


■

■.- ,.. .■■ ■ ■
-

.■■■/,. ,. . ■ ■■•

Type in a lot of Transactorprograms? •

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program-is just a LOAD away!

Only $8.95 US, $9.95 Cdn. Per Issue

6 Disk Subscription (one year)

Just $45.00 US, $55.00 Cdn.

(see order form at center fold)

Now Amiga Owners Can Save Time Too!
Transactor Amiga Disk #1, $12.95 US, $14.95 Cdn.

• All the Amiga programs from the magazine, with complete

documentation on disk, plus our pick of the public domain!



Volume 8

Issue 02
Paid Circulation

15,000

Operating Systems

Start Address Editorial

Bits and Pieces ... 6
TheJiggler

The Striped Crawler That Drips Blood and Kills People

Resets Revisited

1541 + 1702 = *?$♦!!

Do You Know Where Your Head Is?

More 1541 Tips

Break C64

128 Notepad

Save C-128 Variables in RAM Expansion

128 BASIC Linefinder

No-line LIST For the 128

Table Look-Up Without Arrays

Static Detector

Marble Madness Teamwork Tip

Simple C64 Hi-Res Printer Dump

Ribbon Alternative

Formatting An Un-Notched Disk

Protect Those Vectors!

Sorting On The Fly

Letters .
Amiga coverage unjust

Ingratitude, publicly expressed

Bang-bang floppy-copy

Explaining the Drivelight Zone

Boat leaves Commodore stranded

Bird, plane, or Commodore 64?

Plus/4 Tech Info Source

Communicating Braces

Getting Poor Quick

Another IEEE Interface for the C-128

More Quicksilver IEEE Info Wanted

Super-C 3.0 Fix Available

12

NewsBRK 75
Our New Home

Advertisers Wanted

New Canadian Prices

Cover Price Increase

Shipping Fee on Mail Orders

Don't Forget the Sales Tax!

Sign Of The Times

Dealer Inquiries Welcome

Group Subscription Rates: The 20/20 Deal

T-Shirt Offer Continues

Mail-Order Products No Longer Offered

New Mail-Order Products

The Bits and Pieces Disk

Bits Book AND Disk

The Amiga Disk is here!

The Potpourri Disk

TransBASICII

TheGlinkisBack!

New Set of Microfiche

Transactor Disks, Back Issues, and Microfiche

Portland Company Vanishes

4040 Drive Internals

CAD for the Amiga

B.E.S.T.Business Management

Public Domain Programs

The New PAL JR.

NLQ for the Gemini 10X

Supradrive Amiga Hard disk

Auto Disk Menu/Program Loader

A-Talk Communication Tools for the Amiga

TransBloopurz ... 11
V0I8 Iss. 1: Strange Cases of Backwards Braces

Vol7 Iss.6: EPROM Programmer Update .

Vol7 Iss.6: Textscan

Vol7 Iss.3: Keyboard Expander

V0I6 Iss.6: VARPTR

TeleColumn 16

Driven MenUS The power of an Atari ST on your C64! 17

Collector Revealed Crashed or collecting? Wonder no more! ... 30

SYS 65478 A new look at ah old dog 33

Kernal LISTEN and its Relatives More control, lessee 36

CBM RAM Cartridges Use them.from Basic on the C64 38

In the CP/M Mode HowtogetmoreoutofC128CP/M 42

CP/M User AreaS Making the most of practically nothing 46

Disk Error Recovery two mfty ml subroutines . 49

The 32-bit Amiga Enhance your Amiga's power with the MC68010 50

Messages, Ports and Signals An Amiga conversation piece 53

Amiga DiSpatCheS Our plugged-in columnist brings you the latest news .... 60

A C64 TeXt EditOr Complete with source, of course, of course . . 62

Mandelbrot HalO Exploring the Mandelbrot Set on the C128 68

C128 FunCtiOn KeyS Allyou'll ever need to know 74

Note: Before entering programs,

see "Verifizer" on page 4

The Transactor September 1987: Volume 8, Issue O2



Ifcmsddor
1h*T*ch/N«w» Journal PerCommodore Cemputon

Editor-in-Chief

KarlJ.H.Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Online Editor

Nick Sullivan

Cover Art

Jason Goldberg

Administration & Subscriptions

Jennifer Reddy

Contributing Writers

Ian Adam

David Archibald

Jim Barbarello

Anthony Bertram

Tim Bolbach

Ranjan Bose

Donald Branson

Anthony Bryant

Jim Butterfield

DaleA.Castello

Betty Clay

Joseph Caffrey

Tom K. Collopy

Robert V. Davis

Elizabeth Deal

Frank E. DiGioia

Chris Dunn

Michael J. Erskine

Jack Farrah

William Fossett

Jim Frost

Miklos Garamszeghy

Eric Germain

Michael T. Graham

Eric Guiguere

Thomas Gurley

R. James de Graff

Tim Grantham

AdamHerst .

Thomas Henry

John Holttum

John Houghton

Robert Huehn

David Jankowski

Clifton Karnes

Lome Klassen

Jesse Knight

Gregory Knox

David Lathrop

James A. Lisowski

Richard Lucas

Scott Maclean

David Martin

Steve McCrystal

Stacy Mclnnis

Chris Miller

Terry Montgomery

Ralph Morrill

Rick Morris

Michael Mossman

Bryce Nesbitt

Gerald Neufeld

Noel Nyman

Kevin O'Connor

Richard Perrit

Terry Pridham

Raymond Quirling

Richard Richmond

Gary Royal

John W. Ross

Dan Schein

EJ.Schmahl

David Shiloh

John Spencer

Darren J. Spruyt

Aubrey Stanley

David Stidolph

Richard Stringer

Anton Treuenfels

AudrysVilkas

Jack Weaver

Evan Williams

Program Listings In The Transactor

All programs listed in The TVansactor will appear as they would on your screen in Upper/Lower

case mode. To clarify two potential character mix-ups, zeroes will appear as *0' and the letter "o"

will of Course be in lower case. Secondly, the lower case L (T) is a straight line as opposed to the

number 1 which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're

listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces

you insert will not be critical to correct operation of the program. When it is, the required number of

spaces will be shown. For example:

print'' flush right'' - would be shown as - print "[10 spacesjflush right''

Cursor Characters For PET / CBM / VIC / 64

Down - Q

Up -BJ

Right -D

Left - [lit]

RVS -B
RVSOff-H

Insert

Delete

ClearScm-|

Home

STOP

Colour Characters For VIC / 64

Black -|

White -|

Red -Q

Cyan - [Cyn]

Purple- [Pur]

Green-B
Blue -H

Yellow- [Yel]

Function Keys For VIC / 64

F5-

F6-

F7-

F8-

Please Note: The Transactor's

NEW NEW

phone number is: (416) 764-5273

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

The IVansactor is published bi-monthly by Transactor Publishing Inc., 85 West Wilmot Street, Unit 10,
Richmond Hill, Ontario, L4B 1K7. Canadian Second Class mail registration number 6342. USPS 725-
050, Second Class postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address
changes to The Transactor, P.O. Box 338, Station C, Buffalo, NY, 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore
Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64,128, Amiga) are registered
trademarks of Commodore Inc.

Subscriptions:

Canada $19 Cdn. U.S.A. $15 US. All other $21 US.
Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 85 West Wilmot Street, Richmond
Hill, Ontario, Canada, L4B 1K7, 416 764 5273. Note: Subscriptions are handled at this address ONLY.
Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use

postage paid card at center of magazine. __^__^^_

Quantity Orders:

Norland Communications
251NipissingRoad,Unit3
Milton, Ontario
L9T4Z5
4168764774

CompuServe Accounts

Contact us anytime on GO CBMPRG,

GO CBMCOM, or EasyPlex at:

KarlJ.H.Hildon 76703,4242

Richard Evers 76703,4243

Chris Zamara 76703,4245

Nick Sullivan 76703,4353

.SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vo) 4 Issues 03.04.05,06, and Vol 5 Issues 02,
03,04 are available on microfiche only

Still Available: Vol. 4:01,02, Vol. 5:01,04,05.06. Vol. 6:01,02,03,04,05.06.
Vol. 7:01,02,03,04,05,06. Vol. 8:01,02

Back Issues: $4.50 each. Order all back issues from Richmond Hill HQ.

Editorial contributions are always welcome. Remuneration is $40 per printed page. Preferred media is
1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft, Superscript, or SEQ text Hies.
Program listings over 20 lines should be provided on disk or tape. Manuscripts should be typewritten,
double spaced, with special characters or formats clearly marked. Photos or illustrations will be included
with articles depending on quality. Authors submitting diskettes will receive the Transactor Disk for the
issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor
Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Solicited
material is accepted on an all rights basis only. Write to the Richmon Hill address for a writers package.
The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.
Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor September 1987: Volume 8, Issue O2



Makin' The Transactor

Whew! I can't believe it's time for another editorial page. Since writing my

last one the hands on the clock have been spinning like a crankshaft. I

know, I know, you're thinking, "it seems like every second editorial he

writes more tales of countless hours of sweat and toil, and it sounds like

he's about to plunge into another one.". Well, I am, but it's not a sad song,

quite the contrary. And it's not just me... we've all been chasing our tails

over the last 10 weeks.

Let me tell ya'bout it!

Sittin' in the classroom, thinkin' it's a drag,

Listenin' to the teacher, well thatjust ain 't my bag

... oops, wrong lyrics. Oh, here they are, but the melody is the same

(Smokin' in the Boys Room by Brownsville Station):

Negotiated terms, agreed to take the rap,

Transactor would be sold to us for three dollars cash,

But computers and assets, and outstanding debts,

Would add up to more than we would ever expect.

Signed all the papers, Shook all their hands,

Said see ya later, Andpacked up the van,

Headed offto Richards, With one load then two,

2 o'clock A.M., andyou know what we would do?., We'd go.,

Makin'The Transactor

Makin' The Transactor

Weil readers don'tya laugh about writin'this tune,

'Cause everybody knows that Transactor must be out byJune.

Next day would come, time to check out the shop,

Construction hadn 't started, but there's no time to stop,

Called up the landlord, "hey what's happenin' man?",

"Ifwe don't move in soon, it's gonna mess up ourplan, for

Program afterprogram, loadin'up to CompuServe,

My faulty VDT is gonna kill my optic nerve,

Prepared2 meg oftext, just 3 more meg to go,

By the time the DA's done we'llprobably be havin'snow. And we'll be...

(Chorus)

Should we do this show, called ComputerExpo?,

Orshould we get the mail sittin' in Buffalo?,

End up doin' both, made G-Links 'till three,

And all to find some kids went on a T-Shirt stealing spree.

Ourplace is almost ready, it's almost time to move

Our old lease is up, so we gotta do it soon,

Betterpaint the warehouse first, to keep the dust down,

Y'knowifwedon't, we'll be cleanin'all around... Before we go..

The Transactor

Rented out a truck to move 1Q tons ofmagazines,

There was desks and chairs and other stuffpacked in just like sardines,

the packages were heavy; they made our muscles strain,

Heavin' the 50 pounders way up top sure was a pain. Then we went...

(Chorus) ("sackbut, take it Benny...")

Richard was busy, with his own set ofprobs,

He had to get things going on a number ofjobs,

There was Lawyers, and Bankers, and Fishermen too,

Keepin 'em all happy was like workin' in a zoo.

Mastercard, Visa, and old mother Bell,

Were takin' their time getting ready as well,

Customers are calling, their orders aren 't filled

"I'd love to help you sir, but Visa must be billed."

The top floor was unfinished, it wasn 't in the deal

It saved a bit ofmoney and we thought, "no big ordeal",

First there was sanding, then painting with blue

The overspray gave me an unnatural hue.

With Jim as the foreman, the carpet got laid,

Then Rick came around and the countergot made,

Just in time too, for our opening due,

The party is tommorrow but there's still more to do.

The counter was up, the equipment was not,

We loaded Rick's truck with an incredible lot,

Grabbed the computers, the stereo, and TV,

And were sure that on the way, we'd be charged with B'n'E. Jailed and.,

(Chorus)

With the place all set up, it was time for the bash,

We brought in the liquor and took out the trash,

People came from all around, there's some hungoveryet,

"Thanks for comin' folks, now we've got some type to set".

'Cause we're...

Late with The Transactor

Late with The Transactor

Now readers Imay not be that good with a rhyme,

But now you all know why this Transactor won't be out on time.

(Spoken) Tune in next issue, same time, same place, for a more serious

editorial.

