
ID
in

O

M ■

o
00

0
O
Oi
Q_

LU

O
o

O

O
o

o

M

<

<

THE ONE MEGABYTE C64!

V

Canada $4.25

USA $3.50

r V

• RAMfinder - Identify, stash and fetch

■

Combiner - A handy utility for geoWrite

Encryptor - Password protection for the C64

Pop-ASCII - A handy pop-up utility for the C64

lEEE-to-Serial Bus Conversion - for the 4040

Colour Coordination - Making the right choices

The One Megabyte C64! - Expand your C64 internally

Clean Machine Language Screens - Techniques for text output routines

Plus Regular columns by Todd Heimarck and Joel Rubin, Bits, and more

Whyudiick by Wayne Schmidt

U
T
I
L
I
T
I
E
S
U
N
L
I
M
I
T
E
D
,

in
c.

1
2
3
0
5

N
.
E
.
1
5
2
n
d

S
t
r
e
e
t

B
r
u
s
h

P
r
a
i
r
i
e
,
W
a
s
h
i
n
g
t
o
n
9
8
6
0
6

O
V
E
R
5
0
0
0

UN
IT

S
SO

LD
!!

!
U
n
l
i
k
e
o
u
r

co
mp

et
it

or
s,

w
e

at
Ut
il
it
ie
s
U
n
l
i
m
i
t
e
d
,

In
c.

h
a
v
e
b
e
e
n
c
o
n
c
e
n

tr
at
in
g

al
l
o
u
r

ef
fo

rt
s
in

b
r
i
n
g
i
n
g
th
e
n
e
w
e
s
t
te
ch
no
lo
gy
.
T
h
e

re
su
lt

of
th

at
ef

fo
rt

is
Su
pe
rC
ar
d.

It
is

fa
r

su
pe

ri
or

to
al

l
th

e
co

py
ut

il
it

ie
s
ou
t

th
er
e

in
cl

ud
in

g:

Ra
mb
oa
rd
/H
en
eg
ad
e,

Da
te

l
Bu

rs
t

Ni
bb
le
r,

2
1
S
e
c
o
n
d
,

Ul
tr

ab
yt

e,
a
n
d

a
n
y

ot
he
r
b
a
c
k
u
p

ut
il

it
y
o
n

th
e
m
a
r
k
e
t
.
S
o

do
n'

t
b
e

le
d

as
tr

ay
.
W
e

wi
ll

gi
ve

yo
n

yo
nr

mo
ne
y

ba
ck

if
th
ey

c
a
n

b
a
c
k

u
p

m
o
r
e

of
th

e
la
te
st

so
ft

wa
re

,
wi
ll

t
h
e
y
?
?
?

In
a

w
o
r
d

"
N
O
!

A
L
L

S
A
L
E
S

A
R
E

F
I
N
A
L
!
!
!
"

T
h
a
t

is
th
ei
r

r
e
s
p
o
n
s
e

if
y
o
u
w
a
n
t

to
re
tu
rn

R
A
M
B
O
.

If
y
o
u
h
a
p
p
e
n

to
se

e
th

e
a
d
s

o
n
R
A
M
B
O
a
r
d

(o
ri

gi
na

l
n
a
m
e

h
u
h
)
,

th
ey

c
l
a
i
m

to
b
e

c
h
e
a
p
e
r
.

We
ll

,
th

at
's

pa
rt

ia
ll

y
tr
ue
,

bu
t

as
is

us
ua
l,

mo
st
ly

fa
ls

e.
Fi
rs
t
y
o
u
n
e
e
d

to
b
u
y

th
ei

r
b
o
a
r
d
,

t
h
e
n
y
o
u
n
e
e
d

to
s
p
e
n
d

a
n
o
t
h
e
r

$3
4.
95

fo
r
so
ft
wa
re

to
ru
n

th
ei

r
bo
a
rd
.

Th
at

ma
k
e
s

th
e

co
st

of
R
a
m
b
o
Re

ne
ga

de
to

be
at

le
as

t
$6
9.
90
.

Bu
t
th
en

th
ey

cl
ai

m
yo
u
ca

n
us

e
ou

r
so
ft
wa
re

(w
ha

t
do
es

th
at

sa
y

ab
ou
t

th
ei

r
so
ft
wa
re
?}
.

We
ll

no
w,

th
at

ma
y

be
ju
st

a
bi

t
of

a
wh

it
e

lie
as

we
ll

,
wh

il
e

it
's

tr
ue

th
at

ea
rl

y,
le
ss

re
li
ab
le

ve
rs

io
ns

wo
rk

wi
th

T
H
E
I
R

th
in
g,

th
e
ne
w

m
or
e

re
li

ab
le

ve
rs

io
ns

of
Sn
pe
rC
ar
d

so
ft
wa
re

is
sp
ec
if
ic
al
ly

de
si
gn
ed

no
t

to
wo

rk

wi
th

th
ei
r
R
A
M
B
O
.

Fo
r

th
os

e
pe
op
le

th
at

ha
ve

fo
un
d

ou
t

th
at

th
e
R
A
M
B
O

an
d

R
e
n
e
g
a
d
e

so
ft

wa
re

pa
ck

ag
e

ar
e

qu
it

e
in

fe
ri

or
to

Su
pe

rC
ar

d
w
e

of
fe

r
th

e
fo

ll
ow

in
g

su
gg

es
ti

on
.

Se
nd

in
yo

ur
R
A
M
B
O

an
d

$2
4.

95
an
d

WE
'L

L
S
E
N
D
Y
O
U

T
H
E

R
E
A
L

T
H
I
N
G
—

Su
pe
rC
ar
d.

Ne
ed

le
ss

to
sa
y
y
o
u

n
e
e
d

a
pa
ir

of
hi
p

bo
ot

s
to

wa
lk

t
h
r
o
u
g
h

th
ei

r
c
l
a
i
m

th
at

th
ey

ar
e

th
e

be
st

.
B
y

th
e
w
a
y
,

th
ei

r
so

ft
wa

re
th

at
b
a
c
k
s
u
p
a
n

u
n
p
r
o
t
e
c
t
e
d

di
sk

in
5
0
s
e
c
o
n
d
s
,

we
ll
,

it
do
es
n'
t
e
v
e
n
u
s
e

th
e

R
A
M
B
O

to
w
o
r
k
.

I
su

pp
os

e
if

yo
u
ha
d
a

ch
oi
ce

of
an

O
L
D
S
M
O
B
Q
J
E

or
a

Co
rv

et
te

wi
th

no
en
gi
ne
,
yo
n

wo
ul

d
st
il
l
pi

ck
th
e

Ol
ds
no
bi
le
.

Su
pe
rC
ar
d
1
5
4
1

15
4
1
c

$4
9.
95

2
dr

iv
e
ve

rs
io

n
$7
9
.9
0

Su
pe
rC
ar
d

1
5
4
1
-
0

$
5
9
.
9
5

2
dr

iv
e
ve
rs
io
n

$
9
9
.
9
0

Su
pe
rC
ar
d
1
5
7
1

$
5
9.
9
5

2
dr

iv
e
ve
rs
io
n

$9
9
.9
0

Su
pe
rC
ar
d

15
41
-1
1
ve
rs
io
n

wi
ll

w
o
r
k

wi
th

m
o
s
t

co
m
p
at
i
b
le

dr
iv
es
.

Th
es
e

pr
ic
es

in
cl
ud
e

so
ft
wa
re
.
Y
o
u

do
n'

t
ne
ed

to
st

ea
l
an
yo
ne

el
se

's
so
ft
wa
re

to
m
a
k
e

it
wo

rk
. S
U
P
E
R
P
A
R
A
M
E
T
E
R
S

5
0
0

Pa
ck

#
1

an
d
#
2

5
0
0
P
a
c
k
#
1

-
$
2
4
.
9
5
h
a
s
th
e
vi

nt
ag

e
p
a
r
a
m
e
t
e
r
s
o
n

it
th

at
n
o
o
n
e

el
se

ha
s.

T
h
i
s
p
a
c
k

c
o
m
e
s

in
a

5-
di

sk
se
t.

5
0
0

P
a
c
k
#
2

•
$
2
9
.
9
5
h
a
s

al
l
th

e
m
o
s
t

cu
rr

en
t
p
a
r
a
m
e
t
e
r
s
o
n

it
.
A
n
d

pu
t

t
o
g
e
t
h
e
r

a
s
o
n
l
y

Ut
il
it
ie
s
U
n
l
t
d
.

c
a
n
.

Al
l
S
u
p
e
r
P
a
r
a
m
e
t
e
r
P
a
c
k
s

a
r
e
c
o
m

pl
et
el
y
m
e
n
u

dr
iv

en
,

fa
st

a
n
d

re
li

ab
le

.
I
n
c
l
u
d
e
d
o
n
b
o
t
h

5
0
0
P
a
c
k
s

is
o
u
r

st
at
e-
of
-t
he
-a
rt

6
4
/
1
2
8
S
u
p
e
r

N
i
b
b
l
e
r

at
n
o

ex
tr
a
c
h
a
r
g
e
.

S
U
P
E
R
P
A
R
A
M
E
T
E
R
S

1
0
0
0

Pa
ck

#
1

Ut
il
it
ie
s
U
n
l
t
d
.
h
a
s
d
o
n
e

it
ag
ai
n!
!
W
e

h
a
v
e
c
o
n
s
o
l
i
d
a
t
e
d
a
n
d
l
o
w
e
r
e
d

th
e

pr
ic
es

o
n

th
e

m
o
s
t

p
o
p
u
l
a
r

p
a
r
a
m
e
t
e
r
s

o
n

th
e

m
a
r
k
e
t

.
.

.
S
u
p
e
r
-

P
a
r
a
m
e
t
e
r
s
,
n
o
w

y
o
u

c
a
n

ge
t

1
0
0
0

p
a
r
a
m
e
t
e
r
s
a
n
d

o
u
r

6
4
/
1
2
8

n
i
b
b
l
e
r

p
a
c
k
a
g
e

fo
r

ju
st

$3
9.
95
!!
!

Th
is

is
a

c
o
m
p
l
e
t
e

10
di

sk
se
t,

th
at

in
cl

ud
es

e
v
e
r
y
p
a
r
a
m
e
t
e
r
w
e

h
a
v
e
p
r
o
d
u
c
e
d
.

P
A
R
A
M
E
T
E
R
S

C
O
N
S
T
R
U
C
T
I
O
N

SE
T

T
h
e

c
o
m
p
a
n
y

th
at

h
a
s

T
h
e

Mo
st

Pa
ra
me
te
rs

is
a
b
o
u
t

to
d
o

s
o
m
e
t
h
i
n
g

Un
be
li
ev
ab
le
.
W
e

ar
e
g
i
v
i
n
g
y
o
u
m
o
r
e

of
o
u
r

se
cr
et
s.

U
s
i
n
g

th
is

Ve
ry

Ea
sy

p
r
o
g
r
a
m
,

it
wi
ll

no
t
o
n
l
y

Re
ad
,
C
o
m
p
a
r
e
a
n
d

Wr
it

e
Pa

ra
me

te
rs

fo
r
Yo

u;
it

wi
ll

al
so

Cu
st
om
iz
e
th

e
di

sk
wi
th

y
o
u
r
n
a
m
e
.

It
wi
ll

i
m
p
r
e
s
s
y
o
u

as
we
ll

as
y
o
u
r

fr
ie
nd
s.

T
h
e

"P
ar
am
et
er

Co
ns

tr
uc

ti
on

Se
t"

is
li
ke

n
o
t
h
i
n
g

y
o
u
'
v
e

ev
er

se
en

.
In

fa
ct

y
o
u

c
a
n
e
v
e
n

R
e
a
d

Pa
ra
me
te
rs

th
at

y
o
u
m
a
y

h
a
v
e

a
l
r
e
a
d
y

wr
it

te
n;

t
h
e
n

b
y

u
s
i
n
g

y
o
u
r

co
ns

tr
uc

ti
on

se
t

re
wr
it
e

it
wi
th

y
o
u
r
n
e
w

Cu
st
om
iz
ed

Me
nn

.
$
2
4
.
9
5

If
y
o
u
w
i
s
h
t
o
p
l
a
c
e
y
o
u
r
o
r
d
e
r
b
y
p
h
o
n
e
,
p
l
e
a
s
e

ca
ll

2
0
6
-
2
5
4
-
6
5
3
0
.
A
d
d

$
3
.
0
0
s
h
i
p
p
i
n
g
&
h
a
n
d

li
ng
;

$
3
.
0
0
C
O
D

o
n

al
l

o
r
d
e
r
s
.

V
i
s
a
,

M
/
C

a
c
c
e
p
t
e
d
.
D
e
a
l
e
r

I
n
q
u
i
r
i
e
s

I
n
v
i
t
e
d
.

W
O
R
L
D
'
S
B
I
G
G
E
S
T

P
R
O
V
I
D
E
R
O
F

C
6
4
/
1
2
8

U
T
I
L
I
T
I
E
S

S
o
f
t
w
a
r
e
S
u
b
m
i
s
s
i
o
n
s

In
vi

te
d

W
e

a
r
e
l
o
o
k
i
n
g

fo
r
H
A
C
K
E
R
S
T
U
F
F
:

pr
in
t

ut
il

it
ie

s,
p
a
r
a
m
e
t
e
r
s
,

t
e
l
e
c
o
m
m
u
n
i
c
a
t
i
o
n
s
,

a
n
d

t
h
e

u
n
u
s
u
a
l
.

W
e
n
o
w
h
a
v
e
o
v
e
r
1
,
0
0
0
p
a
r
a
m
e
t
e
r
s

in
s
t
o
c
k
!

LO
CK

PI
CK

-
T
H
E
B
O
O
K
S

-
fo

r
th
e
C6
4

an
d
C
1
2
8

L
o
c
k

Pi
k

6
4
/
1
2
8
w
a
s

p
u
t

t
o
g
e
t
h
e
r
b
y

o
u
r

c
r
a
c
k

t
e
a
m
,

as
a

to
ol

fo
r
th
os
e

w
h
o

h
a
v
e

a
de
si
re

to
se
e

th
e

In
te
rn
al

Wo
rk

in
gs

of
a
p
a
r
a
m
e
t
e
r
.
T
h
e

b
o
o
k
s

gi
ve

y
o
u

St
ep
-B
y-
St
ep

In
st

ru
ct

io
ns

o
n
b
r
e
a
k
i
n
g

pr
ot

ec
ti

on
fo
r
b
a
c
k
u
p

of
10
0

p
o
p
u
l
a
r

p
r
o
g
r
a
m

ti
tl

es
.

U
s
e
s

He
st
no
n
a
n
d

Su
pe

re
di

t.
In

st
ru

ct
io

ns
ar
e

so
c
l
e
a
r
a
n
d

p
r
e
c
i
s
e

th
at

a
n
y
o
n
e
c
a
n

u
s
e

it
.

•
O
D
R
B
O
O
K
T
W
O

IS
N
O
W

A
V
A
I
L
A
B
L
E

•

B
O
O
K

1:
I
n
c
l
u
d
e
s
H
e
s
m
o
n

a
n
d

a
di
sk

wi
th

m
a
n
y

ut
il
it
ie
s
s
u
c
h

as
:
K
E
R
N
A
L

SA
VE

,
1/
0
SA
VE
,

DI
SK

L
O
G

FI
LE

a
n
d

lo
ts

m
o
r
e
,

al
l
wi
th

in
st

ru
ct

io
ns

o
n

di
sk

.

A
l
o
n
g
-
t
i
m
e

fa
vo
ri
te
.

B
O
O
K

2:
1
0
0
N
E
W

E
X
A
M
P
L
E
S
,
H
e
s
m
o
n

o
n

di
sk

a
n
d

ca
rt
ri
dg
e

pl
us

m
o
r
e

ut
il
it
ie
s

to
in
cl
ud
e:

A
Ge

ne
ra

l
Ov

er
vi

ew
on

H
o
w

to
M
a
k
e

Pa
ra

me
te

rs
a
n
d

a
Di

sk

Sc
an
ne
r.

$
1
9
.
9
5

ea
ch

O
R
B
U
Y
B
O
T
H
F
O
R

O
N
L
Y

$
2
9
.
9
5

N
o
w

wi
th

F
R
E
E
H
e
s
m
o
n

Ca
rt

ri
dg

e.

T
H
E

1
2
8
S
U
P
E
R
C
H
I
P

-
A,

B
or

C
(a
no
th
er

fir
st)

A
—

T
h
e
r
e

is
a
n
e
m
p
t
y

so
ck
et

in
si
de

y
o
u
r

12
8

ju
st

wa
it

in
g

fo
r
o
u
r

Su
pe
r

Ch
ip

to
gi
ve

y
o
u
3
2
K

wo
rt
h

of
gr
ea
t

Bu
il
t-
in

Ut
il

it
ie

s,
al

l
at

ju
st

th
e
To
uc
h

of
a

Fi
ng

er
.
Y
o
u

ge
t

bu
il

t-
in

fe
at

ur
es

:
Fi
le

Co
pi
er
,

Ni
bb
le
r,

Tr
ac
k
&

Se
ct
or

Ed
it

or
,

Sc
re

en
D
n
m
p
,
a
n
d
e
v
e
n

a
3
0
0
/
1
2
0
0
b
a
u
d

Te
rm
in
al

P
r
o
g
r
a
m

th
at

's
16
50
,

1
6
7
0

a
n
d
H
a
y
e
s

c
o
m
p
a
t
i
b
l
e
.

Be
st

of
al

l,
it

do
es
n'
t
u
s
e
u
p
a
n
y
m
e
m
o
r
y
.

T
o

us
e,

s
i
m
p
l
y
t
o
u
c
h

a
fu
nc
ti
on

ke
y,

a
n
d

it
r
e
s
p
o
n
d
s

to
y
o
u
r
c
o
m
m
a
n
d
.

B
—

H
A
S
S
U
P
E
R

81
UT

IL
IT

IE
S,

a
c
o
m
p
l
e
t
e

ut
il

it
y
p
a
c
k
a
g
e

fo
r
th
e
15
81
.
C
o
p
y

w
h
o
l
e

di
sk
s
f
r
o
m

15
41

or
15
71

f
o
r
m
a
t

to
15
81
.
M
a
n
y

op
ti
on
s
i
n
c
l
u
d
e

15
81

di
sk

ed
it

or
,
dr
iv
e
m
o
n
i
t
o
r
,
R
a
m

wr
it
er

a
n
d

wi
ll

al
so

p
e
r
f
o
r
m
m
a
n
y
C
P
/
M
&

M
S
D
O
S

ut
il

it
y
fu
nc
ti
on
s.

C
—

"C
"

IS
F
O
R
C
O
M
B
O
a
n
d

th
at

's
w
h
a
t
y
o
u

ge
t.

A
su
pe
r
c
o
m
b
i
n
a
t
i
o
n

of
b
o
t
h

c
h
i
p
s
A

a
n
d
B

in
o
n
e

ch
ip
,

s
w
i
t
c
h
a
b
l
e

at
a
gr
ea
t
s
a
v
i
n
g
s

to
y
o
u
.

Al
l

Ch
ip

s
In
cl
ud
e
1
0
0

Pa
ra

me
te

rs
FR
EE
!

C
h
i
p
s
A

or
B:

$
2
9
.
9
5

ea
.

C
h
i
p

C:
$
4
4
.
9
5

ea
.

S
U
P
E
R
G
R
A
P
H
I
C
S
1
0
0
0
P
A
C
K

T
h
a
t
'
s

ri
gh
t!

O
v
e
r

1
0
0
0
g
r
a
p
h
i
c
s

in
a

1
0
-
d
i
s
k

se
t
fo
r
o
n
l
y
$
2
9
.
9
5
.
T
h
e
r
e
a
r
e

g
r
a
p
h
i
c
s

fo
r

vi
rt
ua
ll
y

e
v
e
r
y
t
h
i
n
g

in
th
is

p
a
c
k
a
g
e
.

T
h
e
s
e

g
r
a
p
h
i
c
s
w
o
r
k

wi
th

Pr
in
t
S
h
o
p

a
n
d

Pr
in
t

M
a
s
t
e
r
.

N
E
W
!
S
U
P
E
R
C
A
R
T
R
I
D
G
E
EX
PL
OD
E!

V4
.1

w
/
C
O
L
O
R
D
U
M
P

$4
4.
95

I
n
t
r
o
d
u
c
i
n
g
th
e
Wo

rl
d'

s
Fi

rs
t
Co
lo
r
Sc

re
en

D
u
m
p

in
a
ca
rt
ri
dg
e.

E
x
p
l
o
d
e
!
V
4
.
1

wi
ll

n
o
w

Su
pp

or
t

Di
re
ct
ly

f
r
o
m

th
e
sc

re
en

.
F
U
L
L
C
O
L
O
R
P
R
I
N
T
I
N
G

fo
r
th
e

Ra
in
bo
w

St
ar

N
X
-
1
0
0
a
n
d

al
so

th
e

Ok
id

at
a
1
0
&

2
0

pr
in

te
rs

.

T
h
e

Mo
st

Po
we
rf
ul

Di
sk

Dr
iv
e
a
n
d

Pr
in
te
r
Ca

rt
ri

dg
e
p
r
o
d
u
c
e
d

fo
r
th
e
C
O
M
M
O

D
O
R
E

U
S
E
R
.

Su
pe
r

Fr
ie
nd
ly

wi
th

th
e

fe
at

ur
es

m
o
s
t

a
s
k
e
d

fo
r.

•
S
U
P
E
R
F
A
S
T

bu
il

t-
in

si
ng
le

dr
iv

e
8

or
9
F
I
L
E
C
O
P
Y
,

c
o
p
y

fi
le
s
of

u
p

to

2
3
5
B
L
O
C
K
S

in
le

ng
th

,
in

le
ss

t
h
a
n

13
s
e
c
o
n
d
s
!

•
S
U
P
E
R
S
C
R
E
E
N
C
A
P
T
U
R
E
.
C
a
p
t
u
r
e
a
n
d

C
o
n
v
e
r
t
A
n
y

Sc
re
en

to
K
O
A
L
A

or

D
O
O
D
L
E
.

•
S
U
P
E
R
F
A
S
T
F
O
R
M
A
T

(8
S
E
C
'
S
)

-
pl
us

F
U
L
L

D
.
O
.
S
.
W
E
D
G
E

w
/
s
t
a
n
d
a
r
d

f
o
r
m
a
t
!

•
S
U
P
E
R
F
A
S
T
L
O
A
D
a
n
d
S
A
V
E

(5
0k

in
9
S
E
C
'
S
)
w
o
r
k
s

wi
th

al
l
C-
64

or
C-

12
8'

s

N
o

Ma
tt

er
W
h
a
t

Vi
nt
ag
e!

A
n
d

wi
th

m
o
s
t

af
te
r
m
a
r
k
e
t

dr
iv

es
E
X
C
E
P
T

th
e

15
81
,
M
.
S
.
D
.

1
or

2.

•
S
U
P
E
R

P
R
I
N
T
E
R

F
E
A
T
U
R
E
S

al
lo
ws

A
N
Y

D
O
T

M
A
T
R
I
X

P
R
I
N
T
E
R

e
v
e
n

1
5
2
6
/
8
0
2

to
pr
in
t
H
I
-
R
E
S
S
C
R
E
E
N
S

(u
si

ng
16

s
h
a
d
e
G
R
A
Y

S
C
A
L
E
)
.

A
n
y

Pr
in
te
r

or
In

te
rf

ac
e
Co

mb
in

at
io

n
c
a
n
b
e
u
s
e
d

wi
th

S
U
P
E
R
E
X
P
L
O
D
E
!

V
4
.
1

or
V
3
.
0
.

•
N
E
W

an
d
I
M
P
R
O
V
E
D

C
O
N
V
E
R
T

fe
at

ur
e

al
lo
ws

a
n
y
b
o
d
y

to
c
o
n
v
e
r
t

(
e
v
e
n

T
E
X
T
)

Sc
re
en
s

in
to

D
O
O
D
L
E

or
K
O
A
L
A

Ty
pe

Pi
ct

ur
es

wT
ul

l
Co

lo
r!

•
S
U
P
E
R
F
A
S
T
S
A
V
E

of
E
X
P
L
O
D
E
!
S
C
R
E
E
N
S

as
K
O
A
L
A

or
D
O
O
D
L
E
F
I
L
E
S

w
/
C
O
L
O
R
.

•
S
U
P
E
R
F
A
S
T
L
O
A
D
I
N
G

wi
th

Co
lo

r
Re

-D
is

pl
ay

of
D
O
O
D
L
E

or
K
O
A
L
A

fi
le

s.

•
S
U
P
E
R
F
A
S
T
L
O
A
D

or
S
A
V
E
c
a
n
b
e
T
U
R
N
E
D
O
F
F

or
O
N

wi
th

ou
t
A
F
F
E
C
T

I
N
G

th
e
R
E
S
T

of
S
U
P
E
R
E
X
P
L
O
D
E
'
S
F
E
A
T
U
R
E
S
.

T
h
e

re
st

of
E
x
p
l
o
d
e

V
4
.
1

is
st

il
l
ac
ti
ve
.

•
S
U
P
E
R
E
A
S
Y

L
O
A
D
I
N
G

an
d
R
U
N
N
I
N
G

of
A
L
L
P
R
O
G
R
A
M
S

f
r
o
m

th
e
D
I
S
K

D
I
R
E
C
T
O
R
Y
.

•
S
U
P
E
R

BU
IL
T-
IN

T
W
O
-
W
A
Y

SE
Q.

or
PR
G.

fi
le

R
E
A
D
E
R

us
in
g

th
e

D
I
S
K

D
I
R
E
C
T
O
R
Y
.

•
N
E
V
E
R

T
Y
P
E

A
FI

LE
N
A
M
E

A
G
A
I
N
w
h
e
n

y
o
u

us
e
S
U
P
E
R

E
X
P
L
O
D
E
'
S

u
n
i
q
u
e
L
O
A
D
E
R
S
.

•
C
A
P
T
U
R
E

40
C
O
L
U
M
N

C
or

D
-
1
2
8
S
C
R
E
E
N
S
!

(w
it

h
op
ti
on
al

D
I
S
A
B
L
E

S
W
I
T
C
H
)
.
A
d
d

$5
.

A
D
U
L
T
G
A
M
E
&
G
R
A
P
H
I
C
S
D
A
T
A

DI
SK

S
G
A
M
E
:
A

ve
ry

u
n
u
s
u
a
l
g
a
m
e

to
b
e
p
l
a
y
e
d
b
y
a
ve

ry
O
p
e
n
Mi
nd
ed

ad
ul

t.
It

in

cl
ud
es

a
Ca

si
no

a
n
d

Ho
us

e
of

11
1
Re

pu
te

.
Pl

ea
se

,
y
o
u

Mu
st

be
18

to
or
de
r

Ei
th

er
On

e.

D
A
T
A

*
:

Th
is

Po
pu

la
r

di
sk

w
o
r
k
s

wi
th

Pr
in
t
Sh

op
a
n
d

Pr
in

t
Ma
st
er
.

N
o
w

V
e
r
s
i
o
n

1
+

2
.
.
.

$
2
4
.
9
5

ea
.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
I
*
"
*

AL
L
T
H
E
A
B
O
V
E

FE
AT
UR
ES
,
A
N
D
M
U
C
H

M
O
R
E
!

P
L
U
S
A

F
R
E
E

UT
IL
IT
Y

DI
SK

w
/
S
U
P
E
R

E
X
P
L
O
D
E
!

V4
.1
.

M
A
K
E
Y
O
U
R

C-
64

,
64

-C
or

C-
12

8*
,
D-

12
8*

S
U
P
E
R

F
A
S
T

an
d
E
A
S
Y

to
ns

e.

* *

S
U
P
E
R
T
R
A
C
K
E
R

Ut
il
it
ie
s
Un
li
mi
te
d
ha

s
d
o
n
e

it
ag
ai
n.

A
t

la
st

a
n

ea
sy

w
a
y

to
fi

nd
ou

t
w
h
e
r
e

th
e

pr
ot
ec
ti
on

re
al

ly
is

.

Su
pe

r
Tr

ac
ke

r
wi

ll
di
sp
la
y
th

e
lo
ca
ti
on

of
y
o
u
r
dr

iv
e
h
e
a
d

wh
il
e
y
o
u

ar
e
lo
ad
in
g

a
pi

ec
e

of
so
ft
wa
re
.

Th
is

in
fo

rm
at

io
n

wi
ll

b
e

ve
ry

us
ef

ul
,

to
fi
nd

w
h
e
r
e

th
e
pr
ot
ec
ti
on

is
.
Su
pe
r
Tr

ac
ke

r
h
a
s

ot
he

r
us
ef
ul

op
ti
on
s
s
u
c
h

as
:

tr
ac
k
a
n
d

ha
lf
-t
ra
ck

di
sp

la
y,

8
a
n
d

9
sw
it
ch
,

de
ns
it
y

di
sp

la
y,

wr
it
e
pr
ot
ec
t

on
/o
ff
.

Th
is

in
cr
ed
ib
le

li
tt
le

to
ol

is
e
n
c
a
s
e
d

in
a
h
a
n
d
s
o
m
e
b
o
x

th
at

si
ts

o
n

to
p

of
y
o
u
r

dr
iv
e.

W
o
r
k
s
wi

th
al
l

C
/
6
4
/
1
2
8
a
n
d

m
o
s
t
C
/
6
4

c
o
m
p
a
t
i
b
l
e

dr
iv
es
.
S
o
m
e

m
i
n
o
r

so
ld
er
in
g

wi
ll

b
e

re
qu
ir
ed
.

In
tr

od
uc

to
ry

Pr
ic

ed
at

Ju
st

$
6
9
.
9
5

•

Hack this editorial

It's that time again. Transactor is pleased to introduce a

new assistant editor. By the time you read this, the editori

al staff will include Paul Bosacki. Readers will probably

recall that it was Paul who introduced us to the C256 in

Volume 9, Issue 2 and showed us how to expand the 1764

with RAM and an EPROM in Volume 9, Issue 5. In this

issue, you'll find that The One Megabyte C64 has been

added to Paul's list of credits. As you would imagine, the

presence of a hardware hacker in the Transactor offices

could make for some interesting developments in the mat

ter of 'pushing the limits' in the pages of Transactor, Stay

tuned! There are more limits that need pushing....

If you haven't sent in your Reader Survey yet, please do.

They've just started coming in and have made for inter

esting reading. Although no space on the page was allot

ted for your name and address, feel free to include that

information or your CompuServe PPN or Q-Link handle

if you wish. I spend my on-line time on CompuServe

(76703,4243) but Paul is on Q-Link (PaulB109).

You are encouraged not only to participate in the Reader

Survey but also to write letters or to send electronic mail.

We want to establish a dialogue. Now that there are few

er large companies supporting the 8-bit machines, it has

become increasingly important that we support each oth

er. This can only come about when such a dialogue

becomes established. The on-line networks are an excel

lent way to keep in touch. Another is our exchange sub

scriptions with user groups. I read all the user group

newsletters that come into Transactor and that has been

a very valuable indicator of what's happening in the 8-bit

world. So don't hold back, tell us what's on your mind.

We are distressed to find that the new edition of the

Oxford dictionary gives the follow (informal) meaning

to the term "hack": to gain unauthorized access to

(computer files). This is somewhat puzzling consider

ing that they give the (informal) meaning of "hacking"

as: using a computer for the satisfaction that it gives.

Do they mean to suggest that there's no satisfaction in

gaining authorized access to computer files? Does this

make no sense at all, or is it me?

In addition to Paul's Mega64, this issue features: a pop

up utility by Peter Lottrup for the 64 (runs in 64K ma

chines!), some tips from Bill Brier on creating ML text

display routines, a nifty IEEE-to-serial coversion project

for the 4040, an encryption program from Jim Frost, a

utility by Nick Vrtis that will combine geoWrite files

(regardless of version).

The prolific Jim Butterfield explains exactly why some

colour combinations work and others don't. You'll save a

lot of trial and error by using the chart that Jim has

included with this article. Add to this the columns, bits,

reviews and other articles and I'd say you're in for some

interesting reading.

Malcolm D. O'Brien

Volume 9, Issue 6

Volume % Issue 6

Publisher

Antony Jacobson

Vice-President Operations

Jeannle Lawrence

Assistant Advertising Manager

Mike Grantham

Editors

Malcolm O'Brien

Nick Sullivan

Chris Zamara

Assistant Editor

PaulBosacki

Contributing Writers

Ian Adam

Paul Bosacki

Bill Brier

Anthony Bryant

Joseph Buckley

Jim Butterfield

William Coleman

James Cook

Richard Curcio

Jim Frost

Mikios Garamszeghy

Lany Gaynier

Michael Gilsdorf

Kerry Gray

Todd Heiiaarck

Adam Herst

Robert Huehn

George H&g

Dennis Jarvis

Francis Kostella

fea&«Yves Lemieux

Peter Lottrap

DX Morriss

Noel Nyman

Steve Punter

Robert Rockefeller

Joel Rubin

Anton Treuenfels

Nicholas Vrtis

Cover Artist

Wayne Schmidt

Transactor
The Magazine for Commodore Programmers

The One Megabyte C64! 24

by Paul Bosacki

Everything you need to know to expand your C64 to one megabyte and to make GEOS recognize it.

Code, schematics, theory - the whole ball of silicon.

RAMfinder 40

by Ian Adam

A good program should use the available resources, right? Here's how to make your programs support

anREU.

Encryptor

by Jim Frost

There are times when you want to hide your files from prying eyes.

44

46Pop-ASCII For The C64

by Peter M.L. Lottrup

Tired of looking up CHR$() values in books? This Sidekick-style utility will make the table resident. A

single keystroke brings up the information you need.

Combiner 51

by Nicholas Vrtis

If you've ever needed to combine two geoWrite files, you'll appreciate the convenience of Combiner.

This program will combine files made with any version of geoWrite.

Clean Machine Language Screens 64

by Bill Brier

Most ML programs require at least some text output. In this article, Bill shares with us some slick,

quick routines for efficient text output.

Ride Your 4040 On The Serial Bus 70

by Michael Gilsdorf, Toledo, Ohio

The venerable 4040 can be modified to plug into your C64/C128 directly. This will enable you to use

the copy and backup commands built into the drive.

Colour Coordination 76

by Jim Butterfield

Jim explains the ins and outs of colour combinations. There's more to consider than which colours are

complementary. The key is luminance.

Departments and Columns

Letters

Bits 10

Debug 128

Don't Assume Device 8!

Shortest directory in BASIC 2.0?

Partition

The ML Column

by Todd Heimarck

More on big numbers including a primes program. Requires an REU.

The Edge Connection

by Joel Rubin

Societies, anti-rental laws, shows and disk drive voodoo.

News BRK

14

19

78

About tlis cover; Whyadwk by Wayne Schmidt;

Quite a different source of inspiration this time aroua& This issue's cover has an old

comedy routine as its source, This colourful picture of a duck is a reference to a

humourous routine by the Marx Brothers concerning a viaduct Tim picture was created

with Artist 64, modified for the X351 mouse, ~ Wayne Schmidt

Transactor Is published feftnomhly by Croftward
Publishing &*« $$~1Q Ws$t Wlimot $lm\t Rich
mond Hill, Ontario, L4B HC7* ISSN# 083S-01$3.

cd Second class Matt Registration
eMll Ot UBP$ Post-

masters; send address cfean$es to; Transactor,

pq &mm> Station 0, Bsttelo, NV, 1420s,

Croftward pablis&ing fn& te in m way conwcted
with Commodore Business Machines Ltd. or

Corrtrtwdofe lrtC6jj»mt$d> Commode and
Commodore prodye* namesm registered tra<fei
marks of Commodore tnc.

Send all subscripftom |»! .TVansactor.,
$c>tton l^t 85 West Wllmat
Mnit 10, , a, t4^
1K7, (41S) 7^4-3273, For b6st reS^S, use in*

Qtiantity Ordr; in Canada; fr$&m Software
Ut. 141 Adesso Or(ver C,

2W7, ^416^ ^8-1?O0< <n fMnlHMc PD

K it760^

481^5928; ask for Dave Buescter.

_ _ ^^on^
erad> Pro-am listings: and arfidles, Jnciud&jg

&JT$ s^bmleslofiis, of more than a few &>$»,
should be provided on disk. Preferred format &

i54t text Hie* waR«s<^>fe
ba ^psewr^n, dpe®e~spaced, «*h ape-

lions should t» on white jpapenwfth l^ack Ink on

ly, m<m ^rai^iio$ ie$ <m <ifeK are preferred to
liardcopy Illustrations when possible. Write la

Tranto' Rihd Hill flfe t

wateifal accepted tmmm Jhe proaerty of
Croftward pubiishing Inc. except by special ar-

The options expressed In c<*&rfetf$d artfcies
am not necessarily those of Cretan

errors in a«^cle& or propims+ Proems listed in

tmnsamr, art9Vbrapp$arln0 tm Trmsammik
are copyright by Croftward pubfehs^ im arid

outputby VetlLtm Print $

K? $sry)oe$, fiia, Toronto

Printed in Canada by

Using "VERIFIZER"

Transactor'sfoolproofprogram entry method

Verifizer should be run before typing in any long program

from the pages of Transactor. It will let you check your work

line by line as you enter the program and catch frustrating typ

ing errors. The VERIFIZER concept works by displaying a two-

letter code for each program line; you can then check this code

against the corresponding one in the printed program listing.

There are three versions of verifizer here: one each for the

PET/CBM, VIC/C64, and C128 computers. Enter the applica

ble program and RUN it. If you get a data or checksum error,

re-check the program and keep trying until all goes well. You

should SAVE the program since you'll want to use it every

time you enter a program from Transactor. Once you've RUN

the loader, remember to enter NEW to purge BASIC text

space. Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top

left of the screen in reverse field. Note that these letters are in

uppercase and will appear as graphics characters unless you

are in upper/lowercase mode (press shift/Commodore on

C64/VIC).

Note: If a report code is missing (or "--") it means we've

edited that line at the last minute, changing the report code.

However, this will only happen occasionally and usually only

on REM statements.

With vermzer on, just enter the program from the magazine

normally, checking each report code after you press RETURN

on a line. If the code doesn't match up with the letters printed

in the box beside the listing, you can re-check and correct the

line, then try again. If you wish, you can LIST a range of lines,

then type RETURN over each in succession while checking

the report codes as they appear. Once the program has been

properly entered, be sure to turn VERMZER off with the SYS

indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0

instead of POKE 53281,0. However, verifizer uses a

"weighted checksum technique" that can be fooled if you try

hard enough: transposing two sets of four characters will pro

duce the same report code, but this will rarely happen. (VERI

FIZER could have been designed to be more complex, but the

report codes would need to be longer, and using it would be

more trouble than checking the program manually). VERMZER

ignores spaces so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!) Stan

dard keyword abbreviations (like nE instead of next) will not

affect the verifizer report code.

Technical info: VIC/C64 verifizer resides in the cassette

buffer, so if you're using a datasette be aware that tape opera

tions can be dangerous to its health. As far as compatibility

with other utilities goes, VERMZER shouldn't cause any prob

lems since it works through the BASIC warm-start link and

jumps to the original destination of the link after it's finished.

When disabled, it restores the link to its original contents.

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

CI 10 rem* data loader for "verifizer 4.0" *

LI 20 cs=0

HC 30 for i=634 to 754: read a: poke i,a

DH 40 cs=cs+a: next i

GK 50 :

OG 60 if cs<>15580 then print"***** data error *****": end

JO 70remsys634

AF 80 end

IN 100:

ON 1000 data 76,138, 2,120,173,163, 2,

IB 1010 data 173, 164, 2, 133, 145, 88, 96,

CK 1020 data 145, 201, 2, 240, 16, 141, 164,

EB 1030 data 144, 141, 163, 2, 169, 165, 133,

HE 1040 data 2,133,145, 88, 96, 85,228,

OI 1050 data 201, 13, 208, 62, 165, 167, 208,

JB 1060 data 254, 1, 133, 251, 162, 0, 134,

PA 1070 data 0, 2,168,201, 32,240, 15,

HE 1080 data 165, 253, 41, 3,133,254, 32,

EL 1090 data 198, 254, 16, 249, 232, 152, 208,

LA 1100 data 251, 41, 15, 24,105,193,141,

KI 1110 data 165,251, 74, 74, 74, 74, 24,

EB 1120 data 141, 1,128,108,163, 2,152,

DM 1130 data 251, 133,251, 96

133,

120,

2,

144,

165,

58,

253,

230,

236,

229,

0,

105,

24,

144

165

165

169

217

173

189

253

2

165

128

193

101

Transactor

VIC/C64 VERIFIZER

KE 10 rem* data loader for "verifizer" *

JF 15 rem vic/64 version

LI 20 cs=0

BE 30fori=828to958:reada:pokei,a

DH 40 cs=cs+a:next i

GK 50:

FH 60 if cs<>14755 then print"***** data error

KP 70remsys828

AF 80 end

IN 100:

EC 1000 data 76, 74,

EP 1010 data 252, 141,

OC 1020 data 3,240,

MN 1030 data 251,169,

MG 1040 data 3, 3,

DM 1050 data 0, 160,

CA 1060 data 32,240,

NG 1070 data 133, 90,

OK 1080 data 232, 208, 229, 56,

AN 1090 data 32, 210, 255, 169,

GH 1100 data 89, 41, 15, 24,105,

JC 1110 data 165, 89, 74, 74, 74,

EP 1120 data 32,210,255,169,146,

MH 1130 data 32, 240, 255, 108, 251,

BH 1140 data 101, 89,133, 89, 96

*****». en(j

3,165,251,141, 2, 3,165

3, 3, 96,173, 3, 3,201

17,133,252,173, 2, 3,133

99, 141, 2, 3, 169, 3, 141

96,173,254, 1,133, 89,162

0,189, 0, 2,240, 22,201

91,200,152, 41, 3

3,198, 90, 16,249

32, 240, 255, 169, 19

18, 32,210,255,165

97, 32,210,255

74, 24,105, 97

32,210,255, 24

0, 165, 91, 24

15, 133,

32, 183,

NEW C128 VERIFIZER (40 or 80 column mode)

KL 100 rem saveM0:cl28 vfz.ldr",8

OI 110 rem c-128 verifizer

MO 120 rem bugs fixed: 1) works in 80 column mode.

DG 130 rem 2) sys 3072,0 now works.

KK 140 rem

GH 150 rem by joel m. rubin

HG 160 rem * data loader for "verifizer cl28"

IF 170 rem * commodore cl28 version

DG 180 rem * works in 40 or 80 column mode!!!

EB 190ch=0

GC 200 for j=3072 to 3220: read x: poke j,x: ch=ch+x: next

NK 210 if ch<>18602 then print "checksum error": stop

BL 220 print "sys 3072,1 to enable

DP 230 print "sys 3072,0 to disable

AP 240 end

BA 250 data 170, 208, 11, 165, 253,141, 2, 3

MM 260 data 165, 254, 141, 3, 3, 96, 173, 3

AA 270 data 3, 201, 12, 240, 17,133, 254, 173

FM 280 data 2, 3,133,253,169,39,141, 2

IF 290 data 3,169, 12,141, 3, 3, 96,169

FA 300 data 0, 141, 0, 255, 165, 22, 133, 250

LC 310 data 162, 0, 160, 0, 189, 0, 2, 201

AJ 320 data 48,144, 7,201, 58,176, 3,232

EC 330 data 208, 242, 189, 0, 2,240, 22,201

PI 340 data 32,240, 15,133,252,200,152, 41

FF 350 data 3,133,251, 32,141, 12,198,251

DE 360 data 16,249,232,208,229, 56, 32,240

CB 370 data 255,

OK 380 data 32,

ON 390 data 105,

OI 400 data 74,

OD 410 data 255,

PA 420 data 240,

BO 430 data 101,

169, 19, 32,210,255,169, 18

210,255,165,250, 41, 15, 24

193, 32,210,255,165,250, 74

74, 74, 24,105,193, 32,210

169, 146, 32, 210, 255, 24, 32

255, 108, 253, 0, 165, 252, 24

250,133,250, 96

The Standard Transactor

Program Generator

If you type in programs from the magazine, you might be able

to save yourself some work with the program listed on this

page. Since many programs are printed in the form of a BA

SIC "program generator" which creates a machine language

(or BASIC) program on disk, we have created a "standard

generator" program that contains code common to all program

generators. Just type this in once, and save all that typing for

every other program generator you enter!

Once the program is typed in (check the Verifizer codes as

usual when entering it), save it on a disk for future use. When

ever you type in a program generator, the listing will refer to

the standard generator. Load the standard generator first, then

type the lines from the listing as shown. The resulting program

will include the generator code and be ready to run.

When you run the new generator, it will create a program on

disk (the one described in the related article). The generator

program is just an easy way for you to put a machine language

program on disk, using the standard BASIC editor at your dis

posal. After the file has been created, the generator is no

longer needed. The standard generator, however, should be

kept handy for future program generators.

The standard generator listed here will appear in every issue

from now on (when necessary) as a standard Transactor utility

like Verifizer.

MG 100 rem transactor standard program generator

EE 110 n$="filename": rem name of program

LK 120 nd=000: sa=00000: ch=00000

KO 130 for i=l to nd: read x

EC 140 ch=ch-x: next

FB 150 if ch then print "data error": stop

DE 160 print "data ok, now creating file."

CM 170 restore

CH 180openl,8,l,"0:"+n$

HM 190 hi=int(sa/256): lo=sa-256*hi

NA 200print#l,chr$(lo)chr$(hi);

KD 210 for i=l to nd: read x

HE 220 print#l,chr$(x);: next

JL 230 close 1

MP 240 print"prg file "';n$;'" created..."

MH 250 print"this generator no longer needed."

IH 260: Q

Volume 9, Issue 6

L

Another view of DevPak: This letter is a comment concern

ing Joel Rubin's remarks in Volume 9, Issue 3 about the

DevPakl28 package from Commodore.

I have made extensive use of this package in the development

of a multi-user, online truck leasing and billing system. The

total amount of code written for this system (it is 100 percent

machine language) is about 100,000 lines. The software runs

on a group of C128D computers multiplexed to an 80mb Xetec

Lt. Kernal hard disk subsystem. I used a separate C128D and

40mb Lt. Kernal as the development system, using a home

brew text editor to write the source code and the DevPak

assembler and loader to create executable object code.

It is true that the DevPak assembler is disk-intensive. So is

just about any assembler that must make two passes through

ten files totalling nearly 400 kilobytes of source code. As for

the procedure of having to use the hex file loader to actually

place your program into RAM, that procedure has existed with

all assembler packages that have been marketed by Com

modore (the C64 Macro Assembler Development System or

MADS uses the identical procedure).

The limitations on open files and speed on a 1541 or 1571

drive are limitations that any assembler must contend with.

As Mr. Rubin mentioned, these limitations are clearly

explained in the DevPak documentation and can be alleviated

by using multiple drives, as the assembler can read source

code from one unit and write object code to another. Addi

tional gains in speed can be achieved by utilizing the

SFD-1001 drive and a Skyles Quicksilver IEEE interface or if

the user is intent on doing some heavy-duty programming,

the Lt. Kernal system (the Lt. Kernal DOS allows up to seven

files to be opened at the same time).

Because I do my development on a Lt. Kernal-based system,

I do not experience the problems Mr. Rubin mentions about

speed and open files. Even my largest program assembles at a

rapid rate. Smaller programs (those with less than 50K of

source code) assemble in under three minutes if no listing

output is required. So, while the disk-intensive nature of

DevPak might be a problem on a 1541 or 1571 system, it

probably would not be a problem on a system with greater

disk capacity (for example, the SFD-1001 allows a larger

number of files to be simultaneously opened because of more

available drive RAM).

The advantages of the DevPak assembler, in my opinion, out

weigh the disadvantages. For one thing, the assembler's pars

ing routine is not case-sensitive for non-quoted strings. Quot

ed strings may include shifted or PET graphics characters

(something which is not allowed by many assemblers).

Another point to consider is that DevPak supports local labels

(real handy for patching existing programs). The macro facil

ity works flawlessly and allows nesting of macros (macros

can call other macros). The printed output listing is more

informative than that of most other assemblers. The symbol

table is structured in RAM 1 and has over 60 kilobytes

available in which to deposit data.

The need to use the loader to place the hex image file into

RAM is a minor nuisance in some cases. However, the use of

the hex loader allows me to assemble for an area which can't

be conveniently used as a location from which to execute a

binary save (such as the hardware stack) and load the pro

gram into a free area of RAM from which it may be saved.

This feature is complemented by the ability of the Lt. Kernal

DOS to change the load address of a binary file after it has

been stored on the drive.

Transactor

I cannot recommend the EDT text editor that is supplied with

DevPak, both for the reasons mentioned by Mr. Rubin (the use

of the numeric keypad to issue commands to the editor) and

because the editor is actually quite unfriendly and cumber

some. However, as he mentions, almost any editor can be used

in its place.

In summary, the DevPak assembler is gross overkill for the

casual programmer that is interested in writing only a few

lines of code. I can't recommend it for the user that has only a

1541 or 1571 on his system. This assembler is really meant for

a serious machine language programmer who has the proper

hardware to go with it.

Bill Brier, Bensenville, IL

A letter to Francis Kostella: I am writing you in a somewhat

desperate attempt to get some reliable information on how to

obtain a copy of Alexander Boyce's GEOS manual. I realize it's

not your job to answer questions like this (sorry) but I couldn't

think of anyone else to ask. I'm a bit at my wits' end.

I have been trying to obtain a copy of the manual for several

months. Through what seemed a stroke of good fortune,

Nicholas Vrtis published Alexander Boyce's address in Trans

actor, Volume 9, Issue 4. However, a letter to that address was

returned to me only yesterday, unopened - that address does

not seem to exist. My final plan of attack is to get in touch

with people who have the manual already, to see if they can

give me a lead on how to get a copy. Hence my letter to you.

