
i^icommodore

The Transactor

Commodore Canada's

Tech/News Periodical

VOLUME

Issue

Bits & Pieces

Unit to Unit Copying

Ever needed to copy one or two programs from 4040 to

8050 (or vice versa)? So you pull out your Change Unit

Address program, then Copy All, and after answering all the
prompts, the files you've selected get transfered. Seems

like a lot of work for only a couple of files, doesn't it.

Alas, there is another wayl Connect your 4040 and 8050

to the PET/CBM and leave the device numbers alone (ie. both

device 8). Assuming we're going from 4040 to 8050, insert

your source disk in drive 0 of the 4040 and place the

destination disk in drive 1 of the 8050. Now DLOAD the

program from 4040 drive 0. Both disk units will fire up, but

the 8050 will give an error since drive 0 is empty... So

What! DSAVE to drive 1 and the 8050 error light will go off

and the 4040 error light comes on. Again... So What! Check

the directory and you'll find the transfer took place without

a hitch!

This would also work for SEQ files with a small bit of

software that knows how to ignore anticipated errors. Of

course, for a lot of files or programs, the Copy All approach

would probably be quicker, but isn't it nice to know you can

deliberately cause disk errors and still accomplish

something!

IEEE Timeout Defeat

IEEE Timeout is a condition that simply says, "this bus

operation took too long!". There are two such situations;

Timeout on Read and Timeout on Write.

Timeout on Read has occurred when ST=2. This usually

happens when you try to read past the end of an SEQ file.

More generally, the controller (PET) has asked a peripheral

for a byte and the peripheral did not respond with that byte

within the 64 ms. time limit.

The Transactor is produced on the CBM 8032 with WordPro IV

Plus and the NEC Spinwriter

Index Transactor #3

Bits & Pieces 1

Unit to Unit Copying 1

IEEE Timeout Defeat 1

Comal-80 Is Here! 3

Pacific Coast Computer Fair 4

CBM 8010 Auto-Answerer 4

Backup 6

Disable RUN/STOP 6

Joystick/Keyboard Routine 6

Programs to WordPro Converter 7

8032 / DOS 2.0 Tips 8

Jim Strasma's SUPERSORT-..- 15

Jim Butterfield on Programming 16

Screen Editting 18

SWARM-100 For PET/CBM 21

Bulletin Boards 26

Calculator Revisited 28

Spell Checking Programs 34 !

Toronto PET Users Group Memberships ..39 j

I

Timeout on Write (ST=1) will happen if you write to a

file that is open in the PET but not open in the peripheral*

For example, OPEN an SEQ disk file for writing and reset the

disk or perf.orm a CATALOG command. PET still considers this

file open while the disk has gone and closed it. Try a

PRIIlTf now and Timeout on Write will be flagged.

This protocal works great with Commodore peripherals,

but unfortunately there exist devices with much slower
response times. The biggest offenders are X-Y Plotters.

Fortunately, in all BASIC 4.0 PET/CBMs, there is a

feature that allows you to disable IEEE Timeout. When the

bus flags timeout, BASIC 4.0 checks location 1020 (hex 03fc)

to determine how to handle it.

POKE 1020, 255

If 1020 contains a negative number (bit 7 set), PET will

wait forever for the peripheral to accept the byte last

delivered to the bus. Be careful though... the PET can hang

up if your peripheral doesn't accept this character. This

might sound somewhat precarious but it has its advantages.
If your peripheral is receiving characters successfully, but

just not fast enough, disable timeout and no data will be

lost.

To enable timeouts POKE 1020, 0.

Comal-80 Is Herel

Comal-80 is a programming language that supports very

structured programming techniques. Comal works on CBM 8032s

only. It loads into RAM and and virtually gives you a new

operating system.

Comal has been approved as the learning programming

language of Holland and already there is a Comal Users Group

based in the U.S.

The best application for Comal is in the educational

environment. Teachers will find that introducing programming

via Comal is an excellent first step.

The best feature in Comal is the price... it's FREE!

All authorized Commodore dealers in Canada have the package

and the disk & documentation are available for copying.

COMAL stands for COMmon Algorithmic Language.

The address for the Comal Users Group is:

Comal Users Group

5501 Groveland Terrace

Madison, Wisconson

53716

Send a large self-addressed envelope with 35 cents U.S. for

return postage and receive additional Conial info. More on

Comal in future issues of The Transactor.

Pacific Coast Computer Fair

The Pacific Coast Computer Fair Association is

presenting Vancouver's second annual Computer Fair. This

years theme is "Computers and the Handicapped*1 in recognition

of; the International Year of the Disabled.

Site of the fair is The Robson Square Media Centre in

downtown Vancouver. With 65f000 sq. ft. and over 50

exibitorsf: the PCCFA is expecting more than 10,000 visitors!

Show dates are October 3rd & 4th.

A second conference is slated for Oct. 2nd. This will

be closed to the public. For more information, contact:

PCCFA

4100 Stf Goerges Ave.

North Vancouver, B.C.

V7N 1W8

CBM 8010 Auto-Answer Circuit

The schematic on the following page is an automatic

answering device for the CBM 8010 IEEE Modem. It was

designed by Dieter Demmer of Oakville Ontario. The circuit

hasn't been tested by us, but presumably it works for Dieter 1

**x
3g

V

8

O

O

I
• -* o

£ 2 A

3 <J

0»

5 .TV

§ 3 tf «
£8!

JJ?

* U.

f\J

I

SI ^
0 Q

< k

5 «

8

* *

o

0

Disable RUM/STOP

In Transactor #2 of Volume 3, Jim Eutterfield*s disable
STOP key routine was published; the one that does not disable
the clock. The code is correct but you need one more POKE to

engage it:

POKE 145, 3

The above POKE points the IRQ vector at Jim's program. To

reset the vector:

POKE 145, 228

Joystick/Keyboard Routine

The following is the Basic loader for Dave Hook's

Joystick/Keyboard routine. The machine code source was

listed but the Basic loader and deno program was accidentally

omitted. Sorry Dave

0

1

2

3

4

REM

DATA

DATA

DATA

DATA

JOYSTICK/KEYBOARD

k 32. 228. 255. 2

5 DATA

6 DATA

7 DATA

8 DATA

32,

48,

168,

180,

74,

174,

210,

6,

228,

56,

162,

2,

74,

198,

76,

5

255,

233,

255,

134,

45,

2,

188,

1

FOR

201,

48,

173,

151,
79,

16,

196,

3,

READD

ALL

48,

48,

198,

76,

232,

3,

0,

ROMS

240,

4,

2,

180,

168,

76,

5,

5,

15,

201,

16,

2,

185,

120,

5,

201,

10,

6,

173,

199,

210,

5,

6,

9 FOR 1=6 3 4 TO 7 26 : READD : POKEI,D : NEXTI

10 POKE710, SGH(PEEK(50003)-l)

11 INPUT"USING JOYSTICKS Y[CR CP. CR]";A$

12 LO=165 : IF A$O"Y" THEN LO=122

13 POKE1,LO : POKE2,2 : CLR

11

12 LO=165 : IF A$OnY'

13 POKE1,LO : POKE2,2 .

14 FOR 1=1 TO 1000 : N=USR(0)

32,

48,

142,

79,

2,

208,

0,

208,

2,

3,

232,

168,

3,

2,

169,

2,

74,

169,

76,

7,

169

5

76

74

0

109

9

PRINTN; : FOR J=l TO 50 : NEXTJ,I

- 6 -

programs to WordPro conversion !

This tidy little Basic program converts programs to

WordPro files. It was written by Paul Higginbottom of

Commodore Canada1s Software Department.

The program does not convert special characters such as

cursor graphics. These would have to be changed to CHR$(

values or some other representation which would be

unfeasible. Insteadf these characters are left alone and

show up in WordPro just as they do in a normal LIST. From

heref you can use WordPro to edit them to suit (and what

better editor) • The program was actually used here to

convert itself for publication. Then alpha characters were

substituted for cursor characters that don't print on the NEC

Spinwriter. (remember, "left-arrows" can't be printed from

WordPro)

100 dim a$(90):for i=0 to 90:read a$(i):next

110 print "program filename ";:gosub 890:fi$=a$

112 print "wordpro filename ";:gosub 890:wf$=a$

115 input "device number 8[CR CR CR]";dv

120 open 2,dv,2ffi$+",p":gosub 880:get#2,a$,a$

121 open 3,dvf3,wf$+",p,w":gosub 8.80:print#3,

chr$(192)chr$(91);
125 sl=0:get#2,a$,a$:if a$="" then 600:rem skip link un

less end of program

126 print "[HM HM CLR]wchr$(14);:get#2,a$,b$:rem get line

number

140 n=asc(a$+chr$(0))+asc(b$+chr$(0)) *256:print n; L

150 get#2,a$:p=asc(a$+chr$(0)) :if p=0 then print "

[left-arrow]":goto500

160 if (peek(205)<>0) or (p<128) then print chr$(p);:

goto 200

170 printa$(p-128) ;

