O | A Tl .

| THE ONE MEGABYTECo! |
= ' : Cnaa .25
g)) USA $3.50
o

L

=

=)

—ad

O

>

o~ « RAMfinder - /dentify, stash and fetch

0

o - Combiner - A handy utility for geoWrite

5; « Encryptor - Password protection for the C64

=2 -

1) « Pop-ASCIl - A handy pop-up utility for the C64

2 - IEEE-to-Serial Bus Conversion - for the 4040

« Colour Coordination - Making the right choices
* The One Megabyte C64! - Expand your C64 internally
» Clean Machine Language Screens - Techniques for text output routines

* Plus Regular columns by Todd Heimarck and Joel Rubin, Bits, and more

08

29074712121

Whyaduck by Wayne Schmidt

THE MAGAZINE FOR COMMODORE PROGRAMMERS

)
XXX XX XXX YO XXX XXX XXX XX XXX XXX XX XY XXX XXX XX XXX X XXX

»

"asm 0} SV Pue ISV ¥IdnS .821-Q ',821-D 10)49 ‘¢9-D HNOA THYW
"T'PA 13007dX3 Y3dNS/A HSIO ALITLLA ITHd ¥ SNTd
iTHON HODW ONY 'STUNLY3S 3A0GY IHL TIV

‘6 PPY “(HOLIMS

ATEYSIA [euondo yim) jSNITYIS 821-Q 1°©) NWNTOD 0% TUNLAYD o
"SYIQYQT @nbrun

S,4007TdXT YAdNS esn nok usym NIy9y TWYN ITH V IdAL HIAIN o
"KHOLOHIA

MSIQ oyl buisn yIQYIY o[y "9Yd 10 DIS AYM-OML NI-LTING YidnS e
"XHOLOTHIA

WSIQ oY woyy SWYHHOHd TTY Jo ININNAY Pue ONIAVOT ASY HidnS e
OATJO® [[Us ST T°FA
apordxg o jse1 ayJ ‘STUNLYAL S,IA0TIXT HANS Jo ISTY 241 ONI

-10T 44V Inoyps NO 10 110 @INHNL 29 UB2 JAYS 10 AY0T LSY4 HIdS o

"sa[1j YTy0Y 10 10000 Jo Aefdsig-ay 10109 yiM INIQYOT LSV HIdNS e
"H0TOO/M

SATIE TTA00A 20 YTYOY S SNATHIS iAA0TAXA JO JAYS IS¥4 HIdS o
{1009 [ym saImaiq odAL, YTYOY 10 T1000Q Oyl SuRLS (IXAL

=w>wv J8AU0D 0} >@o&>:m Eso:m w::mw* .—EEOO EE—&E unm BMZ °
“0°€A 10 T'PA
i700TdXd YIS Yi# Pasn aq Ued OReIqmo) 3dBJIAU] Jo I3juLld Ay
“(ITYDS AYHD peys 91 buisn) SNHIYDS SHH-IH 1urxd o} 708/92ST

uand YYINIYd XIMIYW 10d ANY SMo[® STHNIYI YIINTHd H3dS e
710 T @S ‘1881
oy} [dIOXT SPALP JoIeu Iaje jsour yyim puy jabejup jeqy Japey oN

5,821-) 10 §9-) [[° [$10M (S,0S 6 U {08) JAYS PUe AYOTLSY HIdNS
:c::o*

pIepuejs/m IHAIM “S'0°d T10d sd - (5,04S 8) LYWHO4 LSYd HIdnS o
170004

10 YTY0Y O} UsNa§ Auy y1eauo)) pue srmyde) TYNIAY) NITHIS HIdAS e
jspuooas g1 ueyj ssof ur ‘yibua] ut GYHOTH SEZ

o} du jo saqiy Adod ‘140D TTId 6 10 § 2Aup S[buis ur-j[ing [S¥] YIdAS e

*10j payse jsour saInjesj ay} yyim A[puarij Jadng “HISN THOA

-OWI0D @Y 10j paonpoid afiptiie) Jajuig pue aAL(S1] [HaM0d JSOK Y]

szojuird 07 B (T PIEPYQ oY} OS[e pue OI-XN dBl§ Moquiey

ay) 10 HNJINIYd HOTOD TIJ 18108 ayy uroxy Apaexiq poddng mou [im

T'7A jopordxy "abpixjreo e ut dumg usa1ag 10[0] JsI1{ S,pli0p @Y} buronpozju]

56°y¥$ dWNQ HOT0D/A T'FA i300TdXT IIATYLUYD HIANS iMIN

00Is Ul sielewesed 000°L JOA0 BABY MOU 9

‘lensnun
ayl} pue ‘su ‘slajaweled

‘sal

edlunwwoods|al

n Juud ;434N LS HINOVH 40} Buyoo| are o
PaliIAU| SUOISSILLIQNS 8IEM}OS

‘B3 CGpeS T T 7 + [UOISIaA MON

“19)sey Juug pue dog§ juug yyM syzom ystp rendod SWL i ¥ YI¥Q

‘3uQ

13Ir 18p10 0} T 3q JSmy NoA ‘esea|q “aynday [[f 0 SO PU® OMSE) © SAPN[O
-ut] “ynpe papuy ued(4104 e £q pake(d oq o} sweb [ensnun fron g INY9

SASIQ VIVa SIIHAYHD B WY I1nay

XX NN NN NN O YO YO N X N R N XX XX N XXX NN RX

ma.mww Jsn[je paour A1ojonporjuy
"permbar aq [[IM Dulrep[os 1oulul suIOg "SAALIP 3[quedwiod $9/{) jsow pue g8z1/%9/)
[[® YIm sy10) “@ALIp InoA Jo doj uo SHS Jey} X0q SWIOSPURY © Ul PASeOUd ST [00} S[HI] S[qIPSIOUI SIY],
‘jjo/uo 108j01d 8yuim ‘Aeydstp Ayisusp ‘yojims g pue g ‘Aedsip yoerj-jey pue yoerj :se yons suoydo
[nyesn 1eyjo sey Jayael], Iadng °st uorosjoid 8y} aI19YM pUIj 0} ‘[NJosn AI0A oq [[IM UOLRULIOUT STY],
*aIRM}JOS Jo 90eId © Hurpeo| a1e nok o[iym pesy sALIp IN0A Jo UoLeoOo] dy} Ae[dsIp [[im Iaydei] Iadng
st f[[ea1 uorjosjord 8y} a1eym jno puij o} Kem £ses ue jse[jy "urebe jr suop sey pajumIup SAIMQ
HINDVHL ¥idNS

X
X
X

* k

X
X
x
X
x
X
X

66°y2$ mmsK

PSZImOJSN) MBU INOK YJM JI BjlIMBI Jos uononIjsuod Imok buisn Aq usy}
‘usyjum ApeaIfe aary Aew nof jeyj SI9jamEeIR{ PEaY UsA® ueD nok joej uj
*U9ds I9Ad 9A,NOK bulyjou 81| st , Jag NORINGSUO]) IBJOMBIRg,, OYJ "SPUSL}
oA se [[om se ok ssaxdwil [[I4 J] “aweu IMo& yjis YsIp 8y} IZIWOjSnY OS[e
[1M J1 ‘n0j J0j SI3joMeleq 3jLip pue aledmo) ‘peay Auo jou [im ji ‘weiboid

e] A1aj sty} buisp) -sjo109s 1no jo axow nok buralb ore apy a|qeASIAqUN
buryjautos op o} jnoqe sI sIgjameleq JSOi L sey jeyj Auedwoo ayjf

L3S NOLLINYLSNOD SHILIWYHYd

“19)sepy jullg pue doyg juug ypm
y1om soryde1b asayj -abeyoed siy} ur buryjhreas A[enyiia 1o sorydeib
aIe dI8YJ "G6'6ZS A[UO 10§ Jos ysip-OT © ur soryderb go01 18AQ j1ybu s,jey],

H)¥d 0001 S)IHAYHD HIdNS

‘peonpoid aaey am 1sjewrered £1sae
sepn[oul jey} ‘)s ysip (1 9je[dwoo e st SIYT {ijG6'6€$ isnl 10f abeyoed
I9[qqIu gz1/%9 Ino pue sisjpwered (O] }ob ueo nok mou ’‘sisjourereq
-18dng joyrew oy} uo sisjpurered 1endod jsow 8y} uo seoud
81} PaIsMO[pue PajepIosu0d aARY 84 jjurebe jt auop sey “pjup sauIun

T# ¥oBd 0001 SHILIWYHYd HIdNS

‘ab1eyo e1jx8 ou e I8[qqIN 18dng @z1/p9 He-8Yyj-Jo-8je}s
1Ino sI $Yoeq (0§ Yloq U0 papnidu] "8[qel[al pue jsej ‘usAurp nuaw £pejerd
-woo a1e syoeq 1ajawered 1adng [y ‘ued "pjjup seuiu A[uo se 1ayjeboj
jnd puy ‘Jt uo sisjowrered jusiInd jsow ayj [[e SeY G6'6Z$ - Z# Y0Bd 00

*}8s YSIp-G ® ul sawoo yoed siyj
"sey as[d auo ou jeyj ji uo siejpurered abejula ayj sey ¢6pz$ - T# J98d 005

G# PUB T# H2ed 00S SHILIWVHVd H3dNS

B9 G6ppS ©0 dIYD B3 G6'62$ € o Y sdiy)
3344 siaameted Q1 apupou] sdrg)
[Ty "noA o sbutaes jea1b e je a[qeyojms ‘diydp auo ut g pue y sdiyd yjoq
jo uoyeurquod 1adns g “job nok jeysm sjeyj pue oguod ¥od SI .9 — 9
“suonouny AN §00-SKH
B W/dD Aurwt wiopiad os[e [[1M pue IajlIm WRY ‘I0JIUOW SALID 'I0}IP8 YSIP
1851 @pnpout suoydo Auppy “[@GT O} jewiof [/GT 10 TG WO} SYSIp o[oym
4dop 1887 @y 1of @bexoed Ayn ajaidurod e ‘gyjIITILA T8 ¥IdAS SYH — 4
‘puewwod Inok of spuodsal j1 pue ‘Aey uonounj e yonoj Ajduis
‘asn o], "A1oweur Aue dn asn },useop 1 ‘[[e jo jseg “s[quedwod sekey pue
0L9T ‘0691 S,1ey} weibolq [BUNMIB], Pneq (0Z1/00¢ © UsA® pue ‘dumq uasiag
‘10)1pg 10j39§ B ¥oe1] ‘IB[qqIN ‘1erdo) afif :seInjesj ur-j(inq job nog “Iahmy
© J0 §anoJ, @Yy} isnl je e ‘sanimp ___.m___m jea1b jo yom yz¢ nok aa1b o} dm)
Iadng 1no 1o} Huyrem jsnl gz7 1moA episul joyoos Ajdwe ue st s13y] — §

(is1y somoue)) Yo g 'Y - dIHDWIANS 82T THL

S3ILITILN
8¢L/¥90
40 H3aIAOYd
1539919 S.aTHOM

abpLi}Ie) UOWSS TTHJ MM MON

66'62§ AINO HOJ HLOE ANd HO Yoee G6'61S “IauuEdg
YSI ® PU® SI3joWeIRq YR 0] MOH U0 M3IAIAA() [RI3UY § :OpPTOUT 0} sayI[HN
a1ow sn[d abpujed pue sip uo uowsaH ‘STIJWYXI MIN 00T :2 ¥00d
"aj10Ae} sury-buory
“[SIp Uo suoyonysur yim [[e ‘axow sjof pue Iyi§ HOT YSIA ‘IAYS 0/ ‘TAVS
TYNYTY :S® yons sayiyn Auewr yjim YsIp pue Uowssy sapnjou] :1 J00d

o TTGYTIVAY MON SI OML 004 00 o
‘Jt asn ued auokue jey} estoaid pue I1es[d
os a1e suononysu] ‘jipasadng pue momsey sesp) ‘sepiy weiboid rendod
001 jo dnyoeq 10§ uonoajord Huryesiq uo suonanysuj dojs-Ag-dajg nok aatb
s$yooq ayJ, "Iejowrered e jo SHUIYIOM [PUIBJU] O} 98S O} BIISAP © 8ARY OYM
8501} 10§ 00} © Se ‘Wrea) YorId INO AQ 13yjabo} nd sem gz1/p9 I YOOT

8210 pue y9) oy 10§ - SHO0H IHL - 4DId HI01

*paliAu| salinbuj Jajeaq ‘paidadoe
O/IW ‘esipA 'siepJo |le uo @OD 00°€$ ‘Bull
-puey @ Guiddiys 00'€$ PPY "0£59-¥S2-902 |1ED
ases|d ‘auoyd Aq 1ap10 InoA aoe|d 01 Yysim noKk j|

"J10A 1 3yem
0} 3IBAJJOS S,3S[9 AUOATE [B3)S 0} PIAU },UOP NOJ 3IeAyjos apnjomr saoid asaqy

*$9AUID 9[qeduIoD JSOUI YJIM YIOM [[I4 UOISIaA [-[§G] piejiedug

06'66s i i UOISISA SAUP 7 GEGS T TLST preptadng
v66es e uoIsIsASAUP 7 GF'66S 1" IMKST preptadng
06’628 "l UOISISASAUP 7 GG'6YS """ ATYST/THST prepadug

“a[iqomsp[Q) ¥0id [oM nok ‘ambua ou QM
2)jaAlo) B Jo JTIGOWSAI0 T8 Jo 82102 © pey nok Ji asoddus | “Yiok o} OEWNYY
Yy} 98N UBAS },USB0P }I ‘[[oM ‘spu0das ()G UI Ysip pajoejordun ue dn syoeq
Jey} a1emyjos 118y ‘Aem ayj g "jseq ayj a1e K8y} jeyy wred 18y} ybnoryy
y[es o} sjooq dry jo 1red e paau nok Aes o} ssa[paay ‘piegiadng — ONIHL
T¥Id 3HL NOA (NIS TLIM PUe S6'9Z$ PUe QWYY ok mr puag -mopsshbns
busorjoj oy 190 am piesedng o) louajui ajmb are afiexoed aemyjos apebauay
pIe QFWYH oM jeqy juo punoj aaey jey) ojdoed asom doj “OGWYY UW WA
104 0] jou paubrsap Afrearyizads st aremyjos piegiadng jo STOISIA 3[qeI[al Alom
Mou 3] ‘Burpy YTIHL [IA HI0M SUOISIAA A[qeI[al SSo] ‘A[Iea Jem) any SJI A[MA
‘[13M Se 31 2JrM B Jo J1q e jsul aq Aem jey) ‘Mom [[Bj ‘(¢eIemjos iaxy jnoqe Aes
JBQ) SR0D JBQM) 2IBM}JOS 1m0 351 Ued nok mrepd Aemy uam jug ‘06°69S ISea] I8 3q 0
apeBouay/oquiey Jo 10) SAYeM Jeq], “pIL0q I8y} UNI O} AIRMIOS 10f GG HES
Iayjoue puads 0} paau nok uayj ‘preoq 118y} Anq o} pasu nok sy -as[e;
Apsow ‘[ensn st se jnq ‘eniy Afpenied sjey) ‘[8p “1edesyo aq o} urrepo
foyy ‘(yny awreu [euibuo) preQgNyy uo spe ayj sss o} ueddey nok

"OgWYY uinje1 o} jues nok ji asuodsar
Teyy st eyl ,jiiTYNId FHY SATYS TIV iON. PIoM ® U iiey)
[‘aremjjos jsaje[ay} jo arow dn yoeq ued A8y jr yoeq Aswom Imok
nok u»E LT *fe1jse P2[8q },uop og ‘jexIeul ayj uo b::z nyoeq 18yjo
fue pue ‘sjAqenn ‘puodagiz ‘IB[qqIN ising [ejeq ‘apefemay/pieoquey
:burpnjout 2131} yno sermn £dod 8 [fe o Jouadns zej st i “pregiadng st j1ope
1By Jo j[nsax ay], *Abojouyda) jsamau ayy burburiq ur spoje 1no [(e bunex
-U3dUOD UdA(] dARY "OUJ 'pojlwi[uf) SayI[H() J° am ‘s10jijaduIod 1o ayIup

iii10S SLIND 0008 HIAO

90986 UOIBUIYSEA ‘BliIRld YSN.
190115 PUZSL "3°'N S0EZ)

oul ‘g3 LINITINN S3ILITILN

« www.Commodore.ca

Way NOT Keprint wiinour Fermission

Hack this editorial

It’s that time again. Transactor is pleased to introduce a
new assistant editor. By the time you read this, the editori-
al staff will include Paul Bosacki. Readers will probably
recall that it was Paul who introduced us to the C256 in
Volume 9, Issue 2 and showed us how to expand the 1764
with RAM and an EPROM in Volume 9, Issue 5. In this
issue, you’ll find that The One Megabyte C64 has been
added to Paul’s list of credits. As you would imagine, the
presence of a hardware hacker in the Transactor offices
could make for some interesting developments in the mat-
ter of ‘pushing the limits’ in the pages of Transactor. Stay
tuned! There are more limits that need pushing....

* ok 3k

If you haven’t sent in your Reader Survey yet, please do.
They’ve just started coming in and have made for inter-
esting reading. Although no space on the page was allot-
ted for your name and address, feel free to include that
information or your CompuServe PPN or Q-Link handle
if you wish. I spend my on-line time on CompuServe
(76703,4243) but Paul is on Q-Link (PaulB109).

You are encouraged not only to participate in the Reader
Survey but also to write letters or to send electronic mail.
We want to establish a dialogue. Now that there are few-
er large companies supporting the 8-bit machines, it has
become increasingly important that we support each oth-
er. This can only come about when such a dialogue
becomes established. The on-line networks are an excel-
lent way to keep in touch. Another is our exchange sub-
scriptions with user groups. I read all the user group
newsletters that come into Transactor and that has been

a very valuable indicator of what’s happening in the 8-bit
world. So don’t hold back, tell us what’s on your mind.

* ok ok

We are distressed to find that the new edition of the
Oxford dictionary gives the follow (informal) meaning
to the term ‘“hack”: to gain unauthorized access to
(computer files). This is somewhat puzzling consider-
ing that they give the (informal) meaning of ‘‘hacking”
as: using a computer for the satisfaction that it gives.
Do they mean to suggest that there’s no satisfaction in
gaining authorized access to computer files? Does this
make no sense at all, or is it me?

* kK

In addition to Paul’s Mega64, this issue features: a pop-
up utility by Peter Lottrup for the 64 (runs in 64K ma-
chines!), some tips from Bill Brier on creating ML text
display routines, a nifty IEEE-to-serial coversion project
for the 4040, an encryption program from Jim Frost, a
utility by Nick Vrtis that will combine geoWrite files
(regardless of version).

The prolific Jim Butterfield explains exactly why some
colour combinations work and others don’t. You’ll save a
lot of trial and error by using the chart that Jim has
included with this article. Add to this the columns, bits,
reviews and other articles and I’d say you’re in for some
interesting reading.

Malcolm D. O’Brien

Volume 9, Issue 6

www.Commodore.ca|

Transactor

The Magazine for Commodore Programmers

The One Megabyte C64! 24
by Paul Bosacki

Everything you need to know to expand your C64 to one megabyte and to make GEOS recognize it.
Code, schematics, theory - the whole ball of silicon.

RAMfinder 40
by Ian Adam

A good program should use the available resources, right? Here’s how to make your programs support
an REU.

Encryptor 44
by Jim Frost

There are times when you want to hide your files from prying eyes.

Pop-ASCII For The C64 46

by Peter M.L. Lottrup

Tired of looking up CHR$() values in books? This Sidekick-style utility will make the table resident. A
single keystroke brings up the information you need.

Combiner 51
by Nicholas Vrtis

If you’ve ever needed to combine two geoWrite files, you’ll appreciate the convenience of Combiner.
This program will combine files made with any version of geoWrite.

Clean Machine Language Screens 64
by Bill Brier

Most ML programs require at least some text output. In this article, Bill shares with us some slick,
quick routines for efficient text output.

Ride Your 4040 On The Serial Bus 70

by Michael Gilsdorf, Toledo, Ohio

The venerable 4040 can be modified to plug into your C64/C128 directly. This will enable you to use
the copy and backup commands built into the drive.

Colour Coordination 76
by Jim Butterfield

Jim explains the ins and outs of colour combinations. There’s more to consider than which colours are
complementary. The key is luminance.

= www.Commodore.ca

M = Fan

Departments and Columns

Letters 6
Bits 10
Debug 128 Shortest directory in BASIC 2.0?
Don’t Assume Device 8! Partition
The ML Column 14
by Todd Heimarck

More on big numbers including a primes program. Requires an REU.

The Edge Connection 19
by Joel Rubin

Societies, anti-rental laws, shows and disk drive voodoo.

News BRK 78

« www.Commodore.ca

May Not Reprint Without Permission

Using “VERIFIZER”

Transactor’s foolproof program entry method

VERIFIZER should be run before typing in any long program
from the pages of Transactor. It will let you check your work
line by line as you enter the program and catch frustrating typ-
ing errors. The VERIFIZER concept works by displaying a two-
letter code for each program line; you can then check this code
against the corresponding one in the printed program listing.

There are three versions of VERIFIZER here: one each for the
PET/CBM, VIC/C64, and C128 computers. Enter the applica-
ble program and RUN it. If you get a data or checksum error,
re-check the program and keep trying until all goes well. You
should SAVE the program since you’ll want to use it every
time you enter a program from Transactor. Once you’ve RUN
the loader, remember to enter NEW to purge BASIC text
space. Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)
SYS 828 to enable the C64/VIC version (off: SYS 831)
SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a
program line a two-letter report code will appear on the top
left of the screen in reverse field. Note that these letters are in
uppercase and will appear as graphics characters unless you
are in upper/lowercase mode (press shift/Commodore on
C64/VIC).

Note: If a report code is missing (or “--) it means we’ve
edited that line at the last minute, changing the report code.
However, this will only happen occasionally and usually only
on REM statements.

With VERIFIZER on, just enter the program from the magazine
normally, checking each report code after you press RETURN
on a line. If the code doesn’t match up with the letters printed
in the box beside the listing, you can re-check and correct the
line, then try again. If you wish, you can LIST a range of lines,
then type RETURN over each in succession while checking
the report codes as they appear. Once the program has been
properly entered, be sure to turn VERIFIZER off with the SYS
indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0
instead of POKE 53281,0. However, VERIFIZER uses a

“weighted checksum technique” that can be fooled if you try
hard enough: transposing two sets of four characters will pro-
duce the same report code, but this will rarely happen. (VERI-
FIZER could have been designed to be more complex, but the
report codes would need to be longer, and using it would be
more trouble than checking the program manually). VERIFIZER
ignores spaces so you may add or omit spaces from the listed
program at will (providing you don’t split up keywords!) Stan-
dard keyword abbreviations (like nE instead of next) will not
affect the VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette
buffer, so if you’re using a datasette be aware that tape opera-
tions can be dangerous to its health. As far as compatibility
with other utilities goes, VERIFIZER shouldn’t cause any prob-
lems since it works through the BASIC warm-start link and
jumps to the original destination of the link after it’s finished.
When disabled, it restores the link to its original contents.

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

CI 10 rem* data loader for "verifizer 4.0" *
LI 20cs=0

HC 30 for i=634 to 754: read a: poke i,a

DH 40 cs=cs+a: next i

GK 50:

OG 60 if cs<>15580 then print"***** data error *****": end
JO 70 rem sys 634

AF 80end

IN 100:

ON 1000 data 76,138, 2,120,173,163, 2,133,144
IB 1010data 173, 164, 2,133,145, 88, 96, 120, 165
CK 1020 data 145,201, 2,240, 16,141, 164, 2,165
EB 1030 data 144, 141, 163, 2, 169, 165, 133, 144, 169
HE 1040data 2,133,145, 88, 96, 85,228, 165,217
OI 1050 data 201, 13,208, 62,165, 167,208, 58,173

JB

PA
HE
EL
LA

1060 data 254, 1,133,251,162, 0, 134,253, 189
1070 data 0, 2,168,201, 32,240, 15,230,253
1080 data 165, 253, 41, 3,133,254, 32,236, 2
1090 data 198, 254, 16, 249, 232, 152, 208, 229, 165
1100 data 251, 41, 15, 24,105,193,141, 0,128
KI 1110 data 165,251, 74, 74, 74, 74, 24,105, 193
EB 1120 data 141, 1,128,108, 163, 2,152, 24,101
DM 1130 data 251, 133, 251, 96

Transactor

T

2 www.Commodore.ca

WIAQY ™NOT REPIINT YWiInoul ren 15510N

VIC/C64 VERIFIZER CB 370 data 255, 169, 19, 32,210, 255,169, 18

OK 380data 32,210, 255, 165,250, 41, 15, 24
KE 10 rem* data loader for "verifizer" * ON 390 data 105, 193, 32, 210, 255, 165,250, 74
JF 15 rem vic/64 version OI 400data 74, 74, 74, 24,105,193, 32,210
LI 20cs=0 OD 410 data 255, 169, 146, 32,210,255, 24, 32
BE 30 for i=828 to 958:read a:poke i,a PA 420 data 240, 255, 108, 253, 0, 165,252, 24
DH 40 cs=cs+a:next i BO 430 data 101, 250, 133, 250, 96
GK 50:
FH 60 if cs<>14755 then print"***** data error *****": end
KP 70 rem sys 828 The Standard Transactor
AF 80end
IN 100: Program Generator
EC 1000data 76, 74, 3,165,251,141, 2, 3,165
EP 1010 data 252, 141, 3, 3, 96,173, 3, 3,201 If you type in programs from the magazine, you might be able
OC 1020data 3,240, 17,133,252,173, 2, 3,133 to save yourself some work with the program listed on this
MN 1030 data 251, 169, 99,141, 2, 3,169, 3,141 page. Since many programs are printed in the form of a BA-
MG 1040data 3, 3, 96,173,254, 1,133, 89,162 SIC “program generator” which creates a machine language
DM 1050 data 0,160, 0,189, 0, 2,240, 22,201 (or BASIC) program on disk, we have created a “‘standard
CA 1060 data 32,240, 15,133, 91,200, 152, 41, 3 generator ”’ program that contains code common to all program

NG 1070 data 133, 90, 32,183, 3,198, 90, 16,249 generators. Just type this in once, and save all that typing for
OK 1080 data 232, 208, 229, 56, 32,240, 255,169, 19 every other program generator you enter!

AN 1090 data 32,210, 255, 169, 18, 32,210, 255, 165

GH 1100data 89, 41, 15, 24,105, 97, 32,210,255 Once the program is typed in (check the Verifizer codes as

JC 1110data 165, 89, 74, 74, 74, 74, 24,105, 97 usual when entering it), save it on a disk for future use. When-

EP 1120data 32,210, 255, 169, 146, 32,210, 255, 24 ever you type in a program generator, the listing will refer to

MH 1130 data 32, 240, 255, 108, 251, 0, 165, 91, 24 the standard generator. Load the standard generator first, then

BH 1140 data 101, 89,133, 89, 96 type the lines from the listing as shown. The resulting program
will include the generator code and be ready to run.

NEW# C128 VERIFIZER (40 or 80 column mode) When you run the new generator, it will create a program on
disk (the one described in the related article). The generator

KL 100 rem save"0:c128 vfz.ldr",8 program is just an easy way for you to put a machine language

OI 110 rem c-128 verifizer program on disk, using the standard BASIC editor at your dis-

MO 120 rem bugs fixed: 1) works in 80 column mode. posal. After the file has been created, the generator is no

DG 130 rem 2) sys 3072,0 now works. longer needed. The standard generator, however, should be

KK 140 rem kept handy for future program generators.

GH 150 rem by joel m. rubin

HG 160 rem * data loader for "verifizer c128" The standard generator listed here will appear in every issue

IF 170 rem * commodore c128 version from now on (when necessary) as a standard Transactor utility

DG 180 rem * works in 40 or 80 column mode!!! like Verifizer.

EB 190 ch=0

GC 200 for j=3072 to 3220: read x: poke j,x: ch=ch+x: next MG 100 rem transactor standard program generator

NK 210 if ch<>18602 then print "checksum error": stop EE 110 n$="filename": rem name of program

BL 220 print "sys 3072,1 to enable LK 120 nd=000: sa=00000: ch=00000

DP 230 print "sys 3072,0 to disable KO 130 for i=1 to nd: read x

AP 240 end EC 140 ch=ch-x: next

BA 250 data 170, 208, 11, 165,253,141, 2, 3 FB 150 if ch then print "data error": stop

MM 260 data 165, 254, 141, 3, 3, 96,173, 3 DE 160 print."data ok, now creating file."

AA 270data 3,201, 12,240, 17,133,254,173 CM 170 restore

FM 280data 2, 3,133,253,169, 39,141, 2 CH 180 open 1,8,1,"0:"+n$

IF 290data 3,169, 12,141, 3, 3, 96,169 HM 190 hi=int(sa/256): lo=sa-256*hi

FA 300data O, 141, 0,255,165, 22,133,250 NA 200 print#1,chr$(lo)chr$(hi);

LC 310data 162, 0,160, 0,189, 0, 2,201 KD 210 for i=1 to nd: read x

AJ 320data 48,144, 7,201, 58,176, 3,232 HE 220 print#1,chr$(x);: next

EC 330 data 208, 242,189, 0, 2,240, 22,201 JL 230close 1

PI 340data 32,240, 15,133,252,200, 152, 41 MP 240 print"prg file *";n$;"’ created...”

FF 350data 3,133,251, 32,141, 12,198,251 MH 250 print"this generator no longer needed."

DE 360 data 16, 249, 232, 208, 229, 56, 32,240 IH 260: T

Volume 9, Issue 6 5

« www.Commodore.ca

NMay Not Reprint Without Permission

"R

Another view of DevPak: This letter is a comment concern-
ing Joel Rubin’s remarks in Volume 9, Issue 3 about the
DevPak128 package from Commodore.

I have made extensive use of this package in the development
of a multi-user, online truck leasing and billing system. The
total amount of code written for this system (it is 100 percent
machine language) is about 100,000 lines. The software runs
on a group of C128D computers multiplexed to an 80MB Xetec
Lt. Kernal hard disk subsystem. I used a separate C128D and
40MB Lt. Kernal as the development system, using a home-
brew text editor to write the source code and the DevPak
assembler and loader to create executable object code.

It is true that the DevPak assembler is disk-intensive. So is
just about any assembler that must make two passes through
ten files totalling nearly 400 kilobytes of source code. As for
the procedure of having to use the hex file loader to actually
place your program into RAM, that procedure has existed with
all assembler packages that have been marketed by Com-
modore (the C64 Macro Assembler Development System or
MADS uses the identical procedure).

The limitations on open files and speed on a 1541 or 1571
drive are limitations that any assembler must contend with.
As Mr. Rubin mentioned, these limitations are clearly
explained in the DevPak documentation and can be alleviated
by using multiple drives, as the assembler can read source
code from one unit and write object code to another. Addi-
tional gains in speed can be achieved by utilizing the
SFD-1001 drive and a Skyles Quicksilver IEEE interface or if
the user is intent on doing some heavy-duty programming,
the Lt. Kernal system (the Lt. Kernal DOS allows up to seven
files to be opened at the same time).

Because I do my development on a Lt. Kernal-based system,
I do not experience the problems Mr. Rubin mentions about
speed and open files. Even my largest program assembles at a
rapid rate. Smaller programs (those with less than 50K of
source code) assemble in under three minutes if no listing
output is required. So, while the disk-intensive nature of
DevPak might be a problem on a 1541 or 1571 system, it
probably would not be a problem on a system with greater
disk capacity (for example, the SFD-1001 allows a larger
number of files to be simultaneously opened because of more
available drive RAM).

The advantages of the DevPak assembler, in my opinion, out-
weigh the disadvantages. For one thing, the assembler’s pars-
ing routine is not case-sensitive for non-quoted strings. Quot-
ed strings may include shifted or PET graphics characters
(something which is not allowed by many assemblers).
Another point to consider is that DevPak supports local labels
(real handy for patching existing programs). The macro facil-
ity works flawlessly and allows nesting of macros (macros
can call other macros). The printed output listing is more
informative than that of most other assemblers. The symbol
table is structured in RAM 1 and has over 60 kilobytes
available in which to deposit data.

The need to use the loader to place the hex image file into
RAM is a minor nuisance in some cases. However, the use of
the hex loader allows me to assemble for an area which can’t
be conveniently used as a location from which to execute a
binary save (such as the hardware stack) and load the pro-
gram into a free area of RAM from which it may be saved.
This feature is complemented by the ability of the Lt. Kernal
DOS to change the load address of a binary file after it has
been stored on the drive.

Transactor

« www.Commodore.ca

I cannot recommend the EDT text editor that is supplied with
DevPak, both for the reasons mentioned by Mr. Rubin (the use
of the numeric keypad to issue commands to the editor) and
because the editor is actually quite unfriendly and cumber-
some. However, as he mentions, almost any editor can be used
in its place.

In summary, the DevPak assembler is gross overkill for the
casual programmer that is interested in writing only a few
lines of code. I can’t recommend it for the user that has only a
1541 or 1571 on his system. This assembler is really meant for
a serious machine language programmer who has the proper
hardware to go with it.

Bill Brier, Bensenville, IL

A letter to Francis Kostella: I am writing you in a somewhat
desperate attempt to get some reliable information on how to
obtain a copy of Alexander Boyce’s GEOS manual. I realize it’s
not your job to answer questions like this (sorry) but I couldn’t
think of anyone else to ask. I’'m a bit at my wits’ end.

I have been trying to obtain a copy of the manual for several
months. Through what seemed a stroke of good fortune,
Nicholas Vrtis published Alexander Boyce’s address in Trans-
actor, Volume 9, Issue 4. However, a letter to that address was
returned to me only yesterday, unopened - that address does
not seem to exist. My final plan of attack is to get in touch
with people who have the manual already, to see if they can
give me a lead on how to get a copy. Hence my letter to you.

Can you please send me any hints or suggestions you might
have on how to get a copy of Boyce’s book? Even a photo-
copy, I don’t care. I really do want this manual. Thanks very
much for your trouble.

David Kotchan, Toronto, Ontario
We managed to contact Alex. Here’s his new address:

Alexander Boyce
63 Chamberlain Ave.
Elmwood Park, NJ 07407

Incompatible 1541C?: I am writing to you in hopes that you
may help me with a problem which has plagued the techni-
cians here in Ottawa and at Commodore in Toronto for some
time.

The problem began when I bought a second disk drive model
1541 and added it to my collection of 1541s... This is my set-
up: 64, 1701, three 1541s, Epyx Fastload cartridge, Aprotek
RS-232 interface, Star NX-1000 and a Datagram modem.

After many years of being interested in Commodore equip-
ment, I have never heard of this problem. When I connect my
recently purchased 1541 as device 8§, it locks up the 64. I
have made many trips to my local service depot and spent

VIay NOT Keprint witnour Fermission

many hours in frustration, so I decided to troubleshoot this
problem myself.

In the beginning, I had everything connected to a power bar so
all I had to do was hit the switch and go... (not by the book,
but has been effective in the past).

To make a long story short, after I put my new drive on as
device 8, it locks up the 64. The screen will say, for example,
‘‘searching for $” and that’s it. The read LED never lights and
my keyboard is now frozen. The only way to access it, is by
resetting the drive and then it will work, but this only happens
on the very first time, then it’s somewhat OK for the rest of the .
evening.

Now it gets even more interesting. If I only leave device 8 on
and turn on the power bar everything is fine, but as soon as I
turn on device 9, that’s it! - the keyboard is frozen. The only
way to get back to normal is to reset all drives. Now this may
not be a bad solution; however, as my system has grown I have
gotten squeezed out of my office and forced to build a custom
computer hutch that contains all my equipment. The hutch is
virtually useless to me now, because every time I go to use it I
have to consistently start pulling equipment out of it to reset it.
This is not very practical and so I have abandoned this drive.

Se you say, how can we help? Well, I'm going to tell you.
After some research I believe that it has something to do with
the priority of how the 64 recognizes the 1541C.

After closer inspection of the situation, I have concluded that
the logic PCB in this new drive is not compatible with the oth-
ers. As I had previously stated, everything was in perfect
working order until I installed this new drive.

What I have done is taken the version number from each drive,
hoping that you will be able to help me...

My question is: Can I make them compatible with the same
type of software?

My new 1541 is a PCB #251830 Rev. A. My old 1541 is a PCB
#1540050 Rev. C. The service people have been co-operative
and have said that if it is possible to make them compatible,
then they would do so. I hope that the solution is a simple soft-
ware upgrade or downgrade, whichever makes it work!

Terry Golding, address unknown

First of all, troubleshooting by mail rarely works... However, it
sounds like a ‘serial bus loading problem’. These tend to be
more common as devices are added to the bus and some de-
vices are more likely than others to cause such problems. For
example, one revision of the 1526 is notorious in this regard.
Of course, you may be right about the 1541C. This is one
piece of equipment with which Transactor has no experience.
(We don’t have any 1541-11s either.) If anyone can supply more
information on this subject, please send it in.

Volume 9, Issue 6

« www.Commodore.ca

Transblooperz in Programming GEOS Icons: First, let me
say that this is the first letter to an editor that I have ever
written. I have been reading Transactor for several years
and I believe it is the finest Commodore-specific magazine
existing.

I am writing regarding the article Programming GEOS Icons on
page 56 of Volume 9, Issue 5. I am a GEOS enthusiast and
enjoyed the article very much. The program works well, but
there are a couple of errors; one in the article and one in the
program. Also, the program (geoKeyboard) can be shortened
considerably, as I will show.

Firstly, in the fifth paragraph at the top of the right-hand
column on page 56, it is stated: “When Dolcons is called,
the GEOS Kernal expects the two-byte .word following the
JSR in memory to contain the pointer to the icon table.”
This is not correct. The pointer to the icon table must be
loaded into rOL/rOH (using the macro, LoadW
r0,IconTable) before the JSR to Dolcons, as is done in the
program on page 59. There is no in-line form of the
Dolcons routine.

Secondly, in the geoKeyboard program (page 59, left hand col-
umn), the following sequence is printed:

lda #0 ;Put mouse on geos menu item
LoadW r0,GeosMenu ;Put address of menu table in r0
jsr DoMenu

I must point out that if this routine is coded as above, the
LoadW macro will change the value of the A register, and the
mouse will not be put in the right place. The LoadW macro
and the 1da should change places, as follows:

LoadW r0,GeosMenu

lda #0
jsr DoMenu
rts

Now the A register will contain O on entry to the DoMenu rou-
tine, and the mouse will be placed on the first menu item.

