

The

GOLD
DISK

VOLUME 1 FEATURES:

• Complete Data Base system with:

— Full screen data entry

— Fast sorting capabilities

— Extensive multi-clause search facilities

— On line help facilities

— On disk tutorial and instructions

• 2 arcade style games with 3D graphics

• Learning to Program in BASIC: Lesson 1

Input/output, variables and assignments,

conditional branches.

• Towers of Hanoi with solution

• The Pereonal House Purchase Analyzer:

Evaluation of financial scenarios

VOLUME 4 FEATURES:
• The Gold Disk Art package

High-res joystick controlled painter prgm with

these powerful features:

— Preprogrammed shapes

— 'Fill' capabilities, Free drawing mode

— 'Undo' capability for error-correction

— 'Print' capability, Zoom

• The Gold Disk Trivia Game with

— Over 500 questions, Multi player, scoring

• Arcade action game with 3D graphics

• Educational: File operations on the C64

• Programming Tutorial:

Binary Search technique illustrated

• Complete checkwriter program

VOLUME 2 FEATURES:

• Complete Word Processing Package with:

— Cut-and-paste, full formatting capabilities,

Margin Justification, Page Numbering

— Access to programmable printer capabilities

• 4 action screens flame! "SPOOK CASTLE"!

• Children's educational game: counting

• Learning to Program in BASIC — Lesson 2:

Array & string variables, FOR-NEXT loop

• 8 Queen's puzzle with solution

• Loans and Mortgages program

• File backup/copy program utility

VOLUME 3 FEATURES:

• A complete Typing Tutor program

Use the built in lessons or create your own!

Complete with self evaluator

• Arcade action game "Chomper"

— 4 screens to complete at each level

• Mind puzzling strategy game: "Cubic"

• Home Budgetter program

• Report Generator (used with Vol. 1 database)

• Tutorial: Powerful sorting techniques

• Learning to Program in Basic: Lesson 3:

PEEKs, POKES, print controls, multi-dimensional

arrays and subroutines

"I've always thought good programs cost a lot more. Now

there's Gold Disk." Karl Hildon, TRANSACTOR

Official approval from "Small Things Considered"

Radio WNYC AM83, New York

"A great way to get inexpensive quality software"

L. Redgers, TPUG Magazine

"The products low price, high quality and simplicity of use,

make it an excellent addition..." CLASSIC Bookshops

"Gold Disk remains on top." DASHER INDUSTRIES, Distributor

"... the right kind of product at the right prices."

COLES, THE BOOK PEOPLE

"Gold Disk idea's time has come."

Phil Kemp, INPUT Magazine

VOLUME 6 FEATURES

• Enhanced Basic

— Over fifty powerful new commands and functions

— Increases programmer productivity

— Simplifies programming

— Easy-to-use

• Action Strategy Game "Rogi Ginbani"

• 4 Screen Game: "Return to Spook Castle"

• Sound Tutorial — Part I

• Tutorial on "Disk Manipulation"

• Educational: Encoding — Decoding

• Financial Options Program — Evaluate

different payment scenarios

VOLUME 7 FEATURES:

• Full Spreadsheet Program

— Ability to evaluate "What if" scenarios

— Powerful and easy-to-use tool with

— Large Worksheet, Variable width columns

— Internal File Operations, Printer Option

• Casino Pack "Poker" and "Black Jack"

• Bonus Card Game "Solitaire"

• Sound Tutorial — Part II

• Tutorial on error recovery

• Educational: Stacks

• Business: Balance Sheet

VOLUME 5 FEATURES:

• The Gold Disk Sprite and Font Editor

package

Joystick controlled graphic package for Sprites

and character graphics with:

— Multi-colour capabilities

— High resulution capabilities

— Easy to follow instructions

• Challenge game: "Kode Breaker"

• Arcade action, arcade graphics game:

"Cosmic Chaos" — Outstanding play!!

• Educational Tutorial: How to Use Sprites

• "Knights Tour" with solution

VOLUME 8 FEATURES:
• FORTH!

The ease of BASIC, the Power of Machine Code

Complete implementation of FIG FORTH!

• The Gold Disk Trivia Game II

— Over 500 new and interesting questions

— Multi-player, auto-scoring

• Arcade action game "Cube Stinker"

3D action, multi-level

• Programming with Forth Part I

• Tutorial — Screen manipulation

• Educational — working with queues

• Business: Compound and Simple Interest

—i 2179 Dunwin Drive, #6, Mississauga

Ontario, Canada L5L 1X2

GOLD;
i P.O. Box 1540, Buffalo

N.Y. 14205-1540

PRICES SINGLE ISSUE @ 15.95 (U.S. FUNDS) OR 17.95 (CDN. FUNDS)
3 ISSUES @ 39.95 (U.S. FUNDS) OR 45.95 (CDN. FUNDS

PHONE ORDERS 6 ISSUES @ 60.95 (U.S. FUNDS) OR 75.95 (CDN. FUNDS)

(416) 828 0914 8 ISSUES @ 80-95 (u-s- FUNDS) 0R 99-95 (CDN- FUNDS)

Ontario residents add 7% tax. Allow up to 4 weeks for delivery. Payment must accompany all orders. 'Commodore 64 is a registered trademark of Commodore Business Machines Inc.

Volume 6

Issue 03
Circulation 64,000

The Languages Issue

Start Address Editorial

Bits and Pieces 5
Disk Cleaner

The 154 l's amazing "«"

World's Simplest Un-Scralch

C-64 Directory LOAD & RUN

Jumbo Relative Files

APPENDingMLtoBASIC

Another Use For " ,A "

Creating DEL Files

Read Blocks Free Directly

1541 Track Protect

Scratch & Save

C-64 POP

C64/V1C20 PRINT AT Command

Menu Select

LIST Freeze

A Couple of Plus/4 Goodies

BASIC Programming Tip - Simulated IF..THEN..ELSE

ML Binary/ASCII Conversion Routines

Lett'er Fly!

Letters 11
Just Love Those Transactor Disks

Ad-vice

A Few Notes On DOS

A Bit More DOS Advice

18-0 Screwup Fixed

Long Lost PAL

Chop, Goes The Executor

News BRK 78
Submitting NEWS BRK Press Releases

The Worst Kind Of Crash

PCCFA - Computers In Action

ISECON '85 - The Information Systems Education

Conference

Western Ontario Business/ Computer Show and

Seminar

Evolution of the Digital Pacific

Four New Books from Abacus

How To Write Papers And Reports About Computer

Technology

TransBASIC Installment #5 15

The Atari 520 ST: An Overview 28

Doing Away With Drama a programming forethought 30

C Power: A Users Review 31

Commodore 128 Keywords and Tokens 32

From Apple To Commodore And Back 34

What Is COMAL? 37

COMAL For The Commodore 64 Better than basic 40

IS lUK. CinOUgh: Using the COMAL RAM Version 0.14 45

GO LOGO GO A Logo familiarizer 48

Hidden Op—CodeS Exploring uncharted CPU territory 50

ALlU COmpariSOn The6502,6809,and68000,side-by-side 53

1 he Intel oOoO The 6502 of the PC world 58

A QUICK PC Primer Including a summary of PC BASIC and MS DOS 61

ng Up BASIC PrOgramS A time consumption analyzer .. 66

TeXt Maker Variable sizetex. made easy! 69

The Save @ Debate Rages On! 73

OlangLiageS A look at some very rare dialects I 0

Compu-toons 77

Note: Before entering programs,

see "Verifizer" on page 4

The Transactor Volume 6, Issue O3

Transactor
TIM T«ch/N*wt Journal For Commodore Computers

print

Managing Editor

KarlJ. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Lana Humphries

Contributing Writers

Robert Adler

Gary Anderson

M. Van Bodegom

Peter Boisvert

Anthony Bryant

Tim Buist

Jim Butterfield

Gary Cobb

Bob Davis

Elizabeth Deal

Yijun Ding

Tony Doty

Michael J. Erskine

Jeff Goebel

Jim Grubbs

Gary Gunderson

Dave Gzik

Bob Hayes

Thomas Henry

Chris Johnsen

Steve Kortendick

Scott Maclean

Jim McLaughlin

John R. Menke

Gerald Neufeld

John W. Ross

Louis F. Sander

Darren J. Spruyt

Aubrey Stanley

David Stevenson

Howard Strasberg

Nick Sullivan

Tony Valeri

Charles Whittern

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton.
Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class
ostage paid at Buffalo NY for U.S. subscribers. U.S. Postmasters: send address changes to The
ransactor, 277 Linwood Avenue, Buffalo, NY, 14209 ISSN' 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET. CBM, VIC, 64) are registered trade

marks of Commodore Inc.

Subscriptions:

Canada$15Cdn. U.S.A.S15US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 878 8438. Note: Subscriptions are handled at this address ONLY.

Subscriptions senl to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use

postage paid card at center of magazine.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 04, 05, 06, Vol 5 Issues 03, 04

Still Available:Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04, 05, 06. Vol. 6: 01, 02, 03

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of course

be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the number 1 which has an

angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

insert will not be critical to correct operation of the program. When it is, the required number of spaces

will be shown. For example:

flush right " - would be shown as - print " [10 spaces]flush right "

Cursor Characters For PET / CBM / VIC / 64

Down - H Insert - Q

Up - S Delete - Q

Right -fl Clear Scrn-H
Left - [lit) Home -Q

RVS - D STOP - Q

RVS Off - |B

Colour Characters For VIC / 64

Black -

White -

Red -

Cyan -

Purple -

Green -

Blue -

□
D
□
[Cyn]

[Pur]

o
B

Orange -

Brown -

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt. Blue -

Yellow- [Yel] Grey 3 - [Gr3]

Function Keys For VIC / 64

Fl- U

F2- Q

F3- Q

F4- B

F5-

F6-

F7-

F8-

Please Note: The Transactor has

a new phone number: (416) 878 8438

p

T
CompuLit

PO Box 352

Port Coquitlam. BC

V5C4K6

604 941 7911

U.S.A. Distributor:

Capital Distributing

Charlton Building

Derby. CT

06418

(203) 735 3381

(or your local wholesaler)

Quantity Orders:

Micron Distributing

409 Queen Street West

Toronto, Ontario, M5V 2A5

(416)593 9862

Dealer Inquiries ONLY:

1 800 268 9052

Subscription related inquiries

are handled ONLY at Milton HQ

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 5B4

(416)842 1555

(or your local wholesaler)

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per

printed page. Prelerred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft,

Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos or illustrations will be included with articles depending on quality. Authors submitting diskettes

will receive the Transactor Disk for the issue containing their contribution.

Al! material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please

re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.

Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor Volume 6, Issue O3

Two things I'd like to say. Both semi-related. Here it is.

Two barrier zones have developed on either side of our fair

industry, leaving us in the middle. And when 1 say us, I mean

you, and I. Because we are those with that affinity for our

micros, much like musicians have for their instruments. And

much like an instrument, each zone has several sounds, but

has the same tone throughout the entire range.

In one zone, perhaps to our far left, is the general conception

that the microcomputer is over. A new toy, a new hobby, a

passing fad not unlike any other. They'll say, "get out now

before it's too late" to the retailer sporting a blank purchase

order. Quite contrary to the "ya, let's sell micros" attitude of

only a short while ago.

Towards the inside of the same zone is the opinion that the

seige is over, and the micro necessity will be determined by the

individual - not the public at large whence many took the

plunge only because the Jones's did. They'll say, "micros will

continue to sell just like guitars will, but I'm not sure / really

want one, and I've no plans to start selling them either. I want

something different because I want to be there as it happens, as

opposed to having a lot of catching up to do".

Then there's us, once again, who know we're in love, who

know there will be those who resist and chastise, who know

there will be those without the will to participate in our domain

which they would probably find fascinating given half a

chance. But we also know that new interest is being generated,

that new faces will indeed make their entrance, and names

among those faces will make their presence known. The names

and faces lie in the zone to our right, which for the most part

will always be just beyond the horizon.

To our inside right are those who believe, "the micro is for me".

They've decided that a micro would be a fabulous pastime, a

challenge, and a chance to learn something which just might

have alterior benefits one day. They may not know quite yet

which brand to buy, but they will. And when they buy, it won't

be long until many are among us. They may not buy Commo

dore, but nonetheless they will want to advance and meet

others who enjoy the same stimulus.

Shortly beyond here lies the average. Parents advocate micro

computing, if not for themselves, at least for their children. You

have to admit it's truly heartwarming to watch the young enjoy

learning, especially knowledge to be proud of. (You) kids soak

up this kind of stuff like a sponge, exploring far more advanced

material far sooner than we ever did. And since there will

always be children who will always become new enthusiasts,

there will always be a need for another micro out there

somewhere.

But the most fascinating sector of this surface must be the far

right. I'd like to point out that the scenarios described previ

ously have all been formulated from personal experience, as is

the next. So many times I've talked with friends and acquaint

ances who are firmly convinced that the wave is still peaking,

that micro proliferation is still on full charge! "Oh ya, that's

really taking off right now, isn't it?", is a common response. Of

course, we know the emphasis has faded. But what about this

sector. Is this the untapped market? Untapped or not, it's out

there - the proof is in the pudding!

Which brings about item two. Perhaps there is a market waiting

to be tapped. What and who will unlock it remains to be seen,

emphasis on "What". Because let's face it. . . new micros are

coming, the Atari, the 128, the Amega, but they are not really

new. Combinations of features and unbelievable prices don't

make new technology. The question that sums it up best for me

is, "Which company's stock value will go through the ceiling

next?" The product belonging to that company is the one I'm

waiting for. It will probably have a central processor, but it will

leave the CPU as we know it in the dust. I call this "the next

wave".

Then the far left will say, "let's get in". The inside left will have

their "something new to be part of". The inside right may very

well discard their indecision in favour of riding the wave. The

average will finally have an alternative. The far right will

complete the picture as Company X sweeps the continents with

the latest "gotta have one" sensation, and we'll be in the

middle, or even out in front!

In short, a new zone will emerge, one equally as big as us, and

the cycle repeats. I don't profess to know when, where, how, or

especially what. But I do know I wanna be there, I think we all

do. Let's be ready.

There is nothing as constant as change

Karl J.H. Hildon, Managing Editor, I remain.

The Transactor
Volume 6, Issue O3

Using "VERIFIZER"

The Transactor's Foolproof Program Entry Method

VERIFIZER should be run before typing in any long program from

the pages of The Transactor. It will let you check your work line by

line as you enter the program, and catch frustrating typing errors.

The VERIFIZER concept works by displaying a two-letter code for

each program line which you can check against the corresponding

code in the program listing.

There are two versions of VERIFIZER on this page; one is for the

PET, the other for the VIC or 64. Enter the applicable program and

RUN it. If you get the message, "***** data error *****", re-check

the program and keep trying until all goes well. You should SAVE

the program, since you'll want to use it every time you enter one of

our programs. Once you've RUN the loader, remember to enter

NEW to purge BASIC text space. Then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)

or SYS 634 to enable the PET version (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top left of

the screen in reverse field. Note that these letters are in uppercase

and will appear as graphics characters unless you are in upper/

lowercase mode (press shift/Commodore on C64/VIC).

Note: If a report code is missing it means we've editted that line at

the last minute which changes the report code. However, this will

only happen occasionally and only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type

RETURN over each in succession while checking the report codes

as they appear. Once the program has been properly entered, be

sure to turn VERIFIZER off with the SYS indicated above before

you do anything else.

VERIFIZER will catch transposition errors (eg. POKE 52381,0

instead of POKE 53281,0), but ignores spaces, so you may add or

omit spaces from the listed program at will (providing you don't

split up keywords!). Standard keyword abbreviations (like nE

instead of next) will not affect the VERIFIZER report code.

Technical info: VERIFIZER resides in the cassette buffer, so if

you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original

destination of the link after it's finished. When disabled, it restores

the link to its original contents.

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

Listing 1 a: VERIFIZER for C64 and VIC-20

10 rem* data loader for " verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>14755 then print" ***** data error *****

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165

3, 3

17, 133

99, 141

96, 173,254

0, 189

15, 133

32, 183

Listing 1b: PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

": end

76, 74,

1010 data 252, 141,

1020 data 3,240,

1030 data 251, 169,

1040 data 3, 3,

1050 data 0,160,

1060 data 32,240,

1070 data 133, 90,

1080 data 232, 208, 229, 56,

1090 data 32,210,255,169,

1100 data 89, 41, 15, 24,

1110 data 165, 89, 74, 74,

1120 data 32,210,255, 169,

251

96

252

2

1130 data 32,240,255,108,251,

1140 data 101, 89,133, 89, 96

141

173

173

3

1

0, 2

91,200

3, 198,

32, 240, 255,

18, 32,210,

97, 32,

74, 24,

32,210,

0, 165,

2,

3,

2,

169,

133,

240,

152,

90,

105,

74,

146,

3,

3.

3,

3,

89,

22,

41.

16,

169,

255,

210,

105,

255,

91,

165

201

133

141

162

201

3

249

19

165

255

97

24

:m

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

Ol

JB

PA

HE

EL

LA

Kl

EB

DM

10 rem* data loader for "verifizer 4.0" *

15 rem pet version

20 cs = 0

30 for i = 634 to 754:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>15580 then print" ***** data error

70 rem sys 634

80 end

100:

1000 data

•":end

76, 138, 2,

1010 data 173, 164, 2,

1020 data 145, 201, 2,

1030 data 144, 141, 163,

1040 data 2,133,145,

1050 data 201, 13,208,

1060 data 254, 1

1070 data 0, 2

1080 data 165, 253

1090 data 198, 254

1100 data 251, 41

1110 data 165, 251

1120 data 141, 1

120, 173,

133, 145,

240, 16,

2, 169,

88, 96,

62, 165,

163, 2

88, 96

141, 164

165, 133

85, 228

167,208

0,133,251, 162

168,201, 32,240

41, 3,133,254

16,249,232, 152

15. 24, 105

74, 74, 74

128, 108, 163

193,

74,

2,

134

15

32

208

141

24

152

, 133,

, 120,

2,

144,

, 165,

58,

253,

230,

236,

229,

0.

, 105,

24,

144

165

165

169

217

173

189

253

2

165

128

193

101

1130 data 251, 133, 251, 96

The Transactor Volume 6, Issue O3

Bits and Pieces

Got an interesting programming tip, short routine, or an un

known bit of Commodore trivia? Send it in - if we use it in the

Bits & Pieces column, we'll credit you in the column and send

you a free one-year's subscription to The Transactor

A Bunch of Disk Stuff...

Disk Cleaner Peter Boisvert, Amherst MA

/ clean my disk drive read/write head using a diskette-like

insert containing a woven cloth disk impregnated with cleaning

solution. To clean the head you must insert the diskette and

close the door. Now the instructions say to "run the disk drive

for 45-60 seconds" by sending any disk command to the drive.

I used to use the initialize command. Unfortunately, the disk

turns for only 4 seconds or so before it "knocks" the head and

stops. To clean the disk properly requires repeating the disk

command 10 to 12 times. That's an awful lot ofknocking. Since

too much knocking can precipitate head alignment problems, I

was determined to find a better way. To my surprise the

solution was very simple, provided you have a disk map of the

ROM:

10 rem* 1541 motor spin routine *

20 open 15,8,15

30 rem execute ml at $f97e to start motor

40 print#15," m-e" chr$(126)chr$(249)

50 for i = 1 to 6000:next: rem time delay

60 rem execute ml at $f9e8 to stop motor

70 print#15," m-e" chr$(232)chr$(249)

80 close 15

This short BASIC program executes two disk ROM routines

directly, bypasssing the 1541 error checking protocol and

avoiding the dreaded "knock". Location SF97E in disk ROM is

the start of a routine which simply turns the drive motor on,

nothing else. Similarly at location $F9E8 a routine exists which

shuts off the drive motor. Thus all that is needed is a short

program to execute the routines and a delay loop for the

cleaning time. When the program is RUN the drive motor turns

but the drive LED doesn 't light. Ahh, the wonders of direct

access programming! The motor will run for a minute and then

stop, leaving a shiny disk in its wake. But, make sure the disk

drive door is closed when the cleaning diskette is inserted,

otherwise the head will not make good contact with the clean

ing surface.

Using Peter's technique, here's another 1541 motor spin pro

gram that will make it turn whenever the shift key is pressed.

You can use SHIFT LOCK to keep the motor running if you

wish. This one is handy when working on the drive.

10 rem* 1541 motor spin routine #2 *

20 print chr$(147)" hold SHIFT to spin drive motor"

30 print" press CTRL to quit program"

40 open 15,8,15

50 for i = 0 to 1

60s0 = s1:s1=(peek(653) = 1)

70 if s1 and not(sO) then

print#15," m-e" chr$(126)chr$(249): rem motor on

80 if not(s1) and sO then

print#15," m-e" chr$(232)chr$(249): rem motor off

90 i = -(peek(653) = 4): next: rem until Ctrl pressed

100 close 15

The 154l's amazing " * "

On the 1541, the special filename " * " can be used to load the

most recently used file, or if no disk access has yet taken place,

the first file on the disk. On other Commodore drives, " *"

always loads the first file. If you want the 1541 to behave as the

other drives, i.e. you want to load the first program on disk, just

use the filename " :*" instead of " * ", for example:

LOAD ":*",8

World's Simplest Un-Scratch

The "*" filename on the 1541 will let you LOAD the last

program SAVEd, even if it has been previously scratched! You

probably won't believe it so try it for yourself:

SAVE the current program in memory: SAVE" 0:TEMP" ,8

SCRATCH it from the disk: OPEN 1,8,15," S0:TEMP"

The Transactor Volume 6, Issue O3

You may check the directory at this point to make sure it has

been scratched.

NEW the program in memory or even reset the C64 with SYS

64738 (don't turn it off and on, as this will also reset the 1541).

LOAD" *" ,8 and your scratched program is back. Now you can

safely save it again.

The above technique will not work if you've used any file since

the scratched one, or if the drive has been reset. But it's great

for those times when you realize you need a file right after you

scratch it!

C-64 Directory LOAD & RUNBob Davis, Salina, Kansas

The 8032 series have the capability of using shifted RUN/STOP

to load and run the first program on disk. . . but the 64 can go

one better.

When you save a program, follow the program name with the

following four characters:

1) A shifted space

2) Commodore D (The Commodore key and

letter 'D' simultaneously)

3) Commodore U

4) Shifted'©'

This will force the disk directory to contain the file name in

quotes, followed by ", 8:" and all you do is display the direc

tory, move the cursor to the appropriate line and press shifted

RUN/STOP to load AND run your program.

While surely someone else has noticed this before, the trick is

new to me, and I have not seen it published.

Jumbo Relative Files Elizabeth Deal, Malvern, PA

The B128 and the MPS-80 Drive can write large (500k) relative

files without a "file too large " error. An old manual (circa 1982)

has this incantation for the 8250, which just happens to work

on the DOS 2.7 MPS drives:

open 1,8,15

xx = 0:print#3," m-w" chr$(164)chr$(67)chr$(1)chr$(x)

close 1

Reset, UJ or the above program with xx=255 turns the large-

file feature off.

The CBM 8050 test/demo floppy has a program which ex

pands relative files to an 8250 format. It works only on PET 4.0

computers; I don't have one. I find it mildly amusing that the

8050 test/demo wasn 't fixed up to work on the B-machine.

APPENDing ML to BASIC

A hybrid program - one using both machine language and

BASIC - often consists of a single file on disk containing a

BASIC program with machine code tacked onto the end. An

easy way to create such a file is to simply SAVE the BASIC part,

then send the object from your assembler to the same filename

with the ",A" (append) filename extension. For example, using

the PAL assembler:

100 open 1,8,12," O:oldfile,p,a" :rem append to basic prg file

110 sys700 ;activate " PAL" assembler

120 .opt o1 ;direct object to append file

(The PAL example is redundant, since that assembler has

hybrid capability, but you can use any assembler, or a BASIC

loader program using DATA statements to generate the ML

object.)

When Using this technique, the assembly origin will have to be

set to the end of the BASIC program, which you can find by

PEEKing the top-of-BASIC pointers ($2D,2E on VIC/64), and

the new pointers will have to be set to the end of the ML object

before you SAVE the BASIC (so that variables won't clobber the

code). Also, remember that when using an assembler the first

two bytes of the ML will be the start address, so you'll have to

SYS two bytes past the start to execute the program.

Another Use For " ,A"

The filename extension for append (,a) can help out when

you're word processing. If you're creating a document and wish

to maintain a table of contents, list of references, or any notes

that come to mind, you can keep appending to a file by putting

a ",s,a" or ",p,a" after the filename (depending on whether

you're using SEQ or PRG files). Just set a "range" on the next

note you wish to add to the file, and save the range with the

above extension. Bits and pieces uses this technique with

Superscript to keep a list of B&P authors in a separate file.

Creating DEL Files

A "DEL" file may be created as follows:

David Stevenson,

Pilot Mound, Man.

OPEN 2,8,2, "0:TEST,S,W"

OPEN 3,8,3, "0:TEST,S,W"

PRINT#2," FIRST"

PRINT#3," SECOND"

CLOSE 2: CLOSE 3

The first file opened will become a DEL file. The DOS allows

you to open more than one file with the same name as long as

you haven't closed any and attempts to recover by giving a

different file type designator. Ifyou try this with more than two

The Transactor Volume 6, Issue O3

files all but the first two are lost. To make both files easily

accessible just rename, changing the first one in the directory.

This happens with SEQ, PRG or USR files (or a combination) on

my 1541.1 haven't seen mention of this anywhere.

Neither have we. It seems to work with the 8050 as well.

Read Blocks Free Directly

This will let you directly read the number of blocks free on the

current disk without any disk access (the disk must have been

previously used in some way).

5 rem* read blocks free-1541

6:

10 lo = 250: hi = 2: rem $02fa-$02fd

20z$ = chr$(0)

30 open 15,8,15

40 print#15," m-r" chr$(lo)chr$(hi)chr$(4)

5Oget#15,IO$,l1$,hO$,h1$

60 fO = asc(IO$ + z$) + 256*asc(hO$ + z$)

70 print" blocks free:" fO

80 close 15

For the 8050 or 8250, make these changes (sorry, no 4040/

2040 version):

10 lo = 157: hi = 67: rem $439d-$43aO

90 f 1 = asc(H $ + z$) + 256*asc(h 1 $ + z$)

100 print" blocks free - 0:" fO", 1:" f 1

1541 Track Protect John R. Menke, Mt. Vernon, IL

It's sometimes useful to be able to reserve certain tracks for

later use, or prevent programs and files from being saved to a

disk or certain tracks. Here's a short, quick 1541 utility which

save-protects an entire disk or designated tracks. It works by

writing zeros to the BAM (Block Availability Map), thereby

misinforming the DOS that those tracks have already been

used and are unavailable.

Conveniently, the BAM is restored and the save-protection

removed simply by validating the disk.

ON

EN

IN

MO

FH

MD

FE

BB

CM

10 print "save-protect"

20 print "(d) entire disk

30 print "(t) a track

40geta$:ifa$= ""then40

50 if a$ = " d" then x = 4:y = 143: goto 100

60 if a$<>" t" then 40

70 input" track number" ;t

80 if t<1 or t>35 then end

90x = t*4:y = x + 3

CC

IK

PP

MO

MN

LJ

EK

FD

IM

GC

JO

100 open 15,8,15

110 open 5,8,5, "#"

120 print#15, "u1: "5;0;18;0

130print#15,"b-p:"5;x

140 for i = x to y

150print#5,chr$(0);

160 next

170print#15,"u2:"5;0;18;0

180print#15,"u;"

190 close 5: close 15

200 print" validate deprotects"

Scratch & Save Bob Hayes, Winnipeg, Man.

Unlike SAVE with "@:", this program actually scratches your

old file before saving the new one. I initially wrote it as an

additional command to the TransBASIC language. Once the

program is in memory, type this:

SYS<start address>" filename"

Notice there is no ",8" needed.

Below are BASIC loader and PAL source listings of "Scratch &

Save' '. The start address of these listings is $C000 (49152), but

the program is fully relocatable. If you're using a dual drive,

you'l have to remove lines 350 and 360 from the source code,

and specify the drive number in the filename whenever you

call "Scratch & Save".

PO

LI

LF

DH

GK

OC

MB

AF

IN

CB

BF

EC

MB

PG

AC

GH

MA

KF

OO

HL

GN

HK

10 rem* data loader for " scratch & save" *

20cs = 0

30 for i = 49152 to 49252:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>14558 then print" * data error ": end

70 rem sys 49152" filename"

80 end

100:

1000 data 32,158,173, 32,163,182,134,251

1010 data 132, 252, 72,162, 0,189, 90,192

1020 data 32,210,255,232,224, 11,208,245

1030 data 169, 8, 32,177,255,169,111, 32

1040 data 147, 255, 169, 83, 32, 168, 255, 169

1050 data 58, 32,168,255,104,170,160, 0

1060 data 177, 251, 32,168,255, 32,210,255

1070 data 200, 202, 208, 244, 132, 253, 32, 174

1080 data 255, 165, 253, 166, 251, 164, 252, 32

1090 data 189, 255, 169, 8,168, 170, 32, 186

1100 data 255, 169, 43,166, 45,164, 46, 76

1110 data 216,255, 83, 67, 82, 65, 84, 67

1120 data 72, 73, 78, 71, 32

The Transactor Volume 6, Issue O3

FD

HC

LP

Nl

AC

OP

MA

KB

KA

GD

HE

OE

DC

FF

GD

DJ

AO

MP

IP

NB

FG

DM

10

KJ

PD

DG

DF

KP

HE

BN

LA

IN

PI

HE

IJ

JH

CL

IF

JA

OM

OC

PD

AB

DA

BO

HO

NO

BK

CF

DG

PJ

JJ

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

515

520

530

540

550

560

570

580

590

600

sys700

; scratch and save

; bob hayes Winnipeg, manitoba

; routine help from brian munshaw's

; " new erro

.opt oo

write =

jsr

jsr

stx

sty

pha

Idx

mloop =

Ida

jsr

inx

cpx

bne

Ida

jsr

Ida

jsr

Ida

jsr

Ida

jsr

pla

tax

Idy

sloop =

Ida

jsr

jsr

iny

dex

bne

sty

jsr

Ida

Idx

Idy

jsr

Ida

tay

tax

jsr

Ida

Idx

Idy

jmp

smsg .asc

wedge

*

$ad9e

$b6a3

$fb

$fc

#0

*

smsg.x

$ffd2

#11

mloop

#8

$ffb1

#$6f

$ff93

#"s"

$ffa8

#":"

$ffa8

#0

*

($fb),y

$ffa8

$ffd2

sloop

$fd

$ffae

$fd

$fb

$fc

$ffbd

#8

$ffba

#$2b

$2d

$2e

$ffd8

;listen

;send secondary address

;ciout

;ciout

;ciout

;unlsn

;setnam

;setlfs (open8,8,8)

;save$2b,2cto.x,.y

" scratching

C-64 POP

Sometimes you need to clean up the stack and re-start a

program without killing variables, for example when you need

to get back to the main menu from a deeply nested subroutine

after an error condition occurs. The POP routine that works on

the PET doesn't do the trick for the 64, but you can use this

trick instead: just LOAD the program from within itself. That

will cause an automatic re-run, cleaning the stack of subrou

tine return addresses and for..next loops, but leaving variables

intact.

Computer Stuff. ..

C64/VIC20 PRINT AT Command M. Van Bodegom,

St. Albert, Alberta

On many computers you can move the cursor to any spot on the

screen with a simple command. For example, TAB(8,8) or

PRINT AT(8,8); would allow you to print starting at row 8,

column 8. Commodore doesn 't have a BASICcommand for this

so most programmers PRINT down to the line and then use

TAB(column). There is an easy way to get the cursor directly to

any spot on the screen. The KERNEL has a routine that does

just what we want. Simply use this line to set the cursor location:

POKE 781,row: POKE 782,column:

SYS 65520: PRINT" message"

Menu Select Tim Buist, Grand Rapids, MI

There have been many menu selection programs, but this is

one of the nicest to use, and it's fairly short! Just put the

selections in the array 'A$0', the number of choices (up to 11) in

'N', then call this subroutine. It will display the options centred

on the screen and highlight the first one. You can use the cursor

up/down keys to highlight any option, and confirm the selec

tion by pressing RETURN.

The subroutine returns with the chosen selection number in

the variable T. You can then branch the the appropriate section

of your main program with ON I GOTO or ON I GOSUB. With

the few additions given below, you can select using either the

joystick or the keyboard.

100 rem* menu subroutine *

110 cd$ = chr$(17): cu$ = chr$(145)

115 hi$= "H": off$= "Q"
116 rem use reverse-on and reverse-off for above,

117 rem any two colours, or a combination.

120 aa = (25-n*2)/2: printchr$(147)

130 fori = 1 to aa: print: next

140 fori = 1 ton: printtab(20-len(a$(i))/2);off$;a$(i):

print: next

The Transactor Volume 6, Issue O3

150 print chr$(19)

160 fori = 1 to aa: print: next: i = 1

170 printtab(20-len(a$(i))/2);hi$;a$(i)

175 get a$

180 if aOcd and aOcu and a$Ochr$(13) then 175

190 if a$ = chr$(13) then return

200printcu$;tab(20-len(a$(i))/2);off$;a$(i)

210 if a$ = cd$ then print: i = i +1: if i>n then 150

220 if a$ = cu$then print cu$cucu;: i = i-1: ifi<1then150

230goto170

Notes:

1) Line 115 is set up to highlight the selected option with

reverse field. If you wish, use colours for 'HI$' and 'OFF$',

or colours combined with reverse on and reverse off (see

comments in program).

2) To allow use of the joystick as well as the keyboard (up/

down and fire to select), add the following lines:

176 j = peek(56320): rem 56321 for joystick port #1

177ifj = 111 thena$ = chr$(13)

178 ifj = 125thena$ = cd$

179 if j = 126 then a$ = cu$

LIST Freeze Yijun Ding, Pittsburgh, PA

Here's a real convenience utility. It lets you temporarily halt a

program listing in progress to examine a section of code. Saves

having to BREAK and re-list all the time! Once activated, this

21-byte machine language demon will live unobtrusively in

your C-64 until you hold the SHIFT, CTRL, or Commodore key

during a LIST to "freeze" the action. Just RUN the program

below to set it up.

10 rem* data loader for " list freeze" *

20cs = 0

30 for i = 49152 to 49172:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>2031 then print" Idata error!": end

65sys49152

70 print" Hlist freeze activated.
80 print "0press Ctrl, shift or commodore keys

to halt program listings.

90 end

100:

1000data169, 11,141, 6, 3,169,192,141

1010 data 7, 3, 96, 8,174,141, 2,208

1020 data 251, 40, 76, 26,167

A Couple of Plus/4 Goodies

Here are two pattern drawing programs that we borrowed from

other magazines and adapted to the plus/4.

The first one, Waving Spokes, was originally designed to run

on a Radio Shack plotter. You'll understand its title when you

run it a few times. You can get vastly different patterns by

supplying different parameters on start-up. Some recommen

dations: 20,6,20; 50,4,10; 30,6,60; 40,20,10; 20,4,100

After a pattern is complete, you can press F6 (RUN) to generate

a new one.

1 rem" waving spokes - plus/4

2 rem" adapted from Bill and Lee Harding's

3 rem" program in Computek Magazine

4:

10 graphic 0,1

20 input "no. of spokes, no. of waves, amplitude

of waves" ;spok,waves,amp

30 graphic 1,1

35p = 360/spok

40 for angle = 0 to 360-p step p

50 locate 160,100

60 for i = 0 to 100 step 5

70 d = amp*sin(i*waves*.01745)

80 x = i*cos((angle + d)*.01745)

90 y = i*sin((angle + d)*.01745)

100 drawto 160 + x, 100 + y

110 next i,angle

This next dazzler - Kaleidoscope - was originally written for

an Atari machine. It's uncomplicated and easy to modify, but

produces a constantly changing intricate pattern — certainly

worth a try.

1 rem" kaleidoscope - plus/4

2 rem" Adapted from kaleidoscope by

3 rem" Rafael Soriano

4 rem" in April '85 Atari Explorer

5:

50 xm = 159:ym = 199:mc = 1

60 graphic 3,1 :color 0,1 :color4,1:

colori ,8:color2,2:color3,4

65 do

70 for b = 1 to xm

80 me = me + 1: if mc>3 then me = 1

90 draw mc,b,c to xm-b,c

100 draw mc,b,c to xm-b,ym-c

110 draw mc,b,ym-c to xm-b,ym-c

120 draw mc,b,ym-c to xm-b,c

130 c = c + 6:ifc>ymthenc = 0

140 next b:color 3,4,i

150i = (i + 1)and7

160 loop

The Transactor Volume 6, Issue O3

BASIC Programming Tip - Simulated IF..THEN..ELSE

Here is a way you can put a statement on the same line as an

IF. . .GOTO and have it execute if the branch isn 't taken:

ON -(condition) GOTO 1000: statement(s)

This is equivalent to

IF (condition) THEN 1000: ELSE statement(s)

Since the C-64 and PET don't have an ELSE, the above trick

can come in handy.

See why it works? By negating the condition, we get ON 1 or

ON 0, which jumps to the given line if the condition is true, or

"falls through" to the next statement if not. A bit tricky, but

easier to follow than a rat's nest of GOTOs.

ML Binary/ASCII Conversion Routines Tim Buist,

Grand Rapids, MI

This first routine is easy to use: just place the binary number

you wish to convert after the SYS, for example:

SYS49152, 110010

The 16-bit result will be in RESULT and RESULT +1, which are

828 and 829 in the listing below.

100 sys700;pal 64 assembler

101 ;this program converts an ascii

102 ;binary number to actual binary

103 ;form and stores it in "RESULT"

104 ;it works on anything up to 16 bits

105 ;

110 .opt oo

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

result

loop

zero

one

=

Ida

sta

sta

=

jsr

cmp

beq

cmp

beq

rts

=

clc

=

rol

rol

jmp

828

#0

result

result+1

$0073

#" 0"

zero

#" 1"

one

■■r

result

result +1

loop

;clear it first!

;lsb

;msb

;chrget

;return if notO or 1

;put in carry bit

;get more digits

While looking like it does nothing, it actually rotates a bit into

RESULT. Since a CMP. . .BEQ will sett the carry bit, at ONE the

carry bit will be ROLed into RESULT If the CMP *V succeeds,

the carry bit is cleared and a zero inserted into RESULT. These

Sure are fun to write!

Here's another simple but fun subroutine that converts an 8-bit

binary number to ASCII binary and prints it. While this is again

a not-so-complicated-that-I-couldn 't-think-of-it subroutine,

it might spark someone just getting started in M.L.

100

101

102

103

105

110

120

130

140

150

160

170

180

190

200

210

sys700;|Dal 64

;this program (converts a byte

;to its ascii binary equivalent

;and prints it.

J

.opt oo

number

loop

Lett'er Fly!

-

Idx

=

Ida

asl

adc

jsr

dex

bpl

rts

828

#7

♦

#" 0"

number

#0

$ffd2

loop

;result will go here

;8 bits

;getabitfrom number

;add in carry

;print it

;next bit

;all8bitsdone"?

Try this:

10 s1 $ = chr$(19) + chr$(17) + chr$(157)

: s2$ = chr$(19) + chr$(29) + chr$(20)

20 get a$

30 print s1as2$: goto 20

Press a few letter keys and watch. We know, neat but totally

useless, right? Well, modify line 20 like this:

20geta$: if a$= "" then 20

Now try it. You might have a use for an input routine like that in

one of your programs.

The Transactor 1O Volume 6, Issue O3

Letters

Just Love Those Transactor Disks: As you remarked in

your comment at the end of David W. Tamkin's letter published

in the July 1985 issue, whether to get the programs from

Transactor already on disk saved or to type them in for yourself

from the listings given in the magazine is reader's choice.

What Mr. Tamkin obviously does not realize is that there are

many reasons why a reader either may not be able to type them

in - or even why it may be impossible for him to type them in

correctly!

Victims of dyslexia are far more common than perhaps people

realize. The commonest form of this reading problem is the

reversal of the ORDER in which the reader sees a small set of

letters or digits. He does NOT see the mirror images of these

characters - it is only their order that gets reversed. The use of

checksums does not help such people, for changes in the order

in which characters are typed does NOT cause a checksum

error.

Also there are many types of disabilities affecting the use of

their hands. For many, typing in long programs is exhausting

and so very difficult because exhaustion increases the already

high error rate due to the disability the typist has.

There can be other reasons why it is undesirable or impossible

for a reader to find the time to put in the hours required to type

in these programs and then debugging them.

Being a dyslexia victim, I have had to ask authors of programs

what they would charge me to copy their programs upon a disk

which I would provide - just to get a very few of the programs

which were not sold be dealers or software firms that I needed

to use. Having had one arm totally paralyzed - though I was

one of the fortunate few who in time recovered full use of that

arm -1 know how impossible it would have been for me to type

in any long program while that paralysis was wrecking even

hunt-and-peck typing for me.

The publication or non-publication of disks of programs con

tained in an article is irrelevant to the level of expertise

assumed for a magazine's readership or for its quality. Making

such disks available does, however, show concern on the part

of the editors and publishers for the problems some of their

readers may have with respect to using the programs listed in

their magazines.

I wish to congratulate and thank you, the publishers and

editors of Transactor, for making the Transactor Disks available

to your readers if they wish to order them.

Mrs. Marge Paulie, Eugene, Oregon

It may interest you to know that Mr. Tamkin called us shortly

after his letter but before that issue hit the newstands. After

apologizing for the letter (which, by the way, was unnecessary)

he proceeded to order disks. To be quite honest, though, it

hadn't occurred to us that our disks would benefit the disabled

moreover others. Thank you for pointing that out to us. Making

Transactors is a lot ofwork and a lot offun, but letters like yours

help tip the balance that much more towards the latter. Thank

you again.

Ad-vice: Hey, Transactor, you're missing the boat! You boast a

print run every issue of 64,000 copies. Compute! boasts about

600,000. You print about 75 pages every issue of terrific

information for the Commodore enthusiast, Compute! has now

dropped to 96 pages, with a 50% advertising content. That

means that a maximum of 48 pages contain actual usable info.

To further water down the content, these 48 pages are divided

up between Commodore, Atari, Apple, IBM, and TI. When

tallied up, a very small portion of each Compute! would be of

use to most Commodore users. Now, Commodore users domi

nate the home computer arena. There are millions of them out

there. It stands to reason that many of Computed readers are

Commodore users, with many users buying both Compute!

and Computed Gazette. Chances are that most of their readers

have never even heard of The Transactor.

There seems to be two ways in which to increase your sales

figures. The first is to update your marketing strategy to include

advertisements in as many Commodore related magazines as

possible. The second, and possibly the most effective, is to ask

your readers to spread the word of The Transactor as far and

wide as possible. It does not take a lot of grey matter to realize

that the only way to make a virtual advertising free magazine

pay off is to increase the subscriber base as much as possible.

Magazine rack sales may sell a lot of magazines for you, but

they also force you to reduce your prices to your distributors,

give terms on payment, and allow a return policy for unsold

magazines. Subscription sales, due to the fact that payment is

immediate, in advance, and in full, is where the profits are. The

only major expense to you is mailing out the magazine every

issue. Boost your subscriber base, and you will be on easy

street.

