
Canada $4.25

USA $3.50

C128 scrolling directory utility

Multitasking on the C128

Exploring CP/M's SUBMIT program

The ultimate machine language input routine

Fast ML sprite rotation

An / Ching Hexagram generator

C64 hexadecimal file editor

Notes on C programming and RAM expansion units

Programming in GEOS

Plus Reviews of the Lt. Kernal hard drive and Cinemaware's Warp Speed

cartridge; tips and programs in bits; new product announcements and more.

Trilemma by Jo-Anne Park

NorifWest
MUSIC
CENTER

539 N. Wolf Rd. - Wheeling, 1L 60090
Hours— (voice) Phone (312) 520-2540

Mon.-Thurs. 12:30-5:00, Sat. 12:00-4:00
(24 Hour Order Recorder)

We want to b<jr Commodore shop!

u
*.
NWM cares!! We

Gcpnep
Parts

still stow ^ ^^ p

ava/tabte tor some SOOftJOOO and B series models/

programs.

One of a Kind • Surplus • Monthly Special • Closeouts

64 k ieee to parallel buffer $199.00

4023p 100cps rehab $99.00

64k ram exp 8032 $110.00

Smith Corona DM-200 $179.95

6400. 8300p. Diablo 630 ribbons $4.95

8023p and MPP 1361 ribbons $5.50

9090 7.5 meg rehab $495.00

4023p ribbons $6.00

Everex 2400 external modem $245.00

• ••••••••••••1

NWM's

INVENTORY CONTROL
SYSTEM*

■■■■■■■■ ■
■■■■■ ■■■■■

■■■■■

■::::

.sr m
'Requires use of superbase

I loads program modules in less than 8 seconds

(superbase 2) to main menus in 3 seconds or less

I on screen pop-up calculator in transaction

modules

I most data centered function use the calculator

keypad

I versatile report features allow for 3 ways to print

the same report. User selects the fastest method

I built in sophisticated export program allows for

complete packing of the database

I type ahead feature allowed

I you can display reports on screen

I access to superbase menu for user developed

applications

B Version 1 8050 $39.95

B Version 2 8050 $39.95

C-128 Version 1 1571 $24.95

B-128 Version 1&2 8050 $44.95

B-128

$145 U.S.

NEW 128K USER INSTALLABLE

MEMORY EXPANSION!

INTRODUCTORY PRICE OF ONLY $125

SOFTWARE FOR THE B-128!!!

C.A.B.S. Accounting

Superbase $19.95

Superscrip! $19.95

Superoffice Integrated

Superbase & Superscript $49.95

Calc Result $89.95

Word Result $89.95

Super Disk Doc 24.95

Tne Power of: Calc Result (Book) $14.95

General Ledger $ 9.95

Accounts Receivable $ 9.95

Accounts Payable $ 9.95

Order Entry $ 9.95

Payroll $ 9.95

Buy all 5 for only $24.95

Superbase: The Book $14.95

Applied Calc Result (Book) $14.95

With Five

Interpretive

Languages:

Cobol

Pascal

Basic

Fortran

Apl

Runs 8032 software.

Great for schools and students

64K Memory Expansion for 8032 only $110
upgrades your 8032 to an 8096.

COMMODORE

8000-9000 SOFTWARE & MISC.

9000 Superpet $199.00

64K exp for 8032 $110

OZZ Database $25

BPI General Ledger $25

BPI Accts Payable $25

BPI Job Cost $25

BPI Accts Receivable $25

BPI Inventory $25

Superscript 8032 $79

Superbase 8096 $79

Legal Time Ace $25

Dow Jones Program $25

Info Designs 8032

Accounting System $50

Superoffice 8096 $149

Calc Result 8032 $89

• •••••••••••••••••a ••••

SFD 1001 1 Megabyte

PRICED AT $149.95 (US)
$125 with purchase of Superpet

SFD-1001 is the drive that you should consider when you need large amounts of data storage. It holds

over 1 megabyte ol data on its single floppy drive. Fast IEEE access for your C-64 or C-128. (C-64 and

C-128 need an IEEE interface.) Why settle for slower drives with less storage capacity. This drive stores

substantially more programs and data. Think how much money you can save on disk purchases. In

fact, it stores almost 7 times more information than your standard drive. Bulletin board owners love

them. And whal an introductory price! At $169.95 these drives will sell fast, so don't wait. This drive has

the identical format of a CBM 8250 drive, one of Commodores most durable floppy drives.

MODEL

DRIVES

HEADS/DRIVE

SFD-1001

1

2

STORAGE CAPACITY (Per Unit)

Formatted

MAXIMUM (Each Drive)

Sequential File

Relative File

Disk System

Buffer RAM (Bytes)

1.06 Mb

1.05 Mb

1.04 Mb

4K

DISK FORMATS (Each Drive)

Cylinders (Tracks) (77)

Sector/Cylinder

Sector/Track

Bytes/Sector

Free Blocks

TRANSFER RATES (Bytes/Sec)

Internal

IEEE-488 Bus

ACCESS TIME (Milli-seconds)

Track-to-track

Average track

Average Latency

Speed (RPM)

—

23-29

256

4133

40 Kb

1.2 Kb

100

300

ORDER NOW WHILE STOCK LASTS!

Send or call your orders to Northwest Music Center, Inc. 539 N. Wolf Rd., Wheeling IL 60090. 312-520-

2540 For prepaid orders add $25 50 for Superpet. $10 45 SFD 1001, $11 45 B-128 $1 0.45 4023p. $16 45 9090

and $5 45 64K memory expansion For software add S3 50 tor first and $2 00 for each additional book or
program. Canadian shipping charges are double U.S. For CO.D orders add $2.20 per box shipped. All orders

must be paid in U.S. funds. Include phone numbers with area codes. Do not use P.O. Box, only UPS shippable

addresses. A 2 week hold will be imposed on all orders placed with a personal or business check. C.O.D.

orders shipped in U.S. only and cash on delivery, no checks 30 day warranty on all products from NWM, Inc
No manufacturer warranty NWM reserves the right to limil quantities to stock on hand and ad|ust prices

without notice!

All prices quoted in US dollars.

What's a
G-Link?

Glad you asked.

A G-Link is an interface that lets you expand your 64 to an

incredibly powerful system by letting you connect all of

Commodore's ieee disk drives and peripherals. With the G-Link,

you can use devices from the fast, reliable 4040 dual drive to

the high-storage sfd-1 001 single drive in just the same way as

you use your 1541. You can switch between the serial devices

you're using now and the G-Link supported ieee devices with

the flick of a switch. And the G-Link is transparent, meaning it

won't interfere with the operation of most software: as far as

your computer is concerned, you're just using a super-fast 1541

drive!

If you're ready to upgrade your system, or you have some IEEE

equipment you want to connect (which includes printers,

plotters and all kinds of scientific instruments), consider the

inexpensive G-Link. Order from the card in the centrefold.

•• COMMODORE **

parts & service
DAVE TAYLOR ENTERPRISES

4400 N. Big Spring #3 * Midland, TX 79705

915-686-0535

FLAT RATE REPAIRS

C64 repair $45.00

1541 , $50.00

C128 repair $65.00

1571 repair $75.00

SX64 repair .$75.00

MISCELLANEOUS PARTS

C64 power supply $19.95

C128 power supply (repairable) .$84.95

C64 power supply (repairable) . .$34.95

SX64 transformer $29.95
C64 Diagnostics $150.00

C128 Diagnostics $150.00

1541 Diagnostics $165.00

Diagnostician (C-64/1541/1571) . .$6.95

•• CALL FOR COMPLETE PARTS PRICE LIST ••

All prices F.O.B. Midland Tx. Prices subject to

change without notice. Texas residents add 7.5%

sales tax. All sales and repairs carry a (30) day war*

ranty. except IC's which have been pre-tested.

repairs do not include external power supplies or

return shipping, please add 3% for VISA/MC

charges.

915-686-0535

UNLEASH THE DATA ACQUISITION AND
CONTROL POWER OF YOUR COMMODORE C64 OR C128.

We have the answers to all your control needs.

NEW! 80-LINE SIMPLIFIED

DIGITAL I/O BOARD

Create your own autostart dedicated

controller without relying on disk drive.

• Socket for standard ROM cartridge.

• 40 separate buffered digital output lines can

each directly switch 50 volts at 500 mA.

• 40 separate digital input lines. (TTL).

• I/O lines controlled through simple memory

mapped ports each accessed via a single

statement in Basic. No interface could be easier

to use. A total often 8-bit ports.

• Included M.L. driver program optionally called

as a subroutine for fast convenient access to

individual I/O lines from Basic.

• Plugs into computer's expansion port. For both

C64 & C128. I/O connections are through a

pair of 50-pin professional type strip headers.

• Order Model SS100 Plus. Only $119! Shipping

paid USA. Includes extensive documentation

and program disk. Each additional board $109.

We take pride in our interface board documentation and

software support, which is available separately for

examination. Credit against first order.

SS100 Plus, $20. 64IF22 & ADC0816, $30.

OUR ORIGINAL ULTIMATE

INTERFACE

• Universally applicable dual 6522 Versatile

Interface Adapter (VIA) board.

• Industrial control and monitoring. Great for

laboratory data acquisition and instrumentation

applications.

• Intelligently control almost any device.

• Perform automated testing.

• Easy to program yet extremely powerful.

• Easily interfaced to high-perfomance A/D and

D/A converters.

• Four 8-bit fully bidirectional I/O ports & eight

handshake lines. Four 16-bit timer/counters.

Full IRQ interrupt capability. Expandable to

four boards.

Order Model 64IF22. $169 postpaid USA.

Includes extensive documentation and programs

on disk. Each additional board $149. Quantity

pricing available. For both C64 and C128.

A/D CONVERSION MODULE

Fast. 16-channel. 8-bit. Requires above. Leaves all

VIA ports available. For both C64 and C128.

Order Model 64IF/ADC0816. Only $69.

SERIOUS ABOUT

PROGRAMMING?

SYMBOL MASTER MULTI-PASS SYM

BOLIC DISASSEMBLER. Learn to program

like the experts! Adapt existing programs to
your needs! Disassembles any 6502/6510/
undoc/65C02/8502 machine code program

into beautiful source. Outputs source code

files to disk fully compatible with your MAE,

PAL, CBM, Develop-64, LADS, Merlin or

Panther assembler, ready for re-assembly and
editing. Includes both C64 & C128 native

mode versions. 100% machine code and

extremely fast. 63-page manual. The original

and best is now even better with Version 2.1!

Advanced and sophisticated features far too

numerous to detail here. $49.95 postpaid
USA.

C64 SOURCE CODE. Most complete

available reconstructed, extensively com

mented and cross-referenced assembly
language source code for Basic and Kernal

ROMs, all 16K. In book form, 242 pages.

$29.95 postpaid USA.

PTD-6510 SYMBOLIC DEBUGGER for

C64. An extremely powerful tool with

capabilities far beyond a machine-language

monitor. 100-page manual. Essential for

assembly-language programmers. $49.95

postpaid USA.

MAE64 version 5.0. Fully professional

6502/65C02 macro editor/assembler. 80-page

manual. $29.95 postpaid USA.

»f^nRFSS1 SCHNEDLER SYSTEMS A/£l/|/ a m^
ME\N AUUntlW^ Dept. 91, 25 Eastwood Road, P.O. Box 5964 W¥ MDDftESSl

ah prices in u.s. dollars. Asheville, North Carolina 28813 Telephone 1-704-274-4646 ***■

Volume 9, Issue 1

Publisher

Richard Evers

Editors

Malcolm O'Brien

Nick Sullivan

Chris Zamara

Editorial Assistant

Moya Drummond

Customer Service

Renanne Turner

Accounting

Donna Evers

Contributing Writers

Ian Adam .

Jack Bedard

Bill Brier

Jim Butterfield

Don Currie

Jim Frost

Miklos Garamszeghy

Eric Giguere

David Godshall

Thomas Gurley

Adam Herst

D. J. Morriss

Gary Kiziak

Bob Kodadek

Francis Kostelia

Keath Milligan

Mike Mohilo

Noel Nyman

Adrian Pepper

. Steve Punter

Tony Romer

Herb Rose

Audrys Vilkas

Cover Artist

Jo-Anne Park

Transactor
The Magazine for Commodore Programmers

ScrollDirl28 15

by Miklos Garamszeghy

The ultimate directory utility - scroll up and down through your file names, load programs, display

text, and scratch files without typing

Multitasking on the Commodore 128 20

by Mike Mohilo

Run up to four programs simultaneously, or switch between tasks instantly - even BASIC can run in

the background!

Exploring SUBMIT

by Adam Herst

Adam's look at one of the most useful tools in CP/M Plus goes far deeper than the docs

A Machine Language Input Routine

by Garry Kiziak

The bullet-proof, all-purpose, high-performance, configurable, easy-to-use input routine

24

28

36

46

Sprite Rotation

by Jim Frost

A super-fast ML implementation of Transactor's "sprite rotate" - a boon for video game programmers

Structured DATA and Seeding RND 42

by Audrys Vilkas

Something completely different: / Ching, yin and yang, Hexagrams, Ancient Chinese farmers... and

random numbers

C64 Hex File Editor

by Bob Kodadek

Edit disk files in memory, machine language monitor-style

On the C Side.,.

by Adrian Pepper

Insights into C programming on the 64 and 128

Programming in GEOS

by Francis G. Kostelia

How to get your machine language applications to run under GEOS

54

56

Departments and Columns

Letters

Bits

7

11
G-Link on newer computers

Self-Save

Find Joy

Hook, Line and Singer

Easy 128 Key Fix

News BRK

C128 developer's package

Mystic Jim's stuff

1988 Commodore Computerfest

Computer Save

Micro Detective professional debugger

Super 81 Utilities for the C64

POKE Poser Figured Out

Data Checker 64

Late Night TV

Re-Booting GEOS 128

Never-never land 128D

C128 complete bookkeeping system

Romjet custom cartridge update

SuperbootforC128

Satellite tracking program

Anatomy of the 4040 disk drive

CP/M Starter Set from PD Solutions

77

Reviews

Lt. Kernal Hard Drive

by Bill Brier

Super power for the 64 with this fast, feature-laden hard drive system

The 1351 Mouse and GEOS 1.3
GEOS was never this easy

Warp Speed

Cinemaware's multi-purpose cartridge brings you far beyond mere impulse power. Engage!

67

72

74

About the cover: We're getting just a little bit tired of hearing 8-bit computers like the

Commodore 64 and 128 referred to as 'dinosaurs', so for this issue's cover we asked

Toronto artist Jo-Anne Park to remind the 16/32-bit crowd what dinosaurs really look

like. Even at a casual glance you can see there's really very little resemblance to any

microcomputer, even an Atari.

Jo-Anne specializes in Commodore 64 and Amiga art. She did the cover for an upcom

ing issue of Transactorfor the Amiga, and we liked her work so much we asked her to

do a Transactor cover - using the C64 - as well. The picture was done using Doodle,

so it's hi-res rather than multi-colour; as C64 graphic artists are aware, creating good

colour graphics in hi-res mode is quite a challenge. Through the ingenuity of creative

people, the 8-bit machines will continue to be viable for a long time to come

Transactors^

phone number is: .

(416)764-5273

Line open Mondays, Wednesdays

and Fridays ONLY

FAX: (416) 764-9262

TOLL-FREE ORDER LINE

1*800-248-2719 Extension 911

(for orders oniy; have your VISA or Mastercard

number ready; available in the U.S. only)

Transactor is published bimonthly by Transactor

Publishing Inc., 85-10 West Wilmot Street, Rich

mond Hill, Ontario, L4B 1K7. JSSN# 0838-0163.

Canadian Second Class Mail Registration No.

7690, Gateway-Mississauga, Ont US Second

Class mail permit pending at Buffalo, NY USPS

Postmasters: send address changes to: Transac

tor, PO Box 338, Station C, Buffalo, NY, 14209.

Transactor Publishing Inc. is in no way connected

with Commodore Business Machines Ltd, or

Commodore Incorporated. Commodore and

Commodore product names are registered trade

marks of .Commodore Inc.
t

Subscriptions:

Canada $19 Cdn.

USA $15 US

All others $21 US

Air Mail (Overseas only) $40 US

Send all subscriptions to: Transactor Publish

ing Inc., Subscriptions Department, 85-10 West

Wilmot Street, Richmond Hill, Ontario, Canada,

L4B 1K7, (416) 764-5273. For best results, yse

the postage paid card at the centre of the maga-

Quantity Orders: In Canada: Ingram Software

Ltd., 141 Adesso Drive, Concord, Ontario* L4K

2W7, (416) 738-1700*. In the USA; 1PD (Interna
tional Periodical Distributors), 11760-B Sorrento

Valley Road, San Diego, California, 92121, (619)

481-5928; ask for Dave Buescher. Quantity or

ders/enquiries are also welcome from comput

er/software distributors, in the UK, Europe and

Scandinavia. Please contact: T.G. Hamilton

(W/S) Ltd,, Tel: 021-742-5359; Fax: 021«74£-

2190; or contact Transactor (UK) direct, at-Unit 2,

Langdale Grove, Bingham, Notts; NG13 8SR,

telephone 0949-39380. In Australia,, contact

Transactor (Australia) Pty. Limited, 35 Calder Cr.,

Holder, ACT 2611, Australia. Phone 61 62

883584.

Editorial contributions are welcome. Only original,

previously unpublished material will be consid

ered. Program listings and articles, including

BITS submissions, of more than a few lines,

should be provided on disk. Preferred format is

1541-format with ASCII text files. Manuscripts

should be typewritten, double-spaced, with spe

cial characters or formats clearly marked. Photos

should be glossy black and white prints. Illustra

tions should be on white paper with black ink on

ly. Hi-res graphics files on disk are preferred to

All material accepted becomes the property of

Transactor Publishing inc., except by special ar

rangement. AH material is copyright by Transactor

Publishing Inc. Reproduction in any form without

permission is in violation of applicable laws. Write

to the Richmond Hill address for a writer's guide.

The opinions expressed in contributed articles,

are not necessarily those of Transactor Publish

ing Inc. Although accuracy is a major objective,

Transactor Publishing Inc. cannot assume liability

for errors in articles or programs. Programs listed

in Transactor^ and/or appearing on Transactor

disks, are copyright by Transactor Publishing Inc.

and may not be duplicated or distributed without

permission.

Production ;

in-house with Amiga 2000 and

Professional Page

Final output by Vellum Print &

Graphic Services, Inc, Toronto

Printing

Printed in Canada by

Maclean Hunter Printing

Using "VERIFIZER"

Transactor'sfoolproofprogram entry method

VERIFIZER should be run before typing in any long program

from the pages of Transactor. It will let you check your work

line by line as you enter the program and catch frustrating typ

ing errors. The VERIFIZER concept works by displaying a two-

letter code for each program line; you can then check this code

against the corresponding one in the printed program listing.

There are three versions of verifizer here: one each for the

PET/CBM, VIC/C64, and C128 computers. Enter the, applica

ble program and RUN it. If you get a data or checksum error,

re-check the program and keep trying until all goes well. You

should SAVE the program since you'll want to use it every

time you enter a program from Transactor. Once you've RUN

the loader, remember to enter NEW to purge BASIC text

space. Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top

left of the screen in reverse field. Note that these letters are in

uppercase and will appear as graphics characters unless you

are in upper/lowercase mode (press shift/Commodore on

C64/VIC).

Note: If a report code is missing (or "--") it means we've

edited that line at the last minute, changing the report code.

However, this will only happen occasionally and usually only

on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN

on a line. If the code doesn't match up with the letters printed

in the box beside the listing, you can re-check and correct the

line, then try again. If you wish, you can LIST a range of lines,

then type RETURN over each in succession, while checking

the report codes as they appear. Once the program has been

properly entered, be sure to turn verifizer off with the SYS

indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0

instead of POKE 53281,0. However, VERIFIZER uses a

"weighted checksum technique" that can be fooled if you try

hard enough: transposing two sets of four characters will pro

duce the same report code, but this will rarely happen. (VERI

FIZER could have been designed to be more complex, but the

report codes would need to be longer, and using it would be

more trouble than checking the program manually). VERIFIZER

ignores spaces so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!) Stan

dard keyword abbreviations (like nE instead of next) will not

affect the VERIFIZER report code.

Technical info: VIC/C64 verifizer resides in the cassette

buffer, so if you're using a datasette be aware that tape opera

tions can be dangerous to its health. As far as compatibility

with other utilities goes, VERIFIZER shouldn't cause any prob

lems since it works through the BASIC warm-start link and

jumps to the original destination of the link after it's finished.

When disabled, it restores the link to its original contents.

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

CI 10 rem* data loader for "verifizer 4.0" *

LI 20cs=0

HC 30 for i=634 to 754: read a: poke i,a

DH 40 cs=cs+a: next i

GK 50:

OG 60 if cs<>15580 then print"***** data error *****": end

JO 70remsys634

AF 80 end

IN 100:

ON 1000 data 76, 138, 2,120,173,163, 2,133,144

IB 1010 data 173, 164, 2,133,145, 88, 96,120,165

CK 1020 data 145, 201, 2, 240, 16, 141, 164, 2, 165

EB 1030 data 144, 141,163, 2, 169, 165, 133, 144, 169

HE 1040 data 2,133,145, 88, 96, 85,228,165,217

OI 1050 data 201, 13,208, 62,165,167,208, 58,173

JB 1060 data 254, 1,133, 251, 162, 0, 134, 253, 189

PA 1070 data 0, 2,168,201, 32,240, 15,230,253

HE 1080 data 165, 253, 41, 3,133,254, 32,236, 2

EL 1090 data 198,254, 16, 249, 232, 152, 208, 229, 165

LA 1100data251, 41, 15, 24,105,193,141, 0,128

KI 1110 data 165,251, 74, 74, 74, 74, 24,105,193

24, 101EB 1120 data 141, 1,128,108,163,

DM 1130 data 251, 133,251, 96

2, 152,

Transactor July 1988: Volume 9, Issue 1

VIC/C64 VERIFIZER

KE 10 rem* data loader for "verifizer" *

JF 15 rem vic/64 version .

LI 20 cs=0

BE 30fori=828to958:reada:pokei,a

DH 40 cs=cs+a:next i

GK 50:

FH 60 if csol4755 then print"***** data error *****": end

KP 70 rem sys 828

AF 80 end

100:

1000 data 76, 74,

1010 data 252,141,

IN

EC

EP

3,165,251,141, 2,

3, 3, 96,173, 3,

OC 1020 data 3,240, 17,133,252,173, 2,

MN 1030 data 251, 169, 99,141, 2, 3, 169,

MG 1040 data 3, 3, 96,173,254, 1,133,

DM 1050 data 0,160, 0,189, 0, 2,240,

CA 1060 data 32,240, 15,133, 91,200,152,

NG 1070 data 133, 90, 32,183, 3,198, 90,

OK 1080 data 232, 208, 229, 56, 32,240,255,

AN 1090 data 32,210,255,169, 18, 32,210,

GH 1100 data 89, 41, 15, 24,105, 97, 32,

JC 1110 data 165, 89, 74, 74, 74, 74, 24,

EP 1120 data 32,210,255,169,146, 32,210,

MH 1130 data 32,240,255,108,251,

BH 1140 data 101, 89,133, 89, 96

0,165,

3,165

3,201

3,133

3,141

89,162

22,201

41, 3

16,249

169, 19

255,165

210,255

105, 97

255, 24

91, 24

NEW C128 VERIFIZER (40 or 80 column mode)

KL 100remsaveM0:cl28vfz.ldr",8

OI 110 rem c-128 verifizer

MO 120 rem bugs fixed: 1) works in 80 column mode.

DG 130 rem 2) sys 3072,0 now works. ,

KK 140rem ; ; ./ ' ^
GH 150rembyjoelm. rubin

HG 160 rem* data loader for "verifizer cl28"

IF 170 rem * commodore c 128 version

DG 180 rem * works in 40 or 80 column mode!!!

EB 190ch=0

GC 200 for j=3072 to 3220: read x: poke j,x: ch=ch+x: next

NK 210 if ch<>18602 then print "checksum error": stop

BL 220 print "sys 3072,1 to enable

DP 230 print "sys 3072,0 to disable

AP 240 end

BA 250 data 170, 208, 11, 165, 253, 141, 2, 3

MM260 data 165, 254, 141, 3, 3, 96,173, 3

AA 270 data 3, 201, 12, 240, 17, 133, 254, 173

FM 280 data 2, 3,133,253,169, 39,141, 2

IF 290 data 3,169, 12,141, 3, 3, 96,169

FA 300 data 0, 141, 0, 255, 165, 22, 133, 250

LC 310 data 162, 0,160, 0, 189, 0, 2, 201

AJ 320 data 4a, 144, 7, 201, 58, 176, 3, 232

EC 330 data 208, 242, 189, 0; 2,240, 22,201

PI 340 data 32,240, 15,133,252,200,1.52, 41

FF 350data 3,133,251, 32,141, 12,1?$, 251

DE 360 data 16, 249, 232, 208, 229, 56, 32, 240

CB 370 data 255, 169, 19, 32,210,255,169, 18

OK 380 data 32, 210, 255, 165, 250, 41, 15, 24

ON 390 data 105, 193, 32, 210, 255, 165, 250, 74

OI 400 data 74, 74, 74, 24,105,193, 32,210

OD 410 data 255,169,146, 32,210,255, 24, 32

PA 420 data 240, 255,108,253, 0,165,252, 24

BO 430 data 101, 250,133, 250, 96

The Standard Transactor

Program Generator

If you type in programs from the magazine, you might be able

to save yourself some work with the program listed on this

page. Since many programs are printed in the form of a BA

SIC "program generator" which creates a machine language

(or BASIC) program on disk, we have created a "standard

generator" program that contains code common to all program

generators. Just type this in once, and save all that typing for

every other program generator you enter!

Once the program is typed in (check the Verifizer codes as

usual when entering it), save it on a disk for future use. When

ever you type in a program generator, the listing will refer to

the standard generator. Load the standard generator first, then

type the lines from the listing as shown. The resulting program

will include the generator code and be ready to run.

When you run the new generator, it will create a program on

disk (the one described in the related article). The generator

program is just an easy way for you to put a machine language

program on disk, using the standard BASIC editor at your dis

posal. After the file has been created, the generator is no

longer needed. The standard generator, however, should be

kept handy for future program generators.

The standard generator listed here will appear in every issue

from now on (when necessary) as a standard Transactor .utility

like Verifizer. ' '

MG 100 rem transactor standard program generator

EE 110 n$="filename": rem name of program

LK 120 nd=000: sa=00000: ch=00000

KO 130fori=l tond:readx

EC 140 ch=ch-x: next

FB 150 if ch then print "data error": stop

DE 160 print "data ok, now creating file."

CM 170 restore • -

CH 180 open l,8,l,"0:"+n$

HM 190 hi=int(sa/256): lo=sa-256*hi

NA 200print#l,chr$(lo)chr$(hi);

KD 210 for i=l to nd: read x '

HE 220 print#l ,chr$(x);: next

JL 230 close 1

MP 240 prinfprg file '";n$;"' created..."

MH 250 print"this generator no longer needed."

IH 260:

Transactor July 1988: Volume 9, Issue 1

Evolution in the Eight-Bit World

First, a brief note: no, you haven't missed an issue, this one re

ally is about two months late. That's pretty late for a bi

monthly magazine, and it certainly doesn't do much to instill

confidence in readers and advertisers (both current and poten

tial). We thought we'd let you know what's going on, and why

you can believe us when we say we're back on track now.

Production-wise, we now have a schedule that guarantees that

a magazine gets produced in 56 days, barring unforseeable

catastrophes of biblical proportions. This issue remained un-

printed for so long due to financial difficulties within the com

pany (read: not enough money) that have since been cleared

up with an influx of capital and business know-how. Our

spreadsheet shows good news ahead, so the reliable produc

tion schedule is backed by a financially stable company.

Newsstand circulation has just increased again as we appear

on the shelves in Waldenbooks in the U.S., so the 8-bit Trans

actor is still growing even as the 16-bit computers increase

their presence in the market.

Enough talk of the real world: we take you now to the origi

nally scheduled editorial for this issue.

With this issue we welcome a new member to our editorial

staff, which brings us up to a three-man team. Malcolm

O'Brien has been with us a few months now, and has had

much to do with the creation of this magazine. We think you1 II

like the flavour that Malcolm's touch brings to the magazine,^

as there will be more focus on real-world and "power-user"

applications; as you can see already, GEOS will no longer be

a stranger to these pages. The following editorial, written by

Malcolm himself, will complete the introduction.

Evolution means changes. Lots of changes. Probably more of

them for me than for you. I've gone from a nine to five, two

subway stop, merchandising, strictly IBM job to an all hours,

long haul, 90 per cent 8-bit, 10 per cent Amiga, editing job.

I'm starting to learn the ropes around the office and on Com

puServe. It's a strange environment but it fits me well. Hmm...

The changes you will experience will be of a different nature.

For one thing, we're going to be doing GEOS coverage.

We've had letters requesting it and some submissions. Expect

to see articles on GEOS programming, starting with this issue.

For the many people who've requested ML subroutines, we

have two in this issue - one for the tricky job of sprite rotation,

and another that is perhaps the ultimate in configurable input

routines.

We'll also be featuring articles with a "pushing the limits"

theme. These will be concerned with doing things that are of

ten considered to be beyond the capabilities of the 8-bit ma

chines. For a sample of what I mean, take a look at the Lt.

Kernal article in this issue.

You've already noticed the inclusion of C coverage. Response

to this has been uniformly favourable and we'll continue doing

it. This is a recognition of the fact that many C64 and C128

users are also using other languages on other computers at

work, at school and at home. C is the main one but there are

others as well. Coverage for other languages such as COMAL

will probably be appearing in Transactors of the future.

These are significant changes but they reflect the ongoing evo

lution of the user base. Haven't we all been reminded for years

that "there's nothing as constant as change"? It's true - even

though they told us in programming school that constants

weren't supposed to change.

Malcolm O'Brien

Transactor July 1988: Volume 9, Issue 1

L R

It's about time: This is a reply to a letter published in Trans

actor ("Clock Setting", Letters, Volume 8, Issue 5), where

reader David Kuhn briefly describes his computerized light

and automatic sprinkling system controller and queries

whether the C128 can read an external real time clock to reset

its internal clocks following a power failure.

An excellent product, which should do exactly what the reader

(and many others) requires, is the Model CCSZ Cartridge from

Jason-Ranheim, 1805 Industrial Drive, Auburn, California,

USA 95603. Their phone numbers are (800) 421-7731 and

(916) 823-3284. Their price is $49.95 (US), plus shipping.

The CCSZ not only includes a battery-backed Clock / Calen

dar, but 8K of battery-backed RAM and a modified operating

system in ROM to support the features. The CCSZ can auto

matically download and run a program when power resumes

following an outage, and even maintains a power-off/power-on

log in RAM. Moreover, the cartridge, which works in both the

C64 and C128 (in the C128 mode), will automatically recog

nize which computer it is being used with.

Now for the commercial message: The CCSZ from Jason-

Ranheim is fully compatible with the control interface boards

which we (Schnedler Systems) manufacture for the C64 and

C128, and we believe many readers will be interested in both

as a compatible system. Our Model SS100 Plus 80-line Sim

plified Digital I/O Board is particularly attractive in this regard

because it includes a standard 44-pin cartridge socket for re

ceiving cartridges such as the Jason-Ranheim CCSZ, as well

as standard EPROM cartridges. Thus the SS100 Plus may be

viewed as a .digital data acquisition and control interface com

bined with a single-slot expansion motherboard. The price cur

rently is still only $119.00 (US), including the manual and

program disk. Shipping to US. addresses is included in that

price. For shipping to Canada add $10.00, and add $20.00 to

other countries.

Steven C. Schnedler

Schnedler Systems

25 Eastwood Rd.

P.O. Box 5964

Asheville, NC 28813

(704)274-4646

Time backed-up: The problem that David Kuhn expressed in

the Letters column of Volume 8, Issue 5, can be overcome by

relating to a previous article in Transactor. In Volume 6, Issue

6, Jean Des Rosiers, the author of "Home Control on a VIC"

interfaced various hardware projects for a home secu

rity/controller run by a VIC-20. Amongst these projects was a

battery back-up in case of power failure. This involved alka

line batteries added into the power supply circuit. The

schematic diagrams are in Figures 5 through 7, inclusive, on

page 70 of that issue.

I made a similar project and used the schematics from this pro

ject to have the battery back-up. I hope to upgrade this to

NiCads with current "steering" diodes.

I feel that this sort of device is what's needed with David's

C128. He will still have to obtain the schematic of the 128's

power supply to know what has to be added.

Daryl Leopold

Vancouver, British Columbia

Transactor July 1988: Volume 9, Issue 1

Another M/L aficionado: In a recent letter to your magazine,

Bob Tischer expressed his interest in a "Continuing Education

Course" in 6502 assembly language. I thought it was a great

idea, and in an effort to let you know that there are certainly

others who would appreciate such a course, I write this letter.

Robert Gallant

Corner Brook, Newfoundland

Revving up to autostart: I am writing to answer Patrick G.

Demets' question about building his own cartridge in the arti

cle entitled "ML EPROM Burner". He found that by analyz

ing a cartridge entitled "Visible Solar System", the addresses

$8004 to $8008 did not contain the code "CBM80", which he

had expected to find.

Under normal circumstances, when the computer is turned on,

it checks the location mentioned for the specific code above. If

the code does exist, it will begin executing the ML program

pointed to by the vector at $8000/$8001, and the program

pointed to by the $8002/$8003 vector will be the warmstart

procedure. If the code is not present in locations $8004 to

$8008, however, control is given to the program pointed to by

the vector at $a000/$a001, and the warmstart is pointed to by

$a002 to $a003. Locations $a004 to $a008 need not contain

the code CBM80. An autostart cartridge addressed for $a000

to $bfff will replace BASIC.

The above procedure is the common method of cartridge de

sign. Its mode of operation is quite simple. On power-up, the

6510 microprocessor jumps to the ML program pointed to by

$fffc/$fffd. This program has many tasks, including testing for

an autostart cartridge.

Mr. Demets mentions that all of the JMP's and JSR's are tar-

getted at locations beginning with $e. The 64 has a third ad

dress range for cartridges. This is $e000 to $ffff. Evidently,

Mr. Demets' cartridge occupied this range along with $8000 to

$9fff (perhaps even $a000 to $bfff). The autostart program

pointed to by locations $fffc to $fffd is located at $fce2. How

ever, a cartridge with the address range $e000 to $ffff will re

place the computers own memory at this location. Therefore,

there will be a new startup vector at $fffc/$fffd (not to mention

a new NMI at $fffa/$fffb and a new IRQ/BRK vector at $ff-

fe/$ffff). The new vector may point to any other memory loca

tion, but wherever it does point, that is the new autostart pro

gram. If the 64 autostart program is replaced, the code at loca

tions $8004 to $8008 is irrelevant (unless, of course, the new

autostart program calls for it).

Bernard Epsilon Wolfe

Oakville, Ontario

Book List?: First of all, I would like to express my apprecia

tion for your magazine. I find Transactor to be consistently

excellent for quality, technical level, usefulness of material,

friendliness, and in many other ways. (I have been reading it

for about one year so far, and just ordered all available back is

sues.)

Perhaps the only thing I miss in it is some ongoing informa

tion on good computer books. It would be a great help to those

who, like me, have not been very long in the field, and find

themselves hunting among a morass of trivia in the hope of

finding good and reliable publications - the best of which are

often little known.

An annotated list of the best books, revised and reprinted may

be twice a year, plus ongoing reviews of new interesting titles,

would be great. But even just a list of books you recommend,

with one line of evaluation for each, would go a long way. I do

hope you will find it feasible to do something along these

lines.

In the meantime, I wonder if you could suggest some good

ML books, either C64 specific, or for the 6502.1 am getting a

lot from Transactor articles, and have Jim Butterfield's and the

COMPUTE! "Mapping..." and "...Kernal" books. What I am

looking for is, say, the equivalent of the Neufeld and Immers'

books, for ML programming. I hope you can help. Thank you.

James G. Vargiu

Atlanta, Georgia

Sounds like you already have a pretty fair collection, James.

Jim Butterfield's book is an excellent introduction to machine

language programming, and Mapping the Commdore 64 is

also very useful. If you7 re looking for some hard-core refer

ence material, you might also be interested in The Complete

Commodore Inner Space Anthology, which is published by a

very reputable Canadian company (the one that publishes

Transactor, strangely enough). The CCISA has been around

for a long time now, long enough that it doesn't cover the

C128, but it's still a gold mine of concentrated information on

the other 8-bit Commodore machines. As for an annotated list

- well, how about it readers? What are your favourites, and

why?

AH Together Now: I would like to suggest a new and useful

way to use the 7,000,000+ Commodore 64 and 128 computers.

It is by using them for a parallel processing project. First I will

describe Project #1.

It has long been suspected that Pierre Fermat was right when

he wrote that there are no solutions to Xn + Yn = Zn for inte

gers X, Y, and Z unless n=2. Less well known is Leonard Eu-

ler's generalization of Fermat's theorem. Euler conjectured

that an Nth power (N > 2) was never the sum of less than N

smaller Nth powers.

In 1966, a computer search found a counterexample to Euler's

conjecture. It is that 1445 = 1335 + 1105 + 845 + 275. Since

then, no others have been found. The sad fact is: getting com

puter time at large installations is not easy.

Transactor July 1988: Volume 9, Issue 1

If the search for numerical examples were programmed for the

Commodore machines, it is easy to see that running the prob

lem on many machines would give the equivalent of days of

time on large IBM, Amdahl, Cray, etc. machines. Suppose 100

Commodore computers devoted 100 hours in 6 months (less

than four hours a weekend) to the problem. That is 10,000

hours or, with an improved speed factor of 1,000 for main

frames, 10 hours of equivalent mainframe time for that six

month period.

By increasing the number of Commodore 64 and 128 comput

ers working on the project or by increasing the number of

hours worked per machine, any speed factor can be dwarfed

and many days of equivalent mainframe time can be obtained.

I would not be surprised to learn of Commodore computers

that can be made available for 100 hours a week. With 100

such machines, we could have ten hours of equivalent main

frame time per week.

The specific task proposed can be separated into smaller tasks.

Using 6th powers as an illustration, one computer can look at

summing from 1 to 100 as a sixth power, a second at 101 to

120, a third at 121 to 140, and so on for suitable divisions

which will lead to approximately equal time to complete. In

addition, a search for additional counterexamples to Euler's

conjecture must be made for seventh powers, eighth powers,

etc. It will not be difficult to set up search lists for 100 com

puters.

Other tasks scan be tackled in a similar manner. I have been in

touch with two eminent mathematicians, Drs. Daniel Shanks

and John W. Wrench Jr., who are among those who can sug

gest other reasonable projects. If Project #1 can be started, I

am certain that suggestions for other work will be forthcom

ing.

To get such a co-operative effort off the ground, several steps

are needed. One is to find 6502 machine language program

mers who will write efficient code to tackle the problems. A

second step is to find an overall project manager, and, probably

a series of specific project managers. The managers would

have the task of seeing to it that the code was written, disks

with the projects were prepared and mailed to solvers, or put

on bulletin boards. A third step is collecting results, which in

most cases will be "no solution found". When these are put

together, no one will have to research the same range for the

project.

I would appreiate the comments of your readers and of the

magazine staff. I have no doubt that the idea is a good one and

that it can be improved. Are there people willing to help? Are

there computer clubs willing to help? The club could be a spe

cific project's manager as well as a group of solvers. Let them

write me or the magazine.

Vincent J. Mooney Jr.

607 Wyngate Drive

Frederick, MD 21701

Very interesting idea, Vincent, though we shudder a bit at the

amount of organization it would require. The primary diffi

culty, once the code was written - which would not too be diffi

cult in the case of the Euler project - would be the assignment

of ranges to individuals in such a way as to get exhaustive but

not overlapping coverage. The problem is a bureaucratic one

and, as with all bureaucratic problems, any solution is going

to be time-consuming. Perhaps an on-line service with a lot of

subscribers would be the best vehicle for organizing the pro

ject, as some kind of rapid, centralized communications facil

ity would probably be requisite if the effort were not to col

lapse under its own weight. By the way, "Fermafs last theo

rem" was recently proved (with the aid ofcomputers, I gather),

ending at last a couple of centuries of head-scratching. It's

amazing that both it and the four-colour theorem have been

disposed of in the last ten years. Not to mention the save-@

bug. Do keep us informed. We hope you'll receive an enthusi

astic response.

LQ & The Bible: In an old Transactor (Letters, Volume 7, Is

sue 1) magazine, there is an item concerning the data entry of

the New Testament. Was this project ever completed? Where

can I obtain or purchase a version of the Bible for either a C64

or IBM/XT?

I have another question I'd like to ask. How does one go about

building an interface for a true RS-232 port to a C64 serial bus

printer? Can such a device be purchased? I would like to use

my letter-quality Commodore printer on my IBM/XT.

Garth Usick

Regina, Saskatchewan

Well, Garth, if there is such an interface it has escaped our no

tice. However, there was (is?) an interfacefor connecting your

CBM serial bus printer to the IBM via the parallel printer

port. We seem to remember it as an Omnitronix product. A lo

cal BBS user here in Toronto purchased the device and ex

pressed his satisfaction with both the device and the service.

Perhaps our readers can provide more information. Biblical

text is now available on Commodore disks (as evidenced by

the recent ads we've seen since receiving your letter) but we

really don't know if this is a product of the project described in

Volume 7, Issue 1.

Yet another vote for the ML column!: As a Commodore fan,

I would like to know if there are any packages developed, or

under development, that make use of the 1764 RAM expan

sion. Special programs such as RAM disk assemblers and

compilers would be a great boost to the 64 programming envi

ronment! Before I leave the topic, is the emulation software

included truly compatible? Can you run a word processor and

tell it to use drive 9 (your RAM disk)? I would also like to add

my vote for the assembler subroutine column, since I, like

many of your readers, am missing vital routines that must have

been written! Writing them again is not very productive.

Transactor July 1988: Volume 9, Issue 1

Your magazine comes out on top in the Commodore world

when it comes to good solid information. Keep up the good

work!

AmirMichail

Willowdale, Ontario

GEOS uses REUs to a limited extent. The anticipated GEOS

upgrade will almost certainly use it to greater advantage. Pa

perclip III uses the REUfor spell checking and Big Blue Read

er uses it to buffer file transfers. Most software needs to be

rewritten to use the REU although some of the more "well-

behaved" ones work with RAMDOS. Disparate data storage

methods raise the compatibility question. Check out "On the C

Side" in this issuefor tips on using the REU with Power C.

REUs and Copyrights: According to the introduction to Dale

Castello's article on RAM Expansion Cartridges in the Volume

8, Issue 2, the 1700 and 1750 RAMs work with the C64.

(There was also an article in TPUG Magazine, Issue 22, by

Tim Grantham, where he stated that Commodore Canada had

assured him that the 1750 would work with the C64.) Is the re

verse true, too? I'm soon going to be moving up to the 128

and if my 1764 RAM will work with it, I would like to stay

with it for now. Customer Service at West Chester says it

won't work, but then they want to sell more 1750s, don't they.

Also, have any of your hardware hackers come up with a bat

tery-backed system for the 17xx RAMs so they will retain

their memory when the system has been powered down (or

aren't they the right kind of RAM chips to do this with)?

Now for another query. With all the discussion about copy

rights in the T and other magazines, I'm curious about an arti

cle I saw in a British magazine, Commodore Computing Inter

national's January 1988 issue. The article seems to be a word

for word duplication, including the comparison tables, of Mike

Garamszeghy's review of the 1581 disk drive in the T (Volume

8, Issue 3). The accompanying program and a paragraph de

scribing it were deleted, but the editors seem to have missed

an earlier reference to the program in the body of the text. The

article is credited to Mr. Garamszeghy, but there's no mention

of the T. The magazine also has no copyright notice with their

masthead, as you do.

Also, in the past three issues of CCI, there has been a series of

Mike's articles on the burst mode that are virtual reprints of

his series in TPUG Magazine some months ago.

I don't mean to stir up any hornets' nests, but I am curious.

James Greek

New York, New York

Our URS (usually reliable source) tells us that the 1764 will

work with the C128. We have heard of a schematic for adding

another 256K to a 1764 but we aren't aware ofanyone using a

battery-backed REU. It sounds like it could be a very popular

hack .though. In the matter of copyrightsy Mike informs us that

CCI reprinted the articles with his permission. Since he holds

the copyrights on those articles, the decision is his and his

alone.

Answers, anyone?: I recently picked up an Atari joystick for

$10 in a closeout. It works fine as a joystick, with the T-J

switch flipped to J, but I can't figure out what it does as a

track ball, other than mess up the keyboard, making it neces

sary to read it with interrupts disabled. I wonder if it could be

rewired as a 1351 mouse? I can't find the trackball mentioned

in any of the Atari literature.

Secondly, does anyone have a working conv52 for the C128

version of C Power? That's the function which converts floats

to integers. (I have the Spinnaker "Power C" disk.) The C64

version works fine, but the C128 version gives me random

values, based on the fractional part of the number. I wrote to

Pro-Line, but the answer I got wasn't very helpful.

Thirdly, is there a version of Buddy (Transactor, Volume 8, Is

sue 4) that does macros, in the sense that I understand macros?

The Spinnaker Power Assembler, which is, I gather, the same

program, has up to three user-defined pseudo opcodes and

three pre-defined multi-instruction pseudo op-codes, but noth

ing like the usual definition of a macro assembler. To use the

user-defined pseudo op-codes, you have to put in extra ma

chine language, with things like "jsr eval", and "jsr

put'byte", or whatever. Usually I think of macros as some

thing like:

movd .mac

lda?l

sta?2

Ida ?1+1

sta ?2+l

.endmac

movd adrl,adr2

where the syntax can vary a bit from assembler to assembler.

Maybe I'm splitting hairs, since the Ragsdale assembler which

is included with most FORTHs is regarded as a macro assem

bler.

Finally, I'm mildly surprised that there hasn't been more of a

cross-over between 8-bit Commodore types and the Atari ST,

on the one hand, and 8-bit Atari types and the Amiga. I should

expect to see the people who bought the C64 as a cheap Apple

II with improved sound and graphics, much lower price, and,

at the time, little available software or support (so you were

forced to become a hacker), to go for Tramiel's "Power with

out the. Price". On the other hand, the people who knew the

ins and outs of display list interrupt programming on the Atari

800 should now be working with Jay Miner's Amiga chips.

Joel M. Rubin

San Francisco, California

Transactor 10 July 1988: Volume 9, Issue 1

(,

1

t s

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - ifwe use it in the bits column, we* II credit you

in the column and send you afree one-year's subscription to Transactor

C64 Bits

G-Link on Newer Computers

For all of you G-Link users: our favourite IEEE interface can

be used with the 64C (even though R44 does not appear on

that board). Simply attach the lead on the G-Link to pin 28 of

the 6510 in your 64C and you're in business.

Those of you who wish to use the G-Link on a C128 should

attach the lead to pin 29 of the 8502. For more info on G-

Links, please refer to the Transactor Mail Order section of

News BRK.

POKE Poser Figured Out

Randy Thompson, Greensboro, North Carolina

The answer to Vol. 8, Issue 5's "Figure This One Out!" is:

1 print "*";: poke 122,0

After reading your challenge, the answer was immediately ob

vious: Simply POKE a zero into the low byte of BASIC'S TXTPTR

($7A-$7B) to reset CHRGET. When used in the first line of a

basic program, this poke acts as a crude GOTO command.

Congratulations, Randy! You've won the satisfaction ofhaving

solved the puzzle. We're still waiting on someone to come up

with a second solution. There's a Transactor Bits Book in itfor

anyone who does.

Self-Save

Ben de Waal, Windhoek, South Africa

After using the Commodore 64 and the 1541, the so-called

"save with replace" bug bugged me even in my bed. After

reading one of your articles I started to delete my programs

before saving them. This was a tedious job because of the

length of the delete command. After a few months of doing

this, I realized that something had to be done...

selfsave is designed to delete a program before it is saved.