U.H.Hildon, Editor in Chief

with help from Nick and Chris... thanks guys!

~~~~ September 1987: Volume 8, Issue O2



Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from the

pages of The Transactor. It will let you check your work line by line as

you enter the program, and catch frustrating typing errors. The VERIFI

ZER concept works by displaying a two-letter code for each program

line which you can check against the corresponding code in the

program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or

C64, Plus 4, C128, and B128. Enter the applicable program and RUN it.

If you get a data or checksum error, re-check the program and keep

trying until all goes well. You should SAVE the program, since you'll

want to use it every time you enter one of our programs. Once you've

RUN the loader, remember to enter NEW to purge BASIC text space.

Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 4096 to enable the Plus 4 version (off: SYS 4099)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

BANK 15: SYS 1024 for B128 (off: BANK 15: SYS 1027)

Once VERIFIZER is on, every time you press RETURN on a program

line a two-letter report code will appear on the top left of the screen in

reverse field. Note that these letters are in uppercase and will appear as

graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that

line at the last minute which changes the report code. However, this

will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine nor

mally, checking each report code after you press RETURN on a line. If

the code doesn't match up with the letters printed in the box beside the

listing, you can re-check and correct the line, then try again. If you

wish, you can LIST a range of lines, then type RETURN over each in

succession while checking the report codes as they appear. Once the

program has been properly entered, be sure to turn VERIFIZER off with

the SYS indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead

of POKE 53281,0. However, VERIFIZER uses a "weighted checksum

technique" that can be fooled if you try hard enough; transposing two

sets of 4 characters will produce the same report code but this should

never happen short of deliberately (verifizer could have been designed

to be more complex, but the report codes would need to be longer, and

using it would be more trouble than checking code manually). VERIFI

ZER ignores spaces, so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!). Standard

keyword abbreviations (like nE instead of next) will not affect the

VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer, so

if you're using a datasette be aware that tape operations can be

dangerous to its health.. As far as compatibility with other utilities goes,

VERIFIZER shouldn't cause any problems since it works through the

BASIC warm-start link and jumps to the original destination of the link

after it's finished. When disabled, it restores the link to its original

contents.

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

01

JB

PA

HE

EL

LA

Kl

EB

DM

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

10 rem* data loader for " verifizer 4.0" *

15 rem pet version

20cs = 0

30 for i = 634 to 754:read a:poke i,a

40cs = cs + a:nexti

50:

60 if cs<>15580 then print" ***** data error *****": end

70 rem sys 634

80 end

100:

1000 data 76,138, 2,120,173,163, 2,133,144

1010 data 173,164, 2,133,145, 88, 96,120,165

1020 data 145, 201, 2,240, 16,141,164, 2,165

1030 data 144,141,163, 2,169,165,133,144,169

1040 data 2,133,145, 88, 96, 85,228,165,217

1050 data 201, 13, 208, 62,165,167, 208, 58,173

1060 data 254, 1,133, 251,162, 0,134, 253,189

1070 data 0, 2,168, 201, 32, 240, 15, 230, 253

1080 data 165, 253, 41, 3,133,254, 32,236, 2

1090 data 198, 254, 16, 249, 232,152, 208, 229,165

1100data251, 41, 15, 24,105,193,141, 0,128

1110 data 165, 251, 74, 74, 74, 74, 24,105,193

1120 data 141, 1,128,108,163, 2,152, 24,101

1130 data 251,133,251, 96

VIC/C64 VERIFIZER

10 rem* data loader for "verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:nexti

50:

60 if cs<>14755 then print "***** data error *****": end

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,251,141, 2,

3, 3, 96,173, 3,

17,133,252,173, 2,

99,141, 2, 3,169,

96,173,254, 1,133,

0,189, 0, 2,240,

15,133,

32,183,

76, 74,

1010 data 252,141,

1020 data 3,240,

1030 data 251,169,

1040 data 3, 3,

1050 data 0,160,

1060 data 32,240,

1070 data 133, 90,

1080 data 232, 208, 229, 56,

1090 data 32,210,255,169,

1100 data 89, 41, 15, 24,105,

1110 data 165, 89, 74, 74, 74,

1120data 32,210,255,169,146,

1130 data 32, 240, 255,108, 251,

1140 data 101, 89,133, 89, 96

3,165

3,201

3,133

3,141

89,162

22, 201

91,200,152, 41, 3

3,198, 90, 16,249

32,240,255,169, 19

18, 32,210,255,165

97, 32,210,255

74, 24,105, 97

32,210,255, 24

0,165, 91, 24

VIC/64 Double Verifizer Steven Walley, Sunnymead, CA

When using 'VERIFIZER' with some TVs, the upper left corner of the

screen is cut off, hiding the verifizer-displayed codes. DOUBLE VERI

FIZER solves that problem by showing the two-letter verifizer code on

both the first and second row of the TV screen. Just run the below

program once the regular Verifizer is activated.

The Transactor September 1987: Volume 8, Issue O2



KM

BC

Dl

GD

IN

EN

KG

KO

FM

LP

100 for ad = 679 to 720:read da:poke'ad.dainext ad

110sys679: print: print

120 print" double verifizer activated" :new

130 data 120,169,180,141, 20, 3

140 data 169, 2,141, 21, 3, 88

150 data 96, 162, 0,189, 0,216

160 data 157, 40,216,232,224, 2

170 data 208, 245,162, 0,189, 0

180 data 4,157, 40, 4,232,224

190 data 2,208,245, 76, 49,234

VERIFIZER For Tape Users Tom Potts, Rowley, MA

The following modifications to the Verifizer loader will allow VIC and 64

owners with Datasettes to use the Verifizer directly (without the loader).

After running the new loader, you'll have a special copy of the Verifizer

program which can be loaded from tape without disrupting the pro

gram in memory. Make the following additions and changes to the VIC/

64 VERIFIZER loader:

NB 30 for i = 850 to 980: read a: poke i,a

AL 60 ifcs<>14821 then print" *****data error*****": end

IB 70 rem sys850 on, sys853 off

— 80 delete line

— 100 delete line

OC 1000 data 76, 96, 3,165,251,141, 2, 3,165

MO 1030data251,169,121,141, 2, 3,169, 3,141

EG 1070 data 133, 90, 32,205, 3,198, 90, 16,249

BD 2000 a$ = n verifizer.sys850[space]"

KH 2010 for i = 850 to 980

GL 2020 a$ = a$ + chr$(peek(i)): next

DC 2030 open 1,1,1 ,a$: close 1

IP 2040 end

Now RUN, pressing PLAY and RECORD when prompted to do so (use a

rewound tape for easy future access). To use the special Verifizer that

has just been created, first load the program you wish to verify or

review into your computer from either tape or disk. Next insert the tape

created above and be sure that it is rewound. Then enter in direct

mode: OPEN1 :CLOSE1. Press PLAY when prompted by the computer,

and wait while the special Verifizer loads into the tape buffer. Once

loaded, the screen will show FOUND VERIFIZER.SYS850. To activate,

enter SYS 850 (not the 828 as in the original program). To de-activate,

useSYS853.

If you are going to use tape to SAVE a program, you must de-activate

(SYS 853) since VERIFIZER moves some of the internal pointers used

during a SAVE operation. Attempting a SAVE without turning off

VERIFIZER first will usually result in a crash. If you wish to use

VERIFIZER again after using the tape, you'll have to reload it with the

OPENliCLOSEl commands.

Plus 4 VERIFIZER

Nl

PM

EE

NH

Jl

AP

NP

JC

ID

PI
CA

OD

LP

EK

1000 rem * data loader for n verifizer + 4"

1010 rem * commodore plus/4 version

1020 graphic 1: scnclr: graphic 0: rem make room for code

1030 cs = 0

1040 for j = 4096 to 4216: read x: poke j,x: ch = ch + x: next

1050 if ch<>13146 then print " checksum errorB: stop

1060 print " sys 4096: rem to enable"

1070 print " sys 4099: rem to disable"

1080 end

1090 data 76, 14, 16,165,211,141, 2, 3

1.1.00 data 165, 212,141, 3, 3, 96,173, 3

1110data 3,201, 16,240, 17,133,212,173

1120 data 2, 3,133,211,169, 39,141, 2

1130data 3,169, 16,141, 3, 3, 96,165

Dl

LK

GJ

DN

GJ

CB

CB

PE

DO

BA

BG

1140 data 20,133,

1150 data 0, 2,

1160 data 176, 3,

1170 data 240, 22,

1180 data 200,152,

1190 data 16,198,

1200 data 165, 208,

1210 data 0, 12,

1220 data 24,105,

1230 data 0,165,

1240 data 96

208,162, 0,

201, 48,144,

232, 208, 242,

201, 32,240,

41, 3,133,

209, 16,249,

41, 15, 24,

165,208, 74,

193,141, 1,

210, 24,101,

160, 0,189

7,201, 58

189, 0, 2

15,133,210

209, 32,113

232, 208, 229

105,193,141

74, 74, 74

12,108,211

208,133,208

PK

AK

JK

NH

OG

JP

MP

AG

ID

GF

MG

HE

LM

JA

El

KJ

DH

JM

KG

EF

CG

EC

AC

JA

CC

BO

PD

1090 data 208,

1100 data 254,141, 3,

1110 data 201, 12,240,

C128 VERIFIZER (40 column mode)

1000 rem * data loader for n verifizer d 28w

1010 rem * commodore d 28 version

1020 rem * use in 40 column mode only!

1030 cs = 0

1040 for j = 3072 to 3214: read x: poke j,x: ch = ch + x: next

1050 if ch<>17860 then print " checksum error": stop

1060 print " sys 3072,1: rem to enable"

1070 print " sys 3072,0: rem to disable"

1080 end

11,165,253,141, 2, 3,165

3, 96,173, 3, 3

17,133,254,173, 2

1120 data 3,133,253,169, 38,141, 2, 3

1130 data 169, 12,141, 3, 3, 96,165, 22

1140 data 133, 250,162, 0,160, 0,189, 0

1150 data 2,201, 48,144, 7,201, 58,176

1160 data 3,232,208,242,189, 0, 2,240

1170 data 22,201, 32,240, 15,133,252,200

1180data152, 41, 3,133,251, 32,135, 12

1190 data 198, 251, 16,249,232,208,229, 56

1200 data 32,240,255,169, 19, 32,210,255

1210 data 169, 18, 32,210,255,165,250, 41

1220 data 15, 24,105,193, 32,210,255,165

1230 data 250, 74, 74, 74, 74, 24,105,193

1240data 32,210,255,169,146, 32,210,255

1250 data 24, 32,240,255,108,253, 0,165

1260data252, 24,101,250,133,250, 96

B128 VERIFIZER Elizabeth Deal, Malvern, PA

1 rem save' @0:verifizerbi 28n ,8

10 rem* data loader forn verifizer b128" *

20cs = 0

30 bank 15:for i = 1024 to 1163:read a:poke i,a

40cs = cs + a:nexti

50 if cs<>16828 then printn ** data error **w: end

60 rem bank 15: sys 1024

70 end

1000 data 76, 14, 4,165,251,141,130, 2,165,252

1010 data 141,131, 2, 96,173,130, 2,201, 39,240

1020data 17,133,251,173,131, 2,133,252,169, 39

1030 data 141,130, 2,169, 4,141,131, 2, 96,165

1040 data 1, 72,162, 1,134, 1,202,165, 27,133

1050 data 233, 32,118, 4,234,177,136,240, 22,201

1060 data 32,240, 15,133,235,232,138, 41, 3,133

1070 data 234, 32,110, 4,198,234, 16,249,200,208

1080 data 230,165,233, 41, 15, 24,105,193,141, 0

1090 data 208,165,233, 74, 74, 74, 74, 24,105,193

1100 data 141, 1,208, 24,104,133, 1,108,251, 0

1110 data 165, 235, 24,101,233,133,233, 96,165,136

1120 data 164,137,133,133,132,134, 32, 38,186, 24

1130 data 32, 78,141,165,133, 56,229,136,168, 96

1140 data 170,170,170,170

The Transactor September 1987: Volume 8, Issue O2



b
i

1

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - ifwe use it in the Bits column, we 7/ credit you in

the column and sendyou a free one-year's subscription to The Transactor

Ok, we've got a great bunch of bits for you this time! We start

with a couple of screen blitzes for the 64, the kind of program

that made the bits section famous.

TheJiggler Loren Teillon, Virginia Beach, VA

Make your C64 "Twist and Shout" - just try this simple program

and see what happens.

100 for t=0 to 15: poke 53270,t: next: goto 100

Just remove the GOTO to use this in your programs. Experiment

with the for-next values for different effects. Great for games.

The Striped Crawler That

Drips Blood and Kills People

Martin Spencer

Brampton, Ontario

Ooh, a real scary one this is, kids! Ok, so it doesn *t drip blood.

Well, it doesn *t kill people either. Ok, maybe it isn 't that scary,

but look at those stripes in the border!

53280:b = 0:c = 11:d = 12:e = 15

20pokealb:gosub30:pokea,l:gosub30:pokeald

:gosub30:pokea,e:gosub30:goto20

30::return

(Make sure the two colons precede the RETURN on line 30.)

Ahem. Now on to some slightly more serious topics.

Resets Revisited Keith Hendren

Kelvington, Saskatchewan

The Commodore 64C has an advantage over the older 64 in the

way the reset lines are set up. In the newer model, a reset in the

serial port will not reset the computer; similarly a reset in the

user or expansion port will not reset the serial line. This gives us

the opportunity to install two reset switches - one between pin 3

of the user port and ground, the other between pin 6 of the serial

port and ground. (See the Commodore 64 Programmers Refer

ence Guide or The Complete Commodore Inner Space Anthol

ogy for numbering of pins.) There is plenty of room above the

cassette port in the back of the lower half of the computer case

for the SPST momentary contact switches. Here they are fairly

immune to accidental operation, and don't prevent easy removal

of the top of the keyboard.

There are several advantages to having two reset switches. In

many cases a disk or printer operation can be discontinued

without locking up the computer by resetting the serial line.

Sometimes this will also free a program that has locked up with

the drive running. Similarly when a program crashes with the

drive light flashing, you can reset the computer and then read

the error channel or "m-r" around inside the drive memory for

a possible clue as to what has happened.

1541 + 1702 = #?$*!! Graham Reed

Toronto, Ontario

I'm sure you've all heard advice about not having your disk

drive or cassette deck on the left side of your Commodore

monitor. Well, if you want some real proof, with no fancy gear at

all, here's what to do:

1) Get a telephone. One that has a separate base and handset is

a must.

2) Turn on your computer and monitor.

3) Unplug your phone and take it to your computer.

4) Hold the base of the phone to the left side of the monitor, and

listen to the handset.

5) Realize that the buzz you are hearing is cau 2d by a magnetic

field in the bell coils of your phone... and imagine what that

may be doing to your disks.

Okay, now we know why you shouldn't keep your disk drive

near the left side of your monitor. But, and this is a biggie, ifyou

are not having any problems with your disks and drive, do not

change your setup! The reason for this is very simple. All the

disks you have formatted with your current setup (assuming that

The Transactor September 1987: Volume 8, Issue O2



that your drive is on the left...) have had this magnetic field

affecting the drive. If you move the drive, then the field won't be

affecting the drive, and your data will be fine, right?

Wrong. When the field is gone, the drive goes back into (or, from

your point of view, out of) alignment. This means that your disks

that were formatted on the left will have their data compensated

for this magnetic field, and when the field is gone, it may have

trouble reading the data.

I had very little trouble with my drive, except when trying to

load some protected commercial programs. Tilting the drive on

its side seemed to do the trick!

Do You Know

Where Your Head Is?

Harold R. Skewes

Birmingham, Alabama

I program a little in machine language and once in a while my

programs don't work out and the disk drive sticks or jams.

Usually I take the drive apart and move the read/write head to

solve the problem. It started to happen frequently, so I left the

top of the drive's case off so that I could just reach in to move the

head. My drive collected quite a lot of dust, and some other

things, with the cover off.

Then I found a better way. One day as I reached to make the

adjustment, the head vibrator protector that the drive was

shipped with fell to the floor. As I picked it up, I took a good look

at it, then turned off the drive and inserted it into the slot. The

tab on the cardboard pushed the head back to track one, and the

drive was ready to use again!

Foryet another solution to head-correction, see the next bit.

More 1541 Tips Wayne McDaniel

Terre Haute, IN

As one of the many owners of the Commodore 1541 disk drive/

oven, I would like to offer a few tips:

First, it's been said before, but cutting a couple of pencils into

about 2V2 to 3 inch lengths and putting them in the screw holes

increases the air circulation through the drive and keeps it

cooler.

Second, I just had my drive realigned for the second time in six

months, and the second shop where I had it done gave me some

good advice. After the drive was properly aligned, they put some

permanent epoxy on the drive stepping motor to prevent it from

being knocked back out of alignment. They said that several

people had taken their drives to other shops for alignment

before bringing it to them, and the drive had just gone back out

of alignment in 4-6 months. They told me that the epoxy

seemed to be an almost permanent solution to the problem.

Third, the read/write head on my drive has on several occa

sions gotten hung up. I have found that if you take the disk out

and tell the drive LOAD" *" ,8, this will get the head back into

position.

Finally, I have to say that The Transactor is without a doubt the

perfect magazine for all Commodore users.

That last part has been sent in by others already, but good

advice is worth repeating - Ed

Break C64 Paul Bougard

Harmignies, Belgium

This program lets you put a virtual break anywhere in a BASIC

program. Just set a break with the syntax:

sys 828,<line number>

For example, to stop your program at line 250, you would give

this command in direct mode:

sys 828,250

Then, when you run your BASIC program, it will stop with the

message "Break in line 250", when that line is about to be

executed. The specified break only occurs once; if you run the

program again, it will run as usual. This is a very handy

debugging tool, and it saves you from having to put STOP

commands into your program at various points.

Just run the loader program below to put "break c64" in place.

1 rem break c64

2 rem create a virtual break

3 rem syntax:

4 rem sys 828, line to break

5 rem paul bougard 1986

10i = 828

20 read a: if a = 256 then end

30 poke i,a: i + i +1: goto 20

828 data 32,253,174, 32,107,

836 data 133, 251,165, 21,133,

844 data 141, 8, 3,169, 3,

852 data 96,165,123,201, 2,

860 data 252,197, 58,208, 31,

868data 57,208, 25,169,228,

876 data 169,167,141, 9, 3,

884 data 233, 4,133,122,176,

892 data 56, 32, 52,168, 76,

900 data 8, 3,141,104, 3,

908 data 173, 9, 3,141,109,

916 data 3, 96,256

128 Notepad

169,165, 20

252,169, 85

141, 9, 3

240, 37,165

165,251,197

141, 8, 3

165,122, 56

2,198,123

228,167,173

141,129, 3

3,141,130

John M. Paterson

Houston, Texas

Frequently when entering BASIC programs from magazines I

add REM statements to identify the source of the article and the

major functions and commands of the program. With machine

language programs, however, REM statements are obviously not

a possibility.

The Transactor September 1987: Volume 8, Issue O2



Now that I have a C128 I can record most of a 40-column

screenful of instructions and other information by typing the

screen exactly as I want to see it (except for the bottom 5 lines).

Then I give the command:

bsave " filename, n" ,p1024 to p1824

This saves the screen in a binary file. Later, when I want to view

the instructions I can place the cursor on the 6th line from the

bottom of the 40-column screen and enter:

bload "filename.n"

using the same filename used to save it. This fills the screen with

instructions without erasing the program in memory. The ".n" in

the filename is used as a reminder that the file is a "notepad" file.

128 BASIC Linefinder Philip C. Herald

Seattle, Washington

Save C-128 Variables

in RAM Expansion

Richard D. Young

Greenwood, Nova Scotia

STASHing and FETCHing BASIC program variables to and from

C-128 RAM expansion can be tricky. The information required

for such an operation is included in the manual that comes with

the RAM expansion module, but it must be interpreted with

care. First of all, since I/O is enabled for the BASIC commands

involved in RAM expansion activity, the top of variables pointer

must be set to the beginning of the I/O memory area at $D000.

Do this with POKE 58,208: CLR, then STASH and FETCH

variable data from $0400 to $D000 of BANK 1 ONLY. Secondly,

the C-128 BANK number used for DMA to and from RAM

expansion is determined by the VIC RAM bank pointer at bit six

of $D506. This bit must be set before activating RAM expansion

activity associated with BANK 1 variables, and re-zeroed after

such activity. Thirdly, and obscure characteristic of the C-128

bank configurations and their overlap dictates that the variable

pointers that reside in $0000-$0400 always be written to RAM

BANK 0. This means that variable pointer data must be read

from and written to the C-128 in the BANK 0 or BANK 15

configurations, not BANK 1.

The following subroutines illustrate the process of saving C-128

variable data in RAM expansion banks.

100 : rem fetch variables from expansion ram bank 'rb'

110:

120 poke 54534,(peek(54534) or 64): bank 1: slow

130 fetch 52224,1024,1024,rb: bank 15: poke 54534,4

: fetch 10,49,49, rb

140 fetch 4,71,71,rb: return

150:

160 : rem stash variables in expansion ram bank 'rb'

170:

180 poke 54534,(peek(54534) or 64): bank 1: slow

190 stash 52224,1024,1024,rb: bank 15: poke 54534,4

: stash 10,49,49,rb

200 stash 4,71,71 ,rb: return

If youVe ever looked through the BASIC text storage area with a

monitor's memory dump, trying to find that one elusive to-

kenized line, this will save you some eyestrain. It accepts a line

number passed through the USR function, calls some routines in

the BASIC 7.0 jump table, and returns with the address of the

line. For instance, if you're looking for line 1000,

print hex$(usr(1000))

prints the starting address, in hex, of the tokenized line. The

unused bytes in page 10 of the 128 provide a space that's just

about right for the job.

A F0AC8

A F0ACA

A F0ACC

A F0ACF

A F0AD2

A F0AD3

A F0AD6

A F0AD9

A F0ADB

A F0ADD

A F0ADF

A F0AE1

F0AE3

F0AE4

F0AE6

F0AE9

F0AEA

F0AEC

A

A

A

A

A

A

LDA #$D3

LDX #$0A

STA $1219

STX $121A

RTS

JSR $AF0C

JSR $AF8D

BCC$0AEA

LDA $61

LDX $62

STA $65

STX $64

SEC

LDX #$90

JSR $AF0F

RTS

LDX #$11

JMP($0300)

;point usr vector at $0ad3

;float-to-integer

;search for line number

;branch if not found

; int-to-float routine fetches from

; these zero-page locations

; and requires this precondition

; as well as this one

; integer-to-float

;" undef'd statement" error

If you use this area of memory to hold the code, SYS 2760 starts

things running. You can put it anywhere else below BASIC text

in bank 15 by changing where the USR vector points.

This could be handy if you want to use a monitor dump to slip

some colour change or control characters into your REM state

ments. You could even use it from a running program as part of a

scheme to make changes "on the fly"; for instance, to change

REMs to PRINTs, or vice versa.

No-line LIST

For the 128

K. van Mil

St. Ann's, Ontario

In The Transactor Volume 7 Issue 03, there was a simple method

for the C64 to convert PAL-format assembler source code to

CBM assembler format, called "Easy PAL to CBM Source Con

version". The POKE for convincing the 128 to do this was not

given. On the 128, POKE 24,37 stops the printing of line

numbers for a LIST. POKE 24,27 returns the system back to

normal. The complete method looks like this:

open 1,8,2," filename,s,w": cmd 1: poke 24,37: list

TheTransactc September 1987: Volume 8, Issue Q2



Then, to return things to normal after the LIST:

print#1: closei: poke 24,27

I like to use 128 mode to enter programs because the numeric

keypad and the extra editing features makes program entry and

correction a lot easier.

Table Look-Up

Without Arrays

James MacFarlane

Islington, Ont.

Here are some quick ways to look up a string within a table

without putting it all in an array.

10 print mid$(" JanFebMarAprMayJunJulAugSepOctNov

Dec", (mo-1)*3 + 1,3)

20 pa = 1-pa: print "Pager is " +mid$("OFFON "

,3*pa + 1,3)

30 dx = 1 -dx: print mid$(HALFFULL" ,dx*4 + 1,4)

+ " Duplex"

Line 10 will print the abbreviated name of a month given its

number (1 through 12). Lines 20 and 30 show the use of two-

state indicators that are toggled.

Mid-string functions save time and memory space since an

array does not need to be defined or filled with data.

Here is the general form of the technique:

print mid$("FREDJOHNSUE DAVE", (position-1)*

(element length) +1 .element length)

In this case the length would be four. The technique is easy to

use and can be applied to a variety of programs.

Static Detector Andrew Fernandes

St. John's, Newfoundland

lated wire. Use R2 to calibrate the circuit. A 9V battery will run

the circuit for around 48 hours; when there is no danger to your

equipment, you can shut it off by disconnecting the battery (you

can install a switch to do this). Good luck!

+ 9V

Ml

0-1 mA meter

Recently a friend of mine just came back from the repair centre

where he had his C64 fixed from static electricity damage. Too

bad computers don't have Blue Cross. If the fellow's lucky, he

might be able to pay back the loan within 20 to 30 years.

Not having a credit rating such as his, I decided to protect

myself. The result, after a good one-hour search of eight years'

worth of electronics magazines, is the following circuit taken

from Computer & Electronics, January 1984 (Vol 22, #1), page

98 in a column written by Forrest M. Mims III.

This electrometer is quite sensitive and detects negative static

charges from several feet away. Unfortunately, humans gener

ally develop positive charges, so a simple solution is to replace

the 2N3819 N-channel JFET with a 2N3820 P-channel device.

The circuit is simple enough to directly build into a small

PLASTIC box, the antenna simply being a short piece of uninsu-

Ql
2N3819, etc.

An ultra-simple

FET electrometer

Marble Madness

Teamwork Tip

David A. Butcher

Cleveland, Tenessee

Want to increase your scores in that arcade hit, "Marble Mad

ness" by Electronic Arts? Simply play with a friend! No, not

against a friend, with a friend, as follows:

Some of you may have noticed that when playing in one-player

mode, both joysticks/trackballs can control the ball. An annoy

ing bug, right? WRONG. Put it to your use - BOTH of you can

play the same ball, simultaneously! Be sure to have both

joysticks or trackballs plugged in, and select single player mode.

Both of you can help control the ball, and best of all, if both of

you use the "turbo" option (fire button), you add enough power

to knock the steelie backwards in his tracks! And enough power

to simply whizz by the vacuum nozzles without any deflection at

all!

Scores of well over 24,000 points are easily attainable with this

method, and the sixth frame is now easily reached.

Teamwork. It works!

Simple C64 Hi-Res

Printer Dump

Mark Beckman

Pomona, California

I have seen quite a few routines in The Transactor and other

magazines to dump a hi-res screen to a printer, but none of

The Transactor September 1987: Volume 8, Issue O2



them have been as fast, short and simple as this one. One word

of warning: in order to be as simple as it is, this routine cheats-it

prints the screen sideways.

100 print: open 4,4,4: print#4,chr$(27);chr$(65);chr$(8)

110 s = 8192: gr$ = chr$(27) + chr$(75) + chr$(200)

+ chr$(O)

120 for x = 0 to 321 step 8: print#4,gr$;

130 for y = 7680 to 0 step -320: for z = 7 to 0 step -1

140 print#4,chr$(peek(s + x + y + z));: next: next: print#4

: next

Line 100 opens a channel to the printer through a Cardco

interface in "transparent mode"; another interface or setup may

need a different open statement. The PRINT* statement sets line

feeds to 8/72 inches on a Star SG10 printer. Your printer may

differ.

Line 110 sets the base address (in this case 8192) and puts the

sequence to tell the printer to expect 200 bytes of graphics data

into GR$. Once again, this sequence may be different from

printer to printer.

The rest of the routine just peeks a byte at a time from the hi-res

screen and sends it to the printer.

To make the routine stand alone as a program, the following

lines could be added to get a hi-res screen from disk.

60 if flag = 1 goto 100

70 poke 51,0: poke 52,32: poke 56,32: clr: flag = 1

80 input " filename ";f$: iff$= " " then end

90 load f$,8,1

Ribbon Alternative Larry Cossaboon

Saint John, New Brunswick

While doing hi-res dumps on my 1526 printer, I found that I was

going through printer ribbons more quickly than usual. To solve

the problem, I took advantage of the printer's friction-feed

capability and put a piece of carbon paper over the paper I was

printing on and removed the ribbon.

Not only does the carbon paper save on ribbons, but it allows

printing on clear acetate for use with overhead projectors, etc.

Formatting An

Un-Notched Disk

A.J. Saveriano

Sparta, New Jersey

the two screws that hold the metal shield in place. Remove the

metal shield.

4. On the top left side of the PC board are five connector plugs in

a row. The long centre one is the one we want.

5. The pins on this plug are numbered from back to front. We

want numbers 12 and 13.

6. Pin number 12 will have an ORANGE wire and pin 13 will

have a GREEN wire.

7. Install a jumper between these two wires and you will be able

to format and write to an un-notched disk.

A jumper is a simple wire that joins or shorts two other wires or

points on a PC board. You can install a SPST switch between

these wires instead, then use the switch to easily go from normal

to un-notched formatting.

Important: Make sure that the switch is in the normal (off)

position before removing or inserting a disk, otherwise the DOS

will not be aware of disk changes and it could get confused

between disks and destroy data.

Protect Those Vectors! Randy Rizun

Hamilton, Ont.

In the Bits and Pieces section of Volume 7 Issue 4, Philip Herold

stated, "We all know what pressing RUN/STOP-RESTORE on

the 64 does to our IRQ-driven wonders: it resets the IRQ vector

and disables them.". Well. . .

I've found a way to preserve the IRQ vector, or any other vector,

after a RUN/STOP-RESTORE. The main BASIC program loop is

vectored through $0302, so by changing it, whenever the

"READY" prompt appears, your vectors will be installed again.

Here's one way to accomplish it:

The following modification to the 1541 disk drive will allow you

to format and write to an un-notched disk.

1. Carefully turn the drive upside down and remove the four irqrtn

screws.

2. Turn it right-side up (hold the drive together!) and remove the

top.

3. Turn it on its side with the TOP to your RUGHT and remove

entry Ida

sta

Ida

sta

jsr

rts

setback jsr

jmp

etirq sei

Ida

sta

Ida

sta

cli

rts

#<setback ;change the main loop vector

$0302

#>setback

$0303

setirq

setirq

$a483

#<irqrtn

$0314

#>irqrtn

$0315

;irq-driven routine starts here

jmp $ea31 ;exit through end of irq routine

The Transactor 1O September 1987: Volume 8, Issue O2



Sorting On The Fly Martin Hofheinz

Stockton, CA

Sorting is certainly one of the most common things done by a

computer.

The programmer has a wide variety of sorting algorithms from

which to choose. Some are faster with pre-sorted lists; some are

faster with un-sorted lists. Machine language sorts are the

fastest, but they are tricky to incorporate into BASIC programs.

The usual approach is to first enter the data, then sort it after it is

all entered.

Another way to sort is to enter the data, and sort each item as it

is entered. This system works especially well with keyboard

input, where data must be entered manually. The actual sorting

is not too fast, but since it is being done at the same time you are

looking up names, addresses, etc., the overall program run time

can be shorter than if everything was sorted at once.

The following simple program illustrates a sample sorting rou

tine for sorting lists of names and ages by either name or age. It

creates pointers to the unsorted arrays "t$(" (containing the

names) and "a$(" (the ages). The arrays of pointers are "a(" for

the names and "b(" for the ages - these arrays hold the element

numbers of the other arrays in sorted order. As each item is

entered, it rises from the bottom of the list until it reaches its

proper place.

The program is written as simply as possible, with no attempt at

elegance.

10 input "how many names" ;n

20 dim a(n),b(n),a$(n),t$(n)

30 for j = 1 to n: print: print" number" ;j

40 input"surname ";s$

50 input "first name" ;f$

60t$(j) = s$+ ", " + f$: rem combine surnames

with first names

70 input"age";a$(j)

80 a(j)=j: h=j + 1

90 h-h-1: if t$(j) < t$(a(h-1)) then a(h) = a(h-1)

: goto 90: rem sort names

100a(h)=j

110b(j)=j:h=j + 1

120 h = h-1: if a$0) < a$(b(h-1)) then b(h) = b(h-1)

: goto 120: rem sort ages

130b(h)=j

140 next j

150 print: print" sorted alphabetically:"

160 for j = 1 to n

170 print t$(a(j)),a$(a(j))

180 next j

190 print: print" sorted by age:"

200 for j = 1 to n

210 print t$(b(j)),a$(b(j))
220 next j

TransBlooperz

Volume 8 Issue 1: Strange Cases of Backwards Braces

Programmers who typed in the C listing for "TrapSnapper" probably

noticed that all the open and close braces were reversed. (Blush.) We

hope this didn't confuse anyone.

Volume 7 Issue 6: EPROM Programmer Update

William Coleman of Green Cove Springs, FL wrote in with this fix to the

BASIC program on page 41. Line 80 reads in part 'ad(4) = 57087'. It

should read 'ad(4) = 57089'.

..And another one from Alan Reece of Everett Washington, regarding

the personality module for the 2764 on page 42: the jumper going from

pin 10 to pin 24 should be changed to go from pin 10 to pin 22. He also

gives this tip: "Persons using surplus 2764's should try voltages from 12

Volts up. The AM 2764-2DCB I'm using required about 18.3 volts.

Anything above or below this voltage would not work."

Volume 7 Issue 6: Textscan

A little typesetting slip up split one line into two on the 5th line of page

57. "CALL BDOS" should be on one line. Also, on page 58, another

typesetting anomoly would cause a sumcheck error. The line starting

with "linasc:" defines bytes in memory as 5 zeros, a colon, AND a

space. Typeset spaces are so small that it would go unoticed by most.

Our apologies - we'll make sure they're bigger from now on.

Volume 7 Issue 3: Keyboard Expander

John M. Paterson from Houston, Texas observed that Aubrey Stanley's

"Keyboard Expander" was not fully compatible with C64 version 1

ROMs and sent the following fix. With this correction, the shift-F3 (clear

to end of line) and logo-F3 (clear to end of screen) will work properly

with the early machines.

Make the following changes to the program " ke.gen":

1000 rem program to create file " ke.1 " on disk

1002 rem modified for 1st generation ROM

1004 rem by j. paterson, houston, tx

1006 rem 9/4/86

1007 rem changes in lines 1030,1040,1060,

1070,1550,1900,4450,4470

1008 rem line 4475 added.

1030 for j = 1 to 2753: read x: ch = ch + x: next

1040 if ch<>276696 then print " checksum error": end

1060 open 8,8,8, "0:ke.1 ,p,w"

1070 for j = 1 to 2753: read x

1550 data 108, 27, 0, 0, 16,129, 47, 10

1900 data 129, 32, 1, 10, 96,136, 97, 48

4450 data 97,162, 0,129,189, 6, 10, 98

4470 data 97,144,245, 96, 96, 97,169, 1

4475 data 97,145,243, 96, 96,112, 75, 69

Volume 6 Issue 6: VARPTR

This one's over a year old, but was only recently brought to our

attention: Randy Winchester from Quincy, MA reported problems with

the short VARPTR program on page 40. The problem is not with the

program but with the instructions on how to use it to find the address of

a string variable in memory. The text erroneously used a peek(v)

instead of peek(v + 2). The correct syntax is:

print peek(v + 1) + 256*peek(v + 2)

The Transactor September 1987: Volume 8, Issue O2



L
t R

Amiga coverage unjust: I feel that you are doing your loyal

readers an injustice by including so many articles on the Commo

dore Amiga, especially in your May 1987 issue (volume 7, issue 6). I

hope you realize that the Amiga has a completely different operat

ing system than the other Commodore computers, and has a 16

rather than an 8 bit microprocessor. Commodore is now branching

out into PC clones as well as the Amiga line.

I purchased a subscription to your wonderful magazine on the basis

of the C64/C128 information and articles. If you intend to branch

out into other areas, please cancel my subscription because I do not

want a magazine for computers that I do not own. If I owned an

Amiga, I would subscribe to a magazine like Amiga World. I hope

you can realize the harm you are doing by publishing these articles,

and that you will eventually lose your faithful following of dedicated

Commodore 64/128 owners.

Bernard H. Weiss, Edison, New Jersey

Well, Bernard, we hate to disappoint readers, but let us just draw

your attention to the front cover of any Transactor. Right under the

name, you'll see a message prominently displayed: "The Tech/

News Journal For Commodore Computers". Like the Amiga.

On the other hand, we admit you have a valid point. Our programs

for the Amiga are not going to run on your 64 or 128, and the

articles that tell you how it works aren 't going to help you much

either. And that's why, for the time being at least, we're restricting

our Amiga coverage to something like 20 or 25 per cent of the

magazine.

Sooner or later, though, something's got to give. We'll be very

surprised if various models of the Amiga aren't around for a long

time to come; whereas the 8-bit machines will probably dwindle in

importance and market share. A magazine like ours eventually has

to either adapt to the changing situation, or go out of business. You

might say, "Well, why not start an Amiga version of Transactor, and

keep the coverage separate?" Truth is, we'd love to, and maybe we

will some day. Unfortunately, that's not a (financially) realistic

option right now and, until it is, we 're going to have to make shift

with the 80 pages at our disposal.

Don't worry, though. We haven't forgotten our 64 and 128 readers,

and we 11 keep bringing you good things. Besides, are you SUREyou

wouldn 't like to own an Amiga?

Ingratitude, publicly expressed: I am writing this letter in

regard to the special issues of Transactor which you have been

sending. These issues were started with Volume 7, Issue 2, and

have continued to this day. Please don't misunderstand! I'm flat

tered by the trouble and expense you must go to in providing this

unique edition. However, I believe that for the good of all your other

readers, such expenses would be better made on increasing the

number of excellent articles per issue (or, better yet, make The

Transactor a monthly!)

As it is conceivable that you are publishing other "special" issues for

other readers, I will attempt to identify those I am receiving. Their

most recognizable feature seems to be in the omission of an

Editorial Schedule for upcoming issues. Although this may seem a

minor issue to some, the knowledge of major topics that are

"Coming soon to your local Transactor" allows me to savour the

anticipation for months in advance. It also proves of some help in

deciding if an idea for a program and article will match with any

planned issue topics. So please, guys, start sending me the regular

issues of Transactor and save the specials for someone else!

Jack R. Farrah, Cincinnati, Ohio

So this is the thanks we get! All right, Jack R. Farrah, you 've really

got us steamed now! Anybody else out there want to get on the

bandwagon? What about you, Milo Whistlebottom? Are you going

to start whining because we print your Transactor without page

numbers? And how about you, Henrietta Sloop? You want the

'toons like everybody else?

Okay, people, you 've got it. No more special treatment, no more

special issues. From now on, everybody gets the same Transactor

The Transactor 12 September 1987: Volume 8, Issue O2



no matter who they are. Andjust to make sure you get the point,

(We interrupt this tirade to bring you a special announcement: as of

next issue, Transactor is abandoning the practice of publishing

theme issues, so please disregard the Editorial Schedules that have

been appearing in all copies ofthe magazine apart from those being

sent to Jack R. Farrah. Instead, we will be having one article (or a

few) on a feature topic, with the balance drawn from the best other

material we can lay our hands on. And unless we have a change of

heart, that feature topic will NOT generally be announced far in

advance, if at all. This new policy has come about mostly because

we find ourselves delaying good articles issue after issue simply

because they don't happen to fit the theme. And that isn 't fair to the

authors, or to you. So from now on, as a regular feature of

Transactor, we will be omitting the Editorial Schedule. Look for its

absence in future issues!)

Bang-bang floppy-copy: I just acquired a second 1541. Now I

cannot find a fast copy program that does not bang the head on the

destination drive (this includes Fast Hack'em 3.0, SuperKit and

QuickCopy). Why do programs that work fine with one drive

become destructive with two drives? Have they just copied each

other's code? Can you suggest anything? I don't need sophisticated

copying. Most of the time ! duplicate my own or user group disks.

Warren Pollans, Davidson, North Carolina

-4s far as we know there's no real solution to yourproblem, Warren.

The reason a copy program can avoid head-banging with a single

drive is that it already knows where the drive head is when it starts

writing to the destination disk. It knows that because the source disk

was formatted, and the program was able to locate the head

correctly according to the formatting information on the source disk.

A destination disk in a second drive is an unknown quantity,

however. Not only does the program not know where the head is at

the outset of the copy, it does not have any means of finding out

apart from the usual one ofmoving the head far enough towards the

rim of the disk to bang against the stop. A partial solution would be

to install one of the soft spring stops that are available as aftermar-

ket upgrades for the 1541. The banging on your head won't stop, but

the headache will.

Further, since most ofyour duplicating is done with disks that are

NOT copy-protected, it's quite possible that some of the public

domain disk copiers would be the answer. Ifyou 're transferring "file

by file" to an already formatted disk, usually these programs won't

bang the head on the destination drive.

Explaining the Drivelight Zone: The problem reported by Karl

in the last issue (drive 0 on his 8050 was misbehaving because of a

neighbouring monitor) is really quite common, and is due to flux

from the flyback transformer interfering with the drive signals,

which are incredibly weak at the beginning of amplification. Investi

gation of the monitor in question will probably show 'crazing' of the

ferrite material used as the flyback core, due to repeated thermal

cycles. One of these microscopic cracks has probably now formed a

significant breach in the magnetic integrity of the core, with a

significant increment of flux leakage.

Stated simply: (1) the TV signals screw up the drive, especially on

the left side of the set, where virtually every TV manufacturer puts

the flyback; and (2) prepare within a year or two at the outside to

replace the flyback or the entire monitor.

Anthony J. Goceliak, Jersey City, New Jersey

Boat leaves Commodore stranded: Commodore missed the

boat, again, with the new 1 Megabyte Amiga. The 68000 can run at

12 MHz; so why 7.13 MHz? Also, the 68020 can run at 14 MHz, 32

bit, which is about 235% faster than a 16 bit/12 MHz 68000, and

about four times faster than Commodore's new Amiga. It is a shame

to waste a megabyte of RAM on such slow speeds!

John R. Menke, Mt. Vernon, Illinois

Commodore isn't to blame for this one, John. While it's true that

there is a 12 MHz (and more expensive) version of the 68000, and

that the (much more expensive) 68020 can run faster still, the

fundamental limitation in the 68000 micros is RAM speed, not

processor speed. In fact, the Amiga gets you more speed for your

money than other 68000 machines (like the 8 MHz Atari ST line) by

running the 68000 on every second cycle ofa 14 MHz clock, leaving

the odd cycles free for use by the custom graphics and I/O chips.

Bird, plane, or Commodore 64?: I am writing in regard to an

advertisement in the May issue of Computer Shopper on page 270.

Swisscomp Inc. is advertising a 4 MHz 16-bit expansion card for the

C-64 called "Turbo 64". According to the ad, it will increase the

speed of the C-64 by 400%, "plug into the expansion port of the

C64", contains a "16 Bit 65816 CPU with 64K of battery backed

RAM", and "can address up to 16 MB of memory directly". The unit

has a "special introductory price" of $189.95. Supposedly, they

have a 1 MB expansion board under development.

Have you or any of your readers had any type of encounter with this

product? I stumbled on the ad by accident, and thought it might be

of interest. Just think of the possibilities with direct access of 16

megabytes of memory! (Isn't that more than the Amiga can ad

dress?)

Nolan Whitaker, Jeffersonville, Kentucky

Yup, the Amiga's stuck at a miserable 8.5 meg (9 on the new

models). Ofcourse, the Amiga has an Operating System that knows

about that memory and can use it, which the 64 doesn 't (unless

Swisscomp is writing one, that is). Even so, it sounds like a great

board, and we 'd love to hear from anyone who can tell us more

about it. And the price isn't bad, either.

Plus/4 Tech Info Source: In the July 1987 issue of Transactor

(Volume 7, Issue 1), Jim Welch of Santa Clara, California, asked a

question regarding the availability of schematic diagrams and other

technical data for the Plus/4 computer.

Publications regarding the Plus/4 are few and far between, but I

have found two good reference books for this machine. These are:

"Service Manual, Model PLUS 4 Computer", PN-314001-04. This

is available from Commodore Direct Marketing, 1200 Wilson Ave

nue, West Chester, PA 19388. It costs $25 plus $3 S&H. The pinouts

for the 6529 are given, but not the memory map. Complete

schematics including the pinouts for all the external connectors are

presented.

"Programmer's Reference Guide for the Commodore PLUS/4" by

Cyndie Merten and Sarah Meyer. Published by Scott Foresman in

1986 (ISBN 0-673-18249-5). Order from local bookstore. This

book has memory maps of the Plus/4, but no schematics or

connector pinouts.

The Transactor 13 September 1987: Volume 8, Issue O2



Anyone seeking to make serious use of the Plus/4 should strongly

consider joining the Plus/4 SIG. Information regarding it can be

obtained by writing:

Mr. Calvin Demmon, The PLUS/4 Users Group, Box 1001, Monte

rey, CA., 93942.

The group publishes a newsletter about eight times a year and has

been instrumental in locating software suppliers for the Plus/4. The

owners of orphan computers must stick together!

I now have a question of my own. I am interested in writing ML

software which I want to store in the RAM below the BASIC ROM in

the Plus/4. I understand how the RAM/ROM bank switching is

done using locations $FF3F and $FF3E and can successfully load

and execute code in the higher sections of RAM. My problem is:

"How can I use the MLM in the Plus/4 to examine my code?" Once

the ROM is switched out, the MLM is gone, so that it cannot be used

any longer. I have tried every trick I can think of to try to download

the MLM into RAM so that it is available when the ROM is switched

out, but to no avail. I suspect that I am doing something wrong

involving the I/O, but cannot figure out what it is.

Lee A. Cross, Dayton, Ohio

Thanks for the help, Lee. It's nice to know that Plus/4 owners have

somewhere to turn for information.

According to the + 4 manual under the "TEDMON" section, loca

tion S07F8 controls the memory source which TEDMON reads

above location $8000 (ie 'M'emory dump, 'Disassemble, etc.). If

$7F8 is set to $00, TEDMON will look at ROM; if set to $80, it will

read the RAM underneath.

Communicating Braces: I hope you can help me. I have to

transmit via modem ASCII codes 123 ($7B) and 125 ($7D). These

are the left and right curly brace characters respectively.

I am using a C-128 in C-64 mode to run Speedscript (v3.1). This

stores screen codes in PRG files. I have a utility which converts

screen codes to Commodore ASCII. My modem program in turn

translates PETSCII to ASCII. My question is: how can I generate the

braces? What screen codes do I type to start with?

Perhaps you have a simple answer, or a program which can

selectively transmit the desired characters. I want to use a typeset

ting service which uses these characters as control codes for

typesetting.

Joseph Francis, Zephyrhills, Florida

Most of the conversion from one set of character codes to another is

done by manipulating the "zone bits" - bits 5, 6 and 7 - of each

character to be converted. It happens that the ASCII codes for curly

braces lie in the zone that also contains the lower case alphabetic

characters (in binary, these codes have the form XOllxxxxx). The

Commodore screen codes for the lower case letters are in the range

1 to 26 (their codes have the form XOOOxxxxx). To get the ones you

want, then, we canjust convert 123 and 125 to binary (%01111011

and X01111101 respectively), alter the zone bits (we now get

X00011011 and XOOOlllOl), convert back to decimal (27 and

29), and find the characters corresponding to these screen codes,

which happen to be the left and right square brackets on the C-64

keyboard).

The only problem is, that's the wrong answer. Any reasonable

PETSCII to ASCII converter will take into account the fact the square

brackets have wandered out of their correct zones, and those screen

codes will eventually translate to ASCII$5B and $5D, not $7B and

$7D.

This raises the interesting question of what happens to screen codes

like 91 and 93 ($5B and $5D) which would, like the upper case

characters, come out as the same values in ASCII (the number 65,

for instance, is both the screen code and the ASCII for upper case

'A'). Well, the screen codes in this range (actually $5B through $5F)

are assigned to Commodore graphics characters that have no True

ASCII counterpart, so it is likely that most PETSCII to ASCII

converters simply leave them unchanged, including the one in your

terminal program (the PETSCII codes do follow the screen code

patterns rigorously, apart from the zone bits). A really smart

converter, though, might take the PETSCII codes ($DB through $DF)

for these graphics characters and swap them into the range $ 7B

through $7F, which is what you want. Ifthat were the case, which it

probably isn 1, the keyboard characters corresponding to the curly

braces would be the shifted plus sign and shifted minus sign,

respectively. Failing that, what you need is a terminal program that

will send your characters untranslated; you would in this case do

the conversion from PETSCII to ASCII (or directly from screen codes

to ASCII) beforehand.

The most efficient way to write such a converter in BASIC is to use

the table look-up method, in which you would have an array with

128 entries corresponding to the possible screen codes (assuming

there are no reverse field characters in the Speedscript file - these

use the screen code range from 128 to 255), each element of which

contains the corresponding ASCII value. Given such an array, which

you might call tr$, you would do the translation with a little

program like this:

10dimtr$(128):z$ = chr$(0)

20 gosub 1000: rem initialize the array

30 open 2,8,0," O:ss-inputfile,p,r"

40 open 3,8,3," 0:asc-outputfile,s,w"

50 get#2,a$

60 print#3,tr$(asc(a$ + z$));

70 if st = 0 goto 50

80 close 3: close 2

90 end

This approach will also work ifyou choose to convert from PETSCII

to ASCII instead of from screen codes to ASCII, only you 11 need a

larger array, as valid PETSCII values range up to 223.

Getting Poor Quick: I don't know how many of you folks got

ideas about making "mucho big bucks" after you gained knowledge

in writing machine language programs. We have heard or read

about those who have made a fortune doing the same thing. No one

writes about the many who failed.

The dream to make the program that will put us on Easy Street has

overwhelmed some of us. I have learned much since that dream

came into my head. I had visions of retiring from my electronic

service business, and spending my leisure time writing programs

for profit. After losing some money in advertising, I decided to do

some market research. Boy, it is a tough world out there!

The Transactor 14 September 1987: Volume 8, Issue O2



One source told me that there are over five thousand software

development companies cranking out software, not to mention all

the individuals. One of the biggest entertainment software pub

lishers for Commodore, Apple, and Atari computers said that of the

few programs they accept from many submissions, only one per

cent does well in sales.

My attention turned to marketing my own software, so I checked

into advertising. I don't mean a little classified ad either (lost money

on that idea once). One source told me that the average reader

response for advertising your wares in a computer magazine is from

. 1 % to .5 %. Far less than the one to two per cent I imagined.

Most of you probably write programs for other reasons. I did in the

beginning. I did not plan to make money at first. However, the more

I wrote programs, the more I thought about doing it for a living.

Making a "big hit" is not impossible, but it is very tough indeed.

John Augustine, Reading, Pennsylvania

Another IEEE Interface for the C-128:1 am writing this letter

in response to the inquiry about IEEE-488 interfaces for the C-128

in the letters section of the March 1987 issue. The Chemistry

Department here recently acquired a Brain Boxes (25, Lynmouth

Road, Algbruth, Liverpool, England) IEEE-488 Interface for con

necting a C-128 to a spectrophotometer which uses the IEEE-488

bus. The interface can also be used with the C-64 and includes a

superset of "wedge"-type commands in ROM. At time of purchase

the cost of the interface was 77 pounds (including shipping and

insurance). Brain Boxes accepts American Express, which simpli

fies currency exchange. I am enclosing further information, and

hope this will be of benefit to your readers.

Tim Ballard, University of North Carolina at Greensboro

Thanks, Tim. From the info you included with your letter, the Brain

Boxes interface is going to interest a lot ofpeople. Anyone looking to

use IEEE equipment with their C-128 or C-64 should check out the

News BRK section in this issue for information from the Brain Boxes

press release.

More Quicksilver IEEE Info Wanted: I would like more infor

mation on the Quicksilver IEEE interface described by John A.

Spencer (Letters, Volume 7 Issue 6). I have the 128 and an old MSD

IEEE interface that works in 64 mode only. It requires a SYS call to

get from IEEE to serial and another to get back. A friend here in

Jackson has the BusCard (on his 64) and it seems to handle devices

on both buses much more elegantly. How about the Quicksilver?

Can it 'get' from the IEEE and 'put' to the serial transparently? Will

the Quicksilver work in CP/M mode? Could I use my IEEE and

serial devices both in CP/M mode?

In the same letters column, Doug Hurd of British Columbia was

looking for information on sources for long cables and other unusual

parts, plus an inexpensive modem. For the long cords, he might try

Precision Peripherals and Software, P.O. Box 20395, Portland,

Oregon 97220, phone 503-254-7855. A source for other odd parts

is Black Box Corp., P.O. Box 12800, Pittsburg, Pennsylvania 15241.

Their order number is 412-746-5530; their tech support line is

412-746-5565. As for a modem, Doug might want to check out the

Total Telecommunications auto-answer, auto-dial modem from

C.O.M.B. for $19.00. If he can live with 300 baud it is great. I have

been using mine for a year now on my BBS, and also call out on it

from time to time. I have seen ads for the Commodore 1600 from

them at the same price, so make sure they know which one you

want when you're ordering. C.O.M.B.'s address is 14605 28th

Avenue N., Minneapolis, Minnesota 55441-3397. They have a toll-

free line for U.S. residents at 1-800-328-0609.

Rick Crone, Jackson, Tennessee

Our apologies, but not owning a Quicksilver interface makes it

difficult to answeryour questions, Rick. We also do not own a single

BusCard, and the fact that Batteries Included has all but joined the

ranks of Info Magazine's R.I. P. column, you might find it difficult to

get one. Electronic Arts has acquired rights to some of their prod

ucts, so it's possible they might have some information for you.

On the other hand we do have some good news, however self-