One more bit of advice before I sign off. Advertising. Why not

bring it back again. Ads are only offensive when they are

splattered everywhere, as most magazines do. I like to read ads,

but not while I am reading an article. Your concept of placing

the ads in the back, and once in a while at the very front, is

terrific. It's not offensive, and encourages me to read them at

my own leisure. Your sales figures are up since you dropped

your ads, so why not re-introduce them once again. An

increase in your ad content could possibly be the key to a

greater Transactor future.

John Brunner, Chicago, Illinois

The Transactor Volume 6, Issue O3

You either have ESP or you 'ue been eavesdropping on our

headquarters via long distance. We have been trying to dream

up ways to increase our subscriber base since day one. To date

we've been fairly successful, with a base right now of about

10,000.

At present there are Transactor ads in some of the Commodore

related mags but some will not accept ads from what they deem

"competitors". Also, we have been getting a lot ofsupport from

quite a few of the users groups everywhere, with mentions in

their newsletters, and messages mysteriously appearing on

BBS's all over. This hasn 't hurt our sales one bit. But we would

always appreciate anyone passing the word. Increase our sales

figures and you will earn our affection forever.

About bringing advertising back. We have debated it, and have

decided to bring them back, in limited quantity. We still want to

try to keep the magazine 90% ad free. We will offer a total of

seven, full page ads to run, laid out in the magazine as would a

second cover on the inside. Hopefully, our readers will enjoy the

ads as much as you seem to.

Thanks for the terrific advice, and we hope that if any more

helpful thoughts pop up, you will drop us a letter.

A Few Notes On DOS: Congratulations on "Learning The

Language Of DOS" in Vol. 5, No. 5, which 1 found interesting

and useful. With your tips I quickly converted my custom,

homebrew disassembler to work with the 1541 RAM/ROM. 1

look forward to more 1541 memory maps, but encourage that

the tabular size be made larger than on page 51 of the above

issue to spare my eyesight.

It isn't quite sufficient to say that "B-R", "B-W", "B-A", and

"B-F" are tainted, and I hope that you will mention why; 1 have

had no problems with "B-W". But, indeed, "B-R" doesn't seem

to pay attention to the Buffer-Pointer and simply reads the first

few bytes of a block then stops. In agreement with your

experience, I have noted no other problems with "B-P". I

haven't had enough experience with "B-A" or "B-F" to make a

judgement yet. "UI" and "UJ" seem to work OK, but I haven't

tried the alternate syntax for the other user commands. It's easy

enough to accept your advice to use the standard syntax here, if

you will be a bit more specific about the reasons.

Let me mention a caution with relative files. If a relative file is

left open, inadvertently such as during program development,

the 1541 DOS crashes! I lost a good disk that way. Initialization

(@I) of the drive doesn't fix things and subsequent disk opera

tions will damage other disk files. In this case, a save with

replacement leaves the disk directory looking like scrambled

eggs; you can't even format a new disk. The cure is a reset with

"UJ" or by turning the disk drive off and on.

I have yet figured out how to write to a relative file in emulation

of the "U2" command. So far as I can determine, an entire

relative file record must be read into computer memory, up

dated there, then all fields of the record must be rewritten to

disk. It would be faster and generally more useful if there were

a way to emulate the "U1" then "U2" sequence, normally used

with random files, with relative files. I suspect that there may

be an easy way to do so, but I haven't yet stumbled across it

after a lot of syntax and command experiments. The only thing

I've come up with is to access and interpret a side sector to get

the track and sector of a record number; then random file

commands are handy enough if the record length happens to

be exactly 254 or 127 bytes.

I note that when a relative file record is accessed, apparently

the 1541 DOS reads two disk sectors into disk RAM. This

observation might be useful now that you have kindly pub

lished the addresses of the RAM buffers! I haven't yet checked

to see which two buffers are involved. Thus, relative file

records of 127, 254, 381, or 508 bytes in effective length can

probably be efficiently constructed with the 1541 relative file

system.

I note that 'Single Disk Copy Program' by Rick Illes, on pages

13-14 of Vol. 5, No. 5, doesn't work on my Commodore 64.

There's a typo in program line 130 : PEEK(46) should be

PEEK(56). I can't say whether anything else is wrong because 1

reworked thing extensively from this point on.

John Menke, Mt. Vernon, Illinois

To begin, thanks for the voice of approval regarding my article.

It took a while to write, but from the sounds ofthings since then,

many people have enjoyed it. To be a bit more specific, "B-W"

has been blamed in the past for clogging up the error channel in

use. The syntax of a reset, "UJ", "U:", or "U;", seems to vary

depending on the ROM revision you have with your 1541. You

will know what doesn'/ work for you when your drive hangs up

through its use. "B-A "and "B-F"again are dependent on ROM

revision. Older ROM's seem to have the problem of them not

working in general. It seems that Commodore has always had

some difficulties with these two. One piece of advice, lifted right

out of Commodore Magazine ofFebruary 1982, is to convert all

numerals into strings and concatenate them into the command

string before issuing the command. Most people write their own

Block-Allocate and Block-Free routines to synthesize the proc

ess in computer RAM. This technique is my favourite because

you are always sure that it took.

Sorry for the type size, but it was the only way to fit it on the

page. That map was really there to give you a taste for our

'Complete Commodore Inner Space Anthology', to incite you to

dash out and buy it. Inside this oddly named book we have

placed the ROM/RAM maps plus definitions for the 1541, 4040,

and 8050 drives. Interested yet?

Thanks for the advice regarding relative files, and their crashes

thereafter. I really didn 't know that this problem existed. Let's

hope that some brilliant disk doctor out there takes your hints

and comes up with a synthetic relative file makerjust for you.

Might be a neat application.

The Transactor 12 Volume 6, Issue O3

A Bit More DOS Advice: I'd like to comment on some of the

statements in "Learning The Language Of DOS", by Richard

Evers in the March '85 issue, and make some corrections to the

'1541 User's Manual'.

My first argument is with the statement on page 48 of the article

that claims that Block Commands (Block-Allocate, Free, Read,

and Write) are "terminally ill". Perhaps there were some

problems with the original 1540 ROM's. However, all of the

commands do work flawlessly. I have written, used, and

distributed several programs that rely on these commands, and

they have never made any mistakes. 1 feel a major reason for

the confusion with these commands is the User's Manual. On

page 29, the format for Block-Allocate is shown:

PRINT#file*,"B-A:"drive,track,block. Only the first comma is

correct, the rest should be semi-colons. That is,

PRINT#file#,"B-A:"drive;track;block. All other Block com

mands are listed incorrectly as well. The correct usage is shown

on page 41 of the manual, and in the article. Also, it is not

necessary to close the command channel after using any

command, IF you use them correctly. Overall I found this

timely article to be both informative and useful. I appreciate the

technical aspects of your magazine, and I hope it remains that

way.

The manual included with the 1541 drive has enough bugs to

keep the experts guessing until the technology becomes

techno-obsolete. Few of the tutorial program work as written.

An almost ridiculous error on page 8 is a good example of the

writer's carelessness. It reads, "never remove the diskette

when the green drive light is on". Of course, they meant red,

didn't they? On page 4, Commodores manual claims the 1541

is write compatible with both the 4040 and 2031 disk drives.

Perhaps it is in theory, but it's never worked for me or my

friends. There have been rumours that Commodore has writ

ten a new manual for the 1541. If they have. I strongly suggest

you try to get one. It might clear up a lot of Head Aches.

One final rumour about the 1541 is a fault in the save-with-

replace command (save"@O:filename"). I, too, blamed it for

destroying my programs and data. But I discovered the real

culprit was an occasional disk swap, forgetting to 0 after the @,

or, worst of all, absent mindedly typing save"sO;filename".

Since I started double checking my typing and initializing the

drive each time a disk swap was made, I have had no problems.

Remember, too, if you don't give each disk you format a unique

ID, just changing the disks can be fatal.

I recently had a chance to use a new 1541 drive. They have a

"right-angle" door latch, no over-heating problems, no head-

banging (suggesting a new ROM).

Still, if you're in the market for a new Commodore compatible

drive, you might consider the Commodore 128's 1571 multi-

mode disk drive. It behaves like a 1541 in the 64 mode, and can

be directly connected to the serial port. In the 128 mode (for use

with the C128 only), it becomes a dual-sided (340K Byte) drive

capable of speeds of 12000 baud! That's more than 46 times

faster than a normal 1541. It's also able to read CP/M disks

when used with the C128. For more information, see Commo

dore Magazine, April 1985.

Tom Johnson, Jefferson, Missouri

Commodore documentation always seems to have bugs in it,

regardless of who it's written by (ie. Commodore or otherwise)

and I suppose no manufacturer is 100% immune to this

problem. In defence of my statements regarding the terminally

ill Block Commands, I still feel that some revisions ofthe 1541 s

ROM's are still a little shakey. Also, look back at my article once

again. Closing the command channel after access was only

specified with Block-Allocate and Block-Free. Other than that,

your letter is terrific. Oh, by the way. Hope you 'ue been catching

our current debate regarding the save with replace bug. Charles

Whittern was able to reproduce it, but not isolate its cause.

18-0 Screwup Fixed: Having read your article on "Learning

The Language Of DOS" in Vol.5, Iss.5 of The Transactor, I am

now apparently one of those dangerous people. (You know

what is said about someone with a little knowledge?) Without

dragging out a story, here's my situation briefly:

A friend of mine has a program called "18-0 Screwup". Believe

me, it works JUST FINE! He inadvertently ran it while he had a

disk in his drive which he didn't want screwed up. It appears

that only the second and perhaps third byte of track 18, sector

0, has been changed. He asked me for help. So, armed with

your article and the 1541 drive manual, I set to work. Enclosed

you'll find the short program I've been trying. I have narrowed

the problem down to around line 150. No matter what I've tried

(closing unnecessary channels, using a different channel from

the one used for the "B-R" command, and replacing the "B-

W" command with the "UB" and "U2" command), I still get the

error 70, NO CHANNEL.

Can you help? The disk in question is not a critical one, as there

are back-ups on file, but, now it has become a riddle to me.

Any input you can give will be welcome.

50 open 15,8,15, "i"

60 open 5,8,5, "#0"

70print#15,"b-r:"5;0;18;0

75 close 5

80 print#15," m-r" chr$(1)chr$(3)

82get#15,a$

83 print asc(a$ + chr$(0))

90 open 8,8,15

100print#8,"m-w"chr$(1)chr$(3)chr$(1)chr$(1)

110 print#15," m-r" chr$(01)chr$(O3)

120 print#15," m-r" chr$(1)chr$(3)

130get#15,a$

140 print asc(a$ + chr$(0))

145 open 5,8,5

150print#15, "b-w: "5;0;18;0

160close8: close5: close15

Dennis McKee, Ottawa, Ohio

The Transactor 13 Volume 6, Issue O3

The problem with a No Channel Error is one that I am familiar

with. It caused me great pains a long time ago when first

working directly with Commodore DOS. It took quite a bit of

experimentation, just as you have done, before the cure was

found. The cure, do not initialize the drive when OPENing the

15th channel. The bug is that once the drive starts initializing, it

tends to ignore a few commands coming over the bus, namely

the OPEN statement. In your example, as in my original one,

OPENing the direct access buffer through channel 5 was ig

nored, therefore a No Channel error would be generated

thereafter through reference to channel 5. If you leave out the

Initialization, your program should work.

Ifyou care to key in the program listed below, you might find it

worth your effort. It's a take off of your program, with a few

mods. It reads track 18, sector 0 into RAM buffer *0, $0300.

Next, it displays the first 3 bytes held in the buffer. These bytes

will normally be 18, 1, and 65. The 18 and 1 point to track 18,

sector 1, the first directory block. The 65, ascii 'a', represents the

DOS format, 1541/2031/4040. Ifyou were to change this 65 to

any other value, you might find a bit of fun waiting. You would

not be able to write to the diskette any more, nor scratch files,

quick new the diskette, or even Back-Up the diskette if using a

4040 drive. This trick has been mentioned before in an article/

program I wrote a while ago called 'Drive Protect'.

To get back on track, following the display of the current

contents at that location, you are given a prompt to update

RAM(y/n). Any other response but 'y' at this point will abort the

program. Once the RAM has been updated, the new data held

at $0300-$0302 will be displayed, just for your peace of mind.

Another prompt will then materialize, asking if you really want

to write the block back to the diskette. As before, anything but a

Y will abort. Once the block has been correctly written to

diskette, the files are all closed up, and the program ends. A

nice ending to a bad experience.

100 rem save "0:18-0 un-screw" ,8

105z$ = chr$(0)

110 open 15,8,15: open 5,8,5," #0"

115print#15,"u1:"5;0;18;0: rem * read in track 18,

sector 0

120 print#15," m-r" chr$(0)chr$(3)chr$(3)

: rem * peek about in ram

125forx = 0to2: get#15,a$: print 300+ x;asc(a$ + z$)

: next x

130 input "** update ram (y/n) " ;sr$: ifsr$O"y" then 160

135 print#15," m-w" chr$(0)chr$(3)chr$(3)chr$(18)

chr$(1)chr$(65)

140 print#15," m-r" chr$(0)chr$(3)chr$(3)

145 for x = 0 to 2: get#15,a$: print 300 + x;asc(a$ + z$)

: next x

150 input " ** write back block (y/n) " ;wb$

: if wb$<>" y" then 160

155 print#15," u2:" 5;0;18;0: rem * write back to track 18,

sector 0

160 close5: closei 5: end

Long Lost PAL: Today I discovered, to my satisfaction, a

super magazine dealing with the things I want to know. I can

foresee a subscription to Transactor would be money put to

wise use, and in the near future such a thing will happen.

In the meantime, please enlighten us new comers to your

publication. You mention the PAL assembler by Brad Temple-

ton. Where can we find this assembler and how much should

we expect to pay?

This PAL sounds like a super good assembler, why haven't we

heard about it in Washington.

Brad Moore, Seattle, Washington

It's nice to know that we're appreciated. The PAL Assembler is

possibly the nicest assembler that you will ever work with on

the Commodore machines. The syntax is similar to that of the

Commodore Assembler, but it has some pretty sharp additives.

The reason why you haven't heard of it in Washington is

possibly because no dealers out your way have either. Try the

address below for a copy, worth $69.95 Canadian.

Pro-Line Software

755 The Queensway East, Unit 8

Mississauga, Ontario

L4Y4C5 (416)273-6350

Chop, Goes The Executor: I am writing regarding an article

appearing in the July, 1985, issue of The Transactor, called DOS

FILE EXECUTOR by Chris Johnsen. First, I would like to say

how pleased I was to see you tackle this hidden feature of the

1541 drive. I would very much like to see more articles of this

kind!

There are a couple of problems with Mr. Johnsen's program as

it was published. The most important is that it will not create

proper DOS EXEC FILES if the program is longer that 250

bytes! What is missing is an update of the LOW/HIGH address

of $00/03 instead of $00/03, $FA/03, $F4,04, etc.. What

happens is that each block is loaded into successive buffers and

then overlaid onto buffer 0 ($0300) leading to massive confu

sion.

A tip that your readers might find useful when working with

DOS EXEC FILES is to place an RTS ($60) in front of the first

byte in your M/L routine before creating a DOS EXEC FILE of it

(Or modify Mr. Johnsen's program to do it for you!).

This will allow you to 'park' your main routine in the drive and

have control of it returned to you without its being executed.

This is useful because you may first need to memory-write (M-

W) values to the drive and also want to memory-execute (M-E)

at a different location.

Bill MacMillan, Prince George, British Columbia

The Transactor 14 Volume 6, Issue O3

TransBASIC

Installment #5

Nick Sullivan

Scarborough, Ont.

TransBASIC has been generating a lot of mail, lately, and I

would like to thank all of you who have written in with your

problems, questions, suggestions and — yes, new TransBASIC

modules, some of which appear in this issue. Before we get to

those, though, let's take a look at the rest of the mail.

Assembler Compatibility

Several readers have had success in adapting TransBASIC to

assemblers other than PAL. One common requirement is to

change PAL's non-standard .asc pseudo-op, with double

quotes, to .byte with single quotes.

Not all assemblers parse expressions in the same way PAL

does. For instance, given the instruction:

lda#>label-1

... the effect in PAL is to load the accumulator with the high

byte of the address ('label-1'). At least one assembler, the

Commodore 64 Macro Assembler Development System, evi

dently takes a different approach, by first taking the high byte

of 'label', and then subtracting 1. Presumably the answer is

caution and parentheses:

lda#>(label-1)

I would appreciate it if readers would let me know of other

problems along this line.

Back in the first TransBASIC column, I said that "unless you

have access to a copy of PAL, or some other assembler that

parasitizes the BASIC source editor, TransBASIC is not for you".

After receiving a letter asking for an elucidation of that remark,

I realized it was a bit too sweeping. The point was that the ADD

command will merge TransBASIC modules only if they are

stored in the form of BASIC program text — assemblers with

their own editors won't work. On the other hand, if the

particular package offers some means of merging files by line

numbers, the ADD command isn't necessary, and maybe

TransBASIC is for you after all.

Bug Reports

Numerous letters make mention of three problems. 1) The

shifted left parenthesis was missing from the keyword line

(602) in the CHECK & AWAIT module that appeared in instal

ment 2. The line should have read:

602 .asc " check": .byte $a8: .asc " await": .byte $a8

Originally, this line was written with graphics characters em

bedded in the .asc string, and no .byte commands, but this is

difficult to reproduce in a typeset program listing. 2) The

CURSOR POSITION module, which was supposed to have

appeared in the second instalment, didn't actually make it until

the third. 3) Early copies of the Transactor disk with the

programs of instalment number one, had a problem with the

TransBASIC loader program. In the incorrect copies, line 130 of

this program reads:

130 a=1: load "tb/add.m" ,8,1

The correct version is:

130 a = 1: load " tb/add.obj ",8,1

Now for a trickier bug. David Stevenson of Pilot Mound,

Manitoba, correctly points out that the indirect jumps in the

TransBASIC kernel (tvec, Ivec, evec and fvec) could potentially

lie across a page boundary, depending on the size of the

keyword table. Owing to a bug in the 6502/6510 microproces

sors, this condition would cause a crash. The solution is to

make sure that the vectors fall on even-number memory

locations, or that they do not lie across a page boundary.

Taking the latter approach, Mr. Stevenson suggests putting the

vectors before the keyword list instead of after. This would

mean changing the line numbers around, but could be done

fairly easily. Or, you could add the following line to the kernel:

2129.if>(*&255) + 7: * = * + (*&i)

This rather cryptic line will pad your object code by one byte if

the vector table that follows would otherwise lie on an odd byte

and across a page boundary. The number 7 represents the

number of bytes in the table minus one — by choosing the

appropriate value you could use this line any time a vector or a

table of vectors occurs in a program you are writing. Will it

work with assemblers other than PAL? I don't know.

New Modules

Six of the seven modules published this issue were contributed

by readers, and there are more to come. I have edited all of

them, sometimes heavily, to mesh more closely with TransBA

SIC; I hope I have not introduced any bugs.

The LABELS module comes from Jerry Gillaspie of North

Hollywood, California. Mr. Gillaspie writes: "I have always felt

The Transactor 15 Volume 6, Issue O3

that the biggest problem with BASIC was the need to GOTO

and GOSUB to a line number. The line numbers have no

significance relative to the function being performed." His new

commands, L, LGOTO and LGOSUB get around this problem

nicely. I added SGOTO and SGOSUB to the module for even

greater flexibility — and introduced a problem. This is dealt

with in another small module, TOKEN &VAR.

Charles Kluepfel of Bloomfield New Jersey, has contributed two

modules. One, ARCFUNCTIONS, provides two trigonometric

functions missing in regular BASIC. The other, INSTRING,

duplicates the INSTR(function found in many BASICs, but with

an extension that makes use of the Boolean operators.

Mr. Kluepfel asks an interesting question about compatibility

between TransBASIC dialects: "If I write a program on a

(dialect) having commands A, B, and C, utilizing the B and C

commands, then later try running on a version that has B, C

and D, the B and C commands will have different tokens, and

the thing won't work."

This is entirely true. The whole point of TransBASIC is that

keywords are dynamically, not statically, assigned to tokens.

Thus, in different dialects, the same keyword may have a

different token. There are two answers to this difficulty. One is

to make a new dialect for every new program you write, to label

it, and to stick with it. The other is to search and replace tokens

with a programming utility. That can get you out of a jam, but

it's a lot more awkward.

Shaun Erickson of Jamestown, North Dakota, has sent in the

PRINTAT module, which is like an extended version of the

CURSOR command.

And Frank Vanzeist, of St. Mary's, Ontario, has contributed his

extensive SOUND THINGS module, with its 28 statements and

4 functions, which should make poking the SID chip a thing of

the past.

Thanks to all the above contributors, and to those whose work

has been received, but not yet published. Next issue, I hope to

have some disk commands by Darren Spruyt, whose work has

often appeared in this magazine in the past; a very fast merge

routine that you can use instead of ADD; and much more.

New Commands

This part of the TransBASIC column is devoted to describing

the new commands that will be added each issue. The descrip

tions follow a standard format:

The first line gives the command keyword, the type (statement

or function), and a three digit serial number.

The second line gives the line range allotted to the execution

routine for the command.

The third line gives the module in which the command is

included.

Mr. Kluepfel adds: "As for other commands and functions I

would like to see, these include PRINT USING, SWAP (inter

change two variables), UNDIM (to delete one or more arrays)

from memory so it can be reDIMmed), a new RND that allows

specification of the range of random numbers desired or a

repetition of the previous random number given, a RESTORE

to a line number, a LINPUT, and a computed GOTO."

Anyone interested? We already have one version of a SWAP

command awaiting publication, and a version of the RND

function similar to the one Mr. Kluepfel suggest, but without

the repetition feature. An extended INPUT has also been

written, that does not produce the question-mark prompt, and

can be terminated only by a carriage return. Of course, the

INPUT statement has always provided lots of room for innova

tion, and there are plenty of other possibilities. The UNDIM will

require a memory move utility, one of which will be introduced

in the next column, so it might be best to hold off on that for

now.

Another 'instring' function comes from Michael Phillips of

Camden, Tennessee. This one also features an interesting

extension: the ability to specify a point in the first string at

which the search for the second string is to begin. In order to

distinguish it from Charles Kluepfel's contribution, I renamed

this one PLACE(, as in Simons' BASIC.

The fourth line (and the following lines, if necessary) demon

strate the command syntax.

The remaining lines describe the command.

L. (Type: Statement Cat #: 073)

Line Range: Routine in ROM

Module: LABELS

Example: L.GETLOOP: GET U$

A line is labelled for reference by the LGOTO, LGOSUB,

SGOTO and SGOSUB statements. The L. command must be the

first on its program line if the label is to be recognized.

LGOTO (Type: Statement Cat *: 074)

Line Range: 5924-6100

Module: LABELS

Example: IF A$OCHR$(13) THEN LGOTO GETLOOP

The program is searched for a line bearing the specified label. If

found, execution continues from that line, otherwise an Unde

fined Statement error results.

LGOSUB (Type: Statement Cat *: 075)

Line Range: 5870-6100

Module: LABELS

Example: LGOSUB BLUEBIRD

The program is searched for a subroutine labelled as specified.

The Transactor 16 Volume 6, Issue O3

SGOTO (Type: Statement Cat *: 076)

Line Range: 5920-6130

Module: LABELS

Example: U$ = " BLUEBIRD": SGOTO U$

The program is searched for a line bearing the label specified

by the string expression. If found, execution continues from

that line. Otherwise, the program is searched for a line with the

label DFAULT, and if found, execution continues from there.

Otherwise, an Undefined Statement error results.

SGOSUB (Type: Statement Cat *: 077)

Line Range: 5866-6130

Module: LABELS

Example: INPUT L$: SGOSUB L$

The program is searched for a subroutine bearing the label

specified by the string expression. If found, the subroutine is

executed. Otherwise, the program is searched for a subroutine

with the label DFAULT and, if found, the subroutine is exe

cuted. Otherwise, an Undefined Statement error results.

TOKEIN$((Type: Function Cat *: 078)

Line Range: 6132-6196

Module: TOKEN &VAR

Example: SGOTO TOKEN$(" POKER")

A string is returned which is the tokenized version of the

argument string. One use is illustrated in the example. The

label specified by the L. labelling command (073) is tokenized

by the BASIC and TransBASIC tokenizing routines, whereas

the argument string of the SGOTO and SGOSUB commands is

not tokenized. This would result in the label not being recog

nized if it contains one or more BASIC and/or TransBASIC

keywords (as with "POKER"). By tokenizing the string with

this function before the search, the match can be made success

fully.

VAR((Type: Function Cat #: 079)

Line Range: 6198-6208

Module: TOKEN &VAR

Example: PRINT VAR(U$)

An address is returned corresponding to the address of the data

in the named variable — the third byte in the variable's entry

in the table above BASIC program text space. In the case of

numeric variables, the address is that of the actual data; in the

case of string variables, the address is that of the string descrip

tor.

INSTR((Type: Function Cat *: 080)

Line Range: 6210-6396

Module: INSTRING

Example: A = INSTR(U$,V$)

Example: B = INSTR(" INSANE"," SANE" ,AND)

Example: IF INSTR(W$," JKQXZ" ,OR) THEN PRINT " GOOD

SCRABBLE WORD"

Example: IF INSTR(M$," 01" ,NOT) THEN PRINT " NOT

BINARY")

String 1 is scanned for an occurrence of String 2. If one is found,

the starting position of String 2 in String 1 is returned, counting

from 1. An unsuccessful search returns 0. The search can be

modified by using a Boolean operator as the third argument in

the function. AND is the default, and operates as described

above; therefore example two returns the value 3. OR returns

the position of the first character in String 1 that matches any

character in String 2. NOT returns the position of the first

character in String 1 that does not match any character in

String 2.

PLACE((Type: Function Cat*: 081)

Line Range: 6398-6546

Module(s): PLACE

Example: Q = PLACE(" CLOVERLEAF"," LOVER")

Example: R = PLACE(5," RAT-A-TAT-TAT", "AT")String 1 is

scanned for an occurrence of String 2. If one is found, the

starting position of String 2 in String 1 is returned, counting

from 1. An unsuccessful search returns 0. The position in String

1 at which the search is to commence can be specified with an

optional first parameter as in the second example, which

returns a value of 8.

ASN((Type: Function Cat *: 082)

Line Range: 6548-6702

Module: ARCFUNCTIONS

Example: U = ASN(l/2)

The arcsine (inverse sine) of the argument is returned. Argu

ments less than -1 or greater than +1 are illegal quantities,

except that the function is forgiving of quantities exceeding 1 in

absolute value, but very close to it, counting them as equal to 1

to allow for accumulated errors in trigonometric computation.

ACS((Type: Function Cat *: 083)

Line Range: 6670-6702

Module: ARCFUNCTIONS

Example: U = ACS(V/W)

The arccosine (inverse cosine) of the argument is returned.

Arguments less than -1 or greater than + 1 are illegal quanti

ties, except that the function is forgiving of quantities exceed

ing 1 in absolute value, but very close to it, counting them as

equal to 1 to allow for accumulated errors in trigonometric

computation.

PRINT® (Type: Statement Cat*:

Line Range: 6704-6744

Module: PRINTAT

Example: PRINT® 15,5," FLEAS IRK US"

Example: PRINT® 5,12: INPUT C$

The cursor is moved to the specified column (first argument)

and row (second argument), and the third argument, if any, is

printed at that position. The third argument is passed directly

to the BASIC print routine, and can be anything that is legal in a

PRINT statement.

CLESID (Type: Statement Cat*: 085)

Line Range: 6908-6922

Module: SOUND THINGS

Example: CLESID

Clears the 25 write only registers of the SID chip, and the SID

image maintained by the SOUND THINGS module.

The Transactor 17 Volume 6, Issue O3

FREQ (Type: Statement Cat #: 086)

Line Range: 6924-6932

Module: SOUND THINGS

Example: FREQ4.53000

The first argument, in this and other SOUND THINGS com

mands, specifies the voice(s) to which the command is to apply.

The argument is a 3-bit value in which the state of each bit

indicates whether the corresponding voice is included in the

command. The number 4, in the example, indicates that in this

instance the command applies only to the third SID voice. An

argument of 5 would cause the command to affect both the first

and the third voice; 7 would affect all three voices. The second

argument is a frequency to be poked into the frequency

registers for the indicated voice(s).

PUWID (Type: Statement Cat *: 087

Line Range: 6934-6948

Module: SOUND THINGS

Example: PUW1D3,1000

Set the pulse width (second argument) of the voices specified in

the first argument.

FIFREQ (Type: Statement Cat *: 088)

Line Range: 6950-6978

Module: SOUND THINGS

Example: FIFREQ FF +1

Set the filter cutoff frequency to the specified value.

ADPUL (Type: Statement Cat *: 089)

Line Range: 6980-7026

Module: SOUND THINGS

Example: ADPUL 2

Switch on the pulse width wave form in the specified voice(s),

without affecting other bits in the wave form register except the

noise bit, which is cleared.

ADSAW (Type: Statement Cat *: 090)

Line Range: 6984-7026

Module: SOUND THINGS

Example: ADSAW 6

Switch on the sawtooth wave form in the specified voice(s),

without affecting other bits in the wave form registers except

the noise bit, which is cleared.

ADTRI (Type: Statement Cat*: 091)

Line Range: 6988-7026

Modules: SOUND THINGS

Example: ADTRI 7

Switch on the triangle wave form in the specified voice(s),

without affecting other bits in the wave form registers except

the noise bit, which is cleared.

NOWAV (Type: Statement Cat *: 092)

Line Range: 7012-7026

Modules: SOUND THINGS

Example: NOWAV 5

Clear the wave form nybble in the specified voice(s).

NOI (Type: Statement Cat*: 093)

Line Range: 6996-7026

Modules: SOUND THINGS

Example: NOI 1

Set the wave form to noise in the specified voice(s).

PUL (Type: Statement Cat *: 094)

Line Range: 7000-7026

Module: SOUND THINGS

Example: PUL 7

Set the wave form to pulse in the specified voice(s).

SAW (Type: Statement Cat *: 095)

Line Range: 7004-7026

Modules: SOUND THINGS

Example: SAW VV

Set the wave form to sawtooth in the specified voice(s).

TRI (Type: Statement Cat *: 096)

Line Range: 7008-7026

Modules: SOUND THINGS

Example: TRI VI+V2 + V3

Set the wave form to triangular in the specified voice(s).

TEST (Type: Statement Cat*: 097)

Line Range: 7028-7052

Modules: SOUND THINGS

Example: TEST 2,1

Set or clear the test bit in the wave form register of the specified

voice(s). The first parameter is the voice(s). The second is set (1)

or clear (0).

RING (Type: Statement Cat*: 098)

Line Range: 7032-7052

Modules: SOUND THINGS

Example: RING B,0

Switch ring modulation off or on in the specified voice(s). The

first parameter is the voice(s). The second is on (1) or off (0).

SYNC (Type: Statement Cat*: 099)

Line Range: 7036-7052

Module: SOUND THINGS

Example: SYNC 4,1

Switch synchronization off or on in the specified voice(s). The

first parameter is the voice(s). The second is on (1) or off (0).

GATE (Type: Statement Cat*: 100)

Line Range: 7040-7052

Module: SOUND THINGS

Example: GATE 2,1

Set or clear the gate bit in the wave form register of the specified

voice(s). The first parameter is the voice(s). The second is set (1)

or clear (0). Setting the gate bit starts the attack phase of the

ADSR envelope; clearing the gate bit start the release phase.

The Transactor 18 Volume 6, Issue O3

ATT (Type: Statement Cat*: 101)

Line Range: 7054-7070

Module: SOUND THINGS

Example: ATT 1,2

Set the attack time in the specified voices (first argument) to the

value in the second argument (range 0-15).

DEC (Type: Statement Cat*: 102)

Line Range: 7072-7092

Module: SOUND THINGS

Example: DEC 6,11

Set the decay time in the specified voices (first argument) to the

value in the second argument (range 0-15).

SUS (Type: Statement Cat*: 103)

Line Range: 7058-7070

Module: SOUND THINGS

Example: SUS 3,15

Set the sustain volume level in the specified voices (first

argument) to the value in the second argument (range 0-15).

REL (Type: Statement Cat*: 104)

Line Range: 7076-7092

Module: SOUND THINGS

Example: REL 7,0

Set the release time in the specified voices (first argument) to

the value in the second argument (range 0-15).

RESON (Type: Statement Cat*: 105)

Line Range: 7094-7112

Module: SOUND THINGS

Example: RESON 11

Set the filter resonance level to the specified value.

VOL (Type: Statement Cat*: 106)

Line Range: 7102-7112

Module: SOUND THINGS

Example: VOL 6

Set the combined volume level for the three SID voices to the

specified value.

FILT (Type: Statement Cat*: 107)

Line Range: 7114-7124

Module: SOUND THINGS

Example: FILT 12,1

Switch the filter on or off. The first parameter is the voice(s) as

usual, except that a fourth bit, corresponding to the audio input

to the SID chip, is included. That bit contributes a value of 8 to

the total for the voices selected. The second parameter in this

statement is 1 (for on) or 0 (for off). Thus the example selects

filtering on for the audio input and for the third SID voice.

TRDOFF (Type: Statement Cat*: 108)

Line Range: 7126-7138

Module: SOUND THINGS

Example: TRDOFF

Switches off oscillator 3.

TRDON (Type: Statement Cat*: 109)

Line Range: 7130-7138

Module: SOUND THINGS

Example: TRDON

Switches on oscillator 3.

HP (Type: Statement Cat*: 110)

Line Range: 7140-7158

Module: SOUND THINGS

Example: HP 1

Turn the high pass filter on or off, leaving the status of the other

two filters unchanged. The parameter is 1 (on) or 0 (off).

BP (Type: Statement Cat*: 111)

Line Range: 7144-7158

Module: SOUND THINGS

Example: BP 0

Turn the band pass filter on or off, leaving the status of the

other two filters unchanged. The parameter is 1 (on) or 0 (off).

LP (Type: Statement Cat*: 112)

Line Range: 7148-7158

Module: SOUND THINGS

Example: LP FS

Turn the low pass filter on or off, leaving the status of the other

two filters unchanged. The parameter is 1 (on) or 0 (off).

POTX (Type: Function Cat*: 113)

Line Range: 7060-7178

Module: SOUND THINGS

Example: P = POTX

This pseudo-variable returns the value of a game paddle

plugged into joystick port 1.

POTY (Type: Function Cat*: 114)

Line Range: 7064-7178

Module: SOUND THINGS

Example: PRINT POTY

This pseudo-variable returns the value of a game paddle

plugged into joystick port 2.

OSC3 (Type: Function Cat*: 115)

Line Range: 7068-7178

Module: SOUND THINGS

Example: J = OSC3*256

This pseudo-variable returns the current value of the upper 8

bits of the output of oscillator three.

ENV3 (Type: Function Cat*: 116)

Line Range: 7072-7178

Module: SOUND THINGS

Example: FREQ 1,20000+ ENV 3*10

This pseudo-variable returns the current value of the envelope

generator of oscillator three.

The Transactor 19 Volume 6, Issue O3

TB/KERNEL

Statements: 2

000 S/IF

001 S/ELSE

002 S/EXIT

Modules So Far

TransBASlC Modules that have appeared so far (Instalments 1 to 4)

TransBASlC #\

Functions: 0 Keyword Characters: 8

Modified IF to work with TransBASlC

Part of IF-ELSE construct

Disable current TransBASlC dialect

SCREEN THINGS

Statements: 5 Functions: 0 Keyword Characters: 22

013S/GROUND Set background colour

014S/FRAME

015S/TEXT

016S/CRAM

017S/CLS

Set border colour

Set text colour

Fill colour memory with value

Clear screen, or screen line range

TransBASlC #2

DOKE & DEEK

Statements: 1

007 S/DOKE

008 F/DEEK(

Functions: 1 Keyword Characters: 9

Poke a 16-bit value

Peek a 16-bit value

BIT TWIDDLPR*!MJm. m. 1 if JIjL/JL/JLj

Statements: 3

009 S/SET

010S/CLEAR

01 IS/FLIP

Functions: 0 Keyword Characters: 12

Set specified bit at address

Clear specified bit at address

Flip specified bit at address

CHECK & AWAIT

Statements: 0

018F/CHECK

019F/AWAIT(

KEYWORDS

Statements: 1

Functions: 2 Keyword Characters: 12

Check keyboard for valid character

Wait for valid character from keyboard

Functions: 0 Keyword Characters: 8

059 S/KEYWORDS Print currently active TransBASlC key-

words

TransBASlC #3

CURSOR POSITION

Statements: 1 Functions: 1 Keyword Characters: 10

004 S/CURSOR Move cursor to specified row and column

005 F/CLOC Return cursor location

SET SPRITES

Statements: 6 Functions: 0 Keyword Characters: 27

031 S/COLSPR Set colour of sprite

032 S/SSPR Turn on a sprite

033 S/CSPR Turn off a sprite

034 S/XSPR Move sprite to specified x-position

035 S/YSPR Move sprite to specified y-position

036 S/XYSPR Move sprite to specified xy-position

WITHIN

Statements: 0 Functions: 1 Keyword Characters: 7

040 F/WITHIN(Return true if value lies within specified

range

READ SPRITES

Statements: 0 Functions: 2 Keyword Characters: 10

041 F/XLOC(Return x-position of specified sprite

042 F/YLOC(Return y-position of specified sprite

TransBASlC #4

STRIP & CLEAN

Statements: 0 Functions: 2 Keyword Characters: 14

045 F/STRIP$(Remove non-alphanumerics from string

046 F/CLEAN$(Remove non-blank non-alphanumerics

from string

SCROLLS

Statements: 4 Functions: 0 Keyword Characters: 24

067 S/USCROL Scroll screen area up one row

068 S/DSCROL Scroll screen area down one row

069 S/LSCROL Scroll screen area left one row

070 S/RSCROL Scroll screen area right one row

The Transactor 2O Volume 6, Issue O3

Editor's Note: This jumbo TransBASIC article has been brought to

you thanks to the diligent efforts of Nick Sullivan. Although several of

the modules this time were submitted by readers, much work went

into preparing them. As mentioned, Nick found it necessary to edit

almost everything; in all cases the line numbers were modified; labels

were changed in the source listings to cut down on the chances of

duplicates; keywords had to be changed in many cases to eliminate

tokenization problems (eg. 'RES' was one of the Sound Things key

words but had to be changed so as not to interfere with RESTORE);

and commenting, general organization, not to mention the presenta

tion itself, ate up some hours, I'm sure.

For those who submitted TransBASIC modules, The Transactor will

be sending a free 1 year magazine subscription, plus the Transactor

Disk for this issue (Disk *8) so you don't have to retype your own

modules to resemble what Nick has done to them.

As promised last issue, the following is a quick refresher on building a

TransBASIC dialect. M.Ed.

Using TransBASIC

About the easiest way to get in on TransBASIC is to obtain a copy of

The Transactor Disk (Disk *4 or greater). TransBASIC users must also

have the PAL Assembler package (or a similar assembler as discussed

earlier).

The directory shows a program called "transbasic instr". LOAD and

LIST and you will see that it will proceed to load two other programs:

the first is the 'ADD' module which allows you to add more modules to

the 'tb/kernel' which is loaded second.

Now comes the easy part. Select the modules you need from those you

have on disk (Disk #8 contains every module released to date). Then,

for each module, follow these steps:

1) Use the ADD statement to merge the module into memory, for

example:

ADD "SCREEN THINGS"

2) List line 2 of your program. This line number is common to all

modules. It will read something like:

REM 5 STATEMENTS, 0 FUNCTIONS

3) List line 95. This kernel line records the number of statements and

functions in the TransBASIC that you are creating. When you first

load in the kernel, line 95 reads:

95XTRA.BYTE2.0 ; STMTS.FNCS

. . .indicating that the kernel contains two statements (ELSE and EXIT)

and no functions. You are responsible for updating the two numbers

appropriately as you ADD modules. After adding SCREEN THINGS,

for instance, the first number in line 95 would be increased by five,

the second would be left unchanged.

When you have finished adding modules, it would probably be a good

idea to save the completed source file, at least temporarily. Then load

PAL, if you haven't previously, and give the RUN command. PAL then

proceeds to assemble all the modules you 'ADDed' into your new

TransBASIC extension.

Normally the object code is origined to that popular niche at SC000,

but you can select another starting point if you wish (see line 31 of the

source code). Save the object code directly, perhaps with Supermon,

or convert it into DATA statements that can be loaded in with

whatever programs you intend shall make use of the added com

mands.

With that, the work is done. To activate the new commands type:

SYS 49152

Presto! — you have just extended BASIC to your own specifications,

and now it's ready for use.

Program 1: LABELS

JL

FH

MH

HH

KE

JH

NJ

JK

HI

Cl

CL

KK

Al

LD

Cl

JF

OB

PP

HE

DB

IL

OP

JJ

BO

IF

AE

ML

EP

IH

LL

MH

DN

HE

II

ON

Gl

JK

Kl

MB

01

GC

CA

Gl

HH

KK

EJ

NB

00

BB

PM

HB

01

NP

EH

0 rem labels (j. gillaspie 3/85

1 :

) :

2 rem 5 statements, 0 functions

3:

4 rem keyword characters: 24

5:

6 rem keyword

7 rem I.

8 rem Igoto

9 rem Igosub

10 rem sgoto

11 rem sgosub

12:

13 re

14:

120.

121 .

