

THE TIME SAVER

Type in a lot of Transactor programs?

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $7.95 Per Issue

6 Disk Subscription (one year)

Just $45.00

(see order form at center fold)

Volume 6

Issue 06
Circulation 64,000

mi

Real Life Applications

Start Address Editorial

Bits and Pieces 5
SAVERIFY

Double Verifizer

Corrupting RAMTAS Update

Finding the Missing File

LOAD & RUN Trick

Check For Device Present

Word-Wrap For VIC, 64, PET, etc.

Visible "searching" Messages

C-64 Scroll Down Routine

Easy 'RESTORE x'

Sneaky Saves

Sanitation Engineer: Faster Garbage Collection?

C128 Bits

Ornament and Happy New Year In High-Res

Multiple Circle, Triangle and Square High Res Draw Routine

Incredible 3-D Effect High Res Draw Routine

More Ideas

Amiga Bits: Some Notes About CLI

Letters 11
The Gremlin Effect

Jordan Rolltop Stand Revisited

The Horror Of Hex

False ID

News BRK 75
The TransBASIC Disk

PAL and POWER: The ToolBox

TheG-Link Interface

Attention Anthology Owners

World Of Commodore III In Toronto A Success

C.A.S.E Meeting And Jamboree 1986

NAAUG For Amiga Users

BBS For Amiga Owners

dBx Translator Converts dBASE Programs Into "C".

The Trading Board BBS

2890 Databases Available Online

Tymnet Offers Local Access Service In Canada

Basic Compiler For The C128

Chartpak 128 for the Commodore Cl 28

Statistical Programs for Commodores

Bookkeeper's Aid

Wilanta Descender ROM

Attention B Machine Owners: 1 Meg RAM Board

1200 BPS Response

More Responding at 1200 BPS

Almost Clear

Transactor/Ohio Porting

A BIT Of A Problem

Left Wing Interference

Attack Of The Killer Clone

InStallment#8 Modules So Far on page 22 19

The Amiga: A User's Perspective 29

The Amiga: A Programmer's Perspective 33

Amiga DOS and CLI COmmandS Ahandyquick reference .. 38

Amiga Editor Commands Using "ED", the screen oriented editor .. 42

EDIT: Amiga's Line Oriented Editor 43

Pick AreaS and POP MenUS Drop-down menus for the C64 44

1_J V vyfvrvJA. Dl Convert your keyboard through software Tt7

Complete keyboard control from a joystick DZt

Make team sports predictions with this statistics analyzer DO

HOme Controller Runyour entire house from a VIC 20 DZ

A Comparison of 4 Wordprocessors 72

Compu-toons 79

Note: Before entering programs,

see "Verifizer" on page 4

The Transactor May 1986: Volume 6, Issue O6

Transactor
The Tech/News Journal For Commodore Computer*

Editor in Chief

KarlJ. H.Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Lana Humphries

Contributing Writers

Ian Adam

Daniel Bingamon

Anthony Bryant

Tim Buist

Jim Butterfield

Gary Cobb

Jeffery Coons

Pierre Corriveau

Bob Davis

Elizabeth Deal

Yijun Ding

Michael J. Erskine

Jim Grubbs

Tom Hall

Bob Hayes

John Jay Hilfiger

Andy Hochheimer

John Holttum

Chris Johnson

Mark Jordan

Gary Kiziak

Jesse Knight

James E. LaPorte

William Levak

Jack Lothian

Scott Maclean

Jim McLaughlin

Terry Montgomery

Michael Mossman

Gerald Neufeld

Noel Nyman

Dave Pollack

Richard Perrit

Terry Pridham

Raymond Quirling

Glen Reesor

Gary Royal

John W. Ross

Louis F. Sander

Fred Simon

Perry Shultz

Edward Smeda

Darren J. Spruyt

Nick Sullivan

Zoltan Szepesi

Karel Vander Lugt

Audrys Vilkas

Andrew Walduck

Steven Walley

Jack Weaver

Charles Whittern

Chris Wong

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower

case mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o"

will of course be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the

number 1 which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours,

or function keys. These will also be shown exactly as they would appear on your screen, but

they're listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor

Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of

spaces you insert will not be critical to correct operation of the program. When it is, the required

number of spaces will be shown. For example:

print flush right " - would be shown as - print " [10 spaces]flush right

Cursor Characters For PET / CBM / VIC / 64

Down - 0

up H

Right - fl

Left - [Lft]

RVS - Q

RVS Off - IB

Insert - Q

Delete - Q

Clear Scrn - Q

Home - Q

STOP - fl

Colour Characters For VIC / 64

Black -

White -

Red

Cyan -

Purple -

Green -

Blue -

□
0
□
[Cyn]

[Pur]

D

B

Orange -

Brown

Lt. Red -

Grey 1 -

Grey 2

Lt. Green -

Lt. Blue -

Yellow- [Yel] Grey 3 - [Gr3]

Function Keys For VIC / 64

Fl- y

F2- Q

F3- Q

F4- B

F5-

F6-

F7-

F8-

Please Note: The Transactor has

a new phone number: (416) 878 8438

The Transactor is published bi-monthly by Transactor Publishing Inc.. 500 Steeles Avenue, Miiton.

Ontario, L9T 3P7, Canadian Second Class mail registration number 6342. USPS 725-050, Second Class

postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor, 277 Linwood Avenue, Buffalo, NY, 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, fi4) are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Sleeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 878 8438. Noie: Subscriptions are handled at this address ONLY.
Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use

postage paid card at center of magazine.

Quantity Orders:

U.S.A. Distributor:

Capital Distributing
Charlton Building

Derby. CT

06418

(203)735 3381

(or your local wholesaler)

Master Media

261 Wyecrofl Road
Oakvilie, Ontario
L6J 5B4

(■116)842 1555

(or your local wholesaler)

Compul.it

PO Box 352

Port Coquitlam, BC

V5C 4 KG

604 941 7911

Norland Communications

251 Nipissing Road, Unit 3

Milton, Ontario

L9T 4Z5

416 876 4774

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol A Issues 04, 05, 06, Vol 5 Issues 03, 04

Still Available:Vol A: 01, 02, 03. Vol. 5: 01. 02, 04, 05. 06. Vol. 6: 01, 02, 03, 04, 05

Back Issues: $4.50each. Order all back issues from Milton HQ.

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is -$40 per

printed page. Preferred media is 1541, 2031. 4040, 8050, or 8250 diskettes with WordPro, WordCraft,
Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos or illustrations will be included with articles depending on quality. Authors submitting diskettes

will receive the Transactor Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please

re-confirm any permissions granted prior to this notice. Solicited material is accepted on an al! rights

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.

Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor May 1986: Volume 6, Issue O6

SoftBound

What is happening?! Creative Computing, 11 years publishing, gone.

Popular Computing, gone. infoAge, Commander, Micro, Kilobaud, Soft

ware Now, all gone. This list goes on, too, into areas outside those covering

Commodore equipment. One report I recall stated "out of 160 computer

magazines that were publishing in 1982, only 35 remain today". The

common complaint is a lack of advertising revenue due to a "soft" market.

In his closing editorial, Creatiue's David Ahl complained that most adver

tising had become a decision based on "lowest cost per thousand readers".

But I think the industry is getting smarter than that. infoAge's Gordon

Campbell does too. "InfoAge suffered from not being able to deliver a

stable market to our advertisers", we became too "heterogenous" as

quoted from Toronto Computes. Vertical magazines offer the reader more

reading per dollar. So it's only natural that more readers, who are also

getting smarter, will be attracted to the higher concentration. Indications

are that many firms are spending their ad dollars in magazines that have a

tighter focus on the industry. Ahl's complaint becomes one of semantics. If

only a fraction of each thousand readers can be qualified, cost per

thousand goes way up.

However, 1 admit the horizontal publications couldn't just pull a brand

(rom a hat, and focus. They could have, but they waited too long. 1 also

suspect not enough deflection on the 'lean and trim' meter. Because what

confuses me most is that all the above mags did have ads. Almost half of

Creative's 96 page final was advertising!

Now 1 don't claim we are immune to the same fate because we seem to be

afloat without ad revenue. Not at all. For the last 9 issues we have

depended on nothing but sales. Distributors have told us, "publishers

would sell their souls for your stick rate at the news stand". But it just

doesn't seem to be enough. Is this an S.O.S.? No. But if you know a place

where one more Transactor might be sold, you can help. Write their name

and address on our postage paid subscription form and check off the box

marked "please send dealer information". You can bet we'll get in touch

with them, but please use discretion. In the magazine distribution business

you soon learn that not every smoke shop and convenience store is a

suitable venue. We're looking for outlets that specialize in reading material

as much as we do. And who knows - you may just help yourself get

Transactor a little closer to home.

Why all the malarky about advertising? We have other plans too. The

Transactor has decided to offer ad space. Several requests have been

denied over the last 9 issues, as will several more over those to come. Since

we do seem to be surviving without ad revenue, we're going to be very

selective about the ads we accept. Our standards are high and we have a

keen sense on our focus. Advertising of little or no value to our readers will

not be considered. In fact, we would have to feel good enough about the ad

to want to sell that product or service. Which leads me to the next phase of

our plan.

With prices dropping everywhere except in ad rates, it comes as no

surprise that advertisers are indeed "tightening up". Retail prices can only

drop so low. The manufacturer, distributor, and retailer all take their

percentage and when it stops adding up, they all feel the pinch. On the

other hand, the mail-order business has very low operating costs which is

ideally suited to items priced low enough to move. You may have noticed

we're selling The Toolbox through mail-order at $50 off suggested retail.

We like this package and if you think we'll like yours as much, talk to us.

Your percentage wouldn't change, but the possibility of subsidizing the

cost of advertising with a merchandise exchange is open for discussion.

You could look me up in Toronto directory assistance, but I'll save you the

trouble. It's 416 221 2922 any time.

Does this mean the end of the 95% Ad Free Transactor? No way. Only 7

pages will be available to start - the cover spots and a four page glossy

insert at the center of the magazine. 7 over 88 makes only 8% advertising,

and if response warrants more ad space, the editorial content will be

increased to maintain the ratio. Colour ads will get higher preference, but

again, only if they meet with criteria.

By expanding our horizons The Transactor will become even more

insulated from the ad space insertion order. Magazine quality control will

propagate through to our mail-order operation where we have the opportu

nity to strengthen our sales, help stimulate the industry we believe in, and

at the same time offer a trustworthy service to our readers.

In brief, our 20/20 deal still stands - order 20 anything for 20% off. Our

Viewtron section should be operational by February - sign on and enter

"transactor", and we'll have a complete explanation for you next issue.

The "ultra-glazed" cover means you can casually wipe off any coffee spills,

and you're looking at our very first experiment with "spot colour". And

yes, it looks like there will be another Inner Space Anthology, but not for at

least another 5 months. We're making this early notice mainly for your

input. If there's a table, listing, chart, diagram, index, illustration, or any

other skiagraphical cartographic images you may have, let us know. Often

they can be computer generated and my typesetting instincts are down to a

reflex. Anyone who is aware of errors in the first edition is invited to send

them along. We have a couple copies of published magazine reviews

(TPUG, 1CPUG, PCA) but if you know of others, a copy would be sincerely

and personally appreciated.

Some of the items we have planned for the next Anthology include new

material for the 68000 and the Amiga, Cl 28 stuff, Z80/Z80B specs and CP/

M for posterity, 1571 notes, MS DOS commands, a modem section, more

printer info, more hardware specs, an updated BBS and club listing,

DataPac and other network parameter settings plus a listing of time

sharing call addresses. Tentatively planned are Jim Butterfield's com

mented disassembly of the C64 and C128. They're pretty long so I'll be

forced to reduce the type to near microscopic, but even then they may

consume too much space. I'm also considering a table of popular guitar

chords and their finger positioning - as my choice for the "wonder-why-

that's-there" category.

There is nothing as constant as change, I remain

Karl J.H. Hildon, Editor In Chief

P.S. Could someone help me? I'm looking for engineering software for any

CBM ie. calculating forces, analytical geometry, etc.

The Transactor May 1986: Volume 6, Issue O6

Using "VERIFIZER"

The Transactor's Foolproof Program Entry Method

VERIFIZER should be run before typing in any long program from

the pages of The Transactor. It will let you check your work line by

line as you enter the program, and catch frustrating typing errors.

The VERIFIZER concept works by displaying a two-letter code for

each program line which you can check against the corresponding

code in the program listing.

There are two versions of VERIFIZER on this page; one is for the

PET, the other for the VIC or 64. Enter the applicable program and

RUN it. If you get the message, "***** data error *****", re-check

the program and keep trying until all goes well. You should SAVE

the program, since you'll want to use it every time you enter one of

our programs. Once you've RUN the loader, remember to enter

NEW to purge BASIC text space. Then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)

or SYS 634 to enable the PET version (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top left of

the screen in reverse field. Note that these letters are in uppercase

and will appear as graphics characters unless you are in upper/

lowercase mode (press shift/Commodore on C64/VIC).

Note: If a report code is missing it means we've editted that line at

the last minute which changes the report code. However, this will

only happen occasionally and only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type

RETURN over each in succession while checking the report codes

as they appear. Once the program has been properly entered, be

sure to turn VERIFIZER off with the SYS indicated above before

you do anything else.

VERIFIZER will catch transposition errors (eg. POKE 52381,0

instead of POKE 53281,0), but ignores spaces, so you may add or

omit spaces from the listed program at will (providing you don't

split up keywords!). Standard keyword abbreviations (like nE

instead of next) will not affect the VERIFIZER report code.

Technical info: VERIFIZER resides in the cassette buffer, so if

you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original

destination of the link after it's finished. When disabled, it restores

the link to its original contents.

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

Listing 1a: VERIFIZER for C64 and VIC-20

10 rem* data loader for " verifizer" *

15 rem vic/64 version

20 cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>14755 then print" ***** data error

70 rem sys 828

80 end

100:

1000 data 76,

1010 data 252,

1020 data 3,

1030 data 251,

1040 data 3,

1050 data 0,

Listing 1 b: PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

": end

1060 data 32

1070 data 133

74,

141,

240,

169,

3,

160,

240,

90,

3,

3,

17,

99,

96,

0,

15,

32,

165,251

3, 96

133,252

141, 2

173,254

189,

133,

183,

141, 2

173, 3

173, 2

3, 169

133

240

152

90

1

0, 2

91,200

3, 198

1080 data 232, 208, 229, 56,

1090 data 32.210,255, 169,

89, 41,

32, 240, 255

18, 32,210

1100 data 89, 41, 15, 24,105, 97, 32

1110 data 165, 89, 74, 74, 74, 74, 24

1120 data 32,210,255,169,146, 32,210

1130 data 32,240,255,108,251, 0,165

1140 data 101, 89,133, 89, 96

3,

3,

3,

3,

, 89,

, 22,

, 41,

, 16,

, 169,

,255,

,210,

, 105,

,255,

91,

165

201

133

141

162

201

3

249

19

165

255

97

24

24

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

Ol

JB

PA

HE

EL

LA

Kl

EB

DM

10 rem* data loader for "verifizer 4.0" *

15 rem pet version

20 cs = 0

30 for i = 634 to 754:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>15580 then print" ***** data error

70 rem sys 634

80 end

100:

1000 data 76, 138, 2, 120, 173,

1010 data 173, 164, 2,133,145,

1020 data 145, 201, 2,240, 16,

1030 data 144, 141, 163, 2,169,

1040 data 2, 133, 145, 88, 96,

1050 data 201, 13,208, 62,165,

1060 data 254,

1070 data 0,

1080 data 165,

1090 data 198,

1100 data 251,

1110 data 165,

1120 data 141,

1,

2,

253,

254,

41,

251,

1,

133,251,162,

163, 2,

88, 96,

141, 164,

165, 133,

85, 228,

167,208,

0, 134,

1130 data 251, 133,251,

168,201, 32,240, 15.

41, 3,133,254, 32.

16,249,232,152,208.

15. 24,105,193,141.

74, 74, 74, 74, 24.

128,108,163, 2,152.

96

<****": end

133, 144

120, 165

2, 165

144,169

165,217

58, 173

253, 189

230, 253

236, 2

229, 165

0, 128

105, 193

24, 101

The Transactor May 1986: Volume 6, Issue O6

Bits and Pieces

Got an interesting programming tip, short routine, or an un

known bit of Commodore trivia? Send it in - if we use it in the

Bits & Pieces column, we 'II credit you in the column and send

you a free one-year's subscription to The Transactor

SAVERIFY Bob Hayes

Winnipeg, Manitoba

This is a short program which enables the 64 (and possibly

other Commodore?) owner to SAVE and VERIFY a program

with one command. The format is:

SYS(address)" filename" ,8

Where the address is the start of the machine language code

(relocatable in the BASIC loader).

Here is the assembly:

start jsr

jsr

Ida

sta

bit

sta

jsr

rts

$e1d4

$e159

#$01

$93

$00a9

$0a

$e16f

And the BASIC loader:

10 rem ** saverify — bob hayes **

20 rem ** wpg, man. Canada **

25 sa = 828: rem start address-note: relocatable

30 q$ = chr$(34): a = 0: for x = 0 to 18: read q: poke sa + x,q

: a = a + q: next

40 print: print" format: sys" sa;q$" filename" q$" ,8"

50 end

60 data 32,212,225,32,89,225,169,1,133,147,

44,169,0,133,10,32,111,225,96

by showing the two-letter verifizer code on both the first and

second row of the TV screen. The program uses the interrupt

vector to update the screen every 1 /60 of a second.

To use Double Verifizer, just run the below program once the

regular Verifizer is activated.

KM

BC

Dl

GD

IN

EN

KG

KO

FM

LP

100 for ad = 679 to 720:read da:poke ad,da:next ad

110 sys 679: print: print

120 print "double verifizer activated" :new

130 data 120, 169, 180,

140 data 169, 2,141,

150 data 96, 162, 0,

160 data 157, 40,216,

170 data 208, 245, 162,

180 data 4,157, 40,

190 data 2,208,245,

141, 20, 3

21, 3, 88

189, 0,216

232,224, 2

0,189, 0

4, 232, 224

76, 49,234

Corrupting RAMTAS Update Yijun Ding

Pittsburgh, PA

"Corrupting RAMTAS Routine" in Bits and Pieces Volume 6,

issue 4 mentioned the fact that $A000 will contain $55 after a

reset. But there is more. RAM from $FD30-$FD4F will be

written with the contents of the corresponding ROM, as the

routine at $FD15 ($FF8A, reset vectors in $0314-$0333) is

called in a reset process. Actually, the RAM at $FD30-$FD4F

will be corrupted every time $FD15 is called.

Finding the Missing File Jeffery Coons

Lake Ridge, Virginia

Double Verifizer

If a program bombs because it needed some file that wasn't on

Steven Walley the disk, you can find out what file the program wanted with

Sunnymead, CA this one-liner:

When using 'VERIFIZER' with some TVs, the upper left corner

of the screen is cut off, hiding the verifizer-displayed codes.

The program below, 'DOUBLE VERIFIZER' solves that problem

for i = 0 to peek(183)-1: poke 1024 + i,

peek(peek(188)*256 + peek(187) + i): next

The Transactor May 1986: Volume 6, Issue O6

The name of the last file used will be displayed at the top left-

hand corner of the screen. You have to POKE to the screen in

this manner because PRINTing will corrupt the last character in

the string. Users with ROM version 2 will have to also POKE to

colour memory (at 55296 + i) or make sure there is some text

already on the top line of the screen.

LOAD & RUN Trick Chris Wong

. . .A really neat load and run trick: After you type

load" filename" ,8,1

or load "filename" ,8:

Press shifted RUN/STOP instead of RETURN. The program will

automatically RUN itself after loading. It eliminates the old

load/return/run/return routine, easing up loading a bit.

Check For Device Present Dave Pollack

Commodore E. Brunswick

Users Group (CEBUG), E. Brunswick ,NJ

As most every C-64 user knows, the 'DEVICE NOT PRESENT'

message and consequent crash is not the most pleasant experi

ence in the world to endure. Believe me, I've been searching

for close to a year for ANY solution that will work. It was not

that obvious. I stumbled upon it quite by accident after coding a

small routine that provided a way for me to print the value of

the 'ST' variable after multiple I/O operations. If you do that

you'll notice something interesting. An OPEN followed by an

immediate CLOSE will not hang the computer even if the

device is not present, but it allows you to interrogate ST which

returns a nonzero result in this case.

If you use the following code, your program will be able to

check for DEVICE NOT PRESENT and continue without bomb

ing.

100 open 15,8,15: close 15

110ifstO-128then 160

120 print "!! DRIVE NOT PRESENT!!"

130 print " ## check drive power and cables, then

press a key ##"

140 get a$:if a$ = "" then 140: rem wait for a key

150 goto 100

160 rem program continues. . .

Word-Wrap For VIC, 64, PET, etc. Gary Royal

Chicago, IL

beginning of another. Whining about it does no good (I've

tried), but word-wrap does. Place the string you want wrapped

in 'w$', the desired line width in V, and call this routine.

100 rem* recursive word-wrap routine *

110 rem* put string in w$,

120 rem* line width in w

130:

140iflen(w$)>wthen 160

150 print w$: return

160 p = 0: for i = w to 1 step-1

170 if p = 0 and mid$(w$,i,1)= " "then p = i

180 next: h$ = right$(w$,len(w$)-p)

190w$ = left$(w$,p): gosub150

200w$ = h$: goto 140

Since strings in Microsoft BASIC can be up to 255 characters

long, you can easily squeeze five screen lines into w$ with the

peace of mind that can only come from the knowledge that it

will be formatted legibly. But beware! the routine is recursive,

and assumes that words in the text will be separated by spaces.

If the length of w$ is greater than 'w' and 'w$' contains no

spaces it will loop forever, so avoid hyphenated words that

might be longer than your desired line length (or modify line

170 to look for hyphens, too).

Visible "searching" Messages Terry Montgomery

Auckland, New Zealand

In direct mode you get 'SEARCHING' and 'FOUND' messages

that tell you what is going into the computer. These messages

can be extremely helpful, especially when using tape. But

when LOAD statements are encountered in program mode, the

messages are suppressed. During program development, it

would be nice to see what's going on a bit more. Here are two

ways to see these messages from a running program:

1) Use GOTO instead of RUN to start the program. If the first

line is 0, GOTO doesn't need a line number specified.

2) POKE 157,128 to flag direct mode. This can be turned off by

POKE 157,0. This way you can get messages from one part of

the program and block them from others.

C-64 Scroll Down Routine Chris Johnson

Toronto, Ont.

There never seems to be enough columns on the screen to

display what you want to print on it. And there's nothing uglier

than a word hanging partly on the end of one line and at the

In Volume 5, Issue 2 of The Transactor, Paul Blair reported a

ROM routine that scrolled down the screen of a C-64. He also

mentioned that it "left some pointers a bit untidy ... a PRINT

or two seems to restore order".

I found that a PRINT or two did not set things right; however,

resetting the screen line link table did. The following routine

The Transactor May 1986: Volume 6, Issue O6

clears the link table before and after calling the scroll-down

routine.

The syntax to use is:

SYS address, n, topline

Where n is the number of times you want the screen to be

scrolled down one line and topline (0 to 24) is the last line not to

be scrolled. All the lines below this will be scrolled down x

times.

I've found a shorter and easier way to RESTORE X, using

TransBASIC:

10doke65,line(x) + 4

This incredible program line does work; location 65 is the

Current DATA Address. It restores the pointer to the first byte of

line X. The 4 is added to avoid reading the last data element of

the previous line. This is a small sample of the great things you

can do with TransBASIC!

To change the location of the routine, just change the value of s

in line 110. The loader will make the necessary changes to the

machine code.

rem* c-64 scroll down *

i s = 49152: rem start address (relocatable)

1 for i = s to s + 33: read a: poke i,a: next

print" ** scroll down - syntax:"

print "sys"s",n, topline"

print" Where 'n' = number of lines to scroll"

fs = 49152 then end

i u = s + 22: ju = s + 7: r = s + 34: jr = s + 4

jj = s + 18

i poke ju + 1,u/256: poke ju,u-256*peek(ju + 1)
i poke jj +1 ,r/256: poke jj,r-256*peek(jj +1)

i pokejr + 1,r/256: poke jr,r-256*peek(jr + 1)

data 32,241,183,142, 34,192, 32, 22

'data 192, 32,241,183,134,214, 32,101

' data 233, 206, 34,192,208,248,162, 24

■ data 181,217, 9, 128, 149, 217, 202, 208

'data247, 96

Sneaky Saves Terry Pridham, Belmont, Ont.

AF

MO

OL

PH

Dl

LA

EB

Ol

GM

CB

AG

PN

BE

KF

HB

KD

FH

AD

GJ

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

Easy 'RESTORE x'

Using TransBASIC

Andy Hochheimer

Wallaceburg, Ont

I have been using a lot of DATA statements in programming for

quite a while. 99% of the time I have to RESTORE then search

for my data on a specific line number before reading again. In

Transactor Volume 5 Issue 3 was this 'RESTORE x' program

from Gary Kiziak, which allowed a RESTORE to a specific line

number:

10 restr = 828: for k = restr to restr + 31:read j:poke k,j: next

20 data 32,253,174, 32,158,173, 32,247

30 data 183, 32, 19,166,175, 5,162, 17

40 data 76, 55,164,165, 95,233, 1,133

50 data 65,165, 96,233, 0,133, 66, 96

60 rem format: sys restr x

In Vol 5 issue 3, "Unveiling The Pirate Part 2: Programming

Sleight of Hand" - 'Ye Olde Standbye', where by using a

shifted-space before the filename within quotes produces a

directory that shows two quotes followed by the filename:

save" 0:[Shift-space]filename" ,8

In the directory it becomes:

3 " "filename prg

By experimenting with it, I found even more ways to twist the

minds of Pirates (as if they weren't in the first place). Ever see

directories where the name of the program is in reverse field?

Well here's how it's done. Type:

save,1 quote, drive number, colon, 1 quote, rvs on, 1

delete, 2 inserts, shift-M, rvs on, rvs off, filename, quote,

comma, device number

When done, it will appear something like:

save " Olffillfilename" .8

In the directory, it will show the block count and the first quote

where it would normally appear. The shifted M causes a

carriage return (because a shifted reverse M is a '13') and the

filename will appear right under the block count in reverse

field. The file type indicator (i.e. "prg") and the spaces preced

ing it will also appear in reverse field.

Try adding a couple DELs, or even cursor control characters, by

hitting 1 Insert for every control character you wish to include

immediately before the filename. However, you must remem

ber what characters are in this "prefix" in order to LOAD that

file. Experiment and have fun!

The Transactor May 1986: Volume 6, Issue O6

Sanitation Engineer Fred Simon

Gibbsboro, New Jersey

Did you ever have to wait for several minutes while your

computer collected "garbage" strings? Garbage collection on

the C-64 has been known to take more than twenty minutes

when a large number of strings need be processed. With the

program "Sanitation Engineer", active strings are collected

lightning fast.

What Is Garbage Collection?

Each time the Basic interpreter encounters a new string varia

ble definition, it builds that string character by character in

high memory, working downward from location 40960. If a

string variable is changed, the old string remains in memory as

"garbage". If the available free memory is less than the maxi

mum length of a couple of strings, or if the Basic command

FRE(O) is issued, the garbage collection routine is called. This

routine looks at each string variable to find the one stored

highest in memory, moves all of the other strings down by the

length of this string, and then copies the string to the top of

available memory. The length of time it takes to complete this

task depends only on the number of strings and not their

length.

To see garbage collection at work, try this program:

10d = 500: dim x$(d)

20 for j = 0 to d: x$(j) = str$(j): next

30 print " starting collection. . ."

40t = ti: j = fre(O)

50 print (ti—1)/60" seconds"

Change the value of D in line 10 to see the effect of increasing

the number of strings.

Faster Collection

One way to speed up garbage collection is to first copy the

string memory to a buffer area (Sanitation Engineer uses the

area located underneath the Kernal ROM). Each active string

can then be pulled out of the buffer and written to the clean

string area. The bottom of the string memory is then the bottom

of the last active string copied from the buffer. Sanitation

Engineer is written as a " patch" to the Basic operating system.

It uses the area of memory from 51740-52223 for the garbage

collection routines. Thus, it can be used with the DOS Wedge

and leaves 49152-51739 free for other machine language

routines.

Type in and Save Sanitation Engineer. A mistake in one of the

Data statements could cause your computer to lock-up when

the routine is executed. A checksum is included to reduce the

chance of errors. When you Run the program, Basic ROM is

first copied to RAM. The new address for the Sanitation Engi

neer is written over the old collection routine. In addition, the

READY, prompt is changed to READY! to remind you that

Basic has been modified. If you hit Run/Stop-Restore, the

Sanitation Engineer will be deactivated. To reactivate, just type

SYS 51740. Try the test program you typed in earlier. Change D

to 5000 and try again. No more delays!!

Sanitation Engineer Basic Loader

PI

DD

FN

BP

HO

BP

EG

GK

OB

MD

HL

AN

JH

NC

LG

BF

JK

EG

Nl

NE

ND

DB

EK

GD

Gl

KJ

KB

HJ

NK

BL

EA

OK

Jl

Dl

BO

CC

GC

KF

PM

FC

DG

JA

NF

MA

NJ

Cl

DJ

10 rem save" 0:sanitation 64" ,8

100 rem sanitation engineer

110 rem for the commodore 64

120 rem by fred simon 8/85

130 ck = 0: for i = 51740 to 52223: read d

140 poke i,d: ck = ck + d: next

150 if ck = 63591 then sys51740: end

160 print " error in data statements": stop

170:

180 data

190 data

200 data

120,169, 55,133, 1,169,160,133

3,160, 0,132, 2,177, 2,145

2,136,208,249,230, 3,165, 3

210 data 201,192,208,241,169, 54,133, 1

220 data 88,169, 5,141,143,183,169, 33

141,125,163,162, 2,189, 83,202

157, 38,181,202, 16,247, 96, 76

86,202,169, 0,141,239,203,169

15, 133, 250, 169, 224, 133, 249, 165

52,141,240,203, 56,229, 50,201

22,233, 3,133,250,165

0,133,249,165, 56,229

1,197,250,176, 2,133

56,141,242,203,165, 55

141,241,203,133, 51, 24,240, 1

56,173,242,203,133, 52,233, 0

133,251,105, 0,133,252,165, 50

105, 1,133,254,165, 45,233, 6

133, 95,165, 46,233, 0,133, 96

165, 47,133,253,165,251,205,240

380 data 203,144, 51,229,250,133,248,165

390 data 52,229,251,229,248, 73,255,105

400 data 2, 197, 248, 144, 2,165, 248, 205

240,203,176, 5,173,240,203,233

0,133,251, 32,138,203,166, 48

32,243,202,176, 9, 32, 39,203

165,251,133,252,144,182, 96, 24

165, 95,105, 7,133, 95,144, 2

230, 96, 69, 47,208, 4,228, 96

240, 31,160, 0,177, 95,200, 81

95, 16,228,177, 95, 16,224,160

4, 177, 95, 197,251, 144,217, 197

252,176,212, 32,170,203,144,208

96, 24, 96, 32, 83,203, 176,249

2,177, 95,197,251,144, 10

32, 170,203, 144

3,101, 95,133

2,230, 96,197,253,208

230 data

240 data

250 data

260 data

270 data

280 data 19,144

290 data 50,105

300 data 52,105

310 data 250,165

320 data

330 data

340 data

350 data

360 data

370 data

410 data

420 data

430 data

440 data

450 data

460 data

470 data

480 data

490 data

500 data

510 data

520 data

530 data

540 data

550 data

160,

197,252,176, 6,

2, 96, 24,169,

95, 144,

The Transactor May 1966: Volume 6, Issue O6

KJ

CL

JE

LH

AH

KG

HL

MJ

EA

OM

EE

IF

JD

KM

Dl

CO

PO

HG

OD

ND

IH

JG

DL

560 data

570 data

580 data

590 data

600 data

610 data

620 data

630 data

640 data

650 data

660 data

670 data

680 data

690 data

700 data

710 data

720 data

730 data

740 data

750 data

760 data

770 data

780 data

223,228, 96,

165, 253, 133,

208, 4,228,

177, 95,101,

95, 101

200, 81

95

144,

133,

132,

96,

95,

10, 105,

3, 230,

79, 165,

78, 132,

78,145, 88,

230, 79,202,

169, 53,133,

5,229,248,

136,177, 95,

51,241, 95,

165, 52,233,

95, 136, 136,

136,177, 78,

169, 54,133,

229, 52, 96,

49, 57, 56,

73, 77, 79,

208,219,240

95,134, 96

50, 240, 39

95, 133,253

170,160, 0

16, 218, 160

5,101, 95

96, 24, 96

249,133, 89

88, 166,250

200,208, 249

208, 242, 96

1, 104, 197

24, 101,249,

133, 78,136,

133, 51,200,

0, 133, 52,

177, 95,240,

145, 51,152,

1, 88, 24,

0, 0, 0,

53, 32, 70,

78

,212, 24

69, 49

160, 2

200, 177

177, 95

4, 177

133, 95

165,248

160, 0

232, 177

230, 89

72, 120

248, 144

133, 79

56, 165

145, 95

200, 145

9, 168

208,248

165,254

0, 67

46, 83

Some C128 Bits Perry Shultz, Miami, Florida

Ornament and Happy New Year In High-Res

9 graphid :scnclr:color1,5:foru = 1to50step3:circle1,160,

75,u,60-u:next:color1,2:forr = 9to85step5:circle1,160,

r/9,r*2,r*3.,,,72:nextr:char1,13,18, "happy new year" ,1

Notes: The line number must be 9 or less. Type line with no

spaces. After entering the last character, cursor back anywhere

in the line then return.

Multiple Circle, Triangle and Square

High Res Draw Routine

5 graphic"! ,1 :fori = 25to300step9:circle1 ,i, 100,20,

18,,,,120:next:fori = 25to300step9:circle1,i,20,20,

18,,,,45:next:fori = 25to300step9:circle1,i,175,

20,,,,,90:next

Incredible 3-D Effect High Res Draw Routine

10 graphid :scnclr:forr = 3to100step6:circle1,160,130,

r + 20,r+18,,,,120:nextr

15 graphid :scnc!r:forr = 3to100step4:circle1 ,r + 100,

130,r + 20,r + 18,,,,120:nextr

20 graphid ,0:scnclr:forr = 3to100step4:circle1,160,

110,r + 20,r + 18,,,,100:nextr

25 graphid ,0:scnclr:forr = 3to100step4:circle1,99 + r,

110,r + 20,r + 18,,,,100:nextr

30 graphic! ,0:scnclr:forr = 3to100step4:circle1,160,

110,r + 20,r + 18,,,,90:nextr

35 graphid ,0:scnclr:forr = 3to120step3:circle1 ,r + 70,

r + 20,r + 20,r + 18,,,,90:nextr

40 graphid ,0:scnclr:forr = 3to100step4:circle1,160,

110,r + 20,r + 18,,,,150:nextr

45 graphid ,0:scnclr:forr = 3to120step3:circle1 ,r + 75,

99,r + 20,r + 18,,,,30:nextr

50 graphid ,0:scnclr:forr = 3to120step3:circle1 ,r + 100,

95,100,r+10,,,,75:nextr

55 graphid ,0:scnclr:forr = 7to100step2:circle1,160,

r + 60,r + 55,r + 3,,,,72:nextr

More Ideas

Redefine two function keys as graphic 0 (textscreen), graphic 1

(hi-res screen) — this enables screen change with one key-

touch.

With the 160 bytes per line, 1 hope to see many new exciting 1

liners.

And For the First Time. . .

Some Amiga Bits and Pieces

Got an Amiga? Then no doubt you learn something new nearly

every day - we do! We at The Transactor would be most

pleased if we could share your discoveries with all our readers.

Same deal as "Bits" - we'll credit you and send a free one-

year's subscription.

Some Notes About CLI

CLI, Amiga's Command Line Interface, is your interface to

AmigaDOS. You can access CLI by clicking its icon on your

WorkBench disk - the CLI icon appears if the "CLI on" option is

chosen in "Preferences". When a DOS command is entered,

the system looks for the command in the current directory, and

if not found, in the subdirectory C on the SYS: disk (the disk

that was booted with). See the article in this issue for a brief

description of the DOS commands.

The disk-oriented nature of the DOS commands makes for a

flexible system, since you can add and change commands at

will. With a single drive though, it can be a problem doing

operations with a disk other than SYS: (the one in the drive).

For example, if you wish to get a directory of another disk, you

can't just switch disks and type DIR because the system will ask

for the SYS: disk again (by volume name) and then do a DIR,

giving you the directory of your original disk. Since AmigaDOS

is a fairly flexible and powerful system, there are many ways of

getting around the problem; here are a few suggestions:

1) The standard method is to refer to the new disk by name

when giving the DOS command, for example to get a directory

The Transactor May 1986: Volume 6, Issue O6

of a disk called " Utilities", you could just enter:

dir utilities:

The system would then put up a requester asking you to insert

volume " utilities" in the drive, and would give you a directory

after you had done so. You can work with any file or directory

on the new disk in this way, for example:

type utilities:stuff/TextFile

. . .would display the file "TextFile" in the sub-directory

stuff" on the disk " utilities". This method works fine when

you know the volume name of the disk you're interested in

(which you should, since you've thoughtfully written it on the

disk label, right?), and you only want to use the disk a few times

and don't mind swapping disks back and forth.

2) If you wish to switch to a new disk for awhile to perform

several commands, and the new disk has those commands on

it (usually in the C sub-directory), you can just change the

assignment of C: , telling the system to look elsewhere for

commands. For example, if from the original disk you typed:

assign c: utilities:c

You would be prompted to insert volume " utilities:", and the

C sub-directory on that disk would then be searched for all

DOS commands subsequently issued.

Likewise, you could re-assign the current directory using the

CD command, as in:

cd utilities:c

The disadvantage with this approach is that it locks you into C

as the current directory.

3) A more direct approach for using a new disk which also

contains the DOS commands is to refer to the disk explicitly

when issuing the command, preventing DOS from requesting

the SYS: disk. For example, if you wanted a directory of any old

disk laying around (remember, it MUST contain the required

DOS command - in this case DIR - in the C directory), just pop

in the new disk and type:

dfO:c/dir

That way you are referring to Drive 0 (not a specific volume), C

directory, then finally the command name. This is a handy

technique for little one-time commands such as a DIR or TYPE

when you don't feel like typing in or don't know the new disk's

volume name.

4) A favourite trick used by many is COPYing all or some of the

DOS commands into RAM and then assigning C: to RAM to tell

the system to look there for the commands. You could use the

following sequence of commands, possibly in your startup-

sequence batch file, to accomplish this:

makedir ram:c ;make c sub-directory in RAM:

copy c: ram:c ;copy entire c sub-directory to RAM:

assign c: ram: ;assign ram as new source of commands

This seems to be the ultimate solution at first glance, since all of

your commands execute out of RAM at lightning speed, and

you're never bound to a disk when issuing a command. The

disadvantage (there had to be one) is that you use up lots of

RAM, and also (OK, two) it takes a long time to copy all of those

commands. Nonetheless, some people have enough RAM and

enough time that this really is the ultimate solution to fast and

flexible DOS commands.

5) A variation on the above RAM technique is my favorite,

thought up by Amiga-buff Rico Mariani. Pick your most-used

DOS commands, for example DIR, LIST, COPY, ASSIGN, CD,

and TYPE, and copy them to RAM. Then assign names to each

of those files, and use those new names in lieu of the command

names. (ASSIGN is just a way of setting up a new name to refer

to a volume, directory, or file.) As a confusion-avoiding con

vention, make the assigned names identical to the command

names, except for the required colon (:) at the end. The

example below should clear up any confusion (you could use

this in your startup-sequence).

copy :c/dir to ram:

copy :c/copy to ram:

copy :c/cdto ram:

copy :c/typeto ram:

assign dir: ram:dir

assign copy: ram:copy

assign cd: ram:cd

assign type: rarrrtype

Now, with those assignments in place, when you wish to do a

DIR, just type dir: (with the colon at the end). This will get the

dir command from RAM, executing it quickly, and you don't

have to have the dir command on the disk currently in the

drive. Also, you haven't use up tons of RAM, since you've only

copied the commands you need. Obviously the assignments

aren't needed at all, since you could just use " ram:dir" for the

same effect, but the assignments make things just a bit clearer

and easier to type. Incidentally, you can use assign whenever

you'd like to use an alias to refer to a directory or file. Tired of

typing " execute" all the time? Just do an:

assign !: c/execute

and use !: instead of the word " execute" at any time. Assigns

are system-wide, not just for the current window, so your

assignments will last until re-boot (and beyond, if you put them

in the startup-sequence).

The Transactor 1O May 1986: Volume 6, Issue O6

Letters

1200 BPS Response: Reference 'Twinkle Tones' in your

'Letters' column of Transactor, Jan. 1986: Volume 6, Issue 04.

Mr. Giese stated that "One of the things that 1 have learned in

playing with my C-64 is the amount of mis-information availa

ble!". How true. But he then goes on and spreads more mis

information about the C64 in the remainder of his letter!!

Mr. Giese implies (states?) that you can't use a 1200 bps modem

with the C64 until you do something special. This is just not

true!! I have been running 1200 bps modems with my C64 for

two years now with several different ternimal programs and

have had no trouble. And I didn't have to do anything special to

run these 1200 bps modems - THEY DO WORK WITH THE

C64!!

Mr. Giese then states that in opening the RS-232 channel,

setting the control register to CHR$(8) and the command

register to CHR$(0) does not work for 1200 bps, one stop bit, 8

bit word, no parity, and full duplex. He further states it is

because the baud rate table in the Programmer's Reference

Guide is wrong (that is how the CHR$(8) was determined). That

is simply not correct, as I have been using the same baud rate

table for a number of different baud rates and it does work!!! I

used an old RS-232 dot matrix printer at 300 baud with my C64

for about a year by using the baud rate table for a number of

different baud rate inputs. I have successfully printed on the

printer using 300, 1200, and 2400 baud by consulting the baud

rate table and setting the control register to CHR$(6), CHR$(8),

and CHR$(10) respectively, and setting the command register

to CHR$(0)!!! I am having a buffer problem at 1200 and 2400

baud which is due to handshake and/or cable inconsistencies,

or possibly the lack of a suitable buffer in the printer. But the

fact remains that you can communicate at 300, 1200, and even

2400 baud from the RS-232 port using the baud rate table as

published. I do it!!!! Mr. Giese's problem must be something

else, not the baud rate table.

Lastly, Mr. Giese states that the Programmer's Reference Man

ual infers that the User baud rate is not implemented. Pages

349 and 350 of my Programmer's Reference Guide infers no

such thing - in fact it infers the opposite! It tells you how to

calculate a user defined baud rate, but the calculations seem to

have at least one error in them.

Mr. Evers, I hope that your magazine will clear up this addi

tional mis-information about the C64 and the RS-232 port that

was published in your Jan. 1986 Transactor magazine (the first

issue I have ever read).

Albert F. Harsch, North Huntington, PA

Now we're really confused. You say it works, Lyle Giese says

no. Actually it was Rick Sterling andJoe O 'Hara ofMicrotechnic

Solutions that supplied Mr. Giese with his information. How

ever, you must agree that three users would have trouble

experiencing a problem that doesn t exist. Perhaps the next

letter will help shed some more light in this dark area of 'inner

space'.

More Responding at 1200 BPS: In Volume 6, Issue 4

(January 1986) of The Transactor you published a letter from

Lyle R. Giese, Woodstock, Illinois, called "Twinkle Tones".

Among other things RS232 baud rates as implemented on the

C64 were discussed. I believe I may have something useful to

add to the discussion.

Mr. Giese rightly points out that user-definable baud rates are

implemented by the C64 Kernel. Confusion may arise on this

point because I believe that the Vic 20 Kernel does not imple

ment user-definable baud rates - or rather, it does, but in an

incorrect manner. To understand what is going on requires a

little technical detail. I hope to make it fairly clear in what

follows.

What happens in the C64 Kernal when an RS232 file is opened

is this: the OPEN command is followed by a filename field of

one to four characters. The low nybble of the first character is

used as an index into a baud-rate table in the kernel (one of

two separate tables is used depending on whether system

frequency is NTSC or PAL). The values in the baud-rate tables

are pre-scaler values for the CIA #2 Timers A and B, which are

used to time the non-maskable interrupts of the RS232 rou-

The Transactor May 1986: Volume 6, Issue O6

tines (Timer A is the transmit clock and Timer B is the receive

clock). More accurately, the pre-scaler values in the baud-rate

tables are what might be called the half-bit times. The values

are half the number of clock cycles it takes to transmit or

receive one bit at the selected baud rate. The OPEN routine

uses these values to calculate the full-bit times, and stores both

values in page 2 locations in lo byte/hi byte form (the half-bit

time is at $0295/96, and the full-bit time is at $0299/9A). The

RS232 routines in the kernel make use of both values, although

exactly how they do so is beyond the scope of this letter.

We are now in a position to understand exactly how user-

defined rates are implemented on the C64. If the low nybble of

the first character in the filename field of the OPEN command

is zero, then the pre-scaler values are not obtained from the

baud-rate tables at all. Instead, the third and fourth characters

of the filename field are considered to be the pre-scaler values.

This is exactly what the formulas in the Programmer's Refer

ence Guide produce - the half-bit time in lo byte/hi byte form.

We can also begin to appreciate where some of the confusion

surrounding the RS232 routines in the kernel has arisen. In the

first place, the low nybble of the first character can have sixteen

different values, but not all sixteen mean something. Zero gives

the user-defined rate, and there are ten different values in the

baud-rate tables. What happens if the low nybble has a value

greater than ten? Simple - there is no error checking, so the

index now points to random bytes beyond the end of the baud-

rate tables - and those are used as the pre-scaler values. Why

doesn't the user-defined rate work on the Vic 20? As I under

stand it, the kernel of the Vic 20 does not specifically check for a

zero in the low.nybble of the first character - now the index

points to somewhere before the beginning of the baud-rate

tables, and again a random value is used for the pre-scaler

value. This is apparently a bug which was fixed in the C64.

One more thing which is now apparent is why the C64 has

trouble with some 1200 bps modems. By examing the baud-

rate tables it is clear that the baud rate produced when 1200 bps

is requested is — exactly 1200 bps. What can possibly be the

problem, then? It turns out that it is the 1200 modems that do

not operate at 1200 bps. Typically, 1200 bps modems actually

transmit at 1219 bps and receive at 1182. Some modems are

more tolerant of deviations from these rates than others,

particularly as regards the receive rate (which is good, since the

RS232 routines in the C64 kernel do not operate at different

transmit/receive rates, although there is nothing in principle to

stop them - it is mostly a question of obtaining separate timing

values for the two clocks. A fifth and sixth character could be

added to the OPEN filename field for a differing transmit rate,

perhaps, along with space to store them and routines that can

find them). The pre-scaler values given by Mr. Giese in his

letter (CHR$(57) + CHR$(1)) actually works out to about a 1238

bps rate. For myself 1 have found that CHR$(64) + CHR$(1)

works well. The actual value found in the NTSC baud-rate

table corresponds to CHR$(70) + CHR$(l).

