

guide, I typed in the data for an array of nine dimensions,
each dimension having six elements. This dimension will
be known as 0(9,6). The six elements consist of the direc
tions North, South, East, West, Up, and Down. This is
a numerical array, and the number in each element indi
cales the location to which that direction connects. Any non
zero number is a pathway; otherwise there is no exit in that
direction. I did not type in directions for the gas station,
because it is only accessible by use of the forementioned
"magic word.'"

In the fushion of any sensible hacker, I jumped to lines
120 through 210 and designed a data loader. Once I made
sure that the arrays were dimensioned properly in line 120,
I read them in a couple of times in lines 190 and 210 just
to make sure everything was going smoothly berore I contin
ued. This rype-n-run approach is the hacking method, and
it works. Trust me.

Now for the tough part. I had to figure out all the verhs
and nouns that would be needed for the parser's vocabu
lary. In lines 1800-1850 I tried to give the program a rea
sonable dictionary of words to work with ror player input.
An advanced parser would recognize fur, fur more than this
simple collection of words.

Again, I skipped back to the beginning and made sure
these strings loaded in correctly before going on.

Lines 1m through 1900 are detailed descriptions of the
objects that can be canied in the player's inventory. Although
an object might be referenced by the parser as "diamo," it
will be described on the screen as a "glowing diamond."
This gives character and atmosphere to the adventure.

Line 1920 is a list of numbers that tells the program where
to place objects initially. The first number indicates the lo
cation, the second is the object number itself in the inven
tory. The - I, -I at the end of the line signals the end
of the data.

Lines 194O-l9iU are end of game messages, for when the
player is killed or is victorious. If the player is killed, these
lines help tell him where he made his mistake.

With this, I completed the data lines, the major stumb
ling block of any adventure game. Although I made many
changes afterwards and altered these lines considerably be
rore finishing, these lines gave me something to work with,
the meat of the text adventure. The remaining program por
tions manipulate the data loaded in from here in many ways,
but it is in these lines that the game gets its substance.

Important variables to be defined are CL (Current Loca
tion) and the arrays 0(9,8) and 1(8). The former is an array
that tells what objects are in what rooms, and the latter is
the player's inventory array. 1(8) refers directly to the eight
objects listed in line 1840, the objects in the game which
can be carried. Any non-zero number in element 1(1), for
example, would indicate that the player is carrying the torch.
However, a -I would mean the torch is burning, while a
1 would mean it is out. I also set up meaningful flag names
in line 150. These flags indicate the status of certain items.

In lines 340-540, I fleshed out the parser routines. First
the directions, then once the program is recognizing them
correctly and responding, I introduce the other verbs. It
is bener to make sure that all the directions are function
ing correctly first before continuing, because a flaw that
shows up later might take a lot of work to repair. Make

14 AHOYI

certain that the directions in the game correspond identi
cally to your map. It is very common to make errors here.
I often get East and West mixed up while typing them in.

Line 340 gets the player's input. If he enters nothing, the
program checks again. Line 370 checks ror a single charac
ter input (either a direction or the letter "i" ror inventory)
and acts accordingly. Since the six compass directions match
up with the six single character commands perfectly, I just
reduced any of these terms to a number between I and 6,
subtracting 7 if necessary. I can then use this number to
reference the corresponding element in direction array
0(9,6). Once a match is found for the verb, the number
is placed in the variable V.

The verb is the important part. We use the verb to jump
to the subroutine that designaleS the action, so we must have
a verb. The noun, on the other hand, is not always neces
sary ror many actions, and so our parser only looks for
it. If it finds one, it places the number of the noun into
the variable N before branching off to our routine. The sub
routine can then check this variable to see if the player is
referencing the correct object. For example, if the player
gives the command to dig, we check the variable N to de
termine whether or not he wants to dig in any particular
spot, as in DIG MOUND. IfN=O, we simply print a stan
dardized message that reads "YOU DIG FOR A WHILE
BUT YOU DOW!' FIND ANYTHING."

After the parser has both these variables, V and N, as
signed with values, it drops through to lines 570-580, the
branches. These lines will steer the program flow into the
correct verb actions that alter program variables and the
game environment.

