

SOFTWARE for the ATARI 800* and ATARI 400* from QUALITY SOFTWARE

STARBASE

 HYPERION ${ }^{\text {™ }}$By Don Ursem
Become absorbed in this intriguing, original space simulation of war in the far future. Use strategy to defend a front line Star Fortress against invasion forces of an alien empire. You create, deploy, and command a fleet of various classes of space ships, while managing limited resources including power generators, shields and probes Real time responses are sometimes required to take advantage of special tactical opportunities. Use of color, sound, and special graphics add to the enjoyment of this program. At least 24 K of RAM is required. On Cassette - $\$ 19.95$

NAME THAT SONG

By Jerry White
Here is great entertainment for everyone! Two players listen while the Atari starts playing a tune. As soon as a player thinks he knows the name of the song, he presses his assigned key or joystick button. There are two ways to play. The first way requires you to type in the name of the song. Optionally, you can play
 multiple choice, where the computer asks you to select the title from four possibilities. The standard version requires 24 K of RAM (32 K on diskette) and has over 150 songs on it. You also get a 16 K version that has more than 85 songs. The instructions explain how you can add songs to the program, if you wish. Written in BASIC.

On Cassette - \$14.95
On Diskette - $\$ 17.95$

QS FORTH

By James Albanese
Want to go beyond BASIC? The remarkably efficient FORTH programming language may be just for you. We have taken the popular fig.FORTH model from the FORTH Interest Group and expanded it for use with the Atari Personal Computer. Best of all we have written substantial documentation, packaged in a three ring binder, that includes a tutorial introduction to FORTH and numerous examples. QS FORTH is a disk based system that requires at least 24 K of RAM and at least one disk drive. Five modules that may be loaded separately from disk are the fig-FORTH kernel, extensions to standard fig-FORTH, an on-screen editor, an I/0 module that accesses Atari's operating system, and a FORTH assembler.

Diskette and Manual - $\$ 79.95 \quad$ Manual 0 nly $-\$ 39.95$

FOR OUR COMPLETE LINE OF ATARI SOFTWARE PLEASE WRITE FOR OUR CATALOG

QUALTTY SOFTWARE
6060 Reseda Blvd. Suite 105, Reseda. CA 91335
(213) 344-6599

ASK FOR QUALITY SOFTWARE products at your favorite computer store. If necessary you may order directly from us. MasterCard and Visa cardholders may place orders by calling us at (213) $344 \cdot 6599$. Or mail your check or bankcard number to the address above. California residents add 6\% sales tax. Shipping Charges: Within North America orders must include $\$ 1.50$ for shipping and handling. Outside North America the charge for airmail shipping and handling is $\$ 5.00$. Pay in U.S. currency.

If you are trying to figure out how we got all those alphabet characters using PLOT and COLOR statements, read on.

As any intermediate programmer can tell you, one cannot plot points in modes 1 and 2. you get absolutely nothing displayed if you try it. Of course the stumbling beginner might think the reason one gets nothing is that one did not enter a COLOR statement. Sandwiching COLOR 1 between the lines and trying again, he discovers that he has plotted an "!" instead of a point. "Pixel-head!" he chides himself. "You can't use PLOT in modes 1 and 2!" He notes this in his reference manual and ranks himself a step closer to intermediate programmer, missing the opportunity to discover more hidden graphics.

The Atari will plot a character in modes 1 and 2 at whatever position the programmer commands. The nature and color of that character are determined by a single COLOR statement. Using the COLOR Statement Graphics Chart, you can display any Atari keyboard character (POKE 756 for lower case) by using the associated COLOR statement, then plotting X, Y coordinates to place it at the desired position on the screen.

Once again, SETCOLOR 0 to 3 or POKE 709 to 711 can be used to color each individual character, including lower case characters which are normally limited to only two colors. (Note: these SETCOLOR's and POKE's work only when using GR. 1 or $2+16$.) Again, redefined characters may be used and this time manipulated arithmetically. Game-writers, rejoice!

While the PRINT \#6; approach displays numbers, punctuation and arithmetic signs, the COLOR/PLOT technique allows access to upper and lower case letters as well. Preference for one method over the other will vary from user to user and application to application, as you will see once you have tried them a few times.

Table A. "HIDDEN GRAPHICS" CHART

To Get Character	$\begin{aligned} & \text { Press CTRL } \\ & + \text { Key } \end{aligned}$	Character	(Default)	$\underline{\text { SE. }}$	POKE
0	P	normal	yellow	0	708
1	Q	"hidden"	green	1	709
2	R	inverse,			

3	S	normal	blue	2	710
4	T	inverse,			
5	U	"hidden"	red	3	711
56	v				
7	W				
8	X				
9	Y				
	Z				
!	A				
"	B				
\#	C				
\$	D				
\%	E				
\&	F				
,	G				
(H				
)	I				
*	J				
$+$	K				
,	L				
-	M				
.	N				
,	0				
[;				
@	.				

Other Color*		Press Keys
\wedge	green	ESC then DELETE•BACK
	red	ESC then CTRL + DELETE BACK S
<	green	ESC then CTRL + -
	red	ESC then SHIFT + DELETE \cdot BACK S
>	green	ESC then CTRL + -
	red	ESC then CLR \cdot SET \cdot TAB
	green	ESC then CTRL + I
	red	ESC then SHIFT + INSERT ${ }^{\text {- }}$ >
?	green	ESC then CTRL + -*
	red	ESC then SHIFT + CLR \cdot SET \cdot TAB
-	green	ESC then CLR-SET \cdot TAB
	red	ESC then CTRL + INSERT $\cdot>$
;	green	ESC then ESC
]	red	ESC then CTRL + ". 2

* greens manipulated by SE. 1 and POKE 709 reds manipulated by SE. 3 and POKE 711

Table B. COLOR STATEMENT GRAPHICS CHART

				Use Color Number	
ToGet	SE.	0	1	2	3
Character	POKE	708	709	710	711
		green	yellow	red	blue
!		1	33	129	161
"		2	34	130	162
\#		3	35	131	163
!		4	36	132	164
\%		5	37	133	165
\&		6	38	134	166
,		7	39	135	167
(8	40	136	168
)		10	41	137	169
*		11	42	138	170
+		12	44	139	171
,		13	45	141	173
-		14	46	142	174
;		15	47	143	175
0				48	144

GHOST HUNTER

THE ULTIMATE GAME OF HIDE AND SEEK.

In the beginning. . . there was Star Raiders. (ave
Then. . . came Missile Command. © ${ }^{(w x}$
Now. . . Arcade PLUS introduces Ghost Hunter, ${ }^{\text {(10) }}$ the first in a new generation of software for the Atari ${ }^{\circledR} 400 / 800{ }^{(\pi 10)}$ personal computers.

Your mission in Ghost Hunter ${ }^{(1)}$ is simple—rid the mansion on Huckleberry Hill of ghosts. . . before they get you!

Ghost Hunter $\left.{ }^{(1 \pi y}\right)$ begins where most computer games end!

- 51 game variations!
- One or two player game. . . you can play alone or head-to-head against another player!
- Choose from 16 different "floor plans" or let the computer randomly choose for you!
- Special features allow you to "Build-A-Hunter" and "Hide-Instantly"!
- Fast paced, 10 color action with 4 -channel music and simulated sound effects!

Ghost Hunter ${ }^{\circledR 10}$ is available on cassette or disk for Atari® $400 / 800{ }^{\text {®w }}$ computers with 16 K minimum memory from your local Atari computer dealer. Or send $\$ 29.95$ (cassette) $/ \$ 34.95$ (disk) $+\$ 2.50$ postage and handling (CA residents please add 6% sales tax).

1	17	49	145	177
2	18	50	146	178
3	19	51	147	179
4	20	52	148	180
5	21	53	149	181
6	22	54	150	182
7	23	55	151	183
8	24	56	152	184
9	25	57	153	185
:	26	58	154	186
;	27	59	*	187
<	28	60	*	188
$=$	29	61	157	189
>	30	62	158	190
?	31	63	159	191
@	96	224	*	192
[91	123	219	251
]	93	*	221	253
1	92	124	220	252
\wedge	94	126	222	254
-	95	127	223	255
A	97	65	225	193
B	98	66	226	194
C	99	67	227	195
D	100	68	228	196
E	101	69	229	197

Table C. COLOR STATEMENT GRAPHICS CHART (Cont.)

Character			Color Number	
	green	yellow	red	blue
F	102	70	230	198
G	103	71	231	199
H	104	72	232	200
I	105	73	233	201
J	106	74	234	202
K	107	75	235	203
L	108	76	236	204
M	109	77	237	205
N	110	78	238	206
O	111	79	239	207
P	112	80	240	208
Q	113	81	241	209
R	114	82	242	210
S	115	83	243	211
T	116	84	244	212
U	117	85	245	213
V	118	86	246	214
W	119	87	247	215
X	120	88	248	216
Y	121	89	249	217
Z	122	90	250	218

*Writing color statements that would logically appear in these positions displays nothing on the screen.

Super real time action - fast! An all assembly line program which includes our brand new Finescroll routines. Spaceship flight controlled by joysticks. Enhanced by four-voice Crystalsonic sound. Include $\$ 2.20$ extra for 48 hour Blue-Label service. Requires Atari 800 with disk and 32K RAM.

$\$ 29.95$

To place order send check or money order to: High Country Micro Systems 9551 Green Court Westminster, Colorado 80030 Add $\$ 1.50$ for postage and handling Colorado residents add 6.5\% tax Complete catalog available for $\$ 1.50$.

Atari Program Listings

COMPUTE! is
starting a new, standardized Atari program listing format. All the editing and cursor-control characters are spelled out (e.g.,
CLEAR for clear screen) and surrounded by brackets.

Other characters, such as
CTRL-T, the "ball" character, will be listed as the "normal" character within brackets: \{T\}. A series of identical control characters will be indicated by a number within the brackets, e.g. 5 DOWN for five cursor downs and 12 R for twelve CTRL-R's. Two control characters, $\{=\}$ and $\{-\}$ should be shifted. Any reverse-field text will be enclosed in vertical lines, I like this I. (Press the Atari logo key ($\mathbb{I I})$) for each vertical line.) We expect that this convention will permit easy, unambiguous program typing.

PREMIUM SOFTWARE FOR YOUR ATARI

ARCADE GAMES 24 K disk; 16 K cassette; Joystick required
Add these HIGH RESOLUTION, REAL-TIME, ANIMATED games to your software arsenal. Get FAST ACTION and FULL SOUND GRAPHICS that take advantage of the unique features of your ATARI. Enjoy challenge that requires strategy and skill.
SPACE CHASE Fly against intelligent invader clones. Arm Yourself with Nuclear Defense Charges and play with or without Defense Shields. Enjoy this action-packed multicolor space odyssey. Displays top score, number of planets saved and number of galaxies conquered. $\$ 14.95$ cassette; $\$ 19.95$ disk
TIMEBOMB Meet the challenge of this fast moving animated race against time, enemy aircraft and enemy bombs as you attempt to disarm timebombs set to explode ammunition depots. Avoid aircraft of varying sizes and speeds - and their bombs. Choose one of ten Day or Night Missions. Use from one to four Joysticks. Any number can play; top players listed on scoreboard. $\mathbf{\$ 1 4 . 9 5}$ cassette: $\$ 19.95$ disk

DATA MANAGEMENT

FILE-IT With this startup databsese system you can file and manage personal information and data. Use this database system to create, sort, store, and manipulate information such as appointment calendars, address or telephone data, credit or charge card records, stock investments, medical or prescription information, hobby, coupon or other types of collection informaton...and more. With a printer you get 1 or 2 across mailing labels, disk jacket inventory covers and neatly written copy of all your data files. Comes with well documented instruction manual explaining basics of computer filing. Fast and easy to use. Holds $100+$ records in 24 K and over 300 in 40 K . Requires minimum of 24 K and one disk drive. Pinter optional. $\$ 34.95$ (Disk Only)
FILE-IT 2 An expanded database system which extends FILE-IT, provides the following additional capabilities. User controlled data selection for creating subfiles from main data files. Random access file updating for label and financial data files. Financial entry and report generator programs provide data selection by code(s) and/or date(s). Monthly bar graph program generates visual pictures of selected data on screen/printer. Requires 1 disk drive, minimum of 24 K RAM, and an 80 column printer. Supports single or multiple disk drives. Includes detailed documentation, users manual and utility programs. $\$ 49.95$

EDUCATIONAL/ENTERTAINMENT

MY FIRST ALPHABET Will give your youngster an unparalleled learning experience. Complete with melodies and thirty-six professional drawings, children see pictures and hear tunes with letters and numbers of their own choosing or the ones you choose to show. Package includes a GRAPHICS EDITOR for creating, editing and VIEWING your own custom drawings in real time. Use drawings with any basic program or as part of MY FIRST ALPHABET. Instruction manual included. Minimum of 24 K and disk required. $\$ 29.95$
WORDGAMES This package is jam-packed with hours of fun and challenge. Wordgames contains GUESSIT. WORDJUMBLE and POSSIBLE. GUESSIT, a deductive alphabetic reasoning game for 1 or 2 players can also be used for teaching or learning dictionary look-up skills. Comes with 60 word vocabulary. WORDJUMBLE is a multiple word descrambling puzzle with play-on-word hints and mystery answers. Comes with 20 puzzles. Instructions show how to substitute your own words and clues. Use POSSIBLE as a word game tool to assist creating or playing word or letter scrambling games by showing all combinations of letters you supply. If you like word games you will love this package. 16 K cassette $\$ 14.95 ; 24 \mathrm{Kdisk} \$ 19.95$
UTILITIES
PROGRAMMING AIDS PACKAGE I Is four utility programs to help increase programming efficiency and learn more about your computer. RENUMBER handles references and owen variables. Generates Diagnostic Tables for programming error detection. PROGRAM DECODER. DECIMAL TO BCD and BCD TO DECIMAL programs give you a practical way of studying internal program representation and ATARI number-conversion procedures. Comes with comprehensive users manual. 16 K cassette $\$ 14.95 ; 24 \mathrm{~K}$ disk $\$ 19.95$
SWIFTY UTILITIES Make programming time more efficient; increase programming productivity. Includes all of PROGRAMMING AIDS I plus has REM Remover, Variable Lister, Disklist, DOS Caller (access DOS Utilities with program in core), MENU/SELECTOR (to run programs in either saved or listed format) and Custom Print (for preparing condensed and indented program listings on either EPSON MX-80's or ATARI 825 printers). (Listings skip page perforations and title and number pages.) Minimum of 24 K disk system required. $\$ 29.95$
DISKETIE INVENTORY SYSTEM Use this system to gain control of your expanding disk/program inventory. Quickly get locations of single or multiple copies of your programs and all your valuable files. An invaluable tool, this system is easy and convenient to use and to update. 24 K disk system required. $\$ 24.95$ Printer suggested. GRAPHICS EDITOR (refer to MY FIRST ALPHABET.)

SWIFTY DATALINK HIgh Quality Smart Terminal Communications program. Easy to use Multi-Option, Menu Driven. Full performance uploading/downloading. Printer dump, screen dump and disk search options. Use as remote terminal. Send/recelve and store programs and data files. Save on connect time charges with commercial services.... $\$ 34.95$ Requires: 24K RAM, 810 disk drive, 850 Interface or equivalent, 830 or other 300 baud nodem. (Printer Optiona)

SWIFTY SOFTWARE, Inc.
P.O. Box 641 Melvilio, Now York 11747 (516) $540-9141$
N.Y. Residents add $71 / 4 \%$ sales tax

SEND FOR FREE CATALOGUE

Fantasy for your ATARI Ali Baba and the forty thieves

By Stuart Smith

Guide your alter ego, Ali Baba, through the thieves mountain den in an attempt to rescue the beautiful princess. Treasure, magic, and great danger await you! One or more human players can guide up to seventeen friendly characters through the many rooms, halls, and caves. Some characters wander around randomly, making each adventure a little different.

ALI BABA AND THE FORTY THIEVES is written in high resolution color graphics and includes music and sound effects. Adventures can be saved to disk and resumed at a later time. Requires 32 K .

On Diskette Only - $\$ 32.95$

Graphics for your ATARI Character Magic By Chris Hull

It's easy to create your own character sets and save them to diskette or cassette with CHARACTER MAGIC. But this is not just another character editor. CHARACTER MAGIC helps you use all the character types that the Atari is capable of, including descending characters (8×10 dots) and two types of five-color character graphics not supported by Atari's Operating System. Documentation includes examples of display lists that let you use these "secret" graphics modes. Requires 32 K .

Cassette or Diskette - $\$ 29.95$

FOR OUR COMPLETE LINE OF ATARI SOFTWARE

 PLEASE WRITE FOR OUR CATALOGASK FOR QUALITY SOFTWARE products at your favorite computer store. If necessary you may order directly from us. MasterCard and Visa cardholders may place orders by calling us at (213) $344-6599$. Or mail your check or bankcard number to the address above. California residents add 6% sales tax. Shipping Charges: Within North America orders must include $\$ 1.50$ for shipping and handling. Outside North America the charge for airmail shipping and handling is $\$ 5.00$. Pay in U.S. currency.

QUALTTY
SOFTWARE

String Art

Craig Maiman
Spring Valley, NY

If you always wanted a program which generates beautiful mathematical patterns, now you have it. This program serves very well to impress friends (and yourself!) with the graphics capabilities of the Atari 400/800.

The program actually generates two lissajous figures that are TWISTed relative to each other, it then draws lines between them. The variables that determine the shape of the lissajous are FREQUENCY RATIO and PHASE. Since a lissajous pattern is generated by two signals perpendicular to each other, as on an oscilloscope, we can specify their frequency ratio to obtain many different figures. Changing the phase makes the pattern seem to rotate in 3-D space. An example would be a circle which has a frequency ratio of one-to-one and a phase of 0 degrees. If you now change the phase to 45 degrees it will look like a tilted ellipse. Another variable which can be controlled is DISPLACEMENT: this variable determines the vertical separation of the two lissajous patterns. It can be varied between 0 and 95 .

Here are some numbers to generate nice patterns:

```
FREQUENCY RATIO: 1,1
PHASE: }4
TWIST: }13
DISPLACEMENT: 0
FREQUENCY RATIO: 2,1
PHASE: 0
TWIST: }6
DISPLACEMENT: 0
FREQUENCY RATIO: 1,2
PHASE: }4
TWIST: }12
DISPLACEMENT: 70
```


Hints

1. Good numbers for the FREQUENCY RATIO are various combinations of 1,2 , and 3. Higher numbers tend to make messy pictures.
2. For PHASE, 0 and 90 are good numbers, but try numbers in between also.
3. The TWIST can be varied from -180 to 180 . Try them all if you want.
4. DISPLACEMENT can vary between 0 and 95 . When you get near 90 all the pictures start looking the same. For starters, I would recommend using 0 then try 20,30 , etc.

Now to reveal the secrets of the program:

Lines Description

20-40 Screen initialization (Put String... in inverse video)
Prompts for input (Put these in inverse video)
Tests for illegal displacement
Initializes screen for GRAPHICS 8
generates first lissajous
generates second lissajous
plots and connects the 2 lissajous tests for key touch
 Y, 1981
20 GRAPHICS G:SETCOLOR $1,3,10: S E T C O L O R 2$,3, 6
3 SETCOLOR 4, $6,0: \mathrm{H}=95:$ FOKE 75,1
$4 \overline{0}$ " 1 STRIHG ART FFUGRAM $1^{\prime \prime}$
50 ? ? ? ? " 1 IRFUT FREDUEHCY RATIO 1" ;:INFUT A,E

$807: 7: 7^{\prime \prime} 1$ IHFIT DISFLACEHENT $\left.\right|^{\prime \prime} ;: I$ HFUT DI
90 IF UI 995 THEN 80
$100 \%: ?$? " 1 WHEN FICTURE IS [UIIE HI T 1" 110% " A AHY KEY TO COHTINJE 1 "
120 FOR [10 0 T0 680 : FEXT D
130 [EE : GRAFHICS 24: SETCOLOR $1,3,16$
140 SETCOLOR $2,3,0:$ SETCOLOR $4,6,0:$ COLOR 1
150 FOR ANG=10 TO 360 STEF 5

$190 \mathrm{Y}=(\mathrm{H}-\mathrm{DI}) \mathrm{KOS} \mathrm{E}$ ($\mathrm{A}+\mathrm{T}+\mathrm{FH}+\mathrm{TW}) \mathrm{O}+96+\mathrm{DI}$

210 IF FEEK $764 \times>255$ THEN FOUE 764,255:
607020
2206070210

$$
\begin{aligned}
& \text { TOLL FREE } \\
& \text { Subscription } \\
& \text { Order Line } \\
& 800-345-8112 \\
& \text { In PA } 800-662-2444
\end{aligned}
$$

WORDSEARCH by GO-TARI ATARI' Games \& Good Music!! | 400 | W | F | H | L |
| :---: | :---: | :---: | :---: | :---: |
| 800 | O | O | C | O |
| WITH | W | R | R | P |
| $16 k$ | R | E | A | D |
| $\&$ | R | P | L | E |
| JOY | A | | | |
| STICKS | J | U | S | T |
| | S | Y | O | U |

Computer assisted 'BONGS' \& 'THUDS'
Kids enter weekly spelling words !
Use names, places, or 'fun' words
Select the WORDSEARCH words
Key words change color \& score
Hear latest release from AXBAR RECORDS
ONLY $\$ 15.95$ FOR CASSETTE TAPE
(INQUIRE ABOUT OUR CARTRIDGES)
 o-tar

PO Box 33684
Son Antonio. TX 78233-0684 nix
(312) $853-8069$
*ATARI $400 / 800-$ REG.T.M. of Atari, Inc.

ATARI

"QUALITY DESIGN WITH THE USER IN MIND"
DRUG BUST - Exciting new game that puts you in the midst of drug trafficking. Buy at rock bottom prices and resell for enormous profits. But, don't get caught holding! One or two players. Requires 16 K
Cassette $\$ 19.95$
Diskette \$24.95
DIRECTORY - Load this user friendly program and you can view diskette contents, select and run programs. Menu selection approach as found in many larger computers. Program is transferrable to any diskette. Requires 3K.
Diskette only \qquad \$18.95
ROLL-EM - System generated dice roll. Excellent graphics for use in any game of chance requiring dice. Included as a bonus when both above programs are ordered. Requires 6K.
Cassette \qquad $\$ 7.95$
Diskette $\$ 11.95$
Catalog included in all above orders. For catalog only, send $\$ 1.00$ to cover postage and handling to:

\square
$\square \square$Esplanade Enterprises 2042-312 Peach Orchard Drive Falls Church, VA 22043

Add 5\% Virginia sales tax. Sorry, no C.O.D. orders please.

The aliens have swept undefeated across the galaxy. You are an enterprising star ship captain-the final defender of space.
As the aliens attack, you launch a deadly barrage of missiles. Flankers swoop down on your position. Maneuvering to avoid the counterattack, you disintegrate their ships with your magnetic repellers. As your skill improves, the attackers increase their speed. And as a last resort, the aliens use their invisible ray to slow the speed of your missile launcher.
GALACTIC CHASE provides Atari owners with the most challenging one or two person game in the galaxy.

』。
 ATARI

Atari 400/800 16k. Written in machine language. Requires joysticks.
Payment: Personal Checks-allow three weeks to clear.
American Express, Visa, \& Master Charge-include all numbers on card. Please include phone number with all orders. 24.95 for cassette or 29.95 for disk plus 2.00 shipping. Michigan residents add 4\%.
Check the dealer in your local galaxy. Dealer inquiries encouraged. Galactic Chase © 1981 Stedek Software.

Billiard Bounce

Kevin and Priscilla Laws Carlisle, PA

This program was written initially to provide a graphic demonstration of two lessons on Billiard Ball Mathematics presented by Harold Jacobs in his delightful book entitled Mathematics: A Human Endeavor (Freeman, San Francisco, 1970). Once the program was entered, we discovered that we could spend hours watching wonderful patterns unfold before us. Floor designs, Navajo rugs, smooth and nubby fabrics can all be designed with a simple change of two inputs.

In the program, the path of a "billiard ball" is traced on a "table" with a horizontal length of 160 pixels and a vertical width of 96 pixels. The user inputs the horizontal and vertical distance the ball moves during each program step. (These inputs determine the angle at which the ball moves.) A background color and trace color are chosen at random during each run to prevent viewers from becoming tired of the color scheme.

When the program is run the Atari prints:

Angle Horizontal, Vertical?

The user then enters two numbers separated by a comma, such as 1,2 and presses the return key. Users will quickly discover that integers lead to fairly smooth patterns, large numbers to rapidly unfolding patterns, and decimal fractions to jagged lines. Some entries a novice user might like to try:

$3.14159,3.14159$	(leads eventually to a waffle iron)
3.3,7.7	(looks like a woven curtain)
$6.2,6.3$	(a folksy looking fabric)
$4.5,6.3$	(an indian rug)
$3.4,5.5$	(a greek design)
2,9	(bedsprings!)

If a particularly interesting pattern appears before the design is complete it can be studied by pressing the "CNTRL" key and the " 1 " key simultaneously. Hitting these two keys again will allow the design process to continue.

The use of the GRAPHICS $7+16$ mode allows the program to fit easily in an 8 K Atari.

```
10 FRINT "Ansle Horizontal, Vertical":IN
FUT X1,Y1
20 GRAPHICS 7+16
30 COLR1=INT(FHDKO)*15)+1:SETCOLOR 4,COL
R1,10
40 COLRC=INT(FTG(0)累15)+1:SETCOLON O,COL
R2,5
5 0 \text { IF COLR1=COLRE THEN 40}
60 Y=X-X1:Y=Y-Y1
70 IF ABS(Y)}95\mathrm{ THEH Y=95
80 IF ABS(X)>159 THEH X=159:GOTO 160
90 GOTO 60
100 COLUR 1:FLOT ABS(X),ABSCY)
110 DRONWTO ABS(X), ABS(Y)
120 X=X-X1:Y=Y-Y1
130 IF ABS(X)>159 THEN }8=15
140 IF ABS(Y)Y95 THEN 'Y=95
150 G0T0 110
```


COMPUTE!
 The Resource

Imagine being able to print the letter＂ A ＂ and get a multi－color space ship．Using THE NEXT STEP and a minimum of programming effort，you can do it in no time at all．
 novice and professional alike．

THE NEXT STEP contains well－written，easy－to－use documen－ tation with simple BASIC programming examples that show you how THE NEXT STEP can help develop colorful graphic displays．Graphics you never thought possible until now．

THE NEXT STEP is a user friendly，menu driven graphics tool kit that allows you to create new character sets or redefine characters to make shapes for use with your basic or machine language programs．THE NEXT STEP allows you to save these ＂new＂characters on disk for future use．

THE NEXT STEP is perfect for use on shapes for animation and features a joystick controlled color menu to make your graphics come alive．THE NEXT STEP even generates its own code to help you incorporate new characters and shapes into your programs．

THE NEXT STEP allows you to see your shapes as you make them．Now you can determine ahead of time how characters will interact with one another when creating shapes for Charac－ ter Set or Player－Missile Graphics．

THE NEXT STEP helps you to mix any of ATARI＇s 14 graphics modes in the same display．THE NEXT STEP is a perfect graphics utility for the BASIC or machine language programmer

THE NEXT STEP features full joystick control for ease－of－use and quick editing．

THE NEXT STEP runs on any 32K ATARI 400／800 with a disk drive and is available for $\$ 39.95$ at your local computer store or order direct from

VISA，MASTERCARD，CHECK，C．O．D．

Join the company of best－ selling authors at Med Systems． We have an established market spanning the free world and royalties second to none．We seek excellent games，utilities and applications packages． Only the best are accepted！If you have authored software you feel is publishable，submit it to Med Systems，Software Review Section．

KNOSSOS You wander a gigantic，3－D perspective cave，seeking the only door out．Somewhere，the minotaur seeks you for a grizzly meal．The cave is graphically represented as though you are actually there！ Extensive graphics，sound effects．

Atari 400／800 16K BASIC cassette
 $\$ 14.95$
 Atari 400／800 32K BASIC disk
 $\$ 19.95$

Scott Adams Adventures 1－9 for 24 K Ataris．What can we say？These are some of the best！

Atari 400／800 $\mathbf{2 4 K}$ cassette
s18．95 each
（The higher numbers are the harder adventures）
COMING SOON FOR THE ATARI：Rat＇s Revenge，Deathmaze 5000， Labyrinth，Asylum．Now Available：Microworld Adventure．

ATARI SOFTWARE：Star Raiders $\$ 34.95$ ，Chess $\$ 34.95$ ，Basketball $\$ 24.95$ ， Asteroids $\$ 34.95$ ，Missle Command $\$ 34.95$ ．Space Invaders $\$ 16.95$ ，Super Breakout \＄34．95，Joystick Pair \＄16．00．

CALL FOR OUR INCREDIBLE HARDWARE PRICESI

MED SYSTEMS has been publishing and distributing software worldwide since 1979．We publish only the best！We ship within 5 days，whenever possible，usually within 2 ！We don＇t wait for＂checks to clear．＂We know how hard it is to wait for that perfect program．We even guarantee satisfaction！If you don＇t like our software，return it within 14 days for a prompt，cheerful refund．If you have a problem，call us 10－6 EST．We are here to serve you．

MED SYSTEMS
Box 2674－Cl．Chapel Hill，NC 27514

Blinking Characters

Frank C. Jones
Silver Spring, MD

The inverse video (四) key on the Atari 400/800 computer allows messages to be displayed in inverse video for special emphasis or eye-catching effects. Another, sometimes even more dramatic, method of catching the viewer's eye is to have the message flash on and off, or blink. There is no simple command in Atari BASIC to produce this effect, but the key to producing it lies in the register, maintained by the operating system, called CHACT (Dec-755, Hex-2F3). If bit 1 in this register is set true, inverse video characters are displayed in inverse video; if it is set to zero they are displayed normally. However if bit 0 is set true, these characters are displayed as blank spaces (inverse video or normal blanks depending on bit 1).

Looking For A Faster Solution

With this information we can write a program that will produce blinking characters on the screen. (Program 1). The trouble with this approach is that our BASIC program is completely preoccupied with timing loops and toggling bit 0 of CHACT. If we try to incorporate this method in a program that does anything else, the timing problem gets very difficult, if not downright impossible. What we really want is a routine that will sit in the background and toggle bit 0 of CHACT on a regular basis without interfering with any BASIC program that might be running at the time. Fortunately the Atari has in it the resources we need to do just this.

The Atari operating system maintains five separate timers which are incremented or decremented during every vertical blank period (the period between successive TV picture frames during which the screen is dark). One of these, called CDTMV2 (Hex21A) is a two byte down counter that can be set to any value between 1 and 65535. Every 60th of a second, during vertical blank, the operating system reduces this number by one and, when it counts to zero, initiates a subroutine jump to the address that it finds in the two byte vector CDTMA2 and returns to the operating system, waiting for the next time the counter counts down to zero.

Program 2 achieves this result by poking a machine language program into memory starting at page 6 (Dec 1536, Hex 0600) and transferring control to it via the USR function. Since the operation of this program is obvious, we will spend no time discussing it. Rather, we will turn our attention to the assembly language version of the program that does all of the work, Program 3.

Lines 20-30: Identifies the hex locations of the names times and registers.
Line 50: Starts the program assembly at location hex 0600 (decimal 1536).
Lines 60-130: Initialize jump vector and start timer.
Line 60: Pops one number off the stack. This is required by the USR function; the routine will work without this step, but you will get an Error-9 on return to BASIC.
Lines 70-100: Stores the address of the routine that begins on line 140 in the subroutine jump vector CDTMA2.
Line 110-120: Stores a number in the timer, CDTMV2, to get it going; the number itself is arbitrary.
Line 130: Return from initializing subroutine.
Line 140: Start of subroutine that does the blinking; load the register CHACT into the accumulator.
Line 150: AND the accumulator with the number one, turns off all bits except bit 0 .
Line 160: EOR - exclusive OR the accumulator with the number one; reverses the state (toggles) of bit zero.
Line 170: Stores the result back into the register CHACT.
Line 180-190: Resets the timer CDTMV2 at 30 ($1 / 2 \mathrm{sec}$.).
Line 200: Return from blink subroutine.

This program, in machine language, is contained in the string of numbers in the DATA statement, line 50, of the BASIC in Program 2. A few of the numbers are readily identified and can be changed by the user to obtain different effects. First of all, the last \#30 in the list (the 29th number) is the number that is loaded into the countdown timer each cycle. It determines the delay time between each jump to the toggling routine and hence the blink frequency. Since the counter is decremented every $1 / 60$ of a second, loading 30 in the timer causes the characters to be on for $1 / 2$ second and blank for another $1 / 2$ second. This

ALTERNATE REALITY SOFTWARE

Presents for the Atari

THE I CHING

THE ANCIENT CHINESE BOOK OF DIVINATION

- The complete text of the world's oldest book on disk
- 40K program
- 73 disk files (155,000 bytes)
- Occupying 1211 disk sectors
- High Resolution Graphics
- Animation
- Music and Sound Effects
- Instructional text material
- Calculates and Displays Hexagrams
- Displays Judgement, Image, Moving Lines for primary \& secondary Hexagrams
- \$44.95
order from:
Alternate Reality Software
2111 W. Arapahoe Drive
Littleton, Colorado 80120

Dealer inquiries invited
Atari is a T.M. of Atari, Inc.

VIEW FROM THE TOP

(TRS-80 16K Atari 24K)
A presidential simulation in which you as president must solve the whole array of problems now facing our country. $\$ 24.95$

WORKERS COMPENSATION RETRO RATING

(TRS-80 8K Atari 8K)
This is an insurance utility to aid agents and brokers in the rating of retrospective rating programs. $\$ 19.95$

MURDER-MURDER-MURDER

(TRS-80 16K Atari 24K)
In this simulation you as a well known detective must solve the mystery. Depending on how you proceed with your investigation, the solution may change. \$21.95

SPACE EMPIRES

(TRS)-80 J6K Atari 16K)
With this fantasy you must colonize as many planets as you can in 20 years. You will face many problems and hazards but the rewards are great - your own empire. $\$ 15.95$
The above programs are available on cassette only. Send check, money order or see your local dealer
> C.E.L. PROGRAMS

> 4040 Winterpark Dr. Liverpool, NY 13088

GRADUATE TO BASIC A+ FROM THEAUTHORS OF ATARI BASIC

 BASIC A+BASIC A + will rate an A+ from any Atari user! Upward compatible with Atari Basic, it adds statements and features that enhance the Atari 800 's real power, flexibility, and ease of use: Superior $1 / 0$ features for business and other applications. Additional file manipulation commands. Significant help in program development and debug. Structured programming aids. And MORE! A partial list of the enhancements of BASIC A+ includes:

RPUT/RGET (record I/0) BPUT/BGET (binary I/0) ERASE
PRINT USING SET TAB INPUT"..." DIR PROTECT RENAME
TRACE WHILE...ENDWHILE IF...ELSE...ENDIF SUPERB PLAYER/MISSILE GRAPHICS
BASIC A + requires a disk and 32 K bytes of RAM. Since no cartridge is used, BASIC A + will take advantage of all the RAM (48 K bytes) in a maximum Atari 800 system (recommended) \$80 OS/A+
Completely compatible with Atari's DOS (version 2), but with an advanced, command-driven console processor. Simple. Flexible. Powerful. With an easy-to-use BATCH capability. OS/A + INCLUDES all the following utilities (and more):

EASMD (Editor/ASseMbler/Debug) is our upgraded all-in-one assembly language development package for the 6502 microprocessor. The editor - with such features as FIND and REPLACE can even edit BASIC A+ programs. The assembler can include multiple source files in a single assembly.
DUPDSK and FORMAT create master or slave disks. Make sector by sector copies of any $O S / A+$ disk.
COPY a simple, single file copy utility.
All of this power is included in our OS/A+ package
For the utmost in capability and flexibility, our combination system

- BASIC A+ and OS/A+ - is available
\$150
SOFTWARE IN A CLASS BY ITSELF
AVAILABLE NOW THROUGH LOCAL DEALERS

Optimized Systems Software, Inc.
10379 Lansdale Ave., Cupertino, CA 95014,
(408) 446-3099
number may be changed by the user to be anything between 1 and 255 to make the blink frequency anything between $1 / 30$ of a second to $81 / 2$ seconds.

See For Yourself

The two ones in the list, the 22nd and 24th numbers are the ones that are AND'ed and EOR'ed against the contents of CHACT. Changing the first one to 23 leaves inverse video on during the blanking. If both ones are changed to threes, inverse video is on when the characters are on, but the blanks are normal. Changing both ones to twos causes the characters to alternate between normal and inverse video. Finally putting fours in place of the ones produces an effect that you will just have to see for yourself; I still haven't figured out a use for this one.

Once the BASIC program has been entered and run, it may be erased by typing NEW, (RETURN), and entering a new program and the flashing will continue (the flashing will stop during I/O to or from a disk or cassette since stage two vertical blank processes are suspended during I/O operations). System Reset will stop the flashing and bring back inverse video; however, merely typing A = USR(1536) (RETURN) will reinstate the flashing characters without having to reload and run the BASIC program.

This program may be added on to almost any other BASIC program to produce the flashing characters and should add some new twists to your special effects.

Program 1.

```
10 CHACT=75.5
20 DELA''=2000
30 FRINT "IHELLO!"
40 FOR I=1 TO DELAH: FEXT I
50 FOKE CHACT,O
60 FOR I=1 TO DELAM: FEXT I
70 POKE CHACT,1
80 GOTO 40
9 0 \text { EMD}
```


Program 2.

10 FOR $I=1536$ T0 $1536+32$
20 READ E:FOKE I, B: FEXT I
$30 \mathrm{~A}=\mathrm{USF}(1536)$
40 END
50 DATA 1 164, $169,17,141,40,2,169,6,141,41$
$, 2,169,30,141,26,2,96,173,243,2,41,1,73$,
$1,141,243,2,169,30,141,26,2,96$

Program 3.

62F3	10; CHARACTEF 20 CHACT	
0210	351 COTHU2	$=\$ 2 \mathrm{H}$
6eco	40 Cothtie	$=520$
060600	59	新
060468	60.1 IMITIATE	FLA
0601 A911	70	LOM \#ELIFHK*
FF		
0600300802	80	STA CITHAE
0606 A906	90	LDA \#ELIHM/256
4606880962	0160	STA CDTMAE+1
6606 AGIE	0110	LOA \#30
6601861962	0120	STA DITHE
061060	0130	RTS
6511 ATF302	0140 ELINK	LOA CHACT
06142001	0150	Atici \#1
06164901	0160	EUF \#1
661895302	0170	STA DHACT
6615 A 15	0180	LUA \#30
061080140	0190	STA CUTHE
66.60	9200	RTS

Make Your Atari Keyboard A Little Friendlier

Ric Mears
San Francisco

If you've ever been typing on the Atari computer and hit the inverse video key instead of the shift key, cleared the screen inadvertently, or locked the keyboard into character graphics mode when you only meant to move the cursor right one space, then this article is for you.

Although I do use assembly language to tame the Atari down a bit, don't worry if you don't know a thing about programming in assembly because I've included a version of my code written in BASIC. And for those of you who are old pros at tickling the insides of your machines, you'll find a listing of the original source code with notes on how it works.

This code does two main things. First, it speeds up the initial delay you encounter while waiting for the auto-repeat to engage. Normally there is a pause of about $3 / 4$ of a second after pressing a key before it starts to repeat. This seems a bit too long to me. It gets to be aggravating, especially when moving the cursor around the screen for editing. You can adjust this speed to suit yourself, or even shut the auto-repeat off altogether if you like.

