
1^f^ fVfr ITTfc §F% flf^ l^B^ Commodore Canada's
Tech/News Periodical

The Transactor
VOLUME 3

Issue #5

Bits & Pieces

ON GOTO ELSE

A useful sequence in BASIC is IF - THEN - ELSE.

Unfortunately, as everyone knows, PET BASIC can't do an

IF THEN ELSE, or can it? Well, the answer is no, it can't.

However, a lot of times the 'THEN' keyword is followed by a

line number which really means GOTO. IF GOTO ELSE we can do!

The common approach in BASIC is an IF statement followed

by some 'if criteria1, followed by THEN or GOTO and a line

number. Anything beyond here will be ignored since if the

condition is satisfied, the GOTO is executed, and if not,

BASIC drops down to the next line of the program. Therefore, =*-•

the next line usually contains the 'ELSE' code. For example:

100 IF X=B GOTO 120 : X=X+1 : GOTO 100

...will never work. Even though it does absolutely nothing,

to do it correctly we need:

100 IF X=B GOTO 120

110 X=X+1 : GOTO 100

To get it all on one line we use the ON GOTO statement:

100 ON -(X=B) GOTO 120 : X=X+1 : GOTO 100

True/false logic in PET BASIC produces a "0" for false and

"-1" for true (try PRINT 4=5, 5=5). A negative argument will

give 7ILLEGAL QUANTITY ERROR so we change the sign with

-(A=B) . Fortunately, an argument that is out of range

(ie.'O')for ON GOTO will not cause execution to drop to the

next line but rather continue with the next statement. This

is also true if there are not enough line numbers following

the GOTO to satisfy the argument. For example:

100 ON PEEK(32768+X) GOTO 120 : X=X+1 :GOTO 100

...will GOTO 120 only if the character PEEKed is an "A".

The Transactor is produced on the CBM 8032 with WordPro 4+



Index Transactor #5 .

Bits & Pieces 1

ON GOTO ELSE 1

MisguideINT 3

PET/CBH EPROMs 3

Invade Invaders 4

80/40 Vision 4

Backup 9

BASIC Plotter 10

Machine Language Monitor Intro 12

The 6845 Video Controller 18

Getting Usable Video Signals 20

PRINT-AT Routine 21

The Print Mint 22

Programming Tips 24

VIC-20 Bonus Section

VIC-20 Cartridge Development 29

A Little VIC Music 32

* Another Voice For The VIC-20 34

* Joystick Control on The VIC-20 36

* Computer Magic 3 8

VIC Loader For PET/CBM 41

SUPERMON For The VIC 49

VIC-20 Memory Maps 5 8

* Reprinted from

Commodore, The Microcomputer Magazine

i



When you. think about it, an.IF THEN ELSE is only useful

if you can fit the IP criteriar the THEN criteria and the

ELSE criteria all on one liner which is often not possible.

Using this variation of ON GOTOr you111 get the IF and ELSE

criteria on one line; the THEN conditions will go elsewhere.
Additionallyr you can have several THEN conditions just by

adding more line numbers.

MisauideINT

In algebrar the integer of a decimal number is defined

as the next lower whole number past the fractional part.

Therefore:

PRINT INT (1.3)

1

PRINT INT (-1.3)

-2

One might expect the second example to return M-ln. But
BASIC is doing it right. If you want the next lower whole in

order of magnitude, you'll have to code:

PRINT INT (ABS (-1.3)) * SGN(-1.3)

Of course "-1.3" will probably be a variable in your program.

One last note... integer variables automatically do an INT

operation on decimal numbers:

A% = INT (A) is the same as

A% = A

PET/CBM EPROHs

EPROMs come in all shapes and sizes but not all work

with PET/CBMs. The most useful ones are the 4K and 2K sizes.

There is also a IK EPROM which you could probably get quite

cheap, but this is getting somewhat small and wastefull of

valuable address space.

The part numbers are set up so that the last 2 digits

represent the number of K bits, so this number divided by 8

gives K bytes. Here is a list of EPROMs that DO work with

PET/CBMs:

2532 - 4K byte

2716 - 2K byte

2516 - same chip as above

2708 - IK byte

250 8 - same chip as above
r*

Several manufacturers (Texas Intruments, Motorola, Hitachi,

etc.) produce these chips so you might find some letters

before or after the part number. The 2516s and 2716s are

virtually the same IC (ie pin for pin compatible) , but the

2732s and 2532s are qiJiite different. The 2732 won't operate

in the PET due to power supply requirements. The T.I.

TMS2716 is also incompatible.

- 3 -



Any local electronics* shop should have availability
information and EPROM programmers with software are available

through some Commodore dealers or see the ads in Compute!,

BYTE, etc.

Invade Invaders

Paul Higginbottom has a quick note for 'Invaders1

players (from Midnight Software Gazette):

SOEOl (3585) - sets speed you move & fire; normally 2

$0E09 (3593) - sets invader firing speed ; normally 4

$0E0E (3598) - sets mother ship speed ; normally 6

Finallyf $0623 (1571) contains the character after missiles

to erase them* Try POKEing with 102 ($66) for V7all Invaders,

80/40 Vision

Jim Butterfield doesn't have bionic eyes but he does

have a way to test for 80 or 40 column screen:

WD=80 : POKE 32768+1024, 96 : IF PEEK(32767)=96 THEN WD=40

<J#b**>

Vc

6<-

•What Do You Mean You Don't Know?'

- 4 -



Standard Features:

• Full power to PET/CBM for a minimum of

15 minutes

• Installs within PET/CBM cabinet

• No wiring changes necessary

• Batteries recharged from PET/CBM inte

gral power supply

Specifications:

Physical Size: 5.5" x 3.6" x 2.4"

Weight: 4.5 lbs.

Time to reach full charge: 16 hours

Duration of outputs: Minimum of 15 mm.

Voltages: +16, 4-9. -12, -9

Battery Life Expectancy: 3 to 5 years

Battery On-Off Switch

For Use With:

• Commodore PET/CBM 2001 and 4000 ser

ies computer

• Commodore PET/CBM 8000 series com

puter (screen size will not be normal on

battery back-up)

• Commodore C2N Cassette Drive

BATTERY
BACKUP
SYSTEM.
FOR COMMODORE PET/CBM COMPUTERS

Never again lose valuable data because of

power shortages or line surges. BackPack sup

plies a minimum of 15 minutes reserve power to

32K of memory, the video screen and tape

drive. BackPack fits inside the PET/CBM

cabinet and can be installed easily by even the

novice user. BackPack is recharged during nor

mal operation and has an integral on-off switch.

BackPack comes fully assembled and tested.

Instructions included.

BackPack is a trademark of ETC Corporation

CBM/PET are trademarks of Commodore Business Machines

Designed and manufactured by:

ELECTRONIC TECHNOLOGY CORPORATION

P.O. Box G, Old N.C. 42.

Apex, North Carolina 27502

Phone: (919)362-4200 or (919)362-5671

E lectronic Manufacturing

Technical Design and Development

Computer System Technology

ELECTRONIC TECHNOLOGY CORPORATION

- 5 -



The Spats and Violin Case Won't Be Necessary In This Line

of Work, Perkins.'

'A Bit Excessive, This One, Eh, Jenkins?'

mmmmm

Jandn 1

h

'I Know Its Our Computer's Mistake,

Mr. Hill, But It Would Be Easier in the

Long Run if You Did Change Your

NametoZP4/QE/70K.'

'Our Computer Is on the

Blink. Can You Send Over a

Hundred of Your Fastest

Mathematicians?'

•Murder, eh? I'm In for Bending,

Folding and Mutilating Computer

Cards.'

They're Kinda Cute Once

You Get Used to Them/

*Oh. I Don't Mind the

$800,000 Price. But Is That

the Only Color It Comes In?*

_ c _



•I Said I Needed Another
DISK Pack/ There's Nothing to It. Just Remem

ber That Force Equals Mass Times
Acceleration.'

00 ©0 06
m—mmm.

•Obviously, the Work of an

Irate User/

Then It's Agreed. At 12:35 P.M., We
All Break Down Just for Fun.'

'Gee, Nano, You Never Were Very Good at Strip Poker.1

i fjk

L

(

'I Think a Simple Error

Would-Suffice.'

'How About Kicking Off With a Good,

Old-Fashioned Memory Dump?'

•Here You See Our Entry to the Far East Market.'
It Wants a Squirt of Oil on That
Squeaky Door Hinge Back There/



Standard Features:

• Full power to Commodore Dual Drive
Floppy Disk for a minimum of 15 minutes

• Installs within Disk Drive cabinet
• No wiring changes necessary

• Batteries recharged from Disk Drive's
internal power supply

Specifications:

Physical Size: 5.5" x 3.6" x 2.4"
Weight: 4.5 lbs.

Time to Reach Full Charge: 16 hours

Duration of Outputs: Minimum of 15 min.

Voltages: +16, +8

Battery Life Expectancy: 3 to 5 years

Battery On-Off Switch

For Use With:

• Commodore CBM 2040 Dual Disk Drive

• Commodore CBM 4040 Dual Disk Drive

• Commodore CBM 8050 Dual Disk Drive

BATTERY

BACKUP
SYSTEM.
FOR COMMODORE

DUAL DRIVE FLOPPY DISK

Floppy BackPack is a total, rechargeable,

battery backup system for the Commodore line

of Dual Drive Floppy Disks. Used in conjunc

tion with BackPack (battery backup for the

PET/CBM) it is now possible to save valuable

data to either disk drive during power short

ages and line surges. Floppy BackPack also

reduces chances of disk damage in the 2040.

Floppy BackPack fits inside the disk cabinet

and can be installed easily by even the novice

user. Floppy BackPack is recharged during

normal operation from the disk's own internal

power supply and has its own integral og-off

switch.

Floppy BackPack comes fully assembled,and

tested. Instructions included.

Floppy BackPack is a trademark of ETC Corporation

CBM is a trademark of Commodore Business Machines

Designed and manufactured by:

ELECTRONIC TECHNOLOGY CORPORATION

P.O. Box G, Old N.C. 42

Apex, North Carolina 27502

Phone: (919)362-4200 or (919)362-5671

Electronic Manufacturing

Technical Design and Development

Computer System Technology

ELECTRONIC TECHNOLOGY CORPORATION



Backup

Apologies to Dave Hook for omitting his Roroswitch &

Utility Switch BASIC Loader■ for the SWARM-100 Board. Two
issues later, here it is.

0 REM ROMSWITCH & UTILITY SV7ITCH

1 REM FOR SWARM-100

2 REM

3 REM(C) DAVID A. HOOK, 58 STEEL STREET

4 REM BARRIE, ONTARIO, CANADA

5 REM L4M 2E9 (705) 726-8126

6 REM

7 REM ALL RIGHTS RESERVED

8 REM PERMISSION TO COPY FOR NON-COMMERCIAL PURPOSES

9 REM AS OF JUNE 14, 1981

10 SA=897:B=64

11 PRINT"ICLR RVS]ROMSWITCH / UTILSWITCH FOR SWARM-100

12 PRINT"[DN DNJDO YOU WANT TO LOAD AT [RVS]";SA"(OFF ']Y[CL]";

13 POKE167,0

14 GETZ$:IFZ$=""THEN14

15 PRINTZ$:IFZ$O"N"THEN29

16 PRINT"[DN]PUT IN HIGH MEMORY [RVS]Y[CL]";
17 POKE167,0

18 GETZ$:IFZ$=""THEN18

19 PRINTZ$:IFZ$="N"THEN23
20 EA=PEEK(52)+256*PEEK(53)-2:SA=EA-B:J%=SA/256:J=SA-256*J%

21 POKE 52,J:POKE 53,J%:POKE 48,J:POKE 49,J%

22 GOTO29

23 INPUT"[DN]START ADDRESS ?[CL CL CL]";Z$

24 IFZ$="?"THENPRINT"[UP UP UP]":GOTO23
25 SA=VAL(Z$)

26 IFASC(Z$)O36THEN29
27 Z$=RIGHT$("000"+MID$(Z$,2),4)

28 FORI=1TO4:Z=ASC(MID$(Z$,I,1)):Z=Z+7*(Z>57)-48:SA=SA+Z*16*(4-1):NEXT

29 EA=SA+B:TA=SA+42:TA%=TA/256:RL=SA+30

30 FOR A=SA TO EA:READ D:POKE A,D:NEXT

31 POKE RL+1,TA%:POKE RL,TA-TA%*256

32 PRINT"[CLR DN]NOTE THE 'SYS1 ROUTINE ADDRESSES:

33 PRINT" [DN DN]FOR: SOFT ROM SWAP — SYS("SA")

34

35

36

37

38

39

40

41

42

43

44

45

46

PRINT

PRINT

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

"[DN]

"[DN]

162,

160,

208,

56,

252,

0,

16,

195,

. o,

228,

141,

5,

4,

2,

232,

255,

0,

247,

137,

0,

85,

56,

HARD ROM

UTILITY

208,

165,

160,

138,

152,

149,

88,

253,

179,

120,

232/

2

144

0

208

10

144

108

23

255

141

• 88

SWAP

SWAP

, 162

, 201

, 120

3

, 168

, 200

, 250

, 230

, 212

, 60

, 96

— SYS(

— SYS(

0

, 85

, 153

, 108

, 185

, 202

, 255

, 46

, 120

, 232

"SA+4")

"SA+56")

"[CLR]" =

"[HOME]" -

"[UP]"

n[DN]"

"[CL]"

"[CR]"

"[RVS]" =

"[OFF]" =
n[ • ]" =

"[15DN]" =

clear screen

cursor home

cursor up

cursor down

cursor left

cursor right

reverse mode on

reverse mode off

1 space

15 cursor downs

- 9 -



BASIC Plotter Paul Higginbottom

Commodore Canada

This . program will plot random lines using the
"quarter-square" graphics characters. Although it's a
program in itself, it could easily be made into a subroutine.

The program has been set up for 80 column screens (line
9040). Notice "LL" (Line Length) is multiplied by 2 in lines

2020 & 2030? Since the quarter squares use up half a

character space in the "xlf direction, an 80 column screen can

have up to 160 "half-characters11 horizontally. Similarly, on

25 lines there can be up to 50 half characters vertically

("y" direction). For 40 column screens you'll need to change

LL to 40; the second parameter remains the same since both

have 25 lines.

Line 2000 clears the window (if one set), the screen,

and sets graphics mode (no gap between lines). If you like,

substitute CHR$(142) with lesc-rvs-Nl and stick it inside the

quotes.

2000

2010

2020

2030

2040

3000

3010

3020

3030

3040

3050

8000

8010

8020

9000

9010

9020

9030

9040

9050

PRINT"[HM HH CLR]"CHR$(142)

GOSUB 9000

X1=INT(RND(TI)*LL*2) : Y1=INT(RND(TI)*50)

X2=INT(RND(TI)*LL*2) : Y2=INT(RND(TI)*50)

GOSUB 3000 : Y1=Y2 : X1=X2 : GOTO 2030
REM ********** PLOT A LINE **********

DX=X2-X1 : DY=Y2-Y1 : X=X1 : Y=Y1

L=SOR(DX*DX+DY*DY) : IF L=0 THEN 3 040

XI=DX/L : YI=DY/L

GOSUB 8000 : IF (ABS(X2-X)<=ABS(XI)) AND

(ABS(Y2-Y)<=ABS(YI)) THEN RETURN

X=X+XI : Y=Y+YI : GOTO 3040
**********

SQ=AM(TX AND AM, TY AND AM)

POKE Pf C(I(PEEK(P))OR SQ)

**********

REM ********** PLOT X, Y

TX=INT(X+IR):TY=INT(Y+IR)

P=ES+TX/DV-INT(TY/DV)*LL :

: RETURN

REM ********** SETUP

DIM C(15)r 1(255), AM(lfl)

FOR 1=0 TO 15 : READ C(I) : I(C(I))=I : NEXT

FOR I=0TOl : FOR J=0TOl : AM(J,I)=(J+l)*4tI

LL=80 : BS=32768+24*LL : DV=2 : AM=1 : IR=.5

DATA 32, 123, 108, 98, 126f 97, 127, 252,

: NEXTJ,I

124, 255, 225, 254, 226, 236, 251,

906 0 RETURN

160

The subroutine at 9000 sets up an array with the 16 possible

combinations of the quarter squares. BS is the base address

or the POKE address of the bottom left corner of the screen.

All plotting efforts are performed by the two subroutines at

3000 & 8000. Subroutine 3000 plots a line from xl,yl to

x2,y2 by plotting several points (sub 8000). At the same

time, subroutine 8000 must determine if there is already a

point in a character space. If there is, the POKE

information must not interfere with existing points.

- 10 -



Lines 200X are used for plot criteria generation. The above

merely plots random lines. For something more meaningful,

try substituting with these:

2020 Xl=0 : Yi=l
2025 FOR X2=0 TO 159

2030 Y2=EXP (X2/31.4)
2040 GOSUB 3000 : Y1=Y2 : X1=X2 : NEXT : END

2020 N=6 i C=3.1415926/160
2025 FOR X2=0 TO 159

2030 Y2=25 + 24 * SIN(X2 * N * C)

2040 GOSUB 3000 : Y1=Y2 : X1=X2 :

Xl=0 : Y1=25

NEXT : END

2020 N=8 : 0=3.1415926/160 : Xl=0 : Yl=50 : DC=100
2025 FOR X2=0 TO 159

2030 Y2=25 + 24 * COS(X2 * N * C) * EXP(-X/DC)

2040 GOSUB 3000 : Y1=Y2 : X1=X2 : NEXT : END

The first plots an exponential curve. Notice the Y origin is

set to 1 rather than 0. This accounts for a slight

inaccuracy as the plotter draws horizontal lines using the

top "half-character" rather than the bottom half-character.

This could be changed by modifying the character table at

9050.

The second draws a SINE curve starting half way up the screen

(Yl=25). The variable N represents the number of half cycles

displayed (N=6 will draw 3 complete cycles).

The last one is a decaying COSINE wave, origin at top-left

(Yl=50). For higher decay rates, use lower values in DC.

Finally, with little effort you could use the plotter

routine to draw axes for your functions.

'Now, You Say the Last Time

You Saw It Was in a Macro

You Were Coding.. /

- 11 -



The Machine Language Monitor - An-Introduction

When the first 2001 Series PET hit the market back in

197 8, the first programs Commodore released v;ere Squiggle,
Bigtime and The Machine Language Monitor. Back then, the

M.L.M. was loaded from tape. Commodore decided to introduce

the M.L.M. to the next version of BASIC. The two became

great companions and have been rommies ever since! (ugh. So

much for PET folklore!)

The Machine Language Monitor is quite simply a utility

program for performing more direct operations on machine

memory and processor registers. For example, the BASIC SAVE

command is used to store the contents of BASIC text space.

The M.L.M. 'S1 command can be used to save ANY part of memory

because the start and end addresses are given by the user,

not pre-determined by the machine.

In this article, I111 attempt to give a brief overview

of the main sections of the M.L.M, plus some explanation of

the 6502 microprocessor registers. For more details on

machine language, there are several good books on the

subject. Three are; MOS 6502 Programming Manual (see your

dealer), 6502 Assembly Language Programming by Lance A.

Leventhal (any good computer store) , and the PET Machine

Language Guide by Arnie Lee (Abacus Software) .

Engaging the M.L.M.

There are two ways to enter the M.L.M. program. They

are known as "break to the monitor" and "call to the

monitor". In 6502 machine language, a BRK (break)

instruction is represented by hex 00. Therefore, a SYS to

any location in memory that contains a zero, will result in a

"break to the monitor":

SYS 1024 ;brackets around

SYS 4 address unnecessary

The contents of decimal locations 1024 and 4 are always

zero (unless deliberately altered). For example:

SYS4

B*

PC IRQ SR AC XR YR SP

.; 0005 E455 30 00 5E 04 F8

Notice the 'B*1 at the left margin. This indicates

break to the monitor. To "call" the monitor, one must SYS to

the location in ROM at which the monitor program starts:

SYS 64785

SYS 54386

:BASIC 2.0

:BASIC 4.0

A 'C*1 will be displayed for call to the monitor.



M-L.M. Command^

There are 6 M.L.M. commands:

R - display Registers
M - display Memory

G - Go or execute memory
X - Exit to BASIC

L - Load

S - Save

Several monitor extension programs have been released

that offer extra commands in addition to the above six.
Programs like NEWMON, SUPERKON and EXTRAMON are loaded into

RAM and link themselves in with the M.L.M. in ROM to produce
a more sophisticated monitor utility. However, for now we'll
concentrate on the resident commands.

r — Display Registers

When the M.L.M. is entered (SYS 4, etc.), the registers

are automatically displayed. These registers are, from left
to right, the:

Program Counter (PC)

Interrupt Request vector (IRQ)

Status Register (SR)

Accumulator (AC)

X Register (XR)

Y Register (YR)

Stack Pointer (SP)

All of these registers, except IRQ, are contained inside the

microprocessor. They have NO equivalent PEEK address and are

only accessible through machine language. However, the M.L.M

allows screen editing here so you can change the values of

the registers with the cursor.

The Program Counter (PC)

The PC register always shows the address of the next

instruction that will be executed. Notice that if you enter

with SYS4, the PC will show 0005.

The IRQ Vector

Every 60th of a second the PET performs an interrupt. During

the interrupt, the PET flashes the cursor, updates the clock,

checks the stop key and scans the keyboard. Once again, all

this is done by a machine code routine resident in ROM. The

IRQ vector designates the starting address of this routine.

You can change the IRQ vector (using the cursor) , but the

change does not take place until a 'G1 command is given.

Also, exit to BASIC ('X1) resets the IRQ vector back to the

original contents.

- 13 -



The Status Register.(SR)

The Status Register (sometimes called the 'P1 register) is

used to indicate the status of .the microprocessor. Each bit

of this register is used to represent some condition in the

processor as a result of the events leading up to its1

interrogation.

Bit 0 - C - Carry Flag

1 - Z - Zero Flag

2 - I - Interrupt Disable

3-D - Decimal Mode

4 - B - Break Command

5 - - Not used

6 - V - Overflow Flag

7 - N - Sign Bit

The Accumulator (AC)

The Accumulator is your main work register in the

microprocessor. One can bring data into the accumulator and

transfer it elsewhere in memory or perform operations on it

such as AND, ORr ADC, etc.

The X and Y Registers (XR & YR)

These registers are auxiliary registers. Although they can

be used for data transfers, they are more often used as index

registers for the accumulator.

The Stack and the Stack Pointer

The stack is an area in RAM used by the microprocessor to

store registers temporarily while another task is performed

that requires the use of those same registers. The stack is

located from $0100 to 01FF. That's*255 bytes of the total IK

that PET takes away from you on power up. This area is

critical for proper machine operation and no POKEs should be

made here. The stack is often used to store return addresses

for subroutines AND interrupts. All registers are also

pushed on the stack before servicing an interrupt and pulled

off the stack back into their respective registers at the end

of an interrupt. Several arithmetic routines also use the

stack extensively.

The Stack Pointer is used as an index pointer into the stack

area. As the 6502 throws stuff onto the stackf it must keep

track of which byte it can use next. The SP starts at $FF

and decrements each time data is pushed on the stack. This

means that the first byte onto the stack would occupy

location $01FF. The SP would decrement by 1 and the next

byte on would go into $01FEf and so on. As these bytes are

removed from the stack, SP is first incremented, and the

processor gets the byte contained in location $0100 + SP, or

more formally, $0100,SP . Afterwards the Stack Pointer is

conveniently left pointing at the next available location.