I hope this helps clear up some of the mysteries surrounding

theC64 RS232 routines.

Anton Treuenfels, Fridley, Minnesota

Almost Clear: While reading one of my Transactors, Vol. 6,

Issue 01,1 came across a thing for clearing a line on the screen.

In the issue before there was a letter saying that a guy had a

program in which the top 3 lines must remain. The editor gave

a long IRQ routine to do this. I have devised a way to do the

same thing using the clear screen line technique. Here is an

example of how it works:

10 for p = 1 to 38: print " abcdefghighlmnopqrstuvwxyz";

: next

20 for 1 = 1 to 1000: next

30 for k = 3 to 24: poke 781 ,k: sys59903: next

40 for 1 = 1 to 1000: next

The program fills the screen with letters. There is a pause then

all the lines are cleared except the top 3. Then there is another

pause allowing time to show the results. The line in which you

would want to use and change to your own needs is line 30.

This line does all the work. I hope that this will relieve the use

of the long IRQ routine.

Mike Digdon, Bedford, Nova Scotia

Thanks for the code. Line 30 measures in at 30 bytes of Basic

(without spaces), no assembler required. As far as speed is

concerned, it goes off pretty darn quick. It's nice to see a better

cure fora problem.

Incidently, the IRQ driven routine in Volume 5, Issue 06 was a

continuous screen display routine for the top three lines. It

measured in at 43 bytes of object. The partial screen clear

routine was written to be called as required, with a total object

count of 25 bytes. Although written in assembler, they both

were not too terribly long. Now, to take your routine and re

write it in assembler, we come up with this:

* = 828 ;cassette buffer

Idx #24

loop = *

jsr 59903 ;clear line specified in ,x register

dex

cpx #2 ;are we done yet

bne loop ;nope!

rts

Pronto!And only 11 bytes of object. Not too shoddy. Thanks for

the idea.

The Transactor 12 May 1986: Volume 6, Issue O6

Transactor/Ohio Porting: Just a note with my subscription

to tell you that I am enjoying your magazine immensely. Since

discovering The Transactor, I buy it before any other on the

newsstand. 1 do not currently program on any Commodore!

Your articles are great for programming ideas. The Jan '86

issue, Vol 6, Issue 04 particularity impressed. The SID super

sound commands have been implemented with my OHIO

SCIENTIFIC BASIC. Your article on the SID filters is very

informative. The projectile motion article sits in my mind as

one to try to implement on the Ohio.

While I realize it is not always possible to publish source code

due to the length of the code, I would appreciate it being

available as often as possible. Perhaps information could be

included as to contacting you or the author for the missing

source. As you know, this would simplify my task, and give me

many ideas.

Another issue that I enjoyed was the one dealing with com

munications, particularity the serial bus information pertaining

to the Commodores, but applicable to many other situations.

You may well know that the Ohio Scientific release of Microsoft

Basic is dated just prior to the first Pet, and thus has much in

common. I currently use a mostly C4P model, with 48k of RAM.

Beside the 64X25 video, I also have a T19114 video controller

chip implemented. This gives 16 colours, Hi-Res with Apple

compatible plotting commands, with a resolution of 255x192

pixels. It also supports 32 sprites. I added a SID chip for sound

and a 6522 to drive a parallel printer. I expect to put a GI AY3-

8910 into the ext pin of the SID.

Not bad for a system produced at the same time as the original

Pet. The one big advantage I have is that the Basic and the

operating system are loaded into RAM from disk whenever the

system is booted. It thus lends itself admirably to tinkering.

John Horemans, Mississauga, Ontario

You could take the prize for the greatest amount of perser-

verance in recorded history. While the rest of the world is

scrambling for the newest, biggest, bestest, fastest, greatest,

most incredible, you quietly work with your loyal friend, modi

fying as desired. Anyone who reads the Transactorjust for the

ideas has to be special. Thanks for a refreshing letter. Generally

we print source code with few exceptions. Even long listings

aren 't too unreasonable once they're reduced with Karl's "type-

magic". But in this case we didn't get source code from Mr.

Reesor (4408 63rdSt, Camrose, Alta, T4V2J4). Perhaps he can

help, otherwise you may need to use "Unassembler" (Disk 9,

same as Super Sound) to make source on a friend's Commo

dore.

A BIT Of A Problem: Congratulations to Transactor and J.

Lothian for the excellant "Disk Un-Assembler for the Commo

dore 64" in The Transactor (Volume 6, Issue 04). There is a BIT

of a problem, but it is a superb piece of Basic code.

The BIT operation is a problem as Lothian hints, and presum

ably space prevented further elaboration. But this BIT problem

is the most likely source of a crash of the un-assembler. For

example, if you use a monitor to disassemble the standard C-

64 disk wedge, at $CE2F you will find the unusual syntax of BIT

$00A9. Only BIT $A9 in proper zero page syntax was neces

sary, and presumably an assembler, gremlin stuck in the lead

ing zero. The microprocessor executes op code $24 (BIT) as

zero page mode, and op code $2C (also a BIT) in absolute mode.

The first uses 2 consecutive bytes, and the latter requires 3

consecutive bytes. As far as the executed result is concerned,

BIT($24) $A9 and BIT($2C) $00A9 are the same. The latter

simply takes up a bit more memory, and executes a bit slower.

But "The Commodore 64 Macro Assembler Development Sys

tem" doesn't treat these two syntaxes the same. If that assem

bler encounters BIT($2C) $00A9 in the source code, it

presumes that you made a mistake and automatically drops the

leading zero, converting it to BIT($24) $A9. The result of an un-

assembly and re-assembly of such code is that a byte (the zero)

is dropped, and all of the following code is offset by one byte.

Naturally that leads to a crash.

So, I encourage inclusion of Lothian's suggested line 61 in the

program that causes the un-assembler to burp out a .BYTE, as

if BIT didn't exist. The Commodore assembler then fails to drop

any bytes from the source code! Although a few lines of code

thereafter may appear incorrect in the source listing, the

assembled result will operate correctly; and it's fine as far as the

microprocessor is concerned, which is the main thing, after all.

I note that lines 2020-2060 are never accessed in the un-

aasembler program, which is a shame because they would

signal that a BIT operation was converted to a .BYTE. Also,

lines 310-360 in the program are excess baggage, although it

would be nicer if that weren't the case. Presumably Lothian

tried to stick closely to Higginbottom's prior program code,

while disagreeing with his treatment of BIT. I agree with

Higginbottom that BIT must be converted to .BYTE in any un-

aasembler which is related to the standard Commodore 64

assembler.

That might not be true with other assemblers, which may have

entirely different quirks. I don't really know. I can only afford

one commercial assembler. Because I bought the Commodore

assembler fairly early on, that will have to suffice.

Another problem with the un-assembler is that it won't create

more than one file, despite what is claimed. I suspect that a

couple of variables got mixed up, nevertheless there is an easy

cure without striving for elusive perfection. Substitute the

The Transactor 13 May 1986: Volume 6, Issue O6

following line in the program:

1280 IF LC<1000 THEN 1350

That fixes everything except when you try to un-assemble a

long bit (there's that gremlin again!?) of machine code. The un-

assembler inserts a lot of unnecessary spaces in the source

code, creating a significant limit on the amount of source code

which can be created on ordinary diskettes. With an ordinary

170k 1541 diskette, only about 12k of machine code can be

un-assembled. Deleting unnecessary spaces from the gener

ated code can double the limit. 24k sounds and is a lot better!

This change is fairly easily accomplished by going through the

program and substituting a single space wherever there are

multiple spaces, notably in lines 1250, 1260, 1380,and 1400. It

also seems desirable to increase the dimensions in line 120 to

LI(2000) and L2(2000), which will then handle up to about 24k

of machine code in a single un-assembly. (at least, after

compilation)

But let's not get carried away with deleting spaces! The propor

tional typesetting machine used to set Transactor program

listings is a problem too. Be sure to include a space between

.BYTE and $ in line 1480. Otherwise the Commodore assem

bler generates the " RAN OFF END OF CARD" error message.

That error message presumably means that a couple of cooties

sitting on the Ace of Spades will never really know whether the

card is flat or round.

Finally, after the corrections and changes as indicated above, 1

want to confirm that the un-assembler works very well. It can

be easily compiled with the Abacus compiler to give a 3-4x

increase in overall speed, with negligible expansion of the

program code. My compiled version of the un-assembler took

about 4 hours to un-assemble 21k of code, i.e. almost the full

capacity of 1 170k 1541 diskette. After deleting unnecessary

spaces from the generated code, the resulting code is approxi

mately 5-6x expansive.

Incidently, I confirmed that after the BIT to .BYTE correction,

the un-assembler correctly handles the standard C-64 disk

wedge program, allowing relocation of the utility to any mem

ory area simply by varying the first line in the source code.

Relocation of machine code, as much as editing, is a major

advantage of the un-assembler.

I really enjoy Transactor, at least partly because you obviously

do too. John R. Menke, Mt. Vernon, 1L

There are quite a few extra benefits derived from working at

The Transactor; one of them is the continuous stream of top

notch letters and articles originating with John Menke. It's

always a pleasure to be on the receiving end of your thoughts

and observations. Your comments, as usual, areAl. We thank

you for making what would have been just a good program -

great! Please keep the correspondence coming.

Left Wing Interference: I had an experience this weekend

that I thought might be of interest to other users of the

Commodore 1541 disk drive.

My son's "Winnie The Pooh In The Hundred Acre Woods"

program was having difficulty loading some of the screen files,

and would sometimes provide an error message indicating a

problem with the disk drive. This led me to believe that the

drive might be out of alignment. So I checked with the "Check/

Adjust/Alignment" function of the " 1541 Disk Drive Alignment

Program" from CSM Software. This function determines the

time to access every seventh sector of every fourth track of a

calibration disk supplied with the program. Proper alignment is

indicated if the program reports a 'timing number' of about

100. The program was indicating timing numbers of 110 to

113, and blinking of the red light on the drive indicated that

there was difficulty in accessing sector 8 of tracks 5 and 9.

The disk drive and TV normally sit on the top shelf of a cart

wich 1 roll up to a side arm of my desk, where my Commodore

64 is set for use. Because there is not enought room on the cart

to disassemble and adjust the drive, I moved it to my desk top. I

then rechecked my timing number and found that it was 101 to

102 - well within the acceptable range - and there was

practically no trouble accessing the disk. However, upon re

turning the drive to the cart, the timing number returned to 110

or greater.

A little investigation showed that if the disk drive was sitting to

the left of my TV (or my Commodore 1701 monitor), there was

trouble accessing the drive. When the drive was sitting to the

right, there was little or no trouble.

In conclusion, sitting the disk drive to the left of a TV or

monitor can produce symptoms which mimic alignment prob

lems. Readers might want to check for this type of interference

before going to the trouble of having a drive realigned.

Jack Ryan, El Dorado, Arkansas

A while ago 1 received a 1541 fast load cartridge called GT-4

from Proline for review. The fast load was interesting, but what

was more enlightening was the manual supplied. By reading

through the authors notes, a similar experience to yours was

noted. The author wrote that odd gremlins appeared within the

1541 if operated too close to the left side of the Commodore

1701/1702 monitor. Specifically, trouble might occur reading

from and/or writing to track 35. Through your own experiences

it seems that the problems are further reaching than just track

35. Very odd.

Perhaps, and this is pure and applied speculation, the trouble

lies not with an actual read/write error, but with a checksum

error in the data read/written. The flyback is placed closer to

the left side ofthe Commodore monitors. Perhaps operating the

1541 too close to the flyback is sufficient to cause bit movement

at the head or some other unexpected spot within the drive.

The Transactor 14 May 1986: Volume 6, Issue O6

Although the diskette is actually in good shape, and the align

ment is Ok, the checksum always bombs out thereby flagging

an error. A theory worth considering. It's worth mentioning here

that I originally shot off on an altogether different tangent

blaming speed variations due to the physical placement to the

monitor, but my father brought me back down to earth. Thanks

Dad.

Here is another tip gleaned through exposure to my father.

Once again; thanks Dad.

In many cases ofsupposed alignment problems with the 1541,

the root of all evil can be found in the form of a speed error.

Speed variations can be caused by a variety of reasons, one of

which is not using it for an extended period of time. If this

sabbatical is spent basking in a fairly warm to hot environment

('School's Out For Summer!'), the demon may appear. Given

these conditions, the drive belt will dry out thus taking on the

shape it is currently in, an oval. Once the drive is fired back up

again, the speed will be all over the place due to the rigid

malformation of the belt. The cure in this case is to either

replace the belt or continue using the drive until the belt loses

some of its rigidity, or consider just popping the belt off and

leaving it inside the case if extended non-use is anticipated.

The Gremlin Effect: It seemed to me that your current piece

about errors on page 14 of Vol 6, *04 could apply to my recent

letter of last June 12th.

In it 1 complained that two programs from the July, Vol 6, *01

Transactor just wouldn't work for me and in fact kept producing

endless loops and fouled up generally! Namely, your own " File

Pursuit" and Jeff Goebel's " Bootmaker II".

I decided to have another crack at them tonight. Taking a brand

new disk, loading "Verifizer" into my 64, 1 re-entered "File

Pursuit" and this time it worked absolutely perfectly!

I went back to my orginal "save" on an older disk and re

loaded that for comparison. Apart from a few spacing differ

ences between some words or commands, the two versions

appeared to be identical when listed on screen in manageable

groups of lines. Yet running the earlier one produced exactly

the same hang-ups, endless loops, etc!!! Even re-entering the

suspect lines several times had absolutely no effect! Just as

though the program was jinxed from the word 'Go'!

Needless to say 1 replaced the first one on the old disk with my

new workable one, as a back-up copy and gave the working

File Pursuit" a place on my main 'Disk Utilities' disk. I then re-

entered " Bootmaker II" and got that working first time too! I

had destroyed my earlier "save", so couldn't compare the

earlier one that had destroyed a ml program!

Quite frankly I had begun to think that my 64, which may well

have an earlier ROM chip in it, had a few weird bugs inside! I

know when I foul up entering lines, though I've often found

that even if one spots an error and cursors up and re-works the

line, it may never be right. In which case one has to redo the

entire line. I have had this happen with much longer programs

in other magazines and books. Finally ALL the major Commo

dore 64 magazines now have checksum type "goof-proof"

programs, or at least ones which make it pretty hard not to

catch errors right away. However a series 'RUN' ran on a 'Basic

4' by a Canadian author, I still can't get to work at all and I've

had file loading problems with an English book on ML utilities.

Reading 'Transactor' has persuaded me to lay out money on

books on machine language and 1541 DOS, so this winter I

should be all set to grow some more computer-wise.

Quite frankly I'm beginning to think that my 64 does have a

resident gremlin inside, one that from time to time had a

decidedly "off" night and refuses to allow a program to be

entered correctly. If I hadn't experienced this with " File Pur

suit " and " Bootmaker II", I'm not sure I would have believed

it could happen!!!

Looks like I'm going to have to get back to re-working a few

more programs now! At least while the gremlin is in a good

mood!

John Matthew, Rexdale, Ontario

Although Verfizer will catch entry errors, it ignores Spaces.

About the only critical Spaces possible in CBM Basic are those

in Block Commands sent to the Disk Command Channel.

However, we used semi-colons in the Block Commands of File

Pursuit forjust this reason. So it certainly is mystifying that two

identical entries would not work the same. Try loading Verifizer

andyour first "save" of File Pursuit andjust hit return over each

line while checking the Verifizer codes. This may leadyou to the

discrepency, which would certainly be interesting if not educa

tional.

Jordan Rolltop Stand Revisited: I am writing concerning

the "Jordan Rolltop Stand" in the Transactor, Volume 6, issue

05. First from a technical standpoint; having grown up in the

lumber business and having built much of the furniture in my

house, I would like to say that the article was well done and the

assembly instructions easy to comprehend, although I did

notice that the stand in the accompanying photo was not made

to the specs in the article. Also, I would caution (indeed, I would

PREACH!) against buying lumber for a project like this at a

regular lumber yard because building supply yards generally

carry only lumber for making buildings. This is not acceptable

for furniture type projects. Here's why; building lumber is

usually kiln dried to approximately 16 to 20 percent moisture

content (m.c.) but to match the humidity inside a house,

lumber must be drier; around 4 to 6 per m.c.

The Transactor 15 May 1986: Volume 6, Issue O6

You can build with construction lumber fine, but as it sits in

your house - which is probably about 6 to 8 % m.c. - the lumber

will dry further (to "equalize" itself to its surroundings). When

this happens, the piece will shrink and/or warp slightly, some

times causing real problems, especially in furniture with mov

ing parts. For a piece of furniture meant to last, lumber dried to

6 to 8% m.c. is a must.

But my point in writing is not to critique the article, but rather

to offer help to Transactor readers. To anyone who is inclined to

build the "Jordan Rolltop Stand" (or any woodworking project

for that matter) we can supply quality Appalachian hardwoods

and New England White Pine in any form from rough sized,

surfaced boards right through to "ready-to-assemble" pieces,

and can supply them for less money than most furniture

lumber suppliers. Take for instance the "Jordan Rolltop Stand";

if you wanted to make this out of Cherry or Hard Maple you

could get the rough sized boards to do it for about ten dollars

(U.S.) (depending on the actual size of the desk it was to be

placed on) or get ready-to-assemble pieces, less the cloth for the

tambour, for about twenty-five dollars (U.S.). Shipping charges

are extra and will vary depending on distance.

If you've got your own idea for a project, send a drawing or

picture - or a cutting list if you have one - along with a five

dollar (U.S.) deposit and we will draw the plans for you and

send you a custom price quote. If for some reason you don't

buy the lumber, the five dollars covers our time in drawing up

the plans. (No deposit is necessary if you send a cutting list.)

Traditional furniture woods, such as Ash, Cherry, Hard Maple,

Poplar, Red Oak and White Pine are all readily available and

most other North American woods can be gotten (as long as

you're not in a hurry!) So don't decide not to build that project

because of fear of saws, lack of ability, or any other excuse you

may have for leaving your computer area in a mess; we'll meet

you right where you want with the lumber you need.

Matthew Strange

P.O. Box 2

Mansfield, PA

USA 16933

First, let me quote from a hand-written letter attached to this

one when we received it:

" If this letter sounds too much like blatant advertising - feel free

to toss it. I've been considering starting up a business like this

for about 2-3 years now and this looks like a good place to

check out its feasibility and help out my computer friends as

well. But like I said, if it's too blatant in its advertising content -

chuck it out.

Terrific! Anyone who asks us to "Chuck It" if we begin to feel

compromised can't be too bad. Here's wishing you massive

oodles of luck with your business. I like your style.

The Horror Of Hex: I have hesitated writing this letter for

over a year now but, even though 1 realize it is like trying to

prevent the sea from following the moon around, 1 am going to

try to have my say.

I own a Commodore 64. I am quite familiar with it and 1 can

program fairly well in M.L. My frustration comes from bumping

into HEX notation all the time. It is utter nonsense.

The use of Hex is a game some programmers play. My com

puter does not understand Hex. When 1 Poke a value into

memory, both the memory and the value must be in decimal!

I have a memory map of low and high ROM's with each

memory location given in Hex. What a waste. I had to translate

every hex address into decimal before 1 was able to peek the

routine or before I could SYS to it. The entire process of figuring

the HEX code to prepare the map was a waste of time and

caused untold hours upon hours of wasted time as program

mers everywhere decode the Hex back into useable form.

When I read an article in a magazine (Such as Transactor), 1

have little if any difficulty following and understanding the

flow. 90% of my time is wasted in flipping back and forth

through my Hex to decimal conversion chart!

If you really take an objective viewpoint, you will also see how

wasteful HEX is. Even Transactor publishes all 'data' state

ments in decimal. THE LINE NUMBERS IN A M.L. LISTING

ARE IN DECIMAL!!!

If HEX is really so great, why don't you use it for the line

numbers and for the PAGE NUMBERS! Frankly, I think HEX is

to programmers what Latin is to Doctors. It helps support a

private clique to which the "undesirables" cannot belong. The

Doctors are gradually giving up Latin and I would be thrilled if

programmers would give up HEX.

In doing let me say I do understand HEX -1 just see no need for

it in any home or business computer environment.

There -1 said it.

Thomas W. Gurley, Willis Point, Texas

Time is the major factor involved in learning to appreciate the

hexadecimal numbering system. Similar to olives, artichokes,

smelly cheese, or whatever initially disgusting ingestible, Hex

requires that you learn to accept its obvious rude points before

you are allowed to enjoy it.

You may have noticed that new BASICs are including HEXand

DEC functions to allow conversion for those who wish to SYS,

POKE, etc., to an address specified in hex. Although you do

have a valid point for the hybrid BASIC/Machine Language

environment, the fact remains that hexadecimal is the only

notation for the total Machine Language situation. I suppose if

The Transactor 16 May 1986: Volume 6, Issue O6

ICs where originally designed with, say, 6 address lines (0 to

999999) and 3 data lines (0 to 999) then decimal would have fit

much more naturally. Except each line of every chip would

need the capability to sense 10 voltage levels and that might be

expensive. Besides that, "IAdore My Commodore 100" doesn't

rhyme and a "K" would actually be 1000 bytes - now that's

confusing!

You might say that binary would then be the most natural since

there are only 2 voltage levels, but groups of 8 and 16 'I's and

'0 's take up far too much paper space. Hex merely allows you to

"see " four of those characters by only looking at one. 1 guess,

once again, it's something you get used to in time. I know some

programmers that swear by Octal!

False ID: The Transactor is a real winner and I always look

forward to a new issue. You have published many good articles

on the 1541 disk drive. However, I cannot find anything that

tells me how to change a disk ID without destroying what is on

the disk. I know the ID is at byte 162-163 of track 18, sector 0,

and I have no trouble changing that, but I understand the ID is

printed to every sector on disk. When I display other tracks I do

not get the ID information. I would really appreciate your help

in this matter.

E.C. McPherson, Ottawa, Ontario

Commodore DOS is very unique in concept; during a formatting

procedure, it magically tucks away the diskette's ID with every

sector. The magic part of this entire procedure is that the

average user would never know of its existence.

The DOS uses this ID as a check-sum to ensure that the diskette

is Ok while you work with it. If for some reason a sector gets

messed up, the ID offers DOS another method to detect an error.

Along with this hidden ID are a whole slew of other equally

important bits of information. There is only one problem:

Commodore wrote the DOS to make this portion of the sector

difficult if not impossible to access. They felt that there was no

reason why anyone would ever want to dig this deep into their

operations. Therefore, you are going to have problems chang

ing the ID.

Considering that you did not mention why you need to change

the diskette s ID, I will assume that eitheryou arejust nuts about

arcane bits of Commodore tech, or you are brewing up some

form of disk protection for a package. Whatever the story, this

subject is a bit too involved to cover in the letters column, and

we suggest you don't try changing any occurrence of the ID

unless you 're prepared to do a completejob on the entire disk. If

that's the case, try locating the book "Inside Commodore DOS",

written by Gerald Neufeld and Richard Immers. You would be

hard-pressed to find any other book that would compare to this

one for arcane bits of information about Commodore DOS.

These guys rank right up there with Raeto Collin West of

"Programming The PET/CBM" fame in the presentation of

high-level information. Try hitting a few of your local Commo

dore dealers for the book. There is a good chance that if they

don't have it, they would at least know of it and point you in the

right direction.

Attack Of The Killer Clone: I have an INDUS-GT disk drive

and I have problems. I cannot find any information for this

drive except for the manual(?) and instructions^) that came

with the unit. Where can I obtain more information? There has

been nothing in any Commodore magazine about this drive,

except advertising this drive for sale.

I am the President of TRACE (The Richmond Area Commodore

Enthusiasts), with 68 members. There are a dozen INDUS-GT's

in the group, and each have problems.

We cannot get Microprose software to load on the INDUS-GT or

MSD-1. All calls to Microprose have been less than satisfactory.

Only tested on the 1541 and not guaranteed to work with

anything else.... What goes? All other software written and on

disk from other companies Load and Run fine on INDUS and

MSD-1. Programs Saved on disk to the 1541 and Loaded into

INDUS or MSD-1 work.

We have tried everything but nothing works. Help!!!

A quick bit of computer trivia of days gone by might put this

problem in perspective.

A long, long, very long time ago, the Abacus was born of two

very good friends, Aba and Cus. The Abacus was conceived

due to a difficult problem Aba and Cus encountered on a daily

basis. In their village, Aba and Cus were considered to be the

finest mathematicians within a 10 miles radius. Due to this fact

the townspeople would often rely on the guys to straighten out

whatever financial mess they found themselves in. Initially, this

presented no problem. Ten fingers and ten toes were more than

sufficient for even the most vexing ofproblems. But soon, as can

be expected with any successful small business, their sum and

total ofanatomical parts were insufficient for their needs. Enter;

the Abacus.

Aba and Cus build the first unit with absolute love and devo

tion. When complete, it was just perfect. Calculations that

before would take many days to complete were performed on

the Abacus within a period ofa few minutes. And so, the legend

of Abacus began. They sold out of their financial consultation

firm and began the Abacus Manufacturing Company.

As could be expected, the larger Abacus got, the more problems

they had with imitations coming onto the scene. The original

clone was born, and with it came the inherent problem with

most clones. You have to expect imperfections when you are

dealing with a copy.

The Transactor 17 May 1986: Volume 6, Issue O6

As time moved along, Abacus was deluged with requests for

help regarding Abacus clones. Problems such as beads falling

off, beads seizing in place, insufficient or too many beads

supplied and, of course, no beads, were in great quantity. In

performing a market survey, they found that 95% of the clones

had very obvious shortcomings, with the balance presenting

themselves as perfect replicas. But Aba and Cus had been in

business for so much longer that even the sum total of all the

clones added up to only a small percentage of the number of

originals they sold. They found they could not possibly spend

the time coverting their Abacusware to work on anything but

their own units. Third party abacusware developers felt the

same. It soon became the responsibility of the clone manufac

turers to be more compatible. However, they decided not to

since they couldn't possibly anticipate every exception outside

"normal use".

The moral of this story, as I am sure Aba and Cus would agree,

is that a clone may save you money, but you have to be

prepared to live with the problems of using a copy. The INDUS-

GT and MSD-1 drives are compatible with the 1541 in many

respects. In truth, each have superior features to the 1541. But

they are not absolutely compatible. If each ROM routine was

the same, then Commodore would have a really good chance

of winning a juicy little lawsuit. Both manufacturers did pro

duce almost perfect clones, but the almost perfect is the killer.

Disk protected software packages often rely on techniques of

bypassing the DOS's Interface Processor and working directly

with the Floppy Disk Controller. At this level of operation,

anything is possible. A good chance exists that quite a few

packages use the DOS ROM routines directly, along with

utilizing little known quirks of the 1541.

My only advice, as far as software packages go, is to be careful

and hope that either the software or hardware manufacturers

are responsible enough to listen to legitimate complaints. Other

wise, be prepared to tear down those programs yourself to find

and modify that one piece of non-portable code that stands in

your way.

As far as documentation goes, try to get hold of whatever

Commodore drive users manuals you can find. This and a few

Commodore DOS books and articles will probably help you out

as much as you can expect. If the drives are clones, Commo

dore documentation should suffice. Hope the strange advice

helps.

Transbloopers

Hi-Res Terminally 111: After reading "The Error Of Our Ways:

More Often Oops Than Bloops" on page 14 of the Jan. 86 Transac

tor, I moved on to type in the HIRES Create program to use with the

Projector program. It would not work, not because of a checksum

error, but because of an out-of-data error!

I triple checked all the data statements with Verifizer and even

counted all the lines. But this time it truly was your error.

Fortunately, 1 have a copy of The Transactor Vol. 5, Issue 06 where

HIRES was first published. I compared the two listings and found

that the first 30 data items are missing from the second listing. The

number 51233 in line 1050 should be changed to 51231 and the

checksum number in line 1060 should be changed from 245,919 to

245,727.

I also discovered that you had forgotten to write the starting address

to the machine language program that HIRES created. So 1 added

this line to Hires Create:

1045 print#8,chr$(0);chr$(192);

I ran the program again and then ran the Projector program and it

worked beautifully. This is a great graphics program and I want to

thank you for publishing it.

Tony Damato, Jacksonville, Florida

Strangely enough, it took quite a while before word started to filter in

to us that HIRES was sick that issue. Sure enough, it was sick and it

was our (my) fault.

To transform object into data statements for publication, I usually

use one of two programs. The first is "Data Gen" written by Karl to

transform any object into clean and neat Data statements. The

second is the same with some heavy mods by yours truly. The heavy

mods produce a Data loader that Opens a program file for a write to

disk, takes the first two data elements as the start address and the

balance as the object. From that point you have pure object on disk

to be Loaded via ,8,1. The problem came when "Data Gen" ala me

became terminally ill. It seemed to be fine, but it ate four of its own

lines. Four lines x 8 elements per line = 32 data elements. Two

elements were the start address, the balance was required code. The

checksum was Ok, as was most everything else. All we can do at

this stage is offer our apologies and hope that the corrections listed

below help to make up for our mistake partially.

Missing lines from Gary Kiziak's Hi-RES routine re-published in

Volume 6, Issue 04. Notice the start address is included as the first

two elements of line 1082. Omit these if you plan to use line 1045

above.

1082 data 0,192, 76,194,193, 76,247,195

1084 data 76, 98,195, 76,110,194, 76, 30

1086 data 194, 76, 214, 196, 76, 228, 196, 76

1088 data 11,197, 76, 67,197, 76,169,192

The Transactor 18 May 1986: Volume 6, Issue O6

TransBASIC

Installment #8

Nick Sullivan

Scarborough, Ont.

The TransBASIC Disk

Since the TransBASIC modules published so far are consuming so

much space on each Transactor Disk, we have decided to produce

The TransBASIC Disk. Starting with this issue, only the modules

published in each issue will be on The Transactor Disk. The others,

plus several that have not yet been published, will reside on The

TransBASIC Disk, which contains almost 500 blocks of source

code. Included is a manual showing each command from every

module with short examples. More complete documentation for a

command can always be found in a Transactor back issue, should

you need it. Otherwise you simply run " *" and start adding

commands

After selecting commands from the library they need to be assem

bled with PAL. Until now! SYMASS 3. 0 is a machine language

assembler that is compatible with PAL format source code, and it

will be on The TransBASIC Disk! (It will also be published in the

next Transactor, with assembler-design theory and complete in-

tructions) SYMASS 3.0 is not compatible with all of PAL's exotic

features, and although it will assemble most any program, it is not

a "development" package. SYMASS does not print listings and

sends object code to memory only. So if you're writing code, PAL's

error checking and elaborate pseudo-ops are still the ideal ap

proach, but for assembling TransBASIC modules, SYMASS 3.0 is

perfect!

The TransBASIC Disk with SYMASS 3.0 is just $9.95. See News

BRK this issue for more, or use our postage paid order card at

center page.

TransBASIC Parts 1 to 7 Summary:

Part 1: The concept of TransBASIC - a custom command utility

that allows one to choose from a library only those commands that

are necessary for a particular task.

Part 2: The structure ofa TransBASIC module - each TransBASIC

module follows a format designed to make them simple to create

and "mergeable" with other modules.

Part 3: ROM routines used by TransBASIC - many modules make

use of ROM routines hurried inside the Commodore 64. Part 3

explains how to use these routines when creating new modules.

Part 4: Using Numeric Expressions - details on how to make use

of the evaluate expression ROM routine.

Part 5: Assembler Compatibility - TransBASIC modules are writ

ten in PAL Assembler format. Techniques for porting them to

another assembler were discussed here.

Part 6: The USE Command - The command 'ADD' merges

TransBASIC modules into text space. However, as more modules

are ADDed, merging gets slow. The USE command was written to

speed things up. USE also counts the number ofmodules USEd and

updates line 95 automatically.

Part 7: The TransBASIC kernel uses all of the 64's system vectors.

Should two or more modules attempt to alter any vector, a

potential crash situation exists. Part 7 deals with avoiding this

situation.

TransBASIC Part 8

Our first module this issue (Program 1) is called OLD. It was written

by Joel M. Rubin of San Francisco, California, and consists of one

statement, also called OLD. Like the UNNEW and OLD commands

of other utilities, OLD restores a BASIC program that you have lost

through inadvertent use of the NEW command. Joel will have

more modules appearing in future issues.

The second module is INPN & INPA (Program 2). It provides

controlled input of either numeric (INPN) or alphanumeric (INPA)

characters. This one is by Wayne Happ of North Babylon, New

York (who also wrote the SELECT module, discussed below).

Wayne notes that it would be easy to modify the section of code

that screens the input characters, if the particular selections made

in this published version do not exactly meet your programming

requirements. This module also makes use of part of the INLINE

module (see below), so if you're typing them in, note that some

code is duplicated, and there's no need to enter it twice if you're

willing do a little juggling.

SELECT (Program 3) is a short but interesting module that pro

vides a structure not unlike the SWITCH structure of C or the CASE

structure of Pascal. SELECT is not a closed, formal structure — this

being BASIC, after all — but it should be helpful in a lot of

instances where an unwieldy series of IF-THEN statements is the

only alternative. The SELECT structure begins with SELECT and

ends with ENDSELECT, with an arbitrary number of WHEN

statements and an optional OTHERWISE statement in-between.

However, there is nothing to prevent you using other kinds of

statements inside the structure, if you so desire, or even — since

SELECT does not use the stack — distributing the component

statements in various subroutines or FOR-NEXT loops. Formal

structures don't allow these kinds of liberties, and so can keep you

out of trouble; on the other hand, you might be able to make good

use of the freedom SELECT offers you.

MC GRAPHICS (Program 4) is another big module from Darren

Spruyt of Gravenhurst, Ontario, whose work has appeared in this

column in each of the past two issues. This module gives a battery

of twelve commands that make multicolour hi-res graphics easy to

use, rather than a programming headache. In multicolour hi-res,

The Transactor 19 May 1986: Volume 6, Issue O6

you have the choice of four colours in each low-res pixel (4 by 8

multicolour pixels), rather than the two colours allowed in regular

hi-res (though one of the four is the background colour, common

to the whole screen). The drawback of multicolour is a loss of

resolution - you get a 160 by 200 pixel screen instead of the 320 by

200 pixels of regular hi-res. However, this is still enough to allow

good detail.

One problem with programs that run in graphics modes other than

the default text mode is that a syntax or other error can leave you

with a mess on your screen and no obvious way to get out of it. To

get around this, the MC GRAPHICS module reroutes the error

vector when the hi-res screen is turned on, and returns the screen

to normal before handling the error. The error trap is deactivated

when the hi-res is switched off. This will normally introduce no

additional problems, but if you want to intercept the error vector

for your own purposes, be sure to do so only when the multicolour

is off. By the way, if you happen to be writing hi-res modules

yourself, whether multicolour or not, it would be a good idea to use

the same error-trapping procedure, or even the same routines, as

those employed by MC GRAPHICS.

Finally this month we have INLINE (Program 5), a variant of

BASIC'S INPUT command that does away with the question-mark

prompt and also allows all punctuation mark characters to be

input. This one works only from the keyboard - maybe in a future

issue we'll run a sequel that does the same thing for reading from

files.

New Commands

INLINE (Type: Statement Cat *: 030)

Line Range: 3454-3528

Module: INLINE

Example: INLINE " SAY SOMETHING: " ;A$

Identical in syntax and operation to the regular INPUT statement

except that: the question mark prompt is not given; only one

variable may be input and that must be a string variable; commas,

colons and semicolons are accepted as input.

OLD (Type: Statement Cat #: 142)

Line Range: 10190-10216

Module: OLD

Example: OLD

This command will restore a BASIC program in memory after a

NEW has accidentally been given or the computer has been reset

(in the latter case, you will have to first reset TransBASIC with SYS

49155 or POKE 49152,96, then re-enable it with SYS 49152). The

command will not function predictably if any syntax errors occur

after the NEW.

INPN (Type: Statement Cat *: 143)

Line Range: 10224-10386

Module: INPN & INPA

Example: INPN "YOUR PHONE NUMBER: ";PN$

This is a controlled input command that accepts only numeric

characters and some punctuation (space, period, plus, minus). The

cursor is a non-flashing underline character. The only allowed

control characters are DEL and RETURN. There is no automatic

question mark prompt; and the string prompt (as in the example) is

optional.

INPA (Type: Statement Cat *: 144)

Line Range: 10218-10386

Module: INPN & INPA

Example: INPA "YOUR NAME: ";PN$

This is a controlled input command that accepts only numeric

characters, upper and lower case alphabetics and some punctua

tion (space, period, plus, minus, and the characters in the ASCII

range 58 through 64). The colon (ASCII 58) and semicolon (ASCII

59) are accepted as input like other characters, not as terminators.

The cursor is a non-flashing underline character. The only al

lowed control characters are DEL and RETURN. There is no

automatic question mark prompt; and the string prompt (as in the

example) is optional. The variable must be of string type.

SELECT (Type: Statement Cat #: 145)

Line Range: 10388-10410

Module: SELECT

Example: SELECT

Example: SELECT A(3)-1

This statement begins the SELECT structure. If no parameter is

given (first example), the structure operates in logical mode; when

a parameter is present (second example) it operates in comparison

mode. For further details see the entry for the WHEN statement

(146).

WHEN (Type: Statement Cat*: 146)

Line Range: 10412-10446

Module: SELECT

Example: WHEN A = B PRINT " EQUALITY "

Example: WHEN A PRINT " CASE " ;A

This statement is part of the SELECT structure (see SELECT, #145).

The first example illustrates the syntax when the structure is in

logical mode: the WHEN is followed by a logical expression which,

as in the IF statement, controls whether the remainder of the

program line is executed. The second example illustrates the

syntax of the comparison mode: the WHEN is followed by an

expression whose result is compared with the value of the expres

sion accompanying the SELECT statement, and the remainder of

the line is executed if the two values are equal. If the WHEN test

expression is successful (and thus the remainder of the program

line is executed), the SELECT structure is disabled: further WHEN

statements and OTHERWISE (*147) statements will have no effect.

OTHERWISE (Type: Statement Cat*: 147)

Line Range: 10448-10458

Module: SELECT

Example: OTHERWISE PRINT " NO LUCK "

The OTHERWISE statement is an optional component of the

SELECT structure (see SELECT, *145). Statements following on the

same line will be executed only if no WHEN statement (#146) has

been successful. The OTHERWISE statement disables the SELECT

structure: further WHEN statements and OTHERWISE statements

will have no effect.

ENDSELECT(Type: Statement Cat*: 148)

Line Range: 10438-10446

Module: SELECT

Example: ENDSELECT

This statement terminates the SELECT structure (see SELECT,

#145).

The Transactor 2O May 1986: Volume 6, Issue O6

HCLR (Type: Statement Cat *: 149)

Line Range: 11106-11134

Module: MC GRAPHICS

Example: HCLR

This statement clears the high-resolution screen at address

$E000-$FFFF by filling that area of memory with zero bytes.

MCON (Type: Statement Cat ": 150)

Line Range: 11068-11104

Module: MC GRAPHICS

Example: MCON

This statement enables the multicolour hi-res screen at address

$E000, with video matrix at $D800. Current values of background

colour, text colour and character set location are saved, to be

restored later with the HOFF (*151) command.

HOFF(Type: Statement Cat*: 151)

Line Range: 11154-11198

Module: MC GRAPHICS

Example: HOFF

This statement disables hi-res and multicolour modes, sets the

video matrix (low-res screen) to its usual location of $0400, and

restores previous low-res values of background colour, text colour

and character set location, as saved with the MCON (#150) com

mand.

MSET (Type: Statement Cat *: 152)

Line Range: 10746-10762

Module: MC GRAPHICS

Example: MSET 100,30,2

This statement sets the specified screen location (in the example

x=l 00, y = 30) to the specified colour. The colour in the example is

number 2, as set in the MCOLOR command ("159).

MTEXT (Type: Statement Cat *: 153)

Line Range: 11784-11996

Module: MC GRAPHICS

Example: MTEXT 10,40,1,2,3, "HELLO"

This command writes the given string, in a specified colour, to a

location on the multicolour high-res screen. The text may be

magnified by an integer factor in both the X and Y dimensions (no

magnification results in a character size of 8 by 8 multicolour

pixels). The order of parameters is: x location, y location, x

magnification, y magnification, colour and the string to be printed.

The character shapes are drawn from the Upper Case/Graphics

ROM character set. The example prints the text " HELLO" at

coordinates x= 10, y = 40, with no magnification in the X dimen

sion, and double magnification in the Y dimension, using colour 3

as set by the MCOLOR command (*159).

MCIRCLE (Type: Statement Cat *: 154)

Line Range: 11362-11782

Module: MC GRAPHICS

Example: MCIRCLE 80,100,50,1,1,2

This command draws a circle with a specified radius to a location

on the multicolour high-res screen, using a specified colour. The X

and Y dimensions of the circle may be adjusted (creating an oval)

with separate multipliers, whose value should lie between 0 and 1.

The order of parameters is: x location, y location, radius, x

magnification, y magnification and colour. The example draws a

circle of radius 50 at coordinates x = 80, y = 100, with no magnifica

tion in either the x or y dimensions, using colour 2 as set by the

MCOLOR command (*159).

MDISC (Type: Statement Cat *: 155)

Line Range: 11356-11782

Module: MC GRAPHICS

Example: MDISC 80,100,60,1 ,.8,1

This command is identical to MCIRCLE (*154) except that the

circle is filled instead of being drawn as an outline.

MRECT(Type: Statement Cat*: 156)

Line Range: 11270-11318

Module: MC GRAPHICS

Example: MRECT 30,40,50,15,1

This statement draws a rectangle specified by the coordinates of

two diagonally opposite comers, in a specified colour. It does not

matter which corners are specified. The example draws a rectangle

whose lower left corner is at x = 30, y = 40, and whose upper right

corner is at x = 50, y= 15, using colour 1 as set by the MCOLOR

command (*159).

MBOX (Type: Statement Cat #: 157)

Line Range: 11320-11354

Module: MC GRAPHICS

Example: MBOX X1.Y1 ,X2,Y2,C

This command is identical to MRECT (#156) except that the

rectangle is filled instead of being drawn as an outline.

MDRAW (Type: Statement Cat #: 158)

Line Range: 10472-10626

Module: MC GRAPHICS

Example: MDRAW 13,111,77,99,0

This command draws a line between two points in a specified

colour. The example draws a line from x= 13, y= 111 to x = 77,

y = 99, in the background colour as set by the MCOLOR command

(*159).

MCOLOR (Type: Statement Cat *: 159)

Line Range: 10954-11066

Module: MC GRAPHICS

Example: MCOLOR 10,10,25,20,0,2,3,6

This command sets the four colours available in the multicolour

palette for a specified screen region as specified by the low-res co

ordinates (x = 0 to 39, y = 0 to 24) of its upper left and lower right

corners. The example sets colour 0 (the background colour) to

black (0), colour 1 to red (2), colour 2 to cyan (3), and colour 3 to

blue (6), for the region whose upper left corner is at x= 10, y = 10,

and whose lower right corner is at x = 25, y = 20. Colour 0, the

background colour, is different from the others in that it is set for

the whole screen at once, and not only for the specified region.

MCHK((Type: Function Cat #: 160)

Line Range: 11136-11152

Module: MC GRAPHICS

Example: PRINT MCHK(100,yc)

This function returns the colour (as set by the MCOLOR command,

*159) of the specified point (in the example, x = 100, y = yc).

The Transactor 21 May 1986: Volume 6, Issue O6

Modules So Far

TransBASIC Modules that have appeared so far (Instalments 1 to 7)

TransBASIC #1

TB/KERNEL

Statements: 2 Functions: 0 Keyword Characters: 8

000 S/IF Modified IF to work with TransBASIC

001 S/ELSE Part of IF-ELSE construct

002 S/EX1T Disable current TransBASIC dialect

SCREEN THINGS

Statements: 5 Functions: 0 Keyword Characters: 22

013S/GROUND Set background colour

014S/FRAME Set border colour

015S/TEXT Set text colour

016 S/CRAM Fill colour memory with value

017 S/CLS Clear screen, or screen line range

TransBASIC #2

DOKE & DEEK

Statements: 1 Functions: 1 Keyword Characters: 9

007S/DOKE

008 F/DEEK(

Poke a 16-bit value

Peek a 16-bit value

BIT TWIDDLERS

Statements: 3 Functions: 0 Keyword Characters: 12

009 S/SET

010S/CLEAR

011 S/FLIP

Set specified bit at address

Clear specified bit at address

Flip specified bit at address

CHECK & AWAIT

Statements: 0 Functions: 2 Keyword Characters: 12

018 F/CHECK(Check keyboard for valid character

019 F/AWA1T(Wait for valid character from keyboard

KEYWORDS

Statements: 1 Functions: 0 Keyword Characters: 8

059 S/KEYWORDS Print currently active TransBASIC keywords

TransBASIC #3

CURSOR POSITION

Statements: 1 Functions: 1 Keyword Characters: 10

004 S/CURSOR Move cursor to specified row and column

005 F/CLOC Return cursor location

SET SPRITES

Statements: 6 Functions: 0 Keyword Characters: 27

031 S/COLSPR Set colour of sprite

032S/SSPR Turn on a sprite

033 S/CSPR Turn off a sprite

034 S/XSPR Move sprite to specified x-position

035 S/YSPR Move sprite to specified y-position

036 S/XYSPR Move sprite to specified xy-position

WITHIN

Statements: 0 Functions: 1 Keyword Characters: 7

040 F/WITHIN(Return true if value lies within specified range

READ SPRITES

Statements: 0 Functions: 2 Keyword Characters: 10

041 F/XLOC(Return x-position of specified sprite

042 F/YLOC(Return y-position of specified sprite

TransBASIC #4

STRIP & CLEAN

Statements: 0 Functions: 2 Keyword Characters: 14

045 F/STRIP$(Remove non-alphanumerics from string

046 F/CLEAN$(Remove non-blank non-alphanumerics from

string

SCROLLS

Statements: 4 Functions: 0 Keyword Characters: 24

067 S/USCROL

068S/DSCROL

069 S/LSCROL

070 S/RSCROL

Scroll screen area up one row

Scroll screen area down one row

Scroll screen area left one row

Scroll screen area right one row

TransBASIC #5

LABELS

Statements: 5 Functions: 0 Keyword Characters: 24

073 S/L. Label a line

074 S/LGOTO GOTO a labelled line

075 S/LGOSUB GOSUB to a labelled line

076 S/SGOTO GOTO a line whose label matches a string

077 S/SGOSUB GOSUB to a line whose label matches a string

The Transactor 22 May 1986: Volume 6, Issue O6

TOKEN & VAR

Statements: 0 Functions: 2 Keyword Characters: 11

078 F/TOKEN$(Return tokenized version of argument string

079 F/VAR(

INSTRING

Statements: 0

080 F/INSTR(

PLACE

Statements: 0

081 F/PLACE(

Return address of data of named variable

Functions: 1 Keyword Characters: 6

Search string 1 for string 2. Boolean options

Functions: 1 Keyword Characters: 6

Search string 1 for string 2 from specified posi

tion

ARCFUNCTIONS

Statements: 0

082 F/ASN(

083 F/ACS(

PRINTAT

Statements: 1

084 S/PRINT<3

Functions: 2 Keyword Characters: 8

Return arcsine of argument

Return arccosine of argument

Functions: 0 Keyword Characters: 6

Print at specified cursor position

SOUND THINGS

Statements: 28

085 S/CLESID

086S/FREQ

087S/PUW1D

088S/FIFREQ

089 S/ADPUL

090 S/ADSAW

091 S/ADTR1

092 S/NOWAV

093 S/NO1

094 S/PUL

095 S/SAW

096 S/TRI

097 S/TEST

098S/RING

099 S/SYNC

100S/GATE

101 S/ATT

102S/DEC

103S/SUS

104S/REL

105S/RESON

106S/VOL

107S/F1LT

108S/TRDOFF

109S/TRDON

110S/HP

111 S/BP

112S/LP

113POTX

114POTY

115OSC3

116ENV3

Functions: 4 Keyword Characters: 126

Clear SID chip

Set SID voice frequency

Set pulse width

Set filter cutoff frequency

Add pulse to waveform

Add sawtooth to waveform

Add triangle to waveform

Clear waveform register

Set noise waveform

Set pulse waveform

Set sawtooth waveform

Set triangle waveform

Set/clear waveform register test bit

Set/clear ring modulation

Set/clear synchronization

Set/clear gate bit

Set attack

Set decay

Set sustain

Set release

Set filter resonance

Set volume

Set/clear filter

Turn off oscillator 3

Turn on oscillator 3

Turn high-pass filter on/off

Turn band-pass filter on/off

Turn low-pass filter on/off

Return value of port 1 game paddle

Return value of port 2 game paddle

Return value of oscillator 3 output

Return value of oscillator 3 envelope generator

USE

Statements: 1

117S/USE

TransBASIC #6

Functions: 0 Keyword Characters: 3

Fast-merge programs, TransBASIC modules

MOVE & FILL

Statements: 2

118S/MOVE

119 S/FILL

Functions: 0 Keyword Characters: 8

Move area of memory

Fill area of memory with specified value

DOS SUPPORT

Statements: 5

123S/CAT

124S/DOS

125S/DEV

126S/DLOAD

127S/DSAVE

128F/DSS

129F/DS

LINE CALC

Statements: 2

130S/JUMP

131 S/CALL

132F/L1NE(

BEEP

Statements: 1

133S/BEEP

RANDOM

Statements: 0

Functions: 2 Keyword Characters: 24

List directory to current output device

Send a command to disk

Set default disk device number

Load program from default drive

Save program to default drive

Return disk error string

Return disk error number

Functions: 1 Keyword Characters: 13

Goto program line at specified address

Call subroutine at specified address

Determine address of specified line

Functions: 0 Keyword Characters: 4

Produce a beep tone

TransBASIC #7

Functions: 1 Keyword Characters: 7

027 F/RANDOM(Return random integer within range

PHRASE SPLITTERS

Statements: 0

028 F/F1RST$(

029 F/BF$

Functions: 2 Keyword Characters: 11

Return first word of string

Return all but first word of string

PRG MANAGEMENT

Statements: 3

136S/AUTO

137S/DEL

138S/REN

Functions: 0 Keyword Characters: 10

Generate line numbers automatically

Delete program line(s)

Renumber BASIC program

COMPUTED CMDS

Statements: 3 Functions: 0 Keyword Characters: 16

139 S/RESTORE Restore DATA pointer to computed line number

140 S/GOSUB Call subroutine at computed line number

141 S/GOTO Transfer execution to computed line number

The Transactor 23 May 1986: Volume 6, Issue O6

IJ

FH

Al

HH

DO

JH

NJ

JP

MH
pp.