1120

1121

5866

5868

5870

5872

5874

5876

5878

5880

5882

5884

5886

5888

5890

5892

5894

5896

5898

5900

5902

5904

5906

5908

5910

5912

5914

5916

5918

5920

5922

5924

5926

5928

5930

5932

5934

m

routine

= 'data'

Igot

Igosu

sgot

sgosu

line ser#

$adf8 073

5924 074

5870 075

5920 076

5866 077

byte$4c,$ae: .asc " IgotOlgosuB"

asc "sgotOsgosuB"

.word $a8f7,lgot-1 ,lgosu-1

.word sgot-1 ,sgosu-1

sgosu sec

.byte $24

Igosu cic

ror

Ida

sta

Ida

jsr

Ida

pha

Ida

pha

bit

bpl

jsr

Igosi Ida

pha

Ida

pha

Ida

pha

jsr

dey

dey

jsr

jmp

sgot sec

.byte

Igot cic

ror

Ida

sta

bit

bpl

t6

#$ff

t5

#3

$a3fb

$7b

$7a

t6

Igosi

sgstr

$3a

$39

#$8d

$79

igoti

$a7ae

;$24

t6

#$ff

t5

t6

Igoti

;s = neg, l = pos

;max string length

duplicate rom's

; gosub routine

;push chrget ptr

;test jump-type flag

;evaluate string

;push line number

;push gosub token

;back up token offset

; to labelled goto

;use labelled goto

; next statement

;s= neg, l = pos

;max string length

;test jump-type flag

The Transactor 21 Volume 6, Issue O3

CL

IJ

JL

PG

CM

FA

OJ

FA

PD

Gl

HC

EK

IA

KK

MH

DG

GL

LJ

FM

DA

OB

OB

CJ

Cl

PP

KE

OD

OB

HA

JG

HI

MN

FL

DG

HA

EF

GJ

GL

DD

LM

Al

DN

KA

MO

IG

GK

JN

JE

DG

AK

IM

KH

OA

00

DL

KH

MB

MP

LE

Bl

NE

MM

KK

HI

5936

5938 Igoti

5940

5942

5944

5946

5948

5950

5952

5954

5956 Igot2

5958

5960

5962

5964

5966

5968

5970 Igot3

5972

5974

5976

5978

5980

5982

5984

5986

5988

5990

5992

5994 Igot4

5996

5998

6000

6002

6004

6006 Igot5

6008

6010

6012

6014

6016

6018

6020 Igot6

6022

6024

6026

6028

6030

6032

6034

6036 Igot7

6038

6040

6042

6044

6046

6048 Igot8

6050

6052

6054 Igot9

6056

6058

6060

6062

jsr

dey

dey

tya

Isr

ora

sta

cmp

bcc

inc

Ida

sta

Ida

sta

Ida

Idx

Idy

sta

stx

Ida

beq

Idy

Ida

cmp

bne

iny

Ida

sgstr

#$40

t4

#$5d

Igot2

t4

$7a

12

$7b

t3

$2b

$2c

#1

$5f

$60

($5f),y

Igoti 0

#4

($5f),y
#$5f

Igot9

($5f),y

cmpt4

bne

iny

!da

cmp

beq

Idx

jsr

cmp

bne

invj
dex

beq

jsr

bne

Ida

beq

iny

cmp

beq

dey

Igot9

($5f),y

#$20

Igot4

t5

$79

($5f),y

Igot9

Igot6

$73

Igot5

($5f),y;

Igot7

#$20

Igot6

cmp#":"

bne

Ida

Idx

clc

adc

bcc

inx

sta

stx

jmp

Ida

sta

Ida

sta

Idy

Igot9

$5f

$60

#4

Igot8

$7a

$7b

$a8f8

t2

$7a

t3

$7b

#1

;evaluate string

;back up token offset

; to I. command

;convert to token

; stored in t4

;save chrget ptr

; start of basic ptr

;pointto link hi byte

;setzp pointer

; to current line

;check for end of pgm

;yes, undef'd stmt

;point to Isttok byte

;get it

;check if tb token (*-)

;no, try next line

;yes

;which tb token

;check if label

;no, try next line

;strip off blanks

;get string length

;begin label compare

;no match, next line

;match, test next char

;done if line/stmt end

;yes, end of line

;blanks don't count

;test end of stmt

;no match

;copy ptr to chrget

;skip link, line #

;use data rtn to skip

;point back to

; start of label

;point to link

PD

NH

PG

GN

IJ

JK

KO

BB

IE

MP

BE

BJ

DM

IC

DC

CJ

BD

MC

Kl

OE

JD

LI

OK

NA

OH

NC

AN

IN

DK

FK

GA

IC

MN

IG

CH

FH

DH

HH

DE

JH

NJ

HB

KC

NH

ME

PH

KD

Bl

BK

GD

EC

FH

IB

GM

IN

OH

BB

Kl

NH

AM

6064

6066

6068

6070

6072

6074

Ida

tax

dey

Ida

iny

bne

6076 Igoti Obit

6078

6080

6082

6084

6086

6088

6090

6092

6094

6096

60981

bpl

clc

ror

Ida

Idy

sia

sty

Idy

sty

jmp

got11 jmp

6100 trpstr .asc

6102 s

6104

6106

6108

6110

6112

6114

6116

6118

6120

6122

6124

6126

6128

6130

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

9:

sgstr sty

jsr

jsr

sta

stx

sty

Idy

dey

dey

dey

dey

sec

ror

rts

($5f),y

($5f),y

Igot3

t6

Igoti 1

tfi

#<trpstr

#>trpstr

$7a

$7b

#6

t5

Igot2

$a8e3

"dfault"

$14

$ad9e

$b6a3

t5

$7a

$7b

$14

t6

; to next line

;get first char

;lookfor next label

;test jump-type flag

;l-type, give up

;setflag to l-type

;hunt 'dfault' label

;undef stmt error

; save token offset

;eval label string

;getstrlen &addr

;save length

;set chrget ptr

; to string data

; recover token offset

;back up token offset

; to labelled jump

;sets-jumpflag

Progra

token & var (april 7/85)

0 statements, 2 functions

keyword characters:

keyword

token$(

var(

routine

token

var

10 rem u/usfp (2620/006)

11 :

12 rem = = = = = = = =

13:

611 .asc "token$": ,byte$

612 .asc "var":

1611

1612

2620

2622

2624

2626

2628

2630

2632

2634

byte $a8

word token-1

word var-1

usfp Idx

stx

sta

sty

Idx

sec

jmp

#0

$0d

$62

$63

#$90

Sbc49

11

line ser #

6132 078

6198 079

a8

iroutine to convert

;unsigned integer

;in .a (high byte)

;and .y (low byte)

;to floating point

; in fac #1

The Transactor 22 Volume 6, Issue O3

HO

NC

KP

EJ

LA

KM

CF

JM

LO

FA

HM

FD

CC

BA

II

OM

Ml

JG

OC

PB

GB

CK

HB

PC

PE

HC

OD

FP

AK

PP

DL

KD

OE

MA

DJ

KK

AJ

KP

MG

NH

GP

GL

NN

FH

EC

HH

GO

JH

NJ

LN

MH

HD1 1 LJ

OH

HB

HD

HC

CL

KH

DN

KK

6132

6134

6136

6137

6138

6139

6140

6142

6144

6146

6148

6150

6152

6154

6156

6158

6160

6162

6164

6166

6168

6170

6172

6174

6176

6178

6180

6182

6184

6186

6188

6190

6192

6194

6195

6196

6198

6200

6202

6204

6206

6208

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8:

Q rprr
C I Ol 1

10:

token jsr $b3a6

jsr $aef4

jsr $b6a3

cmp #$59

bcs tkn4

tay

Ida #0

tax

tkn1 sta $200,y

dey

Ida ($22),y

cpy #$ff

bne tkn1

Ida $7a

pha

Ida $7b

pha

stx $7a

jsr tok

pla

sta $7b

pla

sta $7a

tya

sec

sbc #5

jsr $b47d

tay

tkn2 dey

bmi tkn3

Ida $200,y

sta ($62),y

bne tkn2

tkn3 jmp $b4ca

tkn4 jmp $b658

var jsr $bO8b

Idy $47

Ida $48

jsr usfp

jmp $aef7

;

Program 3:

instring (c. kluepfel,

;program mode only

;evaluate expr

;set string ptrs

;upto88 chars

;clear .a and .x

;copy string to

; input buffer

; with terminal 0

;push chrgetptr

;tokenize buffer

;pull chrgetptr

;calc length of

; tokenized line

; reserve str space

;copy tokenized

; line to string

; storage

;set up descriptor

;string too long

;find variable

;load pointer

; to data

;conv to floating

;checkfor paren

INSTRING

apr/85) :

0 statements, 1 function

keyword characters

keyword routine

f/instr(instr

:6

line ser #

6210 080

613.asc " instr": ,byte$a8

1613

6210

6212

6214

6216

6218

.word instr-1

nstr Ida #2

jsr $a3fb

jsr $ad9e

jsr $b6a3

sta t3

;check stack depth

;evaluate string 1

; and set up ptrs

JC

CA

AG

JA

AE

IH

Kl

ME

DJ

JO

KA

Jl

LK

OO

CD

JN

GD

GP

MD

BG

DJ

EJ

Kl

KL

GF

IA

MA

BO

MB

HA

FA

HN

CG

LM

CL

EL

FM

Bl

JP

KO

JN

MJ

BO

FK

FO

MF

HM

BM

HP

OM

CN

JH

IP

EG

NK

PFW 1

PF

OA

LB

DH

OM

GK

LN

DP

6220

6222

6224

6226

6228

6230

6232

6234

6236

6238

6240

6242

6244

6246

6248

6250

6252

6254

6256

6258

6260

6262

6264

6266

6268

6270

6272

6274

6276 ins1

6278

6280

6282

6284

6286

6288

6290

6292

6294

6296

6298

6300

6302

6304

6306

6308

6310

6312 ins2

6314

6316

6318 ins3

6320 ins4

6322

6324

6326

6328
RQQf)
UuOU

6332

6334

6336 ins5

6338

6340 ins6

6342

6344

6346 ins7

pha

txa

pha

tya

pha

Ida t3

jsr $b47d

jsr $aefd

jsr $ad9e

jsr $b6a3

stx $22

sty $23

sta t3

pla

sta $25

pla

sta $24

pla

sta t2

sta t4

dec t4

Idx #$af

jsr $79

cmp #")"

beq inst

jsr $aefd

tax

jsr $73

jsr $aef7

sec

Ida t2

beq ins6

sbc t3

ror t6

tay

Ida t3

beq ins6

Ida #0

sta insctr

cpx #$af

beq ins2

cpx #$b0

beq ins3

cpx #$a8

beq ins3

jmp $afO8

bit t6

bpl ins6

sty t4

Idy #0

Ida ($24),y

cpx #$af

bne ins9

cmp ($22), y

bne ins7

i n\/Illy

cpy t3

bne ins4

Idy insctr

.byte$2c

Idy #$ff

iny

jmp $b3a2

inc insctr

;push length

;push addr-lo

;push addr-hi

; lower b-o-s ptr

;check for comma

;evaluate string 2

; and set up ptrs

;store address ptr

;store length

;set up addr ptr

; to string 1

;save length

;set up test limit

;'and' - default

;branch on paren -

; end of expr

;test for comma

;boolean to .x

;get next char

;test for r. paren

;str1 null - exit

;len str2-len str1

;rot carry to t6

;resultto .y

;str2 null - exit

;init counter

; and ;test for and

; or ;test for or

; not ;test for not

;syntax error

;exit if len str2

; > len str1

;store test limit

;init index

;getstr1 char

;branch on or/not

;compare with str2

iskip if unequal

■j^HvAnpp inripY,d\J VCll IUC II ILJCA

;index = len str1

;means success

;get function

; result (counter)

;make result zero

;resulttofac 1

;bump counter

The Transactor 23 Volume 6, Issue O3

Jl

DJ

PN

AP

NH

Fl

AD

KA

FF

IE

OG

MB

BD

NO

MD

BH

MH

IC

NM

JP

JE

PA

OG

NF

CH

GG

FH

EC

HH

GO

JH

NJ

GH

MH

Ml
1 N l_

OH

EJ

FK

BG

OG

DC

Al

HB

EC

AN

NH

AA

FG

OD

FA

CL

FO

OM

IJ

AM

DN

FK

MB

DB

EK

6348

6350

6352

6354

6356

6358

6360 ins8

6362 ins9

6364

6366

6368ins10

6370

6372

6374

6376

6378

6380ins11

6382

6384

6386

6388

6390

6392;

6394 insctr

6396;

0 rem place

1 :

Ida t4 ;

cmp insctr ;

bcc ins6

inc $24

bne ins8

me $25

bne ins3

Idy t3

cpx #$a8

beq ins11

dey

cpy #$ff

beq ins7

cmp ($22),y

bne ins10

beq ins5

dey

cpy #$ff

beq ins5

cmp ($22),y

bne ins11

beq ins7

.byteO

get test limit

branch if done

bump pointer

into str1

next pass

getstri len

branch on 'not'

try to match any

str2 char

no, do next pass

no, try next char

yes, exit

try to match any

str2 char

no, exit

no, try next char

yes, do next pass

counter

Program 4: PLACE

(m. phillips 3/85)

2 rem 0 statements, 1 function

3:

4 rem keyword characters: 6

5:

6 rem keyword routine

7 rem f/place(nst

8:

Q rprn
C? 1 Cl II

10:

614.asc "place" : .byte$a8

1614 .word

6398 nst

6400

6402

6404

6406

6408

6410

6412

6414

6416

6418

6420

6422

6424 nst1

6426

6428

6430

6432 nst2

6434

6436

6438

6440

nst-1

Ida #2

jsr $a3fb

Ida #0

pha

jsr $ad9e

bit $0d

bmi nst2

jsr $b7a1

jsr $aefd

pla

txa

bne nst1

jmp $b248

dex

txa

pha

jsr $ad9e

jsr $b6a3

sta t3

pha

txa

pha

line ser#

6398 081

check stack space

default start char

evaluate expr

test type

skip if string

convto byte in .x

check for comma

substitute value

in .x for default

must be >0

illegal quantity

evaluate next expr

,set up string ptrs

;save str1 length

,push str1 length

push str1 addr

BO

IK

NK

JG

CB

NJ

IN

EN

EA

HA

NJ

OE

DF

BO

FL

MM

AB

AN

FB

NM

EN

GC

LB

JK

LC

FL

JH

EE

IK

BL

EE

PO

BJ

AD

Bl

JB

EN

OE

HP

GN

DM

MD

LB

NN

KH

AF

AG

OJ

NA

NO

AK

HD

AE

MB

PA

IA

6442

6444

6446

6448

6450

6452

6454

6456

6457

6458

6459

6460

6462

6464

6466

6468

6470

6472

6473

6474

6476

6478

6480

6482

6484

6486

6488

6490

6492

6494

6496 nst3

6498

6500

6502

6504

6506

6508 nst4

6510

6512

6514 nst5

6516

6518

6520

6522

6524

6526

6528

6530

6532 nst6

6534

6536 nst7

6538

6540

6542

6544

6546;

tya

pha

Ida t3

jsr $b47d

jsr $79

jsr $aefd

jsr $ad9e

jsr $b6a3

tax

beq nst6

sta t4

jsr $79

jsr $aef7

pla

sta $25

pla

sta $24

pla

beq nst6

sta t3

pla

sta t2

sta t5

Ida t3

cmpt2

beq nst6

bcc nst6

sbc t4

bcc nst6

sta t6

clc

Ida $24

adc t5

sta $24

bcc nst4

me $25

Idy #1

sty t5

dey

Ida ($24),y

cmp ($22),y

bne nst7

iny

cpy t4

bne nst5

Idy t2

my

.byte$2c

Idy #0

jmp $b3a2

Ida t2

cmpt6

bcs nst6

inc t2

bne nst3

;lower b-o-s ptr

;retrieve separator

;must be comma

;evaluate next expr

;set up string ptrs

;str2 null

;check right paren

; retrieve str1 addr

; store at $24/25

;str1 null

;save str1 length

;save start pos'n

;init result

;start pos'n must

; be within str1

;str1 cannot be

; shorter than str2

;save # of loops

;advance pointer to

; str1, reflecting

; start position

;bumpstr1 ptr by 1

; at nst3 next time

'indpy into <^tr1, IJ H~JG/\ IJ I L_/ oil I

;get a character

;branch if no match

; with str2

;bump index

;branch if more

; chars to test

;get result

; * bit' instruction

;search failed

;resulttofac#1

;quit if no more

; positions to

; search from

;bump result

;try again

The Transactor 24 Volume 6, Issue O3

EM

FH

DH

HH

PH

JH

NJ

AH

EF

NH

ID

PH

MD

MC

AF

OE

LP

EA

IP

KP

HP

JC

MB

BP

MH

NH

PO

PL

AJ

IC

AA

LC
A d
Ar

FP

PP

GB

JN

LN

PL

Jl

NN

EL

DK

HE

Jl

LH

IK

JC

CO

DJ

JM

IE

NP

EE

MF

JJ

KB

CA

CP

BM

DD

00

nvi

Prograrr

0 rem arcfunctions

1 :

2 rem 0 statements

3:

I 5: ARCFUNCTIONS

(c. kluepfel 3/85):

, 2 functions

4 rem keyword chars: 8

5:

6 rem keyword

7 rem f/asn(

8 rem f/acs(

9:

10 rem = = = -- = -- = =

11 :

615.

616.

1615

1616

6548

6550

6552

6554

6556

6558

6560

6562

6564

6566

6568

6570

6572

6574

6576

6578

6580

6582

6584

6586

6588

6590

6592

6594

6596

6598

6600

6602

6604

6606

6608

6610

6612

6614

6616

6618

6620

6622

6624

6626

6628

6630

6632

6634

6636

6638

bb40

routine

asin

acos

asc "asn": .byte$a8

asc "acs": .byte$a8

.word asin-1

.word acos-1

asin Ida

jsr

jsr

jsr

jsr

Ida

pha

Ida

sta

Ida

Idy

jsr

beq

bmi

Ida

sta

sta

Ida

Idy

jsr

beq

bmi

jmp

ash Ida

Idy

jsr

pla

sta

asi2 rts

asi3 pla

St3

Ida

beq

jsr

Ida

jsr

Idx

asi4 Ida

pha

dex

bpl

jsr

Ida

Idy

jsr

jsr

#2

$a3fb

$79

$aef4

$ad8d

$66

#0

$66

#<$b9bc

#>$b9bc

$bc5b

ash

asi3

#0

$65

$70

#<$b9bc

#>$b9bc

$bc5b

ash

asi3

$b248

#<$e2eO

#>$e2eO

$bba2

$66

$66

$61

asi2

$bdb

#3

$a3fb

#5

$61 ,x

asi4

$bc0c

flmult

#<$b9bc

#>$b9bc

$b850
CTK4*7 -i
J)DT/ 1

line ser#

6548 082

6670 083

;test stack depth

;reexamine byte

;eval, right paren

;check expr numeric

;push sign

;make it positive

;point to number 1

;compare with fac#1

;branch if equal

; or if fac is less

;clear low byte

; of mantissa

; and rounding byte

;repeat comparison

;ill quant if >1

;point to pi/2

;copy to fac#1

;restore sign

; and exit

;restoresign

;if argument isO,

; so is result

;round fac#1

;check stack space

;push fac#1

;copy fac to fac#2

;squarefac#1

;point to number 1

;calc 1-(fac#1)

;calc sqr(fac#1)

JD

||

PN

EN

PF

EB

DB

ON

MB

Ml

NM

BA

KM

Cl

EH

HA

LC

KG

Ml

GC

JD

CJ

BA

NC

IJ

KP

AB

AD

FL

IB

EK

AC
Pl-I
rn

AH
LJ II
n n

GO
11 |

JH

NJ

FC
hfl l_|

IVI n

HD

OHwi i

DP

KC

DA

HL

EB

JA

MC

HE

JC

FB

LB

MD

Cl

EO

LL

FO

PF

LF

OM

6642

664^

6646

6648

6650

6652

6654

6656

6658

6660

6662

6664

6666

6668

6670

6672

6674

6676

6678

Idx #0

asi5 pla

sta $69,x

inx

cpx #6

bne asi5

pha

Ida $61

beq ash

pla

Ida $61

jsr fldiv

jmp $e30e

acos jsr asin

Ida #<$e2eO

Idy #>$e2eO

jmp $b850

6680 flmult jsr condsg

6682

6684

6686

6688

6690

6692

6694

6696

6698

6700

6702

0 rem
-\ .
1 .

2 rem
Q ■
O .

4 rem
r-

5 :

6 rem

7 rem
Q •
O

9 rem

10 ■

jmp $ba2b

fldiv jsr condsg

jmp $bb12

condsg Ida $66

eor $6e

sta $6f

Ida $61

rts

;

;pull fac#2

;push sign again

;branch on

; zero result

;calcfac#2/fac#1

; perform atn

;perform asin

; point to pi/2

;calc pi/2 - fac#1

;multiply fac#1

; by fac#2

;dividefac#2

; by fac#1

;adjust sign

Program 6: PRINTAT

printat (s. erickson 3/85) :

1 statements, 0 functions

keyword characters: 6

keyword routine

s/print@ prinat

122 .asc "print" : ,byte$cO

1122

6704

6708

6710

6712

6714

6720

6722

6724

6726

6728

6730

6732

6734

6736

6738

6742

6744

.word prinat-1

prinat jsr $b79e

stx $14

cpx #$28

bcs prini

jsr $aefd

jsr $b79e

cpx #$19

bcs prini

Idy $14

jsr $fffO ;

jsr $79 ;

beq prin2 ;

jsr $aefd ;

jmp $aaa0 ;

prini jmp $b248 ;

orin2 rts

line ser#

6704 084

eval expr to .x

save (column #)

must be <40

check for comma

eval row to .x

must be <25

column to .y

kernal plot rtn

quit if no

string argument

else check comma

& print string

illegal quantity

The Transactor 25 Volume 6, Issue O3

BG

FH

MB

HH

HO

JH

MG

LH
on
DU

NH

OP

CM

BB

DL

FJ

KF

EK

OE

BO

JF

PH

BF

FG

NM

JL

HI

AE

PP

PH

LA

JA

BE

KL

ML

FH

CE

CN

FD

OE

KN

KM

PG

CJ

ML

KB

NK

PE

AG

MO

KP

FD

ON

AD

MG

IP

OC

HO

MD

GH

JJ

JD

LD

NF

Program 7: SOUND THINGS

0 rem sound things (f. vanzeist 3/85):

1 :

2 rem 28 statements, 4 functions

3:

4 rem keyword characters: 126

5:

6 rem keywords #085 to #116

7:
Q rorn
O I clll = =

9:

123 .asc "clesiDfreQpuwiDfifreQ"

124 .asc " adpuLadsaWadtrl"

125 .asc " nowaVnolpuL"

126 .asc "saWtrltesT"

127 .asc " rinGsynCgatE"

128 .asc " atTdeCsuS"

129 .asc " reLresoNvoLfilT"

130 .asc "trdofFtrdoNhP"

131 .asc "bPIP"

617.asc "potXpotY"

618 .asc "osc": ,byte$b3 ;asc

619.asc "env":.byte$b3

1123 .word clesi-1 ,frq-1 ,puwi-

1124 .word adwav-1,adwv1-1

1125 .word nuwv4-1 ,nuwav-1

1126 .word nuwv2-1 ,nuwv3-1

1127 .word wvbiti -1 ,wvbit2-1

("3") + $80

■1,fifre-1

,adwv2-1

,nuwv1-1

,wavbit-1

wvbit3-1

1128 .word asset-1 ,drset-1 ,ast1 -1

1129 .word drt1 -1 ,rvset-1 ,rvt1 -1 ,filt-1

1130 .word third-1 ,thrd1 -1 ,flset-1

1131 .word flt1-1 ,flt2-1

1617 .word pots-1 ,pts1-1

1618.wordpts2-1

1619.wordpts3-1

6746 getvoi jsr $b79e

6748 cpx #8

6750 bcs illqty

6752 stx voictr

6754 rts

6756;

6758getwrd jsr $aefd

6760 jsr $ad8a

6762 jsr $b7f7

6764 Ida #<direct

6766 sta sbyt3 +1

6768 Ida #>direct

6770 sta sbyt3 + 2

6772 rts

6774;

6776 lonyb jsr $aefd

6778 Inybi jsr $b79e

6780 cpx #$10

6782 bcs illqty

6784 rts

6786;

6788 hinyb jsr $aefd

6790hnyb1 jsr Inybi

6792 txa

6794 asl

6796 asl

6798 asl

6800 asl

6802 tax

get byte in .x

maximum 7 for

voice parameter

check comma

get two bytes

convert to int

address of direct

routine replaces

dummy in sbyti

subroutine

check comma

get byte in .x

;maximum value of

;one nybble is 15

;check comma

;get nybble

;convertto

;high nybble

Al

MA

JK

JP

AF

BG

IJ

PA

ME

CJ

OB

BN

PP

NE

CC

KD

OC

CK

OC

JN

JH

DL

DD

LK

OH

MD

CO

AE

KC

OC

ON

AK

DK

JA

PO

NL

DC

GD

MD

Fl

HH

OE

PJ

HK

IN

EG

CA

ID

CJ

LI

EO

AH

KF

MB

BF

DE

PL

PK

EP

Al

DE

DO

CB

IF

Kl

6804

6806;

6808 getbit

6810 gbiti

6812

6814

6816

6818 gbit2

6820

6822

6824 ;

6826 direct

6828

6830

6832

6834

6836

6838

6840;

6842 bitnyb

6844

6846

6848

6850

6852

6854;

6856 illqty

6858;

6860 sidbyt

6862

6864

6866

6868 sbyti

6870

6872 sbyt2

6874

6876

6878 sbyt3

6880 sbyt4

6882

6884

6886

6888

6890

6892

6894;

6896 eormsk

6898

6900 emski

6902

6904

6906;

6908 clesi

6910

6912csid1

6914

6916

6918

6920

6922;

6924 frq

6926

6928

6930

6932;

rts

jsr

jsr

cpx

bne

stx

cpx

bcs

rts

Ida

sta

sia

Ida

sta

sta

rts

Ida

and

ora

sta

sta

rts

jmp

Ida

sta

Ida

sta

sty

Idx

Isr

bcc

Idy

jsr

Ida

clc

adc

sta

dex

bne

rts

txa

eor

stx

sta

rts

Idy

Ida

sta

sta

dey

bpl

rts

jsr

jsr

Idy

jmp

$aefd

$b79e

#0

gbit2

newval

#2

illqty

$14

imsid,y

$d400,y

$15

imsid +1 ,y

$d401,y

imsid,y

prtect

newval

imsid,y

$d400,y

$b248

#<bitnyb

sbyt3 +1

#>bitnyb

sbyt3 + 2

voindx

#3

voictr

sbyt4

voindx

$0000

voindx

#7

voindx

sbyt2

#$ff

newval

prtect

#$19

#0

imsid,y

$d400,y

csidi

getvoi

getwrd

#0

sbyti

;check comma

;get byte in .x

;must be 1 or 0

;if .x is 0 then

;clear newval

;direct pokes a

;two byte number

;for frequency,

;pulsewidth and

;filter cutoff

frequency

;set and clear

;bit in sid

;and imsid

; registers

depending on

; newval

;ill quant error

;set up to

;enter parameters.

;put bitnyb instead

;of dummy

;reg offset

;loop counter

;check voice

;don't change voice

;get reg. offset

;direct or bitnyb

;add 7 to register

; offset for next

;voice

;do another voice

;.ais#$ff

complement of ,x

;clears sid chip

;and its image

; frequency

;get voice(s) and

frequency, reg 0

;enter frequency

The Transactor 26 Volume 6, Issue O3

BG

NO

PH

JE

GM

OP

IB

KJ

EL

EL

BH

DD

HC

NG

OA

HJ

FK

BH

ME

10

FH

GF

IL

CB

BC

AF

FC

IB

KL

FL

IM

HK

BD

II

FD

NP

JD

FM

ND

OB

BO

ON

PM

ND

IF

BM

10

MM

BF

ME

FF

ML

JF

ED

KH

FF

AE

LN

GN

CA

CC

LG

CM

LD

HG

6934 puwi

6936

6938

6940

6942

6944

6946

6948;

6950 fifre

6952

6954

6956 ffrei

6958

6960

6962

6964

6966

6968 ffre2

6970

6972

6974

6976

6978;

6980 adwav

6982

6984 adwvi

6986

6988 adwv2

6990

6992

6994;

6996 nuwav

6998

7000 nuwvi

7002

7004 nuwv2

7006

7008 nuwv3

7010

7012nuwv4

7014

7016;

7018 gowave

7020

7022

7024

7026;

7028 wavbit

7030

7032 wvbiti

7034

7036 wvbit2

7038

7040 wvbit3

7042

7044

7046

7048

7050

7052;

7054 asset

7056

7058 ast1

7060

7062

jsr

jsr

Ida

cmp

bcs

Idy

jmp

jsr

jsr

Idx

asl

rol

bcs

inx

cpx

bne

Isr

dex

bne

Idy

jmp

Idx

.byte

Idx

getvoi

getwrd

$15

#$10

illqty

#2

sbyti

$ad8a

$b7f7

#0

$14

$15

illqty

#5

ffrei

$14

ffre2

#$15

direct

#$40

$2c

#$20

.byte$2c

Idx

Ida

bne

Idx

.byte

Idx

.byte

Idx

#$10

#$7f

gowave

#$80

$2c

#$40

$2c

#$20

.byte$2c

Idx

.byte

Idx

Ida

jsr

jsr

Idy

jmp

Idx

.byte

Idx

.byte

Idx

.byte

Idx

jsr

jsr

jsr

Idy

jmp

Idy

.byte

Idy

sty

jsr

#$10

$2c

#0

#$0f

emski

getvoi

#4

sidbyt

#8

$2c

#4

$2c

#2

$2c

#1

eormsk

getvoi

getbit

#4

sidbyt

#5

$2c

#6

voindx

getvoi

; pulse width

;get voice(s) and

;pulse width

;maximum $Offf

; register 2

;enter pulse width

;cutoff frequency

;convto integer

; rotate 5 bits of

;lo byte into hi

;maximum $07ff

;another bit to go

put the 3 bits in

;lsb back in their

;proper position

;reg. 24 , filter

;cutoff frequency

;add pulse

;add sawtooth

;add triangle

protect whole reg

;except noise

;set noise

;set pulse

;set sawtooth

;set triangle

;clear waveform

;store values

;get voice(s)

register 4

; enter waveform

;test

;ring modulation

synchronization

;gate

;get voice(s)

;off or on

;enter parameter

; attack

;sustain

;for indexed addr.

;get voice(s)

GG

JF

AC

EB

JG

NH

Al

NE

JH

NO

EK

IL

DH

Dl

KC

BN

CH

PC

AA

LI

Bl

BB

GP

CM

OD

NC

EM

OM

Kl

OM

KE

AH

DL

ON

BF

PJ

EC

IF

CM

BM

FK

FM

II

GO

FO

DL

EK

MG

Kl

FN

MH

JN

PO

NN

PO

PC

NA

Al

HN

NB

JD

JC

OC

Ml

7064

7066

7068

7070;

7072 drset

7074

7076 drt1

7078

7080

7082

7084

7086 drt2

7088

7090

7092;

7094 rvset

7096

7098

7100

7102 rvt1

7104

7106

7108 rvt2

7110

7112;

7114 ft

7116

7118

7120

7122

7124;

7126 third

7128

7130 thrdi

7132

7134

7136

7138;

7140 flset

7142

714411

7146

7148 flt2

7150

7152

7154

7156

7158;

7160 pots

7162

7164 pts1

7166

7168 pts2

7170

7172 pts3

7174

7176

7178;

7180imsid

7182 newval

7184prtect

7186 voindx

7188voictr

7190;

jsr

Ida

bne

Idy

.byte

Idy

sty

jsr

jsr

Ida

jsr

Idy

jmp

jsr

Idy

Ida

bne

jsr

Idy

Ida

jsr

jmp

jsr

jsr

jsr

Idy

jmp

Idx

.byte

Idx

Ida

Idy

bne

Idx

hinyb

#$0f

drt2

#5

;$2c

#6

voindx

getvoi

lonyb

#$fO

emski

voindx

sidbyt

hnybi

#$17

#$0f

rvt2

Inybi

#$18

#$fO

emski

bitnyb

Inybi

eormsk

getbit

#$17

bitnyb

#$80

$2c

#0

#$7f

#$18

rvt2

#$40

.byte $2c

Idx

.byte

Idx

jsr

jsr

Idy

jmp

Idx

.byte

Idx

.byte

Idx

.byte

Idx

Idy

jmp

* = *

* = *

* = *

#$20

$2c

#$10

eormsk

gbiti

#$18

bitnyb

#0

$2c

#1

$2c

#2

$2c

#3

$d419,x

$b3a2

+ $19

+ 1

+ 1

+ 1

+ 1

;get att/sus value

protect decay &

;release nybble

;decay

; release

;for indexed addr.

;get voice(s)

;get dec/rel value

protect att/sus

;enter values

; resonance

;register 23

protect lo nybble

;volume

register 24

protect hi nybble

;enter values

;filter

;get off or on

; register 23

;enter values

;third voice off

;third voice on

protect low bits

register 24

;high pass filter

;band pass filter

;low pass filter

;skip check comma

register 24

;enter value

potx reg offset

poty reg offset

;osc3 reg offset

;env3 reg offset

;get value in reg.

;store to fac #1

The Transactor 27 Volume 6, Issue O3

The Atari 520ST

An Overview

Dave Gzik

Burlington, Ontario

; \

This overview should in no way convey any indication that The

Transactor is starting coverage of Atari computers. We fully

intend to remain a Commodore exclusive journal, at least for

the foreseeable future. Quite simply, we were interested in the

information presented here and thought you might be too.

M.Ed.

For the past year or so Apple has been making inroads into the

business market with a computer so easy to use, all you have to

do is point and click.

Well up to now they have had no competition to speak of

against the Macintosh computer. Atari offers the solution to the

people who dreamed of owning a Mac but were discouraged at

the hefty price tag attached to it.

Presenting. . . the Atari 520 ST! Comparable in every way to

the Mac except the price.

The following will give you some idea of the features the 520 ST

has to offer you.

Facts & Figures

The 520 ST computer is a GEM (Graphics Environment Man

ager) based 16/32 bit computer system that can facilitate many

requirements for business, education, home, and specialty

purposes.

The TOS operating system supports user interaction via a

mouse controller to perform operations. These operations are

shown on screen by ICONS which are graphic representations

of operating system functions. Drop down menus and windows

allow for easier identification of an operation to be selected.

The 520 ST is comprised of four systems which make up its

architecture. The four systems are:

graphics

subsystem

main

system

music

subsysten i

device

subsystem

Main System

The 520 ST computer is based on the Motorola 8 MHz 16 bit

data/24 bit address microprocessor unit with an internal 32 bit

architecture. This processor features eight 32 bit data registers,

nine 32 bit address registers, a 16 megabyte direct addressing

range, 14 addressing modes, memory mapped I/O (input/

output), five data types, and a 56 mnemonic instruction set.

The Transactor 28 Volume 6, Issue O3

The main system contains 16 Kbytes of internal ROM (Read

Only Memory) that contains the boot program for the operating

system. The unit can accommodate an additional 128 Kbytes of

ROM in cartridge form.

There are 512 Kbytes of RAM (Random Access Memory) on

board and available on power up.

The main system also supports a direct memory access port

that allows data transmission at a rate of 1.33 megabytes/

second. This port will also serve as the Hard Disk interface.

Graphics Subsystem

The graphics subsystem of the ST possesses three modes of

video configuration: 320 by 200 resolution with 4 planes, 640

by 200 resolution with 2 planes, and 640 by 400 resolution with

1 plane, (a plane represents the square number of colour

palettes available) A sixteen word colour lookup palette is

provided with nine bits of colour per entry. The sixteen colour

palette registers contain three bits of red, green, and blue

aligned on low nibble boundaries. Eight levels of red, green,

and blue provide 512 maximum possible colours.

In low resolution 4 plane mode, all 16 palette colours are

available, while in medium resolution 2 plane mode only the

first four palette entries are accessible. In high resolution 1

plane mode the colour palette is bypassed altogether and is

provided with an inverter for inverse video. Either the bit is on

(white) or off (black).

The video display area uses 32 Kbytes that is mapped directly

into RAM and has an identical bit, byte, and word relationship

with the physical screen display.

Music Subsystem

The Atari ST Programmable Sound Generator (PSG) produces

music synthesis, sound effects, and audio feedback. With an

applied clock input of 2 MHz, this system is capable of produc

ing frequency response from 30 Hz to 125 KHz. The sound

system supports 3 voices with programmable envelope genera

tor registers. The PSG three sound channel output is mixed

together and sent out in a non amplified signal that can be

received by a television, monitor speaker, or other amplifier

devices. (The PSG has built-in digital to analog converters).

The Musical Instrument Digital Interface (MIDI) ports allow the

ST to integrate with music synthesizers, sequencers, drum

boxes, and other devices that support the MIDI interface. High

speed (31.25 Kbaud) serial communications of keyboard and

program information is provided by two ports, MIDI OUT and

MIDI IN.

The MIDI bus permits up to a maximum of 16 channels in one

of three addressing modes. OMNI mode allows all units ad

dressed at once, POLY mode allows each unit addressed indi

vidually, and MONO which allows each unit voice addressed

individually. MIDI information is communicated by five types

of data along five data lines.

Device Subsystem

The device subsystem provides access to the ST via an intelli

gent keyboard (separate microprocessor controlled), and a two

button mouse controller. The available ports for Input/Output

on the ST are:

• 2 'D' style controller ports

• MIDI IN / MIDI OUT

• RGB/Monochrome monitor signal output

• Centronics Parallel

• RS-232 Serial

• Floppy Disk Serial

• Direct Memory Access/Hard Disk interface

• Direct Memory Expansion (ROM)

The monitor display port provides signal lines for either low

resolution RGB, medium resolution RGB, or high resolution

monochrome output.

A Standard Centronics Parallel port provides the ability to

interface any compatible device directly to the ST without

conversion interfaces. The ST RS-232 interface provides volt

age level synchronous or asynchronous serial communication.

The five standard RS-232C handshake control signals are

supported allowing any compatible device to be connected

without conversion interfaces. The ST RS-232 can support data

transfer rates from 50 baud to 19.2 Kbaud.

The floppy disk port is setup to support ATARI three and half

inch disk drives. Communication is achieved in a serial fashion

through an Atari designed serial interface cable. The Hard Disk

port supports a dual function. This port allows direct memory

access (DMA) at 1.33 Mbytes/second. The communication

method is parallel with a high speed throughput. Both disk

ports contain on board controllers for their respective compo

nents.

The expansion port allows adding an additional 128 Kbytes of

ROM. This cartridge based ROM can be utilized for application

software, plug in languages, or as additional operating system

information.

Well, that should be enough to digest for now. The newest Atari

is the 520 ST available to consumers at a price that is one third

that of the Mac. The 520 ST is packaged with a three and half

inch microfloppy drive and a twelve-inch monochrome high

resolution monitor. Also part of the package is the mouse

controller, LOGO, BASIC, and the TOS operating system disk.

The Transactor 29 Volume 6, Issue O3

Doing Away With Drama
Chris Zamara, Technical Editor

The second-rate actor staggers across the stage in his big death

scene, gesticulating and gasping while taking out every obsta

cle in his path. This melodramatic spectacle is such a cliche

that the only time you'll ever see it on stage or screen is

probably as a parody. Why, then, is the computer-equivalent

scene being played by almost every commercial software

package on the market?

When you try to exit a program and go back to good ol' BASIC,

why must you be subjected to colour flashes, cleared screens,

and a cold restart? That's what you'll get with most word-

processors, games, etc, providing they even have some means

of exiting. Many don't. Turning a computer OFF then ON again

just to try out something in BASIC or load in a new program (or

to escape from the depths of some relentless mode!) is just a bit

too vulgar to take. Like the over-achieving actor knocking

down stage props, both of these escape options also tend to kill

any data (or at least kill vital pointers) which have the misfor

tune of living in RAM at the time of program-abort. Due to the

snail-like haste of the 1541 drive and hence the memory-

intensive nature of most C-64 software, a cold start can leave

you very cold indeed.

By insisting on taking complete control of the machine and

cold-starting on exit, a program makes life much more difficult

for itself than it has to. A program in that position assumes a lot

of responsibility and becomes inadequate unless it gives the

user options for his every whim — display disk catalog, allow

sending of disk commands, provide a calculator or expression

evaluator mode, etc. Otherwise, you get the dying-of-thirst-

in-the-middle-of-the-ocean syndrome, sitting in front of your

perfectly good computer, but not being able to calculate any

thing mathematical because you happen to be running a word-

processor at the time.

I may be an incorrigible programmer at heart, but the only

packages that get much use on my system are ones that I wrote

myself, or ones written by other programmers, that don't give

me extra drama for the money. Consider the terminal program

for the 8032 that I use. It doesn't have a disk catalog function,

but I don't care, because when I select the "Exit to BASIC"

function, it simply says READY. That's it, no flashing, beeping,

memory-clearing, or leaving a trail of broken props before

exiting the stage. Now I can type CATALOG, do a calculation, or

just play around in BASIC direct mode until I type RUN again to

re-start the terminal program. I'm still connected with the host

computer, and no drama distracts me from the task at hand.

Give me a terminal program with a million extra features, and I

don't want it unless it gives me elegant, non-destructive entry

and exit. (While the argument that program exits must be

destructive for software protection reasons could be brought up

here, I think protection is even worse than memory-clearing.

But that's another editorial.)

Unfortunately, program exits aren't the only over-dramatized

event in software operation. Program entry or start-up is just as

bad. How do the programmers dare to assume how 1 like my

border, background, and character colours? I can set them up

perfectly well myself, thank you. Changing colours is forgivable

on some packages like games, but how about something like a

disk copy utility? Why should you have to re-set all your

colours after copying a few files just because some programmer

somewhere liked pink letters on a green screen? (Doesn't

matter, if he was like most programmers, the copy utility will

probably cold-start after it's finished anyway, treating you to

Commodore's wonderful blue-on-blue motif.)

You're probably saying to yourself, "Well what does this whin

ing idiot want, anyway? A computer can only run one program

at a time." Well, if you are, stop insulting me and I'll tell you.

Having dabbled outside of the world of Commodore, I've seen

some well-written (and expensive) packages running on IBM

PCs. Dbase II is a good example — an incredibly powerful

database management system with its own high-level lan

guage. You would expect such a system to completely take over

the PC, but on start-up, it doesn't even clear the screen. When

you bring it in (by simply typing "DBASE" from PC-DOS), the

prompt just comes back in about a second, and the only clue

that you're now in the Dbase command language instead of the

operating system is the appearance of the prompt; a period

instead of a greater-than. If Dbase ever falls short in the system

command department, eg. examining disk files, just type QUIT

and you get the PC-DOS prompt back. No files or data are lost,

everything is saved, and Dbase retains its composure as it dies,

much like an unwary victim succumbing to Mr. Spock's myste

rious Vulcan grip. You can even automatically invoke Dbase

from a batch file and exit again. The lack of drama here seems

stark, but ah, so elegant! And so powerful!

As a computer-idealist, I look forward to the day when I can

just call in programs one by one, flitting from terminal emulator

to word-processor without any jolts to my sense of elegance.

Programs which greedily change system parameters and vec

tors to the point where the only way back to normal is a cold

start have no place in my computer-utopia. Programs must

learn to live at peace with their environment as well as

themselves. Since a computer cold-start is the equivalent of a

nuclear holocaust on earth which wipes out all life, it's obvious

that most commercial software hasn't learned yet. Like the

melodramatic actor in his big scene, the dramatic program is

somewhat embarrassing and awkward, as well as being a

hindrance to the whole production. A change in direction is

obviously needed here; let's not put software authors in the

same company as bad actors.

The Transactor 3O Volume 6, Issue O3

C Power - A Users Review
Richard Evers, Editor

'C makes you work to learn, but rewards you generously.

C Power: It seems like a rather odd name for a software package. But if

you can get past the stigma of its odd calling card, you will have

discovered a friend for life. Written by Brian Hilchie, and distributed

by Pro-Line Software, C Power is a C Language Editor/Compiler

System for the Commodore 64. With that quick introduction out of the

way, a little bit of C trivia is in order.

The C Language seems to be getting alot of air play these days. Major

movies are programming their special effects in C (Star Wars, Star

Trek), major software developers are writing their code in C (Micro-

Soft, Visicorp), and simply put, it seems to the language of the future.

Most of the Universities have been bitten by the C bug, with Univer

sity and College students everywhere communicating in C. It's kind of

like Valley speak, with class.

C Power allows the Commodore 64 user to write and compile in C. A

simple statement to make, but not so simple when you get down to it.

