
Canada $4.25

USA $3.50

Non-destructive windows on the C128

Trouble-free 2400 Baud serial communication on the C64

A DOS wedge for the C64 in ROM

Far-Sys: execute machine code in any RAM area

An easy-to-build parallel printer in terface for the C128

Special centrespread bonus: GEOS label reference chart

Machine language routines for game programming

Serial I/O routines in Power C

All about the C128's BANK command

Product Reviews: Z3PLUS for CP/M, JiffyDOS, SWL shortwave decoder, The

ZR2 Hardware interfacing chip

Plus Regular columns by Todd Heimarck and Joel Rubin, Programming tips in

Bits, and more

Dreamtime by Wayne Schmidt

DATEL COMPUTERS

□FINAL CARTRIDGE III

J Give your C64/12S an -Amiga Look-Alto"

environment. Pull down windows/icons.

J PLUS a huge range of utilities all built into this

one cartridge... including:

J Freezer option to freeze and copy most any

memoiy resident program,

J Full machine code monitor with all the usual

J Unique picture print dump - compressed/
enlarged

Plus other effects.

i _} Past loader - loads commercial software at up
to 15 times normal speed.

ij Bange of desktop type tools - clock, calculator,

deaktools etc. etc.

D Final Cartridge 3 is a superb utilities cartridge
with an added bonus of a freezer function.

only $54.99

TOOLKITS?
The ult! mito disk toolkit

fbrthslMO/lMl

_J A disk toolkit is an absolute must for the serious disk hacker.
Toolkit IV has more features than most for less.

J DiSK DOCTOR V2 - Bead and write any track and sector

including extra and renumbered tracks. Repair damaged

sectors. Look underneath read errors.

J HEADER/GAP EDITOR - Decodes and displays ALL header
information including off bytes and header gap. Rewrite the

entire header and header gap. Renumber sectors. Also edit any

sector tail gap.

J DISK LOOK - Sort directory. Recover lost files. Display file

start/end addresses. Disassemble any file program directly from

the disk to SCREEN or PRINTER including undocumented

opcodes. Edit Bam. Much, much more.

J FILE COMPACTOR - Can compact machine programs by up
to 50%. Saves disk space. Compacted programs run as normal.

J FAST DISK COPY - Copy an entire disk in 2 minutes or less

using single 1541.

J FAST FILE COPY -■ Selective file copy. Works at up to 6 times

normal speed.

J FORMATTER - 10 second format an entire disk or format

any individual track or half track 0 to 41. Redefine any of 30

parameters to create or recreate unique disk formats.

J ERROR EDIT - Quickly find and recreate all read errors

including extra and renumbered tracks or sectors and half

tracks from 0 to 41. Even recreates data under errors and

allows you to redefine any necessary parameters.

ONLY $14.99

DIGITAL SOUND

SAMPLER
J The new sampler allows you to record any sound digitally

into memory and then replay it with astounding effects.

_| Playback forwards/backwards with echo/revBrb/ring

J Pull 8 bit D to A 9 ADC conversion.

Zl Midi compatible with suitable Midi interface.

(see Ad')

iJ Full sound editing and realtime effects menu with

waveforms

!J Powerful sequencer plus load/save functions

□ Line In/Mie In/line Out/Feedback controls.

_J Complete hardware/software packagete hardware/software package

only $89.99

MIDI 64
0 Full specification MIDI interface at a

realistic Price.

!J MIDI IN ;J MIDI OUT ;J MIDI THRU

Compatible with most leading MIDI software.

only $49.99

TURBO

ROM!
Turbo Rom n is a replacement

for the actual keraal inside

your 64. It provides superfast

load/save routines.

_| Loads/Saves most programs at 5-6 times

normal speed.

J Improved DOS support including 10 sec

format.

J Programmed function keys:- load,

directory, old, etc.

J Return to normal kernal at flick of a

switch.

J FCOPY - 250 block file copier.

J FLOAD - special I/O loader.

_1 Plus lots more.

J Fitted in minutes - no soldering usually

required. (On some 64's the old ROM may

have be desoldered).

only $24.99

256K SUPEROM EXPANDER

_l Now you can select from any of 8 32K EPROMs

_] 8 sockets to accept upto a. 32K EPROM in each.

_l On board operating system - no programs

to load.

_l Program your own EPROMs uBing our EPROM

programmer.

_1 No need to have loads of cartridges - just

make a selection from the Superom menu.

_J Directory of utilities on power up.

_1 Fully menu driven on power up.

□ Select any slot under software controls.

_| Unique EPROM generator feature will lake

your own programs - basic or m/c and turn

them into autostart EPROMs. (EPROM burner

required).

J Accepts 2764/27128/27256 EPROMs.

only $49.99

EPROMMER

64™
IJ A top quality, easy to use EPROM

programmer for the 64/128.

□ Fully menu driven software/hardware
package makes programming/reading/ verifying/

copying EPROM's simplicity itself.

IJ Will program 27256 chips. 12.5, 21 or
25 volts.

[Jj Pits into user port for maximum com
patibility with cartridges/Superom Board etc.

i_| Full feature system - all functions
covered including device check/verify.

Q We believe Bprommer 64 is the most com
prehensive, most friendly and best value for

money programmer available for the 64/128.

!j Ideal companion for Superom Board.
Cartridge development System, our kernal

expanders or indeed any ERPOM base

project.

J Comes complete with instructions - plus

the cartridge handbook.

onut

$69.99 COMPLETE

DEEP SCAN BURST NIBBLER™
_) The most powerful disk nibbier available anywhere, at any price!

□ Burst Nibbler is actually a two part system - a software package ud a parallel cable to connect the
1541/1570/1571 to 64/128 (state type).

U What gives Burst Nibbler its power? Conventional nibblers have to decode the data from the disk
before it can transfer it using the serial bus - when non standard data is encountered they are beat.

Burst Nibbler transfers data as raw GCR code via the parallel cable without the need to decode it so you

get a perfect copy of the original.

• Will nibble upto 41 tracks. • Copy a whole disk in under 2 minutes. • Full instructions.

• Regular updates - we always ship the latest. • Fitted in minutes - no soldering usually required.
• Full cr' 2 tracks. • No need to buy parallel cable if you have Professional DOS eta.

• Cable has throughbus extension for other add ons.

ONLY $39.99 COMPLETE
SOFTWARE ONLY $19.99 CABLE ONLY $19.99
BURST NIBBLER PARAMETER DISK
J Burst Nibbler is the most powerful Nibbler around - but even the best can be better J This disk contains dcaens of

parameters specially written for the protection schemes impossible to Nibble. These are mainly 'V-max' and 'Rapidlock' and

include titles such as 'Defender of the Crown: Gauntlet etc. J Regularly updated to include any new UUes. J This disk is by no

means a necessity - the standard Burst Nibbler will copy 98% of software aa is - if you want to go to the limits, this is the

product for you! a _ _ «■ _■■

only 514.99

SMART CART

□ NOW YOU CM HAVE A 32K CARTRIDGE
THAT YOU PROGRAM LIKE RAM THEN ACTS

UKER0M!

□ 32KpseudoR0M - hattery backed to

last up to 2 years (lithium battery).

J Simply load the program you require -

then flick the switeh. The cartridge then

acts like a ROM cartridge and can even be

removed.

J Make your own cartridges - even auto

start types, without the need for an Eprom

burner.

J Can be switched in/out via software.

:_| 1/02 slot open for special programming
techniques.

only $59.99

□ EXTERNAL 3.5"

DISK DRIVE
• Slimline extra low profile unit - only 6" long!
• Top quality NEC drive mechanism. • Throughport allows
daaychaining other drives. • A superbly styled case
finished in amiga colours. • fully compatible. * 1 meg
unformatted capacity. • Good length cable for positioning on
your desk etc. • Complete - no more to buy.

ONLY $169.99 SINGLE
ONLY $299.99 DUAL

DUPLIKATOR
J Dupllkator is a mass disk copier ideal for clubs, user

groups etc.

J Comes with 256K on board RAM and it's own built-in

operating system - no software to load.

_] Makes entire backups in 8 seconds!!

J Multiple copies from one original - over 250 disks pep
hour. Full verify option.

J Copies upto 40 tracks and can cope with standard disk

errors 21-29.

J The mo6t price effective method of mass duplication

available.

only $189.99

MIDIMASTER

• Full Midi Interface for A500/2000/

1000 (Please state model).

• Compatible with most leading Midi
packages (inc. D/Music).

• Midi In - Midi0utx3 -
Midi Thru.

• Fully Opto Isolated/Full MIDI.

ONLY $59.99

Circle 154 on Reader Service card.

Aid $4.00 Shipping/Handling

CHECKS/MONEY ORDER/CODS ACCEPTED

DATEL COMPUTERS
3430 E. TROPICANA AVENUE, UNIT #67, LAS VEGAS, NV 89.121

TOTAL BACK UPPOWER TAKES

ACTION, i
REPLATIV THE ULTIMATE UTILITIES/BACK-UP CARTRIDGE FOR THE 64/128

• Action Replay allows yon to Breeze the action of any memory Resident Program and make a complete back-up to disk or tape - but

thats not all.... Just compare these features

Simple Operation: Just press the button at any

point and mate a complete back-up of any* memory

resident program to tape or disk.

:i_J Turbo Reload: All back-ups reload completely

independantty of the cartridge at Turbo speed.

... : Sprite Monitor: View the Sprite set from the frozen ,

program - save the Sprite - transfer Sprites from one

game to another. Wipe out Sprites, view the animation

on screen. Create custom programs.

, j Sprite Killer: Effective on most programs - make

yourself invincible. Disable Sprite/Sprite/Backround
collisions.

S Unique Picture Save: Freeze and save any Hires

Screen to'tape or disk. Saved in Koala, Blazing Riddles
format.

UNIQUE FEATURES:

G WARP 25
Loads BOK in under 5 seconds!)

*t it tru tctia rtflay fmUtm Thrp IB' th» vnld'a JuUrt
dlik Mi-ial Ttuto. A tyfloal tackmj will nioti ia uuWr g

• Ho additional hardware required • No special formate
• Super reliable • Remember this ia not a gyntom where film;

have to be converted - with action replay you simply save

direcGy into Warp 25 status - reload in seconds. 9 Backup all

your existing programs to load at unbelievable speedl! • Because
AR4 has on board ram it can also load commercial disks

directly at 25 times speed.

nil b nlfu to Aetira Iqlayl!

• Warp Save/load Available straight from Basic.

□ Plus unique Code

Cracker Monitor
• Freeze any program and enter a full machine code monitor

• Full Monitor Features - Dissasembie. Hex, Find, Jump,

Compare, Replace, TWo Way Scroll. Full DiBk Load/Save, Printer

Support etc. In fact all usual monitor commands plus a few others,

• Because of Action Replay's on Board Ram the Frozen

program can be looked at in it's ENTIRETY: - In it's Frozen state.

That means Video Ram. Zero Page etc. and remember you see the

code in it's Frozen state not in a Reset state as with competitors

products. # Restart the program at any point.

• No corruption • An absolute must for the program Hacker -

make changes and see your result's instantly!

?per disk

uoth sides.

iveaas a, single

SatabilKy. "*V.

ud: A host of additional coiSinands:'

.■.TKppend, Old. Delete, linesave.-Prfiiteio--.

-; Screen Dump: Print out any Screen to Host or

Printers. 16 Gray Scales, Double size print options.

Unstoppable Reset: Reset button to Rectrieve ■

System and Reset even so called Unstoppable-

Programs , ,

Fully Compatible: Vforks with 1541/C, 1581,1571

and Datacassette with C64.128,128D (in 64 Mode)

Compatible: With Fast DOS and Turbo.Rom Systems

Disk Utilities: last Format, Directory, list, Run and'
many other key commands are operated by Function

Keys

:; Unique Restart: Remember all of these utilities are

available at one time from an integrated operating

system. A running programme can be Frozen to enter

any Utility and the program is restarted at the touch of

a key - without corruption.

LSI Logic Processor: This is where Action

Replay IV gets it's power. A special custom LSI

chip designed to process the logic necessary for this

unmatched FVeeze/Restart power. No other cartridge

has this power!

□ Action Replay
Graphics Support Disk
Jb help Uki ■dnnttji of action rapUy's unique power to tntu
iny screea tnd tm It Into your bnmrtta (riphki pukifa we

hm prepared ■ nit* of jnphic mpport ficllitlei.

• Sertn Titwu View screens in a 'slide show' sequence -
Joystick control simple to use. • Mtsufa Miter Add scrolling
messages to your saved screens with music, very easy to use.

• Pnaprfto A full sprite editoc modify/save/load feature, full edit
facilities. • Soon Ltni Explode sections of any saved screen to full
size including Border - Superb fun and very useful.

ONLY $19.99

CENTRONICS PRINTER
LEAD

Qlike full advantage of Action Replay or Final
Cartridge screen dump features with this Centronics
lead.

□ Connects user port to any full size Epson
compatible printer.

ONLY $18.99

□ SUPERCRUNCHER
QA utility to turn your Action Repiay into a super

powerful program compactor. Reduce programs by up to

50%! Save disk space and loading times. Can even further

compact programs already crunched by Action Replay's

own compactor

ONLY $9.99

ORDERS 1-800-782-9110
ONLY

NOTE: - technical or any other type of

Enquiry cannot be answered by the staff

on this number.

TECHNICAL SUPPORT
CUSTOMER SERVICE

(702) 454-7700

MONDAY THRU SATURDAY 9am to Spm

PACIFIC TIME

EXTRA SHIPPING REQD.

OUTSIDE CONTINENTAL U.S.

Volume 9, Issue 3

Publisher

Antony Jacobson

Vice-President Operations

Jeannie Lawrence

Vice-President Advertising

Maximillian Jacobson

Assistant Advertising Manager

Julie Cale

Editors

Malcolm O'Brien

Nick Sullivan

Chris Zamara

Contributing Writers

Marte Brengle

Paul Bosacki

Bill Brier

Anthony Bryant

Joseph Buckley

Jim Butterfield

William Coleman

Richard Curcio

Miklos Garamszeghy

Larry Gaynier

Todd Heimarck

Adam Herst

Robert Huehn

George Hug

Zoltan Hunt

Garry Kiziak

Francis Kostella

Mike Mohilo

DJ. Morriss

Noel Nyman

Adrian Pepper

Steve Punter

Joel Rubin

David Sanner

Stephen Shervais

Audrys Vilkas

W. Mat Waites

Cover Artist

Wayne Schmidt

Transactor
The Magazine for Commodore Programmers

Keep-80 17

by Richard Curcio

A non-destructive windowing technique that uses RAM in the VDC chip as auxiliary storage

Kernal++ 20

by William Coleman

Add a DOS wedge to your C64 - in ROM!

Far-Sys for the C64 28

by Richard Curcio

Execute machine language easily anywhere in the 64's memory - even in the dreaded "D" block

C128 Parallel Printer Interface 32

by Bill Brier

Use a regular parallel printer on your 128 with this simple User Port interface and printer driver

GEOS Label Names 40

Compiled by Francis G. Kostella

Special centrespread feature - a handy cross-reference table for all GEOS assembler labels

Gamemaker's ML Grab-Bag 42

by Zoltan Hunt

Programming games in assembler? Here's a collection of short routines to make your life easier

The BASIC 7.0 BANK Command 46

by D.J. Morriss

What exactly does the C128's BANK command do? A look at the ROMs reveals all the effects of this

often-misunderstood command.

REDATE 50

by Adam Herst

Adam's latest CP/M utility is a real convenience - never type in the system date again!

Serial I/O in Power C 56

by W. Mat Waites

A comprehensive collection of serial I/O functions for the C programmer

Toward 2400 62

by George Hug

Real 2400 bit-per-second communication is easy on the 64 with these routines. And unlike the Kernal's

RS-232 routines, these are bug-free

Departments and Columns

Bits
Bits puzzle solved

Data Mouth

Alien Video

Dynaborder

Video Reset

The Edge Connection 10

by Joel Rubin

Joel looks at some more assembler packages, a CP/M C compiler, discusses some bugs in the 65xx

CPU chips, and more.

The ML Column 14

by Todd Heimarck

Todd implements the "voters" program from Scientific American in ML on the 64, and in the process

covers hi-res graphics programming and random number generation

Reviews

Z3PLUS

Our local CP/M expert looks at this extensive CP/M enhancement for the 128

69

JiffyDOS for the C64/C128 72
This ROM chip set promises compatibility, convenience and super speed; as Noel reports, it delivers.

SWL Short Wave decoding cartridge 76
Turn those beeps and squeals in shortwave broadcasts into readable text with SWL and a 64 or VIC-20

The ZR2 Hardware Interfacing Chip

Control the world through your C64's user port with this versatile interfacing IC

78

About the cover: Dreamtime, by Wayne Schmidt

Wayne Schmidt is our regular cover artist, creating the artwork on the C64 with a

variety of software. Wayne explains the work as follows:

"Inspired by the wonderful totemic imagery of the Aboriginal Australians, the

'Dreamtime' refers to a core mythic state in which there is a communion with the

Eternal Spirit and an experience of visions that transcend all boundaries of normal

experience and human limitation."

Thanks to David Foster at ReadySoft, who supplied the RGB colour values to match

the 64's colour set.

Transactor's

phone number is:

(416)764-5273

Line open Mondays, Wednesdays

and Fridays ONLY

FAX: (416) 764-9262

TOLL-FREE ORDER LINE

1*800-248-2719 Extension 911 ;

(for orders only; have your VISA or Mastercard

number ready; available in the U.S. only)

Transactor is published bimonthly by Croftward

Publishing Inc., 85-10 West Wilmot Street, Rich

mond Hill, Ontario, L4B 1K7. ISSN# 0838-0163.

Canadian Second Class Mail Registration No.

7690. Gateway-Mississauga, Ont. USPS Post

masters: send address changes to: Transactor,

PO Box 338, Station C, Buffalo, NY, 14209. :

Croftward publishing Inc. is in no way connected

with Commodore Business Machines Ltd. or

Commodore Incorporated. Commodore arid

Commodore product names are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $19 Cdn.

USA$15US

All others $21 US

Air Mail (Overseas only) $40 US

Send all subscriptions to: Transactor,, Sub*

scriptions Department, 85-10 West Wilmot Street,

Richmond Hill, Ontario, Canada, L4B 1K7, (416)

764-5273. For best results, use the postage paid ',
card at the centre of the magazine.

Quantity Orders: In Canada: Ingram Software

Ltd., 141 Adesso Drive, Concord, Ontario, L4K

2W7, (416) 738-1700. In the USA: IPD (Interna

tional Periodical Distributors), 11760-B Sorrento

Valley Road, San Diego, California, 92121, (619)

481-5928; ask for Dave Buescher. '

Editorial contributions are welcome. Only original,

previously unpublished material will be consid
ered. Program listings and articles, including

BITS submissions, of more than a few lines,

should be provided on disk. Preferred format is

1541-format with ASCII text flies. Manuscripts,

should be typewritten, double-spaced, with spe

cial characters or formats clearly marked. Photos

should be glossy biack and white prints. Illustra

tions should be on white paper with black ink on

ly. Hnres graphics files on disk are preferred to

hardcopy illustrations when possible. Write to

Transactor's Richmond Hill office to obtain a writ

er's guide.

Ail material accepted becomes the property of

Croftward publishing Inc., except by special ar

rangement. All material is copyright by Croftward

publishing Inc. Reproduction in any form without

permission is in violation of applicable laws. Write

to the Richmond Hill address for a writer's guide.

The opinions expressed in contributed articles

are not necessarily those of Croftward publishing

inc. Although accuracy is a major objective, Croft

ward publishing Inc. cannot assume liability for

errors in articles or programs. Programs listed in

Transactor, and/or appearing on Transactor disks,

are copyright by Croftward publishing Inc. and

may not be duplicated or distributed without per

mission.

Production

In-house with Amiga 2000 and

Professional Page

Final output by Vellum Print &

Graphic" Services, Inc., Toronto

Printing

Printed in Canada by

Bowne of Canada inc.

Using "VERIFIZER"

Transactor'sfoolproofprogram entry method

Vermzer should be run before typing in any long program

from the pages of Transactor. It will let you check your work

line by line as you enter the program and catch frustrating typ

ing errors. The verifizer concept works by displaying a two-

letter code for each program line; you can then check this code

against the corresponding one in the printed program listing.

There are three versions of VERIFIZER here: one each for the

PET/CBM, VIC/C64, and C128 computers. Enter the applica

ble program and RUN it. If you get a data or checksum error,

re-check the program and keep trying until all goes well. You

should SAVE the program since you'll want to use it every

time you enter a program from Transactor. Once you've RUN

the loader, remember to enter NEW to purge BASIC text

space. Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top

left of the screen in reverse field. Note that these letters are in

uppercase and will appear as graphics characters unless you

are in upper/lowercase mode (press shift/Commodore on

C64/VIC).

Note: If a report code in the printed listing is missing (or "--")

it means we've edited that line at the last minute, changing the

report code. However, this will only happen occasionally and

usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN

on a line. If the code doesn't match up with the letters printed

in the box beside the listing, you can re-check and correct the

line, then try again. If you wish, you can LIST a range of lines,

then type RETURN over each in succession while checking

the report codes as they appear. Once the program has been

properly entered, be sure to turn VERIFIZER off with the SYS

indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0

instead of POKE 53281,0. However, VERIFIZER uses a

4 * weighted checksum technique" that can be fooled if you try

hard enough: transposing two sets of four characters will pro

duce the same report code, but this will rarely happen, (veri-

FIZER could have been designed to be more complex, but the

report codes would need to be longer, and using it would be

more trouble than checking the program manually). VERIFIZER

ignores spaces so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!) Stan

dard keyword abbreviations (like nE instead of next) will not

affect the VERIFIZER report code.

Technical info: VIC/C64 verifizer resides in the cassette

buffer, so if you're using a datasette be aware that tape opera

tions can be dangerous to its health. As far as compatibility

with other utilities goes, VERIFIZER shouldn't cause any prob

lems since it works through the BASIC warm-start link and

jumps to the original destination of the link after it's finished.

When disabled, it restores the link to its original contents.

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

CI 10 rem* data loader for "verifizer 4.0" *

LI 20 cs=0

HC 30 for i=634 to 754: read a: poke i,a

DH 40 cs=cs+a: next i

GK 50:

OG 60 if cs<>15580 then print"***** data error *****": end

JO 70 rem sys 634

AF 80 end

IN 100:

ON 1000 data 76,138, 2,120,173,163, 2,133,144

IB 1010 data 173, 164, 2,133,145, 88, 96,120,165

CK 1020 data 145, 201, 2, 240, 16, 141, 164, 2, 165

EB 1030 data 144, 141, 163, 2, 169, 165, 133, 144, 169

HE 1040 data 2,133,145, 88, 96, 85,228,165,217

OI 1050 data 201, 13,208, 62,165,167,208, 58,173

JB 1060 data 254, 1, 133, 251, 162, 0, 134, 253, 189

PA 1070 data 0, 2,168,201, 32,240, 15,230,253

HE 1080 data 165, 253, 41, 3,133,254, 32,236, 2

EL 1090 data 198, 254, 16, 249, 232, 152, 208, 229, 165

LA 1100data251, 41, 15, 24,105,193,141, 0,128

1110 data 165,251, 74, 74, 74, 74, 24,105,193KI

EB 1120datal41, 1,128,108,163,

DM 1130 data 251, 133,251, 96

2, 152, 24, 101

Transactor February 1989: Volume 9, Issue 3

VIC/C64 VERIFIZER

KE 10 rem* data loader for "verifizer" *

JF 15 rem vic/64 version

LI 20 cs=0

BE 30 for i=828 to 958:read a:poke i,a

DH 40 cs=cs+a:next i

GK 50:

FH 60 if csol4755 then print"***** data error

KP 70 rem sys 828

AF 80 end

IN 100:

EC 1000 data 76, 74,

EP 1010 data 252, 141,

OC 1020 data 3,240,

MN 1030 data 251,169,

MG 1040 data 3, 3,

DM 1050 data 0,160,

CA 1060 data 32,240, 15,133,

NG 1070 data 133, 90, 32,183,

OK 1080 data 232, 208, 229, 56, 32,240,255,

AN 1090 data 32,210,255,169, 18, 32,210,

GH 1100 data 89, 41, 15, 24,105,

JC 1110 data 165, 89, 74, 74, 74,

EP 1120 data 32,210,255,169,146,

MH 1130 data 32, 240,255, 108, 251,

BH 1140 data 101, 89,133, 89, 96

": end

3,165,251,141, 2,

3, 3, 96,173, 3,

17, 133,252, 173, 2,

99, 141, 2, 3, 169,

96,173,254, 1,133,

0,189, 0, 2,240,

91,200,152,

3,198, 90,

97, 32,

74, 24,

32,210,

0, 165,

3,165

3,201

3,133

3,141

89, 162

22, 201

41, 3

16, 249

169, 19

255, 165

210, 255

105, 97

255, 24

91, 24

C128 VERIFIZER (40 or 80 column mode)

KL 100remsave"0:cl28vfz.ldr",8

OI 110 rem c-128 verifizer

MO 120 rem bugs fixed: 1) works in 80 column mode.

DG 130 rem 2) sys 3072,0 now works.

KK 140 rem

GH 150 rem by joel m. rubin

HG 160 rem * data loader for "verifizer cl28"

IF 170 rem * commodore cl28 version

DG 180 rem * works in 40 or 80 column mode!!!

EB 190ch=0

GC 200 for j=3072 to 3220: read x: poke j,x: ch=ch+x: next

NK 210 if ch<>18602 then print "checksum error": stop

BL 220 print "sys 3072,1 to enable

DP 230 print "sys 3072,0 to disable

AP 240 end

BA 250 data 170, 208, 11, 165, 253, 141, 2, 3

MM 260 data 165, 254, 141, 3, 3, 96, 173, 3

AA 270 data 3,201, 12,240, 17,133,254,173

FM 280 data 2, 3,133,253,169, 39,141, 2

IF 290 data 3,169, 12,141, 3, 3, 96,169

FA 300 data 0, 141, 0, 255, 165, 22, 133, 250

LC 310 data 162, 0, 160, 0, 189, 0, 2, 201

AJ 320 data 48,144, 7,201, 58,176, 3,232

EC 330 data 208, 242, 189, 0, 2,240, 22,201

PI 340 data 32,240, 15,133,252,200,152, 41

FF 350 data 3,133,251, 32,141, 12,198,251

DE 360 data 16,249,232,208,229, 56, 32,240

CB 370 data 255, 169, 19, 32, 210, 255, 169, 18

OK 380 data 32,210,255,165,250, 41, 15, 24

ON 390 data 105, 193, 32, 210, 255,165, 250, 74

OI 400 data 74, 74, 74, 24, 105, 193, 32,210

OD 410 data 255, 169, 146, 32, 210, 255, 24, 32

PA 420 data 240, 255, 108,253, 0,165,252, 24

BO 430 data 101, 250, 133, 250, 96

The Standard Transactor

Program Generator

If you type in programs from the magazine, you might be able

to save yourself some work with the program listed on this

page. Since many programs are printed in the form of a BASIC

"program generator" which creates a machine language (or

BASIC) program on disk, we have created a "standard genera

tor" program that contains code common to all program gen

erators. Just type this in once, and save all that typing for ev

ery other program generator you enter!

Once the program is typed in (check the Verifizer codes as

usual when entering it), save it on a disk for future use. When

ever you type in a program generator, the listing will refer to

the standard generator. Load the standard generator first, then

type the lines from the listing as shown. The resulting program

will include the generator code and be ready to run.

When you run the new generator, it will create a program on

disk (the one described in the related article). The generator

program is just an easy way for you to put a machine language

program on disk, using the standard BASIC editor at your dis

posal. After the file has been created, the generator is no

longer needed. The standard generator, however, should be

kept handy for future program generators.

The standard generator listed here will appear in every issue

from now on (when necessary) as a standard Transactor utility

like Verifizer.

MG 100 rem transactor standard program generator

EE 110n$="filename": rem name of program

LK 120 nd=000: sa=00000: ch=00000

KO 130fori=l tond:readx

EC 140 ch=ch-x: next

FB 150 if ch then print "data error": stop

DE 160 print "data ok, now creating file."

CM 170 restore

CH 180 open l,8,l,"0:"+n$

HM 190hi=int(sa/256):lo=sa-256*hi

NA 200print#l,chr$(lo)chr$(hi);

KD 210 for i=l to nd: read x

HE 220 print#l,chr$(x);: next

JL 230 close 1

MP 240 prinf'prg file '";n$;"' created..."

MH 250 print"this generator no longer needed."

IH 260: □

Transactor February 1989: Volume 9, Issue 3

Not Fair!

Boy, am I steamed! Recently I was in a computer

store in downtown Toronto, waiting in line at the

cash register. The customer in front of me was

purchasing GeoPublish for the Apple. I was

amazed to discover that the software is supplied

on both 5.25" and 3.5" disks. What's more, a

sticker on the front of the package makes the

proud boast that the software is - hold your breath

- not copy-protected!

Yes, you read that right. Apple GeoPublish is not

copy-protected. I guess Apple users will never

know the terrors of having only one boot disk. I

wonder if they have serial numbers...

"official" operating system? Was the copy

protection Commodore's idea?

I expect that every regular GEOS user has been in

convenienced, irritated or infuriated by the obsta

cles put in the way of the legitimate user. I know

I have. A friend of mine (who is not a GEOS user)

once told me that a copy-protected operating sys

tem was his definition of a useless thing. I can

see his point and I'm sure that a lot of CP/M,

MS-DOS and AmigaDOS users would concur. It

just doesn't make sense.

Why the special treatment for Apple users?

Surely the vast majority of Berkeley Softworks'

customers are Commodore users. Don't they de

serve the consideration that is being shown to Ap

ple users? Isn't it partly as a result of the resound

ing success of Commodore GEOS that BSW pro

duced GEOS for the Apple? Why is Commodore

GEOS copy-protected? Is it because GEOS is an Malcolm D. O'Brien

If you want people to use your operating system

and if you want programmers to develop applica

tions to run in that environment, make it easy to

use. And I don't mean 'point and click' easy.

I don't mean to malign BSW or Commodore. I

just had to say something. Maybe one day copy

protection will disappear. Sigh....

Transactor February 1989: Volume 9, Issue 3

Got an interesting programming tip, a short routine, or an unknown bit of

Commodore trivia? Send it in - if we use it in the bits column, we'll credit you in the

column and send you afree one-year subscription to Transactor.

Bits puzzle solved

In Volume 8 Issue 5, we posed what we thought was a difficult

challenge - the following simple program was presented:

1 print "*' poke NUM,0

...and the challenge was to find what value of NUM would

cause the program to fill the entire screen with asterisks. We

didn't offer any prize for the solution, but half in jest, we of

fered a free bits book to anyone who could come up with a

second solution.

Well, it wasn't too long before we received the first solution

from Randy Thompson of Greensboro, North Carolina.

Randy's answer was the one we expected: "Simply POKE a ze

ro into the low byte of Basic's txtptr ($7A-$7B) to reset

CHRGET." We knew of no other solution, but still promised a

free bits book to anyone who could come up with one.

Well, surprise! Jim Bond of Spokane, Washington recently

submitted an article, and along with it the following solution if

we would allow it:

1 print "*";: poke 2069,138:

Using 4138' (and the extra colon) instead of 0 is a slight cheat,

but the solution is ingenious enough, and considering we didn't

think there even was one, we're giving Jim recognition (and the

bits book) for the second solution. It works by adding a RUN to

ken to the end of the program, modifying itself to keep running

over and over again, printing an asterisk each time. Just goes to

show that where there's a will, there's a poke!

Dynaborder

Jean-Yves Lemieux, Rimouski, Quebec

"Dynaborder" stands for "dynamic border". It is an interrupt-

driven program that uses the raster line registers to enhance

the screen border with a dynamic rainbow of colours. It can

offer a bit of animation to your BASIC or machine language

program, especially during an INPUT. Its shortness (215 bytes)

lies in the fact that it contains self-modifying routines. To

make it compatible with both the 64 and the 128 (40 column

screen), this version is loaded at $3000 (12288). Enable with

'sys 12288' and disable with 'sys 12493'. The source code for

Dynaborder follows:

JL

HD

HA

EO

LL

AO

KJ

GJ

OK

GF

GJ

CB

ED

NG

AL

OK

EH

NG

CB

HI

GC

DF

CL

DF

EC

KJ

LN

BE

AI

FN

CK

CG

NN

EL

EF

MJ

1000 .

1010

1020

1030

1040

1050

1060

1070

1080

sys700

• * dynaborder *

• * pal source code *

• * by jean-yves lemieux *

• * rimouski (qc) dec 88 *

• ************************

.opt oo

1090 tem =$254 /temporary storage

1100 2Lrqold =$257

1110 irqvec =$314 ;irq vector

1120 rashi =$d011 /raster line

1130 raslo =$dO12 /registers

1140 irr =$dO19 /int. request reg

1150 imr =$d01a /int. mask reg

1160 bcol =$d020 /border color

1170 icr =$dc0d /int. cntrl reg

1180 ,

1190 *=$3000

1200 ,

1210

1220

1230

1240

1250

1260

1270

sei

Ida irqvec /prepare new

ldy irqvec+1 /interrupt

sta irqold /procedure

sty irqold+1

Ida #<newirq

ldy #>newirq

1280 di sta irqvec

1290

1300

1310

1320

1330

1340

1350

sty irqvec+1

cli

Ida #1 /enable raster

sta imr /line interrupt

sta irr /reset irr

Ida #$lb /clear raster

sta rashi /compare bit (8]

Transactor February 1989: Volume 9, Issue 3

CP

OD

HI

MH

DO

NL

AN

BB

CM

GJ

KC

ON

OD

HK

IM

CD

IK

FE

HM

AE

MF

IK

DI

II

DE

CI

OH

ID

KJ

GO

DH

MP

HC

KB

NJ

EG

NL

CG

FB

LL

IA

JD

GC

EH

DL

PA

OM

AI

FC

KF

BJ

FF

DK

OP

IB

JH

ck

AJ

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

Transactor

;

newirq

;

nl

n2

n3

n4

n5

;

n6

;

rest =*

;

Ida

sta

Ida

sta

sta

Ida

sta

Ida

sta

rts

=•

Ida

sta

ldx

stx

ldy

ado

cxnp

bne

stx

inx

adc

cmp

bne

sty

cpx

bne

bit

bvs

ldx

stx

ldx

stx

Ida

sta

ldx

stx

dec

ldx

bne

Ida

sta

Ida

sta

inc

Ida

beq

sec

Ida

sbc

sta

ldx

#$7f

icr

#$00

tern

tem+2

#$05

tem+1

#$d7

n6+l

#$32

raslo

#1

irr

#0

#2

raslo

n2

bcol

tem+1

raslo

n4

bcol

#$05

nl

tern

rest

#0

n5+l

#$ca

n3

#$00

raslo

#1

irr

tern

#4

nl

#$e8

n3

#5

n5+l

tern

tem+2

rl

n6+l

#4

n6+l

tem+1

;clear irq

;flag bit

;prepare

;self-modifying

;routine

;first interrupt

;at line 50

;reset

;register

;if a raster line

;has been reached

;we display

;a color stripe

/separated by

;a black line

; modify prior

;routine

;'dex' opcode

/display bottom

;rainbow

/restore newirq

routine

/'inx' opcode

/modify raster

/line value

/and stripe width

AH

KE

JD

JN

CG

FG

GE

OL

JA

AB

PK

DJ

OA

MI

JO

AK

EN

BJ

MG

PD

FO

MG

GO

DB

MN

IA

JC

The

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

rl

;

cirq

;

inx

cpx #$16

bne cirq

inc tem+2

beq cirq

ldx tem+1

dc

Ida n6+l

adc #$04

sta n6+l

dex

bne cirq

dec tem+2

=*

stx tem+1

Ida #$30

sta raslo

Ida #1

sta irr

jmp (irqold)

disable =*

following

Once this

cute

file is

it like this:

sei

Ida irqold

ldy irqold+1

jmp di

;

;

;

program is a generator

continue

next

irq

raster line

interrupt

for dynaborder.obj'.

created by the program below, loac

load"dynaborder.obj",8,1

sys 12288

KG

EL

AD

100

110

120

rem generator for "DynaBorder

n$="DynaBorder.obj": rem

nd=215: sa=12288: ch=22654

name

\

.obj"

it and exe-

of program

(for lines 130-260, see the standard generator on page 5)

AO

AJ

KD

GP

NE

FE

JI

CM

BH

LD

DJ

AK

CM

HH

BL

PH

LJ

8

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

120, 173, 20,

87, 2, 140,

48, 141, 20,

169, 1, 141,

169, 27, 141,

13, 220, 169,

86, 2, 169,

215, 141, 115,

18, 208, 162,

0, 105, 2,

142, 32, 208,

18, 208, 208,

5, 208, 230,

162, 0, 142,

83, 48, 169,

1, 142, 25,

4, 208, 198,

3,

88,

3,

26,

17,

0,

5,

48,

1,

205,

232,

251,

44,

96,

o,

208,

169,

February

172,

2,

140,

208,

208,

141,

141,

96,

142,

18,

109,

140,

84,

48,

141,

206,

232,

21,

169,

21,

141,

169,

84,

85,

169,

25,

208,

85,

32,

2,

162,

18,

84,

141,

3,

61,

3,

25,

127,

2,

2,

50,

208,

208,

2,

208,

112,

202,

208,

2,

83,

141

160

88

208

141

141

169

141

160

251

205

224

27

142

162

162

48

1989: Volume 9, Issue 3

CE 1170 data 169, 5,

NM 1180 data 173, 86,

MM 1190 data 48, 233,

HI 1200 data 2, 232,

OB 1210 data 2, 240,

NN 1220 data 115, 48,

GO 1230 data 208, 3,

JC 1240 data 169, 48,

MC 1250 data 25, 208,

IC 1260 data 2, 172,

Data Mouth

141,

2,

4,

224,

18,

105,

206,

141,

108,

88,

96,

240,

141,

22,

174,

4,

86,

18,

87,

2,

Andrew Millen, Asbestos, Quebec

I recently discovered an amazingl)

data statements (especially long

For anyone with the Software

checking becomes a breeze!

48

22

115

208

85

141

2

208

2

76

, 238,

, 56,

, 48,

, 23,

2,

, 115,

, 142,

, 169,

, 120,

, 17,

84,

173,

174,

238,

24,

48,

85,

1,

173,

48

2

115

85

86

173

202

2

141

87

f useful method for checking

ones). Remember S.A.M.?

\ Automatic Mouth,

Simply load up

in the data you want to check, and

1 poke 53265,peek(53265)

2 restore

and

3 read x: x$=str$(x): say x$

4 get a$: if a$="" then 3

add these

239

S.A.M

lines:

., ther

data-

l load

16

BL

GF

OD

EP

IO

IF

JG

HJ

IM

BK

PL

LP

CB

HF

CI

LG

HD

DE

LH

EK

KP

CJ

FC

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

3,

141,

152,

33,

23,

208,

141,

153,

218,

21,

25,

254,

170,

142

0

72

208

141

169

0

0

153

208

208

72

104

5 get b$: if b$=n" then 5

6 goto 3

S.A.M. will recite your numerical data (including decimals) so

that you can easily follow along with your printed listing and

compare. To pause (that S.A.M. is relentless!), press any key,

and press any key to start up again. Note that line 1 turns off

the screen to eliminate the irritating visual flash. When done,

hit RUN/STOP-RESTORE to return to normal. I'm sure this trick

is easily modified for other software mouths.

Video Reset

Jim Bond, Spokane Washington

Ever have your BASIC program bomb out while in hi-res

mode? Can't see the error message showing line number that

caused the error, can you? With this program, you just have to

tap the RESTORE key by itself and voila! - the screen is restored

to text mode without being cleared. Sound and sprites are

turned off, too. It doesn't stop a running program, but don't

use it during disk operations.

The program works by intercepting the NMI vector - an NMI

is generated when the RESTORE key is pressed. It also redirects

the 'error message link' vector at $0300 to re-install itself in

case a run/stop-restore or another operation restores the

NMI vector back to normal. To disable it, use the two ROM

routines 'sys 58451: sys 64789'.

KC 100 rem video reset - relocatable

DB 110 ml=50000: rem start address

MO 120 :

OB 130 x=ml: xl=x+21: x2=x+95

OE 140 hl=int(xl/256): ll=xl-256*hl

h2=int(x2/256): 12=x2-256*h2

h3=int(x/256) : 13=x-256*h3

gosub 230

print"tap restore to reset video"

poke ml+1,11 : poke ml+3,hl

poke ml+11,12: poke ml+13,h2

poke ml+99,13: poke ml+100,h3

sys ml: end

read a: if a=-l then return

poke x,a: x=x+l: goto 230

data 169, 128, 162, 192, 141, 24,

data 25, 3, 169, 202, 162, 192,

data 3, 142, 1, 3, 96, 72,

data 169, 6, 141, 32, 208, 141,

data 169, 14, 141, 134, 2, 169,

data 24, 208, 169, 200, 141, 22,

data 27, 141, 17, 208, 169, 199,

data 221, 160, 0, 173, 134, 2,

data 216, 153, 0, 217, 153, 0,

data 0, 219, 200, 208, 241, 140,

data 152, 153, 0, 212, 200, 192,

data 248, 104, 168, 104, 76, 71,

data 138, 72, 32, 0, 192, 104,

data 76, 139, 227, -1

Alien Video

Brian Spencer, Barrie, Ontario

Alien Video is a machine language program that is installed

through BASIC, and is totally relocatable. Just change the num

ber in line 10 to whatever address you'd like the ML to reside

at. After running the program, you'll be informed of the SYS

to use to start Alien Video. When running, press any key to

stop it. Besides a rather wild video display, the program pro

duces some truly unusual sound effects.

MA 10 rem alien video

JI 20 sa=828

CM 30 for i=sa to sa+31

AM 40 read d: poke i,d: next i

FB 50 print "* sys";sa;"to start *"

BM 60 data 169, 11, 141, 17, 208, 169, 15, 141

EF 70 data 24, 212, 162, 23, 165, 162, 13, 18

DC 80 data 208, 157, 0, 212, 202, 208, 245, 141

D6 90 data 32, 208, 32, 228, 255, 240, 235, 0

How was the video made? At full speed, the machine language

reads memory location $a2 (162), performs a logical OR with

memory location $dO12 (53266), and stores the final result in

the SID (sound) chip registers. It is reading from two con

stantly changing memory locations: $a2 is the least significant

byte in the 64's jiffy clock, and $dO12 is the lower eight bits of

the current screen line of the raster beam. The effect is a

strange, alien-like sound. The visual part of the video is creat

ed by storing the same resulting byte to the screen border loca

tion ($d020, 53280); since the main display was turned off by

a write to $d011, this affects the whole screen. That's all there

is to it! Simple? Absolutely. □

Transactor February 1989: Volume 9, Issue 3

The Edge Connection

CP/M C, more assemblers, CPU bugs and drive tips

by Joel Rubin

Cp/m programmer Leor Zolman put a classified ad in the

November '88 FOGHORN offering his BDS C compiler package

for $90 (US) for the first copy and $50 for each additional

copy. Presumably, the idea is to order through a users' group.

You get the source code for a full-screen editor, debugger,

xmodem-compatible telecommunications program (will it

work on the C128?) and standard I/O library. A few years ago I

did some programming on a multi-Z80 mp/m system and had

access to both BDS C and Aztec C from Manx. I found Aztec

to be closer to the Unix/K&R standard (especially when it

came to using files); but, once I got used to BDS, I found it eas

ier to work with. BD Software is at P.O. Box 2368, Cam

bridge, MA 02238, (617) 576-3828. (I think the zip code

should be 02138 not 02238.) Mr. Zolman takes check, VISA or

Master Card. Be sure to specify disk format or you might get

the old CP/M default format - 8" single density!

Speaking of the FOGHORN, FOG, the one-time First Osborne

Group, which supports CP/M, MS-DOS, and (soon) the Mac, is

raising its dues on New Year's Day. You can order up to five

years of membership for $25 (or $44 if you want both CP/M

and MS-DOS publications) through 1988. (These are going up

to $30 and $52.50, respectively.) There is a surcharge of $12

per year per publication if you live in Canada or Mexico or if

you live in the U.S. and want first class delivery. FOG is at 210

Lakeshire, P.O. Box 3474, Daly City, CA 94015-0474, or, if

you want to join by VISA or Master Card, you can phone (415)

755-2000, Monday through Friday, 1000 to 1730 Pacific Time.

They also have a starter disk for $4, modem disk (specify set

up) for $4, and a three-disk catalog set for $10. The catalog set

includes CP/M and MS-DOS programs and data files and is only

available in Osborne DD or 360K MS-DOS formats. If paying by

card you will get charged $1 shipping per $25 merchandise.

One more CP/M note: There is an error on page 684 of the

Commodore 128 Programmer's Reference Guide. TYPE should

be XDPH-i and UNIT XDPH-2; not reversed as they are. This is

correct in the DRI Systems Guide but it's somewhat confusing -

UNIT and TYPE are shown as the low byte and high byte, re

spectively, of a word at XDPH-2, and, except in Motorola-land,

the low byte of a word is at the lower address.

Since I wrote a comparison of Merlinl28, Buddy and LADS in

Transactor 9:2, I have seen two more 6502 assembler

packages - Commodore's own DevPak for the C128 and

Geoprogrammer.

Some Commodore developers prefer to do their development

on other machines and then download. Berkeley Softworks

credits its use of sophisticated cross development tools for

much of its success. Others, such as Eric Rosenzweig, who

wrote the PTD-6510 debugger for Pterodactyl, say that pro

gramming on the object machine helps you to get used to the

machine and program around its weak points. To quote Mr.

Rosenzweig, writing in the September 1984 edition of the

newsletter put out by the Programmer's Shop, (800-421-8006

-1 don't know if they sell anything for 8-bit Commodore com

puters in 1988) "Programming on a big machine and down

loading to a smaller or slower one results in a program being

written for a big machine that runs slow and large when put on

the target machine."

Now, we have some programmers using the cross-

development method who are so enamoured of their main

frame-based programming tools that they have attempted to

port their tools to the object machine. DevPak 128 and Geo

programmer each have many fine features, but they run slow

and large when put on the target machine.

DevPak 128 ($50 U.S. from Commodore Business Machines,

1200 Wilson Drive, West Chester, PA 19380) is extremely disk

intensive. First, you edit the source file, using either the EDT

editor which comes with the package, or, if you don't want to

learn new editing commands, any word processor which can

save PETSCII text files to disk. Then, you load the assembler

which creates files similar to (but not the same as) Intel Hex

Files. Finally, you boot the loader, which reads the hex files

into memory as binary code, and save the code to disk, using

the C128's monitor. The loader can load the hex files into an

other part of memory if necessary - for example, if the binary

image and the loader itself conflict. (Cinemaware's Warp

Speed cartridge helps in this case as its monitor contains a

"save using another load address" directive.)

