
Canada $4.25

USA $3.50

• Micro-Lisp 2.5: a Lisp interpreter for the Commodore 64!

• Report on CoNIX - a Unix-style enhancement for CP/M 3+

• Great Assignment: Add expression evaluation to BASIC

• Understanding BRK - get debugging duty from the zero byte

• Fast mnemonic-to-opcode conversion

• An update to "Shiloh's Raid"

• Stabilizing Tl$ for long-term timing applications

• Memory swapping routines for screens and programs

Cellular Automata - A world of mathematical patterns

page 16

0 5

|d i v e r s e

OGIC

We've made talk cheap
By making available the new Avatex 1200e and SupraModem 2400 we will introduce

you to high speed communications without a high speed price.

NEW!
Avatex-1200e

• 300/1200 baud operation

• Call progress monitoring

• 2 year warranty

• TOTAL Hayes compatibility

• Includes free hour and package on-line time and introductory

subscription to CompuServe- (a $29.99 value)

only

$139.95

SupraModem

24OO

only

$249.95

300/1200/2400 baud operation • 1 year warranty

Non-volatile memory stores user configuration and last dialed

number even when turned off

ADDITIONAL

FEATURES

• Hayes compatible

• Built-in speaker

• Bell 103/212A, CCITT

V.22 and CCITT V.21

compatible

• Programmable speaker

volume

• Full/half duplex

operation

• CSA/FCC approved

• Full "S" register

support

• Pulse or tone dialing

• Compact case

• All status LED's

• 100% compatible with

industry standard "AT"

command set

• External power supply

Free terminal software with

each modem purchase.

RS-232 CABLES
• Base price of $15.00 plus

$1.00 per foot

• Specify computer connector

gender type

Onmitronix Deluxe RS-232 Interface
For use with Commodore 64, 128, Vic-20,

SX 64 and Plus 4 computers

Supports pins 2 through 8, 12, 20, 22

Includes 3-foot cable

Compatible with all standard RS 232

equipment

Recommended by Commodore and Avatex

For use with both DTE and DCE equipment

only

$49.95
($39.95 Can./S32.95 U.S.

with purchase

of modem)

SEND TO

diverse

LOGIC
127 Hillsmount Cres.

London, Ontario

Canada N6K 1V6

I if Tel.: (519) 657-7841
f||BBS: [5191 472J5354

j'Pum' NrYfi" #Tsf

PLEASE MAKE SURE ALL INFORMATION IS INCLUDED IN YOUR ORDER.

FREE TERMINAL SOFTWARE WITH EACH MODEM PURCHASE.

PLEASE INDICATE COMPUTER TYPE.

U AMIGA Commodore 64

3 Commodore 128 "IBM PC

QTY.

Avatex 1200e(s|

Supra 2400(s]

RS-232 Interface^

Subtract $10.00 for each

interface purchased with modem

RS-232 Cables

IS15.00 + 51.00 per fl. CAN.]

($12.00 + 5 .80 per ft U.S.)

Specify male or female for

computer end.

CANADIAN

@ 5139.95

@ $249.95

@ S 49.95

@ $ 1.00

U.S.

@ $114.95 =

D Atari ST

fl Macintosh

AMOUNT

@

@

@ '.

7% Onl

$199.95 =

S 39.95 =

1 .80 =

Sub-Total

. Sales Tax

Total

$

$

$

$

5

$

5

Name:

Address: _

City: ___

Prov.: .

Phone No.:

. Postal Code:

PAYMENT CAN BE MADE

Money Order Z Cheque □ VISA M/C LI

Card # Expiry Date

Cardholder's Name: __

Signature:

All products shipped from inventory within 24 hours. Shipping is FREE.

Transactor Volume 8 Issue 6

Bits

Header with variables

C128 64-ModeAutobooter

Commodore Service Manuals

C64 Joystick Port Protection

Seikosha Printer Ribbon Reloads

Gemini lQx Ribbon Refieshing

More* C128 Mvsteries

FastLoad Killer

Fade Out (Fade In?)

Disklight Flasher

Restore to LineNumber

Letters

Oh, for the Good Old Days

CP/M Saviours

Random Drive Errors Corrected

Where's the RS232 Interface?

Transactor Site Licensing Policy

Piracy: the debate continues

In Praise ofC

Paperclip and the 65C816

Product Info from Readers

More docks

Transbloopurz

Improved hidden line removal

forPivjector

NewEPROMProgrammer

The SuperChips OS for the C128

NewBASICforGEOS

Science Software

Poseidon Bectronics Catalog

RS-232 interface for

PETto Centronics interface

Surge and lightning Protection

6

10

15

61UJL

The Strategist market timing program

RomJet Custom Cartridges

iStdTtAClClreSS ASign ofMaturity D

CellularAutomata AM^m^,^m 16

CP/M+ CONIX = CP/M P1US+ ACP/Menharcs.ent 27

VXUCctl r\SSl^IllllcIll» Automatic expression evaluation DA

VXlVC 1VJLC A. OlVlV» An exciting new role for the neglected instruction D^\

IVllCITKL/ISp VCrSlOIl !*•$ AUsp implementation for the C64! DO

AnAlgorithm for 6510Mnemonics Avenge,™- 46

AnACCUrate Tl$...wilhalinlehelpfomtheTime-Of-Dayclock 50

OlSenSJ\aiU An update to"Shiloh's Raid" 54

Three MOyerS fOr the C64 Memcyswappingmadeeasy 56

About The Coven This graphic was produced with Ian Adam's "Cellular Automata" program

||j§l§^ tern was created with the code 2001313120
Ii^mBSii!-—!_-!_!!!!!!!!^^ ^" **^ AQ3IH COllllTierilS, Very pOWeitUl

KH8^^^«|B|m patterns arc created tram all incarnations of
|^^^^^g|ffi^^^^^P9Jr^^^|^^^l ^ °°dQ' ^e "^^ blue-green background
B8Bja|HlgB§^ gives way to solid red, overlaid by black di-
^mSBHBBHHH^ agonals and blue branching structures." The
^^^^hHH|^BHH^^^K^I colour separations for the cover were done
BB^^^mB^H^^BSBP^y^Sl on m Amiga 2000, and typeset with the
^BSH^ra|MBM|^^^^8^H|^H^W^SB|| same equipment used for the rest of the
U^n^iiiKSwH^Hi^lHSiijI^mns^S^^SMl! magazine.

Transactor May 1988: Volume 8, Issue 6

Transactor
The Magazine forCommodore Pic

Publisher

Richard Evers

Editors

Nick Sullivan

Chris Zamara

Editorial Assistant/Advertising

MoyaDrummond

Customer Service

RenanneTlirner

Contributing Writers

Ian Adam

David Archibald

JackBedard

Paul Blair

GlenBodie

Bill Brier

Anthony Bryant

Jim Butterfield

Dale Castello

Tom Collopy

Richard Curcio

DonCurrie

Robert Davis

Elizabeth Deal

Frank DiGioia

ChrisDunn

PaulDurrant

Michael Erskine

JackFarrah

MarkFarris

Jim Frost

Miklos Garamszeghy

Eric Germain

David Godshall

Michael Graham

EricGiguere

Thomas Gurley

Patrick Hawley

Adam Herst

Thomas Henry

JohnHoughton

Robert Huehn

Tom Hughes

David Jankowski

Clifton Kames

LomeKlassen

Jesse Knight _

Gregory Knox

David Lathrop

James Lisowski

Richard Lucas

Scott Maclean

Steve McCrystal

Chris Miller

Keath Miiligan

Terry Montgomery

Ralph Morril

DJ. Morriss

Michael Mossman

BryceNesbitt

Gerald Neufeld

Noel Nyman

Helen Olsen

Matthew Palcic

Richard Perrit

Steve Punter

Raymond Quirling

Doug Resenbeck

Tony Romer

Herb Rose

EJ.Schmahl

David Shiloh

Darren Spruyt

Aubrey Stanley

David Stidolph

Richard Stringer

Anton Treuenfels

AudrysVilkas

Nicholas Vrtis

Jack Weaver

Geoffrey Welch

Evan Williams

Production

In-house withAmiga and Professional Page

Final Typesetting by Vellum Print & Graphic Services Inc.

Printing

Printed in Canada by

MacLean Hunter Printing

Subscription and Order Information

Address all orders, queries and other correspondence to:

Transactor

85 West Wilmot Street, Unit 10

Richmond Hill, Ontario, Canada

L4B 1K7

Or, in the U.S.:

Transactor

P.O. Box 338, Station C

Buffalo, NY

14209

In the U.K., Europe, South Ireland and Scandinavia:

Transactor (UK) Limited

2 Langdale Grove

Bingham, Nottingham

England NG13 8SR

Phone Oil 44949 39380

Note that all mail sent to our Buffalo P.O. box is forwarded to our Richmond Hill of

fice; for fastest delivery, mail directly to the Richmond Hill address above.

For VISA and Mastercard phone orders of subscriptions or other Transactor products,

call our new

TOLLFREE ORDER LINE (In the U.S. only)

1-800-248-2719 Extension 911

Please note that the toll-free number is for orders only.

In Canada, call our office directly at (416) 764-5273 on weekdays 9-5 (EST). For

queries about existing subscriptions or orders, please call on Mondays, Wednesdays

and Fridays only. For prices, products and back issues in stock, etc. see order card in

the centerfold,

Authors: Write to the above address for a copy of our writer's guide. Submit articles

to the above address, preferably on disk along with any associated programs. Just

about any format is acceptable, but articles should preferably be straight ASCII text,

without control characters or formatting codes. Minimum payment for articles is

$40.00 per printed page. Manuscripts should be typewritten (or computer-printed),

double spaced, with special characters or formatting clearly marked. Photos should be

glossy black and white prints. Illustrations should be on white paper with black ink

only. All material accepted becomes the property of Transactor, unless a special

agreement is made for the author to retain copyright. Otherwise, all material is copy

right by Transactor Publishing Inc

Quantity Orders

In Canada: Ingram Software Ltd., 141 Adesso Drive, Concord, Ontario L4K 2W7.

Phone (416) 738-1700

In the U.SA: IPD (International Periodical Distributors), 11760-B Sorrento Valley

Road, San Diego, California 92121. Phone (619) 481-5928. Ask for Dave Bruescher.

Copyright Policy

The contents of this magazine are copyright by Transactor Publishing Inc., except

where otherwise noted, and may not be distributed or duplicated without permission.

The distribution of individual Transactor programs for personal use is generally ac

ceptable, but mass duplication of collections of Transactor programs (such as Trans

actor disks) requires that an agreement be made with Transactor Publishing Inc. Call

us if you are in doubt about distributing a Transactor program.

The opinions expressed in contributed articles are not necessarily those of Transactor.

Although accuracy is a major objective, Transactor cannot assume liability for errors

in articles or programs. Transactor Publishing Inc. is a wholly owned subsidiary of

Mantra Communications Inc., 95 Lawrence Ave., Richmond Hill, Ont.. L4C1Z2.

Transactor is published bi-monthly by Transactor Publishing Inc., 85 West Wilmot Street Unit 10, Richmond Hill, OnL L4B 1K7. Canadian Second
Class mail registration number 6342. USPS 725-050, Second Class postage paid at Buffalo, NY for U.S. subscribers. U.S. Address: 127 Reed SL, Buf
falo, NY 14212. U.S. Postmasters: send address changes to Transactor, P.O. Box 338, Station C, Buffalo, NY, 14209. ISSN# 0827-2530.

Transactor May 1988: Volume 8, Issue 6

Signs of Maturity

You may have noticed that this issue is a little thinner than

usual - 64 pages instead of the customary 80. This feature is

available for this issue only, and will not be repeated again in

the near future. You may have also noticed that this issue is a

few weeks late. This relatively minor glitch in the course of

the magazine's seven year history comes as a result of some

not-so-minor internal changes.

Every Transactor since Volume 4 Issue 1 almost five years

ago has been produced using professional typesetting equip

ment, with all the typesetting work done by Karl Hildon,

founder and long-time Editor-in-Chief of Transactor. This is

sue is the first created without the benefit of Karl's assistance;

he has recently left the company to pursue other interests.

Events leading up to Karl's resignation happened quickly, and

all of a sudden we had a late issue on our hands, with no ap

parent way to produce it.

The fact that you are reading this now gives away the happy

ending to this tale, but the story is still worth telling, because

our leap from editing to typesetting and final production is a

success story that says a lot about the maturity of present mi

crocomputer technology. The ease with which we made this

leap would have been unheard ofjust a few years ago, and it's

worth looking at what made it possible in the current techno

logical climate.

At the time we were faced with creating the magazine, we

knew nothing about "Desktop Publishing" programs or laser

printers, and were only vaguely aware of a standard protocol

for output devices called PostScript®. Within 24 hours of that

terror-filled moment, we were creating pages as you see them

here (almost), using our friendly 3 1/2 megabyte Amiga 2000

at the office. Not only can we set text as well as before, but

we are able to do things that were previously difficult or im

possible, or things that our printer had to do for us.

When we learned a bit about PostScript, we started realizing

how little we would have to give up in the quality of the mag

azine. PostScript is a language that Desktop Publishing pro

grams can use to speak to output devices, like laser printers

and phototypesetters. The initial appeal of PostScript to us

was that it was a standard, so we could get any program that

spoke PostScript and plug it in to any output device that un

derstood it. To our delight, we found PostScript to be power

ful and high-level enough that many complicated images can

be created quite easily directly in the language.

After learning a bit about PostScript and buying a laser print

er came the big step: software. Our choices were limited to

PostScript-compatible programs available on the Amiga,

which left one obvious choice: Gold Disk's Professional

Page, just released. Fortunately, that wasn't a severe limita

tion, because the quality of the copy it produces is close

enough to a professional system that it isn't an issue (al

though a 300 DPI laser printer doesn't do justice to its capa

bilities). Just as important, the program is extremely easy to

learn and use, which was a major factor in us getting up and

running so soon.

The only hurdle left between our quick'n'dirty homemade

type-shop and a professional system was the laser printer's

less-than-perfect resolution. This hurdle was jumped quite

easily by making an arrangement with a local shop that had a

PostScript-driven phototypesetting machine: we supply

PostScript files generated by Professional Page, and they

pump them through the machine and deliver camera-ready

film for a reasonable charge per page.

So what does all of this say about the maturity of the technol

ogy? Well, we (the user) started without knowing anything,

except how to work an Amiga and create the contents of a

magazine. We bought a printer and just plugged it in to our

Commodore equipment with the enclosed cable; we bought a

program from another manufacturer and ran it. Everything

worked. Not by accident, but because developers of comput

ers, software, peripherals, languages and standards are work

ing together more tightly to make these things work.

We hope you enjoy this special extra-lite issue, with new

home-made production goodness. You can expect future is

sues to grow to regular size, and expect the production to get

slicker and the number of diagrams and photos to increase as

we get more comfortable with the new system. Ironically,

Karl's traditional sign-off is more appropriate now than ever:

"There's nothing as constant as change."

Transactor
May 1988: Volume 8, Issue 6

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from the

pages of The Transactor. It will let you check your work line by line as

you enter the program, and catch frustrating typing errors. The VERIFI

ZER concept works by displaying a two-letter code for each-program

line which you can check against the corresponding code in the

program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or

C64, Plus 4, C128, and B128. Enter the applicable program and RUN it.

If you get a data or checksum error, re-check the program and keep

trying until all goes well. You should SAVE the program, since you'll

want to use it every time you enter one of our programs. Once you've

RUN the loader, remember to enter NEW to purge BASIC text space.

Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a program

line a two-letter report code will appear on the top left of the screen in

reverse field. Note that these letters are in uppercase and will appear as

graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that

line at the last minute which changes the report code. However, this

will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine nor

mally, checking each report code after you press RETURN on a line. If

the code doesn't match up with the letters printed in the box beside the

listing, you can re-check and correct the line, then try again. If you

wish, you can LIST a range of lines, then type RETURN over each in

succession while checking the report codes as they appear. Once the

program has been properly entered, be sure to turn VERIFIZER off with

the SYS indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead

of POKE 53281,0. However, VERIFIZER uses a "weighted checksum

technique" that can be fooled if you try hard enough; transposing two

sets of 4 characters will produce the same report code but this should

never happen short of deliberately (verifizer could have been designed

to be more complex, but the report codes would need to be longer, and

using it would be more trouble than checking code manually). VERIFI

ZER ignores spaces, so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!). Standard

keyword abbreviations (like nE instead of next) will not affect the

VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer, so

if you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities goes,

VERIFIZER shouldn't cause any problems since it works through the

BASIC warm-start link and jumps to the original destination of the link

after it's finished. When disabled, it restores the link to its original
contents.

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

01

JB

PA

HE

EL

LA

Kl

EB

DM

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

10 rem* data loader for "verifizer 4.0" *

15 rem pet version

20cs = 0

30 for i = 634 to 754:read a:poke i.a

40cs = cs + a:nexti

50:

60 if cs<>15580 then print"***** data error *****": end

70 rem sys 634

80 end

100:

1000 data 76,138, 2,120,173,163,

1010 data 173,164, 2,133,145, 88,

1020 data 145, 201, 2,240, 16,141,

1030 data 144,141,163, 2,169,165,

1040 data 2,133,145, 88, 96, 85,

1050 data 201, 13, 208, 62,165,167,

1060 data 254, 1,133,251,162, 0,

1070 data 0, 2,168,201, 32,240,

1080 data 165, 253, 41, 3,133,254,

1090 data 198, 254, 16, 249, 232, 152,

1100data251, 41, 15, 24,105,193,

1110 data 165, 251, 74, 74, 74, 74,

1120 data 141, 1,128,108,163, 2,

1130 data 251,133,251, 96

VIC/C64 VERIFIZER

10 rem* data loader for Verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs=cs + a:nexti

50:

2,

96,

164,

133,

228,

208,

134,

15,

32,

?08

141,

24,

152,

133,144

120,165

2,165

144,169

165,217

58,173

253,189

230, 253

236, 2

??9 165

0,128

105,193

24,101

60 if cs<>14755 then print"***** data error *****": end

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165, 251,141,

1010 data 252,141, 3, 3, 96,173,

1020 data 3, 240, 17,133, 252,173,

1030 data 251,169, 99,141, 2, 3,

1040 data 3, 3, 96,173,254, 1,

1050 data 0,160, 0,189, 0, 2,

1060 data 32, 240, 15,133, 91, 200,

1070 data 133, 90, 32,183, 3,198,

1080 data 232, 208,229, 56, 32,240,

1090 data 32,210,255,169, 18, 32,

1100 data 89, 41, 15, 24,105, 97,

1110 data 165, 89, 74, 74, 74, 74,

1120 data 32, 210, 255,169,146, 32,

1130 data 32,240,255,108,251, 0,

1140 data 101, 89,133, 89, 96

2,

3,

2,

169,

133,

240,

152,

90,

255,

210,

32,

24,

210,

165,

3, 165

3,201

3,133

3,141

89,162

22, 201

41, 3

16,249

169, 19

255,165

210,255

105, 97

255, 24

91, 24

VIC/64 Double Verifizer Steven Walley, Sunnymead, CA

When using 'VERIFIZER' with some TVs, the upper left corner of the

screen is cut off, hiding the verifizer-displayed codes. DOUBLE VERI-

The Transactor
May 1988: Volume 8, Issue 6

FIZER solves that problem by showing the two-letter verifizer

code on both the first and second row of the TV screen. Just run

the below program once the regular Verifizer is activated.

KM

B.C

Dl

GD

IN

EN

KG

KO

FM

LP

100 for ad = 679 to 720:read da:poke ad,da:next ad

110sys679: print: print

120 print"double verifizer activated":new

130 data 120,169,180,141, 20, 3

140 data 169, 2,141, 21, 3, 88

150 data 96, 162, 0,189, 0,216

160 data 157, 40,216,232,224, 2

170 data 208, 245, 162, 0,189, 0

180 data 4,157, 40, 4, 232, 224

190 data 2,208,245, 76, 49,234

VERIFIZER For Tape Users Tom Potts, Rowley, MA

The following modifications to the Verifizer loader will allow VIC and 64

owners with Datasettes to use the Verifizer directly (without the loader).

After running the new loader, you'll have a special copy of the Verifizer

program which can be loaded from tape without disrupting the pro

gram in memory. Make the following additions and changes to the VIC/

64 VERIFIZER loader:

NB 30 for i = 850 to 980: read a: poke i,a

AL 60 , if cs<>14821 then print"*****data error*****": end

IB 70 rem sys850 on, sys853 off

— 80 delete line

— 100 delete line

OC 1000 data 76, 96, 3,165,251,141, 2, 3,165

MO 1030 data 251,169,121,141, 2, 3,169, 3,141

EG 1070 data 133, 90, 32,205, 3,198, 90, 16,249

BD 2000 a$ = Verifizer.sys850[space]"

KH 2010 for i = 850 to 980

GL 2020 a$ = a$ + chr$(peek(i)): next

DC 2030 open 1,1,1,a$: close 1

IP 2040 end

• Now RUN, pressing PLAY and RECORD when prompted to do so (use a

rewound tape for easy future access). To use the special Verifizer that

has just been created, first load the program you wish to verify or

review into your computer from either tape or disk. Next insert the tape

created above and be sure that it is rewound. Then enter in direct

mode: OPEN1:CLOSE1. Press PLAY when prompted by the computer,

and wait while the special Verifizer loads into the tape buffer. Once

loaded, the screen will show FOUND VERIFIZER.SYS850. To activate,

enter SYS 850 (not the 828 as in the original program). To de-activate,

use SYS 853.

If you are going to use tape to SAVE a program, you must de-activate

(SYS 853) since VERIFIZER moves some of the internal pointers used

during a SAVE operation. Attempting a SAVE without turning off

VERIFIZER first will usually result in a crash. If you wish to use

VERIFIZER again after using the tape, you'll have to reload it with the

OPEN1:CLOSE1 commands.

C128 VERIFIZER (40 column mode)

PK

AK

JK

NH

OG

JP

MP

AG

ID

GF

1000 rem * data loader for Verifizer d 28"

1010 rem * commodore d 28 version

1020 rem * use in 40 column mode only!

1030 cs = 0

1040 for j = 3072 to 3214: read x: poke j,x: ch = ch + x: next

1050 if ch<>17860 then print "checksum error": stop

1060 print "sys 3072,1: rem to enable"

1070 print "sys 3072,0: rem to disable"

1080 end

1090 data 208, 11,165, 253,141, 2, 3,165

MG

HE

LM

JA

El

KJ

DH

JM

KG

EF

CG

EC

AC

JA

CC

BO

PD

1100 data 254,141,

1110 data 201, 12,

1120 data 3,133,

1130 data 169, 12,

1140 data 133, 250,

1150 data 2,201,

1160 data 3,232,

1170 data 22,201,

1180 data 152, 41,

1190 data 198, 251,

1200 data 32,240,

1210 data 169, 18,

1220 data 15, 24,

1230 data 250, 74,

1240 data 32,210,

1250 data 24, 32,

1260 data 252, 24,

3, 3, 96,

240, 17,133,

253,169, 38,

141, 3, 3,

162, 0,160,

48, 144, 7,

208,242,189,

32,240, 15,

3,133,251,

16,249,232,

255,169, 19,

32,210,255,

105,193, 32,

74, 74, 74,

255,169,146,

240,255,108,

101,250,133,

173, 3, 3

254,173, 2

141, 2, 3

96,165, 22

0,189, 0

201, 58,176

0, 2,240

133,252,200

32,135, 12

208,229, 56

32,210,255

165,250, 41

210,255,165

24,105,193

32,210,255

253, 0, 165

250, 96

Introducing

The Standard

Transactor Program Generator

If you type in programs from the magazine, you might be able to save

yourself some work with the program listed on this page. Since many

programs are printed in the form of a BASIC "program generator",

which creates a machine language program on disk, we have created a

"standard generator" program that contains code common to all

program generators. Just type this in once, and save all that typing for

every other program generator you enter!

Once the program is typed in (check the verifizer codes as usual when

entering it), save it on a disk for future use. Whenever you type in a

program generator (for example listings 5 and 6 from the article

"Interfacing two Commodore 64s" in this issue), the listing will refer to

the standard generator. Load the standard generator you've saved, then

type the lines from the listing as shown. The resulting program will

include the generator code and be ready to run.

When you run this new generator, it will create a machine language

program on disk that can be loaded (load"filename ",8,1) and executed

with a SYS command. The machine language program is described in

the related article, and the generator is just an easy way for you to create

it using the standard BASIC editor at your disposal. After the machine

language file has been created, the generator is no longer needed. The

standard generator, however, should be kept handy for all future

Transactor type-in program generators.

The standard generator listed here will appear in every issue from now

on (when necessary) as a standard Transactor utility like Verifizer.

MG

EE

LK

KO

EC

FB

DE

CM

CH

HM

NA

KD

HE

JL

MP

MH

IH

100 rem transactor standard program generator

110 n$ = "filename": rem name of program

120 nd = 000: sa = 00000: ch = 00000

130 for i = 1 tond: readx

140ch = ch-x: next

150 if ch then print"data error": stop

160 prinfdata ok, now creating file"

170 restore

180open1,8,1,"0:" + n$

190 hi = int(sa/256): lo = sa-256*hi

200 print#1 ,chr$(lo)chr$(hi);

210 for i = 1 to nd: read x

220 print#1 ,chr$(x);: next

230 close 1

240 prinf'prg file '";n$;"' created.. ."

250 prinfthis generator no longer needed."

260:

The Transactor May 1988: Volume 8, Issue 6

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - ifwe use it in the bits column, we'II credit you

in the column and send you afree one-year's subscription to The Transactor

Header With Variables

Ken Garber, Windsor, Ontario

The example in the C128 user guide (page 265) on using

HEADER has an error. A syntax error will occur if one at

tempts to assign the disk ID to a variable name (e.g. I(A$)).

This is confirmed by the BASIC 4.0 Reference Manual. How

ever, by manipulating the string variables, the ID can be suc

cessfully set from within a program.

As the 'Are you sure?' prompt is suppressed in program

mode, the 'escape' prompt in line 40 has been added. Line 30

allows for a short NEW.

10 input!ldiskname";a$: input"disk id";b$

20 c$=a$+","+b$

30ifb$=IMtthenc$=a$

40 input"are you sure ";q$:if q$o"y" then end

50header(c$)

60 print ds$

C128 64-Mode Autobooter

Aaron Spangler, Everett, Washington

You've heard about all those auto start programs for the C64

that 'save you keystrokes'. Well, this one beats them all - you

don't have to hit any keys until your program is loaded.

There's one catch - it only works on the 128.

It works like this: First it sets up an autostart program at track

1 sector 0. When the 128 powers up, it checks for the upper

case characters 'CBM'. If it finds it, it executes the machine

language following. My machine language program transfers

part of its program to $8000 in bank 0, flips to bank 15 and

then goes to 64 mode.

When the 64 resets, it checks for 'CBM' then the byte $80 at

$8004. If it finds this, it executes the ML pointed to by loca

tions $8000 and $8001. The ML there initializes as the Kernal

would until it's ready to go to BASIC, but before it does that,

it puts a '1O"*",8,8' and a shifted RUN/STOP in the keyboard

buffer. After BASIC has taken over, it goes to the ready

prompt and dumps those characters. The only complication is

that when you hit the RESTORE key on the 64, it also checks

for the same mask at $8004 and of course it finds it. Then it

jumps to the location pointed to by $8002 and $8003.1 didn't

want the RESTORE key to reset the computer, so I had it

point right back into the Kernal. Here's the program that does

it all.

IB 100 print" 'autoboot64' - by : !the wolverine! "

KA 110 print"this program puts an autoboot program"

GL 120 print"at track: 1 sector: 0. upon reset, the"

BC 130 print" autoboot program is loaded by the 128,"

ID 140 print" the program sets the 128 into 64 mode,"

CE 150 print" loads the first program on disk,"

DO 160 print" and executes it."

HH 170 for x=l to 91: read a: b=b+a

: a$=a$+chr$(a): next

LD 180 for x=l to 164: b$=b$+chr$(0): next

EF 190 if bol0230 then print"data error": stop

PL 200 data 67, 66, 77, 0, 0, 0, 0, 0

AH 210 data 0,120, 32,132,255,169, 0,141

IM 220 data 0,255,120,162,128,189, 37, 11

KA 230 data 157, 255, 127, 202, 208, 247, 169, 0

OC 240 data 141, 0,255, 76, 77,255, 9,128

AP 250 data 94,254,195,194,205, 56, 48,142

LC 260 data 22,208, 32,163,253, 32, 80,253

MC 270 data 32, 21,253, 32, 91,255, 88,162

PD 280 data 10,189, 42,128,157,118, 2,202

IO 290 data 208, 247,169, 10, 133,198, 108, 0

EJ 300 data 160, 76,207, 34, 42, 34, 44, 56

BM 310 data 44, 49,131

AD 320 print: print"insert new formated disk &

press return."

Transactor May 1988: Volume 8, Issue 6

MP 330 get z$: if z$ochr$(13) then 250

JO 340 openl5,8,15,lfb-a:0,l,0ft

IJ 350open5,8,5,"#"

AH 360print#15,"b-p:5,0"

NM 370print#5,a$;b$;

GC 380 print#15,"u2:5,0,l,0"

00 390close5:closel5

Ordering Information

For Commodore Hardware Service Manuals

Ted Evers, Richmond Hill, Ontario

Device Commodore Part Number

C64 #314001-02

8050/8250 #314011-03

1540/1541 #314002-01

2031 (Identical to 1541 long-board except for input circuitry.)

#1540039 sheet numbers 1 and 2 for 2031 schematics.

Message Scroller

Nick Barrowman, St. John's, Newfoundland

Message is an interrupt driven routine to scroll a message

across the bottom of the 64's screen. It allows huge messages

(which can be composed using writer, a short basic program

included) to scroll across at any speed you choose. You can

set the colour (and change it at any time) by POKEing it into

1023. To set the speed, POKE 780,speed (the lower the faster)

and then SYS 49152

DM 10 rem ** interrupt message scroller **

HM 20 rem ** by nick barrowman **

CB 30 read a: if a>-l then ch=ch+a

: poke 49152+b,a: b=b+l: goto 30

AM 40 if cho13439 then print "checksum error!": end

NN 50 print "poke 780,speed"

JM 60 print "poke 1023,colour"

JI 70 print "poke 780,255 to halt"

PK 80 print "sys 49152 to activate"

CL 90 print "note: always poke 780 before the sys"

JO 1000 data 120, 201, 255, 208, 14,173,107

PH 1010 data 192,141, 20, 3,173,108,192

KG 1020 data 141, 2*, 3, 88, 96,141, 61

IJ 1030 data 192,173, 20, 3,141,107,192

HJ 1040 data 173, 21, 3,141, 108,192,169

JG 1050 data 54,141, 20, 3,169,192,141

EE 1060 data 21, 3,169, 0,133,251,169

PB 1070 data 193, 133, 252, 88, 96,238, 19

GL 1080 data 3,173, 19, 3,201, 0,144

JH 1090 data 42,169, 0,141, 19, 3,160

GB 1100 data 0,177,251,208, 11,169, 0

CJ 1110 data 133, 251,169,193,133,252, 76

DL 1120 data 106,192, 153, 192, 7, 173,255

EM 1130 data 3,153,192,219,200,192, 40

OH 1140 data 208, 227, 230, 251,208, 2, 230

ON 1150 data 252, 76, 0, 0, -1

5 rem the message writer program:

10 a=0: print chr$(147);

20 get a$: print a$;: if a$<>"@" then 20

30 b=peek(1024+a): poke 49408+a,b

: if b<>0 then a=a+1: goto 30

C64 Joystick Port Protection

Gary M. Collins, Bonner Springs, Kansas

The notorious susceptibility of the C-64/C-128 joystick ports

to static "zaps" (and resulting severe damage to the comput

er) can be avoided in many ways. Evan Williams (Transactor

Vol. 8, Iss. 3, p. 25) solves the problem by killing the static

charge before contact with the pins. As he says in his excel

lent article, however, the pins should not be touched at all.

One very cheap and simple method is to simply slap a piece

of vinyl electrical tape across the unused opening(s).

Another method, equally cheap, involves one of those

scrapped joysticks that everyone accumulates. Simply cut the

wire flush with the back end of the plug. Dab a bit of 5-

minute epoxy on the exposed wire ends, and prestol - a dum

my plug for the unused port. (I leave a stick plugged into Port

2 all the time.) This makes it easy to move the plug as need

ed, doesn't gum up the pins as tape might, and eliminates the

necessity of opening the computer.

Seikosha Printer Ribbon Reloads

Robert V. Davis, Salina, Kansas

The Seikosha printers, SP-1000VC and SP-180VC, plug di

rectly into the Commodore C-64/128 serial bus and provide

reasonable print quality at a very low price. But the replace

ment ribbons cost about $10 each. Users with a masochistic

streak or a desire for economy can reload their ribbon car

tridges for about $4.50 each. My first reload took an hour and

my hands became very inky. Experience helps. Be very care

ful opening the plastic cartridge to avoid breaking the pins

which hold it together. Follow precisely the directions for in

stalling the reload so the highly compressed ribbon will not

spring out of the plastic housing (personal experience).

Reloads for the Tandy DMP-130 printer, packed three to a

box, are exact replacements for the Seikosha printers. The

Radio Shack part number is 26-1238. Save money!

Gemini lOx Ribbon Refreshing

Dashim Shah, Republic of Singapore

Murray Kalisher's tip on ribbon rejuvenation in BITS (Issue

Nov. '87), prompts me to write in with this tip for users of

STAR'S venerable Gemini lOx series of printers.

These printers, very popular with 64 users, use spool-type rib

bons, similar to those used in typewriters, but with one very

Transactor
May 1988: Volume 8, Issue 6

important difference. On either end of the ribbon are two eye

lets. These eyelets trigger a mechanical lever when either

spool is empty, causing the spool to turn the other way, thus

allowing the full spool to unwind.

Well, after using my original STAR ribbon for almost two

years (that's right, two years!), I discovered that STAR does

not supply these ribbons any longer. Since it looked like a

typewriter ribbon anyway, I thought it would be available at

my normal stationer.

Here is problem number one. It is practically impossible to

locate ribbons with eyelets at the ends, in Singapore anyway.

Problem number two is that most typewriter spools are not

configured with the correct number or spacing of holes to fit

the printer.

The solution is rather obvious, if a little messy. Unwind the

new ribbon from its original spool and wind it onto the print

er 's old spools (having removed the old ribbon first of

course). As for the eyelets, I simply used a couple of staples,

vertically stapled to the new ribbon where the eyelets should

have been. It worked beautifully! However, for those who

prefer a more elegant approach, you can use a couple of those

bulk eyelets that legal firms are so fond of using to hold a

bunch of papers together by their corners. Simply punch them

into position.

Finally, you can extend the life of your ribbon by just flipping

the spool around. This will automatically position the unused

half of the ribbon on top, giving you the use of two ribbons

for the price of one.