200 if (a$=":" or a$=ilfli) and (peek (198) >45) then 220

201 if peek(198)>55 then 220

210 gotol50

220 print "[left-arrow]":print n;chr$(150);:sl=sl+l:goto 150

500 for 1=0 to sl:q=32768+l*80

505 for i=0 to 79:p=peek(q+i):print#3,chr$(p);:

next

510 next

520 goto 125

600 close 3:close 2:end

880 if ds<20 then return

885 print ds$:end

890 poke 623,34:poke 624,27:poke 158,2:input a$:

return

900 data end,for,next,data,input*,input,dim,read,

let,goto,run,if,restorergosub

910 data return,rem,stop,onrwait,loadrsavefverify^

def,poke,print#,print,cont

920 data list,clr,cmd,sys,open,close,get,new,

tab(,to,fn,spc(,then,not,step,+,-

930 data *,/,t,and,or,>,= ,<,sgn,int,abs,usr,fre,

pos,sqr,rnd,log,exp,cos,sin
940 data tan,atn,peek,len,str$,val,asc,chr$,left$,

right$,mid$,go,concat
950 data dopen,dclose,record,header,collect,backup,

copy,append,dsave,dload

960 data catalog,rename,scratch,directory

Son-.e Observations Sieg Deleu,
On Using CEM 8032 & DOS 2.0 Kobetek Systems

1. On concatenating files

On page 30 of the DOS manual it states that in the COPY

conircand, the destination file name may be a new name, or the
same as the old file name, unless the destination and source

drives are the same.

V7hen I first read this, I assumed that this meant that

when concatenating files on the same drive,, the destination

file name had to be different from any of the names of the

files being concatenated. This turns out not to be sof which

is quite useful. If, for example, you have a sequential file

(PERM) to which you keep adding data: you create a temporary

file (TEMP) into which you write the data to be added to the

PERM file. When finished, concatenate TEMP to PERM, and

scratch TEMP.

2. On using variables in the disk commands.

I tend to use a standard set of subroutines for handling

file operations such as opening, scratching, concatenating,

etc... I don't remember having any*problems with that under
DOS 1.0. However, during a recent project I ran into some

very annoying troubles, which caused me a good amount of

headaches.

Consider the following two lines, part of a larger

subroutine, to concatenate two files (assume command channel

open on channel VC):

2000 DR$=STR$(DR):REM DR IS THE DRIVE BEING ACCESSED

2010 REM CONCATENATE XG$ TO XF$

2020 PRIKT#VC, "C"+DR$ + n : Il+XF$=DR$ + If: "+XF$+" , "+DR$ + n : n+XG$

Everything should work, right? It seems to me it used

to! When you use these lines in your program, it will in

fact run like a charm. V7e assume that you also have an error

routine in your program, to check when anything goes wrong

during file operations (check DS$). No error occurs when the

above code is executed, but the concatenation operation did

not take place! I found this out the hard way - I did not

suspect THAT part of the code, and went looking everywhere

else trying to find out why the data that was supposed to be

in my file v/as'nt there. Being a neat person, and not

wanting to clutter up my disk, I scratched XG$ as soon as the

concatenation was done - vastly increasing the time necessary

to trace this bug.

Solution: 2000 DR$=MID$ (STR$(DR) ,2) : REM to get rid of the

space created by the STR$ function. DOS 2.0 detests spaces

in disk commands.

- 8 -

3* On closing files.

Sometimes your program bombs with a syntax error just
after you have opened a disk file. And sometimes the active

light on the drive stays on, even when you issue a DCLOSE.
You1 re a little worried about it, since you want to start

checking your syntax error, and don't want anything to happen

to your file in the mean time.

Solution: Type direct command - OPEN 1,8,15:CLOSE 1, and the

disk goes to sleep.

4. Spaces in files.

We all know now that leading blanks in a record are lost when

INPUTting from a disk or tape file. If you need blanks at

the beginning of a record, use shifted ones (CHR$(160)) - the

PET does'nt know they are blanks and gladly gives them back

to you on INPUT. They PRINT on the screen as perfectly legal

blanks of course.

5. Other nasties in files.

I am what you call a "squasher"" of disk files. Whenever
I get a chance, I'll "code11 pieces of information so that

they occupy as little space as possible. Example: suppose

you have a series of Yes/No answers to be placed in a disk

file. Let's say you have 8 of them, or less. You could use

8 bytes, one each with either a Y or a N. Or you can store

this sequence of 8 answers in a single byte, by building a

binary number out of the 8 answers, coding a Y as a 1, and a

N as a 0. (Some people have been known to use the opposite

convention - but "that's stupid", as Paul would declare).

Below is a short piece of code to do it (we assume that the

answers were input by your program into an array ANS$ - i.e.

ANS$(K)="Y" or "N", for K from 1 to 8) :

2000 ANS%=0

2010 FOR I = 1 TO 8: IP ANS$(I)="Y" THEN ANS%=ANS%+2**(8-1)

2020 NEXT I

The code constructs an 8-bit binary number that has a 1

in position i (leftmost position considered to be position 1)

if ANS$(i)="Y", and a 0 in every other position. For

example, NNNNYNYY will turn ANS% into 00001011, or decimal

11, We can now write this packed information to a file by

PRINT# If, CHR$(ANS%). Is'nt that great? Well, it is,

provided we can unpack it easily, and provided we take a

little care when writing it to the file.

I don't particularly like to do GETs from long records,

so I want to get the information back via an INPUT statement*

Assume that this ANS% byte is part of a longer string record

(REC$) , e.g. 20 character name, 8 Y/N answers, # of children,

of bathrooms in the dwelling.

Before proceeding, we should note that the record as
described can be stored in 23 bytesf as long as we don't have

more than 255' children or bathrooms* 255 is the biggest

binary number that can be held in one byte (binary 11111111).

We PRINT#lfn, NAME$; * CHR$(ANS%); CHR$(#children);
CHR$(#bathrooms) to our tape or disk file.

To get it back, we:

100 INPUT #lf, REC$

110 NAME$=LEFT$(REC$,20): ANS%=ASC(MID$(REC$,21,1)

120 CHILD=ASC(MID$(REC$,22,1): BATH=MID$(REC$,1)
130 REM: NOW TO ISOLATE OUR Y/N ANSWERS INTO ANS$ •

140 FOR K=8 TO 1 STEP -1: QZ%=ANS%/2: QR%=ANS%-2*QZ%

150 ANS$(K)=flYn: IF QR%=0 THEN ANS$(K)=MNw

160 ANS%=QZ%: NEXT K

So farr so good. HOWEVER - what happens if all the

answers were Nf or if the answers were NNNNYYNY, or if we had

no children or thirteen bathrooms? What's special about

these? They cause our program to become very confused, and

sometimes result in the programmer becoming equally stumped*

In all four of the above instances the program will either

write a CHR$(0) or a CHR$(13)"to the file, and nicely

terminate the record in the wrong place. Both of those

CHR$ls are recognized by the PET as end-of-record markers,

and prevent us from getting to the rest of the record which

follows the CHR$. What do we do about that? We make sure

that they cannot occur as part of the file, except where we

want them.

A few suggestions:

a. Start ANS% with a value other than 0f and which does

not occur as one of the actual Y/N combinations. This is not

feasible in our case of 8 Y/N's, since the entire byte ANS%

is needed to cover the whole range of possibilities (from 0

(00000000-all N's) to 255 (llllllll-all Yfs). In other

words, there is no value with which ANS% can be initialized

to avoid the "null or thirteen problem". Here we are forced

to use GET instead of INPUT.

For sets of Y/N's of 7 or fewer, we can start ANS% at

2 to the power X, where X equals (# of Y/N answers):

Examples:

Nr of Y/N's Starting value of ANS%

2 4

5 32

7 128

Let's look at 7 in more detail:

- if our answers are NNNNNNN, then ANS% will be 10000000

(binary)f and CHR$(ANS%) cannot cause any problems when

written to the file

- if our answers are NNNYYNY, ANS% equals 10001101, and

again no record terminator is written.

On reading the file, we must cf course remen.ber that the

value we read must nov; be reduced by the value v/e cjave Ai si

at the start* Line 110 in pur short example v/ill now read:

110 I3AnE$=LEFT$(REC$,2O) : ANS%=ASC(MID$ (REC$,21 ,1) -IHIT
111 RE11 INIT IS STARTING VALUE OF ANS%

b. In our children-bathrooms example, the same ideas arc

of course valid. If we have N bathrooms, where 1K128, v;e can

add 128 to N before writing it to the file, and then subtract

it from the value we read back before we actually use it in

our program.

c. There is still one small thing to watch out for.

When testing our program, we usually like to read stuff that

we have written to a file, and display it on the screen, to

make sure that what we thought we wrote did in fact get

written. Watch out when you do this if you have compacted

some of your data using the technique mentioned above. Many

of the CHR$ characters that you write are non-printing ones -

they don't appear on the screen on a PRINT command - in fact,

they look like nulls (if you print them between two markers,

say two *fs, the *'s will be printed as **, i.e. with nothing

in between). Now that's OK as long'as you are aware of this,

and you don't have a CBM8032.

