

Standard Features:

- Full power to PET/CBM for a minimum of 15 minutes
- Installs within PET/CBM cabinet
- No wiring changes necessary
- Batteries recharged from PET/CBM integral power supply

Specifications:

- Physical Size: $5.5^{\prime \prime} \times 3.6^{\prime \prime} \times 2.4^{\prime \prime}$
- Weight: 4.5 lbs .
- Time to reach full charge: 16 hours
- Duration of outputs: Minimum of 15 min .
- Voltages: $+16,+9,-12,-9$
- Battery Life Expectancy: 3 to 5 years
- Battery On-Off Switch

For Use With:

- Commodore PET/CBM 2001 and 4000 series computer
- Commodore PET/CBM 8000 series computer (screen size will not be normal on battery back-up)
- Commodore C2N Cassette Drive

BATTERY BACKUP SYSTEM FOR COMMODORE PET/CBM COMPUTERS

Never again lose valuable data because of power shortages or line surges. BackPack supplies a minimum of 15 minutes reserve power to 32 K of memory, the video screen and tape drive. BackPack fits inside the PET/CBM cabinet and can be installed easily by even the novice user. BackPack is recharged during normal operation and has an integral on-off switch.

BackPack comes fully assembled and tested. Instructions included.

BackPack is a trademark of ETC Corporation CBM/PET are trademarks of Commodore Business Machines

Designed and manufactured by:

ELECTRONIC TECHNOLOGY CORPORATION

P.O. Box G, Old N.C. 42

Apex, North Carolina 27502
Phone: (919)362-4200 or (919)362-5671

Electronic Manufacturing Technical Design and Development

Computer System Technology

P1 (CUMULATIVE) FOR $K=4, N=2$

Figure 3

PE FOR $X=4, N=2$

M	ALPHA $=0$.	. 125	25	5	1	2	4
	RHO $=0$	5	1	2	4	8	16
2	50955	. 454439	408615	. 338910	. 259034	. 218670	288887
4	759892	. 708395	661886	. 582550	. 469299	362902	359455

8 bytes, 6 or 7 bits high. These routines are made available in this manner in case you would like to mix text and graphics in a more sophisticated manner than a simple dump.

Following the transfer vector is the data area. The values here specify how the Visible Memory is to be dumped and where it is. SDUMP is assembled to work with the 460 Paper Tiger, but by making the changes described in lines 25-27, the code will work on the Paper Tiger 440. Presumably, with similarly minor changes, SDUMP will also work on the newest Paper Tiger, the 445 .

The following should be noted about SDUMP and its use: The only code in SDUMP that is specific to a particular version of BASIC is that in OUTCH, lines 235-280. This code was given to me
by Greg Yob - thanks Greg. It outputs the character in the ACC directly to the device whose number is in RDEV, at location $\$ 600 \mathrm{E}$ in the data area.
Because this code bypasses the PET's file system and directly accesses the IEEE-488 routines, the device does not even have to be opened.

Each routine in SDUMP checks to see if the stop key is pressed, using the routine STOPTS at lines 281-292. If so, the routine quits and returns to the routine which called it. Because of the way the Paper Tigers enter and exit graphics mode, it is possible for them to be left in graphics mode when the stop key is pressed. If this happens, you will know it when it does, the easiest method of recovering is to turn the printer off, then on.

You should not have a CMD operation open

DR. DALEY'S BEST Mailing List Is Now Better!

DR. DALEY has taken his best selling mailing list and made it even better! This version has been totally revised to increase the reliability of the files and make it even easier to operate. Several new features have been added:

- Goof-proof input routine. Eliminates the irritating results of accidentally pressing some cursor control keys. This is a machine code routine so it is as fast as you are! BONUS-Auto repeat on all keys!
- Interface to allow output of the entire mailing list or virtually $A N Y$ subset to WORDPRO III and WORDPRO IV format files so you can use these to generate personalized form letters. YOU can format the structure of this output!
- Routines to merge files and to minimize the number of duplicate entries in a file.
- More machine code routines to speed up processing.
- In addition you have the same powerful file formatting options where $Y O U$ can determine the structure of the files. YOU can format your label output with up to 11 lines per label and from 1 to 8 (yes EIGHT) labels per line.

This system is completely menu driven. It includes 100 pages of user documentation. This documentation is for the end user and is not padded with listings, flow charts, and other such extraneous material.

This program will be available for a short time at the introductory price of $\$ 159.95$. It is available for the 32 K PET and CBM 3000, 4000 and 8000 series computers. You can order through your dealer or directly from us. We will accept VISA or MASTERCARD or your check or money order. Overseas orders include 10% to cover shipping.

Charge to
your
MC/VISA

DR. DALEY'S Software

425 Grove Avenue, Berrien Springs, MI 49103
Phone (616) 471-5514
Sunday - Thursday noon to 9 p.m., Eastern Timiww.commodore.ca

```
4000 REM PLOT X IN (XA,XB) NX WIDE, Y IN (YA,YB) NY HIGH, KEY PK
4005 IF PF=0 THEN RETURN
4010 CLEAR
4060 CX=NX/(XB- XA):REM CONVERSION CONSTANTS
4070 CY=NY/ (YB-YA)
4090 FOR JR=1 TO NR:REM GET THE DATA POINTS
4100 DOTL DO(JR,1),DO(JR,2)
4110 FOR JQ=1 TO NQ
4120 X=QS(JQ)
4130 IX=INT(.5+(X-XA)*CX)
4140 IF IX<O THEN IX=0:REM MAKE SURE & OK
4150 IF IX>NX THEN IX=NX
4160 IX=IX OX
4210 IF PK=1 THEN Y=DD(JQ,JR):REM PK=1 FOR P1 DENS DIST
4220 IF PK=2 THEN Y=CD(JQ,JR):REM PK=2 FOR PI CUM DIST
4300 REM CONVERT Y LIKE X
4310 IY=INT(.5+(Y-YA)*CY)
4320 IF IY<O THEN IY=0:REM FORCE ON PLOT
4330 IF IY \NY THEN IY=NY
4335 IY=IY+OY
4340 IF JQ=1 THEN MOVE IX,IY
4350 DRAW IX,IY
4480 NEXT JQ
4490 NEXT JR
4495 DOTL 1,0
4500 REM PRODUCE THE PLOT
4510 MOVE OX,OY:REM BORDER
4520 DRAW OX +NX,OY: DRAW OX +NX,OY +NY
4530 DRAW OX,OY +NY:DRAW OX,OY
4590 MOVE OX +NX/2-3*(LEN(PL5) +6),OY +NY+10
4592 CHAR PLs;" VS. Q"
4594 PL$=""
4 6 0 0 ~ R E M ~ D I S P L A Y ~ R H O ~ A N D ~ D O T S ~
4610 IX =OX +NX +10:IY =OY +NY -7
4620 MOVE IX,IY:CHAR "RHO CURVE"
4630 FOR I=1 TO NR
4640 V=RS(I):GOSUB2002
4650 IY=IY-12:MOVE IX,IY
4660 CHAR VS
4670 DOTL DO(I,1),DO(I,2):LINE IX+42,IY+3,319,IY+3
4680 NEXT I
4690 DOTL 1,0
4700 REM DRAW A GRID
4702 TL=3:REM TIC LENGTH
4705 DX =. 1:REM X GRID SPACING (ALWAYS)
4710 DY=10:REM Y SPACING - HAVE TO SEARCH
4715 IF YB/5<DY THEN DY=DY/10:GOT04715
4720 E&=INT(XB/DX+.01):EY=INT(YB/DY+.01):REM POINTS ON GRID
4725 FX=1:IF EX>5 THEN FX=2:IF EX>10 THEN FX=5:IF EX) 20 THEN FX=10
4730 FY=1:IF EY>5 THEN FY=2:IF EY>10 THEN FY=5:IF EY>20 THEN FY=10
4735 FOR I=0 TO EY:OZ=OY+I*DY*CY:LINE OX-TL,OZ,OX TL,OZ:REM Y AXIS
4737 LINE OX +NX-TL,OZ,OX+NX+TL,OZ
4740 IF I=FY*INT(I/FY) THEN CHROT 1:MOVE OX-TL-5,OZ-3:CHAR MIDS(STRS(I*DY), 2)
4745 NEXT I
4750 FOR I=0 TO EX:OZ=OX+I*DX*CX:LINE OZ,OY-TL,OZ,OY+TL:REM X AXIS
4752 LINE OZ,OY +NY-TL,OZ,OY +NY +TL
4755 IF I=FX*INT(I/FX) THEN CHROT 0:MOVE OZ-3,OY-TL-10:CHAR MIDS(STRS(I*DX), 2)
4760 NEXT I
4900 REM PRODUCE THE PLOT
4910 PRINT: PRINT
4920 CMD 3: REM REGULAR OUT TO THE SCREEN
4930 SYS(LP):REM THERE IT GOES
4940 CMD 1:REM BACK TO THE PRINTER
4950 RETURN
```


Listing 1

to the Paper Tiger when SDUMP is called, because of the way this command is interpreted in the IEEE-488 system. To avoid this, open a unit to the screen (device 3) and switch to this unit before invoking SDUMP. For example:
OPEN 1,4:REM PRINTER FILE
OPEN 2,3:REM SCREEN FILE
CMD 1:REM OUTPUT TO PRINTER

CMD 2:REM DIVERT OUTPUT SYS(96*256):REM DUMP VISIBLE MEMORY CMD 1:REM RESUME PRINTER OUTPUT

The byte in the data area called EORVAL (at $\$ 6011$) is exclusive-ored with each Visible Memory byte when it is accessed for dumping. This gives a visible indication of the progress of the dump which I find entertaining. It is actually an instance

Third Generation Business Application Software:

Fully guaranteed, unprotected, sell to end users as many times as you desire

Micro Management	Micro Management	Independent Micro
Information System	Information System	Management System
For Service Firms	For Retail/Wholesale	Components
	Firms	Components
General Ledger	General Ledger	General Ledger-\$600
Accts. Receivable	Accts. Receivable	Accts. Receivable-\$500
Payroll		
Accts. Payable	Accts. Payable	Accts. Payable-\$200
Cash Flow and	Inventory Control	Inventory-\$550
Contribution Margin	With Safety Stock	
Budgeting By Dept.	Feature	
Financial Reports and Much More	Contribution Margin Budgeting by Dept.	Payroll \$400
	Point of Purchase	
	Invoicing, Trial	
	Balance, Financial	
	Reports and Much	
	More	
Total Price: \$2,500.00	Total Price: \$2,500.00	

All programs are available using CBM 8032/8050 equipment. Written using Relative File Structure (printer no factor).

If you want the very best in business application software, call us:
The Management Accountability Group
MAG, INC.
P.O. Box 346

493 East Clayton St.
Athens, Georgia 30603
(404) 353-8090

We believe we are the best in the business. If you are serious about profits for your business make us prove it; otherwise, call our competition.
of Cohen's first law of interactive computing - "Always let the operator know that something is going on." However, this leaves the screen reversed when the dump finishes. If you do not like this, there are (at least) two possibilities: (1) Set EORVAL to zero (\$00); the exclusive or will than not change anything. (2) If you are using the Keyword Graphics Package, follow the call to SDUMP with a 'SCFLIP 0,0,319,199'; this will reverse the whole screen, restoring its original condition.

To load SDUMP together with the MTU keyword Graphics Package, when reserving memory space, do a 'POKE 53,96' instead of 'POKE 53,98' for a 32 K system, and similarly for smaller systems. This will reserve the two pages needed by SDUMP.

Listing 2

9100
9110 PRINT\#U: REM SPACE
9120 PRINT\#U, CHRS(3);:REM ENTER GRAPHICS MODE
9130 VM=256*PEEK(832):REM START OF VISIBLE MEMORY
9140 PVMEM
9142 GRSHRT
9145 S=7: REM ROWS PER GROUP
9150 FOR RO $=0$ TO 199 STEP $5:$ REM S ROWS AT A TIME
9160 : R1 = RO + S-1: REM END OF ROW GROUP
9170 :IF R1)199 THEN R1=199
9180 :FOR $C=0$ TO 39 : REM A BYTE (8 BIT COLUMNS) AT A TIME
9190 ::FOR I=0 TO 7:REM CLEAR VALUES TO BE PRINTED
$9200::: P(I)=0$
9210 : :NEXT I
$9220:: V=V M+C: R E M ~ L O C ~ O F ~ B Y T E ~$
$9225:: P 2=1:$ REM POWER OF 2 TO ADD
$9230:$:FOR R=RO TO R1:REM SCAN THE ROWS
9235 :::PRINT C;R
$9240::: B=\operatorname{PEEK}(\mathrm{V}):$ REM GET THE BYTE (8 BITS)
$3250:: V=V+40$: REM LOC OF BYTE BELOW
9260 : : : IF B=0 THEN 9315 :REM FASTER IF EMPTY
$9270::: M=1:$ REM MASK (2^(7-I))
9280 :: : REM ACCUMULATE VALUES FOR PRINTING
$9290::$ FOR I=7 TO O STEP - 1
9295 :::: $\mathrm{IF}(\mathrm{B}$ AND M$)\rangle 0$ THEN $\mathrm{P}(\mathrm{I})=\mathrm{P}(\mathrm{I})+\mathrm{P} 2$
$9300::: ~: ~ M=M+M$
9310 :: NEXT I
$9315::: \mathrm{P} 2=\mathrm{P} 2+\mathrm{P} 2$
9320 : NEXT R: REM DO THE ROWS
9330 :: REM NOW, PRINT THE 8 COLUMNS OF ROWS
$9340:: F O R \quad I=0$ TO 7
9350 :: : PRINT\#U, CHRS(P(I));
9360 ::: IF $P(I)=3$ THEN PRINT\#U,CHRS(P(I))::REM 3 IS SPECIAL 9370 : NEXT I
9390 :NEXT C:REM END OF COLUMN LOOP
9400 : PRINT*U, CHRS(3);CHRS(14);:REM GRAPHICS LINE FEED/RETURN
9410 : $\mathrm{VM}=\mathrm{VM}+\mathrm{S} * 40$: REM DOWN S ROWS
9420 NEXT RO:REM END OF ROW GROUP LOOP
9430 PRINT\#U, CHR (3) ; CHR $\$(2)$: REM LEAVE GRAPHICS MODE
9439 J
9440 VISMEM
9450 RETURN: REM DONE

Listing 3

SDUMP.ASM - MTU TO IDS PAPER TIGER 460 (440) SCREEN DUMP
BY MARTIN J COHEN, DECEMBER 1980
ANYONE WHO WANTS TO CAN USE THIS PROGRAM, ALTHOUGH SOME ACKNOWLEDGEMENT WOULD BE APPRECIATED

APPROXIMATE TIME NEEDED TO DUMP VISIBLE MEMORY:
AT 1200 BAUD, 1 MIN, 30 SEC
AT 9600 BAUD, 45 SEC (WITH 3 MS DELAY SET BY NMSDLY, BELOW)
THE ACTUAL CPU TIME NEEDED IS ABOUT 3 SECONDS!!

$*=\$ 6000$; TWO PAGES BELOW KGP CODE
JMP OUTVM	, SKIP DATA AREA AND DUMP THE VIS MEM
JMP OUTROW	; OUTPUT ROW STARTING AT VM
JMP OUTCOL	; OUTPUT A COLUMN OF \& BYTES

DATA AREA
NOTE - TO RUN THIS ROUTINE ON A 440 INSTEAD OF A 460 , CHANGE THE FOLOWING VALUES AS INDICATED (VALUES IN DECIMAL): $R P F X C=0, ~ R R E P=33, ~ R V A L=6, R E N D=2, R X G R=11$.

NEW LIFE for old Pets?

Is it a dream ... is it fantasy?

Switch from old ROMs to new

- Not sure about the ROM Retrofit Kit from Commodore? Now you can use all three sets of Commodore ROMs and others as well.
- The Basic Switch allows switch selection of either ROM set (your original set or your retrofit set) from Commodore. Plus, Models 15-A and 15-B include an additional zero insertion force socket allowing easy use of ROMs like the BASIC Programmer's Toolkit ... concurrently.
- Models 15-A and 15-B The Basic Switch plus ... includes expanded cable assembly and zero insertion force socket. Your 15 th ROM simple plugs in ... enabled while either ROM set is selected Socket 15 may be readdressed by the user for additional flexibility.
- The Basic Switch is sold in assembled form only. All models are designed for easy attachment to your PET with a convenient cable assembly. No soldering or drilling is required. The Basic Switch mate! with a cable assembly at your primary board, and does not use the physical connectors of any PET ports.
- Price List:

OldPETs \$129.95*
New PETs \$139.95*
*Case optional, \$15 additional.

- Our prices and complete product specifications are available by contacting APPLIED MICRO SYSTEMS, Mishawaka, Indiana; or any Commodore Dealer.

Free MACHINE LANGUAGE MONITOR COMMANDS List will be included with pricing and product specification requests.

APPLIED TILCRD STSTETS

3502 Home Street, Mishawaka, Indiana 46544 1-219-259-3787 (Indiana) • 1-800-348-7208

COMPUTEI's Book Corner

Back Issues: COMPUTE! January, 1981, Issue 8 COMPUTE! February, 1981, Issue 9 \$2.50 COMPUTE! March, 1981, Issue 10 \$2.50

For The Single Board Computer Owners: (KIM, SYM, AIM, OSI)
COMPUTE II, All Three Issues
(The only ones: COMPUTE II merged into COMPUTE!) Issues 1, 2, and 3 . $\$ 5.00 \square$

Individual Issues
COMPUTE II, \#1
. $\$ 2.00$
COMPUTE II, \#2
\$2.00
COMPUTE II, \#3
\$2.00
Miscellaneous:
Best of the PET Gazette
$\$ 10.00 \square$
(Note...an old anthology primarily for old ROM, 8K original PETs.)
Collected PET User Notes (7 issues) \$10.OO \square (Above note applies)
Collected 6502 User Notes (17 issues) . . . \$2O.OO \square (Specifically for Single-Board Computer Owners)
Ordering information:
Address orders to:
Compute's Book Corner
P.O. Box 5406

Greensboro, NC 27403 USA
Payment, in US funds, required with order. "Master Charge/ VISA accepted. All items subject to availability. Please add the following amount(s) for shipping/handling: US $\$ 2.00$ (UPS or mail) - Canada $\$ 2.00$ (mail) Foreign Air Mail $\$ 5.00$

The \$180 Programmable character generator that performs above and beyond its price.

It's the NEW HAL PCG 6500 for your PET. With HAL, you control each dot in the 8×8 matrix so you get sharp, clear graphics. HAL offers:

- Storage for 64 userprogrammable characters
- Built-in CB2 sound amplifier
- PCG Manual and demo program

The HAL PCG 6500 is available exclusively at Systems Formulate...
Call today for more information or to place your phone order: (415) 326-9100 39 Town \& Country Village, Palo Alto, CA 94301 We honor Master Charge, Visa, Check or Money Order (Calliornia residents add $61 / 2 \%$ sales tax)

Dealer Inquiries Invited

DUNGEON OF DEATH Battle evil demons, cast magic spells, and accumulate great wealth as you search for the Holy Grail. You'll have to descend into the Dungeon of Death and grope through the suffocating darkness. If you survive, glory and treasure are yours. For the PET 8K. Order No. 0064P \$7.95.

ARCADE I

ARCADE I This package combines an exciting outdoor sport with one of America's most popular indoor sports: -Kite Fight - It's a national sport in India. After you and a friend have spent several hours maneuvering your kites across the screen of your PET, you'll know why! - Pinball-By far the finest use of the PET's exceptional graphics capabilities we've ever seen, and a heck of a lot of fun to boot.
Requires an 8K PET. Order No. 0074P \$7.95. -

TREK-X

TREK.X Command the Enterprise as you scour the quadrant for enemy warships. This package not only has superb graphics, but also includes programming for optional sound effects. A one-player game for the PET 8K. Order No. 0032P \$7.95.

CODE NAME: CIPHER

CODE NAME:CIPHER

Enjoy that same feeling of intrigue and discovery with the Code Name: Cipher package. Included are:

- Memory Game - Would you like to match your memory against the computer's? You can with the Memory Game. - Codemaster-One player types in a word, phrase, or sentence, and the PET translates that message into a cryptogram. The other player must break the code and solve the cryptogram in the shortest time possible.
-Deceitful Mindmaster - This isn't your ordinary Mastermind-type game. You must guess the five letters in the hidden code word.
-Code Breaker-Cracking this code won't be as easy as cracking walnuts. You'll need to flex your mental muscles to win this game.
If you want a mental challenge, then Code Name: Cipher is for you. For the 8 K PET. Order No. 0112P. \$7.95.

Captivate Yourself.
 Santa Paravia and Fiumaccio The most captivating and engrossing program ever made for the PET ${ }^{-}$

It is the dawn of the 15th Century; you rule a tiny Italian city-state. Your goal: The Crown!

Up to six players can compete as rulers of neighboring cities. You control the grain harvest, feed your serfs, set tax rates, dispense justice and invest in public works.

The future of your realm will depend on your decisions. If they are wise, your city-state will grow and you will acquire loftier titles. If your rule is incompetent, your people will starve and you may be invaded by your neighbors.

How will you rule your kingdom? Will you be an enlightened leader-or an unscrupulous despot? Only you can answer that question-with Santa Paravia and Fiumaccio.

DOW JONE\$

DOW JONES Up to six players can enjoy this exciting stock market game. You can buy and sell stock in response to changing market conditions. Get a taste of what playing the market is all about. Requires a PET with 8K. Order No. 0026P \$7.95.

We Guarantee It!