More C-128 Mysteries...

A.J. Saveriano, Sparta, New Jersey

Look at these two sentences and decide what the response of

the C-128 would be if you typed them in direct or program

mode (type them in exactly as shown):

QUIT THAT!

OFFEN, WORDS ARE SPELLED STRANGELY

Ok... now that you have made your decision, type the first

sentence in direct mode and hit RETURN. Do the same for

the second sentence. Hmmm... did you get the old faithful

SYNTAX ERROR? Surprise! A new error code appears (new

for me, at least). UNIMPLEMENTED COMMAND ERROR

is your reward. Why? Well, I'm not really sure. However, if

you scan the BASIC ROM in Bank 15 from addresses 18089

to 18111 you will see that two keywords appear that we (I)

didn't know about. They are QUIT and OFF.

This one-liner will let you see them:

10 bank 15:print chr$(14):for i=18089 to 18111

:print chr$(peek(i));:next

Since the error calls itself 'unimplemented', I have to assume

that Commodore had plans for these two commands but de

cided against using them (at least for now). Actually, any

command starting with the letters QUIT or OFF will cause

the above result. I wonder if there are any others?...

Fast Load Killer

Michael T. Graham, Hopatcong, New Jersey

Some C64 games and applications that read or write to disk

don't operate properly when they are loaded using EPYX's

FAST LOAD or similar cartridges. The trouble isn't with the

load operation itself; the problems occur because FAST

LOAD is still enabled when the program is executing. Some

thing in FAST LOAD causes drive errors when non-load disk

I/O is attempted. One way around this is to disable the car

tridge before loading the program, but this means you'll have

to put up with the lethargic pace of the unassisted 1541. There

is, however, a better way.

You can load the program using FAST LOAD and then

disable the cartridge by inserting the following lines in the

program's loader or at the beginning of the program itself:

10 sys 58451: sys 65418

20 open 15,8,15,"uift: print#15,ui0n: close 15

The first line resets the vector tables used by BASIC and the

Kernal, effectively disconnecting the cartridge's hooks into

the system. The second line resets the disk drive, flushing any

special code that was uploaded during the load operation.

This technique also disables The Final Cartridge' and should

work on other fast-loaders as well. It will also work when no

cartridge is installed, making it more universal than calling

the cartridge's built in disable routine.

Fade Out (Fade In?)

Geoff Seeley, Bridgewater, Nova Scotia
i

The following screen dazzler was written for only one reason,

to see it work. Be forewarned though, prolonged exposure to

this program could freak-out your optic nerve! The program

is written completely in machine language and is IRQ driven.

Type SYS 49152 to start and to stop the program. (For C64

only).

FJ 100x=49152:ck=0

EA 110 read a: if a=-1 then 130

DL 120 poke x,a: ck=ck+a: x=x+1: goto110

CF 130 if ck<>16891 then prinf'error in data"

MN 140 print"sys 49152 to start/stop" :end

AO 1000 data 173, 20, 3,201, 49,240, 13

EE 1010 data 120, 169, 49,141, 20, 3,169

DC 1020 data 234, 141, 21, 3, 88, 96,120

LF 1030 data 169, 33,141, 20, 3,169,192

JH 1040 data 141, 21, 3, 88, 96, 24,173

BF 1050 data 125,192, 105,128, 141,125,192

Transactor
May 1988: Volume 8, Issue 6

OE

IH

BK

II

IL

PI

FI

DK

HN

FK

FM

LL

PA

LA

KL

CJ

1060 data 201, 0,

1070 data 173, 126,

1080 data 238, 126,

1090 data

1100 data

1110 data

1120 data

1130 data

1140 data

1150 data

76, 71,

192,168,

192, 169,

133, 255,

145 ?M

255, 169,

76 86

1160 data 208, 141,

1170 data

1180 data

1190 data

1200 data

1210 data

141, 134,

0, 0,

12, 11,

11, 11,

1, -1

240,

192,

192,

192,

185,

0,

160,

?30

220,

19?

33,

2,

1,

11,

12,

3, 76, 49,

201, 19,240,

173, 126, 192,

169, 0, 141,

128, 192, 141,

133,254,169,

0, 173, 127,

254, 208, 247,

197, 255, 240,

169, 0, 141,

208,173, 127,

76, 49,234,

1, 15, 15,

0, 0, 0,

12, 15, 15,

234

10

168

126

127

216

192

230

3

32

192

0

12

0

1

Disk Light Flasher

Jeff Spangenberg, Zephyr Cove, Nevada

This program flashes the disk light as a strobe on the 1541

and 1571 drives. It works on the C64, or a C128 in 64 mode.

The program also monitors the line so that if a disk command

is sent the program exits and executes the command.

LF

NM

EG

ML

01

DI

EB

AD

MI

NH

HD

MO

KK

MF

FE

AE

HA

FO

EA

CG

DK

PK

CM

LM

DL

100 rem flash disk drive LED on 1541

110ck=0

120 for x=49152 to 49290: read z: ck=ck+z

130 poke x,z: next

140 if ck<>18154 then printMerror": end

150 sys 49152

160:

170 data 160, 62, 169, 8, 32, 177, 255, 169

180 data 111, 32,147,255,169, 77, 32,168

190 data 255,169, 45, 32,168,255,169, 87

200 data 32, 168, 255, 152, 32, 168, 255, 169

210 data 5, 32,168,255,169, 1, 32,168

220 data 255, 185, 77,192, 32,168,255, 32

230 data 174, 255,136, 16,205,169, 8, 32

240 data 177, 255, 169, 111, 32, 147, 255, 169

250 data 85, 32,168,255,169, 51, 32,168

260 data 255, 32, 174, 255, 96, 120, 41, 0

0, 24,169,254,170, 32, 38

5,202,224, 1,208

5, 32, 38, 5,232

300 data 224, 255, 208, 248,173, 0, 24, 240

310 data 232, 88, 96,138, 72, 73,255,168

320 data 169, 248, 141, 0, 28,202,208,248

330 data 169, 240, 141, 0, 28, 136, 208, 248

340 data 104, 170, 96

270 data 141,

280 data 5, 32, 38,

290 data 248, 32, 38,

Best-Bit-From-Moscow Department

Restore to Line Number

Oleg Smirnov, Moscow, U.S.S.R.

I was recently making a MONOPOLY game for my 64. There

was lots of data that required random access, but keeping it in

arrays would have consumed too much memory. Some BA-

SICs have a RESTORE [line number] statement to do the job.

So does the 64's BASIC 2.0, according to some smartie at

Commodore (see user's guide, page 176, 'RESTORE line

number'). Unfortunately, my 64 never read the user's guide

and reported a ?SYNTAX ERROR when put face to face with

this version of RESTORE statement. To make up for its igno

rance, I wrote this short ML program as a substitute:

OF 1 rem 64 restore-r - oleg smirnov

DJ 5s=49152

EF 10 for i=s to s+54: read a: poke i,a: next

OK 20 data 165, 43,133,251 165, 44,133,252

IC 25 data 160, 2,177,251,197, 63,208,21

BI 30 data 200, 177,251, 197, 64,208, 14,165

GG 35 data 251, 24,105, 4,133, 65,165,252

ND 40 data 105, 0,133, 66, 96,160, 0,177

LF 45 data 251, 133, 254, 200, 177, 251, 133, 252

BA 50 data 165, 254,133,251, 76, 8,192

Here is how to use it. Poke the line number to be RE

STORED to into locations 63-64 decimal in the standard low

byte/high byte format, and then SYS 49152. Example (dl

stands for data line number):

100 hi=dl/256: lo=dl-int(hi)*256

105 poke 63,lo: poke 64,hi: sys 49152

To relocate RESTORE-r to a different address in memory,

change line 5 (V is the starting address) and line 50. The last

two numbers of line 50 are equal to s+8 in the low byte/high

byte format. Change these to correspond to your new starting

address plus eight.

RESTORE-r uses zero-page locations $FB-FC and $FE (251-

252 and 254 decimal). To use other locations, make changes

wherever you encounter a 251, 252 or 254 in the data state

ments. Also, for the sake of shortness, RESTORE-r lacks er

ror trapping. It gets stuck on non-existent line numbers. Use

RUN STOP - RESTORE in this case.

And one more thing. With the following changes, RESTORE-

r becomes a computed GOTO routine:

Line 25: 57 instead of 63

Line 30: 58 instead of 64

Line 35: 56,233,1,133,122 instead of 24,105,4,133,65

Line 40: 233 instead of 105; 123 instead of 66

To use it, poke the line number into locations 57-58 decimal

(low byte first), and SYS 49152. Control is then transferred to

the line specified. Example:

100 input "which line number should I GOTO";g

110 hi=g/256: lo=g-int(hi)*256:

120 poke 57,lo: poke 58,hi

130 sys 49152

Transactor May 1988: Volume 8, Issue 6

Oh, For the Good Old Days... Today, I received the last is

sue of my subscription. I have carefully considered my deci

sion regarding renewal.

Two years ago, A friend of mine lent me his Transactor. At

that time, I had just about absorbed all the pablum to be had

in Compute! 's Gazette which seemed to repeat the same old

stuff over and over, always directed to the rank beginner.

God! was I happy to find T Because it went to the very heart

of my computer, telling me all the hidden secrets which I

could never have discovered on my own at that stage of my

development.

I have eagerly awaited every issue since that first one because

I knew there would be a choice piece of information and/or a

terrific program I needed. As I once wrote to you, "It seems

that every time I need a program to do a certain job, the very

next issue of T provides exactly what I need!" It was eerie at

times...

For the last two or three issues, however, the quality of the

magazine print has soared to new heights but the quality of

the words (which is all that matters) has dropped to the level

of Compute!'s Gazette. T is now full of empty words. Who

needs reviews? Who needs opinions? I miss the interesting

covers and I hate the slick paper. The very reasons for my

loving T so much are almost all gone.

I wish you well with your new "look" but from now on, I

will just buy a copy of Compute!'s Gazette in the grocery

store when one interests me. Someone there at T should real

ize that the old magazine was directed to super-intelligent,

avid C-64 fans who crave the arcane knowledge found only

in the old T. Now, you seem to be trying to grasp the begin

ner's market but, all of them are gone.

It is very much like watching the slow death of a dear friend

and with deep regret that I must decide not to renew my sub

scription.

P.S. I failed to mention I'm NOT interested in Amiga, Apple,

128, or B-Series - only C-64. If you ever become a "special"

magazine again, please let me know!

Wayne Gurley

Wills Point, Texas, USA

CP/M Saviours: Once again Transactor comes to the rescue.

I had just purchased my new 1581 drive and could hardly

wait to get it up and running, when I discovered that the cur

rent CPM+ system wouldn't support it. I played with it in the

BASIC 7.0 mode and it was great! But I really couldn't wait

to get dBASE and WordStar over to one of those "little

square" disks.

Then Mike Garamszeghy saved me with his CPM+.SYS

patch. Now I can PIP to my 1581 all day long. Thanks Mike!

Thanks for the articles on CP/M and thanks to writers like

Mr. Garamszeghy, Adam Herst, Clifton Karnes and Aubrey

Stanley for sharing their knowledge with other Commodore

CP/M users. And thanks to Transactor for offering a place for

this sharing to take place.

Transactor 10 May 1988: Volume 8, Issue 6

That one issue was worth the price of the subscription. It is a

shame that Commodore couldn't have supplied the 1581 sys

tem with the drive (but I've been a Commodore user long

enough to know all about Commodore Customer Support).

P.S. Mike Garamszeghy is fast becoming the CP/M "Jim But-

terfield".

Dr. Ken Hippo

Milan, Tennessee, USA

Contrasting letters like the above two keep us walking an edi

torial tightrope around here. No matter how we fill these

pages, we're bound to get both praise and criticism; as long

as the former prevails (and our sales don't dip dramatically),

we figure we're doing something right. Wayne Gurley's letter,

though, is worth a closer look because his perceptions of the

magazine's "slow death" have been voiced by one or two oth

ers. Compared against thefacts, though, they just aren't true.

The interesting thing about a magazine like the T is that peo

ple read it, to a large extent, for the parts they don't under

stand. We've heardfrom so many readers, "I love your maga

zine, even though I don't understand any/most/some of it",

that it's a standing joke around here. These people hope to

learn by eventually grasping more of the magazine's content,

so that the parts they don't understand become less with each

passing issue. Ifwe've done ourjobs well, you should befind

ing less (in Wayne's words) "hidden secrets which I could

never have discovered on my own at that stage ofmy develop

ment." Why is that surprising, ifyour whole purpose is to in

crease your stage ofdevelopment? Ironically, the better we do

our job of educating and informing, the more we remove the

Transactor magicfrom the minds of long-time readers, and it

is possible that we may even lose some along the way. (Mr.

Gurley's reaction of going back to the "pablum to be had in

Compute!'s Gazette" is one whose logic escapes us, however.)

If you take a good look at the recent issues, you'IIfindjust as

much technical info as always (if not more), and I'm sure

many will testify that much of it is incomprehensible to them

at this stage. No Amiga content appears in this magazine any

more, and Apple content never did; expect coverage of the

C64 and C128 exclusively, with a tiny smattering ofPET/ Su-

perPETI VIC/ Plus 41 B-series related material. If we were

going after the beginner's market, the previous issue wouldn't

have articles on a communications interface for software de-

velopers^ hacking the POWER C function library, a detailed

look at C128 ROM code to investigate a little-known but

deadly bug, bank-switching routines for C128 machine code,

and other material that would guarantee instant death in that

market.

To address Dr. Flippo's letter, we appreciate the support for

Mike Garamszeghy's articles. Feedback like this helps us de

termine what to put into the magazine; your letters do make a

difference!

Chess, Anyone? I recently purchased a C-128D based largely

on all prior reports that C-64 software runs OK on it, without

exception. That's not the case! Colossus Chess IV, from Silver

House, England, will not run on my C-128D. It works fine, as

it always has, on my C-64. I'd appreciate knowing if others

with a C-128 or C-128D have had the same problem. I have

tried, but am unable to get a response from Commodore in

this regard.

P.S. My C-128D works fine, otherwise. It even works OK

with Superkit 1541, which I was never able to get to work

correctly with my old C-64/1541!? Except, despite claims to

the contrary, Superkit 1541, will not copy itself.

John R. Menke, Chessoft Ltd.

Mt. Vernon, Illinois, USA

Other than slight differences which vary among all C64 ver

sions, we were not aware of any compatibility problems with

the 128 or 128D. At this stage, we know little about the 128D

other than the fact that it is a repackaged C128. Even subtle

differences in hardware or software can break a program

however, especially one that uses clever copy protection

methods, or code that relies on undocumented quirks in the

system, (we don't know ifColossus is one of these). Ifanyone

knows of a commercial program that runs on the 128 but not

the 128D, we would like to hear about it - let's see if there's a

problem, and how widespread it is.

Believe it or not, we have made working copies of SuperKit

using SuperKit itself- on a brand-new 1571. The program is

slick and very high-performance, but, like a highly-tuned rac

ing engine, just a bit too finicky for everyday use in the real

world. Perhaps that has something to do with why SuperKit

publisher Prism Software is now out ofbusiness.

Random Drive Errors Corrected: It has been noted that a

1571 disk drive without ROM updates will produce random

'?device not present error' messages. I encountered this error

several times while reading a relative file, and upgraded my

1571 ROM to get rid of this bug. Well, this did not get rid of

the errors. I asked Commodore in the United States, a soft

ware company in the U.S. and a few store owners in the area -

my question was still unanswered. I had deduced that the er

rors were being caused by a very low voltage at sporadic

times. A C-128 power supply can only handle so much at one

time: two disk drives, a modem, a Mach-128 cartridge, a

printer, and a printer interface with a 16k print buffer. In my

last breath I asked a very knowledgeable 'guru' on a local

bulletin board if he had a solution to my problem. He felt that

if I changed my printer interface I would solve the problem.

So, I changed from a TurboPrint GT with the buffer to a Su

per Grafix Jr., and it worked.

Here's the reason: the interface that I had was drawing too

much amperage from the cassette port, especially with the

16K printer buffer hanging off of it. I was able to narrow the

Transactor 11 May 1988: Volume 8, Issue 6

problem down by turning off the printer and finding that the

errors did not occur. If you are having the same problem as I

was please check the interface that you are using.

Duane E. Barry

Cambridge, Ontario, Canada

Thanks for the tip!

Where's the RS232 Interface? I've heard that one of your

issues had construction directions for an RS232 interface for

modem connection. Could you please answer a few questions

for me?

1. Will this interface work on an SX64?

2. What issue has this info in it?

3. Will the VIC/C-64 Verifizer work on the SX64?

(It doesn't seem to work for me.)

Looking forward to my new subscription.

Isidro G. Nilsson

Marysville, Washington, USA

First, the answers: 1: Yes; 2: Volume 8 Issue 3; 3: Yes.

Nowfor some explanations...

Other than some differences that vary on different versions of

the 64 itself the SX is 100% software-compatible with the

regular 64 and 64C. It is theoretically hardware compatible

as well, but since the unit's physical construction is different,

it is wise to verify, as you are doing, that a plug-in piece of

hardware will fit in the slot on the top of the machine. Most

simple boards that plug into the expansion or user ports will -

as is the case with our RS232 interface project that appeared

in Volume 8 Issue 3

As far as the Verifizer goes, we have used it many times on

our SX without a hitch - double-check your program against

the listing (you don't have the benefit of the Verifizer to do

this, of course!), or better yet, load the Vic/64 verifizer from

any Transactor disk. If that's where you got your Verifizer,

suspect a bad disk. If Verifizer from a good Transactor disk

gives you the same trouble, you've got bad hardware, or

you've discovered a problem we don't know about - please let

us know!

Transactor Site Licensing Policy - We, the Fundy C64 Us

er's Group are in receipt of the reference letter, clarifying the

Transactor copyright policy. However, we see this as a change

in your policy and must protest.

In October 1987, we entered into a subscription with your

magazine under the clear understanding that Transactor soft

ware was available for copy but not resale. For your part, you

accepted our subscription, and began to supply us with soft

ware.

Therefore, this Club and your magazine have entered into a

contract, and as with all contracts, unless otherwise agreed in

advance, the terms and conditions of that contract remain in

effect for its duration.

Accordingly, the Club expects to receive Transactor software,

as agreed, and will continue to copy but not resell, as agreed.

Our Club consists of members who, having paid a member

ship fee, are free to copy the software in our library without

charge. This Club policy is a factor in determining to which

magazines we subscribe. We know of no other magazines

adopting this type of policy and feel that it is a serious mis

take which will, in future limit the circulation of your prod

uct.

In closing, we would ask you to reconsider your policy, since

it will influence our future decisions, and, frankly, we like

Transactor.

Bob Laws

Software Librarian, Fundy C64 User's Group.

Our copyright policy as printed on page one of the magazine

was changed recently to prevent exactly the kind of thing your

user group is doing, because it is difficult to sell Transactor

Disks when anyone can get them for free at their local user

group. Our attitude regarding Transactor programs has not

changed: use themfor whatever you wish; use our routines in

your own programs; give them to your friends. What we are

trying to prevent is mass-distribution of Transactor Disks,

which we put considerable effort into producing, and we

would like to avoid having to compete with our own product

supplied by others.

The copyright policy in this issue remains the same, but we

added a short note about our attitude toward individual copy

ing of our programs. Note that this does not affect our copy

right, butjust states that we generally don't mind copies of in

dividual programs being given away, but you should get spe

cial permission for mass-distribution or for distribution of

collections of Transactor programs (like a Transactor Disk).

For user groups, our site-licensing arrangement of $3 per

copy made is the standard deal.

You're correct in stating that no other magazine has a policy

similar to ours, butfor the wrong reason: no other magazine

has a policy as liberal as ours. Ask Compute! how they feel

about people giving away their programs.

Ifyou no longer wish to subscribe to the Transactor Disk as a

result of our change ofpolicy, then you may cancel your sub

scription and get a refund for the remaining disks. Alterna

tively, you can start charging your members a small fee for

obtaining our disks without having to order themfrom us (for

Transactor 12 May 1988: Volume 8, Issue 6

more money) and waitfor them to arrive. We believe that this

arrangement still benefits your group; that, of course, is for

you to decide.

Piracy: the debate continues - This letter is in response to

your editorial in the March issue of Transactor, There is an

old saying, "Be careful what you wish for, you just might get

it." For the benefit of the home computer industry as a whole

and software game writers in particular, I hope you don't get

your wish in the Weaver vs. Doe case.

There are several statements in your editorial which are incor

rect as far as US law is concerned. If judgement is found for

the plaintiff, the defendant will not be convicted of anything.

This is a civil suit.

Secondly, you can most assuredly collect damages from a mi

nor if he has anything. Also, a judgement is good for seven

years. By that time your minor is a young adult and you can

get that which he had hoped would be his college tuition or

business stake too.

Thirdly, judgements are not expensive. US copyright law

grants the plaintiff actual damages plus all legal fees if he

prevails. Let your lawyer collect his fee and your damages

from the defendant.

I hold a copyright to a book and sympathize with Weaver to

the extent that Weaver wishes to recover from the pirate him

self. My sympathy diminishes rapidly as Weaver tries to pull

the parents, the phone company, the fire department and any

one else he thinks may have some money, into his suit.

Parents normally are not held liable for damages caused by

their children, only for their own culpable negligence. To at

tempt to extend liability to parents who know little or nothing

about computers and have no interest in learning or in con

stantly monitoring what their child does with his computer

can only result in parents refusing to buy computers for their

children. This will tend to maximize protection for copyright

holders, but it will also minimize the market for games, com

puters and magazines. I would not want that.

I don't want to start holding Ma Bell responsible for misuse

of modems on regular home phone lines at this time, either.

She has just barely accepted the idea of permitting such activ

ity instead of confining it to the special computer lines which

are more expensive. There goes Q-Link, all the BBS's, and

the other services whose make or break point depends on the

home computer user.

No, I can't support your position on that. I can support going

after the violator with all vigor. Get his equipment, for now,

and don't let up until your judgement is paid in full or the

time limit has expired.

I can also support a strong request to all responsible owners

and users to report violations which come to their attention.

Perhaps holders of software copyrights need an organization

to monitor and protect their rights as BMI does for the music

industry. I wouldn't know how to contact a copyright owner

if I did see his work being distributed illegally.

Interestingly, the US copyright law grants certain express

rights to the owner of a copy of copyrighted material. These

include the right to sell or otherwise dispose of his copy, to

make copies for archival purposes, to re-arrange the material

to suit his purposes, to study the copyrighted material in

depth, and generally, to enjoy all the benefits of ownership

except distribution.

Federal court in Louisiana has just ruled that State's "shrink

wrap license" law illegal. If you buy the package, you own

that copy and the right to use it as you please, period. This

comes as no surprise since the "shrink wrap license" was

originated as an effort to deny copy owners the rights that

they were intended, by Congress, to have.

Congress has been repeatedly lobbied to reduce the rights of

the owner of a copy, in the case of tape recorders, video tape

decks and, most recently, digital tape recorders. They have

steadfastly refused to do so. I don't expect them to change

their position just for software.

The use of copy protection schemes obviously is intended to

deny the copy owner certain of his rights and is probably an

actionable cause. Further, they only harm the legitimate soft

ware user. The pirate has ample tools, provided by a segment

of the industry solely supported by their use, to effectively

negate such schemes. Last year's best seller list is topped by

"Print Shop Graphics Library #1" at a quarter of a million

copies sold. It has not one whit of protection. GEOS, on the

other hand, is given away with every C64 sold. It is of inter

est mostly to users who want only to plug it in and push the

button. It is so loaded with protection that programmers have

shown little interest except to prove that they can crack the

protection. I ask you, why protect a program you intend to

give away? I suggest their interests would be better served by

making the shell disk wide open and protecting, if really nec

essary, the additional programs for it, which they do sell.

I feel that we all, software users and creators, need to begin

co-operating to protect each other's rights, not just our own.

Working together, we can run the pirates out of the game.

Working at cross purposes we only harm each other and cause

them to flourish. Nothing so discourages me as seeing a letter

from a novice who hasn't mastered BASIC yet, seeking a

way to hide his work. If the rest of us hid our work, he would

have no chance to learn. Programmers are not born, we all

learned most of what we know from others. If Johnnie von

Neuman and Grace Hopper had hidden their knowledge, we

would all have had to pursue other hobbies or livelihoods. Yet

he, somehow, expects an experienced programmer to teach

him how he can avoid teaching others. That is the atmosphere

that has been created and I abhor it!

Transactor 13 May 1988: Volume 8, Issue 6

Co-operation and a commitment to protecting all parties

rights are the only solutions I can see. I certainly don't want

to see "big brother" deciding to do for us what we should

have done for ourselves.

Russell K. Prater

Parker, Florida, USA

In praise of C - You guys are reading my mind. The March

issue's shift towards using C on the 64 and 128 shows a very

smart shift of focus on your part. I vote for continued atten

tion to this language because of the language's popularity on

other machines (and of the usefulness of familiarity with C

when moving up to the Amiga). Since it is so fast, C provides

a wonderful world to explore between the two languages you

have promoted thus far, BASIC and assembly language. How

about some graphics routines in C?

I bought Power C a month ago and am intrigued. If Transac

tor focuses on using this package (with forays into other im

plementations like Super C by Abacus) the attention will pro

mote the popularity of the language among the Commodore

community. The use of some kind of standard is important, as

you have proved by promoting PAL as an assembler.

Besides, even though you consistently use the same software,

there is always room in Transactor for other products. You

have proved that by publishing assembly language from

MAE, French Silk, the Commodore Assembler and others. It

is nice to see alternative implementations, just to know what

the other guys are up to. Keep it up. My vote is for continued

focus on C.

One more thing. Since moving from Minnesota to Alabama to

work at the University of Alabama-Birmingham, I have be

come heir to four 8032 CBMs, two 8050 disk drives, a 4023

printer and cables to connect them all. The only thing missing

is decent software and the manuals. Without the last few

years of Transactor and the Inner Space Anthology, I

wouldn't be able to do anything with them. Do you have any

advice as to where to find a word processor and database for

these things at a reasonable price? Since the university is a

nonprofit organization, donations from readers who have

moved on to bigger and better things would probably be tax

deductible. I would appreciate it if you would publish this let

ter along with my address so that interested-readers could

contact me.

Craig Ede, Art Dept., 101 Honors House, Univ. of Alabama at

Birmingham, Alabama, USA 35294

Paperclip and the 65C816 - Re the review of the Turbo Pro

cessor for the C64 on page 56 of Transactor V8i4: I think I

know why Paperclip won't run on a 65C816. As you may

know, Paperclip is not DOS copy protected but is dongle pro

tected. This dongle protection seems to consist of two phases.

First, when you run the program, the program is decoded us

ing values from the dongle as a key. Secondly, once the pro

gram is up and running, there is a loop which checks for the

presence of the dongle, apparently during the IRQ (at least,

the cursor stops blinking if the dongle is removed, and starts

blinking again if you reinsert it).

Alas the decoding phase appears to use undocumented op

codes (at least, they are not officially documented in MOS

Technology spec sheets although they have been documented

in Raeto West's books and in several other places). Of course

it is precisely these undocumented codes which the 65816

family uses for its extra instructions. It would be as if you

used undocumented 8080 codes which undoubtedly exist in

one form or another and then wondered why the resulting

code would not run on a Z80. The 65816 does have a 6502

emulation mode but this, I believe, only affects the width of

the registers. Thus INX would work differently if the x-

register contained $FF depending on whether the X-register

were 16 bits or, in 6502 emulation mode, 8 bits. In any case,

it would have had to choose between MOS/Commodore,

Rockwell and Synertech 6502's, and I believe the trend for

both Rockwell and Synertech has been to treat undefined op

codes as NOPs in their 65C02's which has the advantage that

you can pass these through to a co-processor.

I suppose the moral is that programmers shouldn't be too

smart with their tricks. If possible, and it isn't always possi

ble, keep with "official" methods. If you don't need blinding

speed or decent graphics let your MS-DOS programs use MS-

DOS I/O instructions. Assume your 68000 users are going to

insert a 68030 board one of these days. Unless you're being

paid by the company that built the computer, try to let your

users get away with a not altogether 100% compatible clone.

And, unless you want a lynch mob outside your door, make

sure your 1541 DOS copy protection doesn't only work on

1541s made on alternate Thursdays in June 1984.

Joel M. Rubin

San Francisco, California, USA

Product Info from Readers - I just received the March

Transactor and read the Letters column. I think I can help a

couple of my fellow readers.

Patrick Demets wants a book. Specifically he needs a book

which covers cartridge addressing. May I suggest Easy Inter

facing Projectsfor the Commodore 64 by Downey, Rindsberg

and Isherwood. It is available from Prentice-Hall or from Don

Rindsberg, The Bit Stop, 5958 S. Shenandoah Road, Mobile;

AL., 36608. This book is 200 pages of goodies ranging from

the basics to constructing speech synthesizers, IEEE serial

and parallel interfaces, a modem, 8-line multiplexed ADC and

a ton of other goodies, with the driver programs where need

ed. It also has a chapter on building an EPROM burner/reader

and covers address range selection as well as any book I have

seen. The C64 supports cartridges at $8000, $A000, $E000,

$DFE0, $DFF0 or any combination thereof by proper manip

ulation of the EXROM, GAME, ROMH, ROML, I/Oi and

I/O2 lines and the address register at $0001.

Transactor 14 May 1988: Volume 8, Issue 6

David Kuhn needs a real-time clock for his C128. Everyone

who is interested in computers and knows what a soldering

iron looks like should write for a catalog from JAMECO

Electronics, 1355 Shoreway Road, Belmont, CA 94002. They

have all the chips, connectors and supplies that you just can't

find anywhere. They do have a $20 minimum order, but I

have trouble keeping my orders down to that. On page 30 of

the current catalog is a real time clock module, a complete 12

or 24 hour clock in a 16 pin DIP with four bit data line access

for computers at only $7.95. It is easy to interface through the

user port and serves very well if powered from a battery and

7805 regulator. Don't forget to order the specification sheet

with it.

I too have a need. Does anyone know where I can get a

schematic and ROM program for a print buffer? I would pre

fer 8-bit Centronics, but Commodore serial would serve.

Russell K. Prater

Parker, Florida, USA

V

More Clocks - In response to the inquiry "Clock Setting"

(V8I5) as a hacker who also likes to dabble in hardware, I use

my C64 and C128 for real world interface and control appli

cations. About a year ago I purchased a CCSZ Clock/ Calen

dar with 8K CMOS RAM (both battery backed up) from Ja-

son-Ranheim (1805 Industrial Drive, Auburn CA, 95603).

The cartridge has proven very useful for my purposes, such as

maintaining system time and protecting data integrity during

power losses. The operating modes that are provided in

firmware (easily called from BASIC) are too extensive to

cover in this letter. The documentation is quite decent and the

imaginative programmer can make the thing serve many pur

poses! The cost a year ago was $50 US.

Case H. Marsh

Columbia , Maryland, USA

Transbloopurz - The C128 version of "The Projector, Part

II" which is listed on pages 23-25 of the January, 1988 Trans

actor does not seem to remove the hidden lines properly. On

my C128 the line 1960-1970 PAINT 0 statements do not

erase previously drawn lines which are a large distance below

the newly drawn line.

The enclosed hidden line subroutine, if substituted for the ex

isting lines 1950-2000 seems to work satisfactorily as a sub

stitute. Instead of drawing only 3 lines below the most re

cently drawn horizontal line, the substitute program draws a

sufficient number of spaced, offset lines to cover the previous

lines lying below this new line. The erasure accomplished us

ing the PAINT 0 command then erases a swath sufficiently

wide to eliminate all unwanted portions of the previous line.

Lines 1851-1859 in the substitute program are intended to

limit the number of offset lines to the minimum necessary to

accomplish the erasure. The maximum vertical screen dis

placement between the most recently drawn line and its im

mediate predecessor is calculated for twp points on each line

segment connecting the precalculated and stored net points.

Because these points are calculated and indexed using the in

teger variables x and y they do not lie along vertical lines on

the screen. This is because each line is offset to the left from

the previous line to achieve the 3-D illusion.

The quantity K2 represents the vertical screen distance be

tween a precalculated point on the previous line with the in

terpolated point on the newly drawn line having the same

horizontal screen coordinate. K3 is the same quantity using

the precalculated (stored) point of the new line and the corre

sponding interpolated point from the previous line. If the new

line lies entirely below the previous line, no lines are drawn.

I hope this may help other readers experiencing similar hid

den line problems. The effort certainly helped me understand

the original program more completely.

J. Milton Andres

Palos Verdes, California, USA

1850 rem mask hidden lines

1851 kl=0

1852forx=0tom-l

1853 k2=r(x,y+l)-r(x,y)+(r(x,y)-r(x+l,y))*ys/xg

1854 if k2>kl then kl=k2

1855k3=r(x+l,y+l)-r(x+l,y)+(r(x,y+l)-r(x+l,y+l))*ys/xg

1856 if k3>kl then kl=k3

1857 next x

1858 k=int(kl/3)+l

1859 if k=l then 1980

1860forj=ltok

1865fori=-ltol

1870 locate g(0,y)+i, r(O,y)+3*j,

1880 for x=l torn

1890 draw to g(x,y)+i, r(x,y)+3*j

1900 next x,i,j

1910 locate g(0,y), r(O,y)+l

1920 for x=l to m

1930 draw 0, +0, +0 to g(x,y), r(x,y)+l

1940 next x

1950 draw 0, +0, +0 to +8, +8

1955forj=ltok

1957fori=-ltol

1960 paint 0, g(m,y)+i, r(m,y)+3*j

1970 paint 0, g(0,y)+i, r(0,y)+3*j

1971 nextij

1975fori=-ltolstep2

1976 locate g(0,y)+i, r(0,y)+l

1977 forx=l torn

1978 draw 0, +0, +0 to g(x,y)+i, r(x,y)+l

1979 next x,i

1980 locate g(0,y), r(O,y)

1990 return

2000 :

Transactor 15 May 1988: Volume 8, Issue 6

Cellular Automata

Mathematical Artforms For The C64 and C128

by Ian Adam, P. Eng.

Copyright (c) 1987 Ian Adam

There has been a great deal of mathematical exploration over

the past few years of the concept of cellular automata. These

are arrays of cells with specified states; each cell's state

changes from generation to generation, in accordance with a

fixed set of rules operating on its neighbours. The accompa

nying programs implement a particular variety, 4-state linear

cellular automata, on the Commodore 64 and 128. You may

want to use the resulting

plots as an aid to academic

investigation of the phe

nomenon; on the other hand,

you can just run the program

and enjoy the endlessly vary

ing graphics it produces.

Background

The program, I promise you,

will provide some stunning

graphic images. Unlike other

forms of display such as

games or art programs, this

one generates graphics inter

nally in the computer, and it

is amazing that applying a

simple algorithm can create

such a wide variety of re

sults. These images are more

than just pretty faces, howev

er: they have brains, too. So that you can appreciate them ful

ly, please stay tuned for some history and philosophy.