By only typing save "filename" the file is first deleted and

then SAVEd.

The "SS Creator" program will create a BASIC program called

"selfsave" on disk. When RUN, SELFSAVE will transfer 32

bytes of ML to $02A7 and 72 bytes to $A000. The routine

needs all of the space at $02A7 (up to $02FF) because the file

name is transferred to that location. The code at $A000 is there

so that it is not in the way of your other routines. The routine

wedges into the save vector and first deletes the file before

saving it as normal. This only happens when devices from 8 to

15 are used and wouldn't affect other devices. If the SAVE vec

tor is restored, sys 679 will direct the vector back again. If

you want to disable it, type POKE 818,237: POKE 819,245 and

the save vector is back to normal.

GK 100 print" ** selfsave - ben de waal 87/12/30 **"

BN 110 n$="selfsave": print "creating the /"n$I" program on disk"

LE 120 nd=200: sa=2049: ch=19472

*** for lines 130-260, see the standard generator program on page 5 ***

AN

EE

KO

FF

FF

EA

JH

FF

DE

HO

OG

PJ

HF

EG

BH

AP

EO

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

203,

20,

20,

86,

87,

51,

95,

8,

141,

254,

76,

96,

183,

187,

187,

255,

149,

8,

20,

20,

69,

65,

48,

8,

157,

50,

133,

237,

162,

141,

153,

169,

32,

0,

1, 0, 158, 50,

20, 20, 20, 20,

32, 42, 42, 32,

32, 45, 32, 66,

65, 76, 32, 32,

32, 42, 42, 0,

157, 167, 2, 202,

0, 160, 202, 16,

3, 169, 2, 141,

1, 32, 0, 160,

245, 83, 48, 58,

183, 181, 0, 72,

36, 160, 24, 105,

199, 2, 200, 192,

2, 133, 188, 169,

192, 255, 169, 15,

.202, 224, 182, 208,

49, 49,

20, 20,

83, 69,

69, 78,

56, 55,

0, 0,

16, 247,

247, 76,

51, 3,

165, 1,

165, 186,

232, 224,

3, 133,

2, 208,

15, 168,

32, 195,

248, 96

56, 58, 143,

20, 20, 20,

76, 70, 83,

32, 68, 69,

47, 49, 50,

0,162, 32,

162, 73,189,

167, 2, 169,

96, 165, 1,

9, 1, 133,

41, 8, 208,

189, 208, 248,

183, 160, 0,

246, 169, 196,

166, 186, 32,

255, 162, 188,

34

20

65

32

47

189

127

178

41

1

1

165

177

133

186

104

Transactor 11 July 1988: Volume 9, Issue 1

RS-232 Bus Shelter

Thomas W. Gurley, Canton, Texas

When the RS-232 channel is either OPENed or CLOSEd, the

Kernal ends the routine with CLR. It seems that the program

mers at Commodore believed that anyone using the RS-232

bus must be senile and unable to do anything for themselves.

That is why the Kernal sets aside the receive and the transmit

buffers, does the CLR (because memory was affected) and

hopefully selects the correct baud rate for us. The fact that the

Kernal sets aside two buffers for use by the RS-232 equipment

and clears away variables has presented problems to just about

every programmer who has to deal with it. There is an easy fix

for both problems.

To help with the problem mentioned by Tony Valeri (Volume

6, Issue 2, p. 48) wherein compiled basic programs fail when

the RS-232 bus is opened, the programmer can set aside the

transmit and the receive buffers just prior to the OPEN state

ment.

100 close 2: rem close always writes a 0 into 248 and 250

110 poke 248,x: poke 250,y

:rem x=rcv buffer page, y=xmit buffer page

120 open 2,2,2,chr$(a)+chr$(b)+chr$(c)+chr$(d)

:rem use your usual values here

When the Kernal finds a non-zero in 248 and in 250, it skips

over the part which sets aside the top of BASIC memory for the

buffers. Because the CLOSE routine writes '0' to the buffer

pointers, the programmer has to assign the buffers every time

after the CLOSE and prior to the OPEN. Even so, when the pro

gram is compiled, there is no longer a conflict for the top of

memory. You should use a safe memory area above 49152 for

your buffers.

One would think that if the Kernal knows when the program

mer has taken control and assigned the buffers himself, it

would realize that memory was not changed and therefore skip

the CLR. But such is not the case. For that, you will have to

change the Kernal. It's very easy to do, but the solution cannot

be used with existing terminal software.

Those who want to burn their own Kernal into EPROM and

who intend to write their own terminal software can take ad

vantage of the simple change, as can those who write the Ker

nal to the RAM underneath.

Change address 65289 from SEC (56) to CLC (24). This area of

the Kernal is common to both OPEN and CLOSE. If the carry is

set, a CLR is performed at 57796.

The reason you cannot use this procedure with most existing

software is that the buffers must be assigned by the program as

noted above before open. If this is not done first, the Kernal

will assign the buffers to the top of memory. If this is allowed

to happen, as it most certainly will with most current software,

then the CLR is necessary.

On the other hand, if you have the basic version of a terminal

program, the change is easy and will allow you to open and

CLOSE the RS-232 channel anytime you want without losing

variables and without clashing with the compiled program.

Blow Your Stack?

Tony Sultana, Farmers Branch, Texas

Error Check adds a Stack Overflow Error to the list of possi

ble CBM errors. A stack overflow error can occur when too

many FOR-NEXT loops or GOSUB routines are nested, or if the

stack is too full during an Evaluate Expression (ieval) opera

tion (vectored at 778-779).

BASIC stores for-next loops and GOSUB routine information

on the stack - and ieval data temporarily. If less than 62 bytes

of storage remains after determining stack space, the BASIC

operating system displays an '?out of memory error'. Howev

er, such an error can also occur if the BASIC programming

space is used up. This short BASIC aid can distinguish between

a stack overflow and a real Out of Memory error.

Here's the BASIC loader:

MK 10 for x=679 to 747: read a: poke x,a: d=d+a: next

HF 20 if d<>6577 then printMdata error": end

PD 30 printlferror check activated": sys 679

GC 50 data 173, 0, 3, 141,200, 2, 173, 1

CE 60 data 3,141, 201, 2, 169,195, 141, 0

AF 70 data 3,169, 2,141, 1, 3,169, 96

KG 80 data 141, 167, 2, 96,224, 16,240, 3

LN 90 data 76, 0, 0,138,186,228, 34,144

JE 100 data 3,170,176,244,169,221,160, 2

DF 110 data 32, 30,171, 76,101,164, 83, 84

BB 120 data 65, 67, 75, 32, 79, 86, 69, 82

NK 130 data 70, 76, 79, 87, 0, 0, 0, 0

The source code for the stack checking program:

start

.opt list, gen, noerr

*=

old

strout

error

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

its

cpx

beq

$02a7

= $0000

= $able

= $a465

$0300

$02c8

$0301

$02c9 ;save old vector

#$c3

$0300

#$02

$0301 ;store new vector

#$60

$02a7 ;protect vector

#$10 ;chk for out of mem

outmem

Transactor 12 July 1988: Volume 9, Issue 1

jump jmp old

outmem txa

tsx

cpx $22

bcc stackv ;goto stack overflow

, tax

bcs jump

stackv Ida #$dd

ldy #$02

jsr strout

jmp error

.byte $53, $54, $41, $43, $4b, $20, $4f, $56

.byte $45, $52, $46, $4c, $4f, $57, $00, $00

Data Checker 64

Pontus Lindberg, Veberod, Sweden

This is a useful routine for checking data statements from a

long list and also checks for abnormal values (i.e. non-integers

and values outside the 0-255 range).

To use it, LOAD it and LIST it. Then LOAD the program to be

checked. Now cursor up and hit RETURN on each line of DATA

CHECKER. NOW RUN it.

Hold down the space bar to scroll. Any abnormal value will be

indicated by "error!". Note that if you have typed a lower

case L for a 1 or an upper-case O as a 0, the program will end

with a syntax error which will show the line number of the of

fending data element.

AO 1 read b: bc=bc+l: rc=rc+l: a=peek(64)*256+peek(63)

MH 2 if b=-1 then print "end of data": goto 9

JM 3 if choa then rc= 1: ch=a

BJ 4 if boint(b) or b<0 or b>255 then c$="error!"

EA 5 print"line:"a"data"b,c$:c$=""

MM 6 get q$: if q$="" then 6

HG 7 if q$="r"then print bc;rc

NK 8 goto 1

JA 9 end

Find Joy

Steven E. Clark, Phoenix, Arizona

Plug joystick into Port One. Be sure joystick is in Port Two.

Port One... Port Two...

Are you as tired of the dichotomy as I am? Try the little rou

tine listed below. SYS 828 waits for one of the fire buttons to

be pressed, then returns the value of the joystick you used: one

or two. You can break out of the wait with a return. When

you get back from the routine, you'll find your value stored at

928. If you pressed return, the value will be zero. If you

don't want it in the cassette buffer at 828, any location will do.

Don't forget to move joynum (the returned value) to a

favourite safe location.

One other use of JOYID, with minor changes, might be to start

off a program. Instead of 'Press any key to begin', how about

'Press a key or fire button to begin'?

NK lOrem loader for "joyidl"

PK 20 for i=828 to 916: read x: ch=ch+x: poke i,x: next

AE 30 if ch<>9536 then print"data error": stop

KN 40 print "sys828:peek928 to read joystick number"

HB 100 data 169, 0,141,160, 3,133,198,169, 1,141,147, 3

JD 110 data 141,148, 3,169, 17,141, 13,220,169,255,141, 0

JP 120data220,173, 1,220,141,147, 3,173, 0,220,141,148

LB 130 data 3,169,129,141, 13,220,173,119, 2,201, 13,208

NE 140 data 7,169, 0,141,160, 3,240, 26,173,147, 3, 41

MJ 150 data 16,208, 7,169, 1,141,160, 3,208, 12,173,148

DF 160 data 3, 41, 16,208,179,169, 2,141,160, 3,169, 0

KP 170 data 133,198, 96, 1, 1

Late Night TV

Jason Farah, Davison, Michigan

This is a "dazzler"-type program that simulates a static pat

tern on a TV set. Make sure the audio is on.

NP 10forn=49152to49173

GM 20 read a: poke n,a: next

OJ 30 poke 54273,100: poke 54277,0: poke 54278,255

: poke 54296,15: poke 54276,129

FB 40 sys 49152

FA 50 data 169, 11, 141,17, 208, 169,0, 141, 32, 208, 105

LF 60 data 1, 201, 16, 240, 245, 141, 32, 208, 76, 7, 192

Hook, Line and Singer

Chuck Lam, San Francisco, California

Here is an interesting trick for use with the 1660 modem (and

maybe other modems with a built-in speaker).

First unplug the telephone cord from the modem and type:

poke 56579,peek(56579) or 32:

poke 56577,peek(56577) and 223

Now play a music program or any program that uses sound;

you should be able to hear the sound from your modem's

speaker. Although the sound quality is not really good, it is al

most noise free. And at least you know another interesting

thing about modems.

After you finish playing with this trick, type:

poke 56577,peek(56577) or 32

and plug the telephone cord back into the modem.

Note: The above pokes take your modem off-hook, so be sure

you unplug the telephone cord from the modem.

Transactor 13 July 1988: Volume 9, Issue 1

C-128Bits

Re-Booting GEOS 128

Richard D. Young, Orleans, Ontario

GEOS 128 functions effortlessly with the 1750 Ram Expansion

Unit (REU). Among other things, the REU offers quick and easy

re-booting from BASIC, but not without some adjustments. Fast

re-boot is one option using the 128 configure program in GEOS;

if this option has been selected, the 128 will return to GEOS

when it is reset. The fastest reset back to GEOS will occur if a

copy of the 128 deskTop has been placed in the REU RAM

"1571 drive". The GEOS environment will remain reasonably

intact, particularly if a copy of preferences is also in the RAM

drive.

The GEOS manual mentions some conditions that are required

before GEOS 128 can be successfully re-booted from basic.

The most critical of these conditions is that memory in ram

Bank 1 from $C000 to $C07F must remain unmodified. This

area of 128 memory is, of course, used by BASIC variables and

will be quickly overwritten by strings if a BASIC program is

run.

Recognizing this fact, a program called 128 rboot has been

provided with GEOS 128. It provides a clean recovery from

RAM Bank 1 changes, when it performs properly. This rboot

routine restores Bank 1 at $C000 by FETCHing the required*

data from the REU. To do this, it must be relocated to an area

of common RAM because it must switch to RAM configuration

1 prior to restoring the data. I relocated my version to $0C00

by changing the load address on disk with a disk editor, and

changing onp absolute address high byte from $1C to $0C. To

be safe, I always reset back to GEOS through 128 rboot.

The easiest way to return to GEOS after running a BASIC pro

gram is to include the 128 rboot routine as DATA statements in

the BASIC program, READ and POKE this machine language

into memory, and SYS to the re-boot program. The necessary

DATA statements can be included as a subroutine; a SYS 3072

will execute the re-boot to GEOS.

I also generally include one more function in any BASIC pro

gram I wish to run from the GEOS deskTop. The 1571 disk

drive is left in 1541 mode after exiting from GEOS, so I reset it

to 1571 mode. One caution: a disk should be inserted in all

drives before leaving GEOS.

AO 30000 rem reset geos 128 - ml data for 128 rboot

EM 30010 for i=3072 to 3126: read d: poke i,d: next

FD 30020 return:rem sys 3072 to re-boot geos

EB 30100 data 120,173, 6,213, 41, 48, 9, 71

BK 30110 data 141, 6,213,169, 126, 141, 0,255

PE 30120 data 173, 48,208, 41,254,141, 48,208

HM 30130 data 160, 8,185, 45, 12,153, 1, 223

BO 30140 data 136, 16,247,173, 0,233, 41, 64

KM 30150 data 240,249, 76, 0,192,145, 0,192

IO 30160 data 64,188, 0,128, 0, 0, 0

Easy 128 Key Fix

Rick Crone, Jackson, Tennessee

My 128 developed a problem with the 'K' key; it would often

take two or three strokes to get it to work. Well, soon the ag

gravation reached critical mass and a solution had to be found.

I remembered an article from the T about keyboard repair and

searched my back issues.

I found it in Volume 5, Issue 5. So I opened up the 128 and

started to follow the instructions. But the 128 had three

switches that would require unsoldering (instead of one as in

the 64 and PET). Even worse, there were wires running

through the back cover of the keyboard, and I couldn't see any

obvious way of disconnecting them. I checked the keyboard

from the top side and still couldn't see any safe way to get in

side.

I pulled the key cap off of the 'K' key and found that with the

cap off there is a hole that goes right into the contact area.. I

used a squirt of cleaner/degreaser (Radio Shack #64-2322

$1.99), put the 128 back together and now the key works

great!

I thought this might save some other folks some trouble if they

have the same problem with a key. You wouldn't even have to

open the case for this repair. I know I sure wouldn't have put

up with the aggravation as long as I did if I had known about

this quick fix.

Never-never land 128D

John Menke, Mt. Vernon, Illinois

The C128D has a metal chassis. The Cardco?+G printer inter

face has a power connection that plugs into the cassette port.

The connection doesn't fit very well and there's a tendency to

fiddle with it despite the exposed template on the top of the

connection.

Wrap it with insulating tape or you'll crash the 1571 drive in

the C128D. I assure you that sparks do indeed fly when the

connector contacts the C128D'S chassis, and the 1571 goes

completely off-line (never stops spinning, won't accept com

mands, 'device not present').

This Bud's for you

Marc Begleiter, Forest Hills, New York

I was having trouble with Buddy-128 when trying to assemble

a program with an indirect jump statement. Well I found out

what the trouble was! Never include comments on the same

line. What appears to be happening is the parser ignores the

semicolon and reads the comment as part of the label for the

indirect jump. Gee, that was easy. At least it wasn't my fault.

Doesn't change my opinion on the assembler though. Love

that Bud!

Transactor 14 July 1988: Volume 9, Issue 1

ScrollDir

A scrolling disk directory programfor the C-128

by M. Garamszeghy

© 1987 by M. Garamszeghy

The C-128's DIRECTORY or CATALOG command is a vast

improvement over the C-64's LOAD "$",8 type of directory.

However, it still has some very serious limitations. These in

clude: the inability to obtain a hard copy of the directory with

out resorting to the LOAD "$",8 method; the inability to scroll

the list; and the cumbersome techniques required to LOAD a

program or SCRATCH a file directly from the displayed list. If

you would like to be able to do these things and more, then

this little utility is for you.

SDIR is a memory resident extended directory utility for the

C-128 (in 40 or 80 column, FAST or SLOW mode) with a

1541, 1571 or 1581 disk drive. It provides full forward and re

verse scrolling capabilities for a directory listing as well as the

ability to: provide a hard copy of the directory via a printer;

scratch files; load a PRG file; display or merge a SEQ file;

change 1581 directory partitions; and validate a disk, all di

rectly from the displayed list.

Creating SDIR

SDIR is written in assembly language using the Buddy-128

system. The source code is some 1000 lines long, and is not

included in this article. For those who are interested, it is in

cluded on the Transactor disk for this issue. Listing 1 is the

BASIC loader for the machine language program. Type this in

and SAVE it under a name other than "SDIR". Before RUN-

ning the program, you can make changes to the system de

faults in lines 1100 to 1170 to reflect your personal set-up. The

default values correspond to a disk drive on device 8, an Ep

son compatible printer as device 4 with a CARDCO interface

in transparent mode, and a printed directory listing three en

tries wide.

The control character values for compressed print on/off and

expanded print on/off can be changed to suit your printer.

Consult your printer and/or interface manual for details if you

are not sure of the appropriate codes. If your printer does not

support one of these modes, use a value of 13 (carriage return)

or some other harmless value for the applicable parameters.

The printer width should be specified in multiples of 32. This

parameter divided by 32 will give the number of entries to be

printed on a single line. Any value over 64 requires either a

wide carriage printer or support for compressed print.

RUN the program once to create the SDIR machine language

program. After the program has created the file in memory,

you will be prompted to insert a disk into the device 8 disk

drive. When the file has been successfully written, you will be

asked if you want to start SDIR now. Type in "y <return>" if

this is what you wish, or any other response to quit. Once you

have created the SDIR file, you no longer need the program in

Listing 1 (keep it anyway in case you ever wish to change the

default configuration). You can start SDIR on subsequent oc

casions by the method outlined below.

SDIR Memory Management

The machine language portiori of SDIR occupies normally un

used BANK 0 RAM between $1300 (decimal 4864) and

$1BEO (decimal 7136). BANK 0 RAM from $D000 upwards

is used as the directory buffer. $0B00 to $0DFF (cassette and

RS-232 buffers) and $FA to $FF (unused zero.page space) are

also used as temporary buffers and pointers for various items.

These areas are erased and set up each time SDIR is activated.

To prevent BASIC text code from over-writing the machine

language portion, the start up routine resets the top of BASIC

text limit pointer to $CFFF. This gives over 40K bytes of

memory available to BASIC for storing programs and is more

than adequate for even the longest of programs. (Remember

that on the C-128 variables are stored in BANK 1, and do not

take up room in the BASIC work space).

Using SDIR

To start SDIR from disk, the following command is used:

BOOT "SDIR"

assuming that the machine language program is saved under

the name of "sdir". Alternatively with the older C-128 ROM

set, SDIR can be activated from the 1541 with:

BLOAD "SDIR": SYS 4864

Transactor 15 July 1988: Volume 9, Issue 1

Once in memory, the machine language portion of SDIR will

remain active until a hard reset is performed on the computer.

If it becomes deactivated at any time because the function

keys get redefined or the BASIC tokenizer vector at $0304

gets re-set by another utility, SDIR can be restarted by the

command:

SYS 4864

The start up routine for SDIR does two main things: it patches

itself into the BASIC tokenizing vector and re-defines the F3

key to point to itself rather than the normal BASIC DIREC

TORY command. With this patch installed, SDIR becomes a

resident command which can be accessed in direct mode only.

Of course, DIRECTORY still can be accessed by typing in the

command word from BASIC.

The full syntax of the command is:

SD [pattern] [,U<device#>] [,P<printer#>] [,W<printer width>]

All of the parameters are optional and can be specified in any

order. The F3 key is redefined as "SD <return>" which works

with all defaults. The SD portion of the command line must

begin in the first column of a screen line. The optional param

eters can be separated by spaces for legibility if desired, al

though punctuation, etc. is not required.

The pattern can be any legal DOS pattern for directories, in

cluding the extended set for the 1581 (only if you're using a

1581 of course). <device#> should be in the range of 8 to 13.

An error message will be generated if you try to access a non

existent drive. <printer#> should be 4 or 5. <printer width> is

given in number of entires to be printed on a line. It is normal

ly in the range of 2 to 5.

For example, just entering the command "SD" or hitting the

F3 key will list all files on the default disk drive (normally de

vice 8) using the default printer and printer width for output.

SD MK*=S",U9,W4,P5

will find all of the SEQ files on device 9 that begin with the

letter K. If a printout is selected later, it will be given on the

device 5 printer at 4 entries per line.

The simplest way to use SDIR is to just put a disk into your

drive and press the F3 key - the F3 key was chosen for this

task because its default definition in BASIC 7.0 is DIRECTO

RY. Alternatively, you can enter the SD command along with

its optional parameters described above.

After a few seconds, the disk directory will be printed on the

screen. If you are using an 80 column screen, a command

summary will be printed on the right hand side of the screen.

No command summary is provided on the 40 column screen

due to space considerations. A quick summary is given in Ta

ble 1.

The directory listing takes the following format:

filename type size

The type will be one of PRG, USR, REL, SEQ or CBM (1581

only). Locked "<" and splat "*" status are also indicated. The

file size is given in blocks. The disk name, number of blocks

free and number of files listed is also displayed. Up to 20 files

can be displayed on the screen at one time. The following

command options are possible:

• Use the <cursor up> and <cursor down> keys to scroll

through the displayed list. The currently selected file will be

highlighted in reverse video.

• The <home> key will take you back to the top of the list.

• The <esc> key will clear the screen and go back to BASIC.

• The logo-p key combination (i.e. hold down the Commodore

logo key at the lower left corner of the keyboard and the"p"

key simultaneously) will give a hard copy of the entire directo

ry on a printer and return to the SDIR display. If supported by

your printer, the disk name and ID code will be printed in dou

ble width, while the entries will be in compressed print. The

number of files found and blocks free will be printed in nor

mal size.

• The <return> key has three functions, depending on the file

type. For PRG files, it acts like a BLOAD command and will

automatically load the highlighted file. Be careful with BASIC

programs: make sure that the graphics screen allocation state

is the same as when the program was saved. (If you BLOAD a

BASIC program that was saved when the graphics screen was

allocated, it comes from a start of BASIC address of $4000,

rather than the normal start of BASIC address of $lC00.)

For a 1581 CBM directory partition file, <return> will switch

the current partition to the selected file.

For other file types, <return> will display the contents of the

file on the screen then return to the SDIR menu. This will not

affect any BASIC program that may be in memory. Press the

<run/stop> key to abort a file display if you decide that you do

not want to view the entire file. The <no scroll> key will pause

the display momentarily until another key is pressed.

• The key combination logo-m will cause a SEQ program file

listing to be MERGEd with any BASIC program currently in

memory. A listing can be created with the simple command se

quence:

OPEN 8,8,8,"PROGRAM.LIST,S,Wfl: CMD 8: LIST

PRINT#8: CLOSE8

A SEQ program listing is also sometimes used for download

ing files from bulletin board systems. The logo-m command

will automatically re-crunch the file into PRG format. After

Transactor 16 July 1988: Volume 9, Issue 1

the MERGE has been completed (usually by the printing of an

*?out of data' error on the screen), you must type in CLOSE#1

to close the disk file. (The '?out of data' error is caused by the

"READY." message which is included at the end of every

Commodore BASIC listing. The computer interprets this as

READ Y. Since no DATA statements are included, you get the

'?out of data' message). Logo-m can also be used to execute a

sequential disk command file as outlined in Transactor Vol

ume 8, Issue 2 ("SYS 65478 revisited" on page 33).

• The key combination logo-r will return a 1581 to its root di

rectory partition and initialize the drive. For 1541 or 1571

drives, it just initializes the drive ("10"). For all drives, it will

also select the full directory if a pattern was originally speci

fied.

• The logo-s key combination will scratch the selected file. Be

careful when you use this, because you are not prompted to

confirm your request to delete the file! Once the file is gone, it

is gone (unless you fix the disk with a sector editor). After

deletion, SDIR will re-read the directory using the original

pattern.

• The logo-v key will perform a disk validation, then re-read

the directory.

Final Observations

Unlike most programs that deal with disk files, SDIR credits

the user with a degree of intelligence. Although it has exten

sive error detection routines, you will not be prompted or ca

joled "are you sure?" each time you press a key. Because of

this, a certain amount of caution may be required, especially

when scratching files. Otherwise, SDIR is much faster for peo

ple who are relatively careful.

Listing 1: BASIC program to create the "SDIR" machine lan

guage program on disk.

Table 1: SDIR

Command

<cursor up>

<cursor dn>

<home>

<esc>

<return>

C=m

C=p

C=r

C=s

C=v

Quick Command Reference

Action

Scroll up list

Scroll down list

Go to top of list

Exit to Basic

BLOAD PRG file

Set 1581 directory

Display SEQ file

Merge SEQ file

Print directory list

Set 1581 rootdir

Reset dir pattern to all

Scratch file

Validate disk

OC 1000

CI 1010

PH 1020

PE 1030

6F 1040

01 1050

BI 1060

CA 1070

EF 1080

6L 1090

FM 1100

OG 1110

JM 1120

POf 1130

JJ 1140

NH 1150

JG 1160

DE 1170

AB 1180

HB 1200

PA 1210

DA 1220

HG 1230

LH 1240

JO 1250

MO 1260

OJ 2000

LP 2010

GE 2020

NC 2030

LK 2040

IH 2050

IJ 2060

AJ 2070

CJ 2080

KE 2090

LK 2100

OD 2110

OF 2120

AL 2130

GK 2140

CL 2150

EA 2160

AI 2170

PG 2180

DB 2190

FF 2200

JD 2210

BK 2220

MO 2230

MP 2240

HN 2250

AM 2260

DO 2270

FG 2280

FK 2290

DP 2300

rem***************************

rem* sdir 4.0 *

rem* by m. garamszeghy *

rem* 87-09-01 *

rem***************************

cs=0: bank 0: print "working ..."

for i=4864 to 7126: read x: cs=cs+x: poke i,x: next

if csO222651 then print "error in data statements": end

poke 4867,8

poke 4868,4

poke 4869,4

poke 4870,96

poke 4871,15

poke 4872,18

poke 4873,14

poke 4874,20

rem default disk drive device!

rem default printer device!

rem default printer sec address

rem default # printer columns per page

rem printer code to set compressed print

rem printer code to cancel compressed print

rem printer code for expanded print

rem printer code to cancel expanded print

print"insert disk then press a key to continue..."

getkey a$

bsave"sdir"/b0,p4864 to p7136: if ds then print ds$: end

print "--> sdir4 file created <--": bank 15

inpuf'start sdir <y/n>";ss$

if ss$="y" then sys 4864

end

data 76, 11, 19, 8, 4, 4, 96, 15

data 18, 14, 20, 162, 0, 134, 252, 32

data 221, 26, 32, 101, 19, 169, 207, 141

data 19, 18, 169, 255, 141, 18, 18, 169

data 154, 141, 4, 3, 169, 19, 141, 5

data 3, 32, 125, 255, 13, 13, 83, 89

data 78, 84, 65, 88, 58, 32, 32, 83

data 68, 32, 34, 80, 65, 84, 84, 69

data 82, 78, 34, 44, 85, 60, 68, 69

data 86, 73, 67, 69, 35, 62, 13, 0

data 169, 97, 133, 250, 169, 19, 133, 251

data 169, 250, 160, 4, 162, 3, 76, 101

data 255, 13, 83, 68, 13, 32, 125, 255

data 83, 68, 73, 82, 32, 52, 46, 48

data 32, 32, 60, 67, 62, 49, 57, 56

data 55, 32, 77, 46, 32, 71, 65, 82

data 65, 77, 83, 90, 69, 71, 72, 89

data 0, 96, 169, 0, 141, 0, 255, 32

data 231, 255, 162, 0, 76, 221, 26, 36

data 48, 58, 173, 0, 2, 201, 83, 208

data 7, 173, 1, 2, 201, 68, 240, 3

data 76, 13, 67, 169, 0, 141, 0, 255

data 168, 153, 0, 13, 200, 208, 250, 32

data 204, 255, 32, 231, 255, 162, 0, 32

data 221, 26, 162, 3, 32, 221, 26, 32

data 101, 19, 162, 1, 32, 221, 26, 173 .

data 3, 19, 141, 5, 13, 173, 6, 19

data 141, 4, 13, 173, 4, 19, 141, 2

data 13, 173, 5, 19, 141, 3, 13, 160

data 0, 185, 151, 19, 153, 32, 13, 200

data 192, 3, 208, 245, 136, 140, 13, 13

Transactor 17 July 1988: Volume 9, Issue 1

PO

LA

GB

BH

KK

AF

LF

NG

OG

BK

LF

BD

PF

KL

NJ

OH

MF

NF

NA

EP

BA

PI

EA

JC

JH

GL

HB

PG

II

HE

CD

AK

DK

PF

AK

KP

GJ

NP

EP

GG

FL

JO

LA

JL

AK

LA

IM

GM

HC

LN

GK

BC

AK

BI

LI

LA

LO

SM

CH

FG

JG

IG

HH

2310 data

2320 data

2330 data

2340 data

2350 data

2360 data

2370 data

2380 dat'a
2390 data

2400 data

2410 data

2420 data

2430 data

2440 data

2450 data

2460 data

2470 data

2480 data

2490 data

2500 data

2510 data

2520 data

2530 data

2540 data

2550 data

2560 data

2570 data

2580 data

2590 data

2600 data

2610 data

2620 data

2630 data

2640 data

2650 data

2660 data

2670 data

2680 data

2690 data

2700 data

2710 data

2720 data

2730 data

2740 data

2750 data

2760 data

2770 data

2780 data

2790 data

2800 data

2810 data

2820 data

2830 data

2840 data

2850 data

2860 data

2870 data

2880 data

2890 data

2900 data

2910 data

2920 data

2930 data

Transactor

160,

131,

240,

240,

72,

5,

3,

225,

64,

64,

200,

208,

24,

0,

34,

237,

109,

13,

169,

186,

192,

73,

12,

27,

19,

48,

19,

26,

73,

1,

255,

32,

255,

0,

32,

140,

76,

148,.

13,

160,

208,

167,

148,

148,

174,

185,

200,

144,

244,

21,

200,

238,

76,

83,

204,

22,

192,

21,

245,

162,

162,

96,

208,

0,

20,

13,

31,

20,

13,

173,

32,

20,

64,

185,

9,

105,

2,

240,

224,

13,

208,

14,

255,

255,

141,

169,

173,

32,

240,

32,

32,

78,

174,

173,

189,

32,

12,

198,

1,

167,

27,

200,

0,

248,

21,

27,

27,

22,

234,

208,

3,

32,

201,

192,

0,

46,

32,

255,

32,

32,

153,

169,

3,

4,

13,

245,

185,

201,

201,

200,

208,

208,

4,

72,

141,

64,

0,

200,

10,

141,

6,

0,

13,

143,

174,

169,

144,

0,

2,

12,

87,

6,

194,

125,

71,

5,

13,

255,

192,

201,

255,

13,

21,

201,

192,

32,

32,

208,

144,

141,

13,

0,

245,

76,

148,

34,

22,

13,

21,

70,

169,

172,

208,

189,

255,

32,

32,

32,

173,

0,

34,

80,

208,

3,

238,

19,

20,

4,

96,

2,

185,

96,

20,

157,

240,

141,

169,

5,

0,

3,

12,

141,

13,

27,

32,

26,

255,

46,

13,

13,

169,

255,

48,

160,

32,

201,

34,

22,

159,

148,

246,

3,

22,

32,

240,

160,

167,

27,

240,

208,

208,

66,

82,

1,

27,

245,

13,

160,

221,

221,

210,

1,

2,

240,

240,

229,

173,

32,

141,

41,

13,

128,

41,

0,

162,

13,

35,

14,

13,

0,

13,

32,

76,

169,

10,

240,

173,

14,

162,

87,

46,

160,

162,

0,

32,

208,

0,

148,

34,

240,

208,

27,

27,

32,

76,

13,

207,

6,

0,

21,

144,

244,

236,

.3,

76,

69,

32,

153,

160,

200,

0,

26,

26,

255,

13,

208,

86,

22,

240,

3,

72,

2,

7,

76,

160,

15,

2,

0,

240,

13,

232,

13,

141,

160,

189,

14,

48,

13,

3,

0,

27,

1,

79,

46,

0,

32,

170,

87,

189,

140,

27,

208,

249,

241,

200,

144,

148,

167,

32,

26,

32,

32,

201,

3,

32,

32,

238,

79,

69,

195,

162,

0,

192,

32,

32,

160,

200,

174,

3,

201,

201,

108,

19,

20,

13,

170,

18,

192,

201,

41,

200,

10,

232,

138,

173,

0,

15,

255,

27,

141,

32,

76,

12,

76,

32,

82,

0,

32,

160,

32,

27,

162,

0,

144,

244,

153,

169,

192,

3,

27,

21,

148,

160,

159,

148,

34,

76,

159,

185,

1,

67,

32,

255,

13,

185,

12,

159,

101,

0,

192,

0,

76

85

87

32

141

208

208

189

20

64

1

3

185

201

208

24

20

2

32

32

169

1

117

138

201

138

221

75

169

186

13

104

173

1

13

3

32

96

32

32

76

32

32

27

22

27

27

208

167

27

27

13

75

32

160

200

155

208

27

19

185

.24

13

BN

GP

NC

NJ

GD

BP

CI

HJ

OD

10

LH

FB

FD

EG

PB

IM

CN

MN

DI

GJ

JL

GJ

KE

NL

EM

OL

CH

JM

GA

NA

KJ

KC

CD

LN

CM

MN

PE

MB

KO

EA

OH

OH

BC

AF

LI

BB

KD

LG

FL

JJ

CG

HJ

00

PA

KI

BM

NA

MA

CL

PO

GE

. LE

LC

18

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

32,

185,

32,

185,

153,

70,

32,

255,

173,

208,

78,

32,

32,

215,

26,

192,

192,

192,

192,

80,

45,

32,

32,

32,

45,

32,

32,

32,

45,

79,

32,

82,

45,

80,

32;

32,

45,

69,

32,

32,

45,

32,

82,

32,

45,

83,

32,

32,

45,

68,

32,

32,

45,

79,

32,

32,

45,

72,

32,

32,

45,

84,

32,

207,

0,

210,

22,

165,

73,

0,

200,

0,

28,

79,

70,

59,

208,

32,

192,

192,

192,

192,

62,

32,

76,

32,

60,

32,

76,

32,

32,

32,

32,

32,

69,

32,

82,

32,

32,

32,

81,

32,

32,

32,

49,

32,

32,

32,

69,

32,

32,

32,

73,

32,

32,.

32,

79,

32,

32,

32,

32,

32,

32,

32,

69,

32,

26,

1,

255,

22,

13,

76,

168,

192,

13,

32,

32,

79,

27,

3,

125,

192,

192,

192,

174,

44,

83,

73,

221,

72,

84,

73,

221,

60,

69,

66,

221,

84,

66,

71,

221,

32,

82,

32,

221,

32,

67,

53,

221,

32,

77,

si;

221,

32,

80,

82,

221,

32,

49,

84,

221,

32,

83,

70,

221,

32,

86,

32,

221,

160,

240,

200,

240,

200,

69,

185,

18,

208,

221,

70,

85,

76,

76,

255,

192,

192,

192,

13,

60,

67,

83,

13,

79,

79,

83,

13,

69,

88,

65,

13,

85,

76,

32,

13,

32,

69,

32,

13,

32,

72,

56,

13,

67,

69,

32,

13,

67,

82,

32,

13,

67,

53,

32,

13,

67,

67,

73,

13,

67,

65,

68,

13,

0,

9,

208,

21,

208,

83,

184,

208,

33,

26,

73,

78,

138,

4,

176,

192,

192,

192,

221,

68,

82,

84,

221,

77,

80,

84,

221,

83,

73,

83,

221,

82,

79,

32,

221,

32,

65,

32,

221,

32,

65,

49,

221,

61,

82,

32,

221,

61,

73,

32,

221,

61,

56,

68,

221,

61,

82,

76,

221,

61 ,-

76,

73,

173,

32,

153,

242,

32,

242,

32,

13,

245,

173,

32,

76,

68,

19,

24,

192,

192,

192,

192,

32,

78,

79,

32,

32,

69,

32,

32,

32,

67,

84,

73,

32,

78,

65,

32,

32,

32,

68,

32,

32,

32,

78,

32,

32,

32,

71,.

32,

32,

32,

78,

32,

32,

32,

49,

73,

32,

32,

65,

69,

32,

32,

73,

83,

192,

July

197,

160,

160,

210,

32,

32,

32,

162,

1,

125,

69,

13,

232,

32,

192,

192,

192,

192,

60,

62,

76,

32,

32,

62,

79,

32,

32,

62,

32,

67,

32,

62,

68,

32,

32,

32,

32,

32,

32,

32,

71,

68,

32,

77,

69,

32,

32,

80,

84,

32,

32,

82,

32,

82,

32,

83,

84,

32,

32,

86,

68,

75,

192,

198£

27

13

0

255

32

32

210

1

13

255

83

0

165

221

192

192

192

192

85

32

76

32

32

32

70

32

32

32

84

32

60

32

32

32

32

32

83

32

32

32

69

73

32

32

32

32

32

32

32

32

32

32

82

32

32

32

67

32

32

32

65

32

192

1: Volume 9, Issue 1

IK

CL

ML

DF

JG

61

KE

FE

OA

PB

DP

BM

BF

6H

AE

CB

IM

OK

EC

IL

OB.

IC

MD

IC

DC

DP

GO

JF

KO

HD

MC

GC

DG

GM

CE

NE

BA

HA

GL

IL

NI

HF

KK

LH

GM

GL

BL

CC

DI

IN

JP

CE

PN

MM

PM

HB

CG

LA

KD

MN

IG

LH

GE

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

3740

3750

3760

3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3940

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

torn

4090

4100

4110

4120

4130

4140

4150

4160

4170

4180

4190

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

Transactor

192, 192, 192, 192, 192, 192, 192, 192

192, 192, 192, 192, 192, 192, 192, 192

192, 192, 192, 192, 192, 192, 192, 192

192, 192, 189, 0, 32, 194, 26, 162

0, 142, 18, 13, 142, 6, 13, 142

7, 13, 142, 8, 13, 232, 32, 221

26, 160, 0, 32, 172, 27, 201, 255

208, 3, 76, 64, 24, 32, 210, 255

200, 192, 28, 208, 238, 32, 185, 27

238, 18, 13, 173, 18, 13, 201, 20

240, 6, 32, 197, 27, 76, 25, 24

32, 194, 26, 32, 73, 24, 76, 146

24, 169, 18, 32, 210, 255, 160, 0

174, 6, 13, 24, 32, 240, 255, 160

0, 32, 172, 27, 32, 210, 255, 200

192, 31, 208, 245, 169, 146, 76, 210

255, 32, 78, 24, 174, 7, 13, 232

236, 0, 13, 208, 3, 76, 73, 24

142, 7, 13, 174, 6, 13, 224, 19

240, 7, 232, 142, 6, 13, 76, 140

24, 32, 197, 27, 32, 185, 27, 76

73, 24, 32, 228, 255, 240, 251, 141

9, 13, 201, 27, 208, 3, 76, 138 .

19, 201, 19, 208, 3, 76, 4, 24

201, 13, 208, 3, 76, 38, 25, 201

167, 208, 3, 76, 38, 25, 201, 175

208, 3, 76, 34, 26, 201, 145/ 240

36, 201, 17, 208, 3, 76, 235, 24

201, 174, 208, 3, 76, 38, 25, 201

178, 208, 8, 162, 2, 142, 13, 13

76, 159, 20, 201, 190, 208, 3, 76

143, 25, 76, 146, 24, 32, 241, 24

76, 146, 24, 32, 105, 24, 76, 146

24, 32, 78, 24, 174, 7, 13, 202

224, 255, 208, 3, 76, 73, 24, 142

7, 13, 174, 6, 13, 240, 7, 202

142, 6, 13, 76, 24, 25, 169, 27

32, 210, 255, 169, 73, 32, 210, 255

56, 165, 252, 233, 32, 133, 252, 176

2, 198, 253, 76, 73, 24, 160, 16

32, 172, 27, 41, 127, 201, 32, 208

3, 136, 208, 244, 200, 140, 16, 13

173, 9, 13, 201, 174, 208, 16, 160

0, 185, 137, 25, 153, 0, 12, 200

192, 3, 208, 245, 76, 105, 25, 160

17, 32, 172, 27, 201, 67, 208, 77

160, 0, 185, 134, 25; 153, 0, 12

200, 192, 3, 208, 245, 136, 140, 13

13, 160, 0, 32, 172, 27, 153, 3

12, 200, 204, 16, 13, 208, 244, 24

173, 16, 13, 105, 3, 141, 10, 13

32, 117, 27, 76, 201, 20, 47, 48

58, 83, 48, 58, 86, 48, 58, 160

0, 185, 140, 25, 153, 0, 12, 200

192, 3, 208, 245, 140, 10, 13, 32

117, 27, 76, 201, 20, 162, 0, 32

221, 26, 169, 1, 174, 5, 13, 160

3, 32, 186, 255, 173, 16, 13, 166

252, 164, 253, 32, 189, 255, 169, 0

170, 32, 104, 255, 160, 17, 32, 172

27, 201, 80, 208, 23, 24, 169, 0

32, 213, 255, 142, 16, 18, 140, 17

18, 176, 3, 76, 138, 19, 32, 87

NJ

Hfl

NI

PO

BL

NK

BL

HF

JO

NE

HC

KA

OB

GM

BF

KD

ED

AE

MD

HA

JG

NI

OH

MH

LH

FE

BO

GK

MH

DM

HK

JL

AP

FO

DP

JM

PN

CB

DM

IL

HH

FP

GG

CN

FH

FJ

JA

GG

KB

ID

DC

PK

BB

LA

EM

BJ

GG

LK

GN

GC

NJ

LN

IJ

19

4200

4210

4220

4230

4240

4250

4260

4270

4280

4290

4300

4310

4320

4330

4340

4350

4360

4370

4380

4390

4400

4410

4420

4430

4440

4450

4460

4470

4480

4490

4500

4510

4520

4530

4540

4550

4560

4570

4580

4590

4600

4610

4620

4630

4640

4650

4660

4670

4680

4690

4700

4710

4720

4730

4740

4750

4760

4770

4780

4790

4800

4810

4820

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

27, 76, 4, 24, 32, 192, 255, 162

1, 32, 198, 255, 173, 9, 13, 201

167, 208, 12, 160, 17, 32, 172, 27

201, 83, 208, 3, 76, 146, 19, 32

207, 255, 32, 210, 255, 32, 225,v 255

16, 5, 32, 183, 255, 240, 240, 32

204, 255, 169, 1, 32, 195, 255, 32

59, 27, 162, 0, 32, 221, 26, 76

208, 21, 169, 6, 174, 2, 13, 172

3, 13, 32, 186, 255, 169, 0, 32

189, 255, 32, 192, 255, 24, 162, 6

32, 201, 255, 144, 3, 76, 183, 26

32, 194, 26, 173, 9, 19, 32, 210

255, 160, 0, 185, 96, 13, 32, 210

255, 200, 192, 32, 208, 245, 12, 197

27, 32, 197, 27, 173, 10, 19, 32

210, 255, 173, 7, 19, 32, 210, 255

172, 4, 13, 32, 202, 27, 32, 197

27, 160, 0, 32, 172, 27, 201, 255

240, 27, 32, 210, 255, 200, 204, 4

13, 208, 240, 32, 197, 27, 24, 165

252, 109, 4, 13, 133, 252, 144, 225

230, 253, 76, 113, 26, 32, 197, 27

172, 4, 13, 32, 202, 27, 32, 197

27, 173, 8, 19, 32, 210, 255,* 160

0, 185, 160, 13, 32, 210, 255, 200

192, 48, 208, 245, 32, 197, 27, 32

204, 255, 169, 6, 32, 195, 255, 76

4, 24, 169, 0, 133, 252, 133, 254

169, 192, 133, 253, 133, 255, 96, 133

100, 134, 101, 162, 144, 56, 32, 117

140, 32, 68, 142, 96, 189, 250, 26

133, 228, 189, 255, 26, 133, 229, 165

215, 240, 10, 189, 4, 27, 133, 230

189, 9, 27, 133, 231, 169, 147, 76

210, 255, 24, 22, 24, 24, 2, 0

3, 5, 24, 0, 0, 0, 45, 0

0, 79, 44, 79, 44, 44, 32, 204

255, 162, 1, 32, 221, 26, 32, 125

255, 13, 13, 69, 82, 82, 79, 82

58, 13, 0, 173, 11, 13, 240, 14

160, 0, 185, 0, 12, 32; 210, 255

200, 204, 11, 13, 208, 244, 169, 64

141, 12, 13, 32, 125, 255, 13, 13

80, 82, 69, 83, 83, 32, 65, 32

75, 69, 89, 32, - 46, 46, 46, 13

0, 32, 228, 255, 240, 251, 96, 24

162, 14, 32, 198, 255, 176, 175, 160

0, 32, 207, 255, 153, 0, 12, 201

13, 240, 3, 200, 208, 243, 140, 11

13, 32, 204, 255, 96, 162, 14, 24

32, 201, 255, 176, 17, 160, 0, 185

0, 12, 32, 210, 255, 200, 204, 10

13, 208, 244, 76, 204, 255, 32, 204

255, 76, 14, 27, 56, 32, 183, 255

208, 4, 24, 32, 207, 255, 96, 162

63, 142, 0, 255, 145, 252, 162, 0

142, 0, 255, 96, 162, 63, 142, 0

255, 177, 252, 162, 0, 142, 0, 255

96, 24, 165, 252, 105, 32, 133, 252

144, 2, 230, 253, 96, 169, 13, 76

210, 255, 169, 61, 32, 210, 255, 136

208, 248, 96, 255, 0, 0, 0

July 1988: Volume 9, Issue 1

Multitasking on the Commodore 128

Mysteriousforce or simple programming trick?

by Mike Mohilo

Multitasking is really a mysterious force that only inhabits

computers like the Amiga, or is it? Actually it is just a simple

programming trick that can even be done on the Commodore

128. This program will allow up to four different programs to

run at the same time provided that they don't interfere with

each other. A program doesn't have to be an IRQ routine to

run in the background. Anything that ends with an RTS or

even the monitor can be run in the background. For example,

the first demo program (MULTI.B1) will let you have full use

of the monitor while BASIC runs a short program. Imagine us

ing the monitor to debug a program while it is running! Have

you ever wanted the power to switch from a word processor to

a spreadsheet or to BASIC and back again without saving sev

eral files and swapping just as many disks? For a demonstra

tion of the idea, run MULTI.B2 and you will be able to switch

from the monitor to BASIC even if a BASIC program is run

ning and there is no cursor.

General operation

Getting things started is fairly straightforward. The multitask

ing program and any other programs are loaded. The initializa

tion routine is called first. Afterwards, background tasks are

created with another set of subroutines. This simply tells the

multitasking program where it can find your programs. Pro

grams that have been entered into the multitasker can now be

told to run or stop with either a subroutine or directly from the

keyboard.

Each background task is assigned a number and a key. Task #0

(which is usually BASIC) is switched on or off by pressing

[SHIFT][RESTORE]. Task #1 is switched by [C=][RESTORE], #2 is

switched by [ALT][RESTORE]. Reading these keys from the

NMI routine triggered by the RESTORE key probably won't

interfere with your programs. Any combination of the four

available tasks can be toggled on or off by hitting the appro

priate keys.