[^0]| 00188 | 611 A | 85 | 01 | | | STA PGZ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00189 | 611 C | A 5 | 02 | | | LDA PGZ +1 | | | | |
| 00190 | $611 E$ | 69 | 00 | | | ADC \#0 | | | | |
| 00191 | 6120 | 85 | 02 | | | STA PGZ +1 | | | | |
| 00192 | 6122 | | | | , | | | | | |
| 00193 | 6122 | A 9 | 01 | | | LDA \#1 | | | SET MASK TO 1 | |
| 00194 | 6124 | 8 D | DE | 60 | | STA M | | | | |
| 00195 | 6127 | ${ }^{\text {A } 2}$ | 07 | | | LDX \#7 | | | FOR I $=7$ TO 0 STEP -1 | |
| 00196 | 6129 | AD | DD | 60 | ILOOP | LDA B | | | $1 F B$ AND M 〈 ${ }^{\text {P }}$ | |
| 00197 | 612 C | 2 D | DE | 60 | | AND M | | | | |
| 00198 | 612 F | Fo | 09 | | | BEO ILOOPI | | | | |
| 00199 | 6131 | BD | D4 | 60 | | LDA PO, X | | | $P(I)=P(I)+P 2$ | |
| 00200 | 6134 | OD | DC | 60 | | ORA P2 | | | | |
| 00201 | 6137 | 9 D | D4 | 60 | | STA PO, X | | | | |
| 00202 | 613A | OE | DE | 60 | ILOOP1 | ASL M | | | SHIFT MASK LEFT | |
| 00203 | 613 D | CA | | | | DEX | | | SEE IF DONE | |
| 00204 | 613 E | 10 | E9 | | | BPL ILOOP | | | | |
| 00205 | 6140 | | | | ; | | | | | |
| 00206 | 6140 | OE | DC | 60 | | ASL P2 | | | DOUBLE P2 | |
| 00207 | 6143 | CE | D3 | 60 | | DEC R | | | SEE IF OUTER LOOP DONE | |
| 00208 | 6146 | D 0 | C 0 | | | BNE RLOOP | | | | |
| 00209 | 6148 | | | | ; Output | | | | | |
| 00210 | 6148 | | | | ; OUTPU | U PO(0:7) | | | | |
| 00211 | 6148 | | | | | | | | | |
| 00212 | 6148 | A 0 | 00 | | | LDY \#0 | | | | |
| 00213 | 614A | 20 | BA | 61 | MOVEP | JSR STOPTS | | | SEE IF STOP PRESSEDD | |
| 00214 | 614 D | B 0 | 12 | | | BCS MOVEPF | | | If SO, QUIT HERE | |
| 00215 | 614 F | B9 | D4 | 60 | | LDA PO,Y | | | | |
| 00216 | 6152 | 20 | 6 D | 61 | | JSR OUTCH | | | OUTPUT A CHARACTER | |
| 00217 | 6155 | C 9 | 03 | | | CMP \#3 | | S | SEE IF 3 | |
| 00218 | 6157 | D 0 | 03 | | | BNE MOVEP1 | | | | |
| 00219 | 6159 | 20 | 6 D | 61 | | JSR OUTCH | | ; 1 | IF SO, DO IT AGAIN | |
| 00220 | 615C | C 8 | | | MOVEPI | INY | | | | |
| 00221 | 615 D | CO | 08 | | | CPY \#8 | | - 0 | ONLY DO 8 | |
| 00222 | 615 F | D 0 | E 9 | | | BNE MOVEP | | | | |
| 00223 | 6161 | | | | | | | | | |
| 00224 | 6161 | 68 | | | MOVEPF | PLA | | | RESTORE PAGE ZERO AREA | |
| 00225 | 6162 | 85 | 02 | | | STA PGZ +1 | | | | |
| 00226 | 6164 | 68 | | | | PLA | | | | |
| 00227 | 6165 | 85 | 01 | | | STA PGZ | | | | |
| 00228 | 6167 | 68 | | | | PLA | | | RESTORE REGS | |
| 00229 | 6168 | A 8 | | | | TAY | | | | |
| 00230 | 6169 | 68 | | | | PLA | | | | |
| 00231 | 616A | AA | | | | TAX | | | | |
| 00232 | 616 B | 68 | | | | PLA | | | | |
| 00233 | 616 C | | | | ; | | | | | |
| 00234 | 616 C | 60 | | | | RTS | | | | |
| 00235 | 616 D | | | | | | | | | |
| 00236 | 616 D | | | | OUTCH | - OUTPUT A | CHAR | RAC | CTER TO DEVICE RDEV | |
| 00237 | 616 D | | | | | | | | | |
| 00238 | 616 D | | | | ; THIS | ROUTINE WAS | SUPP | PLI | IED BY GREG YOB - THANKS | MUCH |
| 00239 | 616 D | | | | | | | | | |
| 00240 | 616 D | 8 E | B7 | 61 | OUTCH | STX OUTCHX | | | SAVE REGS | |
| 00241 | 6170 | 8 C | B8 | 61 | | STY OUTCHY | | | | |
| 00242 | 6173 | 48 | | | | PHA | | | | |
| 00243 | 6174 | A5 | D4 | | | LDA 5D4 | | | SAVE CURRENT DEVICE | |
| 00244 | 6176 | 8 D | B9 | 61 | | STA TMPDEV | | | | |
| 00245 | 6179 | AD | OE | 60 | | LDA RDEV | | | SET MY DEVICE | |
| 00246 | 617 C | 85 | D4 | | | STA SD4 | | | | |
| 00247 | 617 E | 20 | BA | F0 | | JSR SFOBA | | L | LISTEN | |
| 00248 | 6181 | 20 | 2D | F1 | | JSR SFI2D | | | ATTENTION | |
| 00249 | 6184 | | | | OUTCH1 | = * | | | | |
| 00250 | 6184 | 20 | BA | 61 | | JSR STOPTS | | | SEE IF STOP PRESSED | |
| 00251 | 6187 | B0 | 11 | | | BCS OUTCH2 | | | IF SO, EXIT FROM HERE | |
| 00252 | 6189 | A 9 | 00 | | | LDA \#0 | | | CLEAR STATUS | |
| 00253 | 618 B | 85 | 96 | | | STA 596 | | | | |
| 00254 | 618 D | 68 | | | | PLA | | ; R | REGET CHAR | |
| 00255 | 618 E | 48 | | | | PHA | | | | |
| 00256 | 618 F | 85 | A 5 | | | STA 5A5 | | | STORE WHERE IT SHOULD BE | |
| 00257 | 6191 | 20 | EE | Fo | | JSR SFOEE | | ; 0 | OUTPUT | |
| 00258 | 6194 | A 5 | 96 | | | LDA 596 | | ; S | SEE If TIMED OUT | |
| 00259 | 6196 | 25 | 01 | | | AND 1 | | | | |
| 00260 | 6198 | D0 | EA | | | BNE OUTCHI | | ; I | IF SO, TRY AGAIN | |
| 00261 | 619A | | | | OUTCH2 | $=*$ | | | | |
| 00262 | 619A | 20 | 83 | F1 | | JSR SE183 | | ; U | UNLISTEN | |
| 00263 | 619 D | AD | B9 | 61 | | LDA TMPDEV | | ; R | RESTORE DEVICE | |
| 00264 | 61A0 | 85 | D4 | | | STA 5DG | | | | |
| 00265 | 6142 | AE | 10 | 60 | | LDX NMSDLY | | | DELAY A FEW MS | |

www.commodore.ca

Machine Language:

 Getting To The Machine LanguageProgram
Your PET/C $\bar{B} M$ is a Basic machine. To run machine language you have to leave Basic - perhaps for a temporary period - and enter the machine language program. You'll often want Basic and Machine Language to work together. Where time is not critical, many things code easily into Basic. But where speed is important, or the job is beyond Basic's normal powers, you'll want to use machine language inserts. At that time, your computer will want to go into machine language.

There are four standard methods of doing this: some are more complex than others. Each has its own advantages and drawbacks.

The SYS command and the USR function call machine language whenever Basic desires to do so. This may be done with a direct command or from a program. The machine language program acts as a subroutine, and may return to the Basic calling point when it has done the job.

The more complex "wedge" method calls a machine language routine frequently whenever Basic is running. It doesn't wait for the Basic program to call it in; it seems to run simultaneously with Basic.

The interrupt method taps the PET's internal interrupt scheme. Every sixtieth of a second whether Basic is running or not - PET's interrupt kicks in and does a number of quick jobs, such as checking the keyboard and flashing the cursor. Machine language programs which tap the interrupt seem to run continuously, even when Basic is not active.

The Machine Language Monitor has a Go (.G) command which allows you to start a machine language program directly. The program is not called as a subroutine, so it must find its own way back to the MLM when it is finished.

Each of the four methods will be discussed briefly here.

SYS And USR

SYS and USR create direct calls from Basic to a machine language program. This program runs only when called, and when it is finished it will hopefully return control to Basic and allow Basic
execution to continue.
SYS is a command. You say SYS 7143, for example, as a direct command or within a program, and machine language at decimal address 7143 will start executing. SYS is quite convenient when you have several machine language programs to be run at different times: you just give the address of each one as you call it.

USR is a function, not a command. You cannot say USR (0) alone any more than you can say SQR(0): it must be part of a command. You might say any of: PRINT USR(0); X = USR(99); IF $\operatorname{USR}(7)=3$ THEN \ldots or any similar syntax .

When Basic encounters the USR function within a Basic statement, it will start to execute machine language at a present address. Hopefully you will have set the address to point at the program you want to run; you do this by POKEing the desired address into locations 1 and 2. Once you've done this, USR will fire you into the desired machine code every time you use it.

The argument of the USR function - that's the value enclosed in brackets - is available to the machine language program if it wants to use it. This value may be found in the floating point accumulator, which is at hexadecimal B 0 to B45 in original ROMs or at 5 E to 63 in subsequent PET/ CBM machines. It's store in floating point notation, which is devilishly hard to read if you don't know the system and not that easy if you do. When a simmple number like 5 comes up as hexadecimal 83 A0 00000020 you may be happy to reach for a built-in conversion routine that yields a much more readable fixed-point value of 0005 .

If you use the USR argument you may also leave a value in the same floating point accumulator just before you return to Basic. This value will be picked up by Basic as the value computed by the USR function.

To summarize: SYS lets you pick any of several machine language programs. USR takes you to a fixed location and allows you to pass a single value to and from machine language if you want. The SYS command seems simpler to the beginner, but USR is also straightforward once you get used to it.

The Wedge, Or Infilitrating Basic

This advanced technique gives the effect of a Basic "supervisor" which watches Basic run and occasionally kicks in with some of its own activities. It doesn't need to be called from Basic: once implanted, it will be there and active any time Basic is running.

It's a powerful method of extending Basic. Many systems use it: disk monitors, including the Commodore "wedge" DOS; Basic enhancers such as the Programmer's Toolkit or Basic Aid; and Brett Butler's TRACE as published in COMPUTE!,

Skyles Electric Works

BASIC Programmer's, Toolkit ${ }^{(\pi 10)}$, Disk-O-Pro ${ }^{\text {(N0 }}$, Command-O

For CBM ${ }^{\text {®1 }}$ Owners Who Want More Fun And Fewer Errors with Their Programs

Here are nineteen commands you'll need, on a single chip you can install in two minutes without tools, on any CBM or CMB system. 4KB of ROM firmware on each chip with a collection of machine language programs available from the time you turn on your PET to the time you shut it off.

For CBM 8016 and 8032; BASIC 4.0

BASIC Programmers Command-O

AUTO ${ }^{\text {ed }}$ DUMP $^{\text {ed }}$ DELETE ${ }^{\text {ed }}$ FIND ${ }^{\text {ed }}$ (improved) HELP ${ }^{\text {ed }}$ KILL $^{\text {ed }}$ OFF ${ }^{\text {ed }}$ TRACE ${ }^{\text {ed }}$ (improved) RENUMBER ${ }^{\text {ed }}$ (improved) INITIALIZE ${ }^{\text {BS }}$ MERGE ${ }^{\text {BS }}$ MOVE $^{\text {BS }}$

EXECUTE ${ }^{\text {BS }}$ SCROLL ${ }^{\text {ed }}$ OUT $^{\text {ed }}$ SET $^{\text {ed }}$ SEND ${ }^{\text {BS }}$ PRINT USING ${ }^{\text {BS }}$ BEEP ${ }^{\text {BS }}$

$<$ NOTICE
When you order Command-O, we will loan you a Toolkit until we deliver Command-O.

PRICES:

BASIC Programmers Toolkit (chip only)	$\$ 40.00$
BASIC Programmers Disk-O-Pro	
BASIC Programmers Command-O	(chip only)
Interface boards (needed sometimes)	$\$ 75.00$
Instruction Manual (with redeemable $\$ 5.00$ coupon)	$\$ 20.00-\$ 50.00$

Shipping and handling \$2.50 USA/Canada, \$10.00 Europe/Asia
California residents please add 6\% or 6-1/2\% sales tax as required Reserve your Disk-O-Pro, Command-O today

Toolkits immediate delivery, Disk-O-Pro delivery in December, Command-O delivery in January VISA, MASTERCHARGE ORDERS CALL (800) 538-3083 (except California residents) CALIFORNIA ORDERS PLEASE CALL (408) 257-9140
issue 1.
How does it work? It's done by infiltrating a Basic subroutine called CHRGET which is located in page zero. This subroutine is called every time the Basic interpreter wants to get a character from your Basic program. By making very careful changes to this subroutine, you can force the Basic interpreter to do a little extra work for you.

It's not simple. But with a little persistence and a lot of bravery, you can train Basic to do some clever new tricks.

Interrupt

Sixty times a second, PET's normal activity freezes. An interrupt signal causes a completely independent program to run. When the interrupt program completes, the computer's normal programs unfreeze and continue exactly where they left off.

This powerful mechanism allows PET to do several important jobs. The jiffy clock is updated; the keyboard is checked for activity; the stop key is checked and its condition logged; the cursor is flashed when necessary; and the cassette motors are started or stopped. All of this is invisible to the main program, which clanks along happily without even noticing the interruptions.

The interrupt mechanism works all the time, even when Basic isn't running. If you add your own machine language program to the interrupt sequences, it too will work all the time - sixty times a second. It's ideal for watching special input/ output ports, flashing parts of the screen, and similar jobs.

You can get at the interrupt routine quite easily. There is a memory location called the Hardware Interrupt Vector: in original ROMs, it's at hexadecimal 0219 and 021 A ; in new ROM systems it's at hex 0090 and 0091 . In either case, the locations contain an address which points to the interrupt routine. If you change the address, the interrupt mechanism will go wherever you say, sixty times a second. At the end of your coding, don't forget to jump to the regular interrupt program so that the keyboard, clock, etc. still work properly.

Changing the address of the Hardware Interrupt vector has a small problem. Like all addresses, it comes in two chunks: a low order byte and a high order byte. If you have just changed the low order part and are about to change the second part when the interrupt strikes, you have a disaster on your hands. The address that the interrupt finds at that moment will be nonsense - part old address and part new.

Avoid this problem by making use of the SEI (Set Interrupt disable) instruction to lock out the interrupt while you are changing the vector. Don't forget to restore the interrupt with a CLI (Clear Interrupt disable) when you've finished putting
the address in place.
It seems odd, but cassette tape can neither read or write after you have changed the interrupt vector from its usual address; and LOADs from disk may "hang" without saying READY. Be sure to make provision to restore the vector if you do much input or output.

Machine Language Monitor

In the Machine Language Monitor, you can type .G for Go and go directly to any machine language program you like. You will go with a direct jump (JMP) command, which means that the program is not treated as a subroutine. You can't get back with a return (RTS) instruction; instead, you will likely use a Break (BRK) command to reconnect with the monitor.

The Go command and associated BRK instructions are useful in debugging programs. After your program is written, replace several of the instructions in your program with Break commands. Try to scatter the Break commands evenly throughout your program, especially at the start of logical program "modules". Now perform Go to the start of your program. You should come back to the monitor almost instantly with the first Break point. If so, you've reached that program step safely; replace the Break instruction with the command that originally belonged there. Now you can Go to that address, and the program will resume and continue to the next Break. As you go through the program piece by piece, check that the registers contain the values you expect; if appropriate, check key memory locations, too

If the PET misbehaves or goes terribly quiet, at least you will have isolated the portion of the program that is doing it to you. On the next test, you can set your break points closer together in that area, and pin the problem down step by step.

Summary

There are several ways to link your PET to machine language programs. Beginners will want to stay with the SYS command and the USR function until they have gained confidence. They should learn the Machine Language Monitor (.G) and Break (BRK) functions as quickly as possible to help in checking out programs.

The advanced functions - wedge and interrupt - will be there when they are needed.

Odds \& Ends on the 2040 Disk

Jim Butterfield

The disk has almost more brains than the PET. It contains two separate microprocessors, each of which has its own ROM program; the micros talk to each other via a shared block of memory.

[^1]
80 COLUMN GRAPHICS

The Integrated Visible Memory for the PET has now been redesigned for the new 12" screen 80 column and forthcoming 40 column PET computers from Commodore. Like earlier MTU units, the new K-1008-43 package mounts inside the PET case for total protection. To make the power and flexibility of the 320 by 200

The image on the screen was created by the program below.

```
```

10 VISMEM: CLEAR

```
```

10 VISMEM: CLEAR
20 P=160:Q=100
20 P=160:Q=100
30 XP=144: XR=1.5*3.1415927
30 XP=144: XR=1.5*3.1415927
40 YP=56: YR=1: 2P=64
40 YP=56: YR=1: 2P=64
50 XF=XR/XP: YF=YP/YR: 2F=XR/ZP
50 XF=XR/XP: YF=YP/YR: 2F=XR/ZP
60 FOR 2I=-Q TO Q-1
60 FOR 2I=-Q TO Q-1
70 IF, ZI<-ZP OR ZI>ZP GOTO 150
70 IF, ZI<-ZP OR ZI>ZP GOTO 150
80 ZT=ZI*XP/ZP: ZZ=ZI
80 ZT=ZI*XP/ZP: ZZ=ZI
90 XL=INT (.5+SQR (XP* XP-2T*ZT))
90 XL=INT (.5+SQR (XP* XP-2T*ZT))
100 FOR XI=-XL TO XL
100 FOR XI=-XL TO XL
110 XT=SQR(XI*XI+2T* 2T)*XF: XX=XI
110 XT=SQR(XI*XI+2T* 2T)*XF: XX=XI
120 YY=(SIN (XT) +.4*SIN (3*XT)) *YF
120 YY=(SIN (XT) +.4*SIN (3*XT)) *YF
130 GOSUB 170
130 GOSUB 170
140 NEXT XI
140 NEXT XI
150 NEXT ZI
150 NEXT ZI
160 STOP
160 STOP
170 X1= XX +2Z +P
170 X1= XX +2Z +P
180 Yl=YY-ZZ+Q
180 Yl=YY-ZZ+Q
190 GMODE 1: MOVE XI,Yl: WRPIX
190 GMODE 1: MOVE XI,Yl: WRPIX
200 IF Yl=0 GOTO 220
200 IF Yl=0 GOTO 220
210 GMODE 2: LINE X1,Y1-1,X1,0
210 GMODE 2: LINE X1,Y1-1,X1,0
220 RETURN

```
```

220 RETURN

```
```

bit mapped pixel graphics display easily accessible, we have designed the Keyword Graphic Program. This adds 45 graphics commands to Commodore BASIC. If you have been waiting for easy to use, high resolution graphics for your PET, isn't it time you called MTU?

K-1008-43M Manual only $\$ 10$ (credited toward purchase) k-1008-43 Complete ready to install package \$495

Mastercharge and Visa accepted
Write or call today for our full line catalog describing all MTU 6502 products, including our high speed $8^{\prime \prime}$ Floppy Disk Controller for up to 4 megabytes of PET storage.

NOW 80 COLUMN PETS CAN HAVE MTU HIGH RESOLUTION GRAPHICS

A Thirreen Line BASIC Delete

Arthur C. Hudson Ottawa, Ontario

Here is a short program written entirely in BASIC, which allows you to delete any group of lines from an existing program. Typically the increment is 1 , so that all lines in the group are deleted, but this is not necessary.

To use the Basic Delete, just screen merge it with your existing program. Hopefully no conflict of line numbers will occur, if there is conflict, then some renumbering will be required. After the merge, RUN7878, and as instructed, modify the listed line 7892 to define the start, the end and the increment. Then press return twice, and the delete process will begin. The line number being deleted is displayed and you may press BREAK (RUN/STOP) at any time.

As an example of using an increment other than unity, you could write all or part of a program using even numbers for the useful statements and odd numbers for the remarks. Save on tape or disk, and then automatically delete all the remarks and save again. Finally the original can be brought back, and all even numbered statements deleted. This gives a program consisting only of the remarks. Each of these three versions can have its uses.

Somewhat complicated programming techniques are used here, and the statements must be entered carefully. Note that after you have modified the automatically listed line 7896 and pressed RETURN, the cursor will rest on a direct statement, RUN7882. In this way, a second RETURN will initiate the delete process.

The program uses the dynamic keyboard feature of the PET. (See COMPUTE! Issue 4 page 58 and the earlier reference - Louder - cited therein). It uses bins 834 and 835 in the second cassette buffer, but this does not prevent use of the second cassette.

One of the more interesting problems in this type of program is that PET suffers from amnesia the moment it executes a delete (all variables set to 0). It is for this reason that parameters have to be embedded in a program statement, and also N , the number of the line currently being deleted, must be poked into memory before the deletion and retrieved after it.

Note that in line 7892 the word 'INCREMENT' is spelled incorrectly. Don't try to fix it, or PET will see thé word REM inside it and bomb out. Don't think you can get away with substituting 'step' for 'incrment', because PET will object to the use of ST, a reserved word. Finally don't try incr'ment,

PET doesn't like this either, (not alphanumeric).
The first time that the Basic Delete is used, the asterisks in SN7896 will be replaced by numbers. There is of course no need to replace the asterisks when executing a SAVE.

My version of this program uses about 330 bytes. It is certainly possible to trim this down by about 50 bytes.

If You Have OLD ROM

Referring to statements numbered 7884 and 7886; for 623 and 624 substitute 527 and 528 . For 158 substitute 525 . These bins relate to the keyboard buffer. Note that Harvey Davis's article is written for old ROM, so the conversions given above apply in reverse, if you have new ROM.

Reference:

Algebraic Input for the PET, Harvey Davis, COMPUTE! Vol. 1, Issue 4, page 58.

```
    l0 PRINT"f\downarrowA THIRTEEN LINE BASIC DELETE
    12 PRINT"\downarrowARTHUR C. HUDSON
    14 PRINT"\downarrow11 AMBERLY PLACE
    16 PRINT"\downarrowOTTAWA,ONT.
    18 PRINT"\downarrowCANADA
    2\emptyset PRINT"\downarrowKlJ 7J9
    22 PRINT"\downarrowPHONE (613) 749 5475
30 PRINT"\downarrow\downarrow KEY IN CONT":STOP
7878 PRINT"h`MODIFY SN7896,THEN CR
7880 PRINT"\downarrow\veeRUN7882\uparrow\uparrow\uparrow":LIST7896
7882 POKE835,0:POKE834,0:GOTO7894
7884 POKE623,13:POKE624,13
7886 POKE158,2:PRINT"^\downarrow\downarrow\downarrow\downarrowGOTO7894
7888 PRINT"h\downarrow\downarrow"N"\uparrow\uparrow\uparrow";:N=N+IN
7890 D=INT(N/256):POKE835,D
7 8 9 2 ~ P O K E 8 3 4 , N - D * 2 5 6 : E N D ~
7894 N=256*PEEK (835) +PEEK (834)
7 8 9 6 ~ F I R S T = \emptyset \emptyset \emptyset 0 : L A S T = \emptyset \emptyset \emptyset \emptyset : I N C R M E N T = \emptyset 1 ~
7898 IF N > LA THEN STOP
7900 IF N < FI THEN N=FI
7902 GOTO7884
READY.

\section*{DFFICE WRAK LTD*}

\section*{INVOICING PROGRAM FOR PET/CBM® SYSTEMS}
- No special forms required.
- Available on Cassette or Disk
- Works with oid or new ROMS.
- Requires only 16 KB of memory. - Requires CBM 2022 or 2023 Printer

Limited Time Introductory Price - \$50.00 To order send check or money order for \(\$ 50.00\) to: OFFICE WORK LTD, 2523 Harley Drive, Greensboro, North Carolina 27406.

Also ask for our Supplies Booklet!
North Carolina Residents add 4\% Sales Tax Works on the new 80 -column CBM

\title{
Agricultural Software from Cyberia
}

FOR PET/CBM SYSTEMS

\section*{ accounting package for today's farm operations}
- Records, sorts, combines and prints the results of the farm operation.
- Account headings and numbers are pre-assigned for nearly every type of farm income or expense, but any account may be deleted, altered or added.
- Keeps personal, family and house-hold accounts as well.
- Cyber-Farmer management tools include cash-flow analyses, depreciation schedules, inventory and budget reports.
■ No computer experience is necessary to operate this system.

\section*{Farrow-Filer"}

\section*{Record-keeping and management} system for the pork producer
- Helps the pork producer to lower their cost-per-pig by producing more animals.
■ High visual impact of reports allows for better culling of freeloaders.
- Alerts the operator to possible medical problems in the herd.
■ Forecasts farrowings for a 3 month period.
- Keeps individual records on each animal.

\section*{Farmer'sWorkbook}

The most powerful management tool ever for the agricultural producer. Farmers Workbook combines the power of Visicalc \({ }^{\text {© }}\) * with the knowledge of a major midwestern university. The Farmers Workbook is a collection of templates that are designed to be run on the Visicalc \({ }^{\circledR}\) program. The templates include lables, formulas, sample data, test cases and full documentation. Template titles include: Cattle Feeder, Pig Production, Sheep Production, Grain Management, Loan Payments, Market Average, Land Purchase and many others.
*Visicalc is a trademark of Personal Software, Inc.

\section*{Also...Two Other Enhancements for PET/CBM Systems}


\title{
Calculated Bar－graph Routines On The PET
}

\section*{Edward F．Heite Camden－Wyoming，Delaware}

To exploit the CBM printer＇s graphic potentials， programmers need a few routines that haven＇t been published yet．The＂Keyprint＂program （COMPUTE！，issue 7，page 84）is okay for dumping 40 columns to the printer，if you have the right ROM．But if you want to manipulate the full 80 columns and create complicated graphs，you need a way to calculate the length of the bar．

A calculated bar can be created as a string variable，by concatenating a graphic string to the desired length with a FOR ．．．NEXT loop．Listing 1 is a dummy program to demonstrate this process．

Line 1 sets \(\mathrm{B} \$\) to an empty value．Line 2 defines \(C \$\) as a single graphic character．In line 3， the value of the bar is set at 20 ；in actual programs， this would be a calculated value．Line 4 sets the FOR ．．．NEXT loop to the value of J，and thus determines the length of the bar．Line 5 concaten－ ates \(\mathrm{B} \$-\mathrm{C} \$\) to create a new value for \(\mathrm{B} \$\) ．Line 5 keeps adding symbols to \(\mathrm{B} \$\) until the loop reaches the value of J ．After the loop has cycled the required number of times， \(\mathrm{B} \$\) is a bar of length J ，which in this case is 20 ．

In normal program use，a series of these routines would create the bars．Then the printer routine would use them in a report；lines 7－9 are a typical printer routine．

LISTING 1
```