The Encyclopedia Britannica, 15th Edition, lists an automa

ton as any of various mechanical objects that are relatively

self-operating once set in motion. It notes that automata are

designed to arouse interest through their visual appeal, and

then to inspire surprise and awe through the apparent magic

of their seemingly spontaneous movement. Although written

with a different application in mind, that description fits this

program very well.

The earliest references to mechanical automata date all the

way back to the 4th Century BC in ancient Greece and China,

and include such artifacts as moving models of birds and ani

mals. Many interesting variations have appeared over the cen

turies. Of particular interest is the 'magician box' of a hun

dred years ago: in a curious portent of the computer age, a

disk engraved with a question is inserted into a slot in the

box. A tiny figure of a magician then comes to life, and points

with a wand to where the answer appears (on a tiny monitor,

no doubt!)

Figure 1: Code 1011303003, seed Random

Both red and blue are capable of asserting themselves as

background colours. The result is a class 2 image with

intricate vertical structures. The stable structures are

established quickly in spite of a random start. Cycle lengths

are 7 and 23.

More recently, the term au

tomaton has been applied to

robots and androids, and to

other automatic devices that

emulate human behaviour.

Collier's Encyclopedia ex

tends the term to include

computers undertaking such

human-like activities as play

ing chess.

By comparison, the cellular

automaton has a considerably

abbreviated history. The

grand-daddy of modern com

puters, John von Neumann,

began exploring self-

replicating automata about

1950. His explorations led to

the concept of an infinite

checkerboard and a set of

transition rules acting on each of its cells, resulting in a more-

or-less independent machine that could transmit information,

or even duplicate itself.

A popular implementation of this concept is John Conway's

invention of the game of 'Life'. This game is played on an

unbounded two-dimensional grid playing field; if you don't

have one of those handy, you can approximate it with some

sheets of graph paper. In the initial state (that is, on the first

sheet of paper), some cells are 'on', or coloured in, while the

rest are 'off', or blank. The next sheet of paper represents the

Transactor 16 May 1988: Volume 8, Issue 6

second generation of this lifeform, and the state of each cell is

governed by a fixed rule which operates on the first genera

tion. A new cell is 'born' if exactly three of its eight neigh

bours are occupied; an

existing cell survives if

two or three neighbours

are occupied. In all other

cases, the cell dies of ei

ther loneliness or over

crowding. The game was

explained to the public

by Martin Gardner in the

Scientific American of

October 1970. By the

February 1971 issue,

Gardner was already

able to report on a num

ber of interesting pat

terns and cycles that had

been developed for this

new procedure. Because

the playing field is cellu

lar, and because each cell

behaves autonomously

once set in motion, the

Figure 2: Code 0023010110, seed2...3

The classic triangular branching pattern is seen at the top. A

seed of 2 creates a green structure (left), while a seed of 3

give a blue structure (right). The collision area is marked by

red dendritic intrusions, and blue prevails as the predominant

structure.

term cellular automata was coined.

Linear Cellular Space

Of course, many different sets of rules could be developed

and applied to Conway's game - different neighbourhoods,

multiple-state cells, and so on. Gardner also touched very

briefly on a one-dimensional variation of cellular space, used

in his application to identify a

palindrome. Here the initial cells

occupy one line of the graph pa

per; subsequent generations are

usually plotted on successive

lines. This results in a two-

dimensional plot in which each

generation's data is linear, and

the second dimension (down the

page) is time.

Cellular automata inhabit a sim

plified universe in which space is

reduced to an array of cells, and

time becomes a series of discrete

steps. This degree of abstraction

permits modelling to take place,

and automata do closely resem

ble a number of modern comput

er applications. Computer chess

was previously mentioned, and

of course it is played on a

'bounded 2-dimensional cellular space', or checkerboard.

Some other comparisons are linear, such as railroad block

control and computerized traffic signals. Each of these major

Figure 3: Code 0023010111, seed 3113

industrial applications uses a linear representation of its oper

ating space, divided into cells or blocks. Vehicles are repre

sented as 'on' cells, and their progress through the system is

} traced through subsequent gener

ations by a complex set of safety

rules.

These models are fairly direct

and straightforward; by compari

son, some of the recent interest at

academic levels ranges from ab

stract to. abstruse. Both Scientific

American and Nature carried ex

tensive discussions of cellular au

tomata in 1984, by Brian Hayes

and Stephen Wolfram. After 14

years of development, the plots

were beginning to resemble some

of the images you see here. Pos

tulated applications included in

formation processing and trans

mission, simulation of crystals,

and a better understanding of bi

ological processes (which are

based on millions of cells each

following simple rules, after all). Beyond this, suggestions

that cellular automata could be applied to model languages

could only be described as metaphysical at best. In December

1986, Kenneth Perry presented an algorithm in Byte magazine

for computer display of linear cellular automata, with a more

realistic main objective of creating graphics.

The linear algorithm creates a display on a high-res screen.

The first row of pixels

represents the initial state

of the cells, each of

which can have one of

four values, 0 through 3,

represented by different

colours. As the array

evolves, a new cell's

state is determined by its

three parents - the cells

immediately above,

above left, and above

right. These three are

added, resulting in a sum

from 0 to 9.

The characteristic signa

ture of each automaton is

contained in its inheri

tance rule, a ten-digit

code that governs the

evolution of cells. Each

digit in the code corresponds to one value of the sum, the first

digit representing a sum of 0, the second a sum of 1, and so

on. For example, if the parent cells have values of 1, 3, and 2,

Only a single digit has been added to the code in photo 2, yet

a much more complex image results. This includes a

two-colour background and numerous short-cycle structures.

Additional symmetrical patterns of considerable complexity

are overlaid.

Transactor 17 May 1988: Volume 8, Issue 6

then the sum is 6. With a prevailing rule of '0120123123', the

new cell gets a value of 3. As subsequent generations evolve,

a two-dimensional plot is created on-screen (remember that

the second dimension is time, not space).

The Program

I promised we'd get to this eventually, and here we are. The

program includes considerable improvements over previous

incarnations, probably the most important of which is speed.

It is fairly easy to write a BASIC program to implement this

linear cellular algorithm, particularly in BASIC 7.0. There are

200x160 multicolour points to plot, however, and about a

dozen calculations for each, so the plot takes well over 15

minutes. With all the peeks and pokes of BASIC 2.0, it would

take much longer. No wonder the pace of scientific progress

can be so slow! Watching a universe unfold at this fate gener

ates suspense that would make Alfred Hitchcock proud, but it

is not conducive to produc

tive research. The solution in

this case is machine lan

guage, which plots the screen

in less than four seconds, a

considerable improvement.

The program includes a num

ber of other features. You

specify the code and the seed

value for the initial genera

tion. If you wish, either can

be supplied randomly. If the

plot is developing nicely, you

can continue it for another

screen. For when you get it

just right, a simple screen

dump is included.

Figure 4: Code 0103220121, seed Various

more selective, the procedure is different for the 64 and 128.

On the 64, you enter a value for one byte, 1 to 255. This byte

will be poked into position on the first row, representing 4

cells. If you enter 1, then a single cell with that value is creat

ed. A value of 255 creates 4 adjacent cells each containing 3.

You also supply the column for this byte, 1 to 40.

On the 128, the seed is much more flexible. You enter a string

of cell values, each 0 through 3, up to 160 digits if you wish.

You also enter a pixel position 0 to 159, with 79 suggested as

approximately the centre. All the cells are plotted, starting

where you specify.

The Menu

As the image is drawn, 200 generations of the automaton are

revealed to you. There will be a short pause to view the result,

then a menu will be printed. To make a selection from the

menu, just press the key

shown (don't press return):

S (new seed)

You will be returned to the

prompt for the seed for the

first generation. The image

will then be redrawn with

your new seed and the same

code.

R (random seed)

Random cells will be created

for the first generation, and

the plot will be redrawn with

the same code.

Before you can enjoy these

features, you will have to

type the program in, choos

ing the 64 or the 128 version. Be sure to save a copy to disk

before running it. Two special notes apply to the 64 version:

this program modifies some pointers, and should not be saved

after running. In additibn, because the machine code follows

BASIC, be careful not to add to its length when typing it in.

When you run the program, it starts by giving a brief descrip

tion of cellular automata, and some instructions. While you

are reading, the machine language is poked into memory. The

program uses the digits 0, 1,2, and 3 to correspond to black,

red, green, and blue respectively. Your first input is the 10-

digit code for inheritance, each digit being 0 to 3. At startup a

sample code will be suggested, so just press return to accept

it. In subsequent loops the previous code will be printed,

which you can accept or replace with another from the table.

The next input is the seed value for the first generation. Just

press R and return to get a random seed. If you want to be

Seed is selected to generate a variety of propagating

structures. This code supports a variety of angled and vertical

structures; one diagonal also spawns new verticals. When

diagonals reach an edge or other obstacles, tthey may be

absorbed, reflected, or generate other structures.

M (more)

The same evolution will be

drawn for another screenful

(199 more generations, since

the last line will become the

first one displayed on the new screen).

C (new code)

You get to enter a new 10-digit code, followed by a new seed

value. The new plot will then be drawn.

A (automatic)

Auto-pilot! Make this selection, and the computer will choose

both random codes and random seeds. Random automata will

be displayed one after another, every 4 seconds, until you

press any key to get back to the menu.

P (print)

The current image will be sent to your printer, unfortunately

not in colour.

Q(quit)

End the program.

Transactor 18 May 1988: Volume 8, Issue 6

Any alphanumeric key not listed here will return you to the

graphic for a few more seconds, following which the menu

will return.

The Screen Dump

Since it is impossible to anticipate all printer and interface

combinations, this program is designed for a Cardco interface

and Gemini, Panasonic, or

Roland printer - popular combi

nations. It will work unmodified

with many other systems. If it

doesn't work right at first, you

may be able to make some ad

justments:

• Set the interface for transpar

ent graphics mode, no line feed.

Line 490 gives a secondary ad

dress of 5 to achieve this...

change it to suit your interface if

necessary (eg the Tymac needs a

6).

• Two commands in the pro

gram are 27,65,8 to set linefeed

to 8/72 inch, and 27,75,64,1 to

call for 320 graphics characters.

If your printer uses different

codes, change these values in line

1210.

• If after all this the printout is double-spaced, change the

DATA item 10 to a zero in line 1210.

chaos, others start from a random condition and quickly es

tablish order. Still others seem to symbolize the eternal strug

gle between good and evil, never quite resolving their ulti

mate personality. But then, of course, we should limit our

selves to discussion of their scientific merit.

The images defy easy classification. With 4 values for each of

10 digits, there are 4gl0e, or 1,048,576 possible codes. Many

of these turn out to be

trivial, but most produce

usable results. Wolfram

divides the patterns into

four general groups, ac

cording to their perfor

mance after many gener

ations:

Class 1 automata pro

duce plots that very

quickly die out, and are

basically of no interest.

Class 2 codes quickly

evolve to very stable

structures, mostly stripes

and cyclic structures, re

gardless of their starting

configuration (of very

limited interest).

Figure 5: Code 0100132332, seed Random

A random seed produces two very distinct regimes that

coexist side-by-side. This pattern is stable and is maintained

through many generations. Repetitive vertical structures are

also supported. There is a gradual tendency to reduce the

number ofdistinct zones, an increase in entropy.

• If your printer is one

of those that print each

row of graphics upside

down, change the value

118 in line 1230 to 54.

• Finally, if you still

have a Commodore 1525

or such... my condo

lences. However, you

will see listed some re

placement lines to get a

printout.

The Results

Class 3 automata pro

duce patterns that appear to be chaotic (but note they are not

random!). These structures typically grow indefinitely.

Class 4 codes have a complicated

balance so that they neither grow

indefinitely, nor contract and die.

They generally include complex

structures that are cyclical in na

ture, and often propagate across

the field. /

Figure 6: Code 0110133232, seed 331..J...133

This code is only slightly changed from photo 5. The

blue-green regime has a very different character as a result,

and now supersedes the red area in only 2-300 generations.

As I hope you can infer

from the accompanying

illustrations, the graphics

images arising from the

se automata can be amazingly beautiful. With minor adjust

ments to the code, you can get images that are simple, com

plex, bright, sombre, or confounding. While some decay to

Perry considers only Class 4 to

be worthy of further investiga

tion: certainly these codes offer

ample latitude for experimenta

tion and mathematical study,

lending themselves to consid

erable formalization of their

structure. However, personally I

find that Class 3 automata offer

at least as much potential for ex

ploration. One Class 3 code will

often support several different

patterns; depending upon seed

values and boundary conditions, the results may range from

highly ordered structures, to seemingly random textures, to

cellular battlefields where rival patterns fight over territory.

Transactor 19 May 1988: Volume 8, Issue 6

Because of this variety, in fact, it becomes very difficult to

place these automata definitively into one category or anoth

er. For this reason, I am inclined to group them further ac

cording to the types of pattern observed, although even this is

not always definitive. The table gives a number of examples

of different results.

The Source Of Patterns

You will have more success creating images with a little ob

servation of how patterns are generated. The first digit of the

rule governs the background; it is commonly a zero, causing

black to prevail as background. If a different digit appears,

then another colour will be generated. In order for this second

colour to be sustained as the background, however, it must al

so be able to inherit from itself. This requires that sums of 2

and 3 times the background colour also produce the same

state (e.g. for green to prevail as background, the digit 2 must

result from sums of 0,4, and 6):

sum values 0123456789

black background Oxxxxxxxxx

red background 1 x 11 xxxxxx

green background 2xxx2x2xxx

blue background 3xxxxx3xx3

It is apparent from this that red is at least partly compatible

with the other colour backgrounds, so codes like 1011303003

will result in red and blue duelling over background rights.

Blue wins in this case, but

because of the fine balance

between the two, a Class 2

image is created quickly

from a random seed, with red

structures of cycle length 7

through 23 sustained on a

blue background (see figure

1).

The simplest spreading pat

terns are those in which a

single colour propagates it

self; for example, if the digit

1 appears in the code corre

sponding to a sum of 1, then

red will spread across the

field in both directions at a

rate of one cell per genera

tion. This is the fastest rate

that any information can be

transmitted, and is generally

referred to as the 'speed of light'. Furthermore, if zeroes are

present for sums of 2 and 3, then a branching algorithm is

created. As the pattern spreads from a single point, it grows

branches back in toward the centre. As these meet, sums of

two and three are created, and their zeroes guarantee that the

branches will cancel one another out. This results in the char

acteristic triangular pattern seen in photo 2, and occurring

with so many automata. These are the minimum requirements

for the branching to occur:

red triangles

green triangles

blue triangles

OlOOxxxxxx

0x2x0x0xxx

0xx3xx0xx0

Figure 7: Code1031102332, seed 11

This automaton supports a wide variety of different patterns

and structures. Black stripes, wandering red patterns and

blue-green triangles all compete for territory. No clear

winner can be declared after thousands ofgenerations.

Since the digits marked V don't matter, it is apparent that

there are many codes supporting this pattern, at least 4096 for

each colour. Many of these will support other structures as

well, leading to some interesting dual patterns. It is also clear

that the green and blue patterns can co-exist with one another

(in the form 0x230x0xx0). Figure 2 uses this approach,

adding a touch of red where the two structures collide.

Complex Patterns

Greater complexity can be introduced through at least three

measures. The first of these is the rule itself, and many exam

ples are given in the table. Once you become familiar with the

operation, you will probably want to try creating your own

rules; for example, adding a single 1 to the simple code of

figure 2 produces the complexity of figure 3.

Second, there is the seed, or first generation. The program

will suggest starting with a single cell in the centre, but you

can choose seeds more specifically in order to draw out spe

cial features from an automaton. In the alternative, a random

seed will usually display many of the capabilities very quick

ly, and introduce a great deal

of complexity in the process.

The third form of complexity

is somewhat artificial, and

that is the border condition.

In principle at least, the au

tomata should be viewed on

an infinite field. Our screen is

considerably less than infi

nite, being 160 pixels wide,

so some mathematical impu

rity is inevitably introduced.

Different patterns react to the

border in different ways; the

triangular patterns we have

seen simply stop there, but

even this alters the overall

pattern. As shown in figure 4,

some patterns will bounce or

otherwise modify themselves

when meeting an obstruction,

and you can position the seed carefully so as to create specific

effects. In most cases, however, the disturbance reflecting

from the edge eventually serves to transmit chaotic conditions

right across the entire field. This is a primary source of disor

der in Wolfram's Class 3 automata.

In theory, this disturbance could be avoided by establishing a

Transactor 20 May 1988: Volume 8, Issue 6

pseudo-playing field in memory, much wider than the screen.

A field width of, say, 1000 pixels, with only the centre portion

copied to the screen, would not be a burden on the computer's

RAM. This approach would permit most patterns to be fol

lowed for at least 800 generations before a reflection moving

at the speed of light could return to the visible area. (This ex

ercise is left to the reader!)

It is also left to the reader to explore the many patterns con

tained in the table, as well as the million or so other possibili

ties. I will just express my personal fascination with the many

automata having two distinct regimes, of which figure 5 is but

one example. Sometimes these regimes coexist peacefully

side-by-side; some fight back and forth, possibly producing a

victor; sometimes one pattern gradually infuses the other,

rather like 'invasion of the body-snatchers'. Each is unique

and fascinating.

In Conclusion...

The patterns produced by these automata can be both fascinat

ing and beautiful. Their beauty is more than skin deep, how

ever, as they are valid mathematical phenomena in their own right. This program will offer you hours of experimenting and

promises rewarding results, whether your interest is academic or otherwise. Send in your best results: I'd be very interested to

see what you come up with. And when you get tired of all that intense experimentation... put the program on auto-pilot, relax,

and enjoy the video wallpaper! As for me, I'm going to try some of these seeds in the garden, to see if I can grow an infinite

crop of cellular automatoes.

Figure 8 ("Stingray"): Code 0110310301, seed 22

A spreading blue line spawns blue bars, which in turn give

rise to a red triangular pattern. This pattern is terminated by

the edging, giving rise to this characteristic shape.

A Table of Sample Rules

Code Seed

(R = Random)

Product

Class 1 (Decay quickly)

0201023002 R extinct in a few generations.

Class 2 (Organize to stable state)

1011303003 R organizes into cyclic red structures on blue

(fig.l)
0331122210 R immediate formation of red & green stripes

0330312233 R evolves to green & blue stripes, vertical red

structures (seed 3)

0102223130 R chaos organizes to striped wallpaper, cyclic

patterns (try seed 11)

0201300003 R evolves to long-cycle multicolour structures

0003111003 R,3,33 red/blue triangular; broad geometric patterns

2233020233 R, 1,11 ice floes - blue/green blocks & patterns; rapid

evolution to stripes

3032112333 R instant self-organization as blue stripes,

red/green patterns

Class 3 (Growing, chaotic)

0023010110 2,3, 23 blue & green triangular, red dendritic in

combined areas (fig. 2)

0023010111 3,R complex trailing patterns on red & blue

wallpaper (fig. 3)

0221213321 R blue and green patterns over red blocks.

3 same pattern, but ordered

0003232012 R,33

0230210313 11

0311302133 11, R

3300011033 R

0103002233 1,R,33

1110330111 R

0123310203 1,3,11

3333020331 R

multicolour spreaders, green/black vertical

stripes, eyolves chaos

blue shapes on multicolour, gradually

expands for 600+ generations

irregular red areas, blue overlay, vertical

structures

metallic crystal structure in red & blue.

blue/black patterns, red top; blue/green stripes

(a palindrome!) red/blue dendritic structure

over red/black blinds

blue triangles, red/green dendritic structure

blue/green diagonal structures on red/black

Class 4 (Complex Structures)

0103220121 R,l 1 vertical, angled structures (seeds 22,233023,

10202,2220123; fig. 4)

2221213321 3,R blue/green vertical & angled structures on red

0201103212 3,33,R red/green long-cycle structures on black

2001313120 R, 11, black diagonals, red diamonds, blue striped

22,3 background (cover)

0300123302 l,33,101,232,3132,2331,etc

wide variety of vertical and diagonal

structures, pendants

0230332101 2,22 multicolour pattern, black triangles

0210133310 R,ll,2 vertical & angled structures organize into grid

0311301203 1,11,22 blue/green structures and pendants on red

0230323130 R, 11,232,23303,313,etc

wintery structures, infill, pendants, etc.

0020130211 22,2,23, red, green triangular; overlays; vertical

322,131 and angled structures. ,

Transactor 21 May 1988: Volume 8, Issue 6

0230011133 1,11; amorphous multicolour structure that may

23 at 100 survive or not (from Wolfram)

0120133230 1; spreading red 'roof, spawning many

various blue/green structures (from Perry)

Two-regime images

0100132332

0110133232

1031102332

0001231232

0321200311

0233100120

1001330213

1300122313

3303022133

3100323120

0120123123

2033210201

0132000120

0033220110

0103310132

0122022331

R

R,
232,etc

22,33

R

R,22,3

R,ll,22

2222

R,2

R,33

22,1

l,202,R

1,33

2,3,1,

2003

233,22,

222

11,22,3

R,l,33

coexistence: red triangular; green tri's on

blue; verticals (fig. 5)

non-coexistence of same regimes (fig. 6);

many variations

red stripes, blue/green triangles, red/black

dendritic, long cycles (fig. 7)

multicolour hash; black; long-cycle structures

green triangular, infusion of red/blue dendritic

blue triangular, infusion of red/green dendritic

red triangles, blue dendritic infusion with

green

blue, green patches on red stripes, vertical

structures

blue & green blocks, strong diagonals

many black & blue textures; seed 1 adds

green dendritic

startup screen; red/green triangular,

blue/black stripes

green jumble; red/blue stripes; some vertical

structures

blue, green triangular patterns, joint

occupancy of space

fight for territory between blue triangular,.

green/red herringbone

joint occupancy of red/blue wallpaper, black

dendritic structure

green/black triangles; blue/green regime

struggles, but loses

Devolution to primordial chaos

0130312131 1 strong red triangle pattern, devolves to chaos

11 retains structure, cycle length of 168

(on 64: seed 20 at positionn 19)

0113233102 11,3,33 regular stripes and patterns, decay to random

0223320100 2,3 blue or green triangular; green decays

0331210300 33,3 blue triangular, loses to red/green invasion

Suitable for framing

0110310301 22 stingray: red triangular, blue bars and edging

(fig, 8).

0132320233 R,ll,33 ice palace: blue blocks, green crystals

1233233320 11 ,R mach waves: green vertical, red/blue stripes,

blue waves (fig. 9).

0332221003 33,1,22 green/red window blinds, blue/black

dendritics; eventually stable

0020133020 11 caves: green/red grid above, blue caves and

triangular pattern below

More

0112002100 6201310313

3002110310 3103020001

3102033003 1200020231

2310131211 3011300332

3131120030

3132230102 (seed: 11,22)

0023320103 (seed: 11,33,R)

1132230002 0233000001

0021233023 3012022322

3201032322 0213131022

3320003011 3320010231

1302023302 (seed: 1,11,2,R)

0111212323 (seed: 1331)

3320012010 (seed: 33)

• Note: Seed values arefor the 128. Here are equivalentsfor the 64:

11:5 22:10 23:11 33:15 101:17 131:29

202:34 222:42 232:46 233:47 313:55 322:58

1331: 125 2003:131 2222: 170 2331:189 3132: 222

Listing 1: "Automata 128"

DM 10 rem automata 128 by ian adam

EN 20gosub650

CJ 30:

GM 40 do:rem main control loop

GK 50:

CN 60 print tab(6) r$"[up]":input"code";r$

KG 70a=5887:fori=ltolO

DH 80 poke a+i,val(mid$(r$,i,l)) and 3

OF 90 next

IN 100:

LM 110 print "seed value 1 [left][left][left]";:inputb$

MP 120 ifval(left$(b$,l))=O then 250

ND 130 a=160-len(b$)

DK 140 print "position (0 -"a") 79[left][left][left][left]";-.input a

MM 150 graphic 3,1

CP 160 locate a,0:for i=l to len(b$)

NB 170 draw val(mid$(b$,i,l)) and 3,+0,0

El 180 locate+l,0:next

CD 190:

HK 200 trap 230:sys 5900:rem plot routine

GE 210:

AF 220sl=200

CC 230 for i=l to sl:if peek(208)=0 then next:print"s new seed r

random seed m more":print"c new code a automatic p print q

quit";:graphic 4,,23

II 240 getkey b$:print

GJ 250 on instr("srmcapq",b$) goto 280,300,340,360,380,490,610

IK 260 graphic 3:sl=700:goto 230

CI 270:

JO 280 graphic 4,,23:goto 110:rem new seed

GJ 290:

HF 300 r=255:graphic3,l:rem random seed

JI 310fori=8192to8504step8

LF 320 poke i,rnd(i)*r:next:goto 200

OL 330:

ND 340 graphic 3:sshape s$,0,199,159,199:gshape s$,0,0:

goto 200:rem copy last line

CN 350:

JG 360 graphic 4,,23:loop:rem next code

GO 370:

MK 380 graphic 3:r=255:do:r$="":rem automatic codes

GM 390 for i=5888 to 5897:a=rnd(i)*4

CJ 400 poke i,a:r$=r$+chr$(48+a):next

OA 410:

HP 420 for i=8192 to 8504 step 8

JC 430 poke i,rnd(i)*r:next:rem seed

MC 440:

BB 450 sys 5900

AE 460:

CJ 470 loop until peek(208):poke 208,0:goto 230

EF 480:

PE 490 graphic 3:open 4,4,5:

rem secondary address = 5 for graphics, no line feed

AC 500 a$=chr$(10):cmd 4:printa$:sys 6060:printa$

LG 510 printchr$(27)chr$(64):rem reset

KG 520printachr(14)"code:"ra

BI 530 print#4:close 4:goto 230:screen dump

MM 600:

GB 610 graphic 0:end

AO 620:

PK 630 :rem start-up sequence

EP 640:

OM 650 bank 15:color 0,l:color l,ll:color 2,14:color 3,15:color 4,1

IA 660:

EC 670 print" [clr][white] cellular automata for the 128

PG 680 print" [down]this program creates complex

GL 690 print"geometric artforms on the screen.

Transactor 22 May 1988: Volume 8, Issue 6

OH 700 print"the image is generated line-by-line,

01 710 print"according to these rules:

FD 720 print"[down] [yel]- a pixel has a colour value of 0,1,2,3

PH 730 print"- the values of 3 adjoining pixels

FF 740 print" in a line are added.

DG 750 print"- the sum (0 to 9) is used to select a

KG 760 print" new colour from the code you specify.

ME 770 print"- this new colour is plotted as the

MB 780 print" pixel in the line below.

LG 790 print"- the code has 10 digits, corresponding

AC 800 print" to the 10 values of the sum (0 - 9).

PD 810 print"[down][wht]automata were introduced in scientific

JM 820 print"american in 1971 & 1984, and a version

PO 830 print"appeared in byte magazine in 1986. this

GO 840 print"enhanced version for the 128 is by

LH 850 print"ian adam & transactor magazine, 1987.

DE 860 if peek(5900)-160 then gosub 1100

DO 870 print"[down][yel] press a key!":getkey a$

EO 880:

MA 890 print"[clr][down] instructions:

DC 900 print"[down][wht]you enter a 10-digit rule, using only

NN 910 print"the digits 0,1, 2, and 3.

EB 920 print"[down]next, enter a seed value, which

DH 930 print"is plotted as the top line.

AN 940 print"if you enter r, a random seed is used.

HP 950 print"if you enter seed numbers, you must

GA 960 print"also supply their position on the line.

DA 970 print"[down][yel]after plotting, press:

NO 980 print"- s to enter a new seed

NM 990 print"-r for a random seed

CB 1000 print"- m more of the same plot

LE 1010 print"- c enter new code

OL 1020 print"-a automatic code generation

DM 1030 print"-p send pattern to printer

BC 1040 print"- q to quit.

JB 1050 print"[down][wht]the current code will be printed like

HC 1060 print"this. make any changes, & press return:[down]

FA 1070r$="0120123123

EF 1080 return

GL 1090:

EM 1100 for i=5900 to 6132:read a:poke i,a:next

CH 1110 return

EN 1120:

OA 1130 data 160, 32,132,251,132,253,160, 1

PK 1140 data 132, 252,136,132,250,162,199,134

EA 1150 data 166,162, 39,134,167,132,169,177

OL 1160 data 250,133,168,165,167, 240, 4,160

KM 1170 data 8,177,250, 10, 38,168, 42, 38

DN 1180 data 168, 42, 41, 3,133,170,160, 4

KA 1190 data 169, 0, 38,168, 42, 38,168, 42

IN 1200 data 72,101,170,101,169,170,165,170

CE 1210 data 133,169,104,133,170,189, 0, 23

HN 1220 data 6,254, 6,254, 5,254,133,254

NP 1230 data 136,208,221,145,252, 24,198,167

CH 1240 data 16, 40,162, 2,181,250, 41, 7

KP 1250 data 201, 7,240, 15, 56,181,250,233

AM 1260 data 55,149, 250,181, 251,233, 1,149

PP 1270 data 251,208, 6,246,250,208, 2,246

OB 1280 data 251,202, 202, 240,223,198,166,208

DB 1290 data 144, 96,162, 2,181,250,105, 8

NH 1300 data 149,250,144, 3,246,251, 24,202

IC 1310 data 202,240,241, 76, 35, 23, 27, 65

KL 1320 data 8, 13, 10, 27, 75, 64, 1, 0

KK 1330 data 160, 32,132,251,160, 0,132,250

NM 1340 data 160, 25,132,252,160, 0,185,162

PB 1350 data 23, 32,210,255,200,192, 9,208

JP 1360 data 245,160, 40,132,253,160, 7,177

FG 1370 data 250,162, 7, 42,118,166,202, 16

HM 1380 data 250,136, 16,243,169, 7,170, 56

KF 1390 data 101,250,133,250,144, 2,230,251

EM 1400 data 181,166, 32,210,255,202, 16,248

BO 1410 data 198,253, 208, 217,198, 252,208,196

FB 1420 data 96

Listing 2: "Automata 64"

KM 10 gosub 650

CC 20 automata 64 by ian adam

CJ 30:

LH 40 : main loop

GK 50:

CN 60 print tab(6)r$"[up]":input"code";r$

KG 70a=5887:fori=ltolO

DH 80pokea+i,val(mid$(r$,i,l))and3

OF 90 next

IN 100:

LM 110 print "seed value 1 [left][left][left]";:inputb$

CG 120 ifval(b$)=0 then 250

LN 130 print "position (1-40) 20[left][left][left][left]";:input a

PH 140 gosub 540:fori=8192 to 8504 step 8:poke i,0:next

GL 150 poke 8184+8*a,val(b$) and 255

EB 160:

JP 170 sys 5900 . .

IC 180:

PL 190 for i=0 to 999:if peek(k) then 240

MN 200 next:gosub 590:print"m more of this p print this

DF 210 print"s new seed r random seed

GN 220 print"c new code a automatic codes

NG 230 print'V view plot qquit";

PF 240 wait k,7:getb$

CL 250 for i=l to 7:if mid$("srmcapq",i,l) o b$ then next

LI 260 on i goto 290,310,330,370,390,490,610

DD 270 gosub 540:goto 190

MI 280:

FE 290 gosub 590:gotoll0:new seed

AK 300:

CK 310 r=255:def fhs(x)=rnd(x)*r:goto 340:random seed

EL 320:

FM 330 r=7687:def fns(x)=peek(r+x):rem copy last line

HK 340fori=8192to8504step8

HE 350 poke i,fhs(i):next:gosub 540:goto 170

MN 360:

CG 370 gosub 590:goto 60:new code

AP 380:

MO 390 gosub 540:r=255:forj=0 to l:r$="":rem automatic

CO 400 for 1=5888 to 5897:a=rnd(l)*4

FK 410 poke l,a:r$=r$+chr$(48+a):next

IB 420:

KA 430 for 1=8192 to 8504 step 8

DB 440 poke l,md(l)*r:next

GD 450:

LB 460 sys 5900

BC 470j=peek(k):next:pokek,0:gotol90

EF 480:

GK 490 gosub 540:a$=chr$(10):open 4,4,5

:rem 2nd addrs graflx, no If

EF 500 cmd 4:sys 6060

OD 510printaachr$(14)"code: "r$aa

JM 520 print#4:close 4:goto 190

GI 530:

LN 540 if peek(v)=59.then return

MC 550 poke v,59:poke v+5,216:poke v+7,24:rem hires

PP 560 print"[home][It. blue]";:for i=l to lll:print

"[rvs] ";:next

DK 570 poke 2023,173:poke 56295,14:retum:colors

IL 580:

IN 590 poke v,27:poke v+5,200:poke v+7,21 :print:return:text

MM 600:

Transactor 23 May 1988: Volume 8, Issue 6

LL 610 sys 65409:end

AO 620:

FL 630: start-up

EP 640:

FB 650 poke53280,0:poke53281,0:poke46,64:clr:k=198:v=53265

IA 660:

KM 670print"[clr][white] cellular automata for the 64

PG 680 print" [down]this program creates complex

GL 690 print"geometric artforms on the screen.

KP 700 print"the image is generated line-by-line

OI 710 print"according to these rules:

HF 720 print"[down][yellow]- a pixel has a colour value 0,1,2,3

LC 730 print"- add the values of 3 adjoining pixels

KN 740 print" in a line.

LF 750 print"- the sum (0-9) is used to select a

KG 760 print" new colour from the code you specify.

ME 770 print"- this new colour is plotted as the

OI 780 print" pixel directly below.

LG 790 print"- the code has 10 digits, corresponding

AC 800 print" to the 10 values of the sum (0-9).

PD 810 print"[down][white]automata were introduced in scientific

JM 820 prinf'american in 1971 & 1984, and a version

PO 830 print"appeared in byte magazine in 1986. this

MF 840 print"enhanced version for the 64 is by

LH 850 print"ian adam & transactor magazine, 1987.

DE 860 ifpeek(5900)-160 then gosub 1100

PE 870 print"[yellow]press return! ":input a$

EO 880:

MA 890 print" [clr] [down] instructions:

AP 900 print"[down][white]you enter a 10-digit rule, using

NN 910 prinf'the digits 0,1,2, and 3.

BI 920 print"[down]next, enter a seed value which

HH 930 print"is plotted on the top line.

AN 940 print"if you enter r, a random seed is used.

El 950 print"if you enter a seed #, you must

NH 960 print"also supply its position on the line.

