
If any manufacturing defect becomes apparenl within 30 days ol purchase, the defective cassette/disk will be replaced

free of charge subject lo its return by the consumer by prepaid mail. Send a letter specifying the defect lo:

RERUN • 80 Pine Street • Peterborough, NH 03-158

Replacements will not be made if the cassetle/dlsk has been altered, repaired, or is misused through negligence,

shows signs ol excessive wear or is damaged by equipment.

RERUN is simply the listing from RUN Magazine. It will not run under all system configurations. Use the Key Box ac

companying each article in RUN as your guide.

The entire contents are copyrighted 1984 by CW Communications/Peterborough. Unauthorized duplication is a viola-

lion ol applicable laws.

© Copyright 1984 CW Communications, Inc/Peterborough

CW COMMUNICATIONS

PETERBOROUGH
80 RneSLRMerfomKiyh.New Hampshire 03458

REPRINTED

ARTICLES

FROM

JANUARY

TO

JUNE

1984

RL I hi

MAGAZINE

DIRECTORY OF PROGRAMS

INTRODUCTION

OPERATING INSTRUCTIONS

COMMODORE 64
"ZELAZ64

"SYM-CODE

"KINGDOM

"DATABASE

"FNCTKEY

"SPRITEN

"BOMBER

"TLMUSIC

"REPEAT

"DSKO-64

JAN P42"

JAN P92"

FEB P76"

FEB P48"

FEB P70"

FEB P124"

MAR P106"

MAYP132"

MAY P82"

JUN P54"

3

6

8

15

17

19

21

25

27

30

32

35

"UP C64XDOWN VIC

VIC 20

"DSKOVIC

"KNGDM

"FUNCTKEY

"DBASE/3K

"VICASSO

"DOODL/3K

"SERP/3K

JAN P102"

FEB P76"

FEB P70"

FEB P48"

FEBP132"

JUN P98

MAR P58"

"SERPENT MODULE"

"BAHA1000 MAR P68"

"BAHA MODULE"

"CAVES MAY P90"

"CAVES MODULE"

"FUNKEY APR P58"

38

17

21

19

46

49

54

54

58

61

62

The file names listed above contain the month of issue and page number.

*This program is not included on the cassette version of RERUN.

Cassette users please note that Side A contains the Commodore pro

grams and Side B contains the VIC 20 programs.

2

the

Please send me RERUN

VOLUME III I understand

that it will be available with

December 1984 issue of RUN.

Cassette version(s)at $11.47* each.

Disk version(s) at $21.47 each.

■ Piices include $1.50 postage and handling.

Foreign Air Mai! please add an additional 45c per item.

U.S. funds drawn on U.S. banks ONLY.

□ Check/MO

Card #

Signature

Name

Address_

City. .

□ MC □ VISA □ AE

Exp. Date.

.State. -Zip.

RERUN • 80 Pine Street • Peterborough, NH • 03458

DIRECTORY OF PROGRAMS

INTRODUCTION

OPERATING INSTRUCTIONS

COMMODORE 64
"ZELAZ64

"SYM-CODE

"KINGDOM

"DATABASE

"FNCTKEY

"SPRITEN

"BOMBER

"TLMUSIC

"REPEAT

"DSKO-64

JAN P42"

JAN P92"

FEB P76"

FEB P48"

FEB P70"

FEB P124"

MAR P106"

MAYP132"

MAY P82"

JUN P54"

3

6

8

15

17

19

21

25

27

30

32

35

"UP C64XDOWN VIC

VIC 20

"DSKOVIC

"KNGDM

"FUNCTKEY

"DBASE/3K

"VICASSO

"DOODL/3K

"SERP/3K

JAN P102"

FEB P76"

FEB P70"

FEB P48"

FEBP132"

JUN P98

MAR P58"

"SERPENT MODULE"

"BAHA1000 MAR P68"

"BAHA MODULE"

"CAVES MAY P90"

"CAVES MODULE"

"FUNKEY APR P58"

38

17

21

19

46

49

54

54

58

61

62

The file names listed above contain the month of issue and page number.

*This program is not included on the cassette version of RERUN.

Cassette users please note that Side A contains the Commodore pro

grams and Side B contains the VIC 20 programs.

2

the

Please send me RERUN

VOLUME III I understand

that it will be available with

December 1984 issue of RUN.

Cassette version(s)at $11.47* each.

Disk version(s) at $21.47 each.

■ Piices include $1.50 postage and handling.

Foreign Air Mai! please add an additional 45c per item.

U.S. funds drawn on U.S. banks ONLY.

□ Check/MO

Card #

Signature

Name

Address_

City. .

□ MC □ VISA □ AE

Exp. Date.

.State. -Zip.

RERUN • 80 Pine Street • Peterborough, NH • 03458

will help you.

V-- the location of the bomb

CA— the position in iln- cactus string

I)— I lie control variable for the jumping

truck

C—■ a control variable to poke oui ilnal

bomb display

WC— tire color, either white or black

SN— noise voice location

SV— volume location (also auxiliary color)

DS— homes and then comes down to road

level

S$— a line of solid blocks

F$— homes and then goes to llie normal

location of the truck

CAS— a series of cursor riglils, a caclus and

then more cursor rights

Table I. Explanations of the vari

ables used in the Baja 1000 program.

Routines

The main game loop statements arc

in the first part of the program.

Lines 85-87: a subroutine thai drops

the bomb and checks for a hit.

Lines 200-250: the end of the game.

Lines 250-300: the Hit a Cactus rou

tine.

Lines300-400: the crash routine.

Lines 480-481: the data that moves

the helicopter.

Lines 500 and on: just initialization.

The program is lull of tricks 1 learned

from many hours of programming

bookkeeping, database and word pro

cessing programs, so it may contain

some new things for game makers. It

should not only be fun to play, but

hopefully, it will inspire some experi

mentation, too. i*

program is loaded, type RUN and

press the return key, and you're on

your way.

If you're a disk user, just type

LOAD "entire-program-name" , 8

then press the return key and the

program should load.

When we say "entire-program-

name," we mean either the entire

name, including the month and

page number, just the way it ap

pears on the box, or the "wild

card" method, the first few letters

followed by an asterisk.

For example, if you want to load

the program DISK-O-VIC, you must

type it exactly as we show it on the

box —DSKOVIC JAN P102—or, if

you're lazy {like me), you can type

the first four or five letters of the

name and add an asterisk (*) as a

wild card. So to load DISK-O-VIC,

you would only have to type

how much work we put into this

and so on, but all you have to do is

order a copy, try a few of the pro

grams and see for yourself. After

all, if you didn't think that RUN

magazine was worthwhile, then

you wouldn't be reading this now,

would you?

GW

LOAD"DSKO*",8

(check your manuals for more on

how to load programs).

We could go on and on about RE

RUN—how wonderful the pro

grams are, how inexpensive, how

easy, how to load and run them,

60 ...,.,..,,..,- 5

HOW TO LOAD

How to load programs from RERUN:

disk-

to load any of the programs type:

LOAD " program-name " , 8

then press the RETURN key.

The disk drive should 'whirr' while the screen prints SEARCHING FOR

program-name. The screen should then print LOADING and then finally

READY with the flashing cursor beneath. Type RUN and press the

RETURN key. The program will then begin.

CASSETTE—

Insert the cassette tape into the Datasette recorder with the proper side

facing up {Commodore 64 side up if you own a Commodore 64 and VIC-20

side up if you own a VIC-20)

Make sure that the tape is rewound all the way to the beginning.

Type

LOAD " program-name "

then press the RETURN key. The screen will display

PRESS PLAY ON TAPE

you should then push the play button on your datasette recorder. WARN

ING: do not press the RECORD button and the PLAY button at the same

time or you may destroy the programs on the tape.

The datasette motor should then start by itself. When the program has

been found the screen will display

FOUND program name

on some Commodore computers you may then have to press the C =

(Commodore symbol) key to then load the program. On other Commodore

machines the program will load automatically. Check your owner's

manual for specific loading procedures.

When the program has finished loading you will see the READY prompt

and the flashing cursor beneath. Type RUN and press the RETURN key to

start the program.

This is the basic technique used to

move the ground underneath the truck;

a separate string moves the cacti along

the outcropping of the turf. When we

combine this with the mull-color graph

ics capabilities, you'll see that the I ruck

wheels follow the ups and downs of the

ground without a single Peek and only

two Pokes.

The wheels, formed atop each piece

of turf, are formed in multi-color mode

in a character color the same as the

screen color so that you can't see the

wheel part. Then, by Poking the color

memory at the location below the truck

wheel-wells to a black character color,

the black tires appear, and always right

on the ground.

If you change POKE 646,9 in line 120

to POKE 646,8, you will see that the

tires are there all the time, just invisible.

Combining these two techniques allows

elaborate side scrolls with reasonable

speed.

The course you drive in Baja I (XX) is

composed of four strings—B$(l-4).

These strings arc scrolled with a For...

Next loop beginning in line 110 and

printed in line 120.

B$s are in turn composed of differing

combinations of Al$, A2$ and A3$.

Each B$, formed in lines 585 and 586, is

made of four substrings. The substrings

can be found in lines 580-583. They arc

composed of @, A, B, C, D and Es.

These specially created graphics char

acters make up the ground (and the

tires). A "@" is a complete block, and

an "A," an empty space. The others

range in between. In these substrings,

the As are the ditches, the @s will

sprout cacti if there are not already cacti

on the screen, and the others cause the

undulations of the ground.

I encourage you to create new

courses, especially after you master this

one. The rules for creating the strings

are simple. Al$ should start each 11$.

A2S should end each B$. The first 22

characters of A1$ should be the same as

the last 22 characters in A2$. I don't like

the terrain too rough, so I usually just

move to the next letter, and 1 like to

avoid ditches in the first 22 characters

of Al$ so the poor guy doesn't crash

right away. But aside from that, you

can create both easy and difficult

courses. Just change those 63 character

strings around and enjoy a new chal

lenge.

The program comes in two parts and

should be saved on tape, one right after

the other. The first program reserves a

section of memory for special char

acters, and then Pokes data into the

memory to create the special characters.

Use of special characters gives this pro

gram a high - resolution graphics ap

pearance.

The program uses double-high char

acters, which are eight pixels wide and

16 pixels deep. This is the reason the

data is arranged in sixleens. If you wish

to vary any of the special charac

ters—for instance, change the pickup

truck into a Bronco—it should be easy

to find your way. This first data state

ment creates the @, the second the A,

the third the B and soon. The rest of the

first program displays some simple di

rections and automatically loads the

second part.

When typing in the second part of the

program, you should enter line one as

GOTO 510. This will prevent the pro

gram from going into double-high

character mode as well as from shifting

to custom characters. The program may

look like the war of the alphabet, but it

will let you find your errors, as the error

messages come up in English instead of

fragmented truck parts. When all seems

to be working, then enter GOTO 5(X). 1

left out REM statements because there

isn't enough memory in the uncx-

panded VIC, but the chart in Table 1

59

BAJA 1000

In Baja 1000, an arcade-style game

for the unexpanded VIC-20, you drive

your 4x4 pickup across rough terrain

and try to escape ruthless pursuers, who

arc in a helicopter with heat-seeking

bombs.

If you can switch your exhaust from

down on the ground to up in the air,

you will confuse the heat-seeking

capabilities of the bombs. If you can

avoid the ditches and the giant cactus

plants, you might make it to safety.

The space bar sends your truck into

the air, which enables you to jump the

ditches and the cacti. The F7 key switches

your exhaust to confuse the heat-seek

ing bombs that are carefully dropped

from the helicopter. The letter at the

bottom of the screen helps you keep

track of your mileage.

The course has four sections, A

through D. The course listed is medium

tough, and I'll teach you also how to

write a more difficult one, in case this is

too easy for you. (Or you may want to

make it easier—for your little sister, of

course.)

This program illustrates one of the

most powerful features of Microsoft

Basic—its ability to create graphics ani

mation. As a beginning programmer,

you soon discover that Poking your ani

mated graphics on the screen brings the

action almost to a halt.

At this point, people too often give

up on Basic and turn to Forth or As-

RUN It Right

Unexpanded VIC-20

Address author correspondence to

Bruce S. Gordon, 701 S. 11th St., Her-

rin, IL 62948.

sembly Code. They fail to recognize

that printing strings in Basic is very

close to a machine language memory

move. The interpreter still has to keep

track of a lot of things and do a lot of

jumping around, but it's remarkably

fast.

To see how fast this technique is, try

the following program and refer to your

manual if you don't understand how it

works.

10 AS - ■•(22 spaces) B (22 spaces)"

20 FOK1 1TO2.1

30 PRINT CHR$(19) M[DS(AS,I,22>

40 NEXT!

50 GOTO20

Now add this appropriate time delay so

you can see the B run across the screen:

33 FORT - ITO100: NEXT

You might say that you could make

the B go that fast by using Pokes, but

remember we're not just putting up one

character with this program; we're

printing 22 characters, each of which

could be different. We could add dif

ferent colors too, and it will go just

about as fast.

With Poking you need to Poke both

screen and screen color memory, and if

you want to shift in and out of multi

color mode, you'll see that specdwise,

Poking just can't compete with print

ing. Try this program and then try to ac

complish it with Poking.

10A$=" [color black] * [color red] *

[color cyan] • [color purple] * [color

green] * [color blue] * [color yellow] *

(each color change and symbol

should be separated by two spaces)

15 A$ = A$ + AS+A$ + A$

20FORl = lTO90

25 PFUWCHR$(I9)M1D$(A$,I,28)

30 FORT- lTO90:NEXT

40 NEXT!

50 GOTO20

58

NOTE: 1

You should use the entire program name as listed to avoid loading pro

grams that have similar titles.

NOTE 2:

Make sure that if you are loading VIC-20 programs you have the correct

memory expansion cartridge (or no cartridge if that is required) plugged in

before loading the program. The memory configurations are listed as part

of the title. EG: "DBASE/3K FEB P48" requires a 3K memory expansions

cartridge.

NOTE 3:

Some VIC-20 programs are divided into two sections, the main section

(the one you should load first) and the MODULE section that is either

automatically loaded when the first section is run or is loaded manually

after the first section is run.

IMPORTANT

Commodore 64 programs (the first 10 programs on the disk) will NOT nor

mally run on a Commodore VIC-20 and by the same token VIC-20 pro

grams will NOT usually run on a Commodore 64. Even though you may be

able to load a particular program into the wrong computer it is unlikely

that it will run properly.

ALWAYS refer to the article in the magazine (month and page numbers

are given in the title of each program) for operating instructions, memory

requirements, etc.

7

CANYONS OF
You're good—no doubt

about it. You've fought off

hundreds of invaders, made

the jump to hyperspace and

shot your way through a

meteor swarm that was bliz

zard-thick on your sensors.

Now you've earned a rest,

unless... maybe you're good

enough to fly the mail run in

the Canyons of Zelaz, a game

that illustrates the use of

sprite graphics on the Com

modore 64.

By Gary D. McClellan

Enjoyable games can be created in

Basic using the C-64's sprite graphics

capability—wiihoui the need for writ

ing routines in assembly language. The

simple process for generating such a

game can be broken down into three

general steps:

1. Define the scenario and what ac

tion will lake place.

2. Create the graphics images neces

sary to compleic the scenario.

3. Write the program.

Scenario

Writing a game program is similar to

writing a short story; the background

and setting are important. Since I've al

ways been fond of" lunar-lander-type

games, I decided a lander game using

sprite graphics would be fun to write. I

wanted a different setting than Earth's

moon, however, so I decided on the fol

lowing scenario.

RUN It Right

Commodore 64

Joystick

Zelaz is an airless planetoid discov

ered in 2183. Mineral deposits of com

mercial quantity were located in the

northern hemisphere. The first three

landing panics perished when their

ships were destroyed at landing. Fluxes

in the planetoid's magnetic field were

discovered, and a landing team was sent

in farther south.

After a successful landing, the team

moved north with tracked vehicles.

Rich deposits of Ellisonite were dis

covered. Mining operations began and

the excavations followed the EUisonite

plugs down through the crystalline

mantle of Zelaz.

The aberrations in the magnetic field

stabilized below the surface o\' Zelaz,

so the miners nicknamed the destruc

tive forces at the top of the can

yons the "inagwinds." A warning bea

con was erected at the top of each

canyon wall to warn of the danger. Oth

er problems occurred.

The crystalline layer surrounding (he

deposits of Ellisonite reacted violently

to earth-manufactured alloys. To pro

tect their equipment and themselves

from serious damage, the miners left a

thin coating of Ellisoniic covering the

canyon sides as a buffer zone. A heavily

shielded shuttle was built to haul loads

of Ellisonite from the bottom of the

subcanyons created by the mining oper

ation to the landing pad at the upper

level of the main canyon.

Action

The mission of the shuttle pilot is to

fly into each subcanyon and to land suc

cessfully at the bottom. At each of three

landing pads in the canyons, the shuttle

drops off mail and supplies for the min

ing team working there and takes on a

cargo of Ellisonite and 300 units o\' fuel.

The shuttle then must be llown lo the

next landing pad or return to (he upper

landing pad, where greater supplies of

8

" ?f4: ■ ■" " "-■■■^ ■■■"■■■■"

..M ■■■■■::■ ■ "■■ ■■?-^:!W< ■ ■
,.-:-. -■ , -.-, .;.-

....

Fig. 2. Flow chart for (he Serpent of

Death program.

The order of events is to look at the

character color and shape, memorize

these values by placing them in vari

ables, place the figure and then erase the

figure with previous background and

color. This sounds simple, but its prop

er functioning requires considerable

care in design.

When Peeking color, the value must

be a logical AND with 15 to filter out

any values other than the basic colors 0

through 15. An originally simple con

cept soon becomes complex as more

and more details are worked out.

As the limits of the game arc reached,

bugs creep in, as usual, that require pro

gram modification and change in vari

able values. As an example, the back

ground color for the snake must be

changed to white when a level change is

made. Otherwise, the previous back

ground color will be Poked on the top

square.

1 thought all the bugs were worked

out of the program, only to have one of

my children, a more capable games

player than I, push the routines to the

limit and discover a situation I had not

yet provided for.

Address author correspondence to Jim

C. Hoppe, S. 5309 Glenrose Road,

Spokane, WA 99203.

. .. 57

HEAD U1C-C0CUNU

AND COLOR

O1EOD OF 111!

Ni ',1 Ui HI

VEBTICOL FALL

ONE

GO 10

MUUM1
MJBB0UT1NE

EFI45E
WITH V

■NO CO

TUT

rviaus

LOR

ig. J. F/oiv of a complex subroutine in the program.

56

fuel are available.

If [he shuttle makes contact with a

landing pad ai a velocity of - 10 or less

or a horizontal velocity of 4.? or greater

or -4.5 or less, the shuttle will explode.

If the shuttle brushes against the can

yon walls briefly, nothing will happen.

More than brief contact will explode

the ship.

When the shuttle is returning to the

upper pad, if the shuttle altitude reaches

the same altitude of the warning bea

cons, the shuttle will be ripped apart by

(he magwinds or hurled into the upper

canyon walls.

After all three lower landing pads

have been reached and the shuttle has

safely returned to the upper pad, the

mission is complete. A status report will

be generated on the mission computer

and the shuttle pilot scored.

WHEN ?PPITE COMPLETE

Fig. I. Screen dump of sprite utility

program with shuttle sprite dis

played.

Graphics

To complete the scenario, the

graphics images required were made up

of a shuttle craft, landing pads and the

canyon.

The shuttle craft is a perfect candi

date for sprite graphics, since a com

plete graphics image needs to be moved

around the screen rather quickly. The

image of the shuttle (see Fig. 1) was

created using the sprite utility program

for the C-64 from the June 1983 issue of
Microcomputing. The shuttle craft im

age then was edited to add a rocket ex

haust (see Fig. 2). The 63-byte data de

scription for each image was displayed

and then entered into data statements in

the game program (see Figs. 3 and 4).

Since the shuttle would be interacting

with the landing pads, a sprite image of

a pad was created. This was done by fill

ing the first 24 bytes of the 63-byte im

age with decimal value 255. The result

ing graphics image is a solid block, eight

pixels deep by 24 pixels wide.

The canyon was created by poking

values for the C-64's low-resolution

graphics characters into screen memory.

Program Description

After defining the scenario and creat

ing the graphics images to go along with

it, you'll write the program. In the de

bugging process, you'll discard a few

ideas and find others that will modify

the scenario and the graphies. The cre

ative process continues until you're sat

isfied with the results.

In the completed game program, let's

look at the beginning lines, then at the

various subroutines and finally at the

main program loop to sec how we can

••••••••*•*•

PRESS Ti' l-JHEN SPRITS COMPLETE

Fig. 2. Shuttle sprite in Fig. 1

edited to add rocket exhaust to sprite

image.

9

......_..-_._.. r-

animate the sprite images to obtain the
results we need.

Lines 5-30: The program clears the

screen in line 5 and then prints the start
ing message.

Line 60: Line 60 sets up the game

before the program enters the main
loop at line 100. The variable OF is an

offset value between the standard

screen memory starting at location 1024

and screen color memory starting at lo

cation 55296. Anytime a value is stored

into screen memory, the color can be set

by storing a color value into SCREEN

LOCATION + OF.

Subroutines at line 500 and line 900

are called to draw the background for

the game; they enable the sound genera
tor and sprite graphics.

Lines 500-597: The routine ai line

500 generates the game background and

BVTE i

BVTE 4
EVTE 7

BVTE IP

BVTE 13

EVTE 16

BVTE 1?
EVTE 22

BVTE 25

EVTE 2S

PVTE 31

BVTE 7:4

EVTE 37

EVTE 40

BVTE 4 3

BVTE 46

EVTE 4?

PVTE 52

EVTE 55

PVTE 5?

BVTE £1

ENTER flUV

0

32

35

31

IS

31

63

127

127

127

63

15 ;

19

36 ■

120

3

>54

255

£55

?55

?55
D c-

?35

:55

:55

?55

»55

e

24

64 254

64 f

64 C,

64 c

192 £

0 E

&

24

160

216

192

192

249

252

243

249

240

152

ee

62

X
-.

2

3

0

CHRPRCTEP FOP MENU.

Fig. 3. Sixty-three-byte

(ion of shuttle sprite

Fig. I,

data descrip-

disp/ayed in

mission computer display and loads the
sprite images into memory. Data values

are read from the data statements be

ginning at line 1000 and stored into
three 64-byte sections of memory.

BVTE 1

EVTE 4

BVTE 7

BVTE 19

BVTE 13

EVTE 16

BVTE 1?

BVTE 22

BVTE 25

BVTE 2S

BVTE 31

BVTE 34

BVTE 37

BVTE 40

BVTE 43

EVTE 46

EVTE 4?

BVTE 52

BVTE 55

BVTE 53

EVTE 61

0

22

35

31

15

31

S3

127

127

127

63

1 5

19

39

12P

64

€4

64

65

193

0

ENTER flMV CHflRflCTEF

0

254

255

255
253

255

255

255

255

255

255

56

124

254

210

169

85

51
0

0

24

160

216

192

192

24?

252

24?

240

240

152

68

62
2

2

2

131

(?

FOP MENU.

Fig. 4. Sixty-three-byte data

lion of shuttle sprite with

displayed in Fig. 2.

descrip-

exhaust

A sprite is defined by 63 bytes of

data, but the 64th byte is used by the

C-64 as a control byte for each image.

The C-64 is set up to handle up to eight

sprite images at a time, so a value has to

be assigned to each sprite image

defined. This value is the number of the

memory section in which the sprite im

age is stored. The sprite images defined

by the data statements are stored in

memory sections 13, 14 and 15(13 x 64

= 832, the starting address at which the

data is stored).

After the values in the data state

ments have been read and stored into

memory, we have three sprite image

definitions we can use. The landing pad

image is in section 13, the shuttle image

in section 14, and the shuttle with ex

haust is in section 15.

Line 504 dimensions a string array

and creates four elements of the array

that will be used in the mission status

report.

line 506 clears the screen, and then

sets the screen background color to

the programmer. This is critical and re

quires a certain amount of creativity.

Many workable ideas for the beginner

can be derived from already successful

games.

After setting up wooden hlocks on a

table, 1 began to sketch a rough pyra

mid shape on paper. 1 broke down the

basic units of the drawing in an attempt

to use the VIC graphics designs already

on the keyboard. It soon became evi

dent that I'd need custom characters.

Fig. 1 shows the basic building blocks of

the pyramid.

Since the pyramid remains static ex

cept for color changes, 1 decided print

ing would be the easiest method for pro

ducing the design. Lines 120 through

160 accomplish this task in the pro

gram.

Using a flow chart makes life much

easier in tiie long run. A good basic de

sign makes it simple to modify and ex

pand upon an idea without completely

rewriting the program. My completed

flow chart looked like that in Fig. 2.

Of course, a flow chart can be more

detailed, but I prefer lo keep mine gen

eral and 1111 in the details of each sub

routine in Basic. If the subroutine is

highly complex, a flow chart may then

be required. This was the case of the

jump-and-faJI-to-the-squarc subroutine

(see Fig. 3), which took me some time to

perfect.

Program Details

The expression I developed for move

ment of characters on the screen is

POKE S+H + 22'V, CN

POKE S + H + 22-V, CC

where S, the starting position of Tut at

the top of the pyramid, equals 7713.

V = vertical position, CC = character

color, H = horizontal position and

CN = character Poke value. Separate

variables for the cobra and King Tut

make their movements independent.

The values of H and V are obtained

for the joystick reading routine. For

each increment of H, the horizontal co

ordinate increases by one (moves one

space to the right). For each increment

of V, the value is multiplied by 22, since

moving right by 22 spaces automatically

brings the character to the same hori

zontal position, but one row down.

The values for H and V in the cobra

rout inc arc generated randomly by

lines 440-480. This makes the snake a

completely independent character,

j urnping unpredictably all over the

pyramid and thus difficult to avoid.

The background and color ahead of

King Tut are set by
BA - PEEK(S + H-) 22*(V))

Cl= (PEEK[C+H+22*(V))AND15)

where C, the starting position of color

at the top of the pyramid, equals 38432.

S = 7713 (starting position of Tut),

H = horizontal position and V = vertical

position.

0

1

2

3

= @

= A

ID

— Q

Fig. L The basic building blocks

of the pyramid.

10 55

OP DEATH

Venomous cobras, mummi

fied zombies and even

King Tut himself are all in

this Egyptian setting that will

keep you hopping from

pyramid to pyramid.

by Jim Hoppe

Serpent of Death is an action arcade-

style game requiring timing and skill to

move "King Tut" down an ancient

Egyptian pyramid while avoiding the

killer cobra.

Each block on the pyramid changes

color and scores one point as King Tut

jumps from square to square. Stomp

the killer cobra and score an extra 100

points; but watch oul! If the cobra bites

King Tut, he has only seconds to live.

The cobra venom is inactivated by

touching the mummy who appears

alongside the pyramid. If you press the

fire button, the mummy will carry King

Tut back to the top of the pyramid.

The difficulty increases as higher lev

els are reached. You can advance from

level one to level two either by stomping

the cobra or by filling in all the squares

on the pyramid. Difficulty is increased

at succeeding levels by requiring a great

er number of cobra stomps to advance

to the next level; by alternating between

as many as four mummies who Hash

from spot to spot next to the pyramid;

and by requiring all squares to be col

ored—as well as cobras stomped—to

advance in the highest levels.

Game Design

Designing the Serpent of Death in

Basic was challenging, yet fun! The ini

tial problem in game design is coming

up with a workable idea that is within

the capabilities of both the machine and

54

RUN II Right

VIC-20 will) 3K expansion

dark gray and the screen border color to

light gray. The For.. .Next loop fills

screen color memory' with the value for

the color white.

Lines 508-510 draw the border for

the mission computer on the right-hand

side of the screen and color the border

an off-world purple.

Lines 512-577 draw the game back

ground on the screen. Since color mem

ory already has been filled with while,

the character graphics poked to the

screen will appear as while objects

against a dark gray background.

Lines 584 to 597 draw the instrument

readouts for (he mission computer on

the screen.

Lines 900-950: This subroutine en

ables the sprite images previously placed

in memory and initializes the sound

generator.

In line 900, the starting address of the

C-64 video controller is set to variable

V. Variable X is loaded with the begin

ning X-axis coordinate for the shuttle.

The variable Y is loaded with the begin

ning Y-axis coordinate for the shuttle.

Variable D is set to 3 and used in the

main program loop to calculate alti

tude. Memory' location V t 31 contains

I he sprite-to-background collision regis

ter and is initialized to 0. Variable A2 is

the starling altitude of the shuttle when

the game begins, and variable FU will

be used to count the number of times

the shuttle refuels during the game.

Images Knabled

Sprite images arc enabled for use by

setting from one to eight bit values to 1

in the sprite-enable register at location

V + 2I. Setting a bit to I will turn on a

sprite. The first bit in the register is

sprite 0, the second bit enables sprite 1,

and so on (bit 0 is also the fust bit in a

byte). By poking the value 31 into the

enable register, we set bits 0 through 4

to 1, and enable live sprites.

The C-64 needs a way to determine

which sprite image will be used by an

enabled sprite. Eight locations at the

end of screen memory have been re

served for this function. Memory' loca

tions 2040-2047 correspond to sprites

0-7. By poking the value 15 into loca

tion 2040, we define the sprite image at

section 15 as sprite 0.

At this point, Uvc sprites have been

enabled and sprite 0 has been defined.

Sprites are positioned on the screen by

loading an X and Y coordinate into the

sprite position registers at locations V

through V+ 15. The X coordinate for

sprite 0 is at location V. The Y coordi

nate for sprite 0 is at location V + 1.

Now that the shuttle is enabled, de

fined and positioned on the screen, a

value of I is poked into location V + 27.

This location is the sprite/background

priority register. By setting bit 0 (which

represents sprite 0) to 1, (he shuttle

sprite will disappear "behind" any low-

resolution graphics characters it en

counters on the screen.

Sprites 1-4 are defined as the sprite

image in section 13 in line 916. This is

the landing pad image. Since we need

four landing pads, we can define four

different sprites using the same ba

sic image. The X and Y coordinates

for the loin' landing pad sprites are

set in line 918.

Memory locations V + 39 through

V + 46 conlain color registers for sprites

0-7. Line 920 pokes the value for light

gray into the register for the shuttle, and

pokes the value for green into the regis

ters for the landing pad sprites. Line 92

sets bits I, 2, 3 and 4 to 1 in sprite ex

pand X register at location V + 29. This

doubles the horizontal size of the land

ing pads.