That beauteous machine grabs some of these CKR$ts, and

interprets them as control codes, to define a screen window

for example, or to ring its chimes. I recently printed out a

large file to browse through the records, looking for

abnormalities. The screen was scrolling merrily upward as

the records were displayed, occasionally squeaking as a

chr$(7) was printed. Suddenly the screen contracted, and the

display was confined to the rightmost 10 columns of the

screen. This was sort of cute and I could still read the

data, although I had to hurry, since the short lines zipped

by at a good clip. The next thing was'nt cute at all: the

screen collapsed to a single character, at the bottom right

hand corner, and the rest of my file just winked at me from

that spot as it flashed by - still ringing the funny little

bell at times.

Moral: When you want to look at "squashed" files, GET the

characters one by one, and print out their ASC values. Make

sure that you change any nulls to CHR$(0) prior to printing

on the screen, otherwise your program will hang v/ith an

ILLBGAL QUANTITY ERROR - ASC("") is a nyetnyet.

6. How full is an empty file.

Assume as I suggested in 1 that we want to add to a

sequential file, using concatenation, every time a program is

run.

10 OPEN 2,8,2,"l:TEMP,S,Wn

20 HEM STORE DATA TO IN TEMP

30 REM WHEN FINISHED, CONCATENATE WITH PERM

40 CLOSE 2

50 OPEN 1,8,15:PRINTSl,"Cl:PERn=l:PERM,1:TEMP"

60 PRINT#1,"S1:TEMP":CLOSE 1:EMD

In order for line 30 not to abort with a FILE NOT FOUND

error, PERI: rr»ust exist prior to concatenation* It must

therefore exist even before the program is run the first

tin.e. It seems natural therefore to issue a direct command:

' OPEN 2,8,2rnl:PERM,SrWM:CLOSE 2

This will put an empty file on the disk, so that the

very first concatenation can properly take place. Right? -

Well... almost.

The file will get on the disk; the very first

concatenation will take place; but when you next want to read

the PERM file to get your data back, there is a little too

much in the file. This can throw things off a little or

quite a lot, especially if you do GETs, where each character

has a specific meaning, e.g. in a "squashed" file.

As it turns out, the "empty" file, created by the direct

command, has not just one character in it, but a total' of

four! It has a CHR$(13) , then a CHR$(0), a CHR$(2) and

another CHR$(13) . OK, now we know, so we just do four dummy

GETs to skip past them when we read our PERK file after

concatenation. No, we just do one dummy GET - after the

first concatenation, the last three of the four extraneous

characters vanish, and we1 re left with just one extra

annoying carriage return (CHR(13)).

To prove it to yourself:

10 OPEN 3,8,3, "1: EMPTY FILE, S, W" :CLOSE3

20 OPEN 3, 8,3,Hl:ONE CHAR,S,W":PRINTS3,"1":CLOSE3

30 OPEN1,8,15:PRINT#1,"C1:EMPTY FILE=1:EMPTY FILE,1:ONE CHAR"

40 OPEN 3,8,3, "1: EMPTY FILE,S,Rlf

50 GET#3,A$:IF ST=64 THEN ST%=-1

60 IF A$ = fl" THEM A$=CHR$(0)

70 PRINT "#MA?"#"ASC(A$) :IF NOT ST% THEN 50

80 CLOSE 3

90 PRINT#1,"S1:ONE CHAR":CLOSE 1:END

The output of this is

(.carriage return printed)

13 # (ASC of CR)

#1# 4? # (^character 1 and its ASC value)

#

S13#

Note that we wrote only two characters (1 and a

carriage return) to ONE CHARf yet v/e end up with three in

the concatenated file. The first carriage return is the

leftover from opening the empty file.

Some (more) trivia?

If we time the sequence in lines 50 to 70, then we get

5.7 seconds. If we replace the name EMPTY FILE with FILE,

i.e. a name different from the two being concatenated, then

this same sequence takes 10 seconds - almost double!?!?!

The time to concatenate two files is a bare 1/4 of a

second!!

- 12 -

7. The last word on nulls•

If you write a CHR$(£) to a filer and then GET it back

(GET A$) , then A$ does not equal CHR$(0) , but rether ccir.es

back as a measly null character ("") . This may not ceen; like

much (ehleh!) , but it does become crucial when you want to

copy one sequential file to another character by character -

say because you processed part of it and nov; you want to

discard that part and process only the remainder. During the

copy, y°u roust check if a character from the old file equals

null("") and change it to CHR$(0) before writing it to the

new file - otherwise you end up with a mess.

8. Time out error (variable ST=1)

I had never had one of those (at least not that I know

of), and was therefore surprised and a bit pleased to finally

get hit with one. Can you spot why in what follows? (FILE2

contains plenty of data)

10 OPEN 2r8,2,ltl:FILE2,S,Rfl:OPEN 3,8,3 , "1 :FILE3,S,WM

20 OPEN 1,8,15: REM DO A BUNCH OF STUFF

30 CLOSE 1

40 GET#2,A$:IF ST=64 THEN 60

50 PRINT#3,A$: GOTO40

Timeout occurred in line 50.

Editor's Note-

Timeout is an IEEE condition indicating that a bus

operation has taken too long to complete. The time allowed

is 64 milliseconds and timeout can occur during a read or

write operation. In the above example a timeout on write

occurs at line 50; an attempt to send A$ across the bus is

made but the DOS does not accept the character within the 6 4

ms. time limit. PET sets ST is set to 1 but no test is made

to trap this error here.

Leaving this for a moment, another disaster lies in the

above example. By now we all know that the problem lies in

the OPEN1,8f15:CLOSEl sequence of lines 20 and 30. (Sorry if

I revealled that too early Sieg) As mentioned earlier, this

causes the DOS to close down any open files on the disk but

the 8032 still considers these files open since no CLOSE 2 or

CLOSE 3 command was given. The GET# statement in line 40 is

still honoured (i.e. no FILE NOT OPEN ERROR) but the disk has

nothing to offer since all files (in the DOS) are nov; closed.

A timeout on read (ST=2) occurs but there is no Basic to

detect this (only ST=64? is tested).

The program then goes on to send the "gotten" chatacter

but (besides the fact that there is no character in A$ to

send) there is no open file in the disk to send it tc. The

DOS won't accept A$ and after 64 ms.f tiireout on write is

flagged (ST=1).

None of this should be of any concern if you handle your

I/O files properly. Opening and closing the DOS command

channel should not be used to close other E/l? files except as
mentioned earlier. By issuing proper OPEN and CLOSE

coDinands, both computer and disk will always know what's

happening, not to= mentidn the programmer. Same goes for

Easic 4.0 DOPEK and DCLOSE commands.

One last notef timeout on read (ST=2) will occur if you

try reading past the end of a file. This usually happens

when 'end of file1 (ST=6 4) is tested after some subsequent

bus operation is performed that changes ST. If this is a

problem, the best solution is to "trap" ST into some other

variable (say SX) and then test SX later.

Compressed Data

The above article talks about compressing data of the

YES/KO, OFF/ON type so that several items can be stored as

bits rather than using a whole byte for each. This can work

well provided your program knows how to handle it. It can

also save a lot of storage space when working with large

amounts of information. The only drawback (aside from those

mentioned) is that nov; your (user's) data is in unreadable by

other softwaref i.e. compressed data can look pretty alien to

a simple file reading program/ especially when compared to

what Vas thought to be typed in. Compressing data is
generally undesirable, but if you find yourself cramped for

space and absolutely require it, always provide plenty of

documentation..* if not for the next guy, at least for

yourself!

- 14 -

Jim Strassma's SUPERSORT

SUPERSORT is an extremely fast and powerful machine

language sort for multi-dimensional memory-resident arrays.

It has features which surpass those on computers many times

the price and size of the Commodore line. It "lives

somewhere11 at the top of memory of ANY PET or CBMr in about

1200 bytes. Its exact location depends on what your computer
already has at the top cf its memory (DOS Support for

example) . SUPERSORT adjusts the memory pointers to make room

for itself, and then protects itself, and everything above it

in memory from being clobbered by BASIC. It then announces

the SYS address by which to invoke it.

FEATURES

1. Sorts one- and two-dimensional string and integer arrays

at lightning speed, in adscending or descending

order(e.g. 3000 integers in less than 30 sees!).

2. Records may have up to 75 fields (a 10 by 50 array for

example stores 11 records of 51 fields each) • The fields

may be of random length, and require no special

delimiters.

3. Sort may be specified on any one of the fields.

4. You may specify a subsort on any" field (and on as many as

desired in any order) if a match is found in the previous

field.

5. The array to be sorted may be specified by name. If no

name is given, SUPERSORT processes the first array in

your program.

6. You may specify the sort on all or part only of an array.

This allows you to set up a large enough array to sort

the largest possible dataset, without running into

re-dimensioning problems.

7. Provides a pattern-matching option, to allow you to

divide your dataset into records that match/do not match

a specified bit-pattern.

8. All options have convenient default settings. Desired

changes in the default are provided through simple POKE

statements.

This program is a GEM, and at the price of $ 45.00 Canadian

on cassette ,including first class mail ($ 50.00 on disk),

you cannot afford not to use it! It comes complete with

clear instructions. Why so cheap? Don't ask, just get it

you will wonder how you ever got along without it!!