In some cases, having more than one task running at a time

would be undesirable, so an OTAT (one task at a time) mode is

included. For example, when task #2 is turned on, tasks 0, 1,

and 3 are turned off and kept out of the way. Another option

will display the status of all tasks whenever one is selected

with the restore key. The restore key routine is idiot proof and

it will prevent everything from being turned off or a non

existent task from being turned on. [RUN/STOP] [RESTORE] is

not affected by the program.

Initialization

The INIT routine at $1300 sets the IRQ and NMI vectors and

starts the multitasker. To display task status when a task is tog

gled with the restore key, set the accumulator to 1. To allow

only one task to run at a time, set the X register to 1. This rou

tine can be run at any time without disturbing background

tasks.

Creating a Task

Three routines are used to define a background task, setregs

at $1303 will set the A, X, Y, and P registers of a new task.

SETPROG at $1306 sets the bank and starting address of the

program to be run. The bank value is stored in A, low byte of

start address in X, and high byte in Y. Note that the bank value

is poked directly into the MMU at $FF00. The CREATE routine

at $1309 will create the new task by preparing a stack for it

and recording it in a task table. The task number is stored in A

and task #0 does not need to be created since it exists at the

moment you turn on the computer, setregs and SETPROG

must be used before CREATE and they will not affect a previ

ously created task.

Using the runstop routine

The runstop routine at $130C can give absolute control over

a task regardless of the restrictions on the restore key routine.

It can even turn every task off (a bad idea since it crashes the

machine). The task number is stored in Y and run/stop is

stored in X as a 0 or a 1. A program can get absolute priority

and run uninterrupted by the multitasker if this routine is

called with the carry bit set. It will disable the multitasker but

not the normal IRQ until it is called again with the carry bit

Transactor 20 July 1988: Volume 9, Issue 1

clear. Unimportant background tasks can be slowed down by

setting a delay value greater than 0 in the accumulator (see

MULTI.B 1 for an example).

Kill and load/save

Programs that terminate with an RTS will automatically return

to the kill routine. The return address to KILL was placed on

the stack by create. Note that task #0 was not made with cre

ate so it will not return to KILL. To prevent a collision be

tween the Kernal load, save, and other I/O, load and save are

trapped and run with the priority mode set (see RUNSTOP). This

allows them to run without interference.

The IRQ routine

During an IRQ, all of the registers including the bank are

stored on the stack. After all of the IRQ work is done, all of

the registers are put back and the program that was interrupted

runs as if nothing had happened. To perform multitasking, the

IRQ sequence runs normally until the end, when registers for a

different program are put back. With each IRQ, one program's

registers are.stored and another's are put back, causing each

program to run for a brief moment between IRQs. This hap

pens quickly enough that all programs appear to run at the

same time. Since the registers are stored on the stack, several

sets of them can be stored simply by switching between sever

al stacks. The MMU chip has an interesting feature that can re

locate the stack or zero page to any convenient place. Switch

ing from one program to the next is simply a matter of switch

ing from one stack to another. The newly installed IRQ routine

switches stacks and stack pointers according to a list of

available background tasks - the very same list made by the

CREATE and RUNSTOP routines. The entire process is very fast

and the background tasks are completely unaware of what

happened.

Here is a more detailed description of what happens during the

IRQ. The IRQ signal to the microprocessor from one of the

I/O chips starts the process every l/60th of a second. First, the

status register and a return address from the interrupted pro

gram are put on the stack. The Kernal IRQ routine is entered.

This puts the A, X, Y, and MMU configuration on the stack.

The status register is tested to see if a BRK instruction caused

the interrupt. At this point the IRQ can be trapped and made to

do as I wish. Normal housekeeping is done (scan keyboard,

update clock, etc.). Now I find a new task to run and change

the stack and stack pointer acordingly. The time delay function

to slow a program down works here too. Now that all house

keeping and task swapping is done, it is time to put the bank,

A, X, Y, status, and return address back where they belong (the

RTI instruction does some of this). Now the interrupted pro

gram is back and running.

Unfortunately the Commodore 128 wasn't designed to be a re

al multitasking machine and without careful planning, use of

the Kernal I/O routines by several tasks at a time will cause

bad things to happen. Maybe someone can fix this?

Listing 1: multi.Bl. This program uses multitasking to allow a BASIC

program to run while you use the ML monitor.

MB

ML

BF

IC

OH

PI

GH

NN

KH

CJ

JA

6K

KL

BC

10 rem ***** multi.bl *****

20 rem basic on/off - shift-restore

30 rem monitor on/off - logo-restore

40 fast: scndr: bankl5: bl6adnmulti.ml"

50 sys 4864,1,0 :rem init -display tasks -on/off toggle

60 sys 4867,0,0,0,0

70 sys 4870,0,0,176

80 sys 4873,1

90 sys 4876,0,1,1,0

100 play"cdefgab"

110 sys 4876,100,1,0,0

120 play"cdefgab"

130 sys 4876,0,1,0,0

140 goto 100

rem set a,x,y,p

rem set bankl5 and $b000

rem create task#l (monitor)

start task#l

rem set delay=100 task#0

rem set no delay (basic)

Listing 2: multi.B2. This example uses the one-task-at-a-time mode to

allow switching between BASIC and the monitor.

PB 10 rem ***** multi.b2 *****

CI 20 rem switch to basic - shift-restore

GP 30 rem monitor - logo-restore

IC 40 fast: scndr: bankl5: bload"multi.ml"

EJ 50 sys 4864,0,1 :rem init -no display -one task at time

PI 60 sys 4867,0,0,0,0 :rem set a,x,y,p

GH 70 sys 4870,0,0,176 :rem set banklS and $b000

NN 80 sys 4873,1 :rem create task#l (monitor)

Listing 3: BASIC generator program for the multitasking system. This

will create the file "multlm!" on disk.

PI 1000

EN 1010

IA 1020

OG 1030

IK 1040

ML 1050

JN 1060

GE 1070

LP 1080

GN 1090.

EL 1100

GN 1110

IE 1120

GG 1130

GP 1140

CP 1150

AG 1000

PB 1010

LB 1020

NB 1030

JA 1040

DH 1050

BE 1060

BJ 1070

JI 1080

NK 1090

HD 1100

ME 1110

JM 1120

EH 1130

HM 1140

HI 1150

KE 1160

AN 1170

NE 1180

MI 1190

HP 1200

GO 1210

10 1220

KO 1230

EO 1240

HL 1250

DB 1260

KB 1270

rem generator for "multi.ml"

nd$="multi.ml": rem name of program

nd=529: sa=4864: ch=57790

for i=l to nd: read x

ch=ch-x: next

if ch<>0 then print"data error": stop

print"data ok, now creating file": print

restore

open 8,8,l,"0:"+f$

print#8,chr$(sa/256)chr$(sa-int(sa/256));

for i=l to nd: read x

print#8,chr$(x);: next

close 8

prinf'prg file '";£$;n/ created..."

print"this generator no longer needed."

data 76,

data 20,

data 32,

data 173,

data 3,

data 54,

data 20,

data 185,

data 170,

data . 2,

data 20,

data 9,

data 51,

data 172,

data 32,

data 32,

data 10,

data 240,

data 7,

data 189,

data 240,

data 200,

data 238,

data 73,

data 189,

data 0,

data 173,

data 208,

89, 20,

76, 138,

36, 192,

13, 220,

32, 6,

172, 6,

136, 192,

238, 20,

254, 254,

21, 208,

140, 6,

213, 185,

255, 216,

13, 221,

225, 255,

9, 225,

32, 213,

213, 162,

224, 4,

242, 20,

19, 169,

192, 4,

20, 76,

1, 157,

238, 20,

208, 244,

8, 21,

133, 169,

76, 64,

20, 76,

144, 15,

173, 4,

64, 173,

21, 186,

255, 208,

201, 0,

20, 189,

229, 169,

21, 185,

250, 20,

169, 127,

48, 20,

208, 12,

32, 0;

232, 165,

255, 232,

208, 247,

240, 51,

0, 168,

208, 248,

208, 19,

238, 20,

201, 0,

169, 1,

240, 138,

18, 32,

20, 76, 79

45, 20, 216

32, 248, 245

10, . 74, 144

9, 21, 208

138, 153, 250

2, 160, 3

240, 242, 152

254, 20, 221

255, 157, 254

246, 20, 141

170, 154, 76

141, 13, 221

32, 61, 246

32, 86, 224

192, 108, 0

211, 41, 15

24, 74, 176

76, 95, 19

173, 7, 21

153, 238, 20

169, 1, 157

189, 238, 20

162, 4, 202

208, 9, 224

157, 238, 20

173, 9, 21

210, 255, 169

Transactor 21 July 1988: Volume 9, Issuel

CD

KP

PJ

LD

EF

JI

DN

JB

PE

MI

PF

IK

CG

KE

AI

ID

GI

OP

AM

IN

KE

EB

FB

CE

GB

PP

IB

GN

BI

DE

PC

MK

HK

IF

OI

IF

MF

AE

CB

1280 data 255,

1290 data 4,

1300 data 138,

1310 data 238,

1320 data 210,

1330 data 19,

1340 data 32,

1350 data 76,

1360 data 169,

1370 data 88,

1380 data 2,

1390 data 153,

1400 data 8,

1410 data 11,

1420 data 10,

1430 data 96,

1440 data 162,

1450 data 21,

1460 data 3,

1470 data 142,

1480 data 160,

1490 data 88,

1500 data 20,

1510 data 157,

1520 data 246,

1530 data 105,

1540 data 105,

1550 data 10,

1560 data 246,

1570 data 145,

1580 data 9,

1590 data 0,

1600 data 1,

1610 data 162,

1620 data 0,

1630 data 23,

1640 data 255,

1650 data 0,

1660 data 0

133, 250, 230,

240, 30, 189,

24, 105, 48,

20, 240, 2,

255, 104, 32,

169, 146, 32,

210, 255, 169,

51, 255, 234,

0, 157, 238,

234, 76, 41,

21, 185, 242,

238, 20, 96,

141, 13, 21,

21, 104, 141,

21, 142, 15,

120, 141, 8,

15, 160, 19,

3, 162, 98,

140, 25, 3,

48, 3, 140,

20, 142, 50,

96, 120, 170,

169, 1, 157,

250, 20, 169,

20, 133, 251,

255, 141, 15,

255, 141, 16,

21, 145, 250,

169, 27, 145,

250, 88, 96,

21, 104, 32,

141, 9, 21,

141, 9, 21,

0, 142, 9,

0, 1, 0,

24, 0, 0,

255, 0, 0,

0, 0, 0,

Listing 4: PAL/Buddy-format source

250, 166, 250, 224

242, 20, 240, 243

72, 160, 155, 189

160, 5, 152, 32

210, 255, 76, 227

210, 255, 169, 5

13, 32, 210, 255

120, 174, 6, 21

20, 157, 242, 20

20, 176, 13, 153

20, 240, 4, 138

142, 9, 21, 96

142, 12, 21, 140

14, 21, 96, 141

21, 140, 16, 21

21, 142, 7, 21

142, 20, 3, 140

160, 19, 142, 24

162, 204, 160, 20

49, 3, 162, 222

3, 140, 51, 3

169, 0, 157, 238

242, 20, 169, 246

247, 133, 250, 189

173, 15, 21, 24

21, 173, 16, 21

21, 160, 0, 185

200, 192, 7, 208

250, 200, 169, 20

72, 169, 1, 141

108, 242, 72, 169

104, 96, 72, 169

104, 32, ' 78, 245

21, 96, 1, 0

0, 0, 1, 22

0, 0, 255, 255

0, 0, 0, 0

0, 0, 0, 0

code listing for the multitasking

system. When assembled, this creates the program "multi.ml".

IB

DC

PO

LE

El

HH

JH

BH

MK

KN

DF

PJ

EO

EF

HC

AI

GK

AH

CJ

OD

LC

OA

EP

LI

PL

JO

IJ

GC

AD

EG

AH

EJ

LE

IA

MG

10 open 8,8,1,"

20 rem open8,8,

30 sys 700

40 .opt 08

0:multi.ml"

l,"0:multi.ls"

60 ; * multitasking for d28

70 ; * by

80 ;* mike mohilo

100 ;

110 *=$1300

120 chrout = $ffd2

130 kload = $f26c

140 ksave = $f54e . ,

150 jmp init

160 jmp setregs

170 jmp setprog

180 jmp create

190 jmp runstop

200 ;

210 irq dd

220 jsr $cO24

230 bcc swap

240 jsr $f5f8

250 Ida $dc0d

260 Ida $0a04

270 lsr

280 bcc swap

290 jsr $4006

300 swap Ida prirty

310 bne rtnint

320 ldy ctask

330 tsx

340 txa

350 sta stack,y

Transactor

*

*

;kernal load/save that

;bypass the jump table

a=disp x=otat

a=a x=x y=y p=p

a=mmu x=pcl y=pch

a=task

a=delay x=rnst y=task# c=pri

;irq routine

/duplicate of

;kernal irq

see

get

if priority task

current task

store stack pointer

22

EK

BK

HE

FB

pp

CA

LN

FG

DI

NN

HM

CP

CO

HK

GP

JE

KI

MP

GP

BP

MC

FN

KL

NF

JJ

LK

HN

OK

ON

KA

FL

CO

ON

IN

CH

II

PO

NO

DB

HA

FG

IH

FO

AJ

BM

NN

HI

IB

OK

JN

JJ

JI

PD

DM

EG

DD

EF

JM

PI

JF

JI

IK

OK

NG

II

OI

EG

ID

BK

OK

LE

JM

DB

HG

BN

FA

HE

360 find dey

370 cpy #$ff

380 bne gtask

390 ldy #$03

400 gtask Ida runst,y ;

410 cmp #$00

420 beq find

430 tya

440 tax

450 inc timer,x

460 Ida timer,x

470 cmp delay,x

480 bne find

490 Ida #$ff

500 sta timer,x ;

510 sty ctask

520 Ida spage,y ;

530 sta $d509

540 Ida stack,y

550 tax

560 txs

570 rtnint jmp $ff33

580 ;

590 nmi eld ;

600 Ida #$7f

610 sta $dd0d

620 ldy $dd0d

630 bmi next ;

640 jsr $f63d

650 jsr $ffel

660 bne next ;

670 jsr $eO56

680 jsr $elO9

690 jsr $c000

700 jmp ($0a00)

710 next jsr $e8d5

720 Ida $d3

730 and #$0f

740 beq rtnint

750 ldx #$ff

760 nextbit inx

770 dc

780 lsr

790 bes rstask

800 cpx #$04

810 bne nextbit

820 jmp rtnint ;

830 rstask Ida crtbl,x

840 beq display ;

850 Ida otat

860 beq togtask ;

870 Ida #$00

880 tay

890 stopatk sta runst,y

900 iny

910 cpy #$04

920 bne stopatk

930 Ida #$01

940 sta runst,x

950 jmp display

960 togtask Ida runst,x

970 eor #$01

980 sta runst,x

990 ldx #$04

1000 deadlk dex

1010 Ida runst,x

1020 cmp #$00

1030 bne display

1040 cpx #$00

1050 bne deadlk

1060 Ida #$01

1070 sta runst,x ;

1080 display Ida dispt

1090 beq rtnint

1100 Ida prirty

1110 bne rtnint

1120 Ida #$12

find a new task

see if it is running

not running-look again

task delayed-get another

reset timer

get new stack page

get new stack ptr

kernal-return from interrupt

;nmi routine

;duplicate of

;kernal nmi

get shift/ctrl/cmdr/alt keys

no keys

convert key bits to #0-3

no keys

run/stop task

task not created

one task at a time

not set-toggle task on/off

stop all tasks

run one task only

toggle task onjott

make sure at least 1 task runs

a task is running

look again

all tasks stopped-run task #0

display tasks

no display

do not disturb priority task

print a rvs-on

July 1988: Volume 9, Issue 1

BE

BD

HJ

EA

JM

ND

HA

HK

66

IH

EE

NF

OF

PB

CJ

MB

DC

OB

PI

AL

PP

DM

AI

HC

FH

LD

P6

PE

PN

CA

' 6H
JD.

CF

HN

6D

BL

A6

IN

KG

66

HJ

IC

AB

HL

6N

00

MM

FJ

6D

KM

HF

DM

FI

HJ

OA

HC

61

KB

OB

FK

DK

IL

ME

FB

IN

BO

PL

JM

JC

66

KN

EO

FF

N6

DO

NO

NH

AC

1130 jsr chrout

1140 Ida #$ff

1150 sta $£a

1160 dnext inc $fa

1170 ldx $fa

1180 cpx #$04

1190 beq dexit

1200 Ida crtbl,x

1210 beq dnext

1220 txa

1230 dc

1240 adc #$30

1250 pha

1260 ldy #$9b

1270 Ida runst,x

1280 beq color

1290 ldy #$05

1300 color tya

1310 jsr chrout

1320 pla

1330 jsr chrout

1340 jmp dnext

1350 dexit Ida #$92

1360 jsr chrout

1370 Ida #$05

1380 jsr chrout

1390 Ida #$0d

1400 jsr chrout

1410 jmp $f£33

1420 ;

1430 kill nop

1440 sei

1450 ldx ctask

1460 Ida #$00

1470 sta runst,x

1480 sta crtbl,x

1490 cli

1500 idle nop

1510 jmp idle

1520 ;

1530 runstop bcs priority

1540 sta delay,y

1550 Ida crtbl,y

1560 beq notask

1570 txa

1580 sta runst,y

1590 notask rts

1600 priority stx prirty

1610 rts

1620 ;

1630 setregs php

1640 sta rega

1650 stx regx

1660 sty regy

1670 pla

1680 sta regp

1690 rts

1700 ;

1710 setprog sta regm

1720 stx rpd .

1730 sty rpch

1740 rts

1750 ;

1760 init sei

1770 sta dispt

1780 stx otat

1790 ldx #<irq

1800 ldy #>irq

1810 stx $0314

1820 sty $0315

1830 ldx #<nmi

1840 ldy #>nmi

1850 stx $0318

1860 sty $0319

1870 ldx #<tload

1880 ldy #>tload

1890 stx $0330

1900 sty $0331

Transactor

/display tasks 0-3

/no more tasks

/get a task

/task not created

/make #0-3 into ascii '0'..'3'

/task stopped-lt grey

/task running-white

/print color

/print ascii task #

/look for another task

/print a rvs-off

/make color white

/print a cr

/kemal rti

/kill task

/what task is this

/stop it

/un-create it

/task will die after next irq

/run/stop/delay task

/set delay timer

/task not created

/run/stop the task

/set priority

/set a,x,y,p registers

/set bank,starting address

/initialize program

/display task option

/one. task at time option

/set irq vector

/set nmi vector

/set load vector

♦

PA

JB

HK

ME

MC

EJ

AB

HI

JO

60

BA

EH

L6

DC

DI

FC

PO

MD

PP

DN

OH

K6

6C

MJ

IH

DP

FD

HF

FP

JE

NB

AM

PI

LN

CN

EP

M6

EN

16

CP

NC

DJ

CK

K6

KK

LF

FA

EN

CE

GN

66

LJ

BA

AB

KN

LB

FM

MJ

AD

KP

PO

EH

CC

AK

NC

AJ

KJ

FD

HP

HB

6H

F6

L6

JB

PF

OM

AN

00

23

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

' 2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

ldx #<tsave

ldy #>tsave

stx $0332

sty $0333

cli

rts

create sei

tax

Ida #$00

sta runst,x

Ida #$01

sta crtbl,x

Ida #$f6

sta stack,x

Ida #$f7

sta $fa

Ida spage,x

sta $fb

Ida rpd

dc

adc #$ff

sta rpd

Ida rpch

adc #$ff

sta rpch

ldy #$00

initsk Ida ntreg

sta ($fa),y

iny

cpy #$07

bne initsk

Ida #<kill

sta ($fa),y

iny /

Ida #>kill

sta ($fa)/y

di

rts

;

tload pha

Ida #$01

sta prirty

pla

jsr kload

pha

Ida #$00

sta prirty

pla

rts

/

tsave pha

Ida #$01

sta prirty

pla

jsr ksave

ldx #$00

stx prirty

rts

/

runst .byte $01,

crtbl .byte $01,

spage .byte $01,

stack .byte $00,

timer .byte $ff,

delay .byte $00,

ctask .byte $00

otat .byte $00

dispt .byte $00

prirty .byte $00

y

/set save vector

/create task

;don't run it yet

'make it 'created'

-set the stack ptr

get the stack page

-adjust program start address

-net effect is addr=addr-l

-

_

build a stack

put mmu,y,x,a,p,pcl,pch

registers on the stack

put a return address to

kill-routine on stack

when task ends with rts it

will return to kill

/trapped load

/get priority

/trapped save

/get priority

$00,$00,$00 /run/stop status

$00,$00,$00 /created task table

$16,$17,$18 /stack page table

$00,$00,$00 /stack pointer table

$ff,$ff,$ff /delay timers

$00,$00,$00 /delay values

/current task

/one task at time option

/display tasks option

/priority task flag

ntreg = * /new task registers

regm .byte $00

regy .byte $00

regx .byte $00

rega .byte $00

regp .byte $00

rpd .byte $00

rpch .byte $00

/

/mmu $ffOO

;y
;x

/a

;p

;pel

/pen

July 1988: Volume 9, Issue 1

Exploring SUBMIT

Notesfrom the CP/M Plus workbench

by Adam Herst

Copyright (c) 1988 Adam Herst

Submit is one of the most useful tools provided with CP/M

.Plus. It allows you to automate many of the repetitive tasks

that are performed'on a regular basis. Almost any series of

commands that can be entered through the command line and

executed by the CCP can be executed through a SUBMIT file.

The documentation provided with CP/M Plus covers the basic

operation of submit. As is often the case, the documentation

raises more questions than it answers. Unfortunately, informa

tion about the version of SUBMIT provided with CP/M 2.2 is

not applicable. While their function is the same, their underly

ing processes are different. When the documentation fails,

there is only place to go to get accurate information - your

computer!

When a submit file is executed, SUBMIT rewrites the original

file to a temporary file. You can verify this with the submit

file, testolsub:

dir

Execute the file with the command:

SUBMIT TEST01.SUB

(Typing 'SUBMIT' on the command line is unnecessary. Submit

files can be executed as if they were command files by setting

your CP/M environment with the command:

setdef [order=(com,sub)]

The command 'SUBMIT' will be omitted from examples in the

remainder of this article.)

The directory of the current user area on the current disk will

be listed to the screen. In it should be a file with a filetype of

$$$, the standard filetype for a CP/M system temporary file.

The complete file specification is SYSIN56.$$$. The signifi

cance and origin of the number in the file specification remain

a mystery to me.

When submit files are nested (a submit file is called from

within another submit file), the numbers generated for the file

specification follow a pattern. Submit file TEST02.SUB illus

trates:

dir

submit testO2

Note the semicolon (;) on the last line. It is required so that a

new file specification will be generated. If it (or any other ad

ditional line(s)) is not included, SUBMIT will delete the original

temporary file (because the last command line has been

reached) before creating the temporary file for the nested sub

mit file. Consequently, the SYSIN56.$$$ file specification will

be reused ad infinitum.

Execute the submit file with the command:

TEST02

As the nested submit files are executed, directory listings are

printed to the screen. Subsequent listings contain an additional

temporary file entry. The numbers in the file specifications be

gin at 56 and decrease by one, skipping numbers ending in 8

and 3. (The submit file can be aborted with a ctrl-C when you

grow tired of watching the screen.) ' "Curiouser and curious-

er " said Alice', and I'm inclined to agree.

How deeply can submit files be nested? One guess would be

to 46 levels. This would be the limit placed on the generation

of temporary file names, if the numbers in the file specifica

tion stopped at 0 (a logical assumption). TEST02.SUB can be

used to check this. This time, instead of stopping the submit

file, let it run it's course.

The number in the temporary file specifications never reaches

0. When the number in the file specification has reached 16,

the next nested submit file causes the following error message

to be displayed:

CANNOTLOAD PROGRAM

to be displayed. Apparently, submit files can only be nested to

a maximum of 33 levels on the C-128.

Transactor 24 July 1988: Volume 9, Issue 1

This limit is imposed by available memory and is a result of

the operation of SUBMIT under CP/M Plus. SUBMIT uses the

'Resident System Extension' (rsx) capabilities of CP/M Plus.

As the name implies, RSX's can be attached to the standard

operating system to handle custom tasks as system functions.

Each time submit is invoked, it attaches an RSX to process the

submit file. To attach an RSX, sufficient memory at the top of

the Transient Program Area' (tpa) must be available. When

an RSX is attached, the amount of available high memory is re

duced. When SUBMIT has nested 33 levels, it appears that ei

ther high memory has dropped so low that there is no room

left for SUBMIT to be loaded and executed or that there is no

room for SUBMIT to attach its RSX. This also implies that the

presence of other RSX's attached to the system will reduce the

number of levels that submit files can be nested.

The creation of a temporary file holds a number of implica

tions for the use of SUBMIT. First, there must be enough space

on the disk to hold the temporary file. Also, the creation of a

temporary file is a factor in the execution time of submit files.

How big can a submit file be? Since a temporary file is created

from it, it must be smaller than the remaining space on the

temporary file disk. If it isn't, SUBMIT will abort execution and

print the message:

DISK WRITE ERROR: LINE nnnn

where nnnn is the line SUBMIT was trying to write to the tem

porary file when it ran out of space.

As long as there is space on the disk for the temporary file,

there is no apparent limit on the size of a submit file. I have

successfully created a submit file the full size of the RAM disk,

and was able to execute it by having the temporary file written

to the 1581. That's a 512K submit file, the largest that I can

test on my system, and larger than I have ever actually needed.

(The drive that is to be used for the storage of temporary files

can be designated with the command:

SET [TEMPORARY=d:]

where d: is the drive specification of the temporary drive.)

The creation of a temporary file is a factor in the execution

time of SUBMIT files. Disk access is the processing bottleneck

on the C128; consequently, SUBMIT file execution times should

be influenced by strategic selection of the drive on which the

temporary file will be written. Two considerations are relevant

in choosing the location of the temporary file: the speed of the

temporary drive, and the location of the submit file.

It seems obvious that SUBMIT execution times will decrease

with increases in the speed of the temporary drive - the tempo

rary file will be created faster, and the command lines will be

retrieved from it faster. The influence of the location of the

submit file, and the effect of its interaction with drive speed, is

not as clear cut. Consider this - if the temporary file is to be

created on the same drive as the submit file, the drive will be

forced to access two separate locations on the same disk, im

posing overhead in the form of additional drive head move

ment, and slowing down submit file execution.

To examine the effects of the various combinations of submit

and temporary file locations, the following submit files,

time.sub and dummy.sub, can be used. They are well com

mented and shouldn't require additional explanation. Well,

maybe 'comments' require explanation.

Comments are a feature of the CCP rather than of SUBMIT. Any

line beginning with a semicolon (;) is echoed to the screen and

not interpreted or executed by the CCP. Since SUBMIT simulates

a user entering commands at the keyboard, comment lines in a

SUBMIT file are echoed to the screen and not executed.

Create the file TIME.SUB:

; time.sub 1/21/88

»

; time the effects of changing the locations

; of the submit and temporary files

; $1 is the location of the submit file

; $2 is the location of the temporary file

»

; set the temporary drive

setdef [temporary=$2]

; set the starting time to 0

m:conf date = 00:00:00

; submit the file to be timed

m:submit $ldummy.sub

»

; show the execution time

mxonfdate

»

; reset temporary drive - PLACE YOUR PREFERENCE HERE

setdef [temporary=m:]

Create the file dummy.sub:

; dummy.sub 1/25/88

; This is a dummy submit file. It causes a temporary

; file to be written to the selected disk.

To determine submit file execution time, place both submit

files on a disk in each drive that is to take part in the test. Also

make sure that the necessary support files (e.g. CONF, SUBMIT)

are located on the designated drives in accessible user areas.

Invoke the test with the command:

SUBMIT TIME <submit file drive> temporary file drive>

where 'submit file drive' is the driv&from which DUMMY.SUB

will be loaded and 'temporary file drive' is the drive to which

Transactor 25 July 1988: Volume 9, Issue 1

SUBMIT is to write its temporary file. Don't forget to provide

both parameters on the command line! The time required to

read the submit file, write the temporary file, and then echo

the commands from the temporary file to the screen will be

shown at the bottom of the screen as the current date/time.

Here are the times generated on my machine:

Submit File Drive

1571

1581

1750

Temporary File Drive

1571 1581 1750

13

14

12

10 6

9 5

6 5

All times are in seconds. Note that these are not benchmarks.

You are left to draw your own conclusions as to their final

meaning and significance for your system setup. (My tempo

rary file drive is set to the 1750 RAM disk. The location of the

submit file does not seem to be significant in that case.)

How does SUBMIT use the temporary file? One of its purposes

is to allow the substitution of command line parameters to be

performed. Parameters are represented in submit files by a dol

lar sign followed by a digit from one to nine ($1 - $9). When a

submit file is invoked, any arguments following the name of

the submit file are substituted for the appropriate parameter in

the submit file. Submit file TEST03.SUB makes use of comment

lines as well as illustrating parameter passing:

; $1 $2 $3 $4 $5 $6 $7 $8 $9 $10

>

type sysin56.$$$

Execute TEST03.SUB with a command line of:

TEST03 WHAT IS THENAME OFTHE SUBMIT FILE BEING EXECUTED

The temporary file will be printed to the screen. The reference

to $1 in the submit file has been replaced with 'WHAT', refer

ence to $2 with 'is' and so on. The reference to parameter $10

has become 'WHAT0', not the 'EXECUTED' you might have ex

pected. Only the first digit after the dollar sign is considered

significant for parameter replacement.

(When submit encounters a dollar sign that is not followed by

a digit, in all but one case, the error message:

PARAMETER ERROR IN LINE nnn

will be printed and execution will be aborted. If submit en

counters a dollar sign followed by a dollar sign however, it

will replace the dollar sign pair with a single dollar sign. In

this way, a dollar sign may be included in a submit file for

some purpose other than parameter passing.)

One digit is missing in this analysis - $0. This is documented

as a valid parameter in the dri manual set, but no mention is

made of its function. We can find out by changing the line

with the parameters in TEST03.SUB to read:

; $0 $1 $2 $3 $4 $5 $6 $7 $8 $9

and removing the line:

type sysin56.$$$

Execute the modified TEST03.SUB with the command line:

TEST03 IS THE NAME OF THE SUBMIT FILE BEING EXECUTED

The comment line containing the parameters is echoed to the

screen with the appropriate substitutions. $0 has been replaced

with the name of the submit file.

Another feature of the CCP that takes on special significance in

submit files is 'Conditional Command Execution'. Programs

that run under CP/M Plus can set a 'Program Return Code'.

The CCP initializes this code to successful before a program is

run. If the program encounters an error condition, it can set the

return code to unsuccessful before it terminates. Additionally,

the CCP will set the return code to unsuccessful if the program

terminates with a fatal BDOS error or a CTRL-C. Command lines

in a submit file that begin with a colon will not be executed if

the previously executed command has set the program return

code to unsuccessful. Submit file TEST05.SUB illustrates:

$1 $2 $3 $4 $5 $6 $7 $8 $9

:dir

Execute TEST05.SUB with various arguments designed to force

some kind of error. If the error code is set to unsuccessful, the

command on the line containing the colon will not be execut

ed. Try anything you can think of - the conditional command

line will always execute. I have not found a single program or

utility, let alone a CP/M Plus command, that will set the return

code to unsuccessful as the result of a program error.

Just to make sure that conditional command execution does

work, execute TEST05.SUB with a command line of:

TEST05DIRJ:

Attempting to access drive J: (a non-existent drive on most C-

128 CP/M systems) causes a fatal BDOS error. Consequently,

the CCP sets the program return code to unsuccessful and the

conditional command line is not executed.

I'll close this look at SUBMIT with some submit files that I use

often. They are simple examples that show how SUBMIT can be

used to perform a variety of repetitive tasks. They also illus

trate how characteristics of other CP/M commands can be

used to extend the capabilities of submit files.

Transactor 26 July 1988: Volume 9, Issue 1

MESSAGE

There is no formal way to cause a submit file to pause during

its run, short of terminating it. This can be a problem when a

submit file is to perform operations involving more than one

disk. No opportunity is given to insert the appropriate disk in

the appropriate drive. Also, there is no way to indicate that a

disk switch is necessary or which disk(s) are to be switched.

message.sub offers a solution to both problems. It echoes a

message of up to nine words to the screen, then pauses the

submit file until a signal from the user is received. Parameters

and comment lines are used to echo the message. A character

istic of PEP is used to pause execution of the submit file.

PIP can copy to and from devices as well as files. One device

under CP/M is CQN:, representing the keyboard in an input

context and the screen in an output context. When pip copies

from CON:, it waits for a predetermined signal (CTRL-Z, the

end-of-file character) to end the process. This effectively halts

submit file execution until the PIP operation is finished.

$1 $2 $3 $4 $5 $6 $7 $8 $9

Press CONTROL-z to continue...

pip con:=con:

Execute MESSAGE.SUB with the command:

message <your message>

where <your message> can contain up to nine words delimited

with spaces. The message is optional - omitting it causes only

the Tress CONTROL-z to continue...' message to be displayed. Execute SPACE with the command line:

a named file. The engine driving these two submit files is the

DRI context editor, ED. You may want to review the command

syntax of ED in the dri documentation to modify these submit

files to meet your own needs.

strip treats as excess any carriage return/linefeed that is not

followed by another carriage return/linefeed (i.e it ends a line

rather than a paragraph). STRIP removes the excess characters

and joins the lines that had been separated. If a text file con

sists only of excess carriage return/linefeeds, the resultant file

will consist of a single line of text. Create the file strip.sub:

; strip.sub 1/15/88

»

era stripped.txt

pip stripped.txt=$l

edstripped.txt

<mnALALAZ-4c#sALALAZ**AZ

<h

<mnALAZ-2c#sALAZ AZ

<h

<mri**AZ-2c#s**AZALALAZ

<h

<e

era stripped.bak

Execute strip with the command line:

strip <filename>

where filename is the name of the file to be stripped. STRIP

writes the stripped file to the file stripped.txt - the original

file remains unchanged. If the marker characters '**' are used

in your text file, you will want to change the marker characters

in the submit file to some unused character string.

SPACE doubles the line spacing of the named file. It replaces

every single carriage return/linefeed with two carriage re

turn/linefeeds. If your text was single-spaced, SPACE will make

it double-spaced. If it was double-spaced, SPACE will make it

quadruple-spaced. Create the file SPACE,SUB:

; space.sub 1/15/88

era spaced.txt

pip spaced.txt=$l

ed spaced.txt

<mnALAZ-2c#sALAZAL$2AZ

<h

<e

era spaced.bak

STRIP and SPACE

STRIP and space perform two very common operations on text

files. STRIP will strip excess carriage return/linefeed combina

tions from a named file, space will double the line spacing of

SPACE <filename>

where filename is the name of the file to be spaced, space

writes the spaced file to the file SPACED.TXT - the original re

mains unchanged.

Transactor 27 July 1988: Volume 9, Issue 1

A Machine Language Input Routine

A routinefor all reasons

By Garry Kiziak

I'm sure that many of you, like myself, get a great deal of

pleasure out of writing your own programs - even when there

is a commercial program available that will accomplish the

same thing. It's the pride and the sense of accomplishment that

we get when we complete that last line and say "There! It's

done, and vit works!" In many cases, the result is even better

than the commercial program, if only because it was designed

specifically to meet your needs and not somebody else's.

Often, the one thing that distinguishes a commercial quality

program from one that you create yourself is the manner in

which input is obtained from the user. Let's face it, the INPUT

statement in Commodore BASIC is not the most useful com

mand to use. Here are some of its limitations - I'm sure you

can think of more:

1. If you enter a comma or a colon, an 'extra ignored' error

message is displayed.

2. If you only want numeric data to be entered and the user en

ters an alphabetic character, you will get a '?redo from start'

error.

3. You can enter control characters in the middle of the input,

(e.g. Press the CLR/HOME key in the middle of an input and

watch the screen clear. Similar problems arise from the cursor

keys, the delete key, and others.)

4. The user can type as many characters as he likes, often de

stroying the appearance of the screen that you spent many

hours designing.

5. Often you would like the user tp be able to type only certain

characters (e.g. 'y' or 'n'), yet he can type any character that

he wants.

We have learned how to get around many of these problems.

For example, to get around problem 2 above, simply use a

string variable to get the input and then the VAL command to

convert it to a numeric. Of course, a certain amount of error

trapping has to be done along with this to make sure that the

user doesn't enter 0 accidentally (i.e. by entering an alphabetic

character instead). Similarly, problem 5 could be eliminated by

some error trapping.

'Bullet-proof input subroutines

The most common way around this problem is to not use the

INPUT command at all. Instead a special 'bullet-proof input

subroutine' is written and used whenever an input command

would normally be used. Many such routines have appeared in

magazines, user club libraries, etc. I'm sure you have your

own favourites and have probably created some yourself.

There are some problems with this approach, however.

1. Most such routines make use of the GET statement. As a

consequence a premature garbage collection can occur, result

ing in an annoying delay in your program.

2. Usually these routines are very specific (e.g. one may only

allow alphabetic input, another may only allow numeric input,

etc.). If this is the case, you may need several such routines in

your program (one for each type of input that you require).

This can eat up a lot of memory fast.

3. If the routine is, in fact, versatile (that is, it is able to handle

many different types of input), it will likely be slow and

probably consume a lot of memory. I wrote such a routine on

ce when I was creating a database program. The routine even

tually took up over IK of memory but even more important it

was terribly slow. A reasonably fast typist would either lose

some of the characters typed or else have to slow down their

typing speed to adjust to the program.

The program in this article will offer you an alternative. It is

another 'bullet-proof input routine', but written in machine

language instead. It still is fairly long (854 bytes to be exact)

but it is stored in a place in memory that won't take away from

your BASIC programs. Because it is written in machine

language, you won't have to slow down when typing in your

Transactor 28 July 1988: Volume 9, Issue!

input. It does not force any premature garbage collection, and

is quite versatile - in fact, as you will see, it allows you to do a

lot of the things that you normally do when editing your BASIC

programs.

First, type in the assembly language program (Listing 1).

Don't forget to save it in case you make a mistake or you want

to modify it later (some suggestions are given at the end of the

article). Assemble it and save the resulting machine language

as "input.obj". If you don't have an assembler, type in Listing

3. This will create the input.obj file on your disk automatically.

Then type in the BASIC program (Listing 2), which is a short

demonstration of the capabilities of this routine.

Using the subroutine

Before I explain what the demo does, perhaps I should explain

the syntax of the calling statement in BASIC, which is.

sys in,x,y,in$,le,id[,b$]

The square brackets indicate that the ",b$" is optional.

In this statement:

in is the calling address of the machine language routine. If

you assemble it where I have, in=49155 (see line 30 in the BA

SIC demo).

x is the column that you want the input to begin in (0-39).

y is the row that you want the input to be on (0-24).

in$ is the string variable which will receive the input. You

must initialize in$ prior to using this routine; either to a string

of blanks, or to whatever you would consider to be the default

input. This string is printed to the screen when the input rou

tine is entered. If it is blank, everything appears as in a normal

input statement except for the question mark. If you provide a

default input, it can be edited using the cursor keys, insert and

delete keys, etc., just as you would edit a BASIC program - the

difference being that not all keys are active, just those that you

specify.

le is the length of the input; that is, the maximum number of

characters that you want to allow the user to enter. This num

ber must be less than or equal to the length of the string in$,

otherwise you will get an 'illegal quantity' error message. The

entire string in$ is, in fact, not printed as stated above, just the

first 'le' characters.

id is the identification number. This is what determines what

keys are active on input and what features are in force.

Selective input

When id=l, only alphabetic characters, upper and lower case,

and a space are allowed. Everything else is ignored.

YOU CAN HAVE IT ALL

THE CONVENIENCE OF A CARTRIDGE!

THE FLEXIBILITY OF A DISK!

THE QUICK BROWN BOX stores up to 30 of your favorite

programs - Basic & M/L, Games & Utilities, Word Processors

& Terminals - READYTO RUN AT THE TOUCH OF A KEY

- HUNDREDS OF TIMES FASTER THAN DISK - Modify

the contents instantly. Replace obsolete programs, not your

cartridge. Use as a permanent RAM DISK, a protected work

area, an autoboot utility. C-64 or C-128 mode. Loader Utili

ties included. Price: 16K $69 32K $99 64K $129 (Plus $3 S/H;

MA res add 5%) 30 Day Money Back Guarantee. 1 Year War

ranty. Brown Boxes, Inc, 26 Concord Road, Bedford, MA

01730; (617) 275-0090

THE QUICK BROWN BOX - BATTERY BACKED RAM

THE ONLY CARTRIDGE YOU'LL EVER NEED

"... excellent, efficient program that can help you save both money and

downtime." Computers Gazette

1541/1571_ _ Dec. 1987

DRiVE AUGNivlENT
1541 /1 571 Drive Alignment reports the alignment condition of the disk drive as you perform

adjustments. On screen help is available while the program is running. Includes features for

speed adjustment. Complete instruction manual on aligning both 1541 and 1571 drives.

Even includes instructions on how to load alignment program when nothing else will load!

Works on the C64, SX64, C128 in either 64 or 128 mode, 1541,1571 in either 1541 or 1571

mode! Autoboots to all modes. Second drive fully supported. Program disk, calibration disk

and instruction manual only

Super 81 Utilities is a complete utilities package for the 1581 disk drive and

(81N C128 computer. Among the many Super 81 Utilities features are:
bfrntf- • Copy whole disks from 1541 or 1571 format to 1581 partitions.

• Copy 1541 or 1571 files to 1581 disks

• Backup 1581 disks or files with 1 or 2 1581 's

• Supplied on both 3V2" and 5V4ff diskettes so that it will load on either the 1571 or 1581

drive.

• Perform many CP/M and MS-DOS utility functions.

• Perform numerous DOS functions such as rename a disk, rename a file, scratch or

unscratch files, lock or unlock files, create auto-boot and much more!

Super 81 Utilities uses an option window to display all choices available at any given time. A

full featured disk utilities system for the 1581 for only £^q q- j

RAMDOS is a complete RAM based "Disk" Operating Sys-

tern for the Commodore 1700 and 1750 RAM expansion

modules which turns all or partof the expansion memory into

a lightning fast RAM-DISK. RAMDOS behaves similarto a much faster 1541 or

1571 floppy disk except that the data is held in expansion RAM and not on disk.

Under RAMDOS, a 50K program can loaded in Vfe second. Programs and files

can be transferred to and from disk with a single command. RAMDOS is avail

able for only $39ag5i

Order with check, money order. VISA. MasterCard. COD

Free shipping a handling on US. Canadian. APO.FPO

orders COD & Foreign orders add S4.00

order From Free spirit sonware, inc.
965 W. Hillgrove. Suite 6

LaGrange. IL-60525

(312) 352-7323

1-8OO-552-6777

For Technical Assistance call: (312)352-7335

Transactor 29 July 1988: Volume 9, Issue 1

When id=2, only the numeric characters 0-9 are allowed. Use

this id to accept integers as input. See below for floating point

numbers.

The identification number is additive in the sense that if id=3

(i.e. 1+2), both the alphabetic and numeric characters are al

lowed. Everything else is ignored.

When id=4, the period is allowed as a decimal point. This

would be used along with 2 (i.e. id=6) to allow the input of

decimal numbers. Because this is a decimal point, it can be en

tered only once in a given input. Of course, it could be deleted

and then entered elsewhere in the same input, if the user so de

sires.

When id=8, cursor up and cursor down keys act just like the

return key (i.e. they terminate the input). You can tell which

key terminated the input by peeking at location 780. If it con

tains a 1, the return key was pressed. If it contains a 2, the cur

sor down key was pressed, and if it contains a 3, the cursor up

key terminated the input.

When id=16, function one key (Fi) can be used as an escape

key. Input is of course terminated as if you pressed the return

key (or the cursor up/down key), but you can tell if the Fi key

was pressed by peeking at location 781. If it contains a 0, the

Fi key was not pressed. If it contains a 1, the Fi key was

pressed.

When id=32, any trailing blanks are removed from in$.

When id=64, the default input is left justified when the input is

entered but right justified when the input routine is exited (see

the BASIC demo for an example).

As you may have noticed, no provision has been made for al

lowing characters such as the dollar sign, the comma, etc. An

id of 128 overcomes this. When id=128, the \b$' must be in

cluded in the calling statement and any characters stored in the

variable b$ will be allowed to be entered (e.g. if b$="+-/*M and

id=128, the four arithmetic operators may be entered into the

input).

As stated above, the identification number is additive. Thus if

id=51 (i.e. 1+2+16+32), only the upper and lower case alpha

betic characters and the numeric digits 0-9 will be allowed.

Furthermore, the FI key can be used as an escape key and any

trailing blanks that remain in the input variable will be re

moved. Also notice that a space can always be input regardless

of the identification number.

The BASIC demo

A brief explanation of the BASIC demo is now in order. Notice

first that there is another ML routine included with the input

routine. It is a 'print at' routine. The command sys pr,x,y,a$ (pr

is initialized in line 130 as well) will print the contents of a$ at

location x,y of the screen.

Line 100 simply loads the machine language routines into

memory.

Lines 130-140 initialize various variables - pr and in as indi

cated before. The variable 'ret' is the location to be peeked to

determine if the input was terminated using the return key or

the cursor keys, while 'esc' is the location to be peeked to de

termine if the escape key (i.e. FI) was pressed. b$, c$, and d$

are used below.

Lines 150-220 print a blank template on the screen for what

could be a database program.

Lines 230-260 initialize several variables with data that will be

placed in this template to be modified by the user.

Lines 1000-1150 allow the user to modify the data using the

input routine. For example, the input command in line 1000 al

lows the user to modify the name. An identification number of

153 is used (i.e. 1+8+16+128). Thus only the upper and lower

case alphabetic characters and the character in b$ (i.e. the peri

od) can be used. The cursor up/down keys can be used to ter

minate input and the Fi key can be used as an escape key. The

third statement in line 1000 checks to see if the escape key

was pressed. If it was, control passes to line 1160 which quits

the program. If it wasn't, line 1010 checks to see what key ter

minated the input. If it was the return key or the cursor down

key, control is passed to line 1020. If it was the cursor up key,

control is passed to line 1140.

The remaining lines behave similarly.

Run the program and notice how the cursor left/right keys

work during an input. Also notice how the delete/insert keys

work - they should be identical to the way they work when

editing a BASIC program. Depending on what field you are

editing, only certain keys are permitted, the others are ignored

(see if you can predict which ones are permitted by looking at

the id). The cursor down key (or the return key) moves you to

the next field of data and the cursor up key moves you to the

previous field. Wraparound is in effect in both cases. You can

edit any field and move from field to field as often as you like.

Also notice how quickly you can move from field to field

(simply hold down the cursor down or cursor up key).

When you get to the 'Amount owed:' field, notice how the in

put jumps to the left when you begin to enter something and

jumps back to the right when you exit the field.

To quit the program, simply press the escape key in any field.

Some comments and suggestions

If you analyze the assembly language routines, you will notice

that whatever the user types is stored directly into memory ex

actly where the original data for the variable in$ is stored. It

does not create a new string. Consequently, a premature

garbage collection will not result from the use of this routine.

Transactor 30 July 1988: Volume 9, Issue 1

It also has a side effect. If you didn't make any changes to the

data when you ran the program initially, run it again and

change the name or the address or whatever. Then quit the pro

gram and list it. You will see that the data statements in lines

240-260 will have changed accordingly. This problem should

occur only rarely because the variables that you create will

normally be stored in high memory, not within the basic pro

gram itself. To eliminate this problem, all you have to do is

force your variables to be stored in high memory - a statement

such as na$=na$+"M will do this.