(For more info on the stack, see Transactor #1, Vol3, pg5)

- 14 -



M - Display Memory

The fMf command can be used to display any part of
memory in the entire 64K range. Like the registersr this is
also in hexadecimal. Syntax - for the command is fM, [start
address],[end address]1. For example:

PC IRQ SR AC XR YR SP

•; 0005 E455 30 00 5B 04 F8

.M,0400,0401

.: 0400 00 00 00 AA AA AA AA AA

•

The M.L.M displays groups of eight bytes on a line*

Unless your end address is an even multiple of 8, you will

always be shown the remainder of the line. Screen editing is
allowed here too. Simply move the cursor over to the byte.

Changes occur when RETURN is hit. The address can also be

altered to duplicate lines into other memory addresses (like
duplicating a line of BASIC by changing the line number and

hitting RETURN).

G - GO or Execute

This command is equivalent to a GOTO as opposed to

GOSUB. Programs should end with a BRK (hex 00) rather than

an RTS. Upon executing the BRK, the registers will be

displayed and you1re back in the monitor.

The IGI command can be used two ways. Once a machine

language program is entered, a 'G1 command followed by a hex

address will start executing memory at the address specified.

If no address is given, execution will begin at the

address shown by the Program Counter (PC). On a BRK, the PC

will be left pointing at the address following the BRK

instruction. After examining the registers, another 'G'

command with no address would perform the equivalent of a

CONT (continue) .

X - Exit to BASIC

Quite simply, the 'X1 command does a warm start to

"READY." and you're back in BASIC.

L - Load

Unlike the BASIC LOAD command (or DLOAD), a monitor Load

brings in files without changing any of the pointers that

support BASIC text. This can be useful when you have a BASIC

program already loaded and you would like to bring in a

machine language utility,

BASIC programs dan also be loaded with 'Lf, but pointers

would not be set correctly and proper operation would be

hampered. For example, NEW the machine and use the M.L.M. to

load a BASIC program. You can LIST the program, but RUNning

- 15 -



the program will produce unpredictable results, LIST the

program again and you'll notice your BASIC text has been

clobbered* This is because the Start of Variables Pointer

was not set properly to the end of BASIC but rather remained

set pointing at the beginning of BASIC, As variables get set

from within the program, BASIC begins building a variables

table according to the address specified by the start of

variables pointer• If this pointer is at the start of BASIC,

whammo!... the variables table gets built right on top of

your BASIC,

Syntax for the command is:

fL [filename],[device #]f

A drive number preceding the filename is optional and the
device # must be in 2 digit hexadecimal. For example:

PC IRQ SR AC XR YR SP

.; 0005 E455 30 00 5E 04 F8

• L wl:some program11,08

searching for some program

loading

S - Save

Probably the most important of the M.L.M. commands. The

•S1 function can be used to store any part of memory from

zero page, cassette buffers, BASIC text, the screen, right up

through BASIC ROM and the operating system. This command is

most appreciated when a crash occurs that clobbers the BASIC

operating system. Such situations are usually caused by a

faulty machine code subroutine that you might be testing.

When the BASIC SAVE command returns 7SYNTAX ERROR, it's nice

to know that you can salvage the program from the M.L.M.

Syntax is:

•S [drive*]:[filename],[device*],[start addr],[end addr+1]1

Due to a small bug, add 1 to the end address chosen. The

byte at the resultant end address is not saved.

PC IRQ SR AC XR YR SP

.; 0005 E455 30 00 5E 04 F8

.S "Irscreen contents",08,8000,9000

The above would store an image of the screen out to a

disk PRG file. Of course the monitor display would be stored

too, but this would be impossible with an ordinary BASIC

SAVE.

There is one exception when dealing with cassette tape.

Due to the tape routines and format, the cassette will not

accept addresses above $7FFF, or more precisely, addresses

with bit 15 set to 1. Since the start address is stored in

the file header, a save of memory above $7FFF will not be

properly sent to the cassette. However, I can't think of a

- 16 -



single reason why this would be necessary since therefs not

much you could do with it on tape.

Summary

With this information in handf you'll probably find

yourself more intrigued by the concept of "machine language"

(that is if you're not already). As mentioned earlier, there

are several monitor extension programs that add some

extremely useful commands to the built-in M.L.M. Commands

like dissassemble, single step, hunt, transfer, interrogate,
and assemble make life a lot easier. A little practice and

you111 find that machine language is not as tough as it's

made out to be. With many sophisticated assemblers now

available, you might even find machine language easier than

BASIC!

- 17 -



Features Of

The 6845 Video Controller
noicom

Control Kicrosysteins

All Commodore machines -that have 12" monitors (8032,

fat 4032, 8096/ and SuperPET) employ a device known as the

6845 video controller to generate the video signals. Some

come with a 6545 but they1re both the same.

The chip has 18 programmable registers that are accessed

through 2 memory locations at $E880 and $E881 (59520 and

59521)* To read or write a register, the number of the

register (0-17) is stored in 59520 and that register can then

be accessed through 59521. This method saves considerably on

address space.

The device is used to control such functions as

character height, cursor size, horizontal position, vertical

resolution, etc. Here is a summary of the registers and

their functions:

R0 - Horizontal Total Register. Horizontal frequency

equalling the total of displayed plus non-displayed

"character time units" minus 1.

Rl - Horizontal Displayed Register. Number of displayed

characters per horizontal line.

R2 - Horizontal Sync

positioning.

Position. Controls horizontal

R3 - Horizontal Sync VJidth. 4 bits which control the width

of the horizontal sync pulse.

R4 - Vertical Total. The vertical frequency is controlled by

R4 and R5.

R6 - Vertical Displayed. Number of displayed character rows

on the video.

R7 - Vertical Sync Position. Controls vertical positioning.

R8 - Interlace Mode. 2 bits which determine wether

interlaced or non-interlaced mode is employed.

R9 - Maximum Scan Line Address. 5 bits determining the

number of scan lines per character row including spaces.

R10 - Cursor Start,

blink rate.

7 bits for cursor start scan line and

Rll - Cursor End. 5 bits for cursor end scan line.

R12 - Start Address. R12 and R13 control the first address

put out as a refresh address after vertical blanking.

R12 is the low 8 bits and R13 is the hi 6 bits of the

address.

R14 - Cursor Register. This 14 bit register stores the

cursor location. R14 is the 8 low and R15 is the 6 hi

bits.

m£ _ T.Snht Pen. 14 bits of R16 and R17 store the contents



All registers are write only with the exception of R14, R15,

R16 and R17. This means tjie registers 0-13 can only be

POKEd* PEEKing these registers will return invalid results.

Interesting Effects

In the early daysf it was possible to blank the screen of the

2001 PET, This was useful for visual effects. BASIC 2

machines omitted this capability which was unfortunate. Now

it's possible again! The following program demonstrates

screen blanking for 12lf monitor machines:

10 FOR J=l TO 2000

20 POKE 59520, 1 :

30 POKE 59521, 0 :

40 FOR J=l TO 2000

50 POKE 59521, 40 \

PRINT "*"; : NEXT : REM FILL SCRN

REM HORIZ DISPLAY REG

REM NO WIDTH = NO DISPLAY

NEXT : REM DELAY

REM VIDEO BACK ON

Notice that the register offset (59520) need not be set again

to access the same register as before. Default display width

for 40 and 80 columns screens is "40".

The horizontal and vertical positioning of the display

area can be altered by POKing different values into R2 and

R7. R2 default is 41 and R7 default is 29.

The number of displayable character columns may be

modified by POKing different values into Rl. Rl default is

40. Likewise, the number of displayable character rows can

be changed using R6. R6 default is 25*

The machine makes use of the controller for things like

windowing, and text/graphic modes. Several other effects

could certainly be achieved for use in games and other

applications. The combinations and permutations are

virtually endless!

Editor's Note

A word of caution. Uneducated experimentation with the

6845/6545 can potentially crash the computer. The effects

involving the registers that Jim talks about are all safe to

play with but other registers should be left alone unless you

know what you're doing.

- 19 -



Getting Usable Video Jim Law
Signals From 12" Monitor PET/CBHs Batteries Included

This program works with" any "fat" Commodore computer

(8032, 12" 4032, 8096, and SuperPET). It re-configures the

video controller to produce signals which more closely

approximate the standard video sync signal frequencies. For \

those wishing to use an external video adapter to display the !
PET screen on a video monitor, this program can save having !
to modify the monitor. j

The PET screen remains completely readable, with only

minor narrowing of the picture and the possibility of loosing

part of the bottom line in text mode. However, this can be

corrected with a slight adjustment* to the PET video section.

Video adapters formerly used with 9" screen machines

will not work directly with the new 12" machines as the

polarity of the video out and horizontal sync signals have

been reversed at the User Port. Correct this with:

POKE 59520, 12 : POKE 59521, 0

This will give the desired effect on the external monitor but

the PET screen will be inverted (but still readable). To get

back to normal, POKE 59520, 12 : POKE 59521, 16

Some video interfaces for 9" machines have a horizontal

sync position control and thus may accept the inverted

pulses. People have used this system and it saved them

having to obtain new interfaces.

Video adapters for 12" screen machines are now becoming

more readily available and may be used with this program to

produce an external picture which might otherwise be unable

to "sync" to the strange signal frequencies coining from a 12"

machine without this program.

A universal video adapter is available from Batteries

Included in Toronto (416 596 1405) as well as "Video*"; a ROM

which alters the signals at power-up and eliminates the need

for this program. Video+ replaces the ROM at UD7 and does

not interfere with normal operation.

100 DATA 0, 59, 2, 47, 4, 26, 5, 8, 7, 25, 9, 9

110 DATA 0, 59, 2, 47, 4, 33, 5, 6, 7, 30, 9, 7

120 FOR J=l TO 6 : READ A, B

130 POKE 59520, A

140 POKE 59521, B

150 NEXT J

160 POKE 59468, 14 : PRINT CHR$(14)

170 PRINT "HIT 'STOP1 FOR TEXT MODE CONFIGURATION"

180 GET A$ : IF A$="" THEN 90

190 FOR J=l TO 6 : READ A, B

200 POKE 59520, A

210 POKE 59521, B

220 NEXT J

230 POKE 59468, 12 : PRINT CER$(142)

240 PRINT "HIT 'STOP1 FOR GRAPHICS MODE CONFIGURATION"

250 GET A$ : IF A$="" THEN 250

260 RESTORE : GOTO 120



PRINT-AT Routine Jacques Lebrun

Lennoxville, Quebec

Ever had .to print at random locations on the screen?

Most programmers probably have. The only way provided by the

BASIC interpreter is to use cursor down, upf left and right

enclosed within quotes in print statements. This could be

impractical for some programs which constantly print

something at different places on the screen.

Here is a cure: a machine language PRINT-AT routine that

allows a BASIC program to print anywhere on the screen with a

simple SYS command. The routine is location independent

which means that it can execute well no matter its location

in memory. The best place is probably the first cassette
buffer for those who never use cassettes. The routine is for

BASIC 4.0 but could be modified for other BASICS

The routine can be used two ways. The first one is to

position the cursor only. This allows further PRINTS, INPUTS

and GETs to be done at that new location on the screen.

Format is:

SYS ADDR,ROW,COL

The second way positions the cursor and prints whatever

text follows the SYS. Its format is:

SYS ADDR,ROV7,COL,TEXT

•ADDR1 is the starting address of the routine, 'ROW1 and

fCOLf are two numeric expressions. 'ROV71 ranges from 0 to 24

and 'COL1 ranges from 0 to 79. •TEXT1 can be any numbers of

string, integer or floating-point expressions seperated by

commas or semi-colons just as a normal PRINT statement.

100 REM *** BASIC LOADER FOR PRINT-AT ROUTINE ***

110 REM *** SET VARIABLE AD TO DESIRED STARTING ADDRESS ***

120 AD=634

130 FOR I=AD TO AD+41

140 READ A

150 POKE I,A

160

170

180

190

200

210

220

230

NEXT

END

DATA

DATA

DATA

DATA

DATA

DATA

I

32,

176,

245,

13,

32,

195,

245,

28,

190,

134,

245,

96

190,

134,

32,

198,

190,

32,

216,

212,

32,

76,

212,

32,

200,

118,

168,

200,

lllf
224,

0,

186,

224,

224,

80,

240,

76,

25

32

176

9

115

- 21 -



The Print Mint — Jim Butterfieiaf Toronto

The usual point of programs is that they produce output* The

normal way of producing output is by using the PRINT command

or its cousin, PRINT*. We can abbreviate PRINT with a

question mark (?) r but oddly enough, PRINT* can't be

shortened that way: typing ?# will produce a program line

that lists as PRINT*, but doesn't work.

Other Ways*

We can generate output without using PRINT* It's not always

good practice, but we can POKE to the screen memory area*

This can be good for graphic games and animations, but there

are several bonus things we get by using PRINT. First, PRINT

keeps track of the line position for us, and starts a new

line as necessary. Secondly, PRINT doesn't limit output to

the size of the screen: when the screen fills up, scrolling

is automatic. Finally, and most important, PRINT can easily

be changed to PRINT* to allow output to be directed to other

devices such as printer, modem, disk or cassette tape. In

contrast, screen POKEs are absolutely limited to the size of

the screen, and can't be easily redirected anywhere else.

Punctuation.

If you say 'PRINT X1 you will print the value of X and start

a new line. The absence of punctuation at the end of the

PRINT command signifies, "That's the whole thing; print it

and wrap the line up." In contrast, if you say 'PRINT X;1

you will print the value of X but you won't go to the next

line: the invisible cursor will wait behind the printed

value. This sounds a little backwards: you do something

extra if you have no punctuation, but you do nothing if you

have a semicolon.

There's one other form of "formatting" punctuation: the

comma. If you type 'PRINT Xf' you will print the value of X

and then skip ahead to the next "column". Columns are

considered to start at positions 11, 21, 31 and so on up to

position 71. They exist only on the screen; saying

'PRINT#4, X,1 to send to printer or other device won't set up

columns properly. The comma will produce quick and

convenient output to the screen, but it may be a bad habit

since you can't use it anywhere else.

We can use this punctuation within a Basic PRINT statement as

well as at the end. 'PRINT A;B?;C;' will generate the values

of variable A, string B$f and variable C one behind the other

and will leave the cursor positioned behind the value of C.

Neat Input.

We can use this punctuation to generate prompting for INPUT

statements. For example, if we wanted to add ten numbers, we

might code:



100 PRINT -INPUT EACH NUMBER:11

110 FOR J=l TO 10

120 PRINT J;

130 INPUT X " -
140 T«T+X'
150 NEXT J

160 PRINT "TOTAL IS";T

We prompt for the ten numbers with 1? ••• 2? ••• 3? ... and

so on. The prompting number is printed by line 120 - J is

stepping from 1 to 10 - and the question mark from the INPUT

statement appears behind it because line 120 ends in a

semicolon; after printing the number we wait on the same line

so that the question mark will appear there* Question: What

would happen if line 120 ended with a comma instead of a

semicolon? Try it and see.

Number Formats.

Numbers are printed in a special format. Firstr there is

either a space for positive numbers or a minus sign for

negative numbers. Then the number appears, as many digits as

required plus a decimal point if needed and perhaps even HEW

notation. (Never heard of E notation? Try PRINT 3E2 and see
if you can figure it out). Finallyf the number is followed

by a cursor-right on the screen.

This seems at first to give you two spaces between numbers,

but there are one or two fine points that are useful to know*

If you type PRINT 2;3;4 you will see two spaces appear

between each set of digits. Now try this: Type a bunch of x

characters over the answer (a row of xxxxxxx...) and then

cursor back to the PRINT statement and press RETURN again.

Some of the x's don't go away; that's because a cursor-right

skips over that part of the screen without writing there.

There are a couple of ways to eliminate this difficulty if it

bothers you. If you change a value to a string before

printing, the cursor-right won't be performed. You could

type PRINT STR$(2) ;STR$(3) ;STR$(4) - the same numbers will

print with at least part of the problem solved. If you

happen to have an 80-column or Fat-40 4.0 system, you 'may

type: PRINT CHR$(16);CHR$(22) ;2;3;4 and you'll discover the

problem is solved quite elegantly.

Here's another exception to the two-spaces rule: Type

PRINT 2;-3;-4;5 and look at the result. The minus signs take

up one of the two positions, and now there's only one space

between some numbers.

Summary.

PRINT is handy and versatile. It takes a little while to get

used to the formatting of the PRINT statement, but you'll

soon have good control over your output.

There are some fascinating things you can PRINT which cause

the screen to do unusual things. More about them another

time.

- 23 -



programming Tips Paul Higginbottom

Commodore Canada

First I would like to answer some frequently raised

questions about screen formatting of data, and then take a

look at a few techniques to make programs smaller and more

elegant.

Number Juggling

Formatting numbers on the screen can cause problems when

the TAB function is used. If a numbers are to be printed in

columns, then it would be nice to ensure that the decimal

point of the numbers always line up in the column*

For example, if the number is simply TABbed onto the

screen, and the number is a "0", then it will appear at the

left hand side of the column, which doesnft look very smart.

It is therefore necessary to use the length of the number

(ie. the number of digits including decimal points) to drive

the TAB expression. A number has a leading space and a

trailing cursor right which needs to be taken into

consideration. The LEN function counts the number of

characters in a string. In order to use LEN it is first

necessary to convert the number into a string using STR$.

The number of characters in the number is given by:

X = LEN ( STR$ (A) ) - 1

...where A is the number. The trailing cursor right is

ignored by STR$ but 1 is subtracted to take account of the

leading space. So nowf taking the above example, if we were

to TAB(IO-X) we would be in business, right? No, not quite

yet.

There are a couple more possibilities that should be

considered. Sometimes it is desirable to tack leading zeroes

onto integer numbers (ie. to display "0038" rather than

"38"). With decimal numbers, we may want a specified number

of digits following the decimal place, followed by trailing

zeroes which the PET does not do for us. All of this will

affect the positioning of numbers output to the screen.

Without question, the easiest way to handle number

formatting is to first turn the number into a string:

A§ = MID? ( STR$ (A), 2 )

STR$ converts "A" to a string and the MID$ function is used

to take the 2nd character onwards, thus removing the leading

space. To add leading zeroes we use the RIGHT$ function:

A$ = RIGHT$ ("000000" + A$, 4 )

Assuming "A" is an integer, the above will produce a 4

character string. The number of leading zeroes will be

dependent on the size of "A" (ie "16" produces "0016" and

"1024" stays "1024"). For compactness, all of the above

could have been done with:

n<: = r'nnoooo"+ mid? ( str$(a),2), 4)



Rounding decimal numbers and adding trailing zeroes is a
little trickier. First we must decide how many significant

digits are to follow the decimal place. The following is an

example for 2 significant digit truncating:

A = 1035.55534

A = INT (A * 100) / 100

PRINT A

1035.55

The above merely moves the number two places to the left,

.chops off the fractional part, and then moves it back two

places to the right. However, this is not rounding but

rather truncating, which is not the same. For rounding, we

must first decide what degree of rounding is desired. Most

often, numbers are rounded to 2 decimal places, or "to the

penny11. Our example then becomes, simply:

A = 1035.55534

A ■ INT (A * 100 + .5) / 100

PRINT A

1035.56

The same result would be accomplished by first adding .005 to

A and multiplying that by 100, but BASIC is more accurate at

decimal arithmetic that lies closer to the decimal point.

Numbers that end up with 1 decimal or less will need

trailing zeroes. Once again, this can be done with a string

manipulation. For example:

A = 1035.59534

A = INT ( ABS(A) * 100 + .5) / 100)

PRINT A

1035.6

S$ = CHR$ (32 - (V<0) * 13)

A$ = MID$ ( STR$ (IMT(A)) ,2)

DP = INT ((A - INT(A)) * 100 + .5)

A$ = A$ + "." + RIGHT? ("00" + MID$ (STR$(DP) ,2) ,2)

A$ = RIGHT$ (" " + S$ + A$ ,10)

PRINT A$

1035.60

This probably looks sort of clumsy but it's designed to do

everything; trailing zeroes; pos. and neg. rounding; and

decimal point alligning. Notice that we've taken the

ABSolute value of A before entering the routine. S$ will be

either a space or a minus sign. Then we grab the INTeger

part of A into A$. DP is used to take the decimal part of A,

and round it on the left of the decimal point. Next we build

it all together by taking the integer part, adding our own

decimal point, followed by the decimal part. As usuall, the

leading space is stripped off DP with MID$. "00M is added to

this (remember, DP could have a value of say 04 or an even 0)

and RIGHT$ comma 2 gives us our 2 decimal places. Lastly we

add some leading spaces (which could also be zeroes) and then

we stick the sign S$ of the front.

- 25 -



Easy, right? 'Well, you might have done it differently

but this was a string juggling exercise for the practice.

For a formatting routine that's even more cryptic than this

one, see Jim Rutterfield1s PRINT USING in Transactor #1,

Volume 3.

Variable Flip-Flop

Programs can be shortened a great deal with a little

thought and an active imagination. For example, it is often

necessary to set a flag if a condition is met or to

compliment the flag* One might code:

1200 IF ~FLAG=0 THEN FLAG=1 : GOTO 1220

1210 FLAG=0

1220 •..

On consideration, the statement

1200 FLAG = 1 - FLAG

1210 ...

will be seen to have the same effect.

Screen Codes To ASCII

This program is a screen dump routine which makes it

possible to copy the contents of the screen onto the printer.

This subroutine has been presented several times but we'll be

looking at technique as opposed to operation.

5000 OPEN 4, 4

5010 FOR J = 0 TO 999

5020 P = PEEK (32768 + J)

5030 GOSUB 5500

5040 IF P< 64 THEN P=P+ 64 : GOTO 5090

5050 IF P<126 THEN P=P+128 : GOTO 5090

5060 IF P<128 THEN P=P+ 64 : GOTO 5090

5070 IF P<191 THEN P=P- 64 : GOTO 5090

5080 IF P=255 THEN P = 191 : GOTO 5090

5090 PRINT #4, CHR$ (P);

5100 X=X+1 : IF X=40 THEN PRINT#4 : X=0 : F=0

5110 NEXT

5120 CLOSE 4

5130 RETURN

5500 REM REVERSE FLAG

5510 IF F=l AND P>127 THEN 5550

5520 IF P>127 THEN F=l : PRINT#4,lf [RVS] "; : GOTO 5550

5530 IF F=0 AND P<127 THEN

5540 IF P<127 THEN F=0 : PRINT#4,"[RVS OFF]";:GOTO5550

5550 RETURN

As you can see, the routine begins PEEKing the screen

into P. The subroutine at 5500 deals with reverse field

characters. Then P is converted to its corresponding CHR$

value and it's sent to the printer. Lines 5010 and 5100 are

set up for 40 columns but this can easily be changed to 80.



Now let's have a closer look at those five nasty IP
statements. If we look at the differences between PEEK/POKE

codes and ASCII, it becomes apparent that only the 3 most

significant bits (bits 5 [32] r 6 [64], and 7 [128]) are
changed. "Aha, a bit of boolean algebra will solve this

problem!" Using the OR and AND functions, it is possible to

make the conversion with just one line! Thus if

P=PEEK(32768), the top left corner of the screen, then:

C « (P AND 127) OR ((P AND 64)*2) OR ((64-P AND 32)*2)

where C is the corresponding ASCII character. Herefs the new

program:

5000 OPEN 4, 4 : T=40 : S=32768

5010 FOR J = S TO 33767 : P=PEEK(J)

5020 R$ = CHR$(146-(PAND128))

5030 R$=LEFT$(R$,-(P>127ANDPEEK(J-1-(J=S))<128ORP<128AND

PEEK(J-1-(J=S))>127))
5040 P=(P AND 127)OR((P AND 64)*2)OR((64-P AND 32)*2)

-((PAND127)=0)*64
5050 PRINT#4, R$;CHR$ (P);

5060 IF (J-32807)/T = INT( (J-32807)/T) THEN PRINT#4

5070 NEXT : CLOSE4

The extra little bit at the end of 5040 takes catre of "@"

signs that have a screen code of zero. Lines 5020 and 5030

generate a RVS ON or RVS OFF character and then decide wether

to send it or not (5030). This is dependent on the field of

the last character. The routine has one bug though; if

quotes are printed to the printer, any RVS or RVS OFF

characters sent will appear literally. If you expect there

may be quotes, you'll need to modify so that a CHR$(141); is

sent to do a carriage return with no line feed. Then you'll

need to position back to where you left off.