These lines run from 700-1520, accomplishing every pos
sible action that the player is permined to take in our ad
venture. If you study them carefully, the variables are self
explanatory and it should be readily apparent that they act
on values to change location inventory, specific flags (mound
full-empty, wolf dead-alive, etc.), and print messages for
the player's benefit.

After program flow returns from these subroutines, the
main parser program executes a series of critical checks
in lines 600-690. These flags count elapsed time in the cur
rent location and check on the player's status relative to cer
tain non-player characters and events. For example, if the
player is in room 4 for more than rour turns with the spirit,
he is going to get it good. The same goes ror being in a
river full of water too long or beside a hungry wolf.

The check for a win is in line 600. This line checks if
a variable called WINGAME has been set yet by the drop
subroutine. If the player drops all three treasures in loca
tion zero, this flag will be set upon returning from the rou
tine, telling the main program that the player has succeeded.

With as Iinle work as all this, an adventure game was
born. We have a full-fledged story, with a plot, characters,
and suspense. Next month, welI go over the specifics of
the way the parser functions, and methods we could use
to upgrade the routine so that it could recognize complete
sentences.

Until then, remember-stop wrestling with the program
as a whole and break it down into modules. You cannot
move mountains unless you do it one bucket of dirt at a
time! 0

guide, I typed in the data for an array of nine dimensions,
each dimension having six elements. This dimension will
be known as D(9,6). The six elements consist of the direc
tions North, South, East, West, Up, and Down. This is
a numerical array, and the number in each element indi
cates the location to which that direction connects. Any non
zero number is a pathway; otherwise there is no exit in that
direction. I did not type in directions for the gas station,
because it is only accessible by use of the forementioned
"magic word."

In the fushion of any sensible hacker, I jumped to lines
120 through 210 and designed a data loader. Once I made
sure that the arrays were dimensioned properly in line 120,
I read them in a couple of times in lines 190 and 210 just
to make sure everything was going smoothly before I contin
ued . This type-n-run approach is the hacking method, and
it works. Trust me.

Now for the tough pan. I had to figure out all the verbs
and nouns that would be needed for the parser's vocabu
lary. In lines 1800-1850 I tried to give the program a rea
sonable dictionary of words to work with for player input.
An advanced parser would recognize fur, fur more than this
simple collection of words.

Again, I skipped back to the beginning and made sure
these strings loaded in correctly before going on.

Lines 1870 through 1900 are detailed descriptions of the
objects that can be carried in the player's inventory. Although
an object might be referenced by the parser as "diamo," it
will be described on the screen as a "glowing diamond."
This gives character and atmosphere to the adventure.

Line 1920 is a list of numbers that teUs the program where
to place objects initially. The flfSt number indicates the lo
cation, the second is the object number itself in the inven
tory. The - I, -I at the end of the line signals the end
of the data.

Lines I94O-I9iU are end of game messages, for when the
player is killed or is victorious. If the player is killed, these
lines help tell him where he made his mistake.

With this, I completed the data lines, the major stumb
ling block of any adventure game. Although I made many
changes afterwards and altered these lines considerably be
fore finiShing, these lines gave me something to work with,
the meat of the text adventure. The remaining program por
tions manipulate the data loaded in from here in many ways,
but it is in these lines that the game gets its substance.

Imponant variables to be defined are CL (Current Loca
tion) and the arrays 0(9,8) and 1(8). The former is an array
that tells what objects are in what rooms, and the latter is
the player's inventory array. 1(8) refers directly to the eight
objects listed in line 1840, the objects in the game which
can be carried. Any non-zero number in element 1(1), for
example, would indicate that the player is carrying the torch.
However, a -I would mean the torch is burning, while a
I would mean it is out. I also set up meaningful flag names
in line 150. These flags indicate the status of cenain items.

In lin.es 340-540, I fleshed OUI the parser routines. First
the directions, then once the program is recognizing them
correctly and responding, I introduce the other verbs. It
is better to make sure that all the directions are function
ing correctly first before continuing, because a flaw that
shows up later might take a lot of work to repair. Make

14 AHOY!

ce.nain that the directions in the game correspond identi
cally to your map. It is very common to make errors here.
I often get East and West mixed up while ryping them in.

