $148,84,232,224,4,208,247,133$
$92 \emptyset$ DATA $88,1 \varnothing 4,96,162,4,169,32,149$
$93 \emptyset$ DATA $84,202,16,251,96,72,165,192$
$94 \emptyset$ DATA $164,193,56,233,7,133,186,176$
945 DATA 14445
950 DATA $1,136,132,187,2 \emptyset 1,0,152,233$
$96 \emptyset$ DATA $1 \varnothing, 144,2 \varnothing, 16 \varnothing, 4,185,84, \varnothing$
$97 \emptyset$ DATA 2ø9,186,2ø8,5,136,16,246,48
980 DATA $73,165,186,164,187,208,219,165$
990 DATA $192,164,193,133,188,132,189,56$
1øøø DATA 233,7,176,1,136,133,186,132
$101 \emptyset$ DATA $187,201,0,152,233,1 \varnothing, 144,21$
$1 \emptyset 2 \emptyset$ DATA $16 \varnothing, 6,56,177,186,145,188,249$
$1 \varnothing 3 \emptyset$ DATA $84, \varnothing, 136,16,246,144,6,165$
$1 \varnothing 4 \emptyset$ DATA $186,164,187,208,214,160,6,185$
1050 DATA $84, \varnothing, 145,188,136,16,248,24$
1060 DATA $165,192,165,7,133,192,144,2$
$107 \emptyset$ DATA 23Ø,193,32,54,7,104,96,96
1080 DATA $165,190,164,191,133,186,132,187$
1090 DATA $56,165,192,233,0,141,122,2$
1095 DATA 15395
$110 \emptyset$ DATA $165,193,233,10,141,123,2,13$
1110 DATA $122,2,24 \emptyset, 227,24,173,122,2$
1120 DATA 1ø1,186,133,190,133,188,173,123
1130 DATA $2,101,187,133,191,133,189,32$
1140 DATA $39,8,165,192,56,233,7,164$
$115 \emptyset$ DATA $193,176,1,136,133,192,132,193$
1160 DATA $2 \emptyset 1,0,152,233,10,144,184,165$
1170 DATA $188,164,189,56,233,7,176,1$
1180 DATA $136,133,188,132,189,160,6,56$
$119 \emptyset$ DATA $177,186,145,188,241,192,136,16$
1200 DATA $247,144,6,32,39,8,76,25 \emptyset$
1210 DATA $7,160,6,177,192,145,188,136$
1220 DATA $16,249,48,190,165,186,164,187$
1230 DATA $56,233,7,176,1,136,133,186$
1240 DATA $132,187,96,162,4,134,84,32$
1245 DATA 15168
1250 DATA 2ø1,255,169, $0,160,11,133,186$
1260 DATA $132,187,16 \emptyset, 4,185,84, \varnothing, 2 \emptyset 9$
$127 \emptyset$ DATA $186,2 \emptyset 8,5,136,16,246,48,34$
1280 DATA 169,13,32,210,255,169,10,32
1290 DATA $21 \varnothing, 255,160,0,177,186,153,84$
$13 \varnothing \varnothing$ DATA $\varnothing, 32,21 \varnothing, 255,2 \emptyset \varnothing, 192,5,144$
$131 \emptyset$ DATA $243,169,58,32,210,255,169, \emptyset$
$132 \emptyset$ DATA $133,188,230,188,165,188,197,2 ø 8$
$133 \emptyset$ DATA $144,22,169,13,32,21 \varnothing, 255,169$
1340 DATA $10,32,210,255,160,5,169,32$
156 COMPUTE! May 1984

1350 DATA $32,210,255,136,16,248,48,222$
1360 DATA 16Ø,5,177,186,133,90,2ø0,177
1370 DATA $186,133,89,32,225,255,164,151$
$138 \emptyset$ DATA 2øø, 2ø8, 248,32,192,8,24,165
$139 \emptyset$ DATA $186,164,187,165,7,144,1,2 \emptyset \emptyset$
1395 DATA 16229
$14 \emptyset \emptyset$ DATA $133,186,132,187,197,190,165,187$
$141 \varnothing$ DATA 229,191,144,134,96,169, 0,162
$142 \emptyset$ DATA $2,157,122,2,202,16,25 \emptyset, 12 \varnothing$
1430 DATA $248,16 \emptyset, 15,6,89,38,90,162$
1440 DATA 2,189,122,2,125,122,2,157
$145 \emptyset$ DATA $122,2,202,16,244,136,16,235$
1460 DATA $216,88,162,0,169,48,133,189$
$147 \emptyset$ DATA $134,192,189,122,2,72,74,74$
$148 \emptyset$ DATA $74,74,9,48,32,16,9,104$
$149 \emptyset$ DATA $41,15,9,48,224,2,208,2$
$150 \emptyset$ DATA $198,189,32,16,9,166,192,232$
$151 \varnothing$ DATA $224,3,144,220,96,197,189,2 \varnothing 8$
$152 \emptyset$ DATA $4,169,32,208,2,198,189,76$
$153 \emptyset$ DATA $21 \varnothing, 255, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
$154 \emptyset$ DATA $\varnothing, 78,79,78,69,32, \varnothing, \varnothing$
1545 DATA 12648

Program 3: MLX Listing For 64

$2 \varnothing 49$: $043, \varnothing \varnothing 8,1 \varnothing \varnothing, \varnothing \varnothing \varnothing, 153, \varnothing 34, \varnothing 83$
$2 \varnothing 55$: Ø32, Ø67, ø82, Ø79, Ø83, Ø83,177
$2 \emptyset 61$: $\varnothing 32, \varnothing 82, \varnothing 69, \varnothing 7 \varnothing, \varnothing 34,058,1 \varnothing 2$
$2 \emptyset 67$: $153, \varnothing 34,16 \emptyset, \varnothing 32, \varnothing 32, \varnothing 32,2 \varnothing 6$
$2 \varnothing 73$: Ø32, $074, \varnothing 73, \varnothing 77, \varnothing 32, \boxed{6}, 123$
$2 \varnothing 79$: Ø85, Ø84, ø84, Ø69, Ø82, Ø7ø,249
$2 ø 85$: ø73, Ø69, ø76, ø68, Ø34, øøø,1ø1
$2 ø 91$: Ø52, øø8,115, øøø, ø87,178,227
$2 \varnothing 97$: Ø48, Ø54, øøø, Ø81, Øø8,12ø,1ø4
$21 \emptyset 3$: øøø,16Ø, Ø49, Ø58,133, Ø34,233
2109 : Ø78, Ø65, Ø77, Ø69, Ø32, Ø79,2ø5
2115 : Ø7ø, Ø32, ø8Ø, Ø82, Ø79, Ø71,225
2121 : ø82, $665, ~ \varnothing 77, \varnothing 34, \varnothing 59, \varnothing 78,212$
2127 : Ø36, øøø,126, øø8,13ø, Øøø,123
2133 : 159, Ø49, Ø44, ø56, Ø44, Ø51,232
2139 : ø44, ø78, ø36,17ø, ø34, ø44,241
2145 : Ø8ø, Ø44, Ø82, Ø34, Ø58,161,044
2151 : Ø35, Ø49, ø44, ø88, Ø36, Ø44,143
2157 : Ø89, Ø36, ø58,139, Ø88, Ø36, Ø43
$2163: 179,177,199,040,049,041, \varnothing 32$
2169 : 137, Ø49, Ø5ø, ø48, øøø,176, Ø69
2175 : Øø8,19ø, øøø,158, Ø50, Ø54, Ø75
2181 : Ø57, Ø50, ø58,16Ø, Ø49, Ø58, Ø53
2187 : $133, \varnothing 34, \varnothing 8 \emptyset, \varnothing 82, \varnothing 73, \varnothing 78,1 \varnothing 7$
2193 : Ø84, Ø69, ø82, ø34, Ø59, ø90, Ø51
2199 : Ø36, Ø58, ø8ø,178, Ø51, 058,1øø
$22 \emptyset 5$: $139,198, \varnothing 4 \emptyset, \varnothing 9 \emptyset, \varnothing 36,041,189$
2211 : $178, \varnothing 56, \varnothing 57,167, \varnothing 80,178,111$
2217 : $052, \varnothing 58, \varnothing 87,178,049, \varnothing 49,130$
2223 : øøø, 224, øø8, 2øø, øøø,159,254
2229 : $052, \varnothing 44, \varnothing 8 \varnothing, \varnothing 58,152, \varnothing 52,107$
2235 : ø44, Ø34, ø67, ø82, Ø79, Ø83,ø64
2241 : ø83, ø45, ø82, ø69, ø7ø, ø58, ø88
2247 : Ø32, Ø34, Ø59, Ø78, Ø36, Ø58, 24Ø
2253 : 151, 049, Ø57, ø48, 044, Ø87,129
2259 : ø58, 158, ø51, Ø49, Ø51, Ø54,12ø
2265 : $058,152,052,058,160,052,237$
2271 : Øøø, Øøø, øøø, Øøø, Øøø, Øøø,223
2277 : $\varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, 229$

2289 : Øøø, øøø, øøø, Øøø, øøø, øøø,241
2295 : øøø, øøø, øøø, øøø, øøø, øøø, 247
$23 \varnothing 1$: $\varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing 11,011,019$
2307 : $011,011,011,011,011,011,069$
2313 : $011,011,011,011,011,011,075$
2319 : $011, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 81$
2325 : $\varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 87$

2331 : $011,011,011,011,011,011,093$ 2337 : Ø11, øø5, Ø11, øø3, 0ø3, øø3, ø69 2343 : ø11, øø4, ø11, ø11,ø11,øø9,ø96 2349 : Ø11, ø11, ø11, øø2, øø2, øø2, ø84 2355 : $\varnothing \varnothing 2, \varnothing 63$ 2361 : $002, \varnothing 08,011,011, \varnothing 11,011,111$ 2367 : $011, \varnothing 11, \varnothing \varnothing 1, \varnothing 01, \varnothing 01, \varnothing \varnothing 1, \varnothing 89$ 2373 : $0 \varnothing 1, \varnothing \varnothing 1, \varnothing \varnothing 1, \varnothing 01, \varnothing \varnothing 1, \varnothing \varnothing 1, \varnothing 75$ 2379 : øø1, øø1, øø1, øø1, øø1, øø1, ø81 2385 : $\varnothing \varnothing 1, \varnothing 87$ 2391 : $001, \varnothing 01,001,001,011,011,113$ 2397 : Ø11, Ø11,011,011,011,011,159 2403 : Ø11, ø11, ø11, Ø11,ø11, ø11,165 2409 : $011,011,011,011,011,011,171$ 2415 : $\varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11,177$ 2421 : 011, Ø11,011,011,011,011,183 2427 : Ø11, Ø11, Ø11,ø11,ø11, Ø11,189 2433 : $011, \varnothing 11,007, \varnothing 11,011, \varnothing 11,191$ 2439 : $011,011,010,010,011,011,199$ 2445 : $01 \varnothing, \varnothing 11,0 \varnothing 6, \varnothing 11,011, \varnothing 11,201$ 2451 : $011, \varnothing 11,011,011,011,011,213$ 2457 : $011,011,011,011,011,011,219$ 2463 : Ø11, ø11, Ø11, ø11,ø11,øø9,223 2469 : Ø11, Ø11, ø1ø, Ø11, Ø11, ø11,23ø 2475 : $011, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11,237$ 2481 : $011, \varnothing 11,011,011,011,011,243$ 2487 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11,249 2493 : Ø11, Ø11,011,011,011,011,255 2499 : $011, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 05$ 2505 : $011, \varnothing 11,010, \varnothing 11,011,011, \varnothing 1 \varnothing$ 2511 : ø11, Ø11, ø11, Ø11,ø11,ø11,ø17 2517 : $011,011,011,011,011,011,023$ 2523 : $011, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 29$ 2529 : 011,011,011,011,011,011,035 2535 : ø11, Ø11, ø11, Ø11,ø11,011,041 2541 :ø11,011,011,011,011,011,047 2547 : $011,011,011,011, \varnothing 11,011,053$ 2553 : $011,011,011,011,011,011,059$ 2559 : $011, \varnothing \varnothing \emptyset, 012,012,012,012,058$ 2565 : $012, \varnothing 12,012,012,012,012, \varnothing 77$ 2571 : $012, \varnothing \varnothing \varnothing, 224, \varnothing 72, \varnothing 12, \varnothing 12, \varnothing 87$ 2577 : $024,036,048,012,012,060,209$ 2583 : Ø12, øøø, ø $24, \varnothing 24, \varnothing 24, \varnothing 24,131$ 2589 : Ø12, Ø24, ø24, Ø24, Ø24, ø24,161 2595 : $024, \varnothing \varnothing \varnothing, \varnothing 36, \varnothing 36, \varnothing 36, \varnothing 36,2 \varnothing 3$ 2601 : $036, \varnothing 36, \varnothing 36, \varnothing 36, \varnothing 36, \varnothing 36, \varnothing 01$ $26 \varnothing 7$: $036, \varnothing \varnothing \varnothing, \varnothing 48, \varnothing 48, \varnothing 48, \varnothing 48, \varnothing 19$ 2613 : $048, \varnothing 48,048,012,048,048, \varnothing 49$ 2619 : $048, \varnothing \varnothing \varnothing, 224,212,012, \varnothing 12,055$ 2625 : $024, \varnothing 36,048, \varnothing 12,060, \varnothing 6 \varnothing, \varnothing 49$ 2631 : $012, \varnothing \varnothing \varnothing, \varnothing 72, \varnothing 72, \varnothing 12, \varnothing 12,251$ 2637 : $\varnothing 24, \varnothing 36, \varnothing 48, \varnothing 12, \varnothing 12, \varnothing 6 \emptyset, 013$ 2643 : ø12, øøø, ø12,212,ø12,ø12,ø87 2649 : $024,036,048,012,060,060,073$ 2655 : ø12, øøø,236,236,248,140,199 2661 : $024,036,048, \varnothing 12,012,060,037$ 2667 : $012, \varnothing \varnothing \varnothing, 1 \varnothing 8,1 \varnothing 8,248,140,211$ 2673 : $024, \varnothing 36,048, \varnothing 12,012, \varnothing 60, \varnothing 49$ 2679 : $012, \varnothing \varnothing \varnothing, 120,012,012,140,159$ 2685 : $024,036, \varnothing 48,012,012,060,061$ 2691 : ø12,162, øø1, ø32,198,255,ø23 2697 : Ø32, $054,011,169, \varnothing \varnothing \varnothing, 133, \varnothing 24$ $27 \varnothing 3$: $\varnothing 75,169,015,133, \varnothing 76,169, \varnothing 12$ $27 \varnothing 9$: $010,133,07 \varnothing, 162, \varnothing 13,189,214$ 2715 : $052, \varnothing 13,157,249, \varnothing 14,2 \varnothing 2, \varnothing 74$ 2721 : Ø16, 247, ø48, øø7, ø32,2ø4,2ø3 2727 : 255, ø96, ø32,179, Ø11, ø32, øø4 $2733: 228,255,032,228,255,240,131$ $2739: 241,169, \varnothing \varnothing \varnothing, 133, \varnothing 77,169,2 \varnothing \varnothing$ 2745 : $014,133,078,032,228,255,157$ 2751 : 133, 093, ø32, 228, 255, 133, ø41 2757 : Ø92,162, Ø12,134,069,ø32,186

2763
2769 2775 .069 $016,003,032,011,011,101$ 2775 : Ø69, Ø16, Øø3, Ø32,ø11, Ø11,101 2781 : $041,127,164,069,133, \varnothing 69,056$ 2787 : 2ø1, Ø84,176, Ø07,192, Ø84,2ø3 2793 : 144, øø3, Ø32, ø64, Ø11,2ø1,176 2799 : 120, 2ø8, 019, 192,120,2ø8, ø82 2805 : ø15,142, ø6ø, øø3, Ø32, ø64, ø49 2811 : $011,174, \varnothing 60, \varnothing 03,169,012,168$ 2817 : $133,069,2 \varnothing 8,205,2 \varnothing 1, \varnothing \varnothing \varnothing, \varnothing 49$ 2823 : $240,160,2 \emptyset 8,191,041,127,2 \emptyset 6$ 2829 : $\varnothing 72,2 \varnothing 1, \varnothing 84,24 \varnothing, \varnothing 2 \varnothing, 138, \varnothing \varnothing \varnothing$ 2835 : 162, øøø,18ø, ø87,192, ø32,160 2841 : 24ø, $0 \varnothing 7,232,224,0 \emptyset 5,208,173$ 2847 : $245,24 \varnothing, \varnothing 18,149, \varnothing 87,24 \varnothing, 242$ 2853 : $\varnothing 14,138,162, \varnothing \varnothing \varnothing, 18 \varnothing, \varnothing 88,1 \varnothing 7$ 2859 : $148, ~ Ø 87,232,224, \varnothing 04,2 \emptyset 8,178$ 2865 : 247,133,091,104,096,162,114 2871 : $0 \varnothing 4,169,032,149,087,2 \varnothing 2,186$ 2877 : $016,251,096,072,165,077,226$ 2883 : 164, $078,056,233, \varnothing 07,133,226$ 2889 : $\varnothing 71,176, \varnothing \varnothing 1,136,132, \varnothing 72,149$ 2895 : 2ø1, øøø,152,233, Ø14,144, ø55
2901 : ø20,16ø, Øø4,185, Ø87, øøø, Ø29
2907 : 2ø9, Ø71, 2ø8, Ø05, 136, 016, 224
2913 : 246, $048,073,165,071,164,096$
2919 : $072,2 \varnothing 8,219,165, \varnothing 77,164,24 \varnothing$
2925 : $\varnothing 78,1.33, \varnothing 73,132,074,056,143$
2931 : 233, øø7,176, øø1,136,133, ø33
2937 : Ø71,132, $072,2 \varnothing 1, \varnothing \varnothing 0,152,237$
2943 : 233, Ø14,144, ø21,160, øø6,193
2949 : $056,177,071,145,073,249,136$
2955 : $\varnothing 87, \varnothing \varnothing \varnothing, 136, \varnothing 16,246,144, \varnothing \varnothing \varnothing$
2961 : $\varnothing \square 6,165,071,164,072,2 \varnothing 8, \boxed{6} 3$
2967 : 214,160, Øø6,185, ø87, øøø, Ø35
2973 : $145,073,136,016,248,024,031$
2979 : 165, Ø77,105, Ø07,133, 077,215
$2985: 144,0 \varnothing 2,23 \varnothing, 078, \varnothing 32,054,197$
2991 : $\varnothing 11,1 \varnothing 4,096,096,165,075,210$
2997 : 164, $076,133, \varnothing 71,132,072, \varnothing 61$
$3 ø \emptyset 3$: $\varnothing 56,165, \boxed{77}, 233, \varnothing \varnothing \varnothing, 141, \varnothing 91$
$3 \varnothing \emptyset 9: ø 6 \emptyset, \emptyset \emptyset 3,165,078,233, \varnothing 14,234$
$3 \varnothing 15: 141, \varnothing 61, \varnothing \varnothing 3, \varnothing 13, \varnothing 6 \varnothing, \varnothing \varnothing 3,224$
$3 \emptyset 21$: 24ø, 227, Ø24,173, ø6ø, øø3,164
$3 \emptyset 27$: $101,071,133,075,133,073, \varnothing 29$
$3 \varnothing 33: 173, \varnothing 61, \varnothing \emptyset 3,1 \varnothing 1, \varnothing 72,133,248$
$3039: ø 76,133,074,032, \varnothing 39, \varnothing 12, \varnothing 77$
$3045: 165,077,056,233,007,164,163$
$3 \emptyset 51$: $078,176, \varnothing \emptyset 1,136,133, \varnothing 77,068$
$3 \emptyset 57$: 132, Ø78, 2ø1, øøø,152,233, Ø13
3063 : $014,144,184,165,073,164,223$
$3 ø 69$: $074, \varnothing 56,233, \varnothing \varnothing 7,176, \varnothing \emptyset 1, \varnothing 32$
$3075: 136,133,073,132,074,160,199$
$3 \varnothing 81$: $\varnothing 66,056,177,071,145,073,025$
$3 \varnothing 87$: 241, $077,136,016,247,144,1 \varnothing 8$
$3 \varnothing 93$: øø6, ø32, ø39, ø12, ø76,25ø,18ø
3099 : Ø11,16ø, Øø6,177, Ø77,145, ø91
$3105: 073,136,016,249,048,190,233$
3111 : $165, \varnothing 71,164, \varnothing 72, \varnothing 56,233, \varnothing 32$
3117 :øø7,176, øø1,136,133,ø71,ø57
$3123: 132, \varnothing 72,162, \varnothing \varnothing 9,181, \varnothing 69,164$
3129 : 157, ø8ø, øø3,2ø2,ø16,248,251
3135 : $996,162, \varnothing \varnothing 9,189, \varnothing 8 \varnothing, \varnothing \varnothing 3, \varnothing 9 \varnothing$
$3141: 149, \varnothing 69,2 \varnothing 2,016,248,162,147$
3147 : øø4, 134, ø87, ø32,2ø1, 255, ø2ø
3153 : 169, øøø,16ø, Ø15,133, Ø71,117
$3159: 132, \varnothing 72,160, \varnothing 04,185,087,215$
3165 : øøø, 2ø9, Ø71, 2ø8, Øø5,136,21ø
3171 : Ø16, 246, ø48, 034,169,013,113
3177 : Ø32,21ø,255,169, Ø32, Ø32, Ø67
3183 : $210,255,16 \varnothing, \varnothing \varnothing \varnothing, 177, \varnothing 71,216$

```
3189 :153,ø87,øøø, Ø32,21ø,255,ø86
3195 :2ø\emptyset,192,ø05,144,243,169,052
32ø1 :ø58,ø32,21ø,255,169,øø\emptyset,ø85
32ø7 :133,ø73,230,073,165,073,114
3213 :197,190,144,022,169,013,108
3219 : Ø32,210, 255,169,ø32,ø32,109
3225 :210,255,160,005,169,032,216
3231 : ø 32, 21\varnothing, 255,136,ø16,248,ø32
3237 : Ø48,222,160, ø05,177,071,ø8\emptyset
3243 :133,093,200,177,071,133,210
3249 : Ø92,ø32,225,255,24ø,ø31,ø28
3255 :165,2ø3,010,010,144,245,192
3261 :ø32,215,012,024,165,071,196
3267 :164,\varnothing72,1ø5,ø\varnothing7,144,0ø1,176
3273 :2ø0,133,071,132,ø72,197,238
3279 : Ø75,165,072,229,076,144,2ø\emptyset
3285 :131,ø96,169,øøø,162,øø2,ø\emptyset5
3291 :157,ø60, Ø\emptyset3,2\emptyset2,\emptyset16,250,139
3297 :120,248,160,015,006,092,098
33ø3 : Ø38, 093,162, 0ø2,189,060,øø7
33Ø9 : Øø3,125,060,0ø3,157,060,133
3315 : Ø\emptyset3,2ø2, 016,244,136,ø16,ø92
3321 :235,216, Ø88,162,øøø,169,ø95
3327 :048,133,074,134,077,189,142
```



```
3339 : Ø74,øø9,048,ø32,ø39,ø13,226
3345 :1Ø4,ø41,015,0ø9,048,224,2ø2
3351 : Ø\emptyset2,2ø8,ø\emptyset2,198,ø74,ø32,ø27
3357 : Ø39,ø13,166,ø77,232,224,ø12
3363 : Ø\emptyset3,144,220,096,197,074,øø1
3369:2ø8,ø\varnothing4,169,ø32,2ø8,ø\varnothing2,152
3375 :198,ø74,076,210,255,ø00,092
```



```
3387 : 078,ø79,078, 069,032,ø0ø,139
3393 :øø\emptyset,ø13,ø13,013,013,013,130
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 3189 \\
& 3195
\end{aligned}
\] & \[
\begin{aligned}
& : 153, \emptyset 87, \varnothing \varnothing \varnothing, \emptyset 32,21 \emptyset, 255, \emptyset 86 \\
& : 2 \emptyset \emptyset, 192, \varnothing \emptyset 5,144,243,169, \emptyset 52
\end{aligned}
\] \\
\hline 3201 & : ø58, Ø32,21ø,255,169, øøø, ø85 \\
\hline 3207 & : \(133,073,230,073,165,073,114\) \\
\hline 3213 & :197,190,144, 022,169,013,1ø8 \\
\hline 3219 & : ø32, 21ø, 255,169, ø32, Ø32,1ø9 \\
\hline 3225 & : 210, 255,16ø, øø5,169, ø32,216 \\
\hline 3231 & : ø32, 21ø, 255, 136, ø16, 248, ø32 \\
\hline 3237 & : \(048,222,160, \emptyset \emptyset 5,177,071, \varnothing 8 \emptyset\) \\
\hline 3243 & : 133, \(093,2 ø 0,177,071,133,210\) \\
\hline 3249 & : Ø92, Ø32,225,255,24ø, Ø31, ø28 \\
\hline 3255 & : \(165,2 \emptyset 3,01 \varnothing, \varnothing 1 \varnothing, 144,245,192\) \\
\hline 3261 & : ø32,215, ø12, \(24,165,071,196\) \\
\hline 3267 & : \(164, \varnothing 72,1 \varnothing 5, \varnothing \varnothing 7,144, \varnothing \varnothing 1,176\) \\
\hline 3273 & :200,133, \(071,132,072,197,238\) \\
\hline 3279 & : \(\varnothing 75,165,072,229,076,144,2 \varnothing \varnothing\) \\
\hline 3285 & :131, ø96,169,øøø,162, øø , øø \\
\hline 3291 & : 157, ø6ø, øø \(, 2 ø 2, \varnothing 16,250,139\) \\
\hline 3297 & : 120,248,160, ø15, øø6, ø92, 098 \\
\hline 3303 &  \\
\hline 3309 & : Øø \(125,1260, \varnothing \varnothing 3,157,060,133\) \\
\hline 3315 & : øø , 2ø2, Ø16, 244,136, Ø16, Ø92 \\
\hline 3321 & : 235, 216, \(088,162, \varnothing \varnothing \varnothing, 169,095\) \\
\hline 3327 & : \(048,133,074,134,077,189,142\) \\
\hline 3333 &  \\
\hline 3339 & : ø74, øø9, \(448, \varnothing 32, \varnothing 39, \varnothing 13,226\) \\
\hline 3345 & : 1ø4, Ø41, \(15, \varnothing ø 9,048,224,2 ø 2\) \\
\hline 3351 & : øø2,2ø8, øø2,198, \(74, \varnothing 32, \varnothing 27\) \\
\hline 3357 & : ø39, Ø13,166, \(77,232,224,012\) \\
\hline 3363 & : Øø , 144, 22ø, ø96,197,ø74, Øø1 \\
\hline 3369 & :2ø8, Øø \(12169, \varnothing 32,2 \varnothing 8, \varnothing \varnothing 2,152\) \\
\hline 3375 & : 198, \(074,076,210,255, \varnothing 0 \emptyset, \boxed{12}\) \\
\hline 3381 & :øøø, øøø, øøø, øøø, øøø, øøø, Ø53 \\
\hline 3387 & : \(078, \varnothing 79, \varnothing 78, \varnothing 69,032, \varnothing 00,139\) \\
\hline 3393 & :øøø,ø13,ø13,ø13,013,ø13,130 \\
\hline
\end{tabular}
```


SUPER FORTH 64*

TOTAL CONTROL OVER YOUR COMMODORE-G USING ONLY WORDS

MAKING PROGRAMMING FAST, FUN AND EASY:

- Home Use, Fast Games, Graphics, Data Acquisition, Business
- Real Time Process Control, Communications, Robotics, Scientific, Artificial Intelligence A Powerful Superset of MVPFORTH/FORTH $79+$ Ext. for the beginner or professional
- $14000 \times$ laster than Basic.
- Easy full control of all sound, hi res.
graphics, color, sprite, plotting line \& circle.
- Includes interactive interpreter \& compiler.
- Forth virtual memory
- Fuil cursor Screen Editior. distribution without licensing. - FORTH equivalent Kernal Routines.
- Conditional Macro Assembler. - More Compact than assembly code. - Meets all Forth 79 standards - Source screens provided. - Compatible with the book - Access to all $1 / 0$ ports RS232, IEEE including memory \& interrupts.