This routine is dreadfully slow but it was meant to be a

exercise in boolean algebra. Several screen print utilities

have been released that are in machine code. (KEYPRINT,

Compute! and TPUG Club Library)

Abacus

My final program has no application apart from fun. It

is a pseudo abacus or bead counter.

mmm-

mmmmm-

- 27 -



100 POKE 59468r 14 : PRINT "[CLR] ABACUS" : 0=12 : D=9
110 E=102 : L=64

120 FOR 1=1 TO 9

130 FOR J=l TO I

140 FOR J=I TO22

150 PRINT CHR$(230) : NEXT I

160 FOR 1=1 TO 9

160 FOR 1=1 TO 9

B=81 : R=13 : X=14 : S=l

PRINT CHR$(230);

PRINT CHR$(209); : NEXT

PRINT CHR$(192); : NEXT

P(I)=33179-I*40 : NEXT ;FOR 40 COL

P(I)=33579-1*80 : NEXT ;FOR 80 COL

170 C=S : REM SETS ROW TO 1

180 P=P(C) : REM SET SCAN LINE POSITION

190 IF PEEK(P)=L THEN P=P-S : GOTO 190

200 IF PEEK(P)=E THEN 230

210 POKE Pr L : P=P+S : POKE P, B : IF PEEK(P+S)=L

THEN 210

220 GOTO 170

230 T=D-C : FOR I=S TO X+C-S : POKE P(C)+R-I, L :

POKE P(C)+Q-I-T, B : NEXT : C=C+S : GOTO 180

Using variables instead of constants (100-110) gives a faster

execution time:

E = Edge POKE code for CHR$(230)

the shade character
B = Bead code

S = Starting row (1 being bottom)

L = Line POKE code (abacus bars)

Lines 120-150 draw the initial display. The next job is to

create an array with the poke addresses of the mid points of

each row. The array must match the position of the initial

display. If you want to move it, you'll also have to modify

line 160.

Lines 170 onward do the rest. The routine uses a

scanning technique that scans from the middle of the bottom

row moving left (190) until it finds something that is not a

line. If it is a bead then line 210 pushes that bead along

the bar until that bead hits something that is not the bar

(either the right hand edge or another bead) • If it finds

the left hand edge before finding a bead (200) then it knows

that all of the beads have been moved over to the right. Now

it moves them all back and pushes one over to the right on

the next raw up (240, 180 & 190).

One thing I found is that the beads move very fast. If

you want to slow them down, add a delay loop in 190:

190 IF PEEK(P)=L THEM P=P-S : FOR 1=1 TO 2 0 : NEXT :

GOTO 190

I will leave you with a final puzzle - how long will it take

before the top bead moves?

- 28 -



VIC-20 Cartridge Development- . Paul Higginbottom

Commodore Canada

Power-Up Activity

When the VIC-20 is powered onr it looks for a sequence
of bytes in a place in memoryf which will tell the computer
whether or not there is a cartridge plugged in. If this

pattern of bytes is not present, the VIC goes about its usual

choresf and comes up with the familiar message:

**** CBM BASIC V2 ****

3583 BYTES FREE (may be a different amount)

READY.

The Sequence of Bytes

The sequence of bytes the VIC-20 is looking for are

located from $A004 to $A008. They should contain:

Hex

Address

$A004

$A005

$A006

$A007

SAO 08

Hex

Contents

$41

$30

$C3

$C2

$CD

CBM ASCII

Equivalent

"a"

"0"
no n

ngn

"M"

To recap then, "aOCBM" is the sequence. If the VIC does see

this sequence, what does it do? Well, that's what the first

four bytes from $A000 to $A003 are for. If the VIC sees the

sequence, it will hump indirectly through $A000, ie. using

the vector at $A000 as a power up address. In laymans terms,

this means wherever your code is that you want to execute at
power-up, the address of it should be stored in "low, high"

format at $A000 and $A001. This will be known as the

"cartridge cold start vector".

That still leaves $A002 and $A003. They form another

vector called the "cartridge warm start vector". This will

be vectored through whenever an "NMI" interrupt occurs. . For

those that are not aware of this, the RESTORE key actually

generates an NMI interrupt, and so it may be used to re-start

a game, or better still if pressed while holding down another

key simultaneously (usually RUN/STOP) to avoid accidental

re-starts.

- 29 -



An example in assembly coding night be:

*=$A000

I WORD COLD ;LOV7, HIGH VECTOR TO FIRST INSTRUCTION
.WORD WARM ;LOV7, HIGH VECTOR ON "WARM START"

$41, $30, $C2, $C3f $CD

•IGNORE NHI INTERRUPTS
• -

WARM PLA

TAX

PLA

TAY

PLA

RTI

COLD <- CARTRIDGE CODE STARTS HERE.

9

BASIC Programs in a Cartridge

It is inadvisable to try to "RUN" BASIC programs out of

a cartridge. A compromise would be to do the usual power-up

activities (ie. test RAM, etc.) and then "move" the BASIC

program from the cartridge to RAM, and execute (probably

easiest to do by putting a RUN<RETURN> in the keyboard
buffer). It is also inadvisable to put BASIC in a cartridge

anyway because of the hazard of someone putting the code onto

a more "transportable" medium such as tape or disk. This can
be partially avoided by disabling the RUN/STOP key, and the

RESTORE key by using the WARM start vector, and changing the

IRQ vector into the cartridge.

Cartridge Standards

Here are some standards that have been laid out for

operation of cartridge software:

1. Users should have the opportunity to adjust the screen

before commencing; horizontal adjust ($9000) using the

cursor left/right key and vertical adjust ($9001 ) using

cursor up/down.

2. V7here applicable, games should have both keyboard and

joystick/paddle control. The keys to use are:

p

A - "fire" Left - L ; - Right

Down



Also where applicabler Fl and F3 are used to choose 1 or

2 players. Afterwards, Fl is used to start play action.

Provide about a 5 second delay between "Play Player 1"

and "Play Player 2".

Function key 7 should flip interlace mode. Some TVs scan

every raster "one after another". Other TVs scan every

second raster, then go back and do the "in between"

rasters. The VIC chip can provide for this by simply

setting or unsetting bit 7 of $9000. The user will

decide which looks best.

Finally, the combination of the RON/STOP and RESTORE keys
should re-boot the game, as if power were interrupted.

Discover how easy it is

for you to get useful

results from your VIC.

Understanding Your VIC Volume 1: Basic

programming uses a proven step*by-step approach

to teach programming. It costs $11.95

A cassette tape with two demonstration programs

from the book is available for $7.95. It will save you

typing time and eliminate typing errors.

VIC Software

Easy to use program for you to create new

characters for graphics or games. Cassette S9.95.

See your dealer or order direct

VISA/MC accepted

Money back guarantee

Please add S2 ($8 overseas)

for shipping and handling

TIS inc.

Total Information Services. Inc.

Box 921. Dept. CM

LOS Alamos. NM 87544

Dealer inquiries invited.



A Little VIC Music. Jim Butterfieldf Toronto

The following program plays music on the VIC. It's the

simple round, Frere Jacques* The music is listenable, and

the program is worth looking atf too.

You'll note that the three voices of VIC are different.

Voice three is sharper, and is better for carrying the tune.

Voice one is the softest.

Hope you don't mind my breaking up the listing with comments.

90 REMARK: FRERE JACQUES /JIM BUTTERFIELD /DECEMBER 81

This tells you who to blame.

100 DIM A(8)

Makes room for eight voices. How come? We only have

three voices on the VIC and four "lines" in the song.

Watch for the trick.

110 POKE 36878,8

Set volume (for maximum use ^15)
120 FOR A=5 TO 0 STEP -1

Here's our main loop. We're going to play the tune six

times.

130 T=TI+S

140 IF TKT GOTO 140

This waits for time "S" before allowing the program to

continue. The time is measured in "jiffies": units of

1/60 second.

150 READ S, A(A+0), A(A+l), A(A+2), A(A+3)

Here comes the song data. It's taken from the DATA

statements near the end of this program. We're reading

the data into the table cleverly; this way, each voice

"comes in" at the proper time.

160 POKE 36874,A(3) : POKE 36875fA(4) : POKE 36876fA(5)

Play the music! This puts the notes into the VICs

playing electronics.

170 IF SO0 GOTO 130

If there's no more music to play, variable S will become

zero (from the DATA statement at line 1120) We may want

to do it again, though.

180 RESTORE : NEXT A

RESTORE takes us back to the start of the data

statements (line 1000) so that we can play it again if

we wish. NEXT A takes us back for the six repeats.

190 POKE 36 878,0 : END

Turn down the volume and quit. The END statement isn't

really needed here, but it's good practice.

The rest of the program is our DATA statements

containing the music. It's set up with a timing value

followed by the four "parts". By careful reading of the

program, you may be able to work out how the different

voices come in during the repeats (hint: the key to the

trick is in lines 150 and 160).



1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

DATA 10,

DATA 10,

DATA 10,

DATA 10,

DATA 20,

DATA 20,

DATA 10,

DATA 10,

DATA 10,

DATA 10,

DATA 20,

DATA 20,

DATA 0,

195,

195,

201,

201,

207,

195,

195,

195,

201,

201,

207,

195,

0,

207,

207,

209,

209,

215,

215,

207,

207,

209,

209,

215,

215,

0,

215,

219,

215,

209,

207,

195,

215,

219,

215,

209,

207,

195,

0,

195

195

17 5

175

195

0

195

195

175

175

195

195

0

It's not very big, but it's interesting to see how the coding
comes together. Check Appendix P of your VIC-20 Friendly

Computer Guide and you'll see how to set up the notes. Write

your own music. If you like programming you might want to

try your hand at writing a program which allows DATA

statements to be written in easier form. For example, line

1000 might be written as DATA 10,C,E,6,C .. but your program

will need to be smart enough to catch the letters and

translate them into the appropriate numbers.

Music doesn't have to stand by itself, of course. You could

add it as an extra touch to games and animations. Looking at

it the other way, you could add to the music - how about a

"bouncing ball" program that lets you sing along with VIC?

You can get some nice effects from the VIC, although you'll

never quite achieve orchestra quality sound. I can recall

showing a group of users some simple music coding on the VIC.

At one point, I played a simple rendition of "Dixie", and

noticed a listener who had tears in his eyes. I was touched.

I asked him, "Are you a Southerner?"

"No," he replied. "I'm a musician."

I guess you can't win 'em all.



Another Voice For The VIC-20 Andy Finkel
Commodore U.S.A.

Normally, your VIC has 4 musical voices... three music

registers and a white noise register. But by connecting a

small amplifier to the User Port, and doing a little

programming, you can get another musical voice.

The User Port on the VIC is very similar to the PET User

Port. This makes it easy to adapt some of the PETs music

methods to the VIC-20.

Background - Adding Sound to Older PET/CBMs

Before Commodore introduced the CBM 8032 with a built-in

speaker, most PET/CBM users had to develop their own means of
getting their computers to sgueek, hum, whistle, and sing.

They came up with the idea of using the User Port to send

square waves through an external amplifier/speaker
combination. The shift register could be programmed through

BASIC, giving a wide variety squeals, pops, sirens, etc.

Theory

Most music is made up of square waves of different

amplitudes and frequencies. One of the functions of the 6522

chip is to generate square waves through the CB2 line. If we

connect the CB2 line to a speaker, we will be able to hear

the square waves generated by the VIC.

NOTE: Connecting a speaker directly to CB2 may damage your

VIC and void your warranty. You must connect the speaker

through an amplifier to protect the VIC. See Transactor #6

for a simple amplifier circuit.

BASIC Program Steps

1. Set the 6522 shift register to free running mode by

typing:

POKE 37147, 16

2. Set the shift rate by typing:

POKE 37144f C

...where C is an integer from 0 to 255. C is the note to

be played.

3. Load the shift register by typing:

POKE 37146f D ,

...where D = 15, 51 or 85 for a true square wave. This

step also sets the octave for the note.

This step must be done last, since as soon as it is set, the

VIC starts generating the square waves.



The frequency ot tne square wave can be found by tfce
following formula:

PREQ = 50000 Hz

(C+2)*(D1) where Dl=8 when D=15

Dl=4 when D=51

Dl=2 when D=85

When you're in this mode, the VIC will not read or write to

cassette. To restore normal operation, just type:

POKE 37147f 0

Here are some pre-calculated values for C:

Bb

C

C#

D

D#

E

P

F#

G

G#

A

At

■ 251

= 237

= 224

» 211

» 199

» 188

= 177

= 167

» 157

= 149

= 140

= 132

B

Cl

Cl#

Dl

Dl#

El

PI

Pl#

Gl

61 #
Al

= 124

« 117

= 111

= 104

■ 99

» 93

» 88

» 83

= 78

= 73

= 69

The following short program demonstrates music using this

method. By hitting a letter, a note will be played.

10 PRINT "MUSIC DSING CB2"

20 REM A TO G IS ONE OCTAVE, SHIFT A TO G IS ANOTHER

30 PRINT "HIT + TO GO UP AN OCTAVE, - TO GO DOWN"

40 PRINT "[DN] USE ! TO EXIT."

50 POKE 37147, 16

60 DIM A(14)

70 FOR 1=1 TO 14

80 READ A(I)

90 NEXT

100 DATA 124, 117, 104, 93, 88, 78, 69

110 DATA 251, 237, 211, 188, 177, 157, 140

20O GET A$ : IF A$="" THEN 200

210 IF A$="!" THEN POKE 37147, 0 : END

220 IF A$="+" THEN SF=SF-(SF<2) : GOTO 200

230 IF A$="-" THEN SF=SF+(SF>0) : GOTO 200

240 A=ASC(A$)-64+(ASC(A$)>192)*121

250 IF A>14 OR A<1 THEN 200

260 POKE 37144, A(A)

270 POKE 37146, -(SF=0)*15-(SF=l)*51-(SF=2)*85

280 GOTO 200



Joystick Control on The VIC-20 Andy Finkel

Commodore U.S.A.

Like all other input and output, the joysticks are

controlled using the VICfs 6522 versatile interface adapters

(VIAs). The 6522 is a versatile and complex device.

Fortunately, it isn't necessary to delve deeply into the

mysteries of the 6522 VIA to read the joysticks.

Bach 6522 has two Input/Ouput portsf called port A and

port B. Each of the ports has a control register attached

called the DATA DIRECTION REGISTER (DDR). This highly

important register controls the direction of the port. By

using this registerf you can use the port for inputf output,

or both at the same time. To set one bit of the port to

output, set the corresponding bit of the Data Direction
Register to a 1. To set a bit of the port for input, set the

corresponding bit of the DDR to 0. For example, to set bit 7

of port A to input and the rest of the bits to output, POKE a

127 into the DDR for port A. -'

To read the joystick, one port (and one DDR) of each of

the 6522 VIAs on the VIC must be used.

The joystick switches are arranged as follows:

TOP

FIRE BUTTON

Switch 4

(FR)

Switch 0

(SO)

Switch 2

(S2)

Switch 3

(S3)

(SI)

Switch 1

Switch 0, switch lf switch 2 and the Fire button can be read

from VIA #1, which is located beginning at $9110. Switch 3

must be read from the other 6522 which is located at $9120.

Now, the key locations for the joystick are as follows:

Hex Decimal Purpose

9113 37139 Data Direction Register

for I/O Port A on VIA #1

9111 37137 Output Register A

Bit 2 - Joy switch 0

Bit 3 - Joy switch 1

Bit 4 - Joy switch 2

Bit 5 - Fire button

9122 37154 Data Direction Register

for I/O Port B on VIA #2

9120 37152 Output Register B

Bit 7 - Joy switch 3



To read the joystick inputsr you first set the ports to
input mode by setting the DDR to 0. This can be done by a

POKE. Then the value of the switches can be read with two

PEEKs, Sounds easy, right? There is only one problem...

VIA #2 is also used for reading the keyboard. Setting the

DDR can disrupt the keyscan rather badly. So you have to

make sure you restore the DDR to its original condition if

you want to use the keyboard afterwards.

To make thing really easy, you can use the following

program* Lines 10 to 40 are initialization. The rest of the

program, beginning at line 9000, pan be called as a

subroutine whenever you want to read the joystick.

10 DIM JS (2,2) : POKE 37139, 0

15 DD=37154 : PA=37137 : PB=37152
20 FOR 1=0 TO 2

25 FOR J=0 TO 2

30 READ JS (J, I)

35 NEXT J, I

40 DATA -23, -22, -21, -1, 0, 1, 21, 22, 23

50 GOSUB 9000

60 PRINT JS (X+l, Y+l)

70 GOTO 50

9000 POKE DD, 127

9010 S3=-((PEEK(PB) AND 128)=0)

9020 POKE DD, 255

9030 P=PEEK(PA)

9040 S1=-((P AND 8)=0)

9050 S2=-((P AND 16)=0)

9060 S0=((P AND 4)=0)

9070 FR=-((P AND 32)=0)

90 80 X=S2+S3 : Y=S0+Sl

9090 RETURN

The variables SO, SI, S2 and S3 will be 0 normally, and will

be set to 1 (or -1) when the joystick is pointed in that

direction. Two of the variables will be set to 1 on diagonal

moves. FR will be 1 when the Fire button is pressed, and 0

otherwise.

The AND function is used to pick out one bit of the jpystick

port. The bits are numbered from 7 (most significant bit) to

0 (least significant bit). By ANDing the 6522 port with a

number whose value is a power of twof a single bit is

selected (For example, to pick out bit 3f AND with 2, 3 or 8)

The JS array in the program is set up to make it easy to

move around the screen using the joystick. The numbers in

the DATA statement of line 40 can easily be changed for other

purposes. For example, to decode the joystick in this

pattern:

TOP

0

7 i 1

6-8-2

5 13

4

...the DATA statement should be changed to:



Computer Magic Michael Tomczyk

Commodore U.S.A.

V7riting programs for Commodore's VIC-20 is a lot like

performing magic. The results are certainly astounding, and

your friends are sure to be amazed!

Actually, computing isn't much different from magic if

you1re talking about illusions. For example, the VIC

automatically tells you if you make a programming mistake by

displaying an "error message" on the screen. That doesn't

mean there's an "intellectual rabbit" hiding under the

keyboard. It simply means the VIC-20 is a "logical" machine.

We're going to explore the VICs peculiar logic - and
some magic too. This article v/ill focus on elementary

programming to show first-time computer owners how to

COMPUTE, with secondary emphasis on hard-line programming.

The philosophy is: "You don't have to know how to repair a

car in order to drive one; likewise, you don't have to be a

computer scientist to "drive" the VIC-20."

That's the beauty of Commodore's "friendly computer."

It's easy to learn, fun to "drive", and you don't need a

license (or PhD.) to use it.

Everyone likes to perform magic with their new computer,

but doing these neat tricks the salesperson showed you in the

store doesn't seem so easy when you get the thing home.

Here are some of the favourite programs of Commodore's

"VIC Group11. These programs are not only fun, but they

incorporate some helpful computing techniques which you might

want to mix, match, and experiment with. Most of these

programs are explained in the VIC owners guide.

Before we begin, here's a quick refresher on how to

enter a program into the VIC-20.

1. Type the program line-by-line as shown, including the

line number.

2. Hit the RETURN key at the end of each line.

3. Type the word RUN and hit RETURN to make the program

execute.

4. To stop a program which is "running", hit the RUN/STOP

key.

5. You can RUN a program over and over by STOPping it and

typing RUN (because the program stays in the VICs memory

when you type it in) .

6. Before typing in a new program, type the word NEW and hit

RETURN to erase the old program.

7. If a program "hangs up", hold down the RUN/STOP key and

hit the RESTORE key. This resets the VIC without losing

the program.



VIC Trick #1; 255 Colours

10 FOR X=0 TO 255

20 POKE 36 879, X
30 PRINT CHR$(147)

40 FOR T=l TO 700 : NEXT T

50 NEXT X

This little program displays the VICs 255 screen and border

colour combinations. Itfs useful because you can go through

all 255 combinations step-by-step, and find the colour

combination you like best for a particular program. The POKE

command in line 20 is the key. RUN the program until you see
a color combination you like. Hit the RUN/STOP key to freeze

the colours. Now type PRINT X, and record the value of X for

future reference. Type CONT and hit RETURN to continue the
program where it left off. This is the lazy approach to

choosing colours. The best way is to check page 37 or 134 in

the VIC owners guide.

Vic Trick #2: The Rolling Screen Window

10 POKE 36 867, 4

20 PRINT CHR$(147)

30 PRINT "YOUR MESSAGE HERE H

40 FOR X=0 TO 120

50 POKE 36 865, X

60 NEXT

70 GOTO 30

You can change the screen window of the VIC-20 by using some

of the special POKE commands, which change the size and

position of the VICs screen window. This little program

makes use of these commands to make your messsage scroll

downward across the screen. The message in line 30 should be

22 characters long. Try typing 22 hearts (hold down the

SHIFT key and type S) instead of a message.

Vic Trick #3; The Seasick Program

10 PRINT CHR$(147) "SEASICK"

20 FOR L = 0 TO 6.28 STEP .1

30 POKE 36864, 5 + 4 * SIN(L)

40 POKE 36865, 27 + 4 * COS(L)

50 NEXT

60 GOTO 20

This program makes the screen move around.•• and around...

and around. We call it the Seasick Program because that's

how you might feel if you stare at it too long. The

programming magic here is the VICs ability to move the screen

horizontally and vertically using POKE statements.



Vic Trick #3: Drawing A High Resolution Circle

10 FOR S=7168 TO'7679 : POKE S, 0 : NEXT

20* POKE 36879, 8 : PRINT CHR$(147)

30 FOR S=76 80 TO 8185 : POKE S, 160 : NEXT

40 POKE 36869, 255

50 FOR L=0 TO 7 : FOR M=0 TO 7

60 POKE 7680 + M*22 + L, L*8 + M

70 NEXT H, L

80 FOR X=0 TO 63

90 Yl=32 + SQR(64*X-X*X)

100 Y2=32 - SQR(64*X-X*X)

110 FOR Y=Y1 TO Y2 STEP Y2-Y1

120 CH=INT(X/8) * 8 + INT(Y/8)

130 RO=(Y/8 - INT(Y/8))*8

140 BY=7168 + 8*CH + RO

150 BS=7-(X-INT(X/8)*8)

160 POKE BYf PEEK(BY) OR (2 t BS)

170 NEXT Y, X

180 GOTO 180 : REM FREEZE PROGRAM

This 18 line program looks like a lot.*, but it does a lot.
This is our first program that actually draws something on

the VIC-20 screen in high resolution dot programmable

graphics. Dot programmable graphics are different from VIC

graphics, in that VIC graphics are made up of 8x8 dot blocks

(64 dots per block) . Dot programming lets you access each

dot individually, and "draw11 in high resolution* The

mechanics of how to do this are discussed in the VIC-20

Programmers Reference Guide. But, if you really want to get

into programmable graphics and plotting, we suggest the

VIC-20 Super Expander Cartridge. This special cartridge

gives you 3K of extra RAM and adds several new commands to

VIC BASIC that let you plot individual points, lines, arcs

and circles... and even let you "paint" closed figures on the

screen in colour! The Super Expander also has built-in music

writing commands and a special "music mode".