The Right Pinkie's Burden

The second main thing this code does is to give you an audible signal when you press the inverse video key, the clearscreen key, caps/lower key, or the shift-delete key. The burden of finding all these keys plus a number of others is dumped completely on the right hand's little pinky, making it all too easy to make a mistake. For example, when typing a long mathematical formula, it has been quite frustrating to me when, instead of hitting the final right parenthesis, I'd accidentally press the clearscreen, leaving me to start all over. This happened to me so many times that I decided to do something about it. Now, instead of the screen going blank, I get the sound of five quick keyclicks letting me know my little pinky is off target. If I really want the screen cleared, I just hold the key down a bit longer than usual for the key to be activated. This short wait seems a small price to pay compared to

the time that can be lost in correcting mistakes. Whether you know assembly or not, if you have a disk drive and DOS 2, you can create an "AUTORUN" file so that, when you turn your computer on, the keyboard will behave itself automatically. If you're using DOS 1 or a cassette only system, you'll have to run the BASIC program each time you power up. Of course, those of you without DOS 2 running the assembler cartridge will have to load in the necessary object code after powering up.

It is possible to "tap the computer on the shoulder"...

Cassette Users

A special note to anyone using a cassette, with or without disk drives: If you want to use your cassette in addition to taming your keyboard down, you'll have to switch the two values at the beginning of the BASIC version of the program. I'll try to explain:

There are 256 bytes of memory (referred to as Page 6) available for use any way you see fit located at address 600 hex, or 1536 decimal. The computer's operating system doesn't use them, nor does any typical BASIC program. Still, many BASIC programs, with a need for high-speed assembly language subroutines, do use Page 6. In my own programming, I frequently make use of this area of memory and wanted to put the keyboard code someplace else which was safe from unfriendly programs. There are 131 bytes of memory similar to Page 6, located at address 3FD hex, 1021 decimal, unused for anything but conversations between the computer and the cassette. Since I rarely use my cassette, I appropriated this area of memory to hold the new keyboard code. Since this forfeits your ability to use the cassette, you may wish to forfeit use of Page 6 instead by switching the two previously mentioned values at the beginning of the program. The initialization code can pretty much go anywhere, since it's only used once when the program is run, but the keyboard code has to have a permanent place to reside. If neither Page 6 nor the cassette buffer will work for you, you'll have to find some other place for the code. But when you do, you'll only have to change the values at lines 190 and 200 to the new addresses where
you want the code placed since it is position independent.

Setting Up

For those of you using a cassette only, or those of you with DOS 1 , just run the BASIC program that follows. I suggest first saving a copy of the program before running it though, since, as with any assembly program, if you make a mistake, your computer may very well "lock-up," requiring you to turn it off and back on. Hopefully you will find this program useful and a timesaver. Once it has been run, it is no longer needed in memory and is transparent to normal operations of the computer.

This paragraph is for those of you using DOS 2. Run the BASIC program that follows and see how your keyboard acts afterwards. Then, call up the DOS menu and type " K " for the binary save option. If you already have an AUTORUN file on your disk, respond with "D1: AUTORUN,SYS/A, 3FD, 47F". If you don't already have an AUTORUN file on the disk leave the "/A" off the filename. This will save or append the cassette buffer area containing the new keyboard instructions. Again type "K", and now respond with "D1: AUTORUN.SYS/A, 600, 60B, 601". Don't forget the "/A". This will append the initialization code along with the proper initialization address. That's it Now, whenever you turn the computer on with this AUTORUN file present, your keyboard will be ready to go automatically.

Changing The Auto-repeat Speed

As I mentioned before, the delay before the auto-repeat engages can be changed, and I've shortened it to suit my typing habits. Decreasing the second number in the data list at line 520 , which is now 15 , will decrease the length of time before the autorepeat starts. I doubt you will want to decrease it, but increasing this number will slow the repeat down if you end up typing things like "LLISSTT." You can turn the auto-repeat off altogether by changing this number to a zero. If you should want to disable the new keyboard characteristics (to use the cassette for example) just press the System Reset key. It'll restore the keyboard to normal.

After careful study of the operating system source code, I regret to report that two desirable changes are not feasible. It does not look possible to change the speed of the auto-repeat once it has begun. Nor does it look feasible to shut off the keyclick with software. The keyclick got on my nerves when I first got my computer and, for what it's worth, I dicsovered that the bottom cover of the computer is easily removed (at the expense of voiding your warrenty) and the speaker can be unplugged. However, you lose use of the warning bell or buzzer, so I chose to solder a 200 ohm resister
in series with the speaker to soften the volume of the keyclick without losing the bell.

How It Works

At the heart of the Atari computer is a 6502 microprocessor chip. It's always running some kind of program and always in the only language it understands, 6502 machine code. Whenever you use the BASIC cartridge, you're really running a machine language program called "BASIC," which waits for you to tell it to do something, such as to run a program you've typed into memory with its assistance. This program then "interprets" your instructions and sends the 6502 off to execute various machine code subroutines which collectively, and in the proper sequence, accomplish what you told the BASIC "interpreter" you wanted to have done. So, any time your computer is on, the 6502 is always executing machine code instructions.

Interruptions

It is possible to "tap the computer on the shoulder," asking it to stop what it's doing and take care of something else. This is called an interrupt. Regardless of whether the computer was busy drawing on the screen, trying to figure out a BASIC program, or whatever, it'll take note of what it was doing so that it can pick up again where it left off after it finishes taking care of the interruption.

There are all kinds of things that can cause an interrupt. One of them is pressing a key on the keyboard. Whenever a key is pressed, the 6502 gets "tapped on the shoulder," and it goes to a subroutine located in the operating system ROM. This subroutine does some checking around and finds out that a key was pressed. Then it looks at memory location 208 hex, which is called VKEYBD, short for Keyboard Vector. Now, vector is just a fancy word for pointer and normally, this memory location contains the starting address of another subroutine in ROM which takes care of saving information about the particular key that was pressed so that, at some time later on, yet another subroutine can do something with it (like print the letter on the screen). The initialization code at the end of the assembly language listing changes the value contained in the keyboard vector VKEYBD so that the 6502 will follow our instructions on what to do when a key is pressed. In fact, we'll tell the 6502 to figure out if the key pressed is one of those that our little pinky hits by mistake so often.

Most of the assembly code is fairly self-explanatory, but a few things are worth discussing. At line 500 of the assembly language listing a check is done first to make sure that the computer wasn't interrupted while it was in the middle of doing something where timing is critical, such as talking to the disk drive. Lines 610-650 take care of key-

Software for Personal Computers

238 Exchange St., Chicopee, Massachusetts 01013
bounce, caused by the vibration of the switch contacts inside the keys.

It is also worth noting that this whole routine is executed only in response to a key being pressed. Holding a key down for the auto-repeat does not generate any further interrupts, and repetition of the key is accomplished at a later time during another type of interrupt, the Vertical Blank period. This interrupt occurs sixty times a second during

> May you never know the agony of delete (or clearscreen) again!
the time between pictures on your TV screen. The instructions executed during this interrupt are located in an area of the operating system that does not appear to be bypassable. This is also where the keyclicks are generated, making it impossible to shut them off or change the auto-repeat speed itself.

Although it is possible to intercept the vertical blank interrupt, it does not look feasible to replace the operating system ROM routines which take care of these things. If anyone has information to the contrary I'd be very interested in hearing from you. The reason the initial repeat speed can be altered is that the auto-repeat timer, SRTIMR, is initialized during the key-pressed interrupt.

At line 810 bits 6 and 7 of the key code are set to zero since these bits indicate the shift or control key was pressed which is no importance in the case of these two keys. The keycodes themselves have no relation to the ASCII or ATASCII codes. Only the engineers who designed the keyboard could tell you why they created it the way they did, (like why the little pinky got stuck with so many keys to deal with). Anyway, if you want to alter the program to warn you about your own problem keys, you can easily determine their codes with the following one-line BASIC program:

10 PRINT PEEK(53769): GOTO 10

At lines 1210-1260 you may notice a slightly curious bit of code. VCOUNT is a hardware register which can be read to determine the current scan line being drawn on the TV screen. This value will be zero, sixty times each second, and provides a quick and easy way to obtain a do-nothing loop without tying up any memory locations for counting. Of course, you might wonder why I didn't just use
one of the system timers. There are two big reasons why not. One is that I wanted my routine to be as transparent to normal computer operations as possible and tying up a timer could conflict with another program. But a bigger reason is that the system timers are themselves maintained during an interrupt cycle, the old vertical blank period.

Thus, whenever pressing a key causes an interrupt, all other low priority interrupts are temporarily ignored, meaning that the system. timers stop. They remain frozen during the time that this program code is being executed and resume counting afterwards. If having the timers lose accuracy is a problem for your application, I suggest adding a little more code which would make an appropriate correction to the timer values. I didn't do this because there is no way the extra code would fit into the cassette buffer. It is being packed to the very last byte already.

Finally, at lines 1400-1430 of the assembly listing, bit 3 of the memory-mapped hardware register named SKSTAT (Serial Port/Keyboard Status) is selected with a logical AND command. This bit indicates whether the last key pressed is still depressed, and is the determining factor as to whether one of those problem keys is actually wanted. May you never know the agony of delete (or clearscreen) again!

Program 1.


```
4 2 0 ~ R E M
430 REM Now reset the the keyboard vector:
4 4 0 ~ R E M
4 5 0 ~ I N I T = U S R ( I N I T )
460 PRINT :PRINT "ALL DONE"
4 7 0 ~ R E M
480 REM Here's the assembled program
4 9 0 ~ R E M ~ a s ~ d a t a : ~
5 0 0 ~ R E M
510 DATA 165, 66, 208, 81, 138, 72, 152, 72
5 2 0 ~ D A T A ~ 1 6 0 , ~ 1 5 , ~ 1 7 3 , ~ 9 , ~ 2 1 0 , ~ 2 0 5 , ~ 2 4 2 , ~ 2 ~
50 DATA 208, 5, 173, 241, 2, 208, 55, 173
540 DATA 9, 210, 201, 159, 208, 10, 173, 255
5 5 0 \text { DATA 2, 73, 255, 141, 255, 2, 176, 38}
5 6 0 \text { DATA 201, 116, 240, 43, 201, 118, 240, 39}
5 7 0 \text { DATA 201, 182, 240, 35, 41, 63, 201, 39}
5 8 0 \text { DATA 240, 29, 201, 60, 240, 25, 173,9}
5 9 0 ~ D A T A ~ 2 1 0 , ~ 1 4 1 , ~ 2 5 2 , ~ 2 , ~ 1 4 1 , ~ 2 4 2 , ~ 2 , ~ 1 6 9 ~
60 DATA 3, 141, 241, 2, 133, 77, 140,43
610 DATA 2, 104, 168, 104, 170, 104, 64, 160
620 DATA 5, 32, 216, 252, 162, 8, 142, 31
6 3 0 \text { DATA 208, 162, 75, 173, 11, 212, 208, 251}
640 DATA 202, 208, 248, 136, 208, 235, 160, 255
650 DATA 173, 11, 212, 208, 251, 136, 208, 248
660 DATA 160, 40, 173, 15, 210, 41, 4, 240
670 DATA 189, 208, 203
6 8 0 ~ R E M
6 9 0 ~ R E M ~ H e r e ' s ~ t h e ~ i n i t i a l i z a t i o n ~
700 REM code as data:
7 1 0 ~ R E M
7 2 0 \text { DATA 104, 169, 253, 141, 8, 2, 169,3}
730 DATA 141, 9, 2, 96
740 END
7 5 0 ~ R E M ~ E n d ~ o f ~ B A S I C ~ p r o g r a m ~ l i s t i n g
```


Program 2.

0100	; MAKE YOUR KEYBOARD FRIENDLIER		
0110	; Assembler Source Code		
0120	;		
0130	; Ric	Mears	8/15/81
0140			
0150	; EQUATES		
0160	;		
0170	UKEYED =	\$208	; Keyboard vector
0180	$\mathrm{KBCODE}=$	\$D209	;Pokey register
0190	CONSOL $=$	\$D01F	; Speaker
0200	UCOUNT $=$	\$D40B	; Scan-line counter
0210	SKSTAT $=$	\$D20F	; Keyboard status
0220	CLICK $=$	\$FCD8	; OS keyclick routine
0230	$\mathrm{CH}=$	\$2FC	; Current kes pressed
0240	$\mathrm{CH} 1 \quad=$	\$2F2	; Last key pressed
0250	KEYDEL $=$	\$2F1	; Kesbounce counter
0260	SSFLAG $=\$$	\$2FF	; Critrl-1 start-stop
0270	ATTRACT $=$	\$4D	; Attract mode flas
0280	CRITIC $=$	\$42	; Critical code flag
0290	SRTIMR $=$	\$22B	; Auto-Repeat timer
0300	CNTRL1 $1=$	\$9F	
0310	CLEAR1 1	118	; Internal
0320	CLEAR2 $2=1$	182	; codes
0330	INUERSE $=$	39	; for these
0340	CAFSLWR $=$	60	; Problem
0350	DELETE $=$	116	; keys
0360	;		
0370			
0380	; ENTRY FOINT		
0390	;		
0400	; Whenever a key is pressed, an		
0410	; interrupt sends the 6502 here:		
0420	;		
0430	* $=$ \$3FD		Or any safe place
0440	;		

World Class

Your ATARI is a world class personal computer. But you need great software in order to exploit its capabilities. And you need information about how it all works.

IRIDIS is a series of software packages that will help you enjoy and understand your ATARI more fully. The programs are outstanding, just as you would expect from the people who have published 23 issues of the widely acclaimed CURSOR Magazine for the Pet since 1978. But IRIDIS is more than just a collection of excellent programs. IRIDIS \#2 comes with a 56 -page manual that has clear, detailed explanations of how each program works. The explanations tell you line-by-line what each program does, and how it does it.

IRIDIS and your ATARI: A winning team. World Class!

IRIDIS \#2-Fondedit and Knotwork programs. Includes 56 page User Manual. $\$ 15.95$ Cassette, $\$ 18.95$ disk. Mastercharge and Visa welcome.

Published By:

Box 550
Goleta, CA 93116 805-683-1585

[^0]| 0450 ; If the computer was executing 0460 ; critical code, then forget | If the computer was executing
 ; critical code, then forget | |
| :---: | :---: | :---: |
| 0470 ; | ; about the keyboard interrupt: | |
| 0480 | , | |
| 0490 | NEWFROCEDURE | |
| 0500 | LDA CRITIC | |
| 0510 | | |
| 0520 | BNE EXIT | |
| 0530 | TXA | ; OS has already |
| 0540 | PHA | saved register A, |
| 0550 | TYA | must also |
| 0560 | FHA | save X \& Y |
| 0570 | | |
| 0580 | ; | |
| 0590 | LDY ${ }^{\text {* }}$ \$F | ; Set new Auto- |
| 0600 | ; ; repeat speed | |
| 0610 | LDA KECODE | |
| 0620 | CMP CH1 | ;Same as last key? |
| 0630 | ENE NEWKEY | |
| 0640 | LDA KEYDEL | ; If KEYDEL > 0 |
| 0650 | ENE OUT | ; ignore as bounce |
| 0660 | NEWKEY | |
| 0670 | LDA KBCODE | |
| 0680 | CMP \#CNTRL1 | ; Take care of |
| 0690 | BNE NOTCTRL1 | ; Control-1 |
| 0700 | LDA SSFLAG | stall flas |
| 0710 | | |
| 0720 | STA SSFLAG | |
| 0730 | ECS OUT | |
| 0740 | NOTCTRL1 | |
| 0750 | CMF \#DELETE | ; Check for aggravating |
| 0760 | BEQ ALERT | |
| 0770 | CMP \#CLEAR1 | ; keys |
| 0780 | EEQ ALERT | |
| 0790 | CMF \#CLEAR2 | |
| 0800 | | | |
| 0810 | AND \ddagger \$3F | ; Strip off shift |
| 0820 | CMF \#INUERSE | ; \& critl bits |
| 0830 | BEQ ALERT | since these |
| 0840 | CMP \#CAFSLWR | keys are |
| 0850 | EEQ ALERT ; urique | |
| 0860 | | | |
| 0870 | ; | |
| 0880 | ; This poirit reached if a regular key | |
| 0890 | ; or the typist wants the special key | |
| 0900 | ; | |
| 0910 | NOCHANGE | |
| 0920 | LDA KECODE | |
| 0930 | STA CH | ; Pass the |
| 0940 | STA CH1 | ; letter oni |
| 0950 | LDA \#3 | |
| 0960 | STA KEYDEL | ; Set debourice |
| 0970 | STA ATTRACT | ; Reset Attract flag |
| 0980 | OUT | |
| 0990 | STY SRTIMR | |
| 1000 | speed | |
| 1010 | PLA | |
| 1020 | TAY | ; Restore
 ; registers |
| 1030 | PLA ; registers | |
| 1040 | TAX | |
| 1050 | EXIT | |
| 1060 | FLA | ; And returri from ; the iriterrupt. |
| 1070 | RTI | |
| 1080 | ; | |
| 1090 | ; ALERT ROUTINE | |
| 1100 | ; A promen kes has ben pressed | |
| 1110 | ; A problem key has been pressed | |
| 1120 | ; so do the special signal. | |
| 1130 | ; | |
| 1140 | ALERT | |
| 1150 | LDY \#5 | ; For 5 clicks |
| 1160 | LOOP5 | |
| 1170 | JSR CLICK | ; Turn speaker
 ; back off |
| 1180 | LDX $\ddagger 8$ | |
| 1190 | STX CONSOL | |

```
1200;
1210 LDX *75
1220 WAIT
1230 LDA VCOUNT ;Scan line count
1240 ENE WAIT ; (extra delay)
1250 DEX
1260 ENE WAIT
1270 DEY
1280 ENE LOOFS ;5 clicks yet?
1290;
1300 LDY #255
1310 WAITAGAIN
1320 LDA UCOUNT ;Stall a moment
1330 ENE WAITAGAIN ; after sounding
1340 DEY
1350 ENE WAITAGAIN
1360 ;
1370 LDY *40 ;Slower initial
1380 ; ; repeat for these
1390;
1400 LDA SKSTAT ;Are they still
1410 AND #4 ; holding the
1420 EEQ NOCHANGE ; key dowri?
1430 ENE OUT
1440 ;
1450;
1460 *= $600
1470 ;
1480
1490
1500 ; Resets keyboard vector so that
1510 ; wherever a key-pressed interrupt
1520 ; occurs, the 6502 will go the riew
1530 ; routine.
1540
1550 INIT
1560 FLLA
1570 LDA *NEWFROCEDURE & $00FF
1580 STA UKEYBD
1590 LDA #NEWFROCEDURE / 256
1600 STA UKEYED+1
1610 RTS
1620 ; Enid of Assembly Frogram Listing
```


Adding High Speed Vertical Positioning To P/M Graphics

David H. Markley Reynoldsburg, OH

By now many of you have been playing the "Aliens from Outer Space" program I described in
COMPUTE! \# 11, and have been able to experiment with an actual game program incorporating the advanced player/missile graphics of the Atari computer. As you may have observed, player images can be moved horizontally across the playfield quite easily just by placing the player's horizontal coordinate $(0-120)$ into its associated horizontal position register. Vertical positioning with the P/M graphics however is somewhat more difficult. Since the player's vertical position on the playfield inversely corresponds to its position within the image buffer, it is necessary to relocate each byte of the image up or down within the buffer to produce vertical movement. For example, if we move the player's image to higher address locations within the image buffer, the player will appear to move downward on the playfield.

A BASIC routine can be written using PEEKs and POKEs to move the player within the image buffer, but for most applications this method is too slow. An alternative, however, is to use a small, general purpose vertical positioning routine written in 6502 assembly code which can be called by BASIC's USR instruction.

The vertical positioning routine shown in Program 1 is relatively simple, but provides the user with a flexible and easy method of handling P / M graphics within a BASIC program. This program not only provides a valuable tool to use with player missile graphics, but for those of you who have not used assembly language routines with BASIC, it will provide some insight into this area as well. The routine is called by a BASIC statement similar to below:

DUMMY = USR(VP,IMAGE,LAST LOCATION, NEW LOCATION)

The variable to the left of the equal sign called "DUMMY" is used by some machine language subroutines as a target for a value returned by the

ATARI 400/800 OWNERS: THERE'S A MICROCONNECTION ${ }^{\mathrm{w}}$ FOR YOU!

Now you can direct-connect to the telephone with or without the $850^{\text {m }}$ interface, there's also a serial port to drive a printer, optional autodial and autoanswer, and smart terminal software! Prices start at $\$ 199.50$ For more details write or phone:
the mıcroper!pheral corporat!on

RAM For ATARI

Get the most from your ATARI 400. Memory expansion to a full 48 K is now possible with our 48 K Board. Expand your ATARI 800 with our 32 K Board.

$$
\begin{array}{ll}
\text { 48K Board } & \$ 299 \\
32 \mathrm{~K} \text { Board } & \$ 199
\end{array}
$$

INTEC

Suite \# 111

3387 Del Rosa Ave. North
San Bernardino, CA 92404
(714) 864-5269

CA residents add 6 percent tax
ATARI is trademark of ATARI, Inc.
program. The vertical positioning routine however, does not return a usable value, but the DUMMY variable is still required to satisfy Atari's USR format requirements. Within the parentheses of the command are four arguments. The first argument, VP, is the transfer address to the VP routine which has been placed into a free area of memory. Loading of the VP routine into memory will be described later with a program application example. Following the transfer address argument (which, by

> Before either step can be executed, the routine must first look at the image's data structure and get the image size parameter.

the way, is also required for any USR routine called by BASIC) are three arguments which are passed to the VP routine.

These arguments are the address of the image's data structure, the address of the image's current position in the P / M image buffers, and the address of its new position. Each image requires a small data structure which provides the VP routine with a pattern of the actual image which it will vertically reposition. An example of a typical image data structure is shown in Figure 1. The first byte of data provides the VP routine with the image's size in bytes. The second and following bytes are used to form a bit map pattern of the image as it would appear in the P / M image buffers.

The next two arguments contained in the USR command tell the VP routine the image's current and new positions. These arguments are actual memory addresses into the image buffers, therefore care must be taken to assure that they do not access another area of memory by mistake.

Routine Operation

The program operation begins with an initialization step in which the three arguments passed to it by the USR command are removed from the processor's stack and placed into an area in page zero where they can be more easily used. You may have noticed that a total of seven bytes are popped off the stack during this operation. This is because the USR command always places a one byte argument count onto the stack followed by the arguments themselves. The arguments are always two bytes in length.

Once the initialization task is complete, the routine is ready to begin its intended task of moving
the player image. Basically the operation is performed in two steps. The image data is first removed from its current location and then copied to its new location. Before either step can be executed, the routine must first look at the image's data structure and get the image size parameter. This value tells the routine how large an image it must handle and thus determines the number of bytes it must remove and restore. To remove an image from its current location, the routine simply goes to the current location address and writes zeroes into an X number of memory locations indicated by the size parameter. Replacement of the image is done by copying from the image's data structure an X number of bytes, also determined by the size parameter, to the image buffer starting at the address specified by the new position argument.

In some cases it may not be desirable to have the VP routine perform both the delete and restore functions. One example would be if the player image is to be removed from the viewing field and not restored at a new location. This can be handled by using the following routine call:

DUMMY $=$ USR(VP,IMAGE,CURRENT LOCATION,0)

The zero in the new location field tells the VP routine not to attempt to restore the image. Likewise, the delete function can be disabled by placing a zero in the current location field.

Let's Have Some Fun

Now that we have looked at the Player/Missile Vertical Positioner routine, let's put it to work. The following game will show you how to load the player images and VP routine into memory and how to use the routine in other ways besides vertical positioning.

This game which I call "Island Jumper" involves the cooperation of two characters named Crash Coleman and Deadeye Dan. Crash is the pilot of a reliable (but not so stable) airplane, the "Leaping Lucy." Crach has only had one flying lesson, but has courageously volunteered to make this flight so that you can see the VP routine in action. Although he has successfully managed to get the Leaping Lucy off the ground, he seems to be having some trouble keeping her in level flight. Our other daredevil of the sky, Deadeye Dan, will attempt, with your help, to jump out of Crash's airplane and land on Target Island. Since the ground seems to be a bit unstable from Dan's point of view, he is having difficulty figuring out when to jump and asks that you help him by pulling back on your joystick controller when you think he's on target.

Dan will make a total of five jumps each time you play the game. He will try to land on top of a
sand dune located on the left side of the island. If he makes the jump on Crash's first pass over the island and lands on the dune with both feet, you get 30 points. If you don't give Dan the signal to jump during the first pass, Crash will continue to fly over the island until a jump is made. Each additional pass will deduct eight points from Dan's maximum obtainable score.

Dan can also land in the area between the sand dune and the palm tree, but you will only receive a maximum of 15 points for the jump. At the completion of the game, the computer will give you both a final score the last game played and the highest score for all games played since the last RUN command was entered. To play another game, press the button on the joystick controller.

The data for the VP routine and the player data structures is read from data statements and POKEd into memory by lines 110 thru 310 of the program. It is loaded into memory page 6 (starting at address 1536) which is a 256 byte area in memory that Atari has reserved for user binary data and machine language routines. Once the data structures and VP routine are loaded into memory, they are referenced in the BASIC program by variable names whose values have been set to the starting address of the data structure or VP routine they represent.

Program 1.

[^1]
$640 \mathrm{I}=-1$
650 ． J 期 $=5$
660 SURE $=6$
670 PNTS $=30$
$680 . \mathrm{H}=0$

700 FOKE 623．4
710 J5TOF $=J+219$
720 FOR $G=20$ T0 245 STEF 3
730 FOKE 53248，巨
$740[=\mathrm{USR}(\mathrm{UF}, \mathrm{APIN}, \mathrm{LAFUS}, \mathrm{AFOS})$

THEH JMF＝APOS＋132：FOKE $53249, \mathrm{E}+4: I \mathrm{H}=\mathrm{JFI}$
$\mathrm{M}_{\mathrm{I}}: \mathrm{D}=\mathrm{ISR}(\mathrm{UF}, \mathrm{IH}, \mathrm{G}, \mathrm{J}, \mathrm{JF}$ ）
760 L． N P $\mathrm{F}=\mathrm{JHF}$
770 IF JHF $=0$ THEN 85
$780 . \mathrm{HF}=\mathrm{JHP}+3$

80610 I $\mathrm{H}=\mathrm{I}=1 \mathrm{SIH}$

808 SOUN $1, ~ 0,6,0$
810 IF H．AF $>=122$ AN木 H．AP $=126$ THEN ．JSTO
$F=J+208:$ G0TO 860
820 IF HMP《120 OR HHP＞1．34 THEH 860
$830 . \mathrm{BTOF}=1+210$
840 FOKE 623，1
850 IF FHTS＞15 THEN FNTS $6=15$
860 IF JHPDJSTOF THEN 946

800 LAFUS＝APUS
896 APUS＝AFTS＋1

910 IF AFOS＞ETT THEH I＝－SLOPE
GEO IF AFUQ TOF THEN I＝GUPE
930 FEXT に
940 IF JHPJ AHID FHTSY THEH FHTS＝FHTS－8
：GOTO 1220
950 IF JTPCI THEN 1200
970 IF H．HF《120 UR HMF 134 THEN TOHE $=8$ ：
E0TO 1010
960 SUORE $=$ COTREFHTS
$955 \mathrm{TO}=\mathrm{E}=12$

10004 ？ SCORE＂；SUORE：$?$
1010 FOR $[=15$ TO 0 STEF -1

1030 FOR $I=1$ TO $10:$ FEXT I
1646 HEXT E

1660 ． $\mathrm{HOP}=\mathrm{NJF}-1$
1060 IF UlNPCM THEN 1176
1680 IF GCORE HSOURE THEN HGORE＝SCORE
$1000 \mathrm{FOR} I=1 T 0120$
1160 IF $I=1$ THEN ？＂HIGH GOURE＂HGCOEE：

DATA $15,60,126,126,255,255,129,189,189,90,60,24,24$, 36,66;195

LDX \#5
PLA
STA NEW, X
DEX
BPL LP1
DEC NEW
DEC LAST
LDY \#0
LDA (IMAGE),Y ; GET IMAGE BYTE COUNT
TAX
TAY
LDA LAST + 1 ; IF ZERO DON'T DELETE
BEQ SKIPD
LDA \#0
STA (LAST), Y
BNE LP2
TXA
TAY
LDA NEW + 1 ;IF ZERO DON'T RESTORE
BEQSKIPR
LDA (IMAGE),Y ; COPY IMAGE DATA TO NEW
STA (NEW), Y ; ADDRESS
DEY
BNE LP3
RTS

NOTICE

 Krell Software'sCollege Boards $81 / 82$
Preparation Series
is now available on ATARI.

See our ad elsewhere in this issue.

Program 2. Assembly language representation of the P/M Vertical Positioner Routine

[^2]TOLL FREE
Subscription Order Line 800-345-8112 In PA 800-662-2444

A Poor Programmer＇s Word Processor

Frank Roberts

Ft．Wayne，IN
A few days ago I walked into a local computer store for new software for my Atari 800．I was informed－just as expected－that there wasn＇t much available yet，＂but a lot was expected real soon．＂Well，being impatient，low on cash and desperately wanting something besides Star Raiders to play with I decided to tackle one of those＂soon－ to－be－available＂projects myself．After all，didn＇t I really buy my Atari to have fun with？The following program is a primitive（but workable）method of justifying left and right margins for letters and texts－sort of a poor man＇s word processor．

Program 1.

1 REM＊木＊＊＊FSEUCO WORD FRUCESSUR（D：WRI TE．LET）
5 GRAPHICS 0

20 REM
30 ？？ ？HON MLCH MARGIN＂；：INPUT MARGIN
40 ？？？＂ENTER TEXT（IN DOHELE LINES）＂
50 ？？？＂WHEN FINISHEU，ENTER＇999＇＂
60 ？？${ }^{\text {？}}$ TO EEGIN，HIT RETUFN＂；：INFUT A

$\$$

 WIDTH $/ 2+2$
80 FOKE 201，HAFGIH－1
90 INPUT A 4 ：IF A $=$＝ 999 ＂THEN 140
95 IF LEN $\mathrm{A}^{3} 3=0$ THEN 120

20
110 GOSUE 1000
120 LFRINT＂＂，BS：B $=$＂＂＂：PRINT
130 GOTO 90
140 END
1000 REM＊＊＊＊SUBROUTIHE：USTIFY RIGHT
MARGIN
$1010 \mathrm{C}=0$
1020 FOR $J=1$ TO LENK $A \$$ ）
1030 IF LENK BS $=$＝NIDTH +1 THEN 1070
$1040 \mathrm{C}=\mathrm{C}+1: \mathrm{B}=(\mathrm{C})=\hat{9}$ 本（J）
1050 If $\hat{A}+(\mathrm{J}, \mathrm{J}, \mathrm{J})=\mathrm{n}$＂THEN $\mathrm{C}=\mathrm{C}+1: \mathrm{B}(\mathrm{C}(\mathrm{C}, \mathrm{C})=$＂
＂
1060 NEXT J
1070 RETURN

Program 2.

20 OPEN $\# 1,8,0$ ，＂D：FILE．LET＂

50 ？？＂＂LO YOU WANT PRINTOUNT HON＂；：IN
PUT AS
80 FRINT \＃1； 1 HRGIN
120 FRINT \＃1；B4：B\＄＝＂＂：FRINT
160 IF A $\$=$＂NO＂THEN END
170 RUN＂ $\mathrm{D}:$ TYPE．LET＂

Program 3.

1 REM 䋛 FETCH TEXT AMD FRINT（D：TYFE．L ET）
10 DIM A（ 100 ）
20 ？：？＂WHEN FEA［H＇，HIT RETUFN＂；：IFFUT A
30 OPEN \＃1，4， 0, ＂ $\mathrm{D}:$ FILE．LET＂
40 TRAF 80
50 INPUT \＃1，MARGIN：FOKE 201，MARGIN

70 GOTO 60
80 LLOSE \＃1
90 ？？？＂DESTROY FILE NOW（Y－N）＂；INFITT AS
100 IF A오 $(1,1)=$＂ $\mathrm{N}^{\prime \prime}$ THEN ERE
110 x10 33，\＃1，0，0，＂D：FILE．LET＂

How It Works

Line 70 calculates the parameters of the text string according to the MARGIN selected and POKEs the right margin of the screen monitor to one－half the width．The latter is necessary to accomodate one full line of typing for each $\mathrm{A} \$$ to be printed （the screen is only 40 columns wide）．The user enters two lines for each single line of text and types as close to the right margin as possible without hyphenating the last word in the middle of a sylla－ ble．The subroutine beginning at LINE 1000 counts the characters within each line of text and adjusts the length of the text by inserting the proper number of spaces into the string．

The program is designed to print directly to an AXIOM II printer，but with the following modifications（Program 2）a temporary file （D：FILE．LET）can be made which will allow storage of the text for future printout or multiple copy．

There is also a file retrieval program（Program 3；LINE 110 automatically deletes the unwanted file without going to DOS）．

COMPUTE! Magazine

When we first started COMPUTE! magazine in the Fall of 1979, we made a commitment to build a strong, ongoing users resource. Since that beginning, we've provided thousands of personal computer owners with breakthroughs, innovations, practical software, and in-depth reviews of new and significant products. In every issue of COMPUTE!, you'll find dozens of pages showing you exactly how to make better use of your computer; articles which tutor the beginner and challenge the advanced.

We're your specialists, whether your interests lie in home applications, game development, educational insights, or better business planning. Here are just a few facts to tell you more about COMPUTE!:
' In every issue, you'll find clearly, cleanly printed software you can type right into your computer and use...

Here's a comparison of average machine specific articles in the last three issues of COMPUTE!, matched against the average number of articles in the "Big Four" ...the personal computer magazines with circulations of 100,000 or more:

Computer Type	COMPUTE!		"Big Four"	
Articles	Programs	Articles	Programs	
Atari	10.67	13.3	1.08	1.42
PET/CBM	11.33	11.0	1.5	2.33
Apple	4.0	6.0	3.58	3.17
OSI	2.0	4.0	.5	.5

(Numbers are average number of articles or programs in COMPUTE! issues 16, 17, and 18 compared with the average number of articles or programs in each of the same three issues of the four largest personal computing magazines.)
Subscribe to COMPUTE! today! We're the Resource...

Announcing Home and Educational COMPUTING!, the newest publication from the publishers of COMPUTE!

We've expanded the scope of our new magazine and, beginning in January, you'll find resourceful coverage and helpful information for the VIC-20, the Atari 400, the TI 99/4A, the Radio Shack Color Computer, the Sinclair ZX-81, and more. We'll be covering personal applications, education, new thresholds, the pocket computers, and a great deal more.

COMPUTE! Books

Our First Book of Atari is now shipping (if you've already ordered one it's on the way). If you haven't, check with your dealer, or order directly from us by using the convenient toll-free numbers below.

In the continental US, Call TOLL FREE 800-345-8112. In PA call 800-662-2444.

SUBSCRIPTION RATES

| COMPUTE!
 (monthly)
 Twelve issues | Home And
 Educational
 COMPUTING! |
| :---: | :---: | (bimonthly)

Us:

One Year	\$20.00	\$10.00
Two Years	\$36.00	
Three years	\$54.00	
Canada	\$25.00	\$12.00
Europe, Air Delivery	\$38.00	\$18.00
Elsewhere. Surface	\$25.00	\$12.00
Air:		
Middle East, Central America and North Africa	\$48.00	\$24.00
South America, South Africa. Far East and	\$88.00	\$24.00
Australia		
All subscriptions fro funds drawn on a	outside th ank or in	prepa money
Visa/MasterCard	accepte	

Super Cursor V1.3

Frank Cohen
 Pacific Palisades, CA

My biggest complaint about Ohio Scientific's Superboard II has been about the awful video output. It's almost ironic noting all the good things the Superboard has going for it: a nice keyboard; a powerful Microsoft BASIC in ROM; a dependable cassette interface; 8 K of RAM; and many other functions. The irony comes into play when you turn on the Superboard and take a look at the 24 by 24 video. And it gets worse as you start to use BASIC to list programs the effective display size becomes 23 by 20 .

In reading through The First Book of OSI, from Elcomp Publashing, I found that a company names Silver Spur Electronics, in Chino, California, sells detailed instructions to double the display size by adding several jumpers and a couple of I.C.'s to the board. The modified display yields an effective display size of about 26 lines of 48 characters (which can be enlarged if you don't want a border around the display).

After making the modificatons, though, the BASIC in ROM still thinks the memory map of the video display is the same, and so it only uses half the screen. Included with the modification instructions is a software patch which will allow BASIC to utilize the whole display. However, that, too, gives you only a very simple cursor. Using other computers I

; SUPER CURSOR VI. 3
;Written by Frank Cohen
; Cursor Routine for OSI Superboard II
; to suppliment Microsoft's Basic-in-ROM ; cursor functions.
;
; Note: This program works with Steven
;Chalfin's video modifications and needs
; to be changed to work with a Superboard's ; normal 24 by 24 video. At the end of this ; listing are the changes for 24 by 24 video.
;
; This program loads into 1E40-1FE7 hex
; which is the top of memory on an 8 K
; Superboard II. It may be reassembled for other ; addresses if desired.
;
; Directions: Once loaded the following must
; be done to start Super Cursor-
; 1. Set the zero page locations
; 2. Cold start BASIC limiting the memory size
to 7624 (dec.). MEM SIZ? 7624
; 3. Poke the following-
POKE 538,64: POKE 5 39,30
;At this point a solid white cursor should ; appear at the home position (upper left corner) ; If this happens you have successfully loaded ; Super Cursor V1.3. If not, try it again.
;
; Options:
; To turn off the scrolling function-
POKE 7861,128: POKE 7862,30
To turn on the scrolling function-
POKE 7861,105: POKE 7862,31
; To change the cursor symbol-
POKE 8033, X (where x is a graphics number)
; HOME LOCATION $=$ DOCC (hex)
; Horizontal Boundary $=44 \quad$ (2C hex)
; Verticle Boundary $=26$ (1A hex)
;BASIC Commands-
; Clear Screen $=$ PRINT CHRS (1)
; Home cursor = PRINT CHR \$(2)
;
;Zero Page Usage
CURSLOC LOW; Cursor Location Low byte
CURSLOC HI ; Cursor Location High byte CURSLOC HI ; Cursor Location High byte

Stores byte from cursor location
; Horizontal Location of Cursor
;Verticle Location of Cursor
;
;Start of Program $\begin{aligned} & \text {; Save all register onto the }\end{aligned}$
; the stack
$1 E 408 \mathrm{D}$
;Check key pressed for cursor
;function
; Restore all the resisters from ; the stack

GALAXIAN - 4 K - One of the fastest and finest arcade games ever written for the OSI, this one features rows of hard-hitting evasive dogfighting aliens thirsty for your blood. For those who loved (and tired of) Alien Invaders. Specify system - A bargain at $\$ 9.95$ OSI

LABYRINTH • 8K . This has a display background similar to MINOS as the action takes place in a realistic maze seen from ground level. This is, however, a real time monster hunt as you track down and shoot mobile monsters on foot. Checking out and testing this one was the most fun I've had in years! $-\$ 13.95$. OSI

THE AARDVARK JOURNAL
FOR OSI USERS - This is a bi-monthly tutorial journal running only articles about OSI systems. Every issue contains programs customized for OSI, tutorials on how to use and modify the system, and reviews of OSI related products. In the last two years we have run articles like these!

1) A tutorial on Machine Code for BASIC programmers.
2) Complete listings of two word processors for BASIC IN ROM machines.
3) Moving the Directory off track 12
4) Listings for 20 game programs for the OSI.
5) How to write high speed BASIC - and lots more -
Vol. 1 (1980) 6 back issues - $\$ 9.00$
Vol. 2 (1981) 4 back issues and subscription for 2 additional issues - \$9.00.

ADVENTURES!!!

For OSI, TRS-80, and COLOR-80. These Adventures are written in BASIC, are full featured, fast action, full plotted adventures that take 30.50 hours to play. (Adventures are interactive fantasies. It's like reading a book except that you are the main character as you give the computer commands like "Look in the Coffin" and "Light the torch".)

Adventures require 8 K on an OSI and 16 K on COLOR-80 and TRS-80. They sell for \$14.95 each.

ESCAPE FROM MARS (by Rodger Olsen)
This ADVENTURE takes place on the RED PLANT. You'll have to explore a Martian city and deal with possibly hostile aliens to survive this one. A good first adventure.