SUPER FORTH 64* is more powerful than most other computer languages!
 - Access all C-64 peripherais including 4040 drive. - Single disk drive copy utility. - Disk \& Cassette based. Disk included - Full disk usage-680 Sectors. - Supports all Commodore file types - Supports all Commodo
and Farth Virtual disk. - Access to 20 K KAM underneath ROM 3 argas - Vectored kernal words.

- TRACE facility
- DECOMPILER lacility
- Full String Handling
- ASCII error messages.
- Floating POINT. MATH \& SIN/COS \& SQRT
- Conversational user defined Commands.
- Tutorial examples provided. in extensive manual
- INTERRUPT routines provide easy control ol split screen display, hardware timers. alarms and devices.
SUPER FORTH 64* compiled code becomes more compact than even assembly code

- A SUPERIOR PRODUCT In every way at a low price of only $\$ 96$
See your local dealer, or B Dation Bookstore. Phone orders also accepted. Immediate delivery

BPARSECRESEACN
commodore os A vic-20
Commodore es a vic. 20
TM ol Commodore

SOUTHERN
AUDIO VIDEO ELECTRONICS INC

Heshare. MICROSOFT MULTIPLAN $\$ 60$ OMNIWRTTER /OMNISPELL CALL! TURTLE GRAPHICS II \$34 GRIDRUNNER \$17

FOR IBM, APPLE, C64
AEROBICS \$25 SNOOPER TROOPS I\&II DELTA DRAWING CALL! CALL!

FACEMAKER
\$20

WORDWRITER (\%)BASFFlexy Disks
5.25 SS/SD (10)
$\$ 19$

HIGH SPEED DISK DRIVES

64 COMPATIBLE	$\mathrm{C}-321 \mathrm{P}$	$\$ 299$
IBM COMPATIBLE	$\mathrm{C}-522$	$\$ 299$
APPLE COMPATIBLE	$\mathrm{C}-111$	$\$ 199$

APPLE DISK CONTROLLER CARD C-130 \$74

Send \$2 for complete catalog - CREDIT with purchase

158 COMPUTE! May 1984
IN GEORGIA 404-351-8459

File Processing Part 3

This month C. Regena concludes her three-part discussion on creating data files.

A Birthday List

Program 1 prints a birthday list of the students in a class. The same data file is used, and the information is arranged in order by birthdate. Line 180 is the OPEN statement for the printer (use your own printer configuration). Line 190 is the OPEN statement for the disk drive to read in information.

Line 210 reads in the date-again, in the same order that the items were saved. We will ignore some of the information, but all the items must be read in order. Line 250 combines several of the items into one variable T\$. The birthday BD and $\mathrm{T} \$$ are actually arrays, so the items may be sorted. Lines 280-350 contain the sorting procedure to sort by birthday.

Line 360 and lines 510-560 print the header. Lines 370-480 print the information. Lines 380-400 print the month and day from the BD number that was saved. Line 410 prints a blank line between months. Lines 420-450 use POS and SEG\$ to separate the T\$ item back into its parts, then line 460 prints the information in columns using the IMAGE statement of line 200.

The Report Writer

Program 2 generates reports using the data saved in Program 1 of Part 2 (April 1984). Lines 160-200 present the option to print the report for one of the reading groups or for the whole class.

These reports will use a 132 -column line, or compressed print (16.5 characters per inch). Line 210 OPENs device \#1 for the printer. The previous reports used an 80 -column line, which is the default value for most printers. VARIABLE 132 is used to designate a longer line before a carriage return. Line 230 sets $m y$ printer (TI 825 , which is like the TI 840) to use compressed print. You will probably need a different command.

Some printers can use a certain CHR\$
number. Other printers may require you to set certain hardware switches. I have used compressed print and the 132 -column line so more can fit on the one line. The other two reports in this program may be printed with the regular printing.

Line 240 is the OPEN statement to read the data from the data file created by Program 1 (Part 2, April). Again, the variables are in the same order as they were saved. Line 280 checks for the end of the file. Lines 290-300 check to see if a particular group was chosen or if the whole class is to be printed. Lines 310-480 then print the first report. The student's R\$ tally is separated using SEG\$. Line 360 and line 410 are used to print information if only part of the ten weeks is used. If you have a different number of weeks in your report, you can change the 10 in lines 130, 410, $520,560,600$, and 670, and the titles in lines 140 and 930-950.

Total Values

Variable names starting with T are total values. Lines $440-450$ print total presentations divided by total possible weeks and the individual's percentage. Lines 500-630 print the totals for each week.

A bar graph report is printed in lines 640-700. Each asterisk represents a report, and the appropriate number of asterisks is printed for each week as a graph.

The final report in this program is to rank the students from high score to low score by percentage. Lines 720-780 contain the sort routine. The percentages were stored in the P array with the corresponding names in NN\$. Lines 790-850 print the percents and names. Line 810 and the subroutine in lines 1000-1150 alphabetize the names of all students who have a zero score.

Console BASIC

You can, in fact, do file processing without Extended BASIC and all the peripherals. I used Extended BASIC mainly because of the ease in formatting the printing-lining up the columns. In regular console BASIC you can use subroutines to
line up columns of numbers and the TAB function to start the columns right．See my January 1984 column in COMPUTE！for some suggestions on formatting and screen scrolling．

To use a printer you need the RS－232 interface plus the printer．A number of different name brands of printers can be used with the TI－99／4A． The printer manuals should tell you what features the printer has and how to control different fea－ tures，such as the number of characters per inch and form feeds．Using the printer and RS－232 manuals，you can determine the appropriate print－ er configuration necessary for the OPEN state－ ment．Without a printer，you can print on the screen－just keep within the 28 print columns and print a screen at a time or use a scrolling delay method so you can read the information as it is printed．

To use a disk drive you also need the disk controller or disk controller card for the Peripheral Expansion box．The disk controller or card comes with a command module and a manual that de－ scribes disk procedures．To use a cassette，simply change the＂DSK1．－－－＂statements to＂CS1＂and change the VARIABLE to FIXED．The cassette system works fine－it just takes longer than the disk system．

Program 1：Birthday List

8め REM TI EXTENDED EASIC
9め REM DISK，PRINTER
1 Øø REM BIRTHDAY LIST
110 CALL CLEAR
120 DISPLAY AT $(12,5):$＂BIRTHDAY LIST ＂
13Q OPTION BASE 1
$140 \mathrm{DIM} T \Phi(140), \mathrm{HD}(14$ ），MD（12）
150 FOR $I=1$ TO $12:=\mathrm{READ} M \$(I):=N$ EXT I
$16 \unrhd$ DATA JAN，FEG，MAR，APR，MAY，JUN，JU L，AUG，SEF，OCT，NOV，DEC

19\％OPEN \＃ड：＂DSK1．SAMFLE＂，INTERNAL， INFUT，VARIABLE 192
2 و＠IMAGE＂と5 SPACES \＃\＃\＃\＃\＃ \｛3 SPACES3．\＃ \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\｛3 SF．ACES？\＃\＃\＃\＃\＃\＃\＃\＃\＃ \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃＂
210 INPUT \＃S：G，Nक，F末，A末，P末， $\mathrm{BD}\{\mathrm{I}), \mathrm{R} \$$ ，ट\＄
220 IF C $\$=$ MMOVED＂THEN 210
2Sg IF Nक＝＂ZZZ＂THEN 27ด
240 IF $\mathrm{P} \Phi=$＂＂THEN $\mathrm{F}=$＝$=$＂ 4 SPACES\}"

$260 \mathrm{I}=\mathrm{I}+1$ ：：GOTO 210
$279 \mathrm{I}=\mathrm{I}-1$ ：：CLOSE \＃S
2B＠DISPLAY AT $(23,1): " S O R T I N G "$
$290 \mathrm{~B}=1$
उめg $\mathrm{B}=2 * \mathrm{~B}:=1 \mathrm{~F} \mathrm{~B}<=1$ THEN उूg

329 FOR $J=1$ TO I－B ：：$C=J$
$339 \mathrm{D}=\mathrm{C}+\mathrm{B}$ ：：IF $\mathrm{BD}(\mathrm{C})<=\mathrm{BD}(\mathrm{D})$ THEN 35 Ø
उ4め $A A=B D(C): T T \$=T \neq(C): B D(C)=B D$
（D）：$: T \$(C)=T \$(D): B D(D)=A A::$ $T \Phi(D)=T T \$: C=C-B: I F C>D T$ HEN उSG
उ5g NEXT J ：：GOTO 316
उ与ด GOSUB 51g
37Q FGR J＝1 TO I
 ：：GOTO 42＠
39＠ $\operatorname{BD} \$=S T R क(B D(J)): ~ M=V A L\{S E G \$(B D$ \＆ $1, \operatorname{LEN}(B D \Phi)-2)$ ）：：$D=V A L(S E G \&(B$ Dक，LEN（EDक）－1，2））

$410 \mathrm{~L}=\mathrm{L}+1:=$ PRINT \＃1：：L $=\mathrm{B}=\mathrm{D}$
$425 \mathrm{P}=\mathrm{POS}(\mathrm{T}$（J） 3 ，＂／＂，B）
430 NA＝SEGq（T\＆（J），1，P－1）

 4）
4 S G FRINT \＃1，USING $206:$ ES，D，Nक，P末，A \＄
47 6 $L=L+1$ ：：IF $L=48$ THEN PRINT \＃ $1:$ CHRक（12）：$: ~ L=0:$ GOSUE 510
45G NEXT J
496 FRINT \＃1：CHR\＄（12）
5g日 STOF
516 PRINT \＃1：TAB（34）；＂SAMPLE CLASS＂
52多 FRINT \＃1：：TAB（ 34 ）：＂HIRTHDAY LI ST＂
53Q FRINT \＃1：：TAB\｛3 984＂
54 § FRINT \＃1：：：TAE（5）＂＂EIRTHDAY＂； TAB（15）；＂NAME＂；TAB（41）；＂PHONE＂； TAE（54）：＂ADDRESS＂
55 5 PRINT \＃1：TAB（5）；＂－－－－－－－－＂；TAB： 15）；＂－－－－＂；TAB（41）；＂－－－－－＂；TAE（ 54）；
560 RETURN
579 END

Program 2：Report Writer

$8 \varnothing$ REM TI EXTENDED BASIC
9め REM DISK，PRINTER
1 めめ REM REPORT WRITER
11 OPTION FASE 1
 ），$P(140)$
$130 \operatorname{FOR} I=1$ TO $1 \varnothing:=R E A D \quad D \$(I):=N$ EXT I
140 DATA JAN 1，JAN 8，JAN 15 ，JAN 22， JAN 29，FEG 5 ，FEG 12 ，FEB 19 ，FEB 26，MAR 4
15め DISPLAY AT（4，6）ERASE ALL：＂REPOR T WRITER＂
160 DISPLAY AT $(7,3):$＂CHOOSE：＂：：DI SPLAY AT $(8,5): " 1$ GROUP $1 ":=D I$ SPLAY AT $(9,5)=" 2$ GROUP 2 ＂
170 DISPLAY AT（10，5）：＂3 GROUP $3 ":$ DISPLAY AT $(12,5): " 4$ COMPLETE C LASS＂
189 CALL KEY（G，KEY，ST）
190 IF KEYく 49 OR KEY〉52 THEN 180
$20 め \mathrm{G} 1=\mathrm{KEY}-48$ ：：CALL HCHAR $67,3,32$ ， 192）
210 OFEN \＃1：＂RSZ32．BA＝ 20 ＂，VARIABLE 132
220 REM SET FOR COMPRESSED PRINT
 P＂\＆＂D＂\＆ESC末\＆＂\＂
249 OPEN \＃S：＂DSK1．SAMFLE＂，INTERNAL， INPUT，VARIABLE 192
$25 \emptyset I=\emptyset:=$ L血＝＂A＂
26 GOSUB 889 ：：GOSUB 93
279 INPUT \＃S：G，N末，F\＄，A $, ~ P \$, B D, R 末, C \$$
28＠IF Nक＝＂ZZZ＂THEN 47夕
290 IF G1＝4 THEN 310
उめめ IF G1く＞G THEN 27 O
31＠IF SEGक（Cゅ，1，5）＝＂AUDIT＂THEN 27 め
 NL\＄＝C\＄：PRINT \＃1 ：：L＝L＋1
 （44）：
उ49 $T A=\varnothing: \quad . \quad T F=\varnothing$

36＠FOR $3=1$ TO LEN（Rも）
 N TA＝TA＋1

336 IF Aक：＝＂1＂OR $A \$=" 6 "$ THEN TP＝TF＋ $1:: T(J)=T(J)+V A(\{A \Phi): T T(J)=$ TT（J）＋ 1
3Я＠PRINT \＃1：A末；＂〔4 SFACES？＂：
4 6以 NEXT J
410 FOR $3 J=J$ TO $16:$ PRINT \＃1：＂
（E SPACES3＂；：：NEXT JJ

450 PRINT \＃1，USING＂ 16 SPACES？\＃\＃／\＃\＃ （S SFACES\} \#\#\#": TA,TP, P(I)
$469 \mathrm{~L}=\angle+1$ ：：IF $L=43$ THEN GOSUB 879 ：：GUSUE 932

470 IF $A \neq="-$ THEN $I=I-1$
486 GOTO 276
490 GOSUE G5ig
50め PRINT \＃ 1
5i 6 PRINT \＃1：TAB（10）：＂REPORTS：＂；TA E（42）；
520 FOF J＝1 TO 10
5Зめ FRINT \＃1，USING＂\＃\＃\＃＂：T（J）；
540 TAT $=$ TAT $+T(J)::$ NEXT J
55 PRINT \＃I：：TAB \｛1g）：＂ENROLLED：＂ ；TAE（42）；
560 FOR J＝1 TO 10
579 FRINT \＃1，USING＂\＃\＃\＃＂：TT（J）；
5Sめ TE＝TE＋TT（J）：NEXT J
599 PRINT \＃1：：：TAB（1以）；＂FERCENT R EPORTS：＂；TAB（42）；
SめQ FOR $3=1$ TO 19
616 PRINT \＃1，USING＂\＃\＃\＃＂：T（J）＊10日 ／TT（J）；
62\％NEXT ？
Sडg FRINT \＃1：TAB：12g）：INT：TAT＊1 ： E）
649 GOSUR 879
 Q）：＂REPORTS＂
Sめ日 PRINT \＃1：TAB（1Ø）；＂－－－－＂；TAB（उめ） ；＂－－－－－－－＂：
670 FOR J＝1 TO 1め
59め A\＄＝KPT\＄（＂＊＂，T（J））
690 PRINT \＃1：：TAB（1め）；D\＄（J）；TAB（З ） $\boldsymbol{T}(\mathrm{J}) ; " \quad " ; A \$$
$76 め$ NEXT J
71日 GOSUE 870
$720 \mathrm{~B}=1$
$730 \mathrm{~B}=2 * \mathrm{~B}:=1 F \mathrm{~B}:=1$ THEN 73め
$740 \mathrm{~B}=1 \mathrm{NT}(\mathrm{B} / 2):$ ：IF $\mathrm{B}=$ Ø THEN 79 g
750 FOR $J=1$ TO $I-B: C=J$
$769 \mathrm{D}=\mathrm{C}+\mathrm{B}:=\mathrm{IF} \mathrm{F}(\mathrm{C})<=\mathrm{F}(\mathrm{D})$ THEN 789
$77 め A A=P(C):=A A \$=N N \$(C):: P(C)=P(D$ ）：：$N N \$(C)=N N \$(D):=P(D)=A A::$ $N N \$(D)=A A \$: \quad C=C-B: I F C>\emptyset T$ HEN 76の
789
790
8めØ
IOR $J=1$ STEP－ 1
810 IF $P(J)=\varnothing$ AND $F L=\emptyset$ THEN GOSUA 1 Øロロ
820 PRINT \＃1：TAB：46）：
83 9 PRINT \＃1，USING＂\＃\＃\＃\｛8 SPACES？\＃\＃ \＃＂：P（J），N N （ J ）
$840 L=L+1$ ：$:$ IF $L=48$ THEN GOSUE 379 ：：GOSUB 97め
85 NEXT J
860 STOF
87＠PRINT \＃1：CHRま（12）
38め PRINT \＃1：TAB（58）：＂SAMPLE CLASS＂
39＠IF G1＝4 THEN 91＠
9め曰 FRINT \＃1：：TAB（GQ）；＂GROUP＂；G1
910 FRINT \＃1：：TAB（5S）：＂EOOK REPORT S PRESENTED＂
920 FRINT \＃1：：TAB（57）；＂FIRST TERM 1984＂：：RETUKN
930 PRINT \＃1：：：TAB\｛43）：＂JAN JAN JAN JAN JAN FEG FEG FEG FEG MAF ${ }^{\text {＂}}$
940 PRINT \＃1：TAB（1g）；＂NAME＂；TAB（43） ： 1 \｛4 SPACES38\｛3 SPACES\}15
\｛3 SPACES\}22^3 SPACES\}29
\｛4 SPACES\}5\{3 SPACES\}12
\｛3 SPACES 317 \｛3 SFACES326
\｛4 SPACES？4＂；TAB（110）：＂TOTAL＂：T AB（121）：＂\％＂
95め PRINR \＃i：TAE（10）；＂－－－－＂；TAB（43） ；＂－－－－－－－－－－－－－．．．－－－ －．．－－＂；TAE（12g）；＂－．－＂：
960 L＝日 ：RETURN
979 PRINT \＃1：：：TAB（44）：＂PERCENT＂： TAB（57）：＂NAME＂
98月 PRINT \＃1：TAE（44）；＂－．．－－－－－＂；TAE； 57）；＂－－－－＂：：
99日 $L=$ 日 ：R RETURN
10月以 FOR K＝1 TOJ
$1010 \mathrm{~S}=\mathrm{POS}(\mathrm{NN}=(\mathrm{K})$ ，＂＂：1）
1026 SI＝FOS（NN⿱（K），＂＂，S＋1）：：IF S1 $=6$ THEN 1 OS 0 ELSE $5=51$
 （k））－S）$s ", \quad " \& S E G \$(N N \pm(K), 1, S-1$ ，
$1040 \mathrm{NEXT} K$
105 会 $=1$
$16 \in \mathrm{~B}=2 \mathrm{*E}$ ：：IF $\mathrm{B}<=3$ THEN 1 gbs
1 67 日 $B=I N T(E / 2):$ IF $B=$ W THEN 1129
10956 FOR $K=1$ TO $3-B:=C=K$
1 g9 $0 \mathrm{D}=\mathrm{C}+\mathrm{B}:$ ：IF $\mathrm{NA}=(\mathrm{C}) \geqslant=\mathrm{NN}=(\mathrm{D})$ THEN 111 ゆ
本（D）＝A＝： $\mathrm{C}=\mathrm{C}-\mathrm{B}:=\mathrm{IF} \mathrm{C}\rangle$ THE N1090
1116 NEXT $K: ~ G Q T O ~ 1 月 7 W$
1120 FOR $K=1$ TO $J: S=P O S$（NN末 (K) ：＂ ，＂，1）
1136 NN $\$(K)=S E G \$(N N \$(K), S+2, L E N(N N \$$ （K）$-S+1$ ）\＆＂＂\＆SEG\＄（NNक（K），1，S－ 1）
1140 NEXTK
$1150 \mathrm{FL}=1$ ：：RETURN
1165 END

A Program Critique

Part 2

This month we continue with comments on Bud Rasmussen's program to copy files on the Commodore 64 with a single disk unit. At this point the program has obtained a filename. The filename is kept in two forms: the short form
("FILENAME") and the longer form for writing ("FILENAME,P,W"). We will use the short form when we open the file for reading.

In this session, we'll track the mnemonics that open the error channel, initialize the disk, and input the file into RAM memory.

			; DISK I/O ROUTINE		
C18A	A9 00	00	DİOR	LDA \#0	; CLEAR
C18C	8D 60	$60 \quad 03$		STA ISF	;INPUT STAT FLAG
C18F	8D 61	6103		STA IEC	;INPUTERR CODE

This is probably overkill. The flags should be zeroed close to where they are used, if necessary.

C192	A2			LDX	\#IPBML	;PRINT
C194	A0	C1		LDY	\# >IPBM	;'INPUT
C196	A9	AD		LDA	\#<IPBM	;PHASE
C198	20	75	C1	JSR	PR	;MSG

A Friendly Message

In keeping with the friendly style, a message is printed telling the user what's going on. We'll find the message in-line very shortly.

C19B	A9	OF	LDA	\#15	;SET
C19D ${ }^{\text {A }}$	'A2	08	LDX	\#8	;COMMAND
C19F	A0	0F	LDY	\#15	;CHANNEL
C1A1	20	bA FF	JSR	SETLFS	
C1A4	20	C0 FF	JSR	OPEN	;OPEN COMMD CH

The command channel is opened. This is quite important: We'll get all our error messages from this channel. It should always be opened before other disk activities are started.

C1A7	20	$3 F$	C4	JSR	ID	;INIT DISK
C1AA	4 C	CF	C1	JMP	SNI	;GOTO SETNAME
					INPUT	

We send the initialize command to the disk over the command channel. This is not vital, but a good precaution. It's a subroutine within the program; we'll meet it much later.

We need to jump over the message to continue with the program. Here's the message:

	;	
	; INPUT PHASE BEGUN MESSAGE	
	;	
	;	
C1AD 0D 0D 12	IPBM	.BYTE\$0D,\$0D,\$12
C1B0 2A 2A 2A		.ASC ${ }^{\prime * * *}$ INPUT PHASE BEGUN ***/
C1CD 0D 0D		.BYTE\$0D,\$0D
	IPBML	$={ }^{*}$-IPBM

Now we're ready to open the input file in preparation for reading it. We use the short name, since the last four characters ($, \mathrm{S}, \mathrm{W}$) aren't needed or wanted for an input file.

We're doing things backwards from the equivalent BASIC coding. If we code OPEN 2,8,2,"HOTDOG" in BASIC, we've now placed the "HOTDOG" part of the command. Now let's put in the $2,8,2$ sequence:

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | ; SET LOGICAL FILE (INPUT) | |
| | ; | | |
| C1D9 A9 02 | SLFI | LDA \#2 | ; LOAD LOGICAL |
| C1DB A2 08 | | LDX \#8 | FILE \# |
| COAD DEVICE | | | |

Error Check

Now we'll check to see if the OPEN took place without error:

C1E5	A5	90		LDA	IOS	; TEST
C1E7	F0	0B		BEQ	OCI	;STATUS
C1E9	8D	60	03	STA	ISF	;STORESTATUS FLAG
C1EC	A9	01		LDA		;SET/STORE
C1EE	8D	61	03	STA		;ERROR CODE
C1F1	4 C	4 F	C2	JMP		;INPUTERROR

Location \$90-called IOS here- is the familiar BASIC ST flag. If it's zero, we are OK and can proceed to read the file. If not, we must advise, abort, or take other appropriate action.

But this flag is not enough. ST, or hex 90, tells us only if the transfer of information (in this case, filename) has been passed to the disk correctly. After the information gets to the disk, there may be other problems.