KOBETEK is the exclusive distributor of SUPERSORT in Canada.

Dealer inquiries welcome - we offer an excellent deal!

- 15 -

First Programming Steps. Jim Butterfield, Toronto

The first programs that a beginner writes tend to be simple.

That's good, of course: the programmer is developing skills
which will be useful when he tackles more ambitious jobs*

Here are a few suggestions on how to go about these early

projects; the emphasis will be more on sound practices and

clear style rather than clever coding methods* Some of the

suggestions might be useful for experienced programmers,

too**.

Try to lay out your programs in "blocks". Each block should

have, a clear, simple function. One block might do an input

job, another might calculate, and a third generate output.

If you start planning a program by thinking out the blocks

you will need, your program will be better planned. Some

programmers make each block into a subroutine so that the

main program simply calls in these units as needed.

Title each section or block with a remarks REM statement.

You don't have to put comments on each line, but it's useful

to be able to find a section of code quickly. Perhaps you

think that you can remember the code - after all, you wrote

it - but wait a couple of months. It's amazing how a crystal

clear prograrjL can suddenly become gibberish after you've been

away from it for a while. Leave yourself some highway

markers so that you can find your way around later.

Name your variables in a semi-meaningful way. Totals can

start with the letter T, counts with a C, and so on. Ifm not

a fan of large alphabetic names, since they have pitfalls:

TERRIFIC is a great label, but it doesn't work since the

keyword IF is hidden in the middle. Can you find the hidden

keywords in GRANDPA, CATNIP, CRUNCH and FRONT? It's fun to

play word games, but not when you're trying to write a

program. I prefer a single letter followed by a numeric:

T4, B7 and so on. By the way, don't forget that variable B

has nothing to do with integer variable B% or string B$ or

for that matter array variable B(3) . They are all completely

independent values.

Don't let anyone hustle you about program size or speed. If

others write in less memory and fewer milliseconds, let them.

You'll have space enough for most of your programs and the

tenth of a second saved in run time won't give you time for a

cup of coffee. On the other hand, do look for better

methods. Better isn't always faster or smaller, but you'll

recognize it when you see it.

Keep track of your variables; it's useful to make a list on a

sheet of paper. That way, you won't accidentally use

variable X for two different jobs and get them mixed up. In

fact, it doesn't hurt to do paperwork planning before turning

your computer on. There's a kind of "heat" in working

directly on the machine that sometimes leads to hasty

programming. A little leisurely planning beforehand can

generate sounder and better programs.

- 16 -

Don't be afraid to write loosely* The fanatic who tells you

that you111 save memory and time by compacting

FOR M = S TO P STEP V into PORM=STOPSTEPV is steering you

wrong in most cases. If legibility costs you four bytes and

one millisecond, take it: " it's a bargain.

If your program doesnft work right the first time, don't lose

heart* It happens to mast of us. The easy errors are where

the computer tells you where the problem is, most commonly

7SYNTAX ERROR IN ... The problem will likely be obvious when

you look at the line; if not, you can try rewriting it

slightly to see what happens. The hard errors are where the

computer doesn't stop, but gives you the wrong answers.

Debugging can be great fun if you take the right attitude.

Look at the variables: you can call them up with direct
PRINT statements. Change them if it suits your purpose. Put

STOP commands into your program and check everything out when

you come to the halt. You can resume where you left off with

CONT. Using the RUN/STOP key to break your program in

mid-execution is less precise but will also do the job.

Getting a program together can be a rewarding experience -

not necessarily rewarding in . money, but in a sense of

accomplishment. Each program will be a work ofart, done in

your own style. When you put your signature to your latest

masterpiece, you'll feel good about it if you've used good

coding craftmanship.

.. - 17 -

The Friendly PET - Screen Editing, Jim Butterfield,

Toronto

One of the friendliest things about the PET, CBM and VIC is
the way they allow you to make a change or correction. If

the line on the screen is wrong - whether it is a program

line or a direct command - we can move the cursor back and

type over the line* Pressing the RETURN key will make the

change take effect.

Correcting Programs

This is very handy for programs. When your first program

attempts result in a message such as 7SYNTAX ERROR IN 350 you

can list 350 to see what the trouble. If line 350 happens to

say PWINT X, you can move the cursor back, type R over the W

to give PRINT X, and strike RETURN. The line has been

corrected with a minimum of typing on your part.

If you need to make an insertion into your programr you may

use the INSERT key. If the mistake was PINT Xf the technique

is to position the cursor over the I, hold down the SHIFT

key, and press INST for insert; the computer will open up

space and you can type in the missing R. On the other hand,

if the error was PHRINT X you'll want to make a deletion:

place the cursor over the R, press the DEL key to delete, and

the H will disappear. In either case, donft forget to press

RETURN to make the change permanent.

If you happen to goof in making the change, start over. In

this case, don't press RETURN. Hold down SHIFT and then

press RETURN: this will take you to the next line without

any program change being made.

Shifted-RETURN is quite a handy key combination to know for

many reasons. If you wanted to leave a note on the

computer's screen for someone to read, you might type

MARY - PUT THE CAT OUT. At this point, striking RETURN would

cause the computer to try to "perform" the line, and you'd

get 7SYNTAX ERROR. If you press Shifted-RETURN, however,

you'll just go to the next line and the computer won't try do

anything with the contents of the previous line.

The INSERT key has some special rules. After you have

pressed the INSERT key a number of times (don't forget to

hold down SHIFT) there will be an open space on the screen

where you can insert the new characters. At this point,

you'll be in "programmed cursor" mode. This means that the

cursor keys don't move the cursor; instead they will print as

special reversed characters. This is the same way that the

PET behaves after you press the quote-mark key, with two

important exceptions: the computer remains in this mode only

for the number of characters to be inserted; and the Delete

(DEL) and Insert (INST) keys work in a different way. More

about this another time; in the meantime, you'll get used to

them quite quickly.

- 18 -

A problem sometimes crops up if a program line is too long.

Sometimes this means that there's no extra space available to

make a desired insertion - eighty characters is the screen

limit. Worsef the line is too long to start with; it

occupies over 80 characters even before we make a change. It

might be more sensible to change it to two lines and relieve

the crowding; but if you must, the trick is to look through

the line to find a keyword that can be abbreviated. PRINT is

the most popular, since it can be rewritten as a question

mark. Close up the space, making sure that everything is

packed into the 80-column work area, and then make the change

if it fits.

The Direct Approach

Direct lines - Basic commands typed in without a line number

so they are executed right away - are usually easy to fix.

If you mistype LOAD "PROGRAM" so that it comes out

LOUD "PROGRAM", don't be dismayed by the 7SYNTAX ERROR. You

can slip the cursor back, change the U to an A, press RETURN

and the load will take place.

Correcting mistakes in Direct lines can leave a cluttered

screen. When I try to load BOTTLESHIPS from the disk, I get

several lines which tell me that there%s no such program.

When I move the cursor back and correct to BATTLESHIPS, the

following lines don't go away unless written over. It looks

messy, but works OK.

There's a sharper problem when I ask a direct statement to

print a number. If I ask the PET to calculate 4*5*6,

yielding a product of 120, and then decide that I really want

addition, I can go back and change the asterisks to plus

signs. The PET will now produce a total of 15f but the last

digit of the previous answer won't be wiped out; the zero

will be left on the screen and our sum will look like 150

instead of 15. The solution? Wipe out any numbers you want

recalculated so that the new values will print on a fresh

line.

Special Screenings

When you press RETURN, the PET sees only what's on the

screen. You may have done deletions, insertions, and changes

but the final screen result is all that counts* This is true

of program lines, direct commands, and responses to program

INPUT statements.

You may want to run a program several times while testing,

with similar answers to INPUT questions on each run. With

screen editing, it's a snap. After you have run once, move

the cursor back to the RUN statement. Press RETURN (no need

to type RUN: it's on the screen). For each INPUT, the cursor

will appear over the answer you typed on the previous run.

If you want to go with the same response this time, just

- 19 -

press RETURN and the program will accept the same input from

the screen. If you want to*change, type your new input..

Here's a hint of advance techniques that you111 learn as you

become more familiar with your computer* You can actually

get the PET to type its own input - even its own program

changes - to the screen. Then, with a stroke of the RETURN

key, you can activate the input or program change* When used

for INPUT activities, this provides a "default" input for the

user. As a program change, the program could suggest DATA

statements that it would like to see included in a future

run. Mind bogglingl At this rate, the computer could

program itself and make us all obsolete.

At least, the computer still needs us to press the RETURN

key; it can't do that by itself. Or can it? Technical tyros

suggest that POKE 158,1:POKE 623,13 (or on Original ROMs,

POKE 525,1:POKE 527,13) would actually cause the PET to send

a carriage return to itself...