OH

OH

FG

CD

DO

DC

JB

JK

JO

OC

AM

DF

NL

IC

DF

NG

OF

OP

FH

DH

HH

10

JH

NJ

BG

DL

NH

PDru

PH

MM

BB

BO

FH

PO

JF

OL

IJ

NP

Nl

GJ

PP

IA

MK

JJ

PH

El

BH

GN

0 rem

1 :

2 rem

3 :

4 rem

5:

6 rem

7 rem

8:

Q ram
y i ci' i:

10:

Program 1:

old (j. rubin, sept/85)

OLD

1 statement, 0 functions

<eyword characters:

keyword routine

s/old ol

141 .asc "olD"

1441 .

10190

10192

10194

10196

10198

10200

10202

10204

10206

10208

10210

10212

10214

10216

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

9:

1 O rpn

word ol—1

ol Idy #1

tya

sta (43),y

jsr $a533

clc

Ida $22

adc #2

sta 45

Ida $23

adc #0

sta 46

jsr $a660

jmp $e386

3

line ser #

10190 142

;make first line hi

; link non-0

;relink program

;($22) points 1

; byte past end

; of program, add

; 2, and write to

; start of vars

;clr

; ready

Program 2: INPA a

inpa& inpn (w.happ 1985) :

2 statements, 0 functions

keyword characters:

keyword routine

s/inpa npa

s/inpn npn

**
IU ICl 1

11 :

142 .asc " inpAinpN "

1442

3478

3480

3482

3484

3486

3488

3490

3492

3494

3496

3498

3500

3502

3504

3506

3508

3510

word npa-1,npn-1

nl2 jsr $ad8f

sta $49

sty $4a

Ida $7a

Idy $7b

sta $4b

sty $4c

Idx $43

Idy $44

stx $7a

sty $7b

jsr $73

Ida #0

sta $07

sta $08

Ida $7a

Idy $7b

8

line ser#

10218 143

10224 144

FP

CC

DD

IH

NN

NL

CC

CL

OD

GK

AC

FGI v_J

OJ

AF

CP

BM

FP

AB

KN

KJ

NO

KK

EB

EP

GO

LE

IP

KM

BM

BM

Cl

HE

OJ

PA

FK

AB

HE

BB

GA

FB

CM

JB

JE

NRI N LJ

JG

IA

LB

EN

GP

GC

NO

HA

LP

HK

PD

AF

OH

FE

HF

MN

JO

KN

AC

BL

3512

3514

3516

3518

3520

3522

3524

3526

3528;

10218npa

10220

10222;

10224 npn

10226

10228

10230

10232

10234 np1

10236

10238

10240

10242

10244

10246 np2

10248

10250

10252

10254

10256

10258 np3

10260

10262 np4

10264

10266

10268

10270

10272

10274

10276

10278

10280

10282

10284

10PR6I KJ c.kJ\J

10288

10290

10292

10294

10296

10298

10300

10302 np5

10304

10306

10308

10310 np6

10312

10314

10316

10318

10320

10322

10324

10326

jsr $b48d

jsr $b7e2

jsr $a9da

Ida $4b

Idy $4c

sta $7a

sty $7b

rts

Ida #"["

.byte$2c

Ida #":"

sta t2

jsr $79

bne np1

jmp $afO8

cmp #$22

bne np2

jsr $aebd

Ida #";"

jsr $aeff

jsr $ab21

jsr $b3a6

Ida #","

sta $01 ff

Idx #0

stx t3

stx $11

Ida #$a4

jsr $ffd2

jsr $ffe4

cmp#$0d

beq np8

cmp#$14

beq np7

cmp #$20

beq np6

cmp #"."

beq np6

cmp #" + "

beq np6

cmp#"-"

beq np6

Idx t2

cpx #" ["

bne np5

cmp#"A"

bcc np5

cmp#$db

bcc np6

cmp#"0"

bcc np4

cmp t2

bcs np4

Idx $d3

cpx #$4f

bcs np4

pha

Ida #$9d

jsr $ffd2

pla

jsr $ffd2

Idx t3

;last valid char + 1

;'tDif

;last valid char + 1

;test arg present

; yes

;'syntax'

;test for quote

; no

;set up prompt str

;check semicolon

;print prompt str

;check prg mode

;put comma before

; input buffer

;init char counter

;set input flag

;print underline

; (cursor)

;get character

;test cr

; yes

;test delete

; yes

;test space

; yes

;test period

; yes

;test plus

; yes

;test minus

■ \/pc
, y co

;test inpa

; no

;test upper case

: no

;yes

;test if in range

; no

; no

;get cursor column

;test < 79

; no

;print cursor left

;print input char

;get buffer index

The Transactor 24 May 1986: Volume 6, Issue O6

HU

NF

DE

Dl

JF

II

GN

JA

JK

AG

FA

JM

KJ

FD

CK

MP

LG

AG

PI

KP

JH

CG

Bl

01

IL

AG

HB

FJ

IE

IA

JC

FH

JH

HH

CF

JH

NJ

BP

Ml

EP

FF

PH

KD1 \ LJ

Bl

BP

PD

HB

NP

JL

FE

FC

GO

OL

HD

EA

JC

DP

MF

bJ

AC

10328

10330

10332

10334

10336

10338

10340

10342

10344

10346

10348

10350

10352

10354

10356

10358

10360

10362

10364

10366

10368

10370

10372

10374

10376

10378

10380

10382

10384

10386

0 rem 5

1 :

2 rem <

3:

4 rem I

5:

6 rem I

7 rem i

8 rem s

9 rem 5

10 rem

11 :

1 ? rpmI C— I Cl I

13:

sta

inc

bne

np7 Idx

beq

jsr

jsr

dec

bpl

np8 Ida

jsr

Idx

jsr

stx

sty

Idx

bne

imp

np9 jsr

pha

jsr

beq

jmp

np10 pla

Idx

cpx

bne

jmp

np11 jmp

$0200,

t3

np3

t3

np4

$ffd2

$ffd2

t3

np3

#$14

$ffd2

t3

$aaca

$43

$44

t3

np9

$abf3

$bO8b

$79

np10

$afO8

t2

#"["

np11

inl2

$ac18

x ;char to buffer

;bump index

;get another char

;test index > 0

; no

;delete cursor

;delete character

;back up index

;handle next input

;delete cursor

;get buffer index

;print cr

;$1 ff to input ptr

;test input null

; no

;no assignment

;find variable

;test end of line

;yes

;'syntax'

;test alpha

: no

;enter inline rtn

;enter rom input

Program 3: SELECT

select (wayne happ,

I statements

1985) :

, 0 functions

ceyword characters:

keyword

s/select

s/when

;/otherwise

s/endselec

28

routine line ser #

sel

whn

oth

wn3

143 .asc " selecTwheN "

10388 145

10412 146

10448 147

10438 148

144 .asc "otherwisEendselecT"

1143 .word sel-1 ,whn-1

1144 .wnrri nth-1

10388

10390

10392

10394

10396

10398

10400

10402

10404

10406

10408

10410

sel bne

Ida

sell sta

beq

jsr

Idx

Idy

jsr

sel2 Ida

sta

rts

/vn3-1

sell

#0

sflg2

sel2

$ad8a

#<seltst

#>seltst

$bbd4

#1

sflgi

;set sflg2 if

; argument present

;skip if no arg

;eval expr

;store result

; to seltst

iflag - select on

PH

Dl

EC

HK

OK

Jl

CD

PL

OJ

OG

OC

MB

JL

FK

OH

HK

IN

EE

PJ

GE

KK

LM

KN

AF

PE

EF

FF

IF

LA

MF

Darren's

10412whn

10414

10416

10418

10420

10422

10424

10426

10428wn1

10430wn2

10432

10434

10436

10438wn3

10440

10442

10444

10446 ;

10448 oth

10450

10452

10454

10456 oth 1

10458;

10460 sflgi

10462;

10464 sflg2

10466;

10468 seltst

10470;

beq

jsr

Ida

beq

Ida

bne

Ida

bne

jmp

Ida

Idy

jsr

bne

Ida

sta

jsr

jmp

beq

Ida

bne

beq

jmp

oth1

$ad8a

sflgi

wn1

sflg2

wn2

$61

wn3

$a93b

#<seltst

#>seltst

$bc5b

wn1

#0

sflgi

$79

$a940

oth1

sflgi

wn3

wn1

$afO8

.byteO

.byte

* = *

Program l

done it again! '

0

+ 5

;error- no arg

;eval expression

;test sel on

; no

;test for test expr

; yes

;test 'when' expr

; true

;enter rem routine

;compare test

; expression

; with fac 1

;not equal, ignore

flag - select of f

execute statement

error - no arg

test sel on

yes

no

syntax

I: MC GR

i*his next TB

source code on Transactor I

reference, but we didn't

module comes to 85

Disk *1I! It's been printed

include the

Blocks of

here for

Verifizer codes - we couldn't

imagine anyone actually typing it in, except Darren of course. M.Ed.

0 rem me graphics (d. spruyt, 1985)

1 :

2 rem 11 statements, 1 function

3:

4 rem keyword characters: 57

5:

6 rem keyword routine line

7 rem s/mcon

8 rem s/mset

9 rem s/hoff

ho 11068

meset 10746

mcrstr 11154

10 rem s/mdraw medra 10472

11 rem s/mrec

12 rem s/mc r

13 rem s/mtex

14rems/hclr

t mcrec 11270

;le mccr 11362

t mctxt 11784

hcl 11106

15 rem s/mcolor mccol 10954

16rems/mbo

17 rem s/md s

18 rem f/mch!<

19:

20 rGm

21 :

< mcbox 11320

c medis 11356

(mchk 11136

145 .asc "mcoNmseTholF"

146 .asc "mdraWmrecTmcirdE"

147 .asc "mtexThdRmcoloR"

148.asc "mboXmdisC"

622 .asc "mchk":.byte$80 + "("

1145 .word ho-1 .mcset-1 ,mcrstr-1

ser#

149

ISO

151

152

153

154

•55

156

157

158

159

160

1146 .word medra-1 .mcrec-1 ,mccir-1

1147 .word mctxt-1 ,hcl-1,mccol-1

1148 .word mcbox-1,mcdis-1

1622 .word mchk-1

10472 medra Ida #0

10474

10476

sta 13

jsr mcget5

10478 mdr1 Ida #0

10480

10482

10484

10486

10488

10490

10492

10494

sta Sab

sta $ae

Ida t5

sec

sbc $a6

bes mdr2

eor #$ff

adc #1

10496 dec $ae

10498mdr2 sta Sad

10500

10502

10504

10506

10508

10510

1DS1?

Ida $21

sec

sbc Sa8

bes mdr3

eor #$ff

adc #1

I UO I £ UtiO <4JC1LJ

10514 mdr3 sia $aa

10516

10518

10520

10522

Ida lad

emp $aa

bes mdr4

Ida $aa

10524 mdr4 sta Saf

10526 Ida ttO

10528

10530

10532

10534

sla $a3

Ida $aa

sta $a4

jsr mediv

iselect non-

: duplicating

:get 5 params

;zero neg/pos

;dir x (lag

;dir y flag

;get y2 value

;subtract y1

: value and skip

; over the twos

; complement

; if y2>y1

;set neg flag

;save y diff

;get x2 value

subtract x1

; value and skip

; over the 2's

; complementing

; and negative

;save x diff

;get y diff

icompare x diff

; y bigger

: x bigger

;save biggest

;zero location

;get x diff

;save

idivide $a4 val

The Transactor 25 May 1986: Volume 6, Issue O6

10536

10538

10540

10542

10544

10546

10548

10550

10552

10554

10556

10558

10560

10562

10564

10566

10568

10570

10572

10574

10576

10578 mdr5

10580

10582

10584

10586

10588

10590

10592

10594

10596

10598

10600

10602

10604

10606

10608

10610

10612

10614

10616

10618

10620

10622

10624

10626;

10628 mcplo

10630

10632

10634

10636

10638

10640

10642

10644

10646

10648

10650

10652

10654mcp1

10656

10658

10660

10662

10664

10666

10668mcp2

10670

10672

10674 mcp3

10676mcp4

10678

10680

10682

10684

10686

10688

10690

10692

10694

10696

10698

10700

10702

10704

10706

Ida $a3

sta $a9

Ida $a4

St3 $33

Ida #0

sta $a3

Ida Sad

sta Sa4

jsr mcdiv

Ida Sa3

sta $ac

Ida $a4

sta $ad

Ida #$80

sta Sa7

sta $a5

Idx #$a9

jsr mcneg

Idx #$ac

jsr mcneg

Idx Saf

Ida $a8

sta $b5

Ida Sa6

sta Sb4

Ida $bO

jsr mcplo

Ida Sa7

clc

adc $a9

sta $a7

Ida $a8

adc Saa

sta $a8

Ida $a5

clc

adc $ac

sla $a5

Ida $a6

adc $ad

sta $a6

dex

cpx #$ff

bne mdr5

rts

sta $a4

sta t4

Ida 13

beq mcp2

bmi mcp1

jsr mcp2

Ida $b4

clc

adc t6

sta Sb4

Ida t4

sta Sa4

jmp mcp2

jsr mcp2

Ida Sb5

clc

adc t6

sta Sb5

Ida t4

sta Sa4

Ida $b5

cmp #$aO

bcc mcp4

rts

Ida $b4

cmp #$c8

bcs mcp3

tya

pha

jsr ptr19

Ida $b5

and #3

tay

Ida mctbl2,y

pha

Ida Sb5

Isr

php

Isr

Ida Sa4

The Transactor

; by $af val

;copy 16-bit

; result to ($a9)

;zero location

perform same

; division for y

; with result in

; ($ac)

;set plot values

;lower fractions

; to 0.5

10708

10710

10712

10714

10716

10718mcp5

10720

10722

10724

10726mcp6

10728

10730

10732

10734

10736

10738

complement ($a9) 10740

; if needed 10742

complement ($ac) 10744;

; if needed 10746mcset

;number of steps

;copy x value

; to plot loc'n

copy y value

; to plot loc'n

;colour-pattern

plot point

accumulate

; fractions to

;x and y values

;dec plols-lo-do

; count and loop

; if necessary.

colour-pattern

;get mode

; normal draw

; x parallel

; y parallel

;get y value

;add parallel

; value

;get colour

;replot parallel

plot initial

;get x value

;add parallel

; value

;get colour

; replot parallel

;get x value

;test off screen

; no

;a

;get y value

;test off screen

;yes

push .y

;set up pointers

;gel low bits of

; x value to .y

;get mask patt

push it

copy low bit

; into sr as

; carry and save

;nextlow bit

colour pattern

10748

10750

10752

10754

10756

10758

10760

10762;

10764 mcget

10766 meg 1

10768

10770

10772;

10774 mcdiv

10776

10778

10780mcdvi

10782

10784

10786

10788

10790mcdv2

10792

10794

10796

10798

10800mcdv3

10802

10804

10806;

10808 mcneg

10810

10812

10814

10816

10818

10820

10822

10824

10826

10828

10830 men!

10832 ;

10834 ptr19

10836

10838

10840

10842

10844

10846

10848

10850

10852

10854

10856

10858

10860

10862

10864

10866

10868 p19r1

10870

10872

10874

10876

10878

DCS mcp5

asl

asl

ail

asl

pip

bcs mcp6

asl

asl

sla $a4

pla

Idy #0

jsr ropen

and ($19),y

ora $a4

sta ($19),y

jsr rclose

jmp mcr5

Ida #0

sta 13

jsr mcg1

sta $b5

jsr mcget

sta $b4

jsr mcget

jmp mcplo

jsr Saefd

jsr Sb79e

txa

rts

Idx #$10

Ida #0

asl Sa4

rol : subtract

bcs mcdv3

cmp Saf

bcc mcdv2

sbc Saf

rol $a3

rol $a4

dex

bne mcdvi

rts

sbc Saf

sec

bcs mcdv2

Ida 2.x

bpl mcn1

sec

Ida 0,x

eor #$ff

adc #0

sta 0,x

Ida 1,x

eor #$ff

adc #0

sta 1 ,x

rts

Ida Sb4

Isr

Isr

and #$fe

tay

Ida mctbM.y

sta $19

Ida mctbli +

sta $1a

Ida Sb4

and #7

sta $a3

Ida $b5

and #$fc

asl

bcc p19r1

inc $1a

clc

ora Sa3

adc $19

sta $19

bcc p19r2

inc $1a

; 2/3 pattern

;0/1 pattern

;lo nybble to hi

retrieve carry

;skip if 3/1 pat

;shift bits 2

; more places up

;save value

pull mask value

;init index

;open ram

;and value with

; mask, or patt

put value back

close ram

;finish up

;select non-

; duplicating

;gel x value,

; y value.

; colour pattern

plot point

check comma

;eval 1 byte

parameter to .X

;divide $a4 val

; by Saf val with

; shift and

; hi byte of

; resull will be

; 0 or 1

perform twos

; complement of

; count value if

; count direction

; is negative

;divide y value

; by 4, clear Isb

;up values for

; hi-res map from

; table, make ptr

1,yin($19)

;save bits 0-2 of

; y val (relative

; scan line 0-7)

;6 high bits of

; x value times 2

; (screen column)

:adjust pointer

;totruepos'n

; in 8x8 block

10880 p19r2

10882;

10884 mcrea

10886

10888

10890 mcr1

10892

10894 mcr2

10896

10898

10900

10902

10904

10906

10908

10910

10912

10914

10916

10918

10920

10922

10924

10926

10928

10930

10932 mcr3

10934

10936

10938

10940mcr4

10942 mcr5

10944

10946

10948

10950 mcr6

10952 ;

10954 mccol

10956

10958

10960

10962

10964

10966

10968

10970

10972

10974

10976

10978

10980

10982

10984

10986

10988

10990

10992

10994

10996

10998

11000

11002

11004

11006

11008

11010

11012

11014

11016

11018

11020mcc1

11022

11024

11026

11028mcc2

11030

11032

11034

11036

11038

11040mcc3

11042mcc4

11044

11046

11048

11050

26

rts

Ida $b4

cmp #$c8

bcc mcr2

Ida #$ff

rts

Ida Sb5

cmp #$a0

bcs mcr1

tya

pha

jsr ptr19

Idy #0

Ida $b5

Isr

php

Isr

jsr ropen

Ida ($19),y

jsr rclose

bcs mcr3

Isr

Isr

Isr

Isr

pip

bcs mcr4

Isr

Isr

and #3

sla $a3

pla

tay

Ida Sa3

rts

isr mcg1

sta $a7

jsr mcget

sta $a8

jsr mcget

sec

sbc Sa7

bcc mcr6

sta $a6

jsr mcget

sec

sbc $a8

bcc mcr6

sta $a5

jsr mcgel

sta $dO21

jsr mcget

asl

asl

as1

asl

sla $a9

jsr mcget

and #$0f

ora Sa9

sta $a9

jsr mcget

sta $aa

Ida #0

sta $19

Ida #$d8

sta $1a

Idy $a8

dey

bmi mcc2

jsr add19

jmp med

Ida $19

clc

adc $a7

sta $19

bcc mcc3

inc $1a

Idy Sa6

Ida Saa

sta ($19),y

jsr ropen

Ida Sa9

sta ($19),y

;test y value

; in range

;yes

;set error flag

;test x value

; in range

; no

push .y

create pointer

;init index

;get and save

;savelsbtosr

push sr

;nextlsbtosr

;open ram

;get value

Close ram

colour 2/3

;shift hi nybble

; to lo nybble

; (colour 0/1)

pull x-value Isb

colour 1 or 3

:shift 2 bits rt.

;save 2 low bits

pull.y

retrieve .a

;set colours

;left x value

;top y value

;right x value

;calc x diff

;right<left

;bottom y value

calc y diff

;bottom<top

;set background

;shitt%0i value

; to hi nybble

;temp save

;or with %1 Oval

;save

;%11 value

create pointer

; lo colour ram &

; underlying vm

;adjust pointer

; for position

; of area to be

; filled

;o-flow if ness.

;write colour to

; colour ram

;open ram

;write colour to

; vm

11052

11054

11056

11058

11060

11062

11064

11066;

11068 ho

11070

11072

11074

11076

11078

11080

11082

11084

11086

11088

11090

11092

11094

11096

11098

11100

11102

11104;

11106 hcl

11108

11110

11112

11114

11116

11118

11120 hell

11122

11124

11126

11128

11130

11132

11134;

11136mchl<

11138

11140

11142

11144

11146

11148

11150

11152;

jsr

dey

bpl

jsr

dec

bpl

rts

Ids

ora

sta

Ida

ora

sta

Ida

sta

Ida

and

sta

Ida

sta

Ida

sta

iiia

sta

jmp

Ida

sta

Ida

sta

Ida

tay

Idx

sta

iny

bne

inc

dex

bne

rts

jsr

sta

jsr

sta

jsr

jsr

tay

jmp

11154 mcrstr sei

11156

11158

11160

11162

11164

11166

11168

11170

11172

11174

11176

11178

11180

11182

11184

11186

11188

11190

11192

11194

11196

11198;

Ida

Idy

sta

sty

cli

Ida

anc

sta

Ida

anc

sta

Ida

ora

sia

ida

sta

Ida

sta

Ida

sta

rts

11200mcget5jsr

11202

11204

11206

11208

11210

11212

11214

11216

11218

11220

11222

sta

sla

jsr

sta

sta

jsr

sta

sla

jsr

sta

sta

rclose

mcc4

add 19

$a5

mcc3

$d011

#$20

$d011

$dO16

#$10

$dO16

#$68

$dO18

$dd00

#$fc

SddOO

$dO21

mcuvid

$0286

mcuvid +

Close ram

;test row done

;no

;advance next row

test all done

; no

;hi-res on

;multicolour on

;vm offset $1800.

; hires $2000

;select topmost

; 16k ram slice

;save lo-res

; background,

; text colour.

1; char and screen

$d018

mcuvid+ 2

mefxer

#0

$19

#$e0

$1a

#0

#$20

(S19),y

hen

$1a

hell

mcg1

$b5

mcget

Sb4

Saef7

mcrea

$b3a2

evtmp

evtmp +

$300

$301

SdO11

#$df

$d011

SdO16

#Sef

$dO16

$ddOO

#3

$ddOO

mcuvid

SdO21

mcuvid 4

$0286

;set up err nn

create pointer

; to hi-res scrn

;lnit .a and

; .y index

;.x counts pages

clear 32 pages

;getx value

;get y value

Check')'

;read point

;conv to fp

;restore previous

; error vector

;hi-res off

;multicolour off

;select first 16k

; ram slice

;restore lo-res

; background.

1; text colour,

; char and screen

mcuvid+ 2

$dO18

mcg1

$1d

$a8

mcget

$1e

$a6

mcget

$1f

$21

mcget

$20

t5

;get 5 parameters

;x1

;yi

;x2

;y2

May 1986: Volume 6, Issue O6

11224

11226

11228

11230;

11232 mcfix5

11234

11236

11238

11240

11242

11244

11246

11248

11250mcf1

11252

11254

11256

11258

11260

11262

11264

11266mcf2

11268;

11270mcrec

11272

11274

11276

11278

11280

11282

11284

11286

11288

11290

11292

11294

11296

11298

11300

11302

11304

11306

11308

11310

11312

11314

11316

11318;

11320mcbox

11322

11324

11326mcb1

11328

11330

11332

11334

11336

11338

11340

11342

11344

11346

11348

11350

11352

11354;

11356mcdis

11358

11360;

11362 mccir

11364

11366

11368

11370

11372

11374

11376

11378

11380

11382

11384

11386

11388

11390

11392

11394

jsr mcget

sta $b0

rls

jsr mcgel5

Ida $1f

cmp$1d

bcs mcf1

Idx $1d

sta $1d

sta Sa8

stx $1f

stx $21

Ida $20

cmp$1e

bcs mcf2

Idx $1e

sta $1e

sta $a6

stx $20

stx $t5

rts

jsr mcfix5

Ida #$f1

sta t3

Ida $1d

sta $21

Ida $1f

sec

sbc $1d

sta t6

jsr mdr1

Ida #1

sta 13

Ida $1e

sta $a6

sta 15

Ida $20

sec

sbc $1e

sta t6

Ida $1d

sta $a8

Ida $1f

sta $21

jmp mdr1

jsr mcfix5

Ida #0

sla 13

Ida $1e

sla $a6

sta t5

Ida $1d

sta $21

Ida $11

sta $a8

jsr mdr1

inc $1e

Idy $1e

cpy $20

beq mcb1

bcc mcb1

rls

Ida #1

.byte $2c

Ida #0

sta 9

Idy #0

sty (3

jsr mcg1

stx $a5

jsr mcget

stx $a6

jsr mcget

stx $a8

jsr $aefd

jsr $ad9e

Idx #<mymul

Idy #>mymul

jsr $bbd7

jsr $aefd

isr $ad9e

;colour

;get 5 params

duplicating on.

; vertical lines.

;savex1

;x1 minus x2

;save difference

;draw line

;draw duplicate

; horiz. lines

;save y1

;y1 minus y2

;y1 minus y2

;save difference

;set x values

;draw lines

;draw lines

;get 5 params

;no duplicating

;store y1

;store x1

;store x2

;drawlme

;bumpy value

;testdone(= y2)

;yes

;no

;flag - disc

.flag - circle

;no duplicating

;get x focal pt.

;get y focal pt.

;get radius

;check comma

;eval and save

; x factor

;check comma.

;evaland save

11396

11398

11400

11402

11404

11406

11408

11410

11412

11414mcd1

11416

11418

11420

11422

11424mcd2

11426

11428

11430

11432mcd3

11434

11436

11438

11440

11442

11444

11446mcd4

11448

11450

11452mcd5

11454

11456

11458

11460

11462

11464

11466mcd6

11468

11470

11472

11474

11476

11478

11480

11482

11484mcd7

11486

11488mcd8

11490

11492

11494

11496

11498

11500

11502

11504

11506

11508 mcd9

11510

11512mcd10

11514

11516

11518

11520

11522

11524

11526

11528

11530 mcd11

11532

11534

11536mcd12

11538

11540

11542

11544mcd13

11546

11548

11550

11552

11554

11556

11558

11560

11562

11564

11566

Idx

Idy

jsr

jsr

stx

Ida

sta

sta

sta

Idx

Ida

asl

bcc

i>

sec

adc

bcc

inx

sta

stx

sec

sbc

bcs

dex

clc

sbc

bcs

dex

sta

stx

jsr

Ida

bne

Idy

sty

Ida

Idx

php

Idx

pip

beq

sec

sbc

jmp

clc

adc

sla

Ida

Idx

php

Idx

pip
beq

sec

sbc

jmp

clc

adc

sta

Ida

jsr

Idy

nv

sty

cpy

bne

jmp

Idy

sty

Idy

Ida

sta

dey

bpl

Ida

Idy

clc

Idx

adc

sta

icia

sec

Idx

sbc

sta

tya

#<mxmu

#>mxmu

$bbd7

mcget

$bO

#0

$a7

$ad

$ae

$ae

$a7

mcd2

Sad

mcd3

$ab

Sac

$a8

mcd4

$a8

mcd5

$a9

Saa

mcmul

9

mcd11

#0

t6

Sa5

mxtype.y

mxadds.y

mcd7

0.x

mcd8

0,x

$b5

$a6

mytype.y

myadds.y

mcd9

0.x

mcd10

0,x

$b4

$bO

mcplo

16

t6

#8

mcd6

mcd17

#0

t6

#$0f

$a3.y

mcbud.y

mcd12

$a5

t6

mctbl3,y

0.x

Sa8

$a5

mctbl3,y

0,x

$21

; y factor

;get colour

;clear work area

;y position

baselo

;base hi

;calcbase + 2.y +

; in a/.x

;save new y value

;calcy-2«x+1

; in .a/.x

;save new x value

;adj for factors

;test circle

; no - disc

;clear counter

; for plots

;gel x focal pi.

;push type at pt.

;get zp offset

;test type

; addition

subtract value

; at 0,x

;skip addition

;add value at 0,x

;update focal pt.

;get y focal pt.

;push type at pt.

;get zp offset

;test type

; addition

;sub(racl value

; at 0,x

;skip addition

;add value at 0.x

referenced

;update focal pt

;colour pattern

;plot point

;bump counter

;test counter <8

; yes

;skip disc rln

;reset counter

;set aside data

; (o temp storage

;get x focal pt.

;get counter val

;add offset in

:0.x

;save (xleft)

;get x focal pt.

subtract offset

; in 0.x

;save (xright)

;test counter Isb

11568

11570

11572

11574

11576

11578

11580

11582mcd14

11584

1 11586

11588

11590mcd15

11592

11594

11596

11598mcd16

11600

11602

11604

11606

11608

11610

11612

11614

11616mcd17

11618

11620

11622

11624

11626

11628

11630

11632

11634

11636

11638

11640

11642

11644

11646mcd18

11648mcd19

11650

11652 mcd20

11654

11656

11658

11660

11662

11664

11666

11668

11670

11672

11674

11676mcd21

11678mcd22

11680

11682mcd23

11684

11686

11688

11690

11692

11694

11696

11698

11700

11702

11704

11706

11708

11710mcd24

11712

11714

11716

11718mcd25

11720;

11722 mcmul

11724

11726

11728

11730

11732

11734

11736

11738

and #1

bne mcd14

Ida $a6

clc

Idx mctbl4,y

adc 0,x

jmp mcd15

Ida $a6

sec

Idx mctbl4,y

sbc 0,x

sta $a6

sla 15

jsr mdr1

Idy #SOf

Ida mcbufi.y

sta $a3,y

dey

bpl mcd16

Idy t6

iny

sty t6

cpy #4

bne mcd13

Ida Sab

sta Sad

Ida Sac

sta $ae

inc $a7

Ida Sac

bpl mcd19

eor #$ff

lax

Ida $ab

eor #$ff

clc

adc #1

bcc mcd18

inx

jmp mcd20

tax

Ida Sab

stx 12

sla 7

Ida $aa

bpl mcd22

eor #$ff

tax

Ida $a9

eor #$ff

clc

adc #1

bcc mcd21

nx

jmp mcd23

tax

Ida $a9

sta $14

stx $15

Ida 12

cmp$15

bcc mcd24

Ida 7

cmp$14

beq mcd24

bcc mcd24

Ida $a9

sta $ad

Ida $aa

sta $ae

dec Sa8

Ida Sa8

cmp Sa7

bcc mcd25

jmp mcd1

rts

Idy $a7

jsr many

six $1e

Idy $a8

|S(mcmy

stx $1d

Idy $a7

jsr mcmx

stx $1f

:sel

;gel y focal pt

;add olfsel in

;0,x

;skip

;get y focal.

;subtracl offset

; m 0,x

;save y value

;draw line

.restore old

; values

;bump counter

:value

;test counter = 4

; no

;copy (Sab)

; to (Sad)

;bumpy counter

;test hi val pos

;yes

complement

;skip

;set up .a, .x

Store

;lest hi val pos

;yes

complement

;skip

;setup.a, ,x

;store

;abs hi of y

;abshiofx

;x>y

;lo of y

;lo of x

;x> = y

;copy current x

; work value to

; start value in

; case of loop

;dec x plot value

;test x<y plot

; value

; yes

; no - loop

;get y value

;multiplybyy

; scalar and save

;getx value

;multiply by y

; scalar and save

;get y value

;multiply by x

: scalar and save

11740

11742

11744

11746

11748

11750 mcmx

11752

11754 mcmy

11756

11758

11760

11762

11764

11766

11768

11770 mem 1

11772

11774 mcm2

11776

11778

11780

11782;

11784 mctxt

11786

11788

11790

11792

11794

11796

11798

11800

11802

11804

11806

11808

11810

11812

11814

11816

11818mct1

11820

11822

11824

11826

11828

11830

11832

11834mct2

11836

11838

11840mct3

11842

11844

11846

11848

11850

11852

11854

11856

11858

11860

11862

11864

11866

11868mcl4

11870

11872

11874

11876

11878

11880

11882

11884

11886

11888

11890

11892

11894

11896

11898

11900mct5

11902

11904

11906

11908

11910

Idy $a8

jsr mcmx

stx $20

rls

sec

.byte $24

clc

php

jsr $b3a2

pip
bcc mcm1

Idy #>mxmuli

Ida #<mxmult

bne mcm2

Ida #<mymult

Idy #>mymult

jsr $ba28

jsr Sbibf

Idx $65

rts

Ida #0

sta t3

jsr mcg1

stx $a7

jsr mcget

stx $a8

jsr mcget

stx $a6

isr mcget

stx $a5

jsr mcget

stx $b0

jsr $aefd

jsr $ad9e

jsr Sb6a3

sta Sad

Idy #0

sly $ae

Ida ($22),y

cmp #$40

bcc mct2

sbc #$40

cmp #$80

bcc mct2

sbc #$40

Idy #0

sty Sab

Idy #3

asl

rol Sab

dey

bne mct3

sta $14

Ida Sab

clc

adc #$d0

sta $15

set

Ida 1

and #$fb

sla 1

Idy #7

Ida ($14).y

sta mcbuf2,y

dey

bpl mct4

Ida 1

ora #4

sta 1

cli

Ida $a8

sta Sb4

Ida Sa6

sta $a9

Ida $a5

sta $aa

Ida #0

sta $ab

Ida #7

sla $ac

Ida Sa7

sta $b5

Idy Sab

Ida mcbuf2,y

;get x value

;multiply by x

; scalar and save

;flag - x

;flag - y

;push flag

;convylof-p

retrieve flag

;y multiply

;point to x val

;pomt to y val

;perform multiply

;convert to int

;get value

duplicating off

;get x value

;get y value

;x size

;y size

colour pattern

;check comma

;eval expression

;make siring ptr

;store length

;zero sir counter

;get character

convert to

; screen code

; range

calculate 16-bit

; offset into

; rom characters

: by multiplying

; screen code

;by8

;address with

;upper 3 bits

;add lo char base

; address SdOOO

;lock out irq

;swilch out i/o

; to see d-rom

copy 8 bytes of

; char definition

; to buffer

; restore i/0

enable irq

;y ptr to plot

;x multiplier

countdown x val

count down y val

;reset row count

;init bit count

;x value for plot

.get char row

The Transactor 27 May 1986: Volume 6, Issue O6

11912 md6

11914

11916

11918mct7

11920

11922

11924

11926

11928

11930mct8

11932mct9

11934

11936

11938

11940

11942mct10

11944

11946

11948

11950

11952

11954

11956

11958

11960

11962

11964

11966

11968

11970

11972

11974

11976

11978

11980

11982

11984

11986

11988

11990

11992

11994

11996;

11998 ropen

12000

12002

12004

12006

12008

12010

12012;

12014 rclose

12016

12018

12020

12022

12024

12026

12028 ;

12030add19

12032

12034

12036

12038

12040

12042 a19

12044;

asl ;test left bit

bcc mct8

pha

da $bO

jsr mcplo

inc $b5

dec $a9

bne mct7

jmp mct10

pha

Ida #0

jsr mcplo

inc $b5

dec $a9

bne mct9

Ida $a6

sta $a9

pla

dec $ac

bpl mct6

inc $b4

dec $aa

bne mct5

Ida Sa5

sta $aa

Idy $ab

iny

sty $ab

cpy #8

bne mct5

Ida $a6

asl

asl

dc

adc Sa7

sta Sa7

Idy $ae

iny

cpy Sad

beq a19

jmp mct1

pha

sei

Ida 1

and #$f8

sla 1

pla

rts

pha

Ida 1

ora #7

sta 1

Cll

pla

rts

Ida $19

dc

adc #$28

sta $19

bcc a19

inc $1a

rts

; clear - no plot

;push .a

;get colour

;piot

;bump x value

;dec x mult

;loop till 0

;skip

;push .a

;dear points

;bumpxval

;dec x mult

;loop till 0

;resetxmultval

;pull bit pattern

;count down

;loop till <0

;bumpy value

;dec y mult

llooptillO

;reset y mult

;bump char row

;test <8

;yes

;get x mult

;times 8 for next

; character

;bump index into

; string

;test = length

;yes

;handle next char

;open up ram

; underneath the

; roms, disable

; the irq and

; preserve.a

;close up ram

; underneath the

; roms, enable

; the irq and

; preserve .a

;add screen width

; (40, $28) to

; pointer ($19)

12046 mctbli = • :hi-res line addresses

12048.word $e000

12050.word $e140

12052.word $e280

190^4 wnrH Tlp'^rOI £.\J\j^ . WvI VJ 4JCJOv

12056.word $e500

12058.word $e640

12060.word $e780

12062.word $e8cO

12064 .word $ea00

12066.word $eb40

12068.word $ec80

12070.word $edc0

12072 .word $e(00

12074 .word $(040

12076 .word $f180

12078 .word $f2cO

12080 word $1400

12082 .word $1540

12084 .word $1680

12086 .word $f7cO

12088 .word $000

12090 .word $fa40

12092 .word $fb80

12094 .word $fccO

12096 .word $feOO

12098;

12100 mctbl2 .byte $3f,$cf,$f3,$fc

12102;

12104mctbl3 .byte$1d,$1d,$1e,$1e

12106;

12108 mctbl4 ,byte$1f,$1f,$20.$20

12110;

12112 mxmult . = . + 6

12114;

12116mymult . = .+6

12118;

12120 mxtype .byte0,1,0,1,0,1,0,1

12122;

12124 mytype .byte 0,0,1,1,0,0,1.1

12126;

12128 mxadds= •

12130 ,byte$1d,$1d,$1d,$1d

12132 .byte $1e,$1e,$1e,$1e

12134;

12136 myadds= •

12138 .byte$1f,$1f,$1f,$1f

12140 .byte $20,$20,$20,$20

12142:

12144 mcbufi . = . + $10

12146mcbuf2. = . + 8

12148:

12150. = .+(.&1) ;skip odd byte

12152 evtmp .word$e38b ;error vector

12154;

12156mcfxer sei

12158 Ida $300 ;vectortotemp

12160 Idy $301 ; storage

12162 sta evtmp

12164 sty evtmp+ 1

12166 Ida #<mcerr ;copy substitute

12168 Idy #>mcerr ; address to page 3

12170 sta $300

12172 sty $301

12174 cli

12176 rts

12178:

12180 mcerr jsr mcrstr restore lo-res

12182 jmp ($300) ;handle error

12184 ;

12186 mcuvid > - •+3 ;store user video

12188;

PA

FH1 1 1

Al

HH

GO

JH

NJ

CB

MH

HD

OH

MM

OA

GJ

DF

BL

NN

OC

OK

DN

LB

JE

OL

LJ

DM

EO

BM

EG

EA

OL

IJ

NP

NC

NG

PP

IA

OA

MJ

JC

El

Cl

DM

FP

IM

LO

Dl

NN

NL

CC

CL

OD

O rem
-. .

2 rem

3:

4 rem

5:

6 rem

7 rem

8:

9 rem

10 :

Proqram 5

inline (aug 25/84)

NLINE

1 statement, O functions

keyword characters

keyword

inline

107 .asc

1107

3454

3456

3458

3460

3462

3464

3466

3468

3470

3472

3474

3476

3478

3480

3482

3484

3486

3488

3490

3492

3494

3496

3498

3500

3502

3504

3506

3508

3510

3512

3514

3516

3518

3520

3522

3524

3526

3528

routine

inlin

.word inlin-1

nlin cmp

bne

jsr

Ida

jsr

jsr

inh jsr

jsr

stx

sty

Ida

jsr

jsr

sta

sly

Ida

Idy

sta

sty

Iclx

Idy

sfx

sty

jsr

Ida

sta

sta

Ida

Idy

jsr

jsr

jsr

Ida

Idy

sta

sty

rts

mzz

inh

$aebd

#$3b

$aeff

$ab21

$b3a6

$a560

$43

$44

#0

$bO8b

$ad8f

$49

$4a

$7a

$7b

$4b

$4c

$43

$44

$7a

$7b

$73

#0

$07

$08

$7a

$7b

$b48d

$b7e2

$a9da

$4b

$4c

$7a

$7b

6

line ser#

3454 030

;test quote

; no

;eval prompt string

;check semicolon

;print prompt

;check prg mode

;get input

;store ptr to input

;find/create var

;check string type

;store pointer to

; descriptor

;save chrget ptr

;set eg ptr to

; start of input-1

;bumpcg ptr

;set str delimiter

; to zero

;set up string for

; assignment to var

; reload eg ptr

icopy str to var

; restore eg ptr

The Transactor 28 May 1986: Volume 6, Issue O6

The Amiga: A User's Perspective
Chris Zamara, Technical Editor

The Amiga provides new answers to the old question, ''Great, but what's it good for?'1

The Amiga may fill the promise of being the tool for the average

computer-naive person and enthusiast alike. Because of its

visually oriented user interface, the consistent way of doing

things among all programs, and the power and capabilities

inherent to the hardware itself, this eye-opening machine can

be used and enjoyed even by the most computer-shy among

us. And not used as a toy, but as a flexible tool for persons in

many fields. It is not a business computer, or a "home"

computer, or a music computer, or a graphics computer, or a

software development system. It is all of these, and manages to

be well suited to both the computer-phobe and computer

phile.

Regardless of which of these categories you fall under (I

strongly expect the latter, though), the following is a look at the

main elements of the Amiga from the end user's standpoint.

(The machine is also great for programmers, but that's another

article.) The elements of the system which concern the user

are: The WorkBench, Amiga's efficient and intuitively-

operated user interface; the bottom line - examples of actual

application software; and the basic hardware in terms of ergo

nomics and expandability. What follows is a closer look at

these three elements of the Amiga system and philosophy.

The WorkBench: Your Link With The System

The Work Bench is a very fun, friendly and modern (read:

Macintosh/GEM -like) front end to the powerful AmigaDOS

operating system lurking beneath. It lets you control the tasks

and files in the system without knowing that you're doing such

ominous-sounding work. You'll be startings tasks and copying

files, but as far as you're concerned, you're just using the mouse

to point to things and select them, or "drag" them over to

where you want to put them.

When workbench first comes up (after you boot the system), all

you see is a little picture of the disk you currently have in the

system drive with its name underneath (if there is more than

one drive, all mounted disks will be displayed). Point to the

disk with the little mouse-controlled arrow on the screen, then

click the left mouse button twice, and ZAP - a "window"

appears on the screen displaying the contents of that disk. The

programs on the disk (called tools) are displayed as icons - little

descriptive pictures - which can be double-clicked like the

disk icon to run the program. A window may contain drawers,

which are sub-directories containing several tools, projects

(files used by tools), or more drawers. Opening a drawer brings

up another window somewhere on the screen, showing the

contents of this new drawer.

Now it may sound like quite a mess with all of these drawers,

windows, icons and program names floating around, but each

window has various gadgets which let you work with only what

you're concerned with. Using the gadgets, you can change a

window's size by dragging its right bottom corner, and its

location on the screen by using the "drag bars" to move it

wherever you wish. You can also push a window to the front or

the back of a stack of windows using another pair of gadgets on

the window. All of these operations are done by simple mouse

moving and clicking. If a window is too small to see all of the

icons within it, you can either enlarge the window or use the

scrolling gadgets to see different parts of what's in a window. A

"close" gadget allows you to get rid of the window. In words, all

of this may sound rather confusing, but it literally takes only a

few minutes to become comfortable with the whole operation.

The icons representing the tools, projects and drawers in any

window can be dragged around to other windows. Doing so

will copy the file to whatever disk or drawer you drag it to. You

can duplicate an entire disk by dragging its icon to the icon of

another disk. To get rid of a file, you just drag it into the

Trashcan, an icon in the main disk window. Until you empty

the trash, though, you can still retrieve trashed files by opening

the Trashcan. All of this is great fun, and makes you feel like

re-organizing all of your files just for the heck of it. Besides

copying files and running programs, the WorkBench has pull

down menus which allow other functions, like renaming, disk

initialization, emptying the trash, getting information about a

file, drawer or disk, and "cleaning up" a window to neatly

organize the icons contained within it.