serving it may seem. The G-Link will make IEEE/serial transfers,

and Richard Evers has modifiedJim Butterfield's "Copy-All" to take

advantage. It will appear on every Transactor Disk starting with

number 19 for this issue. Up until about 6 weeks ago we thought

there would be no more G-Links. The parts for them are quite

common, but making the printed circuit boards is a fairly involved

process. Then, while cleaning out the warehouse in preparation for

our move from Milton to Richmond hill, we found about 200 more

unpopulated G-Link boards. So, based on this discovery and the

number of requests we've had for them (not to mention the number

of orders we've had to send back because we thought we didn't

have any left), we've decided to continue offering them. See News

BRK for more details.

Super-C 3.0 Fix Available: I have just finished reading the

March Transactor, and would like to make some comments con

cerning the articles I've read. The first comment I have is that there

is a bug in Super-C 3.0 that has been fixed with the 3.02 version.

The new version fixes the 'getc' problem when using an RS232 file -

the old version would hang up the system when it got to the first

'getc' for the file. Present owners may want to ask Abacus for details.

Enclosed you will find a letter I got (from Germany!) that confirms

the problem.

The brand-new version of Pocket Writer 2.0 has a funny bug in it. If.

you boot the disk from a cold start, i.e. put the disk in the drive and

turn the computer on, the disk will make horrible sounds! However,

if the disk is booted from a warm start, i.e. press the reset button, the

disk doesn't knock any more. By the way, the new features of

Pocket Writer 2.0 are great - including mouse support, RAM disk,

and spelling checker.

Mark Bonnema, South Holland, Illinois

Mark certainly can't complain about the response he got on his

Super-C question. The "letter from Germany" he received was from

Franz Hauck, one of the two authors of the compiler. Hauck not

only confirmed the RS232 bug, but also went out of his way to

correct a couple ofminor errors in the Csource code Mark sent him,

and returned Mark's disk with the corrected code. Now that's

customer service!

The Transactor 15 September 1987: Volume 8, Issue O2



TeleColumn

Transactor Area on CompuServe

Almost 2 megabytes of Transactor articles have now been prepared for

uploading to CompuServe. Yes, this means that the much touted

Display Area is still not operational, but man what a job! We figure

there's about 3 more megabytes of text to go before almost every

Transactor article ever printed since Volume 4 Issue 01 will be available

online.

Some of the articles were not going to be uploaded due to diagrams. But

many of them have been "hand-translated" to low-res replicas. They

may not be as good as the printed versions, but they get the point across

enough that the article didn't have to be excluded.

Also in the uploading queue is The Transactor Writer's Guide.

The Transactor Data Library currently has every program ever pub

lished from Volume 4 Issue 01 to Volume 5 Issue 06. As mentioned last

issue, we wanted to get the programs up first so the articles could refer

to them by name. There's about 12 disks to go and we average about 1

per night. After this issue is done we'll resume the uploading activity

and with any luck we'll have our entire history for the past 5 years

available online by next issue (tongue firmly between teeth).

New Rates on CompuServe

From April 1 to May 30, 1987, CompuServe announced that their prime

time charges would be the same as their non-prime or night time

charges. Now, however, CompuServe has decided to make the daytime

rate reduction permanent. 300/450 BPS is now $6.00 per hour and

1200 BPS is $12.50 per hour. 2400 BPS rates are the same as 1200.

TeleColumn suspects now that daytime rates have been reduced, the

nightly charges will also come down, at least for 1200 BPS if not 300/

450. Watch this spot next issue.

Time Saving Tips

On CompuServe, as on any online service, time is money. Here are a

couple tips that may save you a little or a lot.

Even at 300 BPS it's possible for CompuServe to send you messages

faster than you can read them. Agreed, many can read faster than 30

characters per second, but messages are not always grammatically

perfect. So you might stop to read a sentence or paragraph twice, but

the system just keeps sending. Even if you stop the flow with a Control

A, the clock keeps ticking. One alternative is to capture the messages

and read them off line.

If your terminal program has capture buffer capabilities, sign on and

open the buffer at the main "Function:" prompt. Enter RTN (Read

Threads New to you), RF (Read Forward), or whatever you use most.

Following the first message (which will now be in your capture buffer)

you'll get the "Read Action" prompt. Enter NS at this point for "No

Stop". Messages will be captured non-stop from where you start

through to the last, or until your buffer is full, whichever comes first.

Now save the buffer to disk and use your favourite file reader, text

editor, or word processor to read the messages at your convenience.

To reply to a message off line, use your word processor and enter "RE"

followed by the message number you want to reply to. Type the rest of

your reply making sure there is a carriage return after every 80

characters (1 usually type the whole message and put the CRs in later).

Now load your capture buffer with the reply. Sign on, navigate to the

main "Function:" prompt, and dump the buffer contents. "RE 7500"

means REply to message 7500. At this point CompuServe usually prints

"Enter You Message", but your terminal program won't wait for it. The

text will just continue pumping into the system, but that's ok. When

done, use CTRL Z or /EX, depending which editor you have selected.

"/EX" is for exiting the FILGE editor and could be included as part of

your off line composition if you like, followed by "S" for "Send" on the

next line. You may want to use PREview before Send the first few times

to be sure you have it right.

Once you have a little practice, all your replies can be capture dumped

at full bore. You only need be sure that each reply is separated by the

correct commands. The number of replies you can pump in non-stop

has not been tested, but 3 or 4 shouldn't be a problem.

If this technique becomes routine for you, consider 1200 baud. It's twice

as much as 300/450, but it's four times faster and potentially less

expensive for uploading off line replies.

RLE Notes

Two issues ago, Christopher Dunn explained the concept of RLE (Run

Length Encoded) files; a method for displaying high resolution pictures

on CompuServe. Chris is also the author of two conversion programs -

RLE2HR converts RLE files to high-res files for the 64, and HR2RLE

converts high-res information at $2000 in the 64 to RLE format so it can

be uploaded to CompuServe. The programs were supposed to be on

Transactor Disk #17, but didn't quite make it. Both programs and the

documentation files to go with them are now on Transactor Disk #18

AND #17. Our apologies for any inconvenience.

The article explained everything about RLE files, but one point may

have been left unclear. RLEs begin with ESC GH. The "GH" stands for

"Graphics Hires". In hex, the values are $1B for ESC, and $47,$48 for

GH. These are the true ASCII values for G and H, but in PETSCII the

values for capital G and H are quite different, which may have lead

some to generate the wrong values in the RLE 3 byte header.

To summarize again briefly, the header is followed by bytes that are

always in the range from decimal 32 to 127. These represent pairs of on

and off pixels in the screen area which is 256 pixels across by 192

down. Decimal 32 is added to each byte to keep it in the range away

from Control type characters. Therefore, following the 3 byte header,

the sequence of decimal 40, 52, 78, 35, 127, 32, 55, 70, would mean 8

pixels on, 20 off, 46 on, 3 off, 95 on, 0 off, 23 on, 38 off.

Theoretically, you would continue the pairs until all 256 x 192 (49152)

pixels are defined. However, if a lot of pixels near the end were all off,

the file end marker could be thrown in early. This is ESC GN for

"Graphic Normal". In hex, the values are $1B, $47, and $4E.

Letters to TeleColumn

F.J. Warner of Vancouver, BC, wonders why there has been no mention

of "The Punter Network" in TeleColumn. Actually, we've been wonder

ing why we haven't received just such an article. Much of the material

we get is on topics well past the "worn out" stage. An article on

PunterNet would really catch our attention (hint, hint).

The Transactor 16 September 1987: Volume 8, Issue O2



Mouse Driven Menus
Anthony Bryant, Winnipeg,Manitoba

. . .a hires Menu System for the C-64 and C-1350 mouse. . .

Desk ■ ariTJi Ui ew
Open
Show Info...

Opti ons

\. | Mew Folder. . .
\-J Close Folder
\] Close Window

I>I<HKfcUJtuai
>t ine
current ti i*e i

>dir
HIRES

VIEWPORTS
POH1R WINDOWS

MEKUS.BAS
4 files

>endc1i_

2:17 Ph

PRG
PRG
PRG
PRG

9 BLKS
4 BLKS

25 BLKS
23 BLICS

371 blKs free

Desk Tile 'Jitu Options

is e

Hi a a

m ti b is a

lifl U H B GS

lifl w R B E

Two sample screens showing off 'Menus', 'Hires', and 'Viewports'.

The little clock is updated every minute with simple multi-tasking in BASIC.

Pull-down Menus

The newest Microsoft BASICs (such as Amiga Basic) have built-in

commands to create and manage a pull-down Menu System. If

you've never used pull-down menus, you might not appreciate

their advantage in offering both the ability to browse through a list

of menu commands and the ability to execute them, all in one

visually-oriented package. At the same time, the 'look' of the menu

is open, allowing creative design. The welcome introduction of the

C-1350 mouse prompted me to work out this concept on the C-64.

Two new commands, MENUS and MOUSE presented here, manage

a system of menus on the hires screen. If you wish, some or all of

your menu names or items can be graphic images (pictures, icons,

glyphs) instead of text. The Menu System holds a maximum of 56

items and 7 menu names in the menu bar.

MENUS is designed to co-exist with 'HIRES' and 'VIEWPORTS' (see

the Transactor Vol.5 Iss.6 and Vol.7 Iss.2) drawing on the same hires

screen (at $E000) but is self-contained (uses no routines from either)

so that, if the user selects a menu, any drawing on the hires screen

is frozen, while the Menu System goes into action, and unfrozen

continuing drawing where it left off. Menu names and items can be

disabled (dimmed or ghosted) or items can be marked (with a

checkmark). An alternate command-key sequence to access menu

items is also supported.

MOUSE sets up a sprite cursor, and manages menu selection as a

background task (interrupt driven). MOUSE requires the use of the

defacto Microsoft/Amiga standard left and right buttons. (See A Two

Button Mouse' Transactor Vol. Iss.) The left button is called the

'Select' button and the right button is the 'Menu' button. To activate

the Menu System, the user presses the menu button (moving the

mouse cursor over a menu name within the menu bar) and while

still keeping it pressed, moves the mouse cursor in the list of menu

items that appear below the menu name. To select an item, release

the menu button while over a highlighted item. The selected item

will flash, reinforcing the selection. If the user wishes not to select

anything, he simply mouses out of the menu box. It's all... well. . .

intuitive.

'MENUS. BAS' is a BASIC loader that, when run will create a

program file called 'MENUS' on your disk. (Make it the same disk

that holds 'HIRES' and 'VIEWPORTS').

'MENUS DEMO' is a Basic program that demonstrates the new

commands and encourages user experimentation.

The syntax of the two new commands is quite varied, but first let's

look at some definitions for the Menu System.

Graphic Forms

The hires screen is object-oriented. That is, it doesn't know text

from images - only bitmap objects. MENUS recognizes three differ

ent types of graphic forms. All of the menu names and items use

string variables (because its the most compact method of storing a

sequence of bytes). In order to differentiate the 3 graphic forms, an

extra variable, XR is used with a menu name$ or item$.

The Transactor 17 September 1987: Volume 8, Issue O2



i.

2.

3.

texts

iwageS-

iwageS-

• •

i

2

XR= B

XR=i28

XR=i92

I^nT^m",!

GEi±ii-_t±l:lii

(i

<\

byt* 5/cni>

on; )

Figure 1

FIGURE 1 shows the 3 recognized graphic forms, with its corres

ponding XR value. The Menu System routine that puts 8 consecu

tive bytes (that make up a 'cell') on the hires screen, doesn't care

where the bytes come from. If it's working with 'text$', the routine

has to take the extra step of looking up a table (the character ROM)

to get the 8 consecutive bytes, but if it's 'image$-l' the 8 bytes are

plotted directly in each cell before going on to the next cell. The

only difference in 'image$-2' is the automatic wrap-around to fill 2

rows. Because strings can only hold 255 bytes (in C-64 Basic),

'text$' is limited to 255 cells (in practice less than 40 cells - the

width of the hires screen), 'image$-l' is limited to less than 32 cells

in width, and 'image$-2' is limited to less than 16 cells in width (but

2 rows).

Offset Columns

In the extra variable, XR, it's the two most significant bits, bit7 and

bit6, that determine which it is of the 3 graphic forms. The

remainder of the bits in XR can be used to move the column position

(offset from the left edge). These bits are collectively called OC and if

omitted the Menu System handles positioning automatically. OC

allows menu names to be spread evenly across the menu bar (or

bunched up - your choice). It also allows grouping of 'image$-2'

menu items in a menu box.

Key Codes

Alternately, the remainder of the bits in byte XR, (bit5-bitO), can be

used to store an appropriate command-key sequence code. These

bits are collectively called KC, and are the keycode values found in

location $C5. For example A= 10, Q = 62, P = 41. (The'Inner Space

Anthology' does not list these codes, but COMPUTE! has published

them several times and Raeto Collin West's PROGRAMMING THE

64 has a nice table of keycodes on page 161). Once added to the

menu item (where together with a stylized Commodore logo they

are printed in the menu box) the user can make menu selections

with the keyboard instead of the mouse by pressing Commodore-

key and that key, together.

Menu Types

There are instances where you would want to have menu items

selected, but not acted upon. All that happens is a checkmark is

placed next to that item. And there are occasions where you would

want to disable (keep from being selected) certain items or even

menu names. A disabled item or name is dimmed (faint or ghosted)

- still readable but less distinct. A value of (0-2) for MT determines

this. Enabling or disabling a menu name or item before or during

your program is an easy procedure.

Le ft
Mi ddle
Bight SR

I Kfu

T

S3 ST^r
Set Parameters
Set Rotation

/flninate Fraine

Figure 2

Figure 2 shows just some of the different menus that can be created

on the hires screen. Not all of the features need be used. The choice

is up to the programmer in the design of the 'look' of his menu and

in the requirements of the application. But the Menu Sytem has a

number of default conditions, that speed up building a menu. Let's

look at the syntax and those defaults now.

A LA CARTE (.. .the main course.. .)

The commands are listed in the order in which they would normally

appear in an application program.

To initialize the system ...

1000 SYS MENUS CLR [,BG,FG]

The Transactor 18 September 1987: Volume 8, Issue O2



where: BG is menu background color (0-15)

FG is menu foreground color (0-15)

clears out any previous menu lists, and initializes the system, with

optional color parameters.

Next, comes a series of names and items to fill the menu list.

where: MN is menu number (1-7)

Ml is menu item (0-8)

MT is menu type (0-2)

types: (mutually exclusive)

MT = 0 for disabled (dimmed)

MT = 1 for enabled (normal)

MT = 2 for marked (checkmark)

Submit a list of menu names and items in any order.

To add a menu name. . .

where:

(MI=0)

1100 SYS MENUS.MN, 0,MT,name$ [,XR]

XR = 0 OR OC for text$

XR = 128 OR OC for image$-1

XR = 192 OR OC for image$-2

'OR' is the logic OR, effectively adding the OC bits to XR. OC is

the offset column position relative to the left edge and can

have a value of (1-40). The default for XR is 0 (text$ and no

special offset column).

To add a menu item . . .

1200 SYS MENUS.MN,Ml,MT,item$ [,XR]

where:

XR = 0 OR KC for text$

(MIO0) XR = 128 OR KC for image$-1

XR = 192 OR OC for image$-2

'OR' is the logic OR, effectively adding the KC bits to XR. KC is the

key code. You can't have a KC with image$-2 form, since an OC is

needed if image$-2 forms are to be grouped. The default for XR is 0

(text$ and no key code).

To display the menu bar. . .

where:

1300 SYS MENUS ON [,BG,FG]

BG is menu background color (0-15)

FG is menu foreground color (0-15)

To remove the menu bar. . .

1500 SYS MENUS [OFF]

the hires screen area under the menu bar is restored.

Menu Selection Messages

When a menu item is selected, either by the mouse or alternate

command-key sequence, the appropriate menu number and menu

item number are placed in locations (MNUM) and (MITM), respec

tively, where they can be PEEKed at within the main loop of an

application program. (MNUM) = 0 means no menu or menu is

disabled and (MITM) = 0 means no item or item is disabled. Location

(MFLG) can be PEEKed if your program needs to know if the menu

bar is displayed. (MFLG) = 0 means no menu bar. See the MENUS

DEMO program for examples.

Designing Menu Text and Images

The Menu System automatically lays out the menu box (every time

it's activated) according to the lists submitted, and according to

some general design rules. For example, it places (if MT = 2 for that

menu item) the checkmark in the first column of the item row, so

you must allow for a space at the beginning of your text$ or image$-

1 if you use the checkmark. image$-2 form requires an OC value for

its placement and the checkmark (if used) is placed to its left.

Incremental OC values allow image$-2 forms to be grouped along

the same row. For text$ the default case is the lowercase ROM set. To

switch to the graphic ROM set, concat text$ to CHR$(141). CHR$(14)

reverts to lowercase. You can make use of the graphic ROM set in a

text$ for divider lines, or even crude graphics. Use the MENUS

DEMO program to experiment!

Designing Images is made relatively straight forward using a good

font editor. I used Charles Brannon's excellent ULTRAFONT+

because it readily outputs the DATA statements (which you can then

use to build a string). Just clear out sufficient cells and treat it like a

bit-map editor (you can use the mouse). image$-l (1 row form) can

be used to depict different fonts, for example. image$-2 (2 row form)

can be used for a larger bit-map area. The cell width of your image

designs will determine the general layout of the menu box. The

MENUS DEMO program contains a few examples.

MOUSE GLACE (. . .and for dessert...)

The MOUSE command sets up the interrupt driver routine, which

polls the mouse position, moves the sprite, monitors the left and

right buttons and handles all the details of displaying menus.

Let's look at the variety of syntax.

the hires screen area under the menu bar is saved before the menu To change the cursor. . .

bar is printed.

2000 SYS MOUSE,cursors

To change menu type . . .

allows the design of a new cursor shape (See 'Designing a Cursor'

1400 SYS MENUS.MN,Ml,MT below.)

2000 SYS MOUSE.O

within the course of a program

sets the cursor to transparent

The Transactor 19 September 1987: Volume 8, Issue O2



2000 SYS M0USE.1 Inside Mouse Driven Menus: Some Technical Notes

sets the cursor to the built-in arrow shape

2000 SYS MOUSE,2

sets the cursor to the built-in cross shape

To show the mouse . . .

2100 SYS MOUSE ON [.COLOR]

activates the mouse interrupt driver with optional color parameter

(0-15).

To hide the mouse . . .

2200 SYS MOUSE [OFF]

removes the mouse interrupt driver. Use to turn the sprite off, in

order to access serial devices (disk, printer, etc).

Mouse Messages (Mouse Droppings?!)

While the mouse is ON, it continually updates several locations

which an application program can PEEK. Location (MB) = 0 if no

button was pressed,(MB)= 1 if right button was pressed,(MB) = 255

if left button was pressed. Locations (MX) and (MY) can be PEEKed

to get the pixel positions for 'HIRES' to use to draw on the screen.

Location (MX+1) is the x-high bit. Location (MY+1) is equal to

199-MY for use in a non-Cartesian system. The MENUS DEMO

shows more on this.

Designing a Cursor

Since the cursor is a sprite (spriteO in fact), you can use your

favourite sprite editor to design with. I used Charles Brannon's

SPRITE MAGIC editor, because it generates DATA statements

(which can then be built into a string). The file "ARROW.SPR" on the

distribution disk, contains the data for the built-in arrow sprite,

which you can load into a sprite editor to use as a template for your

own design. Of particular importance is the hot-spot position (tip of

the arrow).

About MENUS DEMO program

This program, after building the menus, just executes a running

loop, polling the menu and mouse variable locations. It just prints

the selected (by mouse or alt-command-key-sequence) menu and

item numbers on the old text screen. Experiment with this program.

Exchange menu names and items, move graphic images about

using various OC values. Change KC values. Figure 2 shows some of

the configurations possible. Change the action of, say, the right

menu button, so it toggles the menu bar on/off. Try the random SYS

DRAW and note what effect going to the menu has.

It doesn't take long to get used to creating and using pull-down

MENUS, and before long you'll find yourself with a desire to change

some design criteria of the Menu System. (Everybody's a critic).

Assembling the Components

The PAL source code is quite long, but is basically a library full of

small modules, software components, that when assembled work

as a system. You can't do Menus without doing Windows and you

can't do Windows without doing Viewports. Modularizing all these

routines was the only way to go (to remain sane). The modules (refer

to the PAL source file) are arranged in the following catagories:

(Editor's Note: Anthony's source is a whopping 1000 lines! It

couldn't possibly be printed here - refer to Transactor Disk #19.)

1. Menu support routines

2. Window routines

3. Viewport routines

4. Plotting routines

5. Mouse support routines

6. Sprite routines

'HIRES' operates in Bank 3, using the hires screen at BMAP1 =

SEOOO and color memory at CMEM1 = $CC00. So does 'MENUS'.

1. Menu support routines

A menu is mostly 'Lists' - lists of names and items and types. String

variables were chosen to store these 'lists' because it's the most

compact method of storing a sequence of bytes. The Menu System

recognizes three different 'graphic forms' (determined by an extra

byte, XR, following the string).

form

text$

image$-l

image$-2

XR

OOxxxxxx

1Oxxxxxx

1lxxxxxx

Since each string can be totally defined with just three bytes (length

and low byte/high byte pointers to the start of the string) only four

bytes are needed to define each menu name$ and menu item$. To

hold 56 item$ and 7 name$ requires just 252 bytes i.e a page of

memory - called MUST. The routines SETLIST and GETLIST store

and retrieve the four bytes to/from respective 'slots' in the page of

MLIST. As a consequence, menu names and items may be submit

ted to the menu list in any order with the SETMTOP routine keeping

track of the maximum no. of menu names and items in each menu.

Also, an area of memory is set aside for the MENU DATA STRUC

TURES. MTOP holds the max. no. of menu names (#MN = 0) and

items in each menu. MNLC, MNTR, MNWD and MNDP hold the

dimensions of the menu bar (#MN = 0) and each menu box. #MT

defines an item's type as disabled (dimmed), enabled (normal) or

marked (checkmark). SETTYPE and GETTYPE store and retrieve

MTYP, which for each item is stored in MDIM and MCHK (for

#MN = 0 the type of each menu name - disabled or enabled - is

stored in MDIM). The MDIM or MCHK byte holds the type for 8

items (one bit in the byte for each item).

■■-.

MNDPIfE
-tj MftWD

c Henu

T
Wd

Box

Figure A

The Transactor 2O September 1987: Volume 8, Issue O2



Figure A shows the dimension variables for the Menu System.

MNLC and MNTR (#MN = 0) determine the top-left corner of the

Menu Bar when it's attached to the hires screen. MNWD determines

the width. These three variables are preset, but could be altered to

suit.

QC = 1
i

n aMe1

0C=7
i

nane2 n

3

ane3 [
i i

■

MNLC

Figure B: General Menu Bar Layout

Figure B shows the positioning of menu names by OC, the offset

column.

□ MENUSIZ routine just alters MNDP, the depth of the menu bar to

accommodate 'image$-2' graphic forms.

□ MENUBAR prints the menu bar on the hires screen and handles

automatic column positioning if no specific position is given.

□ MENUSEL is called by the mouse driver (by MENUBTN) when

ever the menu button is pressed. It checks if the mouse is within the

menubar area - if not returns with carry set - then scans each menu

name for horizontal position, to check if the mouse is within a menu

name's 'area of influence' (determined by the length of the name$).

You can fool MENUSEL by submitting menu names with wrong

order column positions -it just ignores the out of order name!

MENUSEL highlights the menu name and returns to the mouse

driver.

lc

V

V

V

DC=i

Text

DC=5

£ tP

DC=3
i

T

-IC+Wd

^KC=22

logo

Figure C: General Menu Box Layout

D MENUBOX is also called by the mouse driver (by MENUDOWN).

It's job is to look at the SELected menu's items to determine the

dimensions of the menu box. (You can change the list of items or re-

submit new ones between accessing the Menu System). It goes

through the list of items keeping track of each items' length (and

group 'image$-2' total length) and stores the dimensions in the

MENU DATA STRUCTURE. The GETLIST routine is invaluable (in

this and the MENUPLT routine) in simplifying this job. GETLEN

always presents the correct cell length to enable placement and

sizing. Thus the menu box is automatically sized.

□ MENUDOWN (called by the mouse driver) lays down the menu

box over an area of the hires screen.

□ MENUPLT does the actual plotting of 'forms' in the menu box,

taking into account, positioning, grouping (of 'image$-2' forms) and

alternate command-key special imagery.

□ MENUKEY is called by the mouse driver if the 'Commodore key'

is pressed. The keycodes (if any) in the menu list are scanned

starting at #MN = 1 and the first match is noted by storing the

current menu number and menu item number in (MNUM) and

(MITM), respectively.

□ MENUAWAY is the clean-up routine (opposite to MENUDOWN)

which swaps back the area of the hires screen hidden by the menu

box and un-highlights the menu name.

□ MENUCTRL is the main routine that handles item selection with

the mouse. It is basically two loops. The first locates the form to

which the mouse cursor is pointing and if within the items 'area of

influence' highlights it. The second checks to see if the mouse leaves

the items 'area of influence' and un-highlights it, returning to the

first loop. Again, the GETLIST routine simplifies the differentiation

of the three graphic forms. Both loops call CHECKBOX to make sure

the mouse is still within the menu box. CHECKBOX incorporates a

DELAY in the speed of the mouse of 16ms. to match the normal

(outside the menu box) speed. If the DELAY is reduced to say, 8ms.

the mouse moves twice as fast in the menu box. Releasing the menu

button over a highlighted item causes the item to FLASH. The

current menu number and menu item number are stored in

(MNUM) and (MITM), respectively.

2. Window Routines

Both the menu bar and menu box require windowing - that is, the

area of the hires screen, hidden by the Menu System must be saved

and later, restored. The Menu System uses a 'save' buffer area for

the hires bitmap from $9000 to $A000 (BMAPO) that is, 1/2 of a

hires screen. A corresponding color memory save area at $8E00

(CMEMO) is also needed, so that the Menu System has its own

distinctive colors. The bytes are 'packed' into the buffer areas on a

last-in first out basis - a buffer pointer, "BPTR", keeps track of this.

□ OPENWNDW sets up a viewport and does the swap.

□ CLOSWNDW is shorter and simply swaps back.

The buffer pointer routine GETBP points to the bitmap save area.

GETCBP computes the equivalent pointer into the color memory

save area.

3. Viewport Routines

The work horse of windowing is a series of routines which manipu

late a byte-aligned viewport (rectangular region of the hires screen).

□ VIEWPORT gets the MENU DATA (dimensions) into zero page

variables, LC,TR,WD and DP for faster execution.

□ VADDR gets the start byte of the hires bitmap (top-left corner of

the rectangular region).

□ VCPOSN positions the color memory pointers to the start of the

viewport.

□ VCOCMEM pre-colors the save area so..

□ VSWCMEM just swaps the save area color memory with the on

screen color memory.

The Transactor 21 September 1987: Volume 8, Issue O2



□ VWIPE pre-clears the save area so ..

□ VXFER just exchanges the hires save area with the on-screen

hires bitmap.

All of the viewport routines use byte boundaries (because color

memory is aligned to them, absolutely) to speed up viewport

transformations.

definition area - SLOT1. [Note 'HIRES' operates in Bank 3]. There

are two more SLOTs available, but unused: SLOT2 = $FF80 (#254)

and SLOT3 = $FFC0 (#255).

□ MOUSEPTR sets the sprite pointer to SLOT1 (#253).

□ MOUSEOFF puts back the old IRQ routine and turns off the

sprite.

□ VROW handles one row (8 bytes) over the viewport width, WD. □ MOUSEON sets up the new IRQ routine and turns the sprite on.

□ VBORDER draws a one pixel border around the current viewport

(only used by menu box) as a series of bytes, so is much faster than a

general line drawing algorithm.

□ VBTOP draws the top line for a viewport (not used)

□ VBLIN draws any horizontal line.

4. Plotting Routines

The menu routines used the general PLTFORM routines. Now it's

time to get specific!

□ PLTFORM sorts out the three graphic forms, recognized by the

Menu System.

□ PLTTEXT handles 'text$' as a series of bytes to be translated by

EXCHAR into an 8 byte 'cell'.

□ PLTIMG1 plots the one-row image directly, bypassing EXCHAR

'text$' table look-up.

□ PLTIMG2 plots the two-row image one row at a time, by saving

column positions and re-positioning as needed.

□ PLTMARK plots the checkmark imagery.

□ PLTALTK first finds the right edge of the viewport, moves left,

then plots the Commodore-logo imagery and the uppercase alter

nate key.

The EXCHAR routine maintains pointers to the bitmap through the

use of some 'crsr' routines, which are tempered by the viewport (i.e.

knows the edges of the viewport, so can't plot outside the viewport).

The PUTBYTS routine actually puts the bytes (pointed to by $A9/

$AA) on the hires screen. If the DIMFlag is set then the plotting is

'dimmed' by logic ANDing the bytes with the DIM bits mask.

5. Mouse Support Routines

These routines manage the cursor and set up the interrupt driver.

MOUSE requires the use of the defacto Microsoft/Amiga standard

left and right buttons. The left button is called the 'Select' button and

the right button is the 'Menu' button. (See 'A Two Button Mouse'

Transactor Vol. 7 Iss. 06, Pg.36 for details). To activate the Menu

System, the user presses the menu button (moving the mouse

cursor over a menu name within the menu bar) and while still

keeping it pressed, moves the mouse cursor in the list of menu items

that appear in the menu box, below the menu name. Release the

menu button while over a highlighted item to select, or move out of

the menu box to cancel.

SETTRANS, SETARROW and SETCROSS enable the built-in default

cursors. Note that since the sprite area is pre-cleared, only the most

significant bytes need be submitted in 'cursor$'.

□ MOUSESTR sets the bytes found in 'cursor$' into the sprite

□ MOUSECOL sets the sprite color.

□ MSDIRQ is the new mouse driver, which moves the sprite,

handles the mouse buttons and checks for optional alternate key

codes (if implemented). This new IRQ routine is added to the

existing old IRQ routine, so the mouse is updated every 16ms

(which is fast enough to simulate smooth motion). It is also possible

for the enterprising programmer to mix polled interrupts with true

interrupts and CIA #1 allows the frequency of interrupts to be

changed.

MSEVENT checks the mouse buttons and if pressed, branches to..

□ SELECT if left button pressed (currently no action taken), or..

□ MENUBTN for the right button. [Note that it's possible to make

the left button the menu button by slight changes to MSEVENT and

SELECT and RDMOUSE -(change line 1832 LDA #$00 .. .;logic

low to LDA #$20 . . .;a logic high always)].

The mouse button status, MB, is polled every interrupt. Only if the

Menu System is activated is MB consumed (set to 0), otherwise it's

status reflects real time.

More of the system stack is used by the new mouse driver, 16 bytes

more if the Menu System is activated. Normally, this won't bother

Basic, unless you are a FOR/NEXT or GOSUB junkie.

The mouse 'position' is converted to equivalent 'cells' - columns &

rows - by MCMXY, to speed up and ease the item selection process.

6. Sprite Routines

The sprite with the highest priority, spriteO, is commandeered for

the job of cursor.

□ RDMOUSE is the main routine that updates the mouse in Control

Port 2, position (MX, MY) and button status (MB). [Note that location

(MYI) holds 199-MY for use with non-Cartesian coordinates if

need].

D RMPOS0Y positions the spriteO-y register below the menu bar

(i.e into the menu box).

□ RMSPRT0 initializes spriteO hires mode, coordinates (if needed),

priority and display enable.

□ RMSCOL0 just stores the color parameter.

□ RMBTNS tests the status of the buttons and sets the Z-flag.

There, then, is my own subjective interpretation of a Menu System.

I now possess much greater understanding of and compassion for

other menu systems and their designers (the Amiga comes to mind)

but using this source code you might want to make changes in the

design criteria! (Go ahead, make my day!)

The Transactor 22 September 1987: Volume 8, Issue O2



tn

PC

CN

JN

AA

FM

EB

PO

LA

EF

MF

BC

LC

KF

NG

KJ

PI

BK

BH

GD

MN

DH

IH

Cl

MM

BJ

II

LJ

AC

AB

CM

FN

GJ

EL

FH

OE

HN

LF

AO

01

EN

EP

CF

AM

DO

EA

MC

PO

HB

BM

DD

GA

PC

LN

CP

OH

AN

JP

HJ

HB

Menus Demo Program

i uu rem odve u.menus oemo ,o

110 rem 'hires menus demonstration

120 if peek(49153)0194 then load " hires" ,8,1

130 if peek(32769)O 97 then load " menus ",8,1

140:

150 poke52,128:poke56,128:clr:rem reserve memory

160:

170 rem 'hires' variables

180 hires = 49152:draw = hi + 3:p!ot = dr + 3

190 mve = pi + 3:clscr = mv + 3:dmode = cl + 3

200 selpc = dm + 3:colour = se + 3:box = co + 3

210text=bo + 3:prnt = te + 3:chset=pr + 3

220trap = ch + 3

230:

240 rem 'menus' variables

250 menus = 32768

251 mnum = me + 3

252 mitm = mn + 3

253mflg = mn + 2

254 mouse = mi + 3

255 mb = mo + 3

256 mx = mb + 3:my = mx + 3

260:

270:

280 rem user demo - experiment with it

285:

290 rem c-1350 mouse in control port 2

295:

300 sys hires,0,3,0:poke53280,14

31 Ott$= "Workbench Version 1.0 30717 bytes

free"

320 sys prnt,0,0,chr$(14) + tt$

325 sys prnt,12,10, "Working "

330 gosubi 000 'build the strings

335 sys prnt,12,10," [13 spcs]"

340 sys menus clr:rem clear menu lists

350 sys mouse,1 :rem set arrow cursor

355:

360 rem build the menus

370sysmenus,1,0,1," File ",1

371 sys menus, 1,1,1," Open"

372 sys menus,1,2,1," Show Info. . ."

979 q\/q mpm ic 1 Q fl " "

374 sys menus, 1,4,1," New Folder. . ."

375 sys menus, 1,5,1," Close Folder"

376 sys menus, 1,6,1," Close Window"

977 <^\/c; mpm ic 1 7 D " - "

378 sys menus, 1,8,1," Format. .."

379:

380 sys menus.2,0,1," Edit " ,8

381 sys menus.2,1,1,edit$, 192or1

382sysmenus,2,2,1,type$, 192or5

383 sys menus,2,3,1,pen$, 192or1

384 sys menus,2,4,1,erase$,192or5

385 sys menus,2,5,1,fillS, 192or1

386 sys menus,2,6,1,cube$, 192or5

387 sys menus.2,7,1 ,spray$,192or1

388sysmenus,2,8,1,actn$, 192or5

389:

390 sys menus,3,0,1 ,faunts$, 128or15

391 sysmenus.3,1,1," Plain ",41

JH

FL
i_in
nu

CH

FO

DJ

CA

DA

FL

AO

MC

KF

KO

OL

EM

LA

MA

NA

GF

FJ

MH

NA

AJ

IE

FH

FD

LC

CM

MP

BD

AO

JG

AG

OP

IF

OH

MB

Ml

AD

IH

NB

EL

IF

DJ

CB

LD

HK

NG

LA

IF

JE

Bl

EG

GL

PF

EM

NH

IE

JG

NG

CC

AD

PH

The Transactor 23

392sysmenus,3,2,1,italic$,128or33

393 sys menus,3,3,1,script!,128or13

oy^f sys rncriubjOjH,u,

395 sys menus.3,5,2," Align Left" ,42

396 sys menus,3,6,1," Align Middle " ,36

397 sys menus,3,7,1," Align Right ",17

398:

399:

400 sys menus,4,0,1," Goodies " ,23

401 sys menus,4,1,1,diskS, 192or1

402 sys menus,4,2,1,paperS, 192or1

403 sys menus,4,3,2,mouse$,192or1

404 sys menus,4,4,1,cmlg$, 192or1

405 sys menus,4,5,0,

406 sys menus,4,6,1," Key

407:

408:

409:

500 rem display menu bar & white mouse

510 sys menus on,7,6:sys mouse on,1

520:

530 rem main program loop start

540:

550 rem poll variables as needed

560 nm = peek(mn):im = peek(mi):bt = peek(mb)

570 xm = peek(mx) + 256*peek(mx + 1)

580 ym = peek(my)

590:

600 rem 'on nm gosub xxx,xxx,xxx,xxx'

610 if nm then print nm,im:poke(mn),0

620:

630 rem if bt = 1 then 'act on right btn

640 if bt = 255 goto720 'act on left btn

650:

660remtrysysdraw,rnd(1)*320,rnd(1)*180

670 rem try if bt = 255 then sys draw.xm.ym

680:

690 goto530 'main loop

700:

710 remove mouse,menu bar, await keypress

720 sys mouse off:sys menus off

730 wait198,1 :get a$:sys textend

740:

799:

999 rem subroutines to build strings

1000 ns = 48:gosub2000:edit$ = a$

1002 ns = 48:gosub2000:type$ = a$

1004 ns = 48:gosub2000:pen$ = a$

1006 ns - 48:gosub2000:erase$ - a$

1008 ns = 48:gosub2000:fill$ = a$

1010 ns = 48:gosub2000:cube$ = a$

1012 ns = 48:gosub2000:spray$ = a$

1014 ns = 48:gosub2000:actn$ = a$

1016 ns = 56:gosub2000:faunts$ = a$

1018 ns = 56:gosub2000:italic$ = a$

1020 ns = 56:gosub2000:script$ = a$

1022 ns = 48:gosub2000:disk$ = a$

1024 ns = 48:gosub2000:paper$ = a$

1026 ns = 32:gosub2000:mouse$ = a$

1028 ns = 48:gosub2000:cmlg$ = a$

1030 return

2000 a$ = " " :for i = 1 to ns:read byte

2002 a$ = a$ + chr$(byte):next

September 1987: Volume 8, Issue O2



CC

KE

OM

DH

IN

AJ

PC

NO

PJ

KD

AA

EO

PE

NC

NL

DA

HM

OB

BN

NO

LN

PE

JA

KO

CO

EP

JC

GB

CC

ML

NA

JA

IC

KO

EJ

FC

JF

KC

LD

LN

LA

EM

GG

GC

MG

GJ

BG

GJ

HI

HJ

JN

GH

HF

FO

BK

LB

FM

PA

AP

NO

DK

AP

MK

2004f = fre(" "):return

2006:

2999 rem

3000 rem

3005 data

3010 data

3015 data

3020 data

3025 data

3030 data

3035 rem

3040 data

3045 data

3050 data

3055 data

3060 data

3065 data

3070 rem

3075 data

3080 data

3085 data

3090 data

3095 data

3100 data

3105 rem

3110 data

3115 data

3120 data

3125 data

3130 data

3135 data

3140 rem

3145 data

3150 data

3155 data

3160 data

3165 data

3170 data

3175 rem

3180 data

3185 data

3190 data

3195 data

3200 data

3205 data

3210 rem

3215 data

3220 data

3225 data

3230 data

3235 data

3240 data

3245 rem

3250 data

3255 data

3260 data

3265 data

3270 data

3275 data

3280 rem

3285 data

3290 data

3295 data

The Transactor

string data

edit$ - [image$-2]

0,124, 64, 64, 64, 64, 0,

0, 0, 0, 0, 0, 0, 0,

0, 62, 2, 2, 2, 2, 0,

0, 0, 64, 64, 64, 64,124,

0, 0, 0, 0, 0, 0, 0,

0, 0, 2, 2, 2, 2, 62,

type$ - [image$-2]

0, 7, 15, 28, 0, 0, 0,

0,255,255, 24, 24, 24, 24,

0,224,240, 56, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,

24, 24, 24, 24, 24, 60,126,

0, 0, 0, 0, 0, 0, 0,

pen$ - [image$-2]

0, 0, 0, 0, 0, 0, 0,

0,254,254, 130,146, 178, 162,

0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 10,

130,146,238, 68, 40, 16,176,

0, 0, 0, 0, 0, 0, 0,

erase$ - [image$-2]

0, 0, - 0, 0, 0, 0, 0,

0, 0, 0, 15, 31, 33, 66,

0, 0, 0,224,160, 64, 64,

1, 3, 4, 4, 3, 0, 0,

9,242, 12, 8,240, 0, 0,

0, 0, 0, 0, 0, 0, 0,

fill$ - [image$-2]

0, 0, 0, 0, 0, 1, 3,

0, 48, 32, 64,128, 0,255,

0, 0, 0, 0, 0, 56,216,

15, 31, 15, 3, 0, 0, 0,

255,254,252,248,240, 32, 0,

24, 8, 8, 8, 8, 0, 0,

cube$ - [image$-2]

0, 0, 3, 12, 16, 28, 23,

48,204, 3, 0, 0, 1, 7,

0, 0, 0,192, 96,224,224,

21, 26, 21, 14, 3, 0, 0,

127,191,127,191,126,248, 32,

224,224,224,128, 0, 0, 0,

sprayS - [image$-2]

0, 0, 1, 6, 8, 24, 16,

0, 0,255,126, 24,126,153

0, 16, 64, 8, 32, 8, 0,

16, 16, 0, 0, 0, 0, 0,

153,153,255,255,255,255, 0

0, 0, 0, 0, 0, 0, 0

actnS - [image$-2]

0, 0, 0, 0, 0, 0, 0

0, 0, 1, 3, 7, 14, 29

0,192,192,128, 0, 0,128

14, 15, 7, 3, 3, 1, 0

118, 185,221,222,191,255,255,

216,180,108,216, 48,160,192

faunts$ - [image$-1]

0, 0, 0, 0, 0, 0, 0

126,144, 80, 30, 80,144,144

0, 0,120,206,205,204,120

0

0

0

0

0

0

0

24

0

0

0

0

0

162

0

0

0

0

0

132

128

0

0

0

7

255

152

0

0

0

26

223

224

0

0

0

16

153

0

0

0

0

12

59

96

0

255

128

0

96

0

EN

CB

LB

BM

NO

LM

IL

OP

OH

AB

NH

HL

DF

DP

PL

ID

HB

HB

CB

MG

EB

HI

CF

BF

OK

DC

CG

FK

FH

OE

DG

AK

JG

LJ

BP

AN

CO

OO

FN

BH

HA

KM

DM

LD

HK

IM

CF

3300 data

3305 data

3310 data

3315 data

3320 rem

3325 data

3330 data

3335 data

3340 data

3345 data

3350 data

3355 data

3360 rem

3365 data

3370 data

3375 data

3380 data

3385 data

3390 data

3395 data

3400 rem

3405 data

3410 data

3415 data

3420 data

3425 data

3430 data

3435 rem

3440 data

3445 data

3450 data

3455 data

3460 data

3465 data

3470 rem

3475 data

3480 data

3485 data

3490 data

3495 rem

3500 data

3505 data

3510 data

3515 data

3520 data

3525 data

3530 end

0, 0, 56,100,164, 37, 66,

0, 48,252, 48, 48,241, 14,

0, 24, 36, 68,130, 3, 60,

0, 0, 0, 0, 0, 0, 0,

italics - [image$-1]

0, 0, 0, 0, 0, 0, 0,

30, 12, 12, 12, 24, 24, 60,

0, 12, 63, 12, 24, 24, 14,

0, 0, 30, 3, 62,102, 62,

0, 28, 12, 12, 24, 24, 60,

0, 12, 0, 28, 24, 24, 60,

0, 0, 30, 48, 96, 96, 60,

scripts - [image$-1]

0, 0, 0, 0, 0, 0, 0,

114,140,192, 56, 6,113,129,

0, 0,112,200,192,193,126,

0, 0, 80,104,200, 69, 69,

24, 0, 24, 24, 24,249, 30,

0, 176,200, 136,200, 177, 142,

0, 48,252, 48, 48,241, 14,

diskS - [image$-2]

0,127, 64, 64, 64, 64, 64,

0,255, 0, 0,126,129,129,

0,254, 2, 2, 2, 6, 2,

64, 64, 64, 64, 64, 64,127,

126, 0, 24, 24, 24, 0,255,

2, 2, 2, 2, 2, 2,254,

paperS - [image$-2]

0, 15, 16, 32, 32, 32, 16,

0,255, 0, 0, 0, 0, 0,

0,248, 16, 32, 32, 32, 16,

4, 30, 33, 65, 65, 34, 31,

0, 0, 0, 0, 0, 0,255,

8, 4, 2, 2, 2, 4,248,

mouse$ - [image$-2]

0,127, 81, 81, 81, 95, 72,

0,255, 69, 69, 69,125, 9,

72, 72, 72, 79, 80, 96,127,

9, 9, 9,249, 5, 3,255,

cmlgS - [image$-2]

0,127, 64, 65, 71, 79, 79,

0,255, 0,252,252,255,131,

0,254, 2, 2, 2,226,194,

95, 79, 79, 71, 65, 64,127,

3,131,255,252,252, 0,255,

2,194,226, 2, 2, 2,254,

of data

0

0

0

0

0

0

0

0

0

0

0

0

126

0

0

0

128

0

64

129

2

0

0

0

8

0

8

0

0

0

72

9

0

0

95

3

2

0

0

0

Program to generate pointer sprite for optional editing

MA

BF

NA

BC

BE

OK

LG

MD

HJ

OD

AL

NK

GN

24

100 rem pointer arrow sprite generator

110 for j = 1 to 64 : read x

120 ch = ch + x : next

130 if ch<>499 then print" checksum error"

140 print ' data ok, now creating file": print

150 restore

160 open8,8,8, "0:arrow.spr,p,w"

170 print#8,chr$(192)chr$(63);

180 for j = 1 to 64 : read x

190 print#8,chr$(x); : next

200 close

210 print

220 print

8

1 prg file 'arrow.spr' created. . .

' this generator no longer needed.

end

September 1987: Volume 8, Issue O2



EA

LD

EM

FA

GB

CP

AP

KP

KH

CC

AN

KP

EB

BA

KA

GD

KM

MM

LG

Gl

NO

OM

LI

AH

KP

FH

PM

Ml

GP

NN

CL

ML

FJ

DN

KN

EO

00

GC

ON

IA

Bl

PJ

FK

IM

DL

JP

JO

JM

PM

PN

FM

CJ

JP

FM

HE

FP

DB

KG

GP

NN

230 rem

240 data 0, 0, 0,

250 data 0, 48, 0,

260 data 0, 0, 62,

270 data 60, 0, 0,

280 data 0, 3, 0,

290 data 0, 0, 0,

300 data 0, 0, 0,

310 data 0, 0, 0,

0,

0,

0,

38,

0,

0,

0,

0,

0,

56,

0,

0,

3,

0,

0,

0,

Generator for "MENUS

100 rem save "0:menus. bas"

110 rem a hires menu system f

8

0,

0,

63,

0,

0,

0,

0,

0,

or use

120 rem with 'hires' & 'viewports'

130 rem by anthony bryant

140 rem Winnipeg,manitoba

150:

160forj = 1to3030:read;

170 if ch<>347286 then

180 restore

190 rem data ok, create r

200 open 15,8,15

<:ch =

print

nlfile

210 open 8,8,1, "0:menus"

220input#15,e,e$,b,c

230 if e then closei 5:print e;e!

240 print#8,chr$(0)chr$(128);

250 for j = 1 to3030:read

260close8:close15

32,

0,

0,

6,

0,

0,

0,

0,

ch + x:next

0

60

0

0

0

0

0

68

"checksum error!":

>;b;c: stop

<:print#8,chr$(x

270 print " ** module created

280:

1000 data 76, 97,128

1010 data 76, 152, 137

1020 data 0, 0, 0

1030 data 0, 0, 0

1040 data 1, 1, 1

1050 data 0, 0, 0

1060 data 0, 0, 0

1070 data 0, 0, 0

1080 data 0, 0, 0

1090 data 0, 0,128

HOOdata 1, 0,216

1110 data 0,240,111

1120 data 3,129,104

1130 data 240, 112, 76

1140 data 240, 61,224

1150 data 32,241, 183

1160 data 128, 32,241

1170 data 7,128, 32

1180 data 1, 96, 32

1190 data 163, 182, 32

1200 data 1, 96, 32

1210 data 76, 72, 178

1220 data 232, 224, 8

1230 data 157, 0,141

1240 data 240, 37, 32

1250 data 187, 133, 169

1260 data 208, 19, 32

1270data 11, 32, 19

1280 data 130,169,255

1290 data 0,208, 1

1300 data 15,141, 4

1310data 10, 10, 10

The Transactor

0,

0

0

0

1

0

0

0

0

64

0

201

201

8

8

224

183

33

253

172

241

162

144

232

56

0,

255,

130,

141,

96,

128,

13,

**" :end

1,

0,

0,

0,

1,

0,

0,

o,

0,

32,

0,

44,

156,

175,

176,

9,

224,

129,

174,

129,

183,

0,

248,

208,

130,

240,

133,

32,

5,

32,

32,

4,

0,

0,

0,

0,

1,

0,

0,

0,

0,

16,

0,

240,

240,

32,

57,

176,

3,

32,

32,

32,

138,

138,

141,

250,

140,

24,

173,

166,

128,

241,

241,

128,

):nex

0

0

0

0

1

1

0

0

0

8

0

16

77

241

142

47

176

121

158

121

76

157

8

173

6

173

19

133

96

183

183

141

t

0

0

0

0

40

0

0

0

0

4

32

72

201

183

3

142

37

0

173

0

224

19

128

5

128

5

128

32

32

138

138

4

stop

, o

, 0

, 0

, o

, 0

, o

, 0

, 0

, 0

, 2

,121

, 32

, 145

,138

,128

, 6

, 142

,208

, 32

,208

, 129

,128

, 170

,128

, 32

, 128

,240

, 62

, 115

, 41

, 10

, 128

25

FA

HH

PI

Fl

DD

HG

OJ

BM

AH

GN

IA

FP

HG

LK

DN

JD

LE

CC

LJ

KB

CN

JC

EB

OL

MO

PG

ED

MH

LH

ND

EA

Ml

CM

AE

EE

JA

BJ

Fl

JN

GH

BK

DG

FN

BF

ON

DL

MO

IC

BD

MP

LK

PJ

MH

JH

MD

DD

LA

GF

LF

MJ

FK

KJ

JP

1320

1330

1340

1350

data

data

data

data

1360 data

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

1610 data

1620 data

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

1870 data

1880

1890

1900

1910

1920

data

data

data

data

data

1930 data

1940 data

96,172, 3,128,174, 6,128,208, 5

160, 0,174, 3,128,189, 82,128, 73

255, 57, 59,128,153, 59,128,189, 82

128, 73,255, 57, 67,128,153, 67,128

173, 7,128,201, 0,240, 5,201, 2

240, 11, 96,185, 59,128, 29, 82,128

153, 59,128, 96,185, 67,128, 29, 82

128,153, 67,128, 96,172, 3,128,174

6,128,208, 5,160, 0,174, 3,128

185, 59,128, 61, 82,128,141, 95,128

185, 67,128, 61, 82,128, 96,174, 6

128,157, 74,128, 96,174, 6,128,188

74,128, 96,173, 3,128, 56,233, 1

10, 10,133,163, 10,101,163,133,163

10,101,163,133,163,173, 6,128, 10

10,101,163,168, 96,170, 32,143,129

138,153, 0,141,200,165, 34,153, 0

141,200,165, 35,153, 0,141,200,140

8,128,169, 0, 32,224,129,174, 3

128,236, 19,128,144, 3,142, 19,128

173, 6, 128, 221, 19, 128, 144, 3, 157

19,128, 96,172, 8,128,153, 0,141

96, 32,143,129,190, 0,141,200,185

0,141,133,163,200,185, 0,141,133

164, 200, 185, 0, 141, 133, 165, 140, 8

128,138, 36,165, 16, 6, 80, 1, 74

74, 74, 74,170,165,165, 36,165, 96

169, 1,141, 51,128,160, 0,140, 6

128, 200, 140, 3, 128, 204, 19, 128, 240

2,176, 16, 32,231,129,112, 6,172

3,128,200,208,235,169, 2,141, 51

128,160, 0,140, 3,128, 96,174, 27

128,134,189,172, 35,128,132,190, 32

213,136,160, 0,140, 6,128,200,140

3,128,204, 19,128,240, 2,176,221

185, 19,128,208, 6,141, 7,128, 32

33,129, 32,157,136, 32,100,129, 32

231,129, 41, 63,240, 9, 24,101,189

170, 164, 190, 32, 213, 136, 32, 231, 129

5,158, 32,224,129, 36,165, 32,200

135,172, 3,128,200,208,194,173, 5

128,240, 99,173, 19,128,240, 94,172

35, 128, 132, 190, 32, 112, 138, 200, 173

51,128,136,196,190,240, 5, 74,144

248,176, 72,160, 0,140, 6,128,200

140, 3,128,204, 19,128,240, 2,176

56, 32,231,129,133,192, 41, 63,133

189,205, 13,128,240, 2,176, 40,138

24, 101, 189, 205, 13, 128, 240, 2, 176

6, 172, 3,128, 200, 208, 213, 134, 180

32, 100, 129, 173, 95, 128, 208, 13,165

180, 166, 189, 164, 190, 36, 192, 32, 118

132, 24, 96, 32, 56,130, 56, 96,165

190, 24, 109, 51,128, 133, 177, 165, 189

133, 176, 160, 0, 132, 178, 132, 179, 132

166,162, 1,142, 6,128, 32,231,129

112, 12, 41, 63,240, 2,232,232,160

0,132,166,240, 27, 41, 63,197,166

240, 2,176, 4,160, 0,132,166,164

166, 133, 166, 138, 56, 101, 166, 170, 192

0, 208, 4, 230, 179, 230, 179, 228, 178

144, 2,134,178,238, 6,128,172, 3

128,173, 6,128,217, 19,128,144,190

September 1987: Volume 8, Issue O2



GA

KJ

CN

EF

PN

BP

EO

LB

JO

OA

KB

EA

HB

KE

JC

DE

AK

ID

DG

KM

JM

NL

FF

NF

JK

BM

FL

LP

HB

PO

GP

CG

IA

BM

GF

FC

BC

CJ

OJ

GE

DK

IF

MJ

Bl

NO

CH

DF

MK

CJ

Cl

IB

IL

LA

Cl

KM

FD

HK

CN

OC

PD

HA

II

ED

1950 data 240,

1960 data 144,

1970 data 189,

1980 data 165,

1990 data 128,

2000 data 153,

2010 data 133,

2020 data 1,

2030 data 157,

2040 data 197,

2050 data 166,

2060 data 192,

2070 data 201,

2080 data 165,

2090 data 3,

2100 data 135,

2110 data 165,

2120 data 235,

2130 data 136,

2140 data 128,

2150 data 240,

2160 data 96,

2170 data 240,

2180 data 162,

2190 data 95,

2200 data 174,

2210 data 240,

2220 data 6,

2230 data 172,

2240 data 100,

2250 data 56,

2260 data 165,

2270 data 4,

2280 data 134,

2290 data 133,

2300 data 175,

2310 data 133,

2320 data 132,

2330 data 96,

2340 data 1,

2350 data 176,

2360 data 231,

2370 data 101,

2380 data 32,

2390 data 196,

2400 data 240,

2410 data 229,

2420 data 159,

2430 data 176,

2440 data 80,

2450 data 196,

2460 data 13,

2470 data 216,

2480 data 40,

2490 data 208,

2500 data 0,

2510 data 100,

2520 data 133,

2530 data 32,

2540 data 240,

2550 data 36,

2560 data 253,

2570 data 133,

159,

32,

188, 165, 176,

11,240, 9,

76, 6,131,

178,153, 43,

165, 179,201,

51,128, 96,

32, 96,135,

142, 6,128,

136, 32,231,

166,240, 2,

164, 166, 133,

0,240, 9,

131, 166, 176,

32, 129,

40,136,

36, 165,112,

165, 41, 63,

32, 56, 136,

32,208, 136,

173, 6,128,

145, 96,165,

160, 1,140,

2,176, 67,

0,142, 6,

128,208, 32,

6,128,240,

22,238, 6,

128,217, 19,

3, 128,200,

129,173, 95,

130, 140, 6,

180, 166, 189,

80, 2,112,

160, 0,177,

175, 177,247,

145,247,200,

191, 32,110,

32, 143, 134,

32, 77,139,

141, 6,128,

134,158, 32,

129, 80, 9,

176, 133, 158,

138, 139,240,

159,240, 9,

2,176, 69,

158, 197, 191,

208, 52, 32,

60, 32,138,

26, 196, 159,

159,240, 2,

138,229,158,

196, 159,240,

176, 8,206,

3,238, 6,

142, 6,128,

129,173, 95,

32, 92,133,

120,133, 32,

96, 165,

76, 118,

136,208,248,

32, 137,138,

24, 101,

233, 39,

165, 176,

128, 165,

21, 144,

32, 252,

164, 177,

160, 0,

129, 80,

176, 4,

166, 24,

164,159,

164,159,

129, 32,

32,231,

20, 160,

240, 13,

76, 250,

238, 6,

217, 19,

197,201,

3,128,

185, 19,

128, 32,

32,231,

6, 41,

128, 172,

128, 144,

208, 190,

128,208,

128, 96,

164, 190,

31, 133,

10,

74,

1,

165,

247

74

196, 191,

134,162,

232, 224,

164, 177,

166, 178,

136, 129,

134, 191,

32, 129,

102, 36,

144, 76,

228,158,

176, 58,

100, 133,

139,240,

240, 9,

176, 17,

197, 191,

212, 8,

6, 128,

128, 76,

142, 12,

128,208,

32, 95,

100,129,

191, 166,

132,162,

96, 160,

32, 112,

178,201, 39

73,255, 101

153, 27,128

177,153, 35

2,169, 21

130, 32,166

132, 159, 162

132,166, 32

31, 41, 63

160, 0,132

101, 176, 170

136,136, 76

32,213, 136

100, 129,240

129, 32,200

0, 132,166

170, 189, 194

131, 32,208

128,172, 3

128, 144, 147

64,208, 1

204, 19,128

128,240, 45

100, 129, 173

129,112, 11

63, 197, 197

3, 128, 173

226,240, 224

198,198, 32

1, 96, 32

32, 187, 133

36,192, 16

191, 32,110

10, 10, 10

74, 74, 5

144,233, 96

0, 32,129

2, 144,245

132,159, 169

134, 191, 166

132.159, 32

41, 63, 24

133,176, 45

165, 80, 26

136,196, 159

144, 65,138

144, 4,196

32, 129, 133

64, 36,165

144, 24,136

228, 158, 144

176, 6,144

32, 100, 133

173, 6,128

186,132, 162

128, 96, 32

239, 32, 89

133.160, 48

173, 95,128

158, 164, 159

184,202,208

16, 32,120

138,228, 176

FN

JH

AH

Ol

IM

KC

LE

Gl

CH

FE

MA

IF

OL

BJ

HO

PO

KL

GO

PF

JE

OP

JG

FA

IK

BF

PJ

LP

NH

ND

El

HL

LP

JD

PI

JJ

Ol

JA

ND

EO

Gl

CL

OK

LB

CF

HN

KB

MA

MG

CA

OK

LM

EL

FC

GK

FB

LP

GG

MD

HL

FH

AH

CJ

Gl

2580 data 144:

2590 data 196,

2600 data 176,

2610 data 32,

2620 data 32,

2630 data 32,

2640 data 76,

2650 data 173,

2660 data 168,

2670 data 2,

2680 data 133,

2690 data 185,

2700 data 167,

2710 data 141,

2720 data 133,

2730 data 70,

2740 data 133,

2750 data 96,

2760 data 133,

2770 data 128,

2780 data 165,

2790 data 166,

2800 data 173,

2810 data 168,

2820 data 133,

2830 data 0,

2840 data 143,

2850 data 133,

2860 data 204,

2870 data 40,

2880 data 4,

2890 data 134,

2900 data 160,

2910 data 177,

2920 data 178,

2930 data 144,

2940 data 179,

2950 data 105,

2960 data 168,

2970 data 174,

2980 data 169,

2990 data 134,

3000 data 135,

3010 data 144,

3020 data 13,

3030 data 133,

3040 data 173,

3050 data 240,

3060 data 104,

3070 data 24,

3080 data 152,

3090 data 170,

3100 data 134,

3110 data 136,

3120 data 167,

3130 data 133,

3140 data 178,

3150 data 136,

3160 data 165,

3170 data 1,

3180 data 135,

3190 data 255,

3200 data 167,

20,

177,

2,

243,

159,

42,

159,

199,

96,

160,

96,

201,

166,

199,

56,

250,

249,

0,

176,

133,

176,

249,

40,

72,

1,

133,

134,

247,

133,

133,

128,

32,

0,

249,

144,

2,

144,

64,

24,

105,

1,

170,

32,

243,

220,

171,

165,

8,

145,

101,

24,

232,

162,

16,

105,

168,

135,

16,

167,

133,

32,

145,

105,

138,229.

9,

96,

32,

32,

32,

0,

144,

24,

134,

134,

134,

134,

133, 174,

32, 205,

1, 153,

172, 3,

133, 190,

168,208,

133,142,

233, 144,

106, 70,

24, 165,

0, 172,

185, 35,

178, 185,

101, 178,

142, 40,

134, 174,

169, 127,

104, 96,

247, 133,

136,208,

170, 169,

248, 104,

247, 144,

44, 169,

106, 134,

165, 163,

145,247,

237, 152,

230, 250,

217, 76,

133, 167,

165, 173,

1,133,

133, 164,

32, 205,

229,134,

169, 55,

96,132,

165, 168,

170, 133,

177, 169,

167,200,

167,133,

101, 169,

228, 178,

0, 169,

251,232,

64, 133,

208, 228,

162, 0,

251,232,

233, 64,

168,160,

84, 134,

167,232,

8, 133,

32,

76,

32,

0,

176, 197, 178,

152,229, 177,

56, 96, 32,

155, 134,

246, 134,

234,133,

0, 0,

200, 133, 133,

133,172, 3,

201, 133, 138,

128,240, 2,

203, 133,208,

4,169, 0,

200,133, 96,

133,250, 173,

250,106, 70,

250, 105, 142,

3, 128, 185,

128, 133, 177,

51, 128, 133,

133,156, 32,

134,141, 41,

41, 134, 133,

141, 13,220,

166, 176, 164,

248, 152,240,

250,138, 24,

0, 101,248,

96, 24,165,

2, 230, 248,

0, 133,163,

32, 10,134,

208, 8,177,

104, 145,249,

24, 101,249,

32, 143,134,

19,135, 24,

165, 172, 105,

105, 64,133,

170, 96,169,

32, 84,134,

133,160, 0,

164, 175,200,

133, 1,169,

175,162, 0,

133, 172, 165,

174,160, 0,

72, 177, 167,

192, 8,208,

167,144, 2,

133, 169, 144,

144,210, 96,

128,160, 7,

228, 179, 176,

167, 165, 168,

162, 0,160,

136,169, 1,

228, 179, 176,

133, 167, 165,

7, 208, 227,

162, 0,160,

228,178,176,

167,144, 2,

176, 13

197, 179

42, 134

216, 133

249.133

246.134

0, 0

167, 134

128,240

153,203

160, 1

10, 165

162, 144

173,200

199, 133

250, 106

133,250

27, 128

185, 43

179, 24

239,136

134, 96

167, 134

169, 52

177,169

6, 32

101,247

72, 105

247, 105

96, 173

32, 94

162,

247,

200, 196

133,249

232, 228

165, 171

1, 133

169, 165

0, 44

133, 169

32, 29

196, 179

129, 141

165, 167

169, 133

165, 164

145, 169

237, 152

230, 168

2,230

32, 84

145, 167

14, 165

105, 1

7, 32

145,167

17, 56

168,233

76, 19

0, 169

12, 165

230, 168

0

72

The Transactor 26 September 1987: Volume 8, Issue O2



AA

FE

IB

KO

DC

DK

DB

LO

JC

BA

EB

EE

IC

LD

PA

JD

MH

CD

GE

PG

FP

NE

IM

MF

LD

FF

NB

BK

DK

AO

01

PM

MM

AH

PH

KN

IC

NH

GP

EC

FG

OK

CN

BE

LH

AM

HG

CP

NC

NK

NM

KN

HP

El

DJ

EM

AN

KE

AD

LN

DA

JK

ID

3210 data 208, 235,

3220 data 232, 160,

3230 data 177, 163,

3240 data 232, 160,