SWARM-100 — SWAP A ROM MODULE David Hook, parrie Ont
FOR PET/CBM/

Producer: Software Unlimited, Oakville, Ontariof CANADA
Designer: Dieter Demmer

Cost: $150 (Canadian)

Availability: Batteries Included, 71 McCaul Street, TORONTO,
Ontario, CANADA, M5T 2X1

The SWARM-100 is an 8" x 4M printed-cicuit board. It

installs completely inside the PET* There are two rows of

seven sockets for installation of two independent operating

systems. Selection of either system is done via software.

The swapping of ROMs may be accomplished without loss of the

program in memory.

The SWARM-100 is a solution for PET owners with Basic

2.0 who want Basic 4.0 also. Many commercial programs won't

function with the new Basic; many programmers won't be able

to convert machine language themselves.

This past week I received a letter from the University

of Waterloo advising that they would be happy to provide ne

with an upgrade EPROM for my $61.50 Waterloo Basic chip.

With a price tag of $35 for this service, I'll politely

ignore the offer. The SWARM board frees me from such

outrageous costs.

Since the documentation refers only to "new" Pets, I'll

presume that the board is suitable for 2001 or 4000 series

machines. We've been told elsewhere that the "original" Pets

may only be upgraded to Basic 2.0.

The Toronto PUG has over 1400 programs in its library.

I've felt the need for both Basic 2.0 and 4.0 in the

screening of contributed programs. My 2.0 machine was

purchased prior to the "swap" offer from Commodore.

Therefore, when I purchased the upgrade ROMs, I had a set of

2.0 left over.

Installation:

The instructions provide a complete description and

diagrams of the proper arrangement. Read them carefully if

you are trying it yourself.

Don't try to extract the ROMs with a screwdriver, as

suggested. A cheap (under $1) IC-puller is widely available.

Bent or broken pins may not be salvageable!

The diagram does not clearly indicate that Row 1 is the
BACK row (when holding the board with sockets on your left).

Row 2 (FRONT) is where to place the Basic 4.0 ROM set. This

is the row that is alive on power-up.

The pins on the underside of the.SWARM are quite sturdy.

They are wire-wrap pins and will likely enlarge the PET's

sockets. There are 33 pins to force into the PET sockets.

Removing the entire main logic board is highly recommended.

I know that I was quite leery of the force required to fit

them snugly. . Perhaps the "dealer's expertise is the best

approach for the uninitiated (like myself).

Operation:

Kr* Demmer has used three "non-existent" memory

addresses to control the operation of the SWARM*

Basic 4.0 requires five of the seven available sockets*

These five in both rows are switchable. Memory^ addresses

range frpm $B000 through $FFFF# These will be referred to as

the SYSTEM ROMs.

The two pairs of sockets covering $9000 and $A000 are

the UTILITY sockets* They may be switched quite

independently of the System ROMs* This allows you to have

both WordPro3/BPI or Waterloo Basic/Jinsam available at a

moment's "swap".

The 4-page manual provided gives a short machine

language routine demonstrating the software control of

swapping the System ROMs. Basic 2*0 and 4.0 have different

locations for the interrupts that occur 60 times per second.

Machine language is necessary to safely make the various

swaps possible.

The program shows how to implement a swap from 2.0 to

4.0 and vice versa. The proper code for cold-start (reset)

and warm-start (no loss of program) is given.

You may use a Basic POKE command to swap the Utility row

from front (4.0) to back (2.0) row. If you are using Basic

4.0, another POKE gets the Utilities back to the front row.

When the System is in Basic 2.0, the above POKE will

swap the Utility pair to the back row. But machine language

is the only way to get these two back to the front row.

A Better Program?

I've put together an all-in-one program to give maximum

control of the available options. It's in the form of a

Basic loader which will permit storage:

1. Cassette#2 buffer, but safe from Basic 4.0 usage.

2. Top of memory, moving down the appropriate pointers.

3. Anywhere in RAM, user-specified, either in decimal or

hex.

The loader is self-relocating, adjusting the internal

memory reference automatically.

- 22 -

After RUNning three "SYS11 addresses are displayed:

1. SOFT: swap either way, retaining program in memory.

2. HARD: swap either way,*-with a power-on reset.

3. UTIL: allows restoring of Utility ROMs to front row

when in Basic 2.0

Copy the addresses from the screen. Referring to the

above program here is a table of options:

Action In Basic 4.0 In Basic 2.0

Utility ~ front/back POKE 59444,0 POKE 59444,0

— back/front POKE 59452,0 SYS(UTIL)

System — keep program SYS(SOFT) SYS(SOFT)

— reset PET SYS(HARD) SYS(HARD)

A Quirk:

When swapping System ROMs in a "soft" fashion, there are

some Basic pointers that are left in an "unknown state"• Hr.

Demmer advises that this should not.pose a problem in RUKning

the program. In my brief experience, no problems have

developed.

If you attempt to modify the program after the swap, you

may find a "reluctant" cursor. When •RETURN1 is struckf

instead of advancing to the start of the next liner the

cursor may sit in mid-line.

If youfve used CMD to print a program listing, then

immediately CLOSE the file, you've seen this animal before.

(Most everyone knows to do a 'PRINT*1 before doing the

CLOSE).

No real problems here, either. Mr. Demmer suggested

that you can generate a SYNTAX ERROR to restore normal

behaviour. Do this with two consecutive double-quotes ("")

and 'RETURN1 and you're home free.

Summary:

The SWARM-100 is a well-designed, good quality product.

It fits inside the PET/CBM and permits software selection of

either of two operating systems. The two pair of spare

sockets may be swapped independently of the other pair of

five sockets.

The product has a three-month warranty for parts and

labour. It must be returned to the dealer for repair.

If you need both Basic 2.0 and Basic 4.0 in your

machine, the SWARM-100 does the job.

- 23 -

ROM/UTIL.S PAGE 0001

LINE* LOC CODE LINE

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

003 8

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

03 81

03 81

03 83

03 85

03 85

03 87

03 89

03 8B

03 8D

03 8F

03 8F

0391

0391

03 92

0395

03 95

03 96

A2

DO

A2

AO

A5

C9

DO

AO

78

99

8A

DO

05

02

00

04

90

55

02

00

38 E8

03

••••••a*********************************

* *

* ROMSWITCH & UTILSWITCH FOR SWARM-100 *
* *

* DAVID A. HOOK, 58 STEEL STREET *

* BARRIE, ONTARIO, CANADA *

* L4M 2E9 (705) 726-8126 *

* MAY 17, 1981 *
* *

*** BASIC VARIABLES

IRQ=$90

; VECTORS FOR BASIC 4.0

INVEC4=$E455

BRKVC4=$D47 8

NMIVC4=$B3FF

;IRQ VECTOR

;NORMAL INTERRUPT

;BREAK

;NMI (READY)

VECTORS FOR BASIC 2.0

INVEC2=$E62E

BRKVC2=$FD17

MMIVC2=$C389
•

SWAP42=$E83 8

SWAP24=$E83C

;NORMAL INTERRUPT

;BREAK

;NMI (READY)

;SWAP ROMS

;RESTORE ROMS/UTIL

*** OP SYSTEM ROUTINES

NMIVEC=$FFFA

RSETVC=$FFFC

*-

SOFT

= $0381

LDX #05

BNE SOFT1

HARD LDX #00

SOFT1 LDY #$04

LDA IRQ

CMP #<INVEC4

BNE NOW2

LDY #$00

NOW2 SEI

STA SWAP42,Y

TXA

BNE SOFT2

;SECOND CASSETTE BUFFER

;SET INDEX COUNTER

;ALWAYS

;IF HARD SWAP

;OFFSET FOR 2.0 TO 4.0

;ARE WE USING 4.0

;NO

;OFFSET FOR 4.0 TO 2.0

;DISABLE INTERRUPT

;SET ADDRESS

;CHECK IF SOFT SWAP

;YES

ROM/UTIL.S PAGE 0002

LINEf LOC CODE LINE

0054

"0055

0056

0057

0058

0059

0060

0061

0062

0063

0064

0065

0066

0067

0068

0069

0069

0069

0069

0070

0070

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

0398

0398

03 9B

03 9B

03 9C

03 9D

03 9E

03 9E

03A1

03A3

03A4

03A5

03A7

03A8

03AB

03AB

03AD

03AF

03B1

03B3

03 B5

03 B7

03 B9

03B9

03 B9

03 BA

03 BD

03C0

03C1

03C2

03C2

6C

98

0A

A8

B9

95

C8

CA

10

58

6C

C3

FD

E6

00

B3

D4

E4

78

8D

8D

58

60

PC

AB

90

F7

FA

89

17

2E

00

FF

78

55

3C

38

FF

03

FF

E8

E8

•

9

;

SOFT2

•

9

LOOP

•

9

TABLE

•

9

•

9

UTIL

•

9

JMP (RSETVC)

TYA

ASL A

TAY

LDA TABLE,Y

STA IRQ,X

INY

DEX

BPL LOOP

CLI

JMP (NMIVEC)

.DBYTE NMIVC

.DBYTE NMIVC

SEI

STA SWAP24

STA SWAP42

CLI

RTS

.END

;COLD START WITH SWAPPED ROMS

;GET OFFSET INDEX

;DOUBLE IT

;KEEP IT IN R(Y)

;GET VECTORS IN REVERSE ORDER

;RETURN THROUGH WARM START

;SWAP UTILITY ROM TO 4.0 ROW

;RESET ALL TO 4.0

;SWAP ROMS TO 2.0

ERRORS =0000

SYMBOL TABLE

SYMBOL VALUE

BRKVC2

INVEC4

NMIVC4

SOFT

SWAP42

FD17

E455

B3FF

03 81

E838

BRKVC4

IRQ

NMIVEC

SOFT1

TABLE

D47 8

0090

FFFA

03 87

03AB

HARD

LOOP

NOW2

SOFT2

UTIL

03 85

039E

0391

039B

03B9

INVEC2

NMIVC2

RSETVC

SWAP24

E62E

C3 89

FFFC

E83C

END OF ASSEMBLY

Culletin Boards ' Gord Campbell, Toronto

A new phenomenon has appeared in the Canadian small

computer world. Several computer bulletin-board systems have

become available in the last fev; months. If you have a
300-baud modem, (such as the Commodore 8010) it is easy to

use these systems.