Pull-down menus are an important aspect of Amiga's environ

ment, used by application programs as well as workbench.

Pressing the right mouse button reveals menu titles, and

pointing to one of these menus pops up a list of options under

the menu name. These options can be selected with the

pointer, and some may have sub-menus which pop up to the

side, containing additional choices. For example, a "change

color" menu option may have a sub-menu containing the

choices red/green/blue.

The Transactor 29 May 1986: Volume 6, Issue O6

When a tool is opened (running a program), it can run in its

own window in the workbench. For example, you may open a

terminal package which brings up a new window. This window

acts as a computer in itself, with the terminal program running

inside. Depending upon the tool running, this window can

usually be re-sized, re-ordered, or closed just like any other

window. You are free to start as many programs as you wish in

this manner (limited by available memory), each with its own

window; and each running at the same time! By clicking

any given window, you "select" it so that you can supply input

to its program and activate that program's pull-down menus.

The ability to have a number of programs running, each

available at any given moment, adds a new dimension to

computer usage. Consider this: you're writing an essay on a

word processor, and while it's performing a long search

through text, you get bored and click your adventure game to

the front. Just before you're about to bile the dust at the hands

of a bloodthirsty troll, you notice that someone has called up

your Bulletin Board System, which is running in its own

window, barely visible above the troll's misshapen head. After

enlarging the BBS window and chatting with the fellow who

logged on (the troll has meanwhile enjoyed a satisfying lunch),

you decide to have a look at how much room is left on your

disk, so you check the INFO menu after clicking the main

workbench screen, visible under layers of windows. Clicking

back to your essay, you find that your word search has long

since completed and you are ready to write on. A fanciful

example perhaps, but there are many real-world occasions

when you want to do something with the system or another

program without having to save your project, bring in a new

program, then bring in the original program again later. Just

the ability to easily switch between tasks is a marvelous

convenience; multitasking as well means we're talking serious

computing power here.

Some programs take up an entire screen rather than a window.

This doesn't mean that it dominates the machine, though; you

can slide the screen down to reveal whatever was there before.

Like windows, more than one screen can be active, and each

can be slid up and down to reveal whatever is desired. Like

windows, screens have re-ordering gadgets to push one to the

top or bottom of a stack of screens. For a major application

program, or one that needs a constant screen width, a screen

can be more convenient than a window. Each screen may have

windows within it, since a program may make its own win

dows.

Using workbench gives you an idea of the Amiga's software

philosophy. You can accomplish a lot without ever using the

keyboard, and you don't have to know a thing about computers

to get things done. You'll find that your work on the computer

is organized more like your daily tasks, because you can

schedule your time so that several things may be going at once.

The workbench screen will probably be as neat or as messy as

you keep your desktop. Once you can use the mouse to control

workbench functions, you shouldn't have any trouble using

application software - the basic principles of pointing, clicking

and menu selection apply to most programs that run on the

Amiga. Let's now take a look at some of these programs.

Application Software

One of the ideas behind the Amiga that makes it so easy to use

is that once you learn to use the mouse to point, click and

choose menu options, you can operate most software. On a

Commodore 64 or similar computer, there is no such thing as

"learning how to work the computer"; every program that you

run will have its own rules and conventions for choosing

options or selecting functions. With the Amiga, software devel

opers are encouraged to use the routines in the operating

system and to follow certain conventions. This means that you

can bring up a program and start using it right away because

you know how to access the menus; how to save, load, or edit a

project; how to select any options displayed on the screen, etc.

A consistent user interface among different programs is truly a

wonderful thing!

Besides the fact that programs are generally operated in the

same manner, they also will (at least they should) work with

other programs in the system, in a screen or window which can

be pushed aside to work on something else. This last point is a

convention rather than a rule, since it is possible to write a

program which hogs the whole machine and requires that the

program be quit, or even the system re-booted, if you wish to

use another program. Such system-hogging programs, how

ever, totally defeat the purpose of the Amiga's remarkable user

environment and should be avoided. Before you buy a pro

gram, make sure that it can allow the Amiga to be used as

intended; as a multi-tasking machine. Avoiding the purchase of

a system hogging program will serve two purposes: 1) savi1 y< u

much frustration when you discover that you can't use with

other software, and 2) hopefully establish an unwritten law for

software developers governing all future Amiga programs.

While I'm beefing, one more potential problem with Amiga

software: if you have external RAM on your system in addition

to the internal 512k, some programs will not run properly

because they don't specifically allocate video memory when

they need it (the video chips can only access the internal 512k).

This hopefully won't be a continuing problem, as long as

software developers test their programs on systems with exter

nal RAM.

In order to get an idea of the kind of products you can expect for

the Amiga, below is a look at three programs currently availa

ble, covering different aspects of the Amiga's capacity: graph

ics, word processing, and music. These are not product

reviews, just impressions of programs to illustrate typical

Amiga applications.

Deluxe Paint From Electronic Arts

Deluxe paint is a real showcase for the Amiga'a colour graph

ics, and probably the most powerful graphics package on any

microcomputer. It is oriented towards creating works of art

rather than design applications, and has a mind-boggling array

of ways in which to manipulate images. Just a few are given

below. Besides the usual line, box, ellipse, and paint com

mands, there are unusual features such as being able to scale

any area's width and height in real time, by moving the mouse.

The Transactor 3O May 1986: Volume 6, Issue O6

Rotation of any boxed area is also provided for. The 32 on

screen colours can be set up to encompass any of the Amiga's

4,096 colours by using a palette control which lets you set the

amount of red, green, and blue for every colour. The paint

palette can also create a range of desired colours between any

two colours you choose, for example shades of grey between

white and black. You can choose a cycle mode which cycles

through the colour registers to give the illusion of movement in

various parts of the picture. The magnify mode makes it easy to

work in detail on any small section of the picture, and different

magnification levels can be chosen, there is an airbrush mode

which works like a real airbrush, spitting out "drops" of the

desired colour randomly over a given area. A shading feature

allows you to make anything you paint over a shade lighter.

You can define any part of the graphics screen as your "paint

brush" and use it for any future painting. This package is a

natural for the Amiga, using the 4,096 colours for visual effect,

the custom chips for super-quick area fills and shape drawing,

and Intuition (the operating system) for an easy user interface.

Although DPaint is an extremely complex package, using it is

quite simple because it follows the conventions for Amiga

programs. Main functions are selected from pull-down menus,

and modes can be switched by pointing to the desired icon and

clicking, though some of the icons are a bit cryptic until you

figure them out. The program runs in a standard screen, which

means the whole thing can be pulled down or re-ordered (by

clicking the re-ordering gadget) to reveal WorkBench or what

ever was up before. Good! The program comes on a copy

protected disk. Not so good, because you can't put the program

on you favorite utilities disk or make backups. I hope it isn't

necessary for future Amiga software to be copy-protected, but

if Commodore-64 type piracy persists with the Amiga, it may

be. Sigh. Incidentally, DPaint is selling for a reasonable price

considering the quality and power of the package - let's hope

this sets a trend!

TextCraft Word Processor From Commodore

Textcraft is a very easy to use (there it is again, but it's still less

over-use than "user-friendly"), "WhatYouSeelsWhatYouGet"

word processor. The nice thing about Textcraft is that there are

no text-formatting commands to learn. It takes full advantage

of a mouse-driven system. Change the margins? Grab the little

margin markers and move them to where you want - the

current paragraph re-formats automatically. Change the text

format? Click the desired icon to instantly re-format. Headers,

footers, page length and the like are selected from requesters

brought on-screen by a menu option. Text editing functions

are performed by the current pointer you're using: pencil to

add text, scissors to cut, camera to copy, glue bottle to paste,

paintbrush or roller brush to change fonts or text formats over a

given range. Deleting a section of text is easy: just get the

scissors, drag them over the text you want to delete, highlight

ing it, and release the mouse button. In the blink of an eye the

text is gone, and may be pasted elsewhere in the document

with the paste icon if you wish. You could figure out everything

about using TextCraft just by playing, but even so there is

extensive help available from a help menu, even providing one

minute tutorials on every facet of the package's operation.

Forgive me for repeating this just one more time: very easy to

use.

As you edit, text on the screen appears exactly as it will on the

printed page, including italics, bold-face and underlined text.

You don't have to guess if this printout will finally be the right

one. Textcraft is so unintimidating that it will pass this software

test: take your favorite computer-phobia victim, you know, the

one who is scared to get near a computer, let alone touch it,

since he is certain that his smallest action will result in the

instant destruction of the frightfully expensive system, or

worse, that his every move will be electronically recorded and

surreptitiously passed on to an evil organization who will

gather information from computer-naive people and go on to

spread darkness and evil throughout the free world. Take that

person, sit him or her down in front of Textcraft, and clench his

white, clammy hand around the mouse. Now tell him he has

the opportunity to write that letter he's been putting off for

years. Providing he's used a typewriter keyboard before, the

chances are good that colour will slowly come to his mouse

hand, a letter will take form on the screen, and a new mouseke-

teer will be born. The power of easy software!

The down side is that Textcraft does not have the slew of

advanced features found in some other word processors. For

things like spelling checking, column manipulation, sorting,

virtual memory, automated table-of-contents, or filling of

variables from a file, you'll have to look elsewhere. Lots of

features though, does not preclude ease of use, and soon there

may be a Textcraft look-alike with a plethora of features. The

point is, word processing isn't the old, "Hmmm . . . was that a

Control-Big-C or Control-Small-c to set a column? Or was it a

Control K? 1 Wonder what this mess is gonna look like?. . .".

Thank God.

Incidentally, the above observations are based on a pre-release

version of Textcraft that I saw, but I believe the release version

has been very little changed. The version I saw provided no

obvious way to re-order or slide its window to get to other

programs in the system. Horrors! I hope this has been corrected

in the version now for sale.

Musicraft from Commodore

Musicraft is an incredible music composition tool that really

lets your musical creativity express itself, even if you can't play

an instrument. You use the mouse to put notes up on a staff,

composing the music as it would look on paper. Notes can be

changed, inserted and deleted. Music for up to four voices can

be composed, any combination of voices being displayed or

played at once. The exceptional thing about Musicraft on the

Amiga is the instruments available. The realism is unbeliev

able: drums sound like drums. If you've heard computer

synthesized drums before, that's really saying something. The

same goes for other hard-to-produce sounds like bells, electric

guitar, and banjo. There is a large assortment of instruments on

the Musicraft disk, and each sounds eerily realistic. The trick, of

course, is Amiga's approach to sound; in effect, the instruments

The Transactor 31 May 1986: Volume 6, Issue O6

are digital recordings stored in memory and converted to

analog at a high rate by DMA. That gives you something like a

programmable tape recorder to play with, making complex

sounds a piece of cake. You can change instruments at any time

in your composition simply by putting an instrument icon on

the staff instead of a note or rest. Editing a song is fast and

simple, and while it's playing, you can adjust the speed, tempo

and other settings by "sliding" on-screen "controls" with the

mouse-driven pointer. There are some pretty impressive sam

ple songs on the disk that you can bring in to play and edit.

Besides staff mode, as it's called, there is also synthesizer mode.

The synthesizer is a screen full of controls which you can use to

create your own instrument to use or save on disk with the

others. You can actually draw your own waveform on a little

graph, or generate a waveform mathematically by choosing a

standard function and adding two or three times its frequency

to itself at any amplitude. There are literally dozens of mouse-

operable slide controls on the synthesizer, which control filters,

oscillators, amplitude generators, and various levels. The set

up basically simulates a good synthesizer, but even if you don't

know what half the stuff does, you'll have a ball just messing

around with the controls and listening to the results (take it

from me). Musicraft would also pass the test by your local

computer-paranoid, but this one doesn't even have to know

how to type. In fact, the keyboard isn't required at all, unless

you want to play notes live, or play along with one of your

compositions. A keyboard screen lets you see what notes are

assigned to which keys, and lets you change the assignments.

In the case of Musicraft, its simple operation is more than just a

convenience, since it opens the door for many musicians who

have no desire to learn about programming computers or how

to use a complex package. 1 have seen a non-computerist

guitar player sit down in front of Musicraft and start producing

music after a few minutes, concentrating on the composition

itself rather than on how to use the program. That's how it

should be.

The Amiga Hardware

Here's something that Commodore 64 users in particular will

appreciate: to add a standard Epson-type printer to the Amiga,

you plug it in and it works. Period. Forget the interface. There is

a standard parallel printer port provided on the back, and the

operating system supports most popular printers and can use

their special features. You can tell the system what kind of

printer you have using the "Preferences" tool on the work

bench disk. There is also a serial port on the back, but it uses a

male instead of the standard female connector, requiring a

special cable or a male-female adapter. Other than that, it is a

standard RS-232 port, which you can use to connect a modem

for telecommunicating. The serial port can run at speeds up to

19,200 baud.

The computer unit itself sits on supports on either side and

leaves enough room underneath for the keyboard to slide

under when not in use. Handy when desk space is prime real

estate. Speaking of the keyboard, it is quite light and sits nicely

on the knee. The fan in the main unit is so quiet that I'll bet

there are some Amiga owners out there who are reading this

and saying, "What fan?".

The built-in disk drive uses 3.5 inch microdisks. These disks

are much better than floppies since they are protected by a

hard plastic case and require no storage sleeves, since the

recording surface is protected by a sliding trap which is moved

away when the disk is in the drive. Each disk holds around

880K, and data access is quite fast, a disk duplication taking

only about 90 seconds. Perhaps best of all, the disks fit in a

standard shirt pocket. If anyone actually took that detail into

consideration when designing the 3.5 inch format, I tip my hat

to him.

For further expansion of the system, there is a slot on the right

side of the machine; devices can be stacked horizontally out to

the side of this port. This doesn't seem as elegant or reliable as

a card-cage like in the IBM PC, but the Amiga would have

probably had to grow too much in size and cost to accommo

date such an arrangement. Several manufacturers will be

offering motherboards though, to allow proper expansion of

multiple boards. You can also add more memory. Several

outfits, including Comspec Communications here in Toronto,

will be offering two megabyte RAM expansions as soon as

additional information about Amiga's I/O protocol is released

to developers. I've been using one of Compsec's prototype

RAM expansion units for a few weeks now, and having all of

that memory can really speed things up when you use it as a

super-fast disk drive. Hard drives are also here now or on the

way soon from various companies. Imagine a 2.5 Megabyte

Amiga with a 20 Megabyte hard drive! Awesome, as Commo

dore's promotional people say.

Is It Worth it?

Judging from the Amiga's real-world usefulness when running

available, affordable software, it would not be an exaggeration

to say that the Amiga may well be worth its price just to run one

specific program. Musicraft, for example, would be reason

alone for a budding musician to buy an Amiga. Likewise

Graphicraft for the graphic artist or Textcraft for the writer. But

best of all is that anyone can make use of the machine

regardless of his field of interest or level of computer expertise.

I just can't see an Amiga languishing in anyone's closet like

some of the simpler eight-bit machines have been known to.

The Amiga appears to be the first micro to combine multi

tasking, an easy and flexible user interface, advanced graphics

and sound hardware, and a good operating system. Its only real

competition is the Atari 520ST and Apple's Macintosh, which

are good machines in their own right, but neither are multi

tasking, both lack the super-fast hardware graphics capabili

ties, and the Mac doesn't have a colour display and isn't easily

expandable. Which machine wins out remains to be seen, but

the Amiga is a very strong contender and deserves your

consideration if you're looking around. No machine is without

its flaws, but the Amiga has enough virtues to convince many

that it's the best micro available ... for now, anyway.

The Transactor 32 May 1986: Volume 6, Issue O6

The Amiga: A Programmer's Perspective
Chris Zamara, Technical Editor

. . .can a single mortal

whip up a game or

utility within a

normal lifetime?

The Amiga is designed to be pow

erful yet easy for anyone to use. In

other words, it is a machine ori

ented to the user, with much of the

application software being devel

oped by the major software com

panies. But how is it for the

average hacker - can a single mor

tal whip up a game or utility within

a normal lifetime?

Well, he'll have a bit of learning to

do, but using one of Amiga's BA-

SICs, he'll be writing programs us

ing multiple windows, graphics,

pull-down menus, the mouse, and even speech in no time. All

of those goodies - and others - which are inherent to the

Amiga environment are available to the programmer even in

Assembler, because of the built-in operating system functions

and the libraries available on disk. Programming at the lowest

level, i.e. manipulating the hardware itself, is pretty much out,

but the operating system does so much for you that you'll never

need to do so.

The Amiga comes with BASIC (MetaCompco's ABasiC or Micro

soft's AmigaBasic), and at the time of writing, " C", Pascal, and

Assembler packages are all available at dealers. The devel

oper's kits which are available for the Amiga contain complete

system documentation and manuals for the included Lattice

C" compiler and the 68000 Assembler - seven manuals in all.

Most of the elements of this kit are now, or will soon be,

available at Amiga dealers. The manuals will be released to the

public as soon as they are finalized; fortunately, the folks at

Commodore-Amiga seem extremely willing to make the infor

mation widely available! With the help of these manuals, all of

the Operating system's features like windows, menus, request

ers, etc. can be used from C or assembler; the documentation is

complete and keeps no secrets about the system. Perhaps the

only " bad" news for hackers is that there are no mysteries to

solve or unknown routines to find!

Since the idea behind the Amiga is that anyone can use it

intuitively (hence "Intuition" as the name of the operating

system), there are certain standards that all programs must

follow to work properly in the machine, and other standards

which are recommended so that there is some consistency

among application programs. These standards and the many

Kernel routines available make a bit of study necessary for the

new Amiga programmer, but allow the creation of complete,

friendly, professional programs.

For many applications, programming in either of the available

BASICs is an extremely easy way to realize much of the Amiga's

potential. If you want to use C or assembler, you have even

more control over the system, but you'll need documentation,

like the Intuition and ROM Kernel manuals, to use all of the

system's features. These manuals are currently available only

in the developer's kits, but should be at Amiga dealers soon,

probably by the time you read this.

Documentation

As previously mentioned, the Amiga people are keeping few

secrets about the machine, and there doesn't seem to be a lack

of information as there was, for example, early in the Commo

dore PET days. Some of the manuals aimed at developers are a

The Transactor 33 May 1986: Volume 6, Issue O6

bit cryptic and extremely technical, but the ones aimed at the

user - like the AmigaDOS User's manual - are very easy to

understand and full of examples. Since the Amiga is a very new

and complex system, updates on these manuals are occurring

constantly, and the stack of errata pages included with the

developer's kit is quite large. When the final documentation is

actually released to the public, the manuals should be fairly

accurate, as the questions of developers serve to weed out the

errors and omissions.

Workbench and BASIC manuals come with the system, and for

the casual BASIC programmer contain everything he'll proba

bly need to know. Workbench is Amiga's Icon-oriented user

interface, and the manual explains how to use it to copy,

rename, and delete files, duplicate disks, run programs (" tools

"), use the window gadgets, etc. Workbench is designed to

make the system intuitively easy for users to operate, but all of

its functions can also be performed directly using AmigaDOS

from CLI, the Command-Line Interface. If you wish to fully

understand and use CLI and the DOS commands, the set of

three AmigaDOS manuals is available from dealers. Other

Amiga books from outside publishers are expected to arrive

shortly as well.

The amount of documentation already available suggests that

the Amiga will be a very " open" system, and software will

abound from independent users everywhere. In addition, a

dedicated magazine, Amiga World, already exists. This is no

shoddy newsletter, but a high-quality, full colour publication.

Sources of Amiga information for programmers also include

networks with an Amiga section such as UseNet, not to men

tion the Amiga-specific BBS's, User Groups, and newsletters

which are springing up around the continent. The Transactor

and other Commodore-specific magazines are also covering

the Amiga at one level or another.

AmigaDOS and the CLI

Even without bringing a particular language into the system,

you can do some useful things using AmigaDOS through CLI.

The CLI (Command Line Interface) is a process provided by

AmigaDOS, and can be run from WorkBench. Like Work-

Bench, CLI is a user interface to the system, but is command-

rather than icon-driven. It simply reads commands and exe

cutes them. More than one CLI can be active at once, each

running in its own separate window; a new CLI can be started

with the NEWCLI command, and a CLI can be ended with

ENDCLI. Actually, when a WorkBench disk is booted, CLI

comes up and executes a batch file - a series of DOS instruc

tions - which invokes WorkBench with the " LoadWb" com

mand. In other words, CLI is the first thing the system runs, and

it is quite possible to run the machine solely from CLI and

never use WorkBench at all.

DOS is used primarily for disk management and I/O com

mands, and allows you to execute commands or any program

on disk by simply typing its name. A disk's main or " root"

directory may contain files, or other directories which may

contain other files or directories, and so on. DOS maintains a

disk directory hierarchy and allows you to work with any file or

directory on disk. Some of the things you can do with DOS:

display any or all directories, sorted or with the date/time of

creation and size also displayed (DIR and LIST), print files to the

screen as text or hex (TYPE), COPY, DELETE, RENAME or

JOIN files, set or view the DATE and time, and similar file-

handling and general system functions. The RUN command

causes any command or program to execute under a new CLI,

allowing you to continue in the current CLI while the new job

executes; in other words it lets you multi-task. Two standard

commands are ED and EDIT, which invoke screen or line

editors. For complete DOS, ED and EDIT command lists, see

articles elsewhere in this issue.

All of the DOS commands are on disk as separate, executable

files, and exist in the "C " directory on the workbench disk.

When a command is called by name, it is fetched from disk and

executed. This arrangement makes it possible to add, change,

or rename commands at will. The number of commands you

have available in DOS is only determined by what's in your

C" directory, and you can create you own commands simply

by writing a program and putting the object file there.

Any input or output of a DOS command that would normally go

to the current window (keyboard and screen) can be re

directed to any file or device that you wish, using the < and >

operators. This way, you could, for example, send output from

a command such as DATE to a file, or send information to a

printer on the serial port instead of the screen. You can actually

create a custom window of any size from the CLI and use it for

input or output, as you would a disk file or device. Another

useful device is the built-in RAM disk, which can be used as a

disk drive; you can copy to or from RAM, get a directory listing,

make sub-directories, even execute programs or DOS com

mands out of RAM. The RAM device is quite handy for program

development, since you can speed up compilation or assembly

enormously by doing it directly from memory. This is espe

cially attractive if you have additional expansion RAM on your

system.

CLI has a provision for batch files - sequences of DOS com

mands which are executed directly from a text file. Batch files

are like simple programs written in the language of DOS, and

even support primitive control structures: IF ... ELSE

ENDIF, and SKIP (a forward GOTO). Batch files can also accept

parameters when executed, giving a kind of " meta-command

ability, a command which consists of a series of other

commands. Batch files are normally invoked by the EXECUTE

command, but an exception is the file called "Startup-

Sequence " in the " S" directory, which automatically executes

when the disk is booted. "Startup-Sequence" normally prints

a few things, then does a LOADWB to enter WorkBench and an

ENDCLI to kill the CLI process, leaving you completely under

the control of WorkBench. You may use Ed or EDIT to change

The Transactor 34 May 1986: Volume 6, Issue 06

the Startup-Sequence, making the system leave you in CLI

after re-booting, so that you can use DOS directly without

having to invoke a CLI from WorkBench. You may set up your

Startup-Sequence to do anything you want, like display the

date, copy your favourite commands to the RAM disk, start a

given program, etc.

ABasiC: The Original Amiga BASIC

ABasiC from MetaCompCo is the BASIC that until recently was

shipped with every Amiga. It is in many ways an old-fashioned

BASIC, much like that on a Commodore 64, but with many

more commands in its vocabulary. This BASIC uses line num

bers, GOTOs, no indenting of program lines, and LISTing of

programs by line number just like in the old days. It does

support a WHILE . . . WEND control structure, but that's about

it for modern features. In fact, in the editing department it's

back to the dark ages when teletypes roamed the computer

rooms of the earth: it is a line-oriented editor. No moving the

cursor over a line and simply changing it to correct it. At first

this can be a disappointment to those weaned on Commodores

or similar screen-oriented systems, but once you get used to

the editor's commands, it's really not all that terrible.

The language itself is very rich, allowing mouse input, the

creation of real windows with all the usual gadgets, a complete

set of graphics instructions (which work in the blink of an eye

thanks to the Amiga's custom graphics chips), speech and

sound capabilities, error trapping, and just about anything else

you could ask for function-wise. File handling is quite sophisti

cated, and works in a similar manner to IBM PC's BASIC;

random file records are mapped to string variables with the

FIELD command. Windows are treated as files and can be

PRINTed to and INPUT from. All graphics and mouse input

parameters are always relative to the currently active window,

allowing the user to move around any windows that a program

is using without the program even knowing - unless it wants

to. Debugging instructions include TRACE, and a wonderful

command called FOLLOW which allows you to trace any

variable and observe it whenever it changes value. The com

mands of ABasiC cover such a wide range of functions that

there's no way to list them all here. Suffice it to say that as far as

commands and functions go, this language is not wanting.

ABasiC checks every program line for syntax as it is entered,

pointing out where in the line an error occurred. Programs are

stored as pure ASCII files, and can be edited with you favorite

editor, like ED from CLI, if you wish. This form of storage also

means that programs are not particularly compact or fast. In

floating point operations, ABasiC on the Amiga is not much

faster than some BASICs running on lesser machines like the

IBM. When it comes to graphics though, stand back!

When ABasiC comes up, it creates a new screen. It actually

runs in a window which happens to take up this new screen.

That means that by re-sizing the ABasiC window, you can get

to the screen behind it and slide it down to reveal WorkBench

happily waiting for your return. You are free to merrily switch

between BASIC and WorkBench without interrupting any task

which may be executing, like a BASIC program. It's very handy

to have access to a CLI at any time without having to abandon

your current program, and even see part of the program on the

screen. You can even bring up another BASIC, and have both

of them running in their own screens, letting you slide them

around and work with whichever one you wish. You can bring

up as many BASICs as you have memory for, which isn't many

unless you have more than the internal 512k of RAM. The

default ABasiC screen is a 320 by 200 two-bitplane screen

which allows for 40 characters per line. With the SCREEN

command, you can change to a 640 by 200 screen and get 80

columns.

You can definitely write some interesting programs using

ABasiC, and for many applications it will be fast enough. But

since it is just an ordinary BASIC, your code is liable to be

difficult to debug, as all variables are global (no passing of

parameters to subroutines), and all the necessary GOTOs

pointing to number by line can weave a tangled spaghetti web.

For major applications, things can get just a little bit too messy,

but if you're used to that sort of language, then you'll like it just

fine. Other than the line editor, it is far superior to the built-in

BASIC on any previous Commodore.

AmigaBasic From Microsoft

Microsoft's AmigaBasic is the replacement for ABasiC and is

being shipped with all new Amigas. If you bought an Amiga

with ABasic, see your dealer about getting an upgrade kit to

AmigaBasic. AmigaBasic is an up-to-date language which is

powerful, fast and completely structured. Program line num

bers are not required, and your program is edited in a separate

window from the main " run" window, which displays pro

gram output and lets you enter direct-mode commands. The

WHILE . . . WEND and IF ... THEN . . . ELSE . . . ENDIF

constructs exist, and real sub-procedures can be used which

are invoked by name and can be passed a list of local variables

or arrays. In short, this BASIC is a structured, COMAL-like

language which is interactive, powerful, and easy to program

in.

AmigaBasic supports most of the commands of ABasiC, with a

few new features and some new twists. The major advantage

that this BASIC has is its " Event Trapping" capabilities. The

ON MOUSE command, for example, can be used to name a

subroutine to be performed when the mouse button is pressed.

The program then need not check the mouse repeatedly, but

the mouse-handling routine will be automatically executed

when necessary. The ON MENU command is used for checking

pull-down menus, which were not supported in ABasiC. When

a menu option is selected, you can have your menu-handling

procedure performed, even though your program is not explic

itly checking for a menu action at the time. These interrupt

The Transactor 35 May 1986: Volume 6, Issue O6

capabilities exist for object collisions, timer countdowns and

program breaks as well. Windows are supported more fully

than in the previous BASIC; now you have a choice as to what

gadgets you want on any given window. Object animation is

supported, and an object editor comes on the AmigaBasic disk

to create sprites and " BOBs" (software sprites). You can

directly call system library functions if you open the library

with the LIBRARY command. Again, there isn't enough room

to list all of the available functions, but there are enough. The

beauty of this BASIC is that you can write your own procedures,

much like in COMAL, which are then used exactly like the

built-in commands. In other words, your program defines new

commands for you to use and build upon.

The editor is full-screen, in a window of its own. You can scroll

up and down through the listing in this text editor of sorts. The

mouse is used to place the cursor at any spot and to highlight

sections of text for cut/copy/paste operations, or replacement

of new text. Just use the mouse to highlight any text in you

program, and type the new text to replace it. Programs are

totally free-form in this editor, allowing blank lines anywhere

and indenting of lines to emphasize the control structures.

Unlike ABasiC, the AmigaBasic environment takes full advan

tage of the Amiga's nature, using the mouse, windows, pull

down menus, and Amiga-Key " shortcuts". In fact, it gets a bit

carried away and forces you to use the mouse for no good

reason: any program error MUST be acknowledged by clicking

an " OK" box in the error requester before continuing - a bit of

a pain. Also, updating the screen after one of these errors, or

sometimes while editing, is a bit slow. The environment is not

hacker-oriented, as it puts ease-of-use over speed, but it sure

is flexible.

AmigaBasic occupies not a screen, but two windows in the

WorkBench environment - one for listing/editing, and the

main window for issuing commands. These windows are no

different from any other, and can be modified by the WINDOW

command at will. Since AmigaBasic programs can be executed

from WorkBench (they have their own icon), you can have a

program change the main BASIC window and come up as an

ordinary tool - the user never has to know it is a BASIC

program.

Programs are semi-compiled and stored in a compact way.

Keywords are tokenized and variables are stored not by name,

but by reference, with all of the variable names stored at the

end of the program file. This saves memory and speeds things

up considerably; standard benchmark programs seem to run

about three times faster in this than in ABasiC. You may

optionally save a program as straight ASCII if you wish, or save

it protected so that it can't be modified.

All in all, AmigaBasic is a good programming environment and

can be enjoyed even by those who scoff at normal BASICs. If it's

still not fast or flexible enough for your application though,

you'll have to go to C or assembler.

Lattice C Compiler For The Amiga

The Lattice C compiler is part of the developer's kit, or available

as a separate package from Amiga dealers for a lot of money

(retail about $450 in Canada). I will not attempt an explanation

of the C language in general, but will just give some notes on

Lattice C on the Amiga. If you aren't a C programmer and wish

to learn about this widely used language, the definitive re

source is the book, The CProgramming Language By Brian W.

Kerningham and Dennis M. Richie.

First of all, you need at least 512k and two drives to use the C

development system. It is apparently possible to use a single

drive for C development, but it is probably quite inconvenient.

Lattice C on the Amiga contains the standard function library

(which closely follows Unix C conventions), as well as the

extensive Amiga library which lets you use all of Intuition's

special features like window gadget control, graphics functions,

sprites and the like. The only problem is that all those nifty

functions are documented only in the two Intuition manuals ("

Intuition - The AMIGA User Interface" and the " ROM Kernel

Manual"), which are currently available only as part of the

developer's kit. If you don't have the manuals and want to use

the Amiga to full potential, Your best bet is to haunt the Amiga

section on various Networks and BBS's in search of source code

- of which there is quite a bit. Using public domain C programs

as examples will give you a good idea about how to use the

common Intuition library functions. If you have the set of three

DOS manuals, you'll have documentation for all DOS library

functions, and of course the standard Lattice C functions are

documenred in the C manual. That should keep you busy until

you can get your hands on the Intuition manuals, which should

be available from dealers soon. Even if you don't use any of

Intuition's special features, programming in C is a great way to

add utilities and DOS enhancements to your system.

To use Lattice C on the Amiga, you first create the source

program using your favorite editor, probably the standard

system editor ED for convenience sake. After saving the file

with " .C" after the filename, you are ready to compile and

link. To make life easy, a batch file on the C disk called " Make"

calls the compiler and linker properly for you. You just EXE

CUTE Make from CLI, giving it the name of your source file,

and wait until the work is done. If the compiling and linking

was successful, you'll have a relocatable, executable object

module on disk which you can run by simply typing its name,

like a DOS command or any other program. Using the Icon

editor from a standard WorkBench 1.1 disk, you can create a

custom Icon for your program so that you can run it directly

from WorkBench by just pointing and clicking.

Be forewarned: programming in C, even armed with all of the

documentation you could want, is not a beginner's venture. If

you're a casual weekend programmer, you may want to stick

with BASIC for awhile. If, however, you're willing to learn a bit

and want to produce high-quality software, then C may be the

The Transactor 36 May 1986: Voiu

way to go. The Amiga's system software, as well as most Amiga

application software was written in C, attesting to the flexibility

and speed of the language. As far as C compilers go, Lattice C is

not the fastest or most efficient. The future should bring faster

and possibly less expensive compilers.

68000 Assembler

The 68000 microprocessor has an instruction set which resem

bles that of a minicomputer like the PDP-11. It is beyond

compare with any 8-bit microprocessor; if you're used to

programming a 6502, the increase in power is akin to trading in

your Chevette for a Turbo Porsche. Without getting into details

about programming the 68000, a bit of technical data follows.

The chip has eight internal data registers and eight address

registers, each of which is 32 bits wide. Instructions can operate

on bytes (8 bits), words (16 bits) or long words (32 bits) in

memory. Addressing modes include: data or address register

direct (using the value in the specified register); address register

indirect (using the data in the address pointed to by the

specified address register); address register indirect with post

increment (incrementing the register after an indirect); address

register indirect with pre-decrement (decrementing the regis

ter before an indirect); address register indirect with displace

ment (register + displacement = address of data to be used);

Address register indirect with index (register + displacement

+ another register = address of data) and others. Instructions

can use any addressing mode or combination of addressing

modes, for example:

MOVE(A4) + ,100(A1,D2)

This single instruction means to take the data at the address

pointed to by the contents of A4 (Address register 4), then

increment A4; move the data to the address calculated by

adding the contents of D2 (data register 2) to Al, then adding

the constant 100. Machine language fans should delight in the

power of the 68000.

The assembler available for the Amiga is a macro assembler

with a full complement of pseudo-ops for conditional assem

bly, listing control, external symbol reference, etc. Also on the

disk is the Linker, which is used to resolve references in your

source file to external symbols. The assembler and linker work

in much the same way as the C compiler and linker, but you

use "Assem" and "Alink". Like C programs, your final object

file will be directly executable from CLI by typing its name.

The comments in the above C section about using the ROM

library routines applies in assembler also. You need the Kernel

manuals to know how to use the fancy operating system

functions. You also need a 512k system with two drives to use

the assembler development disk. If you have such a system and

the Amiga Assembler package, you can begin writing simple

programs immediately. The video games may take a little

longer, as you'll have to get a hold of the necessary manuals

and then figure them out, which is no trivial task.

Simple Machine Language and Debugging

Up to this point, the Amiga probably sounds like a vastly

powerful but somewhat remote system, with such a complex

operating system that no one can directly influence the state of

the machine. For those of you who like to feel firmly connected

with the workings of the beast, you can actually toy with the

Amiga's memory directly with the aid of a machine language

monitor. A program for the Amiga called " Wack" comes with

the developer's kit. If you have a copy of Wack, you can

examine memory, disassemble, single step, set breakpoints,

search memory, and generally have a ball. This is how the

hackers find out about the machine first-hand, although on the

Amiga there's a lot to find out about.

A small subset of WACK is built into the Amiga's " ROM"

(actually " kickstart" RAM) and operates through a 9600 baud

terminal on the serial port. You can access this " ROM Wack"

directly from a WorkBench menu if you use the command "

loadwb -debug" to bring up workbench instead of the usual "

loadwb". Rom Wack's short command list can be displayed by

typing a question-mark on the terminal. You can also enter

Rom Wack after a software failure causes a " Guru Meditation #

alert to threaten bringing the system down. If you hit the

RIGHT instead of the left mouse button at this point, you will be

dumped into ROM Wack on the external terminal with the state

of the system preserved. A handy de-bugging feature!

Other Languages

As mentioned, Pascal is also immediately available from Amiga

dealers - I haven't had a chance to look at it yet. There are also

a few languages in the public domain which can be had for the

taking. A lot of public domain Amiga software is quite good, as

it is existing C source ported from other systems. The best way

to keep abreast of available software is to get a modem and

snoop out any BBS that has an Amiga section or any Amiga

messages. By sharing programs and ideas through user groups

and networks, the Amiga knowledge and software base will

spread rapidly. Things are off to a very good start already.

The Transactor 37 May 1986: Volume 6, Issue O6

AMIGA DOS & CLI Commands
by Roy Reddy, Toronto, Ontario

The following article is meant as a quick reference card for

those users without an AmigaDOS Manual. At time of

writing Commodore states that they are supplying AMIGA

developers with the AMIGA manual sets and that they hope

to have these manuals available to end users in early 1986.

The manuals will be sold through the same retail outlets that

AMIGA computers may be purchased.

Since the manual sets are not available to every AMIGA

user at this time this article becomes more timely. The

mandate of this article is to offer a quick reference to the

commands available in AmigaDOS. It is not possible to

cover the commands in more detail than the manuals

without being larger than the manuals.

The AmigaDOS environment is very helpful, in fact it has a

sort of built-in help. If you remember the command but

forget the pattern for the arguments you can ask Amiga-

DOS to show you. The syntax for this kind of help is :

< Command > < space > ? < return >

Format () Numeric Brackets - numeric input required

Note: <> Angle Brackets - denotes user supplied input

[] Square Brackets - indicates optional input

Thus: [(< >)] would indicate an optional user supplied input

that must be of numeric nature if used.

AmigaDOS will respond by showing you the argument tem

plate. This template has three qualifiers which are preceded by

slashes as follows:

/A - argument must be present and may NOT be omitted.

Eg. with the TYPE command, the filename is mandatory

/K - argument must use this keyword

Eg. TYPE file OPT H ;The "H" (Hex) option can only be

specified by using the OPT keyword

/S - argument is used as a switch

Eg. LIST QUICK DATE ;Lists a direcory with only the fi

lename and date - QUICK and DATE

are function toggles

In future issues the command details and their applications

could be further discussed but for now let us illustrate the

commands that are available in AmigaDOS.

The AmigaDOS Commands Quick Reference Card

In file or directory names, a colon (:) indicates the root direc

tory, and a slash (/) can be used to indicate a subdirectory. If

any filename contains spaces, double quotes (") must enclose

the entire filename. Some examples of filenames appear below.

dfdgoldfish ;refers to file or directory "goldfish" in root

directory of drive 0

Ark:Animals/Goat ;refers to the file or directory "goat" in the

directory "Animals" on the disk "Ark"

:Bread ;File or directory bread on root directory on

same disk as current directory

Foo: ;Refers to the disk named "Foo"

:Foo ;Refers to the File or directory named "Foo"

in the root directory of the current-directory

disk

"Music/Songs/Oh When The Saints ..." ;The file or directory

"Oh When The Saints ..." in directory

"Songs" in directory "Music" on current

disk. Quotes are needed because of embed

ded spaces

The Transactor 38 May 1986: Volume 6, Issue O6

File Utilities

comment character. Allows comments for use in

batch files (Executable sequences of DOS commands)

Format : [<command>] ; [<comment>]

Template : "command" ; "comment"

Examples :

copy DFO:c/list to ram: ; Copy list program to RAM drive

list DF1: ; display directory of DF1: drive

< > Direct command input and output respectively. Al

lows redirection of a command's input or output to a

file or device

Format : <command> [<] or [>] [<arg>]

Template : " command " > " TO " < " FROM " " args"

Examples :

DATE > date-file ;send current date to "date-file"

ECHO > SER: " Message from Amiga" ;send message to serial port

COPY copies one file to another, or, copies all the files from

one directory to another.

Format : COPY [FROM] <name>] [TO <name>] [ALL] [QUIET]

Template : COPY " FROM,TO/A,ALL/S,QUIET/S "

Examples :

COPY DFO: TO DF1: ALL QUIET ;copy all files from drive 0 to drive 1

without printing "copying..." messages

COPY Extras:demos/myprog TO DFl:basicdemos/ ;copy "myprog

from directory " demos" of disk " Extras" to the directory "

basicdemos" of the disk in drive 1, keeping the same filename

COPY print-file TO PRT: ;send " print-file" to printer

DELETE deletes up to 10 files or directories.

Format : DELETE <name> [<name>] [ALL] [Q or QUIET]

Template : DELETE " ,,,,,,,,,,ALL/S,Q = QUIET/S

Examples :

DELETE out-dated-file ;delete "out-dated-file" in current directory

DELETE temps/filel temps/file2 ;delete "filel" and "file2" in

directory " temps"

DIR shows filenames in a directory.

Format : DIR [<name>] [OPT A or I or Al]

Template : DIR "DIR.OPT/K"

Examples :

DIR ;display current directory

DIR DF1: OPT A .display entire directory structure of disk in drive 0

DIR C ;display directory " C "

ED enters a screen editor for text files.

Format : ED [FROM] <name> [SIZE <n>]

Creates a new file if <name> does not exist

Template : ED " FROM/A.SIZE "

Examples :

ED temp/ed-file

ED large-file SIZE 55000 ;Allocate up to 55,000 bytes for file

EDIT enters a line by line editor.

Format : EDIT [FROM] <name> [TO] <name>]

[WITH <name>] [VER <name>] [OPT <option>]

Template : EDIT " FROM/A,TO,WITH/K,VER/K,OPT/K "

Examples:

EDIT ed-file WITH edits VER nil: ;Get edit commands from " edits",

edit " ed-file", and do not print any verification of edit commands
EDIT orig-file TO new-file

FILENOTE attaches a note with a maximum of 80 characters to a

specified file.

Format : FILENOTE [FILE] <file> COMMENT <string>

Template : FILENOTE " FILE/A.COMMENT/K "

Examples :

FILENOTE my-picture COMMENT " drawn in November"

FILENOTE src-file COMMENT " source for screen "

JOIN concatenates up to 15 files to form a new file.

Format : JOIN <name> <name> [<name>] AS <name>

Template : JOIN " ,,,,,,,,,AS/A/K"

Examples : JOIN src-file 1 src-file2 AS all-src

JOIN text data results AS experiment

LIST examines and displays detailed information about a

file or directory.

Format : LIST [DIR] <dir> [P or PAT <pat>] [KEYS] [DATES]

[NODATES] [T0<name>] [S<string>] [SINCE <date>]

[UPTO <date>] [QUICK]

Template : LIST " DIR,P = PAT/K,KEYS/S,DATES/S,

NODATES/S,TO/K,S/K,S1NCE/K,UPTO/K,QUICK/S"

Examples :

LIST DF1: ;List all files on disks in root directory of disk in drive 1

LIST P ?? ;List all files in current directory with names two characters

in length

LIST :1 S handler ;List all files in directory " 1" in root directory with

the characters "handler" somewhere in the filename

LIST SINCE YESTERDAY ;List all files created since yesterday

MAKEDIR creates a directory with a specified name.

Format : MAKEDIR <dir> Template : MAKEDIR " /A"

Examples :

MAKEDIR DF0:test ;Creates directory "test" in root directory of disk

in drive 0

MAKEDIR RAM:temp/files ;make directory "files" in directory

temp " in root directory of RAM-Disk

PROTECT sets a file's protection status.

Format : PROTECT [FILE] <name> [FLAGS <status>]

Template : PROTECT " FILE.FLAGS/K"

Examples:

PROTECT filel rwd ;Allow " filel " for Read, Write and Deletion

PROTECT temp/file FLAGS r ;Only allow " temp/file" to be Read

The Transactor 39 May 1986: Volume 6, Issue O6

RENAME renames a file or directory.

Format : RENAME [FROM] <name> [TO or AS] <name>

Template : RENAME " FROM/A,TO = AS/A "

Examples :

RENAME OLD-NAME NEW-NAME

RENAME ramx/filel AS new-file ;
1

SEARCH looks for a specified text string in all the files of a

directory.

Format : SEARCH [FROM] <name> or <pattern> [SEARCH]

<string> [ALL]

Template : SEARCH " FROM,SEARCH/A,ALL/S "

Examples :

SEARCH DFO: my-name ;Search for the text " my-name" in the root

directory of the disk in drive 0

SEARCH DF1: source ALL ;Search for the text in the root directory

and all the directories therein on drive 1

SORT sorts simple files.

Format : SORT [FROM] <name> [[TO] <name>] [COLSTART

<n>]

Template : SORT " FROM/A,TO/A,COLSTART/K"

Examples :

SORT file TO sorted-file

SORT list TO sort-list COLSTART 5 ;Sort using data starting at fifth

byte in each record as sort key

TYPE types a file to the screen that you can optionally

specify as text or hex.

Format : TYPE [FROM] <name> [[TO <name>] [OPT N or H]

Template : TYPE " FROM/A,TO,OPT/K"

Examples :

TYPE preferences OPT H ;print hex dump of " preferences"

TYPE :s/startup-sequence ;print file "startup-sequence" in "s" dir.

TYPE some-file TO ser: ;send " some-file" to the serial port

CLI Control

BREAK sets attention flags in a given process.

Format : BREAK <task> [ALL] [C] [D] [E] [F]

Template : BREAK "TASK/A,ALL/S,C/S,D/S,E/S,F/S"

: Examples :

BREAK 6 ;Send a CTRL-C to task * 6

BREAK 4 D F ;Sends a CTRL-D and CTRL-F to task 4

CD sets a current directory and/or drive.

Format : CD [<dir>] Template : CD "DIR"

Examples :

CD RAM: ;Set root directory in RAM-disk as the current directory

CD DFl:temp/l ;set directory "1" in directory "temp" on disk in

drive 1 as the current directory

ENDCLI ends an interactive CLI process.

Format : ENDCLI Template : ENDCLI

Examples: ENDCLI

NEWCLI creates a new interactive CLI process.

Format : NEWCLI [<window>]

Template : NEWCLI "WINDOW"

Examples :

NEWCLI

NEWCLI CON:30/30/300/120/ " NEWEST CLI" ;Create a new CLI

process in a window titled " NEWEST CLI" starting at screen co

ordinates (30,30), 300 pixels wide and 120 pixels high

PROMPT changes the prompt in the current CLI.

Format : PROMPT <prompt>

Template : PROMPT "PROMPT"

Examples :

PROMPT

PROMPT " %n>" ;Put current CLI process number in prompt

RUN executes commands as a background process.

Continues CLI as command executes

Format : RUN <command>

Template : RUN command +

command

Examples:

RUN TYPE :s/startup-sequence

RUN COPY :c/list TO RAM: +

CD RAM: +

LIST

STACK displays or sets the stack size for commands.

Format : STACK [<n>]

Template : STACK " SIZE "

Examples :

STACK

STACK 9000

STATUS displays information about the CLI processes cur

rently in existence.

Format : STATUS [<process>] [FULL] [TCB] [SEGS] [CLI or ALL]

Template : STATUS " PROCESS,FULL/S,TCB/S,SEGS/S,

CLI = ALL/S"

Examples:

STATUS

STATUS 1 FULL

WHY explains why a previous command failed.