Can you please send me any hints or suggestions you might

have on how to get a copy of Boyce's book? Even a photo

copy, I don't care. I really do want this manual. Thanks very

much for your trouble.

David Kotchan, Toronto, Ontario

We managed to contact Alex. Here's his new address:

Alexander Boyce

63 Chamberlain Ave.

Elmwood Park, NJ 07407

Incompatible 1541C?: I am writing to you in hopes that you

may help me with a problem which has plagued the techni

cians here in Ottawa and at Commodore in Toronto for some

time.

The problem began when I bought a second disk drive model

1541 and added it to my collection of 1541s... This is my set

up: 64, 1701, three 1541s, Epyx Fastload cartridge, Aprotek

RS-232 interface, Star NX-1000 and a Datagram modem.

After many years of being interested in Commodore equip

ment, I have never heard of this problem. When I connect my

recently purchased 1541 as device 8, it locks up the 64. I

have made many trips to my local service depot and spent

many hours in frustration, so I decided to troubleshoot this

problem myself.

In the beginning, I had everything connected to a power bar so

all I had to do was hit the switch and go... (not by the book,

but has been effective in the past).

To make a long story short, after I put my new drive on as

device 8, it locks up the 64. The screen will say, for example,

"searching for $" and that's it. The read LED never lights and

my keyboard is now frozen. The only way to access it, is by

resetting the drive and then it will work, but this only happens

on the very first time, then it's somewhat OK for the rest of the •

evening.

Now it gets even more interesting. If I only leave device 8 on

and turn on the power bar everything is fine, but as soon as I

turn on device 9, that's it! - the keyboard is frozen. The only

way to get back to normal is to reset all drives. Now this may

not be a bad solution; however, as my system has grown I have

gotten squeezed out of my office and forced to build a custom

computer hutch that contains all my equipment. The hutch is

virtually useless to me now, because every time I go to use it I

have to consistently start pulling equipment out of it to reset it.

This is not very practical and so I have abandoned this drive.

So you say, how can we help? Well, I'm going to tell you.

After some research I believe that it has something to do with

the priority of how the 64 recognizes the 1541C.

After closer inspection of the situation, I have concluded that

the logic PCB in this new drive is not compatible with the oth

ers. As I had previously stated, everything was in perfect

working order until I installed this new drive.

What I have done is taken the version number from each drive,

hoping that you will be able to help me...

My question is: Can I make them compatible with the same

type of software?

My new 1541 is a PCB #251830 Rev. A. My old 1541 is a PCB

#1540050 Rev. C. The service people have been co-operative

and have said that if it is possible to make them compatible,

then they would do so. I hope that the solution is a simple soft

ware upgrade or downgrade, whichever makes it work!

Terry Golding, address unknown

First ofall, troubleshooting by mail rarely works... However, it

sounds like a 'serial bus loading problem'. These tend to be

more common as devices are added to the bus and some de

vices are more likely than others to cause such problems. For

example, one revision of the 1526 is notorious in this regard.

Of course, you may be right about the 1541C. This is one

piece of equipment with which Transactor has no experience.

(We don't have any 1541-Us either.) Ifanyone can supply more

information on this subject, please send it in.

Volume 9, Issue 6

Transblooperz in Programming GEOS Icons: First, let me

say that this is the first letter to an editor that I have ever

written. I have been reading Transactor for several years

and I believe it is the finest Commodore-specific magazine

existing.

I am writing regarding the article Programming GEOS Icons on

page 56 of Volume 9, Issue 5. I am a GEOS enthusiast and

enjoyed the article very much. The program works well, but

there are a couple of errors; one in the article and one in the

program. Also, the program (geoKeyboard) can be shortened

considerably, as I will show.

Firstly, in the fifth paragraph at the top of the right-hand

column on page 56, it is stated: "When Dolcons is called,

the GEOS Kernal expects the two-byte .word following the

JSR in memory to contain the pointer to the icon table.*'

This is not correct. The pointer to the icon table must be

loaded into rOL/rOH (using the macro, LoadW

rO,IconTable) before the JSR to Dolcons, as is done in the

program on page 59. There is no in-line form of the

Dolcons routine.

Secondly, in the geoKeyboard program (page 59, left hand col

umn), the following sequence is printed:

Ida #0

LoadW rO,GeosMenu

jsr DoMenu

;Put mouse on geos menu item

;Put address of menu table in rO

I must point out that if this routine is coded as above, the

LoadW macro will change the value of the A register, and the

mouse will not be put in the right place. The LoadW macro

and the Ida should change places, as follows:

LoadW rO,GeosMenu

Ida #0

jsr DoMenu

rts

Now the A register will contain 0 on entry to the DoMenu rou

tine, and the mouse will be placed on the first menu item.

Now for the change to make the program shorter. The follow

ing is based upon the fact that, after an icon is clicked, its

number (based on its position in the icon table, starting with 0)

is returned in rOL. It is simple then to use this value to index

into a table of frequency values, instead of having a separate

action routine for each note.

1) In the Keyboard icon table (page 59), change all the action

routine pointers (such as .word DoCN4, DoCS4 etc.) to .word

Play

jsr InitForlO

Ida #$40

sta vlcntrl

ldx rOL ;put icon number into index register

Ida lofreq, x ;get low frequency value from table

sta vlfreqlo ;put it in the sid register

Ida hifreq, x ;get high frequency value from table

sta vlfreqhi ;put it in the sid register

Ida #$41

sta vlcntrl

<rest same>

4) Add the following data table to the program at the end (after

jmp EnterDeskTop)

lofreq:

.byte 195, 195, 209, 239, 31, 96, 181, 30

.byte 156, 49, 223, 165, 135, 134, 162, 223

.byte 62, 193, 107, 60, 57, 99, 190, 75, 15

hifreq:

.byte 16, 17, 18, 19, 21, 22, 23, 25

.byte 26, 28, 29, 31, 33, 35, 37, 39

.byte 42, 44, 47, 50, 53, 56, 59, 63, 67

There is just one more thing. If the Ida #$01/sta vlsusrel in

the LoadSlDRegisters routine is changed to Ida #$0c/sta vlsus

rel, the note lasts longer and seems to sound better.

Roy Longworth, Trenton, ON

Right on all fronts, Roy. Thanks for pointing out the errors in

the text and code. And thanks for the tip on shortening the

code. Keep on writing letters to editors. We do appreciate it

when readersfind (and correct) our mistakes.

Back to Forth: Friends, I am looking for documentation for

Scott Ballantyne's Blazin' Forth implementation of the Forth

language. He wrote an article in Transactor, Vol. 7, Iss. 5 and

it was on your disk. It seems to assume we all know the pro

gram well! I'm trying to learn Forth.

I would also like disk I/O routines for HESForth cartridges. C64

and vic-20 disk operations crash on mine. Thanks.

Premena

P.O. Box 1038

Boulder, CO 80306-1038

Your best bet for 8-bit Forth support is CompuServe. LIB 5 of

our Commodore Programming Forum (GO CBMPRG) is devoted

to the Forth language. In addition to the complete source code

for Blazin* Forth, LIB 5 contains a number of helpful text files.

Whatfollows is a list of thefiles in the Forth library:

2) Eliminate all the routines on page 60/61 for loading the fre- Filename legend:

quency values into aOL/aOH (DoCN4 to D0CN6) ,_ _ _epTT
/a = ascii text tile

/B = Xmodem upload

3) Change the routine Play on page 61 (left hand column) to: /I = B-protocol (Vidtex) upload

Transactor

/R = RLE graphic file

NOTE: Size is rounded to the nearest full K (IK = 1024 bytes)

NPOWER.SCR/A IK

CONCAT.SCR/A 2K

DECRYP.SCR/A IK

MACROS.SCR/A IK

System

Filename Size

Upload

date Brief description

k 19K

LIB5.DIR/A 5K

BVT100.BIN/B 28K

FORTH.TXT/A 4K

SIDEXP.IMG/I 38K

PRTFIL.BIN/B 2K

BFCDEM.IMG/B 18K

FSP.BFT/A 4K

FSP.TXT/A 80K

BFCSRC.TUT/A 36K

BFC1.ASM/A 19K

BFC10.ASM/A

BFC11.ASM/A

BFC12.ASM/A

BFC2.ASM/A

BFC3.ASM/A

BFC4.ASM/A

BFC5.ASM/A

BFC6.ASM/A

BFC7.ASM/A

BFC8.ASM/A

BFC9.ASM/A

12-Oct-88 Overview of the Forth programming language

17-Jul-88 Directory of all files in LIB 5 to date

27-Sep-87 Blazin'Forth VT52 terminal emulator

15-Apr-87 A review of Steve Burnap's FORTH tutorial book

06-Feb-87 Forth program to exercise SID chip

ll-Dec-86 Blazin'Forth sequential file printer

12-Nov-86 Fport source to demos described in BFHSRC.BIN

12-Nov-86 Structured programming constructs in bforth83

12-Nov-86 Text by George Hawkins on structured programming

22-Sep-86 Explains the inner workings of Blazin'Forth

18-Sep-86 First assembler source for Blazin'Forth Compiler

18-Sep-86 Support file for Blazin'Forth (Macros)

18-Sep-86 Support file for BForth (global declarations)

18-Sep-86 Support file for BForth (constant declarations)

18-Sep-86 Second source file for Blazin'Forth Compiler

18-Sep-86 Third source file for Blazin'Forth Compiler

18-Sep-86 Fourth source file for Blazin'Forth Compiler

18-Sep-86 Fifth source file for Blazin'Forth Compiler

18-Sep-86 Sixth source file for Blazin'Forth Compiler

18-Sep-86 Seventh source file for Blazin'Forth Compiler

18-Sep-86 Eighth source file for Blazin'Forth Compiler

18-Sep-86 Ninth source file for Blazin'Forth Compiler

09-Sep-86 BForth code to do dynamic memory management

31-Aug-86 Documentation for ESTAC2.IMG

31-Aug-86 BForth floating point math in FPORT file

29-May-86 64FORTH string handling program

29-May-86 Documentation for FTHSTR.BIN

29-May-86 Converts 64FORTH REL to SEQ file

29-May-86 Converts SEQ file to 64FORTH REL file

12-May-86 Gives BForth C like files (fopen, fclose, etc.)

ll-May-86 Directory using CBM's DOS directory, FPORT file

09-Mar-86 Backup for files created with VFILE.BIN

07-Mar-86 Translate screens between Super Forth and BForth

05-Mar-86 Save BForth code as commodore REL files

26-Feb-86 Forth 83 floating point math words

26-Feb-86 Add background tasks to BForth

18-Feb-86 Utility to backup screens

18-Feb-86 Forth words to access the c64's hardware clock

10-Dec-85 Blazin'Forth Assembler tutorial

09-Dec-85 Blazin'Forth terminal program example

25-Nov-85 Upgraded FPORT file transfer utility

20-Oct-85 Documentation for HFGFCO.IMG

20-Oct-85 HES 64FORTH graphics program

23-Sep-85 Decompiler for Blazin'Forth

16-Sep-85 Decompiler for Blazin'Forth

13-Sep-85 Disk Directory for Blazin'Forth Command = DIR

12-Sep-85 Procedure for adding full screen editor to BForth

08-Sep-85 Scott Ballantyne's Blazin' Forth Compiler system

04-Sep-85 Arthurs Theme, Blazin'Forth music

27-Aug-85 Help for Forth-83 changes to 'Starting Forth'

27-Aug-85 Forth-83 Sieve of Eratosthenes

25-Aug-85 Squeezed source code for BFORTH.IMG

25-Aug-85 Documentation for SRCWRT.IMG and BFHSRC.BIN

25-Aug-85 Convert squeezed format source to Forth screens

24-Aug-85 BForth Turtle graphics demo

07-Aug-85 Readme file for BFORTH.IMG

07-Aug-85 Documentation for BFORTH.IMG (part 1)

07-Aug-85 Documentation for BFORTH.IMG (part 2)

07-Aug-85 Documentation for BFORTH.IMG (info on string pkg)

07-Aug-85 Documentation for BFORTH.IMG (sound extensions)

07-Aug-85 Documentation for BFORTH.IMG (turtle graphics)

07-Aug-85 Documentation for BFORTH.IMG (misc. info)

07-Aug-85 BFORTH.IMG help file 1 for 'Starting Forth' text

07-Aug-85 BFORTH.IMG help file 2 for 'Starting Forth' text

29-Oct-84 Monitor for HES 64FORTH (only)

IK

10K

2K

26K

22K

24K

28K

13K

17K

17K

12K

5K

ESTAC2.DOC/A 5K

ESTAC2.IMG/I 17K

FTHSTR.BIN/A 2K

FTHSTR.DOC/A IK

RELSEQ.BIN/B IK

SEQREL.BIN/B IK

FILES.BIN/B 4K

CBMDIR. IMG/I IK

VBACK.BIN/B 2K

SF2BLZ.IMG/I 5K

VFILE.BIN/B 3K

FLOAT.BIN/B UK

MULTI.BIN/B 4K

BACKUP.BIN/B 2K

REALCL.BIN/B 2K

BFASM.DOC/A 29K

BFVDTE.TXT/A 6K

FPORT.IMG/I IK

HFGFCO.DOC/A 12K

HFGFCO.IMG/I 6K

BFCYAD.IMG/I 4K

DECOMP.IMG/I 3K

DIR. IMG/I 2K

BFEDIT.DOC/A 3K

BFORTH.IMG/I 23K

ARTHUR.IMG/I 7K

EXAMPL.FTH/A 4K

SIEV83.SRC/A IK

BFHSRC.BIN/B 61K

SRCWRT.DOC/A IK

SRCWRT. IMG/I IK

BFDEMO.SRC/A 2K

BFRTH1. IMG/I IK

BFRTH2.DOC/A 2OK

BFRTH3.DOC/A UK

BFRTH4.DOC/A 8K

BFRTH5.DOC/A 10K

BFRTH6.DOC/A 18K

BFRTH7.DOC/A 9K

BFRTH8.DOC/A 19K

BFRTH9.DOC/A UK

MON.IMG/I 4K

QX.SCR/A

TABLE.SCR/A

ASK.SCR/A

CASE.SCR/A

GOES.SCR/A

LIFE.SCR/A

LSCR.SCR/A

TIME.SCR/A

CANON.DOC/A

SCMSCR.SCR/A IK

BOXES.SCR/A IK

SIEVE.SCR/A IK

SQROOT.SCR/A IK

15-Apr-84 Forth power arguments

28-Mar-84 Takes PMP screens and creates file for uploading

28-Mar-84 Takes downloaded file and converts to PMP screen

28-Mar-84 Updated macros for Performance Micro (PMP)

28-Mar-84 Prints out screen headers, for PMP

28-Mar-84 PMP C64FORTH creates tables

28-Mar-84 PMP C64FORTH word for fetching several screens

28-Mar-84 Defining word create daughters numeric input

28-Mar-84 Forth79 CASE statements

28-Mar-84 Forth recursive decompiler

28-Mar-84 Forth mathematical/graphic Game of LIFE

28-Mar-84 Screens contain example life screens

28-Mar-84 Forth79 words to support clock on 6526 chip

28-Mar-84 Documentation file describing .SCR format

28-Mar-84 Simple data encrypter for forth screens

28-Mar-84 Draws random size and color boxes

28-Mar-84 Sieve of Eratosthenes benchmark

28-Mar-84 Returns square root, PMP assembler format

That empty REU socket: Is it possible to put the 28-pin chip

from the Epyx Fast Load cartridge into the 1764? The Fast Load

cartridge also has one other chip on it. It is a SN7407N DIP.

This info would be greatly appreciated. My Fast Load collects

dust now because I don't want to keep plugging and unplug

ging the 1764, and I have no room for an expander board to

plug both in. I hope that my Fast Load can be put back into

action soon. There are probably quite a few people with the

same need.

Frank Liuzzi, Broomall, Pennsylvania

Great idea, Frank, but unfortunately, ifs just not possible. The

Epyx Fast Load cartridge is a transparent cartridge. The car

tridge is visible only at particular times, specifically at a hard

reset and on an access to $deOO. This magic is achieved

through the 7407N and a discharge capacitor on the cartridge

board. Although the code maps in at $8000, the command

parser maps in at $dfOO. (More magic, because the code for

the parser isfound in the $9f00 range ofthe EPROM.)

Placing the EPROM in the REU socket would result in a hung

machine on power-up because the BASIC IERROR vector is left

pointing to somewhere in the $dfOO block by the code that ini

tializes the cartridge. Result: on an error (i.e., $, I, %, etc.),

control is passed over to non-existent code at $dfOO and the

machine most likely crashes.

Also, the EPROM would grab the $8000 to $9fff block. Because

the transparency was achieved through the support circuitry in

the cartridge, we would always be out 8K ofBASIC RAM. A ter

rible waste! Especially when you consider that the cartridge

used to be 'invisible' in normal use.

So, what to use the REU EPROM socket for? Mostly home

brewed code, I would think. Today's cartridges are a lot more

sophisticated than those of a few years ago. Not uncommonly

now, we find kilobytes of bank-switched EPROM, DRAM and

even microprocessors. Offhand, I can't think of any cartridge

EPROM that could be plugged into that slot. Anybody know dif

ferent? Q

Volume 9, Issue 6

Got an interesting programming tip, a short routine, or an unknown bit of

Commodore trivia? Send it in - ifwe use it in the bits column, we'll credit you in the

column and send you afree one-year subscription to Transactor.

Debug Utility

Jean-Yves Lemieux, Rimouski, PQ

Debug is a programming utility for the C128 that can help a

machine language programmer in a number of ways. It can

provide a controlled testing environment for assembler pro

grammers: avoid a system crash, detect endless loops, and so

on. It is an interrupt-driven program that uses NMI and BREAK

vectors and a CIA 2 timer to perform a 'trace' function. It lets

you see, step by step, each instruction that your C128 exe

cutes, displaying register contents, PC address and disassembly

of the next instruction to be executed.

This version is loaded at $03000. You'll need to reassemble to

relocate it. Enable it with sysl2288 from BASIC or jf3000 from

your monitor. Now you're ready to use Debug's two com

mands: Walk and Quick.

W <start address> (eg. w 2000): The first instruction is

executed and you are then presented with a register display,

PC address and the disassembled next instruction. Debug is

waiting for your next command. Pressing a key will result in

the execution of the next instruction. RUN/STOP will stop

walking.

Q <routine address>: This command only works during a

walk and at the beginning of a subroutine. Following instruc

tions will be executed at nearly full speed until an RTS or BRK

is encountered. No display is provided during this process.

You should use the Quick command for normal system sub

routines (BASIC or Kernal) since Walking through these will

probably cause unpredictable results.

You can disable Debug with RUN/STOP-RESTORE. Debug gener

ates system interruptions via Timer A of CIA 2 ($ddOO). During

a Walk or a Quick command a timer is set to generate an NMI.

The registers are then pulled from the stack and are saved with

the program counter for future use. Since the timers of CIA 1

are often used for system tasks (I/O), Timer A of CIA 2 (which

generates only NMI) has been used. Because of the timer's in

volvement with RS-232 operations, you should not try to use

Debug for RS-232 routines.

Listing 1: debug.gen

OC 100 rem prg. gen. for debug.obj

EK 110 n$="debug.obj"

DD 120 nd=376:sa=12288:ch=39305

K0 130 fori=ltond:readx

EC 140 ch=ch-x:next

FB 150 if chthenprinf'data error":stop

DE 160 prinf'data ok, now creating file"

CM 170 restore

CH 180 openl,8,l,"0:"+n$

HM 190 hi=int(sa/256):lo=sa-256*hi

NA 200 printf1,chr$(lo)chr$(hi);

KD 210 fori=ltond:readx

HE 220 print#l,chr$(x);:next

JL 230 closel

MP 240 prinf'prg file '";n$;"' created..."

MH 250 print"this generator no longer needed."

LE 12288 data 120, 169, 185, 160, 48, 141, 22, 3

NB 12296 data 140, 23, 3, 169, 53, 160, 48, 141

MJ 12304 data 46, 3, 140, 47, 3, 169, 64, 162

ID 12312 data 250, 141, 157, 2, 142, 158, 2, 169

BI 12320 data 0, 141, 154, 2, 141, 155, 2, 88

EC 12328 data 0, 198, 4, 208, 2, 198, 3, 76

BO 12336 data 70, 176, 76, 178, 176, 201, 87, 208

DP 12344 data 249, 32, 167, 183, 176, 244, 166, 96

PK 12352 data 164, 97, 165, 98, 133, 2, 134, 4

BC 12360 data 132, 3, 186, 142, 156, 2, 169, 40

El 12368 data 162, 49, 133, 250, 134, 251, 108, 250

IJ 12376 data 0, 32, 152, 85, 32, 125, 255, 83

MK 12384 data 82, 32, 65, 67, 32, 88, 82, 32

82, 32, 83, 80, 32, 80, 67

0, 166,

NM 12392 data 89,

LJ 12400 data 13,

DL 12408 data 144,

FI 12416 data 165,

2, 165, 3, 201, 64

2, 162, 15, 134, 104, 133, 103

4, 133, 102, 160, 0, 185, 5

IE 12424 data 0, 32, 165, 184, 200, 192, 5, 144

ED 12432 data 245, 32, 146, 184, 160, 0, 174, 170

FE 12440 data 2, 134, 77, 32, 26, 177, 32, 89

JO 12448 data 182, 32, 8, 182, 166, 77, 142, 170

EN 12456 data 2, 76, 152, 85, 173, 157, 2, 172

FL 12464 data 158, 2, 141, 24, 3, 140, 25, 3

JH 12472 data 96, 169, 128, 141, 14, 221, 173, 13

KM 12480 data 221, 32, 172, 48, 216, 104, 133, 2

MK 12488 data 104, 133, 8, 104, 133, 7, 104, 133

EL 12496 data 6, 104, 133, 5, 104, 133, 4, 104

KJ 12504 data 133, 3, 186, 134, 9, 88, 165, 5

LA 12512 data 41, 16, 240, 3, 76, 41, 48, 44

10 Transactor

FB

OH

LD

PD

AG

NE

NI

BD

HE

IH

LF

GF

JE

FH

OK

01

OL

KI

12520 data

12528 data

12536 data

12544 data

12552 data

12560 data

12568 data

12576 data

12584 data

12592 data

12600 data

12608 data

12616 data

12624 data

12632 data

12640 data

12648 data

12656 data

154, 2,

2, 208,

32, 196,

240, 5,

89, 48,

240, 248,

48, 201,

2, 169,

169, 128,

17, 208,

41, 239,

12, 202,

169, 57,

169, 129,

9, 1,
185, 141,

9, 154,

165, 5,

48, 12, 166, 9, 236,

58, 169, 0, 141, 155,

119, 166, 9, 236, 156,

144, 3, 76, 47, 48,

32, 18, 192, 32, 228,

201, 3, 208, 3, 76,

81, 208, 11, 186, 142,

1, 141, 154, 2, 208,

141, 154, 2, 162, 0,

168, 41, 16, 240, 16,

141, 17, 208, 234, 234,

208, 253, 136, 208, 250,

141, 4, 221, 142, 5,

141, 13, 221, 173, 14,

141, 14, 221, 169, 48,

25, 3, 142, 24, 3,

165, 3, 72, 165, 4,

72, 165, 2, 76, 242,

Listing 2: debug.pal

GL

LN

OF

IE

GA

NC

JO
UAHA

mi
ISA

rp
h\3

KN

CC

AL

MH

EN

AM

OG

OH

MC

CB

DN

KC

PA

AN

KM

DD

BK

PK

OF

BE

JN

MN

JE

IM

JO

JN

GD

OF
pn

Lr

DN

GA

GP

KB

HE

01

MJ

El

CA

BK

FL

FL

AD

9 open2,8,l

10 sys700

20

30

40

50

60

70
OA

* debu<

* for 1

"0:debug.o "

f source code *

:he cl28 *

* by jean-yves lemieux *

* rimouski, quebec *

* feb. 1989 *
..*.*.+*.******************

Ov ,

Oft nnf nOy\j .opt Ol

100 ;

110 bkby

120 pchi

130 pclo

140 sreg

150 areg

160 xreg

170 yreg

180 sptr

190 hinmi

200 lonmi

210 cmdflg

220 qflg

230 rflg

240 oldnmi

250 brvec

260 nmivc

270 exmon

280 talo

290 tahi

300 icr

310 era

320 prcr

330 gslow

340 prsp

350 meval

360 prim

370 getin

380;

390 *=$3000

400 ;

410 init

420 ;

430

440

450

460

470

480

490

500

510

=$02

=$03

=$04

=$05

=$06

=$07

=$08

=$09

=$298

=$299

=$29a

=$29b

=$29c

=$29d

=$316

=$318

=$32e

=$ddO4

otalo+1

=$dd0d

=$dd0e

=$5598

=$77c4

=$5604

=$b7a7

=$ff7d

=$ffe4

;bank byte

;prg counter hi

; " " lo

;cpu status reg

;acc. reg.

;x ■

;y "

;stack pointer

;nmi ptrs

;walk flag

;quick "

;return flag

;storage for nmi

;break vector

;nmi "

;exmon "

;timer a low byte

;

;int. cntl reg.

;control reg. a

;bas. print <cr>

; " slow cmd

; " print space

;mon eval entry

;kernal print

; " get

;'sysl2288'

=*

sei

Ida |<newbrk ;break vector

ldy |>newbrk ;will point to

sta brvec ;newbrk routine

sty brvec+1

Ida Kwtwalk ; exmon

ldy #>wtwalk ;point to

sta exmon

sty exmon-!

;wtwalk

•1

155

2

2

32

255

47

155

5

173

152

160

120

221

221

162

166

72

2

LC

HH

MI

EL

EM

PD

HM

MN

OG

IN

LI

MO

JN

MB

JM

EB

BF

IC

AF

MD

KL

AF

CI

EG

FG

HN

NK

NC

01

IF

GI

JD

EE

KP

EF

OD

MN

IP

AG

DP

DL

LH

IO

MC

HD

AE

OK

DA

EE

OK

KP

KI

El

JB

IN

FB

DB

AK

EC

JN

NN

DJ

KC

FO

KO

JE

HO

JE

KA

AD

HO

KD

520

530

540

550

560

570

580

590

600

610 ;

620 rmon =*

630 ;

640

650

660

670 ;

680 inmon =

690 ;

700

710;

720 norm =*

730 ;

740

750 ;

760

770;

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950 ;

Ida #$40

ldx #$£a

sta oldnmi

stx oldnmi+1

Ida #0

sta cmdflg ;

sta qflg

cli

brk

;return to monitor

dec pclo

006 XDIILOfl

dec pchi

k

jmp $bO46

jmp $b0b2

wtwalk =*

emp IV

bne norm

jsr meval

bes norm

ldx $60

ldy $61

Ida $62

sta bkby

stx pclo

sty pchi

tsx

stx rflg

Ida #<walk

ldx #>walk

sta $fa

stx$fb

jmp (!$fa)

normal

nmi entry

init 'walk' &

'quick' flags

jump to newbrk

init mon. entry

exmon norm, entry

read keyword for

walk command

evaluate and

store addr

taken from

opl

store stack ptr

for 'rts' eval.

jump to walk

routine via

z-page

960 direg =* ;display registers

970;

980

990

1000 .asc "

1010 .byte

1020

1030

1040

1050

1060

1070 dl

1080

1090

1100

1110

1120 d2

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

jsr prcr

jsr primm

sr ac xr yr sp pc"

SOd,o

ldx bkby

Ida pchi

emp #$40

bec dl

ldx #$0f

stx $68

sta $67

Ida pclo

sta $66

ldy #$00

Ida !sreg,y

jsr $b8a5

iny

cpy#5

bccd2

jsr $b892

ldy #0

ldx $2aa

stx $4d

jsr $blla

jsr $b659

jsr $b608

is it a basic

or kernal call

so, set 'bank 15'

display 2-cbar

ascii for reg

& 5-char ascii

for pc

store 'fetvec'

mon indfet entry

test code in ace

mon disassembly

EP

HK

MK

MG

GH

NE

KI

AF

MH

GD

HI

CD

GM

AN

CC

EO

GH

MP

JL

AJ

KB

FD

BC

HP

GF

KF

J6

06

66

CI

MI

6J

EL

KK

EK

AD

JB

IN

6B

DN

OO

MM

PM

LL

LB

MA

MK

NN

PL

ID

DH

ME

JB

FO

IK

L6

HD

NN

CJ

DO

6K

GD

BK

BI

IK

BA

LB

BE

6P

OH

KA

NC

DB

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

ldx$4d

stx$2aa

jmp prcr

;

rest =* ;restore nmi

Ida oldnmi

ldy oldnmi+1

sta nmivc

sty nmivc+1

rts

;restore 'fetvec'

vec

newbrk =* ;break routine

Ida #$80

sta era

Ida icr

jsr rest

eld

pla

sta bkby

pla

sta yreg

pla

sta xreg

pla

sta areg

pla

sta sreg

pla

sta pclo

pla

sta pchi

tsx

stx sptr

cli

Ida sreg

and #$10

beqnl

jmp rmon

nl bit cmdflg

bmickrfg

ldx sptr

cpx qflg

bne delay

Ida #0

sta qflg
.

ckrfg =* ;check for

;

jsr gslow

ldx sptr

cpx rflg

beq wtand

bec wtand

wtand =* ;wait for i

jsr direg

wl jsr $cO12

jsr getin

beqwl

emp #$03

bne quick

jmp inmon

;

quick =* ;full speec

;

opf-q-

bnewalk

/regain control

;fros timer

;get reg contents

;from stack

;and store in z-p

;store stack pntr

;get cpu status

;break bit set

;no then continue

;if bit 7 set

;then do 'walk'

;did we reached

;the end of

;of subroutine

;yes, stop running

;and walk

last rts

lew and

; check kbd matrix

;get char

;stop key pressed

land

Volume 9, Issue 6 11

BK 1970

FF 1980

FO 1990

PJ 2000

L6 2010

KF 2020

NO 2030

OG 2040

HO 2050

LN 2060

MI 2070

JC 2080

AK 2090

LH 2100

HN 2110

HB 2120

KD 2130

PJ 2140

NB 2150

IJ 2160

BF 2170

AF 2180

NF 2190

OL 2200

OH 2210

HG 2220

CO 2230

HA 2240

JN 2250

PM 2260

NE 2270

OA 2280

NF 2290

EP 2300

GO 2310

AG 2320

NN 2330

HE 2340

JB 2350

IJ 2360

ND 2370

IE 2380

MM 2390

JK 2400

AO 2410

OK 2420

KP 2430

GO 2440

OA 2450

GO 2460

CC 2470

KB 2480

PK 2490

tsx

stx qflg

Ida #1

sta cmdflg

bne delay

walk =* ;walk and rout

Ida #$80

sta cmdflg

/store 'return'

;address

;set 'quick' fig

/set 'walk' fig

delay =* /delay for raster

ldx |f0

Ida $d011

tay

and #$10

beqd4

tya

and i$ef

sta $d011

nopmop

ldy #$0c

d3 dex

bned3

dey

bned3

d4 sei

Ida #$39

sta $ddO4

stx $dd05

Ida #$81

sta icr

Ida era

/set clock timer

/in cia2

/enable timer a

/start timer

orafl

sta era

Ida f>newbrk

ldx #<newbrk

sta nmivc+1

stx nmivc

ldx sptr

txs

jmpfar =* /prepare jmpfar

Ida pchi

pha

Ida pclo

pha

Ida sreg

pha

ldabkby

jmp $2f2 /jmpfar entry

Shortest Catalog in BASIC 2.0?

Michael Gilsdorf, Toledo, OH

Here's a little four-liner for the C64 (or Vic) that will get you an

on-screen disk directory in a hurry. It features a pause function

that can be toggled on or off by pressing any key. No ML code -

so you can easily tailor it to your needs (change device or drive

number, display specific files, etc.). It may very well be the

shortest, fastest BASIC directory routine with a pause feature.

AI 10 t=l:x=12:n$=chr$(0):p=198:q=255:y=13

:printchr$(147):opent,8,0,"$0":get#t, a$

JJ 20 get#t,a$,a$,a$,a$,b$,c$

:printasc(b$+n$)*256+asc(a$+n$)c$;:fori=ttox

KD 30 get#t,a$,b$:printab;:next:print

:ifb$<>""thenx=y:waitp,q,t:pokep,O:goto20

EG 40 closet

Don't Assume Device 8!

Michael Gilsdorf, Toledo, OH

If you're writing a program that loads, saves, or otherwise ac

cesses the disk drive, don't assume the default is always de

vice 8, drive 0. Allow users the option to use drive 1 (for dual

drives) and devices 8, 9, 10 and 11 as well. Programs which

allow the use of multiple devices and drives eliminate the need

to have the user swap program and data disks.

So how do you tell which device numbers the user may want

to use? Simple! First, peek location 186 to tell what device

number was used to load the program file (last device number

accessed). Use this same number if the program will be load

ing any additional program files. This location is the same on

both the C64 and C128. Second, by opening and closing the

device, then reading the STatus, you can tell what devices are

present. Here's a short and simple BASIC routine that demon

strates this. It checks the last device number accessed, which

device numbers are present, and the type of drive.

PC 10 rem device number check — by michael gilsdorf

LP 20 dn=peek(186):print"device number";dn;

": accessed last"

AM 30 for dv=8 to 15: open 1, dv, 15:dosel

LK 40 print"device number";dv;": ";

:a$="not present":if st<0 then 70

OP 50 openl,dv,15,"uj":for d=l to

1000:next:input#1,a,a$:closel

GC 60 a$=right$(a$/4):if left$(a$,

then a$="drive unknown"

JA 70 print a$:next

Disk Partitions On The 1571

M. Garamszeghy, Toronto, ON

Being a developer of software for the C128 in both its native

mode and CP/M mode, I frequently send out program disks to

various people for 'beta testing' (i.e. testing of the programs

by others before release to the general public). In order to save

on disk and mailing costs, I sometimes send out more than one

program on a disk.

Sometimes I even send out CP/M and C128 software on the

same disk. Since I do not like using flippy disks, I have devel

oped a method to partition a 1541 or 1571 disk so that it can

be used by both CP/M and CBM DOS at the same time. The pro

gram listed below gives you just over 70K available to CP/M

and about 70K (for a single-sided 1541 disk) or 240K (for a

double-sided 1571 disk) for use by normal CBM DOS. (The

numbers include the inefficiencies in disk utilization caused by

the chosen CP/M format.)

12 Transactor

The program works by formatting the disk in CBM DOS mode

normally, then reserving tracks 1 to 17 with the DOS block-

allocate command. You then write a blank CP/M directory (i.e.

all bytes set to hex $e5) to track 3, and presto you have a C64

style CP/M disk for use in C128 CP/M mode (or C64 CP/M if you

have the CP/M cartridge) occupying the lower half of the disk

and a CBM DOS disk in the upper tracks.

It should be noted that there are some limitations to this tech

nique. Firstly, you must not validate or 'collect' the disk in

CBM DOS mode. This would de-allocate the reserved CP/M

tracks. Secondly, you must not put more than about 70K of

stuff in the CP/M area or else you will overwrite the CBM DOS

BAM, directory, and data tracks.

'partition.bas"

IE

BJ

EA

GG

GK

KF

DA

DK

OJ

CI

HF

JM

06

CG

GJ

JF

AA

EB

NK

FD

MB

FA

KI

PI

EE

JK

IL

10 rein

20 rem

30 rem

40 rem

50 :

60 dv=8

70 print

80 print

90 print

100 input

110 print

120 print

partition v 1.0

<c> 1988 herne data systems ltd.

: rem device!

{dr} partition vl.0"

" <c> 1988 herne data systems ltd."

print

"enter disk name,id code ";na$,id$

: print "insert new disk injievice .."dv

: print "then press a key to continue"

130 getkey a$

140 print : print "formatting disk => "na$+","+id$

150 open 15,dv,15,"nO:"+na$+V+id$

160 input§15,ex$: print

170printfl5,"i0"

180 for t=l to 17

190 print chr$(27)"jallocating cp/m space ... track =>"t;

200 for s=0 to 20

210 print#15,"b-a: 0";t;s

220 next s,t

230 open2,dv,2,"f'

240 print : print

250 print"creating cp/m directory ..." : print

260 for b=l to 256

270print§2,chr$(229);

280 next

290 for s=0 to 8

300 print chr$(27)"jwriting cp/m directory ... sector =>"s;

310print§15,"u2: 2 0 3";s

320 next

330 close 2 : close 15

340 print : print "=> done <=" □

Lruir
Top-Tech International, Inc.

Advanced Computer Systems

INDUSTRY FIRST - LIFETIME COMPUTER1

Lifetime Warranty—availablefor anv C-64 computer serviced and/or sold by us!!
Flat Service Rates — FAST, Professional Service

Full line of CBM computers, peripherals & parts; C-64 Power Supply with 3-yr warranty;
itasette — S 19.95; Hard-to-find parts (STR-54041); Service Manuals; V1C-20 andI S31 Datasette — S 19.95; Hard-to-find parts (STR-54041); Service Ma

C-64 Cartridges & Tapes: S3.00 ea.; 10 for S25.00 ("Pot Luck" — No e:
VISA. MASTERCARD, DISCOVER, AMEX

xchanges/ returns).

(215) 389-9901

Orders ONLY: FAX - (215) 389-5920 or CALL - (800) 843-9901
No extra chargesfor our Gls! We want vour business!!!

1112 S. Delaware Avc. Philadelphia. PA 19147 • (215) 389-9901

AWARD WINNING*

BIG BLUE READER 128/64

File Transfer Utility
Big Blue Reader 128/64 is ideal for those who use IBM PC compatible MS-
DOS computers at work and have the Commodore 128 or 64 at home.
Big Blue Reader 128/64 is not an IBM PC emulator, but rather it is a quick
and easy to use program for transferring word processing, text and ASCII
files between Commodore and IBM MS-DOS diskettes.
Both C128 and C64 applications are on the same disk. 1571 or 1581 disk

drive is required. Does not work with 1541 type drives.
BBR transfers 160K-360K 5.25 inch & 720K 3,5 inch MS-DOS disk files.

Big Blue Reader 128 supports: C-128 CP/M files. 17xx RAM exp. 40 & 80

column modes and more.

Big Blue Reader 64 is available separately only $29.95

BIG BLUE READER 128/64 only $44.95

Order by check, money order, or COD.

Free shipping and handling. No credit card orders please.

BBR 128/64 is available as an upgrade to current users

for $18 plus original BBR disk. Foreign orders add $4
CALL or WRITE for more information.

NEW - BIBLE SEARCH - Complete KJV New

Testament with very fast word and verse search

capabilities. Complete Concordance. Word(s) in text

can be found and displayed in seconds. Includes both

C64 and C128 mode programs. Please specify 1541,

1571 or 1581 formatted disk, only $25.00

To order Call or write:

SOGWAP Software

115 Bellmont Road; Decatur, IN 46733

Ph(219) 724-3900

'Big Blue Reader was voted the best utility program by RUN's 1988

Reader Choice Awards.

JASON-RANHEIM
CARTRIDGE MATERIALS

FOR YOUR COMMODORE 64 or 128

Quality Products

from the World Leader!

• Promenade C1 EPROM Programmer

• Game Type Cartridges

• Bank Switching Cartridges

• RAM/ROM Combination Cartridges

• Capture Archival Cartridge System

• Cases, EPROMS, Erasers, Etc.

Call or write for complete information!

Call Toll Free

from California

Tech Support

800-421-7731

916-878-0785

916-878-0785

JASON-RANHEIM
3105 Gayle Lane

Auburn, CA USA 95603

Volume 9, Issue 6 13

The ML Column

Two Kinds ofNumbers

by Todd Heimarck

I want to start by explaining how I write this column. The kind

editor (KE) lets me know two weeks before the deadline that

he needs to fill up some pages in the magazine and that I

should write another column. I say to myself, "Well, if it were

me, topic XYZ would be interesting." Sometimes I suggest the

idea to the KE, who usually says either "Fine" or "No, we did

that two years ago."

But I'm never sure if the XYZ topic interests you. You buy this

magazine; you should get a vote. If there's something you

want to see, let me know. Send a letter to: The ML Column,

Transactor, 85 West Wilmot St., Unit 10, Richmond Hill, ON,

Canada, L4B 1K7 (they'll forward it to Seattle). Or leave elec

tronic mail on CompuServe to id 76703,3051.

If you saw the last issue (Volume 9, Issue 5), you saw the let

ter from Barry Kutner. He wants to read more about in

put/output routines in machine language. Sounds good to me.

We'll look at I/O in the next issue.

This issue we'll finish the big numbers idea from last issue.

Kinds of people

Someone once said that there are two kinds of people in the

world: people who think there are two kinds of people and

people who don't.

For thousands of years, mathematicians have made a less trivial

distinction. They divide whole numbers into primes and compos

ites. Each prime number is divisible only by 1 and itself; it has no

other divisors. Every composite number is divisible by two or

more primes. For example, 650 breaks down into 2*5*5*13.

The numbers 2,5, and 13 are primes; 650 is a composite.

There's no formula for testing primes and there probably never

will be.

In the third century BC, a Greek mathematician named Eratos

thenes invented a way to generate prime numbers. His method,

The Sieve of Eratosthenes, is still in use because it's simple

and it works. You go through a list and cross off all numbers

that are composite. Whatever's left is a prime.

Let's say you want the prime numbers betwen 2 and 30. Write

down the numbers. The first prime is 2. Now you cross out all

multiples of 2 - the even numbers 4, 6, 8, 10, and so on. Next on

the list is 3, another prime. Cross out 6, 9,12,15, and so on. Al

though 4 comes after 3, it's been crossed off, being a multiple of

2, so you skip ahead to 5. The remaining primes (after some

more crossing out) are 7,11, 13,17,19,23, and 29.

Running the program

The program Primes calculates all prime numbers up to

8,386,549. To run it, just sys 49152. It prints them to the

screen. If you prefer, you can redirect output to a disk file or

the printer (with open 4,4:cmd 4:sys 49152, for example).

Be prepared to wait; it takes nearly four hours to print all of

the primes.

If you're curious about how I fit 8,000,000+ variables into a

program, I'll admit that I cheated a bit. You must have a RAM

Expansion Unit (REU) installed. I wrote it for a 1750 REU

(512K), but it should work just as well with the 1764 (256K)

or the 1700 (128K). If you have less than 512K, change the

variable REUTYPE at the end of the program. Putting a smaller

number into REUTYPE also makes the program run faster; theo

retically, every time you cut the value in half, you get half as

many primes, but the program finishes in half as much time.

It runs on a 64, but you can reassemble it to a new location in

the range 0-16384 and run it without modification on a 128. I

tested it at location 5000. Two notes for 128 users: Enter a

bank 15 command before SYSing to the program (to make the

Kernal ROM and REU registers visible) and don't run the pro

gram in FAST mode. The RAM Expander doesn't like FAST

mode.

Let the data write the program

This is one of those programs that's built around the data

structure. Once you figure out how to fit the data in memory,

the program almost writes itself.

Begin with the 1750 REU's memory of 512K. That should be

enough for 524,288 byte-sized variables. We don't need entire

bytes, though, because each variable has only two possible

14 Transactor

states: prime or not-prime. That amount of information can fit

into a bit. We'll arbitrarily decide that 1 means prime and 0

means composite. There are eight bits in a byte, so we have

room for about 4,000,000 variables.

There's one more trick to stretch the data. We can ignore all

even numbers, which always end with a zero in base two, any

way. We'll only deal with odd numbers. Byte 0 of the REU will

hold eight bits representing the odd numbers 1, 3, 5, 7, 9, 11,

13, and 15. In byte 1, the bits are 17-31. In byte 2, the bits are

33-47, and so on.

The program has two primary subroutines named FILLREU and

PRIMES. The first fills up memory with $ff bytes (because we

start out assuming that all odd numbers are prime until they're

crossed off the list). The second prints out the primes, while

whittling away at the composites.

Talking to the REU

The RAM Expansion Unit's 11 registers map into the addresses

$df00-df0a on both the 64 and 128. The important ones are:

• DMACMD ($dfOl): a multipurpose command register. When

you store a value here, the appropriate command executes.

In bits 0- 1, the value 00 means STASH, 01 means FETCH, 10

means swap, and 11 means verify. Bit 4 should be 0 if you

want the command to execute immediately (if it's a 1, the

command waits until a value is stored at $ffOO, which is

useful on the 128 in some situations). Bit 5 is the load flag.

If it's 0, the addresses in DMAADL and DMALO are automati

cally incremented after a memory access. If it's 1, the

addresses are restored to their original values. Bit 7 is the

execute flag; it signals the REU to begin the operation speci

fied in bits 0-1.

• DMAADL ($dfO2): two bytes that specify an address inside

the computer. In this and other registers, the low byte is

stored before the medium or high bytes.

• DMALO ($dfO4): three bytes that specify an address inside

the REU. Whether or not the addresses in DMAADL and

DMALO increment depends on bit 5 of DMACMD (after an

operation) and bits 6-7 of $df0A (during an operation).

• dmadal ($dfO7): two bytes that specify the number of

bytes to transfer. Up to 65,535 bytes can be transferred.

• dmaver ($dfOa): address control register. Bit 6 controls

whether the REU memory increments during an operation (0

means yes, 1 means no). Bit 7 controls whether the system

memory increments.

The fillreu routine begins by putting the number $ff into

MVAL, which happens to be location $OOff. We want to fill the

whole REU with $ff because ones represent prime numbers and

we assume that all numbers are prime until proven otherwise.

That one byte will fill all 512K because an $80 is stored in

dmaver. Next, we put 4096 into NBYTES (a shadow of

dmadal) and set the addresses in C64MEM and reumem (shad

ows of DMAADL and DMALO). Then copy the shadow registers

to the real REU registers in the COPYREGS subroutine. Then

loop 128 times (or 64 or 32 times for a 1764 or 1700 RAM

Expander).

When FILLREU is finished, the REU should contain nothing but

ones.

Skipping over even numbers

We've already decided that we don't neeo^to bother with even

numbers. That means the program's outer loop has to count

from 1 to 3 to 5 to 7, up to 8 million, two at a time.

In the inner loop where the multiples of x get zapped, we

can count 2 * x numbers at a time. For example, if we dis

cover that 5 is a prime number, the algorithm says that we

cross off every fifth number: 10, 15, 20, 25, etc. But we're

ignoring even numbers, so we needn't bother with 10, 20,

30, and the others. Start with 5, add 10 (making 15), add

ten (25), add ten (35), and we'll zap only the odd multiples

of 5.

The second major subroutine, called primes, contains mostly

JSRs to other routines in the program. Start out with the num

ber 1 and clear that bit (meaning that 1 is not prime). Then the

main loop (MAIN) begins. Add two to the number in BIG. BIG

is similar to bigsix from the last column, but it holds only

three bytes instead of six. A second three-byte number is TEST

(used for the inner loop). A third is DOUBLE, which is just BIG

times two.

The TOOBIG subroutine checks the value in TEST to see if the

loop (inner or outer) should end because the number has

grown too large.

Testprim tests TEST to see if it's prime. When a prime is locat

ed, two things happen: PRiNTrT prints it out (in ASCII decimal)

and the routines in CPLOOP zap all multiples of TEST.

The printit routine is copied almost exactly from MAKEDEC

from the BIGl.SRC program from last issue. It converts a big

binary number into printable ASCII characters that provide a

decimal (base ten) number. It also adds a comma and a space

to separate the numbers.

With a 512K REU, there is a large delay of about 20 minutes

between printing the number 3 and the number 5. There are a

lot of multiples of 3 between 9 and 8.4 million (in that

20-minute pause, more than a million bits are turned off).

Between 5 and 7, the delay is only about 12 minutes. The

delay gradually decreases as the primes get bigger. I inserted

the inc 53280 line to increment the border colour on the 64

and on the 128 in 40-column mode. When the border flashes,

you know the program is running and not locked up in an end

less loop.

Volume 9, Issue 6 15

If you don't want to wait 20 minutes between 3 and 5, make

REUTYPE a smaller number. $80 means 512K, $40 means

256K, and $20 means 128K. But there's no reason you

couldn't used a smaller number such as $04 or $02.

Making bricks

In a previous column, I said that if BASIC is a pile of bricks

from which you can build a house, then ML is like a pile of

clay from which you make the bricks to build a house.

The trick, I think, is to make the bricks small enough.

Makedec from last issue printed out a decimal number. It

needed only slight modifications to become printit this issue.

Programming is like musical composition. When you compose

music, you have to keep the entire structure of the piece in

mind at all times. But you can divide a symphony into move

ments. Movements break down into parts. Parts break down

into phrases. Those are the bricks.

When I wrote the primes subroutine, I divided the program

into small modules that did specific tasks. For example, I

typed jsr getmval, knowing that I would eventually write a

routine that would grab a byte from the REU and put it in

MVAL. I didn't have the routine written yet, but I knew how to

write it.

We've done enough with big three-byte and six-byte numbers.

In the next column, we'll look into I/O.

If you'd like to do something with big integers, here's an idea.

Set aside a 16K section of memory (in the computer, not the

REU). If you store only odd primes, that's enough memory to

handle values up to 262,143. Next, ask the user to input a

number up to about 68 billion (see the GSTRING routine from

BlGl.SRC in Volume 9, Issue 5). Now figure out its factors. If

the binary number ends with a zero, it's divisible by two, so

print a 2 and shift to the right. If not, take the square root (see

BIG2.SRC) and call that MAX. That's the highest possible factor

if it is a square. Run through the prime numbers from 3 to

MAX and see if they divide into the target number (see Volume

9, Issue 2). If you find a factor, calculate the new value of MAX

and repeat the loop until you find all of them.