EF=""

```

```

3 J=2G
4 \mp@code { F O F ~ X = 1 ~ T O ~ I }
5 Eも=「ま+E\&
E HE\&T %
7 OFENH 1,4,E1
B FRINT\#1, E\&
GLOSE 1

```

\section*{INTRODUCING ABP}

ADVANCED BASIC PROGRAMS（C），A POWERFUL DISK－BASED PROGRAM LIBRARY FOR THE 16／32K CBM／PET COMPUTER，FEATURING STATISTICAL， MEDICAL AND UTILITY ROUTINES FOR THE RESEARCHER，THIS PACKAGE IS DERIVED FROM A DRASTICALLY ENHANCED VERSION OF OSBORNE＇S ＂SOME COMMON BASIC PROGRAMS＂ AND ALLOWS MENU PROGRAM CHAINING，STREAMLINED DATA ENTRY， AND OPTIONAL PRINTER OUTPUT， OVER 90 PROGRAMS！！！ PRICE
－Program Disk \＄29．95
－Manuals（Includes Osborne＇s
＂Some Common Basic Programs）\＄12．95
－Complete package \＄39．95
 Woburn，Massachusetts 01801
Mass．residents add \(5 \%\) tax．Add \(\$ 2.50\) per order for postage and handling．（Available in CODOS and 8050 Format by special order．）

\section*{1，000，000 Bytes}


If your data and program handling requirements are minimal，a mini－disk may be for you．If you want to access large amounts of data，program libraries，flexible user－ defined data formating，and easy to understand documen－ tation，CONSIDER the PET／BETA－1．

The PET／BETA－ 1 is a fast digital tape system incorporating the BETA－ 1 drive，with a flexible user－oriented operating system．The double－density drive has high－speed random access to over 1 million bytes per digital cassette with a transfer rate of \(1 \mathrm{~K} /\) second．


\section*{PET/CBM* IEEE-488 T0 PARALLEL PRINTERS}

THE P.I.E.-C IS COMPATIBLE WITH
Centronics, NEC "Spinwriter", Escon Products, AJ-841, IDS "Paper Tigers", Anadex, "MIPLOT" by Watanabe, etc.

Fully assembled and attractively enclased. Connected with, and powered by, the printer using the 6' data cable. Independently addressable as Device\# 4 to 30. IEEE-488 Bus Extension for floppy disks, etc. Switch selectable PET-TO-ASCII code conversion. No software drivers required -- Uses BASIC 488 commands instead.

\section*{McTerm}

\section*{A Telecommunication Package}

With the McTerm package your Commodore computer can now become a very intelligent terminal. It allows you to easily participate in the electronic mail revolution. McTerm can communicate simultaneously with another PET or mainframe. You can transfer entire disk files to other disk drives; send or receive program, WordPro, sequential, or relative files. This package works on Commodore computers with 3.0 or 4.0 Basic, 1.0 or \(2.0 \mathrm{DOS}, 40\) or 80 column computers, and 2040 or 8050 disk drives (requires the use of TTL Level RS-232 modems).

Complete with Program, ROM, Cable and Manual.
Price: \(\$ 195.00\)
Features include:
-Baud selection from 75 to 1200.
-Full and half duplex, also local echo:
-Supports odd, even and mark parity.
-CRC, error checking for PET to PET files.

\title{
The Revised Pet/CBM Personal Computer Guide
}

\section*{Jim Butterfield \\ Toronto, Canada}

This article deals with the changes and new features of the well-known Osborne/McGraw-Hill guide. As such, it isn't a full scale review. Many PET/CBM users are familiar with the first edition; it was the first truly comprehensive user guide for their machine. As such, they were less likely to complain about its faults, which were few, and more likely to be thankful that such a book finally existed.

\section*{A Stronger Style}

The new edition is a major revision. The previous casual, almost folksy style ("Assuming you have just brought your PET home in a box, you must unpack it") has been replaced by a much tougher down-to-business style. The name PET has been almost universally replaced by CBM. The new book socks it to you with a much more hard-hitting style.

The organization of the book is stronger. Chapters have been reorganized, and additional Basic programming material inserted. There's a stronger grouping of data with headings, subheadings and detail. The Preface suggests, "Even if you have never programmed a computer before, this book will teach you how to write your own Basic programs ... Chapters 4,5 and 8 teach BASIC programming." That's 190 pages of Basic material, the last 50 of which are essentially reference. It may be rather too terse for many learners, but it's all there.

\section*{File Foulup?}

The book covers the newer 4.0 ROM system. This is quite a feat considering how recent this system is. Unfortunately, some of this new material appears to have been prepared hastily.

The new Relative data files are discussed, but the book gets the whole thing wrong. It would be well for readers to stay away from this section entirely: relative files are easy to handle, but not in the manner the book suggests. It seems that the authors have confused the carriage return character
with the IEEE-488 EOI line; somehow the comma gets dragged in as a field delimiter and we end up with a mess. Worse and worse: playing with the comma makes numeric file variables difficult to handle, and we end up with pages of explanation on how to cope with this. It would have been so easy if we'd started off on the right foot: for writing, one PRINT\# statement writes one record; for reading, EOI (as detected in the ST value) signals the last field within a record. And no commas, please.

\section*{Appendices}

The tables in Appendix A do a fair job of trying to sort out the various codes used by the PET. Between screen formats, PET ASCII, true ASCII and keywords, they take some unscrambling.

For a book which makes some effort to be up-to-date on such things as 4.0 machines, I was surprised to see the out-of-date list of CBM newsletters and references given in appendix D. The PET Gazette and PET User Notes were still listed, and there was no sign of COMPUTE! magazine. And I really thought that Commodore Canada's excellent Transactor should have been on the list.

Table F-3 near the end of the book is a curious piece of work. It seems that the authors got hold of the symbol table from Commodore/Microsoft's assembly and sorted and printed it for both Upgrade and 4.0 ROMs. It's fascinating: I suspect that it

\section*{ECX COMPUTER COMPANY.}

Specialists In Commodore PET Equipment, Peripherals And Software.
\begin{tabular}{|c|c|}
\hline & FFER THE F \\
\hline *SX-300: & IEEE MODEMSOFTWARE, WITHREMOTE DISK/FILE ACCESS \(\$ 79.95\) \\
\hline *SX-100: & IEEE-488MODEMSOFTWARE (FOR COMMODORE MODEL 8010) \$49.95 \\
\hline *MX-200: & CUSTOM PARITYIEEE-488 MODEM WITH SX-200 SOFTWARE \(\$ 449.95\) \\
\hline *X232: & PET TORS232C BIDIRECTIONALINTERFACE
\[
\$ 125.00
\] \\
\hline *X901: & PET BEEPER: ADDS 8032 BEEPEF SOUND TO YOUR OLD PET \$19.95 \\
\hline * X902: & PET CASSETTE SOUND: HEAR THE CASSETTE LOADING/SAVING \(\$ 19.95\) \\
\hline *C101: & CENTRONICS/NECTOIEEE-488(PET)INTERFACE
\[
\$ 225.00
\] \\
\hline * C102: & WATANABE DIGIPLOT TOIEEE-488 (PET) INTERFACE \(\$ 295.00\) \\
\hline *WX4671: & WATANABE DIGIPLOTINTELLIGENT GRAPHICS PLOTTER \$1395.00 \\
\hline *CURVE: & GRAPHICS SOFTWARE PACKAGE FOR THE DIGIPLOT AND PET \$295.00 \\
\hline & ITER SYSTEM DESK, WALNUT OR OAK \$395.00 \\
\hline *NEC SP & YWRITER PRINTER STAND: MATCHES DESK NOTED ABOVE \(\$ 275.00\) \\
\hline ALL CO & ODORE BUSINESS MACHINES COMPANY PRODUCT \\
\hline \multicolumn{2}{|l|}{We offer fast and efficient service on all Commodore Business Machines Equipment!} \\
\hline Send it to & via UPS; You will have it back ustally within a week!! \\
\hline
\end{tabular}

ECX COMPUTER COMPANY
2678 North Main Street \#6
Walnut Creek, CA 94596
Walnut Creek, CA 94596

\title{
PETTERM
}


Intelligent Communication

\section*{Uploads and Downloads}

\section*{In Machine Language}

Use your PET as an intelligent terminal. Access timeshare systems and networks such as the Source or Telenet. This is an interrupt driven system with buffered input/output. Unlike dumb terminals, the PET can do other tasks instead of having to wait for incoming data. This flexibility allows many advanced features.

These are complete assembled hardware and software packages. All include line editing/resend, auto-repeat, shift lock, output to IEEE printer and much more. Delivered on cassette or disk. Also, available for Commodore 8010 modem or Livermore Star 488 modem.

PETTERM I All features above
\(\$ 80.00\)
PETTERM II All features of I. plus local text editor with down-loading capability 90.00 PETTERM III All features of II. plus 80132 column scrolling window for viewing formatted outputs wider than 40 columns 100.00

\section*{FORTH}

FORTH Interactive high level compiler and operating system 5-10 times faster than PET BASIC. High level block structured language. This is a true fig-FCRTH implementation for 16 and 32K PETs.

\section*{A Programming Revolution}

\section*{DEALERS INQUIRE}

shows the original Commodore/Microsoft symbolic names for memory addresses: for example, the Floating Point Accumulator at hexadecimal 005E seems to be called FAC. But mixed in with these is a series of values which don't represent addresses at all. For example, hex 35 is the memory address of part of the top-of-Basic-memory pointer. But 35 is shown in the table as ERRFC, which happens to be the value loaded into the X register just before printing an ?ILLEGAL QUANTITY error message. Oddities in this computer-generated table: non-existent addresses are printed as 0000 rather than being left blank; and locations for which the authors apparently had no explanation are marked " X ". It's a lovely table - I wish I could figure out why it's there.

\section*{Summing up.}

Like its predecessor, the new book is a prodigious work. Its stronger style will improve its value as a reference, although some readers may miss the more casual approach of the first edition.

It's certainly the most comprehensive guide to using CMB/PET machines that is available today. The book is well organized and clearly written. It's generously fitted with examples, programs, diagrams and tables. Apart from the problems dealing with Relative files, the book is a sound approach to using the computer.

\section*{[PET/CBM Personal Computer Guide, Second} Edition: by Adam Osborne and Carroll S. Donahue. Published by Osborne/McGraw-Hill, Berkeley, California.]


New 248-page book includes all the former TIS workbooks except "PET Graphics." Provides information for both ROMs and a comprehensive index. Only \(\$ 14.95\).

> Also trom TIS

WE-3 PET Graphics \(\$ 495\)
Software products on cassette or lloppy disk with complete instruction manual Each \(\$ 2495\) (cassette). \(\$ 2995\) (diskette)

SW. 1 MAIL B malung list system
SW- 2 CHECKBOOK record
SW-3 ACCOUNTS keep track of who owes you how much
SW-4 MEDIT create and maintain date files
SW-5 CALENDAR appointments, meetings at a glance

\section*{TIS}
P.O. Box 921, Dept. C

Add \$2 (\$5 foreign orders) Los Alamos, NM 87544 shipping and handling


\section*{Not from Commodore!}

So why should the desk look like wood? A pleasant cream and charcoal trimmed desk looks so much better with Commodore systems. One look and you'll see. Interlink desks are right. By design.

\section*{The specifications only confirm the obvious:}
- Cream and charcoal color beautifully matches the Commodore hardware and blends with your decor.
- An ideal 710 mm (28') keyboard height yet no bumping knees because a clever cutout recesses the computer into the desktop.
- High pressure laminate on both sides of a solid core for lasting beauty and strength.
- Electrostatically applied baked enamel finish on welded steel legs-no cheap lacquer job here.
-T-molding and rounded corners make a handsome finish on a durable edge that won't chip.
- Knocked down for safe, inexpensive shipment.
- Patented slip joints for quick easy assembly.
- Leveling glides for uneven floors.
-Room enough for a Commodore printer on the desk, yet fits into nearly any den or office nicheH: \(660 \mathrm{~mm}\left(26^{\prime \prime}\right) \mathrm{W}: 1170\) mm (46') D: 660 mm (26'). - Matching printer stand available with slot for bottom feeding

\section*{Price: \$295}

In short, as Commodore dealers, we won't settle for anything that looks good only in the catalog! Our customers won't let us. They don't buy pictures. And neither should you. This is why we will let you use one of our desks for a week and then decide. If for any reason you don't like it, just return it in good condition for a cheerful refund.

If your Commodore dealer doesn't carry our desks yet, send a check for \(\$ 295\) and we will ship your desk freight paid!
Name
Address
City_St Zip
Interlink, Inc., Box 134, Berrien Springs, MI 49103
Master Charge and Visa welcome. Call our order line:

\section*{CBM/PET Computers \& Such!}

\section*{Features for Mar/Apr 81 :}


CONNECT PET/CBM TO PRINTER: Simply plug into the interface and use your PET/CBM computer with popular "standard" printers, or add a video monitor for a second display. All interfaces are assembled, tested, and waranteed. No software is required.

TU-65C Use NEC, Centronics, Xymec, or other industry standard parailel printers. Works with disk, other IEEE
devices attached. \$129.95
TU-6514 Use RS-232 (serial) printers, like Heathkit H-14. 300 to 4800 baud (please specify rate desired).
TU-PVE Connect your Video Mont
display. Our unique contact exto PET/CBM for second display. Our unique contact extensions leave the user
port available for connection of other accessories. \(\$ 39.95\) (NOT for \(8016 / 32\) )
ESCON Interfaces:
SELECTRIC to PET/CBM
SELECTRIC to Apple, Atari, TRS-80: Parallel SELECTRIC to Apple, Atari, TRS-80: RS-232 Scrial MTST-I/O to Paraliel

Virginia Micro Systems
14415 Jefferson Davis Highway
(703) 491-6502

VISA/MC, VA \(+4 \%\)
Factory auth sales \& service
Woodbridge. Virginia 22191


\footnotetext{
If you are interested in or are already into machine language programming on the PET, then this invaluable guide is for you. More than 30 of the PET's built-in routines are fully detailed so that the reader can immediately put them to good use.
Available for \(\$ 6.95+.75\) postage. Michigan residents please include \(4 \%\) state sales tax. VISA and Mastercharge cards accepted give card number and expiration date. Quantity discounts are available.

\section*{8\$88::0:: : \\ ABACUS SOFTWARE} milini
}

ROM and MANUAL - \(\$ 49.95\)
Specify 3.0 or 4.0 Basic (Works with or without toolkit)

\section*{Un-Compactor}

\section*{Robert W. Baker Atco, NJ}

Since my Compactor program was published in the Nov./Dec. ' 80 issue of COMPUTE!, I've had several requests for a companion program to un-Compact programs. The program shown here will do just that!

The program reads a BASIC program file from disk on drive 0 and creates a new copy on drive 1 . The new program filename is the same as the original except for a "/U" suffix to indicate an un-compacted version. As with Compactor, load the newly created program file and enter a CLR command from the keyboard to correct the program links. Then save the program back to disk as usual. Un-compactor does not generate correct link values when writing the new program file, it merely writes a dummy value to reserve space for a link. This saves a fair amount of extra work not really needed in the program. The CLR command will force BASIC to correct the program links for you.

The program takes any multi-statement lines (statements separated by colons) and breaks them into separate program lines with new line numbers. The new line numbers are generated by adding one to the original line for each new line generated. This procedure is followed for however many statements exist in the line, as long as new line numbers can be generated without reaching the next line number in the original program. If that point is reached, the remainder of the original line is then copied as part of the last line generated with any appropriate separating colons.

The program must take into account certain BASIC tokens or keywords since they effect whether or not a particular line can be broken into separate lines. Thus, any data following a GOTO, END, RUN, IF, RETURN, REM, STOP, LIST, or CONT token is copied unchanged to the end of the current program line. Also, once a quote is detected, the line must be copied until another quote or end of the program line is reached.

Hope this proves to be of help, especially to those currently using Compactor. This program allows you to effectively re-create programs that were compacted. Now you can get a compacted program in Un-compactor to help speed up program execution. As usual, I'll supply copies of the program on cassette for \(\$ 2\) to cover costs.
```

 10 FOR }X=1\mathrm{ TO 1E
 11 FRINT X
 12 HE%T
 20 F'RINT
    ```

```

 22 FRIHT
 3O FEM TEST FILE FOE UHEOMFHCTOR
 40 F=1
 41 E=2
 42 C=3
 43 II=4
 44 E=5:F=E:G=7
 45%=10
 46 'r=20
 47 2=30
 1010 EHII:THFT FLL!
 EEFIT'.

- SA|fFLE LISTIHG
OUTFUT FILE FFOM UNTOONFHOTOR

```
    16 FOR \(X=1\) TO 1G: FRINT \(\because\) : HEXT
    20 FRINT : FRINT: FREINT
    36 EEN TEST FILE FOR UHOOHFHOTOR
    \(40 \mathrm{H}=1: \mathrm{E}=2: \mathrm{C}=3: \mathrm{I}=4: \mathrm{E}=5: \mathrm{F}=\mathrm{E}: \overline{\mathrm{G}}=\overrightarrow{\mathrm{F}}\)
    \(45 \%=16:{ }^{\prime}=20: 2=30\)
    160 EHII: THHT FLL!
EEFTIT'
- SAMFLE LISTING
IHFUTT FILE TO UFEOMFHCTOE:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{50 REM BY: ROBERT W. BAKER} \\
\hline & REM 15 WINDSOR DR., ATCO, NJ Ø8øø 4 \\
\hline 100 & - \\
\hline 110 & GOTO \(27 \emptyset\) \\
\hline 120 & : \\
\hline 130 & REM >>>>>> SUBROUTINES <<<<<<<< \\
\hline 140 & : \\
\hline 150 & GOSUB 160: Vl=V \\
\hline 160 & GET\#5,C\$: GOSUB 190 \\
\hline 170 & IF C\$="" THEN V=0: RETURN \\
\hline 180 & \(\mathrm{V}=\mathrm{ASC}(\mathrm{C}\) ) : RETURN \\
\hline 190 & INPUT\#15,EN,EM\$, ET, ES \\
\hline 200 & IF EN=0 THEN RETURN \\
\hline 210 & PRINT "f̂rdisk ERROR": PRINT \\
\hline 220 & PRINT EN;EM\$;ET;ES \\
\hline 230 & GOTO 1030 \\
\hline 240 & : \\
\hline 250 & REM ***** INITIALIZATION ***** \\
\hline 260 & \\
\hline 270 & PRINT" \({ }^{\text {¢ }}\); SPC(1Ø) ; "rUN-COMPACTOR \(\downarrow \downarrow\) \\
\hline 280 & PRINT" \(\sim\) INPUT \(\hat{r}\) FILE IN \\
\hline 290 & PRINT"rOUTPUTr FILE IN ェDRIVE \#l \(\downarrow \downarrow\) \\
\hline 300 & INPUT"rINPUT FILENAME \(\mathrm{r}^{\prime \prime}\); F ¢\$ \\
\hline 310 & DIM C(256) \\
\hline 320 & OPEN \(15,8,15\) \\
\hline 330 & OPEN 5,8,5,"冋:"+FL\$+", P, R" \\
\hline 340 & GOSUB 190 \\
\hline 350 & PRINT:PRINT"OK, WORKING ON LINE न ᄀ...... \(\downarrow\) \\
\hline 360 & FO\$=LEFT\$(FL\$,14)+"/U" \\
\hline
\end{tabular}

370 PRINT\#15,"Sl:"+FO\$
380 OPEN 6,8,6,"l:"+FO\$+",P,W"
390 GOSUB 190
400 GOSUB 150: PRINT\#6,CHR\$(V1);C\$;
\(410 \mathrm{~F}=1:\) GOTO 580
420 :
430 REM ***** OUTPUT THIS LINE\#
440 :
\(45 \emptyset\) LN=NL: IF LK=Ø THEN \(1 \emptyset 1 \emptyset\)
460 PRINT LN,
470 PRINT\#6,CHR\$(1);CHR\$(1);
480 PRINT\#6, CHR\$(LL) ; CHR\$ (LH) ;
490 :
500 REM ***** READ THIS BASIC PGM LINE
510 :
\(520 \mathrm{X}=1\)
530 GOSUB 160: C(X) \(=\mathrm{V}\)
540 IF V>0 THEN \(\mathrm{X}=\mathrm{X}+1\) : GOTO 530
550 :
560 REM ***** GET NEXT LINK \& LINE\#
570 :
580 GOSUB 150: LK=V+Vl: IF LK=0 THEN 600
590 GOSUB 150: NL=Vl+(256*V): LL=Vl: ᄀ \(\mathrm{LH}=\mathrm{V}\)
\(60 \emptyset\) IF F THEN \(\mathrm{F}=\emptyset\) : GOTO 450
610 :
620 REM ***** BREAK UP LINE IF POSSIBLE
630 :
\(640 \mathrm{X}=1\)
650 :
660 REM SKIP IF NOT COLON
670 :
680 IF \(C(X)<>58\) THEN 810
690 IF \(X=1\) THEN 950
700 LN=LN+1: IF LN>=NL THEN 950
710 PRINT\#6, CHRS( 0\() ; \operatorname{CHRS}(1) ; \operatorname{CHR} \$(1)\);
\(720 \mathrm{H}=\mathrm{INT}(\mathrm{LN} / 256): \mathrm{L}=\mathrm{LN}-(256 * \mathrm{H})\)
730 PRINT\#6, CHR\$(L) ; CHR\$ (H) ;
\(740 \mathrm{X}=\mathrm{X}+1\) : IF \(\mathrm{C}(\mathrm{X})=32\) OR \(\mathrm{C}(\mathrm{X})=58\) THEN ᄀ ᄀ740
750 GOTO 680
760 :
770 REM COPY REST OF LINE IF ---
780 REM GOTO, END, RUN, IF, RETURN
790 REM REM, STOP, LIST, CONT
800 :
810 IF \(C(X)<128\) OR \(C(X)>155\) THEN 910
820 IF \(C(X)=128\) OR \(C(X)>153\) THEN 850
830 IF \(C(X)<137\) OR \(C(X)>144\) THEN 910
840 IF \(C(X)=140\) OR \(C(X)=141\) THEN 910
850 PRINT\#6, CHRS (C (X));
860 IF C(X) \(>0\) THEN \(X=X+1:\) GOTO 850
870 GOTO 450
880 :
890 REM SKIP IF NOT QUOTE
900
910 IF \(C(X)<>34\) THEN 950
920 PRINT\#6,CHR\$(C(X)); : X=X+1
930 IF \(C(X)=34\) OR \(C(X)=\emptyset\) THEN \(95 \emptyset\)
940 GOTO 920
950 PRINT\#6, CHRS(C(X));
960 IF \(C(X)>\emptyset\) THEN \(X=X+1:\) GOTO 680
970 GOTO 450
980 :
990 REM *** END OF BASIC PROGRAM
1000:
1010 PRINT\#6, CHR\$( 0\() ; \operatorname{CHR} \$(0)\);
1ø2Ø PRINT"h上DONE": PRINT: PRINT
1ø30 CLOSE 5: CLOSE 6: CLOSE 15
READY.

\title{
Using the Hardware Interrupt Vector on the Pet
}

\section*{Eric Brandon}

The operating system of the PET is divided into several distinct parts. Some of these get and process your BASIC statements; others deal with all Input/ Output operations, and some update the clock, flash the cursor and take care of other sundry details every 60 th of a second. This article will show you how to change the operation of the latter to suit your own needs.

Every 60th of a second the PET gets a signal on its IRQ interrupt. When this occurs, it saves all registers and goes to the memory locations specified in locations 537 and 538 (144 and 145 on new ROMs). It executes the machine language program there, and upon hitting an RTI instruction, reloads all of its registers and continues with whatever it was doing. By changing the hardware Interrupt Vector at 537 and 538 (144 and 145 new ROMs) we can make the PET execute our program every 60 th of a second, while BASIC operates normally.

I have included here two sample programs using this technique, one is for ROM 2.0 (old ROMs) and the other is for ROM 3.0. What they do, is that after a SYS 826, the contents of the BASIC Input Buffer are constantly displayed on the top two lines of the screen. Hitting the ampersand (\&), BREAKs the machine language program, and hitting the slash to the right of the ampersand on the keyboard, clears the buffer if you find that it is getting too cluttered. These programs were written only as examples of using the Hardware Interrupt Vector and are meant to show you how to use this with your own programs. Before we proceed, I wish to clarify just one feature of my assembler; the plus sign on lines 11 and 37 means add one to the value of the symbol. On most assemblers this should be substituted with HIV 1.

Lines 2-6 simply set the values of some symbols. INBUF is the first memory location of the BASIC Input Buffer. KEY is the location that contains the keyboard matrix value of the key presently depressed. INTRPT is the routine to which the Hardware Interrupt Vector usually points. HIV is the location of the first byte of the two byte Hardware Interrupt Vector. Finally, SCRN is the top lefthand corner of the screen.