DA 970 print"[down][yellowjafter plotting, press:
IO 980 print"- s enter a new seed

NM 990 print"- r for a random seed

CB 1000 print"-m more of the same plot

LE 1010 print"- c enter new code

OL 1020 print"- a automatic code generation

DM 1030 print"-p send pattern to printer

GM 1040 print"- q quit

BE 1050 print"[down] [white]the current code will be shown like

JO 1060 print"this. make any changes & press return: [down]

FA 1070 r$="0120123123

MK 1080 goto 60

GL 1090:

EM 1100 for i=5900 to 6132:read a:poke i,a:next

CH 1110 return

EN 1120:

OA 1130 data 160, 32,132,251,132,253,160, 1

PK 1140 data 132,252, 136,132,250,162,199, 134

EA 1150 data 166,162, 39,134,167,132,169,177

OL 1160 data 250,133,168,165,167,240, 4,160

KM 1170 data 8,177,250, 10, 38,168, 42, 38

DN 1180 data 168, 42, 41, 3,133,170,160, 4

KA 1190 data 169, 0, 38,168, 42, 38,168, 42

IN 1200 data 72,101,170,101,169,170,165,170

CE 1210 data 133,169,104,133,170,189, 0, 23

HN 1220 data 6,254, 6,254, 5,254,133,254

NP 1230 data 136,208, 221,145,252, 24,198,167

CH 1240 data 16, 40,162, 2,181,250, 41, 7

KP 1250 data 201, 7, 240, 15, 56,181,250,233

AM 1260 data 55,149, 250,181, 251,233, 1,149

PP 1270 data 251,208, 6,246,250,208, 2,246

OB 1280 data 251,202,202,240, 223,198,166,208

DB 1290 data 144, 96,162, 2,181,250,105, 8

NH 1300 data 149,

IC 1310 data 202,

KL 1320 data 8,

KK 1330 data 160,

NM 1340 data 160,

PB 1350 data 23,

JP 1360 data 245,

FG 1370 data 250,

HM 1380 data 250,

KF 1390 data 101,

EM 1400 data 181,

BO 1410 data 198,

FB 1420 data 96

250,144, 3,

240,241, 76,

13, 10, 27,

32,132,251,

. 25,132, 252,

32,210, 255,

160, 40,132,

162, 7, 42,

136, 16,243,

250,133,250,

166, 32,210,

253,208,217,

246,251,

35, 23,

75, 64,

160, 0,

160, 0,

200,192,

253,160,

118,166,

169, 7,

144, 2,

255,202,

198,252,

24,202

27, 65

1, 0
132, 250

185,162

9,208

7,177

202, 16

170, 56

230,251

16, 248

208,196

Listing 3: "Lines for 1525"

GA 1 rem lines for 1525

GL 490 gosub 540:a$=chr$(10):open 4,4:rem cbm 1525

GM 1100 for i=5900to6134:read a:poke i,a:next

CF 1310 data 202,240,241, 76, 35, 23, 13, 8

GP 1320 data 0, 0, 0, 0, 0, 0, 0, 0

IB 1350 data 23, 32,210,255,200,192, 2,208

MF 1370 data 250,162, 7, 42, 54,166,202, 16

KP 1400 data 181,166, 9,128, 32,210,255,202

CB 1410 data 16,246,198,253,208,215,198,252

OP 1420 data 208,194, 96

Listing 4: "automata.src"

KB 100

MJ 110

PH 120

PL 130

KL 140

ME 150

GB 160

AC 170

KC 180

PN 190

CN 200

IE 210

HP 220

PO 230

GG 240

AA 250

GL 260

El 270

LD 280

IJ 290

CK 300

FB 310

CM 320

PJ 330

NJ 340

FH 350

ON 360

JC 370

GM 380

FB 390

OJ 400

El 410

IK 420

KF 430

JF 440

MO 450

MA 460

IJ 470

GF 480

MN 490

** **

** cellular **

** automata **
** **

geometric computer

artforms

for the

commodore 64 & 128

by ian adam

Vancouver be

march 1987

the screen image is plotted 1

line at a time, each pixel

depends on the sum of the 3

pixels above, using a preset

code supplied by the user.

zp =$a6

rows =$a6

column =$a7

bits =$a8

aval =$a9

bval =$aa

adread =$fa

adwrit =$fc

output =$fe

screen =$2000

bsout =$ffd2

*=$1700

;8 bytes temporary

;read address

;write address

;same for both

Transactor 24 May 1988: Volume 8, Issue 6

KG 500

CG 510

IA 520

II 530

GO 540

EF 550

CB 560

IG 570

OA 580

EM 590

BI 600

IN 610

AE 620

MO 630

NN 640

HM 650

DG 660

FC 670

KI 680

NG 690

BM 700

MD 710 ;

EK 720

DK 730

KF 740 ;

IA 750 ;

OG 760 ;

GB 770 s

AB 780

MI 790 ;

JC 800 ;

OE 810 ;

LP 820 ;

EL 830 ;

OF 840

IM 850 ;

JN 860 ;

MN 870 ;

codes *=*+10 ;these are the rules

; for plotting pixels (10 bytes)

** **

** start plotting here **
** **

*=$170c ;friendly address (5900)

set up pointers

ldy #>screen ;set addresses

sty adread+1

sty adwrit+1

ldy #$01

sty adwrit ;write to $2001

dey

sty adread ;read$2000

ldx #$c7

stx rows ;199rowstodo

setup for each row

>tartr ldx #$27 ;40 bytes per line

stx column

aval is pixel above & left

bval represents pixel above

cval is pixel above & right

sty aval ;aval = 0 to start row

prepare one byte at a time

ME 880 startc Ida (adread),y ;get byte above

MD 890

KP 900 ;

IP 910

LH 920

CP 930 ;

sta bits

Ida column

beq getlst

note: we need the first pixel

ND 940 ;from the next byte to the right,

BA 950 ;to be cval for the 4th pixel of

BE 960 ;this byte, on the last screen

IL 970 ;blockof a row, counter'column'

GI 980 ;will be zero, in this case,

EF 990 ;a 0 will be put into variable

PE 1000 ;cval for the last pixel in the

FL 1010 ;row. if not the last block, then

PO 1020 ;get a pixel from the next block:

MH 1030 ;

LG 1040

AK 1050

KJ 1060 ;

ldy #8

Ida (adread),y

PI 1070 getlst asl a

FA 1080

EE 1090

JC 1100

DN 1110

DA 1120

GP 1130

KO 1140 ;

CA 1150 ;

OP 1160 ;

GF 1170

rol bits ;extra pixel into bits

rol a

rol bits

rol a ;and 1st pixel rolls

and #3 ;into a, then

sta bval ;...into bval

pixel loop for one byte

ldy #4 ;4 pixels

AH 1180 pxloop Ida #0

Transactor

BB

CL

HJ

GM

IC

OE

CO

PF

BM

GH

BC

FI

JL

KJ

IK

NF

KC

NC

HA

MD

EO

U

DB

CA

DL

HL

AC

OI

ED

PO

IE

CF

BD

MI

AH

MA

El

PH

U

PF

LM

DO

JL

ID

EN

GF

AE

EN

CJ

PI

HJ

BO

DE

OC

LF

PB

FP

GF

FM

LK

EK

OH

NH

MJ

CB

GK

OB

KL

KK

25

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590 i

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730 i

1740

1750

1760 ;

1770 i

1780

1790

1800 ;

1810

1820

1830

1840 ;

1850 ,

1860 ,

1870 ;

rol bits

rol a

rol bits

rol a

pha

adc bval

adc aval

tax

»

Ida bval

sta aval

pla

sta bval

»

Ida codes,x

asl output

asl output

ora output

sta output

>

dey

bne pxloop

; finished pixel loop for

;get one pixel

;this pixel is cval

;formsumof3pixels

;(carry is clear)

;shift records over

;get cval back

;get new colour value

;make room in byte, &

;put pixel in stream

;move to next pixel

; byte, so output the result:

sta (adwrit),y

; update addresses:

;

clc

dec column

bpl oldrow

here because end of row

;where on screen?

, so

update pointers-to start next row

ldx #2

lewrwl Ida adread,x

and #7

cmp#7

beq newlin

sec

Ida adread,x

sbc #$37

sta adread,x

Ida adread+1,x

sbc #1

sta adread+l,x

bne newrw2

newlin inc adread,x

bne newrw2

inc adread+1,x

iewrw2 dex

dex

beq newrwl

dec rows

bne startr

its

;do adwrit first

;check if bottom of block

;next pixel row, subtract 311

;if bottom of

;block, just add 1

;now do adread

;ready for next row

here because in middle of row

so move to next byte

May 1988: Volume 8, Issue 6

OM

PB

CO

MO

LN

GJ

FK

NL

OB

IC

MO

NH

JG

MI

KF

EG

KL

AD

DI

EE

CO

AK

FO

HG

OL

JO

CN

KM

HH

CK

KD

EA

OA

FC

MF

MC

GD

BP

KE

PF

OF

EB

JD

JI

EH

EM

GJ

EK

HD

IL

CE

AH

CL

KE

DO

NN

OP

BC

AK

MB

LA

OK

KD

DN

OE

KD

PG

MG

FF

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

Transactor

»

oldrow ldx #2 ;start with adwrit

»

oldrw2 Ida adread,x ;mid column so

adc #8 ;move over one byte

sta adread,x

bcc oldrw3

inc adread+1,x

clc

»

oldrw3 dex

dex

beq oldrw2 ;now do adread

jmp startc ;start next column

»

»

. *************************

. ** **
»

; ** screen dump here **
. ** **

.*************************

»

rowout = adwrit

colout = adwrit+1

;

messag .byt 27,65,8,13,10,27,75,64,1

;

; 27,65,8 sets graphics linefeed

; 13,10 is carriage return & If

; 27,75,64,1 for 320 graphics bytes

; change these for other printers

»

; printer is already accessed as

; CMD file by BASIC program

•

;

*= $17ac ;6060 is a friendly start

»

; set up pointer

j

ldy #>screen ;set screen address

sty adread+1

ldy #$00

sty adread

ldy #$19

sty rowout ;25 rows to do

;

; set up for row of 320 bytes

»

oprow ldy #0

linmsg Ida messag,y

jsr bsout

iny

cpy #9

bne linmsg .

j

ldy #$28 ;output 40 columns

sty colout

»

block ldy #7 ;one block of 8 bytes

bytelp Ida (adread),y

; reorient bytes 90 degrees

; screen bytes are horizontal

; printer bytes are vertical

ldx #7

EO 2570

DH 2580

EA 2590

OF 2600

IK 2610

DP 2620

IL 2630

GM 2640

FB 2650

IP 2660

EO 2670

JI 2680

DP 2690

CA 2700

PI 2710

LG 2720

LC 2730

MG 2740

CM 2750

PB 2760

. BJ 2770

CF 2780

CO 2790

GG 2800

FL 2810

GF 2820

FM 2830

KL 2840

U 2850

PO 2860

MK 2870

MF 2880

KO 2890

KM 2900

NJ 2910

CG 2920

IO 2930

IG 2940

MP 2950

AD 2960

FA 2970

KB 2980

KI 2990

H
■a

Bi

■

BE
tSSSEKa

rotate rol a ;one bit into each

ror zp,x ; of 8 bytes

;change ror to rol if your

;printer does graphics inverted

j

dex

bpl rotate

j

dey

bpl bytelp

»

; move pointer 8 bytes

; for next screen block

j

Ida #7

tax

sec

adc adread

sta adread

bcc oploop

inc adread+1

output 8 bytes

oploop Ida zp,x

jsr bsout

dex

bpl oploop

, update counters

dec colout ;next column

bne block

dec rowout ;nextrow

bne oprow

its

; BASIC takes care of unlistening

; and closing printer file.

.end

irffi'ii'iiiiiiii'iiiiiiiii'iiiiiiiiiiiiii iiHi^^g i

■jBjSSBifiijBlBiB^

niNiiiiiiiiiimNmiin

iiilil^SiSiiMiHIil^Bi

Figure 9 ("Mach Waves99): Code 1233233320, seed 11

The background consists of red and blue lines. The repeating

green central pattern creates a series of blue interference

waves that create a strong image. The pattern continues

indefinitely.

26 May 1988: Volume 8, Issue 6

CP/M Plus + CoNIX = CP/M Plus+

A CP/M enhancement with a Unixflavour

by Adam Herst

Copyright (c) 1987Adam Herst

The 'Plus' in CP/M Plus holds the promise that this version of

CP/M is more than just a retread of the time-worn operating

system. It suggests the presence of new ideas and enhanced

capabilities. But the reality is a mere shadow of the ideal.

CoNIX, an operating system enhancement for computers run

ning CP/M-80, makes good on the promise of CP/M Plus.

The combination of the C-128, CP/M Plus and CoNIX proves

a powerful combination. The CoNIX package implements a

programming environment around CP/M that in many ways

surpasses that of CP/M's supplanter, MS-DOS. Its name sug

gest comparisons with the popular minicomputer operating

system, Unix. After working with CoNIX these last few

months, I can say that the comparison is apt.

CoNIX is not a CP/M replacement. Instead, it adds functions

and capabilities to the operating system, maintaining compati

bility for existing CP/M programs. No aspect of CP/M opera

tion is left unenhanced. New system calls, more command

line utilities, a system level Command Language and a library

of utilities written in the Command Language are just some

of CoNIX's features.

CoNIX was developed and is distributed by Computer Helper

Industries Inc. CHI distributes the CoNIX environment in

three packages: the CoNIX Operating System, the CoNIX

Programming System and the CoNIX Library of XCC Utili

ties (XCC is the CoNIX Command Language 'interpreter').

However, the three packages are intimately intertwined in

their operation and the divisions between them appear to be

mostly in name. Nonetheless, for the purposes of this article,

the distinction between the packages will be maintained.

CoNIX: The Operating System

The heart of CoNIX is the CoNIX Operating System. Neither

of the other packages qan be run without it. CoNIX is called

an operating system because "...it is in total control of all sys

tem hardware and software, and all programs must pass

through it when they are running."

CoNIX replaces the CP/M Console Command Processor

(CCP) with the C0NIX.COM program. It is through this new

command processor that CoNIX is able to provide scores of

internal utilities, a customizable user environment, additional

command line functionality, an assortment of variables, and

enhanced file management.

The CCP provided with CP/M Plus comes with a small num

ber of internal or resident commands. The CoNIX command

processor has over 20 internal commands, including all the

functions provided in the CCP of CP/M Plus. Some of these

are:

BDEC and DECB

CHR

ECHO

EXAM

FELL

FIND

FLUSH

INDEX

MOVE

OPT

UDIR

WRITE

ZAP

convert binary values to decimal

values and vice versa

convert ASCII values to hex

print the arguments to screen

examine memory

fill memory

find file in the search path

empty the print spooler

find a string in memory

copy memory

set environment option

list files through user areas

write memory to a file

modify memory

You may have noticed a few utilities that perform functions

that have no place in a normal CP/M system. Flushing the

print spooler? Searching the file path? Setting the environ

ment? All of these are possible with CoNIX.

The most powerful of the utility commands is OPT. It allows

the customization of most of the capabilities of CoNIX. (The

number of definable fetures is too great to cover exhaustively

Transactor 27 May 1988: Volume 8, Issue 6

- only those I use most will be mentioned.) A print spooler

can be enabled on any disk up to the maximum size of the

disk. Printer output is sent to the printer during keyboard

polling. The spooler can be flushed and overridden. Other

customizable options include the specification of sizes and lo

cations of internal stacks, buffers and pointers, the location of

temporary files and data files used by the CoNIX system, the

definition and enabling of path searching, and the default set

ting for memory management. These last two items deserve

further elaboration.

CoNIX improves on the file manipulation capabilities of

CP/M Plus in several ways. User areas are more accessible - a

program in any user area can now be executed from any other

user area. File location is designated with the syntax:

D:U/

where D is the drive letter and U is the user area number. The

commands and utilities provided with CoNIX accept this syn

tax for their arguments, allowing access to data files in other

user areas as well as command files.

When a commaqd is issued under CP/M Plus, both the cur

rent user area and user area 0 of the default drive, the only lo

cations from which files can be executed, are searched.

CoNIX extends the search path to include any drive or user

area. There is no limit to the extent of the search. To allow

non-CoNIX programs to find their overlay, help and other

run-time files, a list of file extensions in addition to .COM

files can be added to the search. To allow programs to look

for their data files in other user areas in the search path auto

matic file searching can be invoked. (This requires the data

file name to be prepended with a colon, thereby reducing the

effective file name length to seven characters.) Finally, the

CoNIX environment is equipped with an archive manager,

ARM.COM. This program collects many files into a man

ageable single file, reducing disk storage overhead, a major

problem with CP/M. Commands can be executed directly

from these archives, which can be added to the search path.

Finally, one environment option sets the default memory

management level. This option defines the 'level' of the

CoNIX program that remains resident in memory. As you

may have guessed from the functionality provided by CoNIX,

it is not a small program - 28K to be exact. If all of the

CoNIX program were to remain in memory at all times, it

would leave little room for the execution of other programs.

To avoid this restrictive condition, the CoNIX program has

been divided into a number of functional levels. The full 28K

is used when all of the levels are resident. A minimal 1/2K is

used when the lowest level is resident. CoNIX functionality

decreases with the number of levels resident in memory. The

default memory management level can be set with the OPT

command and individual commands can set the memory

management level for the duration of their execution.

As the primary interface to CoNIX, and by extension to

CP/M, the CoNIX command processor provides great free

dom and variety in the forms of allowable input. A particular

ly useful example is the use of the backslash (\) as a mask or

'non-interpret' character. This allows all ASCII characters to

be entered at the command line, even those with assigned

special functions. Other examples include a variety of charac

ter case mappings and data type conversions.

CoNIX provides a variety of variables, all accessible at the

command line. These include: disk-based variables, hexadeci

mal variables and memory variables.

The 52 disk-based variables are referenced as $a to $z and $A

to $Z. They are set with the internal SET command and their

values stored in a disk file. When one of these variables is

used, the disk file is read and the value substituted. These

variables each can hold strings of up to 255 characters in

length, including references to other variables.

The 16 hexadecimal variables are referenced as $$0 to $$F.

They are used primarily to pass values to and from resident

commands. They are pivotal in the execution of CoNIX Com

mand Language programs.

The most interesting (and potentially most useful) variables

provided by CoNIX, are the memory variables. Memory

variables are referenced by a $@ sign followed by a 16-bit

hexadecimal address. The contents of memory starting at that

address, and usually terminated by an FF (this, as with so

many other features of CoNIX, is user definable), is then sub

stituted. If no address is given, the contents of CoNIX's inter

nal, 128 byte memory buffer is used. As may have been

guessed, the number and size of memory variables are system

and application dependent.

Through its command processor CoNIX also provides a very

rich implementation of I/O redirection. In a recent article I

talked about the PUT and GET commands of CP/M Plus and

complained that they were non-standard and 'untrue' imple

mentations of redirection. CoNIX provides true I/O redirec

tion for both devices and files. Input and output can be redi

rected, respectively from and to the 'raw' console keyboard,

the 'null' device, the console keyboard, a user defined device,

a user defined memory address and a memory 'file', as well

as the expected disk file.

In addition, printer output can be redirected to other devices,

memory files or disk files. A variety of command-line redirec

tion options are available to control and process the data

stream. Finally, CoNIX implements command PIPES (the di

rect use of the output of one command as the input to a sec

ond command), the logical extension of redirection. It is one

of the few microcomputer operating systems to do so.

CoNIX: The Programming Language

Earlier I said that the divisions between the three packages in

the CoNIX environment appear to be abitrary. This is most

Transactor 28 May 1988: Volume 8, Issue 6

pronounced with the division between the CoNIX Operating

System and the CoNIX Command Language. The CoNIX

Command Language is little more than a programming manu

al and the 'interpreter' to turn CoNIX Command Language

programs into .COM files, executable only under CoNIX. All

of the commands used in the programs are available under, the

CoNIX Operating System. However, without the manual to

tell you what they are, and the XCC program to turn them in

to runnable form, these commands are useless. The value of

documentation to today's complex programs should not be

underestimated.

The CoNIX Programming Manual details the use of the XCC

interpreter, the flow of control commands, the many program

ming variables (yes, Virginia, there are more variables), the

operating system command line options (mentioned only in

passing in the Operating System Instruction Manual), the

general programming commands, the programming utilities

and the added CoNIX system calls.

The CoNIX Command Language provides the facilities of

any structured programming language. Unlike most program

ming languages, which are designed to operate in isolation,

the CoNIX Command Language is designed to interact with

the operating system and the programs and commands which

run under it. Used simply, the CoNIX Command Language

can automate repetitive tasks, similarly to the CP/M Plus

SUBMIT command that it replaces. Used to its fullest, the

CoNIX Command Language can join disparate and distinct

commands and programs into new and unique software tools.

The CoNIX Command Language contains the flow of control

constructs expected in modern programming languages. Sim

ple conditional evaluations (AND and OR) are possible. More

complex conditional evaluations are possible with IF-THEN-

ELSE and SWITCH constructs. Branching is possible using

any of GOTO, GOSUB or WHILE constructs. These com

mands are accessible only through CoNIX Command Lan

guage programs. All appropriate constructs can be nested (it's

hard to nest a GOTO) to a default value of 255 levels. As with

most other CoNIX parameters, these values can be individu

ally tailored to suit your needs within the restrictions of your

system's resources. Each of the constructs has an associated

command to break out of any specified number of nested lev

els.

Construct tests are based on the exit status of commands and

programs. Only CoNIX commands and user-written programs

designed to run under CoNIX will set the exit status. Only

these programs can be used directly in construct tests. How

ever, other methods, outlined in the documentation, exist for

the indirect use of standard CP/M commands and programs.

An assortment of programming variables is available for use

with CoNIX Command Language programs. Command Line

Argument Variables, referenced as $0 to $255, allow the pass

ing of parameters to Command Language programs. Memory

Address Variables, referenced as $&<address>, where <ad-

dress> is a hexadecimal memory address, allow the manipula

tion of two-byte data anywhere in memory. Finally, Environ

ment Variables allow for the testing and monitoring of many

system functions. These include: the BDOS error status, the

default disk drive, the current user area, the end of file status,

the current nest level, the column position of the cursor on the

screen, the column position of of the last character output on

non-screen devices and, of course, the exit status.

Included in the Command Language manual is a chapter on

the more than twenty programming commands. The introduc

tion to the chapter states that these commands are accessible

on the operating system command line as well as in Com

mand Language programs. If you had bought only the operat

ing system, you would never know they were there.

The programming commands generally fall into two cate

gories by function: system interface and string manipulation.

Examples of the system interface commands are:

BDOS

FNAME

PUSH, POP

execute a system call or accessible

user routine with the loading of

registers

process a filename into its

components

push and pop strings onto and off a

user-defined stack in memory

The string processing commands are greater in number and

include:

GETC, GETL

ISC, ISN, ISX

LEN

SCMP

SUBSTR

STRIP

SUM, SUB

TEST

read a character/line from the

standard input

check if a string is a character,

numeric or hexadecimal string,

respectively

print a string length

compare strings

return a substring

strip leading characters from a string

add and subtract two numbers

test two numbers for equality

Additional programming utilities, omitted from CoNIX prop

er to minimize program size, are distributed with the CoNIX

Command Language. Only two will be mentioned here. Of

most general use is the utility program EXPR, an expression

analyzer. The CoNIX command lnaguage, oriented towards

string processing, performs only the most rudimentary mathe

matical operations. EXPR can be used to supplement these re

sources when the need arises.

The second utility is MKREL - make a relocatable program.

Relocatable programs are one part of another great idea from

the developers of CoNIX. Using MKREL, and following a

simple prescribed methodology, user programs can be written

that load into and execute from any point in memory. Since

programs normally load into memory at lOOh, loading a pro

gram causes the previous one to be displaced from memory.

Transactor 29 May 1988: Volume 8, Issue 6

To repeatedly execute a program requires that it be repeatedly

loaded from disk. Storing and executing multiple relocatable

programs promises a significant reduction in disk I/O and its

associated overhead.

Supporting the many features of CoNIX are 23 new system

calls. These system calls are documented in the CoNIX Com

mand Language Manual and are accessible to user written

programs. From the description of the CoNIX operating sys

tem and Command Language, you can imagine the breadth of

the new system calls. I won't list them. Obviously, programs

accessing these calls will not run under standard CP/M.

The CoNIX commands, constructs and utilities described

above, along with any user commands or programs, can be

brought together in Command Language programs. Com

mand Language programs are ASCII text files, prepared with

any text editor, typically with the file extension .xcc. The

XCC Command Language Interpreter must be used to turn

the source files into executable Command Code, with an ex

tension of xom. Error checking is performed during 'compi

lation' and a number of XCC debugging options are accessi

ble through the command line.

While XCC programs have a .com extension, they are not

like regular .com files. First, they will not run on a standard

CP/M system. Second, unlike standard .com files, XCC pro

grams do not load into memory to execute. Instead,

"...execution takes place on disk, with CoNIX reading 128-

byte records into an internal area of memory from which the

program is processed". This allows XCC programs to be as

large as available disk space, removing program size limits

imposed by system memory.

CoNIX: The XCC Library

The CoNIX programming environment is as sophisticated

and versatile as that found on many mini and mainframe com

puters. As such it presents a foreign and potentially frustrating

environment for new users. The CoNIX Library of XCC Util

ities, distributed as ready to run programs, include the XCC

source code as tutorial examples of XCC programming. The

printouts of these programs total over 100 pages and reveal

many of the tricks of XCC programming.

The functions of some of the XCC utilities are worth men

tioning in themselves. Using XCC programs, CoNIX imple

ments a system of hierarchical directories and provides a

complement of utilties to manipulate the file system. These

include utilities to make and remove directories, list directory

paths and file contents, move, copy and link files across di

rectories and a shell to process path names for other pro

grams. All this is performed through the manipulation of text

files by the XCC programs. There is an I/O overhead from the

extra disk access but the system performs surprisingly well.

Other utilities are an interactive file un-erase utility, a utility

to do simple formatting of a file and-send it to the printer, a

file display utility, and more. Space constraints prevent a full

description of these but suffice it'to say that many of them

singly are worth the price of the XCC Library package in to

tal.

CoNIX: The Documentation

Each of the three CoNIX packages, Operating System, Pro

gramming Language and XCC Library, comes with a plastic-

spiral bound manual - in total almost a rival in size to the

Digital Research Inc. CP/M Plus manual. Chapters are well

organized and, more importantly, well written. Concepts are

presented from first principles. Little, if no, prior knowledge

of operating systems or programming languages is assumed.

Examples abound. Each manual has a comprehensive index.

A truly professional attitude is evident throughout - a quality

all too often lacking from computer software documentation.

If all of the commands and options sound like too big a hand

ful to keep hold of, and the documentation too cumbersome

to use with your hands full, on-line help and a simple but ef

fective menu program to configure the CoNIX environment

are included in the package. These files require a lot of disk

space and are best stored in the C-128's RAM disk if you ex

pect to receive help in real time. This overhead makes the

help systems impractical most of the time, but in the first few

weeks of using CoNIX they will be the first files you load.

CoNIX: The Support

CoNIX and Computer Helper Industries are an oasis in the

CP/M software desert. Finding support for most CP/M soft

ware packages is an insurmountable problem. Manufacturers

have either gone out of business or (and this is the case with

the manufacturer of CP/M Plus, Digital Research Inc.) have

discontinued support for the product. CoNIX, whose current

version is numbered 22.x, evolves with the computers it can

run on. A call to Computer Helper Industries (at my expense -

they do not provide toll free service) yielded a speedy fix to

my bug report (they called me back) and the information that

a C-128 was now their in-house system. (Other surprises, cur

rently under development and specifically for the C-128,

were alluded to -1 will keep you informed.)

CoNIX: The Search

The search for CoNIX will not lead you far. In one of the

most savvy marketing moves I recently have come across,

Computer Helper Industries releases the previous version of

the CoNIX operating system as shareware. This is not a crip

pled version - it is the full implementation of the previous

generation of the software. You are free to use the shareware

package for a period of up to six months; at that time you are

asked to become a registered user or to destroy the package.

(This was my introduction to CoNIX - downloaded from the

CP/M library of the CBMPRG forum on CIS. It took only

two months to convince me to place my order.)

Transactor 30 May 1988: Volume 8, Issue 6

The cost of the complete, most recent version of the CoNIX

package, including media and shipping via air mail to

Canada, was $83.95 US. Various combinations of the CoNIX

packages are available for less. Delivery was prompt, under

four weeks, a rarity when ordering by mail. The product was

well packaged and suffered no damage in transit.

Two features of CoNIX, Expandisk and BDOS patching,

must be disabled during installation in order for it to run on

the C-128. The procedure for disabling them is clearly ex

plained in the interactive installation program. Without going

into their functions, I will say that I have not noticed them in

their absence.

More information on the CoNIX environment can be ob

tained from: Computer Helper Industries Inc., PO Box 680,

Parkchester Station, Bronx, NY, 10462, (212) 652-1786.

You Win Some, You Lose Some

Not everything is perfect with CoNIX. Most annoying is the

loss of even the limited command line editing provided with

the CCP of CP/M Plus. A recall-last-command command is

available but cursor movement commands are limited to a

destructive backspace - barbaric!

A more serious problem is the overhead involved in CoNIX

use. The many support files, option files, and temporary files

need lots of disk storage space. If you are using a single drive

system, CoNIX may be your best reason to buy a second stor

age device. A high-speed, high-capacity storage device like

the 1581 3.5 inch disk drive or the 1571 RAM Expansion

(used as a RAM disk) is recommended. If you aren't ready to

expand your system to this extent, CoNIX isn't for you.

I must admit that the number of system crashes has increased

since I have begun to use CoNIX. This is to be expected with

the opportunities CoNIX provides for the uninitiated to ride

roughshod over their systems. Fortunately, the C-128's non

volatile RAM disk reduces the damage a crash can do and

makes reboots fast and easy.

Its faults notwithstanding, I would recommend the CoNIX

Operating System to anyone who uses the CP/M side of the

C-128 with any regularity. If you are using CP/M as your

business system, or programming for personal or commercial

interests, you will wonder how you got by without the com

plete CoNIX package.

The redundancy of some CoNIX capabilities when run on the

C-128, and the superiority of those C-128 capabilities (rede-

finable keys, function keys, virtual drives, command line edit

ing), illustrate the power of CP/M Plus on the C-128. Howev

er, the addition of CoNIX to this team makes for a truly un

beatable combination.

UNLEASH THE DATA ACQUISITION AND
CONTROL POWER OF YOUR COMMODORE C64 OR C128.

We have the answers to all your control needs.

NEW! 80-LINE SIMPLIFIED

DIGITAL I/O BOARD

Create your own autostart dedicated

controller without relying on disk drive.

• Socket for standard ROM cartridge.

• 40 separate buffered digital output lines can

each directly switch 50 volts at 500 mA.

• 40 separate digital input lines. (TTL).

• I/O lines controlled through simple memory

mapped ports each accessed via a single

statement in Basic. No interface could be easier

to use. A total often 8-bit ports.

• Included M.L. driver program optionally called

as a subroutine for fast convenient access to
individual I/O lines from Basic.

• Plugs into computer's expansion port. For both

C64 & C128. I/O connections are through a

pair of 50-pin professional type strip headers.

• Order Model SS1G0 Plus. Only $119! Shipping

paid USA. Includes extensive documentation

and program disk. Each additional board $109.

We take pride in our interface board documentation and

software support, which is available separately for

examination. Credit against first order.

SS100 Plus, $20. 64IF22 & ADC0816, $30.

OUR ORIGINAL ULTIMATE

INTERFACE

• Universally applicable dual 6522 Versatile

Interface Adapter (VIA) board.

• Industrial control and monitoring. Great for

laboratory data acquisition and instrumentation

applications.

• Intelligently control almost any device.

• Perform automated testing.

• Easy to program yet extremely powerful.

• Easily interfaced to high-perfomance A/D and

D/A converters.

• Four 8-bit fully bidirectional I/O ports & eight

handshake lines. Four 16-bit timer/counters.
Full IRQ interrupt capability. Expandable to
four boards.

Order Model 64IF22. $169 postpaid USA.

Includes extensive documentation and programs

on disk. Each additional board $149. Quantity

pricing available. For both C64 and C128.

A/D CONVERSION MODULE

Fast. 16-channel. 8-bit. Requires above. Leaves all

VIA ports available. For both C64 and C128.

OrderModel64IF/ADC0816. Only $69.

SERIOUS ABOUT
PROGRAMMING?

SYMBOL MASTER MULTI-PASS SYM

BOLIC DISASSEMBLER. Learn to program

like the experts! Adapt existing programs to
your needs! Disassembles any 6502/6510/

undoc/65C02/8502 machine code program

into beautiful source. Outputs source code

files to disk fully compatible with your MAE,

PAL, CBM, Develop-64, LADS, Merlin or

Panther assembler, ready for re-assembly and
editing. Includes both C64 & C128 native

mode versions. 100% machine code and

extremely fast. 63-page manual. The original

and best is now even better with Version 2.1!

Advanced and sophisticated features far too

numerous to detail here. $49.95 postpaid
USA.

C64 SOURCE CODE. Most complete

available reconstructed, extensively com

mented and cross-referenced assembly

language source code for Basic and Kernal

ROMs, all 16K. In book form, 242 pages.

$29.95 postpaid USA.

PTD-6510 SYMBOLIC DEBUGGER for

C64. An extremely powerful tool with
capabilities far beyond a machine-language

monitor. 100-page manual. Essential for

assembly-language programmers. $49.95
postpaid USA.

MAE64 version 5.0. Fully professional

6502/65C02 macro editor/assembler. 80-page

manual. $29.95 postpaid USA.

ADDRESS!

All prices in U.S. dollars.

SCHNEDLER SYSTEMS
Dept. 86, 25 Eastwood Road, P.O. Box 5964

Asheville, North Carolina 28813 Telephone 1-704-274-4646
NEWADDR

Transactor 31 May 1988: Volume 8, Issue 6

Great Assignment!

Easy in-program expression evaluationfor the C64 and C128

by Paul Durrant

Enter and run the following program on your C64 or C128:

10 input"Enter an arithmetic expression";a$

20a = a$

30 print a

At the prompt, enter something like '(13+2)*46\ or 'sqr(4)'

(without the quotes).

You get a '?type mismatch error', right? I developed a series

of inventory control programs which required entering

thousands of numbers. Sometimes they were things like: "13

dozen plus 5 plus eight-and-a-half more dozen." Not being

able to enter those numbers as an arithmetic expression

resulted in considerable frustration - and "great assignment".

After enabling this routine (by changing the ERROR

vector...more later), an arithmetic expression in a string

variable can be solved and assigned to a floating point

variable. The method of use couldn't be simpler: just execute

'a = a$' (or 'item(x) = entryline$(7)\ or...). If the string

variable contains a legal arithmetic expression, it will be

solved, and its value assigned to the numeric variable. An

empty string will be assigned a value of zero. And, the

routine stays active, even after doing a 'Run-Stop Restore'.