Line 340 gets the player's input. If he enters nothing, the
program checks again. Line J70 checks for a single charac
ter input (either a direction or the letter "i" for inventory)
and acts accordingly. Since the six compass directions match
up with the six single character commands perfectly, I just
reduced any of these terms to a number between I and 6,
subtracting 7 if necessary. I can then use this number to
reference the corresponding element in direction array
D(9,6). Once a match is found for the verb, the number
is placed in the variable V.

The verb is the imponant part. We use the verb to jump
to the subroutine that designates the action, so we must have
a verb. The noun, on the other hand, is not always neces
sary for many actions, and so our parser only looks for
it. If it finds one, it places the number of the noun into
the variable N before branching off to our routine. The sub
routine can then check this variable to see if the player is
referencing the correct object. For example, if the player
gives the command to dig, we check the variable N to de
termine whether or not he wants to dig in any panicular
spot, as in DIG MOUND. If N =0, we simply print a stan
dardized message that reads "YOU DIG FOR A WHll.E
BUT YOU Dam FIND ANYTHING."

After the parser has both these variables, V and N, as
signed with values, it drops through to lines 570-580, the
branches. These lines will steer the program flow into the
correct verb actions that alter program variables and the
game environment .

These lines run from 700-1520, accomplishing every pos
sible action that the player is permitted to take in our ad
venture. If you study them carefully, the variables are self
explanatory and it should be readily apparent that they act
on values to change location inventory, specific flags (mound
full-empty, wolf dead-alive, etc.), and print messages for
the player's benefit.

After program flow returns from these subroutines, the
main parser program executes a series of critical checks
in lines 600-690. These flags count elapsed time in the cur
rent location and check on the player's status relative to cer
tain non-player characters and events. For example, if the
player is in room 4 for more than four turns with the spirit ,
he is going to get it good. The same goes for being in a
river full of water too long or beside a hungry wolf.

The check for a win is in line 600. This line checks if
a variable called WINGAME has been set yet by the drop
subroutine. If the player drops all three treasures in loca
tion zero, this flag will be set upon returning from the rou
tine, telling the main program that the player has succeeded.

With as little work as all this, an adventure game was
born . We have a full-fledged story, with a plot, characters,
and suspense. Next month, well go over the specifics of
the way the parser functions, and methods we could use
to upgrade the routine so that it could recognize complete
sentences.

Until then, remember-stop wrestling with the program
as a whole and break it down into modules. You cannot
move mountains unless you do it one bucket of din at a
time! 0

)

And Q·Link, the dynamic telecommunications service for
Commodoree owners, does just that!

As the developer of GEOS, the graphics environment operating
system for Commodore 64s and 12&, I know how good Q·Link is.
Personally and professionally. Here at my company, we recommend
Q·Link to all our customers. We use it ourselves, too, for online
customer service ... so you can get help when you need it We've
also found it's a very efficient way to provide upgrades and patches
and to announce new GEOS-<:ompatible products.

With just your Commodore, a modem and Q·Link software, a new
world of personal computing options opens up: thousands of
programs you can download and keep; advanced graphics (thanks
to GEOS); an exclusive help line to experts at Commodore;
online educational courses taught by real teachers; fun; games;
friendship, you·name·it. Q·Link lets you realize the full potential of
Commodore computing - right at your fingertips.

00 I use Q·Link? Absolutely! And what's really impressive is that
when you join Q·Link, you get a modem and Q·Link Software free! To
my mind that's a tough offer to tum down. But don't take my word
for it Find out for yourself. Call . ..

T
TM

ATsE

)

•

•

•

R

ASEBALL--

up

ReM:ler Service No. 181

,

),

its
n
ile

d,
D-

!II
IN

III
e.
:s
)

l-

II PUR E - STAT

ASEBALL ™

R .. d., Strvlc. No. 181

32 AHOY/

Real-World Interface: Temperature Sensing
actual resistance values must calibrate the AID converters.
If you need only relative values ("is the paddle turned more
to the left or more to the right?", for example), calibration
may not be necessary.

Just to eliminate any confusion, I should mention that
AID converters generally convert analog input voltages (not
resistance) into digital quantities. (Refer to Analog ro Digital
Adventures, October 1986 Ahoy!, for further discussion of
A to D conversion.) Since voltage and resistance are rela
ted, it is appropriate and more useful to talk about input
resistance in this application.