Lines 7-13 are essential and should be looked at in detail. Line 7 has the Set Interrupt Mask instruction. This is necessary to prevent the PET from being interrupted with only one byte of the pointer changed. Line 12 clears the interrupt mask. If the mask wouldn't be cleared, the PET would "hang up" and need to be turned off. Lines 8-11 make the pointer point to 0347 ( 0345 new ROMs). Note that the least significant byte goes in 537 ( 144 new ROMs), and that the most significannt byte goes in 538 ( 145 new ROMs). The RTS in line 13 returns you to BASIC after your SYS. The effect of an SYS 826 is to make the cursor reappear nearly immediately, but now the PET executes the machine language program at 0347 (0345 new ROMs) every 60 thy of a second. The actual operation of the program is quite straightforward to anyone familiar with machine language programming.

Lines 33-39 are the standard procedure for setting the Hardware Interrupt Vector back to normal. Note that POKE 537,133:POKE 538,230 (POKE 144,46:POKE 145,230 new ROMs) has the same effect. This procedure must be clone before any cassette I/O.

The last thing that deserves notice are lines 25,32 , and 39 . The only safe way to leave a program that has been called by the Hardware Interrupt Vector is to jump somewhere into the interrupt handling routine. Since it begins at E685 (E62E new ROMs), that is where you will most often go. You cannot end your program with a RTS or a BRK.

I learned this technique from disassembling KEYPRINT by Charles Brannonn, a program in a previous issue of COMPUTE!. I hope you find this useful, and if you have any questions, you can write me at:

\footnotetext{
Eric Brandon
36 Hartfield Road
Islington, Ontario
Canada
M9A 3C9
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { INFEUF }= \\
& { }_{K E} \Psi^{\prime}=
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\[
\$ 22010
\]} & \multicolumn{3}{|l|}{} \\
\hline & & \multicolumn{2}{|l|}{\[
K E Y^{\prime}=\$ 0697
\]} & & & \\
\hline \multicolumn{2}{|l|}{IHTEPT＝} & \multicolumn{2}{|l|}{\＄ EG 2 E} & & & \\
\hline \multicolumn{2}{|l|}{HIV＝} & \multicolumn{2}{|l|}{轫090} & & & \\
\hline \multicolumn{2}{|l|}{SCRN＝} & \multicolumn{2}{|l|}{\＄80610} & & & \\
\hline \multicolumn{2}{|l|}{START＝} & \multicolumn{2}{|l|}{\＄0345} & & & \\
\hline \multicolumn{2}{|l|}{LOOP＝} & \multicolumn{2}{|l|}{\＄0351} & & & \\
\hline \multicolumn{2}{|l|}{CLEAR＝} & \multicolumn{2}{|l|}{車355} & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \operatorname{LOOPV}= \\
& \text { HORMRL }=
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\＄ 0636} & & & \\
\hline & & 束 6 & & & & \\
\hline 1 & & & & 米 & \(=\) & 舟33月 \\
\hline 2 & & & & INFESUF & ＝ & \＄2019 \\
\hline 3 & & & & K \(\mathrm{E}^{\prime \prime}\) & ＝ & 151 \\
\hline 4 & & & & INTRFT & ＝ & \＄E62E \\
\hline 5 & & & & HIV & ＝ & 144 \\
\hline 6 & & & & ECRN & ＝ & \＄8010 \\
\hline 7 & 633A & 78 & & & SEI & \\
\hline 8 & 6338 & A9 & 45 & & LIA & \＃ 4 4． 5 \\
\hline 9 & 633I & 85 & 90 & & STA & HIV \\
\hline 10 & 633F & & 09 & & LIA & \＃ 013 \\
\hline 11 & 0341 & & 91 & & STA & HIV＋ \\
\hline 12 & 0.343 & 58 & & & CLI & \\
\hline 13 & 0344 & 60 & & & RTS & \\
\hline 14 & 0345 & A5 & 97 & START & LIA & \(\mathrm{KE} \mathrm{T}^{\prime}\) \\
\hline 15 & 6347 & & 45 & & CMP & \＃69 \\
\hline 16 & 0349 & F 0 & 14 & & EEQ & CLEAR \\
\hline 17 & 634B & & 41 & & CMP & \＃ 77 \\
\hline 18 & 0341 & & 1 F & & EEQ & NOFMAL \\
\hline 19 & 934F & F2 & 60 & & LIX & \＃ 6 \\
\hline 20 & 0351 & BII & 6082 & LOOF & LIA & IHPBUF，\(X\) \\
\hline 21 & 0354 & & 6188 & & STA & SCRH， X \\
\hline 22 & 19357 & E8 & & & INX & \\
\hline 23 & 6358 & & 519 & & EF\％ & \＃80 \\
\hline 24 & 635A & & FS & & BHE & LOOP \\
\hline 25 & 6.35 C & & 2 E E6 & & IMP & INTRPT \\
\hline 26 & 日35F & H2 & 610 & CLEAR & LDX & \＃ 1 \\
\hline 27 & 0361 & H9 & 20 & & LDA & \＃32 \\
\hline 28 & 0363 & 9 D & 616182 & LOOP2 & STA & IHFELUF， X \\
\hline 29 & 9366 & E8 & & & IHAX & \\
\hline 30 & 0367 & EQ & 50 & & CFX & \＃89 \\
\hline 31 & 0.369 & 10 & FS & & EHE & LOOP2 \\
\hline 32 & －136B & 4 C & 2 E E & & J JFF & IHTRFT \\
\hline 33 & 636E & 78 & & HORMRL & SEI & \\
\hline 34 & 636 F & A9 & 2 E & & LIM & \＃車ごE \\
\hline 35 & 0371 & 85 & 90 & & STA & HIV \\
\hline 36 & 6373 & & E6 & & LINH & \＃\＃E6 \\
\hline 37 & 0375 & 85 & 91 & & STH & HIV＋ \\
\hline 38 & 6377 & 58 & & & CLI & \\
\hline 39 & 6378 & 4 C & 2 E E6 & & JMF＇ & IHTRF＇T \\
\hline
\end{tabular}

\section*{}

\section*{Odds \＆Ends on the 2040 Disk}

Jim Butterfield
The disk＇s ID is written over 600 times．There＇s no quick way of changing it－just copy everything over to a new disk if you really need to do this．

\section*{Odds \＆Ends on the 2040 Disk}

Jim Butterfield
Yes，the disk checks every read by using a checksum． You can depend on a good read being correct．


\title{
Pet As An IEEE－488 Logic Analyzer
}

\section*{Jim Butterfield Toronto，Canada}

If you＇d like to see what＇s going on on the GPIB－ and if you can borrow an extra PET and IEEE inter－ face cable－this program will help．

It shows the current status of four of the GPIB control lines，plus a log of the last nine characters transmitted on the bus．

The four control lines are NRFD，NDAC， DAV，and EOI．It would be nice to show ATN too， but I couldn＇t fit this in：it＇s detected in a rather odd way in the PET so that fitting it in is rather too tricky for this simple program．

The last nine characters are shown in＂screen format＂．This means that you＇ll have to do a little translation work to sort out what some of them mean．On the other hand，it allows you to see charac－ ters that otherwise wouldn＇t be printed．A carriage return，for example，shows up as a lower case m；this
is a little confusing at the start，but you＇ll quickly get used to it and it＇s handy to see everything that goes through．Don＇t forget that original model PETs may show upper and lower case reversed．

I had hoped to show which characters were ac－ companied by the EOI signal．It turned out that time is critical－the bus works very fast－and that adding this feature would cut down the number of displayed characters from nine to five．I opted for the bigger count，and dropped the EOI log feature．

The high speed of the bus makes it difficult to watch the control lines in real time．When the＂ac－ tive＂PET is exchanging information with disk or printer everything is happening very fast，and the ＂logic analyzer＂PET will show an amazing flurry of activity on the control lines．Only when the activity stops or hangs up will you be able to see the lines in their static conditions．

You may use the program to chase down real GPIB problems，or just to gain insight on how the bus works．Either way，it will come in handy if you can borrow that extra PET unit．

Even at the speed of program operation，a few signals come too fast to catch on the fly．If you must see everything in the select and unselect sequences， you＇ll have to cut down the number of characters displayes．Try changing the contents of \(\$ 04 \mathrm{~F} 0\) to， say， 5 if you want to do this．
\begin{tabular}{|c|c|c|c|c|c|}
\hline 119： & 94E0 & ；IEEE & WFTTEH
d＝ & IIM EUTTE：
\[
\ddagger 4 \mathrm{ED}
\] & FIELI \\
\hline 120： & 94 ED & IFLAGI & \(=\) & 和1 & \\
\hline 130： & G4E0 & Indtuay & \(=\) & 㖪 & \\
\hline 146： & Q4EO & EOIGFiv & \(=\) & まES & \\
\hline 2610 & Q4EG 4E E1 & BTHET & LSF & IFLFigi & \\
\hline \(210:\) & Q4Eこ 76 & & SEI & & \\
\hline 220： & W4ES FII 12 ES & MAIH & LIIH & 㭏E12 & \\
\hline 230： & E4EE CGEF & & OtP & \＃\＃ & \\
\hline 246： &  & & EWE & COHT & \\
\hline 256 & G4EA 5E & & CLI & & \\
\hline 250： & GUEE EG & & RTS & & \\
\hline 206： & E4EC FIG 10 ES & CIINT & LI＇t＇ & ま巨816 & ：EGI \\
\hline 296： & G4EF FII 46 ES & & LIH & まEE49 & SIAW，REFI，HIMS \\
\hline 3010： & Q4ic FE 20 ES & & LIN： & まESこの & ：IATH \\
\hline 310： & 0405081 & & Hili & \＃\(\ddagger 01\) & ；ESTEHET EITE \\
\hline 320： & 040705 E & & CHF & IHHEAG & \\
\hline 361： & 2409 1611 & & ErtE & IIf： & \\
\hline 340： & W4EE GE & & T＇t＇Ri & & \\
\hline 350： & 940\％ 2940 & & Hid & \＃\＃d 4 & S STRACT EQI \\
\hline E60： & 640E EA & & HEL & F & \\
\hline 370： & Q40F 49 FQ & & EDF & \＃ & \\
\hline 500： & 94I1 ESE & EOI & CriF & EOISAV & \\
\hline 3910： & Q4IIS F0 IE & & FEQ & MEIH & \\
\hline 469： & 0415 ES ES & & ETH & EOIEA： & \\
\hline 410： & \(64 \pi 781800\) & & STH & 积过 & \\
\hline 420 ． & Q4IA IGE IT & & EHE & MAIH： & \\
\hline & & Shltu & T＇SEE & EH－LIFIFTE & CREEEH \\
\hline 430： & Q4IIG ESE & Irldy & STH &  & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 446 & Q4IE 2986 & FiHI & \＃ 5 E6 \\
\hline 450 & W4E日 49 H6 & EOr： & \＃\(\ddagger\) ¢0 \\
\hline 46可： & D4E2 EI 52 80 & ETH & \＄6052 \\
\hline 479 & Q4ES 1911 & EFL & HITV＇ \\
\hline 5610 & E4EF F4 E1 & LII＇T＇ & IFLFici \\
\hline 516 & 94E9 361E & E州I & Incolt \\
\hline 529 & 94EE 85 E1 & STA & IFLFiGi \\
\hline 550 & Q4EI 85 Ez & ETH & IHHUSH \\
\hline 546 & CUEF FEG ETE & LIIT＇ & \＃ 0 \\
\hline 550 & Q4F1 EG He EG & STOU LIA & 末日6世2＇T＇ \\
\hline 560： & 64F4 99 F1 80 & ETA &  \\
\hline 576 ： & Q4FF ES & Ift＇ & \\
\hline 5891 & 64FE EQ EG & C＇t＇ & \＃ \\
\hline \(596:\) & Q4FA In Fs & ENE & SOROL \\
\hline E69： & Q4FE EH & T YH & \\
\hline 660 & 64FI 49 FF & EOR： & \＃\(\ddagger\) FF \\
\hline  & 64FF EIF HC & ETH & \＄ 80 HE \\
\hline 619： & E56 EM AF & ESS & MEIH \\
\hline 646 & 0564 ES & HIF\％STH & IFLFIG \\
\hline 650 & W56 FS ES & IICOHT LIIH &  \\
\hline E60： & 05080940 & FHII & \＃\(\ddagger 46\) \\
\hline 676 & 日501 ER & ACL & Fi \\
\hline 080 & CSEE 49 Fig & EOF： & \＃ ¢ \(_{\text {¢ }}\) \\
\hline 600： & 056185868 & ETH & \＄5067 \\
\hline 760 & 9516 Fig Ez & LIIA &  \\
\hline 710 & \(0512 \quad 2961\) & Fill & \＃ 11 \\
\hline 7 CQ & 9514 4月 & LSe & A \\
\hline 76 & 9515 EA & FOE： & H \\
\hline 746 & Q51E 49 F6 & EDE & \＃韦阳 \\
\hline 750 & 0518 EII ES & STH & क力 \\
\hline 760 & WSTE IGE & Er \(E\) & MAIH \\
\hline
\end{tabular}

16 EEM IEEE WHTCH
Q FEM TM EUITTEFFIELI
30 FOHE5G4ES．14：FRIHT＂3 IHW HEFI

```

 4G FRIHT' = 123456%0=R"
 56 E'T:200
 EEEFI'T'.

```

\section*{Odds \＆Ends on the 2040 Disk}

Jim Butterfield
Yes，the disk checks every write by reading the block back and verifying every byte for correctness．
You can depend on a good write having gotten to the diskette correctly．

\section*{Odds \＆Ends on the 2040 Disk}

\section*{Jim Butterfield}

The first files written to disk will cluster around track 18，the directory track．This minimizes head movement on a lightly－used disk．By the same token，you might arrange to write your most－used programs and files first on the disk，to save both time and wear and tear．

FHO IAW SEEH
：LH＇V SEEH EEFORE
： 4 FRI
：HIARE

\section*{3 \\ BPomemifull PET Products from OPTIMIZED DATA SYSTEMS！}

－WORD PROCESSOR（PS－001）．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 16.95\)
Makes documents a snap
Throw away your address book
SPACE EATER（PS－003）\(\ldots \ldots\)
Gobbles spaces in BASIC programs
CATALOG（PS－004）
\＄16．95
File stamp／coin／etc．collections
Tracks OSCAR Ham Satellite in real time
ORSE CODE KEYER（PS－006）
Sends code on the air or for practice
Measures frequency to \(17 \dot{\mathrm{~K}} \dot{\mathrm{H}} \dot{z}\) and intervals to 65 msec
－HARDWARE FOR＂OLD＂8K PETS－
（Shipping Additional）
2114 RAM ADAPTER．．．．．．．．．．．．．．．\(\$ 1.50\) per order）
RHB 001 （Bare PCB）

PH－001S（Assm－sockets PHK－001S（Kit－8 sockets）．．．\＄16．25
．\(\$ 22.95\)
4K MEMORY EXPANSION ．．．．．．．．\(+\$ 3\) per order）
Installs easily internally．Uses 2114 s ．Write Protect．

PH－002S（Assm－sockets PH－002（Full Assm）．．．．．．．．．\＄105

PROMPT SHIPMENT！
P．O．Box 595，Dept．C－Placentia，California 92670
MINI－COUNT Trademark of Optimized Data Systems
PET／CBM Trademark of Commodore Business Machines

\title{
Running 40 Column Programs On A CBM 8032
}

\author{
Chuan Chee \\ St. Catherine's \\ Ontario Canada
}

Good news for those who own a Commodore 80 column CBM. I have developed a method of making the computer act almost like a 40 column PET.

Over the years, many programs have been developed for PET 2001 computers. There had been one ROM upgrade from BASIC 1.0 to 2.0 but many people and software companies got over that hurdle. Now Commodore has introduced a BASIC 4.0 for their PET 40XX and CBM 80XX computers. Again many programmers must change any SYS commands into the ROM locations. However, some programs can still run on the PET 40XX because the programmers were careful enough to avoid any of the ROM routines; especially the BASIC part as opposed to the Operating System. Luckily, most of the first 1024 bytes remained the same as promised by Commodore.

\section*{\(\mathbf{8 0}\) Column Problem}

But hold on before you start attacking your programs, the CBM 80XX is a completely different animal - it has an 80 column CRT (or screen). All the programs are assuming that there are 40 bytes per line as in the case of a PET, but a CBM has 80. Therefore, any programs that store characters on the CRT memory will have every other line on columns 41 to 80 . This is certainly a dissaster.

\section*{The Solution}

In solving this problem, there must be some way of convincing the microcomputer that there are only 40 bytes per line as in the PET. Commodore was wise enough to implement their newly developed Video Interface Controller (or CRT Controller) into the CBM. They are also using this chip in the VIC 20 (Video Interface Computer). When the power is turned on, the operating system instructs the chip to do various functions such as the height of the 25 lines in normal or graphics modes. My program instructs the Controller to display 40 bytes per line and shift the first column to the right to center the display instead of being on the left side of the CRT.

That is just fine for the programs that store characters on the CRT. But what about those that simply PRINT. Now whenever the PRINT finishes a line ( 40 characters) of output, the ROM routines will make the next PRINT occur 80 bytes from the start of the current PRINT line. This will make the output appear on every other line.

Well, there just happens to be an "Output a byte on the CRT" jump vector at locations \(\$ 00 \mathrm{~EB}\) to \(\$ 00 \mathrm{EC}\). The CBM 4032 program will change this vector to intercept any character before it gets printed. The routines included in the program were modified from a PET 4032 Operating System ROM, set so that it will behave exactly like a 40 column PET. It will handle RETURN, cursor movements, INST, DEL, and even wrap around lines properly.

\section*{Bonuses Not Available On A Pet}

There are several features that make this simulation of a PET 40XX even better since they are not available on any PET computer. Such bonuses include the automatic repeat of the cursor control and editing keys and the use of the REPEAT key with all other keys. There will also be the usual warning "bell" when six characters from the end of the line. To disable the "bell", type POKE 231.0. This RAM location contains the duration time of the "bell" which usually is 16 . Try poking various values and notice how the duration changes.

I also decided to keep the functions of " \(\wp\) " and ":" during scrolling the same as before because those who are used to them should not have to use the RVS key. Along the same lines, the ESC key is still fully functional. By the way, did you know that the ESC key not only gets you out of quote and insert modes but also the reverse mode, thus functioning similar to the OFF key?

\section*{The CBM 4032 Program}

The program is in two parts - a BASIC and a data part. After turning on the computer or typing NEW, type in the BASIC part exactly as shown without any extra spaces. LIST it again to be sure. Next, get into the Machine Language Monitor by SYS4 and type in the data, making sure not to make any mistakes. The next important step is to save the program through the Monitor by .S " \(0:\) CBM 4032 ", \(08,0400,07 \mathrm{~A} 8\) for a disk drive or.\(S\) "CBM 4032", \(01.0400,07 \mathrm{~A} 8\) for a tape cassette drive. Now exit the Monitor and prepare to RUN the program.

The data is actually the machine language routines required. The BASIC portion will transfer it into the second half of the 2K CRT memory. As it transfers the data, you will see "garbage" appear on the CRT. This is an ideal spot to put the routines because the CRT will only use 40 bytes per line by 25 lines ( \(=1000\) bytes), the second half of the CRT memory will never be printed on.

After the transfer, the BASIC portion will SYS 33876 (\$8454) to have the routines set up the necessary parameters. It will give the CRT Controller the proper instructions and then CLR the CRT. A READY. will appear on the CRT and control is returned to the user. Now you are ready to RUN any programs meant for a 40 column PET with the proper ROM charges if necessary.

If for any reason you wish to go back to the original 80 column format, you can switch off and on the CBM. Alternatively, you can type SYS 58982 (\$E666) and press both SHIFTs and the quote keys simultaneously. The latter method will again display the data on the second half of the CRT but you risk printing or typing over it.

\section*{Conclusion}

Essentially, any program that can RUN on a PET 40 XX , that is with BASIC 4.0 , will work with this program. There is no need to alter the program to add anything extra to the programs to artificially perform what this program does. The only side effect is that the characters appear narrower than usual but the advantage of having the program displayed far exceeds this small deviation.

I would like to thank Batteries Included, in Toronto for allowing me to use their computers for the development of this program.

10 REM * CBM 4032 - BY CHUAN CHEE *
20 REM SEE ARTICLE IN COMPUTE!
\(30 \mathrm{~A}=32672\) :FORI=1136T01998: POKEI+A, PEEK (I) : NEXT:SYS33876 READY.

C*
PC IRQ SR AC XR YR SP
.; B780 E455 \(3433 \quad 38 \quad 36 \mathrm{FA}\)
\(\therefore 047031 \quad 141 \mathrm{~F}\) OF 28051921
.: 04780007000010000000
.: \(0480 \quad 000000285078\) AO C8
.: 0488 FO \(184068 \quad 90\) B8 E0 08
.: 0490305880 A8 D0 F8 2048
.: 04987098 CO 205362 7D 80
.: 04AO 94 AO B3 C2 20021920
.: \(04 \mathrm{~A} 8 \quad 0308 \quad 1501\) OE 200308
.: 04B0 \(050520 \quad 2078\) A9 6F A2
.: 04B8 8485 EB 86 EC 86 A7 58
.: 04C0 207584 A2 0086 A7 A9
.: 04C8 10 A2 \(8420 \quad 86\) EO \(60 \quad 20\)
.\(: 04 D 04 F 85\) 4C 9D E1 A0 83 A2
.: 04D8 1898 9D 3B 84 E0 14 F0
.: O4EO 08 EO OD FO 04 EO 07 DO
.: 04E8 0188 CA 10 EC E8 86 9F
.\(: 04 \mathrm{FO} 86\) C4 A9 20 9D 0080 9D
.: 04F8 0081 9D 0082 9D 0083
.: 0500 CA DO F1 AO OO 84 C6 84
.: 0508 D8 A6 D8 BD 3B 840980
.: 051085 C5 BD \(2284 \quad 85\) C4 A9
.: 05182785 D5 E0 18 F0 09 BD
\(\therefore 0520\) 3C \(8430 \quad 04\) A9 \(4 \mathrm{~F} \quad 85\) D5
.: 0528 A5 C6 C9 \(28 \quad 90 \quad 04\) E9 28
.: 053085 C6 600940 A6 9F F0
.: 0538020980 A6 DC FO 02 C6
.: 0540 DC 2006 E6 E6 C6 A4 D5
.: \(0548 \mathrm{C} 4 \mathrm{C} 6 \mathrm{BO} 30 \mathrm{A6}\) D8 C0 4F
.: 0550 DO OB 20 1D 85206786
.: 0558 A9 0085 C6 60 E0 18 DO
.: 05600920 8B 86 C6 A3 C6 D8
.: 0568 A6 D8 1E 3C 84 5E 3C 84
.: 057020 1D 85 A5 C6 4820 A9
.: 0578846885 C6 60 E0 17 B0
.2058008 BD 3D 840980 9D 3D
.: 05888460 A0 27 A6 D8 D0 05
\(\begin{array}{llllllllll}. & 0590 & 86 & C 6 & 68 & 68 & 60 & \text { BD } & 3 A & 84 \\ .: & 0598 & 30 & 06 & C A & B D & 3 A & 84 & A 0 & 4 F\end{array}\)
\(\because \quad 05 \mathrm{AO}\) CA 86 D8 85 C5 BD 2284
\(\because \quad 05 \mathrm{AB} 85 \mathrm{C4} 84 \mathrm{C} 684 \mathrm{D5} 60 \mathrm{A9}\)
\(\begin{array}{llllllllll}\therefore & 05 B 0 & 00 & 85 & \text { AC } & \text { A5 } & \text { D9 } & 29 & 7 \mathrm{~F} & \text { C9 } \\ . & 05 B 8 & 1 B & \text { D0 } & 07 & 68 & 68 & 4 C & \text { BD } & \text { E3 }\end{array}\)
.\(: \quad 05 \mathrm{CO}\) EA EA A4 C6 A5 D9 3068
\(\therefore \quad 05 \mathrm{C} 8\) C9 OD D0 03 4C 7E 86 C9
\(\therefore\) 05D0 \(20 \quad 90 \quad 0829\) 3F 20 6A E1
.: 05D8 4C D5 84 A6 DC F0 03 4C
.: 05EO D9 84 C9 14 DO 108884
-: 05E8 C6 \(10 \quad 06 \quad 20 \quad 2 \mathrm{~A} 85 \quad 4 \mathrm{C}\) 5C
: 05F0 E2 6868 4C 51 E2 A6 CD
.: 05F8 F0 03 4C D9 84 C9 12 D0
.: 060003859 F 60 C 913 DO 03
\(\therefore 0608\) 4C A3 84 C9 1D DO 10 C8
\(\because \quad 061084\)\begin{tabular}{llllllll}
\(\because\) & 84 & 88 & C4 & D5 & 90 & 07 & 20 \\
\hline\(:\) & 0618 & 67 & 86 & A9 & 00 & 85 & C6 \\
60 & C9
\end{tabular}
\(\therefore \quad 06186786\) A9 0085 C6 60 C9
\(\begin{array}{llllllllll}: & 0620 & 11 & \text { DO } & \text { FB } & 18 & 98 & 69 & 28 & \text { C5 } \\ .: & 0628 & \text { D5 } & 90 & \text { F1 } & \text { F0 } & \text { EF } & 4 C & 67 & 86\end{array}\)
.\(: \quad 0630 \quad 297 \mathrm{~F}\) C9 7 FF DO 02 A9 5 E
: 00638 C9 2090034 C D3 84 C9
: 0640 OD DO 03 4C 7E 86 A6 CD
.: 0648 D0 2F C9 14 D0 27 A4 D5
.: 0650 B1 C4 C9 20 D0 04 C4 C6
.: 0658 DO 07 C0 4F F0 1620 ED
.: 066086 A4 D5 88 B1 C4 C8 91
.: 0668 C4 88 C4 C6 D0 F5 A9 20
.: 067091 C4 E6 DC 60 A6 DC F0
.: 0678050940 4C D9 84 C9 11
\(\begin{array}{llllllllll}.: & 0680 & \text { D0 } & 2 A & \text { A5 } & \text { C6 } & \text { C9 } & 28 & 90 & 05 \\ .: & 0688 & \text { E9 } & 28 & 85 & \text { C6 } & 60 & \text { A6 } & \text { D8 } & \text { F0 }\end{array}\)
.: 0690 FB BD 3A 841007 C6 D8
.: 069820 A9 8490 EF CA CA 86
.: 06 A0 D8 20 A9 84 A5 C6 1869
\(\therefore \quad 06 A 828 \quad 85\) C6 60 C9 12 DO 04
.: 06B0 A9 0085 9F C9 1D D0 08
\(\therefore \quad 06\) B8 8884 C6 10 EE 20 2A 85
.: 06C0 C9 13 DO E7 4C 758438
.: 06C8 46 A3 A6 D8 E8 E0 19 D0
\(\therefore 06 D 0 \quad 0320\) 8B 86 BD 3B 8410
.: 06D8 F3 86 D8 4C A9 84 A9 00
.: 06EO 85 DC 85 9F 85 CD 85 C6
．：06E8 4C 6786 AO 0084 C4 A9
．：06F0 \(80 \quad 85\) C8 85 C5 A9 28 2C
．：06F8 3C \(8430 \quad 02\) A9 \(50 \quad 85\) C7
．： 0700 B1 C7 91 C4 C8 D0 F9 E6
．： 0708 C8 E6 C5 A9 84 C5 C8 D0
．： 0710 EF A9 E8 85 C4 C6 C5 A9
．： 0718 20 C6 C4 C6 C7 91 C4 D0
．： 0720 F8 A2 1986 D8 A2 00 C6
．： 0728 D8 BD 3B \(84297 F\) BC 3C
．： \(07308410 \quad 020980\) 9D 3B 84
．： 0738 E8 E0 19 DO EC A9 83 8D
．： 07405384 AD 3B 8410 DE 20
．： 0748 0B E4 A6 D8 60 A6 D8 E8
．： 0750 E0 18 F0 369003 4C 01
．： 075885 A2 17 BD 3C 840980
．： \(0760 \quad 85\) C8 BC 3B \(8430 \quad 0229\)
．： 0768 7F 9D 3C 8498098085
．： 0770 C5 A0 27 BD 238485 C7
．： 0778 BD 228485 C4 B1 C4 91
.0780 C7 8810 F9 CA E4 D8 D0
．： 0788 D2 E8 BD 3B 84098085
.\(: 0790\) C5 29 7F 9D 3B 84 BD 22
．： \(0798 \quad 8485\) C4 AO 27 A9 2091
.\(: 07 \mathrm{~A} 0 \mathrm{C} 48810 \mathrm{FB} 58\) 4C A9 84