Format : WHY

Template : WHY

Examples :

WHY

The Transactor 4O May 1986: Volume 6, Issue O6

ECHO

Format :

Examples :

EXECUTE

Format :

Template :

Examples :

FAILAT

Format :

Examples :

IF

Format :

Template :

Examples :

Command Sequence Control

displays the message specified in a command arg.

ECHO < string > Template : ECHO " "

ECHO " This string was echoed to the screen "

EXECUTE <comrnandfile> [arguments]

EXECUTE " command-file "," args"

EXECUTE :s/startup-sequence

fails a command sequence if a program returns an

error code greater than or equal to specified number.

FAILAT <n> Template : FAILAT " rclim "

FAILAT

FAILAT 14

tests specified actions within a command sequence.

IF [NOT] [WARN] [ERROR] [FAIL] [<string> EQ

<string>] [EXISTS <name>]

IF "NOT/S,WARN/S,ERROR/S,FA1L/S,,EQ/K,EX1STS/K"

IF EXISTS :c/cd ;execute commands up to END1F if the file " cd " is in

directory " c " on root directory

ASSIGN

Format :

Template :

Examples:

ASSIGN ten

LAB

Format :

Examples :

QUIT

Format ;

Examples :

SKIP

Format :

Examples:

WAIT

Format :

Template :

Examples :

defines a label (see SKIP).

LAB <string> Template : LAB <text>

LAB error-location

exits from command sequence with a given error

code.

QUIT [<retumcode>] Template : QUIT "RC"

QUIT 14

QUIT

jumps forward to a LAB in a command sequence (see

LAB).

SKlP<Iabel> Template : SKIP "LABEL"

SKIP

SKIP error-location

waits for, or until, a specified time.

WAIT <n> [SEC or SECS] [MIN or MINS] [UNTIL<time>]

WAIT ",SEC = SECS/S,MIN = MINS/S,UNTIL/K"

WAIT ;Wait one second

WAIT UNTIL 12:25

WAIT 5 MIN

System and Storage Management

assigns a logical device name to a directory or fi

lename.

ASSIGN [[<name>] <dir>] [LIST]

ASSIGN "NAME,DIR,LIST/S"

lp: DFO:source/files

ASSIGN ;Show all current assignments

DATE

Format :

Template :

Examples :

displays or sets the system date and time.

DATE [<date>] [<time>] [TO or VER <name>]

DATE "DATE,T1ME,TO = VER/K"

DATE ;Display today's date

DATE TOMORROW ;Advance the current date by one day

DATE 01-OCT-85 12:32

DATE TUESDAY ;Set the date to the upcoming luesday

DISKCOPY copies the contents of one entire microdisk to an-

Template :

Examples :

DISKCOPY

DISKCOPY

other.

DISKCOPY [FROM] <disk> TO <disk> [NAME

<name>]

DISKCOPY " FROM/A,TO/A/K,NAME/K"

FROMDFO:TODF1:

DFO: TO DFO: NAME " Copied Disk"

FAULT

Format :

Examples:

FAULT 123

FAULT 133

FORMAT

Format :

Template :

Examples :

INFO

displays messages corresponding to supplied fault or

error codes.

FAULT [<n>] Template : FAULT" ,„„"

;Display error message #123

234 245 ;Display list of messages for 133, 234 and 245

formats and initializes a new 3 1/2 inch floppy disk.

FORMAT DRIVE <drivename> NAME <string>

FORMAT "DRIVE/A/K,NAME/A/K"

FORMAT DRIVE DFO: NAME " New Blank Disk "

gives information about the filing system, including

room left on all mounted volumes.

Format : INFO Template : INFO Examples : INFO

INSTALL

Format :

Template :

RELABEL

Format :

Template :

Examples:

makes a formatted disk bootable.

INSTALL [DRIVE] <drive>

INSTALL "DRIVE/A" Examples: INSTALL DFO:

changes the volume name of a disk.

RELABEL [DRIVE] <drive> [NAME] <name>

RELABEL " DRIVE/A.NAME/A"

RELABEL DF1: " Disk over there"

The Transactor 41 May 1986: Volume 6, Issue O6

AMIGA Editor Commands
by Roy Reddy, Toronto, Ontario

There are two editors that come with every AMIGA as part of the

WORKBENCH diskette. The names are 'ED' and 'EDIT. They are,

respectively, a screen editor and a line editor. This article is meant to

be a quick reference to the commands available in each editor.

ED - The Screen Oriented Editor

The template for the screen editor "ED" is :

ED "FROM/A, SIZE/K"

. . .where the 'FROM' argument is the file to be edited. ED allows

for a file of 40,000 bytes as a default if more memory is required

then the 'SIZE' switch may be used to allocate more memory.

'ED' has two categories of commands: immediate commands

and extended commands. Immediate commands are a sequence

of keystrokes performed while in the middle of a document. Some

immediate commands are a combination of the CTRL key and

another key. Extended commands are executed in a command

mode. The 25th row of the screen is reserved for the extended

command line and is entered by striking the ESC key. Some

commands are available in both modes. The following list will

comprise the quick reference for 'ED'.

Immediate Commands

Cursor Movement Immediate Commands

Cursor UP moves cursor UP

Cursor DOWN moves cursor DOWN

Cursor RIGHT moves cursor RIGHT

Cursor LEFT moves cursor LEFT

BACKSPACE moves cursor left and erases char.

CTRL+A

CTRL+B

CTRL+D

CTRL+E

CTRL+F

CTRL+G

CTRL+H

Insert a Line after the current line

Delete the current line

almost equivalent to CURSOR UP, scrolls t

down

move to opposite (top or bottom) corne

screen.

DEL

ESC

RETURN

TAB

deletes character under cursor and moves remaining text left.

Enters the extended command mode at bottom of screen.

return cursor to left edge and if in insert mode the current line will

be broken in two.

moves cursor to next TAB position right.

CTRL Key Commands

CTRL+I

CTRL + M

ext CTRL + O

of CTRL + R

CTRL+T

flips the case of the character under the cur- CTRL + U

sor

will repeat the last Extended command

equivalent to BACKSPACE

CTRL+V

CTRL+[

CTRL+]

equivalent to TAB

equivalent to RETURN

deletes spaces until next non-space character or deletes character

as DEL if not a space

moves cursor to the space following the previous word

moves cursor to the start of the next word (non-space)

almost equivalent to CURSOR DOWN, scrolls text up

will update or redraw the screen

equivalent to ESC

move cursor to opposite (left or right) end of current line

Extended Commands

ESC or CTRL+[starts the extended mode. Some extended commands can contain additional parameters (string or numeric).

Strings must be delimited by a character other than letters, space, numbers, brackets, or a semicolon. The slash character " /" is an

acceptable delimiter and will be used in the examples in this article.

A/str/ insert a line of text "str" After current line J

B move cursor to the Bottom of the file LC

BE set the Block End at cursor position M n

BF /str/ search for 'string' Backwards N

BS set the Block Start at cursor position P

CE move the Cursor to the End of the line RP

CL equivalent to Cursor Left in immediate mode S

CR equivalent to Cursor Right in immediate mode SA

CS move the Cursor to the Start of the line SB

D Delete the current line SH

DB Delete the previously defined Block SL n

DC equivalent to DEL in immediate mode SR n

E/strl/str2/ Exchange "str2" for " str] " throughout document ST n

EQ /strl/str2/ as above but will Query before Exchange

EX Extend right margin ignoring defaults T

F/str/ Find "strl " in document U

I/str/ Insert a line of text "str" before current line UC

IB Insert a copy of a previously defined Block WB /fil/

IF /fil/ Insert or merge the File " fil" into the document at the X

current line

Joins the current line with the next

set ED to distinguish between upper/Lower Case

Moves the cursor to the line specified by n

moves the cursor to the start of the Next line

moves the cursor to the start of the Previous line

Repeat the last extended command continuously

create a new line by Splitting the current line

Save the document

moves cursor to the Start of the defined Block

Show the status (margins, tab length, filename)

Set the Left margin to the value specified in n

Set the Right margin to the value specified in n

Set the distance between each TAB to the value

specified in n

moves the cursor to the Top of the document

Undo the last change made (except delete line)

set ED to NOT distinguish between Upper/lower Case

Write previously defined Block to file " fil"

eXit from ED & write document to file

The Transactor 42 May 1986: Volume 6, Issue O6

EDIT: Amiga's Line Oriented Editor
by Roy Reddy, Toronto, Ontario

This article describes the line oriented Editor of AmigaDOS called

'EDIT'. The documentation covering 'EDIT' in the Amiga manual

"AmigaDOS User's Manual" is 35 pages long. This article and the

following pages will act as a quick reference guide only and cannot

cover this Editor in as much detail as the manual.

Commodore full screen Editors have spoiled me thus making it hard

to get interested in studying a line Editor. EDIT however offers quite a

bit of power in that it can modify files using commands from another

file called an "Edit Command File". The following describes EDIT's

format and template :

Format : EDIT [FROM]<name> [TO]<name>] [WITH<name>]

[VER<name>] [OPT Pn:Wn:PnWn]

Template : EDIT " FROM/A,TO,WITH/K,VER/K,OPT/K "

EDIT has some limitations, the first of which, you will discover, is that

you cannot create a new file using EDIT. For this reason the 'FROM'

argument must exist even though the keyword 'FROM' is optional.

The argument 'TO' instructs EDIT what filename to give the destina

tion file. If the 'TO' argument is omitted EDIT creates a file and will

rename it with the 'FROM' name when you Quit EDIT. The original

file is saved as ':T/ED1T-BACKUP' and will remain until the next EDIT

The 'WITH' file is the "EDIT Command File" which gives EDIT its

additional editing power. The 'VER' file, if specified, will contain error

messages that may have been generated during the EDIT session. If

either the 'WITH' or 'VER' arguments is omitted, EDIT will use the

keyboard and screen for input and output respectively.

EDIT has memory and line width defaults that can be adjusted using

the 'OPT' keyword and either/both the 'P' & 'W' arguments. With the

'P' argument you can adjust the amount of memory EDIT uses to

retain previous lines. The 'W' argument adjusts the maximum line

length used by EDIT. The default setting of these parameters is

P40W120 ; 40 previous lines retained & 120 maximum line length.

This table describes the abbreviations used in this quick reference

guide.

/qs/ qualified string <f> file specifier

HI string sw + or - (on or off)

n line number, or

< move character pointer left

> move character pointer right

delete character at pointer <SPACE>

Character Pointer Commands

lower case character at pointer PA /qs/

upper case character at pointer PB /qs/

turn character at pointer to space PR

move character pointer to After /qs/

move character pointer to Before /qs/

reset character pointer to start of line

Current Line Positioning Commands File Search Commands

M n move to line n

M + move to highest line in memory

M - move to lowest line in memory

N move to Next line in memory F /qs/

P move to Previous line in memory BF /qs/

REWIND make current line line #1 of source file DF /qs/

search for string /qs/

search Backward for string /qs/

search & Delete line with string /qs/

Text Display and Verification Commands

? verify current line

! verify with case indicators

T type lines until end of file

T n type n lines forward

TL n type n lines with line numbers

TP moves to lowest line then type lines

V sw switch to turn on/off line display verification

Commands That Operate Globally

GA /qs/t/ Globally place string IV After string /qs/

GAB /qs/t/ Globally place string IV Before string /qs/

GE /qs/t/ Globally exchange string /(/ for string /qs/

CG [n] Cancel Global operation [n] (all operations if [n] omitted)

DG [n] Disable Global operation [n] (all operations if [n] omitted)

EG [n] Enable Global operation [n] (all operations if [n] omitted)

SHG Show information about Globals in use

Commands That Operate On The Current Line

A /qs/t/ insert string IV After string /qs/ on current line

AP /qs/t/ same as above but moves character pointer

B /qs/t/ insert string IV Before string /qs/ on current line

BP /qs/t/ same as above but moves character pointer

CLt Concatenate current line + string/t/ + next line

D Delete current line

DFA /qs/ Delete After string /qs/ to the end of the line

DFB /qs/ Delete Before string /qs/ to the end of the line

DTA /qs/ Delete from start of line to After string /qs/

DTB /qs/ Delete from start of line to Before string /qs/

E /qs/t/ Exchange string /qs/ for string /t/

EP /qs/t/ same as above but moves character pointer

I Insert chars from keyboard before chars in line

I <f> Insert chars from file <f> before chars in line

R Replace characters from keyboard

R <f> Replace characters from file <f>

SA /qs/ Split current line After string /qs/

SB /qs/ Split current line Before string/qs/

Input/Output Redirection

FROM read From source (original file)

FROM <f> read From file <f>

TO return to original destination file

TO <f> send output to file <f>

CF <f> Close file <f>

Miscellaneous Commands

repeat previous A, B, or E command

= n set line number to n

C <f> take Commands from file <f>

H n set Halt at line n (if n = * then Halt and unset H)

Q Quit input from command file, or windup if no command

file

SHD Show Data ; last cmd, search string

STOP Stop ; quit without changes made to existing file

TR sw switch to suppress Trailing spaces from lines

W Windup ; continue through the remaining source file

Z /t/ change value of current input terminator string to IV

43 May 1986: Volume 6, Issue O6

Pick Areas

and Pop Menus

Darren Spruyt

Gravenhurst, Ontario

Drop-Down Menus For Your Commodore 64

Such a title definitely needs explaining. While reading other

computer literature, you may have heard the term 'POP MENUS'.

'Pick Areas' are just as common, but less documented. These

features are now available on your C-64 with the help of a short

assembly language program.

Pop Menus are just what they sound like. A menu that can be

'popped on' the screen for a decision to be made, then be 'popped

off again when the decision has been made. You can do just about

the same in BASIC, however the machine language version pre

sented hear has more features. It automatically remembers what

was present on the screen when it was 'popped on' and will restore

the information back to the screen again when it is 'popped off,' as

well as remembering the correct colors. The pop menu on the

screen also comes complete with a border and a reverse field line

for selecting the appropriate item in the menu.

Pick areas are areas on the screen given a (X,Y) position, width and

height and finally an ID number. When a pointer on the screen is

moved into a Pick Area, the area is highlighted (reversed) and a

flag is set to tell the main program that the pointer has been moved

into a Pick Area. This may not seem like much, but is paves the

way for powerful menu and selecting features to be added to a

basic program very easily. The pointer is an integral part of this

package and it operates from the cursor keys when they are not in

use. (i.e. during a run of a BASIC program when no input is being

accepted).

The PICK AREA and POP MENU machine language program is

very easy to use. There are just a few SYS's to use (5) and you can

be on your way to a great looking program. The first SYS turns on

the PICK program, it is:

SYS 49152

This turns on the sprite to be used as the pointer and sets up the

required information for the program to operate. The second SYS

defines a Pick Area:

SYS 49155,X,Y,W,H

Given the screen as a grid of 0-39 horizontally and 0-24 vertically

from the top left corner, (X,Y) is the top left comer of the Pick Area

with width of W and height of H. The ID number of the Pick Area is

in location 782 (values from 1-16 are normal) so retrieve it with a

PEEK and remember it for further use.

SYS 49161.X

. . .will delete the Pick Area with ID X from the list of active Pick

Areas.

SYS 49164

. . .will turn off the PICK program and remove the pointer from the

screen. While the PICK program is active, if the pointer enters a

PICK area, it's ID will be placed in memory location 2.

The last SYS is for use with the POP MENUs, and the PICK

program does not have to be active for the POP MENUs to work. To

use a pop-menu,

SYS 49158,X,Y,W,H,C,A$

. .. will create a pop menu at (X,Y) as mentioned earlier with width

W and height H using color C and using the last parameter as the

string of data with which to fill the menu. Since the pop-menu

places a border around it, the width for text inside the menu will be

(H-2) and the number of lines allowable will be (V-2). The string

needs no cursor characters to be included within it - the text will

'wrap' inside the area automatically.

If a menu was to be created having 4 lines of text with each line

being 6 characters long, and to hold the following information on

separate lines 'WHITE,BLACK,YELLOW,ORANGE' the following

would be done. Define a string variable such as:

A$= "WHITE BLACK YELLOWORANGE "

SYS 49158,0,0,8,6,1,A$

This would place a pop menu at (0,0) with the information within

it. NOTE: the string is to be exactly as written above, the spaces or

lack thereof is important. Once this has been done, the menu will

be on the screen and a reverse bar will be on the first line of the

menu. This line is moved up and down with the cursor keys to

select the item and then the return is pressed. This will then

remove the pop-menu from the screen, replacing the old data,

while a number corresponding to which line the selector bar was

on will be placed in memory location 599. The contents of 599

would then be used to index to the chosen operation, which in this

case would be to the correct colour value.

It may seem complex, but is really very simple to use, also very

powerful. With such a utility, Basic can be used to produce very

graphically appealing and easy to use programs. A sample pro

gram using Pick Areas and two pop-menus appears in Listing 1,

while Listing 2 is a program to create the machine language file on
the disk.

The Transactor
44

May 1986: Volume 6, Issue O6

Pop

AN

JF

AH

MB

MD

LL

OA

CL

KN

OM

IP

HF

OG

ND

CO

EB

MN

CM

FK

PC

IM

ME

Jl

II

HM

Kl

PH

FO

KG

GD

GF

CB

MD

MJ

OM

PH

EC

FM

MG

DE

EP

KF

EN

HN

IF

NE

FC

BD

CE

AB

OK

Menus Demo Program

95iffl = -1 then 200

100 a = peek(49152) + peek(49153)*256 + peek(49154)
110ifa = 4108then200

120 fl = -1 :load" pick.mlp.cOOO" ,8,1

200:

300 hi $ = chr$(192) + chr$(192):h2$ = hi $ + hi $

310 v$ = chr$(221)

320 ul$ = chr$(176): rem upper left corner (c = & a)

330 ur$ = chr$(174): rem upper right corner (c = & s)

340 ll$ = chr$(173): rem lower left corner (c = & z)

350 lr$ = chr$(189): rem lower right corner (c = & x)

1000 rem window using program

1010 print "@";

1030printul$h2$chr$(178)h2$h2$h2$h1chr(178)
h2$h2$h2$h2$h1ur;

1040 print v$" exit" v$" [14 spcs]" v$" background

[8 spcs] "v$;

1050 printchr$(171)h2$chr$(219)h2$h2$h2$h1 $

Chr$(177)h2$h2$h2$h2$h1$lr$;
1060 printv$" time "v$

1070 printv$" on[2 spcs]" v$

1080 print chr$(171)h2$chr$(179)

1090 printv$" opts" v$

1100printll$h2$lr$

1200 gosub 60000

1210geta$:

1212 print"B H";b:if z = 0 then b = b + 1
1214ifa$Ochr$(13)then 1210

1220 if peek(2) = ex then 20000

1230 if peek(2) = bk then 21000

1250 if peek(2) = tm then 23000

1900 goto 1210

20000 a$ = " no yes"

20010 sys 49158,0,0,5,4,1 ,a$

20020 if peek(599) = 2 then sys 49164:stop

20030 goto 1210

21000 a$ = " black white red[3 spcs]cyan[2 spcs]

purplegreen blue[2 spcs]yellow"

21010 sys 49158,21,0,8,10,0,a$

21020 poke 53281 ,peek(599)-1

21030 goto 1210

23000 if z = 0 then 23100

23010z = 0 ^^^

23020 print" BSBBOItimfiBIl4 lefts]on[2 spcs]"
23030 gotoi 210

23100 rem

23110z= 1

23120 print" BJBB[HtimeEl[4 lefts]off[1 spc]"
23130 gotoi 210

60000 sys 49152

60010 sys 49155,1,1,4,1 :ex = peek(782)

60020 sys 49155,1,3,4,2:tm = peek(782)

60030 sys 49155,1,6,4,1 :op = peek(782)

60040 sys 49155,21,1,10,1 :bk = peek(782)

60050 return

Pop

CC

IN

PP

JE

JH

NH

IL

EK

MF

NH

IG

AL

MA

PD

KF

HN

HC

IP

JN

FK

GF

AM

MO

AH

GF

DH

PH

HH

NJ

ML

IH

EM

AM

FB

LE

PO

— I

NB

DF

KG

GE

FG

KA

AG

PC

Ol

Dl

JG

MH

CK

IJ

PE

DF

AL

O

PI

CN

IG

EP

BE

HA

Menus BASIC Loader

100 open 15,!

110print#15,

120 open 1,8,

3,15

'sO:pick.mlp.cOOO"

2," pick.mlp.c000,p,w"

130 print#1 ,chr$(0);chr$(192

140 rem start 3f basic loader

150reada,b,d

160 print" now loading ir

170fork = atc>b

;

code

i code."

180 read c:print#1,chr$(c);:

190 poke 1024,c:poke55296

200 ch = ch + c:next:close1

210if chOdthen print"

220 print "done." :end

999 data 49152,50321

1000 data 76

1010 data 192

1020 data 160

1030 data 129

1040 data 196

1050 data 32

1060 data 174

1070 data 32

1080 data 72

1090 data 208

1100 data 32

1110 data 174

1120 data 196

1130 data 13

1140 data 208

1150 data 196

1160 data 32,

1170 data 72,

1180 data 93,

1190 data 10,

1200 data 76,

1210 data 142,

1220 data 2,

1230 data 192,

1240 data 251,

1250 data 145,

1260 data 251,

1270 data 196,

1280 data 145,

1290 data 153,

1300 data 208,

1310 data 196,

1320 data 211,

1330 data 2,

340 data 141,

350 data 130,

360 data 136,

370 data 0,

380 data 0,

390 data 120,

400 data 196,

410 data 16,

420 data 145,

430 data 34,

440 data 142,

450 data 222,

460 data 193,

, 164, 195

, 76,185

0, 32

196,201

201, 3

234, 195

32, 158

219, 182

136, 177

2, 198

36, 193

129, 196

136, 169

169, 64

249, 169,

169, 40,

20, 193,

224, 1,

145,251,

177, 71,

147, 192,

146, 196,

162, 71,

172, 112,

169, 64,

251, 76,

162, 1,

32, 228,

208, 11,

193,202,

16, 138,

240,219,

192,201,

169, 128,

88, 2,

193, 136,

16,251,

133, 34,

32, 127,

133, 1,

172, 112,

11,177,

253, 76,

177,253,

146, 196,

193, 169,

32,130,

data

c

error" :stop

,134294

, 76

193

11

3

144

142

173

160

100

72

160

32

110

145

112

162

174

240,

200,

32,

136,

173,

32,

196,

136,

195,

32,

255,

224,

76,

24,

32,

13,

32,

96,

173,

96,

169,

195,

32,

196,

34,

93,

145,

169,

40,

193,

,245, 193

, 76, 201

,194, 48

144,241

234,140

149,196

164,101

2, 177

133, 71

198, 71

0, 32

20,193

145,251

251,136

145,251

251, 32

146,196,

44, 160,

204, 112,

232, 193,

169, 93,

112, 196,

222, 193,

136, 169,

240, 7,

192, 169,

153, 193,

174, 146,

1,240,

211, 192,

105, 2,

153,193,

208, 208,

36, 193,

172, 112,

149, 196,

141, 147,

176, 133,

165, 1,

130, 193,

136, 173,

145,251,

193, 177,

36,136,

40, 162,

162, 34,

174, 146,

, 76

, 193

,248

173

88

32

165

100

165

169

127

172

136

48

142

222,

202,

0,

196,

145,

145,

56,

76,

125,

48,

109,

142,

196,

239,

201,

205,

232,

142,

169,

196,

145,

196,

35,

41,

174,

147,

177,

251,

16,

251,

32,

196,

, 16

, 96

, 173

112

2

253

100

133

71

0

195

112

48

6

146

193

240

169

240

251

251

233

121

145

9

145

146

201

32

17

129

76

87

1

32

253

169

160

254

129

196

36

145

229

32

222

202

The Transactor 45 May 1986: Volume 6, Issue O6

CN

BP

DA

FB

JA

DD

GC

OE

NA

AG

AE

NK

OP

PC

KG

MG

CB

LK

KK

EE

AM

00

10

LC

LA

DO

CC

KJ

DE

FC

00

Gl

KE

BA

ML)

AC

Cl

NF

FP

FG

FO
□ LJ
BH

IN
M DNr

Bl

II

JF

JP

AA

DO

HN

PK

BD

FK

PC

LD

FE

EC

AJ

OE

HH

KJ

HK

1470 data

1480 data

1490 data

1500 data

1510 data

1520 data

1530 data

1540 data

1550 data

1560 data

1570 data

1580 data

1590 data

1600 data

1610 data

1620 data

1630 data

1640 data

1650 data

1660 data

1670 data

1680 data

1690 data

1700 data

1710 data

1720 data

1730 data

1740 data

1750 data

1760 data

1770 data

1780 data

1790 data

1800 data

1810 data

1820 data

1830 data

1840 data

1850 data

1860 data

1870 data

1880 data

1890 data

1900 data

1910 data

1920 data

1930 data

1940 data

1950 data

1960 data

1970 data

1980 data

1990 data

2000 data

2010 data

2020 data

2030 data

2040 data

2050 data

2060 data

2070 data

2080 data

2090 data,

208

88

9

165

96

109

112

145

96

169

96

208

49

0

201

144

61

254

61

176

201

234

121

234

109

1

169

49

188

240

3

248

7

1

176

3

136

1

176

194

240

194

192
H 7O
173

173

195

195,

105,

74,

74,

61,

78,

112,

95,

129,

140,

172,

76,

32,

188,

190,

196,

251,

, 199, 165

, 96,165

, 4,133

,252, 41

,160, 0

, 95,196

, 196, 136

,251, 136

32,234

0, 157

173, 21

120, 169

141, 20

149, 0

64, 144

2,233

196,240

96, 32

196, 96

48, 153

25, 176

195,240

78, 196

195,240

95, 196

96, 169

82, 72

234,173

254,165

245, 164

221, 55

48, 2

240, 4

172, 141

205, 9

208, 12

140, 59

208, 14

38, 200

201, 2

22, 136

201, 0

159, 176

16, 208

60, 196

24, 105

141, 14

50, 141

74, 141,

74, 141,

196,240,

196, 144,

196, 176,

196, 144,

196, 176,

148, 196,

148, 196,

188,254,

82, 195,

254, 152,

129, 196,

206, 146,

73, 128,

, 1, 9, 1,133, 1

, 34,133, 36,165, 35

, 37, 165,251, 133,253

, 3, 9,216,133,254

,138,141,146,196, 24

, 170, 32, 130, 195, 172

,136,177,251, 73,128

,208,247, 174, 146, 196

,195,224, 17,176, 6

, 61,196, 96,169,255

,208, 41,127,141, 21

,234,141, 21, 3,169

, 3, 88, 96, 24,117

,144, 2,246, 1, 96

, 2,233, 64,201,128

, 64, 96,160, 16,185

6, 136,208,248, 169

11,194, 48,250,153

32,234,195,201, 40

78,196, 32,234,195

38,153, 95,196, 32

30,153,112,196, 24

201, 40,176, 19, 32

14,153,129,196, 24

201, 25,176, 3,169

255, 96,169,194, 72

8, 72, 72, 72, 76

88, 2,208, 3, 76

157, 48,249,165,204

198, 185, 118, 2, 162

196,240, 5,202, 16

198, 198, 165,203,201

201, 2,208,216, 41

2,240, 9,192, 3

2, 76,143,194,201

172, 59,196,240, 56

196, 76,208,194,201

172, 59,196,192, 99

140, 59,196, 76,208

208, 12,172, 60,196

140, 60,196, 76,208

208, 11, 172, 60, 196

4,200,140, 60,196

41, 127, 141, 16, 208

10,144, 3, 32,153

24,144, 3, 32,153

208,173, 59,196, 10

1 ^ PDft 1 T\ fin 1 Qfi

86, 2,173, 59,196

85, 2,160, 16,185

55,173, 86, 2,217

47,249, 78,196,217

39, 173, 85, 2,217

31,249, 95,196,217

23,196, 2,240, 16

164, 2, 32, 82,195

132, 2, 32, 82, 195

136,208,193,164, 2

169, 0, 133, 2, 76

240, 41, 32,127,195

185, 112, 196, 141, 146

196, 172, 146, 196, 177

145,251,136, 16,247

FE

EG

HJ

GJ

MC

KJ

CB

OA

CN

NJ

EP

AG

EB

HE

GM

OC

PJ

CN

NM

KM

KM

EN

ON

IO

BG

BO

GA

AB

KB

EC

OC

ID

CE

ME

GF

AG

CB

2100 data 165

2110 data 2

2120 data 95

2130 data 2

2140 data 78

2150 data 96

2160 data 16

2170 data 195,

2180 data 169,

2190 data 20

2200 data 169,

2210 data 169,

2220 data 60

2230 data 16

2240 data 24

2250 data 208,

2260 data 32,

2270 data 254,

2280 data 0,

2290 data 0,

2300 data 0,

2310 data 0,

2320 data 0,

2330 data 0,

2340 data 0,

2350 data 29,

2360 data 0,

2370 data 0,

2380 data 0,

2390 data 0,

2400 data 0,

2410 data 0,

2420 data 0,

2430 data 0,

2440 data 0,

2450 data 0,

2460 data 0,

251

230

196

133

196

72

208

153

194

3

15

0

196

153

141

96

158

0

216

0

0

0

0

0

0

145

0

0

0

0,

0

0

0

0,

0.

0,

0

24,

252,

181,

252,

133,

173,

104,

192,

141,

88,

141,

141,

141,

61,

14,

140,

183,

0,

0,

3,

0,

0,

0,

0,

0,

157,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

105

202

217

189,

251

16

96

3,

21

169

255,

61

59

196

208

146

172,

224,

0,

0

0,

o,

0,

0

0

0.

o,

0,

0,

0,

0,

0.

0,

0,

0,

0.

Pop Menus Source Code

(IN

OG

PJ

AG

GF

OE

AF

AK

DO

II

IN

BO

CD

LN

GD

HH

FD

EH

DL

NP

JO

JN

NF

HI I

BH

ICE

RL

LJ

> sys 700

5 .opt oo

20 ;.

30;.

Id

50 ;*

60;.

1000

1010

40,

208,;

41,

240,;

144,

208,

160,

136,

3,

128,

7,

196,

196,

136,

169,

196,

146,

0,

204,

0,

0.

0,

0,

0,

0,

o,

0,

0,

o,

0,

o,

0,

0,

0,

0,

0,

* window and pop menu manager *

• by darren James spruyt •

«(c) 1985 by

• darren iames sDruvt

;define variables

1015 Ipickarea

1020 xby-1

1030 yby4

1040 avail

1050 line

2000 start

2010

2020

2025

2030

2040

5000 fl

=

imp

imp

imp

imp

imp

rts

10000 popmc-nu =

10002 kiv

1000.

lOOOf
mom
1 UUUC

1000E

1001C

jsr

him
MaIda

cmp

bcc

ScOOO

$02

$0256

$0255

$0258

$0257

33,

130,

3,

136,

2,

9.

63,

16,

69,

41,

41,

33,

69,

16,

50,

32,

96,

0,

0,

1,

0,

0,

o,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

(sprite ;pick areas on

anpickarea ;add new pick area

popmenu ;pop menu

dpickarea ;delele pick area

pareasoff ;rjick areas off

*0

getval

fl

;popmenu entry

;get four

;paramelers

pickheigm ;ror input

*3 :and check

II ;for minimum

251

96

13

24

230

128

185

247

69

21

88

2

0

250

141

253

138

240

0

0,

0,

0,

0,

0

0,

0,

o,

0

0.

0,

o,

0,

0,

0,

0,

0,

144

190

136

121

252

141

248

120

141

208

2

141

160

169

15

174

96

0

198

0

0

0

0

0

17

0

0

0

0

0

0

0

0

0

0

0

The Transactor

May 1986: Volume 6. Issue O6

G

1)

N

M

II

F

El

PI

0

0,

Ni

GA

BN

PO

Mi

EO

l.N

N

EH

GP

Kl

DE

D(

BC

AE

HC

CO

LL

GG

AJ

JN

DC

AC

EM

HP

3E

3B

GN

OL

LG

vIL

CN

NL

a

NE

HJ

OK

OL

■P

A

CD

IP

AN

)P

)A

IE

MG

D

FC

CG

PI

'B

OK

K

II

0

H

II

C

R

)li

KC

\l.

o

0

N

II'1

C

ip

II

11

F

H

(i

F

■.(]

A

10011

10012

10013

10014

10016

10018

10020

10022

10024

10026

10028

10030

10032

10034

10036

10038

10040

10050

10052

10054

10056 enO

10090

10100

10200

10210

10220

10225

10230

10240

10250

10260

10270

10272

10280

10290 en2

10300

10302

10310

10320

10330

0340 enl

0350 en la

0360

0370

0375

0380

0390

0400

0402

0404

0410

0420

0430

0440 en4

0450

0460

0470

0475

0480

0490

0500 en5

0510

0515

0520

0530

0540

0550

0560

0570

0580

0640 en6

0650

0660

0670

0680

0690 en8

0700

0710

0720

0730

0740 en7

0750

0760;

0800 en3

0810 ep3

0900 ep2

0905

0907

0910

Ida pickwidlh

cmp *3

bcc

sty

jsr

MX

jsr

jsr

Idy

Ida

jsr

Idy

Ida

sta

dey

Ida

sta

Ida

Inn-

dec

dec

Ida

jsr

Idy

jsr

Idx

jsr

Idy

dey

kla

sta

dey

bmi

Ida

sta

dey

bmi

bne

Ida

sla

stx

Ida

Idx

jsr

jsr

Idx

dex

beq

cpx

beq

Idy

Ida

sta

iny

cpy

beq

Ida

jsr

sta

imp

dey

Ida

sta

stx

Ida

sec

sbc

Idx

jsr

imp

Idy

dey

Ida

sla

Ida

dey

beq

bmi

sla

imp

Ida

sla

Idx

jsr

six

jsr

Idx

cmp

fl

avail

getparam

color

$aefd

$ad9e

$65

$64

$b6db

•2

($64),y

$48

($64),y

$47

$47

enO

$48

$47

•0

copyl

•0

makep

pickheight

colorline

pickwidth

•$6e

($fb),y

enl

•$40

(Mb),y

enl

en2

•$70

($fb),y

temp

'$28

*$fb

add

colorline

temp

en3

•1

en6

•0

•$5d

($fb).y

pickwidth

en5

($47),y

corrascii

($fb).y

en4

•$5d

($fb).y

temp

pickwidth

•$02

•$47

add

en la

pickwidlh

•$7d

($fb),y

•$40

en7

en3

($fb),y

en8

•$6d

(Sfb).y

•1

revline

temp

$ffe4

temp

• B

;width and

;heigh!

;set avail fig

;gel color

;check comma

;eval input

;cln desc slk

;gel add hi

;get add lo

;dec address

;by one

;copy section

;make pntr

;'C= andS"

;" Shift and."

;"C= andA"

increase pntr

;linecnlr

;exit if done

;" Shift and-"

;get char

;lo screen

;" Shift and-"

:inc pntr

;"C = andX"

;" Shift and •"

;"C = andZ"

;sel to top

;save line

;get char

;up?

C

II

M

AK

F(

B

a

HI

FA

IL

MH

JO

BF

Al

FH

GA

PI

F<

PD

NC

KJ

MM

Bl

OF

HC

BG

HJ

CO

Fl

FM

NN

AA

DO

JP

IC

Dl

DG

OK

GO

FM

,i-:

KE

HI

ND

LO

JN

ON

MK

CK

M

)B

AH

K

DC

.\

KC

FO

KK

,B

FP

OK

H

K

G

GE

L

N

M

D

P

H

F

N

M

L

K

'J

1.

j

M

N

D

D

)

P

E

D

N

K

10920

10930 ;up

10940

10950

10960

10970

10980

HOOOepl

11010

11012

11014

11016

11020

11030

11040

11050

11060

11100 ep4

11110

11120

11130

11140

11150

11160

11170

11499;

11500 colorline

11510

11520

11530

11540

11550 ell

11560

11570

11580

12000copyl

12005

12010

12020

12030

12032

12034

2040

2050

2060

2070

2080

bin

cpx

beq

jsr

dex

imp

cm|

but

Ixa

clc

adc

cm]

br(|

jsr

in.x

imp

cmp

bne

six

Ida

jsr

Ida

sla

rts

Idy

jsr

dey

Ida

sla

dey

bpl

rts

sta

Ida

sta

Ida

sla

Idy

jsr

Ida
and

sei

sla

jsr

epl

•1

ep2

revline

ep3

n
ep4

*2

pickheight

ep2

revline

ep3

»$0d

ep2

$0257

•$80

copyl

1

avail

pickwidth

imagepntrs

color

($fd),y

ell

dir

•0

$22

•$t>0

$23

•0

makep

$01

$01

imagepntrs

2100 transfer from ($fb) to ($22)

2110

2115ep9

2120

2122 epb

2124

2126

2127

2128

2129

2130

2132epa

2134

2136

2138

2l50ep8

2160

2200 ;inc pntrs

2210

2220

2230

2240

2250

2260

2270

2275

2280

2290

2300

2310

2320

2330

2340

2400

2900 imagepntrs

2905

2910

2915

2920

2925

2930

2935

Idx

Idy

dey

Ida

bpl

Ida

sta

Ida

sta

imp

Ida

sla

Ida

sla

dey

bpl

stx

Ida

Idx

jsr

Ida

Idx

jsr

jsr

Idx

dex

bne

Ida

ora

sla

cli

rls

=

Ida

sta

Ida

ora

sla

Ida

sla

pickheight

pickwidlh

dir

epa

($22),y

($fb),y

($24),y

ep8

($lb),y

($22),y

($fd),y

($24),y

epb

temp

•$28

•$fb

add

•$28

'$22

add

imagepntrs

temp

ep9

$01

"% 0000000

$01

•

$22

$24

$23

*$04

$25

$fb

Sid

;al lopprint

;yes

;unrevrs line

;up 1

;down?

;at bottom

;ves

lunrevrs line

increase line

;is a return

:nope

;sel line num

;copy back

;data to sc

release pntr

;back to basic

ibackup pntrs

;set line

according

;finish

;set($22) to

;$b000

; make address

0

;lock irqs

;open the rom

;copy from memory

;lo screen

;copy from screen

;to memorv

;finish line

;add $28 to lib

;add $28 lo $fb

;copy pntrs

;finish all lines

;c!ose roms

;and finish up

;hackup($22)to

.($24)

;backu|> ($fb) to

NG

(II

JJ

HC

M

.11

IN

ED

DJ

GG

BK

K\

GA

HF

DN

FN

HG

HO

KG

LP

HP

FF

AE

NA

FK

OF

MK

FH

FL

HC

EF

MP

ON

LO

EP

\B

IL

MA

Hi

IE

.N

MO

KE

)F

.A

\\

IK

II.

PF

IB

DH

SB

MK

DP

E

KB

MB

IP

!E

EK

E

B

■J

DJ

B

CG

HD

O

FC

BA

BK

OL

OI

OK

BP

J

HJ

KL

D

G

A

O

IF

LI

D

H

G

KL

F

12940

12945

12950

12955

12960

13000 revline

13020

13030

13032

13040

13050

13055

13060

13070

13080

13082

13090 rvll

13100

13110

13120

13130

13135

13140

14999;

15000dpickarea

15010

15020

15030

15050

15060

15070

15080 ep7

15090

15989;

15999 pareasoff

16000

16010

16020

16030

16040

16050

16060

16070

16080

6090

6999;

9000 add

9010

9020

9030

9040

9050

9060 add 1

9069;

9100 corrascii

9110

9120

9130

9140 crl

9150

9160

9170cr2

9999;

0000 anpickarea

0010

0014 anO

0016

0020

0022

0040

0060 ep6

0100 anl

0110

0120

0130

0140

0200 getval

0210

0220

0230

0240

0250

0260

0270

0280

0285

0290

0292

0294

Ida

an(

ora

sta

rts

Idy

txa

sta

adc

tax

jsr

Idy

devVJV.J

dey

Ida

eor

sta

dey

bne

Idx

rts

isr

bes

Ida

sta

rts

Ida

rts

Ida

and

sta

sei

Ida

sta

Ida

sta

cli

rts

_

clc

adc

sta

bcc

inc

rts

=

cmp

bcc

sbc

cmp

bcc

sbc

rts

_

Idy

Ida

beq

dey

bne

Ida

rts

-

jsr

bmi

sta

rts

jsr

cmp

bes

sta

jsr

cmp

bes

sla

jsr

beq

sta

clc

adc

$fc

*$03

•$d8

$fe

*0

temp

pareay

makep]

pickwidth

(Sfb).v

*$80'
($fb),y

rvll

temp

gelparam

•17

ep7

'0

;($fd)

;.x holds line

;add pick offset

;make pntr

;get width of line

;reverse char

;back to sc

;finish line

;restore .x

;get pick are

;errorso exit

pareasopen.itdelete with 0

■Hnnp

•$fl

$dO15

$dO15

•Sea

$0315

'$31

$0314

$00,x

$00,x

addl

$01,x

;at $00,x

•$40

crl

•$40

*$80

cr2

•$40

-16

pareasopen

anl

anO

*$fe

getval

ep6

;error return

;turn areas off

1

;turn off sprite

; reset irq

;vector and

;exit

;add routine

;add value in .a

;to indirect

;correct ascii

; characters

;before placing

;on the screen

y

pareasopen.y

getparam

M0

error

pareax.y

getparam

"25

error

pareay,y

getparam

error

pickwidth.y

pareax.y

The Transactor 47 May 1986: Volume 6, Issue O6

!G

1296

1298

1300

0305

1307

0310

0312

131 1

0316

0320

0340

0350 error

0360

0380

9000 irqentry

9100

9110

9120

9130

9140

9150

9160

9170

9200

9500 retcall

9510

9520

9530 exl

_9600rrl

29610

29612

29614

29620

29630

29640

29650 afO

29660

29670

29680

29690

29700 afl

29710 a!2

29720

29730

29740

29750

29760 af3

29763

29765

29770

29780

29790

29800

30100 cup

30110

30130

30140

30145

30150

30160

30200 cdown

30210

30230

30240

30250

30260

30270

30280

30300 cleft

30310

30320 ;left

30330

30340

30345

30350

30360

30400 cright

30410

30420 ;right

30430

30440

30450

30460

30470

30500 end

30510

30520

30530

30540

cmp "4(1

bcs error

jsr getparam

beq error

sta

clc

adc

pickheight.y

pareay

cmp '25

bcs

Ida

rts

Ida

rts

•$ff

Ida ">relcall

pha

Ida *<retcall

pha

php

pha

pha

pha

jmp $ea31

Ida avail

bne rrl

jmp $febc

Ida $9d

bmi ex 1

Ida $cc

beq exl

Idy $c6

Ida $0276,y

Idx '3

cmp tablea.x

beq afl

dex

bpl af()

bmi af2

dec $c6

Ida $cb

cmp "$07

beq af3

cmp *$02

bne exl

and '$01

Idy $028d

beq cup

*3

exl

"$02

jmp cup

cmp '03

bne cdown

Idy ypos

beq end

dey

sty ypos

jmp end

cmp *1

bne cleft

Idy ypos

cpy *99

bcs end

iny

sty ypos

jmp end

cmp *02

bne cright

Idy xpos

beq end

dey

sty xpos

jmp end

cmp *00

bne end

cpy

bcs

ora

Idy

cpy

bcs

iny

stv

xpos

•159

end

xpos

;sel fake irq

;call data

;do irq

;back here

;is ok

;yes

;finish irq

;in basic

;nope

;cursor on

;yes - exit

;get last chr

;check against

;lable

;delete from

;buffer + gel

;up

;at top - ex

.ll'Vl'lMM'

;down

;at bottom -ex

increase

-left

;at led - ex

;decrease

;righ(

;at right-ex

increase

Ida $d()l()

and "%01llllll

sta $d010 :zero high bit

Ida xpos

\

J

J

E

P

F

il

F

r

A

E

P

1!

L

G

r

E

IG

F

•I

Kl

K

:p

Bl

LN

10

DB

viO

KD

DL

IB

JB

HD

KJ

Al

DK

I.I

BA

BN

GA

MO

KJ

PI

hi

OK

PK

DJ

CP

IN

Fl

OD

JL

OA

DF

F.I

BH

HD

JP

K

M

I

10

II

a

A

c

BC

M

H

LO

C

G

L

H

F

C

L

LM

1!

H

M

1

c.

M

1

F

O

)550

1560

1565

1570 ck6

0580

0590

0600

1610 ck7

1620

)630

0640

0650

1000

1010

1020

1030

1040

1050

1060

1070

1102

1104ck4

1105

1110

1120

1130

1150

31160

31170

31180

31190

51200

31210

31220

31230

31240

31250

31260

31270

31280

31290

31300

31310

31320 ckl

31350ck3

31370

31380

31390

31400

31410

31420

31999;

32000 revarea

32002

32004

32020

32120

32130

32140

32145

32150 rvll

32160 rvl

32170

32180

32190

32200

32210

32220

32230

32240

32250

32260

32270 rv2

32280

32290 dni

38000 makep

38010

38020 makepl

38030

38040

38050

38060

38070

38080

38090

38100

38110

38120 pnl

39000 setbit

asl

bcc

jsr

clc

adc

bcc

jsr

sta

Ida

asl

adc

sta

Ida

Isr

lsr

sta

Ida

lsr

lsr

sta

Idy

Ida

beq

Ida

cmp

bcc

sbc

cmp

bcs

Ida

cmp

bcc

sbc

cmp

bcs

cpy

beq

sty

Idy

jsr

Idy

sty

jsr

jmp

dey

bne

Idy

jsr

Ida

sta

jmp

=

tya

beq

jsr

Idx

Ida

sta

dec

Idj

Ida

eor

sta

dey

bpl

Ida

clc

adc

sta

bcc

inc

dex

bne

rts

=

Idx

Ida

anc

ora

sta

Ida

clc

adc

sta

bcc

inc

rts

=

:k6

setbit

•24

ck7

setbit

SdOOe

ypos

'50

fdOOi

xpos

xby4

ypos

yby4

•16

pareasopen

ck3

xby4

pareax.v

ck3

pareax.y

pickwidth.v

ck3

ybyl

pareay,v

ck3

pareay,y

x.2

set if ness.

.add offset

,set if ness.