The main function they provide is implied by the name:

the ability to enter and retreive messages. This helps

people who have announcements to make or who wish to browse

what others have to say. They are also a good place to ask

questions, since someone is bound to want to 'be the expert1.

There are several systems, with a wide range of

capabilities, but all of them have a common set of simple

commands:

HELP » - lists the available commands

SUMMARY - gives a summary of messages on the system.

RETREIVE - lets you look at specific messages

ENTER - to place a message on the system

GOODBYE - to disconnect tidily

In addition, several systems let you scan the messages

on the system (command ALL) or list the users (LOG) . A

couple allow program upload/download, but require that you

have appropriate terminal software. Most systems operate

with single-letter commands for ease of use.

Here are the systems of which I am aware:

- The PSI/ltordpro Bulletin Board operated by Steve Punter.

This is a very well-developed system. It operates on a PET

with a modified Commodore modem. The program is a mix of

BASIC and machine-language. Program upload/dov/nload is

supported, with a special terminal program which Steve has

developed. There are a number of commands which support

program-swap, such as LIST, which prints out what programs

are available. As a result, some of the commands must be

spelled out in full. When a message is deleted, the others

are renumbered, so it is unwise to refer to another message

by number. By the same token, if the highest message number

is 57, for example, you know that there are messages numbered

1 to 57 on the system. During message entry, it is not

neccesary to press RETURN except at the end of a paragraph,

since the program reformats your text into 38-character

lines. The phone number is (416) 624-5431, with availability

during non-business hours.

- The Toronto Pet Users Group bulletin board. This is a

slightly more primitive system. It is written entirely in

BASIC, so some people find they have to type a bit slower

than normal. It operates on a PET with a TNV7-1O3 modem.- The

fundamental functions are provided, as well as a list of

other systems, which may not be all that current. The phone

number is (416) 923-1917. Availability is during non-store

hours.

- Remote CP/M operated by Jud Kewell. This operates on a
large S100 system in Hississauga. The software is extremely

well developed. For example; when you sign en, it will tell

you about any messages which are for you. As well, once you

enter a messagef you can edit it before saving. Program swap

is supported for people running CP/K, using a program called

XMODEM. You can also exit to CP/M, and operate as the main

console of the system. This is not as powerful as it sounds,

since there doesn't seem to be any EASIC compilers or

interpreters available to terminal users. However, there is

a lot of stuff stored on a hard-disk which you can browse.

The phone number is (416) 826-5394, and the system is

available nearly 24 hours a day.

- Apple Bulletin Board System. This provides the basic

bulletin-board functions. The phone number is (416)

499-2908, and the system is available during non-business

hours.

- Burlington Bulletin Board. I have not signed on to this,

but have browsed messages describing it. Phone (416)

639-7209 days and weekends.

- Thunder Bay BBS. I have not used this system. It is

apparently available evenings and weekends on an experimental

basis. Phone number is (807) 345-7336.

All of the above information is, of course, subject to

change. VJhen you are offering a free service, you get to make

your own rules as you go.

I am told that there are also systems available in

Vancouver, Ottawa, Oakville, and perhaps Nova Scotia.

The three busiest systems described above have already

had over 1500 callers in total. Try them out, and see what

all those people are saying.

Calculator Revisited Morley E. Kipp

Mississauga, Ont.

In the October, 197 8,* issue of The Transactor, a

suggestion was made for a program to simulate a calculator on

the PET. A "starter" program was provided and a proposal put

forth that it should be built upon and submitted for a

follow-up article. Well, it kind of caught my fancy, and I

fooled around with it for a while. Then I got involved with

a fev; other things and forgot it* While browsing through-

some disks the other day, I came across it and realized that

I had not seen any follow up in our favourite newsletter, so

thought I would toss it in. It may be just the thing to

convince your good lady that a computer can indeed be useful.

(On the other hand, she may figure it's the world1 s most

expensive calculator.)

It started in life as a fairly plain device, utilizing

some of the built-in PET functions. It now has ten memories

and is completely programmable, with the capability to save

and recall programs. As presented here, it saves on disk,

but that, of course would be quite easy to change to tape

operation. It is straightforward to operate, so intructions

will be on the sketchy side, in * the interests of space

conservation. The program will operate on both 40 and 80

column machines.

Calculator Operation

Normal calculator operation is carried out on the PET

number pad, with the exception of fclear display1 which is

done with the left-arrow key. The more exotic functions are

called up on the keyboard:

Q - Square Root

L - Logarithm

S - Sine

C - Cosine

E - Exponent

T - Tangent

P - Programmable Mode

Programmable Mode

After hitting 'P1 and entering Programmable Mode, the

procedure is as follows: (All 'Program1 transactions are

entered in the screen space to the right of the calculator

mock-up, except the actual run, which is displayed in the

calculator window.) First, the prompt appears:

•NEW OR EXISTING?1.

a) New Program

If you are writing a new program, the response to the

initial prompt will be 'N1. The prompt, 'ENTER PROGRAM1 will

appear followed by step numbers starting at 1. Enter each

number or function the same way as with any other

programmable calculator, following each entry with the

•RETURN1 key to register it. The last step of the program
should be an 'equals key1 (=) and the last entry of all MUST

be the word •END1 which is the key for the program at all

steps of its existence - loading from disk and running.

b) Existing Program

If the program exists in memory, you may run or modify

it. If it has been previously saved on disk, you may recall

it for re-running or modification. In either caser enter 'E1
and the next prompt will be 'LOAD, SAVEr CHECK, RUN OR EXIT1

(1, 2, 3, 4, or 5). Actions will be as follows depending on

your response:

1) LOAD. You will be asked for the name of the program
to be loaded. Respond with the name given to the file when
you saved it on disk. The program will load and the last

prompt will reappear.

2) SAVE. Here you will be asked to provide a name for

the program* It will then be saved on disk in drive 0, and

the prompt will reappear. If the program has not been

previously saved but has been written during the current

session, you would still respond with 'E' for existing, but

would not tell the program to 'LOAD1 when asked. Rather, you

would 'RUN1 or •CHECK1 it.

3) CHECK. The program must be in memory for this to

work. It will be presented step by step. You must hit

•RETURN1 as each step is presented, to re-enter it, or you

may change the item to a new value or instruction. After

•END1 is entered, the prompt reappears.

4) RUN. As the command implies, this initiates the

run of the program in memory. Completion of a program run

leaves you in standard calculator mode, with the program

result displayed.

5) EXIT. Exit from programmable mode to calculator

mode.

Memories

Handling of memories has been implemented as far as

possible to conform with normal calculator usage. The

program supports 10 memories; 0 - 9»

To Write a Memory

First display the number in the calculator window. To

enter the displayed number into memory 1 as a positive

number, hit fWl+f (•WRITE memory ONE - ADD1). This action

will also add the value in the display to any number already

in the addressed memory. Similarly, entering 'Wl-1 subtracts

the value in the display from the value in memory 1. To

erase a memory, enter 'W101. (WRITE memory ONE with ZERO).

_ 29 -

To Read a Memory

To read, memory 1, enter •Rl■• The value in memory 1

will be put into the display*

You may also read or write memories from program mode.

Simply enter the individual instructions as one step each.

That is, to write to memory nine, for example:

... STEP 5: fW' <RETURN>

STEP 6: f9f <RETURN>

STEP 7: f+f <RETURN>

I hope you enjoy using the program. It really is kinda

fun, and may help put computers into a context that

non-computer people can relate to, during a demonstration.

(As in "But what can it D0???n) The program listing follows

and a copy will also be submitted to the Toronto PET Users

Group library.

Editor's Note

Due to the amount of graphics in Morley's program, we
chose to list it on an 4022 printer. As you can see, the

program is quite neat and tidy, which means new features

would be no trouble to add. One possibility might be a

•halt1 function to allow programs to display intermediate

results before continuing with the rest of the program.

Another might be a stack implementation to allow a hierarchy

order of operation (ie. programmable brackets). A LIST

function could be implemented by simply modifying the SAVE

command. Whatever you decide, I'm sure we all agree that

Morley's program is a best start!