The EDT editor, ported from a Digital Equipment mainframe,

includes most of what you might want in a programmer's edi

tor, except, perhaps, for split-screen two file editing, and editor

macro commands. It can handle files in PETSCII or ASCII, with

Transactor 10 February 1989: Volume 9, Issue 3

line lengths up to 255 characters, and can convert between the

two. If you want to type in long lists of numbers with the nu

meric keypad, you will find, to your chagrin, that edt uses the

numeric keypad for commands.

The assembler is a full macro assembler. I think it is possible

to write a macro package to allow this assembler to use 8080

or Z80 op-codes, in some form, similar to x6502.lib on the

CP/M extras disk, in case you wish to write mixed 6502/Z80

programs for the C128, but no such macro package is includ

ed. One feature which I missed was an 'offset'-type pseudo-

op. Let's say that you are going to write code at one address

which will be moved to another address (or downloaded to

disk RAM) before it is run. You would like to assemble so that

your address references (e.g. in a JSR) refer to the running ad

dress rather than to the original loading address. Some assem

blers allow you to do this, but DevPak won't - you either have

to assemble the offset code separately, or add the offset to all

the address references.

With DevPak, you also get the source code for file compres

sors, C64 fast loaders, and the DOS for the ram expanders.

There are also some utilities, such as a C64-mode sprite editor.

The manual includes a discussion of some ROM differences in

8-bit Commodore equipment, including the SX-64. The discus

sion of the new 1571 ROM, and the 1541C and 1541-11 ROMs

sounds as if Commodore thinks they have finally exterminated

the save-with-replace bug.

The manual is more a spiral-bound collection of unrelated pa

pers than a manual. Some of the papers, such as the assembler

instructions, are well-written and clearly printed. However,

some of the program listings seem to have been printed on a

1525, or similar low-quality dot matrix printer. Since these

program listings are on disk, you don't need their listing. In

case you don't know which way the wind is blowing, the man

ual cover has the word 'Amiga' twice as large as the word

*Commodore'.

The main problem with DevPak is its disk intensiveness for

even the most minor programming task. (All assemblers run

ning on a C128 are going to become disk intensive if you try

to write a 60K program.) If you use it with a single 1571 or

1541, you are going to find yourself quickly running into the

limits on the number of open files caused by the limited disk

RAM, and, indeed, the assembler will warn you of that fact.

Thus, if you want to include a file of often-used macros and

often-used equates, and get both a listing and object file, you

may have to repeat the assembly twice.

Geoprogrammer, ported from Berkeley's Unix-based cross

development system, is going to come out in Version 2.0 "real

soon now". Version 1 only runs under the C64 version of

GEOS; version 2 will run under either GEOS or GEOS128. Like

RMAC, under CP/M, Geoprogrammer is an 'edit, assemble,

link, debug' system. The editor, for better or worse, is any ver

sion of geoWrite. On the one hand, geoWrite is slow and

clunky for entering text. On the other hand, geoWrite allows

you to paste in pictures, and geoAssembler allows you to de

fine icons or other bit patterns using this. Of course, there's al

ways Text Grabber, which converts a file from another word

processor to geoWrite format.

GeoAssembler is a macro assembler. I don't think its macro

language has quite the power of DevPak's, but, on the other

hand, geoAssembler can compute very complex 16-bit arith

metical expressions using a C-like syntax. GeoLinker com

bines the .rel files and turns them into a regular Commodore

program, a GEOS sequential program, or a GEOS VLIR program

with a resident module and, possibly, overlay modules. One

nice feature of geoLinker is that if files A and B create global

labels with the same name, you will not get an error unless file

C tries to access that name as a Random external label (or

maybe it allows you to be sloppier than you should be). While

geoAssembler and geoLinker do create, if necessary, error

files, and geoLinker creates a symbol file, neither one creates

listing files, which can be a pain.

The best feature of the Geoprogrammer package is geoDe-

bugger, but to use the debugger in its full glory requires that

you have a RAM Expansion Unit. You can single step, or single

step at the top level and execute subroutines at full speed, set

break points, and perform all the usual monitor functions. If

you have an reu, you can define debugger macros or refer to

locations in symbolic terms. The Geoprogrammer manual is

a huge beast, and is somewhat disorganized, but contains very

useful information on programming under GEOS. Geopro

grammer 's advantages far outweigh its disadvantages if you

are writing programs that are to run under GEOS. However,

while it can assemble non-GEOS programs, I think that other

assemblers will do the job with far less hassle and probably

more speed.

Geoprogrammer can be purchased directly from Berkeley

Softworks (Great Western Building, 2150 Shattuck Ave., Pent

house, Berkeley, CA 94704) for $69.95 plus $4.50 shipping

plus $4.90 sales tax in California, or through the usual retail

outlets.

Recently, in looking over some machine language reference

books, I noticed that several of them do not mention ye olde

JMP-indirect bug - including the C128 Programmer's Refer

ence Guide, (Even though the bug does exist on the 8502!) In

case you're learning 6502 programming and haven't run into

it, here's the problem:

Ordinarily, you expect jmp (vector) to load the PC with

peek(vector) + 256 * peek(vector+l). However, if vector is on

a page boundary, for example $18FF, you will get peek(vector)

+ 256 * peek(int(vector/256) * 256)). Thus, if $18FF contains

$2D and $1800 contains $4F and $1900 contains $5C, then JMP

($18FF) jumps to $4F2D, not $5C2D - the microprocessor looks

up the high byte at $1800, not $1900.

Just in case you're tempted to use this to confuse some pirate,

you should know that the bug has been fixed on the 65C02

Transactor 11 February 1989: Volume 9, Issue 3

and 65816 - so the resultant code won't work with speed-up

boards. Also, by a clear corollary to Murphy's Law, if you try

playing with this, you will probably add or delete something

and forget to make sure that the vector is or is not on a page

boundary - leading to a next-to-impossible debugging job. If

you must use JMP indirect, you should use assembler pseudo-

ops to add filler bytes if necessary. I think that self-modifying

code may be safer in some cases.

Another potential problem on the 6502 involves the TXS op

code. Whenever you decrease the stack pointer (extend the

stack) using TXS you should make sure that no interrupt, be it

maskable or non-maskable, can possibly take place. For exam

ple, consider the following code, intended to let a routine find

out where it is in memory:

its

you almost never use this part of the stack

Ida #$60

sta $100

adrl jsr $100

tsx

adr2 dex

dex

txs

pla

sta $£c

pla

sta $£d

You now expect ($FC) to contain adrl+2 because of the way

JSR uses the stack. However, suppose an interrupt strikes on

the first DEX. The interrupt overwrites the positions on the

stack you are trying to read, and ($FC) now contains adv2. It

won't happen very frequently, but, again by a Murphy's Law

corollary, it will happen at the worst possible time.

If you have a C128 (or, I believe, C16/Plus 4) you have an al

ternative:

jsr prixnm

.byte 0

will leave the address of the null byte in ($CE). As long as you

are not actually printing anything, you don't have to be in

Bank 15 - any memory configuration in which the high ROMs

are visible will work.

(Speaking of Bank 15, if you have a C128, you should always

make sure that the I/O chips are visible before you try to do

any input or output. This goes double if you try to interface

with BASIC, as BASIC tends to leave you in configurations like

Bank 14, or Bank 14 with RAM 1. This is why the version of

the C128 Verifizer that appeared in Transactors before 9:1

wouldn't work in 80 columns. If your machine language uses

C128 BASIC routines that deal with variables or strings, you

may find you have to use jsrfar even though you are going

from Bank 15 to Bank 15, because the BASIC routines end up

in Bank 14 with ram 1 and your program will try to return to

the right address in the wrong bank - instant crash!)

Finally, a few notes about 1541 and 1571 disk drives:

a) Do you want to distinguish between the two? Try this:

open 1,8,15, "m-r" + chr$(dec("67")) +

chr$(dec("fe")): get#l,a$

This will read the first byte of the IRQ routine on either drive.

On the 1541, the IRQ routine begins with PHA ($48). On the

other hand, since the 1571 has two modes, the IRQ routine be

gins with a jump indirect instruction ($6C). The vector is at

$2A9 and points to $9D88 in 1541 mode and to $9DDE in 1571

mode. Some commercial programs {Copy II and Fast

Hack'Em) got into trouble trying to read the signature byte at

$C000 which changed when the 1571 ROM changed.

b) Do you want to change a single-sided 1541 disk into a 1571

disk without losing data on the 1541 disk? (Follow at your

own risk!!! Destroysflippies!!!)

open 1,8,15, "iO": print#l, "m-e"

chr$(69) chr$(164)

will format the second side of the disk. (You use "iO" to set up

the disk ID value correctly.)

Of course, this still doesn't finish the job - the double-side flag

on track 18, sector 0 is still single, and the bam for the second

side isn't written. So, you will have to change byte 3 (counting

from 0), the double-side flag of 18/0, to $80, and copy the

bytes 221 to 255 of 18/0 (giving the summary of the side two

BAM) from a freshly formatted double-side disk. Then, dclear,

which will tell the 1571 that you have a double-sided disk. Fi

nally, copy 53/0 from a freshly formatted double-sided disk.

c) Last, a faster way to dump a 1541 or 1571 ROM to disk - in

stead of reading each byte into the computer and then writing

it back to the disk drive, you get the disk drive to write the

bytes directly to disk. Of course, entering the program takes

more time than you will ever save, but it's a neat hack. Maybe

you can figure out some use for it.

First, open 2,8,2,"#0". Note the '#0' - the '0' tells it you want

the buffer at $0300. Now, send the machine code below to the

buffer: (open 1,8,15," b-p:2,0", then print the bytes to file 2)

{fstad is the first address of the ROM which you want to dump -

usually $8000 for the 1571, $C000 or $C1OO for the 1541.)

Now, open 3,8,1," :dosfile". This opens a program file called

dosfile to write. Now, type:

print#l, "m-w" chr$(0) chr$(0)

chr$(l) chr$(224)

This will tell the disk drive to execute the machine code in

buffer 0. The dumping of the disk drive ROM will take place,

and all files will be closed, independently of the computer.

Transactor 12 February 1989: Volume 9, Issue 3

'romdump" - Follow directions given in article

org $300

Ida #1

sta 0 tell the system you finished running this code OK so the

disk drive can do other work, like writing bytes

all sectors are written in the interrupt cycle

current secondary address

disk drive internal channel for secondary address 1

current disk drive internal channel

put the load bytes to file 1

yes, this is self-modifying code

to change the address from fstad to the current address

unfortunately, I couldn't find a zero page address which

didn't get corrupted, so I had to do it this way

di

sta $83

Ida $022c

and!7

sta $82

Ida lup+1

jsr put

Ida lup+2

jsr put

lup Ida fstad

jsr put

inc lup+1

bne nine

inc lup+2

nine Ida lup+2

emp top+1

bne lup

Ida lup+1

emp top

bne lup

jsr close

Ida 12

sta $83

jmp close

top .word finaladdress+1 mod 65536

put = $dl9d ; put a byte in the current disk file

close = $dacO
□

TransBlooperz

Oops! A bug in our program that creates BASIC "genera

tor" programs managed to sneak two bad generators by us

before we caught it. The result is that the programs will not

work as listed, but fortunately the problem is very easily

solved. These are the affected programs:

Volume 9 Issue 2, "Cycle Counting", page 31:

Don't panic - all the data statements are correct! Just

change line 110 as follows:

110 n$=Mcc.c000"

...and replace lines 130-250 with lines 130-260 from the

"standard generator" program on page 5.

Volume 9 Issue 1, "Multitasking on the C128", page 21:

This one was even more messed up - after line 1150, the

line numbers start again at 1000! Ignore the first set of lines

1000-1150, and use the standard generator on page 5 in

their place. Then replace lines 110 and 120 as follows:

110 n$="xnulti.ml"

120 nd=529: sa=4864: ch=57790

New! Improved!

TRANSBASIC 21
with SYMASS1

"I used to be so ashamed of my dull, messy code, but

no matter what I tried I just couldn't get rid of those

stubborn spaghetti stains!" writes Mrs. Jenny R. of

Richmond Hill, Ontario. 'Then the Transactor people

asked me to try new TransBASIC 2, with Symass®.

They explained how TransBASIC 2, with its scores of

tiny 'tokens', would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in

giving it a try. Well, all it took was one load and I was

convinced! TransBASIC 2 went to work and got my

code looking clean as new in seconds! Now I'm telling

all my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass, the symbolic assembler.

Package contains all 12 sets of TransBASIC modules

from the magazine, plus full documentation. Make your

BASIC programs run faster and better with over 140

added statement and function keywords.

Disk and Manual $17.95 US, $19.95 Cdn.

(see order card at center and News BRK for more info)

TransBASIC 2
"Cleaner code, load after load!19

Transactor 13 February 1989: Volume 9, Issue 3

The ML Column

Creating orderfrom chaos

by Todd Heimarck

Copyright © 1989 Todd Heimarck

The idea for this month's column comes from someone else.

Last year, Byte magazine reviewed a book that was a compila

tion of columns from Scientific American magazine. One of

the programs described in the review sounded interesting.

The scenario is simple enough: You start with a pool of voters

who have been assigned random political leanings, pick one of

the voters at random, pick a neighbor at random, and change

the neighbor's political preference to match the original voter.

Then you repeat the process in an endless loop (or until some

body stops the program by pressing a key).

The Commodore 64's hi-res screen has 320 x 200 pixels. That's

64,000 voters. You assign one of two colours to each pixel (I

picked blue and white because they contrast with each other).

Counting diagonals, each pixel has eight neighbors. In the main

loop, you pick one of the voters, one of its eight neighbors, and

change the neighbor's colour to match the voter.

You create a tiny universe where everything happens random

ly. The voters are given colours at random. A voter is picked at

random. A neighbor to be converted is picked at random.

It sounds absurd, but in this chaotic and utterly random uni

verse, patterns of order arise. The first screen looks like televi

sion static. After several hundreds of thousands of arguments

between neighbors, you see definite blobs growing on the

screen.

Although every rule relies on randomness, the voters gather

together into blocs of solidarity. Here's a blotch of blue;

there's a blotch of white. If you let the program run for a long

enough time, you would probably see either blue or white take

over the whole screen.

The boon and the bane of assembly language

I wrote the original VOTERS program in the C language on a PC

compatible. Then I translated it to run under basic 7.0 for the

128.

Both programs were relatively slow. It made sense to switch to

assembly language, to squeeze the last drop of speed out of the

computer. That's the main reason for programming in assem

bly language: It's the fastest game in town.

I ran into a problem, however, which became the second topic

for this column. Machine language is fast, but it's not always

very good at handling randomness.

Modular programming

Let's jump into the program. It starts like this:

cOOO

c003

c006

c009

cOOc

20 Od

20 le

20 68

20 Od

60

cO

cO

cO

cO

jsr

jsr

jsr

jsr

its

gmode

initvote

campaign

gmode

; turn on graphics mode

; initialize voters

; randomly change votes

; back to text mode

Although the program depends on chaos, that doesn't mean we

have to be chaotic about writing it. If you believe in modular

programming (also called "top-down programming"), you

break down the task into modules. The C, basic, and assembly

programs all looked pretty much the same because they had

the same structure.

The GMODE subroutine toggles the 64 between text mode and

graphics mode:

cOOd gmode = *

cOOd ad 11 dO Ida $d011 ; scroly

cOlO 49 20 eor #%00100000; flip bit 5

cO12 8d 11 dO sta $d011 ; toggle graphics mode

c015 ad 18 dO Ida $d018 ; vmcsb

c018 49 0c eor #%00001100; toggle bits

cOla 8d 18 dO sta $d018 ; toggle base addresses

cOld 60 its

It's a short routine that makes the screen flip from text mode to

graphics mode (and vice versa), but only if you start with a 64

that's set for the default values. The EOR (exclusive-or) com

mand changes the appropriate bits in SCROLY and VMCSB

(Commodore's names for locations $doh and $D0i8).

The next routine is called initvoters:

Transactor 14 February 1989: Volume 9, Issue 3

cOle initvote = *

cOle 20 28 cO jsr rndinit ; crank up the noisy SID

;voice

cO21 20 36 cO jsr fill ; fill the colour bytes

cO24 20 4a cO jsr choose ; the voters randomly choose

;a colour

cO27 60 its

Most people think of the SID chip as a musician, but if you tell

it to use a noise waveform, you can get random numbers from

it. The RNDINIT routine makes the SID chip start acting ran

domly:

c028 rndinit = *

c028 a9ff

cO2a 8d0fd4

cO2d a9 80

cO2f 8dl2d4

c032 8dl8d4

c035 60

Ida #$ff

sta $d40f

Ida #$80

sta $d412

sta $d418

rts

; max hi frequency

; noise waveform

; volume off and no output

;for voice 3

249 to 0 (forward from 0 to 249 would be OK, too). I chose

249 to 0 because I could leave out the CPY instruction. The

6502 processor knows when it hits a zero (equal-to-zero) condi

tion. It doesn't recognize 250 unless the program makes an

explicit test for 250. You save a little time and a byte or two if

you wait for a zero.

Also, we don't really want to loop 250 to 1, we want 249 to 0.

But we want to STA when .Y contains a zero, so we DEY before

the STAs.

Some people might put the location 1024 into a zero-page

pointer and store indirectly with .Y. That would work, but it

would probably take more bytes and more clock cycles (try it

if you don't believe me).

The next routine fills 8192 bytes of bitmap memory with ran

dom numbers:

cO4a

cO4a

cO4a a2 20

choose = *

bitmap = $2000

The registers at $D40E and $D40F control the frequency of voice

three and $D412 controls the waveform (we're seeking noise).

Storing an $80 into $D418 prevents the noise from being heard.

Two ways to fill memory

The hi-res screen will get its colour information from the text

screen (although we could change that if we wanted to). The

next routine fills locations 1024-2023 with the blue/white

byte. The .Y register can only count to 255 and we need to fill

1000 bytes. One way to do it is to count up to 250 four times:

c036 fill = *

cO36 a9 61 Ida #$61

c038 aOfa ldy #250

c03a colO = 1024

; foreground 6 (blue) and

; background 1 (white)

ldx #32 ; 32 pages of 256 bytes =

; 8192

cO4c aOOO ldy #0

cO4e a9 00 Ida #<bitmap

c050 8d5cc0 sta selfmod+1

c053 a9 20 Ida #>bitmap

c055 8d 5d cO sta selfmod+2 ; set up the address

c058 ad lb d4 lpchoose Ida random

cO5b 99ffff selfmod sta $ffff,y

c05e c8 iny

cO5f dOf7 bne lpchoose

cO61 ee5dcO inc selfmod+2

cO64 ca dex

cO65 dOfl bne lpchoose

not the real address

count forward

until .y wraps

cO67 60 rts

and repeat a total

of 32 times

and that's all

Look at $C05B STA $FFFF,Y. It looks like the value in .A is being

stored at $FFFF indexed by .Y, but that's not really true. A few

bytes back, selfmod+1 and selfmod+2 are changed. This is

called "self-modifying code."

At $C06i, the high byte (selfmod+2) increments. The program

is programming itself by changing bytes within a loop. If you

use this technique, remember four things:

1) You can't rely on values being stable when you enter the

subroutine. You should initialize the memory value (see

$C04E-$C057) at the beginning of the routine.

The four STAs don't affect the zero (equal-to-zero) flag. So 2) The 6502 puts the low byte before the high byte. The instruc-

c03a

c03a

c03a

c03a

c03b

c03e

cO41

cO44

cO47

cO49

coll

col2

col3

88 lpfill

99 00 04

99 fa 04

99f4 05

99eeO6

dOfl

60

=

=

dey

sta

sta

sta

sta

bne

rts

colO + 250

coll+250

col2 + 250

; note that this sets the

; zero flag

colO,y

coll,y

col2,y

col3,y

lpfill

when the program does a Branch if Not Equal (bne) at $C047,

it's working from the dey instruction at $C03A. Dey affects the

Z flag and STA doesn't.

Although this subroutine might look a little odd, the oddness is

necessary. We want the .Y register to count backward from

tion STA takes a byte, so the low byte is xxx+1 and the high

byteisxcv+2.

3) If you know what you're doing, you can do amazing things

with self-modifying code. If you don't, you'll get

headaches when you try to debug your program.

Transactor 15 February 1989: Volume 9, Issue 3

4) Structured programmers will think you're crazy (or stupid)

if you write self-modifying code. If you're majoring in

computer science in college, you might be expelled for

doing things like this.

The program ends with the final subroutine:

cO68 20e4ff campaign jsr getin

cO6b fO fb beq campaign

cO6d 60 rts

This is just a placeholder. The meat of the program would go

here. But there's a major problem that I can't solve.

Computers aren't very random

Assembly programs are so fast that the SID chip isn't random

enough. It spits out noisy numbers, but they follow a pattern.

Painting the screen with output from voice three produces very

definite shapes and diagonal lines. Try POKEing various num

bers into 54286 (or STAing into $D40E).

I wrote an entire CAMPAIGN routine, but it was flawed because

the 64's SID chip couldn't produce random enough values. You

can make a computer act chaotic up to a point, but then it

insists on being orderly. If anybody has a solution, I'd like to

hear about it.

Listing 1: Source code in PALformat for the voters program

LL 10 rem save"v.src",8

FO 20 sys 700

OF 30 *=49152

AJ 40 .opt oo

IB 50 getin = $ffe4

CL 60 random = $d41b

ML 70 ;

PM 80 ;

LF 90

GI 100

MB 110

AJ 120

OG 130

CA 140

FB 150

jsr gmode

jsr initvote

jsr campaign

jsr gmode

rts

mode = *

Ida $d011

eor #%00100000

sta $d011

Ida $dO18

eor 1*00001100

sta $dO18

rts

turn on graphics mode

initialize voters

randomly change votes

back to text mode

scroly

flip bit 5

toggle graphics mode on/off

vmcsb

toggle bits

toggle base addresses

GP 170

MM 180

MN 190

DM 200

AA 210

CJ 220

CN 230

GG 240

JH 250

01 260 initvote = *

MC

HG

HE

IB

MK

AI

HA

DE

JJ

PA

OH

IG

MP

LN

EH

CF

CN

MP

JA

GB

GC

JO

HP

FA

DB

AF

OP

CJ

IP

OG

PH

PI

KB

HG

KC

ID

HK

PA

CP

EC

AJ

PF

IH

EM

MD

PE

AG

HE

KN

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

jsr rndinit

jsr fill

jsr choose ,

rts

•

rndinit = *

Ida #$ff

sta $d40f

Ida #$80

sta $d412

sta $d418

rts

•

fill =*

Ida #$61

ldy 1250

colO = 1024

coll = colO + 250

col2 = coll+ 250

col3 = col2 + 250

lpfill dey

sta col0,y

sta coll,y

sta col2,y

sta col3,y

bne lpfill

rts

;

choose = *

bitmap = $2000

ldx #32

ldy #0

Ida f<bitmap

sta selfmod+1

Ida |>bitmap

sta selfmod+2

lpchoose Ida random

selfmod sta $ffff,y

iny

bne lpchoose

inc selfmod+2

dex

bne lpchoose

rts

;

;

campaign jsr getin

beq campaign

rts

crank up the noisy sid voice

fill the color bytes

the voters randomly choose a color

max hi frequency

noise waveform

volume off and no output for voice 3

foreground 6 (blue) and background 1

note that this sets the zero flag

32 pages of 256 bytes = 8192

set up the address

this isn't the real address

count forward

until .y wraps

and repeat a total of 32 times

and that's all

Listing 2: BASIC generatorfor the voters program

KM 100 rem generator for "v.obj"

FP 110 n$="v.obj": rem name of program

FA 120 nd=110: sa=49152: ch=14246

(for lines 130-260, see the standard generator on page 5)

OM 1000

JA 1010

NP 1020

OC 1030

KE 1040

HF 1050

AG 1060

AF 1070

BF 1080

LH 1090

OP 1100

CJ 1110

NN 1120

JP 1130

data 32,

data 192,

data 73,

data 73,

data 192,

data 169,

data 18,

data 160,

data 4,

data 241,

data 141,

data 173,

data 247,

data 32,

13, 192,

32, 13,

32, 141,

12, 141,

32, 54,

255, 141,

212, 141,

250, 136,

153, 244,

96, 162,

92, 192,

27, 212,

238, 93,

228, 255,

32, 30,

192, 96,

17, 208,

24, 208,

192, 32,

15, 212,

24, 212,

153, 0,

5, 153,

32, 160,

169, 32,

153, 255,

192, 202,

240, 251,

192, 32, 104

173, 17, 208

173, 24, 208

96, 32, 40

74, 192, 96

169, 128, 141

96, 169, 97

4, 153, 250

238, 6, 208

0, 169, 0

141, 93, 192

255, 200, 208

208, 241, 96

96

Transactor 16 February 1989: Volume 9, Issue 3

Keep-80

Non-destructive windowing on the C128

by Richard Curcio

The C128's 80-column Video Display Controller has features

that can enhance our 80-column text screens. Two of these fea

tures, 4K of unused RAM and a hardware *block-copy', can be

used to overcome a limitation of the window command: once

a C128 window has been opened, whatever was under it is

lost. By copying the 80-column screen to the unused area be

fore opening a window, recalling the saved screen 'closes' the

window and restores the text and attributes over-written by it.

This can give our C128 programs the look of more advanced

(and more expensive) computers.

The vdc and Keep-80

The Video Display Controller (VDC) has its own 16K of RAM.

This RAM does not appear in the C128 memory map, and can

only be accessed through the VDC. Since 80 columns by 25

rows require 2000 bytes, 2K bytes of VDC RAM are assigned to

screen memory. A corresponding 2000 bytes are required by

attribute memory, which is similar to the 40-column display's

colour memory. The character definitions are also stored in

VDC memory. Though only eight bytes are needed per charac

ter, each is padded out to 16 bytes for a total of 8K for both

upper-case/graphics and lower/upper-case characters. This ac

counts for 12K of the 16K of VDC RAM, leaving 4K unused in

normal circumstances. It is this unused memory that Keep-80

uses to hold a copy of the text and attributes. However, there's

more to a video display than the characters and colours. A

number of locations in zero page and page three keep track of

the screen or window dimensions, cursor position, the current

colour, tab positions, 'linked' lines, etc. This information can

collectively be referred to as the Editor Values; Keep-80 stores

these in the unused area as well.

How Keep-80 works

When the 'store screen' command is issued, after testing for

80-column mode, the routine moves the 40 bytes of editor val

ues from RAM 0 to the unused 48 bytes at the top of 80-column

screen memory. The VDC's copy feature is then used to move

everything from $0000-$0FCF (beginning of screen to end of

attributes), to the unused area, $1000-$lFCF. Instead of calcu

lating the number of pages and bytes to move, and invoking

the copy mode the necessary number of times, Keep-80 uses a

ROM routine that takes care of everything. The routine at

$C53C in Screen Editor ROM is used for 80-column scrolling

and line clearing. To use it, the VDC memory destination end

address (plus one) is stored in RAM 0 locations $0A3C and

$0A3D in low-high format. The destination start is stored in

VDC registers $12-$ 13 in high-low format. The source start ad

dress is stored in VDC registers $20-$21, again in high-low for

mat. Setting bit 7 of register $18 tells the VDC that the next

block operation will be a copy. JSR $C53C does the rest. It is

a misnomer to call this operation a block-copy, however, be

cause the ROM routine invokes the VDC copy mode one byte at

a time! Still, using this routine simplifies the programming

somewhat, and any loss of speed is negligible, especially in FAST

mode, which should always be used in 80 columns anyway.

There are two 48-byte areas still available, one at the top of

the attributes area and one at the top of the unused area. Since

Keep-80 already has code to move editor values to and from

VDC RAM, I have given it the ability to preserve two additional

sets of editor values. In this way, your program can jump from

window to window, perhaps using one to receive input and the

other to display results. This feature can be made to function

in 40 columns. Obviously, considerable confusion will result if

80-column editor values are recalled to a 40-column screen.

Usage

Keep-80 can be called from BASIC or machine language. The

C128 must be in the BANK 15 configuration. The accumulator

holds the type of operation and X holds the direction, which is

zero to save and non-zero to recall. If KEEP is the location of

the routine,

sys keep, o, o

saves the current 80-column screen. This should be done be

fore opening a window. If the current text mode is not 80

columns, the processor carry bit is set and the routine returns.

From BASIC, RREG,,,SR will read the status register into the

variable SR. IF SR AND 1=1 THEN you know you made a mis

take. In assembler:

Ida operation

ldx direction

jsr keep

Transactor 17 February 1989: Volume 9, Issue 3

You can then branch on the carry flag appropriately. To recall

the saved screen:

sys keep, o, l

To save and recall only the editor values, the accumulator

should hold a 1 for the first set or 2 for the second set. Values

greater than 2 will also set the carry to signal an error. Direc

tion is as described above.

The BASIC loader (Listing 2 at the end of this article) pokes the

Keep-80 machine language into the applications area at loca

tion 4864. Keep-80 can be located elsewhere by changing the

variable KE in line 110. Other possible locations include the

RS-232 buffers at 3072-3583, and the sprite definition area at

3584-4096. After running the loader, it will print the range of

memory the ml occupies.

Modifications and demo

If one of the 80-column character sets is unused, Keep-80 can

be made to store another screen at that location. Keep+6 and

keep+7 hold the starting and ending pages of the storage area.

The normal contents of these locations are $10 and $1F. The

values $20 and $2F in these locations will move storage to the

upper-case/graphics character set. To use the lower/upper-case

character set area for storage, poke KEEP+6 and KEEP+7 with 48

and 63 ($30/$3F). These pokes should be performed only

when one of the character sets is not used. (To regain the com

plete 80-column character set, use BANK 15: SYS 49191.) This

modification makes Keep-80 compatible with D.J. Morriss'

Twin-80 program {Transactor, Volume 8, Issue 3), since that

program uses the normally-unused area for a second screen.

Keep-80 only copies the default text and attributes locations

($0000-$0FCF), and these pokes do not affect editor-only stor

age/retrieval.

To save and recall 40-column editor values, Keep-80 can be

entered beyond the test for 80 columns with SYS KEEP+8, A, X.

Be certain that A is not zero in that case. With a little more

work, the routine can store many more sets of editor values,

but only if a complete screen will not be saved, or one of the

character sets is unused. First, store the direction value in loca

tion 195 ($C3), then SYS or JSR KEEP+103 ('editsr' in the

source listing) with A holding the high byte and Y the low byte

of the VDC RAM location to be accessed. Each set of editor val

ues requires 40 bytes.

When a second storage area is created in an unused character

set, another 48 bytes at the top of that area are available for yet

another set of editor values. Use the method described above

to access $2FD0 for the upper-case/graphics area or $3FD0 for

lower/upper-case.

The demo program (Listing 3) assumes that Keep-80 is locat

ed at 4864. It uses colours that should be readable on a green

screen. For amber monitors some adjustment of the COLOR

statements will be necessary. The program creates a window

on the left half of the screen and lists itself. Two cursor-ups

compensate for the line feeds when the listing is completed.

The editor values are saved and a window is opened on the

right half. Because of CHR$(27)"R" (ESC-R), clearing the win

dow with a different COLOR 5 creates two different 'back

grounds'. This delineates the two windows. The program again

lists itself, saves the right half editor values, then returns to the

left half and continues the first listing where it left off. SLEEP

slows things down for observation. The whole screen is saved

and a window with a message is displayed. The Keep-80 pro

gram is then poked to create a second storage area at $2000-

$2FCF, corresponding with the upper-case/graphics character

set which is not used by the demo program due to PRINT

CHR$(14). Having created another storage area, the demo again

saves the whole screen and displays another message window.

When a key is pressed, the process is reversed, recalling the

saved screens and thus restoring the characters covered up by

the two windows.

More free memory?

Is there still more usable 80-column memory? What about the

eight 'pad' bytes of each character definition? This amounts to

2K per character set. Can this highly non-contiguous memory

be put to use? Is it worth the trouble?

We have seen the C-128 80-column capability used for hi-res

graphics, its memory used as a RAM drive, the unused RAM as

a second screen and the application described here. What else

can we do with the VDC and its memory?

Listing 1: Keep-80.src

AB 1000

16 1010

MP 1020

MH 1030

LH 1040

AJ 1050

JA 1060

EK 1070

MN 1080

IL 1090

NF 1100

MM 1110

EG 1120

JB 1130

PB 1140

EP 1150

BD 1160

IA 1170

NC 1180

PA 1190

BC 1200

FK 1210

KD 1220

EE 1230

JL 1240

OL 1250

KF 1260

CO 1270

GH 1280

AH 1290

OH 1300

EJ 1310

LC 1320

KK 1330

sys4000

power assembler (buddy128)

*= $1300

rom routines

wrvdc = $cdca

rdvdc = $cdd8

vcopy a $c53c

ram locations

svars = $00e0;start of screen variables

snaps = $0354/start of tab and link naps

pnt80 = $0a3c;end pointer for vcopy

ztenp = $c3;safe temporary location

keep bit $d7;test 80 columns

bmi ok80

err sec

rts

spage .byte $10;start page of unused area

epage .byte $lf;end page

ok80 cmp #$03

bcs err

Transactor 18 February 1989: Volume 9, Issue 3

JF 1340

FB 1350

PG 1360

OA 1370

ND 1380

EO 1390

IK 1400

IP 1410

BP 1420

MA 1430

6F 1440

HH 1450

CF 1460

PJ 1470

KI 1480

FF 1490

EP 1500

EB 1510

PL 1520

DB 1530

GA 1540

OJ 1550

GA 1560

NL 1570

LD 1580

MN 1590

AO 1600

6D 1610

KM 1620

AH 1630

ON 1640

IP 1650

EB 1660

EC 1670

BH 1680

NL 1690

DH 1700

GM 1710

AH 1720

FE 1730

N6 1740

ME 1750

AB 1760

6D 1770

KG 1780

BD 1790

GF 1800

NM 1810

NH 1820

OD 1830

CE 1840

AL 1850

AJ 1860

EM 1870

MJ 1880

MC 1890

MJ 1900

HF 1910

GP 1920

LA 1930

KP 1940

JF 1950

EJ 1960

FI 1970

PD 1980

CB 1990

LI 2000

HM 2010

AN 2020

EG 2030

AD 2040

HC 2050

HM 2060

EA 2070

DP 2080

HE 2090

JF 2100

JP 2110

stx ztenp;direction

tay

bne edda

txa

bne rscrn

;

;save whole screen

;

jsr rend;write editor values to $07d0

;

Ida #$d0;destination end+1

ldx epage

sta pnt80

stx pnt80+l

Ida spage;dest. start

ldy #$00

jsr addwr

Ida f$00;source start=$0000

tay

setsrce ldx #$20

jsr addwr+2

setcopy ldx #$18

jsr rdvdc+2

ora #$80;bit 7=l=copy

jsr wrvdc+2

jsr vcopy;call rom routine

clc;no errors

rts

recall whole screen

rscrn Ida #$d0;copy everything

ldx #$0£;back to $0000-$0fcf

sta pnt80

stx pnt80+l

Ida #$00

tay

jsr addwr

Ida spage;source is unused area

ldy #$00

jsr setsrce

;

rend Ida #$07;hi-byte of editor storage

bne edsa

;

edda Ida #$0f;store/recall editor values

clc;at $0£d0 or $l£d0

dey

beq edsa

adc #$10

edsa ldy #$d0;lo-byte

;

/store/recall screen editor values

;

editsr jsr addwr

ldy #$la

Ida ztemp;0=store

beq Ioop3

;

loopl jsr rdvdc

sta svars,y

dey

bpl loopl

ldy #$0d

Ioop2 jsr rdvdc

sta smaps,y

dey

bpl Ioop2

rts

;

Ioop3 Ida svars,y

jsr wrvdc

dey

bpl Ioop3

ldy #$0d

Ioop4 Ida smaps,y

jsr wrvdc

dey

HD 2120 bpl Ioop4

OD 2130 rts

CN 2140 ;

DA 2150 ;routine to write to vdc address registers ($12/$13)

AB 2160 ;or any other pair of registers

EF 2170 ;a=first byte,y=next byte,x=first register

KP 2180 ;

LN 2190 addwr ldx #$12

NG 2200 jsr wrvdc+2;here for other pairs

JF 2210 tya

II 2220 inx

LK 2230 jmp wrvdc+2

MJ 2240 .end

Listing 2: Keep-80 loader

DF 100

CL 110

HN 120

IJ 130

NC 140

LH 150

ME 160

DH 170

PP 180

AI 190

CO 200

FI 210

BP 220

EJ 230

CE 240

EM 250

NO 260

OA 270

MI 280

AE 290

OL 300

NO 310

MK 320

IJ 330

HK 340

HF 350

LB 360

BB 370

LE 380

CK 390

FL 400

BK 410

rem *** keep-80 loader ***

ke=4864:rem relocating ***

ck=0

readd:ck=ck+d:ifd=999thenl50

gotol30

ifck<>16817thenprintn*** error in data ***":e

restore:sa=ke

readd:ifd=999then220

ifd=>0thenpokesa,d:goto210

ad=ke+abs(d):h=ad/256:l=ad-int(ad/256)*256

pokesa,l:sa=sa+l:pokesa,h

sa=sa+l:gotol70

print"keep-80 installed"ke"to"sa

print"sysnken(left}, a, x"

print"a=0 for screen","x=0 to save"

print"a=l for editor l"/"x>0 to recall"

print"a=2 for editor 2"

end

data 36,

data 134,

data 174,

data 32,

data 218,

data 169,

data 168,

data 8,

data -154,

data 0,

data 136,

data 247,

data 96,

215, 48, 4,

195, 168, 208,

-7, 141, 60,

154, 169, 0,

205, 9, 128,

208, 162, 15,

32,-154, 173,

169, 15, 24,

160, 26, 165,

136, 16, 247,

16, 247, 96,

160, 13, 185,

162, 18, 32,

56, 96,

76, 138,

10, 142,

168, 162,

32, 204,

141, 60,

-6, 160,

136, 240,

195, 240,

160, 13,

185, 224,

84, 3,

204, 205,

16, 31,

208, 45,

61, 10,

32, 32,

205, 32,

10, 142,

0, 32,

2, 105,

21, 32,

32, 216,

0, 32,

32, 202,

152, 232,

201, 3,

32, -89,

173, -6,

156, 162,

60, 197,

61, 10,

-45, 169,

16, 160,

216, 205,

205, 153,

202, 205,

205, 136,

76, 204,

176, 248

169, 208

160, 0

24, 32

24, 96

169, 0

7, 208

208, 32

153, 224

84, 3

136, 16

16, 247

205, 999

Listing 3: Keep-80 demo

EE 100 bankl5:keep=4864:ren start of ml

10 110 pokekeep+6,16:pokekeep+7,31:rea storage @ $1000-$lfcf

NK 120 graphic5:color6,l:colorS, 12

KJ 130 print"{home}{hoine}(clr}"chr$(14)chr$(27)"rn;

DB 135 rem full-size reverse screen, lower/uppercase

PE 140 window0,0,39,24,l:a=l:x=0:gosub280

PI 150 color5,15:window40,0,79,24/l:a=2:x=0:gosub280

NF 160 a=l:x=l:gosub290:list210-

AM 170 a=0:x=0:gosub290

DE 180 color5,l:windowl2,7,37,ll,l

PN 190 color5,8

KN 200 printchr$(15)chr$(18)"{2 down}{3 right} your message here ";:sleepl

CK 210 pokekeep+6,dec("20"):pokekeep+7,dec("2f")

JB 215 rem move storage to upper/graphics

PI 220 gosub290:windowl9,8,43,12,1:printchr$(143) ;

NG 230 print"{2 down}{5 right} press any key ";:getkey a$

MJ 240 x=l:gosub290:sleep2

MA 250 pokekeep+6,16:pokekeep+7r31:gosub290:sleepl

BA 260 a=2:gosub290:list210-

JH 270 sys49191:end:regain char set

DH 280 list-200:print"{up}{up}";

KM 290 sys keep,a,x:sleepl:return □

Transactor 19 February 1989: Volume 9, Issue 3

KERNAL++

Add a DOS wedge to your C64 Kernal

by William Coleman

Kernal++ is a Kernal enhancement for your C64. It adds a

built-in DOS wedge, auto-loading of BASIC or ML programs at

power-up, additional screen editor commands, and several oth

er patches that make using the 64 easier.

DOS commands

The DOS Wedge intercepts the crunch vector ($0304-$0305),

so program execution speed won't be affected. All wedge

commands must start at the first position of a logical line. The

following commands are supported:

% Load an ML program (same as ,8,1). The end of program

pointers are not modified, so you can load ML without affect

ing BASIC. However, for this reason, don't try to load a BASIC

program with this command.

/ Load a BASIC program.

T Load and run a basic program.

<— Save a BASIC program.

= Verify the program in memory with a file on the disk.

Display a sequential file on the screen. The RUN/STOP key

will abort the display. No character checking is done; cursor

commands and colour changes will print, so be careful what

you try to display. Only SEQ files will work, though you can of

course modify the code to display other types.

All of the above commands have the same syntax: %file-

name. You don't need quotes. However, if you list a directory

and place one of these characters in the first position of a line

with a filename on it, the command will execute properly.

The following commands all begin with '(§>'. You can also use

*>' instead if you prefer.

@ Read error channel.

@#<number> Change the drive number the wedge accesses.

The number can be from 4 (yes it's possible to have a drive

#4) to 9. To use device 10, enter @:, and for drive 11, @; (this

works for most DOS wedges by the way).

@$ Displays the disk directory. The RUN/STOP key will abort.

@<disk command> Send a command to the drive, e.g.

@sO:filename.

@£ Toggle the write protect status of the disk. If you use this

command and then try to write to the disk you'll get a DOS

MISMATCH error. Executing it a second time will return the

disk to normal. If you list the directory of a protected disk, the

Version String (just after the disk name) will read '2e' instead

of '2a'. The routine used is based on one by William Fossett.

For more information see Transactor, Volume 7, Issue 4.

@Q Quit wedge. To re-enable, use SYS 65526.

The T commands

The commands in this group of BASIC enhancements are pre

ceded by4!':

!d Restore default screen colours. This command will set the

screen colours to the power-up configuration, currently a black

background with light green text in lower case. You can mod

ify the color subroutine in the source code to your own

favourites. This subroutine also pokes the value 128 into loca

tion 650, which will make all keys repeat.

!<number> Set background and border colours. Use the same

number you would use if you were poking locations $D020 and

$D02i directly.

!* Un-new BASIC. If you accidentally enter NEW (or hit a reset

button), this restores your BASIC program. It's also handy if

you inadvertently load a BASIC program with the '%' com

mand. Just use this command to set the pointers properly.

Screen editing

Several new Screen Editor commands have been added. All

are activated by pressing the CTRL key at the same time as the

Transactor 20 February 1989: Volume 9, Issue 3

key listed. They can also be used from within a program by

using the CHR$() code given.

INST/DEL - CHR$(23): Toggles quote mode on and off. Can

celling quote mode will also cancel insert mode if that is

active.

The commands added to the screen editor are patched into the

print-to-screen routine. Commercial programs that may use the

new CHR$() values as commands (CTRL-U for example) won't

try to print them, so there shouldn't be any interference.

Learn how to burn!

CLR/HOME CHR$(22): Homes the cursor to the bottom of the

screen.

RETURN CHR$(2l): Clears the line that the cursor is on from

the cursor to the end of the line.

VERT. CURSOR CHR$(25): Clears the screen from the cursor to

the bottom of the screen.

HORIZ. CURSOR CHR$(26): Clears the screen from the line the

cursor is on to the top of the screen.

Other goodies

Several other patches are included to enhance the Kernal's

operation or change the standard defaults:

The default load device is now 8. LOAD "O:filename" will

load from the disk instead of the cassette.

The default OPEN device is now 4 with a secondary address of

7. Open 4 now behaves like open 4,4,7. These two defaults

can of course be changed to suit your needs.

Pressing SHIFT and RUN/STOP together will generate <RE-

TURN> RUN <RETURN>. The logo key and RUN/STOP will gen

erate load "0:*",8,l without a return. Ctrl and run/stop

will generate LOAD "0:*M without a return.

The screen will not scroll while the shift (or SHIFT LOCK) key

is depressed. This is handy when listing BASIC programs.

Holding down the CTRL key while turning on the computer (or

hitting the reset button, if you have one) will load the first pro

gram on your disk (same as %0:?*). This is a handy option

for booting games and other programs that have an auto

loader.

Holding down the SHIFT key while turning on the computer

will load the first program on the disk and RUN it (same as

TO:?*).

Where's the beef?

The wedge is installed where the cassette routines used to be.

To prevent crashes, device #1 is patched out - if you try to ac

cess it you will receive an ILLEGAL DEVICE error. Because of

where the routines are placed, these improvements should be

100 per cent compatible with commercial programs, although

you may have to disable the wedge with @Q before loading

them in.

You will need access to an EPROM burner to install these addi

tions, either a commercial model like the Promenade or a

home-built model like the one I use, which was featured in

Transactor, Volume 7, Issue 4. The source code at the end of

this article was written for the Abacus assembler, but should

work with PAL with only minor changes.

To make the file that will be burned onto the eprom, do the

following:

1) Load your assembler and monitor. Don't run them (my

monitor interferes with my assembler, that's why I do it this

way).

2) Load in the source code and run it. The first thing it will

do is copy BASIC and the Kernal into RAM. This is done from

basic, so be patient! If you're not using a PAL-compatible as

sembler (lads, for instance), you'll have to do this by hand.

Do not flip out the ROMs yet.

3) When the assembly is finished, enter your monitor and

transfer $E000-$FFFF to $3000 (exactly where isn't critical,

$2000 would do just as well). Change the contents of memory

location 01 to 53 ($35). If you forget, and the ROM isn't

switched out, you won't see many improvements when you in

stall the new Kernal! The 'standard' transfer command is:

T E000 FFFF 3000

4) Now use the monitor to save memory from $3000 to

$5000:

S 3000 5000 "filename" 08

or possibly:

S "filename" 08 3000 5000

Read the documentation that came with your monitor for the

proper syntax.

While you have the new Kernal in RAM, you may as well test

it. Hit RUN-STOP/RESTORE, and enter POKE 1,53 then SYS

65526. All of the options should work (except the autoboot of

course).

Now burn the file you just saved in accordance with the in

structions that came with your EPROM burner. As far as chips

go, you have two choices: 2764s or the MCM68764. The for

mer is the cheapest ($6.95, Radio Shack #276-1251), but it's a

28-pin chip so you'll need to build an adapter. The MCM68764

Transactor 21 February 1989: Volume 9, Issue 3

is more expensive (about $16), but it's pin-for-pin compatible

with the Kernal chip (2364). By the way, basic and 1541

ROMs are the same type as the Kernal.