Listing 1: primes.src

FG 10 rem save"primes.src",8

F0 20 sys700

OF 30 *=49152

AJ 40 .opt oo

KP 50 mval = $ff

CM 60 scmnd =144

0G 70 fcmnd =177

Hfl 80 chrout = $ffd2

LH 90 dmacmd = $d£01 ; command for reu

PC 100 dmaadl = $dfO2 ; c64 memory address

JP 110 dmalo = $d£04 ; reu memory address

KE 120 dmadal = $d£07 ; number of bytes

zero-page location for value to fetch or stash

stash command

fetch command s

BH

CA

60

HK

GJ

KC

CH

EE

PD

GD

LG

BB

AF

CP

01

GA

GC

EB

HP

EN

ON

KK

IL

ON

NO

DD

KA

BB

HE

FB

MP

DI

PN

JH

IL

ME

GD

AH

K0

IL

DM

MK

IA

MJ

EH

0G

AL

NJ

DP

KA

IF

EH

LJ

HI

NL

MG

CJ

JF

0M

AM

GL

GD

IL

KI

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

395

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

dmaver

•

= $df0a / if

jsr

jsr

rts

fillreu =

;

frloop

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

sta

sta

jsr

ldx

jsr

Ida

dex

bne

Ida

Ida

Ida

jsr

rts

copyregs =

crloop

fetch:

stash =

doit

primes

main

more

ldy

Ida

sta

dey

bpl

rts

s *

Ida

bne

: *

Ida

sta

rts

= *

jsr

jsr

jsr

jsr

jsr

jsr

bcc

rts

jsr

beq

fillreu

primes

k

#$ff

mval

#$80

dmaver

#<4096

nbytes

#>4096

nbytes+1

#<mval

c64mem

#>mval

c64mem+l

#0

reumem

reumem+1

reumem+2

copyregs

reutype

stash

address increments

; fill with Is

; print all primes

; the fill byte

; the location in 64 memory

; don't increment 64 memory

; reu register

; 4k at a time

; number of bytes

; location in 64 memory

; location in reu memory

; copy to reu registers

; stash many times

#>4096:sta dmadal+1

frloop

|1:sta nbytes ; from now on, one byte at a time

#0:sta nbytes+1

t$c0:sta

copyregs

*

16

c64mem,y

dmaadl,y

crloop

ffcmnd

doit

fscmnd

dmacmd

numberl

getmval

clbit

addtwo

big2test

toobig

more

testprim

main

jsr printit

jsr times2

dmaver ; don't increment any addresses

; seven registers

; from memory

; to the reu

; fetch command

; branch always

; stash command

start with $000001

fetch bit for 1

clear that bit

add 2 to big

copy big to test

is it too big

keep going if ok

else get out of primes (because we're done

if equal, not a prime

if not equal, we have a prime, so print it

multiply by two

16 Transactor

PD

LM

EF

HK

NF

DM

BO

EL

HE

FD

LK

BF

IJ

DK

BP

KH

OA

DH

KJ

MJ

KK

GL

KE

NL

JB

GI

HJ

MF

NK

EH

GK

PH

IA

GI

DF

OM

PJ

GF

KO

HH

OP

EO

CL

DH

01

HD

LM

BG

EM

IF

AA

MG

BB

LO

DG

IA

FA

KF

HC

DC

JH

GE

KN

760 c

770

780

790

800

810

820

830 ;

jploop]sr composit ;

inc 53280

jsr toobig

bcs main ;

jsr getmval ;

jsr clbit ;

jmp cploop

840 numberl = * ;

850

860

870

880

890

900

910

920 ;

930 1

940

950

960

970

980 ;

990 c

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

Ida #1

sta big

ldaiO

sta big+1

sta big+2

jsr big2test

rts

)ig2test = *

Ida big:sta test

add test = test + double

too big, back to the next prime

fetch from reu

clear that bit, it isn't a prime

start with the number $000001

copy three bytes from big to test

Ida big+1:sta test+1

Ida big+2:sta test+2

rts

jetmval = *

Ida test

sta reumem

Ida test+1

sta reumem+1

Ida test+2

sta reumem+2

jsr rotreu

Ida reumem:and §7

sta bitloc

get a value from reu and put it in mval

copy test to reumem

; rotate reumem to right

; bit location (0-7)

jsr rotreu:jsr rotreu:jsr rotreu

jsr copyregs

jsr fetch

Ida mval

rts

;

rotreu lsr reumem+2:ror

;

clbit = *

ldx bitloc ;

Ida mval

and bitoff,x ;

sta mval

jsr copyregs

jsr stash ;

rts

i

addtwo = *

dc

Ida big

adc |2

sta big

Ida big+1

adc 10

sta big+1

Ida big+2

adc 10

sta big+2

rts

.

; get the byte

reumem+1:ror reumem:rts

clears a bit (call fetch first)

bit location 0-7

value in memory

clear the bit

store back in reu

adds two to big

ON 1390

GA 1400

CC 1410

KN 1420

MA 1430

GC 1440

JA 1450

NE 1460

KC 1470

EL 1480

IE 1490

DE 1500

JI 1510

IB 1520

IG 1530

ML 1540

HI 1550

ON 1560

PI 1570

KN 1580

DM 1590

LO 1600

FL 1610

EF 1620

CC 1630

AF 1640

BE 1650

JC 1660

IA 1670

MA 1680

DF 1690

AF 1700

KC 1710

DM 1720

JJ 1730

DG 1740

HM 1750

PO 1760

BB 1770

AO 1780

EH 1790

EL 1800

AM 1810

BE 1820

NE 1830

MB 1840

AL 1850

GK 1860

EM 1870

FB 1880

LP 1890

NA 1900

CG 1910

OG 1920

PJ 1930

EH 1940

00 1950

AC 1960

NH 1970

BE 1980

JF 1990

HC 2000

OK 2010

HL 2020

HM 2030

IO 2040

toobig = * ;checks test for out of range (about 8 million for 512k reu)

Ida test+2 ; high byte of test

cmp reutype

rts ; carry set means error/too big, clear means it's ok

testprim = *

jsr getmval

ldx bitloc

and biton,x

rts

printit

mdlpl

mdlp2

mdcool

priloop

prend

= *

Ida

ldx

stx

Ida

asl

rol

Ida

crop

sbc

sta

php

lsr

pip

rol

dec

bne

Ida

pha

Ida

bne

pla

beq

jsr

jmp

jsr

Ida

Ida

rts

#0:pha

124 ; 3 bytes = 24 bits

count

SO:sta temp

test:rol test+1:rol test+2

temp

temp

#10:bcc mdcool

#10

temp

test

test

count

mdlp2

temp:ora #48 ; make it an ascii number

test:ora test+1:ora test+2

mdlpl

prend

chrout

priloop

big2test

|44:jsr chrout

132:jsr chrout

put test back

comma

space

times2 = *

Ida big:asl:sta double

Ida big+1:rol:sta double+1

Ida big+2:rol:sta double+2

rts

composit = *

dc

Ida test:adc double:sta test

Ida test+1:adc double+1:sta test+1

Ida test+2:adc double+2:sta test+2

rts

reutype .byte $80; $80 means 512k, $40 is 256k, $20 is 128k

biton .byte 1, 2, 4, 8, 16, 32, 64, 128

bitoff .byte 254, 253, 251, 247, 239, 223, 191, 127

c64mem = e

reumem = e+2

nbytes = e+5

big = e+7

test = e+10

double = e+13

bitloc = e+16

count = e+17

temp = e+18

2 bytes (64k)

3 bytes (512k)

2 bytes

3 bytes

3 bytes

3 bytes

lbyte

1 byte

1 byte

Volume 9, Issue 6 17

Listing 2: primes.gen

HO 100 rem generator for "primes.obj"

FL 110 n$="primes.obj": rem name of program

KB 120 nd=468: sa=49152: ch=70208

(for lines 130-260, see the standard generator on page 5)

AC 1000

10 1010

CG 1020

B6 1030

FP 1040

OC 1050

MB 1060

PL 1070

CE 1080

RI 1090

AL 1100

BI 1110

D6 1120

JI 1130

00 1140

NB 1150

LB 1160

KG 1170

JF 1180

AK 1190

JK 1200

FC 1210

IB 1220

CC 1230

ID 1240

GD 1250

IA 1260

LB 1270

HI 1280

GF 1290

AF 1300

JO 1310

JL 1320

PO 1330

JB 1340

HA 1350

01 1360

EL 1370

00 1380

JJ 1390

BM 1400

LN 1410

NJ 1420

AM 1430

LB 1440

JA 1450

BP 1460

JN 1470

EK 1480

KE 1490

IA 1500

CB 1510

AM 1520

JD 1530

OD 1540

DG 1550

DG 1560

EJ 1570

AK 1580

data 32,

data 255,

data 169,

data 218,

data 0,

data 193,

data 83,

data 169,

data 169,

data 218,

data 83,

data 153,

data 177,

data 96,

data 250,

data 32,

data 193,

data 193,

data 37,

data 250,

data 219,

data 221,

data 193,

data 223,

data 96,

data 223,

data 141,

data 193,

data 192,

data 83,

data 78,

data 193,

data 204,

data 99,

data 2,

data 0,

data 0,

data 205,

data 228,

data 72,

data 141,

data 193,

data 230,

data 141,

data 46,

data 173,

data 193,

data 192,

data 121,

data 210,

data 173,

data 220,

data 193,

data 222,

data 173,

data 193,

data 224,

data 16,

data 239,

7, 192, 32,

133, 255, 169,

0, 141, 217,

193, 169, 255,

141, 213, 193,

141, 215, 193,

192, 174, 195,

16, 141, 8,

1, 141, 217,

193, 169, 192,

192, 96, 160,

2, 223, 136,

208, 2, 169,

32, 157, 192,

192, 32, 11,

37, 193, 144,

240, 239, 32,

32, 166, 193,

193, 176, 222,

192, 76, 137,

105, 192,

128, 141,

193, 169,

141, 212,

169, 0,

141, 216,

193, 32,

223, 202,

193, 169,

141, 10,

6, 185,

16, 247,

144, 141,

32, 193,

193, 32,

1, 96,

54, 193,

238, 32,

32, 193,

192, 169,

193, 169, 0,

193, 32, 174,

141, 222, 193,

193, 173, 221,

173, 222, 193,

193, 141, 215,

216, 193, 32,

41, 7, 141,

32, 240, 192,

192, 32, 95,

216, 193, 110,

96, 174, 228,

193, 133, 255,

192, 96, 24,

141, 219, 193,

141, 220, 193,

141, 221, 193,

195, 193, 96,

193, 61, 196,

162, 24, 142,

230, 193, 14,

46, 224, 193,

193, 201, 10,

230, 193, 8,

222, 193, 206,

230, 193, 9,

13, 223, 193,

104, 240, 6,

193, 32, 174,

255, 169, 32,

219, 193, 10,

193, 42, 141,

42, 141, 227,

193, 109, 225,

223, 193, 109,

173, 224, 193,

193, 96, 128,

32, 64, 128,

223, 191, 127

141, 220,

192, 96,

173, 220,

193, 141,

141, 214,

193, 173,

240, 192,

228, 193,

32, 240,

192, 165,

215, 193,

193, 165,

32, 83,

173, 219,

173, 220,

173, 221,

96, 173,

32, 193,

193, 96,

229, 193,

222, 193,

46, 230,

144, 5,

78, 222,

229, 193,

48, 72,

13, 224,

32, 210,

192, 169,

32, 210,

141, 225,

226, 193,

193, 96,

193, 141,

226, 193,

109, 227,

1, 2,

254, 253,

96, 169

10, 223

16, 141

193, 169

141, 214

193, 32

99, 192

208, 245

0, 141

223, 32

212, 193

96, 169

1, 223

192, 32

174, 192

32, 44

32, 144

208, 32

192, 32

1, 141

193, 141

173, 219

193, 141

224, 193

193, 173

224, 193

173, 214

32, 240

192, 32

255, 96

110, 214

255, 61

192, 32

193, 105

193, 105

193, 105

224, 193

192, 174

169, 0

169, 0

46, 223

193, 173

233, 10

193, 40

208, 219

173, 222

193, 208

255, 76

44, 32

255, 96

193, 173

173, 221

24, 173

222, 193

141, 223

193, 141

4, 8

251, 247

□

Bits & Pieces I:

The Disk

From the famous book of the same name, Transactor

Productions now brings you Bits & Pieces I: The Disk!

You'll thrill to the special effects of the screen

dazzlersi You'll laugh at the hours of typing time

you'll savel You'll be inspired as you boldly go

where no bits have gone before!

"Extraordinarily faithful to the plot "Absolutely

of the book... The BAM alone is magnetic!!"

worth the price ofadmission!" Gene sysca||

Vincent Canbyte

"Ifyou mount only one bits disk in 1987, make it this

one! The fully cross-referenced index is unforgettable!

Recs Read, New York Tl$

BITS & PIECES I: THE DISK, A Mylar Film, in association with Transactor Productions.

Playing at a drive near you!

Disk $8.95 US, $9.95 Cdn. Book $ 14.95 US, $ 17.95 Cdn.

Book & Disk Combo Just $ 19.95 US, $24.95 Cdn!

18 Transactor

The Edge Connection

Societies, shows and disk drive voodoo

by Joel Rubin

The Toronto pet Users' Group (5333 Yonge St., Box 116, Wil-

lowdale, Ontario, Canada, M2M 6M2, telephone +1 416 733

2933, 1200-1700 Eastern Time), which stretches back to the

time when Jack Tramiel was making watches, calculators, and

the brand new PET 2001, seems to be gradually coming back

after a moribund period. They are getting out newsletters,

albeit a few months after the date on them, and the one office

worker (formerly three) is working on filling disk orders, and,

one of these days, they may even get out renewal notices.

Jameco Electronics (1355 Shoreway Rd., Belmont, Califor

nia, USA 94002, telephone +1 415 592 8097) is closing out

ics, including the Commodore custom chips which they were

carrying. The chips that they still have are reduced in price,

but some are already sold out.

The March, 1988 issue of the newsletter of the Commodore

Owners Workshop (c/o Home Computing Center, Tanforan

Park, San Bruno, CA), a local users' group just south of San

Francisco, warns that Datel's MIDI interface, while it may

work with many European programs, will not work with the

American programs written to the Passport standard. Con

versely, it is presumably the case that those who buy a Pass

port or Passport-compatible interface will not be able to run

European software on it. God must have loved standards

because He made so many of them.

Anti-rental law in the States?

According to a blurb in the 24 April Christian Science Moni

tor, Senator Orin Hatch (Republican, Utah) has introduced

legislation to prohibit firms from renting or loaning software.

The law is based on the Record Rental Act of 1985, which was

passed when phonograph record producers complained that

stores which rented records were, in fact, encouraging illegal

copying and thus costing them money. (One can still borrow

recordings from public libraries in the U.S.A., however.)

On the other hand, the loaning of video cassettes is a very big

business, with the full co-operation of the recording industry,

and many of the video stores also rent Nintendo cartridges

which are, technically, software - although cartridges are usually

more expensive to pirate than to buy. The Senator did accept an

amendment which would exempt libraries at non-profit organi

zations - for example, a computer lab at a university.

CLONEDEX

The Fourteenth West Coast Computer Faire was held the

weekend of March 17, back at its old home at Brooks Hall and

the Civic Auditorium, near San Francisco City Hall, instead of

the more impersonal and newer Moscone Center where it had

been held the past few years. There was a point to this - the

theme of the show was "Legends of the West", and the Faire

was attempting to regain its glory years, back when the Apple

I was sold by its creators from one of the mini-booths or when

Adam Osborne introduced the first luggable.

Lee Felsenstein, the designer of the Processor Technology Sol

and of the Osborne I, held a meeting of the long defunct Home

Brew Computer Club; many of the Silicon Valley giants grew

out of their meetings at Stanford. This was, for the most part,

an excursion into nostalgia, and 'where are they now'. Jim

Warren, the founder of the Computer Faire, and of Infoworld,

had a seminar on the future. I hope that Jim's visions are more

valid than the view one got from the present, which seems to

be full of 80x86 clones.

Whereas Jim used to patrol the Faire on roller skates, the head

of the company which now owns the Faire (The Interface

Group of COMDEX fame, and macdex infame) was busy buy

ing the Sands Hotel in Las Vegas. A seminar on older comput

ers, which I thought might be interesting for 8-bit Commodore

owners, turned out to be mostly about marketing orphans. Bob

Cook, of Sun Remarketing, told how he built a multi-million

dollar business selling Apple Ills and Lisas with Mac compati

bility enhancements, mostly on Apple's money.

The keynote address was given by Philippe Kahn, of Borland

International. Mr. Kahn spent some time bad-mouthing Lotus

and, in fact, the newspaper here reported that, a week or so later,

he was caught putting copies of an anti-Lotus article beneath the

doors of a hotel at a Palm Springs event. Of course, Lotus ver

sion 3.0 has been vapourware for so long that a lot of people

have been bad-mouthing Lotus, but it's in bad taste for a com

petitor to do so. Mr. Kahn said he had heard that Lotus 1-2-3

Volume 9, Issue 6 19

version 3.0 had acquired the internal name "Titanic", and that

he hoped his company would make the iceberg.

Mr. Kahn did say one thing which Amiga programmers might

want to keep in mind. He said that many programmers were

becoming lazy because, faced with faster processors, and huge

amounts of memory, they felt that they need not optimize for

time or speed the way they would have had to on an older com

puter. He warned such programmers that multi-tasking would

eat much of the speed they counted on; and that new graphics

standards would eat much of the RAM; and that, if they aren't

careful, their badly written programs will be swapped out to

disk faster than one can say " 128K Mac" (my phrase).

Of course, there wasn't much there for Commodore owners, or

even Amiga owners. For 8-bit Commodores, there was a local

store which sells both new and liquidated software, a couple of

CP/M users' groups, Softdisk {Loadstar), Virgin/Mastertronic

(which is going to take its Leisure Genius line back from Elec

tronics Arts in the U.S.), and Elcomp selling its old C64 books

and software at a discount, and that was just about it. By the

way, Softdisk wants to put out an Amiga version, and is look

ing for contributors.

There was an Amiga store, a few games available, and a users'

group. Poor Person Software (3721 Starr King Circle, Palo

Alto, CA 94306, telephone +1 415 493 7234) had an Amiga

program called Thinker. In essence, Thinker is a word proces

sor which allows you to click on a phrase and either reference

some more text or a picture. They claim that it's Hypertext. I

don't know enough about the definition of Hypertext to decide

that. (Speaking of Hypertext, someone ought to port some

thing more or less like HyperCard to the Amiga. I'm not sure

that it's quite as great as its boosters claim, but what it has

done is to allow a lot of people whose expertise is outside the

computer field to write programs reflecting their expertise on

the Mac. HyperCard may have its deficiencies as a program

ming language, but many of the programs written in it proba

bly wouldn't have been written without it, and some of these

are quite useful.)

Humour, probably not intentional

If you can manage, see if you can find a copy of Transactor's

cousin magazine, Commodore Computing International, for

the month of April (Fools'). On page 7, there's an ad for the

company well-known for importing American software and

hardware into Britain. One of the products being advertised is

a nybbler/parameter package. You are, of course, familiar with

the disclaimers that follow such ads. "While we don't con

done piracy...", or "We strongly condemn piracy..." or some

such blurb follows the claim that "Our package copies more

copy-protected programs than any other." Well, it appears that

there were two versions of this ad, and someone accidently (or

because of a Freudian slip, or because they had just gotten

fired and wanted to get back at the company or for some other

reason) mixed them - leading to the statement: "While we

strongly condone piracy..."

Reading 1581 'credit' messages

Also, on the humour front, if you have a 1581 disk drive, try

entering the following program at disk RAM address $0300,

and executing it:

error = $ff3f

org $0300

Ida #$79

jmp error

Then, read the error channel. You will get the author's credit

message. If you substitute $7a for $79, you will get a dedica

tion to one of the authors' wives. Read the error channel using

GET# rather than input#, especially with $7A, since the error

number gets printed as 7:, and that colon plays havoc with

INPUT#.

100 get#15,a$:print a$:if st=0 goto 100

Relative files and 96

In recent Commodore disk drive manuals, you have been

instructed to give the relative file positioning command, p, in

the form:

print#15,"p"chr$(sa or 96)chr$(reclo)

chr$(rechi)chr$(ofs)

because in BASIC 7.0, RECORD ends up sending the disk drive

this message. (This is because Kernal OPEN sets the $60 bits in

the secondary address, and RECORD looks up the secondary

address from the file number.)

I have looked at 1541, 1571, and 1581 disassemblies, and,

with all of these drives, it doesn't matter. On the 1541 and

1571 the p command begins at $e207. On the 1581, it is vec

tored through to $alal. All of these routines are the same,

except for specific addresses. The beginning looks like this:

jsr syntax

Ida buf+1

sta tempsa

jsr getchannel

this is the secondary address

If a secondary address is greater than 18, getchannel lops

off the high nybble, so if you add 96 to the secondary address,

not only won't the gods of relative files appreciate your sacri

fice, but the disk drive will just subtract it off and they won't

even know about it. I use the word "gods" advisedly -1 think

the source file for Commodore DOS has just gotten too compli

cated, with too many patches between the olde 2040 and to

day. And, since no one really knows the whys and wherefores

of some of the bugs, Commodore is just trying voodoo debug

ging. That sounds like programmers' hell - you've got this

huge source file with zillions of patches, and half the program-

20 Transactor

mers don't work at Commodore anymore, and you've got to

try to maintain it!

I don't really know what's going on with secondary addresses

16, 17, and 18. Since most routines in the disk drive also lop

off the high nybble of these three numbers, 16 and 17 yield the

load/save channels of 0 and 1, respectively, and 18 usually is

equivalent to 2. (Channel 0 is not used for C128 fast loads.)

So, you can't use 16 or 17 for relative files, and 18 may con

fuse the disk drive.

Where you do have to 'or' 96 to the secondary address is when

you call SECOND and TKSA. Actually, SECOND 'or's $20 to the

secondary address, and TKSA 'or's $40, so you don't have to

use $60 - just $40 for SECOND and $20 for TKSA. But, who

wants to remember that? Doing both ($60) always works. I

think that the problem is that, because of handshaking between

the computer and the disk drive, the disk drive must be told to

be both a talker and a listener whenever you send or receive

data.

A neat 1581 trick from West Chester

It turns out that on the 1581, you can have the 128 boot sector

wherever you want. Look at an official C128 1581 CP/M disk.

(Not one with the Miklos G. format!) You'll notice that there's

an autoboot user file on it ("copyright cbm 86"). When you

boot, you send the string ui to the disk drive, and with the

1581, ui forces a search for and (if found) execution of a &

file called "copyright cbm 86". What is in this mysterious

file? In the case of a 1581 CP/M disk, it diverts the sector trans

lation vector so that the first time the disk drive attempts a

read, if it attempts to read track I/sector 0, it actually reads

track 40/sector 5. After the first read, even if the disk drive

was trying to read another sector, the translation vector is

restored. The boot sector is to be found on track 28/sector 5;

the real track 1/sector 0 is the first sector of the CP/M directory.

temptr

* autoboot file on 1581 *

* cp/m disks, disassembled*

* with merlin's *

* disassembler *

jobs

hdrs

vtransts

jcbmbtrtn

org $300

= 2

= $1b
= $lb8

= $ff5a

sei

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

vtransts

savead

vtransts+1

savead+1

Ktemptr

vtransts

§>temptr

vtransts+1

#$81

$6d

jcbmbtrtn

ldx

Ida

cmp

bne

ldy

ldx

bne

ldx

dex

bne

ldx

stx

ldx

stx

Ida

sta

Ida

sta

hex

ds

$83

jobs,x

#$80

:no

$99

hdrs+l,y

:no

hdrs,y

:no

#$28

hdrs,y

»5

hdrs+l,y

savead

vtransts

savead+1

vtransts+1

4c

2

;is it a read job?

;is it on track 1?

;is it on sector 0?

;if so, track 40

; sector 5

; now, restore tran

; jump

; dummy address

:no

savead

Further applications of this technique are left to the reader. Of

course, this effort is, for the most part, wasted in CP/M, since

very few 1581s are hooked up as device 8, and CP/M must be

booted from device 8. In the U.S., at least, one can no longer

buy a C128 - only a C128D, and the separate 1571, if not offi

cially dead, is almost impossible to find. The 1571 in the

C128D has no DIP switches and changing the device number

of the built-in 1571 from device 8 involves the old pad-cutting

technique. However, the pads are not as accessible as they

were in 1541s. If you have a 128D and a 1581, however, you

can try booting from the 1581 by shutting off your 1581, flip

ping the DIP switches to make it device 8, soft-setting the built-

in 1571 to device 9 (open 1,8,15," uO>"+chr$(9)), turning on

the 1581, and then booting. The 1581 must be set to device 8

by dip switches, because when it receives the ui command

from boot, it will read the switches.

Let's look at this real boot sector, track 40, sector 5. What it

does is to fill $1000-$feff in bank 0 with null's, and then read

in the four logical sectors beginning at track 40, sector 6, to

$e000. These are the same as the two 512-byte physical sec

tors on side 0, beginning at track 39, sector 4. It then jumps to

the Z-80 code beginning at $e000.

fillsp

hdcOc

hdcOd

hddOO

z80code

inniucr

setbnk

ioinit

setlfs

setnam

open

chkout

clrchn

z80on

chrout

z80wake

= $1000

= $dcOc

= $dcOd

= $ddOO

= $e000

= $ffOO

= $ff68

= $££84

= $ffba

= $ffbd

= $ffcO

= $ffc9

= $ffcc

= $ffdO

= $ffd2

= $££ee

org $b00

txt 'cbm

ds 6

Volume 9, Issue 6 21

jsr

Ida

sta

* fill $1000 -

ioinit

#S3f

nnnucr

;*****************

$feff w/ 0 *

Ida

sta

Ida

sta

ldx

tay

:lup sta

iny

bne

inc

dex

bne

#>fillsp

$21

Kfillsp

$20

t$e£

($20),y

:lup

$21

:lup

sta mmucr ;bank 15

* open 15,8,15,

Ida

ldx

tay

jsr

Ida

tax

jsr

Ida

ldx

ldy

jsr

jsr

Ida

ldx

ldy

jsr

Ida

ldx

jsr

Ida

sta

Ida

sta

Ida

sta

Ida

sta

name *

l$f
#8

setlfs

10

setbnk

14

Kname

#>name

setnam

open

#$27 /these are physical sectors

14 /logically 40/6,7

#$e0

readsec

#$27 /logically

#5 ;40/8,9

readse2

#$c3 ; z-80 jump

z80wake

|<z80code

z80wake+l

f>z80code

z80wake+2

#$3e

mmucr

jmp z80on

* read track .a, sector x

* side 0 to .y*256
*

* this routine reads physical

* sectors, so 512 bytes

readsec

readse2

:lup2

sty $21

sta track

stx sect

ldx #$f

jsr chkout

ldy 16

Ida ecmd-l,y

jsr chrout

dey

bne :lup2

jsr drchn

bit hdcOd

jsr getbyt

ldx 12

ldyfO

sty $20

:lup3 jsr getbyt

sta ($20),y

iny

bne :lup3

inc $21

dex

bne :lup3

Ida hddOO

and i$e£

sta hddOO

rts

getbyt sei

Ida hddOO

eor #$10

sta hddOO

Ida #8

:wait bit hdcOd

beq :wait

Ida hdcOc

rts

* this is a burst command *

* sent to the disk drive *

* in reverse, beginning with *

* the first 'u' in name *

ecmd

sect

track

hex 01

hex 00

hex 00

hex 00

txt '0'

;read 512 bytes—1 physical sector

;read and—physical sector, side 0

name txt 'uOMcOO ; set the status byte

The four (logical) sectors of Z-80 machine language then par

tially replace the boot ROM in booting CP/M.

Save time on 1581 partitioning

When you make a partition on a 1581, if you want to make a

directory, you have to enter the partition and do a long format

on it. Typically, you format the disk, make partitions, and for

mat the partitions - so you end up formatting the disk twice.

Since the 1581 does not appear to use the disk or partition ID

at the lowest level (the way the Commodore GCR drives do),

you can save time by just doing a short format on the partition.

But, there are complications.

If, within a partition, you try to write on a partition sector (e.g.

doing a short format) you will get error 73 (dos mismatch)

unless byte 2 of sector 0 of the first track of the partition con

tains a d ($44). You can avoid this by two methods - either

write from the root or parent partition, or use the job queue. If

you now do a short format in the directory, you will get a

directory, but it will look a bit strange because it will have

chr$(0) + chr$(0) for its ID. So, you should now write the ID

22 Transactor

to bytes 22-23 of sector 0, and to bytes 4-5 of sectors 1 and 2.

See the partition program below for details.

BL 100 rem faster 1581 partition—avoids full formatting of partition

OE 110 rem by joel m. rubin

FO 120 rem run from parent directory

FO 130 input"device number";dn

CI 140 openl,dn,15,"m-r"+chr$(252)+chr$(255)

NE 150 getil,a$:ifasc(a$)<>36thenprint"not a 1581":run

OJ 160 inpuf'name of partition";na$

LN 170 input"first track";ft

PH 180 input"number of tracks (including 1 overhead)";nt

KJ 190 ns=40*nt:nh=int(ns/256):nl=ns-256*nh

CN 200 printil;"/"na$"/"chr$(ft)chr$(O)chr$(nl)chr$(nh)"/c"

DI 210 inputil,e,e$,t,s:ifethenprinte;e$t/s:stop

F6 220 open2,dn,2,ni0":printtl,"b-p:2,2":printlf2,"d";:rem dos version

PN 230 printfl,"u2:2"0;ft;0:inputil,e,e$,t,s:ifethenprinte;e$t;s:stop

MC 240 print"name of directory ";na$

FC 250 input"";nd$

HB 260 input"id of directory";id$

LO 270 iflen(id$)<>2goto260

LA 280 print#1,"/"na$:inputfll,e,e$,t,s:ife<>2thenprinte;e$t;s:stop

AN 290 print#l;"nO:"nd$:input|l,e,e$,t,s:ifethenprinte;e$t;s:stop

NO 300 close2:open2,dn,2,"ifO"

JO 310 fori=0to2

PA 320 print#l/"ul:2";0;ft;i:inputfl,e,e$,t,s:ifethenprinte;e$t;s:stop

NJ 330 printfl/"b-p:2"(-22*(i=0))+(-4*(i<>0)):printt2,id$;

BL 340 printfl,"u2:2"0;ft;i:inputfl,e,e$,t/s:ifethenprinte;e$t;s:stop

CG 350 next

OD 360 close2

FO 370 print"done—in new directory!"

Save time on 1571 single-sided formatting

There are two ways to do single-sided formatting on the 1571.

First, you can do double-sided formatting, and then tell the

BAM that you really did a single-sided format. Cp/m does it this

way. This isn't too slow, but it destroys flippies. Of course, the

Aligner General has determined that flippies may be danger

ous to the health of your system, but there are some programs

which come on flippies and are inconvenient to use in any oth

er format.

On the other hand, you could do what GEOS does - you can go

into 1541 mode before you format. This is less dangerous to

flippies. However, 1541 formats are notoriously slow. Here is

a third method: you use exactly that part of the 1571 format

routine, in the disk ROM, which formats side 0.

GI 100 printchr$(147)chr$(14);

OE 110 prinf'Format a single-sided disk using the 1571 format routine

OP 120 print" (c) 1989 Joel H. Rubin-commercial rights reserved

DD 130 openl, 0

OK 140 fori=lto30:e$=" "+e$+chr$(157):next:d$=chr$(17)+chr$(17)

HN 150 u$=chr${145)+chr$(145)+chr$(145)

OG 160 printd$"Insert disk to be formatted."d$

OM 170 printd$"Drive Number: "e$"8"chr$(157);:inputil/dn:print

PI 180 if(dn<8)or(dn>ll)thenprintdeuu:gotol70

MG 190 open2,dn,15,"m-r"+chr$(103)+chr$(254):rem irq at $fe67 should be jmp ()

NF 200 getf2,a$:ifa$<>chr$(108)thenclose2:printd$"NOT A C'1571!"uu:gotol70

BL 210 printd$"Disk name: "l$"new"chr$(157)chr$(157)chr$(157);:inputfl,dn$:print

OJ 220 if(len(dn$)=0)or(len(dn$)>16)thenprmtu$;:goto210

BA 230 print:print"Insert disk to be formatted!"

EA 240 x=rnd(-ti):id$=chr$(65+26*rnd(0))+chr$(65+26*rnd(0))

F6

IK

JB

CK

OP

IP

H6

DE

MA

JI

NG

JO

MI

DB

LK

BN

OA

AP

JF

6M

NG

EN

BC

HC

GA

Hfl

BN

HK

NB

FP

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

AD 550

printd$"Disk id: "l$idchr(157)chr$(157);:inputfl,id$:print

iflen(id$)<>2thenprintu$;:goto240

printi2,"uO"chr$(19O)"mri:bu=3:rem 1571 mode, working with buffer 3

print§2,"m-w"chr$(18)chr$(0)chr$(2)id$

printi2,"m-w"chr$(59)chr$(0)chr$(l)chr$(240):rem format 8 $3b

printi2,"m-w"chr$(162)chr$(2)chr$(l)chr$(36):rem < 36 tracks

printi2,"m-w"chr$(178)chr$(l)chr$(l)chr$(0):rem side 0

printf2,"m-w"chr$(bu)chr$(0)chr$(l)chr$(240):rem format

gosub470

ifc>lthenprintd$"Format error!":goto510

printf2,"iO":bu=4:rem iO reads 18/0 into buffer 4

input|2,x,x$,t,s:ifxthenprintx;x$;t;s:stop

printi2,"m-w"chr$(2)chr$(7)chr$(2)"aIIchr$(0):rem--right dos, single sided

tr=l

printi2,"m-w"chr$(bu)chr$(0)chr$(l)chr$(144):rem write 18/0 w.o. err 73

gosub470:ifc>lthentr=tr+l:iftr<=3goto390:rem try 3 times to write

iftr=4goto510

print|2,"iO":print|2,"nO:"dn$

input#2,x,x$,t,s:ifxthenprintx;x$t;s:stop

open3,B,2,"i":printf2,"ul:2,0,l,0"

input|2,x,x$,t,s:ifxthenprintx;x$t;s:stop

printd$"It worked!":close2:end

print#2,"m-r"chr$(bu)chr$(0):get|2,a$:c=asc(a$)

ifc>=128goto470:rem not done

return

rem-convert job code to ds error

m$="m-w"+chr$(0)+chr$(3)+chr$(7)+chr$(169)+chr$(c)+chr$(162)+chr$(bu)

m$=m$+chr$(76)+chr$(185)+chr$(169)

print|2,m$

printf2,"m-e"chr$(0)chr$(3)

input§2,x, x$,t,s:printx;x$;t;s:stop □

Faster than a Speeding Cartridge

More Powerful than a Turbo ROM
It's Fast, It's Compatible, It's Complete, It's...

JJffvDOS
\uitrafast Disk Operating Syst&m for the C-64,SX-64&(>128

• Speeds up all disk operations. Load, Save, Format, Scratch, Validate, access

PRG, SEQ, REU & USR files up to 15 times faster!

• Uses no ports, memory, or extra cabling. The JiffyOOS ROMs upgrade your

computer and drive(s) internally for maximum speed and compatibility.

• Guarant©od10Q%<»mpatlW9wrthallwftwareandh

upthe loading and internal file-access operation of virtuallyallcommercial software.

• Built-in DOS Wedge plus 14 additional commands and convenience features

including one-key tadfeave/scratch, directory menu and screen dump.

• Easy do-it-yourself installation. No electronics experience or special tools re

quired. Illustrated s^p-by-step instructions included.

Available for C-64,64C, SX-64, C-128 & C-1280 (JiffyDOS/128 speeds up both 64

and 128 modes) and 1541,1541C, 1541-1,1571,1581, FSD-1&2, MSD SD-1&2,

Excel 2001,Enhancer2000,Amtech,Swan,lndus&Bluechlpdiskdrives. System

includes ROMs for computer and 1 disk drive, stock/JiffyOOS switching system,

illustrated installation instructions, User's Manual and Money-Back Guarantee.

Volume 9, Issue 6 23

The One Megabyte C64!

Activitiesfor a rainy afternoon: C512

by Paul Bosacki

Copyright © 1989 by Paul Bosacki

In Volume 9, Issue 2, Paul showed us how to expand a C64 to

256K internally and have GEOS recognize the extra RAM as a

RAMdisk. At that time we stated that Paul was using a 1mb C64 -

512K internal and 512K in an REU. As you now know, this project

generated a lot of interest amongst the readership and the Com

modore community at large. The machine became the subject of

various speculations and rumours.

Well, the time has come to lay those rumours to rest. The first

half of the 1mb C64 was covered last issue when Paul showed

how to expand the 1764 to 512K. This is the second part. This

article will show how a C64 can be expanded internally to

512K. Et voila, the 1mb C64.

As you might expect, this project is more complex than the two

previous ones - in the software as well as the hardware. If

you're not comfortable with a soldering iron in your hand you

may want to have someone else do it. The usual disclaimers

apply: you undertake this project at your own risk and good

bye the warranty.

On the software side of things, GEOS V2.0 has made significant

changes in the way that the operating system handles drives.

Consequently, it was necessary for Paul to modify some of

Berkeley Softworks' own code to enable the banked RAM used

in the C512. Accordingly:

Special Note: Portions of Driverl571.src Copyright ©

1986-1989 by Berkeley Softworks. All rights reserved.

Used with permission. Our thanks to Berkeley Softworks

for their kind indulgence in this regard and to Matt Love

less at Berkeley for his support and assistance.

When I claimed a few months ago that an Amiga needed a

meg of memory to really show, I never imagined that anyone

would want a 512K 64. Nor did I expect the overwhelming

response the article generated. So first, before I get into any

thing, I want to thank all the people who took the time to

write. Considering the vagaries of postal offices, you all

should have long ago received my reply. Yes, I answered each

and every letter and that's why, in part, this update is so late in

getting out to you.

Also, I'd like to thank two people in particular: Richard Cur-

cio and George Hug. Although this article might have

appeared without their comments, suggestions and interest,

writing it wouldn't have been as much fun.

Now, into the meat

As I pointed out in Care and Feeding of the C256, the limiting

factor in an MPU's addressable memory space is its number of

address lines. The C64's 6510 has sixteen, allowing access to

65,000 or so bytes. Adding two pseudo-address lines, as the

last project demonstrated, bumped that to 256K. Four banks of

64K were made available through a simple poke to $01. How

ever, a small amount of memory had to remain 'common' to

each bank. Specifically, memory below $0400 was always

available. This was necessary because the stack and OS vectors

must (within limits) remain constant. Change them without

proper setup and the machine crashes.

The 512K project offers significant improvements over the

previous design. In order to take our machines to 512K, it's

necessary to add a third pseudo-address line. In the previous

article, the two needed lines were found at the MPU I/O port.

Needing three lines in this case, the MPU I/O port is no longer

adequate. I/O is found elsewhere.

Unfortunately, the 64 uses its resources to the fullest, and

this necessitates some additional work. But the extra work

yields some nice returns. Unlike the 256K version of this

project, all options can now be controlled through software.

Options like OK common memory to 16K and control over

where the VIC chip finds its data. Well worth the extra

effort!

The modification

An eight bit read/write latch is used in the 512K system to

allow control over system memory configurations. This latch,

called the Bank Control Register (bcr) for lack of a better

24 Transactor

name, is accessable at $dd80. The astute among us will realize

that this space usually contains phantom CIA2 images. But that

problem is worked around by remapping the CIA's 256 bytes

into four unique and separately selectable 64-byte sections.

The first 64 bytes still belong to CIA2 keeping its base address

valid. However, the third 64-byte block belongs to the BCR.

Read from or write to $dd80 and the system memory configu

ration will either be returned or set. The second and the fourth

64-byte sections are open for user expansion.

The BCR is the most significant improvement over the prev

ious design. And the most powerful aspect. Through a little bit

twiddling, the memory configuration can be changed at will.

What follows is the bit function layout of the BCR:

bitO-2: The three pseudo-address lines needed to access the

addtional memory. Bank 0 on power-up or hard reset.

bit 3: AEC enable. When this bit is set to 0 (default power

status), the Video display matrix is drawn from

BankO.

The following three bits affect the amount of common

memory (CRAM) available to the system.

bit 4: Mask A10 ($0400)

bit 5: Mask All ($0800)

bit 6: Mask A12 & A13 ($1000)

This takes a little explaining. When the

MPU accesses a particular memory loca

tion, a combination of ones and zeros

are placed on the address bus corre

sponding to the desired address. In the

case of $03ff, AO through A9 would have

ones while A10 through A15 would be

zeros. Decoding CRAM simply becomes

a matter of monitoring A9 through A15. If

they should equal zero, then cram is

being accessed and Bank 0 is switched

in. However, if any of those lines equal

one then the bank selected is enabled.

Part of the design philosophy

behind the 512K board was that

switches were to be done away

with altogether and that all

options should be controlled

through software...

banked memory appears until $0800; there a CRAM hole opens

that continues to $Offf. Then banked memory reappears. So,

unless you know what you're getting into, stick to the four

CRAM configurations above. They are the most useful.

Let's take a closer look. Clear all three bits and CRAM widens

to include the bitmap at $2000. Not using the bitmap? Then

how about a large (16K) area for machine language or BASIC

programs that need to easily take advantage of an additional

384K of memory (that's (64-16)*8). The next option is similar

to the first except that CRAM narrows to $Offf. This excludes

the bitmap, and the work space is smaller. But some interest

ing possibilities open here. For example, rapid cycling through

up to 64 different bitmaps becomes a reality. Imagine, the REU

globe demo done totally from within system ram!

Option 3 narrows CRAM even further, leaving only the default

screen matrix within CRAM. All banks could, therefore, draw

their character screen matrix from the same place. And the fi

nal option banks out the screen matrix as well. All banks now

share only OS vectors, the stack, and zpage; in short, anything

below $0400 is drawn from Bank 0.

Then there's bit 7. By setting this bit, the CRAM option is disabled.

In other words, there is no common memory. On a bank switch,

the machine moves into a whole new domain; a place with it's

own stack, OS vectors, zpage etc. This option is really exciting be

cause it allows us a kind of task switch-

ing. With proper setup, a bank switch

might drop us into a radically different

machine. More on this later....

Arguably, the BCR is the most difficult

aspect of this modification, both from

the hardware and software side of

things. When it comes time to build it,

and later on, to program it, take your

time looking over its specifications. It

will save a lot of frustration later on.

Each of the above bits masks the corresponding address line.

Simply put, if the bit is set, then the address line cannot signal

that a selected bank should enabled, cram is effectively

widened. If all three bits are clear (the default power-on sta

tus), CRAM stretches to $3fff. However as each bit is set, CRAM

space narrows:

option

i)

ii)

iii)

iv)

bit4

alO

0

0

0

1

bit5

all

0

0

1

1

bit6

al2,13

0

1

1

1

CRAM

=$3fff

=$0fff

=$07ff

=$03ff

Four other CRAM combinations are possible, but some open

CRAM 'holes'. For example, %101 has cram to $03ff. Then

Unlike the 256K version, the 512K modification has no

switches. Two of the three switches have corresponding func

tions available through the BCR outlined above. The third

switch was a 'master disable' switch necessary because some

software and hardware is incompatible with the 256K modifi

cation. However, because the bcr is mapped into phantom I/O,

and because every sane programmer reads from and writes to

the BASE address of CIA2, the BCR should never be inadver-

ently accessed. Consequently, the mod board cannot be

disabled; nor, really, should such action be necessary.

The 512K modification requires one step unnecessary to the

256K version: the installation of an additional 256K. Rather than

building an additional board with all its attendant difficulties, it is

easier to 'piggy back' one bank of DRAM on top of the other. Then

all that needs to be done is bend up pin 15 of each chip on the top

bank and solder the rest to the corresponding pin below. A some

what simpler operation with little opportunity for mistakes.

Volume 9, Issue 6 25

Paul Bosacki

revised 81/11/89

512fc|

117 +5

Q

1B

1V6

1V1

1V2

1V3

GRD

2B

2V0

2V1

2V2

2V3

JB 1

256k

+5v

U3-a 11 U3-b I I U3-GII U3-d II U4-a

IC

Ul

112

113

114

115

116

ill?

28

20

14

14

14

16

16

Grd

10

16

7

7

7

8

8

111

2C3 2C2 2C1 2G6 1C3 1C2

U6

74LS153

2V 26 SELQ SEL1

s R

1G IV

CRftN

Notes:
This board aUouus expansion throuah to 512k. The jumper block (JB1) is not necessary. If 512k is to

be installed simply uiire the 2V output of the LS153 directly to the LS139. If 256k, pull the

appropriate A input of the 'LS139 to ground.

On some c64's it may be necessary to replace the follouuing chips as folloujs:

0 ?4lS8rs ujith 74F83as

ii) 74LS153 with 74F153

In banks uuhere bit 1 is set, a "sparkling" effect may be visible in hires mode. The above chip

changes solve this problem.

See text for function outline of 8 bit latch.

Circuit theory

The first 512K board was a patch on the orginal 256K board.

With a little (read: a lot) of wiring and rewiring and an addi

tional six ics, it was possible to access even more memory.

Twelve chips is a lot of chips. So the board was redesigned

and the chip count reduced to seven. Good and bad. Bad

because if you built the 256K mod, it's necessary to build and

install another board. Good because the fewer chips, the less

likely mistakes are, and the easier it is to troubleshoot any

problems that may arise along the way. If you did build the

256K board, I offer this consolation: installing the DRAM is the

hardest, touchiest part, and you don't have to do that again!

Part of the design philosophy behind the 512K board was that

switches were to be done away with altogether and that all

options should be controlled through software. When the wish

list of options was drawn up, an 8-bit latch was pretty much

demanded. The problem became where to map it into system

memory. For better or for worse, I chose CIA2. Because CIA2

26 Transactor

occupies 256 bytes of memory starting a $ddOO, it was neces

sary to 'remap' I/O in that area.

This was acomplished through the use of an 'LSI39 Dual 2-to-

4 Line Decoder. The CIA2 select signal is intercepted and

used to enable one half of the 'LSI39. Address lines A6 and A7

serve to select which of the four 64-byte sections is accessed.

If both A6 and A7 are low, then the 'LSI39 'selects' CIA2 allow

ing it to continue its exsistence at $ddOO. If however, A6 is

low and A7 high (indicating address $dd80), then a low is

generated on pin 10 of the 'LSI39. This signal, with a little

additional qualifying, selects the two components that make

up the BCR: an 'LS273 Octal 'D Type' Flip-Flop is the write

portion of the register, while an 'LS373 Octal 3-State *D'

Latch forms the read.

That signal, *newio on the schematic, is then OR'd with

GR/*w at one gate of an 'LS32, and OR'd with G*R/w at anoth

er. On a read operation (GR/*W is high, G*R/w is low)), the

output buffer of 'LS373 is enabled and dumps to the data bus.

On a write, the 'LS273 is clocked and the contents of the data

bus are latched into the chip and immediately present at its

outputs.

These outputs serve the variety of functions outlined in the

BCR bit function map. Bits 0 and 1, the low address bits, are

presented to two inputs of one half of an 'LS153 Dual 4-Line to

1-Line Data Selector/Multiplexor. Depending upon the state of

CRAM (a signal whose generation we will discuss shortly), a

2-bit code is then strobed out to pin 1 of the 41256s.

Ignoring bit 2 for the moment, bit 3 is used to qualify the AEC

signal from the Vic chip. If bit 3 is high, the output of the 'LS32

OR gate will be high regardless of the state of AEC. If low, the

state of AEC is present at the output of the OR gate. The output

of the OR gate is the old *VID signal and drives one of the

select pins on the 'LS153. The 'LS153 is wired in such a manner

that should *vid go low, a pair of lows are strobed out to the

41256's. This occurs on the rise and fall of *CAS which is used

to drive the other select pin on the 'LS153. The end result is that

when bit 3 is high, AEC cannot force a CRAM call,, and the

video matrix is drawn from the current bank.

Tijie next three bits serve to mask address lines and function

much as bit 3 above. First, each of the address lines A10-A15 is

presented to one input of an open-collector dual-input NAND

g ite (the two 'LS03's of the schematic). [Each 'LS03 contains

four such dual-input NAND gates. - PB] In the case of A15 and

A14, the other input is pulled high, the immediate result being

that the inverted state of A14 and A15 is present at the output.

The other address lines are handled in a different fashion. To

the other input of the gates shared with AlO and All, bits 4 and

5 respectively are presented. If either bit is high, the corre

sponding output shows the inverted state of that address line.

1^ either bit is low, a high is generated. Consequently, neither
r these lines can affect a CRAM call.

A|12 and 13 share bit 6 and are affected as above. The output

of the NAND gates are grouped and pulled up with a 2.2K

resistor. Should any output go low (indicating that the corre

sponding address line is high), the grouped output is pulled

low enabling the 'LS153 to pass a 2-bit bank select code to the

4. 256s. However, should all lines go high indicating a CRAM

ac cess, the grouped output goes high, forcing a default to Bank

O.j This output is the old *CRAM signal, now active high and

ied CRAM on the schematic.

It is grouped with one other NAND output. At this gate, bit 7

arid a high are decoded. Bit 7 is, as noted above, the CRAM

disable function. If high, the grouped output is forced low, per

manently enabling the 'LS153 until that bit is cleared.

All that's left now is to explain how the new address line is

hajndled. The third address line does something wonderful. It

1S153 LS139 1S32

Parts Placement Layout

C512 - Revision A

Parts List

1: 'HCT373

1: 'HCT273

1: 'HCT139

1: 1S32

2: 1S63

1: IS153

2: 26 pin

2: 16 pin

3: 14 pin

sckts

sckts

sckts

2: 62a resistors

1: 33a resistors
2: 2.2k*

7: 6.1 pF

resistors

capacitors

Misc: solder ringed PC board, ribbon

cable, connectors, 36 quage wirewmp,

22 guage wire.

Volume 9, Issue 6 27

allows us to select which 256K bank of DRAM is accessed. Bit

2 is presented to the other half of the 'LSI53 dual 4-to-l multi

plexer. Depending again on the state of CRAM and *vid above,

the other Y output of the 'LS153 generates either a high or low.

A low is generated when either a CRAM call has been generat

ed or when bit 2 is low. A high is found only when bit 2 is

high. This signal, LA18 on the schematic, is passed to the other

half of the 'LSI39. The 'LSI39 is enabled whenever *CASRAM

goes low. *Casram is the same signal used by the VIC to actu

ally select system DRAM over other system resources. Here we

are using it to do the same thing; however, dependent on the

state of bit 2, either *RAML or *ramh will go low selecting one

of two banks of dram. LA18 does not act as an address line in

the truest sense of the word, but rather helps to generate a

select for one of two banks of dram.

That's pretty much it. The key signal here is the CRAM signal.

It plays the part of the master controller. When high, the 'LSI53

is disabled and default bank 0 is switched in; when low, the

contents of the three low bits in the BCR are free to set the

bank accessed. *Vid when low, has a similar effect, but this is

acheived in a slightly different fashion.

Installation

Before you attempt installation, I suggest you read and reread

the section above. It's intended to familiarize you with the

function of the board and how the various components relate.

Knowing how the board works can only help you later on if

there are any problems.

Now, if you've already installed the 41256s, all you're really

concerned with is the construction of the new mod board. If

you have yet to install the DRAM, let's go over it briefly (for a

more complete description, see Transactor, Volume 9, Issue

2). First, disassemble your computer and locate the eight 4164

drams on the system board. They're located in the lower left

hand corner of the system board. If you can't find them, don't

worry. Just keep reading. There's interesting news ahead.

Once you've located the chips, turn the board over and care

fully note their position. Now, using a combination of desol-

dering braid and a vacuum desolder, remove them. Another

option is to cut the pins away from the chip, heat the pin and

remove it with a small pair of pliers (Richard Curcio's RAMifi-

cations from Volume 9, Issue 4 offers some valuable advice

here). Make certain that each of the holes is as free of solder as

possible.

With all chips removed, install 16-pin sockets in their places.

Once installed, use a fine guage wire to link pin 1 of each

socket to the next. Connect the final one to a convenient

ground (pin 16 of that socket, for example). Now, install the

41256-15s. Although I've never had a problem here, these

chips are static-sensitive, so be certain to ground yourself first.

Mistakes with DRAM are expensive and, at this stage, difficult

to uncover. Now reassemble as much of your computer as

necessary to power up safely. But before you do, check the

orientation of each DRAM. An upside down DRAM equals a

dead dram.

If everything checks out, connect your power supply and your

monitor and turn your machine on. Most likely, you'll see the

familiar power-up screen. Generally, the only other possiblities

are a blank screen or one that changes randomly then

'freezes'. If you're confronted with either, don't panic. Turn

your machine off, disconnect everything and examine your

work. Check your soldering for bridges, try reseating the

chips. Are they installed properly? Did a pin get bent beneath a

chip when you installed it earlier? Check your pin 1 work. Is it

properly grounded; is each socket in the chain linked? If you

have a logic probe, power your machine back up and test each

of the pins. Pins 1 and 16 should show low, while pin 8 shows

high. All others should pulse between high and low. If a pin

does not reflect the proper state, there is probably a problem

with the soldering at that point. Resolder that pin of the socket

and any other that might show a problem. Check everything

and try again. And don't worry: You probably won't have to

go through any of this.

With the chips installed, move on to constructing the board.

Once again, I used point-to-point soldering and all my sugges

tions from the previous article still apply. Check the parts lay

out diagram for the layout I used. Something I did this time

round, was use 16-pin connectors for all interfacing. The parts

layout shows the male connectors to the left hand side of the

board. The result was a board that could be easily removed if

troubleshooting indicated a problem. And there were problems

- an incorrectly wired 'LS273 for one! As Richard Curcio once

told me, half jokingly: "If it works right the first time, don't

trust it!"

With the board finished, it's time to interface (I've always

wanted to say that). There are two distinct places to go for the

various signals required by the board: either the cartridge port

or the MPU. I suggest the MPU only if it is socketed, and then I

suggest you carefully remove it from its socket while doing

this. Take a length of ribbon cable 16-conductor wide and

make the following connections: A15-A10, A7, A6, D0-D7. Do

this by heating the pin, gently pushing it to one side with

the tip of your soldering iron and carefully inserting the

conductor.

Whether you use the cartridge port or the MPU socket, follow

the appropriate diagram. [See page 50 - MO] Both diagrams

show the layout from the solder side. Determining the final

length of the ribbon cable is up to you but keep it short. Now,

if you used connectors, attach the other end to the connector.

Otherwise, solder A15-A10 to the appropriate inputs of the 2

'LS03 sockets, A6 and A7 go to pins 14 and 13 of the 'LS139 re

spectively. The data bus is tricky, and if you're going to make

any mistakes it's here. Follow the schematic carefully and

make the appropriate connections.

With that finished (easier said than done), take another length

of ribbon cable, this time six-conductor wide. Now we hunt.

28 Transactor

The first signal we want to locate is *CAS. Locate pin 1 of ei

ther 'LS257 (U13 or U25) on the system board (they're to the

right of the DRAM you removed earlier. Follow the trace away

from the pin until you reach a tiny silver dot. This is a pass-

through to the other side of the board. Heat the dot and install

the first of six conductors. Remember this procedure because

we're about to repeat it.

Look to the drams, and locate pin 15 with a trace moving

away from it (only one DRAM will show this). You've just

found the *CASRAM signal generated by the PLA. Again follow

the trace away from the chip until it comes to a resistor. On my

board, this resistor was labelled R42. It may not be on your

board, so follow the trace instead. Remove the resistor. Into

the opposite solder pad, install the second conductor.

The next two signals are easier to locate. The first, AEC is

available at a number of places. The first is pin 16 of the VIC

chip (U19), the second is the mpu, pin 5. Both offer pass-

through jumpers which can be found by following the trace.

Or, if you wish, heat the pin and insert the third conductor. The

next signal, *CIA2, offers us a special case. Again, I'll offer you

two choices. Locate the 'LS139 on the system board (U15). Pin

11 is the *ciA2 select line. Cut the

trace leading away from the pin,

scrape away the green insulating mate

rial and carefully solder the fourth

conductor here. Or, if CIA2 (U2) is in a

socket, bend up pin 23 of CIA2. This is

the chip select pin. Now, heat the

socket's pin and insert the conductor. I

did neither. I removed the 'LSI39 and

installed a socket. When I reinstalled

the 'LSI39, I bent up pin 11 and sol

dered the conductor to pin 11 of the

moved earlier. Into the other hole install one conductor. This

will become the new *casram signal, labelled *raml on the

schematic.

Depending on how you dealt with the *ciA2 signal earlier,

another conductor connects to the other side of the cut trace, or

to either the bent up pin on the CIA or 'LSI39. That's the worst

of it. Two more lines go out to the system board, but we'll

save them for a bit.

Now, you can fix the board into place and install the chips

ensuring correct orientation and placement. Connect the +5V

source and ground to the mod board. Both are availabe at the

cassette port. Again, reassemble as much of your computer as

necessary and power up. With any luck, you're staring at the

power-up screen! If not, let's go over the possiblities. Check

the interface wiring. Are we getting the right signals up to the

mod board, is there any sloppy soldering? Using a voltmeter

or a logic probe check for the following conditions: pulses on

all data and address lines. Fixed highs indicate a crashed bus

and the problem is probably in the interface wiring. Pulses on

*CAS, *CASRAM, *RAML. Fixed highs or lows are a problem.

Check all associated wiring. The same holds true for AEC and

GR/w. ClA2 will show high; otherwise,

there's a problem either in the inter

face wiring or the mod board itself.

Ifyou choose to install the

second bank ofRAM, you will

need a stronger power supply

than the one that came

originally with your C64!...

One trick that might help you locate a

problem is turning off your computer,

pulling a chip from the mod board and

powering back up. If you get a power-

on message, then you just narrowed

your field of search. The only chips

that you can't do this with are the

'LS139 and 'LS153. Pull either of these

socket. Any of the above will work; I leave the method to you. chips and you will not get the power-on message.

Next locate pin 8 of the 2114 Colour RAM (U6). The fifth con

ductor attaches there. And lastly, pin 40 of the MPU allows us

easy access to the *RES signal. Solder the last conductor to this

pin.

Now on the mod board, make the following connections:

*CAS to pin 14 of the 'LS153 socket

•CASRAMto pin 1 of the 'LS139 socket

AEC to pin 10 of the 'LS32 socket

*CIA2 to pin 15 of the 'LS139 socket

GR/W to pin 2 of the 'LS32 socket and

to pin 9 of the 'LS03 socket (U4)

•RES to pin 1 of the 'LS273 socket

Again, if you used connectors, you've had it somewhat easier.

Just install the connector to the other end of the cable.

The above are the required signals from the system board.

There are four signals that go the other way. Turning our atten

tion again to the system board, go back to the resistor we re-

However, if you've been careful and meticulous with this,

you were confronted with the power-on message. Great!

Now, turn off your computer and install the second bank of

RAM. However, if you choose to do so, you will need a

stronger power supply than the one that came originally

with your C64! A 128 power supply or the one that comes

with the 1764 will do just fine. But you will need a stronger

power supply. Things might work fine for a while, but

you're courting disaster.

To install the second bank of DRAM, carefully bend up pin 15

of each chip. Then piggy back the second bank atop the first

and solder the upper pin to the lower. Again using a fine guage

wire, link pin 15 of each chip on the upper bank and run the

conductor out to pin 5 of the 'LSI39. Now, disconnect pin 1 of

the 41256s from the convenient ground and run it out to pin 7

of the 'LS153. Connect the keyboard and again power your ma

chine back up. The power-on message should greet you. Now

type this:

poke 56704, 124 <cr>

Volume 9, Issue 6 29

The screen should fill with garbage. If any of the garbage

characters are randomly changing, then one or more of the

drams on the top bank is not connected properly. Locate the

problem and try again until the problem is solved.

If you choose not to install the additional bank of memory at

this time, that's fine, just connect the keyboard and power-up

as above. Now, instead type:

poke56704,121

As above, your screen should fill with garbage. You won't

have the random charcters problem though. If nothing hap

pened, however, there is a problem. Something is wrong in the

new I/O decoding, or the CRAM generation ciruitry. Try PEEK-

ing the above location. If you get 121 or 127 for the 512K

machines, then your problem's with CRAM generation. If you

get a 0, then check out the write half of the BCR. A value that

changes with each PEEK, indicates a problem with both halves

of the BCR. Check the wiring carefully and try again.

With that done, it's over.

Your machine now contains

512K of user installed banked

memory. Give yourself a pat

on the back. What you've

done is just short of amazing.

Congratulations! Now, re

assemble your computer. Fair

warning, if you installed the

extra bank of memory, the

top RF shield will no longer

fit. Don't bother with it. It's

not a problem.

iii) *ClA2: use the cut trace method from above. Cut the trace

off pin 23. The trace opposite the CIA goes to the 'LSI39.

iv) Some chip designations have changed. The 6510 is now

an 8500 and in generally socketed. The SID and VIC both

have new 85xx prefixes. The Vic is the larger of the two.

The pin layouts have not changed, however, just the desig

nations.

All the rest of the signals are available as indicated in the

above section and don't present a problem.

Because the dram used in the E board revisons are such dif

ferent beasts from the 4164, the mod board, as presented, is

incompatible. This leaves us with two options. The first of

course, is to modify the board so that it will work. But atten

dant with this strategy is laying in 14 additional 41464 drams.

The second strategy involves forsaking the 41464's altogether,

and installing 41256's. Using this strategy, the mod board does

not have to redesigned, although 16 41256's must be 'laid in'.

G

D6

D1

N

RR5

A6

A5

A4

+5v

., GRD

bq D3
CflS

D2

AG

A1

A2

A3

A7

1*
17

IS

IE

U

13

12

10

A8

Dl ™

N

RflS

H0

A2

A1

+5v

„ GRD

56 COS
DO

A6

A3

M

A5

A7

IE

14

10

Of the two strategies, the sec

ond makes the most sense.

The 41464 dram was initial

ly designed for systems that

would be using less than

256K of ram. In that case,

their use becomes more eco

nomical. When 256K is

reached, however, it makes

more sense to go with the

41256, and that's what we'll

do here.

Modifyng the 'E Board'

If you opened your computer and had trouble finding the the

eight DRAM chips, there might be a good reason for this: you're

the proud of owner of Commodore's latest line of revisions for

the C64. The 'E board' has two 41464 dram's (also labelled

LH2464) rather than eight 4164's. As well, the board layout itself

is significantly different from earlier boards. There are two dif

ferent E revisions that I'm aware of. The first maintains the old

layout and logic except for the 41464s. The second one is radi

cally different, with one large chip handling all the select logic

and timing. Gone are the PLA and the 'LSI39 decoder and 'LS257

multiplexers. But it is not difficult and certainly not impossible

to modify either of these revisions to 512K.

All that is mentioned in the above section still applies with the

following changes:

i) *Cas is available at pin 19 of the Vic chip.

ii) *Casram: Use the same technique as above, follow the

trace back from the dram, but instead of pin 15, follow pin

16 to the resistor.

The method is actually fairly

straightfoward, but it requires

a lot of additional work on your part. First, remove the 41464s

using the techniques outlined earlier and install 18-pin sockets

in their place. Now, install eight 16-pin sockets on a small

board. Take a look at the attendant pin layout for the 41256-

15. For each of the eight sockets, link together each address

line to the next in the chain. Do the same for *CAS, *ras, *W,

pin 8 and pin 16. 41256s have two data lines, a data in (Dl) and

data out (do). For each socket, link these two pins together

(pins 2 and 14).

Now, direct your attention to the pin layout for the 41464.

Ignoring pin 1 (*G) and pin 18 (GRD) altogether, each pin cor

responds to another on the 41256s. The data pins offer a spe

cial case. Each 41464 has four data pins. With two chips, that

gives us eight data lines. Each data line goes to one 41256.

The new dram board is interfaced to the system using two

16-pin dual-in-line connectors plugged into the sockets

installed on the system board earlier. Plug the connector into

the lower 16 holes. You can find this item at Radio Shack. It's

made up of two connectors joined by an 18-inch stretch of rib

bon cable. Cut the cable in half, each piece consisting of a

30 Transactor

connector and nine inches of cable. At the other end, solder the

corresponding line from the 41464 sockets to the 41256s. Do

this with one of the pieces. With the other, it is only necessary

to connect the data lines. Now make a suitable ground connec

tion between the system board and the DRAM board.

With the signals out to the board, install eight 41256s, and

ground pin 1 of the 41256s again paying attention to the sug

gestions above. Power up your machine and the usual power-

on message should appear. If it doesn't, check your wiring,

and chip orientation. Check with logic probe or voltmeter that

each pin shows a pulse condition (except for pin 8, high, and

pin 16, low). If you find a pin that isn't offering the proper

condition, check the pin out diagram and that'll give you an

idea as to the nature of the problem. Follow the above instruc

tions if you intend to install a second bank of dram.

Once you've have the dram installed and operating properly,

proceed as above. Pay special attention to those areas where

signal locations differ. There are two additional notes in this

area. The first is that output Yi from the 'LS153 goes to pin 1 of

the 41256s on the new RAM board. The second: *raml and

*ramh go to pin 15 of bank 1 and pin 15 of bank 2 respec

tively. And that, as they say, ladies and gentlemen, is that.

Getting aquainted

Saying that your C64 is a radically dif

ferent beast would be a gross under

statement. The Bank Control Register

up at $dd80 gives you access to total

control over how your system's

memory is configured. Study the

above tables, and the resultant config-

urations. Some of the results might be

suprising - even disconcerting - if you don't understand the

implications of a particular configuration. And, although there

are 256 possible configurations, not every one of them useful.

However, none of them are tragic.

But to get you started, here are some values to try and the

resultant configuration. Just POKE the value to $dd80 (56704),

when you press Return the new configuration will be in effect.

i) 0-7: These are the base values. Each corresponds directly

to one of the eight banks of memory. In each case memory

above $3fff is replaced with the select bank.

ii) 120-127: These values are interesting in that cram has

been set to its lowest amount. As well, screen data is drawn

from the current bank. This allows eight separate work

spaces for BASIC or machine language programs. However

since all OS vectors, the stack and zpage are shared, be care

ful of programs that modify those areas - especially the inter

rupt vector. On a bank switch, your machine is sure to crash.

iii) 248-255:These values disable the CRAM option. Poking

one of these values without proper set up will cause a crash.

To make certain our RAMdisk

acted like a RAMdisk,

Berkeley's RAMdisk driver was

unassembled and then rebuilt...

Before poking one of these values, it is necessary to set up

the bank's zpage, stack and OS vectors. Key in the program

task switch to see this option in operation. Call it with

poke2,6:sys828 where b is the bank you want initialized.

I encourage you to become familiar with the operation of the

BCR. POKE away! The results you get may be strange (even

confusing) but, I assure you, yours is a 'few of a kind'

machine. Have fun!

Of RAMdisks and GEOS

One of the nice things about things about the 256K project

was that it allowed the additional memory to be configured

as a RAMdisk under GEOS. For those of us lacking REU's,

that do-it-yourself RAM expansion project offered an alter

native route to a souped-up GEOS. As so many sources have

stated, an REU is an absolute necessity for the serious GEOS

user. In fact, REU routines are now an integral part of that

operating system. Where it was once possible to fool GEOS

without consquence that an REU was present, it now seems

(at least at this point) impossible. What exactly does this

mean? Well, first the good news: The program that follows

allows the configuration of a 256K or 512K RAMdisk under

GEOS 2.0 and the co-existence of an

reu. Now the bad news: you must

have an REU (either a 1764 or 1750)

for it to work.

Some background. When you boot

GEOS, it searches for any programs of

the auto-exec file type. Configure is

one of these. Configure, as you know,

searches out, and initializes the drives

on your system. If you have an REU,

the disk drivers are stashed in the REU. When you switch

drives, the driver is fetched down from the REU and the other

drive is accessed. If you don't have a REU, there are two possi

bilities. If your drives are the same type (ie., two 1541s), you

don't have a problem. If they are different, you must have a

copy of Configure on the work drive. The reason for this being

that the DeskTop will load the appropriate driver and get

things going.

This seemed to be a glimmer of hope. It seemed possible to

splice a new driver into Configure. The idea was this: your

system consists of a 1541 and 1571. Great, we'll overwrite the

1581 driver with the new one and then configure a 1581 as

part of the system. Now, when we open the RAMdisk, the

DeskTop will think it's a 1581, fetch our driver and we'll be in

business. No way! Unfortunately, the DeskTop is fairly picky

about drivers and the number of tracks arid sectors a disk

should have. As well, it doesn't always use the standard rou

tines for fetching its information about a particular disk or

driver. The DeskTop is smart! It knows a 1581 has its direc

tory at Track 40, Sector 0 and if it isn't found there, the Desk

Top tells you this with an error. The bottom line was: the

scheme described above didn't work.

Volume 9, Issue 6
31

But with an reu on the system, we've a different situation

altogether. All we need do is make certain that the right driver

is in the REU and that our RAMdisk conforms to the expected

format. In other words, all that was necessary was to make

certain our RAMdisk acted like a RAMdisk. In order to accom

plish this, Berkeley's RAMdisk driver was unassembled and

then rebuilt to support the banked RAM.

The program that handles installation of the BRAMdisk is

C512Install. Like Configure, it is an auto-exec program.

Because auto-exec programs are executed in the order they

appear on your boot disk, C512Install must be placed after

Configure. What happens is this: after Configure installs the

drives on your system, control is returned to what I call the

'BootTop'. It then searches for other auto-execs. Finding

C512Install the BootTop executes it. C512Install does very

little error checking. It simply searches out an empty drive slot

and, on finding one, installs itself (uploading the BRAMdriver

to the reu). Depending on the amount of expansion dram,

either a BRAM1571 or '41 is installed. It then exits.

Now you're asking: what use is it. After all, you already have

an REU. Imagine this: two shadowed 1541s (if you've a 512K

reu and two 1541s) and a 1571 BRAMdisk. Now that's a fast,

powerful configuration.

And if you don't have an REU? Well, I'm still working on the

problem and you've got a little incentive too. Maybe between

the few of us, we can figure it out.

How to get there from here

I received many letters after Care and Feeding of the C256

appeared in Transactor, Volume 9, Issue 2. In letter after letter

I had the unique pleasure of reading how people had pushed

their C64s into domains that would have been impossible for

us to imagine just a few years ago.

Throughout writing this article, a phrase from an old movie

has been running through my head. I've been looking for a

way to work it in. When I think again of what people are doing

to and with their 64s, the phrase becomes suddenly appropri

ate: Something wonderful is about to happen!

Enjoy it! And thanks!

Listing 1: C512Inst.hdr

.**********************************

;* C512Inst.hdr *

;* *

;* *

;* This is the header declaration *

;* for C512Install. *

;**********************************

.header

.byte 3

.byte 21

.byte

.byte

.byte

.word

.word

.word

$80|USR

AUTO EXEC

VLIR"

$0400

$03ff

$0400

C51£

.byte "C512Install VI.1",0,0,0,0

.byte "Paul J. Bosacki ",0

.block 43

.byte "Installs banked RAM as RAMdisk.",0

.endh

Listing 2: C512Installsrc

; mm***************************

InstallRAM
;*********************************

.if Passl

.include geosSym

.include geosMac

.endif

BCR =$dd80

DoBankRAMOp =$02a7

.psect

Ida

cmp

bne

Ida

beq

LoadW

Ida

sta

jsr

txa

bne

ldy

2$: Ida

beq

box

iny

cpy

bcc

1$: sty

jsr

txa

bne

jsr

Quit:Ida

jsr

jmp
GetDriver:

LoadW

LoadB

LoadB

jsr

txa

bne

version

#$20

Quit

ramExpSize

Quit

rlO, C512Install

n
whichDriver

GetDriver

Quit

§8

$8486,y

1$
1$

#10

2$

driveNum

InstallDriver

Quit

StashDriver

C curDrive

SetDevice

EnterDeskTop

r6, fileNmBuf

r7L, $0e

r7H, 1

FindFTypes

1$

;if not V2.0 then exit

;if REU not present then exit

;get diskdriver

;second VLIR record

;exit on error

/branch on empty drive slot or

;REU drive

/otherwise, continue search.

;save drive number

;and install driver

/restore configuration

;and return control to BootTop

/locate filetype auto-exec

/with permanent filename "C512Install"

32
Transactor

LoadW

jsr

Ida

jsr

LoadW

LoadB

sta

jsr

txa

pha

jsr

pla

1$: rts

rO, fileNmBuf

OpenRecordFile

whichDriver

PointRecord

r7, diskBuf

r2L, $ff

r2H

ReadRecord

CloseRecordFile

StashDriver:

LoadW

LoadW

LoadW

LoadB

jsr

ldy

LoadW

Ida

sta

Ida

sta

LoadW

LoadB

jsr

rts

rO, $848e

rl, $7900+$048e

r2, 4

r3L, 0

StashRAM

driveNum

rO, diskBuf

REUHstash-8, y

rlH

REULstash-8,y

rlL

r2, $0d80

r3L, 0

StashRAM

InstallDrive:

php

sei

jsr

jsr

txa

bne

jsr

1$: pip
rts

MoveTransfer

FindRamSize

1$

FormatDrive

NoveTransfer:

LoadW

LoadW

LoadW

jsr

rts

FindRamSize

MoveB

LoadW

ldx

Ida

sta

Ida

bne

LoadW

LoadW

LoadW

LoadB

LoadB

jsr

rO, moveRoutine

rl, DoBankRAMOp

r2, routineSize

MoveData

>:

CPUJ)ATA, tempA

cpu"data, io_in

DEV NOT FOUND

to"
size

BCR

1$

rO, $c006

rl, buf

r2, $0009

r3L, #%01100100

r3H, 0

DoBankRAMOp

;open that file

;open second record

;and load that record into

/diskBuf

;tidy up

/update drive vars, in REU

/so system can be RBOOTed

/stash new disk driver to REU

/move transfer routine to CRAM and

;GEOS free ram

/because of its location, this is the

/only free ram under 6E0S

/map in 10

/if not bank 0, then

;error-don't install!

/source

/destination

/tlength

/bank 4

/bank 0

/do BankOp

ldy

ldx

Ida

jsr

bne

Ida

sta

bne

2$: Ida

sta

#rl

#rO

#9

CmpFString

2$
#$40

size

3$

#$80

size

3$: ldx #0 /return no error

1$: MoveB tempA, CPU DATA

rts

FormatDrive:

MoveB CPU DATA, tempA

LoadB CPUDATA, #$35

1$:

/drive type=raml541

ldy driveNum

Ida #$81

sta $8486,y

Ida #0

sta $88b7,y

Ida size

bvs 1$

Ida #$80

sta Header+3

sta $88b7,y

ora #2

sta $8486,y

Ida #$37

sta driveModel

LoadW rO, #headl571

LoadW rl, $8800

LoadW r2, #$0100

LoadB r3L, 0

LoadB r3H, #%01100101

jsr DoBankRAMOp

LoadW rO, fixl571

LoadW rl, Header+$dd

LoadW r2, 35

jsr MoveData

LoadW rO, fHeader /dump track $18, sector $00 header

LoadW rl, $8800

LoadW r2, #$0100

LoadB r3L, 0

LoadB r3H, #%01100010 /bank 2

jsr DoBankRAMOp

ldy #0

tya

/update drive vars. to indicate

;a ram5171

/fix header title to reflect change

/dump track $35, sector $00 header

/bank 5

10$: sta

dey

bne

Ida

sta

diskBlkBuf,y

10$

#$ff
diskBlkBuf+1

LoadW rO, #diskBlkBuf

LoadW rl, $9c00+$0800

LoadW r2, #$0100

LoadB r3L, 0

LoadB r3H, #101100010

jsr DoBankRAMOp

/dump offside dir track to $19,$

/bank 2

LoadW rO, #diskBlkBuf /dump $18,$01 to expansion ram

LoadW rl, $8900

LoadW r2, #$0100

LoadB r3L, 0

LoadB r3H, #101100010 /bank 2

jsr

Volume 9, Issue 6 33

MoveB

Ida

ldx

rts

moveRoutim

PushB

LoadB

ldy

ldx

1$: dey

Ida

sta

Ida

stx

sta

tya

bne

beq

PushB

ldy

2$: dey

ldx

stx

Ida

sta

Ida

sta

Ida

stx

ldx

stx

beq

ldx

stx

3$: sta

tya

bne

ldx

stx

Done:sta

PopB

rts

IRQVEC:

pla

tay

pla

tax

pla
NMTVFP*

rti

tempA, CPUDMA

#0

to

a:

CPU DATA

cpu"data,
r2L~
r3H

r3L

BCR

(rOL),y

BCR

|rlL),y

1$

Done

CPU DATA

r2L~

#10 IN

CPUDATA

r3L"
BCR

#$30

CPU DATA

(rOL),y

CPU DATA

r3H"
BCR

3$
#$30

CPU DATA

(rlL),y

2$
#$35

CPUDATA

BCR

CPUJATA

ejnoveRoutine:

routineSizt

Header:

.byte $12,

.byte $15,

.byte $15,

.byte $15,

.byte $15,

.byte $15,

.byte $15,

.byte $15,

.byte $15,

.byte $11,

.byte $13,

.byte $13,

.byte $13,

.byte $12,

.byte $12,

10JN

i = ejnoveRoutine-moveRoutine

$01, $41,

$ff, $ff,
$ff, $ff,
$ff, $ff,
$ff, $ff,
$ff, $ff,
$ff, $ff,
$ff, $ff,
$ff, $ff,
$fc, $ff,

$ff, $ff,
$ff, $ff,
$ff, $ff,
$ff, $ff,
$ff, $ff,

$00,

$lf,
$lf,
$lf,
$lf,
$lf,
$lf,
$lf,
$lf,
$07,

$07,

$07,

$07,

$03,

$03,

$15,
$15,

$15,

$15,
$15,

$15,

$15,
$15,

$15,

$12,

$13,

$13,

$12,
$12,

$12,

$ff,
$ff,
$ff,
$ff,
$ff,
Iff,
$ff,
$ff,
$ff,
$ff,
$ff,
$ff,
$ff,
$ff,
$ff,

$ff,
$ff,
$ff,
$ff,
$ff,
$ff,
$ff,
$ff,
$ff,
$fe,

$ff,
$ff,
$ff,
$ff,
$ff,

$lf
$lf
$lf
$lf
$lf
$lf
$lf
$lf
$lf
$07

$07

$07

$03

$03

$03

.byte $12, $ff, $ff, $03, $11, $ff, $ff, $01

.byte $11, $ff, $ff, $01, $11, $ff, $ff, $01

.byte $11, $ff, $ff, $01, $11, $ff, $ff, $01

headerTitle: .byte "BRam 15"

driveModel: .byte "41"

.byte 160,160,160,160,160

.byte 160,160,160,160

.byte nPJM,160,"2A"

.byte 160,160,160,160

.byte 19,8

.byte "GEOS format VI.0"

.block 256-188

fixl571:

.byte $15,

.byte $15,

.byte $13,

.byte $12,

.byte $11,

headl571:

.byte $ff,

.byte $ff,

.byte $ff,

.byte $ff,

.byte $ff,

.byte $ff,

.byte $ff,

.byte $ff,

.byte $ff,

.block 152

$15, $15, $15, $15,

$15, $15, $15, $15,

$13, $13, $13, $13,

$12, $12, $12, $12,

$11, $11, $11, $11

$15, $15, $15, $15

$15, $15, $15, $00

$13

$12

$ff, $lf,

$ff, $lf,

$ff, $lf,

$ff, $lf,
$ff, $lf,
$ff, $07,

$ff, $03,

$ff, $03,

$ff, $01,

$ff, $ff,
$ff, $ff,

$ff, $ff,
$ff, $ff,
$00, $00,

$ff, $ff,
$ff, $ff,

$ff, $ff,
$ff, $ff,

$lf, $ff,
$lf, $ff,

$lf, $ff,

$lf, $ff,
$00, $ff,

$07, $ff,

$03, $ff,

$03, $ff,

$01, $ff,

$ff, $lf,

$ff, $lf,
$ff, $lf,

$ff, $lf,
$ff, $07,

$ff, $07,

$ff, $03,

$ff, $01,

$ff, $01

$ff, $ff, $lf

$ff, $ff, $lf
$ff, $ff, $lf

$ff, $ff, $lf
$ff, $ff, $07

$ff, $ff, $07

$ff, $ff, $03

$ff, $ff, $01

/internal variable space trails code

C512Install:

fileNmBuf:

REDHstash:

REULstash:

driveNum:

whichDriver:

size:

buf:

tempA:

C curDrive:

spacer:

diskBuf:

.byte

.block

.byte

.byte

.byte

.block

.byte

.block

.block

.block

.block

.block

"C512Install\NULL

16

$83,$90,$9e

$00,$80,$00

9

1

0

9

1

1

8

1

Listing 3:C512Install.lnk

* C512Install.lnk *

* *

* *

* These are the link file directives *

* for C512Install & driverl571. *

.output C512lnstall

.header C512Inst.hdr.rel

.vlir

.psect $0400

C512Install.rel

.modi

.psect $9000

driver!571.rel

34 Transactor

Listing 4: Driver157l.src C GetDirHead:

* RamDisk Driver (geos) *

.if Passl

.noeqin

.noglbl

.include geosSym

.include geosMac

.eqin

.glbl

.endif 1$:

BCR =$dd80 ;this is the Bank Control Reg.

C RdBlkDskBuf

Four banks of 64K are available. The register is laid out like

C GetBlock:

bit 0: bank select

bit 1: bank select

bit 2: bank select

bit 3: video access forced bank0=0

bit 4: consider alO=l

bit 5: consider all=l

bit 6: consider al2 & 13=1 1$:

bit 7: CRAM Inhibit

CJutDirHead:

Portions of the following code are Copyright (C) 1986-1989 by

Berkeley Softworks. All rights reserved. Used with permission.

Special thanks to Matt Loveless at Berkeley for his support.

.psect

OSJumpTable:

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

[C InitForlO,

[C~DoneWithIO,
[CJxitTurbo,

[CJSxitTurbo,

[C EnterTurbo,

[C ChangeDskDev,

[C~NewDisk,
[c"ReadBlock,
[C~WriteBlock,
[C~VerWriteBlock,
[C~OpenDisk,
[C~GetBlock,
[C~PutBlock,
[C~GetDirHead,
[c"PutDirHead,
[C~GetFreeDirBlock,
[c"CalcBlocksFree,
[CJreeBlock,

[CJetNextFree,

[C~FindBAMBit,
[C~NxtBlkAlloc,
[cYUAlloo,
[c'CnkDkGEOS,
[CJetGEOSdisk,

]C InitForlO

]C~DoneWithIO
]C~ExitTurbo
]C~ExitTurbo
]CJ!nterTurbo

]C ChangeDskDev

]C~NewDisk
]C~ReadBlock

]c""writeBlock
]C~VerWriteBlock
]C~OpenDisk
]C~GetBlock
]C~PutBlock
]C~GetDirHead
]c"*PutDirHead
]C~GetFreeDirBlock
]C~*CalcBlocksFree
]C~FreeBlock
]C~SetNextFree
]C~FindBAMBit
]c"NxtBlkAlloc
]C~Blkllloe
]C~ChkDkGEOS
]CJetGEOSDisk

jmp C GetlstDirEntry

jnp CJSetNxtDirEntry

GetOffPgTS jmp C GetOffPgTS

SetLink: imp C SetLink

DskBufRdBlk: jmp C RdBlkDskBuf

DskBufWrBlk: jmp CJfrBlkDskBuf

nop

nop

rts

nop

nop

rts

jmp C_AllocateBlock

jnp C ReadLink

MoveTransfer: jnp C~MoveTransfer
diskType: .byte $82, "VI .0",NULL

1$:

jsr DirlGet

jsr C_GetBlock

txa

bne 1$

ldy curDrive

Ida $8203

sta $88b7,y

bpl 1$

jsr Dir2Get

jsr C GetBlock

Ida #$06

sta interleave

rts

Ida #$08

sta interleave

rts

: LoadW r4,diskBlkBuf

this:

jsr EnterTurbo

txa

bne 1$

php

sei

jsr ReadBlock

pip

rts

php

sei

jsr DirlGet

jsr WriteBlock

txa

bne 1$

ldy curDrive

Ida curDirHead+3

sta $88b7,y

bpl 1$

jsr Dir2Get

jsr WriteBlock

pip

rts

C WrBlkDskBuf: LoadW r4, diskBlkBuf

C PutBlock:

2$:

1$:

DirlGet:

Dir2Get:

CheckTrack:

jsr EnterTurbo

txa

bne 1$

php

sei

jsr WriteBlock

txa

bne 2$

jsr VerWriteBlock

pip

rts

Ida #$12

sta rlL

Ida #$00

sta rlH

sta r4L

Ida #$82

sta r4H

rts

Ida #$35

sta rlL

Ida #$00

sta rlH

sta r4L

Ida #$89

sta r4H

rts

Ida #$00

sta tenpc

ldx #$02

Ida rlL

beq 1$

2$:

1$:

C_OpenDisk:

1$:

CJBlkAlloc:

CJxtBlkAlloc:

1$:

2$:

3$:

7$:

cmp

bcc

ldy

Ida

bpl

Ida

cmp

bcs

sec

rts

dc

rts

jsr

txa

bne

jsr

txa

bne

#$24

2$

curDrive

$88b7,y

1$
rlL

#$47

1$

NewDisk

1$
GetDirHead

1$

LoadW r5, curDirHead

jsr ChkDkGEOS

LoadW r4, curDirHead+$90

ldx

jsr

ldx

ldy

Ida

jsr

ldx

rts

ldy

sty

Ao\taey

sty

#$0c

GetPtrCurDkNm

#r4L

#r5L

#$12

CopyFString

#$00

#$01

r3L

r3H

PushW r9

PushW r3

Ida

sta

Ida

sta

ldx

ldy

jsr

Ida

beq

inc

bne

inc

jsr

jsr

pla

sta

pla

sta

ldx

Ida

cmp

bne

Ida

cmp

beq

bcs

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jsr

txa

bne

ldy

#$00

r3H

#$fe

r3L

#r2L

#r3L

Ddiv

r8L

1$
r2L

1$
r2H

GetCurDirHd

CalcBlksFree

r3L

r3H

#$03

r2H

r4H

2$
r2L

r4L

3$

4$

r6H

r4H

r6L

r4L

r2H

r5H

r2L

r5L

SetNextFree

4$
#$00

Volume 9, Issue 6
35

5$:

6$:

4$:

GetCurDirHd:

Ida r3L

sta (r4L),y

iny

Ida r3H

sta (r4L),y

clc

Ida #$02

adc r4L

sta r4L

bcc 5$

inc r4H

Ida r5L

bne 6$

dec r5fi

dec r5L

Ida r5L

ora r5H

bne 7$

ldy #$00

tya

sta (r4L),y

iny

Ida $12

bne 8$

Ida #$£e

clc

adc #$01

sta (r4L),y

ldx #$00

PopW r9

rts

LoadW r5, curDirHead

rts

4$:

3$:

jsr DskBufRdBlk

ldy #$00

LoadW r5, diskBlkBuf+2

rts 7$:

C_GetlstDirEntry:

Ida #$12

sta rlL

Ida #$01

sta rlH

jsr DskBufRdBlk

LoadW r5, diskBlkBuf+2

Ida #$00

sta tempf

rts

C GetNxtDirEntry:

ldx #$00

ldy #$00

clc

Ida #$20

adc r5L

sta r5L

bcc 1$

inc r5H

Ida r5H

cup #$80

bne 2$

Ida r5L

cmp#$ff

1$:

2$: bcc 3$

ldy #$ff

Ida diskBlkBuf+1

sta rlH

Ida diskBlkBuf

sta rlL

bne 4$

Ida tempf

bne 3$

Ida #$ff

sta tempf

jsr GetOffPgTS

txa

bne 3$

tya

bne 3$

C GetOffPgTS: jsr GetDirHead

txa

bne 1$

LoadW r5, curDirHead

jsr ChkDkGEOS

bne 2$

ldy #$££

bne 3$

2$: MoveW curDirHead+$ab, rl

ldy #0

3$: ldx #0

1$: rts

C ChkDkGEOS: ldy #$ad

ldx #$00

Ida #$00

sta isGEOS

2$: Ida (r5L),y

cmp formatID,x

bne 1$

iny

inx

cpx #$0b

bne 2$

Ida #$££

sta isGEOS

1$: Ida isGEOS

rts

formatID: .byte "GEOS format VI.0",NULL

C GetFreeDirBlk:

php

sei

Ida r6L

pha

PushW r2

ldx rlOL

inx

stx r6L

Ida #$12

sta rlL

Ida #$01

sta rlH

1$: jsr DskBufRdBlk

2$: txa

bne 7$

dec r6L

beq5$

3$: Ida diskBlkBuf

bne 4$

jsr SetLink

civ

bvc 2$

4$: sta rlL

Ida diskBlkBuf+1

sta rlH

civ

bvc 1$

5$: ldy #$02

ldx #$00

6$: Ida diskBlkBuf,y

beq7$

tya

clc

adc #$20

tay

bcc 6$

Ida #$01

sta r6L

ldx #$04

ldy rlOL

C SetLink:

1$:

ClearBlock:

1$:

C SetNextFree:

1$:

2$:

3$:

5$:

7$:

my

sty rlOL

cpy #$12

bcc 3$

pla

sta r2L

pla

sta r2H

pla

sta r6L

pip

rts

PushW r6

ldy #$48

ldx #$04

Ida curDirHead, y

beq 1$

MoveW rlLrr3L

jsr SetNextFree

MoveW r3L,diskBlkBuf

jsr DskBufWrBlk

txa

bne 1$

MoveW r3L,rlL

jsr ClearBlock

PopW r6

rts

Ida #$00

tay

sta diskBlkBuf,y

iny

bne 1$

dey

sty diskBlkBuf+1

jmp DskBufWrBlk

Ida r3H

clc

adc interleave

sta r6H

Ida r3L

sta r6L

cmp #$12

beq 2$

cmp #$35

beq 2$

Ida r6L

cmp #$12

beq 4$

cmp #$35

beq 4$

cmp #$24

bcc 3$

clc

adc #$b9

tax

Ida curDirHead,x

bne 5$

beq 4$

asl a

asl a

tax

Ida curDirHead,x

beq 4$

Ida r6L

jsr CheckSector

Ida NumSectors,x

sta r7L

tay

jsr SetAllocBlock

beq 6$

inc r6H

dey

bne 7$

36
Transactor

4$:

9$:

11$:

10$:

6$:

12$:

bit $8203

bpl 8$

Ida r6L

cmp #$24

bcs 9$

dc

adc #$23

sta r6L

bne 10$

sec

sbc #$22

sta r6L

bne 11$

inc r6L

Ida r6L

cop #$24

bcs 12$

sec

sbc r3L

sta r6H

asl a

adc #$04

adc interleave

sta r6H

bne 1$

Ida r6L

sta r3L

Ida r6H

sta r3H

ldx #$00

rts

ldx #$03

rts

CheckSector: pha

cmp #$24

bcc 1$

sec

sbc #$23

1$:

2$:

3$:

ldx #$00

cmp SideAScVals,x

bcc 3$

inx

bne 2$

pla

rts

SideAScVals: .byte $12,$19,$lf,$24

NumSectors: .byte $15,$13,$12,$11

SetAllocBlock:

Ida r6H

1$: cmp r7L

bcc 2$

sec

sbc r7L

civ

bvc 1$

2$: sta r6H

C AllocateBlock:

jsr FindBAMBit

beq 1$

Ida r6L

cmp #$24

bcc 2$

Ida r8H

eor #$££

and dir2Bead,x

sta dir2Head,x

civ

bvc 3$

2$:

-CO-
1$:

CJindBAMBit:

bitMask:

CJreeBlock:

2$:

3$:

1$:

Ida r8H

eor #$££

and curDirHead,x

sta curDirHead,x

ldx r7H

dec curDirHead,x

ldx #$00

rts

ldx #$06

rts

Ida r6H

and #$07

tax

Ida bitMask,x

sta r8H

Ida r6L

cmp #$24

bcc 1$

sec

sbc #$24

sta r7H

Ida r6H

lsr a

lsr a

lsr a

clc

adc r7H

asl r7H

clc

adc r7H

tax

Ida r6L

clc

adc #$b9

sta r7H

Ida dir2Head,x

and r8H

rts

asl a

asl a

sta r7H

Ida r6H

lsr a

lsr a

lsr a

sec

adc r7H

tax

Ida curDirHead,x

and r8H

rts

.byte $01,$02,$04,$08

.byte $10,$20,$40,$80

jsr FindBAMBit

bne 1$

Ida r6L

cmp #$24

bcc 2$

Ida r8H

eor dir2Head,x

sta dir2Head,x

dv

bvc 3$

Ida r8H

eor curDirHead,x

sta curDirHead,x

ldx r7H

inc curDirHead,x

ldx #$00

rts

ldx #$06

rts

C_CalcBlksFree

2$:

1$:

5$:

4$:

3$:

CJetGEOSDisk

3$:

2$:

:lda #$00

sta r4L

sta r4H

ldy #$04

Ida (r5L),y

clc

adc r4L

sta r4L

bcc 1$

inc r4H

tya

clc

adc #$04

tay

cpy #$48

beql$

cpy #$90

bne 2$

Ida #$02

sta r3H

Ida #$98

sta r3L

bit $8203

bpl 3$

ldy #$dd

Ida (r5L),y

clc

adc r4L

sta r4L

bcc 4$

inc r4H

iny

bne 5$

LoadW r3, $0530

rts

: jsr GetDirHead

txa

bne out

LoadW r5, curDirHead

jsr CalcBlksFree

ldx #$03

Ida r4L

ora r4H

beq out

Ida #$00

sta rOL

Ida #$13

sta r3L

Ida #$00

sta r3H

jsr SetNextFree

txa

beq 2$

Ida rOL

bne out

Ida #$01

sta r3L

sta rOL

bne 3$

Ida r3H

sta rlH

Ida r3L

sta rlL

jsr ClearBlock

txa

bne out

MoveW rlL,curDirHead+$ab

ldy #$bc

ldx #$0£

Volume 9, Issue 6 37

PutlDString:

out:

CJnitForlO:

1$:

2$:

CJ)oneWithIO:

Ida

sta

dey

dex

bpl

jsr

rts

php

pla

sta

sei

Ida

bne

jsr

Ida

sta

Ida

sta

Ida

sta

Ida

sta

ldy

sty

sty

Ida

sta

sta

sta

formatID,x

curDirHead,y

PutlDString

PutDirHead

tempi

$02b0

1$
MoveTransfer

$01

temp3

#$36

$01

$d01a

temp2

$d030

tempO

#$00

$d030

$d01a

#$7f

$dO19

$dc0d

$dd0d

LoadW $0314, $02£6

LoadW $0318, $02fb

Ida

sta

Ida

sta

sty

sty

iny

sty

Ida

sta

Ida

sta

ldy

Ida

cmp

beq

sta

dey

bne

rts

sei

Ida

sta

Ida

sta

Ida

sta

Ida

Ida

sta

Ida

sta

Ida

pha

pip

rts

#$3f

$ddO2

$d015

temp4

$dO15

$ddO5

$ddO4

#$81

$dd0d

#$09

$dd0e

#$2c

$dO12

$8f

2$

$8f

2$

tempO

$d030

temp4

$dO15

#$7f

$ddOd

$ddOd

temp2

$d01a

temp3

$01

tempi

C_EnterTurbo:

CJxitTurbo:

C_ChangeDskDev

CJtewDisk:

C_ReadBlock:

1$:

CJleadLink:

1$:

C_WriteBlock:

1$:

Ida

jsr

ldx

rts

Ida

sta

rts

:sta

sta

ldx

rts

jsr

rts

jsr

bcc

jsr

ldy

rts

jsr

bcc

ldy

jsr

rts

jsr

bcc

jsr

rts

C VerWriteBlock:

jsr

bcc

ldx

1$:

Dojetch:

Dojtash:

rts

ldy

bne

ldy

bne

curDrive

SetDevice

#$00

#$08

interleave

curDrive

$ba

#$00

EnterTurbo

CheckTrack

1$
Do Fetch

#$00

CheckTrack

1$
#$91

LoadLink

CheckTrack

1$
Dojtash

CheckTrack

1$
#$00

#$91

LoadPage

#$90

LoadPage

;** the code most heavily modified to support the banked ram begins here **

LoadLink:

1$:

Ida $02a7 /quickie is transfer routine installed?

bne 1$;if not, then do so.

jsr MoveTransfer ;this routine should be unnecessary, but

;one never knows.

PushW r2

LoadW r2, $0002 ;fetch links only

bne SavePs

1$:

SavePs:

Ida $02a7

bne 1$

jsr MoveTransfer

PushW r2

LoadW r2, $0100

;as above

/fetch page

2$:

PushW

PushW

PushW

tya

and

pha

Ida

bcc

sec

sbc

tay

dey

Ida

elc

adc

#%00000001 /mask out high bits

/and save

rlL

#$24

2$

#$23

/track request>35

/if .cs then do some math to access

/correct page values

RamDiskTab,y /RAM page translation

rlH /sector

38
Transactor

3$:

5$:

11$:

12$:

13$:

14$:

RamDiskTab:

sta rOH

txa

ldx

cpy

bcc

cpy

bcc

inx

inx

#%O111OOO1 ;base value for BCR=bank 1, CRAM set to $0400

til

3$
#23

4$

rlL

#$24

5$

Ida

cmp

bcc

inx

inx

inx

stx r3L

LoadB r3H, 0

sta rOL

MoveW r4L, rlL

pla

bne 6$

PushB r3H

MoveW rOL, rlL

MoveW r4L, rOL

MoveB r3L, r3H

PopB r3L

Ida r3H

beq 11$

Ida rlH

bne 12$

;work out the bank

; value based on

;sector requested

;if sector>35 then

;increase bank value

;by 3 the hard way.

/source

/destination

;set up for fetch

;get back command value

;on .ne = fetch

;stash, then do flip

Ida

and

crop

beq

jsr

bne

rOH

#$f0

f$dO

13$

$02a7

14$

jsr $02c4

PopW r3

PopW rl

PopW rO

PopW r2

ldx fO

Ida 10

rts

/determine whether page requested

/lies under 10 block

/if .eq then do slow transfer, otherwise.

;do fast transfer

/do under 10 trans,

/restore psreg.'s

/and return no errors

.byte $04, $la, $30, $46, $5c, $72, $88, $9e

.byte $b4, $ca, $eO, $04, $la, $30, $46, $5c

.byte $72, $88, $9c, $bO, $c4, $d8, $ec, $04

.byte $18, $2b, $3e, $51, $64, $77, $8a, $9c

.byte $ae, $cO, $d2, $e4, $00

C MoveTransfer:

PushW rO

PushW rl

PushW r2

LoadW rO, mvRoutine

LoadW rl, $02a7

LoadW r2, routineSize

jsr MoveData

LoadW $0314, $02£6 /IRQvector

LoadW $0318, $02fb /NMIvector

PopW r2

PopW rl

PopW rO

rts

mvRoutine:

1$:

2$:

3$:

Done:

IRQVEC:

NMIVEC:

ejavRoutine

routineSize

PushB

LoadB

ldy

ldx

dey

Ida

sta

Ida

stx

sta

tya

bne

beq

PushB

ldy

dey

ldx

stx

Ida

sta

Ida

sta

Ida

stx

ldx

stx

beq

ldx

stx

sta

tya

bne

ldx

stx

sta

PopB

rts

pla

tay

pla

tax

pla

rti

= ejp

/internal variable s]

tempO:

tempi:

temp2:

temp3:

temp4:

temp5:

temp6:

temp7:

temp8:

temp9:

tempa:

tempb:

tempc:

tempd:

tempe:

tempf:

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

.byte 0

CPU DATA

CPU~DATA, IO IN
r2L~
r3H

r3L

BCR

(r0L),y

BCR

(rlL),y

1$

Done

CPU DATA

r2L~

#10 IN

CPUDATA

r3L"
BCR

#$30

CPU DATA

(rOL),y

CPU DATA

r3H"
BCR

3$

#$30

CPU DATA

(rlL),y

2$
#$35

CPUJDATA

BCR

CPU_DATA

/Routine-mvRouti

pace trails code

□

Volume 9, Issue 6 39

Ramfinder

Identify, stash andfetch

by Ian Adam

Introduction

Adding an external RAM cartridge to a Commodore 64 or 128

can greatly increase its power and speed. For example,

program overlays and disk files can be held in RAM, for near-

instant access. A word processor or spreadsheet can now

handle vastly larger documents or tables, rivalling those on

any other personal computer. Another of my favourite uses is

to prepare a number of graphics images, either high-resolution

or low-res, and stash them in the RAM cartridge. When these

are fetched rapidly, some pretty good animation can be created.

Many other kinds of programs can use that extra capacity for a

variety of different purposes, if only they know it's there.

The speed of the RAM cartridges is truly amazing. The RAM

Expansion Controller is a special-purpose Direct Memory

Access chip; it has a very limited instruction set, and is opti

mized for just one purpose - moving data. As a result, the data

transfer rate is one byte per clock cycle, or one million bytes

per second. This is far higher than with any other method,

even much higher than you could achieve with hand-crafted

machine language (a maximum of 70,000 cycles per second).

Compared to loading data from a 1541 disk drive... well,

there's just no comparison. When programming animation

with the cartridge, I find that it's actually necessary to intro

duce delay loops in order to keep the animation down to a rea

sonable speed! The RAM cartridge can load high-resolution

images about twice as fast as the video chip can display them,

and four times as fast as the human mind can perceive them.

With all of these capabilities at hand, it follows that the thor

ough programmer will take the time to write programs in such

a way that external ram is taken advantage of. After all,

there's no sense in the user buying a cartridge, if programs for

the computer don't make use of the facility. Besides, your pro

grams will look so much more impressive when they use all of

the power at hand.

Right away, though, you run into the little problem of finding

out how much RAM, if any, you have to work with. The stan

dard Commodore operating system doesn't test for external

RAM, and the cartridge itself doesn't go out of its way to tell

you that it's present, so you have to devise a way to find out

for yourself. What's more, while the cartridge does have a

status byte to tell you how big it is, unfortunately two of the

three available cartridges can have the same status byte!

That's the bad news. The good news is that all three cartridges

use the same ten instruction registers, so they can all be con

trolled with the same commands. Furthermore, they are all

located at the same address in the I/O block, at $dfOO to $dfOa,

regardless of what computer they are installed in. Here are the

cartridges Commodore has made available for the 64 and 128:

Model

1764

1700

1750

Banks

4

2

8

RAM

256K

128K

512K

Status Byte

xxxlxxxx

xxxOxxxx

xxxlxxxx

For

C 64

C 128

C 128

Bank

0 to

0 and

0 to

#s

3

1

7

Check the larger accompanying table for further details on the

meaning of the various control registers. In theory at least, the

status byte (at $dfOO) should be a sufficient signature to identi

fy the cartridge uniquely, once you know which model of

computer it's installed in. After all, there is no duplication of

the byte within each computer model. The 64 is not supposed

to use a 128-model cartridge, since its meager power supply is

barely capable of powering the computer itself, let alone any

RAM expansion. The 1764 comes with an upgraded power sup

ply, and so would not be of interest to an owner of a 128.

In the real world, however, you must remember that hardware

could be combined in ways that your program might not have

anticipated. For example, a Commodore 128 could be running

a C64 program in 64 mode, and still have access to either of

the 128-model expansion cartridges. You could also encounter

a 64-model cartridge being operated in a 128. Thus, there is no

guarantee that the cartridge will be the one you expect from its

signature byte.

What's more, there still remains the problem of sorting out

whether a cartridge is present at all. A genuine status register

can take on many different values at different times, as a

glance at the table will illustrate. However, if there is no

40 Transactor

cartridge present, a read of the address of the non-existent

status register gives a random value, which could mimic the

status byte of a cartridge. All in all, an interesting program

ming challenge.

The Ramfinder program

To the rescue rides the Ramfinder program. The challenge of

detecting RAM isn't all that difficult to deal with, and any

experienced programmer could tackle it reasonably well.

However, I've always felt that the programmer should be freed

to deal with important matters like making his or her program

work properly, and not have to spend time and energy worry

ing about little details like what sort of hardware is attached.

To help out with this, I prepared the Ramfinder program,

which has several useful advantages. This compact program

will run in either the 64 or the 128, with no preference for

either. As a further advantage, it is fully relocatable to any

available start address (SA), so it will be compatible with just

about any program you may want to write. What's more, it has

three handy entry points:

sys sa identify RAM cartridge & report

sys sa+4 STASH to expansion RAM

sys sa+7 FETCH from expansion RAM

All of this usefulness is packed into just over 100 bytes of

machine language.

Of the three entry points, the first entry is the key one, because

it will check whether or not a RAM cartridge is present. If none

is found, it will return a value of zero. If it succeeds in finding

external RAM, then the program will perform a couple of addi

tional tests to identify which cartridge is present. It will return a

result of 2,4, or 8, representing the number of banks of memory

available. The result is stored in zero-page memory, where it can

be retrieved with a simple Ida $fb, or a peek(251) from basic.

The result is also held in the accumulator on departure.

The second and third entry points will perform very simple

STASH and FETCH operations. Because the 64 and 128 manage

their memory in such different fashions, these operations will

not deal with subtleties like data in hidden memory banks.

However, they are ideal for my favourite task, pulling graphic

screens in and out of memory. To use these operations, put the

number of the external RAM bank that you want to use in $fb

(from BASIC: poke 251, bank#. For example, if you have a

four-bank cartridge, select a bank number of 0 to 3). Load the

microprocessor registers as follows:

accumulator high byte of expansion address

X register high byte of computer address

Y register high byte of length of transfer

(all low bytes will be set to zero)

If you are working in machine language, this is very straight

forward. If you are working in BASIC 2.0 on the 64, just POKE

these three values into memory locations 780 through 782,

then sys sa+4. With BASIC 7.0 on the 128C the values can be

transferred directly by the extended SYS command (as an

example: sys sa+4,8,4,4 to stash a low-res screen in the car

tridge at $0800), but be sure you are in Bank 15 when you use

the program.

If you find you need a more comprehensive STASH and FETCH

capability, see Dale Castello's wedge commands for the 64 in

Transactor, Volume 8 Issue 2, page 38 or use the built-in com

mands in BASIC 7.0 on the 128.

Starting Ramfinder

How you use the Ramfinder program is at least partly depen

dent on what you want to do. If you are doing machine lan

guage programming and want to deal with the expansion

cartridge issue painlessly, then type in the source code and add

it to your library of useful routines. Again, note that the code is

fully relocatable, so you should find it most accommodating in

getting along with other routines. Its only requirement is for

one byte of space in zero page, at $fb. A JSR to the start of the

code will identify the expansion RAM available, and on return

the accumulator will contain the number of 64K banks

available. You can use the stash and fetch commands if

suitable to your needs.

For you non-ML programmers, a BASIC loader is also supplied.

Type the program in, being especially careful with the DATA

statements at the end. Be sure to save a copy of the program

before running it. When you do run the program, it gives a

brief description of itself, then asks for the address to load the

machine language into. Enter the address of any suitable free

ram (in the 128, you must be in Bank 15, so the load address

must be less than 16270 in order to stay in non-banked RAM).

If you are unsure, just press Return and the code will be loaded

into the cassette buffer automatically. The program will then

give further instructions for each of its routines.

If you want to incorporate the routine into other BASIC pro

grams that you write, you have my blessings. Of course, you

won't need to include all of the detailed instructions - just the

data statements and their loader.

How it works

The only way to detect a RAM cartridge reliably is actually to

command it to work, then find out whether it performed as

expected. As I mentioned, the status byte should tell you about

the cartridge, but unfortunately it cannot be relied upon. Read

ing this when a cartridge is not installed may yield a phantom

random number, leading to the erroneous conclusion that extra

RAM is available.

To get around this problem, the program puts a known byte in

zero page (the seed value 1 in its storage location at $fb), then

commands the cartridge to save the page in expansion RAM.

The value in $fb is changed (to #$b5, a convenient alterna-

Volume 9, Issue 6 41

tive), then the page is fetched back. By checking what value

remains, the presence or absence of a cartridge can be de

duced. If none, then a value of zero is returned.

With the knowledge that a RAM cartridge is present, the status

byte can be read reliably. If bit 4 is clear, then the cartridge

must be the 1700, and the task is finished.

There are two beneficiaries of this process; one is the user,

whose investment in an expansion cartridge is rewarded with

programs that offer more power and speed. The other benefi

ciary is you, the programmer - your programs will be slicker

and more popular when they take advantage of all the

resources available to them. Ultimately, that reflects

favourably on your ability as a programmer!

Otherwise, there are still two possibilities, so one more test is

required. This depends on the characteristic that the bank

addresses 'wrap around'; that is to say, access to a bank

beyond those in place will be decoded into the existing banks.

To make use of this, remember that zero page has already been

stashed in bank 0: this page will now be verified against bank

4. In the 1764 (the 256K cartridge) bank 4 is read as bank 0, so

the verify operation succeeds. In the 1750, bank 4 is distinct

and different from bank 0, so the verify fails. Thus, the detec

tion is complete.

Listing 1: ramfinder.bas

REGISTER

STATUS

COMMAND

ADDRESS

EXP ADDR

BANK

LENGTH

IRQ MASK

INCREMENT

ADDRESS

$DF00

$DF01

$DF02

$DF03

$DF04

$DF05

$DFO6

$DF07

$DF08

$DF09

$DF0A

Table

TYPE

Read

Only

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

of REU Registers

MEANING

bits 0-3

bit 4

bit 5

bit 6

bit 7

bits 0,1

bit 4

bit 5

bit 7

low byte,

high byte

low byte,

high byte

RAM bank f

low byte,

high byte

bit 5

bit 6

bit 7

bit 0

bit 1

version

'size'

1 = verify error

1 = complete

interrupt pending

transfer type

0 = $FFOO trigger

1 = reset parameters

execute

computer address

expansion RAM address

low bits only

length of transfer

IRQ on verify error

IRQ on completion

enable interrupts

0 = increment RAM addrs

1 = fix RAM address

0 = increment host addrs

1 = fix host address

The benefits are yours

How you use this program is up to you. It is most useful when

combined with other programs, whether in basic or machine

language. Ramfinder is compatible with both; its length and

transportability make it easy to incorporate with other pro

grams of all types. [If you've ever plugged in your REU and

booted GEOS only to discover that the REU wasn't seated prop

erly and thus was not seen by the system, you'll recognize an

other usefor the program as published. - MO]

PK 100

PH 110

PK 120

GP 130

GK 140

CA 150

GG 160

JM 170

OL 180

II 190

MD 200

DK 210

HL 220

OE 230

HK 240

OG 250

FE 260

10 270

MI 280

HP 290

GJ 300

KD 310

EL 320

CF 330

CE 340

JA 350

KL 360

El 370

BP 380

6F 390

HI 400

DN 410

DF 420

CD 430

FB 440

GD 450

HP 460

GC 470

PF 480

CC 490

ND 500

KB 510

GM 520

GI 530

LN 540

LL 550

AA 560

DK 570

IL 580

NK 590

CF 600

IM 610

BG 620

KO 630

AI 640

OP 650

FG 660

DO 670

CG 680

GA 690

NE 700

ON 710

BH 720

print chr$(147):print"** ramfinder **"

print:print"(c) ian adam"

print"Vancouver be 1988"

print:print"this short program will identify an"

print"external ram cartridge attached to"

print"the computer, and indicate its size"

print"in 64k banks, the program will operate"

prinf'without modification in either"

prinf'the 64 or the 128."

print:print"the program is fully relocatable to"

print"any start address, for compatibility."

print"good locations are 828 in the 64,"

print"and 2810 in the 128."

print:input"your start address";a$

sa=val(a$):if sa=0 then sa=828 -2000*(peek(46)>27)

for i=sa to sa+117

read a:poke i,a

next

print chr$(147):print"identifying ram:"

print:print"sys"sa

print:print"this command will locate a ram"

print"cartridge and indicate the number of"

prinf'banks in location $00fb (251)."

print"a value of 0 means no expansion ram."

prinfoptions are 2, 4, or 8 banks of 64k."

print:print"number of banks installed now:"

sys sa

print:print"peek(251) =" peek(251)

print:print"press return to continue"

input a$

print chr$(147):print"stash and fetch:"

print:print"to start, set these parameters; all"

print"others will be set to zero:"

print:print"poke 251, external ram bank #"

print"accumulator = msb external ram address"

print"x register = msb computer address"

prinf'y register = msb length to transfer"

print:print"on the 64, poke these three values"

prinf'into locations 780 to 782, then...":print

print"sys"sa+4" to stash"

print"sys"sa+7" to fetch"

print:print"on the 128, use the extended sys"

print"command, for example, to save this"

print"screen at the start of external ram:"

print:print"poke 251,0:sys"sa+4",0,4,4"

end

datal69,0,240,6,24,144,80,56,176,77,120,162,10,157,0,223,202,208

data250,232,142,8,223,134,251,169,180,141,1,223,169,181,133,251,141,1

data223,197,251,240,40,173,0,223,41,16,208,4,169,2,208,31,169,4
datal41,6,223,169,1,133,251,169,183,141,1,223,173,0,223,41,32,208

data4,169,4,208,6,169,8,208,2,169,0,133,251,88,96/141,5,223
datal42,3,223,140,8,223,166,251,142,6,223,169,0,141,2,223,141,4

data223,141,7,223,105,180,141,1,223,96

42
Transactor

Listing 2: ramfinder.src

external ram

identifier

'* for the c-64 *

* and c-128 *

(c) ian adam

may 1988

Vancouver be

zpbank = $00fb

rec = $dfOO

'jump table'

start address = test exram

sa + 4 = stash

sa + 7 = fetch

dummy start address:

= $2000

code is fully

relocatable,

and executes

on either the 64

or 128 (bank 15)

Ida #$00 ;entry to test ram

beq trial

clc ;entry for stash

bec stash

sec ;entry for fetch

bes stash

* *

* trial *

* stash *

* *

move zero page from computer

to external ram bank 0, as

a test of cartridge operation:

trial sei

ldx #$0a

clear sta rec,x ; clear registers

dex

bne clear

inx

stx $dfO8 ;move 1 page

stx zpbank /plant seed

Ida #$b4 /control byte = stash

sta rec+1 /execute

the value 1 was saved as a test,

if the stash was successful,

then that seed value will be

restored when the same page is

fetched back, thus, this

sequence will detect a working

external ram cartridge:

Ida #$b5 /control byte = fetch

sta zpbank

sta rec+1 /execute

emp zpbank /check it

beq noram /exit if no exram found

/ external ram located -

; find out how much:

i

Ida rec

and #$10 /check # of banks

bne more

if bit 4 is clear, then

there must be 128k of

external ram, in 2 banks:

Ida #$02

bne exit

if bit 4 is set, then there

are either 4 banks (256k) or

8 banks (512k). test for this

by verifying bank 4. if there

are only 4 banks, bank 0 will

read as bank 4, and verify ok.

if there are 8 banks, a verify

error will result:

more Ida #$04

sta $dfO6

Ida #$01

sta zpbank

Ida #$b7

/set bank 4

/control byte = verify

sta rec+1

Ida rec

and #$20

bne most

Ida

bne

most Ida

bne

#$04

exit

#$08

exit

• ***************

; * *

; * exit with *

; * message *

; * *

; ***************

noram Ida

exit sta

di

rts

; the # of

; be left

/ 0 banks

; options:

#$00

zpbank

/execute

/check status

; for error

/no error, 4 banks

/error = 8 banks

/leave message

expansion banks will

in zpbank ($00fb).

means no external ram.

2, 4, or 8 banks.

* *

* stash and fetch *

* *

a = high byte expansion address

x = high byte computer address

y = high byte of length

bank number in zpbank

all other parameters set to 0

stash sta

stx

sty

ldx

stx

Ida

sta

sta

sta

$df05

$dfO3

$dfO8

zpbank

$dfO6

#0

$dfO2

$dfO4

$dfO7

/external ram address

/set

/set

/set

/set

computer address

length

bank

low bytes to 0

build control byte and execute:

the carry bit will increment the

control byte by 1, when a fetch

was specified in the jump table

adc #$b4

sta rec+1

rts

/build control byte

/execute

/all finished

.end □

Volume 9, Issue 6 43

Encryptor

Password Protectionfor C64

by Jim Frost

First, let me set the record straight. I believe in neither copy

protection nor stealing programs. Why then did I write

Encryptor? Computing at my house is a family pastime.

Mother does word processing and neatens documentation so

no one can find it. Jim (Grandpa is James R., I'm James S. and

he's James T.) plays games and writes music. My daughter,

Summer, writes BASIC games that she definitely does not want

her older brother to touch. Jim naturally delights in analyzing,

modifying and criticizing Summer's latest effort. With Sum

mer's work encrypted, I spend less time preventing fights and

more time writing programs.

If you have similar problems and want to protect BASIC pro

grams from unauthorized use, with Encryptor, it's easy! To use

Encryptor, load and run the BASIC loader. Nothing appears to

happen; however, Basic's LOAD and SAVE vectors are changed

to access encryption routines. A password prompt appears

when LOAD or SAVE is requested. For normal (plain-text) load

ing, simply press return. To save an encrypted program, enter

a password in the spaces immediately following the prompt.

Any password will work - provided it does not begin with a

space and is not longer than eleven characters.

Loading encrypted programs involves the same procedure as

saving them. Type your password, then press return and let

the computer work. Unless you use the correct password,

loaded programs will be hopelessly scrambled, and the operat

ing system may even lock due to confusion while relinking

gibberish.

Encryptor works by exclusive-ORing the ninth and eleventh

password characters with the first byte of your BASIC program.

To provide additional confusion, the password is then rotated

and the process repeated byte by byte until the entire program

is encrypted. Because XORing zeroes changes nothing, a pass

word consisting of 11 @ characters (screen code 0) will not

encrypt. More accurately, the encrypted version will be identi

cal to the plain text. I have slowed the encryption processes so

that you can watch it work. If you prefer lightning speed,

change the last data element from zero to one.

While Encryptor will make breaking into your programs diffi

cult, no encryption method is infallible. With time and effort,

any protection can be overcome. For those who savour the

challenge of overcoming any obstacle, I have included data

statements to create an encrypted BASIC program on disk. The

password is my middle name.

Listing 1: encryptor.s

ENCRYPTOR *

*

LOADS AND SAVES ENCRYPTED *

FILES. TO USE ENTER *

PASSWORD AT PROMPT *

A SPACE PASSWORD BYPASSES *

THE PROGRAM *

J FROST rev 4MAY89

ILOAD

SAVE

LOAD

CHROUT

STOBUF

COUNT

NEWPOINT

VTAB

= $0330

= $F5ED

= $F4A5

= $FFD2

= $A560

= $FD

ORG $033C

LDX #$03

LDA VTAB,X

STA ILOAD,X

DEX

BPL NEWPOINT

RTS

DA ELOAD

DA ESAVE

* Encrypted load Routine

ELOAD PHA

JSR PWDMSG

PLA

JSR LOAD

BCS LFAULT

STX $2D

STY $2E

/change LOAD and SAVE

;pointers to encrypt code

/encrypt addresses

/save load/verify flag (in A)

/get password

/recover load/verify flag

/do normal load

/if load error

/else save end of

/load address

JSR ENCRYPT /mess things up

LDX $2D

LDY $2E

CLC

LFAULT RTS

* Encrypted save routine

/then recover end of

/load address

/carry indicates fault

44
Transactor

ESAVE JSR

JSR

JSR

JSR

CLC

RTS

PWDMSG

ENCRYPT

SAVE

ENCRYPT

;get password

;scramble

;then normal save

/unscramble

;carry indicates error

* print password message then input password

PWDMSG LDX #$00

PWM1

PASWRD

TEXT

TXT

LDA TEXT,X

BEQ PASWRD

JSR CHROUT

INX

BNE PWM1

JSR STOBUF

RTS

HEX 93

'password:',00

* encrypt/decrypt routine

ENCRYPT LDA $0409

CMP #$20

BEQ NOENC

LDA #$00

STA COUNT

LDA $2B

STA $FB

LDA $2C

STA $FC

;get text character

;zero flags end of string

;non-zero - print

;and loop

;input password

;CLR

/if space unencrypted

;LOAD/SAVE requested

;skip encryption

/count rotations

/copy start of BASIC

/address from #43

/to $FB

* Encrypt loop - One cycle with a password will scramble.

* A second pass with the same password changes encrypted to plaintext.

ELOOP LDY #$00 /zero pointer

LDA ($FB),Y /fetch program character

EOR $0411 ;XOR with 9th

EOR $0413 /and 11th password character

STA ($FB),Y /and replace character

INC $FB /advance character pointer

BNE ROTATE /low byte

INC $FC /and high if needed

* scramble password for next pass

ROTATE

ROTl

TIMDEL

QUICK

LDX

LDY

LDA

STA

DEY

BPL

TXA

STA

LDA

BNE

LDX

LDY

INY

BNE

INX

BNE

unt

LDX

INX

$0413

#$09

$0409,Y

$040A,Y

ROTl

$0409

FSTFLG

QUICK

#$D0

#$00

TIMDEL

TIMDEL

and test

COUNT

/save last password character

/rotate 10 password characters

/to right one bit

/and rotate last

/to first

/do it fast?

/if non-zero, hurry

/else time delay

for end of BASIC

/advance count

TEST

CPX #11

BNE TEST

LDX #$00

STX COUNT

LDA $FC

CMP $2E

BNE ELOOP

LDA $FB

CMP $2D

BNE ELOOP

LDA COUNT

BNE ROTATE

/last password character?

/test end of BASIC

/reached end of program?

/high bytes match?

/no then keep working

/else test low bytes

/password centred?

/loop until it is

* return to BASIC if no encrypt or when finished

NOENC RTS

FSTFLG HEX 00 /any nonzero speeds encryption

Listing 2: encryptor.bas

BG 100

EB 120

DC 130

EC 140

FB 150

PM 160

CI 170

IH 260

BG 270

AI 280

EB 290

PE 300

HM 310

ED 320

CA 330

KC 340

NJ 350

LP 360

BG 370

NM 380

GC 390

HA 400

BP 410

AJ 420

JD 430

LB 440

MI 450

KK 460

ID 470

EE 480

KO 490

rem places encryptor in cassette buffer

nd=180: sa=827 : ch=21121

for i=l to nd: read x:pokesa+i,x

ch=ch-x:next

if ch then print "data error":stop

print "data ok, encryptor installed

sys 828:end

data 162,

data 202,

data 72,

data 176,

data 3,

data 113,

data 32,

data 130,

data 208,

data 65,

data 0,

data 169,

data 165,

data 77,

data 230,

data 4,

data 4,

data 173,

data 0,

data 253,

data 134,

data 165,

data 208,

3,189,

16,247,

32,113,

12,134,

166, 45,

3, 32,

141, 3,

3,240,

245, 32,

83, 83,

173, 9,

0,133,

44,133,

17, 4,

251,208,

160, 9,

136, 16,

239, 3,

200,208

232,224,

253,165,

251,197,

196, 96,

72, 3,

96, 76,

3,104,

45,132,

164, 46,

141, 3,

24, 96,

6, 32,

96,165,

87, 79,

4,201,

253,165,

252,160,

77, 19,

2,230,

185, 9,

247,138,

208, 10,

253,232

11,208,

252,197,

45,208,

0

157, 48, 3

3, 99, 3

32,165,244

46, 32,141

24, 96, 32

32,237,245

162, 0,189

210,255,232

96,147, 80

82, 68, 58

32,240, 90

43,133,251

0,177,251

4,145,251

252,174, 19

4,153, 10

141, 9, 4

162,208,160

208,250,166

2,162, 0

46,208,188

182,165,253

Listing 3: makescram.bas

rem transactor standard program generator

n$="scrambled.bas"

nd=43: sa=2049 : ch=2875

for i=l to nd: read x

ch=ch-x:next

if ch then print "data error":stop

print "data ok, now creating file."

restore

open l,8,l,"0:"+n$

hi=int(sa/256):lo=sa-256*hi

print#l,chr$(lo)chr$(hi)/

for i=l to nd:read x

print#l,chr$(x)/:next

close 1

prinf'prg file' ";n$;"'created..."

print"this generator no longer needed."

print "program created will not run"

print "unless you have the password"

data 21, 8,253, 48,138, 37, 70, 93

data 64, 5,103, 87, 79, 4,126, 76

data 75, 69, 65, 18, 15, 59,111, 3

data 189, 18, 39, 76, 84, 53, 65, 5

data 96, 69, 65,115,115, 87, 65, 34

AE 320 data 18, 18, 37

MG

EJ

KF

KO

EC

FB

BM

CM

CH

HM

NA

KD

HE

JL

MP

MH

MD

CJ

CL

AJ

NG

AL

PK

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

265

270

280

290

300

310

□

Volume 9, Issue 6 45

Pop-ASCII For The Commodore 64

A handy pop-up utility

by Peter M.L. Lottrup

Here's a programming aid that you won't want to be without

once you've given it a try. With Pop-ASCII installed, you'll

have immediate access to a pop-up window, displaying a list

of ASCII codes in decimal and hexadecimal, along with the

character corresponding to that code (or a three-character

code, representing non-printable characters, like colours,

reverse, cursors, etc). And you won't even lose the screen

beneath Pop-ASCII, as the utility will restore it for you once it

is done. Say goodbye to programming manuals and charts

forever!

Using Pop-ASCII

When you call Pop-ASCII, using the 'hot-key' combination

Commodore-RESTORE, Pop-ASCII will spring to life on the

centre of your current screen. Pop-ASCII is a 3-D window,

where ASCII codes are displayed in decimal and hexadecimal,

along with the corresponding character codes. Fourteen char

acters are shown per screen, and you may quickly shift

through all characters using the up and down cursor keys to

move forwards or back. The program starts by displaying

character 32, the default starting point, but you may shift

through all 255 characters.

Pop-ASCII is an all-machine language program, which loads in

the following address space:

Start Address: $C000

End Address: $C32E

Once you have typed in the program, save it. If you plan to use

it with the customizing loader program included, use the name

ml-popascii for the save.

To install the program in memory without using the loader

program, type:

load "ml-popascii",8,1

new

sys 49152

Pop-ASCII will then be active and waiting for you to press the

CBM-RESTORE keys. When this happens, you'll see Pop-ASCII

jump to life. If, for any reason, Pop-ASCII ceases to function,

you may reactivate it by simply typing sys 49152. RUN-

STOP/RESTORE will not deactivate Pop-ASCII.

The customizing loader

You may customize Pop-ASCII to your own preferences.

Colours and activation keys may be changed. Any control key

(SHIFT, CONTROL, CBM, CBM+SHIFT, etc.) plus RESTORE may be

used to activate Pop-ASCII.

To make customizing easy, a loader program has been included.

It is written in BASIC. Type it in and save it. To customize Pop-

ASCII, simply change the values in the DATA statements in lines

100-140.

Line 100 selects the background colour of the Pop-ASCII

window. The current colour is cyan (print code 159). Replace

this value for the ASCII print code value of the colour you wish

to use.

Line 105 selects the shadow colour of the window (currently

black) in the same way.

Line 110 determines what combination of keys (in conjunction

with RESTORE) will activate Pop-ASCII. A value of one selects a

SHIFT key, a value of two the Commodore key, and a value of

four the CTRL key. You may combine more than one of these

keys, by adding the values. For example, a value of 3 selects

the SHIFT+cbm+restore keys to activate Pop-ASCII.

Line 120 selects the character used to scroll the list of charac

ters a screen forwards (currently cursor down).

Line 130 selects the backward shift key (currently cursor up).

Line 140 selects the Pop-ASCII 'quit' key (currently q).

The abbreviations

Pop-ASCII uses a list of three-letter codes for non-printable

characters. Most of them are quite direct, like BLK for black or

RON for Reverse-On. Here's a list of abbreviations used:

46 Transactor

WHT -

DIS -

ENA -

RET -

LWR -

DWN -

RON -

HME -

DEL -

RED -

RHT -

GRN -

BLU -

SPC -

0R6 -

SRT -

UPP -

BLK -

CUP -

ROF -

CLS -

INS -

BRN -

LRD -

GR1 -

GR2 -

LGR -

LBL -

GR3 -

PUR -

LFT -

YEL -

CYN -

SPC -

White

Disable SHIFT-CBM

Enable SHIFT-CBM

Return

Lowercase

Cursor Down

Reverse On

Home

Delete

Red

Cursor Right

Green

Blue

Space

Orange

Shift-Return

Uppercase

Black

Cursor Up

Reverse Off

Clear Screen

Insert

Brown

Light Red

Gray 1

Gray 2

Light Green

Light Blue

Gray 3

Purple

Cursor Left

Yellow

Cyan

Space

Listing 1: "popascii.src"

Programming notes

The NMI interrupt vector was selected to activate Pop-ASCII,

providing the easiest and shortest way of interrupting a pro

gram and activating a memory-resident utility. When Pop-

ASCII is called, current cursor colour and address are stored,

along with screen and colour memory.

This information is restored upon exit from the utility. The

memory area below BASIC ROM ($A000-$A800) is used for

this storage. Aside from this memory, addresses 820-827 are

used for miscellaneous data storage. The program itself resides

at memory addresses $C000-$C32E.

I have been using Pop-ASCII for quite some time now, and find

it incredibly handy. I use it for quick hex-dec conversions, and

to find all necessary character codes.

Just think about how often you have found yourself searching

for that Commodore manual just to find the code for one of the

function keys or some special character code. With Pop-ASCII

installed, you'll be able to remain at the keyboard instead of

rummaging through your bookshelves.

NI 1000

DM 1010

PA 1020

HP 1030

NP 1040

HF 1050

ME 1060

HG 1070

AF 1080

DF 1090

JL 1100

LA 1110

MI 1120

GF 1130

KF 1140

ND 1150

BM 1160

CF 1170

HI 1180

DB 1190

AM 1200

IL 1210

FG 1220

CA 1230

KK 1240

MB 1250

NC 1260

NF 1270

IE 1280

JF 1290

KK 1300

CA 1310

ON 1320

KN 1330

JI 1340

HM 1350

PO 1360

PD 1370

GC 1380

JL 1390

AP 1400

KE 1410

LL 1420

FK 1430

AG 1440

FO 1450

CJ 1460

AP 1470

KN 1480

CJ 1490

KB 1500

HM 1510

FC 1520

EC 1530

EM 1540

PE 1550

MP 1560

KF 1570

JF 1580

GP 1590

El 1600

KC 1610

OB 1620

BA 1630

FL 1640

FF 1650

CP 1660

FC 1670

NB 1680

DD 1690

open2,8,1,"0:ml-popascii"

sys 700

.opt p2

*= $c000

;— first save screen & color —

Ida #<newer

sta $0318 ;— new irq low —

Ida #>newer

sta $0319 ;— new irq high —

Ida |<setter

ldy f>setter

sta $0302

sty $0303 ;— make sure new vect. stays

rts

setter Ida |<newer

sta $0318

Ida #>newer

sta $0319

Ida fO

sta active

jmp $a483

newer pha

Ida 653

cmp§2

beq ours

ignore pla

jmp $fe47

ours Ida active

bne ignore

inc active

Ida 204

sta ctemp

inc 204

Ida 646

sta tcolor

sec

jsr $fffO

stx cur

sty cur+1

ldy §0

;— store screen and color memory —

irtftni in* ftnjnn uloopl Ida $0400, y

sta $a000,y

Ida $d800,y

and #15

sta $a400,y

Ida $0500,y

sta $al00,y

Ida $d900,y

and #15

sta $a500,y

Ida $0600,y

sta $a200,y

Ida $da00,y

and 115

sta $a600,y

Ida $0700,y

sta $a300,y

Ida $dbOO,y

and 115

sta $a700,y

iny

bne loopl

now display the pop-ascii window ■

ldx§3

ldy |12

clc

jsr $fffO

Ida #"{rvsl"

jsr $ffd2

Volume 9, Issue 6 47

i loopO

Ioop3

I entry

Ioop4

LK 1700

HE 1710

ED 1720

NK 1730

DJ 1740

NI 1750

JK 1760

JD 1770

EN 1780

EH 1790

HK 1800

AC 1810

61 1820

AH 1830

JB 1840

BN 1850

BB 1860

JA 1870

EC 1880

DM 1890

FA 1900

PD 1910

BN 1920

MD 1930

KA 1940

ND 1950

6H 1960

LE 1970

FK 1980

LP 1990

PJ 2000

FJ 2010

BL 2020

ML 2030

BJ 2040

LM 2050

10 2060

GA 2070

HP 2080

KA 2090

KK 2100

NN 2110

6K 2120

LO 2130

DP 2140

PE 2150

BE 2160

FD 2170

CF 2180

MB 2190

BD 2200

HJ 2210

DD 2220

FL 2230

NB 2240 ,

ME 2250

FK 2260

LP 2270 :

KK 2280

EC 2290

DO 2300

PJ 2310

BK 2320 notone

CP 2330

LA 2340

HM 2350

PD 2360 none

NC 2370

JJ 2380

16 2390

i Ioop5

;— now

i again

I more

Ida #"{black}"

jsr $ffd2

Ida #"{logo-y}"

ldx #16

jsr $ffd2

dex

bne loopO

ldx #4

ldy #11

clc

jsr $fffO

Ida #<prep

ldy #>prep

jsr $able

ldy #14

Ida #"{shift-*}"

jsr $ffd2

dey

bne Ioop3

Ida #"{logo-s}"

jsr $ffd2

jsr black

ldx #5

ldy #11

clc

jsr $fffO

Ida #"}"

jsr $ffd2

ldy #14

Ida #" "

jsr $ffd2

dey

bne Ioop4

Ida #"}"

jsr $ffd2

jsr black

inx

cpx#21

bcc entry

ldy #11

clc

jsr $fffO

Ida #"{logo-z}"

jsr $ffd2

Ida #"{shift-*}"

ldy #14

jsr $ffd2

dey

bne Ioop5

Ida #"{logo-x}"

jsr $ffd2

fill the window —

Ida #32

sta 2

Ida #6

sta line

jsr place

Ida 2

cmp #10

bcs notone

Ida #"0"

jsr $ffd2

cmp #100

bcs none

Ida #"0"

jsr $ffd2

ldx 2

Ida #0

jsr $bdcd ;— display number

jsr twospaces

;— initial char —

DE 2400 ;— now hex number —

EA 2410 Ida 2

BH 2420 and #$f0

HF 2430 lsr

B6 2440 lsr

L6 2450 lsr

FH 2460 lsr

MB 2470 clc

DH 2480 jsr dispnum

EF 2490 Ida 2

HN 2500 and#$0f

BJ 2510 jsr dispnum

KO 2520 jsr twospaces

MH 2530 Ida 2

IL 2540 cmp #32

AJ 2550 bcc speciall

IK 2560 cmp #128

IE 2570 bcc normal

MK 2580 cmp #161

MJ 2590 bcs normal

NE 2600 special2 sec

FK 2610 sbc #128

HO 2620 sta temp

BP 2630 asl

GM 2640 clc

JL 2650 adc temp

DD 2660 tay

LL 2670 ldx #3

KP 2680 lol Ida table2,y

LB 2690 jsr $ffd2

MG 2700 iny

NE 2710 dex

PJ 2720 bne lol

OC 2730 jmp finish

CA 2740 speciall asl

ED 2750 clc

EF 2760 adc 2

BK 2770 tay

JC 2780 ldx #3

LG 2790 Io2 Ida tablel,y

JI 2800 jsr $ffd2

KN 2810 iny

LL 2820 dex

AB 2830 bne Io2

MJ 2840 jmp finish

HL 2850 normal Ida #32

FM 2860 jsr $ffd2

AN 2870 Ida 2

JN 2880 jsr $ffd2

PH 2890 Ida #" "

NO 2900 jsr $ffd2

KB 2910 finish Ida #13

BA 2920 jsr $ffd2

GN 2930 inc line

GD 2940 inc 2

HF 2950 jsr place

EN 2960 Ida line

OF 2970 cmp #20

IJ 2980 bcs waitkey

FO 2990 jmp more

JL 3000 ;— wait for 'q' key —

DN 3010 waitkey jsr $ffe4

LJ 3020 cmp #"{down}"

LO 3030 beq forward

PC 3040 cmp #"{up}"

KD 3050 beq back

DI 3060 cmp #"q"

LN 3070 bne waitkey

6E 3080 ;— now restore current screen —

LK 3090 sei

H6 3100 ldy #0

PL 3110 Ida 1

MF 3120 and #254

KJ 3130 sta 1 ;— switch out basic rom •

48
Transactor

JI 3140 ;— restore screen & colors —

LD 3150 Ioop2 Ida $a000,y

BH 3160 sta $0400,y

PF 3170 lda$a400,y

JL 3180 sta $d800,y

KG 3190 Ida $al00,y

MJ 3200 sta $0500,y

KI 3210 Ida $a500,y

EO 3220 sta $d900,y

FJ 3230 Ida $a200,y

HM 3240 sta $0600,y

FL 3250 Ida $a600,y

EC 3260 sta $da00,y

AM 3270 Ida $a300,y

CP 3280 sta $0700,y

AO 3290 Ida $a700,y

PE 3300 sta $db00,y

OM 3310 iny

DM 3320 bne Ioop2

EL 3330 ;— restore basic & interrupts —

FK 3340 Ida 1

GP 3350 ora §1

HP 3360 sta 1

IL 3370 di

LN 3380 ldx cur

CM 3390 ldycur+1

OL 3400 clc

BP 3410 jsr $fffO

LG 3420 Ida tcolor

ME 3430 sta 646

GB 3440 Ida ctemp

OE 3450 sta 204

BP 3460 sta active

LJ 3470 Ida #"{rvs off}"

BD 3480 jsr $ffd2

KC 3490 pla

3500 rti

3510 forward jmp again

back Ida 2

AH

ND

IP 3520

LE 3530

Lfl 3540

GL 3550

HK 3560

BP 3570

FJ 3580

PJ 3590

MP 3600

LK 3610

KA 3620

EK 3630

HN 3640

PM 3650

FO 3660

CE 3670

IB 3680

DG 3690

KO 3700

3710

3720

3730

PN 3740

DD 3750

JE 3760

GK 3770

ME 3780

HG 3790

NA 3800

LH 3810

AC 3820

PI 3830

MO 3840

CC 3850

OE 3860

EH 3870

EA

BC

OH

sec

sbc 128

sta 2

jmp again

twospaces Ida f" "

jsr $ffd2

jsr $ffd2

rts

place ldx line

ldy #13

clc

jsr $fffO

Ida f{rvs}"

jsr $ffd2

rts

dispnum cmp 110

bcc numeric

clc

adc #55

jsr $ffd2

rts

numeric clc

adc 148

jsr $ffd2

rts

black Ida f"{black}"

jsr $ffd2

Ida f "

jsr $ffd2

Ida f(cyan}"

jsr $ffd2

rts

prep .asc "(rvs}{cyan}{logo-a}"

.byt 0

active = 821

FH 3880 cur = 822

FE 3890 ctemp = 824

FD 3900 line = 825

LE 3910 temp = 826

BD 3920 tcolor = 820

FB 3930 ;— data for special characters —

GF 3940 tablel .asc " wht disena"

KO 3950 .asc " retlwr dwnronhmedel "

JP 3960 .asc " redrhtgrnbluspc"

NC 3970 table2 .asc " org fl f3 f5 f7 f2"

BL 3980 .asc " f4 f6 f8srtupp blkcuprofdsinsbrnlrd"

BC 3990 .asc "grlgr21grlblgr3purlftyelcynspc"

Listing 2: "customizer"

EF 10 rem — pop-ascii

IG 20 rem — customizing loader —

MD 30 rem

JH 35 ifa=0thena=l:load"ml-popascii",8,l

IC 40 read be:poke 49760,bc:poke 49766,be

GI 50 read sc:poke 49750,sc:poke 49309,sc

JG 60 read ky:poke 49196,ky

KE 70 read dw:poke 49585,dw

KH 80 read up:poke 49589,up

MH 90 read qt:poke 49593,qt

ME 95 sys49152

CF 100 data 159:rem — background color:cyan —

NC 105 data 144:rem — shadow color:black —

FF 110 data 2: rem — activation keyicbm —

KC 120 data 17:rem — forward scroll:cursor down —

CD 130 data 145:rem — backward scroll:cursor up —

EO 140 data 81:rem — quit key:q —

Listing 3: BASIC generatorfor "ml-popascii"

EL 100 rem generator for "ml-popascii"

HK 110 n$="ml-popascii": rem name of program

FD 120 nd=815: sa=49152: ch=83582

(for lines 130-260, see the standard generator on page 5)

NE 1000

PC 1010

CA 1020

BC 1030

HG 1040

CB 1050

HE 1060

ME 1070

KP 1080

CB 1090

MF 1100

KE 1110

OF 1120

CH 1130

NH 1140

AK 1150

KA 1160

JA 1170

JJ 1180

HA 1190

00 1200

JK 1210

BD 1220

DE 1230

FN 1240

EN 1250

KD 1260

EJ 1270

data 169,

data 25,

data 3,

data 24,

data 0,

data 173,

data 76,

data 238,

data 230,

data 56,

data 55,

data 0,

data 0,

data 185,

data 185,

data 218,

data 7,

data 15,

data 3,

data 18,

data 255,

data 202,

data 32,

data 30,

data 255,

data 255,

data 24,

data 255,

39, 141,

3, 169,

140, 3,

3, 169,

141, 53,

141, 2,

71, 254,

53, 3,

204, 173,

32, 240,

3, 160,

160, 185,

164, 185,

0, 217,

0, 6,

41, 15,

153, 0,

153, 0,

160, 12,

32, 210,

169, 183,

208, 250,

240, 255,

171, 160,

136, 208,

32, 85,

32, 240,

160, 14,

24, 3,

21, 160,

3, 96,

192, 141,

3, 76,

201, 2,

173, 53,

165, 204,

134, 2,

255, 142,

0, 185,

0, 216,

0, 5,

41, 15,

153, 0,

153, 0,

163, 185,

167, 200,

24, 32,

255, 169,

162, 16,

162, 4,

169, 101,

14, 169,

250, 169,

194, 162,

255, 169,

169, 32,

54,

0,

169, 192, 141

192, 141, 2

169, 39, 141

25, 3, 169

131, 164, 72

240, 4, 104

3, 208, 247

141, 56, 3

141, 52, 3

3, 140

4, 153

41, 15, 153

153, 0, 161

153, 0, 165

162, 185, 0

166, 185, 0

0, 219, 41

208, 197, 162

240, 255, 169

144, 32, 210

32, 210, 255

160, 11, 24

160, 194, 32

192, 32, 210

174, 32, 210

5, 160, 11

221, 32, 210

32, 210, 255

Volume 9, Issue 6 49

FP 1280

F6 1290

Hfl 1300

BO 1310

NC 1320

ND 1330

JB 1340

HD 1350

BH 1360

NE 1370

NF 1380

FC 1390

LP 1400

BK 1410

KM 1420

CP 1430

FL 1440

GM 1450

HM 1460

AC 1470

JO 1480

KI 1490

MF 1500

CD 1510

BA 1520

LC 1530

KP 1540

HJ 1550

NH 1560

DC 1570

FD 1580

AD 1590

JE 1600

BG 1610

CD 1620

H6 1630

KI 1640

06 1650

CK 1660

FL 1670

IL 1680

NM 1690

PK 1700

KH 1710

6K 1720

HL 1730

AO 1740

BP 1750

AJ 1760

MK 1770

GP 1780

ED 1790

FI 1800

EB 1810

CJ 1820

GI 1830

PO 1840

MD 1850

GE 1860

NH 1870

BN 1880

FL 1890

CI 1900

BK 1910

HJ 1920

MK 1930

DP 1940

PO 1950

PB 1960

OD 1970

IB 1980

DC 1990

PD 2000

IN 2010

data 136,

data 32,

data 160,

data 32,

data 210,

data 210,

data 141,

data 201,

data 255,

data 210,

data 189,

data 74,

data 165,

data 43,

data 201,

data 56,

data 109,

data 194,

data 76,

data 162,

data 200,

data 32,

data 255,

data 32,

data 32,

data 176,

data 201,

data 201,

data 1,

data 153,

data 216,

data 0,

data 153,

data 218,

data 0,

data 165,

data 54,

data 255,

data 56,

data 146,

data 193,

data 76,

data 32,

data 13,

data 210,

data 105,

data 48,

data 210,

data 159,

data 0,

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

32,

87,

32,

32,

82,

32,

79,

32,

32,

32,

82,

85,

82,

32,

51,
70,

32,

80,

85,

73,

68,

71,

80,

76,

208, 250, 169,

85, 194, 232,

U, 24, 32,

210, 255, 169,

255, 136, 208,

255, 169, 32,

57, 3, 32,

10, 176, 5,

201, 100, 176,

255, 166, 2,

32, 43, 194,

74, 74, 74,

2, 41, 15,

194, 165, 2,

128, 144, 51,

233, 128, 141,

58, 3, 168,

32, 210, 255,

150, 193, 10,

3, 185, 105,

202, 208, 246,

32, 210, 255,

169, 32, 32,

210, 255, 238,

52, 194, 173,

3, 76, 22,

17, 240, 106,

81, 208, 241,

41, 254, 133,

0, 4, 185,

185, 0, 161,

165, 153, 0,

0, 6, 185,

185, 0, 163,

167, 153, 0,

1, 9, 1,

3, 172, 55,

173, 52, 3,

3, 133, 204,

32, 210, 255,

165, 2, 56,

14, 193, 169,

210, 255, 96,

24, 32, 240,

255, 96, 201,

55, 32, 210,

32, 210, 255,

255, 169, 32,

32, 210, 255,

32, 32, 32,

32, 32, 32,

72, 84, 32,

68, 73, 83,

32, 32, 32,

69, 84, 76,

32, 32, 32,

78, 72, 77,

32, 32, 32,

32, 32, 32,

32, 32, 32,

72, 84, 71,

83, 80, 67,

71, 32, 32,

32, 32, 32,

32, 70, 53,

50, 32, 70,

70, 56, 83,

32, 32, 32,

80, 82, 79,

78, 83, 66,

71, 82, 49,

82, 76, 66,

85, 82, 76,

67, 89, 78,

221, 32,

224, 21,

240, 255,

192, 160,

250, 169,

133, 2,

52, 194,

169, 48,

5, 169,

169, 0,

165, 2,

24, 32,

32, 67,

201, 32,

201, 161,

58, 3,

162, 3,

200, 202,

24, 101,

194, 32,

76, 150,

165, 2,

210, 255,

57, 3,

57, 3,

193, 32,

201, 145,

120, 160,

1, 185,

0, 164,

153, 0,

217, 185,

0, 166,

153, 0,

219, 200,

133, 1,

3, 24,

141, 134,

141, 53,

104, 64,

233, 28,

32, 32,

174, 57,

255, 169,

10, 144,

255, 96,

96, 169,

32, 210,

96, 18,

32, 32,

32, 32,

32, 32,

69, 78,

32, 32,

87, 82,

68, 87,

69, 68,

32, 32,

32, 32,

32, 82,

82, 78,

32, 32,

32, 32,

70, 49,

32, 70,

52, 32,

82, 84,

66, 76,

70, 67,

82, 78,

71, 82,

76, 71,

70, 84,

83, 80,

210, 255

144, 222

169, 173

14, 32

189, 32

169, 6

165, 2

32, 210

48, 32

32, 205

41, 240

67, 194

194, 32

144, 35

176, 47

10, 24

185, 204

208, 246

2, 168

210, 255

193, 169

32, 210

169, 13

230, 2

201, 20

228, 255

240, 105

0, 165

0, 160

153, 0

5, 185

0, 162

153, 0

7, 185

208, 205

88, 174

32, 240

2, 173

3, 169

76, 14

133, 2

210, 255

3, 160

18, 32

7, 24

24, 105

144, 32

255, 169

159, 176

32, 32

32, 32

32, 32

65, 32

32, 32

32, 32

78, 82

69, 76

32, 32

32, 32

69, 68

66, 76

32, 79

32, 32

32, 70

55, 32

70, 54

85, 80

75, 67

76, 83

76, 82

50, 76

82, 51

89, 69

67

Pinout Diagram for 6510 MPU

(viewed from solder side of motherboard)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2-

RE5

62 IH

R/N

DBS

DB1

DB2

DB3

DB4

DBS

DB6

DB7

P6

PI

P2

P3

PA

P5

A15

MA

GRD

OS

©

2
■o
c

81IH

RDV

IRQ

HMI

AEC

Uee

A3

A1

A2

A3

A4

A5

A7

A8

A9

A16

A11

A12

A13

-

-

-

-

-

-

-

-

-

-

-

-

-

-

□

Expansion Port; Pin Positions

(viewed from solder side of motherboard)

1—

|4

o

o

o

o

2O-n

^O^c

O*-

O7Z

or"

002

O

o

SO3JC

o

o

o

o

o

o

o

o

o

O Q. ra

o * 88

° as
O lXl B

o o a

Oui o" S

O*O Ql

O55

o^

oK
o got*
ON

50 Transactor

Combiner

A utilityfor geoWritefiles

by Nick Vrtis

Combiner is a program which I wrote to take multiple

geoWrite files and combine them into a single file. It comes in

very handy when you have a number of separate documents

and want to combine them so that you can edit and paginate

the whole thing. Geos can be pretty slow if you are working

without a RAM expander on a large document, so I found it

quicker and easier to work with smaller files. This way I could

key, spell check, etc. each file as a small piece, then combine

them for final preparation. It also came in handy when some

one would write an article for our newsletter and I had to com

bine that article with the rest of the articles.

When you double click on Combiner, you are presented with

the Main Menu screen. This Main Menu has four items to

select from:

GEOS - This item is a pretty standard GEOS menu item. You

can run any Desk Accessories which are on the same disk that

Combiner was loaded from. You can also get information

about Combiner.

Done - Select this item when you are finished combining docu

ments. It has two submenu items: Quit will quit Combiner, and

return you to the DeskTop and geoWrite will load geoWrite and

let you edit the last output document you created (as if you had

double-clicked on the document icon from the DeskTop). Note

that in order for this to work properly, geoWrite must be on one

of the disks currently in the active drives.

Help - This item is a short series of screens which covers the

basic operation of Combiner, just in case you have forgotten

something and don't have this documentation handy.

Begin - This item is selected to start the process of combining

an input file with an output file. After you have combined an

input with an output, you will be returned to the Main Menu

screen where you can select Begin again to repeat the process

(either with the same output file, or a new one). If you select

Cancel from any of the windows in the process, you will be

returned to the Main Menu screen.

The first thing that happens after you select Begin is that you

are presented with a series of windows to identify the output

document. The first window gives you a choice to Create an

new output file, or to Open an existing file and add to it.

Create will ask for the name of the new output file. If that file

already exists on the disk, you will be asked to confirm that

you want to delete the old version. If you select Open an exist

ing file, you will be presented with the standard GEOS scrolling

filename window showing all the geoWrite documents on the

disk. Highlight the output file you want, and click over the

Open box.

Once the output file has been determined, the input file needs

to be selected. This is done through a standard scrolling file

name window (the same way geoWrite lets you select an exist

ing file). Click to highlight the name of the file you want to

use as input, and click the Open box to use that file.

The last thing Combiner needs to know is where to put the in

put in the output file (in terms of pages). Combiner can pick

off any number of pages from the input file (it doesn't need to

be the whole document). It can also put those pages after any

page of the output file (or insert them at the beginning).

In order to get this information, Combiner puts up a window

with five boxes. The first box requests the first page of the input

document you want included in the output. The second box

requests the last page of the input document you want included.

Both the first page and the last page are included, so in order to

select a single page, put the same number in both the first page

box and the last page box. The third box requests the page

number of the output document you want the new pages placed

after. All the pages specified by the first page number and last

page number will be placed after this page of the output.

For example, if you wanted to put the first two pages of an in

put document after the second page of an existing document,

* first page' would be 1, 'last page' would be 2, and * after page'

would be 2. Page 1 of the input would become page 3 of the

output. To insert the input pages at the beginning (before page

1) of the output, use a value of 0 for the 'after page'.

When this window is first opened, the three numbers are

initialized to select the whole input document and insert it at

the end of the output document. If you are creating a new

Volume 9, Issue 6 51

output document, the 'after page' shows up as page 00. To get

from one number box to the next, click in the box you want to

go to. You don't have to fill in the boxes in order. You can exit

the window by one of three ways. Hitting Return or clicking

over the OK box will close the window and use the numbers

currently in the boxes. Clicking over the Cancel box returns

you to the Main Menu without processing any input.

There are currently three different document versions pro

duced by various geoWrite versions. Version 1.x is from the

geoWrite shipped with the original GEOS (version 1.0, 1.1, 1.2,

1.3). Version 2.0 is from Writer's Workshop, and version 2.1 is

from the Writer's Workshop upgrade or GEOS version 2.0.

Combiner will combine different versions of geoWrite

documents. When you are creating a new document its version

is determined by the version of the first input file. Since

Combiner will combine a version 2.1 document with a version

1.3 and produce a version 1.3 output file, it is conveniently

allows owners of 1.x versions of geoWrite to edit files that

have been produced originally by 2.x versions. You should be

aware that there are features within version 2.1 (and 2.0)

which are unavailable with version 1.3. Combiner drops the

unsupported features when combining a higher version file

into a lower version.

Any graphics which are referenced in the pages selected from

an input document will be copied along with those pages.

Combiner doesn't bother copying any graphics not referenced

by the pages selected.

Version 2 of geoWrite allows for a header and footer page.

Combiner will not select headers or footers from the input as

there can only be one set of headers and footers per document.

They are not removed from the output document, so if you

need the headers and footers, use the DeskTop duplicate op

tion to make a copy of the file with the header and footer and

use it as the first output file.

Combiner will handle multiple drives if they are present on the

system. You can also have the input and output documents on

different disks (even with a single drive system). Combiner

will ask you to insert the necessary disks as they are needed.

Combiner reads as much of the input document into memory

as it can and then writes it out in order to keep disk swapping

to a minimum in a single drive system. Desk Accessories are

always loaded from the disk that Combiner was on when it

was loaded from the DeskTop.

Combiner has been tested under versions 1.3 and 2.0 of GEOS,

and version 1.4 of GEOS 128. [In tests here at the Transactor

offices, it was necessary to exit to a 40-column version of

geoWrite with GEOS 128 v2.0 - MO]

Programming considerations

In addition to being a useful program to have around, Combiner

contains a number of examples of how to make use of various

features within GEOS. In addition to the normal menus and

windows, Combiner will run Desk Accessories, handles

multiple drives, custom click boxes in a window, and multiple

input fields in one window. I've tried to keep the source code

well commented, so I will only present an overview in this ar

ticle. The routine labels I've used are those from Alexander

Boyce's GEOS programmer's reference (except for the general

purpose page zero locations). [The BSW labels and hex

addresses are provided in square brackets following the first

usage ofeach Boyce label.-MO]

I'll start with how the geos portion of the main menu is setup

and handled. What really happens is that the geos item is set

up as a submenu from the main menu. When the source was

coded, the submenu was set up to handle all nine possible

items (eight Desk Accessories plus the info item). Then as part

of the initialization process, Combiner uses table [Find-

FTypes, $c23b] to get a list of the names of Desk Accessories.

Table returns a list of names which are 17 bytes apart, and

zero-terminated, so the addresses don't need to be changed.

All that needs to be adjusted in the submenu entry is the num

ber of items in the list, and the height of the menu. The num

ber of entries left is returned by table, so a simple subtract

gives the number used. Each entry takes 14 pixels, so the

height can be calculated easily. Note that one of the reasons

for the info option is so that the submenu under geos always

has at least one entry.

Running desk accessories

Running a Desk Accessory from within a program is really

pretty simple. All you need to do is point LOAD [GetFile,

$c208] to the name you want, and GEOS takes care of saving

and restoring the piece of your program which is going to be

overlayed. If your screen is not complicated, tell the Desk Ac

cessory not to bother saving and restoring the screen. This can

save some disk I/O if the Desk Accessory has to create a

temporary file to save the screen.

Most of the GEOS environment is preserved during the running

of the Desk Accessory. Unfortunately, Berkeley has never pub

lished much about what a Desk Accessory can and cannot

trash, so I would be a little careful. Obviously, the general pur

pose registers (rO - rl5) are not preserved, nor are the disk

buffers. Strangely, I haven't found anything in GEOS which in

dicates an open or a closed vlir file, so I would not count on

this being preserved between calls to a Desk Accessory. If you

think about it, these restrictions aren't too bad. Since your pro

gram controls when the menu entry is active, just make sure

that you aren't in the middle of some complicated update

when you activate it.

You might be interested in looking at how the geoWrite option

of Done is implemented. This is an example of how to transfer

from one program to another as if it had been double-clicked

on from the DeskTop. This avoids the hassle of reloading the

DeskTop just to get to geoWrite to clean up the file you just

created.

52 Transactor

Text windows and custom click boxes

There was a little challenge in doing the Help windows. The

way text is implemented in windows, each line has to be a sep

arate entry in the window definition. This is because the

WINDOW routine [DoDlgBox, $c256] sets the left margin to

zero (instead of the left edge of the window) so a carriage

return in the text takes you outside the window. Having each

line as a separate entry either means a separate window defini

tion for each help screen, or adjusting a lot of pointers for each

line.

I didn't care for either alternative. So I cheated and used the

'set next character position' function code ($16) within the

text. The three bytes after this code specify the absolute x and

y coordinates where the following text is to be displayed. The

Help window definition has only one text pointer (rl2). This

points to one long text string which contains positioning com

mands to format the text correctly. The bad part of doing win

dows this way is that if you move or resize the window, you

have to go back and recalculate all the positioning.

The Begin main menu entry really starts the combining pro

cess. The code in this section is pretty straightforward. The

way the Drive option is implemented is that windows which

may or may not have a Drive box on them have been designed

with that box definition at the end. Unlike menus which start

with a count of the number of entries, windows end when they

have a function byte of zero. So, by putting the Drive box last,

it can be included in the window by making the function byte

equal to $12 (custom click box), or removed from the window

by making it equal to zero.

Combiner checks numdrv during initialization, and sets the

function bytes appropriately for those windows which may or

may not have a Drive box. This way, the code which processes

the windows doesn't have to worry about whether there are

enough drives. The only way that code will be executed if

there was a Drive box in the window, and there will only be a

Drive box if there is more than one drive on the system.

Non-standard windows

Probably the hardest part of this program was doing the win

dow asking for the starting page, the ending page, and the

page to put them after. It is definitely a non-standard window!

The way I wanted to implement it was to have all three num

bers on one window, and let the user click on any of the num

bers to get into that box and change it. This is similar to the

way geoWrite implements the search and replace function (in

fact that's where I got the idea). There were challenges though.

The trick is displaying text within a click box. The window

processor doesn't do any click boxes until the very end of pro

cessing (regardless of where they appear in the window defini

tion). So what I had to do was put up and display all the click

boxes for the window from within a routine (labeled WHERE-

SET) which gets called after the window is drawn. You have to

do all click boxes at once, because GEOS can only handle one

set at a time. Any boxes specified in the window definition

will replace those you have defined in the setup routine. I

wanted to show the default values for each of the page num

bers required within a box. But, when CBOXES [Dolcons,

$cl5a] draws a box, it overlays anything under the box area (it

makes sense when you think about how GEOS draws graphics).

The first thing WHERESET does is put up the click boxes. Then

it displays the default values for the pages within the areas

where the boxes are by calling WHEREIN.

Handling user text input

In order to start the process, one text input function needs to

be defined in the window definition. You don't want to define

all three, since INPUT [GetString, $clba] saves a copy of the

carriage return entered vector and replaces it with its own val

ue. If you call input twice, the second call saves the wrong

carriage return vector and when you hit return INPUT gets in a

loop.

Each page value has a control block associated with it. This

block keeps the values which are needed to switch between

one input area and the other (the input buffer, the number of

characters entered, and the text cursor column). When the user

clicks over one of the value boxes, two routines get called.

Svwhere takes the necessary input values and saves them in

the current control block (the current block index is saved in

widxsave). Then nxtwhere is called to move the new values

into the areas where input uses, and finally calls PROMPTON to

move the text cursor. As far as input is concerned, nothing

ever happened.

These routines are not totally general purpose, since there is a

lot in common with each area (size, starting column, number

of characters, etc.) The whole window is closed by one of

three actions: 1) entering a Return in any of the input win

dows, 2) clicking on the OK box, or 3) clicking on the Cancel

box. Cancel takes you back to the main menu while the other

two fall through and process the input from the window. One

final bit of cleanup needs to be done before error-checking the

user's input. When INPUT is accepting characters, it just keeps

track of where the next one will go, but doesn't put the zero at

the end of the string until the Return is entered. This works

fine if you have only one input area; but with more it is possi

ble to have shortened a field and then moved to another field.

The first field would not be properly zero-terminated but the

count of the valid characters has been saved, so Combiner

makes sure all three fields are properly terminated before

checking the values.

That is really the end of the major programming challenges

(due to the way GEOS works) that I encountered while doing

Combiner. There are a number of other details which needed

to be taken care of. Rulers need special attention when con

verting between various revisions of geoWrite (a ruler is the

set of codes which define the margins, tabs, etc.). Version 1.x

(any of the original geoWrite versions) only has one ruler per

Volume 9, Issue 6 53

page, and they are shorter than version 2 rulers. So whenever

Combiner goes from version 2 to version 1, it has to shorten

the ruler at the start of the page, and discard any rulers found

within the page (version 2 allows rulers at the start of any

paragraph). Likewise, when going from version 1 to version 2,

Combiner has to lengthen the ruler (and set up a default value

for the paragraph indent).

There are even some conversions which must be done when

going between the two different version 2 documents.

Version 2.0 was delivered with the original Writer's Work

shop, and is the default version created by the new C64

versions of geoWrite. The difference between version 2.0 and

version 2.1 is that version 2.1 margins can go from 0.2

inches to 8.2 inches, and version 2.0 (and version 1.x) goes

from 1.2 inches to 7.2 inches. This means that when going

between these two versions, the values for the margins and

tabs need to be adjusted.

A value of zero for the left margin amounts to the 1.2 inches

mark on the page for version 2.0 documents, and 0.2 inches

for version 2.1. This is a pretty easy conversion, as all early

version tabs are available in 2.1 rulers. But, a tab (or margin

setting) of less than 1.2 inches (or greater than 7.2 inches) is

meaningless (and impossible) in a 2.0 or 1.x document, so

Combiner has to correct for these. The only 'gotcha' is that the

7.2 inch value used in versions 1.x & 2.0 is one less than the

pixel value needed by 2.1. You will notice an odd check for

this in the program.

Combining graphics

Another minor adjustment which needs to be checked for

when combining documents is the way graphics are refer

enced. In GEOS, graphics are not imbedded directly in the

document. They are indicated by a graphics escape character,

the size of the graphic, and the VLIR record number where the

graphic is actually stored. In order to combine documents

properly, any graphic escapes found in the input pages need

to have the VLIR record number adjusted because graphics

from the original document may already be occupying that

record.

You also need to keep track of what graphics are actually

used, since it would be possible for the user to select pages

from the input which don't use all the graphics. The way

Combiner does this is to have a 64-byte table (PICSUSED).

This allows one byte for each possible graphic VLIR. This

gets initialized to zeros. OLDPICS starts with the first free

VLIR record from the original file. When a page gets read in,

it is scanned for the graphics escape character ($10). When

one is found, the input VLIR record is saved in the next

available table slot (pointed to by OLDPICS). The record num

ber is then changed to the value of OLDPICS, as that is where

it will go in the output file. Once all the input pages have

been combined, PICSUSED is scanned for any non-zero val

ues. That VLIR record from the input file is read in, and gets

written out as a new output VLIR record.

Dealing with end of text markers

One other 'adjustment' needs to be made to text in the process

of combining pages. When geoWrite stores a document, the

last byte on the last page is a zero to indicate end of text.

When Combiner needs to insert a new page after the last page

of the output file, it needs to read the last sector of the last

page, and replace the zero with a end of page character (the

ASCII form feed - $0C). For the same reasons, if Combiner has

to insert what was the last page of an input file in between

pages of the output file, the zero at the end of the input page

needs to be replaced with the form feed.

Maximizing available RAM

Combiner reads in as many pages of input into RAM as it can

before writing that data out. This reduces the number of disk

changes which occur in a single drive system when the input

and output disks aren't the same. In order to increase the size

of available RAM for the input buffer, Combiner doesn't use

the background screen which normally goes from $6000 to

$8000.

Whenever GEOS closes a window (or menu) it calls the routine

pointed to by irecvr, with the coordinates of the area to be re

covered. Normally, irecvr points to the routine which trans

fers a box from the background screen to the foreground.

Combiner changes this vector to REPAT. The screen for

Combiner is relatively simple, and except for the title area on

the bottom, it is simply a pattern fill. So in most cases, REPAT

simply sets the pattern to the one Combiner used in the title

screen and calls PFILL [Rectangle, $cl24] to replace the

pattern.

The only exception is for the Help windows which extend into

the title area. Whenever this happens, REPAT has to redraw the

title area as part of the window recovery. Repat actually gets

called twice when a window is closed. Once for the border,

and once for the main window. The position of the Help win

dow and the value that REPAT checks for were carefully chosen

so that it recovers the title area only once.

The method of buffering deserves some explanation. Combiner

uses all the RAM from the end of the program to $8000 (the

start of GEOS storage) for a big buffer. Each time a page gets

read in, the first two available bytes are reserved as a pointer

area, and then LCHAIN [ReadFile, $clff] is called in an attempt

to load the VLIR record into the area available. After the page

is processed (remember, the size might have changed if going

between version 1 and version 2 type documents), the ending

address is saved in the pointer field at the start of each page.

The process is then repeated until either LCHAIN says a record

would not fit, or we run out of input text pages. In either case,

a zero is stored at the end of the last record that has been read

in successfully (any record truncated by memory limitations is

ignored - it will get picked up in the next pass).

54 Transactor

Combiner then begins at the start of the buffer area, and writes

out pages until it sees the zero pointer. In order to write a page,

you need to know the starting address, and the number of

bytes. The starting address of the data portion is two bytes past

the current address pointer (RA2), and the length is the differ

ence between that and the ending address from the pointer

area.

After the VLIR record is written, the old ending address be

comes the new current address and the process is repeated.

This continues until Combiner finds the zeros as the new cur

rent address. This signifies the end of the data in memory. All

that needs to be done is a quick check to see if all the request

ed pages have been processed in order to determine if we are

done. Handling the graphics VLIR records is done the same

way. The only difference is that the picsused table needs to be

checked to determine which graphics pages need to be read in,

and to which record they need to be written.

That pretty much covers the high points of the Combiner code.

The details are commented within the code. I had to break the

source into two separate files and an include file because

geoAssembler couldn't handle it all in one piece.

$HCOMBINER - Headerfilefor Combiner

; $HCOMBINER - Combine multiple geoWrite files into one - N. Vrtis 1/89

/ Header definition file

header

word 0

byte 3

byte 21

byte $80+3

byte 6

byte 0

word start

word patch+30

word start

/first two always zero

/size of ICON always fixed

|!s

;CBM filetype is USR

/GEOS filetype is Application

/GEOS file structure is sequential

/where to load program

/ending address

; begiii execution @ load address

.byte "COMBINER Vl.l",0,0,0,$00 ;(40 column only)

.byte "Nicholas J. Vrtis",0,0,0

.block 160-117 /unused in header

.byte "Combine multiple geoWrite files into a single file.",$0d

.byte "Nicholas J. Vrtis - 1989",0

.endh

; end of $HCOMBINER

/HCOMBINER - Includefilefor Combiner

; /COMBINER - Combine multiple geoWrite documents into one. - Nick Vrtis 1/89

/ include file used to define Page zero locations S GEOS routines

rO = $02

rl = $04

r2 = $06

r3 = $08

r4 = $0a

r5

r6

r7

r8

r9 =

rlO =

rll =

rl2 =

string ==

pline ==

scnflg =

mousex -

mousey =

ra2 =

ra3 =

raO =

ral =

.macro

.endm

.macro

.endm

.macro

.endm

bufO

bufl

buf2

tsbuf

direntry

dfname

ddname

curdrv

numdrv

irecvr

cursx

cursy

wincmd

inplen

pfill

setpat

dsptxt

menu

eramns

cboxes

movedata

drwmnu

grphc2

input

cmenus

read

write

save

lchain

follow

load

lookup

dsetup

.

:

:

:

:

:

:

:

:

$0c

$0e

$10

$12

$14

$16

$18

$la

$24 /input string pointer

$26

$2f ;i

$3a

$3c

$70 ;i

$72 ;i

$fb

$fe

ldptr p,pz

Ida

sta

Ida

sta

f[(P)
pz

pz+1

window p

Idx

ldy

jsr

f[(p)
f](p)

iorground/background flag

>ointer to start of a buffer area

jointer to data part of buffer area (ra2+2)

xywindow

movew src,ds1

Ida

sta

Ida

sta

ss

ss

ss

ss

ss

ss

ss

ss

=

ss

ss

ss

ss

ss

ss

==

ss

ss

ss

ss

=s

ss

ss

ss

ss

==

==

ss

ss

ss

=

src+1

dst+1

src

dst

$8000

$8100

$8200

$8300

$8400

$8442

$8453

$8489

$848d

$84bl

$84be

$84cO

$851d

$87cf

$cl24

$cl39

$cl48

$d51

$cl57

$d5a

$d7e

$d93

$da8

$dba

$dbd

$cle4

$cle7

$cled

$clff

$c205

$c208

$c20b

$c214 ,

1st disk buffer

2nd disk buffer

3rd disk buffer

Track/Sector buffer

directory entry after open

double clicked filename

double clicked disk name

current drive number

number of drives in system

screen recovery vector

used by INPUT to store info
ii ii

command from window close

used by INPUT to store info

Rectangle - pattern fill an area

SetPattern - set display pattern

UseSystemFont - display text

DoMenu - menu processor

RecoverAllMenus - erase all menus

Dolcons - draw click boxes

MoveData - move a block of data

ReDoMenu - redraw menu

i GraphicsString - inline graphic commands

GetString - get text input

GoToFirstMenu - close all menus

GetBlock - read in a sector

PutBlock - write a T/S

SaveFile - save data to file

ReadFile - load a file chain

FollowChain - follow disk chain

GetFile - load desk accessory

FindFile - find file entry

EnterTurbo - disk setup

Volume 9, Issue 6 55

read2 =

restrt =

drrdy =

delete =

table =

window =

opnser —

clsser =

vopen =

vclose =

vgoto =

vappend =

vsave =

prompton =

opndsK —

drvset =

drvnam =

clswin =

;

; end of /COMBI

$c21a ;

$c22c ;

$c232 ;

$c238 ;

$c23b ;

$c256 ;

$c25c ;

$c25f ;

$c274 ;

$c277 ;

$c280 ;

$c289 ;

$c28f ;

$c29b ;

$c2al ;

$c2bO;

$c298 ;

$c2bf;

NER

ReadBlock - disk read

EnterDeskTop - reload desktop

ExitTurbo - stop turbo code

DeleteFile - delete a file

FindFTypes - create file list table

DoDlgBox - process window commands

InitForlO - open channel to disk

DoneHithIO - done with i/o

OpenRecordFile - open vlir file

CloseRecordFile - close vlir file

PointRecord - set vlir chain #

AppendRecord - add record to vlir

HriteRecord - save data to vlir record

sta

sta

;

; Here is the

;

remenu: ldptr

Ida

ft
;

dohelp: ldx

helplp: stx

Ida

PronptQn - turn text prompt on (and position) sta

OpenDisk - open disk in drive

SetDevice - set drive #

GetPtrCurDkNm - get disk name

RstrFnDialog - close window

$1COMBINER - First source file

; $1COMBINER - Combine multiple geoflrite files into one.

Nicholas J. Vrtis

5863 Pinetree S.E

Kentwood, HI 49508

include /COMBI

.psect

start: Ida

sta

ldptr

jsr

Ida

sta

sta

sta
i j

ldx
■ _

]sr

ldy

100$: Ida

sta

dey

KniDpi

ldptr

Ida

ef aSto

IHaiua

ef aSto

Ida

sta

sta

isr
j

sec

Ida

sbc

tax

ora

sta

Ida

calcgmh: clc

adc

dex

bpl

sta

Ida

bcc

Ida

NER

#$80

scnflg

repat,irecvr

opentitle

curdrv

dadskdrv

odskdrv

ldsKdrv

j__,_

drvnam

#15

(rO),y

dadskni

1AA6
lUwy

danl,r6

#5
.7
11

go
f

-74,1
I/Tl

80

rlO

rl0+l

table

#9

r7+l

#$80

omopts

#0

#14

calcgmh

gmhgt

numdrv

#2

remenu

#$12

Page zero & GEOS definitions

I will be using the background screen

so tell GEOS not to use it

set my vector to recover

do opening credits

save D.A. disk drive

also as inital output and input drive

;save D.A. disk name

;findD.A.'S

;looking for D.A.'S

• im ffl O
, UJf Lw 0

,'no class

;calc how many found

;8 D.A.'s U for INFO BOX

;save cnt

;add vertical menu option bit

;calc menu hgt

;14 for each (+14)

;check if 2 drives available

;..drive not available

;else enable -drive- click boxes

Ida

sta

windoi

Ida

cmp

bne

ldx
■ _

inx

inx

cpx

bcc

helprtn: Tip

;

drvoptl

drvopt3

jonon point to

mainmenu,r0

83

menu

#0

helpidx

helpptrs,x

rl2

helpptrs+l,x

rl2+l

rhelpw

rO

#1
helprtn

helpidx

5iimaxneip-nt

helplp

drwmnu

doinfo: window infow

jmp

dogeowrite:

ldptr

ldptr

ldy

115$: Ida

sta

Ida

sta

dey

bpl

ldptr

Ida

sta

jsr

jsr

ft

dodal: Ida

.byte $2c

doda2: Ida

.byte $2c

doda3: Ida

.byte $2c

doda4: Ida

.byte $2c

doda5: Ida

.byte $2c

doda6: Ida

.byte $2c

doda7: Ida

.byte $2c

doda8: Ida

sta

jsr

Ida

ldx

ldy

jsr

beq

clc

Ida

adc

sta

drwmu

ddname,r2

dfname,r3

#16

odsknm,y

(r2),y

outnm,y

(r3),y

115$

geowrite,r6

#$80

rO

load

error

drwmnu

#danl-danl

#dan2-danl

Sdan3-danl

idan4-danl

tdan5-danl

#dan6-danl

#dan7-danl

#dan8-danl

raO

eramns

dadskdrv

#[dadskni

#]dadskm

chkdsk

dodaexit

raO

l[danl

r6

put the main menu back up

;do mainmenu

;on 'HELP'

;chk option

;..not-ok-

;nxt nelp panel

f.~Lre\

lpptrs)

;..sore to show

,* redraw the menu

/redraw the menu

;setup pointers to name/disk of output

;load GEOBRITE program

;say 'double clicked'

;just in case load had an error

;offset to start of name

;save offset

;clear off menu

;make sure D.A.'S available

ididn't want to mount D.A. disk

;calc adr of start of name

Ida #]danl

adc #0

sta r6+l

Ida #0

sta rO ;no options

sta rlO ;I will restore screen/color

jsr load

jsr opentitle ;restore screen

dodaexit:

jmp remenu ;go put menu back up

;

helpw: .byte $01

.byte 18,174

.word 4

.word 305

.byte $0c,2,15,rl2

.byte $01,2,135 ;-ok-

.byte $02,31,135 ;-cancel-

.byteO

helpl: .byte $18,"COMBINER is a program to combine multiple geoWrite"

.byte "documents into one."

.oyte 910,0, u,w

.byte "The MainMenu options are:"

.byte $16,6,0,73

.byte $12,"GEOS",$13," - Lets you run any Desk Accessories on the"

.byte $16,6,0,83

.byte "disk COMBINER was loaded from."

.byte $16,6,0,93

.byte $12,"Done",$13," - QDIT and return to the DeskTop, or go to"

.byte $16,6,0,103

.byte "geoWrite and edit the last output document."

.byte $16,6,0,113

.byte $12,"Begin",$13," - Start the process of combining documents"

.byte $16,6,0,123

.byte "(more information to follow)."

.byte $16,6,0,133

.byte $12,"Help",$13," - This Help series of screens.",$lb,0

help2: .byte $18,"After you select BEGIN, you will be presented with a"

.byte $16,6,0,43

.byte "window which allows you to:"

.byte $16,6,0,53

.byte $12,"CREATE",$13," a new geoWrite output document."

.byte $16,6,0,63

.byte "(a follow on window will ask for the document name)."

.byte $16,6,0,73

.byte $12,"OPEN",$13," an existing geoWrite document for output."

.byte $16,6,0,83

.byte "(a follow on window will present you with the"

.byte $16,6,0,93

.byte "standard filename selection window)"

.byte $16,6,0,103

.byte $12,"CANCEL\$13," and return to the MainMenu.",$lb,0

help3: .byte $18,"Once the input and output files have been identified,"

.byte $16,6,0,43

.byte "you need to tell COMBINER how many pages of the"

.byte $16,6,0,53

.byte "input docunent you want, and where to put them in"

.byte $16,6,0,63

.byte "in the output document. A window allows you to"

.byte $16,6,0,73

.byte "specify the starting and ending pages (inclusive) to"

.byte $16,6,0,83

.byte "take from the input, and the page number to place"

.byte $16,6,0,93

.byte "those pages AFTER. Click over the number to move"

.byte $16,6,0,103

.byte "the cusor to that value and change it.",$lb,0

help4: .byte $18,"COMBINER will combine different versions of geoWrite"

.byte $16,6,0,43

.byte "documents. When you create a new document, the"

.byte $16,6,0,53

56 Transactor

help5:

;

helpptrs

maxhelp:

;

.end

.byte "version is detemined by the first INPUT document."

.byte $16,6,0,63

.byte "You can combine a Version 2.1 (from GEOS 2.0 or"

.byte $16,6,0,73

.byte "geoPublish) document with a Version 1.3 (from GEOS"

.byte $16,6,0,83

Ida

sta

sta

ldptr

window

Ida

.byte "1.3). The result can either be a Version 1.3 ",$0e,"OR",$0f anp

.byte $16,6,0,93 beq

.byte "Version 2.1. ",$0e,"Note",$0f," though, that Version 1.3 cannot" cop

.byte $16,6,0,103

.byte "handle some Version 2.x (2.0 or 2.1) options, so"

.byte $16,6,0,113

.byte "these are dropped when combining Version 2.x files"

.byte $16,6,0,123

.byte "into a Version 1.3 file.",$lb,0

.byte $18,"Graphics included in any of the input pages are"

.byte $16,6,0,43

.byte "copied to the output."

.byte $16,6,0,53

.byte "You cannot copy headers or footers from an input"

.byte $16,6,0,63

.byte "Version 2.x document."

.byte $16,6,0,73

.byte "COMBINER will handle either multiple drives, and/or"

.byte $16,6,0,83

.byte "input and output from different disks. You will be"

.byte $16,6,0,93

.byte "asked to insert the required disk when it is needed."

.byte $16,6,0,103

.byte "Desk Accessories are always loaded from the disk"

.byte $16,6,0,113

.byte "which was in the drive COMBINER was loaded from."

.byte $16,6,0,133

.byte $19," End of HELP Screens.",$lb,0

:.word helpl /Pointers to each help screen

.word help2

.word help3

.word help4

.word helpS

;(naxhelp-helpptrs) is high index for screen.

; END of $1COMBINER

$2C0MBINER - Second sourcefile

; $2C0MB

;

.noeqin

beq

cap

beq

Ida

beq

ldptr

jsr

cpx

beq

jsr

bne

window

Ida

cmp

beq

ldptr

jsr

getid$k2:

jmp

outdrv2: jmp

newodsk2:

FP

reienu4: jip

;

oldout: ldptr

ldptr

ldptr

ldptr

Ida

sta

window

Ida

rap

beq

cmp

beq

cap

beq

ldptr

INER - Combine multiple geoflrite documents into one. - Nick Vrtis 1/89 jsr

; these got defined in the 1st file

.include /COMBINER ;Page zero & 6E0S definitions

.eqin

reienu3:

;

dobegin:

outdrv:

;

savodsk:

101$:

.psect

jmp remenu

jsr menus

window beginw

Ida rO

sta raO

cap #2

beq remenu3

Ida odskdrv

cmp curdrv

beq savodsk

jsr nextdrv

Ida curdrv

sta odskdrv

ldx #[r0

■close menus

*get options

save selected option

..-cancel-

see if current drive is same as last output

..yes

must be other drive (which will be NEXT)

save ablum disk info

get boot drive name

jsr drvnam

ldy #15

Ida (r0),y

sta odsknm,y

dey

bpl 101$

Ida #0

sta oldpages ;no old pages yet

sta oldpics ;or pictures

Ida raO ;get 'BEGIN' option

cmp #5

beq oldout ;..'OPEN' old geoHrite file

jsr

bne

jsr

DCS

stx

jsr

stx

sty

sta

Ida

sta

jsr

initidrv:

Ida

rap

beq

bne

reaenu2: jmp

newodisk:

jsr

jmp

;

newidisk:

jsr

jap

newidrv: jsr

getidsk: Ida

sta

ldx

jsr

ldy

102$: Ida

sta

#$ff
ovflag

oldnew

outrun, rlO

newfilew

rO

#2

reaenu4

$6

newodsk2

«$80

outdrv

outna

reienu4

outm,r6

lookup

§5

getidsk2

error

reienu4

replw

rO

#4

reaenu4

outnm,r0

delete

initidrv

outdrv

newodisk

remenu

fnonisg,fnmsc

outna,r5

writed,rl0

odskm, fnwisc

17

r7

filenw

rO

n

remenu2

16

newodisk

#$80

outdrv2

outnm,r0

vopen

error

reaenu2

getvsn

recenu2

ovflag

countrecs

oldmax

oldpics

oldpages

SO

oldnew

vclose

idskdrv

curdrv

getidsk

newidrv

reienu

newdisk

savodsk

newdisk

getidsk

nextdrv

curdrv

idskdrv

«[r0

drvnai

115

(r0),y

idskna,y

;don't know version yet

;this is new file

;get name for new file

/..-cancel-

;..-disk-

;..-drive-

;..noname selected

;see if file aready exists

;..doesn'T EXIST

;..other error

;make sure can replace

;..-no-

;get rid of original

;..then proceed

1

2

-application data type files

-get old output file name

..-cancel-

..-disk-

..-drive-

..bad open

get version number

..unsupported version

save version flag

get 1 pages & pictures

save values

set 'OLD' file flag

done for now

make sure last used input drive active

..yes-no change needed

..need to make other (NEXT) drive current

tell to insert new disk

..go start process over

setup next drive

get current drive $

save drive I

get disk name of input disk

;

;

202$:

;

;

203$:

getwhere

300$:

rperr:

pgerr:

lperr:

aperr:

chkfp:

dey

bpl

ltytr

ldptr

ltytr

ldptr

Ida

sta

window

Ida

cmp

beq

dp

beq

cmp

beq

ldptr

jsr

jsr

bne

jsr

bcs

stx

bit

bpl

sta

sty

stx

lsr

jsr

bit

bvc

stx

Ida

sta

jsr

Ida

sta

Ida

sta

Ida

sta

ldptr

window

Ida

cmp

bne

jap

Ida

ldx

sta

ldx

sta

ldx

sta

ldx

Ida

jsr

beq

bcc

ldx

jsr

jmp

ldx

.byte

ldx

inc

bne

dex

cpx

bcs

stx

ldx

Ida

jsr

beq

bcs

dex

102$

fnimsg,fnwasgl

inpnm,r5

writecl,rl

idskni,fnwmsg2

17

r7

filenw

rO

#2

remenu2

#6

newidisk

#$80

newidrv

inpnm,r0

vopen

error

remenu2

getvsn

getidsk

ivflag

oldnew

202$

ovsnl

ovsnl+2

ovflag

oldnew

countrecs

oldnew

203$

oldmax

§64

oldpics

vclose

#1

frstipge

pages

lastipge

oldpages

aftpge

rpblk,rl0

wherew

rO

#2

300$

remenu

#0

fpblk+4

fpblk,x

lpblk+4

lpblk,x

apblk+4

apblk,x

fpblk

rpblk+1

binary

fperr

chkfp

#$83

error

getwhere

#$84

$2c

#$85

frstipge

pgerr

pages

rperr

frstipge

lpblk

lpblk+1

binary

lperr

lperr

;get input filename

/..-cancel-

;..-disk-

;..-drive-

;open input file

;get input file version

;..can't handle this version

;save input version

; check if output decided yet

;..yes-everything set

;else 'OLD' version is same as 1st input

;clr W bit (still need to create one)

;..old file already

;else set max pages from input type

;lst available graphic page is same for either

;set default start/stop as 1 to # pages

/default is after last page

;set pointer for first page

;get lst/last/after pages

;..not cancel

;make sure 0 after last entered digit

;convert values

;..O is bad

;..go check for max

/'invalid first page'

;'invalid last page'

;BIT

/'invalid after page'

/restore to what was typed in

;..unconditional

;..page is too big

/save

/same process for last page

;..O is invalid last page

Volume 9, Issue 6 57

cpx

bcs

cpx

bcc

inx

stx

ldx

Ida

jsr

beq

bcs

dex

cpx

bcs

inx

303$: stx

sec

Ida

sbc

clc

adc

dp

bcc

ldx

jsr

rooook: ldx

Ida

206$: sta

dex

bpl

lperr

frstipge

lperr ;..can't be less than first page

lastipge

apblk

apblk+1

binary

303$.'..inserting at start

aperr

oldpages

aperr

aftpge

lastipge ;calc 8 pages being added

frstipge

oldpages ;calc total resulting pages

oldmax

rootok ;..they will fit

8$80 ;"Too many pages"

error

sta

Ida

rl

r4+l

863

80

picsused,x

206$

; here to get pages from input into buffer area

pagesin: ldptr bufbeg,ra2 ;buffer area is empty

Ida idskdrv

ldx 8(idsknm

ldy 8]idskni

jsr chkdsk ?make sure input disk mount

beq reaenu5 ;..cancel from disk mount

ldptr inpnm,r0 ;open the input file

jsr vopen

jsr error

bne remenu5 ;..error in open

; here for the start of each page

ldx frstipge

jsr vgoto

•jar readuade

cpx $11

bne 211$

jmp pagesout

211$: jsr error

Ida SO

sta backlvlf

ldx ivflag

cpx ovflag

beq torulerok

bcs tobacklvl

; going from lover input level to higher output level

cpx #2

bne vlxv2x

beq chkuplvl

torulerok:

jnp rulerok

tobacklvl:

jnp backlvl

remenu5: jnp remenu

; must be froi VI.x to V2.x

vlxv2x: movev ra3,x4

elc

Ida r4

adc 820

sta rO

Ida r4+l

adc 80

sta rO+1

dc

Ida r4

adc §27

go get the page in

check for no buffer space error

..not that

..load failed

assume no backlevel challenges

..no ruler escape fix needed

..need to backlevel the input file

check for V2.0 as input

..no->Vl.xtoV2.x

..go chX for upleveling (2.0 to 2.1)

;need to expand starting ruler

adc 80

sta rl+1

jsr

ldy

Ida

iny

sta

bpl

Ida

ldy

sta

iny

Ida

, tax

iny

Ida

ldy

sta

dey

txa

sta

iny

601$: iny

Ida

sta

cpy

bcc

Ida

ldy

sta

clc

Ida

adc

sta

bcc

inc

chkuplvl:

clc

Ida

adc

sta

Ida

adc

sta

jsr

jmp

backlvl: movew

perfmove

82+2+16-1 ;RM, LM, + 8 TABS

(r4),y

(r4),y

600$

817

80

(r4),y

<r4),y

(r4),y

822

(r4),y

(r4),y

80

(r4),y

826

601$

#$10

823

(r4),y

r7

§27-20

r7

chkuplvl

r7+l

ra2

81

r4

ra2+l

80

r4+l

uplvl

rulerok

ra3,r4

;ciake room for ruler escape

;add ruler escape

;make paragrph indent=left margin

;0 justification/text color/reserved

;I don't know what this bit does

;but geoNrite sets it on

;add to end of buffer pointer

;set pointer past escape

;see if need to uplevel the ruler

;set pointer to start of buffer

ror backlvlf ;set 1st back level flag bit

ldx ovflag

cpx 82 /check output level

bcs 603$;..mustbe2.1->2.0

sec

ror backlvlf ;set flag as 2.x->l.x

ldx ivflag ;check input version

cpx 82

beq slidetabs ;..going 2.0 to 1.x (tabs values are OK)

603$: ' ldy 81 ;Never have 1.x input (would be l.x->l.x)

604$: jsr fixinches ;go adjust inch offsets

cpy 823

bcc 604$

bit backlvlf ;check how far back level

bvc rulerok ;..2.1->2.0 is done

; need to slide tabs up for 2.x to 1.x

slidetabs:

ldy 81

607$: Ida (r4),y

dey

sta (r4),y

iny

;T0 where 2.x needs

iny

cpy

bcc

clc

Ida

adc

sta

Ida

adc

sta

821

607$

r4

827

rO

r4+l

80

r0+l

/don't bother with paragraph margin

;move FROM is just past V2.x escape

clc

Ida

adc

sta

Ida

adc

sta

jsr

sec

Ida

sbc

sta

bcs

dec

rulerok: ldx

Ida

cpx

bcs

Ida

300$: clc

adc

sta

Ida

adc

sta

chrloop: jsr

beq

cap

beq

beq

bne

beq

;rnove TO is just past TABS

]mp

tographic:

newcard: Ida

bapr4: clc

adc

sta

bcc

inc

bne

ruler: bit

bvs

bmi

Ida

cmp

beq

jsr

307$: Ida

bne

rulerout:

sec

Ida

sbc

sta

sta

Ida

sbc

sta

sta

clc

Ida

adc

sta

Ida

adc

sta

r4

820

rl

r4+l

80

rl+1

perfoove

r7

827-20

r7

rulerok

r7+l

ovflag

831

82

300$

824

ra3

r4

ra3+l

80

r4+l

getchr

toendpage

816

tographic

817

ruler

823

newcard

endpage

graphic

15-1

r4

r4

chrloop

r4+l

chrloop

backlvlf

rulerout

nilerfix

ivflag

ovflag

307$

uplvl

827-1

bmpr4

nilerfix:

304$:

ldy

jsr

cpy

bcc

Ida

80

fixinches

823-1

304$

827-1

bne bnpr4

r4

81

rl

r4

r4+l

80

rl+1

r4+l

rl

827

rO

rl+1

#0

r0+l

;back up ending address

;adjust past start of each page

;assume V2.x

;must be VI.x

here to get input character

..end of input

..graphic escape

..ruler escape

..not newcard escape

..newcard escape

;add offset to rO

. .unconditional

check backlevel

.. 2.x to 1.x

.. 2.1 to 2.0

check if same level

.yes

else may need to uplevel the ruler

RULER is 27 characters

..unconditional

have already skipped the escape

see if to t

all fixed

..go skip it

;backup to start of ruler escape

that is the TO

will also be next character needed

;start of ruler + length = FROM

58 Transactor

jsr

sec

Ida

sbc

sta

bcs

dec

308$: jip

;

graphic: ldy

Ida

tax

Ida

bne

Ida

cmp

bcc

ldx

jsr

jmp

301$: inc

sta

302$: sta

Ida

jmp

perfnove

r7

#27

r7

308$

r7+l

chrloop

#3

(r4),y

picsused-64,2

302$

oldpics

#128

301$

#$81

error

remenu

oldpics

picsused-64,x

#5-l'
bmpr4

;shorten end of data also

;don't skip any more characters

;get graphic record number

;see if already referenced

;..yes

;..roon for at least 1 more

;"Too many pictures"

;count record used

/keep where stored

;replace with new record id

/graphic escape is 5 bytes

;..go skip it

; here at the end of each input page

endpage: jsr nextarea ;save end of this area 5 setup next one

inc

Ida

cip

beq

jmp

;

frstipge

frstipge

lastipge

pagesout

pageloop

;bump to next input page

;see if done yet

;..yes-write them out

;else just go get another input page

; here either when buffer area is full, or all input pages read

pagesout:

jsr

jsr

Ida

ldx

ldy

jsr

beq

bit

bvc

ldptr

Ida

sta

sta

jsr

jsr

bne

ldptr

jsr

Ida

sta

210$: jsr

inc

bpl

jsr

openold: ldptr

jsr

jsr

beq

jsr

remenu6: jmp

seteob

vclose

odskdrv

#[odsknm

#]odsknm

chkdsk

remenu6

oldnew

openold

writeinfo,r9

#0

rlO

oldnew

save

error

remenu6

outrun, rO

vopen

#0

xsave

vappend

xsave

210$

vclose

outnm,r0

vopen

error

pageout

vclose

remenu

;set end of buffer flags

•done with input file (for now)

make sure output disk mounted

..CANCEL froi mount

see if need to create output file

..no

else create one first

file is now OLD

..could not create file

extend vlir file to 127 entries

open the output file

..opened ok

error-close output file

; here for the start of each page to output

pageout: jsr

bne

;

jsr

Ida

cmp

beq

jnp

501$: jmp

500$: Ida

cmp

beq

getarea

500$

vclose

frstipge

lastipge

501$

pagesin

textdone

aftpge

oldpages

toaddlst

point to a used area

..area has data in it

done with output for now

else see how we got here

..we just finished the last input page

..we need to get more pages

..we are finished with the text portion

check where adding

..1st page added to end

bcs

sec

Ida

sbc

tay

Ida

asl

tax

503$: Ida

sta

Ida

sta

dex

dex

dey

bne

Ida

sta

sta

inc

•

ldx

inx

cpx

bcc

sec

Ida

sbc

sta

Ida

sbc

sta

lay

Ida

bne

Ida

sta

todowrite:

to
toaddlst:

imp

addoth: ldx

inx

cpx

bcc

sec

Ida

sbc

sta

Ida

sbc

sta

ldy

Ida

beq

a?

beq

inc

bne

500$: inc

inc

bne

inc

501$: Ida

sta

beq

addlst: ldx

beq

dex

txa

jsr

ldptr

jsr

jsr

beq

jsr

to
505$: ldx

Ida

addoth

oldpages

aftpge

oldpages

a

bufl+0,x

bufl+2,x

bufl+l,x

bufl+3,x

503$

#0

bufl+2,x

bufl+3,x

oldpages

frstipge

lastipge

todowrite

r7

#1

rl

r7+l

#0

rl+1

#0

todowrite

#$0c

dowrite

addlst

frstipge

lastipge

todowrite

r7

#1

rl

r7+l

#0

rl+1

#0

(rl),y

dowrite

S$0c

501$

rl

500$

rl+1

r7

501$

r7+l

#0

dowrite

oldpages

dowrite

vgoto

tsbuf,r3

follow

error

505$

vclose

remenu

buf0+l

»$0c

;..other pages added to the end

;calc # chains to move

;adding in the middle of the original

;old end *2 is last used chain index

;slide left 2 bytes

;set this as empty chain

;+l to page counter

;see if this will be the last page to add

;..no-then OX to write

sta

ldx

502$: inx

inx

Ida

bne

Ida

sta

Ida

sta

ldptr

jsr

dowrite: Ida

jsr

jsr

beq

jsr

to
303$: inc

jmp

textdone'

ldx

stx

stx

bufO,x

#[(-2)

tsbuf,x

502$

tsbuf-l,x

rl+1

tsbuf-2,x

rl

bufO,r4

write

aftpge

writepage

error

303$

vclose

remenu

aftpge

pageout

#64-1

picinx

picoutx

;start 6 -2 so 2 inx's = 0

;find end of chain

;check track

;..not zero, so not end of chain

;get last T/S

;rewrite T/S

;get page to write to

;..save was bad

;next page to store to

;..go do another page

;now process the pictures used from input

;set input & output indexes to (start-1)

;else need to make sure last char is non-null; here to get input pictures from input

picsin: ldx picinx ;see if any pictures needed

305S: inx

;..was non-null

;replace null with page skip

;..now do the write

• aaa m£ latta a •■ 1..L »aa,a La La . JJ J

;see if this is last page to be added

;..no-then OK to write

;must have a null at the end

;..already ends in null

;..replace ending page skip with null

;else extend 1 char

/■..unconditional

;..no adjustment (no old pages)

;else find last good chain

;set initial T/S

;set buffer for T/S

;close the output file anyway

;get index to last char

;replace with page skip

cpx

bcs

Ida

beq

ltytr

Ida

ldx

ldy

jsr

beq

ldptr

jsr

jsr

bne

; here to proces

picloop: inc

ldx

cpx

bcs

Ida

beq

txa

jsr

jsr

cpx

beq

jsr

bne

jsr

jmp

topicsdone:

jmp

#128

topicsdone

picsused,x

305$

bufbeg,ra2

idskdrv

#[idsknm

#]idsknm

chkdsk

topicsdone

inpnm,r0

vopen

error

picerr

s each graphic

picinx

picinx

#128

picsout

picsused-64,x

picloop

vgoto

readpage

#11
picsout

error

picerr

nextarea

picloop

picsdone

; here when buffer files or em

picsout: jsr seteob

jsr

Ida

ldx

ldy

jsr

beq

ldptr

jsr

jsr

bne

vclose

odskdrv

#[odsknm

#]odsknm

picsdone

outnm,r0

vopen

error

picerr

; here to process each picture

picout: jsr

bne

;

jsr

ldx

cpx

bcs

jmp

getarea

304$

vclose

picoutx

#128

picsdone

picsin

;..none used

;..this one not used (end test @ 1st used)

;reset to start of buffer area

;make sure input disk mounted

•..CANCELed/not really done

'open input file

..error on open

picture referenced in the input

bump for next picture area

..end of pictures - wrap up last areas

..this one not used

X is input VLIR record #

get graphics page in

check for out of room in buffer

..out of room, need to write what is there

..error writing

setup next area

..go do another

..just passing through

1 of pictures form input

set end of buffer 6 reset pointer to start

done with input file (for now)

make sure output disk mounted

..CANCELed/not really done

..error

from buffer

setup pointers for a used area

..got some data to do

else see if done

..done with all pictures

..more graphics to read in •

Volume 9, Issue 6 59

304$: inc picoutx /bump output counter

ldx picoutx

Ida picsused-64,x /get new record #

beq 304$;..skip to one that was used

jsr writepage /write it out

jsr error

beq picout ;..go do another ^

picerr: jsr vclose

picsdone:

jmp remenu /let the process start again

; Start of subroutines

; check to make sure correct disk is mounted

chkdsk: stx ral /save ptr to name

sty ral+1

tax

clc

adc #'A'-8

sta swpdskd /save drive letter

txa

cmp curdrv /check against current drive

beq chkdsknm ;..don't need to open

jsr drvset

rechkdsk:

jsr opndsk

chkdsknm:

ldx 8[rO

jsr drvnam

Idy 815

112$: Ida (rO),y

cmp (ral),y

bne swpdsk /..need to swap disks

dey

bpl 112$

rts /correct mounted/return (NE set)

swpdsk: window swpdskw /put up window to swap the disk

Ida rO

cmp #2

bne rechkdsk ;..not CANCEL/verify disk name

rts ;..return with EQ set if CANCEL

; advance to next drive number (8 or 9)

nextdrv: ldx curdrv /get current drive 8

inx /bump to next

cpx 810

bcc 111$;..ok

ldx 88 /back to 8

111$: txa

jsr drvset /make current

jmp opndsk /read in name

; allow user to insert a new disk

newdisk: Ida curdrv /get current drive

clc

adc #'A'-8

sta nddrive /put drive letter in window

window newdiskw

jmp opndsk /open/get disk name

; calc length of data to move and the call HOVEDATA

perfmove:

sec /calc number of bytes to move

Ida r7

sbc rO

sta r2

Ida r7+l

sbc rO+1

sta r2+l

jmp movedata

; check for error and put up window with decoded message if so

error: txa ;chk for error

beq errrts ;..no error

sta miscerr /so always finds something

ldptr ermtbl,rl2

erralp: Idy 80

Ida miscerr

cmp (rl2),y

beq errfnd /..found it

errmskp: iny /not found/find end of message

Ida (rl2),y

bne errmskp

tya

sec /skip over end also

adc rl2

sta rl2

bcc errolp /..look some more

inc rl2+l

bne errmlp ;..unconditional

errfnd: inc rl2 /skip past code

bne 115$

inc rl2+l

115$: Ida miscerr /in case needed

jsr ascii

sta miscerrd

stx miscerrd+1

window errorw

errrts: rts

; convert binary number in X reg to two ASCII digits

decimal: Ida 80 /this is not 'elegant', but it is effective

cpx 80

beq ascii ;0 is input

117$: clc

sed

adc 81

eld

dex

bne 117$ /fall through to ascii

/ convert value in A reg to two ASCII hex characters (in X$A)

ascii: pha

jsr toascii

tax ;lst digit in X

pla

Isr a

Isr a

Isr a

Isr a

toascii: and #$0f

ora #$30

a? #$3a

bcc 116$

adc 86

116$: rts

; set pointer from X/Y and call WINDOW routine

xywindow:

stx rO

sty rO+1

jsp window

; get the version number for the directory entry & check if supported

getvsn: movew

ldptr

jsr

ldx

Ida

Idy

beq

inx

cap

bne

cpy

bcc

inx

vsnok: clc

rts

unsvsn: ldx

jsr

jsr

sec

rts

direntry+19,rl /get t/s of info sector

bufO,r4

read

81
bufO+90

bufO+92

I'l'

vsnok

|'2'

unsvsn

I'l'

vsnok

#$82

error

vclose

/set where to read it into

/assume 1.x

/get Va

/getva.y

/..Vl.x

/assume 2.?

;..notVl.xorV2.xis error

Z..V2.0

/must be V2.1 or higher

/set OK flag

/tell bad version

/dose file (can't use it)

/set BAD flag

; count the number of text pages & picture pages in the vlir file

countrecs:

Ida

cpx

bcc

Ida

200$: sta

Ida

sta

Ida

8ta

Ida

cmp

bes

jsr

tya

beq

inc

bne

864

81
200$

861

max

80

pages

864

pics

pages

max

cntpics

vgoto

cntpics

pages

cntpages

/assume Vl.x (64 max)

/..Vl.x

/else 61 max for V2.x

/clear counters

/check for full

/..full

/..end of text pages

;..unconditional

cntpics: Ida pics /same process with pictures

cmp 8128 /up to 64 pics in either

beq endcount

jsr vgoto

tya

beq endcount /..end of pictures

inc pics

bne cntpics /..unconditional

endcount:

ldx max

Idy pics

Ida pages

rts

/ redraw COMBINER screen when WINDOW/MENU needs to restore it

repat: Ida openpat /get pattern used from opening screen

jsr setpat /make current

jsr pfill /that will restore screen

Ida r2+l /check bottom

cmp #[(174+1) /to see if undoing shadow of help window

bes 100$;..yes-need to redraw title box

rts /else just return

100$: jmp redotitle /redraw title box

; get next character from input buffer area

getchr: Idy #0 /get next text character

Ida (r4),y

inc r4 /bump for next time

bne 400$

inc r4+l

400$: ldx r4+l /see if this was last character

cpx r7+l

bne 401$;..can't be, return with NE set

ldx r4

cpx r7

401$ rts

; upgrade ruler to V2.1

uplvl: Ida ovflag /check for V2.1 output

cmp 83

bcc 611$ /..no

Idy #0

610$: Ida (r4),y

cmp #[(480-1) /check for old max right (7.2" was $ldf)

bne 612$ /..no problem

Ida #[480 /fudge to even 7.2 inches

612$: clc /in Vl.x or V2.0, pixel 0 is 8 80 in V2.1

adc #80

sta (r4),y

iny

Ida (r4),y

adc 80

sta (r4),y

iny

cpy 82+2+16+2+1 /RM+M+8 tabs+pi

bcc 610$

611$: rts

; setup the INPUT portions of the window asking for page numbers

whereset:

ldptr wboxes,rO

jsr cboxes

Ida #[(apblk-wblk) /setup the INPUT portions of where window

ldx aftpge

jsr wherein

Ida 8[(lpblk-wblk)

ldx lastipge

jsr wherein

Ida #[(fpblk-wblk) /note that first page is last

ldx frstipge

jmp wherein

; display values in where window & save pointers

wherein: sta widxsave /save for index offset

clc /calc real address

adc 8[wblk

sta rO

Ida 8]wblk

adc 80

sta rO+1

jsr decimal /convert 8 to ascii

Idy widxsave

sta wblk,y

60
Transactor

txa

sta

clc

Ida

adc

sta

ldptr

jsr

Ida

sta

Ida

sta

Ida

sta

; save pointers

swhere: ldx

Ida

sta

Ida

sta

Ida

sta

rts

wblk+l,y

wblk+3,y

pline

rl+1

(64+10),rll

dsptxt

rll

cursx

rll+1

cursx+1

#2

inplen

from current

widxsave

inplen

wblk+4,x

cursx

wblk+5,x

cursx+1

wblk+6,x

/calc pixel line to display on

/DEF-DB-LEFT+8

/move column to where save will find

/have 2 chrs displayed

INPUT area in where window

/get offset into buffer area

/save variable stuff

; advance to requested input area in where window

nxtwhere:

sty

Ida

sta

Ida

sta

Ida

sta

Ida

sta

tya

clc

adc

sta

Ida

a/fo

widxsave

wblk+4,y

inplen

wblk+5,y

cursx

wblk+6,y

cursx+1

wblk+3,y

cursy

8[wblk

string

8]wblk
an

/save table index for save

/restore pointers from the table

/calc address of string buffer

auC trv

sta string+1

jmp pronpton

; convert characters in X/Y to a binary nimber

binary: tay

bne

txa

ldx

150$: sta

cpx

bcc

cpx

bcs

txa

and

asl

sta

asl

asl

adc

sta

Ida

cup

bcc

cmp

bcs

and

adc
f avtax

rts

150$

f'0'

rl

#'0'

bcerr

i'9'+l

bcerr

8$0f

a

rO

a

a

rO

rO

rl

#'0'

bcerr

bcerr

#$0£

rO

/check if 2 digits

/..yes

/else move 1st digit to 2nd

/and replace 1st with 0

/save 2nd digit for now

;..bad digit

;*2

;*4

;*8

;+*2=*10

/return w/ carry clear

bcerr: sec /set error flag

rts

; handle click on first page block in where window

dopglst: ldy

dopg: jsr

jmp

/ handle click o

dopglst: ldy

bne

8[(fpblk-wblk)

svwhere /save current pointers

nxtwhere /move to new area

n last page block in where window

#[(lpblk-wblk)

dopg ;..unconditional

; handle click on after page block in where window

dopgaft: ldy

bne

i[(apblk-wblk)

dopg ;..unconditional

; handle click on OK box in where window

dook: Ida

.byte

docancel:

Ida

sta

jip

#1
$2c

#2

wincmd

dswin

/set OK code

/set CANCEL code

/dose the window

; handle click on DRIVE box in various windows

dodrv: Ida

sta

#$80

vinand

* return $80 froi custom box

jmp dswin

; handle click on CREATE box in begin window

docreate:

Ida

sta

jap

; fix tabs, etc

fixinches:

sec

Ida

sbc

sta

tax

iny

Ida

and

sbc

bcs

Ida

tax

605$: cmp

bne

cpx

607$: bcc

ldx

Ida

608$: stx

sta

Ida

bit

bvc

Ida
ct\et, ..j
b(Jb$: and

on

sta

dey

Ida

sta

iny

iny

rts

; read in a page

readpage:

clc

Ida

adc

sta

sta

Ida

adc

sta

sta

sec

Ida

sbc

sta

Ida

sbc

sta

jto

8$81tryoi

wincmd

dswin

. when going from V2.1 to other versions

(r4),y

#[80

r5

(r4),y

#$7f

#]80

605$

#0

#]480

607$

#[480

608$

#[479

8]479

r5

r5+l

#$80

backlvlf

606$

#$00

(«),y
r5+l

(r4),y

r5

(r4),y

/need to shift tabs down

/save copy for testing

/in case of decimal tabs

/if < 0, make 0

/check if still too big

/..size is ok

/else this is max size

/put back decimal flag if there before

/only if result is 2.0

/discard if result=l.x

of text or graphics to next available buffer area

ra2

#2

r7

ra3

ra2+l

#0

r7+l

ra3+l

#[bufend

r7

r2

#]bufend

r2+l

lchain

/read in a data page

/leave room for pointer to end of area

/where to start loading

/save copy of start of data portion

/calc bytes available

/load the series of sectors

; write a page of text or graphics from buffer area

writepage:

jsr

sec

Ida

sbc

sta

Ida

sbc

vgoto

r7

ra3

r2

r7+l

ra3+l

/position to write new page

/calc bytes used

sta

movew

jmp

r2+l

ra3,r7

vsave

; advance from one buffer area to the next

nextarea:

Ida

ldy

sta

tax

Ida

iny

sta

sta

stx

rts

r7

#0

(ra2),y

r7+l

(ra21 v

ra2+l

ra2

/get pointer to end of area used

/save at start of buffer area

/end becomes start of next area

; set zeros at the end of buffer area used to flag the end

seteob: ldy 80 /set end of buffer

tvatya

sta

sta

ldptr

rts

(ra2),y

(ra2),y

bufbeg,ra2 /reset pointer to start of buffer

; setup pointers for an area to read data into

getarea: clc

Ida

adc

sta

Ida

adc

sta

ldy

Ida

sta

tax

iny

Ida

sta

sta

stx

rts

opentitle:

jsr

.byte

openpat: .byte

.byte

.word

.byte

.byte

.word

.byte

.byte

redotitle:

jsr

.byte

.byte

.word

.byte

.byte

.word

.byte

.byte

.word

.byte

.byte

.byte

rts

mainmenu:

.word

.byte

.word

.byte

.word

.word

.byte

.word

.word

.byte

ra2

#2

ra3

ra2+l

80

ra3+l

80

(ra2),y

r7

(ra2),y

r7+l

ra2+l

ra2

grphc2

$05

24

$01

o

0

$03

320

199

0

grphc2

$05,9

$01

8

176

$03

312

198

$06

20

/set pointer to data portion

/get end of area pointer

/set pointer to start of next area

;0=end of areas (else ne)

/opening screen

/pattern used to clear the screen

/erase screen

/done this way so REPAT can redraw title

/pattern fill title area

190

$18,$20,$la,"Combiner Vl.l",$lb,$18

" Combine geoHrite files. ",$lb,0

0

14

0

120

4

geos

$80

Q805ID6DU

done

$80

donemenu

begin

$00

;4 menu options

/submenu

/flash & run

Volume 9, Issue 6 61

geos:

done:

begin:

help:

geosoanu

gnhgt:

gaopts:

info:

infov:

infoal:

infom2:

infom3:

infoa4:

doneoeni

quit:

nanvrif<geoititt

beginw:

.word

.word

.byte

.word

.byte

.byte

.byte

.byte

.byte

.bloc*

.vord

.word

.block

.word

.byte

.word

.word

.byte

.word

.word

.byte

.word

.word

.byte

.word

.word

.byte

.word

.word

.byte

.word

.word

.byte

.word

.word

.byte

.word

.word

.byte

.word

.byte

.byte

.byte

.word

.byte

.word

.byte

.word

.byte

.word

.byte

.byte

.byte

.byte

.byte

.byte

i:

.byte

.byte

.word

.byte

.word

.byte

.word

.word

.byte

.word

.byte

".byte

.byte

.byte

.word

.byte

.word

.byte

dobegin

help

$00

dohelp

nGEOS",0

"Donen,0

"Begin",0

nHelp",0

14 ;start below nainoenu

1 ;height depends on $ DJ

0

75

1 ;«D.A.'S + H$80

info

0

doinfo

danl

0

dodal

dan2

0

doda2

dan3

0

doda3

dan4

0

doda4

dan5

0

doda5

dan6

0

doda6

dan7

0

doda7

dan8

0

dodaB

nCOmiHERInfon,0

$81

$0b,10,14

infool

$0b,10,35

infos*

$0b,10,50

infoa3

$0b,10,65

infcc4

$0e

0

$la,nO0MBIKSRn,$lb,$18," Vl.r,0

"Nicholas J. Vrtis",0

"5863 Pinetree S.E.",0

"Kentwood, MI 49508",0

14

14+14+14

28,75

$80+2

quit

0

restrt ;reload desktop

geowrite

0

dogeowrite

"Quit",0

"GEOHRITE",0

$81 ;initial options froa

$0b,60,6+12

createi

$0b,60,40+12

opens

$0b,60,74+12

,'S

.word

.byte

.word

.byte

.byte

.byte

createm: .byte

openm: .byte

cancelm: .byte

createbox:

.word

.word

.byte

.word

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

drivebox:

.word

.word

.byte

.word

drvgraph:

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

filenw: .byte

.byte

.word

.word

.byte

fnwmsgl: .block

.byte

.word

.byte

fnwmsg2: .block

.byte

.byte

.byte

.byte

drvoptl: .byte

.byte

.word

.byte

fnoasg: .byte

fnimsg: .byte

inomsg. .cyce

newdiskw:

canceln

$12,1,6 ;-create-

createbox

$05,1,40 ;-open-

$02,1,74 ,-cancel-

0

$18,"new geoHrite file",0

"existing geoHrite file",0

"and go to MainMenu",$lb,0

creategph

0

6,16

docreate

$05,$ff

$82,$£e,$80,$04,$00,$82,$03,$80

$04,$00,$b8,$03,$B£,$80,$00,$00

$00,$03,$98,$c0,$00,$00,$60,$03

$98,$lf,$9e,$3c,$fl,$e3,$98,$lc

$33, $66,$63,$33,$98,$18,$33,$3e

$63,$33,$98,$18,$3f,$66,$63,$f3

$98, $18, $30, $66,$63, $03, $98,$d8

$33,$66,$63,$33,$8f,$98,$le,$3e

$39,$e3,$80,$04,$00,$82,$03,$80

$04,$00,$81,$03,$06,$££,$81,$7f

$05,$ff

drvgraph

0

6,16

dodrv

$05,$ff,$82,$fe

$80,$04,$00,$82,$03

$80,$04,$00,$b7,$03

$80,$f8,$00,$cO,$00,$03

$80, $cc,$00,$00,$00,$03

$80,$c6,$fd,$d9,$9e,$03

nddrive: .byte 0,":",$lb,0

$80,$c6,$c0,$d9,$b3,$03

$80,$c6,$c0,$cf,$3f,$03

$80,$c6,$c0,$cf,$30,$03

$80,$cc,$c0,$c6,$33,$03

$80,$f8,$c0,$c6,$le,$03

$e2,$02,$01

$80,$04,$00,$01,$03

$06,$ff

$01,$7f,$05,$ff

$01 ;non-std window

40,145 ;std height+10

72

263

$0b,2,9

2

$0b,130,19

$0b,130,28

2

$05,17,34 ,-open-

$06,17,52 ;-disk-

$02,17,88 ,-cancel-

$10,4,14 /filename list

0 ;$12=-drive-

17,70

drivebox

0

$18,$19,"Select geoHrite output file.",$lb,$18,0

$18,"Select geoHrite input file.",0

MOndisk:n,$lb,0

.byte $81

.byte $0b,10,30

.word ndmsg

.byte $01,17,78 ;-ok-

.byte 0

ndmsg: .byte $18,"Insert new disk in drive '

newfilew:

.byte

.byte

.word

.byte

.word

.byte

.byte

.byte

drvopt3: .byte

.byte

.word

.byte

nfmsgl: .byte

nfmsg2: .byte

odsknm: .block

.byte

replw: .byte

.byte

.word

.byte

.word

.byte

.byte

.byte

repIn: .byte

errorw: .byte

.byte

.byte

.byte

errmtbl:

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

miscerr: .block

.byte

miscerrd:

.block

.byte

$81

$0b,8,30

$02,17,78 ;-cancel-

$06,17,42 ;-disk-

$0d,8,50,rl0,16

0 ;$12=-drive-

17,60

drivebox

0

$18,"Enter name of new geoHrite file.",0

"On Disk: ",$lb

16

0

$81

$0b,10,30

replm

$0b,10,50

outnm

$03,17,78 ,-yes-

$04,1,78 ,-no-

0

$18,"File exists, OK to replace file:",0

$0c,10,32,rl2

$01,17,72 ,-ok-

0

;table of error codes and messages

$80,$18,"Combined file has too many pages.",$lb,0

$81,$18,"Combined file has too many graphics.",$lb,0

$82,$18,"Unsupported geoHrite Version.",$lb,0

$83,$18,"First page number is invalid.",$lb,0

$84,$18,"Last page number is invalid.",$lb,0

$85,$18,"After page number is invalid.",$lb,0

$03,$18/'Disk full",$lb,0

$26,$18,"Hrite protect on",$lb,0

1

$18,"Disk Error: "

2

$lb,0

swpdskw: .byte $81

.byte $0b,10,32

.word swpdskml

.byte $0c,10,47,ral

.byte $0b,10,(2

.word

.byte $01,17,78

.byte $02,1,78

.byte 0

;-ok-

;-cancel-

.byte $18,"Please insert disk:",$lb,0

swpdskm2:

.byte $18,"In Drive: "

:d: .block 1

.byte $lb,0

wherew: .byte

.byte

.word

.byte

.byte

.word

.byte

.word

.byte

.word

.byte

.word

.byte

wrosgl: .byte

wwmsg2: .byte

wwmsg3: .byte

wwmsg4: .byte

$13 ;call user routine first

whereset ;this sets up ICON boxes

$0d,10,14-2,rl0,2

$Ob,43,20-2

$0b,43,43-2

wwmsg2

$0b,43,66-2

wwmsg3

$0b,43,74

wwmsg4

0

$18,"First page of input to use.",0

"Last page of input to use.",0

"Place input after this page.'\0

$lb,"(Use '0' to place at start.)",0

wboxes: .byte 5 ;5 boxes in the table

62 Transactor

.word

.byte

.word

.byte

.byte

.word

.word

.byte

.byte

.word

.word

.byte

.byte

.word

.word

.byte

.byte

.word

.word

.byte

.byte

.word

pgbox: .byte

.byte

.byte

okbox: .byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

cancelbox:

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

writecl: .byte

writeinfo:

.word

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.word

.word

.word

.byte

ovsnl: .byte

.byte

64+16 ;put mouse in OK box

32+88

pgbox

8+1,32+8

3,16

dopglst

pgbox

8+1,32+32

3,16

dopglst

pgbox

8+1,32+56

3,16

dopgaft

okbox

8+1,32+78

6,16

dook

cancelbox

8+17,32+78

6,16

docancel

3,$ff
220+4,14,128+3,$80,$00,$01

3,$ff

$05,$ff,$82,$fe,$80,$04,$00,$82

$03, $80,$04,$00,$b8,$03,$80,$00

$f8,$c6,$00,$03,$80,$01,$8c,$cc

$00,$03,$80,$01,$8c,$d8,$00,$03

$80,$01,$8c,$fO,$00,$03,$80,$01

$8c,$eO,$00,$03,$80,$01,$8c,$fO

$00,$03,$80,$01,$8c,$d8,$00,$03

$80,$01,$8c,$cc,$00,$03,$80,$00

$f8,$c6,$00,$03,$80,$04,$00,$82

$03, $80,$04,$00,$81,$03,$06,$ff

$81,$7f,$05,$ff

$05,$ff,$82,$fe,$80,$04,$00,$82

$03, $80,$04,$00,$b8,$03,$87,$c0

$00, $00,$00,$e3,$8c,$60,$00,$00

$00,$63,$8c,$07,$9f,$le,$3c,$63

$8c,$0c,$dd,$b3,$66,$63,$8c,$07

$d9,$b0,$66,$63;$8c,$0c,$d9,$b0

$7e,$63,$8c,$0c,$d9,$b0,$60,$63

$8c,$6c,$d9,$b3,$66,$63,$87,$c7

$d9,$9e,$3c,$63, $80,$04, $00, $82

$03, $80,$04,$00,$81,$03,$06,$ff

$81,$7f,$05,$ff

"Write Image",0

outnm

3,21,$80+63

$ff,$ff,$ff,$80,$00,$01,$8f,$ff

$01,$88,$01,$01,$8b,$ff,$cl,$8a

$00,$41,$8a,$ff,$f1,$8a,$80,$11

$8a, $8e,$11,$8a,$80,$11,$8a,$bf

$91,$8a,$80,$11,$8a,$9f,$11,$8a

$80,$11,$8a,$bf,$91,$8e,$80,$11

$82, $bf,$91,$83,$80,$11,$80,$80

$11,$80,$ff,$f1,$ff,$ff,$ff

$83,$07,$01

0

$ffff

0

"Write Image V"

"?.?",0,0,0,0

"by: Combiner VI.0",0,0,0

wblk:

fpblk:

lpblk:

apblk:

dmyx:

inpnm:

outnm:

idsknm:

dadsknm:

patch:

picsused:

idskdrv:

odskdrv:

dadskdrv:

xsave:

picinx:

picoutx:

ivflag:

ovflag:

oldpages:

oldpics:

oldmax:

oldnew:

max:

pages:

pics:

frstipge:

lastipge:

aftpge:

helpidx:

backlvlf:

widxsave:

danl:

dan2:

dan3:

dan4:

dan5:

dan6:

dan7:

dan8:

.byte

.word

.byte

.word

.byte

.block

.block

.byte

.block

.byte

.block

.block

.byte

.block

.byte

.block

.block

.byte

.block

.byte

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

.block

"geoWrite V?.?",0,0,0,0

1

0

0,0,

"xx"

1

2

"xx"

3

"xx"

3

;usedbyV2.x

768

;save blocks for each INPUT data

0,32+14-2

;$87cf

;$84be-84bf

0,32+38-2

0,32+62-2

23-(dmyx-wblk) /padding to 23 bytes

0

16

0

16

16

0

16

0

30

64

1

1

1

1

1

1

1

1

1

1

1

1

]

1

1

17

17

17

17

17

17

17

]L7

;disk name of input disk

;disk name of D.A. disk

;program patch area

;table to convert input picture f to output

;drive i of input disk

;drive f of output disk

/drive i Of D.A. disk

;temp save area for x reg

;index into input picsused

;index into output picsused

;input version flag (0,l,2,3=none,l.x,2.0,2.1)

;output version flag

;§ chains in output file

;§ pictures in output file

;max f pages available in output file

;00=old output/ff=new output/7f=need create

;used by count recs

/1st page to start with

;last page to merge

/merge after this page

/help screen index

;00=normal; $80=2.1->2.0; $c0=2.x->l.x

/save of where window index

/start of buffer area

1-2-(27-20) /allow room for eob flags + ruler expansionbufend =

/

.end

; END of $2COMBINER

%COMBINER - Linker statementsfor Combiner

; %COMBINER - Link statements for geoWrite Combiner - Nick Vrtis - 1/89

.output combiner

.header $HCOMBINER.rel

.seq

.psect $0400

$lCOMBINER.rel

$2COMBINER.rel □

Volume 9, Issue 6 63

Clean Machine Language Screens

Techniquesfor text output routines

by Bill Brier

Displaying text on the screen is the most common of program

activities and is usually one of the first things learned by

beginning programmers. Those moving up from BASIC to

machine language may initially find it somewhat difficult to

print attractive screen displays. The handy PRINT statement

and the companion TAB and SPC formatting commands vanish

once the realm of the BASIC interpreter has been left behind.

Fortunately, the freedom of expression inherent in machine

language makes it possible to write custom versions of PRINT.

Using some simple programming techniques, you will be able

to handle text output to the screen with ease, and at the same

time realize a tremendous increase in display speed. So, if you

are ready to learn, please read on!

In describing some of the techniques I've learned, I'll as

sume that you know what an assembler is and how to use

one. My examples will be given in the MOS Technology stan

dard assembler syntax supported by the Commodore 64 as

sembler and the C-128 Developer's Package hcd65 assem

bler. Some of this stuff may be old hat to experienced ma

chine language progammers, but even they may find some

thing useful here.

Displaying text strings

Let's start with something simple. In BASIC, you type the

command print "text string" and the interpreter obediently

prints text string for you. basic figures out where in

memory (RAM) the text is located, the number of characters

to print and so forth. The price for this convenience is speed

(a lack of it).

In machine language, there isn't an interpreter to figure out

where the string is at and what to do with it. So, you have to

make your own print statement. The first thing to consider

in designing your own version of PRINT is how to determine

the length of the string. This is readily handled by terminat

ing the string with a zero ($00) byte. Fortunately, the Com

modore screen editor considers the null byte to be... well,

nothing as far as printing goes. So, to store the text string

"text string" in memory, you would code as follows in your

assembler:

string .byt 'text string',0

When the assembler parses this line it will generate bytes that

are the PETASCII equivalents of the string. Immediately follow

ing the string will be the null byte. We can output the string

with a simple loop:

print ldy #0 /starting string offset

print1 Ida string,y /fetch byte from text string

beq print2 /the zero byte means we're done

jsr bsout /this kernal routine is located

/at $ffd2

iny /point at next character

bne print1 /do it again

print2 rts / exit

The Kernal BSOUT routine outputs the character in the micro

processor accumulator (.A register) to the current output

device. BSOUT is 'non-destructive' in that it leaves the .A, .X

and .Y registers unchanged. It normally exits with the carry bit

cleared in the status register. By the way, the above routine

works because the act of loading .A with a zero will make the

BEQ PRINT2 instruction succeed. If .A contains any other value

it will be passed to BSOUT.

The trouble with this PRINT subroutine is that it will only out

put the text string located at STRING. So, to make the routine a

little more generic, we'll modify it to use some zero-page

pointers and we'll also modify it to handle text strings that

occupy more than 256 bytes of RAM (the above routine will

abort when .Y wraps around to zero at the INY instruction).

Here's our new, improved print subroutine (funny thing about

that name, eh?):

print stx ptr ; set up zero page pointer to...

sty ptr+1 /the text string to output

ldy #0 /starting offset

printl Ida (ptr),y /fetch a character

beq print2 /zero byte...we're done

64 Transactor

jsr bsout ; output via $ffd2

iny ;next character

bne print1 ; loop

inc ptr+1

bne print1

print2 rts

;now in the next page of ram

; loop

; exit

To use this routine you would code the following:

ldx #<string ; fetch lo byte of string address

ldy #>string ; fetch hi byte of string address

jsr print ;output the string

Now we can output text by simply giving the subroutine the

starting address of the string. Some programmers like to pass

such things as text string addresses via the stack. I personally

fail to see why. The plas and PHAs required to do that are

enough to confuse even the most experienced programmers,

gain little in execution speed, and are likely to introduce hard-

to-solve bugs if everything isn't right.

Ok, now that we have a generic print routine, it's time to in

troduce some more text string output techniques.

Jockeying for position

Most displays require that text be placed at certain locations on

the screen. Such things as menus and columns of numbers look

best when neatly aligned top to bottom and centered between

margins. Fortunately, the Kernal includes a useful cursor posi

tioning function that can be readily called from your program.

Located at $fffO in the Kernal jump table is the PLOT subroutine,

the primary cursor control mechanism built into the screen edi

tor. (One of the truly unique features of the eight-bit Com

modore machines is their flexible, easy-to-use full-screen edi

tors. In particular, the C128 editor is amazingly powerful for a

machine that purports to be a 'home computer'!)

Plot actually serves two purposes, depending on whether the

carry bit is set or cleared. If carry is cleared when PLOT is

called, the cursor will be positioned at the row number given

in .X and the column given in .Y (row and column coordinates

always start at 0,0 and in the C128 editor, location 0,0 is rela

tive to the currently defined window, not the screen). On the

other hand, if the carry bit is set, then the current cursor posi

tion will be returned by PLOT, the row in the .X register and

the column in the .Y register. I call such an operation "logging

the cursor position". Let's write some code to avail ourselves

of these functions:

;carry clear to set position

;fall thru, call plot routine

;set

plota

cursor

dc

.byt

position

$24

;log cursor position

plotb sec ;set carry to log position

jmp plot /located at $fffO

The PLOTB subroutine directly follows the PLOTA subroutine

(PLOTA falls through into PLOTB). A JSR PLOTA instruction will

move the cursor to the row and column specified by the .X and

.Y registers. For example:

ldx trow

ldy #column

jsr plota

This sequence sets the cursor position. If the return from PLOT

leaves the carry bit set, then the position command was not

executed (usually because the coordinates lie outside the limits

of the screen). Calling the subroutine at PLOTB will result in

the current cursor position being returned in .X and .Y without

disturbing the cursor itself (it won't move). This works like the

POS statement in basic.

I know you're wondering about that .BYT $24 business in the

PLOTA subroutine. It's a simple method of getting the processor

to jump past the SEC instruction in PLOTB. Let's suppose that

this little routine is assembled at $2000. The resulting code

would be disassemble in a machine language monitor like so:

.d 2000 2003

.2000 18 clc

.2001 24 38 bit $38

.2003 4c fO ff jmp $fff0

Hmmm, you say. It doesn't look like what I wrote in my

source file. Actually, all of the bytes are there, but appear

different because of the $24 byte (which is a zero-page BIT

instruction). When the processor executes the instructions

starting at $2000 it will clear carry and then execute a harm

less bit operation on location $38 in zero-page RAM (BIT

leaves .A, .X and .Y untouched and doesn't affect carry). The

byte $38 that acts as the operand for the BIT instruction is real

ly the SEC instruction that was assembled into plotb. Now,

let's disassemble the routine at $2002:

.d 2002 2003

.2002 38 sec

.2003 4c fO ff jmp $fff0

Do you see how it works? Good! The technique of using a BIT

op-code to cover some other code is a commonly used one

(take a look at the Kernal itself for some examples of this

trick). By the way, even though PLOT is actually a subroutine,

the JMP PLOT sequence is correct. When the RTS at the end of

PLOT is executed, the processor will return back to the point in

your program that called PLOTA or PLOTB.

Volume 9, Issue 6 65

Now that we can position the cursor to any location on the

screen, we will move forward in our quest for clean screens.

Fetching text strings via a look-up table

Ah, yes... that bane of easy programming: the look-up table! A

suprisingly large number of machine language programmers

avoid the use of look-up tables, probably because they don't

understand them or fail to see any practical use for them. Well,

there's really no good reason to avoid the use of look-up

tables. Once a few simple principles are understood, working

with look-up tables becomes as easy as pressing the Return

key. As for incorporating a look-up table in your software;

well, I'll show you how to use one. Let's first see what a small

look-up table looks like:

txttab .wor strngl,strng2,strng3,strng4

In MOS assembler syntax, the directive (pseudo-op) .WOR

(.WORD) causes the assembler to generate two bytes equal to

the low-byte/high-byte address of the referenced locations

(data words) following the .WOR directive itself. Cbm assem

blers allow you to assemble several words on one code line by

separating them with commas. Let's suppose that the refer

enced strings have the following addresses:

strngl = $2000

strng2 = $2027

strng3 = $2641

strng4 = $316a

When the assembler parses the TXTTAB look-up table, it will

generate the following output bytes (I've arranged them in two

columns to make it more obvious as to what happens):

$00 $20

$27 $20

$41 $26

$6A $31

The .WOR directive results in a series of two-byte pointers

being assembled in low-byte/high-byte order, each pointing to

a location where a text string is lying in wait. The entire table

starts at the address location referenced by the txttab label.

The distance in memory between successive text string point

ers is always two bytes, even though the strings themselves are

scattered all over the map. Incidentally, most assemblers have

a directive (usually .dbyte) that assembles such pointers in

high-byte/low-byte order. The resulting addresses are usually

used as jump vectors.

Ok, big deal, you say. I've got a bunch of addresses in

memory that point to text strings. What good is that? The

beauty of this arrangement is that you can fetch the string

pointer by passing a one-byte index value to a decoding sub

routine, which then leaves the other two processor registers

free to do something else (such as position the cursor). In

effect, you can say, "Give me the pointers to string #14" and

the combination of the look-up table and a simple decoding

routine will do just that.

Let's write the decoding subroutine:

loctxt sec

sbc #1

asl a

bcs errext

;set carry to subtract

/reduce index by one

;double the value in .a

;the index is out of range

tay /becomes an offset

Ida txttab+l,y ;fetch pointer hi byte

ldx txttab,y ;fetch pointer lo byte

tay ;give hi byte to .y

errext rts ; exit

You call this routine by loading .A with the relative position of

the string in the table and the routine comes back with the

string pointer in .X and .Y (which may then be used in the

PRINT subroutine). If you call LOCTXT with 1 in the accumula

tor (which means you want the first of the four referenced

string pointers, STRNG1 in this case), it will be decremented to

0 and then doubled in the ASL A op-code. Since zero times any

thing is zero, the resulting offset will be zero and the first and

second bytes in the look-up table will be fetched. Thus, .X and

.Y will contain $00 and $20 respectively.

If you call LOCTXT with 3 in .A (meaning that you want the

pointers to STRNG3), the subroutine will return .X = $41 .Y =

$26, pointing to STRNG3. Why? Let's 'single step' through the

routine to see what happens to the index:

Executed Code

loctxt sec

sbc #1

asl a

tay

Ida txttab+l,y

ldx txttab,y

tay

rts

Value

.A

$03

$02

$04

$04

$26

$41

$26

$26

.X

*

*

*

•

$41

$41

$41

in

.Y

*

*

$04

$04

$04

$26

$26

The asterisk (*) indicates that the registers contain indeter

minate values. Can you see how we got the correct pointers

with a single byte index in .A? If TXTTAB is assembled at

$3000, the ldatxttab+i,y instruction in effect becomes LDA

$3000+$0l+$04. So we get the low-order byte from $3004 and

the high-order byte from $3005.

The above decoding technique will work on a table with a

maximum of 128 entries. For that reason, a range check is

included to avoid exceeding the 128 entry limitation. If carry

is set when the ASL instruction is executed, the supplied index

was in the range of 129 to 255 or was zero (an index of zero is

66 Transactor

undefined and therefore not allowed). Can you figure out why

128 entries is the limit with this technique?

Just to show you that the look-up table is a handy thing to

incorporate into your software, we'll utilize TXTAB and LOC-

TXT together with plota and print and make an all-purpose

text string printing function. We'll name this routine prntxt

and call it as follows:

Ida #index ;1, 2, 3, etc. (text string

;index)

ldx #row ;row to print the text on

ldy #column /column to start printing at

jsr prntxt ;do it

bcs error /something went wrong

Now for the actual prntxt subroutine:

prntxt pha /stash text string index

jsr plota /position cursor

pla /recover index

bcs abort /coordinates are out of range

jsr loctxt /fetch text string pointers

bcs abort /the index was out of range

jmp print /output the text

abort rts / exit

How's that for an efficient, all-purpose print routine? If the

routine exits with the carry cleared then everything went as

expected (upon exiting from the PRINT subroutine the carry is

cleared). By the way, because we directly control the cursor

position by using PLOT (rather than by utilizing cursor position

characters and spaces) the speed at which the screen display is

brought up is dramatically improved. On a C64, the screens

will seem to appear like magic.

Now for C128 speed tip number one: The 128's screen editor

has its own jump table starting at $c000. Rather than out-

putting to the screen via the BSOUT subroutine at $ffd2, it's

much faster to go directly to the editor at $c00c. BSOUT per

forms time-consuming checks to determine which peripheral

is the designated output device. If you already know where

you want the display to appear, why get tangled up in a bunch

of output device tests? And, while you're busy bypassing the

Kernal jump table, you might want to consider using PLOT at

$cO18, rather than at $fffO (the code at $fffO simply jumps to

$cO18). These are legitimate jump table entry points (they're

documented in the CJ28 Programmer's Reference Guide) and

thus should be stable even though Commodore may revise the

Kernal at a future date.

How to order up menus

It's my humble opinion that menu-driven programs are much

friendlier than those that make the user remember operating

codes and strange keypress sequences. So, let's look at some

menu-handling techniques.

Menus give you an opportunity to make attractive and easy-to-

read screens. However, in machine language you don't have

those convenient TAB, SPC and cursor movement commands

that BASIC provides. Fortunately, the PLOT subroutine (more

specifically, our PLOTA subroutine) can be used to provide the

necessary cursor movements.

Let's design a simple "do-nothing" menu:

1. Do Operation #1

2. Do Operation #2

3. Do Operation #3

4. Do Operation #4

We have several approaches available to us in coding this

menu and outputting it to the screen. The first approach

would be to assemble four separate text strings (you could

call them MENUA, MENUB and so forth), enter them into the

look-up table txttab and then repetitively call the PRNTXT

subroutine to output them. Each call to PRNTXT would

require that you supply the string index and the row and

column coordinates. If you had a menu with eight lines,

you'd have to make eight calls to PRNTXT. That's a lot of

code just to output a menu.

A second approach, if you have a C128, is to define a

window whose top left corner is in the same location as the

top left corner where the menu is expected to start. Then,

each line would end with a carriage return and extra linefeed,

with only the last line ending with a zero byte terminator.

However, not everybody has a C128, so not everybody has a

window command to work with. Besides, the 128's editor is

relatively slow when it is expected to figure out the cursor

position via the use of carriage returns, cursor movement

characters and linefeeds.

A better way (and the one that I like to use) is to imbed the

cursor position coordinates within the text itself. Obviously,

that means that we can't use our prntxt subroutine for such a

menu, as it wouldn't know what to do with the cursor coordi

nates. We can, however, use plota to position the cursor and

LOCTXT to look up the text pointers.

The nice thing about imbedding the coordinates in the text is

that when examining the source code, it is easy to determine

just where on the screen the menu is expected to appear.

Knowing that makes it easier to change the menu's location if

desired. If we were to utilize prntxt and a bunch of individual

text strings, we'd have a lot more work cut out for us. So, let's

implement the third method by imbedding cursor position

coordinates into the text itself. Here is the menu again, but this

time with the row and column positions noted:

Volume 9, Issue 6 67

ROW

6

9

11

13

15

COL

35

31

31

31

31

Menu Title

1.

2.

3.

4.

Do Operation

Do Operation

Do Operation

Do Operation

#1

#2

#3

#4

The coordinates shown above center the menu on an 80-

column display (side to side, as well as top to bottom). The

title appears centered on row 6. On a 40-column screen, just

subtract 20 from the above column values to center the

display.

To imbed the cursor coordinates into the text you would code

as follows:

mentxt .byt 0,6, 35,'Menu Title'

.byt 0,9,31,'1. Do Operation #1'

.byt 0,11,31,'2. Do Operation #2'

.byt 0,13,31,'3. Do Operation #3'

.byt 0,15,31,'4. Do Operation #4',128

Let's look a little closer at this gibberish. Each line is started

with a zero byte, followed by the row and column coordinates,

which are then followed by the text itself. The value 128 acts

as the terminator for the entire menu (128 is not a printing

character nor is 0). The trick to this technique is that when we

encounter a zero byte we know that the next two bytes are row

and column coordinates, not text. When we encounter the 128

byte, we know that the entire menu has been displayed.

You are not limited to just text and coordinates with this tech

nique. You can also imbed colour values at any point in the

text. You can imbed characters to turn reverse video on or off.

In fact, any charcter may be imbedded as long as it will not be

recognized as one of the two possible delimiting values (0 or

128).

To work with this type of format, we need a character-fetching

subroutine and a subroutine to take care of outputting charac

ters and positioning the cursor. First the character fetching

subroutine:

chrgt Ida chrgt+1 /fetch a character

inc chrgt+1 ;step text pointer lo

bne chrgt1

inc chrgt+2 ;step text pointer hi

r

chrgt1 pha ; stash on stack

pla /recover character

rts

Yeah, I know...it's a strange-looking routine, but it does work.

This is an example of self-modifying code. The "text pointer"

is actually the operand of the LDA instruction at CHRGT. When

this subroutine is called, the text pointers will have been stored

at CHRGT+1 (lo byte) and CHRGT+2 (hi byte). After fetching

the character the text pointer is incremented. This means that

the next call to CHRGT will fetch the next character. Finally, the

character is pushed on the stack and then immediately pulled

back off the stack. The purpose of pushing and then pulling

the character to and from the stack is simply to condition the Z

flag in the status register before exiting.

Now for the main routine, which we'll call TXTP. It is invoked

as follows:

Ida #index /index to text string

jsr txtp

bcs error /something is not right

If you wanted to display the menu and the look-up table TXT-

tab had the following entries:

txttab . wor strngl,strng2,strng3,strng4

.wor mentxt,strng5,strng6,strng7

You would code:

Ida #5

jsr txtp

bcs error

Mentxt (the pointer to the menu) is the fifth item in the look

up table. Note that TXTP is called in the same manner as the

prntxt routine except that you don't pass any cursor coordi

nates. Here's the TXTP subroutine:

txtp jsr loctxt /convert index into text pointers

bcs txtpO4/index out of range

stx chrgt+1 /set up beginning text pointers

sty chrgt+2

txtpOl jsr chrgt

beq txtpO2

cmp #128

beq txtpO3

jsr bsout

bcc txtpOl

txtpO2 jsr chrgt

tax

jsr chrgt

tay

jsr plota

bcc txtpOl

fetch a character

zero byte, cursor coordinates

follow

final terminator

exit

output the character

go get the next one

fetch row

fetch column

position cursor

resume

68 Transactor

.byt $24 /cursor coordinates out of range

txtpO3 clc

txtpO4 rts

;no error

; exit

Looks like a lot of code just to print menus? Not really! Don't

forget, this routine takes care of cursor positioning and every

thing. All you have to do is enter the menu into the look-up

table and pass the index in the accumulator. If you come out of

TXTP with the carry set, then something was amiss (either the

index or the cursor coordinates were out of range).

Make it easy for yourself

One of the things I do when planning a program where a lot of

menus and such will be used is to lay out the screen on graph

paper (TOPS form 3304 is perfect for this purpose). I position

the text just as I want it to appear on the screen, and I include

notes about color, reverse video and so forth. This allows me

to visualize the finished product and avoid such contretemps

as off-center titles or text running off the edge of the screen.

Once I have worked out my screen I can read the text right off

the paper version and type it into the program, cursor coordi

nates, colours and all. I suggest that you adopt this method

when writing your software. I call it easy programming! □

NOTHING LOADS YOUR PROGRAMS FASTER

THE QUICK BROWN BOX

A NEW CONCEPT IN COMMODORE CARTRIDGES

Store up to 30 of your favorite programs — Basic & M/L, Games &

Utilities, Word Processors & Terminals — in a single battery-backed

cartridge. READY TO RUN AT THE TOUCH OF A KEY.

HUNDREDS OF TIMES FASTER THAN DISK. Change contents

as often as you wish. The QBB accepts most unprotected programs

including "The Write Stuff the only word processor that stores your

text as you type. Use as a permanent RAM-DISK, a protected work

area, an autoboot utility. Includes utilities for C64 and C-128 mode.

Packages available with "The Write Stuff," "Ultraterm III," "QDisk"

(CP/M RAM Disk), or QBB Utilities Disk. Price: 32K $99; 64K $129.

(+$3 S/H; $5 overseas air; Mass residents add 5%). 1 Year Warranty.

Brown Boxes, Inc, 26 Concord Rd, Bedford, MA 01730: (617) 275-

0090; 862-3675

VIDEO BYTE the first FULL COLOR!

video digitizer for the C-64, C-128
Introducing the world's first FULL COLOR! video digitizer for the

Commodore C-64, C-128 & 128-D computer.

VIDEO BYTE can give you digitized video from your V.C.R., B/W or

COLOR CAMERA or LIVE VIDEO (thanks to a fast! 2.2 sec. scan time).

• FULL COLORIZING! Is possible, due to a unique SELECT and INSERT color process,

where you can select one of 15 COLORS and insert that color into one of 4 GRAY
SCALES. This process will give you over 32,000 different color combinations to use in

your video pictures.

• SAVES as KOALAS! Video Byte allows you to save all your pictures to disk as FULL

COLOR KOALA'S. After which (using Koala or suitable program) you can go in and

redraw or recolor your Video Byte pic's.

• LOAD and RE-DISPLAY! Video Byte allows you to load and re-display all Video Byte

pictures from inside Video Byte's menu.

• MENU DRIVEN! Video Byte comes with an easy to use menu driven UTILITY DISK and

digitizer program.*

• COMPACT! Video Byte's hardware is compact! In fact no bigger than your average

cartridge! Video Byte comes with its own cable.

• INTEGRATED! Video Byte is designed to be used with or without EXPLODE! V4.1 color

cartridge. Explode! V4.1 is the perfect companion.

• FREE! Video Byte users are automatically sent FREE SOFTWARE updates along with

new documentation, when it becomes available.

• PRINT! Video Byte will printout pictures to most printers. However when used with

Explode! V4.1 your printout's can be done in FULL COLOR on the RAINBOW NX-1000,

RAINBOW NX-1000 C, JX-80 and the OKIDATA 10 / 20.

Why DRAW a car, airplane, person or for that matter. . .

anything when you can BYTE it... Ifincn DVTC
Video Byte it instead. VIUCU PI It

SUPER EXPLODE! V4.1 w/COLOR DUMP
If your looking for a CARTRIDGE which can CAPTURE ANY SCREEN, PRINTS ALL
HI-RES and TEXT SCREENS in FULL COLOR to the RAINBOW NX-1000, RAINBOW
NX-1000 C, EPSON JX-80 and the OKIDATA 10 or 20. Prints in 16 gray scale to all
other printers. Comes with the world's FASTEST SAVE and LOAD routines in a car

tridge or a dual SEQ., PRG. file reader. Plus a built-in 8 SECOND format and
MUCH, MUCH MORE! Than Explode! V4.1 is for you.

PRICE? $44.95 + S/H or $49.95 w/optional disable switch.

• in 64 mode only VIDEO BYTE only $79.95
SUPER EXPLODE! V4.1 $44.95

TO ORDER CALL 1-312-851-6667 PLUS $1.50 S/H C.O.D.'S ADD $4.00

Personal Checks 10 Days to Clear IL RESIDENTS ADD 6% SALES TAX

THE SOFT GROUP, P.O. BOX 111, MONTGOMERY, IL 60538

Notice to

Subscribers
Renew early to avoid missing an issue!

Check the expiry volume and issue on your

mailing label, and make sure you renew your

subscription a couple of issues in advance.

For faster processing of your order, please

pay by cheque or money order.

Notice to

Non-Subscribers
Fill in the subscription card in the centre of

the magazine and subscribe now! Get the

most authoritative technical journal for the

Commodore 8-bit computers delivered right

to your door.

Volume 9, Issue 6 69

Ride Your 4040 On The Serial Bus

lEEE-to-serial bus conversionfor the 4040

by Michael Gilsdorf

Copyright © 1989 by Michael Gilsdorf

Ever since I bought my C128 I always wished I could use all

of BASIC 4.0 commands. Top on my wish list was being able to

copy files from one drive to another with the COPY and back

up commands. However, since neither the 1541, 1571, or 1581

support drive 1, copying files required loading and running a

copy program. A few months ago I had the opportunity to

acquire a 4040 dual drive with an IEEE interface. The price was

right so I took the plunge.

Unfortunately the IEEE interface had some problems. It worked

fine in C64 mode, but refused to operate in C128 native mode.

Also, it would not work with the sx-64 or the vic-20. Since the

interface patched into the computer's operating system via the

cartridge port, some programs would neither run nor support it.

I was constantly plugging and unplugging the interface, and

found myself unable to use the drive when I most wanted to.

What I needed was another interface - one that would offer the

maximum compatibility and operate with my other Com

modore computers. Since speed was a secondary concern, the

best interface, I thought, would be one that connected the

4040's IEEE connector to the Commodore's serial bus. However

after contacting several Commodore suppliers and second

party vendors, it appeared no one made this type of interface. I

finally decided to interface the drive to the serial bus myself.

My goal was to connect the 4040 to the serial bus using the

minimum amount of hardware. It seemed to me that since the

4040 was an intelligent drive, it ought to be able to be pro

grammed to respond to the serial bus signals. If so, then there

would be no need of an external interface equipped with its

own CPU, ROM, RAM, I/O, and other support chips. I hoped that

I could connect the 4040 to the serial bus by having to replace

only a ROM chip and the connecting cable.

As it turned out, an additional NAND chip was required since a

direct pin-for-pin EPROM replacement was not available for the

4040 ROM. Once having completed the conversion process, I

did find the 4040 a little faster than the 1541. But don't expect

the 4040 to work with disk speed-up cartridges or some com

mercial software. They generally are not written to operate

with the 4040 disk operating system (DOS).

The following is a list of the items you'll need to make the

conversion - but first, a word of caution. If you are not techni

cally inclined (or don't know what end of a solding iron to

hold) I strongly recommend you do not attempt the modifica

tion yourself! Acquire the skills of an electronic technician

experienced with digital hardware. Should you damage your

4040 through carelessness, you may find it difficult to find an

technician experienced in repairing the drive. So be careful

and double check all your work!

Parts List

Quantity Description

1 2532 EPROM chip

1 74LS00 NAND chip

1 6-pin male DIN plug

The next material list is recommended, but not absolutely

essential to perform the conversion. (More about these items

later.)

1 14-pin IC socket for the 74LS00 NAND chip

1 IEEE-488 connector and cable

1 6-pin female DIN plug

(Note: All parts for this project are available at Radio Shack

with the exception of the 2532 EPROM and IEEE connector

cable.)

One nice thing about this modification is you can still revert

back to the original IEEE interface, if you so desire. Simply

swap the EPROM chip with the original CBM ROM (along with

a cable change-out) and your drive is back to its IEEE config

uration. Removing the NAND chip is not necessary. By the

way, if you're interested in complete, documented source

code for the 4040 drive, The Anatomy of the 4040 by Hilaire

Gagne is an excellent book. [Hilaire Gagne, 4501 Carl St.,

P.O. Box 278, Hanmer, ON, Canada, POM 1Y0. For Canadian

residents, $39.95 (Cdn) plus $3 shipping and handling; for

U.S. residents, $31.95 (US) plus $9 shipping and handling.]

Discussions with Hilaire strongly hint that a similiar modifi-

70 Transactor

cation may be possible for the 8050, 8250, and 9060 drives

since their source code is quite similiar to the 4040. The ROM

chips used in these other drives appear to be 8K. If true,

modifying these drives for serial operation may involve only

a ROM and cable swap!

Step I - Software Modification

We'll begin the modification by programming the EPROM. For

this you'll need an EPROM programmer (e.g., Promenade).

Begin by unplugging the 4040's AC power cord, and discon

nect the IEEE connector/cable on the back of the drive. Next,

locate and remove the two screws on either side of the drive.

You'll find them situated at the bottom near the front face.

Now open the top cover to the drive by lifting and swinging

up the cover from the front to the back. The motherboard,

which we'll be working on, is mounted to the underside of the

top cover. Carefully unplug the four cables on the mother

board. Notice that three of the cables are keyed to prevent

them from being connected improperly. However, the two-

wire cable for the error LED could be reconnected improperly.

So be sure to label/mark it to show its orientation. Next locate

and remove the six Phillips screws used to mount the mother

board to the top cover. Carefully remove the motherboard.

Now find the 24-pin socketed ROM chip located near the bot

tom of the motherboard at position UJ1 (part no. 901468-14).

Most chips have their locations labeled on the motherboard,

but (as luck would have it) UJ1 is not marked (see Fig. 2). The

ROM at UJl contains 4K of DOS code ($dOOO-$dfff), and is

located between the other two socketed ROM chips at ULl

($eOOO-$efff) and uhi ($fOOO-$ffff). Take careful note of the

position of the key on the ROM chip. It should be oriented

towards the bottom of the motherboard. (The same direction as

the other two socketed 24-pin ROM chips on either side.) It

indicates which way the ROM is to be reinserted into its socket.

You'll need this information when installing the EPROM. After

removing the ROM chip, set the motherboard aside for now.

We'll make the hardware modifications to it later.

Next, using an EPROM programmer, read and copy the ROM

code into the computer's memory. We'll be patching our serial

bus routines into the original 4040 code. You might want to

store the code on disk for future reference. If you're using a

Promenade the set-up for the 2532 EPROM will allow you to

read the ROM chip. The main difference between the 2532

EPROM and the ROM chip is that the ROM chip has two chip

select (CS) lines (pin nos. 20 and 21) as opposed to one CS line

(pin no. 20) for the 2532 EPROM. The ROM chip is selected

when pin 21 is low and pin 20 is high. After reading the ROM,

we are now ready to make the patch.

Using the C128 built-in monitor (or other means) replace sec

tions of the ROM code with the new serial bus code (see list

ing). After making the patches, run the code check program

and verify that the code is error free. If the code is correct,

then program the EPROM with the new code. This completes

the software portion of the modification.

Step II - Hardware Modification

First, we'll make up the IEEE-to-serial cable. This cable will be

constructed with an IEEE-488 connector on one end and a six-

pin (male) serial bus connector on the other end. For this you

can use the original Commodore IEEE cable, but you'll need to

cut off the flat edge 24-pin connector. Since this may not be

desirable (if you ever intend to use this cable again), I recom

mend you use a different cable. If you're lucky you might be

able to pick up a used one at a HAM fest or surplus store. How

ever, if all else fails, you can purchase a new IEEE-488 connec

tor and cable for about $50. (One possible source is L-com

Inc. located in N. Andover, MA).

Once you've decided on an IEEE cable, solder a 6-pin DIN

(male) plug to the end. I also recommend that you solder a 6-

pin (female) din plug alongside (parallel to) the male DIN

plug. This will allow you to connect an extra device (e.g.,

printer) to the serial bus. The table below shows how the pins

are to be connected. When finished it's a good idea to check

each connection with an ohmmeter (or dvm). Pay special

attention when soldering the wires to the DIN plug. It's easy to

bridge solder across a couple of pins and cause a short!

6-pin DIN Connector(s)IEEE

Pin

Pin

Pin

Pin

Pin

Pins

Connector

5 (EOI)

6 (DAV)

9 (IFC)

11 (ATN)

12 (Shield)

18,23,24 (GND)

to

to

to

to

to

to

Pin 5 (Data line)

Pin 4 (Clock line)

Pin 6 (Reset line)

Pin 3 (Attention line)

Shield of DIN plug

Pin 2 (Ground)

(Note: Pin numbers are usually stamped on the

connectors. See Figure 1)

Next install the 74LS00 NAND chip. I recommend that you

install a 14-pin IC socket for this chip. This will make it easy to

remove if the need ever arises. There are few places on the

motherboard that can accommodate an additional chip - none

have their locations labeled. I chose UA5 located between loca

tions UA4 and UA6 which should be marked (see Fig. 3). Notice

that UA5 is designed to accept a 16-pin chip, while the 74LS00

is a 14-pin chip. Be sure the key locator on the chip is oriented

in the proper direction, and lines up with the chip key printed on

the motherboard. This will position the chip towards the bottom

of the motherboard leaving two empty IC pin holes at the top.

Before starting the final wiring, a quick review in pin number

ing is in order. To determine pin numbers, look at the top side

of the chip with the key up and facing you and pins pointing

away. Pin 1 is located directly on the left at the top. The other

pins are numbered counter-clockwise around the chip. This

information is commonly pictured in many IC reference books.

Also a word of caution - remember that IC pin numbers are

numbered clockwise when viewed from the bottom of the

motherboard - so be careful! Armed with this knowledge,

you're ready to proceed with the final wiring.

Volume 9, Issue 6 71

IEEE Connector Pins

DIO1

DIO2

DIO3

DIO4

EOI

DAV

NRFD

NDAC

IFC
SRQ

ATN

Shield/Earth

Ground

DIO5

DIO6

DIO7

DIO8

REN

DAV Ground

NRFD Ground

NDAC Ground

IFC Ground

SRQ Ground

ATN Ground

Signal Ground

Serial Bus Connector Pins
Pin # Name Description

1 SRQ Serial SRQ in (active low)

2 GND System Ground

3 ATN Serial ATN In/Out

4 CLK Serial Clock In/Out

5 DATA Serial Data In/Out

RESET Resets all devices on serial bus (active low)

Figure 1: Connector pinout diagrams

Figure 2: Locating UJ1

Locate the three ROM chips at the bottom of

the motherboard. The one in the middle is

UJl. Note that although the article refers to

this ROM as part no. 901468-14, the chip is

designated as 901468-11 in the 4040 used by

Transactor for this illustration. The white

wire is a device number switch.

Figure 3: Chip Location

Install a 14-pin IC socket in UA5 (indicated by

the pen). This socket will hold the 74LS00

NAND chip. Ensure that the key locator on the

chip is oriented in the proper direction and

lines up with the chip key printed on the

motherboard.

72 Transactor

Once the NAND chip is in place, jumper pins 1 and 2, then sep

arately jumper pins 3 and 4. Next, jumper pin 7 of the 74LS00

to the adjacent empty IC pin hole. This hole, which would nor

mally be pin 8 for a 16-pin socket, connects to the ground bus

etching on the motherboard. Now all that is left is to connect

the NAND chip to the 2532 chip and socket with wires. Thirty

gauge insulated wire-wrap (or hook-up) wire works well for

this.

Run one wire and connect the 74LS00 pins 1 and 2 to pin 20

of the empty 24-pin ROM socket (UJ1). (This is the socket from

which we removed the ROM chip.) Run a second wire and con

nect pin 5 of the 74LS00 to pin 21 on the same empty ROM

socket. After double checking your wiring and connections,

you are now ready for the EPROM.

Before inserting the EPROM chip, bend out pin 20. This pin

will not be inserted into its socket. Carefully insert the

EPROM into the empty ROM socket and check to be sure the

chip key is positioned in the same direction as it was for the

ROM. (Should be the same as the keys on the other two 24-

pin ROM chips on either side.) After inserting the EPROM, sol

der one wire on pin 20 of the EPROM and connect it to pin 6

on the 74LS00.

Final check-out

With the DIN plug not connected, insert the power cord and

power-up the 4040 drive. If you performed the modification

correctly, you should see the drive's leds light momentarily.

You won't hear the familiar head chatter on power-up. That

has been eliminated. If the leds continue to flash, or didn't

momentarily light, remove the drive's power cord immediately

and double check all your wiring. Flashing leds could indicate

a hardware problem with the EPROM circuit (wiring, connec

tions, etc.). The most likely cause is connections made to the

wrong pin numbers. Closely re-check all wiring and correct as

necessary. Another possible cause is an error in the EPROM

code or wrong checksum.

If the drive initialized correctly, turn off the drive, connect the

DIN plug to the serial bus, and power up the computer and the

4040 drive. For now, disconnect any other devices you have

from the serial bus. Following initialization, try loading the

directory and loading/saving a program. If this works cor

rectly, then reconnect any other devices you have to the bus

and check them all for proper operation. (Note: Some devices

may cause problems with serial bus operation if they sire left

connected to the bus while turned off.)

Before final reassembly, you may want to change the 4040's

device number. The device number is determined by whether

pins 22, 23, and 24 on the 6532 chip (located at uei) are

grounded or open-circuited (floating). For device 8, the pins

are all grounded by a tiny etched tracing connecting a pair of

adjacent 'half moon' etchings. These 'half moons' are located

between uei and UH2. The device number is changed by open-

circuiting the pins. This can be accomplished by cutting the

trace(s), or bending out pins 22, 23, and/or 24 (preferred).

Another alternative, if you think you'll be changing the device

number again in the future, is to install switches across the cut

half moons. The table below shows how the device number re

lates to the various pin combinations.

Device

Number

8

9

10

11

12

13

14

15

Pin 22

Ground

Ground

Ground

Ground

Open

Open

Open

Open

Pin 23

Ground

Ground

Open

Open

Ground

Ground

Open

Open

Pin 24

Ground

Open

Ground

Open

Ground

Open

Ground

Open

Now, reinstall the motherboard to the top cover using the six

Phillips screws. Do not overtighten the screws or you may

crack the motherboard! Carefully plug in the four cables on

the motherboard, and install the IEEE-to-serial cable on the

back of the drive. Close the top cover and reinstall the two

remaining screws on either side of the drive. This completes

the hardware modification.

Well, thats it! Hopefully everything went smoothly and your

4040 is riding the serial bus. If you have any questions or

comments, I can be reached on QLink as "Mike All". Until

then...easy DOS it!

Patch code for serial bus 4040

; Serial Bus Conversion Code for 4040 Drive

; By Michael Gilsdorf - Copyright (c) Mar 89

Od2aO eO

0d2ee 08

/checksum byte

;gap same as 1541

You may wish to keep the original gap of $09.

If so, change checksum byte to $df.

0d339 a9 18 Ida #$18

0d468 20 73 d6 jsr $d673

0d492 a9 00 Ida #$00

0d49a a2 cl ldx #$d

0d49c 4c a3 d4 jmp $d4a3

; Idle Loop Patch

0d4a6

0d4a9

0d4ab

0d4ac

0d4af

0d4b2

0d4b5

ad 47 43 Ida $4347

fO 07 beq $d4b2

78 sei

20 a6 d6 jsr $d6a6

4c 79 d6 jmp $d679

20 50 d6 jsr $d650

20 94 d6 jsr $d694

/reset bus lines

/eliminate head chatter on error

/initialize track

/eliminate head chatter on power-up,

/reset, and "UJ" command

/command waiting?

/no

/disable interrupts

/set Data low for future ATN ack

/DOS command execution patch

/if ATN pending then service bus

/no ATN - reset bus lines

0d507 4c b2 d4 jmp $d4b2 /continue idle looping

Volume 9, Issue 6 73

; Main

0d50a

0d50b

0d50e

0d511

0d513

0d514

0d517

0d51a

0d51c

0d51e

0d521

0d522

0d524

0d526

0d528

0d52a

0d52c

0d52e

0d530

0d532

0d534

0d536

0d538

0d53a

0d53c

0d53e

0d540

0d542

0d544

0d546

0d548

0d549

0d54b

0d54d

0d54f

0d550

0d552

0d554

0d556

0d559

0d55c

0d55e

Seria]

78

20 a6

ad 87

a2 ff

9a

20 97

2c 80

10 66

50 f9

20 cO

aa

c5 Oc

dO 06

85 Oe

84 Of

fO 08

c5 Od

dO Oe

85 Of

84 Oe

a9 20

85 16

85 17

85 10

dO lb

29 60

c9 60

dO 23

a5 10

fO If

8a

85 17

29 Of

85 16

8a

29 fO

c9eO

dO 27

20 8d

2c 80

30 cO

10 22

L Bus Routine

sei

d6 jsr $d6a6

02 Ida $0287

ldx #$ff

txs

d6 jsr $d697

02 bit $0280

bpl $d582

bvc $d517

d5 jsr $d5cO

tax

cmp $0c

bne $d52c

sta $0e

sty $0f

beq $d534

cmp $0d

bne $d53e

sta $0f

sty $0e

Ida #$20

sta $16

sta $17

sta $10

bne $d559

and #$60

cmp #$60

bne $d567

Ida $10

beq $d567

txa

sta $17

and #$0f

sta $16

txa

and #$fO

cmp #$eO

bne $d57d

f5 jsr $f58d

02 bit $0280

bmi $d51e

bpl $d582

; Enable Interrupts - Check

0d560

0d561

0d564

0d566

; Main

0d567

0d568

0d56a

0d56c

0d56e

0d570

0d572

0d574

0d576

0d578

0d57a

0d57d

0d580

0d582

0d583

0(1585

0d587

0d58a

58

2c 80

30 a4

60

Seria]

8a

c9 3f

dO 04

84 Oe

fO 06

c9 5f

dO 06

84 Of

84 10

fO 03

20 94

2c 80

30 fb

58

a5 Oe

fO 06

20 a7

18

di

02 bit $0280

bmi $d50a

rts

/disable interrupts

;set Data line low - ATN ack

/clear interrupt register

;reset the

/stack pointer

;set Clock line high - release

;read serial bus

;jump if ATN gone (high)

;wait for Clock line high

;read bus command byte

;save command byte

/LISTEN?

/no

/set listen flag active

/set talk flag inactive

/jump (always)

/TALK?

;no

/set talk flag active

/set listen flag inactive

/set for internal (default)

/secondary address and

/original secondary address

/set primary address flag active

/jump (always)

/mask command byte

/SECONDARY ADDRESS?

;no

/is primary address flag active?

/no

/retrieve command byte

/save byte as original secondary address

/mask command byte

/save as secondary address

/retrieve command byte

/mask command byte

/CLOSE?

/no

/execute Close

/read serial bus

/jump if ATN line low - get next byte

/jump if ATN line high

for Fending ATN

/enable interrupts

/is ATN line low?

/yes - service bus

l Bus Routine (continued)

txa

cmp#$3f

bne $d570

sty $0e

beq $d576

cmp #$5f

bne $d57a

sty $0f

sty $10

beq $d57d

d6 jsr $d694

02 bit $0280

bmi $d57d

cli

Ida $0e

beq $d58d

d5 jsr $d5a7

dc

/retrieve command byte

/DNLISTEN?

/no

/set listen flag inactive

/jump (always)

/DNTALK?

;no

/set talk flag inactive

/set primary address flag inactive

/jump (always)

/reset serial bus

/read serial bus

/wait for ATN line high

/enable interrupts

/is listen flag active?

/no

/execute Listen

0d58b

0d58d

0d58f

0d591

0d594

0d597

0d59a

; Main

0d59d

0d5a0

0d5al

0d5a4

0d5a7

0d5aa

0d5ac

0d5ae

0d5af

0d5bl

0d5b3

0d5b5

0d5b7

0d5b9

0d5bb

0d5bd

0d5bf

/ Read

0d5c0

0d5c3

0d5c5

0d5c7

0d5c8

0d5c9

0d5cc

0d5cf

0d5dl

0d5d2

0d5d4

0d5d7

0d5d8

0d5da

0d5db

0d5dd

Od5eO

0d5e3

0d5e5

0d5e7

0d5e9

0d5ec

0d5ee

0d5fl

0d5f2

0d5f3

0d5f4

0d5f6

0d5f9

0d5fb

0d5fc

0d5fe

0d601

0d603

; Main

0d604

0d607

0d609

90 Od

a5 Of

fO 09

20 9a

20 a3

20 04

4c a6

Lister

20 cO

78

20 f8

20 60

20 84

bO 05

b5 98

6a

bO ec

a5 17

29 fO

c9 fO

fO e4

a5 16

c5 01

fO de

60

Byte i

20 89

90 fb

a9 ff

aa

a8

20 9a

20 89

90 14

ca

dO f8

20 a6

c8

a2 0a

ca

dO fd

20 9a

20 89

bO fb

84 aO

aO 08

2c 80

50 fb

ad 80

0a

0a

0a

66 18

20 89

bO fb

88

dO eb

20 a6

a5 18

60

Talk 1

20 69

90 63

60

bcc $d59a

Ida $0f

beq $d59a

d6 jsr $d69a

d6 jsr $d6a3

d6 jsr $d604

d4 jmp $d4a6

l Routine

d5 jsr $d5cO

sei

eb jsr $ebf8

d5 jsr $d560

ed jsr $ed84

bcs $d5bl

Ida $98,x

ror

bcs $d59d

Ida $17

and #$f0

cmp #$f0

beq $d59d

Ida $16

cmp $01

beq $d59d

rts

from Bus

d6 jsr $d689

bcc $d5cO

Ida #$ff

tax

tay

d6 jsr $d69a

d6 jsr $d689

bcc $d5e5

dex

bne $d5cc

d6 jsr $d6a6

iny

ldx #$0a

dex

bne $d5da

d6 jsr $d69a

d6 jsr $d689

bcs $d5eO

sty $a0

ldy #$08

02 bit $0280

bvc $d5e9

02 Ida $0280

asl

asl

asl

ror $18

d6 jsr $d689

bcs $d5£6

dey

bne $d5e9

d6 jsr $d6a6

Ida $18

rts

Routine

ed jsr $ed69

bcc $d66c

rts

/jump (always)

/is talk flag active?

;no

/set Data line high

/set Clock line low

/execute Talk

/execute DOS command/idle loop

/read byte from serial bus

/disable interrupts

/write byte to buffer/disk

/enable interrupts - check ATN

/open channel for writing

/jump if channel not open

/check channel status

/is channel set for writing?

/yes

/retrieve original secondary address

/mask original secondary address

/OPEN?

/yes

/retrieve secondary address

/is secondary address set for Save?

/yes

/read bus

/wait for Clock line high

/set the

/timer/counter, and

/set EOI status to no

/set Data line high

/read bus

/wait for Clock line high

/is timer/counter still running?

/yes - no EOI yet

/set Data line low

/set EOI status to yes

/set timer/counter

/is timer/counter still running?

/yes

/set Data line high

/read bus

/wait for Clock line low

/set EOI flag

/set for 8 bits per byte

/read bus

/wait for Data line high

/read bus for data

/save data bit

/read bus

/wait for Clock line low

/read bus for more bits?

/yes

/set Data line low

/retrieve data byte sent

/open channel for reading

/jump if channel open

74
Transactor

; Send Byte t

0d60a

0d60d

Od€Oe

0d611

0d€12

0d€14

0d617

0d619

0d61b

0d61d

0d61f

0d621

0d624

0d626

0d629

0d62b

0d62e

0d631

0d633

0d635

0d638

0d63a

0d63c

0d63e

0d640

0d643

0d644

0d646

0d649

0d64c

0d64e

0d64f

0d651

0d654

0d657

0d658

0d65a

0d65d

0d65f

0d660

0d663

0d666

0d669

0d66c

0d66e

0d670

0d672

20

08

20

28

30

20

10

a6

b5

29

dO

20

10

20

30

20

20

10

aO

20

10

a6

76

90

20

18

90

20

20

a2

ca

dO

20

20

88

dO

20

30

78

20

20

20

20

a6

b5

30

60

89

97

Od

:ol

d6

d6

89 d6

fb

15

98

08

Oa

89 d6

fb

89

fb

a3

89

fb

08

89

38

15

b5

06

9a

03

a6

97

Of

fd

a3

9a

db

89

fb

a6

a3

60

9a

15

98

98

d6

d6

d6

d6

d6

d6

d6

d6

d6

d6

d6

ef

d5

d6

Jus

jsr

php

jsr

pip

bmi

jsr

bpl

ldx

Ida

and

bne

jsr

bpl

jsr

bmi

jsr

jsr

bpl

ldy

jsr

bpl

ldx

ror

bcc

jsr

dc

bcc

jsr

jsr

ldx

dex

bne

jsr

jsr

dey

bne

jsr

bmi

sei

jsr

jsr

jsr

jsr

ldx

Ida

bmi

rts

$d689

$d697

$d621

$d689

$d614

$15
$98,x

#$08

$d62b

$d689

$d621

$d689

$d626

$d6a3

$d689

$d62e

#$08

$d689

$d672

$15

$b5,x

$d646

$d69a

$d649

$d6a6

$d697

#$0f

$d64e

$d6a3

$d69a

$d635

$d689

$d65a

$d6a6

$efa3

$d560

$d69a

$15

$98,x

$d60a

;read bus

;save status

;set Clock line high

/retrieve status - is Data line high?

;yes - byte not sent (EOI)

;read bus

;wait for Data line high

/retrieve channel index

/get channel status

/is channel status EOI?

/no

/read bus

/wait for Data line high

/read bus

/wait for Data line low

/set Clock line low

/read bus

/wait for Data line high

/set for 8 bits per byte

/read bus

/jump if Data line low - abort

/get channel index

/fetch data bit to send

/is data bit 0?

/no - send data bit 1

/jump (always)

/send data bit 0

/set Clock line high - data ready

/set timer/counter (delay)

/is timer/counter running?

;yes

/set Clock line low

/set Data line high

/more data bits to send?

/yes

/read bus

/wait for Data line low

/disable interrupts

/set Data line low - for future ATN ack

/get next data byte from buffer/disk

/enable interrupts - check ATN

/set Data line high

/get channel index

/is channel set for reading?

;yes

; Set

0d694

0d696

0d699

0d69c

0d69f

0d6a2

; Set

0d6a3

0d6a5

0d6a8

0d6ab

0d6ae

0d8a5

Bus

a9

2c

2c

Od

8d

60

Bus

a9

2c

2d

8d

60

b3

Line(s) High

18

a9 10

a9 08

80 02

80 02

Ida

bit

bit

ora

sta

rts

#$18

$10a9

$08a9

$0280

$0280

Line(s) Low

ef

a9 f7

80 02

80 02

; Error Patch

Ida

bit

and

sta

rts

???

#$ef

$f7a9

$0280

$0280

/reset bus

/set CLOCK line high

/set DATA line high

/read bus

/set bus

/set CLOCK line low

/set DATA line low

/read bus

/set bus

/Change version no.

/This patch allows the 4040 to be used with CP/M+. Unlike the 1541, the 4040

/DOS does not auto-initialize on a disk swap or on receiving a "i" command.

/The error patch initializes the disk (reads BAM & ID) once, when an error is

/encountered.

0d949 ae 00 43 ldx $4300

0d94c fO 52 beq $d9aO

0d94e 48 pha

0d94f 4c 96 d9 jmp $d996

0d952 68 pla

0d953 4c 49 d9 jmp $d949

/is and buffer & disk initialized?

/yes

/save error number

/patch

/patch

Error Recovery Code

(same as original code, but has IEEE code removed)

0d978

0d97a

0d97c

0d97e

0d980

0d982

0d985

0d98b

; No Head Chatter on Error Patch

0d673 09 80 ora #$80

0d675 8d 5c 43 sta $435c

0d678 60 rts

0d990

0d993

beq $d993

lda$0e

bne $d988

Ida $0f

beq $d993

69 ed jsr $ed69

8b d9 jmp $d98b

84 ed jsr $ed84

al ed jsr $edal

03 bcs $d993

9f ee jsr $ee9f

a6 d4 jmp $d4a6

/Listen flag active?

;yes

/Talk flag active?

;no

Error Patch (continued)

; DOS Command Execution Patch

0d679

0d67b

0d67e

0d681

0d682

0d683

0d686

a9 00 Ida #$00

8d 47 43 sta $4347

8d f2 10 sta $10f2

b8 civ

18 dc

20 55 db jsr $db55

4c b2 d4 jmp $d4b2

; Read Serial Bus

0d689 ad 80 02 Ida

0d68c cd 80 02 cmp $0280

0d68f dO f8 bne $d689

0d691 0a asl

0d692 0a asl

0d693 60 rts

/dear the

/command waiting flag and the

;NMI flag

/execute DOS command in command buffer

/back to idle loop

/read serial bus

/has bus settled?

/no

/Clock bit in Carry - Data bit in bit #7

0d996

0d999

0d99a

0d99d

0d9a0

20 b8 db jsr $dbb8

68 pla

8d 01 43 sta $4301

20 fa ec jsr $ecfa

ad 01 43 Ida $4301

0d9a3 20 d4 d9 jsr $d9d4

0d9a6 dO ae bne $d956

/back to idle loop

/initialize (clear) and buffer

/retrieve error number

/save error number

/initialize disk - read BAM & ID

/retrieve original error number

/write error no. and msg into buffer

/jump (always)

Code Check Program - written to check code residing at $d000 to $dfff.

10 bankO: rem for the cl28 only - change bank no. as required

20 for i=53248 to 57343: rem $d000 to $dfff - change if needed

30 b=b+peek(i): if b>255 then b=b-255

40 next:'if b=208 then print "Code OK - Program EPROM": end

50 print "Error in code! Correct and recheck the code before

programming the EPROM." □

Volume 9, Issue 6 75

Colour Coordination

Why some combinations work while others don't

by Jim Butterfield

Computers that use TV sets, or monitors with a "composite

video" connection, are often accused of rendering some

colours poorly. The accusation is often unfounded: it's usually

the video system itself that's at fault. In this article, I'll try to

give you a quick run-down on why this is. An accompanying

chart may help you choose colour schemes with good

readability.

The Video Concept

Whether your video system is NTSC, as used in North Amer

ica, or PAL, as used in much of the rest of the world, it has a

built-in anomaly: there is no detail in colour. Any detail you

need on your screen must be created with a change in lumi

nance (brightness) rather than a change in chrominance

(colour).

When television systems were being designed, there were

sound reasons for this. Tests showed that people can not see

colour within detail; only the broad areas of a picture convey

colour information to the eyes. In order to save channel space,

the television system was designed to drop colour information

from intricate parts of the picture.

To be more precise: the brightness part of a picture (the black-

and-white portion, if you like) is sent complete with sharp de

tail. The colour information of a picture is sent with much less

sharpness. It's easy to demonstrate this on a Commodore

Plus/4 or C-16 computer; the HUE command will change the

brightness level of any selected colour, except black. No mat

ter what basic colours you choose on these machines, you can

also pick a hue that will make the text unreadable against the

background colour.

Here's the trick in setting up a good, readable screen:

choose colours with good luminance differences. The chart

will help.

Horrible Examples

Look at the chart, and note that a Commodore 64 starts up

with a background colour of blue (128 code 7, POKE value 6).

Brown happens to have exactly the same luminance level as

blue; on your Commodore 64, type print chr$(149) (or select

brown on the keyboard with Commodore-2) and then try to

type a readable line. Horrible, isn't it? Yet you can rescue that

colour by putting it against a background that has a contrasting

luminance level. Let's pick green, and poke 53281,5. Even

though brown and green are not considered harmonious, ex

cept in trees, the washed-out brown characters suddenly be

come crisp and readable. Simultaneously, the earlier light blue

text that may be on the screen becomes washed out and virtu

ally unreadable; it no longer has enough contrast against the

green background.

The same thing may be found on the 128. When you turn on the

power, the dark grey background is actually a little brighter than

64 blue. Print chr$(28) (or select red on the keyboardwith

CTRL-3 and then try to type something legible. Next switch the

background to yellow with color 0,8; the red text will now be

fine, but the startup-message (in light green) will wash away.

Refer to the chart and pick a colour that has a luminance level

one group away from whatever background you are using. Try

typing; you'll find the characters are readable, but not as crisp

as you might like.

Practical Applications

If you write a program in which you pick one or more charac

ter colours, you should be sure that such colours are separated

from the background by at least two groups. That way, you

should get good readability.

Can you trust the background colours to be the "default" val

ues? Probably not. If you're going to set colours at all, you

might as well set the whole thing: background, border, and

character. Your program might follow on from somebody

else's masterpiece, in which the background colour has been

set to something completely incompatible to your colour selec

tion.

Then again, you can leave colours alone completely, on the as

sumption that the user will have set colours to a personally

pleasing palette. Side Issues.

Keep in mind that the table and the above description apply

only to the TV-like signals: television itself, of course, and

76 Transactor

monitors taking

composite video

signals. If you hook

up an 80-column

display to your 128

using the RGBI ca

ble, the problem

will not arise.

Colour will be de

livered to the same

sharpness as black-

and-white.

All colour combina

tions will work to

gether. Except, of

course, such combi

nations as blue on

blue, which is, as

always, very hard to

see.

It's interesting to

note how we tend to

blame the computer

for such problems,

when the problem is

in the video

methodology. Ques

tions such as "How

can I fix my video

chip?" can't be an

swered easily, since

the problem is not

in the chip.

In the same way,

interlace pictures as

seen with some 128

programs and with

the Amiga have an

unsolvable flicker

problem. The flick

er is not in the com

puter: it comes

about as a result of

the nature of televi

sion signals.

To get rid of the

flicker, you must

pursue the same

drastic solution as

for 'fuzzy colours':

you would abandon

the standard TV sig

nal and go to a spe

cial monitor.

128Color POKE Character CHRSO

K128

X64

Hhite

Yellow

L.Green

Cyan

L. Grey

Green

L. Red

M. Grey

L. Blue

Purple

Orange

Red

D. Grey

Blue

Brown

f Black

8

14

16

11

13

15

12

10

13

15

10

12

14

8

11

6

El

158

153

159

155

30

150

152

154

156

129

28

151

31

149

144

default background colour of computer.

The Table

The table is a convenient thing to keep on hand. Colours are grouped in descending order of luminance,

from white to black. The 128 COLOR command numeric value is given, plus the POKE value which is val

id for both 128 and 64. If you're looking at a listing, the symbols that you'll see when colours are select

ed via 'programmed cursor' are shown. And finally, the CHR$() values are given; I like to use these when

setting colour within a program, since they are easier to typeset (and read, and enter) than the reverse-

character equivalents. I don't mind if your colours clash. But if you're going to fly that multi-coloured

sprite against a split screen with both hi-res and text in various colours, I'd like it all to be sharp and vis

ible. The table may help. D

77

NewsBRK

CompuServe expanding to Europe: We're pleased to see

that CompuServe will soon be available to European users.

CompuServe has entered into an agreement with Tele Colum

bus of Baden, Switzerland. This extension to CIS service will

begin in the U.K. and Switzerland with other European coun

tries to follow. European users will be able to tap CIS' vast

resources in the fall of this year.

We would be remiss if we failed to note that the Commodore

Programming Forum (GO CBMPRG) and the Commodore

Communications Forum (GO CBMCOM) are a part of those

vast resources. Cbmprg's data libraries contain a large num

ber of public domain, freely redistributable and Transactor

programs which are provided to support Commodore pro

grammers. Cbmcom is directed more to users of Commodore

applications programs, especially terminals. CBMCOM also

features an on-line conference each Sunday at 9:00 PM East

ern time.

The Commodore Arts Forum (GO CBMART) is directed to users

interested in games, graphics and music. Commodore itself is

also accessible via CIS (GO CBMSERV).

Minitel comes to North America: Also on the communica

tions front, North American microcomputer users will be able

to reach Minitel, the French information network, for only a

local call, using Minitel's free terminal software.

The software connects users with the information network

used daily by more than four million people in France. Minitel

offers a wide range of services - everything from financial and

business transactions to electronic chatlines and the French

National Phone Directory. By the end of 1989, Minitel will

also become the gateway to similar networks in Belgium,

Italy, Spain, Germany, and Finland.

To get the free software, use your modem to call Minitel's toll-

free BBS number: 1 (800) 999-6163. Set your parameters to

1200 8N1 and enter "Minitel" at the login prompt. You'll also

receive a Directory of Minitel's services at no charge. [Yes,

there is Minitel softwarefor the C64. Prospective users should

note that charges amount to 17 cents per minute for some ser

vices and 35 cents per minute for others. There is no sign-up

fee and no minimum monthly charge. The free software will

undoubtedly be available all over the continent soon via local

BBSs as well. - MO]

Free Spirit to market VizaStar & VizaWrite 128: Viza Soft

ware and Free Spirit Software have entered into an agreement

whereby Free Spirit shall exclusively market VizaWrite Clas

sic and VizaStar 128 in North America. VizaWrite Classic is

described as a high performance, easy-to-use, word processing

program for the C128. VizaStar 128 is the integrated spread

sheet, database and business graphics program for the C128.

VizaWrite Classic uses page-based WYSIWYG format - word

wraps and formats text, instantly, as you type. Editing features

include: copy, move, delete text by highlighting a character,

word, sentence, paragraph, page or by searching; find and

replace any sequence of characters; full screen and document

scrolling, up to 240 character page width; go to any page

instantly; merge almost any other word processing file directly

into a document; glossary area for frequently used words or

phrases. Mail merge, a full function calculator and a 30,000

word Spelling Checker are among its many features. An 80-

column monitor is required. Free Spirit will market VizaWrite

Classic at a new suggested retail price of $59.95.

The spreadsheet for VizaStar 128 contains a ruled worksheet

display, a 1000 row by 64 column worksheet, variable column

widths, multiple worksheet windows, copy, move, erase func

tions and more. The database allows full screen design of

records (up to nine screens can make up an individual record),

up to 8,000 characters per record, unlimited number of records

per file and more. The Business Graphics function uses data

from the spreadsheet or database to draw two- or three-

dimensional full colour graphs and charts. Free Spirit will

market VizaStar 128 at a new suggested retail price of $69.95.

For further information, contact: Free Spirit Software, P.O.

Box 128 - 58 Noble St., Kutztown, PA, 19530, (215) 683-

5609.

Psygnosis moves into the C64 market: Psygnosis - already

firmly established in the games market for the Amiga and ST

- is now seeking a major slice of the action at the top and

bottom ends of the computer entertainment marketplace. The

company, whose titles regularly feature in the international

Amiga and Atari ST charts, has launched a simultaneous

two-pronged attack on the PC and 8-bit games areas. Three

Psygnosis games will soon be available for the C64. The new

versions are to be released under the Psyclapse label. The

following material was taken from the Psygnosis press

release:

• Baal - "An addictive mixture of strategy and arcade action,

it features eight way ultra smooth scrolling through three dis

tinctive domains containing multiple levels, over 250 highly

detailed screens, superb graphics and sound effects, and more

than 100 monsters and 400 traps."

• Captain Fizz Meets The Blaster-trons - "A gripping mix

ture of high speed play and deep strategy, the game offers

simultaneous two player action, split screen view, 20 Blaster-

tron infested levels and a pounding soundtrack."

78 Transactor

• Ballistix - "Considered the ultimate ball game, it is played

on 130 different pitches, with splitters filling the screen with

dozens of balls, tunnels to hide them from view, red arows to

increase their velocity and magnets to take them out of con

trol. All this and a reverberating soundtrack complemented by

crowd applause for every goal."

These new versions will have new style packaging with cover

illustrations involving lettering from top British artist Roger

Dean. The C64 titles carry a suggested list price of £9.99 (cas

sette) and £12.99 (disk). [Sorry, no dollar amounts were given

in the press release. - MO] Jonathan Ellis, Managing Director of

Psygnosis, states: "As far as the 8-bit scene is concerned, we

are convinced there is a great need for good quality fames. The

trouble has been that 8-bit users have tended to be treated as the

poor relations of late and so the product they have been offered

has not been of a sufficiently high standard. Psygnosis intends

to change all that by breathing new life into the market."

The ICT Mini-Chief hard drive returns!: Owners of 1571

disk drives will probably be tickled pink to discover that the

Mini-Chief hard drive, originally marketed by the now-defunct

InConTrol, is available once again. The hard drive is installed

inside the 1571 case. Manufacturing rights for the Mini-Chief

have been obtained by The Computer Bar, P.O. Box 436,

Hagerstown, md, 21741, (301) 293-7005.

Star Micronics offers 14 resident fonts: Star Micronics

America, Inc. has begun shipping the first 24-wire dot matrix

printers offering 14 resident fonts, claimed to be the greatest

number of internal fonts available in a single dot matrix mod

el. These printers also produce multi-colour output with an

optional colour-printing kit. Additionally, the manufacturer

contends that the XB-2415 Multi-Font (15") and the XB-2410

(10") Multi-Font printers are the quietest models in their

price/performance categories operating at 49 and 50 decibels

respectively.

According to Star, these printers offer exceptional speed, print

quality, memory capacity, paper-handling capabilities and an

easy-to-use front control panel for optimal functionality in

business and home office applications. They offer a super let

ter quality mode (SLQ) in addition to the standard LQ mode

featured on today's 24-wire printers. Each model prints at 240

characters per second in draft elite mode and 80 cps in LQ elite

mode.

The 14 resident fonts are TMS Roman, TW-Light, Courier, Pres

tige, Script, Letter G, Orator, Helvet, Optimo, Cinema, Blippo,

OCR A, OCR B and Code 39. The SLQ mode is available in two

fonts: TMS Roman and TW-Light. In addition, users can expand

their font library with optional font cards that will soon be

available. The printers also offer superior graphics output by

producing 360 by 360 dpi graphics resolution, which surpasses

that of most laser printers.

The XB-2415 Multi-Font has an exceptionally large 41K buffer

which allows the printer to store up to 20 pages. The large

memory capacity frees the computer to handle other process

ing tasks. The XB-2410 Multi-Font has a 27K buffer and holds

up to 13 pages. To expand the memory capacity, users can add

an optiona 128K parallel board and a 32K ram card.

The XB-2415 Multi-Font printer incorporates Epson LQ-1050,

IBM Propr nter XL24 and NEC graphics emulations. The XB-

2410 Multi-Font incorporates Epson LQ-850, IBM Proprinter

X24 and NEC graphics emulations. The printers come standard

with a Centronics parallel interface, and an optional 8K serial

board with RS-232C and RS-422A interfaces is available.

The front, control panel allows users to conveniently select

from 21 fijequently-used print functions, virtually eliminating

the need for DIP switches. By pressing a button, users can

engage the paper parking feature, which permits feeding of

single sheets without removing tractor-fed fanfold paper. In

addition, users can choosejpnts, print quality, print pitch, con

densed print, italic print, quiet mode, graphics printing direc

tion, among other functions.

When producing output on pre-printed forms and fanfold

paper, users can program the printers to skip over the perfora

tion and position the page for a short tear-off. Other printer

functions such as page length, lines per inch, automatic line

feed and automatic carriage return functions can also be set

from the front control panel. In addition, an optional pull trac

tor and a single-bin cut sheet feeder are available.

The XB-24J15 carries a suggested retail price of $999, the XB-
2410 is $749. The colour printing kit has a MSRP of $50. Star

Micronics Inc., 200 Park Avenue, Suite 3510, New York, NY,

10166, (212) 986-6770.

Clip art for your Commodore: Parsec, Inc. is distributing a

new series of Public Domain clip art. This package consists of

ten disks filled with over 1,000 pieces of clip art. The clip art

is available in either Basic S, Newsroom, PrintMaster,

Printshop (Side A) or Printshop (Side B) formats. Also includ

ed is a booklet, catalogued by disk, for quick location of the

graphics.

The clip art series includes everything from hi-tech and cars to

nature and sports. The delivered price, including the shipping

and handling, is: $13.40 for the 48 states (with a street

address); $14.30 for pob addresses, ak, hi; and $16.80 for

Canadian orders. The mailing address is: Parsec, Inc., POB 111,

Salem, ma, 01920. Parsec can be reached on-line at: Com

puServe: 76456,3667; Q-Link: Parsec; GEnie: JBEE

Fourth Annual Commodore Showcase: C.A.S.E (Com

modore Association of the South/East) has selected the

dates of September 16-17, 1989 to hold the Fourth Annual

Commodore Showcase in Nashville, Tennessee. This year's

show will be held at the Nashville Convention Center. Edu

cational and fun seminars are given throughout the two

days of the show. Last year, Jim Butterfield, R.J. Mical, Jim

Oldfield, Pete Baczor and Andre Freeh were some of the

Volume 9, Issue 6 79

personalities that presented topics. Tickets for the Show

case will be sold by member clubs at $7.50 each (prior to

August 15th, $10.00 thereafter), good for both days of the

show.

C.A.S.E. is a consortium of user groups formed to better

serve the souteastem community of Commodore computer

users by providing education, communication, product infor

mation and fellowship to the members. Currently, there are

35 user groups who are members of C.A.S.E. and these

groups consist of well over 5,000 Commodore owners and

users. For more information: C.A.S.E., P.O. Box 2745,

Clarksville, tn, 37042-2745.

Bible Search from SOGWAP Software: Bible Search contains

the complete King James Version New Testament text.

According to SOGWAP, the program is equipped with very fast

word search and verse display capabilities. Bible Search

includes the full text with a complete Concordance on two

Commodore disks. The package comes with two versions of

the program: a C64 version (40 columns, 64K) and a C128

version (40 or 80, 128K).

The Concordance references every word to every verse in the

New Testament, thereby eliminating fruitless searching of text.

With Bible Search, the user can perform single or multiple

word searches and then display the full text of those verses

where the word(s) are used together or separately. The manu

facturer states that complete verse usage of each search word

is returned in about five seconds or less on a C64/1541 and

that faster times are possible for less used words and for

C128/1571 users.

The text is provided with: book, chapter and verse markings;

upper and lower case; full punctuation; italics, and the words

of Christ in colour. Display colours and drive usage are con

figurable - works with one or two drives. Printer output is

available for any verse(s).

Bible Search comes complete with User's Guide and is nor

mally supplied on two 1541 flippy disks (1571 and 1581 for

mat available on request; specify when ordering). Both pro

grams are on one disk with the Concordance on the back. The

full text of the New Testament has been compressed onto both

sides of a second disk. The four Gospels are on one side; Acts

through Revelation on the other. Bible Search is written by

Michael R. Miller (Big Blue Reader) and is not copy protect

ed. The package is available through Commodore dealers or

direct from SOGWAP at a cost of $25.00. Send cheque or mon

ey order to: SOGWAP Software, 115 Bellmont Road, Decatur,

IN, 46733, (219) 724-3900.

New PD disks for C64/C128: Public Domain Solutions is

pleased to announce the release of several new Public

Domain disks.The first four new disks (E004-E007) are only

for the 128 in 128 mode and comprise 12 Physics lessons.

There are three lessons per disk (each lesson is about 180

blocks). This collection sells for $12.00 (US).

The next group of five disks provides telecommunications

capabilities to C64 users and supports a variety of modems.

Each of the five disks contains the terminal program itself

(pcgterm), a wide variety of fonts and 282 blocks of docu

mentation. Choose the disk that supports your modem: TO52

is for the 1650; TO53 for the 1660; TO54 for the 1670;TO55

for the Volks 6480; and TO56 for the Mitey Mo. The disks are

$4.00 each or purchase all five as a set for $15.00.

Pds's 'disks of the month' sell for $4.00 each and include:

April '89/C64: calculate Social Security benefits, view the

pictures that are provided with the commercial game Strip

Poker (user must have the game to use this program), small

SEQ file reader, count number of files on a disk, C64 pictures

with a fade in/out slideshow program, and a disk cataloging

program. May '89/C64: powerful sprite editor from Ger

many, more pictures, Print Shop graphics (3-block), C64 ter

minal with VT100 (yes, 80-column) and Kermit protocol.

June '89/C64: pcgterm with support for 1650, 1660, 1670,

Mitey Mo and Volks 6480 all on one disk. This version

doesn't do everything that the version on the individual disks

does since the disk had insufficient space for the extra fonts

and some other support files. April '89IC128: music menu

program with many song files, a Star Trek demo, some

1571 utilities, a side 2 recovery program and some menu pro

grams. May '89IC128: 203-block checkbook program that

operates in 80-column mode, the shareware terminal pro

gram DESTERM.SDA (which runs in 80-column mode and sup

ports ANSI graphics).

All prices are USD and include shipping and handling within

the USA. Public Domain Solutions, P.O. Box 832, Tallevast,

FL, 342701, (813) 378-2394 help and information line, (800)

634-5546 toll free order line.

Purrrfect mouse holder unleashed: h&h Enterprises has

introduced the MouseCAT mouse device holder. The mouse

holder looks like a kitten and holds the mouse in its lap with

its front paws wrapped around the mouse. MouseCAT comes

in either light grey or white with pink ears, nose and paws,

green eyes and a curling tail. MouseCAT attaches to the com

puter monitor or other flat surface with a velcro-type fasten

er. MouseCAT retails for $6.95 (us). For more information,

contact H&H Enterprises, 4069 Renate Dr., Las Vegas, NV,

89103. Phone (702) 876-6292.

80 Transactor

The Potpourri Disk

Help!

This HELPful utility gives you instant

menu-driven access to text files

at the touch of a key - while any

program is running!

Loan Helper

How much is that loan really going

to cost you? Which interest rate

can you afford? With Loan Helper,

the answers are as close as your

friendly 64!

Keyboard

Learning how to play the piano?

This handy educational program

makes it easy and fun to learn the

notes on the keyboard.

Filedump

Examine your disk files FAST with

this machine language utility.

Handles six formats, including hex,

decimal, CBM and true ASCII,

WordPro and SpeedScript.

Anagrams

Anagrams lets you unscramble

words for crossword puzzles and

the like. The program uses a recur

sive ML subroutine for maximum

speed and efficiency.

Life

A FAST machine language version

of mathematician John Horton

Conway's classic simulation. Set

up your own 'colonies' and watch

them grow!

War Balloons

Shoot down those evil Nazi War

Balloons with your handy Acme

Cannon! Don't let them get away!

Von Googol

At last! The mad philosopher,

Helga von Googol, brings her own

brand of wisdom to the small

screen! If this is 'Al', then it just ain't

natural!

News

Save the money you spend on

those supermarket tabloids - this

program will generate equally

convincing headline copy - for

free!

Wrd

The ultimate in easy-to-use data

base programs. WRD lets you

quickly and simply create, exam

ine and edit just about any data.

Comes with sample file.

Quiz

Trivia fanatics and students alike

will have fun with this program,

which gives you multiple choice

tests on material you have en

tered with the WRD program.

AHA! Lander

AHA!'s great lunar lander program,

Use either joystick or keyboard to

compete against yourself or up to

8 other players. Watch out for

space mines!

Bag the Elves

A cute little arcade-style game;

capture the elves in the bag as

quickly as you can - but don't get

the good elf!

Blackjack

The most flexible blackjack simula

tion you'll find anywhere. Set up

your favourite rule variations for

doubling, surrendering and split

ting the deck.

File Compare

Which of those two files you just

created is the most recent ver

sion? With this great utility you'll

never be left wondering.

Ghoul Dogs

Arcade maniacs look out! You'll

need all your dexterity to handle

this wicked joystick-buster! These

mad dog-monsters from space

are not for novices!

Octagons

Just the thing for you Mensa types.

Octagons is a challenging puzzle

of the mind. Four levels of play,

and a tough 'memory' variation

for real experts!

Backstreets

A nifty arcade game, 1OO% ma

chine language, that helps you

learn the typewriter keyboard

while you play! Unlike any typing

program you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the

above programs, ALL of the above programs, on a single disk, accessed

independently or from a menu, with built-in menu-driven help and fast-loader,

The ENTIRE POTPOURRI COLLECTION

JUST $17.95 US!!

See Order Card at Center

ffre Computer Show
' ' for Everyone!

k Featuring

AMIGA • C-64^12WCS

slcome to a spectacular world of Commodore

' computing — a world devoted to the Amiga,

-64, C-128 and Commodore PCs. You'll

discover the software you've always wanted to try,

plus amazing, new programs. You'll find printers and

plotters. Modems and monitors. Disk drives and joy

sticks. Lasers and light pens. MIDI and mice. All the

big and little stuff that make computing more

productive, more creative — more fun!

And some of the best bargains you'll find anywhere!

It's all in one place — at the 2nd annual North-

Eastern World of Commodore. Whether you compute

for business or fun, at home or school, you can't

miss this computer show!

The World of Commodore
September 22, 23 and 24,1989

Fri. noon-8pm/Sat.&Sun. 10am-5pm

Admission $10 Students/Seniors $8
Includes seminars & stage demonstrations

Exhibitors contact: The Hunter Group (416) 595-5906 Fax (416) 595-5093. Produced in association with Commodore Business Machines.