If the file does not exist, or for any other reason cannot be opened, the disk will know there's an error; but the computer will not. The computer must ask the disk to deliver information on possible errors over its command channel. The command channel is open and ready to receive this data (we opened 15 , remember), but we must ask for it.

To do the job right, we must think about coding along the following lines:

LDX	\#15	; command channel
JSR	\$FFC6	; input
JSR	\$FFE4	;get a character
PHA		;stash it
JSR \$FFCC	;close channel	
PLA	; instash character	
CMP \#\$30	;is it 0?	
BNE ERROR	;nope, we have problem	

A Better Way

The above is minimum coding. It would be better to create a more elaborate subroutine which brings in the whole message from the error channel and stores it in memory. (The message would end with \$0D, the Return character.) Then we could check the first character for $\$ 30$ (ASCII zero, start of the OK message); if not, we'd be able to print the whole error message.

Here comes the coding for a good OPEN:
I wish the comments said "connect channel" rather than "open channel." The OPEN (as we know it in BASIC) has been performed successfully. Now, we're establishing a connection to the input file preparatory to reading.

| | | |
| :--- | :--- | :--- | :--- | :--- |
| | | |
| | | ; LOAD BUFFER START ADDRESS |

Just before reading, we set up the memory address into which we will start to read. The low part of the address is zero; the high part is stored as a constant in the program (SP undoubtedly stands for Start Page). Immediate addressing could be used to set the start page if preferred.

INPUT LOOP							
				;			
C213	20	CF	FF	IL	JSR	CHRIN	;GET CHARACTER
C216	91	FB			STA	(BAL), Y	;STORECHARACTER
C218	E6	FB			INC	BAL	; INCR LOBYTE
C21A	D0	0 C			BNE	TIS	; IF NOT 0, TEST STAT
C21C	E6	FC			INC	BAH	;INCR HI BYTE
C21E	A5	FC			LDA	BAH	;LOAD HI BYTEAND,
C220		3E	C4		CMP	EP	;CHECK FOR END ADDR
C223	90	03			BCC	TIS	; IF LO, TEST STAT
C225	4 C	3B	C2		JMP	DSP	

CHRIN Or CHRGET

Rasmussen uses the CHRIN routine (\$FFCF) to get from the file. I prefer CHRGET (\$FFE4), but the difference is minor with files. Either call gets from the file rather than keyboard/screen because we have switched the input channel with our call to CHKIN (\$FFC6).

Some programmers would prefer to step the Y register through its range rather than change the indirect address each time. In principle, the Y register technique is faster; but in this case, it's doubtful that the speed difference could be observed. Timing of this whole section is governed almost totally by disk speed.

The program checks carefully to make sure that the data does not overrun the memory space available.

TEST INPUT STATUS

Again we test the ST status byte (IOS); in this case, we're primarily interested in an end-of-file signal which would be flagged by a value of hex 40 (decimal 64) in ST.

Once again, the error routines are quite elaborate. It's my opinion that there is little need to check the disk error channel during the read phase; error notices will wait until we ask for them at end of file.

Opening The File

If we run out of memory, we come to DSP:

			; DECREMENT START PG BY HEX 10 ; AND TRY AGAIN, ; TO GIVE YOU 16 MORE BLKS.			
C23B	38		DSP	SEC		
C23C	AD 3D	C4		LDA	SP	; LOAD START PG
C23F	E9 10			SBC	\#H10	; SUBT HEX 10
C241	8D 3D	C4		STA	SP	;STOREIT BACK
C244	20 CC	FF		JSR	CLRCHN	; CLEAR CHANNEL
C247	A9 02			LDA	\#2	;SETCH2
C249	20 C3	FF		JSR	CLOSE	;FOR CLOSE
C24C	4C CF	C1		JMP	SNI	;START ALL OVER

I'm not sure what is going on here. The coding intention is this: If it doesn't fit, allocate an extra 4 K and try again.

An Endless Loop

This is puzzling. If the 4 K was available, why not make it available in the first read and save the trouble?

There's also a pitfall here. Suppose we allocate the extra 4 K , and the program still doesn't fit into memory. We'll end up in an endless loop, since we will come back to DSP, do it again, and so on, and so on.

I'd prefer to allocate as much memory as possible right away, and quit if the program doesn't fit.

This is a programmer's error termination. The program will stop and break to the monitor, if there is a monitor in place. The programmer
can then examine memory locations to see what the trouble is.

If there is not a monitor in the machine, the program will terminate with a READY statement and no other explanation.

Extra Work

For general use, the program would benefit from additional work in this area so that the user would see a meaningful message. This is almost out of character: The messages are so well presented in other parts of the program that their absence here is very noticeable indeed.

Wrapping It Up

The end address (plus one, of course) is stored away, and the file disconnected. I would check the disk error channel at this point. Any errors that may have accumulated during the input phase will be waiting.

Now we may close the file and print an advisory message:

C25E		02	FF		LDA		;SETCH 2
C260	20	C3			JSR	CLOSE	;FOR CLOSE
C263	A2	88	C1		LDX	\#IPFML	;PRINT
C265	A0	C2			LDY	\#>IPFM	;'INPUT
C267	A9	6F			LDA	\#<IPFM	;PHASE FINISHED'
C269	20	75			JSR	PR	;MSG
C26C	4C	F7	C2	;	JMP	SOP	;GOTO STARTOUT PHASE
				; INPUT PHASE FINISHED MESSAGE			
C26F	12			IPFM	. BYTES12		
C270	20	20	49		.ASC" INPUT PHASE FINISHED.		
C28F	0D	0D	12		-BYTES0D,\$0D, \$12		
C292	20	20	52		.ASC" REMOVE INPUT DISKETTE. ${ }^{\text {/ }}$		
C2B1	0D	0D	12		.BYTESOD, \$0D, ${ }^{\text {S }}$		
C2B4	20	20	49		.ASC" INSERT OUTPUT DISKETTE."		
C2D3	0D	0D	12		.BYTE\$0D,S0D, $\$ 12$		
C2D6	20	20	50		.ASC" PRESS RETURN KEY WHEN READY.		
C2F5	0D	0D			.BYT	E\$0D,S0D	
C2F7			IPFML $={ }^{*}$-IPFM				
			; STARTOUTPUTPHASE				
C2F7			ŚOP				

The input phase is complete. Next time, we'll take a look at output.

Atari Softkey

Thomas A Marshall

This utility allows you to GOTO any line in a program while it's running, simply by pressing a console key. See the "Automatic Proofreader" article on page 180 before typing in programs.

To access the OPTION, SELECT, and START keys on the Atari keyboard console, you can use the following BASIC program:

```
M. G GOTO 1@
6C 1 ? "OFTION":GOTO 2@
EK 2 ? "SELECT"=GOTO 2@
8J 3 ? "START ":GOTO 2g
FG1@? "This is a demonstration of th
    e"
g% 11 ? "use of Atari*s console keys."
HK 2@ IF PEEK (53279)=3 THEN GOTO 1
HO SØ IF PEEK (53279)=5 THEN GOTO 2
IB 4@ IF PEEK (53279)=6 THEN GOTO }
AR 5@ GOTO 2\varnothing
```

However, this requires that the computer be tied up in a loop, lines 20 to 50 .

A much better way to accomplish the same thing is for a machine language program to check the console keys during the vertical blank period. (This is the time that the television's electron beam ends at the lower right corner of the screen until it begins again at the top left corner of the screen.) If a console key is pressed, the machine language program will execute a "GOTO line number" where the line number corresponds to the following keys pressed:

```
GOTO 1 for OPTION
GOTO 2 for SELECT
GOTO 3 for START
GOTO 4 for SHIFT & OPTION
GOTO 5 for SHIFT & SELECT
GOTO }6\mathrm{ for SHIFT & START
```

Note that we have doubled the effective number of console keys by adding the SHIFT key. Using this technique, the BASIC programmer can go directly to any portion of his program without
stopping the program and typing GOTO line number.

An Automatic RUN

If you are really lazy, you can have the BASIC line, 3 RUN, so that your BASIC program will RUN when the START key is pressed, regardless of whether the BASIC program was running beforehand or not.

Program 1 creates an AUTORUN.SYS file. Note that this file resets the memory location, MEMLO, that points to the beginning of a BASIC program. Thus, the vertical blank machine language routine resides safely below the BASIC program. The drawback to this technique is that the machine language program will be erased when you go to DOS.

Also Autoruns

An additional feature included in the disk version of "Atari Softkey" is the ability to autorun any BASIC program saved on the disk. Program 2 is a demonstration program which will be RUN automatically by the AUTORUN.SYS file. So, Program 2 should be saved on the disk with the filename as in the AUTORUN.SYS file. Program 2 currently has the filename GOTO.BAS, defined in line 40 of Program 1 by F\$ = "RUN D:GOTO.BAS".

The Tape Version

For Atari owners who do not have a disk drive, Program 3 POKEs Softkey into page 6. You need to initialize the machine language (ML) routine with the USR statement in line 120. Program 3 is essentially the same as Program 1, but with the autorun feature removed. Again, whenever the console keys are pressed, lines 1-6 in Program 2 will be executed as described above.

However, remember that if there is no line number in the BASIC program corresponding to the console key pressed, an "ERROR 12", line not found, will occur.

The ML program is initialized by placing the
low and high address of the start of the ML pro－ gram into memory addresses 736－737（RUNAD $\$ 2 \mathrm{E} 0-\$ 2 \mathrm{E} 1$ ）．Upon completion of DOS．SYS load， the computer will run the ML program pointed to by this address．After resetting several vectors， the ML program sets the Vertical Blank Interrupt （VBI）vector using the deferred mode．

The Deferred Mode

I have used the deferred mode（accumulator $=7$ ）， since there are about 20,000 machine cycles avail－ able versus about 3800 cycles in the immediate mode（accumulator $=6$ ）．Thus，the ML routine checks whether the SHIFT and the console keys are pressed during the vertical blank period．Once the keys are pressed，the ML program jumps to the subroutine that sounds the keyboard click and resets the pointer to the editor routine so that the ML can perform the GOTO line number input． It then simulates a press of the BREAK key so that the editor buffer is emptied and the new editor pointers are executed．Once the BASIC G．line number is in the editor buffer，the editor pointer is reset．A RETURN，CHR\＄（155），is placed in the editor buffer to execute the GOTO line number statement．

Softkey has many applications．I have found it most useful in a program that required the modification of DATA statements．You can RUN the BASIC program simply by pressing the START key．Another application is to go directly to sub－ routines without going through a menu selection．

Program 1：Atari Soffkey

R 19 REM Atari Softkey

EX 2 G GRAFHICS $日:$ ？＂Insert a DOS $2 . \varnothing S$ diskette＂：？＂with DOS．SYS in dri ve $1^{\prime \prime}$
F月 $3 \varnothing$ ？？＂Press RETURN when you have done this＂
N0 4 D DIM F\＄（18）：E＝$: F \Phi="$ RUN D：GOTO．BA $S^{\prime \prime}:$ F\＄$(4,4)=\operatorname{CHF}(34):$ REM $34=A S C I I$ FOR＂
EM 50 IF FEEK（764）＝12 THEN FOKE 764， 25 5：GOTO 7日
AE GQ GOTO 5め
朋 7 ？？？＂Now writing the AUTORUN．SY 5 file＂
DE 80 TRAP 1 ＠g：CLOSE \＃ 1
K 9 G OPEN \＃1，8，Ø，＂D：AUTORUN．SYS＂：TRAP 4：GOTO 11日
FM 1 gg CLOSE．\＃1：？：？＂Can＇t open AUTOR UN．SYS file＂：END
JH119 FOR I＝1 TO 292：TRAP 189：READ A： $\mathrm{B}=\mathrm{B}+\mathrm{A}:$ TRAP 21 ：$:$ PUT \＃1， $\mathrm{A}:$ NEXT I： TRAP 4 KゆめD
$B 0120$ IF $A<>96$ THEN 179
KE13＠IF B＜＞3 13729 THEN 19＠
OA 14 G FOR $I=1$ TO 18 －LEN（F\＄）：FUT \＃1， 32 ：NEXT I
LA 156 FOR $I=L E N(F \$)$ TO 1 STEP－ 1 ：PUT \＃1，ASC（F末（I））：NEXT I：CLOSE \＃1
FN1Gめ？？＂DATA ok，write successfu 1．＂：END
0． 170 ？：？＂There are too many DATA e ntries＂：GOTO 2めळ

DM 180 ？＂There are not enough DATA en tries＂：GOTO 2めの
fP 19G ？？＂Had number in DATA statem ents＂
HL 2øø CLOSE \＃1：？＂RECHECK the entries ！＂：END
BG 210 ？：？：？＂Error－＂；PEEK（195）；＂wh en attempting disk write．＂：CLOS E \＃1：END
HI 220 REM
FH 23g REM The following is the decimal
K0 24 R REM equivalent of the machine
6A 250 REM language．It must be typed
CA 2GG REM perfectly in order to
B6 27＠REM function．
H0 280 REM
F1 $290 \mathrm{DATA} 255,255,9,39,243,39$
GP 3פg DATA $165,12,141,57,30,165,13,14$ $1,58,36,169,56,133,12,169,36,13$ $3,13,32,63,39,169,244,141,231,2$ ，169，30，141，232
IF 310 DATA $2,173,243,36,240,16,169,29$ $5,141,89,36,169,6,141,90,36,160$ ，105，162，36，169，7，32，92，228，96， 32，64，21，32
FH 329 DATA $19,39,96,169,85,141,33,3,1$ $69,36,141,34,3,96,169,6,141,33$ ， $3,169,228,141,34,3,96,251,243,5$ 1，246，229
HA З3g DATA 39，163，246，51，246，60，246，7 $6,228,243,51,46,71,6,7,169,8,14$ $1,31,298,173,31,298,205,194,30$, 24の，1め日，141，1め4
C1 340 DATA $36,291,7,246,93,141,104,36$ $, 173,193,36,268,85,173,194,39,2$
 $73,15,219,41,8$
$6035 ด$ DATA $208,51,169,52,141,10 日, 3 \varnothing, 2$日8，44，201，5，208，19，169，50，141，1 פめ，Зめ，173，15，210，41，8，208，28，15 9，53，141，1めめ，उめ
PF $36 G$ DATA $298,21,201,6,298,32,169,51$ $, 141,10 日, 39,173,15,21 \varnothing, 41,8,208$ ，5，169，54，141，1＠6，36，169，3，141， $103,30,32,216$
MK 379 DATA $252,32,63,30,169,0,133,17$ ， $76,98,228,172,103,39,249,9,185$ ， 99，30，206，163，30，160，1，96，32，74 ， $30,169,155$
NJ 389 DATA $160,1,96,18$
AK З9＠DATA $224,2,225,2,0,3 \emptyset, 2 \emptyset 6,6,255$ ， 6
FC 4めळ DATA $172,243,3 \varnothing, 240,9,185,237,6$ $, 206,243,30,16 \varnothing, 1,96,32,74,30,1$ 69，220，141，89，36，169，30，141，99， 36，169，155，166
HL 410 DATA 1,96

Program 2：Atari Softkey Test Program

M G GOTO 10
01 ？＂\｛TAB\} OFTION\{UP\}":END
$082 ? "$ \｛TAB\}SELECT\{UP\}":END
PA ？＂\｛TAB\}START \{UP\}":END
OH 4 ？＂\｛TAB\}SHIFT-OPTION $\because U F, "$ ：END
M 5 ？＂\｛TAB\}SHIFT-SELECT\{UP\}": END
$106 ? "$（TAB？SHIFT－START \｛UF\}": END
E0 19？＂This is a test of＂

M 11 ？＂Atari Softkey！＂

Program 3：

Atari Softkey（ML）For Tape Drive Users

EA 1 Og FOR $I=\varnothing$ TO $204: R E A D$ $A: B=B+A: P O K$ E $1536+\mathrm{I}$ ，A：NEXT I
$6 C 110$ IF $B<>199900$ I $1<>205$ THEN ? "K echeck DATA statements.":? "The y do not correctly total": END
CL 120 A=USF (1536)
EG200 DATA $164,169,1,133,2,169,6,133$, $3,165,9,9,2,133,9,166,67,162,6$, $169,7,32,92,228,96,169,47,141,3$ उ, 3
KD 210 DATA $169,6,141,34,3,96,169,0,14$ $1,33,3,169,223,141,34,3,96,251$, $243,51,246,192,6,163,246,51,246$,69,246,76
CE 220 DATA $228,243,49,46,71, \emptyset, 7,169,8$, 141, 31, 208, 173, 31, 208, 205, 66,6 , 240, 106, 141, 66, 6, 291, 7, 240, 93, 141, 66, 6
MH 23G DATA $173,65,6,298,85,173,66,6,2$ Q1, 3, 2088, 19, 169, 49, 141, 62,6,173 , 15, 216, 41,8,268,51, 169,52,141, 62, 6, 2088
FF 240 DATA 44, 201,5, 208, 19, 169,5月, 141 $, 62,6,173,15,210,41,8,298,28,16$ 9,53, 141, 62,6, 208, 21, 201, 6, 208, 32, 169,51
JA 259 DATA $141,62,6,173,15,219,41,8,2$ @8, 5, 169,54, 141, 62,6,169, 3, 141, $65,6,32,216,252,32,25,6,169,0,1$ 33, 17
HH 26G DATA $76,98,228,172,65,6,249,9,1$ $85,61,6,206,65,6,166,1,96,32,36$,6,169,155,160,1,96
N 27@? "Now type in program listing
G8 29の ? " number 2 to demonstrate"
oc 290

DISK WIZARD II

THE MOST COMPLETE UTILITY PACKAGE FOR ATARI* COMPUTERS AT ANY PRICE 100 \% MACHINE LANGUAGE - SINGLE LOAD - MENU DRIVEN

THIS USER FRIENDLY PACKAGE INCLUDES THE FOLLOWING POWERFUL PROGRAMS FOR THE ATARI* 400/800/XL SERIES COMPUTERS (40K REQUIRED)

DISK BACK-UP - SINGLEIDOUBLE DENSITY • SUPPORTS 1 OR 2 DRIVES - ALLOWS BACKUP OF DISKS PROTECTED BY BAD SECTORING • FAST COPY OPTION - SECTOR STATUS SUMMARY • OPTIONAL PRINTOUT OF SECTOR STATUS - DISK MAPPING

DISK EDIT - SINGLE/DOUBLE DENSITY - DISPLAY/MODIFY/PRINT ANY SECTOR - SECTOR DISPLAYED IN HEX/ASCII/ATASCII - WORKS WITH ANY FORMAT - SCAN SECTO \cdot TRACEIREPAIR FILE LINKS • RECOVER AND AUTOMATICALLY VERIFY DELETED FILES • FORMAT DISKS WITH AUTOMATIC LOCK OUT OF BAD SECTORS - DECIMAL/HEX NUMBER CONVERSION

DISASSEMBLER - Single/double density - disassemble from DISK BY SECTOR NUMBERS - DISASSEMBLE COMPOUND BINARY FILES Y file name - OUTPut to screen or printer - selectable MNEMONIC DISASSEMBLY WITH OVER 400 STANDARD ATARI MEMORY LOCATION NAMES

DISK SPEED - verifies/allows adjustment of disk speed - bad SECTORING (810 ONLY)
includes comprehensive manual with many usage examples

ORDERING INFORMATION
For fast delivery, send certified check or money order
MASTERCARD \& VISA accepted. (N.Y. Residents add 7\% sales tax) Phone orders
and charges.

SHipping a handuing include
Ind
Manual Only \$10.95

SOFTWAREINC SOFTWARE INC. 100 QUARTZ WAY SYRACUSE, N. Y. 13219

ORDERS TOLL FREE 1.800.732.0320 1-800-732-0320
Info. and N.Y. Residents -315-488-0485

ATARI ${ }^{T M}$ USERS WE SPECIALIZE IN BACKUP HARDWARE AND SOFTWARE "We are the Backup Experts'

 HOURCOPY ANY ATARI** CARTRIDGE

CART CLONE ${ }^{\text {™ }}$

A MUST FOR ALL ATARI* USERS CART CLONE will backup and transfer any 8 or 16 K cartridge to disk or tape The contents of the cartridge will become a file which you can transfer, rename or delete. They will execute from DOS. No need to run a special menu or program to run these files.
(A) Will it copy any cartridge?

The answer is YES.
(B) What will I get?

The answer is a cartridge containing the hardware required and a disk with the cloner software in a powerful machine language program.
We are running an Introductory Sale for a limited time. You can get CART CLONE ${ }^{\text {** }}$ with software for

\$5995
 +2.50 Shipping

This price could increase in the future. Dealer inquiries are welcome.
CART CLONE ${ }^{\text {™ }}$ goes in the left cartridge slot enabling it to work in all ATARI Home Computers including the XL series.

COPY ANY ATARI ${ }^{\text {T }}$ DISK

The HAPPY 810

ENHANCEMENT KIT

 With WARP SPEED SoftwareThe HAPPY ENHANCEMENT KIT is guaranteed for five years to copy any ATARI' Disk Comes with Sector Copier and The Compactor and more software. The Compactor will turn your auto boot whole disks into files. The transfer of data between the computer and disk is greatly increased Disk drive wear is decreased. This is a plug-in kit. No need to solder or cut. Easy installation.
We have LARGE STOCK ready for 24 Hour shipping.

$\underset{\text { PRICE }}{\text { SALE }} \$ \boldsymbol{5}=0$

The TRANSFER PACK

FOR BACKING UP AND TRANS-
FERRING YOUR SOFTWARE

1) Disk file to tape
2) Boot tape to disk file
3) Tape to tape

VERY POWERFUL and low priced Programs are in machine language and user friendly. ALL 3 FOR ONLY

NEW PRODUCT The DOWNLOADER For The ATARI 835 Modem'*

At last, a program that will allow you to download Binary and Basic files with the new 835 Modem, no interface needed. You can save these files to disk, printer or cassette. But Best Of All you will be able to download games from bulletin boards with our software and the 835 Modem.

THE BOOK

WITH SOFTWARE
Software protection and code cracking techniques. MASTER CODE CRACKER REVEALS ALL.
In this book you will find out how the software is protected and ways to protect your software. Copy guarding will be covered in detail on disks, cartridges and tapes and hardware tricks. You will also receive a disk with many programs and examples. BOOK WITH SOFTWARE ONLY

$$
\$ 2495
$$

(516) 467-1866

PRODUCT INFO (516) 588-6019

GARDNER COMPUTERS INC.
P.O. BOX 388, HOLBROOK, N.Y. 11741 We are working on New Products and Software - CALL

In this month's column we will complete our look at line drawing in the 64's bitmapped graphics mode. We will deal with both hi-res and multicolor bitmapped graphics. Fortunately, the same general principles apply to both. Last month we saw how a routine to draw lines might look in BASIC. Actually executing the routine would show that BASIC is much too slow to be of much use for this task. At the end of last month's article we took the first step in putting together a set of machine language routines. This month we will complete the set.

First, here is a summary of the features of these drawing routines. The range of coordinates supported is 0 to 319 for X, and 0 to 199 for Y, when in hi-res mode. For multicolor mode, the range is 0 to 159 for X , and 0 to 199 again for Y . It is up to the user to insure that coordinates are within these ranges. Using coordinates which are too far out of range could cause the 64 to crash. In both hi-res and multicolor mode, the location of 0,0 is found at the lower left corner of the display.

Saving Memory For BASIC

The bitmap memory is placed at 57344 (\$E000), underneath the operating system ROM. This avoids taking memory away from BASIC. Since this makes the bitmap data difficult to PEEK directly from BASIC, a routine is provided to perform this function. The screen memory is placed at $51200(\$ C 800)$, just below where the DOS Wedge loads. Use of these graphics routines should not conflict with the DOS Wedge, but may conflict with other BASIC enhancement software.

Last month we began by writing four of the required routines. This month we are going to upgrade two of those to accept arguments, and add six more. As was mentioned last time, we will execute these routines via a jump table at the beginning of the machine code. This will provide us fixed locations to SYS to, even if modifications or additions are made later. The following is a list of the routines found in the jump table:

[^4]\[

$$
\begin{array}{ll}
\text { JT + } 21 & \text { Set drawing mode } \\
\text { JT + } 24 & \text { Set drawing color (multicolor) } \\
\text { JT }+27 \text { Read bitmap byte (a function) }
\end{array}
$$
\]

The jump vector location of these routines is shown as the variable JT plus an offset. To obtain the actual address, JT should be set to the base of the jump table, which is 49152 or \$C000. The following table gives the syntax for using each of the routines in the jump table.

SYS JV
SYS JV +3
SYS JV + 6,MODE
:REM SAVE SCREEN :REM RESTORE SCREEN :REM ENABLE GRAPHICS MODE: $0=\mathrm{HI}$-RES, $1=$ MULTICOLOR
SYS JV + 9,C0,C1
:REM CLEAR SCREEN
$\mathrm{C} 0=$ "OFF" COLOR, $\mathrm{C} 1=$ "ON" COLOR
USE IF HI-RES BITMAP MODE
SYS JV + 9,C0,C1,C2,C3 :REM CLEAR SCREEN $\mathrm{C} 0=$ BACKGROUND, $\mathrm{C} 1=$ FOREGROUND 1 $\mathrm{C} 2=$ FOREGROUND 2, C3 = FOREGROUND 3
USE IF MULTICOLOR MODE
SYS JV + 12,X,Y :REM MOVE
SYS JV $+15, X, Y$
SYS JV + 18, X, Y
:REM PLOT
SYS JV + 21,DM
:REM DRAW
:REM SET DRAWING MODE

DM: $0=$ FLIP, $1=$ DRAW, $2=$ ERASE

SYS JV + 24, C
:REM SELECT COLOR
WORKS ONLY FOR MULTICOLOR MODE
The last routine in the jump table (offset $=27$) is handled differently because it should be called by the USR function. To set it up as the USR function, execute the statement:
POKE 785,PEEK(JV + 28) : POKE 786,PEEK(JV + 29)
Once this is done, you may read bytes from the bitmap memory with the statement

BYTE $=$ USR (OFFSET $)$
where OFFSET is the offset from the base address of the byte you wish to fetch.