Unlike so many languages, C's secrets do not magically unravel with

little effort. C makes you work to learn, but rewards you generously

when you succeed. The true power of C lies in its relative simplicity,

which seems to be anything but the truth at first glance. As time goes

by, your awkward attempts at writing in C will start to pan out. But

don't blame it entirely on the language. Learning a new language and

a new system all at the same time can be rather frustrating. Time and

perseverance seem to be the only way to conquer the first time blues.

The complete package as supplied by Pro-Line comes with one C

Power diskette, one users guide, and one terrific book, C Primer Plus.

The price for the package is $129.95 Canadian or $99.95 US.

The diskette supplied is a novelty. It is on the standard 1541/MSD

format, but the trick is that both sides are used. In total, about 173 files

are included on this disk. As stated in the users guide, only the

compiler is copy protected. Everything else can be copied, and should

be if you intend to actually use it.

When 1 first started writing this review, difficulties arose regarding the

users manual. In simple terms, it was awful. Although it did contain

some critical information deep within, it also had problems. Sections

were missing, references to wrong pages were in plenty, and the

presentation was poor. In despair, 1 called up Pro-Line and asked

them if a better manual had been written. It turns out that my copy of

the program was ancient (2 months). A new and improved 3rd

printing had been made of the manual, and a super improved version

of the program disk had also come about. Needless to say, my C Power

misgivings were laid to rest. C Power became worthy of a review.

Into The Unknown

The C Language, as stated earlier, will not welcome you with open

arms. More than likely it will try to ignore you and hope you

disappear. To get acceptance into the C club, some heavy duty reading

and computer bashing will be required. The book, C Primer Plus, as

supplied with the C Power package, is the ticket required to start to

understand C, if you have the perseverance. Within its 500 pages plus,

beginning to advanced concepts of programming in C are discussed.

The authors went out of their way to bring the reader up through the

ranks of C programming, in as short of time as possible. There is only

one problem with the book. It has been written with the UNIX

operating system in mind, with allowances for the MS DOS and CP/

M-86 environments. The Commodore 64 shares little with any of

these systems. It is simply not a UNIX type machine, therefore a few C

concepts covered in the book are not applicable to the Commodore

64. All non-applicable sections and operations are discussed briefly in

the C Power users guide.

Once you have stuck your nose in the C Primer for a short while, it

would be best if you actually tried out the C Power package. Before

doing so, read the users manual front to back. Unlike normal software

packages, it expects you to know what you are doing. In order for you

to generate true object of C code, you have to go through at least three

separate stages with the system. The first is the editor, similar to a

wordprocessor in the functions it performs. Once the editing work is

completed, ie. you have written your code, a syntax checker is

available for use. If your syntax is out in any way, this little beauty will

pick it up and let you know. A nice touch.

Once you are satisfied that everything will be just right, the compiler

lies in wait. As stated earlier, the compiler is the only program on disk

that is protected. This is rather unfortunate, but is also a fact of life to

live with as long as there are package pirates lurking about.

To continue, the compiler is a dream once you get it going. Even with

the limitations of the 1541, it's not too slow. Also, as it compiles, you

are able to see the source, pulling in the library routines as it goes

along. A pretty impressive treat.

Once the compilation is complete, one more stage is required before

you can call it executable object. You have to link all the code

together. This means that you have to place your code plus the

applicable library routines together to make one cohesive unit. The

linker makes this part quite simple. If you want to make your code run

in conjunction with the shell program supplied, the linker will take

care of it. If you want true object that will run independently, this can

also be arranged. Your code can be placed anywhere you want in

memory, or can execute at the start of Basic, along with an applicable

Basic line - SYS statement to get it going. It seems like quite a few

stages to go through for object, but it really is worth it. It is true 6502

object, not P code.

When writing in C using C Power, you will probably notice a strange

happening. The execution time of your code will vary depending on

how you write your source. The C compiler supplied is not an

optimizing compiler, therefore, if you do not plan your program

properly, redundant code will be the result. The only cure for this is to

become fluent in C, and the concepts behind it. Read the C Primer,

work with the system, and if your head is screwed on properly, good

clean code will be the result. Remember, becoming fluent in C could

open many doors in the future.

In Conclusion

In my opinion, the C Power system is a worthy investment. It may not

be as fun as Comal, or as widely known as Basic, but it has more

power than most realise. Due to this implementation of C by Brian

Hilche, the source that you write on your 64 could be adapted to

virtually any computer system supporting a C compiler, without major

problems. Although the Commodore 64 does not allow for a true

implementation of C, it's close enough to produce virtually transport

able source. Without further argument, C Power makes the grade.

The Transactor 31 Volume 6, Issue O3

COMMODORE 128 -

Keywords and Tokens

Jim Butterfield

Toronto, Ontario

When the Commodore 128 is in the "64" mode, it behaves exactly the

same as a 64 ... in a sense, it is a 64. But when you select "128" mode,

you have a new machine with much richer Basic. A good part of the

machine is still familiar from the world of 64 - things such as

POKE53281.0 still set the background color of the machine, for exam

ple. But Basic takes on a new, upward-compatible, set of keywords.

The average programmer may not care that keywords are changed into

single-byte "tokens". In other words, a keyword such as INPUT is stored

within the computer's memory as a numeric value of 133 - one byte

represents the whole word. When you say LIST, the token is unfolded so

that you see the original keyword.

The fact that each keyword has a specific token makes it convenient to

give the keywords as a list. But there's a more important question: that of

compatibility. If you have a program from a PET or a B-l 28 computer, it

may have the right keywords, but the wrong token. As an example: if

you use the command SCRATCH within a program on a PET 4.0

machine, the command will be stored (in memory or on a disk PRG file)

as a value of 217 (hexadecimal D9). If you should load this program into

the Commodore 128, the token comes in unchanged ... but in the new

machine, 217 stands for the keyword TROFF (trace off). The keyword

SCRATCH exists in the 128, but it has a token value of 242 (hex F2).

This means that you may take a perfectly good PET/CBM 4.0 program,

load it into the Commodore 128, and get nonsense. There are ways

around this problem, but the first step is to know it can happen, and

watch for it. By the way, this can't happen with programs being

transferred from the Commodore 64 to the 128, since there is "upward

compatibility". But if you go the other way, loading a 128 program which

uses advanced commands into the 64 (or into a 128 in 64 mode), you'll

see strange things in the program listing.

This keyword list allows me to comment briefly on the various keywords

as they appear. This isn't a complete manual, but may help you place the

new commands.

Key values are given in hexadecimal only. Advanced readers will notice

that "double byte" tokens are used; this, too, is new. The double byte -

the first byte always set to $FE or decimal 254 - also allows you to

implement your own keywords if you wish.

Fully 64 compatible:

80

81

82

33

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

A1

A2

A3

A4

A5

END

FOR

NEXT

DATA

INPUT*

INPUT

DIM

READ

LET

GOTO

RUN

IF

RESTORE

GOSUB

RETURN

REM

STOP

ON

WAIT

LOAD

SAVE

VERIFY

DEF

POKE

PRINT#

PRINT

CONT

LIST

CLR

CMD

SYS

OPEN

CLOSE

GET

NEW

TAB(

TO

FN

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

BO

B1

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

CO

C1

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

SPC(

THEN

NOT

STEP

+

-

*

/

(POWER)

AND

OR

>

=z

<

SGN

INT

ABS

USR

FRE

POS

SQR

RND

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STR$

VAL

ASC

CHR$

LEFTS

RIGHTS

MID$

GO

The Transactor 32 Volume 6, Issue O3

New functions:

CC

CD

CE

CE

CE

CE

CE

CE

CE

CE

CE

CF

DO

D1

D2

D3

D4

RGR()

RCLR()

02 POT

03 BUMP

04 PEN

05 RSPPOS

06 RSPRITE

- return graphics mode

- return color value

- return selected paddle value

- return sprite collision data

- return light pen coordinates

- return sprite speed & position

- return sprite characteristics

07 RSPCOLOR - return sprite multicolor values

08 XOR

09 RWINDOV\

0A POINTER

JOY()

RDOTO

DEC()

HEX$()

ERR$()

INSTR

New commands:

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

EO

E1

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

FO

F1

F2

F3

F4

ELSE

RESUME

TRAP

TRON

TROFF

SOUND

VOL

AUTO

PUDEF

GRAPHIC

PAINT

CHAR

BOX

CIRCLE

GSHAPE

SSHAPE

DRAW

LOCATE

COLOR

SCNCLR

SCALE

HELP

DO

LOOP

EXIT

DIRECTORY -

DSAVE

DLOAD

HEADER

SCRATCH

COLLECT -

COPY

- return exclusive OR

' - return size of window

- return address of variable

- return joystick status

- return values of pixel cursor

- return decimal value of hex string

- return hex string

- return error string

- return string match position

part of IF. . .

restart after TRAP

detect error

turn trace on

turn trace off

output a sound

set sound level

enable/disable auto line numbering

define PRINT USING symbols

set graphics mode

fill area with color

display characters

draw box

draw circle

display screen shape

save screen shape

draw dots and lines

place pixel cursor

define screen color

clear screen

adjust graphics scaling

highlight error statement

start a repeat block

end a repeat block

exit a repeat block

show disk directory

save to disk

load from disk

format or clear a disk

remove file from disk

disk block collect

copy disk file

F5

F6

F7

F8

F9

FA

RENAME

BACKUP

DELETE

RENUMBER -

KEY

MONITOR -

- change disk file name

- dual disk backup

- eliminate program lines

- renumber program lines

- show or redefine function keys

- go to machine language monitor

Language elements:

FB

FC

FD

USING

UNTIL

WHILE

New commands:

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

02

03

04

05

06

07

08

09

0A

0B

OC

0D

0E

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

IF

20

21

22

23

24

25

26

BANK

FILTER

PLAY

TEMPO

MOVSPR

SPRITE

-part of PRINT USING

part of LOOP

- part of DO

- set memory bank

- define sound filter

- play musical sequence

- define music speed

- position, move sprite

- manipulate sprite data

SPRCOLOR - adjust sprite multicolors

RREG - assign sys registers to Basic variable

ENVELOPE - define instrurr

SLEEP

CATALOG

DOPEN

APPEND

DCLOSE

BSAVE

BLOAD

RECORD

CONCAT

DVERIFY

DCLEAR

SPRSAV

- pause for specified time

- show directory

- disk file open

- add to file

- disk file close

- binary save

- binary load

- position relative file

- combine two data files

- disk verify

- clear all disk files

- store sprite string

COLLISION - sprite collision handler

BEGIN

BEND

WINDOW

BOOT

WIDTH

SPRDEF

QUIT

STASH

FETCH

SWAP

OFF

FAST

SLOW

- start program block

- end program block

- define screen window

- load & run file

- set graphic line width

- enter sprite definition mode

- not implemented

- save to DRAM

not used

- get data from DRAM

not used

- exchange with DRAM

- not implemented

- run at 2mhz (80 col only)

- run at 1mhz

The Transactor 33 Volume 6, Issue O3

From Apple To

Commodore And Back

Robert Adler

Montreal, Quebec

If you are like the many other computer owners who have

mastered or at least de-mystified the BASIC which was in

cluded in your machine, then perhaps you would like to add a

little more challenge to your BASIC programming.

If you are a Commodore owner, then BASIC 2.0 is what you are

familiar with. In the past, you may have passed up good

programs in a magazine or book that did not specialize in the

computer which you use. You therefore probably missed out

on some very interesting programs. No longer will you have to

pass up those programs which were written for the computer

which possesses the friendly name of the Apple.

The scope of this article does not include delving into compli

cated matters which may require special techniques, com

mands or Machine Language. Even so, we will accomplish a

great deal with BASIC 2.0, better known as the BASIC of the

Commodore 64, Vic-20, and PET computers.

The first BASIC which was ever written for a microcomputer

was Altair BASIC. It was written by Microsoft founder, Bill

Gates. It was actually the first piece of commercial software ever

written for a personal computer. Out of that BASIC, which was

later named Microsoft BASIC, grew other versions. Every com

pany which put out a micro seemed to have its own version.

Two of these companies were Commodore and Apple. In 1977,

Commodore introduced the PET 2001 computer. It had a tiny

calculator type of keyboard, a nine-inch screen and a cassette

drive all built into one unit. It had 8k of Random Access

Memory (RAM), and a 16k BASIC in ROM. This was Commo

dore BASIC 1.0. The machine was later upgraded with an

external cassette recorder, and provisions were made to the

BASIC ROM to allow for connection of a disk drive. This was

known as BASIC 2.0.

When Commodore introduced the 8032 business computer

and the 4032 personal computer, they added commands to

their original BASIC. These new commands allowed easier

usage of their disk drives. This was BASIC 4.0. When Commo

dore tried to make the cheapest home computer they could

possibly make, they introduced the world to the VIC-20. With

the VIC-20, Commodore returned to BASIC 2.0.

In 1982, Commodore produced a computer which had almost

thirteen times the amount of memory as the VIC-20, more

advanced graphics and sound capabilities, but still the same

BASIC 2.0 as was on their original PET computer. This was, of

course, the Commodore 64.

Here we are today, left with almost the same BASIC as was used

nearly 10 years ago. Large advances in microcomputers have

happened since then. Apple computers started out with a very

plain BASIC, called Integer BASIC. It was then upgraded to

Applesoft BASIC. Applesoft had many new commands which

made it an extended BASIC.

Over the years, thousands of programs were written using

Applesoft BASIC. Many programs are still being written in this

powerful version of BASIC. Because there are so many similari

ties between the two versions of BASIC, only the differences

need to be discussed. For a complete listing of all of the

keywords, consult the appropriate user's manual.

We will start off with a simple command in Applesoft called

'HOME'. This command is used to clear the screen and move

the cursor to the top left corner of the screen. This is equivalent

to the Commodore BASIC statement:

The word HOME on the Apple may clear the screen but a

HOME (lowercase reverse 's') on Commodore computers, does

exactly what it says and no more; it puts the cursor in the home

position.

The next keyword is just as easy. It is the Applesoft 'HTAB(x)'

command where x is a number between 0 and 39. If you

remove the H and add a semicolon to the end, making it

TAB(x); you will have the equivalent in Commodore BASIC.

The next one is just a bit harder. It is the VTAB(x) command

where x is a number between 0 and 23 to specify the screen

line where the next printed line will go. This is replaced by

executing a PRINT statement like the following:

print'

The HOME character is followed by x number of CuRSoR down

characters to produce the equivalent result. Please take into

consideration that the Commodore 64 has 25 vertical lines and

the Apple has 24.

The Transactor 34 Volume 6, Issue O3

There is another way to make the VTAB conversion. The

second way is to use a subroutine such as this one:

4000 vt$= " ":d$= "Q"
4010 for cu = 1 tovt

4020 vt$ = vt$ + d$

4030 next

4040 print "@" ;vt$;
4050 vt = 0

4060 return

To use this routine, you simple set the variable VT to the

number within the brackets of the VTAB command, and GO-

SUB 4000. The next line printed will appear on the proper

vertically tabbed line. Please note that although your programs

will be easier to read this way, the routine works considerably

slower than the one liner discussed above.

Note: A faster way to implement VTAB:

4000 d$ =

4010 print left$(d$, vt);

4020 return

Another easy conversion is the Applesoft INVERSE command.

In Applesoft programs, all the text which is PRINTed to the

screen after an INVERSE command, is reversed until the BASIC

encounters a NORMAL command. In Commodore BASIC,

INVERSE is replaced by:

print "fl";

RVS is a special character achieved by simultaneously pressing

the CTRL (pronounced Control) key and the numeric key

marked 9 on the keyboard. To turn the reverse mode off,

NORMAL is used in Applesoft while PRINT" <OFF>"; is used

in BASIC 2.0. The word OFF refers to pressing the CTRL and

zero (0) keys together.

There is one statement that you will find in Applesoft which

looks the same but does not exactly act the same. To translate

the Applesoft GET A$ (read: get 'A' string where 'A' can be any

valid variable), you must not have any other statements on the

same line except for the following translation:

10geta$:ifa$= ""then 10

Of course the line number preceding the GET statement can be

any line, but the same line number should be used after the

keyword THEN. To get around having to always put this

statement on its own line, and more closely simulate the

Applesoft equivalent, use the following line instead:

poke 198,0: wait 198,1 :get a$

This one is a lot better although it will only work on the

Commodore 64 and VIC-20. The only thing that remains to be

different still from the Applesoft GET A$, is the cursor that

flashes while it waits for a keypress.

Using two POKEs, you can simulate a flashing cursor. Insert the

two POKEs between the GET A$ and the IF-THEN statement

as in this example:

10 get a$:poke 204,0:poke 207,0

20 if a$ = "" then 10

Possibly one of the easiest conversions would be the Applesoft

CLEAR command which resets all variable pointers among

other things. Take away the E and the A and you have the

BASIC 2.0 command CLR.

Those are about all the commands that can be easily translated.

There are other commands which are to follow in different

categories that can not as easily be translated. The first category

is graphic commands. The following list shows you what to

look for before you try converting an Applesoft graphic pro

gram.

color = /hcolor =

draw/xdraw

gr/hgr/hgr2

plot/xplot

hlin/vlin

scale = /rot =

shload

scrn/pdl

The commands listed above are used for high and low resolu

tion point plotting, line and shape table drawing. Commands

that are similar can be used on the C64/VIC 20 with graphic

command extension packages. The graphic screen on the

Apple is 280 by 192 in the HGR2 mode while the high

resolution screen on the C64 is 320 by 200. This similarity

makes it easy to use high resolution parameters from Applesoft

programs on the Commodore 64, once a graphic package is

acquired either commercially or from the public domain.

The function PDL(x) where x is a number between 1 and 3

returns a number between 1 and 255 depending on the

rotation of the paddle. To read the paddle on the Commodore

64 and get a result in the range of 0 to 255, use the following

formula:

11 = peek(54297):p2 = peek(54298)

The variable PI will show the results of paddle one in port one.

P2 will show the results of paddle two in port one.

If you encounter the Applesoft PDL(x) functions, you might also

find a series of peeks to test for a fire button. To test for a fire

button on the Commodore 64, use the following formulae:

f1 = peek(56320) and 16 : f2 = peek(56321) and 16

The Transactor 35 Volume 6, Issue O3

The variable Fl will return a zero when the fire button on

paddle one in port one is being pressed. F2 will return a zero

when the fire button on paddle two in port one is being

pressed. Each will return a four when no button is being

depressed.

The next set of commands are the special editing and error

trapping commands as shown in the following list.

trace/notrace

onerr/resume

del/pop

speed = /flash

The above commands can also be acquired by using an editing

utility program, but are for the most part, not needed. The

SPEED = and FLASH commands are keywords that just fancy

things up a bit, and can easily be simulated in plain Commo

dore BASIC.

Let's take a short look at each one. The SPEED = command is

usually used to slow down the speed of text output. At certain

speeds, it can make text output resemble the speed at which

300 baud modems communicate. To implement a similar

command on Commodore computers, we can use a very short

subroutine. The subroutine shown here will expect the string

variable TX$ to be equal to the text which you would like

output in a slower than normal speed:

5000 for x = 1 tolen(tx$)

5010 print mid$(tx$,x,1);

5020 for t = 1 to 333

5030 next t: next x

5040 return

After setting the TX$ variable to the text you want to print to the

screen, all that is needed is a GOSUB 5000 statement. The

output can be slowed down by increasing the delay loop in line

5020 and vice versa to speed it up.

To simulate the effects of the Applesoft command FLASH,

which prints text in alternating reverse and normal characters,

use the following subroutine:

6000rv$ = chr$(18):print

6010 print " <cursor up>" ;rv$;tx$

6020 if rv$ = chr$(18) then rv$ = chr$(146):goto 540

6030 if rv$ = chr$(146) then rv$ = chr$(18)

6040 for t = 1 to 333:next

6050 get k$:if k$ = "" then 3010

6060 return

The following set of commands deal with the internal workings

of the computer or with the Input/Output (I/O).

himem/lomem

in#/pr#

store/recall

call

The above commands can be simulated on Commodores but

will not maintain the same effect. HIMEM and LOMEM set high

memory and low memory just like some pokes to locations in

zero page such as 55-56 for setting the "highmem". IN# and

PR# are similar to the INPUT* and OPEN statements except for

the fact that a Commodore uses device numbers instead of slot

numbers.

For example, to list a program to the printer on an Apple

computer, you would type PR#1, assuming that the printer is in

slot number 1. Control would then be transferred to the printer.

Typing LIST would list the Apple program to the printer. To

give control to the printer on a Commodore system, the

following commands would have to be executed:

open 1,4:cmd 1:list

The one (1) may be substituted by any number from 1 to 255. A

number higher than 127 sends an extra line feed after each

carriage return. The four is the normal device number of the

printer.

STORE and RECALL are used for writing files containing arrays

to a cassette recorder. Storing files on disk or tape is not a hard

task for a Commodore. It is however done differently. Explain

ing how to save sequential, relative and program files could fill

up anywhere from a chapter to an entire book. For this reason,

you should consult the proper manuals for each computer.

The CALL statement is exactly the same as the BASIC 2.0 SYS

statement which calls up a Machine Language routine. If,

however, you encounter a CALL statement in an Applesoft

program, the program is using Machine Language which

means that the conversion would consist of working with the

Machine Language too. That is beyond the scope of this article.

Don't worry about those few commands that are not easily

translated because just knowing the ones discussed here will

be enough to translate hundreds of Applesoft programs. Revive

an Applesoft program today!

To use this subroutine, set TX$ to the text you would like

flashed, and use the command GOSUB 6000.

The Transactor 36 Volume 6, Issue O3

What is COMAL? Michael J. Erskine

San Angelo, TX

COMAL stands for COMmon Algorithmic Language. It is a

general purpose programming language conceived by two

Danes in 1973, Borge Christenson and Benedict Lofstedt. It

occurred to these gentlemen there existed a need for a high

level, highly structured programming language to introduce

non-structured thinkers to structured programming concepts.

Initially COMAL was a simple set of enhancements to BASIC,

similar to BASIC 4.0. In the 13 years since its inception the

language has evolved with the theory of structured program

ming. Today COMAL resembles BASIC in that COMAL retains

some statements COMmon to many Algorithmic Languages;

however COMAL is as different from BASIC as a Porsche is

from a Model-T Ford. There was also a time when the only

automobile one could own came in BASIC black and it was a

very nice automobile. Given the exponential rate of growth of

the hardware and software industries, is it really that hard to

accept the fact that BASIC has become an antique? Is a Porsche

a Model-T? Which would you most prefer to use for transporta

tion?

COMAL is not BASIC, but learning COMAL is easier than

learning BASIC, especially for a novice programmer. This is

because the language was designed by educators for students of

computer programming. Yes it is true that BASIC, among

others, was designed under similar circumstances; but BASIC

was designed before the surge toward structured programming.

Giving BASIC and PASCAL due credit COMAL has retained the

best features of both languages and has many new tricks of its

own thrown in. We build upon what we already know and add

to the store of knowledge through the creative process. This is

true in any science and any art.

COMAL is easy to learn even though there are over 100

commands, statements, functions and procedures available in

the Kernal definition. All these are machine independent. This

means a program written using these Kernal commands will

run on any computer running COMAL, just by typing it in!

Remember the word, "COMmon"? COMAL is now available for

the IBM PC series, in Europe. That's COMmon! Commodore

64's can also run COMAL in 2 versions, a disk loaded COMAL

0.14 and a cartridge COMAL 2.00, that's much more COMmon!

In addition to those 100 or so commands available in the

Kernal, the programmer can build PROCedures and FUNC-

tions which effectively re-define the language. For instance, if

you need a FUNCtion to figure the standard deviation of an

array containing a set of test scores you can write such a

FUNCtion and name it find'std'dev then call it using only its

name. The operating system will jump to that FUNCtion and

execute it (using the parameters you specify, if you wish) and

then return, unless that PROCedure or FUNCtion makes subse

quent calls, (more on COMAL names later) The cartridge

version also allows calling EXTERNAL PROCedures and

FUNCtions from disk, executing them, then continuing execu

tion of the running program which called them. Try that in

BASIC. GOSUB was not retained from BASIC, for obvious

reasons.

For all you C-64 owners who realize the incredible, however

often wasted, power of your VIC II and SID chips, the library of

graphics and sound FUNCtions and PROCedures available will

open a whole new world to you. There are 50 graphics "com

mands" such as GRAPHICSCREEN used to set hi-res or multi

color graphics and 49 others which control graphics and the

TURTLE. "Yes, dear I'm playing with the TURTLE again. I can't

help it, this LOGO EMULATOR is fascinating!". There are 32

sprite commands like IDENTIFY, DEFINE, SPRITEPOS (x,y)

and the biggie ANIMATE. There are 19 sound commands

allowing access to every possibility the SID chip can offer. They

make programming a tune as easy as copying sheet music!

There is a command for reading the joystick, and one for

reading paddles. There are 6 light-pen commands and 7

special font commands which allow definition of a special font

and placement of the font anywhere on any screen in any

mode. I've a listing of a program about 3k long which plays

music, uses 11 different sprites and draws with the TURTLE at

the same time. The music is flawless and the little man walks

across the screen exactly like a cartoon figure and the program

contains NO MACHINE LANGUAGE. COMAL is very fast! It is

so fast that I'd venture to suggest it may be possible for a clever

programmer to write a procedure which makes the SID chip

say "Hi, I'm SID and this is COMAL!" It may not be perfect but

I'll bet it's understandable. Sorry, the sound, lightpen, joystick

and paddle commands are only available in the cartridge

version.

For the particular programmer COMAL offers 4 loop Fstruc-

tures:

(1) LOOP, EXIT, ENDLOOP

(2) FOR, ENDFOR

(3) REPEAT, UNTIL and

(4) WHILE, ENDWHILE.

There are two very powerful decision structures:

(1) IF, THEN, ELIF(else if), ELSE, ENDIF and

(2) CASE OF (variable), WHEN, OTHERWISE, ENDCASE.

The Transactor 37 Volume 6, Issue O3

The language also has built-in error handling routines which

allow a programmer to TRAP an ERRor and REPORT it to the

user via the ERRTEXT$ (which is defined by the programmer).

The interactive programming facilities are the equal of, per

haps better than, any language on any computer anywhere.

You can PRINT AT (row.column), * USING or just plain PRINT.

When you're not PRINTing you might INPUT AT (row.column-

,number of characters) or place the CURSOR (row.column). If

you are inputting data from the screen you will be pleased to

find you are not able to leave the line or enter more data than

specified in the number of characters. PAGE will clear the

screen. KEYS will check to see if a key was pressed and INKEYS

will wait until a key is pressed. If you PRINT SPC$ (8) eight

spaces will be printed, but you can also PRINT TAB (8). TAB (8)

won't print the spaces but will move the cursor. You can also

set the ZONE 8 and use a comma outside of quotes to skip 8

spaces.

If you want to try your hand at writing a data base, you'll find

relative file handling greatly simplified when you CREATE ("a

relative file", number of records, record length). You might

need to APPEND sequential files or DELETE any file also, or

you may want to simply MERGE a couple of programs. COMAL

provides easy to use facilities for working with up to eight disk

units, dual or single. COMAL works with 1541 FLASH!(tm).

You say, "Well, that's all nice but what if I want to twiddle a bit

or two?". Where shall I begin? Commodore's Assembler/Editor

makes life much easier. After the code is written, just save it to

disk and LINK it to your program, then you can SAVE the

program and machine code to disk and they will both LOAD as

a single module in subsequent LOADs. You can write several

machine language routines and LINK them one at a time and

they will not overwrite each other. You can twiddle individual

bits with BITAND, BITOR, or BITXOR. COMAL can read and

write binary, hexadecimal and ASCII files, and you can use any

of the three types as constants in a program. It is possible to

write machine language routines as PACKAGES (this is how

graphics, sound, etc are included) and USE the package. There

are people out there right now writing new packages of com

mands. After USE a package can be DISCARDed. You can USE

more than one PACKAGE at once, subject to memory con

straints.

If you do use up all 30K of work space you can inform your

system that a PROC or FUNC is EXTERNAL and the operating

system will LOAD and EXECute the routine called then return

control to the main program carrying any changes or new data

along. If that's not enough for your special menu-driven

application, you can CHAIN a program from a running menu

program and after it has been RUN for you, you can CHAIN

back to the menu program.

The operating/programming environment is a real work of art.

It includes what can only be called a programmer's word

processor. The screen editor provides commands such as FIND

"any string" and CHANGE "any string", "to any other string".

There are 304 different error messages. Of those 30 are dy

namic. This means they will return messages such as "coun-

t:unknown variable", "wrong type of:lNPUT", "wrong type

of:READ",etc. In other words the error message contains the

name of the offending statement in many cases. The cursor is

generally placed on the offending item or near it also. The error

messages are non-destructive. After you have corrected the

offending section the message will disappear and the over

written characters will be placed back on the screen!

The function keys are completely programmable using the

DEFKEY function and they may programmed for use in direct

mode and program mode. They can be easily reprogrammed

from within a running program.

When in direct mode or while running a program you can use

the 13 CTRL key functions, including such goodies as a true

shades of grey graphics screen dump (CTRL D) and a text

screen dump (CTRL P).

There is one other thing you should know about COMAL.

There are some very serious programmers who are constantly

writing and placing in the public domain some very sophisti

cated programs. COMAL really is the replacement for BASIC,

LOGO and a few others. Take control of your C-64 get COMAL.

In the opinion of anyone I've ever spoken with who has written

in several languages and then tried COMAL, "COMAL does not

have a future, COMAL is the future!"

The Use Of Names in COMAL

I've been working in COMAL for about a year now. Happily, I

never had a lot of experience with BASIC and therefore I am

not having trouble with "BASIC thinking".

I don't presume to be a very good or experienced programmer

but I have seen enough programs to express certain feelings

about correct habits when programming in COMAL.

The idea behind COMAL is to be able to write programs which

describe the solution to the specific problem being solved and

reflect the logical procedures (steps) involved in that solution.

In the words of Mr. Christensen, "It is a fact not to be over

looked that programming languages are not only used to

control computing machinery, but also for COMMUNICATION

OF IDEAS." This is a very powerful and wonderful concept.

COMAL allows us to use up to 78 characters in a variable,

procedure or function name. If we are to communicate ideas we

must use words. The more descriptive and specific our names

the better the distant reader of our programs will understand

them. This is critical to his or her ability to use the program. A

COMAL program should be so descriptive when it is read that

The Transactor 38 Volume 6, Issue O3

no further documentation is necessary! Program flow is docu

mented by forced indentation (upon listing), calculations and

most tests should be isolated and identified by the use of

functions. Procedures should be used whenever a section of

code is used more than once.

The names used to describe these procedures, functions and

variables should be very descriptive. In a procedure which

names all the colors by assigning a numeric value to a name for

each color one should NOT assign variable names like bg: = 3

when he can say bluegreen: = 3. As a consequence of the above

naming we would have two possible statements to change the

PENCOLOR at some later time in the program, PENCOLOR(bg)

and PENCOLOR(bluegreen). Which would you rather have to

remember while you were writing the program? Which would

you rather read if I had written the program?

In the same line of logic why should I call a procedure to figure

the standard deviation of a set of test scores something like

"std'dev(tsO)" when I could call it with a statement like "fi-

gure'standard'deviation(test'scoresO)"?

The naming facilities available in COMAL are designed by the

authors of the language to support the already excellent names

of their statements and commands.

The effective COMAL programmer will carefully select the

names in order to describe the PROCedure, FUNCtion or

variable AND its use in the program.

He will also remember COMAL is NOT BASIC, not even

enhanced BASIC. COMAL is COMAL !!! It's just better than

anything else. Why try to describe a Porsche in terms of a

Model-T?

Cartridge COMAL 2.0

Library Descriptions

Library (page $80, $A59A-$BFF1):

A5C1 Sense routine

PACKAGE english:

A686 Init routine

PACKAGE dan.sk:

A68C Init routine

PACKAGE system:

CA2F Init routine

A80B PROC setprinter(str)

A96A PROC hardcopy(str)

A976 PROC setrecorddelay(int)

A97D PROC setpage(int)

A984 FUNC inkey

A9B6 FUNC free

A9C3 PROC keywords'in'upper'case(inl)

A9C6 PROC names'in'upper'case(int)

A9C9 PROC quote'mode(int)

A9E1 FUNC currow

A9E9 FUNC curcol

A9F6 PROC textcolors(int,int,int)

AA34 PROC defkey(int,str)

AA7F PROC showkeys

AB21 PROC bell(int)

AB2D PROC serial(int)

A7FF PROC settime(str)

A805 FUNC gettime

A878 PROC getscreen(REF str)

A87B PROC setscreen(REF str)

Library (page $83, $800F-$C000):

8081 Sense routine

PACKAGE graphics:

8CDC Init routine

95CB PROC window(real,real,real,real)

8F15 PROC viewport(int,int,int,int)

8CA3 PROC drawto(real,real)

8ADA PROC draw(real.real)

8B06 PROC plot(real.real)

8C7C PROC moveto(real,real)

8AE8 PROC move(real.real)

A62A PROC circle(real,real,real)

A64F PROC arc(real,real,real,real,real)

A564 PROC arcl(real.real)

A55B PROC arcr(real.real)

9426 PROC textstyle(int,int,int,int)

9157 PROC ploltext(real,real,str)

8D9B PROC pencolor(int)

8DBE PROC textcolor(int)

8FC3 FUNC getcolor(real.real)

A37B PROC fill(real,real)

A380 PROC paint(real.real)

9496 PROC background(int)

9483 PROC textbackground(int)

950B

95 IE

8E2A

90FC

A25D

A258

88FA

895E

A23B

A248

A20F

90A9

90D6

8CA3

904D

9094

903F

903C

901A

9017

9536

9542

954E

9576

9584

A8D7

AFD7

B027

ADF4

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

FUNC

FUNC

PROC

PROC

FUNC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

FUNC

PROC

PROC

PROC

border(int)

textborder(int)

graphicscreen(int)

textscreen

splitscreen

fullscreen

clearscreen

clear

showturtle

hideturtle

turtlesize(real)

xcor

ycor

setxy(real,real)

setheading(real)

heading

left(real)

right(real)

forward(real)

back(real)

penup

pendown

home

wrap

nowrap

inq(int)

savescreen(str)

loadscreen(slr)

printscreen(str.int)

PACKAGE turtle:

8CE2 Init routine

9017 PROC bk(real)

9496 PROC bg(inl)

88FA PROC cs

901A PROC fd(real)

A248 PROC ht

903F PROC lt(real)

8D9B PROC pc(int)

9542 PROC pd

9536 PROC pu

903C PROC rt(real)

904D PROC selh(real)

A23B PROC st

9483 PROC textbg(int)

95CB PROC window(real,real,real,real)

8F15 PROC viewport(int,int,int,int)

8CA3 PROC drawto(real.real)

8ADA PROC draw(real,real)

8B06 PROC plol(real,real)

8C7C PROC movelo(real,real)

8AE8 PROC move(real,real)

A62A PROC circle(real,real,real)

A64F PROC arc(real,real,real.real,real)

A564 PROC arcl(real,real)

A55B PROC arcr(real.real)

9426 PROC textstyle(int,int,int,int)

9157 PROC plottext(real,real,str)

8D9B

8DBE

8FC3

A37B

A380

9496

9483

950B

951E

8E2A

90FC

A25D

A258

88FA

895E

A23B

A248

A20F

90A9

90D6

8CA3

904D

9094

903F

903C

901A

9017

9536

9542

954E

9576

9584

A8D7

AFD7

B027

ADF4

PROC

PROC

FUNC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

FUNC

FUNC

PROC

PROC

FUNC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

FUNC

PROC

PROC

PROC

pencolor(int)

textcolor(int)

getcolor(real.real)

fill(real,real)

paint(real.real)

background(int)

lextbackground(inl)

border(int)

textborder(int)

graphicscreen(int)

textscreen

splitscreen

fullscreen

clearscreen

clear

showturtle

hideturtle

turtlesize(real)

xcor

ycor

setxy(real,rea!)

setheading(real)

heading

left(reai)
right(real)

forward(real)

back(real)

penup

pendown

home

wrap

nowrap

inq(int)

savescreen(str)

loadscreen(str)

printscreen(str.int)

PACKAGE sprites:

98B9 Init routine

9979 PROC define(int.str)

9B0D PROC identify(int,int)

99AC PROC spritecolor(int,int)

99BB PROC spritepos(int,int,int)

9A4A PROC spritesize(int,int,int)

9B46 PROC showsprite(int)

9B52 PROC hidesprite(int)

9A83 PROC spriteback(intjnt)

9A93 FUNC spritecollision(int.inl)

9A96 FUNC datacollision(int,int)

9ABF PROC priority(int,int)

AB54 PROC linkshape(inl)

AB5A PROC loadshape(int.str)

AB6E PROC saveshape(int.str)

9B6F PROC movesprite(int,int,int,int,int)

9A11 PROC stopsprite(int)

9DFC PROC animate(int,str)

9D13 FUNC moving(int)

9D1F PROC startsprites

9CEB FUNC spritex(int)

9CFF FUNC spritey(int)

9D3F FUNC spriteinq(int,inl)

9ECD PROC stampsprite(int)

PACKAGE font:

CA2F Init routine

ABD0 PROC linkfont

ABDF PROC loadfont(str)

AC49 PROC keepfont

ABF1 PROC savefont(str)

AC57 PROC getcharacter(int,int,REFstr)

AC87 PROC putcharacter(int,int,str)

PACKAGE sound:

B287 Init routine

B2FE PROC note(int.str)

B3DE PROC pulse(int,int)

B3FA PROC gate(int.int)

B412 PROC soundtype(intjnt)

B436 PROC ringmod(int,int)

B455 PROC sync(int,int)

B474 PROC adsr(int,inl,int,int,int)

B4AD PROC filterfreq(int)

B4CD PROC resonance(int)

B4E6 PROC filter(int,int,int,int)

B508 PROC filtertype(int,int,int,int)

B52C PROC volume(int)

B543 FUNC env3

B549 FUNC osc3

B54F FUNC frequency(str)

B55B PROC setscore(int,REF int(),REF

intO.REF int()

B59F PROC playscore(int,int,int)

B5CD PROC stopplay(int,int,int)

B5FC FUNC waitscore(int,int,int)

B2E3 PROC setfrequency(int.real)

PACKAGE paddles:

CA2F Init routine

B62C PROC paddle(int,REF real.REF

real,REF real,REF real)

PACKAGE joysticks:

CA2F Init routine

B6B9 PROC joystick(int,REF

real.REF real)

PACKAGE lightpen:

B77D Init routine

B7FA PROC offset(int.int)

B7D1 FUNC penon

B79B PROC readpen(REF real.REF

real.REF real)

B820 PROC timeon(int)

B82A PROC delay(int)

B80D PROC accuracy(int.int)

The Transactor 39 Volume 6, Issue O3

COMAL for the Commodore 64
Chris Zamara, Technical Editor

An Introduction to COMAL: Better than BASIC

This article is not a product review, but presents information

about a product which we feel is significant to the Commodore

community.

What is COMAL? If you're a COMAL fan and drive around with

an 'I speak COMAL' bumper sticker, sorry for starting off with

that question. But you see, COMAL isn't really all that well-

known in North America yet, and many people just aren't sure.

If you're one of the un-COMAL-ized, you may be delighted by

what you read here. This article answers the What about

COMAL and gives some programming examples just to give

you a flavour of the language. A complete COMAL program

ming tutorial is beyond the scope of this article, but we hope to

provide that kind of information in future articles.

COMAL (COMmon Algorithmic Language) is a programming

language originally developed in Denmark by Borge Christen-

sen, and is currently in widespread use throughout Europe. It is

estimated that there are 100,000 COMAL users worldwide. The

first version for Commodore machines ran on the PET/CBM,

and was a public domain program, distributed in Canada by

Commodore. The new C64 COMAL takes advantage of the 64's

graphics and has been expanded from the original PET ver

sion. You can get the C-64 COMAL 0.14 system from the

COMAL users group USA (see their address at the end of this

article) or make a copy from someone who has it. You are

encouraged to make copies of the COMAL system disk for

friends or club members, as long as no profits are made and

you copy the COMAL system disk unchanged.

COMAL has been described as a cross between BASIC and

Pascal, with the good points of both languages and the draw

backs of neither. COMAL is as easy to use as BASIC, requiring

little overhead to perform simple programs, but it has the

speed, control structures and parameter-passing capabilities

that BASIC lacks. It does have the powerful structures found in

Pascal, but is not as restrictive to the programmer and is simple

to use. As another bonus, it also contains the "turtle" graphics Programming in COMAL

commands from LOGO. If this article so far sounds like an

endorsement of the COMAL programming language, well so be

it. Read on about the language's capabilities and you'll be able

to judge for yourself.

There are two official versions of COMAL in widespread use

right now. Version 0.14 runs from disk, and will leave your 64

with about 10K of free memory once the language is loaded

into memory. (See the Article "Is 10K Enough?" elsewhere in

this issue.) The disk version keeps all error messages on disk to

save memory, so there is a slight delay before an error message

appears. The newest version of COMAL, called 2.00, comes on

a cartridge. The cartridge leaves about 30K of memory free for

user programs, runs about twice as fast, and error messages are

now fetched instantly. The cartridge also includes new features

and commands not found in version 0.14. The points pre

sented below will generally refer to both versions, with exclu

sive 2.00 features noted in the text.

COMAL is a cross between a compiler and interpreter, compil

ing each program line as it is entered. That means that you'll be

able to edit and run your programs in the same kind of

interactive environment that BASIC enjoys, but your programs

will run about 5 to 10 times faster. It also means that the

compiler looks at each program line right after you press

RETURN, so you're informed of any syntax errors immediately.

This prevents dumb errors from sneaking into an obscure part

of a program that will only be executed, of course, when you're

demonstrating it. If you enter a bad line, the computer beeps,

gives a VERY descriptive message, and positions the cursor at

the point the error occurred. Fixing the error or moving the

cursor to another line will cause the error message to go away

and leave the screen EXACTLY the way it was before, as if

nothing had ever happened. This is good for the ego, since the

computer is so willing to forget your errors and reward your

successes.

Many of the actual keywords and functions in COMAL are the

same as BASIC, so you won't be totally alienated the first time

you fire it up. You still get PEEK, POKE, CHR$, INT, and a lot of

The Transactor 4O Volume 6, Issue O3

other common functions. What makes COMAL better than

BASIC is the structure of the language itself. The best thing is

that you'll never need GOTOs again, and line numbers have no

significance outside of editing — HOORAY! You don't have to

worry about indenting your control structures properly, either;

COMAL does it for you. The structures available are listed

below:

IF(condition). . THEN. . .ELSE. . .ENDIF

WHILE(condition). . .ENDWHILE

REPEAT. . .UNTIL(condition)

CASE(expression). . .WHEN(conditions). . . OTHERWISE.

. .ENDCASE

FOR. . .ENDFOR (like FOR..NEXT in BASIC)

TRAP. . .HANDLER. . .ENDTRAP (error trap - only in

COMAL 2.00)

The above control structures are what gives COMAL a superior

operative environment to BASIC. You never have to use con

fusing branches to transfer control to different sections of code,

just use the control structures to create a conditional loop or

perform a series of instructions or procedures based on a

condition. Procedures (explained more later) are like super-

powerful subroutines, and let you break a problem into simple,

understandable modules. Any student of modern structured

programming techniques will appreciate COMAL's set-up, and

anyone used to Commodore BASIC will be amazed at how

much simpler it is to program with an up-to-date, powerful

language.