;set lo byte

;get ypos

;set it

:/ xpos by 4

:to yield char

positions

;/ ypos by 4

;as above

y

;to the left

;lo the right

;above area

pickheight.y

ck3

ipickarea

ckl

tempi

Ipickarea

revarea

tempi

Ipickarea

revarea

$febc

;do all

ck4

Ipickarea

revarea

•0

Ipii karea

$febc

•

dnl

makep

;below bottom

;was last

;ves - no prob

;save new on

reverse last

;pick area

;get new area

;store cur pic

;reverse area

;exit irq

;open picks

;if none revrs

;last area

;set to 0

;done irq

;makepntr

pickheight.y

pickwidth.y

[cmp

temp

temp

(Sfb).y

•$80

($ib),y

rvl

$fb

'$28

$fb

rv2

$fc

rvO

•

pareav.v

$d9,x "
•$03

$0288

$fc

$ecfO,x

pareax.y

$fb

pnl

$fc

;get char

;reverse

;back to sc

;finish line

increase pntr

;finish lines

;make pointer

;at ($fb),

;to point

;to screen line

according to

;pick area in

■■y
;set msb of

SdOlO ;spritepos

»% 10000000

$dO10

'128

53248 + 21 ;turnon

"15

$07ff

avail

•0

pareasopen ;zeroopen

Ipickarea

xpos

ypos

*0

•16

;set pic loc

;set avail fig

;set last pick

;slart pos

;clear flags

9005 pha

9010 Ida

102(1 ora

9030 sta

9035 pla

9040 rts

OOOOtsprite = • ;copy sprite

1010 Idy '63

0020 Isl Ida spritedata.y

0030 sta $03c0,y ;to low memory

0040 dey

0050 bpl Isl

1010 sei ;lock irq's

1020 Ida ">irqentry

1030 sta $0315

1040 Ida «<irqentry

1050 sta $0314 ;set vector

1060 cli

1100 Ida

1110 sta

1120 Ida

1130 sta

1135 sta

1140 Ida

1150 sta

1152 sta

1154 sta

41156 sta

1160 Ida

41170 Idy

41180ts2 sta pareasopen,y

41190 dey

41200 bpl ts2

11210 Ida "24

41220 sta SdOOe

41230 Ida »50

11240 sta $dOOf

41410 rts

12000 gelparam = •

(2010 sty temp

42020 jsr $aefd

42030 jsr $b79e

42040 Idy temp

42050 txa

42060 rts

50000 spritedata = •

50010 ,byte% 11111110.%00000000. %00000000

50020 ,byte% 11100000,9600000000,S600000000

50030 .byte% 11110000.%00000000,%00000000

50040 .byte% 11011000,%00000000,%00000000

50050 ,byte% 11001100,%00000000,%00000000

50060 .byte% 11000110,%00000000,%00000000

50070 .byte%000000l 1,%00000000,%00000000

50080 . byte % 00000001. %00000000, %00000000

50100 .byte 0,0,0

50110.byte 0,0,0

50120 .byte 0,0,0

50130 .byte 0,0,0

50140 .byte 0,0,0

50150 .byte 0,0,0

50160 .byte 0.0,0

50170 .byte 0,0,0

50180 .byte 0,0,0

50190 .byte 0,0,0

50200 .byte 0,0,0

50210.byte 0,0,0

50220 .byte 0,0,0

50500tablea .byte $ll,$ld,$91,$9d

60000 [internal variables

60010 ypos . = • + !

60030 xpos • = • + 1

60050 pareasopen = •

60060 .byte 0,0,0,0,0,0,0,0,0,0,0,0.0,0,0,0,0

60080 pareax = •

60090 .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

60100 pareay

60110 .byte 0,0,0,0,0,0,0,0,0,0,0,0,0.0,0.0,0

60120 pickwidlh = .

60130 .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

60140 pickheight = «

60150 .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

60200 temp . =. + 1

60220 dir . =. + 1

60240 tempi . = . + 1

60500 color . = . + 1

;for pick areas

;sel start

;sprite pos

;check comma

;0-255 parameter

;return in .a

The Transactor 48 May 1986: Volume 6, Issue O6

Dvorak Keyboard

For The Commodore 64

Donald P. Maple

Calgary, Alberta

. . .Christopher Latham Sholes came up with the QWERTY layout

which places the most-used letters as far apart as possible. . .

The following program will redefine the Commodore 64 key

board to the Dvorak layout. This layout facilitates more effi

cient typing and reduces fatigue.

Contrary to popular belief, the keyboard layout that the major

ity of us face when using our computers is neither the first, nor

only keyboard layout available. As we all know, this keyboard

layout, ingeniously nicknamed "QWERTY", is an atavism that

computer users have inherited from the typewriter.

The invention of both the typewriter and QWERTY keyboard

can be credited to a gentleman by the name of Christopher

Latham Sholes. Often times his name will appear in reference

to the legendary QWERTY keyboard under the pseudonym of

the "Sholes" keyboard. This invention came about in the

1860's, with a patent being granted for both the typewriter and

keyboard layout together. In truth, prior to Sholes' typewriter

there were about 50 other typewriter patents in existence.

Curiously, though, the current Sholes layout is actually an

improved version of his early attempts. Namely, the original

layouts proved to be too good in that they enabled the opera

tors to achieve considerable typing speed. Contrary to what one

would expect, this was an unwelcomed feature due to the

inferior mechanics of the typewriter. The advantages of high

speed typing were quickly wasted due to the constant jamming

of the keys. To "correct" this shortcoming, Sholes came up with

the current QWERTY layout which places the most-used letters

as far apart as possible on the keyboard, thus limiting even the

most proficient typist.

At the beginning of this century, however, several research

projects were undertaken to speed up both learning to type and

the typing speed itself. This is where August Dvorak (pro

nounced Dvorzhak) came in. He invented the Dvorak Simpli

fied Keyboard (see Fig 1) which was designed to increase typing

speed and decrease fatigue by altering the arrangement of the

keys. This new arrangement was based on word sampling and

observance of often used words as well as the most common

three letter combinations (see Fig 2 for the Top Ten). The

purpose of the new layout was to minimize the movements of

the users fingers. This, again, prompted numerous studies in

comparing the efficiency of Dvorak against QWERTY; the

results showed an improvement between 20 % to 50 %. Current

belief is that the actual speed increase is in the 20% range but

the elimination of fatigue results in a 50% long term improve

ment.

In spite of these impressive statistics, the Dvorak layout has

been very slow in coming into general acceptance. It is,

however, most efficient with the English language and the

increased comfort and speed more than make up for having to

relearn typing all over again. So, while waiting for voice

recognition systems to eliminate the use of keyboards alto

gether, here goes. . .

Ladies and Gentlemen, Start Your Keyboards!

To get some hands on experience, first type in the accompany

ing Basic loader program named " DVORAK.LDR". Make sure

the program is saved before running it. The Basic loader

calculates a checksum to insure that all data is correct. If the

checksum proves inaccurate, the message "DATA ERROR"

will show up to indicate the obvious. If, on the other hand, all

goes well, you will find that your keyboard has been redefined

along the lines of the DVORAK standard.

There are some minor variations to the regular DVORAK

layout due to the uniqueness of the Commodore 64. These are

as follows:

Shifted 6 will produce a '<£' sign instead of the standard

DVORAK cent sign, which is absent with the Commodore 64.

Shifted '-' will produce the '-' instead of underdash which,

again, is absent with the Commodore 64.

Note also that the graphics characters associated with the keys

that have been moved, have also moved. This applies only to

the the graphic characters obtained while the SHIFT key is

The Transactor 49 May 1986: Volume 6, Issue O6

down. The ones obtained by pressing the Commodore key

have not moved. This is because only two of the four keyboard

tables have been redefined. The reason for moving only the

unshifted and shifted tables is because these two tables contain

the alphanumeric characters which is where the DVORAK

keyboard layout is at its strongest. In other words, this layout is

perceived as most useful in text based applications which use

graphics characters very sparingly if at all.

Finally, there has been one minor modification to the KERNAL

so that pressing STOP/RESTORE will not revert back to

QWERTY layout. This is so that if the program you happened to

be running locks-up, STOP/RESTORE will come to the rescue

while maintaining the Dvorak keyboard.

How It's Done

Before we get into the ins and outs, a few words about how the

values for individual keys are arrived at in the Commodore 64.

If you count all the keys on your keyboard, including the

function and all other special keys, the total number is 65. One

key, the SHIFT LOCK, is actually the same as the left SHIFT key

since it mechanically holds this key down. So the actual

number of keys the system can "see" is 64. These keys, which

in effect are just simple switches, are arranged into an 8 x 8

matrix, (see Fig 3) This matrix is connected to two registers of

the CIA#1 chip. One register, $DC00 (56320), connects to the

keyboard column, while the other, $DC01 (56321), connects to

the keyboard row. Without going into too much detail, these

two registers eventually yield the key number. This number is

used as an index to obtain the actual key value from the key

table. This value is what we are all familiar with when we

sample the keyboard using the GET statement in BASIC.

There are, as a matter of fact, four different key tables. The table

which is accessed is determined by the operating system based

on whether the SHIFT, Commodore or CTRL keys are pressed

in addition to "regular" keys. The four tables are at the

following addresses:

1. $EB81-$EBC1 (60289-60354) no special keys pressed

2. $EBC2-$EC02 (60355-60419) SHIFT pressed

3. $EC03-$EC43 (60420-60484) Commodore key pressed

4. $EC78-$ECB8 (60536-60600) CTRL key pressed

Each table contains 65 entries, but this is only to insure that if

the search is unsuccessful, the 65th value will be returned. This

value is $FF (255) and you will find that it is also used in place

of any invalid or unused key combination.

The " DVORAK.LDR", as mentioned earlier, pokes a short

machine language routine in the cassette buffer. This routine

basically does two things. First, the complete contents of the

operating system ROM at locations $E000 - SFFFF (57344 -

65535) are copied into the RAM below. BASIC, which is not

modified, is also copied. This is due to the fact that it is

impossible to switch the Kernal ROM out without losing BASIC

ROM as well. This is accomplished by logically ANDing loca

tion 1 with #$FD (253). Secondly, once the ROMs are copied,

the keyboard layout tables are reloaded. Only the first two

tables are modified because that is where the alphanumeric

characters reside.

This program can also be used to experiment with different

keyboard layouts. The data lines containing the key values

correspond to the keyboard matrix in Fig 3. Simply locate the

key to be modified and place the key code in the corresponding

place in the DATA statements.

Let us, for example, redefine the Fl key to perform a 'clear

screen'. A quick check in the keyboard matrix (Fig 3) reveals

that the Fl key is located in row 1, column 5. The correspond

ing location in the DATA statements, line 270, entry 5, cur

rently contains value of $85 (133). This is indeed the code for

Fl as a quick check in the Programmer's Reference Guide will

verify. If you do not have the above guide, try this short

program:

10geta$: if a$= "

20 print asc(a$)

then 10

It will wait for a key to be pressed and then show the ASCII

value of the key in decimal. So, all that is now left to do is to get

the value for a 'clear screen', which happens to be $93 (147),

and place this value as the fifth entry on line 270. Note that this

will upset the checksum which accounts for the " DATA ER

ROR" message when the program is run. Since this was

intentional, ignore it and enable the layout by typing:

SYS 820

Now press Fl and sure enough, the screen has been cleared!

Or how about changing the character colour by using one of

the F-keys? Try putting a $1C (28) as the sixth entry on line

270. This will promptly make F3 change the character colour to

red!

Conclusion

This article and the accompanying program have introduced

some keyboard concepts as applied to Commodore 64. If you

have any questions or suggestions, you can contact me either

through this magazine or directly at the address listed below.

Donald P. Maple

P.O.Box 23, Station M

Calgary, Alberta

Canada T2P2G9

The Transactor
5O

May 1986: Volume 6, Issue O6

DVORAK Basic Loader
DVORflK LRVOUT

Gl

FK

AM

AP

EK

GJ

01

EB

MP

PF

ME

CN

BH

EG

ML

CJ

IB

PF

FL

GO

MJ

KK

PL

AF

FE

Al

OE

NG

LL

MG

FN

PM

EO

KF

PP

GC

CL

10 rem save" O:dvorak.ldr" ,8

100 for i = 820 to 1017: read x$

110 h = asc(left$(x$, 1))-48: if h>9 then h = h-7

120 I = asc(right$(x$, 1))-48: if l>9 then I = I-7

130 x = h*16 + l: poke i,x: ch = ch + x: next

140 if ch<>25301 then print " ** data

error **": end

150 sys820: print " ** dvorak keyboard

enabled **": end

160:

170 data aO, 00, 84, fb, 84, fd, a9, eO

1 2 4

I* |o
j

>

sk
p

e

y

7

f

8

9

u|i|d
y

@

c r

h

b

t

:

i

■n

-

c.

!'■■■'

LOWER CRSE

a9, aO, 85, fe, b 1, fb

fd, 88, dO

dO, ef, a5

180 data 85, fc

190 data 91, fb, b1,fd, 91

200 data f5, e6, fe, e6, fc,

210 data 01, 29, fd, 85, 01, a9, 77, 85

220 data fb, a9, 03, 85, fc, a9, 80, 85

230 data fd, a9, eb, 85, fe, aO,.81,b1

240 data fb, 91, fd, 88, dO, f9, a9, e5

250 data 8d, d6, fd, 60

260 rem *** unshifted keys ***

270 data 14, Od, 1d, 88, 85, 86, 87, 11

280 data 33, 2c, 41, 34, 3b, 4f, 2e, 01

290 data 35, 50, 45, 36, 4a, 55, 59, 51

300 data 37, 46, 49, 38, 58, 44, 47, 4b

310 data 39, 43, 48, 30, 4d, 54, 52, 42

320 data 5d, 4c, 4e, 3d, 56, 53, 3f, 57

330 data 5c, 2a, 2d, 13, 01, 3d, 5e, 5a

340 data 31, 5f, 04, 32, 20, 02, 27, 03

350 data ff

360 rem *** shifted keys ***

370 data 94, 8d, 9d, 8c, 89, 8a, 8b, 91

380 data 23, 2c, d, 24, 3a, cf, 2e, 01

390 data 25, dO, c5, 5c, ca, d5, d9, d1

400 data 26, c6, c9, 2a, d8, c4, c7, cb

410 data 28, c3, c8, 29, cd, d4, d2, c2

420 data 5b, cc, ce, 2b, d6, d3, 3f, d7

430 data a9, cO, 2d, 93, 01, 3d, de, da

440 data 21, 5f, 04, 40, aO, 02, 22, 83

450 data ff

I-

i1;

$

o

■ ,■

ft r &

P|V|F

E

Q

u

J

I

* [

G JC |R |L

D

K|X

H

E

T N

M|W

+

V

UPPER CFISE

Dvorak keyboard/MaPle/FIGURE 1

j NORIi OCCIJRREHCE XRELE |

PLRCE

1

;";

4

cr

6

7

C|

10

WORD

THE

OF

RHIi

TO

R

IN

THRT

IS

WRS

HE

3LETTP

THE

FIND

I NO

I UN

ENT

Tin

EOF

HEP

TEP

RTI

DVORRK KEYBQflRD/MRPLE/FI CURE

!

i
2

3

4

5

g

7

3

KEVEORRD

1

BEL

3

cr

Q

+

£

1

RETRN

W

R

V

I

P

*

CR.RT

D

G

J

L

CTRL

DECODE TflELE

4

F7

4

p,

0

-

HOME

■—i

., ,!;~

5

Fl

C

B

M

■

R.SHF

SPflCE

6

F3

o

F

H

K

-

-7

F5

E

T

U

0

13

t

Q

3

CR.DN

L.SHF

y

H

1

/

STOP

DVORflK KEVBORRD/MflPLE/FIGIJRE 3

The Transactor 51 May 1986: Volume 6, Issue O6

Screenboard

For The Commodore 64

David Tomblin

Parksville,

British Columbia

Probably the most rewarding endeavour a computer

hobbyist can pursue is using the computer to help other

people. The following program is just such an endeavour.

In Transactor Volume 5 Issue 4 there was an article called

"Helping The Handicapped". If you missed it, the article

concerned an attachment for a wheelchair consisting of

pushbuttons on a board that could be used as a joystick

simulator. I read the article while going through my back

issues of the " T" and was inspired to write the program

you see here.

"Screenboard" is what I call this program and the name

describes it well. Because of certain physical handicaps,

the keyboard of a computer is just another obstacle for

some people. What Screenboard does is make keyboard

operation as easy as using a joystick.

When executed, the program will display keyboard char

acters in the top portion of the screen. A cursor is moved

around inside the keyboard 'window' by moving a joy

stick plugged into port 2. A key is selected by placing the

cursor over the desired character or abbreviation (eg.

CUP for cursor-up) and pressing the fire button.

On a more technical side, the program is executed

through the IRQ vector so it may not be compatible with

all software. It also works through the 'test stop key'

vector at $0328. It may be disabled by hitting the restore

key.

The PAL source code is included for anyone who wishes

to see how it works or modify it. The basic loader, for

those who don't is rather lengthy to type in but probably

worth the effort (thank goodness for Transactor disks).

I hope this program will open up the fascinating world of

computers to many handicapped people. I also hope

other computer users will use their skills to help people

less fortunate than themselves. Thanks to Phillip J.

Honsinger for the inspirational article.

Screenboard BASIC Loader Program

ND

LI

LF

DH

GK

CD

DD

Ah"

IN

DH

AM

GC

EP

KE

AG

BD

DK

KE

GG

MD

OA

El

NB

IB

PK

KG

MD

LK

MF

JK

FC

JB

HA

LM

HP

HB

OP

HL

PK

JD

IE

PI

JP

Nf

10 rem* data loader for " screenboard" *

20cs = 0

30 for i = 49152 to 49903:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>79077 then print" Idata error!":

70sys49152

80 end

100:

1000 data

1010 data

end

76

0

1020 data 0

1030 data 169

1040 data 141

1050 data 192

1060 data 41

1070 data 40

18,

0,

o,

192,

14,

173,

3,

3,

192, 14,

0, 0,

120, 169,

141, 21,

192, 173,

3,

17,

192,

192,

0,

0,

89,

3,

144,

141,

192,

141,

141,

0,.

0,

141,

173,

2,

0,

0,

20,

143,

141,

6

113

40

141

169

1080 data 96, 173, 12

1090 data 14,192,173

1100 data 145, 169, 0

1110 data 192, 32,118

1120 data 224, .6,176

1130 data 240, 255, 32

1140 data 96, 173, 0,220, 41

1150 data 133, 253,208, 8,169

1160 data 192, 76,233,192,173

1170 data 96, 169, 1, 141

1180 data 36,253,208, 86

1190 data 240

1200 data 240

1210 data 240, 14,173

1220 data 5,162,252

1230 data 165, 253, 41

1240 data 192, 201, 120, 144

1250 data 204, 192, 162

1260 data 192, 24,101

1270 data 176, 15,141

16, 192,

169, 74,

41, 3,

141, 2,

0

0

3

2

15

173

141

13,192,240, 7

141, 13,192,108

193, 56

162

192

108

133

16

32, 240, 255

6, 24, 32

49, 234

73, 31

141, 6

6, 192,208

192,169, 16

41

41

41

120

76,

31,

0,

1

2

4

144

6

165,253

2, 162,216, 165,253

2, 162, 40, 165,253

4, 192,201

76, 184, 192, 162,254

8,240, 14,173, 4

5,162, 4, 76

2,134,139,173, 4

139, 16, 4,201,200

4,192,141, 5,192

1280 data 201, 120, 144, 5, 41,252,141, 5

1290 data 192, 96,173, 4,192,201,120,176

1300 data 4, 74,

1310 data 74, 74,

1320 data 194, 201,249, 176,

76,253,192, 56,233,

24, 105, 60, 170, 189,

35,224, 37,

120

26

176

1330 data 12,189,203,194,133,203, 32, 65

1340 data 192, 32,101,193, 96,164,198,204

The Transactor May 1986: Volume 6, Issue 06

FH

NE

DM

BA

CJ

NP

CF

MK

BN

PL

ID

CA

NL

AN

HO

EP

IP

AB

NP

PP

BF

FN

KE

ND

JJ

OP

KH

AG

EL

LL

MF

JL

Fl

KA

CB

ND

JA

MP

KB

LG

CA

LC

BE

BH

DH

DK

IE

IH

NN

Cl

GJ

NH

MJ

AG

Fl

LJ

JL

PG

KK

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

data 137

data 119

data 201

data 192.

1

69

0

2

9

2

7,

16,

2,

10,

0,

41,

data

data

data

data

data

data

data

data

data

data

data

data

data 128

data 0

data 162

data 3

data 173

data 24

data 165

data 145

data 200

data 169

data 0

data 72.

data 10

data 194.

data 192.

data 169,

data 254,

data 71

data

data

data

data

data

data

data 157,

data 13,

data

data

data

data

data

data

79.

86.

51,

93,

39,

60,

42,

68,

82,

69,

76,

32,

data 84,

data 255,

data 255,

data 255,

data 32,

data

data

data

data

data

data

32,

80,

21,

39,

30,

59,

2.

2,

249,

96,

105.

255,

141.

9,

4,

141,

192,

245,

133,

192,

169,

63,

200,

216,

0,

32,

5,

237,

254,

251,

232,

64,

216,

174,

24,

133,

201,

0,

96,

72,

80,

87,

52,

32,

40,

61,

29,

249,

47,

78,

84,

76,

82,

32,

80,

255,

255,

255,

32,

32,

120,

26,

38,

31,

176,

230,

208,

56,

0,

37,

12,

1,

174,

12,

41,

32,

252,

141,

32,

204,

145,

200,

189,

239,

192,

5,

9,

173,

224,

145,

200,

10,

109,

254,

3,

141,

65,

73,

81,

88,

53,

33,

41,

62,

148,

250,

32,

32,

32,

32,

32,

32,

32,

32,

32,

32,

79,

76,

160,

29,

41,

9,
11.

8, 189,

198, 32,

6, 169,

233,250,

133,255,

255, 157,

192, 174,

174, 8,

9, 192,

192, 96,

2, 157,

71,193,

169, 0,

11, 192,

145,251,

5, 192,

251,173,

232, 224,

106, 194,

193, 41,

201,120,

192,201,

128, 133,

3, 192,

80, 48,

251,173,

202, 208,

192, 189,

11, 192,

238,

144,

189,

7,

11,

11,

66,

74,

82,

89,

54,

34,

44,

64,

20,

192,

67,

75,

83,

90,

55,

35,

46,

94,

19,

26, 194, 153

101,193, 96

127,141, 13

74, 170, 169

7, 192

192, 169

7, 192,240

192,240, 2

240, 2, 9

162, 2,189

7, 192,202

96, 173, 136

133,251, 141

162, 0,160

189, 26,194

208, 2, 9

3, 192, 153

60, 144,225

201,255,208

63, 133,254

144, 15,152

3,176, 6

254, 165,254

153, 0,216

204,162, 40

3, 192, 153

242, 96,138

7,192, 10

170, 189, 186

192,173, 11

238, 10,192

104, 170, 165

68, 69, 70

77,

84,

49,

57,

37,

58,

Screenboard PAL Source Code

251,252,

67, 85,

67, 76,

73,

72,

32,

82,

83,

67,

67,

32,

70,

79,

10,

78,

79,

43,

84,

72,

84,

79,

42,

70,

75,

28,

78

85

50

91

38

59

17

45

253,254, 255

80, 32, 67

70, 32, 67

83, 32, 68

32,

32,

76

32

48

56

36

63

32, 145

147, 43

33, 34,

62, 17,

23, 25,

16, 19,

77,

32,

78,

70,

76,

77,

32,

32,

32,

20,

37,

13,

12,

24,

67

45

32, 83

58, 255

58,255

58,255

32,

79,

0,

18.

42,

60,

35,

27,

47

78

40

14

36

22

56

32

FD

DG

NF

FJ

CA

GD

BK

AC

NC

MJ

OD

IE

EE

HN

GG

BC

CG

ML

NM

KE

DA

PO

BF

AM

JG

EN

JO

FL

OP

EA

BN

DJ

KN

NF

JP

JF

MO

DD

CD

IN

KG

EG

BK

BO

HN

PF

MO

JJ

MO

PN

00

FL

PA

LP

NL

AB

KK

FL

LG

FM

Al

EF

ML

AF

KF

LJ

BK

BO

KO

Ml

GJ

CJ

IL

BH

HB

ND

100sys700

110; "screenboard"

120 ; joystick-controlled on-screen

130 ; keyboard

140;

150 ;original program by david tomblin

160 ;this version jan86 -cz

170;

180; from

190 ; " The Transactor"

200;

210;

220 .opt oo

230 « = $c000

240;

250 chrout

260 plot

270 screen

280 joymask

290 temp

300 temp2

310xadd

320 joy

330;

340

350;

360 colour

370sindex

380 rvschar

390 movflg

400 keyflags

410

420

430

440togcnt

450 tog2

460 flagim

470 stopflg

480 olkvec

490 olstop

500;

510 start

520

530

540

550

560

- $ffd2

SfffO

$fb

$fd

= $fe

$ff

= $8b

56320

jmp start

.byte 14 ;screenboard colour

.byteO ;screen index

.byteO

.byteO

= *

.byteO ;shift off/on/lock

.byteO ;ctrl off/on/lock

.byteO ;commdr off/on/lock

.byteO

.byteO

.byteO

.byteO

.word 0

.word 0

s= *

sei

Ida #<irqrtn ;irq vector

sta $0314

Ida #>irqrtn

sta $0315

570 ;save keyboard vector

580

590

600

610

Ida $028f

sta olkvec

Ida $0290

sta olkvec+1

620 ;change the stop vector

630

640

650

660

670

680

690

700

710

720

730;

740;

750 newkbd

760

770

780

790;

800;

810 newstop

820

830

840

850

Ida $0328

sta olstop

Ida $0329

sta olstop +1

Ida #<newstop

sta $0328

Ida #>newstop

sta $0329

Cll

rts

= * ;new keyboard setup rtn

Ida flagim ;shift/c = /ctrl

sta 653

jmp (olkvec)

= *

Ida stopflg

beq nostop

sta $91

Ida #0

The Transactor 53 May 1986: Volume 6, Issue O6

OB

JD

OD

AP

KP

CL

ON

DC

FD

IE

MA

OC

HC

EF

CO

FG

KE

PC

MP

AJ

KJ

IC

DJ

GA

HA

LO

LA

FF

JP

AA

DM

AJ

FO

DJ

FD

Ml

CG

LD

PC

CD

DE

IK

MD

BG

EC

CB

AD

PG

DJ

JE

IG

ID

MO

MF

AM

JM

DN

FK

ON

BA

OM

NF

GK

KF

CJ

FD

LD

CP

PE

El

HF

KN

KA

MK

AF

FD

IN

IE

860

870 nostop

880

890 ;

900;

910 irqrtn

920

930

940

950

960

970 ;yes it is,

980

990

1000

1010crsok

1020

1030

1040

1050;

1060;

1070 scmove

1080

1090

1100

1110

1120

1130

1140

1150

1160scm0

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280 semi

1290

1300

1310

1320

1330 scm2

1340

1350

1360

1370

1380

1390

1400

1410

1420sub2

1430

1440scm3

1450

1460

1470

1480

1490

1500

1510

1520

1530 add2

1540

1550;

1560 scm4

1570

1580

1590

1600

1610

1620

1630

sta

=

jmp

_

jsr

sec

jsr

cpx

bcs

stopflg

*

(olstop)

drawscrn

plot

#6

crsok

;draw screenboard

;check cursor pos

;see if it's in scrnbrd

;no it isn't

Tiove cursor down

Idx

clc

jsr

jsr

jmp

rts

=

Ida

and

eor

sta

bne

Ida

sta

jmp

Ida

bne

Ida

sta

Ida

bit

bne

Ida

and

beq

Idx

=

Ida

and

bee

Idx

=

Ida

and

beq

Ida

emp

bec

Idx

jmp
=

Idx

=

Ida

and

beq

Ida

emp

bec

Idx

jmp

Idx

=

stx

Ida

clc

adc

bpl

emp

bcs

#6

plot

*

scmove

$ea31

t

joy

#31

#31

joymask

scmO

#0

movflg

nostor

*

movflg

nostor

#1

movflg

#16

joymask

keypush

joymask

#1

semi

#-40

*

joymask

#2

scm2

#40

#

joymask

#4

scm3

sindex

#120

sub2

#-4

scm3

*

#-2

*

joymask

#8

son4

sindex

> #120

add2

#4

scm4

*

#2

»

xadd

sindex

xadd

stornew

) #200

nostor

;scrnbd cursor move

;move sc cursor row, col

;stick moved

; moved last time

;fire button bit

;enter key

;check up

;not up, check down

;up, subtract 40

;check down

;not down, check left

;down, add 40

;checkleft

; not left, check right

;subtract 2 for top rows

;subtract 4 for bottom 2

;left, subtract 2

;check right

;not right

;keep sb cursor

;in bounds

ME

Ol

FO

OA

AL

CM

BC

BJ

EK

ID

CE

OG

OL

LM

JP

HM

PG

NH

DP

HK

Dl

EF

OF

EM

EL

OM

CO

BE

BA

OD

FO

CD

Fl

IG

NF

PK

El

DM

AA

KN

OG

AG

KF

LE

NE

LK

FJ

AC

GG

KE

IE

MN

GO

AJ

BO

LK

IC

EG

IJ

MC

PB

LE

FA

IP

DL

PN

JN

BM

LD

Al

Kl

HJ

OK

MH

HD

MJ

LA

IH

1640 stornew

1650

1660

1670

1680

1690

1700

1710 nostor

1720

1730;

1740;

1750 keypush

1760

1770

1780

1790

1800

1810 kps1

=

sta

sta

emp

bec

and

sta

=

rts

=

Ida

emp

bcs

Isr

jmp

=

*

sindex

rvschar

#120

nostor

#%11111100

rvschar

*

*

sindex

#120

kps1

a

kps2

*

1820 ;in bottom 3 rows

1830

1840

1850

1860

1870

1880

1890kps2

1900;

1910

1920

1930

1940

1950 normc

1960

1970

sec

sbc

Isr

Isr

clc

adc

=

tax

Ida

emp

bcs

=

cpx

bcs

#120

a

a

#klen

*

keys.x

#249

special

*

#37

kbuf

;last 2 rows in 4s

;enter key

;" top 3 rows?

;no

;yes, just divide by 2

;get key from table

;special character

; normal character

;check, alphanumerics

;no, use kbd buffer

1980 ;yes, use custom keyboard trap

1990

2000

2010

2020

2030

2040;

2050 kbuf

2060

2070

2080

2090

2100

2110

2120 kbuf 1

2130

2140

2150;

2160;

2170 special

2180

2190

2200

2210

2220

2230;

2240 spl1

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360;

Ida

sta

jsr

jsr

rls

=

Idy

cpy

bcs

Ida

sta

inc

=

jsr

rts

=

emp

bne

Ida

sta

rts

=

sec

sbc

Isr

tax

Ida

adc

sta

Ida

eor

and

sta

2370 makimag =

2380

2390

2400

2410

Ida

sta

Idx

beq

keycodes,

203

newkbd

killtog

*

198

649

kbufi

keys.x

631,y

198

*

killtog

*

#249

spl1

#$7f

stopflg

*

#250

a

n

#0

temp2

keyflags.x

temp2

temp2

keyflags,x

*

#0

flagim

keyflags

nk1

< ;get key code

;last key

; print the character

;kill shft/ctri/comm

;# chars in buffer

;max buffer size

; buffer full

;get key from table

;putin kbd buffer

increment buf pointer

;handle special chars

;stop key

;must be shift/ctrl/comm

;1 if c set, 2 if clr

;switch on/off or

; lok/off toggle

;set up key image

The Transactor 54 May 1986: Volume 6, Issue 06

EF

JM

PD

DK

PH

FP

JG

OM

FK

BC

OB

OM

CG

MG

EO

FF

OE

JE

HL

LJ

DP

PG

NJ

GE

KN

EO

IC

FK

IL

Bl

KA

HN

CC

FA

DB

OB

DG

GK

AG

MM

NH

Ml

IL

BO

MA

GP

CK

HJ

ED

<D

AE

GE

CP

KP

GE

KO

AO

IJ

FF

AF

PC

IK

LI

Dl

MH

EG

PL

il

JD

JN

BG

LB

AD

JP

JN

PM

MC

IN

2420

2430 nk1

2440

2450

2460

2470 nk2

2480

2490

2500

2510 nk3

2520

2530

2540;

2550;

2560 killtog

2570

2580 kill

2590

2600

2610

2620

2630

2640

2650

2660;

2670 ;

ora

=

Idx

beq

ora

=

Idx

beq

ora

=

sta

rts

=

Idx

=

Ida

and

sta

dex

bpl

jsr

rts

2680 drawscm =

2690

2700

2710

2720

2730

2740

2750

2760

2770 dr1

2780

2790

2800

2810

2820

2830

2840

2850 norvs

2860

2870

2880

2890

2900

2910

2920

2930

2940;

Ida

sta

Ida

sta

sta

sta

Idx

Idy

=

Ida

sta

Ida

and

cpy

bne

ora

=

iny

sta

Ida

sta

iny

inx

cpx

bcc

#1

*

keyflags +1

nk2

#4

keyflags+ 2

nk3

#2

*

flagim

♦

#2

»

keyflags,x

#2

keyflags,x

kill

makimag

♦

648

screen +1

#0

screen

togcnt

tog2

#0

#0

*

#32

(screen).y

keys.x

#63

rvschar

norvs

#128

♦

(screen),y

colour

$d800,y

#klen

dr1

2950 ;print bottom two kbd rows

2960

2970 dr2

2980

2990

3000

3010

3020 notog

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160 norvs2

3170

3180

3190

The Transactor

Idx

=

Ida

cmp

bne

jsr

=

and

sta

Ida

cmp

bcc

tya

clc

sbc

cmp

bcs

Ida

ora

sta

=

Ida

sta

Ida

#0

#

xkeys.x

#255

notog

drawtog

•

#63

temp

rvschar

#120

norvs2

rvschar

#3

norvs2

temp

#128

temp

•

temp

(screen),y

colour

;kill 1-time keyflags

;draw screenboard

;screen page

;check for revers chr

;set high bit to rvrs

character counter

;toggles

;printoff,on,or lok

;check highlight chr

;none to highlight

;highlight

; three characters

; if option

; is selected

NM

KG

AH

LO

FL

IC

HO

KD

EC

AC

EK

AF

FE

CO

DM

JB

MA

AK

KK

IK

MP

GA

IN

IK

JB

GG

FM

EA

KL

NG

KD

BG

AB

KP

KA

NP

HP

NN

KG

NL

IJ

FO

BJ

KB

OK

IL

AN

KG

MH

BG

GB

LB

PP

CD

FE

KM

GC

EC

HJ

LJ

MA

IF

KF

MG

GN

Al

JF

LG

ML

Nl

Note:

3200

3210

3220

3230

3240

3250;

sta $d800,y

iny

inx

cpx #xklen ;# of chars

bmi dr2

3260 underline keyboard

3270

3280 dr3

3290

3300

3310

3320

3330

3340

3350

3360

3370;

3380;

Idx #40 ;print 40 chars
= *

Ida #64 underline char

sta (screen),y

Ida colour

sta $d800,y

iny

dex

bne dr3

rts

3390 drawtog = *

3400 ;print off, on, or lock message

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590 tgl

3600

3610

3620

3630

3640;

3650;

3660 keys

3670 .asc

3680 .asc

txa

pha

Idx togcnt ;O = shft, 1 = Ctrl, 2 = com

Ida keyflags,x ;off, on, or lok

asl a

asl a ;x4 to point to togtext

clc

adc tog2

tax

Ida togtext,x

sta temp

inc tog2

Ida tog2

cmp #3

bcc tgl

inc togcnt

Ida #0

sta tog2

= *

pla

tax

Ida temp

rts

= ,

abcdefghijklmnopqrs "

tuvwxyz0123456789[] "

3690 .byte 33,34

3700 .asc

3710 klen

#$%&'(),.?:;< = >@t "

•-keys

3720 ctrlchrs = •

3730. byte

3740 .byte

3750 .asc

3760;

3770 xkeys

3780 .asc

3790 .asc

3800 xklen

3810;

145,17,157,29,148,20,19,147,43,45

13,249,250,251,252,253,254,255

= *

cup cdn elf crt ins del hom clr + -

rtn stp shf:iran Cthmm com:nnn • / '

= *-xkeys

3820togtext .asc "off on lok"

3830;

3840 x40

3850;

.byte 0,40,80,120,160

3860 keycodes= *

3870 byte 10,28,20,18,14,21,26,29,33,34

3880. byte 37,42,36,39,38,41,62,17,13,60,22,30,31,9

3890.byte 23,25,12,35,56,59,8,11,16,19,24,27,32

The sets of three n symbols in line 3790 are obtained by typing

pi's, however, they will appear as 'checkerboards' in lower case mode.

55 May 1986: Volume 6, Issue O6

Crystal Ball

For The C64 or VIC 20

Ian Adam

Vancouver,

British Columbia

This time of year is one when many sports leagues are very

active, and will all too soon come to their seasons' conclusions.

Football leads to play offs and championship games, followed

by hockey and basketball. These activities quickly become

'media events', with a great deal of coverage, fan interest, office

pools, and so on.

We've all seen many computer games based on sports — those

arcade-like games may be realistic simulations of actual sports,

or they may be only loosely based on the real thing. I have also

seen programs before that will keep track of players' or teams'

performance, even tell you which player deserves the game

ball on the basis of actual performance. Here's a computer

sports application that's very different, however, and it's one

that I've never seen described before. This program makes the

leap from the game ball to the crystal ball - it will actually

"predict" the performance of a number of athletes over a series

of future games. Based on a compilation of past player perform

ance, team records, and your prediction of team success, this

method is ideally suited to estimating player points over the

second half of the season, or to calculating expected point

production during play offs.

Applications

The Crystal Ball was originally developed for the hockey play

offs, and has been very successful at that application. For our

The Transactor 56 May 1986: Volume 6, Issue O6

southern readers, these play offs involve sixteen teams playing

up to 89 games in order to decide the winner of the historic

Stanley Cup. Predicting the winner of the Cup can be interest

ing, deciding whether the New York Islanders or Edmonton

Oilers will continue whipping the other teams. However, a

popular challenge is for a group of fans to get together and try to

predict the relative performance of individuals among the 320

players in the play offs. Since the point production of each

player may depend on his abilities, the number of games his

team stays in the play offs, and the calibre of the opposition,

this prediction can be a complex task. This program is ideal for

that purpose.

However, it can be equally well applied to a variety of other

situations and sports. Most team sports keep track of player

production, whether it is hits in baseball, yards gained in

football, or dollar value of endorsements. TV networks employ

armies of statistical experts to compile and convey this informa

tion to the fans. Predicting these statistics can be both enjoy

able and challenging; while this program won't do the whole

job, it can be a very valuable assistant.

The program itself is straightforward. Much of its length is

taken up by making it 'user-friendly', and your effort in typing

it in will be repaid many times when using it. It's all in BASIC,

so there's nothing too complicated or problematic. After indica

ting the number of teams and players, RUN the program. All

functions are controlled by the main menu. Once you have

entered the necessary data, instruct the program to proceed to

calculate expected performance, and prepare lists of players

ranked by performance and alphabetically. The results are

most useful when directed to your printer.

Because of its ample memory, the 64 is ideal for this task. The

program is presently configured for analysis of up to 200

players' performance, but could easily be increased to 500 or

more. A disk drive makes the task of storing and retrieving data

much faster. For the VIC 20, at least 3K of expansion memory

would be needed to run the full program, but 8K or more would

allow the analysis of more meaningful numbers of players. A

stripped-down version is also supplied for the minimum-

configuration VIC, modified to use a tape drive instead of disk.

With the small number of players you can analyze without

memory expansion, the speed of tape storage is not a problem.

Using The Program

So that you can understand the capabilities of the program

fully, let's look at the roles of the menu items and subsections:

1. Parameters. Before starting, set the parameters in lines

1220 and 1230 to suit. NT is the exact number of teams you will

be examining. M is the maximum number of players to be

analyzed and is limited solely by available computer memory.

2. Main Menu. When you RUN the program, you will be

presented with the menu. Selections can be made by pressing

either a number key or the corresponding function key. If you

want to load an existing file from disk or tape, press selection 3

and give the file name. Otherwise, press 1 and start with team

data. Choosing any of the other selections at this point would

just generate some garbage.

3. Team data. For each team, you must specify:

• a name;

• the number of games of historical data available;

• the team performance over those games (expressed as

game points, 2 for a victory, 1 for a tie, 0 for a loss);

• the number of wins and losses expected over the forecast

period (the rest of the season, the play offs, or whatever).

The program will prompt for as many teams as you named in

line 1230. At any time, you can press RETURN to the name

prompt and quit, but you CANNOT then go back and add more

teams.

When you have finished entering team data, the computer

displays a list of the teams so you can verify the data you

entered. Any errors at this stage will be carried forward, so

check the data carefully. The computer also adds up total

expected wins and losses for all teams. Normally, since each

game has a winner and loser, the totals should be the same. If

they are different, you may wish to go back and adjust some of

your projections. When all is ok, press N for 'no changes', to

return to the main menu.

In this segment, the program also calculates a performance

factor for each team, based on historic and projected wins and

losses (line 1640). A basic assumption is that players will score

more points on a team that is winning. A winning score ratio of

5 to 3 is used, which is typical of most sports such as football,

hockey, or baseball; for example, a football score might be 28 to

17. One exception to this ratio would be basketball, in which

the point spread between winners and losers is typically 10%

or less.

4. Player Data. From the main menu, press 2 to enter player

data. For each player, you must enter:

• his/her name;

• a team. You may specify a team by its full name, any

abbreviation, or its number in the list;

• the number of games for which historical data is available;

• point production during those games. You can use any

measure of production, goals, baskets, yards, whatever, as

long as it is consistent from one player to another.

You can quit at any time by pressing RETURN when prompted

for the name. You will then see a list of all players and their

data, one screen full at a time. You will then be asked if there

are any changes to be made. If so, press Y, specify the player by

number on the list, and enter the revised data as prompted.

The Transactor 57 May 1986: Volume 6, Issue O6

Simply press RETURN for any item that does not need to be

changed.

If you're getting tired of typing, press N for 'no changes', and

return to the main menu. At this point, it is a good idea to save

the data to disk or tape. You can come back to this function

later to add more players, and the program will remind you

where you left off.

5. Calculate and sort. Don't select this option until you have

entered the team and player data; also, if you subsequently

change any of the data, you will have to come back and repeat

this function. This menu selection includes three basic steps:

• each player's projected performance is calculated, based

on all the data entered for the player and the team. The

results are displayed as calculated.

• the players are ranked in order of maximum production.

• as a cross-index, an alphabetical listing of players and

rankings is also produced.

The two rankings are performed by a shell sort in BASIC;

although this is very efficient, the sort times do increase with

the number of players. If you have many players, take a coffee

break. When the two listings are ready, you have the option of

viewing or bypassing each one; they go by fast, so use the

CONTROL or STOP key if you want to peruse them on the

screen.

If any player has fewer than 25 games of historic data, this

tends to cast doubt on the statistical validity of the projection

because of the small sample size. The program flags this

situation beside the player's listing. In football, however, the

shorter season would dictate a different threshold, say 10

games. Make the necessary adjustment in line 2430 of the

program.

6. Show results. Menu selection 6 allows you to review the

rankings without waiting through the calculate and sort steps.

Needless to say, the calculating and sorting must have been

done previously, or you will get garbage.

7. Print out. Menu selection 7 will send all of the team data

and player rankings to your printer. This is the only practical

way to review extensive performance listings. A Commodore

printer is supported, or any other printer that responds to

device #4 on the serial port.

8. Load or Save. Menu selections 3 and 4 provide access to a

disk or tape file. All team and player data are saved, but the

predictions and rankings are not. After reloading the file using

selection 3, you can make any necessary changes to the data,

then proceed to calculate, sort, and print the results.

Modifications

The main program listing runs as-is in the Commodore 64, and

would require minimal modification for PET/CBM's. It will also

run in a VIC with at least 3K of expansion memory if you delete

the REM's, but 8K would be preferable. For the VIC, make the

changes to lines 1270 and 2900 as shown at the end of the

program. The version for the minimum-configuration VIC

deletes a lot of the frills such as sound, tidy columns, abbrevia

tions, and function keys. It also has a greatly-reduced capacity

for storing team and player data, and assumes tape instead of

disk access.

Whatever your sport, 1 hope you find this program to be a

useful and interesting tool. Is the Crystal Ball perfect? Of course

not — there are many intangible factors that can affect a

human athlete's performance. One injury can eradicate the

most carefully planned prediction. I'm pleased to report, how

ever, that with our input and the Crystal Ball's help, we did win

first place in the office pool. May it work as well for you!

Crystal Ball For The C64 and Expanded Vic-20

FN

MD

HO

GA

EH

BK

DA

AC

NK

IP

FE

cc

LK

AE

GG

DP

KG

ML

BG

KB

GH

OC

AM

GE

ME

KL

FF

NJ

OD

EN

1000 rem save" 0:crystal ball 64" ,8

1010 rem ** the crystal ball for 64 and expanded vie

1020 rem ** written by: ian adam, Vancouver, b.c.

1030cs$ = chr$(147): yl$ = chr$(30): pk$ = chr$(28):

bk$ = chr$(144): bn$ = chr$(151)

1040 print cs$: goto 1220

1050 b = 1: rem numeric descending sort

1060 b = 2*b: if b<np then 1060

1070 b = b/2: if b<1 then return

1080 for i = 1 tonp-b: c = i

1090 d = c + b: if pl(ix°/o(c)) = >pl(ix°/o(d)) then 1110

1100 a = ix°/o(c): ix%(c) = ix%(d): ix°/o(d) = a: c = c-b:

if c>. then 1090

1110 next: goto 1070

1120 b = 1: rem alphabetic ascending sort

1130b = 2*b: if b<np then 1130

1140 b = b/2: if b<1 then return

1150 for i = 1 to np-b: c = i

1160 d = c + b: if pl$(ix%(al%(c)))< = pl$(ix°/o(al°/o(d)))

then 1180

1170 a = al%(c): al°/o(c) = al%(d): al°/o(d) = a: c = c-b:

if c>. then 1160

1180 next: goto 1140

1190:

1200: start program

1210:

1220

1230

1240

1250

1260

1270

dim c,d,i,b,a: m = 200: rem max# players

nt = 16: rem # teams

1280

1290

dim ix°/o(m),al°/o(m),pl$(m),pl(m)

dimpl%(m,3),tm$(nt),tm°/o(nt,3),tm(nt),p$(m)

w = 54276: poke w-3,70: poke w-1,2:

poke w + 2,246: pokew + 20,15: poke 53281,1

for i = 1 to m: ix°/o(i) = i: al°/o(i) = i: next

for i = 1 to nt: tm$(i) = " ": next

The Transactor 58 May 1986: Volume 6, Issue O6

II

DF

MJ

NJ

DF

GH

JM

AJ

NF

EB

NM

FP

Al

IM

HL

CF

HB

CM

MD

LC

AF

IB

PL

EJ

HJ

FO

HC

IJ

AF

JC

HH

KP

GC

BD

01

AP

PJ

EA

ME

MN

KC

GJ

HA

KO

00

GF

JP

HE

IP

LC

CJ

1300:

1310: rem menu

1320:

1330 print cs$

1340 print bk$" [5 spcs]the crystal ball"

luUpJJ, |_T\>J> —— — — — — — — — — — __ — __ LJr\CP

1350 print: print " 1. enter team data"

1360 print: print " 2. enter player data"

1370 print: print " 3. load data from disk"

1380 print: print " 4. save data to disk"

1390 print: print " 5. calculate and sort"

1400 print: print " 6. show results"

1410 print: print " 7. print out results"

1420 print: print: print " 8. terminate"

1430 print

1440 gosub 2890: c = val(r$) + 1

1450 if asc(r$)>132 then c = 2*(asc(r$)-132) +

7*(asc(r$)>136)

1460 one gosub 2820,1510,1940,1690,2220,2390,2470,

2600,2820

1470 goto 1330

1480:

1490 : enter team data

1500:

1510 print cs$: print "[7 spcs]team data": if tm°/o(nt,1)

then 1570

1520 for t = 1 to nt: a$ = ""

1530 print: print: input " enter team name" ;a$

1540 gosub 2900: if a$ = "" then 1570

1550 tm$(t) = left$(a$ + " [9 spes] ",11)

1560 gosub 1620: next

1570 gosub 3020

1580 print: print " change any values (y/n)?":

gosub 2890:if r$ = " n" then return

1590 input " which team " ;a$: gosub 2940: if f then 1600

1600 gosub 1620: goto 1570

1610 : get details

1620 print: input " games played, team pts" ;d,

tm%(t,1):gosub2900

1630 print: input "expected wins, losses" ;tm%(t,2),

tm%(t,3): gosub 2900

1640 tm(t) = d*(3*tm°/o(t,3) + 5*tm°/o(t,2))/(3*d + tm°/o(t, 1))

1650 return

1660:

1670: load disk data

1680:

1690 print cs$;yl$: print " [4 spcsjload data from disk"

1700ifnp = 0then 1730

1710 print: print: print pk$"sure you want to lose this data?"