3250 data 164, 133,

3260 data 32, 76,

3270 data 169, 144,

3280 data 158, 133,

3290 data 166, 158,

3300 data 200, 32,

3310 data 135, 166,

3320 data 36, 165,

3330 data 137, 32,

3340 data 128, 32,

3350 data 136, 160,

3360 data 141, 93,

3370 data 136, 104,

3380 data 208, 54,

3390 data 144, 48,

3400 data 2, 41,

3410 data 128, 162,

3420 data 38, 170,

3430 data 170, 165,

3440 data 132, 170,

3450 data 173, 92,

3460 data 240, 36,

3470 data 169, 94,

3480 data 186, 201,

3490 data 240, 141

3500 data 169, 0,

3510 data 159, 200,

3520 data 133, 250,

3530 data 42, 6.

3540 data 96, 166.

3550 data 156, 202.

3560 data 1, 2.

3570 data 180, 184.

3580 data 85, 170

3590 data 0, 0

3600 data 4,162

3610 data 173, 14

3620 data 49,133

3630 data 137, 136

3640 data 160, 7

3650 data 23, 137

3660 data 25, 23

3670 data 55, 133

3680 data 14,220

3690 data 134, 158

3700 data 144, 2

3710 data 176, 144

3720 data 8,133

3730 data 121, 0

3740 data 32, 27

3750 data 8,175

3760 data 13, 48

3770 data 35,224

3780 data 76, 72

3790 data 208, 6

3800 data 34, 132

3810 data 160, 63

3820 data 250, 160

3830 data 153, 64

9,

41,

32,

96, 16,

0, 140,

32, 76,

128, 140,

169, 132,

136, 24,

2, 230,

155,138,

164, 159,

213, 136,

155,164,

112, 6,

131,137,

246, 136,

0, 140,

128,138,

168, 104,

173, 93,

201, 96,

63, 174,

0, 134,

10, 38,

170, 109,

76, 45,

128,

96

201

14,208,

92, 128,

141, 94,

134, 158,

134,249,

249, 42,

176, 164,

202, 164,

4, 40,

180, 70,

85, 170,

0, 0,

7,160,

220, 41,

1,160,

16,248,

185, 23,

136, 16,

137, 145,

1, 173,

166, 158,

24, 165,

230, 250,

13, 134,

249, 176,

240, 100,

138, 104,

32, 253,

38, 32,

1, 240,

178, 169,

169, 199,

35, 208,

169, 0,

0, 232,

255, 200,

128

144

14,

30,

4, 80, 20,

96, 128,202,

136,200,208,

96, 128, 165,

170,202,208,

165, 169, 105,

170, 76,238,

72,232, 32,

165, 155, 134,

104, 170,232,

159,136, 76,

32, 31,137,

76, 31,137,

32, 37,137,

96, 128, 173,

72,152, 72,

170, 96,173,

48, 68,

4, 41,

94, 128,240,

170, 10, 38,

170, 24,109,

92, 128, 168,

137,201

8,208

127,201, 127,

144, 4, 9,

9,173, 92,

96,201, 18,

128, 96,166,

132.159, 32,

6,249, 42,

24,105,224,

177, 76,213,

76,213,

0, 0,

0,170,

0, 0,

162,255, 160,

137, 134, 169,

254,141, 14,

7, 177, 169,

173, 95,128,

137, 57, 15,

244.160, 7,

249,136, 16,

14,220, 9,

232,228, 156,

249,105, 8,

96,166,158,

158, 56,165,

2, 198,250,

201, 44,240,

201, 145,240,

32, 158,

183,224,

7,224, 2,

160, 160, 139,

160, 139,162,

4, 32,163,

153, 64,255,

202,240, 10,

192, 64,144,

159,

16,

56,

85,

174,

161,

112, 53

240, 8

245, 96

163, 164

1, 96

8, 133

135, 165

225,135

155,170

32,238

213,136

76, 131

141, 93

32, 157

93, 128

32, 91

96, 128

201, 32

223,208

2, 9

170, 10

91,128

134, 169

208, 7

201, 18

208, 2

64,208

128, 41

208, 5

176, 164

110, 134

6,249

133,250

136, 166

136, 0

56, 70

85,170

0, 0

136,208

132,170

220, 169

153, 23

240, 14

137,153

177,249

246, 169

1, 141

176, 13

133,249

202, 228

249, 233

96, 32

12, 72

95, 76

173, 36

0,240

240, 11

162, 39

15, 133

182, 170

136, 16

177, 34

243, 169

PI

FO

BF

JG

OB

IK

IJ

AG

BH

CF

LO

BP

Nl

PI

LN

KC

GH

AD

DD

AE

AJ

JK

GO

DK

PN

AH

NM

LO

DL

IE

IF

PJ

FD

PE

NE

NE

EB

PF

OJ

Jl

NH

00

AF

MJ

MK

AA

ID

PJ

HD

BE

IM

BO

FB

3840 data 253:

3850 data 160,

3860 data 138,

3870 data 88:

3880 data 96:

3890 data 139

3900 data 72.

3910 data 138.

3920 data 138

3930 data 208

3940 data 76

3950 data 96

3960 data 136

3970 data 16

3980 data 170

3990 data 74

4000 data 2

4010 data 232

4020 data 72

4030 data 169

4040 data 74

4050 data 162

4060 data 220

4070 data 201

4080 data 152

4090 data 247

4100 data 208

4110 data 1

4120 data 208

4130 data 254

4140 data 8

4150 data 41

4160 data 0

4170 data 141

4180 data 141

4190 data 0

4200 data 48

4210 data 141

4220 data 105

4230 data 201

4240 data 141

4250 data 16

4260 data 208

4270 data 45

4280 data 208

4290 data 10

4300 data 169

4310 data 0

4320 data 56

4330 data 63

4340 data 6

4350 data 136

4360 data 80

48,

32,

32, 174,

74, 173,

141,248,207,

234,208, 6,

120,141, 20,

139, 88, 96,

32,241, 183,

169,138, 72,

72, 76, 49,

139.141, 12,

76, 129,234,

7, 166, 198,

129,234,

234, 234,

131,

128,

142, 13,128,

168,140, 14,

220, 169, 128,

208,253, 174,

41, 16,141,

32, 44, 169,

73,255, 141,

255.142, 2,

168, 41, 1,

48,240, 20,

41, 2,208,

240, 3,238,

32,174, 0,

208, 4,224,

224, 0,208,

141, 16,208,

208, 27,174,

1,240, 4,

208,208, 8,

16,208, 173,

15, 128, 173,

141, 16,128,

141, 17,128,

18,128, 96,

52,141, 1,

48,176, 24,

1,208, 169,

208,169,254,

138, 48, 5,

21,208, 141,

96,169, 4,

12, 128,

96, 169,

0

162 1,

96,162,254,169, 49

42,160

3,

208,

169,

21,

0,

15,

55, 72,

32, 137,

6,

2,

32,

44,

255,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

32

60

60

3

80

3,140,

32, 115,

138, 41,

169

234

128,240

172, 142

240, 3

4,234, 16,

143, 130, 176,

132, 76,107,

15, 128, 106,

173, 17,128,

128, 96,169,

141, 0,220,

25,212, 173,

12, 128, 138,

0, 13, 12,

12, 128, 104,

220, 162, 127,

208, 12,173,

206, 1,208,

10,173, 1,

1,208, 152,

208,173, 16,

22,240, 50,

43,173, 16,

76, 40, 139,

0,208,173,

224, 85,240,

173, 16,208,

0,208, 56,

16,208, 41,

173, 1,208,

169,199,237,

165,177, 10,

208, 96,173,

75, 141,

45, 16,

27, 208,

13, 21,208,

21,208, 96,

44, 12,128,

6, 169,

96, 0,

0, 48,

169,

254,

45,

0, 136

208,

1,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0

62,

38,

3,

32,

32

1

76, 134

8, 72

138, 32

32, 89

192, 2

14,132

4, 96

247, 32

132,173

74, 74

74, 74

192, 141

162, 0

0,220

48, 3

128, 74

41, 15

142, 0

1,208

208, 15

208, 201

41, 4

208,

206,

208,

152,

16,208

13,238

9, 1

233, 22

1,233

56, 233

17, 128

10, 10

1,208

0,208

208,141

141, 27

208,

141,

208,

0,

0,

0,

0,

0,

0,

0,

41

0

41

41

3

39

9

96

0

0

0

0

0

0

Generator for Garry Kiziak's "HIRES'

This program, as mentioned in the article, is not necessary for the

MENUS program to work. It has been included here because it's

used in the demo program. You'll notice that Anthony only uses

Garry's HIRES to turn on the hi-res screen, print some hi-res

messages, and turn the lo-res screen back on in line 730. The

messages aren't required for correct operation, and the other calls

could be replaced by POKE statements. HIRES is used again in 660

The Transactor 27 September 1987: Volume 8, Issue O2



and 670 of the demo, but this is merely a sample menu selection and

currently disabled in REM statements. However, HIRES makes a

terrific companion for this system.

NF

DC

BJ

AO

FM

CD

IM

EM

JG

CM

ED

KA

KF

II

JB

EN

BB

LH

PP

GH

Fl

CG

KL

HN

PH

AG

ML

Jl

FM

AE

DA

HC

FC

JL

OP

LG

IH

ME

HF

IJ

HM

DH

IA

DO

JK

CP

AL

PD

BO

NF

OP

GK

LE

II

LF

BH

FG

KB

HL

1000 rem 'hires' generator by garry kiziak

1010 for j = 1 to 2080 : read x

1020ch = ch + x: next

1030 if ch<>245727 then print" checksum error" : end

1040 print " data ok, now creating file": print

1050 restore

1060 open8,8,8, "0:hires,p,w"

1070 print#8,chr$(0)chr$(192);

1080 for j = 1 to 2080 : read x

1090 print#8,chr$(x); : next

1100 close 8

1110 print " prg file 'hires' created. . .

1120 print " this generator no longer needed.

1130 rem

1140 data

1150 data

1160 data

1170 data

1180 data

1190 data

1200 data

1210 data

1220 data 208, 0

1230 data 27, 173

1240 data 208, 141

1250 data 192, 173

1260 data 192

1270 data 173

1280 data 3

76, 194, 193

76, 110, 194

76,228, 196

76, 169, 192

76, 4

0, 0

76,247, 195,

76, 30,194,

76, 11,197,

76,206, 197,

200

0

7, 248,

0, 0,

0.

0,

0, 0,

1, 0,

0, 0,

0,221, 141,

58, 192, 173,

76, 98,195

76,214, 196

76, 67,197

76, 199, 199

0, 0, 0, 0, 0

0, 0,255,128, 0

0, 0, 0, 0, 0

15,240,240, 0, 0

0,173, 58,192,208

57,192,173, 24

17,208, 141, 59

22,208,141, 60,192, 32,110

96,173, 0, 3,201,231,208, 7

1,

141,

3,201, 192,240,

234,192,173, 1,

44,173, 0

3, 141,235

1290 data 192, 169, 231, 141, 0, 3,169,192,141

1300data 1, 3,173, 2, 3,141,

1310data 3, 3,141, 42,193,169,

1320 data 3,169,193,141, 3, 3,

1330 data 192, 240, 26,141, 24,208,173,

1340 data 141, 0,221,173, 59,192,141,

1350 data 173, 60,192,141, 22,208,169,

1360 data 58,192, 96,

1370 data 165, 1,141,

72, 169, 127, 141,

41, 193, 173

8,141, 2

96,173, 58

57, 192

17,208

0, 141

13,220

56,192, 41,253,133, 1

169

76

16

21

1380 data 104, 96, 72,173, 56,192,133, 1,

1390 data 129, 141, 13,220,104, 96, 16, 3,

1400 data 139, 227, 142, 13, 3, 44, 76,192,

1410 data 245, 169, 0,133, 20,169, 0,133,

1420 data 162, 250, 154, 169, 167, 72,169,233, 72

1430 data 76,163,168, 32,169,192,173,234,192

3, 173,235, 192,141

193,141, 2, 3,173

1,

42, 193

1440 data 141, 0,

1450 data 173, 41,

1460 data 141, 3, 3,169, 0,141, 76,192, 76

1470 data 131, 164, 164, 254, 240, 13,160, 0,145

1480 data 251, 200, 208, 251, 230, 252, 198, 254, 208

1490 data 243, 164, 253, 240, 10,136,240, 5,145

1500 data 251, 136, 208, 251, 145, 251, 96, 32,201

1510 data 192, 160, 0, 132, 251, 160, 204, 132, 252

1520 data 160, 232, 132, 253, 160, 3,132,254, 32

1530 data 43,193,169, 0,133,251,169,224,133

64,133,253,169, 31,133,254

32, 43,193, 76,218,192, 32

32,138,173, 32,247,183,166

20, 96, 32,253,174, 32,124

1540 data 252, 169,

1550 data 169, 0,

1560 data 253, 174,

1570 data 21,165,

1580 data 193, 141, 43,192,142, 44,192, 32,121

AP

MN

GE

Dl

HH

BE

KH

CF

Ol

Fl

HJ

NA

LF

EB

OE

ID

PF

GM

ML

NN

HB

IO

OP

Bl

DJ

AJ

NG

PB

KE

JG

PN

DG

LG

DL

FJ

IC

AL

KA

FC

LK

NG

MC

MO

MB

CP

IH

HF

CJ

CG

KE

KF

IJ

LI

NK

AE

EH

HE

KN

MM

PJ

PO

DA

LO

1590 data 193, 141, 45,192,

1600 data 162, 1, 44, 53,

1610 data 162, 0,205, 43,

1620 data 176, 3, 76, 72,

1630 data 192, 169, 0,237,

1640 data 32, 77, 192, 32,

1650 data 128, 141, 53,192,

1660 data 32, 30, 194, 173,

1670 data 3,141, 0,221,

1680 data 9, 8, 9, 48,

1690 data 208, 9, 32,141,

1700 data 16, 12,173, 22,

1710 data 208, 169, 3,208,

1720 data 239, 141, 22,208,

1730 data 73,255,141, 55,

1740 data 192, 96,169, 1,

1750 data 192, 141, 66,192,

1760 data 32, 135, 193, 173,

1770 data 10,141, 62,192,

1780 data 192, 41, 15,141,

1790 data 48, 12, 13, 62,

1800 data 70, 192, 76, 75,

1810 data 121, 193, 41, 15,

1820 data 193, 141, 64,192,

1830 data 193, 32,135,193.

1840 data 157, 39,192,202,

1850 data 199, 237, 41,192,

1860 data 252, 160, 0,132,

1870 data 102, 251, 101,252,

1880 data 174, 40,192, 45,

1890 data 16, 6, 10, 72,

1900 data 101, 251, 133,251,

1910 data 104, 41, 7, 24,

1920 data 253, 144, 2,230,

1930 data 253, 74,102,253,

1940 data 44, 53, 192, 48,

1950 data 253, 133,253, 169,

1960 data 76,249, 194, 173,

1970 data 234, 24,169, 0,

1980 data 216, 101,254, 133,

1990 data 0,133,251,165,

2000 data 173, 39,192, 45,

2010 data 0,168, 44, 52,

2020 data 80, 15, 36, 2,

2030 data 2, 36,107, 48,

2040 data 51, 192, 44, 53,

2050 data 195, 133, 97,189,

2060 data 94, 195, 133, 97,

2070 data 49,251, 5, 97,

2080 data 66,192, 13, 70,

2090 data 64, 32, 16, 8,

2100 data 12, 3, 32,110,

2110 data 11, 32,228,196,

2120 data 32,214, 196, 32,

2130 data 32, 14, 195, 76,

2140 data 106, 169, 0,149,

2150 data 253, 39,192,149,

2160 data 40, 192, 149, 99,

2170 data 106, 149, 107, 56,

2180 data 98, 169, 0,245,

2190 data 98,208, 4, 149,

2200 data 99, 74, 133, 103,

2210 data 24,169, 0,229,

142, 46,192,

192, 16, 4,

192, 138,237,

178, 169,199,

46, 192, 144,

121, 193,240,

32,121, 0,

0,221, 9,

173, 24,208,

141, 24,208,

17,208, 44,

208, 9, 16,

10,173, 22,

169, 7,141,

192, 169,255,

141, 65,192,

169, 128, 141,

45,192, 10,

70, 192,

192

73

7

17

44,

62,

33,

141

61

192,141

193, 141

141, 63,192,

173, 62,192,

162, 3,189,

16,247, 96,

72, 74, 74,

251, 74,102,

133.252, 173,

55,192, 44,

138, 42,170,

138, 101,252,

101,251, 133,

252, 165,252,

74, 102,253,

16, 24,169,

204, 101,254,

65, 192,201,

101.253, 133,

254, 24,165,

252, 105,224,

54,192, 170,

192, 16, 4,

48, 9,169,

1, 96,177,

192, 48, 10,

86, 195,208,

189, 94,195,

145,251,177,

192, 145,253,

2, 1,

32, 121,

4,

194,

32,121, 0,

201,192, 32,

218, 192, 169,

107, 56,189,

98,189, 44,

16, 20,169,

169, 0,245,

99,149, 99,

106, 149, 107,

165, 98,106,

98,133,104,

169, 63

169, 159

44,192

205, 45

241, 96

2,169

240, 3

3,

41,

173,

53,192

141, 22

208, 41

54, 192

141, 51

173, 67

52,192

10, 10

173, 43

53,192

192, 141

208, 32

32, 121

76, 75

43,192

56, 169

74,133

251, 74

39, 192

53,192

104, 24

133,252

251,133

74,102

133,254

0, 101

133,254

3, 144

253, 169

251,105

133,252

96, 169

112, 20

255,133

251, 77

61, 86

8, 61

73, 255

253, 45

96, 128

192, 48

0,240

240, 3

125,194

1, 149

43,192

192,253

255,149

98, 149

96, 21

96, 165

133,102

169, 0

The Transactor 28 September 1987: Volume 8, Issue O2



ND

FH

LA

ME

OA

PN

BN

KP

HA

OB

MA

NE

OM

GC

BB

CL

BG

CG

AG

IG

MM

KP

EL

BG

OK

AM

AO

OA

JG

MG

JP

KF

PD

FH

HG

NO

OB

GN

CG

CG

BO

BJ

BL

DD

BL

MJ

AC

LB

PC

CN

LD

PK

LP

HF

IM

Al

OA

HC

GC

PF

Dl

EG

IA

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

2450 data

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

2650 data

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

229,

100,

103,

144,

103,

193,

16,

193,

228,

32,

201,

0,

129,

101,

10,

133,

104,

192,

144,

41,

91,

100,

36,

0,

14,

192,

144,

192,

196,

113,

3,

96,

53,

61,

66,

0,

10,

9,

197,

32,

65,

66,

32,

47,

11,

32,

192,

192,

192,

193,

49,

50,

43,

141,

141,

192,

192,

196,

183,

73,

data 240,

data 105,

data 208,

The Transactor

99, 133, 105, 96, 24,

133, 102, 170, 165, 103,

197, 99,144, 19,208,

13,138, 56,229, 98,

229, 99,133,103, 56,

32,121, 0,240, 44,

32,113,194, 32,115,

32,121, 0,201, 44,

196, 32,121, 0,201,

214,196, 32, 43,196,

164,240,220, 96, 32,

134, 2, 32,129,195,

195,165, 98,197,100,

144, 62, 32,185,195,

32,113,194, 56,169,

108, 32,125,194, 32,

208, 4,230,105,240,

208, 3,238, 40,192,

9, 24,173, 41,192,

192, 32,125,194, 32,

196,162, 1,181, 98,

148, 98,202, 16,245,

107, 16, 10, 32,113,

229,108,133,108, 32,

195,230,104,240, 31,

101, 108, 141, 41, 192,

8,238, 39,192,208,

32,125,194. 32, 14,

36,107, 16, 3, 32,

194, 76,218,192, 32,

73, 3,106,106,106,

32,121,193, 41, 3,

192, 16, 22,141, 65,

192,141, 70,192,189,

192,189, 7,197,141,

85,170,255, 32,121,

10,141, 62,192, 44,

13, 61,192,141, 62,

32,121,193, 41, 15,

121,193, 41, 15,141,

192,189, 61,192,141,

192,141, 66,192, 96,

135,193,162, 3,189,

192,202, 16,247, 32,

32,228,196, 32,121,

214,196, 24,173, 39,

141, 43,192,173, 40,

141, 44,192,173, 41,

173, 42,192,141, 46,

32, 43,196, 56,173,

192,141, 45,192,173,

192,141, 46,192, 32,

196, 56,173, 43,192,

43,192,173, 44,192,

44,192, 32, 43,196,

109, 49,192,141, 45,

109, 50,192,141, 46,

169, 0,133,251,133,

224, 40,144, 3, 76,

192, 32,241,183,142,

18,224, 25,176,237,

40,133,251,144, 2,

242, 24,173, 73,192,

165,

101,

4,

133,

96,

201,

0,

208,

44,

32,

201,

162,

165,

36,

0,

14,

102,

32,

101,

14,

180,

32,

194,

125,

24,

32,

3,

195,

14,

121,

141,

240,

192,

66,

51,

193,

53,

192,

141,

64,

70,

32,

43,

121,

0,

192,

192,

192,

192,

45,

46,

181,

237,

237,

24,

192,

192,

252,

72,

74,

24,

230,

101,

102,

101,

228,

102,

32,

164,

32,

13,

208,

121,

192,

2,

99,

107,

229,

195,

238,

209,

108,

195,

100,

185,

56,

194,

173,

209,

238,

76,

195,

193,

52,

27,

170,

192,

192,

10,

192,

76,

63,

192,

192,

110,

192,

0,

240,

109,

109,

141,

32,

192,

192,

193,

47,

48,

173,

173,

76,

32,

178,

192,

165,

252,

251,

101

133

98

165

135

208

138

32

3

0

162

32

229

16

108

230

39

195

141

76

149

195

169

32

41

195

40

166

32

41

192

44

189

141

96

10

48

51

192

174

189

194

157

240

3

47

48

45

156

237

237

32

192

192

45

46

43

241

142

138

251

202

133

29

FC

BB

NL

CG

DH

OH

Al

Gl

KH

NH

BM

DH

HL

LG

MK

NM

KM

EO

BB

CO

EP

PI

BN

IA

EC

AA

ND

EC

EK

HI

OK

AK

DJ

CA

DD

CK

ME

IP

EM

JN

KB

NC

NM

LP

FO

MO

IP

MD

GB

BJ

MG

EF

AC

FA

JA

DM

EM

HF

LL

JE

AB

2850 data

2860 data

2870 data

251, 133,253,

133,252, 24,

105,204, 133,

2880 data 251, 38,252,

2890 data 252, 105,224,

2900 data

2910 data

2920 data

2930 data

2940 data

158,173, 32,

160, 0,232,

32, 73, 198,

138, 72,152,

32,144, 28,

2950 data 208, 2, 41,

2960 data

2970 data

2980 data

2990 data

3000 data

3010 data

3020 data

3030 data

3040 data

3050 data

3060 data

3070 data

3080 data

3090 data

3100 data

201, 127,208,

125, 76,108,

219,199, 76,

162, 40, 32,

160, 199,201,

75,192, 76,

32, 71,199,

162, 15,221,

248, 76,160,

10, 10,141,

6, 13, 61,

197, 76,160,

28, 30, 31,

26, 27, 1,

3, 8, 9,

3110 data 201, 14,208,

3120 data

3130 data

3140 data

3150 data

3160 data

3170 data

3180 data

3190 data

199,201, 17,

199,202,208,

208, 8, 169,

199,201, 29,

160, 199, 165,

253,165, 3,

56, 165,251,

233, 0,133,

3200 data 252, 233, 224,

3210 data 230, 253, 208,

3220 data

3230 data

3240 data

3250 data

3260 data

3270 data

3280 data

3290 data

3300 data

3310 data

3320 data

3330 data

3340 data

3350 data

3360 data

3370 data

3380 data

3390 data

3400 data

3410 data

3420 data

3430 data

3440 data

3450 data

2,230, 4,

251,144, 2,

165,252,233,

96, 9, 64,

128, 32,165,

177, 5,145,

199,200, 173,

8,173, 64,

13, 62,192,

168, 104, 170,

6, 6, 5,

6, 5, 38,

5,133, 5,

6, 96, 32,

247, 183, 166,

3, 162,208,

162, 0,142,

41,254, 141,

133, 1, 96,

173, 14,220,

32,121, 0,

121,193,141,

128, 44,169,

0

133,

72,

4,

6,

133,

143,

202,

200,

72,

201,

63,

2,

199,

160,

71,

18,

160,

76,

205,

199,

62,

192,

199,

1,

2,

10,

6,

208,

250,

0,

208,

253,

208,

233,

252,

-176,

2,

24,

230,

255,

174,

199,

251,

61,

192,

145

96

38

6

173

253

21

44

71

14

165

9

240

245

0

3, 169,

105,216,

6,251,

251, 38,

252, 32,

173, 32,

208, 1,

76, 60,

165,215,

96, 144,

76, 110,

169, 94,

201, 14,

199,201,

199,202,

208, 8,

199,201,

160, 199,

198,240,

189,221,

192, 44,

141, 62,

5, 28,

21, 22,

5, 6,

11, 12,

32,216,

11, 162,

76, 160,

141, 75,

143, 32,

208, 2,

2, 198,

8, 133,

165,251,

3, 32,

230, 254,

169, 8

252,165,

144, 3

75, 192

160, 7

136, 16

192, 44

145,253

3, 32

133, 5

6, 6

24,173

72, 192

174, 32

208, 9

162,216

192, 96

220,165

1, 9
1, 141

15, 32

192, 142

141, 76

0, 101,252

133,254, 104

38,252, 6

252, 24,165

253,174, 32

166, 182, 170

96,177, 34

198, 133,215

48, 17,201

4, 41,223

199, 41,127

201, 32,144

208, 6, 32

17,208, 11

208,250, 76

169, 1,141

29, 208, 6

162, 3, 44

6,202, 16

198, 10, 10

53,192, 48

192, 32, 51

30, 31, 16

23, 24, 25

0, 4, 7

13, 14, 15

199, 76,160

40, 32, 28

199,201, 18

192, 76,160

28,199, 76

198,254, 198

4,198, 3

251, 165,252

201, 0,165

71,199, 96

230, 3,208

101,251, 133

251,201, 64

32, 28,199

240, 2, 9

32,230, 199

249, 32,245

53,192, 16

173, 63,192

71,199,104

169, 0,133

5, 38, 6

71,192,101

101, 6,133

138,173, 32

165, 20,208

142, 72,192

173, 14,220

1, 41,251

4,133, 1

14,220, 96

110,192, 32

249, 192, 169

192, 96, 0

September 1987: Volume 8, Issue O2



Garbage Collector Revealed Michael T. Graham

Hopatcong, New Jersey

. . .the system appears to be dead as a doornail. . .

That Sinking Feeling

You only have a few records left to enter, then you'll be done.

You finish the current entry, hit RETURN, and. . . nothing! The

screen doesn't clear, the cursor doesn't blink. Beads of sweat

break on your forehead as the thought of all your work going

down the tubes explodes on your tired brain. Seconds turn to

minutes as your mind races, trying to come up with a way out of

this dilemma. Finally, you push the RUN/STOP key. Still noth

ing! What could have happened? Has your poor old 64 given up

the ghost? Then, as your other hand reaches for the RESTORE

key, the system springs back to life. You finish the last few

entries and examine the results. Everything is OK! After storing

your work to disk, you stare at the screen and mull over the

doubts you now have about the reliability of your system.

The above moment of fright was brought to you by a routine in

BASIC called the garbage collector. As strings are stored and

changed in BASIC, the string storage space in memory fills up

with old, useless information, known in technical circles as

garbage. When memory fills up with this junk, BASIC runs the

garbage collector to clear it out. In a program with large string

arrays, this process can take many minutes to complete and

while it is running the system appears to be dead as a doornail.

To add insult to injury, BASIC makes no attempt to tell you to

"please stand by". How many times has the RESTORE key been

hit because of this? I shudder at the thought.

Fighting Back

Garbage Collector Revealed provides a solution to this problem.

When installed, this program will display a "system busy"

message on the top line of the screen when the garbage collector

starts to execute. When collection is finished, the original

contents of the top line are restored.

This is accomplished by adding a few patches to BASIC. The

usual method of hooking into BASIC via RAM vectors won't

work here, there isn't a vector that points to the garbage

collector. Instead, the BASIC ROM is copied to RAM and then

switched out. The entry and exit points of the garbage collector

are then patched to call small routines to display and remove the

busy message. This all happens in a flash when the message

program is initialized. When initialization is complete the system

is executing BASIC in RAM, patches and all.

Now when BASIC tries to run the garbage collector, one of the

patches installed above steers execution to the routine that

displays the busy message. This routine first stores the existing

contents of the screen and color memory locations used by the

message. The message is then displayed in the color of your

choice. When this process is complete, control is passed to the

garbage collector.

When the garbage collector is finished, the other patch executes

the routine that restores the screen to its original contents. This

is accomplished by simply storing the saved color and character

bytes back where they came from. The screen is now exactly as

it was when this all started. Control is then returned to BASIC.

How To Use It

First type and save program 1. This program will create a

machine language program file on disk called GARBMSG con

taining the message program code. This file loads the message

program to the cassette buffer from memory locations 828 to

1019. Memory locations 2, 251 through 255, and 679 through

718 are used for working storage.

When Program 1 is RUN, it will prompt you to insert the disk

that GARBMSG is to be created on. Do so and hit the RETURN

key. The program will then be placed on this disk. The disk

drive may start and stop several times during the process, wait

for the program to end before removing the disk.

To use the message patch in your BASIC application, insert the

following as the first two executable lines in the program:

10IFA = 0THENA = 1:LOAD "GARBMSG'

20CLR:SYS828:POKE2,C

,8,1

The C in line 20 should be replaced with the number of the color

you want the message text to be displayed in. If the POKE in line

20 is left out, the message will be displayed in white. The

message can be displayed in reverse text by adding the follow

ing line:

30 FOR I = 1000 TO 1019:POKE I,(PEEK(I) OR 128):NEXT I

If your BASIC program moves the location of the text screen

from its normal position in memory, be sure it also updates the

pointer at memory location 688 to the new screen starting page

number. The Kernal uses this pointer to find the text screen and

so does GARBMSG. Under normal conditions this is not re

quired.

The Transactor 3O September 1987: Volume 8, Issue O2



Note that if the system is reset with RUN/STOP-RESTORE, the

message patch will be disconnected, running your BASIC pro

gram again will re-install it, so this shouldn't be a problem.

As is, the garbage collector will run whenever BASIC decides

that memory is getting short. You can force garbage collection to

occur at any point in your program by inserting X = FRE(O) at an

appropriate line in your program. The FRE() function runs the

garbage collector so it can give you a true indication of your

remaining memory space. You can use this to get garbage

collection "over with" at a strategic spot in your program, such

as when other lengthy processes are taking place. In either case,

the message will be displayed while the garbage collector is

running.

To test the message program, enter program 2. This program is

designed to do nothing but create garbage. Be sure to have a

disk containing GARBMSG in the drive when you RUN it. If all is

well, you should see the message being displayed every few

seconds. Note that the original text and color is restored when

the message disappears. Note also the use of a contrasting color

and reversed text for the message, this will make it easier to see

on a crowded screen. Lines 160 to 180 demonstrate the use of

the FRE() function to force a run of the garbage collector.

Although there is no easy way to rid yourself of the infamous

garbage collector, at least now you will know when it runs. You

can now use the time you worried through for more productive

purposes, such as getting a fresh beer or watching a few minutes

of the Brady Bunch.

Happy Computing!

GarbMessage: Demonstration Program

GarbMessage: Creates ML on disk

MM

DB

DA

Ml

FK

MG

PH

FG

KB

OD

MC

FJ

Cl

NM

CK

MN

LC

NO

AJ

GA

PA

CN

100 rem garbage collector message demo

110 rem by mike graham 12/02/86

120ifa = 0thena=1:load "garbmsg",8,1

130 clrsys 828:poke 2,7:rem color = yellow

140 for i = 1000 to 1019

150 poke i,(peek(i) or 128):rem reverse garb

message text

160 next i

170 poke 56,20:clr:rem restrict memory size

(normally 160)

1801$ = " garbage"

190 print "g | a line of text at the top of the screen."
200 dim a$(200)

210 for i = 1 to 7

220forj = 0to200

230a$(j) = left$(t$,i)

240 print "EBB "l" [3 spcs]";
250 next j

260 print tab(9)a$(1)" [6 spcs]"

270 next i

280 print forced collection"

290 x = fre(0):rem force garbage collection

300 print "g ; [17 spcs]"

310goto210

IF

DB

LK

HB

LE

LE

IL

ID

HO

BP

IE

KL

OF

AO

OA

CO

DO

BD

EF

FB

LP

LG

LM

IG

HL

BH

GL

EC

BD

Al

PF

ML

BF

FL

Al

AK

AD

GG

FF

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

rem generates gargage collector message

rem by mike graham 12/02/86

for j = 1 to 192 : read x

ch = ch + x: next

if ch<>22794 then print" checksum error"

: end

print " data ok, now creating file": print

restore

open8,8,8," 0:garbmsg,p,w"

print#8,chr$(60)chr$(3); :rem start addr = 828

($033c)

for j = 1 to 192: read x

print#8,chr$(x); : next

close 8

print " prg file 'garbmsg' created. . .

print "this generator no longer needed.

rem

data 169, 0, 133, 251, 169, 160, 133, 252

data 160, 0, 177,251, 145,251,200,208

data 249, 230, 252, 165, 252, 201, 192, 48

data 241, 169, 76,141, 38,181,141, 6

data 182, 169, 128, 141, 39,181,169, 3

data 141, 40,181,169,138,141, 7,182

data 169, 3,141, 8,182,169,239,133

0,165, 1, 41,254,133, 1,169

1,133, 2, 96, 32,153, 3,166

55,165, 56, 76, 42,181,165, 79

5, 78,240, 3, 76, 12,182,

3, 76, 1,182, 8,152,

data

data

data

data

data 198

data 169 10,133,253,173,136, 2

32

72

133

2, 177,253, 153

3, 41,191,145

138

data 254, 160, 19,166,

data 167, 2,185,232,

data253, 185, 10,216,153,187, 2,

data 153, 10,216,136, 16,231,104,168

data 40, 96, 8, 72,152, 72,169, 10

data 133, 253, 173, 136, 2, 133,254, 160

2, 145,253, 185, 18719,185,167

153

data

data 2

data 168, 104,

data 73, 84,

data 77, 32, 66,

10,216,136, 16,242,104

40, 96, 32, 62, 87, 65

44, 83, 89, 83, 84, 69

85, 83, 89, 60, 32

GarbMessage: PAL Source Code

PH

CO

IH

HN

BB

BC

KJ

PC

FD

CP

NP

MM

DB

EF

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

rem — garbage collector message—

rem by michael t. graham

rem open8,8,8," 0:garbmsg,p,w"

sys700

;.opt 08

;pal assembler source code

i

;this basic patch puts a message

;on screen when basic's garbage

;collector runs, basic is moved to

;ram at initialization.

i

hibase = $0288 ;kernal screen page addr

addr = $fb ;move vector

The Transactor 31 September 1987: Volume 8, Issue O2



MC

MM

LO

IH

DO

EB

BK

NG

KD

GK

OE

FG

CG

CA

GG

KB

FO

OD

KM

EL

MB

DM

KA

NL

KG

LC

Fl

BL

GG

GD

Ml

HE

EK

KL

GL

BH

OM

IH

LI

00

NA

LM

JE

IA

HF

MK

KN

AM

MB

EN

EH

EF

DM

GP

GA

EM

KB

Jl

OA

DF

PP

DC

JN

AG

1140 patch 1

1150patch2

1160 ret1

1170cont

1180 quit

1190 color

1200cmem

1210 screen

1220;

= $b526 ;

= $b606 ;

= $b52a ;

= $b60c ;

= $b601 ;

= $02 ;

= $d80a ;

= $fd

1230* = $033c

1240;

1250 initialize message

1260;

1270 init

1280

1290

1300

1310

1320xfer

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590;

1600; patch

1610;

1620;fix1 =

1630;

1640 fix1

1650

1660

1670

1680;

1690 ;fix2 =

1700;

1710 fix2

1720

1730

1740

1750 retrn

1760

1770 ;

The Transactor

Ida

sta

Ida

sta

Idy

Ida

sta

iny

bne

inc

Ida

cmp

bmi

Ida

sta

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

and

sta

Ida

sta

rts

#$00

addr

#$a0

addr +

#$00

(addr),

(addr),

xfer

addr +

addr +

#$c0

xfer

#$4c

patch 1

patch2

#<fix1

patch 1

#>fix1

patch 1

#<fix2

patch start of inputor

patch end of inputor

continue start

inputor not done

end inpution

message color storage

color memory start

screen vector storage

;cassette buffer

Datch (sys 828)

;set up

indirect

; address

1 ;to move

; basic

/ ;move basic rom

/ ;to ram

1 ;bump page address

1 ;continue move

; up to

;$bfff

;jmp instruction op code

;store the jumps for the

; patches

;jump to fix1 at start

+ 1

+ 2

;jump to fix2 at end

patch2 +1

#>fix2

patch2 + 2

#$ef

$00

$01

#$fe

$01

#01

color

nandler

;map

;out

;the basic

;rom

initialize

;color to white

;end init

patch to start of inputor

jsr

Idx

Ida

jmp

msgon

$37

$38

ret1

;display message

;finish displaced basic

;code

;return to basic

patch to end of inputor

Ida

ora

beq

jmp

jsr

jmp

$4f

$4e

retrn

cont

msgofl

quit

;finish basic's

;stuff

;done inpution

;continue inpution

;put screen back

;inputor done

KB

BC

LL

II

BM

Bl

HM

LH

AK

AD

DD

FJ

IO

FC

JA

KF

PA

JD

HN

HC

OA

JH

OE

HP

PL

OH

ML

IH

Cl

AL

FK

AK

HF

KL

AM

OM

LH

Jl

CD

AG

HL

NG

JL

JA

AB

ED

OF

FK

DK

HC

MK

IG

CH

EE

Gl

LN

KJ

PF

OK

DF

AO

MM

MD

32

1780 ;save user screen and put message

1790 ;on screen t)efore starting

1800 ;garbage inputor.

1810;

1820 msgon php

1830 tya

1840 pha

1850 Ida

1860 sta

1870 Ida

1880 sta

1890 Idy

1900 Idx

1910 move Ida

1920 sta

1930 Ida

1940 and

1950 sta

1960 Ida

1970 sta

1980 txa

1990 sta

2000 dey

2010 bpl

2020 pla

2030 tay

2040 pip

2050 rts

2060;

;save status

;and y

; register

#10 ;startat

screen ;11th char

hibase ;get screen

screen + 1 ;page addr

#19 ;20 characters

color ;message color

(screen),y ;save existing

buffer.y ;screen contents

messag.y ;get message

#$bf ;convert to screen code

(screen),y ;display message

cmem.y ;save existing

cbuff,y ;color memory

;replace with

cmem,y ;message color

;bump index

move ;move 20 characters

; restore

; registers

;done

2070 ;put user's screen contents back

2080 ;after collector is done.

2090;

2100 msgoff php

2110 pha

2120 tya

2130 pha

2140 Ida

2150 sta

2160 Ida

2170 sta

2180 Idy

2190restor Ida

2200 sta

2210 Ida

2220 sta

2230 dey

2240 bpl

2250 pla

2260 tay

2270 pla

2280 pip

2290 rts

2300;

;save

registers

#10 ;11th character

screen ;on screen

hibase ;screen page

screen +1 ;address

#19 ;20 characters

buffer.y ;put text

(screen),y ;back

cbuff,y ; restore

cmem.y ;colors

;bump index

restor ;restore 20 characters

; restore

; registers

;done

2310messag .asc " >wait,system busy<

2320 ;

2330 ;data storage - 40 bytes at $02a7

2340;

2350 * = $02a7

2360;

2370 buffer * = *

2380 cbuff * = *

2390;

2400 .end

+ 20

+ 20

September 1987: Volume 8, Issue O2



SYS 65478: Taking A

New Look at an Old Dog

Miklos Garamszeghy

Toronto, ON

. . .the KERNAL CHKIN routine can be put to some much less obvious uses. .

SYS 65478 (that's JSR $FFC6 to you machine language fans) seems

like an innocent and well documented routine. Opening a file as an

input channel. What could be simpler? While this may be its normal

use from within a program, the KERNAL CHKIN routine can be put

to some much less obvious uses in immediate mode. One of the

more interesting of these enables a Commodore 64 or 128 (and

other CBM machines with a similar KERNAL structure) to execute a

series of commands contained in a disk file, similar to an MS-DOS

batch file or a CP/M submit file.

The CHKIN routine resets the input device flag (normally 0 to

indicate the keyboard) at zero page location hex $99 (on the VIC-20,

C-64 and C-128), $AF (on the BASIC 2.0/4.0 PETS), $A1 (on the B

series) or $98 (on the Plus/4 and C-16) to a value corresponding to

the device from which normal input would be received. The main

BASIC immediate mode input loop checks this location before

trying to fetch an input byte. If the value is 0, a normal entry occurs

by fetching a byte from the keyboard buffer. However, if the value is

8, for example, the fetch routine will attempt to read a byte from

serial port device 8 (usually a disk drive). If device 8 has an open file

capable of giving output, a byte is read from this file and placed in

BASIC'S input buffer, just as if it had been entered from the

keyboard. If a carriage return is encountered, the commands

contained in the input buffer are executed, assuming there is no line

number at the beginning. Thus you can execute commands con

tained in a disk file. It should be noted that even with normal input

redirected to respond to an external device, the keyboard is still

scanned by the IRQ routines and the results placed in the keyboard

buffer only, up to the maximum number of characters allowed for

the buffer. BASIC'S input editor will not see any of these characters

until control has been restored to the keyboard.

So what, you say? Everyone knows an easier way to do that: It's

called a program or PRG file. Let's make one thing perfectly clear.

Executing what I call a sequential disk command (SDC) file is not

the same thing as LOADing and RUNning a disk PRG program file.

There are several major differences: A regular PRG type file contains

a series of tokenized BASIC lines (complete with link addresses and

line numbers) or machine language op codes. The sequential disk

command file, on the other hand, contains a series of immediate

mode commands written out in plain English, just as you would

type them in from the keyboard. In addition, a PRG file must be

resident in RAM for execution. In most 8 bit computer operating

systems (Commodore KERNALs included), only one program can

be in memory for execution at a given time (assuming that you have

not artificially partitioned the memory into separate work spaces.)

An SDC-type program is not memory resident! It resides entirely in

a disk file and is called up and executed statement by statement,

without affecting any program(s) stored in the computer's main

RAM unless you deliberately want to. However, since it resides on

disk, an SDC program usually takes longer to execute than a RAM

resident program because of Commodore's notoriously slow disk

access speeds.

SDCs are useful as utility and easy to use reference data files since

they can be called up and executed without fear of erasing main

computer memory. This allows a programmer to interrupt work, call

up and consult an on line data table, for example, and then resume

the task at hand, all with relative ease and speed. SDCs can also be

used for storing customized keyboard macros. (For those unfamiliar

with the concept, a keyboard macro is an often lengthy and/or

complicated series of frequently used keystrokes/commands that

can be automatically invoked by using a shorter, easier to remem

ber key sequence.) These can be very useful for setting up sprites,

sound and graphics on older CBM machines such as the C-64 that

lack high level commands for doing so. (Can you honestly remem

ber the POKE sequence to play the first few bars of HAPPY

BIRTHDAY on the C-64?)

Setting up an SDC

A sequential disk command file is very easy to create. You use your

favourite word processing program to create a SEQ file containing a

series of immediate mode BASIC commands, just as you would type

them in to execute from the keyboard. BASIC keywords (such as

PRINT) can be entered in either their long or abbreviated forms. Of

course, the same limits on line length as for normal programming

apply to the lines in your SDC file (e.g. 80 characters for the C-64,

160 characters for the C-128, etc). This is a restriction imposed by

the size of the input buffer on the computer.

Any immediate mode command can be used except for disk access

commands. You should not use OPEN, LOAD, SAVE, DIRECTORY,

etc. because these commands will reset the input device to the

default keyboard value after they have executed, thus cutting off the

rest of your command file. A DIRECTORY can be used as the last

item in an SDC because it will return control to the keyboard upon

execution, which is desirable in this case.

The program mode only commands, such as INPUT, GET, GOTO,

GOSUB, etc., cannot be used in SDCs because an SDC is executed

in immediate mode, not under program control.

In order to be properly interpreted when they are read in, the BASIC

keywords must be typed in a style that allows them to be saved as

un-shifted PETSCII characters in a disk file. (This is the way that

The Transactor 33 September 1987: Volume 8, Issue O2



you would normally enter them from the keyboard.) With most

word processors, such as PaperClip or Pocket Writer-128, this

means that they are typed in lower case only and the file is saved as

a SEQ file. With word processors such as Timework's Word Writer

128, which save text in true ASCII format, the BASIC keywords must

be entered in UPPER CASE only. Word processors that use PRG

type screen code files only should not be used for creating SDCs.

Making a graceful exit from an SDC back to keyboard input can be

somewhat tricky. The easiest way is to include a statement at the

end of your SDC which POKEs a 0 value back into the input device

flag location described earlier. Simply CLOSEing the disk file from

within the SDC or using the BASIC commands END or STOP, will

not return control to the keyboard because they do not automati

cally reset the input device flag. Another way to exit is to include a

garbage statement or deliberate syntax error as the last line. Upon

reaching such an error, the SDC will crash and control will be

returned to the keyboard. The least elegant way to exit is by the

familiar <RUN-STOP>/<RESTORE> key combination. Crude but

effective.

Once the SDC has been entered, it should be saved as a SEQ disk

file with an appropriate name.

Executing the SDC

Now comes the fun part. Executing the SDC is really quite simple.

All that is required is to open the disk file in immediate mode with a

statement such as:

OPEN 1,8,8, "filename"

Second, you must activate the CHKIN routine. On the C-128, with

the above OPEN statement you would use:

SYS 65478,0,1

With a C-64 or similar type machine, a double statement is

required:

POKE 781,1

followed by:

SYS 65478

The commands in the SDC will then be executed, one line at a time

until control is returned to the keyboard by one of the methods

previously outlined. You will note that the actual commands are not

printed to the screen before they are executed, but the " READY."

message is printed after each line has been executed. Once the SDC

has finished executing, the disk file should be closed with a

DCLOSE or CLOSExx as applicable for your machine.

SDCs on the C-128

The Kernal input routine will accept line numbers in SDCs. These

line numbered files will "execute" exactly as if the line, complete

with line number, had been entered from the keyboard. That is, it

will be added to any program currently in memory. This little trick is

a simple yet powerful way to MERGE two or more program files on

the C-128. Unlike other pseudo merge routines which merely

append one program to the end of another, this technique allows full

intermeshing of line numbers. Only a few steps are required. First,

LOAD one of the programs into memory in the normal manner.

Next convert it into a SEQ disk file listing with a series of commands

such as:

OPEN 8,8,8, "0:filename,S,W":CMD8:UST

PRINT#8:CLOSE8

LOAD in the second file. With the second file now in memory,

activate the SEQ listing of the first file as a SDC as outlined above.

The programs will now be MERGEd. The merge will terminate with

a mysterious " OUT OF DATA" error message. This is a good sign:

the process worked. The error message is caused by the last line of

the listing in the disk file - " READY.". (Commodore BASIC listings

always include this.) The computer, not being able to recognize its

own writing, thinks that someone typed in " READ Y". Since there

are no accompanying DATA statements, the out of data error occurs

and control is restored to the keyboard. If the READY, message did

not appear at the end of the listing (for example if you edited it out

with a word processor to give it a neater appearance), keyboard

control would only be restored with a <RUN-STOP>/

<RESTORE>. The programs will, however, be merged correctly.

This technique can also be used for " loading" program listings

produced on machines with incompatible keyword tokens and

programs transferred into SEQ files via a modem download.

Example SDCs

LISTINGS 1, 2 and 3 are short examples of SDCs. While it may

appear that some of the statements are repetitive, it should be

remembered that they were created with a word processor. (If your

word processor does not have cut, paste and copy commands, then

perhaps it is time to splurge for a new one!)

LISTING 1 is an example for the C-64 or C-128 (in 40 or 80 column

mode) that prints out a simple calendar for the month of April, 1987.

You will note that most of the lines begin with the sequence " print

up$". " up$" is defined in the first line as three cursor ups. This

allows you to get around the nasty habit of immediate mode BASIC

of printing a few carriage returns and a READY after each line it

executes. up$ is included to properly format the screen display in

this case. Note also that special control characters are given as their

CHR$() values. This is the only way to enter them with a word

processor.

LISTING 2 will print out a handy hex-dec conversion chart on the

80 column screen of the C-128. It is similar in nature to the above

example, but works in C-128 FAST mode. The 80 column screen is

required because of the width of the table.

The final example, LISTING 3, is interesting for several reasons. It is

essentially a self-contained data file that can read and display itself

on the screen automatically! The WAIT and POKE values of 208 in

the lines are set up for a C-128. For a C-64, change all of the 208s to

198s. This is the location of the keyboard buffer flag that indicates

the number of characters in the buffer. The file will display one

entry at a time and wait for you to press a key before displaying the

next entry. (Remember, the keyboard scan and buffer filling still

The Transactor 34 September 1987: Volume 8, Issue O2



occurs when an SDC is being executed even if its input is

ignored by the BASIC input routine, hence the need to

clear the buffer by POKEing a 0 to it before reading the

next entry.) To stop the display before it reaches the end, a

<RUN-STOP>/<RESTORE> should be used. This last

example demonstrates that, although you cannot read the

keyboard directly with GETs, INPUTs, etc., you can still

obtain data from the keyboard via direct PEEKs and

POKEs to the keyboard buffer areas.

Variations on a Theme

The re-directed input is not limited to disk files. The

procedure works equally well with the user port. You

could, in theory, control your computer in immediate

mode from a remote location with an external keyboard

or even a modem and an auxiliary terminal.

Listing 1: for C-64 or C-128

up$ = chr$(145) + chr$(145) + chr$(145):poke53280,6:poke53281,6

:printchr$(147)chr$(5);print up$" [13 spcs]august 1987"

print up$" sun mon tues wed thur fri sat

print up$" + + + + + + + + "

print up$" 1

print up$" + + + + + + + + "

print up$" 2 3 4 5 6 7 8

print up$" + + + H + 1 h h "

print up$" 9 10 11 12 13 14 15

print up$" + + + + + + + + "

print up$" 16 17 18 19 20 21 22 "

print up$" + + + + + + + + "

print up$" 23 24 25 26 27 28 29

print up$" + + + + + + + + "

print up$" 30 31

print up$"+ + 1 + h— —h— - + - — +"

poke 153,0

Listing 2: for C-128 (80 column only)

up$ = chr$(145) + chr$(145) + chr$(145):printchr$(147)chr$(5); :fast

print up$

orint up$

orint up$

orint up$

orint up$

orint up$

orint up$

Drint up$

Drint up$

orint up$

Drint up$

Drint up$

Drint up$

Drint up$

orint up$

Drint up$

Drint up$

orint up$

orint up$

orint up$

[9 spcs]hex-dec converter

»

" 00

" 10

" 20

" 30

" 40

" 50

" 60

" 70

" 80

" 90

" aO

" bO

11 cO

" dO

" eO

" fO

00

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

:slow:poke 153

01
|_
r

1

17

33

49

65

81

97

113

129

145

161

177

193

209

225

241

0

02

2

18

34

50

66

82

98

114

130

146

162

178

194

210

226

242

03

1

3

19

35

51

67

83

99

115

131

147

163

179

195

211

227

243

04

4

20

36

52

68

84

100

116

132

148

164

180

196

212

228

244

05

j
1

5

21

37

53

69

85

101

117

133

149

165

181

197

213

229

245

06

6

22

38

54

70

86

102

118

134

150

166

182

198

214

230

246

07
j
i

7

23

39

55

71

87

103

119

135

151

167

183

199

215

231

247

08

1

8

24

40

56

72

88

104

120

136

152

168

184

200

216

232

248

09

9

25

41

57

73

89

105

121

137

153

169

185

201

217

233

249

Oa
L

r

10

26

42

58

74

90

106

122

138

154

170

186

202

218

234

250

Ob
j

11

27

43

59

75

91

107

123

139

155

171

187

203

219

235

251

Oc

12

28

44

60

76

92

108

124

140

156

172

188

204

220

236

252

Od

-4- _1_
i i

13

29

45

61

77

93

109

125

141

157

173

189

205

221

237

253

Oe

14

30

46

62

78

94

110

126

142

158

174

190

206

222

238

254

Of

_i_ _i__l _j_

15

31

47

63

79

95

111

127

143

159

175

191

207

223

239

255

Listing 3: for C-128 (for C-64, change all 208s to 198)

up$ = chr$(145) + chr$(145): printchr$(147)chr$(5);

print up$"

print up$"

print up$"

print up$"

print up$"

print up$"

print up$"

print up$"

poke153,0

mini phone file " :print

name: John doe phone: 123-456-7890"

name: mary brown phone: 123-456-7890"

name: jim smith

name: jane green

name: bill black

name: fred right

name: sally ho

phone: 123-456-7890"

phone: 123-456-7890"

phone: 123-456-7890"

phone: 123-456-7890"

phone: 123-456-7890"

wait 208,1

wait 208,1

wait 208,1

wait 208,1

wait 208,1

wait 208,1

wait 208,1

:poke208,0

:poke208,0

:poke208,0

:poke208,0

:poke208,0

:poke208,0

:poke208,0

The Transactor 35 September 1987: Volume 8, Issue O2



Kernal LISTEN

And Its Relatives

Eric Germain

Ste-Foy, Quebec

In Volume 6, Issue 05 of The Transactor, an article, 'Assembly

Language Disk Access', written by Richard Evers, was published.

This article talks about the techniques used to communicate

through the serial bus. The methods presented make use of some

Kernal routines: OPEN, CLOSE, CHR1N and CHROUT, among

others. The use of these techniques offer many advantages. First,

you don't have to worry about the various parameters needed to

communicate; you just have to specify the device number, the

secondary address, the logical file number and the filename, while

the computer calls the specified device by sending individual bit

patterns on the bus and getting ones from the device.

The second advantage is that once you have opened a file, its

handling is almost executed the same way as in BASIC. Thus, you

just have to remember its logical file number. Everything else is kept

in tables in RAM which are automatically handled by the Kernal.

Third, outputing a character is very simple; you put its ASCII code in

the accumulator and call CHROUT. Getting a character from the bus

is even more simple since you just have to call CHRIN.

There are, however, a few drawbacks using these methods. While

writing some TransBasic modules of my own, I have experienced

associated problems.

Let's imagine you have written a TransBasic VALIDATE command

which may look like one of these:

start Ida

tax

Idy

jsr

Ida

jsr

jsr

Idx

jsr

Ida

jsr

jsr

Ida

jsr

rts

start Ida

tax

Idy

jsr

Ida

Idx

Idy

jsr

jsr

Ida

jsr

rts

name .asc

The Transactor

#8

#15

$ffba

#0

$ffbd

$ffcO

#8

$ffc9

#"v"

$ffd2

$ffcc

#8

$ffc3

#8

#15

$ffba

#1

#<name

#>name

$ffbd

$ffcO

#8

$ffc3

" v"

;set logical,

;device

;and secondary address

; kernal setlfs

;no file name

;kernal setnam

;kernal open

;logical file*

;kernal chkout

;validate command

;kernal chrout

;kernal clrchn

;logical file*

;kernal close

;return to main program

;set logical,

;device

;and secondary address

;kernal setlfs

;set name length

;address lo

;address hi

;kernal setnam

;kernal open

;logical file#

;kernal close

;return to main program

;validate command

Both listings use the usual machine language method of OPENing a

file, printing to it via CHROUT, and CLOSEing it. When sending to

the disk drive a slow-execution command, like VALIDATE, the

method has a major drawback: the CLOSE command is only

executed when the drive has finished its work. In other words,

control is not returned to the main program (in the case of a

TransBasic command, it's the BASIC itself) until the VALIDATE has

been completed!

Also, both listings are about twice as long as they could be. The

second one is especially deceiving if you are using a mini

assembler such as Supermon, since you must find yourself NAME'S

address.

The Alternative

There are many ways to get around these problems very easily. But

first, let's see how do some Kernal routines work.

The LISTEN routine is used to call a device on the serial bus; it sends

a LISTEN signal on the bus, along with the number of the device to

communicate with. The SECOND routine works together with

LISTEN; it sends a SECOND signal along with a command byte. The

low nybble of the byte is just the secondary address of the device;

bits 5 and 6 are always on; bits 4 and 7 are special control bits.

The TALK and TKSA routines work exactly the same as LISTEN and

SECOND. The only differences are in the signals sent through the

bus. When a device receives LISTEN and SECOND signals, it

prepares to receive data from the bus; when it receives TALK and

TKSA signals, it prepares to send some data.

The OPEN routine works by just calling LISTEN and SECOND: the

command byte has control bits 4 and 7 set to indicate that a file is to

be OPENed. Following the command byte is the filename, if present,

sent one character at a time. Then comes an UNLISTEN signal

(obtained by calling the Kernal routine UNLSN).

CLOSE works the same way with the difference that no filename is

sent and that the control bit 4 in the command byte is set OFF (bit 7

remains ON).

It appears that OPENing a file is just necessary to tell the device the

filename you want to use. In the case of the error channel, that one

used to send VALIDATE commands, there is no filename: you don't

need to open the channel! And since it's not open, you don't have to

close it! We can save two major steps by writing our own routines

using only LISTEN and a few other routines. Try the following:

start Ida

jsr

Ida

jsr

Ida

jsr

jsr

rts

#8

$ffb1

#$6f

$ff93

#"v"

$ffa8

$ffae

;device number

;kernal listen

secondary address or $60

; kernal second

;validate command

;kernal ciout

;kernal unlsn

;return to main program

36 September 1987: Volume 8, Issue O2



After setting the device number, we send it through the serial bus by

calling LISTEN; then, we set the secondary address OR'ed with $60

(to set bits 5 and 6 which must ALWAYS be on) and send it with

SECOND. These first four instructions do the same job as CHKOUT

routine, except that you don't have to open a useless file. Short and

sweet.

CIOUT works in a very handy way: it will send information on the

bus to whatever is listening! We can use this feature to perform

some very convenient data transfers. We could, for instance, tell two

disk drives, or one drive and a printer, to LISTEN simultaneously,

and then send some data which will be received by BOTH devices.

Note that two devices, including the main computer, cannot TALK

at the same time; collision between data would cause a bus crash.

Communicating with the printer and the command/error channel

of the disk drive is probably the biggest advantage of the technique

described above. Communicating with a disk file would, however,

be a little tedious. It may sometimes be more advised to call the

OPEN routine rather than sending the filename one character at a

time. The choice is yours.

I have included addresses of the nine major Kernal routines de

scribed in the article:

ACPTR $FFA5 CIOUT $FFA8

LISTEN $FFB1 READST $FFB7

SECOND $FF93 TALK $FFB4

TKSA $FF96 UNLSN $FFAE

UNTLK $FFAB

I have included READST in the list because every program should

use it to check for errors. By the way, before sending any TALK

signal, you must set the status byte to zero by storing a zero in

location $90 (decimal 144).

Listing 1 contains the BASIC loader for the DIRECTORY program.

Listing 2 contains the commented PAL source listing. Type

SYS49152 to see on the screen what you would see by doing LOAD

" $" ,8 and LIST. The routine uses all the concepts described in the

article, plus some BASIC ROM routines to print block counts. You

can stop it by pressing the STOP key.

I hope this article will help you to improve your programs dealing

with the disk drive and the printer. Happy programming!

Listing 1: BASIC Loader

DG

EH

FM

KH

BL

AA

IJ

JE

EJ

FN

AE

OL

LN

DM

AF

1000 rem save" O:directory 64.ldr" ,8

1010 rem * directory demo for the c64

1020 rem * sys(49152) to activate

1030:

1040 for j = 49152 to 49262: read x: poke j,x

: ch = ch + x: next

1050 if ch<>15837 then print " checksum error"

: stop

1060:

1070 data 169, 8, 32,177,255,169,240, 32

1080 data 147, 255,169, 36, 32,168,255,169

1090 data 48, 32,168,255, 32,174,255,169

1100 data 8, 32,180,255,169, 96, 32,150

1110 data 255, 169, 0,133,144, 32,165,255

1120 data 32,165,255, 32,211,170, 32,165

1130 data 255, 32,165,255, 32,165,255,168

1140 data 32,165,255,166,144,208, 31, 32

The Transactor 37

KA

EF

PP

BA

MD

DH

1150 data 145,

1160 data 32,

1170 data 32,

1180 data 170,

1190 data 255,

1200 data 32,

r\r_

HB

JF

HN

DD

LA

KJ

JA

JJ

CB

EH

IM

PG

ME

LK

Bl

BD

MB

EA

OM

BL

AD

AH

CE

ON

EB

IA

AJ

NM

HK

NF

JD

MJ

PP

OP

Dl

PC

KG

Dl

GK

HA

CA

NM

FL

IN

FD

Nl

GP

MC

EH

MF

JO

IA

FP

LG

IJ

FK

PI

IP

HC

IB

CE

ON

HP

MA

KO

GA

KO

PB

JK

MJ

OL

EK

FO

179

32

210

32

169

147

Listing 2:

, 160

,210,

,255,

,225,

, 8,

,255,

1, 32,215, 189, 169

255, 32,165,255, 8

40,208,246, 32,211

255,208,208, 32,171

32,177,255,169,224

32,174,255, 96

PAL Source Code

1000 rem savu u.unuuiuiy on-pai ,o

1010 rem « byericgermain ste-foy, quebec

1020 open 8,8,1,"(

1030 sys700

1040 ont ofi

1050* = $c000

1060;

1070 status

1080 return

1090 fixflt

1100shwflt

1110 acptr

1120 ciout

1130 listen

1140 second

1150 talk

1160 tksa

1170 unlsn

1180 untlk

1190 chrout

1200 stop

1210 "

=

=

=

:

=

=

=

=

=

=

=

):directory 64.obj"

$90

$aad3

$b391

$bdd7

$ffa5

$ffa8

$ffb1

$ff93

$ffb4

$ff96

$ffae

$ffab

$ffd2

$ffe1

;file status variable

;sendchr$(13)

;fixed—float conversion

;print floating point value

;input byte from serial port

;output byte to serial port

;set listen

;send sa after listen

;settalk

;send sa after talk

;command bus to unlisten

;command bus to untalk

; output character

;test (stop) key

1220 ;•• directory read demo **

1240'
1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420 ;

1430 main

1440

1450

1460

1470

1480

1490

1500

1510;

1520

1530

1540

1550

1570;

1580 loop

1590

1600

1610

1620

1630

1640;

1650

1660

1670

1680;

1690 flni

1700

1710

1720

1730

1740

1750

1760

Ida

jsr

Ida

jsr

Ida

jsr

Ida

jsr

jsr

Ida

jsr

Ida

jsr

Ida

sta

jsr

jsr

jsr

jsr

jsr

jsr

tay

jsr

Idx

bne

jsr

Idy

jsr

Ida

jsr

=

jsr

php

jsr

pip

bne

jsr

jsr

bne

jsr

Ida

jsr

Ida