Locations V + 37 and V + 38 are two

extra color registers used with multi

color sprites. These two locations are

loaded with the value for yellow and red

and will be used by the shuttle crash
routine.

Line 930 sets the registers of the

sound generator to 0 with a For... Next

loop and then defines variables for

waveform, attack/decay, sustain/re

lease, note frequency low and note fre

quency high. The high- and low- fre

quency values for a note are then poked

into the registers at line 940.

Lines 300-395: The mission report

routine consists of three separate sub

routines that are called when a shut
tle crash occurs, a mission abort is

requested or the mission is successfully
completed.

The routine is entered at line 300 in a

crash sequence. Line 300 stores note

values in memory and then sets the vol
ume control register at location 542% to

high. Attack/decay, sustain/release and

waveform arc loaded with values, and
I he noise begins.

The variable CK is the crash flag and

is set to I. In line 304, the sprite image
for sprite 0 (this previously was the

shuttle) is defined as memory section

II, a blank section of memory. A value

ol I is poked into the multicolor sprite
.select register at location V + 28. Sprite

0 is now a multicolor sprite.

Fireworks

The explosion begins in line 305. The

subrouline at line 380, which fills 25

random locations in memory section II

with random values, is called. Sprite 0 is

then expanded on the X axis, and sub

routine 380 is called again to add more

random multicolor points to sprite 0.

Sprite 0 is then expanded on its V

axis, and once again subroutine 380 is
called to provide a changing color ef

fect. The explosion is complete and the

subroutine at line 390 is called to clear

memory section II For later use. Line

310 turns off the noise and the explo
sion is over.

. ;1 . ;:■■■".:...,. ■ :■■■■. I?.-:. ■■:■; ■ :■■:■■;■:■■■■■

The mission report status is printed in

line 315, and line 317 tidies up the regis

ters by clearing the expanded X and Y

coordinates of sprite 0. This disables

sprite 0 in the enable register and turns

off the multicolor mode. The program
then goes to line 370 and samples joy
stick port 2 for input. If the fire button

is pressed, the program reinitializes and

returns to the calling routine. If the joy

stick handle is pulled down and the fire

button pressed, the program turns off

the sprites; clears the screen, variables

and pointers; and ends the program.

Line 350 is the mission-abort rou

tine. The mission status is printed,

and then the program goes to line 370 to

wait for joystick input to restart or end
the program.

Lines 360-363 make up the mission-
complete routine. A score is calculated

for the mission based on the number of

refueling slops, and a mission report is

then displayed. The program executes
the routine at line 370 and restarts or
ends the program.

Lines 400-496: The shuttle/pad colli
sion routine is called whenever the shut

tle sprite is in physical contact with a

landing pad sprite. When this occurs, if

the vertical velocity is less than - 10 or

the horizontal velocity is greater than
4.5 or less than -4.5, line 400 calls the

crash subroutine at line 300. Line 403

checks if the shuttle has touched the up

per landing pad, and calls the crash

routine at line 300 if the shuttle is not

lined up on the pad.

At line 405, the shuttle has not met

the crash requirements, so we have a

successful landing. A mission-status

message is displayed, the shuttle sprite is

defined as the image without exhaust,
and noise from the rocket is turned off.

If the shuttle has landed on the upper

landing pad, line 410 checks to see if all

three lower pads have been visited. A

subroutine at line 495 is called. If all

Table 2 continued.

55

56

57-58

60-64

60

61

62

63

64

65-68

79-84

79

80-83

84

86-97

86-92

93-94

95-97

Transfers to Text mode subroutine

Resets screen border; continues only if last character (BO) was

not f6, else falls through

Restore screen, character set, DDR, clear, quit

Text mode—get character, put on screen

Gets character

Converts to ASCII value; quits if f5 or f6

Converts ASCII letters (lowercase) to screen codes (uppercase)

Slides 19 characters in top line one left

Copies desired character from ROM, adds color

Initialize variables, move screen, clear

Initialize program

Data for reading joystick

Select joystick or keyboard; align DDR if required

Reads joystick array; sets up keyboard array; goes to use section

at 65 to initialize screen

Screen printing section

Subroutine loop to build Y$ representing one column of dots for

character, starting at 12,11

Subroutine loop to build row of characters, print

Basic loop to build whole screen, line at a time

inch) is small. So I added the variable

LS'Vo, which causes each line of char

acters to be processed twice (accom

plished in line 96) with LS% values of

one and two.

Now, instead of line 89 building Y$,

lines 90 and 91 do it. Line 90 builds the

top half of a stretched character. For in

stance, if the top dot is on, then H(0) is

1, but instead of adding 2t0 (or 1) to C,

3 is added (2tO + 2tl). In other words,

the first dot is stretched vertically over

two dots.

Similarly, in the second half of the

line, the created character is added twice

to Y$, stretching it also horizontally.

The second time the line is done, line 91

takes care of the bottom half. The result

is a much larger copy, although the

grain is not so fine.

This program is not only powerful,

but it's easy to use. My six-year-old had

no trouble enjoying the drawing part,

and my eight-year-old likes the colors as

well as the text at the top. They use the

joystick, which is a bit faster, but 1 pre

fer the keyboard.

One of my efforts is shown in the ac

companying illustration. Note that I

have positioned my characters so that,

on a color screen, you would sec a blue

bird sitting in a black tree, a yellow flower

on a green stem, a red heart and various

other colors strewn around. It did take a

while, but I think it was worth the time.

I did not add Multicolor mode, be

cause I like the precision I can get now,

but I could easily do it. Feel free to write

me about that, or any other questions

you might have concerning this pro

gram. M

12 53

Table 2. Program description of VIC Doodler.

Line // Function

1-2 Lower top of memory for 3K expansion; skip to main routine

5-14 Get keyboard or joystick input; decode into KI

5-7 Get and decode function keys; if no input, check joystick

8 Skips to keyboard section if not using joystick

9-10 Read joystick and fire button, decode, return

11-12 Loop back to read joystick, if in use

13-14 Decode movement key

20-21 Dimension array to read joystick, initialize

25^30 Basic loop; get input, execute it

25 Gets next instruction, brings back in KI

26 Cycles next entry in array B—causes flashing

30 Decision on how to handle input—0 indicates no input, so return

to 25

31-43 Handle movement instructions

31-38 Change X,Y to point to next location on screen; ensure it is in

range 0-159, 0-175

39 Stores B(0) in old location, calculates new character CO, stores

present character color there

40 Calculates address BY of new location and determines which Bl

bit

41 Starts setup of array B—element 1 has word with bit BI off, 2

has word with bit on

42 B(0) will hold final value—bit Bl on for Draw mode, off for

Erase mode

44 Cycles character color, changes in present location

45-49 Print screen section

45 Sets print flag to large and skips to it

46 Sets print flag to small

47 Realigns data direction register if using joystick

48 Prints to the screen; realigns DDR if using joystick

50-51 Cycle from Draw to Erase or vice-versa

50 Flips border color, Erase-Draw flag and true setting of present

bit

51 Changes border color, indicating new mode

52 Cycles to next background color

53 Goes and clears screen (using part of initialization)

54-56 Text mode section

54 Saves border, sets border yellow and fixes DDR if using joystick

Table 2 continued.

52

lower landing pads are red, (hen vari

able Q is set to 1. The subroutine returns

lo line 410, and if Q is equal to 1, the

program goes to the mission-complete

routine at line 360. If the mission is not

complete, 200 extra units of fuel are

added to the shuttle in line 415.

The Y coordinate is updated after a

landing by line 435. Line 440 prints a

status report update if the program has

returned from the crash routine. If the

shuttle has landed on one of the three

lower pads, lines 450-455 refuel the shut

tle and change the color of the landing

pad the shuttle is on from green to red,

and update the refueling counter. The

upper pad is then colored green in case it

has changed to red from a refueling.

The mission-status instrument read

outs are updated in lines 460^71; the

program then waits for the fire button

to be pushed for take-ofT. ll'the joystick

handle is pulled down and the fire but

ton pressed, the mission is aborted.

When take-off is initiated, line 485 sets

vertical and horizontal velocity, clears

the sprite-to-sprite collision register and

resets the shuttle altitude. The mission

status is updated in line 490 and the

shuttle is once again in flight.

Lines 100-200: The main program

loop controls the game while the shuttle

is in flight. Line 100 sets collision Hags

CS and CP to 0, resets the sprite-to-

background collision pointer and reads

the value of joystick port 2. If the fire

button is not pushed, line 105 sets the

vertical acceleration variable and turns

off the sound of the rocket engine.

When the fire button is pressed, lines

107-113 handle the rocket routines.

Line 107 sets the sound volume to high

and turns on the sound of the rocket.

The fuel total is lessened, deacceleration

is set and sprite 0 is defined as the

graphics image in memory section 14

(shuttle with exhaust).

The program (hen checks to see if the

joystick is pushed left, right or up.

When it's left or right, horizontal velo

city is incremented or decremented in

lines 110 and 112. When the joystick is

pushed forward, line 113 increments the

fuel variable and sets the acceleration

variable to hold velocity at a constant

value.

Line 150 changes the color of the

warning beacons at the top of each side

of the canyon to red, and then calcu

lates velocity and altitude. Line 155

checks the sprite/background collision

register at location V + 31 lo determine

if the shuttle is in contact with the can

yon walls. Collision counter CR is reset

to 0 if the shuttle is clear of the walls.

The X and Y coordinates of the shuttle

are calculated in line 176. If the shuttle

is too high in altitude and being affected

by the magwinds, horizontal velocity is

increased.

Line 177 is the in-flight crash check.

If the shuttle has been hurled into the

far right- or left-hand wall, or is high

enough into the magwinds to be de

stroyed, the program calls the crash

routine at line 300.

Line 178 clears the sprite/back

ground collision register and pokes the

shuttle coordinates into the X and Y po

sition registers of sprite 0. The

sprite/background collision register is

rechecked, and, if a collision has oc

curred, the collision counter is incre

mented by 1. If the collision counter is

greater than 1, the collision Hag CS is

set to 1.

The mission computer readouts are

updated in lines 180-186. Line 190

checks for a sprite/sprite collision, and

calls the shuitle/pad collision routine at

line 400 if required. Line 195 calls the

crash routine at line 300 if the crash flag

is set; otherwise, the beacon colors arc

turned to yellow and sprite 0 is defined

13

as memory section 15.

The program then jumps to line 1(X)

and continues (he loop.

Game-Playing Minis

After the game program is entered in

to your machine, you're ready (o fly a

mission.

Until you get the feel of the shuttle,

be careful when taking o\'l\ Positive ver

tical velocity builds up rapidly and

you'll find yourself in the magwinds.

Push the joystick to the left as you take

off to build up horizontal velocity to

help you clear the landing pad. The

shuttle's on-board computer will hold

the horizontal velocity constant until in

creased or decreased by the joystick.

The lower pads are green until you

land; then they turn red. If you reland

on a red pad, you won't receive any

fuel, since it already has been depleted.

If at first you arc burning too much

fuel, take off and then immediately

reland on the upper pad. Each time you

reland, your fuel reserves will build.

Your final score will suffer, but you'll

be able to complete the mission.

If you find yourself on a lower pad

and feel you don't have enough fuel to

continue, pull back on ihc joystick and

the mission will be aborted.

Conclusions

Enjoyable games can be written in

Basic without using assembly-language

routines. The sprite graphics capabili

ties built into the Commodore 64 let the

programmer control hi-res graphics im

ages easily. Canyons of Zela/ can he

further modified and enlarged by add

ing your own routines to it.

The purpose of Canyons of Zela/

was to provide an example of how

to use sprite graphics in game sce

narios. I hope this prompts you to

enjoy the game, modify and change it

and then write your own game and send

it to RUN. ®

Kir more on the Comnnxlnre M\ spriit-

capabilities, mi: Microcomputing, June 1983, p.

(ii— "Sprites, Graphic Eyes and iheC-64,"

Address author correspondence lo Garv

D. McCleiian, PO Box 346, Rimrock,

AZ 86335.

The following line:

V - Y I:1FY<OTHENY - 0:GOTO39

does not do the same thing. The GOTO

at the end is only executed if the value of

Y is initially less than one. Much more

compact code can be written using this

method.

Screen Printing

In printing the screen, 1 used an un

usual technique, too. It is fairly direct

for small copies obtained with the 14

key.

Lines 95-97 open a print file, set the

Lines 93-94 step across each line and

print the variable Y$. The last character

in the line is again only partial, so line 94

uses A5 to limit the subroutine to the

screen and pad out the character with

two blanks (CHR$(128}).

Lines 86-88 build the array H for one

column of the character— it contains 0

if the bit is off, I if it's on. The 6x7

characters that the graphics printer pro

duces cross character boundaries in the

8x16 screen, so you must go through

the computations in lines 87 and 88 each

time you build the array, which slows

down the program.

Before

Joystick

\ t f

■•-push-*"

/ \ \

fire button

loading with 8K or larger memory expansion, type in:

POKE 44.32: POKE 642.32: POKE 8192,0: NEWJRETURNJ

£

II

a

f3

f4

\>

f6

Keyboard Result

U I O

J L movement

M ,

*- shift from Erase to Draw mode and

back

clear screen

cycle character color

print screen (large)

cycle background color-

print screen (small)

shift graphics to Text mode and back

stop program

Table I. Instructions for use.

Graphics mode and step through each

line. Variable II contains the value of

the first dot in each line, from the top of

a 0-175 screen. A3 is a variable that

gives the height of the character minus

one. Characters are seven dots high ex

cept for [lie bottom line, and for small

pictures, LS% is zero, so line 96 is not

yet significant.

In line 89, the dots are summed, the

mandatory 128 is added and a graphics

character is added lo Y$, which repre

sents one column of the total 6x7

character. That is a workable, if not op

timal, solution to drawing the high-

resolution screen.

However, a picture 176 dots high (on

a printer that prints about 63 dots to the

14 51

The background color can be changed

to any one of sixteen by hitting the f3

key. The f6 key stops the program and

returns the screen to normal.

The f5 key causes the program to

enter or leave Text mode. In this mode,

the border is yellow and a 20-charactcr

banner (initially blank) moves across

the top of the screen. If you strike a key

while you're in this mode, the letter ap

pears in the upper right-hand corner,

pushing everything else to the left; you

can use this to title your masterpieces.

The f6 key still stops the program, and

\'5 returns you to the Draw/Erase mode.

If you have a 1515 or 1525 printer,

you can save your creations by hitting f2

for a large (8-inches high) picture, or f4

for a smaller one.

A Compact Program

The program is short, in order to lit

any memory expansion. Screen mem

ory starts at 7680 for any memory con

figuration. The high-resolution graph

ics characters start at 4096 and continue

to 7615 (this is why an expansion is

necessary—there's no room left for the

program).

Table 2 is a listing, by lines, of what

each part of the program docs. A few

comments on specific techniques and

variables may assist your understanding.

The screen is set up in 11 rows of 20

double-height characters. Screen mem

ory contains numbers 0 thru 219, and

character memory is set to start at 40%.

This, along with clearing the screen and

initializing variables, is done in lines

65-68.

Now a change to the bits in high-reso-

iution character memory is reflected on

the screen. X and Y contain the present

position of the pen (flashing dot). BY is

the address of the word in memory that

contains that point, and BI is a pointer

to the individual bit. CO is the character

position used to set pen color on the

screen. The array B contains the true

value of the word at BY, a copy of the

word with bit Bl turned off and another

copy with bit BI turned on. The point of

interest flashes as the program, while

waiting for input, cycles through the

different values in B.

ED°/b is the variable that determines

the Draw or Erase mode; C8 is the

border-color variable, and contains the

opposite of EDff/o (except in Text

mode). C5 is the screen (background)

color. CO is the pen color—be aware

that the color control on the VIC is

done in blocks of 8 x 16 dots, and the

whole block changes color at once. The

program spends most of its time in the

loop from 25-30, waiting for input and

flashing the dot.

One technique I've used extensively is

multiplying by logical expressions. An

expression, such as Y>0, has the math

ematical value - 1 if it's true, 0 if false.

So line 31 places the value "one less

than the present value of Y" into Y, if

the present value of Y is greater than 0

(the preceding minus sign cancels the

- 1 of a true expression). If Y is zero,

then the expression is false and its value

0; this effectively places a lower limit of

zero on Y.

This game is a mind chal

lenger. Fast thinking is a

plus, but fast reaction, man

ual dexterity, and everything

else that makes you a good

arcade-game player, are ir

relevant.

By Evangelos Petroutsos

Symbol Code is an adaptation for the

Commodore 64 computer of the once

very popular table-game, Mastermind.

The object of Mastermind is to break a

code consisting of a sequence of four

colors selected from a palette of six

different colors. The code is set by

another player. Each lime you make a

guess, you arc provided with some in

formation concerning the success ol

your attempt. Good judgment and the

use of all available information will help

you break the hidden code.

♦ x + on

Fig. 1. The symbols used to form Ihe

codes in (he game program, Symbol

Code.

RUN It Right

Commodore 64

Address author correspondence to

Evangelos Petroutsos, 851 Ca/nino

Pescadero U70, Goleta, CA 93117

SYMBOL CODE

Many Permutations

Symbol Code uses six different sym

bols (Fig. 1) instead of colors, so that

the display is more interesting and the

game can be played on either a color or

a black and white TV set. Since the code

consists of four out of six symbols,

there are at least 360 possible four-

symbol codes. If we allow any symhol

to appear more than once in the code,

there can be as many as 6\ or 1296,

possible codes. The challenge is to break

the hidden code in as few trials as possi

ble. Your task is not easy, as you will

discover!

Let's take a look at the game. After

you run the program, an empty grid will

appear on the screen. Its columns are

labeled 1, 2, 3, 4, FG and PS. The six

symbols are displayed at the right-hand

side of the screen, with an arrow point

ing to the first one. Your guesses will

appear in the first four columns.

The columns labeled PS and FG will

be filled in by the computer as follows:

FG is the number of symbols you have

guessed correctly. PS shows the number

of correctly guessed symbols which are

also in the correct position.

For example, three dots in the FG

column and one dot in the PS column

indicate that in your last guess you have

guessed three symbols correctly, but

only one of them is in the correct posi

tion. Your task is to find out which arc

the correctly guessed symbols and

which one is in the correct position.

The grid is large enough to display six

consecutive efforts. If you have not

broken the code after the six trials, your

next guess will replace the least recent

one. After you become familiar with the

game, however, you will realize that

you don't really need more than six

guesses to break the code.

50

Doodle On Your VIC
Making Ihe Moves

To enter your move, first, choose a

symbol and the position in which you

want it placed. Then, using the function

keys, move the arrow up (Fl) or down

(FT) so that it points to the desired sym

bol. Lastly, hit the key (1, 2, 3 or 4) cor

responding to the square in which you

wish to place the selected symbol, and it

will appear there.

In case you change your mind, you

can overwrite any symbol in any posi

tion, changing the combination as many

limes as you wish before hitting the
space-bar to enter your move. lint once

all four squares are filled and you hit the

space-bar, there is no turning back.

When you hit the space-bar, the pro

gram will read your move, compare it to

the hidden code and display the results

of the comparison in the FG and PS col

umns next to your guess.

Although the hidden code ordinarily

consists of four different symbols, you

may choose to repeat a symbol in any

given guess to try to find out whether or

not it belongs to the hidden code. Begin

ners frequently use this technique,

which sometimes—combined with a lit

tle luck—provides useful information

about the hidden code at the first stages

of the game.

Suppose, for example, that the hid

den code does not include the symbol

"x" or " + ," and that your first guess

is " + + x x." The results of the com

parison tell you immediately the four

symbols making up the code. Then you

have to determine their order. After

breaking the hidden code, you can

start a new game by pressing any func

tion key.

One last feature of the game is the

Help command. As you try to break the

hidden code, four small black squares

are continuously displayed at the lower

right-hand corner of the screen. These

are the symbols in the hidden code.

Each time you press H, one of the sym

bols in the hidden code will be revealed.

When you break the code, all four sym

bols will be displayed there.

A word about the score. The max

imum score you can get in one play is

500. If you break the code with your

first or second guess, you get all 500

points. If not, each unsuccessful guess

after the first two will cost you ten

points. You also lose 50 points every

time you ask for Help, and asking for

Help four times in the same play

reduces your score to zero. Your cur

rent score, as well as the average score

of all your previous games, will be dis

played at the top of the screen.

Listing 1 shows you the game pro

gram, along with some useful remarks.

Lines 135 and 137 compare the symbols

in the hidden code to make sure no sym

bol appears twice. If you find the game

too easy to play, you can remove these

two lines. Doing so will almost triple the

number of possible combinations for

the hidden code.

A word of caution: This program

plays around with the display list, and

you should be very careful when typing

it into your computer. Any typos in the

Poke statements might cause the com

puter to crash. Be sure you Save the

program before you try to run it, so that

even if something goes wrong, you'll

not have to type it in again. E

Let your artistic fancy fly

free with this program that

turns your VIC-20 into an easy,

clever and powerful doodler.

by Terence Bryner

How would you like to see your

flights of fancy in high-resolution, color

graphics on your VIC, without a lot of

planning or bother? If you have 3, 8 or

16K memory expansion, you can doo

dle to your heart's content with this pro-

RUN I! Right

VIC-20

3K, 8K or 16K expansion

printer desirable

joystick optional

Address author correspondence to

Terence Bryner, 15 Crane Road, Gro-

ton, CT 06340.

gram, which runs with keyboard or joy

stick; use a printer, too, to preserve

your finest efforts for posterity.

To use the program, type in Listing I

and save it. Table I is a summary of di

rections. If your VIC has only the 3K

memory expansion, simply load and

run the program; the operating system

will start it at 1024, and the program

protects the high-resolution graphics

screen.

If you have more memory, type in the

command line at the top of Table I be

fore loading the program. This causes

the operating system to load it begin

ning at 8192, above high-resolution

screen memory.

The program first asks whether you

prefer keyboard or joystick control.

After you hit J or K, the display goes

mushy while the screen is reconfigured

to 20 characters by 22 lines, and a flash

ing black dot appears in a white screen

with a black border.

The border color is a key to the

doodling mode—black is Draw. If you

manipulate the joystick, or press a

movement key (see Table 1), a dot will

appear on the screen. If you hold the

joystick in one direction or repeatedly

press the movement keys, you'll leave a

trail of black dots.

The left-arrow key, or the joystick's

fire button, shifts you to the Erase

mode, where the border is white and the

trail of dots, becoming one with the

background color, arc invisible; use this

mode to correct mistakes. If you hit the

left-arrow key or the fire button again,

you'll return to Draw mode. And that's

how you doodle.

Several enhancements are provided.

Press the fl key and your flashing dot

disappears. Press it again and it reap

pears, red. You can change it to five

other colors and back to black (you'll

see that the first color was really while).

characters is with the programmable

Character generator. When the program

is run, it moves 64 characters into user

RAM, pokes in any new characters that

have been designed and then stops to let

you test the new characters. Entering

CONT places the character generator

0

0

1

1

1

1

0

0

Fig.

0

0

0

1

1

1

0

0

/.

0

0

0

0

1

1

0

0

Th

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

I

0

0

0

fl

0

0

1

1

0

0

' bit structure

ter resembling the

0

0

0

0

0

1

0

0

of a

= 0

= 0

= 12S

= 192

=-- 254

= 255

0

0

charac-

space shuttle.

itself on the screen.

The VIC will draw a box with the

numbers of the bytes on the sides and

the numbers of the bits at the top and

bottom. The bits are numbered from

seven to zero to show the power of two

that represents the value of that bit. For

instance, T = 128, the value of this

highest bit.

Draw your new character by moving

the cursor with W = up, X = down, A

= left, D = right. Pressing the space

bar will place a colored box under the

location of the cursor. If an error is

made, press F3. This allows you to cra.se

the colored boxes by pressing the space

bar. Pressing Fl returns the program to

the drawing mode.

When the character is finished, move

the cursor below the box and press F5.

The program will then print out the

Poke values for the new character and

ask for the screen Poke code of the

character to be replaced. See the user's

guide on page 141 of the manual. Re

member also that the character set uses

only characters from 0-64.

When you enter this number, the

program automatically writes a data

line for the new character and adds this

line to itself. It next returns to the begin

ning to enter the character into the char

acter set and then stops so you can test

the character by typing the key of the

character that was replaced.

At this point, never use the return key

except to continue the program by en

tering CONT or GOTO8000. If you do

not like a character, simply make a new

character and re-enter the same screen

code as before. Because it will have a

higher line number, it will replace the

first character.

When you have made all characters

desired, enter GOTO9000. This will au

tomatically delete the generator part of

the program, leaving only a program

for loading the new character set.

You can save this program to tape

and load it just like any other. You can

add games above line 200, or you can

separately load the character set and a

game that uses it. All you have to do is

draw the characters; the generator does

the rest of the work.

Iron Hand Or VIC-20?

How Would

You Rule Your

Kingdom?

As a royal ruler in this

game, you've got to think

quickly to expand your king

dom while forestalling grain

drain, especially in time of

war.

By Joseph J. Shaughnessy

RUN It RIGHT

VIC-20 or Commodore 64

Address author correspondence to

Joseph J. Shaughnessy, 4703 Country

Club Drive, Pittsburgh, PA 15236.

This game is both fun and education

al. You must continually juggle num

bers and computations in your head,

but it's not a painful process. (The pro

gram will work with any memory con

figuration of the VIC-20, including un-

expanded, and also with the C-64. See

Listings 1 and 2.)

You are the ruler of a small city-state

in ancient times. Your major goal in life

is to increase the size of your kingdom,

and you measure your progress towards

this goal by the number of acres that

you own. To be successful, you'll find

that caring and concern for the people

under your rule may not always be pro

ductive in accomplishing your goal.

However, total disregard of your people

also carries penalties.

Royal Decisions

As the game begins, you own land,

have grain in storage and also have a

population to govern. During each

48

:;■■-:"

round of play (measured as one year for

each round), you must buy or sell land,

set aside grain for feeding the popula

tion during the year and determine how

many acres to plant.

There are many factors lo ponder in

planning for the coming year. Is the

stale at war or peace? Is there sufficient

food to feed the population, or should

some of the people be allowed lo starve?

Are there enough people to do the work

of planting and harvesting—and for

military service if there is war? Is the

price of land high or low? Have you

saved enough grain for seed? Are there

any fringe benefits with this job?

To aid you with your job, the State of

the Realm report is constantly displayed

and updated as you are requested to

give orders for the upcoming year. Al

so, at the end of each year, the Grand

Secretary of State will give you a report

of the results of your decisions, includ

ing such things as harvest yield, census

changes and the state of the treasury.

You could discover, through trial and

error, the requirements for distributing

grain to your various priorities, but that

is maddening. Instead, I will tell you the

following: each person requires 20

bushels of grain to eat; each person can

only plant 10 acres of land; seed re

quirements are Vi bushel per acre.

In time of war, one-third of the pop

ulation is required for the army and is

not available for agriculture (they still

eat, though). You will find yourself at

war about 30 percent of the time.

Variables Used

A list of the variables used in this pro

gram is as follows: p = population; ar =

new arrivals to the city; sp = number of

people who starved; rd = grain des

troyed by rats; yh = harvest yield in

bushels per acre; gh = total bushels har

vested; gs-current bushels in storage;

ca = acres owned by the kingdom; yr =

current year of your reign; pw$ = war

or peace; a$, i$, i, j, zz, x = temporary

variables; wk = number killed in war;

wr= flag for warehouse raid; wf =

population efficiency factor for war or

peace; k=current price of land; b$ =

increase or decrease in kingdom size, g]

POKE T,PEEK(T t (32768 - 7!68)):NEXT

30 POKE36869.255

When this is entered, the only notice

able change is that the cursor disap

pears. This is because the screen Poke

number of the reverse space that the

cursor uses is 160, and the new charac

ter set contains only 64 characters.

To adjust this formula to move more

characters, change the codes in lines 10

and 30 to the proper codes for the new

location and substitute the new local ion

for 7168 in line 20.

It's also possible to move individ

ual characters into the new character

set. Use the following formula, where X

equals the screen Poke code of the char

acter in ROM, and Y equals the screen

Poke co<\<£, of the character to be re

placed.

FOR T = 0 TO 7:POKE7I68 + V8 + T,PEEK

(32768 + X"8 + T):NEXT

For example, if you enter the follow

ing, hitting the X key will print a ?.

FOR T = 0 TO 7: POKE 7168 +24*8+ T,PEEK

(32768 + 63*8 t-T):NEXT

POKE 36869

240

253

254

255

LOCATION

ROM MEMORY

5120

6144

7168

POKE 52 AND 56

20

24

28

Table 1. Codesfor moving and protecting a character set.

Design Originals

You're now finally ready to begin de

signing custom characters. Each one is

made of 64 small dots on the screen. It

takes eight bytes of memory to store one

character, with each byte made up of

eight on-off switches called bits. If the

bit is turned on, so is the corresponding

dot on the screen.

The eight bits within each byte are as

signed the following values, which arc

the powers of 2 up to the seventh power:

128,64,32,16,8,4,2,1. Using (bit on) or

not using (bit off) these numbers in all

possible combinations gives you all byte

values from 0-255. Fig. 1. shows the bit

structure of a character resembling the

profile of the space shuttle.

The numbers on the right in Fig. I

represent the values obtained by adding

together the values of the individual bits

in each byte. To replace the @ with this

character, simply Poke the above values

into the first eight locations of your

RAM character memory.

The standard method for doing this

uses data statements as follows:

10 READ A:1F A = - 1 THEN 100

20 FORT »0TQ7:READB:POKE(A*8)+

7168+ T,B: NEXT

30 DATA 0, 0, 0, 128, 192, 254, 255. 0, 0, 1

100 END

The first data number is the screen Poke

code of the character being replaced. The

- 1 tells the program that the last char

acter has been entered. If more than one

character is entered, the - 1 is used only

after the last character's data line.

An even easier way to make custom

18 47

VICasso DATABASE DELUXE

You want to put more crea

tivity into your program

ming, but your VIC-20's char

acter set just doesn't satisfy

your needs. Your only solution

is to generate your own char

acters. Here are some valu

able tips to help you design

custom characters for your

games and graphics with

speed and ease.

By Stephen Erwin

If you're like most programmers in

terested in games or graphics, you

sooner or later reach a point where the

standard VIC-20 character set no longer

satisfies your need for creativity. Al

though there are many interesting char

acters to choose from, your best solu

tion when a game calls for spaceships or

funny little men is to design a custom-

made set of programmable characters.