How it works

Normally, trying to assign the value of a string variable to a

numeric variable results in a '?type mismatch error'. In

addition, the numeric variable is on the left side of the

mismatched equation. So, the new error routine starts by

checking for that condition (a '?type mismatch', numeric on

the left). If this is not the current error, then it jumps to the

normal error handling procedure. If this is the current error,

then some additional information is available. The error was

recognized after finding the addresses of both variables

(numeric on left, string on right), "great assignment" uses

this information to move the text string into the BASIC input

buffer (BBUFF) where CRUNCH can convert the text into

executable, tokenized form. Then it calls 'formula.evaluate'

to solve the crunched expression and put the result in Floating

Point Accumulator #1 (FAC #1). Finally, the assignment

statement is completed, using the address of the numeric

variable which has been waiting patiently ever since the

original error condition.

On the C64, the amount of additional housekeeping required

to make this work is minimal. On the C128, things aren't

quite so simple. Most of the difference revolves around the

issue of where to place the routine. Let's start with the C64,

first. There are no internal jumps or subroutines in "great

assignment", so it can be easily located anywhere in

memory. On the C64, the tape buffer will work. So will that

ever popular area starting at $C000, and it can even be placed

in the BASIC program memory area (if proper adjustments

are made to keep BASIC and variables from over-writing it).

The program cannot be located "under" BASIC or the

Kernal, however, since it uses routines contained therein.

On the C128, principles are the same, but location is more

complicated. The C128's many memory configurations

include several that are used heavily by the BASIC

interpreter. Moreover, because the new error handling routine

must handle all errors, it must be robust enough to take them

on, no matter what memory configuration exists when the

error occurs. Only the Common RAM (from $02 to $3FF)

can do it, and there isn't room there for even a relatively short

program such as this. The solution involves using six free

bytes near the end of Common RAM ($3E4 to $3E9). That's

exactly enough room to set the desired memory configuration

(RAM 0, BASIC and Kernal) and then jump to the remainder

of the new error handling routine (which I've placed in the

cassette buffer, from $B00). There's more trouble ahead,

though: 'crunch', 'frmeval', and the two routines that save

and restore the 'txtptr' require RAM 0, BASIC and the

Kernal, but MOVE$ uses routines which leave us in RAM 1,

BASIC and Kernal. Fortunately, those routines are located in

RAM, so "great assignment" can change those routines a bit

before doing MOVE$, and then restore them to tjieir normal

condition when done. The program listing shows it all.

How to use it

To enable "great assignment", you must change the ERROR

vector to point to the new routine. The ERROR vector is in

locations 768 and 769 ($300/301) on both machines. If you

place "great assignment" at $C000 in the C64, then 'poke

768,0: poke 769,192'. If you use the cassette buffer then

'poke 768,60: poke 769,3'. For the C128 - remembering the

six bytes in Common RAM - 'poke 768,228: poke 769,3'. (Or

use the Monitor to set $300 to $E4 and $301 to $03.) The

BASIC loader programs listed will do everything for you: just

run the 64 or 128 version, and start your great assignments!

Transactor 32 May 1988: Volume 8, Issue 6

Annotated Monitor Listing for C-64 "great assignment"

cOOO

c002

c004

c006

c008

cOOa

cOOd

eOOf

cOll

cO13

cO15

cO17

cO19

cOlb

cOld

c020

cO21

cO23

cO25

cO27

cO2a

cO2b

cO2c

cO2f

cO31

cO33

cO35

cO37

cO39

cO3b

cO3d

cO3f

cO42

cO45

cO48

cO49

cO4a

cO4b

cO4e

bO 08

eO 16

dO 04

24 Od

30 03

4c 8b

a9 00

85 35

a9 02

85 36

a5 64

85 6f

a5 65

85 70

20 7a

aa

bl 6f

dO 06

a9 30

9d 00

e8

98

9d 00

a5 7a

a4 7b

85 3d

84 3e

a9 00

aO 02

85 7a

84 7b

20 79

20 73

20 9e

68

68

68

20 72

4c dO

bcs

cpx

bne

bit

bmi

e3 jmp

Ida

sta

Ida

sta

Ida

sta

Ida

sta

b6 jsr

tax

Ida

bne

Ida

02 sta

inx

tya

02 sta

Ida

ldy

sta

sty

Ida

ldy

sta

sty

a5 jsr

00 jsr

ad jsr

pla

pla

pla

ab jsr

bb jmp

$c00a

#$16

$c00a

$0d

$cOOd

$e38b

#$00

$35

#$02

$36

$64

$6f

$65

$70

$b67a

($6f),y
$cO2b

#$30

$0200,:

;Check for

; *?type mismatch error',

; with FLPT on left,

; string on right.

;Normal ERROR routine.

;Prime to MOVE$ contents

; of $ var to begin

; of BBUFF.

;LET erred here with $64/65

; pointing to header of $ var.

, ;MOVE$.

;= end of $ entered in bbuff+1.

;(y) = 0here.

;Branch if not a null string.

;Else enter ASCII "0".

x

$0200,x

$7a ;Save

$7b ; TXTPTR.

$3d

$3e

#$00 ;Set TXTPTR

#$02 ; to BBUFF.

$7a

$7b

$a579 ;CRUNCH.

$0073 ;chrget(set txtptr to bbuff).

$ad9e ;FRMEVAL.

;Clear stack

; from

; TYPE MISMATCH.

$ab72 ;Restore TXTPTR.

$bbdO ;MOVEFAC#ltovar.

Annotated Monitor Listing for C-128 "great assignment"

003e4 8d 03 ff sta $ffO3 ;Enable ram 0, Basic, Kernal.

003e7 4c 00 0b jmp $0b00 ;Jmp to new ERROR routine.

OObOO eO

00b02 dO

00b04 24

00b06 30

00b08 4c

OObOb a9

OObOd 85

OObOf a9

OObll 8d

00bl4 8d

00bl7 a9

00bl9 85

OOblb a9

OObld 85

OOblf a5

00b21 85

00b23 a5

00b25 85

00b27 20

00b2a aa

00b2b dO

00b2d a9

16

04

Of

03

cpx

bne

bit

bmi

42 4d jmp

lb Ida

18 sta

03 Ida

b4 03 sta

bd 03 sta

00 Ida

37

02

38

66

70

67

71

sta

Ida

sta

Ida

sta

Ida

sta

4e 87 jsr

tax

06 bne

30 Ida

#$16

$0b08

$0f

$ObOb

$4d42

#$lb

$18

#$03

$03b4

$03bd

#$00

$37

#$02

$38

$66

$70

$67

$71

$874e

$0b2f

#$30

;Check '?type mismatch error'

; with numeric on left.

;Found?

; No: do normal ERROR.

; Yes: reset ptr to

; "temp string stack".

; make "RAM 1 fetches"

; return to RAM 0

; during MOVE$.

;Set MOVE$'s destination

; to BBUFF ($0200).

;Set up MOVE$'s source:

; LET erred with ptr to

; string in $66/67.

;MOVE string into BBUFF.

;(x) holds length of string.

;Place ASCII "0" in BBUFF

00b2f

00b32

00b33

00b34

00b37

00b3a

00b3c

00b3e

00b40

00b42

00b45

00b48

aOOl

85 3d

84 3e

00b4b 20

00b4e 68

00b4f 68

00b50 68

00b51 a9

00b53 8d

00b56 8d

00b59 4c

9d 00 02 sta $0200,x ; if empty string.

e8 inx

98 tya ;(y) = 0 after MOVE.

9d 00 02 sta $0200,x ;End BBUFF with null byte.

20 34 4b jsr $4b34 ;Save BASIC'S TEXTPTR.

a9ff Ida #$ff ;Nowset

ldy #$01 ; TEXTPTR to

sta $3d ; BBUFF-1.

sty $3e

20 0a 43 jsr $430a ;CRUNCH the string.

20 80 03 jsr $0380 ;Use CHRGET to align ptrs.

20 ef77 jsr $77ef j'frmevaT solves expression

; (result in FAC#1).

79 57 jsr $5779 ;Restore TEXTPTR.

pla ;Clean the

pla ; stack from the

pla ; MISMATCH ERROR,

04 Ida #$04 ;and

b4 03 sta $03b4 ; restore "RAM 1 fetches"

bd 03 sta $03bd ; to normal operation,

fa 53 jmp $53fa ;Do assignment; carry on.

BASIC loader for the C64 version of "Great Assignment9

FB 100 rem "Great Assignment" for the C64

GG 110 for x=49152 to 49232: read a

KO 120 poke x,a: check=check+a: next

AB 130 data 176, 8,224, 22,208, 4, 36, 13

OG 140 data 048, 3, 76,139, 227,169, 0,133

LO 150 data 053,169, 2,133, 54,165,100,133

AH 160data 111, 165,101,133,112, 32,122,182

EE 170data 170,177, 111, 208, 6,169, 48,157

BJ 180 data 000, 2,232,152,' 157, 0, 2,165

LO 190 data 122,164,123,133, 61,132, 62,169

MO 200 data 000,160, 2,133,122,132,123, 32

JA 210 data 121,165, 32,115, 0, 32,158,173

00 220 data 104,104,104, 32,114,171, 76, 208

GJ 230 data 187

CJ 240 if checko8575 then print"You goofed!":end

KL 250 poke768,0: poke769,192: prinf'OK!"

BASIC loader for the C128 version

GD 100 rem "Great Assignment" for the C128

KN 110 for x=dec("3e4") to dec("3e9"): reada$

KJ 120 pokex,dec(a$):check=check+dec(a$): next

IH 130 data 8d, 03, ff, 4c, 00, 0b

BC 140 for x=dec("b00") to dec("b5b"): reada$

IL 150 pokex,dec(a$):check=check+dec(a$): next

BD 160 data eO, 16, dO, 04, 24, Of, 30,03,4c, 42

IN 170 data 4d, a9, lb, 85,18, a9,03, 8d, b4,03

FN 180 data 8d, bd, 03, a9,00, 85, 37, a9,02, 85

NE 190 data 38, a5,66, 85, 70, a5,67, 85,71,20

IM 200 data 4e, 87, aa, dO, 06, a9, 30,9d, 00,02

MO 210datae8,98,9d,00,02,20,34,4b,a9,ff

CE 220 data aO, 01, 85, 3d, 84, 3e, 20,0a, 43, 20

EJ 230 data 80,03,20, ef, 77,20,79, 57, 68, 68

FC 240 data 68, a9,04, 8d, b4,03, 8d, bd, 03,4c

FA 250 data fa, 53

OM 260 data e4,03

LI 270 read lo$: check=check+dec(lo$)

BG 280 read hi$: check=check+dec(hi$)

NL 290 if check <> 9554 then print"You goofed!":end

HO 300 poke768,dec(lo$): poke769,dec(hi$)

NH 310print"OK!"

Transactor 33 May 1988: Volume 8, Issue 6

Give Me A BRK!

Invisible subroutines on the C64 and C128

by Tom Hughes

I don't think I'd be exaggerating in saying that BRK is the

least used 65xx instruction. In fact, BRK is usually associated

with disaster - your machine language program wanders off

course, slams into a BRK, and your computer ends up in nev

er-never land.

It doesn't have to be this way. BRK can be used to call sub

routines that will be "invisible" to all the 65xx registers ex

cept the program counter (PC). In a way, BRK can be used as

a 6502 equivalent of the 68000's TRAP instruction.

BRKing on the C64 and C128

First, let's see how the Commodore 64 and 128 react to

BRKs. When a BRK occurs in the C64 or C128, the PC is

loaded with the vector at $FFFE/FFFF, which also serves as

the IRQ vector. Since this vector serves a dual function, the

computer first must determine what sort of interrupt occurred

- an IRQ or a BRK. (Yep, BRK is an interrupt.) The BRK en

tries for both machines are listed below:

C64:

ff48 pha

ff49 txa

ff4a pha

ff4b tya

ff4c pha

ff4d tsx

ff4e Ida

ff51 and

ff53 beq

ff55 jmp

ff58 jmp

C128:

ffl7 pha

ffl8 txa

ffl9 pha

ffla tya

;** c64 brk/irq entry **

;save .A, .X and ,Y on stack

;current stack pointer to .X

$0104,x ;use it to load old status register

#%00010000 ;test the brk bit in the SR

$ff58

($0316) ;if this bit = 1, then this is a BRK

($0314) ;otherwise, an IRQ.

;save .A, .X and.Y registers

fflb pha

fflc Ida

fflf pha

ff20 Ida

ff22 sta

ff25 tsx

ff26 Ida

ff29 and

ff2b beq

ff2d jmp

ff30 jmp

$ff00 ;also save current bank on stack

#$00 ;and force bank 15

$ff00

;current stack pointer to .X

$0105,x ;use it to load old status register

#%00010000 ;test the brk bit in the SR

$ff30

($0316) ;if this bit = 1, then this is a BRK

($0314) otherwise, an IRQ

Sifting through the Stack

The BRK entries above are nearly identical for both ma

chines. So why list both? Well, if you're kind of fuzzy on

stack operations during an interrupt, then listing both will

show you exactly how to get at the .A, .X and .Y registers, the

SR, and the PC that have been pushed on the stack - neces

sary information in order to use BRK effectively.

Notice that the C64 does a 'Ida $0104,x', but the C128 uses a

'Ida $0105,x'. What's going on? Keep the following in mind:

• the 65XX stack lives between $01FF and $0100.

• when values are pushed on the stack, the stack grows

downwards in memory.

• the stack is organized in LIFO ("last in, first out") order.

Here's an example of what happens to the stack on the C64

during a BRK, assuming the SP was $F6 when the BRK in

struction happened:

<- old stack pointer

<- program counter high byte

<- program counter low byte

<- processor status register

<- data registers

<- SP (= $ef after the entry routine)

$01f6

$01f5

$01f4

$01f3

$01f2

$01fl

$01f0

$01ef

PCH

PCL

SR

.A

.X

.Y

Transactor 34 May 1988: Volume 8, Issue 6

$01f6

$01f5

$01f4

$01f3

$01f2

$01fl

$OlfO

$Glef

$01ee

PCH

PCL

SR

.A

.X

.Y

BANK

The C128 stack would look like this (again assuming the SP

was at $F6):

<- old Stack pointer

<- Program counter high byte

<- Program counter low byte

<- Processor status register

<- Data registers

<- SP is $EE after the entry routine

Note: The program counter (PCH and PCL) and the status

register (SR) were saved by the CPU itself when the BRK or

IRQ occurred.

Remember that both the entry routines must determine what

really happened - a BRK or an IRQ. So both must test the SR

saved on the stack. On a C64 the 'Ida $0104,x' fetches the old

SR from the stack. Since the SP at the end of our entry rou

tine is $EF, just add 4 to this, and 'Ida $0104,x' really be

comes 'Ida $01F3' - the SR. The C128 usps 'Ida $0105,x' be

cause it must add 5 to get past the saved bank value. Anyway,

use the same technique to get at the other pushed values and

where .X is the SP:

For the C64, to find... For the C128, to find...

PCH

PCL

SR

.A

.X

.Y

useLDA$0106,X

useLDA$0105,X

useLDA$0104,X

useLDA$0103,X

useLDA$0102,X

use LDA $0101,X

PCH

PCL

SR

.A

.X

.Y

BANK

useLDA$0107,X

useLDA$0106,X

useLDA$0105,X

useLDA$0104,X

useLDA$0103,X

useLDA$0102,X

useLDA$0101,X

Once these pushed values are located, they can be changed -.

one method of passing parameters through BRK.

A word on PCH and PCL: the program counter on the stack

has had 2 added to it. This is very important to keep in mind

while using BRK. The following example shows what hap

pens to the PC afer a BRK:

$1000 Ida #$0d

$1002 jsr $ffd2

$1004 brk

$1006 nop

$1007 jsr $ffe4

;($1007 saved as PC on stack)

;we land here after BRK

From the example above, you can see that the PC skips right

over the NOP instruction. So it could be any value. In fact, in

stead of the NOP, we could place a value that our BRK rou

tine could use as some sort of parameter - like a subroutine

number. For instance, the code below could be used to call

subroutine #5:

$1000 Ida #$0d

$1002 jsr $ffd2

$1005 brk

$1006 .byte #$05

$1007 jsr $ffe4

;subroutine or "trap" #

The sample source code listed after the article does just that -

uses a value after BRK to execute a particular routine or trap.

68000 Traps

Before presenting a sample BRK routine, it might be interest

ing to look at the trap functions of the 68000 machines, such

as the Amiga and the Macintosh.

The 68000 has an instruction called TRAP that allows a pro

grammer to create up to 16 routines that can executed from

within a program that generate exceptions or interrupts. (The

68000 also allows something called A-traps and F-traps that

are in a sense closer to our use of BRK, but this is beyond the

scope of this article.)

Traps allow you to interrupt the microprocessor from soft

ware - handy if you need something done in a hurry while at

the same time preserving important program values, and the

trap will seem invisible to the execution of your program.

Our BRK routine will be invisible because the .A, .X,.Y reg

isters, the SP and, in the case of the C128, the bank value will

be unaffected.

A BRK Demonstration Program

The following PAL assembler source code for the C64 con

sists of three parts:

(1) A routine to divert the standard BRK vector at

$0316/0317 to our custom routine.

(2) A BRK handler that shows how to incorporate BRK in a

machine code program. One small note: this part of my pro

gram contains self-modifying code because TRPNM is

changed each time you type 1, 2 or 3. This is not good pro

gramming practice (try using the code in an EPROM!) and

was only done to shorten the example. If you wish to make

use of the concept described in the article, I suggest fixed trap

numbers following the BRK instruction.

(3) The BRK routine itself simply prints 1, 2 or 3 to the

screen depending on which trap was used. The TIDYUP rou

tine pulls the registers from the stack and does an RTI.

Final Notes

Interrupt priority: traditionally, only the NMI and IRQ are

mentioned during any discussion of interrupts. Actually, the

interrupt priority, from highest to lowest, is as follows: NMI,

BRK, IRQ. A BRK supersedes an IRQ because IRQs are

disabled by the SEI instruction, but not BRKs.

Transactor 35 May 1988: Volume 8, Issue 6

BRK

write

to BRK? Though I haven't tried it, I suppose you could

a program using BRKs instead of JSRs. However,

watch nesting BRKs inside of BRKs because each will need 6

(or 7 for a C128) slots on the stack, and there's only 256 stack

locations to work with before the stack wraps around and

obliterates some vital parameter.

Keyboard scanning: since the Kernal's IRQ routine is respon

sible for scanning the keyboard, you will have to use the SC-

NKEY Kernal routine if you want keyboard input to be read

while inside a BRK. Here's how to read and print a character

in this case:

loop jsr scnkey ;scan keyboard

jsr getin ;readit

oeq loop

jsr chrout ;print it

PAL-format source code to demonstrate simulating a trap

with

GD

OB

MB

MH

KD

EE

HN

IL

FF

MG

GH

BM

KI

AK

KO

OJ

OP

JJ

CL

PN

AF

BD

EK

IO

BI

LP

BN

CK

FOru

XJT
OJ

EG

EJ

PC

MC

AD

FC

the BRK instruction:

10 sys 700: .opt oo

1000 *********************************

1010;* *

1020;* simulating a trap with brk *

1030'* *

1040 ;* *

1050 ;* *

1060 ;* brk vector is diverted so *

1070 ;* that "invisible" subroutines *

1080 ;* can be called. *

1090 ;* *

1100;* *

1110;* - by torn hughes vO22287 - *

1120;* *

1130 ;********************************

1140;

1150 ;c64 equates

1160;

1170 cbinv = $0316 ;brk vector (2)

1180 chrout =$ffd2 ;outputachar

1190clrchn =$ffcc ;i/o to defaults

1200 getin =$ffe4 ;inputachar

1210 memory = $8d ;temp storage (2)

1220 oldbrk = $8b ;storage for standard brk (2)

1230 stack = $0100 ;65xx stack location

1240 tidyup = $febc ;recover from interrupt

1250*=$c000 ;sys 49152

1960 •i z*\j\j j——-——-———-—————-

1270 ;set brk vector to our routine

19R0*

1300 ;called once to divert the brk vector.

1310;

1320 jsr clrchn

1330 sei ;disable interrupts

1340 ldx cbinv

1350 ldy cbinv+1

Transactor

AD

FM

AM

BJ

KK

PJ

OG

MA

FI

KP

JJ

ED

CC

AD

CF

NE

HN

EB

LN

on\JVJ

MB

OC

HL

DP

ID

or

MI

KH

PD

LE

EA

NC

HG

JB

EF

HL

OC

EH

DD

DA

CB

HA

CI

DI

OH

DC

KI

AG

ADi\LJ

EM

CI

FO

CO

HG

GO

36

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

stx

sty

ldx

ldy

stx

sty

cii

;

»

oldbrk ;save old brk vector

oldbrk+1

#<newbrk ;then set new vector

#>newbrk

cbinv

cbinv+1

;enable interrupts

;demo brk handler

»

;

;this is just an example of how you

;would use brk from within a program

1510demo5 ldy

1520demol0 Ida

1530 beq

1540

1SS01JJU

1560

jsr
invmy

bne

1570demo20 jsr

1580

1590

1600

1610lUlu

1620

1630

1640

1650

1660

1670

1680

1690

cmp

beq

cmp

cmp

bcs

jsr

and

sta

Ida

jsr

brk

#0

prompt,y ;print "number?"

demo20

chrout

demolO

getin ;check the keyboard

#3 ;(if stop key, quit)

quit

FI" ;for numbers 1 thru 3

Hf»mr»90UdlUJZAS

#"4"

demo20

chrout

#$0F ;make#hexl-3

trpnm ;save in our own prog

#13 ;print a carriage gosub

chrout

;execute trap

1700trpnm .bytO ;(trap#)

1710

1720

jmp

;(after brk,

;

1730 quit sei

1740

1750

1760

1770

1780

1790

1800

ldx

ldy

stx

sty

cli

its

;

1810 prompt .byt

1820

1830
1 QAC\

1RSOLoDV

1870

1880

1890

1900

1910

1920

.asc

demo5

prg continues here)

oldbrk

oldbrk+1

cbinv

cbinv+1

;back to basic

13,13

"number (1 - 3)? "

.bytO

*

•flP>W Vvt*lf lYYIll"
,11CW UlJv 1UUI.

»

11C

;entry (1) interrupts disabled (except nmi)

; so jiffy clock is off.

;

;(2) on entry stack looks like this...

; (assuming old sp was at $f6)

May 1988: Volume 8, Issue 6

AA

BJ

PM

MN

HL

IB

FD

MD

GF

KF

OH

JP

FE

CI

DK

CH

01

CJ

DO

BB

NK

BB

BL

MH

BN

IK

FE

LH

BH

JF

KH

AK

GK

ID

KE

OF

JD

CH

FC

LM

HN

KJ

NK

LM

BM

CM

BH

HD

MB

KO

PJ

PF

IF

CB

NM

HI

AI

AK

1930;

1940;

1950;

1960;

1970;

1980;

1990;

2000;

2010;

2020;

$01f6

$01f5]

$01f4]

$01f3

$01f2

$01fl

$01f0

$01ef

<- old sp

pch (stack+6)

pel (stack+5)

sr (stack+4)

.a (stack+3)

.x (stack+2)

.y (stack+1)

<- current sp

2030 ;(3) expects trap # after brk

2040; (this location can be found by

2050 ; using the pc

2060;

2070newbrk tsx

2080

2090

2100

2110

2120

2130

Ida

sta

Ida

sta

bne

dec

2140 newlO dec

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280;

ldy

Ida

tay

dey

tya

asl

tay

Ida

sta

iny

Ida

sta

jmp

saved on stack-1.)

;get current sp to .x

stack+6,x ;to find pc-high

memory+1

stack+5,x ;and pc-low on stack

memory ;save this address

new10 ;and subtract -1 from it

memory+1 ;so we can locate trap#

memory

#0

(memory),y;get trap #

;adjustitso 1-3

;is now 0-2

a ;multiply this # by 2

table,y ;and use it to look up

memory ;trap addresses

table,y

memory+1

(memory) ;go to a trap routine

2290 ;trap addresses

2300;

2310 table

2320

2330

2340;

.word trap 1

.word trap2

.word trap3

2350;//////////////////////////////

2360 ;demo trap routines

2370;//////////////////////////////

2380;

2390trapl

2400

2410

2420;

2430trap2

2440

2450

2460;

2470 trap3

2480

2490

2500 .end

Transactor

Ida

jsr

jmp

Ida

jsr

jmp

Ida

jsr

jmp

rr

chrout

tidyup ;must end with this

#"2"

chrout

tidyup

#"3"

chrout

tidyup

New! Improved!

TRANSBASIC 2!
with SYMASS™

"I used to be so ashamed of my dull, messy code, but

no matter what I tried I just couldn't get rid of those

stubborn spaghetti stains!" writes Mrs. Jenny R. of

Richmond Hill, Ontario. "Then the Transactor people

asked me to try new TransBASIC 2, with Symass®.

They explained how TransBASIC 2, with its scores of

tiny 'tokens', would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in

giving it a try. Well, all it took was one load and I was

convinced! TransBASIC 2 went to work and got my

code looking clean as new in seconds! Now I'm telling

all my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass, the symbolic assembler.

Package contains all 12 sets of TransBASIC modules

from the magazine, plus full documentation. Make your

BASIC programs run faster and better with over 140

added statement and function keywords.

Disk and Manual $17.95 US, $19.95 Cdn.

(see order card at center and News BRK for more info)

TransBASIC 2

"Cleaner code, load after load!"

37 May 1988: Volume 8, Issue 6

Micro-Lisp Version 2.5

A public domain Lisp interpreterfor the C64!

by Nicholas Vrtis

Lisp is a language designed to work with lists (its name is a

contraction of LISt Processor). It is one of the primary lan

guages used in the study of Artificial Intelligence. Micro-Lisp

is a subset of this language that you can use to learn more

about its capabilities. Although there obviously isn't space in

this article for a complete course in Lisp and AI, I would like

to introduce you to the language and to my Micro-Lisp imple

mentation in particular. At the end of the article you'll find

some suggestions for further reading if you want to know

more.

Why bother with a version of Lisp that runs on a slow 8 bit

computer? Because it is an easy, inexpensive way to become

familiar with the language, and to get a feel for what it is like.

Why buy a model rocket? It can't go as fast or as far as the

Space Shuttle, but you can still have fun and learn from it.

Lisp's World View

Lisp divides the world into two classes of 'things'. On one

side there is a List, and on the other is things that aren't Lists.

Things that aren't Lists are called Atoms. As in physics, an

Atom can't be broken down into something smaller (though

you will find that you can explode and implode an Atom, just

as in physics atoms can be taken apart if you know how). A

word is an Atom, so is a number. If I take some Atoms, and

collect them, I end up with a List (similar to taking atoms and

collecting them into molecules). I can also take Lists and

group them together, either end-to-end to make a longer List,

or as a List of Lists.

Big deal - what good are lists anyway? Actually, if you think

about it, almost all the information we use is in the form of

lists. Your checkbook for example, is a list of three or four

items of information about each check (the check number, the

amount, who it is to, the date written, and possibly a budget

category). To get the amount I have spent on a given category,

I just go through my list of checks and add up the amounts for

those checks with that category. That's a relatively simple

Lisp application, and maybe not a very appropriate one - a

good database program would probably be better, since it

would allow you to sort the data and print a fancy report with

out a lot of work.

Lisp was designed to handle more complicated situations

where you can't know in advance all the combinations and

questions you might want to ask about the information you

have. One example (which I'll be using throughout this arti

cle) would be a family tree. A List showing the name, sex,

and parents of each individual in your family would be a

good starting point. Each item on this List is made up of two

Atoms (name and sex) and one List (Father's name, Mother's

name). Notice that there is no item in the List concerning the

individual's relationship to you, or to most other members of

the family. We can get this information, however, by apply

ing some simple rules; for instance: a brother ofx is any male

whose parents are the same <as the parents of x. Before we

discuss how Lisp lets us extract this kind of implicit informa

tion, however, we need to master a few of the language's

technicalities.

Lisp Fundamentals

Lists in Lisp are enclosed in parentheses. For instance, while

nick is an Atom, (nick) is a List that has one Atom, (nick m)

has two, and (nick m (jim marion)) has two Atoms and a List

(which itself has two Atoms). By the way, one of the hard

parts about Lisp, especially for beginners, is keeping the

parentheses balanced in the right places. Micro-Lisp has a

couple of features to help with this. The command prompt

shows the current number of unbalanced parentheses (the

nesting level). Also, when you display a List, you can use a

feature called pretty print to start each new level on a new

line, and indent one space for each level.

Another concept you need to understand about Lisp is how it

represents 'nothing'. Since an Atom can be either a number or

a word, Lisp can't use 0 for numbers the way we do. Instead,

Lisp uses an entity called nil. Nil is special, because it can be

either a List or an Atom depending on the situation. If you

want to input the Atom nil, just enter the word nil. If you

want to input a List with nothing in it, enter (). Whenever Mi

cro-Lisp displays an empty List, it will always display nil in

stead of ().

Transactor 38 May 1988: Volume 8, Issue 6

We also need to understand how to get Lisp to do something -

how to give it a command. Commands are given in the form

of Lists (not surprisingly). A command List is no different

from any other List, except that the first entry must be an

Atom that is a command. For example, add is a command

that sums the numbers in the rest of the List; the List (add 1 2

3) would add the numbers 1, 2 and 3. A List doesn't have to

have a command as the first entry unless you want to execute

it (called evaluating it in Lisp). The documentation accompa

nying this article shows the built-in commands available in

Micro-Lisp. One of these - define - lets you create your own

commands", which work just like the built-in commands.

We'll make use of this ability when we work on our family-

tree project.

Creating the family tree

Let's begin that now. To start Micro-Lisp, just enter:

load "micro-lisp",8

run

You'll see a title message and a flashing cursor. Now type:

>0 (set (quote family-tree) nil)

nil

The computer will respond by typing out nil (note: the exam

ples in this article use bold type for the computer's prompts

and responses, and regular type for your input). Set is a com

mand that sets the value of the second Atom in the List equal

to the value of the third (similar to a BASIC statement like

FT$ = ""). Now we have a 'database' named FAMILY-TREE

with nothing in it.

You might be wondering why you had to use the strange con

struction (quote family-tree) instead of just family-tree. This

reflects LISP's desire to use the value of a name in most cas

es. Consider the BASIC statement FT$ = A$, which assigns

the value ofA$ to FT$. If we really wanted to assign the char

acters "A$" to FT$, we have to use quotes. The quote com

mand in LISP performs the same function as the pair of dou

ble quotes in BASIC. If that is still confusing, try this:

0>(set (quote tree-name) (quote family-tree))

family-tree

0> (set tree-name 10)

10

0> tree-name

family-tree

0> family-tree

10

In this example, we begin by creating a new Atom - tree-

name - whose value is the name family-tree. When we now

say (set tree-name 10), we are asking for the value 10 to be

assigned to the Atom whose name is found by evaluating

tree-name. After this operation, we discover that the value of

tree-name is unchanged but, as expected, family-tree has the

new value 10. Programmers who have used languages like as

sembler, C and PROMAL will recognize here an example of

indirection', this application of it is fundamental to Lisp and

you should make sure you understand the above example

thoroughly.

Since you end up using the quote command a lot in Lisp,

there is a shorthand version. It is a single quote mark ('). It

eliminates the word quote and a set of parentheses. We can

thus write our original statement more concisely as:

(set 'family-tree nil)

Go ahead and try it - Lisp is very interactive. If you ever want

to know the value of a name, just type it on the command line

without parentheses.

A new command with define

Now let's define a command of our own to add a person to

our database. We use the define command for this, and we'll

keep it simple for now. Later you will probably want to add

some checks to this command to guard against duplicate en

tries and to determine if the parents of a newly-added person

are already defined. But start with:

0> (define'add-person'(person)

1> '(progn

3> (setq family-tree

4> (cons person family-tree))

3> person))

Micro-Lisp should respond with add-person. If not, make

sure you haven't missed any quotes or parentheses (hint: if

you have a number greater than zero in front of the > prompt,

that is the number of parentheses you are missing). You don't

have to indent as shown above, though it helps show each

level of the definition.

There are a number of new items in this definition, but most

are pretty simple. Define is the command that defines new

commands to Lisp. It needs to know three things. The first is

the name of the command (we are calling it add-person); the

second is a List of the arguments (only one in this case - per

son); and the last is the body of the function. Note that quote

marks are used, since we want the literal statements we typed

in, not their value.

The first command in the function body is progn. All this

command does is tell Lisp to evaluate all the other items in

the List. Normally, Lisp expects a command to be in the form

(Command Argument Argument...). Progn lets you string a

set of commands into one List in the form (progn (Command

Argument...) (Command Argument...)...). We need to do this

in add-person because we want to do two things. The first is

setq. This is a special version of set, which we used earlier.

Setq allows you to skip the first quote. The variable we are

Transactor 39 May 1988: Volume 8, Issue 6

setting is family-tree, our database. What we want to set it to

is a List consisting of all the things already infamily-tree plus

the new person data. We use the cons command to do this.

Cons creates a List formed from the first argument followed

by the second argument. Note that I put person first, andfam

ily-tree second, thus adding the new information to the front

of the database instead of the end. For technical reasons this

turns out to be faster than the other way around, but either

way will work.

The second item is not a command, just the word person. No

tice that it is not enclosed in parentheses. When Lisp sees just

a variable name without parentheses, it just takes the value of

that variable, and leaves it as the return value. Everything in

Lisp leaves some sort of return value; whenever Lisp has fin

ished processing the commands you have given it, it prints

out the final return value. Well, it turns out the return value

from setq is the value to which the variable was set. In our

case, this is the whole database. Since it could get lengthy to

have it print out every time we add a new person to family-

tree, we add the word person by itself; now our new com

mand has as its return value the information about the person

we just added. We could have used a special variable called t,

or nil, but person might be more useful if we want to combine

add-person into some other command.

Let's test out what we have so far. Issue the following:

0> (add-person '(nick m (jim marion)))

(nick m (jim marion))

0> family-tree

((nick m (jim marion)))

The last should produce a List of Lists showing everything in

our database. Since it is all scrunched together, enter (setpret-

ty t), then family-tree again. This will indent each level of

parentheses and make the Lists a little easier to read. Now

build up the database a little by adding some more people

with the following lines (this time, Lisp's responses are not

shown):

(add-person '(maryelna f (frank dorothy)))

(add-person '(nikki f (nick maryelna)))

(add-person '(mike m (jim marion)))

(add-person '(matt m (nick maryelna)))

family-tree

Notice that the database has become larger.

Interrogating the database

Now let's define some new commands that will help us find

things in the database. The first is a command to find some

body's name and parentage:

0>(defun find-name (name)

1> (setq temp family-tree)

1> (dountil (or

3> (eq temp nil)

i3> (eq name (car (car temp))))

2> (setq temp (cdr temp)))

1> (setq person (car temp)))

There are more new commands here, but it is still pretty sim

ple. Defun is another version of define. Like setq, it is a short

hand that eliminates the need for quoting its arguments. De-

fun also supplies an implicit progn, so we don't have to both

er with that either. We've seen setq before. Here we are using

it to set a temporary variable to our database because we are

going to have to check each item in it to see if the first Atom

of the sublist is the name we are looking for.