It would be an interesting exercise to modify this program to

better suit your own needs. For example, frequently when a

default input is presented, it is not acceptable to the user. At

present, the user must type over the default and erase anything

that is left over. Modify the program so that pressing the

CLR/HOME key will blank out the default input.

I'm sure that in your programming experiences, you have en

countered many other types of input restrictions that would be

useful in a program. Modify the program to incorporate these.

Some suggestions are:

1. Convert all lower case characters to capitals as they are en

tered. This would be useful when designing educational pro

grams for use by elementary students.

2. Don't allow a space as the first character in an input or else

remove any leading spaces that are input without changing the

length of the string (i.e. left-justify the input).

3. Terminate the input on entering the last character in the in

put field.

4. Skip over certain characters (e.g. skip over the /'s in the date

12/24/87 or skip over the -'s in the phone number 999-999-

9999, etc.).

5. Convert the first character after a space to a capital. This is

for the lazy typist who doesn't want to use the shift key when

typing in names.

You can either remove features already in the routine and re

place them, or you can add new ones to those already in place.

If you choose the latter, note that the variable id in the assem

bly language routine which is presently an eight bit 'mask'

would have to become a sixteen bit or bigger mask. This com

plicates things a little, but the challenge should spur you on.

Some other modifications to consider are to change the flash

ing cursor into a solid cursor or into an underline cursor, or

you may simply want to change the rate at which the cursor

flashes.

I hope you find this a useful routine as is. I certainly have. If

you do make any modifications, don't hesitate to send me a

copy. I'm always interested in seeing what other people can

do, especially when I have given them a starting'point.

Listing 1: "inputsrc" (PAL format)

JL 1000

KF 1010

CH 1020

EH 1030

KD 1040

JN 1050

OL 1060

CD 1070

CG 1080

AL 1090

CM 1100

CA 1110

GN 1120

NO 1130

KO 1140

ED 1150

GA 1160

IA 1170

PK 1180

MB 1190

BG 1200

NP 1210

HB 1220

EJ 1230

EJ 1240

AK 1250

CG 1260

El 1270

MA 1280

PI 1290

JP 1300

CN 1310

EK 1320

CA 1330

BE 1340

LM 1350

ED 1360

CO 1370

DD 1380

EO 1390

HD 1400

CE 1410

CA 1420

IP 1430

GB 1440

JA 1450

CD 1460

KG 1470

OD 1480

OA 1490

CF 1500

EE 1510

FI 1520

DJ 1530

KH 1540

BO 1550

PH 1560

FL 1570

BF 1580

PP 1590

OA 1600

AM 1610

BB 1620

CN 1630

NF 1640

JP 1650

sys 700

opt oo

* *

* m/1 input routine *

*=$c000 ; origin of routines

; command jump table

copyright 1987

garry g. kiziak

jmp print

jmp input

print at routine

input routine

get cursor position

chkcom = $ae£d ; check for a comma

combyt = $b7fl ; get a byte in x

illqty = $b248 ; illegal quantity

plot = $fff0 ; set/read cursor position

xval.byte 0 ; temporary storage

yval .byte 0 ; temporary storage

getcur jsr combyt ; get column

cpx #$28 ; 0<=x<=39

bcs setl ; too big

stx yval

txa

pha

jsr combyt ; get row

cpx #$19 ; 0<=y<=24

bcs setl ; too big

stx xval

pla

tay

dc

jmp plot ; set cursor

setl jmp illqty

; print at routine

print jsr getcur

jsr chkcom

jmp $aaa4 ; continue with rom print

; wait for a keystroke

getin = $ffe4 ; check for a keypress

beg = $fb ; beginning of input field

curpos = $fd ; cursor position within input field

getkey Ida ir ; get character under cursor

eor #$80 ; reverse it

sta ir

ldy curpos ; get cursor position

sta (beg),y

Ida #$10 ; initialize counter

sta count2

Ida #$ff

sta count1

getl jsr getin ; has a key been pressed

bne get2 ; yes

Transactor 31 July 1988: Volume 9, Issue 1

ML 1660 dec countl ; count down

MK 1670 bne getl ; try again

KD 1680 dec count2 ; count down some more

AM 1690 bne getl ; try again

MF 1700 beq getkey ; flash cursor

IM 1710 get2 its

KK 1720 countl .byte 0 ; counter for flashing cursor

BA 1730 count2 .byte 0

CE 1740 ;

EB 1750 ; input routine

GF 1760 ;

JN 1770 len = $02 ; max. no. of characters allowed

HN 1780 ast = $03 ; address of input string

OD 1790 lenb = $b2 ; length of optional string

AL 1800 bst = $b3 ; address of optional string

PF 1810 varadr = $05 ; address of variable

BD 1820 findvar = $bO8b ; find variable

. BF 1830 justf .byte 0 ; justify flag

FH 1840 escflg .byte 0 ; escape flag

AB 1850 iq .byte 0 ; character being entered

PL 1860 ir .byte 0 ; character under cursor

OF 1870 id .byte 0 ; mask for allowable inpputs

OM 1880 ; .

DE 1890 input Ida #$00

MK 1900 sta justf ; no justfication

PE 1910 jsr getcur ; get cursor position

GP 1920 clc

BA 1930 Ida $dl ; get screen address

IG 1940 adc $d3 ; for beginning of input

FO 1950 sta beg

CF 1960 Ida $d2

. HM 1970 adc #$00

MN 1980 sta beg+1

EE 1990 jsr chkcom

FE 2000 jsr findvar ; find input variable

IK 2010 sta varadr ; save its location

GG 2020 sty varadr+1

LD 2030 ldy #$02 ; move its descriptor

PH 2040 inpl Ida (varadr),y ; to zero page

OM 2050 sta len,y

HM 2060 dey

DF 2070 bpl inpl

LE 2080 Ida len

OF 2090 beq setl

FE 2100 jsr combyt ; get max length of input

CP 2110 txa

MH 2120 beq setl

BJ 2130 cpx len ; bigger than length of string <

NM 2140 beq inpla

JJ 2150 bcc inpla

00 2160 bcs setl ; yes, too big

AB 2170 inpla stx len

AD 2180 jsr combyt ; get id

BG 2190 stx id

DG 2200 txa ; set status registers

CG 2210 bpl inplc ; no optional string

KC 2220 jsr chkcom

NI 2230 jsr findvar ; find optional string

LE 2240 ldy #$02

AE 2250 inplb Ida ($47),y ; get descriptor for string

JK 2260 sta lenb,y

JJ 2270 dey

HG 2280 bpl inplb

JM 2290 inplc jsr priast ; print default input

IE 2300 inpld Ida #$00

ND 2310 sta $c6 ; clear keyboard buffer

LF 2320 sta curpos ; initial position of cursor

LP 2330 sta escflg ; escape flag = 0

Transactor

BK 2340 inp2 ldy curpos

AM 2350 Ida (beg),y ; get character under the cursor

LL 2360 sta iq ; save it

OK 2370 sta ir ; temporarily

JP 2380 inp3 jsr getkey ; get a keypress

DI 2390 sta $d7 ; save it temporarily

LN 2400 cmp #133 ; [fl]

BJ 2410 bne inp4

NK 2420 Ida id

CL 2430 and #16 ; check id

FI 2440 beq inp3 ; not allowed

FO1 2450 Ida iq

PA 2460 ldy curpos ; restore character under cursor -

PG 2470 sta (beg),y

IP 2480 ldx #$1 ; set escape fig

CG 2490 stx escflg

NA 2500 jmp return

PE 2510 inp4 cmp #32 ; [space]

IB 2520 beq inp5

LL 2530 cmp #160 ; [shifted-space]

LB 2540 bne inp6

LA 2550 inp5 Ida #32 ; convert to a normal space

HP 2560 sta $d7

DG 2570 jmp gotit

EK 2580 inp6 cmp #48 ; [0]

IC 2590 bcc inp7

DL 2600 cmp #58 ; [9]+l

MH 2610 bcs inp7

FH 2620 Ida id

GE 2630 and #2 ; check id

OB 2640 beq inpl2 ; not allowed

DN 2650 jmp gotit ; [0-9]

CB 2660 inp7 cmp #65 ; [a]

NL 2670 bcc inp8a

ID 2680 cmp #91 ; [z]+l

BB 2690 bcs inp8a

JL 2700 inp8 Ida id

CJ 2710 and #1 ; check id

OG 2720 beq inpl2 ; not allowed

MC 2730 jmp gotit ; [a-z] or [shift Vsnift z]

FP 2740 inp8a cmp #193 ; [shift a]

AN 2750 bcc inp9

OD 2760 cmp #219 ; [shift z]+l

EC 2770 bcs inp9

KO 2780 bcc inp8

PA 2790 inp9 cmp #157 ; [cursor left]

LD 2800 bne inplO

JI 2810 ldy curpos

JO 2820 beq inp3 ; can't cursor left

BG 2830 Ida iq

BO 2840 sta (beg),y

ME 2850 dec curpos y

El 2860 jmp inp2

KE 2870 inplO cmp #29 ; [cursor right]

MI 2880 bne inpll

JN 2890 ldy curpos

ED 2900 iny

LP 2910 cpy len

HJ 2920 beq inp3 ; can't cursor right

NC 2930, dey

PM 2940 Ida iq

PE 2950 sta (beg),y

OF 2960 jsr check

JO 2970 inc curpos

MP 2980 jmp inp2

OP 2990 inpll cmp #13 ; [return]

NN .3000 beq return

CH 3010 cmp #17 ; [cursor down]

32 July 1988: Volume 9, Issue 1

CI 3020 beq down

MO 3030 cmp #145 ; [cursor up]

MG 3040 beq up

MB 3050 cmp #148 ; [insert]

HH 3060 beq insert

CJ 3070 cmp #46 ; [.]

NA 3080 beq decimal

DJ 3090 cmp #20 ; [delete]

- JG 3100 bne inpl2

LF 3110 jmp delete

NB 3120 inpl2 bit id ; special characters allowed

LO 3130 bpl done ; no

HM 3140 ldy #$00

HA 3150 Ida $d7

AP 3160 inpl3 cmp (bst),y ; yes

BL 3170 bne inpl4

FM 3180 jmp gotit

HD 3190 inpl4 iny

BK 3200 cpy lenb

IN 3210 bne inpl3

JF 3220 done jmp inp3 ; no other keys allowed

LO 3230 up ldx #$03

DI 3240 .byte $2c

IF 3250 down ldx #$02

FP 3260 Ida id

NG 3270 and #8

MJ 3280 beq done

FL 3290 .byte $2c

PO 3300 return ldx #$01

HC 3310 Ida id

LM 3320 and #64

FD 3330 beq retl

1 AH 3340 jsr justr
JJ 3350 retl ldy curpos

DH 3360 Ida iq

DP 3370 sta (beg),y

NG 3380 Ida id

HF 3390 and #32 ; check for removing trailing spaces

LE 3400 beq ret4 ; no

NN 3410 ldy len

HB 3420 dey

NF 3430 ret2 Ida (ast),y ; get character from a$

KO 3440 cmp #32 ; is it a space

AK 3450 bne ret3

PD 3460 dey

CN 3470 bpl ret2

OG 3480 ret3 iny

JF 3490 tya

PC 3500 ldy #$00

MH 3510 sta (varadr),y

HN 3520 ret4 txa ; type of return in location 780

GE 3530 pha

HH 3540 jsr priast

GG 3550 pla

KO 3560 ldx escflg ; get escape flag

ON 3570 rts

HK 3580 decimal Ida id ; check id

NJ 3590 and #4

ON 3600 beq inpl2 ; not allowed

LL 3610 jsr checkd ; check for decimal point

CJ 3620 beq cant ; decimal point already entered

HI' 3630 jmp gotit

JG 3640 cant jmp inp3

GP 3650 insert ldy curpos

PJ 3660 Ida iq

PB 3670 sta (beg),y

LO 3680 ldy len

FC 3690 dey

Transactor

FB 3700 cpy curpos

EB 3710 beq cant

PG 3720 Ida (ast),y

IJ 3730 cmp #32 ; is last character a space

ON 37.40 bne cant ; can't insert

KF 3750 insl dey

KO 3760 Ida (beg),y ; get screen code

EM 3770 pha ; save it

LK 3780 Ida (ast),y

OK 3790 iny

LA 3800 sta (ast),y ; move character in string

KG 3810 pla

DL 3820 sta (beg),y ; move character on screen

BL 3830 dey

BK 3840 cpy curpos

OC 3850 bne insl

LJ 3860 Ida #32

ID 3870 sta (ast),y ; put space in string

LD 3880 ldx $c7

PG 3890 beq ins2

PA 3900 ora #$80

HO 3910 ins2 sta (beg),y ; put space on screen

IK 3920 jmp inp2

FK 3930 delete ldy curpos

MF 3940 bne dell

CJ 3950 iny ; cursor in first position

KI 3960 cpy len ; only one character

BA 3970 bne cant ; no, so can't delete

JA 3980 dey ; yes, so put a space

BO 3990 Ida #32 ; in the first position

JG 4000 sta (beg),y

PM 4010 sta (ast),y

MA 4020 jmp inp2

JM 4030 dell Ida iq

BJ 4040 sta (beg),y

KP 4050 iny ; is cursor on last character

JH 4060 cpy len

GK 4070 bne del2 ; no

DL 4080 dey ; yes

BK 4090 Ida (ast),y ; get last character

OH 4100 cmp #32 ; is it a space

HC 4110 beq del2 ; yes

LC 4120 inc curpos ; no

KG 4130 del2 ldy curpos

HO 4140 dey

CA 4150 Ida (ast),y ; get character to delete

KN 4160 del3 iny

HO 4170 cpy len

BH 4180 beq del5

GI 4190 Ida (ast),y ; character to replace

EO 4200 pha

NP 4210 Ida (beg),y

HD 422D dey

JJ 4230 ldx $c7

JK 4240 beq del4

NG 4250 ora #$80

GJ 4260 del4 sta (beg),y ; delete it on screen

GD 4270 pla

ID 4280 sta (ast),y ; delete it in string

CK 4290 iny

MM 4300 bne del3

NE 4310 del5 dey .

HG 4320 Ida #32

PA 4330 sta (ast),y

HA 4340 ldx $c7

PB 4350 beq de!6

LN 4360 ora #$80

IJ 4370 del6 sta (beg),y

33 July 1988: Volume 9, Issuel

6E 4380 dec curpos

OH 4390 .jnp inp2

IA 4400 gotit jsr check

JM 4410 ldy curpos

NP 4420 Ida $d7 '

HO 4430 sta (ast),y ; put it in string '

DP 4440 bmi got3

MN 4450 cmp #$60

LM 4460 bcc gotl

NJ 4470 and #$d£

LA 4480 bne got2

DF 4490 gotl and #$3f

MK 4500 got2 jmp got5

PH 4510 got3 and #$7f

NH 4520 cop #$7f

DE 4530 bne got4

CE 4540 Ida #$5e

HO 4550 got4 ora #$40

DF 4560 got5 ldx $c7

61 4570 beq got6

EL 4580 ora #$80

JN 4590 got6 sta (beg),y

IN 4600 iny

PJ 4610 cpy len

6K 4620 bne got7

BN 4630 dey

EM 4640 got7 sty curpos

CI 4650 jmp inP2

KK 4660 ;

ON 4670 ; justify left

OL 4680 ;

JA 4690 tenpn .byte 0

FB 4700 tempn .byte 0

MN 4710 ;

KC 4720 justl ldy #$00

CN 4730 sty tenpn

LG 4740 Ida (ast),y

KF 4750 cap #32

N6 4760 bne jus5 ; already justified

CJ 4770 jusl iny

JE 4780 cpy len

MI 4790 beq jus5 ; all spaces

HK 4800 Ida (ast),y

6J 4810 cnp #32

MB 4820 beq jusl

HF 4830 sty tenpn ; first non-space character

CH 4840 jus2 ldy tenpn ; move left •

HB 4850 sta (ast),y

HN 4860 inc tenpn

AO 4870 inc tenpn

LC 4880 ldy tenpn

HL 4890 cpy len

EH 4900 beq jus3

FB 4910 Ida (ast),y

PG 4920 bne jus2

OI 4930 beq jus2

DK 4940 jus3 ldy tenpn ; rest are spaces

NN 4950 Ida #32

IJ 4960 jus4 sta (ast),y

KE 4970 iny

BB 4980 cpy len

EJ 4990 bcc jus4

II 5000 jus5 rts

IA 5010 ;

BH 5020 ; justify right

MB 5030 ;

KF 5040 justr ldy len

FH 5050 dey

Transactor

■ MB 5060 sty tenpn

FL 5070 Ida (ast),y

EK 5080 crnp #32

HD 5090 bne just5 ; already justified

KL 5100 justl dey

MA 5110 bmi just5 ; all spaces

HO 5120 Ida (ast),y

GN 5130 cmp #32

JB 5140 beq justl

HJ 5150 sty tenpn ; first non-space character

BK 5160 just2 ldy tenpn

HF 5170 sta (ast),y

BP 5180 dec tenpn

MP 5190 dec tenpn

LG 5200 ldy tenpn

JF 5210 bmi just3

LE 5220 Ida (ast),y

PF 5230 bne just2

OH 5240 beq just2

IN 5250 just3 ldy tenpn ; rest are spaces

DB 5260 Ida #32

IK 5270 just4 sta (ast),y

LF 5280 dey

PL 5290 bpl just4

KO 5300 justS rts

ED 5310 ;

HK 5320 ; print string

IE 5330 ;

CC 5340 priast Ida $d7

CG 5350 pha

LJ 5360 ldy yval

AK 5370 ldx xval

KH 5380 clc

IA 5390 jsr plot

LJ 5400 ldy #$00

EP 5410 pril Ida (ast),y

FM 5420 jsr $ffd2

GB 5430 iny

xNN 5440 cpy len

PF 5450 bne pril

MN 5460 pla

FF 5470 sta $d7

EF 5480 rts

10 5490 ;

GO 5500 ; check justify flag

MP 5510 ;

IN 5520 check bit justf

ON 5530 bmi chl ; already on

NN 5540 Ida id

BI 5550 and #64

LL 5560 beq chl ; not allowed

<2A 5570 jsr justl ; justify string and

FH 5580 jsr priast ; print it

OM 5590 Ida #$80 ; set flag

JA 5600 sta justf

PP 5610 chl rts

KG 5620 ;

LH 5630 ; check for decimal

OH 5640 ;

IJ 5650 checkd ldy len

HN 5660 dey

FP 5670 checkl Ida (ast),y

KA 5680 cmp #46

FA 5690 beq check2 ; found one

PP 5700 dey

NE 5710 bpl checkl

HO 5720 Ida #$01 ; no decimal point

FI 5730 check2 rts

34 July 1988: Volume 9, Issue 1

Listing 2: "input demo"

CE 100 if a=0 then a=l: load "input.obj",8,1

LN 110.print "{dr)(green|(14 right}INPUT DEMO"

BM 120 poke 53281,0: poke 53280,0: poke 53272,23

CG 130 pr=49152: in=49155: ret=780: esc=781

IA 140 b$=".": c$="-": d$="$"

HN 150 sys pr,1,4,"Name:"

BP 160 sys pr,1,6,"Address:"

JC 170 sys pr,1,8,"City:"

JJ 180 sys pr,23,8,"Phone:"

OG 190 sys pr, 1,10, "Mount Owed: {rvs}{cyan}{10 spaces}{rvs off} - Dues"

OJ 200 sys pr,14,ll,"{rvs}{10 spaces}{rvs off} - Disks

MK 210 sys pr,14,12,"{rvs}{10 spaces}{rvs off} - Magazines

FD 220 sys pr,14,13,"{red}{rvs}{10 spaces}{rvs off} - Total

BG 230 read na$,ad$,ci$,ph$,du$,di$,ma$,tl$

JP 240 data "Garry Kiziak{8 spaces}","2381 Duncaster Drive{5 spaces}"

IE 250 data "Burlington{5 spaces}","335-4837"

BO 260 data "{5 spaces}$0.00","{5 spaces}$3.50",

"{4 spaces}$12.00","{4 spaces}$15.50"

AF 1000 print "{yellow}.":sys in,7,4,na$,20,153,b$:if peek(esc) then 1160

HJ 1010 on peek(ret) goto 1020,1020,1140

KJ 1020 print "{yellow}":sys in,10,6,ad$,25,155,b$:if peek(esc) then 1160

MK 1030 on peek(ret) goto 1040,1040,1000

MI 1040 print "{yellow}":sys in,7,8,ci$,15,153,b$:if peek(esc) then 1160

OM 1050 on peek(ret) goto 1060,1060,1020

OJ 1060 print "{yellow}":sys in,30,8,ph$,8,154,c$:if peek(esc) then 1160

AP 1070 on peek(ret) goto 1080,1080,1040

DN 1080 print "{cyan}{rvs}";:sys in,14,10,du$,10,222,d$:if peek(esc) then 1160

HO 1090 on peek(ret) goto 1100,1100,1060

IL 1100 print "{cyan}{rvs}";:sys in,14,ll,di$,10,222,d$:if peek(esc) then 1160

JA 1110 on peek(ret) goto 1120,1120,1080

IM 1120 print "{cyan}{rvs}";:sys in,14,12,ma$,10,222,d$:if peek(esc) then 1160

IB 1130 on peek(ret) goto 1140,1140,1100

CB 1140 print "{red}{rvs}";:sys in,14,13,tl$,10,222,d$:if peek(esc) then 1160

FB 1150 on peek(ret) goto 1000,1000,1120

BM 1160 sys pr,4,20,"{rvs off}{white}That's all there is to it!!!"

Listing 3: "inputobj maker"

AH 10 open 15,8,15,"sO:input.obj"

FN 20 open 1,8,1,"0:input.obj"

FO 30 printil,chr$(0);chr$(192);

EP 40 for i=0 to 853

IE 50 read x

NK 60printfl,chr$(x);

FC 70 next i

DC 80 close 1

BA 90 close 15

EG 100 end

DP 1000 data 76, 39, 192, 76, 95,

FO 1010 data 183, 224, 40, 176, 21,

EC 1020 data 32, 241, 183, 224, 25,

KO 1030 data 104, 168, 24, 76, 240,

JA 1040 data 8, 192, 32, 253, 174,

JD 1050 data 192, 73, 128, 141, 93,

LK 1060 data 169, 16, 141, 89, 192,

LL 1070 data 32, 228, 255, 208, 12,

CJ 1080 data 206, 89, 192, 208, 241,

AP 1090 data 0, 0, 0, 0, 0,

PC 1100 data 32, 8, 192, 24, 165,

PP 1110 data 165, 210, 105, 0, 133,

JF 1120 data 139, 176, 133, 5, 132,

JO 1130 data 153, 2, 0, 136, 16,

MI 1140 data 32, 241, 183, 138, 240,

LE 1150 data 144, 2, 176, 138, 134,

EM 1160 data 94, 192, 138, 16, 16,

AK 1170 data 176, 160, 2, 177, 71,

192, 0,

142, 7,

176, 9,

255, 76,

76, 164,

192, 164,

169, 255,

206, 88,

240, 217,

169, 0,

209, 101,

252, 32,

6, 160,

248, 165,

146, 228,

2, 32,

32, 253,

153, 178,

0, 32, 241

192, 138, 72

142, 6, 192

72, 178, 32

170, 173, 93

253, 145, 251

141, 88, 192

192, 208, 246

96, 0, 0

141, 90, 192

211, 133, 251

253, 174, 32

2, 177, 5

2, 240, 152

2, 240, 4

241, 183, 142

174, 32, 139

0, 136, 16

JM 1180 data 248,

AB 1190 data 141,

CA 1200 data 141,

AM 1210 data 208,

JC 1220 data 92,

FP 1230 data 192,

DM 1240 data 208,

DO 1250 data 48,

HL 1260 data 41,

OG 1270 data 14,

PM 1280 data 240,

LD 1290 data 219,

FG 1300 data 253,

NJ 1310 data 76,

FF 1320 data 196,

JP 1330 data 32,

AA 1340 data 240,

LI 1350 data 201,

JF 1360 data 208,

JB 1370 data 160,

, JI 1380 data 194,

PD 1390 data 3,

HK 1400 data 241,

JH 1410 data 3,

OK 1420 data 251,

GJ 1430 data 136,

CP 1440 data 200,

BO 1450 data 195,

JA 1460 data 4,

AD 1470 data 194,

FL 1480 data 251,

FB 1490 data 201,

KJ 1500 data 200,

DH 1510 data 239,

PG 1520 data 128,

ND 1530 data 200,

FB 1540 data 145,

IF 1550 data 200,

LM 1560 data 240,

IA 1570 data 196,

ND 1580 data 166,

CN 1590 data 3,

KF 1600 data 199,

EG 1610 data 193,

OF 1620 data 3,

EH 1630 data 2,

IH. 1640 data 208,

KD 1650 data 9,

LA 1660 data 132,

LI 1670 data 153,

JD 1680 data 2,

DN 1690 data 154,

LN 1700 data 238,

BI 1710 data 177,

HP 1720 data 32,

CG 1730 data 2,

BN 1740 data 44,

MP 1750 data 140,

DL 1760 data 194,

CB 1770 data 3,

JN 1780 data 145,

MO 1790 data 7,

BI 1800 data 0,

EP 1810 data 246,

JC 1820 data 173,

JD 1830 data 32,

OB 1840 data 2,

JB 1850 data 247,

32, 18,

91, 192,

93, 192,

22, 173,

192, 164,

76, 146,

7, 169,

144, 14,

2, 240,

201, 91,

83, 76,

176, 2,

240, 156,

193, 192,

2, 240,

47, 195,

60, 201,

148, 240,

3, 76,

0, 165,

200, 196,

44, 162,

44, 162,

32, 217,

173, 94,

177, 3,

152, 160,

104, 174,

240, 158,

76, 203,

164, 2,

32, 208,

145, 3,

169, 32,

145, 251,

196, 2,

3, 76,

196, 2,

2, 230,

2, 240,

199, 240,

200, 208,

240, 2,

192, 32,

48, 13,

41, 63,

2, 169,

128, 145,

253, 76,

194, 177,

240, 45,

194, 172,

153, 194,

3, 208,

145, 3,

136, 140,

136, 48,

154, 194,

206, 154,

208, 236;

3, 136,

192, 174,

177, 3,

104, 133,

94, 192,

18, 195,

136, 177,

169, 1,

195, 169,

164, 253,

32, 48,

94, 192,

253, 145,

193, 201,

32, 133,

201, 58,

101, 76,

176, 10,

100, 194,

144, 236,

173, 92,

201, 29,

135, 136,

230, 253,

17, 240,

120, 201,

14, 194,

215, 209,

178, 208,

2, 173,

1, 173,

194, 164,

192, 41,

201, 32,

0, 145,

91, 192,

32, 71,

192, 164,

136, 196,

233, 136,

104, 145,

145, 3,

76, 193,

208, 192,

193, 192,

208, 9,

253, 164,

20, 177,

2, 9,

231, 136,

9, 128,

47, 195,

201, 96,

76, 134,

94, 9,

251, 200,

193, 192,

3, 201,

177, 3,

153, 194,

172, 154,

234, 240,

200, 196,

153, 194,

41, 177,

172, 153,

194, 172,

240, 234,

16, 251,

6, 192,

32, 210,

215, 96,

41, 64,

169, 128,

3, 201,

96

0, 133,

177, 251,

1&2, 133,

41, 16,

251, 162,

32, 240,

215, 76,

176, 10,

100, 194,

173, 94,

201, 193,

201, 157,

192, 145,

208, 21,

173, 92,

76, 193,

46, 201,

46, 240,

44, 94,

179, 208,

244, 76,

94, 192,

94, 192,

253, 173,

32, 240,

208, 3,

5, 138,

96, 173,

195, 240,

253, 173,

253, 240,

177, 251,

251, 136,

166, 199,

192, 164,

136, 169,

173, 92,

136, 177,

253, 136,

3, 72,

128, 145,

169, 32,

145, 251,

164, 253,

144, 4,

194, 41,

64, 166,

196, 2,

0, 0,

32, 208,

201, 32,

145, 3,

194, 196,

232, 172,

2, 144,

177, 3,

3, 201,

194, 145,

154, 194,

172, 153,

96, 165,

24, 32,

255, 200,

44, 90,

240, 11,

141, 90,

46, 240,

198, 133, 253

141, 92, 192

215, 201, 133

240, 240, 173

1, 142, 91

4, 201, 160

100, 194, 201

173, 94, 192

201, 65, 144

192, 41, 1

144, 6, 201

208, 14, 164

251, 198, 253

164, 253, 200

192, 145, 251

192, 201, 13

145, 240, 39

98, 201, 20

192, 16, 16

3, 76, 100

203, 192, 162

41, 8, 240

41, 64, 240

92, 192, 145

18, 164, 2

136, 16, 247

72, 32, 18

94, 192, 41

3, 76, 100

92, 192, 145

239, 177, 3

72, 177, 3

196, 253, 208

240, 2, 9

253, 208, 15

32, 145, 251

192, 145, 251

3, 201, 32

177, 3, 200

177, 251, 136

251, 104, 145

145, 3, 166

198, 253, 76

165, 215, 145

41, 223, 208

127, 201, 127

199, 240, 2

208, 1, 136

160, 0, 140

50, 200, 196

240, 245, 140

238, 154, 194

2, 240, 6

153, 194, 169

249, 96, 164

201, 32, 208

32, 240, 247

.3, 206, 153

48, 6, 177

194, 169, 32

215, 72, 172

240, 255, 160

196, 2, 208

192, 48, 18

32, 155, 194

192, 96, 164

5, 136, 16

Transactor 35 July 1988: Volume 9, Issue!

Sprite Rotation

A New Twist

by Jim Frost

One Transactor every two months is not nearly enough for a

confirmed ML addict like me, so I eventually bought a com

plete set of back issues. Between projects, if my wife isn't in

sisting I mow the lawn or fix the leaking faucets, the entire

Transactor collection is reread for new programming ideas. A

machine language version of Chris Zamara's Sprite Rotate

(Transactor, Volume 5 Issue 1) seemed a suitable challenge so

I decided to give it a try. The project took over a year of study,

trial, and (mostly) error prior to successful completion. Along

the way I learned to use ROM trig routines, unravelled the

mysteries of floating point math and mastered some of the

complexities of graphic rotation.

Using the Rotate Routine

The Rotate program included with this article will spin a com

plete sprite in under a second, fast enough to allow use from

BASIC. Use the syntax sys 49152, sa,da,cx,cy,ra. sa and ra

are the source and destination addresses of the target sprite. CX

and CY are the vertical and horizontal axes of rotation, respec

tively, with rows and columns numbered from zero in the up

per left corner. RA is the radian angle of rotation. The rotate

routine requires that the source sprite be memory resident and

will create one rotated copy per call. To reduce program

length, variable limits are not tested.

Rotation calculations are performed on set pixels only, allow

ing small sprites to be rotated very quickly. To prevent annoy

ing flicker when rotating large sprites, change sprite pointers

only after the rotation is complete. Because the rotated sprite

is rounded to pixel boundaries, an exact representation is

rarely possible. Depending on the shape and detail of your

sprite, some rotation angles provide better results than others.

Experiment and use the angles that work best.

If you want to use Rotate in your ML programs, load $FB and

$FC with the source sprite address, load $FD and FE with the

destination sprite address, and load variables CX, CY, SINM,

COSM, SGNSIN and SGNCOS with the desired values prior to

calling. SGNSIN and SGNCOS are trig function signs. These

should be set to zero for positive functions or one for negative

functions. 5GNM and COSM must be 256 times the actual SGN

or COS values (use $FF for 1). With variables set, enter Rotate

at the label mlent.

Quantization

As I developed the sprite rotate program I encountered several

unplanned difficulties, primarily due to rounding inaccuracies

and quantization limits. Quantization means that a quantity ex

ists in integer steps only, with no possible in-between values.

Discounting the possibility of a sharp knife, seeds in an orange

are quantized. Your orange might have one, two or five seeds,

mine probably 20 or more but no possibility of 13.75. Pixel

positions on a sprite or bit map screen are also quantized. We

can draw a spot at the X,Y position 12,7 but not at pixel posi

tion 12.73,7.42. The rotation equations (see assembly listing)

allow a precise calculation of exactly where a rotated pixel be

longs. Quantization, however, prevents perfect pixel place

ment, leading to distortion of the rotated image and occasional

holes. In my rotate routine, holes were minimized by detecting

adjacent bits along the X axis and plotting the point midway

between them. The current version of sprite rotate still shows a

few holes when a solid (all bytes $FF) sprite is rotated to an

gles near 45 degrees. Without the extra plotting, the results re

semble Swiss Cheese.

Understanding the Routine

With experience, expressing integers in ML is easy, but how

can fractions be handled? In everyday math, the decimal point

separates integer and fractional quantities, with numbers to the

right of the decimal weighted by 10E-1, 10E-2 and so on. The

same rules apply in binary. While bit zero is normally weight

ed by 2E0, this convention may be changed as desired, provid

ed that values are correctly used throughout the program.

An alternate way of looking at binary fractions is to apply

scaling. For example, rather than trying to express one half di

rectly in binary, multiply .5 by 256 and use the resulting 128

($80) in your program. Results are 256 times too large, but can

be rescaled after all mathematics are completed. Scaling is not

a second method; it's simply an alternate approach to under

standing the technique.

After several months of experimenting with rotation, I sudden

ly realized that massive multiplication is not required. Since

rotation equations are linear, the effects of X and Y changes

are independent. This realization led to calculating a lookup

Transactor 36 July 1988: Volume 9, Issue 1

table by addition after multiplying to locate the first point. The

current routine uses lookup tables for X only, as speed im

provements in Y were not dramatic. The multiply routine is

unusual in its handling of signed numbers. If you are planning

a program where both positive and negative variables can oc

cur, checking this portion of code may provide some new

ideas.

Several approximations used in the sprite rotate routines are

permitted by the small size (21 by 24 pixels) of sprites. Any

sprite pixel position can be expressed in five bits, allowing a

truncated multiplication. Sines and cosines can be approximat

ed to an accuracy of one part in 256 in a single byte (MSB =

2E-1). For sprite-sized objects higher accuracy is unnecessary.

These two simplifications reduce code requirements and speed

calculations considerably.

The present routine accomplishes my original goals; however,

I'm not completely satisfied. I'm still researching and analyz

ing to find the ultimate rotation algorithm. If you have ques

tions on the current routine or suggestions on better methods,

feel free to drop me a line. I have one idea I'd like to try right

now, but first I'd better finish mowing the lawn.

Listing 1: BASIC demo program for the sprite rotate routine.

LL 10 rem revolving gun turret demonstrates

AA 20 rem sprite rotation and "holes"

NI 30 if m=0 then m=l: load "rotate.o",8,1

PC 40 poke 53280,0: poke 53281,0: print" [dr]"

LL 50 sp=130: poke 2040,sp

PA 60 x=55350: poke x,l: vic=53248

70 poke vie,40: poke vic+1,200

80 poke vic+21,1

90 for i=0 to 62: read a

100 poke 8320+i,a: next

110 ss=8320: k=0: cx=12: cy=10

120 for i=l to 32

130 ra=2*[pi]/32*i: ds=8384+64*k

140 sys 49152,ss,ds,cx,cy,ra

150 poke 2040,131+k

160 k=k+l and 1

Listing 2: Generator program to create "rotate.o" on disk.

GC

LP

FA

PA

JB

DC

NC

HD

BE

EJ

OJ

IK

CL

ML

GM

AN

EM

KO

170 next

180 data

190 data

200 data

210 data

220 data

230 data

240 data

250 data

260 data

270 data

280 data

0,

0,

0,

36,

36,

36,

36,

36,

36,

36,

36,

290 data 31, 255, 248

300 data 31, 255, 248

310 data 31, 255, 248

320 data 31, 255, 248

330 data 31, 255, 248

340 data 31, 255, 248

350 data 31, 255, 248

360 data 15, 255, 240

370 data 7, 255, 224

380 data 0, 0, 0

CI 1000

BB 1010

ML 1020

OG 1030

IK 1040

ML 1050

JN 1060

GE 1070

LP 1080

GN 1090

EL 1100

GN 1110

IE 1120

GG 1130

GP 1140

CP 1150

JN 1000

PN 1010

Lfl 1020

LA 1030

PM 1040

IG 1050

FF 1060

AM 1070

KL 1080

LM 1090

FI 1100

AH 1110

IM 1120

PL 1130

DK 1140

CH 1150

GL 1160

JP 1170

MO 1180

JE 1190

NN 1200

PN 1210

FH 1220

JM 1230

BH 12.40

CH 1250

KC 1260

LK 1270

AJ 1280

BG 1290

PH 1300

FF 1310

FH 1320

MI 1330

ND 1340

EP 1350

NH 1360

JL 1370

CB 1380

JB 1390

ON 1400

GA 1410

rem generator for "rotate.o"

nd$="rotate.o": rem name of program

nd=824: sa=49152: ch=99925

for i=l to nd: read x

ch=ch-x: next

if ch<>0 then print"data error": stop

print'data ok, now creating file": print

restore

open8,8,l,"0:"+f$

printf8,chr$(sa/256)chr$(sa-int(sa/256));

for i=l to nd: read x

printf8,chr$(x);: next

close 8

prinfprg file MI;f$;"' created..."

print"this generator no longer needed."

data 32, 40,

data 133, 252,

data 132, 253,

data 1, 184,

data 32, 1,

data 194, 162,

data 32, 107,

data 194, 142,

data 32, 162,

data 194, 141,

data 63, 169,

data 162, 0,

data 172, 187,

data 141, 207,

data 194, 173,

data 32, 47,

data 194, 162,

data 194, 172,

data 194, 141,

data 194, 194,

data 1, 32,

data 214, 194,

data 195, 194,

data 32, 47,

data 195, 206,

data 192, 194,

data 141, 216,

data 24, 189,

data 9, 195,

data 157, 33,

data 211, 194,

data 109, 212,

data 23, 208,

data 141, 197,

data 193, 162,

data 194, 177,

data 42, 176,

data 24, 208,

data 208, 217,

data 100, 24,

data 141, 205,

data 194, 141,

194, 32, 1,

32, 40, 194,

133, 254, 32,

140, 192, 194,

184, 140, 193,

181, 160, 194,

226, 32, 137,

194, 194, 169,

187, 32, 100,

187, 194, 142,

0, 145, 253,

142, 196, 194,

194, 169, 1,

194, 140, 208,

187, 194, 74,

194, 141, 209,

1, 142, 196,

186, 194, 169,

211, 194, 140,

173, 186, 194,

47, 194, 141,

162, 1, 142,

172, 187, 194,

194, 141, 8,

196, 194, 174,

172, 186, 194,

194, 140, 240,

8, 195, 109,

189, 32, 195,

195, 24, 189,

157, 217, 194,

194, 157, 241,

213, 169, 255,

194, 238, 197,

0, 238, 202,

251, 160, 8,

16, 232, 136,

232, 173, 202,

96, 133, 98,

189, 8, 195,

194, 189, 32,

199, 194, 24,

184, 132, 251

32, 1, 184

40, 194, 32

32, 40, 194

194, 32, 40

32, 212, 187

194, 141, 186

181, 160, 194

226, 32, 137

195, 194, 160

136, 16, 251

174, 195, 194

32, 47, 194

194, 174, 195

168, 169, 1

194, 140, 210

194, 174, 194

1, 32, 47

212, 194, 174

74, 168, 169

213, 194, 140

196, 194, 174

173, 192, 194

195, 140, 32

194, 194, 173

32, 47, 194

194, 162, 0

207, 194, 157

109, 208, 194

216, 194, 109

189, 240, 194

194, 232, 224

141, 202, 194

194, 32, 218

194, 172, 202

14, 215, 194

208, 249, 224

194, 201, 62

134, 99, 132

109, 188, 194

195, 109, 189

189, 216, 194

Transactor 37 July 1988: Volume 9, Issue 1

FO 1420

HO 1430

OL 1440

JF 1450

KA 1460

DB 1470

OC 1480

NI 1490

BE 1500

AB 1510

LI 1520

DO 1530

FP 1540

KN 1550

FG 1560

GH 1570

LI 1580

BE 1590

EN 1600

EK 1610

DN 1620

GO 1630

EN 1640

EN 1650

LN 1660

PI 1670

JP 1680

DD 1690

GN 1700

OE 1710

ML 1720

GC 1730

NO 1740

CB 1750

JA 1760

KG 1770

LJ 1780

PO 1790

KE 1800

AL 1810

JB 1820

IF 1830

JI 1840

NP 1850

CK 1860

MB 1870

GC 1880

AD 1890

KD 1900

EE 1910

OE 1920

IF 1930

CG 1940

MG 1950

GH 1960

AI 1970

KI 1980

EJ 1990

OJ 2000

IK 2010

CL 2020

data 109,

data 194,

data 201,

data 173,

data 6,

data 98,

data 209,

data 141,

data 24,

data 201,

data 48,

data 193,

data 35,

data 194,

data 199,

data 194,

data 253,

data 2,

data 194,

data 194,

data 47,

data 109,

data 194,

data 47,

data 109,

data 194,

data 251,

data 32,

data 204,

data 178,

data 24,

data 179,

data 169,

data 14,

data 194,

data 235,

data 194,

data 13,

data 152,

data 96,

data 128,

data 165,

data 44,

data

data

data

data

data

data

data

data

data

data

data

data'

data

data

data

data

data

data

190, 194, 141,

109, 191, 194,

194, 48, 19,

.199, 194, 48,

173, 200, 194,

16, 46, 24,

194, 173, 199,

199, 194, 48,

173, 206, 194,

194, 109, 214,

7, 201, 21,

165, 98, 166,

193, 10, 109,

173, 199, 194,

194, 74, 74,

168, 189, 210,

96, 128, 64,

1, 162, 1,

194, 172, 186,

237, 197, 194,

194, 105, 128,

192, 194, 141,

172, 187, 194,

194, 105, 128,

193, 194, 141,

200, 200, 177,

106, 41, 192,

253, 174, 32,

194, 142, 180,

194, 162, 1,

73, 255, 105,

194, 10, 10,

0, 162, 5,

203, 194, 144,

144, 3, 238,

170, 173, 178,

77, 179, 194,

138, 73, 255,

73, 255, 105,

165, 97, 201,

240, 20, 201,

98, 74, 232,

169, 255, 44,

162, 0, 6,

96, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

o, o, o,

0, 0, 0,

o, o, o,

o, o, o,

o, o, o,

o, o, o,

o, o, o,

o, o, o,

206, 194,

141, 200,

201, 21,

10, 201,

32, 178,

173, 205,

194, 109,

28, 201,

109, 213,

194, 141,

176, 3,

99, 164,

200, 194,

41, 7,

74, 24,

193, 17,

32, 16,

142, 196,

194, 56,

141, 198,

141, 188,

189, 194,

173, 198,

141, 190,

191, 194,

251, 42,

141, 215,

158, 173,

194, 160,

201, 0,

1, 232,

10, 141,

10, 46,

9, 24,

178, 194,

194, 168,

77, 196,

24, 105,

0, 168,

129, 240,

120, .144,

224, 128,

169, 0,

102, 144,

0, 0,

, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

o, o,

o, o,

o, o,

o, o,

o, o,

189, 240

194, 141

176, 15

24, 176

193, 165

194, 109

210, 194

24, 176

194, 173

200, 194

32, 178

100, 76

141, 200

170, 173

109, 200

253, 145

8, 4

194, 174

173, 193

194, 32

194, 152

174, 195

194, 32

194, 152

172, 202

200, 177

194, 96

96, 140

0, 140

16, 6

202, 142

203, 194

178, 194

109, 204

202, 208

173, 180

194, 240

1, 170

138, 24

18, 201

13, 170

208, 250

44, 165

2, 162

0, 0

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

Listing 3: Merlin-format assembler source code.

* sprite rotate rev 6 jan 86

* from basic program by chris zamara

* transactor vol5 #1

* to use sys 49152,ss,ds,ex,cy,ra

*

* jim frost

* 4740 harbinson ave

* la mesa ca 92041

facsgn

facexp

facmO

stfalxy

ldfalay

sine

cosine

chkcom

evalexp

fltfix

* basic

= $66

= $61

= $62

= $bbd4

= $bba2

= $e26b

= $e264

= $aefd

= $ad9e

= $b801

org $c000

entry point

jsr eval

jsr fltfix

sty $fb

sta $fc

jsr eval

jsr fltfix

sty $fd

sta $fe

jsr eval

jsr fltfix

sty ex

jsr eval

jsr fltfix

sty cy

jsr eval

ldx #<arg

ldy #>arg

jsr stfalxy

jsr sine

jsr normize

sta sinm

stx sgnsin

Ida #<arg

ldy |>arg

jsr ldfalay

jsr cosine

jsr normize

sta cosm

stx sgncos

/fetch source sprite address

;convert to integer

/save for drawing

/fetch dest sprite address

/convert to integer

/save for drawing

/fetch ex

/convert to integer

/and save

/fetch cy

/convert to integer

/and save

;arg in fad

/store fp argument

;sina in facl

/convert to one byte

/save sine

/and sign

/move argument to facl

;cosa in facl

/convert to one byte

/save cos

/and sign

* clear destination sprite memory from machine

* language enter here with variables set

mlent ldy #$3f

Ida #$00

cdest sta ($fd),y

dey

bpl cdest

;64 bytes to clear

/dear byte

/decrement count

/loop till 64 bytes cleared

calculate table of portions of x2 and y2 due to

Transactor 38 July 1988: Volume 9, Issue 1

* x position across sprite

* convert one byte sine and cosine to two byte

* signed integer with sign adjusted for adding

* to current value x2(x),y2(x). as x increases

* note that the rotated x (xl) = x center (ex)

* - x so that as x increases xl decreases

* resulting in signs the opposite of initial

* expectations

* calculate signed

ldx #$00

stx neg

ldx sgncos

ldy cosm

Ida #$01

jsr mult

sta cosl

sty cosh

* calculate signed

* (used to minimize

ldx sgncos

Ida cosm

lsr

tay

Ida #$01

jsr mult

sta hcosl

sty hcosh

* calculate signed

ldx #$01

stx neg

ldx sgnsin

ldy sinm

Ida #$01

jsr mult

sta sinl

sty sinh

* calculate signed

* (used to minimize

ldx sgnsin

Ida sinm

lsr

tay

Ida #$01

jsr mult

sta hsinl

sty hsinh

cos terms

/don't flip sign

/multiply by 1

/return two byte cos in ay

/save low byte

/and high

cos terms for half pixel step

i rounding and quantization errors)

;a has cos/2

;y has cos/2

/multiply by 1

/return two byte cos/2 in ay

sin terms

/this time flip sign

/multiply by 1

/return two byte -sin in ay

/save low byte

/and high

sin terms for half pixel step

rounding and quantization errors)

;a has sin/2

;y has sin/2

/multiply by 1

/return two byte sin/2 in ay

* calculate first table entry

ldx #$01

stx neg

ldx sgncos

ldy cosm

Ida ex

jsr mult

sta tbxl

sty tbxh

dec neg

ldx sgnsin

Ida ex

ldy sinm

Transactor

/set sign, flag

/sign mult negative

/sign of cosine

/cosine

;x center of rotation

/return xlcosa in ay

/and stash first table value

/low and high bytes

/dear neg flag

/sign of sine

;x0 minus center of rotation

/one byte sine

jsr mult

sta tbyl

sty tbyh

/return xlsina in ay

/and stash first table values

/low and high bytes

!

* add terms to form remainder of table

ldx #$00

tbx2y2 clc

Ida tbxl,x

adc cosl

sta tbxl+l,x

Ida tbxh,x

adc cosh

sta tbxh+l,x

clc

Ida tbyl,x

adc sinl

sta tbyl+l,x

Ida tbyh,x

adc sinh

sta tbyh+l,x

inx

cpx #23

bne tbx2y2

/table pointer

/finished 24th element?