We hope this brief "magical" introduction to the VIC

gives you some interesting programs to experiment with. If

you have a particular topic you'd like us to discuss, please

drop a line to:

VIC Magician

Commodore Magazine

6 81 Moore Road

King of Prussia, PA

19406

- 40 -



VIC Loader For PET/CBM " David A. Hook •

Barrie, Ontario

Purpose:

As the VIC-20 becomes more popular, it's likely that
users will be exchanging tapes with PET/CBM users. Many
people may have a VIC at homef whereas their school or

business is equipped with PET/CBM machines.

The VIC has several possible memory configurationsf

based on what is plugged into the expansion port. The

"Start-of-Basic" may be at any of three locations (so far!).

To allow for thisf the VIC ROMs use a "relocating loader" to

place the tape program into memory. Therefore, it merrily

accepts BASIC programs saved on either PET/CBMs or other
VICs, regardless of the machine used to SAVE it.

Not so for the program saved on the VIC that is

subsequently loaded into a PET/CBM! BASIC programs are

expected to be found at decimal 1025 ($0401). Only one of

the VIC memory arrangements would have put it there (3K

expansion cartridge).

After the LOAD, you may not find anything there when you

do a LIST. A couple of tricks have appeared in print to

adjust the PET "pointers", but these presumed VIC

start-of-Basic at 4097 decimal ($1001). This only works if

it was SAVEd with the "as-delivered" 5K unit.

(POKE 4096,0:POKE 41,16:CLR was one of these).

If the above two things still didn't work, you could try

POKE 4608,0:POKE 41,18:CLR. A LIST command would now

probably show the VIC program, and allow you to modify the

program.

However, a SAVE to a PET disk would leave you in the

same dilemma next time.

Why not a loader program which takes account of these

posibilities? It should load the VIC program into the normal

PET BASIC area, without the above headaches.

A further incompatibility with the VIC is also overcome:

The VIC operating system allows you to save "program

files" which are NOT relocated by the VIC on loading.

Machine-language programs and user-defined character sets are

two things that SHOULD MOT be parked at a variable address.

A special tape header is written by the VIC when this

type is saved. The PET doesn't digest this, so any attempt

to LOAD one of these will be ignored by the PET's operating

system.



Jim Putterfield's "TIl-JYIION" for VIC uses this "absolute

lcao" feature for any SAVEs of memory. lly adaptation of his

Supermon (for VIC) also copies this technique.

This loader v;ill accept such tapes into the PET, placing

then at the same address and reporting start/end locations in

hexadecimal.

Procedure:

You'll need to do this in three stages:

1) Type in the BASIC portion and save it to tape or disk.

2) Enter the machine-language monitor, typing a bunch of
hexadecimal numbers. Save this part separately, too.

3) Combine the two, then SAVE the composite program*

I'll attempt to lead the way through the puzzle... it's

not too long a process.

Step 1:

If you have Original ROMs (BASIC 1.0), you may retire

early. This won't work. For all others, turn your machine

off and back on again.

Type in the BASIC portion, by following the printed

listing exactly. Don't leave out anything or insert any

extra either. Those cursor movement mnemonics should be

replaced by their corresponding characters (ie. CLR=Clear

Screen, DN=Cursor Dov/n, etc). When you are finished,

'?FRE(0)' to check available memory. For 16K this should be

14809 bytes free, and for 32K, 31193 bytes free. Check

carefully if you are more than a few different than this.

Do NOT attempt to RUN this yet. (If you cannot resist

the urge to check it, put a 'REM' in front of the 'SYS'

instruction first) .

Save this program to tape or disk, as file name

"VL.BAS". Verify it normally. (Did you remember to delete

the 'REM1 that you inserted?).

Step 2:

Consult the "hex dump" of the program, which accompanies

this article.

Type 'SYS4' to enter the fi.L. monitor. Don't be

intimidated by the unfamiliar display... this won't take

long.

- 42 -



Beside the'".", type the following:

M 0640 06F0 <RETURN>

The screen' will fill with lots of numbers and letters.

Change the values to match the data in the hex dump. Don't

forget to hit 'RETURN' at the end of each line. A

double-check may save later grief.

When this screen is done, type:

M 06F8 07BO <RETURN>

Enter the correct values from the table, and

double-check.

Now we are ready to save this part, so type:

S "0:VL4.ML",08,0640,07B8 (Drive #0 on disk)
S "VL4.MLH,01,0640,07B8 (Tape #1)

BASIC 4.0 users can proceed to Step 3. Upgrade (BASIC
2.0) users need to make the following corrections. Type the

instructions, then alter the bytes that are displayed to

match those below:

K 07 28 07 2F

.: 0728 20 56 F6 20 12 F8 20 0A

M 0738 073F

.: 0738 00 20 97 F4 DO 08 4C 6E

M 07 5E 07 6A

075E 6A E7 A9 2D 20 D2 FF 20

0766 97 E7 20 6A E7 B8 50 28

M 07 97 07 9B

0797 B9 F3 4C DD F3 A5 9D 48

M 07A0 07AF

07A0 55 F8 A0 00 00 Bl D6 C9

07A8 03 F0 03 4C B0 F5 4C BC

How we are ready to save this part, so type:

S "0:VL2.HL",08,0640,07B8 (Drive #0 on disk)
S "VL2.ML",01,0640,07B8 (Tape #1)



Step 3: . '

Get back to BASIC, by typing:

X <RETURN>

Reload "VL.HAS" followed by the proper "VLn.ML" (n=2 or

n=4) . Save the composite program with a normal FASIC SAVE

comnand.

Do not make any adjustments to the BASIC portion. It

would move the machine language too... and goodbye forever!!!

Barring mistakes, you should be ready to make a go of it

now.

Operation:

Type 'RUN1 and the program will relocate the

machine-language portion. It moves up to high-memory

automatically, correcting the necessary pointers. BASIC will

not interfere v/ith its operation.

On the screen, the necessary 'SYS' address will be

displayed. Copy this down, as it will permit you to

disengage the routine with the same 'SYS1 call.

The routine is nov; active. To load a VIC tape into the

PET, type:

<V "FILE NAI1E" <RETURN>

The "<" must be in the first column of a screen line or

the PET will ignore it. The "file name" is optional—if

omitted, the load will be done on the first program found.

You will get the normal messages, ie. 'PRESS PLAY...1,

so follow normal procedure. When the 'READY' message appears

and the cursor returnsf you can LIST/edit/reSAVE just as if

it were entered on the PET in the first place*

If the program was of the special, "absolute load"

variety, the PET will load it in the same spot in memory it

was SAVEd at (on the VIC). However, alongside the file name,

the start and end address (in hex) will be printed. This

will flag this type of load, and allow you to find it more

easily in the PET memory.In3; Both TINYHON and SUPERHON

for the VIC save memory using this "absolute load" feature of

the VIC-20. The PET would ignore the file, without this

program.



That's about it* I was able to use this myself on
VIXELtl (The Code Works) the day after it was finished. It's

pretty handy to move VIC programs to PET disk, as a compact

back-up medium* •

David A. Hook

58 Steel Street

BARRIE, Ontario

L4K 2E9

(705) 726-8126

Editor's Note

If you're wondering why the source code for Daves1 Vicloader

doesn't match the hex dumpf it's because they don't! The
BASIC portion of the loader is immediately followed by Jim

Butterfields1 machine code relocator. After this comes

Daves' code which still looks somewhat different from the

source output since Jims' relocator demands a specific

format. Perhaps JB will document his relocator in a future

article so that other ML programmers may include it with new
utilities.

Getting Acquainted

With Your VIC20

Getting Acquainted With Your VIC20 by Tim Hartnetl leads

the reader, step by simple step, from the absolute basics of

programming the VIC to writing complex, sophisticated

programs. It thoroughly describes use of the sound, music

and color graphics capabilities and illustrates the use of

these functions in over 60 programs and games.
By following the comprehensive explanation given for

each program and computer function, the reader will learn a

great deal about the VIC. the Basic language and micro

computers m general.

Parents and teachers will find the section "VIC as a Teacher"

a valuable aid in making the most effective use of the computer

in the teaching/learning process.

This book is a worthwhile resource and wiU help the reader

make the most of his computer. The reader will never feel

quite the same about it after surviving a round of FRENZY,
or listening to the VIC20 compose a symphony'.

Softbound. 132 pages. 5 1/2" x 8". 58.95; add $1.50 for

shipping and handling.

creative computing
ATTN: Fiona

39 E Hanover Avenue

Morris Plains. NJ 07950

Toll-free SOO-«31-«112

InNJ 201-540-O445



LOAD VIC TAPES INTO PET

* FOR BASIC 4.0 ONLY

AS OF FEBRUARY 21, 1982

(C) DAVID A. HOOK

58 STEEL STREET

BARRIE, ONTARIO, CANADA

L4M 2E9 (705) 726-8126

100

110 REM

120 REM

130 REM

140 REM

150 EEK

160 REM

170 REM

180 REM

190 REM ALL COMMERCIAL RIGHTS RESERVED

200 REM

210 PRINT11 [CLR RVS]"TAB(15)"VIC LOADER"

220 SYS1600

230 PRINT"[DN DM DN]- ACTIVATE. OR CANCEL THE LOADER USING:11

240 SA=PEEK(52)+256*PEEK(53)

250 PRINTTAB(10)"[DN DN] SYS(lfSA") "

260 PRINT11 [DN DN]- TO LOAD A VIC TAPE, TYPE:11

270 PRINT" [DN DN] <V "CIIR$(34) "PILE N7vME"CHR$(34)

280 PRINT"[DN DN]- FILE NAME IS OPTIONAL.

290 PRINT" [DN]- TYPE THE COMMAND AT COLUKN l0l."

0640

0648

0650

0658

0660

0668

0670

067 8

0680

0688

0690

0698

06A0

06A8

06B0

06B8

06C0

06C8

06D0

06D8

06E0

06E8

06F0

A5

A5

AC

C6

DO

F0

ce

21

34

91

C6

90

85

00

BF

FF

34

35

BD

FA

3C

GO

4C

2A

34

00

IF

02

21

2.0

AA

DO

34

35

B6

30

AA

AE

FF

86

85

FA

FF

DO

F0

7D

85

85

A5

Bl

C6

85

C6

A5

02

8A

C6

C9

A5

AA

FE

00

30

31

FF

00

08

08

00

IF

21

IF

IF

20

23

IF

23

C6

4 8

34

BF

35

AA

FF

E5

AD

A2

00

CA

4 8

68

CO

A5

A5

DO

DO

C6

A5

Bl

65

35

A5

68

DO

85

AA

00

35

FF

03

95

DO

A5

C9

20

2B

35

02

3C

IF

IF

IF

22

C6

3 4

91

ED

31

AA

E4

B0

FF

B5

78

Fl

77

3A

70

85

85

C6

A5

Bl

DO

18

48

34

DO

34

A5

6C

AA

34

OB

00

78

68

60

C9

BO

00

20

22

20

IF

IF

02

65

A5

68

02 •:

18 •:

34 .:

34 .:

AA .:

AD .:

86 .:

85

48

9D

C9

00

EF

00

•

•

•

•

•

•

•

•

06F8

0700

070 8

0710

: 0718

. 07 20

: 0728

i 0730

: 0738

: 0740

: 0748

: 0750

: 0758

: 0760

: 0768

: 077 0

: 077 8

: 07 80

: 07 88

: 0790

: 0798

: 07A0

: 07A8

: 07 DO

C9

CA

DB

C9

DA

C9

20

F4

00

F5

96

ID

95

A9

20

02

02

7E

18

6D

F3

9A

03

F5

56

86

20

22

20

22

95

A5

20

20

29

EO

FB

2D

17

38

ED

02

6D

7C

4C

F8

FO

4C

DO

Dl

70

DO

70

FO

F6

Dl

D6

E7

10

03

CA

20

D7

ED

7C

A5

7R

02

1C

AO

03

31

Fl

86

00

F6

CO

04

20

FO

F4

FF

DO

DO

10

D2

B8

7B

02

29

02

OD

F4

00

4C

FF

A2

9D

00

A6

00

E6

57

03

DO

00

4C

DE

F8

FF

50

02

A8

8D

8D

7E

A5

00

EF

00

01

A9

AA

77

AA

Dl

F8

20

08

FO

EO

BD

20

20

28

AA

A5

7C

7D

02

9D

Bl

F5

0 8

86

02

FO

E8

FO

DO

20

E7

4C

F8

01

7B

17

44

AD

AD

28

02

02

20

4 8

D6

4C

FF

D4

85

17

86

08

F2

49

FF

AD

A5

FO

02

D7

D7

7D

7E

8D

8A

98

F8

20

C9

FE

00

- 46 -



a
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* *

V
I
C
L
O
A
D
4
.
S
R
C
5

*

F
O
R

L
O
A
D
I
N
G

V
I
C

F
I
L
E
S

I
N

4
.
0

P
E
T
S

*

A
S

O
F

F
E
R
R
U
A
R
Y

2
1
,

1
9
8
2

*

D
A
V
I
D

A
.

H
O
O
K
,

5
8

S
T
E
E
L

S
T
R
E
E
T

B
A
R
R
I
E
,

O
N
T
A
R
I
O

L
4
M

2
E
9

C
A
N
A
D
A

(
7
0
5
)

7
2
6
-
C
1
2
6

•
*
•
•
*
•
*
*
*
•
•
*
*
•
*
*
*
•
*
•
*
•
•
*
*
*
+
•
•
*
*
*
*
•
*
•
*
*
•

O
P

S
Y
S
T
E
M

V
A
R
I
A
B
L
E
S

C
R

=
$
0
D

;
C
A
R
R
.

R
E
T
U
R
N

Q
U
O
T
E

=
$
2
2

;
Q
U
O
T
E

C
H
A
R

T
X
T
T
A
B

«
$
2
8

;
S
T
A
R
T

O
F

B
A
S
I
C

F
R
E
T
O
P

=
$
3
0

;
S
T
R
I
N
G
S

L
O
W

L
I
M
I
T

M
E
M
S
I
Z

=
$
3
4

;
T
O
P

O
F

M
E
M
O
R
Y

C
H
R
G
E
T

»
$
7
0

;
G
E
T

A
C
H
A
R
A
C
T
E
R

C
H
R
G
O
T

=
$
7
6

;
R
E
-
G
E
T

L
A
S
T

C
H
A
R
,

T
X
T
P
T
R

=
$
7
7

;
C
U
R
R
E
N
T

T
E
X
T

P
O
I
N
T
E
R

S
T

=
$
9
6

;
S
T
A
T
U
S

B
Y
T
E

V
E
R
C
K

»
$
9
D

;
L
O
A
D
/
V
E
R
I
F
Y

F
N
L
E
N

.«
$
D
1

;
F
I
L
E
N
A
M
E

L
E
N
G
T
H

F
A

=
$
D
4

;
D
E
V
I
C
E

N
U
M
B
E
R

T
B
U
F

=
$
D
6

;
P
O
I
N
T
E
R

T
O

T
A
P
E

B
U
F
F
E
R

F
N
A
D
R

=
$
D
A

;
F
I
L
E
N
A
M
E

A
D
D
R
E
S
S

P
T
R

T
M
P
O

=
$
F
B

;
M
.
L
.
M
.

T
E
M
P
.

P
O
I
N
T
E
R

T
A
P
E
1

■
$
0
2
7
A

;
C
A
S
S
E
T
T
E
*
1

B
U
F
F
E
R

; ;
O
P

S
Y
S
T
E
M

R
O
U
T
I
N
E
S

W
R
O
A

T
2
T
2

Z
Z
Z

C
S
T
E
1

L
D
3
0
0

F
A
F

F
A
F
1

F
A
H

F
A
H
1

F
A
H
2

O
P
1
6
0

C
O
N
T
L
D

L
D
1
6

R
D
T
A
P
E

W
R
T

$
D
7
1
7

;
W
R
I
T
E

A
D
D
R
E
S
S

F
R
O
M

$
F
B
f
$
F
C

$
D
7
4
4

;
S
W
A
P

T
M
P
O

&
T
M
P
2

$
F
6
9
5

;
S
E
T

T
A
P
E

B
U
F
F
E
R

P
O
I
N
T
E
R

$
F
8
5
7

;
T
A
P
E

M
S
G

$
F
4
4
9

;
P
R
I
N
T

F
I
L
E
N
A
M
E

$
F
4
D
3

;
F
I
N
D

S
P
E
C
I
F
I
C

F
I
L
E

$
F
4
D
6

;
F
A
F
+
3

$
F
5
E
5

;
F
I
N
D

A
N
Y

F
I
L
E

$
F
5
E
F

;
F
A
H
+
1
0

(
C
O
N
T
I
N
U
E
)

$
F
5
F
B

;
F
A
H
+
2
2

(
A
B
S

L
O
A
D
)

$
F
5
A
D

;
P
R
I
N
T

'
N
O
T

F
O
U
N
D
1

$
F
4
1
C

;
F
I
N
I
S
H

L
O
A
D

$
F
3
F
8

;
L
O
A
D

F
I
L
E

$
F
8
9
A

;
T
A
P
E

R
E
A
D

$
F
F
D
2

;
P
R
I
N
T

C
H
A
R
A
C
T
E
R

I
N

R
(
A
)

$
7
F
0
8

;
'
S
Y
S

3
2
5
2
0
1

7
F
0
8

7
F
0
B

7
F
0
D

7
F
1
0

7
F
1
2

7
F
1
4

7
F
1
6

7
F
1
8

7
F
1
B

7
F
1
D

7
F
1
F

7
F
2
1

7
F
2
3

7
F
2
4

7
F
2
7

7
F
2
9

7
F
2
A

7
F
2
D

7
F
2
E

7
F
3
0

7
F
3
1

7
F
3
3

7
F
3
5

7
F
3
6

7
F
3
8

7
F
3
A

7
F
3
C

7
F
3
D

7
F
3
F

7
F
4
1

7
F
4
4

7
F
4
7

7
F
4
9

7
F
4
B

7
F
4
D

7
F
4
F

7
F
5
0

7
F
5
2

7
F
5
4

7
F
5
6

7
F
5
8

7
F
5
B

7
F
5
C

7
F
5
E

7
F
6
0

A
E

E
4

A
D

B
5

B
0

8
6

8
6

A
D

8
5

8
5

A
2

E
5
4
8

B
D

9
5

6
8

9
D

C
A

D
O

6
0

C
9

D
O

4
8

A
5

C
9

F
0

6
8

C
9

B
0

4
C

2
0

C
9

D
O

A
2

8
6

C
A

8
6

8
6

A
9

8
5

2
0

A
A

F
0

C
9

D
O

F
E

3
4

F
F

3
5

0
B

3
4

3
0

F
F

3
5

3
1

0
3

7
8

F
A

7
8

F
A

F
l

3
C

0
8

7
7

0
0

0
8

3
A

E
F

7
D

7
0

5
6

F
l

0
1

D
4

D
l

9
D

0
2

D
B

7
0

1
7

2
2

F
6

7
F

7
F

7
F

7
F

7
F

0
0

0
0

0
0

V
I
C
L
D

; $

W
A
R
M

L
O
O
P

S
T
R
T
S

;

W
E
D
G
E

W
G
1
0
0

W
G
2
0
0

;

W
C
M
D

W
G
3
0
0

W
C
1
0
0

L
D
X

C
P
X

L
D
A

S
B
C

B
C
S

S
T
X

S
T
X

L
D
A

S
T
A

S
T
A

L
D
X

L
D
A

P
H
A

L
D
A

S
T
A

P
L
A

S
T
A

D
E
X

B
N
E

R
T
S

C
M
P

B
N
E

P
H
A

L
D
A

C
M
P

B
E
Q

P
L
A

C
M
P

B
C
S

J
M
P

J
S
R

C
M
P

B
N
E

L
D
X

S
T
X

D
E
X

S
T
X

S
T
X

L
D
A

S
T
A

J
S
R

T
A
X

B
E
Q

C
M
P

B
N
E

S
A
R
T

;

M
E
M
S
I
Z

S
A
R
T
+
1

M
E
M
S
I
Z
+
1

W
A
R
M

M
E
M
S
I
Z

;

F
R
E
T
O
P

S
A
R
T
+
1

M
C
M
S
I
Z
+
1

F
R
E
T
O
P
+
1

#
3

C
H
R
G
O
T
+
2
,

C
H
R
G
O
T
A
-
1

C
H
R
G
O
T
+
2
,

C
H
R
G
O
T
A
-
1

L
O
O
P

W
G
2
0
0

T
X
T
P
T
R

#
0

W
C
M
D

;

S
T
R
T
S

C
H
R
G
O
T
+
7

C
H
R
G
E
T

W
G
1
0
0

#
1
F
A

F
N
L
E
N

V
E
R
C
K

#
2

F
N
A
D
R
+
1

C
H
R
G
E
T

;

W
C
2
1
0

#
Q
U
O
T
E

W
C
1
0
0

C
H
E
C
K

T
O
P

O
F

M
E
M
O
R
Y

M
U
S
T

L
O
W
E
R

T
O
P

O
F

M
E
M
O
R
Y

S
W
A
P

O
U
T
/
I
N

C
H
R
G
E
T

R
O
U
T
I

X r
X

X 'X C
H
E
C
K

F
O
R

'
U
N
W
E
D
G
E
'

F
I
R
S
T

C
H
A
R
A
C
T
E
R

w
?
"

F
I
N
I
S
H

C
H
R
G
O
T

•
V
1

M
E
A
N
S

V
I
C
-
L
O
A
D

E
X
I
T

S
E
T

T
O

C
A
S
S
E
T
T
E
f
l

G
E
T

F
I
L
E
N
A
M
E

I
F

P
R
E
S
E
N
T



0
0

7
F
6
2

A
6

7
7

7
F
6
4

E
H

7
F
6
5

0
6

D
A

7
F
6
7

2
0

7
0

0
0

W
C
2
0
0

7
F
6
A

A
A

7
F
6
B

F
O

0
0

7
F
6
D

C
9

2
2

7
F
6
F

F
O

0
4

7
F
7
1

E
6

D
l

7
F
7
3

D
O

F
2

7
F
7
5

2
0

9
5

F
6

W
C
2
1
0

7
F
7
0

2
0

5
7

F
O

7
F
7
I
?

2
0

4
9

F
4

7
F
7
E

A
5

D
l

W
C
2
1
5

7
F
8
0

F
O

O
B

7
F
8
2

2
0

E
7

7
F

7
F
8
5

2
0

D
6

F
4

7
F
8
8

D
O

0
8

7
F
8
A

4
C

A
D

F
5

U
C
2
2
0

7
F
8
D

2
0

E
7

7
F

W
C
2
5
0

7
F
9
0

F
O

F
8

7
F
9
2

A
5

9
6

W
C
2
7
0

7
F
9
4

2
9

1
0

7
F
9
6

D
O

4
C

7
F
9
8

E
O

0
1

7
F
9
A

F
O

I
D

7
F
9
C

E
O

0
3

7
F
9
E

D
O

D
E

7
F
A
0

B
D

7
B

0
2

W
C
2
7

5

7
F
A
3

9
5

F
B

7
F
A
5

C
A

7
F
A
6

1
0

F
8

7
F
A
8

2
0

1
7

D
7

7
F
A
B

A
9

2
D

7
F
A
D

2
0

D
2

F
F

7
F
B
0

2
0

4
4

D
7

7
F
B
3

2
0

1
7

D
7

7
F
B
6

B
8

7
F
B
7

5
0

2
8

7
F
B
9

A
D

7
D

0
2

W
C
2
8
0

7
F
B
C

3
8

7
F
B
D

E
D

7
1
?