If you don't have access to an EPROM burner, you can still use

the program, either by using the BASIC loader (Listing 2), or by

making a file as explained above, using a disk doctor to

change the load address to $E000, and booting with the fol

lowing program (a faster solution would be to write it in ML).

1 x=x+l:if x=l then load"kernal++"/8,l

2 fori=40960 to 49151:pokei,peek(i):next

3 pokei,53:sys65526:end

Making your own improvements

The wedge occupies memory from $F72C to $FA80. The cas

sette routines run through $FCE7, so there's plenty of room

left for further improvments. There are also a few shorter seg

ments in the original ROM code (mostly tape routines) that can

be re-used. You might even be able to squeeze in a mini-

monitor (very mini)! The possible improvements are limited

only by your imagination!

Listing 1: Kernal++.src

MO

00

16

NN

DK

CG

CA

PM

GP

LI

KL

FP

PN

BB

GJ

KM

CK

DL

GO

ML

FN

JK

10

AB

01

HG

PC

DK

PF

JK

KH

KK

BH

IL

1000 gotol055

1005 openl5,8,15,ns0:kernalH.src":closel5:save"0:)cernalH.src",8:end

1010

1015

1020 ; "KERNALH VI.0 (C) 14 JUNE 87

1025 ; "William Coleman 1431 Pacetti Rd

" aka

"Master Blaster

1030

1035

1045

1050

1055

1060

1065 sys32768

Green Cove Spgs

Florida 32043

these 2 lines copy the roms into ram

for i=57344 to 65535:pokei,peek(i):next

for 1=40960 to 49151:pokei,peek(i):next

opt oo

page 65

above is for abacus assembler, for pal, use sys 700, delete .page line^K

ED

*** kernal equates ***

1070

1075

1080

1085

1090

1095

1100 second = $££93

1105 tksa = $££96

1110 acptr = $ffa5

1115 ciout = $ffa8

1120 untalk = $ffab

1125 unlsn = $ffae

1130 listen = $ffbl

1135 talk = $ffb4

1140 readst = $ffb7

1145 open = $£3d5

1150 close = $£642

1155 chrout = $ffd2

1160 load = $f49e

1165 stop = $ffel

HA 1170 clall = $ffe7

NA 1175 ;

OG 1180 ; *** other equates ***

HB 1185 ;

PF 1190 basinit = $e3bf;

EE 1195 basmsg = $e422;

FA 1200 vecp3 = $e453;

GC 1205 setpnts = $e56c;

initialize basic

power-up message

restore pg 3 vectors

set charout pntrs

DI

OD

CE

MI

EP

AH

KD

MF

CH

GG

EE

NL

FH

FI

PH

BE

GH

01

KM

IJ

EH

HB

OP

GB

1210 chardone

1215 chkcodes = $e72a;

1220 clrline = $e9ff;

1225 upordown = $ec44;

1230 save = $el59

1235 border = $d020

1240 backrnd = $d021

1245 ciapra = $dc00

1250 ciaprb = $dc01

1255 outnum = $bdcd;

1260 strout = $able;

1265 newstt = $a7ae;

1270 rune = $a68e;

1275 clear = $a659;

1280 crunch = $a57c;

1285 link = $a533;

1290 crvec = $0304;

1295 spekey = $028d;

1300 repeat = $028a;

1305 inbuf = $0200;

1310 ;

1315 ; *** zero page equates ***

1320 ;

1325 cpnt = $f3;

1330 llynx = $d9;

1335 insert = $d8;

1340 row = $d6;

1345 lmax = $d5;

1350 quote = $d4;

1355 column = $d3;

1360 rpnt = $dl;

1365 keyent = $c6;

1370 wejdev = $be;

1375 fname = $bb

1380 device = $ba;

1385 snd = $b9;

1390 length = $b7;

1395 eal = $ae;

1400 kflag = $9d;

1405 st = $90

1410 txtptr = $7a

1415 sov = $2d;

1420 sob = $2b;

1425 misc = $22

1430 flag = $02;

1435 ;

1440 ctrlret = 21;

1445 ctrlhm = 22;

1450 ctrlins = 23;

1455 ctrlvcr = 25;

1460 ctrlhcr = 26;

exit 4 screen charout

charout (after patch)

clear screenline

chk for case change

print integer

outputs a string

set up statement

set up for run

clear basic

tokenize line

relink basic

crunch vector

Ctrl,shift,or c=

keybrd repeat flag

input buffer

pntr to color mem

line link table

>0 = insert mode

cursor row (0-24)

max chars in line

>0 = quote mode

cursor column

pntr to video matrix

keybrd buffer count

wedge device f

current device

secondary addr

length of filename

end of load

kernal message flag

start of variables

start of basic

flag for autoboot

ctrl-return

ctrl-home

ctrl-ins/del

ctrl-vert cursor

ctrl-hori cursor

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

— patches default device i —

*= $elda

byte 8; load"file" = load"file",8

*= $e228

byte 4; open4 = open4,4,7

ldy #7

— patches vector table ~

*= $e44b

word wedge

-- modify power up message —

asc "Kernal++ VI.0 "

— text for load ~

*= $e4b7

loadtxt .asc "load"

.byte 34

.asc "0:*"

Transactor 22 February 1989: Volume 9, Issue 3

IA 1595

MH 1600

LL 1605

HM 1610

FM 1615

EN 1620

DC 1625

HC 1630

EL 1635

ON 1640

LK 1645

10 1650

CJ 1655

CD 1660

KE 1665

PE 1670

MM 1675

LF 1680

LA 1685

JL 1690

MO 1695

KB 1700

JD 1705

EC 1710

AO 1715

MJ 1720

LA 1725

JN 1730

NE 1735

DJ 1740

FG 1745

JE 1750

GE 1755

FM 1760

LF 1765

ML 1770

FG 1775

IG 1780

ML 1785

CK 1790

M 1795

OH 1800

HE 1805

11 1810

MJ 1815

KC 1820

LH 1825

NC 1830

GF 1835

HD 1840

II 1845

DA 1850

IA 1855

KL 1860

BH 1865

EM 1870

KL 1875

EK 1880

HF 1885

DM 1890

EB 1895

JG 1900

DF 1905

AI 1910

LC 1915

AI 1920

ON 1925

MA 1930

DH 1935

AM 1940

LM 1945

FF 1950

.byte 34

asc ",8,1"

-- patch to for stop keys —

*= $e5ea

jmp onekeys

nop

ldx §5

;

; -- patch to print routine ~

;

*= $e725

jmp chkquote

nop

nop

*= $e7dl

jmp newcodes

;

*= $e962

jmp wait

;

; - patch to Ctrl table --

;

*= $ec42

.byte $84

*= $ec78

.byte ctrlins,ctrlret,ctrlhcr

*= $ec7f

.byte ctrlvcr

*= $ecab

.byte ctrlhm

*= $ecb7

.byte $85

/

; — patch shift-run/stop —

;

*= $ece7

.byte 13

.asc "run"

.byte 13

;

; ~ patch out cassette —

;

*= $f2ce

jmp $f271

*= $f38b

jmp $f713

*= $f539

jmp $£713

*= $£65a

nop

nop

;

; - do stop keys -

;

*= $£65£

onekeys cmp #$83; shifted

bne okl

jmp $e5ee

okl cmp #$84; c= key

bne ok2

ldx #13

bne stickit; always

ok2 cmp #$85; Ctrl key

bne ok3

ldx #9

stickit sei

stx keycnt

okloop Ida loadtxt-l,x

sta $0276,x

dex

JB 1955

AA 1960

BP 1965

IC 1970

HA 1975

CD 1980

FB 1985

II 1990

OA 1995

GD 2000

BM 2005

AF 2010

FF 2015

OA 2020

PF 2025

NP 2030

BF 2035

EF 2040

JI 2045

IF 2050

DJ 2055

FM 2060

GE 2065

OL 2070

LK 2075

GN 2080

HF 2085

DF 2090

BG 2095

HI 2100

LG 2105

ND 2110

II 2115

NE 2120

EL 2125

CF 2130

NM 2135

HB 2140

HN 2145

MJ 2150

BO 2155

PE 2160

ID 2165

EC 2170

OI 2175

KP 2180

LD 2185

EA 2190

FH 2195

DH 2200

BL 2205

OH 2210

NB 2215

AO 2220

HC 2225

PB 2230

HJ 2235

OL 2240

LL 2245

KK 2250

KK 2255

CC 2260

BE 2265

OC 2270

CA 2275

HH 2280

JA 2285

EE 2290

PA 2295

EG 2300

JK 2305

LG 2310

LD 2315

PJ 2320

AI 2325

PL 2330

FJ 2335

bne okloop

jmp $e5cd

ok3 jmp $e5fe

;

; — activates wedge ~

*= $f72c

wedgeon jsr vecp3

Ida #$08

sta wejdev

rts

; — wedge proper ~

wedge ldx txtptr; if not input buffer

bne doreg; then crunch

cmp #"6"

beq doat

cmp #">"

beq doat

cmp #"_"

beq dosave

wdge cmp #"%"

beq doml

cmp #"A"

beq doload

cmp #"/"

beq doload

cmp #"="

beq doload

cmp#"!"

beq jdobas

cmp #"#"

beq seq

entry from autoboot

doreg jmp crunch; normal crunching

jdobas jmp dobas; springboard

; — save routine _ —

dosave jsr setup; set up file params

jsr save; save program

frmseq jsr prntret; print return

jmp disperr; display error chan.

; ~ set up for load ~

doml Ida #1

.byte $2c

doload Ida #0

jmp loadit

; ~ read seq file -

seq Ida inbuf+1

jsr setup;

ldy length;

iny

lda#V

sta inbuf,y

iny;

Ida #"s"

sta inbuf,y;

sty length;

jsr yoohoo;

Ida #25;

jsr chrout;

seql Ida st

bne sqout;

jsr stop

beq sqout;

jsr acptr;

jsr chrout;

jmp seql;

exit if just #

set up file parameters

length of filename

add two

append ',s'

save new length

tell drive to talk

ctrl-return

clear to bottom

exit if st set

also check stop key

get a byte

and print it

loop back

Transactor 23 February 1989: Volume 9, Issue 3

DL

DJ

EK

FH

OK

IA

6N

NN

BF

BJ

FO

IB

16

IM

KB

NC

KO

KI

EP

10

DN

KF

ND

HH

DO

IP

KO

JL

AD

LC

HC

FD

6H

PD

IB

KI

JI

KK

TIPIt

HO
rr

MN

JA

B6

GH

BC

AI

FB

KP

PI

AB

JJ

FI

KG

DF

JH

IN

LB

OP

KA

ED

PN

KF

GE

KD

BL

DK

GG

IK

NA

JF

HJ

NM

BC

AM

2340 sqout jsr close;

2345 jmp frmseq;

2350 ;

2355 ; ~ parse 6 coma

2360 ;

2365 doat jsr setup;

2370 Ida inbuf+1

2375 beq jdisperr;

2380 cmp $"%"

2385 beq chgdev

2390 cmp #"q-

2395 beq quit

2400 cmp i"$"

2405 beq dir

2410 cmp f\"

2415 beq jwprot

2420 ;

2425 ; — send string

2430 ;

2435 jsr hello;

2440 ldy 10

close file

exit

aands ~

set up file parameters

just §

to error channel ~

make drive listen

2445 daloop Ida inbuf+l,y; send string

2450 jsr ciout;

2455 iny

2460 cpy length

2465 bne daloop

2470 jsr unlsn

2475 done jmp bye

to drive

2480 jdisperr jmp disperr; read error chan.

2485 ;

2490 jwprot beq wprot

2495 ;

2500 ; - disable wed<

2505 ;

2510 quit Ida fccrond

2515 sta crvec

2520 Ida |>crunch

2525 sta crvec+1

2530 ;

2535 ; -- change wedg<

2540 '

springboard

je -

i; restore default

; crunch vector

i device ~

2545 chgdev Ida inbuf+2

2550 and #$0£

2555 sta wejdev

2560 ;

2565

2570

2575 1

2580

2585

2590

2595

~ common exit

)ye jsr $a67a;

|mp $a47b;

point —

part of clear

main basic loop

— list directory to screen —

2600 dir jsr yoohoo;

2605 Ida #3;

2610 linein sta $9c

2615 suk jsr acptr;

2620 sta $9e;

2625 jsr acptr;

2630 sta $9f;

2635 ldx st

2640 bne ddone;

2645 dec $9c;

2650 bne suk;

2655 ldx $9e;

2660 ldy $9f;

2665 jsr outnum;

2670 Ida f" "

2675 jsr chrout;

2680 dloop jsr acptr;

2685 beq endline;

2690 jsr chrout

2695 jmp dloop

make drive talk

load addr,link,blocks

get byte from drive

store

get another

store it too

check st

loop to read in

$9c pairs

print decimal

number, i.e.

number of blks

print space

get a byte

loop till zero (eol)

2700 endline jsr prntret

2705 jsr stop;

2710 beq ddone

Transactor

check stop key

KI

OP

HP

IC

FC

DF

JB

ED

GM

OD

JH

GN

NN

CF

DL

BD

LM

PC

FN

AP

JO

IE

DB

JF

IJ

HF

NP

JI

FH

AH

KN

NK

BD

LO

FM

AMAll

HH

JP

HC

DI

BH

KM

NO

IG

HG

KL

LH

KL

BA

DB

KD

AB

AH

KB

KN

MK

OC

EC

MH

JG

ED

HL

DI

KF

OD

IM

JL

HJ

KP

EM

MA

HJ

PO

LL

24

2715 Ida 12

2720 bne linein; link,blocks

2725 ddone jsr close

2730 jmp bye

2735

2740i

2745 •

2750 '
2755

2760

2765

2770

2775

2780

>rntret Ida §13

mp chrout; print return

— write (un)protect disk --

this routine sends to commands to the

drive, the first writes some code and

the second one executes that code.

2785 wprot jsr hello

2790 ldy #0

2795 wloop Ida protstr,y

2800 jsr ciout

2805 iny

2810 cpy 131

2815 bne wloop

2820 jsr unlsn

2825 jsr hello

2830 ldy #0

2835 wloop2 Ida exestr,y

2840 jsr ciout

2845 iny

2850 cpy 15

2855 bne wloop2

2860 jsr unlsn

2865 jmp disperr

2870 ;

2875 ; these two commands are sent to the

2880 ; drive, the first is a memory write

2885 ; and the second is a memory execute

2890 ;

2895 protstr .asc "m-w"; m-w 00 06 25

2900 .word $0600

2905 .byte 25

2910 jsr $dO42; load bam

2915 Ida $0702; get dos version

2920 eor §4; a to e/e to a

2925 sta $0702; store it back

2930 sta $07a6; directory (2a/e)

2935 Ida #$41; make sure drive

2940 sta $0101; will write

2945 jsr $efO7; bam to disk

2950 jmp $d042; reread bam and exit

2955 ;

2960 exestr .asc "m-e"; m-e 00 06

2965 .word $0600

2970 ;

2975 ; -- load routine % / A = --

2980 ;

2985 loadit sta snd

2990 jsr setup; set up file parameters

2995 ldx sob

3000 ldy sob+1; get start of basic

3005 Ida inbuf; if verify then

3010 cmp f="; accum > 0

3015 beq ver

3020 Ida 10

3025 ver jsr load; load program

3030 bcs lbad; branch on error

3035 Ida st

3040 and #$10

3045 bne Ibad2; branch on st

3050 Ida inbuf

3055 cmp #T

3060 beq ldone; if ml load then done

3065 Ida eal

3070 sta sov

3075 Ida eal+1

3080 sta sov+1; set end of load pntrs

February 1989: Volume 9, Issue 3

NE 3085 jsr clear; reset remaining pntrs

BO 3090 jsr link; re-link program

BI 3095 jsr rune; partial clear

JM 3100 Ida inbuf

HN 3105 cmp #"A"

KD 3110 bne Idone; if not A then done
/w* **4 it? i j 11 a

GB 3115 Ida #0

CL 3120 sta kflag; suppress kernal mess

AC 3125 sta inbuf

OF 3130 jmp newstt; execute next statement
FL 3135 ;

FL 3140 lbad tax

PP 3145 bne lfini

EC 3150 ldx #$le

OC 3155 .byte $2c

HG 3160 Ibad2 ldx #$lc

ID 3165 .byte $2c

EM 3170 Idone ldx #$80; no error

EC 3175 Ida #$ff

MC 3180 sta $3a; set direct mode
El 3185 lfini jmp ($0300)

MO 3190 ;

NH 3195 ; — parse command string ~

GP 3200 ;

OB 3205 ; this routine set length and addr

KA 3210 ; parameters of filename in buffer.

FN 3215 ; % "filename" will become

JP 3220 ; %filenamelname

DA 3225 ; this AAAAA will be ignored

EB 3230 ;

MB 3235 parse ldy #$02

MN 3240 sty fname+1

IG 3245 dey

ML 3250 sty fname; filename at $0201

IK 3255 dey; now zero

BA 3260 ploopl Ida inbuf+l,y

HP 3265 beq pdone

MD 3270 cmp #$22

KJ 3275 beq quot

AL 3280 iny

MD 3285 bpl ploopl

CF 3290 quot ldx #0

NP 3295 pmove Ida inbuf+2,y; shift string to

JP 3300 sta inbuf+l,x; start of buffer.

HC 3305 beq x2y; no trailing quote

EG 3310 cmp #$22

BF 3315 beq x2y

IN 3320 iny

JN 3325 inx

NK 3330 cpx #$25

NP 3335 bne pmove

NH 3340 x2y txa

AO 3345 tay

OH 3350 pdone sty length

HA 3355 rts

GJ 3360 ;

MM 3365 ; — display error channel ~

AK 3370 ;

HE 3375 disperr jsr drst

NF 3380 Ida device

EP 3385 jsr talk

NL 3390 Ida #%01101111; $60+0f

PP 3395 jsr tksa

ID 3400 errloop jsr acptr

EC 3405 jsr chrout

NB 3410 cmp #13

IP 3415 beq errdone

PL 3420 Ida st

EO 3425 beq errloop

PJ 3430 errdone jsr untalk

MO 3435 jbye jmp bye

GO 3440 ;

NL 3445 ; - make disk listen -

AP 3450 ;

KH 3455 hello Ida device

IG 3460 jsr listen

Transactor

IA

HH

JA

MB

DB

HP

BF

IE

KN

ON

ON

BL

T.nuu

NM

FE

BH

BA

DJ

HL

AD

JN

IG

PI

CH

BM

KD

DH

CE

PC

II

LE

KG

JH

EL

NK

PC

KH

IL

OP

LL

LM

LE

JN

GN

LG

IO

FO

FE

PO

00

CF

El

MF

ON

10

ID

CB

Lfl

JC

GC

NO

AA

FD

CF

GJ

FF

NE

DI

AF

MP

BI

DM

FJ

DL

BH

25

3465 Ida #%0110

3470 jmp second

3475 ;

3480 ; - make c

3485 ;

3490 yoohoo Ida

3495 sta snd;

3500 jsr open;

3505 Ida device

3510 jsr talk;

3515 Ida snd

3520 jmp tksa;
ococ .

3530 ; ~ setup

3535 ;

Ml; $60+0f

irive talk -

#101100000; $60+0

2ndary addr

open channel

make drive talk

2ndary addr

for drive routines —

3540 setup jsr parse; parse filename

3545 Ida wejdev

3550 sta device; set drive #

3555 clrst Ida #0

3560 sta st; clear status

3565 rts

3570 ;

3575 ; - parse ! routines ~

3580 ;

3585 dobas Ida inbuf+1

3590 beq jbye; just !

3595 cmp #"d"

3600 beq default

3605 cmp #"*"

3610 beq unnew

3615 cmp #"0"

3620 bec jbye

3625 cmp #"<"

3630 bes jbye

3635 sta border

3640 ldy inbuf+2

3645 beq scolor

3650 elc

3655 tya

3660 adc #10

3665 sta border

3670 scolor sta 1

3675 jmp bye

3680 ;

3685 default jsr

3690 jmp bye

3695 ;

3700 ; ~ unnew I

3705 ;

3710 unnew Ida #1

3715 tay

3720 sta (sob),y

3725 jsr link;

3730 Ida misc

3735 sta sov;

3740 Ida misc+1;

3745 sta sov+1;

3750 jsr clear

3755 jmp bye

3760 ;

)ackrnd

color

)asic —

L

set first link

re-link program

link provides the

end of program.

just move it.

3765 ; — set default screen colors —

3770 ; - modify

3775 ;

3780 color Ida #$

3785 sta repeat;

3790 Ida #0;

3795 sta border

3800 nop;

3805 nop;

3810 sta backrnd

3815 Ida #153;

3820 jsr chrout

3825 Ida #14;

3830 jmp chrout

3835 ;

to suit your taste —

80

make all keys repeat

backround

you can insert a

a Ida #xx here.

char color

lowercase

February 1989: Volume 9, Issue 3

BD

LH

B.M

KN

06

CN

EJ

BN

DL

KB

FP

OH

06

OF

OH

DC

6F

OB

MI

MH

NO

EJ

JE

OF

IP

CK

CK

IP

H6

AF

JC

MA

IN

OP

OJ

FC

AH

PC

JH

AI

OD

DA

IE

MJ

FH

PN

ID

BA

LN

DA

II

LO

KH

F6

El

BF

DC

JL

60

NN

JK

IF

OA

HF

6N

F6

PK

A6

HL

OB

3840 ; -- check for autoboot -

3845 ;

3850 autoboot jsr wedgeo

3855 jsr basinit;

3860 jsr color

3865 jsr basinsg;

3870 ;

3875 ldx 1251

3880 txs; clear stack

3885 Ida 11

3890 sta flag;

3895 Ida spckey

3900 cmp §1

3905 beq autol;
OO1ft mm 11A
3910 crop 14

3915 beq auto2;

3920 bne fini;

3925 autol lsr flag;

3930 auto2 jsr dall

3935 ldy #$ff

3940 bootl iny;

3945 Ida star,y;

3950 sta inbuf+l,y

3955 bne bootl

3960 jsr parse;

3965 Ida flag

3970 bne mlload

3975 Ida #"A"

3980 .byte $2c

3985 mlload Ida #"%"

3990 sta inbuf;

3995 jmp wdge;

4000 fini jmp $e386;

4005 star .asc "O:?*"

4010 .byte 0

4015 ;

4020

4025

4030.

4035

4040

4045

4050

i

initialize basic

power up message

init load type flag

if shift key

if Ctrl key

always if no match

flag now zero

tranfer "0:?*"

to input buffer.

parse buffer

use the wedge

to load program.

to basic

— power up default colors —

setclr jsr color

jrop ($a002)

-- stop scroll ii

4055 wait sta $ac

4060 sei

4065 wl Ida #$fd

4070 sta ciapra

4075 Ida ciaprb

4080 crop #%01111111

4085 beq wl;

4090 cli

4095 rts

4100 ;

4105 ; — quote toggle •

4110 ;

4115 chkquote bpl chkq;

4120 jmp $e7d4;

4125 chkq crop #Ctrlins;

4130 beq qtog;

4135 jmp chkcodes;

4140 qtog Ida insert;

4145 beq tryq;

4150 qoff Ida #0

4155 sta insert;

4160 sta quote;

4165 beq qdone;

4170 tryq Ida quote;

4175 bne qoff;

4180 inc quote;

4185 qdone jmp chardone

Transactor

I shift --

loop if shift

—

part of reg kernal

key > 128

"ctrl-ins pressed?

yep

nope

"insert mode?

nope

clear insert

clear quote

always

"quote mode?

yep, clear it

nope, set it

EN

JE

ON

MP

A6

EN

HM

EC

DH

CB

DF

MI

AB

DF

KB

AL

NM

HK

DA

NJ

JK

HH

KL

PI

ME

BA

6F

CC

BN

EH

NN

P6

HD

JH

AN

6E

NN

DO

LN

EP

LK

MJ

JN

NL

MH

6D

KC

PL

JK

JM

PB

PO

BC

KD

BP

CO

BE

E6

JA

LP

LD

FA

IE

MB

GC

HK

AO

FB

TP11

NK

CD

LN

N6

BE

6E

BL

26

4190 ;

4195 ; - parse new Ctrl codes -

4200 ;

4205 newcodes crop #ctrlret

4210 beq dr2eol

4215 crop ictrlhm

4220 beq bothome

4225 crop fctrlvcr

4230 beq dr2bot

4235 crop ictrlhcr

4240 beq clr2top

4245 jmp upordown; check for case change

4250 ;

4255 ; — clear to end of line —

4260 ;

4265 clr2eol Ida #$20; put a space

4270 sta (rpnt),y; in video matrix

4275 Ida backrnd; put backround color

4280 sta (cpnt),y; in color memory

4285 iny

4290 cpy lmax; check for eol

4295 bcc dr2eol

4300 beq clr2eol

4305 bcs jchrdone

4310 ;

4315 ; -- cursor to bottom --

4320 ;

4325 bothome ldy #0

4330 ldx §24

4335 jsr $e50c; jump into clear screen

4340 jchrdone jmp chardone

4345 ;

4350 ; - clear to bottom of screen -

4355 ;

4360 dr2bot ldx #$19

4365 c2bl dex; from the bottom up

4370 cpx row

4375 beq c2b2

4380 Ida llynx,x; clear line links

4385 ora #$80

4390 sta llynx,x

4395 jsr clrline; clear line

4400 broi c2bl; always

4405 c2b2 jsr $e9fO; reset pointers

4410 jsr $ea24

4415 ldy column; clear line the

4420 jmp dr2eol; cursors on.

4425 ;

4430 ; — clear to top of screen —

4435 ;

4440 clr2top ldx #$ff

4445 c2tl inx; from the top down

4450 Ida llynx,x; clear line links

4455 ora #$80

4460 sta llynx,x

4465 jsr clrline; clear line

4470 cpx row

4475 bne c2tl

4480 beq jchrdone; always

4485 ;

4490 ; — various patches —

4495 ;

4500 *= $fcff

4505 jmp autoboot

4510 *= $fe6f

4515 jrop setclr

4520 *= $ff80

4525 .byte $10; version byte (1.0)
/con .

4535 ; — sys65526 to reactivate —

4540 ;

4545 *= $fff6; last jump table entry

4550 jrop wedgeon; is normally unused.

4555 ;

4560 ;

4565 .end

February 1989: Volume 9, Issue 3

Listing 2: Run this to set up the Kernal ROM from BASIC

rem set up rom copy routine

rem copy roms to ram

rem copy a chunk for replacement rom code

rem loop till all rom chunks copied

rem switch out roms

rem activate wedge

EN 100 gosub 190

CO 110 sys 384

BC 120 gosub 190

HI 130 if q=0 goto 120

OC 140 poke 1,53

AE 150 sys

AK 160 end

OB 170 :

JI 180 rem read a,n; poke n bytes starting at a

PI 190 read a

JK 200 if a=-l then q=l: return

KM 210 read n

MK 220 for i=a to a+n-1

HF 230 read b: poke i,b

PM 240 next i

GB 250 return

IH 260 :

JM 1000 data 384,28 : rem poke 28 byte rom copy routine to 384

OJ 1010 data 169, 160, 32, 135, 1, 169, 224, 160, 0, 132, 251, 133

PA 1020 data 252, 162, 32, 177, 251, 145, 251, 200, 208, 249, 230, 252

HE 1030 data 202, 208, 244, 96

El 1040 :

MI 1050 data 57818,1 :rem 1 byte at $elda

CL 1060 data 008

PE 1070 data 57896,3 :rem 3 bytes at $e228

EJ 1080 data 004, 160, 007

NH 1090 data 58443,2 :rem 2 bytes at $e44b

NN 1100 data 052, 247

AM 1110 data 58504,14 :rem 14 bytes at $e488

OE 1120 data 203, 069, 082, 078, 065, 076, 043, 043, 032, 214, 049, 046

00 1130 data 048, 032

DO 1140 data 58551,13 :rem 13 bytes at $e4b7

IH 1150 data 076, 079, 065, 068, 034, 048, 058, 042, 034, 044, 056, 044

HC 1160 data 049

HC 1170 data 58858,6 :rem 6 bytes at $e5ea

JP 1180 data 076, 095, 246, 234, 162, 005

DM 1190 data 59173,5 :rem 5 bytes at $e725

LA 1200 data 076, 025, 250, 234, 234

HP 1210 data 59346,2 :rem 2 bytes at $e7d2

IF 1220 data 058, 250

00 1230 data 59746,3 :rem 3 bytes at $e962

CF 1240 data 076, 008, 250

IP 1250 data 60482,1 :rem 1 byte at $ec42

DI 1260 data 132

AC 1270 data 60536,3 :rem 3 bytes at $ec78

IF 1280 data 023, 021, 026

OF 1290 data 60543,1 :rem 1 byte at $ec7f

HK 1300 data 025

01 1310 data 60587,1 :rem 1 byte at $ecab

LI 1330 data 60599,1 :rem 1 byte at $ecb7

EN 1340 data 133

BK 1350 data 60647,4 :rem 4 bytes at $ece7

AN 1360 data 013, 082, 085, 078

JM 1370 data 62158,3 :rem 3 bytes at $f2ce

ON 1380 data 076, 113, 242

KK 1390 data 62347,2 :rem 2 bytes at $f38b

FA 1400 data 076, 019

JJ 1410 data 62777,2 :rem 2 bytes at $f539

JB 1420 data 076, 019

NM 1430 data 63066,2 :rem 2 bytes at $f65a

KC 1440 data 234, 234

PD 1450 data 63071,39 :rem 39 bytes at $£65£

EE 1460 data 201, 131, 208, 003, 076, 238, 229, 201, 132, 208, 004, 162

ME 1470 data 013, 208, 006, 201, 133, 208, 017, 162, 009, 120, 134, 198

DK 1480 data 189, 182, 228, 157, 118, 002, 202, 208, 247, 076, 205, 229

PF 1490 data 076, 254, 229

JK 1500 data 63276,876 :rem 876 bytes at $f72c

IN 1510 data 032, 083, 228, 169, 008, 133, 190, 096, 166, 122, 208, 036

CJ 1520 data 201, 064, 240, 114, 201, 062, 240, 110, 201, 095, 240, 030

HK 1530 data 201, 037, 240, 038, 201, 094, 240, 037, 201, 047, 240, 033

II 1540 data 201, 061, 240, 029, 201, 033, 240, 007, 201, 035, 240, 026

BD 1550 data 076, 124, 165, 076, 089, 249, 032, 077, 249, 032, 089, 225

JP 1560 data 032, 058, 248,

JB 1570 data 140, 248, 173,

NL 1580 data 200, 169, 044,

PB 1590 data 132, 183, 032,

10 1600 data 208, 014, 032,

ME 1610 data 255, 076, 150,

PP 1620 data 249, 173, 001,

MA 1630 data 240, 035, 201,

EE 1640 data 249, 160, 000,

CH 1650 data 208, 245, 032,

CE 1660 data 094, 169, 124,

GD 1670 data 002, 002, 041,

HH 1680 data 032, 060, 249,

MJ 1690 data 032, 165, 255,

KJ 1700 data 238, 166, 158,

MI 1710 data 255, 032, 165,

DG 1720 data 032, 058, 248,

DL 1730 data 032, 066, 246,

EL 1740 data 050, 249, 160,

OK 1750 data 031, 208, 245,

OL 1760 data 135, 248, 032,

BM 1770 data 255, 076, 017,

HH 1780 data 208, 173, 002,

EM 1790 data 169, 065, 141,

PO 1800 data 045, 069, 000,

BK 1810 data 044, 173, 000,

LN 1820 data 244, 176, 047,

NA 1830 data 201, 037, 240,

BA 1840 data 032, 089, 166,

ON 1850 data 201, 094, 208,

FC 1860 data 174, 167, 170,

HA 1870 data 128, 169, 255,

KA 1880 data 136, 132, 187,

HM 1890 data 003, 200, 016,

00 1900 data 240, 010, 201,

KK 1910 data 138, 168, 132,

BG 1920 data 255, 169, 111,

EF 1930 data 201, 013, 240,

KL 1940 data 242, 247, 165,

BM 1950 data 169, 096, 133,

KN 1960 data 165, 185, 076,

IG 1970 data 169, 000, 133,

CH 1980 data 240, 033, 201,

KH 1990 data 176, 193, 141,

AH 2000 data 105, 010, 141,

EN 2010 data 159, 249, 076,

KN 2020 data 165, 165, 034,

NL 2030 data 076, 242, 247,

KM 2040 data 208, 234, 234,

LN 2050 data 014, 076, 210,

LN 2060 data 249, 032, 034,

BG 2070 data 141, 002, 201,

KA 2080 data 070, 002, 032,

PL 2090 data 001, 002, 208,

PB 2100 data 094, 044, 169,

HP 2110 data 227, 048, 058,

PO 2120 data 133, 172, 120,

EB 2130 data 127, 240, 244,

OA 2140 data 240, 003, 076,

CB 2150 data 216, 133, 212,

OO 2160 data 168, 230, 201,

GF 2170 data 240, 035, 201,

GF 2180 data 209, 173, 033,

CF 2190 data 240, 176, 007,

KD 2200 data 230, 162, 025,

GG 2210 data 149, 217, 032,

HK 2220 data 234, 164, 211,

CH 2230 data 128, 149, 217,

LG 2240 data 64767,3 :rem 3

IG 2250 data 076, 184, 249

FE 2260 data 65135,3 :rem 3

CF 2270 data 076, 002, 250

NB 2280 data 65408,1 :rem 1

CI 2290 data 016

EG 2300 data 65526,3 :rem 3

PI 2310 data 076, 044, 247

BG 2320 data -1

076,

001,

153,

060,

225,

247,

002,

036,

185,

174,

141,

015,

169,

133,

164,

255,

032,

076,

000,

032,

168,

249,

007,

001,

006,

002,

165,

043,

032,

019,

208,

133,

136,

244,

034,

183,

032,

004,

186,

185,

150,

144,

042,

032,

032,

242,

133,

169,

141,
255,

228,

001,

231,

247,

037,

063,

169,

088,

042,

240,

021,

026,

208,

160,

202,

255,

076,

032,

bytes

bytes

byte

bytes

017,

002,

000,

249,

255,

032,

240,

240,

001,

255,

004,

133,

003,

159,

159,

240,

225,

242,

185,

174,

255,

077,

073,

001,

133,

201,

144,

165,

051,

169,

012,

058,

185,

162,

240,

096,

150,

165,

032,

032,

255,

096,

240,

208,

208,

247,

045,

128,

033,

032,

162,

240,

255,

032,

141,
042,

253,

096,

231,

006,

240,

240,

145,

000,

228,

233,

077,

255,

249,

240,

002,

169,

240,

066,

038,

054,

002,

076,

003,

190,

133,

166,

032,

006,

255,

247,

104,

255,

200,

045,

004,

032,

185,

061,

041,

174,

165,

000,

162,

108,

001,

000,

006,

032,

255,

144,

177,

213,

032,

173,

035,

172,

141,
169,

165,

141,
208,

044,

251,

006,

160,

228,

000,

000,

141,

016,

165,

165,

015,

060,

243,

162,

214,

048,

250,

233,

at $fcff

at $fe6f

at $ff80

at $fff6

169,

094,

200,

025,

009,

246,

201,

201,

032,

242,

169,

032,

156,

144,

205,

032,

240,

169,

248,

032,

192,

087,

141,

007,

032,

240,

016,

133,

032,

133,

030,

000,

002,

185,

200,

084,

032,

240,

255,

243,

228,

001,

201,

002,

033,

001,

035,

138,

169,

247,

154,

201,

255,

248,

002,

032,

000,

003,

216,

212,

201,

076,

200,

024,

240,

240,

162,

228,

001,

032,

169,

032,

032,

076,

035,

092,

168,

247,

165,

122,

032,

208,

189,

210,

004,

013,

032,

050,

005,

000,

002,

239,

077,

002,

208,

045,

142,

157,

044,

003,

240,

002,

232,

249,

165,

242,

169,

165,

248,

002,

048,

002,

208,

168,

133,

002,

153,

032,

169,

004,

200,

165,

076,

159,

220,

076,

240,

208,

022,

068,

196,

032,

011,

032,

255,

214,

044,

077,

083,

210,

165,

104,

240,

240,

255,

076,

141,
166,

165,

039,

169,

255,

169,

076,

168,

249,

208,

006,

007,

076,

249,

169,

047,

165,

166,

141,
162,

160,

029,

002,

224,

165,

255,

032,

HI,
186,

165,

240,

144,

240,

076,

145,

046,

169,

032,

191,
001,

240,

185,

002,

068,

249,

173,

212,

008,

244,

240,

236,

213,

012,

181,

240,

232,

208,

169,

249,

153,

255,

255,

247,

049,

025,

200,

017,

005,

076,

255,

198,

032,

076,

002,

210,

255,

160,

245,

025,

141,

066,

166,

000,

173,

175,

173,

000,

028,

002,

201,

157,

037,

186,

032,

171,
076,

032,

190,

209,

197,

007,

242,

043,

032,

000,

210,

227,

133,

004,

253,

208,

247,

108,

001,

231,

169,

230,

029,

169,

144,

229,

217,

233,

181,

242,

000,

164,

000,

165,

032,

032,

201,

032,

196,

249,

003,

123,

133,

156,

032,

029,

208,

255,

200,

000,

032,

032,

166,

208,

043,

032,

000,

133,

000,

002,

044,

132,

034,

001,

208,

032,

210,

255,

147,

180,

133,

201,

201,

024,

247,

032,

089,

141,

255,

032,

002,

208,

249,

003,

076,

002,

220,

201,

000,

212,

201,

032,

242,

076,

009,

032,

217,

240,

076

183

002

144

210

077

081

050

183

240

173

164

158

208

210

248

201

032

192

185

174

066

007

077

164

158

002

046

002

076

162

188

240

002

238

180

255

076

255

255

186

068

060

152

032

051

166

032

169

159

173

034

153

169

134

160

201

023

133

076

025

145

240

168

128

036

009

206

□

Transactor 27 February 1989: Volume 9, Issue 3

Far-Sys for the C64

Reach out and touch some ROM

by Richard Curcio

The Commodore 64 contains 20K of RAM normally unusable

from BASIC. Using machine language, however, the BASIC In

terpreter and Operating System (Kernal) ROMs can be

switched out to allow access to 16K of RAM 'under' them. An

other 4K lies under the I/O and character ROM block. Many

programs have appeared that use this extra RAM as a storage

area or bit-map screen. The utility presented here, Far-Sys,

provides BASIC with a mechanism for calling machine lan

guage located in these 'hidden' areas. Additionally, the utility

provides a means for hidden ML to access ROM routines.

Using Far-Sys

The syntax for using Far-Sys is

SYS FAR, TARGET {,a}{,x}{,y}{,s}

Far is the address where Far-Sys is located and TARGET is the

address of the ml under ROM. The arguments a, x, y, and s are

optional and, if present, will be loaded into the accumulator, x,

y, and status registers respectively. Any argument may be

omitted by placing a comma in the corresponding position.

Omitted arguments retain the values SYS picks up from loca

tions 780 to 783 ($030C - $030F). For example:

SYS FAR, 45056,,8

executes a routine at $B000 passing 8 to the x register. Regard

less of the value assigned to sr, Far-Sys disables IRQs before

ROMs are switched out. Upon return to BASIC, addresses 780 to

783 may be PEEKed for results, just like a normal SYS

statement.

One POKE is necessary before using Far-Sys: POKE FAR +6,

bank. The effect of this poke is similar to, though much sim

pler than, the BANK command in BASIC 7.0 on the C128. Far-

Sys provides six 'banks' numbered 0 to 5. These banks should

be thought of as temporary configurations in effect only during

execution of Far-Sys code. If too large a value is POKEd into

FAR +6, Far-Sys will Stop with UNDEF'ND STATEMENT ERROR.

Bank 0: This is equivalent to the configuration in effect before

executing SYS FAR. This may not be the same as the 64's de

fault configuration since a modified BASIC in RAM could be in

effect. The only reason to use this bank would be to more con

veniently disable IRQs and pass register values than the normal

SYS statement provides.

Bank 1: $A000 - $BFFF RAM (BASIC switched out.)

$D000-$DRFF I/O

$E000-$FFFF Kernal ROM

Bank 2: Same as Bank 1 except;

$D000-$DFFF Character ROM

Bank 3: $A000 - $BFFF RAM

$D000-$DFFF I/O

$E000-$FFFF RAM

(BASIC and Kernal switched out.)

Bank 4: Same as Bank 3 except;

$D000-$DFFF Character ROM

Bank 5: Same as Bank 4 except;

$D000-$DFFF RAM

(all ROM and I/O switched out.)

Note that if the machine is already configured with BASIC or

BASIC and Kernal in ram, Banks 1 or 3 also cause no change

in configuration.

Why so many?

The different configurations provide a great deal of flexibility.

Using Bank 1, a routine under the BASIC ROM could change

colour memory or control the SID chip since I/O is visible to

the CPU. Using Bank 4, a routine under the Kernal could copy

the character ROM into RAM. However, with increased versatil

ity comes increased chance of error. Storing data to the RAM at

the $Dxxx block while I/O is present could crash the system.

Attempting to call a routine under the Kernal when in Bank 1

or 2 could have the same effect. Far-Sys does not compare

banks and target addresses. Use caution.

Using FARJSR

Within Far-Sys is some code to allow ML in the hidden areas

to call ROM routines when the ROMs are switched out. Your

hidden routine should follow these steps:

1. Store the address you wish to call in low/high-byte format

in zero-page locations $14/$15.

Transactor 28 February 1989: Volume 9, Issue 3

2. Pre-condition any necessary flags by storing the proper val

ue in $030F. One way to do this is PHP, PLA then ORA or AND

to set/clear the selected bit(s). Do not CLI while the Kernal

or no is not present!

3. Store any required a, x, and y values in $030C - $030E.

4. JSR FAR +3, where FAR is the beginning of Far-Sys.

The C64 will be restored to the configuration in effect before

BASIC executed SYS FAR (Bank 0).

As with jsrfar and JMPFAR in the C128 Kernal, the user

should ensure that IRQs and NMls are handled properly. Step 2,

above, is critical in this respect. Far-Sys always performs SEI

before switching out ROMs and CLI after switching them back,

but FARJSR doesn't CLI after switching ROMs in. (NMls are not

affected by SEI and CLI instructions. More about NMls at the

end of this article.) If interrupts are necessary, this must be

handled by the value in $030F. When the called routine returns

to FARJSR, SEI occurs before ROMs are again switched out. The

calling routine can then examine $O3OC-$O3OF for results,

though x and y can be examined directly. These locations will

usually be over-written when Far-Sys returns to BASIC.

Unlike the C128's JSRFAR, Far-Sys and FARJSR always restore

the calling configuration - in either direction.

The programs

Program 1 is the BASIC loader for Far-Sys. It is designed to re

locate the ML if the start address (far in line 110) is changed

to a location other than 51200. Far-Sys can be placed any

where in normal or 'open' memory. If placing Far-Sys at the

top of BASIC program space, the top of memory pointer in lo

cations 55-56 should be lowered by at least 157 bytes.

Program 2 is a Demo-Test program to confirm that Far-Sys is

functioning properly. Far-Sys must be located at 51200 for this

demo. A short program is POKEd into RAM beginning at 61440

under the Kernal. No bank switching is necessary to POKE to

this area, or to locations under the BASIC ROM. Another short

program is POKEd to D-block RAM beginning at 53248. Sur

prisingly, this area can be POKEd from basic! The steps to do

so, as shown in lines 200-230 of the demo, are similar to those

when BASIC is used to copy the character ROM to RAM. First,

IRQs are disabled by masking the timer interrupt bit in CIA 1.

(Any other sources of interrupts should also be disabled.)

Then, I/O is switched out by POKEing the 6510 port at location

1. When character ROM is switched in, D-block behaves like

the other ROM regions: POKES 'fall through' to the underlying

RAM. Like the other ROM locations, ML is still necessary to

read this RAM. D-block can be read only when all ROM is

switched out.

The BASIC demo then clears the screen, sets up Far-Sys for

Bank 3 and executes the ML at 61440 ($F000). This code incre

ments the border color, and uses FARJSR to call the Kernal

PLOT routine to position the cursor mid-screen and the BASIC

ROM routine, LINPRT which prints a two-byte integer con

tained in x/a. (See the source listing for Underkern.) Control

then returns to basic via Far-Sys and pauses a while to allow

the effects to be observed. After the delay, 256 'A's are print-

ed and, after another delay, Bank 5 is set up and the code at

53248 ($D000) is called. This increments the first 256 screen

locations, changing the 'A's to 'B's.

Writing hidden ML

There are several ways to write programs under ROM. The

code should first be assembled and tested in normal RAM, if

possible. If the ML is relocatable, with no absolute JSRs, JMPs,

LoaDs or STores within itself, after DATAfication a BASIC

Loader can change the start address and POKE the code to RAM

under ROM. If not relocatable, a machine language monitor can

be used to manually change the absolute addresses of ml as

sembled in normal RAM. This is tedious at best. The most con

venient method is to use an assembler that writes object code

to disk. Load "prog11, 8,1 will bring the ML into hidden RAM,

excluding D-block, which can be POKEd as described above.

For debugging purposes, there are a few machine language

monitors available that can perform their operations on hidden

RAM.

Details and possibilities

Far-Sys is arranged so that parts of it may be accessed by oth

er programs. See the subroutines labeled "twobyt", "combyt"

and "getargs" in the source listing.

It is not neccessary to use FARJSR if a routine under BASIC

needs to call a Kernal routine and the machine is in bank 1 or

(possibly) 2. However, a routine under the Kernal or D-block

must use FARJSR to call any ROM routines.

By changing the contents of the locations labeled "cnfg" and

"mask", it is possible to return to a different configuration -

though it's hard to see a reason to do so.

When a hidden routine is called, four stack positions are used:

two to return to Far-Sys and two to return to BASIC. Similarly,

using FARJSR uses four more stack positions.

It should be possible to re-write Far-Sys as a wedge or Trans-

BASIC module, with an accompanying BANK command. I'm

sure that Transactor readers can devise many uses and varia

tions of this small but useful program.

IRQs, NMls and CIAs

As stated earlier, Far-Sys always performs SEI before ROMs are

switched out. Since I/O and the Kernal are present in bank 1, if

a routine under BASIC requires IRQs, CLI will of course take

care of them. Also, the 6526 CIA (Complex Interface Adapter)

and the vic-li each contain an ICR, Interrupt Control Register,

which can be written to enable or disable IRQ sources.

Transactor 29 February 1989: Volume 9, Issue 3

Nmis are more difficult to deal with. As the name suggests,

Non-Maskable Interrupts cannot be disabled by instructions,

though sometimes the hardware responsible can be. ClA-2 at

$DDxx generates NMls relating to serial I/O and RS-232 activity.