PYRAMID (by Rodger OIsen)
This is our most challenging ADVENTURE. It is a treasure hunt in a pyramid full of problems. Exciting and tough!

TREK ADVENTURE (by Bob Retelle)
This one takes place aboard a familiar starship. The crew has left for goód reasons - but they forgot to take you, and now you are in deep trouble.

DEATH SHIP (by Rodger Olsen)
Our first and original ADVENTURE, this one takes place aboard a cruise ship - but it ain't the Love Boat.

VAMPIRE CASTLE (by Mike Bassman)
This is a contest between you and old Drac and it's getting a little dark outside. $\$ 14.95$ each.

NEW-NEW-NEW

 TINY COMPILEROSI
The easy way to speed in your programs. The tiny compiler lets you write and debug your program in Basic and then automatically compiles a Machine Code version that runs from $50-150$ times faster. The tiny compiler generates relocatable, native, transportable machine code that can be run on any 6502 system.

It does have some limitations. It is memory hungry -8 K is the minimum sized system that can run the Compiler. It also handles only a limited subset of Basic - about 20 keywords including FOR, NEXT, IF THEN, GOSUB, GOTO, RETURN, END, STOP, USR (X), PEEK, POKE, $\dot{\sim}={ }^{\prime}, 1, \dot{\prime},\left\langle{ }^{\prime}\right\rangle$, Variable names A-Z, and Initeger Numbers from 0-64K.

TINY COMPILER is written in Basic. It can be modified and augmented by the user. It comes with a 20 page manual.
TINY COMPILER - \$19.95 on tape or disk OSI

SUPERDISK II

This disk contains a new BEXEC* that boots up with a numbered directory and which allows creation, deletion and renaming of files without calling other programs. It also contains a slight modification to BASIC to allow 14 character file names.

The disk contains a disk manager that contains a disk packer, a hex/dec calculator and several other utilities.

It also has a full screen editor (in machine code on C2P/C4)) that makes corrections a snap. We'll also toss in renumbering and program search programs - and sell the whole thing for SUPERDISK II \$29.95 (5 $\%^{\prime \prime}$) OSI

BARE BOARDS FOR OSI C1P

MEMORY BOARDS!!! - for the C1P - and they contain parallel ports!

Aardvarks new memory board supports 8 K of 2114's and has provision for a PIA to give a parallel ports! It sells as a bare board for $\$ 29.95$. When assembled, the board plugs into the expansion connector on the 600 board. Available now!
PROM BURNER FOR THE C1P - Burns single supply 2716 's. Bare board $-\$ 24.95$.
MOTHER BOARD - Expand your expansion connector from one to five connectors or use it to adapt our C1P boards to your C4/8P. - $\$ 14.95$.
16 K RAM BOARD FOR C1P - This one does not have a parallel port, but it does support 16 K of 2114 's. Bare Board $\$ 39.95$.

WORD PROCESSING THE EASY WAYWITH MAXIPROS

This is a line-oriented word processor designed for the office that doesn't want to send every new girl out for training in how to type a letter.

It has automatic right and left margin justification and lets you vary the width and margins during printing. It has automatic pagination and automatic page numbering. It will print any text single, double or triple spaced and has text centering commands. It will make any number of multiple copies or chain files together to print an entire disk of data at one time.

MAXI-PROS has both globar and line edit capability and the polled keyboard versions contain a corrected keyboard routine that make the OSI keyboard decode as a standard typewriter keyboard.

MAXI-PROS also has sophisticated file capabibilities. It can access a file for names and addresses, stop for inputs, and print form letters. It has file merging capabilities so that it can store and combine paragraphs and pages in any order.

Best of all, it is in BASIC IOS65D 51/4" or $8^{\prime \prime}$ disk) so that it can be easily adapted to any printer or printing job and so that it can be sold for a measly price.
MAXI-PROS $-\$ 39.95$. Specify $5^{1 / 2}$ or $8^{\prime \prime}$ disk.
SUPPORT ROMS FOR BASIC IN ROM MACHINES - C1S/C2S. This ROM adds line edit functions, software selectable scroll windows, bell support, choice of OSI or standard keyboard routines, two callable screen clears, and software support for $32-64$ characters per line video. Has one character command to switch model 2 C1P from 24 to 48 character line. When installed in C2 or C4 (C2S) requires installation of additional chip. C1P requires only a jumper change. - \$39.95
C1E/C2E similar to above but with extended machine code monitor. - $\$ 59.95$ OSI

ARCADE GAMES FOR OSI, COLOR-80 AND TRS 80 ($8 \mathrm{~K} \mathrm{OSI}, \mathrm{16K} \mathrm{TRS-80} \mathrm{AND} \mathrm{COLOR-80)}$

TIMETREK - A REAL TIME, REAL GRAPHICS STARTRECK. See your torpedoes hit and watch your instruments work in real time. No more unrealistic scrolling displays! \$14.95.
STARFIGHTER - This one man space war game pits you against spacecruisers, battlewagons, and one man fighters, you have the view from your cockpit window, a real time working instrument panel, and your wits. Another real time goody. \$9.95
BATTLEFLEET - This grown up version of Battleship is the toughest thinking game available on OSI or 80 computers. There is no luck involved as you seek out the computers hidden fleet. A topographical toughie. \$9.95
QUEST - A NEW IDEA IN ADVENTURE GAMES! Different from all the others, Quest is played on a computer generated mape of Alesia. Your job is to gather men and supplies by combbat, bargaining, exploration of ruins and temples and outright banditry. When your force is strong enough, you attack the Citadel of Moorlock in a life or death battle to the finish. Playable in 2 to 5 hours, this one is different every time.
16 K COLOR-80 OR TRS-80 ONLY. $\$ 14.95$

Please specify system on all orders

found that I really liked being able to Home, or Clear Screen, or Line Feed, or Backspace the cursor. All these are not possible with the cursor program in the ROM.

Super Cursor solved my needs for an advanced cursor program. In addition to the above functions, it can actually Backspace the cursor (the BASIC in ROM version prints another underline), you can define what the cursor looks like by picking any of the graphics characters available, you can also scroll at the bottom of the display or wrap around to the top. All these functions are available in BASIC or you can use Super Cursor from a machine language program.

If you have not installed the video modifications for the larger display size you will need to modify several locations in Super Cursor. These modifications can be found in the listing after Super Cursor's machine language listing.

In operating Super Cursor, some steps must be taken to tell BASIC to use Super Cursor rather than its old cursor. First load Super Cursor into memory. If you have an assembler, you can reassemble it to fit anywhere in memory. It occupies approximately 425 bytes of memory. If you don't have an assembler, I would not advise trying to move Super Cursor as almost everything uses subroutines which need absolute addresses (you would have to renumber everything). Super Cursor, as it is listed, fits into the top portion of an 8 K Superboard II.

Once loaded, it is necessary to set up the page zero memory vectors. There are seven bytes in all which must be set as follows:

00E0 CC D0 2000000000

After you have completed this, you can cold-start BASIC. Be sure to limit BASIC's memory size to only 7624 bytes or else you will wipe out Super Cursor. To limit BASIC's memory, enter:

7624, in response to the cold-start question: Mem Siz?

Now that you are running BASIC, all you have to do is to type POKE 538,64:POKE 539,30 and press ENTER. You should see the solid white cursor in the upper left (HOME) position of the display. If you hit the space bar, it should move. If it doesn't behave properly then go back into the Monitor Program and check to see if you entered Super Cursor correctly. It is quite easy to make a typing mistake with machine language programs.

If you don't want the cursor to scroll when it reaches the bottom of the screen, you can turn off the scroll function by typing: POKE 7861,128:POKE 7862,30. You can also turn on the scroll function by typing POKE $7861,105:$ POKE 7862,31. If you want to change the cursor symbol to some other graphics character, all you have to do is to type POKE $8033, \mathrm{x}$ (where x is the graphics

1F3D	4C	4F1F		JMP	FDN	
1F40	A9	00	DDN	LDA	\$00	;Subtract 0640 from Cursor
$1 F 42$	85	E4		STA	VL	
1F44	A9	06		LDA	\$06	
1 F 46	85	E6		STA	SCURS HI	
1 F 48	A9	40		LDA	\$40	
1F4A	85	E5		STA	SCURS LO	
$1 \mathrm{F4C}$	20	BO 1F		JSR	SBCC	
1 F 4 F	20	5A 1F	FDN	JSR	CT	
1 F 52	60			RTS		
						;
1 F 53	A5	E2	TC	LDA	TEMPREG	;Temp reg. goes to Cursor location
1 F 55	A0	00		LDY	\$00	
$1 F 57$	91	EO		STA	(CURSLOC), Y	
1 F 59	60			RTS		
1F5A	A0	00	CT	LDY	\$00	iCursor location goes to Temp reg.
1F5C	B1	EO		LDA	(CURSLOC), Y	
1 FSE	85	E2		STA	TEMPREG	
1 F 60	A9	Al	SC	LDA	\$A1	; Cursor symbol goes to Cursor location
1F62	AO	00		LDY	\$00	
1F64	91	EO		STA	(CURSLOC), Y	
1 F 66	A9	00		LDA	\$00	
1 F 68	60			RTS		
1 F 69	20	531 F	SCROLL	JSR	TC	;Scroll display one
$1 \mathrm{F6C}$	A9	20		LDA	\$20	;Set up SCURS
$1 \mathrm{F6E}$	85	E2		STA	TEMPREG	
1E70	A9	00		LDA	\$00	
1 E 72	85	E5		STA	SCURS LO	
1 E 74	A9	DO		LDA	\$DO	
1 E76	85	E6		STA	SCURS HI	
1 F 78	A2	00	SCRT	LDX	\$00	;Scroll it
1F7A	AO	40		LDY	\$40	
1F7C	B1	E5		LDA	(SCURS), Y	
1F7E	81	E5		STA	(SCURS), X	
1 F 80	A5	E5		LDA	SCURS LO	
1 F 82	18			CLC		
1 F83	69	01		ADC	\$01	
$1 F 85$	85	E5		STA	SCURS LO	
1 F 87	90	02		BCC	SCAT	
1 F 89	E6	E6		INC	SCURS HI	
$1 \mathrm{F8B}$	A5	E6	SCAT	LDA	SCURS HI	
1 F 8 D	C9	D8		CMP	\$D8	
1 F 8 F	FO	03		BEQ	SCON	

SPUL65: Printer Spooler
Virtual Indirect File

- STOP WAITING for your printer!
- PROCESS words, write programs...all while printing!
- QUEUE lets you pile on print jobs.
- TWO printers may be accomodated on any two ports.
- MULTIPLE COPIES with top and bottom page margins.
- SYSGEN relocates and permits extensive customization.
- VIRTUAL INDIRECT FILES on disk. End space problems when using temporary files. Now do oxtensive oditing of BASIC with your word processor.

XREF: BASIC Cross Referencer

- TABULATES: Referenced line numbers, variable names (numeric, string, array), and defined functions.
- FAST machine language program.
- DISK based for large BASIC source files on any drive.

Data Resource Corporation Suite 203
1040 Lunaai Street
Kailua, HI 96734
(808) 261-2012
\$155/\$10

- FAST machine code written with the ease of BASIC.
- SPEED-optimired, native-code compiler.
- INTEGER subset of OSI-supplied BASIC.
- DISK based to allow largest source and object files.
- EXTENSIONS to BASIC:
- Simple interface to system hardware and software.
- Direct access to 6502 registers.
- Array initialization and optional absolute location.
- WHILE and other structures.
- Combine compiler and interpreter advantages.
- UTILITIES (plus source), manual, and many examples.

R-EDIT: Edit any program or text!

- FULL CURSOR control. Edit anywhere on the screen.
- INSERT, replace, add, delete with RAM-resident editor.
- ONE KEY stroke and you're editing.
- BASIC, assembler, etc. edited without reloading R-EDIT.
- SYSGEN relocates R-EDIT and permits extensive customization.

CP/M to OSI

Disk Translation Service

Frustrated by all those good CP/M disks that won't run on your OSI CP/M system? It's that special OSI disk format! And we can fix that. Just send us your disk, $\$ 15$, and you'll soon have an OSI compatible disk.
number). Normally, the cursor is equal to 161 , which is a white box. If you want to Home the cursor type, PRINT CHR\$(2). If you want to Clear the screen type PRINT CHR\$(1).

Until I began to use the Home and Clear functions, I didn't realize what could be accomplished in a BASIC program. The following is a short program which tests the Random Number Generator of the Superboard's Microsoft BASIC. By running this program, you will see the screen being updated as though the program POKEs the display with the correct information. Actually, the use of the HOME function is all that is being utilized.

```
10 REM RANDOM NUMBER
    GENERATOR TEST
        Remarks
20 DIM A(9)
30 PRINT CHR$(1),CHR$(2)
            Clear and Home
40 POKE 8033,32
            Change the cursor to a space
    50 FOR I= 1 TO 1000
    60 X=INT(RND(1)*10)
    70 A(X)=A(X)+1
    80 PRINT CHR$(2)
        Home the cursor
    90 FOR J=0 TO 9
100 PRINT J;"=`;'A(J)
110 NEXT J
120 PRINT"SAMPLE= ";X
130 PRINT"I= ";I
140 NEXT I
150 POKE 8033,161
    Restore cursor
160 END
```

As you can see by running this program, working with the Superboard II gets easier and easier with the help of an advanced cursor program like Super Cursor V1.3.

$$
\begin{gathered}
\text { NOTICE } \\
\text { Krell Software's } \\
\text { College Boards } 81 / 82 \\
\text { Preparation Series } \\
\text { is now available on } 051 .
\end{gathered}
$$

See our ad elsewhere in this issue.

1 F 91	4 C	78	1 F		JMP	SCRT	; Blank bottom line	
1 F 94	A2	40		SCON	LDY	\$40		
$1 F 96$	A9	20		SCA	LDA			
1 F 98	9D	C0	D7		STA	D7C0		
$1 \mathrm{F9B}$	CA				DEY			
$1 \mathrm{F9C}$	D0	F8			BNE	SCA		
$1 \mathrm{F9E}$	60				RTS			
1F9F	EA	EA	EA		NOP		;for future expansion	
1FA2	A5	E0		ADDC	LDA	CURSLOC LO	;Add SCURS to CURSLOC	
1FA4	18				CLC			
1FA5	65	E5			ADC	SCURS LO		
1FA7	85	E0			STA	CURSLOC LO		
$1 F A 9$	A5	E1			LDA	CURSLOC HI		
1 FAB		E6			ADC	SCURS HI		
1FAD		E1			STA	CURSLOC HI		
lFAF	60				RTS			
1FB0	A5	E0		SBCC	LDA CURSLOC Lo		;Subtract CURSLOC from SCURS	
1FB2	38				SEC			
$1 F B 3$	E5	E5			SBC	SCURS LO		
1FB5		E0			STA	CURSLOC LO		
$1 F B 7$		El			LDA	CURSLOC HI		
1FB9		E6			SBC	SCURS HI		
1FBB	85	E1			STA	CURSLOC HI		
$1 F B D$	60				RTS			
1 FBE	20	53	$1 F$	LEFT	JSR	TC	;Cursor Left	
1 FCl	A5	E3			LDA	HL	;Check for overflow	
$1 F C 3$	F0	10			BEQ	LLE		
1 FC5	C6	E3			DEC	HL	;Add 01 to CURSLOC	
1 FC7		00			LDA	\$00		
1 FC 9	85	E6			STA	SCURS HI		
1 FCB	A9	01			LDA	\$01		
$1 F C D$	85	E5			STA	SCURS LO		
1 FCF	20	B0	$1 F$		JSR	SBCC		
1 FD2	4 C	E4	1 F		JMP	LEFY		
$1 F D 5$	A9	2C		LLE	LDA	\$2C	;Add 2C to Cursor	
1 FD7	85	E3			STA	HL		
$1 F D 9$		00			LDA	\$00		
1 FDB	85	E6			STA	SCURS HI		
1 FDD		2 C			LDA			
1 FDF		E5			STA	SCURS LO		
1 FEl	20		$1 F$		JSR	ADDC		
1 FE4	20		$1 F$	LEFY	JSR	CT		
1FE7	60	-			RTS			
						;		
						; Routines		
$1 E 40$					START			; Start of Program
1580					HOME			; Home cursor
1 EFB					RIGHT			; Cursor Right
$1 F 27$				DOWN			; Cursor Down	
$1 E 95$				CR			; Carriage Return	
1 EAB				LF			; Line Feed	
1EC2				CLS			; Clear Screen	
1 EE8				DISPC			;Display a character	
1 1F53				TC			; Temp reg. goes to display	
1F5A				CT			; Cursor char. goes to temp reg.	
1 1F60				SC			; Cursor symbol goes to disply	
$1 F 69$				SCROLL			; Scroll display one line up	
1FA2				ADDC			;Add SCURS to CURSLOC	
1 FBO				SBCC			; Subtract SCURS from CURSLOC	
1 FBE				LEFT			; Cursor Left	
							; End	

Modifications to Super Cursor V1.3 for 24 by 24 Video
Zero page locations must be
changed as below:

00E0	85	Cursloc LO
00E1	D0	Cursloc HI

Make the following changes to the main program:

1E88	85	LDA $\$ 85$
1EAE	17	CMP $\$ 19$
1EED	17	CMP $\$ 17$
1F01	17	CMP $\$ 17$
1F1D	17	CMP $\$ 17$
1F2D	17	CMP $\$ 17$
1F45	0 E	LDA $\$ 0 \mathrm{E}$
1F49	02	LDA $\$ 20$
1F7B	20	LDY $\$ 20$
1F8E	D4	CMP \$D4
1F95	20	LDY $\$ 20$
1FD6	17	LDA $\$ 17$
1FDE	17	LDA $\$ 17$

Memory Recall Test $\begin{aligned} \text { virmasser } \\ \text {. } \\ \text {. }\end{aligned}$

If a human subject is exposed to a set of random numbers or letters for a short span of time, the number of items recalled is generally about 7 ± 2 items. Theories abound as to the capacity for immediate memory. Obviously words/letters/numbers that are meaningful will be more likely to be remembered than meaningless items. Also, if numbers can be organized in a meaningful way, then the probability of accurate recall is greater. It is possible, with training, to increase one's immediate memory span by a considerable amount. Let me give a typical example. Exposed to the numbers: 162536496481 (and providing one recognizes that each pair of digits is the square of consecutive natural numbers from 4 to 9) then one only has to remember six "chunks," but will nevertheless seem to remember 12 numbers.

However, if the numbers are random, obviously one may not always be able to organize the digits in a meaningful way. My program works in the following way: it asks the subject how many numbers he or she wants to recall. When the subject enters the required items, the program will display the appropriate number of random numbers for a certain time. This exposure time incidentally, is a function of the number of numbers chosen. So that three numbers will be exposed for a much shorter time than ten numbers. After the exposure of random numbers, the screen is automatically cleared and the subject is asked to input the numbers in the sequence originally shown. The program will terminate upon the first erroneous digit input and give the correct answers.

So, having explained a bit about the psychology of immediate memory and presented a program to test your memory span, what use can this program be put to?

Under the influence of alcohol or sedative drugs the memory span drops in proportion to the amount consumed. Further, in certain conditions of brain damage it is not possible to remember more than two or three digits. Thus it has diagnostic possibilities. But more interesting, in my opinion, is the way the program encourages you to remember. If one starts at a low level, the initial successes create the automatic reinforcements necessary to increase one's memory span. This is remarkable since the numbers displayed are random and there is very little chance of organizing them in any meaningful way.

It can be used for any age group from nine
years onwards. The program is both simple and absorbing. It can be adapted for any computer using BASIC, but was specifically written for the Superboard II.

```
1 FOR T=1 TO 32:PRINT:NEXT
2 PRINT " MEMORY RECALL TEST"
3 PRINT:PRINT:PRINT
8 CLEAR
9 PRINT " TYPE NUMBER OF NUMBERS TO BE ᄀ
        \negRECALLED"
10 INPUT P
15 DIM A(P)
16 FOR I=1 TO 32:PRINT:NEXT
20 FOR N=1. TO P
25 A(N)=INT(RND (1)*16)
26 PRINT TAB(2);
30 PRINT A(N);:IF POS(1)>18 THEN PRINT:
    \negPRINT
50 NEXT
55 FOR X=1 TO 500*N:NEXT X
56 FOR T=1 TO 32:PRINT:NEXT
60 FOR N=1 TO P
70 INPUT Y
80 IF Y<>A(N) THEN 106
85 NEXT N
90 PRINT " WELL DONE "
95 GOTO 8
10日 PRINT " INCORRECT"
11g PRINT " THE CORRECT ANSWERS ARE"
    | FOR N=1 TC 2
125 PRINT TAB(2);
130 PRINT A(N);:IF POS(1)>18 THEN PRINT:
        \negPRINT
135 NEXT N
136 PRINT:PRINT:PRINT
140 GOTO }
READY.
```


A Look At Superpet

The SuperPET looks about the same as an 8032 PET which is not surprising - it is an 8032 with two additional boards inside, 64 K more RAM (necessary to hold the new, disk-based languages), and a new I/O system. Externally, it resembles an 8032 except for three things: 1 . the logo reads "SuperPET" and, below, "SP9000"; 2. there is a set of stick-on key overlays for APL special characters; and 3. there are two, three-position switches attached to the side of the black base, below the numeric keypad.

SuperPET comes with four high-level languages, "Waterloo micro-" versions of: BASIC (40.5 K), PASCAL (40.5 K), FORTRAN (52.5 K), and APL (64.75 K). COBOL is expected soon. In addition, there is an extensive development system (nearly a high-level language) for work in 6809 machine language (an Assembler, Monitor, Linker, and Editor).

Avallability

According to Commodore, a SuperPET (\$1995) ordered today would arrive in about 45 days. Owners of 8032's could install a single-board upgrade for approximately $\$ 500$. This upgrade is expected to be available early in 1982.

All the languages are on a single 8050 disk. This does not mean, though, that the SuperPET cannot be used with a 2040 disk system. Program 1 will redefine an 8050 as device \#9. It should be linked to a power-off 2040. Turning on the 2040 leaves it as device \#8. Program 2 will move the languages from an 8050 to a 2040. The value of $\mathrm{F} \$$ must be added to the program when transferring the final two programs (a library of utilities) on the disk, " $\& 00$,)". $\% 80$ " and " $7!4$, ,". $\% 80$ ". The internal quotes cannot, of course, be part of a filename what's more, the characters are not what they seem and must be defined using CHR\$ as shown in Program 3.

Program 1.

```
10 OPEN 15,8,15
2\emptyset PRINT #15,"M-W" CHR$(12)CHR$(\emptyset\emptyset
        ) CHR$ (2)CHR$ (9+32)CHR$ (9+6
        4)
3\emptyset REM THE LAST TWO 9'S DEFINE DEV
        ICE #9.
4\emptyset REM FOR THE 2\emptyset31 (SINGLE DRIVE)
    , USE ll9 INSTEAD OF l2.
```


Program 2.

5 PRINT"\{CLEAR\}":CATALOGDØONU9:IN PUT" $\{$ DOWN $\}$ FILE NAME"; F\$
7 SCRATCH(F\$): POKE59464, \varnothing
1ø OPEN1,9,8,"Ø:"+F\$+",P,R":K=1:SO $=59464$
$2 \emptyset$ OPEN2,8,8,"Ø:"+F\$+",P,W": B=255: Z= \varnothing
$3 \emptyset$ GET\#l,A\$:S=ST:B=B+K:IFB>254THEN $B=Z: N B=N B+K: P R I N T "\{U P\}\{E R A$ ERASE END\}BLOCK:"; NB
35 IFAS=""THEN $\bar{A} \$=C H R \(Z)
$4 \emptyset$ PRINT\#2,A\$;:IFS=ZTHEN3 \emptyset
6ø CLOSE1:CLOSE2:POKE 59467, \varnothing
$7 \emptyset$ PRINT" $\{C L E A R\}$ TRANSFER COMPLETE\{ DOWN \} ": CATALŌGD \emptyset

Program 3.

1 REM CREATES FILENAME FOR NON-ST ANDARD CHARACTERS IN SYSTE M LIBRARY FILENAME
3 F : $=\mathrm{CHR} \$(1 \emptyset 2)+\mathrm{CHR} \$(112)+\mathrm{CHR} \$(112$) +C HR (108)
$4 \mathrm{~F} \$=\mathrm{F} \$+\mathrm{CHR} \$(105)+\mathrm{CHR} \$(98)+\mathrm{CHR} \$(4$ $6)+$ CHR $\$(1 \emptyset 1)+$ CHR $(12 \emptyset)+C H R$ \$(112)
5 REM ELIMINATE LINE FIVE

Program 3a.

```
1 REM FILENAME 7!4,)".%80
3 F$=CHR$(119)+CHR$(97)+CHR$(116)
        +CHR$(108)
4 F$=F$+CHR$ (105) +CHR$ (98) +CHR$ (4
        6)+CHR$(1\emptysetl)+CHR$ (12\emptyset) +CHR
        $(112)
1 REM FILENAME 7!4,)".880
\(3 \mathrm{~F} \$=\mathrm{CHR} \$(119)+\mathrm{CHR} \$(97)+\mathrm{CHR} \$(116)\) +CHR\$ (1ø8)
\(4 \mathrm{~F} \$=\mathrm{F} \$+\mathrm{CHR} \$(105)+\mathrm{CHR} \$(98)+\mathrm{CHR} \$(4\) \(6)+\) CHR \((1 \emptyset 1)+\) CHR\$ \((12 \emptyset)+\) CHR \$(112)
```


Data Manager selected by NASA, Kennedy Space Center

SAVE TIME! SAVE MONEY! JINSAM saves taxpayers 100 's of thousands of \$

"Much more powerful than you can imagine!"

Robert Baker
Kilobaud Microcomputing

JINSAM is an integrated system. It makes it easy to use your information to its fullest. No more will hundreds of valuable hours be spent searching or analyzing needed information nor re-entering information for various reports.

JINSAM transforms your desk-top computer into the "state of the art" data processing machine with features and accessories found nowhere, even at 10 times the price. NASA, Kennedy Space Center selected JINSAM 8.0 and saved approximately $\$ 95,000$ over other software/hardware costs. Riley County, Kansas also selected JINSAM 8.0 and saved approximately $\$ 90,000$ over other software/hardware costs.
JINSAM is designed for you. It is forgiving. It has help commands for every option, available at the touch of a button. The amount of information you store, its structure and/or your hardware can change but your data won't have to be re-entered. Recovery utilites are included even for catastrophes, security passwords are built in for privacy, simple editing and entry includes auto recall, and deleting records is easy and the space is reclaimed. JINSAM includes TWO FREE accessories for reports and labels. You have unlimited report formats with summing and lined up decimals and the label printer prints up to 5 across - any size and even allows single envelopes or index cards.

JINSAM 1.0 allows fast and easy file handling, manipulation and report generation for any CBM computer with CBM 2040 disk drive. It features a menu for ease, has encrypted passwords, 3 deep sorts, .5 to 3 second recall.
JINSAM 4.0 for CBM 4000 series adds JINSORT, user accessible machine sort of 1000 records in 15 seconds; compaction/expansion of information, automatic list maintainance, unlimited number of fields, unlimited record length and much more.

JINSAM 8.0 for CBM 8000 series has all 4.0 features plus unlimited sort, horizontal format, and search by key or record number.

JINSAM 8.2, NEW FOR ' 82 expands 8.0 capabilities by adding information search by word, key or record number and machine language print, format and manipulation routines.

* CUSTOM DATA FILES * CUSTOM REPORTS/LABELS *KEYED RANDOM ACCESS \star FAST/EASY/MENU DRIVEN * MULTIPLE SEARCH KEYS \star PRIVACY ACCESS CODES *WILD CARD SEARCH

JINSAM EXECUTIVE version (soon to be released) is our most powerful professional system for the CBM 8000 and 9000 series. Executive will have 8.2 extended features plus allow multiple users with in-use lockout protection, executive command files, automatic math relations, join, merge or link files, greatly increased record capacity and machine information search by word, as well as by key or record number and many, many more features.

There are currently 7 more interfacing modules and more under development, including independent interfaces between JINSAM and business pack, ages for your $\mathrm{G} / \mathrm{L}, \mathrm{A} / \mathrm{R}, \mathrm{A} / \mathrm{P}$ needs. We announce the availability of modules and enhancements in JINSAM's quarterly newsletter.

WORDPROPACK - Intelligent interface for WordPro $3,3+, 4,4+$, creates lists of information from JINSAM files. It allows up to 10 conditions based on each item of information. Produce individualized letters, report cards, special reports, checks, invoices, etc.

MULTI-LABEL - Prints multiple labels per record with up to 2 lines for messages and consecutive numbering. Produce inventory, caution labels, bulk mail labels, etc.
MATHPACK - global calculator/editor,+- , *, /, by another field or constant; null (remove contents) of a field or replace contents of a field with any word, number or phrase. Sum multiple fields in each record or running sum of single field in all records. Extract information or effect permanent change. Replace in the same field or place in a waiting field.
DESCRIPTIVE STATPACK - Determine MEAN, MEDIAN, MODE, STANDARD DEVIATION, VARIANCE, RANGE. Generate HISTOGRAMS from 1 to 25 steps, and produce Z-SCORE reports.
ADVANCED STATPACK - (You must also acquire DESCRIPTIVE STATPACK) Generate one, two or three way CROSSTABS (number of occurance) CHI SQUARE, LINEAR REGRESSION, with graphic representation and prediction, LINEAR CORRELATION and SIMPLE ANALYSIS OF VARIANCE.
CALCPACK - 2 way interface to VisiCalc or any user program. It lets you use VisiCalc for complex manipulation, editing, placing results in JINSAM for sorting, storing or moving data to WordPro as well as giving the ability for exchange with your own applications.
INTERAC - Interface which can read VisiCalc files, WordPro files and almost any sequential files
to build JINSAM databases automatically. For example: You could "download" information on holerith cards to sequential files and INTERAC would place them into JINSAM files.

All accessories are accessed thru the JINSAM menu and require security password to gain entrance.

JINSAM gives you FREEDOM OF CHOICE. Start with JINSAM 1.0 and upgrade hardware and data at any time. Choose from accessories at any time. The JINSAM Newsletter brings the latest updates, user input and uses and keeps an eye on the future.

JINSAM stands alone by placing "a lot of potential computing power in one integrated program package" (Fred Klein, Ferson div. of Bausch \& Lomb). "The JINSAM package is justification for buying a system no matter what the hardware, be it Vector or Commodore or whatever the system" (Larry Colvin, Micro Computer Systems). It is a "grandfather" in this young field. JINSAM EXECUTIVE will be the third generation in development. All JINSAM systems are sophisticated and flexible yet easy to use. JINSAM is saving its users valuable time and money in government, educational and research institutions, business and industry worldwide.

JINSAM is a Commodore approved product. See your local dealer for a demonstration.

JINSAM is a trademark of JINI MICRO-SYSTEMS, Inc.
WordPro is a trademark of Professional Software, Inc.
VisiCalc is a trademark of Professional Software, Inc.
CBM is a trademark of Commodore Business Machines, Inc.

JINSAM Data Manager

.... Additional Information and nearest dealer
.... Newsletter Subscription (\$5 US/\$8 Worldwide)
\ldots. . JINSAM Demo Disk (\$15, plus shipping \& tax)
\ldots. User's Guide ($\$ 40.00$, plus shipping \& tax)
Please send to:
Name
Position
Company
Address
City, State, Zip
Phone ()
Computer, Disk
Application

JINI MICRO-SYSTEMS, Inc.
Box 274C • Kingsbridge Station Riverdale, New York 10463
(212) 796-6200

Manuals

The computer comes with six manuals, one for each language plus the System Overview: Commodore SuperPET. They are large (the BASIC manual is 221 pages) and contain numerous example programs (a second disk includes some of them). The manuals may be purchased separately from Howard W. Sams \& Co., Inc., 4300 West 62 nd St., P.O. Box 7092, Indianapolis, IN 46206. A minor annoyance in this otherwise carefully planned documentation is the fact that the number 1 and the lowercase l are identical in the Assembler handbook. In general, however, great care has obviously been taken to thoroughly explain each language. The BASIC book, for example, could easily serve as a textbook for learning this version of the language.

The Software Philosophy

Perhaps one of the first questions which comes to the mind of a microcomputerist is: what is a 40 K BASIC? Personal computers contain versions of BASIC which are usually 4 to 12 K large. An advanced BASIC might reach 18 K . What is added when BASIC is 40.5 K ?

The authors of System Overview: "These language interpreters have been designed specifically for educational use in the teaching of computer programming. The design of the interpreters features good error diagnosis and debugging capabilities which are useful in educational and other program-development environments." There are explicit, lengthy error messages, search and replace (from the Editor), a trace facility, and structured programming.

Briefly, structured programming is a kind of tightening up of the rules of a language. It eliminates programming shortcuts in an effort to make programs more readable and to make languages more easily learned. Loops, for example, are supposed to be indented so they can be seen:

10	LOOP
20	$\mathrm{X}=\mathrm{X}+1$
30	$\mathrm{Y} \$=$ VALUE
40	IF $\mathbf{X}=5000$
40	THEN QUIT
50	ENDLOOP

Multiple statements per line are discouraged, spaces are required between the IF and X in IF X THEN..., the keyword VALUE must be spelled out (it replaces STR\$ and VAL), LOAD "FILENAME" must have the second quote, NEXT must have a variable, dir "disk/l" replaces cAd1, and so on. This elimination of shortcuts makes programs more easily debugged, more easily read, but it also makes them larger, slows typing them in, and slows execution times. Comparing the run time of the above with the non-structured equivalent: (FOR $\mathrm{I}=1 \mathrm{TO} 5000: \mathrm{Y} \$=\mathrm{STR} \$(\mathrm{I})$: NEXT) takes 54 seconds, the structured version takes 119 seconds.

Some abbreviations are permitted: 1 for LIST, ? for PRINT. Also, the language contains a DEL function for deleting lines, RENUM for renumbering, and A for automatic line numbering.

The BASIC

As might be expected, there are significant additions and some changes to the Microsoft BASIC which is standard on other PET/CBM computers. NEW becomes CLEAR. TI becomes TIME. ! can mean REM. Structured control statements (IF, ELSE, etc.) must not be followed with anything else on a line.

A number of new functions are implemented: CURSOR ($\mathrm{i} \%$) sets the cursor to the position on the screen defined by the argument. DATE $\$$ holds the current date. EPS gives the smallest number that the computer can represent. INF gives the largest. $\mathrm{FP}(\mathrm{x})$ returns the fractional part of x . IP(x) gives the integer part of $x . \operatorname{HEX}(\mathrm{x} \$)$ will give the hexadecimal equivalent of the decimal argument (up to a value of 32737) and HEX\$(x) goes the other way. IDX $(\mathrm{a} \$, \mathrm{~b} \$)$ returns the position at which $\mathrm{b} \$$ first occurs within a\$. IO STATUS replaces ST. $\operatorname{MOD}(\mathrm{x}, \mathrm{y})$ provides the modulus of x for the range y. ORD $(\mathbf{\$} \$)$ returns the position of the one-character s\$ in the system's set of characters. PI is pi. RPT\$($\mathrm{s} \$, \mathrm{n}$) gives a string which is $\mathrm{s} \$$ concatenated n times. STR $\$(\mathrm{a} \$, \mathrm{~s}, 1)$ is MID\$.

Changes or additions to BASIC statements include: CHAIN provides program overlaying with parameter passing (USE, like DATA, contains the list to be passed). FNEND permits multiple-line function definitions. GUESS...ADMIT...ENDGUESS establish a structure similar to: 10 INPUT A $\$$ <> "YES and A\$ <> "NO" THEN PRINT "ANSWER YES OR NO": GOTO 10. (The ADMIT statement replaces an IF THEN.)

ELSEIF, ENDIF, LOOP, ENDLOOP, UNTIL, ELSE, WHILE, UNTIL, and QUIT are all statements which replace various IF THEN and FOR NEXT loop types. They are aspects of "structured programming." An ON-RESUME/IGNOREENDON structure permits control over some error conditions from within a program. Zero division, EOF, pressing the STOP key, under- and overflow are among the conditions which can be trapped.

This brief summary merely hints at the wealth of software and hardware to be explored in the SuperPET. When asked what impresses them most about this machine, each industry expert answers differently. Some say that the introduction of a serious version of APL is the most significant aspect of the computer. Some say it is the built-in RS-232 interface. Some mention the multiple languages or the inherent ability to speak directly to mainframe computers or the massive bank-switched RAM. All seem to agree, however, that the new PET is super. ©

INVENTOAY CONTROL PUS: *INVOICING — ORDER ENTRY - ACCOUNTS RECEIVABLE
 for CBM 8032 and 8050

*PARTRAC: Three separate but interconnected computer programs. All are "on line" or in the computer at the same time. It is not necessary to change disks with PARTRAC!

INVOICING SYSTEM

a. Instant stock check on any part \#.
b. Instant price check on any part \#.
c. Instant customer status check.
d. Writes invoices and posts to accounts receivable automatically.
e. Writes credit memos and posts to accounts receivable automatically.
f. Writes daily totals reports.

INVENTORY SYSTEM

a. Keeps track of all information related to a part \#. Prices, costs, quantities on order, in stock, back ordered and vendor.
b. Prints reports
1.) "Reorder Advice Report"
2.) "Price List Report"
3.) "Complete Parts Inventory Report" with total cost of inventory. (Your accountant will like that.)

ACCOUNTS RECEIVABLE

a. Posts all open account sales.
b. Prints "Accounts Receivable Report" with aging function.
c. Prints "Statements".
d. Prints "List of Accounts Names".
e. Allows partial payments.

PARTRAC is fully expandable because of modular design. The basic system handles 8000 part \#'s, 1000 accounts, 10,000 open invoices. This is expandable to about 20,000 part \#'s, 3,000 accounts and 25,000 open invoices.

GUARANTEED BEST PRICES!

Vic-TV Modual .-.........-. $\$ 19.00$
Vic Cassette S69.00
Vic Disk Drive --------------- S Call
Vic 6 Pack program .-.--- $\$ 44.00$

CBM Software

WordPro 3 Plus	S199.00
WordPro 4 Plus	S299.00
Commodore Tax Package	_ \$399.00
Visicaic	S149.00
EBS Accts. Rec./Inventory Interac	st. .-- \$595.00
BPI General Ledger	S329.00
OZZ Information System	S329.00
Dow Jones Portfolio	S129.00
Pascal	S239.00
Legal Time Accounting	S449.00
World Craft 80	S289.00
Word Check	S180.00
Create-A-Base	S180.00
Power	\$89.00
Socket-2-Me	\$20.00
Jinsam	Call
Printers	
Epson MX-70	
Epson MX-80	
Epson MX-80 FT	Call for Prices
Diablo 630	
Nec 5530	S2495.00
TEC 1500 Starwriter 25cps	\$1495.00
TEC 1500 Starwriter 45cps	\$1995.00

SUPERMON: A Primary Tool For Machine Language Programming

Here is the legendary Supermon - a version for Upgrade (3.0 or "New ROM") and 4.0 PETs, all keyboards, all memory sizes, 40 or 80 column screens. You need not know how to program in machine language (ML) to enter this program or to use it. In fact, exploring with Supermon, you will find that the mysterious world of your computer's own language becomes gradually understandable. You will find yourself learning ML.

Many ML programmers with PET/CBM machines feel that Supermon is the essential tool for developing programs of short to medium length. All Upgrade and 4.0 machines have a "resident" monitor; a program within the computer's ROM which allows you to type SYS 1024 and see the registers, load and save and run ML programs, or see a memory dump (a list of numbers from the computer's memory cells.) But to program or analyze ML easily, disassembler, assembler, hunt, and single-step functions are all practical necessities. Supermon provides these and more.

Even if you've never assembled a single instruction and don't know NOP from ROL, this article will lead you step-by-step through the entry and SAVE of Supermon. And even if you do not plan to explore ML right now, you might consider putting this program into your library. If you ever decide to work a bit in ML, Supermon will prove invaluable.