A Graphics Cursor

The philosophy behind this is that these graphics commands differ slightly for other graphics enhancements to BASIC. Typically, enhancements will add a line-drawing command which always requires both end points. In the routines above, an internal graphics cursor is maintained. Lines are drawn from this graphics cursor to a specified end point. Whenever a line is drawn, the new end point becomes the graphics cursor location. Thus, successive executions of the DRAW routine will create a series of connected lines.

Also, you have a choice of three drawing modes, flip, draw, and erase. The draw mode
causes points along the lines to be set to the on state, or to the selected color if in multicolor graphics. Erasing causes dots to be set to the off state or background color. The flip mode involves switching the pixels to their opposite state In the case of multicolor mode, pixels of the selected color are flipped to the background color, and vice versa. Pixels not of the selected color are flipped to the other nonselected color.

To provide a simple example of how to put these routines to use in a program, the following program draws an interesting circular pattern in hi-res mode. Once the pattern is drawn, the program will wait for you to press a key

10 JT=49152:SYS JT:REM SAVE SCREEN

$2 \varnothing$ SYS JT+6, $\varnothing: S Y S$ JT+9,1,2:REM INIT SCREE N
$3 \varnothing$ SYS JT+21, $\varnothing:$ REM FLIP MODE
$4 \varnothing$ FOR I=Ø TO 6.24 STEP . 035
$5 \emptyset \mathrm{X}=5 \varnothing$ * $\cos (\mathrm{I}): \mathrm{Y}=5 \varnothing$ *SIN(I)
60 SYS JT+12,16 $\varnothing+\mathrm{X}, 1 \varnothing \varnothing+\mathrm{Y}:$ REM MOVE
$7 \varnothing$ SYS JT+18,16ø-X,1øø-Y:REM DRAW
80 NEXT
9ø GET $\mathrm{Z} \$: I F \mathrm{Z} \$="$ " THEN $9 \varnothing$
$1 \varnothing \varnothing$ SYS JT+3:REM RESTORE TEXT SCREEN
To put the required machine code into memory, run the BASIC program shown below.

Next month we'll explore some of the more interesting aspects of the machine language source code listing.

BASIC Program

Refer to the "Automatic Proofreader" article before typing this program in.
1 READ LN, SA, EA: LN=LN+3 \emptyset :rem 146
$1 \varnothing$ FOR I=Ø TO EA-SA :rem 232
$2 \emptyset$ READ BY:POKE $S A+I, B Y: S U M=S U M+B Y$
:rem $12 \emptyset$
$3 \varnothing$ IF INT $((I+1) / 8) * 8<>(I+1)$ THEN $6 \varnothing$
$4 \varnothing$ READ CS:IF CS<>SUM THEN $8 \emptyset$:rem 242
$5 \emptyset$ SUM= $\emptyset: L N=L N+1 \varnothing$
$6 \emptyset$ NEXT
$7 \varnothing$ PRINT "SUCCESSFUL LOAD":END
$8 \emptyset$ PRINT "ERROR IN LINE";LN:END
$50 \emptyset$ DATA 5øø
510 DATA 49152
520 DATA 5øø87
:rem 254
:rem 165
:rem 105
:rem 104 :rem 68
: rem 181
:rem 181
530 DATA $76,47,192,76,72,192,76,9,740$
:rem 57
540 DATA $193,76,90,193,76,156,193,76,1053$
:rem 255
550 DATA 59, 194,76,192,194,76,1ø1,195,1ø8 7
:rem 53
560 DATA $76,115,195,76,137,195, \varnothing, \varnothing, 794$
:rem 99
$57 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 255,128,383$:rem 11
$58 \emptyset$ DATA $\varnothing, 7,248, \varnothing, \varnothing, \varnothing, \varnothing, 173,428$:rem 21
590 DATA $\varnothing, 221,141,43,192,173,24,2 \emptyset 8,1 \varnothing 02$
:rem 212
$6 \varnothing \emptyset$ DATA $141,44,192,173,17,2 ø 8,141,45,961$
:rem 230
$61 \varnothing$ DATA $192,173,22,2 ø 8,141,46,192,96,1 \varnothing 7$ \varnothing
: rem 25
$62 \emptyset$ DATA $173,43,192,141, \varnothing, 221,173,44,987$
:rem 182

630 DATA $192,141,24,2 ø 8,173,45,192,141,11$ 16 :rem 68
$64 \emptyset$ DATA $17,2 \emptyset 8,173,46,192,141,22,2 \varnothing 8,1 \varnothing \emptyset$
$7 \quad$:rem 19
$65 \emptyset$ DATA $96,72,173,14,220,41,254,141,1 \varnothing 11$
: rem 218
660 DATA $14,220,165,1,41,253,133,1,828$
:rem 69
$67 \emptyset$ DATA $1 \emptyset 4,96,72,165,1,9,2,133,582$
:rem 242
680 DATA $1,173,14,220,9,1,141,14,573$
:rem 225
690 DATA $220,104,96,164,254,240,13,160,12$ 51 :rem 65
$7 \varnothing \varnothing$ DATA $\varnothing, 145,251,2 \emptyset \varnothing, 2 \emptyset 8,251,23 \emptyset, 252,15$
37 :rem 53
710 DATA $198,254,208,243,164,253,24 \varnothing, 10,1$ $57 \emptyset$
:rem 123
720 DATA $136,240,5,145,251,136,2 ø 8,251,13$ 72 :rem 67
$73 \varnothing$ DATA $145,251,96,32,97,192,160, \varnothing, 973$
:rem 144
740 DATA $132,251,160,200,132,252,160,232$, 1519
:rem 153
750 DATA $132,253,160,3,132,254,32,131,109$ $7 \quad:$ rem 12
760 DATA $192,44,4 \varnothing, 192,16,2 \emptyset, 16 \emptyset, \varnothing, 664$:rem 75
770 DATA $132,251,160,216,132,252,160,232$, 1535 :rem 161
780 DATA $132,253,160,3,132,254,138,32,11 \varnothing$ 4 :rem 11
790 DATA $131,192,169,0,133,251,169,224,12$ 69 :rem 84
8øØ DATA $133,252,169,64,133,253,169,31,12$
Ø4 :rem 72
810 DATA $133,254,169,0,32,131,192,76,987$
:rem 192
$82 \emptyset$ DATA $114,192,32,253,174,32,158,173,11$ 28 : rem 75
$83 \emptyset$ DATA $32,170,177,17 \varnothing, 152,96,32,234,1 \emptyset 6$
3 :rem 24
840 DATA $192,141,34,192,142,35,192,32,96 \emptyset$
:rem 234
850 DATA $234,192,141,36,192,142,37,192,11$ 66
:rem 82
$86 \emptyset$ DATA $96,32,234,192,240,2,169,128,1093$
:rem 241
870 DATA $141,40,192,173, \varnothing, 221,9,3,779$
:rem 34
$88 \emptyset$ DATA $73,3,141,0,221,173,24,208,843$:rem 76
890 DATA $41,7,9,8,9,32,141,24,271$:rem 92
$9 \emptyset \emptyset$ DATA $2 \emptyset 8,173,17,208,9,32,141,17,8 \emptyset 5$
:rem 131
$91 \varnothing$ DATA $2 \emptyset 8,44,4 \varnothing, 192,16,12,173,22,7 \emptyset 7$
:rem 125
920 DATA $2 ø 8,9,16,141,22,2 ø 8,169,3,776$:rem 90
$93 \emptyset$ DATA $2 \emptyset 8,1 \varnothing, 173,22,2 \emptyset 8,41,239,141,1 \varnothing 4$
2 :rem 10
940 DATA $22,2 ø 8,169,7,141,41,192,73,853$
:rem 141
950 DATA $255,141,42,192,169,255,141,38,12$
33
:rem 82
960 DATA $192,96,32,246,192,44,40,192,1 \varnothing 34$
:rem 241
$97 \emptyset$ DATA $48,21,173,36,192,10,10,1 \varnothing, 5 \emptyset \emptyset$
:rem 65
980 DATA $10,141,36,192,173,34,192,41,819$
$99 \emptyset$ DATA $15,13,36,192,76,163,192,173,860$
: rem 199
$1 \varnothing \varnothing \varnothing$ DATA $36,192,10,10,10,10,141,36,445$: rem 96 1010 DATA $192,32,234,192,41,15,13,36,755$
:rem 171
$1 \varnothing 2 \emptyset$ DATA $192,141,36,192,32,234,192,17 \varnothing, 1$ 189
:rem 121
$1 \varnothing 3 \emptyset$ DATA $173,34,192,141,33,2 \varnothing 8,173,36,99$ Ø
:rem 24
$1 \emptyset 40$ DATA $192,76,163,192,32,246,192,162,1$ 255
:rem 129
$105 \emptyset$ DATA $3,189,34,192,157,30,192,202,999$
:rem 243
1060 DATA $16,247,96,56,169,199,237,32,105$ 2
:rem 43
$107 \varnothing$ DATA $192,72,74,74,74,133,252,160,1 \varnothing 3$
 :rem $2 \varnothing$ $1 \varnothing 8 \emptyset$ DATA $\emptyset, 132,251,74,1 \varnothing 2,251,74,1 \varnothing 2,986$
:rem 22ø
1090 DATA $251,1 \varnothing 1,252,133,252,173,30,192$, 1384
:rem 161
$110 \emptyset$ DATA $174,31,192,45,42,192,44,40,760$
:rem 172
$111 \varnothing$ DATA $192,16,6,1 \varnothing, 72,138,42,17 \varnothing, 646$
:rem 122
1120 DATA $104,24,101,251,133,251,138,101$, 11 ø3
:rem 133
1130 DATA $252,133,252,104,41,7,24,101,914$
:rem 207
1140 DATA $251,144,2,230,252,24,105,0,1 \varnothing \emptyset 8$
:rem 198
1150 DATA $133,251,165,252,105,224,133,252$, 1515
:rem 207
1160 DATA $173,30,192,45,41,192,170,96,939$
:rem 242
$117 \varnothing$ DATA $169, \varnothing, 168,44,39,192,16,7,635$
:rem 94
$118 \emptyset$ DATA $8 \emptyset, 2,177,251,77,38,192,44,861$
:rem 145
$119 \varnothing$ DATA $40,192,48,10,61,47,194,133,725$
:rem 183 $120 \emptyset$ DATA $97,189,47,194,2 ø 8,8,61,55,859$
:rem 161
1210 DATA $194,133,97,189,55,194,73,255,11$
$9 \emptyset$
:rem 94 $122 \emptyset$ DATA $49,251,5,97,145,251,96,128,1 \varnothing 22$
: rem 234 1230 DATA $64,32,16,8,4,2,1,192,319$
:rem 126
$124 \emptyset$ DATA $48,12,3,32,156,193,32,97,573$
:rem 85 $125 \emptyset$ DATA $192,32,171,193,32, \varnothing, 194,76,89 \varnothing$
:rem 186
1260 DATA $114,192,169,1,149,106,169, \varnothing, 90 \varnothing$:rem 228 1270 DATA $149,107,56,189,34,192,253,30,10$ $1 \varnothing$
:rem 73 1280 DATA $192,149,98,189,35,192,253,31,11$ 39 :rem 98 1290 DATA $192,149,99,16,2 \varnothing, 169,255,149,1 \varnothing$ 49
:rem 99
$13 \varnothing \emptyset$ DATA $1 \varnothing 6,149,107,56,169, \varnothing, 245,98,930$:rem 238 1310 DATA $149,98,169, \varnothing, 245,99,149,99,1 \varnothing \emptyset 8$: rem 4 1320 DATA $96,21,98,208,4,149,106,149,831$:rem 192 1330 DATA $107,96,165,99,74,133,103,165,94$ 2
: rem 39 1340 DATA $98,1 \varnothing 6,133,102,24,169,0,229,861$

350 DATA $98,133,104,169,0,229,99$ 9,133,965
:rem 250 1360 DATA $1 \varnothing 5,96,24,165,102,101,1 \varnothing 0,133,8$ 26
:rem 56 $137 \emptyset$ DATA $1 \emptyset 2,17 \emptyset, 165,103,101,101,133,103$, 978
:rem 151
1380 DATA $197,99,144,19,208,4,228,98,997$
:rem 224 1390 DATA $144,13,138,56,229,98,133,1 \not 02,91$ 3 :rem 32 1400 DATA $165,103,229,99,133,103,56,96,98$ 4 :rem 40 1410 DATA $32,246,192,32,97,192,162,0,953$
:rem 184 1420 DATA $32,74,194,162,2,32,74,194,764$
:rem 137 1430 DATA $165,98,197,106,165,99,229,101,1$ 154
:rem 137 1440 DATA $144,62,32,130,194,36,107,16,721$
:rem 221
1450 DATA $10,32,159,193,56,169,0,229,848$
:rem 194 1460 DATA $108,133,108,32,171,193,32,0,777$
:rem 227 $147 \varnothing$ DATA $194,230,104,208,4,230,105,240,1$ 315
:rem 103
$148 \emptyset$ DATA $1 \varnothing 2,238,30,192,2 \emptyset 8,3,238,31,1 \varnothing 4$ 2
:rem 11 1490 DATA $192,32,154,194,144,9,24,173,922$
:rem 241 1500 DATA $32,192,101,108,141,32,192,32,83$ \varnothing
:rem 3
$151 \varnothing$ DATA $171,193,32,0,194,76,241,194,11 \varnothing$
1 :rem 15 1520 DATA $162,1,181,98,180,10 \varnothing, 149,1 \varnothing 0,97$ 1 :rem 17 1530 DATA $148,98,2 \emptyset 2,16,245,32,13 \varnothing, 194,1 \varnothing$ 65 :rem 74 1540 DATA $36,1 \varnothing 7,16,10,32,159,193,56,6 \emptyset 9$
:rem 184
$155 \emptyset$ DATA $169, \varnothing, 229,1 \varnothing 8,133,1 \varnothing 8,32,171,95$
$\emptyset \quad: r e m 23$
1560 DATA $193,32, \varnothing, 194,230,104,240,31,1 \varnothing 2$
$4 \quad: r e m 1$ $157 \emptyset$ DATA $24,173,32,192,1 \varnothing 1,1 \varnothing 8,141,32,8 \emptyset$ $3 \quad: r e m 1 \varnothing$ 1580 DATA $192,32,154,194,144,8,238,30,992$:rem 246 $159 \varnothing$ DATA $192,2 ø 8,3,238,31,192,32,171,106$ 7 :rem 27 1600 DATA $193,32, \varnothing, 194,76,60,195,32,782$
:rem 137
1610 DATA $159,193,76,114,192,32,234,192,1$ 192
:rem 132
$162 \emptyset$ DATA $41,3,73,3,106,106,106,141,579$
:rem 12ø 1630 DATA $39,192,96,32,234,192,41,3,829$
:rem 144
1640 DATA $17 \varnothing, 189,133,195,44,40,192,16,97$
9 :rem 45
1650 DATA $3,141,38,192,96,0,85,170,725$
:rem 88
1660 DATA $255,32,170,177,17 \varnothing, 152,24,105,1$ Ø85 :rem 121 $167 \emptyset$ DATA $\emptyset, 133,251,138,165,224,133,252,1$ 236
:rem 109
1680 DATA $32,97,192,160,0,177,251,32,941$
:rem 187
$169 \emptyset$ DATA $114,192,168,169, \varnothing, 1 \varnothing 8,5, \varnothing, 756$
: rem 139 ©

Atari Line Check Utility

Ed Sisul
"Atari Line Check" lets you use a joystick to perform a line-by-line search for program bugs.

Quite often, the most effective way to debug a program is to check each line, one at a time, for mistakes. For those of us who are not fortunate enough to own a printer, this can be a very tedious task. The lines can be examined using LIST and CTRL-1 to scroll through the program, but it is difficult to find minor mistakes while staring at a whole screen filled with GRAPHICS 0 text. The lines can be displayed one at a time using the sequence LIST line number, SHIFT CLEAR, LIST line number, SHIFT CLEAR, etc.; but this approach is too slow and cumbersome.

Scrolling With A Joystick

This program will step through a listing and display each line, one at a time, in large GRAPHICS 2 print. The best part is that the scrolling is controlled with a joystick. Pulling back on the stick advances through the listing, and pushing forward on the stick backtracks through the listing. With the stick centered, the displayed line stays on the screen for scrutiny. If a mistake is spotted, press the trigger button, and the line containing the mistake is redisplayed in the normal screen editing mode so it can be corrected. Once the error is dispatched, typing CONT will resume the line-by-line check, or typing RUN will terminate the line check and execute the main program. After typing in "Atari Line Check," LIST it to disk or cassette. Then, using the ENTER command, append it to the program to be checked. Plug a joystick into Port 1 and type GOTO 32000 to start checking lines.

Array Storage

The heart of the program is lines 32010-32030. Lines 32010-32020 retrieve the program line numbers stored in memory and store them in the array LINUM. A complete explanation of the PEEKs used to do this can be found in Larry Isaacs' article "Inside Atari BASIC" in COMPUTE!'s First Book of Atari. Line 32025 opens the screen editor for input and output, lists a line on the screen, then retrieves the entire line, including its line number, and stores it in the variable LINE\$. The POKEs in line 32025 blank the screen during these operations. Line 32030 then reprints LINE $\$$ on the screen in GRAPHICS 2 text in black letters on a white background.

Lines 32035-32055 contain the joystick controller routines to increment or decrement the subscript of the line number array or to redisplay a line for editing. Line 32000 initializes the variables, dimensions LINE $\$$ to the maximum number of characters in a logical line, and dimensions the LINUM array to accommodate a 200 -line program. The POKE in line 32000 standardizes the left-hand margin on all systems. Line 32005 initially sets all elements of the LINUM array to zero. Should you encounter a program with more than 200 lines, simply change the dimensioned size of LINUM in line 32000 and the maximum increment of the loop in line 32005 accordingly.

Storage Characters

Because each line is displayed in graphics mode 2, which uses the internal character set, some characters won't be displayed as originally typed. For instance, the special graphics characters will be displayed as numeric or punctuation symbols,

MASSIVE PRICE REDUCTION SALE！！

Commodore 64 Vic－20 TRS－80 Color

Business \＆Home Software Reduced

TO ORDER CALL TOLL FREE 800－221－8927 OR 800－441－1144 2357 Coney Island Ave．Open Daily 9－6：30 Brooklyn．N．Y． 11223

Sunday 10－4 （212）627－1000

Friday 9－2

Additional Disk Drives Micromodem 2E Hayes 300 Modem Hayes 1200 Modem Buffered Grappler＋ Amdek Monitor Amdek Color 1 Taxan Color Mntr Diablo 630 Juki 6100 Banana Prtt TTX 1014 RMC－PB401 NEC 3550 COMMODORE VIC 20 Commodore 64 Disk Drive 1525 Printer MPS 801 1526 Printer VIC Modem 1650 Modem 16K Expander CPM Card 1701 Monitor Kaypro－Eagle－	$\begin{array}{r} 189.95 \\ 189.95 \\ 179.95 \\ 469.95 \\ 139.95 \\ 114.95 \\ 234.95 \\ 249.95 \\ 1509.95 \\ 359.95 \\ 129.95 \\ 409.95 \\ 624.95 \\ 1479.95 \\ \hline \\ 79.95 \\ 189.95 \\ 189.95 \\ 174.95 \\ 209.95 \\ 229.95 \\ 59.95 \\ 89.95 \\ 74.95 \\ 49.95 \\ 194.95 \\ - \text { Frank } \end{array}$	Okidata 92 Okidata 93 Okidata 82 Okidata 83 Epson RX80 Epson MX100 Epson FX100 Brother HR15 Brother HR25 Prowriter 8510 Starwriter F10 Gemini 10X Gemini 15X SilverReed ATARI Atari 1400 XL Atari 1200 Rebate Atari 600 XL Atari 800XL 1030 Modem 1010 Program Recorder 1020 Printer 1025 Printer 1027 Printer 1050 Drive Indus Drive klin CALL	369.95 619.95 299.95 509.95 259.95 534.95 389.95 619.95 309.95 879.95 239.95 339.95 359.95 CALL 189.95 139.95 239.95 CALL 199.95 284.95 254.95 299.95 399.95

For Info Dial（212）627－1000 No dealers on advertised spe－1 cials，please！To order simply dial toll free 800－221－8927 or 800－441－1144 with your MasterCard or VISA and your order will arrive via UPS or send certified check or money order only to：HARMONY VIDEO AND ELECTRONICS， 2357 Coney is－ land Ave．，Brooklyn，N．Y．11223，and add approximate ship－ ping，postage and insurance charges．Customer Service（2ll prices and availability subject to change without notice．Dealer inquiries invited！！MC，VISA．
and lowercase letters will be displayed as green uppercase letters．Also，the CLEAR charac－ ter，CHR\＄（125），will cause the screen to clear when it is printed． When this happens，just press the trigger button to see the characters in their original form．

Atari Line Check

Refer to the＂Automatic Proofreader＂ article before typing this program in． D З 2 ø Z＝1：TRAF उ2ツめ5：D IMLINE\＄（12g），LI NUM（2めめ）：TRAP 4め øめ曰
IC 32905 FOR $N=0$ TO 290： $\operatorname{INUM}(N)=0: N E X T \quad N$
ML 32016 AD＝PEEK（13S）＋256 ＊FEEK（137）
3832915 LINUM $(Z Z)=$ PEEK（A D）＋256＊PEEK（AD＋ 1 ）：IF LINUM $(Z Z)=3$ 2めめめ THEN END
OE З2め2め IF LINUM $(Z Z)=0 \quad T$ HEN AD＝AD＋PEEK（A $D+2):$ GOTO 32015
HL उ2＠25 OFEN \＃1， $13,6, " E:$ ＂：FOKE 7め9，8：FOK E 71め，8：POKE 712 ，8：LIST LINUM《ZZ ）：POSITION ळ．1：I NPUT \＃1；LINE $=$ CL OSE \＃1
BF $3203 \emptyset$ GRAPHICS $18:$ POKE 7 70，2：POKE 712，8 ：POSITION＠，2：？ \＃6：LINE ${ }^{\text {O }}$
If 32635 IF STRIG（ \quad ）$=$ W TH EN $S T=1:$ GRAPHICS g：LIST LINUM（ZZ ）：STOP
EP 32＠4＠IF ST＝1 THEN ST＝ g：GOTO 32025
MH 32045 IF STICK（ \quad ）$=13 \quad T$ HEN ZZ＝ZZ＋ $1:$ GOTO ふ2め2め
MA 32 W5め IF STICK（ø）$=14$ A ND $Z Z>$ THEN $Z Z=$ ZZ－1：GOTO 32025
DF 32055 GOTO 32035
COMPUTE！
The Resource
COMPUTE！
TOLL FREE Subscription Order Line 800－334－0868

In NC 919－275－9809

Commodore Word Wizard

Joe W. Rocke

Abstract

"Word Wizard" improves your writing skills by checking the readability of any written material. For the VIC-20, Commodore 64, and PET/CBM computers.

The term foggy writing was originated by Robert Gunning. Seeking ways to improve the readability of written text, he developed a fog index formula. The formula is based on counting the number of words and sentences in a sample paragraph of text. Long words and long sentences produce a high index number. This type of writing is called foggy because it can be harder to read and understand. Writing that is easy to read (and understand) should have a low fog index.

The fog index formula uses a 100 - to 200 -word sample of text. Words of three syllables or more are considered "long." Dividing the word count by the number of sentences provides the average sentence length. Adding the number of long words and performing a simple computation produce the fog index. Although the index number is rather arbitrary, it does provide a standard for measuring text readability.

Researchers have since learned that people prefer to read below their educational level. Thus the fog formula has been expanded to produce a reading level index number. The result is a number that represents the approximate grade level at which written material can be read and understood.

People are comfortable reading text that has a reader index ranging from 6 to 8 . Most of the writing in popular magazines and newspapers
has an index in this range. People are capable of reading at a higher level, but the concentration required can make such writing tedious. Even college professors find it uncomfortable to read something with an index of 12 or higher.

Computerized Word Check

The computer is an ideal tool for checking text for readability. Large companies have developed programs of this type to check their product manuals. When used with word processing systems, this checking process takes little additional time.

Using "Word Wizard" is as simple as typing text onto a video screen instead of on paper, as with a typewriter. A 100-word sample is all that is required. Almost all text-reading analysis is based on this sample size.

The program begins with a prompt. There is no cursor, but whatever is typed appears on the

Maxell Floppy Disks The Mini-Disks with maximum quality.

Dealer inquiries invited. C.O.D's accepted.

screen. The left arrow can be used to correct a typo without affecting the program. Use the RETURN key only when you are finished entering the sample. The screen then clears, and the text that has been typed to memory will begin to march across the screen. The text display will then be formatted to improve readability.

Type in the text sample without worrying how it looks on the video display. The text will wrap around the screen, causing some words to be broken midway and to continue on the next line. The display is primarily for reference so you can see what was originally typed.

The Display Phase

Next, during its display phase, the program counts characters, words, and sentences. It also counts the number of words containing more than nine characters, which are presumed to consist of three or more syllables. Word groups ending with a semicolon or colon are counted as one sentence. This prevents a compound sentence from being counted as a single sentence. Naturally, any word group ending with a period, question mark, or exclamation mark is counted as a sentence.