Dountil is a looping command. Until the first argument re

turns a true value (in Lisp, true means anything that isn't nil),

this command will execute the remaining commands in the

List. In our case, we will want to terminate the loop when ei

ther we have run out of person entries in the database, or we

have found the person entry whose first Atom is the name of

the person we are looking for.

Conveniently, Lisp has an or command to express this sort of

requirement. Or evaluates each of its arguments until it either

finds a non-nil, or runs out of arguments (in which case it re

turns nil). The first argument is (eq temp nil). The eq tests to

see if its two arguments are identical, so if temp is equal to

nil, this command will return t. If temp is not nil, or goes to

the next argument. This means there is a person List left, so

we want to compare the first Atom in that List with the name

we are looking for.

To do this, we use the car command. Car returns the first part

of its argument (which must be a List). Since temp is a copy

offamily-tree, the car (first item) of temp is the first 'person'

List in temp. The name is the first Atom in the List, so we

take the car of the car of temp, and compare that to the name

we're looking for. If they are the same, the eq will return t,

and the dountil is done. Otherwise we need to do something

to look at the rest of the person Lists in temp.

This is where cdr comes in. Cdr returns the tail of a List - ev

erything but the car. Since or told us that the current first List

in temp isn't the one we want, we simply setq temp to every

thing but the first List, and repeat the process. Eventually, the

dountil either runs out of Lists in temp (temp equals nil\, or

the car of temp is the person list corresponding to the name

we want. When the dountil terminates, we return the car of

temp. Note that the car of () is nil, sofind-name returns either

the person List of the name we asked for, or nil if the name is

not found. Try (find-name 'nikki); you should get back (nikkif

(nick maryelna)).

Now for another simple, but useful command:

0> (defun parents-of (name)

1> (cond

2> ((find-name name) (setq parents (nth 3 person)))

Transactor 40 May 1988: Volume 8, Issue 6

2> (t (setq parents nil))))

parents-of

Pretty easy, right? Only two new commands this time. Cond

is the Lisp version of if, but a little more complicated. Basi

cally, the arguments for Cond are the members of a List of if

statements. Each argument List is a pair of commands. The

first command in the pair is the condition part. If it returns

non-nil, then the second command is evaluated. If the first

command returns nil, then the next condition is examined.

There is a requirement in Micro-Lisp that at least one of the

conditions in a cond statement must return non-nil, or it is

considered an error.

In parents-of the first condition is (find-name name). Recall

that find-name returns the person List entry if the name is

found, or nil if it is not. If (find-name name) returns non-nil in

the present case, we will want to set a variable called parents

to the third item in the person List thatfind-name returned. To

do this we use nth, a command that returns the nth entry from

the third argument (a List), where n is specified by the sec

ond argument.

In case the first condition returns nil (the name was not

found), we need to make sure that at least one condition is

true {non-nit). Lisp supplies a variable called t that is guaran

teed to return non-nil, we use this for the second condition,

and set parents to nil because we can't identify the parents of

someone not in the database. Note that Lisp skips condition

testing after the first true condition is found, so the second

setq in the above definition is never executed if the name we

are looking for is found. Try (parents-of 'nick)', you should

get back (jim marion).

One more short example:

0> (defun grand-parents-of (name)

1> (setq grand-parents

2> (list

3> (parents-of (car (parents-of name)))

4> (parents-of (car (cdr (parents-of name)))))))

Only one new command in the whole thing, and it is pretty

easy to figure out what it does. List takes all its arguments

and returns a List (simple, isn't it?). Think about what is go

ing on. Grandparents are parents of a person's parents, so all

our new command has to do is create a List of the parents of

the parents of the person in name. Parents-of returns a List

with the two parents' names. The car (first part) of this List is

the name of one of the parents. If we now call parents-of with

this, we will get one set of grandparents. The cdr (rest of) the

original parent List is a List (cdr always returns a List) that

has only one entry, the other parent. The car of that is the

name of the other parent, and the parents-of that is the other

set of grandparents. It takes a long time to explain, but it real

ly isn't complicated - just follow it through. Try (grand-

parents-of 'matt); you should get back ((jim marion) (frank

dorothy)).

Where to go from here

I could continue with more examples, but these should give

you an idea of what Lisp is. Purists will probably be upset

that I did not use recursion techniques in the examples. Lisp

handles these very well, but I find them difficult to follow and

harder to explain; I purposely kept the examples straightfor

ward. As you can see by examining thejist of built-in com

mands, there are a lot of Lisp words that I didn't even cover.

Experiment with them. Even more than BASIC, Lisp is inter

active. Try some things and see what happens.

After you have some experience, try the command called set-

debug. This turns on a trace facility that traces what is going

on. Then use baktrack to see all that went on to get to where

you are (with our simple family-tree, grand-parents-of goes

through over 100 Lisp statements to get the answer). There is

also a trace command that prints out the levels as they are be

ing executed. If setdebug is t and there are symbolic variables

(as name was in our examples) you get an opportunity to dis

play their values before Lisp restores them (enter nil to get

out of this mode).

There is an editor (entered with the edit command) that al

lows you to input and save Micro-Lisp source statements; you

use the Micro-Lisp command source to load them into your

Lisp 'environment'. To Micro-Lisp, your 'environment' is all

the Lists and Atoms you have defined. Use the commands

save and load to keep and restore copies of your work.

A separate program ("sae.lisp") is a special version of the

Micro-Lisp edit command. This program runs without Micro-

Lisp to let you create Micro-Lisp source programs larger than

would be possible with Micro-Lisp running (since Micro-Lisp

and all your working Lists take up memory).

Meanwhile, if Lisp interests you enough that you would like

to know more about it, you might want to read some or all of

these books and articles:

Programmer's Guide To Lisp, by Ken Traction (Tab Books)

Understanding Lisp, by Paul Gloess (Alfred Publishing)

Lisp: Basically Speaking (80 Micro, May 1983)

Design OfANM6800 Lisp Interpreter (Byte] August 1979)

Three Microcomputer Lisps (Byte, September 1981)

Editor's Note: Unfortunately, with a 10K object file size,

there is just no room for a program listing of Nick Vrtis' Mi

cro-Lisp interpreter in the magazine. However, Micro-Lisp,

some sample Lisp code and the SAE.lisp stand-alone editor

will be available on the disk for this issue, and will also be

posted to Data Library 17 on CompuServe's CBMPRG Fo

rum. In the near future, Transactor will also be releasing a

special disk containing the MAE assembler source to Micro-

Lisp, along with programming notesfor those who wish to ex

pand or modify the interpreterfor their own needs.

Transactor 41 May 1988: Volume 8, Issue 6

Micro-Lisp Built-in Functions COND (COND(tlrl)(t2r2))

ABORT (ABORT msg)

Stops current processing, displays the message that msg eval

uates to, and returns to the top level processing. This function

can be used to define additional error processing.

ABS (ABS n)

Returns the absolute value of n.

ADD (ADD nl... nn)

Returns the sum of the numbers nl through nn,

AND (ANDxl...xn)

Evaluates xl and, if it is not nil, proceeds to evaluate the fol

lowing arguments until nil is returned, or the end of the argu

ment List is encountered. Note that and does not evaluate the

following arguments if nil is returned from any argument.

APPEND (APPEND 1112)

Returns the List created by appending 12 to the end of 11.

APURGE (APURGE atm)

Purges the Atom atm from memory and frees the space for re

use. Any references to atm in Lists are changed to reference

nil. Apurge removes the value, definition, and property Lists

of built-in functions, but does not remove the built-in defini

tion or free the space.

ATOM (ATOMx)

Returns t (true) if x evaluates to an Atom; returns nil other

wise.

BAKTRACK (BAKTRACK n)

Displays the last n functions that were executed. Only valid if

debug has been previously activated (see setdebug).

CAR (CAR list)

Returns the first part of list.

CDR (CDR list)

Returns the rest of list after the first part (the car) is skipped.

COLD (COLD)

Restarts Micro-Lisp from the beginning. All options and pa

rameters are reset to the way they were when RUN was is

sued.

Evaluates tl and executes rl if tl returns non-nil. If tl returns

nil, cond proceeds to evaluate t2. Note that t2 will not be

evaluated if tl does not evaluate to nil. An error is issued if all

tests evaluate to nil.

CONS (CONS xl x2)

Returns a List that has xl as its first part {car) and x2 as its

rest part (cdr). If xl and x2 evaluate to Atoms, a special List

called a 'Dotted Pair' is returned.

DECIMAL (DECIMAL)

Sets the current number base to decimal and returns the num

ber 10.

DEFINE (DEFINE fnargx)

Create a function calledfn that has arguments specified in the

list arg. The body of the function is specified in the list x. In

define, fn, arg, and x are evaluated. A defined function has an

implied progn before the body.

DEFUN (DEFUN fn arg x)

Same as define, except thatfn, arg, and x are not evaluated. It

is a more convenient form when entering a function from the

keyboard since quotes are not needed.

DISKCMD (DISKCMDmsg)

Issues the disk command msg. This function opens and closes

the disk command channel.

DISKST (DISKST)

Reads the disk status via the command channel. The function

opens and closes the command channel.

DISK$ (DISKS)

Reads the disk directory and returns a List of Lists about the

disk. Each entry is a List of 3 Atoms. The first Atom is the

number of blocks, the second is the file name, and the third is

the file type. The first entry is the disk name, and the last en

try is the number of blocks free.

DIVIDE (DIVIDE nln2)

Returns the integer result of nl divided by n2.

Transactor 42 May 1988: Volume 8, Issue 6

DOUNTDL (DOUNTILtxl...xn) GETPROP (GETPROPapn)

A looping function. The test t is evaluated and, until it is true

{non-nil), the expressions xl through xn are evaluated (using

an implied progri). Dountil returns the non-nil value returned

from the expression t.

DOWHILE (DOWHILE t xl... xn)

A looping function. The test t is evaluated and, while it is still

true {non-nil), the expressions xl through xn are evaluated

(using an implied progn). Dowhile returns nil always.

EDIT (EDIT)

Exits Lisp to the BASIC screen editor. You may enter a Lisp

program as you would a BASIC program. The only keywords

that will function are LOAD, SAVE, LIST, NEW and END.

END returns you back to Micro-Lisp, the others operate as

expected.

EQ (EQxlx2)

Returns t if xl is identical to x2. Not very useful if comparing

Lists.

EQUAL (EQUAL xlx2)

Returns t if xl is the same as jc2, otherwise returns nil. This

will properly test Lists.

EVAL (EVALx)

Evaluates the List that x evaluates to. (Eval '(car '(a b))) will

produce the same results as (car '(a b)).

EXIT (EXIT)

Leaves Lisp and returns to BASIC.

EXPLODE (EXPLODE a)

Returns a List of numbers that represent the ASCII value of

the name of the Atom a. If a evaluates to a number, it is con

verted according to the current base and the ASCII values of

the digits are returned.

GC (GC)

Forces garbage collection to take place. Returns t.

GETDEF (GETDEFa)

Returns the property value stored under the property name pn

under the atom a. Returns nil ifpn is not defined under a.

GREATERP (GREATERPnl...nn)

Returns t if the numbers nl through nn are in descending or

der. Note that equal is not considered descending.

HEX (HEX)

Set the current number conversion base to 16 (hexadecimal).

Returns the value 10 hex (decimal 16).

IMPLODE (IMPLODE 1)

Takes a List of numbers representing ASCII characters and

returns an Atom whose print name is that series of ASCII

characters. If any number is greater than 256, the ASCII char

acter is taken from the MOD 256 value. If the print name re

sulting from imploding the List results in a valid number, then

it will be converted to a number.

LAMBDA ((LAMBDA (x)(b))y)

A method of executing a function without defining it. The

current value of x is saved, then it is assigned the value of y

and the body b is evaluated (with an implied progn). After b

is evaluated, x is restored to its previous value. Note that there

may be more than one Atom specified in the argument list,

and that there must be a one to one correspondence between

the number of arguments and the number of values supplied.

LENGTH (LENGTH x)

Returns the number of elements in the list x.

LESSP (LESSPnl...nn)

Returns t if the numbers nl through nn are in ascending order.

Note that equal is not considered ascending.

LIST (LISTxl,..xn)

Returns a List containing xl through xn.

LISTP (LISTPx)

Returns t if x evaluates to a List, nil if x evaluates to an Atom.

LOAD (LOADfn)

Returns the definition of the function specified by a. Returns Loads a previously saved environment from file//*. This must

nil if a has not been previously defined. be executed from the first level.

Transactor 43 May 1988: Volume 8, Issue 6

LPAREN (LPAREN) PROGN (PROGN (xl)... (xn))

Outputs the left parenthesis character.

MEM (MEM)

Prints out the number of free object entries, the number of

free List entries and the amount of unallocated memory (in

bytes). Returns the amount of unallocated memory.

MULTIPLY (MULTIPLY nl... nn)

Returns the product of nl times n2 ... times nn. Note that no

check is made for overflow.

NEW (NEW)

Clears memory of any user defined Atoms, Lists, and func

tions without changing settings such as pretty print, echo, or

number base.

NIL NIL, (NIL), or ()

This is the Lisp specification of 'nothing'. As a value it re

turns nil; as a function it also returns nil. It is also considered

both an Atom and a List.

NTH (NTH n 1)

Returns the nth element of the List /.

NULL (NULLx)

Returns r if x evaluates to nil, returns nil otherwise (performs

a logical NOT function).

NUMBERP (NUMBERPx)

Returns f if x evaluates to a number, nil otherwise.

OR (OR xl... xn)

Evaluates xl and if it is nil, or proceeds to evaluate the fol

lowing arguments until a non-m7 value is returned, or the end

of the argument list is encountered. Note that or does not

evaluate the following arguments if non-nil is returned from

any argument.

PATOM (PATOMa)

Prints the Atom a.

PRINT (PRINT x)

Prints the expression x evaluates to, followed by a carriage re

turn. Print returns the value t. If the pretty print flag is set,

each parenthesis level will be started on a new line, and will

be indented.

Successively evaluates the specified function expressions, xl

through xn.

PUTPROP (PUTPROPapnpv)

Puts the property value pv as the property pn ofAtom a. If the

property pn already exists, the old value is replaced by the

new value.

QUOTE (QUOTE x)

Returns the unevaluated expression x.

RATOM (RATOM)

Waits for a single Atom to be entered from the terminal.

READ (READ)

Reads an expression from the terminal.

RPAREN (RPAREN)

Outputs a right parenthesis to the terminal.

SAVE (SAV-Efn)

Saves the current environment (including all objects and

Lists) to file/n.

SET (SET ax)

Causes the value of x to be assigned to the Atom a.

SETBASE (SETBASE n)

Sets the number base used for conversion for both input and

output. Note that n is converted and evaluated with the cur

rent base before the new number base is set.

SETDEBUG (SETDEBUG x)

If x evaluates to nil, debug mode is turned off; if it evaluates

to non-nil, debug mode is turned on. Debug mode is useful

for problem determination. If debug mode is on, Micro-Lisp

will track up to the last 128 functions. This tracking can be

reviewed using the baktrack function. Unlike trace, which

displays the actual input arguments to a function, debug only

tracks the unevaluated arguments. Debug mode also gives

you an opportunity to print any Atom values before lambda

and function arguments are restored in error processing. This

is sometimes useful in determining what caused an error con

dition to occur.

Transactor 44 May 1988: Volume 8, Issue 6

SETECHO (SETECHO x) UNDEF (UNDEFa)

Used to control the echo of source input to the terminal.

(Setecho t) will cause all source input to be echoed (this is the

default setting). (Setecho nil) will eliminate the echo.

SETPRETTY (SETPRETTYx)

Used to set the pretty print flag. If x is non-nil, pretty printing

will be turned on and expressions will be printed with each

parenthesis on a new line and indented for easier reading. If x

is nil, the flag is turned off.

SETQ (SETQ a x)

Causes the value of x to be assigned to the Atom a (similar to

set, except that for setq, a is not evaluated).

SOURCE (SOURCE fn)

Directs that input is to come from the disk file fn instead of

the keyboard. Input is obtained from there until the end of the

source file. The source file may contain another source state

ment. This will close the current source file and open the new

source file for input.

SUBTRACT (SUBTRACT nl nl)

Returns the value nl -n2.

SYS (SYSadrxyaf)

Invokes a machine language routine at address adr. The val

ues for the jc, y, a and/(flag) registers are optional and speci

fied by the corresponding arguments. This function will not

allow the IRQ flag to be set, but any other processor flags can

be set with the / argument. This function returns a List of

numbers consisting of the values of the X, Y, A and FLAG

registers after the return from the machine code call.

T T, (T)

Removes the function definition from the Atom a. If a was a

native function that had been redefined, the native definition

will be restored.

ZEROP (ZEROPn)

Returns t if n is equal to zero; returns nil if it is not.

+ (+ nl... nn)

Shorthand for add.

(-nln2)

Shorthand for subtract.

(* nl... nn)

Shorthand for multiply.

(/nln2)

Shorthand for divide.

Special Input Characters

A Used to start and end a comment. All characters between

the first A and the second A are ignored. (Note: this character

prints on your C64 screen as an up-arrow.)

' Used as a shorthand for {quote ...) - (quote x) can be short

ened to 'x. Note the dropping of the word quote and a set of

parentheses. 'X will print out as (quote x).

" Used to allow special characters and spaces to be included

in an Atom name. Any characters between the double-quotes

will become part of the Atom name. The double-quotes them

selves will not become part of the name.

$ Used to specify a base 16 (hex) number regardless of the

current setting of base. Must precede any digits.

T is one method of specifying a non-nil value. As a function, t . Used to specify a base 10 (decimal) number regardless of

returns t. the current setting of base. Must precede any digits.

% Used to specify a base 8 (octal) number regardless of the

current setting of base. Must precede any digits.

Additional notes

TERPRI (TERPRI)

Causes a carriage return to be output.

TRACE (TRACE x)

All numbers are stored as 24-bit signed integers. This allows

Causes each function level and its arguments to be output to a range of +8,388,607 to -8,388,608.

the terminal as it is evaluated. Note that the actual evaluated

arguments are output. Cursor control keys work as they do in BASIC.

Transactor 45 May 1988: Volume 8, Issue 6

An Algorithm for 6510 Mnemonics

The challenge: tofind the ideal mnemonic-to-opcode algorithm

by Glen C. Bodie

In the March 1987 issue of Transactor, Chris Miller wrote a

very interesting article entitled '"Assembling Assemblers". In

his discussion of command look-up tables, he challenged

"anyone to come up with an algorithm that will generate a

unique, one byte value for every standard 6510 mnemonic." I

love a good challenge! At first I thought it trivial, but it soon

proved more complex than it first ap

peared. In general terms, the problem

is to derive an algorithm that maps 56

unique three-character alphabetic

strings into a unique value between 0

and 255 inclusive.

'...why not use the

computerfor what it is

best at - dumb, repetitive

searching.9

There are all sorts of simple algorithms

that quickly come to mind. As an ex

ample, why not just add up the ASCII equivalents of each let

ter in the mnemonic? For all the examples, I'll use the

mnemonic "LDA".

code = asc('T') + asc("d") + asc("a")

That is simple enough, but the CODE is not unique since

"ADC" and "BCC" would produce the same result. Also the

value of CODE ranges between 195 and 270 so it still needs

some scaling. The easiest way to get CODE within range is to

make each letter a value relative to "A". Now our algorithm

looks like:

code = (asc(T) - asc("a")) + (asc("d") - asc("a")) +

(asc("a") - asc("a"))

Now the range is 0 to 75. That's great, but the CODE is still

not unique. So how are we going to make it unique? That's

where it starts to get weird!

Base 10 and Base 26

Think about normal decimal numbers. In the value 444, the 4

has a different value in each position because it is multiplied

by the base to some power, that is, by 1, 10 or 100. We can do

the same thing with letters by multiplying each position by 1,

26 or 676. If we do that, the results are guaranteed to be

unique, but the range is now 0 to 17576 and we need to map

that into 0 to 255.

Before we get carried away with trying to find some map

ping, think about how this will eventually be coded in the as

sembler. First of all, it will be written

in machine language (ML). Multiply

ing by 26 in ML is a little awkward

and time consuming. Instead of using

26 as the base, why not use 32 as the

base since multiplying by 32 is the

same as shifting left 5 times. The re

sults will still be unique, but now the

range is 0 to 32768!

We can try to map 32768 into 255 by simple techniques (such

as ANDing with 255) or more complex techniques (such as

XORing the high and low bytes), but these all turn our unique

CODE into something that is no longer unique. It seems that

the straightforward approaches just aren't going to work. A

mathematical, analytical approach is beyond me, so why not

use the computer for what it is best at - dumb, repetitive

searching. What we want it to do is try a lot of alternative

combinations of multipliers and transformations until it finds

one that generates unique codes in the range 0 to 255.

What Computers do Best

To limit the problem, let's first make two simplifications:

1) Only use power of 2 multipliers

2) Use a transformation of the letters to reduce the combina

tions

For the transformation, there are only 14 possible first letters,

18 possible second letters and 15 possible third letters. All the

combinations of these result in a CODE between 0 and 3780.

The first step is to get the ASCII value of each letter, make it

Transactor 46 May 1988: Volume 8, Issue 6

The program ranfor over 30 hours

beforefinding this answer.9

relative to "A", then use that in a table look-up to get a value

between 0 and 14, 0 and 18 or 0 and 15. One key benefit of

this is that we will discover very quickly if the mnemonic is

invalid. Now our algorithm looks like this:

code = ((tablel(T-"a") *kl +

table2("d"-"a") * k2 +

table3("an-"a")*k3))and255

Without juggling the tables around and using K1=K2=K3=1,
the code was not unique, so a littlfe bit of searching was re

quired. Program 1 does this. There are probably other an

swers and maybe even better ones! but this one works! The
program checks through 13 different sets of multipliers and

shifts all three tables through all the combinations. This

comes out to a total of 49140 situations to check, calculating

the CODE for each of the 56 mnemonics until it finds a dupli

cate or suceeds. The program ran for over 30 hours before

finding this answer.

Program 2 is the resulting algorithm coded in BASIC and

program 3 is the same thing in ML. The resulting CODE is a

value between 0 and 255 which can be used in a table look-up

to route the assembler to the correct processing, where the

operand field could be parsed, the addressing mode deter

mined, etc. Invalid mnemonics are found whenever the table

results in a transformed value of zero. It is possible to input

an invalid mnemonic that can be transformed without error

into the same CODE as some valid mnemonic. This will have

to be caught in the processing routine for each mnemonic by

checking when you get there if the mnemonic really was what

you were expecting.

There are two obvious alternatives to this solution:

1) a binary search tree

2) a hashing algorithm

The binary search is a classic programming technique for

searching through ordered lists in the minimum number of

comparisons. And though this program is a hashing algorithm

of sorts, a true hashing algorithm would deal with duplicate

codes, in case several mnemonics "hashed" to the same

CODE. I don't know if Mr. Miller ended up using either of

these. Both would work for sure, might be faster than this al

gorithm and have one large advantage - what if another

mnemonic needs to be added to the list!

So, there it is - an algorithm to generate a unique code for

each 6510 mnemonic. I sure love a good challenge.

Program 1: This is the program that was used to generate

the tables and constants so that the formula to find CODE

(see text) would generate a unique value for each of the 56

opcode mnemonics. It takes 30 hours tofind the solution.

PG 100 rem program 1 —

MI 110 rem

FL 120 rem - find the right algorithm—

AK 130 rem

PL 140 n=56: dim op$(n),op(n)

KF 150 for i=l to n: read op$(i): op(i)=0: next

EK 160 data adc,and,asl,bcc,bcs,beq,bit,bmi

DJ 170 data bne,bpl,brk,bvc,bvs,clc,cld,cli

CH 180 data clv,cmp,cpx,cpy,dec,dex,dey,eor

FA 190 data inc,inx,iny,jmp,jsr,lda,ldx,ldy

EK 200 data lsr,nop,dra,pha,php,pla,plp,rol

BL 210 data ror,rti,rts,sbc,sec,sed,sei,sta

LM 220 data stx,sty,tax,tay,tsx,txa,txs,tya

PN 230deffnh(x)=int(x/256)

EF 240deffnl(x)=x-fnh(x)*256

JK 250 dim tr(2,25)

BD 260 for i=0 to 2: for j=0 to 25

PM 270 read tr(ij): next j,i

IO 280 data 1, 2,3, 4, 5, 0, 0, 0,6, 7

AE 290 data 0, 8, 0, 9, 10, 11,0, 12,13,14

EN 300data 0, 0,0, 0, 0, 0, 1, 2, 3, 4

KH 310 data 5, 0,0, 6, 7,0, 0, 8, 9,10

IO 320 data 11,12, 0,13, 14, 15, 0,16, 0,17

BL 330 data 18, 0, 1, 0, 2, 3, 4, 0, 0, 0

GJ 340 data 5, 0,6, 7, 0, 0, 0, 8, 9, 10

JM 350 data 11,12, 0, 13, 0, 14, 15, 0

PP 360 dim k(12,2)

MF 370 for i=0 to 12: for j=0 to 2: read k(i,j): next j,i

BF 380 data 1,1,1, 1,2,4, 1,4,2

PG 390 data 2,1,4, 2,4,1, 4,2,1

PH 400 data 4,1,2, 1,4,16, 1,16,4

JF 410 data 4,1,16,4,16,1,16,4,1,16,1,4

HK 420forkk=0tol2

BE 430 kl=k(kk,0): k2=k(kk,l): k3=k(kk,2)

CD 440fora0=0tol3

DE 450forb0=0tol7

NE 460 for c0=0 to 14

FJ 470 print Mkl/k2/k3/a0/b0/c0=nkl;k2;k3;aO;bO;cO

BD 480 gosub 2000: rem execute algo

DA 490 next cO, bO, aO, kk

AA 500 print "nothing worked!"

OP 510 end

HH 2000 rem —

BF 2010 rem execute the algorithm

CA 2020 rem

CG 2030 xx=asc("a")

AA 2040fori=l ton

AD 2050a$=left$(op$(i),l):a=asc(a$)-xx

EF 2060 b$=mid$(op$(i),2,l): b=asc(b$)-xx

NE 2070c$=right$(op$(i),l):c=asc(c$)-xx

AL 2080al=tr(0,a)+a0:a2=al-int(al/14)*14

v :ifa2=0thena2=14

FA 2090bl=tr(l,b)+b0:b2=bl-int(bl/18)*18

Transactor 47 May 1988: Volume 8, Issue 6

GA

LJ

DA

MB

FD

DF

CF

JF

NI

:ifb2=0thenb2=18

2100 cl=tr(2,c)+cO: c2=cl-int(cl/15)*15

:ifc2=0thenc2=15

2110 x = a2*kl + b2*k2 + c2*k3

2120op(i) = fnl(x)

2130 if i=l then goto 2170

2140forj=ltoi-l

2150 if op(i)=op(j) then gosub

2160 next j

2170 next i

2180 prinf'it works!": end

Program 2: This is a BASIC implementation of the algorithm

calculated by Program I. It prints each mnemonic along with

the code generated; each code is unique, and could be used

to direct an assembler to the appropriate parsing routine for

the opcode.

KA

MI

LK

GL

AJ

PH

OF

BP

AJ

NJ

HL

AP

GH

FI

10

BE

DO

AL

HF

DB

JD

LN

EE

DC

OE

MH

EF

AK

IK

EK

DA

DE

EB

OH

CK

LJ

CE

IL

JE

HG

100 rem, — program 2

110 rem

120 n=56: dim op$(n),op(n)

130 for i=l to n: read op$(i): next

140 data adc,and,asl,bcc,bcs,beq,bit,bmi

150 data bne,bpl,brk,bvc,bvs,clc,cld,cli

160 data clv,cmp,cpx,cpy,dec,dex,dey,eor

170 data inc,inx,iny,jmp,jsr,lda,ldx,ldy

180 data lsr,nop,ora,pha,php,pla,plp,rol

190 data ror,rti,rts,sbc,sec,sed,sei,sta

200 data stx,sty,tax,tay,tsx,txa,txs,tya

210 rem

220 m=25: dim tl(m),t2(m),t3(m)

230 for i=0 to m: read tl(i): next

240 data 6, 7, 8, 9, 10, 0, 0, 0, 11

250 data 12, 0, 13, 0, 14, 1, 2, 0, 3

260 data 4, 5, 0, 0, 0, 0, 0, 0

270 for i=0 to m: read t2(i): next

280 data 10,11,12,13,14, 0, 0, 15,16

290 data 0, 0,17,18, 1, 2, 3, 0, 4

300 data 5, 6, 0, 7, 0, 8, 9, 0

310 for i=0 to m: read t3(i): next

320 data 4, 0, 5, 6, 7, 0, 0, 0, 8

330 data 0, 9,10, 0, 0, 0,11, 12, 13

340 data 14,15, 0, 1, 0, 2, 3, 0

350 rem

360 rem — execute the algorithm

370 rem given an opcode mnemonic in 'op$\

380 rem this routine puts a corresponding

390 rem code in 'x\ the code is guaranteed

400 rem to be unique for each 6510 mnemonic.

410 for i=l to n: op$=op$(i)

420 a=asc(left$(op$,l))-asc("a")

430 a=tl(a): if a=0 goto 1000

440 b=asc(mid$(op$,2,l))-asc(nafl)

450 b=t2(b): if b=0 goto 1000

460 c=asc(right$(op$, l))-asc("a")

470 c=t3(c): if c=0 goto 1000

480 x=(a* 1+ b*16 + c*4) and 255

490 op(i) = x: next

Transactor ' 48

CB

AI

GC

DL

OE

CM

OB

IH

IJ

KM

GE

CG

EM

500 rem

510 rem — print results from array

520 rem

530 print" 6510 Mnemonic Algorithm"

540 print

550 for i=l to 54 step 3

560forj=itoi+2

570 print op$(j)"=Mright$(" "+str$(op(j)),3)n ";

580 next: print: next

590 print op$(55)"="right$(" "+str$(op(55)),3)n ";

600 print op$(56)"="right$(lf "+str$(op(56)),3)

610 end

1000 rem — invalid mnemonic

Program 3: The machine-language implementation of the

opcode algorithm in Program 2.

NA

MI

GL

AK

IC

HG

BL

LJ

CI

ED

KK

IE

JC

DP

JL

DP

MP

PC

OI

LD

CK

NG

GL

ON

KM

OK

OL

HB

JL

GI

DO

HD

DP

JB

IL

IB

OC

NA

ID

AG

LA

100 rem program 3

110 rem

120 rem pal64 format source

13.0 rem

140 open 2,8,l,"0:output"

150 sys 700

160 .opt o2

170*= $c000

180 jmp begin

190;

200 ; table of mnemonics

210;

220 mnem =*

230 .asc "adcandaslbccbcsbeqbitbmibnebplbrk"

240 .asc "bvcbvsclccldcliclvcmpcpxcpydecdex"

250 .asc "deyeorincinxinyjmpjsrldaldxldylsr"

260 .asc "noporaphaphpplaplprolrorrtirtssbc"

270 .asc "secsedseistastxstytaxtaytsxtxatxstya"

280;

290; resulting op-codes

300;

310 ops *= *+56

320;

330 ; tables for transformations

340;

350 tablel =*

360 .byte 6, 7, 8,9,10, 0,0,0,11

370 .byte 12,0, 13, 0, 14, 1, 2, 0, 3

380 .byte 4,5, 0,0, 0, 0,0,0

390

400table2=*

410 .byte 10,11, 12, 13,14, 0, 0, 15,16

420 .byte 0, 0, 17, 18, 1, 2, 3, 0, 4

430 .byte 5, 6, 0, 7, 0, 8, 9, 0

440

450table3=*

460 .byte 4, 0, 5, 6, 7, 0, 0, 0, 8

470 .byte 0, 9,10, 0, 0, 0, 11, 12,13

480 .byte 14, 15, 0, 1, 0, 2, 3, 0

490;

500; execute the algorithm

May 1988: Volume 8, Issue 6

PH

AG

GJ

HK

AP

FA

DA

El

HC

KK

NO

GD

LE

LE

KM

HH

BI

LI

FJ

MD

PC

GO

OC

PG

IL

NM

PM

ME

JP

DA

KK

ML

EF

10

ID

AL

AF

KF

EG

PG

CG

FD

CC

MH

GD

KK

KE

DG

OF

NC

CH

EP

GI

AE

AI

NB

EB

MU;

520 begin

530

540 loopl

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940;

ldy #0

sty opsx

Ida mnem+0,y

sec

sbc asca

tax

Ida tablel,x

beq error

sta temp ; (left-)*l

Ida mnem+l,y

sec

sbc asca

tax

Ida table2,x

beq error

lsr

lsr

lsr

lsr

clc

adc temp

sta temp ;+(mid-)*16

Ida mnem+2,y

sec

sbc asca

tax

Ida table3,x

beq error

lsr

lsr

clc

adc temp ; +(right-)*4

ldx opsx

sta ops,x

inx

stx opsx

iny

iny

iny

cpy #168

bne loopl

beq contl

950; error routine

960;

970 error

980;

=*

990 ; print results/process code byte

1000;

1010 contl

1020;

=*

1030; data areas

1040;

1050 opsx

1060 asca

1070 temp

1080 .end

Transactor

.byte 0

.asc "a"

.byte 0

Bits & Pieces I:

The Disk

From the famous book of the same name, Transactor

Productions now brings you Bits & Pieces I: The Diskl

You'll thrill to the special effects of the screen

dazzlersi You'll laugh at the hours of typing time

you'll save! You'll be inspired as you boldly go

where no bits have gone beforel

"Extraordinarily faithful to the plot

of the book... The BAM alone is

worth the price ofadmission/"

Vincent Canbyte

"Absolutely

magnetic!!

Gene Syscall

"Ifyou mount only one bits disk in 1987, make it this

onel The fully cross-referenced index is unforgettablel

Recs Read, New York Tl$

BITS & PIECES I: THE DISK, A Mylar Film, In association with Transactor Productions.

Playing at a drive near you!

Disk $8.95 US, $9.95 Cdn. Book $14.95US, $17.95 Cdn.

Book & Disk Combo Just $ 19.95 US, $24.95 Cdnl

49 May 1988: Volume 8, Issue 6

An Accurate TI$

Long-term timing accuracyfor the C64 and C128

by Noel Nyman

TI$, and its companion numeric variable TI, are handy for

timing applications. TI$ is easily reset and it's always there in

BASIC. TI can also be read or set through the kernal RDTIM

and SETTIM routines in machine language programs.

TI is incremented from the IRQ, or hardware interrupt rou

tine. IRQ occurs about sixty times each second. IRQ adds 1 to

TI each time it occurs. So, TI counts l/60ths of a second, of

ten called 'jiffies'.