isr

jsr

rts

#8

listen

#$f0

secono

#"$"

ciout

#"0"

ciout

unlsn

#8

talk

#$60

tksa

#0

status

acptr

acptr

return

acptr

acptr

acptr

acptr

status

fini

fixflt

shwflt

#32

chrout

•

acptr

chrout

loop

return

stop

main

untlk

#8

listen

#$e0

seconc

unlsn

;device number

;and secondary address

;'or'edwith$fO

;to indicate a file to be opened

;"$0"

;sent as filename

;one character at a time

;stop listening

;device number

;and secondary address

;'or'ed with $60

;to indicate normal i/o operation

;set status word

;to zero

;get two dummies

;print carriage return

;get two dummies

;line number (low/high)

;check status

;exiton error

;put line number in fpacc#1

,prim line numDer

;(which is the block count)

;printaspace

; get character

; print it

;if non-zero then continue

;print carriage return

;check stop key

;un-talk

;the secondary address

;is 'or'ed with $e0

;to indicate a file to be closed

;returnto basic

September 1987: Volume 8, Issue O2



Commodore External RAM

Expansion Cartridges

Dale A. Castello

Montgomery, AL

Transfer commands for your external storage area!

Editor's Note: Although the 1700 and 1750 Expansion RAM

modules will work on the C64, they draw about 200 milliamps

and the C64 powersupply can not handle the extra load. Should

you wish to use either of these with the C64, you 11 need a higher

output power supply. However, the Commodore 1764 External

RAM Expansion comes with a replacement power supply, and

Dale's software will also work with the 1764. Naturally, the

C128 supplies ample power for operating the expansion RAM in

64 mode with Dale's program.

After many months of anticipation, the expansion RAM car

tridge for the Cl 28 is finally available at local stores and by mail.

It comes in two versions: the 1700 contains 128K bytes of

memory and the 1750 contains 512K bytes. Only the 1750 is

readily available. This memory expansion cannot be directly

addressed like the resident memory banks internal to the C128.

Instead, access is established through the I/O space from $DF00

to $DF0A. Because the expansion cards use the computer's

direct memory access (DMA) capability, a memory bank con

taining the Cl 28 I/O space does not need to be turned on during

the actual transfer. Commodore recommends that transfers be

done with the 1MHz clock rate so as to avoid conflicts with the

memory bus access. Transfers at 2MHz can be done, if the VIC

screen is blanked and the instruction following the command

execution does not make a write to memory.

The card offers four functions:

(1) FETCH - transfers from external RAM to internal RAM

(2) STASH - transfers from internal RAM to external RAM

(3) SWAP - exchanges internal and external RAM

(4) VERIFY - compares internal and external RAM

C128 BASIC implements the first three of these functions. The

fourth function may be executed through use of pokes in C128

mode. A program to implement all four of these functions in C64

mode is discussed later in this article.

Physical Layout

The expansion RAM chips and DMA controller are housed in a

C128-colored, plastic unit which is 5 1/4 inches wide and

extends 4 1/2 inches behind the computer when plugged into

the expansion port. There is no edge connector on the unit to

permit other bus devices to be plugged into it. Inside the case are

the DMA controller chip and 16 memory chips. The chips are

either 64K by 1 bit for the 1700 or 256K by 1 bit for the 1750.

Wire straps on the card indicate that Commodore designed the

circuit card for 128K, 256K, and 512K byte configurations.

Internal Registers And Operation

The external RAM controller appears at I/O addresses $DF00

through $DF0A. Of these eleven addresses in the controller: one

is for status, three for control, and the rest for addresses. All of

the registers are read/write except the status register which is

read only.

In order to activate an operation, the starting memory locations

in internal and external RAM, the block size, some special

options, and the command must be written to the controller. The

actual transfer occurs either immediately following the write of

the command or after the next bank switch of the C128. The

latter feature permits the C128 banks to be reconfigured prior to

the transfer so that memory under I/O may be transferred.

The internal computer RAM starting address is placed in

$DF02/$DF03 in normal low/high byte order. The C128 bank

configuration must be set in $FF00 or in location 1 if you are

using a C64.

The external RAM is banked in increments of 64K bytes.

Because it is only possible to address 64K memory locations

using two bytes, the starting location in the external RAM

requires three locations. The location is given in normal low to

high order in $DF04 through $DF06. The values in $DF06 are

limited to 0-1 for the 1700 and 0-7 in the 1750. If the block of

data to be transferred extends across a bank boundary, the DMA

controller automatically increments the bank register.

The size of the transfer is set in locations $DF07 and $DF08 in

normal order. Transfers are limited to 64K bytes with all block

sizes normal except size value of zero means 64K.

The DMA controller also permits an interrupt to be set when it

completes its operation. Because the DMA controller disables

normal CPU processing on the C128, this capability is not used

The Transactor 38 September 1987: Volume 8, Issue O2



on the Cl 28. This means the interrupt must be processed by the

user's program and will not be handled by the operating system.

Location $DF09 is the interrupt mask for the controller. It works

in the same way as the interrupt mask registers on other I/O

devices. During a write, mask bit 7 determines if the interrupt

will be enabled or disabled. Two conditions may be set: bit 6

causes an flag at the end of an operation and bit 5 sets a flag if a

verify error occurs. The actual interrupt event is signalled by the

setting of bit 7 in the status register. A read of $DF00 (the status

register) will indicate which event caused the interrupt. Bits 6

and 5 of the status register have the same meaning as in the

interrupt mask register. A read of the status register is destruc

tive and will clear bits 5-7.

The status register has one more bit of interest. Bit 4 indicates

whether a 1700 or 1750 is attached. If the bit is set, a 1750 is

attached; otherwise, a 1700 is attached. The last two registers

determine the operation of the controller. The register at $DF01

is called the command register and the one at $DF0A is the

address control register.

During normal operation you will want both the internal and

external addresses to increment as each byte is transferred.

There are special cases where you would want to hold one

address constant, such as a direct transfer with I/O. Bits 6 and 7

at $DF0A are normally zero which permits both addresses to

increment. If bit 7 is set, the C128 address will be fixed. If bit 6 is

set, the external RAM address will be fixed.

The register at $DF01 is the command register. It is set after all

the other registers are set and determines the function to be

performed. All bits must be set during a single write to the

register. Bit 7 must always be set and it executes the function

specified by the other bits and registers. Setting bit 5 enables the

auto-reload feature. This causes the initial internal memory

start address, the external memory start address, and block

length to be reset after the function is completed to their values

before the function. This option is of value if the same addresses

are used repeatedly, such as the VIC screen in computer mem

ory. The user need only set the addresses which change be

tween commands. A disadvantage of the auto-reload feature is

that the reload will occur even after an error is found during a

verify operation. This destroys the address pointers to the

errored byte.

Setting bit 4 enables the bank switch delay. When selected, the

actual DMA transfer will not occur until the C128 bank is set by

a store to location $FF00. This is the mode of operation used by

C128 BASIC. It will not function properly in C64 operation.

Finally, bits 0-1 of the command determine the function:

Bit Function

0 0 Transfer from internal to external RAM (STASH)

0 1 Transfer from external to internal RAM (FETCH)

1 0 Exchange internal and external RAM (SWAP)

1 1 Compare internal and external RAM

After an operation is complete, the address registers will ad

vance by the length register. The length register will be set to

one unless auto-reload is enabled. If there is a bad byte detected

during a verify operation, the internal and external address

registers will point to one location beyond the mismatch.

C64 Operation

There are no commands built into the C64 BASIC to support the

external RAM. Therefore, the program accompanying this ar

ticle provides a BASIC extension of four new commands. The

syntax of the commands is the same as in the C128 BASIC

except an "@" has been added in front of each. The "@" is part

of the keyword and no space should follow it. Any valid expres

sion may be used for the arguments.

©FETCH <length>,<C64 addr>,<RAM addr>,<RAM bank>

©STASH <length>,<C64 addr>,<RAM addr>,<RAM bank>

©SWAP <length>,<C64 addr>,<RAM addr>,<RAM bank>

©COMPARE <length>,<C64 addr>,<RAM addr>,<RAM bank>

Where:

<length> range 0-65535 is size of memory block (0 means 64K)

<C64 addr> range 0-65535 is starting loc. in computer memory

<RAM addr> range 0-65535 is starting loc. in expansion mem.

<RAM bank>is expansion memory bank range 0-1 for 1700

range 0-7 for 1750

The wedge is activated by SYS 52992 and deactivated by SYS

53020. Care has been taken to permit other wedges to coexist

with the expansion RAM wedge provided it is the last wedge

activated. The code has been compacted so that it fits in $CF00-

$CFFF.

Applications

The application program provided in this article will permit the

graphics examples contained on the expansion-RAM demon

stration disk to be executed on a C64, provided changes are

made to C128 tokens and the graphics screen is properly

positioned. Other graphics programs may also be modified. The

author is currently working on a virtual disk which will permit

some graphics adventure games to be played without disk

access.

The availability of the space of three single sided disks at 1MHz

transfer rates permits a entirely new realm of games and

applications to be considered. One application I use is to place

my assembler on RAM and "fetch" it into memory when ever I

am ready to run it. I have also written a package to copy and

modify text adventure games to use the external RAM. Text

adventure games which have a lot of disk access come "alive"

when RAM instead of disk is used. High speed, single drive

copying of filled, single and double-sided disks without disk

swapping is great.

The Transactor 39 September 1987: Volume 8, Issue O2



$DFOO

$DF01

$DF02

$DF03

$DF04

$DF05

$DF06

$DF07

$DF08

$DF09

$DFOA

Figure

7

Status

Command

C128 Start

Address

External

RAM Start

Address

Block

Length

Intr.Mask

Addr.Cntrl

Expansion

LN

KF

HL

HF

OF

PJ

LD

GO

KO

--

GJ

GF

EN

FC

LI

JK

IA

FE

LP

PH

ID

AP

MK

FG

JA

JD

DE

IN

OM

CE

EP

JN

MN

OD

AF

01

EE

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

Interrupt

Execute

[

On/Off

Fix Cl28 Add

E

6

1: C64/C128 Expansion RAM Register

]nd Function

Reserved

Lnd Function

Fix RAM Add

RAM Commands: BASIC

rem save' '0:xram64.bas

rem ** this program

5

Verify Error

Auto-Load

4

512k RAM

No SFFOO

3

Reservec

Low-Byte

High-Byte

Low-Byte

High-Byte

Bank-Byte 0-1(1700)

1

■

Verify Error

Loader

',8

will create

rem ** a load and run module

rem ** disk called '

open 15,8,15: open

input#15,e,e$,b,c: if

: print e;e$;b;c: stop

on

xram64.obj' '

8,8,1 ,' '0: xram64.obi' '

ethen close 15

for j = 52992 to 53244: read >

: ch = ch + x: next: close8

if ch<>30308 then print'

: stop

print' '** finished! *

print' 'load xram64.

*' '

obj,8

print' 'sys53020: rem to <

end

data 0,207,162,

data 3,240, 18,

data 207, 173, 9,

data 8, 3,140,

data 207, 172, 69,

data 142, 8, 3,

data 84, 65, 83,

data 200, 83, 87,

data 80, 65, 82,

data 160, 0,132,

data 64,208,242,

data 56,253, 45,

data 244, 56,233,

data 189, 45,207,

data 208, 246, 230,

data 220, 200, 152,

data 144, 2,230,

data 7,223,141,

data 140, 2,223,

data 207, 140, 4,

data 242, 207, 201,

data 178, 173, 0,

data 192, 8,144,

data 140, 6,223,

The Transactor

70,

173,

3,

9,

207,

140,

200,

65,

197,

2,

162,

207,

128,

48,

2,

24,

123,

8,

141,

223,

0,

223,

4,

165,

Definition

2 1 0

Version Number

1 Reserved Transfer Type 0-3

0-7(1750)

.ow-Byte ($0000 means $10000)

High-Byte

HL

EF

EF

MJ

AJ

GP

JM

OB

1370

1380

data

data

1390 data

1400

1410

1420

1430

1440

print#8,chr$(x);

'checksum error!'

,1 and sys52992 tc

disable' '

160,

8,

141,

3,

200,

9,

70,

208,

0,

200,

0,

208,

208,

5,

232,

101,

32,

223,

3,

141,

240,

41,

192,

2,

207,204, I

3,141, 6E

69,207, 142

96,174, 6E

240, 7, 136

3, 96, 8C

69, 84, 67

67, 79, 71

76, 255, 25E

177, 122,201

200, 177, 122

3, 232, 20E

2,240, 17

240,214,232

160, 1,208

122, 133, 122

245,207, 14C

32, 242, 207

223, 32,242

5,223, 32

3, 76, 72

16,240, l

2, 176,236

160, 0, 14C

> enable' '

)

i

>

1

!

1

r

)

!
r

t

!
>

)

i

\

\

EN

GF

LJ

HN

DD

HD

KJ

LH

IP

PB

CM

IP

LJ

DB

KO

CF

KC

HO

MN

CN

GC

NA

NO

MM

JK

JG

MP

KN

PO

Al

EE

FN

OJ

FF

JD

LB

GM

CA

KN

GG

DE

FD

LM

NN

| DO

4O

data

data

data

data

data

reserved

'eserved

10, 223, 140, 9, 223, 120, 162, 245

164, 1,134, 1, 44, 0,223, 9

144,141, 1,223,165,122,208, 2

198,123,198,122,173, 0,223,141

12, 3,173, 2,223,141, 13, 3

173, 3,223,141, 14, 3,132, 1

88, 76, 67,207, 32,253,174, 32

158,173, 76,247,183

PAL Source Listing

1000 rem save' '0:xram64.pal' ',8

1010 rem «• pal 64 format **

1020 open 8,8,1/ '0:xram64.obj' '

1030 svs700

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

opto8

. =$cfOO

a program to implement external

ram function on a c-64 or

c128 inc64mode

dale a. castello

5964 oakleigh rd

montgomery al 36116

implements basic extensions

©stash <bytes>,<addr1 >,<addr2>,<bank>

©fetch <bytes>,<addr1 >,<addr2>,<bank>

©compare <bytes>,<addr1>,<addr2>,<bank>

©swap <bytes>,<addr1 >,<addr2>,<bank>

whsrG

<bytes> = number of bytes to transfer 0-65535

0 = > 65536 bytes

<addr1> = computer start address 0-65535

<addr2> = ram start address 0-65535

<bank> = ram bank number

0-1 fnr 1700W 1 \\J\ 1 1 \S\J

0-7 for 1750

activate sys 52992 (ScfOO)

deactivate sys 53020 ($cf 1 c)

on sxit

areg status $20 okay

$40 verify error

xreg/yreg last computer address

1380;

1390 and = 2 ;expansion command

1400 txtptr = $7a ;current byte of basic text

1410 areg = $30c ;storage of a reg

1420xreg = $30d ;storage of x reg

1430 yreg = $30e ;storage of y reg

1440igone = $308 ;basic token eval

September 1987: Volume 8, Issue O2



PL

OJ

DF

LA

LK

CF

JL

IP

CA

LN

PD

01

HG

KG

HI

Cl

JC

DE

EN

IN

OF

CP

HL

MO

OP

DE

FD

OC

NH

LK

FM

GF

JK

AO

EH

HB

EH

AD

GF

EE

ML

EF

HN

BF

IN

LB

LE

GP

IN

HJ

OF

ND

CL

IB

NN

GE

CF

KF

MO

GP

CA

Nl

PA

MK

AK

HL

PN

OL

FL

EO

IL

JG

AP

KM

EA

NC

HC

CC

JB

JJ

FB

KE

KJ

OF

OM

GH

MH

CD

1450 exp

1460c64

1470 ram

1480 bank

1490 leng

1500;

1510 active

1520

1530

1540

1550

1560;

1570

1580

1590

1600

1610

1620

1630;

1640 inpl

1650

1660;

1670inact

1680

1690

1700

1710

1720;

1730

1740

1750

1760;

1770 nogo

1780

1790;

1800 table

1810

1820

1830

1840

1850

1860

1870

1880

1890;

1900oldvec

1910

1920;

1930 parse

1940

1950

1960

1970

1980

1990

2000;

2010

2020;

2030 nxt

2040

2050

2060

2070

2080

2090;

2100

2110

2120;

2130 last

2140

2150

2160

2170;

2180

2190;

m

=

=

=

= ,

Idx

Idy

cpy

beq

Ida

sta

Ida

sta

stx

sty

= ,

rts

= .

Idx

Idy

iny

beq

dey

stx

sty

= ,

rts

= •

.asc

SdfOO

exp+ 2

exp+ 4

exp + 6

exp+ 7

#<parse

#>parse

igone+1

inpl ■

igone

oldvec +1

igone + 1

oldvec+ 2

igone

igone+1

oldvec +1

oldvec + 2

nogo

igone

igone +1

'stas''

,byte$c8

.asc 'fete' '

.byte $c8

.asc 'swa''

.byte$dO

.asc 'compar' '

.byte$c5,0

= *

imp

= *

Idy

sty

iny

Ida

cmp

bne

Idx

= .

iny

Ida

sec

sbc

bne

inx

bne

= *

sec

sbc

bne

beq

$ffff

#0

cmd

(txtptr).y

oldvec

#0

(txtptr).y

table.x

last

nxt

#$80

skip

found

;dma controller

;if page$cf

;already installed

;if $ff is hi addr

;don't restore

;address set to old error vector on activation

;scan basic text

;initial command number

; point to next character

;no leading®

;init table pointer

;get next input character

;check text

;may be shifted

;okay so far

; loop for next match

;check for shifted

;check for shifted

character

;matchs string

2200 ; no match found so advance to

2210 ; next command string

2220;

2230 skip

2240

2250

2260;

2270

2280;

2290

2300

2310;

2320 nxcmd

The Transactor

= *

Ida

bmi

beq

inx

bne

= *

table.x

nxcmd

oldvec

skip

;reached shifted char

;error end of table

; keep going

41

PD

AA

CB

JH

IL

NM

EN

GN

DN

KD

FD

OP

EC

KH

AL

GC

MD

KD

JK

KN

JD

FK

Bl

BF

EN

KC

PN

CG

IB

10

KB

GM

ED

AA

EO

GN

HK

LM

HF

GB

BE

NN

ED

HG

KF

10

MF

MM

KN

JA

JF

OF

OB

Fl

HO

NK

IN

PD

DD

CL

JK

KC

MP

BO

AB

OC

MH

DL

ID

DH

KL

MG

IH

LP

JP

OK

II

HG

MJ

OM

HP

KL

DC

FD

LA

CO

CF

2330

2340

2350

2360

2370;

inc

inx

Idy

bne

cmd

#1

nxt

2380 ; we have found the mater

2390; read parameters

2400;

2410 found

2420

2430

2440

2450

2460

2470

2480;

2490

2500;

2510 nopage

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640;

2650 toobig

2660

2670;

2680 limit

2690

2700

2710

2720;

2730

2740

2750;

2760 r128

2770

2780

2790;

2800 inside

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950;

2960

2970;

2980 notb

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090;

= *

iny

tya

clc

adc

sta

bec

inc

_ ,

jsr

sty

sta

jsr

sty

sta

jsr

sty

sta

jsr

cmp

beq

= »

imp

a *

Ida

and

beq

cpy

bec

= ,

cpy

bes

= *

sty

Ida

Idy

sty

sty

sei

Idx

Idy

stx

bit

ora

sta

Ida

bne

dec

= *

dec

Ida

sta

Ida

sta

Ida

sta

sty

cli

imp

txtptr

txtptr

nopage

txtptr+1

getint

leng

leng+ 1

arg

c64

C64 + 1

arg

ram

ram + 1

arg

#0

limit

$b248

exp

#$10

r128

#8

inside

#2

toobig

bank

cmd

#0

exp +10

exp+ 9

;open ram

#$f5

1

1

exp

#$90

exp + 1

txtptr

notb

txtptr+1

txtptr

exp

areg

c64

xreg

C64 + 1

yreg

1

oldvec

;dim in basic text

;search next command

l

;update basic pointer

;get# bytes

;get c64 memory start

;get external ram start

;get bank

;check if out of range

;illegal quantity

;check ram size

;max bank for 512k + 1

;max bank for 128k + 1

;inc pointers

; no interrupts

; under basic and kernel

;old value

;temp value

;resetdma controller

;form command

;dim in basic text

;page boundry

;single byte

;return result

;return last address

;accessed in computer

; restore ram configuration

interrupts on

; back to basic

3100 subroutine to evaluate argument

3110;

3120 arg

3130

3140;

3150getint

3160

3170

3180;

3190 .end

«, ,

jsr

= *

jsr

jmp

$aefd

$ad9e

$b7f7

;must have comma

;eval expression

;fix it

September 1987: Volume 8, Issue O2



In The CP/M Mode

I'd like to discuss several things in this article. First, there are some

exciting software packages in the public domain, including an

excellent text editor/word processor and a spelling checker. Sec

ond, I want to talk about configuring your C128 CP/M keyboard

with KEYFIG (transient utility on the CP/M system disk). Believe

me, if you're not using KEYFIG, you're working too hard. Third, I

want to discuss some commercial CP/M packages that I think C128

CP/M users will be interested in.

VDE2.2

This public domain text editor is the latest in the line that began with

the famous VDO (for Video Display Oriented) in 1982. Before VDO,

most text editors were line oriented. If you've agonized over CP/M's

ED you know what a line oriented editor is—it's a pain. (You may

have heard the CP/M cry, "Better dead than ED.") VDO changed

all that.

The original VDO was developed by Richard Fobes and published in

the September and October 1982 issues of Byte. Soon after, varia

tions and improvements began to appear. The latest VDO is James

Whorton's VDO 2.5(b), which I used before discovering VDE.

VDE has its roots in VDO but is so much enhanced that its author,

Eric Meyer, decided that it was best to change the name slightly and

call it VDE. VDE 2.2 was completed August 1986, so is quite recent.

It is a 58K library file which contains two versions of VDE: VDE-M,

for memory-mapped systems, and VDE, for terminals (the version

the C128 uses). In its distributed form VDE is configured for an

Osborne, but thanks to the 128's extended terminal emulation, this

version works fine.

Why VDE?

What's so good about VDE? First, it's only 9K. This means it doesn't

take up much disk space, and it loads quickly. When you're doing

program development and going back and forth in the edit/

compile/link/run cycle, this fast loading can be a tremendous time

saver. VDE is also fast working and full-featured. It has full-screen

editing, windowing, horizontal scrolling, automatic pagination

(which can be turned off), file directory, block operations, macro

functions, find/replace, undelete, several user definable options,

and (I've saved the best for last) VDE has word processing capabili

ties. The word processing may only consist of word wrap and some

simple formatting, but it is all many people will ever need, and it's

all most people need most of the time.

The three VDE files that are important to C128 users are VDE-

22.COM (the text editor), VDE22.DOC (documentation), and

VDE22OVASM (an overlay file to configure VDE). As I mentioned

earlier, VDE works "right out of the box" for C128 CP/M, but you

may want to fine-tune it for your preferences. You can do this either

by editing the overlay file or, more simply, by using the addresses

supplied in the overlay to change the values with SID. For example,

if you're using the 80-column RGB signal with a composite monitor

Clifton Karnes

Greensboro, NC

you'll want to reverse the high and low intensity values. You may

also want to change tabs (they can't be changed from inside the

program). The most important configuration you'll have to do is for

your printer. You can define three toggles and four switches. These

define special codes that will be sent to your printer for things like

underlining, boldface, italics, and so on. Macro key definitions can

be hardwired in with SID, but there's a much easier way to do it

which is explained in the documentation.

Using VDE

VDE can be invoked with or without specifying a filename. VDE

gives a status line at the top of the screen which shows filename,

page, line, column, and mode (insert or overwrite). Pressing ESC-?

will give a menu of commands.

You can set up ten macros with VDE. Each macro can be up to 65

characters long. These macros can be either temporary or they can

be saved. The documentation with VDE explains the procedure for

saving your macros.

Two of the nicest commands in VDE are the ones that set the right

and left margins. These enable wordwrap and give VDE its word

processing capabilities. VDE also has automatic top and bottom

page formatting (which can be turned off if you like), as well as

centering, right margin alignment, and several other text processing

commands. There are no provisions for headings or other fancy

features, but most writing applications don't call for these, anyway.

VDE reminds me of the motto of the old Dr. Dobbs Journal:

"Running Light Without Overbyte." Eric Meyer deserves the thanks

of all CP/M users for creating such an excellent software package

and putting it in the public domain.

Spell 2.1

Spell is a public domain spelling checker. Version 2.1 was released

in 1985, but the Spell program has a history going back to 1982 and

before. The current version is by Michael C. Adler, and has its roots

in the work of William Ackerman at MIT

I downloaded Spell 2.1 from CompuServe's CPMSIG DL1 as a 124K

library file called SPEL20.LBR. The three necessary files to run Spell

are SPELL.COM (the spelling program), DICT.DIC (the dictionary),

and SPELL.DOC (the documentation). The library also contains the

Z80 assembly language source code for SPELL.COM and a program

(DICCRE10.COM) to create a compressed dictionary file from a raw

file.

Spell not only looks for words in its main dictionary, but in a pre-

named user dictionary (SPELL.DIC) and it can be given command-

line options to have it search any user-created dictionary.

The Transactor 42 September 1987: Volume 8, Issue O2



To use Spell you just specify the file you want to it to check. Spell

looks in its main dictionary, user dictionaries, and any specified

dictionaries for the words in the file. Words not found are marked.

The marking character is a null (f, ASCII 0), but this can be

changed if you don't like it. If you're using WordStar you can use the

tQL command to correct the marked file painlessly. If you're using

another word processor you need to go through the text and erase

each marker and change the word if it's spelled incorrectly.

Spelling Bee

To find out how good Spell is I decided to test it against The Word

Plus and Perfect Speller. The Word Plus is a collection of correction

and writing aids, of which the spelling checker is one part. It is

considered by many to be the best program available. Perfect

Speller comes with Perfect Writer.

There are two ways a spelling program can go wrong: it can fail to

catch a misspelled word or it can mark a word as misspelled that

isn't Marking words that aren't misspelled as wrong can be

corrected by adding those words to the user dictionary. Missing

words that are not spelled correctly is the result of data structures for

the dictionary and algorithms used and it's performance can't be

improved by the user. It is important to consider both of these

errors. The best spelling checkers will give balanced performance

in both areas. Consider, for example, a spelling checker that marks

every word as misspelled. It would get 100% in catching errors, but

would fare poorly in the other area. A checker that marked no

words would be 100% accurate in not marking correctly spelled

words as wrong, but it would get a zero in catching errors. For those

interested in the design and history of spelling checkers there is an

interesting chapter in Jon Bently's Programming Pearls "A Spelling

Checker" (New York: Addison-Wesley, 1982), pp. 139-150.

To test the checkers, I used a list of 75 frequently misspelled words

along with their correct spellings, making a total of 150 words. The

list comes from a test (intended for human spellers) in Harry Shaw's

Spell it Right, collected in Read, Write and Spell it Right (New York:

Greenwich House, 1982), pp. 476-478. I was surprised by the

results:

Misspelled Words Correctly Spelled Words

Speller Not Caught Marked as Incorrect

Number Percentage Number Percentage

The Word Plus 2(1) 97% (99%)

Perfect Speller 24 68%

Spell 2 (1) 97% (99%)

Paperback Speller 1

0

5

9

40

100%

93%

88%

47%

Easyspell 1 99% 13 83%

As you can see, The Word Plus gave the best all round performance.

And to be fair, one of the two words it let slip is given in the

dictionary as acceptable. What is really impressive is its 100%

accuracy in the second column. This is a testament to the thorough

ness with which this product was designed. Perfect Speller is a

surprise. It must be judged a failure. Nothing is going to improve the

number of misspelled words it catches. The next surprise is Spell. It

did as well as The Word Plus in the first column. (One of its "errors"

was also deemed as acceptable by the dictionary.) True, it didn't do

as well in the second column as The Word Plus, but some work on a

user dictionary will ease that problem.

To provide a little more perspective I ran the spelling test with two

other popular spellers for the 64/128 side of the machine. I'll let you

draw your own conclusions on these results.

I am delighted with Spell and I think it is the perfect complement to

VDE. These two packages do so much—for free (almost).

Make Your Keyboard Sing With KEYFIG

KEYFIG is one of the nicest things about the Cl 28's CP/M. And one

of the best uses of it is to reconfigure your numeric keypad as cursor

control and editing keys. With KEYFIG you can define a separate

diamond-shaped area for cursor movement, and use the nearby

keys for common editing functions. The diamond-shaped cursor

control layout has been judged by most to be the best ergonomic

design.

First, some background. The keyboard definitions are saved as part

of the CP/M + .SYS file, and, when it is loaded, the definitions are

stored in Bank 0. This means that you can have several different

logical keyboards—as many as you need. For example, if you use

several text editors and word processors, all of which used different

cursor and editing commands, with KEYFIG, you can create differ

ent keyboard definitions for each application. The cursor-up com

mand may be Control-F in one application, Control-E in another,

and Control-W in another. If you configure your numeric keypad for

use as cursor control keys, you can have keypad-8 be cursor up no

matter what the code for the application might be. This makes life so

much simpler.

To get started, type KEYFIG at the "A>" prompt. You'll be asked if

you want help. You don't now, but you may want to review some of

these topics later. Press "n" and you'll be asked which definitions

you want to use. Since you haven't created any definitions yet, you'll

use the default definitions. Move the cursor to that selection and

press Return. (While in KEYFIG you'll need to use the 128 arrow

keys to scroll through your choices.) Now you're given a choice of

three things to do: edit a key, assign colors, or exit and save our

workfile. To start, you want to edit keys, so make this selection. To

begin, let's define the keypad's 8, 4, 6, and 2 as cursor up, left, right,

and down. To edit a key, just press it, so press "8". You'll see that the

key has several values: its normal value, a shifted value, a control

value, and a Commodore-key value. You want to alter the normal

(top) value first, so make this selection. You're presented with

another menu offering various types of assignments. You can assign

a new character, a string, a color, a special function, or a hex value.

For this key you'll be assigning a single control character, so make

that selection.

Now, press the control code for the assignment you want to make—

Control-E for WordStar-like editors. That key has been reconfi

gured. You can define the rest of the the cursor keys just like "8" by

supplying the appropriate control values for each key.

Defining strings is just as easy. After making the choice for string

assignment, you'll be presented with a list of the 32 available

strings. Some of these will already have been assigned. Scroll

through and make a selection and press Return. Then simply enter

the string. To end strings with a carriage return use Control-M.

The Transactor 43 September 1987: Volume 8, Issue O2



What follows is one way to configure your keypad by function:

Normal Value Shifted Value

Key Function Key Function

(9) page up

(8) cursor up

(7) home

(6) cursor right

(5) end of line

(4) cursor left

(3) page down

(2) cursor down

(1) bottom screen

(0) insert line

(.) mark block

(-t) insert/overwrite

(-) delete char

(9)
(8) 3 lines up

(7) top of block

(6) word right

(5) beginning of line

(4) word left

(3)
(2) 3 lines down

(1) bottom of block

(0)

(.) mark block end

Control Value

Key Function

(9)
(8)

(7) top of file

(6)

(5)

(4)

(3)

(2)

(1) bottom of file

(0)

(■)

(-) delete to end of line (-) delete entire line

Keys with nothing beside them are not defined. The normal values

comprise all the heavily used cursor movement and editing com

mands. The shifted values (when they exist) are intensifications of

the normal values, and the control values are further intensifica

tions. This is only a guide. Your word processor or other application

may not have all these functions (the one I'm writing this with

doesn't), or it may have more.

Pressing the Commodore key (C =), which acts as a CAPS toggle in

C128 CP/M, will give you the numeric values for the keypad. The

above configuration will create an easy-to-use, diamond-shaped

cursor control station. In addition to the keypad configuration I have

found the following redefinitions helpful:

(Control-HELP) (Special function) BOOT - This gives you an easy

way to reboot CP/M without resetting, and when you want to go

from CP/M to 128 mode you can press Control-HELP instead of

resetting.

(ALT) (String) B:tM - on a two drive system this will save two

keystrokes when you want to change to drive B:

(Control-ALT) (String) A:tM - to change back to A:

(Fl) (String) SDtM -1 useSD.COM (SuperDirectOry) most of the time

instead of DIR. This makes it just a keystroke away.

When you've finished configuring your keyboard you need to save

the new definitions. You can save them as the current definitions —

to try them out to see if you like them — or save them on the boot

disk. If you save them as the current definitions, you'll need to enter

KEYFIG again later and save the current definitions permanently to

your boot disk.

CP/M Software Update

I'd like to briefly discuss some CP/M software, both old and new,

that I think is important to C128 CP/Mer's. Details on the packages

discussed are given at the end of this article. First, I want to mention

two pieces of hardware: the 1700 and 1750 expansion modules.

These memory cards work as RAM disks in CP/M and are great.

Anything on the RAM disk is accessible immediately, just like a

resident CP/M command. Going through the edit/compile/link/

run cycle with one of these is so pleasant. It's almost as easy as

working with an interpreter. And it's so quiet. One 128K RAM disk

and one 1571 would make an excellent CP/M system for about

$100 less than a two-drive system would cost.

There are two new releases by Commodore CP/M Engineering

made available on CompuServe recently. One is the source code for

the December 6 BIOS. (The BIOS source that comes with the DRI

offer is an earlier version.) Also recently made available is a new

version of FORMAT. The new version is smaller, can format disks on

either drive (the original only formatted disks on drive A:), and

(most important) it can format disks in any of the formats the C128

can read. All the formats haven't been verified, but the KAYPRO

and CPM-86 formats work fine. The others should, too.

Perfect Writer

As for commercial CP/M software, I've tried several packages

recently that work well on the C128 and one that was a disappoint

ment. Perfect Writer is a word processor that has been released by

Commodore for the 128 in CP/M mode. (It used to be bundled with

Kaypros, but WordStar is now.) The Perfect Writer package comes

with Perfect Speller (which you've already met) and Perfect Thesau

rus for the low price (on the street) of around $50.

First, Perfect Writer is what is called an EMACS-style editor as

opposed to a WordStar-style editor. These distinctions refer to the

editor's command structure. Perfect Writer 2.0 not only has

EMACS-style commands but pop-up menus. These menus can be

turned off if you like and just the commands used. I don't want to

give a complete review of Perfect Writer here, but there are several

things a potential buyer should know. It's huge: slow loading and

slow working. It uses a disk swap file. Every so often everything

stops while text in memory is saved to the swap file on your disk.

There is a quick print function, but printing documents that use any

advanced formatting functions is a different program (on a different

disk) that must be loaded and run.

One annoying thing is that Perfect Writer doesn't use console input,

so strings assigned with KEYFIG won't work. This means you can't

do much in the way of reconfiguring your keypad to make Perfect

Writer easy to use except implement the single cursor movement

keys and the other single-keystroke commands. Perfect Writer

doesn't automatically reformat after inserting, either. And Perfect

Writer committed what Byte columnist Jerry Pournelle calls, "the

one unforgivable sin": it lost text. This happened to me several

times. I reported it to Commodore CP/M Engineering but haven't

received a reply. It could have been a glitch in my copy, but this

seems unlikely. On the plus side, Perfect Writer comes with a

superb manual and is loaded with features. And I have talked to

some people who love the menus. The menus will make Perfect

Writer easy to learn, but with its command structure, and not letting

strings from KEYFIG through, it will never be fluid, fast, or flexible.

WRITE, Some Writing Aids, an Assembler, and More

WRITE (Writer's Really Incredible Text Editor, $99.95 from Work

man & Associates) is an excellent word processor for the C128 and

like a breath of fresh air after Perfect Writer. It is memory-resident

and thus has no swap file to slow you down. It's fast, powerful, and a

The Transactor 44 September 1987: Volume 8, Issue O2



joy to use. Printer configuration may be a problem, though, so check with

Workman & Associates before you buy. Also, install the Televideo 912

terminal instead of Lear-Siegler ADM31. WRITE's previewer works better

with this emulation on the C128.

I've already mentioned The Word Plus ($150.00 from Oasis Systems). It is

a spelling checker, correction manager, homonym checker, hyphen

maker, a huge dictionary, and more. An excellent product. (I understand

that The Word Plus is being shipped with NewWord (a word processor like

WordStar but better according to most) all for $125. Like getting a discount

on The Word Plus and a word processor free.) If all you need is a speller

though, consider Spell. Also from Oasis is Punctuation + Style ($125.00).

There are two parts to this program. The first is called CLEANUP. It finds

extra spaces, mixed capitals—like THis—and such like. PHRASE is the

second program and it marks hackneyed expressions and unnecessary

words. For example, if you write: "all of the apples looked good," PHRASE

would say that "of the" is unnecessary and should be cut. I was amazed at

how good PHRASE is. If you do serious writing, it will more than pay for

itself.

Write-Hand-Man ($49.95 from Poor Person Software) is a Sidekick-like

utility. It lurks in the C128's high memory waiting for you to call it. When

you do, the present program is interrupted and WHM offers you a notepad,

a calendar, a phonebook, a terminal program, hexadecimal and decimal

calculators, and ASCII chart, and more. This is a useful package.

Z80ASM and SLRNK ($49.95 each from SLR Systems) are a Z80 macro

relocatable assembler and linker. Z80ASM is fully compatible with Micro

soft's M80. Many CP/M assembly language programs were written and

are being written with M80 so this is an important feature. Probably the

best thing about Z80ASM is that it can produce executable .COM files in

one step and it is FAST. And I mean warp-factor five FAST! Z80ASM takes

a lot of the bite out of assembly language programming.

Z80DIS is a public domain Z80 disassembler with some interesting

features. It can generate its own breakpoints—or at least will try. This

means it will decide which parts of the machine code are instructions and

which are data. Impressive. The source code for Z80DIS (which the author

hasn't released) is over 5000 lines of Turbo Pascal.

1 hope to have more detailed reports on some of these products in the

future, as well as several that are still in my review queue. Queued items

include two packages from Kamasoft: Out-Think and KAMAS. Out-Think

is an outline processor and text editor, and KAMAS is an outline processor

and programming language. Also, MTBASIC, a multitasking BASIC

interpreter/compiler; Fancy Font, by all accounts, THE printer enhance

ment package; and ASM from MIX Software, which lets you run assembly

language subroutines with their C compiler. I have just started working

with these packages so I don't have much to report yet. More later.

How to Get the Public Domain Software

All the public domain programs mentioned in this article — VDE, Spell,

Format, the December 6 BIOS, and Z80DIS — are available on Compu

Serve (see below for details), or you may be able to find them on a bulletin

board near you, get them from a friend, or from local user's group. If you

can't find them, send me an SASE and a formatted C128 single- or

double-sided disk plus $3 for each library you want, and I'll copy them for

you. There are four libraries: VDE22.LBR, C6DEC.LBR, Z80DIS21.LBR,

and SPEL20.LBR (FORMAT is small and will be on every disk).

A note on .LBR and squeezed files. Putting files in libraries

and squeezing is a way of making the files smaller, so they'll

transfer more quickly, and more unified — one library file

instead of several single files. If you download any of these

libraries yourself you'll need a de-library utility and an

unsqueeze utility, like DELBR and USQ, or NULU, so

download these programs, too. If you get the files from me I'll

put these utilities on the disk.

Clifton Karnes

2519OverbrookDr.

Greensboro, NC 27408

Software Sources Mentioned:

CompuServe CPMSIG

VDE22.LBR (54K) (DL1)

SPEL20.LBR (124K)(DL1)

C6DEC.LBR (130K)(DL3)

Z80DIS21.LBR(148K)(DL2)

FORMAT.BIN (2K) (DL3)

WRITE

Workman & Associates

112 Marion Avenue

Pasadena, CA 91106

(818)796-4401

The Word Plus

Punctuation + Style

Oasis Systems/FTL Games

6160 Lusk Blvd. Suite C206

San Diego, CA 92121

(619)453-5711

Z80ASM

SLRNK

SLR Systems

1622 N. Main St.

Butler, PA 16001

(412)282-0864

Write-Hand-Man

Poor Person Software

3721 Starr King Circle

Palo Alto, CA 94306

(415)493-3735

NewWord

(includes The Word Plus)

NewStar Software

1601 Oak Park Blvd.

Pleasant Hill, CA 94523

(415)932-2526

public domain

public domain

public domain

public domain

public domain

$99.95

$150.00

$125.00

$49.95

$49.95

$49.95

$125.00

Please Note: Ellis Computing, the source for Nevada BASIC,

FORTRAN, COBOL, Edit, etc. has moved. Their new address

is:

5655 Riggins Court, Suite 10

Reno, Nevada 89502

(702)827-3030

The Transactor 45 September 1987: Volume 8, Issue O2



Using CP/M Plus

User Areas

Adam Herst

Toronto, Ontario
(C)1987 Adam Herst

Making the most of practically nothing.

The number of files that the C-128 can store on a disk is limited by

two factors: the storage space available and the maximum number

of directory entries. When disk space is limited, the number of files

on a disk rarely approaches the maximum and directories remain a

manageable size. With the increased storage space available on

large capacity disk drives, however, directory listings grow propor

tionately. The number of files often reaches the maximum allowed

and a given file can be difficult to find. CP/M Plus provides an aid to

file organization in the form of 'USER AREAS'.

The C-128 can currently use two Commodore disk drives: the 1541

and the 1571. Both can be used in the 128's CP/M mode although

the 1541 is far too slow to be of practical use. In CP/M mode, the

1541 can store a maximum of 134 Kbytes in a maximum of 64

directory entries. The 1571 can store a maximum of 336 Kbytes in a

maximum of 128 directory entries on a disk in C-128 double-sided

format. (In some MFM formats the 1571 can hold more data - the

Kaypro IV format can hold 390 Kbytes with a maximum of 128

directory entries - but the benefits of increases in storage space are

offset by decreases in disk access speed).

Unmanageable directories are rarely a problem with the limited

storage capacity on the 1541. The storage capacity of the 1571

however - more than double that of the 1541, can make for very

long directory listings. Finding a particular file, even with CP/M's

sorted directories, can be a chore.

CP/M's file naming conventions can also make directories difficult

to read. File names in CP/M mode are limited to a maximum of 8

characters compared to Commodore DOS's limit of 16 characters.

Trying to create distinct but meaningful file names can become a

poetic exercise. While a filename can be modified by a 3 character

filetype, you do not always have the option on the filetype that can

be assigned. Many filetypes are reserved to designate categories of

files and should not be used indiscriminately. The filetype .com, for

example, must modify the filename of every executable file, while

.sub is reserved for files used by submit.com

The problem gets worse if you are using the 1750 RAM expansion

cartridge. This cartridge adds 512K bytes of extra memory to the C-

128. Unfortunately, the CP/M operating system is limited to an

environment of 64K total memory. To make use of the extra

memory, it is configured by CP/M on the 128 to be recognized as a

RAM disk with the drive designation M:. This allows for very fast

'disk' access since the 'disk' is really memory. It also provides a

'disk' that is larger than any of the real disks currently available for

the 128.

The RAM disk can store a maximum of 508 Kbytes in a maximum

of 127 directory entries. Paradoxically, while the storage space is

over 50% greater than on the 1571, the maximum number of

directory entries is one less than on the 1571.

(The 1750 RAM expansion is indispensable when using CP/M on

the C-128. CP/M is a disk-based operating system. It is loaded into

the computer when a CP/M session is started and practically all

operating system commands must be loaded into memory by CP/M

before they can be executed. While CP/M cannot be booted from

the RAM disk, the CP/M environment can be customized so that all

subsequent commands can be loaded from RAM disk, rather than

disk drive, with substantial increases in performance. If you are

using CP/M but do not have a 1750 expansion unit, you should

seriously consider buying one.

For those with a curious nature - there is a secret hidden within the

RAM disk. By now 128 users are aware of the SYS in 128 mode that

displays the names of the creators of the 128 and their feelings about

the arms race. Von Ertwine, the programmer responsible for porting

CP/M to the 128, has also hidden his name in the RAM disk in CP/

M mode. To display it, issue the 'show m:[label]' command.)

The RAM expansion cartridge provides the 'disk' with the greatest

amount of storage space that is currently available for use with CP/

M. That situation will soon change. A number of hard-disks with 10

and 20 megabyte storage capacities were shown at the World of

Commodore in Toronto this year. While none of them worked in

CP/M mode on the 128, representatives for all of the manufacturers

promised that capability in the near future.

More realistic, both in terms of price and availability, is the 1581, a

3.5 inch drive from Commodore. Commodore Canada has con

firmed the 1581 will operate in CP/M mode, although CP/M cannot

be booted from it. This drive will provide in the neighbourhood of

800K bytes of storage space. No information is available on the

maximum number of directory entries. Commodore will be limiting

its potential if they do not make provisions for the storage of a

greater number of files than on the 1571.

One requirement of storage devices with ever increasing capacities

is a directory system that can expand beyond a single, simple

sequential list. One popular file management system is the arrange

ment of files into nested subdirectories starting from a root direc

tory. This arrangement allows for manageable directory listings as

well as the extension of the limit on the number of files that can be

stored on a disk. While the number of directory entries will still be

limited, the number of directories will have increased.

The Transactor 46 September 1987: Volume 8, Issue O2



This file management method is used by practically all 'modern'

operating systems — by all, that is, but CP/M Plus. To preserve

compatibility with its earlier incarnations, a different file manage

ment system is used. Instead of a root and nested subdirectories,

CP/M Plus has the ability to divide a disk directory into fixed

directories, called user areas. A user area is purely a logical

construct - there is no physical user area on a disk. It is only a

designation given by CP/M to a file.

Early versions of CP/M - up to version 1.4 - did not provide user

area capabilities. User areas were first introduced in CP/M 2.2 in an

attempt to solve two problems. The availability of large capacity

mass storage devices introduced the directory and filenaming

problems discussed above. Secondly, system security and data

integrity were becoming problems in multi-user environments.

These problems could have been solved using a system of nested

subdirectories. This, however, would have made subsequent ver

sions of CP/M incompatible with their predecessors. None of the

then available software was designed to operate in a multi-directory

environment. Programs looked for overlays and data files in the

current directory since no other directory existed. An operating

system that made these programs obsolete would have alienated

both program developers and users.

Instead CP/M creates 16 fixed, distinct user areas numbered 0

through 15. A user area can be thought of as a work environment.

Most programs and operating system commands are executed

within the current user area. Files on a disk are designated as

belonging to the user area in which they were created. Access to

user areas, and the files associated with them, can be restricted with

passwords.

Normally, the files in a user area other than the current one are

invisible to the operating system. This allows programs from the

pre-user area era to operate without modification. These programs

consider the current user area to be the only possible environment

and do not attempt to access other user areas. Their drive/file

specification syntax does not make provisions for accepting a user

area specifier. For these programs to work, all of the supporting

program files and data files must be located in the user area from

which they were invoked.

Some recent CP/M programs will support operations across user

areas. Unfortunately, the majority of the transient commands pro

vided with CP/M Plus do not fall into this category. They do not

recognize non-current user areas and will not access files outside of

the current one. Their command syntax will not accept a user area

specification. Only four CP/M Plus transient commands provide

options for specifying user areas: USER, SHOW, DIR and PIP.

The current user area is indicated in the system prompt. A number

corresponding to the user area number precedes the current-drive

letter in all but user area 0. User area 0 is the default user area and is

the current environment when CP/M boots up. In user area 0, no

number precedes the current- drive letter. It is not possible to name

user areas and reference them as such. All references to user areas

through the system prompt must be by number.

User areas can be changed by entering:

du: <cr>

at the prompt, where d is the drive-letter, and u is the user area. The

current user area can also be changed using the built-in USER

command. Enter:

USER u <cr>

at the prompt, where u is the user area or:

USER<cr>

at the prompt to execute the interactive version of USER.

The numbers of the active user areas (user areas that 'own' files on

the currently active disks) and the number of files within those user

areas can be determined with the SHOW command. One of the

options available with SHOW is USER. (Executing SHOW without

any options displays the number of Kbytes left on the disk.) To

determine the active user areas enter:

SHOWd:[USER]<cr>

where d is the drive to be examined. The word USER must be

enclosed in square brackets as with all CP/M Plus options. In

addition, since SHOW is a transient command, it must be located on

the current drive in the current user area.

CP/M will respond with output resembling:

A:

A:

A:

Active User:

Active Files:

# of files :

1

0

16

1

5

2

12

4

7

A: Number of time/date directory entries: 32

A: Number of free directory entries: 53

The A: followed by the colon indicates that this information is for the

disk in drive A. The 'Active User' is the user area number from

which the SHOW command was issued, in this case user area 1.

'Active Files' are the numbers of the user areas on the disk in drive

A that have files associated with them. The '* of files' are the

number of files associated with the user area number directly above

them.

Having determined the active user areas, their directories can be

displayed in two ways. Issuing the DIR command will display the

directory of the current user area. To display the directory of

another active user area, you can make it the current user area with

the USER command, then issue a simple DIR command. Alterna

tively, the directories of any active user area can be displayed from

the current user area, using one of the options provided with the

transient version of the DIR command. Because the transient

version of DIR is being used, dir.com must be located on the current

drive in the current user area.

DIR will accept a variety of syntaxes to display the directories of

various user areas:

DIR d:filename[Gu]

DIRd:filename[USER = u]

DIRd:filename[USER = (u,u,. . .)]

DIR d:filename[USER = ALL]

The Transactor 47 September 1987: Volume 8, Issue O2



where d is the optional drive letter, filename is an optional filename

and u is the user number. All of these forms will display directories

of user areas other than the current one. The last form of the

command will display the directories of all active user areas.

While it is nice to know what files are stored where on a disk, the

knowledge is wasted if those files cannot be accessed from the

current user area. Fortunately the PIP command can be used to

copy files from one user area to another. PIP is a transient command

and must be located on the current drive in the current user area

whether it is issued with or without options. In fact, issuing the PIP

command without specifiers or options will load PIP from disk and

execute the program in interactive mode.

The option that lets PIP copy files across user areas is unique among

options for CP/M commands. For all other commands, and even for

all other options available within PIP, options must be enclosed in

square brackets following the source-file specification. With PIP, the

user area option alone can be enclosed in square brackets following

the destination file specification. This allows files to be copied from a

non-current user area to another non-current user area, instead of

exclusively to the current user area.

The syntax for the PIP command with this option is:

PIP d:destinationfile[Gu] = d:sourcefile[Gu]

where d is an optional drive specification and u is the user number.

In addition to being a powerful disk-to-disk file copying program,

PIP can also copy files from disk to other devices connected to the

system. This always includes a screen and may include a printer if

you are fortunate. Using PIP with options to copy files from non-

current user areas to the screen or printer can simulate the use of

simple commands, such as TYPE, issued from the current user area.

Similar to the way a disk drive is specified in PIP by a letter followed

by a colon, a device other than a disk drive can be specified by three

letters followed by a colon. The screen is specified with CON: (short

for console device) and the printer is specified with LST: (short for

list device). These device specifications can be used in place of the

d: drive specification in the PIP command syntax shown above. The

filename and user area number should be omitted since they have

no meaning for these devices.

This is the extent of the CP/M Plus commands that will work with or

across user areas. For all other CP/M commands and most commer

cial programs, the current user area is ignorant of other user areas.

With one exception, programs executed in one user area cannot

access files in another. Programs located in a non-current user area,

again with one exception, cannot be executed from another user

area. If you think this sounds limiting, you're right. Compared to a

system of nested subdirectories with access to files along directory

paths, CP/M Plus's user areas are constraining and short-sighted in

their vision of real needs.

The only compromise to utility is an indirect benefit of a characteris

tic of CP/M versions prior to CP/M Plus. CP/M Plus imposes a

distinction between SYSTEM files and DIRECTORY files. DIREC

TORY files are visible when a simple DIR command is issued, while