But the ICR is not like a normal memory location. Writing to it

enables-disables interrupt sources, but reading it reveals which

source generated the interrupt, not the enable-disable status.

It's like a read-only register and a write-only register contain

ing different information at the same location. There is no way

to determine which nmi sources had been enabled so that they

may be re-enabled after disabling them. Far-Sys makes no at

tempt to deal with NMls on a 'universal' basis. It is left to the

user to handle NMls properly in a given situation. Not easy.

The real fly in the ointment is the RESTORE key. Unlike the

vic-20, where the RESTORE key connects to a via chip, where

the resulting NMI can be masked out, the C64's RESTORE key

connects to a one-shot which in turn connects directly to the

NMI line (through an inverter). If this or any other nmi (or for

that matter, IRQ) should occur while Far-Sys or any other rou

tine has switched out the Kernal, the computer will crash.

Changing the Kernal RAM vectors at $O314-$O319 won't help,

because the microprocessor first looks to the 'hardware vec

tors' in locations $FFFA-$FFFF to find out where it should go

when an interrupt or reset occurs. If the Kernal ROM isn't

there, the 6510 will use whatever is in the corresponding RAM

locations to find its way and will more than likely become

hopelessly lost.

There is a partial solution, though. New vectors could be writ

ten to the RAM under ROM at $FFFA-$FFFF directing the 6510 to

a routine to save the registers and switch the Kernal back in

and handle the interrupt, or ignore it. (If the RAM under the

Kernal is used for a bit map, 8000 bytes are required, so 192

are still available for 'hidden vectors' and interrupt handling.

Make certain any hi-res clear command clears only the first

8000 bytes, not the full 8192.)

Program 1: BASIC loaderfor Far-Sys

PI 100 rem *** far-sys ***

DA 110 far=51200:rem relocating ***

HN 120 ck=0

IJ 130 readd:ck=ck+d:ifd=999thenl50

NC 140 gotol30

JF 150 ifck<>11342thenprint"*** error in data ***":end

PH 160 restore:sa=far

DH 170 readd:ifd=999then220

PP 180 ifd=>0thenpokesa,d:goto210

DC 190 ad=far+abs(d):h=ad/256:l=ad-int(ad/256)*256

CO 200 pokesa,l:sa=sa+l:pokesa,h

FI 210 sa=sa+l:gotol70

JJ 220 print"far-sys installed"far"to"sa

MB 230 data 76,-18, 76,-78, 0, 0, 0,108

HE 240 data 20, 0,255,246,242,245,241,244

ND 250 data 32,-96,174, -6,224, 6,144, 3

6D 260 data 76,227,168,165, 1,141, -7, 61

BB 270 data -12,141, -8, 32,-124,32,-89,173

EO 280 data 15, 3, 9, 4, 72,173, 12, 3

KC 290 data 174, 13, 3,172, 14, 3, 40, 32

BO 300 data -9, 8, 72,173, -7,133, 1,104

BK 310 data 40, 88, 96,173, -7,133, 1, 32

HD 320 data 54,225, 32, 71,225,120,173, -8

EF 330 data 133, 1, 96, 32,253,174, 32,138

JK 340 data 173, 76,247,183, 32,121, 0,240

AB 350 data 12, 32,253,174,201, 44,240, 5

00 360 data 32,158,183, 56, 96, 24, 96, 32

BF 370 data-105,144, 3,142, 12, 3, 32,-105

FE 380 data 144, 3,142,13, 3,32,-105,144

EP 390 data 3,142, 14, 3, 32,-105,144, 3

KD 400 data 142, 15, 3, 96,999

Program 2: Far-Sys demo/test (Far-Sys must be at 51200)

EE 100 rem *** far-sys demo/test ***

MA 110 far=51200

HN 120 ck=0

PC 130 readd:ifd=-lthenl50

NH 140 ck=ck+d:gotol30

OC 150 ifck<>6830thenprint"data statement error!11:end

IL 160 restore

LJ 170 rem *** poke routine to $f000 ***

GM 180 fori=0to55:readd:poke61440+i,d:next

DG 190 rem *** poke routine d-block ***

BN 200 poke56334,peek(56334)and254:rem turn off timer irqs

OG 210 pokel,peek(l)and251:rem switch in chr rom

IP 220 fori=0to8:readd:poke53248+i,d:next

JD 230 pokel,peek(l)or4:rem put back i/o

OM 240 poke56334,peek(56334)orl:rem enable irq

OD 250printchr$(147);

CA 260 poke far+6,3:sys far,61440:rem execute routine under kernal

JL 270 gosub320

GK 280 printchr$(19);:fori=0to255:print"a";:next

NM 290 gosub320

FE 300 poke far+6,5:sys far,53248:rem execute routine in d-block

GD 310 end

LC 320 for t=0tol500:next

PL 330 return:rem waste some time

CI 340 rem *** underkern ***

JJ 350 data 238, 32,208,169,255,160,240,132

BJ 360 data 20,133, 21, 24, 8,104,141, 15

FF 370 data 3,162, 10,160, 17, 32, 44,240

NK 380 data 169,189,160,205,132, 20,133, 21

CJ 390 data 8,104,141, 15, 3,169,255,170

OH 400 data 32, 44,240, 96,141, 12, 3,142

NF 410 data 13, 3,140, 14, 3, 76, 3,200

LN 420 rem *** move under d-block ***

NL 430 data 162, 0,254, 0, 4,232,208

ME 440 data 250, 96, -1

Program 3: Source codefor Far-Sys

MO 1000

IG 1010

CJ 1020

MH 1030

BB 1040

AJ 1050

IM 1060

EK 1070

KB 1080

IL 1090

IP 1100

MM 1110

OG 1120

CE 1130

PF 1140

OG 1150

PC 1160

BK 1170

CB 1180

NI 1190

GC 1200

HC 1210

JD 1220

EE 1230

sys999

power assembler

*=

far-sys

system routines

chrget = $0073

chrgot = $0079

chkcom = $aefd

frmnum = $ad8a

getadr = $b7f7

onebyt = $b79e

farsys

farjsr

jmp setup

jmp relay

Transactor 30 February 1989: Volume 9, Issue 3

KC

JL

KI

MG

AN

AI

CM

EJ

HB

AD

MJ

LD

BC

AM

BL

EO

00

m

GB

DB

IK

DL

GI

LI

PL

EM

CF

AB

GG

KK

KI

ND

m

FC

IE

FF

DH

KJ

KM

PF

BB

KO

FO

LF

EH

AF

BL

EC

DG

JA

EM

ME

KH

DE

NP

GP

OH

PM

JL

AM

ND

AL

HE

EM

LC

KL

EB

MO

KI

GL

KA

EB

1240 bank

1250 cnfg

1260 mask

1270 ;

1280 jumper

1290 ;

1300 ;tabl(

1310 ;

1320 msktb.

1330 .byte

1340 .byte

1350 .byte

1360 .byte

1370 .byte

1380 .byte

1390 ;

1400 ;

1410 setup

1420 :

1430 :

1440 :

1450 bad

1460 ok

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630]

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760]

1770

1780

1790

1800

1810i

1820

1830

1840

1850

1860

1870

1880 1

1890

1900

1910

1920

1930

1940

1950

Long

romsir

.byte 0

.byte 0

.byte 0

c jmp ($0014)

i of values to

L=*

255

246

242

245

241

244

jsr twobyt

ldxbank

cpx #$06

bccok

jmp $a8e3

Ida $01

sta cnfg

and msktbl,x

sta mask

jsr getargs

jsr romsout

Ida $030f

ora #$04

pha

Ida $030c

ldx $030d

ldy $030e

pip

jsr jumper

l php

pha

Ida cnfg

sta $01

pla

pip

di

rts

;poke 0-5 here

/current config

;new config

'and with 6510 port

/bank 0 - no change

;bank 1 - bas. out, kern & i/o in

/bank 2 - bas. out, kern & chr. in

;bank 3 - bas. & kern out, i/o in

;bank 4 - bas. & kern out, chr. in

;bank 5 - all ram

;read address from basic text

/display 'undef statement' if bank>5

/mask bits appropo.

/get srreg

/ensure no irq when pip

/as per above

/goto target

/back here

/save flags & ace.

/roms in

routine to allow 'hidden' code to call rom routines.

assumes address in

also

relay

assumes 'cnfg'

Ida cnfg

sta $01

jsr $el36

jsr $el47

romsout sei

look

:wobyt

this

Ida mask

sta $01

rts

for comma, get

jsr chkcom

jsr frmnum

jmp getadr

routine return

followed by comma,

Transactor

$14/15, a, x, y and sr in $030c - $030f.

restores roms and 'mask' is valid

/restore rom(s)

/part of "sys". loads regs, jmp ($0014)

/stores regs.

expression 0 - 65535 from basic text

/eval expression

/two bytes in $14/15

s with carry clear if end of statement or comma

sarry set and one byte in x if num. expression.

BK

AK

KH

FG

OD

OC

IK

LP

DG

PA

CI

DI

IJ

AK

EC

KM

El

MB

KH

LL

AM

PB

MN

MA

OM

FP

CP

MC

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

combyt jsr chrgot

: beq comexit

: jsr chkcom

: emp #$2c

: beq comexit

: jsr onebyt

: sec

: rts

comexit clc

: rts

/routine to read a,

/current chr.

/end of statement

/look for comma and next chr.

/another comma"?

/yeah

;no. get value

x, V; and sr

/values from basic text.

getargs jsr combyt

: bec xget

: stx $030c

xget jsr combyt

: bec yget

: stx $030d

yget jsr combyt

: bec sget

: stx $030e

sget jsr combyt

: bec exreg

: stx $030f

exreg rts

/first param (.a)

/just a comma, get next

/sareg

/next param (.x)

/sxreg

/get .y

/another comma"?

/syreg

/get .sr

/srreg

Program 4: Source codefor "underkern" in demoltest

IG

EO

MG

DO

CA

MA

NM

ED

KC

FP

BI

NN

NJ

DJ

EA

BI

JN

PJ

MH

IF

CK

IG

GL

BP

AD

PB

FB

KE

BF

EO

AN

IJ

KB

KN

OC

KE

CE

CN

GJ

KF

HE

KN

31

100 sys999

110 ;

120 *= $£000

130 .

140 ;

150 ;

160 b

170 f

180 /

190 b

200 :

210 :

220 :

230 :

240 :

250 :

260 :

270 :

280 :

290 :

300 ;

310 :

320 ;

330 :

340 :

350 :

360 :

370 :

380 :

390 :

400 :

410 :

420 ;

430 :

440 ;

450 :

460 /

470 r

480 :

490 :

500 :

510 .

obj "underkern"

order = $d020

arjsr = $c803

egin inc border

Ida #$ff

ldy #$f0

sty $14

sta $15

clc

php

pla

sta $030f

ldx #$0a

ldy #$11

jsr regfar

Ida #$bd

ldy f$cd

sty $14

sta $15

php

pla

sta $030f

Ida #$ff

tax

jsr regfar

rts

egfar sta $030c

stx $030d

sty $030e

jmp farjsr

end

/want to call plot

/will set cursor

;irqs not needed

/status reg.

/row 10

;col 17

;acc. not needed

/basic linprt @ $bdcd

/no change in status reg.

;two-byte interger in x/a

/will print 65535

;.y not needed

/back to far-sys

/prepare registers

/since we jsr'd here

/we can safely...

□

February 1989: Volume 9, Issue 3

C128 Parallel Printer Interface

Emulating a parallel interface via the user port

by Bill Brier

Copyright © 1988 Bill Brier

The Commodore C128 has proven to be a popular machine for

small business use, primarily because of its low cost, powerful

Basic 7.0 programming language and its business-oriented

hardware features.

Unfortunately, a hardware feature that the C128 doesn't have

is a parallel printer output (a Centronics interface). Since the

Centronics-style printer interface is pretty much the standard

in the business world, lack of such an output would seem to

limit the usefulness of the C128 as a business system.

One solution to this limitation is to buy a commercial printer

interface, for which one can expect to spend anywhere from

50 dollars to over 120 dollars. However, many of the available

interfaces offer frill features that aren't necessary for most

business printing applications.

A less expensive solution is to make the C128 user (RS-232)

port act as a parallel printer output. This solution is practical if

the computer's RS-232 functions are not needed.

Employing the user port as a parallel printer output requires

that one buy or fabricate a simple cable to connect the port to

the printer and wedge a driver program into the computer's

operating system.

That is what this article is all about.

For the benefit of those who may not be familiar with the Cen

tronics printer interface system, I'll describe how it operates.

Then, I'll cover the hardware interface and the implementation

of the driver software, the assembler source for which is given

at the end of the article..

(For ease in typesetting, this article uses the * convention to

indication low true signals; for example, *reset means that

RESET is a low true signal.)

The Centronics Parallel Interface

The connection scheme of the Centronics parallel interface is:

C128 User Port Printer

Pin Designation Data Dir. Pin Designation

M *PA2

C PBO

D PB1

E PB2

F PB3

H PB4

J PB5

K PB6

L PB7

B *FLAG2

A GND (signal)

The above connection chart was worked out for the popular

Star Micronics printers. You might want to check your printer

manual for possible differences in the shield GND and RESET

connections. On some printers pin 33 is the shield GND instead

of pin 17. The balance of the connections are standard for all

parallel printers.

The Centronics interface can be described as an eight-bit,

asynchronous parallel bus system with hardware handshaking.

The term asynchronous means that data bytes are transmitted

at random intervals (no clock is used to synchronize transmis

sion). The term hardware handshaking describes the technique

used to coordinate the computer and printer so that data is

passed in an orderly manner.

-> 1

-> 2

-» 3

-> 4

-> 5

-> 6

-> 7

-» 8

-> 9

<- 10

16

17

31

•STROBE

Dl

D2

D3

D4

D5

D6

D7

D8

•ACKnowledge

GND (signal)

GND (shield)

•RESET

Transactor 32 February 1989: Volume 9, Issue 3

Referring to the connection chart, the connections Dl through

D8 on the printer (PBO through PB7 on the computer) pass the

data byte (character) to be printed (Dl is equivalent to bit 0).

When the printer is not being used the logic levels on these

lines will be of no concern.

The *STROBE line, which is controlled by the computer, is one

of the two handshaking lines that synchronize the computer

and printer. Normally, *STROBE will be held at logic one (high

or 5 volts). This is why strobe and PA2 are shown as 'low

true' (and hence are asterisked). The *ACKnowledge line,

which is controlled by the printer, is the other handshaking

line, and it too will normally be held at logic one.

When the computer has a character to print, it will place the

corresponding ASCII data byte on the data lines Dl through

D8. A clear bit will be represented by logic zero (low or 0

volts) and a set bit will be represented by logic one.

The computer will then inform the printer that a character is

waiting by momentarily bringing the *STROBE line low and

then high again (the *STROBE line is said to have been tog

gled). The printer will respond to the toggling of *STROBE by

reading the data byte from the data lines.

When the printer has successfully read the data byte it will sig

nal the computer by toggling the *ACKnowledge line in a man

ner similar to the way the computer toggled *STROBE. Typical

ly, the computer will wait indefinitely for this to happen. Once

the *ACKnowledge has been received, the next character can

be transmitted.

No error checking is implemented in this system. If a byte is

corrupted for any reason, the printer will not know the differ

ence. Corruption can be avoided by limiting the speed at

which data bytes are sent, minimizing the distance between the

printer and the computer, and by using shielded cable to con

nect the computer to the printer.

The *RESET line is not actually part of the data transmission

system, as its only function is to cause a hardware reset in the

printer when it is pulled low (it is normally high). The actual

effect of such a reset will vary from one brand of printer to

another. In most cases, a reset will clear the printer's buffer,

return the head to the left margin and establish a new top-of-

form setting.

Now that I've acquainted you with the Centronics interface,

I'll describe the hardware connection of the printer and

computer.

The hardware interface

You may purchase or fabricate a cable to connect the C128 user

port to the input connector on the printer. If you elect to pur

chase a cable, verify that it conforms to the connection chart in

above (Berkeley Softworks makes a nice but somewhat expen

sive cable called the geoPrint cable). This connection scheme

will work with many word processors that offer a user port

printer output (it has been tested with Superscript 128).

If you decide to build your own interface cable, consult this

parts list for the necessary items:

Quantity Item

1 24-pin male PC board edge user port connector

2 36-pin male plug to fit printer receptacle

1 36-pin female receptacle to fit 36 pin plug

A/R 12 conductor shielded or 36 conductor ribbon

cable

1 Plastic box, approx. 3-1/4" long x 2-1/4"

wide x 1-1/4" high

4 4-40 or 6-32 x 1/2" SEMS head machine screws

1 SPST momentary contact printer reset

pushbutton

A source for the 24-pin PC board connector is Jameco Elec

tronics. The other items can be readily procured from local

sources such as Radio Shack. The 36-pin plugs must match the

type of cable that you intend to use.

I suggest that you mount the 24-pin edge connector and the

36-pin female receptacle to opposite sides of a small plastic

box (see photographs). This will make for a more durable and

professional-appearing assembly, as well as giving you a place

to mount the printer reset button.

Position the 24-pin edge connector so that its centreline will be

7/16" above the bottom surface of the plastic box. This will

cause the box to rest on the surface that supports the computer,

thus avoiding the application of stress to the connector and the

computer's PC board. When connected to the C128, the box will

be adjacent to the RGB receptacle. Sufficient room must there

fore be provided for the RGB connector from the video monitor.

You may mount the 36-pin female receptacle in any conve

nient position on the opposite side of the box. Position the

reset button so that it is pointed towards the left when the

interface is plugged into the computer.

To secure the connector and receptacle to the box, first lay out

rectangular slots on the long sides of the box, and cut the slots

with a sharp modelling knife. Next, drill either #43 (4-40) or

#36 (6-32) pilot holes for the mounting screws, using the con

nectors to lay out the holes.

Then simply screw the machine screws into the pilot holes to

attach the connector and the receptacle. The screws will cold-

flow the plastic and make their own threads. Once you have

tested your new interface and have verified that it works, you

should use a small amount of quick-setting epoxy to perma

nently bond the connectors to the box for greater durability.

The use of the 36-pin receptacle makes it possible to detach

the cable should repairs to the assembly become necessary. If

Transactor 33 February 1989: Volume 9, Issue 3

you elect to hard-wire the cable into the box you may omit the

receptacle and one of the two 36-pin plugs. Be sure to provide

adequate strain relief for the cable.

You will need to fabricate a cable to connect the receptacle on

your new interface box to the printer itself. For residential use,

I highly recommend the use of shielded cable. Flat ribbon

cable, while more economical to purchase and easier to work

with, emits too much radiation and may cause radio and televi

sion interference problems. The length of a ribbon cable

should be limited to six feet.

When using shielded cable, connect the shield to the shield

GND pin at the printer end only. Do not terminate the shield at

the computer end. Simply insulate it and let it float. There

should be no connection between the shield and the signal

GND at any point. This is to prevent the shield from acting as

an antenna for high-frequency noise. The length of a shielded

cable should be limited to ten feet.

When wiring up your cable follow the connection chart above

and, if you are using shielded cable and soldered plugs, wire

pin number for pin number. If you are using ribbon cable, note

that the two plugs must both face the same direction when the

cable is folded up (see the photograph of the cable assembly).

If in doubt, check your work with some type of continuity

checker to avoid an error.

The reset button, while not a required part of the interface, is a

useful feature to have in case you wish to reset the printer

without shutting it off. It should be wired so as to pull the

*RESET line to signal GND when the button is pressed.

In fabricating your interface, you may be as crude or as refined

as your time and talents permit. Just be careful to avoid acci

dentally making incorrect connections or short circuits. The

user port is directly connected to the Mos 6526 ClA #2 chip

inside the computer. A wiring error may damage the chip and

render the computer inoperative. Also, never connect or dis

connect the interface while the computer and printer are turned

on. An accidental slip of the wrist may bridge connections

together, with catastrophic results.

Once the hardware has been connected, always power the

printer first. After it has gone through its power-up sequence

you may turn on the computer. When enabled, the driver soft

ware will configure the user port for output and will set up the

STROBE and ACKnowledge lines to the proper logic levels.

The driver software

The C128 user port is an eight bit I/O port with hardware hand

shaking provisions. It is connected to the ClA #2 chip and is

seen in the $DD00 range of the system map. Normally, this

port is addressed via the Kernal RS-232 routines, and is typi

cally used to communicate with a modem. If the port is to be

used for some other purpose, suitable driver software must be

written to implement the desired functions.

The driver software presented here configures the user port so

that it emulates a Centronics printer output. This is accom

plished by two machine language modules designated

PPD6656 and PPD5632. PPD6656 contains the port driver

code and operating system wedges, while PPD5632 contains

the code used to set up or deactivate the driver module. Upon

activation of the driver, the PPD5632 module is no longer

required in memory, and may be overwritten without any

effect on the system.

The driver is completely transparent to BASIC and to any

machine language program that calls the OPEN, CLOSE, CHK-

OUT, CLRCHN and CHROUT (BSOUT) subroutines in the Kernal

via the jump table. Once it has been wedged into the C128

operating system, the driver will intercept calls to the above

subroutines and direct output to the port printer when required.

Programming considerations will be discussed below.

The driver software's transparency makes it possible to

address the user port as a printer using the standard Com

modore file handling syntax. You may activate the driver as

follows:

• Load the PPD6656 and PPD5632 modules into Ram 0 with

BLOAD.

• Type SYS 5632,DN,LF where DN is the desired device number

(4 through 7) of the port printer and LF is the linefeed enable

flag. Set LF to 1 if you want a linefeed (ASCII 10) sent to the

printer after each carriage return (ASCII 13) is sent. Otherwise,

set LF to 0 to suppress linefeeds.

If a device number of 0 is selected, the driver will be disen

gaged from the operating system and will no longer function.

Selecting a device number outside of the allowable range will

result in an illegal device number error. Never attempt to

activate or deactivate the driver unless the PPD6656 module is

in memory. Such an error may result in system fatality.

Once a device number has been assigned to the user port printer,

any output to that device number will be intercepted and directed

to the port. If you assign device 4 to the port and you also have a

printer on the serial bus that is device 4, the serial unit will not

respond. You may still output to that printer via the low-level Ker

nal serial bus routines (which are not intercepted).

When opening a file to the user port printer, you may use one

of three secondary address (SA) values as part of the OPEN file

syntax. The effects of the secondary address are as follows:

SA EFFECT

0 Only upper case characters are printed with

PETSCII/ASCII translation.

5 Transparent mode with no translation... the

linefeed setting is ignored.

7 Upper and lower case characters are printed with

translation.

Transactor 34 February 1989: Volume 9, Issue 3

Any secondary address other than 5 or 7 will be treated as an

SA of 0. The transparent mode (SA 5) results in characters

being passed through without alteration by the driver. The

linefeed flag setting (lf) will be ignored and a linefeed will

not be sent after a carriage return. The transparent mode

should be used for printing dot graphics. It may also be used to

pass escape sequences.

When an SA of 0 or 7 is used to open the file, the printer will

act pretty much like a Commodore printer. Case switching will

occur if a cursor up (145) or cursor down (17) character is

sent. Any alphabetic character will be translated from PETASCII

to ASCII unless it is part of an escape sequence, in which case

the character will pass through unchanged.

For example, sending CHR$(65), the petascii for 'a', would

result in translation to CHR$(97), the corresponding ASCII value.

Without translation, the printer would have printed an 'A'.

As mentioned above, if an alphabetic character immediately

follows an ESCape character (ASCII 27), no translation of the

alphabetic character will occur. This will result in most escape

sequences passing through the driver intact. If you prefer, you

may open an additional file with an SA of 5 and use it to pass

escape sequences.

When a file has been opened with an SA of 0 or 7, the control

code CHR$(15) (expanded print off) will be automatically con

verted to CHR$(20), as most printers will recognize CHR$(20) as

expanded off and recognize CHR$(15) as condensed print on. If

you need to turn on condensed print, open a file with an SA of

5 and use it to pass the command sequence.

Regardless of the SA used to open the file, no attempt will be

made to translate any of the Commodore Pet graphics charac

ters. The petascii values for those characters will be passed

through unchanged, and will produce differing results depend

ing on the printer that you're working with.

Programming considerations

Upon activation of the driver, several Kernal vectors are modi

fied so that the driver intercepts I/O calls. As a result, the driver

may be considered part of the C128 operating system. Chang

ing anything in the memory range from $1AOO to $1BF3 may

result in system fatality if any file handling routines are called.

If you need that memory range for something else, you must

load the PPD5632 module and deactivate the driver. Never

deactivate the driver while a file is opened to the port printer.

Attempting to open a file to device 2 (the RS-232 output) will

result in an ILLEGAL device NUMBER error. This is to prevent

interference with the driver and the user port setup. No other

precautions need be observed to use the driver.

The driver software will loop indefinitely waiting for the print

er to ACKnowledge the reception of a data byte. As a result, the

system will appear to lock up if the printer is disconnected or

is taken off-line. You can break out of this loop with the

STOP/RESTORE keypress combination.

Conclusion

I hope that you will find the port driver software a welcome

addition to your library of C128 utilities. I also would like to

think that you might learn something new by studying the

code. The driver should demonstrate that there is nothing to be

afraid of when it comes to messing around with the fundamen

tal operation of the computer.

Such hacking can often yield worthwhile improvements to the

system. It can also lead the way to a better understanding of

how the computer works, which will ultimately give you

greater control over the machine and what it can do.

Photo 1. Commodore user port connector.

Photo 2. Centronics parallel port connector.

Photo 3. Ribbon cable assembly.

Transactor 35 February 1989: Volume 9, Issue 3

Listing 1: Printer driver source

opt nos

put"@0:printdriver.src

*

* c-128 Centronics printer...

* driver for the user port

*

* written 1-08-87 w.j. brier
*

* revised
*

* copyright (c) 1987
*

* this program is not to be...

* sold, it is permissible...

* to copy it but credit must...

* be given in the documentation
*

* see the documentation for...

* instructions on using this...

* utility with your software.

*

;driver jump table

*

* <« program assignments >»
*

* *

operating system functions...

clkspd =$d030 /system clock speed

mmu =$ffOO ;configuration

lkupla =$ff59 -search for file

indfet =$ff74 ;indirect fetch

chrout =$ffd2 /output byte

;zero page assignments...

status

ldtnd

dfltn

dflto

msgflg

fnlen

la

sa

fa

fnadr

fnbank

datax

;kerna!

=$90

=$98

=$99

=$9a

=$9d

=$b7

=$b8

=$b9

=$ba

=$bb

=$c7

=$ef

L i/o

;i/o status word

/number of open files

/current input device

/current output device

/kernal message flag

/filename length

/file number

/secondary address

/device number

/filename address

/bank holding filename

/character buffer

tables...

latbl =$0362 /file numbers

fatbl =$036c /device numbers

satbl =$0376 /secondary addesses

;cia #2 registers...

d2pra =$dd00 /data port a

d2prb =$dd01 /data port b

d2ddra =$ddO2 /data direction a

d2ddrb =$ddO3 /data direction b

d2icr =$dd0d /interrupt control

*=$la00 '

;l # # I # # i'l # I i I i # # f I
;t t
;i Centronics printer driver 128 #

;§ i

jmp open /open file

jmp close /dose file

jmp ckout /open output

jmp clrch /close output

jmp bsout /output character

jmp setprt /set up port

/alternate indirect vectors

opena .byt 0,0

closea .byt 0,0

ckouta .byt 0,0

drcha .byt 0,0

bsouta .byt 0,0

.byt 0,0 /reserved

/control flags

pdev .byt 0 /device number

Iffig .byt 0 /linefeed flag

/patch to kernal open routine

open Ida fa /current device

cmp 12 ;rs-232

beq ilgdev /illegal device

cmp pdev /port device number

beq openOl

jmp (opena) /not port printer

openOl Ida la /current file

jsr lkupla /search for file

bcc filopn /file already open

ldx ldtnd /number of open files

cpxfllO

beq toomny /too many files

inc ldtnd /one more file

sta latbl,x /add file to table

Ida fa /device number

sta fatbl,x /add to table

Ida sa /secondary address

cmp |7 /upper/lower case output

beq open02

cmp §5 /transparent output

beq open02

Ida #0 /must be 0, 5 or 7

open02 sta satbl,x /add to table

ldy §0

sty status /dear

sty pmode /initialize

cmp #7

bne open03 /uppercase only

dec pmode /indicate u.c./l.c.

open03 jsr setprt /set up user port

/output command string...

ldyiO

open04 cpy fnlen /command string length

beq open05 /done

Ida ifnadr /filename pointer

ldx fnbank /ram bank

jsr indfet /fetch character

jsr pout /output character

iny

bne open04 /loop

open05 Ida #0

dc /no error

rts

/handle errors

toomny Ida #1 /too many files

.byt $2c /bit op-code

filopn Ida #2 /file already open

.byt $2c

flnopn Ida f3 /file not open

.byt $2c

ilgdev Ida §9 /illegal device number

pha /save error code

jsr clrch /default i/o

bit msgflg ;kernal message flag

bvc error3 /messages disabled

ldy #0

errorl Ida errmsg,y ;'i/o error...'

beq error2 /end of string

jsr bsout /output message

iny

bne errorl /loop

error2 pla /fetch error code

pha /write it back

ora §48 /change it to ascii

jsr bsout /output error number

error3 pla /retrieve error code

sec /indicate error

rts

/patch to kernal close routine

i

close php /save status register

pha /save file number

ldx ldtnd /number of files

closel dex /file table offset

bpl close3

close2 pla /recover file number

pip /recover status register

jmp (closea) /not port printer

close3 cmp latbl,x /file number table

bne closel /not found

Ida fatbl,x /fetch device

cmp pdev

bne close2 /not port printer

pla /clear stack

pla

dec ldtnd /one less file

cpx ldtnd /check file position

beq close5 /no table shift

Transactor 36 February 1989: Volume 9, Issue 3

1

ldy ldtnd /new file count

dose4 Ida latbl,y /shift table

sta latbl,x

Ida fatbl,y

sta fatbl,x

Ida satbl,y

sta satbl,x

/

close5 Ida #0

clc /no error

rts

/patch to kernal chkout routine

;

ckout txa /swap file number

jsr lkupla /search for file

bcs flnopn /file not open

;

cpx pdev

beq ckout1 /port printer

tax /restore file number

jmp (ckouta) /not port printer
;

ckoutl sta la /set file number

stx fa /set device number

stx dflto /set output device

sty sa , set secondary address

jsr setprt /set up port

;

dc /no error

lda#0

;

rts

;

'—"

/patch to kernal drchn routine

drch Ida dflto /output device

cmp pdev /port printer

beq clrchl
;

jmp (clrcha) /normal drchn

clrchl Ida #0

ldy #3

sta d2prb /dear output

sta dfltn /standard input

sty dflto /standard output

(

]

/patch \

bsout 2

:1c /all ok

rts

:o kernal chrout routine

;ta datax /save character

Ida dflto /output device

cmp pdev /port printer

beq boutOl

;

Ida datax /restore character

jmp (bsouta) /normal bsout

boutOl txa /preserve registers

pha

tya

pna

ldx #0 /mode flag

stx status

Transactor

Ida datax /fetch character

ldy sa /secondary address

cpy #5

beq bout08 /transparent

;

cmp #17 /cursor down

bne bout02

dex /set lower case

bmi bout03

bout02 cmp #145 /cursor up

bne bout04

bout03 stx pmode /set mode &...

jmp bout09 /exit

bout04 cmp #27 /escape

bne bout05
;

dex

bmi bout08 /set escape flag
•

bout05 bit escflg

bmi bout08 /no conversion

cmp #15 /expanded off

bne bout06

Ida #20 /ascii expanded off
;

bout06 bit pmode

bpl bout07 ;u.c. only
;

cmp #65 /petscii I.e.

bee bout08

cmp #91

bcs bout07

ora #32 /change to ascii I.e.

bout07 cmp #193 /petscii u.c.

bec bout08

cmp #219

bcs bout08

and #127 /change to ascii u.c.

bout08 stx escflg /set/dear

jsr pout /write to port

•

ldasa

cmp #5

beq bout09 /transparent output

;

bit lfflg

bpl bout09 /linefeeds not enabled

cpx #13

bne bout09 /not a return

Ida #10 /linefeed

jsr pout

bout09 pla /restore registers

tay

pla

tax

Ida datax

clc /all ok

;

rts

;

/output to port printer

37

pout tax /hold character

tya

pha /save .y register

Ida elkspd

pha /save clock rate

ldy #0

sty elkspd /slow speed

sty status /dear

ldy #128

poutOl dey

bpl poutOl /output throttle

stx d2prb /write to port

nop /wait 6 microseconds

nop

nop

jsr toggl /toggle strobe
•

Ida #%00010000 ;icr mask

;

pout02 bit d2icr /wait for ack

beq pout02 /not received

pla

sta elkspd /restore clock

pla

tay /restore

;

rts

;

/set up user port for output

/

setprt Ida #%01111111 /mask interrupts

sta d2icr

/

Ida d2pra /port a output

jsr toggll /set strobe high

Ida d2ddra /data direction a

ora #%00000100 /set strobe...

sta d2ddra /as output

ldx #0 /bring all printer...

stx d2prb /output lines low

dex /set up port b...

stx d2ddrb /as output

rf qits

/toggle strobe line

toggl Ida d2pra

and #111111011 /bring...

sta d2pra /strobe low &...

toggll ora #100000100 /then...

sta d2pra /high again

rts

/error message text

ernnsg .byt 13,'i/o error #\0

/storage

•

escflg *=*+l /escape mode flag

pmode *=*+l /output mode

.end

February 1989: Volume 9, Issue 3

1

Listing 2: Printer driver set-up source

.opt nos

put"@0:driversetup.src

* *

* c-128 Centronics printer... *

* driver setup module *
* *

* written 1-08-87 w.j. brier *

* *

* revised *
* *

* copyright (c) 1987 *
* *

* sys 5632,dn,lf to enable *

* sys 5632,0 to disable *

.* *

•* see the documentation for... *

;* instructions on using this... *

;* utility with your software. *

;* *

;* *
;* <« program assignments >» *

;* *

.

/system vectors & pointers...

•

ierror =$0300 /basic error vector

;

iopen =$031a /kernal open vector

iclose =$031c /kernal close vector

ickout =$0320 /kernal ckout vector

idrch =$0322 /kernal drchn vector

ibsout =$0326 /kernal chrout vector

mmu =$££00 /configuration

/printer driver jump table...

open =$la00 /kernal open patch

close =$laO3 /kernal close patch

ckout =$laO6 /kernal chkout patch

clrch =$laO9 /kernal drchn patch

bsout =$la0c /kernal chrout patch

setprt =$la0f /port setup

/printer driver control flags...

;

pdev =$lale /port device number

lfflg =$lalf /linefeed flag

;

/alternate indirect vector storage...

;

opena =$lal2 /open exit

closea =$lal4 /dose exit

ckouta =$lal6 /chkout exit

clrcha =$lal8 ; drchn exit

bsouta =$lala /chrout exit

;

resrvd =$lalc /reserved

;

*=$1600 ;5632

'*

/driver enable/disable

Transactor

=========================

stx lfflg /save linefeed flag

ldx §0

ldy mmu /get configuration

stx mmu /enable roms

tax

bne endr /enable driver

jmp dadr /disable driver

/enable driver

endr cpx f4 /check device number

bcs endrO2
;

endrOl ldx 19 /illegal device

jmp (ierror) /abort

;

endrO2 cpx 18

bcs endrOl /out of range

tya

pha /save configuration

stx pdev /set device number

clc

Ida lfflg

and fl /masic garcage

ror a /rotate twice

ror a

sta lfflg /set up flag

;

/set up new vectors...

ldx iopen /open vector

ldy iopen+1

cpx f<open

bne endrO3

cpy f>open

bne endrO3

jmp endrO4 /skip setup

;
endr03 stx opena

sty opciiaTi

ldx |<open /new vector

ldy |>open

stx iopen

sty iopen+1

ldx iclose /dose vector

ldy idose+1

stx closea

sty dosea+1

ldx #<dose /new vector

ldy |>dose

stx iclose

sty idose+1
.

ldx ickout /ckout vector

ldy ickout+1

stx ckouta

sty ckouta+1

•

ldx i<ckout /new vector

ldy f>ckout

stx ickout

sty ickout+1

38

ldx idrch ; drchn vector

ldy idrch+1

stx clrcha

sty clrcha+1

;

ldx §<drch /new vector

ldy i>clrch

stx idrch

sty idrch+1

;

ldx ibsout /chrout vector

ldy ibsout+1

stx bsouta

sty bsouta+1

ldx |<bsout /new vector

ldy |>bsout

stx ibsout

sty ibsout+1
;

jsr setprt /set up user port

;

endrO4 pla /old configuration

sta mmu

rts

/disable driver

dadr tya

pha /save old configuration

«

/check for enabled driver...

;

ldx iopen /open vector

ldy iopen+1

cpx |<open

bne endrO4 /not enabled

;

cpy i>open

bne endrO4

/restore vectors...

ldx opena /old open

ldy opena+1

stx iopen

sty iopen+1

/

ldx closea /old close

ldy dosea+1

stx iclose

sty idose+1

;

ldx clrcha /old drchn

ldy drcha+l

stx idrch

sty iclrch+1

;

ldx ckouta /old ckout

ldy ckouta+1

stx ickout

sty ickout+1

;

ldx bsouta /old bsout

ldy bsouta+1

stx ibsout

sty ibsout+1

jmp endrO4

i ~~——™ ' ■ ——————————————————————

.end □

February 1989: Volume 9, Issue 3

The Potpourri Disk

Help!

This HELPful utility gives you instant

menu-driven access to text files

at the touch of a key - while any

program is runningl

Loan Helper

How much is that loan really going

to cost you? Which interest rate

can you afford? With Loan Helper,

the answers are as close as your

friendly 64!

Keyboard

Learning how to play the piano?

This handy educational program

makes it easy and fun to learn the

notes on the keyboard.

Filedump

Examine your disk files FAST with

this machine language utility.

Handles six formats, including hex,

decimal, CBM and true ASCII,

WordPro and SpeedScript.

Anagrams

Anagrams lets you unscramble

words for crossword puzzles and

the like. The program uses a recur

sive ML subroutine for maximum

speed and efficiency.

Life

A FAST machine language version

of mathematician John Horton

Conway's classic simulation. Set

up your own 'colonies' and watch

them grow!

War Balloons

Shoot down those evil Nazi War

Balloons with your handy Acme

Cannon! Don't let them get away!

Von Googol

At last! The mad philosopher,

Helga von Googol, brings her own

brand of wisdom to the small

screen! If this is %AI', then it just ain't

natural!

News

Save the money you spend on

those supermarket tabloids - this

program will generate equally

convincing headline copy - for

free!

Wrd

The ultimate in easy-to-use data

base programs. WRD lets you

quickly and simply create, exam

ine and edit just about any data.

Comes with sample file.

Quiz

Trivia fanatics and students alike

will have fun with this program,

which gives you multiple choice

tests on material you have en

tered with the WRD program.

AHA! Lander

AHAi's great lunar lander program.

Use either joystick or keyboard to

compete against yourself or up to

8 other players. Watch out for

space mines!

Bag the Elves

A cute little arcade-style game;

capture the elves in the bag as

quickly as you can - but don't get

the good elf!

Blackjack

The most flexible blackjack simula

tion you'll find anywhere. Set up

your favourite rule variations for

doubling, surrendering and split

ting the deck.

File Compare

Which of those two files you just

created is the most recent ver

sion? With this great utility you'll

never be left wondering.

Ghoul Dogs

Arcade maniacs look out! You'll

need all your dexterity to handle

this wicked joystick-buster! These

mad dog-monsters from space

are not for novices!

Octagons

Just the thing for you Mensa types.

Octagons is a challenging puzzle

of the mind. Four levels of play,

and a tough 'memory' variation

for real experts!

Backstreets

A nifty arcade game, 1OO% ma

chine language, that helps you

learn the typewriter keyboard

while you play! Unlike any typing

program you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the

above programs, ALL of the above programs, on a single disk, accessed

independently or from a menu, with built-in menu-driven help and fast-loader.

The ENTIRE POTPOURRI COLLECTION

JUST $17.95 US!!

See Order Card at Center

GEOS LABEL NAMES A handy cross-reference table

BSW

label

AppendRecord

BitmapClip

BitmapUp

BitOtherClip

BldGDirEntry

BlkAlloc

BlockProcess

BootGEOS

BBMult

BMult

CalcBlksFree

CallRoutine

ChangeDiskDevice

ChkDkGEOS

ClearMouseMode

ClearRam

CloseRecordFile

CmpFString

CmpString

CopyFString

CopyString

CRC

Dabs

Ddec

DeleteFile

DeleteRecord

DisableSprite

Dnegate

DoneWithIO

DoDlgBox

Dolcons

DoInlineReturn

DoMenu

DoPreviousMenu

DoRAMOp

DrawLine

DrawPoint

DrawSprite

DDiv

DMult

DShiftLeft

DShiftRight

DSDiv

EnableProcess

EnableSprite

EnterDeskTop

EnterTurbo

ExitTurbo

FastDelFile

FetchRAM

FillRam

FindBAMBit

FindFile

FindFTypes

Firstlnit

FollowChain

FrameRectangle

FreezeProcess

FreeBlock

FreeFile

GetBlock

GetCharWidth

GetDirHead

GetFile

GetFreeDirBlk

GetFHdrlnfo

GetNextChar

GetPtrCurDkNm

GetRandom

GetRealSize

GetScanLine

GetSerialNumber

GetString

GoToFirstMenu

GraphicsString

RorizontalLine

ImprintRectangle

InitForlO

InitProcesses

Transactor

Boyce

label

APPEND

DRAW

CBOX

DRAW2

DIRMEM

FALLOC

FORBID

REBOOT

UMUL88

DM168

NUMBLK

INDJMP

CHGDRV

GEOSCK

RESETM

ZFILL

VCLOSE

BLKCMP

STRCMP

BLKMOV

STRCPY

DECODE

ABS16

DEC16

DELETE

REMOVE

SPROFF

NEG16

CLSSER

WINDOW

CBOXES

TBLJMP

MENU

CLSMNU

?

LINE

PLOT

COPYSP

UD1616

DM1616

MASL

MLSR

SD1616

EXERTN

SPRON

RESTRT

DSETUP

CLRRDY

DELET2

?

BLKFIL

INUSE

LOOKUP

TABLE

INIT01

TRACE

PBOX

STOP

FREE

READ

CWIDTH

RD180

LOAD

HOLE

LOADAD

GETIN

DRVNAM

RANDOM

CHARST

ROWADR

WHATIS

INPUT

CMENUS

GRPHIC

HLINE

COPYB3

OPNSER

CMDTBL

Alphabetical Listing

hex Description

adr. of routine

C289 Add a VLIR chain

C2AA Draw a coded image

C142 Draw a click box

C2C5 Draw a coded image with user patches

C1F3 Create a directory entry in memory

C1FC Allocate sectors for a file

C10C Prevent a timed event from running

C000 Reboot GEOS

C160 Unsigned 8 bit by 8 bit multiply

C163 Unsigned 16 bit by 8 bit multiply

C1DB Compute number of free blocks on disk

C1D8 Perform an indirect jump

C2BC Change disk drive device number

C1DE Check if a disk is GEOS format

C19C Reset the mouse

C178 Fill a memory region with zeros

C277 Close a VLIR file

C26E Memory block comparison

C26B String compare

C268 Memory block move

C265 String copy

C20E Compute checksum of a memory region

C16F 16 bit absolute value

C175 Decrement a 16 bit integer

C238 Delete a file

C283 Remove a VLIR chain

C1D5 Turn off a sprite

C172 Negate a 16 bit integer

C25F Close serial communication

C256 Window processor

C15A Draw a table of click boxes (ICONS)

C2A4 Perform a jump through a table

C151 Menu processor

C190 Close current menu

C2D4

C130 Draw/Erase/Copy an arbitrary line

C133 Draw/Erase/Copy a point on the screen

C1C6 Copy a sprite data block

C169 Unsigned 16 bit division

C166 Unsigned 16 bit by 16 bit multiply

C15D Multiple 16 bit arithmetic shift left

C262 Multiple 16 bit logical shift right

C16C Signed 16 bit division

C109 Force a recurring timed event to run

C1D2 Turn on a sprite

C22C Load and run DESKTOP

C214 Set up a drive with turboDOS

C232 Stop turboDOS in a drive

C244 Delete a temporary file

C2CB

C17B Memory block fill

C2AD Check if a disk sector is in use

C20B Lookup a file in the directory

C23B Create a table of file names

C271 Initialize GEOS variables

C205 Create a list of sectors used by file

C127 Draw an outline in a pattern

C112 Stop a recurring timed event's timer

C2B9 Free a block in the BAM

C226 Free a file's sectors

C1E4 Read a sector

C1C9 Get a character's width

C247 Read track 18 sector 0

C208 Load a file, given a file name

C1F6 Find a hole in the directory

C229 Get a file's load address

C2A7 Read a character from the keyboard

C298 Compute address of disk's name

C187 Change the random number

C1B1 Get a character's stats

C13C Compute memory address of screen row

C196 Get user serial number

C1BA Read a line of text from the user

C1BD Close all menu levels

C136 Process a graphic command table

C118 Draw a horizontal line in a pattern

C250 Copy a box from screen 2 to screen 1

C25C Open serial communication

C103 Initialize table of timed events

AB

page

1-9

1-22

1-12

1-22

1-21

1-27

1-28

1-48

1-56

1-56

1-44

1-32

1-14

1-29

1-49

1-62

1-57

1-10

1-53

1-11

1-53

1-20

1-9

1-19

1-20

1-49

1-52

1-43

1-15

1-60

1-13

1-54

1-42

1-15

1-37

1-46

1-18

1-55

1-56

1-41

1-43

1-51

1-27

1-52

1-49

1-24

1-14

1-20

1-10

1-35

1-40

1-54

1-32

1-55

1-45

1-53

1-29

1-48

1-19

1-47

1-37

1-32

1-39

1-30

1-23

1-47

1-13

1-50

1-59

1-33

1-16

1-30

1-31

1-17

1-45

1-16

BSW

pg-

?!

*94
92

97

300

291

182

190

191

270

210

215

256

?!

206

319

203

202

201

200

214

195

197

266

322

175

196

307

231

28

?!

36

38

?!

78

72

172

193

192

188

189

194

186

174

269

309

?!

302

?!