CO."•••,OM sonwa••
The AID converters are accessed through Control Ports

I and 2 (the joystick ports) on the right side of the compu
ter. Each port can handle two resistance inputs. Normally
game paddles are plugged into the' AID pins of these ports.
There are only two AID converters in the Commodore com
puter, but there is an electronic switch which can select the
inputs from either Port I or Port 2. That way two AID con
verters take care of four analog inputs.

BASIC 7.0 in the C-128 uses the Par command to read
the AID converters. Par(l) and Par(2) give values corre
sponding to Control Port I inputs (closest to the front of
the computer). POf(3) and POf(4) correspond to Control
Port 2.

For the C-64, you must read the AID converters by other
means. On page 346 of the C-64 Programmer's Reference
Guide (pRG) is a machine language program for reading
all four AID ("paddlej inputs. It states that reading the pad
dles from BASIC is not reliable. The machine language pro
gram C-64 Paddle Routine on page 66 of this magazine
is a condensed version of the PRG program which allows
inputs only in Control Port 1.

The procedure to perform an AID conversion and to read
the results is as follows:

I. Set the electronic switch at address $DC02 (addresses

By Dale Rupert

Thermal
Connection

T
he computer can do much more than merely exe
cute programs. When connected to the proper
devices, the computer can measure various char
acteristics of the real world (the world outside

of the computer's circuitry), and it can control some of those
characteristics. In previous articles we have connected the
computer to photo-cells, light-emitting diodes, potentiome
ters, and relays. This month we will use a temperature-sens
ing device, a thermistor, to tum the computer into a mod
erately accurate digital thermometer.

Both the C-64 and the C-128 have built-in analog-to-dig
ital converters. These are called "A to D" or simply "AID"
converters. The function of an AID converter is to receive
an analog input signal and to convert it to a digital value.
Specifically, the AID converters in the Commodore com
puters give an integer value from 0 to 255, which is pro
portional to the amount of resistance applied to their inputs.

a 1'0 D PUMDAMINTAU
If you apply a short circuit between the 5 volt supply

voltage and the AID's input, the AID sees a resistance of
zero ohms and converts this to a digital value of O. If you
leave the input to the AID converter unconnected or open,
the AID sees essentially an infinite resistance between its
input and the 5 volt supply. Then the AID converter gives
the largest value it can, namely 255.

The AID converters in the Commodore computers give
an output value of I for approximately every 10,000 ohms
of input resistance. That is, 50,000 ohms corresponds to
an AID output of roughly 50. This is fuirly accurate for
resistance below 100,000 ohms and output values of less
than 100.

Because of different AID input circuitry, the C-64 reaches
its maximum value of255 with an input resistance of roughly
500,000 ohms, whereas the C-128 gives a maximum output
of255 with an input of about 250,000 ohms. Note that these
are only "rules of thumb." Any serious application requiring

Thermal
Connection

Real-World Interface: Temperature Sensing

T
he computer can do much more than merely exe
cute programs. When connected to the proper
devices, the computer can measure various char
acteristics of the real world (the world outside

of the computer's circuitry), and it can control some of those
characteristics. In previous articles we have connected the
computer to photo-cells, ligbt-emining diodes, potentiome
ters, and relays. This month we will use a temperarure-sens
ing device, a thermistor, to tum the computer into a mod
erately accurate digital thermometer.

Both the C-64 and the C-128 have built-in analog-to-dig
ital converters. These are called "A to 0 " or simply "AID"
converters. The function of an AID converter is to receive
an analog input signal and to convert it to a digital value.
Specifically, the AfD converters in the Commodore com
puters give an integer value from 0 to 255, which is pro
portional to the amount of resistance applied to their inputs.

" 1'0 D PUIiDAMlIITAU
If you apply a short circuit between the 5 volt supply

voltage and the AID's input, the AfD sees a resistance of
zero ohms and converts this to a digital value of O. If you
leave the input to the AID converter unconnected or open,
the AfD sees essentially an infinite resistance between its
input and the 5 volt supply. Then the AID converter gives
the largest value it can, namely 255.

The AID converters in the Commodore computers give
an output value of 1 for approximately every 10,000 ohms
of input resistance. That is, 50,000 ohms corresponds to
an AID output of roughly 50. This is fuirly accurate for
resistance below 100,000 ohms and output values of less
than 100.