0
2

7
F
C
0

A
A

7
F
C
1

A
D

7
E

0
2

7
F
C
4

E
D

7
C

0
2

7
F
C
7

A
8

L
D
X

T
X
T
P
T
R

I
N
X

S
T
X

F
N
A
D
R

J
S
R

C
l
I
R
G
E
T

T
A
X

D
E
O

W
C
2
1
0

C
M
P

f
t
Q
U
O
T
E

D
E
Q

W
C
2
1
0

I
N
C

F
N
L
E
N

D
M
E

W
C
2
0
0

J
S
R

Z
Z
Z

J
S
R

C
S
T
E
1

J
S
R

L
D
3
0
0

L
D
A

F
M
L
E
N

C
E
O

W
C
2
5
0

F
V
K

F
A
F
1

W
C
2
7
0

G
I
V
E

N
O
R
M
A
L

M
S
G
S

J
S
R

J
S
R

B
M
E

J
M
P

0
P
1
6
D

J
S
R

F
V
K

B
E
O

W
C
2
2
0

L
D
A

S
T

A
N
D

#
%
0
0
0
1
0
0
0
0

B
M
E

W
C
3
0
0

;
F
I
N
D

'
V
I
C
1

H
E
A
D
E
R

;
R
E
-
E
N
T
E
R

P
E
T

R
O
M

R
O
U
T
I
N
E
S

F
I
N
D

'
V
I
C
1

H
E
A
D
E
R

C
P
X

B
E
O

C
P
X

B
N
E

L
D
A

S
T
A

D
E
X

B
P
L

#
1

W
C
2
8
0

S
3

V
/
C
2
1
5

N
O
R
M
A
L

P
R
O
G
R
A
M

H
E
A
D
E
R

S
P
E
C
I
A
L

V
I
C

'
A
B
S
O
L
U
T
E

L
O
A
D
'

F
I
N
D

A
N
O
T
H
E
R

T
A
P
E
1
+
1
,
X

;
G
E
T

S
T
A
R
T
/
E
N
D

T
M
P
0
,
X

;
F
R
O
M

T
A
P
E

H
E
A
D
E
R

W
C
2
7

5

J
S
R

W
R
O
A

L
D
A

I
"
-
"

J
S
R

W
R
T

J
S
R

T
2
T
2

J
S
R

V
7
R
0
A

C
L
V

B
V
C

V
/
C
2
9
0

L
D
A

T
A
P
E
1
+
3

S
E
C

S
B
C

T
A
P
E
1
+
1

T
A
X

L
D
A

T
A
P
E
1
+
4

S
B
C

T
A
P
E
1
+
2

T
A
Y

P
R
I
N
T

T
H
E
M

O
N

S
C
R
E
E
N

;
A
L
W
A
Y
S

;
G
E
T

P
R
O
G
R
A
M

L
E
N
G
T
H

7
F
C
8

7
F
C
A

7
F
C
D

7
F
C
F

7
F
D
2

7
F
D
3

7
F
D
4

7
F
D
7

7
F
D
A

7
F
D
B

7
F
D
E

7
F
E
1

7
F
E
4

7
F
E
7

7
F
E
9

7
F
E
A

7
F
E
D

7
F
E
F

7
F
P
1

7
F
F
3

7
F
F
5

7
F
F
8

7
F
F
B

7
F
F
C

7
F
F
E

A
5

8
D

A
5

8
D

8
A

1
8

6
D

8
D

9
8

6
D

8
D

2
0

4
C

A
5

4
8

2
0

A
O

B
l

C
9

F
O

4
C

4
C

4
C

3
1

0
8

2
8

7
B

2
9

7
C

7
B

7
D

7
C

7
E

F
8

1
C

9
D

9
A

0
0

D
6

0
3

0
3

E
F

F
B

7
F

7
F

0
2

0
2

0
2

0
2

0
2

0
2

F
3

F
4

F
8

F
5

F
5

V
/
C
2
9
0

W
C
3
0
0

F
V
H

A
B
S
L
D

C
H
R
G
O
T
A

S
A
R
T

L
D
A

S
T
A

L
D
A

S
T
A

T
X
A

C
L
C

A
D
C

S
T
A

T
Y
A

A
D
C

S
T
A

J
S
R

J
M
P

L
D
A

P
H
A

J
S
R

L
D
Y

L
D
A

C
M
P

B
E
Q

J
M
P

J
M
P

•
B
Y
T

•
W
O
R

•
W
O
R

T
X
T
T
A
B

T
A
P
E
l
+
1

T
X
T
T
A
B
+
1

T
A
P
E
1
+
2

T
A
P
E
l
+
1

T
A
P
E
1
+
3

T
A
P
E
1
+
2

T
A
P
E
1
+
4

L
D
1
6

C
O
N
T
L
D

V
E
R
C
K

R
D
T
A
P
E

#
0

(
T
B
U
F
)
,
Y

#
3

A
B
S
L
D

F
A
H
1

F
A
H
2

$
4
C

W
E
D
G
E

V
I
C
L
D

',
C
H
A
N
G
E

H
E
A
D
E
R

B
Y
T
E
S

;
T
O

S
T
A
R
T

O
F

B
A
S
I
C

F
I
X

E
N
D

L
O
A
D

A
D
D
R
E
S
S

C
O
N
T
I
N
U
E

T
H
E

L
O
A
D

F
I
N
D

A
'
V
I
C
1

H
E
A
D
E
R

I
S

I
T

'
A
B
S
O
L
U
T
E
1

T
Y
P
E

R
E
-
E
N
T
E
R

R
O
M

R
O
U
T
I
N
E
S

G
O
T

H
E
A
D
E
R

T
Y
P
E

f
0
3
f

S
W
A
P

I
N
T
O

Z
E
R
O

P
A
G
E

P
R
O
G
R
A
M

L
O
C
A
T
I
O
N

S
T
A
R
T



SUPERMON For The VIC David A* Hook

Barrief Ontario

Introduction

No machine language monitor is provided in the VIC ROMs.

Serious users find themselves in the same position as the

first generation (BASIC 1.0) of PET users. Since only a

commercial productf VICMON, is available, the need for a

public-domain utility seemed a worthwhile project.

Jim Butterfield has already developed TINYMON1, which

may be found in Compute #20 (January 1982). This offers the
equivalent to the Commodore TIM monitor.

We've already been accustomed to the benefits inherent

in Supermon, Extramon and Micromon for the PET/CBM. Herewith

my adaptation of Supermon for the VIC.

While we are on the subject of Jim Butterfield, I once

again offer my thanks for his many contributions to the

PET/CBM/VIC community. His splendid work and the donation of
same to the public domain is quite remarkable. We often fail

to acknowledge how rich is our store of knowledge because of

this gentleman.

Features

Like its predecessors, VIC-20 SUPERMON loads and

self-relocates to the top of VIC memory, regardless of the

memory configuration installed. It was designed to fit in

less than 2K, and I surrendered the "single-step" mode to

accomplish this goal.

Make no mistake, there's a lot of time to be invested to

reproduce the code of this program. Since I plan to make

this available through the Toronto Pet Users Group, you may

obtain this at the April meeting. It should also be part of

that'eveningfs "Copy Disk".

The syntax is identical to that of TINYMON1 and Supermon

(The Transactor, Vol. II, #11 of November 1980, Compute #19

of December 1981 or The Torpet, Issue #7 of October 1981).

See these references for detailed documentation.

I've copied Jim's technique of "absolute-load" files

with VIC-20 SUPERKON. This means that if you SAVE memory

with the monitor, the VIC won't relocate it on you when you

come to re-LOAD the code.

Jim said that the PET would ignore such files, but my

utility called VICLOAD covers that shortcoming.



Procedure

Apart from the investment of time, you don't really need

to be familiar with machine-language to enter the program.

One of Supermon's benefits is its value for beginners in ML

programming.

You'll need a PET/CBM with Upgrade (DASIC 2.0) or BASIC

4.0 ROM installed. Start with a freshly powered-up machine.

Enter the ML monitor by typing 'SYS41 and hitting 'RETURN1.

There are 20 screens of information to be entered before

you're done. Each requires the same procedure. Only the

first (line entry) is slightly different:

1. Immediately after the ".", type the range of memory

to be displayed, like so:

.H 0028 0028 <RETURN>

One line of hexadecimal digits is shown on the

screen.

2. Move the cursor back to this line and type over the

digits with the values:

.: 0028 01 04 DF 0D DF 0D DF 0D <RETURN>

Don't forget to hit the 'RETURN' key at the end of each

line, or else the new values won't be remembered.

Now type in the starting and ending addresses for each

of the 20 screens to be changed. For example, the first

would be:

•H 0400 047 8 <RETURN>

Copy the values shown in the accompanying "hex dump" for

each block shown. Type right over the existing values,

(which will probably show as "AA" on your screen) . Do your

best to double-check before proceding with the next block.

Repeat until the block from $0D80 to ?0DF8 is done. Now

exit the monitor, with:

.X <RETURN>

NOW SAVE AND VERIFY THE PROGRAM. Do not pass "GO", do

not collect $200... do this first!

- 50 -



Checking

Because of the 2000+ entries you've made, the chance for

error is high. Several "Immediate-11 or "Calculator- Mode"

statements are provided to verify your work*

These statements do a "check-sum" on the total program,

each multiple of 5-screens (4 check-sums), and each "line" of

8-entries.

Enter the statements shown, with no line numbers please!

On hitting 'RETURN1, the total will be shown immediately

below.

If your first one shows "283370", then it's probably

perfect. Go to the head of the class, and start using

VIC-20 SUPERKON.

Otherwise, work your way though the next four, noting

which are correct. Each of these totals are a composite of

80 lines of entry, (or 5-screens, as we put them in).

For any incorrect block from above, there is a

corresponding statement to type. This will give the

individual totals for each line of entry. Mark the lines

that are different. You will now have to re-enter the ML

monitor and make the necessary corrections. ReSAVE this

version and re-do the checksum until it's correct.

Operation

Disconnect your cassette recorder (power off the PET

first, please) . Reconnect to the VIC, turn everything on,

LOAD VIC-20 SUPERMON and RUN it.

You should be greeted with the so-called "Register

Display", as on the PET/CBM. Unless it's a B & w display,

you'll see several usages of VIC colour.

Any entries you make will be in blue, while the VIC
variously displays red for register headings or errors,

purple for normal addresses, black for memory bytes and green

for disassembly mnemonics or "next" addresses when assembling

code.

Since we are dealing with a 22-character wide screen,

the disassembly consumes two lines. The mnemonics are pushed

to the right on the second line. More locations would have

fit, but I chose to keep the actual "bytes" display. This of

course permits you to change them, and causes an automatic

redisplay of the same range of addresses.

The goal of "under 2K" was met (by 3 bytes) , but the

single-step had to be sacrificed. Someone else may re-work

Microinon for VIC, but its 4K size is of no use to the "3583

BYTES FREE" crowd.

- 51 -



In Closing.

If I use this half as much as Supermon for PETf it will

have been worth the adaptation effort. VJithout Superrcon 1.0

(for Original ROM) , this would not have been feasible. A

oeep bow towards 14 Brooklyn Avenue, Toronto.

David A* Hook

58 Steel Street

B/iRRIE, Ontario

L4K 2E9

(705) 726-8126

Editor's Note

VICKON is available now from Commodore dealers. Unlike

Supermon for the VIC, VICMON comes on a plug-in cartridge.

VICMON is a 4K program and doesn't use any of the VICs RAM,

leaving more room for your programs. Several additional

features include scrolling backwards and forwards,

quicktrace, single step, and more! If Daves1 Supermon for

the VIC wets your appetite for further exploration into the

realm of machine language, you'll find VICMON a welcome

addition to your programming toolbox!

Your VIC-20 Will Smile...

Volume One

Fly a water-dropping helicopter, and

try to put out the high-rise (ire

before it spreads.

Draw
Be an artist! This high-resolution

drawing program makes it easy to

create pictures on the screen, and then

save them on tape.

Race the computer, head-on! Simple

but fun.

The VIXEL *\ cassette costs only $12.95^ the US and
Canada. Foreign orders please add S3.00 for shipping CA
residents add 6% tax Visa and MasterCard welcome

VIXEL »s a uaoomarv o* Tn« Cooe W(y^

VlC-?0 »s a uao^^

The CodeWorks

Bo» 550. Goleta. CA 93116 805 683-1585

- 52 -



: 0400
: 0A08

: 0410

: 041&

: 0420

: 0428

: 0430

: 0438

: 0440
: 0448

: 0450

: 0458

: 0460

: 0468

: 0470

: 0478

: 0480

: 0488

: 0490

: 0498

: 04A0

: 04A8

: 04B0

: 04B8

: 04C0

: 04C8

: 04D0

: 04D8

: 04E0

: 04E8

: 04F0

: 04F8

: 0500

: 0508

: 0510

: 0518

: 0520

: 0528

: '0530

: 0538

: 0540

: 0548

: 0550

: 0558

: 0560

: 0568

: 0570

: 0578

00

12

45
4E

11

2E

04

4F

4D

99

4D

46

78

29

34

00

A5

A5

A0

C6

DO

FO

C6

24

37

91

C6

90

85

00

BF

03

A9

D8

85

A8

E9

06

2A

IB

00

43

2E

OE

OA

CA

4C

A5

1A

ID

52

00

44

20

70

4D

4F

22

20

49

00

AA

34

00

2D

37
00

22

02

21

23

AA

DO

37

38

B6

33

AA

78

AD

80

68

03

38

00

20

20

A9

85

FA

FO

DD

AA

FF

FC

C2

04

ID

20

2F

41

48

00

20

4E

11

42
45

9E

32

29

00

85

85

A5

Bl

C6

85

C6

A5

02

8A

C6

C9

A5

AA

AD

E9

20

85

68

8A

00

CE

43

IF

26

00

F9

BB

BD

00

FA

85

64

ID

56

04

56

4F

99

53

00

42

55
4C

28

35

AA

AA

22

24

22

22

23

26

22

26

C6

48

37

BF

38

AA

E8

FF

90

05

85

E9

85

F8

FA

20

A2

20

C9

FF

CB

48

00

00

00

ID

49

6E

49

4F

22

55

5E

59

54

44

C2

36

31

AA

A5

A5

DO

DO

C6

A5

Bl

65

38

A5

68

DO

85

AA

FF

00

FF

68

02

02

00

00

00

D2

OD

BB

20

00

FF

60

A5

00

99

53

43

00

44

4B

11

50

04

20

54

00

28

AC

32

AA

2E

38

02

3C

22

22

22

25

C6

37

91

ED

34

AA

00

8D

58

85

68

85

00

A2

A9

FF

A9

FA

FO

DO

00

CA

Cl

60

22

55

4D

99

20

00

46

45

73

4A

45

79

34

C2

37

AA

85

85
C6

A5

Bl

DO

18

48

37

DO

37

A5

6C

AA

8D

17

00

04

AA

01

BA

42

52

A9

2E

00

F5

OC

48

10

85

A9

93

50

4F

22

41

44

52

52

00

49

52

04

33

28

29

AA

23

25

23

22

22

02

65

A5

68

02

18

37

37

AA

16

03

00

68

68

98

86

A9

DO

00

20

C9

A2

8A

BD

EC

01

05

0580

0588

0590

0598

05A0

05A8

05B0

05B8

05C0

05C8

05D0

05D8

05E0

05E8

05F0

05F8

0600

0608

0610

0618

0620

0628

0630

0638

0640

0648

0650

0658

0660

0668

0670

0678

0680

0688

0690

0698

06A0

06A8

06B0

06B8

06C0

06C8

06D0

06D8

06E0

06E8

06F0

06F8

85

00

20

C6

00

Cl

20

02

60

9C

43

4C

C2

20

FF

DO

A5

01

00

BB

2E

00

6C

A6

A5

20

20

FA

20

FO

A9

20

F8

OC

00

06

01

04

6C

B9

A9

20

OD

CF

FO

10

C9

20

ID

00

34

ID

90

Cl

D3

85

98

20

FA

D2

DO

D2

00

F5

00

20

20

FA

20

20

FA

26

C4

BB

81

00

78

05

05

9C

00

C9

90

9A

48

A4

02

88

40

CF

FO

FF

28

FO

OD

8B

A9

20

FA

DO

OB

FO

F8

Cl

48

D2

00

FF

02

FF

20

AO

00

34

81

00

6C

7C

00

DO

E5

F8

F8

20

F8

20

85

F8

20

20

03

78

A5

05

CO

84

85

FF

37

C9

91

20

FO

FA

90

CB

00

Fl

A2

03

00

A9

20

FF

A9

E6

E6

A2

D2

3B

20

FA

F8

20

FA

FA

20

38

C2

00

00

7C

00

7C

ID

00

CF

DO

20

A5

02

40

AO

B7

BB

C9

C9

22

BB

DO

16

00

20

F8

20

60

00

4C
C6

00

CE

68

20

Cl

26

00

FF

20

34

00

00

7C

00

00

70

A5

90

20

FO

FA

20

FA

20

DO

FF

Dl

78

00

48

78

01

84

A9

20

22

FO

E6

EA

C9

29

D2

00

D3

20

00

FC

ID

00

F8

A2

2C

DO

60

00

E8

BB

FA

20

FO

FA

20

90

F7

C3

2E

2D

EO

00

B2

00

BB

F8

C9

20

F8

00

A5

A6

84

90

02

FO

DO

OF

B7

20

2C

OF

FF

Bl

F8

8B

81

FA

60

85

00

2E

A9

06

A9

BD

EO

F8

00

B2

57

00

BB

23

FO

C5

AO

FA

4C

90

F8

90

FA

4C

OD

7C

00

48

03

06-

BA

84

85

F9

34

C9

C8

CF

DO

FO

AO

Cl

00

FA

Cl

00

A9

C2

A9

4C

OD

E6

1C

EA

16

00

A5

F8

20

90

FA

20

3C

Cl

3A

00

FC

03

00

EB

00

44

FO

FA

A6

A5

A6

9A

84

93

BC

C9

20

OD

CO

FF

DD

EA

- 53 -



0700

0708

0710

0718

0720

0728

0730

0738

0740

0748

0750

0758

0760

0768

0770

0778

0780

0788

0790

0798

07A0

07A8

07B0

07B8

07C0

07C8

07D0

07D8

07E0

07E8

07F0

07F8

0800

0808

0810

0818

0820

0828

0830

0838

0840

0848

0850

0858

0860

0868

0870

0878

C9

FF

20

F5

10

8F

7C

CF

FA

85

FF

4C

FA

4A

OF

D2

FA

20

9A

30

A2

CO

20

20

60

FA

FA

20

85

FA

90

CF

4C

00

DO

60

F9

01

00

20

BO

D2

44

DO

C4

27

F3

FB

03-

C9

8F

20

DO

F9

FA

FF

00

AF

C9

44

00

20

20

FF

00

70

A9

C9

02

68

8B

8B

A9

00

00

B2

2A

00

02

FF

44

00

02

20

60

20

20

BB

DE

FF

F8

FA

60

95

60

00

FO

OD

F9

4C

EC

00

00

C9

A5

20

OD

F8

A5

63

63

68

2C

F7

00

3A

B5

95

FA

FA

00

C9

C9

FA

20

05

69

C9

F8

B4

E6

BB

A9

DB

7F

FA

A6

A9

00

60

A2

CO

A5

A5

E6

60

00

FA

4C

C9

20

2C

Cl

6C

DO

00

Cl

FA

FA

4C

2D

DO

00

90

CO

C2

00

00

00

20

20

00

BB

2A

08

OD

00

Cl

26

FA

00

FA

FA

00

06

3F

20

E6

02

68

28

C3

85

4C

DO

00

44

2C

6C

DO

85

FA

CO

A5

48

00

00

D2

91

08

85

02

48

CA

90

90

85

DO

DO

OA

FA

38

29

DO

A2

DO

D6

00

00

00

00

20

9A

20

CB

C3

B5

95

A4

A4

BA

FC

F8

A5

F8

DO

FA

D5-

AE

00

20

C2

4A

AA

48

FF

30

A9

99

69

B5

DO

02

02

2A

09

OE

OA

00

60

OF

F8

02

08

C2

C9

8D

20

90

7C

A9

D2

F8

DO

CO

27

29

C4

20

FA

20

90

00

E2

00

20

A5

20

82

20

4A

68

8A

20

F8

03

60

06

C2

F3

85

85

20

20

18

OA

20

C9

60

68

2C

B4

D6

20

00

92

09

FA

1C

FF

00

02

48

CA

4C

38

CF

00

4F

29

20

20

20

7C

C2

CF

F6

34

4A

29

20

55 .:

•

60 '.:
85 .:

09 .:

60 .:

95 .:

60 .:

C2 .:

Cl .:

BB . :

BB . :

60 . :

OA

B2 .:

3A .:

20 .:

68 .:

A2 ! :
C2 .:

Cl . :