207

296

263

257

213

301

84

183

297

304

272

126

281

259

289

276

119

254

198

125

102

211

111

39

100

74

88

306

180

BSW

label

InitRam

InitTextPrompt

InsertRecord

InterruptMain

InvertLine

InvertRectangle

IsMselnRegion

I BitmapUp

IJillRam

I~FrameRectangle
I GraphicsString

flmprintRectangle
I~MoveData
IJutString

I~RecoverRectangle
IJtectangle

LdApplic

LdDeskAcc

LdFile

LoadCharSet

MainLoop

MouseOff

MouseUp

MoveData

NewDisk

NextRecord

NxtBlkAlloc

OpenDisk

OpenRecordFile

Panic

PointRecord

PosSprite

PreviousRecord

PromptOff

PromptOn

PurgeTurbo

PutBlock

PutChar

PutDecimal

PutDirHead

PutString

ReadBlock

ReadByte

ReadFile

ReadRecord

RecoverAllMenus

RecoverLine

RecoverMenu

RecoverRectangle

Rectangle

RenameFile

RestartProcess

ReDoMenu

RstrAppl

RstrFrmDialog

SaveFile

SetDevice

SetGDirEntry

SetGEOSDisk

SetNextFree

SetPattern

Sleep

SmallPutChar

StartAppl

StartMouseMode

StashRAM

SwapRAM

TestPoint

ToBasic

UnblockProcess

UnfreezeProcess

UpdateRecordFile

UseSystemFont

VerifyRAM

VerticalLine

VerWriteBlock

WriteBlock

WriteFile

WriteRecord

40

Compiled by Francis G. Kostella

Alphabetical Listing

Boyce hex Description

label adr. of routine

BLKSET C181 Multiple memory location init.

MAKCUR C1C0 Create the text cursor sprite

INSERT C286 Insert a VLIR chain

IRQRTN C100 IRQ routine

INVLIN CUB Reverse video a horizontal line

INVBOX C12A Reverse video a box

CKMOUS C2B3 Check if mouse is inside a window

CBOX2 C1AB Draw a click box with inline data

BLKFL2 C1B4 Memory block fill with inline data

PBOX2 C1A2 Inline Draw a solid outline

GRPHC2 C1A8 Inline Process a graphic cmnd table

COPYB4 C253 Inline Copy a box from screen 2 to 1

INTBM2 C1B7 Inline Intelligent memory block move

DSPTX2 C1AE Inline Display a text string

COPYB2 C1A5 Inline Copy a box from screen 1 to 2

PFILL2 C19F Inline Fill a box with a pattern

LOAD3 C21D Load and run a file, given dir entry

LOADSW C217 Load a file with memory swapping

LOAD2 C211 Load a file, given a directory entry

FONT C1CC Activate a memory resident font

MAIN C1C3 GEOS's main loop

MOUSOF C18D Turn off the mouse

MOUSON C18A Turn on the mouse

INTBM CUE Intelligent memory block move

INITDV C1E1 Initialize a drive

NEXT C27A Move to next VLIR chain

FALOC2 C24D Allocate sectors for a file

OPNDSK C2A1 Open a disk

VOPEN C274 Open a VLIR file

SYSERR C2C2 Report system error

GOTO C280 Goto a specific VLIR chain

POSSPR C1CF Position a sprite

PREV C27D Move to previous VLIR chain

CDRSOF C29E Turn off the text cursor

CURSON C29B Turn on the text cursor

CLRSTS C235 Stop and remove turbodos in a drive

WRITE C1E7 Write a sector

DSPCHR C145 Display a character

DSPNUM C184 Display a 16 bit integer

WR180 C24A Write to track 18 sector 0

DSPTXT C148 Display a text string

READ2 C21A Read a sector with drive preset

GETBYT C2B6 Get a byte from a file

LCHAIN C1FF Load a chain into memory, given T&S

VLOAD C28C Load a VLIR chain

ERAMNS C157 Erase all menus

COPYL CUE Copy a line from screen 2 to screen 1

ERAMNU C154 Erase the current menu

COPYB C12D Copy a box from screen 1 to screen 2

PFILL C124 Fill a box with a pattern

RENAME C259 Rename a file

ENABLE C106 Enable a recurring timed event,START

DRWMNU C193 Draw the current menu

LDSWAP C23E Load the SWAPFILE

CLSWIN C2BF Close a window

SAVE C1ED Save memory to a file

DRVSET C2B0 Select a drive

DIRDSK C1F0 Create a directory entry on disk

CONVRT C1EA Convert a disk to GEOS format

ALLOC C292 Find and allocate a disk block

SETPAT C139 Select a fill pattern

DELAY C199 Set up a time delay

DRAWCH C202 Draw a character on the screen

RUN C22F Run a program that is in memory

INITMS C14E Initialize the mouse

? C2C8

? C2CE

TEST C13F Test the value of a pixel

BASIC C241 Restart BASIC

PERMIT C10F Allow a recurring timed event to run

START C115 Start a recurring timed events timer

UPDATE C295 Update a VLIR file

SELBSW C14B Select the BSW font

? C2D1

VLINE C121 Draw a vertical line in a pattern

CWRITE C223 Verify before writing sector

WRITE2 C220 Write a sector with drive preset

SAVE2 C1F9 Save memory to preallocated sectors

VSAVE C28F Save memory to a VLIR chain

February 1989: Volume 9

AB BSW

page pg.

1-11 208

1-41 120

1-34 ?!

1-36

1-35 76

1-35 86

1-14 153

1-12 92

1-11 207

1-45 84

1-30 100

1-17 88

1-34 205

1-26 108

1-17 87

1-46 83

1-38 284

1-39

1-38 287

1-28 132

1-40

1-43 150

1-43 151

1-34 205

1-32 283

1-44 321

1-28 293

1-44 253

1-58 318

1-54 204

1-30 321

1-47 173

1-47 321

1-18 122

1-18 121

1-15 308

1-62 274

1-24 123

1-25 109

1-62 282

1-26 108

1-48 310

1-29 280

1-36 277

1-58 324

1-27 ?!

1-18 77

1-27 ?14

1-17 87

1-46 83

1-49 268

1-26 181

1-23 37

1-36 ?!

1-15 232

1-51 264

1-23 252

1-21 298

1-16 255

1-9 295

1-52 82

1-20 184

1-23 ?!

1-50 ?!

1-33 149

91

1-55 73

1-10 212

1-45 182

1-53 183

1-57 320

1-52 133

1-57 75

1-19 ?!

1-62 312

1-51 276

1-59 323

, Issue 3

GEOS LABEL

BSH

label

BootGEOS

InterruptMain

InitProcesses

RestartProcess

EnableProcess

BlockProcess

UnblockProcess

FreezeProcess

UnfreezeProcess

HorizontalLine

InvertLine

RecoverLine

VerticalLine

Rectangle

FrameRectangle

InvertRectangle

RecoverRectangle

DrawLine

DrawPoint

GraphicsString

SetPattern

GetScanLine

TestPoint

BitmapDp

PutChar

PutString

DseSystemFont

StartMouseMode

DoMenu

RecoverMenu

RecoverAllMenus

Dolcons

DShiftLeft

BBMult

BMult

DMult

DDiv

DSDiv

Dabs

Dnegate

Ddec

ClearRam

FillRam

MoveData

InitRam

PutDecimal

GetRandom

MouseDp

MouseOff

DoPreviousHenu

ReDoMenu

GetSerialNumber

Sleep

ClearMouseHode

I-Rectangle

I-FrameRectangle

AlexB

label

REBOOT

IRQRTN

CMDTBL

ENABLE

EXERTN

FORBID

PERMIT

STOP

START

HLINE

INVLIN

COPYL

VLDJE

PFILL

PBOX

INVBOX

COPYB

LINE

PLOT

GRPHIC

SETPAT

ROWADR

TEST

CBOX

DSPCHR

DSPTXT

SELBSW

INITMS

MENU

ERAMNU

ERAMNS

CBOXES

MASL

UMUL88

UM168

UM1616

DD1616

SD1616

ABS16

NEG16

DEC16

ZFILL

BLKFIL

INTBM

BLKSET

DSPNUM

RANDOM

MODSON

MOUSOF

CLSMNU

DRHMNU

WHATIS

DELAY

RESETM

PFILL2

PBOX2

I-RecoverRectangle COPYB2

I-GraphicsString

I-BitmapDp

I-PutString

GetRealSize

I-FillRam

I-MoveData

GetString

GoToFirstHenu

InitTextPrompt

MainLoop

DrawSprite

GetCharWidth

LoadCharSet

PosSprite

EnableSprite

DisableSprite

CallRoutine

CalcBlksFree

ChkDkGEOS

NewDisk

GetBlock

PutBlock

Transactor

GRPHC2

CBOX2

DSPTX2

CHARST

BLKFL2

INTBM2

INPUT

CMENUS

MAKCUR

MAIN

COPYSP

WIDTH

FONT

POSSPR

SPRON

SPROFF

INDJMP

NUMBLK

GEOSCK

INITDV

READ

WRITE

NAMES A handy cross-reference table

Sequential Listing

hex

adr.

COOO

C100

C103

C106

C109

C10C

C10F

C112

CU5

C118

CUB

cue

C121

C124

C127

C12A

C12D

C130

C133

C136

C139

C13C

C13F

C142

C145

C148

C14B

C14E

C151

C154

C157

C15A

C15D

C160

C163

C166

C169

C16C

C16F

C172

C175

C178

C17B

C17E

C181

C184

C187

C18A

C18D

C190

C193

C196

C199

C19C

C19F

C1A2

C1A5

C1A8

C1AB

C1AE

C1B1

C1B4

C1B7

C1BA

C1BD

C1C0

C1C3

C1C6

C1C9

C1CC

C1CF

C1D2

C1D5

C1D8

C1DB

C1DE

C1E1

C1E4

C1E7

Description

of routine

Reboot GEOS

IRQ routine

Initialize table of timed events

Enable a recurring timed event,START

Force a recurring timed event to run

Prevent a timed event from running

Allow a recurring timed event to run

Stop a recurring timed event's timer

Start a recurring timed events timer

Draw a horizontal line in a pattern

Reverse video a horizontal line

Copy a line from screen 2 to screen 1

Draw a vertical line in a pattern

Fill a box with a pattern

Draw an outline in a pattern

Reverse video a box

Copy a box from screen 1 to screen 2

Draw/Erase/Copy an arbitrary line

Draw/Erase/Copy a point on the screen

Process a graphic command table

Select a fill pattern

Compute memory address of screen row

Test the value of a pixel

Draw a click box

Display a character

Display a text string

Select the BSH font

Initialize the mouse

Menu processor

Erase the current menu

Erase all menus

Draw a table of click boxes (ICONS)

Multiple 16 bit arithmetic shift left

Unsigned 8 bit by 8 bit multiply

Unsigned 16 bit by 8 bit multiply

Unsigned 16 bit by 16 bit multiply

Unsigned 16 bit division

Signed 16 bit division

16 bit absolute value

Negate a 16 bit integer

Decrement a 16 bit integer

Fill a memory region with zeroes

Memory block fill

Intelligent memory block move

Multiple memory location init.

Display a 16 bit integer

Change the random number

Turn on the mouse

Turn off the mouse

Close current menu

Draw the current menu

Get user serial number

Set up a time delay

Reset the mouse

Inline Fill a box with a pattern

Inline Draw a solid outline

Inline Copy a box from screen 1 to 2

Inline Process a graphic cmnd table

Draw a click box with inline data

Inline Display a text string

Get a character's stats

Memory block fill with inline data

Inline Intelligent memory block move

Read a line of text from the user

Close all menu levels

Create the text cursor sprite

GEOS's main loop

Copy a sprite data block

Get a character's width

Activate a memory resident font

Position a sprite

Turn on a sprite

Turn off a sprite

Perform an indirect jump

Compute number of free blocks on disk

Check if a disk is GEOS format

Initialize a drive

Read a sector

Write a sector

AB BSW

page pg.

1-48

1-36

1-16 180

1-26 181

1-27 186

1-28 182

1-45 182

1-53 183

1-53 183

1-31 74

1-35 76

1-18 77

1-57 75

1-46 83

1-45 84

1-35 86

1-17 87

1-37 78

1-46 72

1-30 100

1-52 82

1-50 102

1-55 73

1-12 92

1-24 123

1-26 108

1-52 133

1-33 149

1-42 36

1-27 ?14

1-27 ?!

1-13 28

1-41 188

1-56 190

1-56 191

1-56 192

1-55 193

1-51 194

1-9 195

1-43 196

1-19 197

1-62 206

1-10 207

1-34 205

1-11 208

1-25 109

1-47 198

1-43 151

1-43 150

1-15 38

1-23 37

1-59 211

1-20 184

1-49 ?!

1-46 83

1-45 84

1-17 87

1-30 100

1-12 92

1-26 108

1-13 125

1-11 207

1-34 205

1-33 111

1-16 39

1-41 120

1-40

1-18 172

1-19 126

1-28 132

1-47 173

1-52 174

1-52 175

1-32 210

1-44 270

1-29 256

1-32 283

1-48 272

1-62 274

BSW

label

SetGEOSDisk

SaveFile

SetGDirEntry

BldGDirEntry

GetFreeDirBlk

WriteFile

BlkAlloc

ReadFile

SmallPutChar

FollowChain

GetFile

FindFile

CRC

LdFile

EnterTurbo

LdDeskAcc

ReadBlock

LdApplic

WriteBlock

VerWriteBlock

FreeFile

GetFHdrlnfo

EnterDeskTop

StartAppl

ExitTurbo

PurgeTurbo

DeleteFile

FindFTypes

RstrAppl

ToBasic

FastDelFile

GetDirHead

PutDirHead

NxtBlkAlloc

ImprintRectangle

I-ImprintRectangle

DoDlgBox

RenameFile

InitForlO

DoneWithIO

DShiftRight

CopyString

CopyFString

CmpString

CmpFString

Firstlnit

OpenRecordFile

CloseRecordFile

NextRecord

PreviousRecord

PointRecord

DeleteRecord

InsertRecord

AppendRecord

ReadRecord

WriteRecord

SetNextFree

UpdateRecordFile

GetPtrCurDkNm

PromptOn

PromptOff

OpenDisk

DoInlineReturn

GetNextChar

BitmapClip

FindBAMBit

SetDevice

IsMselnRegion

ReadByte

FreeBlock

ChangeDiskDevice

RstrFrmDialog

Panic

BitOtherClip

StashRAM

FetchRAM

SwapRAM

VerifyRAM

DoRAMOp

41

Compiled by Francis G. Kostella

Alex B

label

CONVRT

SAVE

DIRDSR

DIRMEM

HOLE

SAVE2

FALLOC

LCHAIN

DRAWCH

TRACE

LOAD

LOOKUP

DECODE

LOAD2

DSETUP

LQADSW

READ2

LOAD3

WRITE2

CWRITE

FREE

LOADAD

RESTRT

RUN

CLRRDY

CLRSTS

DELETE

TABLE

LDSWAP

BASIC

DELET2

RD180

WR180

FALOC2

COPYB3

COPYB4

WINDOW

RENAME

OPNSER

CLSSER

MLSR

STRCPY

BLKMOV

STRCMP

BLKCMP

INIT01

VOPEN

VCLOSE

NEXT

PREV

GOTO

REMOVE

INSERT

APPEND

VLOAD

VSAVE

ALLOC

UPDATE

DRVNAM

CORSON

CURSOF

OPNDSK

TBLJMP

GETIN

DRAW

INUSE

DRVSET

CKMODS

GETBYT

?

CHGDRV

CLSWIN

SYSERR

DRAW2
?

9

9

9

9

Sequential Listing

hex Description

adr. of routine]

C1EA Convert a disk to GEOS format

C1ED Save memory to a file

C1F0 Create a directory entry on disk

C1F3 Create a directory entry in memory

C1F6 Find a hole in the directory

C1F9 Save memory to preallocated sectors

C1FC Allocate sectors for a file

C1FF Load a chain into memory, given T&S

C202 Draw a character on the screen

C205 Create a list of sectors used by file

C208 Load a file, given a file name

C20B Lookup a file in the directory

C20E Compute checksum of a memory region

C211 Load a file, given a directory entry

C214 Setup a drive with turbodos

C217 Load a file with memory swapping :

C21A Read a sector with drive preset

C21D Load and run a file, given dir entry]

C220 Write a sector with drive preset]

C223 Verify before writing sector

C226 Free a file's sectors]

C229 Get a file's load address]

C22C Load and run DESKTOP :

C22F Run a program that is in memory]

C232 Stop turbodos in a drive :

C235 Stop and remove turbodos in a drive 3

C238 Delete a file :

C23B Create a table of file names :

C23E Load the SWAPFILE :

C241 Restart BASIC :

C244 Delete a temporary file :

C247 Read track 18 sector 0 :

C24A Write to track 18 sector 0 3

C24D Allocate sectors for a file j

C250 Copy a box from screen 2 to screen 1

C253 Inline Copy a box from screen 2 to 1

C256 Window processor 1

C259 Rename a file 3

C25C Open serial communication

C25F Close serial communication 1

C262 Multiple 16 bit logical shift right :

C265 String copy

C268 Memory block move

C26B String compare

C26E Memory block comparison :

C271 Initialize GEOS variables \

C274 Open a VLIR file 1

C277 Close a VLIR file \

C27A Move to next VLIR chain

C27D Move to previous VLIR chain

C280 Goto a specific VLIR chain

C283 Remove a VLIR chain

C286 Insert a VLIR chain

C289 Add a VLIR chain

C28C Load a VLIR chain

C28F Save memory to a VLIR chain

C292 Find and allocate a disk block

C295 Update a VLIR file

C298 Compute address of disk's name

C29B Turn on the text cursor

C29E Turn off the text cursor

C2A1 Open a disk

C2A4 Perform a jump through a table

C2A7 Read a character from the keyboard

C2AA Draw a coded image

C2AD Check if a disk sector is in use

C2B0 Select a drive

C2B3 Check if mouse is inside a window

C2B6 Get a byte from a file

C2B9 Free a block in the BAM

C2BC Change disk drive device number

C2BF Close a window

C2C2 Report system error

C2C5 Draw a coded image with user patches

C2C8

C2CB

C2CE

C2D1

C2D4

February 1989: Volume 9

AB BSW

)age pg.

L-16 255

L-51 264

L-21 298

L-21 300

L-32 289

L-51 276

L-27 291

L-36 277

L-23 ?!

L-55 301

L-37 259

L-40 263

L-20 214

L-38 287

[-24 309

L-39

L-48 310

L-38 284

[-62 312

L-19 ?!

[-29 304

L-39 276

[-49 269

L-50 ?!

L-14 ?!

L-15 308

L-20 266

L-54 257

L-36 ?!

L-10 212

L-20 302

L-47 281

L-62 282

L-28 293

L-17 88

L-17 88

L-60 231

L-49 268

L-45 306

L-15 307

L-43 189

[-53 200

L-ll 201

L-53 202

L-10 203

L-32 213

L-58 318

L-57 319

L-44 321

L-47 321

L-30 321

L-49 322

L-34 ?!

L-9 ?!

L-58 324

L-59 323

L-9 295

L-57 320

L-23 254

L-18 121

L-18 122

L-44 253

L-54 ?!

L-30 119

L-22 94

L-35 296

L-23 252

L-14 153

L-29 280

297

L-14 215

L-15 232

L-54 204

L-22 97

?!

?!

?!

?!

?!

Issue 3

Gamemaker's ML Grab-Bag

Splits, sprites and special effects

by Zoltan Hunt

© 1988 Zoltan Hunt

Let's face it, there are more interesting ways of displaying the

player's lives than printing a number like '3', '4\ or '6'. The

same goes for energy, power or strength of the player. Are you

tired of writing games with sprites that stop about three-

quarters of the way across the screen? How about those key

board-character displays - wouldn't a hi-res screen with a text

window at the bottom look better? While we're at it, how

about a more interesting screen clear and a box drawing rou

tine? By using a few simple text-oriented routines to display

player status information at the bottom of the screen, along

with the split screen and sprite movement routines to handle

the hi-res action above, you have a simple toolkit with which

to begin building your machine language video game.

Boxes, Strength, Lives and Screens

The BOX routine will print a box of any size at the current cur

sor position, drawn with the character of your choice.

Example:

Ida #10

sta lx

Ida #10

sta hi

Ida #5

sta xd

Ida #5

sta yd

Ida #"x"

sta boxchr

jsr box

;box width

/width variable

;box height

/height variable

/distance from left side of screen

;x distance variable

/distance from top of screen

;y distance

/character to be printed

/character variable

; go!

The colour of the box can be specified by something like this:

Ida #2: jsr $ffd2: jsr box

This will print the box in red. Another effect possible is by

drawing the box in the center and then decreasing XD and YD

while increasing LX and HI and calling BOX each time. This

will make the box grow, making an interesting finish to a

game (by printing blank spaces, this could also be used.for

clearing screens).

The two routines ENEPNT and ENVPNT will display a value (0-

255) in the form of a bar horizontally or vertically on the

screen (something like the player's energy levels in ARCHON or

similar games). The colour is selected the same way as with

BOX, and the bar can be positioned anywhere on the screen

using the Kernal routine PLOT ($FFF0) to position the cursor:

ldx #row number: ldy #column

clc: jsr plot

To use enepnt and envpnt:

Ida #45 /player's energy

sta energy /energy byte

jsr enepnt /or envpnt

Another use for this routine could be in a graphing program

with numbers larger than 255 scaled down (e.g. divided by 2

or 4 or whatever before being stored in ENERGY).

Now we come to the routines PRHMEN and PRVMEN that print a

player's lives, ships, shots or whatever. Using these is easy:

Ida #number /number you want printed

sta pmem /register

jsr prhmen /or prvmen

The word "men: " can be changed to anything, but be sure to

add the right number of cursor-lefts after it. The program, as it

is, prints the solid ball character - this can be changed to any

other character. Try using different characters and colours to

indicate the various values of interest.

Finally, we come to the last routine in this section, CLRSCR.

This gives your program that "disintegrating" effect found in

some programs. It is called simply with a JSR:

jsr clrscr

Once again you can change the character it prints - a blank

space - to anything you want.

Now we move on to the last two and perhaps most interesting

routines.

Transactor 42 February 1989: Volume 9, Issue 3

SPLIT and SEAM

Split splits the screen into two parts: a multi-colour hi-res

screen on top, and a regular text screen on the bottom five

lines.

Using it is easy. Set the bottom text background colour with

the variable IRQTWCOL. Select text or text/hi-res with a 0 or a

1 in IRQSELC.

Here then is a short example:

Ida #0

sta irqselc ;set screen to text/hi-res

Ida #1

sta irqtwcol ;set text window colour to white

jsr split

This routine is one of the most important in many applications,

notably games, and is good if you want to easily give the play

er information, while leaving your richly detailed hi-res mas

terpiece intact. It can also be used in direct mode, letting you

edit or run a program while seeing a high-res screen partially

displayed. To change the number of text lines that are dis

played, change the byte stored in 'splin'. It is currently set to

20 lines, leaving five lines at the bottom; making it smaller

will move the split higher up on the screen. This value can

also be changed dynamically, creating a "curtain" effect as the

border between graphics and text moves up or down.

Now we come to the last routine: it lets you position a sprite

anywhere on the screen without having to work with the sprite

registers and numbers greater than 255 (great for machine lan

guage programmers)

The best way to show it is through example, so here we go:

ldx #40 ;this is half the x position of your sprite

stx xpos ;store it in the x variable

ldy #50 ;this is the y position

sty ylo /store in the y variable

Ida #0 ;this is sprite you want moved (0-7)

sta xpsnum

jsr seam ;go to it

Ida #1 /sprite to turn on

sta 53269;turn it on

This will move your sprite anywhere on the screen. One thing

to note though: the X position is doubled, so that storing 40 in

'xpos' will place the sprite at position 80 on the screen. If you

need to position a sprite precisely, put the low byte in the

accumulator, the high byte (0 or 1) in 4xhi\ and jsr 'seam2'

instead of'seam'.

I hope these routines will find their way into some of your pro

grams (I already have one in mind that will make heavy use of

SEAM). You should be able to modify them to suit your own

needs if required.

DP

GN

BM

CN

KN

AI

LL

AC

PI

OM

AF

CD

BI

01

G6

FL

LE

AH

KG

IM

IA

IA

CM

DJ

HL

MI

BA

MP

FB

0M

JC

GH

EF

ED

BA

GC

KP

PG

ML

ML

OH

HE

NG

MB

FL

CA

AO

IM

NI

EL

GI

LP

GP

PA

IM

DC

AH

0E

KD

LP

DC

0A

JG

GL

GL

El

E0

DP

PL

HN

GE

AI

DP

GN

AA

LN

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

790

800

810

820

100

110

120

130

sys 700 ;pal 64

.opt oo

; " box"

; draws a box given left edge,

; top edge, width and height

; in "xd", "yd", "lx", "hi".

; character in "boxchr".

/

box

Ida

jsr

=*

#"{clr}"

$ffd2 /optional clear

boxll =*

ldx

ldy

clc

jsr

ldx

yd

xd

$fffO /position cursor

#0

box31 =*

Ida

jsr

inx

cpx

bne

ldx

boxchr

$ffd2 ;print char

lx

box31

#1
box41 =*

Ida

jsr

Ida

jsr

Ida

jsr

inx

cpx

bne

ldx

#"{left}"

$ffd2

#"{down}"

$ffd2

boxchr

$ffd2

hi

box41

#1
box51 =*

Ida

jsr

inx

cpx

bne

ldx

#"{left}"

$ffd2

lx

box51

#1
box61 =*

Ida

jsr

inx

cpx

bne

ldx

#"{up}"

$ffd2

hi

box61

#1
box71 =*

Ida

jsr

Ida

jsr

Ida

jsr

inx

cpx

bne

ldx

#"{left}"

$ffd2

#"{down}"

$ffd2

boxchr

$ffd2

hi

box71

#1
box81 =*

Ida

jsr

inx

cpx

bne

rts

lx .

hi .

xd .

yd .

boxchr

$ffd2

lx

box81

byte 15 ;width

byte 10 /height

byte 0 /distance x from side

byte 0 /distance y from top

boxchr .asc "*";char used

sys

.opt

700 /pal 64

oo

; "enepnt"

; this routine can be used to

Transactor 43 February 1989: Volume 9, Issue 3

EJ

MA

El

DA

MF

JL

CD

DF

HO

ME

IJ

LO

BF

LH

HM

ID

GJ

BI

IB

PM

DC

EF

OK

10

MO

61

KB

EB

AC

OC

LF

HI

L6

HH

HI

P6

CH

II

JB

LI

DP

GN

CC

PI

BD

FE

GB

CN

HI

HB

AH

NM

GE

HG

LP

AG

MK

PP

FG

PI

LN

ME

JM

EL

BF

GD

BH

BE

LM

AN

GA

CP

10

HE

EK

ID

140 ; show a player's energy level

150 ;

160 enepnt =*

170 Ida energy

180 sta ecount

190 eploop =*

200 Ida ecount

210 sec

220 sbc #8

230 bcc pntpar

240 sta ecount

250 Ida #<sbox

260 ldy #>sbox

270 jsr $able; print a solid square

280 jmp eploop

290 pntpar =*

300 Ida ecount

310 beq enpnt ;done printing

320 asl: tax /index into table

330 Ida pntab+l,x

340 tay

350 Ida pntab,x

360 jsr $able /print bar char

370 ;

380 enpnt =*

410 rts

420 ;

430 energy .byte 21 /player energy

440 ecount .byte 0

450 sbox .asc "{rvs} {rvs off}":.byte 0

460 pntel .asc "{logo-g}":.byte 0

470 pnte2 .asc "{logo-j}":.byte 0

480 pnte3 .asc "{logo-k}":.byte 0

490 pnte4 .asc "{logo-k}":.byte 0

500 pnte5 .asc "{rvs}{logo-l}{rvs off}":.byte 0

510 pnte6 .asc "{rvs}{logo-n}{rvs off}11:.byte 0

520 pnte7 .asc "{rvs}{logo-m}{rvs off}":.byte 0

530 ;

540 pntab .word 0, pntel, pnte2, pnte3

550 .word pnte4, pnte5, pnte6, pnte7

100 sys 700 /pal 64

110 .opt oo

120

130

140

150

160

170 (

180

• "envpnt"

displays a vertical

• bar graph of the value

• in "ecount"

snvpnt =*

•prints 'energy level' vertically

190 Ida energy

200 sta ecount

210 eploop =*

220 Ida ecount

230 sec

240 sbc #8

250 bcc pntpar

260 sta ecount

270 Ida #<sbox

280 ldy #>sbox

290 jsr $able; print a solid square

300 jmp eploop

310 pntpar =*

320 ; print appropriate character

330 Ida ecount

340 beq enpte

350 asl: tax /index into table

360 Ida pnvtab+l,x

370 tay

380 Ida pnvtab,x

390 jsr $able

400 ;

410 enpte =*

420 Ida #19 /home cursor

430 jsr $ffd2

440 rts

450 /

Transactor

JC

OD

PB

KE

MG

MI

KG

CL

LL

LI

GK

CG

JK

DP

GN

DA

OM

MK

PA

GB

FJ

MM

CD

LM

IE

IF

GD

PN

ME

OM

AH

EA

OA

AK

KC

FD

JM

PB

PN

HB

DN

GB

NM

01

EP

LM

OE

PB

PH

KH

DJ

EF

AG

CO

El

IB

EK

EO

OD

DP

GN

LO

AA

NI

MA

HJ

BP

NC

AC

IL

KC

JM

44

460 energy .byte 100 /player energy

470 ecount .byte 0

480 sbox .asc "{rvs} {rvs off}{left}{up}":.byte 0

490 pntel .asc "{logo-@}{left}{up}":.byte 0

500 pnte2 .asc "{logo-p}{left}{up}":.byte 0

510 pnte3 .asc "{logo-o}{left}{up}":.byte 0

520 pnte4 .asc "{logo-i}{left}{up}":.byte 0

530 pnte5 .asc "{rvs}{logo-u}{rvs off}{left}{up}":.byte 0

540 pnte6 .asc "{rvs}{logo-y}{rvs off}{left}{up}":.byte 0

550 pnte7 .asc "{rvs}{logo-t}{rvs off}{left}{up}":.byte 0

560 ;

570 pnvtab .word 0, pntel, pnte2, pnte3

580 .word pnte4, pnte5, pnte6, pnte7

100 sys 700 /pal 64

110 .opt oo

120 ; "prhmen"

130 /this routine prints the player's

140 /men but could be used to represent

150 /energy levels, strength, etc

160 /

170 prhmen =*

180 Ida #<prnmen

190 ldy #>prnmen

200 jsr $able /print it

210 ;

220 ldx pmen /get number of men

230 Ida #"Q" /this char represents men

240 menlop =*

250 jsr $ffd2 /print it

260 dex /have we printed them all

270 bne menlop

280 rts

290 pmen .byte 5

300 prnmen .asc "men: "

310 .byte 0

100 sys 700

110 :.opt oo

120 / "prvmen"

130 /this is almost the same as

140 /prhmen but prints the men

150 /down insted of across

160 ;

170 prvmen =*

180 Ida #<pnmen

190 ldy #>pnmen

200 jsr $able /print it

210 ldx pmen /get number of men

220 menlop Ida #"{left}"

230 jsr $ffd2

240 Ida #"{down}"

250 jsr $ffd2

260 Ida #"Q" /this char represents men

270 jsr $ffd2 /print it

280 dex /have we printed them all

290 bne menlop

300 rts

310 pmen .byte 5 /number of men

320 pnmen .asc "men: {left}{left}{left}{left}"

330 .byte 0

100 sys 700 /pal 64

110 .opt oo

120 / "drscr"

130 ; clears screen using

140 ; "dissolve" effect

150 ;

160 drscr =*

170 ldx #0

180 loop =*

190 Ida #255

200 sta 54287

210 Ida #128 /set up

220 sta 54290

February 1989: Volume 9, Issue 3

CI

AD

BI

PH.

OA

CA

HD

AB

CB

MA

DO

EG

HP

PH

OO

NM

OE

MC

JJ

LF

IE

AE

NI

IL

DP

6N

FN

GF

AL

PI

GB

HC

NE

PH

DI

PI

IJ

FC

HN

IG

LN

OJ

HD

AL

IB

MK

HH

HL

OL

LG

FF

BF

GL

IL

HA

ED

AH

PL

FN

DP

BL

MH

HA

OM

DO

GN

NK

GE

PP

IL

IB

FN

KL

PM

PP

JE

230 sta 54296 ;sid chip

240 ldy 54299 ;get random number

250 Ida #32

260 sta 1024,y

270 sta 1024+256,y

280 sta 1024+512,y

290 sta 1024+768,y

300 jsr delay

310 inx

320 cpx #254

330 bne loop

340 Ida #"{clr}"

350 jsr $ffd2

360 delay txa

370 pha

380 ldx #5

390 dxsbd ldy #0

400 clrsyl dey

410 bne clrsyl

420 dex

430 bne clrsbd

440 pla

450 tax

460 rts

100 sys 700 ;pal 64

110 .opt oo

120 ; "split"

130 ; irq driven multi-colour

140 ; hi-res/text screen

150 ; by zoltan hunt, 1988

160 ;

170 split =*

180 sei

190 Ida #<main

200 sta $0314

210 Ida #>main

220 sta $0315

230 Ida #$81

240 sta $d01a

250 Ida #$lb

260 sta $d011

270 Ida #$7f

280 sta $dc0d

290 di

300 rts

310 ;

320 main =*

330 pha: tya

340 pha: txa

350 pha ;save a,x,y

360 Ida #1

370 sta $dO19

380 Ida irqselc

390 cmp #1

400 beq irqend

410 Ida $dO12

420 cmp #60

430 bcc topirq

440 Ida 53272 ;set up for text mode

450 and #247

460 sta 53272

470 Ida 53265

480 and #223

490 sta 53265

500 Ida #2

510 sta $dO12

520 Ida 53270

530 and #239

540 sta 53270

550 Ida irqtwcol

560 sta 53281

570 jmp irqend

580 ;

590 topirq =* ;set up for hires mode

600 Ida 53272

610 ora #8

Transactor

BF

MB

GM

OG

JD

KO

LI

BB

IH

ND

IK

AF

IJ

PM

CB

DI

JJ

HK

IK

DF

KK

CA

FN

DO

EO

LO

GO

GJ

MC

BE

DP

GN

GN

ML

PL

AC

BJ

IN

KC

PO

DL

LD

OA

BJ

LA

MM

HI

OI

IM

IG

MG

LH

PH

FH

MH

CF

EE

EN

NP

BO

DJ

NH

AJ

MK

EJ

HG

KE

JL

MM

AG

FE

PK

PK

CJ

OK

LO

45

620 sta 53272

630 Ida 53265

640 ora #32

650 sta 53265

660 Ida 53270

670 ora #16

680 sta 53270

690 Ida splin /split text line

700 asl: asl: asl /convert to raster

710 adc #50

720 sta $dO12

730 ;

740 irqend =*

750 Ida $dc0d

760 lsr a

770 bcc irq2end

780 pla: tax

790 pla: tay

800 pla

810 jmp $ea31

820 ;

830 irq2end =*

840 pla: tax

850 pla: tay

860 pla

870 jmp $febc

880 ;

890 irqtwcol .byte 3

900 irqselc .byte 0 ;hi/text (l)=text

910 splin .byte 20 /split text line

100 sys 700 ;pal 64

110 .opt oo

120

130

140

150

160

170

180

• "seam"

• puts a sprite anywhere

on the screen

put x/2 in xpos,

y in ylo,

and sprite # in xpsnum.

190 seam =* ;uses xpos, ylo, xpsnum

200 Ida #0

210 sta xhi

220 Ida xpos

230 asl

240 rol xhi ;holds high bit

250 seam2 =* ;uses xlo, xhi, ylo, xpsnum

260 sta xlo

270 Ida xpsnum

280 asl: tax

290 Ida ylo

300 sta 53249,x

310 Ida xlo

320 sta 53248,x

330 Ida xhi

340 bne xpnl

350 ;clear high bit

360 ldx xpsnum

370 Ida #255

380 sec

390 sbc xpnum,x

400 and 53264

410 sta 53264

420 rts

430 xpnl =* ;set high bit

440 ldx xpsnum

450 Ida 53264

460 ora xpnum,x

470 sta 53264

480 rts

490 ;

500 xpos .byte 80 /sprite x pos / 2

510 ylo .byte 120 ;y position

520 xlo .byte 100 /sprite x pos low

530 xhi .byte 0 /sprite x high bit

540 xpsnum .byte 0 /sprite # (0-7)

550 xpnum .byte 1,2,4,8,16,32,64,128 Q

February 1989: Volume 9, Issue 3

The BASIC 7.0 BANK Command

A voyage ofdiscovery in the C128 ROMs

by D.J. Morriss

As is well known, Commodore was experiencing financial dif

ficulties during the development and early marketing of the

C128. This may account for the frequent use and misuse of the

term 'bank' in connection with the internal architecture of both

the C128 and the 1750 Ram Expansion Module.

As has been well explained in earlier issues of the Transactor,

the term 'bank' in the C128 is most often used to refer to dif

ferent preselected memory configurations. The Memory Man

agement Unit (MMU) switches different parts of the available

180 kilobytes of RAM and ROM into the C128's 64K of

addressable memory, as needed. This switching is going on

hundreds of times a second, under the control of the operating

system.

For example, a very long basic program may occupy RAM in

Bank 0 as far as $D600. The program at that point may con

tain a statement to PRINT A$, where the string A$ could, by co

incidence, be stored in Bank 1 starting at that same address,

$D600. If the 80-column screen is the active screen, the PRINT

statement must pass the string to the 80-column Video Display

Controller (VDC) through its two registers at (you guessed it)

$D600 and $D601 in Bank 15.

Meanwhile, the 40-column screen may need to know how to

draw a character whose shape is defined starting at $D600 in

Bank 14. Clearly, interfering in these rapidly changing config

urations would be a very tricky and dangerous process. Yet,

Basic 7.0 on the C128 seems to supply a command that does

exactly that. Naturally, it is called the BANK command.

Various references seem unclear about just what the BASIC 7.0

BANK command does. One states that the command "switches

the system from one bank to another". Another says that bank

"selects one of the 16 memory banks". Most authorities, in

cluding Commodore's C128 System Guide and C128 Pro-

grammer's Reference Guide make it clear that the BANK com

mand determines the memory configuration accessed by cer

tain other Basic 7.0 commands, but there is no general agree

ment as to which commands are involved. Some digging in the

C128 ROMs gave me the answer to most of these questions,

and revealed some facts about BANK that are both important

and not widely known.

What it does

The BANK routine is located in ROM at $6BC9 (listed at the

end of this article). As the disassembly shows, the routine is

short and simple. It evaluates the argument of the bank com

mand, checks if that argument is in the range 0-15, then stores

it in $03D5 (decimal 981), and exits. And that is all it does!

The command, BANK 15, is exactly the same as POKE 981,15.

The bank command certainly seems innocent enough...

The next obvious question is "Who cares?" or, "What rou

tines reference this memory location, $03D5?" I used the

Monitor HUNT command to check the ROMs for all instances of

this address. (I thought it unlikely that this location would be

referenced by indexed or indirect addressing.)

Naturally, the address would be found, in low-byte hi-byte

form, as the sequence $D5, $03. There are exactly nine occur

rences of this byte sequence, and they all turned out to be part

of valid load or store commands. This is the break-down of the

locations and the routines located there:

$40B5 the initialization routine of the cold-start

sequence. The routine stores a value of $0F,

decimal 15, in location $03D5

$5891 this part of the ROM handles the SYS

statement.

$6BD1 handles the bank statement (see listing).

$6C41 handles the wait statement.

$7347 handles the BOOT statement.

$80D2 handles the peek statement.

$80Fl handles the POKE statement.

Transactor 46 February 1989: Volume 9, Issue 3

$A3E0 evaluates parameters for disk commands.

$AA60 common code for ram Expansion Module STASH,

FETCH and SWAP commands.

These are the only commands that change or refer to $03D5;

these are the only BASIC commands that are affected by bank.

There are several significant points that should be made about

this list.

The first thing to be noted is the relative permanence of the

BANK command. Once BANK stores a value in $03D5, only an

other bank command, a poke to $03D5, or a complete system

reset will change it. The stored value survives the running of a

program, a RUN/STOP-RESTORE, and even a reset with

RUN/STOP depressed.

As a consequence, you should never assume you know the

value stored in $03D5. Any of the 'banked' commands listed

above should always include some type of BANK command to

set the desired configuration explicitly.

Some C128 references state that, in the absence of any bank

command, Bank 15 is the default value. In one sense, this is

correct. If no BANK command has ever been used since the

computer was reset, the value of $0F stored in $O3D5 by the

initialization routine will establish Bank 15 as the one to be

accessed.

However, if any bank command has ever changed the value in

$03D5 since the last reset, then that bank command is the one

that determines the bank accessed, even if it was isssued hours

earlier.

PEEK, POKE, SYS and WAIT

The importance of BANK to these four commands is obvious.

If you are going to look at, or change bytes at memory loca

tions in different banks, the PEEK and POKE routines must

check $O3D5 to know which configuration you want them to

access.

If you are going to SYS to some machine language, SYS needs

to know which configuration contains the program. If you are

going to wait until the bits in a particular memory location

match some pattern, again the routine must know which con

figuration contains the particular location.

STASH, FETCH and SWAP

The inclusion of the Ram Expansion commands stash, fetch

and swap may cause some surprise. The Ram Expansion Mod

ule User's Guide certainly seems pretty definite that only

Bank 0 can be accessed. On page 14, it states that the BASIC

commands "can only be used to transfer or retrieve data in

Bank 0 of the C128 computer's internal RAM", and the state

ment is repeated word-for-word on page 24. The situation is

somewhat confused, since the manual goes on immediately to

describe how to access Bank 1! In fact, you can FETCH, STASH

and SWAP to/from any C128 internal bank, simply by using the

BANK command first.

The Version 0 C128 ROMs have some problems in doing this.

The original DMA (Direct Memory Access) routine insists on

creating a new memory configuration, in which the I/O block is

visible. Thus, it would be impossible to STASH the Character

ROMs, in Bank 14, using the Version 0 ROMs. In addition, the

Version 0 routine will occasionally carry out the

STASH/FETCH/SWAP with the wrong memory configuration

enabled. The new Version 1 ROMs correct both these bugs, al

lowing you to access any part of any bank without difficulty.

For example, if you have either a 1700 or 1750 RAM Expan

sion Module and C128 Version 1 ROMs, try this short program

in 40-column mode:

100 GRAPHIC 1,1

200 BANK 14: STASH 4096, 53248, 0, 0

300 BANK 15: FETCH 4096, 8192, 0, 0

400 BANK 0: FETCH 4096, 12288, 0, 0

The entire character set has been copied from the Bank 14

Character ROMs into the RAM expansion, and from there twice

into the Bank 15 hi-res screen memory. The different BANK

commands in lines 300 and 400 simply demonstrate that, from

$0000 to $3FFF, Bank 0 and Bank 15 are the same.

Disk I/O

The inclusion of the disk parameter evaluation routine is also

curious. The commands involved are bload and bsave. The

description of these two commands makes it clear that you can

specify the bank to be accessed by including the B parameter

in the command string; for example,

BSAVE "CHARGEN", B14, P53248 TO P57343

will save the character pattern ROM, in Bank 14, to disk; while

BLQAD "SPRITES", B0, P3584

loads a binary file into the Bank 0 sprite pattern storage area.

Not so clearly stated is the fact that, in the absence of any B

parameter in the BSAVE or BLOAD command string, the last

BANK command is used to set the bank saved or loaded. Enter

and run this short BASIC program, in 40-column mode, with a

disk in the drive:

100 GRAPHIC 1,1

200 BANK 14 : BSAVE "CHAR/SET", P53248 to P57343

300 BANK 15 : BLQAD "CHAR/SET", P8192

The complete character set will appear on the screen, as it is

first BSAVEd from Bank 14 to disk, and then BLOADed back in

to Bank 15 into the high-res screen memory.

Transactor 47 February 1989: Volume 9, Issue 3

Either a BANK statement or a B parameter is necessary to en

sure that BSAVE, and particularly BLOAD, operate reliably. The

problem is that the C128 uses the same format for saving files

as do all other Commodore 6502-based systems, from the first

PET onwards. Thus, while the start address of a file is saved,

the Bank is not saved, since the format predates the Bank

concept.

This makes the C128 compatible with other Commodore com

puters, but leads to problems when files are saved and loaded

from different Banks. The Bank must be specified separately,

by either the B parameter in the command string, or the BANK

command preceding the disk command. Since the B parameter

overrides the BANK command, it should be included in the

command string whenever the bload or BSAVE commands are

used.

BOOT

The fact that BOOT is affected by the bank command is a total

surprise. There are, of course, two versions of the BOOT com

mand. The simple command, BOOT, causes the system to carry

out instructions according to the contents of Track 1, Sector 0.

This version of BOOT is not influenced by BANK. However, the

other version of the command, BOOT "filename", is affected

by BANK, although none of references I have seem to be aware

of this.

The command, BOOT "filename", is the equivalent of BLOAD

"filename", followed by a SYS to the load address of the file

BLOADed. However, as explained above, the load Bank is not

saved.

As a result, the BOOT command uses the BANK command flag

in $03D5 to determine the Bank where the program will be

BLOADed and run. Thus, you should always set this flag with a

BANK command before you execute the BOOT "filename"

command.

An interesting discovery was made about the syntax of the

BOOT command. Most references fail to mention that the BOOT

command string can contain an alternate load address, speci

fied by a P, followed by the new load address.

This is exactly the same as the P syntax used in BLOAD and

BSAVE. In addition, none of the references mention that the B

parameter can be included in the BOOT command string to

force the BLOAD and SYS into some other Bank. For example:

BOOT "GOODIES", BO, P12345

will load the file "GOODIES" into Bank 0, starting at 12345

(decimal), and then SYS to this location. The Bank value in

$03D5, and the original load Bank and address of "GOODIES",

will have no effect. Since this use of the B parameter is com

pletely undocumented by Commodore, it would be unwise to

make much use of it. There is no requirement on Com

modore's part to preserve such undocumented 'features'.

USR

Notably absent from the list of BASIC 7.0 'memory' com

mands affected by BANK is the USR function. Briefly, USR op

erates as follows. When a basic program encounters a USR

statement, such as:

400 Y = USR(X)

the expression in parentheses is evaluated and stored in Float

ing Point Accumulator #1. In the example above, the expres

sion is just the variable X, but any complex expression that

yields a numerical value is permitted. Then the program exe

cutes a JMP to a user-supplied machine language routine. This

is only possible if you have earlier stored the address of the

routine, in low-byte, high-byte order, in 4633-4634 (decimal),

$1219-$121A.