1720 gosub 2890: if r$<>" y" then return

1730 print: print: print pk$" load which file?";

1740 input df$: gosub 2900

1750 r$= "0:" +df$+ ",s,r"

1760 open 15,8,15, "i": open 8,8,2,r$: gosub 3210:

input#8,a$

1770 if left$(a$,7) = " crystal" then 1800

1780 print cs$;pk$: print " incompatible file" bk$" " df$:

print a$

1790 gosub 2890: close 8: close 15: return

1800 input#8,a,np

1810 if np>m or a>nt then 3270

HC

IA

EP

FL

FB

CB

MP

II

KO

EF

OP

PM

DB

IC

FE

JM

PF

PH

CG

GC

--

NJ

KG

FB

CL

KB

KO

PK

CA

NP

EH

CG

CN

MB

NB

Ol

CA

PJ

GB

FJ

LF

AL

LL

JH

EC

KJ

ON

GL

PJ

LO

EN

OL

KE

MK

PN

1820 nt = a: for i = 1 to nt: input#8,tm$(i),tm(i)

1830 tm$(i) = left$(tm$(i) +"[11 spes] ",11)

1840 for j = 1 to 3: input#8,tm%(i,j)

1850 next: next

1860 for i = 1 tonp: input#8,pl$(i)

1870 for i = 1 to 31 inDut#8 d\%(\ \)1 \S 1 \J 1 \J 1 I 1 \ ■- ' ■-*' i III k~r ',J L II V_> , L_J 1 * ^* V 1 1 /

1880 next: next

1890 close 8: gosub 3210: close 15

1900 return

1910:

1920 : enter player data

1930:

1940 print cs$" [4 spesjenter player data": print

1950 if np = m then 2060

1960 if np then print " last player: " pl$(np),tm$(pl°/o(np, 1))

1970 for i = np+ 1 to m

1980 print: print " player, team name or #, games, points"

1990 r$= "": a$= "": print i;

2000 input r$,a$,pl%(i,2),pl%(i,3): gosub 2900

2010 if r$ = "" then 2060

2020 if pl°/o(i,2) = 0 then print pk$" i can't handle

that"bk$"!l": goto 1980

2030 pl$(i) = left$(r$ + " [8 spes] ",10)

2040 gosub 2940: if f then 1980

2050 pl%(i,1)=t: np = np+1: next

2060 gosub 3120

2070 print: print " change any data (y/n)?": print

2080 gosub 2890: if r$ = " n " then return

2090 i = 0: print: input "player* ";i: gosub 2900:

if i = 0 then 2060

2100 print pl$(i)tm$(pl%(i,1))pl°/b(i,2),pl%(i,3)

2110 print: print: print " change data or press return:": print

2120 print pl$(i);: input " or" ;pl$(i): gosub 2900

213Oa$ = tm$(pl°/o(i,1)): printa$;: input "or";a$

: gosub 2900

2140 print pl°/o(i,2);: input " games, or" ;pl°/o(i.2): gosub 2900

2150 print pl°/o(i,3);: input " points, or" ;pl%(i,3): gosub 2900

2160 pl$(i) = left$(pl$(i) + " [8 spes]", 10): gosub 2940:

if f then 2090

2170pl%(i,1) = t

2180 print: print pl$(i)tm$(pl°/o(i,1))pl%(i,2)pl°/o(i,3):

goto 2090

2190:

2200 : save data to disk

2210:

2220 print cs$;yl$: print " [4 spcs]save data to disk"

2230 print: print: print " save under what name?": input df$

2240 df$= "0:" +df$+ ",s,w

2250 open 15,8,15, "i": open 8,8,2,df$

2260 print#8," crystal": gosub 3210

2270 print#8,nt: print#8,np

2280 for i = 1 to nt: print#8,tm$(i): print#8,tm(i)

2290 for j = 1 to 3: print#8,tm°/o(i,j)

2300 next: next

2310 for i = 1 to np: print#8,pl$(i)

2320 for j = 1 to 3: print#8,pl°/o(i,j)

2330 next: next

2340 close 8: gosub 3210: close 15

2350 return

2360:

2370 : calculate & sort results

The Transactor 59 May 1986: Volume 6, Issue O6

AM

JJ

CC

OL

AJ

BE

DP

AO

BF

AN

NC

PF

PD

KG

CN

HL

AC

ED

PA

OH

Ml

CJ

LK

LH

Gl

LJ

PA

CB

BH

CH

NC

FP

BD

PO

EK

MN

HC

HD

DG

HO

AG

KF

IG

OG

2380:

2390 if np = 0 then print " enter data first!": gosub 2890:

return

2400 print: print "calculating"

2410 d = 3: b=10: a = 2: for i = 1 to np:

p = int(pl°/o(i,d)*b*tm(pl%(i,1))/pl°/o(i,a))

2420 pl(i) = p: a$ = right$(" [2 spcs]" + str$(p),4):

p$(i) = left$(a$,3) + "." + right$(a$, 1)

2430 if pl°/o(i,a)<25 then p$(i) = p$(i) + " *• " +

str$(pl°/o(i,a))+ " games"

2440 print i,pl$(i)p$(i): next

2450 print: print: print: print "sorting. . .": gosub 1050:

gosub 1120

2460 print: print " sorted ": print: gosub 2900

2470 print " want to see the ranking?": print: gosub 2890:

if r$= "n" then 2510

2480 print pk$ " rank[3 spcs]player[5 spcs]team

[6 spcs]production" bk$: print

2490 for i = 1 tonp: a = ix%(i)

2500 print i tab(7) pl$(a)" " tm$(pl%(a, 1))" [2 spcs]"

left$(p$(a),8): next

2510 print: print: print "want to see the alpha list?"

2520 gosub 2890: if r$ = " n" thenreturn

2530 print: print spc(7)pk$" alphabetical list" bk$: print

2540 for i = 1 to np: a = al°/o(i): print a tab(7);

2550 a = ix°/o(a): print pl$(a)" "tm$(pl°/o(a,1))" [2 spcs]"

left$(p$(a),8): next

2560 gosub 2890: return

2570:

2580 : printout

2590:

2600 open 4,4: a$ = chr$(10)

2610print#4,a$;a$;chr$(14);

2620 print#4, "*** crystal ball ***"chr$(15)

2630 print#4,a$;a$;a$;chr$(14)" [3 spcs]teams" chr$(15)

2640 print#4,a$" [6 spcs]team[8 spcs]wins[4 spcs]

losses "a$

2650 for i = 1 to nt: a = tm°/o(i,2)

2660 print#4,right$(" [2 spcs]" + str$(i) + " [3 spcs]" ,6)

tm$(i)" [2 spcs]" a;spc(5-(a<10))tm°/o(i,3)

2670 next

2680 print#4,a$;chr$(12);chr$(14)"[3 spcs]rankings"

chr$(15)

2690 print#4,a$" rank[2 spcs]player[6 spcs]team[5 spcs]

production "a$

2700 for i = 1 tonp: a = ix°/o(i)

2710 print#4,right$(" [2 spcs]" + strS(i) + " [3 spcs]" ,6)

pl$(a)" [2 spcs]" tm$(pl°/o(a, 1))" [3 spcs]" p$(a)

2720 next

2730 print#4,a$;chr$(12);chr$(14)" [3 spcs]alphabetical

list" chr$(15)

2740 print#4,a$" rank[2 spcs]player[6 spcs]team[5 spcs]

production" a$

2750 for i = 1 tonp:a = al%(i)

2760 print#4,nght$(" [2 spcs]" + str$(a) + " [3 spcs]" ,6);

2770 a = ix°/o(a): print#4,pl$(a)" [2 spcs]"

tm$(pl°/o(a,1))" [3 spcs]" p$(a)

2780 next: close 4: return

2790:

2800 :* end

2810:

MA

MO

HC

CC

AK

Al

EL

EN

MH

CN

BP

GO

CC

MG

IJ

DN

II

CC

MA

GD

AE

LH

CG

CD

PN

KN

EC

Gl

Gl

KJ

MJ

IM

ME

EF

KJ

LE

AO

IF

EP

HF

NE

KL

MB

MM

AD

FG

Jl

PF

OO

CG

OH

IE

2820 print cs$: print " sure you want to lose the data? ": print

2830 gosub 2890: if r$<>" y" then return

2840 print " bonne chance!"

2850 end

2860:

2870 : keyboard & beep

2880:

2890 poke 198.0: wait 198,3: get r$

2900 poke w,65: for tx = 1 to 80: next: poke w,0: return

2910:

2920 : identify team

2930:

2940 f = 0: a = val(a$): if a then if a< = nt then t = a:

print tm$(t): return

2950a$ = left$(a$,11)

2960 for t = 1 to nt: if a$ = left$(tm$(t),len(a$)) then

print tm$(t): return

2970 next: print a$;pk$". . .i don't recall that team." bk$

2980 gosub 2900: f = 1: return

2990:

3000 : display team results

3010:

3020 print cs$;pk$" [3 spcs]team[8 spcs]pts[3 spcs]

wins"," losses" bk$: print

3030 tw = .: tl =.: for i = 1 to nt: print mid$(str$(i) +

"[2 spcs]",2,3)tm$(i);

3040 print tm%(U),tm°/o(i,2),trn%(i,3)

3050 tw = tw + tm°/o(i,2): tl = tl + tm°/o(i,3): next

3060 if tw-tl then print pk$

3070 print: print " total of" tw" wins," tl" losses." bn$

3080 return

3090:

3100: list players

3110:

3120 i = 1

3130 j = 1: print cs$;pk$" [4 spcs]player[5 spcs]

team[6 spcs]games pts" bk$: print

3140 print mid$(str$(i) + " [3 spcs]" ,2,4)pl$(i)" "

tm$(pl%(i,1))pl%(i,2)pl%(i,3);

3150 j = j +1: i = i +1: if i>np then gosub 2900: return

3160 if j<23 then 3140

3170 gosub 2890: goto 3130

3180:

3190 : disk check

3200:

3210mput#15,a,b$

3220 if a>19 then print a, b$, "error": close 8: close 15:

gosub 2890: goto 1330

3230 return

3240:

3250: disk file size

3260:

3270 print "disk file "df$" is too big"

3280 print " m = " np: print " nt = " a

3290 print "change lines:"

3300 close 8: close 15: list 200-210

3310:

3320 vic-20: line 1270 w = 36874: poke w + 4,15

3330 : : line 2900 poke w,250: for tx = 1 to 80: next:

poke tx,0: return

The Transactor 6O May 1986: Volume 6, Issue O6

Crystal Ball For The Un-Expanded Vic-20

OL

NP

HO

GA

CB

IH

DA

LH

NK

GO

GL

CC

OL

AE

GG

DP

JO

FJ

BG

FO

FB

KM

IC

JD

CH

FK

LP

JF

FO

Fl

DK

HF

00

LF

AG

CM

CC

NF

CA

FG

KH

AB

ON

OF

AD

CJ

ON

GJ

BB

IE

PG

CP

IB

LI

1000 rem save" O:crystal ball vie" ,8

1010 rem * * the crystal ball for the un-expanded vie

1020 rem ** written by: ian adam, Vancouver, b.c.

1030 cs$ = chr$(147): yl$ = chr$(30): pk$ = chr$(28):

bk$ = chr$(144): bn$ = chr$(151)

1040 goto 1190

1050 b = 1

1060 b = 2*b: if b<npthen 1060

1070 b = b/2: if b<1 then 1120

1080 for i = 1 tonp-b: c = i

1090 d = c + b: if p(i%(c)) = >p(i%(d)) then 1110

1100 a = i°/o(c): i°/o(c) = i°/o(d): i°/o(d) = a: c = c-b:

ifc>. then 1090

1110 next: goto 1070

1120 b = 1

1130b = 2*b: if b<npthen 1130

1140 b = b/2: if b<1 then return

1150 for i = 1 to np-b: c = i

1160 d = c + b: if p$(i°/o(a%(c)))< = p$(i°/o(a°/o(d))) then 1180

1170 a = a%(c): a°/o(c) = a%(d): a°/o(d) = a: c = c-b:

if c>. then 1160

1180 next: goto 1140

1190 m = 12: nt = 4: dimi%(m),a%(m),p$(m),p(m),

p%(m,2),t$(nt),t%(nt,2),t(nt)

1200 for i = 1 to m: i°/o(i) = i: a°/o(i) = i: next

1210 printcs$;bk$" 1 team data"

1220 print "2 player data"

1230 print "3 from tape"

1240 print "4 to tape"

1250 print "5calc/sort"

1260 print "6 print"

1270 print: print " 7 end"

1280gosub 1940: on val(r$) gosub 1290,1490,1400,

1660,1750,1840,2050: goto 1210

1290 if t%(nt,1) then 1330

1300 for t = 1 to nt: a$ = "": print: input " name" ;a$:

if a$= "" then 1330

1310 t$(t) = left$(a$ + " [5 spes]" ,6)

1320 gosub 1370: next

1330 gosub 1980

1340 print: print " changes?": gosub 1940:

if r$= " n" then return

1350 input " team " ;a$: gosub 1950: if f then 1360

1360 gosub 1370: goto 1330

1370 print: input "games, pts" ;d,t°/o(t,1)

1380 print: input " exp w, I" ;t°/o(t,2),t°/o(t,O)

1390 t(t) = d*(3*t°/o(t,O) + 5*t°/o(t,2))/(3*d + t%(t, 1)): return

1400 print cs$;: input " file";rS

1410 open 1,1,0,r$: input#1,a$: if a$= "cr" then 1430

1420 print " bad file" a$: gosub 1940: goto 1480

1430 input#1 ,a,np: if np>m or a>nt then

print " too big": goto 1420

1440 nt = a: for i = 1 to nt: input#1 ,t$(i),t(i)

1450 for j = 0 to 2: input#1 ,t°/o(i,j): next: next

1460 for i = 1 to np: mput#1 ,p$(i)

1470forj = 0to2: input#1,p°/o(i,j): next: next

1480 closei: return

1490 if np = m then 1560

1500 for i = np+ 1 to m

1510 print: print " player, team, games, pts"

1520 r$= "": a$= "": input r$,a$,p%(i,2),p%(i,0)

1530 if r$= "" then 1560

ND

FH

JB

EH

CP

JB

DH

CA

BG

El

HG

OJ

HK

NG

JC

EM

DK

KK

KA

OK

FB

GA

JP

CC

GC

DK

GL

HN

LC

BD

DL

BB

PN

OE

Kl

NO

BN

FB

PF

OA

HG

LI

BH

NC

KN

IC

IB

JG

MC

PJ

CO

BB

p$(i) = left$(r$ + " [4 spes]" ,6): gosub 1950:

iffthen 1510

p°/o(i,1) = t: np = np+1: next

gosub 2010

print: print: print " changes?": gosub 1940:

if r$ = " n " then return

i = 0: print: input "pi #";i: if i = 0 then 1560

print p$(i)t$(p°/o(i,1))p°/o(i,2)p°/o(i.O)

print p$(i);: input" or";p$(i)

a$ = t$(p°/o(i, 1)): print a$;; input"or" ;a$

print p°/o(i,2);: input "gms, or" ;p°/o(i,2)

print p°/o(i,O);: input" pts, or" ;p°/o(i,O)

p$(i) = left$(p$(i) + " [5 spes]" ,6): gosub 1950:

iffthen 1580

p°/o(i,1) = t: print p$(i)t$(t)p%(i,2)p°/o(i,O): goto 1580

print: input " file name" ;r$

open 1,1,1,r$

print* 1," cr"

pnnt#1,nt: print#1,np

for i = 1 to nt: print#1 ,t$(i): print#1 ,t(i)

for j = 0 to 2: print* 1 ,t°/o(i,j): next: next

for i = 1 to np: print#1 ,p$(i)

for j = 0 to 2: print#1 ,p%(i,j): next: next

close 1: return

b = 10: for i = 1 to np: p(i) = int(p%(i,0)*b*

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760 print i;p$(i)p(i): next: print " sorting": gosub 1050

1770 print: print: print " ready": print: gosub 1940

1780 for i = 1 to np: a = i%(i)

1790 print chr$(157);i;p$(a)" "t$(p°/o(a,1))p(a): next

1800 print: print " abc?": print: gosub 1940

1810 for i = 1 to np: a = a°/o(i): print chr$(157);a;

1820 a = i%(a): print p$(a)" " t$(p°/o(a, 1))p(a): next

1830 gosub 1940: return

1840 open 4,4: a$ = chr$(10)

1850 print#4,a$;a$;spc(6)"team[3 spcs]wins

[2 spcs]losses"a$

1860 for i = 1 to nt: print#4,i" [3 spes]" t$(i)" [2 spes]"

t°/o(i,2)" [3 spes]" t°/o(i,O): next

1870 print#4,a$;a$" rank[2 spcs]player[2 spcs]team

[2 spcs]prod"a$

1880 for i = 1 tonp:a = i°/o(i)

1890 print#4,i" [3 spes]" p$(a)" [2 spes]" t$(p%(a, 1))p(a)

: next

1900 print#4,a$" rank[2 spcs]player[3 spcs]team

[3 spes] prod "a$

1910 for i = 1 tonp: a = a°/o(i): print#4,a" [3 spes]";

1920 a = i%(a): print#4,p$(a)" [2 spes]" t$(p°/o(a, 1))"

[3 spes]" p(a)

1930 next: close 4: return

1940 wait 198,3: get r$: return

1950 f = 0: a = val(a$): if a then t = a: print t$(t): return

1960 for t = 1 to nt: if left$(a$ + " [4 spes]" ,6) = t$(t)

then return

1970 next: print a$;pk$" ?? " bk$: f = 1: return

1980 print cs$;pk$" [3 spcs]team[2 spesjpts win lose" bk$

: print

1990 for i = 1 tont: print i;t$(i);

2000 print t°/o(i, 1)t°/o(i,2)t°/o(i,0): next: return

2010 print cs$;pk$" [3 spcsjplayer gms pts team" bk$

2020 for i = 1 to np

2030 print i;p$(i)p%(i,2)p°/o(i,O)tab(18)left$(t$(p°/o(i,1)),3)

2040 next: return

2050 print " goto 1210 to recoup"

The Transactor 61 May 1986: Volume 6, Issue O6

Home Control

On A VIC 20

Jean Des Rosiers

Montreal, Quebec

". . .turns on lights, controls a cold storage room, gathers temperature

data, and keeps watch on my motorcycle parked in the backyard."

With VIC 20s available at such low prices these days, Mr. Des Rosiers' work approaches the ideal real life application. In

fact, the BSR Command Console and remote modules will easily cost more than the VIC and Mr. Des Rosiers' hardware.

The BSR system is available at Eatons or Radio Shack, and uses the AC lines already inside the walls ofyour home to

send signals to remote modules plugged into any A C outlet. These signals are sent at a much higher frequency than 60 Hz

so they won 'I interfere with the 120 volt AC power. The remote module then transfers power to whatever is connected to

it, and voila! Any AC orb can be controlled at any time! And with the program presented here they can be controlled at

any time ofany day ofthe week. To top it off, Mr. Des Rosiers has added eight analog to digital inputs so information can

be collected that can be used to determine controller output. The input could come from a simple switch or even a

temperature sensor, for which detailed schematics are included! As if that weren 't enough, Des Rosiers has also built

remote status indicators from 7 segment displays so you can eliminate your TV or monitor and use it elsewhere! M. Ed

I started playing with micro processors when I bought a used KIM.

Then I bought the kit version of the Sinclair ZX80. A few years later

I got hold of a real micro computer - a DEC VT-180, but when my

young daughter always wanted to hammer away at my keyboard, I

decided to get her a VIC 20. The ads promised great educational

software, plus they had started to drop in price.

The "great educational software" came in expensive and impracti

cal cartridges, and all in english. A french speaking two year old

can't be taught the subtleties of the english language in a short

enough time to become interrested, and on a VIC 20. So the poor

vie was left alone in its box. 1 later bought a 64 and she quickly

learned numbers and the alphabet.

I then tried to sell the poor VIC 20, but nobody was foolish enough

to consider buying it. Then reading the 64's programmers refer

ence manual I noticed it had a 24 hour clock, I then checked the

VIC 20 to find it had a clock too. That led me to think about the

times I wanted to have a computer run a few things around the

house but rejected the idea as being too complicated.

I had read the numerous articles that were written throughout the

years about home control, most of them either required a lot of

hardware modifications or tying up an expensive micro computer,

with programs written in hard to adapt machine language. The VIC

20 had none of these limitations. It's cheap, has a clock, a user

port, an expansion connector and good basic.

As I started to write the control program it became obvious that the

basic amount of memory was not great enough to store the arrays

needed by the program, so the first order of business was to build

an 8K memory expansion.

An analog to digital converter and an analog multiplexer, giving

eight analog measuring points, were added to the same module

and hooked up to the expansion connector.

Then I built the interface to hook-up the BSR controller to the user

port. A home built battery backed-up power supply made the

whole system immune from power outages. I also added a remote

display to keep track of what was going on without having the T.V.

set on all the time. Most of the hardware described can be built as

required. If the full possibilities of the system are not needed, just

build whatever interfaces are necessary to make it functional.

Hardware and Software Description

Memory Expansion

The 8K expansion is simply an 8K by 8 bit chip connected on the

expansion connector, as shown in figure 1.

BSR Interface

The BSR interface, figure 2, is a modified (to make it work) version

of a circuit that appeared in the January 1982 issue of BYTE.

Voltage to power the oscillator is provided by the BSR command

console itself. Locate a large (1000 uF) capacitor in the command

console, connect the respective + and - leads from the interface to

the capacitor leads. There should be about 18 volts on that filter

cap, but be careful when measuring voltages in the command

console because it is not isolated from the A.C. line. That is why an

opto-isolator is used to connect the interface to the user port. The

output from the oscillator is connected to pin 7 (seven) of the 542C

I.C. (the 542C is the only chip used in the BSR consoles). Any

command console can be used provided it has a 542C chip.

Usually on the mini consoles and the large ones lacking ultrasonic

capabilities, pin 7 is grounded. Cut the foil trace leading to pin 7

and connect it to the output of the oscillator in the interface. I

added a 15 volts zener to keep the voltage on the 4001 CMOS I.C.

from reaching destructive levels. It seems that the old BSR con

soles had an 18 volts zener, but the newer ones don't. So to keep

the circuit operational it is better to put in the 15 volts zener.

The oscillator output should be 40 Khz with the values given. The

frequency doesn't have to be spot on 40 Khz - the BSR will accept

commands with frequencies ranging from 33 to 50 Khz, although

the operation will be marginal at the extremes of the range.

The software to make this interface mimic the cordless controller

works as follows. First, the code to be sent is stored as a variable,

eg: the 'ALL ON' command is equal to "0001111100", the pro-

The Transactor 62 May 1986: Volume 6, Issue O6

gram then searches this string and pokes the appropriate values in

memory. For a zero, the program pokes the values 24 and 136 in

two consecutive memory locations. For a one, the numbers poked

are 80 and 80. These numbers were chosen to give the correct

timing using instruction loops in machine language. When the

whole string has been examined and the appropriate values

poked, the machine language subroutine takes over and toggles

the I/O port according to the values previously poked in memory.

The net result is a complete emulation of the BSR command

console. Thus the sequence is to first send a unit code, then the

action to be taken, just as if someone was pushing the buttons.

A/D Converter

The A/D used is a single channel ADC-0804. A 4051 CMOS

analog multiplexer expands it to a total of 8 analog inputs. The

analog channel is selected by an octal latch. The I/O port could be

used to do the same thing, but would be less elegant. The whole

circuit is shown in figure 3. Since 3 decoded addresses were

needed (the octal latch and the A/D are memory mapped) and

three 8K address blocks were left unused (block 1 is used by the 8K

expander), there was no need for an address decoder. So block 2 is

used to select an analog channel, block 3 starts an analog conver

sion and block 5 reads the result from the A/D.

The software used is quite simple. First the selected A/D channel

to be used, from 0 to 7, is poked where the machine language

subroutine is located, then this value is stored to location 16384

(4000 hex or block 2). Since the octal latch (74LS373) is selected by

block 2, we end up with an analog channel being selected. Second,

to start a conversion we only need to send a pulse to location

24576 (6000 hex or block 3). To give the A/D time to complete it's

conversion, a small delay loop is executed. Then the value from

location 40960 (A000 or block 5) is loaded in the accumulator and

stored in memory location 16156, which is where the basic part of

the program retrieves the result of the conversion. This whole

process is repeated 40 times to iron out peaks or stray values.

Temperature Sensors and Amplifiers

I set out to find cheap, easy-to-get and reliable sensors. I finally

opted for regular 2N-2222A transistors. The emitter base junction

of a silicon transistor will measure about .7 volts when forward

biased, and goes down as temperature increases. The change in

voltage is minimal, about 2.16 mV/°C or 216 mV from 0°C to

100°C. Since the temperatures I was working with would give me

the same range (-50°C to +50°C), I was forced to amplify the

signal. As a side benefit, the signal is inverted so that voltage goes

up as temperature goes up. The amplifiers are implemented with a

pair of LM324's quad op-amps. Now the rate of change is a more

measurable 21.6 mV/°C.

The distance from the sensors does not affect the readings, but as

wire length increases, so does noise pick-up. When the sensors

are to be located more than 10 metres from the amplifiers, put a

small (0.1 uF) capacitor at the amplifier input to shunt the noise to

ground.

Power Supply

There are two flavours of the VIC 20. One has only 9 volts A.C.

input, with the rectifier and the regulator inside the keyboard, and

the other has 9 volts A.C. input and +5 volts D.C. input (the

rectifier, filter capacitor and regulator are inside the power pack as

in the 64's). The power supply shown in figure 5 will accommodate

both types.

The power supply in figure 5, works as follows. First the 9 volts

A.C. from the transformer is rectified and connected to a 12 volt

battery. I used a transformer from the early VIC's, which I got from

a local parts store, and with it the charge current is a safe 300 mA.

The battery can be any size 12 volts. I used a sealed 12 volt

industrial lead-acid battery, but a small motorcycle battery or the

right number of nickel-cadmium cells would do as well. The 12

volts from the battery is brought down to 5 volts using a 4 ohm

resistor feeding an LM-323 three amp regulator. The resistor is

used to reduce the input voltage to the LM-323, otherwise it's

temperature would climb too high and it would cause a thermal

shut-down. Even though the input voltage is reduced to 8 volts, it

is still wise to heat sink the regulator. The 9 volts A.C. is fed to the

VIC as usual. In the event of a loss of power the battery/ + 5 volts

regulator will keep the VIC 20 humming. The only thing not

working would be the cassette interface.

Another way to get the same backup would be to use alkaline " D"

cells with rectifiers used as current steering diodes. For the old

style VIC's use 6 " D" cells to get 9 volts and hook this up to the

filter cap preceding the 5 volts regulator (see figure 6). On the

newer VIC's use 4 cells with 2 rectifiers and tap this last combo in

the power cable, as in figure 7.

Remote Display

Figure 8 is a schematic to giving a visual indication of what is going

on, without having to keep the TV or monitor on. On my system I

used two displays of four digits each. One of the displays is used to

show the time, and is updated each time the program goes through

the main loop. The other is used to show the temperature of one of

the sensors, chosen by keyboard entry. The method of transmis

sion between the V1C-20 and the displays is serial, with a small

peculiarity; the same wire that sends the data is used to power the

display. Only three wires are used to connect the VIC to the two

displays, so that it can be located quite far without having a mess of

wires strung all over the place or having to hunt for an outlet to

power the displays.

A/D Calibration

It is not necessary to trim every channel so that they respond the

same way. The required offset will be done by software. First

measure the voltage at the output of the LM324 amplifier with a

sensor immersed in crushed ice, then take a reading with the

sensor plunged in boiling water, this will give you the range for

100°C, on my system the range was 1.6 volts at 0°C and 3.76 volts

at 100°C, thus:

(3.76-1.6)/100 = 0.0216v/°C

Since a temperature of 0°C gives around 1.6 volts at the output of

the LM324 amplifiers (on my system), we can extrapolate that at -

50°C the output would be 1,6-(50 X .0216) or .52 volts. Lets set it to

.5 volts, to give a bit of leeway, this last value will be the voltage

required on pin 7 of the ADC-0804. Turn the proper pot until the

voltage on pin 7 is equal to .5 volts. To set the voltage on pin 9

(VREF/2), the calculation is as follows. The range is 100T (-50°C

to + 50°C), so 100 X .0216 = 2.16 volts and VREF/2 = 2.16/2 =

1.08 volts. Lets set it to 1.1 volts. Turn the other pot until the

voltage measured on pin 9 is equal to 1.1 volts.

If absolute precision is not required, the potentiometers can be

replaced by a resistor divider network as shown on the diagram.

Now connect all the sensors to the amplifiers, and the amplifiers to

the A/D, and run the program in listing 2. Plunge the sensor to be

The Transactor 63 May 1986: Volume 6, Issue O6

calibrated in a glass filled with a mixture of ice and water. Let the

reading stabilize and note the reading (The first reading is for

C%(0) and the last C%(7) giving all eight channels). This is the

offset to be used with that channel. Note the readings for all eight

sensors (if they are all used) and insert the proper values in the

main program.

Listing 2 : Temperature Sensor Offset

10

20

for i = 1 to 7print |

gt = O

30 poke 16384,i

40 for j = 0 to 19

50 poke 24576,0

60 gt = gt + peek(40960)

70 nextj

80 result =127-(gt/20)

GT is Grand Total

select analog channel

read sensor 20 times

start conversion

read result and add to previous

result is offset

90 print int((int(result*100))/100)

100 next i

drop all fractions

110fori = 0to999:next

120 goto 10

1 second delay

The comments tell the story pretty well. Using the offset generated

by this small routine, I have tested two sensors one next to the

other, and have found them to be accurate to within 0.5°C from

0°C to 45°C. The temperature readings given by both sensors were

exactly the same throughout the range.

Program Structure: Listing 1

Line(s) Description

100 256 bytes are reserved for the machine language

subroutines from 16128 to 16383.

110 The offset required by the temperature sensors are

inserted on this line.

120 Arrays are DIMed here, OF is clock offset.

130 to 220 BSR message formats

230 to 370 Data statements for machine language routines

360 to 460 Constants and set the main array to a known value.

470 to 590 Menu display.

600 to 660 Set clock and day.

670 to 900 Set " Action array" routines.

910 to 980 Set BSR modules NOW.

990 to 1020 Load array from tape.

1030 to 1060 Save array to tape.

1070 Get character from keyboard, if equal to Terminate,

go back to menu.

1080 to 1100 If character input is from 1 to 8, send value read

from sensor selected to remote display.

1110 to 1130 Search array for a match to the present time and set

the appropriate BSR module on or off. Also send the

time to the remote display.

1140 to 1160 Go read temperature and change day at midnight.

1180 to 1240 Every ten minutes reset BSR modules as they

should be, in case of a power outage.

1250 End main loop.

1260 to 1290 Search a secondary array to make sure BSR modules

are not toggled twice, and go do it if it is not done.

1300 to 1320 Send the proper module number and the proper

action to be taken.

1330 to 1350 Set all sixteen modules from the NOW command.

1360 to 1390 Scan the BSR command string and poke the proper

values in memory.

1400 to 1450 Read all eight temperature sensors and display

results on the screen as well as the time and day of

the week.

1460 to 1490 Send data to the remote displays.

1500 to 1550 Clock offset routine (see text).

Temperature and time related decisions can be done between lines

1090 and 1100. The values for all eight temperature sensors are

contained in AC(0) to AC(7), and are in °C. The user port can be

used as output to sound a siren for an alarm or as inputs to read

alarm sensors. If more bits of the user port are used as output don't

forget to change address 16161 in the BSR interface driver to reflect

what bits are used as output. In my program I used PB0 to PB2 as

outputs. PB0 is connected to the BSR interface, PBl and PB2 are

used for the remote displays.

I had to include a "Clock offset routine" because the 24 hour clock

on the VIC 20 is slightly fast, about 50 seconds a day fast. There

were two ways to go about this, first make a hardware crystal

oscillator or second make the software trim the clock. The routine

included will trim 2 seconds per hour so the VIC ends up keeping

the time almost perfectly.

Since this is not a commercial endeavour it is possible to enter

wrong data, and the program will do funny things. I trust that

someone smart enough to duplicate all or part of this package

would not be foolish enough to enter wrong values.

Explanation Of Variables

C°/o(x) Temperature offset. Range of x,0 to 7.

C$(x) BSR message string. Range of x,l to 16.

T°/o(l,J,A) Main action array. A number is stored that represents

the time and action to be taken in the following format

HHMMA where HHMM is hours and minutes. A is the

action, a 1 means turn on at the specified hour and a

zero, off. The number stored can't be higher than 23591

or lower than 0. Range I to 15, J to 6 and A to 3. I

represents channel number, J is the day of the week and

A is one of four actions to be taken per day.

X°/o(l,A) Daily array, a 1 means the action was taken. Needed to

keep from sending a BSR message on every loop of the

program. Range I to 15 and A to 3.

K1 A constant equal to 0.3921568

JO$(x) Days of the week. Range of x,0 to 6.

E Day of the week, 0 = monday, 1 = tuesday and so on.

CA Value of character typed on keyboard. Used to send a

temperature value to the remote display.

CB Equals CA-1

HA Value to be poked in 16157 for the remote display.

Represents the thousandths and hundreds.

HB Value to be poked in 16158 for the remote display.

Represents the tens and units.

HC Value to be poked in 16159 for the remote display. Used

to select user port bit 2 or 4.

AC(x) Value in °C of the temperature read for that sensor range

of x,0 to 7

H$ Four leftmost characters read from the VIC's clock.

HH$ Middle two characters read from the clock. Used to reset

BSR modules every 10 minutes.

HE% Value of H$

SW Switch to keep from incrementing the days counter

more than once at midnight. Value 0 or 1.

S1 Switch to keep from sending a BSR message more than

once every ten minutes. Value 0 or 1.

TA% HHMMA transferred from T%(I,J,A)

TB% HHMM extracted from TA%

AC°/o A extracted from TA %

ENS BSR message string to be sent

The Transactor 64 May 1986: Volume 6, Issue O6

GT

A

Y

C

Total of 40

Average of

sensor values

the 40 values (= GT/40)

Temperature value with offset added

Y to two places. ("CC.CC)

Machine Language

BSR Interface

16160

16162

16164

16167

16169

16172

16175

16176

16177

16178

16180

16181

16184

16187

16188

16189

16190

16191

16193

16195

16196

16197

16199

16201

16204

16206

16208

16209

16212

16213

16215

169,1

160,0

141,18,145

169,1

141,16,145

32,69,63

234

234

234

169,0

200

141,16,145

32,69,63

234

234

234

200

192,24

208,228

96

234

169,0

105,1

32,81,63

201,11

48,247

96

190,0,63

202

208,253

96

Routines

Ida #7

Idy #0

sta37138 (DDR for port B)

Ida #1

sta 37136 (DATA reg. for port B)

jsr 16197

nop

nop

nop

lda#0

iny

sta 37136 (DATA reg. for port B)

jsr 16197

nop

nop

nop

iny

cpy#24

bne16167

rts

nop

lda#0

adc#1

jsr 16209

cmp #11

bmi16199

rts

Idx 16128,Y

dex

bne16212

rts

The first three lines set up the user port to a known state. Then the

program jumps to a couple of instruction loops that provide the

proper delay. Line 16209 loads the X register with the values that

were poked in memory by the basic part of the program, since X is

loaded from address 16128 indexed by Y, we manage to scan the

24 memory locations containing the values chosen to give the

proper timing relationship. Since the values chosen gave only one

tenth of the time required, lines 16199 to 16206 make the subrou

tine starting from 16209 repeat ten times.

A/D Converter

16216

16218

16221

16224

16226

16227

16229

16232

16335

169,0

141,0,64

141,0,96

162,85

202

208,253

173,0,160

141,28,63

96

lda#0 (Channel* in 16217)

sta 16384 (Octal latch)

sta 24576 (Starts conversion)

Idx #85 (delay)

dex

bne16226

Ida 40960 (A/D chip)

sta 16156

rts

instruction loop at 16224 gives the A/D time to finish it's conver

sion. The A/D converter is then read in line 16229 and the result

stored in memory location 16156. The value in this last location is

retrieved and treated by the basic part of the program.

Remote Display

16236

16238

16241

16244

16247

16249

16252

16253

16255

16256

16258

16259

16262

16265

16268

16270

16273

16274

16276

162,100

172,29,63

173,31,63

141,16,145

169,0

141,16,145

136

208,242

202

208,236

96

172,30,63

173,31,63

141,16,145

169,0

141,16,145

136

208,242

96

Idx #100

Idy16157

Ida 16159

sta 37136

lda#0

sta 37136

dey

bne16241

dex

bne16238

rts

Idy 16158

Ida 16159

sta 37136

lda#0

sta 37136

dey

bne16262

rts

(To repeat 100 times)

(Thousands + Hundreds)

(Port

(Data

(Data

(Tens

(Port

(Data

(Data

bit used)

reg. for port B)

reg. for port B)

+ units)

bit used)

reg. for port B)

reg. for port B)

This subroutine is used to send data to the displays. The interface

to the basic part of the program is done through memory locations

16157 to 16159. The first two locations contain the thousands,

hundreds, and the tens units of the number to be transmitted, and

the last contains the bit value of the port used. The program

consists of instruction loops controlled by the values in memory.

The two routines (16236 to 16258 and 16259 to 16276) are

basically the same, except that the first one is repeated 100 times to

give the correct number of times that the port bit is toggled. Any

number up to 9999 can be sent, as long as the proper values are

poked in memory.

BSR Command Codes

Basic pokes the channel number in memory location 16217, this

value is stored into the octal latch thus selecting an analog

channel. Then a conversion is started by line 16221. A small

)0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

D1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

D2

0

0

1

1

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

D3

1

0

0

1

1

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

D4

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Function

ALL ON

ALL OFF

ON

OFF

BRIGHTEN

DIM

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

CHANNEL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

String Name

TA$

TE$

A$

E$

NOT DEFINED

D$

C$(1)

C$(2)

C$(3)

C$(4)

C$(5)

C$(6)

C$(7)

C$(8)

C$(9)

C$(10)

C$(11)

C$(12)

C$(13)

C$(14)

C$(15)

C$16

The Transactor 65 May 1986: Volume 6, Issue O6

Listing 1: Home Control Program

OL

-.

CH

LJ

BL

JM

LN

JL

BJ

PJ

GH

BF

BA

DB

NA

JE

AH

MF

KJ

FF

MF

JP

AF

GH

AJ

Ml

JG

OK

LK

NJ

GP

KP

DA

PB

DF

DL

FF

Kl

LD

FH

NP

GP

ME

II

OM

LH

Ml

LA

ME

OE

II

BC

KO

PE

AG

JF

CE

JL

DK

100poke56,63:clr

110 c%(0) = 1 7:c%(1) = 21 :c°/o(2) = 19:c%(3) = 18

:co/o(4) = 27:c%(5) = 0:c%(6) = 0:c%(7) = 0

120 dimc$(16):dimt%(15,6,3):dimtt°/o(15):dimx%(15,3)

:k1 =100/255:ppke36864,6:of = 2

130 c$(1) = " 0110010011 " :c$(2) ="1110000011 "

140c$(3)= "0010011011 ":c$(4) = "1010001011 "

150c$(5) = "0001011101 ":c$(6) = "1001001101 "

160c$(7)= "0101010101 ":c$(8) = "1101000101 "

170 c$(9) ="0111010001 " :c$(10) = "1111000001 "

180 c$(11) = "0011011001 ":c$(12)= "1011001001 "

190 c$(13) = " 0000011111" :c$(14) = " 1000001111"

200c$(15)= "0100010111 ":c$(16) = "11000001 "

210 a$= "0010111010" :e$= "0011111000"

220 ta$ = "0001111100" :te$ = "0000111110"

:d$= "010011

230 data 169, 7,160, 0,141, 18,145,169

240 data 1,141, 16,145, 32, 69, 63,234

250 data 234, 234, 169, 0,200,141. 16,145

260 data 32, 69, 63,234,234,234,200,192

270 data 24,208,228. 96,234,169. 0,105

280 data 1, 32, 81, 63,201, 11. 48,247

290 data 96,190, 0, 63,202,208.253, 96

300 data 169, 0,141, 0, 64,141. 0, 96

310 data 162, 85,202,208,253,173. 0,160

320 data 141, 28, 63, 96,162,100,172, 29

330 data 63,173, 31, 63,141, 16.145,169

340 data 0,141, 16,145,136,208.242,202

350 data 208,236, 96,172, 30, 63,173. 31

360data 63,141, 16,145,169, 0,141, 16

370 data 145, 136, 208, 242, 96

380 jo$(0) = " monday" :jo$(1) = " tuesday"

390 jo$<2) = " Wednesday" :jo$(3) = " thursday"

400 jo$(4) = " friday" :jo$(5) = " Saturday"

410jo$(6)= " Sunday ":sw = 0:s1 =0

420 fori = 0to15:forj = 0to6:fork = 0to3

43Ot°/o(i,j,k) = 12OOO:next:next:next

440 for i= 16160 to 16276:reada:pokei,a:next

450 pokei6128,80:poke16129,80:poke16150,240

460poke16151,240:poke37138,7:poke37136,6

:poke37136,0

470 print"0 'Sprint" set HcQJfock"
480 print" set Ba0ction arrays" :print" QrQun
490 print "HlHoad array" print "HsQlave array"
500 print "ye0xit" :print" set bsryln|yow"
510 inputr$:ifr$ = " c" thengoto600

520 ifr$ = " a" thengoto670

530 ifrS = "I"thengoto990

540 ifr$ = " s" thengotoi 030

550 ifr$= "e"thengoto590

560 ifr$ = " n " thengoto910

570 ifr$<>" r" thengoto470

580 gosub1070:goto470

590 end

600 print"0" :pnntti$,jo$(e):poke214.10
610 print:print" n = no change" :poke214,4

620 print:input" time" ;t$:ift$ = " n " thengoto650

630 ti$ = t$

640 input "day 0 = monday. . ." ;e

: if(e>6ore<0)thengoto640

650 printti$,jo$(e)

660 fort = 1to2000:next:goto470

67Opnnt"0":poke214,13
680 print:print" n = no change" :print" a = next action "

PJ

CA

IE

GH

FD

PA

AE

MH

BK

EN

CJ

BG

FG

PL

CN

FO

HB

CP

NF

PE

BE

EK

JM

NL

ME

NB

DF

BB

Dl

OJ

HI

PI

Ol

MB

HK

HL

FK

EE

PK

CH

LF

LM

BN

Kl

CP

HK

KL

Fl

EP

CD

AB

LB

GC

BD

MD

GD

ON

GO

BA

Nl

690 print "e = exit" :print"d = next day"

:print" m = next module

700 print "time hhmmaa = 0off"

710 print "[12 spcs]a =1 on"

720 forj = 0to6:poke214,0:print

730 print" [14 spcs]";

740 poke214,0:print:printjo$(j):print

750 fora = 0to3:poke214,2:print:print" time + action" ;a +1

760 fori = 0to15

770 poke214,9:print:print"[12 spcs]";

780 poke214,9:print:printt°/o(i,j,a):poke214,6

790 print.print" module[15 spcs]";

800 poke214,6:print:print"module" ;i+ 1 :poke214,7

810 print:print"[10 spcs]" ;:poke214,7

820 print:inputre$:ifre$ = " n " thengoto880

830 ifre$ = " e" thengoto470

840 if re$ = " d " thengoto900

850 ifre$ = " m" thengoto880

860 ifre$ = " a" thengoto890

870t%(i,j,a) = val(re$)

880 nexti

890 nexta

900 nextj:goto470

910 poke214,13:print:pnnt" 0 = off" :print" 1 = on"

920fori = 0to15:poke214,10

930 print:print"[23spcs]"

940 poke214,10:print:print" module ";i + 1

950 inputre:ifre = Othentt°/o(i) = re:goto980

960 if re = 1 thentt°/o(i) = re:goto980

970 goto930

980 next:gosub1330:goto470

990open6,1,0

1000 forj = 0to6:fora = 0to3:fori = 0to15

1010 input#6,v%:t°/o(i,j,a) = v%:next:next:next

1020close6:goto470

1030 open6,1,2, "data"

1040 forj = 0to6:fora = 0to3:fon = 0to15

1050 print#6,t°/o(i,j,a):next:next:next

1060close6:goto470

1070getc$:ifc$= T'thenreturn

1080 ca = val(c$):ifca = 1 orca = 2orca = 3orca = 4orca = 5

orca = 6orca = 7orca = 8thencb = ca-1

1090 ha = (cb +1)* 10:ifac(cb)<Othenha = ((cb +1)* 10) + 2

1100 hb = abs(mt(ac(cb))):hc = 4:gosub1460

1110 h$ = left$(ti$,4):hh$ = mid$(ti$,3,2):he% = val(h$)

1120 he% = val(h$):ha = int(he°/o/100):hb = he°/o-(ha* 10

1130 hb = he°/o-(ha* 100):hc = 2

1140 gosubi 460:gosub1260:gosub1400

1150 if(val(h$) = Oandsw = 0)thensw = 1 :e = e + 1

:ife = 7thene = 0

1160 if(val(h$)O0)thensw = 0

1170hs = val(right$(ti$,2))

1180 if(hh$ = " 00" andsi = 0andhs>20)thens1 = 1

:gosub1330:gosub1500:goto1070

1190 if(hh$ ="10" andsi = 0)thens1 = 1 :gosub1330:goto107(

1200 if(hh$ = " 20" andsi = 0)thens1 = 1 :gosub1330:goto107(

1210 if(hh$ = " 30" andsi = 0)thens1 = 1 :gosub1330:goto107(

1220 if(hh$ = " 40" andsi = 0)thens1 = 1 :gosub1330:goto107(

1230 if(hh$ = " 50" andsi = 0)thens1 = 1 :gosub1330:goto1071

1240 if(mid$(ti$,4,1)= "1 ")thens1 =0

1250 gotoi 070

1260 fori = 0to15:fora = 0to3:ta°/o = t°/o(i,e,a):tb% = int(ta°/o/10)

:ac°/o = ta%-(tb°/o*1O)

1270 if(he% = tb°/oandx%(i,a) = O)thentt%(i) = ac°/o

:gosub1300:x%(i,a) = 1

1280 if(he%Otb%andx%(i,a)= 1)thenx°/o(i,a) = O

The Transactor 66 May 1986: Volume 6, Issue O6

KB

CL

KF

NB

OP

Dl

BG

Di

AK

OH

OO

FN

CJ

AE

1290 next:next:return

1300 en$ = c$(i + 1):gosub1360:ifac% = 1 thenen$ = a$

1310 ifac% = OthenenS = e$

1320gosub1360:return

1330 fori = 0to15:en$ = c$(i + 1):gosub136O:iftt°/o(i) = 0

thenen$ = e$

1340 iftt%(i) = 1 thenen$ = a$

1350 gosub1360:next:return

1360forj = 0to9:c$ = mid$(en$,j + 1,1)

1370 ifc$ = " 0" thenpokei6130 + j*2,24:poke16131 + j*2,13'

1380 ifc$= "1 "thenpoke16130 + j*2,80:poke16131 +j*2,80

1390 next:sys16160:return

1400 print" S" :printti$,jo$(e):print

1410 fori = 0to7:poke16217,i:gt = 0

1420 forj = 0to39:sys16216

AC

IP

BL

Ol

MO

MH

OO

HK

BF

IK

LG

KD

KO

1430 a = peek(16156):gt = gt + a: next

1440 a = int(gt/40):y = (k1 *(a + c°/o(i)))-5O:c = (int(y* 100))/100

1450 print" sensor" ;i +1 ,c:ac(i) = c:next:return

1460poke16157,ha:poke16158,hb:poke16159,hc

:poke37136,hc:poke37136,0

1470 fork = 1 to1 :next:ifha>0thensys16236

1480 ifhb>0thensys16259

1490 return

1500hd = val(ti$):hd = hd-of:ifhd<10thenti$ = "00000"

nght$(str$(hd),1):return

1510 ifhd<1 OOthentiS = "0000

1520 ifhd<1 OOOthentiS = " 000

1530 ifhd<1 OOOOthentiS = "00

1540ifhd<100000thenti$= "0

+right$(str$(hd),2):return

.+ nght$(str$(hd),3):retum

+right$(str$(hd),4):return

+right$(str$(hd),5):return

1550 ifhd>95959thenti$ = nght$(str$(hd),6):return

List Of Figures

Figure 1 Single Chip 8K Memory Expansion

Figure 2 BSR Interface

Figure 3 Analog to Digital Converter

Figure 4 Temperature Sensors and Amplifiers

Figure 5 Power Supply for both style VIC 20's

Figure 6 Alkaline Cells Battery Back-up (old VIC 20's)

Figure 7 Alkaline Cells Battery Back-up (new VIC 20's)

Figure 8a Remote Display Transmitter

Figure 8b Remote Display Receiver

Semiconductors

1 HM6264P-15 8k X 8 Static RAM chip

1 TIL-111 opto coupler

3 2N-3904 NPN Transistor

1 1N-4744A 15 Volt 1 Watt Zener Diode

1 4001 Quad 2-Input NOR Gate

8 2N-2222A NPN Transistors

2 LM-324 Quad OP-AMP

4 4033 Decade counter with 7 segment output

4 MAN-3 7 segment display

1 1N-4001 Rectifier

1 74LS05 Hex inverter with open collector

1 TIP-117 Darlington PNP Power Transistor

1 74LS04 Hex inverter

1 74LS00 Quad 2-input NAND Gate

1 4051 8 Channel Multiplexer

1 74LS373 Octal Latch

1 ADC-0804 8 Bit A/D Converter

1 LM-323 3 Amp 5 VOlt Regulator

1 KBPC25-02 25 Amp Bridge Rectifier

3 6 Amp Rectifier

Article

Computerize A Home

Plug In Remote Control System

An 8080-Based Remote

Appliance Controller

Single Wire Pair Multiplexes

Power and Data For Display

References

Author

Steve Ciarcia

Steve Ciarcia

David Stoehlin

Publication Date

BYTE Jan 80

Radio Electronics Sep 80

BYTE Jan 82

Tommy N. Tyler Electronics Dec 78

Parts List

Resistors

1

1

1

1

1

2

2

1

11

3

2

8

8

4

30

100

120

180

750

Ik

5.1k

9.1k

10k

33k

100k

1M

25 W

1/4 W

1/4 W

1/4 W

1/4W

1/4W

1/4W

1/4 W

1/4 W

1/4W

1/4W

1/4W

1/4 W

Capacitors

1 200 pf

1 470pf

1 0.05 uf

1 0.33 uf

1 100 uf

1 500 uf

The Transactor 67 May 1986: Volume 6, Issue O6

FIGURE 1

SINGLE CHIP 8K MEMORY EXPANSION

Pins on expansion connector

Chip used is a HM6264P-15 by Hitachi

vcc

FIGURE 2

BSR INTERFACE

TIL-111 CD 4001

OUT

*** MAKE NO CONNECTIONS BETWEEN VIC'S GND AND ***

*** THE BSR'S ***

Optoisolator TIL-111

I.C. CD 4001 VCC to pin 14 VSS to pin 7

Oscillator output to BSR pin 7

INP to VIC user port pin C

GND to VIC user port pin A

The Transactor 68 May 1986: Volume 6, Issue O6

Analog inputs

FIGURE 3

ANALOG TO DIGITAL CONVERTER

+5 +5

DO

D7

BLK2

BLK3

BLK5

D0-D7 TO VIC

EXPANSION

CONNECTOR

BLK5

40960 174 74LS00 1/6 74LS04

Pin 11 on exp,

Pin 12

Pin 13

connector

5k Trimpots

The Transactor 69 May 1986: Volume 6, Issue O6

FIGURE 4

TEMPERATURE SENSORS AND AMPLIFIERS
FIGURE 5

CHAN

CHAN

CHAN

CHAN

1,5

2,6

3,7

4,8

-

2

6

9

13

+

3

5

10

12

OUT

1

7

8

14

- QUO

25 amp

50 PIV bridge

The specs for the early VIC transoraer are 11 volts A.C. output

at 3 asps.