/no - loop til done

* rotate sprite after calculating new positions

Ida #$ff

sta bcount

sta yO

nxtrow inc yO

jsr newrow

ldx #$00

nxtbyte inc bcount

ldy bcount

Ida ($fb),y

ldy #$08

asl adjbyt

* at last pass through

* of byte being tested

shift rol

bes spinbit

shift2 inx

dey

bne shift

cpx #24

bne nxtbyte

Ida bcount

crop #$3e

bne nxtrow

rts

/on first pass y=0

/calculate y based parameters

/start each row at left

/byte counter

/index to byte

/get byte

;8 bits per byte!

/shift msb to carry

shift, bit 7 of adjbyt is in bit 7

V

/shift next bit to carry

/if empty don't rotate

/next column

/last bit?

/last x?

/no - try another byte

/byte count '

/done all 63?

/no - do another row

/back to basic

* calculate new bit positions, if values on sprite

* grid plot them

* calculate x2=int(-ylsina-xlcosa+cx)

spinbit sta $62

stx $63

sty $64

clc

Ida tbxl,x

39

;save current test byte ,

/save sprite x

;save bit count

/get x cos low byte

July 1988: Volume 9, Issue 1

adc ysinl

sta x21

Ida tbxh,x

adc ysinh

sta x2

♦integer x2 now in i

;add -ysina low byte for round

;save for half pixel calc

;now add x cos high byte

/to -ysina high byte

;save integer x2 for plotting

i - fractional x2 in x

♦calculate y2=int(+xlsina-ylcosa+cy)

clc

Ida tbyl,x

adc ycosl

sta y21

Ida tbyh,x

adc ycosh

sta y2

sta y2h

ftest out of range

bmi toobig

cmp #21

bcs toobig

Ida x2

bmi toobig

cmp #24

bcs toobig

Ida y2

jsr plot

* with current bit

* if neg flag set,

;get x sin low byte

;add -ysina for round

, ;save for half pixel calc

;now add xsin high byte

;to -ycosa high byte

,'save integer (lost in plot)

;and a second copy for later

y and x

;if negative

;or larger than 24

/skip other calculations

;if negative

;or larger than 24

;skip other calculations

;plot on destination sprite

in carry, bit 7 is next adjacent bit.

there are two adjacent bits, so plot

* half pixel between them

toobig Ida $62

bpl noplot

clc

Ida x21

adc hcosl

Ida x2

adc hcosh

sta x2

bmi noplot

cmp #24

bcs noplot

Ida y21

adc hsinl

Ida y2h

adc hsinh

sta y2

bmi noplot

cmp #21

bcs noplot

jsr plot

noplot Ida $62

ldx $63

ldy $64

jmp shift2

/retrieve test byte

/unless bit 7 set no plot

;add half cos low

;add integer ycos

;save integer x2 for plotting

;if negative

;or larger than 24

;skip other calculations

;carry always clear

;add half sin

;copy of original y2

;and add -ysina high byte

;save integer

/if negative

;or larger than 24

;skip other calculations

;plot on destination sprite

/retrieve test byte

/retrieve sprite x

/retrieve bit count

;back to test loop

* x and y calculated - plot on destination sprite

plot asl

adc y2

sta y2

laa x2

and #$07

tax

Transactor

;a=2*y2 - no carry guaranteed

;a=3*y2

;save for next calculation

• 4V4fc4i MAM •* •»** 1 ttA
;get new x value

;trash high nibble

;save pointer to bittab

Idax2

lsr

lsr

lsr

clc

adc y2

tay

Ida bitmask,x

ora ($fd),y

sta ($fd),y

rts

bitmask dfb %10000000

dfb 101000000

dfb %00100000
• JM a A A AM AA A A

dfb %00010000

dfb %00001000

dfb %00000100

dfb %00000010

dfb 100000001

* handle all y related

* sprite row rotated

newrow ldx #$01

stx neg

ldx sgnsin

ldy sinm

sec

Ida cy

sbc yO

sta yl

jsr mult

adc #$80

sta ysinl

tya

adc ex

sta ysinh

ldx sgncos

ldy cosm

ldayl

jsr mult

adc #$80

sta ycosl

tya

adc cy

sta ycosh

* arrange bits to flag

* bytes of each row

ldy bcount

iny

iny

Ida ($fb),y

rol

iny

Ida ($fb),y

ror

and #%11000000

sta adjbyt

rts

eval jsr chkcom

40

;a=x2/8

;add bytes from x to 3*y

/pointer to sprite row .

/get value of bit to set

7or new bit with current one

/save with new bit set

calculations one time for each

/set flag

/flip sign of product

/sign of sine

/one byte sine

;y center of rotation

/subtract current y

/value y to rotate

/return -ylsina in ay

/half round

/save fractional part

/get high (integer) byte

/and add offset

/save integer part

/sign of cosine

/one byte cosine

/return -ylcosa in ay

/half round

/get high (integer) byte

/add in offset

adjacent bit pairs between

/grab middle byte of row

/shift bit 7 to carry

/grab last byte of row

/shift carry to bit 7

/bits of 'a' (1 to r) msb mid,

/msb last, trash -

July 1988: Volume 9, Issue 1

jsr evalexp

rts

* multiply one byte

* (0 to 23) in a. vu

* to determine sign

mult sty tempi

stx msign

ldy #$00

sty reshi

ldx #$01

* convert ace value

trig function in y by xl or yl value

;e neg and sign of trig function in x

of product

;save value trig function

/and sign

/clear work space

/guess sign neg

to absolute value in a. check

* msign, neg and sign of ace value and set flag

* showing sign of product for multiply

emp #$00

bpl apos

dc

eor #$ff

adc #$01

inx

apos dex

stx psign

asl

' asl

asl

sta temp2

Ida #$00

ldx #$05

shiftm asl

rol reshi

asl temp2

bee nobitm

clc

adc tempi

bee nobitm

inc reshi

nobitm dex

bne shiftm

tax

Ida reshi

;set flags on a

;branch if positive

/convert negative

/value to positive

/adjust for next instruction

/set sign flag positive

/save sign flag

/since twice sprite width is

/24 max bits, 6, 7 and 8 are

/always zero - trash them

/and save result

/clear lsb of product

/five bits to multiply

;shift product low byte

/and high

/shift msb to carry

/if no carry don't add

/else add to accumulator low

/bit and high bit if required

/decrement counter

/and loop till six bits

/hold result low

*determine sign of product ,,

tay

Ida msign

eor psign

eor neg

beq mdone

txa

eor #$ff

clc

adc #$01

tax

tya

eor #$ff

adc #$00

tay

mdone txa

clc

Transactor

/save reshi for following

;acc zero if negs cancel

;if positive

/else recover low byte

/flip bits

/negate low byte

/and save

/recover high byte

/flip bits

/complete negation

/msb in y

;lsb in a

/for next add

* ohiff

* byte

normize

norl

vail

valO

valok

zsgn

rts

£awl Value JLilUO

Kith bit 7 value

Ida facexp

cmp#$81

beq vail

emp #$80

beq valok

emp #$78

bee valO *

tax

Ida facmO

lsr

inx

cpx #$80

bne norl

hex 2c

Ida #$ff

hex 2c

Ida #$00

hex 2c

Ida facmO

ldx #$00

asl facsgn

bec zsgn

ldx #$01

rts

* variables for rotate

reshi

psign

msign

arg

sinm

cosm

ysinl

ysinh

ycosl

ycosh

ex

cy

sgnsin

sgncos

neg

yO

yi
x2

y2

y2h

bcount

temp2

tempi

x21

y21

cosl

cosh

hcosl

hcosh

sinl

sinh

hsinl

hsinh

adjbyt

tbyl

tbyh

tbxl

tbxh

41

ds 01

ds 01

ds 01

ds 05

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

•ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01

ds 01 '
ds 01

ds 01

ds 01

ds 01

ds 01

ds 24

ds 24

ds 24

ds 24

/lsb in a msb in y

a single

2e-l

/if exp is 81 value is 1

/if exp is 80 no shift needed'

/if exp is < 78 value is zero

/move exponent to x

/get fac msb

/shift bits and increase exp

/until bit 7 has value of

;2e-l

/skip next instruction

;1/256 less than 1

/skip next instruction

/skip next instruction

/set x for positive

/shift neg bit to carry

;if no carry, sign is pos

/set x for negative

/high byte multiply result

/sign of multiply product

/sign of trig funct this mult

/floating point value argument

;sina in multiply-form

;cosa in multiply form

/fractional part y*sina

/integer part

/fractional part y*cosa

/integer part

;x center of rotation

;y center of rotation

/sign of sine term

/sign of cos term V

/flag - value is negative •'

/column count

;y offset from cy

/rotated x position

/rotated y position

/copy of y2

/bit count

July 1988: Volume 9, Issue 1

Structured DATA and Seeding RND

Consult the oracle inside your computer

by Audrys Vilkas

The program that accompanies this article was written in

Commodore BASIC and is an exercise in using structured data

statements and seeding the random function RND provided by

the basic interpreter. I will call it the Hexagram Program for

reasons which will soon be clear. This program may be embel

lished with many "not too difficult to implement" subroutines,

providing the reader with his or her own version.

Motivation

In the September 1986 issue of Transactor (Volume 7, Issue

2), there is an interesting little tidbit called "Animals: An Ex

ercise in Artificial Intelligence", by Chris Zamara. In it he

constructs a data base which "increases its knowledge as it is

used..." by user interaction with the program. Questions are

asked by the machine and the user's answers are stored in a

record to be referenced later as the program matures.

On the other hand, in the May 10th, 1986 issue of Science

News there is an article "Inside Averages" by Ivars Peterson,

in which he discusses Diaconis' analysis of syllable patterns in

Plato's books. Using techniques that depend on certain aver

ages being known though original data are missing, and using

certain statistical techniques applied to these so-called hidden

averages, Diaconis is able to conclude that Plato wrote his

books "top to bottom". These techniques are applied in such

technology as X-ray tomography and side-view radar. I will

not go into any technical detail on these subjects, but I will in

stead provide the reader with the gist of the Hexagram Pro

gram, which is a little more * light-weight'.

This program is the problem of "Animals" somewhat in re

verse. That is, the user begins asking the questions and the ma

chine responds with a pseudo-random answer! Whether the

answer is applicable to the question will be left for the user to

decide. At first glance this may seem a bit outrageous but for

now please bear with me.

The material for the Hexagram routine is rooted deeply in his

tory and comes from what is known today as the / Ching. The

/ Ching (or Chou I) is a collection of symbols and writings of

very great antiquity, at least 3000 years old; its origins may go

back further still. Confucius referred to the document as "very

old" 2500 years ago.

Some historical background will be presented below, but we

will first explain what a hexagram is.

Reading the Hexagrams

All hexagrams are composed of two trigrams (an upper and a

lower) chosen from the following eight basic trigrams:

Ch'ien

Heaven, sky, cold, creative,

father, active, strong, firm

Tui

Lake, marsh, rain, autumn,

joyful, youngest daughter

Li

Fire, lightning, sun, summer,

beautiful, middle daughter

Che^n

Thunder, spring, arousing,

moving, active, eldest son

K'an

Water, cloud, moon, winter,

dangerous, middle son

K'un

Earth, heat, receptive,

yielding, dark, mother

Sun

Wind, wood, gentle,

penetrating, eldest daughter -

KeAn

Mountain, thunder, stubborn,

perverse, youngest son

Juxtaposing any two of the above trigrams produces a hexa

gram. There are additional sets of attributes and structure im

posed on the hexagrams from which much meaning is derived,

and over the centuries these have evolved into the associated

Transactor 42 July 1988: Volume 9, Issue 1

texts. These structures are complicated and we will not go into

them here. There are four basic principles worth noting

though: they are "The Great Yin", "The Lesser Yang", 'The

Lesser Yin" and "The Great Yang". Their mysterious polari

ties determine whether the lines in a hexagram are changing or

not. Thus, the concept of a distinct hexagram pair is arrived at

when there is a changing line.

If one receives a changing line, a Hexagram Generating Pro

gram could maybe highlight the line and mark it with a 'c' to

indicate the change. This is the line to note when reading the

hexagram's associated text, which could be titled "lines". The

hexagrams are numbered from the bottom up, starting at line

one (at the bottom) and going up to line six (at the top). For

example, suppose we ask the question "How many times may

I ask the same question?" and we get the following two hexa

grams, #4 ("Youthful Folly") and #1 ("The Creative"):

sixth place

fifth place

fourth place

third place

second place

first place

#4 #1

The first hexagram (#4) is composed of "yin" lines except for

a "yang" line in the second and sixth places. There are four

dynamic yin (in the first, third, fourth and fifth places). These

are the lines, in this case, which yield a distinct second hexa

gram. When one reads the hexagram, in addition to reading

The Image and The Judgement, in this case, one also reads the

changing lines in hexagram #4. (Note that hexagram #4 con

cerns the repeated asking of the same question - a "logical

glitch".) The second hexagram - #1, The Creative - is also

read but no text associated with the lines needs to be read. Of

course, one may not receive any changing lines, so only The

Image and The Judgement are to be read and the hexagram

pair is.nondistinct. Traditionally, if only one change occurs in

a hexagram you then don't read the second hexagram. I will

not follow that convention here.

Some Historical Background

Bernhard Kalgren, in his Sound And Symbol, writes of the

legend:

"Long, long ago, in the golden age, there was a dragon horse

which came out of the Yellow River with curious symbols

traced upon its back, and revealed them to Fu-hsi (the first of

China's legendary primeval emperors). This potentate copied

them and thus acquired the mystical characters which later be

came the skeleton of the I King (now I Ching), the Canon of

Changes, one of the Five Canons."

The Book of Changes consists of 64 hexagrams, and has a his-

toriographical nature. According to Iulian K. Shchutskii, a

Russian sinologist, the / Ching was basically a divinatory text

that began taking on a philosophical countenance after many

centuries of being appended by the commentary schools (in

which, by the way, Confucius played no direct part). The Book

was then employed by politicians in China and Japan. Over

the thirty centuries or so, the hexagrams have taken on a wide

range of meaning depending upon the context in which they

are applied.

Thus, the use of the Canon ofChanges as an instrument of re

flection and thought is not new, as evidenced by the existence

of Taoist, Confucian and Buddhist schools. There have been a

few more recent students of the Chou /, notably the famous

mathematician, Baron Gottfried von Leibniz, one of the inven

tors of calculus; the psychoanalyst, Carl Jung, a famous stu

dent of Sigmund Freud; the Nobelist in literature, Hermann

Hesse (author of The Glass Bead Game); and others.

Leibniz referred to the / Ching as a "Two-Element Arith

metic"; had he lived later he might have viewed it as an exam

ple of a Boolean algebra (the foundation of modern computer

science).

In particular, the ancient Chinese were farmers, so the hexa

grams themselves are shrouded in interpretation as mystical

weather-like symbols. Such phenomena, as studied today by

meteorologists, are known as the Lorenz Strange Attractors.

Essentially, these are the set of equations which describe tur

bulence and chaos, the difficulties involved with predicting the

weather. The mathematician and philosopher of the Sung Dy

nasty (A.D. 960-1279), Shao Yung, studied the mythical Fu-

hsi's description "following a natural progression of weather

conditions". These patterns are depicted as the doubling of

two trigrams producing such primitive equations as:

The Kou Hexagram #44, Ch'ien/Sun: The Sky Is Clear and

The Wind Comes, traditionally numbered (7,7,7) and (7,9,6):

7 at top

7 in the fifth

7 in the fourth

7 in the third

9 in the second

6 in the first

1 1 0 Ch'ien

110 Sky (upper trigram)

1 1 0 Sky (upper middle)

110 Sky (lower middle)

111 Wind (lower trigram)

0 0 0 Sun

and changing into the T'ung Jen Hexagram #13, Ch'ien/Li:

The Wind Brings Heat, traditionally numbered (7,7,7) and

(7,8,7):

7 at top

7 in the fifth

7 in the fourth

7 in the third

8 in the second

7 in the first

1 1 0 Ch'ien

110 J>ky (upper trigram)

1 1 0 Sky (upper middle)

1 10 Wind (lower middle)

111 Heat (lower trigram)

000 Li

Granted, these formulae seem a bit obscure but we must re

member that they are "very old".

Transactor 43 July 1988: Volume 9, Issue 1

Thus 110 or (101 or Oil) say, can be thought of as a symbolic

representation of the static yang numeral (7), (i.e. not the

number 7), generated by some means, say flipping three coins

at once, (where 1 stands for heads and 0 stands for tails) and

100 (or 001 or 010) the representation of a static yin (8) gener

ated similarly.

If three heads or tails are encountered (9 or 6), the hexagrams

are. then changing, yielding a distinct pair, as shown above.

Note that the above binary symbols do not form a true mathe

matical description of a binary number in the modern sense,

though the ancient scholars may have mysteriously inserted

implicit values of 1 or 0 just as in an ffiEE-type format which

may use an implicit 1 to represent floating point numbers.

Today the / Ching is widely used as an oracle as well as a

guide to the study of ancient Chinese characters and to the

myriad of philosophies inherent in it. It is the gem of Chinese

astrology, but has other aspects as well. It has a natural affinity

to computer programming, being a Boolean system.

For those who are interested, an unsolved problem, as far as

we know, is the generation of the so-called Shchutskii num

bers: numbers assigned to the hexagrams concerning the oc

currence of the four mantic forms: yuan, heng, li, and chen,

curiously extant in exactly half of the 64 hexagrams of the first

layer or wing of the text. There seems to be no formulae or

patterns as to why they occur in some hexagrams but not in

others. Indeed, the / Ching has changed much since its incep

tion, and in its incipient stage consisted of oral mantic tradi

tions that lost their original meanings through gradual philo

logical redefinition of the mantic formulae.

The intersection of the host of meanings derived from an in

quiry of the / Ching brings us onto the frontiers of artificial in

telligence. These great varieties of interpretation are employed

in certain psychoanalytic games which are user friendly, giv

ing them a sense of volition. For example, the DATA statements

in the Hexagram Program can be any statements, phrases or

symbols with repetition among the statements. Thus if the

computer picks data 128 it may be a "Morse Code beep", or

an animal noise, or a flashing screen together with a thunder

clap followed by some comforting words, and furthermore it

may generate one or more DATA statements with such notions.

The Program as Oracle: Seeding RND

There are many ways one may seed the RND function. One

way is to write a simple word processor that echoes one's

question on the video screen and adds the numerical value of

the ASCII string modulo 64 (or something similar)

I will not employ this method but will leave the program at the

mercy of arbitrary numeric input by the user to determine a

pseudo-random seed. Possibly, by adding in ti$ one may pro

duce a better pseudo-random routine. The theory of random

numbers is not a trivial matter and much can be done in this

respect.

The data statements are chosen according to the formula

126+2*n, where n=0,...,63 as is obvious in the program's DATA

listing, but is somewhat more involved as evidenced in the

hexagram-naming routine seen in the main body of the pro

gram (compare BASIC lines 1 through 42, particularly 25 and

26). I have decoded the appropriate hexagram corresponding

to the correct data number. I include the traditional numbering

together with the actual name of the hexagram corresponding

to that numbering in the data statements. Therefore, there are

actually two numbers for each hexagram.

To consult the oracle, run the basic program, and input any

two integers in response to the prompts. The larger the num

bers you use, the slower the program will run. That is all there

is to it. You play the "Strange Attractor". In deference to the

Taoist idea that a hexagram is the time, I include Ti$ next to

each line.

Of course, you may restructure the whole program (possibly

incorporating ideas from the "Animals" program) and open

files on a disk governed by the hexagram-naming routine, or

do whatever you wish. Even increase the number n to 127 to

create heptagrams, or to 255 for octagrams, and so on. You are

only limited by your imagination.

In summary, the hexagram-generating program is a computer

ized / Ching. Instead of flipping coins or using yarrow stalks

to generate hexagrams and then looking up a hexagram's asso

ciated text, everything could be provided in the computer pro

gram. This program took a long time to evolve, and many

hours of programming and research went into it. We sincerely

hope you enjoy it. My special thanks to Prof. Charles

Litzinger, Prof. Roy Leipnik, Ingeborg Comstock, James Cen-

ntanni, Dr. Ibrahim Mustafa and his wife Truus for their help

ful suggestions. All mistakes are my own, though I hope that

they are few and far between. Dr. Mustafa and I have written a

Text-to-Hexagram Processor in Pascal and Assembly Lan

guage. It employs a word processor with onscreen menu and

associated files. We would appreciate it if you would drop us a

card with your ideas concerning the improvement of the Hexa

gram program, as well as notes on bugs that you may find.

Please send all correspondence to:

CompuCell

P.O. Box 2493

Goleta,CA 93118

References

1) Blofeld, J., / Ching, E.P. Dutton Co. Inc., New York

2) Hesse, H., The Glass Bead Game,

Bantam Books Inc., New York

3) Jung, K., Man and his Symbols, Dell Publishing Co.

4) Kalgren, B., Sound and Symbol, Oxford University Press

Transactor 44 July 1988: Volume 9, Issue 1

5) Legge, J., / Ching, Causeway Books, New York

6) Shchutskii, I., Researches on the I Ching,

Princeton University Press

7) Wilhelm/Baynes, / Ching, Princeton University Press

8) Wilhelm, Eight Lectures on the I Ching,

Princeton University Press

9) Shao Yung, Plum Blossom Numerology

10) Wincupp, Rediscovering the I Ching,

Doubleday, New York

11) Transactor, Volume 7, Issue 2

12) Science News, 5/86

Listing: The Hexagram Program

(This program will run on all 8-bit Commodore computers).

KC

1 rest *** program by audry vilkas and james centanni * copyright 1986 ***

2 printchr$(147):dim w$(64,2):t=0:z=0:b$=chr$(192):b2$=b$+b$:b5$=b2$+b2$+b$

3 input"integer l";x

4 inpuf'integer 2";y:print:print

5 for x=l to 6

6 for l=int(rnd(O)*x) to int(rnd(l)*y)

7 i=int(rnd(l)*2)

8 j=int(rnd(l)*2)

9 k=int(rnd(l)*2)

10 next

11 if i=0 and j=0 and k=0 then s=l:p=2:goto 21

12 if i=l and j=l and k=l then s=2:p=l:goto 22

13 s=i+j+k

14 p=s

15 if i=0 and j=0 and k=l goto 23

16 if i=0 and j=l and k=0 goto 23

17 if i=l and j=0 and k=0 goto 23

18 if i=0 and j=l and k=l goto 24

19 if i=l and j=0 and k=l goto 24

20 if i=l and j=l and k=0 goto 24

21print"6 ";b2$;" ";b2$;" ";b5$;

22 print"9 ";b5$;

23 print"8 ";b2$;

24 print"7 ";b5$;

25 t=(2Ax)*s+t

26 z=(2Ax)*p+z

27 next x

29 for x=l to 64

30 for y=l to 2

31readw$(x,y)

32 next y:next x

33 for m=l to 64

34 if t=val(w$(m/l)) then ty$=w$(m,2)

35 if z=val(w$(m,l)) then z$=w$(m,2)

36 next m

37 print:print:print"data f:"t:print" hexagram: "ty$:print

38print"data jj:"z:printn hexagram: "z$

39 print:print:print"again? (y/n)"

40 get a$:if a$=n" then 40

41 if a$="y" then run

42 end

";b2$;"

";b2$;"

";b5$;"

";b2$;"

";b2$;"

";ti$:goto 25 :rem moving yin line

";ti$:goto 25 :rem moving yang line

;b2$;" ";ti$:goto 25 :rem static yin

";ti$:goto 25 :rem static yang

PM 126 data 126, 2 receptive*tenth month

IL 128 data 128, 23 splitting apart*ninth month

6A 130 data 130, 30 holding together*third month

LJ 132 data 132, 20 contemplation*fourth or fifth or sixth month

HE 134 data 134, 16 enthusiasm*second month

LM 136 data 136, 35 progress*first month

BF 138 data 138, 45 gathering together*second month (approx. march)

EC 140 data 140, 12 stagnation*seventh month

PM 142 data 142, 15 modesty*eleventh month

FB 144 data 144, 52 keeping still*ninth month (approx. oct.)

IF 146 data 146, 39 obstruction*tenth month (approx. nov.)

GE 148 data 148, 53 gradual development*twelfth month (approx. Jan.)

BC 150 data 150, 62 preponderence of the small*twelfth month (approx. Jan.)

AO 152 data 152, 56 wanderer*third month (approx. april)

BI 154 data 154, 31 influence'fourth month (approx. may)

MK 156 data 156, 33 retreat*sixth month (approx. July)

BN 158 data 158, 7 army*third month

IM 160 data 160, 4 folly*twelfth month

EA 162 data 162, 29 danger*tenth or eleventh or twelveth month

IB 164 data 164, 59 dispersion'fifth month

OF 166 data 166, 40 deliverance*first month (approx. feb.)

EH 168 data 168, 64 before completion*tenth month

FL 170 data 170, 47 oppression*eighth month

CG 172 data 172, 6 conflict*second month

OL 174 data 174, 46 pushing upwards*eleventh month

EF 176 data 176, 18 work on what is spoiled*second month

LK 178 data 178, 48 the well*fourth month

PJ 180 data 180, 57 gentleness*seventh month

NO 182 data 182, 32 duration*sixth month

BC 184 data 184, 50 the cauldron*fifth month

HC 186 data 186, 62 preponderance of the great*ninth month

FK 188 data 188, 44 coming to meet*fifth month

KM 190 data 190, 24 return*eleventh month

GD 192 data 192, 27 providing nourishment*tenth month

MP 194 data 194, 3 difficulty in the beginning*eleventh month

JE 196 data 196, 42 increase*twelfth month

OF 198 data 198, 51 shock*first or second or third month

AL 200 data 200, 21 biting through*ninth month

HO 202 data 202, 17 following*first month

IN 204 data 204, 25 innocence*eighth month

CA 206 data 206, 36 darkening of the light*eighth month

PH 208 data 208, 22 grace*seventh month

DI 210 data 210, 63 after completion*ninth month

EM 212 data 212, 37 family*fourth month

NH 214 data 214, 55 abundance*fifth month

FM 216 data 216, 30 the clinging*eighth month

MP 218 data 218, 49 revolution*seventh month

GF 220 data 220, 13 fellowship*sixth month

CG 222 data 222, 19 approach*twelfth month

DM 224 data 224, 41 decrease*sixth month

ME 226 data 226, 60 limitation'sixth month

BI 228 data 228, 61 inner truth*tenth month

KF 230 data 230, 54 marrying maiden*eighth month

FO 232 data 232, 38 opposition*eleventh month

CK 234 data 234, 58 joy*seventh or eighth or ninth month

EH 236 data 236, 10 conduct*fifth month

EK 238 data 238, 11 peace*first month

AI 240 data 240, 26 the taming power of the great*seventh month

LO 242 data 242, 5 waiting*first month

JA 244 data 244, 9 the taming power of the small*third month

ON 246 data 246, 34 great power*second month

FI 248 data 248, 14 great possessions*fourth month

NK 250 data 250, 43 breakthrough*third month

DE 252 data 252, 1 the creative'fourth month

Transactor 45 July 1988: Volume 9, Issue 1

C64 Hex File Editor

A toolfor checking and editing C64 binary files

by Bob Kodadek

After entering a very large machine language listing from a

major publication, I was faced with the dilemma of having a

seriously flawed program. Knowing that most programs are

thoroughly tested prior to publication, the errors were proba

bly mine. Obviously, I had made some serious mistakes in en

tering the hexadecimal listing, though I did use the checksum

utility provided.

Most machine language monitors for the C-64 use an eight

byte display line, but some hex program listings do not follow

this convention. Since this particular listing used 11 bytes per

line, using a machine language monitor to find the errors

proved impossible. My only recourse was to write a program

that would produce a hardcopy of the object file, identical to

the magazine listing, and recheck each byte for error. It took

many hours to review and edit the object code until all the er

rors had been corrected. Why did the checksum program allow

these errors?

The answer is that some entry programs produce a "don't

care" checksum. It doesn't care about the individual value of a

byte of data or its position in the line to be entered. The sum to

be checked is produced by adding all the data on a given line

to its line number. In BASIC it might look like this:

for i=l toll

read b

ck=ck+b

next

ck=ck+ln

While entering a program, if you happen to transpose two or

more data bytes, the line is still accepted. For example, if the

next two data bytes to be entered were 40 12, you could type

them in reverse order, as 12 40. The checksum would never

know the difference. It would also be acceptable to enter in

correct values if the total sum is still correct. For example, the

same two data bytes could be entered as 42 10. The checksum

says it's a match, but you and I know otherwise. The result is

usually a worthless program. To eliminate this problem we

need intelligent checksum programs that care about the data

received. There is no magic in producing a checksum program

that works, but many publications refuse to bother. Until they

do, this is a problem that we must live with. But now the prob

lem is no longer hopeless. There is help available.

The accompanying program, "Hex File Editor", has a func

tion for almost everyone. You may read, write, list, edit, or

print the hexadecimal contents of program or sequential files

using simple line numbers and a full screen editor. The num

ber of columns displayed is user definable, and access is pro

vided to the disk directory and command channel for easy file

maintenance operations. There is a help menu, and commands

for converting hex and decimal numbers. It can be used as a

fast file copier, to read/alter the load address of a program file,

or to convert PRG files to SEQ (or USR) files and vice versa.

The Command Menu

Hex File Editor provides a help menu that displays the

available commands, the load address of your file, and its cur

rent location in RAM. When operating in the command mode,

the program will display the prompt *>', and a blinking cursor.

Each command consists of a character and an argument where

indicated. Enter the command and press Return. Square brack

ets show optional arguments, while angle brackets indicate an

argument must be specified. After any disk operation, the error

channel is read and displayed. The available commands are as

follows:

E [line#] - EDIT: This command will display the line specified

and enter the full screen editor. All cursor controls function the

Transactor 46 July 1988: Volume 9, Issue 1

same as in the BASIC editor. Press Return to accept the present

line and display the next line. You may move the cursor to any

line on the screen. To exit this mode type an asterisk or other

non-hex character and press Return. Without an argument,

editing \yill start with the first line. Examples:

E 100 Enters edit mode at line 100.

E Enters edit mode at line 1.

L [line#] - LIST: If a line number is not specified, the program

will list from beginning to end, otherwise it will list from the

specified number. Press Shift to freeze the listing, Ctrl to slow,

and Stop to halt. Examples:

L 100 Lists from line 100.

L Lists from line 1.

P [line#] - PRINT: This is the same as list except output also

goes to a printer with device number 4. Press Shift to freeze or

Stop to exit.

D - DIRECTORY: Displays disk directory. Press the spacebar to

stop and start listing. Press Stop to abort.

R - READ FILE: Reads a disk file into memory. You will be

asked for the filename. Do not use quotation marks around the

filename. Enter no name to abort.

W - WRITE FILE: Writes a file to disk from the current data in

memory. If a file already exists, either scratch it or select a

new name. You will be asked for the file type and filename.

X - DISK COMMAND Send disk command. All commands are

supported. You will be asked for the command. For example,

to scratch a file enter s:filename.

- DEC-TO-HEX: Converts a decimal number (0-65535) to

hex. For example, entering #32768 gives a result of $8000.

$ - HEX-TO-DEC: Converts a hex number to decimal. Leading

zeroes are mandatory. For example, $00FF will yield 255.

C <#> - COLUMNS: Changes the number of columns dis

played. The default display is 8 columns. Only a decimal num

ber from 6 to 11 is accepted.

M - MENU: Use this to return to the command help menu at

any time.

Q - EXIT: Exit to BASIC. Performs the equivalent of a cold

start, SYS 64738.

Using The Program

Type in, save, and then run the basic loader program, listing

1. Hex File Editor is always waiting for the Return key to be

pressed. When this occurs in the Edit mode, the screen editor

begins to process the line the cursor is placed on. First it reads

in the line number and converts it to a two byte binary address

in memory. This determines where your data are going to be

placed in RAM. Then it converts each pair of screen characters

into their binary values, carefully checking for spaces along

the way. If it finds an error it prints a question mark at the end

of the line, stops all processing, and exits to the command

mode. If there is no error, the data are stored in memory.

To check a previously entered program, first use the read

command to place the file into memory and select the proper

number of columns for the display line. Do not include any

checksum characters in this calculation. You may then list to

the screen or printer and recheck each line with its original

listing. On very large program listings, this can be done at

your leisure. Just mark the listing to show where you left off.

Only check the pairs of characters that are the actual machine

code in each line of the original listing. The last one or two

pairs of characters are usually the checksum.

Mark each line where an error is found. After the entire pro

gram has been checked, use the Edit mode to correct the bad

lines, then save the program on another disk using the WRITE

command. To be on the safe side, don't scratch the original

version until you are sure all the bugs, are out and you have a

working copy.

To Copy Programs Or Files

As a program or sequential file copier, the program uses the

RAM area ^048-49152 ($0800-$C000) for storage. This allows

for a program length of over 47,000 bytes, about 184 blocks of

disk space. To do a copy, perform the READ and WRITE opera

tions from the menu. Unlike other copiers, you only have to

read the source file once and can specify a different filename

when doing the write. You may then make as many copies as

needed, very quickly, by repeating the WRITE command.

To convert a program file to a sequential file, or vice versa,

just make a copy. When asked for the file type, enter T' (PRG),

'S' (SEQ), or 'U' (USR).

Changing The Load Address

When listing program files, the first two bytes in line number

one will be the load address in low-byte, high-byte format. By

changing this address and writing a new file, you can relocate

a program that uses the ,8,1 syntax. This can be used on sprite

data, hi-res screens, or relocatable machine language pro

grams. First read in the file and use the DEC-TO-HEX command

to calculate a two byte hex address. Use the EDIT command to

alter the two bytes and then save the new file using write. .

Remember, when referring to a hex address such as $0800

(2048), the first two characters represent the high byte and the

last two are the low byte. In 6502-6510 machine code an ad

dress will appear low byte first. In other words the two byte

load address in the above example would appear in line num

ber one as 00 (low byte) and then 08 (high byte).

Transactor
July 1988: Volume 9, Issue!

Listing 1: HexecLgen

HH 10 rem c64 hex file editor

EO 20 rem (c) 1987 bob kodadek

JH 30 rem 3164 surrey lane

IF 40 rem aston, pa 19014

AF 50 rem

JJ 60 ml=49152: print "reading..."

LF 70 for i=0 to 1510

GE 80 read by: poke ml+i,by: ck=ck+by

OF 90 next

FE 100 if ckOl80036 then print "data error!": end

BM 110 sys ml

MO 120 :

CJ 1000 data 32, 238, 196, 162, 0, 134, 251, 132

OP 1010 data 252, 142, 0, 8, 142, 1, 8, 142

IP 1020 data 134, 2, 169, 15, 141, 32, 208, 141

FF 1030 data 33, 208, 169, 147, 32, 210, 255, 162

OB 1040 data 2, 160, 12, 24, 32, 240, 255, 32

FJ 1050 data 255, 195, 72, 69, 88, 32, 70, 73
ML 1060 data 76, 69, 32, 69, 68, 73, 84, 79

IF 1070 data 82, 13, 13, 13, 32, 32, 77, 69

PH 1080 data 78, 85, 32, 32, 32, 32, 40, 67

CJ 1090 data 41, 32, 49, 57, 56, 55, 32, 66

GP 1100 data 79, 66, 32, 75, 79, 68, 65, 68

KN 1110 data 69, 75, 13, 13, 69, 45, 69, 68

EN 1120 data 73, 84, 13, 76, 45, 76, 73, 83

HL 1130 data 84, 13, 80, 45, 80, 82, 73, 78

GO 1140 data 84, 13, 68, 45, 68, 73, 82, 69

JA 1150 data 67, 84, 79, 82, 89, 13, 82, 45

LO 1160 data 82, 69, 65, 68, 32, 70, 73, 76

HB 1170 data 69, 13, 87, 45, 87, 82, 73, 84

FC 1180 data 69, 32, 70, 73, 76, 69, 13, 88

GC 1190 data 45, 68, 73, 83, 75, 32, 67, 79

FD 1200 data 77, 77, 65, 78, 68, 13, 35, 45

JE 1210 data 68, 69, 67, 32, 84, 79, 32, 72

NE 1220 data 69, 88, 13, 36, 45, 72, 69, 88

ED 1230 data 32, 84, 79, 32, 68, 69, 67, 13

JH 1240 data 67, 45, 67, 79, 76, 85, 77, 78

NG 1250 data 83, 13, 77, 45, 77, 69, 78, 85

KA 1260 data 13, 81, 45, 69, 88, 73, 84, 0

FC 1270 data 162, 18, 160, 20, 24, 32, 240, 255

PJ 1280 data 32, 255, 195, 76, 79, 65, 68, 32

DK 1290 data 65, 68, 68, 82, 69, 83, 83, 58

HK 1300 data 36, 0, 174, 0, 8, 173, 1, 8

KP 1310 data 32, 82, 196, 162, 19, 160, 20, 24

OG 1320 data 32, 240, 255, 32, 255, 195, 79, 66

ML 1330 data 74, 69, 67, 84, 58, 36, 0, 162

EM 1340 data 0, 169, 8, 32, 82, 196, 32, 255

MK 1350 data 195, 45, 36, 0, 166, 251, .165, 252

FN 1360 data 32, 82, 196, 32, 179, 197, 169, 240

ME 1370 data 133, 130, 169, 239, 133, 131, 169, 13

LJ 1380 data 32, 210, 255, 162, 38, 164, 211, 169

CK 1390 data 32, 145, 209, 200, 202, 208, 250, 169

DH 1400 data 62, 32, 210, 255, 32, 247, 196, 32

LE 1410 data 115, 0, 217, 99, 193, 240, 8, 200

DE 1420 data 192, 12,208,246, 76, 35,193,152

MO 1430 data 10, 170, 189, 112, 193, 72, 189, 111

MK 1440 data 193, 72, 96, 82, 87, 76, 69, 88

BI 1450 data 68, 77, 81, 80, 35, 36, 67, 135

ED 1460 data 193, 11, 194, 141, 194, 99, 195, 163

BH 1470 data 194, 239, 194, 17, 192, 206, 194, 97

FC 1480 data 194, 217, 195, 202, 195, 235, 195, 0

Lfl 1490 data 32, 201, 196, 32, 179, 196, 32, 238

KL 1500 data 196, 162, 3, 32, 198, 255, 160, 0

FF 1510 data 32, 207, 255, 145, 253, 32, 5, 194

HG 1520 data 32, 183, 255, 141, 204, 197, 201, 64

85,

2,

89,

47,

32,

IB 1530 data 240,

OD 1540 data 152,

1550 data 192,

1560 data 165,

1570 data 186,

1580 data 32,

1590 data 32,

1600 data 210,

1610 data 32,

1620 data 255,

1630 data 82,

1640 data

1650 data

1660 data

1670 data

1680 data

1690 data 196,

1700 data 2,

1710 data 179,

1720 data 238,

1730 data 197,

1740 data 240,

1750 data 255,

1760 data 196,

EG 1770 data 255,

BI 1780 data 32,

1790 data 89,

1800 data 13,

1810 data 228,

1820 data 197,

1830 data 141,

1840 data 196,

1850 data 79,

1860 data 32,

1870 data 169,

1880 data 0,

1890 data 255,

1900 data 255,

1910 data 32,

1920 data 228,

1930 data 208,

1940 data 169,

1950 data 255,

1960 data 165,

PK 1970 data 150,

JD 1980 data 132,

MN 1990 data 165,

KC 2000 data 164,

EL 2010 data 196,

CI 2020 data 255,

LJ 2030 data 201,

DB 2040 data 225,

2050 data 232,

2060 data 240,

2070 data 255,

2080 data 76,

2090 data 13,

2100 data . 34,

LG 2110 data 248,

2120 data 13,

GF 2130 data 243,

JE 2140 data 123,

2150 data 45,

2160 data. 153,

2170 data 205,

FL 2180 data 169,

2190 data 160,

GL 2200 data 204,

LH

JH

MM

IC

DI

GN

OJ

HM

OJ

AH

MN

PB

GJ

GN

KG

JM

AH

HP

MO

LE

MI

OD

FB

IE

MP

EA

IB

EK

MM

, EH

FD

BM

LP

DI

AM

ME

GL

PP

HD

LD

MG

KD

FI

8, 173,

193, 145,

3, 208,

254, 133,

32, 180,

150, 255,

165, 255,

255, 76,

171, 255,

76, 18,

69, 83,

82, 78,

230, 254,

80, 69,

85, 41,

115, 0,

162, 3,

200, 202,

196, 162,

196, 169,

251, 208,

13, 160,

32, 5,

193, 169,

169, 96,

255, 195,

63, 32,

32, 172,

255, 201,

32, 168,

2, 201,

76, 145,

77, 77,

247, 196,

111, 133,

185, 0,

200, 208,

195, 13,

40, 89,

255, 201,

245, 76,

1, 162,

169, 96,

186, 32,

255, 169,

183, 32,

255, 133,

183, 136,

32, 205,

32, 165,

0, 240,

255, 240,

201, 32,

251, 208,

160, 2,

35, 193,

32, 210,

169, 157,

169, 0,

240, 6,

162, 255,

32, 1,

208, 21,

0, 1,

197, 240,

63, 32,

0, 185,

205, 197,

204, 197,

253, 152,

249, 165,

252, 32,

255, 169,

169, 13,

201, 13,

216, 193,

32, 244,

192, 32,

83, 32,

0, 96,

96, 32,

32, 40,

58, 0,

141, 229,

189, 227,

16, 246,

3, 32,

54, 133,

6, 165,

0, 177,

194, 76,

4, 133,

133, 185,

13, 82,

0, 32,

196, 32,

13, 208,

197, 32,

1, 240,

194, 32,

65, 78,

165, 186,

185, 32,

2, 240,

245, 76,

69, 88,

47, 78,

78, 240,

226, 252,

99, 160,

133, 185,

180, 255,

0, 133,

165, 255,

196, 164,

208, 235,

189, 169,

255, 166,

24, 32,

25, 32,

208, 228,

221, 169,

208, 179,

36, 32,

255, 32,

32, 210,

168, 32,

153, 0,

160, 1,

197, 32,

160, 0,

32, 115,

12, 201,

210, 255,

0, 1,

208, 245,

208, 21, 76

200, 145, 253

253, 133, 251

179, 197, 165

111, 133, 185

32, 210, 255

240, 6, 32

32, 210, 255

193, 32, 207

255, 195, 80

82, 69, 84

230, 253, 208

255, 195, 84

80, 47, 83

32, 247, 196

197, 32, 201

197, 153, 0

132, 183, 32

201, 255, 32

1, 165, 253

254, 197, 252

253, 32, 168

70, 194, 76

186, 32, 177

32, 147, 255

69, 65, 68

244, 193, 169

168, 197, 32

246, 32, 1

29, 196, 173

249, 32, 109

255, 195, 67

68, 58, 0

32, 177, 255

147, 255, 160

6, 32, 168

196, 193, 32

73, 84, 63

41, 0, 32

7, 201, 89

76, 18, 192

195, 32, 189

32, 213, 243

165, 185, 32

144, 160, 3

133, 195, 32

144, 208, 61

166, 195, 165

32, 32, 210

144, 208, 37

210, 255, 32

228, 255, 240

32, 228, 255

13, 32, 210

32, 66, 246

1, 197, 169

29, 196, 160

255, 136, 16

93, 241, 201

2, 200, 208

134, 122, 132

121, 0, 201

32, 59, 197

0, 200, 204

32, 240, 237

76, 35, 193

145, 253, 200

32, 109, 196

Transactor 48 July 1988: Volume 9, Issue 1

DP 2210 data 76, 103, 195, 32, 65, 197, 168, 32

NH 2220 data 65, 197, 170, 152, 32, 205, 189, 76

6P 2230 data 35, 193, 32, 114, 197, 169, 36, 32

CP 2240 data 210, 255, 166, 20, 165, 21, 32, 82

06 2250 data 196, 76, 35, 193, 32, 114, 197, 165

JO 2260 data 20, 201, 6, 144, 7, 201, 12, 176

LO 2270 data 3, 141, 205, 197, 76, 35, 193, 104

JN 2280 data 133, 34, 104, 133, 35, 208, 3, 32

PK 2290 data 210, 255, 160, 0, 230, 34, 208, 2

GJ 2300 data 230, 35, 177, 34, 208, 241, 165, 35

PE 2310 data 72, 165, 34, 72, 96, 32, 151, 196

ON 2320 data 160, 0, 185, 206, 197, 240, 6, 32

JG 2330 data 172, 196, 200, 208, 245, 169, 45, 32

LE 2340 data 172, 196, 160, 0, 140, 203, 197, 177

HH 2350 data 253, 32, 86, 196, 169, 32, 32, 172

61 2360 data 196, 238, 203, 197, 172, 203, 197, 204

06 2370 data 205, 197, 208, 235, 169, 13, 32, 172

NI 2380 data 196, 96, 32, 86, 196, 138, 72, 74

NN 2390 data 74, 74, 74, 32, 97, 196, 104, 41

JB 2400 data 15, 9, 48, 201, 58, 144, 2, 105

FJ 2410 data 6, 32, 172, 196, 96, 162, 3, 254

AL 2420 data 206, 197, 189, 206, 197, 201, 58, 208

IJ 2430 data 8,169, 48,157,206,197,202, 16

OJ 2440 data 238, 238, 201, 197, 208, 3, 238, 202

PN 2450 data 197, 165, 253, 109, 205, 197, 133, 253

LK 2460 data 165, 254, 105, 0, 133, 254, 96, 56

EN 2470 data 165, 253, 229, 251, 133, 81, 165, 254

CN 2480 data 229, 252, 5, 81, 176, 1, 96, 104

LN 2490 data 104, 76, 35, 193, 32, 168, 255, 32

01 2500 data 210, 255, 96, 165, 183, 162, 0, 160

C6 2510 data 2, 32, 189, 255, 169, 3, 162, 8

CA 2520 data 160, 3, 32, 186, 255, 32, 192, 255

C6 2530 data 96, 32, 255, 195, 70, 73, 76, 69

BD 2540 data 32, 78, 65, 77, 69, 58, 0, 32

JB 2550 data 247, 196, 185, 0, 2, 240, 3, 200

DE 2560 data 208, 248, 132, 183, 164, 183, 208, 5

FO 2570 data 104, 104, 76, 18, 192, 96, 162, 0

JB 2580 data 160, 8, 134, 253, 132, 254, 96, 32

JO 2590 data 96, 165, 134, 122, 132, 123, 160, 0

CD 2600 data 96, 169, 1, 141, 201, 197, 169, 0

FN 2610 data 141, 202, 197, 32, 238, 196, 169, 48

FK 2620 data 160, 3, 153, 206, 197, 136, 16, 250

6L 2630 data 238, 209, 197, 32, 114, 197, 165, 20

ND 2640 data 208, 4,165, 21,240, 20,173,201

AB 2650 data 197, 197, 20, 208, 7, 173, 202, 197

OI 2660 data 197, 21, 240, 6, 32, 109, 196, 76

FL 2670 data 38, 197, 96, 169, 234, 133, 130, 133

IK 2680 data 131, 32, 115, 0, 32, 95, 197, 142

60 2690 data 199, 197, 32, 115, 0, 32, 95, 197

MN 2700 data 142, 200, 197, 173, 199, 197, 10, 10

PJ 2710 data 10, 10, 24, 109, 200, 197, 96, 162

K6 2720 data 0, 221, 211, 197, 240, 248, 232, 224

DB 2730 data 16, 208, 246, 104, 104, 104, 104, 76

FM 2740 data 176, 195, 162, 0, 134, 20, 134, 21

HM 2750 data 32, 115, 0, 176, 42, 233, 47, 133

MM 2760 data 7, 165, 21, 133, 34, 165, 20, 10

LO 2770 data 38, 34, 10, 38, 34, 101, 20, 133

KN 2780 data 20, 165, 34, 101, 21, 133, 21, 6

NN 2790 data 20, 38, 21, 165, 20, 101, 7, 133

NG 2800 data 20, 144, 213, 230, 21, 208, 209, 96

KE 2810 data 32, 225, 255, 208, 5, 104, 104, 76

JD 2820 data 35, 193, 96, 32, 174, 255, 32,. 204

DC 2830 data 255, 165, 184, 32, 195, 255, 169, 8

PH 2840 data 133, 186, 169, 55, 133, 1, 96, 0

AE 2850 data 0, 0, 0, 0, 0, 8, 48, 48

KG 2860 data 48, 48, 0, 48, 49, 50, 51, 52

FK 2870 data 53, 54, 55, 56, 57, 65, 66, 67

JC 2880 data 68, 69, 70, 87, 44, 80, 44

Listing 2: Hexed.src

* c64

* (c)

*—.....

hex file editor

1987 bob kodadek

3164 surrey lane

aston, pa 19014

*

*

*

*

*

* merlin-128 macro-assembler *

chrget

chrgot

endadr

ramptr

temp

flen

buffer

buf

sa

second

tksa

acptr

ciout

untlk

unlsn

listen

talk

readst

setlfs

setnam

open

close

chkin

chkout

clrchn

chrin

chrout

stop

getin

plot

= $73

= $79

= $fb

= $fd

= $51

= $b7

= $0100

= $0200 '
= $0800

= $££93

= $££96

= $ffa5

= $ffa8 '

= $ffab

= $ffae

= $ffbl

= $ffb4

= $ffl>7

= $ffba

= $ffbd

= $ffc0

= $ffc3

= $ffc6

= $ffc9

= $ffcc

= $ffcf

= $ffd2

= $ffel

= $ffe4

= $fffO

/character get routine

/get character again

/pointer:highest address

/pointer:to ram

/temporary usage

/filename length

/work area

/system input buffer

/start of usable ram

/kernal equates

* note: labels beginning with "]" are variables

* and are used for backward branching only.

org $c000

start jsr setpnt

ldx §0

stx endadr

sty endadr+1

stx sa

stx sa+1

stx $0286

help Ida #15

sta $d020

sta $dO21

Ida #$93

jsr chrout

ldx |2

ldy §12

clc

jsr plot

jsr primm

txt 'hex file editor'OdOdOd

txt ' menu (c) 1987 bob kodadek'OdOd

txt 'e-edit'0d

txt '1-list'Od

txt 'p-print'0d

txt 'd-directory'0d

txt 'r-readfile'0d

txt 'w-write file'Od

txt 'x-disk command'Od

txt '#-dectohex'0d

txt '$-hex to dec'Od

txt 'c-columns'0d

txt 'm-menu'0d

txt 'q-exit'00

/set ramptr

/zero end address

/zero load address

/black for text color

/color code for grey

/set border color

/set background color

;clr screen

/locate cursor

/print menu screen

ctor
49 July 1988: Volume 9, Issue 1

ldx #18

ldy #20

clc

jsr plot

jsr primm

txt 'load address:$

ldxsa

Ida sa+1

jsr printhex

ldx #19

ldy #20

clc

jsr plot

jsr primm

txt 'object:$'00

ldx #<sa

Ida #>sa

jsr printhex

jsr primm

txt '-$'00

ldx endadr

Ida endadr+1

jsr printhex

* get command and execute

getcom jsr restore

Ida #$f0

sta $82

Ida #$ef

sta $83

Ida #$0d

jsr chrout

ldx 138

ldy $d3

Ida #$20

]erase sta ($dl),y

iny

dex

bne]erase

Ida #'>'

jsr chrout

jsr input

jsr chrget

]loop cmp table, y

beq docom

iny

cpy #$0c

bne]loop

jmp getcom

docom tya

asl

tax

Ida adr+l,x

pha

Ida adr,x

pha

rts

table asc 'rwlexdmqp#$c'

adr da read-1

da write-1

da list-1

da edit-1

da diskc-1

da direct-1

da help-1

da quit-1

da plist-1

da dechex-1

da hexdec-1

da change-1

hex 00

*** command routines ***

read = *

* reads prg, seq, or usr file

jsr fname

jsr setlog

Transactor

/locate cursor

'00

/print load address

/locate cursor

/print start address

/print ending address

/restore channels

/chrget restored always

/print a cr

/erase command line

/print command prompt

/get input

/read character

/compare to command table

/if found, do it

/else, get more

/tested all?