How To Enter Supermon

1. Type in the BASIC program (Program 1). It is the same for all versions. Then save it normally by typing SAVE "CONTROL". This program will be used later to automatically find your memory size, transfer Supermon to the top, and report to you the SYS address you use to activate it.
2. Now the hard part: type SYS 1024 which enters you into the machine language monitor. You will see something like the following:

Figure 1.
B*

> | | PC | IRQ | SR | AC | XR | YR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .$;$ | $\emptyset 4 \emptyset 1$ | E 455 | 32 | $\emptyset 4$ | 5 E | $\emptyset \emptyset$ | Then type: M 06000648 and you will see something similar to (the numbers will be

different, but we are going to type over them which, after hitting RETURN on each line, will enter the new numbers into the computer's memory.):

Figure 2.

We have divided Supermon into 21 blocks with 80 hexadecimal numbers per block to make typing easier. There is a final, shorter block with 64 numbers. Type right over the numbers on the screen so that line 0600 looks like it does in Program 2. Then hit RETURN and cursor over to the A5 on line 0608. (Set a TAB to this position if your keyboard has a TAB key.) Then type over the numbers in this line and so on. When you have finished typing your RETURN on line 0648 , type in: M 0650 0698 and the next block will appear for you to type over. Continue this way until you finish entering the new version of line 0CC8 at the end. (Hope that no lightning or fuses blow.)
3. If you have Upgrade ROMs, you will need to correct the lines listed in Program 3 at this point. To change line 06D0, simply type M 06D0 06D0 and it will appear so that you can type over it and RETURN as in step 2.
4. Now Supermon is in your memory and you must SAVE it. Hit RETURN so that you are on a new line and type: S "SUPER-
MON", 01,0600, 0CCC (to SAVE to tape) or type: S "0:SUPERMON", $08,0600,0 \mathrm{CCC}$ (to SAVE to disk drive 0).
5. Finally, you will want to use the Checksum program to see if you made any errors during the marathon. You probably did, but to make it as painless as possible, the Checksum program will flash through your Supermon and let you know which blocks need to be corrected. So, type in Program 4 (or if you have Upgrade ROMs, use the first three lines from Program 5). SAVE Checksum just in case. Then LOAD "SUPERMON" (an ordinary LOAD as with a BASIC program will slide it in starting at

WATCH

THIS

SPACE

WATCH

THIS

SPACE

CBMIPET？SEE SKYLES ．．．CBMIPET？
The Disk－O－Pro in any PET with Version III（BASIC 2．0）ROMs（\＃\＃\＃COMMODORE BASIC \＃\＃\＃）will give 19 software compatible disk instructions＊： 15 identical with the new BASIC 4.0 （or with 8032 ROMs）compatible with both old and new DOS．Plus 4 addi－ tional disk commands．．．including appending（MERGE），overlaying（MERGE \＃
\qquad and PRINT USING，allowing formatting output of strings and numbers on the PET screen or on any printer．
＊NOTE：Old DOS doesn＇t recognize three of the commands．
Those are just 3 of the important commands－and there are 7 more beauties－on your Disk－O－Pro that have never been available previously to PET／CBM users．（Skyles does it again！）．．．Beauties like the softtouch key（SET）which allows you to define a key to equal a sequence of up to 80 keystrokes；like SCROLL whereby all keys repeat as well as slow scrolling and extra editing features；like BEEP which allows you to play music on your PET．
The Disk－O－Pro is completely compatible with the BASIC programmer＇s Toolkit．The chip resides in the socket at hexadecimal address $\$ 9000$ ，the rightmost empty socket in most PETS．And for the owners of＂classic＂（or old）PETS，we do have interface boards．
（For those owning a BASIC 4.0 or 8032 ，even though the Disk－O－Pro may not be suit－ able，the Command－O is．Just write to Skyles for additional information．Remember，we have never abandoned a PET owner．）
Complete with 84－page manual written by Greg Yob．．．who was having so much fun that he got carried away．We had expected 32 pages．
Skyles guarantees your satisfaction：if you are not absolutely happy with your new Disk－O－Pro ROM chip，return it to us within ten days for an immediate full refund．
Disk－O－Pro from Skyles Electric Works．
Complete with interface board（for＂classic＂PETS） Shipping and Handling．．．．．．．．．．．．．．．．．．．．．．．．．．（USA／Canada）\＄2．50（Europe／Asia）\＄10．00 California residents must add $6 \% / 61 / 2 \%$ sales tax，as required．
Skyles Electric Works
231E South Whisman Road
Mountain View，California 94041 （415）965－1735
IMED
address 1536, above the end of Checksum). Then RUN. Incorrect blocks will be announced. When you know where the errors are, type SYS 1024 and then M XXXX XXXX for the starting and ending addresses of the bad block. Check the numbers against Program 2 (or Program 3) and in all corrections. If, despite everything, you cannot find an error within a block, make sure that the corresponding number within the DATA statement of the Checksum program is correct. Then SAVE the good version "SUPERMON1" as in step 4. "SUPERMON1" as in step 4 .
6. Your reward is near. LOAD "CONTROL" and then LOAD SUPERMON 1. Then type RUN and hold your breath. If all goes well, you should see:

Figure 3.

SUPERMON4!
DISSASSEMBLER BY WOZNIAK/BAUM SINGLE STEP
BY JIM RUSSO
MOST OTHER STUFF ,BY BILL SEILER
TIDIED \& WRAPPED BY JIM BUTTERFIELD

LINK TO MONITOR -- SYS 31283
SAVE WITH MLM:
.s "SUPERMON", øl,7A33,8øøø
READY.

And you should be able to use all the commands listed in the Supermon Summary. If some, or all, of the commands fail to function, check the last, short block of code to see if there are any errors.
After Supermon is relocated to the top of your memory, use a ML SAVE to save it in its final form. Instructions are on screen after RUN.

SUPERMON SUMMARY

COMMODORE MONITOR INSTRUCTIONS:
G GO RUN
L LOAD FROM TAPE OR DISK
M MEMORY DISPLAY
R REGISTER DISPLAY
S SAVE TO TAPE OR DISK
X EXIT TO BASIC
SUPERMON ADDITIONAL INSTRUCTIONS:
A SIMPLE ASSEMBLER
D DISASSEMBLER
F Fill MEMORY
H HUNT MEMORY

I SINGLE INSTRUCTION
P PRINTING DISASSEMBLER
T TRANSFER MEMORY
SUPERMON WILL LOAD ITSELF INTO THE TOP OF MEMORY .. WHEREVER THAT HAPPENS TO BE ON YOUR MACHINE.
you may then save the machine code FOR FASTER LOADING IN THE FUTURE. BE SURE TO NOTE THE SYS COMMAND WHICH LINKS SUPERMON TO THE COMMODORE MONITOR.

SIMPLE ASSEMBLER
.A $2 ø 0 \emptyset$ LDA \#\$12
.A $2 ø 02$ STA $\$ 8 \emptyset 0 \square, \mathrm{X}$
.A $2 \emptyset 05$ (RETURN)
-
IN THE ABOVE EXAMPLE THE USER STARTED ASSEMBLY AT løøø HEX. THE FIRST INSTRUCTION WAS LOAD A REGISTER With immediate 12 hex. In the second LINE THE USER DID NOT NEED TO TYPE THE A AND ADDRESS. THE SIMPLE ASSEMBLER PROMPTS WITH THE NEXT ADDRESS. TO EXIT THE ASSEMBLER TYPE A RETURN AFTER THE THE ADDRESS PROMPT. SYNTAX IS THE SAME AS THE DISASSEMBLER OUTPUT.

DISASSEMBLER
-D $2 ø \emptyset \emptyset$
(SCREEN CLEARS)
., 2000 A9 12 LDA \# $\$ 12$
., 2002 9D øø 80 STA $\$ 80 \emptyset 0, \mathrm{X}$
., $2 \emptyset \emptyset 5$ AA TAX
., 2006 AA TAX
(FULL PAGE OF INSTRUCTIONS) DISASSEMBLES 22 INSTRUCTIONS Starting at løøø hex. the three Bytes FOLLOWING THE ADDRESS MAY BE MODIFIED. USE THE CRSR KEYS TO MOVE TO AND MODIFY the bytes. hit return and the bytes IN MEMORY WILL BE CHANGED. SUPERMON WILL THEN DISASSEMBLE THAT PAGE AGAIN.

```
    PRINTING DISASSEMBLER
.P 2øø0,2ø40
2000 A9 12 LDA #$12
2002 9D \emptyset\emptyset 80 STA $8\emptyset\emptyset\emptyset,XY.
20ø5 AA TAX
203F A2 Ø\emptyset LDX #$0\emptyset
TO ENGAGE PRINTER, SET UP BEFOREHAND:
        OPEN 4,4:CMD4
ON 4.0, ACCESS THE MONITOR VIA A CALL
SYS 54386 (*NOT* A BREAK) COMMAND
    SINGLE STEP
.I
        ALLOWS A MACHINE LANGUAGE PROGRAM
TO BE RUN STEP BY STEP.
CALL REGISTER DISPLAY WITH .R AND SET
```


Standard Features:

- Full power to PET/CBM for a minimum of 15 minutes
- Installs within PET/CBM cabinet
- No wiring changes necessary
- Batteries recharged from PET/CBM integral power supply

Specifications:

- Physical Size: $5.5^{\prime \prime} \times 3.6^{\prime \prime} \times 2.4^{\prime \prime}$
- Weight: 4.5 lbs .
- Time to reach full charge: 16 hours
- Duration of outputs: Minimum of 15 min .
- Voltages: $+16,+9,-12,-9$
- Battery Life Expectancy: 3 to 5 years
- Battery On-Off Switch

For Use With:

- Commodore PET/CBM 2001 and 4000 series computer
- Commodore PET/CBM 8000 series computer (screen size will not be normal on battery back-up)
- Commodore C2N Cassette Drive

FOR COMMODORE PET/CBM COMPUTERS

Never again lose valuable data because of power shortages or line surges. BackPack supplies a minimum of 15 minutes reserve power to 32 K of memory, the video screen and tape drive. BackPack fits inside the PET/CBM cabinet and can be installed easily by even the novice user. BackPack is recharged during normal operation and has an integral on-off switch.

BackPack comes fully assembled and tested. Instructions included.
Also available, Back Pack unit for Commodore CBM 4040 and 8052 Dual Drive Floppy Disk.

Dealer and distributor inquiries invited.

BackPack is a trademark of ETC Corporation CBM/PET are trademarks of Commodore Business Machines

Designed and manufactured by:

ELECTRONIC TECHNOLOGY CORPORATION
P.O. Box G, Old N.C. 42

Apex, North Carolina 27502
Phone: (919)362-4200 or (919)362-5671

Electronic Manufacturing Technical Design and Development Computer System Technology

THE PC ADDRESS TO THE DESIRED FIRST INSTRUCTION FOR SINGLE STEPPING.
THE . I WILL CAUSE A SINGLE STEP TO
EXECUTE AND WILL DISASSEMBLE THE NEXT. CONTROLS:
< FOR SINGLE STEP;
RVS FOR SLOW STEP;
SPACE FOR FAST STEPPING;
STOP TO RETURN TO MONITOR.
[ON BUSINESS KEYBOARDS--
USE $8, \leftarrow, 6$ AND STOP].
FILL MEMORY
.F løøø 11ØØ FF
FILLS THE MEMORY FROM løøØ HEX TO 11ØØ HEX WITH THE BYTE FF HEX.

GO RUN . G

GO TO THE ADDRESS IN THE PC REGISTER DISPLAY AND BEGIN RUN CODE. ALL THE REGISTERS WILL BE REPLACED WITH THE DISPLAYED VALUES. .G 10ø0

GO TO ADDRESS $1 \emptyset \emptyset \emptyset$ HEX AND BEGIN RUNNING CODE.

HUNT MEMORY

- H Cøøø Døøø 'READ

HUNT THRU MEMORY FROM CØØØ HEX TO Døøø HEX FOR THE ASCII STRING READ AND PRINT THE ADDRESS WHERE IT IS FOUND. A MAXIMUM OF 32 CHARACTERS MAY BE USED. - H CøØØ DøøØ $2 \emptyset$ D2 FF

HUNT MEMORY FROM CØØØ HEX TO DØØØ HEX FOR THE SEQUENCE OF BYTES $2 \emptyset$ D2 FF AND PRINT THE ADDRESS. A MAXIMUM OF 32 BYTES MAY BE USED.

LOAD

. L
LOAD ANY PROGRAM FROM CASSETTE \#l. . L "RAM TEST"

LOAD FROM CASSETTE \#l THE PROGRAM NAMED RAM TEST.
. L "RAM TEST", ø8
LOAD FROM DISK (DEVICE 8) THE PROGRAM NAMED RAM TEST.
THIS COMMAND LEAVES BASIC POINTERS UNCHANGED.

```
MEMORY DISPLAY
.M Ø\emptyset\emptyset\emptyset Ø\emptyset8\emptyset
.:.\emptyset\emptyset\emptyset\emptyset Ø\emptyset \emptyset1 Ø2 Ø3 Ø4 Ø5 Ø6 Ø7
: Ø\emptyset\emptyset8 Ø8 Ø9 ØA ØB ØC ØD ØE ØF
```

DISPLAY MEMORY FROM ØØØØ HEX TO Øø8Ø HEX. THE BYTES FOLLOWING THE CAN BE ALTERED BY TYPING OVER THEM THEN TYPING A RETURN.

REGISTER DISPLAY

. R
PC IRQ SR AC XR YR SP
-; Øøøø E62E Ø1 Ø2 Ø3 Ø4 Ø5
DISPLAYS THE REGISTER VALUES SAVED WHEN SUPERMON WAS ENTERED. THE VALUES MAY BE CHANGED WITH THE EDIT FOLLOWED BY A RETURN.

USE THIS INSTRUCTION TO SET UP THE PC VALUE BEFORE SINGLE STEPPING WITH . I

SAVE

.S "PROGRAM NAME", Ø1, ø8Øø, ØC8ø SAVE TO CASSETTE \#l MEMORY FROM Ø४øø HEX UP TO BUT NOT INCLUDING ØC8Ø HEX AND NAME IT PROGRAM NAME. . S " $\emptyset:$ PROGRAM NAME", $08,12 \emptyset \emptyset, 1 F 5 \emptyset$ SAVE TO DISK DRIVE \#Ø MEMORY FROM $12 \emptyset \emptyset$ HEX UP TO BUT NOT INCLUDING $1 F 5 \emptyset$ HEX AND NAME IT PROGRAM NAME.

TRANSFER MEMORY
-T 1øøØ 11Øø 50øø
TRANSFER MEMORY IN THE RANGE løøø HEX TO lløø HEX AND START STORING IT AT ADDRESS 5øøØ HEX.

EXIT TO BASIC

. X
RETURN TO BASIC READY MODE.
THE STACK VALUE SAVED WHEN ENTERED WILL BE RESTORED. CARE SHOULD BE TAKEN THAT THIS VALUE IS THE SAME AS WHEN THE MONITOR WAS ENTERED. A CLR IN BASIC WILL FIX ANY STACK PROBLEMS.

Program 1.

$1 \emptyset \emptyset$ PRINT" \{CLEAR\} \{ø2 DOWN\} \{REV\} SUP ERMON!!"
$11 \emptyset$ PRINT" $\{D O W N\}$ DISSASSEMBLER ~ \{REV\}D\{OFF\} BY WOZNIAK/BAU M
$12 \emptyset$ PRINT" SINGLE STEP \{REV\}I \{OFF\} BY JIM RUSSO
130 PRINT"MOST OTHER STUFF \{REV\},HA LT\{OFF\} BY BILL SEILER
$15 \emptyset$ PRINT" $\{D O W N\} T I D I E D ~ \& ~ W R A P P E D ~ B Y$ JIM BUTTERFIELD"
$17 \emptyset \operatorname{L}=\operatorname{PEEK}(52)+\operatorname{PEEK}(53) * 256: \operatorname{SYSl} 536$: $\mathrm{M}=\mathrm{PEEK}$ (33) : $\mathrm{N}=\operatorname{PEEK}$ (34)
$18 \emptyset$ POKE52,M:POKE53,N:POKE48,M:POKE 49, $\mathrm{N}: \mathrm{N}=\mathrm{M}+\mathrm{N}^{*} 256$
$21 \emptyset$ PRINT" $\{\emptyset 2$ DOWN $\}$ LINK TO MONITOR ~ -- SYS"; N
220 PRINT:PRINT"SAVE WITH MLM:"
$23 \emptyset$ PRINT".S ";CHR\$ (34);"SUPERMON"; CHR\$ (34) ;", Ø1"; : X=N/4Ø96:G OSUB25Ø

240 X＝L／4096：GOSUB250：END
250 PRINT＂，＂；FORJ＝1TO4： $\mathrm{X} \%=\mathrm{X}: \mathrm{X}=(\mathrm{X}-\mathrm{X}$ \％）＊ $16:$ IFX\％>9 THENX $\%=X \%+7$
$26 \emptyset$ PRINTCHR\＄（X\％＋48）；：NEXTJ：RETURN

SUPERMON 4．0 Program 2.

－$: 66 \emptyset$ A9 CB 85 1F A9 ØC 85 2Ø
－：Ø6Ø8 A5 348521 A5 358522
－：Ø61Ø Aø ØØ $2 \emptyset 38$ Ø6 DØ $162 \emptyset$
－：Ø618 $38 \quad \emptyset 6 \mathrm{~F} \emptyset 1185 \quad 232038$
－：Ø62Ø Ø6 18 $65 \quad 34$ AA A5 $23 \quad 65$
－$\quad \emptyset 62835$ 2の 43 Ø6 8A $2 \emptyset 43$ Ø6
－ $06302050 \emptyset 690$ DB 6Ø EA EA
－： 0638 A5 1F D $\emptyset 2$ C6 $2 \emptyset$ C6 1F
－：$\quad 640$ Bl $1 \mathrm{~F} 6 \emptyset 48$ A5 21 D Ø $\emptyset 2$
－： 0648 C6 22 C6 $216891216 \emptyset$
．：Ø65Ø A9 8ø C5 1F A9 Ø6 E5 $2 \emptyset$
－$\quad 06586 \emptyset$ AA AA AA AA AA AA AA
．：$\quad 666 \emptyset$ AA AA AA AA AA AA AA AA
－：$\quad 668$ AA AA AA AA AA AA AA AA
－$\quad \emptyset 67 \emptyset$ AA AA AA AA AA AA AA AA
－$\quad \emptyset 678$ AA AA AA AA AA AA AA AA
．$\quad \emptyset 68 \emptyset \mathrm{AD} \mathrm{FE} F \mathrm{FF} \emptyset \emptyset 8534 \mathrm{AD} \mathrm{FF}$
．$\quad \varnothing 688 \mathrm{FF}$ ØØ $8535 \mathrm{AD} \mathrm{FC} \mathrm{FF} \emptyset \emptyset$
．：$\quad 69 \emptyset$ 8D FA Ø3 AD FD FF ØØ 8D
－： $0698 \mathrm{FB} \emptyset 3$ Øø Øø A2 Ø8 DD DE
．：Ø6AØ FF ØØ DØ ØE 86 B4 8A ØA ．：Ø6A8 AA BD E9 FF ØØ 48 BD E8 ．：Ø6BØ FF ØØ $486 \emptyset$ CA $1 \emptyset$ EA 4C －：Ø6B8 9A FA ØØ A2 Ø2 2C A2 Øø ：$\quad 66 \mathrm{C} \emptyset \quad \emptyset \emptyset \mathrm{B} 4 \mathrm{FB} \mathrm{D} \emptyset$ Ø8 B4 FC D \emptyset ．： 06 C 8 Ø2 E6 DE D6 FC D6 FB 6ø
 －：Ø6D8 A9 Øø Øø 8D Øø Øø Ø1 2ø －：Ø6EØ 79 FA ØØ 2Ø 6B D7 $2 \emptyset 57$ －： 06 E 8 D 7 9ø Ø9 6Ø $2 \emptyset 98$ D7 2ø
－： $06 \mathrm{~F} \emptyset 54 \mathrm{D} 7 \mathrm{~B} \emptyset \mathrm{DE} \mathrm{AE} \emptyset 6$ Ø2 9A －： 06 F 8 4C A4 D7 $2 \emptyset 31 \mathrm{D} 5 \mathrm{CA} \mathrm{D} \emptyset$ －：Ø7ØØ FA 6Ø E6 FD DØ Ø2 E6 FE －： $07 \emptyset 8$ 6Ø A2 12 B5 FA 48 BD ØA －： $071 \emptyset \emptyset 295$ FA 68 9D ØA Ø2 CA －： $0718 \mathrm{D} \emptyset \mathrm{Fl} 6 \emptyset \mathrm{AD}$ ØB Ø2 AC ØC .$\quad \emptyset 72 \emptyset \quad \emptyset 2$ 4C CE FA ØØ A5 FD A4 －$\quad 0728 \mathrm{FE} 38 \mathrm{E} 5 \mathrm{FB}$ 8D 1B $\emptyset 298$
－$\quad 073 \emptyset$ E5 FC A8 ØD 1 B Ø2 6Ø $2 \emptyset$
－$\quad \emptyset 73881$ FA ØØ $2 \emptyset 44$ D7 $2 \emptyset 92$
－：$\quad 74 \emptyset$ FA ØØ 20 AF FA ØØ $2 \emptyset 92$
－$\quad 0748$ FA $\emptyset \emptyset 2 \emptyset$ CA FA ØØ $2 \emptyset 44$
－：Ø75 D7 9Ø 15 A6 DE DØ 65 2ø
．：$\quad 9758 \mathrm{Cl}$ FA ØØ $9 \emptyset 6 \emptyset \mathrm{Al}$ FB 81
－$\quad 076 \emptyset$ FD $2 \emptyset$ A8 FA ØØ $2 \emptyset 39$ D5
．： $0768 \mathrm{D} \emptyset \mathrm{EB} 2 \emptyset \mathrm{Cl} \mathrm{FA} \emptyset \emptyset 18 \mathrm{AD}$
－： 977 1B 0265 FD 85 FD 9865
．：$\quad 9778 \mathrm{FE} 85 \mathrm{FE} 2 \emptyset \mathrm{AF} \mathrm{FA}$ ØØ A6
－$\quad 078 \emptyset$ DE D 0 3D Al FB 81 FD $2 \emptyset$
－：Ø788 Cl FA ØØ B $342 \emptyset 65$ FA
．： $079 \emptyset \emptyset \emptyset 2 \emptyset 68 \mathrm{FA}$ ØØ 4C 1B FB
．： 0798 ØØ 2031 FA ØØ $2 \emptyset 44 \mathrm{D7}$
－：Ø7AØ 2の 92 FA Øø 2044 D7 2ø
－：Ø7A8 98 D7 20 63 D7 9Ø 1485
－： $07 \mathrm{~B} \emptyset$ B5 A6 DE D D 1120 CA FA
．：$\quad 7 \mathrm{~B} 8$ Øø $9 \emptyset$ ØC A5 B5 $81 \mathrm{FB} 2 \emptyset$
．：$\quad 7 \mathrm{C} \emptyset 39 \mathrm{D} 5 \mathrm{D} \quad \mathrm{EE} 4 \mathrm{C}$ 9A FA Øø
．：$\quad 7 \mathrm{C} 8$ 4C BA D4 2Ø 81 FA Øø $2 \emptyset$
．：$\quad 7 \mathrm{D} \emptyset 44 \mathrm{D} 72 \emptyset 92$ FA ØØ $2 \emptyset 44$
－：Ø7D8 D7 20 98 D7 A2 Øø Øø 2Ø
．：Ø7Eの 98 D7 C9 27 DØ 142098
－$: ~ 07 \mathrm{E} 8 \mathrm{D} 7$ 9D 10 Ø2 E8 20 CF FF

－$\quad 07 \mathrm{~F} 8 \mathrm{~F} \emptyset 1 \mathrm{C} 8 \mathrm{E}$ Øø Øø Ø1 20 6B
.\quad ． $88 \emptyset$ D7 9ø C6 9D 1ø Ø2 E8 2ø
．：Ø8Ø8 CF FF C9 ØD Fø Ø9 2ø 63
．：Ø810 D7 9 9 B6 EØ $2 \emptyset$ DØ EC 86
．：$\quad 818$ B4 2ø 34 D5 A2 Øø ØØ Aø
．：$\quad 82 \emptyset \emptyset \emptyset \emptyset \emptyset$ Bl FB DD $1 \emptyset \emptyset 2 \mathrm{D} \emptyset$
.$\quad \emptyset 828$ ØC C8 E8 E4 B4 D \quad F3 2ø
．：ஏ830 17 D7 20 31 D5 20 39 D5
．： 0838 A6 DE Dø 92 2 0 CA FA Øø
．$: \quad 840$ B 0 DD 4C BA D4 2081 FA
.$\quad \emptyset 848$ Øø 8D ØD Ø2 A5 FC 8D ØE
． $085 \emptyset \emptyset 2$ A9 Ø4 A2 Ø0 Øø 8D Ø9

．$\quad 0860 \mathrm{FF}$ A9 $1685 \mathrm{B5} 20$ Ø6 FC
．$\quad 9868$ Øの 2064 FC Øø 85 FB 84
．$\quad 087 \emptyset$ FC C6 B5 DØ F2 A9 9120
．\quad Ø878 D2 FF 4C BA D4 AØ 2C 20
．：\quad •88Ø 79 D5 2017 D7 2Ø 31 D5
.$\quad \emptyset 888 \mathrm{~A} 2$ Øø Øø A1 FB $2 \emptyset 74 \mathrm{FC}$
．： $089 \emptyset$ Øø 4820 BB FC ØØ 6820
．$\quad \emptyset 898 \mathrm{D} 3 \mathrm{FC}$ Ø $\emptyset \mathrm{A} 2$ Ø6 $\mathrm{E} \emptyset \emptyset 3 \mathrm{D} \emptyset$
．：Ø8AØ 13 AC 1C Ø2 FØ ØE A5 FF
．：Ø8A8 C9 E8 Bl FB BØ 1C 20 5C

－：$\quad 8 \mathrm{~B} 8$ ØE BD 51 FF ØØ $2 \emptyset 45 \mathrm{FD}$

－：Ø8C8 45 FD Øø CA DØ D4 6Ø $2 \emptyset$
．：Ø8D 68 FC ØØ AA E8 DØ Ø1 C8
－：Ø8D8 $982 \emptyset$ 5C FC ØØ 8A 86 B4
－：Ø8Eの 2Ø 22 D7 A6 B4 6Ø AD 1C
－： 08 E 8 Ø2 38 A4 FC AA 10 Ø1 88
－：$\quad 8 \mathrm{~F} \emptyset 65 \mathrm{FB} 9 \emptyset$ Ø1 C8 6Ø A8 4A
．：Ø8F8 9ø ØB 4A B 17 C9 $22 \mathrm{~F} \emptyset$
．：Ø9øø 1329 Ø7 Ø9 8ø 4A AA BD ．：$\quad 9 \emptyset 8$ Øø FF $\emptyset \emptyset \mathrm{B} \emptyset \emptyset 4$ 4A 4A 4A ．： $091 \emptyset 4 \mathrm{~A} 29$ ØF Dø Ø4 AØ 8 1 A9 ．：$\emptyset 918$ øø Øø AA BD 44 FF Øø 85
．： $092 \emptyset$ FF 29 Ø3 8D 1C 029829 ．： 0928 8F AA 98 AØ Ø3 EØ 8A $\mathrm{F} \emptyset$ ．： 0930 ØB 4A 90 Ø8 4A 4A Ø9 2ø ．：$\quad 99388 \mathrm{D}$（ $\mathrm{FA} \mathrm{C} 888 \mathrm{D} \quad \mathrm{F} 26 \emptyset$ ．：$\quad 940$ Bl FB $2 \emptyset$ 5C FC Øø A2 $\emptyset 1$.$: \quad 09482 \emptyset \mathrm{Al} \mathrm{FA} \emptyset \emptyset \mathrm{CC} 1 \mathrm{C} \emptyset 2 \mathrm{C} 8$ ．：Ø950 9ø Fø A2 ø3 CC ø9 ø2 9ø ．：$\quad 9958 \mathrm{~F} 060$ A8 B9 5E FF Øø 8D ．： $096 \emptyset$ øB ø2 B9 9E FF øø 8D ØC ．： 0968 Ø2 A9 øø Øø Aø Ø5 ØE ØC
.$: \emptyset 97 \emptyset \emptyset 22 \mathrm{E}$ ØB Ø2 2A $88 \mathrm{D} \emptyset \mathrm{F} 6$ ．：$\quad 997869$ 3F 20 D2 FF CA D \emptyset EA ．： $09804 \mathrm{C} 31 \mathrm{D} 52 \emptyset 81 \mathrm{FA} \emptyset \emptyset 2 \emptyset$ ．：$\quad 99844$ D7 2092 FA Øø $2 \emptyset 44$ ．：$\quad 99 \emptyset$ D7 A9 Ø4 A2 øø øø 8D ø9 ．： 0998 Ø2 8E ØA Ø2 $2 \emptyset 34$ D5 $2 \emptyset$ ．：Ø9Aø ØB FC Øø $2 \emptyset 64$ FC Øø 85 ．： $09 \mathrm{~A} 8 \mathrm{FB} 84 \mathrm{FC} 2 \emptyset 35 \mathrm{~F} 3 \mathrm{~F} \emptyset \emptyset 5$ ．：Ø9BØ $2 \emptyset$ CA FA Øø Bø E9 4C BA ．：Ø9B8 D4 2ø 81 FA Øø A9 Ø3 85
．： 09 C В B5 $2 \emptyset 98$ D7 2Ø ØB D5 Dø
．：Ø9C8 F8 AD ØD Ø2 85 FB AD ØE
．：99Dø Ø2 85 FC 4C E7 FB Øø CD
．：Ø9D8 ØA Ø2 Fø Ø3 20 D2 FF 6ø
．：Ø9Eø A9 Ø3 A2 24 8D Ø9 Ø2 8E
．：⿹9E8 ดA ø2 2034 D5 78 AD FA
．：$\quad 9 \mathrm{~F} \emptyset \mathrm{FF}$ Øø 8590 AD FB FF Øø
．：Ø9F8 8591 A9 AØ 8D 4E E8 CE
．：ØAøø 13 E8 A9 2E 8D 48 E8 A9
．：ØAø8 Øø Øø 8D 49 E8 AE Ø6 Ø2
．：ØAlø 9A 4C 55 D6 20 CØ FC 68
．：ØAl8 8D Ø5 Ø2 68 8D Ø4 Ø2 68
．：ØA2ø 8D Ø3 ø2 68 8D Ø2 ø2 68
－：ØA28 8D Ø1 Ø2 68 8D Øø Øø Ø2
－：ØA3Ø BA 8E Ø6 Ø2 $582 \emptyset 34$ D5
－ØA38 2Ø 23 D5 85 B5 AØ Øø Øø
－ 0 A4 020 FE D4 2031 D5 AD Øø
．：ØA48 øø Ø2 85 FC AD Ø1 Ø2 85
－：ØA5 FB $2 \emptyset 17$ D7 20 ØE FC Øø
．：ØA58 2035 F3 C9 F7 Fø F9 $2 \emptyset$
．：ØA60 35 F3 Dø Ø3 4C BA D4 C9
.\quad •A68 FF Fø F4 4C 5B FD Øø 2ø
．：ØA7Ø 81 FA $0 \emptyset 2044$ D7 8E 11
．：ØA78 Ø2 A2 Ø3 $2 \emptyset 79$ FA ØØ 48
．：ØA8Ø CA DØ F9 A2 Ø3 6838 E9
．：ØA88 3F Aø Ø5 4A 6E 11 Ø2 6E
．：ØA9Ø 1ø Ø2 88 Dø F6 CA DØ ED
．：ØA98 A2 ø2 2ø CF FF C9 ØD Fø
．：ØAAØ 1E C9 $2 \emptyset$ FØ F5 $2 \emptyset$ F7 FE
．：ØAA8 Øø B $\emptyset \mathrm{F} 2 \emptyset 78$ D7 A4 FB
．：ØABØ 84 FC 85 FB A9 3ø 9D 1ø
．：ØAB8 Ø2 E8 9D 1ø Ø2 E8 Dø DB
．：ØACØ 8E ØB Ø2 A2 ØØ ØØ 86 DE
．：ØAC8 Fø Ø4 E6 DE FØ 7B A2 Øø
．：ØADØ Øø 86 B5 A5 DE $2 \emptyset 74$ FC
．：ØAD8 øø A6 FF 8E ØC Ø2 AA BC
．：$\emptyset A E \emptyset 5 E F F \emptyset \emptyset B D 9 E F F \emptyset \emptyset 2 \emptyset$
．：ØAE8 Eの FE Øø DØ E2 A2 Ø6 Eø
．：ØAFØ Ø3 DØ 1A AC 1C Ø2 Fø 15
．：ØAF8 A5 FF C9 E8 A9 3Ø BØ 21
．：ØBøø $2 \emptyset$ E6 FE Øø Dø CA $2 \emptyset$ E8
．：ØBø8 FE Øø Dø C5 88 D （ EB Ø6
．：$\quad \mathrm{Bl} \emptyset \mathrm{FF} 9 \emptyset \emptyset \mathrm{~B} \quad \mathrm{BC} 57 \mathrm{FF} \emptyset \emptyset \mathrm{BD}$
．：ØB18 51 FF Øø $2 \emptyset \mathrm{E}$（ FE Øø D \emptyset
．：ØB2Ø B3 CA Dの Dø Fø ØA 2の DF
．：ØB28 FE Øø DØ A9 $2 \emptyset \mathrm{DF} \mathrm{FE} \emptyset \emptyset$
．：ØB3Ø Dø A4 AD ØB Ø2 C5 B5 Dø
．：ØB38 9D 2044 D7 AC 1C Ø2 Fø
．：ØB4ø 2F AD ØC ø2 C9 9D Dø 2ø
．：$\emptyset \mathrm{B} 4820 \mathrm{CA} F A \emptyset \emptyset 9 \emptyset \emptyset \mathrm{~B} 98 \mathrm{D} \emptyset$
．：ØB5ø ø5 AE 1B ø2 10 ØB 4C 9A
．：ØB58 FA øø C8 Dø FA AE 1B 02
．：ØB6ø 10 F5 CA CA 8A AC 1C 02
．：ØB68 Dø ø3 B9 FC øø øø 91 FB
．：ØB7ø 88 DØ F8 A5 DE 91 FB $2 \emptyset$
．：ØB78 64 FC Øø 85 FB 84 FC Aø
－：ØB8ø $412 \emptyset 79$ D5 2017 D7 2ø
－：ØB88 31 D5 4C D8 FD Øø A8 2ø
．：ØB9ø E6 FE ØØ DØ ll 98 Fø ØE
．：øB98 86 B4 A6 B5 DD $10 \emptyset 2$ ø8
．：ØBAø E8 86 B5 A6 B4 $286 \emptyset$ C9 ．：ØBA8 30 9ø Ø3 C9 $4760386 \emptyset$
．：ØBBø 4ø ø2 45 Ø3 Dø Ø8 4ø ø9
．：ØBB8 30224533 Dø $0840 \quad$ Ø9
．：ØBCø 40 ø2 4533 Dø ø8 $4 \varnothing$ ø9
．：ØBC8 40 ø2 45 B3 Dø ø8 $4 \emptyset$ ø9
．：ØBDØ Øø Øø 224433 Dø 8C 44
．：ØBD8 Øø Øø 11 224433 Dø 8C
－：ØBEØ 44 9A 10 224433 Dø Ø8
．：ØBE8 4ø Ø9 10 224433 Dø ø8
．：ØBFø 40 ø9 6213 78 A9 øø øø
．：ØBF8 218182 øø øø øø øø 59
．：øCøø 4D $9192864 A 85$ 9D 2C

．：ØClø 582424 øø øø 1C 8A 1C
．：0Cl8 23 5D 8B 1B Al 9D 8A 1D
－：ØC2ø 23 9D 8B 1D Al Øø øø 29
．：ØC28 19 AE 69 A8 $1923 \quad 24 \quad 53$
 -: ØC38 1A 5B 5B A5 692424 AE
.: ØC4Ø AE A8 AD 29 Øø Øø 7C øø
.: ØC48 Øø 15 9C 6D 9C A5 6929

.: ØC58 Aø D8 62 5A $48 \quad 26 \quad 6294$
.: $0 \mathrm{C} 60885444 \mathrm{C} 8 \quad 546844$ E8
.: \quad C68 94 øø øø B4 ø8 8474 B4
.: ØC7Ø 28 6E 74 F4 CC 4A 72 F2
.: ØC78 A4 8A øø øø AA A2 A2 74
-: ØC8ø $74747244 \quad 68$ B2 32 B2
.: ØC88 øø øø 22 øø øø 1A 1A 26
.: ØC90 26727288 C8 C4 CA 26
-: ØC98 484444 A2 C8 544648
-: ØCAØ 44 5の 2C 41494 E Øø Øø
.: ØCA8 DB FA øø $3 \emptyset \mathrm{FB}$ øø 5E FB
.: $\emptyset C B \emptyset$ Øø D1 FB $\emptyset \emptyset$ F8 FC $\emptyset \emptyset 28$
.: ØCB8 FD øø D4 FD øø 4D FD øø .: ØCCø B9 D4 7F FD Øø 4A FA Øø .: ØCC8 33 FA øø AA AA AA AA AA

SUPERMON 3.0 Progrm 3.

 - : $088 \emptyset 15 \mathrm{FE} 2 \emptyset 6 \mathrm{~A}$ E7 20 CD FD

SUPERMON Program 4.

$1 \emptyset \emptyset$ REM SUPERMON 4 CHECKSUM
110 DATA7331,12186,10071,10387,1082 9,9175,10314,9823,9715,871 4,8852
120 DATA8850,9748,7754,10247,10423, 10948,10075,6093,5492,7805 : $\mathrm{S}=1536$
130 FORB $=1$ TO21:READX:FORI $=S T O S+79: N$ $=\operatorname{PEEK}(\mathrm{I}): \mathrm{Y}=\mathrm{Y}+\mathrm{N}$
140 NEXTI:IFY<>XTHENPRINT"ERROR IN ~ BLOCK \#"B:GOTO160
15ø PRINT"BLOCK \#"B" IS CORRECT"
$16 \emptyset \mathrm{~S}=\mathrm{I}: \mathrm{Y}=\emptyset: \mathrm{NEXTB}:$ PRINT"CHECK THE F INAL, SHORT BLOCK BY HAND"

SUPERMON Program 5.

$1 \emptyset \emptyset$ REM SUPERMON 3 CHECKSUM
110 DATA7331,12186,10467,10880,1112
4,100ø5,10906,10196,9951,8
813
120 DATA8852,9329,10239,8457,10334, 10423,11047,10311,6093,549
2,7805:S=1536

PET TO PET

 Communication Over The User PortJohn Winn
Department of Chemistry University of California at Berkeley

If you (or you and a friend) have access to two PETs, you may have wanted to connect the two together and transfer data from one to the other. The built-in IEEE bus is not suitable, since each PET is a bus controller and the rules allow only one controller on the bus. You could buy any of a number of attachments for serial, parallel or modem input/output, but the simplest method is to interconnect the PET's through the built-in parallel user port. Here's how it's done, using fairly simple BASIC and twelve wires.

First, what hardware is required? The user port connections are on the bottom row of the PC output edge connector. Looking at the rear of the PET, these are labelled A through N with keying slots sawed between A and B and between L and M. A and N are ground connections. C through L are the eight parallel data lines. Each will correspond, in effect, to one of the eight bits in a memory byte. Connection B is called "CA1"; it will be used to signal the presence of data to be read by the receiving PET. Connection M, called "CB2," will control (signal) CA1 on the other PET. (How this is done will be clearer later on.) To connect the two ports together, use two edge connector plugs, wiring A to A, N to N, C through L to C through L, but wire B on one connector to M on the other and vice versa (i.e. CA1 on one to CB2 on the other). The total length of the cable should not be more than about 20 feet. (Longer distances would require external "line drivers" to keep the signal from degrading.)