FO

00

FA

60

00

20

4C

CA

E6

B5

DO

35

E5

: 0880

: 0888

: 0890

: 0898

: 08A0

: 08A8

: 08B0

: 08B8

: 08C0

: 08C8

: 08D0

: 08D8

. 08E0

: 08E8

08F0

■ 08F8

0900

0908

0910

0918

0920

0928

0930

0938

0940

0948

0950

0958

0960

0968

0970

0978

0980

0988

0990

0998

09A0

09A8

09B0

09B8

. 09C0

09C8

. 09D0

: 09D8

: 09E0

: 09E8

. 09F0

09F8

Cl

IE

FA

FB

FB

A6

90

FB

20

C3

20

Al

BO

FA

FA

FA

FA

85

FB

20

FA

FA

FA

FA

00

00

C9

FO

FA

20

8B

EC

00

10

DO

F8

DO

4C

85

A2

93

20

85

A9

44

00

00

Al

85

60

00

00

00

26

5F

00

2A

85

1A

Cl

34

00

00

00

00

ID

00

D3

00

00

00

00

C9

9D

OD

1C

00

CF

FA

86

00

02

F3

00

92

44

20

00

20

67

Cl

91

F8

20

20

Cl

IE

20

20

20

20

DO

Al

20

FB

C3

FB

81

20

4C

20

20

20

A6

90

F8

4C

20

20

A2

27

10

FO

8E

90

FF

00

1C

AO

DO

20

20

20

F8

A5

00

D2

FC

84

AA

00

CB

CB

20

98

E3

F4

F4

6C

64

Cl

D3

00

98

00

C3

C7

7F

6C

6C

8B

26

OC

00

44

6C

6C

00

DO

02

22

00

C6

C9

90

20

00

OC

2D

D3

31

00

C2

85

FF

00

C2

20

AO

F8

F8

EO

E5

FA

FA

FA

FA

20

81

F8

18

65
A6

20

FA

FB

FA

FA

FA

DO

A5

DO

F8

FA

FA

00

14

E8

EO

00

9D

OD

B6

CE

00

C8

FA

F8

FB

20

85

27

A9

20

C6

43

2C

00

00

FC

C2

00

00

00

00

2A

C3

00

A5

C4

26

2A

00

00

00

00

00

11

ID

EE

00

00

00

20

20

20

20

01

10

FO

EO

F8

Bl

E8

00

00

00

E3

21

86

OB

Dl

ID

FA

20

20

A2

00

A8

20

20

20

90

FB

20

DO

IE

85

DO

FB

20

20

20

20

90

20

81

4C

20

20

20

BB

BB

CF

DO

20

02

09

20

00

Cl

E4

20

A6

BO

FA

A9

28

85

FC

DO

00

BB

2D

00

48

05

6C

1A

31

15

00

13

EB

65

C4

3D

00

CA

E3

F4

BB

14

31

Cl

FC

E3

F4

BB

FA

FA

FF

Fl

92

E8

20

DO

A2

DD

1C

CB

26

DD

00

08

A9

ID

00

F2

4C

F8

FA

00

A9

- 54 -



OAOO

0A08

OA1O

0A18

OA2O

0A28

OA3O

OA38

0A40

0A48

0A50

0A58

0A60

0A68

OA7O

0A78

0A80

0A88

OA9O

0A98

OAAO

0AA8

OABO

0AB8

OACO

0AC8

OADO

0AD8

OAEO

OAE8

OAFO

0AF8

OBOO

0B08

OB1O

0B18

0B20

0B28

0B30

OB38

0B40

0B48

OB5O

OB58

0B60

0B68

OB7O

OB78

90

A9

FD

A4

Bl

88

2E

34

00

00

C9

FA

A4

90

4A

07

00

OF

AA

03

AO

08

C8

C9

00

C4

FF

85

29

3F

CB

6C

6C

85

20

85

05

44

03

9C

Cl

00

60

00

FA

68

11

CA

20

IE

00

IF

Cl

DO

FF

FF

CA

AA

FC

00

C2

01

BO

09

BO

DO

BD

85

03

4A

88

FC

C4

27

00

29

26

20

F8

FA

FA

27

6F

Cl

20

F8

85

F8

A5

C5

20

8E

00

38

02

DO

D2

20

A2

FO

BO

F2

00

00

DO

E8

00

A6

AA

C8

17

80

04

04

21

IF

EO

4A

DO

00

IF

90

85

A9

28

D2

00

00

00
86

FC

84

31

00

ID

00

21

28

E3

11

48

E9

6E

ED

FF

D2

06

OE

1C

06

20

FO

D5

DO

8A

1C

10

60

C9

4A

4A

AO

FF

98

8A

09

F2

A2

C8

F2

28

00

2A

FF

20

20

A9

28

00

C2

FB

20

20

DO

85

FO

FA

02

CA

3F

10

A2

20

FF

EO

A5

20

2A

A6

03

60

01

86

60

01

A8

22

AA

4A

80

00

29

FO

20

60

01

90

60

B9

00

88

CA

E3

F4

09

20

20

20

00

E3

BB

F8

C2

03

00

A2

DO

AO

02

02

26

68

03

2A

C9

90

FD

20

20

C8

1C

A5

88

4A
FO

BD

4A

A9

85
8F

OB

88

Bl

20

Fl

A8

7B

AO

DO

DO

FA

FA

A2

CE

Dl

70

BO

FA

FA

A5

4C

20

20

03

F9

05

88

20

FD

20

DO

C9

FC

OE

00

A6

D4

98

20

IF

65

90

13

DD

4A

00

2A

AA

4A

DO

Cl

OC

A2

B9

FF

05

F8

EC

00

00

00

F8

FC

F7

E9

00

00

20

47

D2

6C

20

A2

4A

DO

CF

00 •

3C

12

E8

00

BD

BD

FD

FC

20

34

38

Cl

OB

29

FE
•

•

29

00

29

98

90

FA

20

FB

03

3B

00

06

69

4C

20

20
•

00

00 .:

00

FO

4C

A9

20

85

FC

FF

FA

DB

03

6E

F6

FF

: 0B80

: 0B88

: 0B90

: 0B98

: OBAO

: 0BA8

: OBBO

: 0BB8

: OBCO

: 0BC8

: OBDO

: 0BD8

: OBEO

: 0BE8

: OBFO

: 0BF8

i OCOO

: 0C08

: 0C10

: 0C18

: 0C20

: 0C28

: 0C30

: 0C38

: 0C40

: 0C48

: 0C50

: 0C58

: 0C60

: 0C68

: 0C70

: 0C78

: 0C80

: 0C88

: 0C90

: 0C98

: OCAO

• 0CA8

: OCBO

: 0CB8

: OCCO

: 0CC8

: OCDO

: 0CD8

: OCEO

: 0CE8

: OCFO

: 0CF8

C9

20

FA

A9

02

00

75

20

AA

00

06

15

21

C5

06

BD

DO

BC

00

AO

2B

31

A6

C8

CA

00

26

Cl

00

D2

F8

Bl

DO

ID

A6

C9

03

33

33

B3

44

22

22

22

13

00

86

28

OD

D4

00

30

E8

86

A2

EO

BC

20

EO

A5

20

FE

2A

2E

B5

FE

DO

20

A5

FB

IE

DO

8A

00

91

84

20

FF

00

FD

11

DD

1C

47

DO

DO

DO

DO

33

44

44

44

78

00

4A

24

FO

FE

A4

9D

DO

26

00

FC

3B

BD

03

2A

C3

00

90

FF

CA

00

A6

6C

29

00

10

FA

A4

91

Cl

C2

CB

20

A9

00

98

10

28

60

08

08

08

08

DO

33

33

33

A9

00

85

59

IE

00

Cl

10

DB

FO

00

00

FF

FE

DO

C9

FE

DO

OB

00

DO

DO

A5

FA

C9

90

OA

A6

IF

Cl

20

AO

F8

2D

IF

A8

FO

02

60

38

40

40

40

40

8C

DO

DO

DO

00

00

9D

00

C9

BO

84

02

86

04

86

A6

00

00

19

E8

00

C7

BC

20

Dl

AB

28

00

9D

OA

4C

IE

DO

88

Dl

41

00

FA

20

20

OE

08

C9

60

09

09

09

09

44

8C

08

08

00

59

2C

00

20

OF

C2

E8

28

E6

ID

2A
BD

DO

A4

A9

DO

88

34

BD

FO

20

C5

A4

DO

98

FC

10

03

DO

FC

20

A9

00

D2

C3

86

E8

30

40

30

40

40

00

00

44

40

40

21

4D

29

58

FO

20

85

9D

A2

26

A5

86

7B

E3

IF

30

CC

DO

FF

FE

OA

BC

ID

IF

ID

DO

FA

F6

B9

F8

00

BB

IE

20

FF

FE

1C

86

90

02

22

02

02

00

00

9A

09

09

81

91

2C

24

F5

9F

Cl

10

00

FO

26

29

FF

A2

FO

BO

20

EB

00

00

20

FE

DO

FO

20

04

00

CA

C2

A5

85

F8

20

CB

4C

00

A6

ID

03

45

45

45

45

22

11

10

10

62

82

92

23

24

- 55 -



ODOO 00 00 1C 8A 1C 23 5D 8B

0D08 IB Al 9D 8A ID 23 9D 8B

0D10 ID Al 00 00 29 19 AE 69

0D18 A8 19 23 24 53 IB 23 24

0D20 53 19 Al 00 00 1A 5B 5B

0D28 A5 69 24 24 AE AE A8 AD

0D30 29 00 00 7C 00 00 15 9C

0D38 6D 9C A5 69 29 53 84 13

0D40 34 11 A5 69 23 AO D8 62

0D48 5A 48 26 62 94 88 54 44

0D50 C8 54 68 44 E8 94 00 00

0D58 B4 08 84 74 B4 28 6E 74

0D60 F4 CC 4A 72 F2 A4 8A 00

0D68 00 AA A2 A2 74 74 74 72

0D70 44 68 B2 32 B2 00 00 22

0D78 00 00 1A 1A 26 26 72 72

0D80 88 C8 C4 CA 26 48 44 44

0D88 A2 C8 3A 3B 52 4D 47 58

0D90 4C 53 54 46 48 44 50 2C

0D98 41 4C F9 00 3F F9 00 DD

ODAO F8 00 06 F9 00 60 F9 00

0DA8 87 F9 00 E9 F9 00 FD F9

ODBO 00 40 FB 00 94 FB 00 C2

0DB8 FB 00 35 FC 00 5D FD 00

ODCO 8B FD 00 AD FD 00 17 F8

0DC8 00 OD 20 20 20 50 43 20

ODDO 20 53 52 20 41 43 20 58

0DD8 52 20 59 52 20 53 50 AA

ODEO AA AA AA AA AA AA AA AA

0DE8 AA AA AA AA AA AA AA AA

ODFO AA AA AA AA AA AA AA AA

0DF8 AA AA AA AA AA AA AA AA

T=O:FORJ=1024TO3550:T=T+PEEK(J):NEXT:?T

283370

READY.

T=0:FORJ=1024T01663:T=T+PEEK(J):NEXT:?T

68631

READY.

T=0:FORJ=1664TO2303:T=T+PEEK(J):NEXT:?T

77155

READY.

T=0:F0RJ=2 304TO294 3:T=T+PEEK(J):NEXT:?T

74768

READY.

T=0:FORJ=2944TO3550:T=T+PEEK(J):NEXT:?T

62816

READY.

- 56 -



)Rj=l024TOl663STEP8:T=0:FORK=

>EEK(K)
64
♦74

♦47

i55

'56

(86

$3

LI 6

.136
• 93

.088

.132

,39

)75

)65

,64

)05

L192

J58

:NEXT:?T,

382

451

538

774

780

853

840

1190

803

889

987

1079

853

1207

1041

1082

793

617

794

1030

:NEXT •

565
472

579

510

802

801

835

1134

753

850

1415

1070

825

983

744

1230

768

1049

1201

805

JTOJ+

426

587

481

850

910

784

1383

831

883

893

1035

762

1193

824

1408

1139

987

1218

803

1036

:T=T

FORJ=2304TO2943STEP8:T=0:FORK=

+PEEKCK) -.NEXT: ?T, :NEXT

835 672 923

901 916 859

937 901 1193

999 989 1179

751 926 1013

1083 901 867

986 880 1329

987 810 645

964 892 874

1059 981 941

1215 995 837
975 838 808

517 684 863

994 791 1284

977 1129 991

858 1282 992

698 832 888

822 994 666

1117 977 995

1146 805 737

JTOJ+7:T=T

1265
881

589

1046

943

677

909

1103

1089

1001

792

1052

825

911

514

916

1283

1190

577

1305

)RJ=1664T02303STEP8:T=0:FORK=JTOJ+7:T=T

JEEK(K):NEXT:?T,:NEXT

L196

S46

1045

L417

L232
384

L274

902

*?76

J=133

459

^54

'62

i55
)53

1082

1104

306

S45
H3

1068

683

1417

1224

1143

1103

937

770

912

1388

919

708

963

930

1270

1082

775

837

1301

963

713

913

835

1150

991

796

1277

638

714

894

825

443

1293

658

1001

878

834

968

782

916

682

1191

1166

951

953

1284

835

1227

660

893

500

1340

1038

875

1419

1256

858

1185

1003

859

FORJ=2944TO3551STEP8:T=0:

+PEEK(K)

1202

997

1239

958

1290

876

1125

714

959

443

552

600

461

477

848

1180

980

848

1089

:NEXT:?T,

880

924

1072

1437

1295

818

1095

1027

671

475

739

457

843

1031

734

956

797

1368

288

:NEXT

1259

645

901

698

1013

800

1002

1021

726

475

458

662

535

342

836

612

577

908

481

FORK=JTOJ+7:T=T

797

891

1054

965

. 985

1318

1211

1079

655

502

540

325

445

810

882

356

923

902

564

- 57 -



Is!
5 2m

SkB. SSB 588 ll 18 38g S3 Si £88 S«S 5SK if £5 SS

••» *\ **. •:

88822222S2338888S]»B885^^

B r
3 fc

M MM>-

ESE B 2 E5E gg ESE 2SB 5 §3S 53S S33 §35 S3 S3S 332 §33

iiini^^^

S3 ESS MS SS S3 §§ S5
5 IK

ES §8

—-*-»

85 m gg ii ?f sii &si sis gf is sie i

251 :

l!.f

ii
till
? ? £ P

, 1 .

5

•3

S

I

f
£

ft

S

J

5

:

I

I

. -

I

•

2

• •

S

•

i
«

-

?

2 S S S S S S S S8§ S

o

" J

" e «..

o

Si

°

u.

t

1

9

C

o

1

o

" 1 "

If

IM ^

5 |

X

.c x

» T —

•

puttiming
c

9

C

3

*

tRegJIMS

s

r

r

-

*

H

*•

5

m

5 = 1

- -

5 =

r

_

■I

•? -

i •*

s "

II
•? -

• £

III••«

>l t»

O — <M

r

«?

o

c

-

c

a

J"

—

e

C
9

-

o

°

I

..

3

~m

w

C

o o

$1

1^
"* —

c -

•

I :

- >

I
c

c

1

—

I
c

1

| |

V

- r* r>

v w »

"S 1 "S
> > >

5,sl°

"5

:

b :

i —

1 3

i

i 3



•
0
0
0
.
0
0
0
*

0
0
0
J
.
0
0
0
4

O
O
O
S
-
0
0
0
4

0
0
0
7

0
0
0
1

0
0
0
*

0
0
0
A

O
O
O
B

o
o
o
c

o
o
o
o

o
o
o
c

o
o
o
r

0
0
1
0

0
0
1
1

0
0
1
1

0
0
1
]

0
0
1
4
-
0
0
1
S

0
0
1
4

0
0
1
7
-
0
0
1
1

0
0
1
1
-
0
0
2
1

0
0
2
2
-
0
0
2
S

0
0
2
4
-
0
0
2
A

0
0
2
O
-
O
0
2
C

C
O
J
O
-
C
O
J
C

o
o
j
r
-
o
o
j
o

0
0
)
1
-
0
0
)
2
.

0
0
)
3
-
0
0
3
4

.

0
0
)
5
-
0
0
)
4

0
0
)
7
-
0
0
)
t

0
O
)
f
-
O
0
)
A

0
O
3
B
-
0
O
K

O
O
J
O
-
O
O
J
C

o
o
)
r
-
o
o
4
0

0
0
4
1
*
0
0
4
2

0
0
4
3
-
0
0
4
4

0
0
4
S
-
0
0
4
4

0
0
4
7
-
0
0
4
1

0
0
4
t
-
0
0
4
A

0
0
4
B
-
0
0
4
C

0
9
4
O

0
0
4
C
-
0
0
5
3

0
0
S
4
-
0
0
S
4

0
0
5
7
-
0
0
4
0

0
0
4
1

0
0
4
2
-
0
0
4
S

0
0
4
4

0
0
1
7

0
0
4
0

o
o
i
9
-
0
0
4
c

I
S
1
4

1
7
1
0

I
t

2
0
-
2
1

2
2
2
)
-
2
4

2
5
-
)
)

)
4
-
)
7

)
l
-
4
2

4
)
-
4
4

4
5
-
4
4

4
7
-
4
1

4
f
-
S
0

S
I
-
S
2

S
3
-
S
4

S
S
-
S
4

S
7
-
S
I

S
9
-
4
0

4
1
-
4
2

4
)
-
*
4

4
$
-
»
*

4
7
-
4
1

C
t
-
7
0

7
1
-
7
*

7
)
-
7
4

7
5
-
7
4

7
7

7
1
-
f
)

•
4
-
l
«

•
7
-
9
4

•
7

1
1
-
1
0
1

1
0
2

1
0
)

1
0
4

1
0
5
-
1
1
0

r
i
o
j
t
-
r
i
«
«
t
f

v
e
c
t
o
r

r
i
i
f
d
-
r
i
o
J
t

v
e
c
t
o
r

S
e
a
r
c
h

c
h
a
r
a
c
t
e
r

S
c
a
n
-
q
u
o
t
r
s

f
l
a
q

T
A
B

c
o
l
u
»
n

o
j
v
o

o
-
l
o
a
o
.

i
-
v
e
m
r
?

I
n
p
w
t

b
u
f
f
e
r

p
o
i
n
t
e
r
/
*

a
u
b
e
c
r
p
t

D
e
f
a
u
l
t

O
I
K

f
l
a
q

T
y
p
e
i

r
r
«
e
t
r
i
n
q
.

0
0
-
n
u
»
«
r
l
c

T
y
p
e
i

s
O
-
l
n
t
e
g
e
r
.

0
0
-
f
l
o
.
t
l
n
g

p
o
i
n
t

D
A
T
A

a
c
e
n
/
L
l
S
T

q
u
o
t
e
/
a
e
»
r
y

f
l
a
g

S
u
b
a
c
c
I
p
t
/
r
N
s

r
i
«
9

0
-
l
M
f
U
T
i
1
4
0
-
C
C
T
l
f
9
*
-
R
C
A
0

A
T
M

s
l
g
n
/
C
o
a
p
e
r
l
e
o
n

e
v
a
l

f
l
e
q

C
u
r
r
e
n
t

I
/
O

p
r
e
a
p
t

f
l
*
q

I
n
t
«
9
«
r

v
a
l
u
e

f
o
l
n
t
t
r
i

t
e
a
p
o
r
s
r
y

»
t
r
e

s
t
a
c
k

L
a
s
t

t
e
a
p

s
t
r
t
n
q

v
e
c
t
o
r

S
t
a
c
k

(
o
r

t
e
m
p
o
r
a
r
y

a
t
r
l
n
q
e

U
t
i
l
i
t
y

p
o
i
n
t
e
r

a
r
e
a

P
r
o
d
u
c
t

a
r
e
a

f
o
r

e
u
l
t
l
p
l
l
c
a
t
l
o
n

P
o
i
n
t
e
r
)

S
t
a
r
t
-
e
f
-
B
e
s
l
e

P
o
i
n
t
e
r
i

S
t
a
r
t
-
o
r
-
A
r
r
e
y
a

r
o
l
n
t
e
r
i

C
n
d
-
o
(
-
A
r
r
a
y
s

P
o
l
n
t
e
r
i

S
t
r
l
n
q
-
e
t
o
r
e
q
e
l
a
o
v
l
n
q

d
o
w
n
)

U
t
i
l
i
t
y

a
t
r
l
n
9

p
o
i
n
t
e
r

P
o
l
n
t
e
r
t

L
l
a
l
t
-
e
(
-
a
e
-
o
r
y

C
u
r
r
e
n
t

B
a
a
l
c

l
i
n
e

n
u
a
b
e
r

P
r
e
v
l
o
u
a

B
a
a
l
c

l
i
n
e

n
u
a
b
e
r

P
o
i
n
t
e
r
i

B
a
a
l
c

e
t
e
t
e
a
t
n
t

(
o
r

C
O
i
t
T

C
u
r
r
e
n
t

D
A
T
A

l
i
n
e

n
u
a
b
e
r

C
u
r
r
e
n
t

D
A
T
A

a
d
d
r
e
s
s

I
n
p
w
t

v
e
c
t
o
r

C
u
r
r
e
n
t

v
a
r
i
a
b
l
e

n
a
a
e

C
u
r
r
e
n
t

v
a
r
i
a
b
l
e

a
d
d
r
e
s
s

v
a
r
i
a
b
l
e

p
o
i
n
t
e
r

f
o
r
r
O
R
/
N
«
T

Y
-
s
a
v
e
i

o
p
-
s
e
v
e
r

B
a
e
l
c

p
o
i
n
t
e
r

s
a
v
e

C
o
a
p
a
r
l
a
o
n

e
y
a
b
o
l

a
c
c
u
a
u
l
a
t
o
r

m
a
c

w
o
r
k

a
r
e
a
,

p
o
i
n
t
e
r
s
,

e
t
c

J
u
a
p

v
e
c
t
o
r

f
o
r

(
u
n
c
t
l
o
n
a

n
i
a
c

n
u
a
e
r
l
c

v
o
r
k

a
r
e
a

A
c
c
u
a
l
l
t

e
x
p
o
n
e
n
t

A
c
c
u
a
l
l
i

M
a
n
t
i
s
s
a

A
c
c
u
a
l
l
i

S
l
q
n

S
c
r
l
e
a

e
v
a
l
u
a
t
i
o
n

c
o
n
a
t
a
n
t

p
o
i
n
t
e
r

A
c
c
u
a
l
l

h
l
-
o
r
d
e
r

(
o
v
e
r
f
l
o
w
)

A
c
c
u
a
l
2
i

O
p
o
n
e
n
t
,

e
t
c
.