/not legal command

/get index into a

/mulitply x 2

/look up address

/push it on stack

/jump to command routine

/read file

/write file

/list to screen

/full screen editor

/send disk command

/read directory

/produce main menu

/return to basic

/list to printer

/convert decimal to hex

/convert hex to decimal

/select number of columns

into ram

/input filename

/set logical file

]loop

eof

]loop r

rderr

Jget

enderr

prrt

incpnt

cl

write =

* writes

]get

]loop

]loop

50

jsr setpnt

ldx #$03

jsr chkin

ldy #$00

jsr chrin

sta (ramptr),y

jsr incpnt

jsr readst

sta erbyt

cmp #64

beq eof

Ida erbyt

bne rderr

jmp]loop

sta (ramptr),y

tya

iny

sta (ramptr),y

cpy #3

bne]loop

Ida ramptr

sta endadr

Ida ramptr+1

sta endadr+1

jsr restore

lda$ba

jsr talk

Ida #$6f

sta $b9

jsr tksa

Ida #$0d

jsr chrout

jsr acptr

cmp#$0d

beq enderr

jsr chrout

jmp]get

jsr chrout

jsr untlk

jsr prrt

jsr chrin

jmp help

jsr primm

txt 'press retun

rts

inc ramptr

bne rl

inc ramptr+1

rts

*

a binary file in

jsr primm

txt 'type (p/s/u)

jsr input

jsr chrget

sta ftyp

jsr fname

ldx #$03

Ida wr,x

sta buf,y

iny

dex

bpl]loop

sty flen

jsr setlog

ldx #$03

jsr chkout

jsr setpnt

Ida #$36

sta $01

Ida ramptr

cmp endadr

bne wl

Ida ramptr+1

/point to $0800

/open input channel

/input character

'store in ram

/increment ramptr

/read status byte

/save it

;test for eol

/test for error

/read error channel

/store eof marker ($40)

;y=0

and a few zero bytes

/move ramptr to endadr

-;clear channels

/read error channel

/device 8 talks

/from command channel

/print a cr

/input serial byte

/test for cr

/print the byte

/print the cr

/stop talking

/prompt "press return"

/wait for <return>

/display menu

i'00

/increment ram pointer

prg, seq, or usr format

:'00

/get user's file type

/save it

/get filename

/append file type

/set file length

/set up logical file

/open output channel

/point to start ($0800)

/basic roms out

/test for end

July 1988: Volume 9, Issue 1

wl

w2

plist =

* lists

]loop

list =

* list

]loop

wait

j • .l- .»

ulSJCC -

* sends

]loop

dl .

quit =

cmp endadr+1

beq w2

ldy #$00

Ida (ramptr),y ,

jsr ciout

jsr incpnt

jmp]loop

jmp rderr

*

get ram byte

/output byte

/increment ramptr

/read error channel

to screen and printer

Ida #4

sta $ba

jsr listen

Ida #$60

sta $b9

jsr second

jsr primm

dfb 13

txt 'ready? '00

jsr prrt

Ida #$0d

jsr senchr

jsr ckstop

jsr $ffe4

cmp#$0d

bne]loop

*

/set device to #4

/printer listens

/secondary address 0

/prompt "ready?"

/prompt "press return"

/print a cr

/test stop key

/wait for <return>

to screen and a listener, if present

jsr calcln /calculate line number

jsr ckstop

jsr line

Ida 653

cmp #$01

oeq wait

jsr indn

jmp]loop

/check stop key

/output line

/check shift key status

/freeze listing if active

/increment line number

/do more

user command to drive

jsr primm

txt 'command:'00

jsr input

Ida $ba

jsr listen

Ida #$6f

sta $b9

jsr second
m j ilAAA

ldy #$00

Ida buf,y

beqdl

jsr ciout

iny

bne]loop

jmp rderr

*

* routine to exit back to

Jloop

qi

direct

jsr primm

db 13

txt 'exit? (y/n)

jsr getin

cmp#'n'

beqql

cmp#'y'

bne jloop

jmp 64738

jmp help

= *

* displays directory from

Ida #$01

ldx #<file

ldy #>file

jsr setnam

Transactor

/prompt user

/get command

/device 8 listens

/command channel

/read input buffer

/send command string

/read error channel

basic

/prompt

00

/getkey

/system reset

/or return to menu

current drive

/setup filename "$"

get

]loop

]wait

newln

dout

file

edit =

* full

el

]loopl

]get

gi

]loop2

51

Ida #$60

sta $b9

jsr $£3d5

Ida $ba /device 8 talks

jsr talk

Ida $b9

jsr tksa

Ida #$00 /clear status byte

sta $90

ldy #$03

sty $b7

jsr acptr /get # blocks in file

sta $c3 /save low byte

jsr acptr

sta $c4 /and high byte

ldy $90 /test status byte

bne dout ;if not 0 then exit

ldy $b7
A

dey ■

bne get

ldx $c3

Ida $c4

jsr $bdcd /print # blocks

Ida #$20 /print a space

jsr chrout

jsr acptr /read filename

ldx $90

bne dout /test status

cmp #$00 /test for new line

beq newln

jsr chrout /print a character

jsr stop /test stop key

beq dout

jsr getin /get keypress
\\Aff 1 1 /\A¥\Deq jloop

cmp #$20 /test for space bar

bne]loop /freeze if pressed

jsr getin /wait for keypress

beq]wait

bne jloop /continue listing
Ida #$0d /print cr

jsr chrout

ldy #$02

bne get /go do more

jsr $f642 /restore channels

jmp getcom /next command

asc '$'

*

screen editor routine

jsr calcln /calculate line number

Ida #$0d /print a cr

jsr chrout

jsr line /print the line

ldy #34

Ida #157 /reposition cursor

jsr chrout

dey

bpl]loopl

Ida #$00 /input screen line

tay .

jsr $fl5d

cmp #$0d

beqgl

sta buf,y /save in buffer

iny

bne]get

ldx #$ff /point chrget to buf

ldy #$01

stx $7a

sty $7b

jsr calcln /read line number

jsr chrgot /get last char read

cmp #'-' /compare to "-"

bne nothex /exit if not

ldy #$00

jsr edhex /editor hex asc to binary

July 1988: Volume 9, Issue 1

sta buffer,y

jsr chrget

iny

cpy col

beq skip

emp #$20

beq]loop2

nothex Ida #'?'

jsr chrout

jmp getcom

* if no errors, now store the

skip ldy #0

]loop3 Ida buffer,y

/save binary

/get next character

/last column?

/then skip test

/else, must be a space

/data error! exit

; data in ram

/get binary value

sta (ramptr),y /store it in ram

iny

cpy col

bne]loop3

jsr incln

jmp el

hexdec = *

* outputs decimal from ascii

jsr rdhex

tay

jsr rdhex

tax

tya

jsr $bdcd

jmp cjetcom

dechex = *

* outputs hexadecimal number

jsr ascint

Ida #'$'

jsr chrout

ldx $14

Ida $15

jsr printhex

jmp getcom

change = *

* user sets number of columns

jsr ascint

Ida $14

emp #$06

bccchl

emp #12

bes chl

sta col

chl jmp getcom

**************** subroutines

/done all columns?

/increment line number

hexadecimal input

/get high byte

/save it

/get low byte

/print in decimal

/next command

from ascii decimal input

;asc to integer

/print "$"

/get low byte integer

/then high byte

/output number in hex

/get next command

3 displayed (6-11)

;asc to integer

/get low byte

;<6 columns?

/then exit

;=>12 columns?

/also exit

/store if 6-11

/get next command

* c-64 print immediate routine allows imbedded string

primm pla

sta $22

pla

sta $23

bne nxtchar

pchr jsr chrout

nxtchar ldy #0

inc $22

bne nc

inc $23

nc Ida ($22),y

bne pchr

Ida $23

pha

Ida $22

pha

rts

/remove return address

/save it as current pc

/branch always

/increment position

/get text

/print until #$00

/new return address

/get next instruction

* outputs line to current channel or listener

line jsr tstend

ldy #$00

Jloop Ida linum,y

beq 11

Transactor

/test for last line

11

]jloop

* output

printhex

prbyte

prnib

phex

jco

incln

]loop

inl

in2

tstend

tsl

senchr

setlog

52

jsr senchr

iny

bne jloop

Ida #'-'

jsr senchr

ldy #0

sty cnt

Ida (ramptr),y

jsr. prbyte

Ida #$20

jsr senchr

inc cnt

ldy cnt

cpy col

bne]jloop

Ida #$0d

jsr senchr

rts

hex string from two

jsr prbyte

txa

pha

lsr

lsr

lsr

lsr

jsr phex

pla

and #$0f

ora #$30

emp #$3a

bit jco

adc #6

jsr senchr
r+e
itS

ldx #$03

inc linum,x

Ida linum,x

emp #$3a

bne inl

Ida #$30

sta linum,x

dex

bpl jloop

inc lnum

bne in2

inc lnum+1

Ida ramptr

adc col

sta ramptr

Ida ramptr+1

adc #$00

sta ramptr+1

rts

sec

Ida ramptr

sbc endadr

sta temp

Ida ramptr+1

sbc endadr+1

ora temp

bes tsl

rts

pla

pla

jmp getcom

jsr ciout

jsr chrout
rfo
its

Ida flen

ldx #$00

ldy #$02

jsr setnam

/send line number

/zero counter

/read binary in ram

/output as hex

/output space

/increment counter

/compare to #columns

/output cr

byte integer

/print a reg

/print x reg

/save a

/shift high nibble down

/print it

/pull original byte

/mask low nibble

/decimal digit?

/branch if so

/add offset for hex

/increments line number

/update ram pointer

/test for highest address

/double-byte comparison

;stop if greater

/else ok

/send byte to listener

/send byte to screen

/open logical file

July 1988: Volume 9, Issue 1

fname

]loop

out

ri

setpnt

input

* this]

Ida #$03

ldx #$08

ldy #$03

jsr setlfs

jsr open

rts

jsr primm /prompt

txt 'file name:'00

jsr input /get file name

Ida buf,y /get length

beq out

iny

bne]loop

sty flen /save it

ldy flen /test for no file name

bne fl

pla

pla

jmp help
rfo
rts

ldx #<sa /reset ram pointer

ldy #>sa

stx ramptr

sty ramptr+1

rts

jsr $a560 /get user input

stx $7a /point chrget

sty $7b

ldy #0

rts

routine translates an ascii line number into

* the needed location in ram and sets the pointer

* (ramptr) accordingly through incln.

calcln

]loop

call

cal2

cal3

* this

* first

Ida #$01 /set integer line# to 1

sta lnum

Ida #$00

sta lnum+1

jsr setpnt /set ramptr to $0800

Ida #$30 /set asc line# to 0001

ldy #$03

sta linum,y

dey

bpl]loop

inc linum+3

jsr ascint /get integer

Ida $14 /greater than 0?

bne call /yes, continue

Ida $15 /else, exit

beq cal3

Ida lnum /get line number

cmp $14 /test low byte

bne cal2 /same?

Ida lnum+1

cmp $15 /test high byte

beq cal3 /same?

jsr incln /increment #& build string

jmp call

rts

routine translates ascii hex into binary, the

entry point modifies the chrget routine to

* accept space characters for the screen editor.

edhex

rdhex

Ida #$ea /modify chrget for edit

sta $82 /store two nop instr.
. A At

sta $83

jsr chrget /get ascii character

jsr tsthex /test for hex

stx hexl /store it

jsr chrget /get next char,

jsr tsthex /test for hex

stx hexl+1 /store it

Ida hexl /get first value

asl /multiply by 16

asl

Transactor

gothex

tsthex

]loop

* this i

* as in

ascint

]loop

asl

ckstop

,

nostop

restore

hexl

lnum

cnt

erbyt

col

linum

hex

wr

ftyp

53

asl

asl

clc

adc hexl+1

rts

ldx #$00

cmp hex,x

beq gothex

inx

cpx #$10

bne jloop

pla

pla

pla

pla

jmp nothex

/add second value

/now we have binary

/test for hex 0-f

/compare to table

;x reg returns 0-15

/else, do more

/any more left?

/not found

/pull 2 addresses

/report error!

routine converts ascii into a two-byte integer

the basic rom routine, but handles 0-65535.

ldx #$00

stx $14

stx $15

jsr chrget

bcs asl

sbc #$2f

sta $07

Ida $15

sta $22

Ida $14
asl

rol $22

asl

rol $22

adc $14

sta $14

Ida $22

adc $15

sta $15

asl $14

rol $15

Ida $14

adc $07

sta $14

bcc]loop

inc $15

bne jloop
rts

jsr stop

bne nostop

pla

pla
*

jmp getcom

rts

jsr unlsn

jsr drchn

Ida$b8

jsr close

Ida #$08

sta $ba

Ida #$37

fita $01

T+flitS

ds 2

ds 2

ds 1

ds 1

db 8

asc '0000'00

asc '0123456789'

asc 'abedef

asc 'w,'

asc 'p,'

__———.————

/get asc character

/set when not asc numeric

/includes carry

/save remainder (0-9)

/build two byte integer

/temp area

/stop key pressed?

/if not, then continue

/else remove return

/address from stack

/and jump to command

/routine.

/unlisten device

/dear channels

/get file number

/close logical file

/set device to 8

/basic rom's in

/storage

/holds line number

/counter

/holds status byte

/holds # columns

;asc line #

/file direction

/file type

July 1988: Volume 9, Issue 1

On the C Side

A Cfollow-up, and some REU notes

by Adrian Pepper

Adrian actually sent this article to us as a letter, but rather

than risk it possibly being overlooked in the midst of the Let

ters section, we have decided to present it in this form. The

programs he refers to near the end of the article will be in

cluded on the Transactor diskfor this issue.

I have been an avid reader of Transactor for several years, and

find it the most informative magazine around for serious users

of Commodore computers. I was especially glad to see two ar

ticles directly relating to the user of the Power C compiler and

environment in Volume 8, Issue 5. Unless playing a game, my

Commodore 64 spends most of its time running in this envi

ronment. (I may be a serious user, but I'm not dour.)

The explanation of the object file format used by Power C was

especially good. Both articles, however, show what a lack of

communication there can be in the hobbyist computing field.

Library Maintenance and Compatible Assembly

First, "Maintaining the Power C Library", by Eric Giguere,

while a very precise, well written article, actually describes a

BASIC program that duplicates the functionality of an existing

C program, "lib.c", which is included in source form on the

Power C distribution disk! It can easily be compiled and used

within the Power C Shell, obviating the need for flipping be

tween the Power C and BASIC environments. Perhaps for some

readers, though, the BASIC version is more meaningful. And,

although I like C, I must admit a useful C program does not

fill pages as efficiently as the equivalent basic.

Second, David Godshall's "The Link Between C and Assem

bly" verifies and documents in one place several things I had

run across before, and tills in a few details I wasn't sure about.

But David's wish has been granted! For well over a year now,

C/ASSM Revision 2.0 has been available. It's a public domain C

program, from Mark R. Rinfret of Portsmouth, RI, and Ray L.

Zarling, of Turlock, CA, that was derived from a PD generic

6502 assembler contributed to USENET by J.H. van Ornum of

AT&T Bell Laboratories. Mark Rinfret and Ray Zarling added

the necessary "back-end" to generate Power C object files.

The progam and source are available on the Pro-Line Power C

BBS, as "cassm.arc". Another program, "ra", for "Reverse

Transactor
54

Assembler", is also available there; it translates Power C ob

ject files into source (almost) suitable for this assembler.

Now, however, Spinnaker (who market Power C) are selling a

different assembler package, Power Assembler, which is very

good and produces Power C compatible object files. It is as

reasonably priced as Power C itself ($40-60 Cdn. in Toronto).

Character Promotion

There is also at least one technical error in David's article.

Many people do not understand that expressions in the C lan

guage involving character variables {chars) are actually inte

ger expressions. When a char is used in an expression, it is im

plicitly "promoted" (lengthened) to an integer [1]. All param

eters in the parameter list for a function call are expressions.

Therefore, a call to a function using a char as a parameter will

actually pass the equivalent int (with a zero high byte in Power

C, a signed extension in most other implementations [2]).

Therefore in the sample call given, FRED's Age would actual

ly be passed as two bytes, similar to the Height and Name.

Don't underestimate how misunderstood this is. Even early

versions of Power C (C Power) got it wrong! When a formal

parameter was declared as char, the compiler got confused as

to whether it was getting one byte or two, and generated in

consistent code [2]. This was fixed in the later releases.[3]

Many authorities on C programming style strongly discourage

declaring formal parameters as type char, because it is inaccu

rate [3]. The compiler is supposed to know that it will actually

be an int. Although it is changing, current standard versions of

C provide no means for the intended type of a function param

eter to be determined when the code for the function call is

generated. Those int (even if they only involved a single char)

expressions, therefore, would have to be assumed to be ints at

the calling end. Discussion about this point raged for a good

month on the Power C BBS about a year ago.

Function calls as parameters

Another apparent error may have been an intentional simplifi

cation on the part of the author. It is not correct to say that the

value passed to a Power C function in the accumulator is al-

"July 1988: Volume 9, Issue 1

ways the number of bytes of arguments passed. Another value

is also passed to the function. This is placed on the Power C

runtime stack, the top of which is pointed to by ($la,$lb).

This value is the offset into the cassette buffer where the func

tion's parameter list begins, and where the return value should

be put. In most cases, this offset is zero, but if a function call

is a parameter to another function, this offset will be non-zero.

'c$functinit' will pop this value off the C stack, and place it in

to the X register, where it can easily be used to access the cor

rect area of the cassette buffer. The value passed in the accu

mulator is actually the upper bound of this area. (That is, the

number of bytes in the parameter list, plus the offset of the

start.) When the offset is zero, this value is obviously the same

as the number of bytes in the parameter list. This is the general

case, especially if the functions defined are "routines", rather

than functions returning a useful value. When a function does

return a value, this convention arranges that the return value of

one function is already set up to be used as a parameter for the

next.

Another observation has bothered me for some time. Perhaps

it is unfair to single out David's routines, but they have

brought it to mind. David's function "Slowkeys" is suppos

edly a general-purpose routine, but it makes a subtle assump

tion about its environment. It does an SEI, because it wants to

inhibit interrupts, but then blithely does a CLI afterwards.

Would not the following sequence be preferable: php; sei;

[code]; pip? The pip at the end restores the previous state of

the interrupt flag, rather than simply clearing it. This way if

someone happened to call "Slowkeys" with interrupts already

inhibited for some purpose, it wouldn't have an unexpected

side effect for them! Not to worry too much. Even the C64

Kernal makes the assumption in several places that the calling

routine doesn't have interrupts already inhibited.

Using an REU with Power C

A couple of quick tips for 1764 RAM disk users. The 1764 does

not work with all of Power C in its standard distribution form,

but it does speed a lot of things up, making the environment a

lot more pleasant.

First 1764 tip: Don't you find it annoying when you are run

ning a disk intensive program, using the RAM disk instead of a

real disk drive? Your machine just sits there. Silently. Doing

who knows what? Looping? Crashing? Locking up? "If only I

could hear that disk!", you think. Well, just poke a volume

value into the SID chip before you start the RAM disk activity

and, lo and behold, you would swear at times you have a very

quiet (but audible) hard disk at work for you! The sounds

seem clearer after I have been playing with my music program

(also written in Power C), but I haven't really analyzed the

correlations. This works on my setup; I don't know if it will

work in general. It is possible that it is partly interference with

the monitor (lines output to the screen also seem to cause

'chirping' - though I suspect RAM gets swapped in for every

CHKIN/CHKOUT). The address to poke is $d418 (54296) and 15

(maximum volume) is a good value to put there.

Another tip is a little less offbeat. I sometimes used to worry

about which of my RAM disk files I had and had not saved to a

real, live floppy! But then I noticed something. I never 're

place' a file on the ram disk (using @), but always rename the

old, then save the new, scratching the old one later when I feel

safer. Well, it seems the 1764 ramdos doesn't create 'holes' in

its directory when deleting files; thus the most recently

changed files are always at the bottom of the directory listing.

So, I took to creating a file named " "as the last

file I transferred to my RAM disk in my startup procedure. Any

files I modify end up below this 'bar', indicating they should

be saved. From time to time I 'move' the bar to the bottom

with a rename, copy, rename, delete sequence when I am sure

I have properly archived everything so far.

Another question regarding the 1764 (and the RAMDOS provid

ed with it). Is there anywhere to find a concrete list of known

problems? Everyone hints at bugs, but it might be nice to have

a verified list somewhere. My own worst observation, on RAM-

DOS 3.3, regards a simple-minded attempt to get around the

lack of support for the concatenation option of the DOS copy

command. I wrote an (admittedly inefficient) one-character-at-

a-time CHKIN/CHRIN CHKOUT/CHROUT loop, and it substituted

an incorrect character in the output every 256th character.

When I changed it to a buffered loop (254 reads, 254 writes),

the bug disappeared. Both programs worked correctly with a

real disk drive. It smells like a subtle hardware/software tim

ing bug, but it really needs confirming on someone else's

hardware. There seem to be few 1764s in the stores around

town, and owners seem less disposed to investigating such

things than they were at one time, anyway.

I have written some examples to demonstrate the problem. The

"concat.a" program works with a 1764, the "badcata"

should, but does not. They need assembling with the C/ASSM

assembler, and linking with the Power C linker to run in the

Power C Shell environment. The principles they illustrate are

quite simple, however, and it should be easy to convert them

to use a different assembler, should anyone be so inclined.

"fred.*" are all programs that do nothing. I wrote "fred.c",

and disassembled it in different ways (before and after linking)

to illustrate how the Power C calling sequence works for nest

ed function calls, "fred.a" is straight RAM disassembly,

"fred.doc" has comments added to explain the code.

References

[1] The C Programming Language, Kernighan, B.W. and

Ritchie, D.M., Prentice-Hall, 1978, p.183.

[2] The language definition specifies that this detail is imple

mentation dependent. "Whether or not sign-extension occurs

for characters is machine dependent, but it is guaranteed that a

member of the standard character set is non-negative." Ibid.

p.183.

[3] Ibid. pp. 39-40, for example.

Transactor 55 July 1988: Volume 9, Issue 1

Programming in GEOS

Entering the geoSphere...

by Francis G. Kostella

Francis G. Kostella is the author of the CIRCE strategy game,

which runs under GEOS. He can be reached via CompuServe

E-Mail (72220,3117) or on Q-Link as FGK.

GEOS is the first alternate operating system for the C64 that

has gained any widespread acceptance. The C64 Kernal is fa

miliar to assembly programmers but, unlike the C64 Kernal,

the GEOS Kernal has not been widely documented and com

mented upon (see the references at the end of this article). This

article will present enough information for the novice GEOS

programmer to start programming in the GEOS environment,

and a sample program that illustrates a few of GEOS's features.

The examples here were developed and tested using GEOS vl.2

and the Commodore MADS assembler with Bill Dixon's source

editor and "assemfix" upgrade. The label names used below

are are in upper case for clarity and are very similar to the

standard bsw (Berkeley Softworks) labels. [Mr. Kostella's

source file contained labels of up to 12 characters. To simplify

matters for users of other assemblers, the source has been

converted to PAL format with six-character labels. The labels

used were taken from Alex Boyce's Tech Manual and will, in

all likelihood, be used in future GEOS programs published in

Transactor. The original source file will be included on the

Transactor diskfor this issue. -Ed.]

Getting started

The first hurdle is that all GEOS disk files have a different

structure than that used by the Commodore DOS. This becomes

obvious upon examining a directory entry on a GEOS disk.

Sample Directory Entry

$00

$06

$0e

c3

74 20 46

aO aO aO

05

69

aO

08

6c

aO

54

65

05

65

aO

00

73

aO

00

tES

fILE

* TABLE 1: F0RMM 0F A GE0S directory entry

0FFSET INT0

DIR ENTRY description

° commodore dos file type

1~2 If GE0S SEQ - points to track & sector

of file's 1st block.

If GE0S VLIR - points to track &

sector of VLIR index table block.

3"18 16 char ASCI1 filename, padded.

19~20 Points to File Header's track & sector

21 GE0S File structure. o=seq i=vlir

22 GE0S File Type <see below).

23"27 Last used: year/month/day/hour/minute.

28~29 Blocks in file

GE0S FILE TYPES

0 - not GEOS

1 - basic

2 - assembly

3 - data

4 - system file

5 - desk accessory

6 - application

7 - application data

8 - font

9 - printer driver

10 - input driver

11 - disk drive

12 - system boot

13 - temporary

The filename is stored in ASCII (thus the case of the characters
appears inverted); petscii is not used in the GEOS system. Al-

so, every GEOS file is of the C64 USR type, that is, the internal

structure is user-determined.

You 11 notice that GEOS not only makes use of the formerly un-

used bytes, but also changes a few around to suit itself (see Ta-

ble 1). Also note that because of these changes, rel files are

not allowed under geos.

.! °° : The time and date are stamped into the 5 bytes before the
block coum ^lagt 2 bytes) Bytes 19 and 2Q poim to the file,s

Header Block. Every GEOS program has a Header Block - a

single sector, not directly connected to the file - that holds

GEOS-specific information (the most important being the icon

definition, the load address and the start address) An example

Header Block is included in Program 2.

Transactor 56
July T988: Volume 9, Issue 1

Probably the two most important of the extra bytes are bytes

21 and 22. These describe the GEOS file structure, and tell the

Kernal what type of file it is. Byte 21, the File Structure Byte,

is 0 if the file structure is sequential; that is, the file is stored

sequentially on disk, as a PRG file would be. Unlike a PRG file,

though, the load address, if any, is not stored as the first two

bytes, but in the Header Block. The example program will be

in sequential form.

When byte 21 is 1, the file structure is vlir (Variable Length

Indexed Record). Although the use of vlir files is beyond the

scope of this article, a few facts will help you explore their

structure in more detail. When the file is of VLIR type, bytes 1

and 2 will not point to the file per se, but to a single-sector

record index. The first two bytes of this index sector are al

ways $00 and $ff, and the following 254 bytes are pairs of

pointers to individual records. If a record's pointers are

$OO,$ff, then that record does not exist. A vlir file may have

up to 127 records (0-126). Each record is structured sequen

tially and may be any length. For example, a font file's index

contains pointers to its various point sizes (0-48). So, if bytes

14 and 15 point to a valid track and sector, then they always

point to the 6-point record.

Byte 22 of the directory entry is the GEOS file type (see Table

1), which should be familiar to the GEOS user. This byte tells

the Kernal where and how to load a file. In this article we'll be

writing a simple application that we can call from the Desk

Top, and are thus concerned only with value 6, a GEOS Appli

cation. When the Kernal loads an application-type file, it will

load it in place of the Desk Top and JSR to the start address

given in the Header Block.

The reason for delving into the file structure is that most (if

not all) assemblers do not output GEOS applications, but pro

duce "binary" or object files. If we want to have our code run

under the GEOS Kernal, we need a method of translating a

standard object file to GEOS format. Thus, Program 1, "make-

togeos".

Translating to GEOS

The process that "maketogeos" will go through to translate

our file is as follows:

• find the file's directory entry

• make block 1 the Header Block, separating it from the pro

gram by saving the next track and sector pointers and

changing them to $OO,ff (end of file, $ff is last byte).

• change the file's load address into the icon dimensions (see

the Header Block in Program 2).

• put the track and sector of this block into bytes 19 and 20 of

the directory entry.

• put the previously saved track and sector pointers to block 2

into bytes 1 and 2 of the directory entry. This block is now

the beginning of the file.

• Now write the new GEOS info to the directory entry,

prompting for date and time.

As long as we structure our object file properly, GEOS will rec

ognize it as a valid file when translated. Specifically, the

Header Block has to be assembled at the beginning of the file,

exactly 252 bytes before the beginning of our application code

(remember, PRG files save the load address as the first two

bytes, and they use 254 bytes per sector.)

Main loop

In its basic form, a GEOS application will usually consist of an

initialization routine, a set of data tables, and a set of service

routines. When our application is loaded, the Kernal will JSR

to the start address held in the Header Block (bytes 75 and 76).

This address will point to our initialization code, which will

usually be called once to create menus, icons, graphics, and so

on, all of which are defined by a set of data tables. The initial

ization code terminates with an RTS, which returns to the Ker-

nal's main loop. The main loop just checks for user input and

watches a set of IRQ process timers. If the user clicks on an

icon, main loop determines which icon was selected and calls

the service routine associated with that icon. The service rou

tine performs whatever action is required and then returns to

MAIN LOOP.

The important thing to understand is that, in essence, we only

have to write a set of subroutines, since all of our basic func

tions (IRQ, character printing, math, disk, graphics, etc.) are al

ready there. Our code doesn't do anything until the user per

forms some action (or one of the processes times out).

At this point a few examples may make things clearer, but first

a word about GEOS routines, variables, and constants.

The GEOS Programmer's Reference Guide (see the references)

lists over 600 constants, 200 variables, and over 150 routines

(called via a jump table at $C1OO-C2D5). Quite a bit to work

with! Documenting even just the routines would fill many

pages, but here we'll be concerned with just a few of them.

The applicable constants' labels are not used in most of the in

cluded source code, but are explained in the comments. The

variables are listed where they're introduced, with the excep

tion of the zero-page registers. The Kernal routines make use

of 16 two-byte pseudo-registers labeled R0 to R15, starting at

bytes $02/03 (R0) and ending at bytes $20/21 (R15). Additionally,

there are ten pseudo-registers not used by the Kernal, reserved

for application use only. These are labeled A0 to A9. A0 is at

$fb/FC, Ai is at $fd/fe, and the rest start at $70/71 (A2) and con

tinue sequentially to $7E/7F (A9).

Menus

Most applications will want a menu, and this is a good place to

start experimenting with GEOS' code structure.

Our initialization code will inform the Kernal that we are us

ing a menu by placing the address of the menu definition table

into pseudo-register R0 and calling the routine DOMENU. Let's

look at an example:

Transactor 57 July 1988: Volume 9, Issue 1

Idx

ldy

stx

sty

Ida

jsr

<#OURMENU ;lo

>#OURMENU ;hi

RO

RO+1

#1 ;leave pointer at

DOMENU

this choice

The Kernal now expects to find a table at address OURMENU

defining the menu structure. After drawing the menu, it will

leave the mouse pointer on selection one (the second one). The

first section of the menu table tells it where the menu is locat

ed on the hi-res screen, what type of menu it is and how many

selections it displays. Our table might start like this:

OURMENU =*

.byte $00

.byte $0f

.word $00

.word $60

.byte $02

;top

/bottom

;left

;right

;type/items

The first four entries describe the outer borders of the menu,

the origin of the hi-res screen being the upper left corner. The

last byte is the number of menu items ORed with the menu

type. The above example describes a horizontal menu with

two items. There are three types of menus (it may be helpful to

think of them by the bits they set):

$00 horizontal

$80 vertical

$40 constrains pointer to menu

Following this position table will be a selection table, one for

each item. Immediately following the example above, our two

selections might be:

.word S1TEXT

.byte 128

.word S1MENU

.word S2TEXT

.byte .0

.word S2RTN

;addr of text

;sub-menu

;addr of submenu

;addr of text

;menu action

;addr of rtn

The first entry of each table holds the address of a null-

terminated ASCII text string that appears in the menu bar for

that selection. The third table entry holds the address of the

routine (or sub-menu table) that is called when that selection is

chosen. The middle byte describes what to do when that item

is selected:

$80 calls a submenu

$00 calls a service routine

$40 calls routine before displaying submenu; the routine

exits with the submenu table address in R0.

Quite often, our main menu will call submenus. A submenu is

set up with the same type of tables we have just shown, first

the position/type/nuipber then the individual entries. We can,

nest menus down four levels. Eventually, we'll want to call a

service routine and/or roll up the menus displayed. We have

three possibilities: REDOMENU, DOPREVIOUSMENU, and

GOTOHRSTMENU. Respectively, these re-enable the current

menu, go back one level, and go to the first. Using our exam

ple service routine above:

S1RTN =*

jsr REDOMENU ;any of the three

... our service routine ...

rts ;back to main loop

When the menu is rolled up, the screen is recovered, so we

usually want to use one of the three routines before changing

the screen. Otherwise, if you were to print text where the

menu was, it would be destroyed by the old screen.

A bit about graphics

GEOS uses two 8000-byte hi-res screens to display all text and

graphics. The main screen is at $A000, and the secondary

screen is at $6000. Our application code space is from $0400 to

$5FFF, and we may optionally use the second screen for code.

As mentioned above, GEOS has the ability to recover previous

ly drawn graphics to its main hi-res screen. We'll not explain

the process, but only mention that properly exiting the service

routines for menus and dialog boxes will automatically recov

er anything that these structures may have overwritten.

We'll illustrate a few of the graphics routines shortly, but first

we have to look at the formats used by GEOS to store graphic

information for icons and bitmaps. Compacting graphic data

saves code and disk space, not to mention disk access time.

GEOS uses three different compaction formats; all three com

pact and uncompact scan lines, not the character cells typically

used in C64 graphics. (Be aware that if you do any digging

through GEOS data files, you'll find that VLIR geoPaint docu

ments do store their data compacted into character cells, but

that Photo Scraps and Photo Albums use scan lines. All com

pact their colour data immediately following the individual

bitmaps.)

All three formats consist of a COUNT byte followed by one or

more data bytes. These COUNT/data groups are repeated until

the entire bitmap graphic is described.

Count Description

000-127 Repeat next byte COUNT times.

128-220 First subtract 128; that gives

the number of following bytes to

use once each.

221-255 First subtract 219; that gives

the number of bytes in the pat

tern following the 2nd byte. The

second byte tells how many times

Transactor 58 July 1968: Volume 9, Issue 1

the pattern is repeated. The pattern

starts with the 3rd byte and is made

up of the other two formats.

If that seems obscure, don't worry - we'll only use the first

two formats in the examples here.

A few drawing commands

To draw a line between two points we call the routine draw-

line. Before calling the routine we need to put the coordinates

of our endpoints into the pseudo-registers:

R3

Rll (lobyte)

R4

Rll+1 (hibyte)

xl (0-319)

yl (0-199)

x2 (0-319)

y2 (0-199)

If the carry flag is set when calling drawline, the line is

drawn in the foreground colour; if it's clear, the line is drawn

in the background colour. Setting the sign flag recovers the

bits from the secondary screen (and ignores the carry flag);

clearing this flag draws on the main hi-res screen.

We draw a single point by calling the routine DRAWPOINT. The

x value is put into R3, and the y value is put into the low byte

of Rll. The carry and sign flags operate the same as they do

for DRAWLINE.

The RECTANGLE routine draws a solid rectangle using one of

the Kernal fill patterns set by the routine setpattern.

FRAMERECTANGLE draws the outline of a rectangle using a pat

tern byte that describes the bits in the line ($FF, %lllilin

would be a solid line, $55 is the pattern %O1O1O1O1.) rectangle

and FRAMERECTANGLE expect the borders of the area to be de

scribed in these pseudo-registers:

R3

R4

R2 (lobyte)

R2+1 (hibyte)

left (0-319)

right (0-319)

top (0-199)

bottom (0-199)

The pattern byte for FRAMERECTANGLE is held in .A before the

call is made. The following example draws a 100 by 100 bit

rectangle in fill pattern 2, and puts a solid frame around it.

We'll use the "inline-pass" form of rectangle:

;50% *stipple'Ida #2

jsr SETPATTERN

jsr I.RECTANGLE

.byte 20

.byte 120

.word 45

.word 145

the borders for the frame are

still held in R2-4, so...

Ida $ff /solid

jsr FRAMERECTANGLE

/inline call

;top

/bottom

/left

/right

We'll mention just one more graphic command before moving

on. bitmapup allows us to display a compacted bitmap on the

hi-res screen. This routine also has an inline form, which we'll

use in this example that puts a 40 by 40 bitmap in the upper

left corner:

jsr I.BITMAPUP /inline call

.word YOURBITMAP /address

.byte 0 ;x pos in bytes

.byte 0 /y pos in pixels

.byte 5 /bitmap width in bytes

.byte 40 /bitmap height in pixels

You might be wondering what usefulness this call would have,

if you don't have a compacted bitmap handy (at least not in

.byte definitions for your assembler). A simple technique is to

steal graphics from Photo Scraps. Photo Scraps are stored se

quentially on disk and are already compacted. All we have to

do is read in the data from the USR file and convert the bytes to

hex (or any form our assembler can use). Or we might just

tack a copy of the file on at the end of our code (being careful

with labelling our bitmap's address). Remember that the

colour data is compacted at the end of the bitmap.

Icons

In some ways, icons are easier to program than are menus. On

ce again, we need to put the address into R0, and call our set

up routine. This will be part of our initialization code:

ldx <#OURICONS ;lo

ldy >#OURICONS /hi

stx R0

sty R0+1

jsr DOICONS

Again, the Kernal expects to find a table defining the icons at

address OURICONS. It is importantly to remember that every

application must have at least one icon; it may be invisible and

it may do nothing, but it must be defined or strange things will

happen. The example code shows how to define a 'dummy'

icon.

The first part of our icon table is very simple:

OURICONS =*

.byte 2

.word 10

.byte 10

/number of icons

;x pos. mouse

;y pos. mouse

This tells the Kernal that we're defining two icons, and to

leave the mouse pointer at position 10,10 on the hi-res secreen.

Now it's time for the individual icon entries. Following the ex

ample above:

.word ICONOGRAFIC /addr of bitmap

.byte 35 /horizontal byte

.byte 160 /vertical, pixel

Transactor 59 July 1988: Volume 9, Issue 1

.byte 2

.byte 8

.word ICONORTN

;bytes wide

/pixels high

;addr of srvc rtn

.word ICON1GRAFIC /bitmap addr

.byte 5

.byte 20

.byte 4

.byte 16

/horizontal byte

/vertical pixel

/bytes wide

/pixels high

.word ICON1RTN /addr of service rtn

The first entry in each icon's table holds the address of the

icon's graphic data, stored in the compaction formats outlined

above (see the source code and the section on dialog boxes for

a simple example). The second entry holds a value from 0 to

39, and indicates, in bytes, the distance from the left of the

screen to the starting position of the icon's picture. (Think of

them as character cells; each byte equals 8 pixels. The left

edge of an icon, as far as I've been able to determine, always

begins on a cell boundary.) The third entry is the number (0-

199) of pixels (or scan lines) down to draw the graphic. Using

the example above, icon 0 would appear in the lower right area

of the screen, and icon 1 would appear in the upper left area.

The fourth entry is the width of the icon graphic in bytes, the

fifth entry is the icon's pixel height. In the example above,

icon 0 is 16 pixels wide by 8 pixels high, icon 1 is 32 by 16.

The final entry in each icon's table holds the address of the

icon's service routine. These routines can do almost anything,

even define new icons. Often they will finish with an RTS to

main LOOP. When a user clicks on an icon, the Kernal returns

the number of the selected icon (0-30) in the low byte of

pseudo-register R0. Thus we could have a number of icons

share the same routine that, when called, checks R0 first then

chooses an appropriate action.

Dialog boxes

A dialog box (DB) is a small window put on the screen to

prompt the user for input or warn about possibly unexpected

conditions. A familiar example from Desk Top is the DB used

to rename a file. Calling a DB causes the Kernal to save most

of the state of the application. We can run the DB, as if it were

itself a small application, without affecting the rest of the pro

gram (unless we need to).

Once again, a table is used, this time to define the structure of

a DB. We run the DB by passing the address of the table in R0

and calling DODLGBOX. When the DB is finished, R0 returns the

number of the icon (if a system icon), or user-supplied value

that terminated the db. A dialog box table is made up of a

number of DB commands, and is terminated by a zero byte.

The very first entry in the DB table is the position byte. The

lower bits specify the number of the Kernal fill pattern that

makes up the shadow box. If the high bit of the position byte

is 1, the db's dimensions are the default dimensions (as are

most of the Desk Top DBs), and the very next byte is the be

ginning of the next DB command. If the high bit is 0, the the

next four entries are the db's dimensions. See the source code

for an example.

After the position, we may define up to eight icons using the

predefined DB system icons or user-defined icons. We may al

so use as many non-icon DB commands as we wish. Six db

system icons are already defined by the Kernal. We only have

to enter their positions; the Kernal will take care of the rest

and, upon exiting the DB, will return the icon's number in R0 if

it is selected. Here are the six system icons:

1

2

3

OK

Cancel

Yes

4

5

6

NO

Open

Disk

These should be familiar to all GEOS users. All six of them are

6 bytes wide and 16 lines deep. Immediately following any of

the six in a DB table would be two position offset bytes. The

first one is the number of bytes to position the icon from the

left of the DB, the second is the offset from the top in scan

lines. Here is a simple, complete DB table using the OK icon:

OURDBTABLE =

.byte $01

.byte $01

.byte $02

.byte $10

.byte 0

/default•pos./solid shadow

;OK icon command

;16 pixel x offset

;16 scanlines y offset

/terminate table

This will simply put up a DB with an OK icon and do nothing,

until the user clicks on OK. In this instance, when OK is select

ed, the Kernal returns to the caller with $01 (OK) in R0. If we

had put up an Open icon instead, R0 would hold $05 upon re

turn.

There are also a number of DB commands used to print text

strings or to define your own icons, among other things. Most

of them, however, require familiarity with routines and Kernal

methods not presented in this article. We will examine only

two here.

To print a text string in a DB, we use the db command $0B (11)

in the db table. It is followed by two position offset bytes, as

used above. The final entry is the two byte address of a null-

terminated string. To define our own icons, we use the com

mand byte $12 (18). It, too, is followed by two position offset

bytes, and a two byte address, this time pointing to an icon ta

ble. This icon table is the same as a regular icon table except

that the position has already been set by the DB table, so the

two bytes normally used for this purpose are made null. Here

is a complete example of these new commands:

OURDBTABLE =*

.byte $01

r

.byte $0b

/default/solid

;DB text string command

Transactor 60 July 1988: Volume 9, Issue 1

.byte -$01,$0d

.word OURTEXT

r

.byte $12

.byte $03/$16

.word OURICON

.byte 0

;x bytes, y lines

/string address

/non-standard icon

;x bytes, y lines

;icon table address

;end of table

OURTEXT =*

.byte 'A SIMPLE STRING'

.byte 0

OURICON =* /similar to regular icon

.word OURICONPIC /graphic address

.byte 0

.byte 0

.byte $01

.byte $08

;x set above

;y set above

/width in bytes

/height in lines

.word OURSVCRTN /service address

OURICONPIC =*

.byte $88 /format 2/8 bytes follow

.byte %11111111 ;a very simple icon

.byte %10000001

.byte %10000001

.byte %10000001

.byte %10000001

.byte %10000001

.byte %10000001

.byte %11111111

r

OURSVCRTN =* /service routine

Ida #$10 /value to be

sta SYSDBDATA /placed in R0

jmp RSTRFRMDIALOG /exit to caller

A few things about OURSVCRTN need to be explained. As

we've said, exiting from a DB via one of the sytem DB icons

will leave that icon's number in R0. But the Kernal knows

nothing about our icons, and doesn't exit the DB when they are

called. The Kernal does, however, provide a method of exiting

a DB and passing information back to the caller.

We place the value we want into the variable SYSDBDATA, and

JMP to the routine RSTRFRMDIALOG. This allows the Kernal to

return the state of the application back to where it was before

we entered the DB, then place our value into R0. If we were to,

say, draw a graphic on the screen from our service routine,

when the Kernal recovers the screen under the DB, our graphic

might be erased. But if we pass a value to R0 (via SYSDBDATA),

we can recover the screen, then draw our graphic.

Text in GEOS

There are a number of complexities dealing with printing text

to the hi-res screen. Here I'll just present the two main charac

ter printing routines, and a brief description of potential prob

lems.