The word-checking data is stored in simple variables and is then used to compute the reading index at the end of the display cycle. A continuation prompt concludes the display cycle to permit you to read the last display page.

Finally the word, sentence, and long word counts are displayed. The reading index, rounded to two decimal places, completes the text analysis. The program then asks you to repeat the analysis or exit the program.

An index of 6-9 indicates a good readability level. A higher index indicates that the text might benefit from some editing. You may want to use two shorter sentences which carry the same thought as a long one, or try to find shorter words. For example, it is easier to read city than the word metropolis.

wabash

When it comes to Flexible Disks, nobody does it better than Wabash.

MasterCard, Visa Accepted. Call Free: (800) 235-4137

PACIFIC EXCHANGES
 100 Foothill Blud. San Luis Obispo, CA 93401 . (In Cal. call (805) 543-1037)

Variables

A\$ The input string is confined to one character.
BE Beginning address of the memory storage area. ASCII value of AS, and the character counter. Character string used for the display cycle. Reading index. Lis the display line length counter. Long word count storage. Memory storage ending address. PEEK value of MS contents. Sentence count storage. Display cycle loop counter. Word count storage.
WC Input cycle word count.
Z \& Z\$ Prompts.

Housekeeping Chores

Lines 10-30: Housekeeping chores are performed at the beginning of the program. The formula used to round the reading index is defined in line 10. Major variables are set to zero to prevent errors if the program is rerun. Variable MS in line 20 denotes the beginning memory storage address. A second variable is set to the same value for use in the display loop.

The value currently in the program works with an unexpanded VIC-20. Use MS $=2300$ in line 20 if you have a PET/CBM or a 3 K expanded VIC. (Ignore the color commands if you have a PET.) For a VIC with 8 K or more of expansion memory, use MS $=5900$. Try MS $=3300$ for the Commodore 64. For other systems you will have to use an address above the BASIC program area.

Lines 35-150: The input cycle begins at line 60 with the GET A\$ keyboard scan for a key input. When a key is pressed, the input is checked for a backspace (left cursor). If it is a backspace, the invisible cursor moves one space to the left, and the memory storage is decreased by one. This is to prevent counting the backspace as part of the text. The program then loops back for a new key input.

If the key pressed is a text character, the key is displayed and converted to its ASCII equivalent. The ASCII value is then POKEd in memory address MS for storage. The input is then tested for a carriage return (CR); if not a CR, storage address MS is incremented by one, and the program loops back for another key input. Note that a CR breaks the input loop, jumping program flow to the continuation GOSUB.

The Word Count

Line 110 performs a word count during the input cycle. The count value of 125 in line 120 limits input to a maximum of 125 words. These two lines are optional, but do insure keeping the input within sample limits. A smaller number of words can be used for a sample, of course.

Lines 160-300: The display and checking cycle begins upon user response to the continuation prompt. Variables used to accumulate wordchecking data are set to zero to prevent errors if the program is repeated. A FOR-NEXT loop is used for the display cycle, since storage beginning address BE and ending address MS were established during the input cycle.

The stored ASCII data is PEEKed from each memory address, converted to a string, and temporarily stored in string variable $\mathrm{C} \$$ for display. $\mathrm{C} \$$ now represents the keyboard character entered during the input cycle. The individual characters are counted and the count is stored in C. L is used to count characters for line display formatting.

Word-checking functions are performed by IF statements. These lines check for the space character that denotes a word end, or punctuation indicating a sentence end. A space increments the word count, W. A sentence end increments the sentence count stored in S and decreases the character count by one. The decrease prevents the punctuation from being counted as a word character. If the character count in C is equal to or greater than 9 , and a space indicates a word, then long word counter LW is incremented. The character counter is returned to zero value whenever a space or sentence end is encountered.

Screen Formatting

Line 220 formats the text to reduce word wraparound.

Lines 320-400: The text analysis is performed in this portion of the program. The reading index is computed in line 320. Text data accumulated during the word-check cycle are displayed, followed by the reading index (ID). The rounding function is performed by the FNA(ID) formula which was established at the beginning of the program.

Lines 410-480: The remaining lines contain the user prompts. Conventional INPUT statements are used to keep the program short. END is used between the REPEAT prompt and the continuation GOSUB to prevent an error message when exiting the program. Line 470 prints the word input count and returns control to the continuation prompt of line 150.

Word Wizard

Refer to the "Automatic Proofreader" article before typing this program in.

```
5 REM... * WORD CHECK *
1\varnothing DEF FNA (B)=INT(B* 1\varnothing\varnothing+.5)/1ø\emptyset :rem 92
2\emptyset MS=53ø\varnothing: BE=MS
3\emptyset C=\varnothing:L=\varnothing:LW=\varnothing:S=\varnothing:W=\varnothing:WC=\varnothing
35 REM...INPUT CYCLE
5\emptyset PRINT"{CLR}\7`BEGIN INPUT
:rem 145
:rem 165
:rem 137
:rem 214
6\emptyset GETAS:IFAS=""THEN 6\emptyset
PRINT
:rem 169
:rem 239
```

$7 \emptyset$ IFA $\$=$ CHR $\$(157)$ THEN PRINTA $;: M S=M S-1: G O$
TO6Ø :rem 2 Ø9
$8 \emptyset$ PRINT AS; :rem 149
$9 \emptyset \mathrm{C}=\mathrm{ASC}(\mathrm{A}$) :rem 118
1øø POKE MS,C
:rem $2 ø 7$
$11 \varnothing$ IFAS=" "THEN WC=WC+1 :rem 3
$12 \emptyset$ IFWC $=>125$ THEN $47 \emptyset$:rem 153
$13 \varnothing$ IFAS=CHRS (13)THEN $15 \emptyset$:rem 64
140 MS=MS+1: GOTO 60 :rem 71
150 GOSUB $44 \varnothing$:rem 174
155 REM...DISPLAY CYCLE :rem 143
$16 \emptyset \mathrm{C}=\varnothing$:L=Ø:LW=ø:S=Ø:W=1 :rem 125
$17 \emptyset$ PRINT"\{CLR\}" :rem 252
180 FOR T=BE TO MS :rem 219
190 P=PEEK (T) :rem 241
$2 \emptyset 0 \mathrm{C} \$=\mathrm{CHR}(\mathrm{P}) \quad$:rem 216
$210 \mathrm{C}=\mathrm{C}+1: \mathrm{L}=\mathrm{L}+1$:rem 29
22 IFC $\$=$ " "AND L=>15THEN GOSUB $46 \emptyset$
:rem 84
230 PRINTC\$; :rem 196
24 IFC\$=" "THEN W=W+1:C=C-1 :rem 222
250 IFC $=$ =". "ORC $\$=$ "! "ORC $\$=$ "?"ORC $=$ =": "ORC $\$=$
";"THEN $\mathrm{S}=\mathrm{S}+\mathrm{I}: \mathrm{C}=\mathrm{C}-1: \mathrm{C} \$=" \mathrm{"}$:rem 32
260 IFC $=$ =" "ANDC $=>9$ THEN LW=LW+1 :rem 231
$27 \varnothing$ IFC $\$=$ " "THEN C= \quad :rem 239
$28 \varnothing$ IFC $\$=\operatorname{CHR}(13)$ THEN $31 \varnothing$:rem 7 9
290 NEXT :rem 218
$3 \emptyset \emptyset$ PRINT :rem 32
$31 \varnothing$ GOSUB $44 \varnothing \quad$:rem 172
315 REM...* ANALYSIS * :rem 191
$32 \emptyset$ ID $=.4^{*}\left(\mathrm{~W} / \mathrm{S}+\mathrm{LW} \mathrm{W}^{2} 1 \emptyset \emptyset / \mathrm{W}\right) \quad$:rem 36
$33 \emptyset$ PRINT"\{CLR\}" :rem $25 \emptyset$
$34 \varnothing$ PRINTSPC(4)"** ANALYSIS **":PRINT
:rem 166
350 PRINT"WORDS $\{2$ SPACES $\}=" ; W$: rem 199
$36 \emptyset$ PRINT"SENTENCES\{2 SPACES\}="; S: rem 221
$37 \emptyset$ PRINT"AVG.WD/SENT ="; INT(W/S) : rem 8
$38 \emptyset$ PRINT"LONG WORDS $\{2$ SPACES $\}=" ; L W$
:rem 70

410 PRINT:INPUT"REPEAT (Y/N)"; Z\$:rem 209
415 IFZ $\langle\ll$ "N"ANDZ $\langle<$ "Y"THEN41ø :rem 223
420 IFZ\$="Y"GOTO $2 \varnothing$
: rem 24
430 PRINT"\{BLU\}\{CLR\}": END :rem 43
440 INPUT"PRESS <RETURN>"; Z :rem 232
450 RETURN :rem 121
$46 \emptyset$ PRINTC\$;CHR\$ (13):L=Ø:RETURN :rem $14 \emptyset$
$47 \varnothing$ PRINT:PRINT"WORDS INPUT="; WC :rem løø
480 GOTO150 :rem 107 FLEXIble discs
WE WILL NOT BE UNDERSOLDI Call Free (800)235-4137
for prices and information. Dealer inquiries invited and C.O.D.'s accepted

PACIFIC

EXCHANGES
100 Foothill Blud San Luis Obispo. CA
93401 . In Cal. call (800) $592-5935$ or (805) 543-1037

The Automatic Proofreader For VIC, 64, And Atari

Charles Brannon, Program Editor

Abstract

At last there's a way for your computer to help you check your typing. "The Automatic Proofreader" will make entering programs faster, easier, and more accurate.

The strong point of computers is that they excel at tedious, exacting tasks. So why not get your computer to check your typing for you?

With "The Automatic Proofreader" nestled in your VIC-20, Commodore 64, or Atari computer, every line you type in will be verified. It displays a special code, called a checksum, at the top of the screen. The checksum, either a number (VIC/64) or a pair of letters. (Atari), corresponds to the line you've just typed. It represents every character in the line summed together. A matching code in the program listing lets you compare it to the checksum which the Proofreader displays. A glance is all it takes to confirm that you've typed the line correctly.

Entering The Automatic Proofreader

Commodore (VIC/64) owners should type in Program 1. Program 2 is for Atari users. Since the Proofreader is a machine language program, be especially diligent. Watch out for typing extra commas, or a letter O for a zero, and check every number carefully. If you make a mistake when typing in the DATA statements, you'll get the message "Error in DATA statements" when you RUN the program. Check your typing and try again.

When you've typed in The Automatic Proofreader, SAVE it to tape or disk at least twice before running it for the first time. If you mistype the Proofreader, it may cause a system crash when you first run it. By SAVEing a copy beforehand, you can reLOAD it and hunt for your error. Also, you'll want a backup copy of the Proofreader because you'll use it again and againevery time you enter a program from COMPUTE!.

When you RUN the Proofreader, the program will be POKEd safely into memory, then it will activate itself. If you ever need to reactivate it (RUN/STOP-RESTORE or SYSTEM RESET will disable it), just enter the command SYS 886 (VIC/64) or PRINT USR(1536) for the Atari.

Using The Proofreader

Now, let's see how it works. LIST the Proofreader program, move the cursor up to one of the lines, and press RETURN. If you've entered the Proofreader correctly, a checksum will appear in the top-left corner of your screen.

Try making a change in the line and hit RETURN. Notice that the checksum has changed. All VIC and 64 listings in COMPUTE! now have a number appended to the end of each line, for example, :rem 123. Don't
enter this statement. It is just for your information. The rem is used to make the number harmless if someone does type it in. It will, however, use up memory if you enter it, and it will cause the checksum displayed at the top of the screen to be different, even if you entered the rest of the line correctly.

The Atari checksum is found immediately to the left of each line number. This makes it impossible to type in the checksum accidentally, since a program line must start with a number.

Just type in each line (without the printed checksum), and check the checksum displayed at the top of the screen against the checksum in the listing. If they match, go on to the next line. If they don't, there's a mistake. You can correct the line immediately, instead of waiting to find the error when you RUN the program.

The Proofreader is not picky with spaces. It will not notice extra spaces or missing ones. This is for your convenience, since spacing is generally not important. Occasionally proper spacing is important, but the article describing the program will warn you to be careful in these cases.

Nobody's Perfect

Although the Proofreader is an important aid, there are a few things to watch out for. If you enter a line by using abbreviations for commands, the checksum will not match up. This is because the Proofreader is very literal: It looks at the individual letters in a line, not at tokens such as PRINT. There is a way to make the Proofreader check such a line. After entering the line, LIST it. This makes the computer spell out the abbreviations. Then move the cursor up to the line and press RETURN. It should now match the checksum. You can check whole groups of lines this way. Atari users should beware of using ? as an abbreviation for PRINT一 they're not the same thing in the Proofreader's eyes.

The checksum is a sum of the ASCII values of the characters in a line. VIC and 64 owners may wonder why the numbers are so small, never exceeding 255. This is because the addition is done only in eight bits. A result over 255 will roll over past zero, like an odometer past 99999 . On the Atari, the number is turned into two letters, both for increased convenience and to make the Proofreader shorter. For the curious, the letters correspond to the values of the left and right nybbles added to 33 (to offset them into the alphabet). This number is then stored directly into screen memory.

Due to the nature of a checksum, the Proofreader will not catch all errors. Since $1+3+5=3+1+5$, the Proofreader cannot catch errors of transposition. In fact, you could type in the line in any order, and the Proofreader wouldn't notice. Anytime the Proofreader
seems to act strange，keep this in mind．Since the ASCII values of the number $18(49+56)$ and $63(54+51)$ both equal 105 ，these numbers are equal according to the Proofreader．There really is no simple way to catch these kinds of errors．Fortunately，the Proofreader will catch the majority of the typing mistakes most people make．

If you want the Proofreader out of your way，just press SYSTEM RESET or RUN／STOP－RESTORE．If you need it again，enter SYS 828 （VIC／64）or PRINT USR（1536）（Atari）．You must disable the Proofreader before doing any tape operations on the VIC or 64.

Hidden Perils

The Proofreader＇s home in the VIC and 64 is not a very safe haven．Since the cassette buffer is wiped out during tape operations，you need to disable the Proofreader with RUN／STOP－RESTORE before you SAVE your program．This applies only to tape use．Disk users or Atari owners have nothing to worry about．

Not so for VIC and 64 owners with tape drives． What if you type in a program in several sittings？The next day，you come to your computer，LOAD and RUN the Proofreader，then try to LOAD the partially completed program so you can add to it．But since the Proofreader is trying to hide in the cassette buffer，it is wiped out！

What you need is a way to LOAD the Proofreader after you＇ve LOADed the partial program．The problem is，a tape load to the buffer destroys what it＇s supposed to load．

After you＇ve typed in and RUN the Proofreader， enter the following lines in direct mode（without line numbers）exactly as shown：

A $=$＝＂PROOFREADER．T＂：$B \$="\{1 \varnothing$ SPACES $\} ": ~ F O R$ $\mathrm{X}=1$ TO 4： $\mathrm{A} \$=\mathrm{A} \$+\mathrm{B} \$: \mathrm{NEXTX}$

FOR $X=886$ TO 1ø18：A\＄＝A\＄＋CHRS（PEEK $(X)):$ NEXTX
OPEN 1，1，1，AS：CLOSE1
After you enter the last line，you will be asked to press record and play on your cassette recorder．Put this program at the beginning of a new tape．This gives you a new way to load the Proofreader．Anytime you want to bring the Proofreader into memory without disturbing anything else，put the cassette in the tape drive，rewind，and enter：

OPEN1：CLOSE1

You can now start the Proofreader by typing SYS 886．To test this，PRINT PEEK（886）should return the number 173．If it does not，repeat the steps above， making sure that A\＄（＂PROOFREADER．T＂）contains 13 characters and that B\＄contains 10 spaces．

You can now reload the Proofreader into memory whenever LOAD or SAVE destroys it，restoring your personal typing helper．

Incidentally，you can protect the cassette buffer on the Commodore 64 with POKE 178，165．This POKE should work on the VIC，but it has caused numerous problems，probably due to a bug in the VIC operating system．With this POKE，the 64 will not wipe out the cassette buffer during tape LOADs and SAVEs．

Program 1：vic／64 Proofreader

1øø PRINT＂\｛CLR\}PLEASE WAIT...":FORI=886TO 1ø18：READA：CK＝CK＋A：POKEI，A：NEXT
$11 \varnothing$ IF CK＜＞17539 THEN PRINT＂\｛DOWN\}YOU MAD E AN ERROR＂：PRINT＂IN DATA STATEMENTS． ＂：END
120 SYS886：PRINT＂\｛CLR\}\{2 DOWN\}PROOFREADER ACTIVATED．＂：NEW
886 DATA $173, \varnothing 36, \varnothing \varnothing 3,2 \emptyset 1,15 \emptyset, 2 \varnothing 8$
892 DATA Øø1，Ø96，141，151，øø3，173
898 DATA Ø $07, \varnothing \emptyset 3,141,152, \varnothing \varnothing 3,169$
$9 \emptyset 4$ DATA 15ø，141，ø36，øø3，169，øø3
910 DATA 141，Ø37，Øø3，169，øøø，133
916 DATA 254，Ø96，ø32，ø87，241，133
922 DATA 251，134，252，132，253，ØØ8
928 DATA 2ø1，Ø13，24ø，ø17，2ø1，ø32
934 DATA 24ø，øø5，ø24，1ø1，254，133
940 DATA $254,165,251,166,252,164$
946 DATA 253，ø4ø，ø96，169，ø13，ø32
952 DATA 210，255，165，214，141，251
958 DATA Øø3，2ø6，251，øø3，169，øøø
964 DATA $133,216,169, \varnothing 19,032,21 \varnothing$
97ø DATA 255，169，ø18，ø32，21ø，255
976 DATA 169，ø58，ø32，21ø，255，166
982 DATA 254，169，øøø，133，254，172
988 DATA 151，øø3，192，ø87，2ø8，øø6
994 DATA Ø32，2ø5，189，ø76，235，øø3
1øøø DATA Ø32，2ø5，221，169，Ø32，ø32
$1 \emptyset \emptyset 6$ DATA $21 \varnothing, 255, \varnothing 32,21 \emptyset, 255,173$
1012 DATA 251，øø3，133，214，076，173
$1 \varnothing 18$ DATA Øø3

Program 2：Atari Proofreader

RAPHICS	
1 ¢	FOR I＝1536 TO 17め．：READ A：POKE ，$A: C K=C K+A: N E X T$ I
12め	IF CKく＞19072 THEN ？＂Error in DA
	TA statements．Check typing＂：END
$136 \mathrm{~A}=$ USR（1536）	
140	？：？＂Automatic Proofreader now activated．＂
150 END	
1536	DATA 1＠4，16め，Ø，185，26， 3
1542	DATA $201,69,249,7,20 \varnothing, 2 \emptyset \varnothing$
1548	DATA 192，34，208，243，96，200
1554	DATA $169,74,153,26,3,20 め$
1560	DATA $169,6,153,26,3,162$
1566	DATA Ø，189， $0,228,157,74$
1572	DATA 6，232，224，16，208，245
1578	DATA $169,93,141,78,6,169$
1584	DATA $6,141,79,6,24,173$
1590	DATA $4,228,165,1,141,95$
1596	DATA $6,173,5,228,105, \emptyset$
1692	DATA $141,96,6,169,6,133$
1698	DATA 203，96，247，238，125，241
1614	DATA $93,6,244,241,115,241$
1620	DATA 124，241，76，295，233，
1626	DATA ø，$¢, \emptyset, \emptyset, 32,62$
1632	DATA 246， $8,201,155,240,13$
1638	DATA $201,32,24 \emptyset, 7,72,24$
1644	DATA 101，203，133，203，104，40
1659	DATA 96，72，152，72，138，72
1656	DATA 160， $0,169,128,145,88$
1662	DATA 290，192，49，298，249，165
1668	DATA 263，74，74，74，74， 24
1674	DATA $105,161,160,3,145,88$
1689	DATA $165,203,41,15,24,195$
1686	DATA 161，200， $145,88,169,0$
1692	DATA $133,2 \emptyset 3,1 \varnothing 4,17 \emptyset, 104,168$
1698	DATA 194，40，96

1 Øの GRAPHICS $\emptyset ~$
110 FOR $I=1536$ TO $17 \varnothing \varnothing:$ READ A：POKE I ，A：CK＝CK＋A：NEXT I
IF CKく＞19め72 THEN ？＂Error in DA TA statements．Check typing＂：END
$130 \quad A=$ USR（1536）
140 ？：？＂Automatic Proofreader now activated．＂
150 END
1536 DATA $104,160,0,185,26,3$
1542 DATA $201,69,249,7,20 \varnothing, 20 め$
1548 DATA $192,34,208,243,96,200$
1554 DATA $169,74,153,26,3,20 \varnothing$
1560 DATA $169,6,153,26,3,162$
1566 DATA $\varnothing, 189, \varnothing, 228,157,74$
1572 DATA 6，232，224，16，208，245
169，93，141，78，6，169
1584 DATA $6,141,79,6,24,173$
DATA 4，228，105，1，141，95
1596 DATA $6,173,5,228,165, \emptyset$
1602 DATA $141,96,6,169,0,133$
1698 DATA 203，96，247，238，125，241
614 DATA $93,6,244,241,115,241$
124，241，76，205，238，0
1626 DATA $\wp, \emptyset, \emptyset, \emptyset, 32,62$
246，8，201，155，240，13
1638 DATA $201,32,240,7,72,24$
$101,203,133,203,104,40$
10，72，152，72，138，72
1662 DATA $260,18,128,145,8$ ，

674
1680 DATA
161，200，145，88，160
1692 DATA $133,203,194,17 \varnothing, 1 \emptyset 4,168$
1698 DATA 1＠4，40，96

CAPUTE！

Modifications Or Corrections To Previous Articles

Atari Super Directory

The character which appears as a grave（＇）in lines 5010 and 5020 of this program from the April issue （p．176）should actually be \｛．\}, CTRL-period. You may find it easier to replace these lines with the lines below，which build $\mathrm{M} \$$ from DATA statements．

```
0M5\emptyset\emptyset\emptyset DIM M$(4\emptyset)=RESTORE 5\emptyset4\emptyset
NJ 5ø1\emptyset FOR I=1 TO 4\emptyset:READ A:M$(I)=C
    HR$(A):NEXT I
KI 5@ふ\emptyset RETURN
F65\emptyset4\emptyset DATA 1\emptyset4,2\emptyset1,2,24\emptyset,9,17\emptyset,24\emptyset
    ,5,1\emptyset4,104,202,208,251,96,1\emptyset
    4,133,2\emptyset4,1\emptyset4,133,2\emptyset3,1\emptyset4
IK 5\emptyset5\emptyset DATA 1\emptyset4,13S,2\emptyset5,16\emptyset,\emptyset,177,2
    \emptyset3,9,128,145,203,20\emptyset,196,205
    ,208,245,96,6,\emptyset
```


Roader For Atari And Color Computer

The Atari version of this game from the March issue（p．66）may stop with an ERROR 141 mes－ sage．To prevent this，Edward Rybczyk suggests the following corrections：
$38 \emptyset$ IF $A=43$ THEN CLR：RUN
390 POKE 764，255：END
The Color Computer version requires Ex－ tended BASIC to run as published．Ron Crail suggests changes to allow the program to run in standard Color BASIC：Change the value of XLOC to 304 in line 220 and to 308 in line 230，and change COS to SIN in lines 260 and 310．Also，adding the line $245 \mathrm{~N} \$=$＂ X ＂will prevent an OS error．

VIC Barrier Battle

A testing loop was inadvertently left in line 200 of this game program from the March issue（p．84）． Troy Pibus points out that the line should read：
2 Øø $\mathrm{DD}=37154: \mathrm{Pl}=37151: \mathrm{P} 2=37152$

64 MLX And Trident

There is an error in the version of the＂MLX＂ machine language editor from the March issue（ p ． 182）．In line $765, K=S+1$ should be replaced with $\mathrm{K}=\mathrm{S}$ ．This error will prevent the＂Trident＂game （p．100），published in MLX format，from working properly．Fortunately，the problem is quite easy to fix．First，load and correct MLX and save the corrected version．Then run MLX and use the MLX Load option to load in Trident．Use the start－ ing and ending addresses given in the Trident
article．Retype the first line of Trident（49152）， then use the MLX Save option to create a new copy of the game，which should now work prop－ erly．

Atari Trident

Reader Jim Davis suggests the following improve－ ment to this game from the March issue（p．94）：

```
1ø5 Z=USR(ADR(MS),M,M+1,128):FOR I=15 TO
    \emptyset STEP -\emptyset.\emptyset8:SOUND Ø,1\varnothing,8,I:NEXT I:Z
    =USR(ADR(AS),48+C,1,144,51)
```

This adds an explosion sound when an incoming missile is destroyed．

Commodore Floating Subroutines

Programs 1，2，and 3 for this article from the March issue（ p ．164）will print a range of hex address values which is one greater than the correct range， as shown in decimal．To correct this，Paul Mon－ tognese suggests changing the $\mathrm{H}=\mathrm{C}$ in line 63994 to $\mathrm{H}=\mathrm{C}-1$ ．

Chopperoids

Some readers tried to create a binary file（MLX option F）for this Atari machine language program （December 1983，p．122）．As stated in the article， ＂Chopperoids＂must be put on a boot disk or boot tape．If you made a binary file，follow these steps to create a boot disk from your work：

1．Load the MLX program and make the fol－ lowing temporary changes：

```
75@ IF NOT READ THEN 1@4@
85@ TRAP 4@@@G:CLOSE #2:? "Finished.
    ":LET READ=Q:BUFFER$ (FIN-BEG+31)
    =CHRक(乡): BUFFER$(उ1)= BUFFEF(क (61)
    :GOTO उSQ
1@\emptysetめ H=INT(ADR(EUFFERक)/256):L=ADR(E
        UFFERक) -H*25S:L=L+3@:FOKE ICEAD
        R+X,L:POKE ICBADR +X+1,H
```

2．Run the modified MLX and use the ad－ dresses given in the original article．Specify the boot disk option．

3．Use the MLX Load command to load your binary file．All the data will be moved up five lines，as described in the February＂CAPUTE！＂ corrections．

4．Use the MLX New Address command to begin typing at line 6092 and enter the additional lines from February＂CAPUTE！＂（p．181）．Insert a new disk in the drive and use the MLX Save option to create a boot disk with the corrected data．

> COMPUTE! The Resource.