0
0
7
1
-
0
0
7
2

0
0
7
)
-
0
0
(
A

0
0
7
A
-
0
0
7
D

o
o
a
n
-
o
o
a
r

0
0
9
0

0
0
9
1

0
0
9
2

0
0
9
)

0
0
9
4

0
0
9
5

0
0
9
4

0
0
9
7

0
0
9
1

0
0
9
9

0
0
9
A

0
0
9
S

0
0
9
C

0
0
9
0

0
0
9
C

0
0
9
-

O
0
A
0
-
0
O
A
2

O
O
A
)

0
0
A
4

0
0
A
5

0
0
A
4

0
O
A
7

O
O
A
I

0
0
A
9

O
O
A
A

O
O
A
B

O
O
A
C
-
O
O
A
D

O
O
A
t
-
O
O
A
r

0
0
B
0
-
0
0
B
1

0
O
B
2
-
O
0
B
)

0
0
B
4

O
O
B
S

0
0
B
4

0
0
B
7

O
O
B
I

0
0
0
9

O
O
B
A

O
O
B
B
-
O
O
B
C

O
O
B
O

O
O
B
t

o
o
o
r

o
o
c
o

0
0
C
1
-
0
0
C
2

0
0
O
-
0
0
C
4

0
0
C
5

1
1
3
-
1
1

1
2
7
-
I
J
J

1
)
9
-
1
4
)

1
4
4

1
4
5

1
4
4

1
4
7

1
4
1

1
4
9

I
S
O

1
5
1

1
5
2

1
5
)

1
5
4

1
5
5

1
5
7

1
5
1

1
S
9

1
4
0
-
1
4
2

1
4
)

1
4
4

I
I
S

1
4
4

1
4
7

1
4
1

1
4
9

1
7
2
-
1
7
)

1
7
4
-
1
7
5

1
7
4
-
1
7
7

1
7
1
-
1
7
9

1
1
0

1
1
1

1
1
2

1
1
)

1
1
4

U
S

1
1
4

1
1
7
-
1
1
1

1
1
9

1
9
0

1
9
1

1
9
2

1
9
)
-
1
9
4

1
9
5
-
1
9
4

1
9
7

C
a
a
a
e
t
t
e

b
u
f
f

l
e
n
/
f
l
e
r
l
e
a

p
o
i
n
t
e
r

C
N
I
i
e
c
r
a
u
b
r
o
u
t
i
n
e
t

9
«
t

O
a
a
l
c

c
h
a
r

D
a
a
l
c

p
o
i
n
t
e
r

(
w
i
t
h
i
n

a
u
b
r
t
n
)

■
N
O

s
e
e
d

v
«
l
u
e

S
t
a
t
u
e

w
o
r
d

S
T

K
e
y
a
w
l
t
c
h

P
l
A
i

S
T
O
P

a
n
d

R
V
S

f
l
e
q
s

T
l
a
i
n
f

c
o
n
s
t
a
n
t

(
o
r

t
a
p
e

L
o
a
d
-
0
,

V
c
r
l
f
y
-
l

S
e
r
i
a
l

o
u
t
p
u
t
!

d
e
f
e
r
r
t
d

c
h
a
r

f
l
a
q

S
e
r
i
a
l

d
e
f
e
r
r
e
d

c
h
a
r
a
c
t
e
r

T
a
p
e

C
O
T

r
e
c
e
i
v
e
d

R
e
g
i
s
t
e
r

a
a
v
e

H
o
w

a
a
n
y

o
p
e
n

f
l
l
e
a

I
n
p
u
t

d
e
v
l
c
t
.

n
o
r
a
e
l
l
y

0
O
u
t
p
u
t

C
H
O

d
e
v
i
c
e
,

n
o
r
a
a
l
l
y

)

T
a
p
e

c
h
a
r
a
c
t
e
r

p
a
r
i
t
y

■
y
t
e
-
r
e
c
e
l
v
e
d

(
1
*
9

D
l
r
e
c
t
*
S
S
0
/
i
i
U
H
>
0

o
u
t
p
u
t

c
o
n
t
r
o
l

T
p

P
a
s
t

1
e
r
r
o
r

l
o
o
/
c
h
a
r

b
u
f
f
e
r

T
p

P
a
a
e

2
e
r
r

I
0
9

c
o
r
r
e
c
t
e
d

J
i
f
f
y

C
l
o
c
k

h
n
l

S
e
r
i
a
l

b
i
t

c
o
u
n
t
/
c
o
t

(
1
*
9

C
y
c
l
e

c
o
u
n
t

C
o
u
n
t
d
o
w
n
,
t
a
p
e

w
r
i
t
e
/
b
i
t

c
o
u
n
t

T
a
p
e

b
u
f
f
e
r

p
o
i
n
t
e
r

T
p
W
r
l

l
d
r

c
o
u
n
t
/
a
d

p
a
a
a
/
l
n
b
l
t

T
p

w
r
t

n
e
w

b
y
t
e
/
I
U
J

e
r
r
o
r
/
l
n
b
i
t

c
n
t

«f
r
t

s
t
a
r
t

b
l
t
/
R
d

b
i
t

e
r
r
/
s
t
b
l
t

T
p

S
c
a
m
C
n
t
i
L
d
i
C
n
d
/
b
y
t
e

e
a
s
y

M
r

l
e
a
d

l
e
n
q
t
h
/
R
d

c
h
e
c
k
a
u
a
/
p
a
r
l
t
y

P
o
i
n
t
e
r

1
t
a
p
e

b
u
f
r
,

s
c
r
o
l
l
i
n
q

T
a
p
e

e
n
d

a
d
d
a
/
C
n
d

o
f

p
r
o
9
r
a
a

T
a
p
e

t
l
a
l
n
9

c
o
n
a
t
a
n
t
t

P
n
t
r
i

s
t
a
r
t

o
f

t
a
p
e

b
u
f
f
e
r

1
-
T
p

t
l
a
e
r

e
n
a
b
l
e
d
}

b
i
t

c
n
t

T
p

C
O
T
/
R
S
2
)
2

n
e
a
t

b
i
t

t
o

a
e
n
d

R
e
a
d

c
h
a
r
a
c
t
e
r

e
r
r
o
r
/
o
u
t
b
y
t
e

b
u
t

I
c
h
a
r
a
c
t
e
r
s

I
n

(
t
i
e

n
a
a
e

C
u
r
r
e
n
t

l
o
q
l
c
e
l

f
i
l
e

C
u
r
r
e
n
t

s
e
e
n
d
y

a
d
d
r
e
a
a

C
u
r
r
e
n
t

d
e
v
l
e
e

P
o
i
n
t
e
r

t
o

f
i
l
e

n
a
a
e

M
r

s
h
i
f
t

v
o
r
d
/
R
d

I
n
p
u
t

c
h
a
r

I
b
l
o
c
k
s

r
e
a
e
i
n
i
n
o

t
o
W
r
/
R
d

S
e
r
i
a
l

w
o
r
d

b
u
f
f
e
r

T
a
p
e

a
o
t
o
r

I
n
t
e
r
l
o
c
k

I
/
O

s
t
a
r
t

e
d
d
e

R
e
r
n
e
l

a
e
t
u
p

p
o
i
n
t
e
r

L
e
a
t

k
e
y

p
r
e
a
a
e
d

U
Q
b
'

0
0
C
«

O
O
C
9
-
0
O
C
A

O
O
C
B

O
O
C
C

O
O
C
O

o
o
c
r
.

o
o
c
r

O
O
D
O

0
0
O
1
-
0
O
D
2

O
O
D
)

0
0
D
4

O
O
D
S

0
0
D
4

0
0
D
7

o
o
o
a

0
0
D
9
-
0
0
r
0

o
o
r
i

o
o
r
2

o
o
n
-
o
o
r
4

o
o
r
s
-
o
o
r
4

o
o
r
7
-
o
o
r
o

o
o
r
9
-
o
o
r
A

o
o
r
r
-
o
i
o
A

0
1
0
0
-
1
0
J
C

o
i
o
o
-
o
i
r
r

0
2
0
0
-
0
2
5
*

0
2
5
9
-
0
2
4
2

O
2
4
3
-
O
2
4
C

0
2
4
D
-
0
2
7
4

0
2
7
7
-
0
2
1
0

0
2
0
1
-
0
2
0
2

0
2
*
3
-
0
2
4
4

0
2
0
S

0
2
0
4

0
2
0
7

0
2
0
1

0
2
0
9

0
2
I
A

0
2
1
8

0
2
0
C

Q
2
S
D

0
2
I
C

0
2
i
r
-
0
2
9
0

0
2
9
1

0
2
9
2

0
2
9
)

0
2
9
4

0
2
9
5
-
0
2
9
4

0
2
9
7

1
9
9

2
0
0

2
0
4

7
0
5

1
0
4

2
0
7

2
0
0

2
0
9
-
2
1
0

2
1
1

2
1
2

2
1
)

2
1
4

2
1
5

2
1
4

2
1
7
-
2
4
0

2
4
)

2
4
2

2
4
3
-
2
4
4

2
4
S
-
2
4
4

2
4
7
-
2
4
0

2
4
9
-
2
5
0

2
5
4
-
2
4
4

2
5
4
-
3
1
0

2
S
4
-
S
1
1

S
I
2
-
4
0
0

4
0
1
-
4
1
0

4
1
1
-
4
2
0

1
2
1
-
4
)
0

4
)
1
-
4
4
0

4
4
1
-
4
4
2

,
«
-
„
.

4
4
4

1
4
7

1
4
0

4
4
9

4
S
0

4
S
1

4
5
2

4
5
3

4
5
4

4
S
S
-
4
S
4

4
S
7

4
S
0

4
S
9

4
4
0

4
4
1
-
4
4
2

4
4
3

S
c
r
e
e
n

r
e
v
e
r
s
e

1
1
-
9

C
a
d
-
o
C
-
l
l
n
e

f
o
r

I
n
p
u
t

p
o
i
n
t
e
r

i
n
p
u
t

c
u
r
s
o
r

l
o
«

(
.
r
o
w
,

c
o
l
u
»
n
t

w
h
i
c
h

k
e
y
s

4
4

i
f

n
o

k
e
y

0
«
(
l
a
a
h

c
u
r
s
o
r

C
u
r
s
o
r

t
l
a
l
n
q

c
o
u
n
t
d
o
w
n

C
h
a
r
a
c
t
e
r

u
n
d
e
r

c
u
r
s
o
r

C
u
r
s
o
r

t
o
b
l
i
n
k

p
h
a
s
e

I
n
p
u
t

f
r
o
a

s
c
r
e
e
n
/
f
r
o
a

k
e
y
b
o
a
r
d

P
o
i
n
t
e
r

t
o

s
c
r
e
e
a

l
i
n
e

P
o
s
i
t
i
o
n

o
f

c
u
r
s
o
r

o
n

a
b
o
v
e

l
i
n
e

0
«
d
i
r
e
c
t

c
u
r
s
o
r
,

e
l
a
e

p
r
o
q
r
a
a
a
c
d

C
u
r
r
e
n
t

s
c
r
e
e
a

l
i
n
e

l
e
n
q
t
h

R
o
w

w
h
e
r
e

c
u
r
o
s
r

l
i
v
e
s

C
a
s
t

l
n
k
c
y
/
c
b
e
c
k
s
u
a
/
b
v
(
(
e
r

I
o
f

I
N
S
E
R
T
S

o
u
t
s
t
a
n
d
l
n
9

S
c
r
e
e
n

l
i
n
e

l
i
n
k

t
a
b
l
e

D
u
a
a
y

s
c
r
e
e
n

l
i
n
k

S
c
r
e
e
n

r
o
w

a
a
r
k
e
r

S
c
r
e
e
n

c
o
l
o
r

p
o
i
n
t
e
r

K
e
y
b
o
a
r
d

p
o
i
n
t
e
r

R
S
-
2
)
2

R
e
v

p
n
t
r

R
*
-
2
)
2

T
«

p
n
t
r

r
i
o
a
t
l
n
o

t
o

A
S
C
I
I

w
o
r
k

a
r
e
a

T
a
p
e

e
r
r
o
r

I
0
9

P
r
o
c
e
s
a
o
r

s
t
a
c
k

a
r
e
a

B
a
s
i
c

I
n
p
u
t

b
u
f
f
e
r

L
o
g
i
c
a
l

f
l
i
t

t
a
b
l
e

D
e
v
i
c
e

I
t
a
b
l
e

S
e
c

A
d
d
s

t
a
b
l
t

R
e
y
b
d

b
u
f
f
e
r

S
t
a
r
t

o
f

B
a
s
i
c

H
e
a
o
r
y

T
o
p

o
f

B
a
s
i
c

H
e
a
o
t
y

S
e
r
i
a
l

b
u
s

t
l
s
w
o
u
t

f
l
e
q

C
u
r
r
e
n
t

c
o
l
o
r

c
o
d
e

C
o
l
o
r

u
n
d
e
r

c
u
r
s
o
r

S
c
r
e
e
n
a
e
a
o
r
y

p
a
g
e

M
a
i

a
t
t
e

o
f

k
e
y
b
d

b
u
f
f
e
r

R
e
p
e
a
t

A
l
l

k
e
y
s

R
e
p
e
a
t

s
p
e
e
d

c
o
u
n
t
e
r

R
e
p
e
a
t

d
e
l
a
y

c
o
u
n
t
e
r

K
e
y
b
o
a
r
d

S
h
i
f
t
/
C
o
n
t
r
o
l

(
1
*
9

L
e
s
t

s
h
i
f
t

p
a
t
t
e
r
n

K
e
y
b
o
a
r
d

t
a
b
l
t

s
c
t
t
u
p

p
o
i
n
t
e
r

K
e
y
a
o
d
e

(
R
a
t
t
e
c
a
n
n
a
)

0
-
s
c
r
o
l
l

t
n
s
b
l
e

v
i
e

c
h
i
p

c
o
n
t
r
o
l

V
I
C

c
h
i
p
c
o
a
a
e
n
d

B
i
t

t
l
a
i
n
g

«
S
-
2
)
2

s
t
a
t
u
s

0
3
9
B

0
2
9
C

O
2
9
D

0
2
9
C

O
2
9
r
-
O
2
A
O

0
)
0
0
-
0
)
0
1

0
)
0
2
-
0
)
0
3

O
)
0
4
-
O
3
0
>

0
3
0
4
-
0
3
0
7

0
)
0
0
-
0
)
0
9

O
3
O
A
-
O
3
O
B

0
)
1
4
-
0
)
1
5

0
)
1
4
-
0
3
1
7

0
3
1
0
-
0
3
1
9

O
)
1
A
-
O
)
l
i

0
3
1
C
-
0
3
1
O

8
K
8
K

0
)
2
2
-
0
)
2
)

0
3
2
4
-
0
3
I
S

0
3
3
4
-
0
3
2
7

0
)
2
0
-
0
)
2
9

0
3
2
A
-
0
3
2
B

0
3
2
C
-
0
3
2
O

0
)
2
C
<
>
0
3
2
r

o
)
)
c
-
o
)
r
t

0
4
0
0
-
o
r
r
r

«
I
7

C
«
0

4
*
9

4
7
0

4
7
1
-
4
7
J

1
4
0
-
7
4
9

1
7
0
-
7
7
1

7
7
1
*
7
7
)

7
7
4
-
7
7
5

7
7
4
-
7
7
7

7
7
0
-
7
7
9

7
0
0
*
7
0
9

7
9
0
-
7
9
1

7
9
2
-
7
9
)

7
9
4
-
7
9
9

1
9
4
-
7
9
7

7
9
0
-
7
9
9

0
0
0
*
1
0
1

•
0
2
-
1
0
)

R
S
-
m

s
p
e
e
d
/
c
o
d
e

R
S
2
M

r
e
c
e
i
v
e

p
o
i
n
t
e
r

R
S
J
)
J

I
n
p
u
t

p
o
i
n
t
e
r

R
S
»
2

t
r
a
n
s
a
U

p
o
i
n
t
e
r

■
5
2
)
2

o
u
t
p
u
t

p
o
i
n
t
e
r

I
R
O

s
a
v
e

d
u
r
i
n
g

t
a
p
e

I
/
O

C
r
r
o
r

a
e
s
s
a
q
e

l
i
n
k

B
a
s
i
c

w
a
r
s
)

s
t
a
r
t

l
i
n
k

C
r
u
n
c
h

B
a
s
i
c

t
o
k
e
n
s

l
i
n
k

P
r
i
n
t

t
o
k
e
n
s

l
i
n
k

S
t
a
r
t

n
e
w

B
a
s
i
c

c
o
d
e

l
i
n
t

G
e
t

e
r
l
t
h
a
e
t
l
c

c
l
e
a
e
n
t

l
i
n
k

H
a
r
d
w
a
r
e

I
n
t
e
r
r
u
p
t

v
e
c
t
o
r

(
C
A
n
r
i

0
0
0
-
0
0
9

0
1
0
-
0
1
1

0
1
1
-
0
1
)

•
1
4
-
1
1
5

0
1
4
-
0
1
7

0
1
0
-
0
1
9

0
2
0
-
1
0
1
9

1
0
2
4
-
4
0
9
5

4
0
9
4
-
0
1
9
1

O
2
7

B
r
e
a
k

I
n
t
e
r
r
u
p
t

v
e
c
t
o
r

N
M
I

I
n
t
e
r
r
u
p
t

v
e
c
t
o
r

o
r
C
N

v
e
c
t
o
r

C
L
O
S
E

v
e
c
t
o
r

S
e
t
-
I
n
p
u
t

v
e
c
t
o
r

S
e
t
-
o
u
t
p
u
t

v
e
c
t
o
r

R
e
s
t
o
r
e

1
/
0
v
e
c
t
o
r

I
N
P
U
T
v
e
c
t
o
r

o
u
t
p
u
t

v
e
c
t
o
r

T
e
s
t
-
S
T
O
P

v
e
c
t
o
r

G
E
T

v
e
c
t
o
r

A
b
o
r
t

I
/
O

v
e
c
t
o
r

U
S
R

v
e
c
t
o
r

C
a
s
s
e
t
t
e

b
u
f
f
e
r

3
K

D
A
N

e
s
p
a
n
s
l
o
n

a
r
e
a

N
o
r
a
a
l

B
a
s
i
c

a
e
a
o
r
y

(
r
c
o
2
i

(
f
C
A
D
I

I
M
O
A
)

(
M
4
A
|

m
c
7
i

I
D
0
1
I

(
M
M
)

m
o
n

(
T
2
7
A
)

i
r
7
7
0
)

i
r
i
r
s
i

(
r
)
c
r
i

i
r
c
o
2
i

2
0
0
0
-
i
f
f
r

0
1
9
2
-
3
2
7
4
7

H
e
a
o
r
y

e
x
p
a
n
s
i
o
n

a
r
e
a

0
0
0
0
-
O
r
r
r

3
2
7
4
0
-
3
4
0
4
3

C
h
a
r
a
c
t
e
r

b
i
t

a
s
p
s

9
0
0
0
-
9
0
0
r

3
4
0
4
4
*
3
4
0
7
9
V
i
d
e
o

I
n
t
e
r
f
a
c
e

C
h
i
p

9
1
1
0
-
»
1
2
f

3
7
1
3
4
-
3
7
1
S
1

V
I
A

I
n
t
e
r
f
a
c
e

-
N
N
1

9
1
2
0
*
9
1
2
f

3
7
1
)
2
*
3
7
1
4
7

V
I
A

I
n
t
e
r
f
a
c
e

-
I
R
Q

9
4
0
0
-
9
S
r
r

3
7
0
0
0
*
3
0
3
9
9

A
l
t
e
r
n
a
t
e

C
o
l
o
u
r

N
y
b
b
l
e

a
r
e
a
.

9
4
0
0
-
9
7
r
r

3
0
4
0
0
-
3
0
9
1
1

M
a
i
n
C
o
l
o
u
r

N
y
b
b
l
e

a
r
e
a

A
O
O
O
-
B
r
r
r

4
0
9
4
0
*
4
9
1
3
1

f
l
w
q
-
l
n

R
O
N

a
r
e
a

C
O
O
O
-
r
r
r
r

4
9
1
5
2
-
4
5
5
)
5

R
O
M
t

B
a
a
l
e

a
n
d

O
p
e
r
a
t
i
n
q

S
y
s
t
e
a

r
r
O
A
-
r
r
r
S

4
S
4
1
0
-
4
S
S
2
S

J
u
a
»
p
T
a
b
l
e
,

I
n
c
l
u
d
i
n
q
t

f
f
C
4

•
S
e
t

I
n
p
u
t

c
h
a
n
n
e
l

r
r
C
9

-
S
e
t

O
u
t
p
u
t

c
h
a
n
n
e
l

f
r
C
C

-
R
e
s
t
o
r
e

d
e
f
a
u
l
t

I
/
O
c
h
a
n
n
e
l
a

r
r
c
r

-
i
n
p
u
t

r
r
o
2

-
p
r
i
n
t

r
r
c
i

-
T
e
s
t

S
t
o
p

k
e
y

f
o
r

a
o
r
e
,

s
e
e

V
I
C

P
r
o
q
r
s
a
a
e
r
s

R
e
f
e
r
e
n
c
e

C
u
l
d
c
,

p
q

1
1
4

V
I
C
-
2
0

R
O
M
O
r
f
a
n
U
a
t
l
o
n

C
0
0
0

IJ
5!

C
O
M

c
O
9
e

c
l
9
e

c
)
2
0

e
)
4
5

c
)
0
e

O
b
O

c
)
f
b

C
4
0
9

C
4
)
5

C
4
)
7

C
4
4
9

C
4
7
4

C
4
I
0

C
4
9
C

C
S
3
3

C
5
4
0

C
5
7
9

c
4
1
)

C
4
4
2

c
4
5
e

c
4
0
e

c
4
9
c

C
7
4
2

C
7
«
d

d
i
d

C
0
3
C

c
O
2
f

.
C
0
3
1

C
0
S
7

C
0
7
1

C
0
0
)

«
0
a
0

e
l
d
]

c
l
f
l

C
9
0
4

C
9
3
0

c
9
)
b

c
9
4
b

c
9
4
b

C
9
a
5

c
a
i
o

c
e
!
4

c
a
a
O

c
b
l
e

c
b
S
b

c
b
4
d

c
b
7
b

c
b
s
S

e
b
b
f

c
b
f
f

c
c
O
l

c
c
f
c

R
O
N
c
o
n
t
r
o
l

v
e
c
t
o
r
s

K
e
y
w
o
r
d

a
c
t
i
o
n

v
«
c
t
o
r
s

f
u
n
c
t
i
o
n

v
t
c
t
o
r
s

O
p
e
r
a
t
o
r

v
e
c
t
o
r
s

K
e
y
w
o
r
d
s

C
r
r
o
r

a
c
s
s
a
q
e
e

E
r
r
o
r

a
e
s
s
a
q
e

v
e
c
t
o
r
s

M
i
s
c
e
l
l
a
n
e
o
u
s

a
e
s
e
e
9
*
a

S
c
a
n

s
t
a
c
k

f
o
r

f
O
R
/
C
O
S
U
O

N
o
v
a

a
e
a
o
r
y

C
h
e
c
k

s
t
a
c
k

d
e
p
t
h

C
h
e
c
k

a
e
a
o
r
y

e
p
a
c
e

'
O
U
T
O
f
N
t
n
O
R
V

C
r
r
o
r

r
o
u
t
i
n
e

B
r
e
a
k
,
e
n
t
r
y

•
R
C
A
O
T
.
*

R
e
a
d
y

f
o
r

B
a
s
i
c

M
a
n
d
l
e

n
e
w

l
i
n
e

R
e
-
c
h
a
i
n

l
i
n
t
s

R
e
c
e
i
v
e

I
n
p
u
t

l
i
n
e

C
r
u
n
c
h

t
o
k
e
n
s

f
i
n
d

B
s
s
l
c

l
i
n
e

f
e
r
f
o
r
a

jt
rn
ri

P
e
r
f
e
r
a

|
c
l
r
|

B
a
c
k

u
p

t
e
s
t

p
o
i
n
t
e
r

P
e
r
f
o
r
a

I
L
I
i
t
J

r
e
r
f
o
r
s
)

|
p
o
r
|

C
a
e
c
v
t
e

s
t
a
t
e
a
e
n
t

f
e
r
f
o
r
a

|
R
C
S
T
O
R
C
|

B
r
s
a
k

P
e
r
f
o
r
a

I
S
T
O
P
I

r
e
r
f
o
r
a

t
i
r
o
)

P
t
r
f
o
r
a

I
c
o
w
t
J

r
e
r
f
o
r
a

I
R
U
N
I

P
e
r
f
o
r
a

I
C
O
S
U
B
I

P
e
r
f
o
r
a

I
C
O
T
O
I

P
e
r
f
o
r
a

|
r
c
t
u
r
n
|

P
e
r
f
o
r
a

|
d
a
t
a
|

S
c
a
n

f
o
r

n
e
a
t

e
t
a
t
c
a
e
n
t

P
e
r
f
e
r
a

|
i
r
|

f
e
r
f
o
r
a

I
r
c
n
|

P
e
r
f
o
r
a

l
O
R
l

C
e
t

f
t
i
e
d

p
o
i
n
t

n
u
a
b
e
r

P
e
r
f
o
r
a

I
L
C
T
I

P
e
r
f
o
r
a

I
p
b
i
k
t
i
I

P
e
r
f
o
r
a

|
C
M
O
|

P
e
r
f
o
r
a

(
p
r
i
n
t
i

P
r
i
n
t

a
e
e
s
a
e
e

f
r
o
a

(
y
,
a
)