SYSTEM files are not displayed. (SYSTEM files can be displayed

using the DIRSYS command.) In this way, files that are used only by

the CP/M operating system can be hidden, reducing the number of

files displayed in a directory listing.

The distinction between SYS and DIR files is both artificial and

arbitrary. Files that are accessed by the user through the command

line can also be designated as SYS files using the SET command. In

addition, files that are used by the system can be designated as DIR

files with the SET command. The syntax for SET is:

SET d:filename[SYSTEM]

SET d:filename[DIRECTORY]

A file in any user area can be designated as a SYS file. The result is to

hide those files in directory listings. Files in user area 0, however,

take on a special characteristic when they are designated as SYS

files. Files in user area 0 can be accessed from any user area when

they are designated as SYS files. Executable files with the SYS

designation can be executed from any user area. Data files can also

be accessed, but only for read operations.

This feature allows user areas to function as simple, single level

subdirectories with user area 0 as the root directory. Keeping

utilities and application programs in user area 0 and giving them the

SYS designation allows data files to be distributed among user areas

in a rational, project-oriented manner while avoiding the necessity

of keeping copies of each program in every user area.

The file management system in CP/M Plus is primitive when

compared to many of the operating systems found on todays high-

end computers. User areas do not compare favourably with a

system of nested subdirectories with the ability to find a file along a

specified directory path. Still, on the C-128, they are a vast

improvement over the sequential system used in 128 mode. With a

little forethought in file arrangement, user areas can be useful for

directory management of large capacity disk drives.

Finally, the usefulness and power of the file management system in

CP/M can be extended with the use of a variety of add-on or

replacement programs. Two of the most promising that I have come

across are ConIX, from Computer Helper Industries Inc., and

TurboDOS, from Software 2000.

ConIX, a version of which is available in Shareware, is a replace

ment CCP that sits on top of the standard CP/M BIOS and BDOS. As

its name suggests, it emulates many of the file and environment

management functions of UNIX. These include variables, named

directories and shell scripts with flow control. Compatibility with

existing CP/M programs is high since the CP/M environment

remains virtually the same for program execution.

In contrast, TurboDOS 2000 is a replacement operating system for the

Z80 chip. The manufacturers claim that TurboDOS corrects many of

the flaws of CP/M while maintaining compatibility with CP/M pro

grams. Improvements include named directories with directory path

searching. As a replacement operating system, TurboDOS requires

considerable effort to install. There is a good chance that it may not

work on the C-128 with its unique, schizophrenic architecture.

I have requested evaluation copies of the programs from both

manufacturers and will keep you posted on my progress. With a

little work the boundaries of the Z80 chip on the C-128 can be

stretched to their limits.

The Transactor 48 September 1987: Volume 8, Issue O2



Assembly Language

Disk Error Recovery

Two Small Disk Utility Subroutines

Here are two small disk utility programs which are actually

useless by themselves, but they can make life a bit easier for you

if you add one or both to your own machine language routines.

They solve a problem which occurs when you either forget to

turn on your disk drive or you neglect to insert a disk or even if

you remember both those items and forget to close the drive

door. Since they use standard kernal calls, they should work with

equanimity on any 8-bit Commodore computer.

The first program answers the timeless question, "Is the Disk

Drive There?" Although I wrote my version to start in normal

BASIC workspace, it could exist in the cassette buffer or in any

out of the way RAM space. Simply change the assembly address

in line 130 and remove line 140. The program opens the

standard 15,8,15 file and initializes the drive. If the disk drive

does not respond, the program prints "CHECK DRIVE 8" at the

current cursor location. If you change the label DRVNR to 9, it

works for that drive as well.

If the drive is plugged in and responds, the program exits

without a word. Change the JMP $E37B to go to your own

program, perhaps to the next error checking program.

The DISK ERROR CHANNEL program is not new, but it is in

SYMASS assembler format, and it too avoids contact with the

user unless something has gone wrong. If it finds that the error

number is 00, it exits gracefully, without writing a note to the

operator. If an error is indicated, it will communicate with the

person who neglected the care and feeding of the disk drive.

This program occupies a few bytes in the cassette buffer, and as

written, is accessed with a SYS 828.

Although I have not experienced a problem, I took care to

retrieve all the disk status message from DOS even if it is not

printed to the screen. Some authors have reported DOS confu

sion if only the error number is read.

Of course it is appropriate to call the program when you attempt

open a read file, just to make sure the proper disk is in the drive.

Like the first program, the ERROR CHANNEL routine ends in a

JMP $E37B, to BASIC warm start. You should insert your own

jump or RTS to the appropriate place in your program.

The usual caution applies concerning the opening and closing of

the file for the disk error channel. You should only open it before

opening all other files in your program and close it after all other

files are closed so as to avoid losing information stored in buffers

but not yet written to the magnetic surface. In other words, only

Robert V. Davis

Salina, Kansas

do that part of the first program in lines 160 through 260 once in

your program and only close the error channel when you are

done with disk access. Don't be opening and closing the error

channel every time you want to check the disk status.

With the combination of the two programs shown here, you can

handle many of the common errors involving the disk drive

before they crash your program.

When using SYMASS to assemble into BASIC space, starting at

$0801, just load and run SYMASS. .. then type

POKE 44,64:POKE 16384,0:NEW

and press RETURN. This will set the start of BASIC at the 16K

mark and will leave about 14K for your object code.

FD

FG

MD

EH

AD

FA

GB

CM

HN

BG

GM

IE

AP

JN

PO

BJ

CL

JF

CD

AJ

FG

HN

Jl

FA

LD

KD

BH

JB

CP

GN

LG

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

sys 700

; "is the disk drive there?"

; using the symass

* = $0801

.byte$0a

.byte $30

J

Ida

Idx

Idy

jsr

Ida

Idx

Idy

jsr

jsr

bcc

Idy

$08,$00

$36,$31

#15

drvnr

#15

$ffba

#3

#<initfn

#>initfn

$ffbd

$ffcO

fini

#11

print1=

Ida

jsr

dey

bpl

Ida

ora

jsr

J

fini =

Idx

errtxt.y

$ffd2

printi

drvnr

#$30

$ffd2

*

#15

3.13 assembler

$00,$9e,$32

$00,$00,$00

;file number

;device number

;secondary address

;set parameters

;length of filename

;low byte

;high byte

;set filename

;open file

;if carry clear

everything was ok

;eleven characters

;get one char

;send it to screen

;loop until done

;convertto ascii

;output to screen

;file number 15

. . .continued on page 52

The Transactor 49 September 1987: Volume 8, Issue O2



Upgrading the

Amiga 1000 to 32 bits

Dan Schein

West Lawn, PA

. . .the MC68010 at equal clock frequencies will run from 8% to 50%

faster than an MC68000 without any user code changes. . .

In recent months there has been a lot of interest in replacing the

Amiga's MC68000 microprocessor with a MC68010. This article

will explain to you the advantages of upgrading to a MC68010

and also show exactly how the conversion is performed.

MC68010's come in several types; the suggested types for this

conversion are the MC68010L8 or MC68010L10. These two

types are the least expensive and easiest to obtain. MC68010's

can normally be purchased from an electronics supply house,

computer flea markets or shows, and many mail order firms.

Usual cost for either of these chips is under $20 (US).

Pin for pin, the MC68010 is compatible with the MC68000

currently in your Amiga. The advantages of the MC68010 are

many. Here is a partial listing taken directly from "Motorola's

MC68010 Micro Minutes MM-444-002":

"The MC68010 at equal clock frequencies will run from 8% to

50% faster than an MC68000 without any user code changes.

The new MC68010 multiply is 14 clocks faster, and the divide is

32 clocks faster than the MC68000. Programs utilizing (or with

the potential of utilizing) such operations can obtain an increase

in performance easily exceeding 10%. The bottom line is, by

upgrading an MC68000 system to an MC68010 system, an

increase in system performance is obtained which is equal to

that which a system redesign from 10 MHz to 12.5 MHz would

provide, but with significantly less design cost and effort." Please

note that the Amiga runs at 7.14 MHz and not 10 MHz, so this

upgrade would make your Amiga equal to 8.925 MHz.

The catch to all these advantages (come on, now, you knew

there had to be one somewhere) is a minor software incompati

bility. The MC68000's "MOVE SR.ea" instruction has been made

into a privileged operation in the MC68010. What this means is

that programs using the instruction "MOVE SR.ea" will cause

you to receive a software error, followed by a visit from the

Amiga Guru.

The fix for this incompatibility is a fantastic piece of code written

by Scott Turner. This software solution stops the Guru from

visiting when the "MOVE SR.ea" instruction is used. This

software fix is actually a "wedge" that catches privileged instruc

tion violations. The wedge then examines the instruction for

"MOVE SR.ea"; if found the wedge replaces that instruction with

"MOVE CCR.ea" and resumes execution of the program. This

wedge is called "DeciGEL" and is available in the Public Domain

usually as an ARC type of file. The ARC file usually consists of

the assembled code (only 168 bytes), the assembly language

source code, and a short program to ensure that DeciGEL is

assembled and linked correctly. This ARC file is available from

many sources. The most common sources include Amicus Disk

#9, Fish Disk #18, and most of the major commercial database

services. Local BBS services may also have DeciGEL available

for downloading; one such BBS is PhilAMIGA (215-533-3191)

where all three DeciGEL files are available for downloading in

the form of one ARC type file called "DeciGEL.arc".

Use of DeciGEL could not be easier. Simply place DeciGEL into

the root directory of your Workbench disk and edit your

Startup-Sequence (found in the S directory) to include a call to

DeciGEL. (Do not change it just yet, though). The following is an

example:

echo "Workbench disk. Release 1.2"

echo " "

echo " Use Preferences tool to set date"

echo

DeciGEL

LoadWB

endcli > nil:

The Startup-Sequence can easily be modified using Ed. Ed is a

text editor supplied on your Amiga Workbench disk. For instruc

tions on using Ed consult the Amiga DOS Users Manual, or

Volume 6, Issue 6 of Transactor.

Now it's time for the actual conversion of your Amiga. The tools

you will need are a Phillips screwdriver, a small straight screw

driver, and a chip puller. But first, a few words of caution. The

circuit board and its components inside the Amiga are very

fragile and very, very sensitive to static. Opening your Amiga to

perform this upgrade will void your warranty, so wait till it's over

(90 days is not that long). Caution and common sense are all you

should need; take your time and be careful. If you want to be

safe, have an experienced technician perform the upgrade for

you.

Disconnect all cables from your Amiga and turn the unit upside-

down. For this and all the following steps, the rear of the unit

should be facing you. To open your Amiga you must remove the

5 recessed screws holding the case together (see Photo 1). Seven

screws are marked with arrows. The two at the top of the photo

need not be removed to get the Amiga apart. After removing the

5 recessed screws, turn your unit right-side up.

The Transactor 5O September 1987: Volume 8, Issue O2



Now comes the trickiest part - opening

the case. Examine the seam on the

right side of the case: behind the power

switch and roughly 10 inches back fur

ther are plastic tabs that hold the case

together. Push in on these tabs one at a

time using a small screwdriver until

they release. Now do the same thing on

the left side of your case and, after

separating all four tabs, remove the top

cover. You must now remove the metal

RF shielding that covers the entire cir

cuit board. The RF shield has 14 screws

securing it in place (see Photo 2). Re

move all 14 screws noting where they

were removed from, as there are sev

eral types of screws used. There are

also 2 twisted tabs holding the RF shield

in place (see Photo 2, where the tabs are

marked with wavy lines). Straighten

these tabs out, and remove the RF

shield. The MC68000 chip should now

be visible (see Photo 3; the MC68000 is

marked with an "x").

Using a chip puller, remove the

MC68000 and replace it with your new

MC68010. It is important to note the

correct direction for installation of the

MC68010 (see Photo 4). Now reverse

all steps to reassemble your Amiga. The

metal tabs that helped hold the RF

shield do not have to be twisted back

into place.

Now it's time to reconnect your Amiga

and test the results. For this test you

must use VI. 1 of Kickstart and Work

bench (vl.2 will not work for this test,

although it is completely compatible

with the 68010). Power up the Amiga.

Everything should appear to be work

ing in a normal fashion. Now start the

Calculator and try "9*9". You should

receive a Software Failure; this means

that your MC68010 is working cor

rectly. The reason for this error is be

cause the vl.l Calculator uses the

"MOVE SR,ea" instruction, which is

now an invalid command. The Calcula

tor supplied with the vl.2 operating

system was written with the MC68010

in mind, and does not use the "MOVE

SR.ea" instruction. Vl.2 will work cor

rectly with the MC68010 and is highly

recommended.

Assuming the above sequence has

gone well and your results were just as I

The Transactor 51 September 1987: Volume 8, Issue O2



have described, I suggest that you now make the changes listed

earlier to your Startup-Sequence. With the MC68010 installed

and the DeciGEL wedge running, your Amiga should be be

tween 8% and 50% faster. The speed difference will vary

depending on the software you are using. The largest advantage

will be noticed when doing a lot of number crunching, as with

spreadsheets, ray tracings and Mandelbrot picture generations.

To check that DeciGEL and your MC68010 are working cor

rectly together, retry the vl.l Calculator test described earlier.

This time you should not receive a Software Error, but will find

out that 9*9 is equal to 81.

If you do not get the expected results, recheck the cables and

connections. The following items are possibilities you should

check for:

1) You have installed the MC68010 the wrong way around.

2) The MC68010 is dead (i.e. no good)

3) You put the MC68000 back in by mistake

4) You have damaged something else inside your Amiga

I suggest that you first remove the MC68010 and reinstall the

MC68000. If your Amiga works with the MC68000 re-installed,

then odds are you have a dead MC68010. If your Amiga still

does not work I suggest you consult an authorized Amiga

service centre for help.

OF

KH

EC

GE

HI

AN

DN

JP

GC

JC

KN

continued from page 49.

410 jsr $ffcc ;closefile

420 jmp $e37b ;print ready

430;

440 drvnr = *

450 .byte 8 ; drive eight or nine

460 initfn = *

470 .asc " iO:" ; filename to

480; initialize drive 0

490 errtxt = *

500 .asc " evird kcehc"

510 .end

FD

NE

MD

LL

CA

OK

DM

NE

CL

ED

GN

JG

Kl

MF

DA

IE

IC

KP

IM

PA

HL

NG

PB

KO

FO

EJ

PD

CG

CP

KB

EP

DD

DE

HE

DJ

AP

ON

GO

GF

LB

AG

IN

GK

FO

BP

KO

MA

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

sys 700

; reac

; using

ithe jisk error channel

the symass 3

* = $033c

;

;

;

noerr

;

Ida

Idx

Idy

jsr

Ida

jsr

jsr

Idx

jsr

jsr

sta

jsr

sta

cmp

bne

and

bne

jsr

cmp

bne

jmp

; print error i

prnterr

loop

done

tempi

temp2

drvnr

.end

Ida

jsr

Ida

jsr

jsr

jsr

cmp

bne

jsr

Ida

jsr

jmp

nop

nop

.byte

#15

drvnr

#15

$ffba

#0

$ffbd

SffcO

#15

$ffc6

$ffe4

tempi

$ffe4

temp2

tempi

prnterr

#$0f

prnterr

$ffe4

#$0d

noerr

done

outine

tempi

$ffd2

temp2

$ffd2

$ffe4

$ffd2

#$0d

loop

$ffcc

#15

$ffc3

$e37b

8

.13 assembler

;file number

;device number

secondary address

;set parameters

;length of filename

;set filename

;open file

;#15-error file

;input from file 15

;get first char

;remember it

;get second char

;remember it

;compare#1 to #2

;if not = print error msg

;mask high nybble

;if not zero then print err

;no error so continue

;compare to return

;get character

;print to screen

;is it return

;no then loop

; reset i/o

;file#15

;close the file

; basic warm start

;either 8 or 9

The Transactor 52 September 1987: Volume 8, Issue O2



The Amiga Section:

Messages, Ports and Signals
Chris Zamara, Technical Editor

- Getting tasks to talk to one another is simple!

Introduction

Since the Amiga is a multitasking computer, there are always several

programs, known as "tasks" in the jargon of the operating system,

operating at any one time. Even if you just run a single program on

your Amiga, there are system tasks hard at work taking care of

things like the disk drives, keyboard and mouse input, and of course

the Workbench, if it has been started.

In order for these system tasks to communicate with the application

programs in the system, they use something called a message. A

message is a chunk of data that is sent to a receiving message port,

where it can be read by a task. More accurately, it is a chunk of

memory in the data segment of one task that can be accessed by

another task when the message is "sent" or "put" to a message port.

The mechanism for creating message ports and sending messages

is provided by Exec, the part of the operating system that handles

task-scheduling and other low-level operations.

Messages are not just used as a means of communication between

the system and application programs, however; any task in the

system can communicate with any other task in the same manner.

The C program presented here, "Talking Tasks", provides an

example of such inter-task communication, and shows how you can

send, receive, and reply to messages in your own programs.

What Messages are Used For

If you have written any programs using Intuition, the Amiga's user

interface system, you have already come in contact with reading

messages. Input from the user can be read by using Intuition's

1DCMP. IDCMP stands for Intuition Direct Communication Message

Port, and it lets a program find out about events that concern it, like

mouse movements, gadget clicks, and keyboard activity. The

IDCMP reports these events to a program as messages. The pro

gram waits for a message, then reads a message port to get the

information contained in the message. Once the program receives a

message, it replies so that whatever task sent the message knows it

was received and can change the message to send a new one.

In the "Talking Tasks" program, we will show a different use of

messages in order to illustrate the method for creating your own

message ports, finding an existing message port, and sending,

receiving and replying to messages. The program itself is not

extremely useful other than being a bit of fun, but it shows you how

you can write a program that can communicate with other copies of

itself that are in the system.

The most common use for message-passing between non-system

tasks is when a program spawns a new "child" task, and communi

cates with this task to tell it things like when to free its resources so

that it can be killed. We are not covering spawning a task in this

article, but there are still many applications where communication

between unrelated tasks can be useful. One interesting example

has been suggested by Jim Butterfield: a spelling-checker that runs

as a separate task, communicating with the text editor to check

words as they are entered. The text editor would just mind its own

business, but words would be automatically checked by the spelling

checker program that you run on its own. Even if you don't have an

immediate application for message-passing, it is important to learn

about messages and ports because they are so fundamental to the

operation of the Amiga in general.

The Details

Talking about sending a message to a message port sounds like

interesting theory, but what does it mean in terms of the computer's

real world of bits and memory locations? A message port can be

thought of as a place where messages are collected; in real terms it is

a "MsgPort" data structure sitting somewhere in memory. In this

data structure, among other things, is a pointer to the list of

messages that are currently at that port, waiting to be read. There is

also a "Node" structure so that Exec can maintain all message ports

in a linked list - one of the many lists managed by Exec using the

"Node" structure. The system will use the node when you ask it to

deal with the MsgPort list, for example when you add, delete, or

search for a specific message port. Besides the list node and the

pointer to the messages waiting at the port, a MsgPort contains

information about the signals for that port, which will be explained

later.

Here is the definition of a MsgPort structure:

struct MsgPort {

struct Node mp_Node; /* for system list management use

UBYTE mp_Flags; /* defines message-arrival action

UBYTE mp_SigBit; /* signal bit number

struct Task *mp_SigTask;/* task to be signalled

struct List mp_MsgList; /* points to linked list of messages

(For some background about data structures and their use in the

Amiga, see the article in the Transactor, Volume 7 Issue 5,

"Programming the Amiga".)

The Transactor 53 September 1987: Volume 8, Issue O2



Like the message port, the message itself is also a data structure

in memory. A message always starts with a "Message" structure,

but the message body after that can contain up to 64K of any

kind of information, depending on the application. This is the

Message structure definition:

struct Message {

struct Node mn_Node; /* for system list management use */

struct MsgPort *mn_ReplyPort;/* message reply port */

UWORD mn_Length; /* length of the message in bytes */

(The MsgPort and Message structure definitions are found in the

include file "exec/ports.h".)

You must put a Message structure at the top of any data structure

you wish to send as a message. For example, if you wished to

send a message containing an (x,y) coordinate, your structure

could look like this:

struct MyXYmsg {

struct Message AnyName;

short Xcoord, Ycoord;

};

The "Message" structure is the system linkage part of the

message, and the information following it is the body of the

message.

It is important to understand what happens when a message is

"sent" to a port. The data is not actually moved from one area of

memory to another; the port simply gets a pointer to the

message data. In other words, messages are passed by refer

ence, not by value. You can think of a message as a temporary

licence for another task to use a space in the data segment of

your task - you put the information you want in the message,

then allow the other task access to that information by sending

the message.

Since both the task sending the message and the task receiving

the message have access to the same data at the same time, it is

important that the sending task doesn't change the contents of

the message structure while the receiving task is trying to read

it. This is where message replying comes in. After sending a

message, a program generally waits for a reply from the task that

received it. A reply is just a message that the receiving task

sends to a designated port, called the reply port (the reply port

can be the same port that received the original message). After

sending the message, the sender should not modify the contents

of the message structure until it gets a reply; at that time, the

receiving task has finished with the message and should no

longer try to access data within it. The receiving task, on the

other hand, may change the message before it replies so that it

can send new information back to the sender.

To make things a little more concrete, here are algorithms that

could be used to send and receive messages.

In order to send a message to a specific port:

1) Create a port • port = CreatePort(name, priority)

or get a pointer to an existing port • port = FindPort(name)

2) Put desired data in a message structure

3) Send the message to the port • PutMsg(port, message)

4) (optional) Wait for the reply • WaitPort(ReplyPort)

5) (optional) read data in reply message • message =

GetMsg(ReplyPort)

In order to receive a message from a specific port:

1) Create a port • port = CreatePort(name, priority)

or get a pointer to an existing port • port = FindPort(name)

2) Wait for a message to arrive at the port • WaitPort(port)

3) Get a message from the port • message = GetMsg(port)

4) Read data of interest in the message

5) (optional) Reply to the message • ReplyMsg(message)

6) Do whatever action is dictated by the message data

7) Repeat 3 through 6 until there are no more messages

As you can see, the code required to send and receive messages

is not all that complicated, but you can get into trouble if you're

not careful. Remember that the data in a message should only

be changed by the task that currently has "ownership" of the

message. The task sending the message has ownership at all

times except after sending the message and before receiving the

reply. The task receiving the message has ownership only after

getting the message and before replying. After replying to a

message, you can make no assumptions about the validity of

data in the message you've just received. A common mistake is

something like:

msg = GetMsg(SomePort);

ReplyMsg(SomePort);

x = msg->something;

/* get the message */

/* reply to the sender */

/* uh-oh! Bad news! */

The correct approach would be to reverse the second and third

lines of code so that the desired data was fetched from the

message before the reply was given. Once you reply, do not

assume that the message still holds valid data - after the other

task got the reply, it may have changed the data in the message,

or released the memory used by the message back to the

system.

The Functions Used

Let's take a look at the functions that were introduced briefly in

the above section.

The CreatePort() function is not actually in the ROM kernal

itself, but is a short "exec support" routine that is in the library

"amiga.lib" ("c.lib" with the Aztec C compiler) and is linked with

your program. It takes as arguments the name (a pointer to a

string, or zero) and the priority of the port to be created (zero is

normally used). It returns a pointer to the port that it creates (a

pointer to a MsgPort structure). The function allocates a signal

bit for the port (more on signals later), allocates memory for a

MsgPort structure, initializes various fields in the MsgPort, and if

the name given was not NULL, adds the port to the system with

the AddPort() function so that other tasks can access it - this is

called a public port. Unless both communicating tasks have a

pointer to the message port being used (as is the case with

Intuition and an application program), a port should be made

public so that any task can use it just by knowing its name. You

The Transactor 54 September 1987: Volume 8, Issue O2



should try to ensure that the name you give to a public port is

unique so that there will be no conflicts with other tasks.

All ports created with CreatePort() must be deleted with Delete-

Port() before the task ends. DeletePort takes a pointer to the

port to be deleted as its only argument.

FindPort() returns a pointer to a port, given that port's name. If

no port with the given name can be found, it returns NULL

(zero). Using FindPort(), you can send messages to a port

created by another task, as long as you know the port name.

This only works with public ports (those given a name when

created with CreatePort(), or added with AddPort()).

PutMsg() sends a message to a port. It takes as arguments a

pointer to the port and a pointer to the message, respectively.

GetMsg() gets a message - if any - from the given port and

returns either a pointer to the message, or NULL if there are no

messages at the port. To get all messages from a port, you should

call GetMsg() until it returns NULL.

WaitPort() waits for a message to arrive at a given port, putting

the task to "sleep" until one arrives. A sleeping task uses no CPU

time. It returns a pointer to the first message to arrive at the port,

but there may be more than one message at the port after

WaitPort() returns. You should get all messages at the port after

a WaitPort(), as described above. WaitPort() does NOT remove

the message from the port, so you must do a GetMsg() after

wards to remove it.

ReplyMsg() sends the given message to its "Reply Port", a

pointer to which is contained in the Message structure. If you

wish to use ReplyMsg(), the 'mn_ReplyPort' field of the message

structure must contain a pointer to a port; the pointer is normally

put there when the message is prepared before it is sent. The

same port that the message was sent to may be used as the reply

port.

Signals

Just in case you feel disappointed because this topic is too simple

for you to work your brain around, here's some more nourish

ment for cerebral satisfaction. You don't have to know all about

signals to pass messages as described above, but this section

might answer a few questions that have arisen (and probably

create as many new ones!).

Signals are used to "wake up" a "sleeping" task. Each task has

up to 32 signal bits that it can use, and it can wait for any of these

signals to occur by using Exec's Wait() function. When a task is

waiting for a signal it uses no CPU time, so signals allow many

tasks to be active in the system at once, waiting for user input or

other external events, without slowing down other, hard

working tasks.

As you have probably guessed, signals play an important role in

message passing. When a task is waiting for a message (or a

reply to a message, which is no different), it is really waiting for a

given signal to occur.

For a better understanding of how signals relate to messages and

ports, let's take another look at the MsgPort structure, specifi

cally the fields called 'mp_Flags', 'mp_SigBit', and 'mp_SigTask'.

These fields are filled in when you create a port with the exec

support function CreatePort(). Exec uses the information found

in these fields in a port to determine what action to take when a

message arrives at that port. CreatePort() sets up the fields so

that your task is signalled when a message arrives at the port;

You can set up a port structure yourself and use AddPort()

instead of CreatePort() if you aren't going to use WaitPort() or

Wait() to wait for a message to arrive at the port, and thus don't

care about getting signalled.

Let's look at the fields one at a time:

UBYTE mp_Flags; /* defines message-arrival action */

Depending on the value in 'mp_Flags', Exec will do one of three

things when a message arrives at the port: generate a signal,

generate a software interrupt (software interrupts will not be

mentioned again in this article), or do nothing. The values

corresponding to these actions are the constants PA_SIGNAL,

PA_SOFTINT, and PAJGNORE, respectively (these are also

defined in the include file "exec/ports.h"). The CreatePort()

function uses PA_SIGNAL so that your task can sleep while

waiting for a message to arrive at the port.

UBYTE mp_SigBit; /* signal bit number ♦/

We mentioned the fact that there are 32 signals that any given

task can wait for. The 'mp_SigBit' field gives the number of the

signal bit that is set when a message arrives at the port (if the

PA_SIGNAL option is used). CreatePort() allocates a signal bit

and puts the newly-allocated signal bit's number in this field.

struct Task *mp_SigTask; /* task to be signalled */

Every task has its own set of signals. The 'mp_SigTask' field is a

pointer to the task that is to be signalled when a message arrives

at the port (again, this only applies if the PA_SIGNAL option is

chosen). CreatePort() fills this in with a pointer to the task that is

currently running, in other words, the task to signal is "me", or

"this task".

Waiting for Signals

Again, the above information is not necessary if you just want to

pass messages. Knowledge about the 'mp_SigBit' field, however,

is useful if you want a program to wait for messages arriving at

more than one port.

We have discussed the WaitPort() function, which will put your

task to sleep until a message arrives at the given port. An

alternative is the Wait() function, which allows you to wait for

one or more signals to occur. Wait() takes as an argument a bit-

mask defining which signals to wait for.

Since your task will receive a signal when a message arrives at a

port, and since the number of the signal is indicated by the

Bit field, you can use Wait() to wait on the signal instead

The Transactor 55 September 1987: Volume 8, Issue O2



of WaitPort() to wait on the port. For example, to wait for a

message to arrive at the port "Smurf" (the name of a pointer to a

MsgPort structure), you could use:

or,
WaitPort(Smurf);

Wait(1 L « Smurf->mp_SigBit);

The latter statement has the same effect, but takes the signal bit

as an argument instead of a pointer to the port. The advantage is

that you can wait on several ports simply by using the bitwise

OR of the signal bits in each port. For example, to wait for a

message arriving at any of the ports "Smurf", "ThisPort", or

"ThatPort":

Wait ((1L « Smurf->mp_SigBit) |

(1L « ThisPort->mp_SigBit) |

(1L « ThatPort->mp_SigBit))

You could then get any messages from all three ports and

handle them in the usual way.

The Talking Tasks Program

Now comes the practical (sort of) application of the concepts

we've covered. The program that appears in the accompanying

listing puts everything together and illustrates message passing

for both the programmer studying the source code and the user

playing with the program itself.

Talking Tasks, as it is called, lets you create a community of

tasks, each with its own name, and each with its own window.

Each copy of the Talking Tasks program that is running has the

ability to "talk" with any other copy by sending typed messages.

Also, all talking tasks have access to a public message port

called "Joe's Cafe", where they can discover how many talking

tasks are currently running and use this information to deter

mine the best place to put their window so that all windows will

come up in a different location without having to be dragged

around by the user.

To use the program, enter, compile and link the C program

listed, or otherwise get an executable copy of the program on

disk. (Transactor programs tend to spread around, thanks to our

public-domain software policy.) This version was compiled with

Manx Aztec C v3.40a - it will most likely work with Lattice, but

hasn't been tested with that compiler. Also, it works with VI.2

Kickstart/WorkBench; it should also work with VI. 1 but it

hasn't been tested with that version. The executable version of

the program should be called "ttalk" on disk for quick typing.

Ttalk should be run from the CLI using the RUN command so

that the CLI will still be available to run more ttalks. Ttalk takes

one argument, which is the name you would like to give that

talking task. As an example, to create a small community of four

talking tasks, you could type the following commands from CLI

(make sure the "ttalk" program is in your current directory).

run ttalk Ernie

run ttalk Edna

run ttalk Jimmy

run ttalk Bertha

(You'll have to click on the CLI window after each RUN to re

activate it.)

Notice that the small window for each program comes up in a

different place, even though you are running the same program

each time - your first indication that the tasks are indeed talking

with each other in some way.

Now, let's say you want Ernie to talk with Edna. Activate Ernie's

window (his name will be in the window's title bar) by clicking

with the mouse, then address Edna and type your message,

something like this:

Edna.Gee you look lovely today.

You will see within Edna's window that she did indeed receive

this flattering message from Ernie, and the message printed in

Ernie's window indicates that Edna acknowledged the message

- Ernie knows that his kind words were not falling on deaf ears.

Edna can now send a message back to Ernie, or anyone can

send a message to anyone. For example:

(click in Edna's window) Ernie.Get lost, creep!

(click in Jimmy's window) Ernie,Hi pal. How's life?

(click in Ernie's window) Bertha, Hey baby, love your nails,

(click in Bertha's window) Ernie,You Scorpios are all alike!

Well, it's not impossible that eventually this great fun may wear

out, but the point is clearly made: separate tasks are getting

messages across to each other, and are also sharing some

common data to determine where to put their window. While

you're having fun, try sending a message to someone who

doesn't exist (don't worry, it's safe); try giving talking tasks

duplicate names; try sending a message to "Joe's Cafe"; sending

a message to "yourself".

To kill a talking task, just press return without entering any text.

How It Works

There are two kinds of communication going on among the

talking tasks: the direct sending of messages from one task to

another, and the sharing of information by all talking tasks at the

port called "Joe's Cafe".

Joe's Cafe is used so that when a talking task is first run, it can

find out how many others are already running and can use this

information to decide on a reasonable place to put its window.

The function HowMany() determines the number as follows: It

looks for Joe's Cafe using FindPort(). If it is not found, it creates

Joe's Cafe by allocating space for a MsgPort structure, filling it in,

then using AddPort() to make it public. There is no need to use

CreatePort() in this instance, since a signal is not needed for the

port, as there will be no waiting for a message to arrive. A

message is then created that contains the mandatory "Message"

structure followed by an integer used to store the number of

talking tasks currently running. This count is initialized to zero,

and the message is put to the Joe's Cafe port with PutMsg().

If Joe's Cafe already exists (it was found with FindPort()), then

the message is read with GetMsg(), the count in the message is

The Transactor 56 September 1987: Volume 8, Issue O2



looked up and incremented, and the message with the new

count is put back to the port for the next talking tasks to look at.

Just as the first talking task to be run creates Joe's Cafe, the last

one to exit removes it. The port is called Joe's Cafe because it is a

place where all talking tasks hang out.

While only the first task to be run creates the Joe's Cafe port,

every task creates a port of its own, using the name given by the

user when the program was run from the CLI. So, the name of

Edna's port is "Edna", and now you can probably guess the port

names of the characters in any given talking task community.

This port will be used to receive messages sent by other talking

tasks, and to receive replies to messages sent to others. Unlike

Joe's Cafe, this port is created with the CreatePort() function,

since it not only needs to be public, but it also needs to use a

signal so that WaitPort() can be used to wait for replies.

After HowMany() has been called to find the number of talking

tasks currently living in the community and the message port

has been created, a DOS file is opened to create the window

used for text input and output. The filename is picked based on

the number of tasks there are, so that the window will be in a

different place every time the program is run, repeating posi

tions every six times (each window takes up one sixth of a 640

by 200 screen).

Now comes the hard part: the program must wait for input typed

into the window by the user AND wait for any messages arriving

at the port. If WaitPort() were used to wait for messages, user

input would be ignored, and if Read() were used to get input,

messages would be ignored. A simple approach is used to solve

this problem: the DOS function WaitForChar() is used to wait up

to a tenth of a second for a character to be typed by the user. If a

character is typed, Read() is called to read the text entered by

the user, and the text is passed to a function called SendString()

to be processed. Whether text was entered within the 1/10—

second time frame or not, the message port is checked for

messages with GetMsg(). Messages are read until no more are

found at the port. For each message read from the port, the

name of the sender and the text sent are read from the message

body and printed to the window for the user to see. This loop

repeats continuously until a single newline is typed, ending the

program.

This might not be the most high-performance way to read user

input and messages from a port, but it works well and has no

noticeable effect on system performance. If you wish, the 1/10

second time can be increased (by increasing the value passed to

WaitForChar()) to make less demand on the CPU when the

program is sitting idle.

When something is typed by the user, the string is passed to

SendString(), which splits it into the name (the text before the

first comma) and the message, then calls SendMessage(). Send-

Message() looks for the port with the given name using Find-

Port(). If the port is not found an error message is printed, and if

it is found, a message is prepared and sent to the port. The kind

of message structure used is called "MyMessage" and is defined

near the beginning of the program listing. A "MyMessage"

structure has the usual "Message" structure at the top, then has

two pointers to strings: the name of the sender of the message,

and the text that is to be sent. An instance of a MyMessage

structure simply called "message" is declared in the SendMes-

sage() function. This structure is filled in with the proper data,

then sent to the previously-found port using PutMsg(). Wait-

Port() is then used to wait for a reply, and the reply message is

removed from the reply port with GetMsg(). A line of text is

printed to the window telling the user that the reply was

received.

That's all there is to it. Look at the program listing to get a better

idea of how everything's done; the code is easy to understand

and well-commented. With the program as a sample and this

article, you should have no trouble using messages and ports in

your own programs. Not only will you have new ways to solve

programming problems, but you will have learned about a

fundamental mechanism within the Amiga's system software,

and will come one step closer to mastering the machine.

/* "TTalk" - Talking Tasks

* - programming example using messages and ports

* (C) 1987 Transactor Publishing Inc.

* From Transactor Magazine, written By Chris Zamara, May 1987

* » This program may be freely distributed «

*

* This code shows you how to create and find message ports, and how

* to send, receive, and reply to messages.

* This program," TTalk", lets you create several named DOS windows, and send

* messages between them. Just give each task its name when you run it

* from the CLI, e.g. " run TTalk Fred". If you then start another task,

* like " run TTalk Edna", you can send Edna a message from Fred by typing

* into Fred's window something like," Edna, you look lovely today!"

* Edna will receive the message and print it in her window. Any number

* of these tasks can be started, and any one can talk to any other.

* How it works: A message port is created and given the name that the user

* supplies (the name in the window title). To send a message to another task,

* its port is found with FindPort(), a message is sent to the port with

* PutMsg(), and a reply is waited for with WaitPort(). Within the message is

* a pointer to the text that the user wanted to send. The receiving task

* uses GetMsg() in between waiting for keypresses to receive the message.

* All talking tasks also have access to a public port called " Joe's Cafe",

* where they read a message saying how many talking tasks are running, and

* update the message when they are started and ended. By talking at Joe's

* Cafe, the talking tasks can determine a good place to put their window so

* that the user doesn't have to always move around overlapping windows. The

* first task started creates the " Joe's Cafe" port and the first message

* there, and the last task ended deletes them.

* compiled with Manx Aztec 3.40a, should work with Lattice as well.

*/

#include <exec/types.h>

#include <exec/memory.h>

#include <exec/ports.h>

finclude <libraries/dos.h>

/* Print macro used to send a string to the output window */

Idefine Print(s) WriteflOfile, (s), (long)strlen(s))

#define BUFLEN 200 /* length of input buffer for user text entry */

/* this is the structure for the message we will be sending */

struct MyMessage {

struct Message Msg; /* for Exec message routines */

char *NameOfSender; /* sender puts his name here */

The Transactor 57 September 1987: Volume 8, Issue O2



char *text; /* the text we want to send

/* this is the kind of message we will use to

* determine how many talking tasks are currently running

*/

struct CountMsg {

struct Message Msg;

int Count;

/* external function declarations */

extern BPTR OpenQ;

extern ULONGRead();

extern UBYTE •AllocMemQ;

extern struct MsgPort *CreatePort(), *FindPort();

extern struct MyMessage *GetMsg();

/* global variables */

char *MyName;

struct MsgPort *MyPort = NULL;

struct MsgPort *TTport;

char *TTportName = ' 'Joe's Cafe'

struct CountMsg *TTmsg;

BPTR lOfile = NULL;

/* ptr to name given to this 'talking task'

/* message port for sending/receiving msgs

/* port shared by all Talking Tasks

; /• name of TTport, where they all hang out

/* the message we'll leave at Joe's Cafe

/* DOS file handle for the terminal window

/***** start of main() I1*********************************************/

main (argc, argv)

int argc;

char *«argv;

{
/* give user instructions and exit if invalid args passed */

if {argc! = 21| strlen(argv[1]) > 30)

{
printf(' 'Run me with a name, like: 'run %s Ernie'\n'', argv[0]);

exit(O);

}
MyName = argv[1]; /* first argument is name given to this 'talking task' */

/* open DOS window, create ports, etc. and return TRUE if successful */

if(OpenStuff())

Handlelnput(); /• get input, send and read messages until user exits */

CloseStuff();

/*OpenStuff() ************************************** • *..

* create 'MyPort' message port, call HowManyQ and open DOS window

*/

OpenStuff ()

{
static char windowName[50]; /* holds filename for DOS' 'con:1' window */

/* this array is used to choose an appropriate window position */

static char *conNames[] = {' 'con:0/0/319/65/'' ,' 'con:320/0/319/65/'',

' 'con:0/67/319/65/'',' 'con:320/67/319/65/'',

' 'con:0/134/319/65/'',' 'con:320/134/319/65/'

};
/* see if a message port with the given name already exists */

if(FindPort(MyName))

{
printff 'Hey, there's already someone here called '%s'!\n'', MyName);

return (int)FALSE;

}
/* set up a message port with the given name and get a pointer to it */

MyPort = CreatePort(MyName, 0L);

if(MyPort = = NULL)

{
printff 'can't open '%s' port!\n'', MyName);

return (int)FALSE;

}
/* the number of talking tasks running determines where to put the window */

strcpy(windowName, conNames[HowMany() °/o 6]);

strcat(windowName, MyName); /* 'MyName' is title for DOS window */

lOfile = Open(windowName, MODE_NEWFILE); /* open DOS window for user

I/O*/

if (lOfile = = NULL) /* file didn't open for some reason */

return (int)FALSE;

/* print some instructions«/

Printf '(send message with <name,message.. >)'');

return (int)TRUE; /* everything opened OK»/

/*CloseStuff()*****************************************************

* Undo what OpenStuff() and HowManyQ did

*/

*/ CloseStuff()

*l {
*l if (lOfile)

*/ Close(IOfile); /* close DOS window if open */

*/ /* decrease count in TTport message, remove port if count is zero */

*/ if (TTport = FindPortfTTportName))

{
TTmsg = (struct CountMsg *)GetMsg(TTport);

if (TTmsg->Count—) /* still more talking tasks, don't remove port */

PutMsgfTTport, TTmsg); /* put back message with decreased count */

else

{ /* we're the last talking task, remove TTport and TTmsg */

RemPortfTTporf); /* remove the port */

FreeMemfTTmsg, (ULONG)sizeof(*TTmsg));

FreeMem(TTport->mp_Node.ln_Name, (ULONG)(strlen(TTportName) + 1));

FreeMemfTTport, (ULONG)sizeof(*TTport));

if (MyPort)

DeletePort(MyPort); /* delete our main message port */

/* HandlelnputQ ****************************************************

* Get user input from window and any messages arriving at MyPort.

«Text from the user is passed to SendMessage().

* Print text field of incoming messages, then reply to message.

* Returns when user inputs a null text line.

•/

HandlelnputQ

{
char lnputBuffer[BUFLEN];

BOOLexit_flag = FALSE;

struct MyMessage *msg;

/* We want to get keyboard input from the user AND get messages arriving

♦ at our message port, and we don't want to waste much CPU time.

• So we WaitForChar() and if no character is received within 1/10

* second, we read the message port, process any messages there, and try

* again. This way we only GetMsg() every 1 /10 second, which is cheap.

*/

while (exiUlag = = FALSE)

{
if (WaitForChar(IOfile, 100000)) /* wait up to 1/10 second (in micros) */

{
/* read an input line and send the message */

if (Read(IOfile, InputBuffer, (long)BUFLEN)> 1)

SendString(lnputBuffer);

else

The Transactor 58 September 1987: Volume 8, Issue O2



exitjlag = TRUE; /* newline bv itself means user exit */

}
/• now handle any messages for us at the port */

while (msg = GetMsg(MyPort)) /* loop until all messages processed */

{
Printf 'A message from'');

Print(msg->NameOfSender):

Print(":\nV");

Print(msg->text);

Prime 'V V');
/* We took care of the message, now reply to it. •/

ReplyMsg(msg);

/* SendString(text) ********************************************

* Split the given string into two strings at first comma

* and call SendMessageQ with the resultant strings.

* Print error message if no comma found.

♦/

SendString (text)

char *text;

{
int NamePos;

NamePos = SearchChar(text,',', BUFLEN); /* check for comma */

if (NamePos = = BUFLEN) /* no comma*/

Printf '(send message with <name,message.. >)'');

else

{ /* split string into two and give strings to SendMessageQ */

text[NamePos] = '\0';

text[SearchChar(text, '\n', BUFLEN)] = '\0';

SendMessage(text, text + NamePos + 1);

/* SendMessage(name, msgstring) ********************************

* Given a port name and a text string, find the port and send a

* message containing the string to it, and wait for a reply.

»/

SendMessage (name, msgstring)

char *name, *msgstring;

{
struct MsgPort *HisPort;

struct MyMessage message;

HisPort = FindPort(name); /* look for other fellow's message port */

if (HisPort = = NULL) /♦ NULL means port couldn't be found */

{
Print(' 'Can't find'');

Print(name);

Print(' r!\n'');

}
/* error if message being sent to ourselves */

else if (strcmp(name, MyName) = = 0)

Printf Talking to myself... OK!\n'');

else if (strcmp(name, TTportName) = = 0)

{/* don't send to Joe's cafe!! */

Printf 'Oh no you don't!\nHumans aren't allowed at'');

PrintfTTportName);

Printf '.\n'');

}
else /* everything's OK, prepare the message and send it to his port */

{

message.Msg.mn_Node.ln_Type = NT_MESSAGE;

message. Msg.mn_Length = sizeof(message);

message.Msg.mn_ReplyPort = MyPort;

message. NameOfSender = MyName;

message.text = msgstring;

PutMsg(HisPort, &message);

WaitPort(MyPort);

GetMsg(MyPort);

Printf ' <Got acknowledgement from '');

Print(name);

Printf >\n'');

/* for Exec list handling */

/* number of bytes in msg •/

/* so receiver can reply */

/* tell him who sent it */

/* our text string to send */

/* send the message */

/* wait for a reply */

/* remove reply from port */

/* tell user we got reply */

/* SearchChar(string, chr, n) *****************************

* find character 'chr' in 'string', searching up to n characters

* return n if character not found

*/

SearchChar (string, chr, n)

char *string;

int chr, n;

{
inti;

for (i = 0; i < n && stringfj]! = chr; i + +)

return (i);

/* HowMany() ***************************************************

* Determines how many 'talking tasks' are currently in the system. Look for

* a port named TTportName (Joe's Cafe). If it exists, get a 'CountMsg'

* message from it, read the count, increment it and put the message back. If

* the port doesn't exist, create it and put a message there with the count

* field set to zero. Return the value of the count.

*l

HowManyQ

{
int count;

if (TTport = FindPortfTTportName))

{
TTmsg = (struct CountMsg *)GetMsg(TTport); /* get message... */

count = + +TTmsg->Count; /* bump count... */

PutMsg(TTport, TTmsg); /* and put it back */

}
else

{ /* port not there, we are first talking task - create the port •/

TTport = (struct MsgPort *)AllocMem((ULONG)sizeof(*TTport), MEMF_PUBLIC);

TTport->mp_Node.ln_Name = (char *)

AllocMem((ULONG)(strlen(TTportName) + 1), MEMF.PUBLIC);

strcpy(TTport->mp_Node.ln_Name, TTportName);

TTport->mp_Node.ln_Pri = 0;

TTport->mp_Node.ln_Type = NT_MSGPORT;

TTport->mp_Flags = PAJGNORE;

AddPortfTTport); /* make the port public so all tasks have access */

/* now create the message to put in the port (Joe's Cafe) */

TTmsg = (struct CountMsg •)AllocMem((ULONG)sizeof(<TTmsg), MEMF_PUBLIC);

TTmsg->Msg.mn_Node.ln_Type = NT_MESSAGE; /* for Exec list handling */

TTmsg~>Msg.mn_Length = sizeof(*TTmsg); /* number of bytes in msg */

TTmsg->Msg.mn_ReplyPort = NULL; /* no reply port required */

TTmsg->Count = count = 0; /* start count at zero */

PutMsgfTTport, TTmsg); /* leave a message at Joe's Cafe for everyone */

}
return count;

The Transactor 59 September 1987: Volume 8, Issue O2



Amiga Dispatches
by Tim Grantham, Toronto, Ontario

Rattigan wrongigan?

Shepherd led the flock astray?

Reign of Error over?

Such were the lurid headlines that flashed through my mind when 1

heard the news of the latest corporate spasm at CBM. 1 mean, really, it's

getting to be worse than Dallas. Big Daddy Gould ('Irving' to his friends

and detractors) stepped in and forced CEO Thomas Rattigan, who had

just had his contract renewed for five years, to resign after having had

him physically escorted from Commodore HQ. Vice-President Nigel

Shepherd was also dismissed.

The official reason was that Rattigan had let the US market deteriorate

to the point where West Germany had become CBM's biggest source of

customers. That he had also overseen CBM's return from the brink of

bankruptcy to profitability in the last three quarters apparently counted

for naught.

Commodore's European and Canadian operations have almost always

done well — it's the US that has proved to be their Achilles heel. This

may be the rationale behind Rattigan's and Shepherd's replacements:

Alfred Duncan and Richard Mclntyre. Each has been a chief of CBM

Canada and Duncan also headed up the Italian branch. With Gould

acting as CEO, it is hoped that they will help CBM find the golden touch

once more in the US.

Rattigan is suing CBM for $9 million, the claimed worth of his now

defunct contract. CBM's stock has dropped in price from $12 to $10.

The recent change in the announced prices of the Amiga 500 and 2000

may be the result of this management shakeup. The 500 has increased

$50 (US) to $700, $200 more if you want 1 Mb, and the 2000 has

jumped a whopping $500 to $2000.

Naturally, I'm disappointed in the higher price of the 2000. However, I

think it may be a smart thinking on the part of CBM, for several

reasons. One, those who have the need and the bucks for hard drives,

bridge cards, 68020/68881 cards, et cetera, that can be easily added to

the 2000, will not balk at paying an extra $500 — they're still getting a

very high performance machine for less than two grand. Second, and

more important from a strategic viewpoint, it will make it more