READY．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{C＊} \\
\hline & PC & IRQ & SR & AC & XR YR SP \\
\hline －； & B780 & E455 & 34 & & 3836 FA \\
\hline 8454 & 78 & & & SEI & \\
\hline 8455 & A9 6 & 6 F & & LDA & 非\＄6F \\
\hline 8457 & A2 8 & 84 & & LDX & \＃\＄84 \\
\hline 8459 & 85 & EB & & STA & \＄EB \\
\hline 845B & 86 & EC & & STX & \＄EC \\
\hline 845D & 86 & A7 & & STX & \＄ 47 \\
\hline 845F & 58 & & & CLI & \\
\hline 8460 & 207 & 7584 & & JSR & \＄8475 \\
\hline 8463 & A2 & 00 & & LDX & \＃\＄00 \\
\hline 8465 & 86 & A7 & & STX & \＄ 47 \\
\hline 8467 & A9 10 & 10 & & LDA & 非\＄10 \\
\hline 8469 & A2 8 & 84 & & LDX & \＃1 \＄84 \\
\hline 846B & 208 & 86 E0 & & JSR & \＄E086 \\
\hline 846 E & 60 & & & RTS & \\
\hline \multicolumn{6}{|l|}{－} \\
\hline 846F & 20 & 4F 85 & & JSR & \＄854F \\
\hline 8472 & 4 C & 9D E1 & & JMP & \＄E19D \\
\hline \multicolumn{6}{|l|}{－} \\
\hline 8475 & AO 8 & 83 & & LDY & \＃\＄\({ }^{\text {d }}\) 3 \\
\hline 8477 & A2 1 & 18 & & LDX & \＃\＄18 \\
\hline 8479 & 98 & & & TYA & \\
\hline 847A & 9 D 3 & 3B 84 & & STA & \＄843B，X \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 847D & EO & 14 & CPX & \＃\＄14 \\
\hline 847 F & F0 & 08 & BEQ & \＄8489 \\
\hline 8481 & E0 & OD & CPX & \＃\＄0D \\
\hline 8483 & F0 & 04 & BEQ & \＄8489 \\
\hline 8485 & E0 & 07 & CPX & \＃\＄07 \\
\hline 8487 & D0 & 01 & BNE & \＄848 A \\
\hline 8489 & 88 & & DEY & \\
\hline 848A & CA & & DEX & \\
\hline 848B & 10 & EC & BPL & \＄8479 \\
\hline 848D & E8 & & INX & \\
\hline 848E & 86 & 9F & STX & \＄9F \\
\hline 8490 & 86 & C4 & STX & \＄C4 \\
\hline 8492 & A9 & 20 & LDA & \＃\＄20 \\
\hline 8494 & 9D & 0080 & STA & \＄8000，X \\
\hline 8497 & 9D & 0081 & STA & \＄8100，X \\
\hline 849A & 9D & 0082 & STA & \＄8200， X \\
\hline 849D & 9 D & 0083 & STA & \＄8300，X \\
\hline 84 AO & CA & & DEX & \\
\hline 84 Al & D0 & F1 & BNE & \＄8494 \\
\hline \multicolumn{5}{|l|}{－Bre} \\
\hline 84 A 3 & A0 & 00 & LDY & \＃\＄00 \\
\hline 84 A5 & 84 & C6 & STY & \＄C6 \\
\hline 84 A7 & 84 & D8 & STY & \＄D8 \\
\hline 84 A9 & A6 & D8 & LDX & \＄D8 \\
\hline 84 AB & BD & 3B 84 & LDA & \＄843B， X \\
\hline 84 AE & 09 & 80 & ORA & 非80 \\
\hline 84B0 & 85 & C5 & STA & \＄C5 \\
\hline 84B2 & BD & 2284 & LDA & \＄8422，X \\
\hline 84B5 & 85 & C4 & STA & \＄C4 \\
\hline \(84 \mathrm{B7}\) & A9 & 27 & LDA & \＃\＄27 \\
\hline \(84 \mathrm{B9}\) & 85 & D5 & STA & \＄D5 \\
\hline 84 BB & E0 & 18 & CPX & \＃\＄18 \\
\hline 84BD & FO & 09 & BEQ & \＄84C8 \\
\hline 84 BF & BD & 3C 84 & LDA & \＄843C，X \\
\hline \(84 \mathrm{C2}\) & 30 & 04 & BMI & \＄84C8 \\
\hline \(84 C 4\) & A9 & 4F & LDA & \＃\＄4F \\
\hline \(84 \mathrm{C6}\) & 85 & D5 & STA & \＄D5 \\
\hline 84C8 & A5 & C6 & LDA & \＄C6 \\
\hline 84 CA & C9 & 28 & CMP & \＃\＄28 \\
\hline 84 CC & 90 & 04 & BCC & \＄84D2 \\
\hline 84 CE & E9 & 28 & SBC & 非\＄28 \\
\hline 84D0 & 85 & C6 & STA & \＄C6 \\
\hline 84D2 & 60 & & RTS & \\
\hline \multicolumn{5}{|l|}{－} \\
\hline 84D3 & 09 & 40 & ORA & 非\＄40 \\
\hline 84D5 & A6 & 9F & LDX & \＄9F \\
\hline 84D7 & F0 & 02 & BEQ & \＄84DB \\
\hline 84D9 & 09 & 80 & ORA & 非\＄80 \\
\hline 84 DB & A6 & DC & LDX & \＄DC \\
\hline 84DD & F0 & 02 & BEQ & \＄84E1 \\
\hline 84DF & C6 & DC & DEC & \＄DC \\
\hline 84 E 1 & 20 & 06 E6 & JSR & \＄E606 \\
\hline 84 E 4 & E6 & C6 & INC & SC6 \\
\hline 84 E 6 & A4 & D5 & LDY & SD5 \\
\hline 84 E 8 & C4 & C6 & CPY & SC6 \\
\hline 84EA & B0 & 30 & BCS & \＄851C \\
\hline 84 EC & A6 & D8 & LDX & SD8 \\
\hline
\end{tabular}
www．commodore．ca
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 84EE & CO & 4 F & & CPY & \＃\＄4F & 8555 & 29 & 7 F & & AND & 非 \({ }^{\text {7 }}\) F \\
\hline 84F0 & D0 & OB & & BNE & \＄84FD & 8557 & C9 & 1B & & CMP & \＃1 \＄1B \\
\hline 84F2 & 20 & 1D & 85 & JSR & \＄851D & 8559 & D0 & 07 & & BNE & \＄8562 \\
\hline 84F5 & 20 & 67 & 86 & JSR & \＄8667 & 855B & 68 & & & PLA & \\
\hline 84F8 & A9 & 00 & & LDA & 非\＄00 & 855C & 68 & & & PLA & \\
\hline 84FA & 85 & C6 & & STA & \＄C6 & 855D & 4 C & BD & E3 & JMP & \＄E3BD \\
\hline 84FC & 60 & & & RTS & & 8560 & EA & & & NOP & \\
\hline 84FD & E0 & 18 & & CPX & \＃1 \({ }^{\text {18 }}\) & 8561 & EA & & & NOP & \\
\hline 84FF & D0 & 09 & & BNE & \＄850A & 8562 & A 4 & C6 & & LDY & \＄C6 \\
\hline ． & & & & & & 8564 & A5 & D9 & & LDA & \＄D9 \\
\hline & & & & & & 8566 & 30 & 68 & & BMI & \＄85D0 \\
\hline 8501 & 20 & 8B & 86 & JSR & \＄868B & 8568 & C9 & OD & & CMP & \＃\＄ 0 D \\
\hline 8504 & C6 & A3 & & DEC & \＄A3 & 856A & D0 & 03 & & BNE & \＄856F \\
\hline 8506 & C6 & D8 & & DEC & \＄D8 & 856C & 4 C & 7 E & 86 & JMP & \＄867E \\
\hline 8508 & A6 & D8 & & LDX & \＄D8 & 856 F & C9 & 20 & & CMP & \＃\＄20 \\
\hline 850 A & 1 E & 3 C & 84 & ASL & \＄843C，X & 8571 & 90 & 08 & & BCC & \＄857B \\
\hline 850D & 5E & 3 C & 84 & LSR & \＄843C，X & 8573 & 29 & 3F & & AND & \＃13F \\
\hline 8510 & 20 & 1D & 85 & JSR & \＄851D & 8575 & 20 & 6A & E1 & JSR & \＄E16A \\
\hline 8513 & A5 & C6 & & LDA & \＄C6 & 8578 & 4 C & D5 & 84 & JMP & \＄84D5 \\
\hline 8515 & 48 & & & PHA & & 857B & A6 & DC & & LDX & \＄DC \\
\hline 8516 & 20 & A9 & 84 & JSR & \＄84 A9 & 857D & F0 & 03 & & BEQ & \＄8582 \\
\hline 8519 & 68 & & & PLA & & 857F & 4 C & D9 & 84 & JMP & \＄84D9 \\
\hline 851 A & 85 & C6 & & STA & \＄C6 & 8582 & C9 & 14 & & CMP & \＃1 14 \\
\hline 851 C & 60 & & & RTS & & 8584 & D0 & 10 & & BNE & \＄8596 \\
\hline ． & & & & & & 8586 & 88 & & & DEY & \\
\hline & & & & & & 8587 & 84 & C6 & & STY & \＄C6 \\
\hline 851 D & E0 & 17 & & CPX & \＃\＄ 17 & 8589 & 10 & 06 & & BPL & \＄8591 \\
\hline 851 F & B0 & 08 & & BCS & \＄8529 & 858B & 20 & 2A & 85 & JSR & \＄852A \\
\hline 8521 & BD & 3D & 84 & LDA & \＄843D，X & 858E & 4 C & 5C & E2 & JMP & \＄E25C \\
\hline 8524 & 09 & 80 & & ORA & \＃\＄80 & 8591 & 68 & & & PLA & \\
\hline 8526 & 9D & 3D & 84 & STA & \＄843D，X & 8592 & 68 & & & PLA & \\
\hline 8529 & 60 & & & RTS & & 8593 & 4 C & 51 & E2 & JMP & \＄E251 \\
\hline ． & & & & & & 8596 & A6 & CD & & LDX & \＄CD \\
\hline & & & & & & 8598 & F0 & 03 & & BEQ & \＄859D \\
\hline 852A & AO & 27 & & LDY & 非27 & 859A & 4 C & D9 & 84 & JMP & \＄84D9 \\
\hline 852C & A6 & D8 & & LDX & \＄D8 & 859D & C9 & 12 & & CMP & 非\＄12 \\
\hline 852E & D0 & 05 & & BNE & \＄8535 & 859F & D0 & 03 & & BNE & \＄85A4 \\
\hline 8530 & 86 & C6 & & STX & \＄C6 & 85 A 1 & 85 & 9F & & STA & \＄9F \\
\hline 8532 & 68 & & & PLA & & 85 A3 & 60 & & & RTS & \\
\hline 8533 & 68 & & & PLA & & 85 A4 & C9 & 13 & & CMP & 非\＄13 \\
\hline 8534 & 60 & & & RTS & & 85 A6 & D0 & 03 & & BNE & \＄85 AB \\
\hline 8535 & BD & 3A & 84 & LDA & \＄843A，X & 85A8 & 4 C & A3 & 84 & JMP & \＄84A3 \\
\hline 8538 & 30 & 06 & & BMI & \＄8540 & 85 AB & C9 & 1D & & CMP & \＃\＄1D \\
\hline 853 A & CA & & & DEX & & 85 AD & D0 & 10 & & BNE & \＄85BF \\
\hline 853B & BD & 3 A & 84 & LDA & \＄843A，X & 85 AF & C8 & & & INY & \\
\hline 853 E & A0 & 4F & & LDY & 非4F & 85B0 & 84 & C6 & & STY & \＄C6 \\
\hline 8540 & CA & & & DEX & & 85B2 & 88 & & & DEY & \\
\hline 8541 & 86 & D8 & & STX & \＄D8 & 85B3 & C4 & D5 & & CPY & \＄D5 \\
\hline 8543 & 85 & C5 & & STA & \＄C5 & 85 B5 & 90 & 07 & & BCC & \＄85BE \\
\hline 8545 & BD & 22 & 84 & LDA & \＄8422，X & 85B7 & 20 & 67 & 86 & JSR & \＄8667 \\
\hline 8548 & 85 & C4 & & STA & \＄C4 & 85 BA & A9 & 00 & & LDA & \＃\＄00 \\
\hline 854 A & 84 & C6 & & STY & \＄C6 & 85 BC & 85 & C6 & & STA & \＄C6 \\
\hline 854 C & 84 & D5 & & STY & \＄D5 & 85 BE & 60 & & & RTS & \\
\hline 854 E & 60 & & & RTS & & 85 BF & C9 & 11 & & CMP & 非\＄11 \\
\hline ． & & & & & & 85C1 & D0 & FB & & BNE & \＄85BE \\
\hline & & & & & & 85C3 & 18 & & & CLC & \\
\hline 854 F & A9 & 00 & & LDA & 非 \({ }^{\text {0 }} 0\) & 85 C 4 & 98 & & & TYA & \\
\hline 8551 & 85 & AC & & STA & \＄AC & 85C5 & 69 & 28 & & ADC & 非\＄28 \\
\hline 8553 & A5 & D9 & & LDA & \＄D9 & 85 C 7 & C5 & D5 & & CMP & \＄D5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(85 \mathrm{C9}\) & 90 & F1 & & BCC & \＄85BC \\
\hline 85 CB & FO & EF & & BEQ & \＄85BC \\
\hline 85 CD & 4 C & 67 & 86 & JMP & \＄8667 \\
\hline － & & & & & \\
\hline 85D 0 & 29. & 7 F & & AND & 非\＄7F \\
\hline 85D2 & C9 & 7 F & & CMP & 非\＄7F \\
\hline 85D4 & DO & 02 & & BNE & \＄85D8 \\
\hline 85D6 & A9 & 5 E & & LDA & \＃\＄5E \\
\hline 85D8 & C9 & 20 & & CMP & 非\＄20 \\
\hline 85 DA & 90 & 03 & & BCC & \＄85DF \\
\hline 85DC & 4 C & D3 & 84 & JMP & \＄84D3 \\
\hline 85 DF & C9 & OD & & CMP & 非\＄0D \\
\hline 85E1 & DO & 03 & & BNE & \＄85E6 \\
\hline 85E3 & 4 C & 7 E & 86 & JMP & \＄867E \\
\hline 85E6 & A6 & CD & & LDX & \＄CD \\
\hline 85 E8 & DO & 2 F & & BNE & \＄8619 \\
\hline 85EA & C9 & 14 & & CMP & 非\＄14 \\
\hline 85 EC & D0 & 27 & & BNE & \＄8615 \\
\hline 85 EE & A4 & D5 & & LDY & \＄D5 \\
\hline 85 FO & B1 & C4 & & LDA & （\＄C4），Y \\
\hline 85 F 2 & C9 & 20 & & CMP & \＃\＄20 \\
\hline 85 F 4 & DO & 04 & & BNE & \＄85FA \\
\hline 85 F 6 & C4 & C6 & & CPY & \＄C6 \\
\hline 85F8 & DO & 07 & & BNE & \＄8601 \\
\hline 85FA & CO & 4F & & CPY & 非\＄4F \\
\hline 85 FC & FO & 16 & & BEQ & \＄8614 \\
\hline 85 FE & 20 & ED & 86 & JSR & \＄86ED \\
\hline 8601 & A4 & D5 & & LDY & \＄D5 \\
\hline 8603 & 88 & & & DEY & \\
\hline 8604 & B1 & C4 & & LDA & （\＄C4），Y \\
\hline 8606 & C8 & & & INY & \\
\hline 8607 & 91 & C4 & & STA & （\＄C4），Y \\
\hline 8609 & 88 & & & DEY & \\
\hline 860 A & C4 & C6 & & CPY & \＄C6 \\
\hline 860 C & DO & F5 & & BNE & \＄8603 \\
\hline 860 E & A9 & 20 & & LDA & 非\＄20 \\
\hline 8610 & 91 & C4 & & STA & （\＄C4），Y \\
\hline 8612 & E6 & DC & & INC & \＄DC \\
\hline 8614 & 60 & & & RTS & \\
\hline 8615 & A6 & DC & & LDX & \＄DC \\
\hline 8617 & FO & 05 & & BEQ & \＄861E \\
\hline 8619 & 09 & 40 & & ORA & 非\＄40 \\
\hline 861 B & 4 C & D9 & 84 & JMP & \＄84D9 \\
\hline 861 E & C9 & 11 & & CMP & \＃\＄11 \\
\hline 8620 & D0 & 2 A & & BNE & \＄864C \\
\hline 8622 & A5 & C6 & & LDA & \＄C6 \\
\hline 8624 & C9 & 28 & & CMP & 非\＄28 \\
\hline 8626 & 90 & 05 & & BCC & \＄862D \\
\hline 8628 & E9 & 28 & & SBC & 非\＄28 \\
\hline 862A & 85 & C6 & & STA & \＄C6 \\
\hline 862 C & 60 & & & RTS & \\
\hline 862D & A6 & D8 & & LDX & \＄D8 \\
\hline 862F & F0 & FB & & BEQ & \＄862C \\
\hline 8631 & BD & 3A & 84 & LDA & \＄843 A，X \\
\hline 8634 & 10 & 07 & & BPL & \＄863D \\
\hline 8636 & C6 & D8 & & DEC & \＄D8 \\
\hline 8638 & 20 & A9 & 84 & J SR & \＄84A9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 863B & 90 & EF & & BCC & \＄862C \\
\hline 863D & CA & & & DEX & \\
\hline 863E & CA & & & DEX & \\
\hline 863F & 86 & D8 & & STX & \＄D8 \\
\hline 8641 & 20 & A9 & 84 & JSR & \＄84A9 \\
\hline 8644 & A5 & C6 & & LDA & \＄C6 \\
\hline 8646 & 18 & & & CLC & \\
\hline 8647 & 69 & 28 & & ADC & 非\＄28 \\
\hline 8649 & 85 & C6 & & STA & \＄C6 \\
\hline 864B & 60 & & & RTS & \\
\hline 864 C & C9 & 12 & & CMP & 非\＄12 \\
\hline 864 E & D0 & 04 & & BNE & \＄8654 \\
\hline 8650 & A9 & 00 & & LDA & 非\＄00 \\
\hline 8652 & 85 & 9F & & STA & \＄9F \\
\hline 8654 & C9 & 1D & & CMP & 非\＄1D \\
\hline 8656 & D0 & 08 & & BNE & \＄8660 \\
\hline 8658 & 88 & & & DEY & \\
\hline 8659 & 84 & C6 & & STY & \＄C6 \\
\hline 865B & 10 & EE & & BPL & \＄864B \\
\hline 865D & 20 & 2 A & 85 & JSR & \＄852A \\
\hline 8660 & C9 & 13 & & CMP & 非\＄13 \\
\hline 8662 & D0 & E7 & & BNE & \＄864B \\
\hline 8664 & 4 C & 75 & 84 & JMP & \＄8475 \\
\hline － & & & & & \\
\hline 8667 & 38 & & & SEC & \\
\hline 8668 & 46 & A3 & & LSR & \＄A3 \\
\hline 866A & A6 & D8 & & LDX & \＄D8 \\
\hline 866C & E8 & & & INX & \\
\hline 866D & E0 & 19 & & CPX & 非\＄19 \\
\hline 866F & D0 & 03 & & BNE & \＄8674 \\
\hline 8671 & 20 & 8B & 86 & JSR & \＄868B \\
\hline 8674 & BD & 3B & 84 & LDA & \＄843B，X \\
\hline 8677 & 10 & F3 & & BPL & \＄866C \\
\hline 8679 & 86 & D8 & & STX & \＄D8 \\
\hline 867 B & 4 C & A9 & 84 & JMP & \＄84 A9 \\
\hline － & & & & & \\
\hline 867 E & A9 & 00 & & LDA & \＃\＄00 \\
\hline 8680 & 85 & DC & & STA & \＄DC \\
\hline 8682 & 85 & 9F & & STA & \＄9F \\
\hline 8684 & 85 & \(C D\) & & STA & \＄CD \\
\hline 8686 & 85 & C6 & & STA & \＄C6 \\
\hline 8688 & 4 C & 67 & 86 & JMP & \＄8667 \\
\hline － & & & & & \\
\hline 868 B & A0 & 00 & & LDY & 非\＄00 \\
\hline 868D & 84 & C4 & & STY & \＄C4 \\
\hline 868F & A9 & 80 & & LDA & 非\＄80 \\
\hline 8691 & 85 & C8 & & STA & \＄C8 \\
\hline 8693 & 85 & C5 & & STA & \＄C5 \\
\hline 8695 & A9 & 28 & & LDA & 非\＄28 \\
\hline 8697 & 2 C & 3C & 84 & BIT & \＄843C \\
\hline 869A & 30 & 02 & & BMI & \＄869E \\
\hline 869 C & A9 & 50 & & LDA & 非\＄50 \\
\hline 869 E & 85 & C7 & & STA & \＄C7 \\
\hline 86 A0 & B1 & C7 & & LDA & （\＄C7），Y \\
\hline \(86 \mathrm{A2}\) & 91 & C4 & & STA & （\＄C4），Y \\
\hline
\end{tabular}

 ©


With one rotary switch select 1 to 6 separate RDMS or EPRDMS, without damaging your computer board or rom pins. Now you can use Wordpro, Toolkit, Visicalc, Eproms as 2716's or 2532's etc.