1．Machine Language Entry Program For Commodore 64 chates B Bommon Procram Eutior

Abstract

MLX is a labor－saving utility that allows almost fail－safe entry of machine language programs published in COMPUTE！． You need to know nothing about machine language to use MLX－it was designed for everyone．

MLX is a new way to enter long machine language （ML）programs with a minimum of fuss．MLX lets you enter the numbers from a special list that looks similar to BASIC DATA statements．It checks your typing on a line－by－line basis．It won＇t let you enter illegal charac－ ters when you should be typing numbers．It won＇t let you enter numbers greater than 255 （forbidden in ML）． It won＇t let you enter the wrong numbers on the wrong line．In addition，MLX creates a ready－to－use tape or disk file．You can then use the LOAD command to read the program into the computer：

$$
\begin{array}{ll}
\text { LOAD "filename" } 1,1 & \text { (for tape) } \\
\text { LOAD "filename",8,1 } & \text { (for disk) }
\end{array}
$$

To start the program，you enter a SYS command that transfers control from BASIC to machine language． The starting SYS number appears in the article．

Using MLX

Type in and save MLX for your 64 （you＇ll want to use it in the future）．When you＇re ready to type in an ML program，run MLX．MLX asks you for two numbers： the starting address and the ending address．These numbers are given in the article accompanying the ML program．

You＇ll see a prompt corresponding to the starting address．The prompt is the current line you are entering from the listing．It increases by six each time you enter a line．That＇s because each line has seven numbers－six actual data numbers plus a checksum number．The check－ sum verifies that you typed the previous six numbers correctly．If you enter any of the six numbers wrong， or enter the checksum wrong，the computer rings a buzzer and prompts you to reenter the line．If you enter it correctly，a bell tone sounds and you continue to the next line．

MLX accepts only numbers as input．If you make a typing error，press the INST／DEL key；the entire number is deleted．You can press it as many times as necessary back to the start of the line．If you enter three－digit numbers as listed，the computer automati－ cally prints the comma and goes on to accept the next number．If you enter less than three digits，you can press either the comma，SPACE bar，or RETURN key to advance to the next number．The checksum auto－ matically appears in inverse video for emphasis．

To simplify your typing，MLX redefines part of the keyboard as a numeric keypad（lines 581－584）：

H	U	I	O			7	8		
	J	K	L	become	0	4	5		
	M	，	．			1	2		3

MLX Commands

When you finish typing an ML listing（assuming you type it all in one session），you can then save the com－ pleted program on tape or disk．Follow the screen instructions．If you get any errors while saving，you probably have a bad disk，or the disk is full，or you＇ve made a typo when entering the MLX program itself．

You don＇t have to enter the whole ML program in one sitting．MLX lets you enter as much as you want， save it，and then reload the file from tape or disk later． MLX recognizes these commands：

SHIFT－S：Save SHIFT－L：Load SHIFT－N：New Address SHIFT－D：Display

When you enter a command，MLX jumps out of the line you＇ve been typing，so we recommend you do it at a new prompt．Use the Save command to save what you＇ve been working on．It will save on tape or disk as if you＇ve finished，but the tape or disk won＇t work，of course，until you finish the typing．Remember what address you stop at．The next time you run MLX， answer all the prompts as you did before，then insert the disk or tape．When you get to the entry prompt， press SHIFT－L to reload the partly completed file into memory．Then use the New Address command to resume typing．

To use the New Address command，press SHIFT－N and enter the address where you previously stopped． The prompt will change，and you can then continue typing．Always enter a New Address that matches up with one of the line numbers in the special listing，or else the checksum won＇t work．The Display command lets you display a section of your typing．After you press SHIFT－D，enter two addresses within the line number range of the listing．You can abort the listing by pressing any key．

What if you forgot where you stopped typing？ Use the Display command to scan memory from the beginning to the end of the program．When you reach the end of your typing，the lines will contain a random pattern of numbers．When you see the end of your typing，press any key to stop the listing．Use the New Address command to continue typing from the proper location．

MLX：Machine Language Entry

$1 \varnothing$ REM LINES CHANGED FROM MLX VERSION $2 . \varnothing$ \emptyset ARE $750,765,77 \varnothing$ AND 860 ：rem 50 $1 \emptyset \emptyset$ PRINT＂\｛CLR\}E6习"; CHR $\$(142)$ ；CHRS（8）；： POKE53281，1：POKE53280，1 ：rem 67
$1 \varnothing 1$ POKE $788,52:$ REM DISABLE RUN／STOP
$11 \varnothing$ PRINT＂\｛RVS\}\{39 SPACES\}": \quad ：rem 119
120 PRINT＂\｛RVS\} \{14 SPACES\}\{RIGHT\}\{OFF \} E＊ヨ£\｛RVS\}\{RIGHT\} \{RIGHT\}\{2 SPACES\}

K＊ $\operatorname{\exists }\{\mathrm{OFF}\} \underline{E} * \notin\{\mathrm{RVS}\} \underline{£}\{\mathrm{RVS}\}$
$\{14$ SPACES $\}$＂；：rem 250
130 PRINT＂\｛RVS \}\{14 SPACES $\}$ \｛RIGHT\} EGJ \｛RIGHT\} \{2 RIGHT\} \{OFF\}£\{RVS\}£E* \｛OFF\}E*ヨ\{RVS\}\{14 SPACES\}"; : rem 35
$14 \varnothing$ PRINT＂$\{$ RVS $\}\{41$ SPACES $\} ":$ rem $12 \emptyset$
$2 \emptyset \varnothing$ PRINT＂\｛2 DOWN\}\{PUR\}\{BLK\} MACHINE LANG UAGE EDITOR VERSION $2 . \emptyset 1\{5$ DOWN\}"
：rem 237
$21 \varnothing$ PRINT＂ $55 \exists\{2$ UP $\}$ STARTING ADDRESS？ \｛8 SPACES\}\{9 LEFT\}"; :rem 143
215 INPUTS： $\mathrm{F}=1-\mathrm{F}: \mathrm{C} \$=\operatorname{CHR} \$(31+119 * \mathrm{~F})$
：rem 166
220 IFS <256 OR（ $S>4 \emptyset 960$ ANDS <49152 ）ORS >53247 THENGOSUB $3 \varnothing \varnothing$ ：GOTO21 \varnothing ：rem 235
225 PRINT：PRINT：PRINT．\quad ：rem $18 \varnothing$
23ø PRINT＂ $\mathbb{E} 5$ 投 2 UP\}ENDING ADDRESS?
\｛8 SPACES $\}$ \｛ 9 LEFT $\}^{\prime \prime} ;:$ INPUTE $: F=1-F: C \$=$ CHRS（ $31+119 * F) \quad$ rem $2 \varnothing$
$240 \mathrm{IFE}<2560 \mathrm{R}(\mathrm{E}>4 \varnothing 96 \emptyset \mathrm{ANDE}<49152$ ）ORE＞ 53247 THENGOSUB3øøø：GOTO23ø ：rem 183
250 IFE＜STHENPRINTCS；＂\｛RVS\}ENDING < START \｛2 SPACES ${ }^{\prime \prime}$ ：GOSUBIøøø：GOTO $23 \varnothing$
：rem 176
260 PRINT：PRINT：PRINT ：rem 179
$3 \varnothing \varnothing$ PRINT＂\｛CLR\}"; CHR\$(14):AD=S:POKEV+21, \varnothing ：rem 225
$31 \varnothing A=1:$ PRINTRIGHT\＄（＂øøøø＂＋MIDS（STRS（AD）， 2），5）；＂：＂
：rem 33
315 FORJ＝ATO6 ：rem 33
$32 \varnothing$ GOSUB $57 \varnothing:$ IFN $=-1$ THENJ $=\mathrm{J}+\mathrm{N}:$ GOTO $32 \varnothing$
：rem 228
390 IFN $=-211$ THEN $71 \emptyset \quad$ ：rem 62
$40 \varnothing$ IFN $=-2 \varnothing 4$ THEN $790 \quad$ ：rem 64
$41 \varnothing$ IFN $=-2 \varnothing 6$ THENPRINT ：INPUT＂$\{$ DOWN \}ENTER N EW ADDRESS＂；ZZ
：rem $4 \overline{4}$
415 IFN $=-206$ THENIFZZ＜SORZZ＞ETHENPRINT＂ \｛RVS\}OUT OF RANGE": GOSUB1øøø:GOTO41ø
：rem 225
417 IFN $=-2 \varnothing 6$ THENAD $=\mathrm{ZZ}:$ PRINT：GOTO $31 \varnothing$
：rem 238
420 IF $\mathrm{N}<>-196$ THEN $480 \quad$ ：rem 133
430 PRINT：INPUT＂DISPLAY：EROM＂；F：PRINT，＂TO ＂；：INPUTT－：rem $2 \overline{3} 4$
$44 \varnothing$ IFF＜SORF＞EORT＜SORT＞ETHENPRINT＂AT LEAS T＂； $\mathrm{S}^{\prime \prime}$ \｛LEFT\}, NOT MORE THAN";E:GOTO43 \emptyset
：rem 159
450 FORI＝FTOTSTEP6：PRINT：PRINTRIGHT\＄（＂øøø $\left.\emptyset^{\prime \prime}+\mathrm{MIDS}(\operatorname{STR}(I), 2), 5\right) ; ": " ;$ rem $3 \varnothing$
451 FORK＝ 1 TO5： $\mathrm{N}=$ PEEK（ $\mathrm{I}+\mathrm{K}$ ）：PRINTRIGHT\＄（＂$\varnothing \varnothing$ ＂＋MIDS（STRS $(N), 2), 3) ; ", " ;$ rem 66
460 GETAS：IFAS＞＂＂THENPRINT：PRINT：GOTO31 \varnothing
：rem 25
$47 \varnothing$ NEXTK：PRINTCHR $(2 \emptyset)$ ；：NEXTI：PRINT：PRIN T：GOTO $31 \varnothing$
：rem 50
$48 \varnothing$ IFN $<\varnothing$ THEN PRINT ：GOTO $31 \varnothing$ ：rem 168
$490 \mathrm{~A}(\mathrm{~J})=\mathrm{N}:$ NEXTJ \quad rem 199
$5 \emptyset$ CKSUM $=A D-\operatorname{INT}(A D / 256) * 256:$ FORI $=1$ TO6：CK SUM $=($ CKSUM + A（I））AND 255 ：NEXT ：rem $2 \varnothing \varnothing$
$51 \varnothing$ PRINTCHR\＄（ 18 ）；：GOSUB57 7 ：PRINTCHR\＄（ 146 ）；：rem 94
511 IFN $=-1$ THENA $=6$ ：GOTO315 ：rem 254
515 PRINTCHR $(2 \varnothing):$ IFN＝CKSUMTHEN $53 \varnothing$
：rem 122
$52 \varnothing$ PRINT ：PRINT＂LINE ENTERED WRONG ：RE－E NTER＂：PRINT： $\bar{G} O S U B \overline{1} \varnothing \varnothing \varnothing: G O T \bar{O} 31 \varnothing:$ rem $^{-1} 176$
$53 \varnothing$ GOSUB2øøø
：rem 218
540 FORI $=1$ TO6：POKEAD $+I-1$, A（I）：NEXT ：POKE5 4 272， 0 ：POKE54273，\varnothing
：rem 227
$550 \mathrm{AD}=\mathrm{AD}+6:$ IF $\mathrm{AD}<E$ THEN $31 \varnothing$ ：rem 212
560 GOTO 710
：rem $1 ø 8$
$57 \varnothing \mathrm{~N}=\varnothing: \mathrm{Z}=\varnothing$

580 PRINT＂区£习＂；
：rem 81
581 GETAS：IFAS＝＂＂THEN581 ：rem 95
$582 \mathrm{AV}=-\left(\mathrm{A} S=" \mathrm{M}^{\prime \prime}\right)-2 *(\mathrm{~A} \$=", ")-3 *(\mathrm{~A} \$=" \cdot ")-4 *$ （ $\mathrm{A} S=$＂ $\left.\mathrm{J}^{\prime \prime}\right)-5^{*}\left(\mathrm{~A}=\right.$＝＂$\left.K^{\prime \prime}\right)-6^{*}(\mathrm{~A} \$=" \mathrm{~L} "):$ rem 41
$583 \mathrm{AV}=\mathrm{AV}-7^{*}(\mathrm{~A}=" \mathrm{U} ")-8^{*}(\mathrm{~A} S=" I ")-9 *(\mathrm{~A} \$=" \mathrm{O} "$ ）：IFAS＝＂H＂THENAS＝＂ ＂$^{\text {＂}}$ ：rem 134
584 IFAV $>$ ØTHENAS $=$ CHR $\$(48+\mathrm{AV})$ ：rem 134
585 PRINTCHR $(2 \emptyset) ;: A=A S C(A \$): I F A=130 R A=44$ ORA $=32$ THEN $67 \varnothing$
：rem 229
590 IFA >128 THENN $=-$ A ：RETURN
：rem 137
$6 \varnothing$ IFA $\langle>2 \varnothing$ THEN $63 \varnothing$ ：rem 10
610 GOSUB69 0 ：IFI＝1ANDT $=44$ THENN $=-1$ ： PRINT 1
\｛OFF \}\{LEFT\} \{LEFT\}";:GOTO69ø :rem 62
620 GOTO57Ø
：rem 109
630 IFA $<480 \mathrm{RA}>57$ THEN58 \varnothing ：rem 105
640 PRINTAS；：$N=N^{*} 1 \varnothing+A-48$ ：rem 106
$65 \emptyset$ IFN >255 THEN A＝2ø：GOSUB1 Øøø：GOTO6øø
：rem 229
$66 \varnothing \mathrm{Z}=\mathrm{Z}+1$ ：IFZ＜3THEN5 $8 \varnothing$ ：rem 71
$67 \varnothing$ IFZ＝øTHENGOSUB1 $\varnothing \varnothing \varnothing: G O T O 57 \varnothing$ ：rem 114
680 PRINT＂，＂；：RETURN ：rem 240
$69 \varnothing \operatorname{S\% }=\operatorname{PEEK}(2 \varnothing 9)+256 * \operatorname{PEEK}(21 \varnothing)+\operatorname{PEEK}(211)$
：rem 149
691 FORI $=1$ TO3：T＝PEEK（ $\mathrm{S} 8-\mathrm{I}$ ）：rem 67
695 IFT＜＞44ANDT $\langle>58$ THENPOKES\％－I， 32 ：NEXT
：rem 205
$7 \emptyset \emptyset$ PRINTLEFT\＄（＂\｛3 LEFT\}",I-1);:RETURN
：rem 7
$71 \varnothing$ PRINT＂\｛CLR\}\{RVS\}*** SAVE ***\{3 DOWN \}" ：rem 236
715 PRINT＂\｛2 DOWN \} (PRESS \{RVS\}RETURN\{OFF\} ALONE TO CANCEL SAVE）\｛DOWN\}": rem $1 \varnothing 6$
$72 \varnothing$ FS＝＂＂：INPUT＂\｛DOWN\} FILENAME";FS:IFFS= ＂＂THENPRINT：PRINT：GŌTO31Ø ：rem 71
$73 \emptyset$ PRINT：PRINT＂$\{2$ DOWN $\}$ \｛RVS \}T\{OFF\}APE OR \｛RVS\}D\{OFF\} ISK: (T/D)" :rem 228
$74 \emptyset$ GETAS：IFAS＜＞＂T＂ANDASइ＜＞＂D＂THEN74 0
：rem 36
$75 \emptyset \mathrm{DV}=1-7 *(\mathrm{~A}=" \mathrm{D} "):$ IFDV＝8THENF $\$=" \emptyset:$＂$+\mathrm{F} \$$ ： OPEN15，8，15，＂S＂＋FS：CLOSE15：rem 212
$760 \mathrm{~T} \$=\mathrm{F} \$: \mathrm{ZK}=\operatorname{PEEK}(53)+256 * \operatorname{PEEK}(54)-\operatorname{LEN}$（ $\mathrm{T} \$$ ）：POKE782，ZK／256
：rem 3
762 POKE 781 ，ZK－PEEK（ 782 ）＊ 256 ：POKE78 7 ，LEN（ TS）：SYS65469
：rem 109
763 POKE78 $\varnothing, 1$ ：POKE781，DV ：POKE782， 1 ：SYS654 66 ：rem 69
$765 \mathrm{~K}=\mathrm{S}:$ POKE254，K／256：POKE253，K－PEEK（254） ＊256：POKE780， 253 ：rem 17
$766 \mathrm{~K}=\mathrm{E}+1$ ：POKE 782 ，K／256：POKE781，K－PEEK（ 78 2）＊ 256 ：SYS65496
：rem 235
$77 \varnothing \operatorname{IF}$（ $\operatorname{PEEK}(783$ ）ANDI）OR（191ANDST）THEN78 8
：rem 111
775 PRINT＂$\{$ DOWN \}DONE . \{DOWN \}": GOTO31 \varnothing
：rem 113
$78 \emptyset$ PRINT＂\｛DOWN\}ERROR ON SAVE. $\{2$ SPACES $\}$ T RY AGAIN．＂：IFDV＝1THEN72 20 ：rem $17 \overline{1}$
781 OPEN15，8，15：INPUT\＃15，E1\＄，E2\＄：PRINTE1\＄ ；E2S：CLOSE15：GOTO72ø ：rem 1 Ø3 790 PRINT＂\｛CLR\}\{RVS\}*** LOAD ***\{2 DOWN \}" ：rem 212
795 PRINT＂\｛2 DOWN\} (PRESS \{RVS\}RETURN\{OFF \} ALONE TO CANCEL LOAD）＂：rem 82
 $\$="$＂THENPRINT：GOTO31 \emptyset^{-}：rem 144 $81 \varnothing$ PRINT：PRINT＂\｛2 DOWN\} \{RVS \}T\{OFF \}APE OR \｛RVS\}D\{OFE\}ISK: (T/D)"
：rem 227 $82 \emptyset$ GETAS：IFAS＜＜＂T＂ANDĀSर＜＞＂D＂THENB2 \varnothing ：rem 34 $83 \emptyset \mathrm{DV}=1-7 *(\mathrm{~A} \$=" \mathrm{D} "): I F D V=8$ THENF $=" \varnothing: "+\mathrm{F} \$$ ：rem 157 $84 \emptyset \mathrm{~T} \$=\mathrm{F} \$: \mathrm{ZK}=\mathrm{PEEK}(53)+256^{*} \operatorname{PEEK}(54)$－LEN（T $\$$ ）：POKE782，ZK／256 ：rem 2

841 POKE 781, ZK-PEEK (782)*256:POKE78 0 , LEN (T\$):SYS65469
:rem 107
845 POKE780, 1:POKE781, DV:POKE782, 1:SYS654 66 :rem $7 \varnothing$
850 POKE780, Ø:SYS65493 :rem 11
$86 \emptyset$ IF (PEEK (783) AND 1) OR (191 ANDST) THEN87 \varnothing
:rem 111
865 PRINT" $\{$ DOWN \}DONE. ": GOTO31ø :rem 96 $87 \varnothing$ PRINT"\{DOWN\}ERROR ON LOAD. $\{2$ SPACES \}T RY AGAIN. \{DOW̄N\}":IFDV=1THEN8øø
: rem 172
880 OPEN15, $8,15:$ INPUT\# 15, E1\$, E2\$:PRINTE1\$;E2\$:CLOSE15:GOTO8øø
:rem $1 \not 02$
1øøø REM BUZZER :rem 135
$10 \emptyset 1$ POKE54296,15:POKE54277,45:POKE54278, 165
: rem 297
COMPU-QUTIE T-SHIRTS
pragrommers are

1. seat cureore

Black Silk Screen on White, Tan, Blue, Gold 50 Cot150 Poly
Compu-Qutie Designs P.O. Box 956 Wickenburg, AZ 85358
Phone (602) 6842263
 Only $\$ 8.95$ VISA money order check Mastercard
Adult S(34-36) M(38-40) L(42-44) XL(46-48) Child XS(2-4) S(6-8) M(10-12) L(14-16) -Dealer Inquiries Welcomed-
1 1ø2 POKE54276, 33 :POKE 54273,6:POKE54272,
5 :rem 42
1 1ø 5 FORT $=1$ TO2øø: NEXT: POKE5 $4276,32:$ POKE54
273, ø:POKE54272, \varnothing :RETURN : rem $2 \varnothing 2$
$2 \emptyset \varnothing \emptyset$ REM BELL SOUND :rem 78
$2 ø \varnothing 1$ POKE54296,15:POKE54277, ø: POKE54278, 2
47 :rem 152
$2 ø \emptyset 2$ POKE 54276,17: POKE54273,40: POKE54272
, $0 \quad:$ rem 86
$2 ø 03$ FORT=1TO1øø:NEXT:POKE54276,16:RETURN
:rem 57
$3 \varnothing \varnothing \emptyset$ PRINTCS; "\{RVS\}NOT ZERO PAGE OR ROM":
GOTO1øøø
: rem 89

COMPUTEI's Gazette Back Issues

JULY 1983: Commodore 64 Video Update, Snake Escape, Alfabug, VIC Marquee, Word Hunt, VIC Timepiece, product reviews, Learning To Program In BASIC, Quickfind, 64 Paddle Reader, Machine Language For Beginners, Enlivening Programs With Sound, Using Joysticks On The 64, Simple Answers To Common Questions, VICreations - Speedy Variables, 64 Explorer.

OCTOBER 1983: The Anatomy of Computers, Telegaming Today And Tomorrow,

Commodore's Public Domain Programs, Oil Tycoon, Re-Beep, product reviews, Aardvark Attack, Word Match, A SHIFTy Solution: The WAIT Command, Program Transfers, Machine Language For Beginners, Improved Paddle Reader Routine, How To Use Tape And Disk Files, Understanding 64 Sound Part 1, Speeding Up The VIC, Simple Answers To Common Questions, HOTWARE, Horizons 64 - Improving 64 Video Quality, VICreations - Using The VIC's Clock, News \& Products.

Back issues of July and August 1983 are $\$ 2.50$ each. Issues from October forward are $\$ 3$. Bulk rates are 6 issues for $\$ 15$ or 12 issues for $\$ 30$. All prices include freight in the U.S. Outside the U.S. add $\$ 1$ per magazine order for surface postage. $\$ 4$ per magazine for air mail postage. ALL BACK ISSUES ARE SUBJECT TO AVAILABILITY.

In the continental U.S. call
TOLL FREE 800-334-0868
(in North Carolina call 919-275-9809)
Or write to:

> COMPUTE!'s Gazette Back Issues P.O. Box 5406
> Greensboro, NC 27403

Prepayment required in U.S. funds. MasterCard, VISA, and American Express accepted.
North Carolina residents please add 4% sales tax.

NEWS\&PRODUCTS

Memory Expander For VIC-20

Letco has announced the 64 KV Memory Module, which adds more than 64 K of memory to your VIC-20.

The 64 KV houses 8 K in each of the VIC's blocks 1, 2, and 3. Block 3 can also be paged, or swapped, under program control, with five other separate 8 K sections of memory. Each block has a separate enable switch and a write-protect switch, and there is a switch to make block 3 respond as though it is block 5 (the normal game block).

The module is priced at
\$109.95
Letco
7310 Wells Road
Plain City, OH 43064
(614) 873-4410

Authoring System And Teaching Tool

CLAS, a teaching tool and authoring system for educators, has been released by Touch Technologies for the Apple II + and IIe, the IBM PC and PCjr, and the Commodore 64.

The software package functions as a teaching tool for any subject. Authoring procedures allow instructors to create lessons in their own teaching style. Up to 30 problem sets can be offered with each lesson. Questions take the form of true/false, multiple choice, short answer, or matching.

If desired, the questions can be presented in a different order

The Letco 64 KV Memory Module adds more than 64 K RAM memory to your VIC-20.
each time the lesson is used.
Sound is used to give feedback when a response is made to a question. A help mode is provided for the student, along with a review of problem areas and a summary of performance at the end of the lesson.

Memory requirement for Apple computers is 48 K . The IBMs must use DOS 2.0/2.1. CLAS is available for $\$ 89.95$.
Touch Technologies
609 S. Escondido Blvd.
Ste. 101
Escondido, CA 92025
(619) 743-0494

Interface For TI-99/4A

Mikel Laboratories, Inc., has announced an RS-232-C interface system for the TI-99/4A.

The $\$ 145.95$ system is a freestanding unit which allows the TI-99/4A to use a printer and modem without a peripheral expansion unit.

The company also offers cassette interface systems (\$49.95), TI cassette cables (\$11.95), and printers and monitors. A line of personal computer accessories for the TI-99/4A will soon be available from Mikel Laboratories.
Mikel Laboratories 3341 W. El Segundo Blvd. Hawthorne, CA 90250
(213) 679-2542

Life Insurance Program For Atari, Commodore

Advanced Financial Planning has released Life Insurance Planning, a software package for the Atari 400 and 800 computers and the Commodore 64.