Because of different AID input circuitry, the C-64 reaches
its maximum value of255 with an input resistance of roughly
500.000 ohms, whereas the C-128 gives a maximum output
of255 with an input of about 250.000 ohms. Note that these
are only "rules of thumb." Any serious application requiring

actual resistance values must calibrate the AID converters.
If you need only relative values ("is the paddle turned more
to the left or more to the right?", for example), calibration
may not be necessary.

Just to eliminate any confusion, I should mention that
AID converters generally convert analog input voltages (not
resistance) into digital quantities. (Refer to Allnlog 10 Digital
Adventures, October 1986 Ahoy!, for further discussion of
A to 0 conversion.) Since voltage and resistance are rela
ted, it is appropriate and more useful to talk about input
resistance in this application.

COIIV ••• IOII Nnw" ••
The AID converters are accessed through Control Ports

I and 2 (the joystick ports) on the right side of the compu
ter. Each port can handle two resistance inputs. NormalJy
game paddles are plugged into the· AID pins of these ports.
There are only two AfD converters in the Commodore com
puter, but there is an electronic switch which can select the
inputs from either Port I or Port 2. That way two AID con
verters take care of four analog inputs.

BASIC 7.0 in the C-128 uses the Par command to read
the AfD converters. Par(l) and Par(2) give values corre
sponding to Control Port I inputs (closest to the front of
the computer). Por(3) and Por(4) correspond to Control
Port 2.

For the C-64, you must read the AID converters by other
means. On page 346 of the C-64 Programmer's Reference
Guide (pRG) is a machine language program for reading
all four AfD ("paddle") inputs. It states that reading the pad
dles from BASIC is not reliable. The machine language pro
gram C-64 Paddle Routine on page 66 of this magazine
is a condensed version of the PRG program which allows
inputs only in Control Port I.

The procedure to perform an AfD conversion and to read
the results is as follows :

I. Set the electronic switch at address $DC02 (addresses

By Dale Rupert
32 AHOY/

By Rlcharel Curcio

WINDOW _ISSING
For the (-128

PRINT AT AND CURSOR .ISTOIII
While CHAR can be used as a form of PRINTAT on

a text screen, there are a few problems with this. The CHAR
statement will only print characters within quotes or string
variables. Numeric values must first be converted to strings
using STRS. Strings must be concatendated if you want to
include more than one in a CHAR statement. CHARO,5,
10,M$;H$ causes a SYNlAX error. Once CHAR has moved
the cursor, it cannot easily be returned to where it came
from. Early versions of the C-128 ROMs have a bug when
CHAR is used in 80 columns.

The Kemal PLOT routine at 65520 (or 49176) could be
used to move the cursor to a selected row and column be
fore a PRINT statement. The "AT" routine provides a few
enhancements to this approach:

SYS AT, flag, row, column ["string]

The first value, flag, determines whether the cursor will
be returned to where it was before SYS AT. This parame
ter cannot be omitted. If 0, the cursor is restored. Any val
ue from I to 255 defers cursor restoration. The cursor po
sition is saved, but will not be restored until SYS CR. This
aUows us to follow SYS AT with multiple PRINT statements
before returning the cursor to its original position, if at aU.
Row and column refer to the current window dimensions.
Note that these are in a different order than that used by

dow. If the heading is a string variable, the LEN and
RWINDOW(I) functions can be used to determine if the
heading is too long for the window's width. Note that RWIN
DOW(O) and (I) return the number of rows or columns mi
nus one.

Once the inner window is opened, the routine performs
a "dummy" PRINT. This turns off reverse printing if it was
enabled.

AHOY/ 31

A well-placed window can give a C-128 BASIC
program a very sophisticated look. The
WINDOW statement in BASIC 7.0, however,
is essentiaUy a no-frills command. Window

Dressing provides four routines to enhance your text screen
displays. Program I POKEs the machine language for Win
dow Dressing into location 4864. It can be located else
where by changing the variable SA in line 110. The pro
gram uses 247 bytes plus 200 bytes for storage immediate
ly after the ML. The four routines are accessed with SYS
statements. If SA is the start address, then FRAME=SA,
AT=SA+3, CR=SA+6, and ED=SA+9.