For. . .Next loops and assignment statements look different

from BASIC, but if you enter them in BASIC form, COMAL will

automatically convert for you! Version 2.00 will also show all

keywords in uppercase when you list the program, and user-

defined procedures, functions and variables in lowercase.

Besides the structures above, there are other major improve

ments that COMAL has over Commodore BASIC. For one, the

use of long variable names, up to 78 characters long. And all

characters are recognized, so 'ACCOUNTS_RECEIVABLE' and

'ACCOUNTS_RECEIVED' are two different variable names.

(The underscore is a valid variable name character in version

2.00 and is selected with the back-arrow key.) The other

important characteristic of COMAL is its use of procedures and

functions.

COMAL Procedures and Functions

When you define a procedure, it's like making your own

COMAL keyword, since you call that procedure by just using its

name, and passing as many parameters as that procedure

needs. For example, a COMAL procedure to draw a square of a

given size at a certain angle might look like this:

PROC square(size,angle)

setheading(angle)

FOR i: = 1 TO 4 DO

forward(size)

right(90)

ENDFOR i

ENDPROC square

Now, to draw a square 25 units large at a 45 degree angle, you

would just use the command:

EXEC square(25,45)

The EXEC statement is optional, so the statement could simply

be:

square(var1,var2)

Want a nice design? No problem:

FORn: = 1 to 50 DO

square(n*4,n*5)

ENDFORn

Once a procedure has been defined, you can use it from direct

mode as well as program mode. A procedure definition can be

placed anywhere in a program, and will not be executed unless

called; it can't be 'fallen into' like BASIC subroutines. By

building a program out of procedures, your code suddenly

becomes simpler to understand and easier to de-bug. Further

more, a procedure can be defined as 'CLOSED', meaning that

all variables defined within the procedure are local. With a

closed procedure, you can use any variable names you wish,

such as T, without caring whether it's been used elsewhere.

And in version 2.00, if you do wish to use a global variable

within a procedure you can bring it in via the IMPORT com

mand. And of course, you don't have to worry about what line

numbers a procedure uses — it's always called by name.

Procedures can be called from within other procedures, en

couraging a "top down" programming technique, where a

problem is broken into lower and lower levels of detail.

Since parameters are passed to a procedure as it is called, the

problem of having to set up variables before calling a subrou

tine (like in BASIC) is eliminated. Entire arrays can be passed to

a procedure, simply by including the array name in the param

eter list. Procedures are used just the same way that built-in

COMAL procedures are, making your subroutines into natural

extensions of the language. In COMAL 2.00, Procedures can

even be EXTERNAL, meaning that the procedure definition is

on disk, and is brought in when the program calls it. This

allows you to maintain a library of procedures on disk and use

them from any program.

A few other notes about procedures. A procedure can be

defined within another procedure, making it local (not execut

able from the main program or any other procedure). Another

The Transactor 41 Volume 6, Issue O3

capability of procedures is that they can be used recursively, i.e.

a procedure can call itself, using a new set of parameters each

time it does. Using recursion often produces a very elegant

solution to a seemingly difficult problem, for example drawing

a binary tree or evaluating an expression.

Besides procedures, you can define your own functions in

COMAL, which are used implicitly just like the BASIC functions

SIN or LEFTS. For example, you may want a function to round

any number to a given number of decimal places. Just define it

like this:

FUNC round(number,places)

mag: = 101 places

RETURN INT(number*mag + .5)/mag

ENDFUNC round

Once this function definition has been included somewhere in

your program (even at the end where it doesn't get executed),

you can use it just as you would a built-in function, as in these

examples:

amount: = round(cash,2)

PRINT" Time taken is approximately

minutes/60,1);" seconds."

answer: = round(answer, precision)

;round(

Functions, like procedures, may also be declared as CLOSED,

and can be used recursively.

Features of C64 COMAL

Besides just the standard COMAL commands, version 0.14 and

2.00 have a whole array of commands to handle graphics and

sprites. The cartridge version 2.00 is a complete implementa

tion of COMAL-80, the current standard, but also contains

extra commands in the way of packages, which can be invoked

with the command:

USE packagename

The concept of packages works well, since the standard

COMAL Kernel can be kept machine independent, and extra

machine-dependent commands — such as those involving

sound, graphics and sprites — can be added at will. That way,

you only have to bring in what you need, and not use unneces

sary processing time and memory. Some of the packages

available with the cartridge version are FONT, GRAPHICS,

JOYSTICK, LIGHTPEN, SOUND, SPRITES, SYSTEM and TUR

TLE. Each of these adds many powerful commands to the

language, and additional packages can be loaded from disk.

You can even create your own packages, customizing the

language to your own needs; any package currently in USE will

be saved along with your program.

Both COMAL versions contain "turtle" commands such as

those found in the language LOGO. Turtle commands, com

bined with the procedure-oriented nature of COMAL, provide

a very easy method to draw incredibly complex patterns on the

screen. You simply move around a "turtle" (which appears as a

triangle) by pointing him in the right direction and moving him

a number of units forward or backward. The main turtle

commands are: RIGHT and LEFT to turn the turtle a specified

number of degrees; FORWARD and BACKWARD to move the

turtle a specified number of units; PENUP and PENDOWN to

tell the turtle whether or not to draw as it moves; PENCOLOR

to select the drawing colour; and a host of other commands to

show or hide the turtle, change his size, move him to an

absolute position, find out his X and Y coordinates, fill in an

area with a specified colour, and others. There is also a

windowing capability to draw only within a pre-defined area or

to scale the drawing area. The cartridge also contains some

non-turtle graphics commands to draw arcs, circles, lines, and

to retrieve information about current graphics and turtle set

tings.

If you're used to drawing patterns with packages like Simon's

BASIC or other graphics utilities, turtle graphics are a real treat.

Forget about calculating X,Y coordinates using number-

crunching feats of math — just point the turtle in the direction

you want and let him go. As an example, Listing 1 shows a

COMAL procedure to draw an N-pointed star given its size and

the number of points the star has. (It works well with anything

but 6 points.) Note that the actual star-drawing takes place in

only 4 lines, which just repeats the sequence FORWARD(size);

RIGHT(angle) until all points are drawn. Try doing that with a

cartesian-oriented graphics package! Furthermore, this proce

dure will draw the star wherever the turtle happens to be at the

current time, so another procedure which was drawing some

thing else could just call STAR wherever a star was needed in

the picture. COMAL isn't just for drawing pictures, of course,

but graphic examples show the flexibility of the language, and

are certainly fun to write and run!

The COMAL cartridge includes commands to control sound,

sprites, character fonts, joysticks, paddles, and a lightpen. But it

is important to note that the COMAL system isn't just a different

language for your C-64, it is an entirely new environment,

replacing the 64's ROM set completely and turning the com

puter into a dedicated COMAL machine. The new environment

is familiar, but contains features which help when editing. For

one thing, the function keys are set up to generate oft-used

commands such as LIST, RUN, TEXTSCREEN, SPLITSCREEN,

FULLSCREEN, etc. (TEXTSCREEN and FULLSCREEN select

either text or hi-res screen displays. The SPLITSCREEN com

mand displays the hi-res graphics screen while setting a

window of five text lines at the top of the screen. This text

window can be positioned anywhere on the full text screen

with the cursor up/down keys.) The function keys can also be

re-defined as any string of text you wish. The cartridge pro

vides a slew of other key-driven functions via control-key

The Transactor 42 Volume 6, Issue O3

sequences. Pressing letter keys in conjunction with CTRL can

give you a printer dump of the current text screen, move the

cursor forward or back a word, erase to end of line, change

border/screen and text colours, among other things.

The programming environment is further strengthened by the

inclusion of FIND, CHANGE, AUTO, DEL, RENUM, and

TRACE commands. The DEL command, used to delete a range

of program lines, can also be used to delete an entire procedure

or function by name. Incidentally, LIST works the same way.

And the error messages are so descriptive and precise that it is

possible to learn the syntax of the language simply by typing in

random guesses and following the suggestions of the error

messages, which say things like: ': = ' or '(' expected, not

integer constant. (If you wish, COMAL will even speak to you

in Danish!) The overall programming environment is also

enhanced by dozens of other clever touches like a pleasant bell

sound when an error occurs, return from hi-res to text screen

when a program is STOPped, word-wrap on program lines,

and a smart INPUT statement which allows STOP key exits and
glitch-free data entry.

Another unique feature of the language is its ability to process

sound and sprite actions concurrently with program execution.

You can set up any number of sprite operations which will be

executed during the 60 cycle interrupts while the main COMAL

program is running. There is also the MOVESPRITE command

which simply tells the sprite where to move to and how fast,

then continues program execution while the sprite does its

thing. Likewise, music can be produced while a program is

running by setting up a musical score in arrays and using the

SETSCORE command. With its auto-animation capabilities,

COMAL gives a simple way to implement normally complex

operations.

COMAL's basic personality is a forgiving one, tolerating minor

syntax aberrations and fixing them up when the program is

listed. For example, to end a procedure, the ENDPROC com

mand is used, followed by the procedure's name. If you leave

off the procedure name, however, COMAL won't mind. The

first time you RUN the program, it will figure out the correct

name and put it in for you. The same goes for functions

(ENDFUNC) and FOR. . .ENDFOR loops. So to an extent,

COMAL documents your programs for you. Speaking of docu

menting, version 2.00 allows blank program lines to separate

sections of code — just enter a line number by itself.

Another of COMAL's strengths is file handling and disk access.

Programs can be stored and retrieved with LOAD and SAVE, or

in sequential ascii format with ENTER and LIST. By opening a

sequential file for input and using the SELECT command (in

version 2.00), you can have BATCH files — that is, commands

can be executed directly from a sequential disk file. Probably

the best thing about COMAL's disk handling is the fact that

random file access commands are built into the language, and

COMAL fixes a bug that the 1541 has in dealing with random

files.

COMAL has hundreds of features not found in BASIC, too

many to list in this article. Things like a built-in string search

command, no garbage collection delays, a PRINT USING com

mand for formatted output, a ZONE command to set up tab

fields, and dozens of little niceties that there isn't space to

mention. At this point though, perhaps you have an idea of the

scope and power of the COMAL system, and you can see why

many who use it turn into big COMAL fans. Like the ones with

the bumper stickers.

COMAL Resources

There are quite a few books on COMAL, both texts and

reference. There are also disks available from the COMAL

users group packed with programs. The disks are under $10.00

each and there are over 2000 programs on 40 disks available

by now. The COMAL users group USA publishes the magazine

COMAL Today, which is filled with news, programs, and little

tidbits about COMAL. A subscription to COMAL Today also

gives you discounts on books and club disks. If you're inter

ested in learning more about COMAL or wish to start using

your COMAL system, a list of good references appear at the end

of this article. Reviews of all of these books appeared in COMAL

Today #7. These publications, the COMAL 0.14 system, or the

cartridge are all available from The COMAL users group, USA.

Several packages including COMAL, books and programs are

also available. For more information, contact:

COMAL USERS GROUP, U.S.A., LIMITED

6041 Monona Drive

Madison, WI 53716

COMAL Book List

"COMAL From A to Z"

Borge Christensen

- A reference of all COMAL commands; 64 pages

"COMAL Workbook"

Gordon Shigley

- An exercise text for beginners; 69 pages

"COMAL Library of Functions and Procedures"

Kevin Quiggle

- Reference guide for the included disk; 71 pages

"COMAL 2.0 Packages"

Jesse Knight

- How to add your own ML packages to COMAL; 108 pages

"Beginning COMAL"

Borge Christensen

- Informal introduction to COMAL by its creator; 333 pages

The Transactor 43 Volume 6, Issue O3

"Captain Comal's Graphics Primer"

Mindy Skelton

- COMAL graphics and sprites for beginners; 84 pages

"Cartridge Graphics and Sound"

Captain Comal's Friends

- Tutorial and reference for 2.0 extra package commands; 64

pages

"Commodore 64 graphics with COMAL"

Len Lindsay

- Complete organized reference for COMAL graphics com

mands; 170 pages

"Foundations in Computer Studies with COMAL"

John Kelly

- Programming textbook using COMAL; 363 pages

"Captain Comal Gets Organized"

Len Lindsay

- Writing a disk management system in COMAL, disk included;

102 pages

"Structured Programming with COMAL"

Roy Atherton

- How to write structured COMAL programs; 266 pages

"Cartridge Tutorial Binder"

Frank Bason & Leo Hojsholt-Poulson

- A tutorial specifically for the C64 COMAL 2.0 cartridge; 320

pages

"The COMAL handbook"

Len Lindsay

- The COMAL reference source, giving syntax and sample

usage of all standard COMAL-80 commands

Listing 1: COMAL program to draw an N-pointed star

-note how COMAL indents the control struc

tures.

// " STAR" - this is a sample COMAL

// program to draw a star of any

// number of points.

// * transactor magazine 1985 -cz

USE graphics

USE turtle

splitscreen

PRINT ""147"",

size: = 100

LOOP

PRINT ""19"",

INPUT " number of points? ": points

clear

xstart: = INT(160-size/2)

ystart: = INT(100-size/2)

moveto(xstart,ystart)

pendown

star(size,points)

ENDLOOP

PROC star(size,points)

//** draw an N-pointed star **

//first calculate the angle to

//turn at each point

CASE (points MOD 4) OF

WHEN0

angvar: = points

WHEN 2

angvar: = points/2

OTHERWISE

angvar: = points*2

ENDCASE

angle: = 180-360/angvar

// now draw the star

setheading((180-angle)/2)

FOR i: = 1 TO points DO

forward(size)

right(angle)

ENDFORi

ENDPROC star

The Transactor Volume 6, Issue O3

Is 10K Enough? Steve Kortendick

Sun Prairie, Wisconsin

Using The COMAL 0.14 System On The C64

Though available in many different formats, the most popu

lar versions of COMAL are disk-loaded systems which reside

in user memory. These releases of the language occupy

space otherwise used by user programs. For example, a

Commodore 64 running BASIC powers up with the message

that there are about 38 kilobytes free, but when loaded with

the COMAL system confesses to have only about 10k of free

space remaining. This has been a source of consternation

for those expecting 64k on their Commodores. But the real

question is whether serious, sophisticated programs can be

run in a small amount of user space like the 10k available

with Commodore 64 COMAL.

1 will admit at the outset that there are indeed some applica

tions for which 10k is insufficient. It should come as little

surprise, in fact, that there are applications for which the

entire 64k of the Commodore 64 are to few, among them

predicting the weather and flying a space shuttle. But within

the domains for which we bought those machines, I have

never found an instance in which I would prefer 38k of

BASIC workspace over 10k of COMAL.

There's a certain elegance to doing a lot with a little.

Countless hours of mainframe use, with seemingly limitless

megabytes of "virtual memory", have not clouded the mem

ories of coming home to my PET, powering up, and seeing

COMMODORE BASIC

7167 BYTES FREE

proudly displayed on the screen. At the time, this was the

big 8k machine; they were still taking orders for the short

lived 4k model as well, with its "3071 BYTES FREE"

message. Though I dreamed of the day I could add another

8k chip to that early home computer, it was a needless lust;

seldom did the small memory size limit my activities with

that machine.

With many of your programs (for some of you, all of your

programs), the straightforward technique of simply storing

your entire program and all necessary data simultaneously

in the 10 free kilobytes will work quite well. Just compute

merrily onward, and forget that some people with other

applications might be having difficulty fitting everything

into their machines. The remainder of this article is not for

you.

First you can regain some free memory by "cleaning out"

your program's name table. COMAL keeps every variable,

procedure, and function name in a table. Once the name is

in the table, it stays there, even if the variable isn't used any

more. Misspelled names remain in the table as well, even if

they are corrected in the program. COMAL saves the name

table along with the program when you issue a SAVE

command. Thus the old name table is reloaded with each

LOAD. But, if you LIST the program to disk (LIST" NAME.L

"), issue a NEW command, and then ENTER it back again

(ENTER"NAME.L"), COMAL will rebuild the name table.

You should have more free memory now.

Another very simple and efficient way of regaining lost

space with COMAL is to hone down the size of your DIMs to

what you actually need. In the DIMensioning of strings,

COMAL reserves space in memory for the full number of

bytes requested. Thus "DIM ADDRESSS OF 1000" would

reserve the full 1000 bytes of memory (plus some for the

name and pointers) for the variable ADDRESSS, rendering

that space unusable by any other variable. Recall that

BASIC, in contrast, simply reserves a few bytes for the name

(AD$ is all it can keep) and pointers, then claims additional

speed as it is required. Though space is not wasted, the

disadvantages with BASIC'S technique are its speed

(COMAL is over 79 times as fast in some string manipula

tions), its need for garbage collection (sometimes requiring

several minutes to reclaim lost space), and its possibility of

The Transactor 45 Volume 6, Issue O3

run-time errors ("OUT OF MEMORY ERROR IN 1230").

Likewise, when DIMensioning arrays ("DIM RANGE(-5:5,

1:25)"), use only the indices needed; more will rob you of

potentially valuable space.

In BASIC, procedures (subroutines) are nameless creatures,

identified only by their chance line number, and cannot

receive parameters; functions are paltry one-line expres

sions identified by one letter and capable of handling only

one true parameter and no decision logic. Both are conse

quently difficult to use and are avoided by legions of BASIC

programmers. COMAL, in contrast, allows meaningful

names to be assigned, parameters (even arrays) to be

passed, and complex branching to be performed in both

procedures and functions. This eliminates the need for the

common variable reassignment necessary for most BASIC

subroutines (eg. XI =L: X2 = BR: T%=3: GOSUB 4250:

IM = X4: REM SET UP VARIABLES AND INTERPOLATE).

The use of procedures and functions not only eases the task

of programming and debugging while making your code

easier to read and understand, it also saves considerable

space by not requiring you to repeat blocks of similar code.

And the set-up required in BASIC is not needed in COMAL,

simply call the procedure or function with the variable you

need (eg. INTERMEDIATE := INTERPOLATE(LOW, HIGH,

ACCURACY)). And each procedure or function call takes

only one byte, plus the parameters. Long variable names

also take only one byte whenever used in a program,

regardless of how long the name is. And the future is even

brighter; the cartridge version of COMAL, in addition to

freeing far more of the machine's memory, will allow exter

nal procedures to be called in from disk as needed and

discarded from memory when they complete execution.

(The "future" is now here; the COMAL cartridge is available.

See the "All about COMAL" article in this issue - T.Ed)

Those of you who have been using COMAL for graphics

applications are aware that there is no comparison with

BASIC when considering the space required to use the 64's

graphics abilities. BASIC needs confusing, tedious, and

spacious strings of POKEs buried in FOR NEXT loops, while

COMAL is content with simple keywords like FORWARD,

LEFT, DRAWTO, and PLOT. Sprites, too, can be defined,

moved, manipulated, and detected with clear COMAL state

ments such as HIDESPRITE, PRIORITY, SPRITEPOS, etc.

Again, BASIC programmers are mired in a series of PEEKs

and POKEs, ideally peppered generously with copious RE-

Marks (and each COMAL keyword takes up only one byte

each time used). Plus COMAL has reserved space for your

graphics screens and sprite images right from the start.

BASIC does not, forcing you to allocate it from within your

program, losing about 4k. In addition, sound commands are

available on the COMAL cartridge, but you can write your

own sound procedures for the disk-based COMAL and easily

create music and sound effects. The best that can be hoped

for with BASIC is repeated code or a series of GOSUBs. The

use of all these features can save considerable memory over

an equivalent BASIC program.

Common structures in BASIC require a copious amount of

space. The decision structure, for example in this menu

option acceptance routine, is a series of:

IF(Q$ = " A" ORQ$ = " a" ORQ$ = " 1 ")THEN

GOSUB1000:GOTO999

IF(Q$ = " C" ORQ$ = " c" ORQ$ = " 2")THEN

GOSUB1200:GOTO999

IF(Q$ = " D" ORQ$ = " d" ORQ$ = " 3")THEN

GOSUB1450:GOTO999

ER = 3:GOSUB2280

COMAL, however, allows a simple CASE statement:

CASE RESPONSES OF

WHEN "A", "a", "1 "

ADD

WHEN "C", "c", "2"

CHANGE

WHEN "D", "d", "3"

DELETE

OTHERWISE

SIGNAL'ERROR(3)

ENDCASE

Besides being simple and non line-number oriented,

COMAL is able to save the programmer significant amounts

of space with such programming. In this example the

difference is a savings of 59 bytes; BASIC would require

55% more space. Other structures which save bytes by

eliminating hard-coded IF tests and subsequent complex

branching are the ELIF and ELSE options of IF, together

with WHILE and REPEAT UNTIL structures.

Other built-in features, if used properly, can also save bytes.

The random number generator will provide you with inte

gers within a specified range if you so desire, freeing you

from the steps of multiplying by a range, adding one, and

truncating (SHAKE: = RND(1,6) will assign the variable

SHAKE with an integer between 1 and 6 inclusive). The

ZONE command and PRINT USING will help you format a

screen or printed page with far less character counting (and

fuss) than the fixed zones found in BASIC. Another feature

which saves space by eliminating a couple of IF THEN

GOTOs on ST is the EOF system variable, which becomes

TRUE (1) at the end of sequential files. Coupled with the

UNTIL loop structure, it will save you not only space but also

heartache. COMAL has other similar features which make

programming not only compact but also quite straightfor

ward. Further, such techniques are so clear that programs

are easier to read without requiring nearly so much memory

The Transactor 46 Volume 6, Issue O3

for REMarks - though do not neglect to comment (//) even

your COMAL programs.

A technique I would recommend if you work with large

amounts of data is to design your programs such that not all

of the data are resident in the computer at any given time. A

mailing list, for example, would not exist in an array in the

machine, but would be on disk in a random access file. You

might keep the index (key) values, or at least their sequence,

in memory for faster access, however. Then you'd need only

one name and address resident at any given time; updates

can be done on an individual record basis. Another example

might be statistical calculations on large sample popula

tions. Thousands of values could be on the disk in a

sequential file, and you might read through them, summing

samples, squares, cross-products, etc., retaining only those

sums in memory. After a pass or two through the file, you'd

have everything you need for all kinds of statistical calcula

tions, yet very little need be kept in memory at once.

The time may come, despite all of the above-mentioned

techniques, that you'll find yourself hemmed in by the 10k

limit imposed by the disk-loaded version of COMAL. Are

you doomed to return to programming in BASIC? Not at all.

Your program and data size can be up to whatever you have

available on disk(s), at least 170k. This is accomplished

through a memory management technique known as over

lays. All that is required is that the currently executing

program prepare any data necessary for the next program,

then CHAIN the new program into the computer. This

eliminates the program that did the CHAINing, and passes

control of the system to the beginning of the new program.

For example, a program called COMPUTE'MEANS could

finish its task, and end up with a statement CHAIN

DO.DELTA.SQ" which would effectively LOAD the pro

gram DO.DELTA.SQ from disk and begin its execution.

This CHAINing technique is particularly easy to implement

in a menu-driven system with clearly distinguishable sub-

tasks. THe menu programs need only display a menu on the

screen and ask for a response through a GET or INPUT

statement. The rest of the program might then say

REPEAT

CASE RESPONSES OF

WHEN "I"

CHAIN "INPUT'ROUTINE"

WHEN "F"

CHAIN "FIX'DATA'ROUTINE"

WHEN"C"

CHAIN "SCRATCH'FILE"

OTHERWISE

INPUT " Enter I, F, C or S:": RESPONSES

ENDCASE

UNTIL RESPONSES IN "iFCS"

Each CHAINed program would end with CHAIN " MASTER-

•MENU"

There is a potential problem with this chaining technique: it

resets all user variables and DIM statements. At times this

makes communication between CHAINed programs some

what difficult. Three techniques are fairly easy to use.

The first is simply to find some unused bytes in a safe place

in memory (the home of an unused sprite is often handy)

and POKE the values necessary into this sequence of bytes.

This is quick and easy for small amounts of data, does not

change the screen, and causes no I/O delays.

The second technique is to use the screen. You can either

POKE to the screen as above, or you can PRINT to the

screen, using cursor controls for positioning if needed. If you

don't want the information seen, simply make your penco-

lor the same as the background color; the information will

be there, but will be hidden. The alternative, of course, is to

make the information seen, making sure you put things

where they'll look good. Here, getting the data back can be

quite interesting. Of course you still have the alternative of

PEEKing at what you want, but there's a far more enjoyable

way. You can OPEN the screen (device 3) as an input file,

then INPUT directly from the screen after positioning the

cursor. This input from the screen technique is explained in

the COMAL HANDBOOK, first edition, page 204 (UNIT) and

123 (OPEN), and in the first issue of COMAL TODAY

newsletter. What happens is that COMAL treats the screen

as a sequential file, with each line seen as a record. You

merely INPUT FILE from the screen, getting any informa

tion you need.

A third technique for passing data between CHAINed pro

grams is to use intermediate storage. The CHAINing pro

gram could OPEN a disk file, WRITE its parameters to that

file, CLOSE the file, then CHAIN the next program. The

CHAINed program, for its part, would DIMension whatever

were necessary, OPEN the parameter file, READ the param

eters, CLOSE the file, and perhaps even scratch (DELETE) it.

Then it would get down to business as usual. This method

has the least of the kludge in it, but requires some time-

consuming I/O. As always, there's a trade-off.

As I admitted in the beginning of this article, there are

applications for which 10k of user memory will be insuffi

cient. But several techniques have been presented which

should help you pare down the size of your programs, and,

if necessary, overlay them with others. Though there is

some cost involved in the careful planning and space-

conscious programming of a COMAL program, I find it far

more pleasant and far less time-consuming than program

ming in BASIC, despite the latter's 38k available.

The Transactor 47 Volume 6, Issue O3

GO LOGO GO Howard Strasberg

Don Mills, Ontario

Tried Logo? No? Break the ice with this.

NOTE: Although this article is written primarily for the Com

modore 64, Logo is very similar on most machines. Therefore

many of the things that are mentioned can also be used on

other computers.

Logo is a language that should scare no one. It really is quite

easy to use. It has a reputation for being so simple yet powerful,

that even very young children can draw interesting designs.

Logo is a great tool for graphics as compared to BASIC. Logo

allows fast and easy use of the hi-resolution screen. If you have

ever tried bit-mapping in BASIC, you will know what I mean. It

is a pain and it is slow. Try machine language and spend years

typing it in! Logo is the perfect solution! Logo is also quite a bit

friendlier than BASIC. If you do something wrong in BASIC, the

computer responds with a 7SYNTAX ERROR. I find that very

rude. Logo is different. In Logo, when you either accidentally or

purposely make a mistake, you get a THERE IS NO PROCE

DURE NAMED....

When you understand Logo, it is quite friendly. You see, Logo

uses what it calls procedures to do anything. A procedure

which comes with Logo, something that is already pro

grammed, is called a Logo Primitive. Something that you make,

let us say a program to draw a square, is called a Procedure.

And to RUN a Procedure in Logo, all you have to do is enter the

name of it. So, if you had a procedure to draw a square, and

called it SQUARE, then a square would be drawn by typing

SQUARE. And if you typed SQURE (instead of SQUARE), then

Logo would respond: THERE IS NO PROCEDURE NAMED

SQURE. I'll talk more about procedures later in this article.

Let us begin. As soon as you have loaded LOGO, type DRAW.

This tells Logo that you wish to have a fresh hi-res screen to

draw on. The screen will clear, there will be a cursor flashing

on the lower part of the screen and there will be a triangle in

the middle. This triangle is what we call the turtle. The turtle

does all of our drawing for us.

We want to move the turtle up. Only in Logo there is no such

thing. Instead, we use FORWARD. The command FORWARD

moves the turtle in the direction the turtle is pointing. It is very

important that you understand FORWARD and the difference

between it and "going up". Now, we cannot just say FOR

WARD. We need to say how many pixels forward. Type FOR

WARD 100. The turtle now should have moved 100 pixels

forward. The opposite function of FORWARD is BACK. Type

BACK 100. The turtle should now be in its home position

(center of screen). Another way of returning the turtle home is

the command HOME (Logo is so easy to grasp).

Now, if we are going to draw anything that looks half decent,

we must be able to move more than forward or back. Type

FORWARD 100. Now, we want to move 100 pixels to the right.

There is a command RIGHT. However, it does not move the

turtle right, it turns the turtle right. So, type RIGHT 90. This

turns the turtle right 90 degrees. You must understand that

RIGHT 90 rotates the turtle 90 degrees FROM THE DIRECTION

IT IS FACING. If the turtle is facing south, then RIGHT 90 will

make it face west. To actually SET the turtle's HEADING to 90

degrees (face east), type SETHEADING 90. Now that we have it

facing right, we can say FORWARD 100. Type RIGHT 90 again

and FORWARD 100 again. Try to complete the square.

We can also have the square on the other side, left of the

middle of the screen. To do this, substitute the RIGHT with

LEFT. Carry out the following commands:

FORWARD 100

LEFT 90

FORWARD 100

LEFT 90

FORWARD 100

LEFT 90

FORWARD 100

LEFT 90

Logo, being the powerful language that it is, can do this with

much less typing and much faster. It is kind of like a

FOR..NEXT loop in BASIC. We use the REPEAT command. The

format is:

REPEAT xx (procedure)

Where xx contains how many times to repeat whatever is

inside the square brackets. Type DRAW. Now, use REPEAT to

draw our LEFT square:

REPEAT 4 (FORWARD 100 LEFT 90)

The Transactor 43 Volume 6, Issue O3

Experiment now, making different sized squares, rectangles,

triangles and, for a challenge, circles.

There are some Logo commands which determine the specifics

of the pen (the instrument the turtle uses to draw). They are

also straight forward. If you want to move the turtle some

where, but not leave a line while it is going there, just enter

PENUP. Penup is like a printer with no ribbon pressing on the

paper. The turtle (pen) will move where you want without

making a line. To continue drawing, give the PENDOWN

command. PENERASE can only erase a line with the PEN-

DOWN. This is the turtle's ability to move somewhere and

erase anything it happens to go over. To do this, enter

PENERASE. To return to normal from this one, we must

change the turtle's colour back to 1 with PENCOLOR 1. As a

matter of fact, Logo's turtle can draw in 16 different colours,

numbered from 0-15. The following is a chart of the number

and its corresponding colour:

0

1

2

3

4

:')

6

7

black

white

red

cyan

purple

green

blue

yellow

8

9

10

11

12

13

H

15

orange

brown

It.red

grey 1

grey 2

It.green

It.blue

grey 3

Again to access these colours, type PENCOLOR x, where x is

the numerical value of the colour you wish. The colour of the

background where the turtle lives can be changed with BACK

GROUND x.

To get a better understanding of the PEN functions, enter the

following commands:

DRAW FORWARD 100

PENERASE BACK 100 PENCOLOR 1

LEFT 90 PENUP FORWARD 50

PENDOWN HOME

Press Fl. You now see all of the information you have entered

in the last few minutes. This is known as TEXTSCREEN, and

can also be accessed by that name. Experiment with F3-

SPLITSCREEN and F5-FULLSCREEN.

Before talking about the procedure topic which 1 touched on

earlier, I would like to bring your attention to short forms. Most

primitives in Logo do have an abbreviation. If the name of the

command is a compound word, then the short form is the first

letter of each of the two words (The short form for PENCOLOR

is PC). If it is not a compound word, then the abbreviation is the

first and last letter (The short form of FORWARD is FD). In some

cases, no short form exists, in which case you must type in the

whole word (I know what you are thinking - NOW he tells me

about short forms!!!) RT 90 is identical to RIGHT 90.

Now, about procedures. Let's make a procedure that draws a

square. We will brilliantly call it SQUARE. Type:

TO SQUARE

The screen will clear. (MISC NOTE: The editing system in Logo

is much different from that of BASIC. I do not intend to go into

the details of this editor. Try not to make a mistake. To find out

more about the editor, consult a reference book, have someone

teach you, or just experiment. Experimentation is the method I

used.) You are now ready to define a procedure. This proce

dure will be quite brief. We'll make our square slightly smaller

(80 instead of 100). Type:

REPEAT 4 (FD 80 LT 90)

That is it! Press CTRL-C and the procedure will be defined.

Now type DRAW. You will see the turtle. Type SQUARE. Voila! I

believe it is time for a design. Type:

REPEAT 36 (SQUARE RT 10)

This draws 36 squares, each 10 degrees apart. As you can see,

Logo is doing quite a lot of things, and quite easily too.

Remember earlier 1 challenged you to draw a circle? Here is

how. All you do is create a 360-sided figure and have the turtle

rotate 1 degree in between sides:

DRAW

REPEAT 360 (FD 1 RT1)

Logo also can STAMP a CHARacter on the screen, in case you

want your design to say something. Type:

DRAWSTAMPCHAR "L

and an L will be placed behind the turtle. However, in order to

get a clear view of our STAMPed CHARacter, we must HIDE the

TURTLE, which brings me to my next point. If at anytime you

want to draw without showing the turtle, simply type HIDE-

TURTLE, or HT. To bring it back to life, enter SHOWTURTLE,

or ST.

As you have undoubtedly noticed, Logo can accomplish a lot.

And everything it does is done logically and powerfully. Many

interesting and colourful shapes and designs can be drawn.

However, Logo is capable of doing much more than just

drawing. Logo can play music, do mathematics, handle sprites,

do amazing things with words, and much more. If you find

Logo interesting now, keep at it. You will find it demands your

attention, but also offers entertainment and excitement. Good

luck. . .

Editor's Note: / believe COMAL contains more LOGO type

commands than LOGO itself. If you want to try your hand at

LOGO, then COMAL is a good place to start.

The Transactor 49 Volume 6, Issue O3

Hidden Op-Codes Jim McLaughlin

Ottawa, Ontario

. . .For the record, all of the commands talked about in this

article behaved identically on my 6502 and on my 6510. . .

All computer users have experienced the problem of their

machine crashing due to the microprocessor's failure to under

stand certain commands.

In this article I will attempt to clarify what happens at the

machine level when a member of the MCS6500 microprocessor

(CPU) family encounters an unrecognizable command.

Some Microprocessor History

MOS Technology, one of the companies that manufactures the

MCS6500 family of microprocessors, claims that all of their

chips can execute 146 instructions, in 13 addressing modes. In

fact, the Commodore 64 Programmer's Reference Guide notes:

"COMMODORE SEMICONDUCTOR GROUP cannot assume

liability for the use of undefined OP CODES". Each instruction

is identified by an eight bit number, and if my math is correct,

that allows for 256 possibilities. What happens if the CPU is

requested to execute one of the remaining 110 codes, you ask?

Any number of things can happen, ranging from a "no opera

tion", to a "crash".

A look at a table of documented instructions will show that

there are no op-codes in the ranges x3, x7, xB, and xF. where

'x' is any hexadecimal digit. Right away, 64 of the 110 instruc

tions are found. Another curious fact is that there is only one

instruction in the x2 range. Again, another 15 instructions are

accounted for. Most, but not all of the tables will also list the

command ROR and its 5 addressing modes. Since this com

mand was omitted in 6502's built before 1977, software written

for the 6502 must account for the missing instruction. This

leaves 26 unrelated instructions spread throughout the rest of

the ranges.

Back to the make-up of the op-codes for a moment. The eight

bits (76543210) that make up the op-code are arranged in the

following manner. Bits 2, 3, and 4 are used to calculate the

addressing mode (see table 1). Bits 0 and 1, according to the

first two bits rule, are used to determine the type of instruction,

and surprisingly enough, are never both set to 1 in any of the

documented op-codes. Apparently when these bits are set at

11, the instructions for 10, and 01 are executed one after the

other, usually in that order. Generally this is the case for the x3,

x7, xB, and xF commands.

TABLE 1: Addressing Modes - Op-code = xxbbbxx

first b

0 not post-indexed

1 post-indexed

last two bb

00 (Ind.X)

01 Zero Page

10 Immediate/ Accumulator

00 (Ind),Y

01 Zero Page.X

lOAbsolute.Y

11 Absolute.X

In the new list of commands, one will find that there are 6 new

NOP's. Each takes up the same number of bytes and the same

time to execute as the original NOP. There are also "skip a

byte" and "skip a word" (a two byte number). The SKB

command takes up 2 bytes and the execution times range

between 2 and 4 clock cycles. The SKW command takes up 3

bytes and the execution time is 4 clock cycles.

If you expected that the times for execution of these commands

would be the sum of times of the individual commands, you

would be wrong most of the time. It turns out that most of the

time used by the CPU to complete an instruction is taken up by

its addressing of the data used. Hence the time for the two

instructions is not much more than that of one of the instruc

tions. (See table 2 for a list of op-codes, addressing modes and

timing values).

I found the CPU's execution times by employing a simple

routine that carried out the command about 14 million times.

This was compared to the time taken to execute a command

with a known number of clock cycles. Having set up standard

times, I was able to predict the timing of any, new or old. Later

testing showed that the loop could have been executed only

100,000 times and the commands would have still been pre

dictable.

One of the advantages to using these "new" commands is the

saving of much time and space. For example, if you wanted to

load the accumulator and the X-register with the same data,

such as in absolute addressing mode, in normal assembly

language it would be written something like this:

The Transactor 5O Volume 6, Issue O3

ad 01 08

aa

Ida $0801

tax

This short routine takes up 4 bytes and takes 6 clock cycles to

complete. However, if the same routine was written with the

"undefined op-codes", it would be written as follows,

AF 01 08 lax $0801

The number of bytes consumed is 3, and the execution time is

4 cycles, a saving of 1 byte and 2 cycles. In a substantial loop

the saving of the 2 cycles might cut execution time by one third.

Another value of the op-codes is that at this point, there are no

disassemblers that can handle them. This makes it very easy to

protect software since a pirate cannot make any sense of the

code even if he can view it in memory.

For example, consider the following program:

AF

OC

6F

01

00

16

01

00

01

lax $0101

skw

rra $0116

If this routine was disassembled with a normal disassembler, it

would result in:

AF

01 01

OC

00

00

6F

16

???

ora

???

brk

brk

???

asl

This would make a very strange looking program, but would

run without any trouble.

The problem of incompatiblility should also be considered. The

main reason why the new commands are not documented by

the manufacturer is that they may not be present in all chips.

Even if there is a command with the same number, they may

not execute in exactly the same way. When a new chip such as

the 6510 was introduced into the market, the whole internal

structure was changed. Consequently some of the new com

mands did not work in some situations. For the record, all of

the commands talked about in this article behaved identically

on my 6502 and on my 6510.

Some of the commands are so specialized that they are only

used in very rare circumstances.

As previously mentioned, there are 15 commands in the x2

range that are not officially documented. I have given 12 of

these commands the name "crash immediately", after the Z-

80's command "halt and catch fire" or "crash and burn". The

command CIM causes the chip to loop forever, or until halted.

The only explanation that has been brought forward is that all

the branch commands end with a 0 and that the x2 commands

are "near neighbours".

The second last group of undocumented op-codes lies in the

group of individual commands. In other words, there is only

one addressing mode for each of these commands. These

commands include ALR, ARR, MKA, MKX, OAL, and SAX. For

a complete description of these, see table 2.

The last few undocumented op-codes lie in the group I like to

call "the unknown" or the "peculiar". These are four com

mands that do not seem to perform the same way on two

different CPU's. The four bytes are 89, 9C, BB, and EB.

The 89 byte looks as if it should be STA Immediate, but that is

impossible. It does, in fact take up 2 bytes and 2 clock cycles.

The BB byte looks as if it might be OAL ABS.y, but it is not and

the only thing that can be said about it is that it takes up 3 bytes,

and I was never able to find out how many cycles it took.

The second last byte is 9B. This one is very strange, in that it is

the missing STA command. It now gives the programmer the

ability to store the accumulator to an absolute address, indexed

by the X-register.

The last peculiar byte to be accounted for is EB. Not much can

be said about this command either, other than it takes up 2

bytes of memory, and 2 clock cycles to execute. A little testing

has shown that the EB byte seems to act just like the command

AND,zero page. In side by side testing the two provided the

same answers. It is interesting to note that the original AND

takes 3 clock cycles, as opposed to the the new one which only

took 2.

I have taken great pains to make sure that all that is written

here is correct. However, the commands may work differently

on other machines. If you want to write any programs using the

new op-codes, I suggest that it be tested on several machines

before assuming that it is correct. Most of the commands

appear to be nearly universal in all MCS6500 family CPU's,

especially the ones in the x3, x7, xB, xF ranges. Remember, if

at first the new commands don't work, there is always the

documented commands on which to fall back.

Sources Consulted

1. Extra Instructions, Joel C. Shepherd, Compute!, Oct. 1983.

2. Programming the PET/CBM, Raeto Collin West.

The Transactor 51 Volume 6, Issue O3

Table 2: Commands, Modes And Timing Values

Legend:

A - accumulator

M - memory location

X.Y - registers

C - carry flag

+ - add

- - subtract

& -logical AND

V -logical OR

V - logical EOR

- - transfer to

$xx - zero page addressing

- add one cycle if crossing boundary

$xxxx - absolute addressing

Op-Code Operation

ALR LSR(A&M)^A

ARR ROR(A&M)^A

ASO (ASLM)VA^A

AXS A&X^A

DCM A - (DEC M)

INS A-(INC M)-C t A.C

LAX M-A.M-X

LSE (LSRM)VAvA

MKA A & #$04 -r A

Addressing

Mode

Immediate

Immediate

Absolute

Absolute.X

Absolute.Y

Zero page

Zero page.X

(Ind.X)

(lnd),Y

Immediate

Absolute

Zero page

Zero page.Y

(Ind.X)

(lnd),Y

Absolute

Absolute.X

Absolute.Y

Zero page

Zero page.X

(Ind.X)

(lnd),Y

^ Absolute

Absolute.X

Absolute.Y

Zero page

Zero page.X

(Ind.X)

(lnd),Y

Absolute

Absolute.Y

Zero page

Zero page.X

(Ind.X)

(lnd),Y

Absolute

Absolute.X

Absolute.Y

Zero page

Zero page.X

(Ind.X)

(Ind).Y

Absolute

Hex

Code

4B

6B

OF

1F

1B

07

17

03

13

OB

8F

87

97

83

93

CF

DF

DB

C7

D7

C3

D3

EF

FF

FB

E7

F7

E3

F3

AF

BF

A7

B7

A3

B3

4F

5F

5B

47

57

43

53

9F

Clock

Cycles

2

2

6

7*

7*

5

6

8

8

2

4

3

4

6

6

6

7*

7*

5

6

8

8

6

7*

7*

5

6

8

8

4

4

3

4

6

5

6

7*

7*

5

6

8

8

5

Flags

Affected

NZC

NZC

NZC

NZC

NZC

NZC

NZC

NZC

NZC

NZC

NC

NC

NC

NC

NC

NZC

NZC

NZC

NZC

NZC

NZC

NZC

NZCV

NZCV

NZCV

NZCV

NZCV

NZCV

NZCV

NZ

NZ

NZ

NZ

NZ

NZ

NZC

NZC

NZC

NZC

NZC

NZC

NZC

NZ

Op-Code Operation

MKX

OAL

RLA

RRA

SAX

XAA

X & #$04 -r A

(AV#$EE)&M) -

(ROLM)&A^

-A.X

A

(RORM) + A + C

vA.C

(A&X)-M-C t ;

(X & M) -r A

<

There are also

Command Hex

Code

NOP

3A

5A

7A

DA

FA

SKB

82

C2

E2

04

14

34

44

54

64

74

D4

F4

Addressing

Mode

Absolute

Immediate

Absolute

Absolute.X

Absolute.Y

Zero page

Zero page.X

(Ind.X) ~
(lnd),Y

Immediate

Absolute

Absolute.X

Absolute.Y

Zero page

Zero page.X

(Ind.X)

(lnd),Y

Immediate

Absolute.Y

Immediate

Hex

Code

9E

AB

2F

3F

3B

27

37

23

33

2B

6F

7F

7B

67

77

63

73

CB

9B-

8B

Clock

Cycle;

5

2

6

7*

7*

5

6

8

8

2

6

7*

7*

5

6

8

8

2

5

2

four implied commands.