Assembled \$80 post paid. Kit \(\$ 45.00\) post paid.

A switch between old basic 2.0 and new 4.0 basic RDMS. Now you can utilize your computer with new and old software. (Write for details).

MRJ 7951 No. 4 Rd., Fichmond, B.C.. Canada, V6Y 2T4
Telephone (604) 273-3651


\section*{Build Your Own Controllers} Nuts And Volts

\author{
Gene Zumchak
}

\section*{PartI}

If you have a personal computer of any kind, you probably already appreciate the power of a generalpurpose computer system to serve as a controller. While tying up your APPLE or PET to control the thermostat may not seem overly attractive, you can usually try out a control idea or scheme using your existing computer system and small amount of custom I/O. Eventually, however, you will want to dedicate a separate computer system to your controller application.

It wasn't so long ago that such a thought would be prohibitive. Computer systems were dream machines that cost several thousands of dollars. Of course, if you have a console type computer system which includes a CRT and perhaps one or more disks, then your console system can easily cost three or more thousand dollars. On the other hand, a great many controller applications require little more than a handful of chips that cost well under \(\$ 100\). In fact, if your application has any merit and a significant market, it may be quite possible to integrate the design into a single-chip microcomputer costing only a couple of dollars, and you can be on your way to making your first million.

While your particular application may never make you rich, it is fairly easy to put together a prototype or a one-of-a-kind microcontroller system for a reasonable price. A 6502 will cost less than \(\$ 10\). A 2716 will cost about the same. Figure \(\$ 5\) for a \(128 \times 8\) RAM chip, (Motorola 6810 ), or \(\$ 8\) for a pair of 2114's for 1 K of RAM. A 6522 for \(\$ 8\) will provide sixteen bits of I/O and a pair of timers (suitable for a real-time clock). Finally, a few more dollars for a crystal and some TTL for address decoding, and the electronic parts cost will come to not much more than \(\$ 50\).

If the parts really cost as little as mentioned, what's to prevent anyone with a little knowledge of computers from designing and building his own microcontrollers? The answer is absolutely nothing.

But there is one small catch. While the cost of the end product may be minimal or even negligible, most companies or individuals who design microcomputer systems do it with the aid of a microprocessor "development system". Commercial development systems start at about \(\$ 5,000\), but typically range from \(\$ 15,000\) to \(\$ 25,000\).

In my book, Microcomputer Design and Troubleshooting, which is being typeset and will be in print in the Fall (Howard Sams, and the Blacksburg Series), I address the question of what comprises a typical development system, but more importantly, what is minimally required to put together your own low-budget development system. While the reader will want to read about the details in the book when it is published, the highlights of that discussion will be brought out here, in this first installment of several in which I will outline the procedures and equipment necessary to put together and bring up, your own microcomputer controllers.

\section*{The Development System}

A development system is the hardware and software required to check out and debug both the hardware and software of a prototype microprocessor system. Ironically, the hardware and software debugging capabilities are not always reflected by the systems very high cost. Software debugging capabilities are usually satisfactory, provided that the system has an "optional" processor emulator module which typically costs \(\$ 2,000\) or more. Even with the emulator, the hardware debugging capabilities may be mediocre at best.

Typically, a commercial development system consists of the following items:
1. Microcomputer with software
2. Console device (CRT or Teletypewriter)
3. RAM memory blocks
4. Floppy disk(s)

5 Printer
6. EPROM programmer (with software)
7. Emulator (processor)

Why should such a system cost \(\$ 15,000\) ? The reason for the high cost is the law of supply and demand; there just aren't that many people in the world who need a microprocessor development system. However, except for some specialized software like an editor and assembler, the first five items in the list are not appreciably different than what you get in a BASIC oriented console computer system like a PET or APPLE. And, of course,

\section*{VAK-1 MOTHERBDARD}


\section*{We also carry: \\ SYM-1 \(\$ 229^{\circ 0}\) \\ AIM-65 w/1K \(389^{00}\) \\ AIM-65 w/4K \(439^{\circ 0}\)}

We also do custom hardware and software for the 6502 microprocessor

\section*{PRICE: \(\$ 139^{00}\)}

Call or write for shipping charges and our complete catalog.

The VAK-1 was specifically designed for use with the KIM-1, SYM-1 and the AIM 65 Microcomputer Systems. The VAK-1 uses the KIM-4* Bus Structure, because it is the only popular Multi-Sourced bus whose expansion boards were designed specifically for the 6502 Microprocessor.

\section*{SPECIFICATIONS:}
- Complete with rigid CARD-CAGE
- Assembled (except for card-cage). Burned in and tested.
- All IC's are in sockets
- Fully buffered address and data bus
- Uses the KIM-4* Bus (both electrical Pin-out and card size) for expansion board slots
- Provides 8 slots for expansion boards on \(1^{\prime \prime}\) centers to allow for wire-wrap boards
- Designed for use with a Regulated Power Supply (such as our VAK-EPS) but has provisions for adding regulators for use with an unregulated power supply.
- Provides separate jacks for one audio-cassette, TTY and Power Supply.
- Board size: 14.5 in. Long \(\times 11.5\) in. Wide \(\times 8\) in. High
- Power requirements; 5V.DC @ 0.2 Amps.
*KIM-4 is a product of MOS Technology/C.B.M.
editors and assemblers are easy to come by for most console systems. On the other hand, not many microprocessor development systems will allow you to run a program in BASIC, or Pascal, or FORTH. In other words, while a personal computer can be turned into a development system, a development system usually does not make a very good personal computer. It should be made clear, however, that a personal computer is not a development system without items 6 and 7 in the list above (or their equivalent). The EPROM programmer is easy. Such accessories are available for very reasonable prices. If you don't mind stuffing a blank board, you can put together your own universal EPROM programmer for less than \(\$ 30\). However, the "emulator" function is not quite so available.

The function of an emulator is to provide the prototype controller with the attributes of an operating system. Suppose you want to make a controller out of an existing single-board computer like a KIM or SYM. After attaching any additional I/O hardware required, you can hand assemble a controller program and enter it into the KIM or SYM's RAM using its built-in operating system. Programs under development can be saved on tape. Software debug functions are even available to get the program running. But what do you do if your prototype controller is not like a KIM or SYM? What if it has no keyboard or display, or any means (operating system) of entering a program into itself? There are two solutions to this problem. One is to use (abuse) an EPROM programmer. The second is to use some kind of emulator.

The first solution mentioned is actually used by owners of commercial development systems, who do not have an emulator module. It works as follows. First, a program is developed and entered into RAM in the development system's microcomputer. The RAM contents are now burned into an EPROM. The EPROM is now plugged into the prototype system and an attempt made to reset the prototype system and run the program. If the program does not run as expected, the program is modified and a second EPROM is programmed. In the meantime, the old EPROM is being erased. While this method can eventually produce a working program it is very tedious and ineffecient. To give you some idea of how really dumb this method is, consider using the same method to write a program in BASIC. That is, suppose you had to enter the program into RAM, burn the RAM contents into an EPROM and then plug the EPROM into a special socket to try out your program. Yet that is essentially what many, if not most, people do to bring up controllers. Clearly there must be a much better way.

The second approach is to give the prototype system a virtual operating system with some kind
of emulator. Commercial development systems generally emulate the prototype's processor. Such a processor emulator is a very complex hardware and software system, usually requiring two or three large PC boards which live in the development system's card rack. The emulator physically connects to the prototype via a cable which plugs into the prototype's processor socket. The development system is used to create a program in a block of RAM. The emulator allows the block of RAM to be executed as if it resided in the prototype system. In addition, the program can be stepped, the register contents displayed, breakpoints set, etc. Effectively, the emulator runs considerable software "in the cracks" between prototype program instructions. One consequent limitation of this scheme, however, is that many emulators are unable to execute prototype programs at the full processor speed.

While a processor emulator can be quite useful for debugging software, it is somewhat less suitable for finding hardware bugs. Unfortunately, many users attempt to debug complicated software before even knowing whether the hardware is \(100 \%\) functional. As mentioned, a processor emulator is very expensive, typically two or three thousand dollars, and cannot be used independently of the development system for which it was designed. Fortunately, another kind of emulator can be built that is usable with almost any computer system having an operating system, including one as simple as a KIM. Instead of emulating the prototype's processor, this emulator emulates the prototype system's ROM or EPROM. It is nothing more than a small block of RAM that can be alternately addressed as part of the host computer system, or via the EPROM socket in the prototype system. Aside from the fact that an EPROM emulator can be an efficient tool for debugging both hardware and software, the best thing about an EPROM emulator is that it can be put together for less than \(\$ 100\).

An EPROM emulator is used as follows. A program is assembled and placed into the emulator RAM block using your computer's operating system. Throwing a switch on the emulator now causes the RAM block to be addressed from a cable and plug inserted into the empty EPROM socket on the prototype system. If a change is required, the switch is flipped back into the host system position and any changes made in the emulator RAM. There is never any need to burn an EPROM until the program is completely debugged. At any point along the way, the RAM contents can be preserved on tape or disk.

In the next column, we will see what it takes to put together an EPROM emulator, and use it to debug both hardware and software. A very workable microprocessor development system can be had with as little as a KIM, an EPROM programmer,

\title{
A BRILLIANT FUTURE FOR YOUR AIM-65 WITH THE BANKER MEMORY \({ }^{\text {m }}\)
}


Your 36K of free address space is the AlM's most valuable and limited resource. With today's large capacity RAM boards, ROM boards, disk systems, video boards, and other expansion accessôries it is easy to deplete this resource before the application requirement is satisfied. MTU has solved this problem.

THE BANKER MEMORY contains 32 K of RAM, 4 PROM sockets for 2716/2732/2332, a PROM programmer, 40 bits of parallel I/O, and 4 timers from two 6522 I/O chips. Addressing is extremely flexible with the RAM independently addressable in 4 K blocks, PROM's independently addressable, and I/O addressable anywhere on a 64 byte boundary (even in AIM's I/O area at AXXX by adding a single jumper to the AIM).
This may sound familiar, but read on! Unlike other AIM compatible memory boards, THE BANKER MEMORY has on-board bankswitching logic! The four 8K blocks of RAM plus the 4 PROM sockets make up 8 resources, each associated with a bit in an Enable Register. Through this Enable Register resources'may be turned on and off under software control. When a resource is off, its address space is freed for other uses. You can even put BANKER resources at the same address and switch among them for virtually unlimited RAM and PBOM expansion! You can even have multiple page zero's and stacks! Do you need 160K byte of memory? It only takes 5 of THE BANKER MEMORY boards and you end up with 5 page zeros and stacks to boot!
There's more! The BANKER MEMORY also incorporates 18 bit addressing which allows for the 256K address spaces of the future. RAM, PROM, and I/O each has its own full 18 bit address decoder which allows these resources to be in different 64 K banks. This board and other MTU products, such as our 320 by 200 dot VISIBLE MEMORY and Floppy Disk Controller with 16K DMA RAM, can turn your AIM into á truly powerful 6502 computer that far surpasses the packaged systems in functional performance.
INTRODUCTORY SPECIAL K-1032-1 32K BANKER MEMORY FULLY ASSEMBLED AND TESTED \(\$ 395.00\) ( \(\$ 450.00\) as of March 1,1980 ) or the K-1032-2 16K RAM only with bank switching and 18 bit address bus only \(\$ 295.00\) Isn't it time you took a closer look at MTU - we offer you power now with an eye to the future.

WRITE OR CALL TODAY FOR OUR 48 PAGE FALL 19806502 CATALOG


International requests include \(\$ 1.00\)
VISA and MASTERCARD accepted

Photo credit: SUPERNOVA CRAB NEBULA:

Palomar Observatory, California Institute of Technology

and an EPROM emulator. With such a budget development system, you can bring up a controller based on ANY processor which can use EPROM. Of course, it's even easier if you have an assembler on your system for the processor you are using in the controller.

Perhaps you would like to control your electric train, or build a home environment control system. Or maybe you want to computerize your wife's loom. Maybe you'd like to cash in on your software experience and build custom controllers for local industrial clients. Whatever your bag, you probably already have with your present personal computer, most of what you need to put together a very practical microprocessor development system. Stay tuned for the next exciting installment.

\section*{COMPUTE!'s Book Corner}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
Back Issues: \\
COMPUTE! January, 1981, Issue 8 COMPUTE! February, 1981, Issue 9 COMPUTE! March, 1981 Issue 10
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

For The Single Board Computer Owners: (KIM, SYM, AIM, OSI)
COMPUTE II, All Three Issues
(The only ones: COMPUTE II merged into COMPUTE!) Issues 1,2 , and 3
\$5.00 \(\square\)
Individual Issues
COMPUTE II, \#1
COMPUTE II, \#2
COMPUTE II, \#3


Miscellaneous:
Best of the PET Gazette
s10.00 \(\square\)
(Note... an old anthology primarily for old ROM, 8 K original PETs.)
Collected PET User Notes (7 issues) ........S10.00 (Above note applies)
Collected 6502 User Notes (17 issues) .... \$20.00 \(\square\) (Specifically for Single-Board Computer Owners)
Ordering information:
Address orders to:
Compute's Book Corner
P.O. Box 5406

Greensboro, NC 27403 USA
Payment, in US funds, required with order. "Master Charge/ VISA accepted. All items subject to availability. Please add the following amount(s) for shipping/handling:
US \(\$ 2.00\) (UPS or mail) • Canada \(\$ 2.00\) (mail)
Foreign Air Mail \(\$ 5.00\)

\section*{6502 FORTTH}

6502 FORTH is a complete programming system which contains an interpreter/compiler as well as an assembler and editor.
6502 FORTH runs on a KIM-1 with a serial terminal. (Terminal should be at least 64 chr . wide)
All terminal I/O is funnelled through a jump table near the beginning of the software and can easily be changed to jump to user written I/O drivers.
6502 FORTH uses cassette for the system mass storage device
Cassette read/write routines are built in (includes Hypertape).
92 op-words are built into the standard vocabulary.
Excellent machine language interface.
6502 FORTH as user extensible.
6502 FORTH is a true implementation of forth according to the criteria set down by the forth interest group.
Specialized vocabularies can be developed for specific applications.
6502 FORTH resides in 8 K of RAM starting at \(\$ 2000\) and can operate with as little as 4 K of additional contiguous RAM.

6502 FORTH PRICE LIST
KIM CASSETTE, USER MANUAL, AND COMPLETE ANNOTATED SOURCE LISTING \(\$ 90.00\) ( \(\$ 2000\) VERSION) PLUS S\&H 4.00
USER MANUAL (CREDITABLE TOWARDS SOFTWARE PURCHASE)
\(\$ 15.00\)
PLUS S\&H 1.50
SEND A S.A.S.E. FOR A FORTH BIBLIOGRAPHY AND A COM-
PLETE LIST OF 6502 SOFTWARE, EPROM FIRMWARE (FOR KIM, SUPERKIM, AIM, SYM, and APPLE) AND 6502 DESIGN CONSULTING SERVICES AVAILABLE
Eric Rehnke
1067 Jadestone Lane
Corona, CA 91720
Now Available For KIM, AIM, And SYM

\section*{A Kim-I Music File In Microsoft Basic Part 1. \\ Anthony T. Scarpeli N. Windham ME}

\section*{Getting The System Together}

If you have a KIM-I, don't have a printer, but do have a memory mapped video display, here's how I solved the problem of getting a software routine to cause an ASCII keyboard to act like a serial teleprinter with all the KIM-I's teletype operations. There's nothing that seems complicated about what I did, but it sure took some mental gyrations to get it working. Yet I did learn a lot about the KIM monitor routines which I'll tell you about. Also how to implement BASIC, and how to implement a Music File which I wrote for my wife. Here's the story.

I had a KIM-I up and running and was learning a lot about assembly language programming, when the opportunity of getting a high resolution video monitor for cheap came along. I bought a SWTP keyboard, and while I was at one of the computer fairs last year I purchased Microtechnology's 8 K visible memory and a main frame. The price was good and it was completely compatible with the KIM. It's a dynamic memory system, but is completely invisible to normal computer use, and it has a standard video output. It works beautifully, and is fairly high in resolution with 64,000 bits as dots on the screen. Writing a " 1 " in a memory location lights up a dot, and, of course, a " 0 " turns the dot off. Microtechnology's SWIRL software routine shows the system off and provides hours of viewing enjoyment; and when company comes over it's great for showing off your computer.

Microtechnology also has a text display routine whereby, after an ASCII number is put into the accumulator, a subroutine call to the text display puts the ASCII character on the monitor screen. It provides a 53 character by 18 line display, with both upper and lower case letters. Having a software character generator gives you complete control over the configuration of the letters. For instance, I changed all my lower case letters, which I didn't need, into a table of 26 lines, dots, and other shapes for drawing on the screen. Also, the whole screen can be saved on tape. My wife was very pleased as a valentine message formed from a
randomly patterned screen. Hypertape loaded the screen in under three minutes.

I also purchased from Microtechnology their bare board 16 K memory, and purchased the I.C.'s and components at other sources. You can save about a hundred dollars this way, but you do have to get a few extra memory chips in case a bad one comes up and you do have to do all of your own soldering, and testing. If you go this route you might have a fault in the bare board. In the one I bought, a part of the PCB pattern wasn't etched away so I had no -5 v supply. After I fixed the problem the board worked perfectly the first time running and onwards, and I have nothing but praises for the design.

Then came the job of getting my keyboard with parallel output ASCII to go serial. It turned out to be not too difficult when I found an interface in a series of articles by John Blankenship in Kilobaud. In the March ' 78 issue he shows how to build a parallel to serial interface for the KIM-I. It merely takes the parallel output of the keyboard, using three I.C.'s and a transistor, and the KIm's power and clock, and converts it to a serial output which is presented to the printer input of the KIM. It worked very well.

Then what? Well, here comes the hard part. In order to get the KIM to accept a printer input, you connected pins " 21 " and " \(V\) " on the applications connector, hit the RS button, press the RUBOUT key on your keyboard and type away. The only problem is that any ASCII characters that come in don't go anywhere except to the printer output of the same connector. The ASCII number is put into the accumulator, but how do you call up a subroutine in some other part of memory to display it? The solution wasn't too difficult. You write a little program that jumps to KIM's own GETCH subroutine which then puts the printer ASCII character into the accumulator, then jumps to the character display subroutine, then jumps back to the GETCH etc. You start out by going to the memory location where the program starts on the KIM keyboard, short the two pins together (best to get a switch to do this), hit RS, then RUBOUT, and G on the keyboard, and away you go. You're finally writing on the CRT. Now what?

With this method that's about all you can do because you are in a program of your own creation and are using KIM's ROM routines, and you have to stay there until you hit ST (stop). What I really wanted to do was have my keyboard act just like a printer: change memory, display it, and all the other things the user manual said you can do with a printer. I asked myself, how easily can this be done? More likely, how difficult is it. There were two possibilities open to me: hardware or software. My old teacher said you never learn enough by going the easy route. I didn't know-whether hard-
ware or software was the most difficult, but I chose software. You can judge the result; I probably would have bought a printer.

To go the software route meant rewriting some of the subroutines in the KIM's ROM. To show you what routines I had to include, let's go over what happens in the KIM when you hit RS. So get out your user manual, follow the diagrams and let's go.

First look at the listings starting at 1C22 in the User Manual and also at fig. 1.
1. When the RS (reset) button is pressed the data at locations 1FFC \& 1FFD, which happens to be the address 1C22, is put into the program counter. This is the entry point for the program in ROM of the 6530-002. This address is fixed and cannot be changed. It is the KIM entry via RST.
2. The first thing that happens is the stack pointer is initialized to FF .
3. Then we go to a subroutine called INITS at 1E88. In INITS, the first thing done is to put 01 into the X register and then put it into the top of the stack at 00 FF .

Next, the X-index gets 00 and is stored in PADD which is the 6530-002 A ports data direction register. This is at address 1741 and makes all the ports inputs so they can accept data from TTY or KB (keyboard).

Next X-index gets 3F and is stored at 1743 which is the 6530-002 B ports data direction register, PBDD, and it makes ports PB6 and PB7 inputs, and all the rest outputs. PB7 is connected to the audio tape interface circuits and is prepared to accept program loading from tape.

Next X-index is loaded with 07 and is stored in SBD (1742) which is the data to be sent out from the 6530-002 data ports. So PB 0, 1, \& 2 now have l's on them. PB0 is for TTY data out. PB 1, 2, 3, \& 4 go to the 74145 I.C.'s inputs. With a 1 on \(1 \& 2\) and 0 on \(3 \& 4\), all the outputs of the 74145 are high except 03 . This goes out to application connections A-V. When this pin is connected to A-21 (PA0), PA0 becomes low. This indicates TTY mode.

Next decimal mode is cleared and the interrupt disable status is set. Then a return from this subroutine.
4. Next back at 1C2A, FF is stored at 17F3 (CNTH 30 ) which is the TTY count, and 01 is stored in the accumulator. Then SAD (1740) is tested, specifically PA0. If it is not equal to zero, that is, if it's high, the program branches to START. PA7 is tested also. This is the input from the TTY keyboard. It tests for a rubout bit. PA7 is normally a one and the program will keep on testing this input until a zero is detected and also PA0 in case the TTY mode is not wanted any more.

If a zero is detected, the accumulator is loaded with FC and the carry flag is cleared, then 01 is
 print KIM


Figure 1. START Routine
added to the accumulator (FC). If the carry flag is not set it will branch to DET 2. It will the first time around anyway. This part (DET 2) first loads Yindex with SAD (1740) and if the rubout bit is still there (a 0 at PA7) then it goes back to DET 3 and another 01 is added to the accumulator. When the

\section*{HUDSON DIGITAL ELECTRONICS INC.}

\section*{ANNOUNCING \\ THE HDE OMNIDISK 65/8}


Now, you can "plug in" the latest in a successful series of flexible disk systems developed by HDE for the KIM, SYM and AIM microcomputers. The OMNIDISK 65/8 is a complete system, using 8 inch soft sectored diskettes with a formatted (IBM Standard) capacity of 256K. Of course, a disk formatting function is included as are system supporting utilities for file renaming, disk packing, copy (dual systems) and others.

TED, a full featured, line oriented editor is standard in KIM and SYM based versions to get you up and running on your project in a hurry. The AIM version uses the on-board editor. With the OMNIDISK 65/8 you can con-
centrate on your problem, the disk supports you all the way.
OMNIDISK 65/8 is available in an attractive walnut wood cabinet, or unpackaged for OEM applications in dual and single drive configurations. The HDE disk controller is a state-of-theart \(41 / 2^{\prime \prime}\) by \(61^{\prime \prime \prime}\) card electronically compatible with the 44 -pin KIM-4 bus structure. The controller and disk-driver are designed to operate with the popular Shugart 801-R and compatible devices.

The OEM single drive is \(\$ 1195\), the dual, \(\$ 1895\) and the dual in the walnut cabinet, \(\$ 2200\). Price is another reason to step up to the proven quality of an HDE system.