The machine language routine may or may not change the val

ue in Floating Point Accumulator #1; also, the routine must

end in an RTS (ReTurn from Subroutine). Finally, the value

found in Floating Point Accumulator #1 at the end of the ma

chine language routine is used as the value of the USR func

tion; in the above example, this value is assigned to Y. Here is

a more complex example:

500 Y = 3 * (SQR(2.5 * USR(LOG(5 * Y))))

Here the variable Y is multiplied by 5, and the logarithm of the

result is calculated and left in Floating Point Accumulator #1.

The machine language routine is executed, and the value in the

Floating Point Accumulator at the end of the ML is multiplied

by 2.5; the square root of the result is multiplied by three and

assigned to the variable Y.

If you are careless enough to use the USR function without set

ting the pointer in $1219-$ 121A, you will receive an ILLEGAL

QUANTITY ERROR message. There is no illegal quantity, and

USR has functioned as described. It's just that the initialization

routine sets $1219-$ 121A to point to the routine that prints

that particular error message, as a precaution against exactly

this piece of carelessness!

As far as this article is concerned, the important point is that

the JMP to the user-supplied machine language routine takes

place in Bank 15. The BANK flag in $03D5 is not consulted,

and USR is not affected in any way by the BANK command.

Thus, the machine language routine must be in Bank 15 RAM

below $4000, or consist of a ROM routine. Of course, there is

no reason why the ML cannot jump to a routine in another

Bank, as long as it returns to Bank 15 before ending.

Bank 16,17,18...?

As stated above, the BANK command is careful to place a num

ber in the range 0-15 (decimal) in $03D5. You may be won

dering what would happen if you poked some other value into

$03D5, and then used any of the commands above. The results

Transactor 48 February 1989: Volume 9, Issue 3

would be quite unusual, and not very useful. Here's why. The

actual switch from one Bank to another is accomplished by

storing a number in $FF00.

This is an alternate address for $D500, the Mmu Configura

tion Register. Each of the eight bits in the number stored deter

mines some part of the memory configuration, leading to a

possible 256 configurations.

Commodore picked 16 individual configurations (or Banks)

that it thought would be particularly useful, and stored the

Configuration Register value that establishes each of these

configurations in a table starting at $F7F0.

For example, to establish the memory configuration that Com

modore chose to call Bank 0 requires that 63 (decimal) be

stored in $FF00, so the first entry in the table is 63. The BANK

flag in $03D5 is used as an offset into this table, to obtain a

value that will then be stored in $FF00.

Since there are only 16 entries in the table, setting a Bank

higher than 15 would cause the system to read the code that

follows the table as more Configuration Register values. The

memory configuration that would be established during PEEK,

POKE or whatever, by these 'new' table values would be very

strange indeed!

Summary

1) Always precede peek, poke, sys, wait, stash, fetch,

SWAP and BOOT "filename" with a BANK statement to set

the desired Bank explicitly.

2) Always include the B parameter in the command string for

BLOAD and BSAVE to set the desired Bank explicitly.

3) Always locate the machine language for the USR function

in Bank 15.

4) Never POKE strange values into $03D5. Better yet, never

poke strange values anywhere!

Listing

BANK Command ROM Listing

6bc9 jsr $87f4

6bcc cpx #$10

6bce bcs $6bd4

6bdO stx $03d5

6bd3 rts

routine to evaluate

BANK argument

check for valid argument

branch if invalid

store BANK argument

in $03D5

all done

NOTHING LOADS YOUR PROGRAMS FASTER

THE QUICK BROWN BOX

A NEW CONCEPT IN COMMODORE CARTRIDGES

Store up to 30 of your favorite programs — Basic & M/L, Games &

Utilities, Word Processors & Terminals — in a single battery-backed

cartridge. READY TO RUN AT THE TOUCH OF A KEY.

HUNDREDS OF TIMES FASTER THAN DISK. Change contents

as often as you wish. The QBB accepts most unprotected programs

including "The Write Stuff the only word processor that stores your

text as you type. Use as a permanent RAM-DISK, a protected work

area, an autoboot utility. Includes utilities for C64 and C-128 mode.

Packages available with "The Write Stuff," "Ultraterm III," "QDisk"

(CP/M RAM Disk), or QBB Utilities Disk. Price: 32K $99; 64K $129.

(+$3 S/ H; $5 overseas air; Mass residents add 5%). 1 Year Warranty.

Brown Boxes, Inc, 26 Concord Rd, Bedford, MA 01730: (617) 275-

0090; 862-3675

GET MORE

PLEASURE

FROM THE

BIBLE WITH

LANDMARK

The Computer Reference Bible

Here's what LANDMARK will enable you to do:

• SEARCH THE BIBLE—Find Phrases, words or sentences.

• DEVELOP TOPICAL FILES-Copy from The Bible text

and search results then add your own comments and notes.

• COMPILE YOUR PERSONAL BIBLE-Outline texts in

color. Add notes, comments, and references. Make your Bible

Study organized and on permament record!

• CREATE FILES— Then convert them for use with

wordprocessors like Paperclip and GEOS.

• MAKE SUPPLEMENTARY STUDY FILES-For specific

study and develop translation variations.

NEW LOW PRICE! $119.95

vl.2 for C64 and v2.0 for C128
CALL OR WRITE TODAYFORA FREE BROCHURE

WHICH SHOWS HOW VALUABLE LANDMARK CAN

BE IN YOUR BIBLE STUDY

PA.V.Y. Software P.O. Box 1584

Ballwin, MO 63022 (314) 527-4505

6bd4 jmp $7d28 ; prints error message □

Transactor 49 February 1989: Volume 9, Issue 3

REDATE

Notesfrom the CP/M Plus workbench

by Adam Herst

Copyright © 1988 Adam Herst

Cp/m Plus provides sophisticated date and time services to both

the user and the programmer. Users can set the system clock from

the command line using the DATE or CONF commands. With a lit

tle preparation, you can stamp files with the system time to reflect

creation, access, and update dates and times. The transient version

of the dir command can display the stamped information. Pro

grammers can manipulate system dates and times and file stamps

using a number of BDOS services.

With all of these services provided by Cp/m Plus, it is unfortu

nate that the C128 does not come equipped with a battery-

powered clock. If the system clock and file stamps are to be

correct, the system date and time must be set or reset on every

cold boot, reset or warm boot.

While this is annoying, there are benefits in making sure that

the system's date and time are set correctly, or at least in cor

rect chronological sequence. If you're like me - without a

watch more often than not - it is convenient to have the time

available through the command line. More importantly, the

date and time services provide a way to track the many ver

sions of text and executable files that are generated by practi

cally every large writing or programming project.

Redate, a short assembler program, removes the drudgery of

manually resetting the system clock. It uses CP/M's file stamp

ing to set the system date and time to that of the most recently

accessed file. Without a battery-powered clock, no program

can automatically set the date and time exactly. However, re-

date can ensure that file stamps are chronologically correct

and, if there has been recent disk access, that the system date

and time are reasonably close to the real date and time.

Setting the date and time

Two utilities with which to set the system date and time, DATE

and CONF, are supplied in the Cp/m Plus toolkit. Date is a

standard Cp/M Plus transient utility provided by DRI (Digital

Research Institute, the supplier of the Cp/m Plus operating sys

tem). It is a relatively large program, and is specialized for set

ting and displaying the system date and time. CONF is an im

plementation-specific utility provided by Commodore, with

CP/M versions dated Dec 6, 1985 and later. CONF is small and

fast, and is designed to manipulate a host of system character

istics, most of them specific to CP/M on the C128. The differ

ences in design and function between DATE and CONF are re

flected in the operation of these two utilities.

When used to set the system date and time, date can be used

in a command line mode or in an interactive mode. Interactive

mode is useful in profile.sub files, since it pauses and

prompts for input.

In interactive mode, the form of the DATE command is:

DATE SET

Cp/m will respond with the exchange:

Enter today's date (MM/DD/YY):

Enter the time (HH:MM:SS):

Press any key to set time

An argument error at any stage will abort the DATE command.

An argument can be passed over by pressing the RETURN key.

In command line mode, the form of the DATE command is:

DATE SET dd/mm/yy hh:mm:ss

where dd is the day number, mm is the month number, yy is

the year number, hh is the number of hours in 24-hour format,

mm is the number of minutes, and ss is the number of seconds.

Both arguments must be supplied in full. An incomplete date

or time specification is flagged as an error.

Issuing this command without argument errors results in a

prompt to press any key to set the date and time. Pressing a key

sets the system clock and returns the CCP prompt. If there are er

rors in the arguments, either syntax errors or invalid dates or

times, the error is flagged and the operation is aborted.

Date can be used to display the system date and time in com

mand line mode only. The form of the command for display is:

DATE

Transactor 50 February 1989: Volume 9, Issue 3

Cp/M will respond with a display similar to:

Mbn 08/01/88 11:49:18

Note the display of the day name. The code to extract this in

formation from the information actually maintained by CP/M is

one of the reasons for date's large size and slow operation rel

ative to CONF. Nonetheless, it is a nice feature if you need it.

Conf offers limited functionality compared to date. It oper

ates in command line mode only, performs less error handling,

and provides a stripped-down display. However, given its rela

tively small size, and its many other uses, it is much more

likely to be found on a currently logged-in disk than DATE, its

DRI counterpart. To use CONF to set the date and time, issue the

command:

CONF DATE = dd/mm/yy hh:mm:ss

where dd is the day number, mm is the month number, yy is

the year number, hh is the hour number in 24-hour format, mm

is the number of minutes, and ss is the number of seconds

(though this is ignored and may be omitted). Either argument

can be omitted. If both arguments are omitted the date is dis

played. An error - either a syntax error or an invalid date -

causes the command to be aborted.

Stamping files

Cp/m's file-stamping services are the heart of redate's opera

tion. Without them, no record of the date and time would exist

for redate to use. However, Cp/M Plus does not stamp files

with dates and times by default. (This is probably due to the

directory entry overhead imposed by file stamps. As described

later in this article, the use of file stamps reduces the number

of available directory entries by 25 per cent.) So, before files

can be stamped, the initdir command must be used to initial

ize the directory of the given disk to receive file stamps. Also,

the SET command must be used to indicate which of the file

stamp types is to be active.

To initialize a disk directory for file stamps, issue the command:

INITDIR d:

where d is the letter of the drive containing the disk to be

initialized.

Initdir responds with the exchange:

INITDIR WILL ACTIVATE TIME STAMPS FOR THE SPECIFIED DRIVE.

Do you want to re-format the directory on drive: M (Y/N)?

If the disk has already been initialized to accept file stamps,

INITDIR responds with:

Directory already re-formatted.

Do you want to recover time/date directory space

If the directory space is not to be recovered, INITDIR responds with:

Do you want the existing time stamps cleared (Y/N) ?

This last exchange is the only way to directly manipulate file

stamps through the standard CP/M toolkit. Unfortunately, file

stamps can only be explicitly set to a blank entry.

Note that the disk does not have to be newly formatted. Exist

ing data will not be destroyed by INITDIR. There is a chance,

however, that a disk with data may not have sufficient directo

ry space remaining to support file stamps. If this is the case,

you will have to remove some of the files on the disk. Files

that existed before the initialization will have blank entries for

the activated stamps.

Once the directory has been initialized, use the SET command

to indicate which of the file stamp types should be active for

that disk. Cp/M Plus supports three types of file stamps: create,

update, and access. Create stamps indicate the date and time

at which the file was created. Update stamps indicate the date

and time at which the file was last updated. Access stamps in

dicate the date and time at which the file was last accessed.

While three file stamp types are supported, a maximum of two

file stamp types may be active at any one time. Cp/m dictates

that create and access file stamps are mutually exclusive - only

one of the two can be active at any one time. Fortunately, the

way CP/M interprets update stamps allows them to function as

create stamps in most cases.

Update stamps indicate the date and time at which the file was

updated 'in place'. A file that is updated in place has altered

information written to the same disk record as the original file,

and writes new information to the last record of the original

file. One program that updates files in place is dBASE II.

Most programs do not update files in place. They create a new

file to hold the altered or new version and delete or rename the

original file. Consequently, for a newly created file, the update

stamp reflects the creation date and time. Activate access stamps

instead of create stamps, and interpret them as create stamps. To

display the file stamps, use the transient version of DIR:

DIR d: [ATT]

where d is the drive whose disk directory should be shown. A

directory display similar to the following will be shown:

Scanning Directory...

Directory For Drive A: User 9

Bytes Fees Attributes Prot Update

REDATE COM 2k 3 Dir HW None 08/01/88 12:11 08/01/88 12:11

(Y/N) ?

Total Bytes

Total Ik Blocks =

2k Total Records = 3 Piles Pound = 1

1 Used/Max Dir Entries For Drive A: 69/ 128

Transactor 51 February 1989: Volume 9, Issue 3

The last two columns of the listing contain the information for

the active file stamps, in this example update and access. Prac

tically all of the other forms of the DIR command will display

the file stamp information as well.

System level services

The next few paragraphs discuss time and date services and file

stamping at the system level; they assume familiarity with the

Cp/m 3.0 BDOS and the Cp/m 3.0 file system. This background in

formation can be found in the Cp/M Plus Programmer's Guide

available through the Commodore Cp/m Special Offer.

Cp/m uses a four-byte data structure to store date and time in

formation. The first two bytes are used to store the date; the

last two bytes are used to store the time. The date is stored as

the number of days elapsed since January 1, 1978, in low

byte/high byte format. (Your guess as to what will happen

when we pass June 4, 2001, the largest date representable un

der this format, is as good as mine.) The time is stored as the

number of hours and number of minutes, in BCD (binary coded

decimal) format. The CP/M date structure representing the date

and time 7/18/88 22:55 looks like this:

oc

low byte

date in days

OF

high

date

byte

in days

22

hours

55

minutes

The system date and time are maintained in the system control

block, at byte offset 58h-5ch. (The fifth byte is used to store

the seconds in BCD, and is unused for file stamps.) It can be

queried and set by directly manipulating the SCB. However,

BDOS calls 68h and 69h are provided to facilitate operations

that set or query the date and time respectively.

Cp/m Plus stores file stamps in the disk directory. Since only

two types of file stamps can be active at one time, and four

bytes are required for each date structure, a maximum of 8

bytes are required to store the file stamps for a given file. File

stamps are not stored in the same directory entry as the file to

which they are related - there is no room. They are stored in a

directory entry used solely for date and time stamps, and pass

word mode information. There is enough room in a directory

entry (32 bytes) to store date and time stamps and password

information for three files.

This explains what is happening when a disk directory is pro

cessed by initdir. When Cp/m Plus prepares a directory for

file stamping, the directory is rearranged so that every fourth

entry is used to record stamp and password mode information

for the previous three files. (This results in the 25 per cent re

duction of available directory space mentioned earlier.) A file

stamp directory entry is identified by a 2lh in location 0 of the

directory entry, instead of the user number to which the file

belongs.

When a directory entry for a file is read using the BDOS

* search for first file' or 'search for next file' system calls, the

DMA buffer contains the directory entry for four files. When

file stamps are active, the last directory entry in the DMA

buffer contains the file stamp and password mode information

for the preceding three files.

File stamp information can be obtained directly from the DMA

buffer. However, BDOS call 66h gets the file stamp information

for the file in the FCB. Bytes 24-27 of the FCB will contain the

create or access file stamp (recall that only one of the two may

be active). Bytes 28-31 of the FCB will contain the update

stamp. File stamp date and times cannot be set directly.

Redating

Redate sets the system date and time to that of the most re

cently accessed file as indicated by the access stamp. It frees

you from finding a calendar and clock to determine the date

and time, and frees you from having to enter that date and time

through the keyboard. While redate can't accurately set the

time, it ensures that stamps are chronologically correct. It is

most effective when used immediately after a warm boot or re

set. While it can be used after a cold boot, large discrepancies

between the system date and time and the real date and time

are likely.

Redate requires that access file stamps be activated on the

specified disk and that some disk activity has occurred before

the REDATE command is issued.

To execute REDATE, issue the command:

REDATE d:

where d is the drive in which the disk to be searched is located.

If the disk letter is omitted, the default disk will be searched. If

no file access stamp is found, the program return code will be

set to an error condition.

The Redate program

Redate is written in 8080 assembler. It can be assembled 'as

is' with MAC and loaded with HEXCOM, both supplied by DRI in

the Commodore Cp/M Special Offer package.

The code is fully commented, so only an overview will be sup

plied here. Redate starts by matching all files in user area 0,

and stores them in a simple stack using the PushFileName rou

tine. Once all matches have been found, the file names are re

trieved one at a time using the PopFileName routine. The ac

cess stamp information for each file is compared to the saved

date (initialized to 1/1/78) using the CompareDate routine. If

the access stamp is more recent, it is copied to the saved date

where it becomes the standard for further comparisons. When

the last file in the current user area is processed, the cycle is

repeated for the next user area. When all user areas have been

processed, the system date is set to the saved date if it is more

recent than the initial date.

Transactor 52 February 1989: Volume 9, Issue 3

Conclusion ; 4.3 Set dma buffer

Redate illustrates one use of Cp/m 3.0's sophisticated date

and time services. Enhancements to redate could include an

option for a 'fudge factor' to set the date more accurately, or

an option to search all the disks in the drive path for the most

recently accessed file. Other date and time related utilities

could include a make utility to evaluate file dependencies. The

features of Cp/M 3.0 make ideas like these surprisingly easy to

implement.

Listing: Redate.asm

Redate

1 TITLE

REDATE (c) 1988 Adam Herst, Toronto, Ontario

Set the system date to that of the most recently accessed file

on the specified disk.

Requires that access file stamping has been activated.

mvi

Ixi

call

c,SetDMAAddr

BDOS

5 Find most recent access stamp and save it

5.1 Has a drive been

Ixi

mov

cpi

h,CPMFCB

a,m

Oh

; 5.2 If no then start checking files

jz CHECKFILES

; 5.3 Set default drive to specified drive

; point to drive letter

; get drive letter

; is it already the default?

filename is already the default

2 HISTORY

v2.1

v2.0

vl.O

3 EQUATES

Adds drive option

Sets program return code to error if no stamp found

First working version

Non-working prototype

GetSetRetCode

SetDMAAddr

SelDisk

GetSetUser

ParseFileName

SearchFirst

SearchNext

GetDatePasswd

SetDate

BDOS:

CPMFCB:

FCBFILENAME:

FCBACCESS:

MYDMA:

FILENAMESTACK:

DMARECOFFSET

RETCODECCPSUC:

RETCODEUSRERR:

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

6ch

lah

Oeh

20h

98h

llh

12h

66h

68h

5h

5ch

CPMFCB+ld

CPMFCB+24d

0400h

0500h

20h

OOOOh

OFFOOh

; CCP-initialized success code

; User set error code

; 4 PROLOG

; 4.1 Program start

org lOOh

; 4.2 Set program return code to error

mvi c,GetSetRetCode

Ixi d,RETCODEUSRERR

call BDOS

dcr

mvi

mov

call

; 5.4 For USERNUM: = 0 to 15

CHECKFILES:

Ixi

mvi

rUnUdfinHUM.

mov

cpi

jnc

; 5.4.1 Set user number to USERN

mvi

mov

call

a

c,SelDisk

e,a

BDOS

h,USERNUM

m,Oh

a,m

Ofh

DODATE

m\

c, GetSetUser

e,m

BDOS

; 5.4.2 Set fcb to match all wildcard

Ixi

shld

Ixi

shld

mvi

Ixi

call

; 5.4.3 Setup the filename stack

Ixi

shld

; 5.4.4 Get directory entry for

mvi

Ixi

call

h,ALLFILES

PFCBFSPECPTR

h, CPMFCB

PFCBFCBPTR

c,ParseFileName

d, PFCBSTRUCT

BDOS

point to counter

set it to 0

get counter

is it equal to 15

yes so jump to set system date

; point to wildcard filespec string

; put pointer in PFCBSTRUCT

; point to file control block

; put pointer in PFCBSTRUCT

; parse the string and initialize FCB

to store filespec matches for processing

h,FILENAMESTACK

FILENAMEPTR

first file match

c,SearchFirst

d, CPMFCB

BDOS

; 5.4.5 While there is a file match

HHILEAMATCH:

; point to bottom of filename stack

; set top stack pointer to bottom

cpi Offh ; is it the no match code?

jz HHILENOTEMPTY ; yes so jump to process matches

; 5.4.5.1 Push filename onto filename stack

call PushFileName ; save filename from DMA buffer

Transactor 53 February 1989: Volume 9, Issue 3

; 5.4.5.2 Get directory

mvi

lxi

call

entry for next file mate

c,SearchNext

d,CPMFCB

BDOS

; 5.4.5.3 Check if there was a match to save

jmp

; 5.4.6 While filename

WHILENOTEMPTY

lxi

push

pop

lhld

call

jz

; 5.4.6.1 Pop filename

call

; 5.4.6.2 Get access st<

mvi

lxi

call

WHILEAMATCH

stack is not empty

h,FILENAMESTACK

h

d

FILENAMEPTR

CompareDEToHL

NEXTUSERNUM

from FILENAMESTACK

PopFileName

unp information for file :

c,GetDatePasswd

d,CPMFCB

BDOS

; 5.4.6.3 Is the file access date never than the

lxi

lxi

call

; 5.4.6.4 If no then pr<

jnc

d,NEWSYSDATE

h,FCBACCESS

CompareDate

)cess next filename

WHILENOTEMPTY

; 5.4.6.5 Save access date of filename

lxi

lxi

mvi

call

; 5.4.6.6 Check if then

jmp

h,NEWSYSDATE

d,FCBACCESS

b,04h

CopyBytesUp

» is another filename to ;

WHILENOTEMPTY

; 5.4.7 Do next user number

NEXTUSERNUM: lxi

inr

jmp

; 6 Set the system date

DODATE:

; 6.1 Is the saved date

lxi

mov

inx

ora

inx

ora

inx

ora

; 6.2 If yes then do an

Transactor

MSERNUM

m

FORUSERNUM

l

; point to bottom of stack

; put pointer in DE

; point to top of stack

; do they point to the same location

; yes so no files to process

; put filename in FCB

m CPMFCB

current saved date?

point to saved date

point to access date

compare saved date to access date

saved is larger so do next file

process

point to user number counter

increment it

check if its valid

if an access stamp has been found

equal to its initial value?

h,NEWSYSDATE

a,m

h

m

h

m

h

m

unsuccessful exit

EXITERROR

; 6.3 Set the sj

; 7 EXIT

; 7.1 Success

EXITSUCCESS:

; 7.2 Error

EXITERROR:

8 SUBROUTINES

fstem d

mvi

lxi

call

mvi

lxi

call

jmp

8.1 CurrentDmaRec - 1

Description:

Arguments:

Returns:

CurrentDmaRec

NEXTDMAREC:

8.2 CompareDal

Description

Arguments:

Returns:

CompareDate

54

Point

the

A-i

HL-

lxi

lxi

inr

dcr

rz

dad

jmp

ite

c,SetDate

d,NEWSYSDATE

BDOS

CGetSetRetCode

d,RETCODECCPSt

BDOS

OOh

>oint to the current DMA

: to the start of

JC

record

:urrent record in the DMA buffer.

lumber of current record in DMA buffer (0-3)

points to start of current record

h,MYDMA

OHAREC0FFSE-]

a

a

d

NEXTDMAREC

:e - Compare HL date to DE date

; point to first DMA record

F ; get the record offset

; initialize record counter

; is it the right record?

; yes so return

; point to next DMA record

; check if it is the right record

Compare the CP/M date structures.

The

than

DE-

HL-

Z -

C -

inx

inx

ldax

emp

re

rnz

dcx

dcx

ldax

emp

re

rnz

inx

inx

inx

inx

ldax

emp

re

rnz

inx

inx

ldax

emp

ret

standard date is smaller/equal/larger

the argument date

standard date

argument date

set if equal

set if std is smaller

h

d

d

m

h

d

d

m

h

h

d

d

d

m

h

d

d

m

- high byte of years in days of argument

- high byte of years in days of standard

get standard

is it equal to argument

no it is smaller

no it is larger

low byte of years in days of argument

low byte of years in days of standard

get standard

is it equal to argument

no it is smaller

no is is larger

hours byte of argument

hours byte of standard

get standard

is it equal to argument

no it is smaller

no it is larger

minutes byte of argument

minutes byte of standard

get standard

is it equal to argument

February 1989: Volume 9, Issue 3

8.3 PushFileName - Push current filename in DHA buffer onto FILENAHESTACK

Description:

Arguments:

Copy current filename in DMA buffer

to the top of the filename stack.

and FILENAHEPTR has been defined.

A - current record in DHA buffer

inr

ldax

mov

inx

inx

imp

c

d

m;a

d

h

NEXTBYTE2

; increment counter

; get source bytes

; put it in destination

; point to next source bytes

; point to next destination

; check if more bytes to copy

PushFileName

call

inx

push

pop

lhld

mvi

call

shld

ret

CurrentDmaRec

h

h

d

FILENAHEPTR

b,lld

CopyBytesUp

FILENAHEPTR

point to current record in DMA

point to start of filename

put source pointer in DE

put destination pointer in HL

put number of bytes to copy

copy them incrementing pointer

save the new pointer

8.7 CopyBytesDown - Copy B number of bytes moving down from DE to HL

Description:

Arguments:

Returns:

CopyBytesDown

Copy the bytes pointed to by DE to

the bytes pointed to by HL

decrementing the pointers.

DE - start of source bytes+1

HL - start of destination bytes+1

B - number of bytes to copy

DE - last byte of source bytes

HL - last byte of destination bytes

; Description:

PopFileName

- rusn menaiae in buj onto iliwiUUidlAUX

Copy the filename from the top of the filename stack

to the FCB.

Requires that

lhld .

push

pop

lxi

mvi

call

push

pop

eh] ASIUQ

ret

FILENAHESTACK: has <

FILENAHEPTR

h

d

h,FCBFILENAHE+lld

b,lld

CopyBytesDown

d

h

it least one entry.

get source pointer

put it in DE

get destination pointer

number of bytes to copy

copy them decrmenting pointer

save new pointer

mvi
ifflt/nnvfflfl') *
NEXTBYTE3:

mov

cmp

rz

inr

dcx

do:

ldax

mov

jmp

; 9 STRUCTURES

c,0h

a,c

b

c

d

h

d

m,a

NEXTBYTE3

; 9.1 VERSION: - Version and copyright string

; Description: Version ai

initialize byte counter

get counter for comparison

is it equal to the number of bytes

yes so no more bytes to copy

increment the counter

point to source byte to copy

point to destination

get source byte

put it in destination

check if more bytes to copy

id release number and copyright string

8.5 CompareDEToHL - Compare the word in DE to the word in HL

Description: Compare HL to DE.

HL is smaller/equal/larger than DE.

Set appropriate flags on return.

HL - word in low byte, high byte format

DE - word in low byte, high byte format

Z - set if equal

C - set if HL is smaller

VERSION: 'REDATE v2.1 (c) Adam Herst 1988'

Returns:

re

rnz

ret

a,h

d

get high byte

is hi high byte equal to de high byte?

no, it is smaller, so HL is smaller

no it is larger, so HL is larger

get low byte

is hi low byte equal to de low byte?

; 9.2 NEWSYSDATE: - Date to set system time to

; Description: date and time in CP/H format

db

; 9.3 PFCBSTRUCT: - Parse FCB structure

; Description: Parse file control block pointer structure

Oh

Oh

Oh

Oh

; low byte of years in days

; high byte of years in days

; hours in bed

; minutes in bed

PFCBSTRUCT:

PFCBFSPECPTR:

PFCBFCBPTR:

dw

dw

OOOOh

OOOOh

; pointer to cp/m style filespec string

; pointer to file control block

8.6 CopyBytesUp - Copy B number of bytes moving up from DE to HL

; 9.4 USERNUH: - user number counter

; Description: User number counter

Description:

Returns:

CopyBytesUp

Copy the bytes pointed to by DE to the bytes pointed to

by HL incrementing the pointers.

DE - start of source bytes

HL - start of destination bytes

B - number of bytes to copy

DE - byte after last byte of source string

HL - byte after last byte of destination string

c,Oh ; initialize byte counter

a,c ; get counter for comparison

b ; is it equal to the number of bytes?

; yes so finished

; 9.5 ALLFILES: - filespec string m:*.*

; Description: CP/H style string for wildcard filespec

ALLFILES: db *.*$'

; 9.6 FILENAHEPTR: - pointer to top of FILENAHESTACK

; Description: Pointer to top of FILENAHESTACK

FILENAHEPTR:

; 10 END

dw 0500h

□

Transactor 55 February 1989: Volume 9, Issue 3

Serial I/O in Power C

An RS232 function packagefor C programmers

byW.MatWaites

One of the most exciting areas of use for the C64 is cheap

telecommunications. The ability to communicate with other

machines via modem or a hardwired connection adds greatly

to the power and value of any computer. The C64 has benefit

ed more than other computers from telecommunications be

cause of Commodore's supplying modems that are very af

fordable.

Developing telecommunications programs is interesting and

fun, but the choices of language for that development have

been very few in the past.

Interpreted basic is too slow even for 300 baud communica

tion. Compiled BASIC is much faster, but generally utilizes the

BASIC interpreter's garbage collection routines for string stor

age maintenance. The result of this is that the system locks up

every few minutes while the string space is being recovered.

This will drive you insane after a while.

Assembly language has been the most viable choice for writ

ing programs that would be limited in speed only by the Ker-

nal and the hardware. These assembly programs are very long

and difficult to modify, however. The lack of a standardized

parameter passing convention and a linker makes it difficult to

write functions in assembler that are reusable and sharable

with other software developers.

C has come to the rescue with a language that is higher level

than assembly, but without the run-time overhead of BASIC and

other interpreted languages.

Commodore 64 serial I/O

The C64 actually has a very sophisticated serial I/O system for

a microcomputer. It is interrupt driven, which means that in

coming characters are taken in by the Kernal even if your pro

gram is not quite ready for them. Even such popular systems

as MS-DOS do not have this feature. MS-DOS terminal programs

must supply their own interrupt-driven code to create this kind

of functionality. The Kernal takes care of all of the low level

details of accepting characters and sending them out.

Most computers have specialized chips to perform the act of

sending out and receiving individual characters. The generic

name for this kind of device is Universal Asynchronous Re

ceiver/Transmitter (UART). The C64 emulates the activities of

a UART in software. The positive side of this is that software is

more flexible than hardware. The C64's serial I/O is at least as

configurable as a UART and is more configurable than some.

The negative side is that software, especially 1 MHz 6502

software, is slow. The C64 Kernal routines are barely able to

keep up at 1200 baud; 2400 baud is not reliable at all.

The two big kludges

There is a problem with the Kernal-supplied serial routines.

The timing values supplied for 1200 baud are not exactly cor

rect! The 'width' of the bits coming in to the port don't match

up with what the Kernal expects. By supplying new and im

proved timing values, we can tune the routines to expect the

correct bit widths.

This 'bit width fix' introduces another problem, though. With

the best possible values in place for receiving characters, there

is a problem with transmitting characters. The 'stop bit' (the fi

nal bit in a serial character transmission) is too 'narrow'. That

is, it doesn't last long enough for the machine at the other end

to recognize it reliably. This is not really a problem with sim

ple terminal emulation because no one types fast enough to

cause multiple characters to be output one immediately after

another.

The short stop bit does cause problems with file transfers.

When a block of data is sent, the characters follow one another

in rapid succession. The receiver is sometimes still waiting for

the end of the stop bit when the next character arrives. This

kind of synchronization problem is called a framing error.

To break down this final barrier to reliable 1200-baud commu

nication, a second kludge is introduced. A delay loop is used to

wait for each character to be clocked out before another is

added to the output buffer. This allows the receiving computer

to recover from one character before the next arrives.

Problems with C

In applying C to telecommunications, the first hurdle to over

come is interfacing to the Kernal for several functions. Most

Transactor 56 December 1989: Volume 9, Issue 2

obviously, the serial I/O must be accessed from C. Methods for

doing this are not documented in either the Abacus Super-C or

Pro-Line/Spinnaker Power C manuals (at least none that I

have seen). Other functions that must be implemented include:

getting a keystroke without 'hanging', producing a cursor on

the screen, doing cursor movement, and providing timing

functions for communications protocols.

This article introduces a terminal program written in C and

provides the details of the implementation of serial I/O in Pow

er C. (Note: due to space limitations, only the serial and Xmo-

dem routines themselves are included in the C source listings

accompanying this article. The full source for Mat's terminal

program, and the program itself will be included on the

Transactor diskfor this issue. -Ed.)

'Packages' of functions

Power C provides an excellent linking facility that allows the

programmer to divide his application into as many compilation

units as desired. Software development can be made more effi

cient by writing subsystems that are independent of each other

and placing them in separate files. In this way, several differ

ent applications may call the same 'package' of functions.

The reusability of software is very important if you ever in

tend to develop a software system of any size. You simply can

not start from scratch at the beginning of every project and ex

pect to do large projects.

The package discussed here contains all of the functions and

data structures necessary for serial I/O in Power C. It allows

you to open the serial device, set the port parameters, write to

the serial device, read from the device, and close the device.

The data structures include the input and output queues and

the current state of the port.

Opening and Closing the Device

Openserial() opens the C64 'file' for serial communications.

Notice that the BASlc-style open() call is used so that a sec

ondary address may be supplied if desired. RS is the symbol

for the stream number used for the serial port, 6. With the ba-

SiC-style open, the stream numbers 5 through 9 should be used

to avoid conflict with the automatic stream-number allocation

done by the higher-level I/O functions.

The closeserialO function simply does a BASiC-style close on

the RS stream.

Moving the buffers

The other activity carried out by the openserial() function is

moving the buffer pointers to point to the buffers that have

been declared for the serial port queues. These are named in-

buf and outbuf The Kernal allocates the buffers initially at the

top of BASIC memory space, but this falls in the middle of

Power C space. We simply move the pointers to point to space

that we have allocated for this purpose; the rest of memory can

then be used without fear of overwriting the input and output

queues. This gives the added benefit of allowing the easy ex

amination of the queues without reading characters from them.

Setting the port parameters

After the port is opened, the baud rate and other parameters

must be set. We could have specified the baud rate at open

time, but we want to be able to change the baud rate at any

time so we must work at a lower level.

The setserial() function allows the caller to set the baud rate,

the number of bits per character, the number of stop bits, and

the parity. This function may be called at any time to change

the parameters. The three baud rates implemented are 300,

450, and 1200. Many 300 baud modems will function reliably

at 450 baud, and many BBSs support this speed.

Kludge #1 is included in the timing values supplied in this

function. The 1200 baud values seem to work well, but they

may be tuned for the best performance with your set-up. The

61 may be varied up or down by about 4 or 5.

The stopbits may be set to either 1 or 2. The bits per character

may be set to anything from 5 to 8. The parity is set with a

bitmap value corresponding to the 3 bits described in the Com

modore 64 Programmers Manual for selecting parity.

Table of parity values

0 - disabled

1 - odd parity

3 - even parity

5 - mark parity

7 - space parity

Reading and writing

The getserial() function is called to get a character from the se

rial port. If no characters are available, a -1 is returned. Notice

that if the Power C getc() function were called here, the func

tion would not return until a character had come in the serial

port. If you are writing a terminal program or BBS, you do not

want to 'hang' waiting on characters. You simply want to get it

if it is there, or return if it is not.

The putserialO function is called to output a character to the

serial port. This function implements kludge #2. There is a de

lay loop that was shortened until framing errors began to oc

cur. After the loop it simply calls the Power C putc() function

to output the character.

Other functions in the package

Functions are also provided in this package for some other

DOS-related activities. Functions are provided for accessing the

Transactor 57 December 1989: Volume 9, Issue 2

keyboard without hanging, for checking to see if the'logo' key

is pressed (I use this for an attention key), to wait for a given

number of seconds, and to read the disk error channel.

Notice that Kernal calls must be made to achieve some of this

functionality, but with these functions making the calls for

you, you don't need to directly call the Kernal in applications.

Using the package

To use this kind of a package you simply compile it as you

would any other function in Power C.

The Xmodem routines are very portable. The Commodore

specific I/O functions are separated out and should make it

very easy to move the Xmodem part to another operating

system.

Ideas for future development

With the serial I/O stabilized, it shouldn't be too difficult to add

other protocols: Xmodem CRC, Xmodem batch, Kermit,

Punter, and so on. The most difficult thing about implementing

some of these protocols is finding definitive documentation.

Implementing a BBS is also a possibility.

This will produce a file - "dos.o". When you link your appli

cation, simply link in "dos.o" and you have serial I/O. Note

that you will only compile it once and then link it in whenever

you need it. This is a great advantage over BASIC compilers

that force you to recompile your entire program every time

you make a change.

The terminal program

The Commodore 64 still has a lot of life left in the area of soft

ware development. Hopefully, this article will help spur inter

est in C programming on the 64. Drop me a note if you have

any questions, or if you write any interesting applications with

the serial package.

I can be contacted on Usenet (!gatech!emcard!mat) or by mail

at this address:

Included on the disk is a simple terminal program that calls

this serial I/O package. It implements a sprite cursor and Xmo

dem file transfers.

W. Mat Waites

1264 Brandl Drive

Marietta, Georgia 30060

/* dos.c - operating system stuff:

disk support

serial i/o

kbi/o

timers */

/* W Mat Waites - Sept 1988 */

iindude <stdio.h>

/* 5-9 may be used with "basic" open */

idefine KB 5

idefine RS 6

/* kludge for reliable 1200 baud */

idefine KLUDGE 40

/* kernel routines */

idefine CHKIN 0xffc6

idefine GETIN 0xffe4

idefine TKSA 0xff96

idefine ACPTR 0xffa5

idefine TALK Oxffb4

idefine ONTLK Oxffab

/* input and output serial buffers */

static char inbuf[256], otbuf[256];

/* serial interface functions */

/* openserialQ - open serial port */

openserialQ

short *ribuf = 0x00f7;

short *robuf = 0x00f9;

/* open serial port */

S, 2, 0, "");

*robuf = otbuf;

}

/* closeserialQ - close serial port */

closeserialQ

{

close(RS);

/* 300, 450, 1200 implemented */

static short hibyte[3] = { 6, 4, 1};

static short lobyte[3] = {68, 12, 61};

/* setserialf) - set serial port */

setserial(bd, bpc, sb, par)

int bd, bpc, sb, par;

{

short *m51ajb = 0x0295;

short *baudof = 0x0299;

char *m51ctr = 0x0293;

char *m51cdr = 0x0294;

/* set baud rate */

*m51ajb = 256 * hibyte[indx] +

lobyte[indx];

*baudof = (*m51ajb)*2 + 200;

/* stopbits */

if (sb < 1 _ sb > 2)

sb = 1;

}
sb--;

/* bits per char */

if(bpc < 5 bpc > 8)

f
bpc = 8;

}

*bitnum = (char)(bpc + 1);

bpc = 8 - bpc;

/* parity */

if(par < 0 _ par > 7)

/* move pointers to buffers */

*ribuf = inbuf;

char *bitnum = 0x0298;

unsigned indx;

switch(bd)

case 300:

indx = 0;

break;

case 450:

indx = 1;

break;

case 1200:

indx = 2;

break;

default: /* default to 300 baud */

indx = 0;

break;

par = 0;

/* put bpc, sb, and par in regs */

*m51ctr = (char)((bpc « 5)

(sb « 7));

*m51cdr = (char)(par « 5);

/* getserialQ - char from serial port */

getserialQ

int ch;

char *rsstat = 0x0297;

ch = getonechar(RS);

Transactor 58 December 1989: Volume 9, Issue 2

/* check for empty buffer */

if((*rsstat fi 0x08) =0x08)

{
return -1;

}

else

i

return ch;

}
}

/* putserialQ - char to serial port */

putserial(ch)

char ch;

{
int i;

putcfch, RS);

/* delay loop for 1200 baud kludge */

for(i=0; KKLDDGE; i++)

{

}

}

/* keyboard interface functions */

/* openkb() - open keyboard */

openkb()

i

char *rptflg = 0x028a;

openfKB, 0, 0, "");

/* let the keyboard repeat */

*rptflg = 0x80;

}

/* closekb() - close keyboard */

dosekb()

{
close(KB);

}

/* getkb() - get char from keyboard */

getkb()

{
return getonechar(KB);

}

/* charsinqf) - i available kb chars */

charsinq()

{
char *ndx = 0x00c6;

return (int)*ndx;

}

/* chkstopO - check for <C=> key */

chkstopO

{
char *shflag = 0x028d;

return(*shflag = 0x02);
i

/* getonecharf) - get char from chan */

static getonechar(channel)

int channel;

{
char ac, xc, yc;

xc = (char)channel;

sys(CHKIN, &ac, &xc, &yc);

sys(GETIN, Sac, &xc, &yc);

return(int)ac;

Transactor

}

/* disk i/o functions */

Idefine SADDR 0x6f

/* diskerr() - read error channel */

char *diskerr(disk)

int disk;

{
int cc;

char ac, xc, yc;

static char msgbuf[41];

char *mp;

char *second = 0x00b9;

char *status = 0x0090;

/* tell drive to talk */

ac = (char)disk;

sys(TALK, Sac, &xc, &yc);

/* tell it what to talk about */

ac = (char)SADDR;

*second = SADDR;

sys(TKSA, Sac, &xc, &yc);

/* read in the response */

mp = msgbuf;

for(;;)

i

/* get byte from bus in ace */

sys(ACPTR, Sac, &xc, &yc);

if(ac= '\r')

{
break;

}
*mp = ac;

mp++;

}
*mp= '\0';

/* tell drive to shut up */

sys(UNTLK, Sac, &xc, &yc);

return(msgbuf);

}

/* timer functions */

unsigned getclock();

/* sleep() - sleep for seconds */

sleep(usecs)

unsigned usecs;

I

setclock((unsigned)0);

while(getclock() < usecs)

{

}
}

struct clock /* struct matches CIA */

{
char tenths;

char seconds;

char minutes;

char hours;

};

/* setclock() - set timer clock */

setclock(usecs)

unsigned usecs;

59

{
unsigned bsecs;

struct clock *dockl = 0xdc08;

char *clmode = OxdcOf;

clmode &= 0x7f; / mode is clock */

if(usecs > 59) usecs = 59;

/* convert sees to bed */

bsecs = usecs%10 _ ((usecs/10)«4);

clockl->hours = 0;

clockl->minutes = 0;

clockl->seconds = (char)bsecs;

clockl->tenths = 0; /* free clock */

}

/* getclockf) - get current clock sees */

unsigned getclock()

{
unsigned usecs;

char junk;

struct clock *dockl = 0xdc08;

junk = clockl->seconds;

usecs = (junk & OxOf) +

10 * (junk » 4);

junk = clockl->tenths; /* free clock */

return usecs;

}

/* end of file */

/* xmodem.c - xmodem protocol */

/* W Mat Waites - Sept 1988 */

iindude <stdio,h>

/* number of retries, timeouts */

idefine RETRY 5

idefine TOUT 2

idefine BTOUT 10

/* protocol characters */

idefine SOH 0x01

idefine EOT 0x04

idefine ACK 0x06

idefine NAK 0x15

idefine CAN 0x18

idefine RECSIZE 128

char *diskerr();

int rec;

int tries;

int timeout;

/* buffer for data in/out */

char buffer[132];

/* sendfile() - send file via xmodem */

sendfile(fname, disk)

char *fname;

int disk;

f
int st;

int es

char errbuf [41];

char locname[21];

char *status = 0x0090;

FILE dfile;

December 1989: Volume 9, Issue 2

rec = 1;

strcpy(locname, fname);

strcatjlocname, ",r");

/* attempt to open file for read */

device(disk);

dfile = fopen(locname);

/* check for disk error */

strcpy(errbuf, diskerr(disk));

st = atoi(errbuf);

if(st >= 20)

{
close(dfile);

showerr(fname, errbuf);

return(0);

}

printf("%s opened\n", fname);

/* clear input buffer */

while(getserial() >= 0)

I
)

tries = RETRY;

for(;;)

{
printf("Synching...\n");

if(chkstopO)

(
close(dfile);

return(0);

}
ch = getchtmo(BTOUT);

if(timeout)

{
printf("Timeout\n");

tries--;

if(tries > 0)

{
continue;

}

close(dfile);

return(0);

}
if(ch = NAK)

break;

}
printf("Strange char [%02x]\n", ch);

}

printf("Synched\n");

/* send the file */

while(fillbuf(dfile, buffer))

{

if(chkstopO)

I

close(dfile);

return(0);

}
if(Itxrec(buffer))

{
close(dfile);

return(0);

}

}

/* tell 'em we're done */

putserial(EOT);

for(;;)

{

Transactor

ch = getchtmo(TOUT);

if(timeout)

{
putserial(EOT);

}
else

{
if (ch = ACK)

printf("sent EOT\n\n");

break;

}

}

}

close(dfile);

printf("%s transferred\n\n", fname);

return(1);

}

/* recvfilef) - recv file via xmodem */

recvfile(fname, disk)

char *fname;

int disk;

{
int st;

int ch;

int i;

char rl, r2, dt;

int response;

char rchk;

char locname[21];

char errbuf[41];

unsigned chksum;

FILE dfile;

rec = 1;

strcpy(locname, fname);

strcatjlocname, ",w");

/* attempt to open file for write */

device(disk);

dfile = fopen(locname);

/* check for disk error */

strcpy(errbuf, diskerr(disk));

st = atoi(errbuf);

if(st >= 20)
r

close(dfile);

showerr(fname, errbuf);

return(0);
i

}

printf("%s opened\n", fname);

/* clear input queue */

while(getserial() >= 0)

(

}

/* transfer file */

response = NAK;

for(;;)

{
/* get a record */

printf ("Record %3d ", reen

tries = RETRY;

for(;;)

i

if(chkstopO)

{
close(dfile);

return(0);

(

60

/* shake hands */

putserial(response);

/* get 1st char */

ch = getchtmo(TOUT);

if(timeout)

{
tries--;

if(tries > 0)

t

continue; /* try again */

}

printf("Can't sync w/sender\n");

close(dfile);

return(0);

}
if(ch = SOH) /* beg of data */

{
break;

}
else if(ch = EOT) /* done */

{
printf("got EOT\n\n");

close(dfile);

putserial(ACK);

printf("%s transferred\n\n",

fname) ;

return(1);

}
else if(ch = CAN) /* cancelled */

{
close(dfile);

printf("Transfer cancelled!\n");

return JO);
}

else

{
printf("Strange char [%02x]\n'\ ch);

gobble(); /* clear any weirdness */

response = NAK; /* and try again */

}

}

response = NAK;

rl = getchtmo(TOUT); /* record number */

if(timeout)

{
printf("TMO on recnum\n");

continue;
i

/* get l's comp record number */

r2 = getchtmo(TODT);

if(timeout)

t

printf("TMO on comp recnum\n");

continue;
i
i

/* get data */

cnksum = 0;

for(i=0; i<RECSIZE; i++)

I

dt = getchtmo(TOOT);

if(timeout)

I
break;

}
buffer[i] = dt;

cnksum += dt;

cnksum &= Oxff;

}

/* check for data timeout */

if(timeout)

{
printf("TMO on data\n");

continue;

December 1989: Volume 9, Issue 2

1

/* get checksum */

rchk = getchtmo (TOUT);

if(timeout)
{

printf("TMO on checksum\n");

continue;

}

/* compare rec num and l's comp */

if((/rl & Oxff) != (r2 & Oxff))

{

printf("Bad recnum's\n");

continue;
}

/* compare checksum and local one */

if(rchk != chksum)

{

printf("Bad checksum\n");

response = NAK;

continue;

}

if((rl =(rec-l) & Oxff)) /* dupe */

{

printf("Duplicate record\n");

response = ACK;

continue;

>

if(rl != (rec & Oxff))

printf("Record numbering error\n");

close(dfile);

return(0);

rec++;

/* write data to file */

for(i=0; KRECSIZE; i++)

putc(buffer[i], dfile);

}

printf("OK\n");

response = ACK;

1
/* showerrQ - display disk error */

showerr(fname, errmsg)

char *fname;

char *errmsg;

t

erased;

move(11, 5);

printf("Error accessing Is", fname);

move(13, 5);

printf("[%s]'\ errmsg);

move(20, 5);

}

/* getchtmoQ - get char w/timeout */

getchtmo(timlen)

int timlen;

{

int serchar;

timeout = 0;

setclock((unsigned)0); /* start timer */

for(;;)

Transactor

(

serchar = getserial();

if(serchar >= 0)

{

return(serchar);

}

if(getdock() >= timlen)

timeout = 1;

return 0;

}

}

}

/* fillbuf() - get buffer of data */

fillbuf(filnum, buf)

int filnum;

charbuf[];

(

int i;

int echk;

char *status = 0x0090;

for(i=0; KRECSIZE; i++)

{

/* get a char from file */

if((echk=fgetc(filnum)) = EOF)

{

break;

buf[i] = echk;

1
if(i = 0) return 0;

/* set rest of buffer to CTRL-Z */

for(; KRECSIZE; i++)

buf[i] = (char)26;

}

return(1);

/* txrec() - send rec, get response */

txrec(buf)

char buf [];

int i;

int ch;

unsigned chksum;

tries = RETRY;

for(;;)

I

/* send record */

printf("Record %3d ", rec);

putserial(SOH);

putserial(rec);

putserial(/rec);

chksum = 0;

for(i=0; KRECSIZE; i++)

{

putserial(buf[i]);

chksum += buf[i];

chksum &= Oxff;

}

putserial(chksum);

/* get response */

ch = getchtmo(BTOUT);

if(timeout)

61

tries—;

if (tries > 0)

{

printf("Retrying...\n");

continue;

}

printf("Timeout\n");

return(0);
i
j

/* analyze response */

if (ch = CAN)

{

printf("Cancelled\n");

return(0);

}

else if(ch = ACK)

{

printf("ACKed\n", rec);

break;

}

else

if (ch = NAK)

printf("NAKed\n", rec);

else

printf("Strange response\n");

tries-;

if (tries > 0)

continue;

printf("No more retries!\n");

return(0);

return(1);

1

/* gobble)) - gobble up stray chars */

gobbled

unsigned gotone;

printf("\ngobbling\n");

sleep(2);

for(;;)

gotone = 0;

/* clear input queue */

while(getserial() >= 0)

{
gotone = 1;

}

if(gotone)

{

sleep(l);

(

else

{

return;

}

}

}

/* end of file */ □

December 1989: Volume 9, Issue 2

Toward 2400

RS-232 revisited

by George Hug

The performance of 2400-baud modems with C64s and C128s

will benefit from a new look at the RS-232 servicing routines.