Clock Command

Cycles

2

2

2

2

2

2

2

2

2

2

3

4

4

3

4

3

4

4

4

SKW

CIM

Hex

Code

OC

1C

3C

5C

7C

DC

FC

02

12

22

32

42

52

62

72

92

B2

D2

F2

Flags

> Affected

NZ

NZ

NZC

NZC

NZC

NZC

NZC

NZC

NZC

NZC

NZCV

NZCV

NZCV

NZCV

NZCV

NZCV

NZCV

NZCV

NZ

NZ

Clock

Cycles

4

4

4

4

4

4

4

-

-

-

-

-

-

-

-

-

-

-

The Transactor 52 Volume 6, Issue O3

A Comparison Of CPUs: The MOS 6502,

Motorola 6809, and Motorola 68000
Richard Evers, Editor

To enlighten your day, our chip comparison will be slightly

delayed in order that we may bring you a quick chip history

lesson as it applies to the world of Commodore. Our story

begins before MOS technology was formed, with the hero of

our tale being a very talented individual by the name of Chuck

Peddle. Back in the days of old, the name Peddle was synony

mous with Motorola. In particular, it was Chuck Peddle who

played a key role in the design of Motorola's first eight bit

processor, the 6800. As history advanced, Chuck Peddles

knack of leading the way in technological break throughs

seemed to become his trademark.

As time progressed, the 6800's evolution continued due to the

efforts of many people at Motorola until the 6809 chip, a pseudo

16 bit delight with an 8 bit data bus, was conceived. The chip

was an instant, limited success for Motorola. Great chip, kind of

costly to make. A mini interjection: A joint venture between

The University of Waterloo and BMB Compuscience back in

the early 80's produced what became later known as the

SuperPET Microcomputer. The system was based on the Com

modore 8032 microcomputer, but was further refined to in

clude a Motorola 6809 processor, 64k of extra RAM (bank

switched), an RS232 port, plus 5 interpreted languages and a

6809 assembler/editor system all written by the University of

Waterloo. Aside from its obvious use as an educational tool, the

rights were sold to Commodore for the purpose of marketing it

as a highly powered business machine. By all indications it

would have done well at the time, but Commodore, in their

often typical brilliance, put it on hold in favor of pushing their

now famous Protecto special, the B machine. They stopped a

great computer from moving, to wait for a computer that they

never moved. Reverse Commodore logic. And so, on with the

story.

Chuck Peddle knew that the key to the future was in the design

of a lower cost 8 bit chip that would appeal to a mass market.

He felt that if the 6809 could be powered down, thus reducing

the manufacturing cost, a winner would be born. Enter MOS

Technology.

MOS was founded by a group of people who were far better at

designing chips than they were at keeping the books. They

quickly started in the design work of the 6500 series of chips,

but just as quickly ran into financial problems. A great product

without proper management to keep it afloat.

Enter stage left, Jack Tramiel. After the calculator wars in the

mid 70's, Jack Tramiel was at a stage where Commodore was

on some pretty shaky financial ground. In simple terms, the

move Texas Instruments made to produce their own calcula

tors and mass market them brought kaos to the calculator

world as it was then known. When TI entered the calculator

market, they brought with them a massive price reduction of

their components. TI florished with high volume sales. Other

manufacturers perished under the strain of competing against

TI using older TI chips bought at much higher prices. The

fatality rate was extremely high, with the majority of manufac

tures sinking due to inexperience and TI. At that time Commo

dore came pretty close to being one of the fatalities.

To Commodores rescue came Irving Gould, a very well to do

financier. In exchange for bailing out Commodore, he received

all of Jack Tramiels corporate stock, with the agreement that

Jack Tramiel would get back a portion if he could get Commo

dore back on its feet. A sure bet for Irving Gould if he really

knew Jack Tramiel.

Soon after the Commodore bail out, Jack Tramiel asked Irving

Gould to back him in the purchase of MOS Technology, a good

company in poor financial shape. The logic was that MOS had

the capacity to do well, and could be bought for pennies on the

dollar. With good management, Jack Tramiel was sure that

MOS would make Commodore great. Never again was Jack

Tramiel going to allow himself to be at the mercy of other

manufacturers in the market place.

The balance is well known computer history. With incredible

drive and determination, the team of Jack Tramiel and Chuck

Peddle started Commodore on its path to glory. Beginning with

The Transactor 53 Volume 6, Issue O3

the KIM microcomputer board, Commodore rapidly developed

the home computer market as we know it today. And so, the

majority of our history lesson has been completed.

If the past is any indication of future trends, Jack Tramiel is sure

to bring Atari back into the world of the living. Something like

the story of Frankenstein. Mad doctor Frankenstein worked

like an animal salvaging people pieces here and there to create

his monster. When the parts were assembled, and power was

applied, presto, the creature was given life. The surprise is that

it was more powerful than the sum of its parts, and just as

unpredictable. Perhaps Atari, with the salvaged structure of

Atari, and the brains of Commodore, will also produce a

creature more powerful than the sum of its parts. Pure specula

tion.

To continue with the story, the 6500 series of chips have

advanced very little in their true power. Although they now

possess better memory management capabilities, it is still

basically of the same eight bit design. Enter Motorola once

again.

Unlike Chuck Peddles ideas regarding a power reduction of the

Motorola chips, the people at Motorola could think of little else

than increasing the chips capabilities. More power was the cry

of the day, and so, a new chip was born. In a time when 8 bit

was king, and 16 bits were a dream, the Motorola 68000 chip

was considered revolutionary. Today, more than five years

since its inception, the Motorola 68000 is one of the best. A

totally new design without the limitations imposed by its 8 bit

ancestor, the chip is incredible to say the least. A 16 bit data bus

that can directly interface with existing 8 bit MC6800 periph

erals, plus true 32 bit architecture that was designed to be a

pleasure to program.

To avoid a long, drawn out rendition about how the 68000 will

change your life, here is a quick synopsis of the 68000's special

features:

1) Most instructions within its set apply to 8, 16, and 32 bit

operations. All that is required is to specify the instruction

with a suffix of .B for 8-Bit Byte, .W for 16-Bit Word, or .L for

a 32-Bit Long Word.

2) There are eight 32-Bit data registers, and seven 32-Bit

address registers at the programmers access.

3) Virtual memory access of 16 megabytes. (24 bits of 32)

4) Linear addressing in a standard 32 bit base.

5) It is a general-purpose register chip, therefore most instruc

tions (eg. ADD) can be used for any combination of registers.

The same instruction for all registers, just a change in the

suffix of registers involved.

6) The MOVE instructions exist! In simple terms, a few incredi

ble variations on the MOVE instruction allow data to be

easily passed anywhere. Between registers, out ports, from

ports, into memory, anywhere. To get you interested, there

can be up to 34,888 combinations of MOVE made, for each of

the 8,16, and 32 Bit data types. Try that on a 6502!

To now remove the 68000 from the lime light, Motorola has

announced the release of the 68010 chip, a totally compatible

upgrade to the 68000. The sharp feature of the 68010 is that it

has an upgraded access facility for up to 16 megabytes of virtual

memory. Whatever is not RAM will be accessed from disk as

virtual memory, with the processor going into a wait state until

the contents from disk are brought into RAM. Once the virtual

access is complete, processing continues. Along with the vir

tual memory access, a special bus access procedure has been

further refined to allow faster bus access in a logical manner.

As a final salute to the progress of Motorola, another chip has

been produced that most of us will never see. It's the 68020, a

true 32 bit monster that operates with a clock speed of 12.5

MHz, soon to be 16.67 MHz. With a 32 bit bus and 32 bit

architecture, it claims a speed increase over the 68000 of up to

400% in some instances. To further blow its horn, the maxi

mum memory access capabilities have been increased from 16

megabytes to 4 gigabytes! Right now this would mean a mini or

main frame, but give it a few years. The distinction between

micro's, mini's, and main's is getting more difficult to deter

mine every day. Another blatant speculation.

To once again return to the main subject matter, the MOS 6500

chips, and the Motorola 6800 and 68000 chips.all share one

thing: lineage. They were once related, therefore they share a

similar instruction set. This is great news to the Commodore

user. When, and if, Commodore releases the Amega Lorraine,

it will be 68000 based. The Atari ST520 is also 68000 based. As

a matter of fact, a quick look about the market will show that

Intel and Motorola are basically the only ones involved in the

business market. With the Atari 520 ST, it looks like the 68000

will make it into the home forum. Whatever the case, if you are

at all interested in keeping up with todays trends, get to know

the 68000. Future chips in the 68000 series will share the

instruction set, so a bit of knowledge now will go a very long

way.

Before advancing onto the hard core programming info, I

would like to extend my sincere thanks to Robert Hamashuk,

Field Applications Engineer with Motorola here in Toronto.

Thanks to the research material he supplied, I have been able

to go into much greater depth than ever anticipated regarding

the Motorola chips. Thanks once again.

The Transactor 54 Volume 6, Issue O3

MOS 6502 Registers:

A Accumulator : 8 Bit

X, Y Index Registers : 8 Bit

S Stack Pointers :

PC Program Counter :

P Processor Status :

BitO C Carry Flag

Bit 1 Z Result Zero

Bit 2 1 IRQ Disabled

Bit 3 D Decimal Mode

8 Bit Stack always held at $0100-$01FF

16 Bit (Low/High)

8 Bits

Bit 4 B BRK Command

Bit 5 x Not In Use

Bit 6 V Overflow

Bit 7 N Negative

Motorola 6809 Registers:

A, B, D

X, Y

S, U

PC

DP

cc

Accumulators

Index Registers

Stack Pointers

Program Counter

Direct Page

Condition Code

D = 16 Bits comprised of A + B (hi/lo)
16 Bit

16 Bit: S = System Stack, U = User Stack
16 Bit

8 Bit

8 Bits

BitO C Carry Flag

Bit 1 V Overflow Flag

Bit 2 Z Zero Flag

Bit 3 N Negative Flag

Bit 4 I Interrupt Request Flag

Bit 5 H Half Carry Flag (from bit 3)
Bit 6 F Fast Interrupt Flag

Bit 7 E Entire State Saved On Stack Flag

Motorola 68000 Registers:

A0-A6

D0-D7

SSP

USP

PC

SR

CCR

Address Registers : 32 Bit

Data Registers : 32 Bit

Stack Pointer : 32 Bit Supervisor Stack A7 Addr Reg
Stack Pointer : 32 Bit User Stack A7 Addr Reg

Program Counter : 32 Bit Low Order 24 Bits In Use

Status Register : 16 Bits

Bits 0-7 of SR is the Condition Code Register

BitO C Carry Flag

Bit 1 V Overflow Flag

Bit 2 Z Zero Flag

Bit 3 N Negative Flag

Bit 4 X Extend (similar to carry)

Bit 5 x Reserved Bit

Bit 6 x Reserved Bit

Bit 7 x Reserved Bit

Bits 8-15 of SR is the System Byte

Bit 8 10 Interrupt Mask #1

Bit 9 II Interrupt Mask #2

Bit 1012 Interrupt Mask #3

Bit 11 x Reserved Bit

Bit 12 x Reserved Bit

Bit 13 S Supervisor State

Bit 14 x Reserved Bit

Bit 15 T Trace Mode

Note: SSP and USP are never active at the same

time, thus they can 'share' register A7.

6502 Data Addressing Modes

01) Memory Immediate

02) Memory Absolute or Direct

03) Memory Zero Page (direct)

04) Implied or Inherent

05) Accumulator

06) Pre-Indexed Indirect

07) Post-Indexed Indirect

08) Zero Page Indexed

09) Absolute Indexed

10) Relative 11) Indirect

6809 Data Addressing Modes

02) Accumulator

05) Register

01) Inherent

03) Immediate

04) Absolute a)

b) Extended

c) Extended Indirect

06) Indexed a) Constant-Offset Indexed

b) Constant-Offset Indexed Indirect

c) Accumulator Indexed

d) Accumulator Indexed Indirect

e) Auto-Increment

f) Auto-Increment Indirect

g) Auto-Decrement

h) Auto-Decrement Indirect

07) Relative 08) Long Relative

68000 Data Addressing Modes

Mode Generation
Register Direct Addressing

Data Register Direct

Address Register Direct

Absolute Data Addressing

Absolute Short EA

Absolute Long EA

Program Counter Relative Addressing

Relative With Offset

Relative With Index And Offset

Register Indirect Addressing

Register Indirect

Postincrement Register Indirect

Predecrement Register Indirect

Register Indirect With Offset

Indexed Register Indirect With Offset EA = (An) + (Xn) + d8

Immediate Data Addressing

Immediate DATA = Next Word(s)

Quick Immediate Inherent Data

Implied Addressing

Implied Register EA = SR, USP, SSP, PC, VBR, SFC, DFC

EA

EA

Dn

An

Next Word

Next Two Words

EA = (PC) + dl6

EA = (PC) + (Xn) + d8

EA = (An)

EA = (An),An<An + N

An < An-N, EA = (An)

EA = (An) + dl6

Notes:

EA = Effective Address

Dn = Data Register

= Program CounterPC

Xn

d8

< = Replaces

An = Address Register

SR = Status Register

() = Contents Of

= Address Or Data Register Used As Index Register

= 8-Bit Offset (Displacement)

dl6= 16-Bit Offset (Displacement)

N = 1 for byte, 2 for word, and 4 for long word. If An is the

stack pointer and the operand size is byte, N = 2 to

keep the stack pointer on a word boundary.

The Transactor 55 Volume 6, Issue O3

Instruction Set Comparison

The MOS 6502, and Motorola 6809 and 68000

Instr. 6502 6809 68000 Description

ABCD

ABX

ADC v

ADCA

ADCB

ADD

ADDA

ADDA

ADDB

ADDD

ADDI

ADDQ

ADDX

AND ^

ANDA

ANDB

ANDCC

ANDI

ANDItoCCR

ANDI to SR

ASL s

ASLA

ASLB ,

ASR ,

ASRA

ASRB ,

BCC *>

BCHG

BCLR

BCS ^ ,

BEQ ^ ,

BGE ,

BGT

BHI ,

BHS ,

BIT *

BITA ,

BITB ,

BKPT

BLE ,

BLO ,

BLS .

BLT »

BMI *> ,

BNE v ,

BPL s ,

BRA >

BRK s

BRN v

BSET

BSR

BTST

BVC *> „

BVS ►* y

CHK
pi p

CLD ^

CLI *>

PI R

CLR

CLRA „

CLRB „

CLV ^

CMP ^

CMPA y

CMPA

CMPB ^

The Transactor

is Add Decimal With Extend

<* Add Accumulator B (unsigned) To Index Reg X

Add Memory To Accumulator With Carry

<* Add Carry Bit And Memory Byte To Accum. A

s Add Carry Bit And Memory Byte To Accum. B

s Add Binary

<• Add Memory Byte To Accumulator A

^ Add Address

«* Add Memory Byte To Accumulator B

^ Add 16 Bits Of Memory To Accumulator D

S Add Immediate

i^ Add Quick

s Add Extended

s Logical AND

<* Logical AND Memory Byte To Accumulator A

k* Logical AND Memory Byte To Accumulator B

<* Logical AND Memory Immediate Byte To CC Reg

S Logical AND Immediate

S Logical AND Immediate To Condition Codes

s Logical AND Immediate To Status Register

y s Arithmetic Bit Shift Left

*■ Arithmetic Bit Shift Left Accumulator A

<« Arithmetic Bit Shift Left Accumulator B

* s Arithmetic Shift Right

*• Arithmetic Shift Right Accumulator A

<• Arithmetic Shift Right Accumulator B

<* »<• Branch On Carry Clear

v Bit Test And Change

v Bit Test And Clear

»• ^ Branch On Carry Set

«• »-< Branch On Equal

«• e« Branch On Greater Than or Equal

«• >*- Branch On Greater Than

" v' Branch On High

' Branch On Higher Or The Same

Test Bits In Memory With Accumulator

■* Bit Test - ANDing Memory Byte With Accum. A

* Bit Test - ANDing Memory Byte With Accum. B

S Break Point

* e" Branch On Less Than Or Equal

- Branch On Lower

* s Branch On Lower Or The Same

' »-• Branch On Less Than

- S Branch On Minus

* is Branch On Not Equal

■" ^ Branch On Plus

' ** Branch Always

Force Break

' Branch Never

*s Test A Bit And Set

<*- Branch To Subroutine

s Test A Bit

*-" Branch On Overflow Clear

' k» Branch On Overflow Set

»<• Check Register Against Bounds

Clear Carry Bit

Clear Decimal Mode

Clear Interrupt Disable

' Llear Memory Byte

^ Clear An Operand

Clear Accumulator A

Clear Accumulator B

Clear Overflow Bit

t* Compare

Compare Memory Byte To Accumulator A

v Compare Address

Compare Memory Byte To Accumulator B

CMPD ^

CMP1 p>

CMPM *

CMPS f

CMPU *

CMPX ^

CMPY *•

COM ^

COMA ^

COMB ^

CPX ^

CPY ^

CWAI ^

DAA ^

DBCC ^

DBCS ^

DBEQ ^

DBF *

DBGE ^

DBGT k-

DBHI ^

DBLE ^

DBLS k-

DBLT ^

DBMI s

DBNE ^

DBPL ^

DBT y

DBVC ^

DBVS v

DEC ^ ^

DECA ^

DECB ^

DEX ^

DEY ^

DIVS ^

DIVU ^

EOR ^ ^

EORA ^

EORB ^

EORI ^

EORI to CCR *

EORI to SR ^

EXG ^ ^

EXT *

INC ^ ^

INCA ^

INCB ^

INX ^<

INY *

JMP s s v

JSR s >s v

LBCC ^

LBCS ^

LBEQ ^

LBGE ^

LBGT ^

LBHI ^

LBHS ^

LBLE *

LBLO k-

LBLS *

LBLT ^

LBMI ,x

LBNE y*

LBPL ^

LBRA ^

LBRN ^

Chips

Compare 16 Bits Of Memory To A 16 Bit Register

Compare Immediate

Compare Memory

Compare 16 Bits Of Memory To Stack Pointer

Compare 16 Bits Of Memory To User Stack Pointer

Compare 16 Bits Of Memory To X Register

Compare 16 Bits Of Memory To Y Register

Complement Accumulator Or Memory

Complement Accumulator A Or Memory

Complement Accumulator B Or Memory

Compare Index Register X

Compare Index Register Y

Clear And Wait For Interrupt

Decimal Addition Adjust On Accumulator A

Decrement And Branch On Carry Clear

Decrement And Branch On Carry Set

Decrement And Branch On Equal

Decrement And Branch On Never True (False)

Decrement And Branch On Greater Than or Equal

Decrement And Branch On Greater Than

Decrement And Branch On High

Decrement And Branch On Less Than Or Equal

Decrement And Branch On Low Or The Same

Decrement And Branch On Less Than

Decrement And Branch On Minus

Decrement And Branch On Not Equal

Decrement And Branch On Plus

Decrement And Branch On Always True

Decrement And Branch On Overflow Clear

Decrement And Branch On Overflow Set

Decrement Memory By One

Decrement Accumulator A By One

Decrement Accumulator B By One

Decrement The X Register

Decrement The Y Register

Signed Divide

Unsigned Divide

Exclusive OR Logical

Exclusive OR Memory Byte To Accumulator A

Exclusive OR Memory Byte To Accumulator B

Exclusive OR Immediate

Exclusive OR Immediate To Condition Codes

Exclusive OR Immediate To Status Register

Exchange Registers

Sign Extend

Increment Memory By One

Increment Accumulator A By One

Increment Accumulator B By One

Increment The X Register

Increment The Y Register

Jump

Jump To Subroutine

Long Branch On Carry Bit Clear

Long Branch On Carry Bit Set

Long Branch On Equal

Long Branch On Greater Than Or Equal To Zero

Long Branch On Greater Than Zero

Long Branch On Higher

Long Branch On Higher Or The Same

Long Branch On Less Than Or Equal To Zero

Long Branch On Lower

Long Branch On Lower Or The Same

Long Branch On Less Than Zero

Long Branch On Minus

Long Branch On Not Equal

Long Branch On Plus

Long Branch Always

-.ong Branch Never

Volume 6, Issue 03

Instr. 6502 6809 68000 Description

LBSR y

LBVC y

LBVS y

LDA y

LDA y

LDB y

LDD y

LDS y

LDU ^

LDX ^

LDX y

LDY ^

LDY y

LEA

LEAS ^

LEAU y

LEAX ^

LEAY „-

LINK

USL y

LSLA ^

LSLB y

LSR ^ ^

LSRA y

LSRB •

MOVE

MOVEA

MOVEC

MOVEM

MOVEP

MOVES

MOVEQ

MOVE from CCR

MOVE to CCR

MOVE from SR

MOVE to SR

MOVE USP

MUL y

MULS

MULU

NBCD

NEG y

NEGA y

NEGB y

NEGX

NOP y y

NOT

OR

ORA y

ORA y

ORB y

ORCC y

ORI

ORltoCCR

ORItoSR

PEA

PHA y

PHP ^

PLA y

PLP ^

PSHS y

PSHU ^

PULS •

PULU y

RESET

ROL **

ROL y

ROIl\UL

ROI A y

ROI R y

ROR y

ROR ^

Long Branch To Subroutine

Long Branch On Overflow Bit Clear

Long Branch On Overflow Bit Set

Load Memory Byte Into Accumulator

Load Memory Byte Into Accumulator A

Load Memory Byte Into Accumulator B

Load 16 Bits Of Memory In Accumulator D

Load 16 Bits Of Memory In Stack Pointer

Load 16 Bits Of Memory In User Stack Pointer

Load 8 Bits Of Memory Into X Register

Load 16 Bits Of Memory Into X Register

Load 8 Bits Of Memory Into Y Register

Load 16 Bits Of Memory Into Y Register

y Load Effective Address

Load Effective Address Into Stack Pointer

Load Effective Address Into User Stack Pointer

Load Effective Address Into X Register

Load Effective Address Into Y Register

y Link Stack And Allocate

y Logical Bit Shift Left Memory

Logical Bit Shift Left Accumulator A

Logical Bit Shift Left Accumulator B

y Logical Bit Shift Right Memory

Logical Bit Shift Right Accumulator A

Logical Bit Shift Right Accumulator B

y Move Source To Destination

y Move Address

y Move To/From Control Register

y Move Multiple Registers

y Move Peripheral Data

y Move To/From Address Space

y Move Quick

Yes Move From Condition Codes

y Move To Condition Codes

y Move From Status Register

y Move To Status Register

y Move User Stack Pointer

Multiply (unsigned) Accumulators A and B

y Signed Multiply

y Unsigned Multiply

y Negate Decimal With Extend

y Negate Memory

Negate Accumulator A

Negate Accumulator B

y Negate With Extend

y No Operation

y Logical Complement

y Inclusive OR

Logical OR Memory With Accumulator

Inclusive OR Memory Immediate Byte To Accum A

Inclusive OR Memory Immediate Byte To Accum B

Inclusive OR Memory Immediate Byte To CC Reg

y Inclusive OR Immediate

y Inclusive OR Immediate To Condition Codes

y Inclusive OR Immediate To Status Register

y Push Effective Address

Push The Accumulator Onto The Stack

Push The Processor Status Onto The Stack

Pull The Accumulator From The Stack

Pull The Processor Status From The Stack

Push Specified Registers Onto System Stack

Push Specified Registers Onto User Stack

Pull Specified Registers From System Stack

Pull Specified Registers From User Stack

y Reset External Devices

Rotate Bits Left Accumulator

Rotate Bits Left Memory

y Rotate Bits Left Without Extend

Rotate Bits Left Accumulator A

Rotate Bits Left Accumulator B

Rotate Bits Right Accumulator

Rotate Bits Right Memory

ROR

RORA y

RORB y

ROXL

ROXR

RTD

RTE

RTI y y

RTR

RTS y y

SBC y

SBCA y

SBCB y

SBCD

sec

scs

SEC y

SED y

SEI y

SEQ

SEX y

SF

SGE

SGT

SHI

SLE

SLS

SLT

SMI

SNE

SPL

ST

STA y

STA y

STB y

STD y

STOP

STS y

STU y

STX y

STX y

STY y

STY y

SUB

SUBA y

SUBA

SUBB y

SUBD y

SUBI

SUBQ

SUBX

SVC

SVS

SWAP

SW1 y

SWI2 y

SWI3 y

SYNC y

TAS

TAX y

TAY y

TFR y

TRAP

TRAPV

TST y

TST

TSTA y

TSTB y

TSX y

TXA y

TXS y

TYA y

UNLK

y Rotate Bits Right Without Extend

Rotate Bits Right Accumulator A

Rotate Bits Right Accumulator B

y Rotate Bits Left With Extend

y Rotate Bits Right Without Extend

y Return And Deallocate Parameters

y Return From Exception

Return From Interrupt

y Return And Restore Condition Codes

y Return From Subroutine

Subtract Memory From Accumulator With Borrow

Subtract Carry Bit And Memory Byte From Accum A

Subtract Carry Bit And Memory Byte From Accum B

y Subtract Decimal With Extend

y Set Conditional Byte Carry Clear

y Set Conditional Byte Carry Set

Set Carry Bit

Set Decimal Mode

Set Interrupt Disable

y Set Conditional Byte Equal

Sign Extended

y Set Conditional Byte Never True (False)

y Set Conditional Byte Greater Than or Equal

y Set Conditional Byte Greater Than

y Set Conditional Byte High

y Set Conditional Byte Less Than Or Equal

y Set Conditional Byte Low Or The Same

y Set Conditional Byte Less Than

y Set Conditional Byte Minus

y Set Conditional Byte Not Equal

y Set Conditional Byte Plus

y Set Conditional Byte Always True

Store Accumulator Into Memory Byte

Store Accumulator A Into Memory Byte

Store Accumulator B Into Memory Byte

Store Accumulator D Into 16 Bit Memory Location

y Load Status Register And Stop

Store Stack Pointer Into 16 Bit Memory Location

Store User Stack Ptr. Into 16 Bit Memory Location

Store X Register Into 8 Bit Memory Location

Store X Register Into 16 Bit Memory Location

Store Y Register Into 8 Bit Memory Location

Store Y Register Into 16 Bit Memory Location

y Subtract Binary

Subtract Memory Byte From Accumulator A

y Subtract Address

Subtract Memory Byte From Accumulator B

Subtract 16 Bits Of Memory From Accumulator D

y Subtract Immediate

y Subtract Quick

y Subtract With Extend

y Set Conditional Byte Overflow Clear

y Set Conditional Byte Overflow Set

y Swap Data Register Halves

Software Interrupt *1

Software Interrupt #2

Software Interrupt #3

Syncronize To External Event

y Test And Set Operand

Transfer The Accumulator Into The X Register

Transfer The Accumulator Into The Y Register

Transfer Register To Register

y Trap

y Trap On Overflow

Test Memory

y Test An Operand

Test Accumulator A

Test Accumulator B

Transfer The Stack Pointer Into The X Register

Transfer The X Register Into The Accumulator

Transfer The X Register Into The Stack Pointer

Transfer The Y Register Into The Accumulator

y Unlink

Volume 6, Issue O3

The Intel 8088 Microprocessor
Richard Evers, Editor

Back in the days of olde, circa 1981, IBM released their IBM PC

complete with an Intel 8088 microprocessor. The 8088 is

unique in that it has 16 bit architecture with an 8 bit data bus.

The 8 bit bus was incorporated to allow a fast acceptance into

the market due to the high proliferation of 8 bit support chips

available at the time. Although a truly fast brother to the 8088

was available, the Intel 8086, the 8088 was chosen. IBM traded

off speed for quick market entry.

Star Date 1985: Commodore announces the Commodore PC-

10 and PC-20, IBM clones with a difference. Better pricing,

complete compatibility, and a few nice hardware features

standard. The trick is that they tried too hard to be compatible.

The Intel 8088 is still there! Intel now has the 80186 and 80286,

which are 8086's with power to spare. They share the same

instruction set as the 8086/8088 chips, but have all sorts of

extras on board which make the 8086 look archaic. IBM has

released the IBM AT, which comes with an 80286 microproces

sor on board. The neat trick with this one is that software

written for the normal PC will execute just fine, but with an

incredible increase in speed.

To follow up on this trend, clones such as the Compaq have

followed suit, using an 80286 monster that runs with an 8

megahertz clock. This one's so incredible that you can get into

multi-tasking at two different clock speeds! One use for two

separate clock speeds is in using the Intel 8087 Numeric Data

Processer. This chip has the capacity to perform all math

functions (80 bit) via hardware, at a speed unsurpassed by

anything but a mainframe. The trick is, this chip runs at 5

megahertz. It also has to run concurrent with the computer's

main processor, ie. also at 5 megahertz. Normally, if you had a

fast chip and you wanted to use the 8087 for number crunch

ing, you would have to slow down the main processor to

match. With the 80286 this is not so. One half of the multi

tasking environment can work at the same speed of the 8087,

the other half can operate at top speed. No trade-off of speed

for special functions.

This little bit of IBM hype is intended to demonstrate the typical

'too little, too late' philosophy common to most of the cloners

as well as Commodore. The PC-10 and PC-20 are great

machines, just as most clones are. They are truly compatible,

and do have some terrific features that most don't come with.

And the pricing is fine. But it's a shame to suffer in the capacity

of the machine just to clone a standard IBM PC. A trade-off in

speed and capability to be able to state that it is truly compatible

is an odd way to enter into the market four years too late. Just

think how nice it would have been to read some Commodore

propaganda stating that their clone was software compatible,

but able to outperform the standard IBM PC, 10 to 1. The

Compaq can state this without fear of retraction.

To finally get on track for the balance of this article, I would like

to introduce you to the Intel 8086/8088 instruction set, a nice

treat in the programming department. As stated earlier, the

8086 and 8088 share an identical instruction set, but the 8086,

with its 16 bit data bus, can move data at a much faster rate. No

matter, they are nice processors to work with.

If you are at all familiar with the MOS 6502 series of chips, you

know their philosophy of storing all data in a low/high fashion.

Not all chip manufacturers do this. For example, Motorola's

6809 and MC68000 chips arrange their 16 bit words in high/

low fashion, as does the Zilog Z80 and Z8000 chips. With the

Intel chips, luck has it that they store their 16 bit words in low/

high order. A point of trivia that the industry might try sorting

out.

A feature that you will soon grow to appreciate with the Intel

chips is their capacity to access 1 megabyte of RAM/ROM. The

trick is called segmentation. Segmentation works through the

use of two 16 bit registers. These registers are called the

Segment Paragraph Address and the Offset. The real memory

address is computed as such:

Real Address = 16 x Segment Paragraph Address + Offset

This is equivalent to a Shift Left on the Segment Paragraph

Address, then adding in the Offset. Therefore, if the Segment

Paragraph Address is set to $0500, and the Offset is $0200, then

the address = $5000+ $0200 = $5200.

Depending on the operation performed, the Segment Para

graph Address is held in one of the following 16 bit segment

registers:

Word Function

.CS Code Segment

.DS Data Segment

.SS Stack Segment

.ES Extra Segment

The processor also has a number of interesting registers. The

accumulator is really three registers. AX is the 16 bit accumula

tor, but AL and AH are the low/high bytes of the accumulator.

In this way 16 bit or 8 bit operations can be easily performed.

Without taking up the entire issue to learn how to program the

8088, I am going to barrage you with 8088 info. To best

understand the 8088's registers and operations, a good book

may be a good investment. The '8086/8088 16-Bit Micropro

cessor Primer' by Christopher L. Morgan and Mitchell Waite

was extra helpful for me. The book is extremely well written,

and they go into good depth on all aspects of the Intel chips.

And so, on to a barrage of Intel info. Have a fine time.

The Transactor
58

Note: The term 'word' refers to 16 bit data in the following text.

The term 'byte' refers to the standard 8 bit byte.

Intel 8086/8088 Registers:

Binary Integer Arithmetic

Word

.AX

.BX

,cx

.DX

.SP

.BP

.SI

.Dl

.IP

,cs

.DS

.SS

.ES

Byte

AH

BH

CH

DH

SL

Byte

AL

BL

CL

DL

SH

Accumulator

Base

Count

Data

Stack Pointer

Base Pointer

Source Index

Destination Index

Instruction Pointer

Code Segment

Data Segment

Stack Segment

Extra Segment

Status Flags (see below)

. Status Flags (bits)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 0100

xx xx xx xx OFDF IF TF SF ZF xx AF xx PF xx CF

xx = not used

OF = Overflow Flag

DF = Direction Flag (strings)

IF = Interrupt Enable Flag

TF = Trap - Single Step Flag

SF = Sign Flag

ZF = Zero Flag

AF = Auxiliary Carry - BCD

PF = Parity Flag

CF = Carry Flag

Intel 8088/8086 Instruction Set

Data Transfer Instructions

MOVe word from source to destination

MOVe Byte from source to destination

MOVe Immediate data to destination

MOVe Immediate data to Byte destination

eXCHanGe contents of word locations

eXCHanGe contents of Byte locations

PUSH source onto stack

POP stack into destination

INput from source to AX (word)

INput from source to AL (Byte)

INput from location (DX) to AX (word)

INput from location (DX) to AL (Byte)

OUTput from AX (word) to destination

OUTput from AL (Byte) to destination

OUTput from AX (word) to location (DX)

OUTput from AL (Byte) to location (DX)

transLATe (using a tables)

Load Effective Address

Load DS and register

Load ES and register

MOV

MOVB

MOVI

MOVBI

XCHG

XCHGB

PUSH

POP

IN

INB

IN

INB

OUT

OUTB

OUT

OUTB

XLAT

LEA

LDS

LES

dest, source

dest, source

dest, data

dest, data

dest, source

dest, source

source

dest

source

source

dest

dest

register, source

register, source

register, source

NEG

NEGB

ADD

ADDB

ADDI

ADDBI

ADC

ADCB

ADO

ADCBI

SUB

SUBB

SUB!

SUBBI

SUBB

SUBBB

SUBBI

SUBBBI

MUL

MULB

IMUL

IMULB

D1V

DIVB

1DIV

IDIVB

CBW

CWD

INC

INCB

DEC

DECB

dest

dest

dest, source

dest, source

dest, data

dest, data

dest, source

dest, source

dest, data

dest, data

dest, source

dest, source

dest, data

dest, data

dest, source

dest, source

dest, data

dest, data

source

source

source

source

source

source

source

source

dest

dest

dest

dest

NOT

NOTB

AND

ANDB

ANDI

ANDBI

OR

ORB

ORI

ORBI

XOR

XORB

XORI

XORB1

dest

dest

dest

dest

dest, data

dest, data

dest, source

dest, source

dest, data

dest, data

dest, source

dest, source

dest, data

dest, data

Shifts And Rotates

SHL

SHL

SHLB

SHLB

SHR

SHR

SHRB

SHRB

SAL

SAL

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

Take NEGative of destination

Take NEGative of Byte destination

ADD source to destination (word)

ADD source to destination (Byte)

ADD Immediate data to destination (word)

ADD Immediate data to destination (Byte)

ADd source + Carry to destination (word)

ADd source + Carry to destination (Byte)

ADd data + Carry to destination

ADd data + Carry to Byte destination

SUBtract source from destination (word)

SUBtract source from destination (Byte)

SUBtract data from destination (word)

SUBtract data from destination (Byte)

SUBtract source + Borrow from destination

SUBtract source + Borrow from Byte dest.

SUBtract data + Borrow from destination

SUBtract data + Borrow from Byte dest.

unsigned 16-bit MULtiply

unsigned 8-bit MULtiply

signed 16-bit MULtiply

signed 8-bit MULtiply

unsigned 16-bit DIVide

unsigned 8-bit DIVide

signed 16-bit DIVide

signed 8-bit DIVide

Convert from Byte to Word

Convert from Word to Byte

INCrement destination (word)

INCrement destination (Byte)

DECrement destination (word)

DECrement destination (Byte)

Logical Operations

take logical NOT of the destination (word)

take logical NOT of the destination (Byte)

logical AND of source and destination (word)

logical AND of source and destination (Byte)

logical AND of data and destination (word)

logical AND of data and destination (byte)

logical OR of source and destination (word)

logical OR of source and destination (Byte)

logical OR of data and dest (word)

logical OR of data and destination (Byte)

logical XOR of source and destination (word)

logical XOR of source and destination (Byte)

logical XOR of data and destination (word)

logical XOR of data and destination (Byte)

logical SHift Left one bit (word)

logical SHift Left CL bits (word)

logical SHift Left one bit (Byte)

logical SHift Left CL bits (Byte)

logical SHift Right one bit (word)

logical SHift Right CL bits (word)

logical SHift Right one bit (Byte)

logical SHift Right CL bits (Byte)

Arithmetic Shift Left one bit (word)

Arithmetic Shift Left CL bits (word)

The Transactor 59 Volume 6, Issue O3

SALB

SALB

SAR

SAR

SARB

SARB

ROL

ROL

ROLB

ROLB

ROR

ROR

RORB

RORB

RCL

RCL

RCLB

RCLB

RCR

RCR

RCRB

RCRB

String

REP

REPZ

REPNZ

REPE

REPNE

MOVC

MOVW

CMPC

CMPW

SCAC

SCAW

LODC

LODW

STOC

STOW

CLD

STD

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

dest

dest, CL

Arithmetic Shift Left one bit (Byte)

Arithmetic Shift Left CL bits (Byte)

Arithmetic Shift Right one bit (word)

Arithmetic Shift Right CL bits (word)

Arithmetic Shift Right one bit (Byte)

Arithmetic Shift Right CL bits (Byte)

ROtate Left one bit (word)

ROtate Left CL bits (word)

ROtate Left one bit (Byte)

ROtate Left CL bits (Byte)

ROtate Right one bit (word)

ROtate Right CL bits (word)

ROtate Right one bit (Byte)

ROtate Right CL bits (Byte)

Rotate Left through Carry one bit (word)

Rotate Left through Carry CL bits (word)

Rotate Left through Carry one bit (Byte)

Rotate Left through Carry CL bits (Byte)

Rotate Right through Carry one bit (word)

Rotate Right through Carry CL bits (word)

Rotate Right through Carry one bit (Byte)

Rotate Right through Carry CL bits (Byte)

Manipulation

REPeat (used to modify next string instr.)

REPeat while Zero

REPeat while Not Zero

REPeat while Equal

REPeat while Not Equal

MOVe string Characters (byte)

MOVe string Words

CoMPare string Characters (byte)

CoMPare string Words

SCan string Characters (byte)

SCan string Words

LOaD string Characters (byte)

LOaD string Words

STOre string Characters (byte)

STOre string Words

Clear Direction flag

SeT Direction flag

Program Control Operators

JMP

JMP

JMPS

JMPI

JMPL

JE

JZ

JNE

JNZ

JS

JNS

JP

JNP

JPE

JPO

JL

JNGE

JNL

JGE

target JuMP direct within segment

target, segment JuMP direct to new segment

dest

dest

dest

target

target

target

target

target

target

target

target

target

target

target

target

target

target

JuMp Short

JuMp Indirect within segment

JuMp Indirect Long (new segment)

Jump if Equal

Jump if Zero

Jump if Not Equal

Jump if Not Zero

Jump if Sign (negative)

Jump if Not Sign (non-negative)

Jump if Parity (parity even)

Jump if Not Parity (parity odd)

Jump if Parity Even

Jump if Parity Odd

Jump if Less than

Jump if Not Greater than or Equal to

Jump if Not Less than

Jump if Greater than or Equal to

JLE

JNG

JNLE

JG

JB

JNAE

JNB

JAE

JBE

JNA

JNBE

TEST

TESTB

TEST1

TESTB1

CMP

CMPB

CMP1

CMPB1

LOOP

LOOPZ

target

target

target

target

target

target

target

target

target

target

target

dest, source

dest, source

dest, data

dest, data

dest, source

dest, source

dest, data

dest, data

target

target

LOOPNZ target

LOOPE target

LOOPNE target

JCXZ

CALL

CALL

CALLI

CALLL

RET

RET

RETS

RETS

target

target

target, segmen1

dest

dest

number

number

System Control

INT

INTO

1RET

CL1

STI

HLT

WAIT

LOCK

ESC

NOP

CLC

STC

CMC

SAHF

LAHF

PUSHF

POPF

Jump if Less than or Equal to

Jump if Not Greater than

Jump if Not Less than or Equal to

Jump if Greater than

Jump if Below

Jump if Not Above or Equal to

Jump if Not Below

Jump if Above or Equal to

Jump if Below or Equal to

Jump if Not Above

Jump if Not Below or Equal to

TEST (word)

TEST (Byte)

TEST word against Immediate data

TEST Byte against Immediate data

CoMPare word

CoMPare Byte

CoMPare word against Immediate data

CoMPare Byte against Immediate data

LOOP

LOOP if Zero

LOOP if Not Zero

LOOP if Equal

LOOP if Not Equal

Jump if CX is Zero

CALL direct within segment

CALL direct to new segment

CALL indirect within segment

CALL indirect Long (new segment)

RETurn within segment

RETurn within segment and adjust stack

RETurn from segment

RETurn from segment and adjust stack

INTerrupt

INTerrupt if Overflow

Interrupt RETurn

CLear Interrupt flag

SeT Interrupt Flag

HaLT the cpu

WAIT (used to synco links of cpu with co-cpu

LOCKs bus on next instr. from access by othe

cpu

ESCape (calls a co-processor into action)

NO Operation

CLear Carry

SeT Carry

CoMplement Carry

Store AH into Flags

Load AH from Flags

PUSH Flags

POP Flags

The Transactor 6O Volume 6, Issue O3

A Quick PC Primer
Richard Evers, Editor

Commodore PC-10 File Formats

As many of you already know, there are four different disk file

formats available for use with your standard Commodore drive.

There is Sequential, Relative, Program, and User type files. Each

have their own special merit in use, and each have been discussed

at length in preceding issues. The purpose of todays article is bring

about a bit of knowledge on the PC-10, the IBM PC clone from

Commodore, and how it compares with currently available file

formats.

To understand file formats a little more, you have to remember

that all data stored on diskette is really sequential data, accessed a

little differently by the ROM routines responsible. Sequential and

User files are identical, with data written to and read back in the

same manner, sequentially. Program files are also read through

sequentially, but the first two bytes are special for the Loading

procedure. Program files in the land of Commodore are handled

specially due to the PRG extension in the Load department.