One final note, I beleive programs are stored in the A$

array. Line 140 would suggest a maximum of 150 steps but

checking FRE(O) would indicate room for about 6000 more!

- 30 -

1

1

1

1

11-if*** I"

I"
III

10© REM *** CRLCULRTOR ***

110 REM FROM THE TRRNSRCTQR, OCTOBER, 1978

120 REM MODIFIED BV MORLEV KIPP

130 REM MISSISSRUGR ONT.

140 DIMR*<150>:P0KE59463,12

150 PRINT"3

160 PRINT11 $****
170 PRINT"

180 PRINT11

190 FORI=1TO19

200 PRINT11 £•

210 NEXT

220 IFR=1ORR=2THEN1030

230 REM CONTROLLER/INPUT

240 GETfi*sIFfi*=""THEN240

250 R=RSC<fi*>

260 IFfl>57THEN420

27© IFR<43THENIFRO46THEN320

280 IFT^ITHENX**11 " :T=0 -«

290 XFLEN<X*>>9THEND*="I1I ERROR & ":GOTO630:T=1:GOTO230
300 X*=X*+R*:X=VRL<X*:>:GOTG570

310 GOTO230

320 REM 0PERRT0R8

330 IFR<480RR=44THEND*= M felfeERRQR "s GOTO630:CLR:GOTO230

340 IFR=40THENN=N+1:B<N>=X:X=0:V=0:0*<N>»0*:O*=M":T=1:G0T0558:G0T0236

350 IFO*=II#IITHENX=X*V

360 IFO*=IVIITHENX=V/X

370 IFO*=II +»THENX=X+V

380 IFO*=M-"THENX«V-X

390 V=X:O*=R*:T=1

400 IFR=41THENV=B<N>:Q*=O*<N>:N=N-1:T=0

410 GOTO550:G0T0238

420 IFR*="SIITHENX«SIN<X>

430 IFfl*=llCllTHENX=COS<X>

440 IFR*="TIITHENX=TRN<X>

450 IFR*=IILMTHENX=LOG<X>

460 IFR*«IIE"THENX=EXP<X>

470 IFR*=IIQIITHENX=SQR<X>

480 IFR*=" =IITHEN350 L&

490 I FR$= " <-'• THENX=8 : V=8 : T= 1 : D*= " II ^^ " : G0T0638
580 IFfl*=llWllTHENG0SUB678

510 IFfl*=llRllTHENGOSUB790

520 I Ff\$= " P " THENP*= " P " : G0T0848

530 GOTO550:IFR=4THEN1©1©

540 G0T0238

550 REM DISPLRV

560 X*=STR*<X>

570 G*= M ** ^^ " +X* : D*=RIGHT* < G* ,
580 IFRBS<XX=999999999RNDRBS<X>>. 81THEN638

590 IFX=8THEN630

600 IFRBS<X>>lE380RRBS<XXlE-38THEND*=lllliyERR0R A r " :G0T0638
618 G*= M l»»Pi>ftft>>ftl +X* : R*=R I GHT* < G* ,

62© D*=LEFT*<R*,11>+"

638

648 IFR=4THEN1888

650 G0T0238

S6@ REM Wkiit \u

£78 IFR=4THENR*=R*<I>:G0T06S8

688 6ETR*:IF RS=U"THEN688

6*8 IFRSC<R*X58THEN708

780 Z=VRL<R*> : IFR=4THENI=I+1 :R*=R*<I > :G0T0728

718 GETfl*:IFR*=l>llTHEN710

728 IFR$="+"THENM<Z >=M<2 > +X

738 IFR$="-"THENM <Z > =M<Z>-X

748 IFfl*=M0MTHENM<Z>=0

758

768

778 PR I NTTH*;" o^^ IMHBHIlllllllir ;

788 'PRIHTZl>||irife}»lla>M<Z> :RETURN

798 IFfl*<I>=llRllTHENR*=R*<I + l> :I = I+2:G0T0828

888 GETfl*:IFR*=MIITHEN800

818 IFRSC<R*»57THEN880

828 X=M<VRL<R*>> :fl'*=IIM sRETURN

838 REM PROGRRM SECTION

848 PRINTllSSlfil>;TflB<24>j!ltNEW OR EXISTING11 :PRINTTRB<24>j"

858 GETE*:IFE$="MTHEN858

868 IFLEFT* < E*,1>= M E MTHEN1838

878 IFLEFTS <E* , 1 > = " Nll THENV=0 : G0T0898

888 G0T0848

898 PRINTIBaffi0>>;TRB<24>;"ENTER PROGRRM

988 V=V+1 :PRINTl illliaiBaiiaiilBHHr1;11;" ^V IIIIIIHIBr ; :INPUTfl*<V>

918 IFR* <V > = -END M THENP*="P":R=8:GOTO1838

928 G0T0S98

938 1=1

948 J=l

958 IFfi*<I> = llEND"THENP$=1111 :R=8:G0T023Q

968 IFfi^ <I> = MR"THENG0SUB79©:J=1:G0T0988

978 IFfi* <I> = "W"THEN1 = 1 + 1:G0SUB67©

988 R*=M ID* < R* < I > .. J.. 1 > : fl=RSC < fi* > *

998 G0T0268

1889 IFJ<LEN<fl*<I> >THENJ=J+1 :GOTO950

1010 1=1+1:G0T0948

1826 fi$<V> = MI1 :GOTO230

1838 PRINTliajflB";TRB<24>;llL0RD, SfiVE..

1848 PRINTTRB<24>; "CHECK, RUN..

1858 PRINTTRB<24>;ll0R EXIT

1868 PRINTTRB<24>;"1,2,3,4,5

1870 PRINTTRB<24>; :PRINT11 »^ffi 11111101911;

1888 GETR:IFR=8THEN1888

1 898 PR I NT M S5I2311 ; TRB < 24 > ; " • * <?x^<*

1188 PRINTIISSSIg]ll;TRB<24>;11

1118 PRINTllSHBIHgJII.?TflB<24>;11
1128 PRINTllSSaSIHflflll;TflB<24>;11

1138 IFR<10RR>5THEN1838

1140 GNRGOTO1168 r 1228 , 1288 , 938.. 238

1158 REM RERD PGM FROM DISK

1160 PR I NT M SSIfl11 TRB < 24 > ; " PGM NRMEll

1178 PRINTTRB<24>; : INPUTPM* :FI*=M© :II+PM*+CHR*<44> + IIS"+CHR*<44> + IIR>I

1188 OPEN1,8,2,FI*:I=8

1198 1 = 1 + 1:1 NPUT# 1 .. f\t- < I > : IFLEFT* < fi* < I > , 3 > = " END " THENCLOSE1 : GGT0228

1208 GOTO1198

1210 REM WRITE PGM TO DISK

1220 PR I NT " SSB11 TRB < 24 > ll NRME PGM M

1230 PR I NTTfiB < 24 > ; : INPUTPM* : FI *= " G0 : " +PM*+CHR* < 44 > +ll S M +CHR* < 44 > + " W M

1248 OPEN1,8,2,FI*:I=©

1258 I = I +1:PRINT#1,R^ <I>;CHR*<13 >;:IFR$ <I> = "END"THENCLOSE1:GOTO158

1278 REM PROGRflM CHECK RND RE-ENTER

1288 1=1

1296

1308 PRINTIj"

1318

1328 IFI >9THENPR I NT " IF .? : IFI >99THENPR I NT MII11 ?

1338 PR I NT " -M ; : I NPUTR$ < I > : IFR^ < I > <>ll END " THEN 1 = 1 + 1: GOTO1298

1348 V«I:GOTO1838

- 33 -

Spell Checkinc Programs. An Overviev; Stew Martin

Mississauga, Ont.

Letting your wordprocessor correct spelling errors seems

like one of the super great ideas of all time. Spell check

programs are not particularly new to the industry. IBM has

had them available as options on their big systems for quite

c few years. Now, spell checkers are starting to attract the

interests of WordPro users, and the first V7ordPro compatible

spell check programs are beginning to appear on the market.

The Problems

Consider this. The average college dictionary contains

about 100,000 to 150,000 words, and Webster's New Collegiate

Dictionary even boasts "...more than 22,000 new words...".

How many bytes of memory would all those words take, I

wonder. The average english word contains about 7 letters,

or, in this case bytes. A little alpha-crunching could bring

that down to about 5 bytes. Even crunched, we would need

over a megabyte just for Webster's alone, without any room

left for the spell checker program.

On top of all those words come the jargon and slang

words developed by the inhabitants of specialized industries

and vocations. An example recognized by legal people would

be the word "tortious". Looks like a typo or an error to the

rest cf us, but it is a properly spelled legal term that does

not appear in Collins. Engineers, teachers, medical people

and legal advisors all have their cvn special jargon words,

seme of which will not appear in any dictionary.

Then there are the place names and proper names that we

use in letters and documents every day. "liississauga" isn't

likely to show up in this years Collins Gem English

Dictionary. Neither is Kim or Joan or Stephen. Starting to

get the picture? First, ...there are a heck of a lot of

words in a dictionary. Second, ...there are a heck of a lot

of words that are not in a dictionary, and third, when a

spell check program can't find a v:orc in its dictionary files

it assumes an error, and refers the suspect word to the

operator for the final decision.