The program will calculate the inflation rate applicable to a user's budget; the user's total estate needs reduced into terms of today's dollars (such as future living expenses for the family,
college expenses, and funeral expenses); the total estate provided by all sources of income and assets; and the total shortfall needed to be provided by life insurance.

Life insurance needs can be calculated for any year over the planning period in order to help the user select the proper type of insurance policy.

Life Insurance Planning supports virtually any printer, and requires a disk drive. The Atari version requires the Atari BASIC cartridge and 32 K RAM. The package is priced at $\$ 29.95$. When purchased with Advanced Financial Planning's Retirement Planning program, the total price is $\$ 49.95$ (shipping prices are included in this total).
Advanced Financial Planning 20922 Paseo Olma
El Toro, CA 92630
(714) 855-1578

Music Adventure Games For Apple II

Syntauri Corporation has introduced Musicland, an advanced set of musical games for the Apple II.

The package is built from four basic games-Sound Factory, Timbre Painting, Music Doodles, and Music Blocks. The four games are integrated. Musicland is a foundation program from which advanced musical concepts and structures may be taught to young children.

The system attempts to maintain the interest of young students, while providing musical challenges for adult musicians as well. Aimed at musically untrained children, Musicland lets youngsters use joystick controls to discover musical form, timbre, orchestration, composition, and transposition.

Children can compose, edit, and play music as well. Interactive graphics aid exploration, from sketching a simple melody
to inverting a complex musical passage. Multipart pieces can be composed, orchestrated, and played back in stereo. Each of the four games covers a different range of musical learning experiences.

Musicland requires a 64 K Apple II computer system with one disk drive, plus synthesizers (the Mountain Computer MusicSystem) which plug into the Apple. The Musicland set with manuals sells for $\$ 150$. The synthesizers are available for under $\$ 400$.
Syntauri Corporation 4962 El Camino Real Suite 112
Los Altos, CA 94022
(415) 966-1273

Three Learning Programs For Atari, Commodore

Three learning programs from Carousel Software have been released for the Commodore 64 and Atari computers on disk or cassette.

Telly Turtle is an introduction to computer programming which uses drawing routines and emphasizes logical thinking, problem solving, numbers sequencing, and visual discrimination.

Brain Strainers includes three learning games for from one to four players: Clef Climber, a multilevel, animated note recognition game; Finders Keepers, a multiscreen and multilevel concentration game; and Follow the Leader, a music and graphic pattern recognition game with up to 44 levels of difficulty.

Simulated Computer is an animated simulation of a computer in operation. Programs written by the user can be seen and heard flowing through the component parts of the computer. The program serves as a teaching tool about the way a computer works.

Telly Turtle (34.95) and Brain

Strainers (\$29.95) are meant for ages five to adult. Simulated Computer (\$29.95) is directed toward ages 12 to adult.
Carousel Software, Inc.
877 Beacon Street
Boston, MA 02215
(617) 437-9419

Games, Tutorial For Commodore 64

Advanced Microware has introduced two new software products for the Commodore 64.

Casino Pac includes four games-Blackjack, Poker, Keno, and Slot Machine. Each simulates the new videogaming machines being used in gambling centers such as Las Vegas and Atlantic City. The games let you practice your betting strategy, try your own betting systems, or play for fun.

Casino Pac sells on tape or disk for $\$ 39$.

64 Tour is a tour of the features and capabilities of the Commodore 64, with demonstrations of all the graphics modes, as well as music and sound effects. The package is priced at $\$ 12$.

Advanced Microware

P.O. Box 6143

Santa Ana, CA 92706
(714) 554-6470

New Product releases are selected from submissions for reasons of timeliness, available space, and general interest to our readers. We regret that we are unable to select all new product submissions for publication. Readers should be aware that we present here some edited version of material submitted by vendors and are unable to vouch for its accuracy at time of publication.

COMPUTE! welcomes notices of upcoming events and requests that the sponsors send a short description, their name and phone number, and an address to which interested readers may write for further information. Please send notices at least three months before the date of the event, to: Calendar, P.O. Box 5406, Greensboro, NC 27403.

COMPUTER MAIL ORDER

 NEC 2050 NEC 3550
\$999.00 ロRIVES 51/4 320K Floppy $\$ 229.00$ 5 Meg Hard w/Controller CALL 10 Meg Hard w/Controller 15 Meg Hard w/Controller 20 Meg Hard w/Controller

AMDEK

 310A Amber Monitor DXY 100Color II

AST RESEARC

Six Pak Plus...trom $\$ 279.00$ Combo Plus II...from $\$ 279.00$ Mega Plus...fromS309.00 I/O Plus...from.

QUADRAM
Quadink
Quadboa
Quadboard....as low as
Quad 512 Plus...as low as. Quadcolor...as low as Chronograph.
Parallel Interface Board 64 K RAM Chips Kit MICROPRO WordStar/MailMerge ... InfoStar
SpellStar $\$ 139.00$
\$479.00 $\$ 289.00$.5249 .00 \$219.00 . 889.00 . 889.00 .559 .00
\$349.00
S349.00
$\$ 299.00$
$\$ 159.00$ S159.00
.599 .00 MICROSTUF Crosstalk..................
Multiplan
\$105.00
NICROSOFT
ASHTON TATE
dBASE
\$389.00
Friday!
IUS
EasyWriter II
\$185.00

EasySpeller
\$249.00
$\$ 249.00$
$\$ 119.00$
. $\$ 229.00$
1st Class Mail/Form Letter... 579.00
The Home Accnt. Plus
pfs

pfs		
	APPLE	18 M
Write:	79.00	89.00
Graph:	79.00	89.00
Report:	79.00	79.00
File:	79.00	89.00
Solutions*: as low as	16.00	16.00
-Call On Titles		
LOTUS		
1-2.3....................... 5329.00		
PROFESSIONALSOFTWARE PC Plus/The Boss........... $\$ 349.00$		
SYN	PSE	

PRINTERS

ger
. 889.00

VISICORP

VisiCalc	IBMAPPLE	
		159.00
VisiCalc 4	159.00	
VisiCalc-Advanced		269.00
VisiWord/Spell	249.00	
Visitrend/Plot	199.00	199.00
VisiLink		169.00
Visifile	199.00	169.00
VisiSchedule	199.00	199.00
Visidex		159.00
VisiPlot		135.00
Visiserm		75.00
Desktop Plan	199.00	169.00
Bus. Forecast Model	75.00	75.00
Stretch Calc	75.00	75.00
VisiTutor Calc	59.00	59.00
VisiTutor-Advanced	75.00	75.00
Visitutor Word	59.00	59.00
Vision Calc	249.00	
Vision Graph	129.00	
Vision Mouse	159.00	
Vision Host	319.00	

VisiCalc VisiCalc-Advan
VisiWord/Spell
Visitrend/Plot Visitrend/Plot VisiLink
Visifile (99.00 Visiplot VisiTerm Bus. Forecast Model Stretch Calc
 $\begin{array}{llll}\text { Visitutor Word } & 59.00 & 59.00\end{array}$ Vision Mouse Vision Host

APPLE/FRANKLIN DISK DRIVES MICRO-SC

A2
 A2 A40 A7 C2 C

Elit
 Elite 2 5279.00 Elite 3 $\$ 5899.00$

APPLE IIE STARTER PACK 64 K Apple lle. Disk Drive \& Controller. 80 Column Card. Monitor II \& DOS 3.3 COMPLET

COMPUTERS
Teleport PortableCALL

MONITORS

620 Letter Quality $\$ 9499.00$
630 Letter Quality....... $\$ 1749.00$ 2000 DAISYWRITER Tractor Feed EPSON
MX-80FT. MX-100 RX-80 MX-80FT, MX-100. RX-80. RX-80FT FX-80. FX-100 ins
Prism 80...For Configurations...CALL MANNESMAN TAILY
60L.............. 5589.00
180L................................. 5399.00
Spirit $80 ~$

PRINTER CABLES

Available for Atari. Commodore. IBM. Apple. Epson. Kaypro. Televideo. Franklin. Eagle. Sanyo. Osborne. NEC. Zenith and many others. We supply all your computer needs!

PAPER SUPRLIES 1000 shts. $8^{\prime} 7 \times 11$ Tractor Paper... 19.99 1000 shts. $144^{1} \times 11$ Tractor Paper. . $\$ 24.99$

MBC-550 PC	CALL
MBC-555 PC	CALL
MBC 1100	S1499.00
FDD 3200-320K Drive	\$389.00
MBC 1150	\$1899.00
MBC 1200	S1849.00
FDD 6400-640K Drive	\$469.00
MBC 1250	. 52099.00
R 5500 Printe	S599.00

914	. 5669.00
4	S689.00
5	\$739.00
950	S929.00
$970 .$	S1039

	\$1099.00 \$2699.00
803	S1949.00
2 H	\$4695.00
806/20	. 54999.00
816/40	. 59199.00
02	S3399.00

F FRANKLIN

ACE 1000 Color Computer . ACE Family Pack System ACE PRO PLUS System .
ACE 1200 Otlice SystemCALL NOT IIE EXPENSIVE...CALL EXPENSIVE
s TeleVideo

MODEMS

Mark I (RS. 232)
Mark I(RS-232).
Mark II (Atari).
Mark III (T1.99).....
Mark IV (CBM/PET)
Mark V (Osborne).
Mark VIII(Auto Ans/Auto Dial)
Mark XII (1200 Baud).
TRS. 80 Color Computer
9 Volt Power Supply HAY
Smartmodem 300 Smartmodem 1200.
Smartmodem
1200 B Micromodem
Micromodem II plus
Micromodem IIE.
Micromodem 100.
Smart Com II
Chronograph.
NO

J.Cat.
 SmartCat 103

SmartCat 103/212
212 AutoCa
Apple Cat II
212 Apple Cat
Apple Cat 212 Upgrade
D.Cat
PC.Cat

PC-Cat
$\mathrm{zT}-1$
$\mathrm{zT}, 10$
$\mathrm{ZT}, 11$
ZENITH

APPLE INTERFACE

CARDS \& BUFFERS
Choose from PKASO. Orange Micro MPC. MicroMax. Tymac. Quadram \&
579.00
s 79.00 S79.00
S109.00 $\$ 109.00$
$\$ 125.00$ S95.00
$\mathbf{S} 169.00$ S 119.00
$\mathbf{S} 29$ $\mathbf{S} 299.00$
$\mathbf{S} 99.00$

S219.00 $\$ 219.00$
S509.00 5599.00
S 549.00 S265.00
S299.00 $\$ 299.00$
S269.00 S299.00 $\begin{array}{r}589.00 \\ \text { S } \\ \hline\end{array}$. 599.99 S179.00
S 399.00 $\mathbf{S 2 1 9 . 0 0}$
S 549.00 S549.00
S249.00 S249.00
S569.00 $\$ 309.00$
$\$ 100$ S139 99
S $\$ 149.00$
$\$ 399.00$
$\$ 309.00$
$\mathbf{S 3 3 9} 0$
S339.00
S 369.00
in PA call 1717)327.9575. Dept. 0506 Order Status Number: 327.9576
Customer Service Number: 327.1450

EWESTE =CANADA= 800.648 .3311800 .258 .4559

COMPUTER MALL ORDER

KOALA PADS

gcommodore

CBM 8023．．．$\$ 599$ MSD SD1 Disk Drive MSD SD2 Disk Drive CBM 4032 CBM 8096 CBM 9000 B128－80．
CBM 64 K Memory Board 8032 to 9000 Upgrade 2031LP Disk Drive 3050 Disk Drive 8250 Disk Drive 4023 Printer． 8023 Printer 6400 Printer Z．RAM． Silicon Office The Manager Soft ROM Soft Rom
5×-64
\＄349．00 ． 5599.00 \＄599．00 5869.00
$\mathbf{S 9 9 9} .00$ S999．00 5769.00 $\$ 269.00$ $\$ 269.00$ $\$ 299.00$ $\$ 949.00$ S1199．00 ．$\$ 379.00$ ． 5569.00 1399.00 \＄499．00 S699．00 $\$ 199.00$ $\$ 125.00$ \＄159．00

$839^{\circ 0}$

VIC 20 \qquad C1541 Disk Drive C1530 Datasette C1311 Joystick C1312 Paddles． C1600 VIC Modem． C1650 Auto Modem． Logo 64
Pilot 64

PRIFESSIONAL

 SOFTWAREWord Pro 2 Plus
．$\$ 159.00$
．$\$ 189.00$ Word Pro 4 Plus／5 Plus．．．．．．．．．．．．．． 189.00 InfoPro
Administrator
Power
.. S179．00
S179．00
$\$ 179.00$
$\$ 399.00$ $\$ 79.00$

IBM
AP／Franklin

75.00
82.00

PORTABLE 4. C1520 Color Printer／Plotter M－801 Dot Matrix Printer ．． M－801 Dot Matrix Printer ．．．
C1526 Dot Matrix／Serial．．．． C1526 Dot Matrix／Serial．．．．S299．00 C1702 Color Monitor ．．．．．．．．S249．00

Simon＇s Basic．
Word Pro 64 Plus．
Parallel Printer Interface． Calc Result 64 Codewriter 64 Quick Brown Fox Word Pro 64 Plus． MCS 801 Color Printer ．．．．．$\$ 59.00$ DPS 1101 Daisy Print ．．．．．$\$ 499.00$ Magic Voice Speech Module．．．S54．00 Desk Organizer Lock．．．．．．．．．．．S49．00
We stock a full inventory of software for Commodore，such as： Artworx，Broderbund，Commercial Data，Creative Software， Epyx，HES，MicroSpec，Nufekop，Romox，Sirius，Synapse， Thorn EMI，Tronix，UMI，Victory，Spinnaker，Rainbow \＆Timeworks！

Games for	ATARISC BM，Apple． IBM／Apple	C64 \＆VIC 20 c64NIC 20
Pac Man	29.99	${ }_{37.99}$
Centipede	29.99	37.99
Dig Dug	29.99	37.99
Donkey Kong	29.99	37.99
Defender	29.99	37.99
Robotron	29.99	37.99
Star Gate	29.99	37.99

CMO＇S PORTABLE CORNER

$H P>18$

 54998941 CV． 41 CX． HP 10 C
HP 11 C
HP 11C
HP 12C
HP 15 C
HP 16 C
HP 75 C
HPIL Module
HPIL Cass．o

S359．99 S143．99

Card Reader
Time Module
TIMEX／SINC：
Timex Sinclair 1000 Timex／Sinclair 2086 16 K Memory 2040 Printer VuCalc．
Mindware Printer
$\$ 51.99$
S69．99
588.99
588.99

588．99
S749．99
S98．99
S359．99 563．99 A1R $^{563.99}$
． 524.99 CALL
S25．00 S 59.99
59.9
S17．99
S99．99

CE 500 ROM Library．．．．．．．．．．

PC－8221A Thermal Printer ．．．S 149.00 PC－8281A Data Recorder ．．．． 599.00 PC－8201－068K RAM Chips．．．S 105.00 PC－8206A 32K RAM Cartridge．．．$\$ 329.00$

	P
PC－1500A．．．S165．99	
PC－1250A．．．． 588.99	
CE－125 PrinteriCassette．．．．S128．99CE－150 Color Printer／Cassette．．．S171．99	
CE． 155 8K RAM	RAM ．．．．．．．．．．．．． 593.99
CE 161 16K RAM	K RAM ．．．．．．．．．．． 5134.99

> Min

EWEST＝＝CANADA＝＝EASTE 800．648．3311 800．268．4559

In NV call 17021588.5654 ．Dept． 0506 Order Status Number： $\mathbf{5 8 8} \cdot 5654$
P．O．Box 6689 ．Stateline．NV 89449
in Toronto call（416）828．0866．Dept 0506 Order Status Number：828．0866 2505 Dunwin Drive．Unit 1B

In PA call（7171327．9575 Dept O506
Order Status Number 327.9576
Order Status Number $327: 9576$
Customer Service Number 3271450
477 E．Third St．Williamsport PA 17701

ATAR1 99°

\because With Purchase of

 1010 Program Recorder，
E．T．Phone Home \＆

 C1311 Joysticks TOTAL SYSTEM PRICE क259 1010 Recorder ．．．．．．．．．．．．．．．．．．S74．00 1020．Color Printer．．．．．．．．．．．．S249．00 1025 Dot Matrix Printer．．．．．S339．00 1027 Letter Quality ．．．．．．．．．．S309．00 1030 Direct Connect Modern ．．．S 119.00 1050 Disk Drive．．．．．．．．．．．．．．．． 5339.00 Cx30 Paddle ．．．．．．．．．．．．．．．．．．．．．．S 12.00 CX40 Joystick．．．．．．．．．．．．each．．．．S8． 00 CX77 Touch Tablet ．．．．．．．．．．．．S64．00 CX80 Trak Ball ．．．．．．．．．．．．．．．．． 548.00 Cx85 Keypad \quad S 105.00 CX85 Keypad ．．．．．．．．．．．．．．．．．S105．00 488 Communicator II．．．．．．．．S229．00 003 Assorted Education．．．．． 547.00 4011 Star Raiders ．．．．．．．．．．．．S33．00 4012 Missile Command ．．．．．S29．00 4013 Asteroids ．．．．．．．．．．．．．．．．S29．00 5049 VisiCalc ．．．．．．．．．．．．．．．．．．S 159.00 7097 Logo ．．．．．．．．．．．．．．．．．．．．．．．S79． 00 7101 Entertainer ．．．．．．．．．．．．．．．．S69．00 7102 Arcade Champ ．．．．．．．．．． 575.00 8026 Dig Dug 8030 E．T．Phone Home． 8031 Donkey Kong S33．00 8033 Robotron 8034 Pole Position ．．．．．．．．．．．．． 539.00 8036 Atari Writer 8040 Donkey Kong．Jr． 579.00 8044 JoustDISKETTES MAXELL

VEREATIM 5／4 SS；DD
5／4 DS／DD

S26．99 S36．99
ELEPHANT 5 $1 / 4$ SSiSD 51／4 SSIDD

S18．49
51／4 DS $/ D 0$
S22．99

HEAD
DISK HOLDERS
INNOVATIVE CONCEPTS
Flip－n－File 10
$\begin{array}{r}\text { S3．99 } \\ \hline\end{array} 17.99$
Flip－n－File 50
517.99
$S 17.99$

Flip－n－File（400；800ROM）Holder． 517.99

LJK ENTERPRISES

Atari Letter Perfect－Disk（40／80）．．．S79．99 Atan Letter Perfect－Disk（40／80）．．．S79．99 Atan Letter Periect－RON（40 col）．．．S79．99 Atari Letter Perfect－ROM（80 col）．．．S79．99 Atari Data Perfect－ROM（80 col）．．．．．S79．99 Atari Spell Perfect－DISK ．．．．．S59．99 Atari Utility／MailMerge ．．．．．．．S21．00 Apple Letter Perfect．．．．．．．．．．．．S99．00 Apple Data Perfect ．．．．．．．．．．．．．．$\$ 75.00$ Apple LJK Utility ．．．．．．．．．．．．．．．．$\$ 21.00$ Apple Lower Case Generator ．．．S19．00

6ロロXL．．．．．．．$\$ 189$ 80ロXL．．．．．．．s299 120ロXL ．．．．CALL $140 \square \times$ ．．．．．CALL

PERCOM

ALIEN VOICE BOX Atar
$\$ 119.00$ Apple

CONTROLLERS \＆

 JOYSTICKS wico| Joystick ．．．．．．．．．．．．．．．．．．．．S21．99 | |
| :---: | :---: |
| 3．way Joystick | S22．99 |
| Famous Red Ball | S23．99 |
| Power Grip | 99 |
| BOSS Joystick | S17．99 |
| ATARI／VIC Trak Ball | S34．99 |
| Apple Trak Ball | S54．99 |
| Apple Adapter | \＄15．99 |
| Apple Analog | S37．99 |
| KRAFT | |
| Joystick | 541.99 |
| Atari Single Fire | S12．99 |
| Atari Switch Hitte | S15．99 |
| Apple Paddles | \＄34．99 |
| IBM Paddles | S34．99 |
| IBM Joystick | \＄46．99 |
| AMIGA | |
| 3100 Single | \＄13．99 |
| 3101 Pair | \＄19．99 |
| | |
| TG | |
| Atari Trak | \＄47．99 |
| Apple Joystick | S47．99 |
| | $\$ 47$ |

CANADIAN ORDERS：All prices are subject to shipping tax and currency fluctuations Call for exact pricing in Canada INTERNATIONAL ORDERS：All shipments outside the Continental United States must pre：pay by certified check only．Include 3 imimumum $\mathbf{5 5}$ ooi shipping and handing．EDUCATIONAL DISCOUNTS．Additional discounts are available to qualitied Educational Instutions

Lyco Computer Marketing \& Consultants

 TO ORDER

 TO ORDER
 CALL US TOLL FREE 800-233-8760
 In PA 1.717-327.1824

HARD DISK DRIVES for APPLE IBM-PC 5MEG..... $\$ 1349.00$ 10MEG ...\$1599.00
15MEG ... $\$ 1999.00$
20MEG ... $\$ 2359.00$
TEXAS
INSTRUMENT
Disk Drive... $\$ 245.00$

TRAK DISK DRIVES

AT-D1................. $\$ 379.00$
AT-D2................3399.00
PRINER CABLE.. .522 .95
Software for ATD.2.... $\mathbf{5 2 2 . 9 5}$
RANA
DISK DRIVE

5 $1 / 4$ DISK DRIVE
CLEANER............ $\$ 12.75$
computer care
KIT
.$\$ 19.75$

BLANK DISKETTES ELEPHANT
Single Side SD (10)........ 817.75 Single Side DD (10)........ $\mathbf{\$ 2 1 . 7 5}$ Double Side DD (10).......\$26.75 MAXELL
MD I (10) 328.75 MD II (10) 338.75

CERTRON CASSETTES

CC-10 12 for
$\$ 15.99$
CC- 2012 for
$\$ 17.99$

INNOVATIVE CONCEPTS

Disk Storage (holds 10) 84.95
Diak Storage (holds 15) 39.95
Disk Storage (holds 50)s26.95

CONTINENTAL

EPYX

Temple of Apshai.......... $\mathbf{\$ 2 6 . 9 5}$
Star Warrior $\mathbf{\$ 2 6 . 9 5}$
Crush. Crumble \& Chomp . $\mathbf{\$ 2 2 . 7 5}$

ADVENTURE

Saga\# 1 Adventureland ... $\mathbf{\$ 2 9 . 9 5}$ Saga\#2 Pirate Adventure. $\mathbf{\$ 2 9 . 9 5}$ Saga\#\# Secret Mission. .. $\$ 29.95$ Stone of Sisyphus $\mathbf{\$ 2 4 . 9 5}$

ALIEN GROUP
Atari Voice Box $\mathbf{S 9 9 . 0 0}$
Apple Voice Box.......... $\$ 129.00$

CARDCO

Cardprinter / LQ1........ $\$ 499.00$ Cardprint DM1 510900 5 Slot Expansion 64 $\$ 54.00$ 64 Write NOW............. $\$ 39.00$ 64 Mail NOW $\$ 29.00$ 2f Write NOW............ $\$ 29.00$ 64 Keypad $\$ 29.00$ Universal Cass. Int....... $\$ 29.75$ Printer Utility............. $\$ 19.75$ 6 Slot Expansion.......... \$79.95 3 Slot Expansion......... $\mathbf{\$ 2 4} 95$ PRINTERINTERFACE........ $\$ 39.75$ PRINTER INTERFACE with
full graphics $\mathbf{S 6 5 . 7 5}$
LIGHT PEN $\$ 29.75$
PARKER 20
Frogger (ROM)
QBert (ROM)
Tutankham (rom)

SPINNAKER 64
Kindercomp.
$\$ 21.75$
Story Machine
Face Maker .
Snooper Trooper............. $\$ 29.75$
Delta Drawing............... $\$ 34.75$
Shamus II c/d.............. $\mathbf{\$ 2 4 . 9 5}$
Pinhead c/d . $\$ 24.95$
$\$ 22.95$
QUICK BROWN FOX
QBF Word Processor $\$ 49.95$ LJK
Letter Perfect............ $\$ 105.00$
Data Perfect.................. $\$ 95.00$
ADVENTURE INTERNATIONAL
S. Adams Adventure $\$ 28.75$ VIC-64
Household Finance C/D.. $\$ 24.75$ VIC 20
King Arthurs Heir Cass ... $\$ 24.75$
Monster Maze Rom.nun $\$ 24.75$
commodore
1212 Programmers Ad. $\$ 44.75$ 1213 Vicmon........... $\$ 44.75$ Vic 20 dust cover........ S6.99 Vic 64 dust cover........ $\$ 6.99$

TIMEWORKS

INVENTORY................ 359.75 ACCOUNTS REC. 859.75 ACCOUNTS PAY. 859.75 GENERAL LEDGER....... 859.75 PAYROLL.
CASH FLOW359.75 ELEC CHECKBOOK 859.75 MONEY MANAGER 859.75
DATA MANAGER........... 859.75

BLUE MAX C/D $\mathbf{\$ 2 4 . 7 5}$ PHAROAH'SCURSE C/D...S24.75

ASTRO CHASE C/D.... $\mathbf{\$ 2 2 . 7 5}$

EASTERN HOUSE

Monkey Wrench 2 $\$ 52.75$ BRODERBUND
LODE RUNNER D...... $\$ 24.75$
OPERATION
WIRLWIND D $\mathbf{\$ 2 9 . 7 5}$
DROL D $\$ 24.75$

PARKER BROTHERS

Tutankham R.............. $\mathbf{\$ 3 3 . 7 5}$
Super Cobra R $\$ 33.75$
Astro Chase R............ $\$ 33.75$
Frogger R $\$ 33.75$
QBert R $\$ 33.75$
Popeye R.................. $\$ 33.75$
Risk R $\$ 42.75$
Chess R $\$ 42.75$

SPINNAKER

Story Machine R $\mathbf{S 2 6 . 7 5}$
Face Maker R............ $\mathbf{\$ 2 4 . 7 5}$
Kinderomp R.............. $\mathbf{\$ 2 0 . 7 5}$
Fraction Fever R......... $\mathbf{S 2 4 . 7 5}$
Delta Drawing R......... $\mathbf{\$ 2 6 . 7 5}$

Lyco Computer Marketing \& Consultants TO ORDER
 CALL US

 TOLL FREE 800-233-8760

 TOLL FREE 800-233-8760}

PRINTER INTERFACING
 PRINTER PAPER AVAILABLE

Available for IBM PC, Apple, Atari, Vic 20 \& Vic 64

LETTER QUALITY
SMITH CORONATP2... 5449.00
DIABLO 630 .. $\$ 1719.00$

ALPAHCOM 42	\$89.00
ALPHACOM 81.	. 5129.00
NEC 8023	..5369.00
NEC 8025	\$699.00
NEC PC-8200	
co	..sCALL

EPSON

RX-80	ssaves
RX-80FT ${ }^{\text {ON }}$
FX-80.	In-Stock
FX-100..	EPSON
MX-80FT	PRINTERS
MX-100..	scallss

MANNESMANN
TALLY
SPIRIT 80 SCALL
MT 160L.....................SCALL

OKIDATA

	SSAVES
82A	.CALL for
83A.	LOWEST
84	PRICES
92	on these
93.	In-Stock
PAC	PRINTERS

ATARI 850
REPLACEMENTS
IN-STOCK

CITOH

GORILLA GX100 $\$ 179.00$ PROWRITER $8510 \ldots . . \$ 339.00$ PROWRITER II $\mathbf{\$ 5 5 9 . 0 0}$ 8600 $\$ 1025.00$ STARWRITER $\$ 1099.00$ PRINTMASTER $\$ 1499.00$
STAR MICRONTICS
GEMINI 10X............ $\mathbf{\$ 2 6 9 . 0 0}$ GEMINI 15X................SCALL DELTA 10................ $\$ 479.00$

MODEMS

ANCHOR MARK I .. 579.00 ANCHOR MARK II. $\$ 79.00$ HAYES SMART ... $\mathbf{S 2 3 9 . 0 0}$ HAYES MICRO II $\$ 309.00$ Micro Bit MPP-1000.......... $\$ 129.75$ NOVATION CAT $\$ 144.00$ D-CAT $\$ 155.00$ J.CAT $\$ 115.00$ APPLE CAT $115279 .00$ 212 APPLE CAT . $\$ 589.00$

CORDLESS TELEPHONES from...\$69.75

DUST COVERS

800
400.
1200.