Relative files are actually sequential data files that can be accessed

by specific records at will. The data within the records can be read

sequentially, but greater freedom is allowed by the use of side

sectors for keeping track of the track and sectors involved and the

ROM routines for calculating the indexing required. So much for

normal file formats with normal Commodore machines.

Relative files, called Random files in MS DOS speak, are identical

in concept to Commodore Relative files. The big plus is that

Random Files don't have the tiny cap on record size as normal

Commodore Relative files do. With MS DOS, you can have a

maximum record size of 32768 bytes. Commodore Relative re

cords are maximum 254 bytes. With both types, aside for the

Commodore 8050 drive, the maximum file size is restricted only

by the room available on diskette.

There is an odd note to mention here about MS DOS file work. If

you will be working with Random records in excess of 128 bytes,

you have to set up the buffer size from DOS before booting up

BASIC. Due to the fact that DOS is resident in computer RAM, all

the file buffers are also. From within DOS, special things such as

the maximum number of files Open at any time, the maximum

size of each buffer, the size of the serial buffer, and a host of other

equally thrilling parameters, should be thought of before booting

up BASIC. Although the defaults of each are pretty logical, some

times they just don't fit. Another point to remember when setting

the parameters. The larger you go, and the more files you leave

room to Open, the greater detraction from the 60k plus BASIC

work space available. It won't affect many people, but it's a point to

ponder.

To create a Random file is not a very difficult task. The following

program will create a Random file, write 10 records of data, Close

up the file, then re-Open and read through each record sequen

tially. Not a terribly exciting example, but it does show how

Random files can be easily attained by the novice.

The PC-10 does share all Commodore drive file formats of past.

Sequential, User, Relative, and Program all exist. But the DOS does

not put a special marking on the files to inform you of the data type

within. This is up to the user.

100 ' Random File Demo Program

105 OPEN "FT,#1,"RANDOM.RND",100' Record Size Of 100 BytesFilenames in MS-DOS have a maximum length of 8

characters, and a maximum extension after the filename

of 3 characters. The delimiter between filename and

extension is a period. Any filename you can type in, with

the exclusion of a few special characters or reserved

extensions, are at your disposal. Without DOS automati

cally assigning all extensions, this leaves room for some

pretty obtuse extensions if used without thought.

Program files, as created through the SAVE process in the

Microsoft BASIC supplied with the PC-10, are pretty

interesting. You can SAVE a file as in normal program

format, with a default extension by the system of .BAS, or

you can SAVE the program in ASCII format, or you can

SAVE it in a protected form. The ASCII format is used if

you want to MERGE the program over top of another

program you are working on. ASCII program files can

also be LOADed and RUN as normal ones. Protected files

are just program files that cannot be listed, at least

without digging into RAM a bit to flip a few bits.

110 FIELD#1,25 AS FIRSTS, 25 AS SECONDS, 25 AS THIRDS,

25 AS FOURTHS

115 FOR LOOP = 1 TO 10

120 LSET FIRSTS = STRS(LOOP) ' Left Justify All Strings

125 LSET SECONDS = STR$(LOOP* 10) ' Into Buffer For Write

130 LSET THIRDS = STR$(LOOP*100)

135 LSET FOURTHS = STR$(LOOP*1000)

140 PUT#1 ,LOOP ' Write Record In

145 NEXT LOOP

150CLOSE#1

155'

160 OPEN "R",#1,"RANDOM.RND"

165 FIELD#1,25 AS FIRSTS, 25 AS SECONDS, 25 AS THIRDS,

25 AS FOURTHS

170 FOR LOOP = 1 TO 10

175 GET#1 ,LOOP ' Get The Appropriate Record

180 PRINT FIRSTS, SECONDS, THIRDS, FOURTHS

185 NEXT LOOP

190CLOSE#1

The Transactor
61

Volume 6, Issue O3

For your own edification, the ' is another form of the REM

statement to flag comments. REM does exist in MS BASIC, but the

apostrophe is much tidier, in my opinion.

The example above is both in Upper and Lower case, with Lower

case only appearing in comment lines. The reason is because the

interpreter allows you to type everything in either case, but

automatically converts all executable code into Upper case.

To start, line 105 Opens 'RANDOM.RND' for Random access, with

a record length of 100 bytes. The "R" following the OPEN keyword

signifies Random Access. For all other file formats, the "R" cannot

be used. They have their own special indications for whatever file

work is required.

Line *1 10 sets up the file buffer to accept the data for the write. In

this example, the first 25 bytes in the file buffer will come from

string variable FIRSTS, the second 25 bytes from SECONDS, etc.

Once a FIELD statement has been executed for a Read or Write, it

remains the same for that particular logical file number. For this

example, the logical file number assigned is *1.

The lines 105-145 loop through a procedure of assigning the

correct string with test data, and moving the string data in the

correct position within the buffer. LSET is a command to Left

Justify the data into the buffer, padding with spaces as required.

This command has a second cousin by the name of RSET. Predict

ably, it Right Justifies the data in the buffer.

When all data has been transferred into the buffer, a single PUT*

statement is used to PUT the record #LOOP to disk. A fairly simple

concept to grasp.

Line *150 Closes logical file *1 to end our write demo. The CLOSE

statement can be used in a variety of ways. You can CLOSE one

specific logical file, or a number of logical files via CLOSE *1 ,#2,#3,

etc., subbing in the logical file #'s affected. If a single CLOSE was

used, all currently OPEN files would be Closed up immediately.

Line *'s 160-190 perform the read the data in routine. The file is

Opened once again for Random access, with the record length not

being specified at the programmers discretion. The file buffer is set

up accordingly through the FIELD statement, then the fun begins.

Each record is read sequentially through the use of the GET*

statement, with the strings thereafter being printed. Not a very

difficult procedure, as most can see.

With Random access described in whole, Sequential access tech

niques begin. To create, write to, and read from sequential files is

no major trick. Look below for a program that suits the occasion.

200 ' Sequential File Create/Read Routine

205 OPEN "O",#1 ."SEQFILE.SECT ' Open File For Output (write)
210 FOR LOOP =10 TO 20

215 PRINT#1,STR$(LOOP);CHR$(13)-
220 NEXT LOOP

225 CLOSE#1

230'

235 OPEN IT',#1,"SEQFILE.SEQ" ' Open File For Input (read)
240 INPUT#1 ,A$: PRINT A$: IF EOF(1) = 0 THEN 240 ELSE CLOSE#1

Line *205 shows a standard OPEN statement, this time using a "O"

to indicate an Output (Write) procedure. Lines 210-225 write 10

sets of test data to the file, then Closes it up. The PRINT* statement

can be replaced by a whole slew of commands to suit your needs.

PRINT* USING exists as does WRITE*, for the purpose of format

ting the output generated. No more special string work required for

all who like nice looking, formatted files. Microsoft to the rescue.

Line 235 Opens the file once again, this time for an Input (Read)

Operation. The "I" is the flag for this procedure. Line 240 Inputs

and Prints all the data held in the file. The function EOF(l) flags the

user when the end of file has been reached by returning a value of

-1. When this happens, the ELSE statement comes into play thus

Closing up the file.

To further entice you, another replacement has been invented for

the ever bugged up INPUT* statement. The INPUTS statement.

INPUT* is still stopped by delimiters such as the comma, carriage

return, and colon. INPUTS is not. The format of INPUTS is as

follows:

A$ = INPUT$(numchar,logadd)

.. .where numchar is the number of characters to read each time,

and logadd is the logical file address to read from. If the logadd is

left off, the default will be from the keyboard.

Another feature exists with the PC-10 that has always been a

favourite with Commodore DOS users. The Append feature. By

Opening a sequential file with "A", you can write directly to the

end of the file. In reality, Commodore DOS and MS DOS are not

that far apart in concept. Commodore DOS is more automatic and

user friendly, but MS DOS has extra advantages such as greater

speed and versatility due to DOS upgrades without surgery to the

drive.

There are a number of different extensions that the system will

automatically assign to filenames of various orgins. They are the

system files of DOS, batch processing files, and a host of other file

types. The .BAT or batch file will be discussed next, but if the MS

bug has really hit you, your best option would be to invest in a few

of the PC magazines available, and hunt around for a book or two
on the subject.

Batch Processing With Your PC-10

The Commodore PC-10, the IBM PC compatible machine, is vastly
different from any machine Commodore has released before. The

Commodore of past has always prided itself in marketing their own

designs. The microprocessors were always of MOS

design, the architecture always typical Commodore,
absolutely everything had a typical Commodore feel.'
Well, with the PC-10, Commodore has finally accepted
that same is easier than different. The PC-10 is an IBM

PC clone, with a few improvements. The keyboard is

nicer to use, the standard options have been enlarged,

and the price is also significantly lower. A clone to be
proud of.

With the new Commodore machine on the scene, a whole new

mind set will be required for those uninitiated with the IBM PC.

The drives are no longer intelligent, therefore the DOS has to be

loaded into computer RAM before access to the drive can really

begin. The BASIC language is no longer resident in ROM, therefore

BASIC, or some other language, will also have to be brought in

from disk after DOS. But, even with these tedious shortcomings, a

breath of fresh air appears. The entire booting up process on

system initialization can be automatically performed with little

effort, allowing the DOS, system parameters, language, and first

program to all be brought in or set up as required. Welcome to

Batch Processing, a welcome friend in a strange new land.

For anyone familiar with the Power command EXEC, or Chris

Zamara's STP from a few issues back, the concept of operation is

similar. They all allow you to create a sequential file on diskette

that can be read from and executed by the computer as if entered

directly from the keyboard. This allows you to perform some pretty

terrific procedures on a repetitive basis without the major key

board hassles.

When the PC-10 is first powered up, or re-booted via (Control)

(Alt) (Del), the DOS is automatically brought in from the default

drive, normally drive A, then a file by the name of 'AUTOEXEC

.BAT' is checked for. If it exists then the file is read through and

executed sequentially. If the file is not found, the system drops into

normal DOS mode.

The 'AUTOEXEC.BAT' file is a batch file with a special name. Batch

files can be easily created that will batch process your needs, but

'AUTOEXEC.BAT' is the only one capable of executing from

system start.

To create the Autoexec file from DOS, little work is required. From

within DOS, type in the following:

COPY CON A:AUTOEXEC.BAT (Carriage Return)

The Drive A has been specified in this example. Drive A is the

upper drive on the unit, drive B the lower.

What this command does is tell DOS to copy the following

information from the keyboard into the Autoexec file, until a

(Control z) is encountered. In this manner, any sequential file

desired can be easily created.

Try typing in the following sequence of commands as described

below

DATE (Carriage Return)

TIME (Carriage Return)

BASICA (Carriage Return)

(Control z) (Carriage Return)

The (Control z) followed by a carriage return will terminate the

session, and tell DOS to write the file to diskette. Once this file has

been executed by the system upon initialization, the system will

prompt the user for the date, defaulting to January 1st 1980, as per

IBM format, then the time. Following the correct replies from the

user, carriage returns or the correct date and time, the language

BASICA will be loaded into memory and executed.

If you wanted to load and run a specific program after BASICA,

then modify the BASICA line as follows:

BASICA FILENAME.BAS (Carriage Return)

Filenames in IBM land have a maximum length of 8 characters,

with an extension after a period of 3 characters maximum. If the

program to be loaded has an extension of .BAS, indicating a BASIC

program file, then it does not have to be specified in the Autoexec

file. BASICA will automatically default to an extension of .BAS

when Loading and Saving to disk.

Often, special tricks have to be performed via the Autoexec file to

set up the computer as your program requires. The maximum

number of files allowed open at any time, the size of the file buffer,

maximum 32768 bytes, the size of the serial buffer, and the mode

of display are just a few of the parameters to be chosen. The system

defaults to logical choices, but often when writing business soft

ware special parameters will be required.

Although special emphasis has been placed on the Autoexec batch

file, normal batch files can be pretty important too. Batch files can

be created to execute special functions such as LOADing and

executing programs of special importance simply by keying in a

simple filename. Take for example the program Lotus 1-2-3. In

DOS mode, execution of Lotus is done by keying in the name

'lotus', followed by a carriage return. There is a batch file on

diskette by the name 'lotus' that fires up the program automatically

for you. The same applies for most commercial software packages

available for the IBM PC. They have Autoexec batch files used for

system start up, and they also have an easily remembered file

name for start up from DOS without (Control) (Alt) (Del). Made

simple for the business market.

This article has been written as a very simple batch processing

tutorial for those just getting into MS DOS, and does not make the

disclaimer of trying to inform you of all the special tricks batch files

can perform. It is just a method to get the ball rolling for IBM PC

mindset to set in. To really get to know your DOS, read through a

few of the many MS or PC DOS books on the market. Some are

pretty poor, but a few will shine through. If you actually have the

PC-10, or some other MS DOS machine, then read through the

manuals supplied. Though the manuals tend to be brief, knowl

edge can be attained for the price of a little time.

So much for force feeding you DOS. Following this is a summary of

DOS and BASIC commands that I hope may one day come in

handy for you.

And lastly, although the PC-10 is a powerful machine, it is an IBM

PC clone that will not be making a regular appearance in the pages

of The Transactor. Placing the Commodore label on the machine

does not justify using precious magazine space, especially consid

ering the other publications dedicated solely to this system. Life

was so much simpler when Commodore was Commodore.

The Transactor 63 Volume 6, Issue O3

Commodore PC-10 Microsoft BASIC Command Summary

You will find that most of the keywords are identical to Commodore BASIC, plus many more just to keep your programming hours

productive. With an equivalent of 175 commands at your access, sleepless nights will soon become a reality. Without further delay,

welcome to your nightmare !!

Command Type Description INPUT

ABS Func Returns absolute value INPUT*

AND Boolean: x AND y = 1 if x,y=l, otherwise = 0 INPUTS

ASC Func Returns the ASCII value of the left most char in a string INSTR

ATN Func Returns the arc tangent of a value expressed in radians INT

AUTO Cmd Sets auto line numbering during edit mode KEY

BEEP Func Produces a 'beep' sound from speaker KEY(n)

BLOAD Cmd Loads from disk into user specific location in RAM KILL

BSAVE Cmd Saves specific ranges of RAM onto diskette LEFTS

CALL Stmt Transfers control from BASIC to machine code LEN

CDBL Func Converts value to double precision number LET

CHAIN Stmt Loads & runs prg from disk, allows passing of variables LINE

CHR$ Func Returns the string equivalent of an ASCII value LINE INPUT

CINT Func Rounds values to next whole number LINE INPUT*

CIRCLE Stmt To draw an ellipse on the screen LIST

CLEAR Cmd Sets all variables, strings, and constants to 0, close files LLIST

CLOSE Stmt Close a specific file channel LOAD

COM(n) Stmt Enable/disable trapping of comm. activity LOC

COMMON Stmt To set-up for passing of variables to chained program LOCATE

CONT Cmd Continue program execution after a break encountered LOF

COS Func Returns the cosine of a value expressed in radians LOG

CSNG Func To convert a value to a single precision number LPOS

CSRL1N Vrbl Returns the current row position of the cursor LPR1NT

CVI Func Converts a 2 byte string into its signed decimal equivalent LPR1NT USING

CVS Func Converts a 4 byte string into its signed decimal equivalent LSET

CVD Func Converts a 8 byte string into its signed decimal equivalent MERGE

DATA Stmt Indicator to program that data for READ exists on the line MID$

DATES Stmt Sets the date from a user defined string (MM-DD-YY) MID$

DATES Vrbl Retrieves the current date from string DATES MKDS

DEF FN Stmt Defines a user specified function MKI$

DEF INT Stmt To declare variable types as integer MKSS

DEFSNG Stmt To declare variable types as single precision numbers MOD

DEF DBL Stmt To declare variable types as double precision numbers NAME

DEFSTR Stmt To declare variable types as string of 0-255 chars NEW

DEFSEG Stmt To define address for BLOAD,BSAVE,CALL,etc NEXT

DEF USR Stmt To specify start address of asm rtn to be called by USR NOT

DELETE Cmd Deletes specified sections of BASIC OCTS

DIM Stmt Used for setting up dimensioned arrays in memory ON

DRAW Stmt Allows drawing of high resolution displays on the screen ON COM(n)

EDIT Cmd Display a specific line from BASIC for editing ON ERROR

ELSE Cmd Executes when preceding IF statement fails ON KEY(n)

END Stmt Ends program execution and returns to OK prompt ON PEN(n)

EOF Func Returns a value of (-1) at the end of a disk file in read ON STRIG(n)

EQV Boolean: xEQVy =1 ifx,y = 0,l or x,y= 1,0 else = 0 OPEN

ERASE Stmt Eliminates specific dim'd arrays from memory OPEN"COM(n)

ERR Vrbl Returns the error code associated with an error OPTION BASE

ERL Vrbl Returns the error line number associated with an error OR

ERROR Stmt To allow simulation of a specific error condition OUT

EXIT Cmd If SHELL cmd used prior, returns user to BASIC from DOS PAINT

EXP Func To return a value to the power of (n) PEEK

FIELD Stmt To allocate space for variables in a random file buffer PEN

FILES Cmd Performs a directory of a specific diskette PEN

FIX Func To truncate a number to a whole number PLAY

FOR Stmt FOR/NEXT: a user defined loop of events to perform POINT

FRE Func Returns the amount of free RAM in allocated str mem POKE

GET Stmt To read a record from a random file into a variable buffer POS

GET Stmt To transfer graphic images from the screen PRINT

GOSUB Stmt Go to a specific sub-routine in BASIC, with return PRINT USING

GOTO Stmt Go to a specific section of BASIC code PRINT*

HEXS Func Return the hexadecimal equivalent of an ASCII value PRINT* USING

IF Stmt Question : IF (condition) then perform an operation PSET

IMP Boolean:xlMPy = 1 if y = 1 or x,y = 0,0else = 0 PRESET

INKEYS Vrbl Get a character from the keyboard buffer PUT

1NP Func To return a byte from a specific machine port PUT

Stmt Input a response from the keyboard

Stmt Input a string of characters from diskette

Stmt To return a string of (n) chars from keyboard buff or file *

Func To search for a string within a string, return with position

Func Returns the integer value of a floating point number

Stmt *," exp" ;ON;OFF;LIST; - assign f-keys/turn on-off,list

Stmt To initiate and terminate key capture in program mode

Cmd Delete a specific file from diskette

Func Returns a user specified section of string from a string

Func Returns the length of a string

Stmt Assumed command for assigning variables : Optional Use

Stmt To draw a high resolution line on the screen

Stmt Input a line from keyboard of (1-254) chars no delimiters

Stmt Input a line (254 max) from sequential file, no delimiters

Cmd Display all or user defined section of BASIC prg

Cmd To list all or part of BASIC program in memory to printer

Cmd Load a file from diskette into BASIC memory

Func Returns current position of data in buffer for file access

Stmt Positions and/or turns on cursor anywhere on the screen

Func Returns number of bytes allocated to a file

Func Returns the logarithmic equiv. of a number in rads

Func Returns current position of line printer print head

Stmt As PRINT; print data at the line printer

Stmt As PRINT USING; print data at the line printer

Stmt Move data from mem to random file buffer, left justified

Cmd Merges a BASIC program in ASCII format from disk

Func Returns a string from within a string by user specified defs

Stmt Replaces a section of a string with a user specified string

Func Converts numeric value to string; double prec expr

Func Converts numeric value to string value; integer expr

Func Converts numeric value to string value; single prec expr

Modulas arith op: 13 MOD 4=1 (13/4 = 3, remainder 1)

Cmd Changes the name of a file on diskette

Cmd Effectively erases a BASIC program from memory

Stmt FOR/NEXT: a user defined loop of events to perform

Boolean Operand: NOT x = 1 ifx = 0else = 0

Func Returns a string of the octal value of a value

Stmt ON (condition) GOTO/GOSUB line*, line*, line*, etc

Stmt ON (specific comm condition) GOTO/GOSUB etc.

Stmt ON (error condition) GOTO/GOSUB etc.

Stmt ON (specific key occurence) GOTO/GOSUB etc.

Stmt ON (specific light pen loc) GOTO/GOSUB etc.

Stmt ON (specific joy stick cond) GOTO/GOSUB etc.

Stmt Open a specific file channel for access

Stmt Allocates a RS232 async communications buffer

Stmt To declare minimum value for array subscripts

Boolean: x OR y = 1 if x and/or y = 1 else = 0

Stmt To send a byte to a machine output port

Stmt To fill in a graphics figure with the selected attribute

Func Returns the content of a user defined location in memory

Stmt ON.OFF.STOP; To read the light pen

Func To read the numeric value read by the light pen

Stmt To play music from string data in program

Func To read attribute value of a pixel from the screen

Stmt Stores a user defined value in a user defined loc in RAM

Func Returns the current cursor position on the screen

Stmt Print a string of characters to the screen

Stmt To print strings or numbers with formatting to the screen

Stmt Print a string of characters to an open file

Stmt To print strings or numbers with formatting to an open file

Stmt To display a specific pixel on a high resolution screen

Stmt To display a specific pixel on a high resolution screen

Stmt To write a record from a random file buff to a rnd disk file

Stmt To transfer graphic images to the screen

The Transactor 64 Volume 6, Issue O3

RANDOMIZE Stmt To re-seed the random number generator STR$

READ Stmt Read DATA elements from BASIC memory STRIG

REM Stmt Indicator for a comment line in BASIC text STRIG

RENUM Cmd Changes the numbering of a BASIC program in edit mode STRIG(n)

RESET Cmd Close all files and write FAT back to diskette ' STRINGS

RESTORE Stmt Restore all DATA to the start for a READ SWAP

RESUME Stmt Resume program execution after ON ERROR trap SYSTEM

RETURN Stmt GOSUB/RETURN: return from BASIC sub-routine TAB

RIGHTS Func Returns a user specified section of string from a string TAN

RND Func Returns a random number expressed in decimal notation TIMES

RSET Stmt Move data from mem to random file buffer& right justify it TIMES

RUN Cmd Starts execution of a BASIC program in memory TRON

SAVE Cmd Saves a BASIC program in memory to diskette TROFF

SCREEN Func To return the value of a specific char on the screen USR

SCREEN Stmt To set the screen attributes VAL

SGN Func Return the sign of a value VARPTR

SHELL Cmd Allows entrance into DOS with return from DOS via EXIT VARPTRS

SIN Func Returns the sine value of a value expressed in radians WAIT

SOUND Stmt To generate sound through the built in speaker WEND

SPACES Func Creates a string of user defined length of ASCII (spaces) WHILE

SPC Func Spaces the cursor over (n) * spaces on the screen WIDTH

SQR Func Returns the square root value of a value WRITE

STICK Func To return the x,y co-ordinates of the two joy sticks WRITE*

STOP Stmt Stops BASIC execution, returns line * of termination XOR

Func Returns the numeric string equivalent of a value

Func ON,OFF; to return the status of the joy stick triggers

Stmt To read the status of the joy stick triggers

Stmt (n) ON.OFF.STOP; to allow use of joystick by trapping

Func Creates a string of user defined length of one ASCII value

Stmt Exchanges string variables with each other

Cmd Pass control of the computer back to DOS

Func Tabulate the cursor on the screen to a specific position

Func Returns the tangent of a value expressed in radians

Func To retrieve the current time

Stmt To set the current time (HH:MM:SS)

Cmd Turn trace of BASIC program on

Cmd Turn trace of BASIC program off

Func Pass control of a BASIC prg to asm rtn with return of vars

Func Returns the numeric value of a string expression

Func To return the address in mem of the vrbl or file Ctrl block

Func To return addr of 1st byte of data of vrbl before VARPTR

Stmt Wait for a certain condition to be met before continuing

Stmt WHILE/WEND: performs loop till condition is true

Stmt WHILE/WEND: performs loop till condition is true

Stmt Set column width of the screen or printer

Stmt To output data to the screen in format

Stmt To write data to a sequential file formatted

Boolean: x XOR y = 1 if x,y = 0,1 or x,y = 1,0 else = 0

The Commodore PC-10 A Brief Look At MS DOS 2.11

MS DOS 2.11, the latest floppy DOS released by Microsoft, is standard with the Commodore PC-10. For those of us who are familiar with

Commodores DOS resident in the normal Commodore drives, this is a strange experience. The PC-10 doesn't have intelligent drives,

therefore DOS has to be loaded into computer RAM, with disk control being performed by the computers on board processor. Due to this

fact the drives tie up computer time to perform all disk activities. Although this is a great loss for fans of normal Commodore drives, this

loss is more than made up for by faster disk access via DMA, direct memory access. The drives are dumb, but really quick.

The purpose of this article is to provide a quick run down of the majority of DOS commands available with the standard PC-10. To fully

utilize the power of the machine, a working knowledge of DOS is required. And so, the summary is born. Below is a quick reference of

most of the commands available. Hope it helps.

BREAK

CHKDSK

CLS

COMP

COPY

CTTY

DATE

DEBUG

DEL

D1R

D1SKCOMP

D1SKCOPY

ECHO

EDL1N

ERASE

EXE2B1N

FORMAT

MODE

PAUSE

PRINT

RECOVER

REM

REN

SYS

TIME

TYPE

VER

Internal

External

Internal

External

Internal

Internal

Internal

External

Internal

Internal

External

External

Internal

External

Internal

External

External

External

Internal

External

External

Internal

Internal

External

Internal

Internal

Internal

BREAK ON [d:] BREAK OFF [d:]

CHKDSK [d]:

CLS

COMP filename.ext [d:] filename.ext

COPY filename.ext [d:] filename.ext [/V]

CTTY [Device]

DATE [mm-dd-yy]

DEBUG DEBUG filename.ext

DEL filename.ext

DIR [d:] [/P] [/W]

DISKCOMP [d:]

DISKCOPY [d:]

ECHO ON ECHO OFF

EDLIN

ERASE filename.ext

EXE2BIN filename.ext [d:] [filename.ext]

FORMAT [d:] [/S]

MODE device: specifications

PAUSE [remark]

PRINT filename.ext

RECOVER filename.ext

REM [remark]

REN filename.ext [d:] filename.ext

SYSd:

TIME [hh:mm:ss]

TYPE filename.ext

VER

Break Off, DOS checks for Break during print or input: Break On, chks always

Checks the diskette and computer RAM, and reports back with status

Clear the display screen

Compares files on diskette and reports back differences

Copies a specified file onto diskette, the same or different

Changes the computer to a remote terminal by re-directing its I/O to Device

Displays current date assignment, and allows user modification

High quality machine language monitor for RAM or disk

Deletes specific files from the directory

Performs a passive directory of a diskette to the display screen

Compare two diskettes, and reports differences

Copies the contents of one disk to another, formats as it copies

Turns the screen Echo of commands in batch file On or Off

Text editor for creation and manipulation of sequential data files

Delete a specific files from the directory

Converts an .EXE file to a .COM file

Formats a diskette to system compatibility

Allows correct set-up for the Line Printer, Serial Port, and Display

Suspends execution of a batch file till a key is pressed

Spools data file from disk to printer without affecting computer operation

Recovers and re-creates files as best it can from disk errors

Flags a comment line in a batch file - displays without action

Changes the name of a file on diskette

Copies the DOS system files onto a specified diskette

Displays current time assignment, and allows user modification

Prints the contents of a specified file to the screen

Displays the version number and ID of the DOS in use

The Transactor 65 Volume 6, Issue O3

Speeding Up

Your BASIC Programs

Dr. John W. Ross

Sudbury, Ontario

Analyze Program CPU Usage . .. And Attack the Slowest Parts!

How would you like to be able to speed up your BASIC programs?

Whether you use your computer to print mailing lists, solve

systems of partial differential equations, or write the ultimate

interactive Star Wars fantasy simulation adventure game, it is a

pretty safe bet that you wish your program ran faster. In this article

1 will show you how to speed up your programs; to do this, we will

make use of a special program called a "profiler" to examine the

program you want to speed up - but more on this later, first let's

take a look at the problem of making a program run faster.

The 80/20 Rule

The well-known 80/20 rule applies to programs as it does to many

situations we encounter from day to day. What it means in terms of

program execution is that most programs spend about 80% of the

time executing only 20% of the code in the program.

The trick to speeding up your programs is to identify the 20% of

the code where the program is spending most of its time, and

streamline it as much as possible - you can forget about the rest of

the program.

Code Optimization

Now streamlining a program, or making it run faster, is an art in

itself and a complete discussion would easily fill the entire maga

zine. For our purposes though, there are basically only a couple of

ways to make a piece of code run faster - the first is to use a

different algorithm, and the second is to use what I call code

"tweaking". Modifying the algorithm is the best method if you can

do it. For instance, say you have a mailing list program and you

have determined that a bubble sort you were using to alphabetize

the names was slowing things down. Your best bet would be to use

a better sorting algorithm, a Shell sort or Quicksort, say.

Sometimes though, this approach cannot be used, either because

there is no better algorithm, or if there is you do not know what it

is. In this case we must resort to tweaking; by this I mean the whole

set of techniques or "tricks" which make a program run faster -

things like not executing REM statements, moving calculations

outside FOR-NEXT loops where possible, using variables instead

of constants, etc. Often, these techniques are not too well docu

mented, but magazines like Transactor are excellent places to find

out about them.

As a final resort, you can take the offending section of code and

rewrite it in machine language. If you have done a good job

identifying the slowest part of your program, this procedure can

lead to really dramatic improvements in execution time. This

approach usually requires an intimate knowledge of the computer,

and many are reluctant to take it if they do not have to.

The strategy for optimizing code with respect to execution time is

quite straightforward, but it requires us to find the parts of our

programs which need optimizing. This is the problem; when

dealing with even a moderate size program of 100-200 lines, it

may be impossible to say for sure where the slowest part or parts

are - this is where the profiler comes into play.

The Profiler

The profiler is a program that runs concurrently with your pro

gram and actually measures the amount of time your program

spends executing each statement. When your program is finished,

the profiler prints out a histogram (an execution time profile)

showing the relative amount of time your program spent on each

statement - by zeroing in on the histogram peaks, you can easily

see where improvements are required. Before going into the

profiler design, I would like to discuss an example which shows

how it can be used.

An Example

Some time ago 1 wrote a 6502 Assembler in BASIC. Although it

works very well, it was frustratingly slow. Fig. 1 shows an execu

tion profile of the program produced while it was doing an

assembly. Out of 258 lines in the program, only 49 (19%) showed

up on the profile; of these 49 "slow" statements, we can see by eye

that the program spent most of its time on 9(18%) of them (the 80/

20 rule can often be applied recursively like this).

In fact, we see that there were three bad areas in the program: lines

5-7, lines 12-17 and line 138. The first two locations were part of a

parsing routine which scans the input lines - as such they were

among the most frequently executed statements in the program. I

was able to improve them by some judicious tweaking. The code at

line 138 was doing a linear search through a list of opcodes; I was

able to improve this part by switching search algorithms to a much

faster binary search.

These modifications resulted in a significant improvement in

execution speed of the assembler - without the profiler it is safe to

say that I could not have made the modifications since I would not

have known where they were required. Now let's look at the

profiler design.

Profiler Design

The profiler is written for a CBM 8032 micro, but should be readily

adaptable to other CBM models. It is based on the CBM's 60-cycle

interrupt; 60 times each second the CBM's 6502 processor runs an

interrupt - during this time the video display is updated and the

keyboard is scanned. It is quite easy to patch into the interrupt

routine. This is an accepted method for running programs concur

rently on Commodore computers. What I have done is add some

The Transactor Volume 6, Issue O3

code to examine the storage location which contains the number

of the BASIC line currently being executed - a counter for that line

is then incremented. Thus, 60 times per second the current line

number is sampled and a count maintained for each line; the total

of these counts is proportional to the amount of time the program

spent executing each line. The counts are displayed in histogram

form for a visual indication of the execution profile.

The count for each line is maintained in a 16 bit word and 4k bytes

of memory are set aside for counts in the present version of the

program.

The profiler is written in two parts - the first part is the interrupt

extension which is placed in the CBM's first cassette buffer (starting

at memory location $027A) and does the actual profiling - this part

is in machine language; the second part is a BASIC program which

is loaded after the program to be profiled has executed - this reads

the counts and produces the histogram. The assembly listing for

the first part is given in Program 1 and the BASIC listing for the

second part in Program 2. Program 3 is a loader which loads the

machine language program (Program 1) into memory.

Using the Profiler

A typical usage pattern would be: (1) load the machine language

loader (Program 3) and run it - this resets the top-of-memory

pointers and loads the interrupt extension into the first cassette

buffer, (2) load the program to be profiled, insert a SYS 634

statement near the beginning, and SYS 658 and SYS 669 state

ments (these entry points are explained below) as required to

profile the appropriate sections of code, (3) run the program to be

profiled, (4) load the profile generator program (Program 2) and

run it. In more detail, here are the three components of the

profiler:

Profiler Components

Consider the assembly listing in Program 1. The program

has three entry points: SETUP, ACTIVATE and KILL.

These are accessed respectively by executing one of...

SYS 634

SYS 658

SYS 669

. .. from the BASIC program to be profiled. These are

actually three short subroutines. SETUP initializes the

counters in the working storage area to zeroes, ACTI

VATE patches in the interrupt extension and KILL re

moves it. When the extension is patched in, the program

segment beginning at MAIN is run automatically 60

times per second. By executing the appropriate subrou

tine, it is possible to turn the profiler on and off - you may

not want to profile your whole program.

The second part of the profiler is the histogram generator

shown in Program 2. This is a BASIC program which

examines the counts for each line and displays them in a

histogram format. The statement which consumed the

most execution time is assigned a bar 70 columns wide in

the histogram. Other statements are assigned bars whose

length is proportional to the amount of execution time

they consumed relative to the 70-column statement. If it

turns out that a statement's bar would be less than 1.

column wide it is not shown.

Look at the listing of Program 2 - it is quite short. The "4" in

statement 100 causes the program output to be directed to a printer

(it is intended for use with an Epson MX-80). If this is changed to a

"3", i.e. "OPEN 1,3", the output will go to the terminal screen

instead of the printer.

Finally we have the machine language program loader given in

Program 3. This is a convenient way to load the program into the

computer, and it serves another very important function. Nor

mally, RAM up to hex location $8000 (just below the screen

memory) is available for use by BASIC. We require a 4K working

storage area and as is usual with a PET, we allocate addresses

$7000-$8000 to this purpose. This working storage must be sealed

off from BASIC so that it will not be overwritten. This is done by

resetting the top-of-memory pointers in line 110 of Program 3.

This is a mandatory step before using the profiler.

There is one important restriction to observe about using the

profiler - due to its design, programs to be profiled are only

allowed to have statement numbers between 1 and 2048 - if the

code to be profiled has statement numbers outside this range you

will have to use a renumbering utility before running the profiler.

In any case you are limited to a 2048 line program, though this

should not be a problem - very large programs should be written

in modules anyway, and these modules can be profiled individu

ally.

Summary

The execution profiler can be one of your most valuable tools in

the program design and modification process. So, don't just sit

there wondering why your program is taking so long to generate

the Klingon invasion force - profile it and see!

Figure 1: Sample Profile Of A BASIC Program (V2 actual size)

The Transactor 67 Volume 6, Issue O3

Program]

PJ

EO

NA

EA

HD

LK

GB

KC

MO

OC

DL

Al

LK

MF

JG

DA

EJ

HK

KG

AL

FN

PM

MC

AM

EK

HP

JC

NA

JD

DO

OB

Gl

KB

DA

BF

CB

HG

CC

ND

IH

AO

EH

PD

NF

HL

EN

CL

LA

EL

JB

DC

OD

AC

PH

HP

MA

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

: 6502 Assembly

*

zw

iv

dine

intrpt

setup

loop

—

=

-

=

=

Ida

sta

Ida

sta

tay

=

sta

inc

bne

inc

Idx

cpx

bne

rts

activate =

;

kill

;

main

sei

Ida

sta

Ida

sta

cli

rts

=

sei

Ida

sla

Ida

sta

cli

rts

=

Idy

Ida

sta

Ida

ora

sta

Ida

tax

inx

txa

sta

bne

Ida

Language

$027a

$00

$90

$36

$e455

*

#$70

zw + 1

#0

zw

*

(zw),y

zw

loop

ZW+ 1

ZW + 1

#$80

loop

*

#<main

iv

#>main

iv +1

*

#<intrpt

iv

#>intrpt

iv+1

*

#0

dine

zw

cline+1

#$70

zw + 1

(zw),y

(zw),y

out

cline + 1

Portion Of The Interrupt-Driven Profiler

NH

OA

DH

NH

IJ

KH

JN

AF

LN

CE

660 ora #$78

670 sta zw +1

680 Ida (zw),y

690 tax

700 inx

710 txa

720 sta (zw),y

730 ;

740 out = *

750 jmp intrpt

Program 2: BASIC Program To Display Profiler

LO

DC

EL

LG

KJ

KB

PJ

HO

KG

CM

EM

FJ

MG

NF

BL

HN

IA

LL

IB

100 rem profiler - basic portion

110 open 1,4

120 dim tt%(2048,2): j = 0: tm = 0

130d = 8*256: lo = 7*4096: hi = lo + d

140 for i = lo to hi—1: sn = i-lo

150 t = peek(i + d)*256 + peek(i)

160 if t = 0 then 190

170 j = j + 1: tt°/o(j,1) = sn: tt°/o(j,2) = t

180ift>tmthentm = t

190 next

200 for i = 1 to j

210a$ = chr$(181)

220 pc = int(tt°/o(i,2)/tm*7O)

230 if pc = 0 then 260

240 for j = 1 to pc: a$ = a$ + chr$(223):

250 print#1 ,right$(" [3 spaces]"

+ str$(tt°/o(i,1)),4)" [1 space]" ;a$

260 next

270 print#1: closei

280 end

Program 3: BASIC Program To Load Profiler

Jl

PC

OB

NP

GJ

BJ

PI

FN

GF

NA

FA

LO

AN

NP

MJ

100 rem profiler loader

110 poke 52,0: poke 53,112: clr

120 read n,l: for i = 1 to n: read x: poke

: next: end

130 data 83,634

140 data 169, 112, 133, 1,169, 0

150 data 168, 145, 0, 230, 0, 208

160 data 1,166, 1,224,128,208

170 data 120, 169, 168, 133, 144, 169

180 data 145, 88, 96,120,169, 85

190 data 169, 228, 133, 145, 88, 96

200 data 165, 54,133, 0,165, 55

210 data 133, 1,177, 0,170,232

220 data 0,208, 13,165, 55, 9

230 data 1,177, 0,170,232,138

240 data 76, 85, 228

Results

next

l,x: 1 = 1 + 1

,133, 0

, 250, 230

,242, 96

, 2,133

, 133, 144

,160, 0

, 9,112

, 138, 145

, 120, 133

,145, 0

The Transactor 68 Volume 6, Issue O3

Hi-Res Text Maker Darren James Spruyt

Gravenhurst, Ontario

Scaled Text For Your Hi-Res Screen!

This program allows one to reproduce any of the C-64 charac

ters on the hi-res screen with its X dimension enlarged up to

X25 and the Y dimension up to X40. This is useful for any

program that needs a slightly larger text size.

The program is very easy to use. The following is a list of the

parameters needed by the routine and where to poke the

needed values.

Listing 1: BASIC Demo Program

POKE

678

679

681

682

683

820

821

USE

X co-ordinate (0-39)

Y co-ordinate (0-24)

X multiple for size (1-40)

Y multiple for size (1-25)

char number (poke values)

overwrite (1 = yes/0 = no)

color byte

The overwrite allows character to be put on top of each other

and 'mesh' together rather than having the area erased before a

new character is put on. The color bytes upper 4 bits or nybble

are for the character color while the lower four bits specify the

character's background color.

There are also some enabling SYS's:

SYS 32768 makes the hi-res screen visible;

SYS 32771 clears the hi-res screen and fills color memory

with the background color;

SYS 32774 reverts back to the original text screen, on which

no changes have been made;

SYS 32777 plots the character.

The program uses memory from $8000-81C5 for the program

and from $5C00-$8000 for the hi-res screen and color map.

To protect the hi-res screen and the color map from being

overwritten, set the limit of memory with:

POKE 55,0: POKE 56,92

Listing 1 is a short demonstration of the hi-res text program,

listing 2 is the BASIC loader, and finally listing 3 is the PAL

source code.

GA

MJ

LF

AK

JM

BP

GD

HG

HN

CD

BE

IJ

NJ

LC

LH

II

JF

NN

10

AD

CA

OC

NF

BD

GD

PD

NE

HM

MA

FF

BJ

Bl

ID

MG

Kl

CJ

KN

CJ

NB

Kl

LP

LB

PO

EP

KA

LA

OA

100

110

120

130

140

rem sample program to use hi-res

rem text

rem darren James spruyt 85/06/01

rem

poke 53281,0 :rem set bg color

150 sys 32771 :rem clear hi-res screen

160 sys 32768 :rem turn screen on

170

180

190

200

210

220

230

240

250

260

270

280

rem 820 is overlap reg

rem 821 is color reg

rem 681 isxsize reg

rem 682 is ysize reg

rem 679 is y pos reg

rem 678 is x pos reg

rem 683 is char reg

for k=1 to 15

a$ = "the"

poke 821,k* 16

poke 681,2

poke 682,2

290 for j = 1 to len(a$)

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

poke 679,3

poke 678,2 + ((j-1)*3)

poke 683,asc(mid$(a$,j,1))

sys 32777

nextj

poke 681,8

poke 682,9

poke 821, k* 16

poke 679,10

poke 678,1

poke 683,asc("t")

sys 32777

for n = 1 to 15

a$ = "ransactor"

poke 681,3

poke 682,2

for j = 1 to len(a$)

c = n + (j-1):if c>15 then c = c-15

poke 821,c* 16

poke 679,14

poke 678,7 + ((j-1)*3)

poke 683,asc(mid$(a$,j,1))

sys 32777

next j

540 next n

550 next k

560 sys 32774

The Transactor 69 Volume 6, Issue O3

Listing 2: BASIC Loader

DD

JF

BM

PG

OH

GH

KJ

GC

DH

PP

GK

OK

CH

FD

IF

DN

BO

JB

BG

EF

HD

IG

LM

MA

DD

CE

LI

BJ

NJ

BA

DL

FM

DN

IF

GF

GB

LD

CA

KO

HA

AD

CL

EC

GB

GL

LA

PP

AB

LM

Al

IB

BE

AC

KH

100 print'

110 print'

120 print'

^B]h-re;5 text maker by

darren james spruyt

as of iune1/85

130 rem start of basic loader code

140 read

150 print'

160 for ki y~j *s i **_/ i ix

170 read

180 poke

190 ch =

a,b,d

'Blnow loadinq in code."