> HDE PRODUCTS - BUILT TO BE USED WITH CONFIDENCE AVAILABLE DIRECT OR FROM THESE FINE DEALERS:
accumulator reaches FF and 01 is added, the carry flag is set and CNTH30 (17F3) is incremented, it becomes 00 . As long as the rubout bit is there the accumulator keeps on increasing and increases CNTH30. As soon as the bit ends the accumulator is stored in CNTL30 (17F2) and X-index gets an 08 . Then the program goes to subroutine GET5 at 1 E 6 A , where it goes to DEHALF (1EEB).
5. DEHALF first gets the high byte count time at CNTH30 and stores it in TIMH (17F4), then gets CNTL30. The accumulator and TIMH are shifted right (divides by two). If the 0 bit had a 0 the carry flag is cleared and a branch is taken to DE2, otherwise the accumulator is OR'd with 80 and it branches to DE4. If the DE2 branch was taken the carry flag has been set and next 01 is subtracted from the accumulator. The time is reduced and back with RTS. What is happening here is the keyboard baud rate in CNTL30 and CNTH30 is halved to get in the middle of the bit, then delayed one whole bit to read the next bit of the character. Cute, huh.
6. Back at 1E6D (GET2), the accumulator is loaded with SAD and the bit number 7 only is saved. 00FE is shifted right, then OR'd with the accumulator and stored in 00FE. Another delay and the process is repeated until the whole character is retreived, then another half delay, X-index is loaded with TMPX ( 00 FD ), and the accumulator gets CHAR which is the ASCII character. The accumulator is rotated left then shifted right, which gets rid of any parity bit that might be stuck on the character.
Then a return to START.
7. START. First is a jump to subroutine INIT1 ( 1 E 8 C ) which is the same as before, it sets up the ports. The accumulator is loaded with 01, and SAD is tested again for TTY or KB mode. If there's a 1 in PA0 it branches to KB mode. If no KB mode, it then jumps to CRLF, Fig. 2 \& 3, (1E2F), which



Figure 3. OUTCH Subroutine
prints a carriage return, then a line feed, then JSR PRTST prints "KIM", then jumps to SHOW1 (1DAF), Fig. 4, and then back to CLEAR, Fig. 7. 8. CLEAR. The accumulator gets loaded with 00 and is stored in INL \& INH. The program tests for a character in GETCH, Fig. 8. In GETCH it stays in a loop waiting for a start bit. After the start bit, the rest of the character is retreived and loaded into the accumulator, the program then comes back, and we test for KB mode again. If no KB the character is changed into a hex number in PACK, Fig. 9, and then in SCAN, Fig. 10, the program determines if the hex number is an execute key. If not, it will get another character.


So this is the program I need to simulate a teletype. The problem now becomes, what are the subroutines I have to rewrite and which ones of the KIM's ROM subroutines can I use. Obviously, any part of the program that refers to a ROM address has to be rewritten, such as in a JMP. Also when the accumulator gets the ASCII character that is to be displayed, the program that does the displaying, in this case called DTEXT (the Microtechnology software routine), has to be addressed at the right point, and thus any subroutines involved here have to be rewritten. So definitely the subroutine OUTCH has to be changed to add DTEXT. We get to OUTCH from CRLF so that has to be rewritten. CRLF is addressed from START which is part of the whole RST routine. As you can see it starts to get involved. So if you go this route table I lists all the KIM ROM routines that must be rewritten. Of course in this rewriting, some branches have to be changed as well as addresses. (A SASE sent to me will get you a list of the changed addresses.)

Now my keyboard acts just as a teletype, and I can display all the teletype outputs from the KIM on the CRT. First I go to the RST program address, the one I rewrote, on the KIM display, switch to teletype mode, hit RS on the KIM, then press the rubout key on the keyboard. The SWTP keyboard doesn't have an actual rubout key, but there are two spare keys, one of which can be wired as rubout. Then I press the G key which puts me into

\section*{SEAWELL PROMMER II -There's Nothing Like It!}


\footnotetext{
- Two independent blocks of 4 EPROM sockets
- KIM, SYM or AIM programming firmware
- Programs 1, 2 or 4K 5-Volt EPROMS: TMS2508, 2516, 2532 and 2758, 2716, 2732
* Read-Only/Deselected/Read-Program for each socket
- Program-protect toggle switch for whole board
- Provision for remoting 4 sockets
- On-board generation of programming voltage.

The Seawell PROMMER II is a general purpose EPROM tool designed for use in a development/production environment. Connects to a KIM, SYM or AIM with a Seawell LITTLE BUFFERED MOTHER motherboard, or to a SEA-1 single-board computer. The PROMMER II is all you need to read, program and execute 1,2 or 4 K 5 -Volt EPROMs.
}

The PROMMER II allows you to put as little as 1 K or as much as 32 K of EPROM on the bus. You never have to give up address space to empty sockets. Each socket can be enabled to READ only, READ and PROGRAM, or can be DESELECTED entirely. Simply moving a shunt sets one block of 4 sockets to 1,2 , or 4 K . The other block can be set independently.

Addresses are selected by piano-type switches on the top edge of the board. The whole board can be program-protected by a toggle switch on the top right corner of the board. A separate one-page ROM containing relocatable firmware for KIM, SYM or AIM is provided which can be set to any page in memory in either of two banks or deselected entirely. A satellite board with four sockets and program-protect switch will be available soon.

PROMMER II EPROM PROGRAMMER - \(\$ 299\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{HER SEAWELL PRODUCTS:} \\
\hline & SINGLE \\
\hline SEA-16............... 16K & 16K RAM BOARD . . . . . . . . . . . . . . . . . . . \(\$ 250\) \\
\hline SEA-FDC8. . . . . . . . . . DOU & DOUBLE DENSITY \\
\hline & \$325 \\
\hline \multicolumn{2}{|l|}{SEA-DEBUG ......... HARDWARE BREAKPOINTS AND TRIGGERS} \\
\hline \multicolumn{2}{|l|}{SEA-PROMMER II . . . . . EPROM PROGRAMM} \\
\hline SEA-PROTO . . . . . . . . COM & COMPLETELY DECODED PROTOTYPING BOARD \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{8K CMOS RAM, 16K EPROM, DAY/DATE CLOCK}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{SEA-PIOB . . . . . . . . . . 4 FULLY-BUFFERED 6522 S . . . . . . . . . . . . . \(\$ 260\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{LITTLE BUFFERED MOTHER FOR KIM, SYM, AI}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{SEA-MOTHERS . . . . . . 4-SLOT MOTHERBOARD . . . . . . . . . . . . . . \(\$ 50.00\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ALL PRODUCTS ASSEMBLED. 10 SLOT MOTHERBOARD ADDITIONAL CONFIGURATIONS}} \\
\hline & LED. ADDITIONAL CONFIGURATIONS \\
\hline NO KITS & MASTERCHARGE/VISA ACCEPTI \\
\hline
\end{tabular}

P.O. Box 30505,

Seattle, Washington 98103, U.S.A., (206) 782-9480
the RST program, (rewritten). When the rubout key is pressed again the CRT will display "KIM" and also the address of the RST program; now we are as a teletype with all its functions. Simple, wasn't it.

Next time I'll go into the actual file program that creates a music file, and then can search it for any of a number of subjects.

*To be modified
Figure 7. CLEAR Routine
**Re-entrance from SCAN


Figure9 2 AGKSuborfininodore.ca


Figure 10.
SCAN Routine


Figure 11. SPACE Routine


Figure 12. STV Routine


Figure 13. RTRN Routine


Dump from open cell out memory.

Figure 18. Dump "V" Routine Routine


Figure 14. FEED Routine


Figure 16. MODIFY Routine


Figure 17. GOEXEC WB M Ancommodore.ca


Figure 20.
Make Entry Routine

Assembly Language Program for Cassette DUMP \& LOAD
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0300 A & A5 0 & 01 & & DELAY & LDA & DELTIM & Load delay \\
\hline 028 & 85 & EE & & & STA & TIMEA & value. \\
\hline 04 & A9 3 & 30 & & DECB & LDA & 30 & Load \\
\hline 068 & 8D 0 & 04 & 17 & & STA & 1704 & timer. \\
\hline 092 & 2C & 07 & 17 & TEST & BIT & 1707 & Test timer. \\
\hline 0 C 1 & 10 F & FB & & & BPL & TEST & Branch if not run out. \\
\hline 0E & C6 & ED & & & DEC & TIMEB & Reduce time value. \\
\hline 10 D & D0 & F2 & & & BNE & DELB & Startagain. \\
\hline 12 & C6 & EE & & & DEC & TIMEA & Reduce delay value. \\
\hline 14 D & D0 & EE & & & BNE & DELA & Branch if not done. \\
\hline 166 & 60 & & & & RTS & & Return. \\
\hline 0317 A & A9 0 & 02 & & TWRITE & LDA & \#02 & Turn tapeon. \\
\hline 191 & 10 & 02 & & & BPL & TAPE & \\
\hline 1 B & A9 0 & 01 & & TREAD & LDA & \#01 & Turn tape off. \\
\hline 1 D & 4D 0 & 03 & 17 & TAPE & EOR & 1703 & \\
\hline 208 & 8D & 03 & 17 & & STA & 1703 & \\
\hline 236 & 60 & & & & RTS & & Return. \\
\hline 03242 & 20 & 17 & 03 & WRITE & JSR & TWRITE & Turn tape on. \\
\hline 272 & 20 & 00 & 03 & & JSR & DELAY & Delay for tape speed. \\
\hline 2A 2 & 20 & 00 & 02 & & JSR & HYPER & Record in hypertape. \\
\hline 2D 2 & 201 & 17 & 03 & & JSR & TWRITE & Turn tape off. \\
\hline 302 & 208 & 8C & 1E & & JSR & INITI & Open ports again. \\
\hline 336 & 60 & & & & RTS & & Return. \\
\hline 03D5 2 & 201 & 1 B & 03 & READ & JSR & TREAD & Turn on tape. \\
\hline D8 2 & 20 & 36 & 03 & & JSR & LOADT & Load tape. \\
\hline DB 2 & 20 & & 03 & & JSR & TREAD & Turn off tape. \\
\hline DE 2 & 208 & 8C & 1E & & JSR & INITI & Open ports again. \\
\hline E1 6 & 60 & & & & RTS & & Return. \\
\hline
\end{tabular}

Note: HYPER is taken from The First Book of KIM page 119 relocated to address 0200 .
LOADT is taken from the KIM-I User Manual Program listing page 6 relocated from address 1871-1931 to 0334-03D4.
If you wish to use the same routines in the same addresses as I did, send a SASE and I'll let you know what locations have to be changed in those listings to get it to run right.

DISK DRIVE WOES? PRINTER INTERACTION? MEMORY LOSS? ERRATIC OPERATION?

\section*{Don't Blame The Software!}

Power Line Spikes, Surges \&
Hash could be the culprit!
Floppies, printers, memory \& processor often interact! Our unique ISOLATORS eliminate equipment interaction AND curb damaging Power Line Spikes, Surges and Hash.
- ISOLATOR (ISO-1) 3 filter isolated 3 -prong sockets; integral Surge/Spike Suppression; 1875 W Maximum load, 1 KW load any

- ISOLATOR (ISO-2) 2 filter Isolated 3-prong socket banks; (6 sockets total); Integral Spike/Surge Suppression; 1875 W Max
load, 1 KW elther bank ................................... \(\$ 62.95\)
- SUPER ISOLATOR (ISO-3), similar to ISO-1 except double filtering \& Suppression
- ISOLATOR (ISO-4), similar to ISO. 1 except unit has 6 Individually filtered sockets
- ISOLATOR (ISO-5), similar to iSO-2 except unit has 3 socket
banks, 9 sockets total
- CIRCUIT BREAKER, any model (add-CB) ............ Add \(\$ 8.00\)
- CKT BRKR/SWITCH/PILOT (-CBS)

\section*{CAPUTE}

\section*{Corrections/Clarifications}

From Raymond Diedrichs ("Pet File I/O In Machine Language", April, 1981, Issue 11, pp. 144-145):
"In the machine language open statement, the following lines are missing:
LDA \#DEVICE-NUMBER
STA \$D4
LDA \#SECONDARY-ADDRESS
STA \$D3.

They should appear directly below the line which reads:

STA \$D2.

\section*{Computer House Division}
\begin{tabular}{lr}
\hline PROGRAMS FOR COMMODORE AND APPLE \\
Legal accounting Demo & \(\$ 15.00\) \\
Legal accounting Program & 995.00 \\
Machine Part Quote Demo & 15.00 \\
Machine Part Quote Program & 325.00 \\
Mailing/phone list & 80.00 \\
Political Mail/phone list & 130.00 \\
Beams, structural & 115.00 \\
Trig/Circle Tangent & 110.00 \\
Spur Gears & 35.00 \\
Bolt Circles & 25.00 \\
Filament Wound TAnks & 125.00 \\
Scrunch & 25.00
\end{tabular}

PROGRAMS FOR COMMODORE ONLY
A/P, A/R, Job Cost \& Job Est. 370.00
Inventory 95.00
Financial
175.00

Real Estate Listings 265.00
Check Writer 25.00
File Editing Tools (FET) 65.00
Screen Dump/Repeat 35.00
Docu-Print 20.00
Scrunch 25.00
Sof-Bkup
40.00

Sorter (Mach. Language) 35.00
Trace-Print 25.00
Vari-Print 25.00
ASK FOR CATALOG \#80-C2 Dealers Wanted Computer House Div. 1407 Clinton Road Jackson, Michigan 49202 (517) 782-2132

And here's the missing listing from Charles Brannon's "String Arrays in Atari BASIC," April, 1981, Issue 11, p. 103.
```

1\emptyset\emptyset REM SIMPLE BAR GRAPH PROGRAM
ll\emptyset GRAPHICS Ø
12\emptyset PRINT "NUMBER OF COMPANIES";
130 INPUT NC
140 MAXLEN=20:DIM A$(MAXLEN*NC),L(NC),
 \negA(NC),T$(MAXLEN)
150 FOR I=1 TO NC
160 T$=" ":REM 2\emptyset ᄀ
 7SPACES
170 E=I:GOSUB 2000\emptyset
18\emptyset PRINT "ENTER THE NAME OF COMPANY ";I
190 INPUT T$:GOSUB 2\emptyset\emptyset\emptyset\emptyset
2\emptyset\emptyset PRINT "AMOUNT FOR ";T$;
210 INPUT A:A(I)=A:IF A>HI THEN HI=A
22\emptyset PRINT:NEXT I
23\emptyset GRAPHICS \emptyset
240 FOR I=l TO NC
250 E=I:GOSUB 3000\emptyset
260 PRINT:PRINT T$
270 FOR J=1 TO (A(I)/HI)*3\emptyset
28\emptyset PRINT CHR$(160);
290 NEXT J
300 NEXT I
310 END
200\emptyset\emptyset L=LEN(T$):IF L>MAXLEN THEN ᄀ
\negL=MAXLEN
20010 L(E)=L:START=(E-1)*MAXLEN+1
2002\emptyset A$(START,START+L-1)=T$:RETURN
30\emptyset\emptyset\emptyset START=(E-1)*MAXLEN+1
30\emptyset1\emptyset T$=A$(START,START+L(E)-1):RETURN
READY.

```

\section*{Program Listings for COMPUTE}

Cursor control characters will appear in source listings as shown below:
\[
\begin{array}{ll}
\mathrm{h}=\text { HOME } & , \hat{h}=\text { CLEAR SCREEN } \\
\downarrow=\text { DOWN CURSOR }, & \uparrow=\text { UP CURSOR } \\
\rightarrow=\text { RIGHT CURSOR, }, & \langle=\text { LEFT CURSOR } \\
\mathrm{l}=\text { REVERSE }, & \hat{\mathrm{r}}=\text { REVERSE OFF }
\end{array}
\]

Graphics (i.e. shifted) characters will appear as the unshifted alphanumeric character with an underline. This does not apply to the cursor control characters. The Spinwriter thimble doesn't have a backarrow symbol, so a " \(\sim\) " is used instead.

The " \(\neg\) " is used to indicate the beginning of a continuation line. It is also used to indicate the end of a line which ends with a space. This prevents any spaces from being hidden.



The Carvery 156 Front Street West Toronto, Ontario M5J 2L6 Telephone 977-7770

\section*{New Toronto Restaurant}

Why does a computer pour the drinks at the Carvery, a downtown Toronto restaurant? Jim Butterfield, who is a small shareholder in the establishment, has no comment. Neither does he explain why the machine always pours him doubles.

\section*{Atari Launches Major Software Acquisition Program}

Sunnyvale, California - April 3, 1981 - A major new effort to expand the library of consumeroriented software for its personal computer systems is being launched by Atari, Inc. Atari is looking for high quality programs that can be used immediately, and easily, by people with little or no training in the use of computers.
"We want to acquire software in the areas of personal finance, self-improvement, education and home entertainment. We are encouraging the creation and
marketing of software by vendors and developers, and want to help market appropriate materials from outside authors," Bruce W. Irvine, vice president of software for Atari's Computer Division said. "To start things off, we are sponsoring a \(\$ 100,000\) contest for software authors."

The acquisition program involves the creation of Atari Software Acquisition Program regional centers where qualified developers can work with Atari equipment and receive technical assistance, and Atari Program Exchange, a free quarterly catalog of user-written software to be distributed to Atari computer owners. In addition, Atari will offer periodic technical seminars for qualified software authors to familiarize them with the inner workings of Atari computer products and enable them to write programs that take advantage of all the advanced features of the ATARI \(400^{\mathrm{TM}}\) and \(800^{\mathrm{TM}}\) computers.
"We recognize that a broad selection of readily available software is a critical key to the ultimate consumer market. No one company can create the amount of material needed to properly address the market, so we are going to do our best to encourage our users and software vendors to create programs compatible with Atari computers. Often, a user or developer is an expert in a field we don't know much about; with our assistance, that person can make his or her programs available to the wide audience they deserve," Irvine added.

\section*{Acquisition Centers}

Beginning with an initial installation in the Sunnyvale area which will open in mid-May, Atari will
develop software acquisition centers in geographical areas where there are high concentrations of programmers and users, such as metropolitan areas with technical universities. No timetable has been announced for the opening of these additional facilities.

Qualified developers will be able to use the centers on an appointment only basis. Design of the centers will help insure the privacy of material under development. Each center will be equipped with Atari computers annd peripherals, all necessary reference materials and technical manuals. Center staff will help answer technical questions and review and evaluate completed software.

Once a program is completed, Atari may be interested in marketing it under the company name, or accept it for listing in the Atari Program Exchange catalog. Or, developers may wish to market the program on their own.


\section*{Pet User Group Celebrates Third Birthday}

As shown in the birthday cake picture above, SPHINX celebrated their third year with a full sized Pet cake (complete with keyboard and message on the screen) at their meeting March 14, 1981 at the Lawrence Hall of

\section*{Announcing}

\section*{Homan Ilidilina: \\ from the publishers of}

COMPUTE
The Journal For Progressive Computing

Small System Services, Inc. is pleased to announce publication of a new quarterly magazine exclusively for the new \(\mathrm{VIC}^{\circledR}\) computer. Comanimutinas: , editorially and physically of the same high quality as COMPUTE!, will premier with an April/May/June issue. Every issue will be full of useful applications material and learning aids.
Our staff of Contributing Editors already includes some of the best authors in the industry: Jim Butterfield, Tory Esbensen, Harvey Herman, and David Thornburg, to name a few.
Homandifurining: will teach, entice, and interact with readers to help users develop maximum benefit from the new VIC \(^{\circledR}\) personal computer series from Commodore.

Reserve your first issues now by filling out the form below.

\section*{Address inquiries and correspondence to: \\ Comainipuitiina: \\ P.D. Box 5406 \\ Greensboro, NC 27403 919-275-9809 \\ Robert C. Lock, Editor/Publisher}

First issue available early June, 1981.


COTMPITTING: \(\qquad\)

Science, Berkeley, California.
Originally formed by Niel Busey and Milt Lee, SPHINX, (Society For Pet Handlers Information Exchange), cooperated with Lawrence Hall of Science in putting out a newsletter which contained basic information about the Pet when there was little from the manufacturer.

Although the newsletter has been discontinued, they are still active in exchanging programs. At the sixth West Coast Computer Fair, April 5, 1981, a proposal was made that librarians from user groups across the United

States trade programs on a disk basis. To this end SPHINX would like to receive 2040 or 4040 format disks from other groups and will return the diskette(s) with programs from our library (currently 13 diskettes and growing.)

Other current SPHINX projects are a nationwide \(\mathrm{Pet} / \mathrm{CBM}\) telephone network for Pet users with modems. Some interest in sponsoring this has been shown by Commodore. SPHINX also plans to start a library for the VICcolor computer because of the tape and software compatabil-
ity. Many of their programs will run on a VIC with minor or no modifications.

For further information, please write to SPHINX C/O their sponsor:

PC Computers
10166 San Pablo Ave.
El Cerrito, CA 94530
Meetings in the Bay Area are the only way SPHINX currently exchanges individual programs - the second Thursday of the month at Lawrence Hall of Science, Chem. Lab, Berkeley, CA at 7:00 p.m.


\section*{New Low-cost 80-Column Dot Matrix Printer}

MICROTEK, Inc. has announced a new low-cost (under \$300) 80column dot matrix printer.
Dubbed the "BYTEWRITER-1", the printer accepts single sheet or roll paper up to \(81 / 2\) inches wide and prints at 60 lines per minute using a \(7 \times 7\) dot matrix.

The BYTEWRITER-1 interface is similar but not identical to a Centronics parallel interface, and has been designed specifically to operate with the Apple II, the Atari 400/800, and all models of the TRS-80. Using a print mechanism and logic board designed and manufactured in the U.S., the unit is priced at \(\$ 299\) (interface cable slightly extra). MICROTEK is directing its marketing efforts towards the personal computing and hobbyist segments of the market, and will sell the printer direct only. The

BYTEWRITER-1 carries a 90day limited warranty. Delivery is from stock to 60 days.

For further information, contact Diane Barney-Laukat at MICROTEK, INC., 9514 Chesapeake Drive., San Diego, California 92123. (714)-278-0633.


\section*{High Performance Data}

\section*{Communications System}

Norcross, Georgia - Hayes Microcomputer Products, Inc., announces the Hayes Stack Smartmodem high performance data communications system for small computers.

The Smartmodem, an FCCapproved direct-connect device, is designed for use with RS-232C compatible computers or terminals to communicate via the telephone system with other computers or time sharing systems.

A unique feature is that the Smartmodem can be program
controlled in any language by ASCII character strings.

This intelligent datacomm system analyzes and executes commands and in response sends result codes which, at the user's discretion, can be English words or decimal digits. The Smartmodem has auto dial and auto answer capabilities. A special design feature is that all circuitry required for auto dial and auto answer is installed within the Smartmodem. This eliminates the need for any auxiliary equipment and makes the Smartmodem a stand-alone system.

The Hayes Stack Smartmodem can be connected to any telephone system in the U.S. since dialing can be either Touch-Tone* or pulse. Furthermore, both dialing modes can be combined within a command with pulse being used, for example, to access a PBX board and Touch-Tone for dialing an outside number after the second dial tone is received.

An audio monitor permits the user to follow the progress of the call and be alerted to wrong numbers and busy signals. If a busy signal is encountered, by entering a repeat command, the Smartmodem will automatically redial the number at any time.

Operation can be in full or half duplex with a data rate of \(0-\) 300 baud. Power-on default options are controlled by the

\section*{DOWN-TO-EARTH PRICES ON OUT-OF-THIS-NORLD PERSONAL COMPUTERS AND COMPONENTS. \\ Look at this! \\ Look at these easy hardware prices:}


\section*{Ohio Scientific Superboard II \(\$ 299\)}
- It's the first complete computer system on a board.
- Superboard II uses the ultra powerful 6502 Microprocessor
- 8K Microsoft BASIC-in-ROM
- 4K static RAM on board, expandable to 8 K
- Full 53-key keyboard, with upper and lower case. Plus user expandability.
- Video interface and audio cassette interface.
The Ohio Scientific Superboard II at \(\$ 299\) - in today's economy - has got to be the best buy by far. It will entertain you with spectacular graphics made possible by its ultra high resolution graphics and super fast BASIC. It will help you in school or industry, as an ultra powerful scientific calculator. Advanced scientific functions and a built-in "'immediate" mode allow you to solve complex problems without programming.

The Superboard II can be expanded economically, for business uses, or to remotely control your home appliances and security. Even communicate with other computers.
Read what's been written about Superboard II:
"We heartily recommend Superboard II for the beginner who wants to get into microcomputers with a minimum cost. A real computer with full expandability."
-POPULAR ELECTRONICS, MARCH 1979
> "The Superboard II is an excellent choice for the personal computer enthusiast on a budget."
> -BYTE, MAY 1979

610 Board For use with Superboard II and Challenger 1P.
8 K static RAM. Expandable to 24 K or 32 K system total.
Accepts up to two mini-floppy disk drives. Requires +5 V (1) 4.5 amps .