The PUTSTRING routine will print a null-terminated string to

the screen; it is probably the most widely used of the GEOS text

routines. We first place the horizontal position (0-319) into

Ri l, and the vertical position into the low byte of Rl. We stuff

the test string's address into R0 and JSR PUTSTRING. Alter

nately, we can use the in-line form:

jsr I.PUTSTRING ,

.word 20 ;x position

.byte 20 ;y position

.byte "A SIMPLE STRING"

.byte 0 ;null terminated

The other often-used routine, PUTDECIMAL, is used to print 16-

bit numbers to the screen. The set-up is similar to PUTSTRING

(x and y go into Rli and Rl), but here we put the number to be

printed into R0, and load the accumulator with a format byte.

The format byte determines how the number will be printed. If

bit seven is 1, the number is printed left justified. If bit seven

is 0, the number is printed right justified. If bit six is 1, leading

zeroes are suppressed. If bit six is 0, leading zeroes are print

ed. If we are using right jusification, the lower bits hold the

pixel width of the field the number is printed in. An example

of PUTDECIMAL is included in the source code accompanying

this article.

Be aware of a potential problem that may crop up when using

PUTSTRING. Any text to be printed that goes beyond the screen

borders won't be printed. There is a vector the Kernal calls

when attempting to print beyond the borders; its name is

STRINGFAULTVECTOR. The Kernal will only JSR to this address

if it is non-zero. The routine pointed to by this vector might

perform a word wrap and move to the next line, or scroll up

the screen, depending on which border was crossed. An entire

"print at" routine is a bit beyond our scope here, but would be

a very useful module for the GEOS programmer. Perhaps such a

module will appear in a future Transactor.

Finishing up

To exit our application we use the call JMP ENTERDESKTOP.

This re-initializes the system and returns us to DeskTop.

That's it! A complete GEOS application.

References

Two books you'll find invaluable for writing GEOS programs:

Berkeley Softworks' The Official GEOS Programmer's Refer

ence Guide, Bantam Books, 1987 ($20 US/$25 Cdn.)

Alexander Boyce's GEOS Programmers Reference Guide,

Alexander Boyce, 1986.

Alex Boyce wrote his shareware guide by dissassembling the

entire GEOS Kernal, and it covers just about everything in its

95 pages. Omissions are few, and I've yet to find a single er

ror. The only problem is that all the label names are six charac-

Transactor
61 July 1988: Volume 9, Issue

ter non-standard names, and even this is only a problem when

using both this and the BSW guide in tandem. If you get a copy

of this guide, send Mr. Boyce a donation - efforts like this

need to be supported. [Alex Boyce's manual is available from

Mystic Jim (see NewsBRK). -Ed.]

The BSW guide was written by the developers of GEOS, and in

my opinion should have been better. Though all the calls are

presented, and most descriptions are understandable, the

downfall of this guide is the numerous typographical errors,

the items mentioned but left out, and the few examples, none

of which will work in the form presented. On the other hand, if

you verify the unclear sections with Alex Boyce's manual, you

should have very few problems. BSW is in the process of

rewriting this guide, and the second edition should be in much

better shape. I have no idea when it's due out; if they give it

the attention it deserves, it may be a while.

Program 1: "maketogeos"

CN 100 rem save"maketogeos",8

H6 110 rem originally part of larger prg

JD 120 dims*(255)

BE 130 gosub370

MI 140 end

KA 150 :

EJ 160 rem disk error

BN 170 input|15,en,em$,et,es:ifen=0thenreturn

NI 180 print"{rvs) disk error {rvs off)"en,em$,et,es

AJ 190 gosub250:return

MD 200 :

HA 210 open 15,8,15, "iO":rem «open all»

FJ 220 gosubl70

OA 230 open 2,8,2,"f"

MA 240 return

J6 250 close2 :rem « close all »

IM 260 print#15, ni0"

EP 270 forx=0to2000:next

FB 280 closel5:return

6J 290 :

El 300 rem « read sector » t,s,s%(255)

MF 310print"readingtrk:";t;"sec:";s

FA 320 print#15/"ul";2;0;t;s

MO 330 gosubl70:fori=0to255:get#2,b$

GH 340 s%(i)=asc(b$+chr$(0)):next:return

CN 350 :

AL 360 rem convert a c64 file to geos

KF 370 print"input filename":print:inputf$:iff$=""thenend

CH 380 forx=0tol5:f$=f$+chr$(160):next:f$=left$(f$,16)

D6 390 gosub210:gosub 600:rem dir

KI 400 t=dl:s=d2:gosub310:rem get info

F6 410 e4=s*(0):e5=s%(l):rem link

6M 420 s%(0)=0:s%(l)=255:rem /change

MM 430 s%(2)=3:s%(3)=21 :rem /lst 4

HB 440 gosub690:rem write block

KJ 450 t=el:s=e2:gosub310:rem get dir

CL 460 gosub 790:rem dir entry info

MN 470s%(e3)=131:remuser/c=64

FD 480 s%(e3+l)=e4:s%(e3+2)=e5:rem vlir

MD 490 S%(e3+19)=dl:s%(e3+20)=d2:reminfo
F6 500 s%(e3+21)=0:rem seq/geos

KE 510 s%(e3+22)=6:remapplication/geos
RE 520 s%(e3+23)=tl

6F 530 s%(e3+24)=t2

C6 540 s%(e3+25)=t3

06 550 s%(e3+26)=t4

KH560 s%(e3+27)=t5

16 570 gosub690:gosub250:return

IL 580

CA 590

600

610

AP

OM

PK 620

630

640

AA

rem find a dir entry

t=18:s=l:gosub310

fori=5to229step32

g$="":forj=0tol5

g$=g$+chr$(s%(i+j)) :next

ifg$=f$thendl=s%(i-2):d2=s%(i-l):el=t:e2=s:e3=i-3:return:

rem e3=filetype

next:ifs%(0)<>0thent=s%(0):s=s%(1):gosub310:goto610

print"{rvs) not found {rvs off}":return

rem write sector to disk

prinf'writing trk:";t;"sec:";s

print#15,"b-p";2;0

fori=0to255

print§2,chr$(s%(i));
next

printfl5,"u2";2;0;t;s

gosub!70:return

AE 650

DC 660

CB 670

JO 680

JD 690

FO 700

CI 710

OP 720

ON 730

NK 740

FM 750

M6 760

6H 770 :

DH 780 rem get dir entry info

HF 790 print"{down)(down)dir. entry information"

DJ 800 input"year

EE 810 input"month

i inpuf'day

i inpuf'hour

i input"min.

NM 820

NJ 830

NF 840

CC 850 print"file:

" time:"

";tl:iftl>99then800

M;t2:ift2>12then810

H;t3:ift3>31then820

n;t4:ift4>23then830

n;t5:ift5>59then840

;f$:print"date:"tl;"/";t2;7";t3;

:t4;":n;t5:pokel98,0

FK 860 prinf'do you wish to change info (y/{rvs)n{rvs off)) ?":

inputk$:ifk$="y"then790

CI 870 return

Program 2:"geosdemo.pal"

HK 100 open 2,8,2,"0:geosdemo,p,w"

PD 110 sys 700

JI 120 .opt o2

IP 130 ;

16 140 /f.g.kostella 12/10/87

MA 150 ;

EJ 160 *= $0304

170 ;

180 ;zpage pseudo-registers

190 ;

200 rO = $02'
210 rOl = $02

220 rOh = $03

230 rl = $04

240 rll = $04

250 rlh = $05

260 rll = $18

270 rill = $18

280 rllh = $19

290

geos routines

AC

FP

ED

ON

II

61

FA

BL

PK

M6

BC

IC

IJ

NK

MK

BA

NH

LO

FJ

KC

FK

MJ

BL

LC

BI

J6

LK

HD

LI

300

310

320 menu = $d51

330 drwnnu = $d93 ;redomenu

340 dsmnu = $d90 /dopreviousmenu

350 cmenus = $clbd ;gotofirstmenu

360 line = $c!30 ;drawline

370 setpat = $d39 ;setpattern

380 plot = $cl33 /drawpoint

390 pfill = $d24 /rectangle

400 pfill2 = $cl9f /i.rectangle

410 pbox = $cl27 ;framerectangle

420 pbox2 = $da2 /i.framerectangle
430 cbox = $d24 /bitmapup

440 cbox2 = $dab /i.bitmapup

450 cboxes = $c!5a /doicons

Transactor
62

July 1988: Volume 9, Issue 1

ML 460 window = $c256 /dodlgbox

PO 470 dswin = $c2bf /rstrfrmdialog

A6 480 dsptxt = $cl48 ;putstring

AD 490 dsptx2 = $dae ;i. putstring

EP 500 dspnum = $c!84 /putdecimal

BN 510 restrt = $c22c /enterdesktop

OH 520 ;

PF 530 sfvec = $84ab /stringfaultvector

FN 540 sysdb = $851d /sysdbdata

MJ 550 ;

FB 560 ;—- --

HM 570 /header block starts at $0304

61 580 ;ram-based assemblers may need.

GP 590 /to change start address.

NO DUO1, --—-—---—...—-..

AN 610 /-assemble the header block here-

OB 620 ; -note-

KB 630 ;lst 4 bytes commented out here

KD 640 /they will be placed in the

JH 650 ;geos file header by "maketogeos"

KF 660 /.byte 0,255 / 1 sector

AB 670 /.byte 3,21 ; 3x21 icon
OT fiftfi •— — - —

FE 690 /define icon to appear on desk top

DD 700 .byte $bf ;$80 (straight bitmap) + 63 data bytes

LK 710 .byte %11111111,%11111111,%11111000

HI 720 .byte %10000000,%00000000,%00001000

BJ 730 .byte %10000000/%00000000,%00001000

NL 740 .byte U0011101, $11011101, &11001111

HL 750 .byte %10001001r %000l0000/%10001111

HM 760 .byte %10001001,%11001000,%10001111

NM 770 .byte %10001001,%00000100,%10001111

PN 780 .byte %10001001,U1011100,110001111

DN 790 .byte %10000000/%00000000,%00001111

NN 800 .byte %10000000,%00000000r%00001111

OP 810 .byte %10011101,%11010001,%11001111

IP 820 .byte %10010000/%10010001,%00001111

MA 830 .byte %10011100,%10010001,%11001111

MA 840 .byte %10010000,%10010001f%00001111

GC 850 .byte %10010001,%11011101,%11001111

JB 860 .byte U0000000,%00000000,*00001111

DC 870 .byte %10000000,%00000000,%00001111

LF 880 .byte Illllllll,111111111,111111111

OF 890 .byte %00011111,%llllllllr %11111111

16 900 .byte %00011111,%11111111/%11111111

CH 910 .byte %00011111,%11111111,%11111111

OA 920 ;

LP 930 .byte $83 ;c64 filetype usr

MO 940 .byte 6 /application

ID 950 .byte 0 ;geos seq file

6D 960 ;

HJ 970 .word saddr /load start addr

LK 980 .word eaddr /load end addr

EP 990 .word start /start addr jump

OF 1000 ;

JE 1010 .asc "filename vl.l" /perm name string

OA 1020 .byte 0,0,0,0 ;

BG 1030 .asc "author name "

61 1040 ;

AI 1050 /the rest of the header block

LM 1060 /is not used in this file

EK 1070 ;

no XUOU , ———————— —

MK 1090 /ram based assemblers change addr

CD 1100 *= $0400
TIN Iiifl . __.....___.._.__.-.—.........

6N 1120 ;

OB 1130 saddr =* /save start

KN 1140 start =*

EP 1150 /

MA 1160 ; clean screen

NH 1170 Ida 10

DH 1180 jsr setpat

Transactor

CB 1190 jsr pfill2

EK 1200 .byte 0

OM 1210 .byte 199

JI 1220 .word 0

AB 1230 .word 319

FJ 1240 Ida #$f£

IN 1250 jsr pbox

CG 1260 ;

MJ 1270 ;1 icon required at all times, so...

GH 1280 ;

. MH 1290 ldx Kdumy /dummy until

CN 1300 ldy f>dummy /we need one

GL 1310 stx rOl

IL 1320 sty rOh

GA 1330 jsr cboxes

OJ 1340 ; menus

OP 1350 ldx Kourmnu

IA 1360 ldy #>ourmnu

CP 1370 stx rOl

EP 1380 sty rOh

LF 1390 Ida #1

CG 1400 jsr menu

LJ 1410 ; that's all!, rts to mam loop

IH 1420 rts

AC 1440 dummy =*

CK 1450 .byte 1 ;# of icons

KN 1460 .word 319 /leave mouse x pos,

HD 1470 .byte 199 ;y pos

OD 1480 ;

JI 1490 .word 0 /icon bitmap addr

OK 1500 .byte 36,1 ;h pos.byte(/8),v pos. pixel

JC 1510 .byte 1,1 ;w+h

DE 1520 .word 0 /dispatch rtn

BE 1540 ;... menu structure...

PE 1550 ourmnu =*

OB 1560 .byte 0 /main top

00 1570 .byte 13 /main bottom

AJ 1580 .word 0 /main left

GJ 1590 .word 80 /main right

EH 1600 .byte 2 /horz ($00) or'ed w/ f menu items

' AM 1610 ;

AF 1620 .word filtxt

GC 1630 .byte $80 /sub menu constant

MB 1640 .word filmnu ;rtn

10 1650 ;

PL 1660 .word optxt

GG 1670 .byte $80

PK 1680 .word opmnu

AB 1690 ;

HI 1700 /text for main selections

JD 1710 filtxt .asc "file"

MK 1720 .byte 0

. GG 1730 optxt .asc "operations"

AM 1740 .byte 0

ME 1750 ;

PM 1760 /..submenus...

AG 1770 ;

HO 1780 filmnu =*

BM 1790 .byte 13

ON 1800 .byte 27

HN 1810 .word 0

AI 1820 .word 33

NH 1830 .byte $81 /vert ored w/ # items

GK 1840.;

MB 1850 .word filxit

BL 1860 .byte 0 /menu action

CP 1870 .word doexit /rtn

OM 1880 ;

PD 1890 filxit .asc "quit"

AG 1900 .byte 0

MO 1910 ; "

63 July 1988: Volume 9, Issue 1

DG 1920 doexit =*

EG 1930 jap restrt

RA 1940 ;

OB 1950 opmnu =*

DF 1960 .byte 13,55 ;top,hot

HO 1970 .word 23,80 ;left,right

GB 1980 .byte $83 vertical or'd w/ #

MD 1990 ; .

DI 2000 .word opOtxt

HE 2010 .byte 0 /menu action

LH 2020 .word opOrtn

EG 2030 ;

PK 2040 .word opltxt

GP 2050 .byte 0

JD 2060 .word mover

MI 2070 ;

LN 2080 .word op2txt

OB 2090 .byte 0

LG 2100 .word sizer

EL 2110 ;

BP 2120 opOtxt .asc "pattern"

GE 2130 .byte 0

BP 2140 opltxt .asc "mover"

KF 2150 .byte 0

HA 2160 op2txt .asc "sizer"

OG 2170 .byte 0

PA 2180 ;

MD 2190 ourpat .word 0

OA 2200 ;

IE 2210 opOrtn =*

AG 2220 jsr anenus

MC 2230 ;

AE 2240 Ida ourpat

DP 2250 and #%00011111

CJ 2260 sta ourpat

FL 2270 jsr setpat

EF 2280 jsr pfill2

FL 2290 .byte 13

AB 2300 .byte 199

LM 2310 .word 0

CF 2320 .word 319

HN 2330 Ida #$ff

KB 2340 jsr pbox

EK 2350 ;

DP 2360 jsr dsptx2

PR 2370 .word 92

DA 2380 .byte 10

HI 2390 .asc "pattern: "

EF 2400 .byte 0

AO 2410 ;

OB 2420 ldx #132

JM 2430 ldy #0

BA 2440 stx rill

PP 2450 sty rllh

JH 2460 ldy §10

CC 2470 sty rl+1

MI 2480 ldx ourpat

FA 2490 ldy #0

IH 2500 stx rO

IE 2510 sty r0+l

EH 2520 Ida #%11000000

IL 2530 jsr dspnum

CG 2540 ;

GJ 2550 inc ourpat

MO 2560 rts

AI 2570 ;
flP 9Rftfl •—— ——_—

NB 2590 /values used to add to pos bytes

RE 2600 dbtop .byte 0

BR 2610 dbbot .byte 0

DH 2620 dbleft .byte 0

LJ 2630 dbrght .byte 0

AN 2640 ;==

Transactor

IO 2650 mover =*

IB 2660 jsr anenus

EO 2670 ;

HK 2680 dodb =*

JI 2690 jsr dradr

JE 2700 ldx Kdbtab

DF 2710 ldy #>dbtab

ID 2720 stx rOl

KD 2730 sty rOh

JG 2740 jsr window

AI 2750 Ida rO /returned by db

CJ 2760 bmi ours

EF 2770 ; its .'ok'

IM 2780 rts

MF 2790 ;

AJ 2800 ours =*

CI 2810 cmp #$82

JA 2820 bcs oursl

NP 2830 Ida #2

CL 2840 sta dbtop

GO 2850 sta dbbot

IF 2860 jsr dbsub

AG 2870 jmp ours4

GL 2880 ;

RR 2890 oursl =*

AO 2900 cmp #$83

EG 2910 bcs ours2

HF 2920 Ida #2

GM 2930 sta dbleft

MO 2940 sta dbrght

CL 2950 jsr dbsub

RL 2960 jap ours4

AB 2970 ;

GA 2980 ours2 =*

OD 2990 cmp #$84

PL 3000 bcs ours3

BL 3010 Ida #2

GG 3020 sta dbtop

RJ 3030 sta dbbot

EJ 3040 jsr dbadd

EB 3050 jmp ours4

RG 3060 ;

CG' 3070ours3=*
HP 3080 Ida #2

GG 3090 sta dbleft

MI 3100 sta dbrght

RN 3110 jsr dbadd

GR 3120 ;

AR 3130 ours4 =*

HA 3140 jsr dspval

PL 3150 jmp dodb

OM 3160 ;

T,,T 317fl •—— — - ——

IC 3180 ;use the same db, process

FJ 3190 ;the results differently ,

GP 3200 ;

CC 3210 sizer =*

IE 3220 jsr anenus

EB 3230 ;

JO 3240 dodbz =*

JL 3250 jsr clradr

JH 3260 ldx Kdbtab

DI 3270 ldy #>dbtab

IG 3280 stxrOl

RG 3290 sty rOh

JJ 3300 jsr window

AL 3310 Ida rO /returned by db

MB 3320 bmi oursz

OO 3330 rts

CI 3340 ;

IM 3350 oursz =*

IR 3360 cmp #$82

DO 3370 bcs ourslz

64 July 1988: Volume 9, Issue 1

DC 3380 Ida 12

IN 3390 sta dbtop

EH 3400 jsr dbsub

JF 3410 jsr clradr

LE 3420 Ida #2

KC 3430 sta dbbot

EC 3440 jsr dbadd

IF 3450 jmp ours4z

KP 3460 ;

KK 3470 ourslz =*

EC 3480 cmp #$83

MF 3490 bcs ours2z

LJ 3500 Ida #2

KA 3510 sta dbleft

MO 3520 jsr dbsub

BN 3530 jsr clradr

DM 3540 Ida #2

OE 3550 sta dbrght

MJ 3560 jsr dbadd

AN 3570 jmp ours4z

CH 3580 ;

EC 3590 ours2z =*

AK 3600 cop #$84

FN 3610 bcs ours3z

DB 3620 Ida |2

IM 3630 sta dbtop

MO 3640 jsr dbadd

JE 3650 jsr clradr

LD 3660 Ida #2

KB 3670 sta dbbot

MI 3680 jsr dbsub

IE 3690 jnp ours4z

KO 3700 ;

OJ 3710 ours3z =*

Hfl 3720 Ida #2

60 3730 sta dbleft

AF 3740 jsr dbadd

NK 3750 jsr clradr

PJ 3760 Ida |2

KC 3770 sta dbrght

AP 3780 jsr dbsub

EE 3790 ;

KP 3800 ours4z =*

FK 3810 jsr dspval

HL 3820 jmp dodbz

MG 3830 ;
nn t>QA(\ •.«.»_.«»««/4K euHe--------------

AI 3850 ;

JN 3860 clradr =*

JA 3870 Ida #0

CM 3880 sta dbtop

GP 3890 sta dbbot

AJ 3900 sta dbleft

GL 3910 sta dbrght

MD 3920 rts

AN 3930 ;

NJ 3940 dbsub =*

PO 3950 sec

OM 3960 Ida dbtab+1 ;top of db

00 3970 sbc dbtop

DC 3980 sta dbtab+1

HB 3990 sec

EJ 4000 Ida dbtab+2 ;bot of db

AE 4010 sbc dbbot

OE 4020 sta dbtab+2

PD 4030 sec

KL 4040 Ida dbtab+3 ;left of db

IP 4050 sbc dbleft

JH 4060 sta dbtab+3

IE 4070 Ida dbtab+4

LO 4080 sbc #0

KJ 4090 sta dbtab+4

FI 4100 sec

Transactor

OE

KF

FM

EJ

BD

60

6D

KM

CE

ON

IM

KM

NB.

6A

01

MB

IE

OC

EL

EN

DH

CE

HM

EJ

EH

IE

6D

PL

01

NA

AO

AD

EM

OM

AF

CO

B6

HF

GP

LI

JF

OO

AP

CD

E6

LB

T\V
Us

BF

LM

KI

HL

HF

OK

AL

m

KA

EL

AA

NJ

FN

DN

IC

FM

ID

OB

ED

IH

CC

FA

NA

DE

BE

JJ

65

4110 Ida dbtab+5 /right of db

4120 sbc dbrght

4130 sta dbtab+5

4140 Ida dbtab+6

4150 sbc 10

4160 sta dbtab+6

4170 rts

4180 ;

4190 dbadd =*

4200 clc

4210 Ida dbtab+1 ;top of db

4220 adc dbtop

4230 sta dbtab+1

4240 clc

4250 Ida dbtab+2 ;bot of db

4260 adc dbbot

4270 sta dbtab+2

4280 clc

4290 Ida dbtab+3 ;left of db

4300 adc dbleft

4310 sta dbtab+3

4320 Ida dbtab+4

4330 adc 10

4340 sta dbtab+4

4350 clc

4360 Ida dbtab+5 /right of db

4370 adc dbrght .

4380 sta dbtab+5

4390 Ida dbtab+6

4400 adc #0

4410 sta dbtab+6

4420 rts

4430 ;

4440 ;

4450 dspyal =*

4460 ;

4470 Ida 10

4480 jsr setpat

4490 jsr pfill2

4500 .byte 1

4510 .byte 11

4520 .word 239

4530 .word 318

4540 ;

4550 ldx 1210

4560 ldy #0
AR7ft afv rilltjlv gU HXX

4580 sty rllh

4590 ldy #10

4600 sty rlh

4610 ldx dbtab+1

4620 ldy #0

4630 stx rOl

4640 sty rOh

4650 Ida #111000000

4660 jsr dspnui

4670 ;

4680 ldx #235

4690 ldy #0

4700 stx rill

4710 sty rllh

4720 ldx dbtab+2

4730 ldy #0

4740 stx rO

4750 sty rOh

4760 Ida #111000000

4770 jsr dspnum

4780 ;

4790 ldx #4

4800 ldy #1

4810 stx rill

4820 sty rllh

4830 ldx dbtab+3

July 1988: Volume 9, Issue 1

KK 4840 ldy dbtab+4

GK 4850 stx rO

MI 4860 sty rOh

CK 4870 Ida i%11000000

GO 4880 jsr dspnum

AJ 4890 ;

KB 4900 ldx #29

LH 4910 ldy #1

BL 4920 stx rill

PK 4930 sty rllh

NA 4940 ldx dbtab+5

OB 4950 ldy dbtab+6

EB 4960 stx rO

KP 4970 sty rOh

AB 4980 Ida ftllOOOOOO

EF 4990 jsr dspnum

EH 5000 rts

HH 5010 ;

FM 5020 dbtab =*

MB 5030 ;

PE 5040 .byte $01 ;pos/shadow patrn

AD 5050 ;

KP 5060 .byte 50 ;top

CA 5070 .byte 86 ;bott

BD 5080 .word 48 ;left

FM 5090 .word 120 ;right

CG 5100 ;

OL 5110 .byte 1 ;ok

KB 5120 .byte 1 ;x byt

AK 5130 .byte 16 ;y pixel

KI 5140 ; '

GA 5150 .byte $12 ;user icon

EM 5160 .byte 1 ;x offset

IN 5170 .byte 4 ;y offset

AE 5180 .word dbl ;addr of icon table

ML 5190 ;

GB 5200 .byte $12

ID 5210 .byte 3,4

PN 5220 .word db2

EO 5230 ;

OD 5240 .byte $12

JG 5250 .byte 5,4

LA 5260 .word db3

MA 5270 ;

GG 5280 .byte $12

HJ 5290 .byte 7,4

HD 5300 .word db4

ED 5310 ;

IC 5320 .byte 0 ;end

JA 5330 ;—————————

FF 5340 ;db user icon tables, graphics

MO 5350 ;& service routines for mover

GG 5360 ;

GB 5370 dbl =*

AI 5380 .word dblbit ;addr of picture data

OI 5390 .byte 0,0 ;x,y-already set!

AD 5400 .byte 1 ;bytes wide

GA 5410 .byte 8 ;pixels hi

LE 5420 .word dodbl ;addr of svc rtn

MK 5430 ;

GJ 5440 dblbit =*

AM 5450 ;

BE 5460 .byte $88 ;format 2, use the next 8 bytes

FA 5470 .byte Ulllllll

IA 5480 .byte U1100111

PA 5490 .byte U1000011

GB 5500 .byte U0000001

GC 5510 .byte U1100111

AD 5520 .byte U1100111

KD 5530 .byte U1100111

LE 5540 .byte Ulllllll

EC 5550 ;

HK 5560 dodbl =*

ID 5570 ;

LA 5580 Ida #$81

IG 5590 sta sysdb

MN 5600 ; and get out

KL 5610 jmp clswin

PH 5620 ;

OB 5630 db2=*

DF 5640 .word db2bit

JL 5650 .byte 0,0,1,8

MK 5660 .word dodb2

MJ 5670 ;

KI 5680 db2bit =*

CC 5690 .byte $88

LO 5700 .byte Ulllllll

CP 5710 .byte U1101111

KP 5720 .byte U1001111

MP 5730 .byte U0000001

GA 5740 .byte U0000001

IB 5750 .byte U1001111

EC 5760 .byte U11011U

BD 5770 .byte Ulllllll

KA 5780 ;

CM 5790 dodb2 Ida #$82

KD 5800 sta sysdb

CI 5810 jmp clswin

CD 5820 ;

MD 5830 ;

EP 5840 db3 =*

JC 5850 .word db3bit

LI 5860 .byte 0,0,1,8

AI 5870 .word dodb3

OG 5880 ;

AG 5890 db3bit =* .

EP 5900 .byte $88

NL 5910 .byte Ulllllll

AM 5920 .byte U1100111

KM 5930 .byte U1100111

EN 5940 .byte U1100111

IN 5950 .byte U0000001

FO 5960 .byte U10000U

CP 5970 .byte U1100111

'DA 5980 .byte Ulllllll

MN 5990 ;

DG 6000 dodb3 =*

AP 6010 ;

LM 6020 Ida #$83

AC 6030 sta sysdb

IG 6040 jmp clswin

NC 6050 ;

CC 6060 ;

MC 6070 ;

10 6080*4=*

NB 6090 .word db4bit

LH 6100 .byte 0,0,1,8

CH 6110 .word dodb4

OF 6*120 ;
EF 6130 db4bit =*

CH 6140 ;

00 6150 .byte $88

HL 6160 .byte Ulllllll

NL 6170 .byte U1110111

GM 6180 .byte U1110011

IM 6190 .byte U0000001

CN 6200 .byte U0000001

EO 6210 .byte U1110011

PO 6220 .byte 111110111

NP 6230 .byte Ulllllll

GN 6240 ;

PF 6250 dodb4 =*

PL 6260 Ida #$84

AB 6270 sta sysdb

IF 6280 jmp clswin

IA 6290 ;

HK 6300 eaddr =*

CI 6310 .end

Transactor 66 July 1988: Volume 9, Issue 1

The Lt. Kernal Hard Drive System

Pushing the limits...

by Bill Brier

Recently, several third party manufacturers have released hard

drives for use with the C64 and C128. All of these units have

their good (and bad) features, but only one is capable of per

forming in a manner suitable for professional and business

use: the Xetec Lt. Kernal hard disk subsystem.

Adapting a hard disk unit to any eight bit Commodore com

puter is no trivial matter. Both the Commodore DOS and serial

data bus are unique to Commodore. The Commodore DOS is

file-oriented rather than system-oriented and is relatively un

friendly to first-time users. Also, Commodore drives are intel

ligent. This means that the host computer has no facilities for

running a DOS as would a CP/M or MS-DOS machine.

Lloyd Sponenburgh and Roy Southwick of Fiscal Information,

Inc. (a turnkey systems vendor in Daytona Beach, Florida)

were well aware of these facts when they decided several

years ago to adapt a hard disk to the C64. The result was the

original Lt. Kernal hard disk subsystem, which is now assem

bled and marketed by Xetec Inc. (Salina, Kansas) of Super-

Graphix printer interface fame.

Their success in this adaptation results in a system offering ca

pabilities that are normally available only on powerful multi

user mini-computers. The Xetec Lt. Kernal is not perfect but it

is far superior to anything else available.

The Lt. Kernal concept

The Lt. Kernal hard disk subsystem is a combination of a

small computer system interface (SCSI, pronounced "scuzzy")

5.25 inch hard disk assembly, various interface electronics and

a sophisticated user-friendly DOS. The standard capacity is 20

megabytes and this may be increased to 180 megabytes. Addi

tional hardware enables it to multiplex up to 16 computers on

to a single drive, resulting in an economical and powerful mul

ti-user system.

The Lt. Kernal implements a modified version of the

C64/C128 Kernal. The Lt. Kernal's operating system adds the

functions needed to make the host computer "talk" to the hard

drive. In addition, the Lt. Kernal DOS adds a variety of imme

diate mode and program mode commands for file manage

ment, directory handling and disk housekeeping. Other hard

drives only implement standard CBM DOS commands and do

not include the commands that are essential for convenient

operation.

The Lt. Kernal DOS and the technology in the drive are the re

sult of the efforts of Fiscal Information, who also own the

rights to the name. They support the DOS and the drive tech

nology. They do not actually build or market any Lt. Kernal

hardware. The design, assembly, testing and marketing of the

finished product are handled by Xetec Inc. They support the

users as well as build, sell and service the drive system.

Both Fiscal and Xetec operate bulletin boards for the use of Lt.

Kernal owners. On these boards one may discuss various drive

topics with Fiscal or Xetec personnel, or receive up-to-the-

minute news about new DOS features and improvements.

The Lt. Kernal hardware

A single station Lt. Kernal system consists of the hard disk as

sembly, a cartridge (the host adaptor), several jumper leads, an

interconnecting cable, user's manual and a floppy disk with

the Lt. Kernal DOS. C128s also require the internal installation

of an MMU daughter-board assembly. The host adaptor is com

puter powered while the drive has its own separate power

source. The Lt. Kernal hardware is designed for continuous

operation.

A multi-user system will aiso require a host adaptor and cable

for each computer (and the daughter-board if it's a C128) and

one or more multiplexers. A multiplexer can accept four sta

tions, with additional stations (up to 16) being accommodated

by daisy-chaining more multiplexers. A multi-user system may

be a mixture of C64s and C128s.

The Lt. Kernal hardware is well designed; attractive and pro

fessional in appearance. The drive is in a low, flat metal case

about the size of two 1541s placed side by side. The on/off

switch in the back is the only user control. The unit's modest

appearance belies the power and versatility within. A "busy"

LED indicates data access. I would like to see a power-on LED

as well, as the noise from the drive is barely audible. The only

sound is a faint hum from the Seagate 5.25" Winchester drive

unit and a soft whining sound from the fan.

Transactor 67 July 1988: Volume 9, Issue 1

The host adaptor in the cartridge port has access to the system

address and data bus lines. However, the adaptor doesn't ex

tend the port. The host adaptor is enclosed in a metal case for

maximum shielding and has four rubber feet. The DB-25 re

ceptacle on the back, which connects it into the system bus is

directly anchored to the steel chassis and is not at all fragile. A

pushbutton marked I.C.Q.U.B. (Image-Capturing Quick Utility

Backup) is the only visible control. This is the Lt. Kernal

equivalent of an ISEPIK or CAPTURE cartridge and functions in

C64 mode only (as of this writing). As received from Xetec,

the host adaptor is visible in the $DF00 I/O block of processor

address space as a multi-port device. To change the adaptor

address to the $DE00 range, simply relocate a jumper on the

host adaptor board.

Inside is a four-position DIP switch which is part of the multi

user system arrangement. On a multi-user system, each com

puter has a station or port number. The port number is deter

mined by the setting of this dip switch and is displayed as part

of the Lt. Kernal prompt. On a single station system, the DIP

switch is set to 0 (port numbers range from 0 to ^inclusive).

In a multiplexed system, station 0 becomes the "master" sta

tion. Additional stations are set to other port numbers and are

designated as "slave" stations.

The port number at location $DE04 (or $DF04, depending on

the I/O block chosen) can be read with: Ida $DF04 ($DE04)

and #%00001111). It is possible for multi-user systems to em

body software features that are contingent on which station is

being used.

The host adaptor's parallel DMA interface operates at tremen

dous speed. It is this feature which makes the Lt. Kernal the

best choice for business and professional use. Other drives use

either the serial or ieee-488 bus. There is no contest when it

comes to speed comparisons, as we'll see below.

Installation of an MMU daughter-board requires that the C128

be opened, the MMU removed from its socket, the daughter

board plugged into the MMU socket and the MMU itself

plugged into the daughter-board. An additional modification

must be made to the C128 to accommodate the serial port

burst mode functions. Although this may sound difficult, the

manual gives clear instructions and drawings and the results

are certainly worth the effort.

A 25-conductor cable connects the host adaptor to the drive or

multiplexer. This cable is of high quality and is designed for

maximum shielding to avoid interference problems. Although

the supplied cable is relatively short, it is possible to extend

the bus a considerable distance if required. There are no user

controls on the multiplexer (which is also in a sturdy metal

case) and therefore it may be located in an out-of-the way

place.

The floppy disk supplied with the drive contains the entire Lt.

Kernal DOS (which is already installed on the drive when

Xetec ships it). The DOS is serial number matched to the drive

as a means of guarding against installing the wrong DOS on the

drive (different DOS packages are used for different sized

drives). Unlike Commodore DOS, the Lt. Kernal DOS is soft

ware and therefore may be upgraded when necessary. By sup

plying it on floppy disk rather than on a ROM chip costs are re

duced and an inexpensive and convenient means of supporting

older drives is established. A process referred to as SYSGEN

(SYStem reGENeration) allows a user to upgrade or repair the

DOS easily.

The Lt. Kernal software

The superior hardware features of the Xetec Lt. Kernal are

complemented by a powerful and user-friendly DOS. The Lt.

Kernal DOS is executed in RAM in the host adaptor and offers

many new immediate mode commands. This amounts to a ma

jor overhaul of the computer's operating system and user inter

face and gives rise to concerns about compatibility with the

host computer and the software that is to be used with it.

Fear not, gentle reader! With a few exceptions, the Lt. Kernal

DOS peacefully co-exists with any software that has been prop

erly written (that is to say, uses the Kernal jump table and does

not JSR directly into ROM routines). Commodore DOS com

mands are supported (with a few exceptions) and all file types

are implemented, including RELative files. C128s equipped

with the Lt. Kernal function equally well in C64, C128 or CP/M

modes. Whole-drive formatting is not allowed and there are no

file-level direct access commands (such as Ul: or U2:), these

being intentionally omitted to protect the disk-resident DOS

(there are undocumented low-level system calls that may be

used to read or write any sector on the drive).

The Lt. Kernal DOS offers these safety features and a bevy of

new commands - sort and print directories; find a file's load

address; copy large groups of files from one drive location to

another; recover accidentally deleted files; list a basic pro

gram to screen non-destructively; read SEQ files; group files

into a separate area on the drive; change device number; auto-

execute a program on power-up (from either C64 or C128

mode). All that and more is available, making the Lt. Kernal a

joy to work with.

The Lt. Kernal supports partitioning (sectioning) of the drive

into user-definable areas. Partitioning on a hard drive is an es

sential feature for serious use, as literally tens of thousands of

files may be stored. The Lt. Kernal DOS allows the definition

of up to 11 logical units (0 to 10 inclusive). LU 10 is reserved

for the DOS and various utilities supplied with the system. The

user may reserve space for LUs 0 through 9 and may also store

files on LU 10 (space permitting). Each user-definable LU may

be configured as a CBM LU or CP/M LU. Any LU may contain up

to 4,000 directory entries. In theory, a drive with 11 defined

LUs could store 44,000 files.

In immediate mode an LU is selected by lu n <return>,

where n is the LU number. In a program an LU may be speci

fied in the syntax of a standard CBM DOS command. To open a

Transactor 68 July 1986: Volume 9, Issue 1

file on LU 6 you would use the syntax: open2,8,2,"6:filename".

Neat, huh? It is also possible to select an LU via the command

channel. As with Commodore drives the Lt. Kernal command

channel is channel 15.

Each LU may be divided into a maximum of 16 user areas

(sub-directories). A user area is selected by user n <RETURN>

or via the command channel when in program mode. Once

logged into an LU and user area, most disk activity will be re

stricted to that area. Files may be assigned to a given user area

by logging into that area before saving or by including the LU

and/or user number in the file save syntax. You can move or

copy a file from one user area to another as well.

Once logged into an LU and user area, the dir command allows

pattern-matching with both leading and trailing "don't cares",

direct output to printer, alphanumeric sorting of filenames be

fore output, selective display of file types, viewing of file

names from foreign areas (i.e. LUs and/or user areas other than

the one currently logged) and more.

A directory display includes: filename; size in disk sectors

(512 bytes); file type (a numeric code that distinguishes ML

programs from BASIC, among others); file's load address; the

file's physical location within the LU (displayed as a hex ad

dress); file's assigned LU and the status of the file's "dirty"

flag. (The dirty flag indicates whether the file has been modi

fied since the last archiving operation.) In a C128 in 80 col

umn mode, the directory is neatly arranged in two columns.

Using the Lt. Kernal

We're not talking about a simple plug-in accessory. This is a

whole new operating system and programming environment

for the C64 or C128. The drive implements high speed, high

storage capacity, a fool-proof DOS and ease of use.

The parallel bus interface of the Lt. Kernal results in immedi

ate response and superb performance during loads or saves.

Programs are running in an eye-blink and saves occur at as

rapid a rate. Also, the nasty SAVE@ bug does not exist on the

Lt. Kernal.

At 1MHz (computer speed), the Lt. Kernal transfers data at

38K per second, over 100 times faster than an unmodified

1541 drive. On a C128 at 2MHz (FAST mode), the transfer rate

is increased to over 60K per second - about 12 times faster

than a 1571 or 1581 in burst mode and over 50 times faster

than an IEEE unit interfaced through the cartridge port. Testing

has shown that a C128 in FAST mode can fetch a disk sector

(512 bytes) into computer RAM in as little as 10 milliseconds.

Sector writes are just as fast. Again, there is no contest when it

comes to speed comparisons.

The "latency" of the Seagate (the time required for a given

sector to pass under the head) averages 8.3 milliseconds,

whereas the SFD-1001 averages 100 MS. The lower the la

tency, the faster the data may be read or written. Additional

gains are achieved by extremely dense storage on the media

and by the use of multiple read/write heads. This reduces the

number of seeks required to read or write a sector and substan

tially improves performance. Continued research on hard disk

design has improved reliability and speed while reducing cost

and physical size. These improvements are evident in the tech

nology of the Lt. Kernal. In a year of continuous use, my

20mb unit has been trouble-free.

Inherent speed aside, credit must also be given to the DMA in

terface and the Lt. Kernal DOS. If the drive had been interfaced

via a serial or IEEE bus and if the standard CBM DOS had been

utilized, the drive would have been little faster than the floppy

units it was designed to replace.

User-friendly DOS

The new functions implemented by the DOS are easy to use

and immediate in action. Plain language prompts and error re

sponses guide you through most tasks, making for an intuitive

operating environment. Immediate mode command syntax is

generally quite obvious, and easier to remember than the

equivalent CBM commands.

For example, type "1 filename" <return> to load a file in

stead of dload "filename" or load "0:filename",8. "L" will au

tomatically load a file to its correct address, with an additional

distinction being made if the file is BASIC rather than machine

language. Entering "1 2:3: filename" <RETURN> loads file

name from LU 2 USER 3. This allows you to load across USER

and/or LU boundaries. Within a program, standard CBM com

mands are used and standard CBM disk error messages are gen

erated. This means that most software will run on the Lt. Ker

nal without alteration, assuming that it was written to use the

standard Kernal jump table.

Specialized DOS functions (such as multiple file deletes) utilize

status messages and confirmation prompts, especially if poten

tially destructive. For example, activating an LU produces the

same result within the LU as formatting a disk does on a CBM

drive. Because an inadvertent activation could destroy thou

sands of files, a triple confirmation system is used to protect

the user from himself.

A single file may deleted from immediate mode with the

"era" (erase) command. Era may be used across LU and/or US

ER boundaries and there is no confirmation prompt. Era may

be used with a pattern-matched filename but the command

will scratch only the first file found to match. Type "oops"

<return> immediately after an errant scratch and the drive

will recover the file.

Multiple file removal may be accomplished with the autqdel

command. The drive will request the source LU and USER area

and list those files on the screen. Using the cursor keys and the

space bar, you select the files to be deleted and then tell the

system to do its job. Multiple confirmations protect you from

careless typing.

Transactor 69 July 1988: Volume 9, Issue 1

Upon powering up the Computer, the Commodore sign-on

message appears and the Lt. Kernal performs a diagnostic test

of the hardware and DOS. When all is well, the Lt. Kernal

prompt will appear, indicating: 64 or 128 mode, current LU

and user area, and the port number of the station. The Lt. Ker

nal will search the power-on lu for a program called au

tostart and, if found, run it. If AUTOSTART is not found, con

trol is passed to BASIC. This whole process takes perhaps five

seconds.

Who needs the Lt. Kernal?

If you write a lot of software, or use the computer for business

or other professional use, then the Lt. Kernal is the drive for

you. For the professional programmer or the business user, the

Lt. Kernal means greater productivity as well as a more re

liable and efficient medium upon which to store and retrieve

data. For the BBS sysop, the Lt. Kernal means lots of space for

uploads and user messages.

The utility of the Lt. Kernal is significantly enhanced if new

software is written to take advantage of the special features -

the multi-user capabilities, for example. A proficient program

mer can write software that allows file sharing amongst the

various stations, resulting in greater system utilization.

Another special feature is the implementation of a unique (to

Commodore-based systems) file type: the key-index file. The

key-index file may be used to relate data keys to the records

of a RELative file or random access storage system. The KEY-

INDEX file is controlled by the DOS's KEY file processor, which

may be used by BASIC or ml programs. The program simply

passes the key string, its record number and some instructions

to the KEY file processor and the Lt. Kernal does the rest. The

DOS passes back information to your program on the success

of the operation and so forth.

KEY file operations are very rapid. A single key and its record

number can be retrieved from literally thousands of keys in

less than 100 milliseconds. Keys are always inserted into the

index in alphanumeric order, key duplication not being al

lowed. Writing a database to utilize a key-index file means

that you don't need to devise search and sort subroutines to do

the housekeeping. The KEY file processor does it all for you.

Using simple techniques, you can retrieve keys in ascending or

descending order or on exact match. When a key is located,

the associated record number is retrieved for access to a com

panion RELative file. In fact, a key file may have multiple di

rectories, such a KEY file being the equivalent of a multi

dimensional RAM data array. This is indeed a database pro

grammer's dream come true. The KEY-INDEX file makes a

RAM-based index as outmoded as a vacuum tube mainframe.

Complementary to the key-index file structure is a greatly en

hanced RELative file implementation. On the Lt. Kernal, RELa

tive file record length may be up to 3,072 bytes with a maxi

mum of 65,535 records per file. The maximum possible size of

any given RELative file is 16.78 megabytes. Record position

commands are executed much faster than on CBM drives and a

double-position dance is not required for reliable performance.

There are numerous other features embodied in the Lt. Kernal

hardware and DOS, a discussion of which would fill another

whole article. However, this is not supposed to be a sugar-

coated hardware review. It is always easy to emphasize the

good features over the not-so-good and therefore I'd like to

mention those features that I don't consider to be optimum.

It's a great system but...

The Lt. Kernal comes with a manual that has been printed and

bound in the same manner as the manuals supplied with ex

pensive MS-DOS software. However, the manual is far from

complete and will prove to be heavy reading for the neophyte.

Although the manual thoroughly describes the installation of

the drive hardware and documents the Lt. Kernal DOS com

mands, it glosses over such hard drive concepts as logical

units, subdirectories and how the DOS operates. A quick com

mand summary card is included but it does not shed any more

light on the workings of the DOS than can be found in the man

ual text itself. If you purchase a Lt. Kernal system be prepared

to do some experimenting with commands. For example, the

manual doesn't mention that reading a directory from within a

program will return only the directory of the currently logged

user area. Nor does it mention that immediate mode DOS com

mands are ignored unless the typed command starts at the left

margin of the screen.

According to Lloyd Sponenburgh of Fiscal Information, an

improved manual and a "power users' kit" are in the works.

Presumably, the power users' kit will document low-level DOS

calls for advanced programming applications and will describe

the inner workings of the DOS in greater detail. Such knowl

edge will be essential if you ever intend to write a multi-user

software package or wish to make full use of the drive's speed

and power.

There are some less than optimum conditions in the combina

tion of drive, DOS and computer. The Lt. Kernal DOS con

stantly monitors system activity to determine if a Lt. Kernal

DOS command has been issued or if a call, has been made to

the CBM Kernal subroutines responsible for peripheral activity

(such as chkin, chkout and so forth). If it detects disk-related

activity, it temporarily remaps the system, causing certain DOS

routines to appear in place of some areas of ram. This is the

primary means by which user or program DOS commands are

intercepted and serviced. This takes time and, in some circum

stances, reduces the computer's operating speed.

A reduction in processing speed will be evident in any func

tion that uses the Kernal basin, getin or bsout subroutines.

This effect will be quite noticeable when using the RS-232

routines at 1200 or 2400 baud or when running a C128 in

slow mode. The Lt. Kernal's presence has a greater effect on

the C128 because of its banked memory environment. This,

Transactor 70 July 1988: Volume 9, Issue 1

coupled with the greater complexity of many C128 I/O rou

tines, simply means slower operation (only so much can be

done with an eight bit CPU). Needless to say, the slower opera

tion under the Lt. Kernal DOS is less of a problem with the 128

in FAST mode and is less noticeable in BASIC programs than in

ML or compiled BASIC programs.

Because of the interception of the basin and BSOUT subrou

tines, SEQuential and RELative file access is actually slower

than the IEEE drives. This is less a fault of the Lt. Kernal than

of the CBM Kernal itself, as many redundant checks are per

formed when the BASIN or BSOUT subroutines are utilized. This

intensive activity, coupled with the extra code required to pass

data between computer and drive slows down the system. Im

provements to this section of code are being implemented in

the next version of the Lt. Kernal DOS and that BASIN and

BSOUT will perform at a much higher speed.

With one exception, the Lt. Kernal DOS operates transparently

as long as the programmer uses the CBM Kernal jump table

and does not JSR directly into I/O routines in ROM (which is

bad programming practice). The exception is that the low-

level or "primitive" Kernal I/O calls (TALK, LISTEN, etc.) are

not supported. Any calls to the primitives will be sent directly

to the serial port. This means that when running in C64 mode

you can forget about using the DOS Wedge to issue commands

to the Lt. Kernal (which would be pointless anyhow). Howev

er, the Wedge load and save commands will work with the Lt.

Kernal and any commands prefixed with the @ symbol will be

passed to the serial port. Therefore, you may use the Wedge to

control a serial port floppy drive that is also connected to the

system.