To control these dozen wires, various PEEKs and POKEs are used. One PET will transmit, and the other will receive at any one time, although each can do both. To send one byte, the transmitter will first activate the eight data lines. Then it will signal the receiver that the byte is set to be read. The receiver will read the byte and signal back to the transmitter that it has done so and is ready for the next.

Suppose we want to send one character from one PET to the other. Program 1 gives the program for the transmitter and Program 2, for the receiver. Line 20 in each program shows how the direction of data transfer is controlled. Line 40 of the transmitter program shows how one byte ($\operatorname{ASC}(\mathrm{A} \$)$) is placed on the data lines. Meanwhile, the receiver is stuck on its line 40 , waiting for bit two of memory location 59469 to be a one instead of a zero. This transition will signal the receiver that it can read the data lines. The signal is sent (from CB2 of the transmitter to CA1 of the receiver) by lines 60 and 70 of the transmitter program. Line 60 forces the three most significant bits of memory location 59468 to be ones. (The other bits are unchanged.) Line 70 forces the third most significant bit back to zero, forcing the first two to be ones and leaving the low order five bits (which are used for other things) as they were. This sequence turns CB2 on, then off.
stuck on line 90 waiting for the receiver to signal back that it has read the data. The receiver signals with lines 70 and 80 . It then prints the received character on its screen and goes after another byte. The transmitter will get the signal and ask for another character to send, and the process will repeat.

Most applications will involve the transfer of more than just one character. Transmitting a whole string of many characters or a floating point number requires more elaborate programs, but they will be based on these simple versions. To send a string, the length of the string must be sent first, and then the string can be sent character by character. To send a floating point number, the simplest technique seems to be to use one BASIC variable at a known location in memory as an intermediary buffer, as is done in the programs described below.

You Could WAIT

Two other concerns arise. The first is the initial synchronization of the data transfer. This is perhaps best taken care of by a one byte "preamble" sent at the beginning of the program just to clean out any unsuspected data or transfer signals. The second concern is the ability to interrupt the transmission gracefully should something go wrong. (Along this same line, it is worth pointing out that line 90 of Program 1 and line 40 of Program 2 could be written using WAIT statements. But, since WAITs are not interruptable, except by pulling the plug, this is a bit dangerous.) The easiest way to interrupt a program without stopping it directly is to use the SHIFT key in the way described below.

Programs 3 and 4 give more elaborate pro-

Professional Business Software For Commodore Computers

GENERAL LEDGER ACCOUNTS RECEIVABLE / BILLING ACCOUNTS PAYABLE PAYROLL / INVENTORY MAILING LIST

CMS Software Systems, Inc.
2204 Camp David
Mesquite, TX 75149
(214) 285-3581
grams which send a string of arbitrary length and arbitrary number of random floating point numbers. They both use the SHIFT key to signal an interrupt. (With Original ROM's, location 516 is zero if the SHIFT key is up, and one if it is down. With Upgrade ROM's, it's location 152.) The transmitter sends a preamble - one "\%" - to guarantee synchronization. The character is arbitrary, but it should be as unique (or obscure) as possible.

The floating point buffer variable, called QQ in each program, must be the first defined variable of the program. This is so its location in memory can be found easily. At the beginning of variable data storage, one finds two bytes for the two character name of the first variable followed by five. bytes representing the floating point number itself. Variables start at memory location 256*PEEK(43) + PEEK (42) in Upgrade ROM's (256*PEEK (125) + PEEK(124) in Original ROM's); hence, variable SQ in each program gives the location, two bytes along from the start, for QQ's five data bytes.

Data are transmitted (or received) in subroutines 1000 and 2000 . Starting at 1000 is the subroutine for transmitting or receiving the five bytes of QQ. Transmitting or receiving only one byte (variable D in the program) is done by the subroutine starting at line 2000 . Note that this subroutine is called by the first one.

Interruption requires that you hold down the SHIFT key until the program can branch to line 3000. Both the transmitter and the receiver have to be interrupted separately, but either can be interrupted first.

These programs illustrate the main techniques needed for more useful and interesting applications. For many games ("Battleship" comes to mind), the transfer rate of the BASIC code is fast enough, around 10 bytes per second or so.

ML For Fast Transfer

For much greater speed, machine language code is needed. Program 5 is a machine language version of the BASIC code in Programs 3 and 4, implemented in a slightly different way. Line 10 sets up a variable, $\mathrm{D} \%$, for receiving single bytes. It must be the first variable defined in the program, and the PEEKs must be changed to 125 and 124 for Original ROM's. The POKE 2,3 statement sets part of the linkage for the USR function. Line 20 POKEs the machine language code into the second cassette buffer. Line 30 puts the address of the low-order byte of $\mathrm{D} \%$ into this code and sets $\mathrm{D} \%$ back to zero. (Note: POKEX, PEEK(Y) does not work on Original ROM's. That's why line 30 is written the way it is.) The DATA statements contain the machine language for Upgrade ROM's. For Original ROM's, change the two occurrences (lines 1035 and 1057) of 94 both to 176 . They locate the floating point
accumulator used by USR.
To set the program into the transmit mode (line 100), POKE 1,91 first to complete the USR linkage for transmission. Next, send a one byte preamble ("\%" is used here again) to insure synchronization. To send individual bytes (line 200), POKE them into location 832 and call SYS826. To transmit a floating point number (line 300), pass the number (or variable) as the argument of USR. Since USR has to be set equal to something, it can safely be set equal to the variable being passed or to any other variable which you want to equate to the variable being passed.

Of course, when one program is set up to transmit, the other must be set up to receive. First, (line 400), POKE 1,139 to complete the USR linkage for reception. Next, look for the preamble and warn yourself (line 440) if it was not received as expected. The FOR-NEXT loop in 420-430 should never go past $I=2$. To receive individual bytes (line 500), call SYS873, and find the byte in the variable $\mathrm{D} \%$. To receive a floating point number (line 600), equate the variable you wish to input to USR. The argument to USR is not important here, nor is it disturbed if a variable is used.

In most programs, lines 100-120 and 400-440 would best be made subroutines which could be called to switch the program from one mode to the other at will. The main disadvantage of this program is that it cannot be easily interrupted. Data synchronization between the two PETs must be exact or one will finish first, leaving the other hung up. One or more direct SYS826 or SYS873 commands from the un-hung PET will, eventually, clear the other. (Which SYS you use will depend on the state-transmitter or receiver- of the hungup PET.

Transmission Rate

The data rate is quite good. Sending 2000 numbers in a command FOR $\mathrm{I}=1$ TO 2000: $\mathrm{X}=\mathrm{USR}(\mathrm{I})$: NEXT takes about 8.6 seconds. That works out to $(2000 \times 6) / 8.6=1400$ bytes per second. In this test, the receiver just read the numbers, but did nothing with them. When the receiver stuck the numbers into an array, the time went up to 12.5 seconds.

Finally, if you want to locate the machine language somewhere other than 826 to 917 (or $\$ 033 \mathrm{~A}$ to $\$ 0395$), the only six numbers in DATA which change are the thirty-ninth (64), fortieth (3), forty-second (58), forty-third (3), eighty-fifth (69), and eighty-sixth (3). These, in pairs, are low and high order absolute address bytes (i.e. $64+3 * 256$ $=832$). They will have to be changed along with the various POKE locations in BASIC (and the numbers POKEd into locations 1 and 2) if the program is relocated. [It is suggested that 4.0 users move the routine to avoid DOS usage of the bottom of this buffer. - Ed.]

Not from Commodore!

So why should the desk look like wood? A pleasant cream and charcoal trimmed desk looks so much better with Commodore systems. One look and you'll see. Interlink desks are right. By design.

The specifications only confirm the obvious:

- Cream and charcoal color beautifully matches the Commodore hardware and blends with your decor.
-An ideal 710 mm (28') keyboard height yet no bumping knees because a clever cutout recesses the computer into the desktop.
- High pressure laminate on both sides of a solid core for lasting beauty and strength.
- Electrostatically applied baked enamel finish on welded steel legs-no cheap lacquer job here.
-T-molding and rounded corners make a handsome finish on a durable edge that won't chip.
- Knocked down for safe, inexpensive shipment.
-Patented slip joints for quick easy assembly.
- Leveling glides for uneven floors.
-Room enough for a Commodore printer on the desk, yet fits into nearly any den or office nicheH: 660 mm (26") W: 1170 $\mathrm{mm}\left(46^{\prime \prime}\right) \mathrm{D}: 660 \mathrm{~mm}\left(26^{\prime \prime}\right)$. - Matching printer stand available with slot for bottom feeding.

Price:\$299

In short, as Commodore dealers, we won't settle for anything that looks good only in the catalog! Our customers won't let us. They don't buy pictures. And neither should you. This is why we will let you use one of our desks for a week and then decide. If for any reason you don't like it, just return it in good condition for a cheerful refund.

[^3]
CBM/PET INTERFACES

RS-232 SERIAL PRINTER INTERFACE - addressable baud rates to 9600 - switch selectable upper/lower, lower/upper case - works with WORDPRO, BASIC and other software - includes case and power supply.

$$
\text { MODEL - ADA1450 } 149.00
$$

CENTRONICS/NEC PARALLEL INTERFACE - addressable - high speed - switch selectable upper/lower, lower/upper case - works with WORDPRO, BASIC and other software - has Centronics 36 pin ribbon connector at end of cable.

$$
\text { MODEL - ADA1600 } 129.00
$$

CENTRONICS 730/737 PARALLEL INTERFACE - as above but with Centronics card edge connector at end of cable.

MODEL - ADA730 129.00
COMMUNICATIONS INTERFACE WITH SERIAL AND PARALLEL PORTS - addressable - software driven true ASCII conversion - selectable reversal of upperlower case - baud rates to 9600 - half or full duplex - XON, X-OFF - selectable carriage return delay - 32 character buffer - centronics compatible - much more.

MODEL - SADI 295.00
ANALOG TO DIGITAL CONVERTER - 16 channels -0 to 5.12 volt input voltage range - resolution is 20 millivolts per count - conversion time is less than 100 microseconds per channel.

MODEL - PETSET1 295.00
REMOTE CONTROLLER WITH CLOCK/CALENDAR - controls up to 256 devices using the BSR X10 remote control receivers - 8 digital inputs, TTL levels or switch closure - 8 digital outputs, TTL levels.

MODEL - PETSET2 295.00
All prices are in US dollars for 120VAC. Prices on 220 VAC slightly higher. Allow $\$ 5.00$ shipping \& handling, foreign orders add 10% for AIR postage.
Connecticut residents add $71 / 2 \%$ sales tax.
All prices and specifications subject to change without notice. Our 30 day money back trial period applies. MASTER CHARGE/VISA accepted.
MENTION THIS MAGAZINE WITH YOUR ORDER AND DEDUCT 5\% FROM TOTAL.
IN CANADA order from: Batteries Included, Ltd., 71 McCaul Street, F6 Toronto, Canada M5T2X1, (416)596-1405.
IN THE USA order from your local dealer or direct: Connecticut microComputer, Inc., 34 Del Mar Drive, Brookfield, CT 06804, (203)775-4595.

Dealer inquiries invited.

Connecticut microComputer, Inc.
34 Del Mar Drive, Brookfield, CT 06804
203 775-4595 TWX: 710 456-0052

Program 1.

```
    10 REM **** SIMPLE TR'RNSMITTER
    20 POKE59459,255 :REM SET IATA
            LINES FOR OUTFUT
    30 INPUT"ENTER A CHARACTER";A$
    40 POKE59457, RSC(A $) :REM OUTPUT
                CHFRHCTER
    50 REM NEXT }2\mathrm{ LINES SIGHAL THE RECEIVER
                        TO REAI DATA
    60 POKE59468,PEEK(59463) OR 224
    70 POKE59468,PEEK(59468) AND 31 OR 192
    80 REM WAIT FOR RECEIVER TO SIGHFL BHCK
    90 IF(PEEK(59469) ANI 2)<>2 THEN 90
    100 GOTO30
RERDY.
```


QUALITY SOFTWARE

 For The Commodore Petdisk Cataloger（16，32K）＊ $\$ 19.95$
ZAP AND MAYDAY（16，32K）＊ $\$ 19.95$
Disk monitor／recovery package
DISK UTILITY PAC $(16,32 \mathrm{~K})^{*}$
$\$ 29.95$
Disk cataloger plus Zap and Mayday
－Specify 3．0， 4.0 （ 40 col ）， 4.0 （ 80 col ） 2040 or 4040 Disk Drive
32K SIMULATED DISK（for tape based systems）．．．．．．．．．．．．．．．．\＄12．95 Fill 32 K with basic programs
Built－in directory will allow immediate execution of any program Entire library can be saved to tape

Send for Software Catalog，or order from：
CompuSoft，Inc．
P．O．BOX 997 －TROY，MI 48099
（313）540－2838

Program 3.
10 REM 米粎米 ELAEORATE TFAHSMITTER 〈UPGRADE ROM UERSION，
20 QQ＝0 ：REM QQ MUST BE FIRST YHRIAELE
30 SQ＝FEEK（42）＋256＊PEEK（43）＋2 ：FEM HDIRESS OF FIRST QU DATA B＇TTE
$40 \mathrm{SH}=152$ ：REM FDDRESS OF SHIFT＇KE＇T FLAG
50 FOKE5 9459.255 ：REM SET IIATH LIHES FOR IUITFUT
E6 REM SEHI S＇THCHROHIZATIOH FREAMELE
$70 \mathrm{D}=\mathrm{FSC}$（＂\％＂）：GOSUB2066
E0 PRINT＂REFIIT＇TO TRAHSMIT＂：FRIHT＂LSE＂SHIFT＂KE＇r＇TO IHTEFRUFT＂
90 INPUT＂ENTER A STRIHG＂： F 志
$100 \mathrm{QQ}=\mathrm{LEN}$（A末）：GOSUE1060 ：REM TFAHSMIT LEHUA末
$110 \mathrm{FORI}=1 \mathrm{TOQQ}$
$120 \mathrm{I}=\mathrm{ASC}(\mathrm{MID} \mathrm{D}(\mathrm{F} \ddagger, \mathrm{I}, 1$ ）$)$
130 GOSUB2E日G ：REM SEHI STRIHG 1 CHHRACTER AT A TIME
140 NEXT
150 INPUT＂HOW MFN＇T＇RANIUM HUMBERS＂；H
$160 \mathrm{QQ}=\mathrm{N}:$ GOSUB1日GE ：REM TRFHSMIT H
170 FORI $=1$ TOH
$180 \mathrm{QQ}=\mathrm{RND}(1)$
190 GOSUB1000 ：REM TRRNSMIT EHCH RANDOM HUMEER：
200 NEXT
999 END
1006 REM SUBROUTINE FGR FLOATING FOINT TFANSMISSIOH
1010 FORI J＝0TO4
$1020 \mathrm{I}=\mathrm{PEEK}(\mathrm{SQ}+\mathrm{IJ})$
1030 GOSUB2006 ：REM SENI QQ F＇r＇TE E＇r＇B＇r＇TE
1040 NEXT
1050 RETURH
2000 REM SUBROUTINE FOR E＇r＇TE TRAHSMISGIOH
2010 FOKE59459，II ：REM OUTFUT E＇r＇TE
2020 REM SIGHAL＇IIATA REAI＇T＇
2030 FOKE59463，PEEK（59463）OR 2c4
2046 FOKE59468．FEEK（59468）FHII 31 OF 192
2050 REM WAIT FOR RECEFTION FHI RLLOW IHTEREUPT

2070 IFFEEK（SH）$=1$ THENS 3616 REM INTERFLIFT
2089 RETURH
3000 FRINT＂INTERRUFTED＂
3010 GOTO999 ：REM ENI IF IHTEFRUFTEI
REAI＇T＇．

The SM-KIT is a collection of machine language firmware programming and test aids for BASIC programmers. SM-KIT is a 4 K ROM (twice the normal capacity) which you simply insert in a single ROM socket on any BASIC 4 CBM/PET-either 80 column or 40 column. Includes both programming aids and disk handling commands.
ERROR DETECTION: the SM-KIT automatically indicates the erroneous line and statement for any BASIC program error.
LINE NUMBERING: the SM-KIT automatically numbers BASIC statements until you turn the function off.
SCREEN OUTPUT: the commands FIND, DUMP, TRACE and DIRECTORY display on the CRT while you hold the RETURN key (display pauses when the key is released). Continuous output is selected with shift-lock.
OUTPUT CONTROL to DISK or PRINTER: in addition to displaying on the CRT, you can direct output to either disk or printer.
HARDCOPY: allows screen displays to be either printed or stored on disk.
FIND: searches all or any part of a program for text or command strings or variable names. Either exact search or wild card search supported.
RENUMBER: the SM-KIT can renumber all or any part of a program. The selective renumbering allows you to move blocks of code within your program.
VARIABLE DUMP displays the contents of floating point, integer, and string variables (both simple and array). Can display all variables or any selected variables.
TRACE: SM-KIT can trace program execution either continuously or step by step starting with any line number. Selected program variables can be displayed while tracing.
DISK COMMANDS: as in DOS Support (Universal Wedge), the "shorthand" versions of disk commands may be used for displaying disk directory, initializing, copying, scratching files, load and run, etc.
LOAD: SM-KIT can load all or part of BASIC or machine language programs. It can append to a program in memory, overwrite any part of a program, load starting with any absolute memory location, and load without changing variable pointers.
MERGE: allows merging all or any part of a program on disk with a program in memory. SAVE and VERIFY: SM-KIT provides one step program save and verification. It also allows you to save any part of a program, or any address range.

A Programming Productivity Tool

A 4K ROM with both programming and disk handling aids.

Developed by (and available in Europe from) SM Softwareverbund-Microcomputer GmbH, Scherbaumstrasse 29, 8000 Munchen 83, Germany

PET/CBM * IEEE-488 TO PARALLEL PRINTERS By LemData Products

P.I.E. C MEANS—Professional design, Indispensible features, Excellent quality and Cost effectiveness. You can't buy a better parallel interface for your PET/CBM.

Our P.I.E.-C will interface your PET/CBM through the IEEE-488 bus to
the NEC Spinwriter, the C. Itoh Starwriter, printers by Centronics, Epson, Anadex, Escon Products, the Paper Tigers by IDS, the MIPLOT by Watanabe, the DIP printers, the AJ-841, the OKIDATA printers, plus ALL OTHER parallel ASCII printers.

Assembled with custom case, CBM-TO-ASCII code converter and appropriate cable, the P.I.E.-C is only $\$ 129.95$ ($+\$ 5$ SEH). Md. Res. $+5 \%$ tax. Specify printer and CBM models.

LemData Products, P.O. Box 1080, Columbia, Md. 21044 Phone (301) 730-3257
*PET/CBM are trademarks of Commodore Business Machines
(Dealer Inquiries Invited)

```
Program 2.
    10 REM 米滊米 SIMFLE RECEIVER:
    20 FOKE59459,0 :REM SET IIHTA
                LINES FOR IHPUIT
    30 REM WAIT FOR IIRTA TO EE SENT
    40 IF(PEEK(59469) FHI 2)<<2 THEN401
    5 0 ~ D = P E E K ~ ( 5 9 4 5 7 ) ~ : ~ R E M ~ R E A I ~ I I A T A ~
    60 REM NEXT 2 LINES SIGHFL
            THE TRHHSMITTER "IHTA REAI"
    70 POKE59468.PEEK<59468) OR 224
    80 POKE59468,FEEK(59468) FHI 31 OR 192
    90 FRINT CHR央(D) :REM FRIHT THE
        RECEIVEI CHHRACTER
    100 GOTOS0
RERDY.
```


NEW PET／CBM SOFTWARE

ASTROIDZ－Based on the popular arcade game and now you can play it for hours at home on your PET／CBM．Save the galaxy from the invading ASTROIDZ．Four levels of play and great graphics with moving ASTROIDZ

CASS 8k 59.95
MUNCHMAN－Based on the Pac－Man arcade game．Its you against the computer munchers ZIP and ZAP．Can you clear out the maze first or will they get you？Wait until you see the fantastic graph－ ics on this game．

CASS 8k $\$ 9.95$

ALL OUR SOFTWARE RUNS IN 8K OLD－NEW ROM WRITE FOR CATALOG

ComputerMat，Box 1664E，Lake Havasu，AZ 86403

Program 4.

16 REM 料料 ELAEOR：ATE RECEIVEF «UFGRAIE ROM UERSION，
20 QQ＝e ：REM QQ MUST BE FIRST U＇HRIFBLE

$40 \mathrm{SH}=152$ ：REM FIDRESS OF SHIFT＂KE＇T FLFG
5 FOKES 9459 ：REM SET IAHTA LINES FOR IHFUT
60 REM LOOK FOR S＇r＇HCHROHIZATIOH FREAMBLE
PO FORI＝1TOS ：GOSUB2EEG：IFI＝ASC（\％＂）THEHEO
72 HENT
34 FRINT＂ESFEECTED FREAMELE HOT RECEIVEII＂：EHII
SQ FRINT＂REAIY TO RECEIUE＂：FRINT＂USE SHIFT＂KE＇T TO IHTERRUPT＂
G® GUSUE1606 ：REM REAII LENGTH OF TEANSMITTEN STRIHG

110 A末＝A + ＋CHR末くI）：REM EUILI UF STRIHG
120 NEKT
136 FRINT＂RECEIVEI＂；F
140 REM READ NUMEER OF F：AHIOM INFUTS TG EXPECT
150 GUSLIB1日0 ： $\mathrm{H}=\mathrm{Q} 0$
$160 \mathrm{FORI}=1 \mathrm{TOH}$
170 GOSUB1006 ：FRINT QU ：REM REAI RHNIUM HUMEERS
18 BE NEXT
999 ENI
1000 REM SUBROUTINE FOR FLOATING FGINT RECEFTION
1010 FORI $J=0104$
1020 GUSUF2006 ：REM REAII QU B＇t＇TE B＇t B＇r＇TE
1030 FOKESQ＋IJ．II ：REM BUILII NEN OU
10146 HEXT
1056 RETURH
2606 REM SUBROUTINE FOR E＇r＇TE RECEFTIOH
2010 REM WAIT FOR IIATA TO EE SENT AHI FLLOW IHTERFLIFTIGH

2036 IFFEEK（SH）$=1$ THEH3614 ：REM IHTERROUFT
$2040 \mathrm{I}=\mathrm{FEEK}(59457$ ）：REM REAI IIATA E＇r＇TE
2050 REM SIGHAL＂IATA RECEIVEI＂
2060 FOKE59468，FEEK（59468）OF 224
2076 FOKE5946S．FEEK《59468）AHI 31 OF 192
2080 RETURH
3010 FRINT＂INTERRUF＇TEI＇
3016 GOTOS99 ：REM ENI IF INTERRUFTEI
REAIT＇．

Program 5.

$10 \mathrm{D} \%=256$ 米PEEK（43）+ PEEK（ 42 ）$+3:$ FOKE 2,3
20 FORI $=826$ TO917：REAIJ ：POKEI，J ：NEXT
$30 I=P E E K(D \%):$ POKE889，$I: I=P E E K(D \%-1)$ ： FOKEB96，I ： $1 \%=0$
100 REM 米東来来米柬 TRFAHSMIT
110 FOKE1，91：REM SET LISR FOR TRANSMISSIOH
120 POKE832． FSC （＂\％＂）：S＇＇S826：REM SENII PREAMBLE
200 REM TRANSMIT A BY＇TE（＂A＂）
210 FOKE832，RSC（＂R＂）：SYS826
300 REM TRFNSMIT THE NUMBER 1.23
$310 x=1.23: X=\operatorname{LISR}(x)$
400 REM 米米米为束米 RECEIVE
410 FOKE1， 139 ：REM SET USR FOR RECEFTION
420 FORI＝1TOS：S＇＇S873：IFD\％＝FSC（＂\％＂）THEN50 4
430 NEXT ：REM LOOK FOR FREAMBLE
440 PRINT＂PREAMBLE NOT RECEIVED＂：STOF＇
500 REM RECEIVE A BY＇TE
510 SY＇S873： $\mathrm{F} \ddagger=\mathrm{CHR} \$(\mathrm{D} \%$ ）：PRINTH $\$$
600 REM RECEIVE F NUMBER
G10 $X=U S R(6)$ ：PRINTX
1006 REM LIATA \＆CORRESFOHDING MNEMONICS
1010 REM

1026	Jata	169.255	TBr＇TE	LIIA	\＃${ }^{\text {F }}$ FF
1021	DATA	141，67，232：		STA	\＄E843
1022	DATA	169.0		LIAR	\＃束米米
1023	DATA	141，65，232：		STA	\＄E841
1024	DATA	173，76，232：		LIAR	FE84C
1025	Infta	9，224		ORA	\＃\＄E0
1026	DATA	141， $76,232:$		STA	\＄E84C
1027	DATA	41.31		AHD	\＃\＄1F
1028	DATA	9，192		ORA	\＃$\ddagger \mathrm{C}$［ 4
1029	DATA	141， 76,232		STA	\＄ 584 C
1030	IATA	173，77，232：	TWAIT	LDA	\＄E841
1031	DATA	41.2		FND	\＃\＄02
1032	DATA	240,249		BEQ	TWAIT
1033	DATA	96		RTS	
1034	DATA	162,5		LDX	\＃\＄05
1035	DATA	181，94：＜－－：	TFLFT	LDA	\＄5E， X
1036	DATA	141，64，3		STA	\＄0340
1037	DATA	32，58，3		ISR	TBYTE
1038	DATA	202		DEX	
1039	DATA	16，245		BFL	TFLPT
1040	DATA	96		RTS	
1041	DATA	169，${ }^{\text {a }}$	RBYTE	LDA	\＃\＄00
1042	DATA	141，67，232：		STA	\＄E843
1043	DATA	173，77，232：	RWAIT	LDA	\＄E841
1044	DATA	41,2		AND	\＃\＄02
1045	DATA	240，249		BEQ	RWAIT
1046	DATA	174，65， 232 ：		LDY	\＄E84C
1047	DATA	$142,0,0$		STY	年洮米米
1048	DATA	173， $76,232:$		LIA	\＄E84C
1049	DATA	9，224		ORA	\＃ \＄ $0^{\text {a }}$
1050	DATA	141， $76,232:$		STA	\＄E84C
1051	DATA	41,31		FHID	\＃\＄1F
1052	DATA	9，192		ORA	\＃ 5 C ［ 1
1053	DATA	141， $76,232:$		STA	\＄E84C
1054	DATA	96		RTS	
1055	DATA	162，5		LDX	\＃505
1056	DRTA	32，69，3	RFLPT	JSR	RB＇r＇TE
1057	DATA	148，94：＜－－：		STY	\＄5E， 欠
1058	DRTA	202		DEX	
1059	DATA	16，248		BFL	RFLPT
1060	DATA	96		RTS	

READY．

NEW BARGAINS！

PRICES ON CBM/PET \& VIC
PRICES ON CBM/PET \& VIC
Cursor Magazine (on tape
specify issues. Write
$\begin{array}{ll}\text { for catalog) } & 10 / \$ 44.95\end{array}$
Micro Software Systems
$\begin{array}{llll}\text { Billboard for } 8032 & \$ & 39 \\ \text { Billboard for } 2001 & \$ & 29\end{array}$
Cable. PET-IEEE (1 meter) $\$ 37$
Cable. PET-IEEE (1 meter) $\$ 37$
Cable, PET-IEEE $(2$ meter $) \$ 44$
Cable, IEEE-IEEE $(2$ meter $\$ 47$
Modem+terminal softwares 279
NEC Spinwriter $\# 5530$ Se $\$ 279$
$\$ 2695$
$\begin{array}{ll}\text { Nymec typewr/printer } & \$ 2499\end{array}$
$\begin{array}{ll}\text { Watanabe MiPLOT } & \$ 1149\end{array}$
Uncrasher for 2000/4000 \$15
** NEW ** for 8032 \$25

VOTRAX Type－N－Talk $\$ 345$
TU－PVE
Video Monitor to PET／CBM for second display．Our unique contact extensions leave user port available for other accessories （NOT for 8032）$\$ 39.95$

CONNECT PET／CBM TO PRINTER：Simply plug in the interface and use your PET／CBM computer with popular＂standard＂printers， or add video monitor for second display．All interfaces assembled，tested，waranteed．No software required．
TU－65C Use NEC，Centronics，Xymec，or other industry standard parallel printers．Works with disk，other IEEE
 TU－65CO As above，for Okidata．．．．．．．．．
Computer－Printer Interfaces by ESCON

SELECTRIC to PET／CBM
SELECTRIC to PET／CBM
SELECTRIC to Apple，TRS－80：Parallel
SELECTRIC to Apple，TRS－80：RS－232 Serial
MTST－1／O to Paraliel
Cables extra，$\$ 20$ to $\$ 90$ ．Installation $\$ 425$

SELECTRIC，Heavy Duty $15^{\prime \prime}$ ，reconditioned，with ESCON for | PET／CBM | $\$ 1195$ | TRS－80 Mod 1.3 |
| :--- | :--- | :--- |
| APPLE | $\$ 1195$ | $\$ 995$ | $\begin{array}{lllr}\text { APPLE } & \$ 1195 & \text { TRS－80 Mod 1．3 } & \$ 995 \\ \text { RS－232 } & \$ 1045 & \text { TRS－80 Model } 2 & \$ 1045\end{array}$

Virginia Micro Systems

14415 Jefferson Davis Highway
V1SA／MC，VA $+4 \%$ Factory auth sales \＆service
Woodbridge．Virginia 22191
（703）491－6502
MWF 12－8，5a 9－3

NEED EXTRA RAM SPACE？

Running out of places to put your protection ROM＇s？
Or perhaps you are looking for protected RAM space to develop your Machine Language Program in？
Then you will be interested in our RAM Boards
We have RAM Boards with 1 K bytes of RAM， 2 K bytes and 4 K bytes of RAM，that will plug in to any empty socket in your Pet or CBM computer with 24 pin sockets．
For those who are looking for utililty programs in EPROM （without empty sockets to put them in），we have a Board that plugs into the E900（UD8） socket．It replaces the original ROM，which then plugs back into our little Board．This gives an ad－ ditional $13 / 4 \mathrm{~K}$ of M / L instruc． tions to your machine．Such as DOS（wedge），screen dump， sort routine，upper lower case toggle，screen color invert， repeat key on all keys，etc， with single keystroke com－ mands．The E900 Board can also be used as either a 1 K or $13 / 4$ K RAM，with a simple move of a jumper．
All Boards are shipped with all IC＇s and RAM or EPROM in place ready tc run，fully documented．All our Boards

can be daisychained for even more RAM．
Please specify whether 3.0 or 4．0 ROM＇s and 40 or 80 column machine．And in the case of the E900 Boards， whether $1 \mathrm{~K}, 2 \mathrm{~K}$ ，RAM or EPROM．
Prices are： 1 K RAM－$\$ 35.00$ ； 2KRAM－$\$ 65.00$ ； 4 K RAM \＄120．00．E900 Board with 1K RAM－$\$ 55.00$ ；with $13 / 4 \mathrm{~K}$ RAM－$\$ 70.00$ ；with EPROM only $\$ 65.00$ ．
For orders or further infor－ mation contact：

LAR MICROTRONIX
12897－96A Avenue
Surrey，B．C．Canada V3T 1A1
Tel．（604）588－8967
Sorry，no charge cards accep－ ted at this time．

Replacing The INPUT\# Command

Jerry E. Dunmire San Jose, CA

At last you have your PET and now you can keep track of all those magazine articles, recipes, addresses or whatever else you promised your spouse! At least that's how I felt, and I immediately sat down to write the programs.

If you have tried to write a program that uses the INPUT command, then you know the problems I encountered. The INPUT command will not accept commas, quotes, or colons and using the GET command to construct a string is very slow. Since a proper bibliography of magazine articles must contain quote marks, I was stuck with the GET command. There had to be a better way.

There is! Nothing says that all programs must be written in BASIC. I could write a machine language routine to replace the INPUT\# command. The new routine would accept all characters. Replacing the INPUT\# command would also solve the same problems I encountered when reading from the tape or disk.

There are three items that we need to know in order to write a new version of the INPUT\# command: how strings are stored, where the string is located, and how to input characters. The PET/CBM Personal Computer Guide by Adam Osborne and Carroll S. Donahue provided the information on string storage. Raymond Diedrichs explained how to input from a file in his article "Pet File I/O in Machine Language" COMPUTE! \#11.

Strings are stored at the top of the available memory. As each string is entered, it is added to the bottom of the list. In order to identify a particular string we must know where it begins and how long it is. The PET uses one byte to represent the length of the string, and two bytes to identify the address where the string begins. The particular format that identifies a string depends on whether the string is an element of an array or a simple variable.

A simple variable has the form shown in Figure 1. If the string is an element of an array, it would be identified as shown in Figure 2. We can disregard the information in the header of an array.

This is only part of the information we need to
locate a string in memory. The location of the pointer to the string is still unknown. Must our routine search for the name of the particular string we wish to input? Well, it could, but there is an easier way. Locations $\$ 44$ and $\$ 45$ point to the last variable referenced. If that last variable were the string we wish to input, then these locations will point to the length of the string, and the next two locations will be the address where the string is stored. Figure 3 shows the relationship between locations $\$ 44, \$ 45$, variables, and strings.

Reading characters from a file is even easier than dealing with strings. If a file has been opened by a BASIC statement, the subroutine at \$FFC6 will set the file up so we can read from it. Then the subroutine at $\$$ FFCF will input a character from that file. When we have all the characters we want, the default I/O devices should be restored.

Armed with this knowledge, I wrote two routines. The two routines are named READString and INPUTLine. They are located in the second cassette buffer. Both use locations $\$ 44$ and $\$ 45$ to locate the variable, so the last variable you reference before calling these routines must be a string.

READS inputs a fixed number of characters from file \#1. The number of characters is determined by the length of the string referenced by locations $\$ 44,45$. As the characters are read in, they replace the characters that are already in the string. This routine will cause strange problems if locations $\$ 44, \$ 45$ point to a string with zero length. To prevent this occurrence, I use the following commands to call READS:

10 IF LEN(A\$) THEN SYS(826)
If $\mathrm{A} \$$ has a zero length, READS will never be called. As you can see, the starting address of READS is 826 (\$033A).

The version of READS shown in Program 1 reads one additional character after it has filled the referenced string. The file has a carriage return at the end of each string. To remove this extra character input, place NOP's (\$EA) in locations \$0361 through $\$ 0363$.

INPUTL also uses file \#1. A carriage return must mark the end of a string just like the INPUT\# command. INPUTL will accept any character other than a carriage return. Up to 80 characters can be input. If more than 80 characters are input, the ST variable will be set to a value of -1 .

INPUTL works more like INPUT\# than READS does. As the individual characters of a string are input, they are placed in an input buffer. Only after the string has been terminated with a carriage return is it transferred to the string storage area and assigned to the variable pointed to by $\$ 44$, $\$ 45$. The string is copied from the input buffer to

A comprehensive accounts receivable and insurance billing system for modern health care offices and clinics

CDESIGNED FOR COMMODORE 8000 SERIES COMPUTERS AND DISK DRIVES
Help functions are always on-line

- Supports CPT, ICD and RVS medical coding
- Supports open item or balance forward accounting systems
- Interfaces to popular word processing programs
Multiple terminals may be added with Superbus 4.0
Multiple disk drives may be used-no limit on number of patients or accounts

ts e

cMai

- Includes a data base and forms generator to fill out any insurance form
E Includes a computer aided instruction program to train new users

Includes these standard reports:
A/R aging A/R transactions

- General ledger Instant cash receipt
- Income analysis by physician
- Doctor referral report
- Patient/account cross reference
- Standard SuperBill insurance form
just below the string storage area. Then the pointer to the beginning of the string storage area is adjusted to account for the new string.

I use the following line to call INPUTL, but you can use any function that leaves locations $\$ 44$, $\$ 45$ pointing to the variable you wish to input.

$$
10 \text { A } \$=" ": \text { SYS(872) }
$$

As you can see, the starting address for INPUTL is 872. As with READS, if the last variable you referenced were not a string then the results are almost unpredictable and certainly bad.

You can change the file number used by these programs to suit your needs. Simply POKE the number of a file you have opened into location 827 for READLINE and 873 for INPUTSTRING.

INPUTL and READS will work with BASIC 3.0 or BASIC 4.0. If you need to use them with BASIC 1.0 then you will have to adjust all of the references to memory locations less than $\$ 0400$ (1024 decimal).

INPUT\# is still the fastest way to input a string. However, both INPUTL and READS are at least three to four times faster than using GET\# commands. If you are short on memory, using the GET\# command will be exceedingly slow since it will cause the garbage collection routine to execute more often than any of the other methods.

Program 1.

$8 \emptyset \emptyset$

FOR ADRES=826TO949:READ DATTA:P OKEADRES, DATTA

805 NEXT
826 DATA $162,1,32,198,255,160$
832 DATA $0,177,68,133,96,20 \emptyset$
838 DATA 177, 68, 133, 94, 200, 177
844 DATA 68, 133, 95, 169, 0,133
850 DATA $97,32,207,255,164,97$
856 DATA $145,94,200,132,97,198$
862 DATA $96,208,242,32,207,255$
868 DATA 32, 204, 255, 96, 162, 1
874 DATA $32,198,255,169,0,133$
880 DATA 5, 32, 207, 255, 201, 13
886 DATA $240,15,166,5,232,224$
892 DATA $81,240,47,157,0,2$
898 DATA $134,5,76,113,3,166$
904 DATA 5, 160, Ø, 198, 48, 165
910 DATA 48, 201, 255, 208, 2, 198
916 DATA $49,189, \emptyset, 2,145,48$
922 DATA $202,208,238,165,5,145$
928 DATA 68, 165, 48, 200, 145, 68
934 DATA $165,49,200,145,68,76$
940 DATA $178,3,169,255,133,150$
946 DATA $32,204,255,96$

Figure 1. Simple String Variable Storage

Figure 2. Array String Storage

Figure 3. (Upgrade or 4.0 BASIC) Memory Map

1. Software select one of two operating systems. (BASIC 2.0/BASIC 4.0)
2. Software select utility ROMs at conflicting addresses.

$\$ 125^{00}$

(U.S.)
(\$150.00 Canadian) Add $\$ 3.00$ shipping to all points outside Canada.

Master Charge and VISA accepted.

For 24 Pin ROM Machines Only.

BRTTERIES ITELUDET
 Village by the Grange
 71 McCaul Street
 Toronto, Ontario
 Canada M5T 2X1
 (416) 596-1405

For the Commodore PET/CBM

4 K
 prompriver

PLUG IN MORE

POWER!

MACHINE LANGUAGE UTILITY-PAC
Rom based firmware includes 43 COMMANDS to ENHANCE use of your computer including D.O.S (WEDGE)!, ASSEMBLER, DISASSEMBLER, HUNT MEMORY, QUICK TRACE, COMPARE MEMORY, TRANSFER MEMORY, RELOCATOR, WALK CODE, INTEGRATE MEMORY (Hex Code and Ascii), VIDEO SCREEN DUMP (STANDARD OR ENHANCED), FILL MEMORY, FAST TYPE HEX ENTRY, HEX TO DECIMAL \& ASCII CONVERSIONS and VISE VERSA! Most functions to screen or printer. Makes handling and understanding of machine code programming easier. Also included are these programs accessible from Basic. D.O.S. (WEDGE), LOW CASE LIST, SCREEN DUMPS (STANDARD \& ENHANCED), RE-NEW, AUTO REPEAT, DISK APPEND, REV.SCREEN, DISPLAYY. AVAILABLE FOR $3.0,4.0$ \& 8032 COMPUTERS IN LOCATIONS $\$$ AOOO or \$9000; SPECIFY WHEN ORDERING. MANUAL included. Does not lower user memory. A MUST for new or advanced programmers alike! We accept VISA \& MASTERCARD, 30 DAY MONEYBACK TRIAL! SEE REVIEW IN COMPUTE! JUNE 1981 ISSUE! ORDER NOW!
4 K ROM for 3.0 (A000) or (9000) $\$ 79.95+\$ 2 \mathrm{~S} \& \mathrm{H}$ 4 K ROM for 4.0 (A000) or (9000) $\$ 79.95+\$ 2 \mathrm{~S} \& \mathrm{H}$ 4 K ROM for 8032 (A000) or (9000) $\$ 79.95+\$ 2$ S\&H DEALER INQUIRIES INVITED!