P
r
i
n
t

f
o
r
a
a
t

c
h
a
r
a
c
t
e
r

B
a
d
-
I
n
p
u
t

r
o
u
t
t
n
e
a

N
r
f
o
r
a

|
C
C
T
|

P
e
r
f
o
r
a

(
I
m
p
u
t
i
i

P
e
r
f
o
r
a

I
t
R
P
U
T
I

P
r
o
a
p
t

ft
I
n
p
u
t

P
e
r
f
o
r
a

|
b
c
a
d
|

I
n
p
u
t

e
r
r
o
r

a
e
s
s
a
9
«
s

c
d
l
e

c
d
7
l

c
d
9
e

c
e
a
l

c
e
f
l

c
e
f
7

c
e
f
f

c
f
O
I

c
(
1
4

c
f
2
l

c
f
a
7

c
f
e
(

d
O
I
I

d
O
e
b

d
l
l
)

d
l
l
d

d
l
9
4

d
l
a
S

d
l
b
2

d
l
d
l

d
2
4
S

d
2
4
l

d
)
4
c

d
)
7
d

d
)
9
1

d
)
9
e

d
)
a
l

d
)
b
)

d
)
e
l

d
)
f
4

.
4
4
5

0
4
7
5

d
4
0
7

d
4
f
4

d
S
2
<

d
5
b
d

d
C
O
l

d
l
)
d

d
4
7
a

<
5
4
a
)

d
€
d
b

d
«
e
c

d
7
0
0

d
7
2
c

d
7
)
7

d
7
«
l

d
7
7
c

d
7
!
2

d
7
t
b

d
7
9
b

d
7
a
d

d
7
e
b

d
7
(
7

d
I
O
d

P
e
r
f
o
r
a

I
N
C
X
T
I

T
y
p
e
-
a
a
t
c
h

c
h
e
c
k

e
v
a
l
u
a
t
e

e
x
p
r
e
s
s
i
o
n

C
o
n
s
t
a
n
t

•
P
I

e
v
a
l
u
a
t
e

w
i
t
h
i
n

b
r
a
c
k
e
t
s

C
h
e
c
k

f
o
r

•
)
•

C
h
e
c
k

f
o
r

c
o
a
a
e

S
y
n
t
a
a

e
r
r
o
r

C
h
e
c
k

r
a
n
q
e

S
e
a
r
c
h

f
o
r

v
a
r
i
a
b
l
e

S
e
t

u
p

r
N

r
e
f
e
r
e
n
c
e

P
e
r
f
o
r
a

|
O
R
|

P
e
r
f
o
r
a

|
a
n
o
|

C
o
a
p
a
r
e

P
e
r
f
o
r
a

|
O
I
N
|

L
o
c
a
t
e

v
a
r
i
a
b
l
e

C
h
e
c
k

a
l
p
h
a
b
e
t
i
c

C
r
e
a
t
e

v
a
r
i
a
b
l
e

A
r
r
a
y

p
o
i
n
t
e
r

e
u
b
r
o
u
t
l
n
e

V
a
l
u
e

)
2
7
4
I

f
l
o
a
t
-
f
l
t
e
d

c
o
n
v
e
r
a
l
o
n

S
e
t

u
p

a
r
r
a
y

•
B
A
D

S
U
B
S
C
R
I
P
T
'

•
I
L
L
E
G
A
L

O
U
A
N
T
I
T
V
'

C
o
a
p
u
t
e

a
r
r
a
y

e
l
s
e

P
e
r
l
o
r
a

T
r
R
C
l

r
i
s
e
d
-
f
l
o
a
t

c
o
n
v
e
r
s
i
o
n

P
e
r
f
o
r
a

(
P
O
S
l

C
h
e
c
k

d
i
r
e
c
t

P
e
r
f
o
r
a

|
D
K
f
|

C
h
e
c
k

r
N

s
y
n
t
a
i

P
e
r
f
o
r
a

|
r
h
|

P
e
r
f
o
r
a

I
S
T
R
t
l

C
a
l
c
u
l
a
t
e

e
t
r
l
n
q

v
e
c
t
o
r

S
e
t

u
p

s
t
r
l
n
q

H
a
k
e

r
o
o
a

f
o
r

a
t
r
l
n
q

C
a
r
b
a
q
e

c
o
l
l
e
c
t
i
o
n

C
h
e
c
k

e
e
l
v
a
q
e
e
b
l
l
i
t
y

C
o
l
l
e
c
t

a
t
r
i
n
q

C
o
n
c
a
t
e
n
a
t
e

B
u
i
l
d

a
t
r
l
n
q

t
o

a
e
a
o
r
y

D
i
s
c
a
r
d

u
n
w
a
n
t
e
d

e
t
r
l
n
q

C
l
e
a
n

d
e
a
c
r
l
p
t
o
r

s
t
a
c
k

P
e
r
f
o
r
a

I
C
R
R
S
J

P
e
r
f
o
r
a

|
L
C
-
T
S
|

P
e
r
f
o
r
a

J
R
I
C
H
T
f
l

P
e
r
f
o
r
a

(
m
i
o
S
I

P
u
l
l

e
t
r
l
n
q

p
e
r
a
a
e
t
e
r
a

P
e
r
f
o
r
a

I
L
C
N
I

C
s
l
t

a
t
r
i
n
q
-
a
o
d
e

P
e
r
r
o
r
a

|
A
S
C
|

I
n
p
u
t

b
y
t
e

p
a
r
a
m
e
t
e
r

P
e
r
f
o
r
a

|
v
a
L
|

C
e
t

p
a
r
a
a
s

f
o
r

p
o
k
e
/
w
a
i
t

r
i
o
a
t
-
f
i
s
e
d

P
e
r
f
o
r
a

(
P
C
C
K
I

d
!
2
4

d
«
2
d

d
!
4
9

d
I
S
O

d
i
l
l

d
*
4
e

d
9
4
7

J
9
7
e

d
9
B
)

d
9
e
a

d
a
2
b

d
a
S
9

d
a
l
e

d
a
b
7

d
a
d
4

d
a
e
2

d
a
f
9

d
a
f
e

d
b
l
2

d
b
a
2

d
b
e
l

d
b
(
c

d
c
O
c

d
c
l
b

d
c
2
b

d
c
)
9

d
c
S
O

d
c
5
b

d
c
9
b

d
e
c
e

d
e
f
)

d
d
7
e

d
d
d
d

d
(
1
4

d
(
)
a

d
(
7
1

d
(
7
b

d
f
b
4

d
f
e
d

e
0
4
0

e
O
S
4

e
O
9
4

e
0
f
4

e
l
2
7

e
l
S
)

e
l
4
S

e
l
b
b

e
l
c
4

e
l
d
l

e
2
0
)

•
2
0
b

e
2
1
4

e
2
l
l

e
2
4
l

.
e
2
b
l

P
e
r
f
o
r
a

I
P
O
K
C
I

P
e
r
f
o
r
a

|
m
a
i
t
|

A
d
d

0
.
5

S
u
b
t
r
a
c
t
-
f
r
o
-

P
e
r
(
o
r
a

I
S
U
B
T
R
A
C
T
I

P
e
r
f
o
r
a

|
a
d
o
|

C
o
a
p
l
e
a
e
n
t

f
a
c
«
l

*
o
v
c
R
r
i
.
o
w
*

M
u
l
t
i
p
l
y

b
y

t
e
r
o

b
y
t
e

P
e
r
f
o
r
a

I
U
K

I

P
e
r
f
o
r
a

I
M
U
L
T
I
P
L
Y

I

N
u
l
t
l
p
l
y
-
a
-
b
l
t

H
e
a
o
r
y

t
o

r
*
C
I
2

A
d
j
u
s
t

P
A
C
f
l
/
1
2

U
n
d
e
r
f
l
o
w
/
o
v
e
r
f
l
o
w

M
u
l
t
i
p
l
y

b
y

1
0

♦
1
0

I
n

t
l
o
a
t
i
n
q

p
t

D
i
v
i
d
e

b
y

1
0

P
e
r
f
o
r
a

l
o
i
v
i
o
c
i

M
e
a
o
r
y

t
o

f
a
c
l
l

P
A
C
I
1

t
o

a
e
a
o
r
y

r
A
C
I
2

t
o

f
a
c
l
l

R
o
u
n
d

"
A
C
I
I

C
e
t

s
l
q
n

P
e
r
f
o
r
a

|
S
C
N
|

P
e
r
f
o
r
a

I
A
D
S

I

C
o
a
p
a
r
e

f
A
C
I
l

t
o

a
e
a

f
l
o
e
t
-
f
l
s
e
d

P
e
r
f
o
r
a

|
|
M
T
|

S
t
r
l
n
q

t
o

f
e
e

G
e
t

a
a
c
i
l

d
l
q
l
t

f
l
o
a
t

t
o

a
e
c
t
l

O
e
c
i
a
a
l

c
o
n
e
t
a
n
t
a

T
I

c
o
n
s
t
a
n
t
a

P
e
r
f
o
r
a

|
S
O
R
|

P
e
r
f
o
r
a

J
P
O
M
C
R
)

P
e
r
f
o
r
a

i
N
C
C
A
T
l
v
e
i

P
e
r
f
u
r
a

I
C
X
P
I

S
e
r
l
e
a

e
v
a
l
u
a
t
e

1
S
e
r
l
e
a

e
v
a
l
u
a
t
e

2

P
e
r
f
o
r
a

|
R
M
O
)

7
7

B
r
e
a
k
p
o
i
n
t
s

7
7

P
e
r
f
o
r
a

1
S
V
S
|

P
e
r
f
o
r
a

|
S
A
V
C
|

P
e
r
f
o
r
a

(
V
C
R
I
P
Y
l

P
e
r
f
o
r
a

IL
O
A
D
]

P
e
r
f
o
r
a

J
O
P
C
M
J

P
o
r
f
o
r
a

J
C
L
O
S
C
I

P
a
r
a
a
s

f
o
r

l
o
a
d
/
s
a
v
e

C
h
e
c
k

d
e
f
e
u
l
t

p
a
r
a
a
s

C
h
e
c
k

(
o
r

c
o
a
*
.

P
e
r
a
a
s

f
o
r

o
p
e
n
/
c
l
o
s
e

P
e
r
f
o
r
a

|
C
O
S
|

P
e
r
f
o
r
a

S
I
N

P
e
r
f
o
r
a

|
T
A
N
|

e
)
0
b

r
e
r
f
o
r
a

|
A
T
N
|

e
)
7
i

i
n
i
t
i
a
l
i
s
e

e
)
«
7

C
M
R
C
C
T

f
o
r

s
e
r
o

p
a
q
e

e
)
a
4

I
n
i
t
i
a
l
i
s
e

B
a
s
i
c

e
4
2
9

P
o
w
e
r
-
u
p

a
e
s
s
a
q
e

e
4
4
f

v
e
c
t
o
r
s

f
o
r

S
)
0
0

e
4
S
b

I
n
i
t
i
a
l
i
s
e

v
e
c
t
o
r
e

C
4
C
7

w
e
r
a

r
e
a
t
a
r
t

e
4
7
l

P
r
o
q
r
a
a

p
a
t
c
h

a
r
e
a

O
4
a
0

S
e
r
i
a
l

o
u
t
p
u
t

'
1
*

e
4
e
9

S
e
r
i
a
l

o
u
t
p
u
t

'
0
*

e
4
b
2

C
e
t

e
e
r
l
a
l

I
n
p
u
t

4
c
l
o
c
k

e
4
b
c

P
r
o
q
r
a
a

p
a
t
c
h

a
r
e
a

e
S
O
O

S
e
t

I
S
2
2

a
d
d
r
s

e
S
O
S

S
e
t

s
c
r
e
e
n
H
a
l
t
s

e
S
O
a

T
r
a
c
k

c
u
r
a
o
r

l
o
c
a
t
i
o
n

e
S
U

l
n
l
t
a
l
i
a
e

I
/
O

e
S
4
c

N
e
r
a
a
l
l
s
e

a
c
r
e
e
n

e
S
S
f

C
l
e
a
r

s
c
r
e
e
n

e
S
I
l

H
o
a
e

c
u
r
s
o
r

e
S
I
7

S
e
t

s
c
r
e
e
n

p
o
i
n
t
e
r
s

e
S
b
b

S
e
t

I
/
o

d
e
f
s
u
i
t
s

e
S
c
)

S
e
t

v
i
e

c
h
i
p
d
e
f
a
u
l
t
s

e
S
c
f

I
n
p
u
t

f
r
o
a
k
e
y
b
o
a
r
d

e
!
4
f

I
n
p
u
t

f
r
o
a
s
c
r
e
e
n

e
f
b
l

O
v
o
t
e

a
a
r
k

t
e
a
t

e
e
c
S

S
e
t

u
p

a
c
r
e
e
n

p
r
i
n
t

e
4
e
a

A
d
v
a
n
c
e

c
u
r
s
o
r

e
7
l
S

R
e
t
r
e
a
t

c
u
r
a
o
r

e
7
2
d

B
e
c
k

I
n
t
o

p
r
e
v
i
o
u
s

l
i
n
e

e
7
4
3

O
u
t
p
u
t

t
o

e
c
r
e
e
n

e
l
c
)

C
o

t
o

n
e
s
t

l
i
n
e

e
O
d
l

D
o

•
R
E
T
U
R
N
*

e
l
e
O

C
h
e
c
k

l
i
n
e

d
e
c
r
e
a
e
n
t

e
l
f
a

C
h
e
c
k

l
i
n
e

I
n
c
r
e
a
e
n
t

e
9
1
2

S
e
t

c
o
l
o
u
r

c
o
d
e

e
9
2
1

C
o
l
o
u
r

c
o
d
e

t
a
b
l
e

0
9
2
9

C
o
d
e

c
o
n
v
e
r
s
i
o
n

e
9
7
)

S
c
r
o
l
l

s
c
r
e
e
n

c
9
e
e

O
p
e
n

e
p
s
c
e

o
n

s
c
r
e
e
n

e
a
S
I

M
o
v
e

a
c
r
e
e
n

l
i
n
e

e
a
<
e

S
y
n
c
h

c
o
l
o
u
r

t
r
a
n
s
f
e
r

e
a
7
e

S
e
t

s
t
s
r
t
-
o
f
-
l
l
n
e

e
e
l
d

C
l
e
a
r

s
c
r
e
e
n

l
i
n
e

e
s
s
l

P
r
i
n
t

t
o

s
c
r
e
e
n

e
a
a
a

S
t
o
r
e

o
n

s
c
r
e
e
n

e
a
b
2

S
y
n
c
h

c
o
l
o
u
r

t
o

c
h
a
r

e
a
b
f

I
n
t
e
r
r
u
p
t

(
I
R
O
)

e
b
l
e

C
h
e
c
k

k
e
y
b
o
a
r
d

e
c
O
O

S
e
t

t
e
a
t

a
o
d
e

e
c
4
4

K
e
y
b
o
a
r
d

v
e
c
t
o
r
s

e
c
S
e

K
e
y
b
o
s
r
d
a
s
p
s

e
d
2
1

C
r
e
p
h
l
c
s
/
t
e
i
t

c
o
n
t
r
o
l

e
d
)
0

S
e
t

q
r
a
p
h
l
c
o

a
o
d
e

e
d
S
b

w
r
a
p

u
p

e
c
r
e
e
n

l
i
n
e

e
d
f
a

S
h
i
f
t
e
d

k
e
y

a
a
t
r
l
s

e
d
a
3

e
d
e
4

e
d
f
d

e
e
l
4

e
e
l
7

e
e
l
c

e
e
4
9

e
e
b
7

e
e
c
O

e
e
c
S

e
e
c
e

e
e
e
4

e
e
f
4

e
f
O
4

e
f
!
9

e
f
O
4

e
f
R
d

e
f
9
4

e
f
a
)

e
f
e
e

f
O
U

f
O
2
7

f
0
3
4

f
O
S
b

f
O
9
d

f
0
a
2

f
O
a
S

f
O
a
O

f
O
b
9

f
O
b
c

C
O
e
d

f
l
U

f
l
l
f

(
1
4
0

(
1
7
4

r
i
o
2

(
1
(
5

(
2
0
5

(
2
0
e

C
2
S
0

(
2
7
a

C
2
9
0

f
2
c
7

f
)
0
9

f
)
4
a

f
)
c
f

f
)
d
(

f
)
e
f

C
3
C
3

f
4
0
a

C
4
9
S

f
4
c
7

f
»
4
2

(
4
4
7

(
«
5
9

f
4
4
«

C
o
n
t
r
o
l

k
e
y

a
a
t
r
l
s

V
t
c

c
h
i
p

d
e
f
a
u
l
t
e

S
c
r
e
e
n

l
i
n
e

a
d
d
a

l
o
w

S
e
n
d

'
c
a
l
k
*

S
e
n
d

'
l
i
s
t
e
n
*

S
e
n
d

c
o
n
t
r
o
l

c
h
a
r

S
e
n
d

t
o

s
e
r
i
a
l

b
u
s

T
t
a
e
o
u
t

o
n

s
e
r
i
a
l

S
e
n
d

l
i
s
t
e
n

S
A

C
l
e
a
r

A
T
M

S
e
n
d

t
a
l
k

S
A

S
e
n
d

s
e
r
i
a
l

d
e
f
e
r
r
e
d

S
e
n
d

'
u
n
t
e
l
k
*

S
e
n
d

'
u
n
l
l
s
t
e
n
*

R
e
c
e
i
v
e

f
r
o
a

s
e
r
i
a
l

b
u
a

C
l
o
c
k

l
i
n
e

o
n

C
l
o
c
k

l
i
n
e

o
f
f

D
e
l
a
y

1
a
a

R
S
2
3
2

a
e
n
d

(
K
M
)

N
e
w

R
S
2
3
2

b
y
t
e

s
e
n
d

C
r
r
o
r

o
r

q
u
i
t

C
o
a
p
u
t
e

b
i
t

c
o
u
n
t

R
S
2
3
2

r
e
c
e
i
v
e

(
N
N
I
I

S
e
t
u
p

t
o

r
e
c
e
i
v
e

R
e
c
e
i
v
e

p
a
r
i
t
y

e
r
r
o
r

R
e
c
e
i
v
e

o
v
e
r
r
u
n

e
r
r
o
r

R
e
c
e
i
v
e

b
r
e
a
k

e
r
r
o
r

R
e
c
e
i
v
e

f
r
a
a
e

e
r
r
o
r

B
a
d

d
e
v
i
c
e

f
i
l
e

t
o

R
S
2
3
2

S
e
n
d

t
o

R
S
3
3
3

b
u
f
f
e
r

I
n
p
u
t

f
r
o
a

R
S
2
3
3

b
u
f
f
e
r

C
e
t

f
r
o
a

R
S
2
3
2

b
u
f
f
e
r

C
h
e
c
k

s
e
r
i
a
l

b
u
a

i
d
l
e

H
e
s
s
a
q
e
s

P
r
i
n
t

I
f

d
i
r
e
c
t

G
e
t
.
.

.
.
f
r
o
a

R
S
2
3
2

I
n
p
u
t

G
e
t
.
.

t
a
p
e
/
s
e
r
l
e
l
/
R
S
2
)
2

O
u
t
p
u
t
.
.

•
.
.
t
o

t
a
p
e

S
e
t

i
n
p
u
t

d
e
v
i
c
e

S
e
t

o
u
t
p
u
t

d
e
v
i
c
e

C
l
o
s
e

f
i
n
d

(
l
i
e

S
e
t

C
l
i
o

v
a
l
u
e
s

A
b
o
r
t

a
l
l

f
i
l
e
s

R
e
s
t
o
r
e

d
e
f
a
u
l
t

I
/
O

D
o

C
l
i
o

©
p
e
n
I
n
q

S
e
n
d

«
A

O
p
e
n

B
J
2
3
3

P
r
i
n
t

f
i
l
e

n
a
a
e

•
L
O
A
O
H
4
S
/
V
C
R
i
r
V
I
N
C
'

(
4
7
S

f
7
2
R

f
7
)
4

f
7
4
0

f
7
4
7

(
7
7
0

(
7
7
e

(
7
«
f

(
7
C
7

(
0
4
d

(
B
S
4

(
0
4
7

(
0
0
a

(
0
9
4

(
B
a
b

(
8
b
7

(
S
c
O

(
0
e
3

(
0
(
4

(
9
4
b

f
9
5
d

f
9
0
e

f
e
e
d

(
b
d
2

(
b
d
b

(
b
e
e

(
c
O
4

(
c
O
b

f
c
9
5

(
c
c
f

(
c
f
4

f
d
O
O

f
d
l
l

f
d
l
b

f
d
2
2

f
d
)
(

f
d
9
2

f
d
O
d

f
d
f
l

(
d
(
9

f
0
4
9

C
e
S
O

f
e
5
7

f
e
4
4

f
e
4
f

f
e
7
3

f
e
O
2

f
e
9
1

f
e
a
9

f
o
d
2

f
e
d
e

f
f
9
4

f
(
S
c

f
(
7
2

f
f
O
a

f
f
f
s

$
»
V
9

p
r
o
q
r
a
a

•
S
A
V
I
W
*

B
u
a
p

c
l
o
c
k

C
e
t

t
l
a
e

S
e
t

t
l
a
e

A
c
t
i
o
n

s
t
o
p

k
e
y

f
i
l
e

C
r
r
o
r

K
e
s
s
a
q
e
s

r
i
m
l

a
n
y

t
a
p
e

n
c
-
t
l
e
r

W
r
i
t
e

t
a
p
e

h
e
a
d
e
r

C
e
t

b
u
f
f
e
r

a
d
d
r
e
s
s

S
e
t

b
u
f
f
e
r

s
t
a
r
t
,

e
n
d

p
n
t
r
*

f
i
n
d

s
p
e
c
i
f
i
c

h
e
a
d
e
r

B
u
a
p

t
a
p
e

p
o
i
n
t
e
r

•
P
R
E
S
S

P
L
A
Y

.
.

*
C
h
e
c
k

c
a
a
s
e
t
t
e

s
t
a
t
u
e

'
P
R
C
S
S

R
C
C
O
R
O

.
.
'

I
n
i
t
i
a
t
e

t
a
p
e

r
e
a
d

I
n
i
t
i
a
t
e

t
a
p
e

w
r
i
t
e

C
o
a
a
o
n

t
a
p
e

r
e
a
d
/
w
r
i
t
e

C
h
e
c
k

t
a
p
e

a
t
o
p

S
e
t

t
t
a
l
n
q

R
e
a
d

b
t
t
a

(
I
R
0
I

S
t
o
r
e

c
h
a
r
a
c
t
e
r
s

R
e
s
e
t

p
o
i
n
t
e
r

N
e
w

t
a
p
e

c
h
a
r
a
c
t
e
r

s
e
t
u
p

T
o
q
q
l
e

t
a
p
e

D
a
t
a

w
r
i
t
e

T
a
p
e

w
r
i
t
e

I
t
R
O
t

L
e
a
d
e
r

w
r
i
t
e

I
I
R
O
)

R
e
s
t
o
r
e

v
e
c
t
o
r
s

S
e
t

v
e
c
t
o
r

K
i
l
l

a
o
t
o
r

C
h
e
c
k

r
e
a
d
/
w
r
i
t
e

p
n
t
r

B
u
a
p

r
e
a
d
/
w
r
i
t
e

p
n
t
r

P
o
w
e
r
u
p

e
n
t
r
y

C
h
e
c
k

A
-
r
o
a

S
e
t

k
e
r
n
a
!
2

I
n
i
t
i
a
l
i
s
e

a
y
a
t
e
a

c
o
n
s
t
a

I
R
O
v
e
c
t
o
r
s

I
n
i
t
i
a
l
i
s
e

I
/
O

r
e
q
e

f
v

d
a
t
a

n
a
a
e

9
»
v

f
i
l
e

d
e
t
a
i
l
s

G
e
t

s
t
a
t
u
s

r
i
a
q

S
T

S
e
t

t
l
a
e
o
u
t

R
e
a
d
/
s
e
t

t
o
p

o
f

a
e
a
o
r
y

R
e
a
d
/
s
e
t

b
o
t
t
o
a

o
f

a
e
a

T
e
a
t

a
e
a
o
r
y

l
o
c
a
t

N
M
I

I
n
t
e
r
r
u
p
t

e
n
t

R
C
S
C
T
/
S
T
O
P
w
a
r
a

a

N
M
I

R
S
2
3
2

s
e
q
u
e
n
c

R
e
s
t
o
r
e

•
e
»
l
t

R
S
2
3
3

t
l
a
l
n
q

t
a
b
l
e

M
a
i
n

I
R
Q
e
n
t
r
y

J
b

J
o
a
p

t
a
b
l
e

r
e

v
e
c
t
o
r
s