= a to b

c:poke k,

1024,c:poke55296,c

~:h + n:next

200 if chOd then f

210 print

220 data

230 data

240 data

250 data

260 data

270 data

280 data

290 data

QDPl Hata\j\J\J \JdiCi

310 data

320 data

330 data

340 data

350 data

360 data

370 data

380 data

390 data

400 data

410 data

420 data

430 data

440 data

450 data

460 data

470 data

480 data

490 data

500 data

510 data

520 data

530 data

540 data

550 data

560 data

570 data

580 data

590 data

600 data

610 data

620 data

630 data

'0done.
32768 ,

76, 95,

129, 169,

167, 2,

2, 230,

174, 166,

144, 2,

34, 120,

IRQ 0
1 U J, \J ,

20, 6,

21, 6

101, 21

153, 174

9, 4

187, 2

141, 172

2, 174

2, 176

153, 60

2, 169

141,186

189, 60

2, 76

206, 186

232,224

140, 183

2, 173

13, 182

182, 2

185, 2

172, 183

128,238

8,208

24, 165

35, 230

240, 3

173, 187

109, 128

174, 167

144, 2

109, 166

21, 174

)rint"data error" :stop

':end

33223,47644

129, 76,143,129, 76,119

96,133, 35,169, 0,174

240, 12, 24,105, 64,144

35, 230, 35, 202, 208, 244

2,240, 10, 24,105, 8

230, 35,202,208,246,133

165, 1, 41,251, 133, 1

133 21 173 171 2 133i _i* _i*. ' i ■ if ' - j i ■ i j ^™ i * *"■* *«^

20, 38, 21, 6, 20, 38

20, 38, 21, 24,169,216

133, 21,160, 7,177, 20

2,136, 16,248,165, 1

133, 1, 88,169, 0,141

141,173, 2,173,170, 2

2,173,173, 2,141,185

187, 2,160, 7,126,174

3,169, 0, 44,169,255

3,136, 16,240,126,174

0,141,182, 2,169, 8

2,162, 0,172,169, 2

3,240, 7, 56, 46,182

176,128, 24, 46,182, 2

2,240, 11,136,208,232

8,208,224, 76,241,128

2,142,184, 2,172,185

52, 3,240, 2,177, 34

2,145, 34,169, 0,141

169, 8,141,186, 2,173

24,105, 8,141,185, 2

2,174,184, 2, 76,181

173, 2,173,173, 2,201

18,169, 0,141,173, 2

34,105, 64,144, 2,230

35,133, 34,206,172, 2

76,115,128,238,187, 2

2,201, 8,240, 3, 76

169, 92,133, 21,169, 0

2,240, 10, 24,105, 40

230, 21,202,208,246, 24

2,133, 20,144, 2,230

170, 2,172,169, 2,136

Cl

HE

LN

KP

DN

AC

OD

BJ

ID

KK

DB

ID

PM

GO

FG

CP

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

Listing 3:

GL

EE

GO

FP

EJ

EL

BH

CB

KJ

OF

LK

NL

LM

IF

IG

NH

Dl

DJ

DD

BD

CK

HH

II

FA

ED

EN

CF

KG

CP

GH

EC

IM

LP

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

data 173,

data 165,

data 21,

data 17,

data 120,

data 252,

data 17,

data 21,

data 252,

data 0,

data 32,

data 230,

data 41,

data 160,

data 0,

data 200,

53,

20,

133,

208,

141,

9,

208,

141,

9,

169,

169,

21,

15,

0,

93,

208,

3, 145,

24, 105,

20, 202,

9, 32,

24, 208,

2, 141,

41,223,

24, 208,

3, 141,

96, 133,

0, 145

202, 208

133, 2

5, 2

153, 0

241, 96

PAL Source Code

rem hi-res text maker

rem by

rem bo>

20,

40,

208,

141,

173,

0,

141,

173,

0,

21,

20,

246,

10,

153,

94,

0,

darren james spruyt

:1226

rem gravenhurst, Ontario

rem pOc

rem

sys 700

.opt oo

:1g0

* = $8000

base

temp

tmp1

tmp2

pntri

cntri

charow

cntr2

cntr3

color

additi

;followir

; start of

print

; create

=

=

=

=

=

=

=

=

=

=

=

' jmp

jmp

jmp

jmp

code

=

base

Ida

sta

Ida

$6000

$02b6

$02b7

$02b8

$02b9

$02ba

$02bb

$02ac

$02ad

$0335

$0334

table

hion

clear

hioff

*

address

#>base

$23

#<base

136,

144,

230,

17,

0,

221,

17,

0,

221,

132,

136

173

10

0

153

0

16,

2,

96,

208,

221,

96,

208,

221,

96,

20,

208

33

10

92

232

0

251

230

173

169

41

173

169

41

160

162

251

208

10

153

94

0

set high address

a = lo address

The Transactor 7O Volume 6, Issue O3

DP

GG

PM

CA

JE

CE

FP

FD

OG

IP

IM

FG

HB

HM

PM

PC
r—f. a

bM

ME

IN

AG

DN

NP

JA

BN

FP

MN

NH

IN

01

OJ

AM

OC

EN

JE

10

HA

FJ

KO

FP

CF

El

AJ

NA

PH

FO

HA

NH

EK

PK

PA

DD

JE

CE

OC

HF

Al

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

980

P3

P2

P1

p6

p5

P4

!

icop)

Idx

beq

clc

adc

bcc

inc

inc

dex

bne

Idx

beq

clc

adc

bcc

inc

dex

bne

sta

$02a7

p1

#$40

p2

$23

$23

p3

$02a6

P4

#$08

p5

$23

p6

$22

;character row

;for each

;row

;add to base

;address, 320

;or$0140inhex

;done

;no

;column address

;for each column

;add8

;to the base

;address

;doneprint -

;no

;save lo address

/ char data from rom

;to $02ae

11

z15

z13

sei

Ida

and

sta

Ida

sta

Ida

sta

asl

rol

asl

rol

asl

rol

clc

Ida

adc

sta

Idy

Ida

sta

dey

bpl

Ida

ora

sta

cli

Ida

sta

sta

Ida

sta

Ida

sta

Idx

$01

#o/o11111(

$01

#$00

$15

$02ab

$14

$14

$15

$14

$15

$14

$15

#$d8

$15

$15

#$07

($i4),y
$02ae,y

11

$01

;lockout irq

)11;maked rom

;visible

;generate

;indirect

; based

;on

;character number

;times8

;plus$dOO0

;copy character

;bit patterns

;from rom

#%00000100

$01

#0

charow

cntr3

$02aa

cntr2

cntr3

pntri

charow

;close rom up

;release irq

initialize

;char pixel rows

;screen pixel row

;y multiple size

;y val for screen

;current char row

BA

FB

FM

PB

BO

LB

PE

NG

GM

JM

NC

MP

JJ

NN

JO

ON

MA

PC

IJ

CG

DC

HK

Al

DK

Al

LB

GP

BO

DK

OF

CE

EF

ED

LD

IE

FM

MA

OF

NC

NB

KG

DC

AG

Gl

JP

MH

HM

KL

IJ

CD

ND

EA

EK

EE

EK

HC

990

1000z1

1010

1020

1030

1040z2

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140z8

1150z5

1160

1170

1180

1190

1200z3

1210

1220z4

1230

1240z7

1250

1260

1270

1280

1290

1300z6

1310

1320

1330

1340

1350

1360

1370z23

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500 z9

1510

1520

1530

1540

Idy

ror

bcs

Ida

#$07

$02ae,x

z2

#$00

.byte$2c

Ida

sta

dey

bpl

ror

Ida

sta

Ida

sta

Idx

Idy

Ida

beq

sec

rol

jmp

clc

rol

dec

beq

dey

bne

inx

cpx

bne

jmp

sty

stx

Idy

Ida

beq

Ida

ora

sta

Ida

sta

Ida

sta

Ida

clc

adc

sta

Idy

Idx

jmp

inc

Ida

cmp

bne

Ida

#$ff

$033c,y

z1

$02ae,x

#0

temp

#$08

cntri

#$00

$02a9

$033c,x

z3

temp

z4

temp

cntri

z6

z5

#$08

z8

z9

*

tmp1

tmp2

pntri

additi

z23

($22),y

temp

($22),y

#0

temp

#8

cntri

pntii

#$08

pntri

tmp1

tmp2

z7

cntr3

cntr3

#$08

z10

#$00

;break bits

;into bytes at

;$033c

;done break

;no

;finish rotation

;set temp

;set rotations 8

;get x multiple

;test bit values

;zero means 0

; rotate a 1 in

;rotate aO in

;done 8 shifts

;yes - to screen

;check multiples

;do more

;check all 8 bits

;are done

;no- do more

;save y

;save x

;get y pntr

;mesh mode

;no

;get prev pattern

;add new pattern

;back to screen

;set temp to zero

;set cntr

;add 8 tp pntri

;to get

;to the next

;row

;restore x and y

;recurse

;count pixel rows

;at eight

;nope

The Transactor 71 Volume 6, Issue O3

GO

01

HI

NE

MM

JO

IM

IB

CM

CH

LF

Kl

KH

Al

FJ

DF

PM

JG

HF

HJ

MN

JP

DL

PP

AN

NA

JP

IE

JA

ID

El

MA

PF

GC

PA

DF

LJ

LD

EP

IK

LD

GD

NL

CD

EG

NN

IK

NJ

II

IG

00

FM

PK

CK

BA

DN

550

1560

1570

1580

1590

1600

1610 z11

1620

1630z10

1640

1650

1660 z12

1670

1680

1690

1700

1710z14

1720 ;add

1730

1740

1750

1760

1770

1780J3

1790

1800

1810

1820J1

1830

1840J2

1850

1860

1870

1880

1890J7

1900

1910)6

1920

1930

1940J4

1950

1960

1970

1980

1990

2000

2010

2020)5

2030

2040

2050

2060 hion

2070

2080

2090

2100

sta

clc

Ida

adc

bcc

inc

inc

sta

dec

beq

jmp

inc

Ida

cmp

beq

jmp

cntr3

$22

#$40

z11

$23

$23

$22

cntr2

z12

z13

charow

charow

#$08

z14

z15

*

colour as indicated

Ida

sta

Ida

Idx

beq

clc

adc

bcc

inc

dex

bne

clc

adc

sta

bcc

inc

-

Idx

Idy

dey

Ida

sta

dey

bpl

Ida

clc

adc

bcc

inc

si a

dex

bne

rts

=

Ida

ora

sta

Ida

#$5c

$15

#$00

$02a7

J2

#$28

J1
$15

|3

$02a6

$14

]7

$15

*

$02aa

$02a9

color

($14),y

J4
$14

#$28

J'5
$15

$14

J6

*

$d011

;re-set counter

;add 320

;to the indirect

;address ($22)

;y multiples

;done

; repeat previos ro

:chr pixel row

;done all 8 rows

;yes then finished

;do next row

;build the

indirect

;address

;via base

;of $5c00

;plusy pos *40

;and x pos

;done

;get y size

;get x size

;get color val

;put in mem

;done x

;no

;add 40

;to the address

;done

;done y

;no

#%00100000;turn hi-res bit

$d011

#o/oO1111000

GN

IB

KH

EP

MM

BA

JL

NB

BC

PG

EC

EO

Gl

IO

DG

ED

El

OG

IM

GA

GB

AD

Bl

AP

JO

KH

PO

GC

AN

PE

GF

ED

JC

DD

BJ

KN

BP

BO

OH

II

IM

NL

CM

LL

CO

MN

2110

2120

2130

2140

2150

2160

2170 hioff

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280 clear

2290

2300

2310

2320

2330

234016

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490 J53

2500

2510

2520

2530

2540

2550

2560 .end

sta

Ida

and

ora

sta

rts

=

Ida

and

sta

Ida

sta

Ida

and

ora

sta

rts

Idy

Ida

sta

sty

Idx

Ida

sta

dey

bne

inc

dex

bne

Ida

and

sta

asl

asl

asl

asl

Idy

ora

sta

sta

sta

sta

iny

bne

rts

$dO18

$ddOO

#%11111100

#%00000010

$ddOO

*

$d011

#%11011111

$d011

#21

$dO18

$ddOO

#o/o1111110C

#%00000011

$ddOO

#0

#>base

$15

$14

#32

#00

($i4),y

t6

$15

t6

$dO21

#%0000111

$02

#0

$02

$5c00,y

$5d00,y

$5e00,y

$5f00-24,y

J53

set screen/map

;set vie chip

.addresses

; re-set bit map

; reset screenmap

;reset vie chip

;address

;base address

;into

;($14)

;do32 pages

;

;zero memory

;doneprint

;no

;pull old color

1 ;from vie chip

;shift to high

;nybble

;low nybble

;fill

;color

;area

;up

The Transactor 72 Volume 6, Issue O3

The SAVE® Debate Rages On

- A Few More Observations

SAVE® Gap Attack!

Finally, that small ulcer that was acting up every time I used SAVE®

has started to heal. Thanks to Charles Whittern for demonstrating that

the BUG really exists.

I used the SAVE® EXPOSED!!! program with a slight modification so

that every time the directory is checked and the names of the program

pairs SAVED® is printed on the printer along with the program-start

track and sector. Also, the routine checks for any programs that start

with the same track/sector (the clone phenomenon). When such a

situation is detected, the program prints the two filenames and their

track/sector pointers. So one can just RUN the program and do

something else. Checking after 15 to 20 minutes would indicate that

SAVE® has done its thing!

I found that disks which have 'holes' in the directory are especially

sensitive to SAVE®. I used such a disk and after about 7 RUNs there

was a corrupted file. Then I scratched one of the clones, validated the

disk and repeated the above once again with the same results. Then 1

ran DIRECTORY GAP REMOVER (Richard Evers, Transactor 5(6): 57,

1985). Running SAVE® EXPOSED!!! required 34 RUNs before a file

was corrupted again. 1 think directory gaps contribute somehow to the

susceptibility of a disk to SAVE@-induced damage.

1 also found that to further guard against SAVE®, one should bring the

file on which one is working (and which will be SAVED®) to the end

of the directory. What I do is LOAD the file after RUNning GAP FILL,

then SAVE it as "TEMP". Then 1 work with this file till 1 get it right

using SAVE®. At this point 1 scratch the original file and SAVE TEMP

with the right filename. 1 know this is tedious but 1 consider it much

better than loading SPEEDSCR1PT and finding that it is actually

P1ANO64 in disguise!

Ranjan Bose, Winnipeg, Manitoba

What We Have Here Is A Failure To Re-Allocate

Charles Whittern's July article on the 1541 SAVE® bug will no doubt

elicit a flurry of activity on that long rumoured but previously uncon

firmed gremlin. A simple manifestation of the bug can be demon

strated as follows: LOAD a ten block BASIC program file and SAVE it

four times (under different filenames) to a newly NEWed disk. LOAD/

LIST the directory to confirm that 624 blocks are free. LOAD the

program and SAVE® the fourth then the third file. Initialize the drive

(or cold start your C-64) to get rid of the previous BAM then LOAD/

LIST the directory again. Surprise! 634 BLOCKS FREE! A look at the

BAM and file chains reveals that sectors used by the third file's

replacement are not allocated in the BAM. That is, the original sectors

occupied by file three are de-allocated normally but the newly

occupied sectors do not get allocated. And there sits file three,

accessible and functional but just waiting for a subsequent write to

wander into its unprotected space. Why some SAVE@'s work OK and

others do not is no doubt a crucial question. It is now clear that the

SAVE® bug results from a failure to allocate.

Phil McBrayer, Lexington, KY

Editors Note: My 1541 seems to be immune to this problem. It may

be a problem that is dependent on ROM revision.

The Relentless SAVE®

Accolades to you and Charles Whittern for your definitive work with

"SAVE With Replace Exposed!!".

1 would like to mention two associated thoughts or suggestions or

questions, however they may be taken:

1. The first time Save® bit me, about a year ago when I had had my 64

for four or five months, the names of a program about 30 blocks and a

program of about 8 blocks interchanged. My point is that as 1

remember, and it was quite a while ago, there was no way that I could

scratch the two programs and put them back in right with plain

"save". They insisted on being reversed. 1 ended up putting programs

I wanted to keep on a new disk and re-formatted the old disk. If that is

true, it ought to be some sort of a hint of what gets mixed up.

2. When I bought my 64, 1 bought Easy Script, which I have used

heavily and love more than you would ever believe. Praying that what

I am about to say doesn't bring the roof down on me (I am "knocking

on wood" madly), Easy Script has never loused with replace for me,

and I have used it far, far more than I have used Save® with plain

Basic programs. Of course, Easy Script is machine language, pro

tected, and for all I know it may Scratch before Saving. It wouldn't be

hard to manually Scratch before Saving because Easy Script has a slick

disk mode which doesn't affect the text in memory, but I just haven't

as yet found it necessary.

But beyond Easy Script, I have a program which I originated, in Basic,

which I have updated 28 files weekly for 32 weeks, now, using Save®

from within the program. Again knocking on wood, these updates

haven't as yet messed up. On the other hand, there is never much

change in length of the files and they only occupy two blocks each.

However, I happened to look at the directory the other day and the

disk showed only 40 blocks free. I ran the "validate" command which

increased free blocks to 584; I am hoping that this will not trigger a

Save® problem.

From these two cases I had a theory that Save® works perfectly from

within a program, but Charles Whittern's experiment rather blows

that. Now I am wondering if sequential files, which both of my

illustrations are, may be immune to the problem.

At any rate, I hope that you experts and Commodore continue your

research until all ramifications of the problem are known.

H.C. Doennecke, Tulsa, OK

Editors Note: Who knows, sequential files might be immune. Pro

gram files only use one data buffer within the drive during creation,

sequential files consume two. It could be that Commodore drives are

claustrophobic, therefore flying into spastic rages whenever con

fronted with the evil Save@.

SAVE® Traps & Tips

If you insert Validate into the LOAD-SAVE® Whittern loop, there's no

longer any file damage.

73

You can also intentionally damage files by (a) LOADing a program, (b)

SCRATCHing it and several other programs, then (c) SAVEing the

program back to disk. Again, if you Validate the disk after the

SCRATCHes, before the SAVE, the DOS error is prevented.

Finally, here's a good way to produce highly unreliable disks which

will either not work, crash within a few days, or give occasional

unexplained file errors: (1) Buy the cheapest bulk disks. (2) Don't reset

the disk drive before you format them. And, (3) use a faster than

normal method to format them. The fast disk copier programs or

speeded-up 1541 ROMs are particularly handy for this purpose.

John R. Menke, Mt. Vernon, IL

SAVE® Goes One Degree Too Far

I read Charles H. Whittern's article 'SAVE With Replace Exposed!!' in

the Transactor. I consider this a very serious situation.

Recently, a large part of my Master's Thesis was destroyed by a word

processor 1 was using on the C-64, jeopardizing my degree! When 1

wrote the software vendor, they shrugged off the problem with a form

letter blaming the SAVE. I'm not sure where the responsibility lies, but

I feel that Commodore and the software vendors have a responsibility

to provide immediate relief. If they do not take this matter seriously, a

law suit would be in order.

Can you help me contact Charles Whittern and anyone else that is

resolving this problem?

Daniel Bresnahan, Bloomfield, New Jersey

The Instigator Returns!!!

Thank you for publishing my research on the Save® phenomena. If

you have not yet sent the champagne, I would be happy to accept a

copy of the new "Complete Commodore Inner Space Anthology" in its

place. Perhaps this would be easier for you to ship, and it would be of

much more use to me as a non-drinker (Although I was going to keep

the bottle as a trophy!).

I modified my "SAVE® EXPOSED!!!" program recently to include a

VERIFY of each program immediately after it is SAVED®. Also I

added a POKE 198,0 to HALT the program if a VERIFY error occurred.

This is skipped over if the VERIFY is ok. I figured this would catch the

first incorrect replacement and HALT the program. After RUNning this

version for a while, I was amazed to find that although each program

LOADED, SAVED®, and VERIFIED ok, SAVE® was still up to its old

tricks! After each SAVE® the VERIFY showed that the program just

placed on disk matched byte for byte the one placed in memory. Yet

LOADing and LISTing the programs revealed several of them to be

very different indeed! How can this be? Now I am truly baffled! I am

sending this program along in hopes that it will aid in finding the

source of the trouble.

Another thing that I have discovered is that the BAM gradually fills as

"SAVE® EXPOSED!!!" RUNs, until it is completely allocated. The

block counts do not reflect this increase although the blocks free does

(it takes several hours to accomplish this).

Charles H. Whittern, President

Lenawee Users Group - Commodore 64 (LUG-64)

Hudson, Michigan

GL

EC

PD

HJ

IL

JD

NH

NO

IB

EN

AP

140

150

160

170

180

190

200

210

130 d1 $ = chr$(17): d2$ = d1 $ + d1 $: d3$ = d2$ +

d1 $: d4$ = d3$ + d1 $: d5$ = d4$ + d1 $

for i = 1 to 5: read a$(i): next

i = int(rnd(0)*5) + 1

print cs$"load"qt$;a$(i);qt$",8"

printd4$"save"qt$"@0:"a$(i);qt$",8"

printd3$"verify"qt$;a$(i);qt$",8"

print d5$"poke 198,0"

print d1$"load"qt$"save@ + verify"qt$",8"

poke631,19: for i = 1 to 5: poke631 +i,13

: next: poke 637,82

220 poke 198,9: end

230 data recover ram,check disk drive,quadra,

performance test,disk log

BE

JO

ON

100 rem "save® & verify"

110 rem may 14,1985 by c.h. whittern, box 215,

hudson, mich 49247

120 cs$ = chr$(147): qt$ = chr$(34)

Editors Note: The following is an excerpt from a letter recently sent

to us by Ray Quiring. We originally received a letter from Mr. Quiring

back in September of 1984 stating that he had finally found the

SAVE@ bug. At that time, we could not reproduce the bug using the

information he supplied. His bug reproduction technique was to create

a disk error then SAVE@ a file while the error was still present. We

tried, but the drive we were using worked just fine. With that back

ground supplied, the following letter should make a bit more sense.

The Disappearing SAVE®

The circumstances surrounding the disappearance of the bug gives

another clue as to what is happening. The procedure worked perfectly

on both my drives, that is it would cause two files to point to the same

track and sector. But then the drive misalignment became severe and

both were eventually sent out to be realigned. When they came back

the bug was nowhere to be found. This only reinforces my belief that

the bug appears as a response to some DOS error condition. We never

notice most DOS errors because the DOS tries several times before

giving up and reporting the error.

The explanation of the symptoms of the SAVE® bug is straight

forward: nothing can ever be correct after two files point to the same

track and sector. If the sector happens to be de-allocated in the BAM,

the very next SAVE will try to use the sector as if it were available.

Mysteriously, the two old files will point to part or all of the new file

saved. How much of the new file gets linked in depends upon how

much of the new file was saved before the DOS used the sector which,

unknown to the DOS, was already "in use" by the two previous files.

You never find out about the problem until you try to use one of the

two previous files. Detecting the multiple use of the same sector is too

much to ask of a DOS, so what should have been done to prevent it?

One thing that would have helped is to issue an error in the attempt to

de-allocate a sector that is already de-allocated. The DOS does not

presently do this. This would, at least, have flagged the condition early

and may even have prevented the damage in the first place. It is

understandable why the designers of the DOS did not do this: why

prepare for a condition that logically should never occur?

All the other symptoms of the SAVE® bug are explained by analysing

the various combinations possible of two or more files pointing to the

same sector, and the sector being allocated or de-allocated at any

given time. This does not explain where the bug originates. I believe

that the bug can be used as a sensitive test of drive condition. When

the drive is in good shape the bug stays hidden, when the drive suffers

from heat prostration or head misalignment the bug reappears.

Prevention of the bug by resetting prior to and after using SAVE® may

not be as sure a thing as it has been for me.

Ray Quiring, Kerby, Oregon

The Transactor 74
VbHii

ira

CAPTPAN S.MMTAX.
O

-HIMSELF

! I 3UVT

CRN WU-HihSELF'Si:^ X H°P£ V

pL0T5KY E Hf^H
PsMt> "Discovered

FLV AS ft Floppy /

HE BEGINS HIS WORK
HOODS

OK VJELL,
MOW TO \aKDRVL,

MEED \MFO

HECOLiLDKi'T TEUL ME

WHERE fIDTSKY IS

BUT HE SMD WHERE
HIS ASSISTANT WORKS

I'M GOING.Fi&
I CAN

TO M695 UP

FLOTSKV'S

COMPUTER..
THIS, ULL
HE.UP

THE MICRO

CH\PS

S

SQME-THIN&

BIG

AT THKV V\O^EUT

(TMERE IT 15!

The Transactor 75 Volume 6, Issue O3

A Gazeteer Of Programming Languages

The following article appeared in the November 2, 1984 edition ofthe

University of Waterloo's mathNEWS. The author is unknown.

SIMPLE

'Simple' is an acronym for Sheer Idiot's Programming Linguistic

Environment. This language, developed at Hanover College for Tech

nological Misfits, was designed to make it impossible to write code

with errors in it. The statements are, therefore, confined to 'begin',

'end', and 'stop'. No matter how you arrange the statements, you can't

make a syntax error.

Programs written in Simple do nothing useful. They thus achieve the

results of programs written in other languages without the tedious,

frustrating process of testing and debugging.

SLOBOL

Slobol is best known for the speed, or lack of it, of its compiler.

Although many compilers allow you to take a coffee break while they

compile, Slobol compilers allow you to travel to Bolivia to pick the

coffee. Forty-three programmers are known to have died of boredom

sitting at their terminals while waiting for a Slobol program to

compile.

VALGOL

From its modest beginnings in Southern California's San Fernando

Valley, Valgol is enjoying a dramatic surge of popularity across the

industry.

Valgol commands include 'really', 'like', 'well', and 'y*know'. Varia

bles are assigned with the ' = like' and ' = totally' operators. Other

operators include the California Booleans, 'fersure' and 'noway'.

Repetitions of code are handled in 'for/sure' loops. Here is a sample

Valgol program:

like y*know (I mean) start

if pizza = like bitchen and

b =like tubular and

c = like grodyax

then

for I = like 1 to oh maybe 100

do wah - (ditty)

barf(1) = totally gross (out)

sure

like bag this problem

really

like totally (y*know)

Valgol is characterized by its unfriendly error messages. For example,

when the user makes a syntax error, the interpreter displays the

message:

gag me with a spoon

LITHP

This otherwise unremarkable language is distinguished by the ab

sence of an 's' in the character set. Programmers must substitute 'th'.

Lithp is said to be useful in prothething lithtth.

LAIDBACK

Historically, Valgol is a derivative of Laidback, which was developed

at the (now defunct) Marin County Center for T'ai Chi, Mellowness,

and Computer Programming, as an alternative to the intense atmo

sphere in nearby Silicon Valley.

The centre was ideal for programmers who liked to soak in hot tubs

while they worked. Unfortunately, few programmers could survive

there for long, since the centre outlawed pizza and RC Cola in favour

of bean curd and Perrier.

Many mourn the demise of Laidback because of its reputation as a

gentle and non-threatening language. For example, Laidback re

sponded to syntax errors with the message:

Sorry, man, I can't deal behind that

C-

This language was named for the grade received by its creator when

he submitted it as a project in a university graduate programming

class. C- is best described as a 'low-level' programming language. In

general, the language requires more C- statements than machine-

code instructions to execute a given task. In this respect it is very

similar to COBOL.

SARTRE

Named after the late existential philosopher, Sartre is an extremely

unstructured language. Statements in Sartre have no purpose; they

just are. Thus Sartre programs are left to define their own functions.

Sartre programmers tend to be boring and depressed and are no fun at

parties.

DOGO

Developed at the Massachusetts Institute of Obedience Training, Dogo

heralds a new era of computer-literate pets. Dogo commands include

'sit', 'stay', 'heel', and 'roll over'. An innovative feature of Dogo is

'puppy graphics', a small cocker spaniel that occasionally leaves

deposits as he travels across the screen.

The Transactor 76 Volume i

And this one from Nick Sullivan

Lingua Programatica

As a programmer who has frequently been frustrated by the lack of

flexibility of conventional high-level programming languages, I am

pleased to report the recent completion of a new language that

promises to leave Pascal and the others stumbling in its tailwind. The

new language is called LATIN (not to be confused with the natural

language, Latin, with which it is, however, identical).

LATIN offers such conveniences as Roman numeral mode (for those

who are tired of trying to deal with clumsy Arabic numbers), output to

marble, and a sophisticated user interface that features not just icons

but also omens. The package includes complete error detection and

punishment. Program execution is rapid; however, programmer exe

cution is painfully slow.

The carefully written documentation is hand-copied on papyrus

scrolls by Egyptian slaves, and scans nicely. The language is provided

on a sturdy double-sided discus, designed for years of trouble-free

use.

Availability of LATIN is something of a problem at present, as the

compiler is written not in assembler but in an intermediate-level

language called GREEK (G-Code), which has yet to be implemented

on any microcomputer.

And this one by Karl Hildon . . .

NORTH

NORTH programs can only execute efficiently where snow falls at

least 5 months of the year. This is because many NORTH program

mers become sick up and fed with their environment and move on to

SOUTH. Almost all NORTH programs are totally useless in the

SOUTH environment.

NORTH programs are immediately recognizable by the " , eh " suffix

which seems to be necessary after every line. Although there are other

slight differences, most NORTH programs can be translated to SOUTH

by replacing the " , eh " suffix with " , uh ".

Debugging NORTH programs is no probs. The "Gimme a break"

command can be inserted to stop programs from taking off with goofs,

and after an error, the "Check it out" command shows the offending

botches.

The following is a demo program that comes with the NORTH

interpreter:

10 hosers = 1, eh

20 buzz hoser, " what's happenin man?", eh

30 far out, eh : hosers = hosers + 1, eh

40 if hosers < beer/6 then 20, eh

50 if dough = 0 then cruise, eh : goto 50, eh

60 if donuts = 0 then cruise, eh

70 if beer < 24 then cruise, eh : beer = beer + 24, eh

80 killer, eh

90 on stereo goto heavy metal, heavy metal, heavy metal

100 while beer >0, eh

110 beer = beer - hosers, eh

120 endwhile, eh

130 if munchies then do food, eh

140 if burnt out then crash, eh : else 70, eh

Compu-toons

COHPUTER WHIZ!

iJornv fVeQ^t*^ I'M

vv >uJj

mm

/rOOU'T &ET It\
EITHER, BUT THIS

IS THE FlteT T/ME

I'VE 8EE^ It! THE

\&J<K FOP VEfl«//

"Efficient?. . . Oh yes, it's efficient!

Maybe a little TOO efficient."

The Transactor 77 Volume 6, Issue O3

News BRK Please Note: The Transactor has

a new phone number: (416) 878 8438

Transactor News

Submitting NEWS BRK

Press Releases

If you have a press release which you

would like to submit for the NEWS BRK

column, make sure that the computer or

device for which the product is intended is

prominently noted. We receive hundreds

of press releases for each issue, and ones

whose intended readership is not clear

must unfortunately go straight to the trash

bin. Price, availability, and phone numbers

are also important. It should also be men

tioned here that we only print product

releases of specific interest when related

somehow to Commodore equipment.

The Worst Kind Of Crash

Normally here at The Transactor we like to

hear about new kinds of crashes. Not this

time. John Mostacci, Art Director at The

Transactor, had the ultimate misfortune of

experiencing an auto mishap of the far-

worse-than-fender-bender type variety.

Photos of John's car (which now looks

more like a slice of pizza with a bite taken

out of it) would make great material for a

fairly gruesome tale.

You'll be glad to know John is ok except for

just enough damage to render him officially

incapacitated. A broken forefinger to his

right and a nasty gash on his left, not to

mention a merciless blow to the knee and

other assorted gouges, meant this months

cover would require a contingency plan. I'd

like to thank Carlo Mostacci for coming to

the rescue. Fortunately for us, two artists

were slated for the Mostacci family, and

fortunately for Carlo his supervisor had two

taped up hands (Fortunately for me they

both have a sense of humor, right guys? I

said, right guys?).

John should be back to the brush for the

next cover, but until then, on behalf of The

Transactor staff and readers, "Get well

soon, John, we miss you".

Events

PCCFA - Computers In Action

It is with great pleasure that we announce

the sixth annual Pacific Coast Computer

Fair, Computer In Action, to be held Sep

tember 14 and 15, 1985, at the Robson

Square Media Centre, Vancouver, B.C.

Ours was the first personal computer fair

held in western Canada and is unique as

the only major Canadian fair presented by

a non-profit association. Each year it draws

from five to eight thousand visitors.

One of the most exciting aspects of the Fair

is our speakers program. This year we will

again have over two dozen speakers, in

cluding:

• Alan Boyd, Director of Software Acquisi

tion, Microsoft

• Jim Button, author of PC-File III

• Andy Hertzfeld, principal software archi

tect of the Apple Macintosh

• Tim Paterson, co-author of MS-DOS 1.1

• Bob Wallace, author of Microsoft Pascal

and PC-Write

The talks, panels, and workshops pre

sented will cover a wide range of topics

related to personal computing. These will

include:

• Artificial intelligence

• How to write for computer publications

• Local area networking

• Logo

• Purchasing computer books

• Purchasing computer software

• Telecommunication

• Unix

For more information, please contact:

Susan Brenan

Pacific Coast Computer Fair Association

P.O. Box 80866

South Burnaby, B.C.

V5H3Y1 604 581-6877

ISECON '85 - The Information

Systems Education Conference

ISECON, sponsored by the Data Processing

Management Association Education Foun

dation (DPMA-EF), will be held October

26th & 27th, 1985, at The Sheraton Hous

ton Hotel in Houston, TX.

This years' theme is Dissemination of Infor

mation Systems (IS).

More than sixty presentations and panel

discussions on topics of major concern to IS

professionals; exhibits presented by major

publishers and manufacturers of hardware,

software, and audio/visual delivery sys

tems; DPMA Special Interest Group of

Education (EDS1G) Educator Award presen

tation; computer film and video tape festi

val; keynote speaker - IBM Fellow Dr.

Harlan Mills, and nationally recognized

luncheon speaker.

Who should attend: Computer systems ed

ucation; undergraduate instructors with

majors in data processing, computer sci

ence and management information sys

tems; business professionals with interest

in computer information systems; and fu

ture IS professionals. For more informa

tion, contact:

ISECON '85

Data Processing Management Association

505 Busse Highway

Park Ridge, IL

60068-3191 312 825-8124

Western Ontario Business/

Computer Show and Seminar

December 2nd, 3rd & 4th

City Centre Complex

Commonwealth Ballroom

Holiday Inn

London, Ontario

A sales success story you can put to work

for you! If you sell. .. business machines,

computer hardware, computer software, of

fice furniture, office copiers, typewriter/

word processors, filing systems, business

telephone systems, office supplies and

services, any products in the computer and

business technology line. . . the Show &

Seminar should be a vital part of your sales

strategy.

Plus. . . we arrange a free seminar series on

up-to-the-minute business trends - a

proven drawing card that will bring quali

fied sales leads directly to you.

To reserve space or obtain further informa

tion, contact:

Don Young, Exhibits Manager

Brian Jones, Show Manager

Southex Exhibitions

1450 Don Mills Road

Don Mills, Ontario

M3B2X7 416 445-6641

The Transactor 78 Volume 6, Issue O3

Evolution of the Digital Pacific

PTC '86, the 8th Annual Forum of the

Pacific Telecommunications Council, will

continue the discussion of telecommunica

tions for Pacific development. The confer

ence will be held January 12th - 15th,

1986, Hawaiian Regent Hotel, Waikiki,

Honolulu Hawaii.

Three sub-themes of PTC '85 will examine

1) Current telecommunications develop

ments in the Pacific; 2) Future develop

ments including computer communication

convergence, artificial intelligence, ISDN;

3) Training & Education needs and pro

grams relevant to current and future needs.

PAPERS are requested in each of the three

sub-themes.

1. Current developments will cover a broad

spectrum including facilities develop

ments, business aspects, user needs an

concerns, regulatory and policy ques

tions, standards, economics. Focus may

e on voice, data, video and broadcast

topics.

2. Future developments will focus on prob

able implementations will will impact

telecommunications and societies in the

1990's and beyond. Papers should focus

on the technological aspects as well as

on the possible impact - social, eco

nomic, education.

3. Overviews of existing telecommunica

tion training organizations and pro

grams including discussions of how

program relate to perceived future

needs of trainees and users.

Papers written jointly by persons from dif

ferent countries are encouraged. Please

submit a one page outline of your proposed

paper to PTC '86.

DEADLINES: Outlines for proposed papers

must be received by June 15, 1985. Notifi

cation of acceptance/non acceptance will

be given August 1st, 1985. First full drafts

will be due September 30th, 1985. Final

manuscript will be due November 30th,

1985.

EXHIBITS related to the conference themes

are especially invited. For PAPERS, EX-

HITITS or INQUIRIES, please contact:

Richard J. Barber, PTC Executive Director

Jan C. Goya, PTC Secretary

PTC '86

1110 University Avenue, #308

Honolulu, HI 96826 808 941-3789

Books

Four New Books from Abacus

COMPILER BOOK for the C64 & C128

The Compiler Book illustrates how a com

puter can transform a high-level language

into machine-executable code. The reader

will also learn how to design a language

suited to his problems and write a corres

ponding compiler. It's not only for those

who need to understand or write compil

ers, but also for those who want to know

more about how their computer works.

Also included as a complete assembler and

disassembler, and an introduction to the

6510 machine language commands.

CADfortheC64&C128

This book offers a detailed and an easy-to-

understand introduction into the fascinat

ing world of Computer Aided Design. Many

examples and programs included as we

cover topics on 3-Dimensional drawing,

reflection, duplications, zoom, and filling

and much more. The reader will learn how

to use the full capacity of his C64 or C128

by designing, calculating, drawing and doc

umenting object.

MORE TRICKS AND TIPS

This book is the second volume of impor

tant techniques to aid the reader in pro

gramming on the Commodore 64. Topics

covered include software protection; ex

tending BASIC commands; character,

sprite and multicolor graphics; interrupts;

the kernal and operating system and others

as well. With these helpful tips, the reader

will enhance the usefulness of the Commo

dore 64.

Presenting The ATARI ST

Jack Tramiel has launched the ATARI ST -

his third major product for the home com

puter market. As with his highly successful

VIC-20 and record-shattering

Commodore-64, the new ATARI ST prom

ises to break current price/performance

barriers to become the computer that

brings the user "power without the price."

The book Presenting the ATARI ST give you

an in depth look at this much publicized

computer. Lothar Englisch and Jorg Walko-

wiak, two computer experts and best-

selling authors examine this fascinating

computer. Based upon hands on experi

ence with the ST, they examine the fantas

tic capabilities of the ST - from the design

of the hardware to the sophisticated operat

ing system.

As with other ABACUS books, Presenting

the ATARI ST will be sure to give complete

coverage of the subject.

For more information contact:

Abacus Software, Inc.

2201 Kalamazoo S.E.

P.O. Box 7211

Grand Rapids, MI

49510 616 241-5510

How To Write Papers And Reports

About Computer Technology

A new book in the ISI Press Professional

Writing Series in now available to help

computer professionals write effective doc

umentation, proposals, specifications, re

ports, and papers. The book covers a large

number of topics including: What makes a

good user manual? How do you define your

audience? What techniques work best for

getting information through interviews?

How do you write proposals that work?

How can you incorporate graphics into

your writing?

The author, Charles H. Sides, is a lecturer

in the Massachesetts Institute of Technolo

gy's Writing Program. His feeling is that

communication is a vitally important func

tion for every computer professional and

that writing is sorely neglected during most,,

professional training. His book fills (P

void. Written in a lively, readable sty,1'.,

book helps remove the mystique and ag

gravation from professional writing respon

sibilities; it belongs on the desk of everyone

in the computer industry who needs to

write.

How To Write Papers And Reports About

Computer Technology (162 pages) is availa

ble as a paperback (ISBN 0-89495-035-5)

for $21.95. It is available at local booksel

lers or direct from ISI Press. Prepaid orders

are shipped postpaid; billed orders are

charged shipping and handling. Orders

may be placed toll-free by calling 800 523-

1850, ext. 1399.

Review and examination copies are availa

ble for reviewers, journalists, and educa

tors considering the book for adoption, and

may be obtained by calling 215 386-0100,

ext. 1302.

Additional information may be obtained by

writing to:

ISI Press

3501 Market Street

Philadelphia, PA 19104

TheTti
79 Volume 6, Issue O3

THE WORLD OF
COMMODORE III

■■ ■■■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■■■■■a

The 1984 Canadian

World of Commodore show was

the largest and best attended show

in Commodore International's

history. Larger than any other

Commodore show in the World

and this year's show will be

even larger.

World of Commodore III

is designed specifically to appeal

to the interests and needs of

present and potential Commodore

owners.

Everything about your

present or future Commodore

computer - from hardware to

software, Business to Personal to

Educational - from over 90

International Exhibitors. Price of
admission includes free

seminars, clinics,

contests and free

parking.

:O

JOIN TPUG
The largest Commodore Users Group

Benefit from:

Access to library of public domain software

for C-64, VIC 20 and PET/CBM

Magazine (10 per year) with advice from

Jim Butterfield

Brad Bjomdahl

Liz Deal

TPUG yearly memberships:

Regular member (attends meetings)

Student member (full-time, attends meetings)

Associate (Canada)

Associate (U.S.A.)

Associate (Overseas — sea mail)

Associate (Overseas — airmail)

— $35.00 Cdn.

— $25.00 Cdn.

— $25.00 Cdn.

— $25.00 U.S.

— $30.00 Cdn.

— $35.00 U.S.

-$45.00 U.S.

FOR FURTHER INFORMATION:

Send $1.00 for an information catalogue

(tell us which machine you use!)

To: TPUG INC.

DEPT. A,

1912A AVENUE RD., SUITE 1

TORONTO, ONTARIO

CANADA M5M 4A1

A HUNTKR NICHOLS PRESENTATION
For more information call:

(416)439-4140

COMAL INFO
if you have COMAL—

we have information.

BOOKS:
COMAL From A TO Z, $6 95
COMAL Workbook, S6.95

Commodore 64 Graphics With COMAL $14 95
COMAL Handbook $18 95
Beginning COMAL, 522.95

Structured Programming With COMAL $26 95
Foundations With COMAL $19 95
Cartridge Graphics and Sound, $9 95
Captain COMAL Gets Organized, $19 95
Graphics Primer, $19.95
comal 2.0 Packages, $19.95
Library of Functions and Procedures $19 95

OTHER:
COMAL TODAY subscription, 6 issues $14 95
COMAL 0.14, Cheatsheet Keyboard Overlay, $3 95
COMAL Starter Kit (3 disks, 1 book) $29 95
19 Different COMAL Disks only $94 05
Deluxe COMAL Cartridge Package $128 95
(includes 2 books, 2 disks, and cartridge)

ORDER NOW:
Call TOLL-FREE: 1-800-356-5324 ext 1307 VISA or MasterCard
orders only. Questions and information must call our
info Line: 608-222-4432. All orders prepaid only-no COD
Add S2 per book shipping. Send a SASE for FREE Info
Package or send check or money order in US Dollars to:

COMAL USERS CROUP, U.S.A., LIMITED
5501 croveland Ter, Madison, wi 53716

trademarks: Commodore 64 of Commodore Electronics irri
Captain comal of COMAL users Croup, USA, Ltd.

Simply code your co-ordinates onto the

postage powered order form and every pro

gram from each issue will be locked in,

energized, and transported from our star'

base directly to yours! Warp 9 will seem

slow compared to the time you save typing,

and the programs will give your machine

that look and feel of a fresh set of Dilithium

Crystals! Coast through the Neutral Zone

with The Transactor Disk!

Only $7.95 Each!

6 Disk Subscription

Just $45.00!

The Transactor presents,

The Complete Commodore

Inner Space Anthology

Only $14.95

Postage Paid Order Form at Center Page