BASIC UTILITIES 3.0 or 4.0

This 4 K Rom contains 19 COMMANDS for Basic programming. INCLUDED are AUTO - RENUMBER DELETE - FIND - APPEND (TAPE) - DUMP - HELP TRACE - STEP - OFF - D.O.S. - SCREEN DUMP ENHANCED SCREEN DUMP - RE-NEW - LOW CASE LIST AUTO REPEAT - APPEND (DISK) - REV.SCREEN DISPLAY - THIS ROM IS LOCATED AT $\$ 9000$. These programs do not lower user memory and will greatly enhance your programming ability through use of the automatic disk \& printer routines! 30 DAY MONEYBACK TRIAL, ORDER NOW!
4K ROM................................ $79.95+\$ 2 S \& H$ 2K ROM W/FIRST 10 COMMANDS ONLY.. $\$ 39.95+\$ 2 \mathrm{~S} \& H$ PLEASE SPECIFY WHICH ROM SET YOU HAVE.

SEND \$1 FOR CATALOG AND \$5 OR \$10 OFF OF YOUR NEXT ORDER!

COMPETITIVE

SOFTWARE
21650 Maple Glen Drive Edwardsburg, MI 49112

Typing Foreign Language Text With The Commodore Printer

Zoltan Szepesi
Pittsburgh, PA

Most languages, unlike English, use different kinds of marks or accents above some of the vowels or even above or below some consonants. The French has the "accent aigu" ('), "accent grave" (') and the "accent circonflexe" (${ }^{\wedge}$) placed in many words above vowels $\mathrm{e}, \mathrm{a}, \mathrm{o}, \mathrm{u}$ and they have also the "cédille" placed below C (as ç) in some words. English typewriters and printers generally do not have the facility for printing these orthographic signs. However, with the CBM series 2022 and 2023 printers one can create special characters, thereby printing any of the wanted letters.

We could create the complete special character (letter + accent) for each vowel. However, for 4 vowels and 3 accents we would need $4 \times 3=12$ special characters. It is simpler to program only the 3 accents and, any time one needs the accent on the vowel, one goes to a subroutine to print the accent in the proper position. After the accent is printed, one has a carriage return without line feed, and the standard characters are printed after a line was typed.

At first, I made a program according to this plan. However, as each accent needs a full printer head scan, the printing time was slowed down very much if the number of accents in a line were great. Therefore, I modified the program so that the accents are printed after the full line has been printed, and any number of accents of one kind is printed in one printer head movement. This improved the speed to a practically acceptable level.

This paper and program will not handle the printing of special symbols below the letters as the cédille in French. This problem is the same as printing descenders on letters g,j,q,p,y. According to the same principles as described above for the accents, one can create these special characters. However, the printing can be done only with the
tractor feed printer (2022 series). A paper and program on this problem will be published elsewhere.

In writing this program, I started with the "TYPEWRITER 1.5" program of Warren D. Swan, published in THE PAPER (pages 11-15, Vol. II, Issue 10, January 1980), modified for the new CBM/PET (ROM 3) and the new printer ROM (4). It is a very simple, but powerful, mini-wordprocessor.

Listing 1 is the accent printing program. There, first we have to design the special character strings $A \$(I)$, where $I=0$ TO 2. They are defined in statement 240 , using the DATA in statements 150 to 170 for the three above mentioned French accents. (See instructions in the Printer User manual or in Swan's article). Second, one has to decide which keys to sacrifice for calling the subroutine for the special accents. We used the "and" key (\&) for the accent aigu (') as specified in statement 410, the "shift and" for accent grave (') - statement 420 and the "shift apostrophe" key for accent circonflexe (${ }^{\wedge}$) - statement 430. For the printing of the accents in the proper place, the strings $S \$(\mathrm{I})$ are created, one for each accent type. For tape recording and reprinting the text from tape the string $\mathrm{T} \$$ is created.
Swan gives the instructions for how to use the original program. I will tell you shortly what to do and how to do it in the modified program.

For Input one can choose:

1. The keyboard (device \#0)
2. The tape recorder (device \#1 or \#2)

For Output:

1. Tapes 1 or 2.
2. Screen (device \#3)
3. Printer (device \#4)

For the tape files you can give a file title. If you do not need a title just press two apostrophes ("‘").

When using the DEL command in or after an enhanced text, the following rule has to be applied:

Within the enhanced text the correction can be made the normal way, if the SHIFT- (key was not yet pressed.

If you want to go back to the enhanced characters after an exit from them, use the DEL until you delete the exit character. Here press the enhanced command (SHIFT-BACKSLASH) and continue with DEL. Do not again use the SHIFT-
BACKSLASH when you type the corrected text, but use the SHIFT-(key when you want to continue with standard characters.

Boldface characters can be printed also on the full line by printing the same text on the same line

ROM based terminal package for CBM 8000 with 8010 or TNW 2000 sys8010 Rом $\$ 49.95$

OR
FREE with purchase of 8010 modern! 8010 modern. \$279.00

PRIVATE I
Eliminates data errors when using a modern with an extension line \$11.95

Software by MICROFEX
fits in 3.5 K

VIC-MAN eats dots and monsters in maze \qquad $\$ 14.95$

VIC-ROIDS

shoot at asteroids as they float in space. . $\$ 14.95$

Pet Bulletin Board System

Start a bulletin board with your 16 K Pet or CBM. Use 4040, 8050 or 2031 drives. See it in operation at (414) 282-8118.

See Message Number 3.
PBBS software $\$ 49.95$

We also carry and demo the entire Commodore and Jim-Pack lines of equipment.

Send check or money order with order. Allow $\$ 5.00$ for shipping and handling.
PETTED microsystem 4265 W. Loomis
Milwaukee, WI 53221 under the "Shell" sign at I-894 \& Loomis Rd. (414) 282-4181

PETTED

VISA \& MASTERCHARGE ACCEPTED

HOME FINANCES Commodore PET ${ }^{\text {tm }}$

These programs were developed on a Commodore 2001 series, thirty-two kilobyte (32K required) personal electronic transactor with a single tape cassette.
Will categorize entries, give totals \& tallies for all past-entered data (not a ledger; no dates or specific item names).
Great for use every 2-6 months in conjunction with check book records, stubs, bills, or your cancelled checks.
(a) Personal cash flow \& tax deduction-related; 24 specific to general categories:

> "tax accounts" or "TAX ACCOUNTS" (No shift)
$\$ 30$
(No shift)
gories mostly
specific for common home expenditures:
"house accounts"
or "HOUSE ACCOUNTS" (No shift)
(c) Both above programs; very slight overlap: \$70

Choice desired
Mail, with check or other payment and your address, to: PractEd Tapes, Inc.
12162 S.E. 14th St.
Bellevue, Washington 98005
Programs not guaranteed against loss, misuse or system difficulties.

PET/CBM COMPUTERS Cross Reference Program

FORMATTED LISTINGS
. Easy to read
. Multiple statement lines can be listed on sep-
arate lines or on one line, as on the screen
LINE NUMBER CROSS REFERENCE
. Shows all GOTO's, GOSUB's and ON GOTO/GOSUB's
.Flags unresolved branches
VARIABLE CROSS REFERENCE
. Shows allocation of all variables and user
defined functions
. Variables sorted into alpha-numeric order
CODE OPTIMIZATION
. Shows the amount of memory wasted on remarks,
long variables and unneeded spaces
4!
Special features for superkram users
Will work on all PET 2001, CBM 4032 and CBM 8032, and $4040 / 8050$ disk drives.
Specify your hardware configuration.
Send $\$ 29.95$ (includes postage and handling) to:
OPPENHEIMER SOFTWARE
79 ST. BOAT BASIN $\ddagger 39$ NEW YORK, N.Y. 18024
(212) 787-2416

PET \& CBM are trademarks of COMMODORE BUSINESS MACHINES, INC. SUPERKRAM is a trademark of UNITED SOFTWARE OF AMERICA. INC.

KEY	ASCII	Statement No.	Function
CLR	147	320	Sets the paging mode to the printer.
HOME	19	330	Sends a cursor-home character to the output device only.
DEL	20	340	Deletes the last character.
SHIFT BACKSLASH	220	350	Enhanced print
SHIFT (168	360	Unenhanced print for stopping enhanced
INST	148	370	Deletes entire line
BACKSLASH	92	380	TAB for next 8 spaces
SHIFT \#	163	400	Prints programmable character defined previously.
RETURN SHIFT RETURN	$\begin{array}{r} 13 \\ 141 \end{array}$	310	Brings the printer to the print subroutine.
\&	38	410	Accent aigu
SHIFT \&	166	420	Accent grave
SHIFT APOSTROPHE	167	430	Accent circonflexe
CURSOR LEFT	157	390	Program goes to the special command mode, where one can ask: 1. A programmable character 2. Change the \# of lines/inch 3. End the program.

Table 1. List of operations for the TYPEWRITER ACCENT program.
two times. For achieving this, do the following:
After the line you want to print bold face, do not press RETURN, but use SHIFT-RETURN. For the next line press SHIFT-BACKSLASH and RETURN.

If the language you want to print has other accents than the ones given in this program, just construct their forms according to the instructions of the printer and substitute the resulting six numbers into the data statements $150-170$. E.g.: the German text needs only the "Umlaut," which could be printed by the following data:

$\mathbf{0 , 0 , 6 4 , 0 , 6 4 , 0}$

Since more accents are not used in the German, the other 2 accents can be deleted in the program. Since there will be just a single $A \$$ and $S \$$, statements $240,270,280,500,510,2090,2510$ could be modified accordingly and statements $160,170,420,430,1110,1120,1220,1230$ could be deleted.

In the Hungarian, beside the accent grave and the Umlaut, one needs an accent similar to the quotation mark. The following data would define this:

0,32,64,32,64,0

In several other languages one uses a waveshaped accent. The previous Hungarian accent could be acceptable for this accent too.

Copyright registration of this program is being requested. You can use this program for your personal use, or you can have it on tape by
sending $\$ 3.00$ to my address: 2611 Saybrook Drive, Pittsburgh, PA 15235.

```
1\varnothing REM TYPE ACCENT PROGRAM BY Z.SZEPESI
        \neg(COPYRIGHT REGISTRATION APPLIED)
2\emptyset REM MODIFIED FROM TYPEWRITERI. 5 BY ᄀ
        \negW.D.SWAN(THE PAPER VOL.II.ISSUE ᄀ
        710)
30 REM INITIALIZATION
35 REM "-----------------"
4\emptyset POKE 59468,14:OU=4:IN=1:Q=2Ø5:
    ᄀCO=59467:TØ=59466:R=59464
5\emptyset K=\emptyset:H=2:PRINT"WHAT IS THE INPUT ᄀ
            \negDEVICE # (\emptyset TO 2)?";:GOSUB3øø\emptyset
60 K=1:H=4:C=D:IFC=1ORC=2THENINPUT"FILE ᄀ
        \negTITLE:";TL$:GOTO8ø
70 OPENIN,C
80 PRINT"WHAT IS THE OUTPUT DEVICE # (l ᄀ
        \negTO 4)?";:GOSUB3øøø
90 IFC=DGOTO8\emptyset
100 IFD=1ORD=2THENINPUT"FILE TITLE";TL$
105 IFC$=""GOTO100
11\varnothingS=-(D<4):IFC=1ORC=2THENOPENIN,C, }0\mathrm{ ,
        7TL$
12\emptyset IFD=1ORD=2THENOPENOU,D,S,TL$:GOTO14\emptyset
130 OPENOU,D,S
140 PRINT"A":OPEN5,OU,5:DIM A$(2),S$(2)
150 DATA }0,\varnothing,\varnothing,32,64,\emptyset:REM ACCENT AIGU
160 DATA 0,64,32,0,0,\emptyset:REM ACC. GRAVE
17\emptyset DATA Ø, 32,64,32,0,0:REM ACC. CIRC.
240 FORI=\emptysetTO2:AS(I) = "n:FORJ=1TO6:READA:
        \negA$(I) =A$(I) +CHR$(A):NEXTJ:NEXTI
250 REM MAIN PROGRAM LOOP
255 REM
                            "_--------------------"
```

260 OPEN7，4，7：PRINT\＃7：CLOSE7：OPEN6，4，6： $\neg \mathrm{M}=6$

 ᄀNEXT
$28 \emptyset A A=\emptyset: A \emptyset=\emptyset: A l=\emptyset: A 2=\emptyset: E=\emptyset$
290 GET\＃IN，C\＄：IF64ANDSTGOTO7ØøØ

$31 \emptyset$ IFC $\$=\operatorname{CHR} \(13) ORC $\$=C H R \(141) GOTO1 $\emptyset \emptyset \emptyset:$ \neg REM TO PRINT LINE
320 IFC $\$=$＂$\uparrow$＂THENPRINT\＃OU，＂ h ＂：GOTO29
$33 \emptyset$ IFC $\$=$＂h＂THENPRINT\＃OU，＂h＂：GOTO29
$34 \emptyset$ IFC $\$=C H R \$(2 \emptyset)$ THENGOSUB2 $\emptyset \emptyset \emptyset: G O T O 29 \emptyset$
350 IFC $\$=$＂$\triangle$＂THENC $\$=C H R \$(1): E=1: I F D=10 R D=$ ᄀ2THENT\＄＝T\＄＋＂${ }^{\text {T }}$ ：GOTO29
360 IFC $\$=$＂（＂THENC $\$=\stackrel{\rightharpoonup}{C} H R \$(129): E=\emptyset:$ ᄀIFD＝10RD＝2THENT\＄＝T\＄＋＂工＂：GOTO29ø
$37 \emptyset$ IFC $=$ CHR $\$(148$ ）THENFORK $=1$ TOLEN（L $\$$ ）： नGOSUB2ØØØ：NEXT：GOTO27Ø
380 IFC $\$=$＂$\$＂GOTO25ø

$40 \emptyset$ IF C $\$=$＂\＃＂THENC $\$=\operatorname{CHR} \(254)
$41 \emptyset$ IFC $\$={ }^{"} \&{ }^{*}$ THENT $=T \$+C \$: G O S U B 11 \emptyset \emptyset: A A=1$ ： $\neg A \emptyset=1:$ GOTO29
$42 \emptyset$ IFC $\$=$＂$\&$＂THENT\＄＝T\＄＋C\＄：GOSUB111 $0: A A=1:$ $\neg A 1=1: G O T O 29 \emptyset$
430 IFC $\$={ }^{\prime \prime}$＂THENT\＄＝T\＄＋C\＄：GOSUB1120：AA＝1： ᄀA2＝1 ：GOTO29 Ø
$5 \emptyset \emptyset \mathrm{FORI}=\emptyset T O 2: S \$(I)=S \$(I)+n \quad$＂：NEXTI： ᄀIF E＝ØGOTO52の
$51 \emptyset$ FORJ $=\emptyset T O 2: S \$(J)=S \$(J)+n \quad$＂：NEXTJ
520 C＝ASC（C\＄）AND127
$530 \mathrm{~L}=\mathrm{L} \$+\mathrm{C} \$: T \$=\mathrm{T} \$+\mathrm{C} \$$
540 IFC >31 ORC $\$=$＂$\rightarrow$＂THENP＝P＋1 $:$ IFE＝1THENP＝P $\rightarrow+1$
$55 \emptyset$ IFP $=72$ THENGOSUB26 $0 \emptyset$
560 POKEQ，1：G\＄＝G\＄＋C\＄：IFE＝1THENG\＄＝G\＄＋＂n
570 PRINTC ；：IFE＝1THENPRINT＂${ }^{n}$ ；
$58 \emptyset$ POKEQ，$\emptyset:$ PRINT＂Ş＂；：GOTO29
998 REM
＂PRINT THE LINE
999 REM
＂PRINT THE LINE
1ØØの IFL\＄＝＂上A＂THENL $\$=M \$: G \$=H \$$
1010 PRINT：IFD＝4THENPRINT\＃OU，L\＄；CHR\＄（141 ᄀ）；
$102 \emptyset$ IFD＝1ORD＝2THENPRINT\＃OU，T\＄；CHR\＄（141） ᄀ；
1030 PRINT＂Ћ＂；：FORK＝1TOLEN（G\＄）：POKEQ，1： ᄀPRINTMID（G\＄，K，l）；：NEXT：M\＄＝L\＄： $\neg \mathrm{H}=\mathrm{G}$ \＄
$1 \emptyset 40$ POKEQ，$\emptyset: I F A A=1$ THENGOSUB12øø
1ø6Ø PRINT\＃OU，CHR\＄（13）；：GOTO27Ø
$110 \emptyset$ PRINT\＃5，A\＄（ $\theta): S \$(\theta)=\operatorname{LEFT} \$(S \$(\theta)$ ， $\neg \mathrm{P}-2)+\mathrm{CHR} \(254)
$11 \emptyset 5$ RETURN
1110 PRINT\＃5，A\＄（1）：S\＄（1）＝LEFT\＄（S\＄（1）， $\neg \mathrm{P}-2)+$ CHR $\$(254)$
1115 RETURN
$112 \emptyset$ PRINT\＃5，AS（2）：S\＄（2）＝LEFT\＄（S\＄（2）， $\neg \mathrm{P}-2)+\mathrm{CHR}$（254）
1125 RETURN
$12 \emptyset \emptyset$ IFD $\langle>4$ THENRETURN
$121 \emptyset$ IFA $\emptyset=1$ THENPRINT\＃5，AS（ \varnothing ）：PRINT\＃OU， नS $\$(\emptyset)$ ；CHR $\$(141)$ ；
1220 IFAl＝1THENPRINT\＃5，AS（1）：PRINT\＃OU， ᄀS\＄（1）；CHRS（141）；

1230 IFA2＝1THENPRINT\＃5，AS（2）：PRINT\＃OU， नS\＄（2）；CHR\＄（141）；
1240 RETURN
1998 REM DELETE A CHAR．
1999 REM＂－－－－－－－－－－－－－－－－＂
$2 \emptyset \emptyset \emptyset \operatorname{IFLEN}(L \$)=\emptyset O R L E N(T \$)=\emptyset T H E N R E T U R N$
$2 \emptyset 1 \emptyset$ PRINTCHR\＄（20）；：IFE＝1THENPRINTCHR\＄（2 ᄀØ）；
$2020 \mathrm{~F} \$=\mathrm{RIGHT}(\mathrm{G} \$, 1): \mathrm{G} \$=\mathrm{MID}(\mathrm{G} \$, 1$ ， ᄀLEN（G\＄）－1）：IFE＝1THENG\＄＝LEFT\＄（G\＄， नLEN（G\＄）－1）
2030 Fl ＝$=$ RIGHT\＄$(T \$, 1): T \$=L E F T \$(T \$$, ᄀLEN（T\＄）－1）
 ᄀLEFT\＄（T\＄，LEN（T\＄）－1）
2050 IFF\＄く＞＂＜＂GOTO2ø80
2060 O\＄＝RIGHT\＄（L\＄，1）：L\＄＝MID\＄（L\＄，1， ᄀLEN（L\＄）－1）：IFO\＄＜＞＂＜＂ORF \＄＜＞＂＜＂GOTO2 7050
$207 \emptyset$ RETURN
$2080 \mathrm{~L} \$=\mathrm{MID}(\mathrm{L} \$, 1, \operatorname{LEN}(\mathrm{~L} \$)-1): \mathrm{P}=\mathrm{P}+((\mathrm{ASC}(\mathrm{F}$ ᄀ\＄）AND127）$>31)+\left(\mathrm{F} \$={ }^{\prime} \rightarrow{ }^{\prime}\right):$ IFE＝1THENP＝ $\rightarrow \mathrm{P}-1$
2090 FORI＝ØTO2：S\＄（I）＝LEFT\＄（S\＄（I），P－1）： ᄀNEXT
$210 \emptyset$ IFD $=10 R D=2 G O T O 212 \emptyset$
$211 \emptyset$ RETURN
 ᄀLEFT\＄（T\＄，P－1）
2130 IFE＝1THEN T\＄＝LEFT\＄（T\＄，LEN（T\＄）＋1）
2140 RETURN
2498 REM TAB TO NEXT STOP
2499 REM

$250 \emptyset \mathrm{~T}=8-($ PAND 7$): \mathrm{P}=\mathrm{P}+\mathrm{T}: F O R K=1 \mathrm{TOT}:$ ᄀL\＄＝L\＄＋＂＂：G\＄＝G\＄＋＂＂：T\＄＝T\＄＋＂＂： \rightarrow PRINT＂＂；
2510 FORI＝ØTO2：S\＄（I）＝S\＄（I）＋＂＂：NEXTI
252の NEXTK：PRINT＂Şィ＂；
$253 \emptyset$ IFP＞$=72$ THENGOSUB26ø \varnothing
2540 GOTO29の
2598 REM END OF LINE BEEP

$26 \emptyset \emptyset$ POKER， $0:$ POKECO，16：POKETØ，15： \rightarrow POKER，150：FORK＝1TO2E2：NEXT
$261 \varnothing$ PORER，$\varnothing:$ POKET $\emptyset, \varnothing: P O K E C O, \varnothing:: R E T U R N$
2998 REM GET A DEVICE

3øøø GETC\＄：IFC\＄＝＂＂GOTO3øø
$3 \emptyset 1 \emptyset \mathrm{D}=\mathrm{ASC}(\mathrm{C} \$)-48:$ IFD＜KORD＞HGOTO3øøø
$302 \emptyset$ PRINTD：RETURN
3998 REM EXTRA COMMANDS
3999 REM＂－－－－－－－－－－－－－－－－－＂
$4 \emptyset \emptyset \emptyset$ PRINT＂ENTER COMMAND：＂
$4 \emptyset 1 \emptyset$ PRINT＂$\downarrow 1$ ．DEFINE A PROGRAMMABLE ᄀ ${ }^{\text {CCHARACTER．}}$＂
$402 \emptyset$ PRINT＂${ }^{2}$ 2．SET LINES／INCH．＂： $\neg P R I N T " \downarrow 3$ ．END PROGRAM＂
4ø3ø GET\＃IN，F\＄：IF64ANDSTGOTO7øøø
4040 IFF\＄＜＂1＂ORF\＄＞＂3＂GOTO4030
4050 IFD $=1$ ORD $=2$ THENL $\$=\mathrm{L} \$+^{\prime \prime}<7+F \$$ ： $\mathrm{GG} \$=\mathrm{G} \$+{ }^{\prime \prime} \leqslant 7$
4060 IF F\＄＝＂3＂GOTO7ضøの

4998 REM
DEFINE CHARACTER
4999 REM

```
5\emptyset\emptyset\emptyset PG$="":PRINT"KENTER 6 NUMBERS TO ᄀ
        \negDEFINE THE CHARACTER:
501\emptyset PRINT"(ONE AT A TIME FOLLOWED BY ᄀ
        \negRETURN)
502\emptyset IFD=4THENCLOSE5:OPEN5,OU,5
5030 FORK=1TO6:PRINTK;:INPUT#IN,F$:
        \negIF64ANDSTGOTO7\emptyset\emptyset\emptyset
5040 C=VAL (F$) : PRINTC:IFD=1ORD=2THENL $=L
        7$+F$+CHR$(13)
5050 PG$=PG$+CHR$ (C) :NEXT:IFD=4THENPRINT
        ᄀ#5,PG$
5060 PRINT"h"; :FORK=1TOLEN(H$):POKEQ,1:
        \negPRINTMID$(H$,K,l);:NEXT
5070 POREQ,0:PRINT"h\downarrow\downarrow\downarrow\downarrow":FORK=1TOLEN(G$
        7) :POKEQ,l:PRINTMID$(G$,K,l) ;:NEXT
508\emptyset POKEQ,\emptyset:PRINT"Ş<";:GOTO29\emptyset
5998 REM SET LINES/INCH
5999 REM "----------------"
60\emptyset\emptyset PRINT"hNUMBER OF LINES PER INCH? ";
601\emptyset IFD=4THENCLOSE6:OPEN6,OU,6
602\emptyset INPUT#IN,F$:IF64ANDSTGOTO700\emptyset
6030 M=VAL (F$) : PRINTM : IFD=1ORD=2THENL $=L
        7$+F$+CHR$(13)
6040 IFD=4THENPRINT#6,CHR$(144/M)
6050 GOTO5\emptyset60
6998 REM END OF PROGRAM "
7\emptyset\emptyset\emptyset PRINT:IFD=1ORD=2THENCLOSEOU
7010 END:IFD>2GOTO5060
7\emptyset20 PRINT"?CAN'T CONTINUE ERROR":END:
        \negRUN
```

 IEEE-488 BUS
 SYSTEM BUILDING BLOCKS
For Commodore PET/CBM and other computers...

TNW-1000 Serial Interface: \$129
TNW-2000 Serial Interface: $\mathbf{\$ 2 2 9}$
TNW-232D Dual Serial Interface: \$369
TNW-103 Telephone Modem: $\$ 389$
 (Use with TNW-200n. TNW-232D, or TNW 103) SWAP: Allows storage ot up 108 programs in PET memory at once Run them in any order PLUS Most popular computers. $\begin{aligned} & \text { memory at once Run them in any } \\ & \text { disks, printers etc }\end{aligned}$ PAN: A sophisticated clectronic mail program disks, printers etc use with TNW 103) Write or call for information today:

TNW Corporation

 3351 Hancock Street San Dlego CA 92110(714) 225-1040

Three Reviews:

Superchip, Spacemaker, Sort

Harvey B. Herman Associate Editor

The Petmaster Superchip

Some of us may have envied the tricks one can play with the new 80 column PETs using BASIC 4.0. For example, one can define a window which is seemingly immune from scrolling. SUPERCHIP, firmware from our English cousins, is intended to provide some of these screen handling functions and additional goodies also. It is available for all the current PET ROMs and does not conflict with the TOOLKIT.

The first feature I made use of (and liked) is called single key BASIC. That is, G stands for GO, N stands for NEXT,R stands for RETURN, etc. The full word appears, as if by magic, when a control key is pressed simultaneously with a letter. Another function that caught my fancy is called escape. This allows you to toggle back and forth between quote and direct modes of cursor control. If you ever get stuck in the wrong mode you know how useful that could be. I also made frequent use of the hold function which suspends execution until RETURN is pressed.

SUPERCHIP has a total of 18 functions:

erase begin	erase end
scroll up	scroll down
escape	retrace
message	functions
movit	single key
delete line	insert line
scroll window	graphics toggle
hold	stop
shrink	reverse

Most functions can be accessed either in immediate mode or from a BASIC program. A concise reference chart on the rear cover of the 26 page user manual summarizes the functions and states any exceptions or limitations. The manual is, for the most part, easy to understand by a first time user. However, I did have trouble with the scroll window section and I was confused by the use of the word "bracket" for "open parenthesis."

SUPERCHIP will appeal, I think, to many people and, if the reader is in this group, by all means buy it. You will have added quite a few useful functions to your repertoire which are not available elsewhere. Programs which use these features will be able to generate displays which ordinary PETs cannot do without great difficulty. As for me, I am not convinced that it is a good buy. Even with the recent drop in the pound exchange rate, SUPERCHIP still costs more than comparable firmware such as the TOOLKIT. In its favor, however, is that it offers some desirable features of BASIC 4.0 without losing the use of previously developed machine language software, which may be ROM-dependent.

Supersoft
28 Burwood Ave.
Eastcote, Pinner, Middx., England £45

Spacemaker II

New Commodore CBM/PETs have empty ROM sockets on the main logic board which allow users to install special software packages. These include the CBM word processors, VISICALC, and the TOOLKIT. Recently I received for review two firmware (EPROM) programs which, alas, required installation in the same empty ROM socket. This meant that I could not switch back and forth between the two programs without risk of permanent damage to the IC pins (or to my psyche). My problem was solved when I received the SPACEMAKER II for review. This nicely crafted piece of hardware is capable of switching between as many as four different ROMs when plugged into a single socket on the PET logic board.

I had no trouble working with SPACEMAKER II. The hardest part is insertion of the ROMs, but this time everything went smoothly. Jumpers which depend on ROM type, are placed on posts and no soldering is required. SPACEMAKER II is particularly easy to plug into a socket on the PET as you can get a grip on it more easily than a much smaller ROM. The four page instruction leaflet had quite explicit directions and I noticed only one typo (figure 2 instead of figure 3). The version I received employed manual switching with a switch mounted on the side of the PET (no drilling necessary). It is also possible to switch using software, with control by the User Port or with optional hardware (ROMDRIVER).

I have no hesitation about recommending this hardware to PET users who require software on ROM, but have addressing conflicts. SPACEMAKER II is professionally done and is reasonably priced. My only gripe is that they did not include a circuit diagram in the unlikely event that service is
needed. In a way I'm glad they didn't as I was hard pressed to find any negative comments.

CGRS Microtech
P.O. Box 102
Langhorne, PA 19047
$\$ 39.00$

SORT

(3.0 or 4.0 ROMs)
(40 or 80 column screen)
If you do much computing you will eventually need a good sort routine. I started to write a program recently which sorted and printed the names of up to 256 programs on PEDISK I diskettes. To my horror, I realized that I did not have, in my "junk box" of programs, a fast sort routine.
COMPUTE! came to my rescue. An early issue compared sort routines and I was able to adapt one of the BASIC listings in the article. However, not everyone has the ability or inclination to fit published programs to their own use. Matrix software offers a SORT program (on EPROM) for people who need a fast machine language sort that can be used with a minimum of effort even by novice programmers.

I had little trouble writing my first simple sort program. Their seven pages of instructions were quite helpful. I was able to do a four character sort on 1000 items in under seven seconds (average). Try doing that in BASIC sometime and you will be as impressed as I was. The program is executed with a SYS call after a few required POKEs. For example,

> POKE 905,a-which dimensioned array
> POKE 906,b一 number of keys
> POKE 907, - dimension of array
> POKE 927,d - number of characters to evaluate POKE $947, \mathrm{e}$ - what character to begin sort at SYS 36864 - for EPROM at $\$ 9000$ (specify when ordering)

For review purposes only, the company included a demonstration program. I believe they should include a listing of this program with each order. Otherwise, I have no complaints about this package. The sort is fast. It works with integers, real numbers, or strings. And, as a bonus, they include a printer screen dump in the unused space on the ROM. Check this program out if you do lots of sorts and you need a fast routine resident at all times. You should find it very useful.

> Matrix Software
> 315 Marion Ave.
> Big Rapid, MI 49307
> $\$ 55$

Machine Language: Jumbo Numbers

Jim Butterfield
Toronto, Canada

A single byte will hold an unsigned number whose value may be from 0 to 255 . Most of us, sooner or later, want to handle larger numbers. The techniques are fairly straightforward.

A number may occupy several bytes of storage. The usual convention is for the higher order bytes to contain powers of 256 . In simple terms, this means that one byte counts in "ones"; another byte counts in " $256-\mathrm{s}$ "; the next byte, if used, counts in "4096-s" and so on. It's easier than it sounds if you convert the number to hexadecimal. One million, which in hexadecimal is 0F4240, fits nicely into three bytes: from high order to low order these bytes contain $0 \mathrm{~F}, 42$, and 40 hexadecimal.

It is possible to hold numbers in a decimal type of format. This makes input and output easy, since no conversion is needed to convert the decimal digits, and addition and subtraction can be quite easily accomplished. More complex arithmetic is difficult - even multiplication and division requires an effort - so that we choose binary if any real math crunching is needed. Decimal numbers can be held two ways: packed, with two digits to a byte; and unpacked, with one digit to a byte.

Sizing

We must make room for the largest possible numbers we expect to handle. The following table may be halpful:

	Unsigned	Signed	Packed Decimal
1 Byte:	0 to 255	-128 to +127	0 to 99
2 Bytes:	0 to 65535	-32768 to +32767	0 to 9999
3 Bytes:	0 to 1677215	-8388608 to +8388607	0 to 999999

The table grows proportionately; if a count of over sixteen million in three bytes won't do, four bytes reaches to over four billion (after taxes, that's four thousand million in Great Britain). Enough for most applications, but you can continue to add bytes as you wish.

What about fractions? The most common method is to use an assumed decimal point. In other words, count in pennies instead of in dollars and you won't need fractions. There are more exacting methods, but most of us sidestep them if
we can.

Memory Arrangement

There's really no special law regarding how you arrange these bytes in memory. You can have high order values at the higher addresses, or turn it around and have high order values at the low end. I like to have low order at the low address end, etc.: it's easier to remember and is more consistent with address modes. On the other hand, storing the bytes the other way around (high order at the low address) makes it a little easier to handle a number with indexing. Why? Well, if we have to test an index register for the end of its range with CPX or CPY, we'll affect the Carry flag ... and we often need that flag to link information between the various bytes. A fine point; the choice is really up to you.

You can even scatter the values through memory rather than having them consecutive. Often it's better to keep them together so that you can "walk through" a number using indexing. But there are exceptions to every rule.

Some Simple Operations

We can manipulate multi-byte numbers just as readily as single bytes. All we need is some new rules.

For the following sample code, let's assume a two-byte value stored in locations 0300 low-order and 0301 high-order.

Moving: move both bytes instead of one. To move 0300/0301 to 0320/0321 we might code: LDX \#\$01; LOOP: LDA \$0300,X; STA \$0320,X; DEX; BPL LOOP. We have moved the high order byte first, but this makes no difference.

Addition and subtraction: start at the low end; fix up the Carry flag before you start, and then let the Carry link the bytes together. To add the contents of $\$ 0300 / 0301$ to $\$ 0320 / 0321$ and place the result at $\$ 0320 / 0321$, we might code: CLC; LDA $\$ 0300$; ADC $\$ 0320$; STA $\$ 0320$; LDA $\$ 0301$; ADC $\$ 0321$; STA $\$ 0321$. Note that it's vital that we start at the low end of the numbers, in this case the low addresses. We might wish to check to insure that the result hasn't overflowed (overflew?) the space available. For unsigned numbers, we do this by checking that the Carry flag is clear.

Subtraction goes the same way, except we give SEC and use the SBC command. A valid subtraction will complete with the Carry flag set; otherwise there's an unsigned number overflow.

Comparisons

Comparison is a little different from the single-byte compare. We need to decide in advance if we're testing for equality or for greater-than; it's hard to check for both in a single sequence.

∞ 品

PET/CBM ${ }^{\text {TM }}$
2000/3000/4000 Series
not using a CRT, or display controller chip
\$275.00*

Select either
80×25 or 40×25

On The Built-in Display

From the keyboard or program

Displays the full, original character set
Available from your local dealer or:
EXECOM CORP.
1901 Polaris Ave.
Racine, WI 53404
Ph. 414-632-1004
*Plus installation charge of $\$ 75.00$

Available only for Basic 3.0 \& Basic 4.0 PET\& CBM ${ }^{T M}$ a
trademark of Commodore Business Machines

Commodore 3.0/4.0/2.1 Dos Source Code!

Complete annotated source code for 3.0 ROMs, 4.0 ROMs and 2.1 DOS ($4040 ; 8050$-disk) now avallable. All entry points, routine/varlable names, Info on routine operation register contents, etc. Included. 4.0 source code comes with 3.0 correspondence codes so you can change 3.0 machine-language programs to 4.0 and vice versa. Hardcopy only. \$129. each. All 3 (3.0, 4.0, 2.1 DOS) for $\$ 310.00$. Source flles on diskette on special order.

Software/Firmware

- EXTRAMON extended monitor in 2K EPROM for any slot, 3.0/4.0 ROMs, plus hardcopy documentation. \$19.95
- DISK MONITOR ${ }^{\circ}$ - reads T/S from disk to screen at 0.21 seconds/blk. Allows editing like the resident monitor, updates disk, traces links, etc.

FAST! 31.1 Kbytes $/ \mathrm{sec}$. \$49.95

- BULLETPROOFI ${ }^{\circ}$ - fullscreen input routine. Uses machine-language to get user Input, places It In a user-defined variable. Text on screen outside flelds impossible to disturb. Documented source code Incl. with

Authorized dealer for RPL ${ }^{\circ}$ compllers

1624 N.W. 9th Ave., Ft. Lauderdale, FL 33311 (305) 523-1351

forth

for PET/CBM

FORTH is a new concept in programming, with the speed of compilers and interactive ease of BASIC. Programs become a part of FORTH extending the power of FORTH and your PET.

8050,4040 disk, cassette all PET-CBMs 16k+
Starter fig-FORTH weditor assembler $\$ 35$
Personal floating point; strings; source $\$ 75$
Professional turnkey development/data base $\$ 259$

Equality tests are quite straightforward: test each of the pairs of bytes, and if any are not the same, the two values are unequal. We might code: LDX \#\$01; LOOP: LDA \$0300,X; CMP \$0320,X; BNE UNEQUAL; DEX; BPL LOOP; EQUAL: ... The code is fairly self-evident.

To compare for greater-than, we might do a full subtraction. We won't need to keep the result; the flags will tell us the answer. We might code: SEC; LDA \$0300; SBC \$0320; LDA \$0301; SBC $\$ 0321$. At this point, the Carry flag will be set if the value in $\$ 0300 / 0301$ is greater than or equal to that in \$0320/0321.

It's possible to compare from the high-order end down, on the theory that if the first byte is. different, you don't need to look at the rest. Additionally, such a comparison can more easily test both equal and greater-than conditions. There's often not much difference; speed is likely to depend on whether or not the numbers are likely to be close or far apart.

Shifts And Rotates

Shifts and Rotates propogate readily through the

Carry bit. The first operation must start at the proper end of the number: Right shifts start from the high end, Left shifts from the low. The remaining operations, which work their way through the number, must always be Rotates, regardless of whether the overall operation is Shift or Rotate.

To shift the two-byte number at $\$ 0300 / 0301$ left, we might code: ASL $\$ 0300$; ROL $\$ 0301$. To rotate the same number, we would give ROL $\$ 0300$; ROL $\$ 0301$.

To shift the same number right, we would code; LSR $\$ 0301$; ROR $\$ 0300$. Finally we would rotate the number right with ROR \$0301; ROR $\$ 0300$.

Big numbers are not much harder to work with than small ones. All the usual operations are still available to you. There are more items to keep track of, but that's a natural result of expansion.

Make provision for future big numbers now. You wouldn't want to tell your boss that he can't give you a raise because there isn't room enough in the computer to hold what he wants to pay you...

File Recovery

M. R. D'Amato

Plainfield, NJ

If you have inadvertently scratched a file (and who hasn't?) on the 2040 (DOS 1.0) or the 8050 disk drive you can easily recover the information if you avoid saving additional files on the disk. (For really bad (slipped?) disk problems, see Cones' more sophisticated file recovery program; COMPUTE! \#10.) The task is easier on the 8050 , so let's start there.

On The 8050

When a program file is scratched, the file identifier, located in byte \#0 of the 30-byte file entry in the directory, is changed from 130 to 0 . Also, the blocks in which the file was written are recovered by DOS for subsequent reuse. Program 1 does the following. It searches the directory for scratched files and presents them on the screen one at a time. Press key " N " if the scratched file is not the one you want. (Also press " N " if all zeros appear as the file name, but don't respond to the directory track and sector numbers, which are provided for your information.) When the desired file appears on the screen, press "Y." This results in changing the file label from 0 to 130 and depositing this value on the disk. If the directory is then accessed, the name of the scratched file will appear in the displayed directory, and the file can be loaded into memory.

It is essential that the file be reSAVEd or it will be again lost when DOS assigns one or more of its blocks to a subsequently saved file. Therefore, after recovering the file and loading it into memory you should (a) SCRATCH the file (to remove it from the directory) and (b) SAVE the file under its original or a new name. That's all there is to it.

And the 2040

The task is a bit more difficult on the 2040 with DOS 1.0 because the track number of the first data block is, like the file identifier, also set to 0 . However, it is usually possible to infer the number of the initial track by examining the starting track numbers of the neighboring files in the directory. Program 2, which lists a block of data on the screen, is meant to help in this task. When prompted for track and sector, enter 18,1, the first directory block. If your scratched file is in this directory block, it can be identified by its name, which appears in ASCII format. The first two bytes of the block give the track and sector of the next directory block $(18,4)$. The 30 bytes of the first file entry follow.