attractive to dealers. I suspect a large portion of that extra $500 will be

passed on as markup. Not only does it give dealers more room for

competitive pricing, it provides the revenue they will need to pay for the

support buyers of the 2000 will demand. If CBM is indeed serious about

rehabilitating their dealer network in the US, they will also improve

their technical support, their advertising and their product availability.

The new pricing also evens out the Amiga product profile, placing the

500 where it can still compete with the Atari ST as a home computer,

the 2000 where it can provide the power required by the business and

the professional user, and the 1000 squarely in the middle as an

advanced personal computer that can still fulfill it's initial promise as a

tool for creative computerists.

Meanwhile, in-house development has not come to a standstill. 1.3 of

the Amiga OS is being written and is reported to consist mostly of

further optimization and the ability to boot from a hard drive (a new

boot ROM might need to be installed for this). Don't expect to see it

soon. Tim King, the author of AmigaDOS, is apparently busy rewriting

the BCPL code into assembly language, making it faster and easier to

interface with. A custom memory management unit for the 2000,

required to run UNIX, is being put into silicon as you read this. Last,

and not least: although CBM shut down their Commodore-Amiga

headquarters in Los Gatos and terminated all but two of theemployees,

they have opened a small C-A office in that city. There, Bart White-

book, Manager of Amiga ROM Software, has been joined by Dale Luck

and Carol Havis, Manager of Third Party Software (and also spouse of

R. J. Mical and mother of Alexander Jose Mical). They are charged with

maintaining, enhancing and developing the ROM software. It's good to

see that CBM has not completely shut down R&D.

Shareware and the Public Domain

There is no doubt in my mind that the very high quality of Shareware

and PD software for the Amiga has contributed significantly to its

survival. The Fish collection, the Amicus library, even our first Transac

tor Amiga disk, have filled in the gap between expensive commercial

offerings and homebrew AmigaBasic programs. They have provided

not only useful software at low cost but absolutely invaluable program

ming info in the (usually) accompanying source code.

However, I don't think this will continue, at least not at the same level.

The unfortunate reality is that those who have relied on the honesty of

others are not getting their just reward. Authors like Hayes Haugen

(Blitz!, Blitzfonts), Rick Stiles (Uedit) and the Software Distillery

(PopCLI, Blink, Hack, Lain) have seen little return on the faith they

have placed in the Amiga user. If you want 'em, folks, ya gotta pay for

'em. TANSTAAFL.

My personal favourites out of the current crop, besides the aforemen

tioned ones, are conman, by William S. Hawes, and Steve Drew's

aux2.

The former slips into the CON: device and provides a command history

and line editing. Any program thereafter that uses the CON: device will

also have these features. It's not nearly as powerful as Matt Dillon's csh

C shell, but it takes no time to learn, uses a miniscule amount of

memory and I couldn't live without it.

aux2 sets up an AUX: device on the serial port. Another user can

connect a terminal, either directly or via modems, and operate the

Amiga remotely on a CL1 opened on the serial port — thus fulfilling,

within limitations, the original promise of the Amiga as a multi-user

machine. You will not get Amiga graphics on the terminal's screen. For

example, you can call up a new CL! by entering the newcli command,

but the new window will be appear on the host Amiga. CLI's only deal

with character data. Only those programs that use stdin, stdout and

stderr will work directly with the terminal.

The Transactor 6O September 1987: Volume 8, Issue O2



So what's it good for? Currently, not a great deal. One could probably

play text-only adventure games remotely. You could compile a C

program remotely — though all your source, include and link files

would have to be on the host machine. (If your terminal program had a

buffer send function, you could upload your source code by entering

copy * to dfhtest.c). You could snoop in your friend's files, or your

own when you're on a trip. But until there are Amiga programs that

send to/receive from a terminal-type device, it's not going to be of

great use.

Nevertheless, it works, it has potential and it's impressive. Anybody out

there have other ideas for it? Let me know.

(Michael Rosenberg, of Conceptual Computing here in Toronto, has

written a much more elaborate system that combines several modules

to permit an unlimited number of terminals to be hung on the serial

port, via a multiplexer. Each terminal can open multiple windows and

run multiple tasks. Each 'window' on a terminal consists of a screen;

they cannot be resized. They can, however, be pushed behind each

other. The programs run must be text-based, but Rosenberg's software

permits input/output redirection between programs and more sophisti

cated editing capabilities than aux2. Ed, for example, can be run

remotely on multiple terminals, providing enough memory is available

on the host Amiga. Rosenberg expects that most of those interested in

his system will be writing their own application software. The complete

package costs $150 (Can.) For more info, you can reach Rosenberg at

(416)781-7742.)

Not quite in the headline category are demo versions of commercial

software. These can still be useful, even though they are usually

crippled to some extent. Disk2Disk, for example, is from Central

Coast Software, the same people who wrote Dos2Dos. Disk2Disk

can transfer files between AmigaDOS disks and 1541/71 disks for the

the C64/128. Note that it cannot run these programs — you would

need a C64 emulator for that. But you can copy, read, list. . . There is

also a feature that will check incompatibilities between Commodore

BASIC programs and AmigaBasic programs. I've been able to use it to

remind myself of all the things I could do on my C64. It costs $49.95

(US).

And now, hot off the nets.. .

ACO, developed by a team headed by Steve Pietrowicz (CBM STEVE of

PeopleLink's Amiga Zone), in an Amiga online conferencing program

inspired by VMCO for the Mac. It can be downloaded from Plink. . .

Mike Plitkins and Ralph Navarro of Top Disk Software are hard at work

on a CP/M emulator. . . There are new versions of Electronic Arts'

Deluxe Music Construction Set and Deluxe Video Construc

tion Set out. Bugs have been reported, particularly when using them

with hard disks. EA is following them up with fixes. . .

Data Pacific is working on an external disk drive that attaches to the

serial port to read Mac disks.. . Look for DesignText, an $80 (US)

word processor from Brian Niessen's group in Vancouver. .. PageSet-

ter appears to be getting good response from its owners. They now

have a PostScript utility available and have made their PagePrint

freely copyable; you can expect to see user group newletters being

distributed electronically in PageSetter format. .. Morerows is a

neat little PD program that enlarges the available screen area for

printing. You can now have a full 80 columns in your CLI... Word

Perfect is finally due to arrive this summer. It won't be cheap, but it

will be powerful. Response from beta testers has been very positive.. .

Starglider, by England's Jez San, has crossed the ocean at last.. .

Oxxi has a new version of MaxiPlan Plus ready and Marco Papa has

introduced A-Talk Plus which, among other things, adds Tektronix

terminal emulation. .. Joe Lowery of New York is busy organizing

AmiExpo, which will take place October 10-12, 1987 at the Sheraton

Hotel in the Big Apple. It will be followed by an LA version Jan. 22-24

and a Chicago appearance July 22-24, both in 1988. . . Excellent

Amiga book: Programmer's Guide to the Amiga, by Rob Peck, a

member of the original Los Gatos development team. It's published by

Sybex.

Amiga-Tax ($59.95) is a Canadian income tax calculation program

from Imagec Software Productions. I used it to check my own return, it

did everything perfectly, until it got to Schedule 1, the detailed tax

calculation. Here, unfortunately, it inverted two numbers on the second

line, the end result being that it said 1 owed less tax than 1 had paid. In

addition, my copy had a major bug in the tax records forms. This

appears to be a well thought-out, carefully implemented program.

However, those who tackle this kind of task have to be extra careful. If it

can't be trusted right from the word go, it won't be bought.

The new version of Online! (2.00) adds Kermit protocol and autochop,

among other features. Owners of earlier versions can upgrade for a

small fee. Note that publishers Micro Systems Software have changed

their address. Their new technical support number is (305) 790-0772.

Perhaps they'll be able to help me. I have the new version of Scribble!,

the word processor for the Amiga. It has a number of improvements,

but has taken a step backwards in its support of multiple windows. In

the previous version, I could have a full four windows open, although

sometimes there apparently wasn't enough memory for the directory

requester. Now it's totally inconsistent: I can call up a 100k buffer from

the CLI, but not from within the program. I managed to get two 64K

buffers open, but no directory requesters. I opened a 30k buffer and a

16k buffer but could only call up the directory requester once. I was not

able to open any more than two buffers at any time. If there has been a

fix to this, MSS has not attempted to contact me and I'm a registered

A new role for the Amiga?

I'd like to finish up with a speculation.

Current Amiga owners have a high degree of computer literacy. Despite

efforts to make it a friendly machine, its power and its price have placed

it out of reach of the home computerist. Whether that will change with

the introduction of the 500 is debatable, although I hope and believe it

will. Where the Amiga will find a niche, is in the narrowing gap

between high-end personal computers and low-end engineering and

graphic workstations. The Sun systems, for example, were originally

designed and marketed as technical workstations. Yet, some 300 third-

party business and desktop publishing programs have been developed

for it. Meanwhile, the Mackintosh II has obviously been aimed at the

workstation market and IBM's Personal System 2 will eventually have a

windowing interface on a multitasking OS.

It's becoming apparent that users want high resolution, colour graphics

for their personal computer in addition to speed and multitasking. The

Amiga places this kind of power in the hands of humble individuals like

me and you. It has the multitasking and windowing interface of the

workstation and the low cost, mass market appeal of the personal

computer.

I think that the most important development for the Amiga, then, will

be in the areas previously dominated by much more expensive ma

chines: computer-aided design, computer-aided engineering, artificial

intelligence, audio-visual control, animation and publishing.

Try to remember that prophecy for the next five years and check my

prognostication.

Any comments? Send them to me c/o The Transactor, on CompuServe

71426,1646 or PeopleLink AMTAG.

The Transactor 61 September 1987: Volume 8, Issue 02



Mr. Ed

A Modular Text Editor For The Commodore 64

Chris Miller

Kitchener, Ontario

About Mr. Ed

Mr. Ed is an ASCII source editor/word processor. With it you will

be able to create and modify large bodies of text effortlessly. The

format of this text is very simple: only a carriage return, ie.

CHR$(13), separates one line from the next. There is no tokeni-

zation, and no line numbering or link addressing as is the case

with source written on the Basic editor. There is also no wasted

or filler space as is the case with many word processors.

Assembly language source written on Mr. Ed will require less

memory than if it had been written in Basic style. Converting an

assembler like SYMASS to handle this source would be an easy

thing to do indeed and probably reduce the complexity, while

increasing the speed and reliability, of the program.

Mr. Ed is designed to provide a springboard for individuals who

would like to create their own custom, top notch text editing

environment without all the grind-work and nit-picking and

preparation involved in laying a foundation.

What You Get

Although Mr. Ed is just less than 1K of code it is in some respects

already a fairly sophisticated little package. Full bi-directional,

four-way scrolling and paging is supported. Lines may be up to

250 characters long. The effect is like typing on a very long,

wide document. Your screen "window" to this document moves

side to side or up and down as you require.

The Status Line

The current line and column of the cursor and the number of

free bytes of memory remaining are constantly updated on the

status line at the top of the screen. The number of lines available

is not fixed as with most word processors but depends on their

average length; a blank line requires only one byte of memory.

You can type right out to column 250. Just under 39,000 bytes

will normally be available as work space.

Loading and Saving Text

Text may be loaded and saved via the Basic LOAD/SAVE

"FILENAME",8 commands. Pressing RUN/STOP while in the

editor will automatically return you to Basic where these or any

immediate commands may be given. The Basic command

"ED"<RETURN> will recall Mr. Ed with old source or newly

LOAD'ed source in memory.

Editing Commands

1. The CRSR keys work pretty much the way you would expect.

Use them to move (the cursor) or scroll (the window) up, down,

left and right. You cannot CRSR out of the range of entered text.

2. The INST/DEL key is used to insert and delete one character

at a time just the way it is in Basic.

3. The RETURN key is non-destructive and does nothing but

advance you to the next line.

4. Fl deletes whole lines to the right and can be used to join two

lines as well.

5. F2 inserts a line, ie. a CHR$(13). It can be used to split a line in

two as well as open up space.

6. F3 and F4 allow vertical page scrolling. F3 takes you down

and F4 up one screen at a time.

7. F5 and F6 control horizontal paging.F5 moves you one screen

to the right and F6 one screen to the left.

8. RUN/STOP exits to Basic where any immediate commands

may be used. ED<RETURN> will put you back in the editor.

Going up or down to a new line always places you at the

beginning of it, ie. full window left.

If you would rather have other keys do these things simply

replace their character values in the command list at the end of

the code with ones of your choosing.

Tricks With Memory

Mr. Ed uses Basic pointers to define its own work space.

Therefore you should always use the Basic NEW command

before calling Mr. Ed for the first time, or to clear old text.

Utilities which lower the top of Basic (55-56) will also be safe

from Mr. Ed. You may create space for Basic programs by raising

the bottom of Basic (43-44) before invoking Mr. Ed. The last

byte of text entered will be pointed to by Basic's SOV pointer

(45-46) during and following any work session.

Check It Out

LOAD"MR.ED",8,1 ;to put the machine code in memory

NEW ; just to clear some of Basic's pointers

SYS52000 ; runs the program

The Transactor 62 September 1987: Volume 8, Issue O2



LM

JC

JB

LB

AO

ME

CN

MC

BF

KG

OC

BP

100

110

120

130

140

150

160

170

180

190

200

210

Use Mr. Ed to write a letter to your Grandma. Mr. Ed is a What-

You-See-Is-What-You-Get word processor. As you type past

column 40 the screen window scrolls along with you. Don't type

past column 80 if your printer can't handle it.

Printing Text

When you're all done press Run/Stop to return to Basic. Next,

SAVE " LETTER " ,8

Now run the following short Basic program with your printer on.

Don't bother typing the REM statements.

i pg = 55: rem lines per page

i open 4,4,7

i open 5,8,5,"letter"

i get#5,a$

x = st: rem save status

print#4,a$;

■ if a$ = chr$(13) then Ic = Ic +1

if IcOpg then 200

getk$: if k$ = "" then 180

Ic = 0: rem initialize line count

if x<>64 then 130

print#4: close4: close5

Your letter will be printed exactly the way it appeared on screen.

Tomorrow you can LOAD "LETTER",8 back in and modify it a

bit for your other Granny.

The above program could just as easily be written in assembler

by anyone familiar with Kernal Rom. It would run quite a bit

faster and could even be added as a command to Mr. Ed.

Season To Taste

Those who copy or otherwise acquire the source for Mr.Ed will

be able to modify screen and text colours, screen window size

and position, paging distances, maximum line size, and much

more just by changing a few constants.

Create Your Own Recipes

The beauty of Mr. Ed lies in its highly structured design, and in

its compactness and compatibility with Basic. New commands

can be added to the source almost effortlessly. To introduce a

new feature simply tack on, to the command list at the end of the

source, the character value of any key press followed by the

address-1 of the routine you would like executed when this key

is pressed. A normal RTS from your routine will return control to

Mr.Ed's main key scan loop.

Let The Fun Begin

My favourite phase of program development comes when all the

fuss work is done and further coding involves primarily macro-

like calls to existing routines. A little programming can go a very

long way at this point and debugging is greatly simplified (by

using stuff that already works). Mr. Ed is in just this stage of

development. Although it may be considered by some to be a

beautiful and complete, albeit simple, little text editor, I like to

think of it as a pre-fabricated super-duper editor.

Some Staple Routines

Mr. Ed's WINDOW routine is the real workhorse and is used to

move ASCII text from the buffer to the screen window. The TOP

pointer will be set to point to the start of a text line. This line will

appear at the top of the screen. TOP determines the vertical

position of the window. The SHIFT variable determines the

horizontal position of the window for left/right scrolling. DISFLG

is used to enable/disable the window for operations where

having display constantly updated may not be desirable (ie.

speed is of the essence).

The LEFT and RIGHT routines allow lateral motion across any

line; and UP and DOWN cause vertical travel through the text

buffer, always to the start of a line. All display and pointer

positioning overhead is taken care of.

FINDEOLN returns in .Y the number of characters remaining in

the current line of text (as pointed to by TXT).

INSERT and DELETE are used to open up and remove space.

The MESSAGE routine can be used much the way Basic's PRINT

command is. All ASCII text following JSR MESSAGE will be

printed. This text must be followed by a zero byte; execution

resumes on the byte following the zero.

There is no point in duplicating source comments here. If you

decide to tinker with Mr.Ed, and I hope you will, you may want

to check out the uses of its various pointers and variables for

yourself.

A Project For ML Programmers

I would really love to have added SEARCH & REPLACE and

CUT&PASTE commands, and even SPLITSCREEN and MULTI-

BUFFER modes to Mr. Ed (and probably will someday), but I

promised myself that I would keep this version short and sweet,

and allow you to develop your own highly personalized editing

tool.

Editor's Note Regarding The Source Code

Chris Miller is the author of the Buddy System-64 and Buddy

System-128 assembler/editor package, available through Pro-

Line Software. Buddy is a assembler that follows PAL format plus

adds many more features for the ML programmer. In keeping

this in mind, you will realize why Chris wrote Mr. Ed in Buddy

format. For the magazine, though, we decided that we should

stay with PAL format. On this issue's diskette we will include

both the PAL and Buddy source files.

The Transactor 63 September 1987: Volume 8, Issue O2



Mr. Ed: BASIC Loader

PD

CG

DL

KH

MG

CC

1000

1010

1020

1030

1040

1050

IA

CK

IF

JG

MG

LG

NP

FC

OL

FO

AA

BN

IH

Fl

LD

MJ

GJ

KP

BG

MJ

OA

PO

EJ

KC

EA

MK

DP

LF

NG

FO

PF

CF

CH

IG

IG

MC

KM

ML

NP

IM

NK

EC

HL

IB

BB

IG

DO

DF

OA

DC

LG

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

rem save"O:ed.ldr" ,8

rem by chris miller - kitchener, Ontario

rem mr.ed - a text editor for the c64

for j = 52000 to 53022: read x: poke j,x

: ch = ch + x: next

if ch<>134753 then print " checksum

error!": stop

sys(52000): rem fire-up mr.ed

128,

3,

141,

169,

5,

33, 208,

0,162,

63,

169,

data 169

data 4

data 9

data 208

data 206

data

data

data 32

data 72

data 121, 206,

data 75, 205,

data 200, 200,

data 185, 250,

data 96, 170,

data 201, 210,

data 240, 64,

data 136, 205,

data 160, 0,

data 32, 99,

data 205, 145,

data 25,230,

data 3,201,

data 187, 204,

data 230, 252,

data 165, 3,

data 205,165,

data 251,165,

data 252,133,

data 145, 253,

data 32,159,

data 205, 230,

data 2,201,

data 230, 2,

data 2,230,

data 5, 6,

data 201, 255,

data 56, 229,

data 253, 32,

data 136, 32,

data 201, 13,

data 230, 253,

data 240, 14,

data 40,176,

data 160, 255,

data 4, 201,

data 63,144,

data 187, 204,

data 236, 201,

data 251, 56,

141,

169,

17,

1,

147,

169,

7,

206,

93,

32,

217,

192,

206,

201,

208,

32,

176,

177,

205,

251,

253,

39,

230,

96,

5,

3,

251,

251,

32,

204,

5,

23,

165,

252,

240,

208,

4,

159,

51,

208,

208,

198,

2,

198,

13,

2,

160,

13,

229,

138,

206,

208,

141,

14,

27,

149,

32,

72,

2,

141,

162,

33,

8,

141,

2,

187,

32,

228, 255,

248, 206,

39, 144,

72, 185,

13,240,

6,165,

86, 205,

54, 224,

253,201,

138, 145,

32, 43,

208, 2,

208, 5,

3, 230,

198, 4,

4, 240,

240, 238,

201,255,

96, 32,

43, 206,

32, 43,

208, 2,

208, 3,

251, 24,

133,251,

67, 198,

2, 198,

176, 2,

204,160,

205, 177,

245, 198,

2, 230,

2,165,

198,252,

64, 136,

208, 247,

230, 64,

255, 200,

208, 247,

3,176,

169,228, 141

5, 3,169

6,142, 32

208, 32,198

158, 0,142

17,208, 169

202, 16,251

204, 169,203

75,205, 32

240,251, 32

240, 9,200

244,176, 9

249, 206,

12, 165,

3,201,

144, 5,

13,240,

13,208,

253, 32,

206,152,240

230,254,165

72

4

39

32

84

3

62

76

2

230, 4

251,208

76, 187,204

21, 32, 51

198, 3,198

208, 2,198

43,206,138

168,240,243

206, 32, 40

230, 6,165

76, 146,204

105, 40, 144

96,165, 5

5,165, 5

6,165,253

198,254, 133

1,132, 8

253,240, 8

8, 16,241

254,165, 2

251, 56,233

133,251, 96

177, 63,240

56, 152, 101

133, 63, 76

177, 63,240

240,230,165

2,198,252

AP

CD

MG

Jl

GO

NP

LF

EK

FN

LN

LF

AD

FJ

Bl

MJ

IP

DG

LC

FA

OJ

KC

CG

PE

CF

NA

HG

CF

BG

El

CK

MP

DL

Cl

OG

Cl

JP

GM

HP

FN

LO

JK

BM

FK

KO

DB

HN

MP

HE

BN

GN

FE

GM

AE

HG

GC

BC

AK

OA

CA

BK

GF

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

data 133,

2,

3,

24,

72,

63,

data

data

data

data

data

data 112,

data 50;

data 205,

data 32:

data 242.

data 34.

data 251.

data 133.

data 240

data 251

data 56

data 133

data 255

data 16

data 73

data 73

data 197

data 197

data 72

data 136

data 2

data 240

data 165

data 197

data 230

data 224

data 164

data 230

data 205

data 104

data 165

data 2

data 205

data 169

data 9

data 132

data 102

data 208

data 32

data 102

data 208

data 32

data 76

data 208

data 177

data 43

data 232

data 64

data 62

data 208

data 144

data 169

data 96

data 213

data 101

251,

198,

133,

133,

165,

133,

206,

196,

160,

62,

32,

204,

104,

254,

3,

200,

152,

253,

208,

8,

64,

128,

46,

45,

160,

198,

198,

233,

46,

55,

46,

203,

8,

253,

144,

133,

45,

198,

169,

32,

32,

250.

46,

9

250

187

187

251

253

166.

133;

165:

160,

2,

242:

40:

32

205.

3.

165,

254,

4,

7,

252,

253,

160,

4,

255,

205,

45,

198,

133,

96,

32,

192,

101,

96,

2,

73,

96,

145,

144,

96,

0,

45,

46,

104,

197,

176,

96,

165,

177,

208,

237,

254,

56,

46,

13,

145,

43,

32,

162,

240,

204,

162,

240,

203,

204,

96,

240,

44,

253,

45,

0,

230,

166,

133,

198,

206,

170,

253, 56,

133,253,

36, 9,

165,254,

72, 165,

165, 64,

255, 32,

144,247,

32, 51,

145,251,

206, 32,

7, 208,

252,104,

32, 40,

40, 205,

40, 144,

253, 144,

198,253,

198,254,

128,201,

72, 160,

251, 104,

6, 208,

165, 46,

177,

165,

32,

133,

45,

45,

86,

45,

56, 144,

6, 230,

169, 1,

254, 72,

253,160,

2, 230,

240, 235,

32, 86,

229, 8,

76,187,

208, 5,

253, 76,

206,152,

162,205,

23, 32,

34, 102,

202, 208,

39, 32,

10, 102,

202, 208,

160,255,

200,192,

2,201,

24, 105,

133, 63,

133, 61,

152, 145,

62,166,

61,228,

251, 169,

206, 19,

58, 0,

152, 32,

229, 3,176

169, 0,133

48, 83,169

72,165,253

251, 72,165

133,254, 32

51,206,240

24, 32, 41

206,240, 42

192, 39, 144

40,205, 32

212, 104, 133

133.253, 104

205,160, 0

169, 32,145

249,176,215

2, 230, 254

165,253,201

96, 73,128

64,144, 2

0, 177,251

96, 165,254

4,165,253

72,165, 45

200,145, 45

201,255,208

205,144,235

104,133, 46

6,165,

45, 208,

133, 8,

165,253,

0, 145,253

254, 32, 86

104,133,253

205,176, 11

133, 45,176

204, 32, 99

32, 99,205

187,204, 102

208, 1, 200

76, 38,206

2, 204, 202

9,162, 23

250,240, 22

224,203, 202

9,162, 39

250, 70, 9

32, 51,206

255,240, 6

13, 96,165

2,144, 1

134.254, 134

165, 46,133

61,230, 61

62,228, 56

55, 144,236

4,133,252

195,207,204

165, 4, 56

205,189, 32

45

2

32

72

The Transactor 64 September 1987: Volume 8, Issue O2



FP

Ml

DO

FE

EP

BF

LL

OC

HN

IJ

IG

OH

NA

LO

JA

JA

BE

KE

2180 data 198, 206,

2190 data 0,164,

2200 data 200, 152,

2210 data 32,198,

2220 data 56, 56,

2230 data 45,170,

2240 data 206, 32,

2250 data 104, 133,

2260 data 208, 2,

2270 data 32,210,

2280 data 165, 61,

2290 data 69,208,

2300 data 208, 3,

2310 data 148, 220,

2320 data 205, 137,

2330 data 3, 206,

2340 data 3,122,

2350 data 204, 157,

32, 204,

6, 166,

32, 205,

210,197,

229, 46,

152, 32,

32, 32,

61, 104,

230, 62,

255, 208,

72, 96,

10,173,

76, 47,

205, 20,

213,205,

135, 27,

227, 17,

223, 203,

Mr. Ed PAL Source Listing

LC

OG

NM

JC

MB

AJ

EJ

BF

PH

IE

IL

CC

GN

EL

AC

GB

FC

OE

HM

IH

GC

MJ

OH

EL

GB

IC

PD

MG

JJ

AE

Gl

GL

HF

JP

GF

BF

DL

NM

CM

EO

FE

HB

KP

AH

DG

IG

Fl

IL

OD

EL

AA

GB

HK

AH

NG

FH

FC

AH

1000 rem save" 0:ed.pal" ,8

1010 open 8,8,1, "0:mr.ed"

1020 sys700

1030.opt 08

201,206,197, 58

5, 232, 208, 1

189, 32,198,206

197, 58, 0,165

168,165, 55,229

205,189, 32,198

0, 96,160, 0

133, 62,230, 61

177, 61,240, 5

241,165, 62, 72

173, 0, 2,201

1, 2,201, 68

203, 76,124,165

154,205, 133,230

134,247,205, 138

206,139, 15,206

1,204,145, 45

29, 186,203

1040; "Mr. Ed by Chris Miller Jul, 1986"

1050;

1060; •••constants

1070 columns

1080linesize

1090screenbeg =

1100screenend =

1110 rows

1120;

***

40

250

1024 + 40

2024

24

1130; • • • important memory • • •

1140 vie

1150 bkg

1160 bor

1170 rptkey

1180icrunch

1190 input

1200;

$dO11

53281

53280

650

$304

$200

1210; ••• rom routines •••

1220crunchsrv =

1230 getin

1240 print

1250 ready

1260cnvrtdec =

1270;

1280; ...variables

1290.

1300 vars

1310 row .=

1320 col

1330 shift

1340 line • =

1350cnt

1360 num • =

1370 disflg

1380varnum

1390;

1400; ••• pointers.

1410 ptr

1420 top

1430 sob

1440eob

1450 end

1460 txt

1470 scr

1480;

$a57c

$ffe4

$ffd2

$e37b

$bdcd

* *

2

•

. + 1

» + 1

• + 1

• + 2

. + 1

. + 1

• + 1

.-vars

t *

61

63

43

55

45

253

251

1490;... beginnngofcode...

1500.

1510 Ida

1520 sta

1530;

1540 Ida

1550 sta

1560 Ida

1570 sta

CK 1580;

The Transactor

52000

#128

rptkey

; screen size

; max allowed

; top of text scr

; end of text scr

; screenend-screenbeg/columns

; screen row 0-24

; screen col 0-39

; off screen left

; text line counter

; display line counter

; general purpose

; negative = no display

; utility pointer

; top line of text window

; start of basic

; end of basic memory

; end of text

; current text position

; current screen position

; keys repeat

#<crunchwdg ; wedge for basic

icrunch

#>crunchwdg

icrunch +1

65

FE

GK

HE

GK

EN

NJ

JP

JN

IF

BN

DF

EC

PK

JB

CE

nrI—'*-/

LM

ML

r\U

JB

PL

KF

CJ

CM

FO

AL

KK

FJ

GM

EN

CO

EA

GL

AA

CC

LN

OB

JH

CD

FJ

JA

Cl

IP

IM

JP

01

Cl

DO

FD

LD

AC

EL

GJ

LE

IN

BD

PK

AP

ME

KM

ID

MM

JN

LF

LA

AE

HA

BO

OF

JO

PA

MH

OJ

HL

KJ

JH

EF

CM

KH

HB

PK

EM

NF

PI

OP

HG

OM

1590 ; entry for ed command from basic

1600 start

1610

1620

1630;

1640

1fiRO1 UJU

1660

1670

= •

Ida #9

sta vie

Idx #6

ctY hnroLA UUI

Ida #1

sta bkg

1680 jsr message

f690.byte5,147,14,8,158,0

1700

1710;

1720

1730

1740;

1750 topoftext

1760

1770
17Pn ■I ioU ,

1790 b1

1800

1810

1820;

1830

1840

1850;

stx bkg

Ida #27

sta vie

Ida #0

Idx #varnum-1

sta vars.x

dex

bpl b1

jsr initialize

jsr window

1860; main key scan loop

1870 getkey

1880

1890

1900;

1910

1920

1930;

1940b2

1950

1960;

1970

1980;

= .

; screen off

; blue screen

; white print

,y = 0

;screen on

; initvars

; always return here

Ida #>getkey-1: pha

Ida #<getkey-1:pha

jsr reverse

jsr statusline

jsr getin

beq b2

jsr reverse

1990 ; check command keys

2000 b3

2010

2020

2030

2040

2050

2060;

2070 foundkey

2080

2090

2100

2110;

emp commands,y

beq foundkey

iny; iny: iny

; line, col, mem

;y = 0

; also sets carry

cpy #commandnum

bec b3

bes put

= .

; a typing key

; jump to routine

Ida commands + 2,y: pha

Ida commands+1

rts

2120; put character in text buffer

2130 put

2140

2150

2160

2170;

= •

tax

cmp#13

beq f1

2180; see if line full

2190

2200

2210

2220

2230

2240

2250;

2260 f1

2270

2280;

2290

2300

2310;

2320 f2

2330

2340;

2350

2360

2370

2380

2390

2400 f3

2410

2420

2430

2440;

Ida shift

emp #linesize-40

bne f1

Ida col

cmp#columns-1

beq r1

jsr testpos

bec f2

jsr pshend

bes r1

cpx #13

beq cret

Idy #0

Ida (txt),y

emp #13

bne f3

jsr insert

txa

sta (txt),y

jsr cnvscr

sta (scr),y

2450; cursor right routine

2460 right = •

,y: pha

; save key

; are we at end

; make room if can

; out of memory

; end of a line check

; cursor right routine

September 1987: Volume 8, Issue O2



ME

HG

HH

ME

OP

JD

BF

BJ

IC

GH

GG

PK

EJ

MJ

Jl

CH

GH

JM

AN

FD

FN

DB

IP

HM

DM

GF

BL

AH

LO

JA

KP

OA

NB

CP

oc

PA

FL

EJ

IJ

JE

BF

GO

GP

OK

EN

DD

JP

CC

FF

NN

DH

KE

MH

MB

IP

MD

Gl

EK

CC

KF

DL

OH

JN

DF

MJ

FH

LE

EH

OP

EE

IN

EH

El

CD

JG

Nl

NN

MO

EL

GH

BB

GJ

LF

AD

CM

ED

DP

KP

2470

2480

2490

2500

2510

2520

2530 f4

2540

2550

2560;

2570

2580

2590;

2600 f5

2610

2620

2630

2640 r1

2650;

jsr findeoln

tya

beq r1

inc txt

bne f4

inc txt + 1

Ida col

; already at end

cmp #columns-1

bne f5

inc shift

jmp window

inc col

inc scr

bne r1

inc scr + 1

rts

2660 ; cursor left routine

2670 b4

2680

2690;

2700 left

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830 f6

2840 r2

2850;

dec shift

jmp window

,

Ida col

ora shift

beq r2

jsr dectxt

Ida col

beq b4

dec col

dec scr

Ida scr

cmp #$ff

bne f6

dec scr + 1

sta scr

rts

; scroll left

; check position

; cant go left

2860 ; carriage return handling routine

2870 cret

2880

2890

2900

2910;

*

jsr findeoln

txa

sta (txt),y

2920 ; cursor down routine

2930 down

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030 f7

3040

3050

3060

3070 f8

3080;

3090 addrow

3100

3110

3120

3130

3140

3150 f9

3160

3170;

•

jsr findeoln

tay

beq r2

jsr unshift

jsr findeoln

jsr addy

inc line

bne f7

inc line + 1

Ida row

cmp #rows-1

bne f8

jmp topdown

inc row

,

Ida scr

clc

adc #columns

bcc f9

inc scr + 1

sta scr

rts

3180; cursor up routine

3190 up

3200

3210

3220

3230

3240

3250

3260

3270

3280 f10

3290

3300

3310

3320

3330 f11

3340

= •

Ida line

ora line + 1

beq r3

dec line

Ida line

cmp #$ff

bne f10

dec line + 1

Ida txt

sec

sbc shift

bcs f11

dec txt+1

sta txt

jsr unshift

The Transactor

handle carriage return

;x = 13

; allready at bottom

; all the way left

; last row check

; scroll down

; check position

; check position

; at top already

; scroll far left

DG

FA

FO

BA

KF

NB

NB

Kl

IK

AM

AP

EG

BF

JP

JB

HC

MC

NG

BA

FF

BE

FM

NP

MN

Fl

Gl

AN

Gl

LE

BK

PG

GJ

HM

LC

KJ

KO

JL

JA

JE

KD

GE

OD

LE

PF

EE

IL

BE

JA

DE

KE

LH

PN

AF

JJ

IK

NE

EP

HI

LN

BK

BF

Dl

KG

CA

OP

BC

HO

KJ

KP

BN

IE

HM

BF

KG

AH

Fl

KC

PP

DK

CK

NG

BM

AM

PO

BF

ND

ED

3350

3360

3370

3380 b5

3390

3400

3410

3420

3430

3440

3450;

3460 f12

3470

3480

3490 f13

3500

3510;

3520

3530

3540

3550

3560

3570

3580(14

3590 r3

3600;

Idy #1

sty num

dey

jsr dectxt ; go back 2 cr

Ida (txt),y

beq f12

cmp #13

bne b5

dec num

bpl b5

inc txt ; then forward 1 char

bne f13

inc txt +1

Ida row ; top of screen check

beq topup ; scroll up

dec row ; else move up row

Ida scr

sec

sbc #columns

bcs f14

dec scr +1

sta scr

rts

3610; move window up

3620 topup

3630

3640

3650 b6

3660

3670

3680

3690

3700;

3710newtop

3720

3730

3740

3750

3760

3770 f15

3780

3790;

* ; move text window up line

Idy #$ff

dec top +1

dey

Ida (top),y

beq newtop

cmp#13

bne b6

= • ; add y to top pointer

sec

tya

adc top

bcc f15

inc top + 1

sta top

jmp window

3800 ; move window down

3810 topdown

3820

3830 b7

3840

3850

3860

3870

3880

3890;

• ; move window down line

Idy #$ff

iny

Ida (top),y

beq newtop

cmp #13

bne b7

beq newtop

3900; initialize for start of new line

3910 unshift

3920

3930

3940

3950

3960

3970 f16

3980;

3990

4000

4010

4020

4030

4040 f17

4050;

4060

4070

4080

4090;

= *

Ida scr

sec

sbc col

bcs f16

dec scr + 1

sta scr

Ida txt

sec

sbc col

bcs f17

dec txt +1

sta txt

Ida #0

sta col

sta shift

4100; move text to screen window

4110 window

4120

4130

4140;

4150

4160

4170;

4180

4190

4200

4210

bit disflg ; is display on

bmi r4 ; no

Ida #rows ; screenend-screenbeg

/columns

sta cnt

Ida txt+1: pha ; save pointers

Ida txt: pha

Ida scr + 1: pha

Ida scr: pha

66

CP

JN

HL

OE

KB

OL

CK

PN

FB

JG

PG

FP

KG

EH

FA

II

JD

CH

EH

EN

PD

AC

FG

IN

MA

CF

GP

LC

KN

MN

ML

IC

MA

MK

AO

CE

FC

AH

OG

IA

KN

BG

HA

DF

CA

GM

OM

CD

BC

DP

MF

AP

LD

PA

PE

MP

IF

HB

BN

GL

KE

BD

LE

KF

OP

CM

ME

PO

KJ

BD

DE

FK

NC

JL

ID

AA

ID

HF

OP

MC

IB

BP

Dl

EA

FN

GF

EM

IF

4220;

4230

4240

4250

4260;

Ida top: sta txt

Ida top +1: sta txt

jsr initscr

4270; process next line of text

4280 newline

4290

4300 b8

4310

4320

4330

4340;

4350

4360

4370;

4380

4390 b9

4400

4410

4420

4430

4440

4450;

4460

4470

4480;

4490 addscr

4500

4510

4520

4530;

4540 fini

4550

4560

4570

4580

4590 r4

4600;

4610lineblank

4620

4630

4640

4650 restblank

4660

4670 f18

4680 b10

4690

4700

4710

4720

4730;

4740addy

4750

4760

4770

4780

4790

4800 f19

4810

4820;

4830 dectxt

4840

4850

4860

4870

4880

4890120

4900;

•

Idy #$ff

jsr testeoln

beq lineblank

cpy shift

bcc b8

clc

jsr addy +1

Idy #$ff

jsr testeoln

beq restblank

jsr cnvscr

sta (scr),y

cpy #columns-1

bcc b9

jsr findeoln+ 2

jsr addy

•

jsr addrow

dec cnt

bne newline

•

pla: sta scr

pla: sta scr + 1

pla: sta txt

pla: sta txt + 1

rts

m .

jsr addy

Idy #0

beq f18

= •

jsr addy

Ida #" "

sta (scr),y

iny

cpy #columns

bcc b10

bcs addscr

= •

sec

tya

adc txt

bcc (19

inc txt +1

sta txt

rts

,

dec txt

Ida txt

cmp#$ff

bne f20

dec txt + 1

rts

4910; convert ascii to screen code

4920 cnvscr

4930

4940

4950

4960

4970

4980

4990 f21

5000;

5010 reverse

5020

5030

5040

5050

5060

5070

5080

5090;

,

eor #128

bpl f21

eor #128

cmp #64

bcc f21

eor #64

rts

; init pointers

+ 1

handle right scroll

; update :xt ptr

; end of line

convert ascii code

; put on screen

; dontinit .y

; point next line

; to screen ptr

; restore ptrs

; start next line

; add y to text ptr

; back up text ptr

• ; reverse cursor char

pha

Idy #0

Ida (scr),y

eor #$80

sta (scr),y

pla

rts

September 1987: Volume 8, Issue O2



ON

HD

EB

DK

GN

Gl

FF

PA

CL

NP

KK

HA

PK

KD

IF

EN

HE

JH

II

MK

JH

II

HL

CG

KK

OM

PL

AH

NP

NN

HE

BM

EB

Ml

FJ

KO

CJ

NE

NO

10

10

DH

FB

GE

NF

EL

LK

HK

10

BC

KD

CH

PL

PF

PP

FK

NO

01

BH

PO

JC

GD

JN

JL

CJ

LF

KE

IP

KA

AB

JG

ID

Nl

MD

CA

LJ

JB

MM

DJ

IH

GA

ED

GM

BO

IA

OB

HH

1 BK

5100testpos

5110

5120

5130

5140

5150

5160

5170 f22

5180;

5190 insert

5200

5210

5220

5230 b11

5240

5250

5260

5270

5280

5290

5300

5310

5320 f23

5330

5340

5350

5360

5370;

5380 pshend

5390

5400

5410

5420

5430

5440

5450 f24

5460

5470

5480 r5

5490;

5500 deletechr

5510

5520

5530

5540 delete

5550

5560

5570 b12

5580

5590

5600

5610

5620

5630

5640 f25

5650

5660

5670

5680

5690

5700

5710

5720

5730

5740

5750

5760

5770 f26

5780;

5790 insertln

5800

5810

5820

5830;

5840 insrtspc

5850

5860

5870 f27

5880

5890;

5900 deleteln

5910

5920

5930

5940

5950

5960 f28

5970

= • ; test position in text

Ida txt+1

cmpend + 1

bcc f22

bne f22

Ida txt

cmpend

rts

• ; insert one space

Ida end + 1:pha

Ida end: pha

Idy #0

Ida (end),y

iny

sta (end),y

dey

dec end

Ida end

cmp #$ff

bne f23

dec end + 1

jsr testpos

bcc b11

beq b11

pla: sta end

pla: sta end +1

• ; bump end ptr up

Ida end + 1

cmpeob + 1

bcc f24

Ida end

cmp eob

bcs r5

inc end

bne r5

inc end +1

rts

*

Ida #1

sta num

jsr left ; dim

• ; number of chars in num

Ida txt+1: pha

Ida txt: pha

Idy num

Ida (txt),y

Idy #0

sta (txt),y

inc txt

bne f25

inc txt + 1

jsr testpos

bcc b12

beq b12

pla: sta txt

pla: sta txt +1

jsr testpos

bcs (26

Ida end

sec

sbc num

sta end

bcs f26

dec end + 1

jmp window

= » ; insert chr$(13)

jsr insert

Ida #13

bne f27

• ; insert blank

jsr insert

Ida #" "

sta (txt),y

jmp window

= • ; delete line

ror disflg ; display off

jsr findeoln

tya

bne (28

iny

sty num

jsr delete

The Transactor

AJ

MN

FK

KP

BP

OE

PE

BG

ML

MC

NJ

KE

DE

PE

PJ

EL

MA

MH

PA

GB

AO

MP

PO

HA

MF

MM

JF

PH

EP

KD

EK

JE

EG

BB

KE

IB

KD

MK

IB

PP

BO

BM

MO

Al

II

OP

HF

OB

IF

CD

LB

DF

KN

HC

HJ

GN

CA

HH

FD

Gl

HK

IK

DK

KN

GK

FF

DF

BL

JM

El

JN

BH

LO

Ol

FO

MP

DN

DA

NB

FM

Nl

CH

GA

PI

DD

KH

EN

OP

5980

5990;

6000 pagedown

6010

6020

6030 b13

6040

6050

6060

6070;

6080 pageup

6090

6100

6110 b14

6120

6130

6140

6150;

6160pageleft

6170

6180

6190b15

6200

6210

6220

6230;

jmp setwindow

»

ror disflg

Idx #rows-1

jsr down

dex

bne b13

beq setwindow

= *

ror disflg

Idx #rows-1

jsr up

dex

bne b14

beq setwindow

= ,

ror disflg

Idx #columns-1

jsr left

dex

bne b15

beq setwindow

6240 ; scroll sideways to end of line

6250 pageright

6260

6270

6280 b16

6290

6300

6310setwindow

6320

6330

6340;

= .

ror disflg

Idx #columns-1

jsr right

dex

bne b16

.

Isr disflg

jmp window

6350 ; set y = distance to text eol

6360 findeoln

6370

6380 b17

6390

6400

6410;

6420 testeoln

6430

6440

6450

6460

6470

6480

6490 f29

6500;

6510 initialize

6520

6530

6540

6550

6560

6570

6580 f30

6590

6600

6610

6620

6630

6640

6650

6660 b18

6670

6680

6690

6700 f31

6710

6720

6730

6740

6750

6760 initscr

6770

6780

6790

6800;

6810 statusline

6820

6830 .byte 19

*

Idy #$ff

jsr testeoln

bne b17

rts

= *

iny

cpy #$ff

beq f29

Ida (txt),y

beq f29

cmp #13

rts

»

Ida sob

Idx sob+1

clc

adc #2

bcc f30

inx

sta txt

sta top

stx txt + 1

stx top +1

Ida end: sta ptr

Ida end +1: sta pt

Idy #0

tya

sta (ptr),y

inc ptr

bne f31

inc ptr +1

Idx ptr + 1

cpx eob + 1

bcc b18

Idx ptr

cpx eob

bcc b18

= *

long scroll down

no display

23 lines

long scroll up

no display

24 lines

no display

display

+ 1

; fill zeros

Ida #<screenbeg: sta scr

Ida #>screenbeg:

rts

- *

jsr message

6840 .asc "COLUMN:": .byte0

6850 Ida shift

67

sta scr+1

; (home)

NE

FP

LK

AN

JK

Nl

CD

CM

ML

CA

EP

KB

KP

DA

HO

NH

GF

HP

PF

JF

FK

GJ

DH

JG

BH

FF

HH

GM

KF

FB

FH

NE

EJ

KK

IK

HJ

FB

FA

HJ

KO

LD

EN

BE

AA

AA

EO

EB

Ol

CC

El

KA

HL

PD

LK

ML

KF

JM

FP

AK

AJ

CK

NO

NA

IK

JO

CC

OM

FA

JK

FO

GG

GB

EO

GD

NJ

MP

6860

6870

6880

6890

6900

6910

6920

6930

6940

6950

6960

6970

sec

adc col

tax

tya

jsr cnvrtdec

jsr message

asc " LINE:":.byte0

Idy line + 1

Idx line

inx

bne f32

iny

6980 f32 tya

6990

7000

7010

7020

7030

7040

7050

7060

7070

7080

7090

7100

7110

7120

7130

7140

7150

jsr cnvrtdec

jsr message

asc " FREE:": .byte 0

Ida eob + 1

sec

sbc end + 1

tay

Ida eob

sbc end

tax

tya

jsr cnvrtdec

jsr message

asc " ": .byte 0

rts

print in source messages

7160 message = •

7170

7180

7190

7200

7210

Idy #0

pla

sta ptr

pla

sta ptr +1

7220 b19 inc ptr

7230

7240

bne f33

inc ptr +1

7250 f33 Ida (ptr),y

7260

7270

7280

beq f34

jsr print

bne b19

7290 f34 Ida ptr+1

7300

7310

7320

7330

7340

7350

pha

Ida ptr

pha

rts

; =0

; 3 (spaces)

wedge for ed command in basic

7360 crunchwdg = ; wedge for ed command

7370

7380

7390

7400

7410

7420

7430

Ida input

cmp #" e"

bne f35

Ida input+ 1

cmp#"d"

bne f35

jmp start

7440 f35 jmp crunchsrv

7450

7460 ; command entries

7470 commands = •

7480

7490

7500

7510

.byte 148: .word insrtspc-1

.byte 20: .word deletechr-1

.byte 133: .word deleteln-1

.byte 137: .word insertln-1

7520 .byte 134: .word pagedown-1

7530

7540

7550

.byte 138: .word pageup-1

.byte 135: .word pageright-1

.byte 139: .word pageleft-1

7560 .byte 3: .word ready-1

7570

7580

.byte 17: .word down-1

.byte 145: .word up-1

7590 .byte 157: .wordleft-1

7600 .byte 29: .word right-1

; call mr. ed

; pass to basic

;inst

;del

;fi
;f2

;f3

;f4

;f5

;f6

;run stop

;(cursor down)

;(cursor up)

;(cursor left)

;(cursor right)

7610commandnum = •-commands

September 1987: Volume 8, Issue O2



Mandelbrot Halo Aubrey Stanley

Mississauga, Ontario

A Mandelbrot-set exploration program for the C128

The Mandelbrot set lies mysteriously at the centre of the two

dimensional complex plane. Surrounding it is a halo whose

splendor is discovered with the aid of a microscope powerful

enough to penetrate the heart of the atom. When we magnify

small areas, we unveil pictures of immense beauty. Repeatedly

magnifying a single spot reveals scene upon scene of ever

changing loveliness. Miniature replicas of the set appear out of

nowhere, each a little different. There seemingly is no end to the

process!

MANDELBROT HALO for the Cl 28 will let you explore the halo

in a manner that is both entertaining and instructive. A mathe

matical appreciation is not required, although readers so in

clined will enjoy the article on the Mandelbrot set (Scientific

American, Aug. 1985), by A. K. Dewdney, to whom I am deeply

indebted for the inspiration. Coincidently, while developing the

program, I came across Peter Schroeder's implementation for

the Amiga (BYTE, Dec. 1986), but it in no way influenced this

program.

The pictures take some time to complete. The initial picture of

the Mandelbrot set with the halo takes 105 minutes. Times for

magnified pictures generally take up to 60 minutes, while some

extreme shots may take up to four hours. But if, like me, you

crave to see the life that vibrates in every atom, your patience

will not go unrewarded.

Typing It In

MANDELBROT HALO is in two parts. Program 1 (" halo.bas"

on the disk) uses friendly C128 BASIC to control the user

interface. Program 2 is in machine language and contains the

floating point calculations and screen plotting routines which

would run too slowly in BASIC. Incidentally, the original All—

BASIC version took 20 hours to plot the Mandelbrot set!

To help you enter the program accurately, you should use the

C128 "verifizer". See the section in the magazine on typing in

programs.

Save the BASIC program under any name. The loader (Program

2) will create the machine language portion and name it

halo.obj"; this program is loaded by the BASIC program.

A Window On The Picture

Pictures are drawn in the graphics area of a split screen. The

parent picture is the Mandelbrot set which must be plotted first

and saved to disk. It may then be recalled whenever you want to

select a new area of the halo for magnification. When the second

picture is plotted, any portion of it may be selected for further

magnification. This process may go on indefinitely.

The following description will help increase your enjoyment of

the program. You may gloss over the math parts if you wish.

Certain parameters or values are associated with the area being

magnified. These are displayed in the menu section of the split

screen. The values are automatically manipulated as you move a

Zoom Window over the picture. You may vary the size of the

window and also the size of the graphics area upon which the

contents of the window will be projected.

RE is the real part of the complex number representing the top

left hand corner of the window. IM is the imaginary part of the

same number. SI is the length of each side of the window. These

three parameters define the area under the window.

In terms of pixels, the top left hand corner of the picture over

which the window moves is given x:y coordinates of 0:0. The top

left hand corner of the window is identified by X and Y, which

are relative to coordinates 0:0. Z is the length in pixels of each

side of the window and you may vary it from a single pixel to 24

pixels. X, Y, Z are related to RE, IM, SI respectively and are the

more visible definitions of the area to be plotted. When encoded

into a filename, they can help to trace the origin of a picture.

PIXELS determines the size of the projection area and is the

length in pixels of each side. You may vary it from 16 to 160

pixels, so even a postage stamp size picture may be plotted. As

smaller pictures will plot in less time, you can use this feature to

quickly evaluate the result of a magnification, before deciding to

go ahead with the maximum size. PIXELS corresponds to SI in

terms of the visible screen area over which the window will be

plotted, for example a 160 by 160 square pixel area.

So we calculate a value for gap by dividing SI by PIXELS. We

now have a two dimensional array, 160 by 160 gaps, in terms of

The Transactor 68 September 1987: Volume 8, Issue O2



the complex plane whose top left hand corner is RE/1M. For

each gap in the vertical (imaginary) plane, we perform a repeti

tive operation on each gap in the horizontal (real) plane, a total

of 160 times 160, or 25600 operations. This iterative operation is

given by the equation, z = z2 + c, where c is the complex

number containing the real and imaginary parts of gap and z is

initially set to the complex number 0. Each time we calculate z,

we substitute its value into the equation and then recalculate z.

Repeatedly computing z in this way produces the Mandelbrot

set, which is the set of numbers for which the size of z remains

finite no matter how many times we recalculate it. Other num

bers will tend to infinity, some sooner than others.

Numbers outside the Mandelbrot set are identified when z

reaches a size of 2 (or more). Those within the set never reach

this size. So we begin an iterative loop with a count of 1,

calculate z, and repeat the loop if the result is below 2, stepping

the count each time. If after 150 iterations, the size of z remains

below 2, the pixel is assumed to lie in the set and is assigned a

count of 0 for convenience. Pixels reaching a size of 2 in the

process will exit the loop and retain the count at which they did

so. Therefore pixels with a count of 2 lie within the set, those

with small counts are very far from the set, and those with large

counts are close to the set.

Colours are assigned to pixels according to how far from the set

they lie. As only four colours may be used in Cl 28 multicoloured

mode without losing detail, black is assigned to pixels within the

set and three other colours are distributed in spectrums based

on a modulus-3 derivation of each pixel count. Each of these

three colours may be individually changed.

For speed reasons, no scaling is employed in the plots. Therefore

pictures are more rectangular than square, but this does not

detract from their beauty. Remember that in terms of the

complex plane, the pictures are truly square!

The Mandelbrot Set

Before you can begin to explore the halo, you must first generate

the Mandelbrot set.

Load and run the BASIC program. You will see the menu in the

text portion of the split screen, a colour line above it, and an all-

black graphics screen. The PLOT option will be highlighted in

the menu.

Press RETURN. The plot will commence at a brisk pace, then

will slow down considerably in the region of the halo, near the

set. You will not actually see the pixels within the set being

plotted because they are left in the background colour (black).

The screen will go blank if you press down the CAPS LOCK key

while the picture is being drawn. This is because the program

goes into fast mode and the VIC chip cannot display at the

(doubled) processor speed. Releasing the key will put the pro

gram into slow mode again and the picture will reappear. It

makes sense to leave the CAPS key down because pictures will

be drawn twice as fast, making for considerable savings in time.

You can always release it from time to time in order to monitor

progress.

Make sure to save the picture as soon as it is complete. To do so,

use the Cursor Left key to move the highlight to the FILENAME

option and then press RETURN. Release the CAPS key if you

had left it down.'Now type in a filename for the picture and press

RETURN. Cursor Right to the SAVE option and press RETURN.

Once the picture is saved to disk, you may recall it at any time by

entering the filename as before, and pressing RETURN on the

LOAD option.

To exit the program, move to the EXIT option and press

RETURN. Sometimes you may wish to abort a picture while it is

being drawn. In that case use the RUNSTOP/RESTORE combi

nation. You may RUN the program again to start another picture.

Exploring The Halo

Bordering the Mandelbrot set is a halo of colour suffused with

filaments that spread out in all directions. From our distant

perspective its beauty is as yet undifferentiated, like the plumage

of the peacock that lies at first in the plasma of its egg.

Two categories of pictures may be derived from the halo. The

first contains exotic structures, often with miniature, imperfect

versions of the set suspended like black jewels on filigreed

tendrils. These pictures take a relatively short time to plot and

occur when the window does not include any of the (black) area

within the set proper. The second category occurs when we

magnify tiny (one or two pixel) protrusions into the set. These

often give spectacular, landscaped effects, but take a relatively

long time to plot as some portion of the set must be included.

Start with the picture of the Mandelbrot set. Load it from disk if

you need to, as explained in the last section. Move to the PLOT

option and then press the SPACE bar. The action now moves to

the graphics screen where a flashing window will appear in the

centre of the picture. Its size may be varied by pressing the " + "

and " -" keys. Move the window by using the four Cursor keys.

The parameter displays are automatically updated to accommo

date the size and position of the window.

Move around the halo looking for interesting spots. There are

hundreds to choose from. If you plot outside the halo you will

only get solid colour, while within the set there is only black! It is

in the filamented border of the halo that you will find the

variegated beauty you are looking for.

To move back to the menu, press the SPACE bar again. You may

move back and forth in this manner. To vary the size of the

projection area, move to the PIXELS option and use the " + "

and " -" keys. To quickly evaluate the result of a magnification,

select a small size, say 48 pixels. The picture will be plotted in a

considerably less amount of time and may then be re-projected

onto a larger area as long as you do not return to the graphics

screen; otherwise the parameters will readjust to the window

The Transactor 69 September 1987: Volume 8, Issue O2



position and size. It is always a safe bet to save the original

picture first. Once you have selected the area for magnification

and noted its X, Y and Z values (a good idea), press RETURN on

the PLOT option. The current picture will be erased and the new

one drawn. You may then save the picture and/or select a

further area for magnification.

The Colour Options

Pixels in the Mandelbrot set are always plotted in black. The

three other colours, however, may be changed individually for

optimum presentation of each picture. Move to the (one of three)

colour options - COL1, COL2 or COL3 - and use the " + " key

to cycle through the colours.

The Colour Line above the menu shows the three colours

currently in effect. It will change to reflect the colour changes

you make. If a picture is displayed, it too will instantly be

updated with the colour changes.

Use the " -" key to revert to the original colour of the last picture

plotted or recalled to the screen.

Beyond The C128

The C128 does give very pleasing results in spite of its limita

tions: 160 by 160 resolution and only four colours. Where more

colours are available, the results will improve dramatically. I

have in mind here other graphics devices like colour printers

and plotters, even other computers like the Amiga!

For this reason, MANDELBROT HALO will generate an array in

memory by storing the count values reached for each pixel

during the iterative loop mentioned earlier. To save the array on

disk, enter the filename, then press RETURN on the DUMP

option. If you want to view it, you will have to exit and use the

Monitor.

As generating the array adds about 15 minutes to the picture,

this function can be bypassed by running the program from the

40 column screen. The DUMP option is only in effect when you

begin the program from the 80 column screen, then switch to

the 40 column screen to use the program.

The array is stored as a program file, so if you are transferring it

to another machine, remember that the first two bytes contain

the start address. You can load the array into memory with the

command BLOAD" filename" ,B0.

In C128 memory the array exists in bank 0, starting at address

6FFD hex. The format is as follows:

6FFD LOWEST Count in the array (excluding 0).

6FFE HIGHEST Count in the array.

6FFF LENGTH Of each line in the array, in pixels.

7000 COUNTS For pixels in line 1, one byte each.

7000 + (LENGTH) COUNTS For each pixel in line 2.

7000 + (LENGTH * 2) COUNTS For each pixel in line 3.

etc.

Remember that the array is square, so the number of lines is

equal to the length of each line. The Low and High counts give

the values for pixels outside the set, and can range from 1 to 151.

A count of 0 in the array denotes a pixel lying in the set (black in

the pictures).

Before plotting to an external device, it is a good idea to divide

up the available colours only within the range of counts that

exist in the array (excluding 0). That is why the Low/High

counts are stored. You will use all the colours this way. An

alternative is to simply assign the " n" colours to the Modulus-n

values of each count. Pixels lying in the Mandelbrot set,

(count = 0) must, of course, be assigned their own, unique

colour.

Happy Exploring!

Mandelbrot Halo

LB

KJ

BN

IN

NG

FG

Dl

EF

NA

NL

Jl

EG

CG

MD

AA

NC

MG

KK

EJ

NG

FC

KN

EN

MO

AG

AM

DC

NO

ED

CH

DA

10rem "mandelbrothalo" "aubreyStanley"

"april 1987"

20 rem = the next line must be entered exactly

as shown =

30 re = -2:im = 1.25:si = 2.5:gp = si/160:cn = 151

35 r1 $ = chr$(18): r2$ = chr$(146): cl$ = chr$(157)

:cr$ = chr$(29)

36 bl$ = chr$(159): rd$ = chr$(150): br$ = chr$(149)

: gy$ = chr$(155)

37 cu$ = chr$(145): cd$ = chr$(17)

40 bank15:fast:close 15:open 15,8,15

:bload "halo.obj"

50 gosub 1770:gosub 930:close 15:end

60 rem = = " print parameters" = =

70 print gy$;:window 3,21,19,21,1 print ac;

80 window 23,21,39,21,1 print be;

90 window 3,22,19,22,1 print cc;:return

100 rem == "printcoords" = =

110 if zm = 0 then mx = 0:my = 0:mz = wd

:else mz = sd

120 print gy$;:window 21,22,26,22,1 :print mx;

130 window 28,22,33,22,1 print my;

140 window 35,22,39,22,1 print mz;:return

150 rem == "print pixels" = =

160 print gy$;:window 33,23,38,23,1 print wd;

: return

170 rem = = "printfilename" = =

180 print gy$;:window 8,23,25,23,1 print f$;