WINDOW RlAMI
caUing FRAME quickly prints a neat box around the

perimeter of the current window and (optionaUy) a head
ing at the top of the box. A window is then opened inside
the box. Your WINDOW statement should therefore open
a window two columns wider and two rows laUer than
needed. The syntax is SYS FRAME [.. , .. heading). The
five commas must be present if a heading is caUed for. The
routine uses the current character color and mode (normal
or reverse) for the frame. The characters used are COM
MODORE A, SHIFf " aod COMMODORE S for the top,
SHIFf-, cursor right, and SHIFf - for the sides, and
COMMODORE Z, SHIFf • and COMMODORE X for
the bottom. These characters were chosen because they ap
pear the same in uppercase/graphics or upperflower case.
They can be changed.

The heading can be anything PRINThble: string or num
eric variables or literals, color changes, cursor controls,
etc. The heading begins at the upper left comer of the frame.
Start the heading with a cursor right if you don't want to
overwrite the comer character. There is no error checking
of the length of the heading versus the width of the win-

"
I

:h
IS

Ie

10
Ie

l.
T
:e

WINDOW DRESSING
For the (·128

By Richard Curcio
well-placed window can give a C-128 BASIC
program a very sophisticated look. The
WINDOW statement in BASIC 7.0, however,
is essentiaUy a no-frills command. Window

Dressing provides four routines to enhance your text screen
displays. Program I POKEs the machine language for Win
dow Dressing into location 4864. It can be located else
where by changing the variable SA in line 110. The pro
gram uses 247 bytes plus 200 bytes for storage immediate
ly after the ML. The four routines are accessed with SYS
statements. If SA is the start address, then FRAME=SA,
AT=SA+3, CR=SA+6, and ED=SA+9.

WIIiDOW PRAM.
CaUing FRAME quickly prints a neat box around the

perimeter of the current window and (optionaUy) a head
ing at the top of the box. A window is then opened inside
the box. Your WINDOW statement should therefore open
a window two columns wider and two rows laUer than
needed. The syntax is SYS FRAME ["", heading) . The
five commas must be present if a heading is caUed for. The
routine uses the current character color and mode (normal
or reverse) for the frame. The characters used are COM
MODORE A, SHIFf " and COMMODORE S for the top,
SHIFf - , cursor right , and SHIFf - for the sides, and
COMMODORE Z , SHIFf • and COMMODORE X for
the bottom. These characters were chosen because they ap
pear the same in uppercase/graphics or upperflower case.
They can be changed.

The heading can be anything PRINThble: string or num
eric variables or literals, color changes, cursor controls,
etc. The heading begins at the upper left corner of the frame.
Start the heading with a cursor right if you don't want to
overwrite the comer character. There is no error checking
of the length of the heading versus the width of the win-

dow. If the heading is a string variable, the LEN and
RWINDOW(I) functions can be used to determine if the
heading is too long for the window's width. Note that RWlN
DOW(O) and (I) return the number of rows or columns mi
nus one.

Once the inner window is opened, the routine performs
a "dummy" PRINT. This turns off reverse printing if it was
enabled.

PRINT AT AIID CURSOR R.STOII.
While CHAR can be used as a form of PRINTAT on

a text screen, there are a few problems with this. The CHAR
statement will only print characters within quotes or string
variables. Numeric values must first be converted to strings
using STRS. Strings must be concatendated if you want to
include more than one in a CHAR statement. CHARO,5,
10,M$;H$ causes a SYNlAX error. Once CHAR has moved
the cursor, it cannot easily be returned to where it came
from. Early versions of the C-128 ROMs have a bug when
CHAR is used in 80 columns.

The Kemal PLOT routine at 65520 (or 49176) could be
used to move the cursor to a selected row and column be
fore a PRINT statement. The "AT" routine provides a few
enhancements to this approach:

SYS AT, flag, row, column ["string)

The first value, flag, determines whether the cursor will
be returned to where it was before SYS AT. This parame
ter cannot be omitted . IfO, the cursor is restored . Any val
ue from I to 255 defers cursor restoration. The cursor po
sition is saved, but will not be restored until SYS CR. This
aUows us to follow SYS AT with multiple PRINT statements
before returning the cursor to its original position, if at aU .
Row and column refer to the current window dimensions.
Note that these are in a different order than that used by

AHOYI 31