On The new style VIC20's use the GND, 5 volts and the two 9 volte AC leads.

On the old style VIC20's use only the CND and 12 volts. Tht; 12 volts Is

connected at the Bame point be the alcaline cells as shown in figure 6,

FIGURE 6 ALCALINE CELL BATTERY BACK-UP FOR OLD STYLE VIC'S

Regulator inside the VIC

=- 6 "D" cells

TI~ in series

1

FIGURE 7 ALCALINE CELL BATTERY BACK-UP FOR NEW STYLE VIC'S

From power pack

9 V ac

9 V ac

+ 5 V dc

■ 9 V ac to VIC

• 9 V ac to VIC

+5 V dc to VIC

6 Amp 50 PIV rectifiers

~ZT 4 alcaline "D" cells in series

GND
i

GND to VIC

The Transactor 7O May 1986: Volume 6, Issue O6

FIGURE 8a

REMOTE DISPLAY TRANSMITTER

TIP-117

74LS05

74LS05 VCC on pin 14 VSS on pin 7

+5 connected to user port pin 2

INP " D

GND " A

COOKTT UP

OUT

FIGURE 8b

REMOTE DISPLAY RECEIVER

INP

33K

GND

1N4001 ALL 4033

■w-

BOOuF
I

2N3904

16

5

15

2 8 14

i

4

15

16

5

2 8 14

rrx

16

1 5
i

4 3

15

2 8 14

16

1

4

15

2 3 8 14

trn
.05 uF .33 uF

INP connected to remote display transmitter OUT

GND connected to remote display transmitter GND

• IB'O»

/ /

The Transactor 71 May 1986: Volume 6, Issue O6

A Comparison of

Four Word Processors

Ranjan Bose

Winnipeg, Manitoba

Even hard-core critics of 'the home computer revolution' grudgingly

concede that wordprocessing is reason enough for having a computer

around Ihe house. Wordprocessing programs for the Commodore 64

abound in plenty and run in price from a few dollars to hundreds.

Presented here is my impression of four medium-priced wordproces-

sors for beginners and moderately advanced users of wordprocessing.

These four programs are:

SPEEDSCRIPT 3.0 from Compute! Publications on disk for

$18.00

Gold Disk volume 2 from Gold Disk Software on disk for

$16.95

OMNIWRITER/Omnispell from HESWARE on disk for about

$50.00

SUPERTEXT-64 from MUSE on disk for about $60.00.

These form two comparable pairs in their prices and functions.

General features: Both SPEEDSCRIPT and GOLDDISK come on

write-protected disks with other programs (games, utilities etc.).

SPEEDSCRIPT is transferable while GOLDDISK is copy-protected.

Instructions for SPEEDSCRIPT appeared in Compute! (vol. 7 no. 3,

March 1985), while those for GOLDDISK are included as text files on

the same disk. SPEEDSCRIPT and OMN1WRITER both can work with

tapes as well as disks. The other two can only access disk.

OMN1WR1TER comes with a compact and lucid manual. The system

disk is write-protected and contains several example files. The pro

gram permits mail merge, label making and has a 30000+ word

spelling checker which is adequately fast and is user-editable (add or

delete words). There are also utilities for backing up disks (text files)

and for copying the dictionary to another disk.

SUPERTEXT comes with two identical disks which can be used for

storing files. The manual is roughly the same size as the C64 manual

and is excellent. Several example files are provided on the disks.

If you accidentally reset the computer, you can still access SUPER-

TEXT and SPEEDSCRIPT (document preserved). Not so with OMNI-

WRITER and GOLDDISK. Both OMN1WRITER and SUPERTEXT have

help menus.

Display: Both SPEEDSCRIPT and GOLDDISK have 40 column unfor

matted displays (not showing margins, paragraphs and page breaks).

SPEEDSCRIPT has an on-screen print preview option while GOLD

DISK does not. SPEEDSCRIPT can send files to disk as formatted

sequential files which can later be directly printed through a GET*/

PRINT" loop without using SPEEDSCRIPT. GOLDDISK is the only

program in this group of four which does not word-wrap or parse

(broken words at right margin). All four allow changing of screen and

character colors.

OMN1WRITER uses normal sized characters and a rolling-writer

display either in 40 column width or full width (up to 240 columns).

The latter shows a portion of a file through a 40 column wide window.

The edges can be seen by horizontal scrolling or by pressing F3/F4. A

status line at the top of the screen indicates the name of the document

and the page, line and column position of the cursor. The display is

formatted (except for line spacing and right justification). Print pre

viewing on-screen is not supported. Display is divided into pages and

you cannot continuously scroll from one end of a multi-page docu

ment to the other. Free movement within a page is possible. Fl moves

to the next page; you can also go to any page directly.

SUPERTEXT accepts lines of up to 132 characters and has either a

normal sized 40 column display or a hi-res 80 column alphanumeric

display; the display is selected by LOADing separate utility modules

without affecting the document in memory. The 80 character display

is unusable for composing text unless you use a high resolution

monochrome monitor, and the manual gives a clear warning about

this. It is however, more than adequate for print previewing and for

checking page layout. The Display is not normally formatted but can

be made so by pressing the '&' key. Print previewing on the screen is

highly sophisticated (see printing). There is also a split screen option

which allows you to view two individually scrollable parts of the

document on the same screen, very helpful during block move and

copy operations or while trying out different sentence constructions

for easy readability.

Editing and Formatting: SPEEDSCRIPT SAVEs text files as screen

codes (PRG). GOLDDISK can SAVE and LOAD ASCII files either as

PRG or SEQ. A GOLDDISK file can be LOADed by SPEEDSCRIPT and

only formatting and some text characters have to be changed.

SPEEDSCRiPT files however look strange on GOLDDISK and cannot

be used. SPEEDSCRIPT permits display of disk directories and send

ing DOS commands. GOLDDISK does neither. SPEEDSCRIPT uses

inverse letters as formatting symbols for selecting margins (left, right,

top and bottom), page length, width (up to 255 columns), line spacing,

forced page breaks, text justification, and centering. It uses keyboard

control sequences for transposing letters, changing case, paragraph

indenting, deleting backwards or forwards - a letter, word, sentence,

or paragraph and then retrieving it if necessary. It also has multiple

keys for moving forwards or backwards through the document by

character, word, sentence or paragraph. It does not support right and

left justification at the same time, though. It supports up to 255

character long headers and footers. It also permits remarks and notes

which are displayed on the screen but not printed on paper.

GOLDDISK uses conventional BLOCK commands. You first mark a

block and then either move, copy or delete it. Retrieval of deleted

material is impossible. It supports all of the above formatting com

mands except for setting of document width, transposing letters and

changing case (nor do the higher priced programs!). The cursor can be

moved bi-directionally by a letter, word, line or 16 lines or to the

extremes of the document. Both programs have an insert mode

(subsequent text moved down while adding text) or replace mode

(overwriting). Keys can be defined by both programs (graphics and

other special printer codes). SPEEDSCRIPT allows one to print the

upper/lower case character-set CBM graphics symbols. None of the

others permit that fully. Gold disk does not support headers or footers.

The Transactor 72 May 1986: Volume 6, Issue O6

SPEEDSCR1PT has a large buffer to accommodate 44K of text and

allows linking of files from disk and tape during printing (not during

editing; only SUPERTEXT permits that). GOLDD1SK allows only 24K

with no linking of files. Both programs allow appending of files in

memory by serially LOADing documents. Both allow selective and

global searches and replaces. Tabulation is difficult on both if not

impossible.

OMNIWR1TER files (PRG) are divided into four areas called pages - a

work area for notes to yourself, or for moving deleted blocks (sort of an

inconvenient recall buffer), and for material which can be merged

during printing (addresses, labels etc.). The other three areas are for

the text, header and footer. Incidentally, any of these can have more

than one page and can be accessed easily for editing. Horizontal

tabbing (left justified for text and decimal justified for numbers) makes

tabulation easy. Any number of tabs are permitted. The two extreme

markers on a format line decide the left and right margin. If these tabs

are repositioned later, the entire display changes and text is rear

ranged. One interesting touch is that when you place the cursor on

any format symbol, a normally invisible letter shows up to indicate

the key for selecting the function represented. Up to ten special ASCII

printer commands can be programmed. Right justification is con

trolled during printing which means that your entire document will

either have a straight or a ragged right margin. Cursor movement to

top and bottom of document, by pages, screens, lines, tabs and

characters is supported. Other standard features like selective/global

searches, replaces, and block operations are provided. Line spacing

can be changed from 1 to 9 but does not show up on the screen (same

as the other programs). Paging (text length) has to be manually

determined by placing end-of-page markers. This also means that if

you use variable spacing in your document you have to do a bit of

mental calculations since the status line would show line numbers as

if it was a single spaced-document and you may end up with a printed

page which extends into the next page. You can overwrite or insert

text anywhere in the document easily. The lack of automatic paging

however has one benefit. It avoids printing a heading belonging to the

paragraph starting on the next page at the bottom of a page! The

document can be up to 34K long and linking or merging of other files

is easy during editing. This includes any sequential file (data bases,

spreadsheets, telecommunications) or other SEQ or PRG wordproces-

sor file. Variable information can be merged from the work page,

other 0MNIWR1TER files, or any sequential file. A form letter thus

could be composed and different names and addresses merged with it

to get multiple copies (Mail-merge). Directory and DOS commands

are a keypress away. If you try to quit without saving an altered

document a warning is displayed.

SUPERTEXT is a program with a unique personality. On the one hand

it has a very flexible and sophisticated printing package and file

linking and merging facilities, yet on the other hand it has a very slow

and inefficient editor. It has three operative modes. Pressing Fl

toggles the CURSOR mode which is used only for disk access and

block operations. The screen goes dead and you cannot type in any

text. The directory is displayed in two columns with numbers which

can be used in lieu of file names for LOADing. The available space on

disk is displayed as pages (roughly corresponding to a double spaced

printed page) rather than as the more familiar blocks. The directory

displays only USR and SEQ files. While carrying out block operations

the marked block can be SAVEd to disk and can be retrieved later if

necessary by merging. This method of block retrieval however is

cumbersome compared to using the replace-buffer available in

SPEEDSCRIPT. SUPERTEXT, like OMNIWRITER, allows non

destructive merges. This means that the material from disk is inserted

at the cursor without overwriting the existing document.

Pressing F3 toggles the ADD (insert) mode which alone can be used

for composing and editing text. Pressing F5 toggles the CHANGE

mode which permits overwriting. You can select the direction of

movement of the cursor by pressing + or - and can move by a

character, word, half a line, a line, half a page or more. All standard

formatting is supported. You can number pages at the top or bottom,

in the center of a line or on the right and left edge on alternate pages.

Up to 15 tabs are supported for tabulation (right or left justified; for

numbers you have to put the 00 after decimal; this is not necessary

with the decimal tab of OMNIWRITER). The text area available is only

10K but you can go to a linked file forward or backward and edit it.

Also, if you are LOADing a sequential file (composed on some other

wordprocessor) which is larger than 10K you can LOAD it in chunks

and SAVE them as linked files! Nine user-definable keys are available

for sending ASCII codes to printers. You can also define the \ key to

represent a frequently used word or phrase up to 30 characters long.

Every time the \ key is pressed the phrase is inserted in the docu

ment.

Printing: SPEEDSCRIPT allows previewing on screen, GOLDDISK

does not. Both print to the lowest common denominator i.e., a dumb

printer. SPEEDSCRIPT has problems with RS232 printers. GOLDDISK

has problems with a 1526! (a special version is available though).

OMNIWRITER formats the text on-screen and therefore does not

need print previewing. You cannot see line spacing or right justifica

tion on the screen though. You can print a sheet at a time or use fan

fold. Printing can be halted and then you can either continue, reprint

the page or abort. Selective printing (e.g. pages 6-19) is possible.

Many printers including RS232 devices and the 1520 plotter are

supported. There are utilities and special versions for parallel and

IEEE printers as well. SUPERTEXT uses customizable separate printer

files. Print previewing on screen is supported. Printing on paper and

screen can be halted and you can continue, reprint a page, print a line

at a time, skip a page or abort. You can print more than one copy (not

possible with linked files for obvious reasons). Printing speed is much

slower than any other program (it probably uses a different algorithm).

Both these programs can send special codes to trigger printer func

tions like italics, emphasized, bold, super/subscripts, custom-

graphics and underlining etc. (provided your printer supports these

functions).

Overview: SPEEDSCRIPT for its price is an extremely sophisticated

wordprocessor. It has the largest text area, very flexible and intelli

gently designed cursor movements (by elements of text rather than by

lines/screen etc.). It also has an undo or retrieve function which none

of the other packages reviewed here possess. At its price, features like

80 columns, mail merging, or spelling checking should not even be

expected. The only vital thing missing is right justification. GOLD

DISK has many more shortcomings - a limited text area, no DOS or

directory access, no screen previewing capability. It however can right

justify. Undoubtedly, SPEEDSCRIPT is an easy winner in this cate

gory. It is a serious contender even when compared with the higher

priced programs.

The higher priced programs are difficult to compare. SUPERTEXT has

a very powerful and flexible printing package (to screen and hard-

copy), and extremely powerful text merging and linking/splitting. It

however does everything more slowly than the other programs and it

has the most inconvenient editor I have ever seen, which is its major

drawback. A wordprocessor should leave your mind free to think

while you compose a document. SUPERTEXT can slow you down.

The only minor inconvenient feature of OMNIWRITER is its non-

automatic page-formatting. When your document is anything but

single-spaced, the line * indicator in the top status line is incorrect.

The Transactor 73 May 1986: Volume 6, Issue O6

You have to mentally count where on the printed page you are and set

page end markers accordingly. Choose variable spacing and you are

in for more work! However, it is comforting to know that the feature is

there and you can space your document variably up to 9 spaces

between lines. SUPERTEXT does not allow this choice. You either

have a single or double spaced document throughout, period. This

beef aside, OMNIWRITER/Omnispell is a very convenient, efficient

package, easily the best among the ones reviewed here. Its flexible

formatted screen output, uncluttered screen, alphanumeric tabbing,

convenient editing and the icing in the form of mail merging and

spelling checking make it a very attractive package. This is a wordpro-

cessor which even a beginner can use easily and continue exploring

and growing with it for a very long time.

Additional Note For 1526 Owners: While I was exploring these

wordprocessors, 1 was amazed to find that most software designers

had not given serious consideration to the 1526 printer. This is ironic

because 1526/MPS-802 is more suitable for serious wordprocessing

than the 1525/MPS-801! The 1526 when first introduced had firm

ware bugs. It would lock up the serial bus and was sensitive to the

order in which devices were switched on. A letter from Commodore

indicates that the latest C64-compatible 1526 had a version 05 ROM

and that the more recent version 07C was introduced to increase

compatibility with the newer + 4 and +16 computers. My recent

experience however indicates that most wordprocessors are allergic to

the 1526 with version 05 ROM. You would either get no printout (with

GOLDDISK, unless you use a special version, readily supplied by

GOLDDISK), strange "?h?HG$-" characters at the head of your docu

ment (almost all wordprocessors) or even a word jumble (LETTER

WIZARD, DATASOFT). If you have a version 07C ROM all of these will

work perfectly. BUT if you RUN any other program which uses

multiple custom characters you are in for a surprise! Your programs

which worked fine with the 05 ROM will now report a terminator

error! The solution is simple. Normally when designing a custom

character, you draw an 8 by 8 matrix and add the binary values of

columns (1,2,4,8,16,32,64,128) depending on the position of dark

printing cells (0 if blank). Thus you have 8 ASCII values which are sent

as a concatenated character string to a printer file with a secondary

address of 5, and then when you print CHR$(254) you get your custom

character. If you have an 07C ROM in your 1526, SEND A 9 CHARAC

TER STRING TO S.A. 5 USING AN 8 BY 9 MATRIX. The last value does

not print and can be a zero. What does this mean? Have the Commo

dore designers run out of coffee (again?) or psst. . .psst are they going

to break the 8 by 8 barrier? Only time can tell. Commodore for sure

won't!

Omnispell Spelling Checker: Omniwriter, in addition to being an

efficient and affordable wordprocessor, has a spelling checking pro

gram with a 30,000 word expandable dictionary both of which can be

copied to your work disks. After working on a document one presses

the commodore key followed by RUN (SHFT-RUN/STOP). This

results in the loading and execution of OMNISPELL. The program first

prepares a word-list (about 1-2 min depending on the size of your

document and word-distribution). You then have an option of spell-

checking, list words alphabetically or by frequency. Spell-checking

compares the words with those in the dictionary and marks and

displays the unrecognized ones. You then return to your document

and issue a verify command. Everytime an unrecognized word is

located you have an option to edit it, skip or accept it or to learn the

word. Once this is done, you can re-execute OMNISPELL and add any

new words learned to the dictionary. This sub-program is reasonably

fast and is usually used only once after your document is in final

shape. This however makes OMNIWRITER a very attractive choice.

Comparison Table

Advantages

SPEEDSCRIPT

Up to 255 columns. Limited CBM

graphics. Logical cursor move

ment. Transpose letter. CHaNge

case. Recall buffer. Large capac

ity. Disk/tape files. VERIFY files.

Seq formatted files printable

without word processor. Easily

copyable. Very good value for

money.

GOLDDISK

Limited CBM graphics. Right jus

tification. Backup utility in

cluded. Poor value for money

(when considering wordproces

sor program alone).

OMNIWRITER

Good design. 240 column dis

play. Good tabulation. Mail

merg/label. Disk/tape files. Ac

cepts files from other wordpro

cessors, any seq. file from data

base/spread sheets/tel.com.

Parallel/IEEE drivers included.

Supports RS232 printers. Excel

lent warning for altered but UN

SAVED files. Backup utility for

dictionary and disks. 30000 +

words spelling checker. Excel

lent value for money.

SUPERTEXT

Hires 80 column display. Up to

132 columns display. Split screen

edit. Excellent file link. Splitting

& link. \ key programmable. Su

perb print package. Good tabula

tion. Altered file has a * before

filename - no other warning. In

cludes 2 program disks. Satisfac

tory value for money (costliest)

Disadvantages

SPEEDSCRIPT

40 col display. Destructive

merge. No right justification. No

altered file warning. Does not

support RS232 printers. No

backup utility. No mail merge or

spell-checking. Difficult tabula

tion.

GOLDDISK

40 column display. Destructive

merge. No word wrap - only fan

fold. No screen preview. No

directory/DOS. Smallest effec

tive text area and no linked files.

No altered file warning. Disks

only. No mail merge or spell-

checking. Difficult tabulation. No

headers/footers.

OMNIWRITER

Few CBM graphics. Manual pag

ing specially tricky when using

variable spacing. Copy protected

- head-bumping.

SUPERTEXT

No CBM graphics. Either single

or double spacing - variable line-

spacing not permitted. Inconven

ient editing. Only seq files. No

tape access. No mail merge or

spell-checking. Slow printing. No

backup utility.

The Transactor 74 May 1986: Volume 6, Issue O6

News BRK

Transactor News

Submitting NEWS BRK

Press Releases

If you have a press release which you would

like to submit for the NEWS BRK column,

make sure that the computer or device for

which the product is intended is prominently

noted. We receive hundreds of press releases

for each issue, and ones whose intended

readership is not clear must unfortunately go

straight to the trash bin. It should also be

mentioned here that we only print product

releases which are in some way Applicable to

Commodore equipment.

The TransBASIC Disk

Well over 100 commands and functions have

been published over the last 8 TransBASIC

Columns and there are dozens more to come.

So we've decided to collect every command,

including the unpublished ones, and put

them all on the first release of The TransBA

SIC Disk. A reference manual gives examples

of every command in the library. You simply

load and run the first program on the disk

and begin adding command modules. After

assembling the selected modules, your new

TransBASIC "dialect" can be saved to disk for

future use.

SYMASS 3.0 is the assembler resident on The

TransBASIC Disk. It's written in machine

code and was modelled after (and tested with)

TransBASIC modules. Previously, PAL was

necessary for doing the final assembly. SY

MASS 3.0 will assemble any source code that

is no more exotic than a typical TransBASIC

module, but it doesn't output listings or send

object code to disk. For development pur

poses we still recommend PAL (see next

item), but SYMASS 3.0 makes the TransBA

SIC Disk totally self-contained!

The TransBASIC Disk with reference manual

is $9.95 (7% pst in Ontario). You can use our

postage paid subscription card to order.

PAL and POWER: The ToolBox

Nearly every source code listing in The Trans

actor is written in PAL format. We often get

requests about obtaining the PAL from Pro-

Line. But since Pro-Line is a distributor, they

would refer requests to a retailer. So to elimi

nate a little legwork, The Transactor is offer

ing The ToolBox. It contains both the PAL

Assembler Development System and

POWER, the Basic editor enhancement pack

age. It comes with the disk and two nice

manuals. Suggested list price is $129.95. Mail

order from us it's just $79.95! And, once

again, you can use the order card at center

page.

The G-Link Interface

There are a couple of C64 to IEEE interfaces

available but one you probably haven't heard

much about is the G-Link, or Clink as it's

pronounced among the few of us who own

one. Why do we use Glinks? They're totally

transparent! The others have "features" like

machine language monitors and Basic exten

sions that tend to interfere with certain more

sophisticated programs. The Glink does none

of that. Nor does it use the RAM that lies

underneath the BASIC and Kernal ROMs. It

also has a switch for serial bus operation. It

comes with installation instructions for

$49.95, but there are only a few in existence

so it's first come first served. Once they're

gone, they're gone.

Attention Anthology Owners

The BBS phone numbers section of the Inner

Space Anthology lists a phone number for

The Simarillion BBS in Garden Grove, CA.

The owner of the number informed us that

although he has a C64, and would also like to

find the correct number for The Simarillion,

he is not the numberb you're looking for.

Unfortunately we have misplaced his iden

tity, so, "number^,. . . if your're listening,. . .

aren't you ready for the fun and excitement of

your own BBS. . ? Perhaps someone might

offer to loan him a modem? and some BBS

software? The number is on page 89 of the

Anthology, but use the voice line.

Events

World Of Commodore III

In Toronto A Success

The third annual World Of Commodore III

held in Toronto in early December was a

complete success, with more than 33,000

people attending the four-day show. In fact,

the show was so successful that Commodore

Business Machines is looking at expansion

and new features for the next years show.

The WOC is the largest microcomputer show

in Canada. This year, Commodore and about

60 other exhibitors displayed, demonstrated

and sold Commodore related hardware, soft

ware, peripherals and accessories. To en

hance the visit, Commodore had C64s,

C128s, PC-lOs and Amigas available for use

and abuse by the patrons of the show. If any

questions developed, Commodore employ

ees could always be found lurking about

waiting for any opportunity to please. This

was surely a noteworthy event in Commo

dore history!

" Record sales were achieved by repeat ex

hibitors and those displaying for the first time

were amazed at the interest they attracted

and the amount of products that sold", said

Robert Graham, Vice-President, Marketing. "

Virtually all the exhibitors plan to return in

1986."

Along with seminars that often drew more

than 350 people, musicians, computer ex

perts, engineers and graphic artists demon

strated the capabilities of the Amiga along

with the other Commodore product line. As

well, Commodore helped the Ontario Special

Olympics for the Mentally Retarded by rais

ing $10,000.00 through the raffle of a C128

system, admissions to a video arcade and the

sale of magazines and posters.

C.A.S.E Meeting And Jamboree 1986

The place to be on the weekend of April 26-

27, 1986, is at the Opry Land Hotel in Nash

ville, Tennessee for the C.A.S.E. annual

get-together. C.A.S.E. (Commodore Associa

tion of the Southeast) is a consortium of the

user groups of the southeast United States,

formed to better serve the southeastern com

munity of Commodore computer users. We

are a non-profit organization recognized by

Commodore World, and installed with our

own special messaging area on the Commo

dore National Network, Quantum Link.

We invite the general public to attend our

two-day Jamboree. There will be vendors

present as well as several guest speakers

furnished by Commodore Business Ma

chines, Limited. One admission charge cov

ers the general admission to all areas of the

Jamboree.

Tickets are available from any C.A.S.E. affili

ate club, or by sending $7.50 (US) to C.A.S.E.

at the address below. Everyone is invited to

attend this southeastern conference of Com

modore computer users. Tickets will be avail

able at the door of the Jamboree 1986 for

$10.00.

Commodore oriented user groups may join

C.A.S.E. by requesting membership informa

tion from C.A.S.E. at the address below. Ven

dors may inquire as to possible spaces

available for the Jamboree 1986 prior to

March 1, 1986 through the address listed

below.

C.A.S.E., Inc.

PO Box 110386

Nashville, Tennessee 37222

Amiga News

NAAUG For Amiga Users

The North American Amiga Users Group

(NAAUG) is distributing its first newsletter as

of December 24th. NAAUG has contacted

The Transactor 75 May 1986: Volume 6, Issue O6

various users groups and Amiga dealers who

have expressed interest in the group. Anyone

interested in receiving a free copy of the

AmigaHelp Newsletter, containing valuable

information and details on how to join,

should write:

North American Amiga Users Group

P.O. Box 376

Lemont, PA 16851

NAAUG offers members a wide range of serv

ices for the annual membership fee of $25.00

(US), which include; a subscription to "Ami

gaHelp" newsletter, the Helpline for free one-

on-one computer advice, one free disk of

public domain software plus full access to the

group's Public Domain library, free classified

ads to members, bulletin boards, and SIGs.

For more information contact:

Richard Shoemaker, Founder

(814) 237-5511, after 4 PM and on wkds.

BBS For Amiga Owners

The system supports up/downloads, mes

sage boards, Fidonet mail and more. All in

terested persons welcome! We have a

growing list of public domain software availa

ble for download. (Also available by mail

from Kinetic Designs on disks for non-

modem computerists.)

Call: Casa Mi Amiga, (904) 733-4515, 24

Hours, 16 Meg Online. Or for more informa

tion send a SASE to:

Kinetic Designs

Casa Mi Amiga

1187DunbarCt.

Orange Pk, FL 32073

dBx Translator Converts

dBASE Programs Into "C".

Desktop A.I. has released a translator that

allows moving dBASE programs into the "C"

language. The dBx Translator system in

cludes a language translator for processing

dBASE source, and a run-time library tool

box to replace the dBASE screen handler.

Once converted, the dBASE code becomes a

fully functional and controllable "C" program

giving an application developer complete

control over his product and release from the

problems and royalty costs of dBASE. In addi

tion, applications can be moved to machines

where dBASE is not available such as the

AT&T 3B2 under UNIX, Altos under XENIX,

and Macintosh or Amiga systems.

The system is programmed in standard "C"

and produces standard "C" from dBASE

code. The action of the dBx Translator ranges

from complete translation of some dBASE

statements to commenting out other state

ments that have no parallel in "C". The pro

grammer then converts those functions that

are too different to allow automatic transla

tion. The run-time library provides the "C"

functions that dBASE has built-in and allows

dBASE application screens to be functional

rapidly without major programming effort.

The system comes with a translation guide

book which provides programming tips and

translating techniques about changing

dBASE code into appropriate "C" code to

further assist the programmer. The system is

available under MS DOS, (using the ANSI

screen handler) UNIX and XENIX, (using the

CURSES screen handling packages) and will

be available soon for the Macintosh and

AMIGA. The package price ranges from

$350.00 to $1,000.00 (US) depending on sys

tem configuration. For more information or

orders contact:

Desktop A.I.

1720 Post Road East *3

Westport, CT 06880 (203) 255-3400

The Trading Board BBS

for the Commodore 64 and C128

The second in the Sure Product line, The

Trading Board offers Up and Downloading

with New Punter, a time and date clock, auto

log on, E-Mail send and read with check at log

on, set log off time and lots more. The system

package includes a detail manual to help you

customize the board to your needs, four pro

grams to get you started, a detail list and a

section on advertising your BBS. The system

will up and down load with one or two drives

and is compatible with most auto-answer mo

dems. For a sample on this amazing system

call (805) 492-3668. For more information:

Terry Hill, Creative Enterprises

PO Box 4253, 1714 Sanalwood PI.

Thousand Oaks, CA

91360 (805)492-0568

Online News

2890 Databases Available Online

The recently published summer 1985 update

issue of the authoritative "Directory of Online

Databases" reveals continued growth in the

online database industry. With a total of 197

databases going online in the last three

months, 2890 databases are now being of

fered through 442 online services worldwide.

This impressive growth rate is slightly offset

by a just-less-than record number of data

bases being dropped by the online services.

Accordingly, this loss is credited to the nor

mal housecleaning in the industry in part due

to repetitive services offered and a narrow

range of subject coverage. According to Dr.

Carlos A. Cuadra, president of Cuadra Associ

ates, " ... we don't really perceive this as a

major shakeout comparable to that found in

other segments of the computer industry.

Rather, it is part of the perpetual houseclean

ing one expects in an industry with a healthy

number of entrepreneurs."

The "Directory of Online Databases" is pub

lished quarterly and provides accurate and

comprehensive coverage of all types of data

bases that are available to users through on

line, interactive systems. A one-year

subscription includes two complete editions

and two update supplements. For further in

formation, contact:

Carlos A. Cuadra, President

Cuadra Associates, Inc.

2001 Wilshire Blvd., Suite 305

Santa Monica. CA

90403 (213)829-9972

George Novotny, Vice-President

Applied and Information Sciences

Elsevier Sciences Publishing Co., Inc.

52 Vanderbilt Avenue

New York, NY

10017 (212)370-5520, ext 1537

Tymnet Offers First-Time

Local Access Service In Canada

Tymnet, McDonnell Douglas Network Sys

tems Company, has announced it now offers

a local async dial-up access to its TYMNET

public data network in Toronto, Canada. No

other U.S. public data network offers local

dial-up services anywhere in Canada.

Now, with a local phone call, Toronto users

can access the various data bases available

through the TYMNET network, and can take

advantage of its numerous value-added fea

tures and services including built-in protocol

conversion, error-correction, comprehensive

network management, and more.

Previously, Toronto users had access to TYM

NET only by means of X.75 gateways to

Datapac, Canada's largest public data net

work. (These gateways will remain in place

indefinitely, however.)

TYMNET plans to offer local dial-up access in

five major Canadian cities by first quarter

1986, and in every major Canadian city by

year-end 1986.

" With local access availability, we can now

offer Toronto businesses an extremely cost-

effective, practical data communications so

lution for a wide variety of business

applications," said Neil Sullivan, Tymnet's

Director of External Services. " For example,

with a local phone call, Toronto users will be

able to access IBM hosts running bisync or

SDLC from inexpensive asynchronous termi

nals."

TYMNET provides local access from more

than 540 locations in the U.S. and from 65

countries.

Tymnet Inc.

2710 Orchard Pkwy.

San Jose, CA 95134

(408)942-5076 DaveTivol

(408) 942-5209 Lori Waggener

The Transactor 76 May 1986: Volume 6, Issue O6

Software

Basic Compiler For The C128

Abacus Software of Grand Rapids, Michigan,

has announced the release of a new Basic

compiler for the Commodore C-128, "BASIC-

128 Compiler". Written in West Germany by

Thomas Helbig, the "BASIC-128 Compiler"

will increase the speed of Basic program exe

cution by a factor of 5 to 35. For the ultimate

in versatility, you can compile Basic pro

grams to either pure 8510 machine code,

very compact P-code, or a combination of

both. The choice is yours.

Included with the "BASIC-128 Compiler" is

an 80-page instruction guide which details all

aspects of working with the compiler. Simple

to very advanced features are outlined, in

cluding tips and techniques that every pro

grammer will appreciate. The suggested retail

price is $59.85 (US). For more information,

contact:

Abacus Software

P.O. Box 7211

2201 Kalamazoo S.E.

Grand Rapids, MI

49510 (616)241-5510

Chartpak 128 for the Commodore C128

There's a new Chartpak available for the

Commodore C-128, "Chartpak-128". Taking

advantage of the new, expanded features of

the C-128, "Chartpak-128" now has 3X the

resolution of the earlier Commodore 64 ver

sion. You can now view an entire chart or

graph, or scroll the screen to see the higher-

resolution detail. And, utilizing the C128's

extra RAM, Chartpak allows you to enter a

greater amount of data in which to build your

charts, while still retaining those familiar data

entry/maintenance features that made the C-

64 version so successful. Through Chartpak

you can produce high-quality pie, bar, or line

charts and graphs that, once completed, can

be printed out to a variety of dot-matrix

printers.

Included with Chartpak is a 140-page user's

guide which contains several tutorials to walk

you through the building of charts and

graphs. "Chartpak-128" has a suggested retail

price of $39.95 (US). For more information,

contact Abacus Software (above)

Statistical Programs for Commodores

David J. Pittenger and Milton H. Hodge of

The University of Georgia announce the re

lease of statistical analyses programs for the

PET 4032, CBM 8032, and Commodore 64.

The package contains a utility program, Data

Manager, which allows the user to enter, edit

and save to disk a file of data to be analysed.

All of the computational programs are de

signed to operate on these data files. The

computational programs include:

1) Descriptive Statistics, which calculate the

arithmetic mean, geometric mean, harmonic

mean, quartiles, quartile range, mode, me

dian, variance, standard deviation, coeffi

cient of variation, and skewness and kurtosis

index for each group.

2) Correlation/Regression, which calculates

and reports all possible correlations in a set of

data, and allows the user to perform multiple

linear regression with any combination of

variables.

3) Analysis of Variance, which performs an

analysis of variance on up to nine indepen

dent variables arranged with or without re

peated measures. In addition, the program

accepts unequal cell sizes.

4) Significance Tester, which calculates the

exact probability of 'z' scores, 't' and 'F ratios,

correlation coefficients (r), and chi squared

scores.

5) Data Transformer, which allows the data

to be manipulated in order to maximize the

homogeneity of variance.

6) Random Number Generator, which gener

ates up to 6,000 random numbers within a

range selected by the user.

7) Permutations and Combinations, which

calculates the permutations and combina

tions possible using the different adding

rules.

The program requires a Commodore com

puter, disk drive, and printer. Several of the

programs have been compiled to optimize

computation speed, but all of the original

Basic code is also supplied for users who wish

to review the algorithm used. A copy of the

program disk and an operation manual may

be purchased by sending $10.00 (US) to:

David J. Pittenger

Department of Psychology

The University of Georgia

Athens, GA 30602

Bookkeeper's Aid:

More Than Just A Tax Record System

Northland Accounting has released the new

revised editions of the "Taxaid" series of

income tax preparation programs for the

Commodore 64, Vic 20 and Plus/4 com

puters. The programs were written by experi

enced tax accountants and are designed for

home use. The new revised editions include

all the latest changes in the tax laws.

TAXAID is easy to use with a detailed manual

that leads the user step by step through the

data entry. The program is menu driven with

advanced editing features that allow the user

to make changes and revisions at any time

during the data entry process. Data files can

be saved and reloaded at any stage of the

program, calculations are automatic and all

tax tables, including income averaging, are

built in. TAXAID will prepare any IRS form

1040. The results can be directed to the moni

tor or printer. Low cost updates for future

years are published yearly.

TAXAID is available on disk or tape for the

Vic 20 with 16k, the Commodore 64 and the

Plus/4 at a cost of $39.95 (US). For more

information contact:

Taxaid Software, Inc.

606 Second Avenue SE

Two Harbors, MN 55616 (218)834-3600

Hardware

Wilanta Descender ROM

Get true descenders for the Commodore 801,

1525, 803, GP-100, Hush 80 and similar

printers with the Wilanta Descender ROMs.

Features include a uniform character forma

tion, no change in existing graphics capabili

ties, no change in software compatibility, and

no change in printer operation. With com

plete instructions for an easy installation with

no soldering, only $29.95 (US), $39.95 (Cdn).

Ontario residents please add 7% provincial

sales tax. Cheque, money order, Visa or Mas

terCard accepted.

Wilanta Arts

6943 Barrisdale Drive

Mississauga, Ontario

L5N-2H5 (416)858-9298

Attention B Machine Owners:

One Megabyte Of RAM Available

How would all of you Commodore B128/

B256 owners like to have a megabyte of RAM

in your B machines?

Question -- What can you do with a megabyte

of RAM in your B?

Answer - SUPERSCRIPT II allows the use of

banks 2 through 9. That's 8 documents in

your computer at one time!

Answer - The 8432 Emulator program,

which allows the B128 to emulate the Com

modore 8032 computer, will let you load

Basic programs into banks 0 through 14 with

a maximum of 12, and allows you to switch

back and forth between them. That's 12 pro

grams in your computer at the same time!

Question -- What's involved in the

byte expansion?

mega-

Answer - The 1 megabyte consists of 32-

256k dynamic RAM chips in sockets on the

original board in place of the 64k RAM chips

that are there now and a custom memory

management circuit.

To find out more about the 1 megabyte ex

pansion, contact:

Fred M. King

1804 Plover Spring Drive

Dept. MEMEXB

Plover, Wisconsin

54467 (715)341-1149

The Transactor 77 May 1986: Volume 6, Issue O6

Compu-toons

The Transactor has been collecting cartoons for almost two

years. Several of them, for one reason or another, will never be

published. We're considering the idea of a "Complete Transac

tor Cartoon Collection" - every cartoon ever received, the best,

and the worst, bound together into a low cost booklet that we

could also include free with other items or give away at

computer shows. If you have submitted cartoons that we have

deemed unsuitable for the magazine, we would still like to

include them in the "collection". However, we would not be

able to pay you for them. Should this be unacceptable, please

contact us and we'll have your drawings returned. Otherwise,

we'll send a free copy of The CTCC to everyone who partici

pates.
CASH OR CHAR.GC ?

This one's stubborn - it has to be kick-started!

Pa... \ua-e 4 {he

ZSOB runs

The Transactor 79 May 1986: Volume 6, Issue O6

JOIN TPUG
The largest Commodore Users Group

Benefit from:

Access to library of public domain software

for C-64, VIC 20 and PET/CBM

Magazine (10 per year) with advice from

Jim Butterfield

Brad Bjomdahl

Liz Deal

TPUG yearly memberships:

Regular member(attends meetings)

Student member (full-time, attends meetings)

Associate (Canada)

Associate (U.S.A.)

Associate (Overseas — sea mail)

Associate (Overseas — air mail)

-$35.00 Cdn.

-$25.00 Cdn.

-$25.00 Cdn.

-$25.00 U.S.

-$30.00 Cdn.

-$35.00 U.S.

-$45.00 U.S.

FOR FURTHER INFORMATION:

Send $1.00 for an information catalogue

(tell us which machine you use!)

To: TPUG INC.

DEPT. A,

101 DUNCAN MILL RD., SUITE G7

DON MILLS, ONTARIO

CANADA M3B1Z3

COMAL INFO
if you have COMAL—

we have information.

BOOKS:
COMAL From A TO Z, $6.95

COMAL Workbook, $6.95

Commodore 64 Graphics with COMAL, $14.95
COMAL Handbook, $18.95
Beginning COMAL, $22.95

Structured Programming With COMAL, $26.95
Foundations With COMAL, $19.95

Cartridge Graphics and Sound, $9.95
captain COMAL Gets Organized, $19.95
Graphics'Primer, $19.95

COMAL 2.0 Packages, $19.95
Library of Functions and Procedures, $19.95

OTHER:
COMAL today subscription, 6 issues, $14.95
COMAL 0.14, Cheatsheet Keyboard Overlay, S3.95
COMAL Starter Kit (3 disks, 1 book), $29.95

19 Different COMAL Disks only $94.05
Deluxe comal Cartridge Package, $128.95
(includes 2 books, 2 disks, and cartridge)

ORDER NOW:
Call TOLL-FREE: 1-800-356-5324 ext 1307 VISA or MasterCard

ORDERS ONLY. Questions and information must call our

Info Line: 608-222-4432. All orders prepaid only—no COD.

Add $2 per book shipping. Send a SASE for free Info

Package or send check or money order in US Dollars to:

COMAL USERS CROUP, U.S.A., LIMITED
5501 Groveland Ten, Madison, wi 53716

TRADEMARKS: Commodore 64 of Commodore Electronics Ltd.:

Captain COMAL of COMAL Users Croup. U.S.A., Ltd.

From The Guru Himself!

The 1986 Commodore Reference Diary

A 65 page reference section that includes:

• All hardware specifications including

theCi28andPCi0/20

• Useful memory locations

• Useful programs

• SuperCharts

• BASIC and machine language hints

• Hexadecimal conversion

• Sound, video

• and more

The full calendar and date book includes:

• National holidays in ten countries

• Personal notes

• 1987 forward planner

• Name, address, telephone section

Just $5.95
(plus 50a: postage and handling)

Order Your Copy Today!

Canada

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T3P7

USA

The Transactor

277 Linwood Avenue

Buffalo, New York

14209

„ , Dealer Orders: ,,_.
Canada USA

Norland Agencies MicroPace Distributing

251 Nipissing Road 1510 North Neil Street

Milton, Ontario Champaign, Illinois

L9T4T7 61820

(416) 876 - 4774 1 800 362-9653

The Transactor presents,

The Complete Commodore

Inner Space Anthology

Over 7,000 Delivered Since March '85

Postage Paid Order Form at Center Page