410 ..
$810 .$.
1050.
PROWRITER
GEMINI 10X..
PERCOM DISK
VIC 20/64.

APPLE DUMPIING GX
S99 75 APPLE DUMPUNG $64 \quad 116$ Butters 17975 INFOCOM
Zork I. II, or III............... \$26.75
Deadline
$\$ 33.75$

HES 20

HES MON Rom. $\mathbf{\$ 2 5 . 7 5}$

Turtle Graphics. $\mathbf{\$ 2 5 . 7 5}$

> HES Writer... $\$ 25.75$ Shamus $\$ 25.75$ Protector..... $\$ 25.75$

PERCOM

VIC 64/20

PACMAN $\$ 33.75$

 DONKEY KONG......... $\$ 33.75$ DIG DUG $\$ 33.75$ CENTIPEDE $\$ 33.75$FIRST STAR 64 BRISTOLS C/D.......... $\mathbf{S 2 2 . 7 5}$ FLIP FLOP C/D $\$ 22.75$

SYNAPSE 64

ZEPPELIN C/D blue max c/D. DIMENSION XC/D.

EPYX 64
ASPHIR... JUMPMAN JR
PIT STOP R

$$
1
$$

connineore

IBM	ATARI	APPLE	48K RAM . . . \$75.00	
PACMAN.............. 527.95	... $\mathbf{5 2 9 . 7 5}$	PACMAN.............. $\mathbf{5 2 7 . 9 5}$	64K RAM . . . $\$ 99.00$	
DONKEY KONG........ $\mathbf{S 2 7 . 9 5}$...s29.75	DONKEY KONG........ $\mathbf{5 2 7} \mathbf{2 7} 9$		
DIG DUG $\$ 27.95$... $\mathbf{\$ 2 9 . 7 5}$	DIG DUG\$27.95	ATARI WRITER $\mathbf{\$ 7 9 . 0 0}$	
DEFENDER $\mathbf{\$ 2 7 . 9 5}$ $\mathbf{\$ 2 9 . 7 5}$	DEFENDER........... $\mathbf{S 2 7 . 9 5}$		
CENTIPEDE $\$ 27.95$ $\mathbf{\$ 2 9 . 7 5}$	CENTIPEDE $\mathbf{S 2 7 . 9 5}$		
			BUSINESS	
KOALA TOUCH TABLET...S99.75	KOALA TOUCHTABLET... $\mathbf{\$ 6 9 . 7 5}$	KOALA TOUCH TABLET... $\$ 84.75$	Visicalc $\mathbf{\$ 1 5 9 . 7 5}$	
DEADLINE\$34.75	. 534.75 \$34.75	Letter Perfect......... 889.75	
ENCHANTER $\$ 34.75$ 534.75 534.75	Letter Perfect........... $\$ 89.75$	
INFIDEL $\ldots \ldots \ldots . .534 .75$ 534.75	$\ldots534 .75$	Data Porfect............. \$89.75	
PLANETFALL \ldots....... $\$ 34.75$		$\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .1534 .75$	TEXT WIZZARD....... \$34.75	
STAR CROSS $\ldots \ldots \ldots . . \begin{aligned} & \text { S } \\ & \text { SUSPENDED }\end{aligned}$ 534.75		SPELL WIZZARD 34.75	
 534.75 534.75	File Manager............ 869.75	
ZORKI 534.75 534.75	. 534.75	Home File Mgr.......... $\mathbf{\$ 6 9 . 7 5}$	
ZORK II 344.75	... 534.75 534.75	Bookeeper............. \$119.75	Computers for people.
ZORK III 534.75	.. 534.75 334.75	C.R.I.S............... $\mathbf{\$ 1 9 9 . 7 5}$	

YOU CAN'T TELL

 A DISK DRIVE BY ITS COVER!!

WITH A HAPPY ENHANCEMENT INSTALLED THESE ARE THE MOST POWERFUL DISK DRIVES FOR YOUR ATARI COMPUTER

 WARP SPEED SOFTWARE DISK READING AND WRITING 500\% FASTER> HAPPY BACKUP - Easy to use backup of even the most heavily protected disks HAPPY COMPACTOR - Combines 8 disks into 1 disk with a menu WARP SPEED DOS - Improved Atari DOS 2.0 with WARP SPEED reading \& writing SECTOR COPIER - Whole disk read, write and verify in 105 seconds
> 1050 ENHANCEMENT - Supports single, 1050 double, and true double density $\mathbf{8 1 0}$ ENHANCEMENT - Supports single density

SPECIAL SUGGESTED RETAIL PRICE: Get the HAPPY ENHANCEMENT 810 or 1050 version with the HAPPY BACKUP PROGRAM plus the multi drive HAPPY BACKUP PROGRAM, plus the HAPPY COMPACTOR PROGRAM, plus the HAPPY DRIVE DOS. plus the HAPPY SECTOR COPY, all with WARP DRIVE SPEED. including our diagnostic. a $\$ 350.00$ value for only $\$ 249.95$. for a limited time only! Price includes shipping by air mail to U.S.A. and Canada. Foreign orders add $\$ 10.00$ and send an international money order payable through a U.S.A bank. California orders add $\$ 16.25$ state sales tax. Cashiers check or money order for immediate shipment from stock. Personal checks require $2 \cdot 3$ weeks to clear. Cash COD available by phone order and charges will be added. No credit card orders accepted. ENHANCEMENTS for other ATARI compatible drives coming soon, call for information. Specify 1050 or 810 ENHANCEMENT, all 1050s use the same ENHANCEMENT Please specify - H model for all 810 disk drives purchased new after February 1982. call for help in 810 ENHANCEMENT model selection. Dealers now throughout the world, call for the number of the dealer closest to you.

ATARI is a registered trademark of Atari Computer Inc
HAPPY COMPUTERS, INC. • P. O. Box 1268 • Morgan Hill, California 95037 - (408) 779-3830

DUST COVERS

For Personal Computers, Peripherals, Game Units-Protective, Long-Lasting Vinyl Resists Both Dust and Liquids.

- Choice of colors -

Amdek
Apple
Atari
BMC
Commodore
Coleco
Epson
Franklin Ace IBM PC Mattel Rana Systems Sanyo Star Micronics TI 99/4 TRS 80 PLUS OTHERS

GROUP/VOLUME DISCOUNTS AVAILABLE
FOR FREE BROCHURE WRITE:
ENCHANTED FOREST
P.O. Box 5261 , Newport Beach, CA 92662 (1129 W. Balboa Blvd.)
Dealer Inquiries Invited

RENT SOFTWARE
1-2-3 Lotus 99.00*
Home Accountant . . . 15.00* PFS: Write 28.00*
VisiCalc 50.00*
FREE CATALOG
*Ask about our membership
Games/Business/Utilities/Education
1-800-221-1031 California
1-800-221-4568 All Others
619-481-0559 San Diego
जी:जिएवतन

(0) (as)

Catalog of Computers and Supplies
Our prices are WHOLESALE + 10\% Samples!!!
ATARI 850 INTERFACE - $\$ 220$ Compucat - \$163
ATARI 1027 PRINTER - $\$ 350$ Compucat - \$265
We support the complete ATARI and COMMODORE product lines Ask for our free price list.
You may order in the regular manner or download our TeleCatalog and order from your computer or terminal.
(408) 353-1836

Instant shipping (or as fast as we can). Mastercard \& Visa Accepted (no extra charge). Shipping \& handling add 5%. California customers add 6.5% sales tax. Order by phone (Mon. - Fri. 10 am - 5 pm PST). Order by modem (daily $6 \mathrm{pm}-9 \mathrm{am}$) from our online TeleCatalog.

COMPUCAT

24500 Glenwood Hwy., Los Gatos, CA 95030

STOCK HELPER" ${ }^{m}$

Commodore $64^{\text {² }}$

Stock HELPER is a tool to maintain a history of stock prices and market indicators on diskette, to display charts, and to calculate moving averages. Stock HELPER was designed and written by a "weekend investor" for other weekend investors.

VISA $\$ 30.00$ plus $\$ 1.25$ shipping.
Canadians may pay $\$ 37.50 \mathrm{CDN}$ plus $\$ 1.55$ shipping.
(M)agreeable software, inc.

5925 Magnolia Lane • Plymouth, MN 55442 (612) 559-1108

HELPER is a trademark of (M) agreeable Sotware, Inc. Commodore is a trademark of Commodore Electronics Ltd

A compact and inexpensive Eprom eraser for the hacker. It erases two chips per exposure, so if you are one of those smart people who only makes little mistakes and only needs to erase two Eproms at a time, this eraser is for you.


```
Comme
```


QuICK=RECORD

Full cursor editing
750 charactork per record
Unilimited fiel

Relative accosss	
Sort by any field	Math abilities

Quick Record is a fast and easy method of retains the liower needed in a data base.
SPECIFY DISK FOMAT SPECIFY DISK FORMAT

B128-80	$\$ 860.00$
Transtar 130	$\$ 810.80$
Transtar 128	$\$ 540.08$
Prowiter 8510	$\$ 398.08$

Tri S/C Software

2 weekz for check FOB (Dodge City, KS
KS Residents add 4%

Data base Management

C= 64 Tape/Disk

$N \star$ Horizon Disk TRS-80 Disk

Define your own database; Add; Change; Delete; Print. Easy to use. Menu driven.
Only $\$ 39.00$
Melcomp
P.O. Box 1085

Melbourne, FL 32901

Manufactured by Aspen Ribbons, Inc. Buy direct from manufacturer \& save. Standard ink color is black. Red, green, blue, \& brown colors are available for $\$ 2.00$ extra- nylon.
PRICES

NEC ${ }^{*}$ 2000/3500	NEC $2000 / 3500$
MS	Nylon
M3.25	

$\$ 3.25$ to $\$ 6.00$ ea.	$\$ 4.75$ to $\$ 9.00$ ea

CALL FOR FREE CATALOGUE.

- Aspen Ribbons, Inc is not affiliated with any company mentioned in this ad.
Aspen Ribbons, Inc. 1700 N. 55th St
Boulder. CO 80301-2796 (303)444-4054 Telex: 45-0055 End User: 800-525-0646 Wholesale: 800-525-9966

VIC-20 COMMODORE 64

THE RECIPE BOX

Now you can easily store and recall your favorite recipes on your Commodore computer. THE RECIPE BOX is a complete menu-driven disk system that comes with these additional features:
SEARCH BY INGREDIENT - Only have a pound of hamburger in the freezer? Let THE RECIPE BOX show you all the recipes that you have on file that use hamburger, or any other ingredient you choose. SEARCH BY CATEGORY/INGREDIENT combination of the above.
AUTOMATIC MEASUREMENT - THE RECIPE BOX will automatically scale up or down the amount of ingredients you need according to how many servings you want
SCREEN OR PRINTED OUTPUT - Have printed copies to use in the kitchen or give to friends.
THE RECIPE BOX requires one disk drive and will run on a 5 K VIC-20, Commodore 64. Please specify. Send check or money order for 21.95 to:

> Aries Marketing Co.
> P.O. Box 4196

> 4200 Shannon Drive Baltimore, MD 21205 MD residents add 5\% sales tax

GREAT DSKKETES
 Super low prices SYMCOM

The low priced, high quality diskette with a LIFETIME WARRANTY. Packed in polybags of 10 with Tyvek envelopes, labels and reinforced hubs.

DISKETTE 70-Holds 70 51/2 diskettes in dust free safety
DISK CADDIES-Flip up style holds $105 \%{ }^{\prime \prime}$ diskettes
$\$ 1.65$ ea. +.20 Shpng
Shipping: $5 \not 4^{\prime \prime}$ DISKETTES-Add $\$ 3.00$ per 100 or fraction thereof. OTHER ITEMS: Shipping charges as shown in addition to diskette shipping charges. Payment: VISA or MC COD orders only, add $\$ 3.00$. Taxes: illinois customers please add 8\%.

Nationwide: 1-800-621-6827
In Illinois: 1-312-944-2788
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICEI DISK WORLD!
Suite 4806 - 30 East Huron Street - Chicago, Mlinois 60611

Advertisers Index

Reader Service Number/ Advertiser Page
102 Aardvark Action Software 113
Abacus Software 143
Abati LQ-20 Printer 53
103 AB Computers 127
Academy Software 126
Aries Marketing Co 191
Artworx 77
104 Aspen Ribbons, Inc. 191
Atari, Inc 4
105 Batteries Included 31
106 Batteries Included 43
107 Brady Communications, Inc. 26.27
108 Cal-Abco/Peripherals Division 95
CA.P. Software Inc 167
109 Cardco, Inc. IBC
Cass-A-Tapes 87
Commodore Computers BC
110 Compucat 191
Compu-Qutie Designs 183
111 CompuServe 11
112 CompuServe 75
ComputAbility 149
The Computer Book Club 99
113 Computer Mail Order 186,187
114 ComputerMat 135
115 Computer Outlet 137
Computer Warehouse 146
Cosmic Computers Unlimited 125
Creative Software 71
116 CTRL Health Software 87
117 Datamost, Inc. 69
DesignWare 35
118 Disk World! 131
119 Disk World! 191
120 Disk World! 191
121 Dymarc Industries, Inc. 57
122 Eastern House 122
Electronic Arts 15
123 Elek-Tek. Inc. 131
Enchanted Forest 190
Epyx 39
Epyx 41
French Silk 72
Frontrunner Computer Industries 122
Funsoft 63
124 Futurehouse 7
Reader Service Number/ Advertiser Page
125 Gardner Computers Inc. 167
126 Handic Software Inc. 61
Happy Computers, Inc. 190
127 Harmony Video \& Computers 172
Hytec Systems 51
128 IBM 22,23
Indus Systems 97
Jason-Ranheim 152
129 Kalglo 72
130 Krell Software Corp. 81
Leading Edge Products, Inc. IFC
131 Lyco Computer Marketing \& Consultants 188,189
(M) agreeable Software, Inc. 191
Maxell 19
Melcomp 191
Micro-Sys Distributors 129
132 Micro Ware 72
Micro World Electronix, Inc. 119
133 Micro Worx 115
Midwest Micro Inc. 152
Mosaic Electronics, Inc. 9
Muse Software 55
134 Nibble Notch 130
Pacific Exchanges 173
Pacific Exchanges 174
Pacific Exchanges 175
Pacific Exchanges 183
Parsec Research 158
Powerbyte Software 172
135 Precision Software, Inc. 79
136 Professional Software Inc
137 Protecto Enterprizes 107
138 Protecto Enterprizes 108,109
139 Protecto Enterprizes 110,111
140 Reader's Digest 47
Reston Computer Group 17
Reston Computer Group 21
Reston Software 13
Reston Software 25
141 Richvale Telecommunications 83
142 SAVE 158
Scholastic Wizware 36,37
143 Screenplay 67
SM Software Inc. 144
SM Software Inc. 144
Reader Service Number/ Advertiser Page
SM Software Inc 145
SM Software Inc. 145
144 SoftPeople Inc. 73
145 SoftRent 190
Software City 119
Software Unlimited 131
146 Sophisticated Software of America 87
Spinnaker 2,3
Strategic Simulations Inc. 93
147 sublOGIC Corporation 89
148 Such A Deal 133
149 Systems Management Associates 117
3-G Company, Inc. 141
150 Timeworks, Inc 59
Tri S/C Software 191
Walling Co. 191
York 10 172
COMPUTEI'S GAZEITE BACK ISSUES 183 65

COMPUTE!'s
 FREE Reader Information Service

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.
Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.
Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTE, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.
Use these cards and this address only for COMPUTE!'s Reader Information Service. Do not send with payment in any form.

COMPUTE!

101	102	103	104	105	100	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122
123	124	125	126	127	128	129	130	131	132	133
134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155
156	157	158	159	160	161	162	163	104	165	166
167	168	169	170	171	172	173	174	175	176	177
178	179	180	181	182	183	184	185	186	187	188
189	190	191	192	193	194	195	196	197	198	199
200	201	202	203	204	205	206	207	208	209	210
211	212	213	214	215	216	217	218	219	220	221
222	223	224	225	220	227	228	229	230	231	232
233	234	235	236	237	238	239	240	241	242	243
244	245	246	247	248	249	250	251	252	253	254
255	256	257	258	259	260	201	262	263	264	265
266	267	208	269	270	271	272	273	274	275	276
277	278	279	280	281	282	283	284	285	286	287
288	289	290	291	292	293	294	295	296	297	298
299	300	301	302	303	304	305	306	307	308	309
310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331
332	333	334	335	336	337	338	339	340	341	342
343	344	345	346	347	348	349	350			

Circle 101 for a one year new U.S. subscription to COMPUTE: you will be billed for \$24.
Please print or type your full name and address Limit one card per person.
Name
Address
City
State/Province Zip

Country

COMPUTE!

01	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122
123	124	125	126	127	128	129	130	131	132	133
134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155
156	157	158	159	160	161	162	163	164	165	160
167	168	169	170	171	172	173	174	175	176	177
178	179	180	181	182	183	184	185	186	187	188
189	190	191	192	193	194	195	196	197	198	199
200	201	202	203	204	205	206	207	208	209	210
211	212	213	214	215	216	217	218	219	220	221
222	223	224	225	226	227	228	229	230	231	232
2	234	235	236	237	238	239	240	241	242	243
244	245	246	247	248	249	250	251	252	253	254
255	256	257	258	259	260	201	262	203	264	265
266	267	268	269	270	271	272	273	274	275	76
277	278	279	280	281	282	283	284	285	286	87
288	289	290	291	292	293	294	295	296	297	298
299	300	301	302	303	304	305	306	307	308	309
310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331
332	333	334	335	336	337	338	339	340	341	342
343	344	345	346	347	348	349	350		341	34

Circle 101 for a one year new U.S. subscription to COMPUTE: you will be billed for \$24.
Please print or type your full name and address. Limit one card per person.
Name
Address
City

State/Province	Zip	
Country		
Please include zip code. Expiration $7 / 31 / 84$	$\mathrm{CO584}$	

COMPUTE!

101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122
123	124	125	120	127	128	129	130	131	132	133
134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155
156	157	158	159	160	161	162	163	164	165	166
167	108	169	170	171	172	173	174	175	176	177
178	179	180	181	182	183	184	185	186	187	188
189	190	191	192	193	194	195	196	197	198	199
200	201	202	203	204	205	206	207	208	209	210
211	212	213	214	215	216	217	218	219	220	221
222	223	224	225	226	227	228	229	230	231	232
233	234	235	236	237	238	239	240	241	242	243
244	245	246	247	248	249	250	251	252	253	254
255	256	257	258	259	260	261	262	263	264	265
260	267	268	269	270	271	272	273	274	275	276
277	278	279	280	281	282	283	284	285	286	287
288	289	290	291	292	293	294	295	296	297	298
299	300	301	302	303	304	305	306	307	308	309
310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331
332	333	334	335	336	337	338	339	340	341	342
343	344	345	346	347	348	349	350			

Circle 101 for a one year new U.S. subscription to COMPUTE: you will be billed for \$24.
Please print or type your full name and address. Limit one card per person.
Name
Address
City
State/Province
Zip
Country

COMPUTE! Reader Service

P.O. Box 11747

Philadelphia, PA 19101

COMPUTE! Reader Service P.O. Box 11747

Philadelphia, PA 19101

COMPUTE! Reader Service P.O. Box 11747

Philadelphia, PA 19101

"Commodore-recay", . . . and ready for you NOW!

"Cardcorder" DC/1, Data Cassette Recorder/Player

Introducing the "CARDCORDER", Model DC/1, the Computer Cassette that is "Commodore-ready," designed for storage and retrieval of computer data efficiently, economically; with consistent performance. Yet, this fine CARDCO product is priced lower than any similar product with special quality features.
Includes standard connector which is
"Commodore-ready": LED "save" indicator light which confirms data recording on to the tape; handles up to 120 minutes (60 minutes on each side) of any standard tape including existing pre-recorded commercial as well as personal data tapes intended for use with Commodore Personal Computers; ready to go . . . just plug it in and record efficiently.
CARDCO's "CARDCORDER" COMPUTER
CASSETIE is a quality data cassette recorder/ player in an attractive polystyrene case, with all
the standard cassette functions:
record . . . play . . . rewind . . . fast forward . . . stop and eject . . . pause. A solid-state designed product of the finest components with auto-stop.
The "CARDCORDER" DC/1 carries a 90 day warranty to original owners.

All CARDCO products are available at your local dealers.

commodore ${ }^{64}$

Only From Commodo Only Commodore brings you the mage using your any special commanded hand to of "user friendly" sot ware! Imagine without learning Just move the animas) and you're MAG picture of the feature you ready to go. just like a real EL ECT ExCellent sound effects The MAGIC DESK Typewriter works just like a real aaronic. Excellent sound reports ..and it's COMPUTERIZED. All the fun, whether you're tyP , mASK useful for
and scoring
keeping names and MAGIC DESK are and more.

MMODORE 64, COMMOD Filing operations are automaticammands-just "file" an unbeatable combination. but you don't have drive - bur text is auto manically saved on Commodore disk drive -but you in the file cabinet and your text is an each drawer and 10 diskette. There are 3

your pages are automatically printed erase what you want to eras. There's eve

CLOCK which helps you Ne mistake! Just press to use .. it's hard to make a mistake! Jo tell you MAGIC DESK easy to of several "help menus" how the various picture
Not only is MAGIC K OE and one messages sha a mistake. Hep and wastebasket.
the COMMODORE
text. Special when you make a di ital clock and wast
-Come join us. commands work a use the printer
show you how to

[^0]: Add $\$ 17.50$ for shipping and handling!!
 Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada orders must be in U.S. dollars. VISA - MASTER

[^1]: David Thornburg is an author and speaker who has been heavily involved with the personal computer field since 1978. His main interest is in making computers responsive to people's needs. He is the inventor of the KoalaPad graphics tablet and is the author of nine books about programming. His recent series Computer Art and Animation (AddisonWesley) includes four books on Logo for the Atari, Commodore, Radio Shack and TI computers. Discovering Apple Logo (Addison-Wesley) shows how Logo can be used as a tool for exploring the art and pattern of nature. He has been called "an enthusiastic advocate for a humanistic computer revolution," and his editorial opinions have appeared in COMPUTE! since its inception.

[^2]: DOT MATRIX PRINIERS
 CBM MPS-801 Printer (50cps) \$ $\mathbf{2 4 5 . 0 0}$

[^3]: After this column was written, COMPUTE! Publications announced the availability of COMPUTE!'s GAZETTE DISK, premiering with the May 1984 issue of COMPUTE!'s GAZETTE. For more information, call TOLL FREE 800-334-0868 (in North Carolina 919-275-9809).

[^4]: Loc. Description
 JT +0 Save screen parameters
 JT +3 Restore saved screen parameters
 $\mathrm{JT}+6$ Enable graphics screen
 JT +9 Clear graphics screen
 $\mathrm{JT}+12$ Move graphics cursor to X, Y
 JT+15 Plot pixel at X, Y
 JT +18 Draw line to X, Y