TI is only as accurate as the IRQ frequency. Routines that halt

interrupts also stop the TI/TI$ clock. Disk and tape accesses

are the common causes of an

inaccurate jiffy clock. But

any machine language that

contains an SEI (SEt Inter

rupt mask), will have the

same effect.

There are two very accurate

clocks in the C64 and C128,

one in each CIA (Complex

Interface Adaptor) chip. The

clocks' timing is maintained

by the power line frequency,

and is accurate to a few mil-

lionths of a second each day.

As the power load increases during the day, the frequency

drops slightly. Your friendly power company monitors the fre

quency changes closely. Then, during non-peak hours, it in

creases the frequency a bit to compensate for the earlier

changes.

The C64/C128 operating systems do not make use of either of

the CIA clocks.

One of our clients wanted to use a C128 for industrial process

control. The C64 and C128 are excellent cost effective choic

es for this type of application. They have an "open architec

ture", which means you can get at all the internal signals eas

ily. Most industrial events occur in "real time", very slowly

Bit

56331

Hours

56330

Minutes

56329

Seconds

56328

Tenths

7

AM

PM

M

T

S

T

X

6

X

M

T

S

T

X

5

X

M

T

S

T

X

4

H

T

M

T

S

T

X

3

H

U

M

U

S

U

S

N

2

H

U

M

U

S

N

1

H

U

M

U

s

N

0

H

U

M

U

S

U

S

N

AM/PM Flag: AM=0, PM=1

T=tens digit U=units digit x=unused

Bit Functions in the TOD Clock

even to the ponderous 1MHz clock in the C64, so it's easy to

monitor or control many machines at the same time with a

very inexpensive, easily programmed computer. For more in

formation on control and monitoring applications, see Practi

cal Interfacing Projects With The Commodore Computers, by

Robert Luetzow (TAB Books).

TI$ was not accurate enough for our client. The TOD (Time

Of Day) clocks in the CIA chips seemed like a good choice to

him. But reading and using them is much more difficult than

using TI or TI$.

The TOD keeps time accurate to one-tenth of a second in four

addresses or registers (see figure 1). The information is held

in BCD (Binary Coded Dec

imal), a compact way of

storing decimal digits. BCD

complicates the task of using

the time numerically.

Our client was monitoring

the 'on time' of various plant

machinery, and counting

produced parts. His software

combined time and counts in

several statistical ways. He'd

intended to use the TI

counter, simply holding in

memory the starting TI and

the ending TI. Subtracting the two gives the total machine

"on time" in jiffies.

To do that using the TOD requires extracting seven BCD dig

its and the AM/PM flag. Then the digits must be converted in

to tenths of seconds and added together. A different conver

sion is required to display the digits as time on the screen.

What was needed was a way for the TOD clock to keep TI

and TI$ accurate.

Maintaining An Accurate TI

Our approach was to modify the IRQ routine to monitor the

TOD clock in CIA#1.

Transactor 50 May 1988: Volume 8, Issue 6

Since our client needed accuracy over a long period, we up

date TI/TI$ only once every hour. The new routine looks for

minutes, seconds, and tenth-seconds in the TOD to all equal

zero. When that occurs, the routine reads the TOD and up

dates the three bytes in zero page memory that make up TI.

BASIC generates TI$ from TI whenever requested, so an ac

curate TI means an accurate TI$.

The "New-IRQ" routine gets the data for the TI update from

three 25-byte tables. A value in each table corresponds to the

value found in one of the three bytes of TI at the start of each

hour. The routine determines the hour from the TOD hours

byte and uses that value as an index to each of the three ta

bles.

If you needed more accuracy, you could update TI each

minute. That would require three tables of 1500 bytes each,

much too large. You could use an algorithm to calculate the

three values for TI. But in practice, an update every hour is

accurate enough for real time applications.

Quirks in the TOD

There are only twenty-four hours in a day. A 25 byte table is

needed because of an anomaly in the TOD clock. The TOD

uses a twelve hour format, with an AM/PM flag, see figure

#1. For example, 11 a.m. is represented by the value 17 ($11)

stored in the hours register. Bit #4 is set for the 10's digit, for

a value of 16. Bit #1 is set for the 1 's digit.

For 11 p.m., the value is 145 ($91). Bits #4 and #0 are set. Bit

#7 is set for PM, value 128. That's all very straightforward.

The problem arises with 12 o'clock.

In twenty-four hour format, the time just after midnight is

called '00' hours. In twelve hour format, we call it 12 a.m., so

12 noon (1200 hours) becomes 12 p.m. to us. The TOD, how

ever, will clear the AM/PM bit if you try to set it with a 12. If

you poke the hours register with a 146 to set 12 p.m., the

TOD will change it to 18, its normal representation for 12

a.m.! If you POKE an 18, the TOD happily changes it to 146,

or 12 a.m.

To set the TOD properly, we have to poke '00' for 12 a.m.,

and '18' for 12 p.m.. But when we read the TOD, an '18' in

the hours register means twelve a.m., and a "146" means

twelve p.m.

So, there are two possible values for 12 a.m., '0' if we've just

set the TOD, and ' 18' if it's counted to a new day on its own.

These added to the other twenty-three hour values make up

tables of 25 bytes.

Using the New IRQ Routine

First, run the BASIC program "Create". A program named

"New-IRQ" will be created on device #8. You can change the

name or device number in line #1050. When prompted, enter

the starting address in decimal. If there are errors in the

DATA statements, you'll get an error message. Scratch

"New-IRQ", correct the DATA errors, and run "Create"

again.

"Create" is a complex generator because the "New-IRQ"

routine is not relocatable. There are several addresses and

vectors that will change, depending on where you decide to

place the code.

You need this flexibility. "New-IRQ" will work on either a

C64 or a C128. But the 'safe' places to store machine lan

guage code vary between the two machines. "New-IRQ" us

es 186 bytes. Anywhere in the area between 49152 and 53247

($C000-$CFFF) is good on the C64. On a C128, the area

starting at 4864 ($1300) may be safe. The tape buffer and

RS232 buffers are good choices, if your software doesn't use

them. In any case, keep the code below 16384 ($4000), so the

new routine will be 'visible' regardless of what bank you're

in when an IRQ occurs.

Line #1110 compensates for a bug in the 65xx/85xx family of

processors. Once "New-IRQ" is finished, the standard IRQ

routine is executed by an indirect jump, JMP ($C0FF) in ma

chine code. The actual address jumped through will depend

on where you located the "New-IRQ". The indirect vector

may span a page boundary. In our example above, the vector

sits at $C0FF and $C100. When this happens, the indirect

jump will not work properly (see 6502 Assembly Language

Programming, by Lance Leventhal, pages 3-13).

Line #1110 checks for this possibility and, if found, adds a

NOP code to the start of "New-IRQ". This makes the code

one byte longer, but avoids the bug under all circumstances.

LOAD "New-IRQ",8,1 either before you run your main pro

gram or from within the program itself. Use SYS xxxxx

(where xxxxx is the decimal starting address you used with

"Create") to initialize the routine.

The program "BASIC Time" sets TI$ and the TOD to the

current time, taking care of the 12 o'clock anomaly. Add

"BASIC Time" as a subroutine to your program, and call it

early.

You can also use "New-IRQ" as a stand-alone program to

keep TI$ accurate in direct mode. Be sure to use "BASIC

Time" to set the clocks, changing the RETURN in line

#50150 to END.

In either program or direct mode, pressing the RESTORE key

will disable "New-IRQ". A SYS to the starting address will

re-enable it. Although you can call "BASIC Time" again, it's

probably not necessary. Unless the computer is shut off, the

TOD and TI will continue running after RESTORE is

pressed.

Transactor 51 May 1988: Volume 8, Issue 6

Listing 1: "BASIC Time" subroutine

MP 50000 rem subroutine to get time from

BL 50005 rem user and convert for ti$ and

LE 50010 rem the tod clock in cia #1.

DN 50015:

AN 50020 rem by noel nyman

NN 50025:

CH 50030 rem called as a subroutine

HO 50035:

JE 50040 rem uses the following variables

EC 50045 rem ap - am/pm flag, am=0 pm=l

GM 50050 rem ht - hours, used for tod

EH 50055 rem mt - minutes, used for tod

GA 50060 rem sc - seconds, used for tod

KE 50065 rem tt - temporary variable

GG 50070 rem tt%- temporary variable

EL 50075 rem ht$-hours for ti$

MO 50080 rem mt$- minutes for ti$

IN 50085 rem st$- seconds for ti$

DA 50090 rem tt$-temporary for ti$

FD 50095 rem ap$- temporary variable

HC 50099:

CN 50100 print "current time is " left$(ti$,2)":" mid$(ti$,3,2)":";

BH 50110 print right$(ti$,2)

FD 50120 print: print "enter new time, or [rvs] [rvs off] to quit"

ID 50130 print: print "enter new hours (0-23):";

GP 50140 open 9,0: input#9,ht$: close9

MJ 50150 if ht$="" then return

MI 50160 ht=val(ht$):ifht<0 or ht>23 goto 50130

MI 50170 ap=0-(ht>12)

IH 50180:

EC 50200 print: print "enter new minutes (0-59):";

GE 50210 open 9,0: input#9,mt$: close9

IP 50220 mt=val(mt$): if mt<0 or mt>59 goto 50200

DL 50230 if len(mt$)<2 then mt$="00"+mt$

EL 50240:

HE 50300 print: print "enter new seconds (0-59):";

GL 50310 open 9,0: input#9,st$: close9

GA 50320 sc=val(st$): if sc<0 or sc>59 goto 50300

LD 50330 if len(st$)<2 then st$="OO"+st$

IB 50340:

AO 50400 if ap goto 50500

GJ 50410 print: ifht<12 goto 50460

BI 50420 print "am or noon (a/n)?";

DH 50430 get ap$: if ap$="" goto 50430

IL 50440 if ap$o"a" and ap$<>"A" and ap$o"n" and ap$o"N"

goto 50430

FE 50450 ap=0-(ap$="n")-(ap$="N"): goto 50500

HB 50460 print "am or pm (a/p)?";

DK 50470 get ap$: if ap$="" goto 50470

GP 50480 if ap$o"a" and ap$o"A" and ap$o"p" and ap$o"P"

goto 50470

IK 50490 ap=0-(ap$="p")-(ap$="P")

JB 50500 ht=ht+12*((ht=12) and (ap=0))

NC 50510 ht=ht-12*((ht<12) and (ap=l))

AM 50520 ht$=str$(ht): ht$="OO"+right$(ht$,len(ht$)-l)

IF 50530 tt$=right$(ht$,2)+right$(mt$,2)+right$(st$,2): ti$=tt$

KH 50540 tt=O: if ht>12 then ht=ht-12:tt=128

LJ 50550 tt%=ht/10: tt=tt+(16*tt%)+(ht-10*tt%)

FP 50560 poke 56335,peek(56335) and 127

HA 50570 poke 5633l,tt

PD 50580 tt%=mt/10: tt=(16*tt%)+(mt-10*tt%)

IB 50590 poke 56330,tt

AB 50600 tt%=sc/10: tt=(16*tt%)+(sc-10*tt%)

FE 50610 poke 56329,tt

AI 50620 poke 56328,0

CO 50630 print: goto 50100

Listing 2: "Create"

CN 1000 rem ** this program will create a

OJ 1010 rem ** machine language program

IH 1020 rem ** which modifies the irq

JK 1030 rem ** routine to set ti$=tod cia#l

El 1040:

HG 1050 openl5,8,15: open8,8,l,"0:new-irq": ck=0

JK 1060 input#15,e,e$,b,c: if e then closel5: print e;e$;b;c:stop

GB 1070 input "starting address: ";s$

KC 1080 s=val(s$): if s<l gotol090

EO 1090 def fhh(x)=int(x/256): def fnl(x)=x-256*int(x/256)

10 1100 print#8,chr$(fnl(s));:print#8,chr$(fnh(s));

PH 1110 if fhl(s+25)=255 then print#8,chr$(234);:s=s+l

GA 1120 for x=l to 5: read a: ck=ck+a: print#8,chr$(a);: next

EB 1130 pririt#8,chr$(fnl(s+25));:print#8,chr$(fhh(s+25));

HB 1140 for x=l to 4: read a: ck=ck+a: print#8,chr$(a);: next

KC 1150 print#8,chr$(fnl(s+26));:print#8,chr$(fnh(s+26));

HE 1160 print#8,chr$(169);chr$(fnl(s+27));

chr$(141);chr$(20);chr$(3);

DC 1170 print#8,chr$(169);chr$(fnh(s+27));

AJ 1180 for x=l to 66:read a: ck=ck+a: print#8,chr$(a);:next

KG 1190 print#8,chr$(fhl(s+l 12));:print#8,chr$(fnh(s+l 12));

AF 1200 for x=l to 3: read a: ck=ck+a: print#8,chr$(a);:next

NJ 1210print#8,chr$(fnl(s+137));:print#8,chr$(fhh(s+137));

EG 1220 for x=l to 3: read a: ck=ck+a: print#8,chr$(a);:next

BK 1230 print#8,chr$(fnl(s+162));:print#8,chr$(fnh(s+162));

NK 1240 for x=l to 12: read a: ck=ck+a: print#8,chr$(a);:next

MI 1250 print#8,chr$(fnl(s+25));:print#8,chr$(fnh(s+25));

PN 1260 for x=l to 75: read a: ck=ck+a: print#8,chr$(a);:next

HG 1270close8:closel5

DJ 1280 if ckol8314 then print"—error in data statements!—":

end

JJ 1290 print "***irq module created***": end

11 1300:

KB 1310 data 120,173, 20, 3,141,173, 21, 3

JD 1320 data 141,141, 21, 3, 88, 96, 0, 0

GO 1330 data 165,251, 72,165,252, 72,173, 11

DH 1340 data 220, 133,251,173, 10,220,208, 57

JC 1350 data 173, 9,220,208, 52,173, 8,220

DO 1360 data 208, 47,165,251, 41, 15,133,252

OG 1370 data 165,251, 41, 16,240, 7, 24,169

HK 1380 data 10,101,252,133,252,165,251, 16

LH 1390 data 7, 24,169, 12,101,252,133,252

MM 1400 data 164,252,185, 133,160,185,133,161

MJ 1410 data 185, 133,162,173, 8,220,104, 133

CJ 1420 data 252,104,133,251, 108, 0, 3, 6

AJ 1430 data 9, 13, 16, 19, 23, 26, 29, 32

GO 1440 data 36, 0, 42, 46, 49, 52, 56, 59

KP 1450 data 62, 65, 69, 72, 75, 39, 0, 75

LI 1460 data 151,227, 47,122,198, 18, 94,169

JA 1470 data 245, 65, 0,216, 36,112,188, 7

JP 1480 data 83,159,235, 54,130,206,141, 0

JA 1490 data 192, 128, 64, 0,192,128, 64, 0

DB 1500 data 192, 128, 64, 0,192,128, 64, 0

NB 1510 data 192,128, 64, 0,192,128, 64, 0

Transactor 52 May 1988: Volume 8, Issue 6

Listing 3: "New-IRQ"

* this routine is added to the *

* normal irq to reset the *

* system clock (ti and ti$) *

* to the time-of-day clock *

* incia#l. *

* *

* the ti/ti$ clock is subject *

* to accumulated errors, *

* especially during disk *

* and tape access, the tod *

* clock accuracy is *

* maintained by the power *

* line frequency. *

* *

* this routine sets the *

* ti/ti$ clock = to the *

* tod clock on the tod *

* hour (minutes and *

* seconds all = zero). *

* *

* noel nyman 8/87 *

ti =$aO ;firstbyteofti

tempi = $fb temporary storage, original value unchanged

temp2 = $fc temporary storage, original value unchanged

irqvec = $0314 ;address of irq vector

hours = $dc0b ;cia #1 hours register

minutes = $dc0a ;cia #1 minutes register

seconds = $dcO9 ;cia #1 seconds register

tenths = $dc08 ;cia #1 tenths sec register

* routine can be placed at any convenient location.

org $c000

* get the current irq vector and store it in

* 'holdirq.' place the vector to the added

* code at the irq vector address.

start sei

Ida irqvec

sta holdirq

Ida irqvec+1

sta holdirq+1

Ida #<newirq

sta irqvec

Ida #>newirq

sta irqvec+1

cli

rtcI la

holdirq hex 00,00

;code added to irq routine starts here

newirq Ida tempi ;store current values of

pha ;templ and temp2 on stack

Ida temp2 ;so we can restore them in case

pha ;the interrupted application uses them

Ida hours ;reading the hours register

sta tempi ;halts the clock, we store

Transactor

*

*

*

*

*

*

*

*

*

*

*

*

skipten

*

*

skipap

*

*

*

*

*

exit

*

*

tablel

table2

table3

53

;the value in tempi, just

;in case it's time to use it

Ida minutes ;check for minutes = zero

bne exit ;if not zero, not time to update

Ida seconds ;check for zero seconds

bne exit ;and skip update if not zero

Ida tenths ;check for zero tenths of a second

bne exit ;and skip update of not zero

;the update routine converts the

;value in the hours register

;from bcd/am-pm format into

;a binary number in the range

;0-25, where 0 or 12 equals 12am,

; 1=1 am, 13=lpm, and 25=noon.

;the converted number is used as an

;index to a table to store the

;proper values in the three bytes of ti

Ida tempi ;hours register value

and #$0f ;mask out upper bed digit, am-pm

sta temp2 ;store lower hours digit

Ida tempi ;get hours value again

and #$10 ;mask out all but the upper bed digit.

;this can only be zero or one.

beq skipten ;if zero, don't add 10 to temp2

clc

Ida #$0a ;if high hours digit was one,

adc temp2 ;add 10 to temp2

sta temp2

Ida tempi ;get hours value again

bpl skipap ;if high bit clear

;time is am, skip the routine

;that adds 12 for pm times

clc

Ida #$0c ;add 12 tb temp2

adc temp2 ;if time is pm

sta temp2

ldy temp2 ;put index to table in y

Ida tablel,y ;get values from

sta ti ;three tables

Ida table2,y ;and store in the

sta ti+1 ;three bytes

Ida table3,y ;of ti

sta ti+2

;restart display,

;restore the previous values in

;templ and temp2, and jump

;through the stored irq vector to

;complete the irq routine.

Ida tenths ;read tenths to restart display

pla

sta temp2

pla

sta tempi

jmp (holdirq)

the following three tables hold the values normally

found in the three bytes of ti at the 'top' of each hour.

hex00,03,06,09,0d,10,13,17,la,ld,20,24

hex00,2a,2e,31,34,38,3b,3e,41,45,48,4b,27

hex 00,4b,97,e3,2f,7a,c6,12,5e,a9,f5,41

hex 00,d8,24,70,bc,07,53,9f,eb,36,82,ce,8d

hex00,c0,80,40,00,c0,80,40,00,c0,80,40

hex 00,c0,80,40,00,c0,80,40,00,c0,80,40,00

May 1988: Volume 8, Issue 6

Olsen's Raid

An Update to the "Shiloh's Raid" Relative File Bug Fix

Volume 7, Issue 4 of Transactor contained an article by

David Shiloh called "Shiloh's Raid" that claimed to elimi

nate the dreaded relative file bug: it showed under what cir

cumstances the bug occurred, and took extra precautions

when writing to the file under those conditions. Since that ar

ticle appeared, we heard from Helen Olsen, who found a flaw

in Shiloh's explanation of when the bug occurs. Helen sent us

several programs to illustrate her point, and after hearing

from her, and again from David Shiloh, we think it's time to

clarify things a bit.

First, let's back-track a little. A generally-known bug in the

1541 causes problems under rare conditions when writing to a

relative file. The fix (also generally known) is easy - just po

sition the record pointer twice before writing a relative file

record. The extra point (and some say a short delay as well)

seems to eliminate the bug, so most experts advise to handle

relative files in this way and eliminate the problem. David

Shiloh took the extra step of finding under exactly what con

ditions the bug occurs, and applying the fix only under those

conditions. The program he presented along with the article

was supposed to prove that the fix works by checking for er

rors in a long random-write test both with and without the

"Shiloh's Raid" routine in place.

Shiloh explained that the bug occurs under the following con

ditions - refer to the diagram below to illuminate the explana

tion: data is written to a relative file record, "spilling over"

from one sector to another. This is write number 1 in the dia

gram, spanning sectors A and B. Write number 2 then takes

place, to a record residing wholly within the next contiguous

sector - sector B. According to Shiloh, the bug is now waiting

to happen, and if a write (3) now occurs to the next sector

(C), the data is instead erroneously written to sector A, poten

tially spilling into sector B as well.

Shiloh's solution was to detect when this condition was about

to occur and apply the standard fix, to position the record

pointer twice and pause before writing. The advantage to

Shiloh's Raid is that the double-point need only be done on

the rare occasions when the above circumstances occur, sav

ing time for typical relative file access.

Enter Helen Olsen. Her main point was that the conditions

that Shiloh sets for the bug to occur are too strict; only writes

1 and 3 (referring to the diagram again) need to take place to

trigger the bug. She suggested that positioning an extra time

(without the delay) after writing to a split record (1) is the

best solution.

Consecutive Sectors

A B
1 101100101101010001001100110010 1 | 10110010110100011010011110010011 |

Write spans sec- Write contained

tors A and B within sector B

C
1 101100101101010001101001101100111

i
Write to sector C

Transactor 54 May 1988: Volume 8, Issue 6

As it turns out, David Shiloh's explanation of when the bug

occurs is too exacting, but the 'Shiloh's Raid' program works

properly, that is, it senses trouble and does the extra pointer

positioning even when only writes T and '3' occur. David

Shiloh told us this, and shortly thereafter, Helen Olsen sent us

a letter that concurred. Here is part of that letter:

"To sum up my position on Shiloh's Raid: His description

of the cause of the bug is wrong - his 1, 2, 3 sequence,

with 2 setting up the bug is wrong. The bug happens with

1 followed by 3. / was wrong about his fix not working be

cause I assumed that it was applied only in response to the

1, 2, 3 sequence. He may not realize it, but his subroutine

repeats the positioning command often outside that se

quence, including the 1, 3 sequence, which may be why

he's unaware that it causes the bug, also... His fix is also

applied when it is not necessary... In random use of a rela

tive file, my fix, which repeats the position command after

every write to a split record, will surely be used unneces

sarily more often than Shiloh's fix, but since I don't know

the cause of the bug (nor does he), I feel safer using it."

Helen presented programs along with her letters that proved

her point, showing that only writes 1 and 3 were required to

cause the bug, and showing that her fix worked.

So where does that leave us at the Transactor? Well, with a

certain amount of egg on our face, to begin with, for not veri

fying that Shiloh's program was doing exactly what the text

of the article said it was supposed to do. It may be even worse

than that (for us), because the version of Shiloh's Raid that

was printed was much improved cosmetically from the origi

nal - expanding from nineteen lines of tightly packed, un

readable code, to a page and a half of commented BASIC that

had a chance of being understood. Perhaps something was

lost in the translation that accounted for the application of the

extra point-and-wait when it was unnecessary, i.e. outside of

the "1, 2, 3" and "1, 3" conditions. In any case, we perhaps

got carried away a tad in presenting the last word on the rela

tive file bug, and we're glad that Helen brought us down to

reality, though "glad" may not be the most appropriate word

all around.

So, to summarize: The original Shiloh's Raid program was

correct, in that it prevented the bug from occurring, and only

applied the fix on a very small percentage of writes to the file.

Shiloh's explanation of when the bug occurs doesn't cover all

situations, so is only partially correct. Helen Olsen is right

about the flaw in Shiloh's explanation, and her solution also

seems to stop the bug from occurring. There is still no proof

that there are no other ways in which the bug can occur, but it

seems that you are safe if you use Shiloh's Raid, Olsen's fix,

or if you just position twice before every write to a relative

file.

Thus closes the file on Shiloh's Raid; as Helen Olsen ended

her letter after announcing that it was to be her last on the

subject, "Did I hear a heartfelt 'amen'?"

SUPER 81 UTILITIES

Super 81 Utilities is a complete utilities package for the

Commodore 1581 Disk Drive and C128 computer. Copy whole

disks or individual files from 1541 or 1571 format to 1581

partitions. Backup 1581 disks. Contains 1581 Disk Editor,

Drive Monitor, RAM Writer, CP/M Utilities and more for only

$39.95.

1541/1571 DRIVE ALIGNMENT

1541/1571 Drive Alignment reports the alignment condition of

the disk drive as you perform adjustments. Includes features

for speed adjustment and stop adjustment. Includes program
disk, calibration disk and instruction manual. Works on C64,
C128, SX64, 1541, 1571. Only $34.95.

"...excellent, efficient program that can help you save both

money and downtime." Compute!'s Gazette, Dec, 1987.

GALACTIC FRONTIER

Exciting space exploration game fro the C64. Search for life

forms among the 200 billion stars in our galaxy. Scientifically

accurate. Awesome graphics! For the serious student of

astronomy or the causal explorer who wants to boldly go

where no man has gone before. Only $29.95.

MONDAY MORNING MANAGER

Statistics-based baseball game. Includes 64 all-time great

major league teams. Reallsitc strategy. Great sound &

graphics! Apple II systems - $44.95, C-64 & Atari systems

$39.95.

Order with check,.money order/VISA, MasterCard, COD. Free

shipping & handling on US, Canadian, APO, FPO orders. COD

& Foreign orders add $4.00. Order from:

Free Spirit Software, Inc.
905 W. Hillgrove, Suite 6

LaGrange, IL 60525

(312)352-7323

[Moil*rCord)|

y

Announcing a unique new product for the C128

Juggler -128
By M. Garamszeghy

This program provides read, write and for

matting support for more than 130 types of

MFM CP/M disks on the C128 in CP/M mode

with a 1570,1571, or 1581 disk drive.

It is compatible with all current versions of

C128 CP/M and all C128 hardware configura

tions including the 128-D. All normal CP/M file

access commands can be used with the extra

disk types.

Jugg'ler is available by mail order for $19.95

Canadian or $17.95 US from Transactor. Order

from the card at the centre of this magazine.

Transactor 55 May 1988: Volume 8, Issue 6

Three Movers for the C64

Relocatable utilities to save and restore programs, screens and colour data

by Richard Curcio

Many video effects are possible on the C64 by quickly mov

ing large blocks of memory. The routines presented here are

designed to do just that. These routines are relocatable; sim

ply change the variable SA in the associated Basic loader to

the desired address. The FOR-NEXT loop value in each load

er indicates the length of the ML. Although relocatable code

is often longer than non-relocating, this can be justified by the

ability to place it wherever there is enough room, without

modification.

Move.Plus

The first routine is not limited to moving video or graphic in

formation. It can move any chunk of memory to any location.

This routine has the ability to retrieve data stored in RAM

"under" the BASIC or Kernal ROMs. The syntax for calling

the routine is:

sys MOVE, source address, destination address,

number of bytes, mask

where MOVE is the start address of the routine (51200 in the

version listed). The last value, mask, must be in the range 0 to

255. If mask is greater than zero, interrupts are disabled and

BASIC and the Kernal ROMs are switched out, allowing the

RAM beneath them to be accessed. The memory configura

tion in effect when the routine was called is restored upon re

turn. Thus, if a modified BASIC in RAM is in effect, the sys

tem stays that way. The RAM under the Kernal would still be

available for storage in that case.

To copy the BASIC ROM into underlying RAM:

sys MOVE, 40960,40960, 8192,0 : poke 1,54

Note that mask value zero is used so that ROM may be read.

Memory writes to addresses in ROM always "fall through"

to the RAM beneath.

This routine can be used to fill memory by poking the first

address with the desired value and moving up by one loca

tion.

poke 55296,0:sys MOVE, 55296, 55297,999,0

...will change all characters on the screen to black by filling

color memory with zeroes.

Character ROM is not affected by the mask value. To copy

character ROM into RAM requires almost as much code as

doing it in BASIC. It happens several hundred times faster,

though:

100 poke 56334, peek(56334) and 254

: rem disable interrupts

110 poke l,peek(l) and 251

: rem switch in character rom

120 sys MOVE, 53248, 12288, 2048, 0

: rem move upper case/graphics character set to ram

130 poke I,peek(l)or4

: rem switch out character rom

140 poke 56334, peek(56334) or 1

: rem enable interrupts

Further pokes are necessary to protect the new character set

from Basic variables and to tell the VIC chip where to find

the characters. Consult the Programmer's Reference Guide or

other sources for more information on C-64 graphics.

If the number of bytes to be moved causes the destination ad

dress to "roll over" from $FFFF to $0000, the remaining

bytes are not moved and the routine returns to BASIC. The

value 255 is left in location 782 (SYREG) to indicate that the

move was incomplete. Caution should be used when specify

ing addresses below 828 as destinations.

Color.Move

This routine will save the contents of colour memory to one

of sixteen sections "under" the Kernal ROM. Because colour

RAM consists of 1024 nybbles, each color map is compacted

into 512 bytes.

To save a color map:

sys COLOR, section #

...where COLOR is the address of the routine (51320 in the

listed version) and section # is 0 to 15.

To recall a particular color map:

Transactor 56 May 1988: Volume 8, Issue 6

sys COLOR+4, section #

To store colors under the BASIC ROM, 'poke COL-

OR+19,160'. To change back to the Kernal, 'poke COL-

OR+19,224'. This makes a total of 32 colour maps available.

If a section were to roll over to zero page (due to poking too

large a value into COLOR+19), the routine stops with

'?illegal quantity' before any transfer takes place.

It is also possible to reduce the number of storage sections.

'Poke COLOR+12,8' would limit storage to sections zero

through seven.

Video.Move

This routine will save screen and color memory to one of five

sections under the Kernal. All 1024 bytes of the screen are

saved, including the sixteen unused bytes and the eight bytes

of sprite data pointers. As in 'Color.Move', colour ram is

compacted into 512 bytes for a total of 1536 bytes per sec

tion.

To save screen and color:

sys VIDEO, section, screen org

where VIDEO is the address where the routine is located

(51456) and section is 0 to 4. The last parameter, screen org,

determines where the screen, which is also called the video

matrix, resides. If screen org is zero, the routine uses the con

tents of location 648 to determine where the screen is located.

The operating system uses this location to determine where

the screen is for text output. If screen org is greater than zero,

the routine uses the contents of the VIC-II chip and data port

A of CIA 2 to determine the video matrix location, which is

the screen currently displayed. When the C-64 is in high-

resolution mode, each byte of screen memory contains the

background and foreground colors for the hi-res bit map. The

value in location 648 in this case is irrelevant, and the value

the VIC chip uses may be completely different. (Color ram is

also irrelevant unless the C-64 is in multi-color hi-res.) In

other words, an org value greater than zero uses the currently

displayed video matrix. A value of zero uses the text screen,

which may or may not be visible.

To recover screen and color:

sys VIDEO+4, section, screen org

BASIC and Kernal ROMs are switched out during both stor

age and retrieval.

Since 'Video.Move' stores information under the Kernal, sec

tion #4 should be used with caution due to the writing to

RAM that takes place when RUN/STOP-RESTORE is

pressed. To demonstrate, list something to screen in one color

and save it to section 4. Press RUN/STOP-RESTORE to clear

the screen and then recall section 4. The lower portion of the

screen will have characters of different colors. This warning

also applies when using section #14 under the Kernal with

'Color.Move'.

As with 'Color.Move', it is possible to change the storage

area. 'Poke VIDEO+16,160' will change the storage area to

RAM under the BASIC ROM. 'Poke VIDEO+16,224' to

store under the Kernal. Like 'Color.Move', the routine stops

with '?illegal quantity' if a section will roll over to zero page.

It is also possible to copy from any given screen location. Say

you have a bit-map at $6000 with its color matrix at $5C00. If

for some reason you want to store the bit-map colors while

maintaining text mode, poke the high byte of the bit-map

colour matrix into location 648.

200 TX = peek(648): rem current text screen

210 VM = 92: rem high byte of bit-map colors at $5C00

220 poke 648, VM: sys VIDEO, section #, 0

: rem use loc. 648 as org

230 poke 648, TX: rem restore normal text

This is risky. If the program should stop with an error before

location 648 is restored to its previous contents, the machine

will appear to have crashed. In reality, the system is printing

to the bit-map colour matrix but the VIC chip is still display

ing the old text screen.

Simple Windows

If you need a simple-minded Window utility, 'Video.Move'

combined with a PRINT "at" routine (that allows you to print

to any given screen position) can do a good simulation. Just

store the current text and colors, use PRINT® or some other

means to display a box with the desired message, then recall

the screen contents to make the "window" disappear. Or store

up to five screens for overlapping windows. If it is not neces

sary to store the colours, 'Move.Plus' can store eight screens

under ROM.

One factor complicates this pseudo-window application.

When printing to the screen, the system keeps track of which

screen lines wrap around to the line below. This information

is stored in 25 locations in zero page. When the screen is

POKEd, which is what 'Video.Move' or 'Move.Plus' do, this

link table is not updated. A recalled screen would have the

links of the previous screen. This may or may not be a prob

lem, depending on what you do with the recalled screen.

PRINTs may not come out as expected. INPUT from the

screen may be affected as well. To get around this problem,

Move.Plus can be used to store the contents of the link table

in some safe location.

sys MOVE, 217, destination, 25,0

To recall the screen links, 217 becomes the destination and

the proper mask value should be used if the links were stored

under ROM. Your program would have to keep track of

Transactor 57 May 1988: Volume 8, Issue 6

which stored screen matches a stored link table.

Other Uses

'Video.Move ' and 'Color.Move' can create interesting effects

in low-res and even achieve pseudo animation by storing and

retrieving a

'Video.Move

the screen's

'Move.Plus'

number of alternate screens and/or colors.

' will change the sprite data pointers along with

> contents. If enough RAM is available,

can store and retrieve a number of bit-maps.

'Video.Move' will store both color maps of hi-res multi-color

graphics. 'Move.Plus' can also redefine custom characters or

sprites for another form of animation.

One

store

of the most useful applications for 'Move.Plus' is to

a number of machine language routines that need to be

at the same

tion,

address. Load a program to its designated loca-

then use 'Move.Plus' to put it someplace safe. Repeat

for other programs, then retrieve each routine as needed.

(Don

even

't try this with "wedges", though.) 'Move.Plus' can

move itself and because of its relocatability it will func-

tion at its new location.

Listing 1: Assembler source code for 'Move.Plus'

JO

PH

GI

KA

PA

FN

ED

JM

AF

MM

IM

AO

GJ

LE

EJ

MG

CC

EC.