As already noted, byte 0 holds the file type.

The track and sector of the first data block are located in bytes one and two, followed by a file name in bytes 3-18, padded with shifted spaces (160 's). A total of eight file entries (separated by two zero bytes) can be contained within a directory block. If your scratched file is not in the first directory block, access the next directory block by running Program 2 and entering 18, 4, continuing the process as necessary.

After locating the lost file, compare the track and sector number of the first data block in the preceding and the following file entries. These values will often immediately suggest the number of the first track of the scratched file. Having inferred the initial track of the scratched file, add lines 145, 414, and 416 to Program 1, change T in line 170 to 18 and run the program. It's a good idea to work with a duplicate disk, just in case you have the wrong track number and cause DOS some confusion.

Sequential files can also be recovered by changing the CHR\$ (130) in line 410 of Program 1 to CHR\$ (129). As with program files, once the sequential file is recovered, the name of the original file should be scratched from the directory and the recovered file saved.

The omission of a disk-error handling routine in the program is a concession to simplicity. It seemed just as easy to rerun the program if anything went wrong, but it's simple enough to include an error routine if needed.

The 8050 recovery program also works for files generated by the Wordpro 4 word processor, which stores text as program files. In fact, it was the humiliation of having mindlessly scratched a couple of such files that led to the development of the present program.

Murky BAM

For those of you who might want to poke around in murky BAM (block availability map), Programs 3 and 4 will illuminate things a bit by highlighting, in reverse field, the BAM bytes associated with a particular track (four on the 2040 disk and five on the 8050). In both cases, the first byte reveals the number of free blocks in the specified track and the subsequent bytes indicate their identity. Block zero is represented by byte zero of the second byte, block eight is represented by byte zero of the third byte, and so on. Not a very intuitive layout, but computers have little concern for such matters.

Because the DOS support program ("wedge") jumps into action when it sees the ASCII of >, l, \uparrow or @, it's best not to have the wedge concurrently in memory when using Programs 1-3 on the 2040 with DOS 1.0. This is not a problem on the 8050 and may be on the 2040 with versions of DOS ,
1.0. As if in compensation, the 8050 (but not the 2040) may give a " 70 , no channels" error if the disk holding the scratched program is not accessed with a load or a directory command after initialization. If this occurs, simply display the directory and rerun the program.

Program 1.

1øØ REM ***RESTORE SCRATCHED PROGRA M FILE***********

$11 \emptyset$ REM ***ON $8 \emptyset 5 \emptyset$ DISK DRIVE*** M. R. D'AMATO *****

120 OPEN15,8,15
130 OPEN1,8,3,"\#"
140 PRINT"DRIVE NUMBER Ø OR 1?":INP UT D
150 PRINT"PRESS Y IF FILE IS FOUND, PRESS N IF NOT"
$16 \emptyset$ REM ***FIND AND PRINT SCRATCHED FILES***********
$170 \mathrm{~T}=39: \mathrm{S}=1$
18@ PRINT\#15,"B-R:"3;D; T;
190 PRINT\#15,"B-P:"3; 2+32*R
$2 \emptyset \emptyset$ GET\#1,A\$: IFA\$=""THENA\$=CHR\$(\varnothing)
$210 \operatorname{IFASC}(\mathrm{~A} \$)>128$ THEN $3 \emptyset \emptyset$
$22 \emptyset$ FOR $K=5+32 * R$ TO $2 \emptyset+32 * R$
230 PRINT\#15,"B-P:"3;K
$24 \emptyset$ GET\#l,A\$:IFA\$=""THENPRINT" " $^{\prime \prime}$: G OTO26Ø
$25 \emptyset$ PRINTA\$;
260 NEXT
270 PRINT
$28 \emptyset$ GETA\$:IFA\$=""THEN28ø
$29 \emptyset$ IFA\$="Y"THEN4øø
$30 \emptyset \mathrm{R}=\mathrm{R}+1:$ IFR<8THEN18 \emptyset
$31 \emptyset$ REM ***GET NEXT DIRECTORY TRACK \& SECTOR********
32 PRINT\#15,"B-P:"3;
$33 \emptyset$ GET\#1,A\$:IFA\$=""THENA\$=CHR\$(\varnothing)
$340 \mathrm{~T}=\mathrm{ASC}(\mathrm{A} \$):$ IFT= \quad THENPRINT"FILE N OT FOUND": GOTO430
35 Ø PRINT\#15,"B-P:"3;1
360 GET\#1, A\$: IFA\$=""THENAS=CHR\$ (\varnothing)
$370 \mathrm{~S}=\mathrm{ASC}(\mathrm{A} \$):$ PRINT T,S
$38 \emptyset \mathrm{R}=\emptyset:$ GOTO18 \emptyset
$39 \emptyset$ REM ***RESTORE PROGRAM FILE LAB EL (13日)
$4 \emptyset \emptyset$ PRINT\#15, "B-P: " 3 ; 5+32*R-3
410 PRINT\#1,CHR\$ (130);
$42 \emptyset$ PRINT\#15,"U2:"3;D;T;
430 CLOSE1:CLOSE15

Program 2.

```
1\emptyset\emptyset REM **READ A BLOCK ON 2\emptyset5\emptyset OR 8
    Ø50**
110 OPEN15,8,15
120 OPEN1,8,3,"#"
130 PRINT"ENTER TRACK AND SECTOR (B
    LOCK)"
```

135 INPUT T,S:D=1:REM D=DRIVE NUMBE R
140 PRINT:PRINTT"-"S":";
150 PRINT\#15,"B-R:"3;D; T; S
160 FORK=øTO255
170 PRINT\#15,"B-P:"3; K
180 GET\#l,A\$
$19 \emptyset$ IFA\$=""THENPRINT"Ø"; :GOTO21Ø
$2 \emptyset \emptyset$ PRINTASC(A\$);
210 NEXTK
$22 \emptyset$ CLOSE1:CLOSE15

Program 3.

```
1\emptyset\emptyset REM **BAM HIGHLIGHT PROGRAM 2\emptyset4
    \emptyset**
1\emptyset5 REM ******** M. R. D'AMATO ****
    ***
11\emptyset OPEN15,8,15
12\emptyset OPEN1,8,3,"#"
13\emptyset PRINT"ENTER TRACK FOR WANTED BA
    M"
135 INPUT T:D=1:REM D=DRIVE NUMBER
14\emptyset PRINT:PRINT18"-"\emptyset":";
15\emptyset PRINT#15,"B-R:"3;D;18; 
16\emptyset FORK=\emptysetTO255
17\emptyset PRINT#15,"B-P:"3;K
18\emptyset GET#l,A$
182 IFK=>(4*T)ANDK<4* (T+1)THENPRINT
    "{REV}";
190 IFA$=""THENPRINT"\emptyset"; :GOTO21\emptyset
20\emptyset PRINTASC(A$);
210 PRINT"{OFF}";:NEXTK
22\emptyset CLOSEl:CLOSE15
```


Program 4.

$1 \emptyset \emptyset$ REM **BAM HIGHLIGHT PROGRAM $8 \emptyset 5$
Ø**
$1 \emptyset 5$ REM ******** M. R. D'AMATO **** ***
110 OPEN $15,8,15$
$12 \emptyset$ OPEN1,8,3,"\#"
130 PRINT"ENTER TRACK FOR WANTED BA M"
135 INPUT $T: D=1:$ REM $D=D R I V E$ NUMBER
137 IF T>50THENS=3:T=T-50:GOTO14 \varnothing
$138 \mathrm{~S}=\emptyset$
140 PRINT:PRINT38"-"S": ";
15 日 PRINT\#15,"B-R:"3;D;38; S
160 FORK $=\emptyset$ TO255
$17 \emptyset$ PRINT\#15,"B-P:"3;K
180 GET\#1,A\$
182 IFK $\Rightarrow 5 * T+1$ ANDK $<5 * T+6 T H E N P R I N T "\{$ REV\}";
$19 \emptyset$ IFA\$=""THENPRINT"ø"; :GOTO21ø
$20 \emptyset$ PRINTASC(A\$);
210 PRINT"\{OFF\}"; :NEXTK
220 CLOSE1:CLOSE15

DR. DALEY'S SOFTWARE

Software with a difference.

THE MAIL LIST

A Proven Performer

Proven Performance with The Mail List is now in use by many satisfied customers.

It has been nearly two years since the first version of The Mail List was introduced. Only the BEST software will stand this test of time.
The Mail List has been specially designed to be used by the novice computer operator. All operations in the system are menu driven with built in user protection. This insures that you can have hassle free and error free operation.

Why waste time with other inferior mailing lists? Compare these features:

1. User defined data structures. You are the best judge of how your files should be organized. DR. DALEY'S mailing list package is unique in this feature. With The Mail List you can divide each record to suit your needs.
2. User defined label format. You can print from one to eight labels across and up to 10 lines per label.
3. Interface to WordPro 3 or 4.
4. Fast and easy input and editing.
5. Easy to use 'wild card' sorting. This will allow searches through the file using up to 3 fields.
6. Multiple disk files. Maximum capacity is 80 disks per file.
This powerful package comes on diskette with nearly 100 pages of documentation. It is packaged in an attractive binder.

When ordering please specify the version you are ordering. It is available for the following systems:
Version 4.4
$\$ 159.95$
(Any computer with Commodore BASIC 4.0 and 32 K memory with the 4040 (or upgraded 2040) disk drive.)
Version $4.8 \quad \$ 179.95$
(Commodore 8032 with the 8050 disk drive.) Call or write for details of our other software.

NOTE OUR NEW ADDRESS

DR. DALEY'S SOFTWARE
Water Street
Darby, MT 59829
Phone: (406) 821-3924

(Hours: 10 a.m. to 6 p.m. Mountain Time)
or telephone uc at (612) 926-2292

Looney Line Numbers

Jim Butterfield
Toronto, Canada

It should never happen. You have a program that you've been working on for hours (days? weeks?) and then suddenly a line number goes wrong. In between lines 6340 and 6360 the line number that should be 6350 has suddenly changed to 2254 . Not only is that wrong - the GOTO's won't work right - but you can't get rid of it! The line seems stuck in your program forever. How does it happen? More to the point, how do you get rid of it without completely reentering the program?

How It Happens

It won't happen under normal circumstances. BASIC guards carefully against this kind of error.

An unwise POKE instruction or a SYS to a machine language program that's not completely debugged can get you into all sorts of trouble. If you're lucky, all you'll get is a looney line number.

Sometimes a bad LOAD will do the trick. In theory, the computer should guard against load errors; but it doesn't always tell you the whole story. If you're loading tape on a CBM/PET, always ask for the Status value (type PRINT ST): if the value is zero, the load is reliable; otherwise, you're taking your chances.

Bad RAM (Random Access Memory) can plague you with faults. It's not always obvious. Memory can sometimes fail erratically: perhaps the power supply voltage drops for a moment, and a bit disappears; or the malfunction only starts after the computer's innards get hot. If you're plagued with this type of problem, have your machine checked out.

All of the above may cause goofy line numbers; but they also may randomly cause other errors. Some are fatal, and some cause your program to look weird. Try to pin down the cause; it's worth the effort.

Fixing Numbers That Are Too High

There are two cases: high line numbers (out of proper order) and very high line numbers.

If an out-of-sequence line number is too high, but less than 64000, the trick is easy: delete the bad line and reenter it with the proper line number.

If the line number is 64000 or more, we must go to the next section and run the program there. You're not allowed to enter a line number of 64000
or more, even to delete the line concerned. Try typing 64000 followed by RETURN; you'll get a ?SYNTAX ERROR.

Fixing Low And Super-high Numbers

Type in the following lines at the front of your program. If your program happens to have lines numbered in the range from 0 to 8 , take them out and put them back later.

```
1 A= 1025: V=256: X=-1
2 B = A:A = PEEK(B) + PEEK(B + 1)*V
3 PRINT : IF A =0 THEN END
4Z = PEEK(B + 2):Y = Z + PEEK (B + 3)*V
5 PRINT CHR$(145);Y;:IF Y>X AND Z<250 GOTO }
6 Y=X + 1 : Y% = Y/V:PRINT"TO";Y
7 POKE B + 2,Y-Y%*V:POKE B + 3,Y%
8 X=Y:GOTO 2
```

The above coding is for the PET/CBM; you can adapt it to other computers by changing the value 1025 in line 1 to the Start-of-BASIC address in your machine. The CHR $\$(145)$ can be changed to match your machine's Cursor-Up character.

Meaning of the variables: B is the address of the current line of BASIC being examined; A is the address of the next line. X is the previous line number and Y is the new line number. Z is the "high byte" of the new line number; it's used to test for a super-high number. V is a constant of 256.

The program goes through each line of BASIC including itself and checks that each line number is higher than the previous one and not over 63999. If the line number fails the test, it is set to one higher than the previous line number.

Note the logic: can you see why the program must not be used on a normal "too-high" looney line number? It would "pass" the bad line number, and then bump up the numbers on all following lines.

What do you do if you have both too-low and too-high? Fix the too-high first before you run this program. If you do have multiple faults, chances are your program is in really bad shape anyway; get your computer fixed and redo the whole program.

Looney line numbers should never happen. Look for the cause if it happens to you.

You can fix them, however. And the mechanics of fixing bad line numbers has a tiny bonus: look at the coding and see if you can gain an insight into how BASIC is put together.

Super-coders can go after the same problems by attacking the program directly as it lies on disk, copying the program over and correcting it on the way. Users with BASIC enhancement packages (Toolkit, Command-O, Power, etc.) can fix everything in a trice with program renumber.

There are many ways of fixing it ... once you know how.

Introducing The

The Wizard helps you quickly calculate 12 major types of Financial Transactions with ease and accuracy.

Created for businesses and individuals, this DISK PACKAGE has 9 programs plus instructions. The Wizard delivers answers on the screen or printer.

CASCADE COMPUTERWARE • (206) 355-6121
Box 2354 • Everett, WA 98203

The Teacber's Aide

Computer programs designed for use by the classroom teacher as a primary source of exercises in mathematics, basic skills. Through simple question and answer, and with the use of only one computer system, a teacher maysatisfy all individualized, inclass and bomework requirements for drill in aritbmetic. Students work directly upon exercise sheets. Difficulty level is easily adjustable. Answers are always provided. 23 programs included, covering integers, decimals, fractions, percent and much more.

On Disk \$99.99

Algebra

Explicitly Produced Exercises in Algebra

Sixteen programs in linear and fractional equations, simultaneous equations, quadratics, signed and complex number arithmetic.

On Disk $\$ 99.99$
(Arizona residents please add 4\% sales tax.) Please add \$1.50 for postage and handling.

T'Aide Software Company P.O. Box 65

El Mirage, Arizona 85335

Programs for Commodore's PET ${ }^{\text {® }}$

Present this ad from COMPUTE! and receive $\$ 2$ off your purchase price. Valid at your local dealer or when ordered direct.

- PROFESSIONAL TOOLS
- Business Researcher (Rvsd. Simplex) (16k) $\$ 50$
- RNAV3 Navigator (Western U.S.). (16k) \$30 (8k) \$25
- Education Pack (High School Math/Sci)
- DISK BOWLING SYSTEM (PET/CBM)
- Leaguebowl-24 (Disk 32k) $\$ 145$
- Archivebowl (for above) \$40
- Allsweepbowl (for above) \$40
- Tournamentbowl (Cass. 16k) \$30
- HOME \& OFFICE DATA MGMT.
- Deluxe Address (10 k)\$40 - Home Inventor
- Home Address Book. \$25 • Shopper \$20
- Grocery Mart. \$15 • Dinner's On! $\$ 15$
- GAMES \& ADVENTURES

- Mansion!	\$15	- Fur Trapper \$15
- Museum!	\$15	- High Seas...... ${ }^{\text {S }} 15$
- Pentogon	\$15	

Write for details or ask your local dealer.

BRILEY SOFTWARE

P.O. Box 2913

Livermore, CA 94550
(415) $455-9139$

Dealers, Letterhead inquiries invited. Photocopies of this ad are NOT valid coupons. One coupon per purchase. This coupon may be redeemed for face value plus 15^{\prime} for handling if it was received from customer upon purchase of one of the above programs. Offer void where restricted by low

Editor's Note: Stephen suggests that this game can be a source of ideas for a variety of other games. If you come up with an exciting variation, send it in and share it with other COMPUTE! readers. - RTM

Mine Maze

Stephen Vermeulen Calgary, Canada

This two-player game for 40 column PETs illustrates how the character oriented graphics of the PET, coupled with keyboard input from only three keys, can produce a fast, frustrating, and addictive game. Also, by keeping the graphics as simple and as clear as possible, implementation in BASIC is practical.

Rules Of The Game

A random maze with a clear border around it is drawn on the screen. The two players are then placed within the clear border and play starts. The object, for both players, is to be the survivor of what might appear at first to be a one-sided conflict. The aggressor in the battle is the left-hand player who is represented by the solid ball (shifted Q) graphic character. The ball can only win by running into his opponent, the circle (shifted W).

The circle is usually the defensive player, and is able to drop mines on the playing field. When the ball hits one of these mines it looses one life. To even things up a bit, the ball is given one free life for every ten mines the circle deposits on the playing field and, also, the number of mines that must be dropped before the ball gets its first free life is set randomly.

Lines 100 to 280 print the instructions and get the players' names and the difficulty factor. Default values for these inputs are provided so that eager (or lazy) players can get into play by pressing return 3 times. The next portion (lines 290-380) sets up the playing field and starts the play. The graphic characters used are Q [81] for the ball, W [87] for the circle, [102] for the maze, and * [42] for the mines. The values in brackets are the screen POKE values. The last section (lines 600-680) of the program displays the score and prompts the players for another game.

Heart Of The Program

Now that the sundries have been discussed, the heart of the program can be dissected. The keypress interpreter is the code found in lines 390-410. The branches on "@" and " =" to lines 470 and 480 serve to rotate the player's direction of movement 90 degrees clockwise. The branch on "*"
proceeds to lines 490-510 which drop a mine and increment the mine counter and the ball's life counter. After the present key press has been processed the program then moves both players. Before a player can be moved, the program must check for obstacles and hazards by PEEKing the next position and, if necessary, going to one of the two obstruction test routines. The first of these (lines $520-560$) is for use when moving the ball. Here the next square is checked to see if it is a maze wall (the ball bounces), or the circle (the ball wins the game), or a mine (the ball looses a life and possibly the game). The second routine (lines $570-590$) is the obstacle routine for the circle, here the next square is checked to see if it is a maze wall (making the circle bounce back) or the ball (the ball wins). If the square happened to contain a mine the circle would just erase it (which can be very frustrating if you are controlling the circle).

Official Decrees

And now for some final rules for situations which do arise (these rules were adopted for play in the most recent World Mine Maze 1.9 Championships consisting of a round-robin three player tournament):

1. It is decreed that, the Mine Layer shall not lock himself in between the outer boundary and a wall of the maze (see Figure 1).
2. It is decreed that, if the Mine Layer has successfully sealed himself off in the inner part of the maze, the Ball must commit suicide by running into as many mines as it takes to die.

Figure 1: The circle is not allowed to win by blocking off an edge position such as this because it is so easy to do.

ASERT yourself... with CFI's new Database Retrieval System WHO CAN USE ASERT?

libraries personnel departments dating services

schools employment agencies accountants

ANY BUSINESS THAT KEEPS RECORDS CAN USE ASERT TO:

- Create up to 21 fields per record
- Restructure fields at any time
- Sort on any field at any time
- Use FREE-TEXT area for comments
- Create up to 90 searchwords
- Search \& retrieve on any combination of 90 searchwords
- Search with MUST HAVE, MAY NOT HAVE and OPTIONAL operators
- Print out hardcopy including labels
- Output to any word processor
- Compile summary statistics

OTHER CFI SOFTWARE
Federal Income Tax Preparation System*
Personal Tax Calculator*
Emergency Control Program*
VIC Animation Tutorial
*Distributed for CFI under the Commodore label

ALL CFI SOFTWARE AVAILABLE

from your local Commodore dealer or direct from CFI

CFI . . . computer solutions, 875 West End Ave., New York, NY 10025

ANIMATION TUTORIAL

A full-scale animated trip to Mars, 6 additional Programs, and a Manual so you can learn to program graphics, animation, color and sound.

GAME PAK 1 containing:

Sheriff 1, Sheriff 2, Sheriff 3, U-Boat and Starfighter. Five exciting 1 - and 2-person games.
All programs are on tape and run in the standard VIC memory. Each tape is $\$ 20$.

PLANET DEFENSE
Protect the Earth from the Alien Mothership! Stop the deadly Plagues! Exciting fun on 9 levels!

KIDDY KORNER 1

Pre-school skill-grouped games that baby-sit and educate! - Alphabet House, Word Float, Making Faces, Pop Goes.

KIDDY KORNER 2

More games for the youngsters: Jack Be Nimble, Mouse ' n ' Clock, The Shoe Lady.

All CFI Software available from your local Commodore Dealer or CFI.

```
10\emptyset POKE59468,14
110 REM MINES VS DESTROYER
12\emptyset PRINT"{CLEAR}{ø4 DOWN}
    S OR BUST"
13\emptyset PRINT" {\emptyset2 DOWN}INSTRUCTIONS:
14\emptyset PRINT"{DOWN}THE'PLAYER ON THE LEFT US
    ES THE @ KEY
15\emptyset PRINT"TO STEER THE BALL CLOCKWISE."
160 PRINT"{DOWN}THE PLAYER ON THE RIGHT U
    SES THE = KEY
170 PRINT"TO TURN THE CIRCLE CLOCKWISE, A
    ND THE *
18\emptyset PRINT"TO PLACE A MINE ON THE FIELD.
19\emptyset PRINT"{DOWN} IF THE BALL [@] HITS A MI
    NE THE CIRCLE
2\emptyset\emptyset PRINT"WINS, IF THE CIRCLE HITS A MINE
        THE MINE";
2l\emptyset PRINT"IS DESTROYED.
22\emptyset PRINT"{REV}THE{OFF} {REV}BALL{OFF} {R
    REV}GETS{OF\overline{F}} {REV}AN{OFF} {REV}
    EXTRA{OFF} {REV}LIFE{OFF} {REV}F
    OR"
23\emptyset PRINT" {REV} 10{OFF} {REV}MINES{OFF} {R
    REV}PLACED{OFF} {REV}ON{OFF} {RE
    REV}THE{OFF} {REV}FIELD"
24\emptyset PRINT"{DOWN} IF THE BALL HITS THE CIRC
        LE THEN THE
250 PRINT"BALL WINS.
260 INPUT"{DOWN}RIGHTIST____IGHT{08 LEFT}
        "; C$
270 INPUT"{DOWN} LEFTIST_ LEFT{白 LEFT}"
    ; B$
28\emptyset INPUT"{ø2 DOWN}DIFFICULTY 1...2\emptyset 9{\emptyset
    3 LEFT}";DD
290 POKE59468,12
3\emptyset\emptyset MC=INT(9*RND (\emptyset)+1)
310 REM SET UP PLAYING FIELD
320 PRINT"{CLEAR}":S=32768
330 FORI=\emptysetTO39:POKES+4\emptyset+I,1\emptyset2:POKES+1\emptyset\emptyset\emptyset-
    4\emptyset+I,1Ø2:NEXTI
.340 FORI=2TO23:POKES+4\emptyset*I,1\emptyset2:POKES+4\emptyset*I+
    39,102:NEXTI
350 FORI=1TO25*DD:POKES+INT(36*RND(\emptyset)+2)+
    4\emptyset*INT(2\emptyset*RND (\emptyset)+3),1\emptyset2:NEXTI
360 U=-40:D=40:L=-1:R=1
37\emptyset B=S+81+160:BD=D:DB=D:C=S+78+40:DC=D:C
    D=D
380 POKEB,81:POKEC,87
390 GETP$:IFP$="@"THEN470
4ø\emptyset IFP$="="THEN48\emptyset
41\emptyset IFP$="*"THEN49\emptyset
42\emptyset X=PEEK (B+BD):IFX<>32THEN52\emptyset
430 POKEB,32:B=B+BD:POKEB,81
440 X=PEEK (C+CD):IFX<>32THEN57\emptyset
450 POKEC,32:C=C+CD:POKEC,87
460 GOTO390
47\emptyset DB=-1/DB:BD=BD*DB:GOTO39\emptyset
48\emptyset DC=-1/DC:CD=CD*DC:GOTO39\emptyset
49\emptyset MC=MC+1:IFMC=1\emptysetTHENMC=\emptyset:BL=BL+1:POKES
    +BL,81
5\emptyset\emptyset IFPEEK (C-CD) <>102THENPOKEC-CD,42:GOTO
    39ø
510 GOTO390
52\emptyset IFX=1\emptyset2THENBD=-BD:GOTO44|
53\emptyset IFX=87THENBS=BS+1:GOT06\emptyset\emptyset
540 IFX<>42THEN430
550 BL=BL-1:POKES+BL+1,32:IFBL>=\emptysetTHENGOTO
    430
56\emptyset CS=CS+1:GOT06ø\emptyset
```

57 (FX=1Ø2THENCD=-CD:GOTO39 Ø
$58 \emptyset$ IFX<>81THEN450
590 BS=BS+1
6ØØ FORI=1TO1ØØ:GETP\$:NEXTI
610 GETP\$:IFP\$=""THEN61ø
$62 \emptyset$ POKE 59468,14:PRINT"\{CLEAR\}\{ 65 DOWN\} SCORE
630 PRINT" $\{03$ DOWN\}"B\$" = "BS; TAB (37-LEN (C \$+STR\$(CS))); CS"= "C\$
$64 \emptyset$ PRINT" $\{\varnothing 4$ DOWN $\}$ NEW DIFFICULTY (YES, N 0 , END)
650 GETPS:IFP\$="E"THENEND
$655 \mathrm{MC}=\emptyset: \mathrm{BL}=\emptyset$
660 IFPS="Y"THENPRINT"\{CLEAR\}": POKE59468, $14: M C=\emptyset: B L=\emptyset: G O T O 28 \emptyset$
$67 \emptyset$ IFP\$=""THEN65
680 GOTO29ø

TOLL FREE Subscription Order Line 800-345-8112 In PA 800-662-2444

Getting Acquainted With Your VIC20

Getting Acquainted With Your VIC20 by Tim Hartnell leads the reader, step by simple step, from the absolute basics of programming the VIC to writing complex, sophisticated programs. It thoroughly describes use of the sound, music and color graphics capabilities and illustrates the use of these functions in over 60 programs and games.

By following the comprehensive explanation given for each program and computer function, the reader will learn a great deal about the VIC, the Basic language and microcomputers in general.

Parents and teachers will find the section "VIC as a Teacher" a valuable aid in making the most effective use of the computer in the teaching/learning process.
This book is a worthwhile resource and will help the reader make the most of his computer. The reader will never feel quite the same about it after surviving a round of FRENZY, or listening to the VIC20 compose a 'symphony'.

Softbound, 132 pages, $51 / 2^{\prime \prime} \times 8^{\prime \prime}, \$ 8.95$; add $\$ 1.50$ for shipping and handling.

creative corppatirg

39 E. Hanover Avenue
Morris Plains, NJ 07950
attn: Cassandra
Toll-free 800-631-8112
In NJ 201-540-0445

PET BITES VIC!

VIC/PET programmers: How would you like to be able to connect all of your PET peripherals, through your PET, to your VIC? Print VIC programs, save or load on disk, or use a VIC joystick on the PET. Basic programs can call HESCOM subroutines to transfer any amount of memory in either direction between two VICs, two PETs, or a PET and a VIC.
For example, a 3.5 K Basic program can be transferred in half a second! Or, you could use an existing PET disassembler to look at the VIC ROMs by simply changing the input routine to get single bytes via HESCOM. Similarly, three-voice VIC sound can be used by PET programs. Full handshaking ensures reliability in block transfers; another mode allows real-time sampling of the user port for applications like two-machine games! Includes 5' cable, machine language software for PET and VIC, demo program, and documentation.
(VIC or 8K PET) \$49.95

by Joy Balakrishnon

HESEDIT: change 22 lines of data by merely overtyping and insert, delete, and even duplicate linesall at once! Scroll forwards or backwards by any amount - it's also easy to edit files bigger than your memory. Why code a program to maintain each file? Use HESEDIT for mailing lists, notes or prepare assembler source for HESBAL. All keys repeat. FAST written in BASIC and assembler.
\$12.95
0502 ASSEMBLER PACKAGE: HESBAL, a full-featured assembler with over 1200 bytes free (8K) \& HESEDIT; for less than $\$ 25$! HESBAL is THE best 8 K assembler available: it uses only 1 tape or disk, yet includes variable symbol sizes, pseudo-opcodes, over 25 error messages and more than 70 pages of documentation.
\$23.95
Human Engineered Software

3748 İnglewood Blvd. Room 11 Los Angeles, California 90066

NEW RELEASES

HESCOUNT by Jerry Bailey. A totally new concept in debugging! Machine language monitor aids debugging of any Basic program by counting the number of times each line is executed. Pinpoints bottlenecks to help you improve run times up to 50%. Shows code that was never executed, and lets you verify that loops and conditional statements are working as expected.
(VIC or 8 K PET) \$23.95
HESLISTER 2.0 by Cy Shuster. Now 35\% faster, reveals program structure by untangling complicated Basic lines and indenting IF, FOR..NEXT statements, etc. Inputs from disk; outputs to screen or printer. (8K PET) $\$ 15.95$ (includes disk)

GUARANTEED to load or replaced FREE. Order from your dealer or direct from us. Add \$2 postage, Cal. res. - 6% sales tax. Disk versions - add $\$ 3$ (disk included).

24 HOUR ORDER LINE (M/C OR VISA)
(213) 398-7259

COMAL: Another Language?
 Jim Butterfield
 Toronto, Canada

There are a lot of "languages" around for small computers. Only two are in common use: BASIC (most often by Microsoft) and Machine Language.

Most of the others classify as in-between languages: not as friendly as BASIC, not as fast as machine language. Each have their advocates (fanatics?) who extol the advantages which a specific language can bring to a specific application. But BASIC and machine language look like they will reign supreme for quite a while yet. Until local computer shops bristle with book titles such as "101 FORTH Games," "Some Common SMALLTALK Programs," and "Hands-On SNOBOL For The PET/CBM," many users will prefer to stay in the mainstream of the home computing community and learn one or two simple languages well.

Now we have COMAL to add to the computer Tower of Babel. Another language, another chance to sidetrack? COMAL does have its interesting features, especially to those raised on BASIC. Let's take a look.

Free!

COMAL is public domain. In other words, it's free; and you can help yourself to a friend's copy with a clear conscience. In Canada, Commodore has distributed copies to all dealers; you can get one by asking your dealer to make you a copy of the disk and documentation. In the USA, the COMAL Users Group, 5501 Groveland Terrace, Madison WI 53716, will send you the disk for a charge of $\$ 12.95$; or for $\$ 47.50$ you get a kit including disks, documentation, binder, and a newsletter subscription; in either case, add $\$ 2.00$ for shipping/handling.

You get what you pay for, right? Not in this case: COMAL is a massive system (it will fit only into a 32 K system with disk) and has features that make it well worth considering, particularly for educational use.

COMAL came into existence in Denmark. It was first defined by Borge R. Christensen and Benedict Leofstedt in 1974. At that time it was a form of extended BASIC. It has been expanded and refined into the current version, COMAL-80,

by Mogens Kjaer.

Super-Basic?

COMAL still retains much of the flavor of BASIC, and for that reason it's a very easy language for BASIC users to pick up. The first impression that a user gets is rather intriguing: it seems as if you may type in your program in BASIC - and when you say LIST, it comes back in a PASCAL-like language!

How can this happen? Most BASIC users learn that their program is "tokenized" as it is input. The individual letters of PRINT get scrunched together and stored as a single byte called a token; that's why you can type in a line such as 100 ? A and list it back as 100 PRINT A. COMAL tokenizes your input to a remarkable extent, so that a line input as 5 FOR $\mathrm{J}=1 \mathrm{TO} 8$ will list back as 5 FOR J $:=1$ TO 8 DO . Note that a colon has crept in after the J, and that the word DO has been added.

So: with a few new rules, you may just type in a program in its BASIC form, and COMAL will adapt it into its own internal format. Some of the new rules are easy: for example, be sure to put a space after each keyword (don't say FORK, say FOR K). Others take a little more practice: subroutines are now called Procedures and, instead of GOSUB-ing to them, you EXEC-ute them. And you don't use line numbers for GOTO and GOSUB, you use names (or "Labels"). But these are not difficult. It's easy for a BASIC person to jump into COMAL.

...And More

But it's more than just a reworded BASIC system. There are a whole new series of capabilities.

Some are easy to understand and on most people's wish-lists. You may now use variables HORSESHOE and HOUSEFLY without confusion (in BASIC, only the first two letters are meaningful). IF has been beefed up to include ELSE and other features, allowing you to code IF $\mathrm{M}=12$ THEN $\mathrm{M}=1 ; \mathrm{Y}=\mathrm{Y}+1$ ELSE $\mathrm{M}=\mathrm{M}+1$ ENDIF. Note that we are using a semicolon instead of a colon to separate statements, and we terminate the IF sequence with an ENDIF. This isn't just needless bookkeeping: ENDIF allows us to set the range of the IF statement to part of a line or multiple lines.

Other COMAL features are recognizable as structured language extensions. The user will find CASE (replacing ON A GOTO...), WHILE, and REPEAT .. UNTIL. Procedures can be used as subroutines or as function definitions; and you may pass parameters to or from procedures. Strings require a little more care than in BASIC, but string handling is more powerful after you get used to it.

COMAL is fast. You'll see no loss of speed
from BASIC.

However...

The language is nice, but it's new. You may have to wait a while before you find a community of other COMAL users around you. The BASIC language feature I miss most is the SYS command - at least I haven't found it yet. I like to be able to extend some programs with machine language inserts if necessary. Some 4.0 disk commands don't appear to be supported by COMAL; I haven't found a way to initiate a SCRATCH or COLLECT from the language. There doesn't seem to be a built-in exit to BASIC cold start, which would be a way around the previous problem.

COMAL for the PET/CBM comes in two forms; the smallest takes up 16 K of memory. This may cramp the size of programs. COMAL does pack programs in memory more efficiently, but you have less space to work with from the start.

COMAL seems ideal for educational environments, particularly for those who like to teach structured programming techniques.

It's a helpful language in many ways: as easy as BASIC and very like it. It has goodies that BASIC can't match. The structure and balance of COMAL lead me to suspect that there will be a compiler along one of these days.

And the price is right.

Introducing the Pet Professor All you need to do is decide what you need.

The Pet Professor Arithmetic Software

If you need to teach division of a 2 -digit decimal by a 1 -digit whole number, we have D-D-1. This program teaches the concept step by step.

Since you probably need to keep student interest high, we go very slowly with a moving cursor. The student is comfortable and involved.

Do you need to drill subtraction of a fraction from a mixed number? Just bypass the teaching part of program F-S-2 and go directly to drill. The nice part is if the student happens to forget, the teaching is still available.

If a test on subtraction of whole numbers with 4 -digits, multiple zeros and borrowing is your need, program WN-S-6 is your answer.

You probably also need just about every arithmetic concept that there is. We have them all - 77 programs. The directions are simple. Use the Pet Professor for all the arithmetic you teach.

For more information send $\$ 5$ for a sample tape or call (516) $365-4423$ and tell us what you need.

COW BAY COMPUTING
BOX 515
MANHASSET, N.Y. 11030

CAPUTE: Corrections And Amplifications

-COMPUTE! \# 14, pg. 106, "The Apple Hi-Res Shape Writer." The following routine was missing (Program 2):

Program 2.

```
10 D) $ = CHF:$ (4) :TNC = 10:5=16
        384
20 FFINT DS"OFEN FOKE FOUTINE"
3 0 ~ F F I T N T ~ D क " W F I T E ~ F O K E ~ F O U T I N E " ~
90 LTNE = 5000:E = 16500
100 FFIINT LTNE"FOFT=16384TO"E";F:
        EADA:FOKET,A:NEXTT"
120 FOOF I = S TOE: IF (I - - S) /
    10= INT ((I -- S) / 10) THEN
                FFINT !LINE = LTNE + INC: FFINT
        I.INE"DATA" FEEK (I);: GOTO 1.
        40
130 FFTNT "," FEEK(I);
140 NEXT : FFTNT : FFTNT DS"CLOS
        E"
ILIST
```

-COMPUTE! \#16, pg. 66: Line 62005 should read: FOR I =LO TO HI

- COMPUTE! \#16, pg. 118: "The $=$ sign does concatenation...". No it doesn't! The + sign does concatenation. Who wrote that? Who is this guy Butterfield anyway? He deserves thirty lashes with a wet noodle.

Unless, of course, he wrote it correctly and somebody goofed it up down there. In which case, transfer the lashes (and the noodle) to the appropriate culprit. Heck, I have enough trouble spelling concatenation without worrying about how to do it...

The whole thing is bristling with = signs that shouldn't be there. $\mathrm{M} \$=\mathrm{A} \$=\mathrm{B} \$=\mathrm{C} \$$ should be $\mathrm{M} \$=\mathrm{A} \$+\mathrm{B} \$+\mathrm{C} \$$; PRINT J $\$="$ " $=\mathrm{M} \$$ should be PRINT $\mathrm{J} \$="$ " $+\mathrm{M} \$$. However, to make up for it, you've changed a character the opposite way in your last paragraph: $\mathrm{Z} \$=\mathrm{Z} \$+$ "+" should read $\mathrm{Z} \$=\mathrm{Z} \$+$ " $=$ ".

Try typing in this line:
FOR J = 1 TO 10:PRINT"TSK.":NEXT J
[Our thanks to Jim for his corrections. The typos (and the noodle) belong here.]
-COMPUTE! \#16, pg. 134: line 9010 should read FOR I $=4$ TO $35 *$ PV STEP $5 *$ PV. The value POKEd in line 9520 should be 43 .
-COMPUTE! \#16, pg. 124: To permit the program to also work on the 8050 drive, change line 290 to PRINT\#15, "M-E"CHR\$(180)CHR\$(255)
-COMPUTE! \# 16, pg. 10: Many readers suggested modifications to David Thornburg's excellent 20questions program to permit more random responses and to prevent the same response if the questions always began: "is it animal," "is it vegetable," "is it mineral." One of Mr. Thornburg's points was the brevity of the program in contrast to the "intelligence" it seemed to evidence. There are indeed a variety of ways to make the program even more remarkable for Turing tests on the unsuspecting.
-COMPUTE! \# 10, pg. 112: To allow the disk program to work with the 4044 CBM disk drives (or 2040s with upgraded ROM), change line 5012 to: IF $\mathrm{P}(0)<25$ THEN SM $=18$

NEW SOFTWARE
 PHANTOM FIGHTER ${ }_{\text {m }}$

An original arcade game for all PET/CBM graphics by Bob Carr and Kathy Higby, the originators of FROG! DANCER!, OURANOS! and DROMEDA! - and with machine language routines for excellent animation.
Phantom- $\$ 14.95^{*}$ cassette
Version for FULL SCREEN play on 80 column machines $\$ 2.00$ extra.

Also Available ...
Wasps - 9.95* cassette
Defend yourself from killer insects!
Graphic Duo - 6.95* cassette
RAIN DANCER and PET DROMEDA - the best two cartoons ever written to demonstrate the graphic animation capabilities of the PET!

Game Pack - 6.95 cassette

SUPERFROG - AEROSOL - WEATHERWAR

- the original versions of three PET favorites.
*Arizona residents add 5% sales tax.

MAGIC EARPET

P.O. Box 35115 Phoenix, AZ 85069

VISA and M/C accepted - send account number, expiration date and sign order. Add $\$ 3$ per order for shipping \& handling - foreign orders add 10% for air postage
Guarantee - if for any reason, one of our programs won't load, return it for free replacement.
${ }^{\text {ma }}$ PET/CBM is a registered trademark of Commodore Business Machines, Inc.