That performance is poor at 1 MHz, and errors occur even at 2

MHz when data flows continuously or in both directions at

once. The 64 and 128-mode RS-232 drivers (which are almost

identical) are inefficient and contain several outright bugs.

There is even a hardware glitch in many 6526 CIA chips. New

routines overcoming these faults will permit error-free com

munication at 2400 baud at either CPU speed.

Commodore RS-232

The RS-232 drivers send and receive data one bit at a time. At

2400 baud the transmit driver runs Timer A of CIA#2 in con

tinuous mode with a latch value of 426 (the 1-MHz I/O clock

divided by 2400). On each timeout, the NMI service routine

places the next bit of outgoing data on pin M (PA2) of the

User Port. Ten NMIs must be serviced to transmit one byte of

8/N/l data.

Timer B is used for received data, which enters on User Port

pins B (FLAG) and C (PB0). The high-to-low transition at the

beginning of the start bit generates a FLAG NMI. In response,

the service routine disables the FLAG NMI, enables the Timer

B NMI, and sets Timer B to time out at the mid-point of the

start bit. (The service code itself uses 100 of the 213 cycles in

a half-bit, leaving a timer load value of 113.) When the NMI

occurs, Timer B is set to time out every 426 cycles so that pin

C can be sampled at the mid-point of each bit period. At mid-

stop-bit the NMIs are switched back to start-bit detection

mode - FLAG enabled, Timer B disabled. Eleven NMIs must be

serviced to receive one byte of data.

RS-232 inefficiencies

The following characteristics do not produce errors as such,

but needlessly limit the baud rate attainable at a given CPU

speed. All relate to the receive function.

1. During each byte, 450 clock cycles are consumed in manu

ally re-starting Timer B once per bit. The re-start routine -

located at $fedd ($e87f in 128 mode) - determines how long

ago the timeout occurred, adds an allowance for its own exe

cution time, subtracts that sum from the bit time, and loads the

timer with the difference. After the timer is started, its reload

latch is reset to $ffff. This appears to be a software emulation

of the VIC 20's 6522 VIA chip. The VIA's Timer B has no

continuous mode, but its one-shot mode underflows to $ffff

and continues counting down. Since the CIA's Timer B does

operate in continuous mode, the VIA emulation seems to be

pointless.

■

2. The RS-232 driver is biased toward a late sampling of pin

C. The sampling point is 70 cycles late in the first place

because of code execution time between the mid-bit NMI and

the actual sampling. (In 128 mode, sampling begins 91 cycles

late, but works back to near mid-point at a rate of 12 cycles

per NMI.) In addition, since the VIA emulation manually re

starts Timer B, any video DMA during that process may cause

a permanent, cumulative, 40-cycle delay in all subsequent

samplings of the current byte. Finally, the actual pin-C data

rate of a 1200- or 2400-baud modem may range from the nom

inal baud rate to as much as 1.6% fast. The combination of late

sampling points and short bit periods may result in a sampling

past the end of a bit period.

3. Continuous data flow hits a bottleneck at the junction of the

stop and start bits, where three NMIs occur within one bit peri

od. For example, the mid-stop-bit NMI requires 287 clock

cycles to service (325 cycles in 128 mode - the extra time

results from saving and restoring the current bank), but at

2400 baud the next byte may start after only 213 of those

cycles. A related limitation is the 2224 cycles (2639 cycles in

128 mode) of total NMI service time needed to receive one

byte of data. At 1 MHz, continuous 2400-baud inflow requires

55% (66%) of available clock cycles just to service NMIs.

RS-232 bugs

The defects described below cause errors without regard to

baud rate, mode or CPU speed.

1. The routine at $f0a4 ($e7ec in 128 mode) disables all RS-

232 activity so that NMIs will not corrupt disk, tape or REU

access. It is called by the kernal routines load, save, open,

CHKIN, CHKOUT, LISTEN and TALK for serial bus devices and

the datasette. It should be called, but is not, by dmacall - the

128's REU routine at $ff50.

Transactor 62 February 1989: Volume 9, Issue 3

f0a4

f0a5

f0a8

fOaa

fOad

fOaf

fObl

f0b3

£0b6

f0b8

fObb

fObc

pha

Ida

beq

Ida

and

bne

Ida

sta

Ida

sta

pla

rts

$02al

$£Obb

$02al

#$03

$fOaa

#$10

$ddOd

#$00

$02al

;copy of enabled NMIs

;none enabled - done.

;any current activity?

;TA(bO) or TB(bl) enabled?

;yes, test until idle

;no, awaiting start bit

/disable FLAG NMI (b4)

;all off now (?)

/update copy

The $fOaa-fOaf sequence pauses until the transmit buffer has

been emptied and any incoming byte has been received. Then

at $fOb3 it turns off the start-bit detector. However, if an

incoming start-bit edge should arrive after $fOaa but before

$fOb3, the resulting NMI servicing will disable FLAG (making

$fOb3 redundant) and enable the Timer B NMI. Since $fOb8

clears only the mask copy, the Timer B NMI will indeed take

place, with unpredictable results.

2. In the BSOUT routine the buffer pointer is incremented (at

$f020/$e768) before the byte to be transmitted is placed in the

buffer (at $fO26/$e76e). If the NMI service routine comes

looking for that new byte in the interim, it will transmit the

wrong character.

3. The routine at $ef3b ($e67f) is used by the NMI service

routines, and by CHKIN and BSOUT, to enable or disable an

NMI source, as specified in the accumulator.

ef3b

ef3e

ef41

ef43

ef46

ef49

sta

eor

ora

sta

sta

rts

$dd0d

$02al

#$80

$02al

$dd0d

;enable

;change

;enable

;update

;enable

or disable the NMI

copy to match

bit on

copy

masked NMIs

The routine is executed while NMIs are enabled. Should an

NMI of the opposite "direction" occur after $ef3e and before

$ef46, the resulting servicing may change the NMI enabled for

that direction. Upon the return, however, $ef43 or $ef46, or

both, will restore the old (wrong) NMI. This error occurs only

when transmission takes place in both directions simultane

ously.

4. It appears that many 6526 CIA chips have a hardware defect

involving the interrupt flag for Timer B. If Timer B times out

at about the same time as a read of the interrupt register, the

Timer B flag may not be set at all. Under the VIA emulation,

Timer B will then underflow and count down $ffff cycles

before generating another NMI. A whole series of incoming

bytes may be lost as a result. The defect was present in five of

six C128s and two of three C64s sampled. When "good" and

"bad" chips were switched, the problem followed the "bad"

chip. There appear to be no such defects with respect to the

flags for Timer A or FLAG. This glitch can cause errors during

simultaneous I/O - when Timer A generates the NMI and

Timer B times out just as the service routine reads $ddOd.

A software solution

The most demanding performance standard for full-duplex

RS-232 is the error-free processing of continuous, bi

directional, asynchronous transmission ("CBAT"), meaning

that data streams generated by unrelated clocks flow, without

pause, in both directions at the same time. Fortunately, such

performance at 2400 baud is attainable through software, even

at 1 MHz. The approach presented here retains bit-by-bit ser

vicing, but adopts a few key simplifications, beginning with

elimination of two receive NMIs. The mid-start-bit NMI exists

only to check for a false start bit, which for technical reasons

would never be detected on a PSK/QAM modem. The mid-stop-

bit NMI tests for a framing error, or missing stop bit, which is

ignored by most software.

Another change is the removal from the NMI service routine

of all matters related to parity, x-line handshake, half-duplex

transmission, multiple stop bits, and the RSSTAT framing, par

ity, overrun and break errors. All such items take up time, are

seldom used, and can be implemented separately if really

needed. Finally, the VIA emulation is discarded.

New Modem Routines

Program 1 ("newmodem.src") is generic assembly language

source code for a collection of new RS-232 routines. The code

is not a patch to any specific BBS or terminal software, but

rather one example of what might be installed by the author of

such a program, or by one having access to its source code.

The assembled code uses less than two pages of memory. In

128 mode it must be visible in bank 15.

The new NMI routine begins at line 3000 by pushing the reg

isters onto the stack (already done in 128 mode, which enters

at 3050). Lines 3060-3170 determine which enabled NMI

sources have triggered. The 6526 glitch is finessed by compar

ing the high byte of Timer B before (3060) and after (3110)

the read of the interrupt register (3090). If the value is higher

after the read than before, then Timer B must have timed out

during that period. Line 3140 makes sure B's flag bit is set in

the accumulator, and 3150 makes sure it is cleared in $ddOd.

Beginning at 3180 the routine is structured to accommodate

CBAT. The NMI routine does only a few critical operations

while the NMIs are disabled, saving its "housekeeping"

chores for later. That prevents a new NMI (one occurring after

3090) from going unserviced for too long. The critical opera

tion for the Timer A NMI is placement of the next outgoing bit

on pin M (3200-3230). The FLAG NMI must load Timer B

with the start-bit timer value and start it counting down (3270-

3320). The Timer B NMI must sample pin C (3120). (Pin C is

sampled on every NMI; the sampling is ignored if Timer B is

not an NMI source.) Once these operations have been com

pleted, the NMIs are re-enabled (3360 or 3470).

Transactor 63 February 1989: Volume 9, Issue 3

Housekeeping chores for the Timer A NMI (3720-3920)

include isolating the next output bit, or fetching the next byte

from the transmit buffer, or stopping Timer A and disabling its

NMI if the buffer is empty. (Timer A is loaded and started, and

its NMI enabled, only by BSOUT.) In flag housekeeping

(3330-3420), the FLAG NMI is disabled and the Timer B NMI

enabled, the Timer B reload latch is loaded with the full-bit

timer value, and the bit counter is initialized. Timer B house

keeping (3510-3680) processes the sampled pin-C value. If the

last data bit has been received, the new byte is stored in the

receive buffer, Timer B is stopped, and the NMIs are prepared

for a new start bit - flag enabled, Timer B disabled.

The procedure at 3630 is used to change the enabled NMIs. It

disables all NMIs, calculates the new configuration, and then

enables that configuration. The duplicate disabling instructions

at 3640/50 are necessary because an NMI occurring during the

first one will be serviced immediately thereafter, resulting in

re-enabled NMIs which must be disabled again by the second

(there is nothing left to interrupt the second).

Following the new NMI routine are replacements for the

defective routines described earlier. A new DISABL at line 4000

is a substitute for the old one at $f0a4/e7ec. Since the old one

cannot be re-vectored, a call to DISABL should be made before

any disk, tape or REU operation if there is any chance that the

modem might generate an NMI. The nbsout routine at 5000

is a new front end for BSOUT which corrects the buffer pointer

problem and avoids a call to $ef3b/e67f. A direct call to RSOUT

(5050) will send a character to the modem regardless of the

current output device.

NCHKIN at 6000 is a new front end for CHKIN which avoids

$ef3b/e67f. A direct call to INABLE (6070) will re-enable the RS-

232 input function without also selecting device #2 for input.

Either NCHKIN (to #2) or INABLE must be called after disk, tape

or REU operations to re-enable start bit detection. The BAUD

section (6090-6190) sets the receive baud rate by poking the

correct timer values into the NMI service code. It assumes that

the current baud rate is already reflected in the BAUDOF variable

at $299 ($al6), and selects one of three baud rates (2400, 1200,

or 300) based on the high byte value of BAUDOF. If NCHKIN (to

#2) or INABLE will be called frequently, baud should be moved

to a separate routine which is called only after OPEN or when the

baud rate needs to be changed. Provision could also be made for

additional baud rates if needed.

RSGET at 7000 will fetch a character from the RS-232 input

buffer regardless of the current input device. It differs from

GETIN in that it does nothing to RSSTAT but instead returns with

the carry flag set if the buffer was empty.

The setup routine at 2000 points the relevant page 3 vectors to

the new NMI, nchkin and nbsout code. Setup is the first entry

in the jump table (1530). Also included in the jump table are the

non-vectored routines INABLE, DISABL, RSGET and RSOUT. Final

ly, the receive start-bit and full-bit timer values for the three

baud rates are located in a table beginning at 1590.

Calibration and performance

The new NMI routine was tested under cbat conditions to

establish the receive timer values which work for various com

binations of computer, CPU speed, video DMA activity and

modem speed. The tests made use of the fact that a 50%-duty-

cycle square wave also constitutes continuous transmission of

the letter 'u' (%01010101) in RS-232 8/N/l format. The

square wave was generated using the serial port of CIA#1, the

clock output of which (CNT1) is available at pin 4 of the User

Port. A spare card-edge connector (Cinch #50-24A-30) was

installed in the User Port with pin&4, B and C wired together.

Program 2 ('calibrate') was used to run the tests. It keeps the

CNT1 "modem" clocking continuously by feeding new output

to the CIA#1 serial port during the IRQ routine. It parks in a

GETIN loop which prints an '*' to the screen if a received char

acter is not a *u\ Program 2 also provides for continuous

transmission by filling the output buffer with u's and changing

line 3820 to read, in effect, 'beq getbuf'.

Timer values for the receive start bit (sb) and full bit (fb), the

CNT1 "modem" (en), and the transmit function (tx) are set in

line 210 of Program 2 for each trial, which consists of running

the program and looking for asterisks. If none appear then

CBAT processing is error-free at those settings. One minute is

enough to run through the possible overlaps of transmit and

receive NMIs, and video DMAs if enabled. Asynchronous tim

ing is approximated if the fb, en, and tx values are different.

Table 1 shows the 2400-baud test results with the tx rate fixed

at 2400 and the fb rate fixed midway between 2400 and 1.6%

fast. For each hardware combination, the tests determined the

highest and lowest start-bit times (sb) providing error-free

CBAT. While the acceptable sb range varies with each set-up,

there is a 70-cycle range, with a mid-point of 459, which

works in all set-ups. Any change to the new NMI routine

would require re-calibration, and the results might be different.

Table 2 compares the NMI service times required under the

old and new routines. Reductions are particularly dramatic in

the receive function.

Program 3 ('ciatest64') tests for the glitch in Timers A and B

of CIA#2. Load and run in 64 mode only, without the card

edge connector. Only a Timer B glitch has been found so far.

For transmission in only one direction at a time, the 'newmo-

dem' routines should be replaced with shorter, faster ones. The

"simultaneous" bugs will no longer occur, separate routines

for each NMI type can be vectored in at $318/319 in sequence,

and NMIs need not be disabled during servicing. Much higher

baud rates can be attained under those conditions.

Random thoughts

1. The usual caveats apply about cartridges, special ROMs, IEEE

drivers, and connecting anything homemade to the User Port.

Transactor 64 February 1989: Volume 9, Issue 3

2. CIA chips produce a count equal to the timer load value plus

one. So a 425 timer value is really 1022727/426 = 2400.8 baud.

3. The SLOW command turns on the video DMAs even in 80-

column mode (the 40-column screen shows a border). Turn off

the DMAs by clearing the blanking bit - bit 4 of $d011. Pro

gram 2 does that through variable dm.

4. New drivers will not cure aborted Xmodem or Punter trans

fers caused by running 1 MHz transfer routines at 2 MHz, but

they will permit the routines to be run at 1 MHz without

modem errors.

5. Program 1 starts and stops the timers and also enables and

disables their NMIs. If nothing else uses the timers, the NMIs

could be left enabled. Time also might be saved by having the

transmit NMIs occur only when the level on pin M needs to

change, or at the stop bit, whichever occurs first.

Program 1: Source code for the new serial modem routines.

Table 1: Calibration Results for

Computer mode

CPU speed (MHz)

Display mode

Video DMAs

TX (Tx bit time)

FB (Rx full bit)

Nominal modem:

CN (CNT1 "modem")

Low SB (Rx start)

High SB

Fast modem:

CN

Low SB

High SB

64

1

40

on

425

421

426

394

568

418

350

524

128

1

40/80

on

425

All

426

392

538

418

348

494*

* Most restrictive. Mid-point = 459.

2400

128

1

80

off

425

421

426

330

618

418

290

580

Baud.

128

2

80

off

425

421

426

424*

724

418

354

688

Table 2: NMI Service Times (cycles per byte).

Transmit:

Data bits 1-8

Stop bit

Start bit

Total

Receive:

FLAG

Start bit

Data bits 1-7

Data bit 8

Stop bit

Total

64 Mode

OLD

1320

196

179

1695

157

188

1393

199

287

2224

NEW

1192

148

173

1513

153

-

959

185

-

1297

128

OLD

1624

234

217

2075

195

223

1659

237

325

2639

Mode

NEW

1360

169

194

1723

174

_

1106

206

-

1486

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

"newmodem.src" - 64 mode.

@128 = changes for 128 mode.

ribuf

robuf

baudof

ridbe

ridbs

rodbs

rodbe

enabl

rstkey

norest

return

oldout

oldchk

findfn

devnum

nofile

=$f7

=$f9

=$0299

xxOO

xxO3

xxO6

xxO9

xxOc

strt24

strtl2

strtO3

£ull24

fulll2

fullO3

setup

nmi64

nmil28

=$029c

=$029d

=$029e

=$02al

=$fe56

=$fe72

=$febc

=$flca

=$f21b

=$f30f

=$f31f

=$f701

;@128 $c8

;@128 $ca

;@128 $0al6

;@128 $0al8

;@128 $0al9

;@128 $0ala

;@128 $0alb

;@128 $0a0f

;@128 $fa4b

;@128 $£a5£

;@128 $ff33

;@128 $ef79

;@128 $fl0e

;@128 $f202

;@128 $£212

;@128 $£682

=$ce00 ;@128 $la00

jmp setup

jmp inable

jmp disabl

jmp rsget

jmp rsout

nop

.word $01cb

.word $0442

.word $1333

.word $01a5

.word $034d

.word $0d52

; 459 start-bit times

;1090

;4915

; 421 full-bit times

; 845

;3410

Ida i<nmi64

ldy #>nmi64

sta $0318

sty $0319

Ida i<nchkin

ldy f>nchkin

sta $031e

sty $031f

Ida #<nbsout

ldy i>nbsout

sta $0326

sty $0327

rts

;@128 #<nmil28

;8128 #>nmil28

pha

txa

pha

tya

pha

old

ldx $ddO7

Ida #$7f

sta $ddOd

Ida $ddOd

bpl notcia

cpx $ddO7

;new nmi handler

/sample timer b hi byte

/disable cia nmi's

;read/clear flags

;(restore key)

;tb timeout since 3060?

Transactor 65 February 1989: Volume 9, Issue 3

3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

mask

ckflag

strtlo

strthi

fulllo

fullhi

notcia

nmion

switch

txd

chktxd

Transactor

ldy $dd01

bcs mask

ora #$02

ora $dd0d

and enabl

tax

lsr

bcc ckflag

Ida $dd00

and #$fb

ora $b5

sta $dd00

txa

and #$10

beq nmion

Ida #$42

sta $ddO6

Ida #$04

sta $ddO7

Ida #$11±ua iryxx

sta $dd0f

Ida #$12

eor enabl

sta enabl

sta $dd0d

Ida #$4d

sta $ddO6

Ida #$03

sta $ddO7

Ida #$08

sta $a8

bne chktxd

ldy #$00

jmp rstkey

Ida enabl

sta $dd0d

txa

and #$02

beq chktxd

tya

lsr

ror $aa

dec $a8

bne txd

ldy ridbe

Ida $aa

sta (ribuf),y

inc ridbe

Ida #$00

sta $dd0f

Ida #$12

ldy #$7f

sty $dd0d

sty $dd0d

eor enabl

sta enabl

sta $dd0d

txa

lsr

bcc exit

dec $b4

bmi char

; (sample pin c)

/no

/yes, set flag in ace.

/read/dear flags again

/mask out non-enabled

/these must be serviced

/timer a? (bit 0)

/no

/yes, put bit on pin m

;*flag nmi? (bit 4)

/no

/yes, start-bit to tb

/start tb counting

;*flag nmi off, tb on

/update mask

/enable new config.

/change reload latch

; to full-bit time

;# of bits to receive

/branch always

/or jmp norest

/re-enable nmi's

/timer b? (bit 1)

/no

/yes, sample from 3120

;rs232 is Isb first

/byte finished?

/no

/yes, byte to buffer

/(no overrun test)

/stop timer b

;tb nmi off, *flag on

/disable nmi's

/twice

/update mask

/enable new config.

/timer a?

/no

/yes, byte finished?

;yes

3740

3750

3760

3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

4000

4010

4020

4030

4040

4050

4060

4070

4080

4090

4100

4110

4120

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

5100

5110

5120

5130

5140

5150

5160

5170

5180

5190

5200

5210

5220

5230

5240

5250

5260

5270

5280

66

low

store

exit

char

getbuf

txoff

disabl

test

;

nbsout

rsout

point

strtup

Ida #$04

ror $b6

bcs store

Ida #$00

sta $b5

jmp return

ldy rodbs

cpy rodbe

beq txoff

Ida (robuf),y

inc rodbs

sta $b6

Ida #$09

sta $b4

bne low

Idx #$00

stx $dd0e

Ida #$01

bne switch

pha

Ida enabl

and #$03

bne test

Ida #$10

sta $dd0d

Ida #$02

and enabl

bne test

sta enabl

pla

rts

pha

Ida $9a

crop #$02

bne notmod

pla

sta $9e

sty $97

ldy rodbe

sta (robuf),y

iny

cpy rodbs

beq fulbuf

sty rodbe

Ida enabl

and #$01

bne ret3

sta $b5

Ida #$09

sta $b4

ldy rodbs

Ida (robuf),y

sta $b6

inc rodbs

Ida baudof

sta $dd04

Ida baudof+1

sta $ddO5

Ida #$11

sta $dd0e

/no, prep next bit

;(fill with stop bits)

/restore regs, rti

/buffer empty?

/yes

/no, prep next byte

/# bits to send

/always - do start bit

/stop timer a

/disable ta nmi

/always

/turns off modem port

/any current activity?

/yes, test again

/no, disable *flag nmi

/currently receiving?

/yes, start over

/all off, update mask

/new bsout

/output to modem

/not official till 5120

/buffer full?

/yes

/no, bump pointer

/transmitting now?

/yes

/no, prep start bit,

/ # bits to send,

/ and next byte

/full tx bit time to ta

/start timer a

February 1989: Volume 9, Issue 3

5290

5300

5310

5320

5330

5340

5350

5360

5370

5380

5390

5400

5410

5420

5430

5440

5450

5460

6000
/•flirt

bUlU

6020

6030

6040

6050

6060

6070

6080

6090

6100

6110

6120

6130

6140

6150

6160

6170

6180

6190

6200

6210

6220

6230

6240

6250O£Jv

6260

KOQflDloU

6290

7000

7010

7020

7030

7040

7050

7060

7070

7080

7090

7100

7110

change

ret3

fulbuf

notmod

nchkin

inable

baud

nosuch

Dacx

rsget

retl

ret2

last

Transactor

Ida #$81

sta $dd0d

php

sei

ldy #$7f

sty $dd0d

sty $dd0d

ora enabl

sta enabl

sta $dd0d

pip

clc

ldy $97

Ida $9e

rts

jsr strtup

jmp point

pla

]mp o out

jsr findfn

bne nosuch

jsr devnum

Ida $ba

cmp#$02

bne back

sta $99

sta $9e

sty $97

Ida baudof+1

and #$06

tay

Ida strt24,y

sta strtlo+1

Ida strt24+l,y

sta strthi+1

Ida full24,y

sta fulllo+1

Ida full24+l,y

sta fullhi+1

Ida enabl

and #$12

bne retl

sta $dd0f

Ida #$90

jmp change

jmp nofile

Ida $Da

jmp oldchk

sta $9e

sty $97

ldy ridbs

cpy ridbe

beq ret2

Ida (ribuf),y

sta $9e

inc ridbs

clc

ldy $97

Ida $9e

rts

/enable ta nmi

;nmi clears flag if set

/save irq status

/disable irq's

/disable nmi's

/twice

/update mask

/enable new config.

;restore irq status

/back to old bsout

/new chkin

/enable rs232 input

/set receive to same

/ baud rate as xmit

/overwrite value @ 3270

;*flag or tb on?

;yes

/no, stop tb

/turn on flag nmi

/input from modem

/buffer empty?

/yes

/no, fetch character

;cc = char in ace.

;cs = buffer was empty

Program 2: Calibration program for the 64 or 128.

PD 100 rem "calibrate" for 64 or 128.

MA 110 rem connect user port pins 4, b & c.

CE 120 rem load "newmodem" object code at pi.

DK 130 rem for 128 mode, un-rem 230-250.

LJ 140 rem adjust values in 210. run. * = error.

LI 150 rem run/stop restore to end trial.

MG 160 rem s = (1,2) mhz; dm = dma off(0), on(l).

IM 170 rem

CL 180 close 2: open 2,2,0,chr$(6)+chr$(0): ml=12288

LP 190 for i=ml to ml+116: read a: poke i,a: z=z+a: next

DO 200 if z<>15157 then print"data error": close2: end

PC 210 sb=459: fb=421: cn=418: tx=425: s=l: dn=l

EJ 220 ri=65212: bf=peek(250)*256: bo=665: pl=52736

NH 230 rem ri=65331: bf=3328: bo=2582: pl=6656

HI 240 rem slow: if s=2 then fast: goto 260

NO 250 rem if dm=0 and peek(215)then poke ml+107,234

FG 260 for i=bf to bf+255: poke i,85: next: sys pi

KL 270 a=pl+16+(tx/256 and 6): b=sb: gosub 310

10 280 a=a+6: b=fb: gosub 310: a=bo: b=tx: gosub310

DI 290 a=251: b=cn: gosub 310: a=598: b=ri: gosub310

NP 300 poke pl+241,0: print#2,"u";: sys ml

QG 310 q=int(b/256): poke a+l,q: poke a,b-q*256: return

HI 320 data 162, 2, 32, 198, 255, 32, 39, 48

PO 330 data 32, 228, 255, 201, 85, 240, 249, 32

DI 340 data 183, 255, 208, 244, 169, 42, 32, 210

CJ 350 data 255, 76, 8, 48, 169, 255, 141, 12

EJ 360 data 220, 173, 13, 220, 108, 86, 2, 120

FA 370 data 166, 251, 164, 252, 169, 0, 141, 26

KM 380 data 208, 141, 15, 220, 169, 127, 141, 13

IA 390 data 220, 141, 25, 208, 142, 4, 220, 140

AI 400 data 5, 220, 169, 81, 141, 14, 220, 160

BL 410 data 255, 140, 12, 220, 162, 5, 173, 13

IA 420 data 220, 41, 1, 240, 249, 202, 208, 246

KJ 430 data 140, 12, 220, 169, 28, 141, 20, 3

PP 440 data 169, 48, 141, 21, 3, 169, 136, 141

IK 450 data 13, 220, 88, 96, 173, 17, 208, 41

AG 460 data 239, 141, 17, 208, 96

Program 3: CIA chip test for the 64.

LO 500 rem "ciatest64" for 64 mode only.

MA 510 rem * = interrupt flag error.

HG 520 rem reset after test.

AD 530 rem

BL 540 n=12800: for i=n to n+103: read a: poke i,a: z=z+a

OA 550 next: if z<>11949 then print"data error":end

EG 560 sys 65412: x=not x: poke 251,x and 255

00 570 print chr$(147);"any key switches timer."

ID 580 prinf'testing timer ";chr$(65-x): sys n

JB 590 wait 198,7: poke 198,0: goto 560

El 610 data 170, 169, 98, 160, 3, 141, 4, 221

JG 620 data 140, 5, 221, 142, 6, 221, 140, 7

GO 630 data 221, 169, 17, 141, 14, 221, 141, 15

EL 640 data 221, 162, 2, 160, 7, 36, 251, 48

GG 650 data 3, 202, 160, 5, 134, 252, 140, 77

OL 660 data 50, 140, 85, 50, 138, 73, 131, 162

JL 670 data 72, 160, 50, 142, 24, 3, 140, 25

EH 680 data 3, 174, 13, 221, 141, 13, 221, 96

FL 690 data 72, 138, 72, 152, 172, 7, 221, 72

FF 700 data 173, 13, 221, 216, 204, 7, 221, 176

NM 710 data 12, 13, 13, 221, 37, 252, 208, 5

JE 720 data 169, 42, 32, 210, 255, 76, 188, 254

67 February 1989: Volume 9, Issue 3

Program 4: Generator for the C64 new modem routines. Program 5: Generator for the C128 new modem routines.

BC 100 rem generator for "newmod64.obj"

FL 110 n$="newiaod64.obj": rem name of program

GF 120 nd=494: sa=52736: ch=58580

(for lines 130-260, see the standard generator on page 5)

MN 100 rem generator for "newmodl28.obj"

NC 110 n$="newmodl28.obj": rem name of program

D6 120 nd=494: sa=6656: ch=51020

(for lines 130-260, see the standard generator on page 5)

DE 1000

IJ 1010

IM 1020

CI 1030

JB 1040

NB 1050

NG 1060

JA 1070

EK 1080

CE 1090

JF 1100

OF 1110

CI 1120

CG 1130

JN 1140

HH 1150

MM 1160

JM 1170

NL 1180

IN 1190

NK 1200

MM 1210

HG 1220

JP 1230

AG 1240

AP 1250

NO 1260

LB 1270

JC 1280

BE 1290

JA 1300

EE 1310

EB 1320

NH 1330

JD 1340

KC 1350

EF 1360

PH 1370

GM 1380

MN 1390

DE 1400

NK 1410

FI 1420

KI 1430

JO 1440

AN 1450

KL 1460

EB 1470

LA 1480

BF 1490

FJ 1500

NA 1510

FG 1520

MO 1530

MP 1540

FE 1550

JB 1560

AI 1570

NG 1580

IE 1590

DG 1600

IP 1610

data 76,

data 207,

data 203,

data 77,

data 141,

data 160,

data 169,

data 39,

data 216,

data 221,

data 221,

data 13,

data 144,

data 181,

data 47,

data 141,

data 169,

data 141,

data 169,

data 168,

data 173,

data 2,

data 168,

data 145,

data 15,

data 221,

data 161,

data 14,

data 182,

data 188,

data 240,

data 182,

data 0,

data 72,

data 169,

data 161,

data 96,

data 104,

data 145,

data 140,

data 208,

data 172,

data 157,

data 173,

data 141,

data 8,

data 13,

data 141,

data 158,

data 104,

data 60,

data 208,

data 173,

data 206,

data 119,

data 185,

data 2,

data 169,

data 165,

data 151,

data 8,

data 24,

28, 206,

76, 213,

1, 66,

3, 82,

24, 3,

207, 141,

33, 160,

3, 96,

174, 7,

173, 13,

172, 1,

13, 221,

10, 173,

141, 0,

169, 66,

7, 221,

18, 77,

13, 221,

3, 141,

208, 60,

161, 2,

240, 44,

208, 34,

247, 238,

221, 169,

140, 13,

2, 141,

198, 180,

176, 2,

254, 172,

13, 177,

169, 9,

142, 14,

173, 161,

16, 141,

2, 208,

72, 165,

133, 158,

249, 200,

158, 2,

58, 133,

157, 2,

2, 173,

154, 2,

14, 221,

120, 160,

221, 13,

13, 221,

96, 32,

76, 202,

32, 31,

54, 133,

154, 2,

141, 114,

206, 185,

23, 206,

41, 18,

144, 76,

186, 76,

172, 156,

177, 247,

164, 151,

76, 156, 207,

207, 76, 41,

4, 51, 19,

13, 169, 59,

140, 25, 3,

30, 3, 140,

207, 141, 38,

72, 138, 72,

221, 169, 127,

221, 16, 77,

221, 176, 5,

45, 161, 2,

0, 221, 41,

221, 138, 41,

141, 6, 221,

169, 17, 141,

161, 2, 141,

169, 77, 141,

7, 221, 169,

160, 0, 76,

141, 13, 221,

152, 74, 102,

172, 155, 2,

155, 2, 169,

18, 160, 127,

221, 77, 161,

13, 221, 138,

48, 13, 169,

169, 0, 133,

157, 2, 204,

249, 238, 157,

133, 180, 208,

221, 169, 1,

2, 41, 3,

13, 221, 169,

237, 141, 161,

154, 201, 2,

132, 151, 172,

204, 157, 2,

173, 161, 2,

181, 169, 9,

177, 249, 133,

153, 2, 141,

141, 5, 221,

169, 129, 141,

127, 140, 13,

161, 2, 141,

40, 24, 164,

59, 207, 76,

241, 32, 15,

243, 165, 186,

153, 133, 158,

41, 6, 168,

206, 185, 17,

22, 206, 141,

141, 145, 206,

208, 35, 141,

101, 207, 76,

27, 242, 133,

2, 204, 155,

133, 158, 238,

165, 158, 96

76, 8

207, 234

165, 1

160, 206

169, 140

31, 3

3, 140

152, 72

141,

236,

5

13

7

9, 2

170, 74

251,

16, 240

169, 4

15, 221

161, 2

6, 221

8, 133

86, 254

138, 41

170, 198

165, 170

0, 141

140, 13

2, 141

74, 144

4, 102

181, 76

158, 2

2, 133

228, 162

208, 188

208, 249

2, 45

2, 104

208, 96

158, 2

240, 74

41, 1

133, 180

182, 238

4, 221

169, 17

13, 221

221, 140

161, 2

151, 165

45, 207

243, 208

201, 2

132, 151

185, 16

206, 141

140, 206

173, 161

15, 221

1, 247

158, 132

2, 240

156, 2

KG 1000

KD 1010

IM 1020

PN 1030

JB 1040

KK 1050

JB 1060

JA 1070

EK 1080

CE 1090

JF 1100

KF 1110

CI 1120

CG 1130

JN 1140

HH 1150

IM 1160

JM 1170

NL 1180

BM 1190

IK 1200

MM 1210

DE 1220

MN 1230

AG 1240

BP 1250

10 1260

LB 1270

JC 1280

GP 1290

LL 1300

EE 1310

EB 1320

HG 1330

JD 1340

GC 1350

EF 1360

CI 1370

PK 1380

AO 1390

DE 1400

AJ 1410

NH 1420

BI 1430

JO 1440

AN 1450

GL 1460

EB 1470

CK 1480

JA 1490

PJ 1500

NA 1510

MF 1520

MC 1530

KB 1540

MB 1550

PO 1560

BM 1570

PF 1580

LD 1590

LD 1600

IP 1610

data 76,

data 27,

data 203,

data 77,

data 141,

data 160,

data 169,

data 39,

data 216,

data 221,

data 221,

data 13,

data 144,

data 181,

data 47,

data 141,

data 169,

data 141,

data 169,

data 168,

data 173,

data 2,

data 168,

data 145,

data 15,

data 221,

data 15,

data 14,

data 182,

data 51,

data 240,

data 182,

data 0,

data 72,

data 169,

data 15,

data 96,

data 104,

data 145,

data 140,

data 208,

data 172,

data 26,

data 173,

data 141,

data 8,

data 13,

data 141,

data 158,

data 104,

data 60,

data 208,

data 173,

data 26,

data 119,

data 185,

data 10,

data 169,

data 165,

data 151,

data 8,

data 24,

28, 26, 76,

76, 213, 27,

1, 66, 4,

3, 82, 13,

24, 3, 140,

27, 141, 30,

33, 160, 27,

3, 96, 72,

174, 7, 221,

173, 13, 221,

172, 1, 221,

13, 221, 45,

10, 173, 0,

141, 0, 221,

169, 66, 141,

7, 221, 169,

18, 77, 15,

13, 221, 169,

3, 141, 7,

208, 60, 160,

15, 10, 141,

240, 44, 152,

208, 34, 172,

200, 238, 24,

221, 169, 18,

140, 13, 221,

10, 141, 13,

198, 180, 48,

176, 2, 169,

255, 172, 26,

13, 177, 202,

169, 9, 133,

142, 14, 221,

173, 15, 10,

16, 141, 13,

10, 208, 237,

72, 165, 154,

133, 158, 132,

202, 200, 204,

27, 10, 173,

58, 133, 181,

26, 10, 177,

10, 173, 22,

23, 10, 141,

14, 221, 169,

120, 160, 127,

221, 13, 15,

13, 221, 40,

96, 32, 59,

76, 121, 239,

32, 18, 242,

54, 133, 153,

23, 10, 41,

141, 114, 26,

26, 185, 22,

23, 26, 141,

41, 18, 208,

144, 76, 101,

186, 76, 14,

172, 25, 10,

177, 200, 133,

164, 151, 165,

156, 27,

76, 41,

51, 19,

169, 64,

25, 3,

3, 140,

141, 38,

138, 72,

169, 127,

16, 77,

176, 5,

15, 10,

221, 41,

138, 41,

6, 221,

17, 141,

10, 141,

77, 141,

221, 169,

0, 76,

13, 221,

74, 102,

24, 10,

10, 169,

160, 127,

77, 15,

221, 138,

13, 169,

0, 133,

10, 204,

238, 26,

180, 208,

169, 1,

41, 3,

221, 169,

141, 15,

201, 2,

151, 172,

26, 10,

15, 10,

169, 9,

202, 133,

10, 141,

5, 221,

129, 141,

140, 13,

10, 141,

24, 164,

27, 76,

32, 2,

165, 186,

133, 158,

6, 168,

185, 17,

26, 141,

145, 26,

35, 141,

27, 76,

241, 133,

204, 24,

158, 238,

158, 96

76, 8

27, 234

165, 1

160, 26

169, 140

31, 3

3, 140

152, 72

141, 13

236,

9,

170, 74

251, 5

16, 240

169, 4

15, 221

15, 10

6, 221

8, 133

75, 250

138, 41

170, 198

165, 170

0, 141

140, 13

10, 141

74, 144

4, 102

181, 76

27, 10

10, 133

228, 162

208, 188

208, 249

2, 45

10, 104

208, 96

27, 10

240, 74

41, 1

133, 180

182, 238

4, 221

169, 17

13, 221

221, 140

15, 10

151, 165

45, 27

242, 208

201, 2

132, 151

185, 16

26, 141

140, 26

173, 15

15, 221

130, 246

158, 132

10, 240

25, 10

□

Transactor 68 February 1989: Volume 9, Issue 3

Z3PLUS

An extensive and versatile operating

system enhancementfor C128 CP/M mode

Review by M. Garamszeghy

Z3PLUS

$69.95 from:

Z Systems Associates

1435 Centre Street

Newton Centre, MA 02159-2469

(617) 965-3552

One of the most frequent complaints I hear about CP/M on the

C128 is its lack of 'user friendliness', especially towards Com

modore junkies who have never bothered to acquaint them

selves with other computer systems. Ask what would consti

tute a user-friendly system, and you are likely to get as many

different responses as people you ask. This seems to indicate

that the ideal operating system should be customizable so that

it can appeal to diverse tastes. Z3PLUS is such a system.

Z3PLUS, or the "Z System" as it is otherwise known, has

evolved considerably over the years since it made its debut as

Zcpr, almost at the dawn of CP/M computing. Versions exist

for almost every Z80 CP/M system around, the latest release

running under Cp/m 3.0 or Cp/M Plus, which just happens to be

the CP/M used by the C128 as well as a few other less impor

tant (to me, anyway) computers.

What is Z3PLUS?

Z3PLUS is essentially an enhanced replacement command pro

cessor for the standard CP/M CCRCOM operating environment.

It is a user interface that provides features such as named

directories (which can be named across drives and user areas),

extensive command line editing, keyboard macros and

enhanced batch file processing.

The system comes complete with a number of operating sys

tem shells of varying sophistication that allow you to perform

routine housekeeping functions such as running programs and

copying files from a point-and-shoot type menu. You can still

run virtually all standard CP/M programs when using the Z

System, as well as many Z System-specific utilities.

Z3PLUS comprises the main operating module (Z3PLUS.COM)

and a number of transient command and utility programs. The

commands are broken down into three segments:

• the FCP (Flow Command Package), which is used to decide

branching and conditional execution in batch file type

processing (such as IF and ELSE);

• the RCP (Resident Command Package), containing general

commands (such as ECHO and CLS);

• the CPR (Command PRocessor), which contains system

commands (like GET, GO and JUMP).

The Z System is customizable in a number of ways. The first

level of customization involves which commands you decide

to include with your system.

The 'stock' Z3PLUS system includes a wide variety of options

and commands in each of the three command types outlined

above, such as CLS (clear screen); ECHO (print message to

screen); POKE (for changing system memory); if, and, OR and

ELSE (for conditional batch file execution); GET (load a file);

GO, jump (execute a previously loaded file); etc.

Any or all of these commands can be included in your person

al command library. Obviously, the more commands you make

resident, the more memory will be required by system over

heads.

By using GET and GO separately, you can load and run pro

grams in areas other than the default start of TPA, providing, of

Transactor 69 February 1989: Volume 9, Issue 3

course, that the files were assembled with the non-standard

start address in mind. This allows you to have more than one

program in memory at once by having each located in a differ

ent area of RAM. (In fact, most of the Z System shells and utili

ties work in this fashion.)

An interesting point is that GET is not restricted to loading pro

gram (COM) files, and can even be used to 'load' text files. Of

course, you will not be able to execute the text file, but you

can bring it into memory if you wish.

The second level of customization involves the use of 'aliases'

and script files (an 'alias' is defined in the manual as a "single

word or command that stands for a longer or compound com

mand"). The alias allows you to set up custom names for your

favourite command sequences.

Script files are more extensive and interactive than aliases, and

can be combined into libraries containing some very sophisti

cated custom menu routines. You write them yourself and can,

therefore, include whatever you wish in them.

Of named directories

One of the many interesting features of Z3PLUS is its use of

the CP/M user areas as named directories. This can help people

to organize large disks into smaller areas associated with easy

to remember labels.

For example, with the editndr you can define user area 15 on

drive M as the 'system' directory. Now when you log onto

user 15 of drive M:, the prompt will display the name of the

directory 'SYSTEM' in addition to the usual CP/M 'M15' prompt.

When in the Z System, and from within most of its utilities,

you can change to the named directory area by simply specify

ing the directory label without having to remember the exact

drive code and user area. The named directory list can also be

saved (using savendr) for future use.

Z3PLUS also provides for password protection of files and

directories.

The tools and utilities

Most of the utilities provided on the distribution version of

Z3PLUS are public domain. (This does not mean, however, that

you get the same old tired programs that you probably already

have several copies of in your library. They have been put into

the public domain by their various authors to the benefit of all

Z System users.)

The major ones, such as the operating system shells ease and

zfiler, have been specifically written to run in the Z3PLUS

environment, so would not do too well without it. (They are

public domain in the sense that you are free to copy and use

them as you see fit. The Z3PLUS.COM main system modules are

not public domain, however.)

Ease stands for 'Error And Shell Editor'. A 'shell' can be

loosely defined as a user interface that provides some degree

of simplification for accessing operating system features. In

addition to providing a powerful command line editor (the

command codes are basically compatible with WordStar),

EASE also provides a 'history' file of previously executed com

mands in sequence that can be easily retrieved, edited and re-

executed.

Zfiler is the second operating shell provided with Z3PLUS. It

is basically a point-and-shoot menu-driven file management

program that does things like batch copying, running other

programs, etc. Like the other Z3PLUS utilities, it is clean and

very easy to use.

(One interesting feature about the Z System is that it allows

you to use multiple levels of shells. If you first activated the

EASE shell, then went into zfiler, you would go back to EASE

when you exited zfiler. You then exit EASE to get back to the

Z3PLUS system.)