Now for the change to make the program shorter. The follow-
ing is based upon the fact that, after an icon is clicked, its
number (based on its position in the icon table, starting with 0)
is returned in rQL. It is simple then to use this value to index
into a table of frequency values, instead of having a separate
action routine for each note.

1) In the Keyboard icon table (page 59), change all the action
routine pointers (such as .word DoCN4, DoCs4 etc.) to .word
Play

2) Eliminate all the routines on page 60/61 for loading the fre-
quency values into a0L/a0H (DoCN4 to DoCN6)

3) Change the routine Play on page 61 (left hand column) to:

May Not Reprint Without Permission

jsr InitForIO

lda #$40

sta vlentrl

ldx rOL ;put icon number into index register
lda lofreq,x ;get low frequency value from table
sta vlfreqlo ;put it in the sid register

lda hifreq, x ;get high frequency value from table
sta vlfreqghi ;put it in the sid register

lda #$41

sta vlentrl

<rest same>

4) Add the following data table to the program at the end (after
jmp EnterDeskTop)

lofreq:
.byte 195, 195, 209, 239, 31, 96, 181, 30
.byte 156, 49, 223, 165, 135, 134, 162, 223
.byte 62, 193, 107, 60, 57, 99, 190, 75, 15
hifreq:
.byte 16, 17, 18, 19, 21, 22, 23, 25
.byte 26, 28, 29, 31, 33, 35, 37, 39
.byte 42, 44, 47, 50, 53, 56, 59, 63, 67

There is just one more thing. If the lda #$01/sta vlsusrel in
the LoadSIDRegisters routine is changed to 1da #$0c/sta vlsus-
rel, the note lasts longer and seems to sound better.

Roy Longworth, Trenton, ON

Right on all fronts, Roy. Thanks for pointing out the errors in
the text and code. And thanks for the tip on shortening the
code. Keep on writing letters to editors. We do appreciate it
when readers find (and correct) our mistakes.

Back to Forth: Friends, I am looking for documentation for
Scott Ballantyne’s Blazin’ Forth implementation of the Forth
language. He wrote an article in Transactor, Vol. 7, Iss. 5 and
it was on your disk. It seems to assume we all know the pro-
gram well! I’'m trying to learn Forth.

I would also like disk 1/0 routines for HESForth cartridges. C64
and VIC-20 disk operations crash on mine. Thanks.

Premena
P.O. Box 1038
Boulder, co 80306-1038

Your best bet for 8-bit Forth support is CompuServe. LIB 5 of
our Commodore Programming Forum (GO CBMPRG) is devoted
to the Forth language. In addition to the complete source code
for Blazin’ Forth, LIB 5 contains a number of helpful text files.
What follows is a list of the files in the Forth library:

Filename legend:

/A = ASCII text file
/B = Xmodem upload
/1 = B-protocol (Vidtex) upload

Transactor

« www.Commodore.ca

/R = RIE graphic file

NOTE: Size is rounded to the nearest full K (1K = 1024 bytes)

NPOWER.SCR/A 1K
CONCAT.SCR/A 2K
DECRYP.SCR/A 1K
MACROS.SCR/A 1K

May Not Reprint Without Permission

15-Apr-84 Forth power arguments

28-Mar-84 Takes PMP screens and creates file for uploading
28-Mar-84 Takes downloaded file and converts to PMP screen
28-Mar-84 Updated macros for Performance Micro (PMP)

System Upload
Filename Size date Brief description
INTRO.4TH/A 19K 12-Oct-88 Overview of the Forth programming language

LIB5.DIR/A 5K
BVT100.BIN/B 28K
FORTH.TXT/A 4K
SIDEXP.IMG/I 38K
PRTFIL.BIN/B 2K
BFCDEM. IMG/B 18K
FSP.BFT/A 4K
FSP.IXT/A 80K
BFCSRC.TUT/A 36K
BFCL.ASM/A 19K
BFC10.ASM/A 1K
BFC11.ASM/A 10K
BFC12.ASM/A 2K
BFC2.ASM/A 26K
BFC3.ASM/A 22K
BFC4.ASM/A 24K
BFC5.ASM/A 28K
BFC6.ASM/A 13K
BFCT.ASM/A 17K
BFC.ASM/A 17K
BFCO.ASM/A 12K
DYNAM.FTH/A 5K
ESTAC2.DOC/A 5K
ESTAC2. IMG/I 17K
FTHSTR.BIN/A 2K
FTHSTR.DOC/A 1K
RELSEQ.BIN/B 1K
SEQREL.BIN/B 1K
FILES.BIN/B 4K
CBMDIR.ING/I 1K
VBACK.BIN/B 2K
SF2BLZ.ING/I 5K
VFILE.BIN/B 3K
FLOAT.BIN/B 1IK
MULTI.BIN/B 4K
BACKUP,BIN/B 2K
REALCL.BIN/B 2K
BFASM.DOC/A 29K
BFVDTE.TXT/A 6K
FPORT.IMG/I 1K
HFGFC0.DOC/A 12K
HFGFCO.IMG/I 6K
BFCYAD. IMG/I 4K
DECOMP.IMG/I 3K
DIR.IMG/I 2K
BFEDIT.DOC/A 3K
BFORTH. IMG/I 23K
ARTHUR. IMG/I 7K
EXAMPL.FTH/A 4K
SIEV83.SRC/A 1K
BFHSRC.BIN/B 61K
SRCHRT.DOC/A 1K
SRCHRT. IMG/I 1K
BFDEMO. SRC/A 2K
BFRTHL,IMG/I 1K
BFRTH2,DOC/A 20K
BFRTH3.DOC/A 11K
BFRTH4,DOC/A 8K
BFRTHS.DOC/A 10K
BFRTH6.DOC/A 18K
BFRTH7.DOC/A 9K
BFRTHS.DOC/A 19K
BFRTHY.DOC/A 11K
MON.IMG/T 4K

17-Jul-88 Directory of all files in LIB 5 to date
27-Sep-87 Blazin'Forth VI52 terminal emulator

15-Apr-87 A review of Steve Burnap's FORTH tutorial book
06-Feb-87 Forth program to exercise SID chip

11-Dec-86 Blazin'Forth sequential file printer

12-Nov-86 Fport source to demos described in BFHSRC.BIN
12-Nov-86 Structured programming constructs in bforth83
12-Nov-86 Text by George Hawkins on structured programming
22-8ep-86 Explains the inner workings of Blazin'Forth
18-Sep-86 First assembler source for Blazin'Forth Compiler
18-8ep-86 Support file for Blazin'Forth (Macros)

18-Sep-86 Support file for BForth (global declarations)
18-Sep-86 Support file for BForth (constant declarations)
18-Sep-86 Second source file for Blazin'Forth Compiler
18-Sep-86 Third source file for Blazin'Forth Compiler
18-Sep-86 Fourth source file for Blazin'Forth Compiler
18-Sep-86 Fifth source file for Blazin’Forth Compiler
18-Sep-86 Sixth source file for Blazin’Forth Compiler
18-Sep-86 Seventh source file for Blazin'Forth Compiler
18-Sep-86 Eighth source file for Blazin'Forth Compiler
18-Sep-86 Ninth source file for Blazin’Forth Compiler
09-Sep-86 BForth code to do dynamic memory management
31-Aug-86 Documentation for ESTAC2.IMG

31-Aug-86 BForth floating point math in FPORT file
29-May-86 64FORTH string handling program

29-May-86 Documentation for FTHSIR.BIN

29-May-86 Converts 64FORTH REL to SEQ file

29-May-86 Converts SEQ file to 64FORTH REL file

12-May-86 Gives BForth C like files (fopen, fclose, etc.)
11-May-86 Directory using CBM's DOS directory, FPORT file
09-Mar-86 Backup for files created with VFILE.BIN
07-Mar-86 Translate screens between Super Forth and BForth
05-Mar-86 Save BForth code as commodore REL files
26-Feb-86 Forth 83 floating point math words

26-Feb-86 Add background tasks to BForth

18-Feb-86 Utility to backup screens

18-Feb-86 Forth words to access the c64’s hardware clock
10-Dec-85 Blazin'Forth Assembler tutorial

09-Dec-85 Blazin'Forth terminal program example

25-Nov-85 Upgraded FPORT file transfer utility

20-0ct-85 Documentation for HFGFCO.IMG

20-0ct-85 HES 64FORTH graphics program

23-Sep-85 Decompiler for Blazin'Forth

16-Sep-85 Decompiler for Blazin’Forth

13-8ep-85 Disk Directory for Blazin'Forth Command = DIR
12-Sep-85 Procedure for adding full screen editor to BForth
08-Sep-85 Scott Ballantyne’s Blazin' Forth Compiler system
04-Sep-85 Arthurs Theme, Blazin'Forth music

27-Rug-85 Help for Forth-83 changes to 'Starting Forth'
27-RBug-85 Forth-83 Sieve of Eratosthenes

25-Rug-85 Squeezed source code for BFORTH.IMG

25-Aug-85 Documentation for SRCWRT.IMG and BFHSRC.BIN
25-Rug-85 Convert squeezed format source to Forth screens
24-Rug-85 BForth Turtle graphics demo

07-Rug-85 Readme file for BFORTH.IMG

07-Bug-85 Documentation for BFORTH.IMG (part 1)

07-Bug-85 Documentation for BFORTH.IMG (part 2)

07-Aug-85 Documentation for BFORTH.IMG (info on string pkg)
07-Aug-85 Documentation for BFORTH.IMG (sound extensions)
07-Aug-85 Documentation for BFORTH.IMG (turtle graphics)
07-Rug-85 Documentation for BFORTH.IMG (misc. info)
07-Aug-85 BFORTH.IMG help file 1 for ’Starting Forth' test
07-Aug-85 BFORTH.IMG help file 2 for 'Starting Forth' text
29-0ct-84 Monitor for HES 64FORTH (only)

QX.SCR/A 1K
TABLE.SCR/A 1K
THRU.SCR/A 1K
ASK.SCR/A 1K
CASE.SCR/A 1K
GOES.SCR/A 1K
LIFE.SCR/A 2K
LSCR.SCR/A 1K
TIME.SCR/A 1K
CANON.DOC/A 9K
SCMSCR.SCR/A 1K
BOXES.SCR/A 1K
SIEVE.SCR/A IK
SQROOT.SCR/A 1K

28-Mar-84 Prints out screen headers, for PMP

28-Mar-84 PMP C64FORTH creates tables

28-Mar-84 PMP C64FORTH word for fetching several screens
28-Mar-84 Defining word create daughters numeric input
28-Mar-84 Forth79 CASE statements

28-Mar-84 Forth recursive decompiler

28-Mar-84 Forth mathematical/graphic Game of LIFE
28-Mar-84 Screens contain example life screens
28-Mar-84 Forth79 words to support clock on 6526 chip
28-Mar-84 Documentation file describing .SCR format
28-Mar-84 Simple data encrypter for forth screens
28-Mar-84 Draws random size and color boxzes

28-Mar-84 Sieve of Eratosthenes benchmark

28-Mar-84 Returns square root, PMP assembler format

That empty REU socket: Is it possible to put the 28-pin chip
from the Epyx Fast Load cartridge into the 1764? The Fast Load
cartridge also has one other chip on it. It is a SN7407N DIP.

This info would be greatly appreciated. My Fast Load collects
dust now because I don’t want to keep plugging and unplug-
ging the 1764, and I have no room for an expander board to
plug both in. I hope that my Fast Load can be put back into
action soon. There are probably quite a few people with the
same need.

Frank Liuzzi, Broomall, Pennsylvania

Great idea, Frank, but unfortunately, it’s just not possible. The
Epyx Fast Load cartridge is a transparent cartridge. The car-
tridge is visible only at particular times, specifically at a hard
reset and on an access to $de00. This magic is achieved
through the 7407N and a discharge capacitor on the cartridge
board. Although the code maps in at 38000, the command
parser maps in at $df00. (More magic, because the code for
the parser is found in the $9f00 range of the EPROM.)

Placing the EPROM in the REU socket would result in a hung
machine on power-up because the BASIC IERROR vector is left
pointing to somewhere in the $df00 block by the code that ini-
tializes the cartridge. Result: on an error (i.e., $, /, %, etc.),
control is passed over to non-existent code at $df00 and the
machine most likely crashes.

Also, the EPROM would grab the $8000 to 39fff block. Because
the transparency was achieved through the support circuitry in
the cartridge, we would always be out 8K of BASIC RAM. A ter-
rible waste! Especially when you consider that the cartridge
used to be ‘invisible’ in normal use.

So, what to use the REU EPROM socket for? Mostly home-
brewed code, I would think. Today’s cartridges are a lot more
sophisticated than those of a few years ago. Not uncommonly
now, we find kilobytes of bank-switched EPROM, DRAM and
even microprocessors. Off hand, I can’t think of any cartridge
EPROM that could be plugged into that slot. Anybody know dif-
ferent? T

Volume 9, Issue 6

|
f

« Www.Commodore.ca

May Not Reprint Without Permission

T S

Got an interesting programming tip, a short routine, or an unknown bit of
Commodore trivia? Send it in - if we use it in the bits column, we’ll credit you in the
column and send you a free one-year subscription to Transactor.

Debug Utility
Jean-Yves Lemieux, Rimouski, PQ

Debug is a programming utility for the C128 that can help a
machine language programmer in a number of ways. It can
provide a controlled testing environment for assembler pro-
grammers: avoid a system crash, detect endless loops, and so
on. It is an interrupt-driven program that uses NMI and BREAK
vectors and a CIA 2 timer to perform a ‘trace’ function. It lets
you see, step by step, each instruction that your C128 exe-
cutes, displaying register contents, PC address and disassembly
of the next instruction to be executed.

This version is loaded at $03000. You’ll need to reassemble to
relocate it. Enable it with sys12288 from BASIC or jf3000 from
your monitor. Now you’re ready to use Debug’s two com-
mands: Walk and Quick.

W <«start address> (eg. w 2000): The first instruction is
executed and you are then presented with a register display,
PC address and the disassembled next instruction. Debug is
waiting for your next command. Pressing a key will result in
the execution of the next instruction. RUN/STOP will stop
walking.

Q <routine address>: This command only works during a
walk and at the beginning of a subroutine. Following instruc-
tions will be executed at nearly full speed until an RTS or BRK
is encountered. No display is provided during this process.
You should use the Quick command for normal system sub-
routines (BASIC or Kernal) since Walking through these will
probably cause unpredictable results.

You can disable Debug with RUN/STOP-RESTORE. Debug gener-
ates system interruptions via Timer A of CIA 2 ($dd00). During
a Walk or a Quick command a timer is set to generate an NML.
The registers are then pulled from the stack and are saved with
the program counter for future use. Since the timers of CIA 1
are often used for system tasks (1/0), Timer A of CIA 2 (which
generates only NMI) has been used. Because of the timer’s in-
volvement with RS-232 operations, you should not try to use
Debug for RS-232 routines.

Listing 1: debug.gen

REBECEGFRERSOEGEEERRRE 288888

283

2EEEgHE.

FI
IE
ED
FE
Jo

caRsgEgae

100 rem prg. gen. for debug.obj

110 n$="debug.obj"

120 nd=376:5a=12288:ch=39305

130 fori=1tond:readx

140 ch=ch-x:next

150 if chthenprint"data error”:stop
160 print"data ok, now creating file"
170 restore

180 openl,8,1,"0:"4n$§

190 hi=int (sa/256) : lo=sa-256*hi

200 print#1, chr$ (lo)chr$ (hi);

210 fori=1tond:readx

220 print#1,chr$(x); :next

230 closel

240 print"prg file '";n§;"' created..."

250 print"this generator no longer needed."

12288 data 120, 169, 185, 160, 48, 141,
12296 data 140, 23, 3, 169, 53, 160,
12304 data 46, 3, 140, 47, 3, 169,
12312 data 250, 141, 157, 2, 142, 158,
12320 data 0, 141, 154, 2, 141, 155,
12328 data 0, 198, 4, 208, 2, 198,
12336 data 70, 176, 76, 178, 176, 201,
12344 data 249, 32, 167, 183, 176, 244,
12352 data 164, 97, 165, 98, 133, 2,
12360 data 132, 3, 186, 142, 156, 2,
12368 data 162, 49, 133, 250, 134, 251,
12376 data 0, 32, 152, 85, 32, 125,
12384 data 62, 32, 65, 67, 32, 88,
12392 data 89, 82, 32, 83, 80, 32,
12400 data 13, 0, 166, 2, 165, 3,
12408 data 144, 2, 162, 15, 134, 104,
12416 data 165, 4, 133, 102, 160, 0,
12424 data 0, 32, 165, 184, 200, 192,
12432 data 245, 32, 146, 184, 160, O,
12440 data 2, 134, 77, 32, 26, 177,
12448 data 182, 32, 8, 182, 166, 77,
12456 data 2, 76, 152, 85, 173, 157,
12464 data 158, 2, 141, 24, 3, 140,
12472 data 96, 169, 128, 141, 14, 221,
12480 data 221, 32, 172, 48, 216, 104,
12488 data 104, 133, 8, 104, 133, 7,
12496 data 6, 104, 133, 5, 104, 133,
12504 data 133, 3, 186, 134, 9, 88,
12512 data 41, 16, 240, 3, 76, 41,

22,
48,
64,
2,
2,
3
87,
166,
134,
169,
108,
285,
82,
80,
201,
133,
185,
5
14,
32,
142,
2
25,
173,
133,
104,
4
165,
48,

141
162
169
88
76
208
96

40
250
83
32
67
64
103

14
170

89
170
1m

13

133
104

4

10

Transactor

« www.Commodore.ca

FB 12520 data 154, 2, 48, 12, 166, 9,
OH 12528 data 2, 208, 58, 169, 0, 141,
1D 12536 data 32, 196, 119, 166, 9, 236,
PD 12544 data 240, 5, 144, 3, 76, 47,
AG 12552 data 89, 48, 32, 18, 192, 32,
NE 12560 data 240, 248, 201, 3, 208, 3,
NI 12568 data 48, 201, 81, 208, 11, 186,
BD 12576 data 2, 169, 1, 141, 154, 2,
HE 12584 data 169, 128, 141, 154, 2, 162,
I8 12592 data 17, 208, 168, 41, 16, 240,
LF 12600 data 41, 239, 141, 17, 208, 234,
GF 12608 data 12, 202, 208, 253, 136, 208,
JE 12616 data 169, 57, 141, 4, 221, 142,
FH 12624 data 169, 129, 141, 13, 221, 173,
OK 12632 data 9, 1, 141, 14, 221, 169,
0I 12640 data 185, 141, 25, 3, 142, 24,
OL 12648 data 9, 154, 165, 3, 72, 165,
KI 12656 data 165, 5, 72, 165, 2, 76,
Listing 2: debug.pal

GL 9 open2,8,1,"0:debug.0"

IN 10 sys700

OF 20 ; * debug source code *

IE 30 ; * for the cl28 *

GA 40 ; * by jean-yves lemieux *

NC 50 ; * rimouski, quebec *

J0 60 ; * feb. 1989 *

M 70 H khkkRRRRRRXRRIARRRRRKRKK

G4 80 ;

16 90 .opt 02

KN 100 ;

C 110 bkby =§02 ;bank byte

AL 120 pchi =§03 ;prg counter hi

MH 130 pclo =504 P lo
EN 140 sreg =505 ;cpu status reg

AM 150 areg =§06 ;ace. reg.

06 160 xreq =§07 x "

OH 170 yreg =508 vy

MC 180 sptr =§09 ;stack pointer

CB 190 hinmi =§298 ;omi ptrs

DN 200 lonmi =$299

KC 210 cmdflg =§2%a ;walk flag

PA 220 gflg =§2% ;quick "

AN 230 rflg =$29c ;zeturn flag

RM 240 oldnmi =§29d ;storage for nmi
DD 250 brvec =§316 ;break vector

BK 260 mmive =318 jomi "

PK 270 exmon =§32 jexmon "

OF 280 talo =$dd04 itimer a low byte
BE 290 tahi =talotl

ON 300 ier =$dd0d 7int. cntl reg.

MN 310 cra =§ddle ;control reg. a

JE 320 prer =§5598 ;bas. print <cr>
IM 330 gslow =§77cd ;" slow cnd

JO 340 prsp =§5604 ;" print space
JN 350 meval =§b7al ;mon eval entry

G 360 primm =$££7d tkernal print

OF 370 getin =§ffed ;" get

CP 380 ;

DN 390 *=§3000 ;'sys12288

GA 400 ;

GP 410 init =t

KB 420 ;

HE 430 sei

oI 440 1da #<newbrk ;break vector
¥r 450 ldy #>newbrk ;will point to
EI 460 sta brvec ;newbrk routine
cA 470 sty brvectl

BK 480 1da f<wtwalk ;ezmon

FL 490 ldy #>wtwalk ;point to

FL 500 sta exmon ;wtvalk

AD 510 sty exmontl

155

32
255

155

1713
152
160
120
21
221
162
166

12

N R EESCE RSB ECS NS RIYRE REREd N ARdER S RERENER8E3BEEESR

520
530
540
550
560
570
580
590
600
610 ;

1da §§40
ldx §§fa
sta oldnmi

stx oldnmi+l

1da §0
sta cmdflg
sta qflg
cli

brk

;normal
;omi entry

;init 'walk' &
;'quick’ flags

7jump to newbrk

620 rmon =* ;return to monitor

630 ;
640
650
660
670 ;

dec pelo
bne inmon

dec pchi

680 inmon =*

690 ;
700
10 ;

720 norm =*

730 ;
140
750 ;
760
10 ;
780
190
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950 ;

jmp $b046

jmp $b0b2

wtwalk =%

mp #"V"
bne norm
jsr meval
bes norm
1dx $60
1dy $61
1da §62
sta bkby
stx pelo
sty pehi
tsx

stx rflg
1da #<walk
ldx $Hvalk
sta $fa
stx $fb
jmp (!$fa)

;init mon. entry

;exmon norm. entry

;read keyword for
jwalk command

;evaluate cmd

;store addr
;taken from
;opl

;store stack ptr
;for 'rts’ eval.

;jump to walk
;routine via
iz-page

960 direg =* ;display registers

970 ;
980
990

1000 .asc "sr ac xr yr sp pe"

jsr prer
jsr prim

1010 .byte $0d,0

1020
1030
1040
1050
1060
1070 d1
1080
1090
1100
1110
1120 &2
1130
1140
1150
1160
170
1180
1190
1200
1210
1220
1230

1dx bkby
1da pehi
cup #540
bee dl
ldx #50£
stx $68
sta $67
1da pelo
sta $66
1dy #500
1da !sreq,y
jsr §b8as
iny

cpy #5
bee d2
jsr $b892
dy #0
ldx $2aa
stx $4d
jsr §blla
jsr §b659
jsr $b608

;is it a basic
;or kernal call

;80, set 'bank 15

;display 2-char
;ascii for reg

;& 5-char ascii
; for pe

;store ' fetvec’
;mon indfet entry

;test code in acc
;mon disassembly

Way NOT Reprnt wiihoar Permission

EP 1240 1dx $4d

HR 1250 stx §2aa ;restore 'fetvec’
MK 1260 jmp prer

M6 1270 ;

GH 1280 ;

NE 1290 rest =* ;restore nmi vec

KI 1300 ;

AF 1310 1lda oldnmi

ME 1320 1dy oldnmi+l

G 1330 sta nmive

BI 1340 sty nmivetl

o 1350 rts

e 1360 ;

AN 1370 ;

CC 1380 newbrk =* ;break routine

BO 1390 ;

GE 1400 1da §§80 ;regain control
W 1410 sta cra ;from timer

JL 1420 1da ier

AJ 1430 jsr rest

KB 1440 cld

FD 1450 pla ;get reg contents
BC 1460 sta bkby ;from stack

EP 1470 pla ;and store in z-p
GF 1480 sta yreg

R 1490 pla

J6 1500 sta xreg

06 1510 pla

GG 1520 sta areg

CI 1530 pla

MI 1540 sta sreg

6J 1550 pla

EL 1560 sta pclo

KR 1570 pla

EK 1580 sta pchi

A 1590 tsx ;store stack patr
JE 1600 stx sptr

IN 1610 cli

GB 1620 1da sreg ;get cpu status
DN 1630 and #§10 ;break bit set
00 1640 beq nl ;no then continue
M 1650 jop rmon

PM 1660 n1 bit cmdflg ;if bit 7 set

IL 1670 bmi ckrfg ;then do ‘walk’
1B 1680 ldx sptr ;did we reached
M 1690 cpx qflg ;the end of

MR 1700 bne delay ;of subroutine
MW 1710 1da §0 ;yes, stop running
PL 1720 sta qflg ;and walk

D 1730 ;

DH 1740 ckrfg =* ;check for last rts

ME 1750 ;

JB 1760 jsr gslow

F0 1770 1dx sptr

IK 1780 cpx rflg

16 1790 beq wtemd

HD 1800 bee wtemd

NN 1810 jmp inmon

CJ 1820 ;

DO 1830 wtemd =* ;wvait for new cmd

GK 1840 ;

GD 1850 jsr direg

BK 1860 wl jsr §c012 ;check kbd matrixz
BI 1870 jsr getin ;get char

IK 1880 beq w1

BA 1890 cmp #3503 ;stop key pressed
1B 1900 bne quick

BE 1910 jmp inmon

G 1920 ;

08 1930 quick =* ;full speed cud

KA 1940 ;

NC 1950 cmp #q"

DB 1960 bne walk

Volume 9, Issue 6

n

« www.Commodore.ca

BK 1970 tsx ;store 'return’
FF 1980 stx qflg ;address

FO 1990 1da §1 ;set 'quick’ flg
PJ 2000 sta cmdflg

16 2010 bne delay

KF 2020 ;

NO 2030 walk =* ;walk cmd rout

0G 2040 ;

HO 2050 1da #$80 ;set 'walk' flg
IN 2060 sta cmdflg

MI 2070 ;

JC 2080 delay =* ;delay for raster

AR 2090 ;

LB 2100 ldx #0

BN 2110 1da $d011

HB 2120 tay

KD 2130 and $$10

Py 2140 beq d4

NB 2150 tya

17 2160 and #$ef

BF 2170 sta $d011

AF 2180 nop:nop

NF 2190 1dy #50c

OL 2200 d3 dex

oM 2210 bne d3

HG 2220 dey

co 2230 bne d3

HA 2240 d4 sei

JN 2250 1da #539 ;set clock timer
P¥ 2260 sta §dd04 ;in cia2

NE 2270 stx $dd05

0R 2280 1da 4§81 ;enable timer a
NE 2290 sta icr

EP 2300 1lda cra ;start timer
G0 2310 ora §1

AG 2320 sta cra

NN 2330 1da #>newbrk

HE 2340 1ldx #<newbrk

JB 2350 sta nmive+l

17 2360 stx nmive

ND 2370 ldx sptr

IE 2380 tzs

M 2390 ;

JR 2400 jmpfar =* ;prepare jmpfar

20 2410 ;

0K 2420 1lda pechi

RP 2430 pha

GO 2440 1da pclo

02 2450 pha

GO 2460 lda sreg

cC 2470 pha

KB 2480 1da bkby

PR 2490 jmp §2£2 ; jupfar entry

Shortest Catalog in BASIC 2.0?
Michael Gilsdorf, Toledo, OH

Here’s a little four-liner for the C64 (or VIC) that will get you an
on-screen disk directory in a hurry. It features a pause function
that can be toggled on or off by pressing any key. No ML code -
so you can easily tailor it to your needs (change device or drive
number, display specific files, etc.). It may very well be the
shortest, fastest BASIC directory routine with a pause feature.

AI 10 t=1:x=12:n$=chr$(0) :p=198:g=255:y=13
:printchr$ (147) :opent, 8,0, "$0" :get#t, a$
JJ 20 get#t,a$,a$,a$,a$, bs,c$

:printasc (b$+n$) *256+asc (a$+n$)c$; : fori=ttox

May Not Reprint Without Permission

KD 30 get#t,a$, b$:printasb; :next :print
:1fb$<>""thenx=y:waitp, q, t :pokep, 0:goto20
EG 40 closet

Don’t Assume Device 8!
Michael Gilsdorf, Toledo, OH

If you’re writing a program that loads, saves, or otherwise ac-
cesses the disk drive, don’t assume the default is always de-
vice 8, drive 0. Allow users the option to use drive 1 (for dual
drives) and devices 8, 9, 10 and 11 as well. Programs which
allow the use of multiple devices and drives eliminate the need
to have the user swap program and data disks.

So how do you tell which device numbers the user may want
to use? Simple! First, PEEK location 186 to tell what device
number was used to load the program file (last device number
accessed). Use this same number if the program will be load-
ing any additional program files. This location is the same on
both the C64 and C128. Second, by opening and closing the
device, then reading the STatus, you can tell what devices are
present. Here’s a short and simple BASIC routine that demon-
strates this. It checks the last device number accessed, which
device numbers are present, and the type of drive.

PC 10 rem device number check -- by michael gilsdorf

LP 20 dn=peek(186) :print"device number";dn;
": accessed last"

AM 30 for dv=8 to 1l5:open 1,dv,15:closel

LK 40 print"device number";dv;": ";
:a$="not present":if st<0 then 70

OP 50 openl,dv,15,"uj":for d=1 to
1000:next:input#l,a,a$:closel

GC 60 a$=right$ (a$,4):if left$(a$,1)<>"1"
then a$="drive unknown"

JA 70 print a$:next

Disk Partitions On The 1571
M. Garamszeghy, Toronto, ON

Being a developer of software for the C128 in both its native
mode and CP/M mode, I frequently send out program disks to
various people for ‘beta testing’ (i.e. testing of the programs
by others before release to the general public). In order to save
on disk and mailing costs, I sometimes send out more than one
program on a disk.

Sometimes I even send out CP/M and C128 software on the
same disk. Since I do not like using flippy disks, I have devel-
oped a method to partition a 1541 or 1571 disk so that it can
be used by both CP/M and CBM DOS at the same time. The pro-
gram listed below gives you just over 70K available to CP/M
and about 70K (for a single-sided 1541 disk) or 240K (for a
double-sided 1571 disk) for use by normal CBM DOS. (The
numbers include the inefficiencies in disk utilization caused by
the chosen CP/M format.)

12

Transactor

s WWw.Commodore.

Ca

May NoOT Reprint Withoul Permission
The program works by formatting the disk in CBM DOS mode
normally, then reserving tracks 1 to 17 with the DOS block- AWARD WINN |NG*
allocate command. You then write a blank CP/M directory (i.e.
all bytes set to hex $e5) to track 3, and presto you have a C64 BIG B LU E READER 1 28/ 64
style CP/M disk for use in C128 cP/M mode (or C64 CPM if you i ili
have the CPM cartridge) occupying the lower half of the disk Flle TranSfer Utlhty
isk i Big Blue Reader 128/64 is ideal for those who use IBM PC compatile MS—
and a CBM DOS disk in the upper tracks. DgSeou:tpute:rs at work and have th?arCO:’ns:\odo?eﬁsZ% oruathcoome. °
sy S T . BT v,
oas! use ram 10! N
It should be noted that there are some limitations to this tech- flos bglvgsen COn&rg'o%grol?nd k;BM MS-DOgﬁ dlskett%sal . 27 se1 diok
nique. Firstly, you must not validate or ‘collect’ the disk in 3,,‘”39,;,2:‘,3;‘,24 63,2‘:,:?.,:;::7,,,0:5;,9 o dfvee. 1571 or 1
CBM DOS mode. This would de-allocate the reserved CP/M 3??“;,'1“,":?,2,‘:'%33‘;’5,&3&;%:,“ Rt M 40 & 80
tracks.. Secondly, you must not put'more thafl about 70K of g;gl'"w Racior 64 b avaliable separately only §20.95
stuff in the CP/M area or else you will overwrite the CBM DOS :
BAM, directory, and data tracks. BIG BLUE READER 1 28/64 Ol‘lly $44-95
Order by check, money order, or COD.
Free shipping and handiing. No credit card orders please.
BBR 128/64 Is available as an upgrade to current users
“‘partition.bas” for $18 plus original BBR disk. Foreign orders add $4
CALL or WRITE for more information.
NEW - BIBLE SEARCH - Complete KJV New
IE 10 rem *hKKRKKRREKKRKKRKRKKAKEKKRRERKER Testament with very fast word and verse search
BJ 20 zem partition v 1.0 capabilities. Complete Concordance. Word(s) in text
EA 30 rem <c> 1988 herne data systenms ltd. can be found and displayed in seconds. Includes both
GG 40 rem KREAKKERKKKKKKEKKKXKERRKEKKAKKEAK C64 and C128 mode programs. Please specify 1541,
G 50 : 1571 or 1581 formatted disk. only $25.00
KF 60 dv=8 : rem devicef TP,
DA 70 print "{clr} partition v1.0" To order Gall or write:
DK 80 print " <c> 1988 herne data systems ltd." SOGWAP Software
0J 90 print : print : 115 Bellmont Road; Decatur, IN 46733
DM 100 input "enter disk name,id code ";na$,id$ Ph (219) 724-3900
BE 110 print : print "insert new disk in device .."dv “Blg Blue Reader was voled the best utility program by RUN's 1988
CI 120 print : print "then press & key to continue" Reader Cholce Awards.
HN 130 getkey a$
A0 140 print : print "formatting disk ==> "na$+", "+id$
BF 150 open 15,dv, 15, "n0:"+na$+", "+id$
JM 160 input#15,ex$: print
06 170 print§15,"i0"
¢ el JASON-RANHEIM
GJ 190 print chr§(27)"jallocating cp/m space ... track ==>"t;
»oammetun CARTRIDGE MATERIALS
NN 220 next 5.t FOR YOUR COMMODORE 64 or 128
HA 230 open 2,dv,2,"§" .
ED 240 print : print Quallty Products
EB 250 print"creating cp/m directory ..." : print !
W 260 ror bt 0 250 from the World Leader!
D 1 prlskkR crhG0); * Promenade C1 EPROM Programmer
FA 290 for s=0 to 8 * Game Type Cartridges
KI 300 print chr§(27)"jwriting cp/m directory ... sector =>"s; * Bank Switching C.am'_ldges)
PI 310 print15,"u2: 2 0 3";s ¢ RAM/ROM Combination Cartridges
EE 320 next e Capture Archival Cartridge System
JK 330 close 2 : close 15 e Cases, EPROMS, Erasers, Etc.
IL 340 print : print "==> done <=" T
Call or write for complete information!
prem— Call Toll Free 800-421-7731
Top-Tech International, Inc. from California 916-878-0785
.r]_l U Advanced Compuler Syslems Tech SUppOﬂ 916-878-0785
INDUSTRY FIRST — LIFETIME COMPUTER"
it Wty gstelefor v €04 ot el sold bl JASON-RANHEIM
i‘{ﬁ'@’{%ﬂ“{%ﬂ%‘%ﬁﬂﬂfﬁﬁ“ i;'i;'éﬁ?ﬁf%ﬁ% 'n’n‘.".'.i?ni '::c'?f'{";'.f;i‘ 3105 Gayle Lane
B -y S T Auburn, CA USA 95603
@15)389:9901 o i i dare e, el bAISIAT e (215)389-9901
Volume 9, Issue 6 13

« www.Commodore.ca

May Not Reprint Without Permission

The ML Column

Two Kinds of Numbers

by Todd Heimarck

I want to start by explaining how I write this column. The kind
editor (KE) lets me know two weeks before the deadline that
he needs to fill up some pages in the magazine and that I
should write another column. I say to myself, ‘“Well, if it were
me, topic XYZ would be interesting.” Sometimes I suggest the
idea to the KE, who usually says either “Fine” or “No, we did
that two years ago.”

But I’m never sure if the XYZ topic interests you. You buy this
magazine; you should get a vote. If there’s something you
want to see, let me know. Send a letter to: The ML Column,
Transactor, 85 West Wilmot St., Unit 10, Richmond Hill, ON,
Canada, L4B 1K7 (they’ll forward it to Seattle). Or leave elec-
tronic mail on CompuServe to ID 76703,3051.

If you saw the last issue (Volume 9, Issue 5), you saw the let-
ter from Barry Kutner. He wants to read more about in-
put/output routines in machine language. Sounds good to me.
We’ll look at 1/O in the next issue.

This issue we’ll finish the big numbers idea from last issue.
Kinds of people

Someone once said that there are two kinds of people in the
world: people who think there are two kinds of people and
people who don’t.

For thousands of years, mathematicians have made a less trivial
distinction. They divide whole numbers into primes and compos-
ites. Each prime number is divisible only by 1 and itself; it has no
other divisors. Every composite number is divisible by two or
more primes. For example, 650 breaks down into 2 # 5 # 5 * 13.
The numbers 2, 5, and 13 are primes; 650 is a composite.

There’s no formula for testing primes and there probably never
will be.

In the third century BC, a Greek mathematician named Eratos-
thenes invented a way to generate prime numbers. His method,
The Sieve of Eratosthenes, is still in use because it’s simple
and it works. You go through a list and cross off all numbers
that are composite. Whatever’s left is a prime.

Let’s say you want the prime numbers betwen 2 and 30. Write
down the numbers. The first prime is 2. Now you cross out all
multiples of 2 - the even numbers 4, 6, 8, 10, and so on. Next on
the list is 3, another prime. Cross out 6, 9, 12, 15, and so on. Al-
though 4 comes after 3, it’s been crossed off, being a multiple of
2, so you skip ahead to 5. The remaining primes (after some
more crossing out) are 7, 11, 13, 17, 19, 23, and 29.

Running the program

The program Primes calculates all prime numbers up to
8,386,549. To run it, just sys 49152. It prints them to the
screen. If you prefer, you can redirect output to a disk file or
the printer (with open 4,4:cmd 4:sys 49152, for example).

Be prepared to wait; it takes nearly four hours to print all of
the primes.

If you’re curious about how I fit 8,000,000+ variables into a
program, I’ll admit that I cheated a bit. You must have a RAM
Expansion Unit (REU) installed. I wrote it for a 1750 REU °
(512K), but it should work just as well with the 1764 (256K)
or the 1700 (128K). If you have less than 512K, change the
variable REUTYPE at the end of the program. Putting a smaller
number into REUTYPE also makes the program run faster; theo-
retically, every time you cut the value in half, you get half as
many primes, but the program finishes in half as much time.