190 return

200 rem = = " plot color line" = =

210 gosub 220:gosub 230:goto 240

220 box 1,0,164,52,167,,1 :return

230 box 2,53,164,105,167,,1:return

240 box 3,106,164,159,167,, 1:return

250 rem = = " plot frame" = =

260 color 3,12:for y = 168 to 199:draw 3,0,y to 159,y

:next:color3,c3

270 x = pa(px,1):y = wd-1 :box 3,x,x,x + y,x + y: return

280 rem == "color values" = =

The Transactor 7O September 1987: Volume 8, Issue O2



BP

IE

CF

GM

IB

Al

DB

JA

AL

CB

GL

FL

HN

JO

MH

MN

BE

KD

HF

HP

LA

JH

DE

PG

CJ

HF

GH

DH

Cl

AD

FA

BK

IH

OG

OE

Fl

LD

PB

BK

CJ

PD

290 color 1 ,c1 :color 2,c2:color 3,c3:graphic 3,1

: return

300 color 1 ,d :color 2,c2:if wi<>0 then sys 27456

:else gosub 220:gosub 230

310 return

320 color 3,c3:if wi<>0 then sys 27415

330 gosub 240:return

340 c4 = d :c5 = c2:c6 = c3:return

350 rem = = " plot values" = =

360 re = ac:im = bc:si = cc:sprite sa(sp,0),0

370 xc = pa(px,1):yc = xc + wd-1 :gosub 70

:gosub 110:gosub 160:return

380 rem = = " make sprite" = =

390 sshape a$,0,0,23,20:sprsav a$,a:a = a +1

:scnclr 1: return

400 rem = = " print menu" = =

410 print chr$(19)chr$(19)rv$:scnclr 0:sys 51941

420 window 0,21,2,21 :print br$" re";

430 window 20,21,22,21 :print " im";

440 window 0,22,2,22:print "si";

450 window 20,22,35,22:print" x" spc(6)" y"

spc(6)" z";

460 gosub 480:gosub 490:gosub 500:gosub 510

:gosub 520

470 gosub 530:gosub 540:gosub 550:gosub 560

: goto 570

480 window 0,23,8,23:print rv$;rd$; "filename";

:goto 580

490 window 27,23,33,23:print rv$;rd$;" pixels";

:goto 580

500 window 0,24,3,24:print rv$;bl$;" plot";

:goto 580

510 window 5,24,8,24:print rv$;bl$;" load";

: goto 580

520 window 10,24,13,24:print rv$;bl$;" save";

: goto 580

530 window 15,24,18,24:printrv$;bl$; "dump";

: goto 580

540 window 20,24,23,24;print rv$;bl$;" coll ";

: goto 580

550 window 25,24,28,24;print rv$;bl$;" col2";

: goto 580

560 window 30,24,33,24:print rv$;bl$;" col3 ";

:goto 580

570 window 35,24,38,24:print rv$;bl$;" exit";

580 rv$ = r2$:print rv$;:return

590 rem = = " get key" = =

600getk$:a = 1

610 do until a = k

620 if k$ = mid$(kb$,a, 1) then exitelse a = a +1

630 loop

640 if a = k then 600:else k = a:return

650 rem = = " load vars" = =

660 for a = 0 to 4:bank 0:p = peek(p1 + a):bank 1

:poke(p2 + a),p:next

670 bank 15:p1 =p1 +5:return

680 rem = = " save vars" = =

690 for a = 0 to 4: bank 1:p = peek(p1 +a):bank0

:poke(p2 + a),p:next

GM

BL

EE

CF

ME

OE

CJ

NP

Ml

EK

DM

PI

BM

CM

El

NC

BH

JH

KE

ND

BA

DL

Gl

LB

CM

Ol

NF

Ol

HB

Fl

DO

Ml

GO

BF

GP

GA

LK

LP

EG

BB

DF

DN

AE

JG

HB

The Transactor 71

700 bank 15:p2 = p2 + 5:return

710 rem = = " update zoom parameters" = =

720 mx = (sx-sq)/2:my = sy-sr:ac = re + (mx*gp)

:bc = im-(my*gp):cc = si/(wi/sd)

730 gosub 70:gosub 110:return

740 rem = - " disk checks" = =

750 print#15, "sO:" +fi$:input#15,a,f$:return

760dopen#1,(fi$)+ ",p":input#15,a,f$:dclose#1

: return

770input#15,a,f$:return

780 rem

790 rem = = "filename" = =

800 rv$ = r1 $:gosub 480:kb$ = cr$ + r$

810k = 3:gosub600:f$= " ":if k = 1 then gosub 480

: goto 860

820 gosub 480:gosub 180:input f$

830 if f$<>" " then fi$ = f$:else f$ = fi$

840 gosub 180:goto800

850 rem = = " pixels" = =

860 rv$ = r1 $:gosub 490:kb$ = cl$ + cr$ + " + -"

870k = 5:gosub600:on k goto 880,880,890,900

880 gosub 490:if k = 1 then 800:else goto 930

890 if px = 9 then 870:else px = px +1 :goto 910

900 if px = 0 then 870:else px = px-1

910 wd = pa(px,0):gosub 160:goto 870

920 rem = = " plot" = =

930 rv$ = r1 $:gosub 500:kb$ = " " + cl$ + cr$ + r$

940 k = 5:gosub 600:on k goto 980,950,950,960

950 gosub 500:if k = 2 then 860:else goto 1000

960 gosub 500:gosub 290:gosub 360:gosub 260

:gp = si/wd:sys 4864,wd,xc.cn,mo

970 slow:wi = wd:graphic 4,0,21 :gosub 210:zm = 0

:gosub110:goto930

980 if wi = 0 then 940:else gosub 500:gosub 2010

:goto 930

990 rem = = " load" = =

1000 rv$ = r1 $:gosub 510:kb$ = cl$ + cr$ + r$

1010 k = 4:gosub600:ifk = 3 then 1030

1020 gosub 510:if k = 1 then 930:else goto 1130

1030 if fiS = " " thenf$ = fi$:gosub510:goto820

1040 gosub 760:if a<> 0 then gosub 510:gosub 180

:goto 790

1050 fast:bload(fi$),bO:p1 =8157:p2 = pointer(c1)

:gosub 660

1060 p2 = pointer(c2):gosub 660:p2 = pointer(c3)

:gosub660

1070 p2 = pointer(ac):gosub 660:p2 = pointer(bc)

:gosub 660

1080 p2 = pointer(cc):gosub 660:p2 = pointer(wi)

:gosub 660

1090 wd = wi:gp = cc/wd:for a = 0 to 9:if wi = pa(a,0)

then px = a

1100 nextzm = 0:gosub 340:gosub 360:gosub 300

:gosub320

1110 gosub 270:gosub 210:slow:gosub 510

:goto 930

1120 rem = = " save" = =

1130rv$ = r1$:gosub520:kb$ = cl$ + cr$ + r$

1140 k = 4:gosub600:ifk = 3 then 1170

September 1987: Volume 8, Issue O2



NF

Cl

AO

EL

BH

DO

DN

KE

PM

OB

LM

KF

LN

DA

DK

IM

PG

EC

NP

DH

IK

LD

BH

01

II

01

HI

HL

Gl

CK

OK

PL

DA

MM

AH

GN

DN

01

FH

AL

GF

AC

OM

IP

AO

BM

DP

PJ

KG

PA

AE

1150gosub520:if k = 1 then 1000

1160 if mo = 0 then 1480:else goto 1280

1170 if fi$ = " " then f$ = fi$:gosub 520:goto 820

1180gosub760:ifa = 62then1210

1190 if a = 0 then f$ = " file exists"

1200 gosub 520:gosub 180:goto 790

1210fast:gosub340:p2 = 8157:forp = 0to34

:ma(p) = peek(p2 + p):next

1220 p1 =pointer(d):gosub690:p1 =pointer(c2)

:gosub 690

1230 p1 =pointer(c3):gosub690:p1 = pointer(re)

:gosub690

1240p1 =pointer(im):gosub690:p1 = pointer(si)

:gosub690

1250 p1 =pointer(wi):gosub690:bsave(fi$),bO,p8157

top14592:p2 = 8157

1260 for p = 0to34:poke p2 + p,ma(p):next:slow

:gosub520:goto930

1270 rem = = "dump" = =

1280 rv$ = r1 $:gosub 530:kb$ = cl$ + cr$ + r$

1290k = 4:gosub600:ifk = 3then1310

1300 gosub 530:ifk = 1 then 1130:else goto 1480

1310 if fi$ = " " then f$ = fi$:gosub 530:goto 820

1320gosub760:if a = 62thena = px + 1:fast

:goto1350

1330 if a = 0 then f$ = " file exists"

1340 gosub 530:gosub 180:goto 790

1350 on a gosub 1370,1380,1390,1400,1410,1420,

1430,1440,1450,1460

1360 slow:goto 1290

1370 bsave(fi$),bO,p28669 to p28928:return

1380 bsave(fi$),bO,p28669 to p29696:return

1390 bsave(fi$),bO,p28669 to p30976:return

1400 bsave(fi$),bO,p28669 to p32768:return

1410 bsave(fi$),bO,p28669to p35072:return

1420 bsave(fi$),bO,p28669 to p37888:return

1430 bsave(fi$)Tb0,p28669to p41216:return

1440 bsave(fi$),bO,p28669 to p45056:return

1450 bsave(fi$),bO,p28669 to p49408:return

1460 bsave(fi$),bO,p28669 to p54272:return

1470 rem = = "color 1 = =

1480 rv$ = r1 $:gosub 540:kb$ = cl$ + cr$ + " + -"

1490 k = 5:gosub600:ifk>2 then 1520

1500 gosub 540:if k = 2 then 1560

1510 if mo = 0 then 1130:else goto 1280

1520 if k = 3 then d =d +1 :else d = c4

1530 if d =17 then d =2

1540 gosub 300:goto 1490

1550 rem = = " color 2 = =

1560rv$ = r1$:gosub550:kb$ = cl$ + cr$+ " +-"

1570 k = 5:gosub 600:if k>2 then 1590

1580 gosub 550:if k = 1 then 1480:else goto 1630

1590 if k = 3thenc2 = c2 + 1:elsec2 = c5

1600 if c2 = 17 then c2 = 2

1610 gosub 300:goto 1570

1620 rem = = "color 3 = =

1630rv$ = r1$:gosub560:kb$ = cl$ + cr$+ " +-"

1640 k = 5: gosu b 600: if k>2 then 1660

1650 gosub 560:if k = 1 then 1560:else goto 1700

The Transactor 72

CD

NA

MD

OH

OC

OC

AF

BJ

IO

GF

BE

IK

AH

Fl

EO

Bl

FL

FE

Al

OG

JD

ME

LL

AD

MO

FB

LC

FD

CJ

DE

EO

CP

OH

GE

OF

KG

EC

BE

MH

1660 if k = 3 then c3 = c3 +1 :else c3 = c6

1670ifc3 = 17thenc3 = 2

1680 gosub 320:goto 1640

1690 rem = = " exit" = =

1700 rv$ = r1 $:gosub 570:kb$ = cl$ + r$

1710k = 3:gosub 600:if k = 1 then gosub 570

: goto 1630

1720 print chr$(19)chr$(19):graphic 0,1

:sprite sa(sp,0),0:sys 51938

1730 if mo = 5 then print" switch to 80 col screen"

:graphic5

1740 return

1750 rem = = = =

1760 rem = = "initialize = =

1770 mo = rgr(0):if mo = 5 then print "switch to 40

col screen"

1780 dim sa(9,1),pa(9,1),ma(34)

1790 zm = 0:wi = 0:xs = 24:ys = 50:ac = re:bc = irn

:cc = si:cn = en and 255

1800 rem = sprite array = sprite* = width =

index sp

1810 for i = 1 to8:spritei,0:next

1820 sa(0,0) -1 :sa(0,1) = 1 :sa(1,0) = 2:sa(1,1) = 2

:sa(2,0) = 3:sa(2,1) = 4

1830sa(3,0) = 4:sa(3,1) = 6:sa(4,0) = 5:sa(4,1) = 8

:sa(5,0)=6:sa(5,1) = 10

1840 sa(6,0) = 7:sa(6,1) = 12:sa(7,0) = 5:sa(7,1) = 16

:sa(8,0) = 6:sa(8,1) = 20

1850sa(9,0) = 7:sa(9,1) = 24:sp = 4:sn = 5:sd = 8

1860 rem = pixel array = width = start = index px

1870px = 9:a = 16:fori = 0to9:pa(i,0) = a:a = a+16

:next

1880 wd = 160:a = 72:for i = 0 to 9:pa(i,1) = a:a = a-8

:next:px = 9

1890 fi$= " ":r$ = chr$(13)

1900 rem == "windowsprites" = =

1910 colorO, 1 :color4,1 :color1,2:graphic1,1

1920 a = 1 :draw 1,0,0 to 2,0:gosub390

1930 box 1,0,0,4,2:gosub380:box 1,0,0,8,4

:gosub390

1940 box 1,0,0,12,6:gosub380:box 1,0,0,16,8

:gosub390

1950 box 1,0,0,20,10:gosub380:box 1,0,0,23,12

:gosub390

1960rem== " graphics screen" = =

1970 d = 3:c2 = 15:c3 = 8:gosub 290:graphic 4,1,21

:slow

1980 gosub 340:gosub 210:gosub 410:gosub 360

: return

1990 rem = = = =

2000 rem = = = " zoom " = = =

2010 kb$ = " " + cl$ + cr$ + cu$ + cd$ + " + -"

:if zm = 0 then mx = wi/2:my = mx:xd = xc:sp = 4

2020 zm = 1 :sr = ys + xd:sq = xs + (xd*2):sx = (mx*2)

+ sq:sy = my + sr

2030 sprite sn,0:sn = sa(sp,0):sd = sa(sp, 1)

:su = xc + wi-sd:ss = su*2

2040 su = ys + su:ss = xs + ss:movspr sn.sx.sy

:if wi = 16 then u = 6:else u = 9

September 1987: Volume 8, Issue O2



ID

EK

OD

GO

CP

HA

GB

LN

OJ

EE

OF

JL

AJ

Gl

GG

AB

HH

FH

GB

MN

IM

FN

KP

2050 movspr sn.sx.sy

2060 k=8:gosub 2150:on k goto 2070,2080,2090,

2100,2110,2120,2130

2070 c = 1 :gosub 2230:gosub 720

2080 if sx = sq then 2060:else sx =

:return

sx-2 :goto 2050

2090 if sx = ss then 2060:else sx = sx + 2 :goto 2050

2100 if sy = sr then 2060:else sy = sy-1 :goto 2050

2110 if sy = su then 2060:else sy = sy +1 :goto 2050

2120ifsp = u then2030:elsesp =

2130ifsp = 0 then2030:elsesp =

2140 rem = = " move window = =

2150b=0:c = 2

2160 get k$:a=1

2170 do until a=k

sp + 1 : goto 2030

sp-1 :goto 2030

=

2180 if k$=mid$(kb$,a, 1) then exit:else a=a+1

2190 loop

2200 gosub 2230:if aOk then k =

2210 gosub 2250:goto 2160

2220 rem = =

a: return

2230 if sp<7 then sprite sn,1 ,c,0,0,0,0:else sprite

sn,1,c,0,1,1,0

2240 return

2250 if c = 2 then c = 1:elsec = 2

2260 if b=0 then gosub 720:b=1

2270 return

Mandelbrot Halo: Creates ML PRG FUe on Disk

BK

BO

PH

IJ

HO

Bl

IL

JJ

PO

CD

GD

EG

DP

DC

HM

EM

MO

DL

00

MB

LC

CB

IE

BG

KE

IL

Kl

FJ

100 rem** this program will create the file

"halo.obj" on disk**

110 rem** for the mandelbrot-set explorer program,

"halo.bas" **

120 for i = 1 to 540: read x: cs = cs + x: next i

130 if cs<>56316 then print" checksum error": stop

140 open 1,8,1, "O:halo.obj"

150 print#1 ,chr$(0)chr$(19);

160 restore

170 for i = 1 to 540: read x: print#1

180 close 1: end

190:

200 data 120, 142, 51, 17,132,

210 data 21,208, 27,169, 73,

220 data 21,133,254,141, 12,

230 data 169, 3,145, 253,136,

240 data 233, 1,208,246,240,

250 data 169, 2, 32,180,138,

260 data 160, 21,162, 28, 32,

270 data 4,169, 9, 32,180,

280 data 140,160, 21,162, 33,

290 data 160, 4,169, 23, 32,

300 data 40,140,160, 21,162,

310 data 140,169, 0,133,251,

320 data 141, 52, 17,133,170,

330 data 112,133, 254,169, 64,

340 data 251,196, 6,144, 31,

350 data 25,169, 63,141, 0,

360 data 141, 255,111,165,170,

370 data 165,169,141,253,111,

The Transactor

,chr$(x);: nexti

169,173, 12

133,253,169

21,160, 65

48, 7, 56

242,160, 4

32, 40,140

0,140,160

138, 32, 40

32, 0,140

180,138, 32

38, 32, 0

141, 50, 17

133,253,169

133,250,164

165, 5,240

255,165, 6

141,254,111

169, 0,141

73

MP

CM

LM

DE

NM

GD

GJ

AA

Ol

BB

AE

LC

EB

FE

EO

CA

CJ

FD

PE

DH

PL

BN

OF

JK

LK

II

LG

EC

EJ

BN

HI

FM

FM

EC

PA

DF

Cl

HL

FJ

EO

AP

GB

FH

GE

LE

BK

GG

EJ

BD

EK

380 data

390 data

0,

132,

400 data 160,

410 data

420 data

21,

133,

430 data 252,

440 data 51,

450 data 253,

460 data

470 data

480 data

490 data

500 data

510 data

520 data

530 data

540 data

0,

32,

137,

43,

32,

0,

140,

160,

0,

550 data 250,

560 data 17,

570 data 240,

580 data

590 data

141,

8,

600 data 240,

610 data

620 data

630 data

640 data

650 data

660 data

670 data

680 data

690 data

700 data

710 data

720 data

730 data

740 data

750 data

760 data

770 data

139,

160,

21,

136,

160,

21,

169,

160,

21,

169,

63,

32,

8,

140,

32,

24,

19,

780 data 240,

790 data

800 data

810 data

820 data

197,

144,

133,

165,

830 data 255,

840 data 0,

850 data 252,

860 data

870 data

0,

0,

255, 88, 96,169, 0, 32,201

160, 21,169, 38, 32, 8,138

21,169, 33, 32, 24,138,160

162, 48, 32, 0,140,169, 0

252,165, 7,141, 49, 17,164

196, 6,144, 18,230,251,238

17, 24,165,253,101, 6,133

144, 164, 230, 254, 208,160, 169

32,201,132,160, 21,169, 38

8,138,160, 21,169, 28, 32 '

138, 32, 72,136,160, 21,162

32, 0,140,160, 21,169, 13

212,139,160, 21,162, 53, 32

140,160, 21,162, 58, 32, 0

160, 21,162, 63, 32, 0,140

21,162, 68, 32, 0,140,160

132,167,165, 1, 41, 64, 69

240, 24, 69,250,133,250,173

208, 41,111,162, 1,164,250

3, 9, 16,202,142, 48,208

17, 208, 230,167,165,167,197

144, 7,169, 0,133,167, 76

20,160, 21,169, 53, 32,212

160, 21,169, 58, 32, 8,138

21,169, 18, 32, 8,138,160

169, 48, 32,137,138, 32, 72

160, 21,162, 58, 32, 0,140

21,169, 68, 32,212,139,160

169, 63, 32, 24,138,160, 21

43, 32,137,138, 32, 72,136

21,162, 53, 32, 0,140,160

169, 53, 32,212,139,160, 21

53, 32, 8,138,160, 21,162

32, 0,140,160, 21,169, 58

212,139,160, 21,169, 58, 32

138,160, 21,162, 68, 32, 0

160, 21,169, 63, 32,137,138

72,136,160, 21,169, 23, 32

138, 32, 87,140, 48, 3, 76

20,165,167,240, 34,166, 5

12,197,169,176, 2,133,169

170,144, 2,133,170,201, 4

2, 74, 74,170,189, 73, 21

131, 32, 36,157, 32, 33,156.

5,240, 16,169, 63,141, 0

165,167,164,252,145, 253,169

141, 0,255,238, 49, 17,230

76,183, 19, 0, 0, 0, 0

0,130, 0, 0, 0, 0,131

0, 0, 0

September1987: Volume 8, Issue O2



The Last Word On

Re-Programming

Function Keys

Miklos Garamszeghy

Toronto, ON

Several examples of how to re-program or de-activate the shift—

<Run/Stop> and <Help> keys have recently appeared in

Transactor's Bits and Pieces section as well as in several other

magazine hint columns. Unfortunately, although most of the

methods described work adequately under various conditions,

they have all missed the very versatile routine built into the C-

128 expressly for this purpose: the KERNAL PFKEY routine at

65381 ($FF65). This function is extremely easy to use and is

very versatile. Furthermore, its use for redefining any program

mable key (including the shift-<Run/Stop> and <Help> keys)

does not depend on knowing the length, absolute values or

locations for any of the keys. It can be used in the following

manner in either program or immediate mode:

1) fill three consecutive zero page locations (such as 250, 251

and 252) with the low byte, high byte and bank of the address

of your new key definition text string.

2) set the "a" register to the address of the first zero page

location, the "$" register to the number of the key to be

defined (from 1 to 10), and the "y" register to the length of

the new text string

3) call the routine with a SYS 65381 ,a,x,y

The length of the new function key definition does not have to

be the same as the old one because all function key pointers are

automatically updated when you define a new one.

One example is as follows:

T$ = " new key definition"

BANK1:AD = POINTER(T$)

LE = PEEK(AD): LO = PEEK(AD + 1): HI = PEEK(AD + 2)

POKE 250.LO: POKE 251 ,HI: POKE 252,1

BANK 15: SYS 65381,250,K.LE

where K= 1 to 8 for F1 toF8

9 for shift-<Run/Stop>

10for<Help>

To de-activate a key, that is set it to a null string, a simple:

BANK 15: SYS 65381,0,K,0

is all that is required!!

To restore the original key definitions at the end of your pro

gram, the following procedure can be used:

Followed by:

POKE 2564,129

<Run/Stop>-<Restore>

in immediate mode, or

SYS 49275

(in either immediate mode or program mode).

Both of these methods activate the KERNAL initialization rou

tine which will also clear screen windows and tab definitions,

and reset the colours and set the active screen (i.e. 40 or 80

column) based on the position of the 40/80 key. If bit 3 of

memory location 2564 is clear before engaging the routine, the

function key definitions will be initialized as part of the process.

While on the subject of function keys, here is a nice little do

nothing piece of trivia: how to make function keys activate each

other.

Try entering this in immediate mode:

KEY 1, "POKE210,0:POKE209,21" +CHR$(13)

Then press Fl. It will continue to activate itself in an endless

loop until you hit <Run/Stop>-<Restore>. The reason is quite

simple. BASIC'S input editor checks location 209 during key

board reads. If the value is non-zero, the corresponding number

of characters are transferred from the function key buffer area,

beginning at the offset location specified in 210, to the input

buffer ready for execution. POKEing a non-zero value into 209

will cause the input editor to think that a function key has been

pressed. The rest is simple mathematics to figure out the offset

into the function key buffer and the number of characters to

transfer.

The Transactor 74 September 1987: Volume 8, Issue O2



News BRK
Submitting NEWS BRK Press Releases

If you have a press release you would like to submit for the NEWS BRK column,

make sure that the computer or device for which the product is intended is

prominently noted. We receive hundreds of press releases for each issue, and

ones whose intended readership is not clear must unfortunately go straight to the

trash bin. It should also be mentioned here that we only print product releases

which are in some way applicable to Commodore equipment. News of events

such as computer shows should be received at least 6 months in advance.

Transactor News

Our New Home

Once again we have a new address. Actually, our last new address was just our

post office box down the street. This new address is our new headquarters in the

Beaver Creek business park of Richmond Hill.

The Transactor

85 West Wilmot Street, Unit #10

Richmond Hill, Ontario Canada

L4B1K7

phone (416) 764-5273

Nt

YongeSt.

West Beaver Creek

West Wilmot

WestPearce

BayviewAv.

■Hwy.#7

West Beaver Creek

If you're in the neighborhood, drop in on us for the grand tour! We're easy to

find. From the Toronto area, take Hwy 401 to Hwy. 404, go north to Hwy. 7, west

to Leslie Street, go north two streets and that's West Wilmot (notice, no *n' in

'Wilmot'). Go west and we're the last building on the left (red bricks, dark green

garage doors). Just past us there's a big empty lot so we may not be the last

building on the left for long.

Advertisers Wanted

If anyone is interested in placing full-page, half-page or quarter-page colour or

black and white ads in the Transactor, please contact us for rates and informa

tion. Yup, you heard right. We'll take ads now, but space is limited. Our ceiling

currently is the cover spots plus 5 pages of the interior.

New Canadian Prices

In an act of boundless generosity and financial miscalculation, we have until now

given our Canadian customers a real break by pricing products the same in

Canadian and U.S. dollars. We felt good about giving our fellow Canadians a

break, but that feeling is quickly giving way to the bad feelings we're getting

about losing money. So, we have adjusted (raised) prices for products when paid

in Canadian currency. It's also the first time in 7 years that subscription prices

have gone up.

With the exception of the Micro Sleuth diagnostic'device, the U.S. prices remain

the same. You will see the new prices on the subscription card, but here they are

so you don't get taken by surprise:

Magazine Subscriptions

Magazine Cover Price

Disk Subscriptions

Transactor Disks

The Bits and Pieces Book

Inner Space Anthology

1541 ROM Upgrade Kit

T-ShirtsS-XL

Jumbo T-Shirt

19.00 Canadian

4.25 Canadian

55.00 Canadian

9.95 Canadian

17.95 Canadian

17.95 Canadian

69.95 Canadian

15.95 Canadian

19.95 Canadian

As mentioned above, the Micro Sleuth is an exception; the U.S. price goes from

$89.95 to $99.95 U.S., while the price in Canadian dollars remains the same.

Many of the price increases do not reflect the exchange rate exactly, but shipping

to the U.S. is more expensive, and there's also brokerage fees.

Cover Price Increase

Our cover price in Canada is up to $4.25, another good reason to subscribe.

Although we're no longer on the newsstand, some are still being shipped to the

odd computer store, but in very few places. But even if you can buy them locally

off a magazine rack, it's 34% more expensive than subscribing, 40% more in the

US.

Shipping Fee on Mail Orders

We have added a small shipping/handling flat rate to all mail orders. With ANY

order, please add $2.00 Cdn. within Canada, $2.00 US in the states, and $5.00

US for foreign orders. This does NOT apply to back issues (shipping costs are

already built into the price of back issues) or subscription orders (i.e. magazine

and/or disk subscriptions).

Don't Forget the Sates Tax!

If you are a resident of Ontario, please don't forget to add the 7 percent sales tax

to all orders, including disk subscriptions. There is no tax on magazine

subscriptions or books, but the tax applies to EVERYTHING else.

Sign Of The Times

We get many orders in on our postage paid order card that show a Visa or Master

Card number. Each time we must call Visa or M/C to get a verification of the carcl

number, expiry date, etc, even for small amounts. Why are gas stations and

department stores not required to do this? One reason: a signature. That

signature means the person making the purchase is the same person who owns

the card, at least in principle. If the card is not on the "hot list" and we have a

signature, many orders won't need verification, which will save us hours, maybe

days! And those days add up to late shipments which you enjoy about as much as

we do.

You can help. Our order card now has a space for a signature. When using your

credit card for payment, please sign, and be sure to indicate the date it was

written. That way your signature is only good for that particular card. Visa and

M/C want copies of our card submitted to match up with our invoicing, and if the

difference between the date on your order card and our invoice date is too big,

we'll be called to the question stand... and we don't want that.

Dealer Inquiries Welcome

The Transactor has several products besides our magazine and disk: the Bits and

Pieces book, the Inner Space Anthology, the TVansBASIC disk, the Potpourri disk

(see ad this issue), and the Micro Sleuth. These products are currently being

The TransGetor 75 September 1987: Volume 8, Issue O2



marketed and sold through the magazine only. We would be happy to bring

these products to a larger audience by selling to any interested dealers; if you are

one of them, please contact us.

Group Subscription Rates: The 20/20 Deal

The Transactor has always been popular among Commodore user groups, so to

encourage new subscribers we are offering quantity discounts for magazine and

disk subscriptions: 20 percent off for group orders of 20 or more subscriptions. If

you can get together enough friends or club members, just put all the subscrip

tions in a single envelope, and you get the discount. You don't need to be a user

group to qualify - any 20 or more subscription cards in a single package get the

20/20 deal, no questions asked.

T-Shirt Offer Continues

Y'know, I just can't believe these T-Shirts. They were ordered from Vantage

Sports here in Toronto, and if anyone else around southern Ontario is planning to

get some made, Vantage is the place to go. Their prices are a little higher, but the

shirts are well worth it. Make sure to specify the "super opaquing process" if

you're getting something screened onto them and they may just last forever.

We've had the T's now for almost a year. I started out with two last July, and

recently had to "borrow" one from stock to wear to a special event when going

home to change would have taken me somewhat out of my way. Now I can't tell

the difference between my newest one and the other two which are easily 10

months older.

Order a combination magazineAND disk subscription, and one of these fabulous

T-Shirts will be sent to you FREE. Please indicate the size you want (sorry,

Jumbo excluded) and the color on the order card. Before now the shirts came in

red only. Now we have red and blue! The front features our mascot, Duke, in a

snappy white tux and top hat, standing behind our logo in 3D letters.

Mail-Order Products No Longer Offered

We have removed several products from our mail-order card: The Gnome Speed

Compiler and Gnome Kit Utility, the "pocket" series of software, PRISM's

SuperKit 1541, the BH100 hardware course material, the Anchor Volksmodems,

and the Comspec 2 megabyte RAM expansion units. We still have some stock of

the software and can order more of the other products if necessary, so we should

be able to fill any orders from previous subscription cards.

New Mail-Order Products

Now the good news. As you can see on the mail-order card, we have four new

TVansactor products to offer you:

The Bits and Pieces Disk: This disk contains all of the programs from the

Transactor book of Bits and Pieces (the "bits book"), which in turn come from the

"Bits and Pieces" section of past issues of the magazine. The "bits disk" can save

you a lot of typing, and in conjunction with the bits book and its comprehensive

index can yield a quick solution to many a programming problem. Price for the

disk is the same as our regular disks, $8.95 US, 9.95 Cdn.

Bits Book AND Disk: Get both for just $19.95 US, 24.95 Cdn.

TheAmigaDisk is here! Finally, the first Transactor Amiga disk is available. It

contains all of the Amiga programs presented in the magazine, of course,

including source code and documentation. You will find the popular "PopCol-

ours" program, the programmer's companion "Structure Browser", the Guru-

killing "TrapSnapper", user-friendly "PopToFront", and others. In addition, we

have included public domain programs - again, with documentation - that we

think Transactor readers will find useful. Among these are the indispensable

ARC; Csh, a powerful CLI-replacement DOS shell; BLink, a linker that is much

faster and has more features than the standard ALink; Foxy and Lynx, a 6502

cross assembler and linker that makes its debut on the Amiga Disk; and an

excellent shareware text editor called UEdit. In addition, we have included our

own expression-evaluator calculator that uses variables and works in any

number base. All programs contain source code and documentation; all can be

run from the CLI, and some from Workbench. There's something for everyone

on the Transactor Amiga disk. Price is $12.95 US, $14.95 Canadian.

The Potpourri Disk: This is a C-64 product from the software company called

AHA!, otherwise known as Nick Sullivan and Chris Zamara. The Potpourri disk

is a wide assortment of 18 programs ranging from games to educational

programs to utilities. All programs can be accessed from a main menu or loaded

separately. No copy protection is used on the disk, so you can copy the programs

you want to your other disks for easy access. Built-in help is available from any

program at any time with the touch of a key, so you never need to pick up a

manual or exit a program to learn how to use it. Many of the programs on the

disk are of a high enough quality that they could be released on their own, but

you get all 18 on the Potpourri disk for just $17.95 US / $19.95 Canadian. See

the Ad in this issue for more information.

TransBASICII

An updated TransBASIC disk is now available, containing all TB modules ever

printed. The first TransBASIC disk was released just as we published TransBASIC

Column #9 so the modules from columns 10,11 and 12 did not exist. The new

manual contains everything in the original, plus all the docs for the extras.

Prices for the new TB disk are $17.95 US and $19.95 Cdn. People who ordered

TB I can upgrade to TB II for the price of a regular Transactor Disk (8.95/9.95). If

you are upgrading, you don't necessarily need to send us your old TB disk; if you

ordered it from us, we will have your name on file and will send you TB II for the

upgrade price. Please indicate on the order form that you have the original TB

and want it upgraded.

Some TBs were sold at shows, etc, and they won't be recorded in our database. If

that's the case, just send us anything you feel is proof enough (e.g. photocopy

your receipt, your manual cover, or even the diskette), and TB II is yours for the

upgrade price.

TheGlinkisBack!

While moving from Milton to Richmond Hill, guess what we found? No, not G-

Links, but enough boards to make about 200 more. Glink parts are common

garden variety type, but when we ran out of boards we discontinued it. Now that

we have more, we've decided to make more. Too bad we didn't find them

sooner... many orders for this item had to be denied. However, we were

surprised to find that many of the parts needed have had price increases since

we discontinued it. Regardless, they're still the least expensive interfaces around.

Glinks are $59.95 US, 69.95 Cdn.

The Glink is a Commodore 64 to IEEE interface. It allows the 64 to use IEEE

peripherals such as the 4040, 8050, 9090, 9060, 2031, and SFD-1001 disk

drives, or any IEEE printer, modem, or even some Hewlett-Packard and

Tektronics equipment like oscilloscopes and spectrum analyzers. The beauty of

the Glink is its "transparency" to the C64 operating system. Some IEEE

interfaces for the 64 add BASIC 4.0 commands and other things to the system

that sometimes interfere with utilities you might like to install. The Glink adds

nothing! In fact it's so transparent that a switch is used to toggle between serial

and IEEE modes, not a linked-in command like some of the others. Switching

from one bus to the other is also possible with a small software routine as

described in the documentation.

As of Transactor Disk #19, a modified version of Jim Butterfield's "COPY-ALL"

will be on every disk. It allows file copying from serial to IEEE drives, or vice

versa.

New Set of Microfiche

Some of our back issues are not available any more, but they're all available on

microfiche. Since we're now into Volume 8, a set of microfiche will include all

issues from Volume 4 through Volume 7. Prices are $49.95 U.S and $59.95 Cdn.

TheTransactc 76 September 1987: Volume 8, Issue O2



Transactor Mail Order

The following details are for products listed on the mail order card. If you have a

particular question about an item that isn't answered here, please write or call.

We'll get back to you and most likely incorporate the answer into future editions

of these descriptions so that others might benefit from your enquiry.

■ Moving Pictures - the C-64 Animation System, $29.95 (US/C)

This package is a fast, smooth, full-screen animator for the Commodore 64,

written by AHA! (Acme Heuristic Applications!). With Moving'Pictures you use

your favourite graphics tool to draw the frames of your movie, then show it at full

animation speed with a single command. Movie 'scripts' written in BASIC can

use the Moving Pictures command set to provide complete control of animated

creations. BASIC is still available for editing scripts or executing programs even

while a movie is being displayed. Animation sequences can easily be added to

BASIC programs. Moving Pictures features include: split screen operation - part

graphics, part text - even while a movie is running; repeat, stop at any frame,

change position and colours, vary display speed, etc; hold several movies in

memory and switch instantly from one movie to another; instant, on-line help
available at the touch of a key; no copy protection used on disk.

■ TVansactor T-Shirts, $13.95 US, $15.95 Cdn.

■ Jumbo T-Shirt, $17.95 US, $19.95 Cdn.

As mentioned earlier, they come in Small, Medium, Large, Extra Large, and

Jumbo. The Jumbo makes a good night-shirt/beach-top - it's BIG. I'm 6 foot tall,

and weigh in at a slim 150 pounds - the Small fits me tight, but that's how I like

them. If you don't, we suggest you order them 1 size over what you usually buy.

■ The Transactor Book of Bits and Pieces #1, $14.95 US, $17.95 Cdn.

Not counting the Table of Contents, the Index, and title pages, it's 246 pages of

Bits and Pieces from issues of The Transactor, Volumes 4 through 6. Even if you

have all those issues, it makes a handy reference - no more flipping through

magazines for that one bit that you just know is somewhere... Also, each item is

forward/reverse referenced. Occassionally the items in the Bits column ap

peared as updates to previous bits. Bits that were similar in nature are also cross-

referenced. And the index makes it even easier to find those quick facts that

eliminate a lot of wheel re-inventing.

■ TheTr@ns@ctor 1541 ROM Upgrades, $59.95 US, $69.95 Cdn.

You can burn your own using the ROM dump file on Transactor Disk #13, or you

can get a set from us. There are 2 ROMs per set, and they fix not only the SAVE®

bug, but a number of other bugs too (as described in P.A. Slaymaker's article, Vol

7, Issue 02). Remember, if SAVE® is about to fail on you, then Scratch and Save

may just clobber you too. This hasn't been proven 100%, but these ROMs will

eliminate any possibilities short of deliberately causing them (ie. allocating or

opening direct access buffers before the Save).

NOTE: Our ROM upgrade kit does NOT fit in the 1541C drives. Where we supply

two ROMs, Commodore now has it down to one MASSIVE 16 Kbyte ROM. We

don't know if the new drives still contain the bugs eliminated by our kit, but we'll

find out and re-cut a second kit if necessary. In the meantime, 1541C owners

should not order this item until further notice.

■ The Micro Sleuth: C64/1541 Test Cartridge, $99.95 (US), $129.95 (Cdn)

This cartridge, designed by Brian Steele (a service technician for several schools

in southern Ontario), will test the RAM of a C64 even if the machine is too sick to

run a program! The cartridge takes complete control of the machine. It tests all

RAiyi in one mode, all ROM in another mode, and puts up a menu with the

following choices:

1) Check drive speed

2) Check drive alignment

3) 1541 Serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

A second board, that plugs onto the User Port, contains 8 LEDs that lets you zero

in on the faulty chip. Complete with manual.

■ Inner Space Anthology $14.95 US, $17.95 Cdn.

This is our ever popular Complete Commodore Inner Space Anthology. Even

after a year and a half, we still get inquiries about its contents. Briefly, The

Anthology is a reference book - it has no "reading" material (ie. "paragraphs").

In 122 compact "pages, there are memory maps for 5 CBM computers, 3 Disk

Drives, and maps of COMAL; summaries of BASIC commands, Assembler and

MLM commands, and Wordprocessor and Spreadsheet commands. Machine

Language codes and modes are summarized, as well as entry points to ROM

routines. There are sections on Music, Graphics, Network and BBS phone

numbers, Computer Clubs, Hardware, unit-to-unit conversions, plus much

more... about 2.5 million characters total!

■ The TransBASIC Disk II $17.95 US, $19.95 Cdn.

This is the complete collection of every TVansBASIC module ever published.

There are over 140 commands at your disposal. You pick the ones you want to

use, and in any combination! It's so simple that a summary of instructions fits

right on the disk label. The manual describes each of the commands, plus how to

write your own commands.

Transactor Disks, Transactor Back Issues, and Microfiche

All issues of The Transactor from Volume 4 Issue 01 forward are now available

on microfiche. According to Computrex, our fiche manufacturer, the strips are

the "popular 98 page size", so they should be compatible with every fiche reader.

Some issues are ONLY available on microfiche - these are marked "MF only".

The other issues are available in both paper and fiche. Don't check both boxes

for these unless you want both the paper version AND the microfiche slice for the

same issue.

To keep things simple, the price of Transactor Microfiche is the same as

magazines, both for single copies and subscriptions, with one exception: a

complete set of 24 (Volumes 4,5,6, and 7) will cost just $49.95 US, $59.95 Cdn.

This list also shows the "themes" of each issue. "Theme issues" didn't start until

Volume 5, Issue 01. The Transactor Disk #1 contains all programs from Volume

4, and Disk #2 contains all programs from Volume 5, Issues 1-3. Afterwards

there is a separate disk for each issue. Disk 8 from The Languages Issue contains

COMAL 0.14, a soft-loaded, slightly scaled-down version of the COMAL 2.0

cartridge. And Volume 6, Issue 05 published the directories for Transactor Disks

Ito9.

■ Vol. 4, Issue 01 (■ Disk 1) ■ Vol. 4, Issue 04 - MF only (■ Disk 1)

■ Vol. 4, Issue 02 (■ Disk 1) ■ Vol. 4, Issue 05 - MF only (■ Disk 1)

■ Vol. 4, Issue 03 (■ Disk 1) ■ Vol. 4, Issue 06 - MF only (■ Disk 1)

■ Vol. 5, Issue 01 - Sound and Graphics (■ Disk 2)

■ Vol. 5, Issue 02 - Transition to Machine Language - MF only (■ Disk 2)

■ Vol. 5, Issue 03 - Piracy and Protection - MF only (■ Disk 2)

■ Vol. 5, Issue 04 - Business & Education - MF only (■ Disk 3)

■ Vol. 5, Issue 05 - Hardware & Peripherals (■ Disk 4)

■ Vol. 5, Issue 06 - Aids & Utilities (■ Disk 5)

■ Vol. 6, Issue 01 - More Aids & Utilities (■ Disk 6)

■ Vol. 6, Issue 02 - Networking & Communications (■ Disk 7)

■ Vol. 6, Issue 03 - The Languages (■ Disk 8)

■ Vol. 6, Issue 04 - Implementing The Sciences (■ Disk 9)

■ Vol. 6, Issue 05 - Hardware & Software Interfacing (■ Disk 10)

■ Vol. 6, Issue 06 - Real Life Applications (■ Disk 11)

■ Vol. 7, Issue 01 - ROM / Kernel Routines (■ Disk 12)

■ Vol. 7, Issue 02 - Games Frorr/The Inside Out (■ Disk 13)
■ Vol. 7, Issue 03 - Programming The Chips (■ Disk 14)

■ Vol. 7, Issue 04 - Gizmos and Gadgets (■ Disk 15)

■ Vol. 7, Issue 05 - Languages II (■ Disk 16)

■ Vol. 7, Issue 06 - Simulations and Modelling (■ Disk 17)

■ Vol. 8, Issue 01 - Mathematics .(■ Disk 18)

■ Vol. 8, Issue 02 - Operating Systems (■ Disk 19)

The Transactor 77 September 1987: Volume 8, Issue O2



Industry News

the following items, compiled by Astrid Kumas, are based on press releases
recently received from the manufacturers. Please note that product descriptions

are not the result of evaluation by The Transactor.

Portland Company Vanishes

News BRK in Volume 7, Issue 6 carried an item about a video digitizer named

Eye-Scan for the Commodore 64 from a company named Digital Engineering

and Design in Portland, Oregon. It seems that Digital Engineering has either

moved or folded, as neither we nor several readers who have tried have been

able to get in touch with them. If you are out there somewhere, Digital, let us

know where you went. We might have some customers for you. ,

4040 Drive Internals

Depending on reader response, a book could soon become available that

uncovers, for the very first time, all inner details of the Commodore 4040 drive.

Within this vast tome of knowledge will be found an in depth and documented

look into the Floppy Disk Controller RAM and ROM, the Interface Processor

RAM and ROM, plus theory on how it all fits together. A useful book for specific

occasions. The book is close to completion right now, but reader response is

required to determine if full production would be worth while. If you are at all

interested, and would like to be kept informed of the book's progress, then send a

note today to the following address. If the 4040 book is successful, then an 8050,

8250,9060 and 9090 will follow.

Hilaire Gagne

1074 Webbwood Drive

Sudbury, Ontario, Canada

P3C-3B7

CAD for the Amiga

On November 17, 1986 Aegis Development began to ship their latest Amiga

product, Aegis Draw Plus, to dealers and distributors. This new computer-aided

design package for the Amiga allows up to six independent drawings of 256

layers each to be worked on using a basic 512K Amiga computer (although one

megabyte of RAM is recommended). Full 16-colour capability is available and

drawings may be saved in the Amiga's standard IFF file format for use in other

programs such as Aegis Images, Graphicraft, and Deluxe Paint paint programs.

Aegis Draw Plus is controlled either with the mouse and pull-down menus, or

entirely with the keyboard for more advanced users. Some of the capabilities

beyond the ability to draw lines and shapes include:

Basic features:

• ruler lines with variable measure types (decimal, feet, inches, etc.)

• adjustable grid sizes and on/off toggle

• plotter drivers selectable via menu for use with multiple plotters

• advanced printer support for clean dot matrix output (72 dpi)

• unlimited levels of zoom

• variable line weights and fill patterns, including solid fills

• full 360 degree rotation of any object or part

• resizing of any object or part

• 256 selectable levels (planes) to work on

• adjustable and savable color palette

• text can be typed directly on any part of any display

• multiple resolution (640x400 - lmb RAM required - and 640x200)

• file compatibility between resolutions

• eight-way mirror function.

Advanced features:

• parts library for storage of often-used objects

• "stats'* function allows precise numeric adjustment of any item

• hook tool for distorting polygons (as found in Aegis Animator)

• array tool for creating repeated objects in a pattern

• function key support for toolbox selection

• arcs allow variance of angle and radius in a single operation

• automatic dimensioning and scaling

• plot spooling

• plot files can be saved to disk for reprinting

•fully 1.2 DOS compatible

• grid size and rounding consistent in zoom operation

• locked font sizes (adjustable via stats)

• customizable plotter driver for any hardware-compatible plotter

• not copy protected for easy transfer to hard drive

• files are compatible between Aegis Draw and Aegis Draw Plus

• works with Genlock, digitizers, track balls, expanded memory (up to 8

megabytes), and hard disks.

Aegis Draw Plus retails for $259.95 (US). Registered users who own Aegis Draw,

the company's first design program for the Amiga, will receive notification of

Aegis' update policy.

For further information on Aegis Draw Plus, contact:

Aegis Development, Inc.

2210 Wilshire Blvd. *277

Santa Monica CA 90403

(213)306-0735

B.E.S.T.Business Management

B.E.S.T. Inc. (Business Electronics Software & Technology, Inc.) announces

B.E.S.T. Business Management for the Amiga computer, an accounting/business

information management software system that includes Order Processing,

Inventory Management, Services Management, Accounts Receivable, Accounts

Payable and General Ledger. Special features of the program listed by the

manufacturer allow the user to:

• create and save as many as fifteen customized financial reports;

• select from fourteen preformatted Inventory reports, or create and save up to

fifteen unique Inventory reports, from a menu of 33 inventory performance

factors;

• define and manage, by invoice or by customer, nine different sets of "Terms

and Conditions" of sale;

• define and categorize Services, units of service and fees per service unit, and

"bill" labour charges or "no charge" warranty services;

• automatically update Inventory, Receivables and Ledger accounts when a

business procedure is completed;

• manage multiple sales/excise tax requirements.

The package includes a 380-page owners manual, containing 260 screen

photographs and 50 sample reports. For further information regarding price and

availability, contact:

B.E.S.T., Inc.

P.O. Box 230519

Tigard, OR 97224

(503)684-6655

1-800-368-BEST

Public Domain Programs

Two US-based sources of public domain software have recently come to our

attention. They are the Schneider Software Company and the Folklife Terminal

Club.

Schneider Software at 23 East Green St., West Hazleton, PA 18201 sells

Frugalware, public domain software for the Commodore 64/128 and the

Commodore Amiga. Three hundred disks containing over 8000 programs

presently run on the C-64 and C-128. Some categories include Games, Utilities,

Business, Graphics and Music.

The price per disk is $2.50 (US), not including quantity discounts. The Public

Domain Catalogue (on disk) and a free disk containing a word processor, a

The Transactor 78 September 1987: Volume 8, Issue 02



database and a spreadsheet plus thirty additional programs can be obtained for

$2.00 (US) postage and handling.

From the same company, twenty-five disks are available for the Amiga. The

price is $4.95 (US) per disk plus $2.00 (US) for postage and handling.

Folklife Terminal Club, an international Commodore computer users group,

provides support for the Plus/4, VIC 20, PET, CBM, B-128, C-64 and C-128

computers. The club has issued new catalogues of software from their archives,

which contain more than 6000 user written programs in the areas of Education,

Science, Business, Games, Music, Graphics and more than twenty-five other

categories.

The programs are stored on diskettes and are usable on various configurations of

the orphaned computers as well as the current C-64 and C-128 machines. The

software itself is free. The first diskette that should be ordered is the new

Catalogue On A Disk which contains an automatic software finder program, a

listing of all the available software in the Folklife library, complete instructions

and Associate Membership in the club. There is a copying and mailing fee of

$15.00 (US) per diskette. Use bank-issued cheques payable on a US bank or Post

office International Money Orders. There is a separate Catalogue Disk for each of

the Commodore computers, so specify which computer and disk drive you have.

Contact:

Folklife Terminal Club

Box555-HN

Co-op City Station

Bronx, NY 10475

The New PAL JR.

Byte By Byte Corporation has announced that their product for the Amiga

computer, PAL JR, has been completely redesigned.

The PAL JR is a two-slot, fully Zorro compatible auto-configure expansion

system. The standard PAL JR system contains 1 MByte of fast RAM, a battery

backed clock calendar, and a 20 MByte hard disk drive with DMA controller. The

DMA controller occupies one slot and will support a SCSI option. The PAL JR

system is contained in a low profile case designed to sit on top of Amiga.

Shipment of the PALJR will start in the first quarter of 1987. Pre-paid orders will

be given preference when shipping commences. The price will be $1495.00 US,

and all orders will be filled directly by Byte By Byte. For additional information,

or to place an order, contact:

Byte By Byte Corp.

Arboretum Plaza II

9442 Capital of Texas Highway North

Suite 150, Austin TX 78759

(512)343-4357

NLQ for the Gemini 1OX

Chessoft Ltd. has developed software-controlled near letter quality print for the

Gemini 1 OX, Commodore 64,1541 home computer system.

Their product, Gem-LQ, operates on ordinary sequential files, which can be

prepared directly with most word processors. It accepts either true ASCII or

Commodore codes. The user can modify any character, or prepare completely

new customized character sets.

Gem-LQ is available exclusively from Chessoft Ltd. for $29.95 (US) ppd. plus

$3.00 (US) for overseas orders. For an original printout sample and further

information, interested C-64 users are invited to send $ 1.00 (US - refundable) to:

Chessoft Ltd.

723 Barton St.

Mt.Vernon

IL 62864

Supradrive Amiga Hard disk

Supra Corporation has announced the release of SupraDrive hard disk systems

for the Amiga computer. The SupraDrive system includes four integrated fea

tures: hard disk drive, real-time clock with battery backup for time and date

retention, SCSI expansion port, and the capability to expand the Amiga's RAM

memory.

SupraDrives are available in 20, 30, and 60 mb capacities and come ready to

plug-in and use. The retail prices are $995, $1195, and $1995 (US) respectively.

The SupraDrive plugs onto the Amiga's expansion connector and features

Supra's own proprietary interface for high-speed data transfers. The data

channel is capable of burst data transfers of over 250 KB per second.

The SupraDrive interface has the capability of adding plug-in RAM modules

with capacities from 512K to 4 megabytes of Fast Ram. The expansion RAM

boards and hard disk are powered by the SupraDrive's own power supply. For

more information call:

John Wiley (503)967-9075

1133 Commercial Way

Albany, OR 97321

Auto Disk Menu/Program Loader

Autoload, a disk file directory and loading utility, is now available from Southern

System Services for the Commodore 64,64C, 128, SX-64 and DX-64 computers

with the 1541 or 1571 (or equivalent) disk drive.

When saved as the first program on disk, Autoload provides two keystroke disk

directory screen listing for up to 100 disk files, single keystroke file load and run,

forward and reverse file listing window scroll, function key exit to BASIC with

single keystroke directory program restart and function key directory reload.

Autoload is completely menu driven, and can be customized to list only boot

files and to operate or interact with drive addresses 8,9,10 and 11. Deleting itself

from the directory listing, Autoload is transparent to the user.

The unprotected program costs $18.00 (US). Make cheque or money order

payable to:

Southern System Services

1307 Krenek

Crosby, TX 77532

(713)328-3451

A-Talk Communication Tools for the Amiga

Felsina Software announces the release of A-Talk, an advanced communication

and terminal program for the Amiga. A-Talk is a set of communication tools that

work together to help you collect, control, and transmit data with your Commo

dore Amiga. A-Talk supports Kermit, Xmodem and CompuServe "B" error-

checking protocols, as well as allowing transfer of standard ASCII files. A script

language called "Dial-Talk" allows you to automate your login process and

includes a phone directory and programmable function keys. Standard Login

scripts are included for connecting with various networks.

Full ANSI terminal emulation is supported, and Termcap and terminfo descrip

tions are included to allow use of full-screen editors like Emacs and vi on UNIX

systems. A-TALK for the Amiga list for $49.95. A-TALK is NOT copy protected.

Felsina Software Inc.

3175 S.Hoover Street, Suite 275

Los Angeles, California 90007

(213)747-8498

The Transactor September 1987: Volume 8, Issue O2



New! Improved!

TRANSBASIC 2!
with SYMASS™

"I used to be so ashamed of my dull, messy code, but

no matter what I tried I just couldn't get rid of those

stubborn spaghetti stains!" writes Mrs. Jenny R. of

Richmond Hill, Ontario. "Then the Transactor people

asked me to try new TransBASIC 2, with Symass®.

They explained how TransBASIC 2, with its scores of

tiny 'tokens', would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in

giving it a try. Well, all it took was one load and I was

convinced! TransBASIC 2 went to work and got my

code looking clean as new in seconds! Now I'm telling

all my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass, the symbolic assembler.

Package contains all 12 sets of TransBASIC modules

from the magazine, plus full documentation. Make your

BASIC programs run faster and better with over 140

added statement and function keywords.

Disk and Manual $17.95 US, $19.95 Cdn.

(see order card at center and News BRK for more info)

TransBASIC 2
"Cleaner code, load after load!"

Bits & Pieces I:

The DisHc

From the famous book of the same name, Transactor

Productions now brings you Bits & Pieces I: The Disk!

You'll thrill to the special effects of the screen

dazzlers! You'll laugh at the hours of typing time

you'll savel You'll be inspired as you boldly go

where no bits have gone beforel

"Extraordinarily faithful to the plot "Absolutely

of the book... The BAM alone is magnetic!!"

worth the price of admission!" GeneSyscall

Vincent Canbyte

"Ifyou mount only one bits disk in 1987, make it this

onel The fully cross-referenced index is unforgettable!

Recs Read, New York Tl$

BITS & PIECES I: THE DISK, A Mylar Film, in association with Transactor Productions.

Playing at a drive near you!

Disk $8.95 US, $9.95 Cdn. Book $ 14.95 US, $ 17.95 Cdn.

Book & Disk Combo Just $ 19.95 US, $24.95 Cdnl



The Potpourri Disk

Help!

This HELPful utility gives you instant

menu-driven access to text files

at the touch of a key - while any

program is running!

Loan Helper

How much is that loan really going

to cost you? Which interest rate

can you afford? With Loan Helper,

the answers are as close as your

friendly 64!

Keyboard

Learning how to play the piano?

This handy educational program

makes it easy and fun to learn the

notes on the keyboard.

Filedump

Examine your disk files FAST with

this machine language utility.

Handles six formats, including hex,

decimal, CBM and true ASCII,

WordPro and SpeedScript.

Anagrams

Anagrams lets you unscramble

words for crossword puzzles and

the like. The program uses a recur

sive ML subroutine for maximum

speed and efficiency.

Life

A FAST machine language version

of mathematician John Horton

Conway's classic simulation. Set

up your own "colonies' and watch

them grow!

War Balloons

Shoot down those evil Nazi War

Balloons with your handy Acme

Cannon! Don't let them get away!

Von Googol

At last! The mad philosopher,

Helga von Googol, brings her own

brand of wisdom to the small

screen! If this is 'Al', then it just ain't

natural!

News

Save the money you spend on

those supermarket tabloids - this

program will generate equally

convincing headline copy - for

free!

Wrd

The ultimate in easy-to-use data

base programs. WRD lets you

quickly and simply create, exam

ine and edit just about any data.

Comes with sample file.

Quiz

Trivia fanatics and students alike

will have fun with this program,

which gives you multiple choice

tests on material you have en

tered with the WRD program.

AHA! Lander

AHAI's great lunar lander program.

Use either joystick or keyboard to

compete against yourself or up to

8 other players. Watch out for

space mines!

Bag the Elves

A cute little arcade-style game;

capture the elves in the bag as

quickly as you. can - but don't get

the good elf!

Blackjack

The most flexible blackjack simula

tion you'll find anywhere. Set up

your favourite rule variations for

doubling, surrendering and split

ting the deck,

File Compare

Which of those two files you just

created is the most recent ver

sion? With this great utility you'll

never be left wondering.

Ghoul Dogs

Arcade maniacs look out! You'll

need all your dexterity to handle

this wicked joystick-buster! These

mad dog-monsters from space

are not for novices!

Octagons

Just the thing for you Mensa types.

Octagons is a challenging puzzle

of the mind. Four levels of play,

and a tough 'memory' variation

for real experts!

Backstreets

A nifty arcade game, 1OO% ma

chine language, that helps you

learn the typewriter keyboard

while you play! Unlike any typing

program you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the

above programs, ALL of the above programs, on a single disk, accessed

independently or from a menu, with built-in menu-driven help and fast-loader.

The ENTIRE POTPOURRI COLLECTION

JUST $17.95 US!!

See Order Card at Center



Introducing

BASIC8
By Lou Wallace & David Darus

At last, you can unleash the graphics potential of your

Commodore 128 to achieve performance which rivals that of

16-bit micros! Imagine your 128 (or 128-D) producing

resolution of 640 x 200 in monochrome and 640 x 192 in 16

colors without any additional hardware. Sound impossible?

Not with Basic 8, the new graphics language extension.

Basic 8 adds over 50 new graphics commands to standard

C-128 Basic. Just select one of many graphics modes and

draw 3-D lines, boxes, circles and a multitude of solid

shapes with a single command. We've even added

commands for windows, fonts, patterns and brushes.

To demonstrate the power and versatility of this new

graphics language, we have created Basic Paint, a flexible

icon-based drawing application. Written in Basic 8, Basic

Paint supports an expanded Video RAM (64K), RAM

Expanders, Joystick and the New 1351 Proportional Mouse.

Also included is an icon-based desk-top utility which

provides quick and convenient access to each of your very

own Basic 8 creations.

All this graphics potential is yours at the special introductory

price of $39.95. The package includes Basic 8, Basic Paint,

the desk-top utility, a 180-page manual and a run time

module. (80-Column RGB Monitor Required)

Mail your order to:

Computer Mart, Dept. G • 2700 NE Andresen Road • Vancouver, WA 98661

Phone orders welcome: 206-695-1393

Same day shipping/No C.O.D. orders outside U.S.

CHECKS, MONEY ORDERS OR VISA/MASTERCARD.

PLEASE NOTE: Free shipping & handling on all orders • C.O.D. add $3.00

to total order • All orders must be paid in U.S. funds.

Complete Package

$39.95
*Details inside package