Memory Moves

The basic techniques are fairly sim

ple, but they do require a bit of back

ground information before they can be

understood. For starters, VIC-20 char

acter memory is stored in ROM, which

cannot be changed. Characters can be

Address author correspondence to

Stephen Erwin, 102 Hickory Court,

Portland, IN 47371.

changed only when they are stored in

the user RAM. Therefore, in order to

create any new characters, the VIC

character memory must first be moved

into the limited locations in RAM thai

the VIC-20 video chip can access.

The standard locations on the unex-

panded or 3K expanded VIC are at the

top of user memory in 7168, 6144 or

5120. Location 7168 will store 64 char

acters; location 5120 will store all 255

characters. You move the character lo

cation by Poking location 36869 with

the proper code. (See Table 1.)

When you choose a character loca

tion, it's important to remember that

you must subtract the memory' used by

the character set from the RAM avail

able for programming. While location

7168 uses only 512 bytes, location 5120,

which allows 255 characters, uses 2560

bytes, leaving only 1024 bytes for the

rest of the program. For this reason, it's

important to use no more characters

than you absolutely need.

Another important consideration is

that the VIC stores some types of vari

ables at the top of user memory. To

protect your character set from these

variables, you must Poke locations 52

and 56 with the proper code. Table I

shows the codes for moving a character

set and protecting it.

Try entering POKE56,28:POKE52t28:

POKE36869.255. The screen should

now be filled with junk. This is because,

although you've moved and protected

the character location, you haven't yet

put any characters in it. To return the

screen to normal, POKE36869,240.

The following routine will Peek the

standard character location and move

64 characters to the new location ai

7168.

10 POKE56,28:FOKE52,28:CLR

20 FORT = 7168 TO 7679:

46

"-/"-fe-^<4^

»»?

Need an inexpensive data-base program for your VIC-20 or

C-64? This one won't cost you a cent. Just type in the

listing to store, categorize and sort your data with ease.

By John Stilwell

Deluxe File Case is a file handler for

the Commodore 64 or for the VIC-20

with a memory expansion of 3K or

more. The program is designed to use

the 1540 or 1541 single disk drive or

the Commodore Datasselte. For print

outs, it will work with any of the VIC

printers.

The file format is a group of pages

with ten entries per page. In the VIC-20

KLIN It Right

VIC-20 with 3K or more of expanded

memory, or Commodore 64

1540 or 1541 disk drive or

Commodore Datassette

A ddress author correspondence to John

Stilwell, 5018 Marathon Drive, Madi

son, W153705.

version, line 30 looks at the amount of

memory available for data storage and

then gives you the optimum number of

pages. This means that if you change

the size of the program, it will notice

and will change the number of pages it

gives you.

In the C-64 version, you are always

given 100 pages with ten entries on each

page. On line 30, N is set to 1000, the

number of entries that the file can hold.

If you want more or fewer pages, all

you have to do is change this number.

When you am the program, you will

first be asked for a file name. If you

push the return key without providing a

name, the file name will default to

"Noname." The program then sets it

self up.

A moment later, the list of one-letter

commands will appear on the screen.

The commands that you have are:

Page, Insert, Enter, Catalog, Alpha-

""■■■■" ■. ; t.

betize. Kill, New, Load, Save, Hard

Copy and Help. If you should ever

forget what they mean, push the ? key

for the list of definitions.

Using the Commands

To call up a page, push P and the

page number that you want. (A Hashing

cursor will remind you to push the

return key after typing in something

that was asked for.) When the page ap

pears, you will see ten entry numbers

with a dash after each one. To make an

entry, push E and type in one of the

numbers to indicate where you want the

entry to go. The entry must not contain

any commas, colons or semicolons.

After you have pushed the return key,

the entry will appear on the page.

If you want the entry to appear in the

catalog, it has to be reversed (lettering

inside a colored bar). To do this, the

first character of the entry must be a left

arrow. This is the key in the upper left-

hand corner of the keyboard.

1 reverse such things as the titles of

categories. For example, you might

want to organize a book list by authors.

To do this, reverse each author's name

and enter his books after the name.

(The book titles are not reversed.) Now,

whenever you call the catalog, each

author's name will be shown with the

page number on which it appears.

To insert something between two

already existing entries, push 1 and type

the number of the line that you want the

insertion to go on. If you want to kill

(erase) an entry, push K and type in the

entry number. To cancel a command

like Kill, just type in another command

letter instead of the entry number.

If you want to skim over pages, push

the space bar instead of a command let

ter. To call up the catalog, push C. Due

to the limited amount of space on the

screen, only ten categories with their

page numbers can be displayed at a

time. Push the return key to get the next

ten categories.

To save or load a file, push S or I. re

spectively. You'll be asked to confirm

your intentions. You wouldn't want to

load in a file when you're not yet done

with the one that's in the computer.

Next, you'll be asked whether you're

using a disk or tape drive. Push D for

disk or T for tape. If you push D, you'll

be asked if you want a listing of the data

files that are on the disk.

When resaving a file to the disk, the

old one will be replaced by the new one.

This relieves you of trying to remember

which version of a file is the most recent

one.

Push A to alphabetize. You can only

alphabetize what is inside of a category.

If your categories are authors' names,

then you can alphabetize the books by

each individual author, but you cannot

alphabetize the authors themselves.

After pushing A, you will be asked for

the number of the first entry to be

sorted. IE

20

Send. This is a general purpose command and

can be used to send some of the standard

Commodore disk commands to the drive

unit. For example.

SEND "I" [return]

will send the tetter I to the disk, and thus

cause an initialization, (Of course, DISK-O-

Vic's command, IN1T, will do the same

thing.) As another example,

SEND "R:ncw name = old name" I ret urn |

will cause the file "old name" to be renamed.

Since other commands in D1SK-O-VIC cover

most contingencies, [lie Send command is

probably not needed often. Bui it's nice to

have it handy for advanced disk program

ming operations. For the record, Send is

equivalent to

OPEN 1,8,15,■■command"

C\ OSE 1

Status This is a troubleshooting command

thai allows you to chase down llie cause of a

disk operation failure. If the red error lighi on

your disk drive comes on, type STATUS and

hit the return key. The light will go off, and

an error message will be printed to the screen.

This message will describe the error and

where on ihc disk (in terms of [rock and sec

tor) ihe problem was encountered. II

everything is OK, no message is printed. To

test this command, type the following:

OPEN 1,8,1,"GARBAGE" [return]

The 1541 drive will whir, and assuming thai

there isn't a file named "GARBAGE" on the

disk, the error light should come on. Type

STATUS, and the error message will be

printed to ihe screen. Refer to the 1541 disk

drive manual for a full explanation of the er

ror messages.

45

syntax lor its use is:

HEADER "disk name",Ixx [return]

where "disk name" is ilie name to be assigned

10 llie disk, "xx" has been used here as the

identification code. However, any two-char

acter combination may be used. Note that the

comma is necessary, as is the letter "I." Be

fore the disk is headered, the query "Are Yon

Sure? (Y/N)" is printed to the screen. An

answer of "Y" will start I lie command; any

other response will abort the process. Since

the Header command overwrites the disk, it's

important to provide this "Are You Sure?"

feature.

IN/T. As mentioned previously, even,1 DISK-

0-V1C command has automatic initialization

built in. However, there may be times when a

disk is acting iroublcsomc and it is desired to

force an initialization. To do so. simply type

1NIT, hit the return key and the disk will be

initialized. This command is equivalent to

typing

OPEN 1,8,15,"!"

CLOSE 1

Kill. This is a self-destruct command. When

you have had enough of DISK-O-VIC for a

programming session and wish to remove it

from the computer entirely, type KILL and

hit the return key. The computer will go

through an entire reset, acting as though you

had shut it off and then turned it on again. Do

not confuse this command with Off (see

below). Kill completely resets the computer.

In general, use this command only when you

wish to cause a cold start.

Off. This command turns off DISK-O-VIC,

but leaves it in memory, safe and protected.

Thus it may be returned to whenever desired.

Since DISK-O-VIC slows Basic clown some

what, you may wish to turn it off whenever

you're running a program to attain maximum

speed. To turn it back on, simply type

Rename. This command will rename a pro

gram on disk, without affecting any program

already in memory. I-'or example,

RENAMI-: "old name" TO "new name"

[return]

will change the name of the program to "new

name." There arc several things to note. The

old name comes first, then the new name. The

word "TO" must be present between the two

names for the command to work. Finally, er

ror detection is provided, so that it is impossi

ble to Rename a flic to a name currently

in use.

Scratch. This command lets you scratch a Tile

or program from the disk. Simply type

SCRATCH followed by the name of the tile,

and hit ihe return key. Once again, the query

"Are You Sure? (Y/N)" is presented. A re

sponse of "Y" will cause the file to be

scratched.

If you've been wanting a way

to define the VIC-20 func

tion keys to your own needs,

here's a program that lets

you do it with ease.

By John Tanzini

When you first purchased your

VIC-20, you undoubtedly wondered

about the function keys. You may have

been disappointed the first time you

pressed one and found that nothing

happened.

I can remember searching through

the reference manual to determine how

to assign functions. I found that the

function keys are very easy to use in

Basic programs, since they can be input

like any other character, but I had

hoped for more. I had hoped to be able

to assign functions that would aid me in

programming—functions that would

execute as if they were part of the oper

ating system.

There is a way. If you print a prede

fined string to the screen every time a
function key is pressed, you can execute

any function with a single keystroke.

For example, suppose the word LIST

is printed when Fl is pressed. Now press

the return key, and your program will

be listed. If the return key had been

defined as pail of the string, then simply

pressing Fl would list the program.

Similarly, F2 could be made to run a

program.

1 find, while debugging certain pro

grams, that I am constantly typing

PRINT PEEK (N), where N is the num

ber of some memory location. Since

cursor controls can be included in

RUN It Righl

VIC-20

Assembler

44

FUNCTION KEYS
strings, I can define a string which

prints PRINT PEEK () and then

moves the cursor back to the position

just after the left parenthesis. Then all I

have to do is type the number of the lo

cation that I wish to interrogate, and

press the return key.

You will doubtless have your own

idea of what functions should be assigned

to the function keys. It is a simple mat

ter to customize my program to your

own needs and define the keys and way

you like.

Although part of this program is

written in machine language, you need

no knowledge of machine language to

use the program or to redefine the

function keys. So read on and put

those function keys to work for you.

Using Ihe Program

A copy of the program is shown in

Listing I. It is not as long as it appears,

since you do not have to type in any of

the REM statements. Be sure to save a

copy of the program before you try to

run it.

The most likely place to make a mis

take while entering the program is in

the Data statements, which contain the

machine language program. For that

reason, 1 have included a checksum at

the end of each Data statement. The

last number of each Data statement is

the sum of all the previous numbers in

that line.

When the Basic program loads the

machine language program, it checks

the checksum in each statement. If it

does not add up properly, the program

assumes that one or more of the num

bers in that line was incorrectly typed,

and an error message is then printed.

The error message tells you exactly

which line is incorrect, which should

aid you considerably in getting the pro

gram running.

When you run the program, you

should see a list appear on the screen,

showing exactly how the function keys

are defined. A few seconds will pass

while the machine language program is

loading, and then READY will appear

on the screen. The Basic program

should have automatically cleared

itself out of memory by executing

a New.

At this time you should be able to

use the function keys. Pressing Fl, for

example, will print the word LIST.

Functions F9 through FI2 are obtained

by pressing the Commodore key and

one of the function keys.

Understanding one point about the

operation of the Basic program will

help you get the program running. The

first thing the program docs is move the

top-of-memory pointer way down to

protect a block of memory where the

machine language program will reside.

If you have made a typing error in a

Data statement, the program will detect

it when calculating the checksum and

will branch to line 800. At line 800 the

program will restore the top-of-memory

pointer, which returns all of the

memor>r back to the operating system.

If it did not, the program wouldn't have

sufficient memory to execute correctly

the next time you tried to run it.

If, however, you enter a Basic state

ment incorrectly (causing a syntax er

ror), the operating system will stop the

program immediately, without restor

ing anything. If you execute a GOTO

800 right after the program slops, you

will save yourself the trouble of turning

your VIC off, then on again, and re

loading the program. Of course, this

problem will not occur once the pro

gram is entered as shown in the listing.

You will find that pressing the

run/stop and restore keys deactivates

the program. This is because the oper

ating system restores the interrupt vec

tor to its original value. The program

can be restarted by simply executing

a SYS 0.

After you are sure the program is

running properly, you may remove

lines 611 through 618, along with the

last data item in each Data statement.

That is the part of the program associ

ated with the checksum. The machine

language program will load in about

half the time with the checksum re

moved. Do not forget also to remove

the last comma in each Data statement.

Since the machine language program

remains in memory after the Basic pro

gram clears itself out, you will lose a

small amount of memory. Your free

memory will decrease by 144 bytes,

plus one byte for every character de

fined in your strings.

Redefining (he Function Keys

The function keys Fl through F12

are defined in lines 210 through 320.

An array of strings named F$ holds a

string associated with each function

key. F$(l) is the string defined for II;

F$(2) is the string assigned to F2, and

so on. To redefine a function key, sim

ply change the appropriate line of the

program corresponding lo the function

key that you wish to change.

For example, line 210 defines the

string for Fl:

210 FS(1) = "LIST"

If, instead, you would like the word

LOAD to be printed when Fl is

pressed, change line 210 to:

2I()I7S(])- "LOAD"

Be sure to include the quotes, since F$

is a string variable.

Any valid string can be assigned to

Ihe function keys, including strings con

taining cursor controls. There are,

however, two characters lliat are slight-

implemented on the VIC-20. The com

puter clearly contains many powerful

routines in ROM, and it behooves every

user to learn as much as possible about

them. The program also shows that the

1541 disk drive is an extremely flexible

unit.

Programming the VIC-20 and 1541

in machine language to perform new

and exotic commands is not as difficult

as it may at first seem. The key, of

course, is to break the problem down

into a series of smaller subroutines,

making as much use as possible of the

various ROM routines available. This

was the very procedure used in D1SK-

O-V1C. 11

Table I. Explanation of DISK-O-V1C com

mands.

Append. This command allows a program

from disk lo be appended onto another in

memory. To keep tilings simple for the VIC-

20. il is important that the program in memo

ry have line numbers less than the disk pro

gram lo be appended. The availability of (his

command makes it possible to build large

subroutine libraries from which complete

programs may be assembled. The proper syn

tax is:

APPEND "title of program" (renirnl

As with normal VIC-20 Basic, some abbre

viations arc possible. For example, instead of

typing in the whole word APPEND, yon may

type "A shift-F." (All of DISK-O-VlC's

commands may be abbreviated in this fash

ion. Just type ihe firsi letter of the command,

followed by ihe second letter shifted.)

Catalog. To determine what is on the disk

currently in !he drive unit, type CATALOG

and hit the return key. A directory listing will

be printed to the screen so you can see all of

ihe programs available. Note that unlike the

method for looking at the directory1 normally

employed by the 1541, Catalog will not dis

turb the program sitting in the VlC-20's

memory.

As an added convenience, a special pause

feature has been added. Push the space bar

once to pause the listing. Push it again to re

sume. You may also hit the run/stop key lo

terminate a listing.

Colled. Type this command and hit the re

turn key, and the disk in the drive will be vali

dated oi collected. In simple terms, this will

cause the 1541 drive unit to trace through the

entire disk, making sure that all of the blocks

are properly "connected." Any blocks that

have been improperly allocated will be

cleaned up and made available for more stor

age. The entire operation of this command is

fairly complex, but basically it simply looks

over the disk and tidies it up. Like initializa

tion, it never hurts to use the Collect com

mand often.

DLOAD. Acts just like the normal Load

command but defaults to the disk drive auto

matically. For example, type DLOAD "pro

gram name" and hit ihe return key. The dri\e

is automatically initialized, the program load

ed and disk errors checked for. Just to put

this into perspective, DLOAD is equivalent to

the following steps:

OPEN 1,8,15,'T'

LOAD "program name",8

INPUTS! disk error message, etc.

CLOSE 1

It is clear that DLOAD. though a simple

command, docs quite a lot. Incidentally,

DLOAD may only be used for Basic pro

grams or machine language programs that

"look" like Basic. This limitation is due to

the fact that the VIC-20 has a strange "sliding

memory" loading format.

DSA VE. This is just like DLOAD, but saves

a Basic program to the disk. The same initiali

zation and error detection lake place.

Header. This is a special command that takes

a virgin disk and formats it for later use.

Magnetic marks, which serve as guides to the

1541, arc imprinted on the disk, and a title

and identification code arc assigned to it. The

22 43

Having covered the theory and oper

ation of DISK-O-VIC, we must consid

er the practical side of things. You

should create a disk copy of the object

code so that the utility is always handy.

To this end, the hexdump in Listing 2

corresponds to the source code in List

ing 1. To use it, you enter the hexadeci

mal numbers into the VIC-20, then save

it to disk. Thus, whenever you want to

invoke DISK-O-VIC, you have only to

load the code and initialize it.

Since the program is in machine lan

guage, you will need a machine lan

guage monitor to enter it. The VIC-20

has no resident monitor, but add-on

monitors are starting to appear with in

creasing frequency. Two good choices

are VICmon or Tinymon.

VICmon, made by Commodore, is

the official machine language monitor

for the VIC-20 and offers many com

mands. It comes in cartridge (ROM)

form, and simply slips into the expan

sion port. Tinymon, on the other hand,

is a tape or disk-loaded monitor. The

advantage of Tinymon is that you can

punch it in yourself and save quite a bit

of money. It doesn't support as many

commands as VICmon, but that

doesn't matter for the purpose at hand.

All you need are the S (save) and M

(memory dump) commands. Hence, ei

ther monitor will do.

(For a full discussion of Tinymon, see

Jim Butterfield's article "Tinymon 1: A

Simple Monitor for the VIC," in the

January 1982 issue of COMPUTE!, p.

176.)

To make a copy of DISK-O-VIC for

your computer, follow these instruc

tions carefully:

• Disconnect any memory add-ons.

DISK-O-VIC must be entered on a

stock machine.

• Load in a machine language monitor.

Either tape/disk-based or cartridge

monitors will do.

• Using Listing 2 as a guide, punch in

the object code. You will start entering

code at location $1000 and continue up

ward.

• After you finish entering the code,

modify the following locations. Put the

data byte $2F into locations $2D, $2F

and $31. Put the data byte $15 into loca

tions $2E, $30 and $32. These are all ze

ro-page locations.

• Exit the monitor to Basic with the X

command.

• Now save the program using the ordi

nary VIC-20 SAVE command. You

may save the program to either tape or

disk.

• If you wish, reconnect any memory

add-ons that you have.

You now have a full version of DISK-

O-VIC ready to go. The code just en

tered and saved is very special. You can

load and run it just like any Basic pro

gram. When you run the program, a

special loader automatically relocates

DISK-O-VIC to the top of memory,

wherever that might be. Also, the load

er instantly compensates for any extra

memory that might be attached to the

VIC-20.

Keypunching this program can be

very tedious, so try to share the task

with other users. One consolation is that

even though the program is in machine

language, it looks like Basic to the

VIC-20. This means that you can make

backup copies quite easily. To do so,

simply load DISK-O-VIC (don't run it)

and save some more copies by using the

ordinary Save command.

Conclusion

The practical value of DISK-O-VIC

should be obvious, but the program

should also serve as an example of how

a complete disk operating system can be

ly more complicated to assign within a

string. They are the Return and the

Quote. To include a Return in a string,

add CHR$(I3) to the string (13 is the

ASCII code for Return). For example,

if you want F3 to automatically start

running a program as soon as you press

the key, change line 230 to:

230 R(3) = "RUN" + CHRSfB)

The return will be executed immediately

after printing RUN, just as if you had

pressed the return key on the keyboard.

A quote can be included in a siring in a

similar manner using CHR$(34).

The maximum total length of all the

strings you assign to the function keys is

231 characters. If you assign more than

231 characters, the program will print

out an error message indicating that

your strings are too long. At that time

you may simply edit the appropriate

lines and run the program again.

Keep in mind that the program clears

itself out of memory after it runs. So if

you would like to have a permanent

copy of the program with your newly

defined functions, remember to save the

program before you run it.

The following is a brief description of

how the machine language section of

the program works. For a commented

assembly-language listing o\' the pro

gram, send an SASE to RUN

magazine.)

The general technique used to ac

tivate the function keys is fairly simple.

Sixty times every second, a hardware

interrupt is generated thai signals the

operating system to perform certain

housekeeping functions such as scan

ning the keyboard and updating the

real-time clock. By intercepting this in

terrupt, the machine language program

executes sixty times a second.

Every time the program executes, it

cheeks lo see if one of the function keys

is pressed. If one is pressed, the key

board buffer is loaded with as many

characters of the appropriate string as it

can hold. As soon as the keyboard buf

fer is emptied by the operating system,

my program will load more of the string

into the buffer, until the string is com

pletely printed.

The Basic Program

The functions of the Basic program

are: to load the machine language pro

gram at the top of memory; to load the

strings just below the machine code; to

set up pointers for the machine lan

guage program; and to protect program

and strings from the rest of the oper

ating system.

Lines 100 to 130. Reserve enough

memory to load the machine language

program and strings by changing the

top-of-memory pointer to point 512

bytes above the Basic program.

Lines 200 to 350. The array F$ is

created, and the strings associated with

each function key are printed lo remind

the user how they are defined.

Lines 400 to 450. The total length of

all the strings is calculated. Ii is verified

that their length docs not exceed 231

characters. If the strings are valid, then

SM (start of machine language pro

gram) and SS (start o\' strings) are

calculated.

Lines 500 to 530. The strings and a

table of pointers to (he strings are load

ed, beginning at location SS.

Lines 600 to 630. The machine lan

guage program is read from (he Data

statements and is loaded, beginning at

location SM.

Lines 700 to 780. A pointer to the

machine language setup routine is

stored in memory. The lop of memory

is changed to point to the beginning of

42
: . ■• -"■■ 23

dEiuAj

-OUI3U!3AISU01X0OJOLUEpOOUfllMHOA

'saunnojpnus^-uouaqjpircjsuopun01

(90Z9t>NI'snoclEUGipu[t60/.*oflOd

*'O3piresores(Wpjbmoh)^>/«£)3Jud

-jsfayS^dWlUDjSoJcfOZ-JIA3M101joj

-3J'SOUlJtlOJ[ElUS^3l|lUOUOI1RU1JO|UI

JOJ'S|rei3pDL|1JOSUIOSUl1|U[|IA\

aoqipin;'uoiiEisjdjoiu]pre

o\spqej[njSuiUB3tUusaiSuooqoabii

ssuijiiojpiresuoueooisq]'S3SB0isolu

a]iSuiisnuisoiBnbojoaiqeisi[j3U|

-iubxoAjjnpjEOO]sansoq'OZOIA3M>

jouoiiBJodooq]lnoqnojouiujeoiox

■popoppSIojoz3ui

-JEUIUUS]ElUUnSJ3PBJBqDJO§UU]S3l||

3uuuudd33>(himn-JojsiSoaXpirejojb|

-niUilMB3qiAqJBpSUIIBSUUJSRU99J3S

3qiO]juud[]ia\]

joauosi'iSuijsiiUj

-0LULUO3sqiliejojjuiiuiisoqoj

Diejnq'suiq.iBui01suiq.iBiuiuojjfje\

HimSUOpBOqJpqi"ssuunojjo

-]bdjaqiouE3jespumumoDcnSBg

'BSJ3A

3DIApUB't?93JOpOlUUlO^3lf)O]OSOIA

aqiluojjJ3jsiiBJio]sjduiisoqpjnoijs

]BIUD>I3qiJO3SI13AISU31X3Sui>|RUI

-UTCQpire0ZOIA3M1J0J

|[B3JBSOUIjnOJIBIU3>1

'(BJ3U3S0]SJ31lldUIO33JOpOUIUIO3JO

//wjojza.4J$Wsin33O

bjndjno,,3i|]l3|durex3

-pBiBOjiuspi]BguuirmosDuijnojouibs

3l{]DABqSJSjndtaOO3JOpOLUUIO3JOSp

-pomp3JDA3s]Bq)ui[Epads3jbssupnoj

|BUJ3>iossqj,(-ojopoujuj03,{qpoziu

-SodojXifBpijjoSuiipdsoil)si,,IBUJ33,,

'UOSB3JUA\OU)Jun3LU0SJOj)SU01J

-BJ3doindjnopirejnduijoj

jofeiujoposoduiODm'reiiJ3>isqi

'dnojgjsnj3iu,'SsuoSsib^qSnojoa\i

ojuiiibjS3unnojtMQ>lOZOIA

■]IB)3pJ31B3JSIIIS3UI1HOJ3l|]JOM3J

e3URUBX3sjo"!ssiAqjo'spuBsnoqi

U3A3'spDjpunqXireujoaesoisiqissod

Sii;'suiujSojdA\ojqouioquisssqiojjii

saupnoJlAJoypJEpireisSuisnA"e"inJ

-dpq3qo]3A0jdpjnoqs3[qEisunl

O'MSIGJOJ3snou3ABMno^J!
•lasiajo>Is(uiaisXsSuiiEJsdoO

sqiuipouiuiuoosouijnojqnsjodnojS

esjssiBnbojo3iqeiaqiui

iispsssso

-deoqa"iojejp|noMsjiunqioqsouis

'jn33op|noqsPHJUO3ou'^sipXddoy

bqiiMSuop0Z'D\A.3l0°lP3Ps!l!un
3H3SSEDBJlU3A3'JOJJIiqpUBlUUIOO)|Sip

3i|ijojpastloqoaojsjoqiubo>(0Oiqsiqx

jojjnqouossEObSBp3Xo(diuoA]|t;lu

-JOUSI1BI|1'3££0$W-SllIUBJS'30EdsJO

>|oo|q3SjbibS33JJsiqx"pssn3qj(uoa\

ijUIlOdB]0H3SSE.T3l|]IBqipSUJHSSBSIII

'luoisAsSuuBJsdo>js[pbsisiqj3omg

W&OCOIA
oqiAqposniousjepxreSUOpBOO)sSftd

-OJ3/ssjjojbgj$qSnojqigj$suoi]

-B30|'XjlBIlpy"P33M3P1!IS3J[B1LUSJSAS

SuilBJodosqi'sasodindreujjouipqi

jojposn3JEXaqisouisinq'S

33Bd-oj3zuozopbnioqesosn0)qB]

■3uiisi|jO|qiuoss-BsqiuisaiEnbojo

oqi]Ejioojp|noqsaft'OIA'O-^SiaJ°

3qi3UIAB3]3JOJ3g

piIBSOSSOJppE

ssuiinojqnsssodind

soupnojqnspireiuuioo

a\3u

oiui

:p3qiJ3sopisnfsjnpruisjje

-J3AO31(1JO,<JBUIUinSESI3J3q'onSSI3l]l

fiuipnopjoAea\b3ABqsiyBjopoouig

popjOABSISUOI1E3O1oSBdOJ3Z

[BOjlUOJO3Sn'BOJBSiq]01S3iqB|JBA3UI

-uSiBSBAg"quojospuEsjsisiSojSuiabs

joosodjndoqijojpoiuojosis3|qBUEAjo

pse'A[]euij-sounnojqnspuBiuujODaqi

'0ZS80
/A/'JOspuiM-.7'pDQ%.y.VA/xpma

0}dadjjoojot/innsssuppy

[g'ApuEqAjsauibj3o.icIs[t[ipuij[]ia\

noA'jsoiu3i|issnnoAiBqisuoipunjjo

13S3l[]OUIJOpIIOAJI'DAUp>fSlpBOABl]

noAjiA[uo[njosnsjbpouijap3ABl|[

SpUBlULUOO31(1JOOUJOy0>|OJ1SAO>|3|§

-inseqiiMjnoiuudbnoAoa[Soipouij

-opoqueosAs>|oqjjoouo'O[duiExo

joj'jsiuiJde3ABqnoAj]'Sp33Uua\o

jnoAoiji3/iiuoisnoueonoAieijiJOBJ

3qjuiS3i|ujBJSoadsjqijoJOA\odoq|

ojojoqiuoisAsSunujodooqioi.\jouioui

3L|1|[BIIJUPJO]JOpJOUI3I1|EApJUlSl.IO

sijoip3iOjS3Js;AJOLiiouijodo]oqx

■&uo|ooiojeiBqisSuuisSuiuyspsb

qons'sjtiooojojjouejiAjlioitiiods;qi

uopnoaxgqzxoiqos

boiuipspco]osjbsi

3qiOIJ3]UI0dVAJOIU31UOIUIIISpBO|

Pue{\)%i\3uuisbS3j|uijeqiouunoj

-qnsoqisisuu'0801°*0001

■woncsoinooxsLioqi

'ou;ino.idnpsoSbhSub]oniqDBiuoqjoi

sduinfUIBJSoJdsqx'iiioisAsSuiiBJsdo

oqiuiojjAeaveuo>(B]sipopssusisbAjo

-momqomuSBA|tioIBqios'sSuujssqi

introduced, we'll look at how it works.

As an aid to understanding, Listing I

presents an assembler listing for the

complete program. Since assemblers are

starling to become more common for

the VIC-20, you may wish to enter the

source code and assemble your own ver

sion. But the assembler listing has been

provided for its educational value, and

most users will want to enter the object

code directly. A hexdump of this code is

provided in Listing 2.

Most problems with detail can prob

ably be cleared up by studying the com

ments in the listing. As an aid to under

standing, however, Til describe the

basic structure of the program. To do

[his, some consideration must be given

to the way Basic fetches and executes a

command.

When interpretative Basic is in ac

tion, a pointer must seek commands by

parsing or scanning the input line. The

interpreter checks the input line, charac

ter by character, in hopes of finding a

command that it recognizes. Thus, if

you want to add new commands to Ba

sic, you must put a "wedge" into the

parser routine, diverting attention from

the normal scanning procedure to a new

one. Essentially, the parser is forced to

look for the new commands first. If it

can't match a command with any on the

new list, then control is sent back to the

normal system and it will check the in

put command against its old list.

The first block of code in Listing 1,

lines 00072-00080, is the initialization

routine. This code inserts a wedge into

the normal parser routine, so initializa

tion need occur only at the start of the

session. After initialization, the Basic

parser will always check first for D1SK-

O-V1C commands.

The next block of code occurs in lines

00086-00165. This is the parser add-on.

As mentioned above, the parser will be

directed to this routine each time a com

mand is input to the computer. The key

instruction in this block occurs at line

00100. The stack is examined for any

"RTS" (return addresses). If the ad

dress on the top of the stack indicates

that the parser has come from the V1C-

20's "waiting for a command" state,

then action is taken. If some other ad

dress is found, then the parser is al

lowed to continue its normal activity.

Assuming that the test has been

passed and the VIC-20 is indeed waiting

for a command, the input line is then

checked character by character. This

occurs in the block of code labeled

"Parser Routine," lines 00119-00150.

The input is checked against the list of

DISK-O-VIC commands held in a table

at lines 00573-00586. If a match is

found, then an "action address" is

formed, and control is passed to the

proper subroutine.

Subroutines

The great bulk of the program is de

voted to the various command subrou

tines. To make them easier to find,

these subroutines have been arranged in

alphabetical order, with Append com

ing first, then Catalog, and so on. Al

though at this point the program may

look complex, it is actually quite easy to

analyze if you attack one small function

at a time.

Toward the end of the program, at

line number 00452, some general pur

pose subroutines are presented. These

are commonly used by the rest of the

program to fetch file names, get disk

parameters, print messages to the screen

and so on. In general, they have been

assigned labels or names that relate to

the functions they perform.

DISK-O-VIC ends with various data

and address tables. First is the table of

keywords, described above. Then fol

lows a table containing the addresses of

Take the tedium out of pro

gramming sprite graphics.

This C-64 program simplifies

the process.

By Edward Rager

The capacity to create and manipu

late sprites is a powerful feature of the

Commodore 64. However, there's a lot

of work involved in doing it. Probably

the most tedious aspect of sprite graph

ics is translating the binary data from

the sprite you draw into decimal num

bers that can be Poked into memory.

The program described here allows

you to draw an enlarged version of your

sprite on the screen. The computer will

scan the diagram, calculate the numbers

to be Poked into memory and display

your sprite.

How to Draw a Sprite

The C-64 user's guide gives a detailed

description of how to create a sprite. Es

sentially, you fill in the spaces of a grid.

A 1 goes in a space you want to have

filled in, and a 0 goes in a space to be

left blank. There arc 21 rows and 24 col

umns. The 24 columns are divided into

three 8-bit binary words.

Run It Right

Commodore 64

Address author correspondence to

Edward Rager, 9360 Tasmania Ave.,

Baton Rouge, LA 70810.

SPRITEN UP!

So 21 rows, composed of three

8-bit words each, make 63 words that

describe your sprite. When converted

into decimal values and Poked into

memory, the sprite can be displayed on

the screen.

Once you have entered the program,

typing RUN will draw the sprite borders

on the screen. (There won't be any grid

lines.) The program will stop here to let

you draw a sprite within the borders.

Use the cursor arrows to move the cur

sor to a position you want filled in and

put a I there. It is not necessary to put a

0 in spaces you want left blank, for the

computer looks only for Is.

When the drawing is complete, type

GOTO200: with the cursor at the left

margin of the screen and about halfway

from the top. (In typing in these pro

gram commands, be sure to include

each colon. If any are omitted, syntax

errors will result.) Your drawing will be

scanned and converted to decimal, and

the values put into arrays. (For about 20

seconds, it will look as though nothing

is happening.) Your sprite will then be

displayed as it would look in a program.

The program pauses again, and if

you like the sprite, you can get a listing

of the 63 decimal values that you can

Poke into memory to display the sprite

in a program of your own. Typing GO-

TO500: will put the list on the screen.

GOTO700: will send it to the printer.

Both lists are read across.

If you're not satisfied, and want to

modify the sprite, do so. Then type

GOTO200: to put the new values into

the arrays and to display the revised

version.

By typing GOTO600:, you can al

ways have the computer redraw the pic

ture for you. It will use the data in the

arrays to do this. No matter what you

40 25

do to the drawing, the array data won'l

change unlil GOTO200: is typed. 01

course, typing RUN will erase it. Table

] summarizes the action of the GOTO

commands.

in array AK.

Subroutine 1300 takes the binary-

data from array AR, eight elements at a

time, and treats this as an 8-bit binary

number. This is converted to its decimal

(ommamt Action

GO7O200: Scan the sprite drawing, convert it to decimal values and

store them in an array. Display sprite.

GOTO500: List the 63 decimal values on the screen. Read across the

rows.

GOIO600: Redraw the current sprite.

GO7O700: List the 63 decimal values on the printer. Read across the

rows.

Table I. Summary oj GOTO commands in sprite drawing program.

How the Program Works

This program works by the position

of the drawing on the screen. If the

screen should scroll up even one row, all

the values lor (he sprite would be

wrong. You must be careful to keep the

cursor away from the bottom of the

screen; that's why you should enier (he

GOTO commands about halfway from

the top. The reason the GOTOs are fol

lowed by a colon is to keep the com

puter from trying to read the whole-

line, which includes pan of your sprite

drawing.

Line 45 dimensions the two arrays

used and scls V equal to the start of the

video display chip. Lines 1(X) through

720 call the subroutines thai do the

work of the program.

Subroutines 1000 and 1100 make the

borders for the sprite drawing. Subrou

tine 1200 scans the area within the

borders. If a 1 is found, ii puts a 1 in the

corresponding element of array AR.

Otherwise, it puts a 0 in [he array loca

tion. There are 504 (3x8x21) elements

26

equivalent and is stored as one of the 63

words in array A1.

Subroutine 1400 displays the sprite.

The 63 decimal numbers from arra> Al

are Poked into memory', starting at lo

cation 832. (Locations 828 to 1019 com

prise the tape I/O buffer.) 832 is

64 x 13, so that with blocks of 64, ihis

data is stored in the 13th block.

In line 1450, 2042 is the location that

points to the data for sprite 2. The 13 is

Poked into it because the data was put

into the i3th block.

Location V+21 enables (displays on

the screen) a sprite. In this case, it turns

on sprite 2 since a 4 (2x2) was Poked

in. Line 1440 specifies the horizontal

and vertical position of the sprite.

Subroutine 1500 lists the 63 decimal

numbers that can be used to define a

sprite in a program.

Subroutine 1600 lakes the binary

data from array AR and redraws the

picture on the screen so it can be re

viewed and modified if desired. k

■ -

remaining transparent to the normal

operating system.

The special loader feature also makes

it possible to use this package in a

VIC-20 with any amount of extra mem

ory. It will not become obsolete if you

decide (o add extra memory at a later

dale. After installation and initializa

tion, DISK-O-VIC consumes 980 bytes

and leaves zero page intact.

Thirteen New Disk Commands

Before describing DISK-O-VIC's

mode of operation, I'll examine the new

commands so you can see just what they

do. (For full details, see the accompany

ing table of commands.)

Whenever a floppy disk is inserted in

to (he 1541 and is subsequently ac

cessed, a special chart, called the block

availability map, is created in the drive's

memory. This charl contains special in

formation about the disk currently in

the drive, such as how the disk has been

partitioned, what blocks are free and

oilier various allocation matters. For

tunately, the disk drive keeps track of

this somewhat esoteric information, so

you rarely need to be concerned with it.

The process of creating this chart is

called initialization. You must initialize

a disk if it is to be properly written to or

read from. (Note that some non-Com

modore disk drive systems use the term

init ializal ion lo mean '' format l he

disk," a process which can write over or

destroy data. This is not the case with

the 1541 disk drive.)

To ensure that the information in the

drive's memory is up to date, you should

initialize the disk often during a session.

The 1541, as it comes from the factory,

will generally perform self-initialization

during the execution of various com

mands. To add a margin of safety, an

automatic initialization precedes every

command in DISK-O-V1C. Though this

may be somewhat redundant, the pro

cess takes only a second and goes a long

way toward reducing problems. It never

hurts to over-initialize!

The DLOAD and DSAVE com

mands work exactly like the VlC-20's

Load and Save commands, except that

the computer knows automatically that

the proper device to access is the disk

drive (device number eighi). These com

mands are for Basic programs only. Do

not try to DLOAD or DSAVE machine

language or hybrid programs, for the

commands make certain assumptions

about the start of program space that

may or may not be true for machine

language programs. In general, all the

commands in DISK-O-VIC assume you

are working in Basic.

DLOAD and DSAVE automatically

check the error channel aficr an opera

tion to see that all went well. If an error

is detected (Drive Not Ready, File Ex

ists, File Not Found, etc.), the message

is primed to the screen and the file is

closed down.

Catalog is an intcresling command.

Unlike the old way of doing things, you

may print the disk director)' or catalog

directly to the screen, thus preserving

any programs in memory- To stop the

list ing to the screen, simply push the

space bar once; to resume the listing,

push the space bar again.

The purpose of the rest of the com

mands should be obvious. Just look

over Table 1 and perhaps refer to the

1541 disk drive manual from time to

time. Users of larger (and more expen

sive) Commodore computers will prob

ably recognize many of the commands.

Unlike the VIC-20, computers such as

the PET and SUPERPET already have

a set of disk commands very similar to

those provided by DISK-O-VIC.

How the Program Works

Now that DISK-O-VIC has been

39

DISKOVIC

Catch Saturday Night

Fever with this utility

program that gives you 13

disk-related commands and

will keep your VIC-20 and

1541 disk drive dancing.

Move over, John Travolta.

By Thomas Henry

The Commodore VIC-20 computer

and 1541 disk drive make a very powerful

computing combination. The VIC-20,

of course, is a full-Hedged 6502-bascd

computer, offering many professional

features such as a thorough set of Basic

commands, a professional keyboard

and expandable memory options.

A beginning system often starts with

a cassette unit for mass storage, but as

the user's level of expertise rises and the

need for faster I/O becomes more im

portant, a disk drive becomes essential.

The 1541 drive, like all Commodore's

floppy disk units, is intelligent. This

means it is a computer in its own right

and is able to perform many functions

with the intervention of the host com

puter.

RUN It Right

l:ditor/assembler or

machine language monitor program

VIC-20

1514 Disk Drive

Address author correspondence to

Thomas Henry, Transonic Laborator

ies, 249 Norton St., Mankato, MN

56001.

In fact, the 1541 contains its own

6502 microprocessor, a couple of VlAs

(versatile interface adapters), 2K of

RAM and a complete operating system

in ROM. This leads to two important

facts. First, since the 154I's system is so

complete, it steals no user program

RAM from the host computer. Unlike

many disk drive/compulcr combina

tions, a VIC-20 has just as much pro

gram space with disk drive as without il.

Second, since the 1541 is intelligent,

you can externally program it to per

form many useful functions. The unit is

essentially open-ended in the sense that

if a particular function doesn't already

exist in the disk operating system, you

may write a program to generate such a

fund ion.

DISK-O-VIC

This article describes a utility

package, called D1SK-O-VIC, which

adds thirteen new disk-related com

mands to the VIC-20. These commands

become part of Basic and you may use

them in the immediate mode to simplify

disk drive housekeeping operations.

Some of the commands, such as

DLOAD and DSAVE, are extensions

of old Basic commands. Others, like

Scratch and Rename, are for keeping

disks neat and orderly. Finally, another

group adds features such as error

message readout, directory' display and

so on.

The DISK-O-VIC utility package is

written in machine language for max

imum speed and flexibility. After it has

been loaded and initialized, it may be

left in place for an entire programming

session. Due to the special loader fea

ture (described later), DISK-O-VIC will

sit at the top of memory and be free

from Basic program interference. Thus,

it adds thirteen new commands while

MAD L BOMBER

Acity is being plagued by

random letter bombs; its

inhabitants fear for their lives.

Where is Dirty Harry when

you need him? Only your

quick thinking and

familiarity with the

keyboard can save

the city.

Which is more important—learning

on your home computer or having fun

with it? That probably depends on

whether you're a child or the child's

parent. But Mad L Bomber is both fun

and educational.

Play this game and you might learn

to type, or at least become familiar with

the keyboard. And as anyone in busi

ness knows, keyboards are everywhere.

RUN It Right

Commodore 64

Address author correspondence to Gary

V. Fields, 86 Lanva/e Ave., Asheville,

NC 28806,

By Gary V. Fields

The Mad L Bomber attacks Anycity,

U.S.A., with mean letter bombs. He

can attack very fast if you want, or very

slowly. Your skill with the keyboard

should determine the speed.

The quiet calm of the title screen is

shattered by a siren and attack 1. bombs

(letter bombs). The sound on the pro

gram is captivating, and the better your

monitor's or (v's speaker, the better the

sound.

You arc asked to pick a speed, and

the fun begins. A city in low-lying fog is

displayed. Suddenly the screen alerts

you with a flashing "Code Red" alarm.

Out of the clouds comes the villain

himself. But don't pay him too much

attention—he's just trying to distract

38

you so his randomly dropped bomb can

make it to ground zero.

Sometimes the letter bomb comes

from beneath Mad L Bomber, but usu

ally it drops from another part of the

sky. You must recognize the letier and

press the same letter on the keyboard

before the bomb twists, turns and ex

plodes on the city below.

If you are fast and correct, the bomb

will self-destruct—tumble and explode.

Then, the Mad L Bomber will beat a

quick retreat into the clouds above.

But don't go away. He'll be back for

a total of 21 bomb runs or until he wins,

whichever comes first.

If you match the Mad L Bomber let

ter for letter, you'll win, and Anycity,

U.S.A., will thank you with hearty ap

plause. The program then gives you a

chance to choose a speed and begin

again.

3—Goes to title screen and siren.

4—Sets up for sprite. BX and BY are the sprite location

variables.

5—Sets sound variables and Pokes Mad L Bomber yellow.

6—Requests speed and Pokes Bomber into upper left corner of

screen.

7-15—Input the speed to use on bombs.

16—MC is the variable that counts bombs.

20-22—Poke the screen black and check to see if game is half

over—MC>20.

23-25—This is the hallway-through subroutine. If MC>20, then

program goes here.

30—TT keeps track of where bomb is on the screen.

31-36—Flash the Code Red warning with beeping sound.

37—Double checks input in main loop will begin (tab = N).

40—N chooses where bombs will start on screen (tab = N).

50—Pokes screen black and moves cursor to home position

(CHR$(I9)).

70-82—Define city and sky.

94—CR limits rising fog and clouds from going above screen.

95-98—Randomly Poke fog or clouds on screen.

100—LE chooses which letter will be a bomb.

110—Makes sure bomb is a letter and not a number or graphics

symbol.

120—GETK$ starts looking for keyboard response to falling L

bomb.

130—If proper response was made, this calls up explosion in

routine 155-250.

155-250—Falling letter tumbles, explodes, and Mad Bomber heads for

cover.

170-178—Make bomb appear to explode.

200—Pokes all the sound off.

250—Adds to MC counter. Pokes Sprite off and returns for
another bomb.

28

Append—This command allows a Basic program to be appended from the

disk to a program in memory that has lower line numbers. The proper syntax

is: APPEND"NAME".

Catalog—Typing CATALOG will read the directory from the disk and

display it on the screen without destroying the program in memory-

Colled—This performs a validate, which means it tidies up the disk and

makes all unused blocks available.

DLoad—Acts like the normal Load command, but you don't have to type

,8. It also initializes before, and checks for errors after, it loads. Both Basic

and hybrid programs can be loaded as long as the hybrid programs are nor

mally loaded like all-Basic programs.

DSave—Just like DLoad, but saves programs to the disk.

Header—This command wiil format a disk. Since all data will be

destroyed, it asks "ARC YOU SURE? Y or N." The correct syntax is:

HEADER"NEWNAME",Ixx. You must use the ,1. The xx is any ID you

want to assign (different for every disk you own).

1NIT—This is the same as OPEN15,8,15,'T':CLOSE15 in Basic.

Kill—This does a reset of the C-64 much like turning the power off and on

or typing SYS64738.

Off—This one will disable D1SK-O-64, but leave it and any other program

in memory intact. DISK-O-64 slows down Basic a little, so you can turn it off

when you're interested in maximum speed. To turn it back on, type:

SYS256*PEEK(56) + PEEK(55).

Rename—Allows you to rename a program that already exists on the disk.

The syntax is: RENAME"OLDNAME"TO"NEWNAME".

Scratch—This will scratch a program on the disk; il is equivalent to

OPEN15,8,15,"SO:NAME":CLOSE15 in Basic. It also asks "ARE YOU

SURE? Y or N." The correct syntax is: SCRATCH"NAME".

Send—With this one, you can send any command to the disk that you can

send in Basic; it is the same as OPEN15,8,15,"xxxx":CLOSE15 in Basic,

where xxxx is the command string. The proper syntax is: SEND"xxxx".

Status—Displays the disk status without executing a program. When you

get a disk error, just type STATUS.

Table 3. Explanation of DISK-O-64 commands.

37

Table 3 lists the new commands now

in place. If you read the original article

on DISK-O-VIC, you'll see that all

commands remain the same for DISK-

O-64. Use a scratch disk and experiment

with each command to become familiar

with them (also to make sure everything

is working OK, with no typos).

DLoad/DSave Restriction Changes

I found one minor irritant in the orig

inal DISK-O-VIC I couldn't use DLoad/

DSave on a hybrid program (one con

taining both Basic and machine lan

guage). It would appear to load and

save all right, but 1 noticed that the

saved program had fewer blocks than

the original.

The real problem was that 1 didn't

realize what was happening until one

day a favorite hybrid program (DISK-

O-VIC) wouldn't run, and I had to type

the whole thing in again. In all fairness

to Mr. Henry, I must say he mentioned

this restriction in his article, but in my

haste I failed to note it.

I traced the problem lo the DLoad

routine in DISK-O-VIC. DISK-O-64

Label

WARMST

WAIT

INFIN

CHAIN

CLR

INTEGR

PSTRNG

ERROR

PRL1NE

CHROUT

RESET

VIC

C474

C48C

C49F

C533

C659

C96B

CB1E

CF08

DDCD

E742

FD22

C-64

E386

A48C

A49F

A533

A659

A96B

ABIE

AF08

BDCD

E7I6

FCE2

Table I. DISK-O-64 label equate

changes from

sernbly listing.

DISK-O-VIC as-

has this modified so DLoad/DSave can

be used with hybrid programs as long as

they are loaded like a normal Basic pro

gram, i.e., L0AD"NAME",8.

The only exception is with the Append

command, which can be used to append

only pure Basic programs, not hybrids.

Practically speaking, the need to ap

pend the Basic portions of hybrid pro

grams is extremely rare (I've never

done it).

The changes to edit the original

DISK-O-VIC are shown in Table 2 for

the convenience of DISK-O-VIC users

who may want to modify their copies.

VIC Hex Address

126E

126F

1270

1271

1272-127B

127C

127D

127E

New Hex Value

86

2D

84

2E

EA

20

33

C5

Table 2. DISK-O-VIC changes for

DLoad/DSave will

grams.

\ hybrid pro-

300-350—The falling bomb sound.

310—Converts N (tab value) to value with an angle for dropping

bomb's twist.

311-312—Keep the bomb within the screen's borders.

360—Detects when bomb touches city.

370—Erases each letter and leaves a red trail where it had been.

800-808—Make screen and city appear to explode.

810-820—Last screen.

820—Goes to hear the siren again.

830-854—Ask if player wants to continue or quit.

1050-1054—Explosion sound.

2000-2028—Title Screen.

2029—Reads Sprite data lines and Pokes it into the proper memory

location.

2030-2080—Siren sound.

4000-4070—Winner routine.

6000-6003—Data lines which define Mad L Bomber Sprite.

Table. Line by line explanation ofMad I. Bomber program.

But if you fail, the city explodes, you

are notified of how many letter bombs

you stopped, and you arc given the

chance to play again.

By Ihe Way

Also note that an early morning fog

rises during the first half of the attack.

After the tenth bomb run by the Mad L

Bomber, you are given a short rest.

When the attack continues, the fog is

gone, but now an ever-thickening cloud

cover makes early recognition harder

and success tougher. After each attack,

the fog or clouds thicken and rise.

EASY MUSIC MAKER

Even if you're not a musi

cian, you can make a

maestro out of your C-64

with this magic music pro

gram.

By Gary V. Fields

Total Music 64 gets sound out of

your Commodore 64 and into your

ears. This program takes all I he work

out of adding sounds or songs to your

own programs.

I f you know nothing about I he sound

interface device (SID), Voice 1, 2 or 3,

or the difference between CJ and G,

help is here.

If you couldn't care less about the

items mentioned above and only want

to get to the sound, then Total Music 64

was written for you.

But don't be surprised if you also end

up learning a lot about SID; Total Mu

sic 64 lets you whistle while it works.

Type in the program as listed. (Be

careful not to leave out any semi

colons.) Save the program before you

run it the first time.

Now run the program. The title page

and some information about the pro

gram and how to use it will dance across

the screen. Press the space bar to begin.

The next screen gives you a chance to

select and define your own voice with:

RUN It Right

Commodore 64

1 IK required

A ddress author correspondence lo Gary

V. Fields, 86 Lanvale Ave., Asheville,

NC 28806.

volume, waveform, attack/decay, sus

tain/release and duration of note. Press

the return key and the program will de-

faull to preselected values that you can

later experiment with, if you wish.

Next is the Practice screen. When you

press A, the letter will appear on the

screen, and you'll hear the musical note

A (octave 4). When you press shift/A,

you'll hear A# and both characters will

appear on the screen. The same pattern

holds true for A-G. All other keys are

empty except P, the function keys

(F1-F8), the INST/DEL key, the return

key and the up-arrow key.

P is for pause; you won't hear any

sound when it appears.

The up-arrow key erases the screen.

(You can play with the whole screen dis

play, but you should reserve the Prac

tice screen for the area above the mid-

line.)

The return key starts another line of

practice notes.

INST/DEL erases each note, one at a

time.

F3 exits the practice screen and puts

you into Total Music. Everything on the

screen will be erased except the notes in

(he practice area. A new menu, offering

additional options, will be displayed.

F7 exits back to the screen where you

select and define your own voice.

Play with the Practice screen for as

long as you please. When you get a song

or series of notes you like, press F3 and

go to Print & Play.

Print & Play

This is where all the fun and real

work is done. The screen should now

display:

Fl DATA ONLY F2 TOTAL PRINT

F3 PRACTICE F4 PRINT NOTES

F5 PLAY TUNE F6 DURATION

17 RESTART

P PAUSE (UP ARROW)ERASEALL

It's easy to keep your disk

drive operations neat and

tidy with this C-64 conversion

of the DISK-O-VIC utility pro

gram that ran in RUN's first

issue.

By Cal Overhulser

In the premiere issue of RUN ap

peared a dynamite disk utility package

for the VIC-20 called D1SK-O-VIC by

Thomas Henry. It is one of the most

useful 1541 disk utilities I've seen, and it

made disk drive housekeeping opera

tions very easy on my VIC-20. I wanted

the same capabilities on my C-64, so I

decided to try convening DISK-O-VIC

to DISK-O-64.

The main problem was that of con

verting the addresses for the system calls

in DISK-O-VIC to those addresses ap

propriate for the C-64. The Kernal calls

were easy, since they are the same for

both machines and are published in sev

eral reference manuals. The real prob

lem involved other system calls such as

Warmstart, Reset and Printstring.

After some searching of the C-64

ROMs, I found the routines I needed.

Table 1 lists the variable names from the

original DISK-O-VIC assembly listing

RUN It Right

Commodore 64

1541 disk drive

Machine-language monitor

Address all author correspondence to

Cal Overhulser, 15 Nutting Road, West-

ford, MA 01886.

DISKO-64

that require changes, along with I heir

new system addresses for (he C-64.

Once I had the correct system ad

dresses, the actual conversion became

relatively easy.

First, I found the affected system

calls every place they appeared in the

original assembly listing and located

their equivalents in the original hex

dump. Next, 1 determined the changes

necessary to fix the startup screen. 1

then loaded in DISK-O-VIC, made the

necessary changes with a monitor and

saved a copy of DISK-O-64 with the

same length and same capabilities as

DISK-O-VIC.

Entering the Program

You'll need a machine-language

monitor to enter the DISK-O-64 pro

gram from the hex-dump listing. After

loading and entering your monitor, you

begin entering the program at address

$0801 and continue through S0D2F.

Then use the method appropriate for

your monitor to save DISK-O-64. Using

the C-64 monitor from Commodore,

you'd type:

S "DKKO64",08,080I,GD2F

Make sure you use $0801 as the start

address so you can later load it like a

Basic program. You now have a copy of

DISK-O-64 that can be loaded and

saved like any Basic program. Then you

exit the monitor and reset the C-64,

either by typing SYS64738 in the Direct

mode or by turning the power off and on.

Now load and run DISK-O-64 like

any Basic program. Just type LOAD

"DISKO64",8 to load it into your

C-64, and then type RUN. If all goes

well, the startup screen appears, and

DISK-O-64 is now in place, protected in

upper memory.

35

4, T2 is redefined in statement 355.

Since from the subroutine "RE

PEAT THE SEQUENCE" (statements

450 to 485) the program exits in given

circumstances without using the Return

command, 1 lie stack could be filled

(after about 13 games at the same game

number) and an error message "OUT

OF MEMORY" could turn up. To

avoid this disaster, three more Return

commands were put in this subroutine

with flag Q. The subroutine "FOR

STACK CLEARING" (statements 700

to 710) gives the proper Jump state

ment.

Similar stack filling can also happen

when a For.. .Next loop is left before

ending it. The first part of statement

515 clears up this problem.

The program needs 3568 bytes of

memory; another 400 bytes are needed

when it is executed. h

Variable

B$

C$

CO

G

K(N)

Nl

NM

P

Q
s

SI

T

Tl

T2

T3

TN

TT

X

Remarks

11 cursor down + purple code

marking of color spots

color memory location

number of games in the same kind of game

position of color spot at n-tb flash in the sequence

maximum number of flashes in a sequence

number of flashes in a given sequence

number of flashes in Game 4

flag when exit from subroutine

screen memory location

duration of musical notes

voice number address

time between flashes (see explanation below)

time delay allowed, in seconds, when repeating flashes

clock status, when measuring time delay T2

pilch code of musical notes

total number of points in the same kind of game

game number

Table 3. List of main variables.

'- ^^

i~ r i

7 v c
1 , A

u g * r > < L-

The notes above the midline (from

the Practice screen) should still be on

the screen, and a little right-arrow sym

bol should race across the screen, eras

ing two lines below the midline.

You'll still hear the notes when you

press them, but now they'll be displayed

below the midline.

Your notes will be placed in an array,

which was dimensioned in line 15 to be a

maximum of 200 notes. The lower half

o\' the screen can display about 200

notes. During this time, copy your prac

tice notes or play something else.

If you want to start over, press the

up-arrow key, and all the notes you've

just played (except your notes in the

practice area) will be erased. If you

press F3 twice, you'll erase everything.

If you press F3 once, you'll return to the

Practice screen.

After you've arranged some notes on

the screen into a tune, press F5, and your

tune will be played as it would sound if

it were in a program. (Note: C,C,C will

sound the C note for three duration

counts. If you want to hear the C note

three distinct times, play C P C P C.)

When II Works, II Plays

When your tune sounds just right,

press F2 (make sure your printer is

ready). The program will print out a

total program listing. To use it, all you

need do is copy it into a program.

Everything's there—every Poke, every

Read, every For.. .Next loop and every

piece of data.

However, you may have to make a

change in copying the data. The pro

gram lists all the data on one line. If

your tune requires more than one line of

data, just add another data line number

and continue.

Fl prints only the data needed for the

tune. Later, you'll probably choose this

most often.

F4 prints the actual notes/letters.

(Total Music 64 uses octave 4.) By using

these notes, you could look on page 152

of the Commodore 64 User's Guide and

translate each note into high and low

frequency for different octaves.

You're asked to name each tune

that's printed. Then the printer takes

over. When the printer finishes, it will

also print out a total count of the data.

You might need this if you're using

other Read statements in a program.

F6 lets you choose another duration

count for your tune without having to

exit this mode. Note: INST/DEL was

not included in Print & Play mode be

cause the notes are placed in an array. If

each note used only one character, then

INST/DEL could have been included.

But, for example, C# takes up two char

acters. Erasing would have thrown off

the array count.

I hope you have fun with Total Music

64, and that it adds lots of sound to

your programs.

Here are some tunes with which you

can experiment:

Old MacDonald—V P 1 I* F I1 C CPDPDPCC

PAPAPGPGPFF

This Old Man—G EGPCiEGPAPGPFPEP

DPEPFPEFGPCPCPCPCPDE

FGPG

After you become familiar with the pro

gram, try the same tunes using different

waveforms, attack/decay, sustain/re

lease and duration values.

31

FLASH GLANCE

v r

v y v r 1 >
f v r ,, ,.

-4 <

A 4 A

-?<■_.

* <- "7

Quick color and sound

flash sequences really

test your memory and reac

tion speed in this fun pro

gram. What a feeling!

By Zoltan Szepesi

The Repeal l he Sequence program

enables you to play three games thai

exercise and improve both your visual

and auditory memory. Another game in

(his program is useful for checking your

reaction .speed. The program (Listlngl)

is written in Basic for the Commodore

64, but it could be modified for use on

Other computers. (The V1C-20 version

of this program was published in Micro

computing, January 1983, p. 86.)

The basic idea of these games is the

same as that of the SIMON (copyright

1979, Milton Bradley Co.). However,

by using the computer with its display, a

better communication between machine

and player can be achieved.

There are lour different color squares

displayed at four different places on the

RUN It Right

Commodore 64

Address author correspondence to

Zoltan Szepesi, 2611 Saybrook Drive,

Pittsburgh, PA 15235.

V 7

TV screen. Single color flashes are pre

sented in random order, each accompa

nied by their special sound Hash. You

have to repeat it by pressing the same

color keys (without pressing the control

key). The colors used arc purple, green,

blue and yellow: consequently, keys 5,

6, 7 and 8 have to be pressed. If you

repeat the color and sound flashes cor

rectly, the game continues. Descriptions

of the fotir games follow.

Game 1. Create the Sequence.

After you have repeated the first sig

nal your C-64 gave, you have to add an

other signal. Following that, you have

to repeat the sequence of the previous

signals and add another to it. Continue

this way until a given number of steps

are finished (sec Table 1), when the

C-64 salutes you with the first eight

notes of Beethoven's 5th Symphony. If

you were not fast enough, or if you

made a mistake in repealing the se

quence correctly, the computer gives a

noisy sequence of the 5th Symphony

and the game is finished.

Before starting with each game, you

can choose one of four difficulty levels

by pressing one of the programmable

function keys (Fl, F3, F5 or F7). Table

1 lists the different parameters defined

by these keys.

When the function key F3 is pressed

(after the C-64 asks for it at the start of

the game), eight sequences have to be

correctly repeated for successfully fin

ishing the game. The time lag between

signals will be short; you have to push

the proper color within three seconds

after the previous color was pushed.

32

Game 2. Repeating Sequence.

The C-64 starts by giving one signal.

After you have repeated it successfully,

the computer repeats the previous signal

and adds one new signal. You have to

repeat this sequence again. In the fol

lowing steps, your 64 repeats the previ

ous sequence and adds a new one until

the series is completed according to the

number of sequences chosen.

Game 3. Changing Sequence.

This game is very much the same as

Game 2. The only difference is that the

computer does not repeat the previously

given sequence, but always starts a new

sequence with one more signal in it.

Game 4. Single Flashes.

In this game, the C-64 gives only one

signal at a time and you have to repeat it

within one second.

Table 2 shows the statement numbers

and subjects of the different sections of

the program. The list of main variables

is shown in Table 3.

The variables Nl, Tl and T2 are

fixed by the four programmable keys in

statements 55 to 70. You can change

them by changing the numbers in these

statements. The time between flashes

(Tl) is only a relative value. It is in addi

tion to the time it takes to display the

color square. T2 is in seconds. In Game

Function Numher of Time Time allowed

ke:

Fl

F3

F5

F7

Statement

No.

5-10

15-95

200-230

250-275

300-310

350-360

400-435

450^85

500-520

525-560

570-580

600-640

650-680

700-710

f sequences hetween signals to you

4 100 5 seconds

8 50 3 seconds

16 10 2 seconds

32 1 1 second

Table I. Difficulty levels within a given game.

Subject and remarks

Title and author

Initialization. Choose game number and difficulty level

Main program of Game 1

Main program of Game 2

Main program of Game 3

Main program of Game 4

Subroutine of color and sound flashes

Subroutine for repeating the sequence

Error messages

Music program

Correct finish. Playing 5th Symphony. (Data in 540)

Repeat last correct sequence?

Want to continue?

For stack clearing

Table 2. List ofprincipal sections of the program.

33

FLASH GLANCE

v r

v y v r 1 >
f v r ,, ,.

-4 <

A 4 A

-?<■_.

* <- "7

Quick color and sound

flash sequences really

test your memory and reac

tion speed in this fun pro

gram. What a feeling!

By Zoltan Szepesi

The Repeal l he Sequence program

enables you to play three games thai

exercise and improve both your visual

and auditory memory. Another game in

(his program is useful for checking your

reaction .speed. The program (Listlngl)

is written in Basic for the Commodore

64, but it could be modified for use on

Other computers. (The V1C-20 version

of this program was published in Micro

computing, January 1983, p. 86.)

The basic idea of these games is the

same as that of the SIMON (copyright

1979, Milton Bradley Co.). However,

by using the computer with its display, a

better communication between machine

and player can be achieved.

There are lour different color squares

displayed at four different places on the

RUN It Right

Commodore 64

Address author correspondence to

Zoltan Szepesi, 2611 Saybrook Drive,

Pittsburgh, PA 15235.

V 7

TV screen. Single color flashes are pre

sented in random order, each accompa

nied by their special sound Hash. You

have to repeat it by pressing the same

color keys (without pressing the control

key). The colors used arc purple, green,

blue and yellow: consequently, keys 5,

6, 7 and 8 have to be pressed. If you

repeat the color and sound flashes cor

rectly, the game continues. Descriptions

of the fotir games follow.

Game 1. Create the Sequence.

After you have repeated the first sig

nal your C-64 gave, you have to add an

other signal. Following that, you have

to repeat the sequence of the previous

signals and add another to it. Continue

this way until a given number of steps

are finished (sec Table 1), when the

C-64 salutes you with the first eight

notes of Beethoven's 5th Symphony. If

you were not fast enough, or if you

made a mistake in repealing the se

quence correctly, the computer gives a

noisy sequence of the 5th Symphony

and the game is finished.

Before starting with each game, you

can choose one of four difficulty levels

by pressing one of the programmable

function keys (Fl, F3, F5 or F7). Table

1 lists the different parameters defined

by these keys.

When the function key F3 is pressed

(after the C-64 asks for it at the start of

the game), eight sequences have to be

correctly repeated for successfully fin

ishing the game. The time lag between

signals will be short; you have to push

the proper color within three seconds

after the previous color was pushed.

32

Game 2. Repeating Sequence.

The C-64 starts by giving one signal.

After you have repeated it successfully,

the computer repeats the previous signal

and adds one new signal. You have to

repeat this sequence again. In the fol

lowing steps, your 64 repeats the previ

ous sequence and adds a new one until

the series is completed according to the

number of sequences chosen.

Game 3. Changing Sequence.

This game is very much the same as

Game 2. The only difference is that the

computer does not repeat the previously

given sequence, but always starts a new

sequence with one more signal in it.

Game 4. Single Flashes.

In this game, the C-64 gives only one

signal at a time and you have to repeat it

within one second.

Table 2 shows the statement numbers

and subjects of the different sections of

the program. The list of main variables

is shown in Table 3.

The variables Nl, Tl and T2 are

fixed by the four programmable keys in

statements 55 to 70. You can change

them by changing the numbers in these

statements. The time between flashes

(Tl) is only a relative value. It is in addi

tion to the time it takes to display the

color square. T2 is in seconds. In Game

Function Numher of Time Time allowed

ke:

Fl

F3

F5

F7

Statement

No.

5-10

15-95

200-230

250-275

300-310

350-360

400-435

450^85

500-520

525-560

570-580

600-640

650-680

700-710

f sequences hetween signals to you

4 100 5 seconds

8 50 3 seconds

16 10 2 seconds

32 1 1 second

Table I. Difficulty levels within a given game.

Subject and remarks

Title and author

Initialization. Choose game number and difficulty level

Main program of Game 1

Main program of Game 2

Main program of Game 3

Main program of Game 4

Subroutine of color and sound flashes

Subroutine for repeating the sequence

Error messages

Music program

Correct finish. Playing 5th Symphony. (Data in 540)

Repeat last correct sequence?

Want to continue?

For stack clearing

Table 2. List ofprincipal sections of the program.

33

4, T2 is redefined in statement 355.

Since from the subroutine "RE

PEAT THE SEQUENCE" (statements

450 to 485) the program exits in given

circumstances without using the Return

command, 1 lie stack could be filled

(after about 13 games at the same game

number) and an error message "OUT

OF MEMORY" could turn up. To

avoid this disaster, three more Return

commands were put in this subroutine

with flag Q. The subroutine "FOR

STACK CLEARING" (statements 700

to 710) gives the proper Jump state

ment.

Similar stack filling can also happen

when a For.. .Next loop is left before

ending it. The first part of statement

515 clears up this problem.

The program needs 3568 bytes of

memory; another 400 bytes are needed

when it is executed. h

Variable

B$

C$

CO

G

K(N)

Nl

NM

P

Q
s

SI

T

Tl

T2

T3

TN

TT

X

Remarks

11 cursor down + purple code

marking of color spots

color memory location

number of games in the same kind of game

position of color spot at n-tb flash in the sequence

maximum number of flashes in a sequence

number of flashes in a given sequence

number of flashes in Game 4

flag when exit from subroutine

screen memory location

duration of musical notes

voice number address

time between flashes (see explanation below)

time delay allowed, in seconds, when repeating flashes

clock status, when measuring time delay T2

pilch code of musical notes

total number of points in the same kind of game

game number

Table 3. List of main variables.

'- ^^

i~ r i

7 v c
1 , A

u g * r > < L-

The notes above the midline (from

the Practice screen) should still be on

the screen, and a little right-arrow sym

bol should race across the screen, eras

ing two lines below the midline.

You'll still hear the notes when you

press them, but now they'll be displayed

below the midline.

Your notes will be placed in an array,

which was dimensioned in line 15 to be a

maximum of 200 notes. The lower half

o\' the screen can display about 200

notes. During this time, copy your prac

tice notes or play something else.

If you want to start over, press the

up-arrow key, and all the notes you've

just played (except your notes in the

practice area) will be erased. If you

press F3 twice, you'll erase everything.

If you press F3 once, you'll return to the

Practice screen.

After you've arranged some notes on

the screen into a tune, press F5, and your

tune will be played as it would sound if

it were in a program. (Note: C,C,C will

sound the C note for three duration

counts. If you want to hear the C note

three distinct times, play C P C P C.)

When II Works, II Plays

When your tune sounds just right,

press F2 (make sure your printer is

ready). The program will print out a

total program listing. To use it, all you

need do is copy it into a program.

Everything's there—every Poke, every

Read, every For.. .Next loop and every

piece of data.

However, you may have to make a

change in copying the data. The pro

gram lists all the data on one line. If

your tune requires more than one line of

data, just add another data line number

and continue.

Fl prints only the data needed for the

tune. Later, you'll probably choose this

most often.

F4 prints the actual notes/letters.

(Total Music 64 uses octave 4.) By using

these notes, you could look on page 152

of the Commodore 64 User's Guide and

translate each note into high and low

frequency for different octaves.

You're asked to name each tune

that's printed. Then the printer takes

over. When the printer finishes, it will

also print out a total count of the data.

You might need this if you're using

other Read statements in a program.

F6 lets you choose another duration

count for your tune without having to

exit this mode. Note: INST/DEL was

not included in Print & Play mode be

cause the notes are placed in an array. If

each note used only one character, then

INST/DEL could have been included.

But, for example, C# takes up two char

acters. Erasing would have thrown off

the array count.

I hope you have fun with Total Music

64, and that it adds lots of sound to

your programs.

Here are some tunes with which you

can experiment:

Old MacDonald—V P 1 I* F I1 C CPDPDPCC

PAPAPGPGPFF

This Old Man—G EGPCiEGPAPGPFPEP

DPEPFPEFGPCPCPCPCPDE

FGPG

After you become familiar with the pro

gram, try the same tunes using different

waveforms, attack/decay, sustain/re

lease and duration values.

31

EASY MUSIC MAKER

Even if you're not a musi

cian, you can make a

maestro out of your C-64

with this magic music pro

gram.

By Gary V. Fields

Total Music 64 gets sound out of

your Commodore 64 and into your

ears. This program takes all I he work

out of adding sounds or songs to your

own programs.

I f you know nothing about I he sound

interface device (SID), Voice 1, 2 or 3,

or the difference between CJ and G,

help is here.

If you couldn't care less about the

items mentioned above and only want

to get to the sound, then Total Music 64

was written for you.

But don't be surprised if you also end

up learning a lot about SID; Total Mu

sic 64 lets you whistle while it works.

Type in the program as listed. (Be

careful not to leave out any semi

colons.) Save the program before you

run it the first time.

Now run the program. The title page

and some information about the pro

gram and how to use it will dance across

the screen. Press the space bar to begin.

The next screen gives you a chance to

select and define your own voice with:

RUN It Right

Commodore 64

1 IK required

A ddress author correspondence lo Gary

V. Fields, 86 Lanvale Ave., Asheville,

NC 28806.

volume, waveform, attack/decay, sus

tain/release and duration of note. Press

the return key and the program will de-

faull to preselected values that you can

later experiment with, if you wish.

Next is the Practice screen. When you

press A, the letter will appear on the

screen, and you'll hear the musical note

A (octave 4). When you press shift/A,

you'll hear A# and both characters will

appear on the screen. The same pattern

holds true for A-G. All other keys are

empty except P, the function keys

(F1-F8), the INST/DEL key, the return

key and the up-arrow key.

P is for pause; you won't hear any

sound when it appears.

The up-arrow key erases the screen.

(You can play with the whole screen dis

play, but you should reserve the Prac

tice screen for the area above the mid-

line.)

The return key starts another line of

practice notes.

INST/DEL erases each note, one at a

time.

F3 exits the practice screen and puts

you into Total Music. Everything on the

screen will be erased except the notes in

(he practice area. A new menu, offering

additional options, will be displayed.

F7 exits back to the screen where you

select and define your own voice.

Play with the Practice screen for as

long as you please. When you get a song

or series of notes you like, press F3 and

go to Print & Play.

Print & Play

This is where all the fun and real

work is done. The screen should now

display:

Fl DATA ONLY F2 TOTAL PRINT

F3 PRACTICE F4 PRINT NOTES

F5 PLAY TUNE F6 DURATION

17 RESTART

P PAUSE (UP ARROW)ERASEALL

It's easy to keep your disk

drive operations neat and

tidy with this C-64 conversion

of the DISK-O-VIC utility pro

gram that ran in RUN's first

issue.

By Cal Overhulser

In the premiere issue of RUN ap

peared a dynamite disk utility package

for the VIC-20 called D1SK-O-VIC by

Thomas Henry. It is one of the most

useful 1541 disk utilities I've seen, and it

made disk drive housekeeping opera

tions very easy on my VIC-20. I wanted

the same capabilities on my C-64, so I

decided to try convening DISK-O-VIC

to DISK-O-64.

The main problem was that of con

verting the addresses for the system calls

in DISK-O-VIC to those addresses ap

propriate for the C-64. The Kernal calls

were easy, since they are the same for

both machines and are published in sev

eral reference manuals. The real prob

lem involved other system calls such as

Warmstart, Reset and Printstring.

After some searching of the C-64

ROMs, I found the routines I needed.

Table 1 lists the variable names from the

original DISK-O-VIC assembly listing

RUN It Right

Commodore 64

1541 disk drive

Machine-language monitor

Address all author correspondence to

Cal Overhulser, 15 Nutting Road, West-

ford, MA 01886.

DISKO-64

that require changes, along with I heir

new system addresses for (he C-64.

Once I had the correct system ad

dresses, the actual conversion became

relatively easy.

First, I found the affected system

calls every place they appeared in the

original assembly listing and located

their equivalents in the original hex

dump. Next, 1 determined the changes

necessary to fix the startup screen. 1

then loaded in DISK-O-VIC, made the

necessary changes with a monitor and

saved a copy of DISK-O-64 with the

same length and same capabilities as

DISK-O-VIC.

Entering the Program

You'll need a machine-language

monitor to enter the DISK-O-64 pro

gram from the hex-dump listing. After

loading and entering your monitor, you

begin entering the program at address

$0801 and continue through S0D2F.

Then use the method appropriate for

your monitor to save DISK-O-64. Using

the C-64 monitor from Commodore,

you'd type:

S "DKKO64",08,080I,GD2F

Make sure you use $0801 as the start

address so you can later load it like a

Basic program. You now have a copy of

DISK-O-64 that can be loaded and

saved like any Basic program. Then you

exit the monitor and reset the C-64,

either by typing SYS64738 in the Direct

mode or by turning the power off and on.

Now load and run DISK-O-64 like

any Basic program. Just type LOAD

"DISKO64",8 to load it into your

C-64, and then type RUN. If all goes

well, the startup screen appears, and

DISK-O-64 is now in place, protected in

upper memory.

35

Table 3 lists the new commands now

in place. If you read the original article

on DISK-O-VIC, you'll see that all

commands remain the same for DISK-

O-64. Use a scratch disk and experiment

with each command to become familiar

with them (also to make sure everything

is working OK, with no typos).

DLoad/DSave Restriction Changes

I found one minor irritant in the orig

inal DISK-O-VIC I couldn't use DLoad/

DSave on a hybrid program (one con

taining both Basic and machine lan

guage). It would appear to load and

save all right, but 1 noticed that the

saved program had fewer blocks than

the original.

The real problem was that 1 didn't

realize what was happening until one

day a favorite hybrid program (DISK-

O-VIC) wouldn't run, and I had to type

the whole thing in again. In all fairness

to Mr. Henry, I must say he mentioned

this restriction in his article, but in my

haste I failed to note it.

I traced the problem lo the DLoad

routine in DISK-O-VIC. DISK-O-64

Label

WARMST

WAIT

INFIN

CHAIN

CLR

INTEGR

PSTRNG

ERROR

PRL1NE

CHROUT

RESET

VIC

C474

C48C

C49F

C533

C659

C96B

CB1E

CF08

DDCD

E742

FD22

C-64

E386

A48C

A49F

A533

A659

A96B

ABIE

AF08

BDCD

E7I6

FCE2

Table I. DISK-O-64 label equate

changes from

sernbly listing.

DISK-O-VIC as-

has this modified so DLoad/DSave can

be used with hybrid programs as long as

they are loaded like a normal Basic pro

gram, i.e., L0AD"NAME",8.

The only exception is with the Append

command, which can be used to append

only pure Basic programs, not hybrids.

Practically speaking, the need to ap

pend the Basic portions of hybrid pro

grams is extremely rare (I've never

done it).

The changes to edit the original

DISK-O-VIC are shown in Table 2 for

the convenience of DISK-O-VIC users

who may want to modify their copies.

VIC Hex Address

126E

126F

1270

1271

1272-127B

127C

127D

127E

New Hex Value

86

2D

84

2E

EA

20

33

C5

Table 2. DISK-O-VIC changes for

DLoad/DSave will

grams.

\ hybrid pro-

300-350—The falling bomb sound.

310—Converts N (tab value) to value with an angle for dropping

bomb's twist.

311-312—Keep the bomb within the screen's borders.

360—Detects when bomb touches city.

370—Erases each letter and leaves a red trail where it had been.

800-808—Make screen and city appear to explode.

810-820—Last screen.

820—Goes to hear the siren again.

830-854—Ask if player wants to continue or quit.

1050-1054—Explosion sound.

2000-2028—Title Screen.

2029—Reads Sprite data lines and Pokes it into the proper memory

location.

2030-2080—Siren sound.

4000-4070—Winner routine.

6000-6003—Data lines which define Mad L Bomber Sprite.

Table. Line by line explanation ofMad I. Bomber program.

But if you fail, the city explodes, you

are notified of how many letter bombs

you stopped, and you arc given the

chance to play again.

By Ihe Way

Also note that an early morning fog

rises during the first half of the attack.

After the tenth bomb run by the Mad L

Bomber, you are given a short rest.

When the attack continues, the fog is

gone, but now an ever-thickening cloud

cover makes early recognition harder

and success tougher. After each attack,

the fog or clouds thicken and rise.

you so his randomly dropped bomb can

make it to ground zero.

Sometimes the letter bomb comes

from beneath Mad L Bomber, but usu

ally it drops from another part of the

sky. You must recognize the letier and

press the same letter on the keyboard

before the bomb twists, turns and ex

plodes on the city below.

If you are fast and correct, the bomb

will self-destruct—tumble and explode.

Then, the Mad L Bomber will beat a

quick retreat into the clouds above.

But don't go away. He'll be back for

a total of 21 bomb runs or until he wins,

whichever comes first.

If you match the Mad L Bomber let

ter for letter, you'll win, and Anycity,

U.S.A., will thank you with hearty ap

plause. The program then gives you a

chance to choose a speed and begin

again.

3—Goes to title screen and siren.

4—Sets up for sprite. BX and BY are the sprite location

variables.

5—Sets sound variables and Pokes Mad L Bomber yellow.

6—Requests speed and Pokes Bomber into upper left corner of

screen.

7-15—Input the speed to use on bombs.

16—MC is the variable that counts bombs.

20-22—Poke the screen black and check to see if game is half

over—MC>20.

23-25—This is the hallway-through subroutine. If MC>20, then

program goes here.

30—TT keeps track of where bomb is on the screen.

31-36—Flash the Code Red warning with beeping sound.

37—Double checks input in main loop will begin (tab = N).

40—N chooses where bombs will start on screen (tab = N).

50—Pokes screen black and moves cursor to home position

(CHR$(I9)).

70-82—Define city and sky.

94—CR limits rising fog and clouds from going above screen.

95-98—Randomly Poke fog or clouds on screen.

100—LE chooses which letter will be a bomb.

110—Makes sure bomb is a letter and not a number or graphics

symbol.

120—GETK$ starts looking for keyboard response to falling L

bomb.

130—If proper response was made, this calls up explosion in

routine 155-250.

155-250—Falling letter tumbles, explodes, and Mad Bomber heads for

cover.

170-178—Make bomb appear to explode.

200—Pokes all the sound off.

250—Adds to MC counter. Pokes Sprite off and returns for
another bomb.

28

Append—This command allows a Basic program to be appended from the

disk to a program in memory that has lower line numbers. The proper syntax

is: APPEND"NAME".

Catalog—Typing CATALOG will read the directory from the disk and

display it on the screen without destroying the program in memory-

Colled—This performs a validate, which means it tidies up the disk and

makes all unused blocks available.

DLoad—Acts like the normal Load command, but you don't have to type

,8. It also initializes before, and checks for errors after, it loads. Both Basic

and hybrid programs can be loaded as long as the hybrid programs are nor

mally loaded like all-Basic programs.

DSave—Just like DLoad, but saves programs to the disk.

Header—This command wiil format a disk. Since all data will be

destroyed, it asks "ARC YOU SURE? Y or N." The correct syntax is:

HEADER"NEWNAME",Ixx. You must use the ,1. The xx is any ID you

want to assign (different for every disk you own).

1NIT—This is the same as OPEN15,8,15,'T':CLOSE15 in Basic.

Kill—This does a reset of the C-64 much like turning the power off and on

or typing SYS64738.

Off—This one will disable D1SK-O-64, but leave it and any other program

in memory intact. DISK-O-64 slows down Basic a little, so you can turn it off

when you're interested in maximum speed. To turn it back on, type:

SYS256*PEEK(56) + PEEK(55).

Rename—Allows you to rename a program that already exists on the disk.

The syntax is: RENAME"OLDNAME"TO"NEWNAME".

Scratch—This will scratch a program on the disk; il is equivalent to

OPEN15,8,15,"SO:NAME":CLOSE15 in Basic. It also asks "ARE YOU

SURE? Y or N." The correct syntax is: SCRATCH"NAME".

Send—With this one, you can send any command to the disk that you can

send in Basic; it is the same as OPEN15,8,15,"xxxx":CLOSE15 in Basic,

where xxxx is the command string. The proper syntax is: SEND"xxxx".

Status—Displays the disk status without executing a program. When you

get a disk error, just type STATUS.

Table 3. Explanation of DISK-O-64 commands.

37

DISKOVIC

Catch Saturday Night

Fever with this utility

program that gives you 13

disk-related commands and

will keep your VIC-20 and

1541 disk drive dancing.

Move over, John Travolta.

By Thomas Henry

The Commodore VIC-20 computer

and 1541 disk drive make a very powerful

computing combination. The VIC-20,

of course, is a full-Hedged 6502-bascd

computer, offering many professional

features such as a thorough set of Basic

commands, a professional keyboard

and expandable memory options.

A beginning system often starts with

a cassette unit for mass storage, but as

the user's level of expertise rises and the

need for faster I/O becomes more im

portant, a disk drive becomes essential.

The 1541 drive, like all Commodore's

floppy disk units, is intelligent. This

means it is a computer in its own right

and is able to perform many functions

with the intervention of the host com

puter.

RUN It Right

l:ditor/assembler or

machine language monitor program

VIC-20

1514 Disk Drive

Address author correspondence to

Thomas Henry, Transonic Laborator

ies, 249 Norton St., Mankato, MN

56001.

In fact, the 1541 contains its own

6502 microprocessor, a couple of VlAs

(versatile interface adapters), 2K of

RAM and a complete operating system

in ROM. This leads to two important

facts. First, since the 154I's system is so

complete, it steals no user program

RAM from the host computer. Unlike

many disk drive/compulcr combina

tions, a VIC-20 has just as much pro

gram space with disk drive as without il.

Second, since the 1541 is intelligent,

you can externally program it to per

form many useful functions. The unit is

essentially open-ended in the sense that

if a particular function doesn't already

exist in the disk operating system, you

may write a program to generate such a

fund ion.

DISK-O-VIC

This article describes a utility

package, called D1SK-O-VIC, which

adds thirteen new disk-related com

mands to the VIC-20. These commands

become part of Basic and you may use

them in the immediate mode to simplify

disk drive housekeeping operations.

Some of the commands, such as

DLOAD and DSAVE, are extensions

of old Basic commands. Others, like

Scratch and Rename, are for keeping

disks neat and orderly. Finally, another

group adds features such as error

message readout, directory' display and

so on.

The DISK-O-VIC utility package is

written in machine language for max

imum speed and flexibility. After it has

been loaded and initialized, it may be

left in place for an entire programming

session. Due to the special loader fea

ture (described later), DISK-O-VIC will

sit at the top of memory and be free

from Basic program interference. Thus,

it adds thirteen new commands while

MAD L BOMBER

Acity is being plagued by

random letter bombs; its

inhabitants fear for their lives.

Where is Dirty Harry when

you need him? Only your

quick thinking and

familiarity with the

keyboard can save

the city.

Which is more important—learning

on your home computer or having fun

with it? That probably depends on

whether you're a child or the child's

parent. But Mad L Bomber is both fun

and educational.

Play this game and you might learn

to type, or at least become familiar with

the keyboard. And as anyone in busi

ness knows, keyboards are everywhere.

RUN It Right

Commodore 64

Address author correspondence to Gary

V. Fields, 86 Lanva/e Ave., Asheville,

NC 28806,

By Gary V. Fields

The Mad L Bomber attacks Anycity,

U.S.A., with mean letter bombs. He

can attack very fast if you want, or very

slowly. Your skill with the keyboard

should determine the speed.

The quiet calm of the title screen is

shattered by a siren and attack 1. bombs

(letter bombs). The sound on the pro

gram is captivating, and the better your

monitor's or (v's speaker, the better the

sound.

You arc asked to pick a speed, and

the fun begins. A city in low-lying fog is

displayed. Suddenly the screen alerts

you with a flashing "Code Red" alarm.

Out of the clouds comes the villain

himself. But don't pay him too much

attention—he's just trying to distract

38

do to the drawing, the array data won'l

change unlil GOTO200: is typed. 01

course, typing RUN will erase it. Table

] summarizes the action of the GOTO

commands.

in array AK.

Subroutine 1300 takes the binary-

data from array AR, eight elements at a

time, and treats this as an 8-bit binary

number. This is converted to its decimal

(ommamt Action

GO7O200: Scan the sprite drawing, convert it to decimal values and

store them in an array. Display sprite.

GOTO500: List the 63 decimal values on the screen. Read across the

rows.

GOIO600: Redraw the current sprite.

GO7O700: List the 63 decimal values on the printer. Read across the

rows.

Table I. Summary oj GOTO commands in sprite drawing program.

How the Program Works

This program works by the position

of the drawing on the screen. If the

screen should scroll up even one row, all

the values lor (he sprite would be

wrong. You must be careful to keep the

cursor away from the bottom of the

screen; that's why you should enier (he

GOTO commands about halfway from

the top. The reason the GOTOs are fol

lowed by a colon is to keep the com

puter from trying to read the whole-

line, which includes pan of your sprite

drawing.

Line 45 dimensions the two arrays

used and scls V equal to the start of the

video display chip. Lines 1(X) through

720 call the subroutines thai do the

work of the program.

Subroutines 1000 and 1100 make the

borders for the sprite drawing. Subrou

tine 1200 scans the area within the

borders. If a 1 is found, ii puts a 1 in the

corresponding element of array AR.

Otherwise, it puts a 0 in [he array loca

tion. There are 504 (3x8x21) elements

26

equivalent and is stored as one of the 63

words in array A1.

Subroutine 1400 displays the sprite.

The 63 decimal numbers from arra> Al

are Poked into memory', starting at lo

cation 832. (Locations 828 to 1019 com

prise the tape I/O buffer.) 832 is

64 x 13, so that with blocks of 64, ihis

data is stored in the 13th block.

In line 1450, 2042 is the location that

points to the data for sprite 2. The 13 is

Poked into it because the data was put

into the i3th block.

Location V+21 enables (displays on

the screen) a sprite. In this case, it turns

on sprite 2 since a 4 (2x2) was Poked

in. Line 1440 specifies the horizontal

and vertical position of the sprite.

Subroutine 1500 lists the 63 decimal

numbers that can be used to define a

sprite in a program.

Subroutine 1600 lakes the binary

data from array AR and redraws the

picture on the screen so it can be re

viewed and modified if desired. k

■ -

remaining transparent to the normal

operating system.

The special loader feature also makes

it possible to use this package in a

VIC-20 with any amount of extra mem

ory. It will not become obsolete if you

decide (o add extra memory at a later

dale. After installation and initializa

tion, DISK-O-VIC consumes 980 bytes

and leaves zero page intact.

Thirteen New Disk Commands

Before describing DISK-O-VIC's

mode of operation, I'll examine the new

commands so you can see just what they

do. (For full details, see the accompany

ing table of commands.)

Whenever a floppy disk is inserted in

to (he 1541 and is subsequently ac

cessed, a special chart, called the block

availability map, is created in the drive's

memory. This charl contains special in

formation about the disk currently in

the drive, such as how the disk has been

partitioned, what blocks are free and

oilier various allocation matters. For

tunately, the disk drive keeps track of

this somewhat esoteric information, so

you rarely need to be concerned with it.

The process of creating this chart is

called initialization. You must initialize

a disk if it is to be properly written to or

read from. (Note that some non-Com

modore disk drive systems use the term

init ializal ion lo mean '' format l he

disk," a process which can write over or

destroy data. This is not the case with

the 1541 disk drive.)

To ensure that the information in the

drive's memory is up to date, you should

initialize the disk often during a session.

The 1541, as it comes from the factory,

will generally perform self-initialization

during the execution of various com

mands. To add a margin of safety, an

automatic initialization precedes every

command in DISK-O-V1C. Though this

may be somewhat redundant, the pro

cess takes only a second and goes a long

way toward reducing problems. It never

hurts to over-initialize!

The DLOAD and DSAVE com

mands work exactly like the VlC-20's

Load and Save commands, except that

the computer knows automatically that

the proper device to access is the disk

drive (device number eighi). These com

mands are for Basic programs only. Do

not try to DLOAD or DSAVE machine

language or hybrid programs, for the

commands make certain assumptions

about the start of program space that

may or may not be true for machine

language programs. In general, all the

commands in DISK-O-VIC assume you

are working in Basic.

DLOAD and DSAVE automatically

check the error channel aficr an opera

tion to see that all went well. If an error

is detected (Drive Not Ready, File Ex

ists, File Not Found, etc.), the message

is primed to the screen and the file is

closed down.

Catalog is an intcresling command.

Unlike the old way of doing things, you

may print the disk director)' or catalog

directly to the screen, thus preserving

any programs in memory- To stop the

list ing to the screen, simply push the

space bar once; to resume the listing,

push the space bar again.

The purpose of the rest of the com

mands should be obvious. Just look

over Table 1 and perhaps refer to the

1541 disk drive manual from time to

time. Users of larger (and more expen

sive) Commodore computers will prob

ably recognize many of the commands.

Unlike the VIC-20, computers such as

the PET and SUPERPET already have

a set of disk commands very similar to

those provided by DISK-O-VIC.

How the Program Works

Now that DISK-O-VIC has been

39

introduced, we'll look at how it works.

As an aid to understanding, Listing I

presents an assembler listing for the

complete program. Since assemblers are

starling to become more common for

the VIC-20, you may wish to enter the

source code and assemble your own ver

sion. But the assembler listing has been

provided for its educational value, and

most users will want to enter the object

code directly. A hexdump of this code is

provided in Listing 2.

Most problems with detail can prob

ably be cleared up by studying the com

ments in the listing. As an aid to under

standing, however, Til describe the

basic structure of the program. To do

[his, some consideration must be given

to the way Basic fetches and executes a

command.

When interpretative Basic is in ac

tion, a pointer must seek commands by

parsing or scanning the input line. The

interpreter checks the input line, charac

ter by character, in hopes of finding a

command that it recognizes. Thus, if

you want to add new commands to Ba

sic, you must put a "wedge" into the

parser routine, diverting attention from

the normal scanning procedure to a new

one. Essentially, the parser is forced to

look for the new commands first. If it

can't match a command with any on the

new list, then control is sent back to the

normal system and it will check the in

put command against its old list.

The first block of code in Listing 1,

lines 00072-00080, is the initialization

routine. This code inserts a wedge into

the normal parser routine, so initializa

tion need occur only at the start of the

session. After initialization, the Basic

parser will always check first for D1SK-

O-V1C commands.

The next block of code occurs in lines

00086-00165. This is the parser add-on.

As mentioned above, the parser will be

directed to this routine each time a com

mand is input to the computer. The key

instruction in this block occurs at line

00100. The stack is examined for any

"RTS" (return addresses). If the ad

dress on the top of the stack indicates

that the parser has come from the V1C-

20's "waiting for a command" state,

then action is taken. If some other ad

dress is found, then the parser is al

lowed to continue its normal activity.

Assuming that the test has been

passed and the VIC-20 is indeed waiting

for a command, the input line is then

checked character by character. This

occurs in the block of code labeled

"Parser Routine," lines 00119-00150.

The input is checked against the list of

DISK-O-VIC commands held in a table

at lines 00573-00586. If a match is

found, then an "action address" is

formed, and control is passed to the

proper subroutine.

Subroutines

The great bulk of the program is de

voted to the various command subrou

tines. To make them easier to find,

these subroutines have been arranged in

alphabetical order, with Append com

ing first, then Catalog, and so on. Al

though at this point the program may

look complex, it is actually quite easy to

analyze if you attack one small function

at a time.

Toward the end of the program, at

line number 00452, some general pur

pose subroutines are presented. These

are commonly used by the rest of the

program to fetch file names, get disk

parameters, print messages to the screen

and so on. In general, they have been

assigned labels or names that relate to

the functions they perform.

DISK-O-VIC ends with various data

and address tables. First is the table of

keywords, described above. Then fol

lows a table containing the addresses of

Take the tedium out of pro

gramming sprite graphics.

This C-64 program simplifies

the process.

By Edward Rager

The capacity to create and manipu

late sprites is a powerful feature of the

Commodore 64. However, there's a lot

of work involved in doing it. Probably

the most tedious aspect of sprite graph

ics is translating the binary data from

the sprite you draw into decimal num

bers that can be Poked into memory.

The program described here allows

you to draw an enlarged version of your

sprite on the screen. The computer will

scan the diagram, calculate the numbers

to be Poked into memory and display

your sprite.

How to Draw a Sprite

The C-64 user's guide gives a detailed

description of how to create a sprite. Es

sentially, you fill in the spaces of a grid.

A 1 goes in a space you want to have

filled in, and a 0 goes in a space to be

left blank. There arc 21 rows and 24 col

umns. The 24 columns are divided into

three 8-bit binary words.

Run It Right

Commodore 64

Address author correspondence to

Edward Rager, 9360 Tasmania Ave.,

Baton Rouge, LA 70810.

SPRITEN UP!

So 21 rows, composed of three

8-bit words each, make 63 words that

describe your sprite. When converted

into decimal values and Poked into

memory, the sprite can be displayed on

the screen.

Once you have entered the program,

typing RUN will draw the sprite borders

on the screen. (There won't be any grid

lines.) The program will stop here to let

you draw a sprite within the borders.

Use the cursor arrows to move the cur

sor to a position you want filled in and

put a I there. It is not necessary to put a

0 in spaces you want left blank, for the

computer looks only for Is.

When the drawing is complete, type

GOTO200: with the cursor at the left

margin of the screen and about halfway

from the top. (In typing in these pro

gram commands, be sure to include

each colon. If any are omitted, syntax

errors will result.) Your drawing will be

scanned and converted to decimal, and

the values put into arrays. (For about 20

seconds, it will look as though nothing

is happening.) Your sprite will then be

displayed as it would look in a program.

The program pauses again, and if

you like the sprite, you can get a listing

of the 63 decimal values that you can

Poke into memory to display the sprite

in a program of your own. Typing GO-

TO500: will put the list on the screen.

GOTO700: will send it to the printer.

Both lists are read across.

If you're not satisfied, and want to

modify the sprite, do so. Then type

GOTO200: to put the new values into

the arrays and to display the revised

version.

By typing GOTO600:, you can al

ways have the computer redraw the pic

ture for you. It will use the data in the

arrays to do this. No matter what you

40 25

dEiuAj

-OUI3U!3AISU01X0OJOLUEpOOUfllMHOA

'saunnojpnus^-uouaqjpircjsuopun01

(90Z9t>NI'snoclEUGipu[t60/.*oflOd

*'O3piresores(Wpjbmoh)^>/«£)3Jud

-jsfayS^dWlUDjSoJcfOZ-JIA3M101joj

-3J'SOUlJtlOJ[ElUS^3l|lUOUOI1RU1JO|UI

JOJ'S|rei3pDL|1JOSUIOSUl1|U[|IA\

aoqipin;'uoiiEisjdjoiu]pre

o\spqej[njSuiUB3tUusaiSuooqoabii

ssuijiiojpiresuoueooisq]'S3SB0isolu

a]iSuiisnuisoiBnbojoaiqeisi[j3U|

-iubxoAjjnpjEOO]sansoq'OZOIA3M>

jouoiiBJodooq]lnoqnojouiujeoiox

■popoppSIojoz3ui

-JEUIUUS]ElUUnSJ3PBJBqDJO§UU]S3l||

3uuuudd33>(himn-JojsiSoaXpirejojb|

-niUilMB3qiAqJBpSUIIBSUUJSRU99J3S

3qiO]juud[]ia\]

joauosi'iSuijsiiUj

-0LULUO3sqiliejojjuiiuiisoqoj

Diejnq'suiq.iBui01suiq.iBiuiuojjfje\

HimSUOpBOqJpqi"ssuunojjo

-]bdjaqiouE3jespumumoDcnSBg

'BSJ3A

3DIApUB't?93JOpOlUUlO^3lf)O]OSOIA

aqiluojjJ3jsiiBJio]sjduiisoqpjnoijs

]BIUD>I3qiJO3SI13AISU31X3Sui>|RUI

-UTCQpire0ZOIA3M1J0J

|[B3JBSOUIjnOJIBIU3>1

'(BJ3U3S0]SJ31lldUIO33JOpOUIUIO3JO

//wjojza.4J$Wsin33O

bjndjno,,3i|]l3|durex3

-pBiBOjiuspi]BguuirmosDuijnojouibs

3l{]DABqSJSjndtaOO3JOpOLUUIO3JOSp

-pomp3JDA3s]Bq)ui[Epads3jbssupnoj

|BUJ3>iossqj,(-ojopoujuj03,{qpoziu

-SodojXifBpijjoSuiipdsoil)si,,IBUJ33,,

'UOSB3JUA\OU)Jun3LU0SJOj)SU01J

-BJ3doindjnopirejnduijoj

jofeiujoposoduiODm'reiiJ3>isqi

'dnojgjsnj3iu,'SsuoSsib^qSnojoa\i

ojuiiibjS3unnojtMQ>lOZOIA

■]IB)3pJ31B3JSIIIS3UI1HOJ3l|]JOM3J

e3URUBX3sjo"!ssiAqjo'spuBsnoqi

U3A3'spDjpunqXireujoaesoisiqissod

Sii;'suiujSojdA\ojqouioquisssqiojjii

saupnoJlAJoypJEpireisSuisnA"e"inJ

-dpq3qo]3A0jdpjnoqs3[qEisunl

O'MSIGJOJ3snou3ABMno^J!
•lasiajo>Is(uiaisXsSuiiEJsdoO

sqiuipouiuiuoosouijnojqnsjodnojS

esjssiBnbojo3iqeiaqiui

iispsssso

-deoqa"iojejp|noMsjiunqioqsouis

'jn33op|noqsPHJUO3ou'^sipXddoy

bqiiMSuop0Z'D\A.3l0°lP3Ps!l!un
3H3SSEDBJlU3A3'JOJJIiqpUBlUUIOO)|Sip

3i|ijojpastloqoaojsjoqiubo>(0Oiqsiqx

jojjnqouossEObSBp3Xo(diuoA]|t;lu

-JOUSI1BI|1'3££0$W-SllIUBJS'30EdsJO

>|oo|q3SjbibS33JJsiqx"pssn3qj(uoa\

ijUIlOdB]0H3SSE.T3l|]IBqipSUJHSSBSIII

'luoisAsSuuBJsdo>js[pbsisiqj3omg

W&OCOIA
oqiAqposniousjepxreSUOpBOO)sSftd

-OJ3/ssjjojbgj$qSnojqigj$suoi]

-B30|'XjlBIlpy"P33M3P1!IS3J[B1LUSJSAS

SuilBJodosqi'sasodindreujjouipqi

jojposn3JEXaqisouisinq'S

33Bd-oj3zuozopbnioqesosn0)qB]

■3uiisi|jO|qiuoss-BsqiuisaiEnbojo

oqi]Ejioojp|noqsaft'OIA'O-^SiaJ°

3qi3UIAB3]3JOJ3g

piIBSOSSOJppE

ssuiinojqnsssodind

soupnojqnspireiuuioo

a\3u

oiui

:p3qiJ3sopisnfsjnpruisjje

-J3AO31(1JO,<JBUIUinSESI3J3q'onSSI3l]l

fiuipnopjoAea\b3ABqsiyBjopoouig

popjOABSISUOI1E3O1oSBdOJ3Z

[BOjlUOJO3Sn'BOJBSiq]01S3iqB|JBA3UI

-uSiBSBAg"quojospuEsjsisiSojSuiabs

joosodjndoqijojpoiuojosis3|qBUEAjo

pse'A[]euij-sounnojqnspuBiuujODaqi

'0ZS80
/A/'JOspuiM-.7'pDQ%.y.VA/xpma

0}dadjjoojot/innsssuppy

[g'ApuEqAjsauibj3o.icIs[t[ipuij[]ia\

noA'jsoiu3i|issnnoAiBqisuoipunjjo

13S3l[]OUIJOpIIOAJI'DAUp>fSlpBOABl]

noAjiA[uo[njosnsjbpouijap3ABl|[

SpUBlULUOO31(1JOOUJOy0>|OJ1SAO>|3|§

-inseqiiMjnoiuudbnoAoa[Soipouij

-opoqueosAs>|oqjjoouo'O[duiExo

joj'jsiuiJde3ABqnoAj]'Sp33Uua\o

jnoAoiji3/iiuoisnoueonoAieijiJOBJ

3qjuiS3i|ujBJSoadsjqijoJOA\odoq|

ojojoqiuoisAsSunujodooqioi.\jouioui

3L|1|[BIIJUPJO]JOpJOUI3I1|EApJUlSl.IO

sijoip3iOjS3Js;AJOLiiouijodo]oqx

■&uo|ooiojeiBqisSuuisSuiuyspsb

qons'sjtiooojojjouejiAjlioitiiods;qi

uopnoaxgqzxoiqos

boiuipspco]osjbsi

3qiOIJ3]UI0dVAJOIU31UOIUIIISpBO|

Pue{\)%i\3uuisbS3j|uijeqiouunoj

-qnsoqisisuu'0801°*0001

■woncsoinooxsLioqi

'ou;ino.idnpsoSbhSub]oniqDBiuoqjoi

sduinfUIBJSoJdsqx'iiioisAsSuiiBJsdo

oqiuiojjAeaveuo>(B]sipopssusisbAjo

-momqomuSBA|tioIBqios'sSuujssqi

Having covered the theory and oper

ation of DISK-O-VIC, we must consid

er the practical side of things. You

should create a disk copy of the object

code so that the utility is always handy.

To this end, the hexdump in Listing 2

corresponds to the source code in List

ing 1. To use it, you enter the hexadeci

mal numbers into the VIC-20, then save

it to disk. Thus, whenever you want to

invoke DISK-O-VIC, you have only to

load the code and initialize it.

Since the program is in machine lan

guage, you will need a machine lan

guage monitor to enter it. The VIC-20

has no resident monitor, but add-on

monitors are starting to appear with in

creasing frequency. Two good choices

are VICmon or Tinymon.

VICmon, made by Commodore, is

the official machine language monitor

for the VIC-20 and offers many com

mands. It comes in cartridge (ROM)

form, and simply slips into the expan

sion port. Tinymon, on the other hand,

is a tape or disk-loaded monitor. The

advantage of Tinymon is that you can

punch it in yourself and save quite a bit

of money. It doesn't support as many

commands as VICmon, but that

doesn't matter for the purpose at hand.

All you need are the S (save) and M

(memory dump) commands. Hence, ei

ther monitor will do.

(For a full discussion of Tinymon, see

Jim Butterfield's article "Tinymon 1: A

Simple Monitor for the VIC," in the

January 1982 issue of COMPUTE!, p.

176.)

To make a copy of DISK-O-VIC for

your computer, follow these instruc

tions carefully:

• Disconnect any memory add-ons.

DISK-O-VIC must be entered on a

stock machine.

• Load in a machine language monitor.

Either tape/disk-based or cartridge

monitors will do.

• Using Listing 2 as a guide, punch in

the object code. You will start entering

code at location $1000 and continue up

ward.

• After you finish entering the code,

modify the following locations. Put the

data byte $2F into locations $2D, $2F

and $31. Put the data byte $15 into loca

tions $2E, $30 and $32. These are all ze

ro-page locations.

• Exit the monitor to Basic with the X

command.

• Now save the program using the ordi

nary VIC-20 SAVE command. You

may save the program to either tape or

disk.

• If you wish, reconnect any memory

add-ons that you have.

You now have a full version of DISK-

O-VIC ready to go. The code just en

tered and saved is very special. You can

load and run it just like any Basic pro

gram. When you run the program, a

special loader automatically relocates

DISK-O-VIC to the top of memory,

wherever that might be. Also, the load

er instantly compensates for any extra

memory that might be attached to the

VIC-20.

Keypunching this program can be

very tedious, so try to share the task

with other users. One consolation is that

even though the program is in machine

language, it looks like Basic to the

VIC-20. This means that you can make

backup copies quite easily. To do so,

simply load DISK-O-VIC (don't run it)

and save some more copies by using the

ordinary Save command.

Conclusion

The practical value of DISK-O-VIC

should be obvious, but the program

should also serve as an example of how

a complete disk operating system can be

ly more complicated to assign within a

string. They are the Return and the

Quote. To include a Return in a string,

add CHR$(I3) to the string (13 is the

ASCII code for Return). For example,

if you want F3 to automatically start

running a program as soon as you press

the key, change line 230 to:

230 R(3) = "RUN" + CHRSfB)

The return will be executed immediately

after printing RUN, just as if you had

pressed the return key on the keyboard.

A quote can be included in a siring in a

similar manner using CHR$(34).

The maximum total length of all the

strings you assign to the function keys is

231 characters. If you assign more than

231 characters, the program will print

out an error message indicating that

your strings are too long. At that time

you may simply edit the appropriate

lines and run the program again.

Keep in mind that the program clears

itself out of memory after it runs. So if

you would like to have a permanent

copy of the program with your newly

defined functions, remember to save the

program before you run it.

The following is a brief description of

how the machine language section of

the program works. For a commented

assembly-language listing o\' the pro

gram, send an SASE to RUN

magazine.)

The general technique used to ac

tivate the function keys is fairly simple.

Sixty times every second, a hardware

interrupt is generated thai signals the

operating system to perform certain

housekeeping functions such as scan

ning the keyboard and updating the

real-time clock. By intercepting this in

terrupt, the machine language program

executes sixty times a second.

Every time the program executes, it

cheeks lo see if one of the function keys

is pressed. If one is pressed, the key

board buffer is loaded with as many

characters of the appropriate string as it

can hold. As soon as the keyboard buf

fer is emptied by the operating system,

my program will load more of the string

into the buffer, until the string is com

pletely printed.

The Basic Program

The functions of the Basic program

are: to load the machine language pro

gram at the top of memory; to load the

strings just below the machine code; to

set up pointers for the machine lan

guage program; and to protect program

and strings from the rest of the oper

ating system.

Lines 100 to 130. Reserve enough

memory to load the machine language

program and strings by changing the

top-of-memory pointer to point 512

bytes above the Basic program.

Lines 200 to 350. The array F$ is

created, and the strings associated with

each function key are printed lo remind

the user how they are defined.

Lines 400 to 450. The total length of

all the strings is calculated. Ii is verified

that their length docs not exceed 231

characters. If the strings are valid, then

SM (start of machine language pro

gram) and SS (start o\' strings) are

calculated.

Lines 500 to 530. The strings and a

table of pointers to (he strings are load

ed, beginning at location SS.

Lines 600 to 630. The machine lan

guage program is read from (he Data

statements and is loaded, beginning at

location SM.

Lines 700 to 780. A pointer to the

machine language setup routine is

stored in memory. The lop of memory

is changed to point to the beginning of

42
: . ■• -"■■ 23

When you run the program, you

should see a list appear on the screen,

showing exactly how the function keys

are defined. A few seconds will pass

while the machine language program is

loading, and then READY will appear

on the screen. The Basic program

should have automatically cleared

itself out of memory by executing

a New.

At this time you should be able to

use the function keys. Pressing Fl, for

example, will print the word LIST.

Functions F9 through FI2 are obtained

by pressing the Commodore key and

one of the function keys.

Understanding one point about the

operation of the Basic program will

help you get the program running. The

first thing the program docs is move the

top-of-memory pointer way down to

protect a block of memory where the

machine language program will reside.

If you have made a typing error in a

Data statement, the program will detect

it when calculating the checksum and

will branch to line 800. At line 800 the

program will restore the top-of-memory

pointer, which returns all of the

memor>r back to the operating system.

If it did not, the program wouldn't have

sufficient memory to execute correctly

the next time you tried to run it.

If, however, you enter a Basic state

ment incorrectly (causing a syntax er

ror), the operating system will stop the

program immediately, without restor

ing anything. If you execute a GOTO

800 right after the program slops, you

will save yourself the trouble of turning

your VIC off, then on again, and re

loading the program. Of course, this

problem will not occur once the pro

gram is entered as shown in the listing.

You will find that pressing the

run/stop and restore keys deactivates

the program. This is because the oper

ating system restores the interrupt vec

tor to its original value. The program

can be restarted by simply executing

a SYS 0.

After you are sure the program is

running properly, you may remove

lines 611 through 618, along with the

last data item in each Data statement.

That is the part of the program associ

ated with the checksum. The machine

language program will load in about

half the time with the checksum re

moved. Do not forget also to remove

the last comma in each Data statement.

Since the machine language program

remains in memory after the Basic pro

gram clears itself out, you will lose a

small amount of memory. Your free

memory will decrease by 144 bytes,

plus one byte for every character de

fined in your strings.

Redefining (he Function Keys

The function keys Fl through F12

are defined in lines 210 through 320.

An array of strings named F$ holds a

string associated with each function

key. F$(l) is the string defined for II;

F$(2) is the string assigned to F2, and

so on. To redefine a function key, sim

ply change the appropriate line of the

program corresponding lo the function

key that you wish to change.

For example, line 210 defines the

string for Fl:

210 FS(1) = "LIST"

If, instead, you would like the word

LOAD to be printed when Fl is

pressed, change line 210 to:

2I()I7S(])- "LOAD"

Be sure to include the quotes, since F$

is a string variable.

Any valid string can be assigned to

Ihe function keys, including strings con

taining cursor controls. There are,

however, two characters lliat are slight-

implemented on the VIC-20. The com

puter clearly contains many powerful

routines in ROM, and it behooves every

user to learn as much as possible about

them. The program also shows that the

1541 disk drive is an extremely flexible

unit.

Programming the VIC-20 and 1541

in machine language to perform new

and exotic commands is not as difficult

as it may at first seem. The key, of

course, is to break the problem down

into a series of smaller subroutines,

making as much use as possible of the

various ROM routines available. This

was the very procedure used in D1SK-

O-V1C. 11

Table I. Explanation of DISK-O-V1C com

mands.

Append. This command allows a program

from disk lo be appended onto another in

memory. To keep tilings simple for the VIC-

20. il is important that the program in memo

ry have line numbers less than the disk pro

gram lo be appended. The availability of (his

command makes it possible to build large

subroutine libraries from which complete

programs may be assembled. The proper syn

tax is:

APPEND "title of program" (renirnl

As with normal VIC-20 Basic, some abbre

viations arc possible. For example, instead of

typing in the whole word APPEND, yon may

type "A shift-F." (All of DISK-O-VlC's

commands may be abbreviated in this fash

ion. Just type ihe firsi letter of the command,

followed by ihe second letter shifted.)

Catalog. To determine what is on the disk

currently in !he drive unit, type CATALOG

and hit the return key. A directory listing will

be printed to the screen so you can see all of

ihe programs available. Note that unlike the

method for looking at the directory1 normally

employed by the 1541, Catalog will not dis

turb the program sitting in the VlC-20's

memory.

As an added convenience, a special pause

feature has been added. Push the space bar

once to pause the listing. Push it again to re

sume. You may also hit the run/stop key lo

terminate a listing.

Colled. Type this command and hit the re

turn key, and the disk in the drive will be vali

dated oi collected. In simple terms, this will

cause the 1541 drive unit to trace through the

entire disk, making sure that all of the blocks

are properly "connected." Any blocks that

have been improperly allocated will be

cleaned up and made available for more stor

age. The entire operation of this command is

fairly complex, but basically it simply looks

over the disk and tidies it up. Like initializa

tion, it never hurts to use the Collect com

mand often.

DLOAD. Acts just like the normal Load

command but defaults to the disk drive auto

matically. For example, type DLOAD "pro

gram name" and hit ihe return key. The dri\e

is automatically initialized, the program load

ed and disk errors checked for. Just to put

this into perspective, DLOAD is equivalent to

the following steps:

OPEN 1,8,15,'T'

LOAD "program name",8

INPUTS! disk error message, etc.

CLOSE 1

It is clear that DLOAD. though a simple

command, docs quite a lot. Incidentally,

DLOAD may only be used for Basic pro

grams or machine language programs that

"look" like Basic. This limitation is due to

the fact that the VIC-20 has a strange "sliding

memory" loading format.

DSA VE. This is just like DLOAD, but saves

a Basic program to the disk. The same initiali

zation and error detection lake place.

Header. This is a special command that takes

a virgin disk and formats it for later use.

Magnetic marks, which serve as guides to the

1541, arc imprinted on the disk, and a title

and identification code arc assigned to it. The

22 43

syntax lor its use is:

HEADER "disk name",Ixx [return]

where "disk name" is ilie name to be assigned

10 llie disk, "xx" has been used here as the

identification code. However, any two-char

acter combination may be used. Note that the

comma is necessary, as is the letter "I." Be

fore the disk is headered, the query "Are Yon

Sure? (Y/N)" is printed to the screen. An

answer of "Y" will start I lie command; any

other response will abort the process. Since

the Header command overwrites the disk, it's

important to provide this "Are You Sure?"

feature.

IN/T. As mentioned previously, even,1 DISK-

0-V1C command has automatic initialization

built in. However, there may be times when a

disk is acting iroublcsomc and it is desired to

force an initialization. To do so. simply type

1NIT, hit the return key and the disk will be

initialized. This command is equivalent to

typing

OPEN 1,8,15,"!"

CLOSE 1

Kill. This is a self-destruct command. When

you have had enough of DISK-O-VIC for a

programming session and wish to remove it

from the computer entirely, type KILL and

hit the return key. The computer will go

through an entire reset, acting as though you

had shut it off and then turned it on again. Do

not confuse this command with Off (see

below). Kill completely resets the computer.

In general, use this command only when you

wish to cause a cold start.

Off. This command turns off DISK-O-VIC,

but leaves it in memory, safe and protected.

Thus it may be returned to whenever desired.

Since DISK-O-VIC slows Basic clown some

what, you may wish to turn it off whenever

you're running a program to attain maximum

speed. To turn it back on, simply type

Rename. This command will rename a pro

gram on disk, without affecting any program

already in memory. I-'or example,

RENAMI-: "old name" TO "new name"

[return]

will change the name of the program to "new

name." There arc several things to note. The

old name comes first, then the new name. The

word "TO" must be present between the two

names for the command to work. Finally, er

ror detection is provided, so that it is impossi

ble to Rename a flic to a name currently

in use.

Scratch. This command lets you scratch a Tile

or program from the disk. Simply type

SCRATCH followed by the name of the tile,

and hit ihe return key. Once again, the query

"Are You Sure? (Y/N)" is presented. A re

sponse of "Y" will cause the file to be

scratched.

If you've been wanting a way

to define the VIC-20 func

tion keys to your own needs,

here's a program that lets

you do it with ease.

By John Tanzini

When you first purchased your

VIC-20, you undoubtedly wondered

about the function keys. You may have

been disappointed the first time you

pressed one and found that nothing

happened.

I can remember searching through

the reference manual to determine how

to assign functions. I found that the

function keys are very easy to use in

Basic programs, since they can be input

like any other character, but I had

hoped for more. I had hoped to be able

to assign functions that would aid me in

programming—functions that would

execute as if they were part of the oper

ating system.

There is a way. If you print a prede

fined string to the screen every time a
function key is pressed, you can execute

any function with a single keystroke.

For example, suppose the word LIST

is printed when Fl is pressed. Now press

the return key, and your program will

be listed. If the return key had been

defined as pail of the string, then simply

pressing Fl would list the program.

Similarly, F2 could be made to run a

program.

1 find, while debugging certain pro

grams, that I am constantly typing

PRINT PEEK (N), where N is the num

ber of some memory location. Since

cursor controls can be included in

RUN It Righl

VIC-20

Assembler

44

FUNCTION KEYS
strings, I can define a string which

prints PRINT PEEK () and then

moves the cursor back to the position

just after the left parenthesis. Then all I

have to do is type the number of the lo

cation that I wish to interrogate, and

press the return key.

You will doubtless have your own

idea of what functions should be assigned

to the function keys. It is a simple mat

ter to customize my program to your

own needs and define the keys and way

you like.

Although part of this program is

written in machine language, you need

no knowledge of machine language to

use the program or to redefine the

function keys. So read on and put

those function keys to work for you.

Using Ihe Program

A copy of the program is shown in

Listing I. It is not as long as it appears,

since you do not have to type in any of

the REM statements. Be sure to save a

copy of the program before you try to

run it.

The most likely place to make a mis

take while entering the program is in

the Data statements, which contain the

machine language program. For that

reason, 1 have included a checksum at

the end of each Data statement. The

last number of each Data statement is

the sum of all the previous numbers in

that line.

When the Basic program loads the

machine language program, it checks

the checksum in each statement. If it

does not add up properly, the program

assumes that one or more of the num

bers in that line was incorrectly typed,

and an error message is then printed.

The error message tells you exactly

which line is incorrect, which should

aid you considerably in getting the pro

gram running.

""■■■■" ■. ; t.

betize. Kill, New, Load, Save, Hard

Copy and Help. If you should ever

forget what they mean, push the ? key

for the list of definitions.

Using the Commands

To call up a page, push P and the

page number that you want. (A Hashing

cursor will remind you to push the

return key after typing in something

that was asked for.) When the page ap

pears, you will see ten entry numbers

with a dash after each one. To make an

entry, push E and type in one of the

numbers to indicate where you want the

entry to go. The entry must not contain

any commas, colons or semicolons.

After you have pushed the return key,

the entry will appear on the page.

If you want the entry to appear in the

catalog, it has to be reversed (lettering

inside a colored bar). To do this, the

first character of the entry must be a left

arrow. This is the key in the upper left-

hand corner of the keyboard.

1 reverse such things as the titles of

categories. For example, you might

want to organize a book list by authors.

To do this, reverse each author's name

and enter his books after the name.

(The book titles are not reversed.) Now,

whenever you call the catalog, each

author's name will be shown with the

page number on which it appears.

To insert something between two

already existing entries, push 1 and type

the number of the line that you want the

insertion to go on. If you want to kill

(erase) an entry, push K and type in the

entry number. To cancel a command

like Kill, just type in another command

letter instead of the entry number.

If you want to skim over pages, push

the space bar instead of a command let

ter. To call up the catalog, push C. Due

to the limited amount of space on the

screen, only ten categories with their

page numbers can be displayed at a

time. Push the return key to get the next

ten categories.

To save or load a file, push S or I. re

spectively. You'll be asked to confirm

your intentions. You wouldn't want to

load in a file when you're not yet done

with the one that's in the computer.

Next, you'll be asked whether you're

using a disk or tape drive. Push D for

disk or T for tape. If you push D, you'll

be asked if you want a listing of the data

files that are on the disk.

When resaving a file to the disk, the

old one will be replaced by the new one.

This relieves you of trying to remember

which version of a file is the most recent

one.

Push A to alphabetize. You can only

alphabetize what is inside of a category.

If your categories are authors' names,

then you can alphabetize the books by

each individual author, but you cannot

alphabetize the authors themselves.

After pushing A, you will be asked for

the number of the first entry to be

sorted. IE

20

Send. This is a general purpose command and

can be used to send some of the standard

Commodore disk commands to the drive

unit. For example.

SEND "I" [return]

will send the tetter I to the disk, and thus

cause an initialization, (Of course, DISK-O-

Vic's command, IN1T, will do the same

thing.) As another example,

SEND "R:ncw name = old name" I ret urn |

will cause the file "old name" to be renamed.

Since other commands in D1SK-O-VIC cover

most contingencies, [lie Send command is

probably not needed often. Bui it's nice to

have it handy for advanced disk program

ming operations. For the record, Send is

equivalent to

OPEN 1,8,15,■■command"

C\ OSE 1

Status This is a troubleshooting command

thai allows you to chase down llie cause of a

disk operation failure. If the red error lighi on

your disk drive comes on, type STATUS and

hit the return key. The light will go off, and

an error message will be printed to the screen.

This message will describe the error and

where on ihc disk (in terms of [rock and sec

tor) ihe problem was encountered. II

everything is OK, no message is printed. To

test this command, type the following:

OPEN 1,8,1,"GARBAGE" [return]

The 1541 drive will whir, and assuming thai

there isn't a file named "GARBAGE" on the

disk, the error light should come on. Type

STATUS, and the error message will be

printed to ihe screen. Refer to the 1541 disk

drive manual for a full explanation of the er

ror messages.

45

VICasso DATABASE DELUXE

You want to put more crea

tivity into your program

ming, but your VIC-20's char

acter set just doesn't satisfy

your needs. Your only solution

is to generate your own char

acters. Here are some valu

able tips to help you design

custom characters for your

games and graphics with

speed and ease.

By Stephen Erwin

If you're like most programmers in

terested in games or graphics, you

sooner or later reach a point where the

standard VIC-20 character set no longer

satisfies your need for creativity. Al

though there are many interesting char

acters to choose from, your best solu

tion when a game calls for spaceships or

funny little men is to design a custom-

made set of programmable characters.

Memory Moves

The basic techniques are fairly sim

ple, but they do require a bit of back

ground information before they can be

understood. For starters, VIC-20 char

acter memory is stored in ROM, which

cannot be changed. Characters can be

Address author correspondence to

Stephen Erwin, 102 Hickory Court,

Portland, IN 47371.

changed only when they are stored in

the user RAM. Therefore, in order to

create any new characters, the VIC

character memory must first be moved

into the limited locations in RAM thai

the VIC-20 video chip can access.

The standard locations on the unex-

panded or 3K expanded VIC are at the

top of user memory in 7168, 6144 or

5120. Location 7168 will store 64 char

acters; location 5120 will store all 255

characters. You move the character lo

cation by Poking location 36869 with

the proper code. (See Table 1.)

When you choose a character loca

tion, it's important to remember that

you must subtract the memory' used by

the character set from the RAM avail

able for programming. While location

7168 uses only 512 bytes, location 5120,

which allows 255 characters, uses 2560

bytes, leaving only 1024 bytes for the

rest of the program. For this reason, it's

important to use no more characters

than you absolutely need.

Another important consideration is

that the VIC stores some types of vari

ables at the top of user memory. To

protect your character set from these

variables, you must Poke locations 52

and 56 with the proper code. Table I

shows the codes for moving a character

set and protecting it.

Try entering POKE56,28:POKE52t28:

POKE36869.255. The screen should

now be filled with junk. This is because,

although you've moved and protected

the character location, you haven't yet

put any characters in it. To return the

screen to normal, POKE36869,240.

The following routine will Peek the

standard character location and move

64 characters to the new location ai

7168.

10 POKE56,28:FOKE52,28:CLR

20 FORT = 7168 TO 7679:

46

"-/"-fe-^<4^

»»?

Need an inexpensive data-base program for your VIC-20 or

C-64? This one won't cost you a cent. Just type in the

listing to store, categorize and sort your data with ease.

By John Stilwell

Deluxe File Case is a file handler for

the Commodore 64 or for the VIC-20

with a memory expansion of 3K or

more. The program is designed to use

the 1540 or 1541 single disk drive or

the Commodore Datasselte. For print

outs, it will work with any of the VIC

printers.

The file format is a group of pages

with ten entries per page. In the VIC-20

KLIN It Right

VIC-20 with 3K or more of expanded

memory, or Commodore 64

1540 or 1541 disk drive or

Commodore Datassette

A ddress author correspondence to John

Stilwell, 5018 Marathon Drive, Madi

son, W153705.

version, line 30 looks at the amount of

memory available for data storage and

then gives you the optimum number of

pages. This means that if you change

the size of the program, it will notice

and will change the number of pages it

gives you.

In the C-64 version, you are always

given 100 pages with ten entries on each

page. On line 30, N is set to 1000, the

number of entries that the file can hold.

If you want more or fewer pages, all

you have to do is change this number.

When you am the program, you will

first be asked for a file name. If you

push the return key without providing a

name, the file name will default to

"Noname." The program then sets it

self up.

A moment later, the list of one-letter

commands will appear on the screen.

The commands that you have are:

Page, Insert, Enter, Catalog, Alpha-

:;■■-:"

round of play (measured as one year for

each round), you must buy or sell land,

set aside grain for feeding the popula

tion during the year and determine how

many acres to plant.

There are many factors lo ponder in

planning for the coming year. Is the

stale at war or peace? Is there sufficient

food to feed the population, or should

some of the people be allowed lo starve?

Are there enough people to do the work

of planting and harvesting—and for

military service if there is war? Is the

price of land high or low? Have you

saved enough grain for seed? Are there

any fringe benefits with this job?

To aid you with your job, the State of

the Realm report is constantly displayed

and updated as you are requested to

give orders for the upcoming year. Al

so, at the end of each year, the Grand

Secretary of State will give you a report

of the results of your decisions, includ

ing such things as harvest yield, census

changes and the state of the treasury.

You could discover, through trial and

error, the requirements for distributing

grain to your various priorities, but that

is maddening. Instead, I will tell you the

following: each person requires 20

bushels of grain to eat; each person can

only plant 10 acres of land; seed re

quirements are Vi bushel per acre.

In time of war, one-third of the pop

ulation is required for the army and is

not available for agriculture (they still

eat, though). You will find yourself at

war about 30 percent of the time.

Variables Used

A list of the variables used in this pro

gram is as follows: p = population; ar =

new arrivals to the city; sp = number of

people who starved; rd = grain des

troyed by rats; yh = harvest yield in

bushels per acre; gh = total bushels har

vested; gs-current bushels in storage;

ca = acres owned by the kingdom; yr =

current year of your reign; pw$ = war

or peace; a$, i$, i, j, zz, x = temporary

variables; wk = number killed in war;

wr= flag for warehouse raid; wf =

population efficiency factor for war or

peace; k=current price of land; b$ =

increase or decrease in kingdom size, g]

POKE T,PEEK(T t (32768 - 7!68)):NEXT

30 POKE36869.255

When this is entered, the only notice

able change is that the cursor disap

pears. This is because the screen Poke

number of the reverse space that the

cursor uses is 160, and the new charac

ter set contains only 64 characters.

To adjust this formula to move more

characters, change the codes in lines 10

and 30 to the proper codes for the new

location and substitute the new local ion

for 7168 in line 20.

It's also possible to move individ

ual characters into the new character

set. Use the following formula, where X

equals the screen Poke code of the char

acter in ROM, and Y equals the screen

Poke co<\<£, of the character to be re

placed.

FOR T = 0 TO 7:POKE7I68 + V8 + T,PEEK

(32768 + X"8 + T):NEXT

For example, if you enter the follow

ing, hitting the X key will print a ?.

FOR T = 0 TO 7: POKE 7168 +24*8+ T,PEEK

(32768 + 63*8 t-T):NEXT

POKE 36869

240

253

254

255

LOCATION

ROM MEMORY

5120

6144

7168

POKE 52 AND 56

20

24

28

Table 1. Codesfor moving and protecting a character set.

Design Originals

You're now finally ready to begin de

signing custom characters. Each one is

made of 64 small dots on the screen. It

takes eight bytes of memory to store one

character, with each byte made up of

eight on-off switches called bits. If the

bit is turned on, so is the corresponding

dot on the screen.

The eight bits within each byte are as

signed the following values, which arc

the powers of 2 up to the seventh power:

128,64,32,16,8,4,2,1. Using (bit on) or

not using (bit off) these numbers in all

possible combinations gives you all byte

values from 0-255. Fig. 1. shows the bit

structure of a character resembling the

profile of the space shuttle.

The numbers on the right in Fig. I

represent the values obtained by adding

together the values of the individual bits

in each byte. To replace the @ with this

character, simply Poke the above values

into the first eight locations of your

RAM character memory.

The standard method for doing this

uses data statements as follows:

10 READ A:1F A = - 1 THEN 100

20 FORT »0TQ7:READB:POKE(A*8)+

7168+ T,B: NEXT

30 DATA 0, 0, 0, 128, 192, 254, 255. 0, 0, 1

100 END

The first data number is the screen Poke

code of the character being replaced. The

- 1 tells the program that the last char

acter has been entered. If more than one

character is entered, the - 1 is used only

after the last character's data line.

An even easier way to make custom

18 47

characters is with the programmable

Character generator. When the program

is run, it moves 64 characters into user

RAM, pokes in any new characters that

have been designed and then stops to let

you test the new characters. Entering

CONT places the character generator

0

0

1

1

1

1

0

0

Fig.

0

0

0

1

1

1

0

0

/.

0

0

0

0

1

1

0

0

Th

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

I

0

0

0

fl

0

0

1

1

0

0

' bit structure

ter resembling the

0

0

0

0

0

1

0

0

of a

= 0

= 0

= 12S

= 192

=-- 254

= 255

0

0

charac-

space shuttle.

itself on the screen.

The VIC will draw a box with the

numbers of the bytes on the sides and

the numbers of the bits at the top and

bottom. The bits are numbered from

seven to zero to show the power of two

that represents the value of that bit. For

instance, T = 128, the value of this

highest bit.

Draw your new character by moving

the cursor with W = up, X = down, A

= left, D = right. Pressing the space

bar will place a colored box under the

location of the cursor. If an error is

made, press F3. This allows you to cra.se

the colored boxes by pressing the space

bar. Pressing Fl returns the program to

the drawing mode.

When the character is finished, move

the cursor below the box and press F5.

The program will then print out the

Poke values for the new character and

ask for the screen Poke code of the

character to be replaced. See the user's

guide on page 141 of the manual. Re

member also that the character set uses

only characters from 0-64.

When you enter this number, the

program automatically writes a data

line for the new character and adds this

line to itself. It next returns to the begin

ning to enter the character into the char

acter set and then stops so you can test

the character by typing the key of the

character that was replaced.

At this point, never use the return key

except to continue the program by en

tering CONT or GOTO8000. If you do

not like a character, simply make a new

character and re-enter the same screen

code as before. Because it will have a

higher line number, it will replace the

first character.

When you have made all characters

desired, enter GOTO9000. This will au

tomatically delete the generator part of

the program, leaving only a program

for loading the new character set.

You can save this program to tape

and load it just like any other. You can

add games above line 200, or you can

separately load the character set and a

game that uses it. All you have to do is

draw the characters; the generator does

the rest of the work.

Iron Hand Or VIC-20?

How Would

You Rule Your

Kingdom?

As a royal ruler in this

game, you've got to think

quickly to expand your king

dom while forestalling grain

drain, especially in time of

war.

By Joseph J. Shaughnessy

RUN It RIGHT

VIC-20 or Commodore 64

Address author correspondence to

Joseph J. Shaughnessy, 4703 Country

Club Drive, Pittsburgh, PA 15236.

This game is both fun and education

al. You must continually juggle num

bers and computations in your head,

but it's not a painful process. (The pro

gram will work with any memory con

figuration of the VIC-20, including un-

expanded, and also with the C-64. See

Listings 1 and 2.)

You are the ruler of a small city-state

in ancient times. Your major goal in life

is to increase the size of your kingdom,

and you measure your progress towards

this goal by the number of acres that

you own. To be successful, you'll find

that caring and concern for the people

under your rule may not always be pro

ductive in accomplishing your goal.

However, total disregard of your people

also carries penalties.

Royal Decisions

As the game begins, you own land,

have grain in storage and also have a

population to govern. During each

48

Doodle On Your VIC
Making Ihe Moves

To enter your move, first, choose a

symbol and the position in which you

want it placed. Then, using the function

keys, move the arrow up (Fl) or down

(FT) so that it points to the desired sym

bol. Lastly, hit the key (1, 2, 3 or 4) cor

responding to the square in which you

wish to place the selected symbol, and it

will appear there.

In case you change your mind, you

can overwrite any symbol in any posi

tion, changing the combination as many

limes as you wish before hitting the
space-bar to enter your move. lint once

all four squares are filled and you hit the

space-bar, there is no turning back.

When you hit the space-bar, the pro

gram will read your move, compare it to

the hidden code and display the results

of the comparison in the FG and PS col

umns next to your guess.

Although the hidden code ordinarily

consists of four different symbols, you

may choose to repeat a symbol in any

given guess to try to find out whether or

not it belongs to the hidden code. Begin

ners frequently use this technique,

which sometimes—combined with a lit

tle luck—provides useful information

about the hidden code at the first stages

of the game.

Suppose, for example, that the hid

den code does not include the symbol

"x" or " + ," and that your first guess

is " + + x x." The results of the com

parison tell you immediately the four

symbols making up the code. Then you

have to determine their order. After

breaking the hidden code, you can

start a new game by pressing any func

tion key.

One last feature of the game is the

Help command. As you try to break the

hidden code, four small black squares

are continuously displayed at the lower

right-hand corner of the screen. These

are the symbols in the hidden code.

Each time you press H, one of the sym

bols in the hidden code will be revealed.

When you break the code, all four sym

bols will be displayed there.

A word about the score. The max

imum score you can get in one play is

500. If you break the code with your

first or second guess, you get all 500

points. If not, each unsuccessful guess

after the first two will cost you ten

points. You also lose 50 points every

time you ask for Help, and asking for

Help four times in the same play

reduces your score to zero. Your cur

rent score, as well as the average score

of all your previous games, will be dis

played at the top of the screen.

Listing 1 shows you the game pro

gram, along with some useful remarks.

Lines 135 and 137 compare the symbols

in the hidden code to make sure no sym

bol appears twice. If you find the game

too easy to play, you can remove these

two lines. Doing so will almost triple the

number of possible combinations for

the hidden code.

A word of caution: This program

plays around with the display list, and

you should be very careful when typing

it into your computer. Any typos in the

Poke statements might cause the com

puter to crash. Be sure you Save the

program before you try to run it, so that

even if something goes wrong, you'll

not have to type it in again. E

Let your artistic fancy fly

free with this program that

turns your VIC-20 into an easy,

clever and powerful doodler.

by Terence Bryner

How would you like to see your

flights of fancy in high-resolution, color

graphics on your VIC, without a lot of

planning or bother? If you have 3, 8 or

16K memory expansion, you can doo

dle to your heart's content with this pro-

RUN I! Right

VIC-20

3K, 8K or 16K expansion

printer desirable

joystick optional

Address author correspondence to

Terence Bryner, 15 Crane Road, Gro-

ton, CT 06340.

gram, which runs with keyboard or joy

stick; use a printer, too, to preserve

your finest efforts for posterity.

To use the program, type in Listing I

and save it. Table I is a summary of di

rections. If your VIC has only the 3K

memory expansion, simply load and

run the program; the operating system

will start it at 1024, and the program

protects the high-resolution graphics

screen.

If you have more memory, type in the

command line at the top of Table I be

fore loading the program. This causes

the operating system to load it begin

ning at 8192, above high-resolution

screen memory.

The program first asks whether you

prefer keyboard or joystick control.

After you hit J or K, the display goes

mushy while the screen is reconfigured

to 20 characters by 22 lines, and a flash

ing black dot appears in a white screen

with a black border.

The border color is a key to the

doodling mode—black is Draw. If you

manipulate the joystick, or press a

movement key (see Table 1), a dot will

appear on the screen. If you hold the

joystick in one direction or repeatedly

press the movement keys, you'll leave a

trail of black dots.

The left-arrow key, or the joystick's

fire button, shifts you to the Erase

mode, where the border is white and the

trail of dots, becoming one with the

background color, arc invisible; use this

mode to correct mistakes. If you hit the

left-arrow key or the fire button again,

you'll return to Draw mode. And that's

how you doodle.

Several enhancements are provided.

Press the fl key and your flashing dot

disappears. Press it again and it reap

pears, red. You can change it to five

other colors and back to black (you'll

see that the first color was really while).

The background color can be changed

to any one of sixteen by hitting the f3

key. The f6 key stops the program and

returns the screen to normal.

The f5 key causes the program to

enter or leave Text mode. In this mode,

the border is yellow and a 20-charactcr

banner (initially blank) moves across

the top of the screen. If you strike a key

while you're in this mode, the letter ap

pears in the upper right-hand corner,

pushing everything else to the left; you

can use this to title your masterpieces.

The f6 key still stops the program, and

\'5 returns you to the Draw/Erase mode.

If you have a 1515 or 1525 printer,

you can save your creations by hitting f2

for a large (8-inches high) picture, or f4

for a smaller one.

A Compact Program

The program is short, in order to lit

any memory expansion. Screen mem

ory starts at 7680 for any memory con

figuration. The high-resolution graph

ics characters start at 4096 and continue

to 7615 (this is why an expansion is

necessary—there's no room left for the

program).

Table 2 is a listing, by lines, of what

each part of the program docs. A few

comments on specific techniques and

variables may assist your understanding.

The screen is set up in 11 rows of 20

double-height characters. Screen mem

ory contains numbers 0 thru 219, and

character memory is set to start at 40%.

This, along with clearing the screen and

initializing variables, is done in lines

65-68.

Now a change to the bits in high-reso-

iution character memory is reflected on

the screen. X and Y contain the present

position of the pen (flashing dot). BY is

the address of the word in memory that

contains that point, and BI is a pointer

to the individual bit. CO is the character

position used to set pen color on the

screen. The array B contains the true

value of the word at BY, a copy of the

word with bit Bl turned off and another

copy with bit BI turned on. The point of

interest flashes as the program, while

waiting for input, cycles through the

different values in B.

ED°/b is the variable that determines

the Draw or Erase mode; C8 is the

border-color variable, and contains the

opposite of EDff/o (except in Text

mode). C5 is the screen (background)

color. CO is the pen color—be aware

that the color control on the VIC is

done in blocks of 8 x 16 dots, and the

whole block changes color at once. The

program spends most of its time in the

loop from 25-30, waiting for input and

flashing the dot.

One technique I've used extensively is

multiplying by logical expressions. An

expression, such as Y>0, has the math

ematical value - 1 if it's true, 0 if false.

So line 31 places the value "one less

than the present value of Y" into Y, if

the present value of Y is greater than 0

(the preceding minus sign cancels the

- 1 of a true expression). If Y is zero,

then the expression is false and its value

0; this effectively places a lower limit of

zero on Y.

This game is a mind chal

lenger. Fast thinking is a

plus, but fast reaction, man

ual dexterity, and everything

else that makes you a good

arcade-game player, are ir

relevant.

By Evangelos Petroutsos

Symbol Code is an adaptation for the

Commodore 64 computer of the once

very popular table-game, Mastermind.

The object of Mastermind is to break a

code consisting of a sequence of four

colors selected from a palette of six

different colors. The code is set by

another player. Each lime you make a

guess, you arc provided with some in

formation concerning the success ol

your attempt. Good judgment and the

use of all available information will help

you break the hidden code.

♦ x + on

Fig. 1. The symbols used to form Ihe

codes in (he game program, Symbol

Code.

RUN It Right

Commodore 64

Address author correspondence to

Evangelos Petroutsos, 851 Ca/nino

Pescadero U70, Goleta, CA 93117

SYMBOL CODE

Many Permutations

Symbol Code uses six different sym

bols (Fig. 1) instead of colors, so that

the display is more interesting and the

game can be played on either a color or

a black and white TV set. Since the code

consists of four out of six symbols,

there are at least 360 possible four-

symbol codes. If we allow any symhol

to appear more than once in the code,

there can be as many as 6\ or 1296,

possible codes. The challenge is to break

the hidden code in as few trials as possi

ble. Your task is not easy, as you will

discover!

Let's take a look at the game. After

you run the program, an empty grid will

appear on the screen. Its columns are

labeled 1, 2, 3, 4, FG and PS. The six

symbols are displayed at the right-hand

side of the screen, with an arrow point

ing to the first one. Your guesses will

appear in the first four columns.

The columns labeled PS and FG will

be filled in by the computer as follows:

FG is the number of symbols you have

guessed correctly. PS shows the number

of correctly guessed symbols which are

also in the correct position.

For example, three dots in the FG

column and one dot in the PS column

indicate that in your last guess you have

guessed three symbols correctly, but

only one of them is in the correct posi

tion. Your task is to find out which arc

the correctly guessed symbols and

which one is in the correct position.

The grid is large enough to display six

consecutive efforts. If you have not

broken the code after the six trials, your

next guess will replace the least recent

one. After you become familiar with the

game, however, you will realize that

you don't really need more than six

guesses to break the code.

50

as memory section 15.

The program then jumps to line 1(X)

and continues (he loop.

Game-Playing Minis

After the game program is entered in

to your machine, you're ready (o fly a

mission.

Until you get the feel of the shuttle,

be careful when taking o\'l\ Positive ver

tical velocity builds up rapidly and

you'll find yourself in the magwinds.

Push the joystick to the left as you take

off to build up horizontal velocity to

help you clear the landing pad. The

shuttle's on-board computer will hold

the horizontal velocity constant until in

creased or decreased by the joystick.

The lower pads are green until you

land; then they turn red. If you reland

on a red pad, you won't receive any

fuel, since it already has been depleted.

If at first you arc burning too much

fuel, take off and then immediately

reland on the upper pad. Each time you

reland, your fuel reserves will build.

Your final score will suffer, but you'll

be able to complete the mission.

If you find yourself on a lower pad

and feel you don't have enough fuel to

continue, pull back on ihc joystick and

the mission will be aborted.

Conclusions

Enjoyable games can be written in

Basic without using assembly-language

routines. The sprite graphics capabili

ties built into the Commodore 64 let the

programmer control hi-res graphics im

ages easily. Canyons of Zela/ can he

further modified and enlarged by add

ing your own routines to it.

The purpose of Canyons of Zela/

was to provide an example of how

to use sprite graphics in game sce

narios. I hope this prompts you to

enjoy the game, modify and change it

and then write your own game and send

it to RUN. ®

Kir more on the Comnnxlnre M\ spriit-

capabilities, mi: Microcomputing, June 1983, p.

(ii— "Sprites, Graphic Eyes and iheC-64,"

Address author correspondence lo Garv

D. McCleiian, PO Box 346, Rimrock,

AZ 86335.

The following line:

V - Y I:1FY<OTHENY - 0:GOTO39

does not do the same thing. The GOTO

at the end is only executed if the value of

Y is initially less than one. Much more

compact code can be written using this

method.

Screen Printing

In printing the screen, 1 used an un

usual technique, too. It is fairly direct

for small copies obtained with the 14

key.

Lines 95-97 open a print file, set the

Lines 93-94 step across each line and

print the variable Y$. The last character

in the line is again only partial, so line 94

uses A5 to limit the subroutine to the

screen and pad out the character with

two blanks (CHR$(128}).

Lines 86-88 build the array H for one

column of the character— it contains 0

if the bit is off, I if it's on. The 6x7

characters that the graphics printer pro

duces cross character boundaries in the

8x16 screen, so you must go through

the computations in lines 87 and 88 each

time you build the array, which slows

down the program.

Before

Joystick

\ t f

■•-push-*"

/ \ \

fire button

loading with 8K or larger memory expansion, type in:

POKE 44.32: POKE 642.32: POKE 8192,0: NEWJRETURNJ

£

II

a

f3

f4

\>

f6

Keyboard Result

U I O

J L movement

M ,

*- shift from Erase to Draw mode and

back

clear screen

cycle character color

print screen (large)

cycle background color-

print screen (small)

shift graphics to Text mode and back

stop program

Table I. Instructions for use.

Graphics mode and step through each

line. Variable II contains the value of

the first dot in each line, from the top of

a 0-175 screen. A3 is a variable that

gives the height of the character minus

one. Characters are seven dots high ex

cept for [lie bottom line, and for small

pictures, LS% is zero, so line 96 is not

yet significant.

In line 89, the dots are summed, the

mandatory 128 is added and a graphics

character is added lo Y$, which repre

sents one column of the total 6x7

character. That is a workable, if not op

timal, solution to drawing the high-

resolution screen.

However, a picture 176 dots high (on

a printer that prints about 63 dots to the

14 51

Table 2. Program description of VIC Doodler.

Line // Function

1-2 Lower top of memory for 3K expansion; skip to main routine

5-14 Get keyboard or joystick input; decode into KI

5-7 Get and decode function keys; if no input, check joystick

8 Skips to keyboard section if not using joystick

9-10 Read joystick and fire button, decode, return

11-12 Loop back to read joystick, if in use

13-14 Decode movement key

20-21 Dimension array to read joystick, initialize

25^30 Basic loop; get input, execute it

25 Gets next instruction, brings back in KI

26 Cycles next entry in array B—causes flashing

30 Decision on how to handle input—0 indicates no input, so return

to 25

31-43 Handle movement instructions

31-38 Change X,Y to point to next location on screen; ensure it is in

range 0-159, 0-175

39 Stores B(0) in old location, calculates new character CO, stores

present character color there

40 Calculates address BY of new location and determines which Bl

bit

41 Starts setup of array B—element 1 has word with bit BI off, 2

has word with bit on

42 B(0) will hold final value—bit Bl on for Draw mode, off for

Erase mode

44 Cycles character color, changes in present location

45-49 Print screen section

45 Sets print flag to large and skips to it

46 Sets print flag to small

47 Realigns data direction register if using joystick

48 Prints to the screen; realigns DDR if using joystick

50-51 Cycle from Draw to Erase or vice-versa

50 Flips border color, Erase-Draw flag and true setting of present

bit

51 Changes border color, indicating new mode

52 Cycles to next background color

53 Goes and clears screen (using part of initialization)

54-56 Text mode section

54 Saves border, sets border yellow and fixes DDR if using joystick

Table 2 continued.

52

lower landing pads are red, (hen vari

able Q is set to 1. The subroutine returns

lo line 410, and if Q is equal to 1, the

program goes to the mission-complete

routine at line 360. If the mission is not

complete, 200 extra units of fuel are

added to the shuttle in line 415.

The Y coordinate is updated after a

landing by line 435. Line 440 prints a

status report update if the program has

returned from the crash routine. If the

shuttle has landed on one of the three

lower pads, lines 450-455 refuel the shut

tle and change the color of the landing

pad the shuttle is on from green to red,

and update the refueling counter. The

upper pad is then colored green in case it

has changed to red from a refueling.

The mission-status instrument read

outs are updated in lines 460^71; the

program then waits for the fire button

to be pushed for take-ofT. ll'the joystick

handle is pulled down and the fire but

ton pressed, the mission is aborted.

When take-off is initiated, line 485 sets

vertical and horizontal velocity, clears

the sprite-to-sprite collision register and

resets the shuttle altitude. The mission

status is updated in line 490 and the

shuttle is once again in flight.

Lines 100-200: The main program

loop controls the game while the shuttle

is in flight. Line 100 sets collision Hags

CS and CP to 0, resets the sprite-to-

background collision pointer and reads

the value of joystick port 2. If the fire

button is not pushed, line 105 sets the

vertical acceleration variable and turns

off the sound of the rocket engine.

When the fire button is pressed, lines

107-113 handle the rocket routines.

Line 107 sets the sound volume to high

and turns on the sound of the rocket.

The fuel total is lessened, deacceleration

is set and sprite 0 is defined as the

graphics image in memory section 14

(shuttle with exhaust).

The program (hen checks to see if the

joystick is pushed left, right or up.

When it's left or right, horizontal velo

city is incremented or decremented in

lines 110 and 112. When the joystick is

pushed forward, line 113 increments the

fuel variable and sets the acceleration

variable to hold velocity at a constant

value.

Line 150 changes the color of the

warning beacons at the top of each side

of the canyon to red, and then calcu

lates velocity and altitude. Line 155

checks the sprite/background collision

register at location V + 31 lo determine

if the shuttle is in contact with the can

yon walls. Collision counter CR is reset

to 0 if the shuttle is clear of the walls.

The X and Y coordinates of the shuttle

are calculated in line 176. If the shuttle

is too high in altitude and being affected

by the magwinds, horizontal velocity is

increased.

Line 177 is the in-flight crash check.

If the shuttle has been hurled into the

far right- or left-hand wall, or is high

enough into the magwinds to be de

stroyed, the program calls the crash

routine at line 300.

Line 178 clears the sprite/back

ground collision register and pokes the

shuttle coordinates into the X and Y po

sition registers of sprite 0. The

sprite/background collision register is

rechecked, and, if a collision has oc

curred, the collision counter is incre

mented by 1. If the collision counter is

greater than 1, the collision Hag CS is

set to 1.

The mission computer readouts are

updated in lines 180-186. Line 190

checks for a sprite/sprite collision, and

calls the shuitle/pad collision routine at

line 400 if required. Line 195 calls the

crash routine at line 300 if the crash flag

is set; otherwise, the beacon colors arc

turned to yellow and sprite 0 is defined

13

and will be used by the shuttle crash
routine.

Line 930 sets the registers of the

sound generator to 0 with a For... Next

loop and then defines variables for

waveform, attack/decay, sustain/re

lease, note frequency low and note fre

quency high. The high- and low- fre

quency values for a note are then poked

into the registers at line 940.

Lines 300-395: The mission report

routine consists of three separate sub

routines that are called when a shut
tle crash occurs, a mission abort is

requested or the mission is successfully
completed.

The routine is entered at line 300 in a

crash sequence. Line 300 stores note

values in memory and then sets the vol
ume control register at location 542% to

high. Attack/decay, sustain/release and

waveform arc loaded with values, and
I he noise begins.

The variable CK is the crash flag and

is set to I. In line 304, the sprite image
for sprite 0 (this previously was the

shuttle) is defined as memory section

II, a blank section of memory. A value

ol I is poked into the multicolor sprite
.select register at location V + 28. Sprite

0 is now a multicolor sprite.

Fireworks

The explosion begins in line 305. The

subrouline at line 380, which fills 25

random locations in memory section II

with random values, is called. Sprite 0 is

then expanded on the X axis, and sub

routine 380 is called again to add more

random multicolor points to sprite 0.

Sprite 0 is then expanded on its V

axis, and once again subroutine 380 is
called to provide a changing color ef

fect. The explosion is complete and the

subroutine at line 390 is called to clear

memory section II For later use. Line

310 turns off the noise and the explo
sion is over.

. ;1 . ;:■■■".:...,. ■ :■■■■. I?.-:. ■■:■; ■ :■■:■■;■:■■■■■

The mission report status is printed in

line 315, and line 317 tidies up the regis

ters by clearing the expanded X and Y

coordinates of sprite 0. This disables

sprite 0 in the enable register and turns

off the multicolor mode. The program
then goes to line 370 and samples joy
stick port 2 for input. If the fire button

is pressed, the program reinitializes and

returns to the calling routine. If the joy

stick handle is pulled down and the fire

button pressed, the program turns off

the sprites; clears the screen, variables

and pointers; and ends the program.

Line 350 is the mission-abort rou

tine. The mission status is printed,

and then the program goes to line 370 to

wait for joystick input to restart or end
the program.

Lines 360-363 make up the mission-
complete routine. A score is calculated

for the mission based on the number of

refueling slops, and a mission report is

then displayed. The program executes
the routine at line 370 and restarts or
ends the program.

Lines 400-496: The shuttle/pad colli
sion routine is called whenever the shut

tle sprite is in physical contact with a

landing pad sprite. When this occurs, if

the vertical velocity is less than - 10 or

the horizontal velocity is greater than
4.5 or less than -4.5, line 400 calls the

crash subroutine at line 300. Line 403

checks if the shuttle has touched the up

per landing pad, and calls the crash

routine at line 300 if the shuttle is not

lined up on the pad.

At line 405, the shuttle has not met

the crash requirements, so we have a

successful landing. A mission-status

message is displayed, the shuttle sprite is

defined as the image without exhaust,
and noise from the rocket is turned off.

If the shuttle has landed on the upper

landing pad, line 410 checks to see if all

three lower pads have been visited. A

subroutine at line 495 is called. If all

Table 2 continued.

55

56

57-58

60-64

60

61

62

63

64

65-68

79-84

79

80-83

84

86-97

86-92

93-94

95-97

Transfers to Text mode subroutine

Resets screen border; continues only if last character (BO) was

not f6, else falls through

Restore screen, character set, DDR, clear, quit

Text mode—get character, put on screen

Gets character

Converts to ASCII value; quits if f5 or f6

Converts ASCII letters (lowercase) to screen codes (uppercase)

Slides 19 characters in top line one left

Copies desired character from ROM, adds color

Initialize variables, move screen, clear

Initialize program

Data for reading joystick

Select joystick or keyboard; align DDR if required

Reads joystick array; sets up keyboard array; goes to use section

at 65 to initialize screen

Screen printing section

Subroutine loop to build Y$ representing one column of dots for

character, starting at 12,11

Subroutine loop to build row of characters, print

Basic loop to build whole screen, line at a time

inch) is small. So I added the variable

LS'Vo, which causes each line of char

acters to be processed twice (accom

plished in line 96) with LS% values of

one and two.

Now, instead of line 89 building Y$,

lines 90 and 91 do it. Line 90 builds the

top half of a stretched character. For in

stance, if the top dot is on, then H(0) is

1, but instead of adding 2t0 (or 1) to C,

3 is added (2tO + 2tl). In other words,

the first dot is stretched vertically over

two dots.

Similarly, in the second half of the

line, the created character is added twice

to Y$, stretching it also horizontally.

The second time the line is done, line 91

takes care of the bottom half. The result

is a much larger copy, although the

grain is not so fine.

This program is not only powerful,

but it's easy to use. My six-year-old had

no trouble enjoying the drawing part,

and my eight-year-old likes the colors as

well as the text at the top. They use the

joystick, which is a bit faster, but 1 pre

fer the keyboard.

One of my efforts is shown in the ac

companying illustration. Note that I

have positioned my characters so that,

on a color screen, you would sec a blue

bird sitting in a black tree, a yellow flower

on a green stem, a red heart and various

other colors strewn around. It did take a

while, but I think it was worth the time.

I did not add Multicolor mode, be

cause I like the precision I can get now,

but I could easily do it. Feel free to write

me about that, or any other questions

you might have concerning this pro

gram. M

12 53

OP DEATH

Venomous cobras, mummi

fied zombies and even

King Tut himself are all in

this Egyptian setting that will

keep you hopping from

pyramid to pyramid.

by Jim Hoppe

Serpent of Death is an action arcade-

style game requiring timing and skill to

move "King Tut" down an ancient

Egyptian pyramid while avoiding the

killer cobra.

Each block on the pyramid changes

color and scores one point as King Tut

jumps from square to square. Stomp

the killer cobra and score an extra 100

points; but watch oul! If the cobra bites

King Tut, he has only seconds to live.

The cobra venom is inactivated by

touching the mummy who appears

alongside the pyramid. If you press the

fire button, the mummy will carry King

Tut back to the top of the pyramid.

The difficulty increases as higher lev

els are reached. You can advance from

level one to level two either by stomping

the cobra or by filling in all the squares

on the pyramid. Difficulty is increased

at succeeding levels by requiring a great

er number of cobra stomps to advance

to the next level; by alternating between

as many as four mummies who Hash

from spot to spot next to the pyramid;

and by requiring all squares to be col

ored—as well as cobras stomped—to

advance in the highest levels.

Game Design

Designing the Serpent of Death in

Basic was challenging, yet fun! The ini

tial problem in game design is coming

up with a workable idea that is within

the capabilities of both the machine and

54

RUN II Right

VIC-20 will) 3K expansion

dark gray and the screen border color to

light gray. The For.. .Next loop fills

screen color memory' with the value for

the color white.

Lines 508-510 draw the border for

the mission computer on the right-hand

side of the screen and color the border

an off-world purple.

Lines 512-577 draw the game back

ground on the screen. Since color mem

ory already has been filled with while,

the character graphics poked to the

screen will appear as while objects

against a dark gray background.

Lines 584 to 597 draw the instrument

readouts for (he mission computer on

the screen.

Lines 900-950: This subroutine en

ables the sprite images previously placed

in memory and initializes the sound

generator.

In line 900, the starting address of the

C-64 video controller is set to variable

V. Variable X is loaded with the begin

ning X-axis coordinate for the shuttle.

The variable Y is loaded with the begin

ning Y-axis coordinate for the shuttle.

Variable D is set to 3 and used in the

main program loop to calculate alti

tude. Memory' location V t 31 contains

I he sprite-to-background collision regis

ter and is initialized to 0. Variable A2 is

the starling altitude of the shuttle when

the game begins, and variable FU will

be used to count the number of times

the shuttle refuels during the game.

Images Knabled

Sprite images arc enabled for use by

setting from one to eight bit values to 1

in the sprite-enable register at location

V + 2I. Setting a bit to I will turn on a

sprite. The first bit in the register is

sprite 0, the second bit enables sprite 1,

and so on (bit 0 is also the fust bit in a

byte). By poking the value 31 into the

enable register, we set bits 0 through 4

to 1, and enable live sprites.

The C-64 needs a way to determine

which sprite image will be used by an

enabled sprite. Eight locations at the

end of screen memory have been re

served for this function. Memory' loca

tions 2040-2047 correspond to sprites

0-7. By poking the value 15 into loca

tion 2040, we define the sprite image at

section 15 as sprite 0.

At this point, Uvc sprites have been

enabled and sprite 0 has been defined.

Sprites are positioned on the screen by

loading an X and Y coordinate into the

sprite position registers at locations V

through V+ 15. The X coordinate for

sprite 0 is at location V. The Y coordi

nate for sprite 0 is at location V + 1.

Now that the shuttle is enabled, de

fined and positioned on the screen, a

value of I is poked into location V + 27.

This location is the sprite/background

priority register. By setting bit 0 (which

represents sprite 0) to 1, (he shuttle

sprite will disappear "behind" any low-

resolution graphics characters it en

counters on the screen.

Sprites 1-4 are defined as the sprite

image in section 13 in line 916. This is

the landing pad image. Since we need

four landing pads, we can define four

different sprites using the same ba

sic image. The X and Y coordinates

for the loin' landing pad sprites are

set in line 918.

Memory locations V + 39 through

V + 46 conlain color registers for sprites

0-7. Line 920 pokes the value for light

gray into the register for the shuttle, and

pokes the value for green into the regis

ters for the landing pad sprites. Line 92

sets bits I, 2, 3 and 4 to 1 in sprite ex

pand X register at location V + 29. This

doubles the horizontal size of the land

ing pads.

Locations V + 37 and V + 38 are two

extra color registers used with multi

color sprites. These two locations are

loaded with the value for yellow and red

......_..-_._.. r-

animate the sprite images to obtain the
results we need.

Lines 5-30: The program clears the

screen in line 5 and then prints the start
ing message.

Line 60: Line 60 sets up the game

before the program enters the main
loop at line 100. The variable OF is an

offset value between the standard

screen memory starting at location 1024

and screen color memory starting at lo

cation 55296. Anytime a value is stored

into screen memory, the color can be set

by storing a color value into SCREEN

LOCATION + OF.

Subroutines at line 500 and line 900

are called to draw the background for

the game; they enable the sound genera
tor and sprite graphics.

Lines 500-597: The routine ai line

500 generates the game background and

BVTE i

BVTE 4
EVTE 7

BVTE IP

BVTE 13

EVTE 16

BVTE 1?
EVTE 22

BVTE 25

EVTE 2S

PVTE 31

BVTE 7:4

EVTE 37

EVTE 40

BVTE 4 3

BVTE 46

EVTE 4?

PVTE 52

EVTE 55

PVTE 5?

BVTE £1

ENTER flUV

0

32

35

31

IS

31

63

127

127

127

63

15 ;

19

36 ■

120

3

>54

255

£55

?55

?55
D c-

?35

:55

:55

?55

»55

e

24

64 254

64 f

64 C,

64 c

192 £

0 E

&

24

160

216

192

192

249

252

243

249

240

152

ee

62

X
-.

2

3

0

CHRPRCTEP FOP MENU.

Fig. 3. Sixty-three-byte

(ion of shuttle sprite

Fig. I,

data descrip-

disp/ayed in

mission computer display and loads the
sprite images into memory. Data values

are read from the data statements be

ginning at line 1000 and stored into
three 64-byte sections of memory.

BVTE 1

EVTE 4

BVTE 7

BVTE 19

BVTE 13

EVTE 16

BVTE 1?

BVTE 22

BVTE 25

BVTE 2S

BVTE 31

BVTE 34

BVTE 37

BVTE 40

BVTE 43

EVTE 46

EVTE 4?

BVTE 52

BVTE 55

BVTE 53

EVTE 61

0

22

35

31

15

31

S3

127

127

127

63

1 5

19

39

12P

64

€4

64

65

193

0

ENTER flMV CHflRflCTEF

0

254

255

255
253

255

255

255

255

255

255

56

124

254

210

169

85

51
0

0

24

160

216

192

192

24?

252

24?

240

240

152

68

62
2

2

2

131

(?

FOP MENU.

Fig. 4. Sixty-three-byte data

lion of shuttle sprite with

displayed in Fig. 2.

descrip-

exhaust

A sprite is defined by 63 bytes of

data, but the 64th byte is used by the

C-64 as a control byte for each image.

The C-64 is set up to handle up to eight

sprite images at a time, so a value has to

be assigned to each sprite image

defined. This value is the number of the

memory section in which the sprite im

age is stored. The sprite images defined

by the data statements are stored in

memory sections 13, 14 and 15(13 x 64

= 832, the starting address at which the

data is stored).

After the values in the data state

ments have been read and stored into

memory, we have three sprite image

definitions we can use. The landing pad

image is in section 13, the shuttle image

in section 14, and the shuttle with ex

haust is in section 15.

Line 504 dimensions a string array

and creates four elements of the array

that will be used in the mission status

report.

line 506 clears the screen, and then

sets the screen background color to

the programmer. This is critical and re

quires a certain amount of creativity.

Many workable ideas for the beginner

can be derived from already successful

games.

After setting up wooden hlocks on a

table, 1 began to sketch a rough pyra

mid shape on paper. 1 broke down the

basic units of the drawing in an attempt

to use the VIC graphics designs already

on the keyboard. It soon became evi

dent that I'd need custom characters.

Fig. 1 shows the basic building blocks of

the pyramid.

Since the pyramid remains static ex

cept for color changes, 1 decided print

ing would be the easiest method for pro

ducing the design. Lines 120 through

160 accomplish this task in the pro

gram.

Using a flow chart makes life much

easier in tiie long run. A good basic de

sign makes it simple to modify and ex

pand upon an idea without completely

rewriting the program. My completed

flow chart looked like that in Fig. 2.

Of course, a flow chart can be more

detailed, but I prefer lo keep mine gen

eral and 1111 in the details of each sub

routine in Basic. If the subroutine is

highly complex, a flow chart may then

be required. This was the case of the

jump-and-faJI-to-the-squarc subroutine

(see Fig. 3), which took me some time to

perfect.

Program Details

The expression I developed for move

ment of characters on the screen is

POKE S+H + 22'V, CN

POKE S + H + 22-V, CC

where S, the starting position of Tut at

the top of the pyramid, equals 7713.

V = vertical position, CC = character

color, H = horizontal position and

CN = character Poke value. Separate

variables for the cobra and King Tut

make their movements independent.

The values of H and V are obtained

for the joystick reading routine. For

each increment of H, the horizontal co

ordinate increases by one (moves one

space to the right). For each increment

of V, the value is multiplied by 22, since

moving right by 22 spaces automatically

brings the character to the same hori

zontal position, but one row down.

The values for H and V in the cobra

rout inc arc generated randomly by

lines 440-480. This makes the snake a

completely independent character,

j urnping unpredictably all over the

pyramid and thus difficult to avoid.

The background and color ahead of

King Tut are set by
BA - PEEK(S + H-) 22*(V))

Cl= (PEEK[C+H+22*(V))AND15)

where C, the starting position of color

at the top of the pyramid, equals 38432.

S = 7713 (starting position of Tut),

H = horizontal position and V = vertical

position.

0

1

2

3

= @

= A

ID

— Q

Fig. L The basic building blocks

of the pyramid.

10 55

HEAD U1C-C0CUNU

AND COLOR

O1EOD OF 111!

Ni ',1 Ui HI

VEBTICOL FALL

ONE

GO 10

MUUM1
MJBB0UT1NE

EFI45E
WITH V

■NO CO

TUT

rviaus

LOR

ig. J. F/oiv of a complex subroutine in the program.

56

fuel are available.

If [he shuttle makes contact with a

landing pad ai a velocity of - 10 or less

or a horizontal velocity of 4.? or greater

or -4.5 or less, the shuttle will explode.

If the shuttle brushes against the can

yon walls briefly, nothing will happen.

More than brief contact will explode

the ship.

When the shuttle is returning to the

upper pad, if the shuttle altitude reaches

the same altitude of the warning bea

cons, the shuttle will be ripped apart by

(he magwinds or hurled into the upper

canyon walls.

After all three lower landing pads

have been reached and the shuttle has

safely returned to the upper pad, the

mission is complete. A status report will

be generated on the mission computer

and the shuttle pilot scored.

WHEN ?PPITE COMPLETE

Fig. I. Screen dump of sprite utility

program with shuttle sprite dis

played.

Graphics

To complete the scenario, the

graphics images required were made up

of a shuttle craft, landing pads and the

canyon.

The shuttle craft is a perfect candi

date for sprite graphics, since a com

plete graphics image needs to be moved

around the screen rather quickly. The

image of the shuttle (see Fig. 1) was

created using the sprite utility program

for the C-64 from the June 1983 issue of
Microcomputing. The shuttle craft im

age then was edited to add a rocket ex

haust (see Fig. 2). The 63-byte data de

scription for each image was displayed

and then entered into data statements in

the game program (see Figs. 3 and 4).

Since the shuttle would be interacting

with the landing pads, a sprite image of

a pad was created. This was done by fill

ing the first 24 bytes of the 63-byte im

age with decimal value 255. The result

ing graphics image is a solid block, eight

pixels deep by 24 pixels wide.

The canyon was created by poking

values for the C-64's low-resolution

graphics characters into screen memory.

Program Description

After defining the scenario and creat

ing the graphics images to go along with

it, you'll write the program. In the de

bugging process, you'll discard a few

ideas and find others that will modify

the scenario and the graphies. The cre

ative process continues until you're sat

isfied with the results.

In the completed game program, let's

look at the beginning lines, then at the

various subroutines and finally at the

main program loop to sec how we can

••••••••*•*•

PRESS Ti' l-JHEN SPRITS COMPLETE

Fig. 2. Shuttle sprite in Fig. 1

edited to add rocket exhaust to sprite

image.

9

CANYONS OF
You're good—no doubt

about it. You've fought off

hundreds of invaders, made

the jump to hyperspace and

shot your way through a

meteor swarm that was bliz

zard-thick on your sensors.

Now you've earned a rest,

unless... maybe you're good

enough to fly the mail run in

the Canyons of Zelaz, a game

that illustrates the use of

sprite graphics on the Com

modore 64.

By Gary D. McClellan

Enjoyable games can be created in

Basic using the C-64's sprite graphics

capability—wiihoui the need for writ

ing routines in assembly language. The

simple process for generating such a

game can be broken down into three

general steps:

1. Define the scenario and what ac

tion will lake place.

2. Create the graphics images neces

sary to compleic the scenario.

3. Write the program.

Scenario

Writing a game program is similar to

writing a short story; the background

and setting are important. Since I've al

ways been fond of" lunar-lander-type

games, I decided a lander game using

sprite graphics would be fun to write. I

wanted a different setting than Earth's

moon, however, so I decided on the fol

lowing scenario.

RUN It Right

Commodore 64

Joystick

Zelaz is an airless planetoid discov

ered in 2183. Mineral deposits of com

mercial quantity were located in the

northern hemisphere. The first three

landing panics perished when their

ships were destroyed at landing. Fluxes

in the planetoid's magnetic field were

discovered, and a landing team was sent

in farther south.

After a successful landing, the team

moved north with tracked vehicles.

Rich deposits of Ellisonite were dis

covered. Mining operations began and

the excavations followed the EUisonite

plugs down through the crystalline

mantle of Zelaz.

The aberrations in the magnetic field

stabilized below the surface o\' Zelaz,

so the miners nicknamed the destruc

tive forces at the top of the can

yons the "inagwinds." A warning bea

con was erected at the top of each

canyon wall to warn of the danger. Oth

er problems occurred.

The crystalline layer surrounding (he

deposits of Ellisonite reacted violently

to earth-manufactured alloys. To pro

tect their equipment and themselves

from serious damage, the miners left a

thin coating of Ellisoniic covering the

canyon sides as a buffer zone. A heavily

shielded shuttle was built to haul loads

of Ellisonite from the bottom of the

subcanyons created by the mining oper

ation to the landing pad at the upper

level of the main canyon.

Action

The mission of the shuttle pilot is to

fly into each subcanyon and to land suc

cessfully at the bottom. At each of three

landing pads in the canyons, the shuttle

drops off mail and supplies for the min

ing team working there and takes on a

cargo of Ellisonite and 300 units o\' fuel.

The shuttle then must be llown lo the

next landing pad or return to (he upper

landing pad, where greater supplies of

8

" ?f4: ■ ■" " "-■■■^ ■■■"■■■■"

..M ■■■■■::■ ■ "■■ ■■?-^:!W< ■ ■
,.-:-. -■ , -.-, .;.-

....

Fig. 2. Flow chart for (he Serpent of

Death program.

The order of events is to look at the

character color and shape, memorize

these values by placing them in vari

ables, place the figure and then erase the

figure with previous background and

color. This sounds simple, but its prop

er functioning requires considerable

care in design.

When Peeking color, the value must

be a logical AND with 15 to filter out

any values other than the basic colors 0

through 15. An originally simple con

cept soon becomes complex as more

and more details are worked out.

As the limits of the game arc reached,

bugs creep in, as usual, that require pro

gram modification and change in vari

able values. As an example, the back

ground color for the snake must be

changed to white when a level change is

made. Otherwise, the previous back

ground color will be Poked on the top

square.

1 thought all the bugs were worked

out of the program, only to have one of

my children, a more capable games

player than I, push the routines to the

limit and discover a situation I had not

yet provided for.

Address author correspondence to Jim

C. Hoppe, S. 5309 Glenrose Road,

Spokane, WA 99203.

. .. 57

BAJA 1000

In Baja 1000, an arcade-style game

for the unexpanded VIC-20, you drive

your 4x4 pickup across rough terrain

and try to escape ruthless pursuers, who

arc in a helicopter with heat-seeking

bombs.

If you can switch your exhaust from

down on the ground to up in the air,

you will confuse the heat-seeking

capabilities of the bombs. If you can

avoid the ditches and the giant cactus

plants, you might make it to safety.

The space bar sends your truck into

the air, which enables you to jump the

ditches and the cacti. The F7 key switches

your exhaust to confuse the heat-seek

ing bombs that are carefully dropped

from the helicopter. The letter at the

bottom of the screen helps you keep

track of your mileage.

The course has four sections, A

through D. The course listed is medium

tough, and I'll teach you also how to

write a more difficult one, in case this is

too easy for you. (Or you may want to

make it easier—for your little sister, of

course.)

This program illustrates one of the

most powerful features of Microsoft

Basic—its ability to create graphics ani

mation. As a beginning programmer,

you soon discover that Poking your ani

mated graphics on the screen brings the

action almost to a halt.

At this point, people too often give

up on Basic and turn to Forth or As-

RUN It Right

Unexpanded VIC-20

Address author correspondence to

Bruce S. Gordon, 701 S. 11th St., Her-

rin, IL 62948.

sembly Code. They fail to recognize

that printing strings in Basic is very

close to a machine language memory

move. The interpreter still has to keep

track of a lot of things and do a lot of

jumping around, but it's remarkably

fast.

To see how fast this technique is, try

the following program and refer to your

manual if you don't understand how it

works.

10 AS - ■•(22 spaces) B (22 spaces)"

20 FOK1 1TO2.1

30 PRINT CHR$(19) M[DS(AS,I,22>

40 NEXT!

50 GOTO20

Now add this appropriate time delay so

you can see the B run across the screen:

33 FORT - ITO100: NEXT

You might say that you could make

the B go that fast by using Pokes, but

remember we're not just putting up one

character with this program; we're

printing 22 characters, each of which

could be different. We could add dif

ferent colors too, and it will go just

about as fast.

With Poking you need to Poke both

screen and screen color memory, and if

you want to shift in and out of multi

color mode, you'll see that specdwise,

Poking just can't compete with print

ing. Try this program and then try to ac

complish it with Poking.

10A$=" [color black] * [color red] *

[color cyan] • [color purple] * [color

green] * [color blue] * [color yellow] *

(each color change and symbol

should be separated by two spaces)

15 A$ = A$ + AS+A$ + A$

20FORl = lTO90

25 PFUWCHR$(I9)M1D$(A$,I,28)

30 FORT- lTO90:NEXT

40 NEXT!

50 GOTO20

58

NOTE: 1

You should use the entire program name as listed to avoid loading pro

grams that have similar titles.

NOTE 2:

Make sure that if you are loading VIC-20 programs you have the correct

memory expansion cartridge (or no cartridge if that is required) plugged in

before loading the program. The memory configurations are listed as part

of the title. EG: "DBASE/3K FEB P48" requires a 3K memory expansions

cartridge.

NOTE 3:

Some VIC-20 programs are divided into two sections, the main section

(the one you should load first) and the MODULE section that is either

automatically loaded when the first section is run or is loaded manually

after the first section is run.

IMPORTANT

Commodore 64 programs (the first 10 programs on the disk) will NOT nor

mally run on a Commodore VIC-20 and by the same token VIC-20 pro

grams will NOT usually run on a Commodore 64. Even though you may be

able to load a particular program into the wrong computer it is unlikely

that it will run properly.

ALWAYS refer to the article in the magazine (month and page numbers

are given in the title of each program) for operating instructions, memory

requirements, etc.

7

HOW TO LOAD

How to load programs from RERUN:

disk-

to load any of the programs type:

LOAD " program-name " , 8

then press the RETURN key.

The disk drive should 'whirr' while the screen prints SEARCHING FOR

program-name. The screen should then print LOADING and then finally

READY with the flashing cursor beneath. Type RUN and press the

RETURN key. The program will then begin.

CASSETTE—

Insert the cassette tape into the Datasette recorder with the proper side

facing up {Commodore 64 side up if you own a Commodore 64 and VIC-20

side up if you own a VIC-20)

Make sure that the tape is rewound all the way to the beginning.

Type

LOAD " program-name "

then press the RETURN key. The screen will display

PRESS PLAY ON TAPE

you should then push the play button on your datasette recorder. WARN

ING: do not press the RECORD button and the PLAY button at the same

time or you may destroy the programs on the tape.

The datasette motor should then start by itself. When the program has

been found the screen will display

FOUND program name

on some Commodore computers you may then have to press the C =

(Commodore symbol) key to then load the program. On other Commodore

machines the program will load automatically. Check your owner's

manual for specific loading procedures.

When the program has finished loading you will see the READY prompt

and the flashing cursor beneath. Type RUN and press the RETURN key to

start the program.

This is the basic technique used to

move the ground underneath the truck;

a separate string moves the cacti along

the outcropping of the turf. When we

combine this with the mull-color graph

ics capabilities, you'll see that the I ruck

wheels follow the ups and downs of the

ground without a single Peek and only

two Pokes.

The wheels, formed atop each piece

of turf, are formed in multi-color mode

in a character color the same as the

screen color so that you can't see the

wheel part. Then, by Poking the color

memory at the location below the truck

wheel-wells to a black character color,

the black tires appear, and always right

on the ground.

If you change POKE 646,9 in line 120

to POKE 646,8, you will see that the

tires are there all the time, just invisible.

Combining these two techniques allows

elaborate side scrolls with reasonable

speed.

The course you drive in Baja I (XX) is

composed of four strings—B$(l-4).

These strings arc scrolled with a For...

Next loop beginning in line 110 and

printed in line 120.

B$s are in turn composed of differing

combinations of Al$, A2$ and A3$.

Each B$, formed in lines 585 and 586, is

made of four substrings. The substrings

can be found in lines 580-583. They arc

composed of @, A, B, C, D and Es.

These specially created graphics char

acters make up the ground (and the

tires). A "@" is a complete block, and

an "A," an empty space. The others

range in between. In these substrings,

the As are the ditches, the @s will

sprout cacti if there are not already cacti

on the screen, and the others cause the

undulations of the ground.

I encourage you to create new

courses, especially after you master this

one. The rules for creating the strings

are simple. Al$ should start each 11$.

A2S should end each B$. The first 22

characters of A1$ should be the same as

the last 22 characters in A2$. I don't like

the terrain too rough, so I usually just

move to the next letter, and 1 like to

avoid ditches in the first 22 characters

of Al$ so the poor guy doesn't crash

right away. But aside from that, you

can create both easy and difficult

courses. Just change those 63 character

strings around and enjoy a new chal

lenge.

The program comes in two parts and

should be saved on tape, one right after

the other. The first program reserves a

section of memory for special char

acters, and then Pokes data into the

memory to create the special characters.

Use of special characters gives this pro

gram a high - resolution graphics ap

pearance.

The program uses double-high char

acters, which are eight pixels wide and

16 pixels deep. This is the reason the

data is arranged in sixleens. If you wish

to vary any of the special charac

ters—for instance, change the pickup

truck into a Bronco—it should be easy

to find your way. This first data state

ment creates the @, the second the A,

the third the B and soon. The rest of the

first program displays some simple di

rections and automatically loads the

second part.

When typing in the second part of the

program, you should enter line one as

GOTO 510. This will prevent the pro

gram from going into double-high

character mode as well as from shifting

to custom characters. The program may

look like the war of the alphabet, but it

will let you find your errors, as the error

messages come up in English instead of

fragmented truck parts. When all seems

to be working, then enter GOTO 5(X). 1

left out REM statements because there

isn't enough memory in the uncx-

panded VIC, but the chart in Table 1

59

will help you.

V-- the location of the bomb

CA— the position in iln- cactus string

I)— I lie control variable for the jumping

truck

C—■ a control variable to poke oui ilnal

bomb display

WC— tire color, either white or black

SN— noise voice location

SV— volume location (also auxiliary color)

DS— homes and then comes down to road

level

S$— a line of solid blocks

F$— homes and then goes to llie normal

location of the truck

CAS— a series of cursor riglils, a caclus and

then more cursor rights

Table I. Explanations of the vari

ables used in the Baja 1000 program.

Routines

The main game loop statements arc

in the first part of the program.

Lines 85-87: a subroutine thai drops

the bomb and checks for a hit.

Lines 200-250: the end of the game.

Lines 250-300: the Hit a Cactus rou

tine.

Lines300-400: the crash routine.

Lines 480-481: the data that moves

the helicopter.

Lines 500 and on: just initialization.

The program is lull of tricks 1 learned

from many hours of programming

bookkeeping, database and word pro

cessing programs, so it may contain

some new things for game makers. It

should not only be fun to play, but

hopefully, it will inspire some experi

mentation, too. i*

program is loaded, type RUN and

press the return key, and you're on

your way.

If you're a disk user, just type

LOAD "entire-program-name" , 8

then press the return key and the

program should load.

When we say "entire-program-

name," we mean either the entire

name, including the month and

page number, just the way it ap

pears on the box, or the "wild

card" method, the first few letters

followed by an asterisk.

For example, if you want to load

the program DISK-O-VIC, you must

type it exactly as we show it on the

box —DSKOVIC JAN P102—or, if

you're lazy {like me), you can type

the first four or five letters of the

name and add an asterisk (*) as a

wild card. So to load DISK-O-VIC,

you would only have to type

how much work we put into this

and so on, but all you have to do is

order a copy, try a few of the pro

grams and see for yourself. After

all, if you didn't think that RUN

magazine was worthwhile, then

you wouldn't be reading this now,

would you?

GW

LOAD"DSKO*",8

(check your manuals for more on

how to load programs).

We could go on and on about RE

RUN—how wonderful the pro

grams are, how inexpensive, how

easy, how to load and run them,

60 ...,.,..,,..,- 5

If any manufacturing defect becomes apparenl within 30 days ol purchase, the defective cassette/disk will be replaced

free of charge subject lo its return by the consumer by prepaid mail. Send a letter specifying the defect lo:

RERUN • 80 Pine Street • Peterborough, NH 03-158

Replacements will not be made if the cassetle/dlsk has been altered, repaired, or is misused through negligence,

shows signs ol excessive wear or is damaged by equipment.

RERUN is simply the listing from RUN Magazine. It will not run under all system configurations. Use the Key Box ac

companying each article in RUN as your guide.

The entire contents are copyrighted 1984 by CW Communications/Peterborough. Unauthorized duplication is a viola-

lion ol applicable laws.

© Copyright 1984 CW Communications, Inc/Peterborough

CW COMMUNICATIONS

PETERBOROUGH
80 RneSLRMerfomKiyh.New Hampshire 03458

REPRINTED

ARTICLES

FROM

JANUARY

TO

JUNE

1984

RL I hi

MAGAZINE