HARDWARE:
CBM 8032 Computer, 80 Column $\$ 1195$
CBM 8050 Disk Drive 1395
CBM 4032 Computer, 40 Column 995
CBM 4040 Disk Drive 995
CBM 4022 Printer 649
CBM VIC 20 Computer 263
CBM VS100 Cassette 68
PET to IEEE Cable 33
IEEE to IEEE Cable 39
BASF Diskette, Box of 1030

SOFTWARE:
OZZ
$\$ 299$
Wordcraft $80 \quad 299$
Tax Preparation System 380

IRMA
380
Dow Jones Portfolio Management System 115
Personal Tax 55
Pascal 229
Assembler Development Package 77
Wordpro 4+ 329

> Order TOLL FREE 1+800-527-3135 10 AM to 4 PM CDT Monday through Friday

> Texas residents call $1+214-661-1370$
> VISA, MASTER CHARGE, MONEY ORDERS, AND C.O.D. "Certified Check" accepted. Units in stock shipped within 24 hours, F.O.B. Dallas, Texas.

> All equipment shipped with manufacturer's warranty.

Residents of Texas, Louisiana, Oklahoma City and Tulsa, Oklahoma must add applicable taxes.
Eclectic shortly will be announcing products that are designed to work with CBM systems.

1. ROMIO: two RS232 ports - three parallel ports-26K EPROM memory-managed alternate character set, software controlled-EDOS (extended DOS).
2. Terminal program (options with ROMIO)
3. Front-end processor
4. EPROM programmer
5. Additional firmware to be announced

Be sure to write the address below for more information; dealer inquiries welcome.

VAK-7 8" FLOPPY DISK SYSTEM FOR AIM-65, SYM-1

The VAK-7 Disk System was specifically designed for use with AIM-65 and SYM-1 Microcomputer Systems. The VAK-7 is a complete full size ($8^{\prime \prime}$) Floppy Disk System. This system will Read, Write and Format IBM Single and Dual Density diskettes. The VAK-7 is available with both Single and Dual Sided Disk Drives. Each Disk Drive comes with its own cabinet and Power Supply. The VAK-7 can handle up to 4 disk drives, totaling more than 4.98 Megabytes of storage.
The VAK-7 Disk System incorporates both advanced hardware and innovative software designs. The addition of the VAK-7 produces a very powerful and useful computer system. Unlike most other disk systems, there is no requirement for the user to provide RAM to hold the Disk Operating System software. No valuable time is wasted loading in the DOS from cassette tape, because the VAK-7 DOS software is in onboard ROM. The VAK-7 is located above the 32K boundary (8000 HEX), leaving the user with a full 32K bytes of contiguous address space for his own use.
AIM-65-Allows the user to save and load object code thru the AIM Monitor; to load, save, and append Text thru the AIM Editor; to load, save, and append Basic Programs thru the BASIC INTERPRETER; to assemble directly from disk single or multiple file programs.
SYM-1-Allows the user to save and load Files for use with the SYM Monitor, SYM Basic, and RAE-1.

ADDITIONAL COMMANDS:

ACTIVATE A DELETED FILE COMPRESS A DISK RENAME A DISK FILE COPY A DISK

SPECIFICATIONS:

- Completely assembled, tested, and burned in.
- Occupies address 8000-8FFF for AIM-65, \$9000-9FFF for SYM-1, or \$E000-EFFF for KIM-1.
- IBM Format; Single Density (128 bytes/sector); Dual Density (256,512 , or 1024 bytes/sector).
- All ICs are in sockets.
- Fully buffered address and data bus.
- Standard KIM-4* BUS (both electrical pin-out and card size).
- Designed for use with a regulated power supply, but has provisions for adding regulators for use with an unregulated power supply.
- Dimensions: Board- $10^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high (including cardedge). Cabinet $-9.25^{\prime \prime}$ wide $\times 10^{\prime \prime}$ high $\times 16^{\prime \prime}$ deep.
- Power Requirements: +5vDC @ 2 Amps.

$$
117 \text { AC 60Hz @ } 2 \text { Amps. }
$$

- Shipping Weight: 25 lbs .
*KIM-4 is a product of MOS Technology/C.B.M.

PRICING:

VAK. 7
\$1,299.00
Controller and One Single-Sided Drive
VAK-7A
$\$ 599.00$
Additional Single-Sided Drive with Cabinet and Power Supply
VAK-7B
\$1,599.00
Controller and One Dual-Sided Drive
VAK-7C $\$ 899.00$
Additional Dual-Sided Drive with Cabinet and Power Supply

CALL OR WRITE FOR FREIGHT CHARGES

FORMAT A DISK DELETE A DISK FILE INITIALIZE A DISK LIST CATALOG

Advanced Operating Systems Publishes 10 Program Household Package

Michigan City, IN, October 1, 1981 - Advanced Operating Systems has published a package of 10 programs useful in performing household duties. The programs are written in BASIC. The "Mostly BASIC Household Program" package offers two programs which give a synopsis of energy consumption. The "Electric Energy Usage" selection compares energy units used during two different years. The "Gas Mileage Calculator" uses basic data to figure the gas mileage of a vehicle.

Two programs focusing on diet and eating habits of the user are the "Recipe Amount Calculator" and "The Basic Diet."
"The House Buying Guide" and "The Amortization Schedule" focus on budgeting and investing of money. The schedule calculates the balance, principal, interest, and cumulative interest for each month of a loan. The buying guide weighs answers from questions it gives the user and advises on the possibilities of making a profit from buying a structure. The program can be used whether the operator will be renting out the structure or selling it at a later date.

Two programs which offer no frills, but are unlimited in their usefulness, are the "Digital Stopwatch" and "The Message Taker." The stopwatch counts off
minutes, hours, and seconds until told to stop. The message program records up to six messages and enables members of the household to leave "notes" for one another.

Medical expenses can also be cataloged through use of this package. The "Medical Expense Record files away the type of expense, cost, and cumulative total for each year.
"The Tarot Card Reader" is an entertaining program based on a deck of 78 cards used in fortune telling. The program answers questions from the user by picking 10 of the cards. The position they hold after being layed out has a meaning, as well as whether the figure on the card is right side up or upside down. The translation of the 10 cards is listed briefly by the computer. This program requires 16 K to run.

The package is available through computer retail outlets. Advanced Operating Systems is the microcomputer software division of Howard W. Sams \& Co., Inc., a subsidiary of International Telephone and Telegraph Corporation.

Smart Terminal Program For Atari® Features Autodialing

Redmond, WA - The MicroPeripheral Corporation has announced TSMART, the first smart terminal program written for the ATARI 800^{\circledR}, with provision for autodialing other computers. The program is availble on cassette with instructions for transferring to disk. TSMART permits transfer of BASIC programs be-
tween a remote host computer and an ATARI cassette or disk storage device. The autodial feature works in conjunction with the AUTOMICROCONNECTION, a direct connection modem (\$199.50), manufactured by the MicroPeripheral Corporation.

The program permits off-line text preparation (messages, manuscripts, letters, etc.) with a text editing or word processing program for on-line transmission. A built-in feature permits creation and storage of text, then transmission by TSMART for those who do not have a text editor.

TSMART also permits transfer of source code assembler files. The recipient can create the object code using an editor/ assembler program. A separate command is available for transferring object (hexadecimal) code files, such as ATARI Music Composer Files.

An AUTOBUF feature will open and close the memory storage buffer automatically when uploading or downloading. TSMART recognizes the automatic buffer open/close (X-on/Xoff) codes transmitted by TSMART or other compatible programs. Downloading from FORUM 80 bulletin boards is also accomplished automatically. The buffer can be "toggled" on and off as many times as desired while data is being downloaded. Another feature is software selectable half or full duplex operation.

The program will also automatically send messages to bulletin boards using the standardized block mode or 16 line prompt recognition message entry.

The program was written for
the ATARI 800^{\circledR} by Dr. James W. Clark. It can be used with any RS232 compatible modem, although the dialer feature cannot be used with obsolete acoustic modems. TSMART is supplied in a protective binder with extensive easy-touse operating instructions and is priced at $\$ 79.95$. For additional information contact the MicroPeripheral Corporation, 2643 151st Place N.E., Redmond, WA 98052, Telephone (206)881-7544.

> Service Of Commodore Computers Begins At 38 TRW Service Centers

Valley Forge, PA, October 9, 1981 - Service of Commodore

Business Machines, Inc., microcomputers has begun at 38 service centers operated by the Customer Service Division of TRW Inc.

As per a five-year agreement signed between Commodore and TRW in August, TRW will service and maintain Commodore microcomputers throughout the United States both on-site and at walk-in depots.

The first 38 service centers to complete comprehensive training on Commodore equipment and go on-line as part of the agreement cover some 75 percent of the nation's microcomputer users. Additional TRW centers will be brought on-line over the next year.

Commodore products covered by the TRW service agreement include the CBM ${ }^{\text {™ }}$ 8032 central processing unit, the 4032 N and 4032 B central processors with 12 -inch monitors and

8040 universal logic boards, 8050 disk drive, 4022 matrix printer, and 8010 communications modem.

The first group of TRW service depots handling Commodore equipment are in Atlanta, Birmingham (AL), Boston, Charlotte (NC), Chicago, Cincinnati, Columbus (OH), Dallas, Denver, Detroit, Fresno, Grand Rapids (MI), Hartford (CT), Houston, Indianapolis, Jacksonville, Little Rock, Los Angeles, Memphis, Miami, Milwaukee, New Orleans, Oklahoma City, Philadelphia, Phoenix, Pittsburgh, Richmond, Rochester, Sacramento, St. Louis, Salt Lake City, San Diego, San Francisco, Seattle, Springfield (NJ), Tampa, and Washington, DC.
"The opening of these TRW service centers for Commodore equipment effectively triples our service capability overnight," said James Finke, president and chief operating officer of Commodore.

Okidata Adds Interface Options To Microline Printers

Mount Laurel, NJ, October 14 Okidata Corporation, a supplier of quality dot-matrix printers announced the availability of significant new interface options for its Microline family of printers. These options are an IEEE 488 bus adapter and a current loop interface.

The bus adapter option will make all new and existing Microline printers compatible with the IEEE 488 bus. Users of Commodore Pet personal computers will find this option particularly helpful in integrating Microline printers into systems. The IEEE 488 bus adapter option comes in the form of a plug-in board which is easily installed by the user. The connecting cable converts Cen-tronics-compatible parallel data
into data compatible with the IEEE 488 bus.

The IEEE 488 bus adapter option will be available later this month. This feature is priced competitively, and quantity pricing is availalble. The board can be used with the Microline 82A, 83 A , and 84.

For those users who need a current loop interface, the optional Microline RS-232C high speed serial interface now offered will add a current loop interface capability as a standard feature. The interface board can also be used with the Microline 82A, 83A, and 84.

The high speed RS-232C interface board comes with two different buffer sizes: a twokilobyte memory or a 256 -character storage buffer. The interface has switch-selectable baud rates of up to 9,600 bits per second. The built-in current loop feature will be available soon. The single
quantity price for the RS-232C board with two kilobytes of buffer memory and the current loop interface is $\$ 160$; the price for the one with 256 -characters of memory is $\$ 130$.

Okidata Corporation is headquartered at 111 Gaither Dr., Mt. laurel, NJ 08054.

Software For The Very Young

In October Edu-Ware Services, Inc. releases a new addition to the EDU-WARE line, COUNTING BEE. This friendly system introduces young learners (ages 3-6) to counting, addition, subtraction, shape discrimination, weight, and measurement.

COUNTING BEE features a learning management mode, which allows parents and teachers to preset the system, with emphasis and duration tailored to an indi-

ATIARI

SOFTWARE
adventure INTERNATIONAL

All Scolt Adams'
Adventures (each)
\quad ATARI
Music Composer
Kingdom
Hangman
Energy Czar
Blackjack
Space Invaders
Basketball
Video Easel
Super Breakout
Computer Chess
3D fic Tar Toe
Star Raiders
Scram
Asteroids
Missile Command
Mailing List
Morggoge \& loan Analysis
Bond Analysis
Stock Analysis
Stock Charting
Calculator
Financial Manogement System
Dow Jones Invest. Eval.
Accounts Receivable System
General Accounting System
Inventory Control
Word Processor

All Talk \& Teach Cassettes	
Invitation To Prog. 1, 2, 3 (each)	
Touch Typing	
Conv. Span, Fren, Germanleach)	
Statistics I	
Educ. Sys. Master Cartridge	
States \& Capitals	
European Countries \& Caps.	
Graph It	
Assembler/Editor	
Telelink I	
Microsoft BASIC	
Pilot	
CRYSTALWARE	
Fantasyland	
House Of Usher	
Gallactic Quest	
Sumer	
World War II	
Laser Wars	
Sands Of Mars	
Beneath The Pyramids	
Little Crystal	
Waterloo II	
DYNACOMP	
Poker Party	
Valdez	
Flight Simulator	
Monarch	
Intruder Alert	
Giant Slalom	

410 Recorder
810 Disc Drive
822 Printer
825 Printer
830 Modem
820 Printer
850 Interface
New DOS 2 System
CX70 Light Pen
CX30 Paddle
CX40 Joy Stick
CX853 16K RAM
Microtek 16K RAM
Microtek 32 K RAM

ATARI SOFTWARE

CX404 Word Processor
C 404 PILOT
CX413 Microsoft Basic
CX4101 Invitation To Programing I
CX4 102 Kingdom
CX4103 Statistics
CX4104 Mialing List
CX4105 Blackjack
CX4106 Invitation to Programing 2
CX4107 Biorythm
CX4108 Hangman
CX4109 Graph It
CX4109 Graph It.......
CX4110 Touch Typing
CX4111 SPACE INVADERS
CX4111 SPACE INVADERS
CX4112 States \& Capitals
CX4112 States \& Capitals
CX4114 European Countries \& Capitals
CX4115 Mortgage \& Loan Analysis
CX4116 Personal Fitness Program
CX4117 Invitation To Programing 3
CX4118-20 Conversational Languages (ea.)
CX4121 Energy Czar
CXL4001 Educational Master
CX6001-17 Talk \& Teach Series (ea.)
CX8106 Bond Analysis
CX8107 Stock Analysis
CX8101 Stock Charting
CXL4002 Basic Computing Language
CXL4003 Assembler Editor
CXL4004 Basketball
CXL4005 Video Easel
CXL4006 Super Breakout .
CXL4007 Music Composer
CXL4009 Chess
CXL4010 3-D Tic-Tac-Toe
CLS4011 STAR RAIDERS
CXL4012 MISSLE COMMAND
CXL4013 ASTEROIDS
CXL4015 TeleLink
Visicalc
Letter Perfect (Word Processor)
Source.
$\$ 119.00$
$\$ 68.00$ $\$ 68.00$
$\$ 68.00$ $\$ 68.00$
$\$ 17.00$ $\$ 17.00$ $\$ 13.00$ $\$ 17.00$ $\$ 17.00$
$\$ 17.00$ $\$ 17.00$
$\$ 13.00$ $\$ 13.00$
$\$ 20.00$ $\$ 20.00$
$\$ 13.00$ $\$ 13.00$
$\$ 13.00$ $\$ 13.00$
$\$ 17.00$ $\$ 17.00$
$\$ 20.00$ $\$ 20.00$ $\$ 17.00$ $\$ 13.00$ $\$ 13.00$ $\$ 13.00$ $\$ 59.00$ $\$ 20.00$
$\$ 15.00$ $\$ 20.00$
$\$ 45.00$ $\$ 45.00$
$\$ 13.00$ $\$ 13.00$
$\$ 21.00$ $\$ 21.00$
$\$ 23.00$ $\$ 23.00$
$\$ 20.00$ $\$ 20.00$ $\$ 20.00$ $\$ 20.00$ $\$ 46.00$ $\$ 46.00$ $\$ 24.00$ $\$ 24.00$ $\$ 30.00$ $\$ 45.00$ $\$ 30.00$ $\$ 30.00$
$\$ 24.00$ $\$ 24.00$
$\$ 39.00$ $\$ 39.00$
$\$ 32.00$ $\$ 32.00$
$\$ 32.00$ $\$ 32.00$ $\$ 20.00$ $\$ 149.00$ $\$ 109.00$WordPro3 Plus
Commodore Tax PackageVisicalc

BPI General Ledger
OZZ Information System
Dow Jones Portfolio Pascal
Legal Time Accounting Word Craft 80 Create-A-Base
Power
Socket-2-Me
Socket-2
Jinsam
Tally 8024
CBM C2N Cassette Drive CBM4040 Dual Disk Drive CBM8050 Dual Disk Drive

SOFTWARE age. .

 MAGIC...

Crcommodore

CBM 8032 \$1149

HP•85 \$2595

NEW! HP•125 . $\$ 3295.00$

 HP•83 . $\$ 1795.00$ HP•85 16K Memory Module \$249.00 51/4" Dual Master Disc Drive $\$ 249.00$ Graphics Plotter (7225B) Call for HP Software Prices \& Information Call for Calculator prices.

VIC 20 \$259

PHC 004 TI-99/4 Home Computer $\$ 379.00$ PHC 004 TI-99/4 Home Computer $\$ 379.00$
PHP 1600 Telephone Coupler $\$ 169.00$ PHP 1600 Telephone Coupler $\$ 169.00$ PHP 1700 RS-232 Accessories Interface $\$ 169.00$
PHP 1800 Disk Drive Controller $\$ 239.00$ PHP 1800 Disk Drive Controller $\$ 2389.00$
PHP 1850 Disk Memory Drive $\$ 2390$ PHP 2200 Memory Expansion (32K RAM) \$239.00 PHA 2100 R.F. Modulator $\$ 43.00$
PHP 1100 Wired Remote Controllers(Pair) $\$ 31.00$ PHM 3006 Home Financial Decisions $\$ 26.00$ PHM 3013 Personal Record Keeping \$43.00
PHD 5001 Mailing List $\$ 60.00$
PHD 5021 Checkbook Manager $\$ 60.00$
PHM 3010 Physical Fitness $\$ 26.00$
PHM 3010 Physical Fitness . $\$ 26.00$
PHM 3018 Video Games I $\$ 26.00$
PHM 3018 Video Games I \$26.00
PHM 3024 Indoor Soccer . $\$ 22.00$
PHM 3025 Mind Challengers 22.00
PHM 3031 The Attack $\$ 35.00$

PHM 3032 Blasto $\$ 22.00$
PHM 3033 Blackjack and Poker \$22.00
PHM 3034 Hustle \$22.00
PHM. 3036 Zero Zap . $\$ 18.00$
PHM 3037 Hangman . $\$ 18.00$
PHM 3038 Connect Four . $\$ 18.00$
PHM 3039 Yahtzee $\$ 22.00$
PHM 3017 Terminal Emulator I $\$ 39.00$
PHM 3026 Extended Basic $\$ 88.00$
PHM 3035 Terminal Emulator II $\$ 45.00$

DISCS		
	Sycom Blank Disk (10)	\$29.00
	Maxell MD I	\$36.00
		\$46.

PRINTERS

Epson MX-70
Epson MX-70
Epson MX-80
Epson MX-80 Call for Prices
Epson MX
Diablo 630
Diablo 630
TEC 1500 Starwriter 25 cps
$\$ 1495.00$

29.00

COD or Credit Card, Shipped Same Day You Call *

* on all in stock units

IN PA, CALL (717) 327.9575
(800) 233-8950 COMPUTER MAIL ORDER
501 E. THIRD ST., WILLIAMSPORT, PA 17701

To Order:
Phone orders invited (800 number is for order desk only) Or send check or money order and receive tree shipping Pennsylvania residents add 6% is subject to price change and availability without notice Please call between 11 AM \& 6 PM
vidual child's needs. COUNTING BEE joins other EDU-WARE systems designed for young learners, SPELLING BEE and ARITHMETIC SKILLS. The sys uses Applesoft, 48K, DOS 3.2 or 3.3 , and retails for $\$ 29.95$.

> Special Learning Ed Software Presents Educational Software For The PET ${ }^{\text {® }}$

The program consists of individualized computer-based instructional activities in spelling for students with specific language learning disabilities. However, this program will improve the skills of any persons with spelling deficits. The ramifications of using the tapes are many which include teaching average students,
slow learners, and those who are studying English as a second language. The program can be used by anyone who can read.

The author is a Language Therapist who has for many years tutored students in grades kindergarten through twelve. These students with specific learning differences are in need of specialized tutoring in the language areas.

The spelling program includes spelling rules, exceptions, and generalizations which provide repetitive exercises and reinforcement as well as motivation to the learner. The drill and practice which persons with specific language learning disabilities require to learn to spell can be provided through tapes to be used on the PET Commodore. All tapes work with any 40 -column PET, old or new.

The program consists of 21
tapes covering five basic spelling rules essential to encode words. The complete program is also available on disk.

The copyrighted program includes:

F-L-S-or Z rule 4 Tapes / $\$ 39.80$
Doubling Rule or One, One, One
3 Tapes / \$29.85
Silent E Rule 4 Tapes / $\$ 39.80$
The Y Rule
4 Tapes / \$39.80
Extension of the Doubling Rule
6 Tapes / \$59.70
You can SAVE by purchasing the entire series, tapes or disk, for $\$ 199.00$. Individual spelling rules can be purchased.

For further information on this program write to:

SLED SOFTWARE

P.O. Box 16322

Minneapolis, MN 55416
Telephone (612)926-5820

Lyco Computer Marketing \& Consultants

We Specialize in Quality, Knowledge, Service, and Microcomputers

At Lyco Computers we offer our expert services to help customers make their first computer purchase, schools establish a computer program, or evaluate multiterminal systems.
to help evaluate your needs, or if you wish to make a purchase.
CALL US AT 717-435-5197

LYCO COMPUTERS

P.O. BOX 10

COGAN STATION, PA 17728

ORDERS SHIPPED SAME DAY
NO COD CHARGES
WE PAY FREIGHT ON PRE-PAID ORDERS

These are just a few of our many fine offers - computers, peripherals, modems, printers, disc drives and an unusual selection of package values. Call TOLL FREE today and check us out for price and warranty.

> Factory warrantees on Apple and Atari equipment. Other equipment carries manufacturer's warranty or Computer Plus 180 day extended warranty. Combined warrantees carry Computer Plus 180 day warranty or original manufacturer's warranty.

DEALER INQUIRIES ARE INVITED
Prices subject to change without notice.
TRS-80 is a registered trademark of Tandy Corp.
call TOLL FREE
1-800-345-8124

Dept. B
245A Great Road Littleton, MA 01460
(647) 486-3193

PDI Establishes Division To Produce And Distribute Games

Program Design, Inc., the 4-year old Greenwich, CT educational software company is forming a division to produce and distribute entertainment software for the Atari 400 and 800 computer.

The division, called BEYOND SOFTWARE, is designed with independent software writers in mind. "We are interested in acquiring high-quality arcade, space, and simulation games," says PDI President, John Victor. "We are setting up a system that will cater to the needs of games designers. We will offer attractive terms, plus consulting services to top programmers."

BEYOND SOFTWARE is being established because the Program Design management feels the Atari computers offer exceptional entertainment possibilities.

BEYOND SOFTWARE will be managed by Craig Patchett, the author of CAPTIVITY, a 3-D maze game, and several other game programs.

For additional information, contact Patchett at Program Design, 11 Idar Court, Greenwich, CT 06830; (203)661-8799.

> Six New SuperPET Books Now Available From Commodore

Valley Forge, PA, October 5, 1981 - Commodore Business Machines, Inc., has announced the availability of six new reference books to be used with its SuperPET "micro-mainframestyle" computer. The books are provided with the SuperPET system, but can also be purchased
separately.
The SuperPET, which is Commodore's latest product addition, offers expanded capabilities by providing 96K RAM, an additional microprocessor, five languages, and a standard data communications interface.

The books include a System Overview of the SuperPET, and one book for each of the five languages available with the product - Waterloo microAPL, Waterloo microBASIC, Waterloo microFORTRAN, Waterloo microPASCAL, and Waterloo 6809 Assembler.

The System Overview book provides an introduction to the hardware of the SuperPET, an overview of the Waterloo software for the computer, and various descriptions that apply to the Waterloo software systems in general. The book retails for $\$ 5.95$.

The Waterloo microAPL book, which retails for $\$ 9.95$, is a tutorial introduction to the language, as well as a comprehensive reference manual.

The reference series also includes a Waterloo microBASIC book, which is divided into four parts: an introduction to the general characteristics of the system; a comprehensive reference guide describing the command language; an additional reference guide describing the programming language; and appendices containing summaries of both command and programming languages, as well as describing use of files with Waterloo microBASIC. It retails for $\$ 10.95$.

The Waterloo microPascal book, also retailing for $\$ 10.95$, features a tutorial introduction of Pascal language, and a reference manual defining the language.

The Waterloo microFORTRAN book is also divided into tutorial and reference sections, and retails for $\$ 10.95$.

The final book in the series, pertaining to the Waterloo 6809 Assembler, describes the 6809

Assembler, Linker, and Monitor systems. It contains all the details necessary to develop and debug programs written in the 6809 assembly language for the SuperPET. Retail price is $\$ 10.95$.

An additional book for COBOL will be available in the first quarter of 1982. These books may be ordered through Commodore dealers nationwide.

Link Systems Introduces DataFax ${ }^{\text {TM }}$

Santa Monica, CA, October 19, 1981 - DataFax ${ }^{\text {TM }}$, a new approach to information management, is now being marketed by Link Systems. This new Pascal program is designed to allow the user to enter and access information according to individual needs without programming.

DataFax ${ }^{\text {TM }}$ allows the user to enter data in virtually any form and to retrieve it in an individually meaningful way...thus eliminating the constrictions of set programs. Each screen of information you enter can be cross-referenced or categorized by the keywords associated with them such as names, dates, or any categories relevant to your use. Screens may be chained together if necessary and a hard copy obtained.

The DataFax ${ }^{\text {TM }}$ user enters all data via a simple screen editor... anywhere on the screen. The screen editor features cursor movement, along with tabbing and word tabbing. Data can be printed exactly as it appears on the screen or in a personalized report form.

With the cross-referencing and indexing feature, a set of keywords can be entered for each screen. Keywords may be logically

ANDed and ORed in any combination, thus providing a powerful data retrieval mechanism.

The program runs on the Apple II ${ }^{\mathrm{TM}}$ and will soon be available for the Apple III ${ }^{\text {mM }}$. The suggested retail price is $\$ 250$.

All Link software is hard disk compatible. For further information, or to order, contact Pat Merryman at (213)453-1851. Or write to Link Systems, 1655 26th St., Santa Monica, CA 90404.

New Product releases are selected from submissions for reasons of timeliness, available space, and general interest to our readers. We regret that we are unable to select all new product submissions for publication. Readers should be aware that we present here some edited version of material submitted by vendors and are unable to vouch for its accuracy at time of publication.

SPECIAL PACKAGE

Hardware ATARI 400 COMPUTER ATARI 825 PRINTER ATARI 850 INTERFACE MOD. 16 K RAM 32K RAM

Soffware ATARI WORD PROCESSOR MISSILE COMMAND ASTEROIDS UK LETIER PERFEC DATASOFT TEXT WZARD VISICALC Media VERBATM DYSAN
24.50 /box
17.50 /box

Printers
EPSON MX-80 call us
EPSON MX-80F
OKIDATA 82A
NEC 8023A
IDS PAPER TIGER 460G
Modems
HAYES MICROMODEM II
HAYES SMARTMODEM
NOVATION AUTOCAT
Monitors
$\begin{array}{ll}\text { NEC } 12^{\prime \prime \prime} \text { GREEN } & 179.00 \\ \text { NEC } 13^{\prime \prime} \text { COLOR } & 399.00 \\ \text { AMDEK 12" GREEN } & 149.00 \\ \text { ZENITH } 12^{\prime \prime} \text { GREEN } & 124.00\end{array}$

We offer the most complete selection of name brands in the country. Stock items are shipped the same day. 30 day guarantee. Your satisfaction and UNICOMM prices made our reputation.
THE PURCHASING SERVCE FOR HOME G BUSINESS COMPUTERS

EAST COAST
$1-800-556-7586$

MEST COAST 1-800-235-3581

PRICES ARE SUBJECT TO CHANGE WIO NOTICE.

NEC Color Monitor JC 1201 \$319

INTERTEC SUPERBRAIN 64K RAM \$2799
QD SUPERBRAIN \$2999
NEC 5510 SPINWRITER (7710) \$2345
NEC 5520 SPINWRITER (7720) \$2695
NEC 5530 SPINWRITER (7730) \$2345
NEC 12" MONITOR
\$ 189
NEC COLOR 12" MONITOR \$ 339
NEC PC 8023 Printer 100 CPS Tractor \& Friction
\$ 639
OKIDATA MICROLINE-80
OKIDATA MICROLINE-82A
OKIDATA MICROLINE-83A
DIABLO 630
APPLE II PLUS 48K \$1139
APPLE DISK w/3.3 DOS Controller \$ 525
APPLE DISK w/o Controller \$ 449
EPSON MX-80
\$ 469

Interfaces:

IEEE \$55, TRS-80 CABLE \$35,
APPLE INTERFACE \& CABLE \$90,
RS-232 \$70
HAZELTINE 1420
\$ 799
NORTHSTAR HORIZON II 32K QD
ANADEX DP-9500/9501
TELEVIDEO 912C \$2925 \$1199

TELEVIDEO 920C
\$ 699
TELEVIDEO 950
\$ 729

WE CARRY THE COMPLETE LINE OF ATARI SOFTWARE, PERIPHERALS AND ACCESSORIES.

NEC Green 12 Inch Monitor

 JB 1201 \$179NEC Friction Tractor Printer 100 CPS (Graphics, Bi-directional) \$635

CBM 8032 COMPUTER
\$1149
CBM 8050 DISK DRIVE
\$1349
CBM 4032 COMPUTER
CBM 4040 DISK DRIVE
CBM 4022
CBM VIC-20
LEEDEX/AMDEK 100
LEEDEX/AMDEK 100G
LEEDEX/AMDEK COLOR-1
13" Color Monitor
MICROTEK 16K RAM BOARD for Atari
MICROTEK 32K
ATARI 800 16K
ATARI 400 16K
ATARI 810 DISK DRIVE
ATARI 82040 Column Printer
ATARI 82240 Column Thermal Printer
ATARI 82580 Column Printer

EAST COAST

1-800-556-7586
OMEGA SALES CO. 12 Meeting St.
Cumberland, RI 02864 1-401-722-1027
\$1029
\$1029
\$ 649
\$ 269
\$ 139
\$ 169
\$ 329
\$ 79
\$ 149
\$ 749
\$ 349
\$ 449
\$ 299
\$ 349
\$ 599

WEST COAST 1-800-235-3581

OMEGA SALES CO. 3533 Old Conejo Rd. \#102 Newbury Park, CA 91320 1-805-499-3678

CA. TOLL FREE 1-800-322-1873

Advertisers Index

AB Computers $40,41,147$
AG Associates 6
ATS Cases 29
Aardvark 124
Abacus Software 46
Alternate Reality Software 109
Andromeda 73
Arcade Plus 101
Atari 5
Axlon 97
BYTM Systems, Inc. 59
Batteries Included 153
Beagle Brothers 79
Beta Computer Devices 71
The Bit Bucket 115
R. J. Brachman 65
Briley Software 167
C-Mart 189
CE Software 113
C.E.L. Programs 109
CFI 169
CGRS 39
CMS Software 143
CRT Entertainment 51
Canadian Micro Distributors 25,27
Cascade Computerware 167
Comm"Data Systems, Inc. 171
Commodore Business Machines BC
Competitive Software 153
CompuSoft, Inc 146
COMPUTE! 13,123
The Computer Bus 63
Computer House 119
Computer Mail Order 181
Computer Mat 148
Computer Plus 184
Computer's Voice 110
Connecticut microComputer, Inc 145
Consumer Computers 179
Cow Bay Computing 26,173
Creative Computing 170
Creative Software 33
Crystal Computer 52,53
Cyberia 151
Cybersoft 91
Data Resource Corporation 127
Data Transforms 77
DataMax 167
Datasoft Inc. 47.55
Dr. Daley's Software 63,165
Dynacomp 30,31
ETC Corporation 137
Eastern House Software 69,95
Eclectic Systems Corporation 81,175
Elcomp Publishing, Inc 51
Electronic Specialists 59
Esplanade Enterprises 105
Excert, Inc 65
Execom Corp 161
FSS Software 161
The Great Western Software Co 161
Go-Tari Enterprises 105
HW Electronics 12
High Country Micro Systems 102
Horizon Simulations 50
Human Engineered Software 171
Huntington Computing 56
Image Works Software 113
Impact Computer Systems 133
Intec 117
Interlink, Inc 145
Iridis, The Codeworks 115
Jini Micro-Systems 13
Krell Software Corp 15,128,121
LAR Microtronix 149
LJK Enterprises 43
Leading Edge IBC
LemData Products 147
Lo-Ball 188
Lyco Computers 183
MED Systems 107
MIS 171
Macrotronics, Inc. 51
Magic Carpet 174
Micro Business World 185
Micro Computer Industries Ltd 11
Micro-Ed. Inc. 165
Micro Technology Unlimited 67
Micrograms Inc 61
Microperipheral Corporation 87,117
Microsoft 2,21
Micro Spec Ltd 173
Microtek 17
Mirage Software 111
Mosaic Electronics 88
Mountain Computer, Inc IFC
Muse Software 87
NEECO 22,23
Netronics 188
Olympic Sales Company 178
Omega Sales Company 190,191
On-Line Systems 107
Oppenheimer Software 155
Optimal Technology, Inc 65
Optimized Systems Software Inc 109
Pacific Exchanges 6,16
Percom Data Company, Inc 19
Petted Micro Systems 155
Philadelphia Computer Discount 187
Powersoft 87
Pretzelland Software 129
Professional Software Inc. 1,7
Program Design, Inc. 99
The Program Store 9
The Programmer's Institute 24
Protronics 64
Quality Software 99,103
Quantum Data, Inc 6
Qube Internationa 182
RNB Enterprises 176
Renaissance Technology Corporation 33
Santa Cruz Software 95
Skyles 6,51,135
Software by Sasso 162
Software Street 180
Southern California Research Group 79
Spectrum Computers 105
Street Electronics Corporation 75
Swifty Software 103
Syncro, Inc 106
T.H.E.S.I.S 111

For Fastest Service

Ny computer ls:

\square PET	\square APPLE	\square ATARI	\square OSI
\square KIM	\square SYM	\square AMM	\square OTHER
\square DOn't yet have one...			

\qquad

New subscription rates for COMPUTE! readers outside of the US
\square \$25 Anywhere/Surface Mail (2-4 months delivery)
$\square \$ 38$ Europe/Air Delivery ($7-10$ days)
\square \$48 Middle East, North Africa, Central America/Air Mail
$\square \$ 88$ South America, South Africa, Far East, Australia/Air Mail

Name	\square Check here if Address
renewal sub- scription.	

Payment must accompany this card.
Payment in US funds drawn on a US bank, International Money Order or charge card. VISA \square MasterCard \square.
Account No. \qquad Expires \qquad 1 1.

The Editor's Feedback:

The 6502 Resource Magazine \square-OSI•KIM•SYM•AIM

My computer Is:

\square SYM \square AMM \square OTHER
\square Don't yef have one.Please enter my 1 year (12 issue) subscription to COMPUTE! \square New subscription
\square Renewal subscription
$\square \$ 2000$ U.S subscription
\square 25.00 Canada and international surface mail: Payment in US funds, drawn on US bank or money order

\square Bill me (US only) \$1.00 billing fee

Name, Address: \qquad
\qquad 1 \qquad

COMPUTE! Magazine

515 Abbott Drive
Broomall, PA 19008 USA

COMPUTE! Magazine

Post Office Box 5406
Greensboro, NC 27403

BUSINESS REPLY MAIL
 FIRST CLASS PERMIT NO. 236 BROOMALL. PA

POSTAGE WILL BE PAID BY ADDRESSEE
COMPUTE! Magazine
515 Abbott Drive
Broomall, PA 19008

,

BUSINESS REPLY MAIL

COMPUTE! Magazine

515 Abbott Drive
Broomall, PA 19008

REMEMBER.

THE COMMODORECOMPUTERS "FROM '300 T0 '1995, THEY COST LESS AND GIVE YOU MORE FOR YOUR MONEY. READ OUR CHART."

The idea of a computer in every office and home used to be science fiction. Now it's becoming a reality. The question is, with so many to choose from, which computer should you buy? When you consider the facts, the clear choice is Commodore.

COMPARE OUR \$995 COMPUTER

FEATURES	$\underset{4016}{\text { COMMODORE }}$	$\underset{\text { II }}{\text { APPLE }}$	IBM
Base Price	\$995	\$1,330	\$1,565
12" Green Screen	Standard	299	345
IEEE Interface	Standard	300	NO
TOTAL	\$995	\$1,929	\$1,910
Upper \& Lower Case Letters	Standard	NO	Standard
Separate Numeric Key Pad	Standard	NO	Standard
Intelligent Peripherals	Standard	NO	NO
Real Time Clock	Standard	NO	NO
Maximum 51/2" Disk Capacity per Drive	500K	143K	160K
Prices are as of the most recent published price lists, September, 1981 and approximate the capabilities of the (16 K) PET ${ }^{*}$ 4016. Disk Drives and Printers are not included in prices. Models shown vary in their degree of expandability			

Many experts rate Commodore Computers as the best desk-top computers in their class. They provide more storage power - up to $1,000,000$ characters on $5^{1 / 4^{\prime \prime}}$ dual disks - than any systems in their price range. Most come with a built-in green display screen. With comparable systems, the screen is an added expense. Our systems are more affordable. One reason: we make our own microprocessors. Many competitors use ours. And the compatibility of peripherals and basic programs lets you easily expand your system as your requirements grow. Which helps explain why Commodore is already the No. 1 desk-top computer in Europe with more than a quarter of a million computers sold worldwide.

WE WROTE THE BOOK ON SOFTWARE.
The Commodore Software Encyclopedia is a comprehensive directory of over 500 programs for business, education, recreation and personal use. Pick up a copy at your local Commodore dealer.

> Commodore Computer Systems 681 Moore Road King of Prussia, PA 19406

Canadian Residents:
Commodore Computer Systems
3370 Pharmacy Avenue
Agincourt, Ontario, Canada, MIW 2K4
Please send me more information.
CBM-CO
Name
Company
Title

Address
City \quad State__ Zip
Telephone
Interest Area
\square Business \square Education \square Personal

[^0]:

[^1]: 10 REM UERTICAL FOSITIOHER EXAMFLE
 20 REM ISLAHTD JUHPER
 30 REM COFYRIGHT (c) 1981
 40 REM BY DAUID H. MAFKLEY
 50 GRPFHICS 2:POKE 752,1
 60 SETEOLOR 4,9,4

 90?," ह才"
 100 ? :? "DAUID MAFKLEY"
 110 (耻 $=1536$
 120 FOR $\mathrm{G}=0 \mathrm{TO} 93$
 125 READ D
 130 FOKE UF $+G, \square$
 135 NEXT G
 140 REM UERTICAL FOSITIONER COLE
 150 DATA $104,162,5,104,149,200,202,16,25$
 $0,198,220,198,222,160,00,177,224,170$
 160 DATA $168,165,223,246,9,169,0,145,222$
 $, 136,208,249,138,168,165,221,240,7,177,2$
 $24,145,220,136,208,249,96$
 170 REM AIRFLAHE DATA
 180 AFIM $=1 \mathrm{FF}+44$
 190 DATA $6,142,132,255,255,4,14$

[^2]: 10 ; P/M VERTICAL POSITIONER
 20 NEW = 220
 30 CURRENT $=222$
 40 IMAGE $=224$
 50 START PLA
 ; REMOVE ARGUMENT BYTE COUNT

[^3]: If your Commodore dealer doesn't carry our desks yet, send a check for \$299 and we will ship your desk freight paid!
 Name
 Address
 City
 \qquad

 Interlink, Inc., Box 134, Berrien Springs, M1 49103

 Master Charge and Visa welcome. Call our order line:
 616-473-3103