Zpatch is a hexadecimal file editor. It is easier to use than the

patching modes of a debugger such as SID because it provides

a full-screen editor that works in both HEX and ASCII modes.

Salias is a mini text editor used for editing and creating alias

script files that uses WordStar-type control code commands for

editing and cursor movement.

In addition, Salias can be used for other general editing of

short text notes as well.

Arunz is an alias library manager of sorts. It allows you to

combine many single alias script files into one large one, thus

saving on disk overhead space (one large file can take up sig

nificantly less disk space than many small ones due to the

CP/M disk allocation unit size of 1 or 2 kilobytes on the C128).

When you use ARUNZ, you specify the name of the alias 'mod

ule' you wish to run, and ARUNZ will extract it from the alias

library file (ALIAS.CMD), then execute it.

The documentation

If I could say but one thing to the first time Z3PLUS user, it

would be: read the manual, front to back, in that order, and do

not skip anything. The manual, like the Z3PLUS system, was

written primarily by a physicist at MIT. (This person is so logi

cal he would make Mr. Spock green(er) with envy, if he were

capable of such emotion.) The manual was written to be read

in consecutive order.

(As a physicist, he should be familiar with the concept of

Brownian motion, which is how I think most people, myself

included, tend to read software manuals - randomly taking bits

here and there. I made the mistake of skipping a chapter in the

middle and was confused for quite some time until I realized

that the chapter I had missed contained some vital information

that I needed.)

Transactor 70 February 1989: Volume 9, Issue 3

Once you convince yourself that reading the manual is

required, initial set-up of the Z3PLUS operating system is quite

simple and straightforward. You define your terminal capabili

ties (Saints be praised, the terminal type selection menu even

includes an entry for the C128!) and rename a couple of files

(this is the less obvious part that killed me before I read the

manual in detail). Type in the magic word Z3PLUS and away

you go.

The documentation itself is clear enough, although somewhat

lacking when it comes to details. For example, in the section

dealing with perhaps the most important utility, ZFILER (the

general file handling, copying etc. utility), the part describing

the command options merely tells you to look at the menu list

ing on the screen. I think that at least a command summary

could have been expected.

(To their credit, however, a more detailed technical reference

manual can be had, at extra cost. A bibliography of suggested fur

ther reading is also supplied for those who may be interested.)

To get around the problem of having to read the manual front

to back, I would suggest better cross-referencing among the

sections, especially between sections that contain vital infor

mation required to get a given utility to work.

The Z System is also supported by a network of BBSs

(referred to as 'Z-Nodes'), which supply up to date techincal

info and help as well as providing a convenient method to dis

tribute new programs written for the Z System. A list of Z-

Nodes is included on the Z3PLUS disk.

Final impressions

Cp/m is a disk-intensive operating system. Z3PLUS is perhaps

even more so because of its reliance on transient commands

and script batch files. Because of this, a fast drive is impera

tive {don't try it with a 1541, you will probably die of old age)

and a RAM disk is even better.

(An interesting combination is a 64k Quick Brown Box bat

tery-backed RAM cartridge with the QDisk CP/M driver soft

ware (reviewed in a recent issue of Twin Cities-128). With this

you can load most of the Z3PLUS main files and utilities into a

non-volatile ram disk and have them available as soon as you

start up CP/M each time without having to copy them into the

1750 RAM disk.)

When I first started up my copy of Z3PLUS, I thought, "anoth

er semi-useful product". However, as I used it more, and dis

covered more of its features, I found myself liking it more and

more and consequently using it more and more.

It sort of grows on you. Although $69.95 may seem like a fair

bit to spend on an operating system enhancement, it is well

worth it if you are seriously into C128 CP/M. What you get is

an easily expandable and customizable operating environment

that can be as powerful as you want to make it. □

C For CP/M
The BDS C Compiler v1.6

The original, fast CP/M-80 C language

development system is now available

once again directly from BD Software!

• Over 700K of materials, including full
sources for: all libraries, runtime pkg,
RED integrated editor, CDB source-level
debugger, CMODEM program, utilities

• Ideal for most ROM-based applications

• Made to run fast on floppy-only systems

• Many P.D. applications available (CUG)

• Fully supported by author Leor Zolman

Now only $90 per copy!

BD Software
P.O. Box 2368

Cambridge, Ma. 02138
(617) 576-3828

Free UPS 2nd-day-air delivery for pre-paid orders. C.O.D., MC,

VISAorders accepted. Please specify a soft-sectored disk format!

CHIP CHECKER

• Over 650 Digital ICs • 8000 National + Sig.

• 75/54 TTL (Als,as,f,h,l,ls,s) • 9000 TTL

• 74/54 CMOS (C.hc, hct, sc) • 14-24 Pin Chips

• 14/4 CMOS • .3" + .6" IC Widths

Pressing a single key identifies/tests chips with ANY

type of output in seconds. The CHIP CHECKER now

also tests popular RAM chips. The CHIP CHECKER is

available for the C64 or C128 for $159. The PC com

patible version is $259.

DUNE SYSTEMS

2603 Willa Drive

St. Joseph, Ml 49085

(616) 983-2352

Transactor 71 February 1989: Volume 9, Issue 3

JiffyDOS for the C64/C128

'Look, Ma - no cables1/

Hardware review by Noel Nyman

JiffyDOS is availablefor C64, C64-C, SX64, C128, C128-D

and 1541I1541-CI1541-II, 1571,1581, FSD, MSD,

Excelerator +, Excel 2001, Enhancer 2000

C64 series and one drive - $49.95

C128 series and one drive - $59.95

additional drive ROMs - $24.95

all prices plus shipping, US dollars

Creative Micro Designs, P.O. Box 789,

Wilbraham, MA 01095, (413) 525-0023

Specify computer and disk drive models when ordering

My first encounter with hardware to speed up my C64/1541

combination was 1541 FLASH. It was incredibly fast compared

to stock machines. Block reads with "Disk Doctor" were on

the screen almost before you could release the RETURN key. It

also sported an extra cable between the drive and the Datasset-

te port. You could put that plug in upside down. I found that

out the hard way. You could break the wires off the plug

(found that out the hard way, too).

Flash permanently replaced the computer and disk drive

ROMs (Read Only Memories), and worked only with the 1541.

It was supposed to be compatible with everything. But the

'newest' copy protection systems used 1541 ROM codes, and

wouldn't work with FLASH.

That was several years ago, and I'm sure FLASH has improved.

It, and many similar products, still require an extra cable be

tween the computer and disk drives. A corollary of Murphy's

Law says that the cable supplied will always be just inches

short of what's needed to locate your equipment where you

want it.

A product that does not require extra wiring is JiffyDOS from

Creative Micro Designs. The system uses the standard serial

bus cable for all data transfers.

JiffyDOS replaces ROMs in the computer and disk drives. I test

ed it on a C64 (ROM-3) with two 1541 disk drives. Both drives

were equipped with JiffyDOS ROMs, although that's not neces

sary. The system will work at normal speed with any addition

al drives that are not upgraded.

Unlike some cartridge-based products, ROM replacements

speed up SAVE and "block access", as well as LOAD. JiffyDOS

loads files about nine times faster than a standard system.

Saves are about three times faster.

JiffyDOS works at this faster speed with all types of files, and

with "block accesses" as well. Programs such as SuperBase

may LOAD rapidly with many other products. But, they operate

at normal 'slow' speed because they rely heavily on sequential

or relative files. JiffyDOS improves the drive performance on

any SEQ, REL, or USR file. Direct block access was also about

three times faster in my tests.

JiffyDOS uses the standard Commodore DOS format to save

files. It changes the 'interleave' (the number of disk sectors

skipped between consecutive sectors of a file) to six. Com

modore uses an interleave of ten. This makes for faster loads

of files SAVEd with JiffyDOS, when JiffyDOS is used. Standard

DOS can still read these files too, but a bit more slowly then

normal.

One disadvantage of ROM replacement is that you must disas

semble your computer and disk drive to make the installation.

Creative Micro tries to make this as painless as possible. They

provide six pages of step-by-step instructions for the comput

er, and seven pages for the disk drive. There are clear draw

ings of the various circuit board versions, with the location of

the ROM to be removed, and similar drawings showing the

JiffyDOS ROM orientation. The instructions are easy to follow,

and have enough cautions and comments to keep even a

novice from running into difficulties.

I had a minor 'problem' reading a special note for 64C owners.

It refers to the ROM for the "older C64 boards" as having 24

pins, while the correct ROM for newer 64Cs has 28 pins.

I have a C64, one of the older boards. But, the ROM I received

has 28 pins. The ROM is mounted on a small circuit board. The

board has 24 pins on it, which fit into the Kernal ROM socket

on the C64 board. The note apparently refers to the number of

Transactor 72 February 1989: Volume 9, Issue 3

JiffyDOS improves the drive

performance on any SEQ, REL,

or USRfile. Direct block access

was also about three times

faster in my tests.,.

pins on the circuit board, not on the ROM chip itself. (Creative

Micro says that a new version of the instructions makes this

clear.)

Which brings up the other disadvantage of ROM replacements.

If you have an older C64, your Kernal ROM may not be in a

socket. To install JiffyDOS, you'll have to unsolder the ROM

from the circuit board. This is not a job to be taken on lightly.

If you don't have experience with unsoldering integrated cir

cuits, you should enlist the aid of a professional. Any compe

tent computer tech should be able to remove your Kernal ROM

and install a low profile socket in its place for a few dollars.

Many C64s, and all 64Cs and C128s have the Kernal ROM

socketed rather than soldered in place.

Most 1541 ROMs are socketed. A few rare exceptions have

ROMs mounted on 'piggyback' boards. Although these can be

unsoldered, the JiffyDOS ROM and socket mounted on the pig

gyback board will sit too high to clear the top cover. If you en

counter this problem, Creative Micro gives you the option of a

free special replacement board.

A wedge, and more

JiffyDOS adds several features besides faster disk access. The

usual 'wedge' commands are available, with the usual syntax.

/filename loads a basic program. %filename will do the

same for a machine language file. @$ displays a disk directo

ry, @SO:filename will scratch a file, etc. The > symbol can be

used in place of the @.

JiffyDOS also defines the eight function keys with commonly

used wedge commands, and RUN and list. @F toggles these

definitions on and off.

'filename verifies a file against memory. @U will 'un-new' a

basic program. @D:filename lists a BASIC program to the

screen without disturbing memory. The listing can be paused

by pressing any key. The listing can be redirected to a printer

with OPEN4,4: CMD4.

@T:filename will display or 'type' sequential files on the

screen, again without disturbing memory. Pressing any key

will pause the display. Cmd will redirect the output to a printer

or disk drive. You can use @T to copy a sequential file to

another disk drive, although "ready." will be appended to the

end of the copy.

Control-p will print the current low resolution text screen on

your printer... sometimes. The printer must be device #4, and

either a Commodore printer or a good emulation. The com

mand worked fine in direct mode.

I hoped to get hard copy of screens from databases and spread

sheets. But, CONTROL-P didn't work from inside most pro

grams. Occasionally one of the public domain "Disk Doctors"

printed, but only in upper case/graphics mode, although the

screen was upper/lower case.

@N0:disk,id formats a disk in about 20 seconds - not as fast

as some systems. But the documentation claims that all normal

error checking is maintained. @N2:disk,id formats both sides

of a disk for 1571 drives in 1541 mode. This facilitates using

both heads when working with a C64/1571.

@B toggles 'head bumping' on the 1541. With bumping off,

disk read errors will not cause the obnoxious misaligning rat

tle. Some software may send its own code to the drive which

turns the bump back on. In that case, two @B commands are

needed to turn bumping off again. More on this in a moment.

@Q disables the wedge and function key commands. Fast disk

access routines are still in place. A SYS to an address in ROM

will re-enable the functions that @Q kills.

Wedge commands can be used in basic programs. They can

be chained, several commands on one line.

@M#9": @"S0:test*": @"#8"

This can be done in program or direct mode. Note that the

quotes are required, and an @$ in the chain will cause the re

maining commands to be skipped.

The wedge commands will accept string variables, but only in

program mode. Numeric variables can be used for some pa

rameters, such as disk drive numbers, in either mode.

Compatibility and copyrights

Creative Micro claims that JiffyDOS is completely compatible

with all commercial hardware and software. They guarantee it

for 30 days from purchase. If you find something that won't

work, you can return JiffyDOS for a full refund.

Obviously, a replacement with all these features changes the

Kernal ROM code substantially. As usual, the extensive Datas-

sette routines are replaced with the new code. That alone

would make the ROM incompatible with one piece of "com

mercial hardware" - the Datassette.

Some products avoid this problem by providing a board with

two sockets - one for the new ROM and one for your old Kernal

Transactor 73 February 1989: Volume 9, Issue 3

ROM. A switch selects one or the other; hence, full compatibil

ity. If something won't work, just throw the switch.

JiffyDOS does this one better. The small circuit board with its

24 pins holds only one ROM. It does have a toggle switch sol

dered to it, on about a foot of wire. You mount this switch in a

hole you drill in the plastic case. The installation instructions

suggest places where the switch won't be in the way of inter

nal workings. Switches are connected to the ROMs for disk

drives as well.

The switch selects one of two 8K banks of memory in the

ROM. One is JiffyDOS. The other is supposed to be fully com

patible with your old computer ROM. When I threw the switch

and reset the computer, I was greeted with the familiar sign-on

message - the exact same message.

Curious, I checked the 'stock' ROM code against the original

Kernal ROM. Not only are they "compatible", they're

byte-for-byte identical! This makes for a curious situation re

garding Commodore's copyright on

the ROM code. It does ensure that the

user has full compatibility. It also

gives you a ROM upgrade in case you

have an older (ROM-1 or ROM-2) C64.

tempts when a disk error is encountered. A 5 causes the normal

activity, complete with head bump. A 133 bypasses the bump

ing part (the high bit is set...133 = 128 + 5). This is a 'tradi

tional' method of eliminating head bump. But, a drive reset

defeats it. So, some software may still cause head bumps.

JiffyDOS changes several of the vectors in the 768-779 ($0300 -

$030B) range. @Q resets them to stock values. Basic add-on

utilities and other programs also change these vectors, to point

at themselves. A well-written program will save the vector it

replaces, and jump to it when done. But, not all programs are

well written. Many programmers will assume the stock values

and jump directly to them. This will bypass the JiffyDOS com

mands.

I was pleasantly surprised to find that JiffyDOS does not use lo

cation 186 ($BA) to determine which drive to access for wedge

commands. Location 186 holds the current device number, ac

tually the last device accessed. If you just printed something

on the printer, location 186 will have a value of 4.

If you need to disable JiffyDOS on the

computer and several disk drives,

you'll have to throw a switch on each.

This could be a bother if you have sev

eral programs requiring the change.

You can make it easier by mounting

the drive switches on the front panels, or under the front bezel

on 1571's.

Compatibility and RAM

The manual says that JiffyDOS "does not use any extra RAM

(Random Access Memory) in your computer". Well... almost.

It's hard to toggle features without using some memory to re

member which state the toggle is in. If the add-on hardware

has no RAM, it must borrow some from the computer.

JiffyDOS has only ROM. So, some memory locations are used.

The designers minimized this impact by using locations that

are uncommon to most software routines.

Locations 674 ($02A2) and 675 ($02A3) are used by the stock

Kernal to save CIA (Complex Interface Adapter) control regis

ters during Datassette I/O. Since JiffyDOS doesn't use the

Datassette, it uses these addresses as toggles.

Address 674 holds the function key toggle. A non-zero value

turns off the pre-defined function keys.

JiffyDOS toggles the value at address 675 between 5 and 133

whenever @B is pressed. The value is then sent to disk drive

address 106 ($6A). This address controls the number of read at-

The "compatibility" ROM is

identical to the Kernal ROM-3.

This insures full compatibility

and upgrades a ROM-1 or

ROM-2 C64...

Many add-ons, such as Fast Load, and

the Datel Mark-iv cartridge, use loca

tion 186 to decide which disk drive to

access. If you tell the Mark-iv to dis

play a disk directory after printing on

the printer, it vainly tries to show you

a directory from device #4.

JiffyDOS is smarter. It keeps its own

active drive number, the one you set

with @#. It stores it at location 787

($0313). This location, marked "unused" on memory maps, sits

between the USR (user routine) and the IRQ (hardware inter

rupt) vectors. It's only one byte, and not in zero page. So, most

programmers don't use it. But JiffyDOS does, and I do.

JiffyDOS also knows the legal disk device numbers. I could

change between disk drives by POKEing an 8 or 9 to address

787. But any other value was changed to 8 by the next disk ac

cess. Since the system works with more than two drives, I as

sume that values of 10 and up would be accepted if those de

vices were installed in the system.

If you use address 787 in your own programs, be aware that

JiffyDOS may change the value for you. That can be a feature.

To tell from program mode if JiffyDOS is active, store 255 at

location 787, issue a disk command, and see if location 787

contains an 8.

Summary

JiffyDOS is a good compromise between maximum fast load

ing and compatibility.

You can use any software or hardware. Your cartridge, Datas

sette, and user ports are free. You can add a disk drive or use

part of your system with other non-JiffyDOS equipment with-

Transactor 74 February 1989: Volume 9, Issue 3

out difficulty. There are no extra wires to bother with, and

nothing to forget to plug in.

JiffyDOS supports many non-Commodore drives. It may be

your only choice for a speed up system if you use another

manufacturer's drive, or mix 1541s and 1571s with the same

computer.

JiffyDOS worked with all the software and add-ons I tested, in

cluding some surprises. The Datel Mark-iv cartridge worked

normally with JiffyDOS active. I loaded a "Warp*25" version

of Disk Maintenance in seven seconds with the Mark-iv. Load

ing the standard program with JiffyDOS took 45 seconds. Disk

Maintenance has its own software fast loader, which probably

deactivated the JiffyDOS routines. Once running Disk Mainte

nance, however, JiffyDOS read the blocks from the disk three

times faster than with the Mark-iv alone. For ease of use, with

some helpful features added, JiffyDOS is a good value.

Here at the Transactor offices we have received JiffyDOS for

the C128 and 1571. This product works in 64 mode as well as

128 mode. The instructions were veiy clear and well-

illustrated. Installation was simple and the system works well.

In our case, the drive instructions amounted to six pages (the

1541 has been through several revisions and therefore re

quires seven pages).

JiffyDOS allows 'power on' ROM switching. (Crashing or hang

ing up is possible; response varies with the program.) Do not

switch during a disk access!

On 1571 and 1581 drives, the drives sense whether the com

puter is in stock or JiffyDOS mode and select the correct rou

tines automatically. JiffyDOS speeds up 1571 and 1581 drives

(though not as dramatically as it does the 1541).

Faster than a Speeding Cartridge

More Powerful than a Turbo ROM
It's Fast, It's Compatible, It's Complete, It's...

JtffvEXX
I Ultefast Disk Operating System for the C441SXS4iM28

• Speeds up all disk operations. Load, Save, Format, Scratch, Validate, access

PRG, SEQ, REU &USR files up to 15 times faster!

• Uses no ports, memory, or extra cabling. The JiffyDOS ROMs upgrade your

computer and drive(s) internally for maximum speed and compatibity.

• Guarant*ed100%wmpatltt#wrthaUwttwartart^

upthe loadingand internal file-access operation ofvirtually all commercial software.

• Built-in DOS Wedge plus 14 additional commands and convenience features

including one-key baoVsave/scratch, directory menu and screen dump.

• Easy do-ft-yoursetf Installation. No electronics experience or special tools re

quired. Illustrated step-by-step instructions ^eluded.

Available for C-64,64C, SX-64, C-128 & C-128D (JrffyOOS/128 speeds up both 64

and 128 modes) and 1541,1541C, 1541-1,1571,1581, FSD-1&2, MSD SD-1&2,

Excel 2001, Enhanctr2000, Amtoch, Swan, Indus4 Bluechlpdisk drives. System

includes ROMs for computer and 1 disk drive, stock/JiffyDOS switching system,

illustrated installation Instructions, User's Manual and Money-Back Guarantee.

Speed Comparison: The chart below is from the JiffyDOS

manual and is based on results obtained using ML routines.

They do not take into account spin-up delay (.5 sec.) or direc

tory searching time. Other factors may also influence the re

sults that you obtain on your system. □

Speed Comparison Chart

C64, SX-64,64 mode

Load 202-block PRG file

Save 100-block PRG file

Read 125-block SEQ or USR file

Write 100-block SEQ or USR file

Read 64 154-byte REL records

Write one 154-byte REL record

Read/write 16K on command channel

Load 202-block PRG file

Save 100-block PRG file

Read 125-block SEQ or USR file

Write 100-block SEQ or USR file

Read 64 154-byte REL records

Autoboot 202-block program

Read/write 16K on command channel

1541
124

75

84

81

40

.350.

47

C128 in 128

124

75

84

81

40

125

47

12

24

15

27

14

.125

9

mode

12

24

15

27

14

13

10

1571

124

75

84

81

40

.350.

47

14

48

31

48

21

54

10

9

20

13

24

14

.120

9

9

25

12

33

14

10

6

1581

102

40

63

44

37

.325,

47

12

26

20

20

17

13

10

8

15

9

17

10

.110

9

8

14

10

11

10

9

6

Transactor 75 February 1989: Volume 9, Issue 3

SWL

Short-wave decodingfor the C64 (and VIC-20)

Hardware review by Noel Nyman

SWL cartridge, availablefor VIC-20, C64, and C128

$64 US

G&G Electronics

8524 Dakota Dr.

Gaithersburg MD 20877

USA

(301) 258-7373

The SWL cartridge, from G&G Electronics, has been adver

tised in Commodore-oriented magazines for several years,

promising "Worldwide Short-wave Radio Signals on Your

Computer."

If your receiver uses a full size phone jack, you'll need an

adapter. A second miniature jack on the cartridge can be used

for headphones or a speaker to monitor the signal.

A third jack is provided for connecting a key (the telegraph

type), so you can practise your code sending skills with the

cartridge. A slide switch is also used to select wide or narrow

bandwidth for certain types of signals.

The demo tape contains a long message in Morse code. You

play the tape on any cassette player. The headphone output

from the player is fed into the cartridge. By monitoring the

sound, you can get a feel for the volume and pitch that work

best.

"Remember the fun of tuning in all those foreign broadcast The cartridge performed flawlessly with the demo tape,

stations?" You bet I do! I once had a WWII Hallicrafters air

craft receiver, modified for short-wave use. The ad explains

that all those "beeps and squeals" you hear in the short-wave

bands are digital data. The SWL cartridge will decode them for

you. "You'll see the actual text [on your] video screen."

The cartridge plugs into the computer expansion port. It comes

with a hook-up cable, a demo cassette, and a manual that ex

plains "how to get the most out of short-wave digital DXing,

even if you're brand new at it." DXing is short for Distance

Receiving. Swl is an acronym for Short-Wave Listening.

There are several microprocessor based products that decode

various sorts of short-wave code. The SWL cartridge, at $64

US, is by far the least expensive. That's because you supply the

microprocessor, a C64 (or a C128 in C64 mode). A different

model of the SWL is available for the VIC-20.

All the decoders operate on the audio output of a short-wave

receiver. They use a circuit called a pll (Phase Locked Loop)

to 'lock in' on a narrow band of audio frequencies. The audio

signal is then converted into digital output. A ROM (Read Only

Memory) in the cartridge supplies the program that tells the

computer how to use the digital output from the PLL.

The cable supplied with the cartridge connects a miniature

phone jack on the cartridge to your receiver's headphone jack.

I connected it to my inexpensive multi-band radio, ran a long

piece of wire around the room, and proceeded to look for sig

nals to decode. None that I found was loud enough to get even

a glimmer of recognition from the cartridge.

I decided that my receiver simply wasn't up to the task. So I

contacted my friend John, who is interested in DXing. He

loaned me a Kenwood receiver with digital tuning, sideband

switches, adjustable filters, and many other bells and whistles.

This was a far cry from that ancient Hallicrafters!

I easily heard hundreds of signals. I also heard incredible

amounts of QRM (radio interference). I patiently adjusted, fil

tered, and tweaked on signals, trying to get the cartridge to re

spond to them.

Swl provides an on-screen tuning indicator which flashes

when the signal fed to the cartridge is recognized by the pll.

An audio tone is also produced in the monitor speaker. With

out these tuning aids, getting the audio just right would be im

possible. Even with them, it's quite a challenge.

Morse code is sent as CW (Continuous Wave). A circuit called

a bfo (Beat Frequency Oscillator) in your receiver creates the

audio 'dots' and 'dashes' from a CW signal. The BFO allows

you to vary the pitch of the audio. The pitch also varies if the

Transactor 76 February 1989: Volume 9, Issue 3

signal's radio frequency drifts. The drift can occur in either the

transmitter, your receiver, or both.

The PLL circuit in the cartridge requires the audio input to be

very near a specific frequency. You must adjust your receiver

to produce audio at that frequency. On the Kenwood, several

knobs affected the audio pitch. I found the volume was also

important.

Morse code can be sent at a variety of speeds, measured in

wpm (Words Per Minute). The cartridge can adjust automati

cally to changing speed, but only over a limited range. You set

the initial speed, and all other cartridge functions, using CTRL

key combinations on the keyboard. So you must guess at the

speed of a signal and set the cartridge, then adjust for the right

pitch and volume. Variations in the signal strength and any fre

quency drift will cause pitch and volume changes. The con

trols on your receiver require frequent adjusting to compen

sate. Too much interference will swamp the cartridge. It won't

be able to find the received signal amongst the garbage.

I worked with the SWL and the Kenwood for three evenings.

My net result was a partial message which read "I am a retired

airline pilot." I determined that most of the QRM was coming

from the C64 itself. Some shielding was in order. A better an

tenna system was needed too.

I explained the problems to John, who put me in touch with

Bill. Bill's hobby is DXing. He has three Commodore comput

ers. But he's not really a 'computer person.' Instead, they only

serve as aids to his many receivers, scanners, and other spe

cialized listening gear.

Bill was interested in the SWL cartridge, and offered to help me

test it. But he didn't expect much from such an inexpensive

product. He uses a decoder made by Info-Tech. It's a large

black box bristling with switches, and cost him several hun

dred dollars.

So, I visited Bill in his listening post. He's solved the comput

er generated QRM problem by using large ferrite traps threaded

around the equipment power cords. He also uses shielded ca

ble to feed signals from his sophisticated antennas.

We tested the SWL cartridge by connecting it and Bill's Info-

Tech to the audio output of his receiver. Both units got the

same audio signal. The Info-Tech has its own microprocessor

and connects to a video screen directly. Both devices can de

code Morse and RTTY (Radio Teletype) signals. The Info-Tech

can deal with several additional types, including packet radio

(computer data sent by radio instead of phone lines).

We found that the SWL cartridge and the Info-Tech did equally

well with Morse code. Both devices displayed the same text

consistently. Bill's receiver has more filtering than the

Kenwood, which helped eliminate static and other signal

interference. The SWL cartridge also did well with RTTY sig

nals. More set-up is required since there are many more varia

tions in RTTY than Morse transmissions. It was difficult to

gauge the SWL's performance against the Info-Tech on RTTY,

because they require audio at different frequencies in this

mode. So, the two devices could not decode the signals simul

taneously.

Bill was quite surprised at the performance of the G&G Elec-

tonics cartridge. It did as well as the much higher priced Info-

Tech, for the signals it was designed to decode.

But this device is not for the casual user. The cartridge will not

work at all with an inexpensive short-wave receiver. You must

have a good radio that will let you adjust the audio to the

range that the SWL can handle. You must also have a good

knowledge of what the signals sound like, and what adjust

ments to make from the keyboard to decode them. Without

Bill's expertise, I would have wasted most of the evening on

inappropriate "beeps and squeals".

You'll need good shielding on the computer also. The comput

er must be within reach of the radio for proper operation, since

you'll need to make adjustments on both often. The computer

and monitor must not create any radio interference. You'll

need clean signals to get proper cartridge operation.

The cartridge is an inexpensive way for the dedicated DX'er

with a C64 to add on-line automatic decoding. It is not appro

priate for a computer owner who's just getting started in the

exciting hobby of short-wave listening. □

ART-l: A complete interface system
for send and receive on CW, RTTY

(Baudot $ ASCII) and AMTOR, for

use with the Commodore 64/128

computer. Operating program on

disk included. $199.00

AIR-1: A complete interface system

for send and receive on CW, RTTY

(Baudot 3 ASCII) and AMTOR, for

use with Commodore VIC-20.

Operating program in ROM. $99.95

SWL SWL: A receive only cartridge for

CW, RTTY (Baudot § ASCII) for use

with Commodore 64/128. Operating
program in ROM. $64.00

AIRDISK: An AIR-1 type

operating program for

use with your interface

hardware. Both VIC-20

and C64/128 programs on

one disk. $39.95
AIR-ROM: Cartridge

version of AIRDISK for

C64/128 only. $59.95

MORSE
COACH

MORSE COACH: A Complete teaching

and testing program for learning

the Morse code in a cartridge.

For C64 or C128. $49.95
VEC SPECIAL $39.95

These products formerly manufactured by

G and G ELECTRONICS

OF MARYLAND

8524 DAKOTA DRIVE, GAITHERSBURG, MD 20877

(301) 258-7373

Transactor 77 February 1989: Volume 9, Issue 3

The ZR2 Hardware Interfacing Chip

Controlfunctions via the user port

Hardware review by Noel Nyman

ZR2 - 40 pin DIP hardware interface integrated circuit chip

$29.95 plus $1.55 shipping (US)

Alx Digital

12265 S. Dixie Hwy #922

Miami FL 33156

a disk with BASIC routines to control the ZR2 connected to a

Commodore user port is availablefor $5

Commodore eight-bit computers have an 'open architecture',

with all control and data signals brought to the outside world.

The VIC-20 and C64 also provide a user port with eight bi

directional lines easily controlled by BASIC software. Their

low cost makes them ideal for hardware control systems.

But, the time saved by using these computers is often lost

again in building the hardware interfaces you need to make

computer signals operate real-world devices.

A product that attempts to make interfacing easier is the ZR2,

from ALX Digital. This forty-pin DIP (Dual Inline Package)

chip provides several programmable functions. The functions

can be loosely grouped as: one-of-X outputs, pulse counter, se

rial functions, dimmers, and specialized display.

Hardware requirements

The ZR2 has eleven inputs and sixteen outputs. The only addi

tional parts required are pull-up resistors, a capacitor and a

crystal (see Figure 1). Alx recommends using buffers on the

ZR2 outputs, and specifies 74240's. These are ttl (Transistor-

Transistor Logic) tri-state gated buffer packages. Since they

invert the ZR2 signals, I used the similar 74244. It is pin-for-

pin compatible, but provides un-inverted buffering.

The ZR2 requires about lOOma (milli-amperes) at five volts

DC. A C64 with a power supply in top condition might be able

to provide lOOma. But I strongly suggest a separate power

supply for the ZR2 and the circuits it drives. Be sure to con

nect computer ground to ZR2 circuit ground.

A crystal frequency between lMHz and 11 MHz will work for

most functions. A 4mhz crystal is specified for AC dimming at

60Hz. If you develop a DC dimming or serial transfer applica

tion, then change the crystal frequency, you may have to adjust

your software to compensate.

The eleven inputs fall into three groups: eight data inputs, two

'logic points', and a reset line. For most applications, one or

both logic points are required. The reset signal is necessary if

you want to change functions under software control. If you

use the Commodore user port, that leaves only five lines for

data inputs. This is enough to select all of the ZR2's functions.

But, some functions accept parameters using all eight data in

puts. With the user port application, you're limited in the range

of these functions you can access.

Parallel decoders

The user port itself is a simple eight line decoder. By sending a

value between 1 and 255 to the user port, its outputs can be

'turned on' in any combination. The outputs are 'latched' in

this state; they don't change until another number is sent to the

port.

If want to turn on output #5, your software will have to calcu

late the appropriate binary value to send to the port (32 in this

case). If you want to turn on output #7 without turning off #5,

you'll have more calculation to do (128+32=160). If you need

more than eight outputs, you have a challenge.

The ZR2 provides some easy alternatives. In what's called the

"matrix" mode, you have two eight line decoders. To activate

this mode, you first place a value of five on the data bus and

ground the reset line. This resets the ZR2 to the function speci

fied by the number on the data bus. Next, place a zero on the

data bus. In matrix mode, the zero value is a toggle. But in

some modes, a fast zero is required, or the mode selection

number may also be interpreted as the first data value.

Now send any value between 1 and 255 to the data bus. The

corresponding outputs of "outport #1" will turn on. They will

be latched, just as with the user port. Sending a zero to the

data bus toggles the data bus to "outport #2". The next data

value will turn on the appropriate lines on outport #2. New

values sent to the ports will change the output lines in the

same manner as the user port.

Transactor 78 February 1989: Volume 9, Issue 3

To zero an outport, you must ground a logic point line while

sending data to the outport. This worked fine for me on out-

port #2. But, I was unable to zero outport #1. Also, with three

of the Commodore user port lines connected to the logic points

and reset, I was limited to controlling five lines on each

outport.

An alternative decoder may be more useful in some circum

stances. The one-of- sixteen decoder is selected by resetting

the ZR2 with a six on the data bus. If you don't quickly follow

this with a zero, the six will appear at the ZR2 output. Even at

computer speeds, your real world devices might respond to

this brief signal. I'll discuss a 'fix' for this later.

Now a value from one to eight will turn a corresponding line

of outport #1 on. Note that this is a true one-of-eight decoder,

where the "matrix" was a binary decoder. If you put a number

from nine to sixteen on the data bus, a line on outport #2 will

turn on. This is the "OR" mode...only one line on each outport

will be on at any time. Alx has designed the ZR2 so the out-

ports are somewhat independent in this mode. You can turn on

lines in either port with just one number on the data bus. But,

following an eight with a nine will leave the last line on out

port #1 on and turn the first line of outport #2 on also.

If you have a need for many lines to be on at one time, you can

enter the "AND" mode by grounding logic point #2. Now

sending in sequence T, '2', '3' to the data bus will cause the

first three lines on outport #1 to come on. Sending a zero to

the data bus clears the outputs in both modes.

Serial decoder

The serial decode function provides an interesting alternative,

since fewer data lines are required to use it. In fact, if you set

up the function using hardware (switches perhaps), you only

need two signals. Data is sent on logic point #2. Up to eight

pulses can be sent. A line will turn on at outport #1 represent

ing the total number of pulses sent. The timing is moderately

critical here. If the pulse widths and frequency aren't right, the

decoding will be erratic, or not work at all. The exact timing

will depend on the crystal frequency you use.

Outputs are "ANDed". So, sending T, '2', and '3' in succes

sion will cause all three of those lines to turn on. You can con

trol outport #2 independently by grounding logic point #1 be

fore sending pulses. A nine sent to either outport will zero the

outputs.

An interesting possibility here is that the pulses to logic point

#2 don't have to come from the computer. You can use pre

recorded pulses from tape, or clocked pulses from a ROM, or

from another ZR2. Using tape, you could set the device up en

tirely in hardware with switches... no computer required.

Alx has also implemented its own proprietary serial transmis

sion system, using two ZR2's. The first ZR2 receives a parallel

eight byte word, and generates serial pulses on outport #1 line

#1. A parallel copy of the word appears on outport #2 for veri

fication. These pulses are fed to logic point #2 of the second

ZR2, set for serial input.

In this mode, the receiving ZR2 displays the received data on

outport #1 in binary form. The data is latched until a new word

is received. New words replace old ones; no "AND" mode. A

zero is a "start of transmission" signal to the first ZR2, and is

not sent as data. Not being able to transmit a zero value makes

this serial system useless for sending program or other data.

But it can be used to send one-of-eight input control signals

over long distances. There is a decoding delay, which increas

es with the value of the number sent.

Pulse counter

Pulse counting mode is similar to serial decoding. However, in

this mode, new pulses are merely added to the existing count.

Both outports are used together. So, numbers up to 65,535 can

be "displayed". The lines change with each pulse received.

This makes for an interesting display. But, any devices con

nected to these lines will get momentary pulses as you send

new numbers.

DC dimmer

Up to eight separate lines can be selected for dimming via out

port #1. The lines start with no output. Grounding logic point

#2 causes pulses to be sent to the selected lines. The pulses in

crease in width, based on the crystal frequency. The observed

effect on LEDs connected to the lines is that they gradually

come up to full brightness. After briefly grounding logic point

#1, logic point #2 is used to dim the LEDs again. Bringing log

ic point #2 high during the process holds the LEDs at their

brightness level. So a slower speed can be implemented by

pulsing logic point #2.

Of course, other devices can be used in place of LEDs. I tried a

small DC motor with fair results (be sure to use a back-biased

diode to prevent reverse voltage spikes entering the integrated

circuits). But any robotics usefulness of this mode is eliminat

ed because you must come up to full "brightness" before

4'dimming" again. You can go from any brightness level to ze

ro, a feature not mentioned in the ZR2 documentation.

AC dimmer

To utilize AC dimming, you need a 4mhz crystal driving the

ZR2, and some additional parts. AC dimming works differ

ently from DC dimming. Not only can you 'dim' before reach

ing full brightness, you can't avoid it. Bringing the logic point

high to halt the process also toggles the direction. To brighten

lights to a particular level, stop, then brighten again, you must

send two ground pulses to the logic point. The first toggles

dimming, the second switches back to brightening. Since

we're dealing with AC devices, this won't be a problem for the

outputs. But it means a more device intensive software

routine.

Transactor 79 February 1989: Volume 9, Issue 3

Only one output can be controlled in AC dimming. However,

the dim rate is selectable over a reasonably wide range by

placing a number on the data bus.

Specialized displays

My first electronics construction projects were 'do nothing'

boxes. We made them from neon lights, capacitors, and resis

tors (relaxation oscillators to you knowledgeable folks). The

lights flashed in patterns, usually a circle.

Integrated circuits made 'do nothings' much more sophisticat

ed. I wrote two articles for Radio-Electronics magazine on

LED 'do nothing' boxes that used ROM's to produce a variety of

displays.

Perhaps because of my past interest in doing nothing, I found

the "chaser" routines most interesting. There are four separate

displays that produce 'chasing' patterns on LEDs or other lights

connected to the outports. The displays are speed controllable,

via the data bus. They can also be operated in "pulse" mode

through the logic points.

You can make a simple 'do nothing' that switches among the

four displays. Or you could connect the outputs to Christmas

tree lights or other displays for some interesting effects. Clever

as they are, the chasers are not very useful for hardware

control.

Should you buy one?

If you have the electronics expertise, you could build a hard

ware device to perform any one of these tasks for less than the

cost of a ZR2. If you have only one particular project in mind,

the ZR2 may be overkill.

If you like to experiment, or if you find your hardware needs

changing periodically, the ZR2 may be a reasonable invest

ment. You can certainly connect it in several different circuits

more easily than you could construct equivalent hardware. It

may even be cheaper to test systems using the ZR2 that you

eventually build from discrete parts, if your development time

is valuable.

There are some problems, many with the documentation.

Some electronics knowledge on the user's part is assumed. In

the first example (the chasers), the user is told to "bring the

same pin [logic point #2] up to +5 volts." A few sentences lat

er comes the caution "never connectany pin of the ZR2 di

rectly TO +5!"

This apparent discrepency assumes that the user understands

"+5 volts" as a slang terminology which actually means "log

ic one" in the ttl world. A ttl "logic one" is usually in the

range of +3.4 volts. Some input lines can cause internal chip

problems if connected to the higher +5 volts. The user must

have a good idea when "+5 volts" in the manual really means

"logic one."

The first example also implies that the ZR2 must be started

from a power off condition to change modes. In fact, a

grounded reset line will switch modes on the ZR2. It will also

force all outputs high briefly. This may be annoying for light

displays. It could mean disaster for real world devices con

nected to those outputs. This and other design 'features' proba

bly stem from alx's background designing lighting control

systems. Lights aren't as fussy about brief spurious signals as

are integrated circuit controllers.

My solution was to add a one-shot circuit to the standard

schematic provided by ALX. I connected the output of the one-

shot to the gate pins on the buffers. The one-shot is triggered

by the ZR2 reset signal to disable the buffer outputs. It's timed

to hold the gates low until the ZR2 settles its outputs down to

their desired state.

It's not always clear from the documentation what the state of

the logic points should be. There are several unused pins on

the chip. These should not have anything connected to them or

internal damage may result. But no caution appears in the

manual.

ALX has informed me that they are working on a revision of

the documentation to correct some of these problems.

For experienced electronics experimenters, the ZR2 provides a

cost effective way to quickly and easily experiment with new

interface circuits.

INPUT BUS 14

LOGIC POINT 1

LOGIC POIN'

ALX DIGITAL
INTERFACING THE ZR2

THIS IS THE BASIC WIRING USED TO INTERFACE THE ZR2

□

Transactor 80 February 1989: Volume 9, Issue 3

NorifNMest
MUSIC
CENTER
INC.

539 N. Wolf Rd. — Wheeling, IL 60090

Hours— (voice) Phone (312) 520-2540

Mon.-Thurs. 12:30-5:00, Sat. 12:00-4:00
(24 Hour Order Recorder)

We want to be shop!I

Hacker's

Parts««,fo-«

One of a Kind Surplus • Monthly Special
Limited Quantities To stock ori hand

Closeouts

64 k ieee to parallel buffer $199.00

4023p 100cps rehab $99.00

64k ram exp 8032 $110.00

Smith Corona DM-200 $179.95

6400, 8300p. Diablo 630 ribbons $4.95

8023p and MPP 1361 ribbons S5.50

9090 7.5 meg rehab $495.00

4023p ribbons $6.00

Everex 2400 external modem $245.00

SUPER SPECIAL

64 K memory expansion for 8032

— with superbase 8096 both for only $125.00

— with superscript 8096 both for only $125.00

Superpet 9000 rehab $150.00

8050 disk drive new $400.00

8050 disk drive rehab $200.00

B-128

$99 us.
rehab

NEW 128K USER INSTALLABLE

MEMORY EXPANSION!

INTRODUCTORY PRICE OF ONLY $125.

SOFTWARE FOR THE B-128!!!

Superbase $19.95

Superscript $19.95

Superoffice Integrated

Superbase & Superscript $49.95

Calc Result $89.95

Word Result $89.95

Super Disk Doc 24.95

The Power of: Calc Result (Book) $14.95

C.A.B.S. Accounting

General Ledger $ 9.95

Accounts Receivable $ 9.95

Accounts Payable $ 9.95

Order Entry $ 9.95

Payroll $ 9.95

Buy all 5 for only $24.95

Superbase: The Book $14.95

Applied Calc Result (Book) $14.95

8000, 9000 and B series

Commodore's

Superpet 9000

only $19900

while supplies last

With Five

Interpretive

Languages:

Cobol

Pascal

Basic

Fortran

Apl

Runs 8032 software.

Great for schools and students

64K Memory Expansion for 8032 only $110
upgrades your 8032 to an 8096.

COMMODORE

8000-9000 SOFTWARE & MISC.

9000 Superpet $199.00

64K exp for 8032 $110

OZZ Database $25

BPI General Ledger $25

BPI Accts Payable $25

BPI Job Cost $25

BPI Accts Receivable $25

BPI Inventory $25

Superscript 8032 $79

Superbase 8096 $79

Legal Time Ace $25

Dow Jones Program $25

Info Designs 8032

Accounting System $50

Superoffice 8096 $149

Calc Result 8032 $89

••••

SFD 1001 1 Megabyte

PRICED AT $149.95 (US)
$125 with purchase of Superpet

SFD-1001 is the drive that you should consider when you need large amounts of data storage. It holds

over 1 megabyte of data on its single floppy drive. Fast IEEE access for your C-64 orC-128. (C-64and
C-128 need an IEEE interface.) Why settle for slower drives with less storage capacity. This drive stores

substantially more programs and data. Think how much money you can save on disk purchases. In

fact, it stores almost 7 times more information than your standard drive. Bulletin board owners love
them. And what an introductory price! At $169.95 these drives will sell fast, so don't wait. This drive has

the identical format of a CBM 8250 drive, one of Commodores most durable floppy drives.

MODEL

DRIVES

HEADS/DRIVE

SFD-1001

1

2

STORAGE CAPACITY (Per Unit)

Formatted

MAXIMUM (Each Drive)

Sequential File

Relative File

Disk System

Buffer RAM (Bytes)

1.06 Mb

1.05 Mb

1.04 Mb

4K

DISK FORMATS (Each Drive)

Cylinders (Tracks) (77)

Sector/Cylinder

Sector/Track

Bytes/Sector

Free Blocks

TRANSFER RATES (Bytes/Sec)

Internal

IEEE-488 Bus

ACCESS TIME (Milli-seconds)

Track-to-track

Average track

Average Latency

Speed (RPM)

—

23-29

256

4133

40 Kb

1.2 Kb

*

100

300

ORDER NOW WHILE STOCK LASTS!

Send or call your orders to Northwest Music Center, Inc. 539 N. Wolf Rd., Wheeling IL 60090. 312-520-

2540 For prepaid orders add $25 50 for Superpel. $10.45 SFD 1 001 ,$11 45 B-128 $1 0.45 4023p, $16.45 9090
and $5 45 64K memory expansion For software add $3.50 for first and $2 00 for each additional book or

program. Canadian shipping charges are double U.S. For COD. orders add $2.20 per box shipped. All orders

must be paid in U S. funds. Include phone numbers with area codes Do not use P.O. Box. only UPS shippable

addresses. A 2 week hold will be imposed on all orders placed wilh a personal or business check. COD.

orders shipped in U S only and cash on delivery, no checks 30 day warranty on all products from NWM, Inc.
No manufaclurer warranty NWM reserves the right to limit quantities to stock on hand and adjusl prices

without notice!

All prices quoted in US dollars.

wB"-

t's landing in

Los Angeles.

► next stop-••

L.A.
With amazing computers.

Stunning software.

Powerful peripherals.

The World of Commodore is coming

to capture your imagination.

It's the computer show for beginners and hackers, professionals and

students, business people and home users.

Commodore Business Machines and many other exhibitors will display and sell the AMIGA, C-64,

C-128, PC computers, a galaxy of software for Commodore and AMIGA computers and a glittering constellation""

of printers, disk drives and desktop publishing equipment. You will find peripherals and accessories

for all your present and future equipment. It's computer heaven.

Stage demonstrations and provocative seminars, presented by top experts, are included with your admission.

Three days of bargains, selection, information, excitement and prizes.

See it all with your own eyes. Try it ail with your own hands. At the World of Commodore in Los Angeles.

May 19, 20 & 21,1989 L.A. Convention Center

Adults $10 Students & Seniors $8 Seminars and stage demonstrations are included with admission.

Exhibitors contact; The Hunter Group (416) 595-5906 Fax: (416) 595-5093 Produced in association with Commodore Business