NH

GM

BO

HJ

GF

IF

MG

MG

AP

1000

1030

1040

1050 1

1060 (

1070 |

1080 i

1090 i

1100 <

1110

1120 ,

1130

1140 1

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

byte in x

AI

FF

EJ

MN

JH

FN

PM

MM

KB

BC

EO

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

Transactor

*= $c800

move.plus

rmnurn = $ad8a

:hkcom = $aefd

getadr = $b7f7

srce = $c3

ibytes = $14

iest = $cl

get and store source and destination

begin jsr chkcom

jsr frmnum

jsr getadr

sty srce

sta srce+1

jsr chkcom

jsr frmnum

jsr getadr

sty dest

sta dest+1

jsr chkcom

get number of bytes and mask value

jsr $b7eb ; two bytes in $14/15, one

$14-15 has number of bytes

txa

beq calc ; if mask = 0

sei

Ida $01 ; get mem. config.

pha

and #$fd ; mask basic and kernel

sta $01

58

FD

IP

PN

GB

BB

IG

GP

LD

LK

FFX 1

DJ

FO

MJ

BM

MG

GM

CK

NM

JD

IL

HM

GC

DN

DC

EE

KD

LD

HH

NE

IC

KJ

EC

AE

NC

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

; calculate end address

calc

start

bumpl

bump2

comp

done

exit

rollo

clc

Ida

adc

sta

Ida

adc

sta

ldy

Ida

sta

inc

bne

inc

inc

bne

inc

beq

Ida

nbytes

dest

nbytes

nbytes+1

dest+1

nbytes+1
#<tnn
TttPVJVJ

(srce),y

(dest),y

srce

bump2

srce+1

dest

comp

dest+1

rollo

dest+1

cmpnbytes+1

bne c*Qr*'

Ida dest

cmp nbytes

bne

txa

beq

pla

sta

cli

its

dey

bne

Listing 2: 'Color.Move'

OB

ON

GI

EC

KJ

KA

HD

CH

JD

NP

OC

GE

IC

MJ

OP

GK

MG

BH

MI

PP

DE

PC

IP

IA

AB

NN

OE

ME

EJ

FN

JN

NN

1000

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

*=

start

exit

$01

done

$c878

;— color.move —

temp

;

setup

savcol

coll

=

ldy

bne

ldy

sty

jsr

cpx

bcs

txa

asl

clc

adc

bcs

tax

inx

beq

ldx

sta

stx

stx

ldx

ldy

beq

iny

Ida

sta

Ida

asl

$c3

#$ff

setup

#$00

temp

$b7fl

#$10

qtyl

#$e0

qtyl

qtyl

#$00

$25

$22

$24

#$fe

temp

recover

#$d8

$23

($22),y

; add #bytes to dest.

; $14/15= dest.end+1

; if dest. rolls over

; was mask = 0

;yeah

; restore mem. config.

; leave 255 in

; location 782

; flag = store

; flag = recover

; save entry

; section # in .x

;chk. range 0-15

;>$0f illegal

; times 2

; use aO for bas.rom

; rolled over, no room

; will roll over, no room

; init. addresses

; counter

; which way

; #$ff+l

; hb of color ram

; $22-23 = source

; get a nybble

May 1988: Volume 8, Issue 6

HO

BP

CE

DJ

EN

LE

LI

PK

JD

OJ

AI

FL

AJ

JG

HH

LH

FI

OM

GG

PM

KH

HF

GN

OJ

MF

DP

OA

BB

KA

LM

BE

LE

FF

MO

EB

MB

NE

DB

HM

OJ

EA

FI

JI

DJ

DA

GL

DK

AK

CB

1340

1350

1360

1370

1380

1390

1400

•1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

»

qtyl

recovei

col2

rdone

exit

asl

asl

asl

sta temp

inc $23

Ida ($22),y

and #$0f

ora temp

dec $23

sta ($24),y

iny

bne coll

inx

beq exit

inc $25

inc $23

inc $23

bne coll

jmp $b248

* sei

Ida $01

pha

and #$fd

sta $01

Ida #$d9

sta $23

Ida ($24),y

sta ($22),y

lsr

1st

lsr

lsr

dec $23

sta ($22),y

inc $23

iny

bne col2

inx

beq rdone

inc $25

inc $23

inc $23

bne col2

pla

sta $01

cli

its

Listing 3: 'Video.Move'.

LO

IK

GI

EC

KJ

PB

HD

HI

DK

PO

NC

LM

NL

GP

PJ

LA

JM

1000

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

Transactor

* = $c900

; video.move —---

j

temp

j

setup

again

= $c3

ldy #$ff

bne setup

ldy #$00

sty temp

jsr $b7fl

cpx #$05

bcs qtyl

Ida #$e0

dex

bmi cont

clc

adc #$06

; move to hi nybble

; save it

; nextpg. ofcol. mem.

; get it

; combine 'em

; prepare for next

; enough times

; branch always

; illegal quant.

; get config.

; mask out roms

;pg2 of color ram

; get a byte

; ignore hi-nybble

; move to lo nyb

; store it

; pointer

; get config

; and restore it

; here to store

; here to recover

; one byte in x

; section 0-4

; use #$a0 for bas.rom

; no addition

OM

GD

PC

PK

MA

OE

BL

CG

BB

EM

ML

HD

JD

AP

AD

AP

KA

PJ

FC

IM

CC

BA

FP

DE

DN

EF

OF

EM

NH

GO

IP

LF

CG

AC

HL

DI

LN

GG

MI

GI

LD

AC

BH

OB

GP

EE

DB

KH

JF

OK

EM

PE

JF

DG

EL

FA

GN

LB

NP

GD

JN

NA

CP

HC

CA

JN

GA

BP

OE

59

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

cont

j

qtyl

ok

movit

store

color

coll

bcs

bne

tay

adc

bcc

jmp

sty

Ida

sta

Ida

sta

sta

jsr
txa

beq

Ida

ror

ror

ror

eor

and

sta

Ida

ror

ror

and

ora

sta

sei

Ida

pha

and

sta

ldx

ldy

beq

iny

Ida

sta

iny

bne

inc

inc

inx

cpx

bcc

Ida

sta

Ida

asl

asl

asl

asl

sta

inc

Ida

and

ora

dec

sta

iny

bne

inx

cpx

beq

inc

inc

qtyl

again

#$05

ok

$b248

$15

$0288

$af

#$00

$ae

$14

$b7fl

movit

$ddOO

#$ff

#$c0

temp+1

$d018

#$3c

temp+1

$af

$01

#$fd

$01

#$00

temp

recover

($ae),y

($14),y

store

$15

$af

#$04

store

#$d8

$af

($ae),y

temp

$af

($ae),y

#$0f

temp

$af

($14),y

coll

#$06

done

$15

$af

; nq good

; save result

; enough room

; illegal quantity

; hi-byt of sect. #

; hi-byt of screen loc.

; init. addresses

; which screen org.

; 0 = text screen

; vid.bank from cia 2

; bits 0 & 1

; into 6 & 7

; invert

; zero others

; vid.matrix from vic-ii

; combine

; mask out roms

; #$ff+l=OO

;hbdest.

; hb src.

; hb of color ram

; get a nybble

; move to hi nybble

; save it

May 1988: Volume 8, Issue 6

IF

NG

CO

CO

JP

KG

NM

DO

FM

01

NF

GN

KJ

IP

HJ

EN

BN

LN

FO

MH

LP

FC

ED

DK

HF

OC

JP

CD

NB

KH

El

NJ

OA

BF

HE

EE

JP

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

>

recover

reccol

col2

»

done

endrec

inc

bne

Ida

sta

iny

bne

inc

inc

inx

cpx

bcc

Ida

sta

Ida

sta

lsr

lsr

lsr

lsr

dec

sta

inc

iny

bne

inx

cpx

beq

inc

inc

inc

bne

pla

sta

cli

its

$af

coll

($14),y

($ae),y

recover

$15

$af

#$04

recover

#$d9

$af

($14),y

($ae),y

$af

($ae),y

$af

col2

#$06

done

$15

$af

$af

col2

$01

; hb src.

; hb dest.

; pg2 of color ram

; get a byte

; ignore hi-nybble

; move to lo nyb

; store it

; pointer

; enough times

; get config

; and restore it

Listing 4: 'Move.PIus' in BASIC loader form. Change the value

of 'sa' in line 110 to change the location of the routine.

FE 100 rem move.plus/c64

GA 110 sa=51200:rem start address

HN 120ck=0

OE 130 for m=0 to 99:read d

PI 140 poke sa+m,d

KO 150 ck=ck+d: next

AC 160 if ckol3877 then print"data error!": end

KK 170 print"move.plus installed":print sa "to" sa+110: print

FE 180 print"to use:":print"sys" sa ",source,dest,# of bytes,mask"

BI 1000 data 32,253,174, 32,138,173, 32,247

BD 1010 data 183,132,195,133, 196, 32, 253,174

DD 1020 data 32,138,173, 32,247,183,132,193

BF 1030 data 133,194, 32,253,174, 32,235,183

JC 1040 data 138,240, 8,120,165, 1, 72, 41

OB 1050 data 253,133, 1, 24,165, 20,101,193

IH 1060 data 133, 20,165, 21,101,194,133, 21

LD 1070 data 160, 0,177,195,145,193,230,195

JB 1080 data 208, 2,230,196, 230,193,208, 4

OL 1090 data 230,194,240, 20,165,194,197, 21

IH 1100 data 208,232,165,193,197, 20,208,226

DJ 1110 data 138,240, 4,104,133, 1, 88, 96

ML 1120 data 136, 208,245, 0

Listing 5: BASIC loader for 'Color.Move'.

NK 100 rem color mover

BB 110 sa=51320: rem start address

HN 120 ck=0

GF 130 for m=0 to 127: read d

PI 140 poke sa+m,d

KO 150 ck=ck+d: next

HB 160 if ckol5890 then print"data error!": end

OB 170 print"color mover installed"

:print sa "to" sa+127: print

BB 180 print"to store colors:"

:print"sys" sa ",section# (0-15)": print

KN 190 print"to retrieve colors:"

: print"sys" sa+4 ",section # (0-15)"

GO 2000 data 160,255, 208, 2,160, 0,132,195

DI 2010 data 32,241,183,224, 16,176, 64,138

BD 2020 data 10, 24,105,224,176, 57,170,232

FO 2030 data 240, 53,162, 0,133, 37,134, 34

EH 2040 data 134, 36,162,254,164,195,240, 42

PJ 2050 data 200,169,216,133, 35,177, 34, 10

CP 2060 data 10, 10, 10,133,195,230, 35,177

OI 2070 data 34, 41, 15, 5,195,198, 35,145

GF 2080 data 36,200,208,233,232,240, 55,230

IE 2090 data 37,230, 35,230, 35,208,222, 76

FH 2100 data 72,178,120,165, 1, 72, 41,253

CE 2110 data 133, 1,169,217,133, 35,177, 36

HN 2120 data 145, 34, 74, 74, 74, 74,198, 35

IF 2130 data 145, 34,230, 35,200,208,239,232

ED 2140 data 240, 8,230, 37,230, 35,230, 35

KH 2150 data 208,228,104,133, 1, 88, 96, 0

Listing 6: BASIC loader for 'Video.Move'.

JK 100 rem video mover

GC 110 sa=51456: rem start address

HN 120ck=0

NE 130 for m=0 to 203: read d

PI 140 poke sa+m,d

KO 150 ck=ck+d: next

MC 160 if cko28129 then prinfdata error!": end

BC 170 print'Video mover installed"

: print sa "to" sa+203: print

AJ 180 print"to store video:"

AP 190 print"sys" sa ",section # (0-4), screen org": print

CM 200 print"to retrieve video:"

PM 210 print"sys" sa+4 ",section # (0-4), screen org"

OM 3000 data 160,255, 208, 2,160, 0,132,195

NA 3010 data 32,241,183,224, 5,176, 17,169

NP 3020 data 224,202, 48, 7, 24,105, 6,176

BP 3030 data 7,208,246,168,105, 5,144, 3

DM 3040 data 76, 72,178,132, 21,173,136, 2

PE 3050 data 133,175,169, 0,133,174, 133, 20

BD 3060 data 32,241,183,138,240, 23,173, 0

CB 3070 data 221,106,106,106, 73,255, 41,192

AH 3080 data 133,196,173, 24,208,106,106, 41

BN 3090 data 60, 5,196,133,175,120,165, 1

CC 3100 data 72, 41,253,133, 1,162, 0,164

JK 3110 data 195, 240, 57,200,177,174,145, 20

GB 3120 data 200,208,249,230, 21,230, 175,232

BD 3130 data 224, 4, 144,240,169,216, 133,175

LF 3140 data 177,174, 10, 10, 10, 10,133,195

JK 3150 data 230,175,177,174, 41, 15, 5,195

NG 3160 data 198,175,145, 20, 200, 208, 233,232

FG 3170 data 224, 6,240, 58,230, 21,230,175

JH 3180 data 230,175,208,220,177, 20,145,174

MF 3190 data 200,208,249, 230, 21, 230,175,232

KH 3200 data 224, 4, 144, 240, 169, 217,133, 175

LM 3210 data 177, 20,145,174, 74, 74, 74, 74

KN 3220 data 198,175,145,174, 230,175, 200,208

NG 3230 data 239,232,224, 6,240, 8,230, 21

NL 3240 data 230,175,230,175, 208,226,104,133

JC 3250 data 1, 88, 96, 0

Transactor 60 May 1988: Volume 8, Issue 6

News BRK

Transactor News

Submitting News BRK Press Releases

If you have a press release you would like to submit for the

News BRK column, make sure that the computer or device for

which the product is intended is prominently noted. We re

ceive hundreds of press releases for each issue and ones

whose intended readership is not clear must unfortunately go

straight into the trash bin. It should also be mentioned here

that we only print product releases which are in some way ap

plicable to Commodore equipment. News of events such as

computer shows should be received at least 6 months in ad

vance. The News BRK column is compiled solely from press

releases and is intended only to disseminate information; we

have not necessarily tested the products mentioned. Items for

publication should be sent to Moya Drummond along with

any queries about advertising, ads themselves and editorial

queries.

Demand for T-Shirts Outstrips Supply

We apologize to all those readers who sent in for T-Shirts and

whom we have had to disappoint. Demand was such that our

initial supply was sold out within a week and we are having

trouble finding another supplier. Most of you should have re

ceived a letter from our new Customer Service Assistant, Re-

nanne Turner, offering a refund in the case of T-Shirts which

were paid for in advance, or a Potpourri or TransBASIC II

disk for subscribers who were entitled to a freebie for order

ing both the Transactor Magazine and Disk at the same time.

We have had a similar problem with the G-Link IEEE inter

face. However, we now have a fresh supply and are shipping

these again. If you are one of the customers who has been

waiting patiently, please bear with us just a little longer.

New Look For Customer Service

Jennifer has moved on to new pastures and we now have Re-

nanne Turner doing her utmost to create order from chaos in

the field of subscriptions and orders. It is a huge job and

growing ever more complex now that we have two magazines

and both are expanding rapidly. Renanne is working miracles

and on Mondays, Wednesdays and Fridays will be delighted

to resolve your queries. On Tuesdays and Thursdays, howev

er, she has to have time to keep her database and mail order

departments up to date and, therefore, the phones will be an

swered by a machine. We think you will find that from now

on delays and mistakes will be kept to a minimum and we

hope you will appreciate the new system.

Subscription Switch

Remember that if you wish to switch your subscription to

Transactor for the Amiga there is no charge. However, there

does seem to have been some confusion: you can only switch

the number of issues of Transactor Classic to which you are

still entitled. TPUG subscribers please remember that your

subscription is with TPUG, not directly with Transactor, and

we are therefore unable to switch issues due to you from

them. Please be sure to put your name and ZIP or Postal Code

as well as your subscriber number on your order card.

The 20/20 Deal

...is still in effect: order 20 subscriptions to the mag or disk,

20 back issues, 20 disks etc., and get a 20% discount. (Offer

applies to regular prices and cannot be combined with other

specials.)

No Longer Available

As mentioned in the last issue, the 1541 Upgrade ROM Kit is

now discontinued. Please see Vol.7 Issue 2 for complete in

structions on obtaining a set; disk #13 contains the ROM im

age you'll need to burn your own EPROMS. However, we're

reasonably sure that the ROM image is compatible with the

1541 only. 1541C owners will need to create an image of

their ROM set, then make the changes described in V7 12, but

with minor adjustments to accommodate for what are more

than likely simple address changes. We are still waiting for an

update article from someone who has successfully done this!

'Moving Pictures' is also out of stock and no longer available

from Transactor. If you have ordered a copy, you may ask ei

ther for a refund or have a credit issued against further orders

from Transactor Publishing - Renanne will be in touch with

you. Moving Pictures is now being distributed by CDA, with

new packaging and manual. Contact CDA at: P.O. Box 1052,

Yreka, CA 96097. Phone (916) 842-3431.

Transactor Mail Order

It is perhaps worth mentioning that items on order cards in

back issues of the Transactor are not necessarily currently

available; if you are unsure, please call Renanne before send

ing in your order. To be certain, place orders from the card in

the most recent issue.

Prices for all products are listed on the order card in the cen

tre of the magazine. Subscribers: you can use the address la

bel from the bag holding your magazine and just stick it on

the order card instead of filling it in by hand!

• Quick Brown Box - Battery Backed RAM for C64 or

C128. The Quick Brown Box cartridges for the C64 and 128

Transactor 61 May 1988: Volume 8, Issue 6

can be used to store any type of programs or data that remains

intact even when the cartridge is unplugged. Unlike EPROM

cartridges, the QBB requires no programming or erasing

equipment except your computer. Loader programs are sup

plied and you can store as many programs into the cartridge

as its memory will allow. It may even be used as a non

volatile RAM disk. Auto-start programs are supported such as

BBS programs and software monitoring systems that need to

re-boot themselves in the event of a power failure. All models

come with a RESET push button and use low current CMOS

RAM powered by a 160 mA-Hr. Lithium cell with an estimat

ed life of 7 to 10 years. Comes with manual; software sup

plied includes loader utilities and Supermom+64 (by permis

sion of Jim Butterfield). 30 day money back guarantee and a

1 year repair/replacement warranty.

• The Potpourri Disk - A C64 product from the software

company AHA! (aka Chris Zamara and Nick Sullivan). In

cludes a wide assortment of 18 programs ranging from games

to educational programs to utilities. All programs can be ac

cessed from a main menu or loaded separately. No copy pro

tection is used on the disk so you can copy the programs you

want to your other disks for easy access. Built-in help is

available from any program at any time with the touch of a

key, so you never need to pick up a manual or exit a program

to learn how to use it. Many of the programs on the disk are

of a high enough quality that they could be released on their

own, but you get all 18 on the Potpourri disk for just $17.95

US/$19.95 Canadian.

• TVansBASIC II - TransBASIC II contains all TB modules

ever printed. There are over 140 commands at your disposal;

you pick the ones you want to use in any combination. It's so

simple that a summary of instructions fits right on the disk la

bel. The manual describes each of the commands, plus how to

write your own commands. People who ordered TB1 can up

grade to TBII for the price of a regular Transactor disk

(8.95/9.95). If you are upgrading, please let us know on the

order form.

• Inner Space Anthology - This is our ever-popular reference

book. It has no "reading" material, but in 122 compact pages

there are memory maps for five CBM computers, three disk

drives and maps of COMAL; summaries of BASIC com

mands, Assembler and MLM commands and Wordprocessor

and Spreadsheet commands. ML codes and modes are sum

marized, as well as entry points to ROM routines. There are

sections on Music, Graphics, Network and BBS phone num

bers, Computer Clubs, Hardware, unit-to-unit conversions,

plus much more ... about 2.5 million characters in total!

• The Transactor Bits and Pieces Book and Disk - 246

pages of Bits from Transactor Volumes 4 through 6 with a

very comprehensive index. Even if you have all those issues,

it makes a handy reference - no more flipping through maga

zines for that one bit that you just know is somewhere ... Al

so, each item if forward/reverse referenced. Occasionally the

items in the Bits column appeared as updates to previous bits.

Bits that were similar in nature are also cross-referenced. And

the index makes it even easier to find those quick tips that

eliminate a lot of wheel re-inventing. The bits book disk con

tains all programs from the book and can save a lot of typing.

• The G-Link Interface - The G-Link is a Commodore 64 to

IEEE interface. It allows the 64 to use IEEE peripherals such

as the 4040, 8050, 9090, 9060, 2031 and SFD-1001 disk

drives, or any IEEE printer, modem or even some Hewlett-

Packard and Tektronics equipment like oscilloscopes and

spectrum analyzers. The beauty of the G-Link is its "trans

parency" to the C64 operating system. Some IEEE interfaces

for the 64 add BASIC 4.0 commands and other things to the

system that can interfere with utilities you might like to in

stall. The G-Link adds nothing: it is so transparent that a

switch is used to toggle between serial and IEEE modes, not a

linked-in command. Switching from one mode to the other is

also possible with a small software routine as described in the

documentation.

• Transactor Disks - now with their new,, colour directory

listing labels. As of Disk #19 a modified version of Jim But-

terfield's Copy-All will be on every disk. It allows file copy

ing from serial to IEEE drives, or vice versa.

• The Micro-Sleuth: C64/1541 Test Cartridge - Designed by

Brian Steele (a service technician for several southern Ontario

Schools), this is a very popular cartridge. The Micro-Sleuth

will test the RAM of a C64 even if the machine is too sick to

run a program! The cartridge takes complete control of the

machine, tests all RAM, ROM and other chips, and in another

mode puts up a menu:

1) Check drive speed

2) Check drive alignment

3) 1541 serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

A second board (included) plugs onto the User Port: it con

tains 8 LEDs that let you zero in on the faulty chip. Complete

with manual.

• Transactor Back Issues and Microfiche - All Transactors

from Volume 4 Issue 1 are available on Microfiche. The strips

are the 98 page size compatible with most fiche readers.

Some issues are available only on microfiche and are marked

as such on the order card; The price is the same as for the

magazines with the exception that a complete set (Volumes 4,

5, 6 and 7) will cost just $49.95 US/$59.95 CDN.

This list shows the "themes" of each issue. Theme issues

didn't start until Volume 5 Issue 1. Transactor Disk #1 in

cludes all the programs from Volume 4 and Disk #2 includes

all programs for Volume 5 Issues 1 to 3. Thereafter there is a

separate disk for each issue. Disk #8 from the Languages Is

sue includes COMAL 0.14, a soft-loaded, slightly scaled

down version of the COMAL 2.0 cartridge. Volume 6, Issue 5

lists the directories for Transactor Disks #1 to #9.

Transactor 62 May 1988: Volume 8, Issue 6

• Vol.4 Issues>lto3(Disk#l)

• Vol.4 Issues 4 to 6 (Disk #1) - MF only

• Vol.5 Issue

• Vol.5 Issue

• Vol.5 Issue

• Vol.5 Issue

• Vol.5 Issue

• Vol.5 Issue

• Vol.6 Issue

• Vol.6 Issue

• Vol.6 Issue

• Vol.6 Issue

• Vol.6 Issue

• Vol.6 Issue

• Vol.7 Issue

• Vol.7 Issue

• Vol.7 Issue

• Vol.7 Issue

• Vol.7 Issue

• Vol.7 Issue

• Vol.8 Issue

• Vol.8 Issue

• Vol.8 Issue

• Vol.8 Issue

• Vol.8 Issue

1 - Sound and Graphics Disk # 2

2 - Transition to ML (MF only)

3 - Piracy and Protection (MF only)

4 - Business and Eduction (MF only)

5 - Hardware and Peripherals

6 - Aids & Utilities

1 - More Aids & Utilities

2 - Networking & Communications

3 - The Languages

4- Implementing the Sciences

5 - Hardware & Software Interfacing

6 - Real Life Applications

1 - ROM/Kernel Routines

2 - Games from the Inside Out

3 - Programming the Chips

4 - Gizmos and Gadgets

5 - Languages II

6 - Simulations & Modelling

1 - Mathematics

2 - Operating Systems

3 - Feature: Surge Protector

4 - Feature: Transactor for the Amiga

5 - Feature: Binary Trees

Industry News

2

2

3

4

5

6

7

8

9

#10

#11

#12

#13

#14

#15

#16

#17

#18

#19

#20

#21

#22

EPROM Programmer for the C64, C128 and 64C from B &

B Products is a versatile programmer offered in an easy-to-

assemble kit form or as a complete and tested system. The de

sign is based on the article by T. Bolbach featured in the Jan

uary 1987 issue of Transactor and contains many enhance

ments, including on-board selectable programming voltages,

local reset switch, power transformer and super-fast improved

software. The programmer supports 2716 through 27256-type

EPROMs and also programs the 68764 direct replacement

types for the Kernal and BASIC ROMs. Documentation in

cludes the schematic. Complete kit with all parts $59.00

(US). Completed and tested units, $89.00 (US). Send cheque

or money order to: T. Bolbach, 1575 Crestwood, Toledo, OH

43612.

The Super Chips: New from Free Spirit Inc. is a custom

operating system for the Commodore 128. The system con

sists of three 16K chips labelled Basic Lo, Basic Hi and Ker

nal which replace U33, U34 and U35 on the motherboard of

the C128. The Super Chips add a variety of powerful new

commands and functions to the C128 operating system in

cluding: type, (Restore) D, Combine, Merge, File, Change,

Find, * - Send monitor command to the printer, and Editor.

When done, a Basic program can be compiled which can be

incorporated into a program and/or saved to disk. The custom

operating system also redefines the function keys.

In 80 column mode the F3/F4 keys will simultaneously dis

play the directories from devices 8 and 9 in separate windows

on the screen. The operating system will default to fast mode

when powered up or reset with the 40/80 display button

down. It will default to slow in the 40 column mode.

The Super Chips system is compatible with 1541/1571/1581

disk drives and virtually all Commodore software and periph

erals. Similar systems will be available for the 128D and C64

in the near future.

Available at $49.95 from Joe Hubbard, Free Spirit Software

Inc., 905 W. Hillgrove, Suite 6, La Grange, IL 60525

(312)352-7323.

New Basic for GEOS: BeckerBASIC adds more than 270

new commands and functions to the Commodore 64 and

GEOS. It has commands for screen and cursor control, hi-res

graphics and sprite animation, sound and music, structured

programming and programmers' aids. A program written in

BeckerBASIC runs as a GEOS application and can use

GEOS' pull-down menus, dialog boxes, different fonts, hi-res

graphics and fill patterns and more.

BeckerBASIC can be customized by adding user-defined

commands and function key definitions. The BeckerBASIC

package includes a free run-time version so that BeckerBA

SIC applications may be distributed to other GEOS users.

BeckerBASIC is compatible with Commodore 64 BASIC and

GEOS Version 1.3. The suggested retail price of BeckerBA

SIC is $49.95.

Available from any Abacus dealer or distributor or call (616)

698-0330. Abacus is at 5370 52nd Street SE, Grand Rapids,

ML, USA 49508.

Science Software is a series of tutorial, utility and application

computer programs in the areas of Astronomy, Earth Satel

lites and Aeronautics. The Astronomy disk contains programs

for determining the position of the Sun, Moon, Planets and

Stars. The Earth Satellite programs can be used to determine

the location of TVRO, weather, OSCAR and other earth satel

lites. The Aeronautics disk contains programs for model rock

etry, hot air balloons and gliders. Science Software disks are

available for the Commodore 64/128 (in C64 mode) and the

Amiga. For additional information contact David Eagle, Sci-

Transactor 63 May 1988: Volume 8, Issue 6

ence Software, 7370 S. Jay Street, Littleton, CO 80123 (303)

972-4020.

Poseidon Electronics announces an addendum to its catalog

of disks for Commodore 64/128 CP/M users. The full catalog

is available for $4.10 plus $0.90 SASE (please send a large

(envelope) in limited quantities; the addendum costs $1.60

plus a $0.39 SASE. Poseidon have a large library of CP/M

disks; for further information contact Ralph S. Lees Jr., Posei

don Electronics, 103 Waverley Place, New York, NY 10011

(212)777-9515.

RS-232 interface for the C64, C128 and Vic 20: Now you

can connect a true RS-232 modem or printer to your 64 or

128. This interface supports all the RS-232 control lines

(DTR, RTS, SI, RI, CTS, DSR and DCD). Also, if you are us

ing a C128, the interface does not obstruct the 80 column

video port. It uses only the +5 volt line from the computer

and draws 30 milliamps of current. It is packaged as a 3 inch

square PC board and terminated with a female DB-25 con

nector, at a cost of $55 (CDN).

PET to Centronics interface: supports all standard Centron

ics style printers and is small enough to be left inside the PET

itself jumpered to the IEEE connector at the rear of the com

puter. Costs $50 (CDN).

Both interfaces come with a 90 day warranty. For further in

formation and orders contact Chris Czech, 227-7a Street, NE.,

Calgary, Alberta, Canada, T2E 4E7. (403) 262-3587

.j

Surge & Lightning Protection for datacommunications and

computer interfaces described from analysis to solution. Tele-

byte Technology's expanded line of surge and lightning pro

tection products is described in a six-page brochure together

with explanations of the phenomena and the basic techniques

for protection. A selection chart is included to simplify the

process of choosing the best device and custom products are

available. For further information contact Telebyte Technol

ogy Inc., 270 E. Pulaski Road, Greenlawn, NY, USA. 11740

(516) 423-3232 or (800) 835-3298.

The Strategist for the Commodore 128 is a market timing

program for investors in stocks, bonds, mutual funds and

commodities. It allows the user to plot prices on the same

chart as one or several market indicators so that he can pick

the ones he wants to time his trades. There is an historical file

which makes realistic simulated trades to see how a strategy

would have paid off in real life; it then repeats this, varying

the strategy each time until it arrives at the one which gives

the highest payoff. The system uses high-low trading en

hanced by the use of persistence checks to confirm buy and

, sell signals and an exponential moving average of quote to

quote volatility.

The Strategist master disk, an 80 page manual and 90 day

money-back guarantee cost $29.95. The system is copyright

ed and is distributed on a shareware basis. Purchasers may

give, but not sell, copies to other users to try; if they like the

program, those with try-out copies should send $29.95 to

Strategy Software in order to become registered users and ob

tain the latest version of the program and manual. For Com

modore 128 users with a 1541 or 1571 disk drive; a printer is

desirable but not essential. Dealer inquiries are welcome. A

C64 version will soon be available at $24.95. Contact Strat

egy Software, 909 Carol Lane, Fairbanks, AK, USA, 99712

(907) 457-2294.

New Telecommunications Software from Made in America:

BananaTerm! offers all the standard features expected in a

terminal program along with an advanced phone book, sup

port for up to 600 baud on standard 300 baud modems and

custom character graphics.

System 64! is a bulletin board system designed to run on stan

dard C64/128 systems. It creates an environment enabling

communication between computers and modems for the ex

change of files and messages. It features ALEX programming

language, customizable environment and support for up to

600 baud on standard 300 baud modems.

The two systems are complementary but are available sepa

rately and are compatible with other telecommunications en

vironments. BananaTerm! costs $24.95 and System 64! costs

$49.95 from Made in America, 9069 Sussex, Union Lake,

ML, USA. 48085 (313) 698-2104.

RomJet Custom Cartridges: 32K TO 256K RomJet car

tridges for C64 and C128 modes are here. These cartridges let

you access your favourite software instantly, via menus that

are also in the cartridge.

RomJet will install on its cartridges any Basic, compiled, or

machine language non-copy-protected program, including

programs such as Paperclip, Consultant, and WordPro, for

which the copyright states that you, the proven legal purchas

er, can make a back-up copy for your own personal use. You

must present to RomJet your original purchase receipt, or

proof of purchase seal.

Commercially sold programs belonging to companies or au

thors other than RomJet that have copy-protection and/or for

which the copyright states that you are not allowed to make a

back-up copy for your own personal use cannot be put on a

RomJet cartridge.

Prices range from $32.00 (CDN) for 8K up to $196 for 256K

cartridges. Cartridges may be upgraded to the next larger size

for the difference in price. There are extra charges for car

tridges that require programmer's time (e.g. modifying a pro

gram that loads files from disk to work from the cartridge ex

clusively).

Inquire at: RomJet, 210-2450 Sheppard Ave. E. Willowdale,

Ontario M2J 4Z9. Phone (416) 274-7378 or 626-5959.

Transactor 64 May 1988: Volume 8, Issue 6

The Potpourri Disk

Help!

This HELPful utility gives you instant

menu-driven access to text files

at the touch of a key - while any

program is running!

Loan Helper

How much is that loan really going

to cost you? Which interest rate

can you afford? With Loan Helper,

the answers are as close as your

friendly 64!

Keyboard

Learning how to play the piano?

This handy educational program

makes it easy and fun to learn the

notes on the keyboard.

Filedump

Examine your disk files FAST with

this machine language utility,

Handles six formats, including hex,

decimal, CBM and true ASCII,

WordPro and SpeedScript.

Anagrams

Anagrams lets you unscramble

words for crossword puzzles and

the like. The program uses a recur

sive ML subroutine for maximum

speed and efficiency.

Life

A FAST machine language version

of mathematician John Horton

Conway's classic simulation. Set

up your own 'colonies' and watch

them grow!

War Balloons

Shoot down those evil Nazi War

Balloons with your handy Acme

Cannon! Don't let them get away!

Von Googol

At last! The mad philosopher,

Helga von Googol, brings her own

brand of wisdom to the small

screen! If this is 'Al', then it just ain't

natural!

News

Save the money you spend on

those supermarket tabloids - this

program will generate equally

convincing headline copy - for

free!

Wrd

The ultimate in easy-to-use data

base programs, WRD lets you

quickly and simply create, exam

ine and edit just about any data.

Comes with sample file.

Quiz

Trivia fanatics and students alike

will have fun with this program,

which gives you multiple choice

tests on material you have en

tered with the WRD program.

AHA! Lander

AHAI's great lunar lander program.

Use either joystick or keyboard to

compete against yourself or up to

8 other players, Watch out for

space mines!

Bag the Elves

A cute little arcade-style game;

capture the elves in the bag as

quickly as you can - but don't get

the good elf!

Blackjack

The most flexible blackjack simula

tion you'll find anywhere. Set up

your favourite rule variations for

doubling, surrendering and split

ting the deck.

File Compare

Which of those two files you just

created is the most recent ver

sion? With this great utility you'll

never be left wondering.

Ghoul Dogs

Arcade maniacs look out! You'll

need all your dexterity to handle

this wicked joystick-buster! These

mad dog-monsters from space

are not for novices!

Octagons

Just the thing for you Mensa types.

Octagons is a challenging puzzle

of the mind. Four levels of play,

and a tough 'memory' variation

for real experts!

Backstreets

A nifty arcade game, 1OO% ma

chine language, that helps you

learn the typewriter keyboard

while you play! Unlike any typing

program you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the

above programs, ALL of the above programs, on a single disk, accessed

independently or from a menu, with built-in menu-driven help and fast-loader.

The ENTIRE POTPOURRI COLLECTION

JUST $17.95 US!!

See Order Card at Center

Computer Expo

April 14,15, 16,17, 1988
Toronto International Centre

THE MICROCOMPUTER

SHOW FOR EVERYONE

Produced by The Hinler Group Inc. (416)595-5906