It runs on a 64, but you can reassemble it to a new location in
the range 0-16384 and run it without modification on a 128. 1
tested it at location 5000. Two notes for 128 users: Enter a
bank 15 command before SYSing to the program (to make the
Kernal ROM and REU registers visible) and don’t run the pro-
gram in FAST mode. The RAM Expander doesn’t like FAST
mode.

Let the data write the program

This is one of those programs that’s built around the data
structure. Once you figure out how to fit the data in memory,
the program almost writes itself.

Begin with the 1750 REU’s memory of 512K. That should be
enough for 524,288 byte-sized variables. We don’t need entire
bytes, though, because each variable has only two possible

14

Transactor

« www.Commodore.

Ca

states: prime or not-prime. That amount of information can fit
into a bit. We’ll arbitrarily decide that 1 means prime and 0
means composite. There are eight bits in a byte, so we have
room for about 4,000,000 variables.

There’s one more trick to stretch the data. We can ignore all
even numbers, which always end with a zero in base two, any-
way. We’ll only deal with odd numbers. Byte 0 of the REU will
hold eight bits representing the odd numbers 1, 3, 5, 7, 9, 11,
13, and 15. In byte 1, the bits are 17-31. In byte 2, the bits are
33-47, and so on.

The program has two primary subroutines named FILLREU and
PRIMES. The first fills up memory with $ff bytes (because we
start out assuming that all odd numbers are prime until they’re
crossed off the list). The second prints out the primes, while
whittling away at the composites.

Talking to the REU

The RAM Expansion Unit’s 11 registers map into the addresses
$df00-df0a on both the 64 and 128. The important ones are:

* DMACMD ($df01): a multipurpose command register. When
you store a value here, the appropriate command executes.
In bits 0- 1, the value 00 means STASH, 01 means FETCH, 10
means SWAP, and 11 means VERIFY. Bit 4 should be 0 if you
want the command to execute immediately (if it’s a 1, the
command waits until a value is stored at $ff00, which is
useful on the 128 in some situations). Bit 5 is the load flag.
If it’s 0, the addresses in DMAADL and DMALO are automati-
cally incremented after a memory access. If it’s 1, the
addresses are restored to their original values. Bit 7 is the
execute flag; it signals the REU to begin the operation speci-
fied in bits 0-1.

DMAADL ($df02): two bytes that specify an address inside
the computer. In this and other registers, the low byte is
stored before the medium or high bytes.

DMALO ($df04): three bytes that specify an address inside
the REU. Whether or not the addresses in DMAADL and
DMALO increment depends on bit 5 of DMACMD (after an
operation) and bits 6-7 of $dfOA (during an operation).

DMADAL ($df07): two bytes that specify the number of
bytes to transfer. Up to 65,535 bytes can be transferred.

DMAVER ($dfOa): address control register. Bit 6 controls
whether the REU memory increments during an operation (0
means yes, 1 means no). Bit 7 controls whether the system
memory increments.

The FILLREU routine begins by putting the number $ff into
MVAL, which happens to be location $00ff. We want to fill the
whole REU with $ff because ones represent prime numbers and
we assume that all numbers are prime until proven otherwise.
That one byte will fill all 512K because an $80 is stored in

May Not Reprint Without Permission

DMAVER. Next, we put 4096 into NBYTES (a shadow of
DMADAL) and set the addresses in C64MEM and REUMEM (shad-
ows of DMAADL and DMALO). Then copy the shadow registers
to the real REU registers in the COPYREGS subroutine. Then
loop 128 times (or 64 or 32 times for a 1764 or 1700 RAM
Expander).

When FILLREU is finished, the REU should contain nothing but
ones.

Skipping over even numbers

We’ve already decided that we don’t need?to bother with even
numbers. That means the program’s outer loop has to count
from 1 to 3 to 5 to 7, up to 8 million, two at a time.

In the inner loop where the multiples of x get zapped, we
can count 2 * x numbers at a time. For example, if we dis-
cover that 5 is a prime number, the algorithm says that we
cross off every fifth number: 10, 15, 20, 25, etc. But we’re
ignoring even numbers, so we needn’t bother with 10, 20,
30, and the others. Start with 5, add 10 (making 15), add
ten (25), add ten (35), and we’ll zap only the odd multiples
of 5.

The second major subroutine, called PRIMES, contains mostly
ISRs to other routines in the program. Start out with the num-
ber 1 and clear that bit (meaning that 1 is not prime). Then the
main loop (MAIN) begins. Add two to the number in BIG. BIG
is similar to BIGSIX from the last column, but it holds only
three bytes instead of six. A second three-byte number is TEST
(used for the inner loop). A third is DOUBLE, which is just BIG
times two.

The TOOBIG subroutine checks the value in TEST to see if the
loop (inner or outer) should end because the number has
grown too large.

TESTPRIM tests TEST to see if it’s prime. When a prime is locat-
ed, two things happen: PRINTIT prints it out (in ASCII decimal)
and the routines in CPLOOP zap all multiples of TEST.

The PRINTIT routine is copied almost exactly from MAKEDEC
from the BIG1.SRC program from last issue. It converts a big
binary number into printable ASCII characters that provide a
decimal (base ten) number. It also adds a comma and a space
to separate the numbers.

With a 512K REU, there is a large delay of about 20 minutes
between printing the number 3 and the number 5. There are a
lot of multiples of 3 between 9 and 8.4 million (in that
20-minute pause, more than a million bits are turned off).
Between 5 and 7, the delay is only about 12 minutes. The
delay gradually decreases as the primes get bigger. I inserted
the inc 53280 line to increment the border colour on the 64
and on the 128 in 40-column mode. When the border flashes,
you know the program is running and not locked up in an end-
less loop.

Volume 9, Issue 6

15

« www.Commodore.ca

May Not Reprint Without Permission

If you don’t want to wait 20 minutes between 3 and 5, make BH 130 dnaver = §df0a ; if address increments
REUTYPE a smaller number. $80 means 512K, $40 means CA 140
256K, and $20 means 128K. But there’s no reason you & 130 jor fillrew ; £ill with 1s
couldn’t used a smaller number such as $04 or $02. g 1:2 ::: primes ; print all prines
. KC 180 ;
Making bricks CH 190 fillreu = *
EE 200 1da #5£f ; the f£ill byte
In a previous column, I said that if BASIC is a pile of bricks pp 210 sta mval ; the location in 64 memory
from which you can build a house, then ML is like a pile of e 220 1da #$80 ; don't increment 64 memory
clay from which you make the bricks to build a house. 16 230 sta dmaver ; reu register
BB 240 1da #<4096 ; 4k at a time
The trick, I think, is to make the bricks small enough. A 250 sta nbytes ; number of bytes
MAKEDEC from last issue printed out a decimal number. It g ;762 ::: ::;:::u
needed only slight modifications to become PRINTIT this issue. a 280 Ma faval ; location in 64 nenory
L . . GC 290 sta c64mem
Programmmg is like musical composmon. When you compose gy 39 1da Haval
music, you have to keep the entire structure of the piece in jp 319 sta c6mentl
mind at all times. But you can divide a symphony into move- gy 320 1da #0 ; location in reu memory
ments. Movements break down into parts. Parts break down oN 330 sta reumem
into phrases. Those are the bricks. KK 340 sta reumemtl
IL 350 sta reumem+2
When I wrote the PRIMES subroutine, I divided the program O 360 ' _
into small modules that did specific tasks. For example, I ¥ 370 Jsr copyregs i Copy to reu registers
typed jsr getmval, knowing that I would eventually write a D 380 l.dx reutype .
. .. KA 390 frloop jsr stash ; stash many times
routine that would grab a byte from the REU and put it in — 1da #54096:sta cnadalsl
MVAL. I didn’t have the routine written yet, but I knew how to 2 499 dex '
write it. FB 410 bne frloop
M 420 1da #1:sta nbytes ; from now on, one byte at a time
We’ve done enough with big three-byte and six-byte numbers. DI 430 1da #0:sta nbytest+l
In the next column, we’ll look into 1/O. BN 440 1da #5c0:sta dmaver ; don’t increment any addresses
M 450 jsr copyregs
If you’d like to do something with big integers, here’s an idea. IL 460 rts
Set aside a 16K section of memory (in the computer, not the 470 ;
. s GD 480 copyregs = *
REU). If you store only odd primes, that’s enough memory to .
; AH 490 1dy #6 ; seven registers
handle values up to 262',14.13. Next, ask the user to. input a o 50 celoop 1da cfdnemy ; from memory
number up to about 68 billion (see the GSTRING routine from g 51y sta dnsadl,y ; to the reu
BIG1.SRC in Volume 9, Issue 5). Now figure out its factors. If py 529 dey
the binary number ends with a zero, it’s divisible by two, so M 530 bpl crloop
print a 2 and shift to the right. If not, take the square root (see IA 540 rts
BIG2.SRC) and call that MAX. That’s the highest possible factor ¥ 550 ;
if it is a square. Run through the prime numbers from 3 to EE 560 fetch =*
MAX and see if they divide into the target number (see Volume % 570 lda #femnd ; fetch comand
9, Issue 2). If you find a factor, calculate the new value of MAX ;ﬁ :gg tash _b:e doit i branch always
and repeat the loop until you find all of them. 2® 600 seas '1 da fscmd ; stash comand
KA 610 doit sta dmacmd
IF 620 rts
Listing 1: primes.src X EH 630 primes = *
LT 640 jsr numberl ; start with $000001
FG 10 rem save'prines.src”,8 HI 650 jsr getmval ; fetch bit for 1
FO 20 sys700 NL 660 jsr clbit ; clear that bit
OF 30 *=49152 MG 670 main jsr addtwo ; add 2 to big
AJ 40 .opt oo CJ 680 jsr big2test ; copy big to test
KP 50 mval = §ff ; zero-page location for value to fetch or stash JF 690 jsr toobig ; is it too big
Gf 60 scand =144 ; stash comand oM 700 bec more ; keep going if ok
06 70 fomd =177 ; fetch comand ¥ M 710 rts ; else get out of primes (because we're done)
HE 80 chrout = $££d2 . :
18 90 dnacnd = $d£01 ; comand for reu GL 720 more jsr testprim
BC 100 dmaadl = $d£02 ; c64 memory address G 730 beq nain i if equal, not a prime
JP 110 dmalo = $df04 ; reu memory address IL 740 jsr printit ; if not equal, we have a prime, so print it
KE 120 dmadal = §df07 ; number of bytes KI 750 jsr times2 ; multiply by two

Transactor

« www.Commodore.ca

PD 760 cploop jsr composit ; add test = test + double

M 770 inc 53280

EF 780 jsr toobig

HE 790 bes main ; too big, back to the next prime
NF 800 jsr getmval ; fetch from reu

DM 810 jsr clbit ; clear that bit, it isn’t a prime
BO 820 jmp cploop

EL 830 ;

HE 840 numberl = * ; start with the number $000001
BD 850 1da #1

LK 860 sta big

BF 870 1da #0

17 880 sta bigt+l

DK 890 sta big+2

BP 900 jsr big2test

KH 910 rts

0A 920 ;

DH 930 big2test = * ; copy three bytes from big to test
K3 940 1da big:sta test

MJ 950 1da bigtl:sta testtl

KK 960 1da big+2:sta test+2

GL 970 rts

KE 980 ;

NL 990 getmval = * ; get a value from reu and put it in mval
JB 1000 1da test ; copy test to reumem

GI 1010 sta reumem

B 1020 1da testtl

MF 1030 sta reumemtl

NK 1040 lda test+2

EH 1050 sta reumemt2

GK 1060 jsr rotreu ; rotate reumem to right
PH 1070 1da reumem:and §7

IA 1080 sta bitloc ; bit location (0-7)

GI 1090 jsr rotreu:jsr rotreu:jsr rotreu

DF 1100 jsr copyregs

oM 1110 jsr fetch ; get the byte

Py 1120 1lda mval

GF 1130 rts

KO 1140 ;

HH 1150 rotreu lsr reumemt2;ror reumemtl:ror reumem:rts
0P 1160 ;

EO 1170 clbit = * ; clears a bit (call fetch first)
CL 1180 1dx bitloc ; bit location 0-7
DH 1190 1lda mval ; value in memory
0I 1200 and bitoff,x ; clear the bit
HD 1210 sta mval

M 1220 jsr copyregs

BG 1230 jsr stash ; store back in reu
EM 1240 rts

IF 1250 ;

AR 1260 addtwo = * ; adds two to big
MG 1270 cle

BB 1280 1lda big

10 1290 adc #2

DG 1300 sta big

IA 1310 1da bigtl

FA 1320 adc #0

KF 1330 sta bigt+l

HC 1340 1da big+2

DC 1350 ade #0

JR 1360 sta big+2

GE 1370 rts

KN 1380 ;

HRBEES8EBE88S

SEERBESEEBESESSA8ERBEREBEBEEREERESE

May Not Reprint Without Permission
1390 toobig = * ;checks test for out of range (about 8 million for 512k reu)

1400 1lda test+2 ; high byte of test
1410 cmp reutype

1420 rts ; carry set means error/too big, clear means it's ok
1430 ;

1440 testprim = *

1450 jsr getmval

1460 1dx bitloc

1470 and biton,x

1480 rts

1490 ;

1500 printit = *

1510 1da #0:pha

1520 mdlpl 1ldx #24 i 3 bytes = 24 bits
1530 stx count

1540 1da #0:sta temp

1550 mdlp2 asl test:rol test+l:rol test+2
1560 rol temp

1570 1da temp

1580 cnp #10:bee mdcool

1590 sbe §10

1600 sta temp

1610 mdcool php

1620 lsr test

1630 plp

1640 rol test

1650 dec count

1660 bne mdlp2

1670 1da temp:ora #48 ; make it an ascii number
1680 pha

1690 1da test:ora test+l:ora testt2
1700 bne mdlpl

1710 priloop pla

1720 beq prend

1730 jsr chrout

1740 jmp priloop

1750 prend jsr big2test ; put test back
1760 1da #44:jsr chrout ; comma
1770 lda #32:jsr chrout ; space
1780 rts

1790 ;

1800 times2 = *

1810 1da big:asl:sta double

1820 1da bigt+l:rol:sta doubletl

1830 1da big#2:rol:sta doublet2

1840 ts

1850 ;

1860 composit = *

1870 cle

1880 1da test:adc double:sta test

1890 1da test+l:adc doubletl:sta testtl
1900 1da test+2:adc double+2:sta test+2
1910 rts

1920 reutype .byte $80; $80 means 512k, $40 is 256k, $20 is 128k
1930 biton .byte 1, 2, 4, 8§, 16, 32, 64, 128
1940 bitoff .byte 254, 253, 251, 247, 239, 223, 191, 127

1950 e = *

1960 cédmem = e ; 2 bytes (64k)
1970 reumem = e+2 ; 3 bytes (512k)
1980 nbytes = e+5 ; 2 bytes

1990 big =47 ; 3 bytes

2000 test = etll ;3 bytes

2010 double = e+13 i 3 bytes

2020 bitloc = e+l ; 1 byte

2030 count = etl? i 1 byte

2040 temp = etl8 ; 1 byte

Volume 9, Issue 6

17

C.‘ www.Commodore.ca

May Not Reprint Without Permission

Listing 2: primes.gen

-
- -
HO 100 rem generator for "primes.obj" Blts & p Ieces I:

FL 110 n§="primes.cbj": rem name of program

KB 120 nd=468: sa=49152: ch=70208 TI Di I

(for lines 130-260, see the standard gemerator on page 5)

AC 1000 data 32, 7, 192, 32, 105, 192, 96, 169
10 1010 data 255, 133, 255, 169, 128, 141, 10, 223
CG 1020 data 169, 0, 141, 217, 193, 169, 16, 141
BG 1030 data 218, 193, 169, 255, 141, 212, 193, 169
FP 1040 data 0, 141, 213, 193, 169, 0, 141, 214
0C 1050 data 193, 141, 215, 193, 141, 216, 193, 32
MB 1060 data 83, 192, 174, 195, 193, 32, 99, 192
PL 1070 data 169, 16, 141, 8, 223, 202, 208, 245
CE 1080 data 169, 1, 141, 217, 193, 169, 0, 141
KI 1090 data 218, 193, 169, 192, 141, 10, 223, 32
AL 1100 data 83, 192, 96, 160, 6, 185, 212, 193
BI 1110 data 153, 2, 223, 136, 16, 247, 96, 169
DG 1120 data 177, 208, 2, 169, 144, 141, 1, 223
1130 data 96, 32, 157, 192, 32, 193, 192, 32
1140 data 250, 192, 32, 11, 193, 32, 174, 192
1150 data 32, 37, 193, 144, 1, 9%, 32, 44
1160 data 193, 240, 239, 32, 54, 193, 32, 144
1170 data 193, 32, 166, 193, 238, 32, 208, 32
1180 data 37, 193, 176, 222, 32, 193, 192, 32
1190 data 250, 192, 76, 137, 192, 169, 1, 141
1200 data 219, 193, 169, 0, 141, 220, 193, 141
1210 data 221, 193, 32, 174, 192, 96, 173, 219
1220 data 193, 141, 222, 193, 173, 220, 193, 141
1230 data 223, 193, 173, 221, 193, 141, 224, 193
1240 data 96, 173, 222, 193, 141, 214, 193, 173
1250 data 223, 193, 141, 215, 193, 173, 224, 193
1260 data 141, 216, 193, 32, 240, 192, 173, 214
1270 data 193, 41, 7, 141, 228, 193, 32, 240
1280 data 192, 32, 240, 192, 32, 240, 192, 32
1290 data 83, 192, 32, 95, 192, 165, 255, 96
1300 data 78, 216, 193, 110, 215, 193, 110, 214
1310 data 193, 96, 174, 228, 193, 165, 255, 61
1320 data 204, 193, 133, 255, 32, 83, 192, 32
1330 data 99, 192, 96, 24, 173, 219, 193, 105
1340 data 2, 141, 219, 193, 173, 220, 193, 105
1350 data 0, 141, 220, 193, 173, 221, 193, 105

1360 data 0, 141, 221, 193, 96, 173, 224, 193
1370 data 205, 195, 193, 9, 32, 193, 102, 174 From the famous book of the same name, Transactor

1380 data 228, 193, 61, 196, 193, 96, 169, 0 Productions now brings you Bits & Pieces I: The Disk!
1390 data 72, 162, 24, 142, 229, 193, 169, 0 You’'ll thrill to the special effects of the screen
1400 data 141, 230, 193, 14, 222, 193, 46, 223 dazzlers! You’'ll laugh at the hours of typing time
1410 data 193, 46, 224, 193, 46, 230, 193, 173 you’ll savel You'll be inspired as you boldly go
1420 data 230, 193, 201, 10, 144, 5, 233, 10 where no bits have gone beforel

1430 data 141, 230, 193, 8, 78, 222, 193, 40
1440 data 46, 222, 193, 206, 229, 193, 208, 219 “Extraordinarily faithful to the plot ‘“‘Absolutely
1450 data 173, 230, 193, 9, 48, 72, 173, 222 of the book... The BAM alone is magneticl!”
1460 data 193, 13, 223, 193, 13, 224, 193, 208 worth the price of admission!” Gene Syscall
1470 data 192, 104, 240, 6, 32, 210, 255, 76 Vincent Canbyte

1480 data 121, 193, 32, 174, 192, 169, 44, 32
1490 data 210, 255, 169, 32, 32, 210, 255, 96 “If you mount only one bits disk in 1987, make it this
1500 data 173, 219, 193, 10, 141, 225, 193, 173 onel The fully cross-referenced index is unforgettablel
1510 data 220, 193, 42, 141, 226, 193, 173, 221 Recs Read, New York TI$
1520 data 193, 42, 141, 227, 193, 96, 24, 173
1530 data 222, 193, 109, 225, 193, 141, 222, 193
1540 data 173, 223, 193, 109, 226, 193, 141, 223 BITS & PIECES I: THE DISK, A Mylar Film, in association with Transactor Productions.
1550 data 193, 173, 224, 193, 109, 227, 193, 141 Playing at a drive near youl

1560 data 224, 193, 96, 128, 1, 2, 4, 8 Disk $8.95 US, $9.95 Cdn. Book $14.95 US, §17.95 Cdn.

1570 data 16, 32, 64, 128, 254, 253, 251, 247 .
1560 data 239, 223, 181, 127 T Book & Disk Combo Just $19.95 US, $24.95 Cdnl

3RS 8EE8H

=]
8%

ERES3REesEglBEEE88

WARNING: Some sectors contain null bytes. Rated GCR

REE88SoERBFPARIERSEEREEERSS

Transactor

< www.Commodore.

Ca

YIQY NUT REPIINT Wiinou

The Edge Connection

Societies, shows and disk drive voodoo

by Joel Rubin

The Toronto PET Users’ Group (5333 Yonge St., Box 116, Wil-
lowdale, Ontario, Canada, M2M 6M2, telephone +1 416 733
2933, 1200-1700 Eastern Time), which stretches back to the
time when Jack Tramiel was making watches, calculators, and
the brand new PET 2001, seems to be gradually coming back
after a moribund period. They are getting out newsletters,
albeit a few months after the date on them, and the one office
worker (formerly three) is working on filling disk orders, and,
one of these days, they may even get out renewal notices.

JAMECO Electronics (1355 Shoreway Rd., Belmont, Califor-
nia, USA 94002, telephone +1 415 592 8097) is closing out
ICs, including the Commodore custom chips which they were
carrying. The chips that they still have are reduced in price,
but some are already sold out.

The March, 1988 issue of the newsletter of the Commodore
Owners Workshop (c/o Home Computing Center, Tanforan
Park, San Bruno, CA), a local users’ group just south of San
Francisco, warns that Datel’s MIDI interface, while it may
work with many European programs, will not work with the
American programs written to the Passport standard. Con-
versely, it is presumably the case that those who buy a Pass-
port or Passport-compatible interface will not be able to run
European software on it. God must have loved standards
because He made so many of them.

Anti-rental law in the States?

According to a blurb in the 24 April Christian Science Moni-
tor, Senator Orin Hatch (Republican, Utah) has introduced
legislation to prohibit firms from renting or loaning software.
The law is based on the Record Rental Act of 1985, which was
passed when phonograph record producers complained that
stores which rented records were, in fact, encouraging illegal
copying and thus costing them money. (One can still borrow
recordings from public libraries in the U.S.A., however.)

On the other hand, the loaning of video cassettes is a very big
business, with the full co-operation of the recording industry,
and many of the video stores also rent Nintendo cartridges
which are, technically, software - although cartridges are usually
more expensive to pirate than to buy. The Senator did accept an

amendment which would exempt libraries at non-profit organi-
zations - for example, a computer lab at a university.

CLONEDEX

The Fourteenth West Coast Computer Faire was held the

“weekend of March 17, back at its old home at Brooks Hall and

the Civic Auditorium, near San Francisco City Hall, instead of
the more impersonal and newer Moscone Center where it had
been held the past few years. There was a point to this - the
theme of the show was “Legends of the West”, and the Faire
was attempting to regain its glory years, back when the Apple
I was sold by its creators from one of the mini-booths or when
Adam Osborne introduced the first luggable.

Lee Felsenstein, the designer of the Processor Technology Sol
and of the Osborne I, held a meeting of the long defunct Home
Brew Computer Club; many of the Silicon Valley giants grew
out of their meetings at Stanford. This was, for the most part,
an excursion into nostalgia, and ‘where are they now’. Jim
Warren, the founder of the Computer Faire, and of Infoworld,
had a seminar on the future. I hope that Jim’s visions are more
valid than the view one got from the present, which seems to
be full of 80x86 clones.

Whereas Jim used to patrol the Faire on roller skates, the head
of the company which now owns the Faire (The Interface
Group of COMDEX fame, and MACDEX infame) was busy buy-
ing the Sands Hotel in Las Vegas. A seminar on older comput-
ers, which I thought might be interesting for 8-bit Commodore
owners, turned out to be mostly about marketing orphans. Bob
Cook, of Sun Remarketing, told how he built a multi-million
dollar business selling Apple ///s and Lisas with Mac compati-
bility enhancements, mostly on Apple’s money.

The keynote address was given by Philippe Kahn, of Borland
International. Mr. Kahn spent some time bad-mouthing Lotus
and, in fact, the newspaper here reported that, a week or so later,
he was caught putting copies of an anti-Lotus article beneath the
doors of a hotel at a Palm Springs event. Of course, Lotus ver-
sion 3.0 has been vapourware for so long that a lot of people
have been bad-mouthing Lotus, but it’s in bad taste for a com-
petitor to do so. Mr. Kahn said he had heard that Lotus 1-2-3

rerminsion

Volume 9, Issue 6

19

« www.Commodore.ca

version 3.0 had acquired the internal name “Titanic”, and that
he hoped his company would make the iceberg.

Mr. Kahn did say one thing which Amiga programmers might
want to keep in mind. He said that many programmers were
becoming lazy because, faced with faster processors, and huge
amounts of memory, they felt that they need not optimize for
time or speed the way they would have had to on an older com-
puter. He warned such programmers that multi-tasking would
eat much of the speed they counted on; and that new graphics
standards would eat much of the RAM; and that, if they aren’t
careful, their badly written programs will be swapped out to
disk faster than one can say “128K Mac” (my phrase).

Of course, there wasn’t much there for Commodore owners, or
even Amiga owners. For 8-bit Commodores, there was a local
store which sells both new and liquidated software, a couple of
CPM users’ groups, Softdisk (Loadstar), Virgin/Mastertronic
(which is going to take its Leisure Genius line back from Elec-
tronics Arts in the U.S.), and Elcomp selling its old C64 books
and software at a discount, and that was just about it. By the
way, Softdisk wants to put out an Amiga version, and is look-
ing for contributors.

There was an Amiga store, a few games available, and a users’
group. Poor Person Software (3721 Starr King Circle, Palo
Alto, CA 94306, telephone +1 415 493 7234) had an Amiga
program called Thinker. In essence, Thinker is a word proces-
sor which allows you to click on a phrase and either reference
some more text or a picture. They claim that it’s Hypertext. I
don’t know enough about the definition of Hypertext to decide
that. (Speaking of Hypertext, someone ought to port some-
thing more or less like Hypercard to the Amiga. I'm not sure
that it’s quite as great as its boosters claim, but what it has
done is to allow a lot of people whose expertise is outside the
computer field to write programs reflecting their expertise on
the Mac. Hypercard may have its deficiencies as a program-
ming language, but many of the programs written in it proba-
bly wouldn’t have been written without it, and some of these
are quite useful.)

Humour, probably not intentional

If you can manage, see if you can find a copy of Transactor’s
cousin magazine, Commodore Computing International, for
the month of April (Fools’). On page 7, there’s an ad for the
company well-known for importing American software and
hardware into Britain. One of the products being advertised is
a nybbler/parameter package. You are, of course, familiar with
the disclaimers that follow such ads. ‘“While we don’t con-
done piracy...”’, or “We strongly condemn piracy...”” or some
such blurb follows the claim that “Our package copies more
copy-protected programs than any other.” Well, it appears that
there were two versions of this ad, and someone accidently (or
because of a Freudian slip, or because they had just gotten
fired and wanted to get back at the company or for some other
reason) mixed them - leading to the statement: “While we
strongly condone piracy...”

viaQy NOT Keprint wimnour Fermission

Reading 1581 ‘credit’ messages

Also, on the humour front, if you have a 1581 disk drive, try
entering the following program at disk RAM address $0300,
and executing it:

error = $££3f
org $0300

lda #$79
jmp error

Then, read the error channel. You will get the author’s credit
message. If you substitute $7a for $79, you will get a dedica-
tion to one of the authors’ wives. Read the error channel using
GET# rather than INPUT#, especially with $7A, since the error
number gets printed as 7:, and that colon plays havoc with
INPUT#.

100 get#15,a$:print a$:if st=0 goto 100
Relative files and 96

In recent Commodore disk drive manuals, you have been
instructed to give the relative file positioning command, p, in
the form:

print#15, "p"chr$ (sa or 96)chr$ (reclo)
chr$ (rechi)chr$ (ofs)

because in BASIC 7.0, RECORD ends up sending the disk drive
this message. (This is because Kernal OPEN sets the $60 bits in
the secondary address, and RECORD looks up the secondary
address from the file number.)

I have looked at 1541, 1571, and 1581 disassemblies, and,
with all of these drives, it doesn’t matter. On the 1541 and
1571 the p command begins at $207. On the 1581, it is vec-
tored through to $alal. All of these routines are the same,
except for specific addresses. The beginning looks like this:

jsr syntax
lda buf+l

sta tempsa
jsr getchannel

; this is the secondary address

If a secondary address is greater than 18, GETCHANNEL lops
off the high nybble, so if you add 96 to the secondary address,
not only won’t the gods of relative files appreciate your sacri-
fice, but the disk drive will just subtract it off and they won’t
even know about it. I use the word “gods’ advisedly - I think
the source file for Commodore DOS has just gotten too compli-
cated, with too many patches between the olde 2040 and to-
day. And, since no one really knows the whys and wherefores
of some of the bugs, Commodore is just trying voodoo debug-
ging. That sounds like programmers’ hell - you’ve got this
huge source file with zillions of patches, and half the program-

20

Transactor

« www.Commodore.ca

mers don’t work at Commodore anymore, and you’ve got to
try to maintain it!

I don’t really know what’s going on with secondary addresses
16, 17, and 18. Since most routines in the disk drive also lop
off the high nybble of these three numbers, 16 and 17 yield the
load/save channels of 0 and 1, respectively, and 18 usually is
equivalent to 2. (Channel O is not used for C128 fast loads.)
So, you can’t use 16 or 17 for relative files, and 18 may con-
fuse the disk drive.

Where you do have to ‘or’ 96 to the secondary address is when
you call SECOND and TKSA. Actually, SECOND ‘or’s $20 to the
secondary address, and TKSA ‘or’s $40, so you don’t have to
use $60 - just $40 for SECOND and $20 for TKSA. But, who
wants to remember that? Doing both ($60) always works. I
think that the problem is that, because of handshaking between
the computer and the disk drive, the disk drive must be told to
be both a talker and a listener whenever you send or receive
data.

A neat 1581 trick from West Chester

It turns out that on the 1581, you can have the 128 boot sector
wherever you want. Look at an official C128 1581 cpM disk.
(Not one with the Miklos G. format!) You’ll notice that there’s
an autoboot user file on it (“copyright cbm 86”’). When you
boot, you send the string ui to the disk drive, and with the
1581, ui forces a search for and (if found) execution of a &
file called “copyright cbm 86. What is in this mysterious
file? In the case of a 1581 CP/M disk, it diverts the sector trans-
lation vector so that the first time the disk drive attempts a
read, if it attempts to read track 1/sector O, it actually reads
track 40/sector 5. After the first read, even if the disk drive
was trying to read another sector, the translation vector is
restored. The boot sector is to be found on track 28/sector 5;
the real track 1/sector O is the first sector of the CPM directory.

KARRKRKKRRRRARRRAKKRRKKRARR

* autoboot file on 1581 *
* cp/m disks, disassembled*
* with merlin’s *
* disassembler *
RERkRkRRKRRERKK* Kk Kk KKk K” KK

jobs

hdrs
vtransts
jebmbtrtn

org $300

sei

1da vtransts
sta savead
lda vtransts+l
sta saveadt+l
lda #<temptr
sta vtransts
1da #>temptr
sta vtransts+l
1da #$81

sta $6d

jmp jcbmbtrtn

Viay NOT Keprint wirnour Fermission

ldx $83

1da jobs,x
cop #980
bne :no

1dy $99

ldx hdrs+l,y
bne :no

ldx hdrs,y
dex ;is it on sector 0?
bne :no

1ldx #§28

stx hdrs,y
ldx #$5

stx hdrs+l,y

temptr

;is it a read job?

;is it on track 1?

;if so, track 40

; sector 5

no 1da savead ; now, restore translate sector vector
sta vtransts
1da saveadtl
sta vtransts+l
hex 4c

ds 2

i jump

savead ; dunmy address

-Further applications of this technique are left to the reader. Of

course, this effort is, for the most part, wasted in CP/M, since
very few 1581s are hooked up as device 8, and CP/M must be
booted from device 8. In the U.S., at least, one can no longer
buy a C128 - only a C128D, and the separate 1571, if not offi-
cially dead, is almost impossible to find. The 1571 in the
C128D has no DIP switches and changing the device number
of the built-in 1571 from device 8 involves the old pad-cutting
technique. However, the pads are not as accessible as they
were in 1541s. If you have a 128D and a 1581, however, you
can try booting from the 1581 by shutting off your 1581, flip-
ping the DIP switches to make it device 8, soft-setting the built-
in 1571 to device 9 (open 1,8,15,"u0>" +chr$(9)), turning on
the 1581, and then booting. The 1581 must be set to device 8
by DIP switches, because when it receives the ui command
from boot, it will read the switches.

Let’s look at this real boot sector, track 40, sector 5. What it
does is to fill $1000-$feff in bank O with NULL’s, and then read
in the four logical sectors beginning at track 40, sector 6, to
$e000. These are the same as the two 512-byte physical sec-
tors on side 0, beginning at track 39, sector 4. It then jumps to
the Z-80 code beginning at $e000.

fillsp = §1000
hdeOc = §dclc
hde0d = §de0d
hdd00 = $dd00
z80code = $e000
mmucr = $££00
setbnk = $££68
ioinit = $££84
setlfs = §ffba
setnam = $£fbd
open = §ffcd
chkout = §££c9
clrchn = §ffce
z80on = $££d0
chrout = $ffd2
z80wake = $ffee
org $b00
txt 'cbm’
ds 6

Volume 9, Issue 6

« www.Commodore.ca

sei

jsr ioinit
1da #$3f
sta mmuer

E3 223223322323 22 3323322322320 22]

* £i11 §1000 - §feff w/ 0 *

bt it ittt eiitiiiisiiiedd

1da #>fillsp
sta §21
1da §<fillsp
sta §20
ldx #Sef
tay

:1lup sta ($20),y
iny
bne :lup
inc §21
dex
bne :lup
sta mmucr ;bank 15

* open 15,8,15, name *

1da #f
ldx #8

tay

jsr setlfs
1da #0
tax

jsr setbnk
1da #4

ldx #<name
1dy #>name
jsr setnam
jsr open

1da §§27 ;these are physical sectors--

ldx #4 :logically 40/6,7
1dy #%e0

jsr readsec

1da #$27 ;logically
1dx §5 :40/8,9

jsr readse2

1da #§c3 ; z-80 jump
sta z80wake

1da #<z80code

sta z80waketl

1da #>280code

sta z80waket2

1da #$3e

sta mmucr

jmp z80on

RARRRKKRRRKKAKKKARKKKK K KRR K RXRRK

* read track .a, sector .x
* side 0 to .y*256
*

* this routine reads physical

* sectors, so 512 bytes
Ei ittt ettt itdtitetiitititiing]

*
*
*
*
*

readsec sty §21
readse2 sta track
stx sect
ldx §5f
jsr chkout
1dy #6
:lup2 lda ecmd-1,y
jsr chrout
dey
bne :lup2

May Not Reprint Without Permission

jsr clrchn

bit hdc0d

jsr getbyt

ldx $2

1dy $0

sty $20
:1up3 jsr getbyt

sta (520),y

iny

bne :lup3

inc §21

dex

bne :lup3

1da hdd00

and §fef

sta hdd00

rts

getbyt sei
1da hdd00
eor §$10
sta hdd00
1da #8

wait bit hdc0d
beq :wait
1da hdclc
rts

b33ttt el s itteiitiiteiiseiigg

* this is a burst command *
* gent to the disk drive *
* in reverse, beginning with *
* the first 'u’ in name *
Eidii it s i s ittt ittt iitiitiiilg]

ecnd hex 01 ;read 512 bytes--1 physical sector
sect hex 00
track hex 00
hex 00 ;read cmd--physical sector, side 0
tzt ‘0’
name txt 'u0’4c00 ; set the status byte

The four (logical) sectors of Z-80 machine language then par-
tially replace the boot ROM in booting CP/M.

Save time on 1581 partitioning

When you make a partition on a 1581, if you want to make a
directory, you have to enter the partition and do a long format
on it. Typically, you format the disk, make partitions, and for-
mat the partitions - so you end up formatting the disk twice.
Since the 1581 does not appear to use the disk or partition ID
at the lowest level (the way the Commodore GCR drives do),
you can save time by just doing a short format on the partition.
But, there are complications.

If, within a partition, you try to write on a partition sector (e.g.
doing a short format) you will get error 73 (dos mismatch)
unless byte 2 of sector 0 of the first track of the partition con-
tains a d ($44). You can avoid this by two methods - either
write from the root or parent partition, or use the job queue. If
you now do a short format in the directory, you will get a
directory, but it will look a bit strange because it will have
chr$(0) + chr$(0) for its ID. So, you should now write the ID

22

Transactor

7« WwWwwW.Commodore.ca

to bytes 22-23 of sector 0, and to bytes 4-5 of sectors 1 and 2.
See the partition program below for details.

BL
0E
FO
FO
Cr
NE
0J
IN
PH
Ky
CN
DI
FG
BN
MC
FC

100 rem faster 1581 partition--avoids full formatting of partition
110 rem by joel m. rubin

120 rem run from parent directory

130 input"device number";dn

140 openl, dn, 15, "m-r"+chr$ (252) +chr$ (255)

150 get#1,a$:ifasc(a$)<>36thenprint"not a 1581":run

160 input"name of partition”;na$

170 input"first track";ft

180 input"number of tracks (including 1 overhead)";nt

190 ns=40*nt:nh=int (ns/256) :nl=ns-256*nh

200 print#1,"/"na$", "chr$ (ft) chr$ (0) chr$ (nl) chr$ (nh)", c"

210 input#l,e, e, t, s:ifethenprinte;elt;s:stop

220 open2,dn,2, "§0":print#l, "b-p:2,2":print§2,"d"; :rem dos version
230 print#1,"u2:2"0; £t;0:inputdl, e, e$, t,s:ifethenprinte;edt;s:stop
240 print"name of directory ";na$

250 input"";nd$

260 input"id of directory";id$

270 iflen(id$)<>2got0260

280 print#1,"/"na$:input§l, e, e$,t,s:ife<>2thenprinte;est;s:stop
290 print#1,"n0:"nd§:inputhl, e, ef, t, s:ifethenprinte;est;s:stop

300 close2:open2,dn,2,"§0"

310 fori=(to2

320 print#l,"ul:2";0;£t;i:inputhl, e, ef,t, s:ifethenprinte;est;s:stop
330 print#l, "b-p:2" (-22*(i=0))+(-4*(i<>0)):print§2,id$;

340 printf1,"u2:2"0;£t;i:input#l, e, ef,t, s:ifethenprinte;eft;s:stop
350 next

360 close2

370 print"done--in new directory!"

Save time on 1571 single-sided formatting

There are two ways to do single-sided formatting on the 1571.
First, you can do double-sided formatting, and then tell the
BAM that you really did a single-sided format. CP/M does it this
way. This isn’t too slow, but it destroys flippies. Of course, the
Aligner General has determined that flippies may be danger-
ous to the health of your system, but there are some programs
which come on flippies and are inconvenient to use in any oth-
er format.

On the other hand, you could do what GEOS does - you can go
into 1541 mode before you format. This is less dangerous to
flippies. However, 1541 formats are notoriously slow. Here is
a third method: you use exactly that part of the 1571 format
routine, in the disk ROM, which formats side 0.

GI 100 printchr$(147)chr$(14);

OE 110 print"Pormat a single-sided disk using the 1571 format routine

0P 120 print"(c) 1989 Joel M. Rubin--commercial rights reserved

DD 130 openl,0

0K 140 fori=1to30:e$=" "+e$+chr$(157):next:dé=chr$(17)+chr$(17)

BN 150 u$=chr§ (145)+chr$ (145) +chr$ (145)

06 160 printd{"Insert disk to be formatted."d$

OM 170 printd$"Drive Number: "e$"8"chr$(157);:input#l,dn:print

PI 180 if(dn<8)or (dn>11)thenprintd$esuus:gotol0

MG 190 open2,dn, 15, "m-r"+chr§ (103) +chr$ (254) :rem irq at $£e67 should be jmp ()
NF 200 get#2,a$:ifa§<>chr$(108)thenclose2:printd$"NOT A C'1571!"udu$:gotol70
BL 210 printd§"Disk name: "1$"new"chr$(157)chr$(157)chr$(157); inputdl,dn$:print
220 if(len(dn$)=0)or (len(dn$)>16)thenprintu$; :goto210

230 print:print"Insert disk to be formatted!"

07
BA
EA 240 x=rnd(-ti) :id§=chr$ (65+26*rnd(0))+chr$ (65+26*znd(0))

=3

G
K

HERBRERSg28R

8 &

BEERISSERER

5

E3EREEE

\'::j? MOy NOTReprint withoar Perm
250 printd§"Disk id: "1idchr$(157)chr$(157); :inputhl,id$:print

260 iflen(id$)<>2thenprintu§;:goto240

270 print§2, "u0"chr$(190)"m1":bu=3:rem 1571 mode, working with buffer 3

280 print#2, "n-w"chr§ (18) chr$ (0) chr§ (2) 1d$

290 print#2, "m-w"chr$ (59) chr$ (0) chr$ (1) chr$ (240) :rem format @ $3b

300 print§2, "m-w"chr$ (162) chr$ (2) chr$ (1) chr$(36) :zem < 36 tracks

310 print#2, "m-w"chr$ (178)chr$ (1) chr$ (1) chr$(0) :rxem side 0

320 print#2, "m-w"chr$ (bu) chr$ (0) chr$ (1) chr$ (240) :rem format

330 gosub470

340 ifc>1thenprintd$"Format error!":goto510

350 print§2,"10":bu=4:rem i0 reads 18/0 into buffer 4

360 input#2,x,x§,t,s:ifxthenprintx;x$;t;s:stop

370 print§2, "m-w"chr$ (2) chr$ (7) chr$ (2) "a"chr$ (0) :rem--right dos, single sided
380 tr=l

390 print#2, "m-w"chr$ (bu) chr$ (0) chr$ (1) chr$ (144) :rem write 18/0 w.o0. err 73
400 gosub470:ifc>lthentr=tr+l:iftr<=3goto390:rem try 3 times to write
410 iftr=4goto510

420 print#2,"10":print§2, "n0:"dn$

430 input#2,x,x$,t, s:ifxthenprintx;x$t;s:stop

440 open3, 8,2, "§":print§2, "ul:2,0,1,0"

450 inputf2,x,x§,t,s:ifxthenprintx;xét;s:stop

460 printd$"It worked!":close2:end

470 print#2, "m-r"che$ (bu) chr$ (0) :get#2, a$:c=asc(af)

480 ifc>=128gotod70:rem not done

490 return

500 rem-convert job code to ds error

510 m§="n-w"+chr$ (0) +chr$ (3) +chr$ (7) +chr$ (169) +chr$ (c) +chr$ (162) +chrs (bu)
520 m$=m§+chrs$ (76)+chr$ (185) +chr$ (169)

530 print2,m$

540 print#2, "m-e"chr$ (0) chr$ (3)

550 input§2,x,x$,t,s:printx;x§;t;s:stop

Faster than a Speeding Cartridge
More Powerful than a Turbo ROM

It's Fast, It's Compatible, It's Complete, It's...

Jitfy

Ultra-Fast Disk Operating System for the C-64, SX-64 & C-128

« Speeds up all disk operations. Load, Save, Format, Scratch, Validate, access
PRG, SEQ, REL, & USR files up to 15 times faster!
+ Uses no ports, memory, or extra cabling. The JiffyDOS ROMs upgrade your
computer and drive(s) internally for maximum speed and compatbiiity.

« Guarantoed 100% compatibie with a!l software and hardware. JiffyDOS speeds
upthe loading and intemal file-access operation of virtually all commercial software.

« Built-in DOS Wedge plus 14 additional commands and convenience features
including one-key load/save/scratch, directory menu and screen dump.

« Easy do-it-yourself instatiation. No electronics experience or special tools re-
quired. lilustrated step-by-step instructions included.

Available for C-64, 64C, SX-64, C-128 & C-128D (JiffyDOS/128 speeds up both 64
and 128 modes) and 1541, 1541C, 1541, 1571, 1581, FSD-1&2, MSD SD-1&2,
Exce! 2001, Enhancer2000, Amtech, Swan, Indus & Bluechipdisk drives. System
includes ROMs for computer and 1 disk drive, stock/JiffyDOS switching system,
illustrated installation instructions, User's Manual and Money-Back Guarantes.

Please specr!y computer and drive when ordmmg
Creatlve In

Dr Box 646. E. Longmeadow, MA 01028

FAX:(413) 525.0147 &

Volume 9, Issue 6

10N

« www.Commodore.ca

May Not Reprint wWithout Permission

The One Megabyte C64!

Activities for a rainy afternoon: C512

by Paul Bosacki
Copyright © 1989 by Paul Bosacki

In Volume 9, Issue 2, Paul showed us how to expand a C64 to
256K internally and have GEOS recognize the extra RAM as a
RAMdisk. At that time we stated that Paul was using a IMB C64 -
512K internal and 512K in an REU. As you now know, this project
generated a lot of interest amongst the readership and the Com-
modore community at large. The machine became the subject of
various speculations and rumours.

Well, the time has come to lay those rumours to rest. The first
half of the IMB C64 was covered last issue when Paul showed
how to expand the 1764 to 512K. This is the second part. This
article will show how a C64 can be expanded internally to
512K. Et voila, the 1MB C64.

As you might expect, this project is more complex than the two
previous ones - in the software as well as the hardware. If
you’re not comfortable with a soldering iron in your hand you
may want to have someone else do it. The usual disclaimers
apply: you undertake this project at your own risk and good-
bye the warranty.

On the software side of things, GEOS V2.0 has made significant
changes in the way that the operating system handles drives.
Consequently, it was necessary for Paul to modify some of
Berkeley Softworks’ own code to enable the banked RAM used
in the C512. Accordingly:

Special Note: Portions of Driver1571.src Copyright ©
1986-1989 by Berkeley Softworks. All rights reserved.
Used with permission. Our thanks to Berkeley Softworks
for their kind indulgence in this regard and to Matt Love-
less at Berkeley for his support and assistance.

L

When I claimed a few months ago that an Amiga needed a
meg of memory to really show, I never imagined that anyone
would want a 512K 64. Nor did I expect the overwhelming
response the article generated. So first, before I get into any-
thing, I want to thank all the people who took the time to
write. Considering the vagaries of postal offices, you all
should have long ago received my reply. Yes, I answered each

and every letter and that’s why, in part, this update is so late in
getting out to you.

Also, I'd like to thank two people in particular: Richard Cur-
cio and George Hug. Although this article might have
appeared without their comments, suggestions and interest,
writing it wouldn’t have been as much fun.

Now, into the meat

As I pointed out in Care and Feeding of the C256, the limiting
factor in an MPU’s addressable memory space is its number of
address lines. The C64’s 6510 has sixteen, allowing access to
65,000 or so bytes. Adding two pseudo-address lines, as the
last project demonstrated, bumped that to 256K. Four banks of
64K were made available through a simple POKE to $01. How-
ever, a small amount of memory had to remain ‘common’ to
each bank. Specifically, memory below $0400 was always
available. This was necessary because the stack and 0S vectors
must (within limits) remain constant. Change them without
proper setup and the machine crashes.

The 512K project offers significant improvements over the
previous design. In order to take our machines to 512K, it’s
necessary to add a third pseudo-address line. In the previous
article, the two needed lines were found at the MPU 1/O port.
Needing three lines in this case, the MPU I/O port is no longer
adequate. I/0 is found elsewhere.

Unfortunately, the 64 uses its resources to the fullest, and
this necessitates some additional work. But the extra work
yields some nice returns. Unlike the 256K version of this
project, all options can now be controlled through software.
Options like OK common memory to 16K and control over
where the VIC chip finds its data. Well worth the extra
effort!

The modification
An eight bit read/write latch is used in the 512K system to

allow control over system memory configurations. This latch,
called the Bank Control Register (BCR) for lack of a better

24

Transactor

« www.Commodore

.Ca

name, is accessable at $dd80. The astute among us will realize
that this space usually contains phantom CIA2 images. But that
problem is worked around by remapping the CIA’s 256 bytes
into four unique and separately selectable 64-byte sections.
The first 64 bytes still belong to CIA2 keeping its base address
valid. However, the third 64-byte block belongs to the BCR.
Read from or write to $dd80 and the system memory configu-
ration will either be returned or set. The second and the fourth
64-byte sections are open for user expansion.

The BCR is the most significant improvement over the prev-
ious design. And the most powerful aspect. Through a little bit
twiddling, the memory configuration can be changed at will.
What follows is the bit function layout of the BCR:

bit0-2: The three pseudo-address lines needed to access the
addtional memory. Bank O on power-up or hard reset.
AEC enable. When this bit is set to 0 (default power
status), the Video display matrix is drawn from
BankO.

bit 3:

The following three bits affect the amount of common
memory (CRAM) available to the system.

bit 4: Mask Al10 ($0400)
bit 5: Mask All ($0800)
bit 6: Mask Al2 & Al3 ($1000)

WMay Nol Reprini without permi
banked memory appears until $0800; there a CRAM hole opens
that continues to $Offf. Then banked memory reappears. So,
unless you know what you’re getting into, stick to the four
CRAM configurations above. They are the most useful.

Let’s take a closer look. Clear all three bits and CRAM widens
to include the bitmap at $2000. Not using the bitmap? Then
how about a large (16K) area for machine language or BASIC
programs that need to easily take advantage of an additional
384K of memory (that’s (64-16)*8). The next option is similar
to the first except that CRAM narrows to $Offf. This excludes
the bitmap, and the work space is smaller. But some interest-
ing possibilities open here. For example, rapid cycling through
up to 64 different bitmaps becomes a reality. Imagine, the REU
globe demo done totally from within system RAM!

Option 3 narrows CRAM even further, leaving only the default
screen matrix within CRAM. All banks could, therefore, draw
their character screen matrix from the same place. And the fi-
nal option banks out the screen matrix as well. All banks now
share only OS vectors, the stack, and zpage; in short, anything
below $0400 is drawn from Bank 0.

Then there’s bit 7. By setting this bit, the CRAM option is disabled.
In other words, there is no common memory. On a bank switch,
the machine moves into a whole new domain; a place with it’s
own stack, 0S vectors, zpage etc. This option is really exciting be-

cause it allows us a kind of task switch-

This takes a little explaining. When the
MPU accesses a particular memory loca-
tion, a combination of ones and zeros
are placed on the address bus corre-
sponding to the desired address. In the
case of $03ff, Ao through A9 would have
ones while A10 through A15 would be
zeros. Decoding CRAM simply becomes
a matter of monitoring A9 through A15. If
they should equal zero, then CRAM is
being accessed and Bank 0 is switched

Part of the design philosophy
behind the 512K board was that
switches were to be done away
with altogether and that all
options should be controlled
through software...

ing. With proper setup, a bank switch
might drop us into a radically different
machine. More on this later....

Arguably, the BCR is the most difficult
aspect of this modification, both from
the hardware and software side of
things. When it comes time to build it,
and later on, to program it, take your
time looking over its specifications. It
will save a lot of frustration later on.

in. However, if any of those lines equal
one then the bank selected is enabled.

Each of the above bits masks the corresponding address line.
Simply put, if the bit is set, then the address line cannot signal
that a selected bank should enabled. CRAM is effectively
widened. If all three bits are clear (the default power-on sta-
tus), CRAM stretches to $3fff. However as each bit is set, CRAM
space narrows:

option bit4 bit5 bité6 CRAM
al0 all al2,13

i) 0 0 0 =$3f£ff

ii) 0 0 1 =$0£££f

iii) 0 1 1 =$07££

iv) 1 1 1 =$03££

Four other CRAM combinations are possible, but some open
CRAM ‘holes’. For example, %101 has CRAM to $03ff. Then

Unlike the 256K version, the 512K modification has no
switches. Two of the three switches have corresponding func-
tions available through the BCR outlined above. The third
switch was a ‘master disable’ switch necessary because some
software and hardware is incompatible with the 256K modifi-
cation. However, because the BCR is mapped into phantom /O,
and because every sane programmer reads from and writes to
the BASE address of CIA2, the BCR should never be inadver-
ently accessed. Consequently, the mod board cannot be
disabled; nor, really, should such action be necessary.

The 512K modification requires one step unnecessary to the
256K version: the installation of an additional 256K. Rather than
building an additional board with all its attendant difficulties, it is
easier to ‘piggy back’ one bank of DRAM on top of the other. Then
all that needs to be done is bend up pin 15 of each chip on the top
bank and solder the rest to the corresponding pin below. A some-
what simpler operation with little opportunity for mistakes.

ssion

Volume 9, Issue 6

25

&

Paul Bosacki

B3R - Revision 4';

revised 8111789

U}l
74L5273

B

gﬂ L AAA—A g
RAM

ANV Y1

oS
NE™
ty

.[__L' N] Ai

<

3
Q¢ B Q4 Q5 Qe QF

uz
74LS373

appropriate A input of the ‘L5139 to ground.
On some c64’s
i) 74L383's with T4F83's
ii} 7415153 with 74F153
changes soluve this problem.

Sea text For function outline of 8 bit latch.

JB 1
512k [G00] 256k
IC +5u
H 28 ‘
3; "}2 lg e In To b ld s Te 1 _Ald—d 2
TV | 14 rd 2C3 202 2C1 208 1€3 1C2 1C1 0B szl
U5 14 T ué 22
U6 | 16 8 74LS152 228
ur | 16 8 — = VA
- 2Y 26 SELA SEL1 G +500
|'9 15 " |z i [38 [Pin 1>
-l
CRAM
Notes:
This board allows expansion through to 512k. The jumper block (JB1} is not necessary. If 512k is o

be installed simply wire the 2¥ output of the ‘L5153 directly to the ‘L5139 If 256k, pull the
it may be necessary to replace the fFollowing chips as fFollows:

In banks where bit 1 is set, a "sparkling” effect mauy be wisible in hires mode. The abouve chip

Circuit theory

The first 512K board was a patch on the orginal 256K board.
With a little (read: a lot) of wiring and rewiring and an addi-
tional six ICs, it was possible to access even more memory.
Twelve chips is a lot of chips. So the board was redesigned
and the chip count reduced to seven. Good and bad. Bad
because if you built the 256K mod, it’s necessary to build and
install another board. Good because the fewer chips, the less
likely mistakes are, and the easier it is to troubleshoot any

problems that may arise along the way. If you did build the
256K board, I offer this consolation: installing the DRAM is the
hardest, touchiest part, and you don’t have to do that again!

Part of the design philosophy behind the 512K board was that
switches were to be done away with altogether and that all
options should be controlled through software. When the wish
list of options was drawn up, an 8-bit latch was pretty much
demanded. The problem became where to map it into system
memory. For better or for worse, I chose ClA2. Because CIA2

26

Transactor

www.Commodore.ca

May Not Reprint Without Permission

« www.Commodore.ca

occupies 256 bytes of memory starting a $dd00, it was neces-
sary to ‘remap’ /O in that area.

This was acomplished through the use of an *LS139 Dual 2-to-
4 Line Decoder. The CIA2 select signal is intercepted and
used to enable one half of the *LS139. Address lines A6 and A7
serve to select which of the four 64-byte sections is accessed.
If both A6 and A7 are low, then the "LS139 ‘selects’ CIA2 allow-
ing it to continue its exsistence at $dd00. If however, A6 is
low and A7 high (indicating address $dd80), then a low is
generated on pin 10 of the 'LS139. This signal, with a little
additional qualifying, selects the two components that make
up the BCR: an 'LS273 Octal ‘D Type’ Flip-Flop is the write
portion of the register, while an °LS373 Octal 3-State ‘D’
Latch forms the read.

That signal, *NEWIO on the schematic, is then OR’d with
GR/*W at one gate of an 'LS32, and OR’d with G«R/W at anoth-
er. On a read operation (GR/*W is high, G*R/W is low)), the
output buffer of 'LS373 is enabled and dumps to the data bus.
On a write, the 'LS273 is clocked and the contents of the data
bus are latched into the chip and immediately present at its
outputs.

These outputs serve the variety of functions outlined in the
BCR bit function map. Bits O and 1, the low address bits, are
presented to two inputs of one half of an *LS153 Dual 4-Line to
1-Line Data Selector/Multiplexor. Depending upon the state of
CRAM (a signal whose generation we will discuss shortly), a
2-bit code is then strobed out to pin 1 of the 41256s.

Ignoring bit 2 for the moment, bit 3 is used to qualify the AEC
signal from the VIC chip. If bit 3 is high, the output of the *Ls32
OR gate will be high regardless of the state of AEC. If low, the
state of AEC is present at the output of the OR gate. The output
of the OR gate is the old *VID signal and drives one of the
select pins on the *LS153. The °LS153 is wired in such a manner

May NoT Reprint wiithoul Permission

that should «VID go low, a pair of lows are strobed out to the
41256°s. This occurs on the rise and fall of *CAS which is used
to drive the other select pin on the "LS153. The end result is that
when bit 3 is high, AEC cannot force a CRAM call, and the
video matrix is drawn from the current bank.

The next three bits serve to mask address lines and function
nIuch as bit 3 above. First, each of the address lines A10-A15 is
presented to one input of an open-collector dual-input NAND
gate (the two 'LS03’s of the schematic). [Each ‘LS03 contains
four such dual-input NAND gates. - PB] In the case of A15 and
All4, the other input is pulled high, the immediate result being
that the inverted state of A14 and A15 is present at the output.

e other address lines are handled in a different fashion. To
the other input of the gates shared with A10 and A11, bits 4 and
5‘ respectively are presented. If either bit is high, the corre-
sponding output shows the inverted state of that address line.
If either bit is low, a high is generated. Consequently, neither
of these lines can affect a CRAM call.

/5412 and 13 share bit 6 and are affected as above. The output
of the NAND gates are grouped and pulled up with a 2.2K
resistor. Should any output go low (indicating that the corre-
sponding address line is high), the grouped output is pulled
low enabling the 'LS153 to pass a 2-bit bank select code to the
41256s. However, should all lines go high indicating a CRAM
access, the grouped output goes high, forcing a default to Bank
0. This output is the old *CRAM signal, now active high and
renamed CRAM on the schematic.

It/is grouped with one other NAND output. At this gate, bit 7
and a high are decoded. Bit 7 is, as noted above, the CRAM
disable function. If high, the grouped output is forced low, per-
manently enabling the *LS153 until that bit is cleared.

All that’s left now is to explain how the new address line is
hafmdled. The third address line does something wonderful. It

‘1583

1583

L3373 13273

ais

15153 15139 153

Parts Placement Layout
C512 - Revision 4

Parts List

1: "HCT373 2: 28 pin sckts

1. 'HCT2?3 2: 16 pin sckts

1. "HCT139 3: 14 pin sckts

1 'LS32

2 'L583 2: b2 resistors

1: ‘L5153 1. 33 resistors
2: 2.2kq resistors
T: 8.1 pF capacitors

Misc: solder ringed PC board, ribbon
cable, connectors, 38 guage wirewrap,
22 guage wire.

Volume 9, Issue 6

27

www.Commodore.ca

allows us to select which 256K bank of DRAM is accessed. Bit
2 is presented to the other half of the 'LS153 dual 4-to-1 multi-
plexer. Depending again on the state of CRAM and *VID above,
the other Y output of the "LS153 generates either a high or low.
A low is generated when either a CRAM call has been generat-
ed or when bit 2 is low. A high is found only when bit 2 is
high. This signal, LA18 on the schematic, is passed to the other
half of the 'Ls139. The °LS139 is enabled whenever *CASRAM
goes low. *CASRAM is the same signal used by the VIC to actu-
ally select system DRAM over other system resources. Here we
are using it to do the same thing; however, dependent on the
state of bit 2, either *RAML or *RAMH will go low selecting one
of two banks of DRAM. LA18 does not act as an address line in
the truest sense of the word, but rather helps to generate a
select for one of two banks of DRAM.

That’s pretty much it. The key signal here is the CRAM signal.
It plays the part of the master controller. When high, the *LS153
is disabled and default bank O is switched in; when low, the
contents of the three low bits in the BCR are free to set the
bank accessed. #VID when low, has a similar effect, but this is
acheived in a slightly different fashion.

Installation

Before you attempt installation, I suggest you read and reread
the section above. It’s intended to familiarize you with the
function of the board and how the various components relate.
Knowing how the board works can only help you later on if
there are any problems.

Now, if you’ve already installed the 41256s, all you’re really
concerned with is the construction of the new mod board. If
you have yet to install the DRAM, let’s go over it briefly (for a
more complete description, see Transactor, Volume 9, Issue
2). First, disassemble your computer and locate the eight 4164
DRAMSs on the system board. They’re located in the lower left
hand corner of the system board. If you can’t find them, don’t
worry. Just keep reading. There’s interesting news ahead.

Once you’ve located the chips, turn the board over and care-
fully note their position. Now, using a combination of desol-
dering braid and a vacuum desolder, remove them. Another
option is to cut the pins away from the chip, heat the pin and
remove it with a small pair of pliers (Richard Curcio’s RAMIfi-
cations from Volume 9, Issue 4 offers some valuable advice
here). Make certain that each of the holes is as free of solder as
possible.

With all chips removed, install 16-pin sockets in their places.
Once installed, use a fine guage wire to link pin 1 of each
socket to the next. Connect the final one to a convenient
ground (pin 16 of that socket, for example). Now, install the
41256-15s. Although I've never had a problem here, these
chips are static-sensitive, so be certain to ground yourself first.
Mistakes with DRAM are expensive and, at this stage, difficult
to uncover. Now reassemble as much of your computer as
necessary to power up safely. But before you do, check the

Vay NOT Keprint wirnour Fermission

orientation of each DRAM. An upside down DRAM equals a
dead DRAM.

If everything checks out, connect your power supply and your
monitor and turn your machine on. Most likely, you’ll see the
familiar power-up screen. Generally, the only other possiblities
are a blank screen or one that changes randomly then
‘freezes’. If you’re confronted with either, don’t panic. Turn
your machine off, disconnect everything and examine your
work. Check your soldering for bridges, try reseating the
chips. Are they installed properly? Did a pin get bent beneath a
chip when you installed it earlier? Check your pin 1 work. Is it
properly grounded; is each socket in the chain linked? If you
have a logic probe, power your machine back up and test each
of the pins. Pins 1 and 16 should show low, while pin 8 shows
high. All others should pulse between high and low. If a pin
does not reflect the proper state, there is probably a problem
with the soldering at that point. Resolder that pin of the socket
and any other that might show a problem. Check everything
and try again. And don’t worry: You probably won’t have to
go through any of this.

With the chips installed, move on to constructing the board.
Once again, I used point-to-point soldering and all my sugges-
tions from the previous article still apply. Check the parts lay-
out diagram for the layout I used. Something I did this time
round, was use 16-pin connectors for all interfacing. The parts
layout shows the male connectors to the left hand side of the
board. The result was a board that could be easily removed if
troubleshooting indicated a problem. And there were problems
- an incorrectly wired 'LS273 for one! As Richard Curcio once
told me, half jokingly: “If it works right the first time, don’t
trust it!”

With the board finished, it’s time to interface (I’ve always
wanted to say that). There are two distinct places to go for the
various signals required by the board: either the cartridge port
or the MPU. I suggest the MPU only if it is socketed, and then I
suggest you carefully remove it from its socket while doing
this. Take a length of ribbon cable 16-conductor wide and
make the following connections: A15-A10, A7, A6, D0-D7. Do
this by heating the pin, gently pushing it to one side with
the tip of your soldering iron and carefully inserting the
conductor.

Whether you use the cartridge port or the MPU socket, follow
the appropriate diagram. [See page 50 - MO] Both diagrams
show the layout from the solder side. Determining the final
length of the ribbon cable is up to you but keep it short. Now,
if you used connectors, attach the other end to the connector.
Otherwise, solder A15-A10 to the appropriate inputs of the 2
'LS03 sockets, A6 and A7 go to pins 14 and 13 of the "LS139 re-
spectively. The data bus is tricky, and if you’re going to make
any mistakes it’s here. Follow the schematic carefully and
make the appropriate connections.

With that finished (easier said than done), take another length
of ribbon cable, this time six-conductor wide. Now we hunt.

28

Transactor

« www.Commodore.ca

The first signal we want to locate is *CAS. Locate pin 1 of ei-
ther *LS257 (U13 or U25) on the system board (they’re to the
right of the DRAM you removed earlier. Follow the trace away
from the pin until you reach a tiny silver dot. This is a pass-
through to the other side of the board. Heat the dot and install
the first of six conductors. Remember this procedure because
we’re about to repeat it.

Look to the DRAMSs, and locate pin 15 with a trace moving
away from it (only one DRAM will show this). You’ve just
found the *CASRAM signal generated by the PLA. Again follow
the trace away from the chip until it comes to a resistor. On my
board, this resistor was labelled R42. It may not be on your
board, so follow the trace instead. Remove the resistor. Into
the opposite solder pad, install the second conductor.

The next two signals are easier to locate. The first, AEC is
available at a number of places. The first is pin 16 of the VIC
chip (U19), the second is the MPU, pin 5. Both offer pass-
through jumpers which can be found by following the trace.
Or, if you wish, heat the pin and insert the third conductor. The
next signal, *CIA2, offers us a special case. Again, I'll offer you
two choices. Locate the 'LS139 on the system board (U15). Pin
11 is the =ClA2 select line. Cut the

May Not Reprint Without Permission

moved earlier. Into the other hole install one conductor. This
will become the new *CASRAM signal, labelled *RAML on the

schematic.

Depending on how you dealt with the *CIA2 signal earlier,
another conductor connects to the other side of the cut trace, or
to either the bent up pin on the CIA or "LS139. That’s the worst
of it. Two more lines go out to the system board, but we’ll
save them for a bit.

Now, you can fix the board into place and install the chips
ensuring correct orientation and placement. Connect the +5V
source and ground to the mod board. Both are availabe at the
cassette port. Again, reassemble as much of your computer as
necessary and power up. With any luck, you’re staring at the
power-up screen! If not, let’s go over the possiblities. Check
the interface wiring. Are we getting the right signals up to the
mod board, is there any sloppy soldering? Using a voltmeter
or a logic probe check for the following conditions: pulses on
all data and address lines. Fixed highs indicate a crashed bus
and the problem is probably in the interface wiring. Pulses on
*CAS, *CASRAM, *RAML. Fixed highs or lows are a problem.
Check all associated wiring. The same holds true for AEC and

GR/W. CIA2 will show high; otherwise,

trace leading away from the pin,
scrape away the green insulating mate-
rial and carefully solder the fourth
conductor here. Or, if CIA2 (U2) is in a
socket, bend up pin 23 of CIA2. This is
the chip select pin. Now, heat the
socket’s pin and insert the conductor. I
did neither. I removed the "LS139 and
installed a socket. When I reinstalled
the 'LS139, I bent up pin 11 and sol-

If you choose to install the
second bank of RAM, you will
need a stronger power supply

than the one that came
originally with your C64! ...

there’s a problem either in the inter-
face wiring or the mod board itself.

One trick that might help you locate a
problem is turning off your computer,
pulling a chip from the mod board and
powering back up. If you get a power-
on message, then you just narrowed
your field of search. The only chips
that you can’t do this with are the

dered the conductor to pin 11 of the
socket. Any of the above will work; I leave the method to you.

Next locate pin 8 of the 2114 Colour RAM (U6). The fifth con-
ductor attaches there. And lastly, pin 40 of the MPU allows us
easy access to the *RES signal. Solder the last conductor to this

pin.

Now on the mod board, make the following connections:

*CAS to pin 14 of the ‘LS153 socket
*CASRAM to pin 1 of the 'LS139 socket
AEC to pin 10 of the 'LS32 socket
*CIA2 to pin 15 of the ’'LS139 socket
GR/W to pin 2 of the 'LS32 socket and

"LS03
'LS273

to pin 9 of the
*RES to pin 1 of the

socket (U4)
socket

Again, if you used connectors, you’ve had it somewhat easier.
Just install the connector to the other end of the cable.

The above are the required signals from the system board.
There are four signals that go the other way. Turning our atten-
tion again to the system board, go back to the resistor we re-

'LS139 and 'LS153. Pull either of these
chips and you will not get the power-on message.

However, if you’ve been careful and meticulous with this,
you were confronted with the power-on message. Great!
Now, turn off your computer and install the second bank of
RAM. However, if you choose to do so, you will need a
stronger power supply than the one that came originally
with your C64! A 128 power supply or the one that comes
with the 1764 will do just fine. But you will need a stronger
power supply. Things might work fine for a while, but
you’re courting disaster.

To install the second bank of DRAM, carefully bend up pin 15
of each chip. Then piggy back the second bank atop the first
and solder the upper pin to the lower. Again using a fine guage
wire, link pin 15 of each chip on the upper bank and run the
conductor out to pin 5 of the *LS139. Now, disconnect pin 1 of
the 412565 from the convenient ground and run it out to pin 7
of the 'LS153. Connect the keyboard and again power your ma-
chine back up. The power-on message should greet you. Now
type this:

poke 56704, 124 <cr>

Volume 9, Issue 6

29

« www.Commodore.ca

The screen should fill with garbage. If any of the garbage
characters are randomly changing, then one or more of the
DRAMs on the top bank is not connected properly. Locate the
problem and try again until the problem is solved.

If you choose not to install the additional bank of memory at
this time, that’s fine, just connect the keyboard and power-up
as above. Now, instead type:

poke56704,121

As above, your screen should fill with garbage. You won’t
have the random charcters problem though. If nothing hap-
pened, however, there is a problem. Something is wrong in the
new 1/0 decoding, or the CRAM generation ciruitry. Try PEEK-
ing the above location. If you get 121 or 127 for the 512K
machines, then your problem’s with CRAM generation. If you
get a 0, then check out the write half of the BCR. A value that
changes with each PEEK, indicates a problem with both halves
of the BCR. Check the wiring carefully and try again.

With that done, it’s over.

Ay NoT Reprint wiinoal PErmission

iii) *CIA2: use the cut trace method from above. Cut the trace
off pin 23. The trace opposite the CIA goes to the *LS139.

iv) Some chip designations have changed. The 6510 is now
an 8500 and in generally socketed. The SID and VIC both
have new 85xx prefixes. The VIC is the larger of the two.
The pin layouts have not changed, however, just the desig-
nations.

All the rest of the signals are available as indicated in the
above section and don’t present a problem.

Because the DRAM used in the E board revisons are such dif-
ferent beasts from the 4164, the mod board, as presented, is
incompatible. This leaves us with two options. The first of
course, is to modify the board so that it will work. But atten-
dant with this strategy is laying in 14 additional 41464 DRAMs.
The second strategy involves forsaking the 41464’s altogether,
and installing 41256’s. Using this strategy, the mod board does
not have to redesigned, although 16 41256’s must be ‘laid in’.

Of the two strategies, the sec-

Your machine now contains

512K of user installed banked . "
memory. Give yourself a pat : 6 41464 GRD 17
on the back. What you’ve 3 D8 _D3 "
done is just short of amazing. r o c‘;g s
Congratulations! Now, re- 5 :{ﬁ a8 :q
assemble your computer. Fair) al 33
warning, if you installed the W s azliz
extra bank of memory, the 8l na azln
top RF shield will no longer # 150 arle
fit. Don’t bother with it. It’s

not a problem.

ond makes the most sense.
The 41464 DRAM was initial-
ly designed for systems that
would be using less than
256K of RAM. In that case,
their use becomes more eco-
nomical. When 256K is
reached, however, it makes
more sense to go with the
41256, and that’s what we’ll
do here.

- I

r~

e Bt Bt 1= 0= 1= B=
- w

L =

Modifyng the ‘E Board’

If you opened your computer and had trouble finding the the
eight DRAM chips, there might be a good reason for this: you’re
the proud of owner of Commodore’s latest line of revisions for
the C64. The ‘E board’ has two 41464 DRAM’s (also labelled
LH2464) rather than eight 4164’s. As well, the board layout itself
is significantly different from earlier boards. There are two dif-
ferent E revisions that I’'m aware of. The first maintains the old
layout and logic except for the 41464s. The second one is radi-
cally different, with one large chip handling all the select logic
and timing. Gone are the PLA and the °LS139 decoder and 'LS257
multiplexers. But it is not difficult and certainly not impossible
to modify either of these revisions to 512K.

All that is mentioned in the above section still applies with the
following changes:

i) *CAS is available at pin 19 of the VIC chip.

ii) *CASRAM: Use the same technique as above, follow the
trace back from the DRAM, but instead of pin 15, follow pin
16 to the resistor.

The method is actually fairly
straightfoward, but it requires
a lot of additional work on your part. First, remove the 41464s
using the techniques outlined earlier and install 18-pin sockets
in their place. Now, install eight 16-pin sockets on a small
board. Take a look at the attendant pin layout for the 41256-
15. For each of the eight sockets, link together each address
line to the next in the chain. Do the same for *CAS, *RAS, *W,
pin 8 and pin 16. 412565 have two data lines, a data in (DI) and
data out (DO). For each socket, link these two pins together
(pins 2 and 14).

Now, direct your attention to the pin layout for the 41464.
Ignoring pin 1 (xG) and pin 18 (GRD) altogether, each pin cor-
responds to another on the 41256s. The data pins offer a spe-
cial case. Each 41464 has four data pins. With two chips, that
gives us eight data lines. Each data line goes to one 41256.

The new DRAM board is interfaced to the system using two
16-pin dual-in-line connectors plugged into the sockets
installed on the system board earlier. Plug the connector into
the lower 16 holes. You can find this item at Radio Shack. It’s
made up of two connectors joined by an 18-inch stretch of rib-
bon cable. Cut the cable in half, each piece consisting of a

30

Transactor

« Wwww.Commodore.ca

connector and nine inches of cable. At the other end, solder the
corresponding line from the 41464 sockets to the 41256s. Do
this with one of the pieces. With the other, it is only necessary
to connect the data lines. Now make a suitable ground connec-
tion between the system board and the DRAM board.

With the signals out to the board, install eight 41256s, and
ground pin 1 of the 41256s again paying attention to the sug-
gestions above. Power up your machine and the usual power-
on message should appear. If it doesn’t, check your wiring,
and chip orientation. Check with logic probe or voltmeter that
each pin shows a pulse condition (except for pin 8, high, and
pin 16, low). If you find a pin that isn’t offering the proper
condition, check the pin out diagram and that’ll give you an
idea as to the nature of the problem. Follow the above instruc-
tions if you intend to install a second bank of DRAM.

Once you’ve have the DRAM installed and operating properly,
proceed as above. Pay special attention to those areas where
signal locations differ. There are two additional notes in this
area. The first is that output Y1 from the ’LS153 goes to pin 1 of
the 41256s on the new RAM board. The second: *RAML and
*RAMH go to pin 15 of bank 1 and pin 15 of bank 2 respec-
tively. And that, as they say, ladies and gentlemen, is that.

May Not Reprint Without Permission

Before poking one of these values, it is necessary to set up
the bank’s zpage, stack and 0OS vectors. Key in the program
task switch to see this option in operation. Call it with
poke2,b:sys828 where b is the bank you want initialized.

I encourage you to become familiar with the operation of the
BCR. POKE away! The results you get may be strange (even
confusing) but, I assure you, yours is a ‘few of a kind’
machine. Have fun!

Of RAMdisks and GEOS

One of the nice things about things about the 256K project
was that it allowed the additional memory to be configured
as a RaMdisk under GEOS. For those of us lacking REU’s,
that do-it-yourself RAM expansion project offered an alter-
native route to a souped-up GEOS. As so many sources have
stated, an REU is an absolute necessity for the serious GEOS
user. In fact, REU routines are now an integral part of that
operating system. Where it was once possible to fool GEOS
without consquence that an REU was present, it now seems
(at least at this point) impossible. What exactly does this
mean? Well, first the good news: The program that follows
allows the configuration of a 256K or 512K RAMdisk under

GEOS 2.0 and the co-existence of an

Getting aquainted

Saying that your C64 is a radically dif-
ferent beast would be a gross under-
statement. The Bank Control Register
up at $dd80 gives you access to total
control over how your system’s
memory is configured. Study the

To make certain our RAMdisk
acted like a RAMdisk,
Berkeley’s RAMdisk driver was
unassembled and then rebuilt...

REU. Now the bad news: you must
have an REU (either a 1764 or 1750)
for it to work.

Some background. When you boot
GEOS, it searches for any programs of
the auto-exec file type. Configure is
one of these. Configure, as you know,

above tables, and the resultant config-
urations. Some of the results might be
suprising - even disconcerting - if you don’t understand the
implications of a particular configuration. And, although there
are 256 possible configurations, not every one of them useful.
However, none of them are tragic.

But to get you started, here are some values to try and the
resultant configuration. Just POKE the value to $dd80 (56704),
when you press Return the new configuration will be in effect.

i) 0-7: These are the base values. Each corresponds directly
to one of the eight banks of memory. In each case memory
above $3fff is replaced with the select bank.

ii) 120-127: These values are interesting in that CRAM has
been set to its lowest amount. As well, screen data is drawn
from the current bank. This allows eight separate work
spaces for BASIC or machine language programs. However
since all Os vectors, the stack and zpage are shared, be care-
ful of programs that modify those areas - especially the inter-
rupt vector. On a bank switch, your machine is sure to crash.

iii) 248-255:These values disable the CRAM option. Poking
one of these values without proper set up will cause a crash.

searches out, and initializes the drives
on your system. If you have an REU,
the disk drivers are stashed in the REU. When you switch
drives, the driver is fetched down from the REU and the other
drive is accessed. If you don’t have a REU, there are two possi-
bilities. If your drives are the same type (ie., two 1541s), you
don’t have a problem. If they are different, you must have a
copy of Configure on the work drive. The reason for this being
that the DeskTop will load the appropriate driver and get
things going.

This seemed to be a glimmer of hope. It seemed possible to
splice a new driver into Configure. The idea was this: your
system consists of a 1541 and 1571. Great, we’ll overwrite the
1581 driver with the new one and then configure a 1581 as
part of the system. Now, when we open the RAMdisk, the
DeskTop will think it’s a 1581, fetch our driver and we’ll be in
business. No way! Unfortunately, the DeskTop is fairly picky
about drivers and the number of tracks and sectors a disk
should have. As well, it doesn’t always use the standard rou-
tines for fetching its information about a particular disk or
driver. The DeskTop is smart! It knows a 1581 has its direc-
tory at Track 40, Sector 0 and if it isn’t found there, the Desk-
Top tells you this with an error. The bottom line was: the
scheme described above didn’t work.

Volume 9, Issue 6

31

« www.Commodore.ca

But with an REU on the system, we’ve a different situation
altogether. All we need do is make certain that the right driver
is in the REU and that our RAMdisk conforms to the expected
format. In other words, all that was necessary was to make
certain our RAMdisk acted like a RAMdisk. In order to accom-
plish this, Berkeley’s RaMdisk driver was unassembled and
then rebuilt to support the banked RAM.

The program that handles installation of the BRAMdisk is
C512Install. Like Configure, it is an auto-exec program.
Because auto-exec programs are executed in the order they
appear on your boot disk, C512Install must be placed after
Configure. What happens is this: after Configure installs the
drives on your system, control is returned to what I call the
‘BootTop’. It then searches for other auto-execs. Finding
C512Install, the BootTop executes it. C512Install does very
little error checking. It simply searches out an empty drive slot
and, on finding one, installs itself (uploading the BRAMdriver
to the REU). Depending on the amount of expansion DRAM,
either a BRAM1571 or °41 is installed. It then exits.

Now you’re asking: what use is it. After all, you already have
an REU. Imagine this: two shadowed 1541s (if you’ve a 512K
REU and two 1541s) and a 1571 BRAMdisk. Now that’s a fast,
powerful configuration.

And if you don’t have an REU? Well, I'm still working on the
problem and you’ve got a little incentive too. Maybe between
the few of us, we can figure it out.

How to get there from here

I received many letters after Care and Feeding of the C256
appeared in Transactor, Volume 9, Issue 2. In letter after letter
I had the unique pleasure of reading how people had pushed
their C64s into domains that would have been impossible for
us to imagine just a few years ago.

Throughout writing this article, a phrase from an old movie
has been running through my head. I've been looking for a
way to work it in. When I think again of what people are doing
to and with their 64s, the phrase becomes suddenly appropri-
ate: Something wonderful is about to happen!

Enjoy it! And thanks!

Listing 1: C512Inst.hdr

;t**t****#**t**tt***t**t*t*********

i* €512Inst.hdr *
% 1 %
:'* *
;% This is the header declaration *
;* for C512Install. *

;********t****t*****t******t******t

.header
.byte 3
byte 21

May Not Reprint Without Permission

G

$80]USR
AUTO_EXEC
VLIR

.byte
.byte
.byte

.word
.word
word

.byte
.byte

.block 43 ‘
.byte "Installs banked RAM as RAMdisk.",0

$0400
$03££
$0400

"C512Install v1.1",0,0,0,0
"Paul J. Bosacki ",0

.endh

Listing 2: C512Install.src

Riitiiiitiiiisiiadtidsidsizitsiiiy

H InstallRAM
;**tt*tttt****t**i******tt*t***t**

.if Passl

.include geosSym
.include geosMac

.endif

BCR
DoBankRAMOp

==§dds0
==402a7

.psect
lda

cmp
bne

version ;if not V2.0 then exit
#520

Quit

ramExpSize
Quit

LoadW rl0, C512Install
lda #1

sta whichDriver
jsr GetDriver

txa
bne

1lda
beq

;if REU not present then exit

;get diskdriver
;second VLIR record

;exit on error
Quit
#8
48486,y

13
13

#10
%

driveNum
InstallDriver

ldy
lda
beg
bmi
iny
cpy
bee

25:
;branch on empty drive slot or
;REU drive

;otherwise, continue search.

;save drive number
;and install driver

1§: sty
" jsr
txa
bne Quit

jsr StashDriver

Quit:1da ;restore configuration
jsr
Jup

GetDriver:
LoadW r6, fileNmBuf
LoadB r7L, $0e
LoadB r7H, 1
jsr FindFTypes
txa
bne 1§

C_curDrive
SetDevice
EnterDeskTop ;and return control to BootTop

;locate filetype auto-exec

;with permanent filename "C512Install"

32

Transactor

« www.Commodore.ca

May NOT Keprint wWitnout Permission

LoadW r0, fileNmBuf ;open that file ldy 1
jsr OpenRecordFile ldx #x0
lda 49
1da whichDriver ;open second record g:: ggp!‘stung
jsr PointRecord lda B840
LoadW r7, diskBuf ;and load that record into ;;: g;ze
LoadB r2L, $£f ;diskBuf
s:ta r28 2%: 1da #$80
jsr ReadRecord sta size
txa
pha . 3% ldx #0 ;return no error
jsr CloseRecordFile ;tidy up 1§: MoveB tempA, CPU DATA
pla rts
1§: rts FormatDrive:
StashDriver: MoveB CPU DATA, tempA
LoadW £0, §848e ;update drive vars. in REU LoadB CPU_DATA, #$35
LoadW rl, §7900+$048e ;so system can be RBOOTed .
LoadW r2, 4 ldy driveNum . i
lda #§81 ;drive type=rami541
LoadB r3L, 0
. sta $8486,y
jsr StashRAM da 0
; : : sta $88b7,y
ldy driveNum ;stash new disk driver to REU 1da size
LoadW r0, diskBuf bvs 1§
lda REUHstash-8, y
sta rlH lda #§80 ;update drive vars. to indicate
lda REULstash-8,y sta Header#3 ;a ram5171
sta rllL sta §88b7,y
LoadW r2, $0d80 ora #2
LoadB r3L, 0 sta $8486,y _ _
jsr StashRaM _ lda #§37 ifix header title to reflect change
rts sta driveModel
I"ml}lf’“"e' load £0, fheadlSTL ;dump track §35, sector §00 header
B LoadW 1, $8800
sel LoadW £2, #§0100
Jsr M9veTran§fer LoadB r3L, 0
jsr FindRanSize LoadB r3H, §801100101 ;bank 5
txa jsr DoBankRAMOp
bre 1§
LoadW r0, -£ix1571
jsr FormatDrive LoadW rl1, Beader+$dd
Load r2, 35
1§: plp jsr MoveData
rts

1§: LoadW r0, #Header ;dump track $18, sector $00 header
LoadW r1, $8800
LoadW r2, #$0100
LoadB r3L, 0
LoadB r3d, #301100010 ;bank 2

MoveTransfer:
LoadW r0, moveRoutine ;move transfer routine to CRAM and
LoadW rl, DoBankRAMOp ;GEOS free ram

I:oadw 2, routineSize ;because of its location, this is the jsr DoBankRAMOp
jsr MoveData ;only free ram under GEOS lay o0
Its tya
FindRamSize: 10§: sta diskBlkBuf,y
MoveB CPU DATA, tempA dey
LoadW CPU_DATA, I0 IN ;map in I0 bne 10§
lda #3£E
ldx DEV NOT FOUND sta diskBlkBuf+l
lda #0~ LoadW r0, #diskBlkBuf ;dump offside dir track to $19,§08
sta size LoadW rl, $9c00+50800
lda BR /A not bark 0, then Loadh 22, #50100
. - o3] oL,
bne 1§ jerror-don’t install! LoadB r38, §501100010 :bank 2
LoadW 0, $c006 ;source Jsr Do Op
Loadd 1, - but idestination Loadi 20, BdiskBLKBuf ;dump $18,501 to expansion ram
LoadW £2, $0009 ;tlength LoadH rl: 28900 uf dump 18,9 expansion
LoadB r3L, #%01100100 ;bank 4 LoadW r2, #$0100
LoadB r3H, 0 ;bank 0 LoadB r3L, 0
LoadB r38, #%01100010 ;bank 2
jsr DoBankRAMOp ;do BankOp jsr DoBankRAMOp

Volume 9, Issue 6 33

« www.Commodore.ca

MoveB tempA, CPU_DATA

lda 40
ldx 40
rts
moveRoutine:
PushB CPU_DATA
LoadB CPU DATA, 10 IN
ldy r2L
ldx r3H
1§: dey
lda 3L
sta BCR
lda (x0L),y
stx BCR
sta (rll),y
tya
bne 1§

beg Done

PushB CPU_DATA
ldy r2L

28: dey
ldx #10 IN
stx CPU DATA
lda 3L
sta BCR
lda #$30
sta CPU_DATA
lda (x0L),y

stx CPU_DATA
ldx r3H
stx BCR
beg 3§
ldx §§30
stx CPU_DATA
3% sta (rll),y
tya
bne 2§
ldzx §§35
stx CPU DATA

Done:sta BCR
PopB CPU_DATA
rts

IRQVEC:
pla
tay
pla
tax
pla

NMIVEC:
rti

e _moveRoutine:
routineSize = e moveRoutine-moveRoutine

Header:

.byte §12, 301, §41, §00, $15, §££, $ff, §1f
.byte §15, $£f, SEf, $1f, §15, $ff, Sff, $1£
.byte $15, $£f, $£f, $1f, §15, §£f, §ff, §lf
.byte $15, $ff, S£f, $1f, $15, §ff, $ff, §1f
.byte §15, $£f, $£f, §1£, §15, $£f, $ff, $1f
.byte §15, $£f, $£€, §1f, §15, $£, $ff, $1f
.byte $15, $£f, $€£, $1f, §15, §ff, §ff, Sif
.byte $15, $£f, S£f, S1f, $15, $£f, $ff, $1f
.byte $15, $£f, $£f, S1f, §15, §ff, $ff, §if
.byte $11, $fc, $£f, §07, $12, $£f, $fe, §07
.byte $13, $££, $££, §07, $13, $ff, $££, $07
.byte §13, $££, $££, $07, $13, SEE, SEf, $07
.byte $13, SEf, $ff, $07, $12, §£f, S€£, §03
.byte $12, $£f, S£f, $03, §12, $ff, $£f, §03
.byte §12, $£f, $Ef, $03, $12, $££, $£f, §03

May Not Reprint Without Permission
.byte $12, $££, $£f, $03, §11, $ff, S£f, $01
.byte $11, $£f, $£f, $01, §11, $ff, $£f, $01
.byte $11, $££, $£f, $01, §11, $ff, $ff, $01

headerTitle: .byte "BRam 15"
driveModel: .byte "41"
.byte 160,160, 160,160,160
.byte 160,160, 160,160
.byte "PJ",160,"28"
.byte 160,160, 160,160
.byte 19,8
.byte "GEOS format V1.0"

.block 256-188

£ix1571:
.byte §15, $15, $15, $15, $15, $15, §15, §15, §15
.byte §15, $15, §15, §15, §15, $15, $15, $15, $00
.byte §13, §13, §13, §13, $13, $13
.byte §12, $12, $12, §12, §12, §12
.byte §11, §11, $11, §11, $§11

head1571:
.byte $££, $£f, S1f, SEf, Sff, S1f, Sff, $£f, $1f, $ff, $ff, $1f
.byte $£f, $£f, 1, S£f, $ff, $1f, Sff, $ff, $1f, $ff, $ff, $1f
.byte $£f, $£f, 1, S£f, $ff, $1f, Sff, $£f, $1f, $£f, $ff, $1f
.byte $£f, $£f, S1f, $£f, $Ef, $1f, Sff, $ff, $1f, $£f, $£f, $1f
.byte $££, $£f, $1£, 00, $00, $00, S££, S£f, $07, $£f, $£f, $07
.byte $££, $£f, §07, $£f, $£f, $07, $ff, $£E, $07, $£f, $£f, $07
.byte $££, SEf, $03, SEf, $£f, $03, S£f, $£f, §03, $£f, $£f, $03
.byte $££, $£f, §03, $£f, $£f, §03, S£E, $££, §01, $£f, $£f, $01
.byte $££, $£f, §01, $£f, $ff, $01, $£f, $£f, $01

.block 152
;internal variable space trails code

C512Install: .byte "C512Install",NULL
fileMmBuf: .block 16

REUHstash: .byte $83,$90,5$%
REULstash: .byte $00,$80,$00
driveNum: Jbyte 9

whichDriver: .block 1

size: byte 0
buf: .block 9
tempA: .block 1
C_curDrive: .block 1
spacer: .block 8
diskBuf: .block 1

Listing 3:C512Install.Ink

s RRRARRERRXXRKARKARRKRRKAARRR KRR KR XX %%

i* C512Install.lnk *
Hd *
o %

’

;* These are the link file directives *

+* for C512Install & driverl571. *
R AR

.output C512Install
.header (C512Inst.hdr.rel

vlir

.psect $0400
C512Install.rel

.mod 1

.psect §9000
driverl571.rel

34

Transactor

www.Commodore.ca

Listing 4: Driver1571.src

,-****i****ii*tﬁ******t*************

B RamDisk Driver (geos) *
B e e e

.if Passl
.noegin
.noglbl
.include geosSym
.include geosMac
.eqin
.glbl
.endif

BCR =$dd80

bit 0:
bit 1:
bit 2:
bit 3:

H bank select
H bit 4:

bank select

bank select

video access forced bank0=0
consider al(=1

consider all=l

consider al2 & 13=1

CRAM Inhibit

bit 5:
bit 6:
bit 7:

;this is the Bank Control Reg.

C_GetDirHead:

1§:

jsr
jsr
txa
bne
ldy
lda
sta
bpl
jsr
jst
lda
sta
rts

lda
sta
rts

DirlGet
C_GetBlock

1$

curDrive

$8203

$88b7,y

1%

Dir2Get

C_GetBlock 2%
#506

interleave

1§:

§508 C_OpenDisk:

interleave

C RdBlkDskBuf: LoadW r4,diskBlkBuf
; Four banks of 64K are available. The register is laid out like this:

C_GetBlock:

1$:

C PutDirHead:

; Portions of the following code are Copyright (C) 1986-1989 by
; Berkeley Softworks. All rights reserved. Used with permission.
; Special thanks to Matt Loveless at Berkeley for his support.

.psect

0SJumpTable:

.byte [C_InitForIo,
.byte [C DoneWithIO,
.byte [C_ExitTurbo,
.byte [C_ExitTurbo,
.byte [C_EnterTurbo,
.byte [C_ChangeDskDev,
.byte [C NewDisk,
.byte [C ReadBlock,
.byte [C WriteBlock,
.byte [C VerWriteBlock,

]C_InitForI0
]C_DoneWithIO
]C_ExitTurbo
1C_ExitTurbo
]C_EnterTurbo
]C_ChangeDskDev
]C_NewDisk
]C_ReadBlock
]C_WriteBlock
]C_VerWriteBlock

.byte [C_OpenDisk,]C_OpenDisk
.byte [C_GetBlock, 1C_GetBlock
.byte [C_PutBlock,]C_PutBlock

.byte [C_GetDirHead,
.byte [C_PutDirHead,
.byte [C_GetFreeDirBlock,
.byte [C_CalcBlocksFree,
.byte [C_FreeBlock,
.byte [C_SetNextFree,

]C_GetDirHead
]C_PutDirHead
]C_GetFreeDirBlock
]C_CalcBlocksFree
]C_FreeBlock
]C_SetNextFree

.byte [C FindBAMBt, 1C_FindBAMBit
.byte [C NxtBlkAlloc,]C_NxtBlkAllec
.byte [C_BlkAlloc,]¢_BlkAlloc
.byte [C_ChkDkGEOS,]C_ChkDkGEOS

.byte [C SetGEOSdisk,)¢ SetGEOSDisk
jmp C_GetlstDirEntry
jmp C_GetNxtDirEntry

GetOf£PgTS
SetLink:
DskBufRdBlk:
DskBufWrBlk:

jmp C_GetO££PqTs
jmp C SetLink
jmp C_RdB1kDskBuf
jmp C_WrBlkDskBuf
nop

nop

rts

nop

nop

rts

jmp C_AllocateBlock
jmp C_ReadLink

jmp C_MoveTransfer
.byte $82, "V1.0",NULL

MoveTransfer:
diskType:

1$:

C_WrBlkDskBuf:

C_PutBlock:

2§:
1%:

DirlGet:

Dir2Get:

CheckTrack:

jsr
txa
bne
Phl_’
sei
jsr
plp
rts

php
sei
jsr
jsr
txa
bne
ldy
lda
sta
bpl
jsr
jsr
plp
rts

EnterTurbo

1

ReadBlock

DirlGet 1§
WriteBlock ‘
C_BlkAlloc:
1$

curDrive
curDirHead+3
$88b7,y

15

Dir2Get
WriteBlock

LoadW rd, diskBlkBuf

jsr
txa
bne
th_’
sei
jsr
txa
bne
jszr
plp
rts

sta

sta
sta
lda
sta
rts

EnterTurbo

1%

WriteBlock

2§
VerWriteBlock

1§:

#512
rlL
#500
rli
rdL
#4682
T4k

#435
rll
#500
rlH
rdl
#589
r4H

3§:

#$00

tempe 7$:
#502

rlL

15

C_NxtBlkAlloc:

VIay NOT Keprint wirnout Fermission

cop f$24

bee 2§

ldy curDrive
lda $88b7,y
bpl 1§
lda 1L
cop §$47
bes 1§

sec
rts

cle
rts
jsr
tza
bne 1§

jsr GetDirHead
txa

bne 1§

NewDisk

LoadW r5, curDirHead
jsr ChkDkGEOS
LoadW r4, curDirHead+$90
ldx #§0c

jsr GetPtrCurDkNm
ldx #rdL

ldy #r5L

lda #§12

jsr CopyFString
ldx #500

rts

ldy
sty
dey
sty r3H
PushW r9
Push¥W r3
lda #$00
sta r3H
lda #ife
sta 3L
ldx §r2L
ldy #3L
jsr Ddiv
lda 8L
beq 1%
ine r2L
bne 1%
inc r28

#s01
r3L

jsr GetCurDirHd
jsr CalcBlksFree
pla

sta r3L

pla

sta r38

ldx $$03

lda r2H

cmp réH

bne 2§

lda r2L

cmp rdL

beq 3§
bes 4%

lda z68
sta rdH
lda z6L
sta rdlL
lda r2H
sta r5H
lda r2L
sta 5L

jsr SetNextFree
txa

bne 4§

ldy #500

Volume 9, Issue 6

35

« www.Commodore.ca

lda r3L

sta (r4l),y
iny

lda r3H

sta (rdlL),y
cle

1da #$02
ade rdL

sta r4lL
bee 5§

inc rdR

58: lda r5L
bne 6§
dec r5H

65: dec r5L
1da r5L
ora r5H
bne 7§
ldy #$00
tya
sta (rdl),y
iny
lda §12
bne 8%
lda #$fe

8§: cle
ade #$01
sta (r4lL),y
ldx #500

48 PopW 19
rts

GetCurDirBd: LoadW r5, curDirHead
rts

C GetlstDirEntry:
lda #§12
sta rlL
lda §$01
sta rlH
jsr DskBufRdBlk
LoadW r5, diskBlkBuf+2
lda #$00
sta tempf
rts

C_GetNxtDirEntry:
ldx #$00
ldy #$00
cle
1da #$20
adc r5L
sta r5L
bee 1§
inc r58

1§: lda r58
cop #$80
bne 2§
1da r5L
cmp $$EE

2§ bee 3%
1dy #$£f
1da diskBlkBuf+l
sta rll
1da diskBlkBuf
sta rlL
bne 4§
1da tempf
bne 3§
1da #$££
sta tempf
jsr GetOffPgTS
txa
bne 3§
tya
bne 3§

4§: jsr DskBufRdBlk
ldy #$00
LoadW r5, diskBlkBuf+2

3§: rts

C_GetOffPgTS: jsr GetDirHead
txa
bne 1§
LoadW r5, curDirHead
jsr ChkDkGEOS
bne 2§
ldy #$£f
bne 3§

2%; MoveW curDirHead+$ab, rl

ldy §0
38 ldx #0
1§: rts

C_ChkDkGEOS: ldy #$ad
ldx #$00
1da #$00
sta isGEOS

2%: lda (z5L),y
cmp formatID,x
bne 1§
iny
inx
cpx #30b
bne 2§
lda #$££
sta isGEOS

1§ 1da isGEOS
rts

formatID: .byte "GEOS format V1.0",NULL

C_GetFreeDirBlk:

Phl?

sei

1da rélL
pha
PushW r2
ldx rl0L
inx

stx réL
1da $#§12
sta rlL
1da #$01
sta rlf

1§: jsr DskBufRdBlk

2§: txa
bne 7§
dec 6L
beq 5

35 lda diskBlkBuf
bne 4§
jsr SetLink
clv
bve 2§

45: sta rlL
1da diskBlkBuf+l
sta rlf
clv
bve 1§

5§: 1dy #5302
ldx #500

6 1da diskBlkBuf,y
beq 7§
tya
cle
adc #$20
tay
bee 6§
1da #$01
sta r6L
1dx #§04
1dy rl0L

May Not Reprint Without Permission

7$:

C_SetLink:

1$:

ClearBlock:

1§:

C_SetNextFree:

1§:

2%

3§

5§:

7§:

iny

sty rl0L

cpy #512

bee 3§

pla

sta r2L

pla

sta r2H

pla

sta réL

plp

rts

PushW r6

ldy #548

ldx #$04

lda curDirHead,y
beq 1§

MoveW rlL,r3L

jsr SetNextFree
MoveW r3L,diskBlkBuf
jsr DskBufWrBlk
txa

bne 1§

MoveW r3L,rllL

jsr ClearBlock
PopH 16

rts

1da #$00

tay

sta diskBlkBuf,y
iny

bne 1§

dey

sty diskBlkBuf+l
jmp DskBufWrBlk
lda r3H

cle

adc interleave
sta ré6H

lda r3L

sta r6L

cop #§12

beq 2§

cmp #$35

beq 2§

lda réL
cmp #$12
beq 4§
cmp §$35
beq 4%

cnp 524

bee 3§

cle

adc #5b9

tax

1da curDirHead, x
bne 5§

beq 4$

asl a

asl a

tax

lda curDirHead, x
beq 4%

1da réL

jsr CheckSector
lda NumSectors,x
sta r7L

tay

jsr SetAllocBlock
beq 6%

inc r6H

dey

bne 7%

36

Transactor

= www.Commodore.ca

4§ bit $8203
bpl 8§
lda réL
cop #3524
bes 9§
cle
ade #$23
sta réL
bne 10§

9§: sec
sbe #$22
sta réL
bne 11§

8§: inc r6lL
lda r6L

114 H cmp #$24
bes 12§

10$: : sec

sbe r3L

sta réH

asl a

ade #3504

adc interleave
sta ré68

bne 1§

6§: lda réL
sta r3L
1da ré6H
sta r38
1dx #$00
rts

12§: : ldx #503
rts

CheckSector: pha
cmp #$24
bec 1§
sec
sbe #$23

1§: ldx #500

2§: cmp SideAScVals,x
bee 3§
inx
bne 2§

3§: pla
rts

SideAScVals: .byte §12,§19,$1£, 524

NumSectors: .byte $15,$13,§12, 511
SetAllocBlock:
lda r6H
1$: cmp rL
bee 2§
sec
sbe r7L
clv
bve 1%
25: sta réH

C_AllocateBlock:
jsr FindBAMBit
beq 1§
lda r6L
cmp §524
bee 2§
lda r8H
eor #$£f
and dir2Head, x
sta dir2Head, x
clv
bve 3§

2§

3§:

1$:

C_FindBAMBit:

1§:

bitMask:

C_FreeBlock:

2§

3§:

1§:

1da r8H
eor #S££
and curDirHead, x
sta curDirHead, x

ldx r7H

dec curDirHead, x
1dx #$00

rts

ldx #$06
rts

lda ré8
and #$07
tax

1da bitMask,x
sta z8H
lda réL
cop #524
bee 1%
sec

sbe #524
sta r78
1da r68
lsr a
lsr a
lsr a
cle

adc r7H
asl r7H
cle

adc z7H
tax

lda réL
cle

adc #$b9
sta r7TH
lda dir2Head, x
and r8H
rts

asl a
asl a
sta r7H
1da 68
lsr a
lsr a
lsr a
sec
adc r7H
tax
1da curDirHead, x
and r8H
rts

.byte $01,$02, $04, 508
.byte $10,$20, $40, $80
jsr FindBAMBit

bne 1§

lda r6L

cmp §$24

bee 2§

1da r8H

eor dir2Head,x

sta dir2Bead, x

clv

bve 3§

lda r8H
eor curDirHead,x
sta curDirHead, x

ldx r78

inc curDirHead, x
ldx #$00

rts

ldx #$06

rts

May Not Reprint Without Permission

2§:

1§:

5§:

4§:

3§:
C_SetGEOSDisk:

3§:

2§

C_CalcBlksFree:lda $500

sta rdlL
sta rdf
ldy #504

lda (r5L),y
cle

adc r4L
sta rdlL
bee 1§

inc rd4f

tya

cle

ade #$04
tay

cpy #3548
beq 1%
cpy #$90
bne 2§
1da #§02
sta r3f
1da #$98
sta r3L
bit $8203
bpl 3§
ldy #$dd

lda (r5L),y
cle

ade 4L
sta rdlL
bee 4%

inc rdf

iny
bne 5§
LoadW r3, $0530

rts

jsr GetDirHead
txa

bne out

LoadW r5, curDirHead
jsr CalcBlksFree
1dx $$03

lda rdL

ora rdf

beq out

1da #500

sta r0L

1lda #$13

sta r3L

1da #$00
sta r38
jsr SetNextFree
txa

beq 2§
lda r0L
bne out
1da #501
sta r3L
sta r0L
bne 3§

lda «r3H

sta rlH

lda 3L

sta rlL

jsr ClearBlock

txa

bne out

MoveW rlL, curDirHead+$ab
ldy #$be

ldx #$0f

Volume 9, Issue 6

37

www.Commodore.ca

w
. May Not Reprint Without Permiss
PutIDString: 1lda formatID,x C EnterTurbo: lda curDrive ' . ' een
sta curDirHead,y jsr SetDevice
dey 1dx #3500
dex rts
l?pl PutIl?String C ExitTurbo: 1da #$08
jsr PutDirHead sta interleave
rts
out: rts
C InitForl0: php C_ChangeDskDev:sta curDrive
- pla sta $ba
1dx #500
sta templ rts
sei
C_NewDisk: jsr EnterTurbo
1da $02b0 rts
bne 1§ C_ReadBlock: jsr CheckTrack
. bee 18
jsr MoveTransfer jsr Do Fetch
1§: lda §01 B ig 00
sta temp3
1da #536 C ReadLink: jsr CheckTrack
st d0L lf:; ;291
i:: zg:;; jsr LoadLink
lda $d030 1: rts
sta templ
ldy #500 C_WriteBlock: jsr CheckTrack
sty $d030 b 28 e
sty $d0la Jsr Do_stas
lda #§7€ 1§ rts
sta §d019
sta $dc0d C_VerHriteBlock:
sta §ddod jsr CheckTrack
LoadW $0314, §02£6 o b0
LoadW $0318, $02fb
lda #§3f 1%: rts
sta $dd02
1da §d015 Do_Fetch: 1dy §591
sta tempd bne LoadPage
sty §d015
Do_Stash: ldy #$90
§ty $dd05 bne LoadPage
iny
sty §dd04 ;** the code most heavily modified to support the banked ram begins here **
lda #4681
sta §dd0d
1da 3509 LoadLink: lda $02a7 ;quickie is transfer routine installed?
bne 1% ;if not, then do so.
sta $dd0e jsr MoveTransfer ;this routine should be unnecessary, but
ldy #52 ;one never knows.
14: PushW r2
2§: 1da $d012 LoadW r2, $0002 ;fetch links only
cnp §8¢ bne SavePs
::g :gf LoadPage: 1da $02a7 ;as above
bne 1§
dey jsr MoveTransfer
bne 2§)
rts 1§: Pushi r2
C_DoneWithI0: sei LoadW r2, $0100 ;fetch page
1da temp0 SavePs:
sta §d030 Push¥ 10
1da tempd Push¥ rl
sta $d015 zushw 3
ya
lg: gi?ig d and #%00000001 ;mask out high bits
5 pha ;and save
1da $dd0d 1da rlL
1da temp2 cmp #$24 ;track request>35
sta $d0la bec 2% ;if .cs then do some math to access
1da temp3 sec ;correct page values
sta §01 ; sbe #§23
25 tay
1da tenmpl de;
Y
pha 1da RamDiskTab,y ;RAM page tranmslation
plp cle
rts ade rlH ; sector

38

Transactor

« www.Commodore.ca

4§
3§:

5%:

6$:

11§:

12§:

13§:
14§:

RamDiskTab:

C MoveTransfer:

May Not Reprint Without Permission

PushB CPU_DATA
LoadB CPU_DATA, 10_IN

sta r0B nvRoutine:
txa

ldx #3%01110001 ;base value for BCR=bank 1, CRAM set to $0400

cpy #11 ;work out the bank

bee 3§ ;value based on

cpy #23 ;sector requested 1§:
bec 4§

inx

inx

lda rlL ;if sector>35 then

cop #524 ;increase bank value

bec 5§ ;by 3 the hard way.

inx

inx

inx

stx 3L ; source

LoadB r3H, 0 ;destination 2:
sta rlL

MoveW rdL, rlL iset up for fetch

pla ;get back command value

bne 6§ ;on .ne = fetch

PushB r3H ;stash, then do £lip

MoveH r0L, rlL
MoveW r4L, r0L
MoveB r3L, r3H
PopB 3L

1da 38
beq 11§

lda rlH
bne 12§

lda r0H
and #$£0
cmp #9d0
beq 13§

jsr §02a7
bne 14§

jsr §02c4

PopH 13
PopH rl
PopH 10
PopHl 12
lx 40
la #0
rts

.byte $04, $1a, $30, $46, $5¢, $72, $88, $%

3:
;determine whether page requested
;lies under IO block
;if .eq then do slow transfer, otherwise...
Done:
;do fast transfer
IRQVEC:
;do under IO trans.
;restore psreg.’'s
NMIVEC:
e nvRoutine:
routineSize

;and return no errors

.byte $bd, $ca, $e0, $04, $1a, $30, $46, $5¢

.byte §72, $88, $9c, $b0, $cd, $d8, $ec, $04 temp0:
.byte §18, $2b, $3e, $51, $64, §77, $8a, $9c templ:
.byte Sae, $c0, $d2, $ed, $00 temp2:
temp3:
tempd:
PushW r0 temp5:
PushW rl temps:
PushW r2 temp7:
LoadW r0, mvRoutine temp8:
LoadW r1, §02a7 temp9:
LoadW r2, routineSize tempa:
jsr MoveData tempb:
LoadW $0314, $02£6 ; IRQvector tempe:
LoadW $0318, $02fb i NMIvector tempd:
PopH r2 tempe:
PopH 1l tempf:
PopH 10
rts .end

ldy r2L

1dx
dey
1da
sta
lda
stx
sta
tya
bne

beg

38

r3L

Done

Push CPU_DATA

ldy
dey
ldx
stx
1da
sta
1da
sta
1da

stx
ldx
stx
beq
1dx
stx
sta
tya
bne
1dx
stx

sta

r2L

#10_IN
CPU_DATA
r3L

BCR

$930
CPU_DATA
(x0L),y

CPU_DATA
r38

BCR

3

#$30
CPU_DATA
(r1L),y

2
#3535
CPU_DATA

BCR

PopB CPU_DATA

rts

pla
tay
pla
tax
pla
rti

= e_mvRoutine-nvRoutine

byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0
.byte 0

;internal variable space trails code

Volume 9, Issue 6

39

« www.Commodore.ca

Ramfinder

May Not Reprint Without Permission

Identify, stash and fetch

by Ian Adam
Introduction

Adding an external RAM cartridge to a Commodore 64 or 128
can greatly increase its power and speed. For example,
program overlays and disk files can be held in RAM, for near-
instant access. A word processor or spreadsheet can now
handle vastly larger documents or tables, rivalling those on
any other personal computer. Another of my favourite uses is
to prepare a number of graphics images, either high-resolution
or low-res, and stash them in the RAM cartridge. When these
are fetched rapidly, some pretty good animation can be created.
Many other kinds of programs can use that extra capacity for a
variety of different purposes, if only they know it’s there.

The speed of the RAM cartridges is truly amazing. The RAM
Expansion Controller is a special-purpose Direct Memory
Access chip; it has a very limited instruction set, and is opti-
mized for just one purpose - moving data. As a result, the data
transfer rate is one byte per clock cycle, or one million bytes
per second. This is far higher than with any other method,
even much higher than you could achieve with hand-crafted
machine language (a maximum of 70,000 cycles per second).
Compared to loading data from a 1541 disk drive... well,
there’s just no comparison. When programming animation
with the cartridge, I find that it’s actually necessary to intro-
duce delay loops in order to keep the animation down to a rea-
sonable speed! The RAM cartridge can load high-resolution
images about twice as fast as the video chip can display them,
and four times as fast as the human mind can perceive them.

With all of these capabilities at hand, it follows that the thor-
ough programmer will take the time to write programs in such
a way that external RAM is taken advantage of. After all,
there’s no sense in the user buying a cartridge, if programs for
the computer don’t make use of the facility. Besides, your pro-
grams will look so much more impressive when they use all of
the power at hand.

Right away, though, you run into the little problem of finding
out how much RAM, if any, you have to work with. The stan-
dard Commodore operating system doesn’t test for external
RAM, and the cartridge itself doesn’t go out of its way to tell
you that it’s present, so you have to devise a way to find out

for yourself. What’s more, while the cartridge does have a
status byte to tell you how big it is, unfortunately two of the
three available cartridges can have the same status byte!

That’s the bad news. The good news is that all three cartridges
use the same ten instruction registers, so they can all be con-
trolled with the same commands. Furthermore, they are all
located at the same address in the 1/O block, at $df00 to $df0a,
regardless of what computer they are installed in. Here are the
cartridges Commodore has made available for the 64 and 128:

Model Banks RAM Status Byte For Bank #S
1764 4 256K XXX1XXXX C 64 0 to 3
1700 2 128K XXX0XXXX C 128 0 and 1
1750 8 512K xXx1XXXX C 128 0 to 7

Check the larger accompanying table for further details on the
meaning of the various control registers. In theory at least, the
status byte (at $df00) should be a sufficient signature to identi-
fy the cartridge uniquely, once you know which model of
computer it’s installed in. After all, there is no duplication of
the byte within each computer model. The 64 is not supposed
to use a 128-model cartridge, since its meager power supply is
barely capable of powering the computer itself, let alone any
RAM expansion. The 1764 comes with an upgraded power sup-
ply, and so would not be of interest to an owner of a 128.

In the real world, however, you must remember that hardware
could be combined in ways that your program might not have
anticipated. For example, a Commodore 128 could be running
a C64 program in 64 mode, and still have access to either of
the 128-model expansion cartridges. You could also encounter
a 64-model cartridge being operated in a 128. Thus, there is no
guarantee that the cartridge will be the one you expect from its
signature byte.

What’s more, there still remains the problem of sorting out
whether a cartridge is present at all. A genuine status register
can take on many different values at different times, as a
glance at the table will illustrate. However, if there is no

40

Transactor

« www.Commodore.

Ca

cartridge present, a read of the address of the non-existent
status register gives a random value, which could mimic the
status byte of a cartridge. All in all, an interesting program-
ming challenge.

The Ramfinder program

To the rescue rides the Ramfinder program. The challenge of
detecting RAM isn’t all that difficult to deal with, and any
experienced programmer could tackle it reasonably well.
However, I’ve always felt that the programmer should be freed
to deal with important matters like making his or her program
work properly, and not have to spend time and energy worry-
ing about little details like what sort of hardware is attached.

To help out with this, I prepared the Ramfinder program,
which has several useful advantages. This compact program
will run in either the 64 or the 128, with no preference for
either. As a further advantage, it is fully relocatable to any
available start address (SA), so it will be compatible with just
about any program you may want to write. What’s more, it has
three handy entry points: '

sys sa identify RAM cartridge & report
sys sa+4 STASH to expansion RAM
sys sa+7 FETCH from expansion RAM

All of this usefulness is packed into just over 100 bytes of
machine language.

Of the three entry points, the first entry is the key one, because
it will check whether or not a RAM cartridge is present. If none
is found, it will return a value of zero. If it succeeds in finding
external RAM, then the program will perform a couple of addi-
tional tests to identify which cartridge is present. It will return a
result of 2, 4, or 8, representing the number of banks of memory
available. The result is stored in zero-page memory, where it can
be retrieved with a simple lda $fb, or a peek(251) from BASIC.
The result is also held in the accumulator on departure.

The second and third entry points will perform very simple
STASH and FETCH operations. Because the 64 and 128 manage
their memory in such different fashions, these operations will
not deal with subtleties like data in hidden memory banks.
However, they are ideal for my favourite task, pulling graphic
screens in and out of memory. To use these operations, put the
number of the external RAM bank that you want to use in $fb
(from BASIC: poke 251, bank#. For example, if you have a
four-bank cartridge, select a bank number of O to 3). Load the
microprocessor registers as follows:

accumulator high byte of expansion address
X register high byte of computer address
Y register high byte of length of transfer

(all low bytes will be set to zero)

If you are working in machine language, this is very straight-
forward. If you are working in BASIC 2.0 on the 64, just POKE

Vay NOT Reprint WithouT PErmission

these three values into memory locations 780 through 782,
then sys sa+4. With BASIC 7.0 on the 128 the values can be
transferred directly by the extended SYS command (as an
example: sys sa+4,8,4,4 to stash a low-res screen in the car-
tridge at $0800), but be sure you are in Bank 15 when you use
the program.

If you find you need a more comprehensive STASH and FETCH
capability, see Dale Castello’s wedge commands for the 64 in
Transactor, Volume 8 Issue 2, page 38 or use the built-in com-
mands in BASIC 7.0 on the 128.

Starting Ramfinder

How you use the Ramfinder program is at least partly depen-
dent on what you want to do. If you are doing machine lan-
guage programming and want to deal with the expansion
cartridge issue painlessly, then type in the source code and add
it to your library of useful routines. Again, note that the code is
fully relocatable, so you should find it most accommodating in
getting along with other routines. Its only requirement is for
one byte of space in zero page, at $fb. A ISR to the start of the
code will identify the expansion RAM available, and on return
the accumulator will contain the number of 64K banks
available. You can use the stash and fetch commands if
suitable to your needs.

For you non-ML programmers, a BASIC loader is also supplied.
Type the program in, being especially careful with the DATA
statements at the end. Be sure to save a copy of the program
before running it. When you do run the program, it gives a
brief description of itself, then asks for the address to load the
machine language into. Enter the address of any suitable free
RAM (in the 128, you must be in Bank 15, so the load address
must be less than 16270 in order to stay in non-banked RAM).
If you are unsure, just press Return and the code will be loaded
into the cassette buffer automatically. The program will then
give further instructions for each of its routines.

If you want to incorporate the routine into other BASIC pro-
grams that you write, you have my blessings. Of course, you
won’t need to include all of the detailed instructions - just the
DATA statements and their loader.

How it works

The only way to detect a RAM cartridge reliably is actually to
command it to work, then find out whether it performed as
expected. As I mentioned, the status byte should tell you about
the cartridge, but unfortunately it cannot be relied upon. Read-
ing this when a cartridge is not installed may yield a phantom
random number, leading to the erroneous conclusion that extra
RAM is available.

To get around this problem, the program puts a known byte in
zero page (the seed value 1 in its storage location at $fb), then
commands the cartridge to save the page in expansion RAM.
The value in $fb is changed (to #$b5, a convenient alterna-

Volume 9, Issue 6

41

« www.Commodore.ca

tive), then the page is fetched back. By checking what value
remains, the presence or absence of a cartridge can be de-
duced. If none, then a value of zero is returned.

With the knowledge that a RAM cartridge is present, the status
byte can be read reliably. If bit 4 is clear, then the cartridge
must be the 1700, and the task is finished.

Otherwise, there are still two possibilities, so one more test is
required. This depends on the characteristic that the bank
addresses ‘wrap around’; that is to say, access to a bank
beyond those in place will be decoded into the existing banks.
To make use of this, remember that zero page has already been
stashed in bank O: this page will now be verified against bank
4. In the 1764 (the 256K cartridge) bank 4 is read as bank 0, so
the verify operation succeeds. In the 1750, bank 4 is distinct
and different from bank 0, so the verify fails. Thus, the detec-
tion is complete. '

Table of REU Registers
REGISTER ADDRESS TYPE MEANING
STATUS $DF00 Read bits 0-3 version
Only bit 4 'size’
bit 5 1 = verify error
bit 6 1 = conplete
bit 7 interrupt pending
COMMAND §DFO1 R/W bits 0,1 transfer type
bit 4 0 = $FFO0 trigger
bit § 1 = reset parameters
bit 7 execute
ADDRESS $DF02 R/W low byte, computer address
$0F03 R/W high byte
EXP ADDR $DF04 R/W low byte, expansion RAM address
§OFO5 R/W high byte
BANK $DFOS R/W RAM bank #, low bits only
LENGTH $DFO7 R/W low byte, length of transfer
$DF08 R/W high byte
IRQ MASK $DF09 R/W bit 5 IRQ on verify error
bit 6 IRQ on completion
bit 7 enable interrupts
INCREMENT $DFOA R/W Dit 0 0 = increment RAM addrs
1 = fix RAM address
bit 1 0 = increment host addrs
1 = fix host address

The benefits are yours

How you use this program is up to you. It is most useful when
combined with other programs, whether in BASIC or machine
language. Ramfinder is compatible with both; its length and
transportability make it easy to incorporate with other pro-
grams of all types. [If you’ve ever plugged in your REU and
booted GEOS only to discover that the REU wasn't seated prop-
erly and thus was not seen by the system, you’ll recognize an-
other use for the program as published. - MO]

May Not Reprint Without Permission

There are two beneficiaries of this process; one is the user,
whose investment in an expansion cartridge is rewarded with
programs that offer more power and speed. The other benefi-
ciary is you, the programmer - your programs will be slicker
and more popular when they take advantage of all the
resources available to them. Ultimately, that reflects
favourably on your ability as a programmer!

Listing 1: ramfinder.bas

PK 100 print chr$(147):print"** ramfinder **"

PH 110 print:print"(c) ian adam"

PK 120 print"vancouver bc 1988"

GP 130 :

140 print:print"this short program will identify an"
150 print"external ram cartridge attached to"

160 print"the computer, and indicate its size"

170 print"in 64k banks. the program will operate"
OL 180 print"without modification in either"

II 190 print"the 64 or the 128."

MD 200 :

DK 210 print:print"the program is fully relocatable to"
HL 220 print"any start address, for compatibility."

OE 230 print"good locations are 828 in the 64,"

HK 240 print"and 2810 in the 128."

06 250 :

FE 260 print:input"your start address";a$

I0 270 sa=val(a$):if sa=0 then sa=828 -2000* (peek (46)>27)

2888

MI 280 :

HP 290 for i=sa to sa+ll7

GJ 300 read a:poke i,a

KD 310 next

EL 320 ;

CF 330 print chr$(147) :print"identifying ram:"

CE 340 print:print"sys"sa

JA 350 print:print"this command will locate a ram"
KL 360 print"cartridge and indicate the number of"
EI 370 print"banks in location $00fb (251)."

BP 380 print"a value of 0 means no expansion ram."
GF 390 print"options are 2, 4, or 8 banks of 64k."

m
-

400 print:print"number of banks installed now:"
410 sys sa

420 print:print"peek(251) =" peek(251)

430 print:print"press return to continue"

440 input a$

450

460 print chr$§(147) :print"stash and fetch:"

470 print:print"to start, set these parameters;
480 print"others will be set to zero:"

all"

T88E8E8EE

CC 490 print:print"poke 251, external ram bank #"

ND 500 print"accumulator = msb external ram address"
KB 510 print"x register = msb computer address"

GM 520 print"y register = msb length to transfer"

GI 530 :

LN 540 print:print"on the 64, poke these three values"
LL 550 print"into locations 780 to 782, then...":print
AR 560 print"sys"sat4" to stash"

DK 570 print"sys"sat+7" to fetch"

IL 580 :

NK 590 print:print"on the 128, use the extended sys"

CF 600 print"command. for example, to save this"

IM 610 print"screen at the start of external ram:"

BG 620 print:print"poke 251,0:sys"sat4",0,4,4"

KO 630 :

AI 640 end

OP 650 :

FG 660 datal69,0,240,6,24,144,80,56,176,77,120, 162,10, 157,0,223, 202, 208
DO 670 data250,232,142,8,223,134,251,169,180,141,1,223,169,181,133,251,141,1
CG 680 data223,197,251,240,40,173,0,223,41,16,208,4,169,2,208, 31,169, 4
GA 690 dataldl,6,223,169,1,133,251,169,183,141,1,223,173,0, 223,41, 32, 208
NE 700 datad,169,4,208,6,169,8,208,2,169, 0,133,251, 88, 96,141, 5, 223

ON 710 datald?,3,223,140,8,223,166, 251,142, 6,223,169, 0,141, 2, 223,141, 4
BE 720 data223,141,7,223,105,180,141,1,223,96

42

Transactor

« www.Commodore.ca

Listing 2: ramfinder.src

;*i***i**k**t******

;* *

;* *

i* external ram *

;% identifier *

;* *

;* *

i* for the c-64 *

i* and c-128 *

;* *

;t *
;t*****tk**ttttttt*

; (c) ian adam

; may 1988

; vancouver bc

i

zpbank = $00£b

rec = $df00

7 "Jump table’

; start address = test exram
;satd = gtash
;sat] = fetch

*

dunmy start address:
= §2000

code is fully
relocatable,
and executes

on either the 64
or 128 (bank 15)

1da #3500 ;entry to test ram
beq trial

cle rentry for stash
bee stash

sec sentry for fetch
bes stash

ARiiiiititiilid

* *
¥ trial *
* stash *
* *

; RRRRRRRKRXAKR

1]

’

.
'

move zero page from computer
to external ram bank 0, as
a test of cartridge operation:

trial sei
1dx #50a

clear sta rec,x ;clear registers
dex
bne clear

inx
stx §df08 ;move 1 page
stx zpbank ;plant seed

1da $8b4 ;control byte = stash
sta rectl ;execute

KERKERKKIKRKXKKRKKRKEKKKKKKK KKK

; the value 1 was saved as a test.
; if the stash was successful,

; then that seed value will be

; restored when the same page is

; fetched back. thus, this

; sequence will detect a working
; external ram cartridge:

1da #$b5 ;control byte = fetch
sta zpbank
sta rectl ;execute

cmp zpbank ;check it

beq noram ;exit if no exram found

external ram located -
find out how much:

1da rec
and $$10 ;check # of banks
bne more

if bit 4 is clear, then
there must be 128k of
external ram, in 2 banks:

1da #$02
bne exit

KRRIKKXRKRKRARKXARKRKKRKK R KKK K

if bit 4 is set, then there
are either 4 banks (256k) or

8 banks (512k). test for this
by verifying bank 4. if there
are only 4 banks, bank 0 will
read as bank 4, and verify ok.
if there are 8 banks, a verify
error will result:

more 1lda #$04
sta $df06 ;set bank 4
1da #$01
sta zpbank

1da #$b7 ;control byte = verify

WQay NOT KeprinT witnour rermission

sta rectl ;execute

1da rec ;check status
and #$20 ; for error
bne most

1da #$04 ;no error, 4 banks
bne exit

most 1da #$08 ;error = 8 banks
bne exit

*kkkkkkkkkkkkkk
* *
* exit with *
* message *
* *
biiiititesidiitg

noram lda #$00
exit sta zpbank ;leave message
cli
rts
; the # of expansion banks will
; be left in zpbank ($00£b).
; 0 banks means no external ram.
options: 2, 4, or 8 banks.

Khkkkkkkkkkkkkkkkkkkk

* *
* gtash and fetch *
* *

kkkkkkkkkkkkkkkkkkxkk

; a = high byte expansion address

; % = high byte computer address

; ¥ = high byte of length

; bank number in zpbank

; all other parameters set to 0

stash sta $df05 ;external ram address
stx $df03 ;set computer address
sty $df08 ;set length
ldx zpbank
stx $df06 ;set bank

1da 40 ;set low bytes to 0
sta $df02
sta $df04
sta $d£07

build control byte and execute:
the carry bit will increment the

control byte by 1, when a fetch
was specified in the jump table

adc #$b4 ;build control byte
sta rectl ;execute

rts ;all finished
.end T

Volume 9, Issue 6

« www.Commodore.ca

May Not Reprint Without Permission

Encryptor

Password Protection for C64

by Jim Frost

First, let me set the record straight. I believe in neither copy
protection nor stealing programs. Why then did I write
Encryptor? Computing at my house is a family pastime.
Mother does word processing and neatens documentation so
no one can find it. Jim (Grandpa is James R., I'm James S. and
he’s James T.) plays games and writes music. My daughter,
Summer, writes BASIC games that she definitely does not want
her older brother to touch. Jim naturally delights in analyzing,
modifying and criticizing Summer’s latest effort. With Sum-
mer’s work encrypted, I spend less time preventing fights and
more time writing programs.

If you have similar problems and want to protect BASIC pro-
grams from unauthorized use, with Encryptor, it’s easy! To use
Encryptor, load and run the BASIC loader. Nothing appears to
happen; however, BASIC’s LOAD and SAVE vectors are changed
to access encryption routines. A password prompt appears
when LOAD or SAVE is requested. For normal (plain-text) load-
ing, simply press return. To save an encrypted program, enter
a password in the spaces immediately following the prompt.
Any password will work - provided it does not begin with a
space and is not longer than eleven characters.

Loading encrypted programs involves the same procedure as
saving them. Type your password, then press return and let
the computer work. Unless you use the correct password,
loaded programs will be hopelessly scrambled, and the operat-
ing system may even lock due to confusion while relinking
gibberish.

Encryptor works by exclusive-ORing the ninth and eleventh
password characters with the first byte of your BASIC program.
To provide additional confusion, the password is then rotated
and the process repeated byte by byte until the entire program
is encrypted. Because XORing zeroes changes nothing, a pass-
word consisting of 11 @ characters (screen code 0) will not
encrypt. More accurately, the encrypted version will be identi-
cal to the plain text. I have slowed the encryption processes so
that you can watch it work. If you prefer lightning speed,
change the last data element from zero to one.

While Encryptor will make breaking into your programs diffi-
cult, no encryption method is infallible. With time and effort,
any protection can be overcome. For those who savour the

challenge of overcoming any obstacle, I have included data
statements to create an encrypted BASIC program on disk. The
password is my middle name.

Listing 1: encryptor.s

KkkkkRRRkKRRRAR KRR kKK KRk Xh*K KK

* *

* ENCRYPTOR *

* *

* LOADS AND SAVES ENCRYPTED *

* FILES. TO USE ENTER *

* PASSWORD AT PROMPT *

* A SPACE PASSWORD BYPASSES *

* THE PROGRAM *

* *

* J FROST rev AMAYBY *

* *

Fdkededed ko ddedk gk ke g gk g o de ok ke ok ko ke k

ILOAD = $0330

SAVE = $FSED

LOAD = $F4AS

CHROUT = $FFD2

STOBUF = $A560

COUNT = $FD
ORG $033C
LDX #$03

NEWPOINT LDA VTAB,X ;change LOAD and SAVE
STA ILOAD,X ;pointers to encrypt code
DEX
BPL NEWPOINT
RTS

VTAB DA ELORD jencrypt addresses
DA ESAVE

* Encrypted load Routine

ELOAD PHA ;save load/verify flag (in A)
JSR PWDMSG ;get password
PLA ;jrecover load/verify flag
JSR LOAD ;do normal load
BCS LFAULT ;if load error
STX $2D ;else save end of
STY $2E ;load address
JSR ENCRYPT ;mess things up
LDX $2D ;then recover end of
LDY $2E ;load address
CLC ;jcarry indicates fault
LFAULT RTS

* Encrypted save routine

Transactor

n |

g www.Commodore.ca
oy NotReprmt-WithroutPermissio
ESAVE JSR PWDMSG ;get password cPx #11 ;last password character?
JSR ENCRYPT ; scramble BNE TEST ;test end of BASIC
JSR SAVE ;then normal save
JSR ENCRYPT ;unscramble 1DX #500
CLC ;earry indicates error
RIS TEST STX COUNT
IDA $FC ;reached end of program?
* print password message then input password CMP $2E ;high bytes match?
BNE ELOOP ;no then keep working
PWDMSG LDX #500
LDA $FB ;else test low bytes
PHML LDA TEXT, X ;get text character P $2D
BEQ PASWRD ;zero flags end of string BNE ELOOP
JSR CHROUT ;non-zero - print LDA COUNT ;password centred?
INX BNE ROTATE ;loop until it is
BNE PWM1 ;and loop o
* return to BASIC if no encrypt or when finished
PASWRD JSR STOBUF ;input password
RTS NOENC RIS
TEXT HEX 93 :CLR FSTFLG HEX 00 ;any nonzero speeds encryption
TXT 'password:’, 00 .

* encrypt/decrypt routine

ENCRYPT LDA $0409 ;if space unencrypted BG
CMP #520 ;LOAD/SAVE requested EB
BEQ NOENC ;skip encryption DC

EC
LDA #$00 FB
STA COUNT ;count rotations PM
CI
IDA $2B ;copy start of BASIC I8
STA $FB ;address from #43 BG
AL
LDA $2C EB
STA $FC ;to $FB PE

* Encrypt loop - One cycle with a password will scramble.
* A second pass with the same password changes encrypted to plaintext.

* gcramble password for next pass

;128

ED

ca

KC

ELOOP LDY #$00 ;zero pointer gg
LDA ($FB),Y ;fetch program character :S
EOR $0411 ;XOR with Sth 6c
EOR $0413 ;and 1lth password character oA
STA ($FB),Y ;and replace character :5
INC $FB ;advance character pointer g
BNE ROTATE ;low byte MI
INC $FC ;and high if needed g
EE

KO

ROTATE LDX $0413 ;save last password character
Loy #509 Listing 3: makescram.bas
ROT1 LDA $0409,Y ;rotate 10 password characters
STA $040A,Y ;to right one bit MG 100 rem transactor standard program generator
DEY EJ 110 n$="scrambled.bas"
BPL ROTL KF 120 nd=43: sa=2049 : ch=2875
KO 130 for i=1 to nd: read x
TXA ;and rotate last EC 140 ch=ch-x:next
STA $0409 ito first FB 150 if ch then print "data error":stop
BM 160 print "data ok, now creating file."
; CM 170 restore
LDA FSTFLG ;do it fast?
> - CH 180 open 1,8,1,"0:"+n$
BNE QUICK ii€ non-zero, hurry EM 190 hi=int (sa/256) : lo=sa-256*hi
. . NA 200 print#l,chr$(lo)chr$(hi);
g)y(:ggg ielse time delay KD 210 for i=1 to nd:read x
HE 220 print#l,chr$(x); :next
JL 230 close 1
TIMDEL my MP 240 print"prg file'";n$;"’created..."
BNE TIMDEL M 250 print"this generator no longer needed."
MD 260 print "program created will not run"
INX CJ 265 print "unless you have the password"
BNE TIMDEL CL 270 data 21, 8,253, 48,138, 37, 70, 93
AJ 280 data 64, 5,103, 87, 79, 4,126, 76
* advance count and test for end of BASIC NG 290 data 75, 69, 65, 18, 15, 59,111, 3
AL 300 data 189, 18, 39, 76, 84, 53, 65, 5
QUICK LDX COUNT PK 310 data 96, 69, 65,115,115, 87, 65, 34
INX ;advance count AE 320 data 18, 18, 37

Listing 2: encryptor.bas

100 rem places encryptor in cassette buffer
120 nd=180: sa=827 : ch=21121

130 for i=l to nd: read x:pokesati,x

140 ch=ch-x:next

150 if ch then print "data error":stop
160 print "data ok, emcryptor installed
170 sys 828:end

260 :

270 data 162, 3,189, 72, 3,157, 48, 3
280 data 202, 16,247, 96, 76, 3, 99, 3
290 data 72, 32,113, 3,104, 32,165,244
300 data 176, 12,134, 45,132, 46, 32,141
310 data 3,166, 45,164, 46, 24, 96, 32
320 data 113, 3, 32,141, 3, 32,237,245
330 data 32,141, 3, 24, 96,162, 0,189
340 data 130, 3,240, 6, 32,210,255,232
350 data 208,245, 32, 96,165, 96,147, 80
360 data 65, 83, 83, 87, 79, 82, 68, 58
370 data 0,173, 9, 4,201, 32,240, 90
380 data 169, 0,133,253,165, 43,133,251
390 data 165, 44,133,252,160, 0,177,251
400 data 77, 17, 4, 77, 19, 4,145,251
410 data 230,251,208, 2,230,252,174, 19
420 data 4,160, 9,185, 9, 4,153, 10
430 data 4,136, 16,247,138,141, 9, 4
440 data 173,239, 3,208, 10,162,208,160
450 data 0,200,208,253,232,208,250,166
460 data 253,232,224, 11,208, 2,162, 0
470 data 134,253,165,252,197, 46,208,188
480 data 165,251,197, 45,208,182,165,253
490 data 208,196, 96, 0

Volume 9, Issue 6

« www.Commodore.ca

WAy NOT KepPIinT wilnour Terminsion

Pop-ASCII For The Commodore 64

A handy pop-up utility

by Peter M.L. Lottrup

Here’s a programming aid that you won’t want to be without
once you've given it a try. With Pop-AScll installed, you’ll
have immediate access to a pop-up window, displaying a list
of ASCIH codes in decimal and hexadecimal, along with the
character corresponding to that code (or a three-character
code, representing non-printable characters, like colours,
reverse, cursors, etc). And you won’t even lose the screen
beneath Pop-AScCii, as the utility will restore it for you once it
is done. Say goodbye to programming manuals and charts
forever!

Using Pop-ASCII

When you call Pop-AScil, using the ‘hot-key’ combination
Commodore-RESTORE, Pop-Ascll will spring to life on the
centre of your current screen. Pop-AScll is a 3-D window,
where ASCII codes are displayed in decimal and hexadecimal,
along with the corresponding character codes. Fourteen char-
acters are shown per screen, and you may quickly shift
through all characters using the up and down cursor keys to
move forwards or back. The program starts by displaying
character 32, the default starting point, but you may shift
through all 255 characters.

Pop-AScil is an all-machine language program, which loads in
the following address space:

Start Address: $C000
End Address: $C32E

Once you have typed in the program, save it. If you plan to use
it with the customizing loader program included, use the name
ml-popascii for the save.

To install the program in memory without using the loader
program, type:

load "ml-popascii", 8,1l
new
sys 49152

Pop-ascil will then be active and waiting for you to press the
CBM-RESTORE keys. When this happens, you’ll see Pop-ASCil

jump to life. If, for any reason, Pop-ASCHI ceases to function,
you may reactivate it by simply typing sys 49152. RUN-
STOP/RESTORE will not deactivate Pop-ASCIl.

The customizing loader

You may customize Pop-ASCII to your own preferences.
Colours and activation keys may be changed. Any control key
(SHIFT, CONTROL, CBM, CBM+SHIFT, etc.) plus RESTORE may be
used to activate Pop-ASCII.

To make customizing easy, a loader program has been included.
It is written in BASIC. Type it in and save it. To customize Pop-
AScll, simply change the values in the DATA statements in lines
100-140.

Line 100 selects the background colour of the Pop-asci
window. The current colour is cyan (print code 159). Replace
this value for the ASCII print code value of the colour you wish
to use.

Line 105 selects the shadow colour of the window (currently
black) in the same way.

Line 110 determines what combination of keys (in conjunction
with RESTORE) will activate Pop-ASCII. A value of one selects a
SHIFT key, a value of two the Commodore key, and a value of
four the CTRL key. You may combine more than one of these
keys, by adding the values. For example, a value of 3 selects
the SHIFT+CBM-+RESTORE keys to activate Pop-ASCII.

Line 120 selects the character used to scroll the list of charac-
ters a screen forwards (currently cursor down).

Line 130 selects the backward shift key (currently cursor up).
Line 140 selects the Pop-AScll ‘quit’ key (currently q).

The abbreviations

Pop-Ascll uses a list of three-letter codes for non-printable

characters. Most of them are quite direct, like BLK for black or
RON for Reverse-On. Here’s a list of abbreviations used:

46

Transactor

« www.Commodore.ca

wIQay NOT KepPIrinT ywimour rermission

WHT - White Listing 1: “popascii.src”
DIS - Disable SHIFT-CBM
ENA - Enable SHIFT-CBM NI 1000 open2,8,1,"0:ml-popascii"
RET - Return DM 1010 sys 700
LWR - Lowercase PA iggg ;°P;' gﬁo
13 = §e
DWN - Cursor Down NP 1040 ;--- first save screen & color ---
RON - Reverse On B 1050 1da #<newer
HME - Home ME 1060 sta §0318 ;--- new irq low ---
DEL - Delete HG 1070 1da #>newer
_ AF 1080 sta §0319 ;--- new irq high ---
RED - Red _ DF 1090 1da #setter
RHT - Cursor Right JL 1100 1dy #>setter
GRN - Green 1A 1110 sta $0302
BLU - Blue MI 1120 sty $0303 ;--- make sure new vect. stays
SPC - Soac GF 1130 rts :
pace KF 1140 setter lda #<newer
ORG - Orange ND 1150 sta $0318
SRT - Shift-Return BM 1160 1da #>newer
UPP - Uppercase CF 1170 sta $0319
BIK - Bluck HI 1180 1da §0
ac DB 1190 sta active
CUP - Cursor Up M 1200 jmp $ad83
ROF - Reverse Off IL 1210 newer pha
CLS - Clear Screen F6 1220 1da 653
ms - 1 A 1230 cp #2
nsert KR 1240 beq ours
BRN - Brown MB 1250 ignore pla
LRD - Light Red NC 1260 jmp $fed7
GRL - Gray 1 NF 1270 ours 1da active
IE 1280 bne ignore
GR2 - Gray 2 F 1290 inc active
LGR - Light Green KK 1300 1da 204
LBL - Light Blue Ca 1310 sta ctemp
ON 1320 inc 204
GR3 -
Gray 3 R 1330 1da 646
PUR - Purple JI 1340 sta tcolor
LFT - Cursor Left M 1350 sec
YEL - Yellow PO 1360 jsr $E££0
_ PD 1370 stx cur
CYN - Cyan GC 1380 sty cur+l
SPC - Space JL 1390 ldy §0
AP 1400 ;--- store screen and color memory ---
. KE 1410 loopl 1lda $0400,y
rogrammin
Progra g notes LL 1420 sta $a000,y
_ . K 1430 1da $d800,y
The NMI interrupt vector was selected to activate Pop-ASCI, A6 1440 and #15
providing the easiest and shortest way of interrupting a pro- F0 1450 sta §ad00,y
gram and activating a memory-resident utility. When Pop- gg mg i:: ggigw
AScll is called, current cursor colour and address are stored, gy 1489 1da sdgoo:y
along with screen and colour memory. cJ 1490 and $15
KB 1500 sta §a500,y
This information is restored upon exit from the utility. The W 1510 1da 50600,y
) FC 1520 sta §a200,y
memory area below BASIC ROM ($A000-$A800) is used for g 153 1da §da00,y
this storage. Aside from this memory, addresses 820-827 are EM 1540 and #15
used for miscellaneous data storage. The program itself resides g }:gg ;;: :ggggﬂ
- 1y
at memory addresses $C000-$C32E. T 1570 sta $a300.y
) JF 1580 1da §db00,y
I have been using Pop-Ascil for quite some time now, and find 6 1590 and §15
it incredibly handy. I use it for quick hex-dec conversions, and :(I: i:gg ?;‘ $a700,y
iny
to find all necessary character codes. 0B 1620 bne Loopl .
BA 1630 ;--- now display the pop-ascii window ---
Just think about how often you have found yourself searching L '1640 ldx #3
for that Commodore manual just to find the code for one of the FF 1650 ldy #12
. .) CP 1660 cle
function keys or some special character code. With Pop-ASCll 1670 jsr $£££0
installed, you’ll be able to remain at the keyboard instead of yg 1680 1da #"{rvs}"
rummaging through your bookshelves. DD 1690 jsr $££d2

Volume 9, Issue 6 47

« www.Commodore.ca

May Not Reprint Without Permission

K 1700 1da §"{black}" DE 2400 ;--- now hex number ---
HE 1710 jsr §££d2 EA 2410 1da 2

ED 1720 1da 8"{logo-y}“ BH 2420 and #Sfo

N 1730 Ldx 416 B 2430 lsr

DJ 1740 loopd jsr $££d2 BLg g:gg i:ﬁ

NI 1750 dex FE 2460 lsr

JX 1760 bne loop0 B 2470 cle

d 1770 ldx #4 DE 2480 jst dispnun
EN 1780 ldy #11 EF 2490 1da 2

Ed 1790 cle B 2500 and #50f
HK 1800 jsr $£££0 BJ 2510 jsr dispnum
AC 1810 lda f<prep KO 2520 jsr twospaces
GI 1820 ldy #>prep ME 2530 1da 2

AH 1830 jsr §able IL 2540 cmp #32

JB 1840 ldy $14 AJ 2550 bee speciall
BN 1850 1da §"(shift-*}" IR 2560 cmp #128

BB 1860 loop3 jsr $££d2 IE 2570 bee normal
1870 dey MK 2580 cnp 161
EC 1880 bne loop3 ¥j 250 bes nornal
DM 1890 1da §"{logo-s}" NE 2600 special? sec

FA 1900 jsr $££d2 FK 2610 sbe §128

W 1910 jsr black E0 2620 sta temp

BP 2630 asl
BN 1920 ldx #5 o 2680 cle
MD 1930 entry 1ldy #11 7 2650 ade t
KA 1940 cle ep

. DD 2660 tay
ND 1950 jsr $£££0 L 2670 ldx #3
GH 1960 1da #)" KP 2680 lol 1da table,y
L2 1970 Jsr $£fd2 1B 2690 jsr $£5d2
FK 1980 ldy #14 MG 2700 iny
Ip 1990 lda " " NE 2710 dex
PJ 2000 loop4 jsr $££d2 PJ 2720 bne lol
FJ 2010 dey oc 2730 jmp finish
BL 2020 bne loop4 CA 2740 speciall asl
ML 2030 1da §")" ED 2750 cle
BJ 2040 jsr $££d2 EF 2760 ade 2
1M 2050 jsr black BK 2770 tay
10 2060 inx 2780 1dz #3
GA 2070 cpx #21 16 2790 lo2 l-da tablel,y
B 2080 bec entry JI 2800 jsr $££d2
A 2090 1:11y #1 g g:;g ﬂ
KK 2100 cle
. AB 2830 bne 102
W 2110 Jor SEE0 I 2840 jmp finish
Sk 2120 1da #" {logo-z} HL 2850 normal 1lda #32
10 2130 jsr $££d2 o 2860 s 62
DP 2140 1da §"{shift-*}" N 2870 ida 2
BE 2160 loopS jsr $ffd2 PE 2890 1da 8" n
FD 2170 dey N0 2900 jsr $££d2
CF 2180 bne loop5 KB 2910 finish lda #13
¥B 2190 lda #"{logo-x}" BA 2920 jsr §££d2
BD 2200 jsr $££d2 GN 2930 inc line
HJ 2210 ;--- now fill the window --- GD 2940 inc 2
DD 2220 1da #32 HF 2950 jst place
FL 2230 sta 2 ;--- initial char --- EN 2960 1lda line
NB 2240 again 1da #6 OF 2970 cmp #20
ME 2250 sta line 17 2980 bes waitkey
FR 2260 jsr place gg gggg N gmp morek
2270 mor ;=== vait for 'q’ key ---
RL; 2238 e (1::; :10 DN 3010 waitkey jsr $ffed
EC 2290 bes notone Ly 3020 cap §"{down}"
D0 2300 1da #"0" 10 3030 beq forward
. BC 3040 cup §"{up}"
PJ 2310 jsr §££d2 o 3050 beg back
BK gggg notone 1:mp:uoo 0T 3080 cmg P
cp cS none :

IN 3070 bne waitke:
1A 2310 l.da #or GE 3080 ;--- now restore curient screen ---
PD 2360 none ldx 2 HG 3100 ldy #0
NC 2370 1da #0 PL 3110 1da 1
JJ7 2380 jsr $bded ;--- display number --- W 3120 and #254
16 2390 jsr twospaces KJ 3130 stal ;=== switch out basic rom ---

48

Transactor

« www.Commodore.ca

Vay NOT Keprint wirnour Fermission

JI 3140 ;--- restore screen & colors ---
LD 3150 loop2 1da $a000,y FH 3880 cur = 822
BE 3160 sta $0400,y FE 3890 ct':emp = 824
PF 3170 1da $a400,y FD 3900 line =825
JL 3180 sta $d800,y IE 3910 temp = 826
K6 3190 1da $a100,y BD 3920 tcolor = 820 '
M 3200 sta $0500,y FB 3930 ;--- data for special characters ---
KI 3210 1da $a500,y GF 3940 tablel .asc " wht disena"
EO 3220 sta $d900,y KO 3950 .as¢c " retlwr dwnronhmedel "
FJ 3230 1da $a200,y JP 3960 .asc " redrhtgrnbluspe”
M 3240 sta $0600,y NC 3970 table2 .asc " org £l £3 £5 £7 f£2"
FL 3250 1da $a600,y BL 3980 .asc " f4 £6 f8srtupp blkeuprofclsinsbrnlrd"
EC 3260 sta $da00,y BC 3990 .asc "grlgr2lgrlblgr3purlftyelcynspe”
M 3270 1da $a300,y
gg gggg ﬁ: :ozgg'y Listing 2: “customizer”
alvl,y s
EF 10 rem --- pop-ascii ---
PE 3300 sta §db00,
oM 3310 iny y ! 16 20 rem --- customizing loader ---
DM 3320 bne loop2 MD 30 rem
EL 3330 ;--- restore basic & interrupts --- JR 35 ifa=0thena=1:1load"ml-popascii”, 8,1
g gggg lda ;1 IC 40 read be:poke 49760, be:poke 49766,be
B 3360 ::: 1 GI 50 read sc:poke 49750, sc:poke 49309,sc
11 3370 cli JG 60 read ky:poke 49196,ky
IN 3380 ldx cur KE 70 read dw:poke 49585,dw
M 3390 ldy curtl KH 80 read up:poke 49589,up
up
g; g:gg ;;: ste50 ME 90 read qt:poke 49593,gt
ME 95 sys49152
16 3420 1da tcolor
ME 3430 sta 646 CF 100 data 159:rem --- background color:cyan ---
GB 3440 lda ctemp NC 105 data 144:rem --- shadow color:black ---
OE 3450 sta 204 FF 110 data 2:rem --- activation key:cbm ---
zl; g:gg i;: ;?{::1::: oft]? RC 120 data 17:rem --- forward scroll:cursor down ---
BD 3480 jsr $£6d2 CD 130 data 145:rem --- b?ckvard scroll:cursor up ---
KC 3490 pla EO 140 data 81:rem --- quit key:q ---
AH 3500 rti
‘I'g gg;g forward gmzkag:ainz Listing 3: BASIC generator for “mi-popascii”
a
IE 3530 sec
I8 3540 she #28
GL 3550 sta 2 EL 100 rem generatof.for "m]-popascii”
HR 3560 jmp again HK 110 n$="ml-popascii": rem name of program
BP 3570 twospaces lda #" " FD 120 nd=815: sa=49152: ch=83582
FJ 3580 jsr §££d2
BJ 3590 gsr gffdz (for lines 130-260, see the standard generator on page 5)
MP 3600 rts
; NE 1000 data 169, 39, 141, 24, 3, 169, 192, 141
PC 1010 data 5, ,1] 11 ' ' '
X 0 place iji; i 010 data 25, 3, 169, 21, 160, 192, 141, 2
CA 1020 data 3, 140, 3, 3, 96, 169, 39, 141
. ;iﬁ 880 BC 1030 data 20, 3, 160, 182, 141, 25, 3, 169
™ 3650 1da #"{zvs)" HG 1040 data 0, 141, 53, 3, 76, 131, 164, T2
q ta ! ! ! r ! I r
R0 3660 r $£5Q2 (B 1050 data 173, 141, 2, 201, 2, 240, 4, 104
CE 3670 3“ HE 1060 data 76, 71, 254, 173, 53, 3, 208, 247
B 3680 di $10 ME 1070 data 238, 53, 3, 165, 204, 141, 56, 3
% 3690 B meri R 1080 data 230, 204, 173, 134, 2, 141, 52, 3
o 3700 1° fumeric CB 1090 data 56, 32, 240, 255, 142, 54, 3, 140
X n cie W 1100 data 55, 3, 160, 0, 185, 0, 4, 153
EA 370 adc #55 KE 1110 data 0, 160, 185, 0, 216, 41, 15, 153
EC 30 jor §£td2 OF 1120 data 0, 164, 185, 0, 5, 153, 0, 161
3130 ks CH 1130 data 165, 0, 217, 41, 15, 153, 0, 165
PN 3240 nmeric cle NH 1140 data 185, 0, 6, 153, 0, 162, 185, 0
b 3750 ade #48 BK 1150 data 218, 41, 15, 153, 0, 166, 185, O
JE 3760 jor $8fd2 KA 1160 data 7, 153, 0, 163, 185, 0, 219, 41
Gk 3770 Its JA 1170 data 15, 153, 0, 167, 200, 208, 197, 162
ME 3780 black lda #"{black}" J7 1180 data 3, 160, 12, 24, 32, 240, 255, 169
BG 3790 jsr $££d2 HA 1190 data 18, 32, 210, 255, 169, 144, 32, 210
NA 3800 lda §" " 00 1200 data 255, 169, 183, 162, 16, 32, 210, 255
L8 3810 jst §££d2 JK 1210 data 202, 208, 250, 162, 4, 160, 11, 24
AC 3820 -'!dﬂ #"{cyan}" BD 1220 data 32, 240, 255, 169, 101, 160, 194, 32
PI 3830 jsr $££d2 DE 1230 data 30, 171, 160, 14, 169, 192, 32, 210
MO 3840 rts FN 1240 data 255, 136, 208, 250, 169, 174, 32, 210
CC 3850 prep .asc "{rvs}{cyan}{logo-a}" EN 1250 data 255, 32, 85, 194, 162, 5, 160, 11
OE 3860 byt 0 KD 1260 data 24, 32, 240, 255, 169, 221, 32, 210
EH 3870 active = 821 BJ 1270 data 255, 160, 14, 169, 32, 32, 210, 255

Volume 9, Issue 6 49

« www.Commodore.ca

1280 data 136,

1290 data

32,

1300 data 160,

1310 data

32,

1320 data 210,
1330 data 210,
1340 data 141,
1350 data 201,
1360 data 255,
1370 data 210,
1380 data 189,

1390 data

4,

1400 data 165,

1410 data

43,

1420 data 201,

1430 data

56,

1440 data 109,
1450 data 194,

1460 data

76,

1470 data 162,
1480 data 200,

1490 data

32,

1500 data 255,

1510 data
1520 data

32,
32,

1530 data 176,
1540 data 201,
1550 data 201,

1560 data

1

1570 data 153,
1580 data 216,

1590 data

0,

1600 data 153,
1610 data 218,

1620 data

0,

1630 data 165,

1640 data

54,

1650 data 255,

1660 data

56,

1670 data 146,
1680 data 193,

1690 data
1700 data
1710 data

6,
32,
13,

1720 data 210,
1730 data 105,

1740 data

48,

1750 data 210,
1760 data 159,

1770 data
1780 data
1790 data
1800 data
1810 data
1820 data
1830 data
1840 data
1850 data
1860 data
1870 data
1880 data
1890 data
1900 data
1910 data
1920 data
1930 data
1940 data
1950 data
1960 data
1970 data
1980 data
1990 data
2000 data
2010 data

0,
32,
87,
32,
32,
82,
32,
19,
32,
32,
32,
82,

210,

162

185

MGy NoT Reprint WiThout PErmission

Pinout Diagram for 6510 MPU

(viewed from solder side of motherboard)

[-4]
[
[~
o
=
b=
=

Expansion Port Pin Positions
(viewed from solder side of motherboard)

—

I

20T

oI
o
H
DODODODOO0O0OO

abpuyny
oy
o0
W

18y USIEUDERE

pIOQIaYI0L. JO 3pIs JAp|Os

™~

50

Transactor

« www.Commodore.

Ca

wWiQy NOT KePIinT wimour Fernmission

Combiner

A utility for geoWrite files

by Nick Vrtis

Combiner is a program which I wrote to take multiple
geoWrite files and combine them into a single file. It comes in
very handy when you have a number of separate documents
and want to combine them so that you can edit and paginate
the whole thing. GEOS can be pretty slow if you are working
without a RAM expander on a large document, so I found it
quicker and easier to work with smaller files. This way I could
key, spell check, etc. each file as a small piece, then combine
them for final preparation. It also came in handy when some-
one would write an article for our newsletter and I had to com-
bine that article with the rest of the articles.

When you double click on Combiner, you are presented with
the Main Menu screen. This Main Menu has four items to
select from:

GEOS - This item is a pretty standard GEOS menu item. You
can run any Desk Accessories which are on the same disk that
Combiner was loaded from. You can also get information
about Combiner.

Done - Select this item when you are finished combining docu-
ments. It has two submenu items: Quit will quit Combiner, and
return you to the DeskTop and geoWrite will load geoWrite and
let you edit the last output document you created (as if you had
double-clicked on the document icon from the DeskTop). Note
that in order for this to work properly, geoWrite must be on one
of the disks currently in the active drives.

Help - This item is a short series of screens which covers the
basic operation of Combiner, just in case you have forgotten
something and don’t have this documentation handy.

Begin - This item is selected to start the process of combining
an input file with an output file. After you have combined an
input with an output, you will be returned to the Main Menu
screen where you can select Begin again to repeat the process
(either with the same output file, or a new one). If you select
Cancel from any of the windows in the process, you will be
returned to the Main Menu screen.

The first thing that happens after you select Begin is that you
are presented with a series of windows to identify the output

document. The first window gives you a choice to Create an
new output file, or to Open an existing file and add to it.
Create will ask for the name of the new output file. If that file
already exists on the disk, you will be asked to confirm that
you want to delete the old version. If you select Open an exist-
ing file, you will be presented with the standard GEOS scrolling
filename window showing all the geoWrite documents on the
disk. Highlight the output file you want, and click over the
Open box.

Once the output file has been determined, the input file needs
to be selected. This is done through a standard scrolling file-
name window (the same way geoWrite lets you select an exist-
ing file). Click to highlight the name of the file you want to
use as input, and click the Open box to use that file.

The last thing Combiner needs to know is where to put the in-
put in the output file (in terms of pages). Combiner can pick
off any number of pages from the input file (it doesn’t need to
be the whole document). It can also put those pages after any
page of the output file (or insert them at the beginning).

In order to get this information, Combiner puts up a window
with five boxes. The first box requests the first page of the input
document you want included in the output. The second box
requests the last page of the input document you want included.
Both the first page and the last page are included, so in order to
select a single page, put the same number in both the first page
box and the last page box. The third box requests the page
number of the output document you want the new pages placed
after. All the pages specified by the first page number and last
page number will be placed after this page of the output.

For example, if you wanted to put the first two pages of an in-
put document after the second page of an existing document,
“first page’ would be 1, ‘last page’ would be 2, and ‘after page’
would be 2. Page 1 of the input would become page 3 of the
output. To insert the input pages at the beginning (before page
1) of the output, use a value of 0 for the ‘after page’.

When this window is first opened, the three numbers are
initialized to select the whole input document and insert it at
the end of the output document. If you are creating a new

Volume 9, Issue 6

51

« www.Commodore.ca

output document, the ‘after page’ shows up as page 00. To get
from one number box to the next, click in the box you want to
go to. You don’t have to fill in the boxes in order. You can exit
the window by one of three ways. Hitting Return or clicking
over the Ok box will close the window and use the numbers
currently in the boxes. Clicking over the Cancel box returns
you to the Main Menu without processing any input.

There are currently three different document versions pro-
duced by various geoWrite versions. Version 1.x is from the
geoWrite shipped with the original GEOS (version 1.0, 1.1, 1.2,
1.3). Version 2.0 is from Writer’s Workshop, and version 2.1 is
from the Writer's Workshop upgrade or GEOS version 2.0.
Combiner will combine different versions of geoWrite
documents. When you are creating a new document its version
is determined by the version of the first input file. Since
Combiner will combine a version 2.1 document with a version
1.3 and produce a version 1.3 output file, it is conveniently
allows owners of 1.x versions of geoWrite to edit files that
have been produced originally by 2.x versions. You should be
aware that there are features within version 2.1 (and 2.0)
which are unavailable with version 1.3. Combiner drops the
unsupported features when combining a higher version file
into a lower version.

Any graphics which are referenced in the pages selected from
an input document will be copied along with those pages.
Combiner doesn’t bother copying any graphics not referenced
by the pages selected.

Version 2 of geoWrite allows for a header and footer page.
Combiner will not select headers or footers from the input as
there can only be one set of headers and footers per document.
They are not removed from the output document, so if you
need the headers and footers, use the DeskTop duplicate op-
tion to make a copy of the file with the header and footer and
use it as the first output file.

Combiner will handle multiple drives if they are present on the
system. You can also have the input and output documents on
different disks (even with a single drive system). Combiner
will ask you to insert the necessary disks as they are needed.
Combiner reads as much of the input document into memory
as it can and then writes it out in order to keep disk swapping
to a minimum in a single drive system. Desk Accessories are
always loaded from the disk that Combiner was on when it
was loaded from the DeskTop.

Combiner has been tested under versions 1.3 and 2.0 of GEOS,
and version 1.4 of GEOS 128. [In tests here at the Transactor
offices, it was necessary to exit to a 40-column version of
geoWrite with GEOS 128 v2.0 - MO]

Programming considerations
In addition to being a useful program to have around, Combiner

contains a number of examples of how to make use of various
features within GEOS. In addition to the normal menus and

ViQy NOT KepPIrint witnour Fermission

windows, Combiner will run Desk Accessories, handles
multiple drives, custom click boxes in a window, and multiple
input fields in one window. I've tried to keep the source code
well commented, so I will only present an overview in this ar-
ticle. The routine labels I've used are those from Alexander
Boyce’s GEOS programmer’s reference (except for the general
purpose page zero locations). [The BSW labels and hex
addresses are provided in square brackets following the first
usage of each Boyce label.-M0O]

I’1l start with how the geos portion of the main menu is setup
and handled. What really happens is that the geos item is set
up as a submenu from the main menu. When the source was
coded, the submenu was set up to handle all nine possible
items (eight Desk Accessories plus the info item). Then as part
of the initialization process, Combiner uses TABLE [Find-
FTypes, $c23b] to get a list of the names of Desk Accessories.

TABLE returns a list of names which are 17 bytes apart, and
zero-terminated, so the addresses don’t need to be changed.
All that needs to be adjusted in the submenu entry is the num-
ber of items in the list, and the height of the menu. The num-
ber of entries left is returned by TABLE, so a simple subtract
gives the number used. Each entry takes 14 pixels, so the
height can be calculated easily. Note that one of the reasons
for the info option is so that the submenu under geos always
has at least one entry.

Running desk accessories

Running a Desk Accessory from within a program is really
pretty simple. All you need to do is point LOAD [GetFile,
$c208] to the name you want, and GEOS takes care of saving
and restoring the piece of your program which is going to be
overlayed. If your screen is not complicated, tell the Desk Ac-
cessory not to bother saving and restoring the screen. This can
save some disk IO if the Desk Accessory has to create a
temporary file to save the screen.

Most of the GEOS environment is preserved during the running
of the Desk Accessory. Unfortunately, Berkeley has never pub-
lished much about what a Desk Accessory can and cannot
trash, so I would be a little careful. Obviously, the general pur-
pose registers (r0 - r15) are not preserved, nor are the disk
buffers. Strangely, I haven’t found anything in GEOS which in-
dicates an open or a closed VLIR file, so I would not count on
this being preserved between calls to a Desk Accessory. If you
think about it, these restrictions aren’t too bad. Since your pro-
gram controls when the menu entry is active, just make sure
that you aren’t in the middle of some complicated update
when you activate it.

You might be interested in looking at how the geoWrite option
of Done is implemented. This is an example of how to transfer
from one program to another as if it had been double-clicked
on from the DeskTop. This avoids the hassle of reloading the
DeskTop just to get to geoWrite to clean up the file you just
created.

52

Transactor

« www.Commodore

.Ca

Text windows and custom click boxes

There was a little challenge in doing the Help windows. The
way text is implemented in windows, each line has to be a sep-
arate entry in the window definition. This is because the
WINDOW routine [DoDIgBox, $c256] sets the left margin to
zero (instead of the left edge of the window) so a carriage
return in the text takes you outside the window. Having each
line as a separate entry either means a separate window defini-
tion for each help screen, or adjusting a lot of pointers for each
line.

I didn’t care for either alternative. So I cheated and used the
‘set next character position’ function code ($16) within the
text. The three bytes after this code specify the absolute x and
y coordinates where the following text is to be displayed. The
Help window definition has only one text pointer (r12). This
points to one long text string which contains positioning com-
mands to format the text correctly. The bad part of doing win-
dows this way is that if you move or resize the window, you
have to go back and recalculate all the positioning.

The Begin main menu entry really starts the combining pro-
cess. The code in this section is pretty straightforward. The
way the Drive option is implemented is that windows which
may or may not have a Drive box on them have been designed
with that box definition at the end. Unlike menus which start
with a count of the number of entries, windows end when they
have a function byte of zero. So, by putting the Drive box last,
it can be included in the window by making the function byte
equal to $12 (custom click box), or removed from the window
by making it equal to zero.

Combiner checks NUMDRV during initialization, and sets the
function bytes appropriately for those windows which may or
may not have a Drive box. This way, the code which processes
the windows doesn’t have to worry about whether there are
enough drives. The only way that code will be executed if
there was a Drive box in the window, and there will only be a
Drive box if there is more than one drive on the system.

Non-standard windows

Probably the hardest part of this program was doing the win-
dow asking for the starting page, the ending page, and the
page to put them after. It is definitely a non-standard window!
The way I wanted to implement it was to have all three num-
bers on one window, and let the user click on any of the num-
bers to get into that box and change it. This is similar to the
way geoWrite implements the search and replace function (in
fact that’s where I got the idea). There were challenges though.

The trick is displaying fext within a click box. The window
processor doesn’t do any click boxes until the very end of pro-
cessing (regardless of where they appear in the window defini-
tion). So what I had to do was put up and display all the click
boxes for the window from within a routine (labeled WHERE-
SET) which gets called after the window is drawn. You have to

May Nof Reprint withour Permi
do all click boxes at once, because GEOS can only handle one
set at a time. Any boxes specified in the window definition
will replace those you have defined in the setup routine. I
wanted to show the default values for each of the page num-
bers required within a box. But, when CBOXES [Dolcons,
$c15a] draws a box, it overlays anything under the box area (it
makes sense when you think about how GEOS draws graphics).
The first thing WHERESET does is put up the click boxes. Then
it displays the default values for the pages within the areas
where the boxes are by calling WHEREIN.

Handling user text input

In order to start the process, one text input function needs to
be defined in the window definition. You don’t want to define
all three, since INPUT [GetString, $clba] saves a copy of the
carriage return entered vector and replaces it with its own val-
ue. If you call INPUT twice, the second call saves the wrong
carriage return vector and when you hit return INPUT gets in a
loop.

Each page value has a control block associated with it. This
block keeps the values which are needed to switch between
one input area and the other (the input buffer, the number of
characters entered, and the text cursor column). When the user
clicks over one of the value boxes, two routines get called.
SVWHERE takes the necessary INPUT values and saves them in
the current control block (the current block index is saved in
WIDXSAVE). Then NXTWHERE is called to move the new values
into the areas where INPUT uses, and finally calls PROMPTON to
move the text cursor. As far as INPUT is concerned, nothing
ever happened.

These routines are not totally general purpose, since there is a
lot in common with each area (size, starting column, number
of characters, etc.) The whole window is closed by one of
three actions: 1) entering a Return in any of the input win-
dows, 2) clicking on the OK box, or 3) clicking on the Cancel
box. Cancel takes you back to the main menu while the other
two fall through and process the input from the window. One
final bit of cleanup needs to be done before error-checking the
user’s input. When INPUT is accepting characters, it just keeps
track of where the next one will go, but doesn’t put the zero at
the end of the string until the Return is entered. This works
fine if you have only one input area; but with more it is possi-
ble to have shortened a field and then moved to another field.
The first field would not be properly zero-terminated but the
count of the valid characters has been saved, so Combiner
makes sure all three fields are properly terminated before
checking the values.

That is really the end of the major programming challenges
(due to the way GEOS works) that I encountered while doing
Combiner. There are a number of other details which needed
to be taken care of. Rulers need special attention when con-
verting between various revisions of geoWrite (a ruler is the
set of codes which define the margins, tabs, etc.). Version 1.x
(any of the original geoWrite versions) only has one ruler per

ssion

Volume 9, Issue 6

53

« www.Commodore.ca

page, and they are shorter than version 2 rulers. So whenever
Combiner goes from version 2 to version 1, it has to shorten
the ruler at the start of the page, and discard any rulers found
within the page (version 2 allows rulers at the start of any
paragraph). Likewise, when going from version 1 to version 2,

* Combiner has to lengthen the ruler (and set up a default value

for the paragraph indent).

There are even some conversions which must be done when
going between the two different version 2 documents.
Version 2.0 was delivered with the original Writer’s Work-
shop, and is the default version created by the new C64
versions of geoWrite. The difference between version 2.0 and
version 2.1 is that version 2.1 margins can go from 0.2
inches to 8.2 inches, and version 2.0 (and version 1.x) goes
from 1.2 inches to 7.2 inches. This means that when going
between these two versions, the values for the margins and
tabs need to be adjusted.

A value of zero for the left margin amounts to the 1.2 inches
mark on the page for version 2.0 documents, and 0.2 inches
for version 2.1. This is a pretty easy conversion, as all early
version tabs are available in 2.1 rulers. But, a tab (or margin
setting) of less than 1.2 inches (or greater than 7.2 inches) is
meaningless (and impossible) in a 2.0 or 1.x document, so
Combiner has to correct for these. The only ‘gotcha’ is that the
7.2 inch value used in versions 1.x & 2.0 is one less than the
pixel value needed by 2.1. You will notice an odd check for
this in the program.

Combining graphics

Another minor adjustment which needs to be checked for
when combining documents is the way graphics are refer-
enced. In GEOS, graphics are not imbedded directly in the
document. They are indicated by a graphics escape character,
the size of the graphic, and the VLIR record number where the
graphic is actually stored. In order to combine documents
properly, any graphic escapes found in the input pages need
to have the VLIR record number adjusted because graphics
from the original document may already be occupying that
record.

You also need to keep track of what graphics are actually
used, since it would be possible for the user to select pages
from the input which don’t use all the graphics. The way
Combiner does this is to have a 64-byte table (PICSUSED).
This allows one byte for each possible graphic VLIR. This
gets initialized to zeros. OLDPICS starts with the first free
VLIR record from the original file. When a page gets read in,
it is scanned for the graphics escape character ($10). When
one is found, the input VLIR record is saved in the next
available table slot (pointed to by OLDPICS). The record num-
ber is then changed to the value of OLDPICS, as that is where
it will go in the output file. Once all the input pages have
been combined, PICSUSED is scanned for any non-zero val-
ues. That VLIR record from the input file is read in, and gets
written out as a new output VLIR record.

May Not Reprint Without Permission

Dealing with end of text markers

One other ‘adjustment’ needs to be made to text in the process
of combining pages. When geoWrite stores a document, the
last byte on the last page is a zero to indicate end of text.
When Combiner needs to insert a new page after the last page
of the output file, it needs to read the last sector of the last
page, and replace the zero with a end of page character (the
Ascll form feed - $0C). For the same reasons, if Combiner has
to insert what was the last page of an input file in between
pages of the output file, the zero at the end of the input page
needs to be replaced with the form feed.

Maximizing available RAM

Combiner reads in as many pages of input into RAM as it can
before writing that data out. This reduces the number of disk
changes which occur in a single drive system when the input
and output disks aren’t the same. In order to increase the size
of available RAM for the input buffer, Combiner doesn’t use
the background screen which normally goes from $6000 to
$8000.

Whenever GEOS closes a window (or menu) it calls the routine
pointed to by IRECVR, with the coordinates of the area to be re-
covered. Normally, IRECVR points to the routine which trans-
fers a box from the background screen to the foreground.

Combiner changes this vector to REPAT. The screen for
Combiner is relatively simple, and except for the title area on
the bottom, it is simply a pattern fill. So in most cases, REPAT
simply sets the pattern to the one Combiner used in the title
screen and calls PFILL [Rectangle, $c124] to replace the
pattern.

The only exception is for the Help windows which extend into
the title area. Whenever this happens, REPAT has to redraw the
title area as part of the window recovery. REPAT actually gets
called twice when a window is closed. Once for the border,
and once for the main window. The position of the Help win-
dow and the value that REPAT checks for were carefully chosen
so that it recovers the title area only once.

The method of buffering deserves some explanation. Combiner
uses all the RAM from the end of the program to $8000 (the
start of GEOS storage) for a big buffer. Each time a page gets
read in, the first two available bytes are reserved as a pointer
area, and then LCHAIN [ReadFile, $c1ff] is called in an attempt
to load the VLIR record into the area available. After the page
is processed (remember, the size might have changed if going
between version 1 and version 2 type documents), the ending
address is saved in the pointer field at the start of each page.

The process is then repeated until either LCHAIN says a record
would not fit, or we run out of input text pages. In either case,
a zero is stored at the end of the last record that has been read
in successfully (any record truncated by memory limitations is
ignored - it will get picked up in the next pass).

54

Transactor

« www.Commodore.ca

Combiner then begins at the start of the buffer area, and writes
out pages until it sees the zero pointer. In order to write a page,
you need to know the starting address, and the number of
bytes. The starting address of the data portion is two bytes past
the current address pointer (RA2), and the length is the differ-
ence between that and the ending address from the pointer

area.

After the VLIR record is written, the old ending address be-
comes the new current address and the process is repeated.
This continues until Combiner finds the zeros as the new cur-
rent address. This signifies the end of the data in memory. All
that needs to be done is a quick check to see if all the request-
ed pages have been processed in order to determine if we are
done. Handling the graphics VLIR records is done the same
way. The only difference is that the PICSUSED table needs to be
checked to determine which graphics pages need to be read in,

and to which record they need to be written.

That pretty much covers the high points of the Combiner code.
The details are commented within the code. I had to break the
source into two separate files and an include file because

geoAssembler couldn’t handle it all in one piece.

$HCOMBINER - Header file for Combiner

; $HCOMBINER - Combine multiple geoWrite files into one - N. Vrtis 1/89
; Header definition file

r

.header

.word 0 ;first two always zero

.byte 3 ;size of ICON always fixed

.byte 21

.byte §80+3 ;CBM filetype is USR

.byte 6 ;GEOS filetype is Application

.byte 0 ;GEOS file structure is sequential
.word start ;where to load program

.word patcht30 ;ending address

.word start ;begin execution @ load address
.byte "COMBINER V1.1",0,0,0,500 ;(40 column only)
.byte "Nicholas J. Vrtis",0,0,0

.block 160-117 ;unused in header

.byte "Combine multiple geoWrite files into a single file.",§0d
.byte "Nicholas J. Vrtis - 1989",0
.endh

; end of $HCOMBINER

{HCOMBINER - Include file for Combiner

; [COMBINER - Combine multiple geoWrite documents into one. - Nick Vrtis 1/89
; include file used to define Page zero locations & GEOS routines

r0

= $02
rl = $04
r2 = $06
r3 = $08
rd = $0a

May Not Reprint Without Permission

5 = $0c
6 = $e
rl = $10
B = $12
9 = U
0 = §16
rll = §18
2 = $la
string == §24 ;input string pointer
pline == $26
senflg = §2f ; forground/background flag
mousex = $3a
mousey == $3c
ra2 = 310 ;pointer to start of a buffer area
ra3 == {72 ;pointer to data part of buffer area (ra2+2)
ral = §fb
ral = $fe
.macro ldptr p,pz

lda #[(p)

sta 124

da #l(p)

sta pztl
.endm
.macro window p

s #[(p)

ldy #1p)

jst xywindow
.endm
.macro movew src,dst

1lda sretl

sta dsttl

1da sre

sta dst
.endn
buf0 = $8000 ; 1st disk buffer
bufl = $8100 ; 2nd disk buffer
buf2 = §8200 ; 3rd disk buffer
tsbuf == §8300 ; Track/Sector buffer
direntry = $8400 ; directory entry after open
dfname == $8442 ; double clicked filename
ddname == §8453 ; double clicked disk name
curdrv. == $8489 ; current drive number
numdrv == $848d ; number of drives in system
irecve = §84bl ; screen recovery vector
cursx == §$84be ; used by INPUT to store info
cursy = §84cl; " "
winend == §851d ; command from window close
inplen == §87cf ; used by INPUT to store info
pfill == §cl24 ; Rectangle - pattern fill an area
setpat == $c139 ; SetPattern - set display pattern
dsptxt == §cl48 ; UseSystemFont - display text
nenu == §cl51 ; DoMenu - menu processor
eramns == §c157 ; RecoverAllMenus - erase all menus
cboxes == §clSa ; Dolcons - draw click boxes
movedata == §cle ; MoveData - move a block of data
drvmnu = $c193 ; ReDoMenu - redrav menu
grphc2 = §cla8 ; i GraphicsString - inline graphic commands
input = $clba ; GetString - get text input
cmepus == $clbd ; GoToFirstMenu - close all menus
read == §cled ; GetBlock - read in a sector
write == §cle? ; PutBlock - write a 7/8
save == §cled ; SaveFile - save data to file
lchain = §clff ; ReadFile - load a file chain
follow == $c205 ; FollowChain - follow disk chain
load == $c208 ; GetFile - load desk accessory
lockup == $c20b ; FindFile - find file entry
dsetup == §c214 ; EnterTurbo - disk setup

Volume 9, Issue 6

www.Commodore.ca

May Not Reprint Without Permission

lda §]danl
ade {0

sta
lda #0
sta 1l
sta
jsr load
jr

;00 options
;1 will restore screen/color

;restore screen
jep rememy

Dyte §01

JDyte 18,14
Jord 4

.vord 305

.byte §0c,2,15,r12
Dyte §01,2,135
Dyte §02,31,135
Jbyte 0

.byte §18, "CUBINER is a progran to corbine multiple geoRrite”
Dyte §16,6,0,43

.byte "documents into one.”

Dyte §16,6,0,63

.byte "The MainMeru options are:"

Dyte §16,6,0,73

.byte §12,"6E08",$13," - Lets you run any Desk Accessories on the”
Dyte §16,6,0,63

.byte "disk COMBINER was loaded from."

Dyte §16,6,0,93

Jbyte §12,"Done”,$13," - QUIT and return to the Deskfop, or go to"
JDyte §16,6,0,103

Jbyte "geoNirite and edit the last output document.”

JDyte §16,6,0,113

byte $12, "Begin” §13," - Start the process of conbining docunents”
Jbyte §16,6,0,123

byte "{nore infornation to follow)."

Jbyte §16,6,0,133

byte §12, "Relp”,§13," - This Belp series of screens.”,§lb,0
.byte $18, "After you select BEGIN, you vill be presented with a"
Dyte §16,6,0,43

.byte "window which allows you to:"

Dyte §16,6,0,53

byte §12,"CREATE", §13," a new geokrite output docurent.”

Dyte §16,6,0,63

.byte "(a follow on window will ask for the docunent nane)."
Dyte §16,6,0,73

byte §12,"0PEN",§13," an existing geolrite document for outpot.”
Dyte §16,6,0,83

.byte "(a follow on window will present you with the"

Dyte §16,6,0,93

.byte "standard filename selection window)"

Dyte §16,6,0,103

JDyte $12,"CANCRL",$13," and return to the Nairenn.”,§1b,0

.Dyte §18,"Once the input and output files have been identified,”
Dyte §16,6,0,43

.byte "you need to tell COMBINER how many pages of the”

Dyte §16,6,0,53

.byte "input docupent you want, and where to put them in"

Dyte §16,6,0,63

.byte "in the output docunent. A window allows you to

Dyte §16,6,0,73

.byte "specify the starting and ending pages (inclusive) to"
Dyte §16,6,0,83

.byte "take from the input, and the page nurber to place”

Dyte §16,6,0,93

.byte “those pages AFTER. Click over the number to move"

Dyte §16,6,0,103

.byte "the cusor to that value and change it." $1b,0

.byte §18, "COMBINER will conbine different versions of geofrite”
Jbyte §16,6,0,43

Jyte "documents. When you create a nev docoment, the”

790 put menu back wp

;-ok-
;-cancel-

ree = §clla ; ReadBlock - disk read
restt = §cdlc; Enterdesklop - reload desktop sta drvoptl
crrdy = §2%0; Exitfubo - stop turbo code sta droopt
delete = §c238 ; Deletefile - delete a file i
table = jclib; FindPfypes - create file list table i Bere s the comon point to put the pain nenu back up
windw = §c256 ; DoDlgBox - process window comands i
opnser = elbc ; InitForl0 - open channel to disk reenn: ldptr mainmeny,x0 ;do maimneny
clsser = §ol5f ; DoneMithI0 - dome with ifo a3 o 'ERL'
vopen = §cll4 ; OpeoRecordFile - open vlir file o mem
vclose = §e217 ; CloseRecordFile - close vlir file i dodaexit:
vgoto = §c260 ; PointRecord - set vlir chain § dohelp: 1dx §0
vappend = §c289 ; AppendRecord - add record to vlir belplp: stz belpids ;
viave = §ol8f ; WriteRecord - save data to vlir record 1da helpptrs,x helpy:
prompton = §c2db ; PromptOn - turn test prompt on (and position) sta 12
opndsk = felal ; OpenDisk - open disk in drive 1da helpptrstl,x
drvset = §edbd ; SetDevice - set drive § sta il
drvaan = §o298 ; GetPtrCurdke - get disk nane vindow helpw
clovin = §olbf ; RstrFrndialog - close window e o ;ckk option
i a i
; end of /COMBINER bne belpstn ;..mot -ok-
lde helpidx helpl:
i inet help panel
$1COMBINER - First source file i
{1 (nasbelp-belpptrs
; $1COMBINER - Conbine multiple geodirite files into one. l?:: hgplp ’ M?Tmle to show
; Nlchol§s J. Vrtis belprtn: Jmp drvemy +redray the nem
; 5863 Pinetree §.8 ;
; Rentwood, NI 49508 doinfo: vindow infov
i ™ dom ;tedrav the meny
include /COMBINER iPage zero & GROS definitions :
i dogeosrite:
peect . liptr ddnane,r2 ;setup pointers to name/disk of output
start: 1da §980 ;1 will be using the background screen Mgt dfname, 13
sta senflg 70 tell GROS not to use it P
l'dptr tepatcuecvr ;8et my ?ector tt_) recover 15 1 odshmy
. jor opentitle ;do opening credits ta ([@)y
lda curdry ;save D.A, disk drive i:: ‘E;;T
sta dadskdrv &y
sta odskdrv ;also as inital output and input drive bl 15 helpl:
sta idskdrv . ’
" ldptr geowrite,z6 ;load GEORRITE program
X 1da §§80 153y 'double clicked'
jor drvnan & o
iy #15 7save D.A, disk name .
s s (0 fir - load
) ' jer error +just in case load bad an error
sta dadsknn,y m o
dey . R
bpl 100 " .
pte danl 16 find D.A'S Ml;te :g: fdanl-danl ;offset to start of name
i(tl: 23 +1ooking for D.A.'S Wbyt ; g‘ it
. Jyte §2¢
a B mul ot 1o Wnddanl
a0 ;0 class dyte e
" dodad: 12 fdand-danl
sta ol e e belp:
]'s: table dodab: 1da fdanS-danl
sec ;scale how nany found e 82
o /8005 +1 for IV0 BOX Goaf: 1da feané-danl
e 1Ml byte e
tax ssave cot doda?; 1da fdan-dant
ora §380 ;add vertical menu option bit yte e
st quopts dods8: 1da {dan-danl
i §0 ;cale memy hgt sta ral ;save offset
caloguh: cle ;14 for each (t14) jor eramns iclear off neny
ae 14 1d2 dadskdrv ;nake sure D.A.'S available
dex lix §[dadskm
bpl calegrh 1y {]dsdskon
sta quhgt jor chkdsk
; beq dodsexit ;didn't want to mount D.A. disk
lda nundrv ;check if 2 drives available cle seale adr of start of name helpd:
ap R lda rad
bec remen ;..drive not available ade §(danl
lda §i2 ;else enble -drive- click boses sta 16

byte $16,6,0,53

56

Transactor

2 www.Commodore.ca

Wy INOT REPTITI YWITNTOUT Perission
.byte "version is deternined by the first INPUT document." 12 §ff dey
.byte $16,6,0,63 sta ovflag ;don’t know version yet bpl 102§
.byte "You can combine a Version 2,1 (from GEOS 2.0 or" sta oldnew ithis is new file ldptr fninsg, fawmsgl
.byte §16,6,0,73 ldptr outnm,rl0 ldptr inpnm, 25
.byte "geoPublish) document with a Version 1.3 (from GROS" window newfilew ;get name for new file ldptr writecl,rl0
.byte §16,6,0,83 lda o ldptr idsknm, fnwmsg?
.byte "1.3). The result can either be a Version 1.3 " §0e, "OR", §0f ap §2 ldaa #
byte §16,6,0,93 beq rememd ;..-cancel- sta 17
.byte "Version 2.1, ",§0¢, "Note", $0f," though, that Version 1.3 cannot” cmp 6 window filenw ;get input filename
.byte $16,6,0,103 beq mewodsk2 ;..-disk- lda 1
.byte "handle some Version 2.x (2.0 or 2.1) options, so" ap #5860 ap #
.byte $16,6,0,113 beq outdr ;. -drive- beq remems2 ;..-cancel-
.byte "these are dropped when combining Version 2.x files" 12 outmn ap #
.byte §16,6,0,123 beg rememd ;..noname selected beq newidisk ;..-disk-
.byte "into a Version 1.3 file.",$1b,0 ldptr outnm, 26 ap #3580
helpS: .byte §18, "Graphics included in any of the input pages are" jsr lookup ;see if file aready exists beq newidv ;..-drive-
.byte §16,6,0,43 x5 ldptr inpam,r0 ;open input file
.byte "copied to the output.” getidsk? ;..doesn'T EXIST jst vopen
.byte $16,6,0,53 jsr o error jsr error
.byte "fou cannot copy headers or footers from an input” bne rememsd ;..other error bne rememu?
.byte $16,6,0,63 window replw ;nake sure can replace jsr getvsn ;get input file version
.byte "Version 2.x document.” M bes getidsk ;..can't handle this version
.byte $16,6,0,73 ap § stx ivflag ;save input version
.byte "COMBINER will handle either multiple drives, and/or" beq remend ;..-no- bit oldnew ;check if output decided yet
.byte §16,6,0,83 ldptr outnm, 0 bpl 202§ ;..yes-everything set
.byte "input and output from different disks. You will be" jsr delete ;9et rid of original i
.byte §16,6,0,93 getidsk2: sta ovsnl ;else '0LD version is same as lst input
.byte "asked to insert the required disk when it is needed.” jup initidry ;..then proceed sty ovsnli2
.byte $16,6,0,103 outdrv2: jup outdrv sts ovflag
.byte "Desk Accessories are always loaded from the disk" newodsk2: Ist oldnew ;clr 'NEW' bit (still need to create one)
.byte §16,6,0,113 jip newodisk ;
.byte "which was in the drive COMBINER was loaded from." reenud: jmp remem 02§: jsr countrecs
.byte $16,6,0,133 H bit oldnew
.byte §19," End of HELP Screens.”,$1b,0 oldout: ldptr fnomsg, fovmsgl bve 203§ i..0ld file already
H ldptr outnm,15 H
helpptrs: .word helpl iRointers to each help screen ldptr writecl, 10 stx oldmax ;else set max pages from input type
.word help? ldptr odsknm, fnvmsg? da 4§64 ;1st available graphic page is same for either
.word help3 lda § ;application data type files sta oldpics
Jword helpd sta 17 H
.word helps vindow filenw ;get old output file name 03: jsr welose
naxhelp: ; (maxhelp-helpptrs) is high index for screens i o lda # ;set default start/stop as 1 to § pages
H ap § sta frstipge
.end beq rememi2 ;..-cancel- lda pages
; END of §$1COMBINER ap sta lastipge
beg newodisk ;..-disk- lda oldpages ;default is after last page
ap §580 sta aftpge
$2COMBINER - Second source file Mo i v gbere:
ldptr outnm, 20 ldptr fpblk,xl0 ;set pointer for first page
; S2COMBINER - Combine multiple geoNrite docunents into one. - Nick Vrtis 1/89 jsr vopen window wherew ;get 1st/last/after pages
H st error da 10
.noeqin ;these got defined in the lst file bne remem ;..bad open ap # .
.include /COMBINER ;Page zero § GBOS definitions jsr getvsn ;get version nunber bne 300§ ;..not cancel
.eqin bes remem? ;..unsupported version jup rememu
.psect stx ovilag ;save version flag 3005: 1da 0 ;make sure 0 after last entered digit
rezenud: jup rememu jsr countrecs ;qet § pages & pictures ldx fpblk#d
H str oldmax ;save values sta fpblk,x
dobegin: jsr cmemus ;close menus sty oldpics ldc lpblk#d
window beginw ;get options sta oldpages sta Ipblkx
da 10 da #0 ;set 010" file flag ldr apblktd
sta ral ;save selected option sta oldnew sta aphlk,x
ap #2 st velose +done for nov lx fphlk ;convert values
beq remenud i..-cancel- initidrv: lda fpblktl
lda odskdry ;see if current drive is same as last output lda idskdrv ;make sure last used input drive active jst Dbinary
cmp curdv ap curdy beg fperr 7.0 is bad
beg savodsk i..yes beg getidsk ;..yes-no change needed bec chkfp 7..g0 check for max
outdrv: jsr mextdrv ;must be other drive (vhich will be NEXT) bne mewidrv ;..need to make other (NEXT) drive current fperr: ldx §$83 ;'invalid first page’
i rezenu: jmp rememu poerr: jsr error
savodsk: 1da curdrv ;save ablun disk info ; jup getwhere
sta odskdrv newodisk: lperr: ldx 984 ;'invalid last page’
ldx §[z0 ;get boot drive name jsr newdisk ;tell to insert new disk byte §2¢ iBIT
jsr drvnam jip savodsk ;..qo start process over aperr: ldx #4585 ;' invalid after page’
oy 85 ; inc frstipge ;restore to what was typed in
100§: lda (z0)y newidisk: bne pgerr ;..unconditional
sta odsknn,y jsr newdisk chkfp: dex
dey o getidsk X pages
bpl 101§ nevidrv: jsr nestdrv ;setup next drive bes fperr ;..page is too big
lda §0 getidsk: lda curdry ;get current drive § stx frstipge ;save
sta oldpages ;no old pages yet sta idskdry ;save drive § lix Iphlk ;same process for last page
sta oldpics ;or pictures e §e0 ;qet disk name of input disk lda Ilpblktl
2 ral ;get 'BEGIN' option jsr drvman jsr binary
ap #5 oy §15 beq lperr ;..0 is invalid last page
beg oldout ;..'OPEN' old geoRirite file 102§ da (x0),y bes lperr
H sta idskm,y dex

Volume 9, Issue 6

57

« www.Commodore.ca

Cpx pages
bes lperr
cpr frstipge
bee lperr 7..can't be less than first page
inx
stx lastipge
lic apblk
1 aphlkl
jsr binary
beqg 303§ ;..inserting at start
bes aperr
dex
opx oldpages
bes aperr
inx
30%: stx aftpge
8¢
12 lastipge ;cale § pages being added
sbe frstipge
cle
ade oldpages ;cale total resulting pages
omp oldmax
bec rocmck ;. they will fit
e §560 ;"f00 many pages”
jer error
jmp o getidsk
roomok: ldx {63 ;clear used flags for pictures
a0
206§: sta picsused,x
dex
bpl 2068
; here to get pages from input into buffer area
pagesin: ldptr bufbeg,ra? ;buffer area is empty
da idskdev
lic fidskan
Iy Hidskm
jer chkdsk snake sure input disk mounted
beq rememd ;..cancel from disk mount
ldptr inpamr0 ;open the input file
jer vopen
jer error
bne remem5 ;..error in open
; here for the start of each page
pageloop:
e frstipge
jer wgoto
jer readpage o get the page in
o il scheck for no buffer space error
bre 21§ 7..not that
jip pagesout ;else need to output pages in so far
1§ jer error
bre rememS ;..load failed
da #0
sta backlvlf ;assume no backlevel challenges
e ivflyg
ope ovtlag
beg torulerck ;..no ruler escape fix needed
bes tobacklvl ;..need to backlevel the imput file
; qoing from lover input level to higher output level
oqx {2 ;check for V2.0 as input
bre vimix ;..00-VLx to V2.2
beg chkuplel ;..go chk for upleveling (2.0 to 2.1)
torulerok:
jmp rulerck
tobacklvl:
jmp backlvl
remenuS: jmp rememu
; mst be from V1.x to V2.x
vlavlx: movew rad,rd 1need to expand starting ruler
cle
lda o
ade 20 1FROM past 1.x ruler
sta 10
lda il
e §0
sta il
cle
e o
ade §7 ;70 where 2.x needs

;RM, 1M, + 8 TABS
;make roon for ruler escape

;add ruler escape

;make paragrph indent=left margin

;0 justification/text color/reserved

;1 don't know what this bit does
;but geodirite sets it on

;add to end of buffer pointer

;set pointer past escape

;see if need to uplevel the ruler
;set pointer to start of buffer
;set 1st back level flag bit

;check output level
;..must be 2.1->2.0

;set flag as 2.x->1.x
;check input version

;..going 2.0 to 1.x (tabs values are OK)
;Never have 1.x input (would be 1.x->1.x)
;g0 adjust inch offsets

;check how far back level
7..2.1-2.0 is done

;don’t bother with paragraph margin

;move FROM is just past V2.x escape

sta 1l
lda il
e #0
sta rltl
jsr perfmove
ldy 242461
6005: 1da (rd)y
iny
sta (o0)y
dey
dey
bpl 600§
4 {17
dy {0
sta (rd)y
iny
)y
. tax
iny
(o)
oy §2
sta (rd),y
dey
txa
st (dd),y
iny
601§: iny
lda {0
sta (rd)y
oy #26
bee 601§
da #$10
dy 83
sta (rd),y
cle
lda 17
ade §27-20
sta 17
bee chkuplvl
ine 14l
chkuplvl:
cle
lda a2
ade §1
sta rd
1l ra24l
ade 0
sta rdtl
jst uplvl
jup rulerok
backlvl: movew ra3,rd
sec
ror backlvlf
lix ovflag
xR
bes 603§
sec
ror backlvlf
lix ivflag
ox §2
beq slidetabs
6035: 1y #1
6045: jsr fixinches
gy 23
bec 604§
bit backlvlf
bvc rulerok
; need to slide tabs up for 2.x to 1.x
slidetabs:
dy #
6079: lda (rd),y
dey
sta (rd)y
iny
iny
oy 2
bee 607§
cle
lda =
ade 27
sta 10
lda il
ade §0
sta 0l

May Noi Reprint Withour Permission

cle ;move 10 is just past TABS
da
ade §20
sta 1l
la rdtl
ade §0
sta rltl
jsr perfmove
sec sback up ending address
lda 17
sbe §27-20
sta 17
bes rulerok
dec 4l
rulerok: 1dx ovflag ;adjust past start of each page
lda 31 ;assune V2.x
ox #2
bes 3008 i..0K
da A ;must be V1.x
3008: cle
ade ral
sta o
lda radl
ade §0
sta rdtl
chrloop: jsr getchr ;here to get input character
beq toendpage ;..end of input
ap $16
beq tographic ;..graphic escape
ap {17
beg ruler ;..uler escape
ap 423
bne chrloop ;..not newcard escape
beq newcard ;..newcard escape
toendpage:
J endpage
tographic:
jup graphic
newcard: lda §5-1 ;NERCARD skips 5 chrs
baprd: cle ;add offset to r0
ade o
sta
bec chrloop
inc il
bne chrloop ;..unconditional
mler: bit backlvlf ;check backlevel
bvs rulerout ;.. 2.xtolx
bmi rulerfix ;.. 2.1to 2.0
lda ivlag ;check if same level
ap ovilag
beq 307§ i..yes
jsr uplvl ;else may need to uplevel the ruler
307§: lda 271 ;RULER is 27 characters
bne buprd ;..unconditional
rulerfix:
dy 0 ;have already skipped the escape
304§: jsr fizinches
cpy 231 ;see if to the end of tabs/margins/etc.
bec 304§ ;.. more to do
lda #2111 ;all fized
bne bmprd ;..go skip it
rulerout:
sec ;backup to start of ruler escape
da o
se f1
sta 1l ;that is the T0
sta rd ;will also be next character needed
da ritl
sbe #0
sta rltl
sta rétl
cle
da 1l
ade 27 ;start of ruler + length = FROM |
sta 1 1
lda it
e §0
sta i+l

58

Transactor

www.Commodore.ca

w

-
. vay No Reprmt-WithootPermission
jst perfrove bes addoth 7..other pages added to the end sta bufl,x
sec ;shorten end of data also sec ;cale § chains to move dx #[(-2) jstart @ -2 80 2 inx's = 0
1 lda oldpages 502§: inx ;find end of chain
:lt): 5.2’7 :bc aftpge inx

ay lda tsbuf,x ;check track

bes 3085 1da oldpages ;adding in the middle of the original bre 502§ i..not zero, so not end of chain
qsc 4l sl lda tsbuf-l,x ;get last 7/S

?085: jmp chrloop ;don’t skip any more characters tax sold end *2 is last used chain index sta 1l

P 53: 12 buflH0,x ;slide left 2 bytes lda tsbuf-2,x

graphic: dy B3 sta bufli,x sta 1l
la (dd)y et graphic record nusber lia bl ldptr buf0, o4
tax sta bﬂﬁﬂ, x jsr write srewrite T/s
lda picsused-64,x ;see if already referenced dex dourite: 1da aftpge jget page to write to
m 322 ivyes dex jsr writepage

oldpics dey st error
ap 2 e 0% beg 303
bee 301§ ;..roon for at least 1 more la §0 96t thi i Jr - velose
le §581 i"loo many pictures sta bufl#2x et o ey ey e i-1%8 a3 bad
jr o error ® hufl 0%: e aftpge inext page to store to
jp remenu : . Jp o pageout ;..go do another page

1§: inc oldpics jcount record used ; e ol e ot i "
sta picsused-64,x ;keep where stored 1dx i sgee if this wi testdone:

302%: sta (rd)y ireplace with new record id inx (R it A thia il e the Lt pgeto 3 el jnow process the pictures used fron input
M 5l ;qraphic escape is 5 bytes ast stx picinx ;set input & output indexes to (start-1)
jap bmprd 7..00 skip it bcz: todwxpg:e 1..no-then OK to write (S pleots

¢ here a e end of each input. page - jele need to ke sue Last char s aowull; here to get nput pictures fron input

endpage: jsr mextarea ;save end of this area & setup next one she ;1 1;;;;111: ldx pleim jsee if any pictures
inc frstipge ;bump to next input page o

! sta 1l 128
lda frstipge @ f .
@ lutipge e if done et ::: ;;H bes t9pxcsdone ;..none used
beg pagesout ;..yes-urite them out e plosued,x ;
fp papelo jele fust go geb anather et poe sta rl#l beq 305§ ;..this one not used (end test @ 1st used)

: My ¥ ldptr l?utheg,zaz ;reset to start of buffer area

i here either when buffer area is full, or all input pages read ;:: t(:zgite .. was noa-null iﬁ ;ﬁd;ukr:m

pagesout: e :

.) i #0e sxeplace mull with page skip lay f]idskon
£ et n N e i
L H inpy oK) todowrite: beq tfopicsdone ;. .CANCELed/not really done
i Hodskan jmp dowrite ;..now do the write l'dptr Lnpnm, 20 —_—
toaddlst:]sr vopen ;open input file
Wl | P jr e
l]:eq p H C:N gefoutput disk mounted s bne picerr ;..€ITOL On open
remenyl . Ton mount ' : ie e s + here to process each graphic pict: f i i
¢ i) addoth: ldx ; H P graphic picture referenced in the input
:l’t :;ltz:‘lid ,se:O:f need to create output file i Bstipge isee 1 this s last page to be added picloop: ine picinx ibuzp for next picture area
HE , ldx icink
liptr writeinfo,r9 ;else create one first g lzz:tm . cpx l6)128
da §0 i odosrite i ":g: 08 £0 write bes picsost ;..end of pictures - wrap up last areas
sta rll % o imus a mull at the end lda picsused-64,x
sta oldnew +file is now OLD e ;1 beq picloop ;..this one not used
Jor save " . txa ;X is input VLIR record §
jsr error Sta T jsr vgoto
bre remem§ ;..could not create file 1:: ;;“ jor readpage jget graphics page in
liptr outm, &0 E opx il ;check for out of room in buffer
jsr vopen ;;; ;;*1 beq picsost ;..out of room, need to write what is there
da #0 jsr error
sta xsave la (1) 5y bne picerr ;..error writing

08 st vappend jestend vlir file to 127 entries beq domite ..already ends in mill Jornestares jsetup nest area
ine xsave ap Ble ' jup picloop ;.90 do another
bl 2108 beq 501§ ;..replace ending page skip with null topicsdone:

o velose ie 1l else extend 1 char i picsdone ;..just passing through

openold: liptr outm,x0 jopen the output file bre 5004 ,"here uhgn buffer files or end of pictures forn input
st vopen 500§: dne 4l picsout: jsr seteob ;set end of buffer & reset pointer to start
e e 1o g:: g::; ;done with input file (for now)
beg pageout ;..opened ok boe 501§
jst velose jerror-close output file ine £l ig; :]lxkkﬂ

remenu6: i remen 509 1 §0

; Jmp u ta () jsr cl}kdsk ;make sure output disk mounted

: here for the start of each page to output beq dowrite ;..unconditional 11>eq . E:::""ﬁ i CEdfo. really done

pageout: jsr getarea ;point to a used area addlst: 1dx oldpages gﬂt &
be 5008 ;..area has data in it beq dowrite ;..no adjustment (no old pages) ;s, :22:

i) . dex relse find last good chain bre picerr ;..error
Jsr velose ,:done vith output for nov tn B here to process each picture from buffer
lda frst}pge 7else see how we got here Jer - wgoto jset initial /8 picout: jsr getarea ;setup pointers for a used area
cp lastipge liptr tsbuf,z3 set buffer for 1/S bne 304§ ;..got some data to do
beg 501§ ;.. just finished the last input page v follow ;
jup pagesin ;..¥e need to get more pages jer error jsr velose

501§: jmp textdome ;..we are finished with the text portion beq 505§ 1dx picoutx ;else see if done

: jsr velose ;close the output file anyway cpx 128

5009: lda aftpge) jip rememn bes picsdone ;..done with all pictures
cmp oldpages ;check where adding 5059: lix buflsl ;get index to last char jmp picsin ;..more graphics to read in
beq toaddlst ;..lst page added to end da e ;zeplace with page skip ;

i Volume 9, Issue 6 59

\

« www.Commodore.ca

304%: dnc picoutx ;bump output counter
ldx picoutx
1da picsused-64,x ;get new record §
beq 304§ ;..8kip to one that was used
jsr writepage write it out
jst error
beq picout ;..o do another -
picerr: jsr vclose
picsdone:
jup rememy ;let the process start again

; Start of subroutines
; check to nake sure correct disk is mounted

chkdsk: stx ral ;save ptr to name
sty raldl
tax
cle
ade §'A'-8
sta swpdskd ;save drive letter
txa
cmp curdev ;check against current drive
beq chkdskan ;..don't need to open
jsr drvset
rechkdsk:
jsr opndsk
chkdsknn:
ldx [0
js drvnan
dy 5
112§: 1da (e0),y
ap (eal),y
bne swpdsk ;..need to swap disks
dey
bpl 112§
rts ;correct mounted/return (NB set)
swpdsk: window swpdskw ;put up window to swap the disk
da 10
ap #2
bne rechkdsk ;..not CANCEL/verify disk name

s ;..return with BQ set if CANCEL
; advance to next drive number (8 or 9)

nextdrv: ld¢ curdry ;get curzent drive §
inx ibunp to next
cpx 10
bec 111§ ;o.0k
88 ;back to 8
1§ txa
jsr drvset ;make current

jap opndsk ;read in name
; allow user to insert a new disk
newdisk: 1da curdev ;get current drive

cle

ade §A-8

sta nddrive ;put drive letter in window

window newdiskw

jop opndsk ;open/get disk name
; calc length of data to move and the call MOVEDATA
perfnove:

sec jcale number of bytes to move

da 17

she 10

sta 12

da

sbe 04l

sta 2l

jnp movedata
; check for error and put up window with decoded message if so
error: txa ;chk for error

beq errrts i..00 error

sta miscerr ;so always finds something

ldptr ermtbl, rl2
ermlp: liy 0
1da

miscerr
ap ()
beq errfnd ;..found it
ermskp: iny ;not found/find end of message
lda (rl2)y
bne ermskp
tya
sec ;skip over end also
ade 12
sta 2

bee ermlp ;..1ook gone more
ine Al
bne ermlp ;. unconditional
errfnd: e rl2 1skip past code
bre 115§
ine rl2dl
115§: 1da miscerr +in case needed
jer ascii
sta miscerrd
stx miscerrdtl
window errorw
errets: rts

; convert binary nunber in X reg to two ASCII digits
decinal: 1da §0

oz 0

beg ascii ;0 is input
w4 cle

sed

e f1

cld

dex

bne 17§ +fall through to ascii
; convert value in A reg to two ASCLI hex characters (in ¥¢A)
ascii: pha

jsr toascii

tax :1st digit in X

pla

lse a2

lsr a

le a2

e a2
toascii: ad §§0F

ora §30

%

bec 116§

ae §6
1165 rts
; set pointer from X/Y and call WINDOW routine
xyvindow:

st o

sty o4l

jIp window

; get the version number for the directory entry & check if supported

getvsn: movew direntry#ld,rl ;get t/s of info sector

ldptr bufl,rd ;8et where to read it into

jer read

e fl ;assume 1.

lda Dbuf490 ;getVa

oy buf0H2 ;get Vay

w ,I 1!

beq vsnok oVl

ix ;assume 2,7

@ 'l zl

bne unsvsn ;..not V1% or V2.x is error

m ’V ll

bec vsnok 0

inx ;must be V2.1 or higher
vsnok: cle 78t 0K flag

tts
ugven: 1k 982 ;tell bad version

jsr error

jsr velose ;close file (can't use it)

sec ;8et BAD flag

tts

; count the nurber of text pages & picture pages in the vlir file
countrecs:

1da 64 ;assume V1,x (64 mag)

ol

bee 200§ oVl

da f6l ;else 61 max for V2.x
20080 sta max

B0 ;clear counters

sta pages

s g6

sta pics
cntpages:

lad pages

op omax ;check for full

bes catpies ;..full

jsr vgoto

tya

beq cotpies ;..end of text pages

ine pages

bie cntpages

;..unconditional

;this is not ’elegant’, but it is effective

catpics: lda
cmp
by
jsr
tya
beg
inc
bne

endcount:
ldx
ldy
1da
s

May Not Reprint Without Permission
pics ;8ame process with pictures
#128 ;up to 64 pics in either
endcount
vgoto

endcount
pics
catpics

;..end of pictures
;. .unconditional
max

pics

pages

; redraw COMBINER screen when WINDON/MENU needs to restore it

repat: lda openpat iget pattern used from opening screen
jsr setpat ;make current
jsr pfill ;that will restore screen
da il ;check botton
cmp #[(17441) ;to see if undoing shadow of help window
bes 100§ ;..yes-need to redraw title box
ts ;else just return
1005: jmp redotitle ;redraw title box
; get next character from input buffer area
getchr: ldy 40 iget nest text character
)y
ine ;bunp for next tine
bne 400§
inc rdtl
4005 ldx rdl ;see if this was last character
px Ml
bne 401§ ;..can’'t be, return with NE set
e o
px 17
4015 rts
; upgrade ruler to V2.1
wplvl: 1lda ovflag ;check for V2.1 output
ap
VY ;.00
dy #0
6103: 1da (rd),y
cmp B[(480-1) ;check for old max right (7.2" was §1df)
bne 612§ 7,10 problen
1da §[480 +fudge to even 7.2 inches
6128 cle 7in Vi.x or V2.0, pixel 0 is @ 80 in V2.1
ade 80
sta (rd)y
iny
i (dh)y
ade 0
sta (cd)y
iny
cpy 2424164241 RMHLMHS tabstpi
bec 6108
61§ rts
; setup the INPUT portions of the window asking for page numbers
whereset :
ldptr wboxes,z0
jst choxes
1da #[(apblk-wblk) ;setup the INPUT portions of where window
lix aftpge
jsr wherein
1da #[(pblk-wblk)
lix lastipge
jst wherein
1da #[(fpblk-wblk) ;note that first page is last
ldx frstipge
jap wherein
; display values in where window § save pointers
wherein: sta widxsave ;save for index offset
cle ;cale real address
ade f[wlk
sta 10
lda fwblk
ade 0
sta r0Hl
jsr decimal ;convert § to ascii
ldy widssave
sta whlk,y

60

Transactor

www.Commodore.ca

| & N
WAy INOT REPTITTT WITTour PETITISSION
txa dook: lda f1 ;set 0K code sta 124l
sta whlktl,y .byte §2 movew rad,r’
cle ;cale pixel line to display on docancel: o vsave
lda whlki3y s R ;8et CANCEL code ; advance from one buffer area to the next
ade pline sta winend nextarea:
sta 1l clsvin +close the window da 17 iget pointer to end of area used
ldptr (64410),211 ;DEP-DB-LEFTH bandle click on DRIVE box in various vindows Iy #0 isave at start of buffer area
jor - dephat _ drv: M BB ;retum $80 from custon bo sta - (ral),y
lda il ;move column to where save will find sta winend tax
sta cursx m clein %da Tl
laa i ; bandle click on CREME bor in begin vindow iny
sta cursxtl docreate: sta (ra2),y
da £ 7have 2 chrs displayed ’1 P sta ral ;end becones start of next area
sta inplen : stx ra
; save pointers from current INPUT area in where window ?u mqﬂ ts
swhere: ldr widssave ;qet offset into buffer area . m duia ; set zeros at the end of buffer area used to flag the end
itd: ﬁllr::,x isave variable sttt :.ﬁx tabs, etc. vhen going from V2.1 to other versions seten: :;g " jset end of buffer
lda cursx fixinches: . sta (rad),y
sta wblkeS,x sec ;need to shift tabs down iny
da cursxil e (el)y sta (ra)y
sta wblkt6,x she §[80 ldptr bufbeg,ra2 ;reset pointer to start of buffer
ts sta <] Its
; advance to requested input area in where window tax 18ave copy for testing ; setup pointers for an area to read data into
nxtwhere: iny getarea: clc ;set pointer to data portion
sty widwsave ;save table index for save da (rd)y da a2
lda wblktd,y ;restore pointers from the table ad W ;in case of decinal tabs ade §2
sta inplen she 4180 sta rad
12 wlk,y bes 605§ da radtl
sta curse 4§ 1 <0, make 0 ae H0
lda whlktb,y tax sta radl
sta cursxtl 6055 cp)480 ;check if still too big dy 0 ;get end of area pointer
lda whlki3,y bie 607 lda (ra2),y
sta cursy o 80 sta 1l
b , 5 b 685 simeisok tax
cle jcalc address of string buffer T L selse this is max size iny
ae [l W W (nd)y
sta string g x5 sta 14l
lda)k I sta radl ;set pointer to start of next area
ade §0 . . : stx a2
sta stringtl Il:: l,)i::lvlf Iﬁybi?;::ﬁgf;ag 1 thern before ts ;0=end of areas (else ne)
o promgton e 06 1.0 it
; e g opentitle:
; convert characters in X/Y to a binary nuber a0 isoard if regaltel.x jsr qrphe2 ;opening screen
binary: tay ;check if 2 digits 606 and)y byte §05
bne 150§ ;. yes o 13 openpat: .byte 24 ;pattern used to clear the screen
ta ;else move Ist digit to 2nd st)y byte §01 ;erase screen
o ;and replace 1st with 0 dey word 0
150: sta 1l ;save 2nd digit for now la 5 byte 0
ogx {0 sta (rd)y byte §03
bee beerr ;. .bad digit iny word 320
px §o4l ing Dbyte 199
bes beerr s Jbyte 0
txa ; read in a page of text or graphics to next available buffer area redotitle:
and #50f readpage: jsr grphe2 ;done this way so REPAT can redraw title
sl a B cle ;read in a data page Jbyte §05,9 ;pattern fill title area
sta 0 a2 +leave roon for pointer to ead of area byte §01
sl a Bl e R word 8
sl a2 i sta ol ;vhere to start loading Dyte 176
ade 10 iH2=t10 sts el ;save copy of start of data portion dbyte §03
sta 10 W word 312
1l @ B byte 198
ap {0 sta 4l ‘byte 306
bee beerr sta radl 'b";:d igo
19'41 . . .byte
b :c::r & I jeale bites amailable byte 18,520, $1a, "Conbiner V1.1°,§1b,16
and BY0F a1 .byte " Combine geoRrite files. ", §1b,0
ae o sta 12 s
tax H
s ;return w/ carry clear t: gﬁmd mainmenu:
beerr: sec ;set error flag & i :itt: 24
it _ o) ;
: handle click on first page block in where window . jm loin load the series of sectors .uog 220
. - i N
:mm ;:i mk 'blkf.sm current pointers i write a page of test or graphics fron buffer area byte 4 ;4 nem options
jup nxtwhere ;move to new area writepage: ") vord geos
; handle click on last page block in where window Jsr vyt iposition to write nev page .by:: $80 ;subnenu
: -1k sec 0! geosmenu
ot tl):z gigpm !..unconditional a1 jcale bytes used vord done
; handle click on after page block in where window s ral Jbyte $80
dopgaft: 1dy #[{apblk-wblk) sta 1 word dongnenu
bne dopg ;..unconditional a1 word begin
; handle click on OK box in where window she radtl Jbyte $00 ;£lash & run

Volume 9, Issue 6

61

= www.Commodore.ca

May Not Reprint Without Permission

vord dobegin word canceln nddrive: byte 0,":",§1b,0
dord help byte $12,1,6 ;-create- P
byte §00 vord createbox newfilew:
word dobelp bte §SL80 -oper- e 481
s bjte GOS0 bte SILLM j-cancel- yte SOb,a,ll.’\
done: .byte "Done’,0 byte 0 ‘;m ;::sg)
begin: .byte "Begin”,0 createn; .byte $18,"new geokrite file",0 "ﬁ: nfm; 5
help: .byte "Eelp",0 openm: .byte "existing geo?rite file",0 :bﬁe $02,g7,73 -cancel-
'geosmu' c‘:ancelm: Jbyte "and go to Mainkem”, $1b,0 bt §06,17.82 - disk-
Jbyte U ;start belov mainmenu createbox: drvopt3: :yytz zOdlal 0,210,16 +$12=-drive-
ghgt: block 1 height dspends on § D.A.'S sord creategph Oy 17,60 '
word 0 word 0 wﬁ:: dr'ivebox
wrd T byte 6,16 byte 0
quopts: block 1 HDAS +1 4§80 word docreate nfnsgl: .byte $18,"Bnter name of new geofirite file.”,0
word info creategph: nfosg2: byte "0 Disk: *,§1b
Jbyte 0 Jbyte §05, $£f odsknm: .block 16
word doinfo byte $82, $e, $80, 504, §00, §82, §03, §80 Jbyte 0
word danl .byte §04, 500, $b8, 03, $8£, $60, 500, $00 ;
byte 0 byte $00, 503, §98, §c0, §00, $00, §60, §03 replv: .byte §61
word dodal byte §98, $1£,$9, §3c, $E1, §e3, §98, §lc Jbyte §0b,10,30
aord dand Dbyte §33,§66, 63, §33, §98, §18, §33, §3e word replm
be 0 byte 63,433, §98, $18, $3E, 66, §63, §83 byte §0b,10,50
word doda? dbyte $98, 18, §30, 566, §63, 803, §98, §d8 word - outnn
vord dand dbyte 33,966,863, 33, 985, §98, §le, §3e dyte 03,1778 -yes-
dbite 0 byte $39,5e3, 80, 804,800,862, 803, 880 byte SALTE - eno-
yord doda3 dbyte §04,500,§81, 503, 806, $2£, $81, 7€ bt 0 _
vord dand byte §05,$ repln: .byte §18,"File exists, OK to replace file:",0
rr: godal drivebox: erronv: byte zgmo -
.byte c, 10,32, 1!
ﬁ: :“‘5 Iﬁiﬂ :“‘-’“Ph .:yte 201, mn -k
byte
::: g:s :g:: :;;L ermtbl: ;table of error codes and messages
e 0 drvqraph'. byte $80,818, "Conbined £ile has too nany pages.” §1b,0
‘ord doda6 ' byt §05,86€, 802,86 .byte §81, 518, "Conbined file has‘too nany graphics.”, §1b,0
vord dan7 .hyte sso’ s“' soo’ saz $03 .byte 582, 318, "UI')S“PpoIted qwﬂn@e Yersx?n.",$1b,0
bte 0 byte 380,804,500, 857,403 byte 98,41, st pa mnber s favalia” 0
o ot Byte 380,368,500, 8c, 50,803 e T e
ord - duf byte §80, e, §00, 800,800,803 .bgtt: 18 Dick S g
dite 0 byte §80,§cé, $£d, §d9, $%e, $03 byt §26, 418, "Hrite prot;ct o §1b,0
word dodaB Byte §80,§c6, §e0, §d9, $b3, §03 miscerr: block 1
infor .byte "COMBINER Info’,0 Byte §80, §c6, §cd, §d9, $b3, §03 Dyte §18,"Disk Error: "
H .byte §80, §c6, §e0, §cf, 3£, 03 niscerrd:
info: .byte $61 .byte §80, 5c6, $e, Sef, $30, §03 block 2
yte §0b,10,14 byte §80, $ce, §c0, §cb, §33, §03 byte §1b,0
word infonl byte §80, $£8, $c0, §c6, §le, §03 :
Jbyte §0b,10,35 byte §e2, 502,01 swpdskw: .byte §81
word infon2 byte §80, 504,500, §01, 503 Jbyte §0b,10,32
Jbyte §0b,10,50 byte §06, $££ vord swpdsknl
word infon3 dbyte $01, 7€, 805, 8¢ byte $0c,10,47,ral
Jbyte §0b,10,65 H Jbyte §0b,10,62
aord infond filenw: .byte §01 ;non-std window vord swpdskn?
byte § byte 40,15 ;std beight+10 byte 04,1778 ;-ok-
b 0 word byt $02,1,78 ;-cancel-
infonl: .byte $1a, "COMBINER",$1b, §18," V1.1",0 word 263 dyte 0
infond: .byte “Micholas J, Vetis",0 byte §0b,2,9 awpdsknl:
infond: .byte "S863 Pinstres 8.8.",0 fomsgl: .block 2 byte §18, "Please insert disk:",§1b,0
infond: byte "Rentwood, T 49506",0 byte §0,130,19 svpdslal;
; word fadnsg .byte §18,"In Drive: "
doneneny: byt §0,130,28 swpdskd: .block 1
e U foomsg2: .block 2 byte §1b,0
Jbyte 114414 byte §05,17,34 ;-open- i
yord 28,75 .bﬁe §06,11,52 ;-m. vherev: .byte 61 o
Dbyte §8082 byte $02,17,88 ;-cancel- byte §13 jcall user routine first
sl qit byte $10,4,14 ;filename list word whereset ;this sets up ICON boxes
e 0 drvpt: byte 0 $12=-drive- .:yte $0d,10,14-2,£10,2
sord restrt reload desktop byte 17,70 byte 0, 43,20-2
word geowrite word drivebox dord - wasgl
e 0 e 0 .bytt: $0b, 4;, 43-2
ol dageomite fomsg: byte §16,419,"Select georite cutput file.", b, 18,0 byte 63,62
it bte Qit,0 fnisg: byte §18,"Select geokrite input file.",0 word wasgd
geowrite: fndmsg: .byte "On disk:",$1b,0 :byte §0b,43, 4
e aomm m " word wasgl
- e — : bye 0
beginw: bjte 881 iinitial options fron 'BRGIN' Dyte 81 wmsgl: byte §18,"First page of input to use.”,0
K: 2::;::;&12 :ztt: :2;;0,30 msg§: .:yte "L;st page of input to use.”,0
. B wmsg3: .byte "Place input after this page.”,0
bytr: §0b, 60, 40+12 :;e zﬂl, 1,78 ;-ok- wasgd: byte §lb," (U:P’O' to place alt)ag:art.)",o
word opemn byte ;
Jbyte §0b, 60, 74412 ndnsg: .byte §18,"Insert new disk in drive " wboxes: .byte 5 ;5 boxes in the table
62

Transactor

« www.Commodore.ca

May NoT Reprint wiihout Permission

word 64+16 ;put mouse in OK box .byte "geoWrite v?.?",0,0,0,0
.byte 32+88 .word 1 ;used by V2.x
.word pgbox Jbyte 0
.byte 81,3248 word 0,0,768
Jbyte 3,16 wblk: ;save blocks for each INPUT data
word dopglst fpblk: .byte "xx",0,32+14-2
word pgbox .block 1 $$87cf
Jbyte 8+1,32432 .block 2 ; $84be-84bf
byte 3,16 lpblk: .byte "zx",0,32+38-2
.word dopglst .block 3
.word pgbox apblk: .byte "xx", 0, 32+62-2
Jbyte 841,32456 Jblock 3
.byte 3,16 dmyx: .block 23-(dmyx-wblk) ;padding to 23 bytes
.word dopgaft inpnm: .byte 0
.word okbox Jblock 16
Jbyte 841,32478 outnm: .byte 0
.byte 6,16 .block 16
.word dook idsknm: .block 16 ;disk name of input disk
.word cancelbox .byte 0
byte 8+17,32+78 dadsknm: .block 16 ;disk name of D.A. disk
Jbyte 6,16 Jbyte 0
word docancel ;
H patch: .block 30 ;program patch area
pgbox: .byte 3,$ff :
Jbyte 220+4,14,12843, 80, $00, 501 picsused: .block 64 ;table to convert input picture § to output
Jbyte 3,3f idskdrv: .block 1 ;drive # of input disk
; odskdrv: .block 1 ;drive § of output disk
okbox: .byte 505, $££, $82, $fe, §80, $04, $00, $82 dadskdrv: .block 1 ;drive # 0f D.A, disk
.byte $03,§80, 504, $00, $b8, $03, $80, $00 xsave: .block 1 ;temp save area for x reg
Jbyte $£8, §c6, 500, 503, $80, $01, $8¢, $ec picinx: .block 1 ;index into input picsused
.Jbyte $00,$03,$80, 501, $8¢, §d8, $00, $03 picoutx: .block 1 ;index into output picsused
.byte $80, 501, $8c, $£0, 500, 503, $80, $01 ivflag: .block 1 ;input version flag (0,1,2,3=none,1.%,2.0,2.1)
Jbyte $8¢c, $e0, §00, $03, $80, $01, $8¢, $£0 ovflag: .block 1 ;output version flag
.byte $00,503,$80, $01, $8¢c, $d8, $00, $03 oldpages: .block 1 ;§ chains in output file
.Jbyte $80,501, §8¢, Sce, $00, $03, $80, $00 oldpics: .block 1 ;# pictures in output file
.byte $£8,5c6, 500, $03, $80, $04, $00, $82 oldmax: .block 1 ;max # pages available in output file
.byte $03, 580, 504, 500, $81, 503, 506, $££ oldnew: .block 1 ;00=0ld output/ff=new output/7f=need create
Jbyte $81,§7£, §05, $££ max: .block 1 ;used by count recs
i pages: .block 1
cancelbox: pics: Jblock 1
.byte $05, $££, $82, $fe, $80, $04, 00, $82 frstipge: .block 1 ;lst page to start with
Jbyte $03, 4§80, $04, $00, $b8, $03, $87, $c0 lastipge: .block 1 ;last page to merge
.byte $00,500, $00, $e3, §8c, $60, 00, $00 aftpge: .block 1 ;merge after this page
.byte $00,$63, $8c, $07, $9f, $1e, $3c, $63 helpidz: .block 1 ;help screen index
Jbyte $8¢c, §0c, §dd, $b3, 66, $63, $8¢, $07 backlvlf: .block 1 ;00=normal; $80=2.1->2.0; $c0=2.x->1.x
.byte $§d9, $b0, $66, $63, $8¢, $0c, $d9, $b0 widxsave: .block 1 ;save of where window index
.byte §7e, 563, $8¢c, $0c, $d9, $b0, $60, §63 danl: .block 17
.byte $8¢, §6c, §d9, $b3, §66, $63, $87, $c7 dan?: .Jblock 17
byte §d9, §9, §3c, $63, 580, 504, §00, §82 dan3: .block 17
.byte $03,§80, 504,500, §81, $03, $06, $££ dand: .Jblock 17
.byte §81,§7£, §05, $££ dan5: .Jblock 17
; dané: Jblock 17
writecl: .byte “Rrite Image",0 dan?: Jblock 17
; dan8: .block 17
writeinfo: ;
.word outnm bufbeg: istart of buffer area
.byte 3,21,$80+63 bufend = $8000-2-(27-20) ;allow room for eob flags + ruler expansion
.byte $EF, $££, $££, $80, 500, 01, $8F, S£E H
Jbyte $01,488,§01, 501, §8b, $££, $cl, $8a .end
byte $00,$41,$8a, $££, $£1, §8a, §80, §11 ; END of $2COMBINER

.byte $8a, §8e, §11, §8a, $80, §11, §8a, $bE
.byte $91,48a,$80, §11, §8a, §9£, §11, $8a

‘byte 380,411, $8a, $bt, $91, $8e, $80, $11 %COMBINER - Linker statements for Combiner
.byte $82, $bf, §91, $83, $80, 11, $80, $80
Jbyte §11,§80, $££, $£1, $££, $££, $EE ; $COMBINER - Link statements for geoWrite Combiner - Nick Vrtis - 1/89
byte $83,507,$01 ;
word 0 .output combiner
word SEEEE .header SHCOMBINER,rel
word 0 .8eq
Jbyte "Write Image V" .psect $0400
ovsnl: .byte "9,92,0,0,0,0 $1COMBINER. rel
.Jbyte "by: Combiner V1.0",0,0,0 $2COMBINER. rel T

Volume 9, Issue 6 63

« www.Commodore.ca

May Not Reprint Without Permission

Clean Machine Language Screens

Techniques for text output routines

by Bill Brier

Displaying text on the screen is the most common of program
activities and is usually one of the first things learned by
beginning programmers. Those moving up from BASIC to
machine language may initially find it somewhat difficult to
print attractive screen displays. The handy PRINT statement
and the companion TAB and SPC formatting commands vanish
once the realm of the BASIC interpreter has been left behind.

Fortunately, the freedom of expression inherent in machine
language makes it possible to write custom versions of PRINT.
Using some simple programming techniques, you will be able
to handle text output to the screen with ease, and at the same
time realize a tremendous increase in display speed. So, if you
are ready to learn, please read on!

In describing some of the techniques I've learned, I'll as-
sume that you know what an assembler is and how to use
one. My examples will be given in the MOS Technology stan-
dard assembler syntax supported by the Commodore 64 as-
sembler and the C-128 Developer’s Package HCD65 assem-
bler. Some of this stuff may be old hat to experienced ma-
chine language progammers, but even they may find some-
thing useful here.

Displaying text strings

Let’s start with something simple. In BASIC, you type the
command print "text string" and the interpreter obediently
prints text string for you. BASIC figures out where in
memory (RAM) the text is located, the number of characters
to print and so forth. The price for this convenience is speed
(a lack of it).

In machine language, there isn’t an interpreter to figure out
where the string is at and what to do with it. So, you have to
make your own PRINT statement. The first thing to consider
in designing your own version of PRINT is how to determine
the length of the string. This is readily handled by terminat-
ing the string with a zero ($00) byte. Fortunately, the Com-
modore screen editor considers the null byte to be... well,
nothing as far as printing goes. So, to store the text string
"text string” in memory, you would code as follows in your
assembler:

string .byt ’text string’,0

When the assembler parses this line it will generate bytes that
are the PETASCII equivalents of the string. Immediately follow-
ing the string will be the null byte. We can output the string
with a simple loop:

print 1ldy #0 ;starting string offset
printl lda string,y ;fetch byte from text string
beq print2 ;the zero byte means we’re done
jsr bsout ;this kernal routine is located
;at $££d2
iny ;point at next character
bne printl ;do it again
print2 rts ;exit

The Kernal BSOUT routine outputs the character in the micro-
processor accumulator (A register) to the current output
device. BSOUT is ‘non-destructive’ in that it leaves the .A, .X
and .Y registers unchanged. It normally exits with the carry bit
cleared in the status register. By the way, the above routine
works because the act of loading .A with a zero will make the
BEQ PRINT? instruction succeed. If .A contains any other value
it will be passed to BSOUT.

The trouble with this PRINT subroutine is that it will only out-
put the text string located at STRING. So, to make the routine a
little more generic, we’ll modify it to use some zero-page
pointers and we’ll also modify it to handle text strings that
occupy more than 256 bytes of RAM (the above routine will
abort when .Y wraps around to zero at the INY instruction).
Here’s our new, improved PRINT subroutine (funny thing about
that name, eh?):

print stx ptr ;set up zero page pointer to...
sty ptr+l ;the text string to output
1dy #0 ;starting offset

printl lda (ptr),y ;fetch a character
beq print2 ;zero byte...we’re done

Transactor

« www.Commodore.ca

’

jsr bsout ;output via $££d42
iny ;next character
bne printl ;loop
inc ptr+l ;now in the next page of ram
bne printl ;loop
print2 rts ;exit

To use this routine you would code the following:

1ldx #<string ;fetch lo byte of string address
1dy #>string ;fetch hi byte of string address
jsr print ;output the string

Now we can output text by simply giving the subroutine the
starting address of the string. Some programmers like to pass
such things as text string addresses via the stack. I personally
fail to see why. The PLAs and PHAs required to do that are
enough to confuse even the most experienced programmers,
gain little in execution speed, and are likely to introduce hard-
to-solve bugs if everything isn’t right.

Ok, now that we have a generic PRINT routine, it’s time to in-
troduce some more text string output techniques.

Jockeying for position

Most displays require that text be placed at certain locations on
the screen. Such things as menus and columns of numbers look
best when neatly aligned top to bottom and centered between
margins. Fortunately, the Kernal includes a