Prefixes And Suffixes

How on earth are they going to jam a hundred thousand

word dictionary into the 32K memory available in a Commodore

8032 or 4032 computer. Wellr first of all, a reasonably good

pocket dictionary has only about 30,000 or so references.

Thenf there are a few tricks and compromises that can be

accomplished by using ."base11 words. A great number of
everyday english words will conveniently break down into

"base" words to v/hich may be added common prefixes and

suffixes. For instance, the word UK-CLAIM-ED. Using the

same prefix and suffix and different base words we get

UN-WANT-EDr UN-FOUND-ED, UN-OPEN-ED and so forth, effectively

increasing the number of words frdm one base by a factor of

three.

Consider all the english words that end with the letter

"e". If we handle that ending "e" as a suffix, we can save a

whole lot of dictionary space. Also, the base word URIT-E

will work with the suffixes WRIT-ER, WRIT-ING, WRIT-TEN.

Unfortunately, it doesn't work in all cases. WROTE would

have to stand as a base word on it's own. By various ways

and methods that will remain undisclosed here, the spell

check programs take about 2000 base words, allow the user to

add 900 or so of his own commonly used words and special

jargon, and very efficiently convert them into an effective

10,000 word dictionary.

Compromises

Without question, the method is a compromise and you can

see that the suffix -ER would be accepted as correct even if

it showed up attached to the word DISK-ER, or LEAST-ER, or

VARIOUS-ER which even I know is wrong. However, the argument

can be made that the foregoing examples are not typical or

likely spelling errors or typos, and can therefore be lived

with.

Numerics canft be checked. If you write 1979 instead of

1981, you1re on your own. When your flying fingers come out

with a date like June 33rd, youfd better have an

understanding lawyer to bail you out of that contract,

because the spell checker won't catch it.

Next, spell check programs check spelling, they do not

correct it. They will bring the suspect wore to your

attention, but you must accept it, correct it, or add it to

the dictionary in the space provided for your own personal

jargon.

Out of context words will not be recognized. If you

keep using "their" for "there", or vice versa^ you are beyond
the help of a mere machine.

- 35 -

Speed

The success or failure .of a spell check program could

sometimes be based on its speed of operation. Some of the

original spell checkers took as much as three minutes to look

over a standard 1200 to 1500 character page. You could live

v/ith slow speed for the odd letter, but what happened when

you wanted to check a 17 page contract? It could take almost

an hour, and that was in no way acceptable. General use of

machine language and some extremely sophisticated sort

routines have brought the speed of some of the current

products down within reason. Fifteen to twenty seconds per

standard page is not unusual now, but that, you must

remember, is for an error free page. Add the time necessary

for you to accept or correct all suspect words. The more

errors or suspect words, the more time will be needed to

process them.

WordCheck. A REVIEW

VJordCheck, an aid to spelling, is a product of Micro

Computer Industries, Ltd. of Fort Collins, Colorado. It has

been designed to accept WordPro 3 and 4 files, WordPro 2 Plus

(disk version) files, and WordPro 3- Plus and 4 Plus files for

processing. The WordCheck package consists of a 2K Eprom, a

VJordCheck disk and four pages of instructions. The Eprom

fits in the $9000 slot and contains a substantial amount of

active machine code. The disk contains four program files

and three sequential files. The "Words" and "Table" files

and the three sequential files "a-g", "h-o" and "p-z" are

used in the normal operation of WordCheck. "Update" and

"Sort" are used to add and delete words from the dictionary

files, and to create new "Table" files. The four pages of

instructions may seem light at first, but the program is so

simple and so straight forward to use, that the four pages

are completely adequate.

Looking For Errors

First, place your WordPro file disk in drive 1 and the

WordCheck disk in drive 0. Then punch in the VJordCheck

enabling SYS command to start things going. WordCheck will

ask for a WordPro file name. This must be an exact, letter

perfect file name without resorting to wild cards (?) and

jokers (*) . Once the file name is input and accepted,

WordCheck carries on, automatically chaining through global

files looking for suspect words. The program processes each

file three times, once for each of the three dictionary files

"a-gMr "h-oM and "p-z".

- 36 -

Updating The Dictionary

Next, you may choose to turn your printer on and make a

hard copy of the list of suspect words, or just have them

appear on the screen. The words that the program has been

unable to identify now appear on the screen one at a time,

and as you accept them, reject them or add them to the

dictionary, are listed by the printer if you have so chosen.

Initially, the printed list is fairly important and will

assist in tailoring the WordCheck dictionary to your style of

vocabulary. When we ran this review through WordCheck, our

printed list of unrecognized words contained words like

wordprocessor, dictionary, collegiate, boasts, wonder,

crunching, megabyte and jargon. These words were all added

to the dictionary as being words that we v/ill likely use

quite often. WordCheck also pointed out a few spelling

errors and typos. Words added in this manner do not

immediately get placed in the active word table, but are

placed in a temporary file awaiting the running of the

"Update" program which will make a new, expanded word table

to include the new words.

Observations

The WordCheck review to this point is a fairly lengthy

139 line (3* page) WordPro 4 Plus file. The WordCheck

program we used was fresh out of the box with the minimum

possible dictionary. Here's what happened when we ran our

review through WordCheck:

First pass (looking for errors) - 2 minutes

Found 57 suspect words, 2 of which were misspelled or

typos, 10 were personal or place names, and 16 were personal

jargon that along with the remaining 29 should really be put

into the dictionary.

Making hard copy list of suspect words - 3 minutes

Sorting - 2 minutes

Updating the 3 dictionary files - 6 minutes

After we added those 45 words to the dictionary and

corrected the two errors, we ran WordCheck again to see if

there was a noticable improvement in the elapsed time. We

could have put in the personal or place names, but we didn't

because you've got to draw the line somewhere.

- 37 -

Here's what happened when we ran the same section of
this review through WordCheck with a slightly expanded

dictionary:

Second pass (looking for errors) - 1 minutes

Found 11 suspect words, including 5 place names, 5

proper names, and wtortioustt which I really didnft think I

needed in my dictionary either*

Making hard copy list of suspect words - 1 minutes

Sorting - 2 minutes

Updating the 3 dictionary files - 6 minutes

Note the significant decrease in the time taken to

process fewer suspect words. Sorting required the same

length of time, and updating took slightly less* Adding

words to the dictionary was very simple, even the first time

we tried*

Conclusions

The programmer will recognize WordCheck as a well

designed and executed, lfstate of the art", "hybrid" program,

using machine language for speed and Basic for convenience*

WordCheck is supplied as a "turnkey" program, without source

listings or technical documentation* It is not intended to

be changed or modified by the dealer or end-user, except as

allowed v/ithin the running program*

The end-user will find WordCheck simple to use and

functional in concept. Short, single page letters and memos

can be checked faster manually, but WordCheck truly hits it's

stride when checking longf multi-page documents* We keep a

special WordCheck for documents and contracts that has all

the legal jargon tucked away in it's dictionary, and another

one for checking technical n.anuals with lots of computer

terms in them. A third* is used for personal correspondence

that recognizes all my own short forms and slang terms.

WordCheck is available from dealers in Canada, United

States and in the British Isles, and is now well worth your

consideration.

- 38 -

TORONTO 'PET1 USERS GROUP

For the 1981/1982 season membership of T.P.U.G., please complete the

application form below and mail with your cheque to:

TORONTO PET USERS GROUP

c/o Chris Bennett

381 Lawrence Ave. West

Toronto, Ontario. M5M 1B9

(416) 782-9252

The Season Membership is valid from the time this application is received

until August 1982. The fees have been set as follows:

$20.00 for Regular Member.

$10.00 for Student Member.

$10.00 for Associate Member.

The Season Membership includes the following privilages:

1. Newletter (TORPET).

2. Access to club library of programs on disk and tape.

3. Entrance to all meeting (except Associate Members).

The meetings will be held at the following locations from September 1981
+ *\ ** **

to June 1982:

1. Central

2. West

- Leaside High School, 200 Hanna Road (Bayview & Eglington)

- 7:30 pm on second Wednesday of month.

- Sheridan College on Trafalgar Road 2 miles north of Q.E.W.

- 7:30 pm on fourth Wednesday of month.

The club library on disk is available to all club members (Regular,

Student and Associate) for $10.00 per disk (about 12 have been released so

far). Also after each club meeting, there is a copy session at which the

programs shown that night can be copied. All you have to do is provide your own

diskette. We use the Duplicate function so that everything on the diskette will

be overwritten.

APPLICATION FORM - Please PRINT clearly (Use your first name NOT Initial).

Name:

Addr:

Addr:

Home Phone: () - Work Phone:

Regular [.] Associate [] Student

If Student School is

Computer 8032 [] 4032 [] 4016 [] 4008

Storage 2040 [] 4P40 [] 8050 [] CN2

Printer 2022 [] 2023 [] 4022 [] 8024

Interest(s) Business [] Communications

[J

81/82

2001 []

Other _

Other

VIC

Home/Hobby

Education

Comments:

