Products for Commodore, Atari, Apple, and others!

THE MONKEY WRENCH II A PROGRAMMERS AID FOR ATARI 800 NEW AND IMPROVED - 18 COMMANDS
PLUGS INTO RIGHT CARTRIDGE SLOT

If you are a person who likes to monkey around with the ATARI 800, then THE MONKEY WRENCH II is for youl! Make your programming tasks easier, less time-consuming and more fun. Why spend extra hours working on a BASIC program when the MONKEY WRENCH can do it for you in seconds. It can also make backup copies of boot type cassette programs. Plugs into the right slot and works with ATARI BASIC cartridge.
The MONKEY WRENCH provides 18 direct mode commands. They are: AUTO LINE NUMBERING - Provides new line numbers when entering BASIC program lines. RENUMBER - Renumbers BASIC's line numbers including internal reterences. DELETE LINE NUMBERS

- Removes a range BASIC line numbers.

VARIABLES - Display all BASIC variables and their current value. Scrolling - Use the START \& SELECT keys to display BASIC lines automatically. Scroll up or down BASIC program. FIND STRING - Find every occurrence of a string. XCHANGE STRING - Find every occurrence of a string and replace it with another string. MOVE LINES - Move lines from one part of program to another part of program. COPY LINES - Copy lines from one part of program to another part of program. FORMATTED LIST - Print BASIC program in special line format and automatic page numbering. DISK DIRECTORY - Display Disk Directory CHANGE MARGINS - Provides the capability to easily change the screen margins. MEMORY TEST - Provides the capability to test RAM memory CURSOR EXCHANGE - Allows usage of the cursor keys without holding down the CTRL key UPPER CASE LOCK - Keeps the computer in the upper case character set. HEX CONVERSION - Converts a hexadecimal number to a decimal number. DECIMAL CONVERSION - Converts a decimal number to a hexadecimal number. MONITOR - Enter the machine language monitor.
In addition to the BASIC commands, the Monkey Wrench also contains a machine language monitor with 16 commands used to interact with the powerful features of the 6502 microprocessor.

VIC RABBIT CARTRIDGE AND CBM 64 RABBIT CARTRIDGE

"High-Speed Cassette
Load and Save!"

$\$ 39.95$
(includes Cartridge and Manual)

Expansion Connector on the VIC Cartridge
"'Don't waste your Life away waiting to LOAD and SAVE programs on Cassete Deck."
Load or Save 8 K in approximately 30 seconds! Try it - your Un-Rabbitized VIC takes almost 3 minutes. It's not only Fast but VERY RELIABLE. Almost as fast as VIC Disk Drive! Don't be foolish Why buy the disk when you can get the VIC Rabbit for much, much less!
Easy to install - it just plugs in.
Expansion Connector on rear.
Works with or without Expansion Memory.
Works with VIC Cassette Deck.
12 Commands provide other neat features.
Also Available for 2001, 4001, and 8032

TELSTAR 64

Sophisticated Terminal Communications Cartridge for the 64. -PFO* 100000 CP $<01>02$ BELL $\quad 12: 30: 00 \quad$ 10:14:36 (TELSTAR's Status Line)
Don't settle for less than the best!

- Upioad/Downioad to/from disk or tape.
- Automatic File Translation
- Communicates in Industry Standard ASCII.
- Real-Time Clock plus Alarm Clock.
- Line editing capabiility allows correcting and resending long command lines.
- 9 Quick Read functions.
- Menu-driven.
- Similar to our tamous STCP Terminal package.
- Works with Commodore Modems and supports auto-dialing.

The best feature is the price - only $\$ 49.95$ (Cartridge and Manual)

ATARI, PET, AND CBM 64 EPROM PROGRAMMER

Programs 2716 and 2532 EPROMs. Includes hardware and software. PET $=\$ 75.00$ - ATARI and CBM 64 (both include sophisticated machine language monitor) $=\$ 119.95$

Prowniter Printer. Excellent dot matix print Parallel $=\$ 48900$
Serial $=\$ 600$ IFEE Serial $=\$ 60000$ IEEE $=\$ 58900$

Machine Language Monitor Cartridge

for the CBM 64

More than 20 commands allow you to access the CBM 64's Microprocessors Registers and Memory Contents. Commands include assemble, disassemble, registers, memory, transfer, compare, plus many more.
Someday every CBM 64 owner will need a monitor such as this.
Cartridge and Manual $-\$ 24.95$

CBM 64 Debugger

A more sophisticated Machine Language Monitor/Debugger. 20K of object code makes this a powerful tool. Works as a symbolic debugger for the MAE assembler. Diskette and Manual - $\$ 49.95$

More than just an Assembler/Editor!

NOW, The Best for Less!

- Designed to improve Programmer Productivity
- Similar syntax and commands - No need to relearn peculiar syntaxes and commands when you go from PET to APPLE to ATARI.
- Coresident Assemblet/Editor - No need to load the Editor then the Assembler then the Editor, etc - Also includes Word Processor, Relocating Loader and much more
- Join the ATUG User Group for MAE formatted disks
- STILL NOT CONVINCED? Send for tree spec sheet!

5 $1 / 4$ INCH SOFT SECTORED DISKETTES

Highest quality. We use them on our PETs, APPLEs, ATARIs, and other computers. $\$ 22.50 / 10$ or $\$ 44.50 / 20$
EPROMS $2716=\$ 4.502532=\$ 750$ DC Hayes Smart Modem $=\$ 23500$
DC Hayes Micro Modem II $=\$ 28900$

Rana Disk Drive - 375
4 Drive Controller - 114
Over 40 Commodore Programs by Baker $($ on 4040$)=\$ 2500$

The VIC chip views memory differently than does the 6510 chip. VIC sees only 16 K at a time and maps the ROM character set into part of this 16 K bank at times. These commands allow changes to the normal locations of the screen and character sets. [BANK selects which one of four banks (0 $3)$ the VIC chip sees. Normally this is bank 0. [BANK resets the pointer BASIC uses to locate the screen. [VS1K determines which 1 K block of the 16 available is used for the text screen. The blocks are numbered $0-15$. The BASIC screen pointer is reset for this location. [CB2K controls which 2 K block of the 8 available is used for the character set. In banks 0 and 2 the ROM set is located at 2 K blocks two and three. [CB2K is also used to select which 8 K block is used for the bitmap screen, values $0-3$ select the lower 8 K block, and values $4-7$ select the upper 8 K block. These three commands must be used in coordination to smoothly relocate the screen. Caution must be exercised in selecting locations since a system crash will result if the screen overwrites important RAM such as page zero. Banks 2 and 3 must be used with great care. (More on bank 3 usage later.) Program 6 demonstrates relocation to PET standard locations for the screen and BASIC.

Graphics/Text Control

[ECGR [MCGR [BMGR

These commands select extended color, multicolor, or bitmap graphics modes. A value of 0 turns the mode off and a value of 1 turns the mode on. Only multicolor and bitmap work in conjunction with each other to form a combined mode. When extended color and bitmap are both on, the screen will appear blank. This effect might be useful for temporarily hiding the screen.

[MXGR [KMXG [CMXV

These commands set up a simple interrupt routine that allows mixed modes to appear in two sections of the screen. [MXGR will change the contents of one VIC register (reg) or part of its contents (the bits OFF in mask) each time the raster counter register equals one of the two raster select values (rast1 and rast2). The values in val1 or val2 will be stored into the selected VIC register. You must determine the appropriate value for the particular register. For example, [MXGR 33,240, $152,6,252,1$ will cause screen lines 51 to 151 to be displayed with background white and lines 152 to 251 with background blue.

The visible portion of the screen extends from raster 51 to raster 251 . [KMXG will kill the interrupt and leave the selected register in an unknown state. [CMXV (change mixed-mode values) allows changing val1 and val2 while mixed mode is in force. By setting them equal, a known state will be in effect after [KMXG. The interrupt routines
are simple in that normal IRQ still occurs (keyboard scan, clock update, etc.) so that the transition will tend to creep. To keep the change precise, you must disable interrupts from the CIA. This will kill the keyboard, however, so I/O would be limited to joystick ports only.

[SIZE [XYSC

These commands help use the smooth scroll registers of the VIC chip. [SIZE selects 40 or 38 columns for the text display chosen by setting colsel to 1 or 0 (colsel $=1$ selects 40 columns) and sets number of lines to 25 or 24 (rowsel $=1$ selects 25 lines). [XYSC moves the entire text screen up to seven pixels horizontally or vertically. By setting xpos and ypos to a value in the range $0-7$, the screen can be stepped a pixel at a time to produce a smooth scroll. When used in conjunction with a machine language scroll routine or the automatic scroll up, text can be scrolled smoothly across or up the entire screen.

[DLCS

[DLCS (download character set) assists in using banks without ROM character set images and in designing custom character sets. You can copy the uppercase graphics set, upper- and lowercase set, or both by setting set equal to 0,1 , or 2 respectively. This is followed by the address of the first location in memory where you wish the ROM set to be positioned. This should be on a 2 K boundary unless you wish to change the order of the set. When the address is 53248, the set will be copied into the RAM beneath the ROM set for use in bank 3.

[FBMS [FSCR

The current hi-res screen (determined by the last [CB2K command) can be filled with any byte value with [FBMS (fill bitmap screen). [FBMS 0 would clear the entire 8 K screen. [FSCR works in a similar way with the current text screen. The entire screen is filled with a byte value. Since the text screen is used for color control in hi-res mode, [FSCR can be used for hi-res color control.

[PLOT [FLIP [CLPX [MCPL

These commands are used in plotting pixel points in hi-res graphics modes. The first three plot in 320×200 resolution two-color mode, the last in 160×200 resolution four-color mode. [PLOT sets the selected pixel on, [CLPX turns the pixel off, and [FLIP changes the pixel to the opposite state. [MCPL (multicolor plot) accepts horizontal coordinates in the range 0,159 and plots in one of four colors determined by sel, with sel in the range 0,3 . A value of 0 selects background color, 1 selects text screen low-byte color, 2 selects text screen high-byte color, and 3 selects color memory color. Before you execute any of the plotting commands, [CB2K must be used to select the appropriate 8 K block and [BMGR 1 must be in force for the plot

THE

REAL PROBLEM IN PERSONAL FINANCE MANAGEMENT

- IF YOU HAVE HAD ENOUGH OF 'PIGGY BANK' FINANCE PROGRAMS ...
- IF YOU WANT TO KNOW WHERE YOUR BUDGET IS GOING INSTEAD OF WHERE IT HAS BEEN...
- IF YOU HAVE SOME DISCRETION AVAILABLE IN ALLOCATING YOUR FUTURE INCOME...
Then the Xana PERSONAL FINANCE FORECASTER, now available for the Commodore 64^{\star}, is specially designed for you.
The FORECASTER uses advanced mathematical techniques to generate a rolling monthly, personalized cashflow projection based upon actual historical information and a limited number of estimates of future expenditures for discretionary items.
SOME UNIQUE FEATURES OF THE FORECASTER INCLUDE:
- Selection of items from a large variety of income and expenditure categories personalizes your budget.
- Immediate revision of each entry and/or each page.
- Opportunities to revise any or all data as desired to study the "What if" sensitivity of the budget.
- Simple updating from month to month with minimum data entry.
- Resistance to typographical errors.
- Single keystroke screen dump of any complete page of data.
- Printout of input data.
- Computer generated forms for organizing input data.

Tabular
printout of complete one to three year projections

If your nearest Commodore 64 dealer does not have the PERSONAL FINANCE FORECASTER in stock, contact:

$$
\begin{array}{ll}
\text { UNITED STATES } & \text { (213) } 410-9884 \\
\text { CANADA } & \text { (403) } 276-6834
\end{array}
$$

XANA DATA SYSTEMS IS A DIVISION OF XANA ENGINEERING LTD. *Commodore and the Commodore 64 are trademarks of Commodore Computer.
to be seen．Remember that y coordinates increase as you go down the screen．

［DRAW

［DRAW is used to draw line segments on the hi－res screen．［CB2K and［BMGR must be used in preparation as in plot commands．［DRAW con－ nects the endpoints given in the parameter list． The line is drawn from $x 1, y 1$ toward $x 2, y 2$ ．

［HRCS［CHAR［CHRX［CODE

These commands make it easy to put text on the hi－res screen．［HRCS（hi－res character set） stores the address of the character set to be used． It need not be located on a 2 K boundary or even be the same set as used on the text screen．The address given is of the first byte of the set．A value of 53248 will select the ROM set（upper／graphics）． ［CHAR and［CHRX plot an 8×8 character to a selected position on the current hi－res screen．The character code（char）to select which character to plot corresponds to the screen POKE codes as listed in Commodore documentation．Example： ［CHAR 1，100，100 would plot the letter A with position 100，100 being the upper－left corner of the 8×8 character cell．［CHAR plots the cell to the hi－ res screen absolutely while［CHRX uses the exclu－ sive OR function to flip the cell pixels．So［CHRX can be used to unplot a previously plotted charac－ ter．［CODE helps in translating to the screen POKE code used by［CHAR and［CHRX in character selection．

The argument for［CODE must be the name of a defined string variable．Upon execution the ASCII values stored in the string will be converted to screen POKE codes．The RVS ON and RVS OFF control characters can be used within the string to select the upper 128 or lower 128 charac－ ters of the set．All other control characters will produce unpredictable results．Once the string is converted using［CODE，use the ASC function and MID\＄function to read the codes．The ASC function will give correct results for the 0 character of the set．Be careful when using strings not built to high memory because［CODE will modify the actual string data stored within the BASIC text area．

［HRAM［LOOK［STUF

These commands make use of［BANK 3 pos－ sible from BASIC．When bank 3 is selected，the VIC chip uses RAM in the 64 from \＄C000 to \＄FFFF and ignores ROM located at the same addresses， including the ROM character set．SuperBASIC allows the location of one text screen（［VS1K block 3 located at \＄CC00）in bank 3．RAM from \＄D000 to \＄FFFF can be used for character sets，sprites， and a hi－res screen．The main problem confronting the bank 3 user is the switching required to read and write to these RAM locations．All plotting commands need to read as well as write to RAM so they can be preceded by［HRAM to accomplish

SuperBASIC Commands

Enhanced BASIC Commands
RESTORE 〈exp＞
GOTO＜exp＞
GOSUB＜exp＞
IF＜exp＞GOTO＜exp＞
IF＜exp＞GOSUB＜exp＞
ON＜exp＞GOTO＜exp1〉，＜exp2＞，．．．
ON＜exp＞GOSUB＜exp1＞，＜exp2＞，．．．
LIST（Shift Key halts list）
New SuperBASIC Commands
Sprite Commands
［DSPR spr，blk，xexp，yexp，xpos，ypos，multi， sprcolr，mc0，mc1
［MOVE spr，xpos，ypos
［KSPR spr
［ESPR spr
［BSPP spr，sel
Sound Commands
［SSND voice，ad，sr，wave，freq，pwidth
［PLAY 256^{*} wave＋voice，freq，pwidth
VIC Color Control ［BKGD col
［BKG4 col0，col1，col2，col3
［EXTC col
［FCOL col
VIC Memory Mapping
［BANK sel
［VS1K sel
［CB2K sel
Graphics Control
［ECGR sel
［MCGR sel
［BMGR sel
［MXGR reg，mask，rast1，val1，rast2，val2
［KMXG
［CMXV val1，val2
［SIZE colsel，rowsel
［XYSC xpos，ypos
［DLCS set，address
［FBMS byte
［FSCR byte
［PLOT x, y
［FLIP x, y
［CLPX x, y
［MCPL x, y ，sel
［DRAW $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$
［HRCS address
［CHAR char，x, y
［CHRX char， x, y
［CODE str\＄
［LOOK address，variable
［STUF address，byte
［HRAM 〈SuperBASIC mnemonic〉
＜parameter list＞
this in bank 3．For example，［HRAMDRAW $1,0,100,100$ would draw to the hi－res screen in RAM under the \＄E000 and \＄F000 ROMs．［HRAM should be used in this manner with［PLOT，［FLIP， ［CLPX，［MCPL，［DRAW，［CHAR，and［CHRX in bank 3．［MXGR should be avoided in bank 3．Using the first 3 K of bank 3 will crash SuperBASIC，so make sure the text screen is relocated by［VS1K 3 ． When the transition to bank 3 is accomplished，

The first program you should buy.
The more you use your computer, the more you want it to work for you.

But where do you begin? There are literally thousands of programs. It's time consuming, confusing and frustrating! The answer is to begin with THE LAST ONE ${ }^{\text {TM }}$.

THE LAST ONE . . The program that writes programs!

Now, for the first time, your computer is truly 'personal'. Now, simply and easily, you can create software the way you want it.

From Accounting to the Zodiac, THE LAST ONE puts you keystrokes away from whatever you need from your computer.

THE LAST ONE... See it at your dealer and buy it first!
Available for Commodore 64 ${ }^{\text {TM }}$, Commodore $8032^{\text {TM }}$, IBM PC ${ }^{\text {TM }}$, Victor $9000^{\text {TM }}$, Apple $I^{\text {TM }}$ and $l l e^{\text {TM }}$, Radio Shack Model II ${ }^{\text {TM }}$ and most CP/M ${ }^{\text {TM }}$ systems.

Distributed By
Computer
the 1 K block at $\$ 0400$ can be reclaimed for BASIC program storage. [LOOK and [STUF are PEEK and POKE equivalents that can be used with [HRAM to examine and change RAM. [LOOK is different from PEEK in that a defined variable name is used in the parameter list to store the value read from memory. [STUF works the same as POKE and is primarily useful for storing to block \$D000 RAM (for example, [HRAMSTUF $53248,255)$.

Programs $2-6$ are demonstration programs which should be helpful in seeing the commands used in actual applications.

If you're not up to typing in SuperBASIC yourself, send $\$ 3$ along with a blank disk (no tapes) and a stamped, self-addressed mailer to:

```
Martin C. Kees
711 West Henry
Pasco, WA 99301
```


Program 1: SuperBASIC 64

$2 \emptyset 49$: Ø11, øø8, øøø, øøø, 158, ø5ø, 228
$2 \emptyset 55$: ø48, ø56, ø48, øøø, øøø, øøø,159
$2 \varnothing 61$: $\varnothing \varnothing \varnothing, \varnothing 13 ~$
$2 \varnothing 67$: øøø, øøø, Øøø, øøø, Øøø, Øøø, Ø19
$2 \varnothing 73$: øøø, øøø, øøø, øøø, øøø, øøø, ø25
$2 \varnothing 79$: Øøø,169, $039,133, \varnothing \varnothing 1,169, \varnothing 3 \varnothing$
$2 \varnothing 85$: $\varnothing \varnothing \varnothing, 133,020,133, \varnothing 78,169,058$
2091 : $\varnothing 09,133,021,169,192,133,188$
$2 \varnothing 97$: $079,162, \varnothing 12,160, \varnothing \varnothing \varnothing, 177,127$
$21 \varnothing 3$: $02 \varnothing, 145, \varnothing 78,2 \varnothing \varnothing, 2 \varnothing 8,249,187$
$21 \varnothing 9: 23 \varnothing, \varnothing 21,23 \varnothing, 079,2 \varnothing 2,2 \varnothing 8, \varnothing \varnothing 7$
$2115: 242,160, \varnothing \varnothing 8,169,1 \varnothing 4, \varnothing 32, \varnothing 14$
2121 : $030,171,169,013,141,119,2 \varnothing 4$
2127 : øø2,141,12ø, Øø2,169, øø2, øø3
$2133: 133,198,169,033,141,001,248$
2139 : øø8,169, ø2ø,141, øø2, øø8,183
2145° : $\varnothing 76,12 \varnothing, \varnothing \varnothing 8, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing 45$
2151 : $\varnothing \emptyset \emptyset, \emptyset 31,147,017, \emptyset 17,048,107$
2157 : Ø17,157, $082, \varnothing 85, \varnothing 78,019, \varnothing 35$
2163 : Øøø, øøø, øøø, øøø, øøø,169, ø28
2169 : øøø, 133, $020,169,160,133,224$
2175 : Ø21,162, Ø32,160, øøø,177,167
2181 : $\varnothing 2 \emptyset, 145, \varnothing 2 \emptyset, 136,2 \varnothing 8,249,143$
2187 : $230, \varnothing 21,2 \emptyset 2,2 \emptyset 8,244,162,182$
2193 : øøø,16ø, Øø $3,185,224,160,1 \varnothing 9$
2199 : $157,224,160,232,2 \emptyset \emptyset, 224, \varnothing 68$
$22 \emptyset 5$: $19 \varnothing, 2 \varnothing 8,244,169, \varnothing \varnothing 3,141, \varnothing 88$
2211 : 161,168,169,192,141,162,132
2217 : $168,169,074,141,210,166,073$
2223 : 169, 193,141,211,166,141,172
2229 : $037,160,169,084,141,036,040$
2235 : $160,169,219,141,223,160,235$
2241 : 169,255,141, $044,160,169,1 \varnothing 7$
2247 : 194,141, 045,160,169,038,178
2253 : $133, \varnothing \emptyset 1,169, \varnothing \emptyset 5,141,143,029$
2259 : 183, 169, $076,141,043,169,224$
2265 : 141, $087,169,169,193,141,093$
2271 : $\varnothing 45,169,141, \varnothing 89,169,169,237$
2277 : 2øø,141, $088,169,169,227,199$
2283 : 141, $044,169, \varnothing 96, \varnothing \varnothing \emptyset, \varnothing \varnothing \varnothing, 173$
2289 : $\varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, 241$
2295 : øøø, øøø, øøø, øøø, øøø, øøø,247
2301 : $\varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing 32,115, \varnothing \varnothing \varnothing, 144$
$23 \emptyset 7$: $\emptyset 32,158,173, \varnothing 32,247,183, \varnothing 6 \varnothing$
2313 : $096, \varnothing 32,139,192,032, \varnothing \emptyset \emptyset, 244$

2319
2325 : 248, øø7, ø32, øøø,192,165,153
2331 : $020,162, \varnothing 29, \varnothing 32,162,192,112$
2337 : $\varnothing 32, \varnothing \varnothing \varnothing, 192,165, \varnothing 2 \varnothing, 162$, 92
2343 : $023, \varnothing 32,162,192, \varnothing 32, \varnothing 97, \varnothing 65$
$2349: 192, \varnothing 32, \varnothing \varnothing \varnothing, 192,165, \varnothing 2 \varnothing, 134$
2355 : $072,162, \varnothing 28, \varnothing 32,162,192,187$
2361 : $032, \varnothing \varnothing \varnothing, 192,165,02 \varnothing, 166,12 \varnothing$
2367 : 002,157,039,2ø8,104,240,045
2373 : 117, Ø32, Øøø,192,165, 020, Ø83
2379 : 141, Ø37, 2ø8, ø32, øøø,192,173
2385 : $165,020,141, \varnothing 38,2 \varnothing 8,169,054$
2391 : $011,162, \varnothing 21,032,162,192,145$
2397 : $096, \boxed{22,139,192,032, \varnothing \varnothing \varnothing, ~} 072$
$24 \varnothing 3$: $192,165, \varnothing 21, \varnothing 72,165, \varnothing 2 \varnothing, 222$
24ø9: $072, \varnothing 32, \varnothing \varnothing 0,192,165, \varnothing \varnothing 2,056$
2415 : $01 \varnothing, 17 \varnothing, 232,165, \varnothing 20,157, \varnothing 97$
2421 : $\varnothing \varnothing \varnothing, 2 \varnothing 8,2 \varnothing 2,1 \varnothing 4,157, \varnothing \varnothing \varnothing, \varnothing 2 \varnothing$
2427 : 2ø8,1ø4,162, $016, ~ ø 32,162, \varnothing 39$
2433 : 192,169, $000,141, \varnothing 30,2 \varnothing 8,101$
2439 : 141, ø31, 2ø8, ø96, ø32, øøø,131
2445 : 192, 165, Ø20, $041,067,133,187$
2451 : $\varnothing \varnothing 2,17 \varnothing, 169, \varnothing \varnothing 1,224, \varnothing \varnothing \varnothing, 2 \varnothing 1$
2457 : 24ø, $\varnothing 4, ~ \varnothing 1 \varnothing, 2 \varnothing 2,2 \varnothing 8,252, \varnothing 45$
2463 : $133, \varnothing 78,096,164, \varnothing 78,201,141$
2469 : $\varnothing \varnothing \varnothing, 24 \varnothing, \varnothing \varnothing 6,152, \varnothing 29, \varnothing \varnothing \varnothing, \varnothing 8 \varnothing$
2475 : 2ø8,2ø8, øø6,152, $073,255, \varnothing 49$
2481 : $\varnothing 61, \varnothing \varnothing \varnothing, 2 \varnothing 8,157, \varnothing \varnothing \varnothing, 2 \varnothing 8, \varnothing 43$
2487 : Ø96, Øøø, Ø07, Ø14, Ø32,019, Ø95
2493 : 199, 24ø, 15ø, ø32, øøø,192,234
2499 : $165, \varnothing 2 \varnothing, \varnothing 41$, øø3,17ø,189, 015
2505 : 183,192,133,078,169,212,144
2511 : 133, $079, \varnothing 32, \varnothing \varnothing \varnothing, 192,165,04 \varnothing$
2517 : $\varnothing 20,160,005,145,078,032,141$
2523 : $\varnothing \varnothing 0,192,165, \varnothing 2 \varnothing, 160, \varnothing \varnothing 6,25 \varnothing$
$2529: 145, \varnothing 78, \varnothing 32, \varnothing 28,193,165, \varnothing 98$
2535 : $020,133,002,160,004,145,183$
2541 : $078, \varnothing 32, \varnothing 37,193,169,015,249$
2547 : 141, Ø24,212, ø96, ø32, øøø,236
2553 : 192,165, Ø2ø, Ø41, Øø3,17ø, 072
2559 : 189, 183,192,133, $078,169,175$
2565 : $212,133,079,165,021,133,236$
2571 : Øø2,169, øøø,160, Ø04,145,235
2577 : $078, \varnothing 32, \varnothing 37,193,165,0 \varnothing 2,012$
2583 : 160, $004,145,078,096,169,163$
2589 : $0 \varnothing 0,160,004,145,078,076,236$
2595 : $\varnothing \varnothing \varnothing, 192, \varnothing 32, \varnothing \varnothing \varnothing, 192,165,1 \varnothing 4$
$26 \varnothing 1$: $\varnothing 21,160, \varnothing \varnothing 1,145, \varnothing 78,165, \varnothing 99$
$26 \varnothing 7$: $\varnothing 2 \varnothing, 136,145, \varnothing 78,165, \varnothing \varnothing 2, \varnothing 81$
2613 : 2ø1, $065,2 \varnothing 8, \varnothing 16, \varnothing 32, \varnothing \varnothing \varnothing, \varnothing 63$
2619 : 192, 165, ø21, ø41, Ø15, 160,141
2625 : $\varnothing \varnothing 3,145, \varnothing 78,165, \varnothing 2 \varnothing, 136,1 \varnothing \varnothing$
2631 : $145, \varnothing 78, \varnothing 96,173,141, \varnothing \varnothing 2,194$
2637 : 208,251 , $076,044,168,076,132$
2643 : $029,168,240,251,032,003,038$
$2649: 192, \varnothing 32, \varnothing 19,166, \varnothing 56,165,207$
2655 : $095,233,001,164,096,176,092$
2661 : $061,136,133,065,132,066,122$
2667 : $096, \varnothing 32, \varnothing \varnothing \varnothing, 192,160, \varnothing \varnothing \varnothing, \varnothing 75$
2673 : 177, $020,133, \varnothing \varnothing 2, \varnothing 32,115, \varnothing 8 \varnothing$
2679 : $\varnothing \varnothing \varnothing, \varnothing 32, \varnothing 4 \varnothing, 175,164, \varnothing \varnothing 2, \varnothing 2 \varnothing$
2685 : $169, \varnothing \varnothing \varnothing, \varnothing 32,145,179,166, \varnothing 48$
2691 : $\varnothing 71,164, \varnothing 72, \varnothing 32,215,187,1 \varnothing 4$
2697 : $096, \varnothing 32, \varnothing \varnothing \varnothing, 192,165, \varnothing 2 \varnothing, 13 \varnothing$
$27 \varnothing 3$: $133, \varnothing 78,165, \varnothing 21,133, \varnothing 79,24 \varnothing$
$27 \varnothing 9$: $032, \varnothing \varnothing \varnothing, 192,165, \varnothing 2 \varnothing, 160,2 \varnothing 6$
2715 : $\varnothing \varnothing \varnothing, 145, \varnothing 78, \boxed{69}, 173, \varnothing 14,149$
2721 : 22ø, $041,254,141, \varnothing 14,22 \varnothing, \varnothing 27$
2727 : 165, øø1, ø41,253,133, øø1,249
2733 : 169,193, Ø72,169,184, ø72, øø8

2739 2745 2751 : Ø32,115, Øøø, Ø76, Øøø,195, Ø85 $: 165, \varnothing \emptyset 1, \varnothing \emptyset 9, \varnothing \emptyset 2,133, \varnothing \emptyset 1,24 \emptyset$: $\emptyset 14,220,096,165,101,133,158$ $2763: 254,1 \varnothing 4,133, \emptyset \emptyset 2,198,254,124$ 2769 : 2Ø8, Ø05,165, Ø02, Ø76, 239,136 $2775: 167, \emptyset 32, \emptyset \emptyset \emptyset, 192, \emptyset 32,121,247$ 2781 : ØØØ, 2Ø1, Ø44,24Ø, 237, Ø96, Ø15 2787 : Ø32,121, ØøØ, 2Ø1,137,2๙8,158 2793 : ØØ3, Ø76, $055,169,2 \emptyset 1,141,11 \varnothing$ $2799: 24 \emptyset, 249, \emptyset 76, \emptyset 5 \emptyset, 169, \emptyset \emptyset \emptyset, 255$
 2811 : ØøØ, ØøØ, Øøø, Øøø, Øøø, Ø77, Ø72 2817 : $\varnothing 79, \varnothing 86,069, \varnothing 93,192, \varnothing 68, \varnothing 76$ 2823 : Ø83, Ø8Ø, Ø82,1Ø1,196, Ø83,12Ø 2829 : $\varnothing 83, \boxed{68}, \boxed{68}, 191,192, \boxed{60}, 193$ $2835: \emptyset 76, \emptyset 65,089,246,192, \varnothing 66,241$ 2841 : $075, \boxed{61, \varnothing 68,056,195, \varnothing 69, \varnothing 47}$ 2847 : Ø88, Ø84, Ø67, Ø65, 195, Ø75, Ø93 2853 : Ø83, Ø8Ø, Ø82, $074,195, ~ Ø 69,1 \varnothing 8 ~$ $2859: \boxed{63}, \varnothing 8 \emptyset, \varnothing 82, \varnothing 84,195, \varnothing 66,121$ 2865 : Ø83, ஏ8Ø, Ø8Ø, Ø92,195, Ø83,15Ø $2871: 084, \varnothing 85,070,137,193,069,181$ 2877 : $067, \emptyset 71, \emptyset 82,125,195, \emptyset 77,166$ $2883: \emptyset 67, \emptyset 71, \varnothing 82,150,195,066,186$ 2889 : $077,071,082,175,195,083,244$ $2895: \boxed{73}, \boxed{0} 9, \varnothing 69,187,195,088, \varnothing 13$ $2901: Ø 89, \emptyset 83,067,211,195,067, \varnothing 29$ $2907: \emptyset 65, \emptyset 84, \emptyset 65,250,195, \varnothing 66, \emptyset 48$ $2913: 065, \emptyset 78,075,053,196,086,138$ $2919: \emptyset 83, \emptyset 49,075,113,196, \varnothing 67,174$ 2925 : Ø66, Ø50, 075,151,196, Ø68, 203 $2931: \emptyset 76, \emptyset 67,083,172,196, \emptyset 77, \emptyset 18$ 2937 : Ø88, Ø71, Ø82, Ø65,197, Ø75,187
 2949 : $\varnothing 77, \varnothing 88, \varnothing 86,2 \emptyset \emptyset, 197, \varnothing 7 \emptyset, \varnothing 83$ $2955: \emptyset 67, \varnothing 79, \emptyset 76,217,197, \varnothing 8 \emptyset, \emptyset 87$ $2961: \emptyset 76,079, \varnothing 84,13 \emptyset, 198, \emptyset 7 \emptyset, \emptyset 14$ 2967 : Ø76, Ø73, Ø8ø, 122, 198, Ø67,255 $2973: \emptyset 76, \varnothing 8 \emptyset, \emptyset 88,138,198,077, \emptyset 46$ 2979 : $\varnothing 67, \varnothing 8 \emptyset, \varnothing 76,148,198, \varnothing 7 \emptyset, 034$ 2985 : Ø83, Ø67, Ø82, 197,198, Ø7Ø, Ø98 $2991: \emptyset 66, \emptyset 77, \emptyset 83,232,198, \emptyset 68,131$ 2997 : Ø82, Ø65, Ø87, Ø97,199, Ø72, Ø15 3øø3: Ø82, Ø67, Ø83, Ø6ø, 2ø1, Ø67,235 $3 Ø \emptyset 9: \emptyset 72, \emptyset 65, \emptyset 82,134,2 \emptyset 2, \varnothing 67, \emptyset 47$ $3 \emptyset 15: \emptyset 72, \emptyset 82, \varnothing 88,142,2 \emptyset 2, \emptyset 67, \emptyset 84$ $3021: \boxed{79}, \varnothing 68, \varnothing 69,15 \emptyset, 2 \emptyset 2, \varnothing 76, \varnothing 81$ $3 \varnothing 27: \emptyset 79, \emptyset 79, \emptyset 75,1 \emptyset 7,193, \emptyset 66, \emptyset 42$ $3 \varnothing 33: \emptyset 75,071, \emptyset 52,105,195, \varnothing 72, \varnothing 19$ $3039: 082,065, \varnothing 77,158,193,255, \emptyset 29$ $3045: 255,255,255,255,255,255,223$ $3051: 255,255,255,255,255,255,229$ $3057: 255,255,255,255,255,255,235$ $3063: 255,255,255,255,255,255,241$ $3069: 255,197,20 \emptyset, 162, \varnothing \emptyset \emptyset, 134,177$ 3075 : Øø2,16Ø, ØøØ,177,122,221,173 $3 \emptyset 81$: Øøø,194,2Ø8, Ø26,232,2Øø,1Ø1 $3 \varnothing 87$: 192, Øø4, 2ø8, 243,189, Øø1, Ø84 $3093: 194, \varnothing 72,189, \varnothing \emptyset \emptyset, 194, \varnothing 72,23 \emptyset$ $3 \emptyset 99: 165,122, \emptyset 24,105, \emptyset \emptyset 3,133, \emptyset 67$ $31 \varnothing 5: 122,144, \varnothing \emptyset 2,23 \emptyset, 123,096,238$ $3111: 165, \emptyset \emptyset 2, \emptyset 24,1 \emptyset 5, \emptyset \emptyset 6,133,218$ 3117 : ØØ2,17Ø,189, ØØØ,194,2Ø1,Ø33 $3123=255,2 \emptyset 8,2 \emptyset 6, \varnothing 76, \varnothing \emptyset 8,175,211$ $3129: \emptyset 32, \emptyset \emptyset \emptyset, 192,165, \emptyset 2 \emptyset, 141, \varnothing 95$ $3135=\emptyset 33,208, \emptyset 96, \emptyset 32, \emptyset 00,192,112$ $3141: 165, \varnothing 2 \emptyset, 141, \varnothing 32,2 \emptyset 8, \varnothing 96,219$ 3147 : $\varnothing 32,139,192,169, \varnothing \emptyset \emptyset, 162, \varnothing \varnothing 1$ $3153: \emptyset 21, \varnothing 76,162,192,032,139,191$
$3159: 192,162,021,076,162,192,124$ $3165: \emptyset 32,139,192,032, \varnothing \emptyset \emptyset, 192,168$ $3171: 165, \emptyset 20,162, \varnothing 27, \varnothing 76,162,199$ $3177: 192,162, \varnothing \emptyset \emptyset, 134, \emptyset \emptyset 2, \emptyset 32,115$ 3183 : ØøØ, 192, 165, Ø20, 166, Øø2,144 $3189: 157, \emptyset 33,2 \emptyset 8,232,224, \emptyset 04,2 \emptyset 7$ $3195: 2 \emptyset 8,239, \emptyset 96, \emptyset 32, \varnothing \emptyset \emptyset, 192,122$ $3201: 165,020,162,017,160,064,205$ $32 \emptyset 7$: Ø32, 164, 192, 165, Ø20, 24Ø, 18Ø $3213: 239,169, \emptyset \emptyset \emptyset, 152, \varnothing 22,16 \emptyset, 125$ $3219: \emptyset 16, \varnothing 76,164,192, \emptyset 32, \varnothing \emptyset \emptyset, 115$ $3225: 192,165,020,162,022,160,106$ 3231 : $\varnothing 16, \varnothing 32,164,192,165,020,236$ 3237 : 240, 214, 169, ØøØ, 162, 017,199 $3243: 16 \emptyset, \varnothing 64, \emptyset 76,164,192, \varnothing 32, \varnothing 91$ 3249 : Øøø, 192, 165, Ø20,162, Ø17, 221 $3255: 160, \emptyset 32, \emptyset 76,164,192, \varnothing 32, \varnothing 71$ 3261 : ØøØ, 192, 165, Ø2Ø, 162, Ø22, 238 3267 : 160, Øø8, Ø32,164,192, Ø32, Ø15 3273 : ØøØ, 192,165, Ø2Ø, 162, Ø17,245 3279 : 160, Øø8, Ø76,164,192, Ø32, Ø71 3285 : Øøø, 192, 165, Ø2Ø, Ø41, Øø7,126 $3291: 133, \emptyset 20,173, \varnothing 22,2 \emptyset 8, \varnothing 41, \varnothing 48$ 3297 : 248, Øø5, Ø2Ø, 141, Ø22, 208, 101 $33 \varnothing 3: \varnothing 32, \varnothing \varnothing \varnothing, 192,165, \varnothing 2 \varnothing, \varnothing 41,169$ $3309: \varnothing \varnothing 7,133, \varnothing 20,173, \varnothing 17,2 \varnothing 8, \varnothing 27$ $3315: \emptyset 41,248, \emptyset \emptyset 5, \emptyset 2 \emptyset, 141, \varnothing 17,2 \emptyset 3$ $3321: 2 \varnothing 8, \varnothing 96,169, \varnothing 32,141, \varnothing \emptyset \emptyset, 127$
3327 : Øø2, 162, ØøØ, 142, Øø5, Øø2, Ø56 $3333: 134, \varnothing \varnothing 2,173,141, \varnothing 02,2 \emptyset 8,153$ $3339: 251,160, \emptyset \emptyset 0,189, \emptyset \emptyset \emptyset, 194, \emptyset 37$ $3345: 153, \varnothing \varnothing 1, \emptyset \emptyset 2,232,2 \emptyset \emptyset, 192, \varnothing 29$ 3351 : Øø4, 2ø8, 244, 169, Øøø, 16Ø, Ø4Ø 3357 : ØØ2, Ø32, Ø3Ø, 171,165, ØØ2,175 $3363: \varnothing 24,1 \varnothing 5, \varnothing \emptyset 6,133, \varnothing \varnothing 2,17 \emptyset, 219$
3369 : 189, ØøØ, 194, 2Ø1, 255, 2Ø8, Ø64 $3375: 215, \varnothing 32,115, \varnothing \varnothing \varnothing, 2 \varnothing 8,251,1 \varnothing \varnothing$
$3381: \emptyset 96,173, \varnothing \varnothing 2,221, \varnothing \emptyset 9, \varnothing \emptyset 3, \emptyset 45$
$3387: 141, \varnothing \emptyset 2,221, \varnothing 32, \varnothing \emptyset \emptyset, 192,135$
$3393: 165, \varnothing 2 \varnothing, \varnothing 41, \varnothing \varnothing 3, \varnothing 72, \varnothing 73,183$
$3399: \emptyset \emptyset 3,133, \varnothing 2 \emptyset, 173, \emptyset \emptyset \emptyset, 221,109$
$34 \emptyset 5: \emptyset 41,252, \emptyset \emptyset 5, \varnothing 2 \emptyset, 141, \varnothing \emptyset \emptyset, \emptyset 24$
$3411: 221,104, \emptyset 24,1 \emptyset 6,1 \varnothing 6,106,238$
3417 : $133, \emptyset 2 \emptyset, 173,136, \varnothing 02, \emptyset 41, \emptyset 82$
$3423: \emptyset 63, \emptyset \emptyset 5, \varnothing 2 \emptyset, 141,136, \varnothing \emptyset 2,2 \emptyset 6$
$3429: \emptyset 96,173,136, \emptyset \emptyset 2, \varnothing 24,1 \varnothing 5,125$
$3435: \varnothing 03,141, \varnothing 22,192, \varnothing 76, \varnothing 1 \varnothing, \varnothing 39$
$3441: 192, \varnothing 32, \varnothing \varnothing \emptyset, 192,165, \varnothing 2 \emptyset, 2 \emptyset 2$
3447 : Ø41, Ø63, Ø10, Ø10, 133, Ø20,140
$3453: 173,136, \varnothing \varnothing 2, \varnothing 41,192, \varnothing \emptyset 5,162$
3459 : Ø2Ø, 141, 136, ØØ2,165, Ø2Ø, 103
3465 : Ø1Ø, Ø1Ø,133, Ø2Ø,173, Ø24,251
$3471: 2 \emptyset 8, \varnothing 41, \varnothing 15, \varnothing \emptyset 5, \varnothing 2 \emptyset, 141, \varnothing 61$
3477 : Ø24, 2Ø8, Ø96,173, Ø24, 2Ø8, 114
3483 : Ø41, 241, 133, ØØ2, Ø32, ØøØ, Ø92
$3489: 192,165, \varnothing 20, \varnothing 41, \varnothing 07, \varnothing 1 \varnothing, \varnothing 84$
3495 : Ø05, Ø02,141, Ø24, 2Ø8, Ø96,131
$35 \emptyset 1: 173, \emptyset 14,22 \emptyset, 041,254,141,248$
$35 \emptyset 7: \varnothing 14,22 \emptyset, 165, \varnothing 01, \emptyset 41,251,1 \emptyset 3$
$3513: 133, \emptyset \emptyset 1, \emptyset 32, \emptyset \emptyset \emptyset, 192,165,196$
3519 : Ø2Ø, Ø41, ØØ3,162, Øø8,2Ø1,114
3525 : Øø $2,2 \emptyset 8, \varnothing \emptyset 2,162, \varnothing 16,16 \emptyset, 235$
$3531: 2 \emptyset 8,2 \emptyset 1, \emptyset \emptyset 1,2 \emptyset 8, \emptyset \emptyset 2,16 \emptyset, 215$
$3537: 216,132,079,160, \varnothing \emptyset 0,132,160$
$3543: \emptyset 78,134, \emptyset \emptyset 2, \emptyset 32, \emptyset \emptyset 0,192,141$
$3549: 166, \emptyset \emptyset 2,16 \emptyset, \emptyset \emptyset \emptyset, 177, \emptyset 78, \emptyset 36$
$3555=145, \emptyset 2 \emptyset, 2 \emptyset \emptyset, 2 \emptyset 8,249,230,255$
$3561: \boxed{21}, 23 \emptyset, 079,2 \emptyset 2,2 \emptyset 8,242,191$
$3567: 165, \emptyset 01, \varnothing 09, \varnothing 04,133, \varnothing 01, \varnothing 4 \emptyset$
$3573=173, \varnothing 14,220, \varnothing \varnothing 9, \varnothing 01,141,035$

Let the Genesis Genie Loose in Your House!!! HE WILL WORK MAGIC WITH YOUR COMMODORE 64 OR VIC 20.

1444 LINDEN STREET, P.O. Box 1143, BETHLEHEM, PA 18018 (215) 861-0850

3789

3999
$40 ø 5$
4011
4017
4023
$4 \varnothing 29$
4035
4041
4047
405
4059
4065
4071
4077
4083
$4 \varnothing 89$
4095
4101
$41 \varnothing 7$
4113
4119
4125
4131
4137
4143
4149
4155
4161
4167
4173
4179
4185
4191
4197
4203
4209
4215
4221
4227
4233
4239
4245
4251
4257
4263
4269
4275
4281
4287
4293
4299
$43 \varnothing 5$
4311
4317
4323
4329
4335
4341
4347
4353
4359
4365
4371
4377
4383
4389
4395
4401
4407
4413
: 133, øø2, øø6, ø2ø, ø38, Ø21,123 : ø $32,255,197,133, \varnothing \varnothing 2, \varnothing 32, \varnothing 48$: øøø, 192, 165, ø2ø, Ø41, øø3, ø8ø : $17 \varnothing, 189,119,198, \emptyset 37, \varnothing 02,124$ $: 133, \varnothing 2 \varnothing, 165, \varnothing \varnothing 2, \varnothing 73,255, \varnothing 63$: 16ø, øøø, Ø49, 251, øø5, Ø20,162 $: 145,251, \varnothing 96, \varnothing 32, \varnothing \varnothing \varnothing, 192,143$ $: 173,136,002,133,252,169,042$: øøø,133,251,168,162,øø3,156 : 165, ø2ø, 145, 251, 2øø, 2ø8,178 $: 251,23 \varnothing, 252,2 \varnothing 2,2 \varnothing 8,246, \varnothing 72$: 145, 251, 2øø, 192, 232,2ø8,173
: 249, ø96, ø32, øøø, 192, 173,2ø5 : 136, øø2, ø41, 192,133,252,225 : 173, ø24, 2ø8, ø41, øø8, ø10,195 : Ø1ø, øø5,252,133,252,169,ø46 : øøø, 133, 251,162, Ø32,160, 225 : øøø,165, ø2ø,145,251,2øø, ø18 : 2ø8, 251, 23ø, 252, 2ø2, 2ø8, ø82 : 246, Ø96, ø32,121, øøø, 2ø8, $2 \varnothing 8$: Øø1, Ø96, 104,1ø4, Ø76, Ø7ø, 218 : 192,169, øøø,141,176, øø2,197 $: 141,178, \varnothing 02,141,179, \varnothing \varnothing 2,166$ $: 173,167, \varnothing 02,013,168, \varnothing 02,054$: 2ø8, øø2, Ø56, Ø96, 162, ø24, ø83 : Ø46,176, øø2, ø46,177, øø2,246 : ø46,178, øø2, ø46,179, øø2, øøø : Ø56,173,178, øø2,237,167,11ø : øø2,168,173,179, øø2,237, Ø64 $=168, \varnothing \varnothing 2,144, \varnothing \varnothing 6,14 \varnothing, 178,2 \emptyset 3$: øø2,141,179, øø2,2ø2,2ø8, ø49 $: 219, \varnothing 46,176, \varnothing \varnothing 2, \varnothing 46,177,243$: øø2, ø24, ø96, ø32, øøø, 192,185 : 165, Ø2ø,141,193, Øø2,165, Ø19 : ø21,141,194, øø2, ø32, øøø, 241 $: 192,165, \varnothing 2 \varnothing, 141,197, \varnothing \varnothing 2, \varnothing 62$: Ø32, øøø,192,165, Ø2ø,141,157 $: 195, \varnothing 02,165,021,141,196,077$: øø2, Ø32, øøø,192,165, ø2ø, ø3ø : 141,198, Øø2,169, øøø,141, Ø2ø $: 2 ø 2, \varnothing \varnothing 2, \varnothing 56,173,198, \varnothing ø 2, \varnothing \varnothing 8$ $: 237,197, \varnothing \varnothing 2,141,199, \varnothing \varnothing 2,159$: 176, Ø14,169,255,141,2ø2, ø88 : øø2, $077,199, \varnothing \emptyset 2,141,199, \varnothing 13$: øø2,238,199, øø2,169, øøø, øø9 : 141, 2ø3, Øø2, Ø56,173,195,175 : øø2,237,193, øø2,141,2øø, 186 : øø2,173,196, øø2,237,194,221 : $\varnothing \emptyset 2,141,2 \emptyset 1, \varnothing \emptyset 2,176, \varnothing 27,228$ $: 169,255,141,2 \varnothing 3, \varnothing \varnothing 2, \varnothing 77, \varnothing 2 \varnothing$: 2øб, øø2,141,2øø, øø2,169,149 : 255, ø77,2ø1, øø2,141,2ø1, ø62 : Øø2,238, 2øø, Øø2,2ø8, øø3,1øø : 238,2ø1, øø2,169, øøø,141,2ø4 : 2ø4, øø2, 173,199, øø2,2ø5,244 : 2øø, øø2,169, øøø, 237,2ø1, ø18 : Øø2,176, Ø76,173,199, øø2, ø99 $: 2 ø 8, \varnothing \emptyset 5,141,2 \emptyset 5, \varnothing \varnothing 2,24 \varnothing, \varnothing 22$: 1ø5,141,177, øø2,173,2øø, ø25 : Øø $2,141,167, \varnothing \emptyset 2,173,2 \emptyset 1,175$: øø2,141,168, øø2,169,255,232 $: 141,2 \varnothing 5, \varnothing \varnothing 2, \varnothing 32, \varnothing 3 \varnothing, 199,11 \varnothing$: 144, øø3, ø76, ø58,2ø1,173,162 :176, Øø2, Ø13,177,øø2,2ø8, Ø91 : ø2ø,169,255,141,176, øø2, ø26 $: 141,177, \varnothing \varnothing 2,169, \varnothing \varnothing \emptyset, 141,155$: 2ø8, øø2,169, Ø25,141,2ø9, ø29 : Øø2, 2ø8, Ø49,169, Øøø,141,1Ø6 : 2ø8, øø2,141,2ø9, øø2,24ø, ø89 : Ø39,169,255,141,2ø4,øø2,1ø3

COMMODORE 64" SOFTWARE

SPRITEMASTER ${ }^{*}$ is not just another sprite editor. It's the finest utility available for multicolor sprite animation and game programming It will have you making full coloranimatedobjects in just minutes. People running birds flying or tanks rollingarea snap with Spritemaster. It will automatically append your sprites to other programs. It's easy to use and understand and comes with a full 21 page instruction manual and samples of animated sprites to get you started. (Suggested retail price... $\$ 35.95$)

GENERAL QUARTERS! BATTLE STATIONS! As chief commander of land and sea forces in the Pacific, your mission is to obtain a quick naval victory, and invade enemy teritory with land forces. BEACH-HEAD" is a 100% machine language game and offers multi-screen action with high resolution, three dimensional graphics. (Suggested retail price... \$34.95)

NEUTRAL ZONE" takes you to the outer edges of the galaxy, to ALPHA IV, a long range early wamingstation whose mission is to detect alien intruders from other galaxies.
NEUTRAL ZONE ${ }^{\text {" }}$ is the ultimate in high resolution, fast action, arcade quality games. It is written in 100\% machine language and features smooth scrolling of the 360 degree panorama. The realism is unbelievable. (Suggested retail price... \$34.95)

4419 : 173,2øø, øø2, ø24,1ø9,2ø1, øø8 4425 : Øø2,24Ø,171,173,199,øø2, 092 4431 : 141,167, øø2,169, øøø,141,187 4437 : 168, øø2,173,2øø, øø2,141, øø3 4443 : 177, øø2,169,255,141,2ø5, 016 4449 : øø $, \varnothing 76, \varnothing 16,2 ø \emptyset, 238,2 \varnothing \varnothing, \varnothing 61$ 4455 : øø2,238,199, øø2,173,193,142 4461 : Øø2, Ø41, Øø7,133, Øø2,173,211 4467 : 193, øø2, ø41, 248, 133, 251, 215 4473 : $173,194,0 \emptyset 2,133,252,173,024$ 4479 : 197, Øø2, Ø32, Ø14,198,Ø17,ø75 4485 : 251, 145, 251,173,204,0ø2,135 4491 : 2ø8, Ø95, 173, 2ø3, Ø02,240, Ø36 4497 : ø16, Ø56,173,193, Øø2,233, Ø50 $45 ø 3$: øø1,141,193, øø2,176, Ø13,165 $45 \emptyset 9$: 2ø6,194, Øø2,144,Øø8,238,181 4515 : 193, Øø2, 2ø8, Øø3,238,194,233 4521 : øø2, $556,173,2 \varnothing \varnothing, \varnothing \varnothing 2,233, \varnothing 67$ 4527 : Øø1,141,2øø, øø2,176, øø3,186 4533 : $2 \emptyset 6,2 \emptyset 1, \varnothing \varnothing 2, \varnothing 24,173,2 \varnothing \varnothing, 219$ 4539 : $\varnothing \emptyset 2,1 \varnothing 9,2 \varnothing 1, \varnothing \varnothing 2,240,120, \varnothing 93$ 4545 : 173,2ø5, øø2,24ø,165, Ø24,234 4551 : $173,176, \varnothing \emptyset 2,1 \varnothing 9,2 \varnothing 8, ~ Ø \emptyset 2,1 \varnothing 1$ 4557 : 141,2ø8, øø2,173,177, øø2,14ø 4563 : 1ø9, 2ø9, øø2,141,2ø9, øø2,115 4569 : $144,144,173,2 \varnothing 2, \varnothing \varnothing 2,24 \varnothing, \varnothing 98$ 4575 : Øø6, 2ø6, 197, Øø2, Ø76, 1ø7, Ø49 4581 : 2øø,238,197, Øø2, Ø76,1ø7, Ø25 4587 : 2øø,173,2ø2, øø2,24ø, øø6, ø34 4593 : 2ø6,197, Øø2, $076,25 \emptyset, 2 ø \varnothing, 148$ $4599: 238,197, \varnothing \emptyset 2,2 \varnothing 6,199, \varnothing \varnothing 2, \varnothing 67$ $46 \varnothing 5: 24 \varnothing, \varnothing 58,173,2 \emptyset 5, \varnothing \varnothing 2,24 \varnothing, 147$ 4611 : Ø40, Ø24,173,176, Øø2,1ø9, Ø15 4617 : 2ø8, øø2,141,2ø8, øø2,173,231 4623 : 177, øø2,1ø9,2ø9, øø2,141,143 4629 : 2ø9, øø2, 144, ø19,173,2ø3, øø3 4635 : øø2,24ø, Ø17, Ø56,173,193,196 4641 : øø2,233, øø1,141,193,øø2,ø93 4647 : $176, \varnothing \varnothing 3,2 \varnothing 6,194, \varnothing \varnothing 2, \varnothing 76,184$ 4653 : 1ø7, 2øØ, 238, 193, Øø2, 2ø8, 225 4659 : 248, 238,194, øø2,2ø8,243,16ø 4665 : $\varnothing 96,198,122, \varnothing 96, \varnothing 32, \varnothing \varnothing \varnothing, \varnothing 89$ 4671 : 192, 165, Ø2ø,141, Ø75,2ø1, Ø89 4677 : 165, ø21,141, Ø76,2ø1, Ø96,øø1 4683 : 143,183, øøø,169, øøø,141,199 4689 : 193, øø2,141,196, Øø2, Ø32,135 4695 : Øøø, 192,165, Ø2Ø,141,197, Ø34 $47 \varnothing 1$: øø2, ø32, øøø, 192,169, Ø56, Ø32 $47 \varnothing 7$: 197, Ø2ø,169, Øø1,229, Ø21,224
4713 : $176, \varnothing \emptyset 5,169,255,141,193, \varnothing 2 \varnothing$ 4719 : Øø2,165, Ø2ø, Ø41, Øø7,133,223 4725 : Øø2,165, Ø2ø, Ø41,248,133,214 4731 : 251, 165, ø21, 133, 252, ø32, 209 4737 : Øøø, 192,169,192,197, Ø20,131 4743 : 176, øø5,169,255,141,196, Ø53 4749 : øø2,165, ø2ø, Ø41, øø7,141, øø5 4755 : 194, Øø2,141,195, Ø02,165, Ø78 4761 : Ø2ø, ø32, Ø14,198,165,251,ø65 4767 : ø41, 248, 133, 251, 173, 197,178 4773 : Øø $2,133, \varnothing 2 \varnothing, 169, \varnothing \varnothing \varnothing, 133,11 \varnothing$ 4779 : Ø21, øø6, ø2ø, ø38, Ø21, øø6, Ø27 4785 : Ø2ø, ø38, ø21, øø6, Ø2ø, Ø38, Ø64 4791 : Ø21, Ø24,173, Ø75,2ø1,1ø1, Ø1ø 4797 : Ø2ø,133, Ø2Ø,165, Ø21,1ø9,145 $48 \emptyset 3$: ø76,2ø1,133, ø21, ø24,165,ø47 $48 \emptyset 9$: 251,1ø5, øø8,141,177, Øø2,117 4815 : $165,252,105, \varnothing \varnothing \varnothing, 141,178, \varnothing 24$ 4821 : øø2, 165, ø21, Ø41, 2ø8, 2ø1, ø83 4827 : 2ø8, 2ø8, øø7,12ø,165, øø1,16ø 4833 : ø41, 251,133, Øø1,169,øøø, ø52

4839
4845
: $\varnothing \varnothing 5, \varnothing 56,1 \varnothing 6,2 \varnothing 2,2 \varnothing 8,251, \boxed{1} 1$
4851 : 141,179, øø2,172,176, Øø2,147
4857 : 177, ø2ø,166, øø2, 24ø, Øø4, ø9ø 4863 : ø74,2ø2,2ø8,252,ø32,ø77,ø76 4869 : 2ø2, 2ø8, 238, Ø44, 193, Øø2,124 4875 : ø48, ø56, ø56,169, øø8,229,ø65 4881 : øø2,133, øø2,2ø1, øø8,24ø, Ø91 4887 : Ø45,173,177, øø2,133,251, ø36 4893 : $173,178,0 \varnothing 2,133,252,169,168$ 4899 : Øøø,141,176, Øø2,173,194,2ø9 4905 : øø2,141,195, øø2,173,179,221 4911 : øø2, Ø73,255,141,179,øø2,187 4917 : 172,176, øø2,177, ø20,166,254 4923 : øø2, ø1ø, 2ø2, 2ø8, 252, ø32,253 4929 : $\varnothing 77,2 \varnothing 2,2 \varnothing 8,24 \varnothing, 169,0 \varnothing 4,197$ 4935 : Øø5, øø1,133, Ø01, ø88, Ø96,139 4941 : 172, 195, øø2, Ø44, $077,2 \varnothing 1, \varnothing \varnothing \varnothing ~$ 4947 : Ø48, Ø12,133,254,173,179,114 4953 : Øø2, Ø49, 251, øø5,254, Ø76,214 4959 : Ø99, 2ø2, ø81,251,145,251,1øø 4965 : 2øø,14ø,195, Øø2,192, Øø8, ø7ø 4971 : 2ø8, Ø17,16Ø, Ø64,140,195,123 4977 : øø2,23ø,252, ø44,196, øø2, 071 4983 : $016, \varnothing \varnothing 5,169, \varnothing \varnothing 7,141,176,121$ 4989 : $\varnothing \varnothing 2,238,176, \emptyset \emptyset 2,173,176,124$ 4995 : øø2,2ø1, øø8, ø96,169, øøø, ø95 $5 \emptyset 01: 141,077,2 \varnothing 1,076, \boxed{1}, 201,143$ $5 ø \emptyset 7$: 169,255,141, ø77,201, Ø76, Ø38 5013 : Ø78, 2ø1, ø32,115, øøø, ø32, ø95
5019 : $040,175,234,234,234,234, \emptyset 26$ 5025 : $234,234,165,071,133,020,25 \emptyset$ $5031: 165, \varnothing 72,133, \varnothing 21,160, \varnothing \varnothing \varnothing, 2 \emptyset 6$
$5 \emptyset 37$: 177, ø2ø, 24ø, 213, ø56, 165, ø2ø
$5 \emptyset 43$: ø2ø, 233, øø2,133, Ø2ø, 176, 251
$5 \emptyset 49$: Øø2,198, Ø21,177, Ø2ø,197, Ø32
5055 : $069,2 \varnothing 8,196,2 \varnothing \varnothing, 177, \varnothing 2 \varnothing, \varnothing 37$
5061 : 197, ø7ø,2ø8,189,16ø, øø3, øøø
5067 : 177, Ø20, 133,251,2øø,177,137
$5 \emptyset 73$: $\varnothing 20,133,252,169, \varnothing \emptyset \emptyset, 133,148$
$5079: 253,133,002,133,254,160,126$
5 Ø85 : Øøø,177, $071,17 \emptyset, 164, \varnothing \varnothing 2, \varnothing 37$
$5091: 177,251,2 ø 1,018,2 ø 8, \varnothing 07, \varnothing 65$
5097 : $169,128,133,253,076,009,233$
$51 \varnothing 3: 2 \emptyset 3,2 \varnothing 1,146,2 ø 8, \varnothing 07,169,149$
$51 \varnothing 9$: øøø,133,253, Ø76,øø9,2ø3,151
5115 : Ø41,191, Ø16, Øø2,ø73,192,254
5121 : Øø5,253,164,254,145,251, ø49
5127 : $23 \varnothing, 254,23 \varnothing, \varnothing \emptyset 2,2 \emptyset 2,2 \emptyset 8,1 \varnothing 9$
5133 : 211, 165, 254,160, øøø,145,18ø
5139 : ø71, ø96, øøø, øøø, øøø, øøø,186
5145 : $\varnothing \varnothing \varnothing, \varnothing 25$
5151 : Øøø, Øøø, Ø72, Ø2ø, Ø1ø, øøø,133
5157 : 153, ø34, 147,154, Ø83, Ø85,181
5163 : ø8ø, Ø69, ø82, Ø66, Ø65, Ø83,232
$5169: \boxed{0} 3,067,032,066,089,032,152$
5175 : Ø77, Ø67, ø83, Ø79, Ø7ø, ø84, Øø3
5181 : Ø32, Ø4ø, ø67, Ø41, Ø32, Ø49, Ø66
5187 : Ø57, Ø56, Ø51, Ø34, Øøø,1ø1,11ø
5193 : Ø2ø, ø15, øøø,129, Ø74,178,233
5199 : Ø49, 164, ø53, ø48, Ø58,161,1øø
5205 : $065,036,058,139,065,036,228$
$5211: 178, \varnothing 34, \emptyset 34,167,13 \varnothing, \emptyset 58,18 \emptyset$
5217 : 137, Ø50, Ø48, Øøø, 1ø7, Ø2ø,2ø3
5223 : Ø16, øøø,13ø, Øøø,143, Ø2ø,156
5229 : $\varnothing 2 \emptyset, \varnothing \varnothing \emptyset, 153, \varnothing 34, \varnothing 91, \varnothing 67,218$
5235 : Ø65, ø84, Ø65, Ø34, Ø58,144, 053
5241 : Ø67, ø65, ø84, Ø65, Ø58,144, Ø92
5247 : ø7ø, ø67, ø79, ø76, Ø49, ø52,øø8
5253 : Ø58,144, Ø66, Ø75, Ø71,068,1ø3
5259 : Ø54, Ø58,162, Øøø, Øøø, Øøø,157

10610 BAYVIEW (Bayview Plaza) RICHMOND HILL, ONTARIO, CANADA L4C 3N8

RICHMOND HILL, ONTARIO, CANA
(416) 884-4165
C64-LINK
The Smart 64
C64-LINK
The Smart 64

RTC

Call or writ by VISA, MASTERCARD or BANK TRANSFER. Mail orders also by certified check, etc.

Many more 64 s

Program 2: Moiré Pattern

1 REM MOIRE TITLE PAGE DEMO
5 [EXTCø
$1 \varnothing$ [CB2K4:[BMGR1:[FBMS $\emptyset:[F S C R 1$
15 FORJ=Ø TO318 STEP2
$2 \emptyset$ [DRAWJ, 198,16ø,1øø : NEXT
22 FORJ=ø TO318 STEP2
23 [DRAWJ, $\varnothing, 16 \varnothing, 1 \varnothing \varnothing$: NEXT
24 FORJ=ø TO198 STEP2
25 [DRAW16ø,1øø, 318, J\{3 SPACES\}:NEXT
26 FORJ=Ø TO198 STEP2
27 [DRAW161,1øø, $\varnothing, \mathrm{J}\{3$ SPACES $\}:$ NEXT
29 [EXTC4
$30 \mathrm{M}=$ ="SUPERBASIC": [HRCS53248:M\$=M\$+""
$4 \varnothing \mathrm{X}=12 \emptyset: \mathrm{Y}=8 \varnothing$: GOSUB5 \varnothing
$45 \mathrm{M} \$="\{$ RVS $\}$ BY MCSOFT": $M \$=M \$+" \mathrm{C}: \mathrm{X}=124: \mathrm{Y}=1$ 2ø: GOSUB5 \varnothing
47 [CHRX54,152,89:[CHRX52,160,89
48 FORJ=1TO8øø:NEXT

$5 \emptyset$ [CODEMS: FORJ=1TOLEN (MS)
$6 \emptyset$ [CHRXASC(MID\$(MS,J, 1$)$), X,Y
$7 \emptyset \mathrm{X}=\mathrm{X}+8$: NEXT
$8 \emptyset$ RETURN
$1 \varnothing \varnothing$ GETAS:IFAS=""THEN1øø
$11 \varnothing$ [BMGRø:[CB2K2

Program 3: Geometric Pattern

1 REM STAR DEMO
$1 \varnothing \mathrm{PI}=2$ * \uparrow
$2 \emptyset$ INPUT" ${ }^{\pi}\{C L R\}$ POINTS WANTED (\varnothing TO END) "; P W
21 IFPW=ØTHENEND
22 INPUT"SKIP";SK
23 INPUT"RADIUS <1øø ";R
$30 \mathrm{P}=\mathrm{PI} / \mathrm{PW}$
$5 \emptyset$ [BMGR1:[CB2K4:[FBMS \varnothing :[FSCR1
$60 \mathrm{X}=160: \mathrm{Y}=1 \varnothing \varnothing-\mathrm{R}: \mathrm{TL}=\varnothing$
$7 \emptyset$ FORJ=1TOPW
$8 \emptyset \mathrm{TH}=\mathrm{TL}+\mathrm{SK}$
$9 \emptyset \mathrm{TL}=\mathrm{TH}: \mathrm{TH}=\mathrm{TH} * \mathrm{P}-(\mathrm{PI} / 4)$
$1 \varnothing \varnothing \mathrm{X} 2=\cos (\mathrm{TH}) * \mathrm{R}+16 \varnothing$
$11 \varnothing \mathrm{Y} 2=\mathrm{SIN}(\mathrm{TH}) * \mathrm{R}+1 \varnothing \varnothing$
$12 \emptyset$ [DRAWX,Y,X2,Y2
$130 \mathrm{X}=\mathrm{INT}(\mathrm{X} 2): \mathrm{Y}=\mathrm{INT}(\mathrm{Y} 2):$: NEXT
$14 \varnothing$ GETAS:IFAS=""THEN14 \varnothing
$15 \emptyset$ [BMGRØ:[CB2K2:PRINT"\{CLR\}":GOTO2ø

Program 4: Joystick-Controlled Sprites

1 REM DOODLE
5 GOSUB9ø 0 :[DSPR1, $13, \varnothing, \varnothing, 16 \varnothing+16,1 \varnothing \varnothing+44, \varnothing$, Ø: GOSUB14Ø
$1 \varnothing$ [BANK 0 : [CB2K4:[BMGR1:[FBMS $\varnothing:[F S C R 1:[B S$ PP1,1
$2 \emptyset \mathrm{E}=1: \mathrm{X}=16 \varnothing: \mathrm{Y}=1 \varnothing \varnothing: \mathrm{C}=-1: \mathrm{FORQ}=1 \mathrm{TO} \varnothing \varnothing: \mathrm{NEXT}$
$3 \emptyset \operatorname{IFPEEK}(2 \varnothing 3)=6 \emptyset$ THENI $3 \varnothing$
$31 \operatorname{IFPEEK}(2 \emptyset 3)=4 \mathrm{THENE}=-\mathrm{E}: \operatorname{IFE}>$ ØTHEN[DSPR1, $13, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
32 IFE< \varnothing THEN[DSPR1, $13, \varnothing, \varnothing, \mathrm{X}+16, \mathrm{Y}+44, \varnothing, 12$: [CLPXX, Y
35 JV=PEEK (5632Ø):FR=JVAND16
$4 \emptyset$ JV=15-(JVAND15)
$5 \emptyset$ IFJV=ØANDFR=16THEN3 \varnothing
$6 \emptyset$ IFJV=1ORJV=50RJV=9THENY=Y-1:IFY<ØTHENY $=199$
$7 \emptyset$ IFJV=2ORJV=6ORJV=1ØTHENY=Y+1:IFY>199TH ENY=ø
$8 \emptyset$ IFJV> $=4$ ANDJV $<=6$ THENX $=\mathrm{X}-1:$ IFX $<\varnothing$ THENX $=31$ 9
$9 \emptyset$ IFJV>=8ANDJV < $=1$ ØTHENX=X+1: IFX> 319 THENX $=\varnothing$
$1 \varnothing \varnothing$ IFFR=ØANDJV=ØTHENC=-C:E=1:FORQ=1TOI $\emptyset \emptyset$

105 IFE < ØTHEN[ESPR1:[MOVE1, X $+16, \mathrm{Y}+44$: [CLP XX, Y: GOTO3 \varnothing
$11 \varnothing$ IFC>øTHEN[PLOTX, Y: GOTO3 \varnothing
$12 \emptyset$ IFC $<\emptyset T H E N[E S P R 1:[M O V E 1, X+16, Y+44:$ GOTO $3 \varnothing$
$13 \varnothing$ [BANK \varnothing :[BMGR 0 :[CB2K2:POKE198, $\varnothing:$ PRINT" \{CLR\}": [KSPRI: END
140 PRINT"\{CLR\}DOODLE 64"
150 PRINT"\{DOWN\}USE JOYSTICK IN PORT 2"
$16 \emptyset$ PRINT"BUTTON TURNS INK ON/OFF"
165 PRINT"F1 TURNS ERASE MODE ON/OFF"
$17 \emptyset$ PRINT"HIT A KEY TO START"
$18 \emptyset$ PRINT"HIT \{RVS\}SPACE\{OFF\} TO STOP"
185 PRINT"THE BLACK + IS YOUR CURSOR WHEN INK=OFF"
186 PRINT"THE GREY + IS YOUR CURSOR WHEN \{SPACE\}ERASE=ON": [BKGD1:[FCOLØ
190 GETAS:IFAS=""THEN19ø
$2 \emptyset 0$ IFA\$=" "THENRETURN
210 RETURN
9øØ $\mathrm{X}=13$ * 64
$91 \varnothing$ READY: IFY<ØTHENRETURN
$92 \emptyset$ POKEX,Y:X=X+1:GOTO91 \varnothing
$1 \varnothing \varnothing \emptyset$ DATA1, 192, $0,1,192, \varnothing, 1,192, \varnothing, 1,192, \varnothing$, 1,192, \varnothing
$101 \varnothing$ DATAØ, $128, \varnothing, 126,63, \varnothing, \varnothing, 128, \varnothing, 1,192, \varnothing$,1,192, \varnothing
$1 \varnothing 2 \varnothing$ DATA1, 192, $, 1,192, \varnothing, 1,192, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$, Ø, \varnothing
$1 \varnothing 3 \varnothing$ DATA $\varnothing, \varnothing, \varnothing$
$1 \varnothing 4 \emptyset$ DATAØ, $\varnothing, \varnothing,-1$

Program 5: Sprite Animation

1 REM FALLING SHAMROCKS
2 REM HIT A KEY TO STOP PROGRAM
5 [EXTCl3:[CB2K4:[BMGR1:[FSCR5:[FBMS171
$10 \mathrm{X}=832$: $\mathrm{V}=53265$: $\mathrm{R}=128$
$2 \emptyset$ READA:IFA $<\emptyset$ THEN35
$3 \emptyset$ POKEX, A: X=X+1: GOTO2 \varnothing
35 FORJ=ØTO7
$4 \varnothing$ [DSPRJ $, 13,1,1, \varnothing, \varnothing, \varnothing, 5+J\{2$ SPACES $\}:$ NEXT
$5 \emptyset$ FORJ=1TO256:FORK=1TO8:[MOVEK-1,J+K*K,J *K+K:NEXT:WAITV,R:[FSCRJ/2
55 GETAS:IFAS<>""THEN3øø
56 NEXT
$6 \emptyset \mathrm{X}=\operatorname{PEEK}(8192)+1:[$ FBMSX: GOTO 0
$1 \varnothing \varnothing$ DATA $\varnothing, 1 \varnothing 2, \varnothing, \varnothing, 255, \varnothing, 1,255,128,3,255,1$ 92
$11 \varnothing$ DATA $3,255,192,25,255,152,60,126,60,12$ 6,126,126
120 DATA $255,60,255,255,255,255,127,255,25$ 4,255,255,255,255
130 DATA24,255, 126,24,126,60,24,60,24,24, $24, \varnothing, 24, \varnothing, \varnothing, 24, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing,-1$
$3 \varnothing \varnothing$ [CB2K2:[BMGR :FORJ=ØTO7:[KSPRJ:NEXT

Program 6: Simple PET Emulator

$1 \varnothing$ REM ROUTINE TO SET BASIC MEMORY AND SC REEN TO PET STANDARD LOCATIONS
$2 \emptyset$ REM SCREEN AT 32768
$3 \emptyset$ REM BASIC $1 \emptyset 24$ TO 32767
$4 \emptyset$ REM ASSUME IN C-64 STANDARD MAP
$5 \emptyset$ [FSCR $\varnothing:[V S I K ~ \emptyset:[B A N K 2: P R I N T "\{C L R\} "$
60 POKE44,4:POKE 45,3: POKE46, 4
70 POKE55, $0:$ POKE56, 128
$8 \emptyset$ NEW

Look at these Features

- Fully screen-oriented
- Horizontal and vertical scrolling

BLIZTEXT is a trademark of ELCOMP PUBLISHING, INC.

Commodore-64 and VIC-20 are trademarks for

Dealer and Distributor inquiries are invited.

BLIZTEXT -- SUPER WORDPROCESSOR

 for the Commodore-64- ON SALE NOW! -
- Fully screen-oriented, up/down, left and right scrolling - Upper and lower case
- More than 70 commands
- Full I/O compatibility with Commodore peripherals Upper and lower case
- Works with practically every printer on the market, user definable printer control commands
- INCLUDE command allows handling large files on up to 4 diskettes or on cassette.
- Build in terminal software for electronic mail and networking. Telecommunications mode, upload and download, save on disk or cassette.
- Dynamic formatting, Imbedded commands
- Single keystroke for disk directory and error channel
- Program comes on disk or cassette
- Double line spacing, left and right margin justification, centering, page numbering, and practically everything one expects from a good wordprocessor.
Order \#4965 AVAILABLE NOW! $\$ 89.00$
Manual only (62 pages)
$\$ 29.95$

MACROFIRE

Editor/Assembler for the Commodore-64
ON SALE NOW
AVAILABLE IMMEDIATELY
One outstanding tool, consisting of 3 powerful elements combined into one efficient program!
1.) Fully screen-oriented Editor (more than 70 commands)
2.) Very fast assembler with macro capability
3.) Machine Language Monitor

Assembly can be started from the editor. Translates in 3 passes. More than 1,000 lables, screen oriented/no line numbers, scrolling, includes disk files.
Practically everything the serious machine language programmer needs everyday!
$\begin{array}{ll}\text { Manual only } & \mathbf{\$ 1 9 . 9 5} \\ \text { Order \#4963 }\end{array}$
Order \#4963

THE GREAT BOOK OF GAMES, VOL.I,
by Franz Ende
46 programs for the Commodore 64
Introduction to graphics and sound. How to program your own games. Walking pictures, animation, high resolution graphics, programming tips and tricks, hints and useful subroutines for the beginner and advanced programmer. This book is a MUST for every C-64 owner. Come and get it - It's yours for only $\quad \$ 9.95$ Order \#182 128 pages $\$ 9.95$ Programs from the book on disk.
Order \#4988
$\$ 19.95$
MORE ON THE SIXTYFOUR, by H.C. Wagner How to get the most out of your powerful Commodore 64. Very important subroutines, tricks and hints in machine language for your C-64. How to modify DOS. How to connect a parallel and serial printer. How to design your own terminal program for communication and networking. Dig into I/O for cassette and disk.
Order \# 183
$\$ 9.95$
Programs from the book on disk Order \#4989
$\$ 19.95$

NEW PRODUCTS

Watch out for our new books, software and add-ons to come soon. ON SALE NOW! - ORDER TODAY!
How to program in 6502 Machine Language on your C-64 ,by S. Roberts (Introduction) Order-\# 184 $\$ 12.95$
Commodore-64 Tune-up, Vol. I, by S. Roberts How to expand and customize your C-64.
Order \#185
$\$ 12.95$
Small Business Programs for the Commodore-64 by S . Roberts
How to make money using your C-64. Mailing list, invoice writing, inventory, simple wordprocessing and much more.
Order \# 186
$\$ 12.95$

Hardware Add-Ons:

Parallel printer interface KIT Order \# 4990 \$ 19.95 Direct Connect Modem KIT Order \#4991 Ask f.price Universal Experimenter Board Order \#4970 \$ 9.95 Expansion Board, space for four ex-
perimenter boards(board only) Order \#4992 \& 29.95
For your VIC-20
Tricks for VICs
S 9.95
Universal Experimenter board

PAYMENT: check, money order, VISA, MASTER CARD, Eurocheck, ACCESS, Interbank
CARD, Eurocheck, ACCESS, Interbank
Prepaid orders add $\$ 3.50$ for shipping (USA)
Prepaid orders add $\$ 3.50$ for
$\$ 5.00$ handling for C.O.D.
\$5.00 handling for C.O.D.
All orders outside USA: add
All orders outside USA: add 15% shipping, California residents add 6.5% sales tax.

ELCOMP PUBLISHING, INC
53 Redrock Lane
Pomona, CA 91766
Phone: (714) 6238314
Telex: 298191

ELCOMP PUBLISHING, INC.
53 Redrock Lane
Pomona, CA 91766
USA
Phone: (714) 623-8314
Telex: 298191

ELCOMP Computer (S) Pte. Ltd.

Machine Language Entry Program For Atari And Commodore 64

Charles Brannon, Program Editor

Abstract

Even the best typists have problems entering machine languare programs as BASIC loaders. Here's the solution.

Have you ever typed in a long machine language program? Chances are you typed in hundreds of DATA statements, numbers, and commas. You're never sure if you've typed them in right. So you go back, proofread, try to run the program, crash, go back and proofread again, correct a few typing errors, run again, crash, recheck your typing frustrating, isn't it?

Until now, though, that has been the best way to enter machine language into your computer. Unless you happen to own an assembler and are willing to wrangle with machine language on the assembly level, it is much easier to enter a BASIC program that reads the DATA statements and POKEs the numbers into memory.

Some of these BASIC loaders, as they are known, use a checksum to see if you've typed the numbers correctly. The simplest checksum is just the sum of all the numbers in the DATA statements. If you make an error, your checksum will not match up. Some programmers make the task easier by calculating checksums every ten lines or so, and you can thereby locate your errors more easily.

Almost Foolproof

"MLX" lets you type in long machine language (ML) listings with almost foolproof results. Using MLX, you enter the numbers from a special list that looks similar to BASIC DATA statements.

MLX checks your typing on a line-by-line basis. It won't let you enter illegal characters when you should be typing numbers, such as a lowercase L for a 1 or an O for a 0 . It won't let you enter numbers greater than 255, which are not permitted in ML DATA statements. It will prevent you from entering the wrong numbers on the wrong line. In short, MLX should make proofreading obsolete!

In addition, MLX will generate a ready-to-use tape or disk file. For the 64, you can then use the LOAD command to read the program into the computer, just as you would with any program. Specifically, you enter:

LOAD "program",1,1 (for tape)
or
LOAD "program",8,1 (for disk)
To start the program you need to enter a SYS command that transfers control from BASIC to machine language. The starting SYS will always be given in the article accompanying the machine language program.

For the Atari, MLX will generate a ready-touse boot tape or boot disk. It also has an option to create binary files for DOS users. A boot disk is like the disks sold with professional games on them. You just insert the disk, remove any cartridges, and turn on your computer. The game will then automatically load.

Boot Tapes

Using a boot tape is almost as simple. Just insert it into your player, rewind, press PLAY. Hold down the START key while turning on your com-

You'll never make
 Grand Prix champion just driving in circles.

You've got to stop sometime. The question is when. Right now you're in the lead. But the faster you go, the more gas you consume. And the quicker your tires wear down.

If you do pull into the pits, though, you lose precious seconds. So it's up to you to make sure the pit crew is quick with those tires. And careful with that gas. Otherwise, poof! you're out of the race. See your retailer for available computer formats.

So what'll it be, Mario? Think your tires will hold up for another lap? Or should you play it safe and go get some new ones? Think it over. Because Pitstop" is the one and only road race game where winning is more than just driving. It's the pits.

Goggles not included.
One or two players; 6 racecourses, joystick control.

STRATEGY GAMES FOR THE ATTION-GAF IE PHY积 W.commodore.ca

W焗w.commodore.ca
puter until you hear a beep（like the one you hear with CLOAD）．Then press a key on the keyboard and the program will automatically load and run．

Incidentally，the binary file is more useful for utilities than games．Binary files are loaded from the DOS menu（selection L）or automatically if the file is named＂AUTORUN．SYS＂．If you can＇t stand the thought of putting only one game on each disk（as with boot disks），you can place sev－ eral binary file machine language games on one disk．

Getting Started

To get started，type in and save MLX（you＇ll need it for future ML programs published in COMPUTE！）． When you＇re ready to type in the ML program， the program will ask you for several numbers：the starting address and the ending address．In addi－ tion，the Atari MLX will request a＂Run／Init Ad－ dress＂．These vital numbers can be found in the appropriate article accompanying the ML program．

The Atari version will then ask you to press either T for a boot tape，or D for disk．If you press D，you＇ll be asked if you want to generate a boot disk（press D）or a binary file（press F）．

Next you＇ll see a prompt．The prompt is the current line you are entering from the listing． Each line is six numbers plus a checksum．If you enter any of the six numbers wrong，or enter the checksum wrong，MLX will ring a buzzer and prompt you to reenter the line．If you enter it cor－ rectly，a pleasant bell tone will sound and you proceed to the next line．

A Special Editor

You are not using the normal Atari or Commodore 64 screen editor with MLX．For example，it will accept only numbers as input．If you need to make a correction，press 〈DEL／BACK S〉（Atari）or 〈INST／ DEL $>$（64）．The entire number is deleted．You can press it as many times as necessary back to the start of the line．If you enter three－digit numbers as listed，the computer will automatically print the comma and prepare to accept the next number． If you enter less than three digits（by omitting leading zeros），you can press either the comma， space bar，or RETURN key to advance to the next number．When you get to the checksum value， the Atari MLX will emit a low drone to remind you to be careful．The checksum will automatically appear in inverse video；don＇t worry，it＇s high－ lighted for emphasis．

When testing MLX，we＇ve found that it makes entering long listings extremely easy．With the audio cues provided，you don＇t even have to look at the screen if you＇re a touch－typist．We have tested MLX with people lacking any computer
）background whatsoever．No one has ever man－ aged to enter a listing wrong with it．

Done At Last！

When you finish typing（assuming you type the entire listing in one session）you can then save the completed program on tape or disk．Follow the screen instructions．With a boot disk，the Atari version will offer to format the disk．If you press Y（yes），be sure you have a blank disk in drive one－not your program disk！If you get any errors while saving，you probably have a bad disk，or the disk is full，or you made a typo when entering the actual MLX program．（Remember，it can＇t check itself！）

Command Control

What if you don＇t want to enter the whole program in one sitting？MLX lets you enter as much as you want，save that portion，and then reload the file from tape or disk when you want to continue． MLX recognizes these few commands：

S：SAVE
L：LOAD
N ：New Address
D：Display
For the Atari，hold down the CTRL key while you type the appropriate key．Hold down SHIFT on the 64 to enter a command key．You will jump out of the line you＇ve been typing，so it＇s best to perform these commands at a new prompt．Use the SAVE command to save what you＇ve been working on．It will write the tape or disk file as if you＇ve finished，but the tape or disk won＇t work， of course，until you finish the typing．Remember what address you stop on．The next time you run MLX，answer all the prompts as you did before， then insert the disk or tape．When you get to the entry prompt，press CTRL－L（Atari）or SHIFT－L （64）to reload the file into memory．You＇ll then use the New Address command to resume typing．

New Address And Display

Here＇s how the New Address command works． After you press SHIFT－N or CTRL－N，enter the address where you previously stopped．The prompt will change，and you can then continue typing．Always enter a New Address that matches up with one of the line numbers in the special listing，or else the checksum won＇t match up．

You can use the Display command to display a section of your typing．After you press CTRL－D or SHIFT－D，enter two addresses within the line number range of the listing．You can abort the listing by pressing any key．

Tricky Business

The special commands may seem a little confusing at first，but as you work with MLX，they will be－ come easy and valuable．What if you forgot where you stopped typing，for instance？Use the Display

command to scan memory from the beginning to the end of the program．When you see a bunch of 170 s （64）or zeros（Atari），stop the listing by pressing a key and continue typing where the 170 s（or zeros）start．Some programs contain many sections of these zeros or 170s．To avoid typing them，you can use the New Address command to skip over these blocks．Be careful，though；you don＇t want to skip over anything you should type．

Making Copies

You can use the MLX SAVE and LOAD commands to make copies of the completed ML program． Use LOAD to reload the tape or disk，then insert a new tape or disk and use the SAVE command to make a new copy．

One quirk about tapes made with the 64 MLX SAVE command：When you load them，the mes－ sage＂FOUND program＂may appear twice．The tape will load just fine，however．

We hope you will find MLX to be a true labor－ saving utility．Since it has been thoroughly tested by entering actual programs，you can count on it as an aid for generating bug－free machine lan－ guage．And be sure to save MLX；it will be used for future all－machine－language programs in COM－ PUTE！，COMPUTE！＇s Gazette，and COMPUTE！Books．

Program 1：MLX－ 64 Version

$1 \varnothing \varnothing$ PRINT＂\｛CLR\}\{RED\}"; CHR\$(142);CHR\$(8);: POKE53281，1：POKE5328ø，1
$1 \emptyset 1$ POKE 788，52：REM DISABLE RUN／STOP
$11 \varnothing$ PRINT＂\｛RVS\}\{4ø SPACES $\} " ;$
$12 \varnothing$ PRINT＂\｛RVS\}\{15 SPACES\}\{RIGHT\}\{OFF\} K＊ $\begin{array}{ll} & \{\text { RVS }\}\{R I G H T\} \\ \text { \｛RIGHT\} }\{2 \text { SPACES }\}\end{array}$

\｛13 SPACES ${ }^{\#}{ }^{\prime \prime}$ ；
$13 \varnothing$ PRINT＂\｛RVS\}\{15 SPACES\}\{RIGHT\} KG彐
 \｛OFF\}E*习\{RVS\}\{13 SPACES\}";
140 PRINT＂\｛RVS\}\{4ø SPACES\}"
15ø V＝53248：POKE2ø4ø，13：POKE2ø41，13：FORI＝ 832TO894：POKEI， 255 ：NEXT：POKEV＋27，3
160 POKEV＋21，3：POKEV＋39，2：POKEV＋4ø，2：POKE v，144：POKEV＋1，54：POKEV＋2，192：POKEV＋3， 54
$17 \varnothing$ POKEV＋29，3
$18 \varnothing$ FORI $=\emptyset$ TO23：READA：POKE679＋I，A：POKEV +39 ，A：POKEV $+4 \varnothing$ ，A：NEXT
185 DATA169，251，166，254，164，255，32，216，25 5，133，253，96
187 DATA169，$\varnothing, 166,251,164,252,32,213,255$ ， 133，253，96
$19 \varnothing$ POKEV＋39，7：POKEV＋4ø，7
$2 ø \varnothing$ PRINT＂\｛2 DOWN\}\{PUR\}\{BLK\}\{3 SPACES\}A F AILSAFE MACHINE LANGUAGE EDITOR \｛5 DOWN\}"
$21 \varnothing$ PRINT＂$\{5$ 羽\｛2 UP\}STARTING ADDRESS? \｛8 SPACES\}\{9 LEFT\}";:INPUTS:F=1-F:C\$= CHRS（ $31+119{ }^{*}$ F）
$22 \varnothing$ IFS＜ 256 OR（ $\mathrm{S}>4 \varnothing 96 \emptyset$ ANDS <49152 ）ORS >53247 THENGOSUB3øøø：GOTO21ø
225 PRINT：PRINT：PRINT
$23 \varnothing$ PRINT＂ K 5 习\｛2 UP\}ENDING ADDRESS? \｛8 SPACES\}\{9 LEFT\}";:INPUTE:F=1-F:C\$=

CHR\＄（31＋119＊F）
240 IFE ＜2560R（E＞4ø960ANDE＜49152）ORE＞53247 THENGOSUB3øøø：GOTO23ø
250 IFE＜STHENPRINTCS；＂\｛RVS\}ENDING < START \｛2 SPACES\}": GOSUB1øøø:GOTO $23 \varnothing$
260 PRINT：PRINT：PRINT
$3 \varnothing \varnothing$ PRINT＂\｛CLR\}"; CHRS(14):AD=S:POKEV+21, \varnothing
310 PRINTRIGHT\＄（＂øøøø＂＋MIDS（STR\＄（AD），2）， 5 ）；＂：＂；：FORJ＝1TO6
$32 \varnothing$ GOSUB57ø：IFN＝－1THENJ＝J＋N：GOTO32 2
$39 \varnothing$ IFN＝－211THEN 710
$4 \varnothing \varnothing$ IFN＝－2ø4THEN 790
$41 \varnothing$ IFN＝－2ø6THENPRINT：INPUT＂$\{$ DOWN $\}$ ENTER N EW ADDRESS＂；ZZ
415 IFN $=-206$ THENIFZZ＜SORZZ＞ETHENPRINT＂ \｛RVS\}OUT OF RANGE":GOSUB1øøø:GOTO41ø
417 IFN＝－2ø6THENAD＝ZZ：PRINT：GOTO31ø
$42 \varnothing$ IF N＜＞－196 THEN $48 \emptyset$
$43 \varnothing$ PRINT：INPUT＂DISPLAY：EROM＂；F：PRINT，＂TO ＂；：INPUTT
$44 \varnothing$ IFF＜SORF＞EORT＜SORT＞ETHENPRINT＂AT LEAS T＂；S；＂\｛LEFT\}, NOT MORE THAN";E:GOTO43 \varnothing
$45 \varnothing$ FORI＝FTOTSTEP6：PRINT：PRINTRIGHT\＄（＂Øøø Ø＂＋MID\＄（STR\＄（I），2），5）；＂：＂；
451 FORK＝\quad TO5： $\mathrm{N}=\mathrm{PEEK}(\mathrm{I}+\mathrm{K})$ ：PRINTRIGHT $($＂$\varnothing \varnothing$ ＂＋MIDS（STRS（N），2），3）；＂，＂；
46Ø GETAS：IFAS＞＂＂THENPRINT：PRINT：GOTO31ø
$47 \varnothing$ NEXTK：PRINTCHR $(2 \varnothing)$ ；：NEXTI：PRINT：PRIN T：GOTO31ø
$48 \varnothing$ IFN $<\varnothing$ THEN PRINT：GOTO31ø
$49 \varnothing$ A $(J)=N: N E X T J$
$5 ø \varnothing$ CKSUM＝AD－INT（AD／256）＊256：FORI＝1TO6：CK SUM $=($ CKSUM + A（ I ））AND 255 ：NEXT
510 PRINTCHRS（18）；：GOSUB570：PRINTCHR\＄（20）
515 IFN＝CKSUMTHEN53 \varnothing
$52 \varnothing$ PRINT：PRINT＂LINE ENTERED WRONG ：RE－E NTER＂：PRINT：ḠOSUBĪ $\varnothing \varnothing$ ：GOTŌ31 \varnothing
$53 \varnothing$ GOSUB2øøø
$54 \varnothing$ FORI＝1TO6：POKEAD＋I－1，A（I）：NEXT：POKE54 272，\varnothing ：POKE54273，\varnothing
550 AD＝AD＋6：IF AD＜E THEN $31 \varnothing$
560 GOTO 710
$570 \mathrm{~N}=\varnothing$ ： $\mathrm{Z}=\varnothing$
58 PRINT＂区 + 习＂；
581 GETAS：IFAS＝＂＂THEN581
$585 \operatorname{PRINTCHRS}(2 \varnothing) ;: A=A S C(A \$): I F A=130 R A=44$ ORA＝32THEN67 \varnothing
590 IFA >128 THENN $=-$ A：RETURN
$6 \varnothing \varnothing$ IFAく＞2ø THEN $63 \varnothing$
610 GOSUB690：IFI＝1ANDT＝44THENN＝－1：PRINT＂
\｛LEFT\} \{LEFT\}";:GOTO69ø
$62 \varnothing$ GOTO57ø
$63 \varnothing$ IFA＜480RA＞57THEN58ø
$64 \varnothing$ PRINTAS；：$N=N^{*} 1 \varnothing+A-48$
$65 \varnothing$ IFN＞255 THEN A＝2ø：GOSUB1øøø：GOTO6øø
$660 \mathrm{Z}=\mathrm{Z}+1$ ：IFZ＜ 3 THEN58 \varnothing
$67 \varnothing$ IFZ＝øTHENGOSUB1øøø：GOTO57ø
$68 \emptyset$ PRINT＂，＂；：RETURN
$69 \varnothing$ S\％$=\operatorname{PEEK}(2 \varnothing 9)+256 * \operatorname{PEEK}(210)+\operatorname{PEEK}(211)$
691 FORI＝1TO3：T＝PEEK（S\％－I）
695 IFT＜＞44ANDT＜＞58THENPOKES\％－I， 32 ：NEXT
7øø PRINTLEFT\＄（＂\｛3 LEFT\}",I-1);:RETURN
710 PRINT＂\｛CLR\}\{RVS\}*** SAVE ***\{3 DOWN\}"
$72 \varnothing$ INPUT＂\｛DOWN\} FILENAME"; F\$
730 PRINT：PRINT＂\｛ $\frac{1}{2}$ DOWN $\}$ \｛RVS $\}$ T\｛OFF $\}$ APE OR \｛RVS\}D\{OFF\}ISK: (T/D)"
$74 \varnothing$ GETAS： $\bar{I} F A \$<>" T " A N D \bar{A} \$ \overline{<}>" D " T H E N 74 \varnothing$
$75 \emptyset \mathrm{DV}=1-7 *(\mathrm{~A}=" \mathrm{D} "): I F D V=8 \mathrm{THENF} \$=" \varnothing: "+\mathrm{F} \$$
760 OPEN 1，DV，1，F\＄：POKE252，S／256：POKE251，

UNICORN TREASURES MAKE LEARNING A PLEASURE

10 LITTLE ROBOTS ${ }^{\text {TM }}$ - Ages 2-7. The most delightful way to introduce your young learner to the computer. 10 Little Robots has five different games to keep your child's avid attention. There is upper and lower case letter recognition, counting the robots, robot addition, an interactive storybook tale and a unique robot sketch game that will enchant kids in a most creative way. The storybook tale introduces the concept of subtraction and serves as a motivational tool for the beginning reader.

Available for the Apple, Atari Commodore 64 and IBM computers.

Disk versions only.
IBM version requires color card adapter.

Each Unicorn educational game teaches as it entertains. All our treasures have been developed and tested at The Computer Learning Center for Children. Written by experts who make them educational and fun, our games feature colorful, high-resolution graphics, multiple difficulty levels, beautiful music, and are completely user-friendly with simple on-screen instructions.

Unicorn's educational games are unique in their flexibility. Parents will be delighted to be able to use them year after year as their child's educational needs change. No need to spend a lot of money on software that children will master in a short time and not use again.

SHIPS AHOY ${ }^{\text {™ }}$ - Ages 5-13. Out- RACE CAR 'RITHMETIC ${ }^{\text {™ }}$ standing graphics and sound makes this program an entertaining way for children to practice their basic math facts. The object of the game is to sail your ship across the ocean avoiding the treacherous mine hidden beneath the sea. Ships Ahoy allows you to select beginner, intermediate or advanced levels within the four basic math functions. The flexibility of this program lies in the option of choosing to be timed or not enabling the academically talented student to practice speed math. An equation program and built-in tables enhance the effect iveness of Ships Ahoy. Two unique and different games are included as rewards

FUNBUNCH - The most flexible language arts program on the market today. Available on three levels. elementary (grades 1.6), intermediate (junior high school), and college board preparatory (high school). Each level includes over 2000 words and phrases. Within the elementary level the word list can be accessed by grade. The program also allows you to enter your own words and phrases. You can adjust the length of time the words and phrases are displayed on the screen, making Funbunch an excellent tool for speed reading as well as remediation. There is a built-in printer option which allows you to list the vocabulary for further review. Funbunch also contains a computer doodle drawing game for creative fun. Please specify Funbunch (elementary), Funbunch (intermediate) or Funbunch (college board preparatory) when ordering.

Available at your local computer store If you can't find them there, you can order directly from Unicorn Software. All programs $\$ 39.95$. Please enclose $\$ 2.00$ for shipping and handling. Visa and Mastercard welcomed.

Atari, Commodore 64, IBM PC and Apple are trademarks of Atari, Inc., Commodore Elec tronics LTD, International Business Machines Corp., and Apple Computer, Inc., respectivelv
Copyright 1983 by Unicorn Software Company. All rights reserved

S－PEEK（252）＊256
765 POKE255，E／256：POKE254，E－PEEK（255）＊256
770 POKE253，10：SYS 679：CLOSE1：IFPEEK（253） ＞90RPEEK（253）＝ØTHENPRINT＂\｛DOWN\}DONE." ：END
$78 \emptyset$ PRINT＂ 1 DOWN\}ERROR ON SAVE. 22 SPACES\}T RỴ AGAIN．＂：IFDV＝1THEN72ø
781 OPEN15，8，15：INPUT\＃15，DS，DSS：PRINTDS；D S\＄：CLOSE15：GOTO72ø
790 PRINT＂\｛CLR\}\{RVS\}*** LOAD ***\{2 DOWN\}"
$8 \varnothing \emptyset$ INPUT＂\｛2 DOWN \} FILENĀME";FS
$81 \varnothing$ PRINT：PRINT＂\｛2 DOWN\}\{RVS\}T\{OFF\}APE OR \｛RVS\} ${ }^{2}\{O F F\}$ ISK：（T／D）＂
$82 \emptyset$ GETAS： $\bar{I} F A S<>" T " A N D \bar{A} \$ \overline{<}>" D " T H E N 82 \emptyset$
$83 \emptyset$ DV＝1－7＊（AS＝＂D＂）：IFDV＝8THENF $=$＂$\varnothing: "+F \$$
840 OPEN 1，DV，Ø，F\＄：POKE252，S／256：POKE251， S－PEEK（252）＊256
850 POKE253，10：SYS 691：CLOSE1
$86 \emptyset \operatorname{IFPEEK}(253)>9$ OR PEEK $(253)=\emptyset$ THEN PRI NT：PRINT：GOTO31 \varnothing
$87 \emptyset$ PRINT＂${ }^{\text {\｛DOWN }}$ ERRROR ON LOAD．$\{2$ SPACES\} T RY AGAIN．\｛DOW̄N\}": IFDV=1THEN8øø
88Ø OPEN15，8，15：INPUT\＃15，DS，DS\＄：PRINTDS；D S\＄：CLOSE15：GOTO8øø
1øøø REM BUZZER
1øø1 POKE54296，15：POKE54277，45：POKE54278， 165
1øø2 POKE54276，33：POKE 54273，6：POKE54272， 5
1øø3 FORT＝1TO2øø：NEXT：POKE54276，32：POKE54 273，\varnothing ：POKE54272，\varnothing ：RETURN
$2 \emptyset \varnothing \emptyset$ REM BELL SOUND
$2 ø \varnothing 1$ POKE54296，15：POKE54277，Ø：POKE54278， 2 47
$2 \emptyset \emptyset 2$ POKE 54276，17：POKE54273，40：POKE54272 ，\varnothing
$2 ø \varnothing 3$ FORT＝1TO1øø：NEXT：POKE54276，16：RETURN
3øøø PRINTC\＄；＂\｛RVS\}NOT ZERO PAGE OR ROM": GOTO1øøø

Program 2：mLX－Atari Version

1 ØØ GRAPHICS $\emptyset: D L=P E E K(56 \emptyset)+256 * P E E K$ （561）＋4：POKE DL－1， 71 ：POKE DL＋2， 6
$11 \varnothing$ POSITION 8，$: ? ~ " M L X ": P O S I T I O N ~ 23 ~$
 ：？
120 ？＂Starting Address＂；：INPUT EEG： ？＂Ending Address＂；：INPUT FIN： ？＂Run／Init Address＂；：INPUT STAR TADR
13Ø DIM A（6），BUFFERक（FIN－BEG＋127），T\＄ （29），F\＄（20），CIO\＄（7），SECTOR\＄（128） ，DSKINV事（6）
$14 \emptyset$ OFEN \＃1，4，Ø，＂K：＂：？：？，＂耳ape or Eisk：＂；
15ø BUFFER $\$=$ CHR $\$$（ \varnothing ）：BUFFER $\$$（FIN－BEG＋ 36）＝BUFFER ：BUFFER $\$(2)=$ BUFFER\＄：S ECTOR $=$＝BUFFER $\$$
16 G ADDR＝BEG：CIO $=$＝hhh＂：CIO $\$(4)=$ CHR $\$$ （17め）：CIO\＄（5）＝＂LV＂：CIO\＄（7）＝CHR\＄（ 228）
$17 \emptyset$ GET \＃1，MEDIA：IF MEDIAく＞84 AND ME DIAく＞68 THEN $17 \emptyset$
18G？CHR\＄（MEDIA）：？：IF MEDIAく＞ASC（＂ T＂）THEN BUFFER $=$＝＂$=$ GOTO $25 \emptyset$
19ด BEG＝BEG－24：BUFFER $\$=$ CHR $\$(0):$ BUFFE R $\$(2)=$ CHR $($（ $(F I N-B E G+127) / 128)$
$299 \mathrm{H}=\mathrm{INT}$（BEG／256）：L＝BEG－H＊256：BUFFE R $\ddagger(3)=\operatorname{CHR} \$(L): \operatorname{BUFFER} \$(4)=\operatorname{CHR} \$(H)$
210 PINIT＝BEG＋8： $\mathrm{H}=\mathrm{INT}(\mathrm{PINIT} / 256): \mathrm{L}=\mathrm{P}$ INIT－H＊256：BUFFER\＄（5）$=\mathrm{CHF}$（ L ）：BU FFERक（ 6 ）$=$ CHF क（ H ）

229 FOF $I=7$ TO 24：FEAD A：BUFFER $\$(I)=$ CHR $=(A):$ NEXT I ：DATA $24,96,169,6 \%$ ，141，2，211，169，Ø，133，1ø，169， 0,13 3，11，76， 9,0
23＠H＝INT（STARTADR／256）：L＝STARTADR－H ＊256：EUFFER （15）＝CHRक（L）：BUFFER （19）＝CHR ${ }^{\text {o }}(\mathrm{H})$
24 Ø BUFFER $\$(23)=$ CHF $\$($ L $):$ BUFFER $\$(24)=$ CHRक（H）
259
260 ？：？＂Boot Disk or Binary Eile：＂ ；
$27 \emptyset$
$28 \emptyset$ YPEく＞7 \quad THEN $27 \emptyset$
？CHRक（DTYPE）：IF DTYFE＝7め THEN З 60
29 פ $\mathrm{BEG}=\mathrm{BEG}-3 \emptyset:$ BUFFER $\$=$ CHR $\$(\emptyset)$ ：BUFFE R\＄（2）＝CHR $\$((F I N-B E G+127) / 128)$
$30 \emptyset H=I N T(B E G / 256): L=B E G-H * 256$ ：EUFFE $\mathrm{R} \$(3)=\mathrm{CHR} \$(\mathrm{~L})=\mathrm{BUFFER} \$(4)=\operatorname{CHR} \$(H)$
З $1 \emptyset$ PINIT＝STARTADR： $\mathrm{H}=$ INT（PINIT／256）： L＝PINIT－H＊256：BUFFER $\$(5)=C H R \(L) ：BUFFER $\$(6)=$ CHR $\$(H)$
32ø RESTORE 33ø：FOR I＝7 TO 3ø：READ A ：BUFFER $\$(I)=C H R \$(A):$ NEXT I
33ø DATA $169, \emptyset, 141,231,2,133,14,169$ ， Ø，141，232，2，133，15，169，Ø，133，19， 169，Ø，133，11，24，96
34ø $H=I N T(B E G / 256): L=B E G-H * 256$ ：BUFFE R\＄$(8)=$ CHR $\$(L)=$ BUFFER $\$(15)=$ CHR $\$(H$ ）
350 H＝INT（STARTADR／256）：L＝STARTADR－H ＊256：BUFFER $\$(22)=$ CHR $\$(L):$ BUFFER $\$$ （26）$=\mathrm{CHR} \$(\mathrm{H})$
36Ø GRAPHICS Ø：POKE 712，1ø：POKE $71 \emptyset$ ， 1ø：POKE 7ø9，2
$37 \emptyset$ ？ADDR；＂：＂；：FOR J＝1 T0 b
38ø GOSUB $57 \emptyset:$ IF $N=-1$ THEN $J=J-1$ ：GOT － $38 \varnothing$
$39 \emptyset$ IF $N=-19$ THEN $72 \emptyset$
$4 \emptyset \varnothing$ IF $N=-12$ THEN LET READ＝1：GOTO 72 Ø
$41 \varnothing$ TRAF $41 \emptyset:$ IF $N=-14$ THEN ？：？＂New Address＂；：INPUT ADDR：？：GOTO 37 Ø
$42 \emptyset$ T
43Ø TRAF 439：？：？＂Display：From＂；：IN PUT F：？，＂TO＂；：INPUT T：TRAP 3276 7
$44 \varnothing$ IF $F<B E G$ $O R$ $F>F I N$ OR $T\langle B E G$ OR $T>$ FIN OR T＜F THEN ？CHR\＄（253）；＂At least＂；BEG；＂，Not More Than＂；F IN：GOTO $43 \varnothing$
$45 \emptyset$ FOR $I=F$ TO T STEF b：？：？I；＂：＂； FOR $K=\emptyset$ TO $5: N=$ PEEK（ADR（BUFFER $\$$ ） $+\mathrm{I}+\mathrm{K}-\mathrm{BEG}):$ T\＄＝＂Øøø＂：T\＄（4－LEN（STR\＄ （N）））＝STR\＄（N）
460 IF PEEK $(764)<255$ THEN GET \＃ 1 ，A：P OF ：POF ：？：GOTO $37 \emptyset$
476 ？Tक；＂，＂；：NEXT K：？CHRक（126）；：NE XT 1：？：？：GOTO 37ø
$48 \emptyset$ IF N＜Ø THEN ？：GOTO $37 \emptyset$
$49 \varnothing A(J)=N: N E X T J$
$5 \emptyset \emptyset C K S U M=A D D R-I N T(A D D R / 256) * 256: F O F$ $\mathrm{I}=1$ TO $6:$ CKSUM＝CKSUM＋A $(I):$ CKSUM ＝CKSUM－256＊（CKSUM＞255）：NEXT I
$51 \emptyset \mathrm{RF}=128:$ SOUND $\emptyset, 2 \emptyset \emptyset, 12,8$ ：GOSUB 57 Ø：SOUND Ø，$, \emptyset, \emptyset: R F=\emptyset: ? ~ C H R \(126)
520 IF N＜＞CKSUM THEN ？：？＂Incorrect ＂；CHR $\$(253)$ ；：？：GOTO 37
$53 \varnothing$ FOR $W=15$ TO \emptyset STEF $-1:$ SOUND $\emptyset, 5 \emptyset$ ，1ø，W：NEXT W
540 FOR $I=1$ TO $6:$ POKE ADR（BUFFER $)+A$

WORD PROCESSING／C－64 $4702-000101$ Quick Brn Fox C／T $\$ 57.00$
$5165-000025$ Script $64 / 80$ Col D $\$ 89.00$ $\begin{array}{ll}\text { 4100－064207 } & \text { Easy Script，Disk } \\ \mathbf{\$ 5 4 . 9 5} \\ \mathbf{5 8 4 1 - 0 0 6 4 0 1} & \text { Totl Text，Tape } \\ \mathbf{\$ 3 5}\end{array}$
 $5841-006402$ dTotI Label，Tape $\$ 17.95$ $5841-046402$ TotI Label，Disk $\$ 19.95$
$5692-000104$ Word Pro 3 Plus D $\$ 99.95$ $5692-000104$ Word Pro 3 Rlus D $\$ 99.95$ 5692－000204 Spelinght Plus／64，$\$ 59.95$
$5066-000164$ Paper Clip，Disk $\$ 100.00$ DATABAS E／C－64
5066－000264 DelphiOracle，D \＄120．00
$5544-000024$ Mirage $4538-000401$ DataBase Mgr，D $\$ 79.00$ UTILITIES／C－64
4365－004064 Develop 64，Tape $\$ 54.95$ 4001－4000177 Tiny Basic Comp D $\$ 59.95$ $4100-064101$ Assembler，Disk $\$ 19.95$ GAMES／C－64
5796－003026 Ft．Apocalypse，T 5796－004026 Ft．Apocalypse，
$5796-003028$ Survivor，Tape 5796－004028 Survivor，Disk 5796－003064 Blue Max，Tape 5796－004064 Blue Max，Disk 5763－254251 Frogger，Disk 5763－254252 Frogger，Tape 5763－254201 Crossfire，Disk 5763－254202 Crossfire，Tape 5763－254803 S．Lightfoot Cart $\$ 27.95$ $4085-002174$ Temple Apshai，D \＄31．95 $4085-002173$ Temple Apshai，T $\$ 31.95$
$4085-005873$ Jumpman，Tape $\$ 31.95$ $\begin{array}{ll}4085-005873 \\ 4085-005874 & \text { Jumpman，Tape } \\ \mathbf{\$ 3 1} \\ \mathbf{\$ 3 1 . 9 5}\end{array}$ 5098－000231 Choplifter，Cart．\＄35．95 $\begin{array}{ll}\text { 4200－000129 Astroblitz，Cart．} & \$ 36.95 \\ 4200-000126 & \text { Trashman，Cart } \\ \$ 36.95\end{array}$ $\begin{array}{ll}4200-000126 & \text { Trashman，Cart．} \\ 4428-000512 & \text { Gridrunner，Cart．} \\ \mathbf{\$ 3 6} & \mathbf{\$ 3 9 . 9 5}\end{array}$ $4428-000512$ Gridrunner，Cart．
$4770-030002$

Critical Mass，D． $4770-030003$ Repton，Disk 4770－077010 Type Attack，Car 432－245421 Suspended，Dart．\＄31．95 | $5432-006408$ | Planetfall，Disk | $\$ 39.95$ |
| :--- | :--- | :--- | 5432－243444 Witness，Disk BUSINESS／C－64 5828－000104 Invent．Mgmt． $\$ 69.95$ 5828－000204 Sales Anal．Mgmt．\＄69．95 5828－000304 Accts．Rea／Invoice．$\$ 69.95$ 5828－000404 Accts Pay／Chkwrite．$\$ 69.95$ $5828-000504$ Payroll Mgmt． $\begin{array}{ll}5828-000604 & \text { Cash Flow Mgmt．} \\ \mathbf{5 8 2 8 - 0 0 0 7 0 4} \text { Gen．Ledger } \\ \mathbf{S 6 9 . 9 5} \\ \mathbf{S 6 9 . 9 5}\end{array}$ $5063-000100$ Stock Mgmt，C／D $\$ 29.95$ S063－000100 Stock Mgmt．，C／D $\mathbf{\$ 2 9 . 9 5}$

$5165-000026$ Easy Calc Result．C $\mathbf{\$ 6 7 . 1 5}$ $5165-000026$ Easy Calc Result，C $\mathbf{\$ 6 7 . 1 5}$
$5165-000028$ Calc Result Adv，C $\$ 140.00$ 4775.000100 Personal Acct．D $\$ 34.95$ 4775．000100 Personal Acct．D $\$ 34.95$
4775.000101 Personal Acct．，T $\$ 29.95$ 4775－000102 Comp．Mechanic，D \＄26．95 $\mathbf{4 7 7 5 - 0 0 0 1 0 3}$ Comp．Mechanic．T $\$ 21.95$
$\mathbf{5 1 9 0} 195925$ Home Acct．D
$\mathbf{S 6 9 . 9 5}$

5433－000264 Accts．Rec．，Disk $\$ 79.95$ $\begin{array}{lll}5433-000364 & \text { Accts．Pay．，Disk } & \$ 79.95 \\ 5433-000464 & \text { Payroll，Disk } & \$ 79.95\end{array}$ $\begin{array}{ll}5433-000464 & \text { Payroll，Disk } \\ 5433-000564 & \$ 79.95 \\ \text { Inv，Mgmt．，Disk } & \$ 79.95\end{array}$ $5433-000564$ Inv，Mgmt．，Disk
$5433-000164$
Gen．Ledger，Disk $\$ 79.95$ ANY 3 OF ABOVE FOR JUST $\$ 229.00$ ！

BUSINESS／VIC－20 $4200-000136$ Home Finance．T $\$ 29.95$ 42000000115 Home Inventor，T 514.95
 4200－000100 Decision Maker，T \＄19．95

GAMES／ATARI

5796－002008 Ft．Apocalypse，C $\mathbf{5 3 1 . 9 5}$ $5796-003008 \mathrm{Ft}$ ．Apocalypse， T \＄27．95 5796－004008 Ft．Apocalypse，D \＄27．95 5796－004016 Necromancer，D 5796－003016 Necromancer． 5796－004002 Protector III，T 5796－004051 Zeppelin，Disk 5796－003051 Zeppelin，Tape 5796－003043 Blue Max，Tape 5763－152401 Ultima II，Disk 5763－154201 Crossfire，Dis 5763－154202 Crossfire，Tape
5763－154251 Frogger，Disk 5763－154251 Frogger，Disk
$5763-154252$ Frogger Tape 5763－154252 Frogger，Tape 5763－154352 Jawbreaker，Disk $\$ 27.9$ 5763－154801 S，Lightfoot，Disk \＄23．95 5763－154803 S．Lightfoot，Cart．\＄27．95 4085－002144 Temple Apshai，D \＄31．95 $4085-002143$ Temple Apshai，T \＄31．95 $5098-000108$ Apple Panic，Disk $\$ 23.95$ $5098-000120$ Choplifter，Disk 5098－000126 AE，Disk
$4325-012001$ Sub Cmdr．，Cart． 4325．012005 River Rescue，Cart $\$ 31.95$
$5574-392422$ Caste Wottenstein $\$ 23.95$ 5574－197681 Zaxxon，Disk $\$ 31.95$ 5574－197672 Zaxxon，Tape 4070－001906 Miner 2049er，Cart \＄39．95 $4770-020008$ Type Attack，Disk $\$ 31.95$ $4770-020010$ Critical Mass，D $\$ 31.95$ $4770-020011$ Repton，Disk 4770－020014 Wavy Navy，Disk 4770－199378 Astrochase，Disk 5432－245212 Deadline，Disk 5432－245309 Starcross，Disk $5432-245309$
$5432-245420$
Witness，Disk

$\$ 31.9$ | 5432－245420 | Witness，Disk |
| :--- | :--- |
| $\mathbf{5 4 3 2 - 2 4 5 4 2 4}$ | $\mathbf{\$ 3 9 . 9 5}$ |

BUYONE CETAL

4325－011010 Jigsaw Eur 1 T TEE！ 4325－011010 Jigsaw，Eur．\＃1，T \＄29．95 $4325-011006$ Humpty Dumpty，T $\$ 29.95$
$4325-011011$ Jigsaw，Eur \＃2，T $\$ 29.95$ 4325－011011 Jigsaw，Eur．\＃2，T $\$ 29.95$
$\mathbf{4 3 2 5 - 0 1 1 0 0 7}$ Hickory Dickory，T $\$ 29.95$ 4325－011007
Hickory Dickory，T $\$ 29.95$
$\mathbf{4 3 2 5 - 0 1 1 0 1 4}$ Comp． $4 / R e v, T$ \＄29．95 $4325-011014$ Comp． $4 / \mathrm{Rev}_{\text {．}}$ ，T $\mathbf{\$ 2 9 . 9 5}$
$\mathbf{4 3 2 5}-011008$ Jigsaw，Brit．\＃1，T $\mathbf{\$ 2 9 . 9 5}$ $\begin{array}{ll}\mathbf{4 3 2 5 - 0 1 1 0 1 3} & \text { Figure Fun，T } \\ \mathbf{4 3 2 5 - 0 1 1 0 0 9} & \mathbf{J i g s a w}, \text { Brit．\＃} 2 . T \\ \mathbf{\$ 2 9 . 9 5} \\ \mathbf{2 9 . 9 5}\end{array}$

BUSINESS／ATARI ${ }^{*}$

5098－000081 Bank St．Writer，C $\$ 59.95$ 5501－028091 Ltr．Pfot 40／80，D $\$ 139.95$ $\begin{array}{ll}\text { 5094－202981 MiI Stk．Mkt．D } & \$ 59.95 \\ 5206-001090 & \text { TextWizard，Disk } \$ 79.95 \\ 5206-001175 & \text { Spell Wizard，}\end{array}$ $\begin{array}{ll}\text { 5206－004011 } & \text { File Mgr．，Disk } \\ \text { 520．0．} & \$ 79.95\end{array}$

VロLK巨MロロEM

Lightweight，compact modem．Voice Data Switch；Full／Half Duples Switch； 300 Baud；Bell 103 Compatible． 5042－000009 INTERFACE CABLES 5042 －000021 For Atari $\$ 12.98$ 5042 －000022 For TRS 80.18 III $\$ 12.98$ $5042-000023$ For Commodore $\$ 12.98$ 5042 －000024 For IBM PC $\$ 12.98$
$\$ 12.98$ VISIT OUR FIRST STORE－JUST

APPLE $\|^{\circ} \cdot$ APPLE $\|^{\circ}+$ $5899-119425$ Visifile／Visiplot．D $\$ 186.00$ $5899-580124$ Visicalc Bus Fore．D $\$ 78.00$
5899.580014 Visitrend／Plot．D \＄223．00 5899.580014 Visitrend／Plot．D \＄223．00 $5899-580013$ Visiplot，Disk $\$ 156.00$ $5899-436278$ VisiCalc，Disk $\$ 178.00$ $5899-580016$
$5899-109385$
Visiterm，Disk $\quad \$ 74.40$ $5899-109385$ Visidex，Disk $\$ 186.00$
$5899-580023$
Visischedule D
$\$ 223.00$ $\begin{array}{ll}\text { 5899－580023 Visischedule，D } & \$ 223.00 \\ 5777-000101\end{array}$ $\begin{array}{ll}5777-000101 & \text { PFS File，Disk } \\ 5700.00 \\ 5777-001022 & \text { PFS Report，D } \\ \$ 100.00\end{array}$ $\begin{array}{ll}5777-001022 \\ 5777-000403 & \text { PFS S Graph，D } \\ 50900.00\end{array}$ $5098-000080$ Bank St．Writer．D $\$ 59.95$

GAMES／APPLE＇
5763－104051 Apple Cider Spider．D \＄27．95 5763－104201 Crossfire，Disk \＄23．95 5763－104251 Frogger，Disk \＄27．95 5763－102401 Ultimali．Disk \＄43．95 5763－104801 S．Lightfoot．D \＄27．95 4085－002134 Temple Apshai，D \＄31．95 4085－005834 Jumpman，Disk $\$ 31.95$
$5094-202819$ Millionaire D $\$ 47.95$ 5094－202819 Millionaire，D 5098－000008 Apple Panic，Disk \＄23．95 $5098-000020$ Choplifter，Disk $\$ 27.95$ $5098-000024$ AE Disk $\begin{array}{ll}5098-000030 & \text { LodeRunner，D } \\ \mathbf{S N} \\ \mathbf{\$ 2 7 . 9 5}\end{array}$ 5574－392418 Castie Woffenstein D \＄23．95 5206－197224 Zaxxon．Disk \＄31．95 5539－000022 Miner 2049er，D 4770.010032 Repton，Disk $4770-010033$ Type Attack，D
$4770-010036$ Wavy Navy，Disk $\begin{array}{lll}4770-010036 & \text { Wavy Navy，Disk } & \$ 27.95 \\ 4770-010037 & \text { Critical Mass．} & \$ 31.95\end{array}$

4108－005600 Vic－20／C－64 KybrdS	

BOOKS／C－64
$4560-000034$ Elementary C． 64 \＄14．95 $4760-022056$ C－64 Prog．Ret．Gde．$\$ 19.95$ $4105-000020$ 1st Book of CBM－64 \＄14．95
$4250-000180$ More 32 Prog C－64 \＄29．95 4250－000180 More 32 Prog C－64 \＄29．95 4690－000380 C－64 User＇s Guide \＄14．95 4690－152306 C－64 Computing $\$ 12.95$ $4690-838136$ Sprite Graph／C－64 \＄15．95 $4690-940072$ Using C－64 at Home $\$ 10.95$ 4760－022010 C．64 User＇s Gde．$\$ 9.95$
4795.000116 C－64 Basic Hindbk $\mathbf{\$} 9.95$ $4795-000126$ Easy Gde to C－64 \＄ 7.95 $4800-001640$ Graph／Sound Prog $\$ 14.95$ BOOKS／ATARI
$\begin{array}{ll}\text { 4105－000000 } 1 \text { st Book of Atari } & \$ 12.95 \\ 4105-000002 & \text { inside AtariDOS } \\ \$ 19.95\end{array}$ $4105-000002$ Inside AtariDOS $\$ 19.95$ $4105-000006$ 2nd Book of Atari $\$ 12.95$ $4105-000008$ 1st Bk Atari Graph \＄12．95 $4105-000015$ Atari Basic Srcebk \＄12．95 $4198-000022$ Computers for Kids $\$ 4.95$ $4198-000034$ Creative Atari
$4250-000084$
32 Prog．Atari $4250-00008432$ Prog．Atar
$\mathbf{4 2 5 0}-00017232$ Prog．Atar （With Diskette） 4525－049194 Hands On Basic \＄19．95 4525－068579 Learning w／Logo \＄14．95 BOOKS／VIC－20

$$
\begin{array}{ll}
4105-000007 & \text { ist Book Vic-20 } \\
410512.95 \\
4105000013 & \text { ist Bk Vic } 20
\end{array}
$$ $4105-000013$ 1st Bk Vic－20 Games $\$ 12.95$ $4105-00016$ 2nd Bk．of Vic－20 $\$ 14.95$ $\begin{array}{lll}4250-000059 & 32 \text { Prog．Vic－20 } & \mathbf{\$ 1 9 . 9 5} \\ 4250-000181 & 32 \text { Prog Vic－20，} & \mathbf{\$ 2 9 . 9 5}\end{array}$ （With Diskette） $4410-001057$ Vic Graphics $\quad \$ 12.95$ $\begin{array}{ll}4560-000056 & \text { Kids } \& \text { the Vic } \\ \$ 19.95\end{array}$

BOOKS／Texas Instr $\begin{array}{ll}4105-000012 & \text { Prog．Ref．Gde．} \$ 14.95 \\ 4105-000017 & \text { 1st Bk of Games } \$ 14.95\end{array}$ | $4105-00017$ | |
| :--- | :--- |
| $4250-000188$ | 1 st Bk．of Games | （With Diskette） $4410-005185$ Introto Basic $\$ 12.95$ 4525－068580 Learn．W／TILogo $\$ 14.95$ $4560-000059$ Kids \＆the TI $\$ 19.95$

NEW NEW NEW NEW NEW

＂HOW TO＂operating manual for the by Nancy Wilmont，a professional in structor，in clear，concise，step－by－step format with sample programs．Includes diskette with sample programs．A MUST for Commodore Disk Drive owners！ 0001－800001 Due Early＇84 $\quad \mathbf{\$ 1 5 . 9 8}$

COUPON Please Send Me：

QTY	NUMBER	DESCRIPTION	COST	TQTAL
Illinois Residents Please Add 6\％Sales Tax Foreign Orders．（All outaide Continental US）．Add 10% Shipping（Minimum $\$ 4.00$ ）			SHIPPING	S 2.50
			TOTAL	

Catalogs Shipped Postage Paid
PAYMENT ENCLOSED：DCASH DCHECK DMONEY ORDER
PLEASE CHARGE TO MY DMASTERCARD IVISA（Min Chg \＄25）
CARD NUMBER
EXPIRES \qquad INTRBNK

SHIP TO 0

STREET ADDRESS

Craftsmen Need Precision Tools . . . Programmers! Demand Precision Software!

BASIC XL has twice the speed and twice the power of Atari ${ }^{-}$BASIC. And yet, as befits a fine craftsman's tool, BASIC XL is even easier to use and more dependable, while including such outstanding major additions as structured programming, string arrays, programming aids, enhanced graphics, and business capabilities.

Atari BASIC is a good starting point. We should know. We wrote it in 1978. Buy BASIC XL. Take advantage of five more years of experience!
So, prepare yourself for some exploration into imaginative programming with BASIC XL! Cartridge, excellent tutorial, reference manual . . $\$ 99$.

OSS ${ }^{\text {m }}$

Precision Software Tools
1173D S. Saratoga/Sunnyvale Road San Jose, CA 95129 - (408) 446-3099

1Functional, honest, and beautiful describe the simple lines of a crafts man's tools. For the jeweler these tools are an extension of the human hand to better execute complex designs. For you, the programmer, Precision Software Tools keep complications out of your programming while allowing you to produce intricate programs.

See the complete collection of OSS
Precision Software Tools! ${ }^{\text {TM }}$
MAC/65: The fastest 6502 macro assembler/editor package on cartridge . . \$99.
BUG/65: A powerful debugger. On disk, with $0 S / \mathrm{A}^{+} \ldots \$ 35$.
$\mathrm{C} / 65$: The first native mode "small c " compiler for Atari and Apple ${ }^{\circledR}$ computers. On disk. . $\$ 80$.
ACTION!: The fastest, small computer language ever. A feature-packed cartridge at only . . \$99.
All products on disk include $0 S / \mathrm{A}^{+}$and also require 48 K .

SEE YOUR LOCAL DEALER!
Call or write for informative brochures.

ATARI and APPLE II, are trademarks of Atari, Inc. and Apple Computer, Inc., respectively. $\mathrm{MAC} / 65, \mathrm{BLE} / 65$, $\mathrm{C} / 65$, BASIC $\mathrm{XL}, \mathrm{OS} / \mathrm{A}^{+}$, and OSS PRECISION SOFTWARE TOOLS ${ }^{\text {s" }}$, are trademarks of O.S.S. INC. ACTION! is a trademark of Action
empusburv.commodore.ca

Super Software in a SuperCartridge!

Expand usable memory by as much as 50% ONLY with the OSS SuperCartridge ${ }^{\text {TM }}$.

Pack up to 24,000 bytes of code into only 8 K of your valuable memory-Thanks to the proprietary memory bank system of the OSS SuperCartridge ${ }^{\text {TM }}$.

Only OSS can offer you these Precision Software Tools in the most advanced cartridge available.

BASIC XL

BUY THE BEST and only complete compatible enhancement of Atari BASIC! BASIC XL makes programming easier for both the beginner and experienced programmers by adding dozens of powerful features.
LEARN TO PROGRAM in only 30 days with our FREE tutorial-the best yet for ALL Atari® Home Computers.
BE MORE PRODUCTIVE by using automatic line numbering and renumbering, automatic string allocation, intelligent file name recognition, and more.
RUN PROGRAMS FASTER with BASIC XL's exclusive FAST mode. Two to four times-or even more-faster than either of Atari's BASICs.
WRITE BETTER PROGRAMS with string arrays, structured programming controls, an advanced PRINT USING, extensive Player/Missile Graphics support, and much, much more.
FIND OUT MORE than we can possibly put in this ad by calling or writing for a complete catalog.

All OSS SuperCartridges are $\$ 99$ each and will work in any Atari computer with at least 16K RAM. Disk or cassette highly recommended.

ACTION!

PROGRAM WITH ACTION!-the newest and fastest Precision Software Tool from OSS. ACTION! is an amazingly complete, consistent, and properly structured language which combines features from C , Pascal, Ada, and even BASIC.
WRITE THE FASTEST GAMES ever written in a high-level language for 6502 -based computers. Speeds 100 to 200 times faster than BASIC are standard in ACTION! programs.

EDIT WITH EASE thanks to ACTION's built-in screen editor which compares favorably to even the best word processors.
PRODUCE MORE CODE faster and easier using ACTION!'s program monitor and built-in library of support routines.
GET A FOUR-IN-ONE DEAL unlike anything ever offered. Editor, compiler, monitor, and library all in an OSS SuperCartridge.

MAC/65

EXPERIENCE THE FASTEST 6502 macro assembler ever produced. MAC/65 gives you more than speed. It makes assembly language programming easier and more productive than you thought possible.
USE SOPHISTICATED MACROS to take the drudge work out of assembly language. Build macros libraries to make easy and readable code.

EDIT, ASSEMBLE, AND DEBUG QUICKLY because the program line editor, macro assembler, and a very effective debugger are always just a command away in this OSS SuperCartridge.
COMPARE FEATURES. No other complete 6502 assembly language package offers all of MAC/65's advantages. It even includes support for the 65 C 02 CMOS microprocessor at no extra charge.
ADDED BONUS: Buy MAC/65 and get a 65 C 02 microporcessor for less than $\$ 20$. Ask for details.

SUPER BONUS

Use DOS XL with a SuperCartridge and save an extra 5 K of valuable RAM. Retail value $\$ 30$. Only $\$ 10$ with purchase of any two OSS SuperCartridges.

DDR－BEG＋I－1，A（I）：NEXT I

560 GOTO 710
$57 \emptyset \mathrm{~N}=\emptyset: \mathrm{Z}=\emptyset$
589 GET \＃1，A：IF $A=155$ OR $A=44$ OR $A=3$ 2 THEN 670
590 IF $A<32$ THEN $N=-A: R E T U R N$
$6 \emptyset \emptyset$ IF $A<>126$ THEN 630
610 GOSUB 690：IF $I=1$ AND $T=44$ THEN N $=-1$ ：？CHRA（126）；：GOTO 690
620 GOTO $57 \emptyset$
$63 \emptyset$ IF $A<48$ OR $A>57$ THEN 589
$64 \emptyset$ ？CHF\＄$(A+R F) ;: N=N * 1 \emptyset+A-48$
65
IF N＞255 THEN ？CHR $\$(253) ;: A=126$ ：GOTO 5日月
66め $Z=Z+1$ ：IF $Z<S$ THEN 58 g
67め IF $Z=\emptyset$ THEN ？CHR\＄（253）；：GOTO 57 D
680 ？＂，＂；：RETURN
690 FOKE 752，1：FOR I＝1 TO 3：？CHR\＄（3 Ø）；：GET \＃6，T：IF T＜＞44 AND T＜＞58 THEN ？CHRO（A）；：NEXT I
 RN
710 GRAFHICS 9：POKE 719，26：POKE 712， 26：PQKE 709，2
720 IF MEDIA＝ASC（＂T＂）THEN 890

740 IF READ THEN ？：？＂Load File＂：？
750 IF DTYPEく＞ASC（＂F＂）THEN 104 （
760 ？？？＂Enter AUTORUN．SYS for auto matic use＂：？：？＂Enter filename＂ ：INPUT Tक
$77 \emptyset \mathrm{~F}=\mathrm{T} \$:$ IF LEN（T\＄）＞2 THEN IF T\＄（1， 2）＜＞＂D：＂THEN F $\$=" D: ": F \$(3)=T \$$
780 TRAP 879：CLOSE \＃2：OPEN \＃2，8－4＊RE AD，$\varnothing, F \Phi: ?: ? ~ " W o r k i n g . . . "$
79ø IF READ THEN FOR $I=1$ TO 6：GET \＃2 ，A：NEXT I：GOTO 820
80ø PUT \＃2，255：PUT \＃2，255
81ø H＝INT（BEG／256）：L＝BEG－H＊256：PUT \＃ 2，L：PUT \＃2，H：H＝INT（FIN／256）：L＝FI N－H＊256：PUT \＃2，L：PUT \＃2，H
820 GOSUB 979：IF PEEK（195）＞1 THEN 87 Ø
8ЗØ IF STARTADR＝ø OR READ THEN $85 \emptyset$
840 PUT \＃2，224：PUT \＃2，2：PUT \＃2，225：P UT \＃2，2：H＝INT（STARTADR／256）：L＝ST ARTADR－H＊256：PUT \＃2，L：PUT \＃2，H shed． ＂：IF READ THEN ？：？：LET READ＝ø： GOTO 36 D
$87 \emptyset$ ？＂Error＂；PEEK（195）；＂trying to access＂：？F\＄：CLOSE \＃2：？：GOTO 7 $6 \varnothing$.
$88 \emptyset$ REM
EROT TAPE
$89 \emptyset$ IF READ THEN ？：？＂Read Tape＂
9øø ？：？：？＂Insert，Rewind Tape．＂：？ ＂Press PLAY＂；：IF NOT READ THE N ？＂\＆RECORD＂

920 TRAP 96ø：CLOSE \＃2：OPEN \＃2，8－4＊RE AD，128，＂C：＂：？？＂Working．．．＂
93．GOSUB 97ø：IF PEEK（195）＞1 THEN 96 Ø
940 CLOSE \＃2：TRAP 32767：？＂Finished． ＂：？：？：IF READ THEN LET READ＝ø： GOTO 36ツ
950 END
960 ？：？＂Error＂；PEEK（195）；＂when r eading／writing boot tape＂：？CLO

SE \＃2：GOTO 89ø

 Ex
989 $\mathrm{X}=32$ ：REM File\＃2，$\$ 29$
990 ICCOM＝834：ICEADR＝836： 1 CBLEN＝840： ICSTAT $=8.35$
1 øøø $H=I N T$（ADR（EUFFER $) / 256$ ）：$L=A D R(B$ UFFEF（ ）$-H * 256$ ：POKE ICEADR $+X, L$ ： F OKE ICEADR $+\mathrm{X}+1, \mathrm{H}$
$191 \emptyset$
（256）：L＝L－H＊ 256：POKE ICBLEN＋X，L：POKE ICELEN $+X+1, H$
$102 \emptyset$ POKE ICCOM $+X, 11-4 * R E A D: A=U S R$（AD R（CIOま），X）
1030 FOKE 195，FEEK（ICSTAT）：RETURN

105Ω IF READ THEN 110ϱ
$106 \emptyset$ ？：？＂Format Disk In Drive 1？（ Y／N）：＂；
1070 GET \＃1，A：IF $A<>78$ AND $A<>89$ THE N $107 \emptyset$
$1 \emptyset 8 \emptyset$ ？CHR $\$$（ A ）：IF $A=78$ THEN 119ϱ
109ø ？：？＂Formatting．．．＂：XIO 254，\＃2 ，ஜ，Ø，＂D：＂：？＂Format Complete＂：？
$1196 \mathrm{NR}=\mathrm{INT}((\mathrm{FIN}-\mathrm{BEG}+127) / 128)$ ：BUFFE R\＄（FIN－BEG＋2）＝CHR（ \wp ）：IF READ T HEN ？＂Reading．．．＂：GOTO 1120
1110 ？＂writing．．．＂
1120 FOF $I=1$ TO NR：$S=I$
1136 IF READ THEN GOSUB 122日：BUFFER $\$$ （I＊128－127）＝SECTOR $=$ ：GOTO 116め
114 g SECTOR $=$ BUFFER \ddagger（I＊128－127）
1159 GOSUB 1229
1169 IF FEEK（DSTATS）$<>1$ THEN $120 \emptyset$
1176 NEXT I
1180 IF NOT READ THEN END
119 ？：？：LET READ＝$:$ GOTO उ6ø
$120 \emptyset$ ？＂Error on disk access．＂：？＂Ma y need formatting．＂：GOTO 1ø4め
1210 REM

$123 \emptyset$ REM Drive ONE
1240 REM Pass buffer in SECTOR $\$$
1250 REM sector \＃in variable S
1260 REM READ $=1$ for read，
1270 REM READ $=\emptyset$ for write
$1289 \mathrm{BASE}=3 * 256$
1299 DUNIT＝BASE＋ $1:$ DCOMND＝BASE $+2:$ DSTA TS＝BASE +3
$13 \emptyset \emptyset$ DBUFLO＝BASE＋4：DBUFHI＝BASE＋5
$131 \emptyset \mathrm{DBYTLO}=\mathrm{BASE}+8: \mathrm{DBYTHI}=\mathrm{BASE}+9$
1320 DAUX1＝BASE +1 g：DAUX2＝BASE +11

134 ＠DSKINV $=$＂hLS＂：DSKINV $\$(4)=\mathrm{CHR} \$(2$ 28）
1359 POKE DUNIT， $1: A=A D R(S E C T O R(\$): H=I$ NT（ $A / 256$ ）：$L=A-256 * H$
136＠POKE DBUFHI，H
$137 \emptyset$ POKE DBUFLO，L
1389 POKE DCOMND，87－5＊READ
1396 POKE DAUX2，INT（S／256）：POKE DAUX 1，S－PEEK（DAUX2）＊256
14のり $A=U S R(A D R(D S K I N V \$))$
141 FETURN

COMPUTE！
 The Resource

Jeff and Marilyn Mitchell "designed" their new program themselves. CodeWriter wrote all the computer code. The Mitchells dream is thriving on fulfilling other people's wishes. Their new home business needs very special information fast: Which fantasies are still open? What's our next completion date? Can we get a list of all fantasies needing out of state travel?
They got it all-with no computer hassle. And you can too, with CodeWriter. No programming. No. 'computerese'. At home or at the office, you create your own programs to handle any information you want-at your fingertips; Payables, receivables, inventory, credit cards, tax details, club or church records-always organized your way.
You work with CodeWriter in plain English. Simply 'draw' any screen layout, add any calculations you'd like done-or help messages you need-and you're done. CodeWriter writes all the BASIC code.

In minutes you've got YOUR OWN PROGRAM on YOUR OWN DISK. You don't need CodeWriter again until you want a new program.

You can begin with Home
 ryiewriter ${ }^{\text {™ }}$ and expand to more complete business systems with full report and menu design features.
You can get CodeWriter for the Commodore 64 ${ }^{\ominus}$, Atari ${ }^{\circledR}$, Apple ${ }^{\circledR}$, IBM PC ${ }^{\circledR}$, Commodore Business Machine ${ }^{@}$, Victor 9000^{\circledR}, and Kay Pro I^{\circledR}, computers. Prices range from $\$ 69$ to $\$ 249$.

You think this much power can't come this easy?
There are thousands of CodeWriter systems in use all
over the world- 80% are first time computer owners.
CodeWriter writes solutions the
first time you try!

CodeWriter

"This is our first business, our first computer, and our first program

CodeWriter

7847 N. Caldwell Ave. Niles, IIl. 60648
Toll-Free 1-800-621-4109 (in Ill. 312-470-0700)

Commodore 64
 (more power than Apple il at half the price)

 COMPUTER AND SOFTWARE

 COMPUTER AND SOFTWARE CHRISTMAS SALE

VIC-20

(a real computer at the price of a toy)

$\$ 99 .{ }^{50}$ *

- 170K DISK DRIVE $\$ 159.00$
- TRACTION FRICTION PRINTER 8119.00
WE
HAVE
THE
BEST
SERVICE
(* with software savings applied)

COMMODORE 64 COMPUTER $\$ 99.50$

You pay only $\$ 199.50$ when you order the powerful 84 K COMMODORE 65 COMPUTER! LESS the value of the SPECIAL SOFTWARE COUPON we pack with your computer that allows you to SAVE OVER $\$ 100$ off software sale prices!! With only $\$ 100$ of savings applied, your net computer cost is $\$ 99.50!!$

SOFTWARE BONUS PACK \$29.95
When you buy the Commodore 64 Computer from Protecto Enterprizes you qualify to purchase ONE SOFTWARE BONUS PACK for a special price of $\$ 29.95$!! Normal price is $\$ 49.95$ (40 programs on disk or 24 programs on 5 tapes).

170 DISK DRIVE $\$ 159.00$

You pay only $\$ 259.00$ when you order the 170 K Disk Drive! LESS the value of the SPECIAL SOFT. WARE COUPON we pack with your disk drive that allows you to SAVE OVER $\$ 100$ off software sale prices!! With only $\$ 100$ of savings applied, your net disk drive cost is $\$ 159.00$.

TRACTION FRICTION PRINTER $\$ 119.00$ You pay only $\$ 219.00$ when you order the Comstar T/F deluxe line printer that prints $81 / 2 \times 11$ full size, single sheet, roll or fan fold paper, labels etc. 40, 66, 80, 132 columns. Impact dot matrix, bi-directional, 80 CPS. LESS the value of the SPECIAL SOFTWARE COUPON we pack with your printer that allows you to SAVE OVER $\$ 100$ off software sale prices!! With only $\$ 100$ of savings applied your net printer cost is only \$119.00.

80 COLUMN BOARD $\$ 149.00$

You pay only $\$ 149.00$ for this 80 Column Board. Included with this board is word processor pack, electronic spread sheet and mail merge data base on two tapes. List $\$ \mathbf{2 4 9 . 0 0}$. Coupon Price $\$ 139.00$ (Disk add $\$ 10.00$).

80 COLUMN

WORD PROCESSING PACKAGE $\$ 79.00$ SCRIPT 64 EXECUTIVE WORD PROCESSOR is the finest available for the COMMODORE 64 Computer! THE ULTIMATE for PROFESSIONAL wordprocessing application. DISPLAYS 80 COLUMNS IN COLOR. Featuring simple operation, powerful text editing with a customized 250 word dictionary, complete cursor and insert/delete key controls, line and paragraph insertion, automatic deletion, centering, margin settings and output to all printers. Included is a powerful MAIL MERGE When used with THE COMPLETE DATA BASE PACKAGE. List $\$ 99.00$. Sale $\$ 79.00$. Coupon Price $\$ 59.00$. (Disk only).

SPECIAL SOFTWARE COUPON

We pack a SPECIAL SOFTWARE COUPON with every COMMODORE 64 COMPUTERDISK DRIVE-PRINTER-MONITOR we sell! This coupon allows you to SAVE OVER \$100 OFF SALE PRICES! $\mathbf{\$ 2 0 0} \mathbf{\$ 3 0 0}$ savings are possible!!
(example)
PROFESSIONAL SOFTWARE COMMODORE 64

Name	Llat	Coupon
Executive Word Processor	\$99.00	\$59.00
Complete Data Base	\$89.00	\$46.00
Electronic Spreadsheet	\$89.00	\$46.00
Accounting Pack	\$69.00	\$32.00
Total 5.2 Word Processor-Plus		
Tape	\$69.00	\$37.00
Disk	\$79.95	\$42.00
Total Text 2.6 Word Processor-		
Tape	\$44.95	\$26.00
Disk	\$49.95	\$26.00
Total Label 2.6	\$24.95	\$12.00
Disk	\$29.95	\$15.00
Quick Brown Fox Word		
Processor	\$69.00	\$40.00
Programmers Reference		
Guide	\$20.05	\$12.50
Programmers Helper	\$69.00	\$29.95
Basic Tutor	\$29.95	\$15.00
Typing Teacher	\$29.95	\$15.00
Sprite Designer	\$16.95	\$10.00
Medicinemen	\$19.95	\$12.00
Weather War II	\$19.95	\$12.00
Music-Maker	\$19.95	\$12.00
EDU.Pack	\$24.95	\$13.00
3D Maze Craze	\$24.95	\$13.00
Professional Joy Stick	\$24.95	\$12.00
Light Pen	\$39.95	\$20.00
Deluxe Dust Cover	\$ 8.95	\$ 4.60
(and many other items) Write or call for		
Sample SPECIAL SOFTWARE COUPON!		

PROFESSIONAL BUSINESS SOFTWARE EXECUTIVE QUALITY BY TIME WORKS!

The Cadillac of business programs

 for Commodore 64 Computers| Item | List | -SALE |
| :--- | :---: | :---: |
| Inventory Management | $\$ 89.00$ | $\$ 69.00$ |
| Accounts Receivable | $\$ 89.00$ | $\$ 69.00$ |
| Accounts Payable | $\$ 89.00$ | $\$ 69.00$ |
| Payroll Management | $\$ 89.00$ | $\$ 69.00$ |
| Cash Flow Management | $\$ 89.00$ | $\$ 69.00$ |
| Sales Analysis | $\$ 89.0$ | $\$ 69.00$ |
| General Ledger | $\$ 89.00$ | $\$ 69.00$ |
| ("COUPON PRICE $\mathbf{\$ 5 9 . 0 0}$) | | |

COMPLETE WORD PROCESSING SYSTEM

(Everything you need for word processing — LIST PRICE ${ }^{\text {s } 1800.00)}$

SALE
 s 995^{00}

COMPLETE SMALL BUSINESS SYSTEM

(Everything you need to computerize your business — LIST PRICE ${ }^{\text {s2200.00 }}$

SALE
 s119500

LOOK AT WHAT YOU GET WITH EACH SYSTEM PACKAGE!!!

- The powerful 84 K Commodore 64 Computer!
(More features than Apple II)
- 170K Commodore 64 Disk Drive!
- Box of 10 "Loran" Disks!
- Gemini 10X Starmicronics 10" Carriage Deluxe,120CPS, Dot Bit Addressable Tractor-Friction Printer!
- Deluxe Cardco Printer Interface!
- Box of Printer Paper!
- Your choice of $12^{\prime \prime}$ Green Screen or Amber Screen Monitor!

The s995 complete word processing system includes: "Script-64 Executive Word Processor Program, 80 columns in color, 20,000 word customizable dictionary, powerful mail merge" - List Price $\$ 130$)

The s1195 complete small business system includes: "General Ledger, Accounts Payable and Check Writing, Accounts Receivable, Payroll, Inventory, Database Manager" - List Price \$595)

15 DAY FREE TRIAL We give you 15 days to try out these SUPER SYSTEM PACKAGES!! If it doesn't meet your expectations, just send it back to us prepaid and we will refund your purchase price!!

90 DAY IMMEDIATE REPLACEMENT WARRANTY If any of the SUPER SYSTEM PACKAGE equipment or programs fail due to faulty workmanship or material we will replace it IMMEDIATELY at no charge!

Add $\$ 50.00$ for shipping and handling!!

WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA.
Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada orders must be in U.S. dollars. We accept Visa and MasterCard. We ship C.O.D.

PROTECTO ENTERPRIZES wtolovenacusomess BOX 550, BARRINGTON, ILLINOIS 60010 Phone 312/382-5244 to order

List And Scroll For The Vic And 64

Tom Forsythe

This utility program - an excellent tool for debugging BASIC programs - separates a BASIC listing into single statements, and sets off FOR-NEXT loops and IF-THEN statements for readability. You can also scroll in either direction to scan the listing.

Are you tired of typing LIST or trying to read BASIC statements that are lumped together on the same line? This machine language program allows listing and scrolling of BASIC statements. It prints each statement on a separate line and provides indents during FOR-NEXT loops and after IF-THEN statements, making your BASIC listing more readable.

For example, a normal screen listing looks like this on a VIC:
$10 \mathrm{~A}=10:$ FORJ = 1TO4:FORI
$=0$ TO10:PRINTI;:PRINTA*
B:NEXTI:PRINT"PASS "J"
$\mathrm{OK}^{\prime \prime}: \mathrm{B}=\mathrm{A}+\mathrm{B}:$ NEXTJ:IFJ = AT
HENA = B:GOTO5:END
With "List And Scroll' it would look like this:

```
1 0
    A=10:
    FORJ=1TO4:
        FORI=0TO10:
            PRINTI;:
            PRINTA*B:
            NEXTI:
        PRINT"PASS "J"OK'"
        B}=\textrm{A}+\textrm{B}
        NEXTJ:
    IFJ=ATHENA=B:
            GOTO5:
            END
```


Simple Operation

Operation is easier and faster than the normal LIST; just type a period (.) followed by an optional
line number. Without the line number, the listing will begin with the first line of your BASIC program. To scroll forward or backward through the listing, use the cursor up or down keys. Pressing the RETURN key or scrolling past either end of the BASIC program will automatically return control to BASIC. You'll know this by the presence of a flashing cursor.

After typing in Program 1 (VIC version) or Program 2 (64 version), be sure to SAVE it to tape or disk. Then you must do one of the following: Type SYS 6769 or type in, SAVE, and RUN Program 3. The first option is fine if the BASIC program you'd like to examine with List And Scroll is not more than 2 K (2673 bytes) for the VIC, or 4 K (4021 bytes) for the 64. However, you must use Program 3 if your BASIC program exceeds the limits mentioned above.

If you SYS 6769 and your BASIC program is too long, it will write over List And Scroll and render it useless. So, if in doubt, use Program 3. After you type RUN, there will be a short wait and then you'll see a command to SYS to a specified address. Program 3 moves the program to a safe location at the top of memory. VIC users should remove the Super Expander cartridge before using Program 3.

Program 1: List And Scroll (vic Version)

```
10 I=6768
2\emptyset READ A:IF A=256 THEN 40
3\emptyset POKE I,A:CK=CK+A:I=I+l:GOTO 2\emptyset
4\emptyset IFCK<>51983THENPRINT"{CLR}ERROR IN DAT
    A STATEMENTS":END
5\emptyset END
6768 DATA 1,113,26,173,113,26,133
6 7 7 6 \text { DATA 55,133,51,173,114,26,133}
6784 DATA 56,133,52,234,234,234,169
6792 DATA 76,133,124,173,147,26,133
```


FEATURING PROGRAMS FOR THE VIC-20 AND THE COMMODORE 64.

BOUNTY HUNTER $\$ 19.95$

An adventure in the Old West. Journey back with us into the days of Jessie James and Billy the Kid where the only form of justice was a loaded revolver and a hangman's noose. In this full-length text adventure, you play the role of Bounty Hunter, battling against ruthless outlaws, hostile Indians, wild animals and the elements of the wilderness with only your wits and your six gun. Average solving time: 20-30 hours. If you love adventures, this one is a real treat.
Available for COMMODORE 64 and the VIC-20 (with 8 K or 16 K expander). Available on TAPE or DISK. Played with JOYSTICK.

KONGO KONG
 $\$ 19.95$

Climb ladders, avoid the barrels the crazy ape is rolling at you, and rescue the damsel. Commodore 64 version features 4 different screens! Available for COMMODORE 64 and VIC-20. Available on TAPE or DISK. Played with JOYSTICK.

GRAVE ROBBERS

$\$ 14.95$
Introducing the first GRAPHIC ADVENTURE ever available for the VIC-20 or COMMODORE 64! With realistic audio-visual effects, you explore an old deserted graveyard and actually see the perils that lie beyond.
Available for COMMODORE 64 and VIC-20. Available on TAPE or DISK. Played with KEYBOARD.

CHOMPER MAN
 $\$ 19.95$

Don't let the bullies catch you as you gobble the goodies! This program has 8 screens and still fits in the standard memory.
Available for COMMODORE 64 and VIC-20. Available on TAPE or DISK. Played with JOYSTICK or KEYBOARD.

AND THANK THEM FOR THEIR PATRONAGE THROUGHOUT THE YEAR.

The creator assembled a massive army of robots and insects to take revenge on the earth. Destroy insects, get treasures, and get the neutron bomb deactivator. Battle robots and destroy the neutron bomb before it annihilates your city. Miss and you must face the mutants. Features 4 different screens.
Available for COMMODORE 64. Available on TAPE or DISK Played with JOYSTICK.

LABYRINTH OF THE CREATOR
 $\$ 19.95$

Journey into the most complex and dangerous fortress ever built by the creator. You will encounter deadly robots, skulls, lakes, avalanches, false creators, and a creature who roams 256 rooms relentlessly pursuing you.
Available for COMMODORE 64. Available on TAPE or DISK. Played with JOYSTICK.

ILLUSTRATIONS: ELIZABETH HAUCK

Check your LOCAL DEALER or order directly.
ORDERING: We accept personal checks, money orders, VISA, and MasterCard. Charge orders please include number and expiration date.
OVERSEAS ORDER: Please use charge, or have check payable through a U.S. bank.
CANADIAN CUSTOMERS: If you wish to write a check drawn through a Canadian bank, please multiply the total order by 1.25 for proper conversion. Add $\$ 1.50$ postage and handling per order. PA residents please add 6% sales tax
VICTORY SOFTWARE INC.
7 Valley Brook Road
Paoli, Pennsylvania 19301
(215) 296-3787

Fast, Fast Relief From Expensive Software Blahs.

COMMODORE 64

COMMODORE 64 Cont'd.

EPYX

Jumpman D\&C \$ \$40	\$25
Temple of Apshai (D\&C) \$40	\$25
Upper Reaches Apshai (D\&C) \$20	\$13
Curse of Ra (D\&C) \$20	\$13
Starfire \& Fire One (D\&C) . . \$40	\$29
Jumpman Junior (CT) \$40	\$29
Lunar Outpost (D\&C) \$40	\$25
Dragonriders of Pern (D\&C) . . \$40	\$25
Gateway to Apshai (C\&D) . . \$ $\$ 40$	\$25
Pitstop (C\&D) \$40	\$25
Crush, Crumble, Chomp (C\&D) \$30	\$19
Fun With Art (CT) \$40	\$27
Fun With Music (CT) \$ \$40	\$27
Facts (D\&C) \$30	\$19

"\$uch-A-Deal! \$oftware."
903 S. Rural Rd. \#102 Tempe, AZ 85281
TO ORDER FAST, FAST CALL TOLL FREE: 1-800-431-8697
For Information Only Call (602) 968-9128
We sell mail order only!
Dealer Inquiries Invited

COMMODORE 64 Cont'd.

And Incredible Savings On:

Data 20 Word Manager (C) Just \$27
Data 20 Business Manager (D) $\$ 89$
Timeworks Data Manager (D\&C) \$17
Timeworks Money Manager (D\&C) \$17
Timeworks Programmer Kit (D\&C) \$17
Continental Home Accountant (D) $\$ 49$
Lightning Mastertype (D) \$27
Sirius Wayout (D) $\$ 27$
Sirius Gruds in Space (D) \$23
Sublogic Pinball (C) $\$ 20$
Acess Neutral Zone (D\&C) \$23
Practicalc (D\&C) $\$ 35$
Programmable Spreadsheet $\$ 55$
Datamost Kids \& The 64 (book) \$14
Commodore 64 Ref. Guide (book) $\$ 17$
Access Beachead (D\&C) \$23
Datasoft Pooyan (D\&C) \$19
Datasoft Zaxxon (D\&C) \$25
Datamost Swashbuckler (D) \$25
Datamost Aztec (D) $\$ 25$
Sierra OnLine Threshhold (CT) \$27
Timeworks Programmer Kit II (D\&C) \$17

COMMODORE VIC 20

HESWARE

Robot Panic (CT) \$20	\$13
Slime (CT) \$20	\$13
Predator (CT) \$20	\$13
Coco II (C\&D) $\$ 20$	\$14
Lazer Zone (CT) \$30	\$19
Necromancer (CT) \$30	\$19
Pharoah's Curse (CT) \$30	\$19
Attack Mutant Camel (CT) ... \$30	\$19
Kindercomp (CT) \$40	\$26
Facemaker (CT) \$40	\$26
Story Machine (CT) \$40	\$26
SEGA	
Congo Bongo (CT)	
Buck Rogers (CT) \$40	\$25
Star Trek (CT)	
BRODERBUND	
A.E. (CT)	
Seafox (CT)	
Mastertype (CT) \$40	\$24
Lode Runner (CT)	
EPYX	
Temple of Apshai (C\&D) \$40	\$24
Sword of Fargoal (C) \$30	\$19

WIZWARE
Electronic Party (C)
Square Pegs (C)
Turtle Tracks (C) \$30 \$19
Your Vic 20 (C)
SIERRA ON LINE
Lunar Leeper (CT)
Crossfire (CT)
Threshhold (CT) \$30
Cannonball Blitz (CT)
CREATIVE

Choplifter (CT) $\ldots \ldots \ldots \ldots . .$$\$ 30$ Home Office (C)$\ldots \ldots \ldots \ldots . . \$ 30$	$\$ 19$
Home Office (D)	

ATARI SOFTWARE

List Price But For You!

List Price But For YOU!

EPYX

Temple of Apshai (D\&C)	\$40	\$25
Gateway to Apshai (CT)		\$27
Upper Reaches Apshai (D\&C)		\$13
Silicon Warrior (CT)	\$40	\$27
Pitstop (CT)	\$40	\$27
Dragonriders of Pern (D\&C)	\$40	\$25
Jumpman Junior (CT)		\$27
Fun With Art (CT)		\$27

SEGA

Buck Rogers (CT) \$40 Star Trek (CT)

SPINNAKER

Facemaker (CT)	\$35	\$23
Delta Drawing (CT)		\$26
Alphabet Zoo (CT)	\$35	\$23
Story Machine'(CT)	\$40	\$26
Kindercomp (CT)	\$30	\$19

SYNAPSE

Dimension X (D\&C)		\$22
New York City (D\&C)	\$35	\$22
Rainbow Walker (D\&C)	\$35	\$22
Quasimodo (D\&C)		\$22
Zeppelin (D\&C)	\$35	\$22
Blue Max (D\&C)		\$22
Drelbs (D\&C)	\$35	\$22
Syn-Calc (D)	\$100	\$75
Syn-File (D)	\$100	\$75
Syn-Trend (D)	\$100	\$75
Syn-Comm (D)	\$35	\$22
Syn-Graph (D)	\$60	\$39
Syn-Mail (D) ..	\$50	\$33
Syn-Stat (D)	\$70	\$45
Syn-Stock (D)	\$70	\$45

DATASOFT

Pooyan (D\&C)	\$30	\$19
Letter Wizard (CT)	\$70	\$45
Money Wizard (D)	\$70	\$45
Zaxxon (D\&C)	\$40	\$25

GENTRY

Maniac Miner (D) $\ldots \ldots \ldots . \$ 20$	$\$ 12$
Sea Bandit (D\&C) $\ldots \ldots \ldots . \$ 17$	$\$ 11$
Spider Quaker (D\&C) $\ldots \ldots . \$ 17$	$\$ 11$
Rosens Brigade (D) $\ldots \ldots . . \$ 17$	$\$ 11$
BRODERBUND	

INFOCOM		
Zork I, II, II each D	\$40	\$26
Deadline (D)	\$50	\$33
Witness (D)	\$50	\$33
Starcross (D)	\$40	\$26
Suspended (D)	\$50	\$33
Planet Fall (D)	\$50	\$33
Enchanter (D)	\$50	\$33
Infidel (D)	\$50	\$33
WIZWARE		
Square Pairs (C)	\$30	\$19
Turtle Tracks (D\&C)	\$30	\$19
Microzine (D)	\$40	\$26

We Take the Byte Out of
Apple Software Prices!
(all disks) But For YOU!
Datasoft Zaxxon $\$ 26$
Epyx Temple of Apshai
Epyx Jumpman $\$ 26$
MicroFun Miner 2049 \$26
Muse Know Apple IIE \$19
Infocom Zork I, II, III ea. $\$ 26$
Infocom Witness \$33
Infocom Planet Fall $\$ 33$
Infocom Enchanter $\$ 33$
Infocom Infidel $\$ 33$
Sir Tech Wizardry I $\$ 33$
S.T. Wizardry II Knight I $\$ 23$
S.T. Wizardry III Legacy \$26

Spinnaker Delta Drawing \$39
Spinnaker Facemaker \$26
Spinnaker Snooper Tps I \$29
Spinnaker Snooper Tps II \$29

More Byte For Your Buck Specials!

Floppiclene Disk Drive Cleaner Just \$22
Innovative Concepts Flip 15 \$ 7
Flip 25 (locking) ... \$18
Flip 50 (locking) ... \$25
Flip Atari Cart. \$19
Maxell Disks MDI (10) \$23
MD2 (10) \$39
MR Floppy Diskea. $\$ 2.25$
\$uqh A Deal
CALL TOLL FREE
1-800-431-8697
Orders Only!
For Information,
Release Dates. Availability
Call
$602-968-9128$
Rock Bottom Prices on Peripherals!
MONITORS
BMC 12" Green Just \$79
BMC 12 " HiRes Green \$125
BMC 12" Amber \$89
BMC 12" HiRes Amber \$129
BMC $13^{\prime \prime}$ Composite Color \$249
DATA 20
ic 40-80 Display Manager $\$ 79$
C64 Video Pak 80 \$139
Parallel Printer Interface $\$ 45$
CARDCO
Vic 3 Slot Motherboard $\$ 26$
Vic 6 Slot Motherboard $\$ 65$
Vic 5 Slot C64 Motherboard $\$ 45$
Printer Utility Software \$17
Numeric Keypad C64 \$29
C64 5 Slot $\$ 45$
Graphic Printer Interface \$69
Economy Printer Interface \$39
WICOJOYSTICKS
The Boss $\$ 14$
Bat Stick $\$ 19$
Red Ball \$21
Track Ball \$30
KOALAPAD
Vic, C64, Atari \$79
Apple, IBM \$99
HESWARE
Hescard 5 Slot VIC $\$ 39$
HesModem VIC \& 64 $\$ 49$
PRINTERS
Alphacom 40 Column $\$ 119$
Alphacom 80 Column \$179
includes Vic, C64, Atari cable
Cardco DM1 Two Color Impact \$119
Okidata, Epson, Citoh -call 968.9128
ATARIDISK DRIVES
Rana 329.00
Trak Single Density w/Printer Port 429.00
Trak Double Density 379.00
MODEMS
Novation, Hayes
Anchor Call 602.968.9128 \$AVE

$$
(\mathrm{C})=\text { Tape }(\mathrm{D})=\text { Disk }(\mathrm{CT})=\text { Cartridge }
$$

6800	DATA $125,173,148,26,133,126,96$
6808	DATA $149,26,201,46,2 ø 8,9,72$
6816	DATA $173,122, \varnothing, 201, \varnothing, 240,9$
6824	DATA 1ø4,2ø1,58,144,1,96,76
6832	DATA 128, $0,169,2,141,251, \varnothing$
6840	DATA $32,115,0,240,14,176,21$
6848	DATA $32,107,201,32,209,26,32$
6856	DATA $215,2 \emptyset 2,76,42,197,169, \varnothing$
6864	DATA $133,20,133,21,24,144,238$
6872	DATA $76,8,207,234,234,234,32$
6880	DATA 19,198,160,2,177,95,133
6888	DATA 2ø,20б,177,95,133,21,160
6896	DATA $\varnothing, 177,95,2 \varnothing 1, \varnothing, 2 \varnothing 8,47$
6904	DATA 2øø,177,95,2ø1, $0,2 \emptyset 8,40$
6912	DATA 24ø,69,169, $1,197,20,2 \emptyset 8$
$692 \varnothing$	DATA $6,197,21,240,59,198,21$
6928	DATA $198,20,32,19,198,160,2$
6936	DATA $177,95,197,20,2 \emptyset 8,231,200$
6944	DATA $177,95,197,21,208,224,32$
6952	DATA $95,229,24,144,201,32,93$
6960	DATA $27,32,228,255,2 \varnothing 1, \varnothing, 24 \varnothing$
6968	DATA $249,201,145,240,2 \emptyset 4,201,8 \emptyset$
6976	DATA $234,234,234,201,13,240,8$
6984	DATA 23ø,20,2ø8,16ø,230,21,2ø8
6992	DATA $156,96,56,233,127,170,132$
7900	DATA $73,160,255,2 \emptyset 2,240,8,2 \emptyset \emptyset$
7908	DATA $185,158,192,16,250,48,245$
7916	DATA 2øø, 185,158,192,48,6,32
7024	DATA 210,255,2ø8,245,96,164,73
7032	DATA $41,127,32,210,255,96,160$
7040	DATA $2,32,215,202,230,199,177$
7048	DATA $95,170,2 \emptyset 0,177,95,32,205$
7056	DATA 221,198,199,32,215,202,166
7964	DATA 251, 32, 228,27,169, 0,133
7972	DATA $253,160,3,200,177,95,201$
$798 \emptyset$	DATA $\varnothing, 240,83,166,253,2 \emptyset 8,4$
7988	DATA 201,128,176,27,32,210,255
7696	DATA 2ø1, $34,2 \emptyset 8,8,72,165,253$
7104	DATA $73,1,133,253,104,201,58$
7112	DATA 24ø, 38, $208,220,234,234,234$
7120	DATA 234,234,234,201,130,208,6
7128	DATA 2ø6,251, $0,206,251, \varnothing, 72$
7136	DATA $32,54,27,1 \varnothing 4,201,129,24 \varnothing$
7144	DATA $36,201,167,208,191,230,252$
7152	DATA $230,252,24,144,184,32,215$
7160	DATA 202,169,0,133,253,165,251
7168	DATA 1ø1,252,17Ø, 32,228,27,24
7176	DATA $144,166,169,0,133,252,133$
7184	DATA 253,96,230,251,230,251,2ø8
7192	DATA $153,224, \varnothing, 240,7,32,63$
7200	DATA 2 Ø3, 202, $24,144,245,96,217,256$

Program 2: List And Scroll (64 Version)

$1 \varnothing I=6769$
$2 \emptyset$ READ A:IF A=256 THEN $4 \emptyset$
$3 \emptyset$ POKE I,A:CK=CK+A:I=I+1:GOTO $2 \emptyset$
40 IF CK<>51322THENPRINT"\{CLR\}ERROR IN DA TA STATEMENTS": END
6769 DATA $113,26,173,113,26,133,55$
6777 DATA $133,51,173,114,26,133,56$
6785 DATA $133,52,234,234,234,169,76$
6793 DATA $133,124,173,147,26,133,125$
6801 DATA $173,148,26,133,126,96,149$
$68 \emptyset 9$ DATA $26,2 \emptyset 1,46,2 ø 8,9,72,173$
6817 DATA $122, \varnothing, 2 \varnothing 1, \varnothing, 240,9,1 \varnothing 4$
6825 DATA $201,58,144,1,96,76,128$
6833 DATA $\varnothing, 169,2,141,251, \varnothing, 32$
6841 DATA $115,0,240,14,176,21,32$
6849 DATA $1 \varnothing 7,169,32,209,26,32,215$

6857 DATA $17 \emptyset, 76,42,165,169, \varnothing 133$
6865 DATA $2 \emptyset, 133,21,24,144,238,76$
6873 DATA $8,175,234,234,234,32,19$
6881 DATA $166,160,2,177,95,133,20$
6889 DATA 2øØ, 177,95,133,21,160, \varnothing
6897 DATA $177,95,2 \emptyset 1, \varnothing, 2 \emptyset 8,47,2 \emptyset \emptyset$
6905 DATA $177,95,2 \varnothing 1, \varnothing, 208,4 \varnothing, 24 \varnothing$
6913 DATA 69,169, $0,197,20,2 \varnothing 8,6$
6921 DATA 197,21,240,59,198,21,198
6929 DATA $20,32,19,166,160,2,177$
6937 DATA $95,197,20,2 \emptyset 8,231,2 ø 0,177$
6945 DATA $95,197,21,208,224,32,68$
6953 DATA $229,24,144,201,32,93,27$
6961 DATA $32,228,255,2 \varnothing 1, \varnothing, 24 \varnothing, 249$
6969 DATA 2ø1,145,24ø,204,2ø1,8ø,234
6977 DATA $234,234,201,13,240,8,230$
6985 DATA $2 \emptyset, 2 \emptyset 8,160,23 \emptyset, 21,2 \emptyset 8,156$
6993 DATA $96,56,233,127,170,132,73$
$7 \varnothing 01$ DATA $160,255,202,240,8,2 \varnothing \varnothing, 185$
$7 \varnothing \varnothing 9$ DATA $158,16 \emptyset, 16,25 \emptyset, 48,245,2 \emptyset \emptyset$
7017 DATA $185,158,160,48,6,32,210$
$7 \emptyset 25$ DATA $255,2 ø 8,245,96,164,73,41$
7033 DATA $127,32,210,255,96,16 \emptyset, 2$
7041 DATA $32,215,170,230,199,177,95$
$7 \emptyset 49$ DATA $17 \varnothing, 2 \emptyset \emptyset, 177,95,32,2 \emptyset 5,189$
$7 \emptyset 57$ DATA $198,199,32,215,17 \emptyset, 166,251$
7065 DATA $32,228,27,169,0,133,253$
7073 DATA $160,3,2 \varnothing 0,177,95,2 \emptyset 1, \varnothing$
$7 \emptyset 81$ DATA $240,83,166,253,2 \emptyset 8,4,2 \emptyset 1$
7 789 DATA $128,176,27,32,210,255,201$
7097 DATA $34,2 ø 8,8,72,165,253,73$
$71 \emptyset 5$ DATA $1,133,253,104,201,58,240$
7113 DATA $38,208,220,234,234,234,234$
7121 DATA $234,234,201,130,208,6,206$
7129 DATA $251, \varnothing, 2 \varnothing 6,251, \varnothing, 72,32$
7137 DATA $54,27,104,201,129,240,36$
7145 DATA $201,167,208,191,230,252,23 \varnothing$
7153 DATA $252,24,144,184,32,215,17 \emptyset$
7161 DATA $169,0,133,253,165,251,101$
7169 DATA $252,170,32,228,27,24,144$
7177 DATA $166,169,0,133,252,133,253$
7185 DATA $96,230,251,230,251,208,153$
7193 DATA $224, \varnothing, 24 \varnothing, 7,32,63,171$
$72 \emptyset 1$ DATA $2 \emptyset 2,24,144,245,96,256$

Program 3: Relocater (VIC or 64)

$1 \emptyset$ REM MOVE 'EZLIST/SCROLL TO MEMORY TOP.
$2 \varnothing$:
$3 \varnothing$ LB=6769: REM PROGRAM ADDRESS IN LO MEMO RY
$4 \varnothing$:
$5 \emptyset \mathrm{HB}=\operatorname{PEEK}(56) * 256+\operatorname{PEEK}(55)-399$: REM PROGRA M ADDRESS IN HI MEMORY
60 :
$7 \emptyset$ REM MOVE BIT BY BIT
$8 \emptyset$ READA: REM LOC TO CORRECT
$10 \emptyset$ FORI=ØTO382
$1 \emptyset 3$ POKEHB +I , $\operatorname{PEEK}(\mathrm{LB}+\mathrm{I})$
105 IFA<>LB+IGOTO17 7
$11 \emptyset \operatorname{V}=\operatorname{PEEK}(\mathrm{A})+\operatorname{PEEK}(\mathrm{A}+1) * 256: \mathrm{A}=\mathrm{V}+\operatorname{HB}-\mathrm{LB}$
120 POKEHB $+\mathrm{I}, \mathrm{A}-\mathrm{INT}(\mathrm{A} / 256) * 256: \mathrm{I}=\mathrm{I}+1:$ POKEH $B+I$, INT $(A / 256)$: READA
$17 \varnothing$ NEXT
180 PRINT"\{CLR\}TO ENABLE EZ-LISTER \{ 3 SPACES $\}$ TYPE SYS" $\mathrm{HB}+2$
$19 \emptyset$ END
195 REM OFFSET VALUES
$2 \emptyset 0$ DATA6769,6772,6779,6793,6798,68ø3
$21 \varnothing$ DATA6842,6935,7ø29,7091,7122, \varnothing

sormatis rouch covir ON...

PractiCalc $20^{2 \pi} \ddagger$ and PractiCalc Plus ${ }^{\text {"N }} \ddagger$: Complete electronic spreadsheets that turn the Commodore VIC-20 into a business computer. (\$39.95* TD and \$49.95* TD, respectively.)
PractiCalc 64*: The computer spreadsheet for the Commodore 64 with over 20 mathematical functions and the ability to graph, sort, and search for entries. (\$49.95* TD)
PS: The Programmable Spreadsheet ${ }^{\text {T }}$: Finally, a computer spreadsheet which can handle the most complicated operations within the structure of a spreadsheet - since you can program it with BASIC. Available for the Commodore 64 (\$79.95D) \& Apple lle (\$79.95 D).
Rabbit Base ${ }^{\text {" }} \ddagger$: A data-file manager for the Commodore VIC-20 with simple screen instructions for efficient use. (\$29.95 T)
Inventory 64": A smart inventory-tracking system for the Commodore 64 that handles 650 parts. (\$39.95 D)
C-64 Analyst: A diagnostic program which tests the Commodore 64 and its peripherals to detect hardware defects. An invaluable tool for C-64 users! (\$19.95 D)

[^0]Total Health ${ }^{\text {w }}$: For fitness and health enthusiasts, a program which monitors and encourages proper nutrition. (For the Commodore VIC-20; \$24.95 T and C-64 \$29.95 D)

AND LEARN FROM . . .

Math Duel ${ }^{\mathrm{m}}$: A math program for ages 5-12 that combines classroom learning with gameroom fun! Available for the Commodore VIC-20. (\$19.95 T)
Sprintyper*: A typing tutorial for the Commodore VIC-20 that encourages speed and accuracy in both the novice and experienced typist. (\$19.95 T)
Tiny Tutor ${ }^{\text {m }}$: A pre-schooler program with fun graphics and sound to teach simple math. (\$19.95 T)
Composer ${ }^{\text {" }}$: A simple music composition program for the Commodore VIC-20 that teaches musical notation and allows 'melodies' to be saved to tape for later recall. (\$19.95 T)

50 Teed Drive, Randolph, Massachusetts 02368

RND PLAY WITH . . .

Zeppelin Rescue ${ }^{\text {w }}$: An intelligent rescue game for the Commodore 64 with arcadelike graphics and the greatest challenge for those with persistence \& skill. (\$24.95D) Skramble ${ }^{\text {w }}:$ You're lost in enemy territory. But before leaving for home, you can play havoc with their airfields and oil supply. Are you ready for the challenge? (For the Commodore VIC-20; \$19.95 T)
Barrel Jumper" \dagger : For the Commodore VIC-20, this game confronts you with a pyramid of steel girders. The present King of the Hill is an angry ape who's hurling barrels at you. Step lively! (\$19.95 T)

See your local dealer for CSA programs or order directly by calling toll-free:

1-800-343-1078

For more information about these and many other programs for your home computer, write to CSA.
Programmers with programs to market are encouraged to send copies for review to CSA.

Dealer \& distributor inquiries are welcomed by:

Micro Software International Inc

The Silk Mill
44 Oak Street Newton Upper Falls, Massachusetts 02164

Commodore Files For Beginners Part 2

Jim Butterfield, Associate Editor

Expanding on his program examples from last month, Associate Editor Jim Butterfield suggests ways to improve and safeguard your files. For disk and tape users.

Creating A File By Program

We can repeat the file creation that we performed last month with direct statements, but this time we'll do it in a more typical way: as part of a program. Here come the statements we have seen before, with a few small enhancements:

```
lØ\emptyset PRINT "FILE CREATION"
ll\emptyset INPUT "NAME OF FILE";N$
```

When the program runs, we must type in a file name. This might be the same name we used previously (STUDENTS). It's wise to choose a name that hasn't been used before. In fact, with disk it's mandatory: we cannot have two files with exactly the same name on one disk.

Now for the OPEN statement. For disk, we type:

```
12\emptyset OPEN 1,8,2,"\varnothing:"+N$+",S,W"
```

For tape, we make line 120 read:

$12 \emptyset$ OPEN 1,1,2,N\$

Now to write the data. Since we're writing a generalized program, it might be wise to ask the user to input the data. As soon as it is received, we'll write it to the file:

```
13\emptyset INPUT "NAME";AS
l4\emptyset INPUT "STUDENT NUMBER";B$
15\emptyset INPUT "MARK";M
160 REM PRINT IT
17\emptyset PRINT#1,A$;CHR$(13);
180 PRINT#1,B$;CHR$(13);
190 PRINT#l,M;CHRS(13);
```

We could make the program more friendly
by asking ARE YOU SURE? in line 155 , so that the user could reenter the information if a mistake had occurred.

Now that the record is written, we need to ask if there are any more:

```
2\emptyset\emptyset PRINT
210 INPUT "MORE";X$
```

$22 \varnothing$ IF X\$="Y" OR X\$="YES" GOTO 13ø

When we get beyond this point, the user has signaled that the job is completed. All we need to do is CLOSE the file, and we're finished:

```
230 CLOSE l
240 PRINT "FILE ";N$;" IS WRITTEN"
```


Trimmings For Disk

If we are using disk, we might add disk error checking. This tells us if we have problems - it's especially important at the time of opening the file. The extra lines for this would be added to the above program:
90 OPEN 15,8,15
95 PRINT\#15,"IØ"
125 INPUT\#15, E, E\$, E1,E2
126 IF E THEN PRINT ES:STOP
Lines 125 and 126 may be repeated after each disk activity, so we could see the same instructions at lines 205 and 206, and again at 235 and 236. You could put these two lines in a subroutine, but they are brief enough to repeat at the appropriate places. Finally, we should CLOSE the command channel with:

250 CLOSE 15

Always OPEN the command channel at the beginning of a program and CLOSE it at the end. Closing a command channel causes the disk to close any other channels it might have going; it

DID YOU HEAR IT？Imagine a cassette containing • Descriptions of all our games • Programming hints • Other products • FREE GAME • Much more！One side is programmed for the Commodore 64^{m} ．The other for the VIC $20^{\mathbf{m}}$ ．Send just $\mathbf{\$ 2 . 0 0}$ to cover costs and then DEDUCT $\mathbf{\$ 3 . 0 0}$ FROM YOUR FIRST ORDER！Actually，the very fun of our cassettalog would make a nice Christmas present itself！

Standard VIC $\mathbf{2 0}^{\text {m }}$ Cassette		Exterminator	\＄19．95	Defender on Tri（＋3K）	\＄12．95
		Music Writer III	\＄16．95		
		Kings Ransom	\＄16．95	Commodore $64{ }^{\text {m }}$	
Alien Panic	\＄9．95			Diskette	
Krazy Kong	59.95	Expanded Memory VIC $20{ }^{\text {M }}$		3D－64 Man	$\begin{aligned} & \$ 19.95 \\ & \$ 19.95 \end{aligned}$
Racefun	\＄12．95	Cassette		Exterminator 64	
The Catch	\＄12．95	3－D Man（ +3 K ）	\＄12．95	Widows Revenge	\＄19．95
Antimatter Splatter	\＄16．95	Space Quest（＋8K）	\＄16．95	Quiz Pro	\＄19．95

BONUSH
The first $\mathbf{2 5 0}$ orders over $\mathbf{\$ 2 0}$ placed from this advertise－ ment will receive a Nufekop dust cover for the 64 or VIC 20 FREE OF CHARGE！

P．O．Box 156， 21255 Hwy．62，Shady Cove，Oregonisp与29．1－60世－5月5－2529．

VIC 20

40-80 COLUMN BOARD

Now you can get 40 or 80 Columns on your T.V. or monitor at one time! No more running out of line space for programming and making columns. Just plug in this board and you immediately convert your VIC-20 computer to 40 or 80 columns! PLUS, you get a Word Processor, Mail Merge program, Electronic Spreadsheet (like VISICALC) and Terminal Emulator! These PLUS programs require only 8K RAM memory and comes in an attractive plastic case with instructions. List \$149 Sale \$89
"15 DAY FREE TRIAL"

- We have the lowest VIC-20 prices
- We have over $\mathbf{5 0 0}$ programs
- Visa - Mastercharge - C.O.D.
- We love our customers!

PROTECTO
ENTERPRIZES (wetocenumssoumes)
BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to order

MAKE YOUR VIC-20

 COMPUTER TALK when you plug in ourYou can program an unlimited number of words and sentences and even adjust volume and pitch. You can make: - Adventure games that talk - Real sound action games This voice synthesizer is VOTRAX based and has features equivalent to other models costing over $\$ 370.00$. To make programming even easier, our unique voice editor will help you create words and sentences with easy to read, easy to use symbols. The data from the voice editor can then be easily transferred to your own programs to make customized talkies.

" 15 DAY'FREE TRIAL"

- We have the lowest VIC-20 prices
- We have over 500 programs
- Visa - Mastercharge - C.O.D.
-We love our customers!

PROTECTO ENTERPRIZES (momoremesmex
BOX 550, BARRINGTON, ILLINOIS 60010 Phone 312/382-5244 to order

COMMODORE 64

 80 COLUMN BOARD

The dream of seeing 80 columns on the screen at one time is now a reality. The Protecto Expansion Board converts your Commodore 64 to 80 columns! PLUS you get a word processor with database mailmerge, an electronic spreadsheet, and a terminal emulator. List \$249. SALE \$149.
Coupon Price $\$ 139.00$ (Disk Programs add $\$ 10.00$).

VIC 20 COMPUTER $\mathbf{4 0 - 8 0}$ COLUMN BOARD LIST $\mathbf{\$ 1 4 9 . 0 0}$ SALE $\mathbf{\$ 8 9 . 0 0}$

- 15 DAY FREE TRIAL
- WE HA VE LOWEST COMMODORE 64 PRICES
- WE HAVE OVER 500 PROGRAMS
- VISA•MASTERCHARGE•COD
- We love our customers

PROTECTO

ENTERPRIZES ме Love our customersi
BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382.5244 to order
could give you real trouble if performed too early.

Trimmings For Tape

You could remove the ;CHR\$(13); ending from the PRINT\#1 lines if you wish. But it might be best to leave it in place, so that your programs can be converted to disk operation without fuss.

If you have an original small-keyboard PET, you can't write to disk at all and may have trouble with cassette tape (blocks written too closely together). If you're serious about files, you might want to upgrade your machine.

A cassette tape file doesn't need to have a name, but use one anyway.

Reading It Back

It would be nice to bring the file back using direct statements, as we did the first time we wrote the information. However, we can't use INPUT\# in direct mode, so we must write a program. Much of it will look familiar. First, we OPEN the file, then ask for the name:

```
løø PRINT "FILE READER"
ll\emptyset INPUT "FILE NAME";N$
```

For disk, we would write the OPEN statement as:

$12 \emptyset$ OPEN $1,8,2, N \$$

We don't need to specify the drive number as both will be checked. We don't need to specify ,S,R for sequential read because these options will be assumed. It doesn't hurt to specify everything, however.

For tape, we would OPEN with:

$12 \varnothing$ OPEN $1,1, \varnothing, N \$$

In fact, if there's only one data file on the tape, or if the one we want is the first, we could write OPEN 1 and everything else would be assumed.

```
13\emptyset INPUT#1,A$
14\emptyset INPUT#1,B$
150 INPUT#1,M
```

Now that we've input a record, let's print it out:
$16 \emptyset$ PRINT "NAME: $\{3$ SPACES $\}$ "; AS
$17 \emptyset$ PRINT "NUMBER:
$18 \emptyset$ PRS
18 PRINT "MARK: $\{3$ SPACES $\} " ; M$

Are there any more records? The computer knows; and if we know how, we can ask the computer.

There's a variable in the computer called ST or STATUS. After every file operation - or more exactly, after every input/output operation variable ST will be set as follows:

ST equals 0: file OK, more to come

 ST equals 64: file OK, no more to come ST other than 0 or 64: file has a problemFor our simple reading program, we can type:

$19 \varnothing$ IF ST=ø GOTO 130

Thus, if the file is OK and is not at the end, we'll go back and get another record.

Finally, we CLOSE the file with:

$2 ø \varnothing$ CLOSE 1

RUN the above program, and the information we wrote to file STUDENTS will be recalled and printed out to the screen.

Try Your Hand At These

Our file program is a good working example. You might like to see if you can write some of the following variations:

If you have disk, add error checking. Then try creating errors (bad names) and see what happens.

Modify the program to print only student records for students named JONES.

Modify the program to count the number of students.

Modify the program to calculate an average grade.

We'll look at other aspects of sequential files next time around.

Dealer availability
Inquiries (203) 389-8383 P.O. BOX 2940, New Haven, Ct. 06515

* ! BREAK AWAY FROM BASIC ! * 6502 MACHINE LANGUAGE ASSEMBLER for the serious users of VIC- 20 and $\mathrm{C}-64$ computers PROFESSIONAL FEATURES INCLUDE:
- FULLLSCREEN TEXT EDITOR for Program Entry or Word Processing
- STANDARD ASSEMBLER UTILITIES: Symbols, Labels, Arithmetic operators
- PLUS: - Extensive Error Checking and Reporting
- Listing Control: On-Off, Pagenation, Symbol Table, etc.
- FUL - Chaining for Unlimited Source length even with small memory size
- FULL CHOICE OF OUTPUT DEVICES: Printer, Disk, Screen, Memory, Tape
- SPECIAL MEMORY-TO-MEMORY MODE FOR SUPER FAST ASSEMBLY
- OBJECT CODE COMPATIBLE with standard PROM PROGRAMMERS to produce firmware -
- ASSEMBLERITEXT EDITOR supplied on disk or cassette. Specify VIC-20 or C-64
- DOCUMENTATION ONLY (Refundable with order) \$ 4.00
- ALSO DISKETTES 1540/1541 Certified Error free, Pack of ten \$19.95 OSIRIS
413 PHEASANT LANE
SANTA ROSA, CA 95401

TYPING TUTOR + WORD INVADERS

The proven way to learn touch typing.
COMMODORE 64 Tape $\$ 21.95$
COMMODORE 64 Disk $\$ 24.95$
VIC 20 (unexpanded) Tape $\$ 21.95$

Put yourself in the pilot's seat! A very challenging realistic simulation of instrument flying in a light plane. Take off, navigate over difficult terrain, and land at one of the 4 airports. Artificial horizon, ILS, and other working instruments on screen. Full aircraft features. Realistic aircraft performance stalls/spins, etc. Transport yourself to a real-time adventure in the sky. Flight tested by professional pilots and judged "terrific"!

P.O. Box 6277, San Rafael, CA 94903 (
(415) 499-0850

COMMODORE-64TM and VIC-20 $0^{\text {wisers! }}$

"Call THE Printer Experts"
Whenci. For Information and Orders
Toll-Free 1-800-645-4710 INSTITUIIONAL
COMPUER
DEVEIOPMENT (in N.Y., outside cont. U.S. 516-221-3000) DEAELOPMENI (in N.Y., outside cont. U.S. 516-221-3000)
CORP. 2951 MERRICK RD. DEPT. C-12 BELLMORE, NY 11710

80 COLUMN PRINTER SALE-\$149.00*

*STX-80 COLUMN
 $$
\text { PRINTER - } \$ 149.00
$$ PRINTER-\$149.00

 PRINTER-\$149.00}Prints full 80 columns. Super silent operation, 60 CPS, prints Hi-resolution graphics and block graphics, expanded character set, exceptionally clear characters, fantastic print quality, uses inexpensive thermal roll paper!

DELUXE COMSTAR T/F PRINTER—\$219.00

The Comstar T/F is an excellent addition to any micro-computer system. (Interfaces are available for Apple, VIC-20, Commodore-64, Pet, Atari 400 and 800, and Hewlett Packard). At only $\$ 219$ the Comstar gives you print quality and features found only on printers costing twice as much. Compare these features.

- BI-DIRECTIONAL PRINTING with a LOGIC SEEKING CARRIAGE CONTROL for higher through-put in actual text printing. 80 characters per second.
- PRINTING VERSATILITY: standard 96 ASCII character set plus block graphics and international scripts. An EPROM character generator includes up to 224 characters.
- INTERFACE FLEXIBILITY: Centronics is standard. Options include EIA RS232C, 20 mA Current Loop.
- LONG LIFE PRINT HEAD: 100 million character life expectancy.
- THREE SELECTABLE LINE SPACINGS: 6, 8 or 12 lines per inch.
- THREE SELECTABLE CHARACTER

PITCHES: - 10,12 or 16.5 characters per inch.
132 columns maximum. Double-width font also
is standard for each character pitch.

- PROGRAMMABLE LINE FEED: programmable length from $1 / 144$ to 255/144 inches.
- VERTICAL FORMAT CONTROL: programmable form length up to 127 lines, useful for short or over-sized preprinted forms.
- FRICTION AND TRACTOR FEED: will accept single sheet paper.

- 224 TOTAL CHARACTERS

- USES STANDARD SIZE PAPER
if you want more try -

Premium Quality COMSTAR T/F SUPER-10X
 PRINTER-\$299.00
 More Features Than RX-80

For $\$ 299$ you get all of the features of the Comstar T/F plus $10^{\prime \prime}$ carriage $120 \mathrm{cps}, 9 \times 9$ dot matrix with double strike capability for 18 $x 18$ dot matrix. High resolution bit image (120 $x 144$ dot matrix), underlining, backspacing, left and right margin settings, true lower descenders, with super and subscripts, and prints standard, Italic, Block Graphics, special characters, plus 2 K of user definable characters. For the ultimate in price performance the Comstar T/F Super 10' leads the pack!

Double
 Immediate Replacement Warranty

We have doubled the normal 90 day warranty to 180 days. Therefore if your printer fails within " 180 days" from the date of purchase you simply send your printer to us via United Parcel Service, prepaid. We will IMMEDIATELY send you a replacement printer at no charge via United Parcel Service, prepaid. This warranty, once again, proves that WE LOVE OUR CUSTOMERS!

15 DAY FREE TRIAL OTHER OPTIONS

Extra Ribbons . $\$ 5.95$
Roll Paper Holder . 32.95
Roll Paper . 4.95
5000 Labels . 19.95
1100 Sheets Fan Fold Paper. 13.95
Add $\$ 17.50$ shipping, handling and insurance. Illinois residents please add 6\% tax. Add $\$ 40.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA orders. WE DO NOT EXPORT TO OTHER COUNTRIES. Enclose cashiers check, money order or personal check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail available!! Canada orders must be in U.S. dollars.

PROTECTO

ENTERPRIZES We Love our customers) BOX 550, BARRINGTON, ILLINOIS 60010 Phone 312/382.5244 to order

SUPER
 COM-STAR T/F 15" PRINTER SALE ${ }^{\text {s }} 379^{00}$

NOW YOU CAN BUY A TRACTOR-FRICTION 15" CARRIAGE PRINTER FOR AN INCREDIBLE ${ }^{\text {s }} 379^{00}$

The popular Com-Star $15^{\prime \prime}$. A great printer at a truly great price. When you add it up, it figures to be a super sale.

Hopping Around

Transfer of control - jumping and branching seems to be easy and straightforward to accomplish. In 6502 programming, you can make a decision-based branch, which will take you forward or backward a hundred-odd locations; or an unconditional jump, which will take you anywhere you want to go.

Yet there are a number of techniques that transfer control in unusual ways. Often they may seem like tricks, but they can be useful in achieving programming objectives: speed, flexibility, or compactness. We'll look at some of these techniques here.

The Long Branch

If you want to use a branch to implement a decision, your range is limited to slightly over 120 locations forward or backward. We often want to get around this limitation. It may be argued, by the way, that well-organized programs should never need to branch over any great distance; that your programs should be organized into subroutine modules so that transfers of control will always be short and visible.

For the moment, let's look at an example:

2000		LDX	$\# \$ 20$
2002	BIGLOOP	LDA	$\# \$ 0 D$
\ldots.			
\ldots.		DEX	
$20 C 0$		BNE	BIGLOOP
20C1		\ldots	
$20 C 3$			

We have a problem here. We can't branch over the needed range - about 190 bytes. The simple way is to insert a JMP:

20C0		DEX	
20C1		BEQ	SKIP
20C3		JMP	BIGLOOP
20C6	SKIP	\ldots	

Another way is more subtle and must be used with care. It avoids the JMP, and thus makes a routine more easily relocatable. Let's assume that somewhere in our program sequence we have a BNE:

2000		LDX	$\# \$ 20$
2002	BIGLOOP	LDA	$\# \$ 0 D$
\ldots.			
\ldots			
2065		LDA	\$027A
2068		BNE	STEP

Now, immediately after the BNE at address 2068, another BNE instruction would never branch. After all, if the Z flag is clear, we will take the previous branch to STEP. And if the Z flag is set, neither branch will be taken. So we might use:

2000		LDX	$\# \$ 20$
2002	BIGLOOP	LDA	$\# \$ 0 D$
\ldots.			
\ldots.			
2065		LDA	\$027A
2068		BNE	STEP
$206 A$	LINK	BNE	BIGLOOP
\ldots.			
\ldots.		DEX	
$20 C 2$		BNE	LINK
$20 C 3$			

As the program executes in the area of 2065, it will never take the branch to BIGLOOP. But when we get down to the bottom, the instruction at 20C3 will (if conditions are right) branch to LINK, and will immediately branch again to BIGLOOP. Each branch is now a shorter hop and easily within range.

Hidden Instructions

Suppose you need a series of PRINT subroutines, one to print a RETURN (\$0D), one to print a space (\$20), and another to print an exclamation point. You could write three subroutines; or you could write the three Load commands and then branch to a common point; or you could do this:

2000	A9	0D	LDA	\#\$0D	;return
2002	2 C	A9 20	BIT	\$20A9	;hidden space
2005	2 C	A9 3F	BIT	\$3FA9	;hidden question mark
2008	20	D2 FF	JSR	PRINT	;print it
200B	60		RTS		;return

What happens when we call address 2000? We load the RETURN character, perform two

This Publication is available in Microform.

University Microfilms International

Please send additional information for
Name
Institution
Street
City \qquad
State \qquad
300 North Zeeb Road Dept. P.R.
Ann Arbor, Mi. 48106

Thrill Your Friends This Christmas

Christmas draws near. Santa has disappeared from his icecastle. The player can solve the mystery using the available clues. Along the way he'll discover that this is no ordinary adventure game: In a storage room, he'll find a shimmering package addressed to him. And in Santa's coat pocket, a scrap of a note signed by you! Santa's computer will call upon him by name to help solve the mystery.

And that's just the start of it. We've designed "A Christmas Adventure" to be fun. Graphics, humor, action sequences and many other features and surprises to charm seasoned adventurer and novice alike. We'll even include your own personal greeting message-right in the program!

A bitCard is the perfect gift for everyone on your list who has access to a micro. They'll love being part of their own adventure. And they'll love you for stuffing their stocking with this Christmas delight.

BitCards. A personalized greeting card. A customized gift.
Now isn't that a better idea than a polka-dot tie?
Cassette versions available for Commodore-648 and for VIC-20® (specify 5 K or $5 \mathrm{~K}+8$) 48 K disk versions available for Atari@ 800 and Apple® || (all models and compatibles) 16 K cassette versions available for Atari® $400 / 800$ and ThS-80® Models I, III and Color
P.S. Why not order one for yourself too. You'll love the adventure.

TO ORDER A CUSTOMIZED BITCARD:

BY PHONE: (Visa or M/C accepted) call 1-800-555-1212 and ask for the TOLL FREE NUMBER FOR BITCARDS.
BY MAIL: (money order or MasterCard/Visa number \& exp. date) use seperate sheet for each bitCard ordered. Give your name and address and following info about recipient: (1) name (2) address (3) computer (e.g., TRS 80 @ Model I) (4) (optional) his/her phone number. Also include your personal message to recipient (25 word max.) (We'll supply standard message if you prefer). Indicate if you want bitCard sent to you or directly to recipient. Order should arrive before Dec. 12. Send order or requests for info to: bitCards, 120 S. University Dr., Sulte F-6, Plantation, FL 33317. Canadian orders welcome.

DEALER INQUIRIES INVITED

Dealers only: Write to Chartscan Data, Inc., 1130 Lajoie, Suite 5. Montreal, Canada H2V 1N8 (514) 274-1103
Apple is a trademark of Apple Computing, Inc. Vic-20 and Commodore-64 are trademarks of Commodore Business Machines, Inc. Atari is a registered trademark of Atari, Inc. TRS-80 is a registered trademark of Tandy Corp.

Hewlett Packard
Write or call for prices.

PROM QUEEN for VIC
170
Apple Emulator for Commodore 64 STAT Statistics Package for C64
Solid Oak 2 Level Stand for C64 or VIC C64/VIC Switch (networking)
BACKUP VI.0 tape copier for C64 or VIC
CARDBOARD/6 Motherboard - VIC
CARDBOARD/5 Motherboard - C64
CARD PRINT G Printer Int. with Graphics
CARD PRINT B Printer Interface-C64/VIC
CARDBOARD/3s Motherboard - VIC
CARDCO C64/VIC Calculator Keypad CARDRAM/16 RAM Expansion - VIC
Complete CARDCO Line in stock
CIE and VIE IEEE Interiaces in stock
MAE Assembler for C64 + CBM
APPLE—FRANKLIN ITEMS
KRAFT Apple Joystick
Kraft Apple Paddle Pair
SPINNAKER Software in stock
Broderbund Saftware in stock
16K RAM Card for Apple 59
Multiplan-Microsoft 185
Solid Oak 2 Level Stand for Apple
Serial Card for Apple 29

MCP RAM/80 column card for Ile (AP/TXT) 99
139
Z80 Softcard and CP/M (Microsoft) 235
RANA Elite I with Controller 389
Parallel Printer Interface/Cable 79
Microtek Interiaces in stock
Apple Dumpling with 16K Buffer 160
Grappler + Interface
Kraft Products for Apple in stock DC Hayes Micromodem II 299
PFS: File
95
PFS: Report
95
Videx 80 Column Card 209
Hayden Software for Apple 20\% OFF
Apple Blue Book

 shared disk drives and printers. Completely transparent to the user. Perfect for schools or multiple word processing configurations. Base configuration supports 2 computers. Additional computer hookups $\$ 100$ each.

COMPACK/STCP
 $\$ 115$

Intelligent Terminal Package for PET, CBM, C64 Includes ACIA Hardware / STCP Software
VIDEO ENHANCER for Commodore 64 69
Realize video quality equal or better than composite monitor using standard color TV.

SCREEN MAKER 80 Column Adapter for C64 145
Provides big screen capability for business applications.

GENESIS Computer Corp

VIController (for C64 as well) 50
combine with BSR modules for home or business control COMSENSE Remote Sensing Adapter for C64 or VIC 35 COM VOICE Synthesizer for C64 or VIC 139
includes software for test to speech, pitch, etc.
COM CLOCK Real Time Clock with battery backup 45
VIC 20 Products and Software in stock

Thorn EMI Software UMI Software
 ABACUS Software HES Software

16K RAM for VIC 64 Vanilla Pilot VICTORY Software for VIC and C64 Street Sweepers (VIC) 12 Kongo Kong (VIC) Night Rider (VIC) 11 Cosmic Debris (VIC) Annihilator 16 Adventure Pack Adventure Pack II 16 Metamorphosis Educational Pack I 11 Trek Strategy Pack I 16 Grave Robbers 27

PAPER CLIP Word Processor

ORACLE Data Base from Batteries Included
Super BusCard from Batteries Included
179
Commodore 64 Programmers Reference Guide 16
MicroChess for C64-8 levels of play
excellent graphics and color
SPINNAKER Software C64, Apple, IBM, Atari Computel's First Book of PET/CBM 11 C64 or VIC SWITCH 125
POWER ROM Utilities for PET/CBM 78
WordPro 3+/64 with Spellmaster
WordPro $4+-8032$, disk, printer 85

SPELLMASTER spelling cheoker for WordPro VISICALC for PET, ATARI, or Apple

189
PET-TRAX PET to Epson Graphics Software SM-KIT enhanced PET/CBM ROM Utilities Programmers Toolkit - PET ROM Utilities
EASY CALC for C64
PET Spacemaker II ROM Switch
COPYWRITER Word Processor for C64
2 Meter PET to IEEE or IEEE to IEEE Cable
12

BM A 12" Gonitor
Dynax (Brother) DX-15 Daisy Wheel Printer Itoh Prowriter Parallel Printer
Panasonic 1090 Printer with Correspondence Mode $\quad 379$
USI CompuMOD 4 RF Modulator
Daisywriter 2000 with 48 K buffer
10/2.20 50/2.00 100/ 1.95
Scotch (3M) 5" ss/dd Scotch (3M) 5" ds/dd Scotch (3M) 8" ss/sd $\begin{array}{llll}10 / 3.05 & 50 / 2.80 & 100 / 2.75\end{array}$ Scotch (3M) 8" ss/dd

10/ $2.3050 / 2.10$ 100/ 2.06

We stock VERBATIM DISKS

Write for Dealer and OEM prices.

Sentinal 5" ss/dd
10/ 1.90 50/ 1.85 100/ 1.80 Sentinal $5^{\prime \prime} \mathrm{ds} / \mathrm{dd}$ 10/2.55 50/2.50 100/2.45

We stock Dysan disks

$\begin{array}{llllll}\text { Wabash } 5^{\prime \prime} \text { ss/sd } & 10 / 1.60 & 50 / 1.55 & 100 / 1.45\end{array}$ $\begin{array}{llllllllllll}\text { Wabash } 5^{\prime \prime} \text { ss/dd } & 10 / 1.90 & 50 / 1.85 & 100 / 1.75\end{array}$ $\begin{array}{llllllllllllll}\text { Wabash } 8^{\prime \prime} \text { ss/sd } & 10 / 2.00 & 50 / 1.95 & 100 / 1.85\end{array}$

We stock MAXELL DISKS

Write for dealer and OEM prices.
Disk Storage Pages 10 for $\$ 5$ Hub Rings 50 for S6 Disk Library Cases $\quad 8^{\prime \prime}-3.00 \quad 5^{\prime \prime}-2.25$ Head Cleaning Kits \qquad
CASSETTE TAPES—AGFA PE-611 PREMIUM
C-30
10/. $61 \quad 50 / .58 \quad 100 / .50$

DATASHIELD BACKUP POWER SOURCE 265
Battery back up Uninterruptible Power Supply with surge and noise filtering. The answer to your power problems.
Zenith ZVM-121 Green Phosphor Monitor
Zenith new color and monochrome monitors in stock
MultiPlan-IBM or Apple
Quadboard for IBM available
Peachtext 5000 Software Package 219
PFS Software for IBM and Apple in stock VOTRAX Personal Speech System
BME ${ }^{n} 91$ Color Monitor 199

Many printers available (Gemini-Star, Brother, OKI, etc)
We Stock AMDEK Monitors
Amdek DXY-100 Plotter
A P Products
15\% OFF
Watanabe Intelligent Plotter 990 6-pen 1290
BROOKS 6 Outlet Surge Suppressor/Noise Filter 54
We stock Electrohome Monitors
Synertek SYM-1 Microcomputer
ALL BOOK and SOFTWARE PRICES DISCOUNTED
Panasonic 12" Monitor (20 MHz) with audio 129
Panasonic CT-160 Dual Mode Color Monitor
USI Video Monitors-Green or AMBER 20 MHz hi-res. Dealer and OEM inquiries invited

CmC Interfaces (ADA1800, ADA1450, SADI in stock)
Programming the PET/CBM (Compute!) - R. West 20
Computel First Book of VIC
11
OMNICALC (HES)
HES MODEM with Software
65
HES Software and Hardware in stock
UMI products in stock
GRIDRUNNER (HES) VIC or C64 29
COCO (HES) Tutorial for C64
39
Public Domain Disks for C64
Agressor (HES)
VIC 30
Grand Master Chess (UMI) C64 or VIC
C64 49

VIC 29
Synthesound (HES)
VIC or C64
6502 Professional Developement System (HES)

- 2

HES MON
29
Robot Panic 29 Pirate's Peril 29 Retro Ball 29

data
 systems

HERO 1 Robot (factory assembled)
Z29 Terminal (DEC and ADM compatible) 680
ZT-10 Intel. Terminal with Serial Port 340
Z100 16-bit/8-bit Systems in stock CALL
We stock entire Zenith line.

WE STOCK ENTIRE LINE-write for prices.
SPINNAKER and Broderbund Software in Stock

OAK STAND-C64, VIC, Apple, Atari
Beautiful natural solid oak two-level stand. Rests on table above computer. Holds disk drives/cassette deck, as well as your monitor/TV.
KMMM Pascal IV. 1 for PET/CBM/C64 \$95 Full-featured Pascal for Commodore Computers.
Now suitable for all Advanced Placement Courses. Includes all features of full Jensen-Wirth Pascal except WITH, SETS, RECORD VARIANTS (plus has STRING extension). Includes machine language Pascal Source Editor (with syntax checking), machine language P-Code Compiler, P-Code to machine language Translator or optimized object code. Runtime package, User Manual, and sample programs. Requires 32 K Please specify configuration.

EARL for PET (disk file based)
 \$65

Editor, Assembler, Relocater, Linker
Generates relocatable object code using MOS Technology mnemonics. Disk file input (can edit files larger than memory).

Paper Clip (Batteries Included) $\$ 109$
Extremely comprehensive word processor for Commodore and Commodore 64 computers. Has features of WordPro, plus advanced functions like horizontal scroll, column move, column arithmetic, column sort, and comprehensive printer support.
Delphi's ORACLE (Batteries Included) $\$ 125$ Comprehensive Data Base, Report Writer, Mail Label system allowing large record size (over 8000 characters) with the number of records in a file limited only by disk capacity (7.5 MB on 9090 drive). Fast machine language routines, including full multilevel sorts.
Super BusCard (Batteries Included)
$\$ 179$

- full buffered IEEE488 bus for speed.
- cartridge extension slot
- parallel printer port.
- DOS "wedge" commands included.
- machine language monitor included.
- room for 24 K ROM BASIC 4.0 (optional).

RAM/ROM for PET/CBM

4 K or 8 K bytes of soft ROM optional battery

backup.

Use RAM/ROM as a software development tool to store data or machine code beyond the normal BASIC range, or to load a ROM image to avoid ROM socket conflicts. Possible applications include machine language sort (such as SUPERSORT), universal wedge, Extramon, etc.
RAM/ROM - $4 \mathrm{~K} \quad \$ 75 \quad$ RAM/ROM -8 K
90
Battery Backup Option 20
PORTMAKER DUAL RS232 SERIAL PORT $\$ 63$
Two ports with full bipolar RS232 buffering. Baud rates from 300 to 4800. For PET/CBM, AIM, SYM.

SuperGraphics 2.0

NEW Version with TURTLE GRAPHICS

SuperGraphics, by John Fluharty, provides a 4 K machine language extension which adds 35 commands to Commodore BASIC to allow fast and easy plotting and manipulation of graphics and shapes on the PET/CBM video display

SOUND commands allow you to initiate notes or songs from BASIC, and then play them in the background mode without interfering with your BASIC program.
Additionally, seven new TURTLE commands open up a whole new dimension in graphics.
Specify machine model (and size), ROM type.
SuperGraphics in ROM (\$A000 or \$9000) \$45
Volume discounts available for schools.
for PET/CBM Computers
FLEX-FILE is a set of flexible, friendly programs to allow you to set up and maintain a data base. Includes versatile Report Writer and Mail Label routines, and documentation for programmers to use Data Base routines as part of other programs.
RANDOM ACCESS DATA BASE
Record size limit is 256 characters. The number of records per disk is limited only by record size and free space on the disk. File maintenance lets you step forward or backward through a file, add, delete, or change a record, go to a numbered record, or find a record by specified field (or partial field). Field lengths may vary to allow maximum information packing. Both subtotals and sorting may be nested up to 5 fields deep. Any field may be specified as a key. Sequential file input and output, as well as file output in WordPro and PaperMate format is supported. Record size, fields per record, and order of fields may be changed easily.

MAILING LABELS

Typical mail records may be packed 3000 per disk on 8050 (1400 in 4040). Labels may be printed any number wide, and may begin in any column position. There is no limit on the number or order of fields on a label, and complete record selection via type code or field condition is supported.

REPORT WRITER

Flexible printing format, including field placement, decimal justification and rounding. Define any column as a series of math or trig functions performed on other columns, and pass results such as running total from row to row. Totals, nested subtotals, and averages supported. Complete record selection, including field within range, pattern match, and logical functions can be specified.
FLEX-FILE 2 by Michael Riley $\$ 110$
CBM64. PETICBMNIT- 32 K Disk Spectly configuration.
SCREEN MAKER (cgrs microtech)
\$149
80 Column Adapter for Commodore 64
Expand your computer for business applications. Provides 80 column $\times 24$ line display in a 2 K video RAM. Linking software provided.

Copy-Writer Word Processor

Full-featured professional word processor with over 800 lines of text per memory load on C64. Has features not available in many word processors such as double column printing, built in graphic capability, shorthand notations, and ability to support all printer codes.
SPECIAL COMBINATION PACKAGE $\$ 200$ Includes SCREEN MAKER AND Copy Writer for C64
PROGRAM YOUR OWN EPROMS
\$75
Branding Iron EPROM Programmer for PET/CBM software for all ROM versions. Includes all hardware and software to program or copy 2716 and 2532 EPROMs.
DISK I.C.U.
$\$ 40$

Intensive Care Unit by LC. Cargile

COMPLETE DISK RECOVERY SYSTEM FOR CBM DRIVES
Edit disk blocks with ease; duplicate disks, skipping over bad blocks; un-scratch scratched files; check and correct scrambled files; recover improperly closed files.

Includes complete diagnostic facilities, extensive treatment of relative files, optional output to IEEE488 printer, and comprehensive user manual (an excellent tutorial on disk operation and theory).
Furnished on copy-protected disk with manual.
Backup disk available, $\$ 10$ additional.

CBM Software

SUBSORT for PET/CBM
-excellent general purpose machine language sort routine.
COMAL Package for CBM 25
-includes software on disk, and Comal Handbook
BASIC INTERPRETER for CBM 8096
$\$ 95$
PEDISK II Systems from cgrs Microtech available.
FILEX IBM 3741/2 Data Exchange Software available.
JINSAM Data Base Management System for CBM.
CASH MANAGEMENT SYSTEM for CBM
$\$ 45$
Petspeed BASIC Compiler
Integer BASIC Compiler
BPI Accounting Modules
UCSD Pascal (without board) 120

Wordcraft 80 or 8096
135

BY LC. Cargile and Michael Riley
Features include:

- full FIG FORTH model
- all FORTH 79 STANDARD extensions.
- structured 6502 Assembler with nested decision macros.
- full screen editing (just as in BASIC)
- auto repeat key.
- sample programs.
- standard size screens (16 lines by 64 characters).
- 150 screens per disk on 4040, 480 screens on 8050 .
- ability to read and write BASIC sequential files.
- introductory manual and reference manual.

For Commodore 64 , or any $16 \mathrm{~K} / 32 \mathrm{~K}$ PET/CBM with ROM 3 or 4, and CBM disk drive. Please specify configuration when ordering
Metacompiler for FORTH
Simple metacompiler for creating compacted object code which can be run independently (without FORTH system).
Floating Point for FORTH \qquad

PageMate 60 COMMAND WORD PROCESSOR

 by Michael Riley

Paper-Mate is a full-featured word processor for Commodore computers. Page-Mate incorporates 60 commands to give you full screen editing with graphics for all 16 K or 32 K machines (including 8032), all printers, and disk or tape drives. Many additional features are available (including most capabilities of WordPro 3).

Page-Mate functions with all Commodore machines with at least 16 K , with any printer, and either cassette or disk

To order Page-Mate, please specify machine and ROM type. Page-Mate (disk or tape) for PET, CBM, VIC, C64 $\$ 40$
SM-KIT for PET/CBM
Enhanced ROM based utilities for BASIC 4. Includes both programming aids and disk handling commands.
STAT for PET/CBM and C64
95
Comprehensive Statistical Analysis Routines
Includes complete disk-based handling routines. Features: normal, T, Chi-Square, F, binomial, Poisson, and exponential distributions; one way ANOVA; two way ANOVA; contingency analysis; linear regression; data transformation; histogram, curve, and scatter plotting; and random sample data generation. Specify machine type and drive when ordering

MicroChess 64

$\$ 19$
Machine language version on cassette for C64. Plays at 8 different levels, with excellent board display and graphics. Commodore 64
Hunter-Killer - Commodore 64 15
authentic naval warfare game (complete with sonar)
SPINNAKER Software in stock
Broderund Software in stock
BASM Compiler and Assembler
WordPro 3+/64
85
75
Vanilla PILOT with Turtle Graphics
27

- also includes sound, Toolkit, joystick support

Commodore 64 Programmer Reference Guide
EARLY GAMES for Young Children

16

PETSPEED Compiler C64 120
CALC RESULT ADVANCED Spread Sheet Package 135
Adventure (disk)
PILOT 64
106064
Easy Calc 64
MAE Assembler - C64
Synthy-64 music and sound synthesizer
Tiny BASIC Compiler
Assembly Language Tutorial - C64/VIC
ScreenGraphics-64 adds BASIC Graphics Abacus Software in stock
All Victory Software
in stock.
meaningless BIT tests - they set the status flags, but we never test them - and then print RETURN.

But, what happens if we JSR to 2003? That's not an instruction - wait - yes, it is. It's A9 20, which is the same as LDA $\# \$ 20$. So we load the A register with a space character, do one meaningless BIT instruction, and print it. And if we JSR to 2006, we'll load A with $\$ 3 \mathrm{~F}$, the question mark, and print that.

What's happening here? By inserting the byte 2C ahead of the two extra A9 or LDA commands, we have made them "invisible." We can slide right through them, without needing to jump over them.

The BIT test, \$2C, is ideal since it does not affect memory or any registers other than the status register, which we don't need. Some computers have a series of NOP commands of various instruction lengths, which are useful for "hiding" instructions within the address field. Sometimes these instructions have names other than NOP for example, "Branch Never" or "Rotate 0 Bits" - but you get the idea.

The Invisible Return

Our last example ended with a JSR and RTS. Think about this. We will call a subroutine; it will return to us; and then we will return to the routine that called us. The return addresses are kept on the stack, of course. Suppose we just JMP to the subroutine. When the subroutine is ready to return, it will go directly to the routine that called our program. Thus, with rare exceptions, JSR and RTS are identical to JMP. We've saved a byte and a little time.

Programmers working with limited memory find this kind of tightening up useful, and it often leads to further economies. For example, if there's a routine called DOG and one called CAT; and if DOG ends with JSR CAT:RTS; then the first step is to replace this with JMP CAT. Now, we won't need to jump to CAT if that subroutine immediately follows. Instead of jumping there, we'll just fall into it. Suddenly, two subroutines have become one - with two entry points.

There's another interesting use for this technique. Suppose you've written a subroutine SPC to print a space, and now you want to write a subroutine to print two spaces. You might start with the sequence JSR SPC:JSR SPC:RTS - but a little boiling down will generate the sequence:

$$
\begin{array}{lll}
\text { SPC2 } & \text { JSR } & \text { SPC } \\
\text { SPC } & \text { LDA } & \text { \#S20 } \\
& \text { JMP } & \text { PRINT }
\end{array}
$$

It seems odd to see a subroutine that starts out by calling the following instruction as a subroutine. But if you think of the way subroutines work, you'll see that it does a simple job: it ex248 COMPUTE! December 1983
ecutes the subroutine twice.
By the way, some theorists are very strong on the idea that all subroutines should have one entry point and one clearly defined exit. You'll have to decide on your own style. If you have lots of memory and processing time, you might prefer neatness. On the other hand, if you're trying to crowd a lot of programming into a small 2 K ROM, you'll take all the economies you can get.

WE MAKE

- P404 Epson MX100 Printer
- P404 Epson MX100 Printer 109109
119
- P410 Epson FX100 Printer 119
- P412 Eps 560 or Prism 132 Printer 99
- P405 C. Itoh Starwriter/Printmaster Printer 89
- P407 Okidata Microline 2 Printer Printer 129
C. Itoh Prowriter 2 Printer PC Printer
- P408 99
- P409 C. Itoh Prowriter (Apple Bor with Keyboard 119
- IB501 IBM Personachrome Monitor 129
- IB502 IBM Monochrome 109
-18503 IBM Color Monitor 129
- VR530 Victor 9000 Comput
109
Victor 9000 Monitor Protessional 32
119
DEC Rainblay Screen
269
- DE541 DEC Display 10 Computer, Keyboard, \& Mit \& Modem 149
Epson QX-20 Computer, Expansion Unit Expansion Unit, Modem
99
- EP560 Epson Choulder Bag - Epson HX-20, Expanion Unit, Modem
- AP101 Apple II with Two Disk Drives
99
- AP102 Apple ll \mid g-inch Monitor \& Two Drives...119
Apple III, Two Drives \& Silentype Prineer ...119
- AP104- AP105 13" Black \& White Monitor With139
- AP106Franklin Ace 1000 or 1200 with Two Drives \& $9^{\prime \prime}$ MonitorFranklin Ace 1000 or 1200 with Two Drives \& Drives
TRS. 80 Model III
ATARI 400 or 800 Computers with- RS204- AT301 ATAR Paper Tiger Printer (400/445/460
- P401Centronics 730737 \& Radio Shack Printer- P402 Enson MX70 or MX80, Microline 82A10910999 - NS010
119
- EP561 Vinyl Shoulder Bag - Eps 129
HP41 with Accessories (or Vic 20) with One Drive 109
Commodore 64 (or Vic 20 with Two Drives 139
Commodore Model 64 with Dataset95
Commodore Model 64-
79
Matching Accessories Case (5 ¹/4 Diskettes) 5.25 " Diskette Case- CC9289 - CC5O

Finally... Computer Paper Products delivered to your doorstep

STOCK TAB COMPUTER PAPER

$91 / 2^{\prime \prime} \times 11^{\prime \prime} 18 \mathrm{lb}$. Bond (other sizes and weights available - Call for prices)

LOW PRICES ON:

- Letterheads
- Envelopes
- Business Forms
- Checks
- Labels

All custom designed on continuous paper

Plus high quality printer accessories!

CALL TOLL-FREE 1-800-556-4455

 VISA. IF ORDERED BY 2 PM IF ORDERED BY 2 PM

PRESTIGE ENVELOPE \& PAPER CORP.
15445 Ventura Blvd. P.O. Box 5973-372
Sherman Oaks, CA 91413
"The finest name in paper and business forms"
 Get these excellent P. D. Programs Free!
"Word Processor - Spreadsheet - Data Base - Modem Terminal Program" (Disk Only) List Price $\$ 59.00$ Sale $\$ 49.00$ *Coupon Price $\$ 39.00$ (Disk Only).

COMMODORE 64 FANTASTIC!! PROGRAMMERS AID (Disk Program) SALE $\$ 39.95$

This is a must for all Programmers, New and Experienced! 33 New Basic Commands! Renumber, Move Sections, Merge Programs, Rename Variables, Trace and Edit Commands to find out exactly where the mistakes are! Easy to use and understand. Fantastic!!! List Price $\$ 59.95$ Sale $\$ 39.95{ }^{*}$ Coupon Price $\$ 29.95$.

[^1]PROTECTO
ENTERPRIZES we tove oun cusomenes
BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to order

© SANYO MONITOR SALE!!

9" Data Monitor

- 80 Columns $\times 24$ lines
- Green text display
- East to read - no eye strain
- Up front brightness control
- High resolution graphics
- Quick start - no preheating
- Regulated power supply
- Attractive metal cabinet
- UL and FCC approved

- 15 Day Free Trial - 90 Day Immediate Replacement Warranty

9" Screen - Green Text Display
\$ 79.00
12" Screen - Green Text Display (anti-reflective screen)
\$ 99.00
12" Screen - Amber Text Display (anti-reflective screen) $14^{\prime \prime}$ Screen - Color Monitor (national brand)

Display Monitors From Sanyo

With the need for computing power growing every day, Sanyo has stepped in to meet the demand with a whole new line of low cost, high quality data monitors. Designed for commercial and personal computer use. All models come with an array of features, including upfront brightness and contrast controls. The capacity 5×7 dot characters as the input is 24 lines of characters with up to 80 characters per line.
Equally important, all are built with Sanyo's commitment to technological excellence. In the world of Audio/Video, Sanyo is synonymous with reliability and performance. And Sanyo quality is reflected in our reputation. Unlike some suppliers, Sanyo designs, manufactures and tests virtually all the parts that go into our products, from cameras to stereos. That's an assurance not everybody can give you!

Computer Fun

The best news for TI owners this Christmas season is that Texas Instruments has reduced the price of its peripherals. One complaint about the TI-99/ 4 A has been that the cost of the basic computer was quite reasonable, but if you wanted to add disk drives or a printer, the cost was out of sight. But that's not a valid complaint anymore. The peripheral expansion box with one disk drive, the disk controller card, and the 32 K memory expansion card now have a total list price of $\$ 550$ - I have seen advertisements of prices near $\$ 450$.

The RS-232 interface card, needed to add a printer or a modem, lists for around $\$ 100$. Therefore, since the computer itself sells for about $\$ 100$, you can get a "complete system" for under $\$ 700$. Although you can use other brands of printers and modems, the TI printer has been reduced to $\$ 500$, and the TI modem to $\$ 100$. All of this means that more TI owners will be getting the peripherals and discovering even more ways we can use our computers in our homes.

Computer Choreography

Since December is a festive time of year, the subject of this column is combining music with graphics to create a show I call "computer choreography." Two months ago I wrote about music on the TI-99/ 4 A . This column is a continuation of that topic, with an explanation of one way to add graphics to the music. Remember, there are many ways to program - there's no one "correct" way. Your program is "correct" if it works the way you want it to when you run it. If it runs properly, you are successful.

Many programming books tell you to plan your program carefully by sketching a structure chart or writing different sections of coding. High school teachers often have students write out the program by hand before going to the computer. (Actually, often the real reason for this procedure
is that the school doesn't have enough computers for the whole class.) If you are using a terminal or a mainframe computer and need to pay for computer time, you do need to plan carefully for efficiency. A home computer allows you to experiment to your heart's content - and even try out your program after every few lines if you wish. Although I usually do sketch out my graphics on graph paper, most of my programming is done by composing right at the console.

Choreography programs require a lot of experimentation, so it is almost better to compose at the console rather than plan each statement in order. Let's get right to an example. I chose a Christmas song that I would like to "play" on the computer. I looked up the music in a songbook then started translating notes. Each CALL SOUND statement contains a duration, a melody note and volume, and two accompaniment notes with their volumes. The duration is expressed in terms of a variable T, which is defined at the beginning of the program.

```
1\emptyset\emptyset REM SILENT NIGHT
11めT=4\emptyset\emptyset
120 CALL SOUND(T*1.5,392,4,3S6,8,13
    1,10)
13\emptyset CALL SOUND(T/2,449,4,349,8,131,
    1\emptyset)
14% CALL
156 CALL
    9)
16@ CALL SOUND{T*1.5,392,4,33@,8,13
    1,1夕)
17@ CALL SOUND{T/2,44@,4,349,8,131,
    1@)
180 CALL SOUND(T,392,4,336,8,131,9)
190 CALL SOUND(J*T, SJg,4,262,6,196,
    9)
26@ CALL SOUND(2*T,587,2,349,4,247,
    8)
216 CALL SOUND{T,587,3,349,5,247,9)
220 CALL SOUND(3*T,494,3,294,6,196,
    9)
```

Try different values for T in line 110．For example，try $\mathrm{T}=600$ ．Then try $\mathrm{T}=100$ ．By pro－ gramming the duration in terms of T，you only need to change line 110，not each of the CALL SOUND statements，to increase or decrease the speed of the song．Keep experimenting until you find the tempo you like．

You may write the three notes（frequencies） in the CALL SOUND statement in any order you wish．I usually write the melody note first so I can keep track of the tune．Also，if I later run out of memory I can more easily delete some of the accompaniment notes because I know the melody note is the first frequency．

Each frequency has a corresponding volume． I write the melody notes with a louder volume than the accompaniment notes in order to bring out the melody．Also，many times bass notes sound louder to us naturally，so we need to lower their volume．

By the way，our chart＇s lowest available note is low A on the bass clef（frequency 110），and you cannot use a frequency number less than 110. However，it is possible to get tones lower than low A．Comparing the tones to an electronic keyboard，Jerry Glaze of Las Vegas，Nevada，has come up with various numbers to get lower tones． He suggests you try this command to hear low G：
CALL SOUND（2の日の，1475，30，1475，39， 147 5，36，－4，1）
He specifies three music frequencies of 1475 with a volume of 30 ，plus the noise parameter of -4 with a volume of 1 ．Now change each of the 1475 numbers to 1293 and you＇ll hear low F （one line below the bass clef）．Continuing downward，Jerry suggests the following numbers： 1227 －E； 1105 － D； $990-\mathrm{C}$ ．（You may wish to adjust the numbers slightly．）

Adding Graphics To Music

Now let＇s add graphics．The actual picture I plan on paper first．I sketch out the main picture on graph paper 24 squares by 32 squares to corre－ spond to the 24 rows by 32 columns on the screen． Any pictures that do not fit into the full squares are redrawn on 8 by 8 squares for the high resolu－ tion graphics．Then add line 105 CALL CLEAR to clear the screen before running the program． Now we＇re ready to begin by inserting graphics commands among the present sound commands．

First，you need to define graphics characters for later pictures using CALL CHAR STATE－
MENTS．This is where you really need to experi－ ment．Try adding the following lines：
122 CALL CHAR（ 128 ，＂$\emptyset 1 \emptyset 1 \emptyset 103 \emptyset 3 F F 7 F 1 F$
124 CALL CHAR（ 129 ，＂$\wp F \emptyset F 1 F 3 E S 86 \emptyset 4 ")$
Be sure those are zeros and not the letter O in the quotes of the character definitions．Now try
running the program．It should sound the same as when you ran it without any graphics state－ ments since the TI can play music while it is ex－ ecuting other commands．Depending on how long a note is held，you can define characters be－ tween sounds．In this case we were able to define two characters between the first note and the sec－ ond．You may be able to define more characters， but if you put too many definitions between the sounds，there will be a gap between the notes－ so you need to use fewer definitions or commands．

I stayed with just the two definitions between the first two notes．I decided to put the next defi－ nition after the third note．Add：

```
145 CALL CHAR(13.,"\emptyset\emptyset8\emptyset8\emptysetC\emptysetC\emptysetFFFEFC
    ")
```

Line 150 is the sound corresponding to the word＂night＂in the song＂Silent Night，＂so right after the music is played，I change the screen color to black with

```
152 CALL SCREEN(2)
```

This chord has a rather long duration，so let＇s define two more characters．Add：

```
154 CALL CHAR(131,"F8F@F8F83CQC66")
156 CALL CHAR(132,"Ø\emptyset\emptyset2\emptyset40810204")
```

Next I started drawing a star．In this case the screen is black and characters are naturally black with a transparent background，so any characters placed on the screen won＇t be seen until the color is changed．I didn＇t want the star to actually appear until after＂holy night．＂To make the star，add the following statements：
$162 \operatorname{CALL} \operatorname{HCHAR}(3,25,128)$
164
$\operatorname{CALL} \operatorname{HCHAR}(4,25,129)$
166
$\operatorname{CALL} \operatorname{HCHAR}(3,26,13 \varnothing)$
168
$\operatorname{CALL} \operatorname{HCHAR}(4,26,131)$
and after＂night＂in line 190，
$192 \operatorname{CALL} \operatorname{COLOR}(13,16,1)$
You can use this technique of drawing invisi－ bly by first defining the colors of the character with a CALL COLOR statement to match what－ ever colors are already on the screen；then placing the characters on the screen with CALL HCHAR and CALL VCHAR；then making the characters visible with another CALL COLOR statement defining the visible colors．

After you add a few more character definitions and some HCHAR commands to draw on the screen，then RESequence the program segment， this is how it will look．

```
Program 1: "Silent Night"
    1ø\varnothing REM SILENT NIGHT
    110 CALL CLEAR
    12\emptyset T=4\emptyset\emptyset
    136 CALL SOUND(T*1.5,392,4,339,8,13
        1,1Ø)
```

1 ØØ REM SILENT NIGHT
$11 \emptyset$ CALL CLEAR
$12 \emptyset \mathrm{~T}=4 \emptyset \varnothing$
$13 \emptyset$ CALL SOUND 1 T＊1．5，392，4，339，8，13 1，1Ø）

```
14\emptyset CALL CHAR(128,"\emptyset1\emptyset1\emptyset1\emptyset3@3FF7F1F
    ")
15@ CALL CHAR(129,"\emptysetF\emptysetF1FSES86@4")
16@ CALL SOUND(T/2,440,4,349,8,131,
    1\emptyset)
170 CALL
18@ CALL
    ")
19\emptyset CALL SOUND(3*T, З30, 4, 262,6,196,
    9)
2\emptyset\emptyset CALL SCREEN(2) "F8F\emptysetFBF83C\emptysetC\emptyset6")
23\emptyset CALL SOUND\T*1.5,392,4,33@,8,13
    1,10)
240 CALL HCHAR(3,25,128)
250 CALL HCHAR (4,25,127)
260 CALL HCHAR ( }3,26,139
27@ CALL HCHAR (4,26,131)
28@ CALL SOUND(T/2,44日,4,349,8,131,
    1\emptyset)
299 CALL SOUND(T, 392,4,339,8, 131,9)
उ\emptyset\emptyset CALL CHAR(1उड,"\emptyset\emptyset\emptyset2\emptyset2\emptyset4\emptyset4\emptyset8\emptyset8")
31\emptyset CALL SOUND(3*T, 33\emptyset,4,262,6,196,
    9)
320 CALL COLOR(13,16,1)
उड\emptyset CALL CHAR(134,"\emptyset\emptyset202040408\emptyset8")
340 CALL SOUND(2*T,587,2,349,4,247,
    8)
35% CALL HCHAR (4,24,132)
360 CALL HCHAR(5,23,132)
376 CALL HCHAR (6,22,132)
380 CALL SOUND(T,537,3,349,5,247,9)
39\emptyset CALL SOUND{3*T, 494,3, 294,6,196,
    9)
400 CALL HCHAR (5, 25, 133)
41\emptyset CALL HCHAR (6,25,134)
420 CALL HCHAR (7,24,133)
43\emptyset CALL HCHAR (8,24,134)
44@ GOTO 44@
```

The last line， 440 GOTO 440 ，keeps the picture on the screen until you press CLEAR（SHIFT C on the TI－99／4 or FCTN 4 on the TI－99／4A）．I＇m going to leave the rest of the song up to you．Since I＇m not an artist，I often look at children＇s picture books or coloring books for picture ideas．For Christmas scenes，you can also try tracing Christ－ mas stencils on graph paper then coloring the squares to plan your shapes．Computer choreog－ raphy can be a lot of fun，and I know many people who have gotten interested in programming by first designing pictures with music．

A New Year＇s Present

I promised you a Christmas present，but I＇ve de－ cided to make it a New Year＇s present instead．I got my first computer for Christmas in 1980，and one of the first programs I wrote was the music for＂Auld Lang Syne＂with the screen showing 1980 turning into 1981．Each year I change the year and I change the graphics or music slightly．In 1981 I had TI Extended BASIC and made the number 1 out of sprites that moved off the screen to make room for 1982．This year I＇m using the natural scrolling of PRINT statements to move 1983 off
the screen while bringing in the new year．
I＇m also including a TI Extended BASIC ver－ sion（Program 3）．To RUN it，you will need the TI Extended BASIC command module．It includes fireworks and champagne bubbles while the music is playing．In the character definitions，up to four characters may be defined in one command． Trailing REMark statements are allowed with the exclamation point，so the words（or syllables）to the music are written along with the CALL SOUND statements．

If you want to use these programs right at midnight，type RUN then press ENTER at 31 sec－ onds before midnight for the regular TI BASIC program，or 25 seconds before midnight for the TI Extended BASIC program．The year 1984 will be in place exactly for the new year．

Have a happy holiday season！

Program 2：＂Auld Lang Syne＂（TI BASIC）

100	REM A	AULD LANG SYNE
110	CALL	CLEAR
120	call	SCREEN（4）
138	CALL ）	
140	CALL	CHAR（97，＂ØF 1F1FSFSF7F7FFF＂
$15 \varnothing$	cali ）	CHAR（98，＂FFFFFFFFFFFFFFFF＂
160	$\mathrm{T}=6 \emptyset \emptyset$	
170	CALL S	SOUND（T＊1．1，262，5）
186	CALL ＂）	CHAR（1＠4，＂øøøSめF1FSF3F7F7F
190	CALL	CHAR（165，＂7F7F SFSF1F＠F＠S＂）
20.0	$\begin{aligned} & \text { CALL } \\ & \text { ") } \end{aligned}$	CHAR（1Øठ，＂ØøСดFØF8FCFCFEFE
210	CALL	CHAF（ 1 ＠7，＂FEFEFCFCFBF $¢$ C以＂）
220	$\begin{aligned} & \text { CALL } \\ & 75,15) \end{aligned}$	SOUND（T＊1．5，349，5，262，12，1
239	CALL	$\operatorname{VCHAR}(8,5,98,9)$
249	CALL	$\operatorname{VCHAR}(8,4,96)$
259	call v	$\operatorname{VCHAR}(9,4,97)$
269	CALL $, 15)$	SOUND（T／2，349，5，262，12，196
270	CALL 5)	SOUND ${ }^{\text {S }}$ ，349，4，262，12，229，1
280	CALL ＂）	
$29 \emptyset$	CALL ＂）	
З＠ロ	CALL 5）	SOUND（T，440，5，349，12，175，1
310	CALL H	HCHAR（8， 1 ，98，3）
320	CALL H	$\operatorname{HCHAR}(8,9,164)$
उЗ 0	CALL	$\operatorname{VCHAR}(9,9,98,3)$
340	$\begin{aligned} & \text { CALL S } \\ & 31,15) \end{aligned}$	SOUND（T＊1．5，392，5，339，12，1
350	CALL H	$\operatorname{HCHAR}(12,9,195)$
36ø	CALL H	$\operatorname{HCHAR}(12,10,98,3)$
370	CALL	$\operatorname{VCHAR}(8,13,106)$
389	CALL	$\operatorname{VCHAR}(9,13,98,7)$
З9ø	$\begin{aligned} & \text { CALL } \\ & , 15) \end{aligned}$	SOUND（T／2，349，5，294，12，131
4øØ	CALL 5）	SOUND（T，392，5，339，12，131，1
410	CALL H	$\operatorname{HCHAR}(16,13,107)$
429	CALL H	$\operatorname{HCHAR}(16,10,98,3)$

436

44 ø

－解
SOUND（T，44ø，5，33ø，12，131，1 5）
$46 \emptyset \operatorname{CALL} \operatorname{HCHAR}(8,17,1 \emptyset 4)$
$47 \emptyset$ CALL $\operatorname{HCHAR}(8,18,98,3)$
$48 \emptyset \operatorname{CALL} \operatorname{HCHAR}(8,21,1 \emptyset 6)$
$49 \varnothing$ CALL $\operatorname{VCHAR}(9,21,98,3)$
$5 \emptyset \varnothing$ CALL SOUND（T＊1．5，349，6，22曰，12，1 75，15）
$51 \varnothing \operatorname{CALL} \operatorname{VCHAR}(9,17,98,3)$
$52 \emptyset \operatorname{CALL} \operatorname{HCHAR}(12,17,1 ø 8)$
$53 \emptyset$ CALL $\operatorname{HCHAR}(12,18,98,3)$
54ø CALL $\operatorname{HCHAR}(12,21,199)$
$55 \emptyset$ CALL SOUND（T／2，349，6，220，12，175
，15）
560 CALL VCHAR（ $13,17,98,3)$
$57 \emptyset$ CALL SOUND（T，449，4，349，12，175， 1 5）
$58 \emptyset$ CALL VCHAR（16，17，195）
$59 \emptyset$ CALL $\operatorname{HCHAR}(16,18,98,3)$
$6 \emptyset \varnothing \operatorname{CALL} \operatorname{HCHAR}(16,21,1 \emptyset 7)$
61ø CALL SOUND（T，523， $3,349,1 \varnothing, 175,1$ उ）
$62 \emptyset$ CALL $\operatorname{VCHAR}(13,21,98,3)$
63Ø CALL $\operatorname{HCHAR}(9,25,98)$
64 CALL $\operatorname{HCHAR}(8,25,104)$
659 CALL SOUND（ $3 * T, 587,2,349,8,233$ ， 1ø）
660 CALL $\operatorname{HCHAR}(8,26,98,3)$
$67 \emptyset$ CALL HCHAR（8，29，1ø6）
68 CALL VCHAR $(9,29,98,3)$
690 CALL $\operatorname{HCHAR}(12,27,98,2)$
$7 \emptyset \emptyset$ CALL $\operatorname{HCHAR}(12,29,1 \emptyset 9)$
710 CALL VCHAR $(13,29,98,3)$
72 © CALL $\operatorname{HCHAR}(16,29,1 \varnothing 7)$
730 CALL HCHAR（16，26，98，3）
740 CALL $\operatorname{HCHAR}(16,25,105)$
$75 \emptyset$ CALL HCHAR $(15,25,98)$
769 CALL SOUND（T，587，2，349，8，233，1ø ）
$77 \emptyset$ CALL SCREEN（8）
78日 FRINT＂＊b\｛3 SPACES？hbbbj \｛3 SPACES\}hbbbj\{3 SPACES\}a"
790 CALL SOUND（T＊1．5，523，3，349，16，2 2ø，13）
8øø PRINT＂ab\｛3 SPACES\}b
\｛3 SPACES\}b\{3 SPACES\}b
\｛3 SPACES\}b\{3 SPACES\}b"
$81 \emptyset$ CALL SOUND（T／2， $449,4,349,12,175$ ，15）
$82 \emptyset$ PRINT＂b\｛3 SPACES\}b
\｛3 SPACES\}b\{3 SPACES\}b
\｛3 SPACES\}b\{3 SPACES\}b"
$83 \emptyset$ CALL SOUND（T，44ø，6，349，12，175， 1 5）
84ø PRINT＂b\｛J SPACES\}b \｛3 SPACES\}b\{3 SPACES\}b
\｛3 SPACES\}b\{3 SPACES\}b b"
85ø CALL SOUND（T，349，6，229，12，175， 1 5）
86ø FRINT＂b\｛3 SPACES\}ibbbb \｛3 SFACES\}lbbbm\{3 SPACES\}b b"
$87 \emptyset$ CALL SOUND（T＊1．5，392，6，33ø，12，1 31，15）
88ø PRINT＂b\｛7 SPACES\}b
\｛3 SPACES\}b\{3 SPACES\}b
\｛3 SPACES\}bbbbb"
89ø CALL SOUND（T／2，349，6，294，12，131 ，15）

9øø PRINT＂b \｛7 SPACES？
$\{3$ SPACES\}b\{3 SPACES\}b
\｛6 SPACES\}b"
$91 \varnothing$ CALL SOUND（T，392，6，33ø，12，131，1 5）
926
PRINT＂b\｛3 SFF．CES\}b
\｛3 SPACES\}b\{3 SPACES\}b
\｛3 SPACES\}b\{6 SPACES\}b"
930 5）
949 PRINT＂b\｛3 SPACES\}ibbbk
\｛3 SPACES\}ibbbk\{6 SPACES\}b"
95ø CALL SOUND（T＊1．5，349，6，294，12，1 47，15）
960 PRINT
$97 \emptyset$ CALL SOUND（T／2，294，7，229，12，147 ，15）
$98 \emptyset$ PRINT
990 CALL SOUND（T，294，7，233，12，117，1 5）
1 Øøø FRINT
1 1019 CALL SOUND（T，262，8，233，14，131， 16）
$1 \emptyset 2 \emptyset$ PRINT
 5，17）
$1 \emptyset 4 \emptyset$ PRINT ：：：
$1 \emptyset 5 \emptyset$ CALL SQUND（T，587，5，349，12，175， 15）
1 Ø6め CALL COLOR $(9,5,1)$
$107 \emptyset$ CALL COLOR（10，5，1）
1 Ø8ø CALL COLOF（2，7，1）
$169 \emptyset$ CALL SOUND（T＊1．5，523，5，349，12， 175，15）
$110 \emptyset$ FOR I＝5 TO 25 STEF 5
$111 \emptyset$ CALL $\operatorname{HCHAR}(6,1,42)$
1126 NEXT I
1130 CALL SOUND（T／2，449，6，262，15）
1140 CALL SOUND（T，449， $6,349,12,175$ ， 15）
1150 CALL HCHAR（4，13，42）
$1169 \operatorname{CALL} \operatorname{HCHAR}(4,17,42)$
$117 \emptyset \operatorname{CALL} \operatorname{HCHAR}(2,11,42)$
118 © CALL $\operatorname{HCHAR}(2,19,42)$
1190 CALL SOUND（T， $349,6,110,18$ ）
$129 \varnothing$ CALL $\operatorname{HCHAR}(4,8,42)$
1210 CALL $\operatorname{HCHAR}(2,6,42)$
122 © $\operatorname{CALL} \operatorname{HCHAR}(4,22,42)$
$123 \emptyset$ CALL $\operatorname{HCHAR}(2,24,42)$
$124 \emptyset$ CALL SOUND（T＊1．5，392，6，339，14， 131,16 ）
125 FOR I＝5 TO 25 STEP 5
126 D CALL $\operatorname{HCHAR}(18, \mathrm{I}, 42)$
127 D NEXT I
$128 \emptyset$ CALL SOUND（T／2，349，6，294，12，13 1，17）
$129 \emptyset$ CALL SCREEN（8）
$13 \emptyset \emptyset$ CALL SOUND（T，392，7，33Ø，15，131， 17）
$131 \varnothing$ CALL $\operatorname{HCHAR}(2 \emptyset, 13,42)$
$132 \emptyset$ CALL $\operatorname{HCHAR}(2 \emptyset, 17,42)$
$133 \varnothing$ CALL $\operatorname{HCHAR}(22,11,42)$
1340 CALL $\operatorname{HCHAR}(22,19,42)$
$135 \emptyset$ CALL SOUND（T，587，6，33ø，14，131， 16）
$136 \emptyset$ CALL $\operatorname{HCHAR}(2 \emptyset, 8,42)$
$137 \emptyset$ CALL $\operatorname{HCHAR}(22,6,42)$
$138 \varnothing$ CALL $\operatorname{HCHAR}(20,22,42)$
$139 \varnothing$ CALL $\operatorname{HCHAR}(22,24,42)$
$14 ø \emptyset$ CALL SOUND（T＊1．5，262，6，349，14，

131,16 ）
$141 \emptyset \operatorname{CALL} \operatorname{HCHAR}(4,3,42)$
$142 \emptyset$ CALL $\operatorname{HCHAR}(2,1,42)$
$143 \varnothing \operatorname{CALL} \operatorname{HCHAR}(4,27,42)$
144 ＠CALL $\operatorname{HCHAR}(2,29,42)$
$145 \emptyset \operatorname{CALL} \operatorname{COLOR}(9,7,1)$
1460 CALL $\operatorname{COLOR}(1,0,7,1)$
$147 \emptyset$ CALL SOUND（T／2，44ø，7，131，16）
1489 CALL SOUND（T，44ø，6，349，14，175， 16）
$149 \varnothing$ CALL HCHAR $(20,3,42)$
$156 \emptyset \operatorname{CALL} \operatorname{HCHAR}(22,1,42)$
$151 \varnothing$ CALL $\operatorname{HCHAR}(2 \emptyset, 27,42)$
1520 CALL $\operatorname{HCHAR}(22,29,42)$
1530 CALL SOUND（T，523，5，220，15）
1549 CALL SOUND（ $3 * T, 587,3,349,12,23$ 3，14）
1559 CALL COLOR $(2,16,1)$
156ø CALL SOUND（T，698，2，349，13，233， 15）
$157 \emptyset$ CALL $\operatorname{COLOR}(2,12,1)$
$158 \emptyset$ CALL SOUND（T＊1．5，523，3，349， 12 ， 22ø，14）
$159 \emptyset \operatorname{CALL} \operatorname{COLOR}(9,11,1)$
$16 \emptyset \emptyset \operatorname{CALL} \operatorname{COLOR}(1 \varnothing, 11,1)$
$161 \emptyset$ CALL SOUND（T／2，44ø，4，349，13，17 5，15）
$162 \emptyset$ CALL SOUND（T，44ø，4，349，13，175， 15）
$163 \emptyset \operatorname{CALL} \operatorname{COLOR}(2,5,1)$
1640 CALL SOUND（T，349，5，262，13，11ø， 15）
$165 \emptyset$ CALL COLOR $(2,16,1)$
$166 \emptyset$ CALL SOUND（T＊1．5，392，5，33ø，13， 131，15）
$1670 \operatorname{CALL} \operatorname{COLOR}(9,14,1)$
168 CALL COLOR（1ø，14，1）
$1690 \operatorname{CALL} \operatorname{COLOR}(2,7,1)$
$17 \emptyset \emptyset$ CALL SOUND（T／2，349，5，294，13，13 1，15）
$171 \varnothing \operatorname{CALL} \operatorname{COLOR}(2,16,1)$
$172 \emptyset$ CALL SOUND（T，392，5，33ø，12，131， 15）
$173 \varnothing \operatorname{CALL} \operatorname{COLOR}(2,12,1)$
$174 \varnothing$ CALL SOUND（T／2，44ø，5，33ø，13，13 9，15）
$175 \emptyset$ CALL COLOR（2，16，1）
$176 \emptyset$ CALL SOUND（T／2，392，5，33ø，13，13 9，15）
$177 \emptyset$ CALL $\operatorname{COLOR}(2,3,1)$
$178 \emptyset$ CALL SUUND（T＊1．5，349，5，294，14， 147，16）
179 CALL $\operatorname{COLOR}(9,16,1)$
$18 \emptyset \emptyset \operatorname{CALL} \operatorname{COLOR}(19,16,1)$
$1810 \operatorname{CALL} \operatorname{COLDR}(2,16,1)$
$182 \emptyset$ CALL SOUND（T／2，294，6，22ø，14，17 5，16）
$1830 \operatorname{CALL} \operatorname{COLOR}(2,6,1)$
$184 \emptyset$ CALL SOUND（T，294，7，233，15，117， 17）
$185 \emptyset \operatorname{CALL} \operatorname{COLOR}(2,14,1)$
$186 \emptyset$ CALL SCREEN（11）
$187 \emptyset$ CALL SOUND（T，262，7，165，15，131， 17）
$188 \varnothing \operatorname{CALL} \operatorname{COLOR}(2,12,1)$
$189 \emptyset$ CALL SOUND（ $4 * T, 349,6,22 \emptyset, 15,17$ 5，17）
$19 \varnothing \emptyset$ CALL SCREEN（8）
$191 \emptyset \operatorname{CALL} \operatorname{COLOR}(9,7,1)$
$192 \emptyset \operatorname{CALL} \operatorname{COLOR}(19,7,1)$
$1930 \operatorname{CALL} \operatorname{COLOR}(2,16,1)$
$1940 \operatorname{CALL} \operatorname{COLOR}(2,14,1)$
$195 \emptyset \operatorname{CALL} \operatorname{COLOR}(2,16,1)$
196 © CALL $\operatorname{COLOR}(2,11,1)$
197 © CALL COLOR $(2,16,1)$
$198 \emptyset \operatorname{CALL} \operatorname{COLOR}(2,7,1)$
$199 \varnothing \operatorname{CALL} \operatorname{COLOR}(2,16,1)$
$2 \emptyset \varnothing \emptyset \operatorname{CALL} \operatorname{COLOR}(2,6,1)$
$2 め 1 \varnothing$ GOTO $193 \emptyset$
$2 ø 2 \emptyset$ END

Program 3：

＂Auld Lang Syne＂（TI Exiended BASIC）

$9 \emptyset$ REM TI EXTENDED BASIC
$1 \emptyset \emptyset$ REM AULD LANG SYNE
$11 \emptyset$ CALL CLEAR ：：CALL SCREEN（4）
$12 \emptyset$ CALL CHAR（96，＂ $10 \emptyset 1 \varnothing 1 \emptyset 3 \varnothing 3 \emptyset 7 \emptyset 7 \emptyset F \emptyset$ F1F1FSF3F7F TFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF＂）
13 Ø T＝6øØ
140 CALL SOUND（T＊1．1，262，5）！SHOULD
$15 \emptyset$ CALL CHAR（ $1 \varnothing 4$ ，＂$\emptyset \emptyset \emptyset З \emptyset F 1 F 3 F 3 F 7 F 7 F$
 EFEFEFCFCFBFøCøøめ＂）
$16 \emptyset$ CALL SUUND（T＊1．5，349，5，262，12，1 75，15）！AULD
170 CALL VCHAR（8，5，98，9）
18 © CALL $\operatorname{VCHAR}(8,4,96)$
190 CALL VCHAR $(9,4,97)$
$2 \emptyset \emptyset$ CALL SOUND（T／2，349，5，262，12，196 ，15）！AC－
21 CALL SOUND（T，349，4，262，12，220， 1 5）！QUAINT－
$22 \emptyset$ CALL CHAR（ $1 \varnothing 8$ ，＂ 7 F SF 1 F $\emptyset 7 \emptyset F 1 F \Xi F 7 F$ FEFCFBCめF ØFBFCFE＂）
$23 \emptyset$ CALL SOUND（T，44 $5,5,349,12,175,1$ 5）！ANCE
240 CALL $\operatorname{HCHAR}(8,1 \emptyset, 98,3)$
25 CALL $\operatorname{HCHAR}(8,9,194)$
26 CALL VCHAR（9，9，98，3）
$27 \emptyset$ CALL SOUND（T＊1．5，392，5，330，12，1 31，15）！BE
$28 \emptyset \operatorname{CALL} \operatorname{HCHAR}(12,9,1 \emptyset 5)$
$29 \emptyset \operatorname{CALL} \operatorname{HCHAR}(12,1 \emptyset, 98,3)$
उØø CALL VCHAR $(8,13,196)$
310 CALL VCHAR $(9,13,98,7)$
320 CALL SOUND（T／2，349，5，294，12，131 ，15）！FOR－
$33 \emptyset$ CALL CHAR $94, " 1 \emptyset 387 C D 6921 \emptyset 3844 "$ ）
$34 \emptyset$ CALL SOUND $(T, 392,5,336,12,131,1$ 5）！GOT
$35 \emptyset \operatorname{CALL} \operatorname{HCHAR}(16,13,197)$
36ø CALL $\operatorname{HCHAR}(16,19,98,3)$
$37 \emptyset$ CALL $\operatorname{HCHAR}(15,9,98)$
$38 \varnothing$ CALL $\operatorname{HCHAR}(16,9,105)$
39ø CALL SOUND（T，44ø，5，33Ø，12，131， 1 5）！AND
$4 \emptyset \emptyset \operatorname{CALL} \operatorname{HCHAR}(8,17,1 \emptyset 4)$
$41 \emptyset \operatorname{CALL} \operatorname{HCHAR}(8,18,98,3)$
$42 \emptyset$ CALL $\operatorname{HCHAR}(8,21,1$ Ø6）
$43 \emptyset$ CALL VCHAR $(9,21,98,3)$
44 CALL SOUND（T＊1．5，349，6，22の，12，1 75，15）！NEV－
$45 \emptyset$ CALL VCHAR $(9,17,98,3)$
$46 \varnothing$ CALL HCHAR（ $12,17,1$ © 8 ）
$47 \emptyset \operatorname{CALL} \operatorname{HCHAR}(12,18,98,3)$
$48 \emptyset$ CALL $\operatorname{HCHAR}(12,21,169)$
$49 \emptyset$ CALL SOUND（T／2，349，6，22ø，12，175 ，15）！ER

256 COMPUTE！December 1983
$5 ø \varnothing$ CALL VCHAR $(13,17,98,3)$
$51 \varnothing$ CALL SOUND (T, 44ø, 4, 349, 12, 175, 1 5) ! BROUGHT
$52 \emptyset$ CALL VCHAR ($16,17,195$)
530 CALL $\operatorname{HCHAR}(16,18,98,3)$
$54 \emptyset \operatorname{CALL} \operatorname{HCHAR}(16,21,1 \emptyset 7)$
$55 \emptyset$ CALL SUUND (T,523,3,349, 1ø,175,1 3)! T0

56 © CALL VCHAR $(13,21,98,3)$
570 CALL HCHAR $(9,25,98)$
$58 \emptyset$ CALL $\operatorname{HCHAR}(8,25,194)$
$59 \emptyset$ CALL SOUND ($3 \$ 1,587,2,349,8,233$, 1ø)! MIND
6øø CALL $\operatorname{HCHAR}(8,26,98,3)$
610 CALL HCHAR $(8,29,106)$
$62 \emptyset$ CALL $\operatorname{VCHAR}(9,29,98,3)$
636 CALL HCHAR $(12,27,98,2)$
64 6 CALL $\operatorname{HCHAR}(12,29,169)$
$65 \emptyset$ CALL VCHAR $(13,29,98,3)$
$66 \emptyset$ CALL HCHAR $(16,29,167)$
670 CALL $\operatorname{HCHAR}(16,26,98,3)$
689 CALL HCHAR $(16,25,195)$
696 CALL HCHAR $(15,25,98)$
$7 \emptyset \emptyset$ CALL SOUND (T,587, 2, 349, 8, 233, 1 Ø)! SHOULD
$71 \varnothing$ CALL SCREEN (8)
$72 \emptyset$ PRINT " "b\{3 SPACES\}hbbbj
$\{3$ SPACES\}hbbbj\{3 SPACES\}a"
730 CALL SOUND(T*1.5,523,3,349,1ø,2 2ø, 13)!AULD
74ø PRINT " ab\{3 SPACES\}b
\{3 SPACES\}b\{3 SPACES\}b
\{3 SPACES\}b\{3 SPACES\}b"
$75 \emptyset$ CALL CHAR (3J," $1 \emptyset 10545454545444 "$)
760 CALL SOUND (T/2,440,4,349, 12,175 , 15) ! AC-
$77 \emptyset$ PRINT " b\{3 SPACES\}b
\{3 SPACES\}b\{3 SPACES\}b
\{3 SPACES\}b\{3 SPACES\}女"
780 CALL SOUND (T, 449,6, 349, 12, 175, 1 5) ! QUAINT-
$79 \emptyset$ PRINT " b\{3 SPACES\}b
\{3 SPACES\}b\{3 SPACES\}b
\{3 SPACES\}b\{3 SPACES\}b b"
8øø CALL SOUND (T, 349, 6, 22ø, 12, 175,1 5) ! ANCE

81 Ø PRINT " b\{3 SPACES\}ibbbb
\{3 SPACES\}lbbbm\{3 SPACES\}b b"
820 CALL SOUND(T*1.5,392,6,33ø,12,1 31, 15) ! BE
8Зø PRINT " b\{7 SPACES\}b
\{3 SPACES\}b\{3 SPACES\}b
\{3 SPACES\}bbbbb"
$84 \emptyset$ CALL SOUND (T/2,349,6,294,12,131 , 15) !FOR-
$85 \emptyset$ PRINT " b\{7 SPACES\}b
\{3 SPACES\}b\{3 SPACES\}b
\{6 SPACES\}b"
$86 \emptyset$ CALL SOUND (T, 392, 6, 33 $9,12,131,1$ 5) ! GOT
$87 \emptyset$ PRINT " b\{3 SPACES\}b \{3 SPACES\}b\{3 SPACES\}b
\{3 SPACES\}b\{6 SPACES\}b"
889 CALL SOUND (T, 449,6,339,12,131,1 5) ! AND

89ø PRINT " b\{3 SPACES\}ibbbk \{3 SPACES\}ibbbk\{6 SPACES\}b"
$9 \emptyset \emptyset$ CALL SOUND(T*1.5,349,6,294,12,1 47,15) : DAYS

910 PRINT
920 CALL SOUND (T/2,294,7,226,12,147 , 15)! OF
93Ø FRINT
940 CALL SOUND $1 T, 294,7,233,12,117,1$ 5) ! AULD
$95 \emptyset$ PRINT
969 CALL SOUND (T, 262, 8, 233, 14, 131, 1 6) ! LANG
$97 \emptyset$ PRINT
989 CALL SOUND $3 * T, 349,8,226,15,175$, 17)!SYNE
$99 \emptyset$ PRINT : :
1 ØøÐ CALL SOUND (T,587,5,349, 12, 175, 15) ! FOR

1 Ø1 $\operatorname{CALL} \operatorname{COLOR}(9,5,1):=\operatorname{CALL} \operatorname{COLOR}$ ($10,5,1$)
1620 CALL SOUND(T*1.5,523,5,349,12, 175, 15) ! AULD
$1 \emptyset 3 \varnothing$ CALL MAGNIFY(1)
$1 \emptyset 4 \emptyset$ CALL CHAR ($12 \emptyset, " 92442892284492 "$)
$105 \emptyset$ CALL SPRITE (\#1,94, 13, 192,115,9, Ø)
1 Ø6Ø CALL SPRITE (\#28, 33, 16, 198, 115, -9, Ø)
$1 \emptyset 7 \emptyset$ CALL SOUND (T/2,44Ø, 6,262,15)
1 Ø8ø CALL SOUND (T, 44D,6, 349, 12,175, 15): LANG

1 ø9ø CALL CHAR (124,"øø3C424242423C")
$11 ø \varnothing$ CALL SOUND (T, 349,6,11ø,18)
$111 \emptyset$ CALL SOUND(T*1.5,392,6,33ø,14, 131, 16) ! SYNE
$112 \emptyset$ CALL DELSPRITE (\#1, \#28)
$113 \varnothing$ FOR $I=1$ TO $1 \varnothing$
$114 \varnothing$ CALL SPRITE (\#I, 12ø, 7, 9ø, 115)
$115 \emptyset$ NEXT I
$116 \emptyset$ CALL SOUND (T/2, 349, 6, 294, 12, 13 1,17)! MY
$117 \varnothing$ CALL SCREEN (8)
$118 \emptyset$ CALL MOTION(\#1, $-1 \varnothing,-1 \varnothing$)
$119 \emptyset$ CALL MOTION (\#2,-1ø,1ø)
$120 \emptyset$ CALL SOUND (T, 392,7,33Ø, 15, 131, 17) ! DEAR

121 CALL MOTION(\#3, $-1 \emptyset, 5)$
$122 \emptyset$ CALL MOTION (\#4, -1 $1,-5)$
$123 \emptyset$ CALL MOTION(\#5, $-1 \emptyset, \emptyset)$
124 CALL MOTION (\#6, $1 \varnothing,-1 \emptyset$)
1250 CALL MOTION(\#7,1ø,1ø)
$126 \varnothing$ CALL SOUND (T,587,6,33ø, 14, 131, 16) ! FOR
$127 \emptyset$ CALL MOTION(\#8, 1ø, -5)
$128 \emptyset$ CALL MOTION (\#9, $1 \varnothing, 5$)
$129 \emptyset$ CALL MOTION (\#1ø,1ø, Ø)
$13 \emptyset \emptyset$ CALL SOUND(T*1.5,262,6,349,14, 131,16) : AULD
$131 \emptyset \operatorname{CALL} \operatorname{COLOF}(9,7,1):=\operatorname{CALL} \operatorname{COLOR}$ (19,7,1)
$132 \emptyset$ FOR $I=1$ TO $5:$ CALL MOTION(\#I , Ø, Ø): : NEXT I
1330 CALL SOUND (T/2, $440,7,131,16$)
1349 CALL SOUND (T, 449,6,349, 14,175, 16) ! LANG
$135 \emptyset$ FOR $I=6$ TO $1 \emptyset:$ CALL MOTION(\# $I, \emptyset, \emptyset):=\operatorname{NEXT} I$
1369 CALL SOUND (T,523,5,220,15)
1379 CALL SOUND ($3 * T, 587,3,349,12,23$ 3,14)!SYNE
$1389 \mathrm{C}=16$

139@ CALL SFRITE (\#11, 42, С, 90, 115,-1 Ø, -16)
14 Øø CALL SFRITE (\#12, 42, C, 7 Ø, 115,-1 6, 18)
1419 CALL SPRITE (\#13, 42, C, $96,115,-1$ $1,-8$)
1429 CALL SPRITE (\#14, 42, C, 9 Ø, 115,-1 1,8)
1439 CALL SPRITE (\#15, 42, C, 9 $9,115,-1$ 2, Ø)
1440 CALL SPRITE (\#16, 42, C, 9月, 115, 9 , -16)
1450 CALL SPRITE $\# 17,42, \mathrm{C}, 96,115,9$, 18)

1469 CALL SPRITE (\#18, 42, C, 9@, 115,13 , -9)
 , 9)
$148 \emptyset$ CALL SFRITE (\#20,42, C, 9ø, 115, 15 , Ø)
1496 CALL SOUND (T, 698,2,349, 13, 233, 15) ? WE LL
$15 \emptyset \emptyset$ FOR $I=11$ TO $26:$ CALL MOTION \# I, Ø, Ø) : : NEXT I
1519 CALL SOUND (T*1.5,523, $3,349,12$, 229, 14)!TAKE
$1529 \operatorname{CALL} \operatorname{COLOR}(9,11,1):=\operatorname{CALL} \operatorname{COLO}$ $\mathrm{F}(19,11,1)$
1536 CALL SOUND (T/2, $449,4,349,13,17$ 5, 15) ! A
1540 CALL SOUND (T, 440, 4, 349, 13, 175, 15) ! CUP
$155 \emptyset$ CALL SPRITE (\#21, 124,5,192,3 $12, \emptyset)$
1569 CALL SPRITE (\#22, 124, 5, 192,249, $-7,5)$
1579 CALL SPRITE (\#23, 124,5,192,64, 2ø, ワ)
1589 CALL SPRITE (\#24, 124,5,192,192, -24, Ø)
$159 \emptyset$ CALL SOUND $1 T, 349,5,262,13,119$, 15): 0 .
$160 \emptyset$ CALL SPRITE (\#25, 124,5,192,103, -14, ø)
161Ø CALL SPRITE (\#26, 124,5,192,164, - Зø, ø)

1620 CALL SPRITE (\#27,124,5,192,120, $-23, \varnothing)$
1639 CALL SOUND(T*1.5,392,5, उ3 1,13 , 131,15) ! KIND-
$164 \varnothing \operatorname{CALL} \operatorname{COLOR}(9,14,1):=\operatorname{CALL} \operatorname{COLO}$ $\mathrm{F}(1 \emptyset, 14,1)$
165 CALL SOUND (T/2,349,5,294,13,13 1, 15) ! NESS
1660 CALL SOUND (T, 392,5, 33ø, 12, 131, 15) ! YET
$167 \emptyset$ CALL SOUND (T/2, 44ø,5,33Ø, 13,13 9, 15) ! FOR
1689 CALL SOUND (T/2, 392,5, 33ø, 13, 13 9, 15)
169 CALL SOUND (T*1.5,349,5,294,14, 147,16) ! AULD
$17 \emptyset \emptyset \operatorname{CALL} \operatorname{COLOR}(9,16,1):=\operatorname{CALL} \operatorname{COLO}$ $\mathrm{R}(16,16,1)$
$171 \emptyset$ CALL SOUND (T/2, 294, 6, 22ø, 14, 17 5, 16)
1720 CALL SOUND (T, 294, 7, 233, 15, 117, 17)! LANG
$173 \emptyset$ CALL SCREEN (11)
1740 CALL SOUND (T, 262,7,165, 15, 131,
17) 5, 17) ! SYNE
$176 \varnothing$ CALL SCREEN(8)
$177 \emptyset \operatorname{CALL} \operatorname{COLOR}(9,7,1):=\operatorname{CALL}$ COLOR ($1 \varnothing, 7,1$)
$178 \boxminus$ FOR $\mathrm{I}=1$ TO $2 \boldsymbol{=}:$ CALL COLOR(\# I , 16) : : NEXT I
179Ø FOR $\mathrm{I}=1$ TO 2 : $:$ CALL COLOR (\# I , 14): : NEXT I
$18 \emptyset \emptyset$ FOR I=1 T0 2 1 , 12) : : NEXT I
$181 \varnothing$ FOR $I=1$ TO $2 \emptyset:=$ CALL COLOR(\#I , 7) : : NEXT I
1829 GOTO 178 g
$183 . E$ END

14 SESSIONS ON VIDEO TAPE

1) What Is A Commodore 64? 2) Getting Started 3) Lets Run Programs 4-A) What Makes Programs Work? 4-B) Putting Programs To Work 5) Storing Information 6) The Commodore 64 As A Learning Tool
2) Computers Talking to Computers 8) Commodore 64 Language 9) Graphics
3) Commodore 64 Working For You 11) Commodore 64 Music 12) Computer Games And Simulations 13) Now What?

Floyd Beaston

Both the Commodore VIC and 64 have graphics characters right on the keys. This program lets you take advantage of these graphics by allowing you to SAVE and LOAD screen pictures made using character graphics.

My eight-year-old son loves to "draw" artwork on the screen using combinations of the graphics symbols on the keys. Because the "artworks" vanished forever when we turned off the computer, my son became more and more frustrated.

These programs for the VIC and 64 were written to help with this problem by allowing you to SAVE and LOAD all characters, including graphics symbols, on the screen.

To use the VIC version, first remove any expansion board and then type in Program 1. Then enter this line:

CLR:POKE46,PEEK(46) + 4
and SAVE to disk or tape.

Operating The VIC Version

If you wish to draw a picture (to later SAVE), LOAD the program and change line 1 to:

1 REM

Next, clear your screen and begin drawing. When you are finished, change the cursor color to match the background color, then type RUN. (You won't be able to see the command RUN since it will be the same color as the background.) In a few seconds, change the cursor color back to a visible color and then SAVE the program to tape or disk. Your screen will also be saved.

To retrieve your picture, LOAD the program

"Art Museum" can save any screen drawing to tape or disk. 64 version.
from tape or disk and change line 1 to:

1 GOTO20

This will magically return your picture to the screen.

Program 1: Art Museum (VIC Version)

Ø $\mathrm{S}=7680$: $\mathrm{C}=384 \varnothing \varnothing$: GOSUB63999
1 GOTO2ø
$1 \varnothing$ FORJ $=\varnothing$ TO5 $\varnothing 5$: POKEML+J, $\operatorname{PEEK}(S+J)$: POKEML + $506+J, \operatorname{PEEK}(\mathrm{C}+\mathrm{J})$: NEXT : END
$2 \emptyset$ FORJ=ØTO5Ø5: POKES $+J$, PEEK (ML+J) : POKEC+J , PEEK (ML+5ø6+J) : NEXT:PRINT" $\{$ HOME $\}$ ";
21 GOTO21
$63999 \mathrm{ML}=\operatorname{PEEK}(61)+\operatorname{PEEK}(62) * 256+31: \operatorname{RETURN}$

Program 2: Art Museum (64 Version)

1 GOSUB4ø1ø:INPUT "\{WHT\}\{CLR\}LOAD FILE";W \$: IFWS="N"THENPRINT"\{CLR\}": END

64 Notes

The 64 version of "Art Museum" (Program 2) stores the contents of screen memory at 16384 (\$4000) and the contents of color memory at 1750 . To use this version, first type in and SAVE the program, then draw your picture on the screen using the cursor control keys and character graphics. When your picture is complete, change the cursor color to the background color and then invisibly type GOTO 10 and press RETURN. Then press S (for SAVE). This saves your screen creation at 16384 . After a wait of about 25 seconds, change the cursor color to a visible color and clear the screen.

If you wish to SAVE your screen to tape or disk, type GOSUB 4010:GOTO 1000 and press RETURN. You will then be prompted for filename and storage medium (tape or disk). After responding to these prompts, your screen will be saved to disk or tape. To LOAD a file, type RUN and the program will prompt for filename and storage medium. Once your file is loaded, type GOTO10 and hit any key except S. Your stored file will gradually appear on the screen.

2 INPUT"DISK OR TAPE"; ES:IFES="D"THENE=8: GOTO19ØØ
$3 \mathrm{E}=1$: GOTO19ØØ
$1 \emptyset$ POKE55, 255 : POKE 56,63
$2 \emptyset$ FORT= ØTO2ØØ:NEXT
$3 \emptyset$ GETAS:IFAS=""THEN3 3
$35 \mathrm{CO}=55296: \mathrm{SC}=1 \varnothing 24: \mathrm{DR}=16384: \mathrm{CR}=\mathrm{DR}+1 \varnothing 24$
$4 \emptyset$ ON $((A S=" S ")+2)$ GOTOl $0 \square, 2 \emptyset \emptyset$
100 FORT=ØTO999: POKEDR+T, $\operatorname{PEEK}(S C+T)$
$11 \emptyset$ POKECR+T, (PEEK (CO+T)AND15)
120 NEXT:PRINT" 1 HOME\}":END
2 FORT $=$ ØTO999: POKESC+T, $\operatorname{PEEK}(\mathrm{DR}+\mathrm{T})$
$21 \varnothing$ POKECO + T, $\operatorname{PEEK}(\mathrm{CR}+\mathrm{T})$
220 NEXT:PRINT"\{HOME\}": END
1ØØØ REM SAVE SCREEN
$1 \emptyset 1 \emptyset$ INPUT"SAVE SCREEN Y OR N"; S\$
1020 IF $S \$=" N " T H E N$ END
$1 \varnothing 21$ POKE25Ø, Ø: POKE251,64
$1 \varnothing 22$ POKE252, Ø: POKE253,96
1Ø3Ø INPUT"FILE NAME FOR SCREEN"; FS
$1035 \mathrm{~F} \$=" \varnothing: "+\mathrm{F}$ \$
$1 \varnothing 36$ INPUT"\{WHT\}DISK OR TAPE";ES:IFES="D" THENE=8: GOTO1Ø4Ø
$1037 \mathrm{E}=1$
$1 \emptyset 4 \emptyset$ OPEN1, E, 1, FS:SYS49152:CLOSE1: END
$19 \varnothing \emptyset$ INPUT "FILENAME"; LS:LS="Ø:"+L\$
2ØØØ OPEN1, E, Ø, L\$:SYS49162:CLOSE1:END
$401 \emptyset \mathrm{I}=49152$
$4 \emptyset 2 \emptyset$ READ $A: I F$ A $=256$ THEN RETURN
$403 \emptyset$ POKE I, A:I=I+1:GOTO $4 \varnothing 2 \emptyset$
49152 DATA $166,252,164,253,169,250,32$
$4916 \emptyset$ DATA $216,255,96,165,184,166,186$
49168 DATA $160,255,32,186,255,169,0$
49176 DATA $162,0,160,64,32,213,255$
49184 DATA 96,256

BUSINESS APPLICATIONS FOR THE COMMODORE 64 AND VIC 20

RELIABLE!! NEW!!

PARALLEL INTERFACE - $\$ 49.95$ - New from Data 20, a Parallel interface for the unbelievable low price of $\$ 49.95$ II Easy to use, simply plug it in - no software to load or switches to configure. Translates the Commodore character set to ASCIIappears to the system as a 1525 Printer. Make printing with your Commodore 64 EASY.
INVENTORY MANAGER SOFTWARE - $\mathbf{\$ 9 9 . 9 5}$ - Having trouble keeping track of your inventory or hobby collections? lf so, our "Inventory Manager" will solve your problems. The Inventory Manager is designed to work with either the Commodore 64 or the VC 20 with $16 \mathrm{k} \& 40 / 80$ Column expander. It gives you complete control of 2500 separate item files with 99,999 items per file. Generate reports by vendor or department, 1000 vendor possibilities, one-step posting process.
THE BEST WORD-PROCESSOR FOR COMMODORE 64 - ONLY $\$ 29.95$ - The Data 2OWordmanager has features found in word processors costing many times more. Features like on-screen editing (what you see is what you get), right justify, search \& replace, block move and copy as well as many more. This package also includes integrated mailing list system-produces form letters fast. All files compatible with 80 Column version that comes free with Data 2080 -Column products. (See below)
80-COLUMN SCREEN EXPANSION FOR COMMODORE 64 OR VIC 20 - Install the Data 20Displaymanager in your VC 20 and you will upgrade your system to 40 or 80 Columns, plus ASCII terminal emulator, screen print feature, and Wordmanager software for 80 -Column wordprocessing. 8 K of expansion RAM optional.
The Video Pak 80 and the Z-80 Video Pak are designed for the Commodore 64 , giving you all the above listed features, also including the FREE Wordmanager Software and integrated Mail List Program. The Z-80 Video Pak includes all the standard features, but adds a $\mathrm{Z}-80$ microprocessor and a CP/M compatible operating system.

The Computer Network
P.O. Box 9840 fountain Valley, CA 92708

Call Toll free 800-221-9948 in California 714-855-4366

If you want your 64 to do more than
play games, The Computer Network has what you wantII

COMPUTER MAIL ORDER

TERMINALB

910 912 912 920 925 950 970 50 802 803 802 H $806 / 2$ $806 / 20$ $816 / 40$ 1602 1602 1603

 800A COMPUTER ${ }^{23}$
MODEMS

Smart Smart $1200(1200$ Baud) S219 Sin

Chionograph
Micromodem 100
Micromodem 11
Micromodem II (with term)
Smart Com II
Smart 12008

$\$ \$ 19000$
$\$ 19900$
$\mathbf{\$ 3 0 9} 00$
$\$ 27900$
$\$ 29900$
$\$ 9900$
$\$ 46900$
$\$ 11900$
$\$ 14400$
$\$ 15900$
$\$ 19400$
$\$ 15900$
$\$ 18900$
518900
$\$ 279.00$
5439
$\$ 23900$
560900
$\$ 60900$
$\mathbf{5} 30900$

Mark III (T I 99)
Mark IV (CBM.
Mark V (Osborne)
Mark VI (IBM.PC)
Mark Vill (Auto Ans Auto Dial)
Mark Vill
TRS 80 Color Computer
9 Volt Power Supply
ZENIT
ZENITH

NEC 3550 Printer....s 1799 PERCOM/TANDON DRIVES
51/4" 320K Flopp
$\$ 1369.00$
$\$ 1649.00$ $\$ 1649.00$
$\$ 2399.00$ $\$ 1649.00$
$\$ 3199.00$ $\$ 3199.00$
$\$ 1579.00$ $\$ 1579.00$
$\$ 2399.00$ $\$ 2399.00$
$\$ 2799.00$ $\$ 2799.00$
$\$ 3599.00$ $\$ 3599.00$
$\$ 3599.00$ $\$ 5499.00$. CALL

MONITORS

 AMDEK| 300G AMDEK | \$149.00 |
| :---: | :---: |
| 300 A | \$159.00 |
| 310 A | \$169.00 |
| Color 1 | \$279.00 |
| Color I plus | \$299.00 |
| Color II | \$399.00 |
| Color III | \$349.00 |
| Color IV | \$999.00 |
| Pi 1, g*G...... USI | S99.00 |
| Pi $2.12{ }^{\prime \prime} \mathrm{G}$ | \$119.00 |
| Pi 3, 12" A | \$149.00 |
| Pi 4, 9*A. | . 5139.00 |
| 1400 Color | . 279.00 |
| ZENITH | |
| ZVM 122A | S109.00 |
| ZVM 123G | . 599.00 |
| BMC | |
| 12"Green | S85.00 |
| 9191 AU 13"Color | \$249.00 |
| TAXAN | |
| 12 NGreen | \$129.00 |
| 12 A Amber | \$139.00 |
| PANASONI | |
| TR 120 Hz -res Green | \$149.00 |
| CT 160 Dual Mode Color | \$27900 |
| 1260 NEC | 511900 |
| JB 1260 | S119.00 |
| JB 1201 | S149.00 |
| JB 1205 | \$169.00 |
| JC 1215 | \$299.00 |
| JC 1216 | \$429.00 |
| JC 1203 | \$469.00 |
| GORILLA | |
| 12" Green | ... 589.00 |

5 Meg Hard w/Controller.
$\$ 249.00$
$\$ 1399.00$ 0 Meg Hard w/Controller. . $\$ 1399.00$ 15 Meg Hard w/Controller ... S2095.00 20 Meg Hard w/Controller ... $\$ 2399.00$
$\$ 169.00$
310A Amber Monitor $\$ 169.00$
DXY 100 Plotter $\$ 599.00$
DXY 100 Plotte
Color II
$\$ 399.00$

> AST RESEARCH, INC. Six Pak Plus...from..... $\$ 279.00$ Combo Plus II...from... $\$ 279.00$ Mega Plus...from........ $\$ 309.00$ I/O Plus II...from S

> Quadlink
> QUADRAM
> (....\$549.00 Quadboard....as low as... \$309.00 Quad 512 Plus...as low as...\$259.00 Quadcolor...as low as ... \$219.00 Chronograph............... $\$ 89.00$ Parallel Interface Board.... $\$ 89.00$ 64K RAM Chips Kit $\$ 79.00$

> MICRO PRO
> Word Star/Mall Merge
> $\$ 319.00$ intoStar
> $\$ 29900$
> Spell Star $\$ 159.00$
> CallStar. 5159.00

Crosstalk MICROSTUF \$129.00
MICROSOFT $\$ 179.00$ Multiplan ASHTON-TATE \$41900 $\begin{array}{llr}\text { D-Base II } & \text { IUS } & \$ 419.00 \\ \text { EasyWriter II } & & \$ 219.00\end{array}$ EasySpeller $\$ 119.00$
Easyfiler $\$ 239.00$
CONTINENTAL SOFTWARE 1 st Class Mail/Form Letter .. \$79.00 The Home Accountant Plus ... $\$ 99.00$ GYNAPSE
File Manager
LOTUS PFS

EPSON COMPUTERS

$\substack{\text { TI-40 } \\ \text { сOMPACT } \\ \text { сOMPUTER } \\ \$ 209}$

TIMEX
SINCLAIR CALL 1000 16 K Memory..
2040 Printer 2040 Pri
Vu.Caic Vu.Calc
$\$ 29.95$
$\$ 99.95$
$\$ 17.95$

HEWLETT

HP41CV... 5209.00 HP 75.
HP 41C
HP 10 C
HP 11 C
HP 12 C
HP 15C
HP 16 C
HPIL Module
$\begin{array}{lr}\text { Hfil Cassette or Printer } & \$ 35900 \\ \text { Cird Reader } & \$ 14400 \\ \text { ExtendedFunctions Module } & \$ 6400\end{array}$
Time Module

MBC-555PC. MBC 1100 MBC 1150 MBC 1200

MBC 1250

FDD 3200-320K Drive FDD $6400 \cdot 64 \mathrm{~K}$ Drive … $\$ 399.00$ PR 5500 Printer $\$ 499.00$
$\$ 699.00$

PRINTERS EPSON
M $\times 80$ FT. MX100. RX80. FX80. FX100.

OKIDATA
82. 83. 84.92.93....
STAR

Delta 10
$\$ 559.00$
Gemini 10X
Gemini P15
$\$ 299.00$
Serial Board....................... $\$ 449.00$
SMITH CORONA

TP. 1 TP. 2

Tractor Feed
. 4699.00
C.ITOH

Gorilla ...
Prowriter 8510 P
$\$ 209.00$
Starwriter F10.40P ... $\$ 1149.00$
Printmaster F10-55P \$1569.00
Tractor Feed S199.00
DAISYWRITER
2000 Letter Quality
2500 NEW
. 5999.00 Tractor Feed

S10900
DIABLO
620
630
$\$ 949.00$
$\$ 1769.00$
105
Call for ALL Configurations on IDS PRISM PRINTERS.

EWEST: =CANADA=

$1.800 .648 .3311 \quad 1 \cdot 800 \cdot 268 \cdot 4559$

In NV call (702)588-5654, Dept. 1206
P.O. Box 6689, Stateline, NV 89449 Order Status \#: 588-5654

In Toronto call (416)828-0866, Dept. 1206 2505 Dunwin Ct.,Unit 1B,
Mississauga, Ontario, Canada LSLITI

COMPUTER MAIL ORDER

ACE 1000 Color Computer
E 1100 Drive \& Cover for ACE 1000 ACE 1200 Computer with Disk Drive ACE PRO PACK

ACE 1000. Disk Drive.

MICRO-SCI

2 $\mathbf{5 2 1 9 . 0 0}$	
A40	\$299.00
A70 5319	
C2 Controller	\$79.00
C47 Controller	
Elite I (Apple/Franklin)	
Elite II (Apple/Franklin)	\$319.00
Elite III (Apple/Franklin),VISICORR	
FOR APPLE. IBM \& FRANKLIN	
Visidex	\$189.
Visitile 5189	
Visipiot $\mathbf{S l}^{\text {s }}$	
Visiterm	S8
Visitrend/Plot $\mathbf{s 2 2}$	
Visischedule	\$229.0
Desktop Plan............... 5189	
Visicaic (Apple. IBM. CBM) ... 517	
Visicalc 4 (IBM)	\$209
Visicalc Advanced Ile	5309
Stretch Catc.............. S 89	
Visicorp prices for IBM may vary slightly	

Letter Perfect Apple
$\$ 109.00$
$\$ 75.00$ AXLON
ADdefrankin 1 28 KRam $\quad \mathbf{\$ 2 9 9 . 0 0}$ Apple/Franklin Ram Disk
$\$ 72900$
Bubdisk(128K Non Volitare). $\$ 649.00$ JOYSTICKS
Joystick Famous Red Ball Power Grip
Three Way Deluxe
Atari/VIC Trackbal
Apple Trackball
KRAFT
Atari Single Fire.
Atari Switch Hitte
Atari Switch Hit
Apple Joystick
Apple Paddles

Cocommodore

CBMG4...s219 VIC 20

CBM 8032 503 CALL ON

Executive 64 Portable

1520 Color Printer/Plotter	\$169.00
152580 Column Printer	\$21900
1526.	\$31900
1530 Datasette	\$6900
1541 Single Disk Drive	\$24900
1600 VIC Modem.	\$59 00
1650 AD/AA Modem	\$8900
170214 Color Monitor	\$249.00
Pet 64	\$569 00
Pet 4032	559900
CBM 8032	\$59900
Super Pet	\$99900
B128.80	\$769 00
8×256.80	596900
2031	\$29900
4040	\$699 00
8050	\$949 00
8250	\$119900
9060	\$199900
9090	\$219900
4023	\$379 00
6400	\$1399.00
64 K Upgrade	\$269 00
Spell Master	\$14900
Z.Ram	\$549 00
Silicon Oftice	\$749.00
The Manager	\$209.00
Sott Rom	\$129.00
Jinsam	CALL
Call Result 64	\$139.00

PROFESSIONAL	
ord Pro 2 Plus	\$159.00
Word Pro 3 Plus	\$189.00
Word Pro 4 Plus	\$279.00
Word Pro 5 Plus	\$279.00
infopro	\$179.00
minis	S399.00
Power	\$79.00
Word Pro 64 Plus	S65
CARDCO for VIC 20/64	
Light Pen	\$32.00
Cassette Interface	\$29.00
Parallel Printer Interface	\$69.00
3 Siot Expans. Interface (20).	\$32.00
6 Slot Expans. Interface (20).	579

ATARIHOMECOMPUTERS

ATARI GOOXL. 5149 ATARI BOOXL. S269 ATARI 1 2OロXL CALL ATARI 400 CALL ATARI 800 CALL

C.M.O.TOP 80

APPLE/FRANKLIN	
1. Choplifter	\$27.00
2. Bank Street Write	\$55.00
3. PFS: File	\$89.00
4. Visicalc	\$179.00
5. Home Acc	\$55.00
6. Zaxxon	\$29.00
7. Most Amazing Thing	\$28.00
8. Visifile	\$189.00
9. Fathoms 40	\$19.00
10. Deadlin	\$35.00
11. PFS: Repor	\$89.00
12. Zork III	\$29.00
13. Frogge	\$24.00
14. Facemaker	\$24.00
15. Snooper Troops \#1	\$32.00
16. Delta Dra	\$35.00
17. Castle Wolfenstine	\$24.00
18. Wayout	\$29.00
19. Canyon Climbe	\$19.00
Bandit	\$26.00

CBM 64

1. Word Pro 64	. 565.00	
2. Jumpman	\$29.00	2. Zaxxon......
3. Gort (20/64)	. 514.95	3. E.T. Phone Home
4. Microspec Data Base 64	. 669.00	4. Miner 2049
5. Logo 64.	. 339.00	5. Dig Dug
6. Microspec Gen. Ledger 64	\$79.00	6. Choplifter
7. Zork III.	\$29.00	7. Donkey Kong. Jr
8. Frogger (64)	. 233.00	8. Canyon Climber
9. Quick Brown Fox (20/64)	\$ 54.00	9. Snooper Troops \#2
10. Shamus	. 29.00	10. Word Wiza
11. Deadline.	\$29.00	11. Picnic Paranoi
12. Assembler 64	\$14.95	12. Jumpman
13. Zork II.	. 29.00	13. Shamus
14. 3-D Man	\$14.00	14. Letter Pe
15. Protector	\$32.00	15. File Manager 800
16. Starcross	\$29.00	16. Preppie
17. Easy Mail 64	\$14.95	17. Astro Chase
18. Grave Robber	\$11.00	18. Blade/Black Hole
19. Wall Street	\$19.00	19. Pac Man
20. Trash Man	\$32.00	20. Baja Bu

ATARI
$\$ 39.00 \quad$ 21. Crush. Crumble \& Chomp $\$ 24.00$ $\begin{array}{ll}\mathbf{\$ 3 9 . 0 0} & \text { 22. Wayout } \mathbf{\$ 2 7 . 0 0} \\ \mathbf{\$ 2 9 . 0 0} & \text { 23. }\end{array}$ $\begin{array}{rr}\mathbf{\$ 2 9 . 0 0} & \text { 23. Zork } 11 \\ \mathbf{\$ 3 9 . 0 0} & \text {..................... } \$ 29.00 \\ \text { s }\end{array}$
 $\begin{array}{ll}\$ 35.00 \\ \$ 33.00 & 25 . \text { Atari Writer } \$ 49.00\end{array}$ $\begin{array}{ll}\$ 33.00 \\ \$ 29.00 & \text { 26. Three Little Pigs } \$ 25.00\end{array}$ $\$ 29.00$
$\$ 39.00$ 27 Upper Reachesot Apshal $\ldots \$ 16.00$ $\begin{array}{ll}\text { \$39.00 } \\ \text { \$25.00 } & \text { 28. Starbowl Football } \$ 24.95\end{array}$ $\$ 35.00$
$\$ 39.00$
29. Drelbs $\begin{array}{ll}\$ 34.00 \\ \$ 59.00 & 30 \\ & \text { Protector }\end{array}$ $\$ 59.00$ 31. Frogger.

$\$ 34.00$ $\begin{array}{ll}\$ 34.00 & \text { 31. Frogger..... } \\ \$ 29.00 & \text { 32. Lunar Leeper }\end{array}$ $\begin{array}{ll}\$ 29.00 & \text { 33. Wizard of Wor }\end{array}$ | $\$ 109.00$ | 34. |
| :--- | :--- | $\begin{array}{ll}\$ 109.00 & \text { 35. Moon Shuttle }\end{array}$ | \mathbf{S} | |
| :--- | :--- |
| $\mathbf{\$ 5 9 . 0 0}$ | 35. Moon Shuttle $\$ 21.00$ |
| 24.00 | | | $\$ 69.00$ | 36. Home Accountant |
| :--- | :--- |
| $\$ 24.00$ | 36...... $\$ 22.00$ |
| 550 | | $\begin{array}{ll}\$ 24.00 & \text { 36. Home Accountant } \$ 55.00 \\ \$ 25.00 & 37 . \text { Temple of Apshal } \$ 29.00\end{array}$ $\begin{array}{ll}\$ 25.00 & 37 . \\ \$ 27.00 & 38 \\ \text { Spell Wizard } \$ 39.00\end{array}$ $\$ 33.00 \quad 39$ Nautilus

$\$ 23.00$
$\$ 25.00$

QERG円N

AT 88-S1	\$329.00
AT 88.A2	\$269.00
AT 88-S2	\$569.00
AT 88-S1 PD	\$469.00
AT 88-DDA	\$145.00
RFD 40-S1	\$449.00
RFD 40-A1	\$279.00
RFD 40-S2	\$729.00
RFD 44-S1	\$539.00
RFD 44-S2	\$869.00
TX 99-S1	\$279.00

1000 Atari Disk Drive

$\$ 319.00$
FLOPPY DISKS

MAXELL	
MD- 1	\$29.00
MD-2	\$44.00
FD.1(8)	\$40.00
FD-2(8* DS DD)	\$50.00
ELEPHAN	
51/4 ${ }^{\text {c }}$ SS SD	\$18.50
51/4 SS DD	\$24.95
$51 / 4$ DS DD	\$29.95
VEREATUM	
51/4 ${ }^{\text {c }}$ SS DD	\$26.00
51/4"DS DD	\$36.00
HEAD	
Disk Head Cleaner	\$14.95

This month I will discuss extended memory management on the Atari computers. Before I start, though, I would like just to chat for a bit. (If you are waiting for the last part of the series on selfrelocatable code, be patient. It's just bigger than I expected it to be, so I've got to massage it a bit more.)

Some Small Talk About Computers

Today I read an interview with Alan Kay in Technology Illustrated. As many of you probably know, Alan Kay was perhaps the most instrumental person in the development of the Smalltalk language. (Or is it an operating system? Or is it more properly called simply an "environment"?)

The work he did on Smalltalk while at Xerox caused him to believe that computers were destined to become a household tool, as common as, say, the television set. (Which may seem a mundane belief today, but Kay was saying such things five to ten years ago.) Well, Atari apparently liked Kay's philosophy, vision, and capabilities, and hired him awhile back.

The article I read interested me in two ways. First, it labeled Kay "Atari's Chief of Games." Well, I had been led to believe that he had been brought to Atari to head research and development, presumably to lead Atari into the generation beyond Smalltalk (a logical presumption, since he'd stated that he felt Smalltalk had served its purpose, was obsolete, etc.).

Anyway, with my orientation toward languages and systems, I saw "Chief of Games" as a step downward. Yet the interview made it clear that Kay felt he was in perhaps one of the most challenging positions possible. Hmmm. What has changed? Are games truly the most useful purpose of a computer right now? The marketplace certainly seems to think so. It is food for thought.

The second thing in the article which really got my CPU stirred up was Kay's view of the computer. I had always been under the impression that he believed his real goal in life was to enable
everyone not only to use the computer, but to actually command and manipulate it. (I hesitate to say "program it," but then Smalltalk is a language.) In the interview, though, Kay stated he was beginning to fear that perhaps the computer was not so much a household tool as it was a fine instrument, like a violin. He strengthened the analogy by noting that very few people can play the violin, just as very few people can properly use a computer.

Well, I for one believe that not only is the analogy inappropriate, but its projection of gloom and pessimism about the future of computers is not justified. Granted, the analogy may hold today. After all, only about 1 percent of the United States population can claim to be able to program at all (or play "Twinkle, Twinkle, Little Star" on the violin). Probably less than .1 percent produce acceptable application programs (or play in a community orchestra or equivalent). Dare we guess that .01 percent are commercial programmers (or make their living playing the violin)? Can it be that only .001 percent can actually write systems and languages (or are the guest soloists of the concert world)?

Actually, these proportions are just order-ofmagnitude guesses, but they do seem to support Mr. Kay's analogy. But I say that his analogy has validity mainly because the computer is still such a relatively "rare" instrument. Personally, I prefer a different analogy.

When computers are as much a part of everyday life in this country as automobiles are now (and I firmly believe that they will be), then I think they will be treated much as automobiles are.

Let me sidetrack a little. Here in California, the State has decreed that all high school students shall take a course in "computer literacy." So what happens? Every high school is scrambling to buy one or two computers and begin teaching every kid how to program in BASIC. Great, right? Nonsense!

Two Different Classes

First of all, I can't conceive of learning how to use

LookslikeaFerrari. Drives like a Rolls. Parks like a Beetle.

Ask your computer dealer to take the cover off a world-class disk drive.

The all new, 1984 Indus GT. ${ }^{\text {TM }}$
The most advanced, most handsome disk drive in the world.

A flick of its power switch can turn an Atari into a Ferrari.

Or an Apple into a Red Hot Apple.

Looks like a Ferrari.

The Indus GT is only $2.65^{\prime \prime}$ high. But under its front-loading front end is slimline engineering with a distinctive European-Gran flair.

Touch its LED-lit CommandPost ${ }^{\top M}$ function control AccuTouch ${ }^{\text {TM }}$ buttons. Marvel at how responsive it makes every Atari or Apple home computer.

Drives like a Rolls.

Nestled into its soundproofed chassis is the quietest and most powerful disk drive power system money can buy. At top speed, it's virtually unhearable. Whisper quiet.

Flat out, the GT will drive your Atari track-totrack 0-39 in less than one second. Increasing data transfer 400%. (Faster than any other drive. And as fast as any Apple disk drive.)

And each GT comes with the exclusive GT DrivingSystem ${ }^{\text {TM }}$ of software programs. ${ }^{\star}$ World-class word processing is a breeze with the GT Estate WordProcessor. ${ }^{\text {TM }}$ And your dealer will describe the two additional programs that allow GT owners to accelerate their computer driving skills. *Included as standard equipment.

Also, the 1984 Indus GT is covered with the GT PortaCase. ${ }^{\text {TM }}$ A stylish case that conveniently doubles as a 80-disk storage file.

Parks like a Beetle.

The GT's small, sleek, condensed size makes it easy to park.

And its low price makes it easy to buy.
\$449 for Atari. \$329 for Apple.
So see and test drive the incredible new 1984 Indus GT at your nearest computer dealer soon.

The drive will be well worth it.

indus

The all-new 1984 Indus GT Disk Drive.
The most advanced, most handsome disk drive in the world.
or program a computer at all if the student/ computer ratio is above 3 to 1 . More importantly, I think it is senseless to equate "computer literacy" with "learning to program in BASIC." After all, "automobile literacy" consists of learning traffic laws, safe driving techniques, and actually starting to drive a car (it's usually called "Driver Training").
"Automobile expertise," on the other hand, consists of learning what tools do what, the theory and practice of internal combustion engines, and how to maintain and repair an automobile (and this is usually called "Auto Shop"). Does every student take driver training? Yes, or nearly so. Does every student take auto shop? No. Not by a long shot.

So, I believe, it should be with computer literacy. Don't teach everyone how to program. (What would we do with a nation of programmers? The same thing we would do with a nation of auto mechanics?) Instead, teach everyone how to use a computer to do word processing, to balance their budget, to access data bases, and the list could be quite long.

And, yes, keep the computer programming classes. But keep them on the same basis that auto shop classes are offered - as electives, for those interested in learning more than how to "drive" their computers or cars.

Why this confusion of computer literacy and computer expertise among schools and teachers? Partly because the computer industry has promoted the view. (Perhaps fearing that current applications programs are inadequate to a classroom situation?) Partly because of a dismal lack of education and information on the part of the educators. (Pity the poor math or history teacher who is nearing retirement. Suddenly he/she is forced to learn enough about these nasty machines to be able to teach some kids how to use it. Do you wonder that the path of least resistance is most often chosen?) Mostly, I suppose, because BASIC comes built into each machine, while good text processors, spreadsheet programs, etc., cost extra, money which most schools don't have.

So how does this tirade relate to either Alan Kay or you, my patient reader? Well, first of all, I think the analogy of car and computer is a better one than violin and computer. And, perhaps, if computer companies started trying to design mass consumable "cars" instead of trying to ply the public with precision instruments, it is a future that will come true. To be fair, I think that companies such as Atari and Commodore and Apple and others are starting to do so already. But my cynicism leads me to believe that they are driven by the current market, not by the future one.

You're Ahead Of Your Time

Perhaps more importantly, though, I am trying to convey the message that those of you who read 266 COMPUTE! December 1983
this column (and this magazine) are, in some sense, ahead of your time. You are, indeed, the violinists that Alan Kay perceives. Some of you are just learning to play your first notes. Others of you are already tackling the great concertos. But, when the computer revolution really arrives, you will all have the advantage of having already taken at least your first "auto shop" course. So, if you enjoy your computer (and particularly if you enjoy programming), don't give it up easily. And certainly don't give it up now. Someday, others will appreciate your art, however humble or glorious it may be.

Did that sound like a sermon? If so, I apologize. But it's my view of both the present and the future of computers and programming. One last sidelight before we move on: On hearing me espouse the views above, someone once asked me what my position in the hierarchy was, as a person who helped design (as opposed to program) operating systems and first languages for new machines. Actually, that's an easy question: I'm simply a composer. And so, I think, are such people as Alan Kay.

You Can Bank On It

All of the new Atari XL computers (including the 1200 XL) will contain 64 K bytes of RAM (the 600XL requires an external RAM pack to do so). And all contain 16 K bytes of Operating System ROM space. And, further, all (except the 1200XL) include good old Atari 8K BASIC. Let's see here 64 K plus 16 K plus 8 K - that's over 90,000 bytes of space.

Wait a minute, though. If I plug in a 16 K cartridge (such as AtariWriter or ACTION! or BASIC XL), then I could have 104 K bytes of RAM and ROM. Wow. That's really nifty, right? Well...

Have you read this column often enough to know that "Well..." means "not really" or "there's more to come"? No? Well...

Not really. To begin with, all Atari computers are built around the same CPU (Central Processing Unit), the 6502. (Which, incidentally, is the same chip used in most Commodore computers and all Apple machines except the Lisa.) However, there is a fundamental restriction involved when using a 6502: There is simply no way to access more than 64 K bytes (65,536 bytes) at one time. How, then, can the Atari use 104 K bytes? Is someone fibbing to us?

The key here is the phrase "at one time." A juggler may be able to juggle only four things at a time. Does that mean he always juggles the same four objects? Should we presume that the 6502 must always work with the same 64 K bytes? Of course not.

In point of fact, the new XL machines allow the 6502 a number of choices about which bytes it will "juggle." How the 6502 makes its choice is

ATARI SOFTWARE FOR THE WHOLE FAMILY

Here are four software packages designed for the different people in your family.

A BASIC COMPILER FOR THE PROCRAMMER

 ABC (A BASIC Compiler) automatically translates Atari BASIC programs into high-performance integer P-code that runs up to 12 times faster!Perfect for developing system software and commercial games, ABC accepts most BASIC programs (unless floating point dependent) with little or no modification. Compiled P-code is a self-standing DOS object module that is unLISTable and runs without the BASIC cartridge.

ABC allows expressions in DIM, GOTO, GOSUB, and RESTORE statements, doesn't require you to re-order lines, and fully supports string and sub-string operations.

Give your BASIC programs the look and "feel" of professional products with ABC. 40K Disk \$69.95. Manual alone $\$ 9.95$ (credited toward compiler purchase).

MAKEBOOT lets you create selfbooting disk or cassette versions of your ABC compiled software. Reduces overall program load time and saves memory and disk space by eliminating DOS. 40K Disk $\$ 14.95$.

AN EDUCATIONAL TOY FOR PRE-SCHOOLERS

Monarch is proud to present SofToy, an educational program smart enough to act simple.

Bells ring, balls bounce, owls hoot as SofToy and its colorful interactive display gently introduce children (two years and older) to spatial relations, letters, numbers, even elementary programming! SofToy lets kids become familiar with computers, without arbitrary demands, competition, or intimidation. SofToy grows with children, too. At more difficult levels, the match game is a real challenge for the whole family. 24K Disk $\mathbf{\$ 2 9 . 9 5}$.

TOOLS FOR THE SERIOUS USER

Power Tools I combines four sophisticated text processing tools on one easy-to-use utility disk. DIFF shows you differences between two ATASCII text files: for example, changes you made in a program or document from one version to the next.
Manually searching for a particular text file can take hours. But now, with SEARCH, you specify a search string and a list of files. SEARCH examines the files and points out which ones have that string. You'll never lose your Fudge Brownie recipe again! CHANGE is a powerful search and replace utility that operates on multiple files with one command. For example, you could change character names throughout your novel with a single command, even if each chapter is a separate file.

The special pattern-matching and multiple disk capabilities of SEARCH and CHANGE are an added plus.

TRANSLIT lets you swap one character set for another (for example, upper case for lower case) throughout a file with one command.

Power Tools / is ideal for professional business and software development text applications. 40K Disk \$34.95.
the subject of this section.
Actually, there is no magic formula or scheme which enables the various choices. In fact, various choices are made by differing means. Generally, the choice is "consciously" made by the program currently in control of the machine. And it makes the choice simply by (usually) storing something in a particular memory location. Confused? Let's digress a little.

Some CPUs (including microcomputers and minis and maxis) treat input/output as a separate domain from general memory. For example, the 8080/Z-80 group of processors allow up to 256 separate input and output ports, which are completely separated from the general RAM/ROM memory (they even have special instructions specifically for reading/writing these I/O ports). On the other hand, many machines (such as the 6800, 68000 , and 6502 families, as well as such giants as the PDP-11 series) simply treat input/output ports as part of the general machine memory.

Efficient And Easily Learned

The advantages and disadvantages of each scheme are a subject of hot debate, but I will only present a single aspect of each here: Keeping the I/O ports out of general memory allows a true 64 K bytes of RAM when using an 8 - or 16 -bit microprocessor. Allowing I/O to be treated as part of memory means that any instruction which can access RAM or ROM can also access a port, often resulting in efficient and easy-to-learn coding.

Anyway, note that the 6502 does, indeed, use what is called "memory mapped I/O," and Atari computers do, as a consequence, reserve 2 K bytes of memory (addressed from \$D000 to \$D7FF) which is specifically designed for I/O port addresses. (If losing 2 K of your space seems excessive, pity the Apple owner who loses 4 K .)

In the case of the XL machines, then, one simply changes the value in an I/O port - which appears to one's program as a memory address and presto, a different choice of "jugglable" memory is made. But what I/O port to use? Did you notice the fact that Atari 400 and 800 computers have four joystick ports while the XL machines have only two? Guess which ports are now used for memory juggling. Did you need more than one guess?

For the more hardware-oriented of you out there, I will note that all four Atari joystick ports are actually nibble-sized pieces of a 6820 (or 6520) PIA (Peripheral Interface Adapter). The PIA is a very flexible chip; it allows each of its 16 I/O pins to be separately configured to be either an Input line or an Output line. In the case of the 400 and 800, all 16 lines are configured as Input, since they are all used to read the four directional switches of an Atari joystick. In the case of the XL
machines, some of them have been changed to Output lines, thus enabling them to act as electronic switches.

On the 1200 XL , for example, two of them are used to control the L1 and L2 status LEDs. And (you saw this coming, I presume) two of them choose certain configurations of the computer's memory. (On the other XL machines, still another line is used to control still another possible configuration.)

Since we are discussing memory configuration choices, I might as well confuse the issue a bit more by also mentioning how we at OSS implemented our new SuperCartridges. It is probably no accident that Atari provides the cartridge slot on all machines with a line labeled "CARCTL", an abbreviation for CARtridge ConTroL. Actually, this line is active whenever any memory location from \$D500 to \$D5FF is accessed. Since no Atari cartridges take advantage of this line, we thought it was time that we did so.

One At A Time

About now, it is past time for a diagram. The figure shows all the possible choices of memory configuration by placing them in memory address order. Note, though, that the 64 K addressing restriction of the 6502 applies. Hence, when two or more choices are given for a particular address range in memory, remember that only one such choice may be active at any given time. For each address range where a choice is available, there are two or more banks of memory. And choosing one bank over another is called bank switching or bank selection.

For example, I might choose to use BANK1 of the SuperCartridge while at the same time choosing the RAM BANK of system memory. The important thing to note here is that each set of banks (that is, parallel memory segments), as shown in the figure, is independently bank selectable.

Also, some bank choices are not available at the software level. For example, when you plug in a Microsoft BASIC cartridge, you have 16 K bytes of ROM from $\$ 8000$ to $\$$ BFFF. You have no RAM in that address range. You have no choice in the matter. This is, then, hardware bank selection.

The advantage of hardware bank selection is that it is essentially foolproof. If the hardware removes a bank of RAM from your program's "vision," your program can't get into trouble trying to use that bank.

But the advantage of software-selectable banks is, quite simply, that they allow you to expand the capabilities of your machine. If you look at the figure, you can see that a SuperCartridge allows you 16 K bytes of programming power while occupying only two 4 K byte banks at any given time.

Memory Map Of Atari XL. Computers (Showing Parallel Memory Banks At Same Addresses)

And the purpose of this discussion? To show that the XL machines really do have a lot of latent power. How do we make it un-latent? Well....

As I write this article, the number of commercially available programs which allow you to take advantage of the extra 14 K bytes of RAM on an XL machine is countable on the fingers of my left foot. Zero. By the time you read this, there will likely be products heading your way that will justify the purchase of an XL machine (or a 64 K memory board, such as the one from Mosaic Electronics, for your 800).

Since I am obviously most familiar with DOS XL, let me explain a little of how it works.

When DOS XL boots into an XL computer, it first establishes a set of jump vectors for the various interrupt routines. Why? Because any IRQ, NMI, or SYSTEM RESET will attempt to jump through the vectors which must (by 6502 CPU law) be located at addresses \$FFFA through \$FFFF. If we deselect the OS ROM bank in order to enable the RAM bank at the same addresses, the contents of these critical addresses are unpredictable. We must supply some valid routine addresses or the system will crash.

DOS XL puts most of the DOS code in the RAM bank which is "under" the OS ROMs. It also leaves a piece of itself at the conventional DOS load address of $\$ 700$ (an area of memory which is not bank selectable). Then, if there is a BASIC cartridge in the machine, it selects the OS ROM bank and jumps to BASIC.

So long as BASIC makes no calls on DOS, all is calm and expected. However, watch what happens when (for example) we try to open a file from BASIC.

1. BASIC sets up an IOCB with a pointer to the filename. Since the filename was specified by the user, the pointer will contain an address somewhere between about \$A00 and $\$ 9 \mathrm{C} 00$. BASIC makes a call to $\$ \mathrm{E} 456$, the CIO entry point.
2. CIO determines that the device requested is actually the disk file manager and uses the "D:" device table to determine the address of the disk's open file routine. It passes control to that routine.
3. Note that the "D:" device table and at least the first part of the file open routine must be in nonselectable RAM (that is, at or near \$700). The file open routine is a big one, so it selects the DOS XL RAM (disabling the OS ROM) and jumps to the main part of the code.
4. The main code is able to examine the filename since it is in nonselectable memory, so the file open is performed if possible. The main code exits back to the tail end of the OPEN code, near \$700.
5. This tail end then simply reselects the ROM bank and returns to where it was called (somewhere in CIO).
6. When CIO is finished, it returns control to BASIC.
Wasn't that fun? For even more fun, try to trace what happens if interrupts occur during any or all of the above steps.

More Space

But why do we go through all this? Because, even though Atari saw fit to include all this good memory bank selection capability, they provided no software to use it. So why not just forget the bank select and pretend we are running on an Atari 800 or 400 ? Because the net gain to you, the BASIC or ACTION! or Assembler or whatever user, is about 5,000 bytes of user space. Your programs can be 5 K bytes bigger. Your spreadsheets can contain many more cells. You can edit more text.

Of course, some programs (such as VisiCalc) which do not use a standard DOS or which use a heavily protected disk (such as the Microsoft BASIC extensions) will not be able to take advantage of the extra memory. But they, too, can use these techniques to extend their capabilities if the software companies producing them will decide that the XL machines are worth the little extra effort.

EPSON*, NEC*, PROWRITER*, GEMINI*, OKIDATA 92*

The only self-booting grafix handler for dumps in horizontal format - all mach. lang. - Lister incl. - all modes - mixed modes change aspect ratios, etc. while running other programs - assem ed - basic or no cartridge - demos, utilities, fonts, included - dump, create forms, stationery, calendars, requires interface. ${ }^{\mathbf{s} 26.95}$

○ diskwiz-II ©

Now for single/double density. Repair, explore, alter, duplicate, map, speedcheck, bad sector (810), block move, trace, special print capabilities, disassembler, new speed, new ease, new functions, special printing functions, excellent repair tool w/instr. - even better than before! The best repair/editor/duplicator at any price - still at the lowest price. (Updates avail. for a small fee.) $\mathbf{\$ 2 8 . 9 5}$

1st Class Postage Paid
California Residents add 6\%, Foreign Orders add $\$ 2.50$
C.O.D. add $\$ 2.00$ - No credit cards

Prices subject to change
(213) 376-4105

Altici
P.O. Box 2205
ACROWARE Redondo Beach, CA 90278
- Indicates Trademark of non-related company

COMPUTER OUTLET सु

We offer the largest selection of software and hardware for Apple, Atari, Commodore, IBM and Kaypro at 25 to 40\% off retail.

1095 East Twain, LasVegas, NV 89109 • Mon.-Fri. 8AM to 6PM, Sat. 9AM to 5PM

Commodore 64

EPYX/Automated Simulations
Jump Man (D) . $\$ 27$

Human Engineered Software

 (HES)| 6502 Professional Dev Retro Ball (CRT) |
| :---: |
| Hesmon (CRT). |
| Turtle Graphics II (CRT) |
| Heswriter 64 (CRT) |
| |

SIrius Software

Blade of Blackpoole (D)
Type Attack (CRT)
Repton (D)
Critical Mass (D)
Snake Byte (D)
Bandits
Squish 'em (CRT)
Deadline (D)

Slerra On-Line

Final Orbit (CRT).

Spinnaker

Snooper Troops \#1 (D)
Facemaker (D)
Kindercomp (D)
Hey Diddle Diddle
In Search of the Most Amazing Thing
Fraction Fever (CRT)
Alphabet Zoo (CRT)

Synapse Software
Ft. Apocalypse (D) $\$ 23$, (C) $\$ 23$
Drelbs................ (D) $\$ 23$ (C) $\$ 23$
Survivor.............(D) $\$ 23$, (C) $\$ 23$
Pharoah's Curse........(D) $\$ 23$ (C) $\$ 23$

United Microwave Industries

92E-302 Renaissance (C) 92E-331 Motor Mania (C)

1525 Printer. $\$ 229$
1530 Datasette $\$ 64$
1541 Disk Drive $\$ 249$
1600 Modem $\$ 89$
1701 Commodore Monitor $\$ 289$
VIC 1311 Joystick \$ 8
VIC 1312 Game Paddles \$ 16
VIC 12103 K Memory Expander ..
VIC 11108 K Memory Expander...
VIC 111116 K Memory Expander.
VIC 1011 RS 232 Terminal Interfac \$34 VT 106A Recreation Pack. \$ 45 \$52 VT 107A Home Calculation Pack. \$ 45 $\$ 89$ VIC 1600 Vicmodem \$43 VM Programmer's Reference Guide .. \$ 14 \$59 Commodore Programmer's Ref. Guide\$ 18

Educational

Ea. \$ 27
Books

$\$ 27$
$\$ 27$
$\$$
$\$ 27$
$\$$
$\$$
$\$$
$\$$
$\$$
$\$$
$\$$
$\$$
$\$$
$\$$
$\$$
$\$$

.
 Sp

Bingo Speed Math (CT)
Number Crunch (CT) 23

Super Allen
Draw Poker
Midnight Drive.
Radar Rat Race
Raid on Fort Knox
Cosmic Cruncher
Gort.
Omega Race

Number Chaser.

Super Holiday Special Commodore VIC 20 Datasette Recorder Gorteck and the Microchips \$169

Avalon Hill

Tank Arcade
Nuke War
\qquad
Automated Simulations
Rescue at Rigel (C) .
Ricochet (C)
$\$ 20$
Sword of Fargoal
Temple of Apshai
$\$ 20$
Martian Raider Broderbund
Multisound Synthesizer
Shark Trap
Sky Blazer (CT)
Sea Fox (CT)
A.E. (CT).

Creative Software
Black Hole (CRT)
Trashman (CRT)
Astroblitz (CRT)
City Bomber \& Minefield (CRT
Apple Panic (CRT)
Apple Panic (CRT)
Serpentine (CRT)
Choplifter (CRT)
Terraguard (CRT)
Household Finance

HES Software

HES Mon (CT)
HES Writer (CT)
. $\$ 29$
Synthesound Music Synthesizer (CI). . \$ 29
Turtle Graphics (CT) \$ 27
VIC Forth (CT)
Victrek (C)
Predator (CT) . $\$ 27$
$\$ 45$
Intro to Basic Prog.I $\$ 22$
Intro to Basic Prog.II................. 22
Programar'sAld.

Type Attack
Sirius
Type Attack
Snake Byte
\$27

Commodore Software

. 529

Stocking Stuffers

Koala Touch Tablet $\$ 69$Wico "BOSS" Joystick\$ 15
Elephant Disks s/s \$ 18
Flip 'n File Diskette Box

$\$ 20$
$\$ 20$

4

1010 Recorder	
1050 Disk Drive	\$359
1027 Printer	all
1025 Printer	5429
830 Modem	\$145
850 Interface	\$179
Entertainer System	\$ 64
482 Educator	\$110
483 Programmer	\$ 52
Communicator II	\$209
Atari Accounting	\$1
CX4104 Mailing List	
CXL 4007 Music Composer	42
Programming $2 \& 3$.	23
Conversational Languages	\$ 45
CX4018 Pilot	\$ 55
CX405 Pilot	\$
CXB126 Microsoft Basic II	\$
CXL4022 Pac-Man	\$
CXL4020 Centipede	\$
CXL4006 Super Breakout	s
CXL4008 Space Invaders	\$
CXL4009 Computer Chess	
CXL4011 Star Raiders	\$
CXL4012 Missile Command	
CXL4013 Asteroids	
The Bookkeeper	02
Home Filing Manager	\$38
Atari Speed Reading	\$ 57
Home Manager Kit	\$ 55
Family Finance	\$ 38
Time Wise	\$ 23
Galaxian	\$ 33
Defender	\$ 33
Paint	\$ 33
Qix	\$33
Dig Dug	\$ 33
E T Phone Home	\$34
Atari Writer	\$ 75
Donkey Kong	\$ 36
Donkey Kong Jr.	\$ 38
Atari Logo	\$ 79
Mickey in the Great Outdoors/D	\$ 34
My First Alphabet/D	\$ 26
Peter Pan's Daring Escape	\$ 36

Business \& Utilities

Visicalc \$169
Compularis $\$ 45$
$\$ 65$
Data Perfect 95
Letter Perfect
Bank Street Writer
Text Wizard.
Word Wizard
File Manager $800+$
Datasm 652.0
K-Dos.
Lisp Interpreter
Basic Compiler
Datalink
Atari World
Color Print
Graphics Generator
Micropainter
Graphics Master
P.M.P. Property Management

Modems
Hayes Smartmodem 300 Baud Hayes Smarmodem 1200
Signalman Modem II

To Order Call Toll Free 1-800~634~6766 Information \& Inquiries 17702-796-0296 We accept VISA and MasterCard

Bitmap Graphics On The 64

Michael Tinglof

High-resolution graphics are achieved by bitmapping. Here's a tutorial and an explanation of what happens in the 64's memory as you bitmap. Also included is a sample program which illustrates the techniques discussed.

High-resolution images of 320 by 200 point (called pixel) resolution are possible on the 64 . To create these images, the 64's VIC-II video chip uses a technique called bitmapping. Simply defined, this means that every bit in a selected area of memory represents one pixel (the smallest point of light) on the high-resolution screen. Thus, by setting or clearing appropriate bits, a picture can be formed.

You might ask "Why use bitmapped graphics when sprites are available and far more convenient to use?" The answer is simple: Each graphics mode has its own purpose. Several of the main reasons for using bitmapped graphics are to create graphs of formulas or statistics, to create high-resolution color pictures, and to create a detailed background for use with sprites, such as for a game.

Binary Operations

Before the bitmapped mode can be used effectively, it is important to have a basic understanding of binary arithmetic (see the section "Binary And Bitmapping" accompanying this article) and the logical AND and OR commands. Basically, they are used to selectively set and clear one or more bits in a byte. AND and OR cause a bit-by-bit comparison of two bytes to produce a third byte. In the case of AND, if both bits are on (1), the resulting bit is on; and in the case of OR, if either bit, or both, is on, the resulting bit, likewise, is on. For example:

10101011	
AND	11011011 $=$$\quad$ OR
$\mathbf{1 0 0 0 1 0 1 1}$	101010001 10111010

The bits in a byte are usually numbered as follows:
$\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
AND is used to selectively clear bits, and OR is used to set bits. For example:

Given: 10100101, clear bit 5. To do this, define a byte with bit 5 set (0010000), then take the inverse (properly termed "complement") of the byte by changing all 1's to 0's and vice versa. Finally, AND the calculated byte with the given byte:

AND | 10100101 | (given) |
| :--- | :--- |
| $\frac{11011111}{10000101}$ | (calculated) |

Given: 10011010, set bit 6 . To do this, define a byte with bit 6 set. Then OR this byte with the given byte:

OR \begin{tabular}{lll}

10011010 \& \begin{tabular}{l}
(given)

110000000
\end{tabular} \& (calculated)

\end{tabular}

Remember that when BASIC is used, all binary bytes must be converted to decimal first. BASIC's AND or OR instructions will then work as described above.

Setting Up The VIC-II Chip

With an understanding of ANDs and ORs, a highresolution picture can be created. The first step is to select an area of memory 8,000 bytes in length for the bitmap.

The VIC-II chip accesses only one 16 K block of memory at a time. Upon power-up, the VIC-II sees the first 16 K from locations 0 to 16383 . All video operations, including those for screen mem-

The Wost Practical Software Now Has Graphics

Commodore-64 PROFESSIONAL BUSINESS PROGRAMS

- INTRODUCTORY OFFER ½ PRICE!

- 15 DAY FREE TRIAL!
- LIFETIME GUARANTEE!
- FILE GUARD ${ }^{\text {(тм) }}$

PROFESSIONAL BUSINESS PROGRAMS! (Disk)

You take no risk! We are so sure these professional business programs will meet and exceed your highest expectations, we are willing to allow you to try these programs at our expense! These are designed and produced by Southern Solutions who produces professional business programs for Commodores most expensive computers. These business program will convert your Commodore 64 into a Professional Business Machine!!!

INTRODUCTORY OFFER! (Expires 12-25-83)

- General Ledger \& Cash Flow
- Accounts Payable Plus Check Writing
- Accounts Receivable
- Payroll
- Inventory
- Data Base Manager

List	$1 / 2$ Price
$\$ 119.00$	$\$ 59.00$
$\$ 119.00$	$\$ 59.00$
$\$ 119.00$	$\$ 59.00$
$\$ 119.00$	$\$ 59.00$
$\$ 119.00$	$\$ 59.00$
$\$ 119.00$	$\$ 59.00$

15 DAY FREE TRIAL!

We give you 15 days at your business for you to try out these programs! Should they not meet your requirements just send them back prepaid and we'll refund your purchase price!

LIFETIME GUARANTEE!

If a program fails due to faulty workmanship or material anytime you personally own and use the program we will replace it at no charge!
FILE GUARD ${ }^{(T M)}$
Prevents loss of data and confidential files due to power failure - a Southern Solutions exclusive!
PLUS: THESE PROFESSIONAL BUSINESS PROGRAMS .

- Script 64 - No. 1 Executive Word Processor - Disk List \$99. Sale \$59
- Complete Data Base - Tape-Disk
- Electronic Spread Sheet (like Visicalc) - Tape-Disk

List \$89. Sale \$59
List \$89. Sale \$59

- BEST SERVICE IN U.S.A. - ONE DAY EXPRESS MAIL• OVER 500 PROGRAMS • FREE CATALOGS

[^2]PROTECTO ENTERPRIZES we love our customeas,

Commodore-64
 WORD PROCESSIMS BREAKTHROUEH!

SCRIPT-64 EXECUTIVE WORD PROCESSOR (80 Columns in Color)

40 or 80 columns in color or black and white; turns your computer into a Business Machine!
Rated best by COMMODORE. This is the finest word processor available. Features include line and paragraph insertion/deletion, in dentation, right and left justification, titles, page numbering, characters per inch. etc. All features are easy to use and understand. With tabs, etc. SCRIPT-64 even includes a 250 word dictionary/spelling checker to make sure your spelling is correct. The dictionary is user customizable to any technical words you may use. Furthermore, all paragraphs can be printed in writing and everyday letters a snap. To top things off, there is a 100 page manual and help screens to make learning how to use SCRIPT. 64 a snap. This word processor is so complete we can't think of anything it doesn't have. When combined with the complete database you have a powerful mailmerge and label program that lets you customize any mailing list with personalized letters. List $\$ 99.95$. Sale $\mathbf{\$ 7 9 . 0 0}$. 'Coupon Price $\$ 59.00$. (Disk only.)

SCRIPT-64 20,000 WORD DICTIONARY

Allows you to check spelling on 20,000 most often mispelled words! List \$29.95. Sale \$19.95. (Disk only)

SCRIPT-64 DATABASE

This is a user friendly database that makes any information easy to store and retrieve. The user defines the fields and then can add, change, delete and search for any category he wants. When combined with the SCRIPT-64 Executive Word Processor you can search out any category (zip codes, hair color, etc.) and print super personalized letters. List $\$ 89.00$. Sale $\mathbf{\$ 6 9 . 0 0}$. ${ }^{\circ}$ Coupon Price $\$ 46.00$. (Disk only.)

"WRITE NOW' WORD PROCESSOR

Finally, a word processor that is easy to use and easy to learn. This cartridge system has all the features of professional systems at only a fraction of the cost. Some features include: margin setting, word wrap, search and replace, centering, page numbering, user defined characters, plus ascii code set that allows you to use all the features of your printer List $\$ 49.94$. Sale $\$ 44,95$. ${ }^{\circ}$ Coupon $\$ 39.95$. (Cartridge).

"WRITENOW" MAILING LIST

600 names, addresses, etc. can be sorted and formulated in any order and by any category (zip code, name, etc.) for merging into the "write now" word processor. Fantastic speed. List \$34.95. Sale \$24.95. 'Coupon \$14.95. (Disk only.)

TOTAL WORD PROCESSOR PLUS 5.2

This top quality word processor was specially designed for PROTECTO ENTERPRIZES. Features include line and paragraph insert and delete, right and left justification, multiple copies, and line spacing. Extra functions include mailmerge, embedded footnotes, extra user defined character sets, plus a complete label program. List $\$ 69.90$. Sale $\$ 56.00$. ${ }^{\circ}$ Coupon $\$ 37.00$ Tape: $\$ 42.00$ Disk.

TOTAL TEXT WORD PROCESSOR 2.6

This is a complete word processor program which allows you to create and format professional looking documents. Features include: page numbering, margin control, full screen editing and footnotes. Tape - List $\$ 44.95$. Sale $\mathbf{\$ 3 9 . 0 0}$. ${ }^{\circ}$ Coupon $\$ 26.00$. Disk - List $\$ 49.95$. Sale \$42.00. 'Coupon \$29.00.

QUICK BROWN FOX WORD PROCESSOR

Nationally advertised all purpose word processor that uses menu control to let you manipulate your text. Includes the features most often asked for including right and left justification, wordwrap, and more, List $\$ 69.00$. Sale $\$ 59.00$. ${ }^{\circ}$ Coupon $\$ 40.00$. (Cartridge).

- LOWEST PRICES • 15 DAY FREE TRIAL• 90 DAY FREE REPLACEMENT WARRANTY

 - BEST SERVICE IN U.S.A. • ONE DAY EXPRESS MAIL• OVER 500 PROGRAMS • FREE CATALOGSory and sprite definitions, access the memory in this area. There is no room in this block for an 8 K bitmap, however, without conflicting with BASIC. The best solution is to select a different 16 K block. (Bits 1 and 0 of address 56576 control where the block is placed in memory.) The combinations of these two bits and the range of addresses they represent are as follows:

decimal	binary	address
0	00	$49152-65535$
1	01	$32768-49151$
2	10	$16384-32767$
3	11	$0-16383$

Note that each block starts at an even 16 K boundary. To select a memory block for the VIC-II chip, use the following command:

POKE 56576, Y

where Y is one of the decimal values from the above table. The best block to choose when using a bitmap and BASIC is number 2 :

POKE 56576, 2

Within this block, two more areas must be selected: one for the 8 K bitmap and one for the 1 K screen memory. Address 53272 is used to control these two memory regions. One bit in this byte controls which 8 K section in the 16 K block is used for the bitmap; four bits control which 1024byte area is used as the screen memory; and three bits are not used. The bits are arranged in address 53272 as follows:

| 7 6 5 4
 screen memory | 3
 bit-
 map | 2 1 0
 x x x
 not used |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The areas selected must fall on even boundaries - that is, their starting address must be a multiple of their size. For example, if the 16 K block selected is from 0 to 16383, the screen memory can fall on $0,1024,2048,4096$, and so on. The following table can be used to determine which block should be used for screen memory or the bitmap:

Base plus	screen memory block	bitmap block
0	0	0
1024	1	
2048	2	
3072	3	
4096	4	
5120	5	
6144	6	
7168	7	
8192	8	
9216	9	
10240	10	
11264	11	
12288	12	
13312	13	
14336	15	
15360		

where Base is the first address in the selected 16 K block. To set 53272, use the following formula:

POKE 53272, screen memory block * $16+$ bitmap block* 8

If you are using the bitmap and BASIC at the same time, use the following POKE:

POKE 53272,120
This sets the screen memory block to seven, and the bitmap block to eight. For the 16 K block suggested for use with BASIC, this means that screen memory starts at 23552 and the bitmap starts at 24576.

Once the memory pointers have been set, the VIC-II chip must be told to display the bitmap on the screen. Bit 5 of 53265 turns on the bitmap mode, that is, displays bitmap memory. To set this bit, use the following POKE command:

POKE 53265, PEEK(53265) OR $2 \uparrow 5$

Drawing The Picture

A high-resolution picture can now be created all you have to do is set and/or clear the appropriate bits in bitmap memory. The problem is determining which bit controls which pixel. This requires an understanding of how the VIC-II chip draws the bitmap on the screen.

The bitmap memory is constructed similar to screen memory in text mode - it is broken into 1000 areas, each eight bytes in size, which we'll call cells.

These cells are arranged contiguously in memory - cell 1 follows cell 0 , cell 2 follows cell 1 , and so on. They are arranged in the bitmap in an order similar to that of screen memory in the text mode, 40 cells per row, 25 rows. The whole process, as described so far, can be illustrated as follows:

Each cell controls an area of 64 pixels arranged in an 8 by 8 matrix. The first byte in the cell controls the top row of pixels in that matrix, the second byte controls the row beneath, and so on down.

The eight bits in each byte control one pixel in that row - the highest valued bit controls the leftmost pixel and so on through the lowest valued bit, which controls the rightmost pixel. Graphically, the process works as follows:

YOU CAN DO THIS
 Commodore 64:
 Getting The Most From It

BY TIM ONOSKO
The Commodore 64 is now yours to master in this new, unique book for beginning users. You'll find this book full of suggestions, hints, and background information! Plus it's:

- Applicable to all versions of the Commodore 64!
- Simply and clearly written for first-time computer users
- The perfect companion for learning the essential skills in BASIC programming, color graphics, sound, word processing, and games.

It's a necessary tool
for your Commodore 64!
1983/320pp/paper/
ISBN 0-89303-380-4/D3804-4/\$14.95

OR THIS

Advanced BASIC

 Programming for the Commodore 64 and Other Commodore Computers BY MICHAEL RICHTER This is the next step for the user who knows the "basics" and wants to move on to more advanced BASIC programming. Here you'll learn:- How to read, write, and use good programs
- How to gain knowledge through the experience of writing advanced software
- Applications for both personal and professional use
- Numerous examples to enhance each concept
This is the way to maximize the capabilities of the Commodore!

1983/204pp/paper/
ISBN 0-89303-302-2/D3022-3/\$14.95

OR BOTH

Chances are when you finish Commodore 64: Getting The Most From It you'll want to take the next step into Advanced BASIC for the Commodore 64 and Other Commodore Computers. One way or another, you're assured a thorough understanding of the powerful Commodore 64.

Available at your local bookstore or computer store. Or call Toll-Free 1-800-638-0220.

Robert J. Brady Co., Bowie, Maryland 20715

A Prentice-Hall Publishing and Communications TM Company

bitmap mode is available, however. This second mode allows four colors in each cell rather than two colors as demonstrated above. There is one catch: resolution is reduced to 160 by 200 pixels, and each pixel is twice as wide. The multicolor mode is enabled by turning on bit 4 of location 53270 . Use this command to enable multicolor mode:

Using X and Y coordinates is cumbersome with this system. If this type of plotting is needed, the following equations will determine which bit to set for the X, Y coordinate:
$\mathrm{Y} 1=\mathrm{INT}(\mathrm{Y} / 8)^{*} 8$ determines which row of cells
$\mathrm{X} 1=\operatorname{INT}(X / 8) * 8$ determines which cell on the above row
$\mathrm{AD}=\mathrm{Y} 1 * 320+\mathrm{X} 1+\mathrm{Y}-\mathrm{Y} 1+$ start of bitmap memory determines address of proper byte
$\mathrm{BT}=7-\mathrm{X1}$ determines which bit to set
POKE AD, PEEK (AD) OR 2 - BT sets the bit
If you have been following our example setup commands, use a starting address for the bitmap of 24576 .

Adding Color

Color is an important part of high-resolution graphics. Each of the 1000 bytes in screen memory controls the color displayed for one cell. Note that screen memory controls the color only in bitmap mode - in normal text mode, it contains the characters displayed on the screen. The bytes in screen memory are in the same order as the cells in the bitmap (the color of cell 650 is controlled by byte 650 in screen memory). In each byte, four bits are used to control the color of each bit in the corresponding cell of the bitmap, and four bits are used to control the color of bits equal to zero. These bits are arranged in each byte of screen memory as follows:

| 7 6 5 4
 color of bits $=1$ | 3 2 1 0
 color of bits $=0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The colors and their corresponding values are listed on page 159 of the User's Guide. Once the values for the desired colors have been found, use the following formula:

$$
(\text { color of bits }=1)^{*} 16+(\text { color of bits }=0)
$$

POKE this value into the appropriate byte of screen memory. Remember that attempting to change the color of one pixel will change the colors of all pixels in that cell of bitmap memory.

Note that screen memory for our working example begins at address 23552 .

Recall that this method can be used to create a picture with 320 by 200 pixel resolution. Another 280 COMPUTE! December 1983

POKE 53270, PEEK(53270) OR $2 \uparrow 4$

Each pixel is now represented by two bits. These two bits have four possible combinations, resulting in four possible colors. To find the color each bit combination represents, several memory locations and/or areas are accessed: screen memory, color memory (this is always from 55296 to 55319), and the background color register at 53281. Color memory is arranged in the same order as screen memory. The following chart shows which bit combinations access which areas of memory:

Bit Combination color from

00 background register (53281)
01 screen memory (4 bits of greatest value; same as bit equal to one in two-color mode)
screen memory (4 bits of least value; as bit equal to 0)
11 color memory
Remember that three of the four colors selected can be different for each cell in the bitmap. The method used to draw the bitmap on the screen in two-color mode is used in the multicolor mode - only now, the bits are grouped together into pairs. The pairs are formed sequentially, so that bit 7 and bit 6 are paired, bit 5 and bit 4 are paired, and so on.

Protecting Your Picture

When using BASIC and the bitmap modes together, BASIC may have a tendency to use the bitmap memory for program and/or variable storage. To prevent this, change addresses 55 and 56, the bytes which point to BASIC's end of memory. Simply change these to point to an address below the lowest address you use. Address 56 is equal to the last address used divided by 256, and address 55 is the remainder. After changing these two bytes, execute a CLR instruction. For example, this instruction insures that BASIC will not use any memory after address 23552:

POKE 55, 0:POKE 56, 92:CLR

To restore your 64 to normal operation, use the following commands:

[^3]
Strengthen your hand with Superbasef54

The complete information control system for the Commodore 64. Ideal for any home, business or professional environment where records are kept. Create the format you
need and enter your records. If the layout or data field sizes are not quite right, correct them and carry on. Superbase gives you an unrivalled range of powerful features including:

BINARY AND BITMAPPING

Lance Elko, Assistant Editor

The Commodore 64's high-resolution graphics screen consists of 64,000 (320 by 200) dots or pixels. Each one can be turned on or off to let you create your own special graphics. This technique is called bitmapping.

At first glance, you might think that if there are 64,000 pixels to control, you'll need to use 64,000 memory cells (bytes) - but this would use more memory than you have available. With bitmapping, one byte controls not one, but eight pixels. Since there are eight bits (a bit is the smallest unit of storage in the computer's memory) in one byte, each bit represents one pixel on the hi-res screen. So, only 8,000 (roughly 8 K) bytes are needed for bitmapping. Let's see how the computer handles these bits and bytes.

Filaments And Light Bulbs

Computers use the binary numbering system rather than the decimal system we're used to. A good way to understand how binary works is to think of a row of light bulbs, each capable of being on or off. The row has eight light bulbs and represents a byte; and each bulb represents one bit. If they are all off: 00000000
we have a value of zero. Now let's turn on the right one:

00000001
This gives us a value of 1 . So far, it's not at all tricky.

The next bulb, counting from the right, however, has a somewhat different construction: It has two filaments. If just this bulb is on, it is indicated as:

00000010

but, remember, this bulb has two filaments, so the value here is 2. Let's go back and turn on the first bulb, also:

00000011

We now have a value of 3 . Two bulbs are on, but three filaments are lit. The next bulb, the third from the right, contains four filaments (twice the number of the last bulb). So, if this is turned on:

00000100
we have a value of 4 . If we turn on the previous bulbs:

00000111
we have $6(4+2+1)$ filaments, but only 3 bulbs turned on. The binary value of

00000111, then, equals the decimal value of 6. We can see a pattern emerging here: Each bulb has twice the number of filaments as the one before it:

$$
\begin{array}{ll}
00000001=1 & 00010000=16 \\
00000010=2 & 00100000=32 \\
00000100=4 & 01000000=64 \\
00001000=8 & 10000000=128
\end{array}
$$

Converting Decimal To Binary

On/off combinations of these bulbs will yield any number between 0 and 255 (11111111). Let's pick a number, say 209, and figure out how to represent that number in binary. In other words, if we need exactly 209 filaments lit, which light bulbs should we turn on?

Since we can get 128 of them out of the way, let's do that first:

10000000 (128)

If we add the next available light bulb, with 64 filaments, that will get us up to 192 $(128+64):$

11000000 (192)

Now, we can't use the next bulb (with 32 filaments) because that would exceed our requirement of 209; so let's check the next one, 16. We can turn this one on because it would get us closer to our goal without going over $(192+16=208)$:

11010000 (208)

We need only one more to make 209, and that's easy because there's only one bulb with one filament, the first one we discussed. Let's turn this one on:

11010001 (209)

and now we have 209 filaments turned on with only 4 light bulbs.

How does all this apply to bitmapping? The VIC-II chip, a microprocessor in the 64 that controls video display, scans an area of memory reserved exclusively for bitmapping. The chip reads each bit in every byte in this area, looking for 1 s (on) and 0 s (off). When a 1 is noted, the pixel it represents is turned on, and when a 0 is noted, the pixel remains the same as the background color.

Keeping in mind these points about binary numbers, take a look at Michael Tinglof's article to see how to control bits and bytes for effective bitmapping. He also discusses special commands used for manipulating the binary figures we discussed. You might find pages $121-28$ in the Commodore 64 Programmer's Reference Guide helpful as well.

GET THE BEST FOR YOUR COMMODORE 64

BUSINESS

- FINANCE CALC 64• Disk
- dATA BASE 64 - Disk

MANAGEMENT SYSTEM 64 - Disk
FAMILY PAC 64 (3 in 1) • Disk (CHECKBOOK, RECIPE, EDU-GAME) CHECKBOOK EASE 64 • Disk HESWRITER 64 - Cart HESMON 64 - Cart HES MODEM - Cart TURTLE GRAPHICS II - Cart QUICK BROWN FOX (W.P.) - Cart WRITERS ASSISTANT (W.P.) • Disk FILING ASSISTANT • Disk INVENTORY PACKAGE - Disk TOUCH TYPING TUTOR • Disk \& Cass CALC RESULT EASY - Cart CALC RESULT ADVANCED • Disk PAPERCLIP (W.P.) • Disk M'FILE • Disk
WORD PRO/3 (W.P.) - Disk SPELL RIGHT PLUS (DICTIONARY) • Car DELPHI'S ORACLE (DATA BASE) • Disk TIME \& MONEY MANAGER - Disk OMNICALC (SPREADSHEET) - Disk CARDCO PRINTER INTERFACE

EDUCATIONAL

$\$ 45.95$ 49.95
45.95
45.95
29.95
29.95
29.95
25.95
67.95
67.95
39.95
45.95
59.95
59.95
67.95
77.95 18.95 67.95 127.45 99.95 94.95 71.95 49.95 125.95 125.95
55.95 79.95 54.95

POLICY

All orders are shipped U.P.S. Shipping charges are $\$ 2.00$ for prepaid orders and $\$ 3.25$ for C.O.D. For fast delivery send money order, certified check or credit card
Please allow approximately three weeks for clearance on personal checks
All items are subject to availability and price change. Thanks for ordering from House of Software! Call for free catalog!

HUNDREDS MORE AVAILABLE SNOOPER TROOPERS I, II • Disk \$29.95
KINDERCOMP • Disk \& Crt. 19.95

IN SEARCH OF MOST AMAZING THING - Disk 26.95
PROGRAMMING KIT I • Disk
FACEMAKER • Disk
19.95

KIDS ON KEYS • Cart. 29.95
FRACTION FEVER - Cart
PIPES - Cart.
ENGLISH INVADERS • Disk \& Cass.
DUNGEONS ALGEBRA DRAGONS - Disk \& Cass
UP FOR GRABS - Car
BENJI'S SPACE RESCUE • Disk
29.95
29.70
21.95
19.95

29.95

HOUSE of SOFTWARE

- From EN-TECH Software

ENTERTAINMENT
STUDIO 64 (MUSIC MAKER) • Disk \& Cass. $\$ 29.95$ GAME DESIGNER • Disk \& Cass 25.95
GRIDRUNNER - Cart
TEMPLE OF APSHAI • Disk
UPPER REACHES OF APSHAI - Disk
CURSE OF RA • Disk
ASTROBLITZ - Cart.
SAVE NEW YORK - Cart
PERSONALITY ANALYZER • Disk
PHANTOM KARATE DEVILS - Disk
PLANET FALL • Disk
ENCHANTER - Disk
SEA FOX • Disk
CHOPLIFTER • Disk
PROTECTOR II • Disk \& Cass
TELENGARD - Cass.
FROGGER - Disk \& Cass
FORT APOCALYPSE - Disk \& Cass.
ROBBERS OF THE LOST TOMB - Disk
JUMPMAN - Disk
SWORD OF FARGOAL • Disk \& Cass
PAKACUDA • Disk \& Cass
SURVIVOR - Disk \& Cass.
PEGASUS ODYSSEY - Disk \& Cass
NEUTRAL ZONE - Disk \& Cass.
COMPETITION PRO. JOYSTICK

To Order Call:
(213) $768-8866$

VISA

HOUSE DF SDFTWARE
9183 Mercedes Ave. \bullet Arleta, CA 91331
25.95
20.25
20.95
20.25
25.95
13.50
13.50
29.20
29.70
28.00
29.70
38.20
38.20
33.95
33.95
24.95
16.95
22.95
22.95
19.95
25.95
20.25

1195
22.95
19.95
27.95
17.95

GHOW US A BETTER PRICE AND WELL BEAT IT!

IF IT'S FOR THE COMMODORE E4 AND ITIS GODD, ITIS PROBAELY

MANAGEMENT BYETEM G4

This integrated business program gives you the computer power once reserved for lange comporations. Capabilities include invoicing, inventory control, and customer mailing lists. Disk $\mathbf{\$ 6 9 . 9 5}$

FINANCE CALC 64

The leader in home and business financial analysis. You can have up to 1440 itemized.expenses and print 1085 different financial reports and bar graphs. In addition, it keeps and compares as many as 12 budgets at once. Disk \$59.95

DATA 日ABE G4

A perfect record system for any business or horme. It can store up to 1200 records and has up to 20 fields for each one. A specia label and report designer is included. It can also merge with popular wond processors. Disk \$59.95

GAME DESIGNER 64

Use to animate 16 sprites and design colorful background screens. Several game sub-routines included. Disk

STUDIO 64 SERIES

Anyone can now create music as beautiful as the most advanced programers could one year ago!! Just play and the computer will instantly write the music on the screen. Included are powerful features like block move, single note editing and scrolling. it will save and recall, add music to your own programs and print lead sheets. Disk \$39.95

FAMILY PAK [3 in 1]
[ALL] $\$ 55.95$
Three of the finest home programs available

- CHECKBDOK EABE 64

Handles over 1300 transactions. Prnts statements, and all types of checks, and 40 expense categories. \$39.95

- RECIPE KEEPER

Searches by ingredient, category or name. Calculates measurements for different serving amounts and prints copies - SPACE MATH G4

Learn math, explore the universe, dance to the music and watch the show.

A Graphics Demonstration

If all the computations needed to find the right bit seem complicated to you, and the two-color mode would be satisfactory, use the following utility program. It is written in machine language to increase speed, and can be used through X and Y coordinates. It is accessed from BASIC via the SYS command.

The format of the SYS call is as follows:
SYS (base address of code), command, operand(s)
The commands for the utility are as follows:

- $0=$ clear bitmap page (set all bytes to 0)
- $1=$ set screen color. Set all bytes in screen memory to the operand. For example, SYS(BS), 1,32 sets every byte in screen memory to 32 .
- $2=$ set point. Set a given point according to its X and Y coordinates. Note that the upperleft corner is $(0,0)$ and the bottom right is $(319,199)$. For example, SYS(BS), $2,28,122$ sets point $(28,122)$.
- $3=$ clear point. The format is the same as above.
This machine language utility is relocatable and can be loaded into memory anywhere simply by changing the pointer in the BASIC loader. Before the utility can be used, however, addresses 680 and 681 must be set. Set address 680 to the start address of the bitmap divided by 256. Likewise, set address 681 to the start address of screen memory divided by 256 . If you have set up the bitmap as shown in our working examples, use these POKEs:

POKE 680, 96:POKE 681, 92

To see how the utility and various aspects of bitmapped graphics work, look at the following program, which draws a sine curve on the screen.

Bitmapped graphics are a powerful part of the 64's repertoire. Once mastered, the results can be spectacular. Remember, the best way to learn is by hands-on practice. Once you feel comfortable with the techniques we've covered, try some of these ideas:

1. Draw the picture into memory, then switch the pointers to it. This makes the graphics appear lightning fast, even from BASIC.
2. Use several bitmaps and switch the pointers between them. Again, this gives the appearance of lightning fast graphics.
3. Use sprites. Since the sprites are totally independent of the background, you can create some fantastic graphics for games.

Sine Curve Graphics

3 REM\{2 SPACES\}COMMAND:
4 REM\{5 SPACES\}XX SYS (BASE), OPTION, DATA

5 REM\{4 SPACES\}OPTIONS:
6 REM SYS B, Ø\{2 SPACES $\}-\{2$ SPACES $\}$ CLEAR \{SPACE\} SCREEN
7 REM SYS B, 1, CL - SET COLOR CL
8 REM SYS $B, 2, X, Y$ - SET POINT (X, Y)
9 REM SYS B, $3, \mathrm{X}, \mathrm{Y}$ - CLEAR POINT
$1 \varnothing$ AD=32768: REM ** BASE ADDRESS
$2 \emptyset$ READD:IFD=-1THEN5 \varnothing : REM ** JUMP TO USE R ROUTINE
$3 \emptyset$ POKEAD, D:AD=AD+1:GOTO2ø
$10 \emptyset$ DATA 32, 115, Ø, 32, 158, 173, 32, 24 7, 183, 140, 170, 2, 192, Ø
$11 \varnothing$ DATA $240,6,192,1,240,32,208,77$, 173, 168, 2, 133, 252, 24
$12 \emptyset$ DATA 105, 32, 133, 253, 169, Ø, 133, \{SPACE $251,168,145,251,230,251$, \{SPACE\} 208
130 DATA 2, 230, 252, 166, 252, 228, 253, $144,242,96,32,115, \varnothing, 32$
140 DATA $158,173,32,247,183,132,253$, 173, 169, 2, 56, 233, 1, 133
150 DATA 252, 24, 105, 4, 133, 254, 169, \{SPACE\} 8, 133, 251, 160, 247, 165, 25 3

160 DATA $145,251,230,251,208,2,230$, 252, 166, 252, 228, 254, 144, 242
$17 \varnothing$ DATA $96,32,115, \varnothing, 32,158,173,32$, 247, 183, 140, 171, 2, 141
180 DATA $172,2,32,115,0,32,158,173$, $32,247,183,140,173,2$
190 DATA $152,41,248,133,253,141,180$, 2, 141, 174, 2, 169, Ø, 133
200 DATA $254,141,181,2,162,4,24,38$, 253, 38, 254, 202, 16, 248
$21 \varnothing$ DATA $162,2,24,46,180,2,46,181$, $2,2 ø 2,16,246,24,165$
220 DATA $253,109,18 \emptyset, 2,141,178,2,1$ 65, 254, 109, 181, 2, 141, 179
230 DATA $2,173,171,2,41,248,141,17$ $6,2,173,172,2,141,177$
240 DATA $2,56,173,173,2,237,174,2$, 24, 109, 176, 2, 133, 251
250 DATA $173,177,2,109,168,2,133,2$ 52, 24, 173, 178, 2, 101, 251
260 DATA $133,251,173,179,2,101,252$, $133,252,56,173,171,2,237$
$27 \emptyset$ DATA $176,2,133,253,56,162,255$, $\{$ SPACE $169, \emptyset, 1 \varnothing 6,232,228,253,2 \emptyset$ 8
$28 \emptyset$ DATA $250,141,18 \emptyset, 2,174,17 \emptyset, 2,2$ $24,3,240,1 \varnothing, 160, \varnothing, 177$
290 DATA $251,13,18 \emptyset, 2,145,251,96,5$ 6, 169, 255, 237, 180, 2, 141
$3 \varnothing \emptyset$ DATA $18 \emptyset, 2,16 \emptyset, \varnothing, 177,251,45,18$ $\emptyset, 2,145,251,96,-1$
$50 \emptyset$ REM ** USER ROUTINE **
501 REM GRAPHS SINE CURVE
$5 \emptyset 5$ POKE 53265, PEEK (53265)OR2 $\uparrow 5:$ REM ** S ET BIT MAP MODE
$51 \varnothing$ POKE68ø,96:POKE681,92:REM ** SET POIN TERS FOR UTILITY
515 POKE 53272, 120:POKE 56576, 2:REM ** \{SPACE\}SET UP VIC II MEMORY
$52 \emptyset$ POKE 55, Ø: POKE 56, 6ø:CLR:REM ** PRO TECTS BIT MAP FROM BASIC PROGRAM
$53 \emptyset \mathrm{~B}=32768$: REM ** SET BASE ADDRESS OF UT ILITY
$54 \varnothing$ SYS B, \varnothing : SYS B, $1,16:$ REM ** CLEAR SCRE EN AND SET COLOR
$55 \emptyset$ FOR X=ø TO 6 STEP . 05 : $\mathrm{Y}=\mathrm{SIN}(\mathrm{X}):$ REM *

NEW: For the Commodore $64^{\text {TM }}$ ANNOUNCING

CodePro-64"

 A new concept ininteractive visual
learning ...

Now you can learn to code in BASIC and develop advanced prögramming skills with graphics, sprites and music-visually. You learn by interacting with CodePro64, a new concept in interactive visual learning.

SEE PROGRAM EXECUTION

Imagine actually seeing BASIC statements execute. CodePro-64 guides you through structured examples of BASIC program segments. You enter the requested data or let CodePro-64 do the typing for you. (It will not let you make a mistake.)

After entering an example you invoke our exclusive BasicView ${ }^{\text {T4 }}$ which shows you how the BASIC program example executes.

You step through and actually see the execution of sample program statements by simply pressing the space bar. CodePro-64 does the rest.

You see statements with corresponding flow chart graphics and variable value displays. You learn by visual examples.

EXTENSIVE TUTORIAL

CodePro-64's extensive tutorial guides you through each BASIC command, program statement, and function. You get clear explanations. Then you enter program statements as interactive examples. Where appropriate, you invoke BasicView to see examples execute and watch their flow charts and variables change.
By seeing graphic displays of program segment execution you learn by visual example. You learn faster and grasp programming concepts easier with CodePro-64 because you immediately see the results of your input.
You control your learning. You can go through the tutorial sequentially, or return to the main menu and select different topics, or use keywords to select language elements to study. You can page back and forth between screens within a topic at the touch of a function key.

CodePro-64 lets you follow your interests and practice with interactive examples. But you can never get "lost". F1 will always return you to the main menu. Once you have practiced and mastered the BASIC language elements you move on to more advanced concepts. You learn about sprite and music programming.

SPRITE GENERATOR \& DEMONSTRATOR
CodePro-64's sprite generator lets you define your own sprites on the screen. You learn how to define sprites and what data values correspond to your sprite definitions. (You can then use these values to write your own programs.) You can easily experiment with different definitions and make changes to immediately see the effects.

We also help you learn to program with sprites by giving you a sprite demonstrator so you can see the effect of changing register values. You can experiment by moving your sprite around in a screen segment, change its color or priority, and see the effects of your changes. You learn by visual examples.

MUSIC GENERATOR \& DEMONSTRATOR

To teach you music programming CodePro-64 gives you an interactive music generator and demonstrator, First we help you set all your SID parameters (attack/ decay, sustain/release, waveform, etc.). Then you enter notes to play and we show your tune graphically as it plays, note by note, on the scale. You learn by seeing and hearing the results of your input.

OUR GUARANTEE

We guarantee your satisfaction. You must be satisfied with CodePro-64 for the Commodore64. Try it for 10 days and if for any reason you are not satisfied return it to us (undamaged) for a full refund. No risk.

Our music demonstrator lets you experiment with various combinations of music programming parameters and hear the results. You can quickly modity any of the SID register values to hear the effects of the change. For example, you could easily change waveform and attack/ decay values while holding all other SID values constant. By seeing your input and hearing the result you quickly learn how to create new musical sounds and special sound effects.

AND MORE . .

We don't have enough space to tell you everything CodePro-64 offers, You need to see for yourself. BASIC tutorials, graphics, sprites, music, keyboard review, sample programs-the main menu shown above gives you just a summary of the contents of this powerful educational product.

Whether you're a beginning programmer or an experienced professional, CodePro-64 will help you improve your Commodore 64 programming skills. We're sure because CodePro-64 was developed by a team of two professionals with over $\mathbf{2 5}$ years of software development experience.

CodePro-64 is a professional quality educational program for the serious student of personal computing. And it's fully guaranteed. Order yours today.

HOW TO ORDER

Order your copy of CodePro-64 today by mail or phone. Send only $\$ 59.95$ plus $\$ 3.00$ shipping and handling to:

SYSTEMS MANAGEMENT ASSOCIATES 3700 computer Drive, Dept. C Raleigh, N. C. 27609
Available on diskette only. MasterCard/VISA accepted. For faster service on credit card orders call (919) 787-7703.

Commodore 64 is a trademark of Commodore Business Machines, Inc.
Ad no- 733 Copyight 1983, SMA
Dealerinquitieshnids COInInodore.Ce

* GET VALUE FOR SINE CURVE
$560 \mathrm{Xl}=\mathrm{X} * 50: \mathrm{Y}=\mathrm{Y} * 50:$ REM ** ENLARGE GRAPH S IZE
$57 \emptyset \mathrm{Y}=1 \varnothing \varnothing-\mathrm{Y}:$ SYS B, 2,X1,Y:REM ** GRAPH POI NT
$58 \emptyset$ NEXT X:REM ** GRAPH NEXT
590 GOTO $59 \emptyset$
6 6ø REM ** EXIT WITH BREAK/RESTORE

Geommodore 54 BIBLE

Drills, Puzzles, Competitive Games, Tutorials
Uses Color, Graphics, Sound, Animation Tape and Disk Versions Send SASE for FREE CATALOG

Uniock Your Creativity. Commodore 64 Color Sketch Pad

Whether you're six or sixty-six, you can use high resolution graphics and color to DOODLE! Draw up a house plan, sketch a landscape, create a colorful masterpiece or just "doodle." On-line MENUS make DOODLE easy to use; 100% machine language means instant response. With your Commodore 64 and joystick or WICO ${ }^{\circledR}$ Trackball you can:

- DRAW pictures, and PAINT with 8 "brush" sizes.
- ZOOM in to draw fine detail.
- Instant BOXES and straight LINES anywhere on your screen.
- DUPLICATE, Enlarge, Stretch, Squeeze or Rotate any part of your doodle.
- Instant NEGATIVE or MIRROR IMAGE of a doodle.
- SAVE your doodle on a disk. LOAD it in to doodle some more.
- PRINT your doodle on many popular printers.

$\$ 39.95$

For information, your nearest dealer, or to order direct, CALL TOLL FREE:
1-800-558-1008
Dealer and Distributor Inquiries Invited
City Software
City Software Distributors, Inc.
735 W. Wisconsin Ave.
Milwaukee, WI 53233
© Copyright 1983 by Mark R. Rubin \& OMNI Unlimited. Commodore 64 is a registered
trademark of Commodore Electronics, Ltd.

COMMODORE 64E American Peripherals

GAMES
(on tape)646 Pacacuda 19.95650 Logger 19.95651 Ape Craze 19.95652 Centropod 19.95653 Escape 19.95641 Monopoly 19.95642 Adventure \#1 19.95
648 Galactic Encounter 9.
667 Yahtzee 14.95
671 Robot Blast 14.95
673 Moon Lander 14.95
676 Othello 14.95
686 Horserace-64 14.95
692 Snake 14.95
697 Football 14.95
819 Backgammon 24.95
822 Space Raider 19.95
846 Annihilator 19.95
842 Zwark 19.95
845 Grave Robbers 13.95
841 Pirate Inn Adv. 22.95
904 Shooting Gallery 14.95
816 Dog Fight 19.95
817 Mouse Maze 19.95818 Ski Run 22.
820 Metro 22.
823 Sub Warfare 29.
838 Retroball 39.95(cartridge)839 Gridrunner 39.95(cartridge)825 Mine Field 13.
672 Dragster 14.95
662 Oregon Trail 14.95
679 3-D TicTacToe 14.95

655 Castle Advent. 14.95

EDUCATIONAL

(on tape)
644 Type Tutor 19.95
645 Assembly Language
Tutor 14.95
687 Fractional Parts 14.95
902 Estimating Fractions 14.95
695 Tutor Math 14.95
870 Square Root Trainer 14.95
699 Counting Shapes 14.95
694 Money Addition 14.95
689 Math Dice 14.95
678 Speed Read 14.95
643 Maps and Capitals 19.95
645 Sprite Editor 19.95
904 Sound Synthesizer Tutor 19.
696 Diagramming Sentences 14.95
690 More/Less 14.95
688 Batting AVERAGES 14.95
802 TicTac Math 16.95
904 Balancing Equations 14.95
905 Missing Letter 14.95
864 Gradebook 15.
810 French 1-4 80.
811 Spanish 1-4 80.
807 English Invaders 16.95
809 Munchword 16.95
812 Puss IN Boot 20.
813 Word Factory 20.
660 Hang-Spell 14.95
905 Division Drill 14.95
906 Multiplic. Drill 14.95
907 Addition Drill 14.95
908 Subtraction Drill 14.95
910 Simon Says 14.95
911 Adding Fractions 14.95
912 Punctuation 14.95

EDUCATIONAL

Series on disk
Computer Science (30 programs) \$350
HS Biology (70 programs) $\$ 500$
HS Chemistry (40 programs) $\$ 450$
HS Physics (60 programs) \$475
HS SAT Drill (60 programs) \$99.
Elem. Social Studies (18 pr.) \$225
Elem. Science (18 programs) $\$ 225$
Elem. Library Science (12 pr.) \$170
Librarians Package (4 utilities) \$110
3rd Grade Reading (20 lessons) $\$ 99$.
4th Grade Reading (20 lessons) $\$ 99$.
5th Grade Reading (20 lessons) $\$ 99$.
6 th Grade Reading (20 lessons) $\$ 99$.
Spanish Teaching (12 lessons) $\$ 95$.
PARTS OF SPEECH (9 lessons) $\$ 95$.

BUSINESS

(all on disk)
WORD PRO $3+95.00$
DATAMAN-64 data base program. 49.95
PERSONAL FILING SYSTEM
(index card style) 19.95
HOME FINANCE 19.95
CYBER FARMER \$195.
GA 1600 Accounting System 395.
PERSONAL TAX 80.
ACCOUNTS RECEIVABLE 22.
New York State Payroll 89.
MAILING LIST 24.
Manufacturing Inventory 59.
Stock Market Package 39.
Finance 16.95

ORDERING BLANK

To: American Peripherals
122 Bangor Street
Lindenhurst, NY 11757
Ship to: Name \qquad
Street
Town, State, ZIP
\qquad
NY State Residents only add $71 / 4 \%$ tax
\qquad
\qquad

Atari Screenbyter

Carl Zahrt and Orson Scott Card

Abstract

Here's a graphics utility that lets you create screen displays in any of the regular pixel graphics modes and GRAPHICS 6.5 and 7.5 as well. It's simple enough for a child to use. It gives you complete control over color, mode, and display size. And a special Fill Mode lets you quickly draw long lines or fill large areas with color in moments.

Atari home computers have superb graphics. Creating screen displays from BASIC, page flipping, scrolling, redefining characters, continuous memory, and changing from mode to mode to get exactly the effect you want - once you've worked with graphics on the Atari, some other home computers can seem a bit confining.

But that doesn't mean using Atari graphics is easy, especially if you want large displays which extend far beyond the edges of the TV screen, or detailed drawings that would take hundreds of PLOT and DRAWTO statements to create from BASIC. Such things take painstaking work on graph paper and many POKEs into screen memory - or a good chunk of your paycheck for software to do it for you.
"Screenbyter" takes the pain out of creating beautiful graphics displays.

- You can work in any of the non-GTIA pixel modes.
- You have access to GRAPHICS 6.5 and 7.5, pixel modes that cannot be used with a simple GRAPHICS statement.
- You can type RUN and start drawing with the joystick - no programming experience is needed.
- You can fill in large areas quickly and easily.
- Since the main action of the program is in machine language, it moves very quickly, but
a Slow Mode is provided so you can do detail work, pixel by pixel.
- You can change screen colors with the joystick.
- You aren't always limited by the size of the screen. In GRAPHICS 3 you can create scrolling displays many times larger than the TV screen, and all the modes except 7.5 and 8 allow some scrolling.
- When you save a display to disk, all the parameters - mode, size, and colors - are saved with the screen data, so that you can load them directly into your own programs.

Using Screenbyter

Setup. Screenbyter begins by displaying a directory of all files on the disk with the extender ".PIX". This extender is automatically added to all files created by Screenbyter. If no directory appears, there are no previously saved files on the disk.
"What file should hold your finished screen? (Eight characters)." Respond to this prompt by giving the filename you want your new display to have, when you save it at the end of the editing session. Screenbyter automatically removes everything before a colon or after a period and replaces it with "D1:" and ".PIX", so that you only need to enter the eight-letter filename. If you use illegal characters, Screenbyter will ask you to try again; if you use more than eight characters, only the first eight characters will be used.

If the name you enter is the name of a file already on disk, Screenbyter will remind you of that. To change the name, press RETURN. Or, if you want your new display to overwrite the old file, press any other key to go on.
"Would you like to edit a screen you have already saved? (Y or N)." If you answer Y, Screenbyter asks you for the name of the saved
file. If the file is not on disk in the form "D1:filename.PIX", Screenbyter will tell you and ask you to insert the correct disk or, if you wish, ask you again if you want to edit a previously saved screen.

Once the file is found, Screenbyter reads the first four bytes of the file to get the mode number, the number of bytes per line, and the number of lines in the display as it was saved. Press RETURN if you want to change these parameters. Press any other key to leave them the same.

Changing the parameters can have interesting effects. Remember that four-color modes all read the bytes the same way; if you want to draw your displays in GRAPHICS 3 (ANTIC 8) and then display them in a higher four-color mode, you can. Changing the length of a file either chops off the bottom or adds blank lines at the bottom of the display. Changing the line width, however, will usually result in garbage, since the vertical relationships will all be changed. The option is included, however, because sometimes even "garbage" can be fun.

If you are not editing a previously saved display, or if you are changing the parameters, you get the following series of prompts:
"What Antic mode will you work in?" This prompt is followed by a table that lists the eight ANTIC pixel modes and their graphics mode equivalent. ANTIC 8, for instance, is GRAPHICS 3; ANTIC F (15) is GRAPHICS 8. Two ANTIC modes, C (12) and E (14), have no GRAPHICS equivalent - they are the famous "GRAPHICS 6.5" and "GRAPHICS 7.5." (See Table 1.) Enter the ANTIC mode number: $8,9, A, B, C, D, E$, or F.
"How wide a line? (Minimum $n n$ bytes, maximum $n n$ bytes)." Depending on the mode you chose, Screenbyter will give you the minimum and maximum number of bytes per line. Remember that in the four-color modes, each byte is four pixels, while in the two-color modes, each byte is eight pixels. The minimum is based on the minimum number of bytes required to fill the screen. The maximum is based on the widest possible line that will allow the display to fit within 4 K . If you enter numbers outside the legal range, Screenbyter will select the minimum or maximum, as appropriate.

With ANTIC E and F, the minimum and maximum are the same - you have no option, so any number you enter will result in the same number of bytes per line. This is because these two modes will not scroll - they both require more than 4 K . Scrolling a screen that crosses a 4 K boundary requires elaborate arrangements of screen memory that are beyond the scope of this program. Displays created in E and F will take up 65 sectors on disk; all other displays will take up

Table 1: Atari Pixel Modes

ANTIC mode	8	9	A	B	c	D	E	F
Graphics mode	3	4	5	6	-	7	-	8
Colors	4	2	4	2	2	4	4	2
Resolution	$\begin{gathered} 24 x \\ 40 \end{gathered}$	$\begin{gathered} 48 x \\ 80 \end{gathered}$	$\begin{gathered} 48 \mathrm{x} \\ 80 \end{gathered}$	$\begin{gathered} 96 x \\ 160 \end{gathered}$	$\begin{array}{r} 192 x \\ 160 \end{array}$	$\begin{gathered} 96 x \\ 160 \end{gathered}$	$\begin{gathered} 192 x \\ 160 \end{gathered}$	$\begin{gathered} 192 x \\ 320 \end{gathered}$
Memory, bytes (sectors)	$\begin{aligned} & \text { s } 240 \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & 480 \\ & (5) \end{aligned}$	$\begin{aligned} & 960 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 1920 \\ & (17) \end{aligned}$	$\begin{aligned} & 3840 \\ & (33) \end{aligned}$	$\begin{aligned} & 3840 \\ & (33) \end{aligned}$	$\begin{aligned} & 7680 \\ & \text { (65) } \end{aligned}$	$\begin{aligned} & 7680 \\ & \text { (65) } \end{aligned}$
Lines/screen	24	48	48	96	192	96	192	192
Bytes/line	10	10	20	20	20	40	40	40
Bits/pixel (Pixels/byte)	$\underset{(4)}{2}$	$\begin{aligned} & 1 \\ & \text { (8) } \end{aligned}$	$\begin{aligned} & 2 \\ & (4) \end{aligned}$	$\begin{aligned} & 1 \\ & \text { (8) } \end{aligned}$	$\begin{aligned} & 1 \\ & (8) \end{aligned}$	$\begin{aligned} & 2 \\ & (4) \end{aligned}$	$\stackrel{2}{(8)}$	$\begin{aligned} & \mathbf{1} \\ & \text { (4) } \end{aligned}$
Scan lines/ pixel	8	4	4	2	1	2	1	1
Color clocks/ pixel	4	2	2	1	1	1	1	1/2

Note: ANTIC C and E, the two "hidden" pixel modes, provide the same resolution. All the other pixel modes attempt to create as square a pixel as the TV screen allows - the same number of color clocks wide as scan lines high. C and E, however, are twice as wide as they are high, making each pixel very short and wide. They come very near the resolution of ANTIC F (GRAPHICS 8). The advantages are that, compared to F, C uses half the memory and E allows four colors.
33 sectors or fewer.
"How many lines do you want to edit? (Minimum $n n$, maximum $n n$)." The minimum and maximum depend on the mode and the number of bytes per line already selected. Again, if you choose parameters outside the legal range, Screenbyter will select the minimum or maximum. And if you choose the maximum number of bytes per line, only the minimum number of lines per screen will be possible.

When all selections have been made, you are given one last chance to change your mind. All the parameters you chose are displayed on the screen. If they are correct, press START, and the program will go on. If you want to make changes, press OPTION and the program will start over.

Waiting. What's going on while you wait? Screenbyter configures the memory to reserve 10 K (40 pages) at the top of memory to hold screen memory (up to 8 K), the display list, and the machine language routine that actually puts your drawing on the screen. Screen memory is cleared and the machine language routines are loaded. If you chose to edit a previously saved screen, it is loaded into memory now. All this takes about six seconds. The rest of the time is spent writing the display list. The higher the ANTIC mode, the longer it takes to write the display list - ANTIC F requires about 200 POKEs in BASIC, plus the calculations to find out what numbers to POKE, and it can take as long as 20 seconds.

When Screenbyter is ready for you to edit, there will be a cursor in the upper-left-hand corner.

Moving the cursor. The joystick controls the cursor.

Drawing a line. Hold down the joystick button to draw; let it up to move the cursor without drawing.

Selecting a color. Press 1 or SHIFT-CAPS/ LOWR to select Color 1. Press 2 or CONTROLCAPS/LOWR for Color 2. Press 3 or SHIFT-CONTROL-CAPS/LOWR for Color 3. Press 0 or CAPS/LOWR to select the background color.
Drawing in the background color has the effect of erasing.

Color Mode. To change the actual colors that are displayed by Colors 1, 2, or 3, or the background color, press START. You will hear a buzz, and the cursor will no longer respond to the joystick. Instead, moving the joystick will change the colors displayed on the screen. Moving the joystick up or right will change the color from darker to brighter, then jump to the darkest value of the next color. Moving the joystick down or left will change the color from brighter to darker, then jump to the brightest value of the next color.

To change the background color, move the joystick forward or back; to change Color 3, move the joystick left or right. To change Color 2, move the joystick forward or back with the button pressed; to change Color 1, move the joystick left or right with the button pressed.

To return to Cursor Mode, press START again. No other commands will work during Color Mode.

Slow Mode. Press the space bar to enter Slow Mode. A delay loop in the program makes the cursor move much more slowly around the screen, with a click between moves. This mode allows you to create details. To return to Fast Mode, press the space bar again.

Fill Mode. Press the inverse key (Atari logo key) to enter Fill Mode. A low hum will come from the television. In this mode, when you press the joystick button, Screenbyter draws a dot of the selected color at the current cursor location, as usual, but it also searches to the right along the same line. If it finds another dot of the same color before it reaches the end of the line, it will fill in all the area between that dot and the current cursor position with dots of the same color. If no dot of the same color is found, no fill operation is performed.

This allows you to fill large or small areas of the screen with a single color. Simply draw the right-hand edge of the figure first; then enter Fill Mode and draw the left-hand border. It takes some practice to get used to using this function without accidentally erasing parts of your screen,
but you may find that this can be the most useful feature of Screenbyter.

To exit Fill Mode, press the inverse key again. The hum will continue as long as you are in Fill Mode, and will stop only when you leave.

Insert a line. Press SHIFT-INSERT to insert a line at the current cursor position. The bottom line of the display will be pushed down and lost.

Delete a line. Press SHIFT-DELETE to delete the current cursor line. A blank line will be added at the bottom of the display.

Clear the screen. Press CONTROL-SHIFTCLEAR to erase the screen completely. If you haven't already saved the display, it will be lost.

Saving the screen. Press SELECT to save the screen without ending the editing session. The current screen display will be saved as "D1: TEMPFILE.PIX". You can save as often as you like; Screenbyter will simply overwrite any existing TEMPFILE.PIX file.

Ending the editing session. Press OPTION to save the screen and end the editing session. (To exit without saving, press RESET.) The display will be saved as "D1:TEMPFILE.SCR." Then the regular GRAPHICS 0 screen will return and you will be given several prompts:
"Do you want to save the screen as D1:filename. PIX? (Y or N)." If you answer N, the saved display will be left as TEMPFILE.PIX. If you answer Y, Screenbyter will erase any existing file that has the same filename. Then Screenbyter will rename TEMPFILE.PIX with the filename you chose.
"Do you want to quit? (Y or N)." If you answer Y, Screenbyter will restore the old top of memory and exit to BASIC. If you answer N, you will get another prompt. To return to edit the screen you just left, press OPTION. That display will be reloaded into memory, the display list will be rewritten, and you can start over. To edit an entirely new screen, or to change the name of the save file, press START. In effect, Screenbyter will then start over.

What's Going On Inside The Program?

Like everything else in a computer, your display exists as a series of numbers stored in binary form in memory locations in the computer. The ANTIC chip scans screen memory as it is instructed to do by the display list. But it doesn't read the numbers as numbers. Instead, it reads them as patterns of "on" and "off" bits.

Four-color modes. In the four-color modes, each byte is read as code for four pixels. The eightbit binary number is treated as four bit-pairs:

00000000
Each bit-pair provides the code for one pixel, or rectangle of color on the screen. In GRAPHICS 3,
each pixel is the size of a character in GRAPHICS 0 . In GRAPHICS 7.5, each pixel is one scan line high and one color clock wide, which gives very good resolution. But all four-color modes read the bit-pairs the same way.

00 means to display the background color (the color code stored at location 712).

01 means to display Color 1 (the color code stored at location 708).
10 means to display Color 2 (the color code stored at location 709).
11 means to display Color 3 (the color code stored at location 710).
This means that the number 216 (binary 11011000) is treated as four pixel color instructions: The first pixel is Color 3, the second pixel is Color 1 , the third pixel is Color 2, and the last pixel is the background color.

Two-color modes. The two-color modes treat each bit as a separate pixel instruction, so that each byte controls eight pixels. An "on" bit, or 1, is read as a Color 1 instruction, while an "off" bit, or 0 , is read as a background color instruction. In a two-color mode, the number 216 would be treated as eight pixel color instructions: Two "on" pixels, one "off" pixel, two more "on" pixels, and three "off" pixels. (See Table 1 for a listing of all the modes.)

Moving around the screen. Moving the cursor around the screen, then, isn't simply a matter of moving from one byte to the next in screen memory. Screenbyter also has to move from bit to bit or from bit-pair to bit-pair within the bytes. This can be done in BASIC by adding or subtracting values, but it is very slow. Machine language, however, has powerful commands that make it easy to move from bit to bit. DRAWTO and PLOT commands do these manipulations for you, but since Screenbyter is circumventing the BASIC graphics commands entirely, there was no practical choice but to execute the main drawing operations in machine language.

To understand what Screenbyter is doing, you need to understand a few machine language commands: EOR, ORA, and AND. The two OR instructions and the AND instruction are not the same as the AND and OR you use in Atari BASIC. In machine language, these are operations on the bits of an eight-bit number, and are often called "bitwise" AND and OR to help keep the difference in mind.

AND, OR, EOR Explained

All three operations compare two numbers, one stored in the accumulator and another somewhere else in memory. The operation results in a third number, which is stored in the accumulator in place of the number that was already there.

- AND, referred to as "bitwise AND," compares the two numbers, bit by bit. Any bit that is on in both numbers stays on in the resulting number. All other bits are turned off. In other words, only bits that are on in the first number and in the second number remain on in the result.

$$
\begin{array}{rr}
& 10010110 \\
\text { AND } & 11110000 \\
\text { results in } & 10010000
\end{array}
$$

- ORA, referred to as "bitwise OR," compares the two numbers, but in this case any bit that is on in either number stays on in the result:

	10010110
ORA	11110000
results in	11110110

- EOR, referred to as "exclusive OR," compares the two numbers, and any bit that is on in one and only one number is left on in the result. Any bit that is on in both numbers or off in both numbers is off in the result:

10010110
 EOR 11110000
 results in 01100110

How do these actually work, in practice?
Screenbyter maintains several masks. The Color Mask is in page 6, at memory location 1692. This byte is set from BASIC whenever the color is changed, and it is set so that every bit or bit-pair represents a pixel of the selected color. If the background color is selected, the Color Mask is 00000000 . If Color 1 is selected, the Color Mask is 01010101. For Color 2, the Color Mask is 10101010, and for Color 3 it is 11111111 . With two-color modes, the Color Mask is either 00000000 or 11111111.

The Cursor Mask is kept at location 1696. It is set to represent the current cursor pixel within the cursor byte. The bits in the current pixel are on; all others are off. In four-color modes, if the cursor is in the leftmost pixel of the cursor byte, the Cursor Mask will be set to 11000000; if it is in the rightmost pixel, the mask will be set to 00000011 . The two middle pixels are 00110000 and 00001100. In two-color modes, a single "on" bit represents the cursor position.

Whenever you move the cursor left or right or diagonally, the Cursor Mask is shifted left or right, so that at any given moment, the Cursor Mask will mark which bit or bit-pair Screenbyter should change.

If you are drawing, Screenbyter first picks up the value of the current cursor byte and stores it at 1690. Then it picks up the Cursor Mask and EORs it with 11111111 (decimal 255). This reverses the Cursor Mask - any bit that was on is now off, and any bit that was off is now on.

Let's see that in action in a four-color mode,
in which the background is black, Color 1 is red, Color 2 is green, and Color 3 is blue. The bit-pairs will be separated in these examples, to make it easier to keep track of the pixels.

$$
\begin{array}{rllll}
\text { Cursor Mask } & 00 & 11 & 00 & 00 \\
\text { EOR } & 11 & 11 & 11 & 11 \\
\text { results in } & 11 & 00 & 11 & 11
\end{array}
$$

(Reverse Cursor Mask)
Screenbyter then ANDs the Reverse Cursor Mask with the number at 1690, which in effect makes a hole in the cursor position:

Reverse Cursor Mask 11001111
AND 01010111 red red red blue resultsin 01000111 red - red blue
The two bits in the cursor position will always be turned off.

Now Screenbyter must prepare the pixel code to go in that hole. Screenbyter picks up the Cursor Mask and ANDs it with the Color Mask. Since all the bits in the Cursor Mask are off except the two bits of the current pixel, the resulting number will have only the bits that represent the current color, and only in the pixel position:

Cursor Mask 00110000
 $\begin{aligned} \text { AND ColorMask } & 10101010 \\ \text { results in } & 00100000\end{aligned}$ green green green green

Now we are ready to put the correct pixel code into the hole in the current cursor byte. To do this, we bitwise OR the current pixel we just got with the cursor byte with a hole in it from the operation before. Remember that with ORA, any byte that is on in either or both of the two numbers is on in the result:

$$
\begin{array}{r}
\begin{array}{r}
\text { correct pixel }
\end{array} 00100000 \\
\text { ORA current byte } \\
\text { with hole }
\end{array} 01000111 \text { red } \quad \text { green }-\quad \text { red } \begin{aligned}
& \text { blue } \\
& \text { results in }
\end{aligned} 01100111 \text { red } \begin{aligned}
& \text { green red } \\
& \text { blue }
\end{aligned}
$$

The result is then stored in 1690, and later in the program it is put into screen memory.

If you are not drawing (merely moving the cursor) the operation is a little different, but AND, EOR, and ORA perform the same functions.

Machine language is so fast that all this seems to happen instantaneously. In fact, the only reason the cursor doesn't fly around the screen out of control is because Screenbyter keeps leaving the machine language routine, returning to BASIC to check the keyboard for other commands. Even so, the cursor moves so quickly that it has to be slowed down in order to allow you to draw details.

Use of Page 6. The machine language routine at SCROLL uses a field in Page 6 to hold some important variables. The memory locations in Page 6 are explained in Table 2.

Screenbyter Displays In Your Own Programs

Here are two routines you can add to your own

Table 2: Page 6 Locations	
1670	WIDE-1. Used to check for the end of the logical
1671	Used in fill routine to keep track of right border of fill.
1672	Cursor location: current byte on logical line.
1673	Used by the fill routine to hold the pattern of the rightmost byte of the fill line.
1674-1675	LINE-1. Used to check for last line of display.
1676-1677	Cursor location: current logical line number
1678	Bytes per screen line-1. Used by the scrolling routine to check for the end of the screen line.
1679	Cursor location: Current byte on screen line.
1680	Lines per screen -1 . Used by the scrolling routine to check for the bottom of the screen display.
1681	Cursor location: current screen line number.
1682	Used by the fill routine to hold the pattern of the leftmost byte of the fill line.
1683	A temporary holding location.
1684	Used by the fill routine to hold the real value of the byte currently being tested.
1685	A temporary holding location.
1686-1687	The current screen starting address (the address of the upper-left-hand corner of the screen).
1688-1689	Cursor location: the address of the current cursor byte in screen memory.
1690	The real contents of the current curso
1691	The, reverse (cursor display) contents of the current cursor byte.
1692	Color Mask.
1693	The number of bits per pixel (1 or 2).
1694	Scroll flag ($0=$ do not scroll).
16	Fill flag ($\theta=$ do not fill).
1696	Cursor Mask.
1697	Joystick value.
1698	Total number of lines per screen. Used in the scroll routine to change the correct number of LMS instructions in the display list.
1699	WIDE. Used in the scroll routine to increment the LMS addresses in the display list.
1700	Fill Test Mask. Used in the fill routine to isolate and test each pixel until a pixel of the selected color is found.
1701	Starting Fill Test Mask. Either 192 (four-color mode) or 128 (two-color mode).
1702-1704	Machine language jump vector: JMP followed by the address of the fill subroutine held in the string FILLS.

programs, which will allow you to load the displays you created with Screenbyter. The first routine, Load and Display List, works with any Screenbyter file. However, it sets up a custom display list with individual LMS instructions, suitable for scrolling. This makes the setup time rather long. So a Simple Load Routine is also included. It will work with any display file that was created using the minimum line width and number of lines per screen, except screens created in ANTIC C and E (GRAPHICS 6.5 and 7.5). You cannot use it if you intend to scroll horizontally. However, you can use it if you intend to scroll vertically or flip pages, and if your display was created with the minimum line width.

Both routines will configure memory to pro－ tect the screen display，read the display param－ eters from whatever display file you choose，and load the file into memory．It uses a load routine very similar to the one used by Fontbyter，so we won＇t explain them again here．

Notice that in loading displays created in ANTIC E and F（GRAPHICS 7.5 and 8），the screen display must cross a 4 K boundary line．The ANTIC chip gets fussy at this point，and ignores anything after a 4 K boundary line until the beginning of the line pointed to by the next LMS instruction． Therefore，screen memory must be arranged so that the 4 K boundary line comes right at the end of a line；the display list routine will have set the value of SC，the start of screen memory，so that the 4 K boundary line will fall right at the end of a line．

Program 1：Load And Display List Routine

5 CLR ：DIM PPB（7），BPL（7），MXW（7），LPS（ 7），FL\＄（2ø）：FL\＄＝＂D1：SHIP．PIX＂：GOSUB 4 Øøø
4øøø FOR I＝ø TO 7：READ W，N，C，T：PPB（I $)=W: B P L(I)=N: M X W(I)=C: \operatorname{LPS}(I)=T:$ NEXT I
4 Øø5 $A=P E E K(1 \emptyset 6): T O P=A-36: S P=T O P+4: S$ C＝SP＊256：DL＝256＊TOP：POKE 1 66 ，TO P：GRAPHICS \varnothing ：PRINT＂\｛CLEAR\}"
$4 \emptyset 1 \emptyset \quad X=16: I C C O M=834: I C B A D R=836:$ ICBLE $N=84 \emptyset: S C O N=\operatorname{PEEK}(559): K 4=4996$
$4 \emptyset 15$ OPEN \＃1，4，Ø，FL\＄：GET \＃1，M：MB＝M－8 ：GET \＃1，WIDE：GET \＃1，LLO：GET \＃1， LHI $=$ LINE＝LLO＋256＊LHI $=5 Z=$ WIDE＊LI NE
4ø2め FOR I＝7ø8 TO 711：GET \＃1，N：POKE I，N：NEXT I：POKE I，N
4025 SC＝SC＋（（LINE＊WIDE）＞K4）＊（K4－INT（ K4／WIDE）＊WIDE）：SH＝INT（SC／256）：S L＝SC－256＊SH
4øЗछ FOR I＝Ø TO 2：POKE DL＋I，112：NEXT I：$N=\varnothing$
$4 \emptyset 35$ FOR $I=D L+3$ TO DL＋3＊LPS（M8）STEP 3：$C=S C+N * W I D E: P Q K E \quad I, 64+M: T=I N$ T（C／256）
$4 \emptyset 49$ POKE $I+2, T: P O K E I+1, C-256 * T: N=N$ +1 ：NEXT I
4045 POKE $I, 65:$ POKE $I+1$ ， $0:$ POKE $I+2, D$ L／256
$4 \emptyset 5 \emptyset$ POKE 56ø，Ø：POKE 561，DL／256
4055 POKE ICBADR $+X+1$ ，SH：POKE ICBADR＋ $X, S L:$ POKE ICBLEN $+X+1,1+I N T(S Z / 2$ 56）：POKE ICBLEN $+X$ ，Ø
$4 \emptyset 6 \emptyset$ POKE ICCOM $+X, 7: I=U S R$（ADR（＂hhhert VE＂），X）：CLOSE \＃1：RETURN
4065 DATA $2,1 \emptyset, 17 \emptyset, 24,1,1 \emptyset, 85,48,2,2$ Ø，85，48，1，20，42，96
$497 \emptyset$ DATA $1,2 \emptyset, 21,192,2,49,42,96,2,4$ Ø，4の，192，1，4ø，4Ø， 192

Program 2：Simple Load Routine

5 CLR $=\mathrm{DIM}$ GM（15），FL\＄（20）：FL\＄＝＂D1：G8 ．PIX＂：GOSUB 4のøø
6 FOR I＝ø TO उøøøø：NEXT I

4øøø FOR $I=\varnothing$ TO 15：READ $N: G M(I)=N: N E$ XT I
4 Øø5 $A=\operatorname{PEEK}(196): T O P=A-36: S P=T O P+4: S$ $\mathrm{C}=\mathrm{SP} * 256: \mathrm{DL}=256 * T O P: \mathrm{POKE}$ 1 66 ，TO P：GRAPHICS \varnothing ：PRINT＂\｛CLEAR？＂
4 Ø1 $\mathrm{X}=16:$ ICCOM＝834： $\mathrm{ICBADR}=836$ ： ICBLE $N=84$ Ø：$S C O N=\operatorname{PEEK}(559): K 4=4996$
4 Ø15 OPEN \＃1，4，ø，FL\＄：GET \＃1，M：GET \＃1 ，WIDE：GET \＃1，LLO：GET \＃1，LHI：LIN $E=L L O+256 * L H I: S Z=W I D E * L I N E$
4 42の FOR $1=7 \emptyset 8$ TO $711:$ GET \＃1，N：POKE I，N：NEXT I：POKE I，N
$4 ø 25 \mathrm{SC}=\mathrm{SC}+(($ LINE 2 WIDE $)>$ K4）$*($ K4－INT（ K4／WIDE）＊WIDE）：SH＝INT（SC／256）：S L＝SC－256＊SH
$493 \emptyset$ GRAFHICS $G M(M)+16: I F G M(M)=\emptyset \mathrm{TH}$ EN ？＂INVALID MODE＂：RETURN
$4035 \mathrm{DL}=\operatorname{PEEK}(560)+256 * \operatorname{PEEK}(561): \mathrm{DL} 4=$ DL＋4：DLS＝DL＋5：POKE DL4，SL：POKE DL5，SH
4 و55 POKE ICBADR＋$X+1$ ，SH：PGKE ICBADR＋ $X, S L:$ POKE ICBLEN $+X+1,1+I N T(S Z / 2$ 56）：POKE ICBLEN $+X$ ，
4ø6め POKE ICCOM $+X, 7: I=U S R$（ADR（＂hhheml V（E＂），X ）：CLOSE \＃1：RETURN
$4 \emptyset 65$ DATA $\varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 3,4,5,6, \varnothing$ ， 7，Ø，ஜ

Program：Screenbyter

After the main listing of the BASIC program， you will find several programs to create disk files containing the machine language routines used in Screenbyter．If you prefer，you can easily add these DATA statements to your program and read them that way，or－as we prefer to do－load them into string constants and use them that way， without so many disk accesses．However，typing in strings that have lots of inverse and control characters in them can be tedious and often leads to typing errors，so these DATA statements are necessary in the published version of the program．

If you are also using＂Fontbyter＂（COMPUTE！， September 1983），you might notice that Screen－ byter follows the same structure．That＇s because Fontbyter was used as the starting point，and changed wherever Screenbyter＇s needs were dif－ ferent．However，the line insert，line delete，and clear screen machine language routines are not identical，so don＇t try to use the similar Fontbyter routines for Screenbyter－you will hopelessly con－ fuse your Atari if you do，and confused Ataris have unpleasant ways to express their frustration．

Program 3：Screenbyter

5 DIM FSAVE $\$(2 \emptyset)$ ，FLOAD\＄（2ø），FL\＄（4ø）， FLL\＄（2ø），DELETE\＄（118），EXPAND\＄（1ø2） ， $\mathrm{N} \$(13), F I L L \$(23 \emptyset)$, CLEAR $\$(26)$
$1 \varnothing$ DIM PPB（7），BPL（7），MXW（7），LPS（7），C OL（11），CL（3）
$15 A=P E E K(1 \emptyset 6): T O P=A-4 \emptyset: S P=T O P+8: S C=$ SP＊256：DL $=256$＊TOP：SCROLL $=D L+6 \varnothing \emptyset: P$ OKE 1ø6，TOP
$29 \quad X=16: \operatorname{ICCOM}=834:$ ICBADR＝836： $\operatorname{ICBLEN}=$ 84ø：GRAPHICS $\varnothing: S C O N=P E E K(559): F=1$

67Ø： $\mathrm{K} 4=4 \emptyset 96: N \$="$ No equivalent＂
$25 \mathrm{C}=7$ 7 $7: \mathrm{FOR} \mathrm{I}=\emptyset \mathrm{TO}$ 7：IF I／2＝INT（I／2 ）THEN $\mathrm{C}=\mathrm{C}+1: \mathrm{IF} \mathrm{C}=711$ THEN $\mathrm{C}=712$
$3 \varnothing \operatorname{COL}(I)=C: N E X T I: C L(\emptyset)=\emptyset: C L(1)=85:$
 LVE＂）
35 RESTORE $77 \emptyset: F O R \quad I=\emptyset$ TO 7：READ W, N ，C，T： $\operatorname{PPB}(I)=W: B P L(I)=N: M X W(I)=C: L$ PS（I）＝T：NEXT I：POKE 16，112：GOTO 3 15
$4 \varnothing$ OPEN \＃1，4，Ø，FL\＄：GET \＃1，MD：GET \＃1， WD：GET \＃1，LLO：GET \＃1，LHI：LN＝LLO＋2 $56 * L H I=S Z=W D * L N$
45 FOR I＝Ø TO 6 STEP 2：GET \＃1，N：POKE COL（I），N：NEXT I
$5 \emptyset$ POKE ICBADR $+X+1$ ，SH：POKE ICBADR $+X$ ， SL：POKE ICBLEN＋X＋1，1＋INT（SZ／256）： POKE ICBLEN $+X$ ，Ø
55 POKE ICCOM $+X, 7: I=U S R(F M S, X)$ ：CLOSE \＃1：RETURN
GØ OPEN \＃1，8，Ø，＂D1：TEMPFILE．PIX＂：PUT \＃1，M：PUT \＃1，WIDE：PUT \＃1，LLO：PUT \＃1，LHI
65 FOR I＝ø TO 6 STEP 2：PUT \＃1，FEEK（C OL（I））：NEXT I：POKE PEEK（ 1688 ）＋ 256 ＊PEEK（1689），PEEK（1696）
$7 \emptyset$ FOKE ICBADR $+X+1$ ，SH：POKE ICBADR $+X$ ， SL：POKE ICBLEN＋X＋ $1,1+$ INT（（LINE＊WI DE）（256）：POKE ICBLEN $+X$ ，Ø
75 POKE ICCOM $+X, 11: I=U S R(F M S, X)=C L O S$ E \＃：RETURN
$8 \emptyset$ IF（（LINE＊WIDE－PIX）（WIDE）THEN RE TURN
$85 \mathrm{C}=\mathrm{USR}(\operatorname{ADR}(\mathrm{DELETE} \$))$ ：POKE 169 9 ，PEE K（PEEK $(1688)+256 *$ PEEK $(1689))$ ：POKE 53279，4：ON SPEED GOSUB 74の：RETUR N
$9 \emptyset$ IF（ （LINE＊WIDE－PIX）（WIDE）THEN RE TURN
$95 \mathrm{~T}=\mathrm{SC}+\mathrm{WIDE*LINE-WIDE-1:C=INT}$（T／256 ）：T＝T－256＊C：POKE 2ø5，T：POKE 2ø6，C
1 ø曰 POKE（PEEK（1688）$+256 * \operatorname{PEEK}(1689)$ ） ，PEEK（169 $)$
1 Ø5 C＝USR（ADR（EXPAND\＄））：POKE 169ø，ø： POKE 53279，4：ON SPEED GOSUB 74日： RETURN
11 P POKE 1699，PEEK（SC）：FOKE 1691，121 ：POKE 559，SCON：OPT＝8
115 OPT＝PEEK（53279）：IF OPT $=6$ THEN GO SUB 189：GOTO 115
$126 \mathrm{~N}=\operatorname{PEEK}(632): \mathrm{C}=\mathrm{USR}(S C R O L L, N): I F N$ <15 THEN POKE $77, \emptyset:$ IF SPEED THEN GOSUB 740：POKE 53279，4
125 IF PEEK $(753)=3$ THEN GOSUB $140:$ GO TO 115
13 ON OPT＝3 GOTO 55 ：IF OPT＝5 THEN GOSUB 6ø：GOTO 115
135 GOTO 115
14 G GOSUB 635：ON $(C=116)+2 *(C=119)+3$ ＊（ $C=246$ ）GOTO 8ø，9ø， $17 \emptyset$
145 IF $N=6$ D THEN $C=C-59: S H I F=I N T(C / 6$ 4）：GOSUB 725
$15 \emptyset$ IF $C=31$ OR $C=3 \varnothing$ OR $C=26 \quad$ OR $C=5 \emptyset$ THEN GOSUB $72 \emptyset$
155 IF $N=33$ THEN SPEED＝1＊$(S P E E D=\varnothing): G$ OSUB 715
$16 \emptyset$ IF $N=39$ THEN VERS $=255 *($ VERS $=\varnothing): P$ OKE 1695，VERS：GOSUB 735
165 RETURN
179 C＝USR（ADR（CLEAR $\$$ ），SP）：POKE 169 ， Ø：POKE 1691，PEEK（1696）：RETURN

175 GOSUB 715 ：RETURN
189 GOSUB 715
185 DI＝PEEK $(632): T=P E E K(644): D I=D I+5$ ＊（ $\mathrm{DI}=7$ ）$: \mathrm{DI}=\mathrm{DI}-11$ ：OPT＝FEEK（53279） ：IF OPT $=6$ THEN 175
$19 \emptyset$ IF DI＜め OR DI＞S THEN 185
$195 \mathrm{DI}=4 * \mathrm{~T}+\mathrm{DI}=\mathrm{IF} \mathrm{DI} / 2=\mathrm{INT}(\mathrm{DI} / 2)$ THEN POKE COL（DI），PEEK（COL（DI））$-2+25$ 6＊（PEEK（COL（DI））＜2）＝GOTO 185
2 2曰 POKE COL（DI），PEEK（COL（DI））＋2－256 ＊（PEEK（COL（DI））＞253）：GOTO 185
205 FLL $\$=F L \$: F O R \quad I=1$ TO LEN（FL $\$): N=A$ SC（FL\＄（I，I））：ON N＝58 GOSUB 245：N EXT I：FL\＄＝FLL $\$$
21 （ $\mathrm{FLL} \$=F L \$: F O R \quad \mathrm{I}=1$ TO LEN $(F L \$): N=A$ SC（FL\＄（I，I））：ON N＝46 GOSUB 250：N EXT I：FL\＄＝FLL $\$$
215 IF LEN（FL $\$$ ）＞8 THEN FL $\$=F L \$(1,8)$
226 IF LEN（FL\＄）＜ 1 THEN 265
$225 N=A S C(F L \$(1,1))=I F N>9 \emptyset \quad O R N<65$ THEN 26ロ
23 IF LEN（FL $\$$ ）＜ 2 THEN GOTO $24 \emptyset$
235 FOR $I=2$ TO LEN（FL\＄）：N＝ASC（FL\＄（I， I））：ON（ $N>9$－ 0 R $N<65$ ）AND（ $N>57$ OR N（48）GOTO 255：NEXT I
$24 \varnothing$ FLL $\$=$＂D1：＂：FLL $\$(4)=F L \$: N=\varnothing:$ RETURN
245 FLL $\$=F L \$(I+1$ ，LEN（FL\＄））：RETURN
25 Ø FLL $\$=F L \$(1, I-1)$ ：RETURN
255 POP ：？＂\｛CLEAR3＂：？＂Illegal char acters in＂；FL\＄：GOTO 265
26ø ith must start w ith a capital＂：？＂letter．＂：GOTO 265
265 ？＂Let＇s try that name again．＂：N ＝ 1 ：RETURN
27ø TRAP 275：OPEN \＃1，4，$\varnothing, F L \$: N=\varnothing: C L O$ SE \＃1：RETURN
275 ？：？FL\＄；＂isn＇t on disk in＂：？＂ drive 1＂：？＂Insert disk with＂；F L\＄；＂and＂：？＂press RETURN．＂：CLQSE \＃1
$28 \emptyset$ ？＂Or to try another file name， press anyother key．＂
285 ON PEEK（753）＜＞3 GOTO 285：GOSUB 6 35：ON N＝12 GOTO $27 \emptyset: N=1:$ RETURN
$29 \varnothing$ TRAP $31 \emptyset:$ OPEN \＃1，4，, FL $\$:$ ？FL $\$; "$ is already on disk．＂：？＂Unless you change the name，the old＂
295 ？＂file will be lost．To change the namepress RETURN＂：？＂Or pre ss any other key to continue．＂：C LOSE \＃1
उØø ON PEEK（753）く＞S GOTO उøø：GOSUB 6 35：ON N＝12 GOTO उø5：$N=\emptyset:$ RETURN
$3 \emptyset 5 \mathrm{~N}=1$ ：RETURN
उ1ø CLOSE \＃1：N＝ø：RETURN
315 ？＂\｛CLEAR\} \{12 SPACES\} BMremothtern" ：？：？？
320 GOSUB 695：？：？＂What file should hold your finished\｛3 SPACES\}scr een？（Eight characters）＂：POKE 76 4，255：INPUT FSAVE $\$$
325 FL $=F S A V E \$:$ GOSUB 2g5：ON N GOTO 3 2ø：FSAVE $=$ FLL $\$$ ：FSAVE $\$$（LEN（FLL $\$$ ）+ 1）$=$＂－PIX＂
उЗの FL\＄＝FSAVE\＄：GOSUB 299：ON N GOTO 3 $2 \emptyset$
335 FLOAD $\$="$＂？：？＂Would you like t －edit a screen you\｛3 SPACES\}hav e already saved？（Y or N ）＂
GoSUB $635: 0 N \mathrm{~N}=35$ GOTO 39 ：ON $N=$

43 GOTO 345：GOTO 34ø
345 ？：？＂What is the name of the sa ved screen file？＂：POKE 764，255 ：INPUT FLOAD\＄
359 FL\＄＝FLOAD\＄：GOSUB 2ø5：ON N＝ø GOTO 355：GOTO 335
355 FLOAD $\$=$ FLL $\$$ ：FLOAD $\$($ LEN $(F L L \$)+1)=$ ＂．PIX＂
36ด FL\＄＝FLOAD\＄：GOSUB 27ø：ON N GOTO 3 35：OPEN \＃1，4，Ø，FLOAD\＄：GET \＃1，MD： GET \＃1，WD：GET \＃1，LLO：GET \＃1，LHI
365 CLOSE \＃1：FLOAD＝1：LN＝LLO＋256＊LHI
370 ？：？FLOAD\＄；＂was saved as：＂：＂ Mode＂；MD；＂，＂：？＂with＂；LN；＂lin es＂：？＂of＂；WD；＂characters per line．＂
375 ？＂If you wish to Chanceg these p arameterspress RETURN．＂：？＂To le ave them गnchancer press any \｛S SPACES\}other key."
उ8ø ON PEEK（753）＜＞3 GOTO 38ø：GOSUB 6 35：IF N＝12 THEN 395
385 $M=M D: M 8=M-8: W I D E=W D: L I N E=L N: G O T O$ 445
39Ø FLOAD＝ø
395 ？：？＂What Antic mode will you w ork in？＂：？：？＂Antic＂：＂Graphics＂ ：？8，3：？9，4：？＂A（10）＂，5：？＂B（ 11）＂，6
4のロ ？＂C（12）＂，Nक：？＂D（13）＂，7：？＂E （14）＂，N\＄：？＂F（15）＂，8：POKE 764，2 55
4 Ø5 TRAP 495：OPEN \＃1，4， $9, " K: ": G E T$ \＃1 ，N ：CLOSE \＃1：ON N＜56 OR（N＞57 AND N（65）OR N＞7 GOTO 4 G5
41 ந $M=N-48: M=M-7 *(M>9): M 8=M-8$
415 ？：？＂How wide a line？＂：？＂（Mi nimum＂；BPL（M8）；＂bytes＂：？＂ \｛ 3 SPACES\}maximum "; MXW(M8);" by tes）＂
42の POKE 764，255：TRAP 420：INPUT WIDE ：WIDE＝INT（WIDE）：GOSUB 64ø：GOSUB 745
425 ？：？＂How many lines do you want to edit？＂：？＂（Minimum＂；LPS（M8） ；＂，Maximum＂；MXL；＂）＂
43Ø TRAP 43ø：INPUT LINE
435 LINE＝INT（LINE）：ON LINE＜＝MXL AND LINE $>=$ LPS（M8）GOTO $44 \emptyset:$ LINE＝MXL＊ （LINE＞MXL）＋LPS（M8）＊（LINEくLPS（M8） ，
$440 \mathrm{LHI}=\mathrm{INT}(\mathrm{LINE} / 256):$ LLO＝LINE－256＊L HI
445 ？＂\｛CLEAR3＂：？＂You have chosen：＂ ：？＂Save file－－＂；FSAVE\＄：？＂Load file－－＂；FLOAD $\$$
$45 \emptyset$ ？＂Mode＂；M：？LINE；＂lines of＂； WIDE；＂characters＂
455 ？＂If this is right，press Biflim \｛9 SPACES\}To make changes, press日PTIEIK＂
46 ON（PEEK（53279）＝6）＋（2＊（PEEK（5327 9）＝3））GOTO 465，315：GOTO 46Ø
465 ？＂\｛CLEAR 3 Just a minute while I get myselfic SPACES\}together. .

47 D SC＝SC＋（（LINE＊WIDE）＞K4）＊（K4－INT（K 4／WIDE）＊WIDE）：SH＝INT（SC／256）：SL＝ SC－256＊SH
475 POKE 167 ，WIDE－1：POKE 1674，LLO－1 ＋256＊（LLO＝$)$ ）POKE 1675，LHI－（LLO＝

255）
48ø POKE 1678，BPL（M8）－1：POKE 1680，LP S（M8）－1：POKE 1692，CL（3）：POKE 169 3，PPB（M8）：POKE 1698，LPS（M8）：POKE 1699，WIDE
485 GOSUB 755：GOSUB 49ø：GOSUB 5ø5：GO SUB 65ø：GOSUB $53 \varnothing: O N$ FLOAD GOSUB 5øø：GOTO 11曰
49ø OPEN \＃1，4，Ø，＂D1：CLEARS．SUB＂：FOR $\mathrm{I}=1$ TO 26：GET \＃1， $\mathrm{N}: \operatorname{CLEAR} \$(\mathrm{I}, \mathrm{I})=\mathrm{C}$ HRक（N）：NEXT I：CLOSE \＃1
$495 \mathrm{C}=\mathrm{USR}$（ADR（CLEAR $\$$ ），SP）：RETURN
$5 \emptyset \emptyset T=S Z: F L \$=F L O A D \$$ ：GOSUB $4 \emptyset: S Z=T: R E$ TURN
$5 \emptyset 5 \mathrm{DL} 4=\mathrm{DL}+4: \mathrm{DL} 5=\mathrm{DL}+5: \mathrm{FOR} \mathrm{I}=\emptyset \mathrm{TO}$ 2： P
OKE DL＋I，112：NEXT I：C＝INT（SC／256 ）：$N=S C-C * 256$
519 FOR I＝1686 TO 1688 STEP 2：POKE I ，$N:$ POKE $I+1, C: N E X T \quad I: N=\emptyset$
515 FOR I＝DL＋3 TO DL＋3＊LPS（M8）STEP S：$C=S C+N * W I D E: P O K E I, S 4+M: T=I N T$（ C／256）
52 POKE $\mathrm{I}+2, \mathrm{~T}: \operatorname{POKE} \mathrm{I}+1, \mathrm{C}-256 * \mathrm{~T}: \mathrm{N}=\mathrm{N}+$ 1 ：NEXT I
525 POKE I，65：POKE I＋1， $6:$ POKE I +2 ，DL 1256：RETURN
$53 \emptyset$ OPEN \＃1，4，Ø，＂D：SCROLL．SUB＂：N＝INT （SCROLL／256）：C＝SCROLL－256＊N
535 POKE ICBADR $+X+1$ ，N：POKE ICBADR＋X， C：POKE ICBLEN $+X+1,3$ ：POKE ICBLEN＋ X, \varnothing
54 Ø POKE ICCOM＋X，7：I＝USR（FMS，X）：CLOS E \＃ 1
545 POKE 56め，Ø：POKE 561，DL／256：CLOSE \＃1：RETURN
$55 \emptyset$ POKE PEEK（1688）＋256＊PEEK（1689），P EEK（169ø）：GOSUB 6ø：GRAPHICS Ø：PO KE 764，255
555 ？＂Screen is saved as D1：TEMPFIL E．SCR＂：？：？＂Do you want to save the screen as＂：？FSAVE\＄；＂？\＆Y o r N）＂
56ø GOSUB 635：ON N＜＞43 AND N＜＞35 GOT 0 560：IF N＝43 THEN GOSUB 61ø：GOT $057 \emptyset$
565 FSAVE＝ø
57 ？？？＂Do you want to quit？（Y or N）＂：POKE 764，255
575 GOSUB 635：ON N＜＞43 AND N＜＞35 GOT 0 575：ON $N=35$ GOTO 58ø：ON $N=43$ G 0T0 6ø5
589 ？：？＂To return to edit the same screen，\｛4 SPACES\}press DPTION":
？：？＂To start SCREENBYTER over， press ETRIR＂＂
$5850 \mathrm{OPT}=\mathrm{PEEK}(53279): \mathrm{ON}($（OPT＝6）＋（2＊ OPT＝3））（GOTO 59ø，595：GOTO 585
$59 \emptyset$ POKE 1ø6，A：GRAPHICS Ø：GOTO $2 \emptyset$
595 POKE 1 Ø6，TOP：FL $\$=" D 1:$ TEMPFILE．PI X＂：IF FSAVE＝1 THEN FL\＄＝FSAVE $\$$
6øø GOSUB 755：GOSUB 40：GOSUB 5ø5：POK E 56ø，Ø：POKE 561，DL／256：G0TO 11ø
$6 \emptyset 5$ POKE 1Ø6，A：POKE 764，255：GRAPHICS Ø：END
$61 \varnothing$ FSAVE＝1：TRAP 615：OFEN \＃2，4，Ø，FSA VE\＄：CLOSE \＃2：XIO 36，\＃2，Ø，Ø，FSAVE \＄：XIO 3З，\＃2，Ø，Ø，FSAVE\＄：GOTO 62ø
615 CLOSE \＃2
620 FL $\$=$＂D 1 ：TEMPFILE．PIX，＂：FLL $\$=F S A V$ $E \$(4, \operatorname{LEN}(F S A V E \$)): F L \$(17)=F L L \$$
625 XIO 32，\＃1，Ø，Ø，FL\＄：RETURN

6Зด ON PEEK（753）＜＞G GOTO 63 ：RETURN
635 C＝PEEK（764）：$N=C-64 * I N T(C / 64):$ RET URN
$64 \emptyset$ IF WIDE＞＝BPL（M8）AND WIDEく＝MXW（M 8）THEN RETURN
645 WIDE＝MXW（M8）＊（WIDE＞MXW（M8））＋BPL（ M8）＊（WIDEくBPL（M8））：RETURN
65ø OPEN \＃1，4，Ø，＂D：DELETES．SUB＂：FOR $\mathrm{I}=1$ TO $118:$ GET \＃1， $\mathrm{N}: \mathrm{DELETE} \(I, I) $=C H R \$(N): N E X T \quad I: C L O S E$ \＃ 1
665 OPEN \＃1，4，, ＂D：EXPANDS．SUB＂：FOR $\mathrm{I}=1$ TO 1 ø2：GET \＃1， $\mathrm{N}: \operatorname{EXPAND} \(I, I) $=$ CHR $\$(N): N E X T$ I：CLOSE \＃ 1
68ø OPEN \＃1，4， 0, ＂D：FILL．SUB＂：FOR I＝1 TO 23 ：GET \＃1，N：FILL\＄$(I, I)=C H R \$$ （N）：NEXT I
69 CLOSE \＃1：C＝ADR（FILL\＄）：N＝INT（C／25 6）：C＝C－N＊256：POKE 17ø2，76：POKE 1 7ø3，C：POKE 17Ø4，N：RETURN
695 TRAP $71 \varnothing: \times I 0$ 36，\＃1，$, ~ Ø, ~ " D 1: * . P I X ~$
$7 \emptyset \varnothing$ ？：＂Currently saved screen fil es：＂
$7 \emptyset 5$ FL\＄＝＂D1：＊．PIX＂：OPEN \＃1，6，$\emptyset, F L \$: F$ OR I＝ø TO 5月：INPUT \＃1，FLL\＄：？FLL \＄：NEXT I
$71 \emptyset$ CLOSE \＃1：RETURN
715 FOR I＝ø TO 1ø：POKE 53279，4：NEXT I ：RETURN
72 Ø SHIF $=(\mathrm{C}=31)+2 *(\mathrm{C}=3 \emptyset)+3 *(\mathrm{C}=26)$
725 POKE 53279，4：POKE 1692，CL（SHIF）： IF PPB $(M 8)=1$ AND SHIF $>\varnothing$ THEN SHI $F=3:$ POKE 1692，CL（SHIF）
$73 \emptyset$ RETURN
$735 \mathrm{~N}=($ VERS $=255)$ ：SOUND $\varnothing, 2 \emptyset \varnothing * N, 14 * N$ ， 4＊N：RETURN
74 FOR I＝ø TO 1 \varnothing ：NEXT I：RETURN
745 IF BPL（M8）$=\mathrm{MXW}$（M8）THEN MXL＝LPS（ M8）：RETURN
$750 \mathrm{MXL}=\mathrm{INT}$（K4／WIDE）：RETURN
755 FOR I＝1677 TO 1681 STEP 2：POKE I ，\varnothing ：NEXT I：FOR I＝1686 TO 1688 STE P 2：POKE I，SL：POKE I＋1，SH：NEXT I
$76 \emptyset N=128+64 *(\operatorname{PPB}(M 8)=2):$ POKE $1696, \mathrm{~N}$ ：POKE 17ø1，N
765 POKE 1672，$:$ POKE 1676，$: V E R S=\emptyset: G$ OSUB 735：POKE 1695，VERS：RETURN
$77 \emptyset$ DATA $2,1 \emptyset, 17 \emptyset, 24,1,1 \emptyset, 85,48,2,2 \emptyset$ ，85，48，1，20，42，96
775 DATA $1,29,21,192,2,40,42,96,2,4 \emptyset$ ，4Ø，192，1，4ø，4Ø，192

Program 4：Insert Line Routine

9øø OPEN \＃1，8，Ø，＂D1：EXPANDS．SUB＂
$91 \emptyset$ FOR $I=1$ TO $1 \emptyset 2:$ READ N：PUT \＃1，N：N EXT I：CLOSE \＃1：？I：END
1 Øøø DATA $164,56,165,205,237,163,6,1$ 33
1 Øø8 DATA $2 \emptyset 3,165,2 \emptyset 6,233, \emptyset, 133,2 \emptyset 4$ ， 56
1916 DATA $173,138,6,237,149,6,133,2 \emptyset$ 7
1624 DATA $173,139,6,237,141,6,133,2 \varnothing$ 8
$1 \emptyset 32$ DATA $165,298,240,5,162,255,24,1$ 44
$1 \emptyset 4 \emptyset$ DATA $2,166,297,172,163,6,177,2 \emptyset$ 3
1 648 DATA $145,295,136,298,249,292,24$ ด， 31

1956 DATA $56,165,205,237,163,6,133,2$ Ø5
1064 DATA $165,296,233,0,133,296,56,1$ 65
$1 \emptyset 72$ DATA $203,237,163,6,133,293,165$ ， 264
1 Ø8Ø DATA 233，Ø，133，2の4，24，144，212，1 65
1 1日8 DATA $298,2 \emptyset 8,206,172,163,6,169$ ， Ø
1996 DATA $145,203,136,298,251,96$

Program 5：Delete Line Routine

$9 \emptyset \emptyset$ OFEN \＃1， $8, \emptyset, " D 1:$ DELETES．SUB＂
$91 \emptyset$ FOR I＝1 TO $118:$ READ N：PUT \＃1，N：N EXT I：CLOSE \＃1：？I：END
1 Øøø DATA 1 Ø4，56，173，152，6，237，136，6 1 Øø8 DATA $133,2 \emptyset 3,173,153,6,233, \varnothing, 13$

1916 DATA $294,24,165,293,199,163,6,1$ उ3
1024 DATA $295,165,204,105,9,133,296$ ， 56
$1 \emptyset 32$ DATA $173,138,6,237,149,6,133,29$ 7
$1 \emptyset 4 \emptyset$ DATA $173,139,6,237,141,6,133,2 \emptyset$ 8
1648 DATA $165,208,240,5,162,255,24,1$ 44
1056 DATA $2,166,207,172,163,6,177,20$
1 Ø64 DATA $145,203,136,298,249,202,24$ Ø， 31
$1 \emptyset 72$ DATA $24,165,205,199,163,6,133,2$ Ø5
$1 ø 8 \emptyset$ DATA $165,206,105, \emptyset, 133,206,24,1$ 65
1 Ø88 DATA $293,109,163,6,133,293,165$ ， $2 \emptyset 4$
1 Ø96 DATA 1 Ø5， $0,133,264,24,144,212,1$ 65
11 Ø4 DATA 2ø8，2ø8，206，172，163，6，169， \emptyset
1112 DATA $145,295,136,298,251,96$

Program 6：Cursor Movement Routine

$9 \emptyset \emptyset$ OPEN \＃1，8，Ø，＂D $1=$ SCROLL．SUB＂
910 FOR I＝1 TO 650：READ N：PUT \＃1，N：N EXT I：CLOSE \＃1：？I：END
1 Øøø DATA 1 Ø4，1ø4，1ø4，141，161，6，173， 152
1 Øø8 DATA 6，133，2ø7，173，153，6，133，2ø 8
1 Ø16 DATA $16 \emptyset, \emptyset, 14 \emptyset, 158,6,173,154,6$
$1 \emptyset 24$ DATA $145,267,173,161,6,41,8,24 \emptyset$ 1 Ø32 DATA $92,173,161,6,41,4,208,71$
$1 \emptyset 4 \emptyset$ DATA $172,157,6,173,16 \emptyset, 6,42,176$
$1 \emptyset 48$ DATA $8,136,2 \emptyset 8,25 \emptyset, 141,169,6,24$ Ø
$1 \emptyset 56$ DATA $54,42,136,268,252,141,148$ ， 6
1 Ø64 DATA $173,136,6,268,2,24$ ， 49,173
$1 \emptyset 72$ DATA $148,6,141,16 \emptyset, 6,56,173,136$
1 Ø8ø DATA $6,233,1,141,136,6,56,173$
1 ø88 DATA $152,6,233,1,141,152,6,173$
1 Ø96 DATA $153,6,233,6,141,153,6,173$
$11 \emptyset 4$ DATA $143,6,24 \emptyset, 6,2 \emptyset 6,143,6,24$
1112 DATA $144,99,173,158,6,9,8,141$
1129 DATA $158,6,24,144,88,172,157,6$

296 COMPUTE！December 1983

1128 8
1136 36
1144 DATA $2 \emptyset 8,252,141,148,6,173,136$, 6
1152 DATA
$116 \varnothing$ DATA
$205,134,6,208,2,249,54,173$
$148,6,141,160,6,24,173,136$
$6,105,1,141,136,6,24,173$
1176 DATA $152,6,1 \emptyset 5,1,141,152,6,173$
1184 DATA $153,6,1 \emptyset 5, \emptyset, 141,153,6,173$
1192 DATA $143,6,205,142,6,240,6,238$
$12 \emptyset \emptyset$ DATA $143,6,24,144,8,173,158,6$
1268 DATA $9,4,141,158,6,173,161,6$
1216 DATA $41,1,249,83,173,161,6,41$
1224 DATA $2,2 \emptyset 8,62,173,149,6,295,138$
1232 DATA $6,298,8,173,141,6,2 \emptyset 5,139$
124 D DATA 6,24 , $124,24,173,149,6,195$
1248 DATA $1,141,149,6,173,141,6,195$
1256 DATA $\varnothing, 141,141,6,24,173,152,6$
1264 DATA $199,163,6,141,152,6,173,15$
1272 DATA 6, 105, $0,141,153,6,173,145$
1289 DATA $6,205,144,6,249,6,238,145$
1288 DATA $6,24,144,75,173,158,6,9$
1296 DATA $1,141,158,6,24,144,64,173$
$13 \emptyset 4$ DATA $14 \emptyset, 6,2 \emptyset 8,5,173,141,6,24$ D
1312 DATA $54,56,173,14 \varnothing, 6,233,1,141$
1329 DATA $149,6,173,141,6,233,9,141$
1328 DATA $141,6,56,173,152,6,237,163$
1336 DATA $6,141,152,6,173,153,6,233$
1344 DATA $9,141,153,6,173,145,6,240$
1352 DATA $6,296,145,6,24,144,8,173$
1360 DATA $158,6,9,2,141,158,6,173$
1368 DATA $152,6,133,207,173,153,6,13$
1376 DATA $2 \emptyset 8,173,132,2,240,36,16 \emptyset, \emptyset$
1384 DATA $177,297,141,154,6,73,255,4$
1392 DATA $160,6,141,155,6,173,160,6$
14 Øø DATA $73,255,45,154,6,13,155,6$
14 D8 DATA $141,155,6,173,158,6,24 \varnothing, 4 \emptyset$
1416 DATA $208,41,169, \emptyset, 177,297,141,1$ 55
1424 DATA $6,173,156,6,45,16 \emptyset, 6,141$
1432 DATA $161,6,173,16 \boxed{1} 6,73,255,45$
1449 DATA $155,6,141,155,6,13,161,6$
1448 DATA $141,154,6,173,158,6,208,3$
1456 DATA $24,144,98,41,8,249,17,56$
1464 DATA $173,159,6,233,1,141,159,6$
1472 DATA $173,151,6,233, \emptyset, 141,151,6$
1489 DATA $173,158,6,41,4,249,17,24$
1488 DATA $173,159,6,105,1,141,150,6$
1496 DATA $173,151,6,105, \varnothing, 141,151,6$
1594 DATA $173,158,6,41,1,249,18,24$
1512 DATA $173,15 \emptyset, 6,169,163,6,141,15$
1529 DATA 6, 173, 151,6,195, $0,141,151$
1528 DATA $6,173,158,6,41,2,246,24$
1536 DATA $56,173,159,6,237,163,6,141$
1544 DATA $15 \emptyset, 6,173,151,6,233, \emptyset, 141$
1552 DATA $151,6,24,144,3,24,144,67$
1560 DATA $173,159,6,133,293,173,151$,
1568 DATA $133,264,24,173,48,2,195,4$
1576 DATA $133,295,173,49,2,133,296,1$ 74
1584 DATA $162,6,16 \emptyset, \emptyset, 165,203,145,2 \emptyset$
1592 DATA $2 \emptyset \emptyset, 165,264,145,2 \emptyset 5,24,165$, 295
$16 \emptyset \emptyset$ DATA $105,3,133,205,165,206,105$, Ø
$16 \emptyset 8$ DATA $133,296,24,165,293,1$ Ø9, 163 , 6
1616 DATA $133,293,165,294,105,9,133$, $2 \emptyset 4$
1624 DATA $262,208,215,173,155,6,160$, Ø
1632 DATA $145,207,173,159,6,201,255$, 2 ø8
$164 \emptyset$ DATA $8,173,132,2,268,3,32,166$ 1648 DATA 6,96

Program 7: Clear Screen Routine

9Øロ OFEN \#1, 8, Ø, "D1:CLEARS.SUB"
910 FOR I=1 TO 26: FEAD N:PUT \#1, N:NE XT I:CLOSE \#1:? I:END
1 ØøØ DATA $1 \emptyset 4,1 \emptyset 4,194,133,2 \emptyset 8,163,32$, 169
1 Øø8 DATA Ø, 133, 297, 169, 255, 145, 297, 136
1016 DATA $298,251,145,207,239,298,2 \emptyset$ 2,298
1024 DATA 238,96

Program 8: Fill Subroutine

9øø OFEN \#1, 8, Ø, "D1:FILL.SUB"
$91 \emptyset$ FOR I=1 T0 23 $9:$ READ N:PUT \#1,N:N EXT I:CLOSE \#1:? I:END
1 Øøø DATA $173,136,6,141,135,6,173,15$ 4
1 Øø8 DATA 6, 141, 146,6,165,267,133,20 1016 DATA $165,298,133,294,162, \varnothing, 173$, 169
1924 DATA $6,141,148,6,172,157,6,78$
$1 \emptyset 32$ DATA $148,6,176,52,136,298,248,1$ 73
1 Ø4 D DATA $146,6,45,148,6,141,149,6$
1048 DATA $173,156,6,45,148,6,205,149$
1056 DATA 6,249,29,141,149,6,173,148
1 Ø64 DATA $6,73,255,45,146,6,13,149$
1 Ø72 DATA 6, $141,146,6,24,144,2 \emptyset 5,173$
1 Ø8ø DATA $146,6,129,2 \emptyset 7,141,154,6,96$
1 Ø88 DATA $173,135,6,295,134,6,245,24$ 7
1 Ø96 DATA $238,135,6,24,165,293,165,1$
$11 \emptyset 4$ DATA $133,2 \emptyset 3,165,2 \emptyset 4,195, \varnothing, 133$, 204
1112 DATA $161,203,141,148,6,173,165$,
1120 DATA $141,164,6,173,164,6,45,148$
1128 DATA $6,141,149,6,173,164,6,45$
1136 DATA $156,6,295,149,6,249,13,172$
1144 DATA $157,6,78,164,6,176,193,136$
1152 DATA $298,248,240,223,172,157,6$, 14
1169 DATA $164,6,176,29,136,298,248,1$ 73
1168 DATA $164,6,45,156,6,141,149,6$
1176 DATA $173,164,6,73,255,45,148,6$
1184 DATA $13,149,6,141,148,6,24,144$
1192 DATA $219,162,9,173,148,6,129,20$
12 פの DATA $173,146,6,129,207,141,154$,
1298 DATA $56,173,135,6,237,136,6,240$
1216 DATA $12,168,136,249,8,173,156,6$
1224 DATA $145,207,136,298,251,96$ ©

Disk Explorer For Commodore

Robert W. Baker

If you've ever been curious about the 1541's memory, this program gives you an inside view of the unit's ROMs. It allows you to display both a disassembly of the 1541's machine language instructions and a hex dump of the drive's RAM and ROM addresses.

[^4]
A Variety Of Choices

When the program starts, there's a short delay while a data array is built for the disassembler (lines $110-130$). Then you're prompted for the starting address of where you'd like to start looking. The desired address can be entered as a decimal number, or a hexadecimal number preceded by a dollar sign. Program lines 160-240 validate the digits of the address and convert a hex address to a decimal value. An invalid address is discarded and you're prompted again for the starting address.

The program normally displays the data on the screen, but you can select printed output as shown in lines 250-270. You'll notice the OPEN statement in line 270 opens either device 3 or 4
depending on whether a printed output is desired. Device 3 is the display screen, and device 4 is the printer. This provides a simple switch between devices for all following PRINT\#4 statements without having separate routines for display and printed data. You can still force output to the display screen by using the simple PRINT statement.

The last prompt is for the data display type: either a hexadecimal dump or an instruction disassembly. If a hex dump is selected, then eight bytes of data are displayed, in hex, per screen line. Each line also includes the hex address and the ASCII translation of the data displayed. The ASCII translation is simply the displayable character for each byte shown, with nondisplayable characters converted to periods.

An instruction disassembly shows one 6502 instruction per line using the standard mnemonics. Each line indicates the address of the instruction in both decimal and hex, along with the hex opcode for the instruction displayed. To make things a little easier to read, branch instructions indicate the hex address to which the instruction would branch rather than an offset from the current location.

Three Choices

When displaying data on the screen, the program will pause after 16 lines of hex data or 20 disassembled instructions. A prompt message will ask whether you want to: continue displaying data with the next sequential location; restart the display with a new address and/or format; or stop the program and return to BASIC.

When data is being printed, pressing any key

GET THE MOST OUT OF YOUR COM VO DOR $=64$ or VIC-20computer

GRAPHICSGHAPHIC:
APHICSGRAPHD
 APHICSGU
 RAPH Si 3 HIC APHIC SH PHICS PHICSGhrAPHICSG HICSGRAPHICSGR

ULTRABASIC-64...Add 50 commands: graphics, music, TURTLE and game features. Tutorial, demo plus. TAPE $\$ 39.95$ DISK $\$ 2.95$

ASSEMBLER-MONITOR-64 High speed language development. Eleven function monitor. Screen editing of source file.DISK $\$ 32.95$
DATAMAT-64...Simple powerful data base management with search, sort, report capability at low price. DISK $\$ 32.95$

SYNTHY-64... Sets the standard for all of the rest. Best 64 -synthesizer anywhere. Samples and manual. CASSETTE \$29.95 DI8K \$32.95. Also available: 3 great companion music albums; Classical, Christmas, and Ragtime Sing-Along. DISK \$12.95 Each.
GRAPHICS DESIGNER-64... TINY FORTH-64/20...Ex-Menu-driven drawings, floor citing language-low price. plans and illustrations etc. Slide program capability. DISK \$32.95
CHECKBOOK MANAGER-64
Simple check account maintainance. Optional screen or printer report and backup. DISK \$22.95

CHARTPAK-64...Professional qualtiy pie, line and bar charts. Menu driven, interactive, hardcopy. DISK \$42.95

SKIER-64...This arcadequality game adds hours of action and excitement to your Commodore-64. word vocabulary.
TAPE \$24.95 DISK \$27.95

Z00M PASCAL-64...Pro- SUPER DISK UTILITY-64.. duces 6502 machine code Speed copy 4 ways: Total, for speed. Floating point, In- Bam, Append or File. Dump tegers, strings File handling. or modify sectors. More DISK \$39.95 DISK \$22.95

POOL-64/20...Play Fullrack SCREEN GRAPHICS-64Adds or nine ball using hires 24 hires, multicolor, sprite graphics. Vic-20 required 8 K commands to 64-BASIC. expander. Demo, tutorial and manual. TAPE \$14.95 DISK \$17.95 TAPE'\$24.95 DISK \$27.95 ANATOMY OF A COMMO- MASTER-64...Full ISAM file management; powerful screen management; excellent printer DORE-64 Complete guide. generator; programmer's aid; BASIC 4.0 commands; machine language monitor; SoftFull comment ROMS list, de- ware developers: NO RUNTIME ROYALTIES; With 150 page manual in three-ring binder tailed intemals, descriptions. and development software.
300 PAQE BOOK $\$ 19.95$ SOFTWARE ON DI8K $\$ 84.95$ tailed intemals, descriptions.
300 PARE BOOK
$\$ 19.95$
SOFTWARE ON DI8K $\$ 84.95$

* dealer inquiries invited

FREE CATALOG Ask for a listing of other Abacus Software for Commodore-64 or Vic-20

DISTRIBUTORS Great Britain
Great Britain: ADAMSOFT
18 Norwich Ave Rochdale, Lancs West Germany: DATA BECKER Merowingerstr 30 4000 Dusseldort 34300 Almhult 0211/312085 476-12304

CCI Software
167 Great Portland St. London WI 01-636-6354
Sweden: TIAL TRADING

Canada East:

 KING MICROWARE LTD5950 Cote des Neiges 514/737.9335 Australia: CW ELECTRONICS 416 Logan Road Brisbane, Queens 07-397-0808

810 W Broadway \#163

Canada West:
S.I. Distributors Lid 810 W Broadway \#163
Vancouver, BC V5Z 4C9 604/733-0211 New Zealand:
VISCOUNT ELECTRONICS 306-308 Church Street Palmerston North 63-86-696

AVAILABLE AT COMPUTER STORES, OR WRITE: Abacus 临iniwin Software
P.O. BOX 7211 GRAND RAPIDS, MICH. 49510 For postage \& handling, add $\$ 1.50$ (U.S. and Canada), add $\$ 3.00$ for foreign. Make payment in U.S. dollars by check, money order or charge card. (Michigan Residents add 4\% sales tax).

EPYX
 TOP 10 GAME SALE
 buY TWO - GET ONE FREE *
 SPECIAL FREE GAME
 Buy Two Epyx Games From Protecto And Get A Free Game
 The Thinking Man's Paradise
 (Disk /Cassette)
 - Award Winning Games - Fantastic Graphics
 - Skill (not luck) Needed - Already in top 10 charts

 COMMODORE - 64 / VIC-20

 COMMODORE - 64 / VIC-20

 Buy Any Two Epyx Games From Protecto And Send The Proof Of Purchase Seals To Epyx

 Buy Any Two Epyx Games From Protecto And Send The Proof Of Purchase Seals To Epyx And Epyx Will Send You A Free Game.

 And Epyx Will Send You A Free Game.}

JUMPMAN

If you like Donkey Kong, you'll love Jumpman. Over 30 different screens with 8 speeds and 5 skill levels make this the fastest action game in the country. You must leap girders, climb ropes, and scale ladders to reach and diffuse bombs while avoiding robots, birds, bullets, explosives, crumbling walls, vanishing escape routes, and many other obstacles. (Truly a fantastic game!)
List \$39.95
Sale \$27.95
(DISK ONLY)

TEMPLE OF APSHAI (computer game of the year)
This is the standard by which other adventure games are judged. Full color graphics portray the temple and all its contents - magic, monsters, doomed cities and damsels in distress. Do battle in real time with over 20 monsters, expansion modules will keep your adventure alive in the future.
List \$39.95 Sale \$29.95

SWORD OF FARGOAL

Search for the wondrous sword in the depths of an ever changing dungeon. Make yourself invisible, teleport to a new location, drink a healing potion or use enchanted treasures, but watch out for traps and hideous creatures who will try to stop you. (Fantastic dungeon adventure)
List \$29.95 Sale \$21.95
CRUSH CRUMBLE \& CHOMP (Computer game of the year nominee)
Choose one of six monsters or create your own, and use your monster to destroy one of four unsuspecting cities. The cities aren't totally defenseless, they call on police, national guard, and even a mad scientist, complete with helicopter, to save humanity from the relentless threat.
List \$29.95 Sale \$21.95

JUMPMAN JUNIOR

The devilish ALIENATORS are back! And they have overrun the Jupiter Command Substation. In this cartridge format sequel to the best-selling Jumpman, players must leap through 12 all new screens featuring electrocution traps, moving walls, hellstones, and dangers much too bizarre to be believed. How many screens can you master? Twelve different screens, 8 speeds.
List \$39.95 Sale \$27.95

[^0]: $\dagger 8 \mathrm{~K}$ RAM required $-\ddagger 16 \mathrm{~K}$ RAM required

 * Price given for tape version. Disk version slightly higher

 T Available on tape - D Available on disk
 Prices shown are manufacturer's retail prices.

[^1]: Add $\$ 3.00$ for postage. Add $\$ 6.00$ for CANADA, PUERTO RICO. HAWAII orders. WE DO NOT EXPORT TO OTHER COUNTRIES.
 Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada orders must be in U.S. dollars. We accept Visa and MasterCard. We ship C.O.D.

[^2]: Add $\$ 3.00$ for postage Add $\$ 6.00$ for CANADA. PUERTO RICO HAWAII orders WE DO NOT EXPORT TO OTHER COUNTRIES
 Enclose Cashiers Check. Money Órder or Personal Check Allow 14 days for delivery. 2 to 7 days for phone orders. 1 day express mall Canada orders must be in US dollars We accept Visa and Master Card We ship C.O.D.

[^3]: POKE 53265,27:POKE 53270,200:POKE 53272,20:
 POKE 56576,151

[^4]: "Disk Explorer," a program written for the 64 but suitable for other Commodore users, is designed to let you look around inside the VIC-1541 disk controller. You can directly display a disassembly of the machine language instructions in the disk unit's ROMs. Alternately, you can display a hexadecimal dump of any area of the disk controller 6502 microprocessor's address space, including peripheral chips, RAM, or ROM. With some knowledge about assembly language and a little about hardware, this program provides an easy method of exploring the disk controller.