In C128 mode, all BASIC 7.0 DOS commands are supported ex

cept HEADER and COLLECT (neither of which has any purpose

on the Lt. Kernal). As mentioned before, the DIR command

permits the direct output of the directory to the printer (with

out pagination). Also, it appears that DOS doesn't verify that

the printer is on-line, as I've had the system crash when at

tempting to print to a non-existent printer.

Because of the memory limitations of the C64, the Lt. Kernal

DOS swaps the $C000-$CFFF range of RAM out of processor

space when certain immediate mode commands are utilized.

Upon completion of the command, the contents of this range

are restored. This won't present a problem unless you have an

interrupt-driven routine in this area. For example, if you re

quest a directory from the Lt. Kernal, the $C000 block will

temporarily become part of the DOS. If an interrupt is directed

to this area of RAM the machine will probably crash - the IRQ

will not find the appropriate code, but will instead see Lt. Ker

nal DOS code. The same limitation holds true for several other

Lt. Kernal utilities. It seems to me that this problem could be

avoided by stashing the current page three indirect Kernal vec

tors on the drive (where there's lots of room for such activity),

temporarily resetting all of the vectors to their default values

and then restoring them to their original condition once the

processing has been completed. As it is you must exercise care

to avoid system fatality. For the non-technical user this may

represent a source of frustration and may lead him or her to

believe that there is something amiss with the drive.

With one exception, no memory usage restrictions appear to

exist in C128 operation. The exception has to do with the use

of the I/O block at $DF00. The STASH, FETCH and SWAP state

ments in BASIC, the DMA-CALL subroutine in the Kernal, and

CP/M (when using drive M) all address this area, as this is

where the external ram expander is mapped into the system.

To use the RAM expander or to run CP/M, you must move the

I/O page jumper on the host adaptor so as to map the adaptor

into the $DE00 block. This may prevent protected C64 pro

grams captured with I.C.Q.U.B. from functioning.

In terms of software compatibility, a few problems may arise.

Any database program that utilizes direct-access storage and

retrieval methods (Ul: or U2:) is not going to operate with the

Lt. Kernal. This means that older versions of Superbase will

not operate (the more recent version that uses RELative files

will work). Most database managers, word processors and

spreadsheets will operate if they utilize standard CBM file

types. Needless to say, any software that is dependent upon the

inner workings of the 1541 DOS (such as applications that set

up some kind of speed-up function in the drive) are not going

to run. Programs that rely on the internal timing of the 1541

ROMs or attempt to utilize low-level DOS functions will go bel

ly up. I.C.Q.U.B. functions only in C64 mode as of this writing

so C128 software that has been protected by DOS protection

schemes cannot be transferred to the Lt. Kernal. To utilize

such software with the Lt. Kernal you must change the drive's

device number (a simple immediate mode command) and load

the software from the floppy drive.

One other compatibility problem exists that may be important

if- you wish to use KEY files with database software written in

BASIC. The BASIC syntax for manipulating KEY files is not

compatible with any of the BASIC compilers that are presently

available. This is because a colon is used to separate the SYS

call to the key file processor from the list of variables that is

associated with the call. Most compilers can be instructed to

ignore a program line fragment by placing a double colon (::)

before the fragment, the result being that it will be passed di

rectly to the BASIC interpreter. Compilation will then resume at

the next colon or at the start of the next line. However, the

colon following the SYS call to the KEY file processor will tell

the compiler to attempt to compile the list of variables that fol

lows the SYS call. The compiler will then flag the list as a syn

tax error. This is unfortunate, as a compiled BASIC database us

ing a KEY file would make a very nice and efficient package.

If there is one significant weakness in the Lt. Kernal system, it

is the means by which data backup is performed. Any data loss

on a hard disk system could be massive. To ensure data

security, frequent backups are mandatory. Unfortunately, the

only backup method presently available to a Lt. Kernal user is

continued on p. 73

Transactor 71 July 1988: Volume 9, Issue 1

The 1351 Mouse and GEOS 1.3

Graphic environment on a roll

Review by Malcolm O'Brien

The 1351 mouse was well worth the wait. What a gas! What a

great product! With its sleek and attractive styling (identical to

the Amiga mouse), the 1351 mouse is a perfect complement to

your 64 or 128. It has a very solid feel and, to my hand, a more

ergonomic design than the mice you'll find attached to Lisas,

Macintoshes or PCs. I particularly like the tactile feedback on

the two buttons.

Two Modes

The people at Commodore have cleverly given the 1351

mouse a dual personality. It has two modes of operation, se

lectable on power-up. With the mouse plugged in, hold down

the right mouse button while you turn on your computer. Now

your mouse will be disguised as a joystick and will function

properly with any software that expects to find a joystick. Ac

tually, this disguise is more like the 1350 mouse, the joystick

in mouse clothing. It should be noted here that some users

have reported that mice make lousy joysticks. Certainly, this is

not the way to have a rip-roaring game of Screen Busters from

Outer Space, but it may be just the ticket in a different sort of

application; for example: hi-res drawing programs like Doo

dle, sprite editors or font editors. You may also find it suitable

for non-arcade type games like Shanghai. Experiment!

If you power-up without holding down the right button, the

mouse will be initialized as a true proportional mouse. It is in

this mode that the 1351 mouse is in its glory and really offers

Commodore users something new.

Documentation

The documentation is up to Commodore's usual (new) stan

dard: very good! A small booklet included with the package

contains a short section on using and caring for (but not feed

ing) your mouse. There is one small discrepancy here between

what the booklet says and the way things are in the real world.

The booklet advises cleaning the mouse's metal rollers with

alcohol or head-cleaning fluid on a cotton swab. On disassem

bly, however, it will be seen that the rollers are actually plastic

cylinders on metal spindles. Note that you should never use

solvents like alcohol or head-cleaning fluid on these plastic

parts. Keep your mouse clean by ensuring that you always use

it on a clean surface. Even so, a periodic dusting is recom

mended. Just disassemble your mouse as instructed, wiping

the ball with a soft cloth and blowing into the opening.

Programming

The second section of the booklet is longer and offers an in-

depth discussion of mouse internals for those interested in of

fering mouse support in their own programs. In joystick mode,

this is fairly simple - it's the same as programming for a joy

stick with one small (and generally ignorable) exception.

When the 1351 mouse is functioning as a joystick, the left but

ton serves as the fire button in the standard way. However, the

right button is readable. It's mapped into the SID POTX register.

When the right button is pressed, the register will contain a

value less than $80. When the button is not depressed, SID

POTX will contain a value greater than or equal to $80. I call

this an ignorable feature since it is not a joystick function. If

your program is going to read the right button, the operator

won't be able use this function if he or she is using a joystick.

(As an aside to the readership: What is the right button for? If

GEOS uses it, I don't know how. Anyone else?)

Programming the 1351 mouse in proportional mode is an en

tirely different kettle of fish. This is not a simple task, espe

cially the positioning aspect (the left and right buttons appear

as joystick lines). If you're not into machine language, or are

intimidated by phrases like: "wedge into the IRQ handler prior

to the polled keyscan" or "distinguish between a point short in

the keyboard matrix and a whole row or column being ground

ed", then you will have a lot of difficulty programming the

mouse yourself. There is an alternative however...

The Disk

Of course, the best hardware is nothing more than a pricey

doorstop without software. Included in the 1351 mouse pack

age is a disk of the 'flippy' persuasion. Side A has several

demo programs for the 64 or 128 (in native mode). These in

clude: mouse drivers in assembly source, BASIC loader and

raw machine language. Also included is a simple "Identify the

Shape" educational program that serves as an example for

writing BASIC programs that get mouse event data from the ML

drivers. This technique serves to make even a simple BASIC

program look more sophisticated and professional.

Transactor 72 July 1988: Volume 9, Issue 1

At present there is very little commercial software available

that will make use of the 1351 mouse (at least in proportional

mode). Obviously, most mouse users will be using the device

with GEOS and will need no other justification for their pur

chase. The only other commercial software that I'm aware of

that offers support for the 1351 mouse is CADPAK from Abacus

Software. There may be other products but I haven't seen them

yet. Nor have I used CADPAK, although it would definitely

seem to be an appropriate application for this device.

GEOS V1.3

Side B of the included disk has only one file. This is the GEOS

upgrade to Version 1.3. Note that you cannot use the 1351

mouse (in proportional mode) with Version 1.2 or earlier. Al

though the upgrade program is copy-protected, it may be

freely re-used to update anyone's GEOS system disk, and it

should be so used. Upgrading is a good idea even if you're not

using the 1351 mouse. The new version is changed in several

important ways: new printer drivers, new input drivers, new

utilities, safeguards and shortcuts.

First, the new input drivers: the Flexidraw lightpen and the

Koala Pad. You can switch from joystick to mouse to pad to

pen without rebooting with "select input" under the GEOS

menu. Note that the pad and pen cannot use the scroll arrows

in geoPaint. Use the page position indicator at the bottom.

The utilities: Backup, Disk Copy, Configure and Rboot. Back

up is now only for use with the GEOS system disk. Use Disk

Copy for copying work disks. Configure allows the use of a

RAM expansion unit. You can create a RAM 1541, 'shadow' a

real 1541, use DMA for fast data transfers, and enable fast re

booting. If the deskTop is in ram, tapping the restore key

will reboot GEOS from ram - fast!

The safeguards: deskTop 1.3 and Disk Copy will not allow

you to screw up your Master disks. You won't be able to for

mat them or use them as "destination" disks. Nor will you be

able to delete important files or even relocate certain files.

This is going to spare a lot of users "that sinking feeling..."

One extra safety note, though. You can't use the deskTop 1.2

or the old Preference Manager with the 1.3 GEOS Kernal. To

do so is to court a crash (speaking from experience here!).

Finally, the shortcuts: These are keystroke combinations for

functions that used to be menu-only. Shortcuts are accessed by

holding down the logo key and pressing another key. The

deskTop has three: Logo-I allows you to select a new input

driver. Logo-0 opens a disk and logo-C closes it. geoWrite has

numerous shortcuts, which are shown in the menus.

The geoPaint update "handles text scraps better" according to

Berkeley Softworks, and forces the edit box to conform to

colour card boundaries when working in colour mode.

You get a lot for your money in this package and it's all great!

I love mine and you'll probably love yours too.

Lt. Kernal... continuedfrom p. 71

to copy files from the hard drive to a floppy disk drive. Ac

cording to Lloyd Sponenburgh, a cartridge-type IEEE interface

may be used to connect an IEEE drive. With a 1541 you will

need 118 (that's not a misprint) floppy disks to back up your

20mb hard drive - assuming that the drive is full). With a

1571, or if you use both sides of the disks on a 1541, you will

need 59 floppies. A 1581 user can manage with a mere 25

disks while an SFD-1001 user will be able to get by with only 20

disks. What makes this backup method especially onerous is

the fact that the only proper way to back up a high capacity

drive is the "double grandfathering" method. This requires the

use of two complete sets of disks, thus protecting you in the

event of a major system fatality while performing a backup.

Regardless of the drive used, backups will be time consuming.

If you have a 1541 or 1571 drive, the built-in FASTCOPY utility

will allow a copy to be cranked out once every three minutes

or so (FASTCOPY runs only in C64 mode). A little math will tell

you how many hours you'll need to perform a full backup.

FASTCOPY reprograms the floppy drive to speed up copying.

Therefore, it is unlikely that it will function with a 1541 clone

(it wouldn't operate with my MSD SD-2). [For what it's worth,

the FSO should work in this case. - Ed.] In such a case, or if

you are using an IEEE drive, you can use 'copy-all 64" (sup

plied on LU 10 of the Lt. Kernal) or "uni-copy'. Neither of

these copiers speeds up the serial bus.

Unfortunately, there is no mechanism presently available to

copy a Lt. Kernal KEY-INDEX file to or from a floppy disk. For

a business or other professional user, the backup situation rep

resents a significant limitation. Most businesses simply cannot

afford the time required for a full backup. Yet a business can

not afford to not back up the drive. Although FASTCOPY lets

the user selectively back up only the most recently modified

files, he would still be faced with a daunting task. One solu-

tionwould be a high-speed streaming tape backup. A ttape

streamer can back-up 20mb in under 10 minutes. Xetec has

done some work in this area but, as of this writing, has not

released any hardware.

To buy or not to buy...

At approximately $900 (US), the price is not trivial. However,

for a major breakthrough in high capacity mass storage in ter

ms of features and ease of use, it's a great value. Consider: two

SFD-1001's, an IEEE interface and cables will cost approxi

mately $600 (US) and will only give 2.1 MB, 1.2K/second

speed and no DOS enhancements. My only reservation in rec

ommending the Lt. Kernal for business or professional use is

the backup situation. A better system is urgently needed if the

Lt. Kernal is .to make its mark in the business world. However,

if you can live with the present backup scheme then the Lt.

Kernal is definitely the way to go. The Lt. Kernal is not per

fect but it is close! And, it is constantly being improved.

Contact Xetec, Inc. at 913-827-0685 for more information.

Transactor 73 July 1988: Volume 9, Issue 1

Warp Speed

"Impulse power is not enough, Mr. Scott

Review by Malcolm O'Brien

Warp Speed is one of the newest entries in the DOS enhance

ment sweepstakes and stands poised to become a front runner.

Warp Speed is powerful, flexible and easy to use. A reset but

ton is built into the cartridge, along with a 64/128 slider

switch. Warp Speed will appeal to a broad base of users due to

the number of devices supported. Warp Speed works with: the

64, the 128 in native mode (40 or 80), the 1541, 1571, 1581,

MSD (!) and some hard drives. An extended DOS wedge is in

cluded with support for multiple drive systems. All features

are accessible from menus to make things simple for new

users while the long-time hacker can bypass the menus in most

cases and use one or two keystrokes to initiate the magic.

Warp Speed is easier to use than it is to document. It has so

many features that describing them all results in a long review.

It's great to have this kind of power at your command. But it

wasn't always this way...

A little background

The C64 and 1541 seemed like a step backwards to pet users

who had BASIC 4.0 disk commands and quick, parallel dual

drives such as the 4040. At that time the obvious path for drive

enhancement was to interface the C64 with the faster IEEE disk

drives. Many users (including me) are still using IEEE drives

via G-Links, BusCards etc. (To be fair, it must be noted that

the introduction of the serial bus interface did help to keep the

hardware costs down.)

As the flood of C64 software turned into a tidal wave, more

and more commercial (read: copy-protected) programs relied

on 1541-specific drive ROMs. Another step backwards - we

now needed to use 1541s to be able to use some software. And

so it was that the C64 community was offered Kwik Load,

Fast Load, Vorpal, SuperDos, GT-4, Mach and others. You

probably have one (or more) of these yourself.

Fast Load may have been the most popular of these. Even

now, years later, Fast Load is still prominently displayed in ev

ery computer store I browse and, presumably, is still selling

well. It was an effective solution for the problems described

above but added new problems of its own design (skewed di

rectories principally). In spite of this, it was parked in my car

tridge port for three years or so.

But not any more. Warp Speed is how I spell relief now. Warp

Speed has powers and abilities far beyond those of mortal car

tridges. It's clearly superior to Fast Load and is well worth the

difference in price (about $10 here in Toronto).

What the user will find

First and foremost, the speed increase is not just in the loads.

Saving and verifying also happen at Warp Speed. (Tech note:

Files saved with Warp Speed are saved in a "skew 6" format.

These files will warp load ten times faster than normal 1541

speed.) The DOS wedge includes a quick text file reader, the

ability to set the currently logged drive and single-key entry to

the menu system (British pound key) or the machine language

monitor (pi key).

The text reader is a nice addition. Just type an ampersand (&)

followed by the name of. the text file and hit Return. The

screen clears and the text begins to be printed to the screen.

CTRL may not slow it down enough for reading so use the

spacebar to pause and restart the listing. RUN/STOP will exit.

This is similar to the TYPE command in MS-DOS and CP/M. It's

great for reading files or just to take a quick peek to determine

a file's contents. I use this feature a lot and you probably will

too.

Setting the currently logged drive is also common to the MS-

DOS and CP/M environments. This allows you to leave out the

",8" or ",9" when accessing the drive. To switch between the

two, type a number sign (#) and Return. This will toggle be

tween devices 8 and 9. If you're using more than two drives,

follow the number sign with the device number of the drive

you want to operate on.

Note that Warp Speed will search both/all drives for the file

desired and, if found, will switch the currently logged device

to that drive. Commodore-RUN/STOP will always load the first

file on the disk, not the most recently accessed.

The DOS wedge

As usual with the wedge, you preface a disk command with

the at-sign (@) or a "greater than" (>). The at-sign alone will

read the error channel. You use a slash for loading BASIC, a

Transactor 74 July 1988: Volume 9, Issue 1

left-arrow for saving basic, a percent sign for ML loads and an

exclamation point for a verify. An unusual wedge feature is the

"f" command. This will yield a fully verified fast format (22

seconds) and even includes an "Are you sure?" prompt.

The non-destructive directory that is initiated by typing a dol

lar sign followed by a Return can be paused and restarted with

the spacebar or aborted with run/stop. All pattern matching

and multiple parameters are supported; i.e. "$*=seq" or

"$p*,t*,s*" will work properly. Beats me why they never doc

ument this stuff!

Utility commands

The other directory function is one of the Utility Commands.

All of these begin with an up-arrow. When followed by a "$",

the disk auto menu is enabled. This will load in the directory

and allow you to scroll through it with the cursor keys. Press

ing Return will warp co load the highlighted file and run it. I

was pleasantly surprised to discover that if you decide not to

load a file and abort the auto menu with the stop key, your BA

SIC program is still in memory. Note, however, that if the BA

SIC program in memory is very large, the directory load will

corrupt basic.

Here's a quick description of the rest of the Utility Commands

(each preceded by an up-arrow):

k - Kill: fast loader only. Other functions are unchanged

e - Enable: resets the Warp Speed load, save and restore

vectors

u - Unnew: restores BASIC after a new or pressing the re

set switch

r(n) - Renumber: assign current drive device number n (de

fault is 8 to 9)

h - Hardcopy: dump text screen to printer (upper:

case/graphics)

s - Single side: put 1571 into 1541 mode

d - Double side: put 1571 into native mode

Note that both format commands function in accordance with

the 157l's current mode.

Multi-file/whole disk operations

These operations are selected from the Main Menu which is

brought up by entering the British pound key. Selections are

made from the menu by number or by cursoring. Functions in

clude single drive copier, two drive-nibble copier and the abil

ity to copy or scratch multiple files. (Typing an "a" will select

all files. An "r" will select remaining files below the cursor.

Home will move the cursor to the top of the directory. An "s"

starts the function when selections are completed. Operation

status is indicated throughout.)

The two drive copier will duplicate a single-sided disk in 30

seconds! This copier uses write verification and will report any

errors encountered during copying. Although the documenta

New! Improved!

TRANSBASIC 2!
with SYMASS™

"I used to be so ashamed of my dull, messy code, but

no matter what I tried I just couldn't get rid of those

stubborn spaghetti stains!" writes Mrs. Jenny R. of

Richmond Hill, Ontario. "Then the Transactor people

asked me to try new TransBASIC 2, with Symass®.

They explained how TransBASIC 2, with its scores of

tiny 'tokens1, would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in

giving it a try. Well, all it took was one load and I was

convinced! TransBASIC 2 went to work and got my

code looking clean as new in seconds! Now I'm telling

all my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass, the symbolic assembler.

Package contains all 12 sets of TransBASIC modules

from the magazine, plus full documentation. Make your

BASIC programs run faster and better with over 140

added statement and function keywords.

Disk and Manual $17.95 US, $19.95 Cdn.

(see order card at center and News BRK for more info)

TransBASIC 2
"Cleaner code, load after load!"

Transactor
July 1988: Volume 9, Issue 1

tion states that this is not as reliable as the fully verified single

copier, it has worked perfectly for me every time and is a won

der to behold!

The manual suggests using the single copier if the dual copier

should fail. A great feature of the single copier is compression

of the read data. You may be able to copy a not-full disk in just

one or two passes!

As you are probably beginning to surmise, these functions will

allow you to re-organize your disk library with a minimum of

time and trouble. And you do need to reorganize, don't you?

For the programmer

The monitor and sector editor are integrated and function syn-

ergistically. A lot of thought has gone into them and the envi

ronment at the low level is quite nice.

The vertically scrolling monitor has several unusual features

that set it apart. The I/O command, for example. Enter "o 08"

, and you'll be working in drive ram! An "o" by itself will re

turn you to the computer. While in drive RAM you can assem

ble, disassemble, execute or dump (in ASCII or hex). Also valu

able is the option of setting the configuration or bank select

register to a new value. Use the left-arrow followed by the de

sired value. On a C64, a value of $34 in $01 will allow you to

work in the RAM under the ROMs and the I/O block at $D000.

On a C128, a value of 00 or 01 can be presented to $FF00 to

select bank 0 or bank 1.

Another handy feature is the transfer command. This is a

smart transfer, i.e. the two blocks of memory can overlap and

the transfer "will not turn into an accidental fill command." In

addition, you can transfer to and from drive memory with the

"td" and "tc" options or toggle output to the printer with the

"p" command.

All wedge and utility commands are also available from the

monitor. All the other standard monitor commands are includ

ed with a couple of variations in their functioning. For exam

ple, you can specify an alternate load address when loading or

saving a program. A "d" without an end address will disas

semble to the end of memory; once again, pause and resume

with spacebar, abort with STOP. The hex and ASCII dumps work

the same way. Scroll up or down as desired. Overtype an ad

dress at the top or bottom of the screen and the monitor will

obediently begin displaying from the target memory segment.

Time to leave the monitor now and there are five ways of do

ing it! The "q" command will exit and restore the break vector

to normal, i.e. Commodore's monitor in the 128, warm start in

the 64. The "x" command will return to basic with the break

vector pointing to the cartridge monitor. Switch to the sector

editor with "xs" and to the main menu with "xm". The "xc"

command will return to basic via a cold start which will also

clear the break vector. These extra conveniences are part of the

reason why Warp Speed is such a joy to use.

The sector editor uses memory from $7E00 to $7EFF as the

editing buffer. The default editing mode is hexadecimal but

pressing "t" will enable text mode. If you exit to the monitor,

the editing buffer and current track and sector values are re

tained. This allows the option of editing the sector at the op

code level.

Type an "r" to read a sector if the default track and sector is

OK; otherwise enter the values in hex. Up and down scrolling

will move the cursor through both pages of the sector. Type a

"p" if you'd like to dump the block to your printer.

Extra editing features are available while working within a

sector. Pressing "SHIFT-CLR/HOME" will fill the buffer with ze

ros from the current cursor position to the end. HOME will

move your cursor to the top of the screen editing area. A sec

ond HOME will place the cursor at the top of the sector. From

this position, you can get the next sector in the file by typing a

"j" which will jump to the track and sector under the cursor.

To step through the file from any other position, type an "n"

for next. The plus and minus keys will move you one sector

forward or back. When used with shift they move you one

track forward or back.

Before you write that block back with "w", remember that you

have source and destination drives set! If you really want to

write back to the source disk, press the spacebar to flip the

drive settings. The usual cautions with respect to sector editors

apply. Be careful....

Some small problems

The only problems I had while using Warp Speed occurred

while using one 1541 and one 1571. I must lay the blame at

the rubber feet of the 1571. This is an "old ROM" 1571. The

docs for Warp Speed clearly state that you should be using the

upgrade ROMs. And you should - even if you're not using

Warp Speed. Despite this discrepancy, Warp Speed functioned

beautifully with the old ROM 1571 when it was the only drive

attached.

I should also mentioned that some software will not fare well

with Warp Speed installed. The Q-Link software refused to

boot but GEOS disables Warp Speed to use its own turboDisk

and you can boot Q-Link from the deskTop. I encountered a

different problem while using Sixth Sense on the C128. After

a period of time online (full buffer?) I would be dropped into

BASIC with garbage characters on the screen. Typing RUN

restarted Sixth Sense which then cleared my buffer and hung.

On the other hand, the performance improvement with some

thing like SpeedScript is nothing short of remarkable.

All in all, Warp Speed offers much more than fast loading. It's

helped a lot in the matter of producing the Transactor disk,

which requires more work than you would imagine. Users

group librarians know something about this too. But the bot

tom line is that, with its numerous features and great speed,
Warp Speed has something for everyone.

Transactor
76 July 1988: Volume 9, Issue 1

News BRK

Transactor News

Submitting News BRK Press Releases

If you have a press release you would like to submit for the

News BRK column, make sure that the computer or device for

which the product is intended is prominently noted. We re

ceive hundreds of press releases for each issue and ones whose

intended readership is not clear must unfortunately go straight

into the trash bin. We only print product releases which are in

some way applicable to Commodore equipment. News of

events such as computer shows should be received at least 6

months in advance. The News BRK column is compiled solely

from press releases and is intended only to disseminate infor

mation; we have not necessarily tested the products

Distributors Wanted

Many subscribers state that the magazine is not available in

their area. If you know of retailers who are not carrying7ra«,s-

actor or Transactor for the Amiga, write or e-mail (Com

puServe PPN 76703,4243) and send us their names and ad

dresses. We particularly need distributors in: Rhode Island,

New Hampshire, Maine, Vermont, Delaware, West Virginia,

South Carolina, Alabama, Mississippi, Iowa, South Dakota,

North Dakota, Montana, Nebraska, Wyoming, Hawaii,

Arkansas, Idaho, Alaska and all over Canada, particularly on

the Prairies and in the West. Subscribers and dealers are our

most important resource.

The 20/20 Deal

...is still in effect: order 20 subscriptions to the mag or disk, 20

back issues, 20 disks etc., and get a 20% discount. (Offer ap

plies to regular prices and cannot be combined with other spe

cials).

Subscriptions

Please note that your subscription order will run from the next

issue anci cannot be back-dated or our mailing database would

freak. This may mean a delay in getting your first issue. If you

need back issues, use the order card in the centre of the mag.

No Longer Available

The 1541 Upgrade ROM Kit is sold out. See Volume 7 Issue 2

for complete instructions on obtaining a set; disk #13 contains

the ROM image you'll need to burn your own EPROMS.

However, we're reasonably sure that the ROM image is com

patible with the 1541 only. 1541C owners will need to create

an image of their ROM set, then majce the changes described

in Volume 7, Issue 2, but with minor mods for what are more

than likely simple address changes. We are still waiting for an

update article from someone who has successfully done-this!

"Moving Pictures" isjio longer available from Transactor. If

you have ordered a copy, you may ask either for a refund or

have a credit issued against further orders from Transactor

Publishing - Renanne Turner, our customer service person,

will be in touch with you. Moving Pictures is now distributed

by CDA, with new packaging and manual. Contact CDA at:

P.O. Box 1052, Yreka, CA 96097. Phone (916) 842-3431.

Transactor Mail Order

Items on order cards in back issues ofTransactor are not nec

essarily currently available; if you are unsure, please call Re

nanne before sending in your order. To be certain, place orders

from the card in the most recent issue. Please remember that

your order takes a week to ten days to reach us. We wil pro

cess it as quickly as possible and it will then take another two

weeks to reach you by what is alleged to be a Postal Service. If

you have a problem, call Renanne (Mondays, Wednesdays,

Fridays, 9 AM - 4 PM Eastern time.)

Prices for all products are listed on the order card in the centre

of the magazine. Subscribers: you can use the address label

from the bag holding your magazine, and just stick it on the or

der card instead of filling it in by hand!

• Jugg'ler-128 - A product of Herne Datasystems Inc., written

by M. Garamszeghy. This program provides read, write and

formatting support for more than 130 types of MFM CP/M

disks on the C128 in CP/M mode with a 1570, 1571 or 1581

disk drive. It is compatible with all current versions of C128y

CP/M and all C128 hardware configurations including the .

128-D. All normal CP/M file access commands can be used

with the extra disk types. Jugg'ler is available by mail order

for $19.95 Canadian or $17.95 US from Transactor. Order

from the card at the centre of this magazine.

• Quick Brown Box - Battery Backed RAM for C64*or C128.

The Quick Brown Box cartridges for the C64/C128 retain files

even when the cartridge is unplugged. Unlike EPROM car

tridges, the QBB requires no programming or erasing equip

ment except your computer. Loader programs are supplied and

you can store as many programs into the cartridge as its

memory will allow. It may even be used as a non-volatile

RAM disk. Auto-start programs are supported, such as BBS

programs and software monitoring systems that need to re

boot after a power failure. All models come with a RESET

push button and use low current CMOS RAM powered by a

160 mA-Hr. Lithium cell with an estimated life of 7 to 10

years. Comes with manual; software supplied includes loader

utilities and Supermon+64 (by permission of Jim Butterfield);

30-day money back guarantee and a 1 year repair/replacement

warranty.

• The Potpourri Disk - A C64 product from the software

company AHA! (aka Chris Zamara and Nick Sullivan). In-

Transactor 77 July 1988: Volume 9, Issue 1

eludes a wide assortment of 18 programs ranging from games

to educational programs to utilities. All programs can be ac

cessed from a main menu or loaded separately. No copy pro

tection is used on the disk, so you can copy the programs you

want to your other disks for easy access. Built-in help is

available from any program at any time with the touch of a

key, so you never need to pick up a manual or exit a program

to learn how to use it. Many of the programs on the disk are of

a high enough quality that they could be released on their own,

but you get all 18 on the Potpourri disk for just $17.95

US/$19.95 Canadian.

• TransBASIG II - contains all TB modules ever printed.

There are over 140 commands; pick the ones you want to use

in any combination. It's so simple that a summary of instruc

tions fits right on the disk label. The manual describes each of

the commands, plus how to write your own commands.

• Inner Space Anthology - This is our ever-popular reference

book. It has no "reading" material, but in 122 compact pages

there are memory maps for five CBM computers, three disk

drives and maps of COMAL; summaries of BASIC com

mands, Assembler and MLM commands and Wordprocessor

and Spreadsheet commands. ML codes and modes are summa

rized, as well as entry points to ROM routines. There are sec

tions on Music, Graphics, Network and BBS phone numbers,

Computer Clubs, Hardware, unit-to-unit conversions, plus

much more ... about 2.5 million characters in total!

• The Transactor Bits and Pieces Book and Disk - 246 pages

of Bits from Transactor Volumes 4 through 6 with a very com

prehensive index. Even if you have all those issues, it makes a

handy reference - no more flipping through magazines for that

one bit that you just know is somewhere. Also, each item if

forward/reverse referenced. Bits that are similar in nature or

are updates to previous bits are cross-referenced. And the in

dex makes it even easier to find those quick facts that elimi

nate a lot of wheel re-inventing. The bits book disk contains

all the programs from the book and can save a lot of typing.

• The G-Link Interface - The G-Link is a C 64 to IEEE inter

face. It allows the 64 to use IEEE peripherals such as the 4040,

8050, 9090, 9060, 2031 and SFD-1001 disk drives, or any

IEEE printer, modem or even some Hewlett-Packard and Tek-

tronics equipment like oscilloscopes and spectrum analyzers.

The beauty of the G-Link is its "transparency" to the C64

operating system. Some IEEE interfaces for the 64 add BASIC

4.0 commands and other things to the system that can interfere

with utilities you might like to install. The G-Link adds noth

ing: it is so transparent that a switch is used to toggle between

serial and IEEE modes, not a linked-in command. Switching

from one mode to the other is also possible with a small soft

ware routine as described in the documentation.

• Transactor Disks - now with their new, colour directory list

ing labels. As of Disk #19 a modified version of Jim Butter-

field's Copy-All is on every disk. It allows file copying from

serial to IEEE drives, or vice versa.

• The Micro-Sleuth: C64/1541 Test Cartridge - Designed by

Brian Steele (a service technician for several southern Ontario

Schools), this is a very popular cartridge. The Micro-Sleuth

will test the RAM of a C64 even if the machine is too sick to

run a program! The cartridge takes complete control of the

machine, tests all RAM, ROM and other chips, and in another

mode puts up a menu:

1) Check drive speed

2) Check drive alignment

3) 1541 serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

A second board (included) plugs onto the user port:; it contains

8 LEDs that let you locate the faulty chip. Manual included.

Micro-Sleuth with both boards and manual is $99.95

US/$129.95 CDN.

• Transactor Back Issues and Microfiche - All Transactors

from Volume 4 Issue 1 are available on Microfiche. The strips

are the 98 page size compatible with most fiche readers. Some

issues are available only on microfiche and are marked as such

on the order card. The price is the same as for the magazines

with the exception that a complete set (Volumes 4, 5, 6 and 7)

will cost just $49.95 US/$59.95 CDN.

This list shows the "themes" of each issue. Theme issues

didn't start until Volume 5 Issue 1. Transactor Disk #1 in

cludes all the programs from Volume 4 and Disk #2 includes

all programs for Volume 5 Issues 1 to 3. Thereafter there is a

separate disk for each issue. Disk #8 from the Languages Issue

includes COMAL 0.14, a soft-loaded, slightly scaled down

version of the COMAL 2.0 cartridge. Volume 6, Issue 5 lists

the directories for Transactor Disks #1 to #9.

• Vol.4 Issues 1

• Vol.4 Issues 4

• Vol.5 Issue 1

• Vol.5 Issue 2

• VoL5 Issue 3

• Vol.5 Issue 4

• Vol.5 Issue 5

• Vol.5 Issue 6

• Vol.6 Issue 1

• Vol.6 Issue 2

• Vol.6 Issue 3

• Vol.6 Issue 4

• Vol.6 Issue 5

• Vol.6 Issue 6

•Vol.7 Issue 1

• Vol.7 Issue 2

•Vol.7Issue 3

• Vol.7 Issue 4

• Vol.7 Issue 5

• Vol.7 Issue 6 -

• Vol.8 Issue

• Vol.8 Issue

• Vol.8 Issue

Vol.8 Issue

to 3 (Disk #1)

to6(Disk#l)-MFonly

- Sound and Graphics Disk #2

- Transition to ML (MF only) #2

- Piracy and Protection (MF only) #2

- Business and Eduction (MF only) #3

- Hardware and Peripherals #4

- Aids & Utilities #5

- More Aids & Utilities #6

- Networking & Communications #7

- The Languages #8

- Implementing the Sciences #9

- Hardware & Software Interfacing #10

- Real Life Applications #11

- ROM/Kernel Routines #12

- Games from the Inside Out #13

- Programming the Chips #14

- Gizmos and Gadgets #15

- Languages II #16

Simulations & Modelling #17

- Mathematics #18

- Operating Systems #19

- Feature: Surge Protector #20

- Feature: Transactor for the Amiga #21

Transactor 78 July 1988: Volume 9, Issue 1

• Vol.8 Issue 5 - Feature: Binary Trees#22

•Vol.8 Issue 6- Feature: Cellular Automata#23

Your Name Here - Mainly due to demand from readers (and

we'd also like the money!), Transactor is now accepting a lim

ited amount of advertising. If you have a product or service

which would be of interest to our readers, you will find the

rates a very pleasant surprise. Your advertising dollar will take

your message directly to the heart of the Commodore world.

and the total for the whole sales force. Other features: analyze

performance by sales staff and department; "cash analysis" to

assist you in balancing the cash at the end of the day; full pur

chasing, receiving, and costing capabilities; payments by cash

or cheque; complete audit trail; custom-designed statements

and reports; intelligent handling of disk errors.

Dataland Ltd., P.O. Box 663, Tottenham, Ontario, Canada,

LOG 1WO. Phone (416) 936-2677.

Classified ads are also available at $2.00 per word - we'll do Mystic Jim's Stuff: Mystic Jim's software and hardware are

all the typesetting. Either write or phone in your requirements.

We reserve the right to refuse advertising which is misleading,

fattening or promotes piracy.

Industry News

C128 Developer's Package: Commodore's own C128 Devel

oper's Package for the C64/C128 is suitable for both large and

small development projects. The package works best with sys

tems having more than one disk drive and an 80-column text

display, but minimal systems are supported as well. The De

veloper's Pack includes an editor, an assembler, C128 tools,

RAM expansion routines, 1351 mouse routines, C64 tools,

1571/1581 burst routines and C64 fast loaders.

The editor, ED128, is a full-screen editor similar in function to

the EDT editor from Digital Equipment Corporation. ED128

functions in both ASCII and PETASCII. HCD65 is a powerful

6502 macro assembler similar to the assembler used to assem

ble the C128 operating system. This assembler supports condi

tionals, local labels, many directives, cross references, etc. The

C64 tools include: a sprite editor, a sound editor, and a charac

ter editor. The software is provided on two double-sided

diskettes (included).

The manual includes such valuable information as: the differ

ences between the C128 and 1571 ROM revisions; source

code for the fast loaders, REU routines, mouse drivers, and

burst routines; and descriptions of the routines in the C128

BASIC 7.0 floating point math package including the table of

jump vectors. To get a copy of the Developer's Package, order

part number CDEV128001 from: CATS, Attn: Lauren Brown,

1200 Wilson Drive, West Chester, PA, USA, 19380.

Complete Bookkeeping Package for the C128: "the sys

tem" is a comprehensive, integrated, easy-to-use electronic

bookkeeping package for the C-128. The General Ledger, Ac

counts Receivable Ledger and Accounts Payable Ledger are

always up to date; posting is not put off to some future time. In

addition, "THE SYSTEM" provides you with a payroll record-

keeping function. You are able to print Income Statements

which cover from one to twelve months of operation, and go

back as far as eighteen months.

"THE SYSTEM" is intended for use as a "point-of-sale" pack

age, actually replacing your cash register. At day's end, a sum

mary of all sales and their cost is printed for each sales clerk

primarily related to GEOS, including products to interface

GEOS with other Commodore programs such as Doodle,

Koala Pad, Print Shop and BASIC 8 in 80 column mode.

Hardware products include a Real-Time Clock and a 64K

Video RAM upgrade kit for the C128.

Shareware disks are sent on request. If you find a disk useful,

you may request any or all of the others, on the shareware ba

sis: you contribute whatever the disks are worth to you, after

trying them. Shareware membership is available for $50 (US)

and includes: all of the shareware disks, including each new

one as it comes out; a subscription to GEOWORLD; full ac

cess to Mystic Jim's 20M BBS, with its growing program li

brary, games, contests, information, and more; and special dis

counts on software and hardware. All products carry a money-

back guarantee and none of the software is copy-protected.

The BBS provides customer service.

Programmers are invited to submit their programs for inclu

sion in the shareware library. Mystic Jim makes lump-sum

payments for programs that are not in the public domain. Full

credit is given for those that are in the public domain.

Mystic Jim, 2388 Grape, Denver, CO, USA 80207. Phone

(303) 321-3223 (voice), (303) 321-8954 (BBS), (705) 533-

2126 (Canadian BBS).

Update on RomJet Custom Cartridge: In our last issue, we

carried an item on the RomJet Custom Cartridges which stated

that they were available in sizes ranging from 32K to 256K. In

fact,' the upper bound of this range is a voluminous 512K.

RomJet will install on its cartridges any non-copy-protected

programs which you legally own and which permit the cre

ation of back-up copies. For more information, contact: Rom

Jet, 210-2450 Sheppard Ave. E., Willowdale, ON, Canada,

M2J 4Z9. Phone (416) 274-7378 or 626-5959.

1988 Commodore Computerfest: The third annual

Chicagoland Commodore Computerfest will be held August

28 at the Exposition Center at the Kane County Fairgrounds,

St. Charles, IL. The show, presented by the Fox Valley 64 User

Group, will feature national speakers, vendors, and products

for the 64, 128, and the Amiga. It is the largest Commodore

computer club show in the midwest. Admission fee is $5.00 .

for the day and includes access to all the speaker and technical

sessions. For more information, write to: Computerfest, P.O.

Box 28, North Aurora, IL, 60542.

Transactor 79 July 1988: Volume 9, Issue 1

Superboot for C128: Superboot is software that lets you cre

ate your own auto-boot disks that will run your program in ei

ther C128 or C64 mode when the system is booted. Available

from: JT Program Software, 100 North Beretania St., Suite

210, Honolulu, HI, USA, 96817.

Computer Save is an independent monthly publication de

signed to provide assistance to buyers and sellers of quality or

phan equipment. They also advertise for both manufacturers

and retailers of the newest hardware. Their aim is to inform

and entertain by way of constantly updated press releases and

feature articles by writers well versed in their particular fields,

whether the very newest or the orphans. Computer Save is

even now planning to expand their aid by way of new and ex

citing additions to their format. Watch for future issues. Con

tact: Elizabeth Hartwell, 278-3017 St. Clair Ave., Burlington,

ON, Canada, L7N 3P5. Phone (416) 529-0580.

Satellite Tracking program for the C64/C128: SATCOMM-

64 allows Amateur radio operators or others using communi:

cations satellites to track up to 15 different satellites, and pro

vides key data at user-selected intervals of one minute or

more. The user can select screen-only searches, or generate

printed reports so that the computer is available for communi

cations use during actual satellite passes. The printed reports

include: relative azimuth and elevation, actual altitude, longi

tude and latitude, local time, UTC day, geographic areas that

are within the satellite's communication range, doppler shift,

minimum and maximum communication distance, operating

frequencies, orbit number, and phase.

SATCOMM-64 overcomes traditional satellite tracking pro

gram shortcomings with features like annual rollover,

standard-to-daylight time change-over, and single setup multi-

day/multi-satellite reports. The program comes with data for

several amateur radio, visible, and weather/research satellites;

whenever desired, the user can replace these with new satellite

choices.

SATCOMM-64 is compatible with the C64/128, 1541 disk

drive and 1525 printer, and is available for $15.95 (MO resi

dents add tax) plus $3.00 p&h from: Strategic Marketing Re

sources, Inc., P.O. Box 2183, Ellisville, MO 63011. Phone

(314) 256-7814.

Micro Detective professional debugger for the C64 and

C128: Micro Detective is a resident debugging facility that

provides interactive trace modes, advanced program error de

tection and reporting, and programmers' utility commands.

The trace can be turned on or off at.will while a BASIC pro

gram executes, and operates on a separate screen so that the

display of the program being traced is not interfered with. The

C128 version displays trace information in a separate window

anywhere on the 40 or 80 column screen. Conditional tracing

allows you to trace only certain program lines, variables, state

ments, or when certain conditions are met.

Micro-Detective's error detection gives specific, clear error

messages instead of the standard '?syntax error' or other sys

tem message. More meaningful messages, like "Expected a

comma", or "Variable must start with a letter" help the pro

grammer spot the problems much more quickly. Micro detec

tive displays the section of code that caused the error, and han

dles all kinds of problems, including numeric overflow and

disk errors.

Micro Detective also provides a complete set of programmers'

aids: bidirectional program scrolling through program listings;

AUTO, DELETE, DIR, DISK, RENUM, etc.; variable cross

reference list; disk commands; program merging; move ranges

of program lines; SLIST, which lists a program with spaces in

intelligent places to make it more readable; plus many other

commands and features (a total of over 30 new commands are

added).

Micro Detective for the C64, with everything mentioned

above, is $49.95 (US). In the C128 version, the debugger

comes without the error detection feature, for the same price;

the C128 error detection program is available separately.

From: American Made Software, P.O. Box 323, Loomis, CA

95650.

The Anatomy of the 4040 Disk Drive, written and published

by Hilaire Gagne, is filled with memory maps, ROM routine

explanations, disassembled source code, technical details and

other hard facts about the 4040. Cost is $39.95 (CDN) for

Canadian residents, plus $3 shipping and handling; In the

U.S., $31.95 (US) plus $9 shipping and handling. Order from:

Hilaire Gagne, 4501 Carl St., P.O. Box 278, Hanmer, Ont,

POM 1Y0.

Free Spirit releases C64 version of Super 81 Utilities: Free

Spirit Software has released a version of Super 81 utilities for

the C64. Now you can copy whole disks or files from 1541 or

1571 disk drives to the 1581. It also backs up disks or files

with one or two 1541s, one or two 1581s, or any combination.

Also included is a full-featured sector editor, partitioning utili

ties, scratch/unscratch, lock/unlock, and other file utilities.

Super 81 Utilities is supplied on both 5 1/4" and 3 1/2"

diskettes and will boot from device 8 or 9. The package costs

$39.95 (US) - shipping/handling are free. For more informa

tion, contact: Joe Hubbard, Free Spirit Software, Inc., 905 W.

Hillgrove, Suite 8, La Grange, IL 60525. Phone 1-800-552-

6777.

CP/M Starter Set from Public Domain Solutions: The

newest product from Public Domain Solutions for the C128 is

the PDS CP/M Starter Set. This set consists of four disks full

of CP/M utilities, plus printed documentation which explains:

The history of CP/M; Booting up; Transient commands; Resi

dent commands; Creating and dissolving library (LBR) files;

How to run software on the CP/M operating system. The set is

$29.95 (US). Order toll-free 1-800-634-5546 or write to: Pub

lic Domain Solutions, CP/M Dept., P.O. Box 832, Tallevast,

FL 34270.

Transactor 80 July 1988: Volume 9, Issue 1

The Potpourri Disk

Help!

This HELPful utility gives you instant

menu-driven access to text files

at the touch of a key - while any

program is running!

Loan Helper

How much is that loan really going

to cost you? Which interest rate

can you afford? With Loan Helper,

the answers are as close as your

friendly 64!

Keyboard

Learning how to play the piano?

This handy educational program

makes it easy and fun to learn the

notes on the keyboard.

Filedump

Examine your disk files FAST with

this machine language utility.

Handles six formats, including hex,

decimal, CBM and true ASCII,

WordPro and SpeedScript.

Anagrams

Anagrams lets you unscramble

words for crossword puzzles and

the like. The program uses a recur

sive ML subroutine for maximum

speed and efficiency.

Life

A FAST machine language version

of mathematician John Horton

Conway's classic simulation. Set

up your own 'colonies' and watch

them grow!

War Balloons

Shoot down those evil Nazi War

Balloons with your handy Acme

Cannon! Don't let them get away!

Von Googol

At last! The mad philosopher,

Helga von Googol, brings her own

brand of wisdom to the small

screen! If this is 'Al', then it just ain't

natural!

News

Save the money you spend on

those supermarket tabloids - this

program will generate equally

convincing headline copy - for

free!

Wrd

The ultimate in easy-to-use data

base programs. WRD lets you

quickly and simply create, exam

ine and edit just about any data.

Comes with sample file.

Quiz

Trivia fanatics and students alike

will have fun with this program,

which gives you multiple choice

tests on material you have en

tered with the WRD program,

AHA! Lander

AHAI's great lunar lander program.

Use either joystick or keyboard to

compete against yourself or up to

8 other players. Watch out for

space mines!

Bag the Elves

A cute little arcade-style game;

capture the elves in the bag as

quickly as you can - but don't get

the good elf!

Blackjack

The most flexible blackjack simula

tion you'll find anywhere. Set up

your favourite rule variations for

doubling, surrendering and split

ting the deck.

File Compare

Which of those two files you just

created is the most recent ver

sion? With this great utility you'll

never be left wondering.

Ghoul Dogs

Arcade maniacs look out! You'll

need all your dexterity to handle

this wicked joystick-buster! These

mad dog-monsters from space

are not for novices!

Octagons

Just the thing for you Mensa types.

Octagons is a challenging puzzle

of the mind. Four levels of play,

and a tough 'memory' variation

for real experts!

Backstreets

A nifty arcade game, 1OO% ma

chine language, that helps you

learn the typewriter keyboard

while you play! Unlike any typing

program you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the

above programs, ALL of the above programs, on a single disk, accessed

independently or from a menu, with built-in menu-driven help and fast-loader.

The ENTIRE POTPOURRI COLLECTION

JUST $17.95 US!!

See Order Card at Center

THE TIME SAVER

..a lot of Transactor programs? •

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program-is just a LOAD away!

Only $8.95 US, $9.95 Cdn. Per Issue

6 Disk Subscription (one year)

Just $45.00 US, $55.00 Cdn.

(see order form at center fold)

Now Amiga Owners Can Save Time Too!
Transactor Amiga Disk #1, $12.95 US, $14.95 Cdn.

All the Amiga programs from the magazine, with complete

documentation on disk, plus our pick of the public domain!