Mini-Floppy Disk Drive Includes Ohio Scientific's PICO DOS
 software and connector cable. Compatible with 610

expander board. Requires + 12V @1.5 amps and +5V @

0.7 amps . [Power supply \& cabinet not included.]
630 Board Contact us for important details. ..... 229
AC-3P 12 " combination black and white TV/video monitor. ..... 159
4KP 4K RAM chip set. ..... 79
PS-005 5V 4.5 amp power supply for Superboard II. ..... 45
PS-003 12 V power supply for mini-floppies. ..... 45
CS-900B Metal case for single floppy disk drive and power supply. [While stock lasts.] ..... 49
AC-12P Wireless remote control system. Includes control console, two lamp modules and two appliance modules, for use with 630 board. ..... 175
AC-17P Home security system. Includes console, fire detector, window protection devices and door unit for use with 630 board. ..... 249
C1P Sams C1P Service manual ..... 8
C4P Sams C4P Service manual ..... 16
C3 Sams Challenger III manual ..... 40
Ohio Scientific and independent suppliers offer hundreds of programs for theSuperboard II, in cassette and mini-floppy form.

Freight Policies Al orders of \(\$ 100\) or more are shipped Treight prepaid. Orders of less than \(\$ 100\) please add \(\$ 4.00\) to cover shipping costs. Ohio residents add 5.5\% Sales Tax.
VISA \(\quad \begin{aligned} & \text { Hours: Call Monday thru Friday. } \\ & \text { 8:00 AM to 5:00 PM E.D.T. }\end{aligned}\) 8:OO AM to 5:OO PM E.D.T.
TOLL FREE: 1-800-321-5805

Guaranteed Shipment Cleveland Consumer Computers \& Components guarantees shipment of computer systems Our failure to ship within 48 hours entitles you to \(\$ 35\) of software, FREE.

To Order: Or to get our free catalog CALL 1-800-321-5805 TOLL FREE. Charge your order to your VISA or MASTER CHARGE account. Ohio residents call: [216] 464-8047. Or write, including your check or money order, to the address listed below.


Canada only. All prices quoted are U.S., date of publication, standard UPS shipping FOB the factory.


\section*{WEST COAST} תMEGA Sales Co. 3353 Old Conejo Rd. \#102 Newbury Park, CA 91320 1-800-235-35\&1 1-805-499-3678

RADIO SHACK 16K Level II Model 3
RADIO SHACK 64K Model 2
ANADEX DP-9500
TELEVIDEO 912C
TELEVIDEO 920C
TELEVIDEO 950
ATARI 825 PRINTER
ATARI 850 INTERFACE
ATARI 810 DISK
(Call for price list of ATARI Software)

\$875
\$3449
\$1249
\$669
\$729
\$1049
\$729
\$169
\$449


\section*{CALL TOLL FREE}

\section*{EAST COAST / WEST COAST 1-800-556-7586 1-800-235-3581}

\section*{EAST COAST}

תMEGA Sales Co. 12 Meeting St.
Cumberland, RI 02864 1-800-556-7586 1-401-722-1027


\section*{SPEGALL OF THE MOWTH!!}


\section*{OR TOGETHER FOR ONLY} \$5195

ATARI 800 OKIDATA MICROLINE-83 ..... \(\$ 949\)\$469
APPLE II PLUS 48K ..... \$1150
APPLE DISK w/ 3.3 DOS Controller ..... \$545
APPLE DISK w/o Controller ..... \$435
BASE II PRINTER ..... \$649
HAZELTINE 1420 ..... \(\$ 799\)
NORTHSTAR HORIZON II 32K QD ..... \$2975
ATARI 400 8K ..... \$399
ATARI 400 16K ..... \$499
- STOCK SHIPMENTS USUALLY SAME DAY OR NEXT DAYWE LIVE BY OUR PUBLISHED PRICES
- NO SURCHARGE FOR CREDIT CARDS
- WE ACCEPT C.O.D.'S
- ALL EQUIPMENT FACTORY FRESHW/MANUFACTURER'S WARRANTY- NO HIDDEN CHARGES -
\(\Omega\)
positioning of seven option switches. Four of these options can be overridden by software command. LED status indicators on the front panel of the unit provide a visual check of the Smartmodem's operational status.

In addition, the unique "Set" commands allow the user to select (and change) various operational parameters such as dialing speed, escape code character and number of rings to answer on.

In announcing the release of the Smartmodem, Glenn Sirkis, Hayes Vice President, stated, "The Smartmodem, offers all the classic
modem functions plus some special features - e.g., pulse and Touch-Tone dialing - that are available only with a limited number of modems. Add to this the features that are unique to the Smartmodem - e.g., programmable in any language and Set commands for customized operation - and you'll know why we believe the Smartmodem is everything you could ever want in a 300 baud modem."

The Smartmodem has a Two Year Limited Warranty. The suggested retail price for the Hayes Stack Smartmodem system
is \(\$ 279.00\). Included in this price are the Smartmodem unit, a power pack, one modular telephone cable to connect the unit to the telephone line and an owner's manual.

The Smartmodem is the first product in a new series that features the exclusive Hayes Stack design. This compact design permits other Hayes components to be stacked on top of the Smartmodem, thereby eliminating clutter.

TM Trademark of Hayes Microcomputer Products, Inc.
* Trademark of American Telephone and Telegraph.

\section*{New Professional Applications Package For The Medical Profession}

Charles Mann \& Associates, Micro Software Division, has announced the release of a new professional applications package for the Medical Profession called "Medirec". The Medirec system is a total Medical History and Report Preparation System. The professional using the system can prepare office input forms, enter patient and family histories, record patient visit symptoms, diagnosis, and treatments, prepare referral requests, prepare patient history summaries, and prepare referral reports. The program compliments the firm's existing Medical Billing Package.

Medirec is designed with today's professional practice liability in mind. The system allows the diskette recording of up to 550 professional visits per diskette. Individual patient records can be recalled, linked together and printed either in whole or in part. The system allows the practitioner to search past history files for common symptoms, diagnosis or the administration of conflicting drug treatments.

The system can recall records for past due follow treatment, prepare reminder notices, prepare liability release forms and print file folder labels. The system comes with a full featured address data base system and a programmable form letter writing element. The system can be programmed to prepare referral report letters, and requests for specialist treatment.

The Medirec system requires a 48 K Apple II, Apple II + , or Apple III, an 80 column printer, and two disk drives. A special Corvus Systems hard disk version is also available for system configurations up to 40 MB of on line storage.

The system is available from over 700 CMA dealers worldwide for an introductory price of \(\$ 199.95\) (Corvus version \$249.95). Preview Documentation is available for \(\$ 25.00\). Additional information and dealer location information can be obtained from Charles Mann \& Associates, Micro Software Division, 7594 San Remo Trail, Yucca Valley, CA 92284. Phone (714) 365-9718.

\section*{NYSAEDS Conference}

On October 18, 19 and 20, 1981, The New York State Association for Educational Data Systems
(NYSAEDS) will hold its annual conference in Syracuse, NY. NYSAEDS, an affiliate of AEDS, is composed of people who have a common interest in computers and education.

The theme of this year's conference is "Software". The keynote speaker is Marge Kosel from MECC and the banquet speaker is Dr. Earl Joseph (Futurist) from Sperry Rand. A variety of workshops will be held concerning the uses of microcomputer software in education.

For further information, please contact Don Ross, Ardsley High School, Ardsley, NY 10502.


\section*{New Power Line Filter}

Pilgrim Electric Company, Plainview, New York, introduces new, compact "Plug-In" style VOLTECTOR®. It provides the most cost-effective protection against voltage spikes, surges, transients and high frequency interference for Word-Processors, Microcomputers and other Microprocessorbased equipment.


David Ahl, Founder and
Publisher of Creative Computing

You might think the term "creative computing" is a contradiction. How can something as precise and logical as electronic computing possibly be creative? We think it can be. Consider the way computers are being used to create special effects in movies-image generation, coloring and computer-driven cameras and props. Or an electronic "sketchpad" for your home computer that adds animation, coloring and shading at your direction. How about a computer simulation of an invasion of killer bees with you trying to find a way of keeping them under control?

\section*{Beyond Our Dreams}

Computers are not creative per se. But the way in which they are used can be highly creative and imaginative. Five years ago when Creative Computing magazine first billed itself as "The number 1 magazine of computer applications and software," we had no idea how far that idea would take us. Today, these applications are becoming so broad, so allencompassing that the computer field will soon include virtually everything!

In light of this generality, we take "application" to mean whatever can be done with computers, ought to be done with computers or might be done with computers. That is the meat of Creative Computing.

Alvin Toffler, author of Future Shock and The Third Wave says. "I read Creative Computing not only for information about how to make the most of my own equipment but to keep an eye on how the whole field is emerging.

Creative Computing, the company as well as the magazine, is uniquely lighthearted but also seriously interested in all aspects of computing. Ours is the magazine of software, graphics, games and simulations for beginners and relaxing professionals. We try to present the new and important ideas of the field in a way that a 14year old or a Cobol programmer can under-

\title{
creative compating
}

\title{
"The beat covered by Creative Computing is one of the most important, explosive and fast-changing."-Alvin Toffler
}
stand them. Things like text editing, social simulations, control of household devices, animation and graphics, and communications networks.

\section*{Understandable Yet Challenging}

As the premier magazine for beginners, it is our solemn responsibility to make what we publish comprehensible to the newcomer. That does not mean easy; our readers like to be challenged. It means providing the reader who has no preparation with every possible means to seize the subject matter and make it his own.

However, we don't want the experts in our audience to be bored. So we try to publish articles of interest to beginners and experts at the same time. Ideally, we would like every piece to have instructional or informative content-and some deptheven when communicated humorously or playfully. Thus, our favorite kind of piece is acessible to the beginner, theoretically non-trivial, interesting on more than one level, and perhaps even humorous.
David Gerrold of Star Trek fame says, "Creative Computing with its unpretentious, down-to-earth lucidity encourages the computer user to have fun. Creative Computing makes it possible for me to learn basic programming skills and use the computer better than any other source.

\section*{Hard-hitting Evaluations}

At Creative Computing we obtain new computer systems, peripherals, and software as soon as they are announced. We put them through their paces in our Software Development Center and also in the environment for which they are intended home, business, laboratory, or school.
Our evaluations are unbiased and accurate. We compared word processing printers and found two losers among highly promoted makes. Conversely, we found one computer had far more than its advertised capability. Of 16 educational packages,
only seven offered solid learning value.
When we say unbiased reviews we mean it. More than once, our honesty has cost us an advertiser-temporarily. But we feel that our first obligation is to our readers and that editorial excellence and integrity are our highest goals.
Karl Zinn at the University of Michigan feels we are meeting these goals when he writes. "Creative Computing consistently provides value in articles, product reviews and systems comparisons . . . in a magazine that is fun to read."

\section*{Order Today}

To order your subscription to Creative Computing, send \(\$ 20\) for one year (12 issues), \(\$ 37\) for two years ( 24 issues) or \(\$ 53\) for three years ( 36 issues). If you prefer, call our toll-free number, 800-631-8112 (in NJ 201-540-0445) to put your subscription on your MasterCard, Visa or American Express card. Canadian and other foreign surface subscriptions are \$29 per year, and must be prepaid. We guarantee that you will be completely satisfied or we will refund the entire amount of your subscription.

Join over 80,000 subscribers like Ann Lewin, Director of the Capital Children's Museum who says, "I am very much impressed with Creative Computing. It is helping to demystify the computer. Its articles are helpful, humorous and humane. The world needs Creative Computing.'

\section*{creative corrpatirg}

Attn: Barbie
P.O. Box 789-M

Morristown, NJ 07960
Toll-free 800-631-8112
(In NJ 201-540-0445)

The unique heavy duty design meets the latest industry Surge Voltage Standards and provides the highest level of commercially available two-way protection. It assures electronic equipment of clean incoming AC power ... and it prevents disturbances generated by equipment from being conducted back into the power line. The VOLTECTOR® Series 6 Plug-In Power Conditioner supplies the positive surge-protection and filtering that most manufacturers have left out of their equipment.

Available with current ratings of \(1,2,5,7\) and 10 amps .

Prices: Begin at \(\$ 79.50\)
Delivery: Stock

\section*{Manhattan}

Software
Announces Four Atari Game Programs
Manhattan Software, long a publisher of programs for the TRS-80, has begun issuing a series of programs for the Atari Computer. The first four releases are:
Gin Rummy 3.0, with color card graphics and sound, which plays a full regulation game of Gin, and can hold its own against even skilled Gin players. Prices at \(\$ 19.95\), the program requires 32 K memory and one joystick.
Casino Blackjack/Counter, a realistic simulation of playing at a casino table - card graphics show five hands dealt, and the user plays the center hand while the computer plays the rest. A major purpose of the program is to teach card-counting, a method which is claimed to give the player a statistical advantage over the house in some situations. Priced at \(\$ 19.95\), for 24 K and one joystick.
Labyrinth Run, a test of skill and coordination, using the joystick to
guide a fast-moving runner through twists, turns, reverses and slaloms, with thunderous crashes when the runner hits a wall. Three skill levels. \(\$ 14.95\), the game requires two joysticks.

These programs are available at dealers, and direct from Manhattan Software, P.O. Box 35, Pacific Palisades, CA 90272. Telephone (213) 454-8290.

\section*{Atari Adds Missile Command To Its Video Computer System Game Library}

Missile Command \({ }^{\text {TM }}\), a popular coin operated video game currently in arcades, is now available in a home video game version, it was announced today by Atari, Inc., creator and manufacturer of both products.

Largely due to Missile Command's success as an arcade game and in response to considerable consumer demand, Atari designed the game cartridge for its Video Computer System \({ }^{\text {TM }}\) programmable TV game.

The Missile Command game cartridge is a one or two player game that uses joysticks and offers 34 game variations.

According to Michael J. Moone, president of the Consumer Electronics Division, "Missile Command is one of the most challenging skill and action video games ever created. We believe its popularity will be as pervasive as that of its predecessors, Space Invaders and Asteroids."

The game begins with wave after wave of enemy missiles raining down on an earth missile base and 6 surrounding cities. The player, as base commander, is responsible for protecting and defending the territory from enemy attack. To combat each wave of enemy missiles, the base commander is given 30 guided
defense missiles which when exploded in the path of attacking missiles destroys them. Each successive wave of attacking missiles comes faster than the previous one and the game continues until all cities and the missile base are lost.

Additional features include game difficulty adjustment to correspond to player skill levels, slow game variations designed for young children and screen color changes as game progresses to reduce eyestrain during extended game play.

Suggested retail price is \(\$ 31.95\) and cartridges will be available nationwide by April.

New Product releases are selected from submissions for reasons of timeliness, available space, and general interest to our readers. We regret that we are unable to select all new product submissions for publication. Readers should be aware that we present here some edited version of material submitted by vendors and are unable to vouch for its accuracy at time of publication.

\title{
Big Savings On Atari \& PET!
}

No Risk - No Deposit On Phone Orders - Shipped Same Day You Call \({ }^{\circ}\) - C.O.D. or Credit Card
* On all in stock units

Please Call Between 11 AM \& 6PM (Eastern Standard Time)
(800) 233-8950

List \$599.95 New Low Price only \$489.00
Maxell Disks ................ 10 for \(\$ 34\)
Sycom Disks.............. 10 for 29 Atari Disks ................. 5 for 22


\section*{commodore}

回
Commodore Computers:
4032 N
\(\$ 1090\)
4032 B
1090
8032
Commodore Peripherals:
CBM 4022 Printer
CBM 4040 Dual Drive Floppy Disk CBM 8050 Dual Drive Floppy Disk

675
1090
1420
CBM C2N Cassette Drive
Tally 8024 Printer

\section*{To Order:}

Phone orders invited ( 800 number is for order desk only). Or send check or money order. Equipment Shipped UPS collect. Pennsylvania residents add 6\% sales tax. Add 3\% for Visa or MC. Equipment is subject to price change and availability without notice.

\section*{CX8104 Atari 810 Master Diskette II}

New DOS 2 Operating System Master
only \$21.00
Microtek RAM 16K or 32K
- Full 1 year warranty
- Compatible with 400 or 800
- Assembled and Tested


Atari Specialists

\section*{We Carry}

It All

Computer Mail Order
501 E. Third St.
Williamsport, PA 17701
(717) \(323-7921\)
Advertiser's Index
Aardvark Technical Services ..... 91
LemData Products ..... 119
AB Computers ..... 44,45
Abacus Software ..... 42,123
Adventure International ..... 75
Andromeda Incorporated ..... 65
Applied Micro Systems ..... 105
Atari, Inc. ..... 5
Canadian Micro Distributors, Ltd. ..... 25
Cascade Computerware Co. ..... 26
C. E. Soflware ..... 81
CGRS Microtech ..... 37
Cleveland Consumer Computers \& Components ..... 153
CMS Software Systems ..... 57
Cognitive Products ..... 51
Color Computer Concepts ..... 85
COMAL User's Group ..... 23
COMDEX'81 ..... 43
Comm*Data Systems ..... 14
Commodore Business Machines ..... BC
Compugraphics ..... 85
Compumart ..... 16,17
Computer House Division ..... 59,73,149
Computer Magic
Computer Magic ..... 81 ..... 81
Computer Mail Order ..... 159
COMPUTE!'s Book Corner ..... 105,140
Computer's Voice ..... 80
Connecticut microComputer, Inc. ..... 40,41
Co-op Software ..... 73
Creative Computing ..... 157
Crystal Computer ..... 13
Cursor ..... 125
Cyberia, Inc. ..... 117
Disco-Tech ..... 67
Dr. Daley's Software ..... 101
Dynacomp, Inc. ..... 27
E. Ch. U. ..... 50
Eastern House Software
Eastern House Software ..... 56 ..... 56
ECX Computer Corp. ..... 120 ..... 120
Electronic Specialists, Inc. ..... 148
Escon Products, Inc. ..... 56
ETC Computer Corp. ..... 99
FSS ..... 51,118,121
Hobbyworld Electronics ..... 63
Home \& Educational Computing Magazine ..... 151
Howard Industries
System Peripherals
System Peripherals ..... 42 ..... 42
119
Madison Computer
103
103
MAG, Inc
MAG, Inc
89
89
Manhattan Software
Manhattan Software
73
73
Charles Mann \& Associates
Charles Mann \& Associates
53
53
Matrix Software, Inc.
Matrix Software, Inc.
49
49
Melad Associates, Inc. ...........
Micro Computer Industries Ltd. ..... 97
Micro-Ed, Inc. ..... 47
Micro Mini Computer World ..... 31
Microphys Programs ..... 26
Microsoft Consumer Products ..... 2
Micro Technology Unlimited ..... 115,139
Microtek ..... 10,11
Milwaukee Software ..... 86
Mosaic Electronics ..... 77
Mountain Computer ..... IFC
MRJ ..... 135
Netronics ..... 49
New England Electronics Co. ..... 28,29
Office Work Ltd ..... 116
Omega Sales Company ..... 154,155
Optimal Technology ..... 51
Optimized Data Systems ..... 129
Orion Software Associates ..... 95
Pacific Exchanges ..... 63,127
Professional Software ..... 1
Program Design, Inc. ..... 61
Protronics ..... 52
Quality Software ..... 81
Rehnke Software ..... 140
Renaissance Technology Corp. ..... 59
Bob Retelle ..... 93
RNB Enterprises ..... 137
Santa Cruz Software ..... 84
Seawell MicroSystems ..... 145
Sebrees Computing ..... 81
Sheridan College ..... 59
Skyles Electric Works ..... 113
Spectrum Computers ..... 23
Spectrum Software ..... 71
Survival Software ..... 85
Swifty Software, Inc. ..... 85,86
Syncro, Inc. ..... 81Hudson Digital Elec143
Huntington Computing ..... 66
ILLUSIONS II ..... 85
Imprint Software ..... 53
Instant Software ..... 108,109
Interlink, Inc. ..... 122
Iridis ..... 87
Jini Micro Systems ..... 23,33
Kansas City Computers Inc ..... 9
Krell Software ..... 19
Leading Edge ..... IBC
Systems Formulate ..... 73,105
T-Aide Software Company ..... 50
T-Com, Inc. ..... 15
T.H.E.S.I.S. ..... 77
TIS ..... 122
TNW Corporation ..... 123
TSE Hardside ..... 39
United Software of America ..... 6.7
Versa Computing ..... 79
Virginia Micro Systems ..... 123
Voicetek ..... 33
WFG Micro Data ..... 93

Don'f yef have one...
During the next year I expect to buy:

\section*{\(\square\) computer}
\(\square\) printer
disk drive
Please enter my 1 year ( 12 issue) subscription to COMPUTE!New subscription \(\square\) Renewal subscription

Name, Address: \(\qquad\)
\(\qquad\)
\(\begin{array}{llllllll}5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}\)

\section*{The Editor's Feedback:}

My compufer Is:
\(\square\) PET
\(\square\) APPLE
\(\square\) ATAR
OSI
KIM
\(\square\) SYM
\(\square\) AIM
\(\square\) OTHER
\(\qquad\)
\(\square\) Don't yet have one...
During the next year I expect to buy:
\(\square\) computer
printer
\(\square\) other peripherals

\section*{Content:}

Best Article This Issue (page \#, title)

Other suggestions:
\begin{tabular}{llllllll}
5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{tabular}

The 6502 Resource Magazine


My computer Is:
\begin{tabular}{lc}
\(\square\) PET & \(\square\) APPLE \\
\(\square\) KIM & \(\square\) SYM \\
\(\square\) Don't yet have one
\end{tabular}
\(\square\) Don'f yef have one...
During the next year I expect to buy:
\(\square\) compuier
prinfer
\(\square\) other peripherals
disk drivePlease enter my 1 year ( 12 issue) subscription to COMPUTE!New subscription
\(\square\) Renewal subscription
\(\square \$ 20.00\) U.S subscription
\(\square\) \$25.00 Canada and international surface mail: Payment in U.S. funds, drawn on U.S bank or money order.
\(\square\) Bill me (U.S. only). \(\$ 1.00\) billing fee
Name, Address: \(\qquad\)

Visa
\(\qquad\)

\section*{COMPUTE.}

Post Office Box 5406 Greensboro, NC 27403

\section*{COMPUTE!}

Post Office Box 5406
Greensboro, NC 274 O 3

\section*{COMPUTE!}

Post Office Box 5406
Greensboro, NC 274 O 3


With the Starwriter \({ }^{\text {TM }}\) Daisy Wheel 25 cps printer from C. Itoh.

A business letter, written on a 45 cps word-processing printer, might take about two minutes to print.

With the Starwriter, it might take closer to three.

The typical 45 cps printer retails for about \(\$ 3,000\).

But the Starwriter 25 retails for about \(\$ 1,895\)-thus saving you about \(\$ 1,000\).

And therein lies the biggest difference between the Starwriter 25 and the more expensive, daisy wheel printers.

The Starwriter 25 comes complete and ready-to-use, requiring no changes in hardware or software. It uses indus-try-standard ribbon cartridges, and it's "plug-in" compatible to interface with a
wide variety of systems, to help lower system-integration costs.

Using a 96 -character wheel, it produces excellent letter-quality printing on three sharp copies with up to 163 columns, and offers the most precise character-placement available, for outstanding print performance.

\section*{C. Itoh's warranty;}

3 months on parts and labor, supported by one of the best service organizations in the industry.



\title{
LEADING \\ EDGE.
}

Leading Edge Products, Inc., 225 Turnpike Street, Canton, Massachusetts 02021
Dealers: For immediate delivery from the Leading Edge Inventory Bank \({ }^{\text {Th }}\) call toll free 1-800-343-6833
In Massachusetts, call collect (617) 828-8150. Telex 951-624

\title{
The Great American Solution Machine.
}

Meet Commodore. The business computer that's providing solutions for more than 100,000 people all over the world. Built by one of the pioneers in office machines. With a reputation for quality that can only come from vertical integration of the total manufacturing process. Commodore builds, not assembles.

Compare Commodore's word and data processing capabilities with computers costing twice or even three times as much. You'll see why so many small businesses are turning to Commodore for solutions to problems as varied as these:
\(\square\) A car leasing company's customers were terminating too early for account profitability. Solution: A 16 K Commodore. It analyzes cash flow on over 1200 accounts, identifies those for early penalties, and even writes up lease contracts. Commodore paid for itself within weeks. \(\square\) A law firm needed a high quality, easy-to-use, affordable word processing system. Solution: Commodore plus its WordPro software pack-
age. At a \(\$ 6,000\) savings. \(\square\) A gasoline retailer needed to inventory, order and set prices; determine Federal and state income taxes; and comply with Federal pricing and allocation regulations. All done daily, weekly, monthly and yearly. Solution: Commodore. It keeps his business on track-and Uncle Sam off his back.
\(\square\) A paint and wallpaper store had to inventory over 600 expensive wallpaper lines for profitability, monitor distributor sales, set and track salesmen's goals, and help the customer select the right size, pattern and quantity. Solution: Two 32 K

Commodore computers, floppy disk and printer. Commodore does it alland accounting, too.

In applications like these,
```


[^0]: Prices subject to change without notice.

[^1]: **********

