g WWW. Commodo e.Cca

Cccommodore gl

COMMODORE PET™

The Transactor .\oc¢

PETMis a registered Trademark of Commodore Inc.

REMAINDERS

One little known use of the MIDS$ function is "remainder
string" If the third parameter of the MID$ function is
omltted the resulting string will be every character to the
right of the specified start position for the string being
operated on. For example:

1. AS = "12345678%"
2. BS = MIDS (AS, 2, 4) ;equals "2345"
3. BS = MIDS (AS, 2) ;jequals "2345678%"

This is not the same as RIGHTS as this function returns
an absolute number cf characters starting from the rightmost
position. This application works best when the right-hand
portion of a string is wanted and the string length is not
known,

BASIC 4.0 Preliminary liote

BEASIC 4.0 LOHs for the 40 column PET are on their way!
The main differences are:

1. Faster carbage collection
2. Disk commands included in BASIC

of course most SYStem calls to RON will require medification
but PEEKs and POKEs should remain velid except for some
locations that may have been labelled unused in BASIC 2.0.
More on DASIC 4,0 in a later issue. Also see Jim
Butterfield's new BASIC 4.0 memory maps, this issue.

211 BASIC 2.0 programs will run on BASIC 4.0 except for
one minor gotcha. BASIC 4.0 has reserved two more variables
for it's own use; DS and DSS. When called, DS will contain
the error number from the disk and DS$ will return the error
number, description, track and sector much like hitting ">"
and return with DOS Support. The same rule applies to DS and
DSS as ST, TI and TIS$; they must not appear cn the left of an

=" sign. If they do a ?SYNTAX ERROR will result. So if
your programs use either of these two new reserved variables,
it would be a good idea to change them before RUNning on
BASIC 4.0. This could be easily done by running your
programs through Jim Butterfield's Cross-Ref program from
Transactor #9, Vol 2.

The Transactor is produced on the new CBM 8032 using
WoréPro IV and the NEC Spinwriter.

, www.Commodore.c

ID_Changer -

COMPUTE magazine, issue #5, published an article that
allows the user to change the ID of a diskette. This can
cause irreparable damage to your disks! The program changes
only the the 1ID that gets printed with the directory.
However, the ID precedes every sector on the disk and these
do not get changed. An update will be published in the next
COMPUTE but this early warning will be appreciated by some
I'm sure.

Printer ROME

Recent deliveries of Commodore printers have been
released with the 04 ROM., Though this ROM fixes existing 03
ROM bugs, it has a tendency to lock into 1lower case,
inhibiting upper case character printing. This happens after
sending to secondary address 2 (receive data for format).
Commodore has discontinued the 04 printer ROM and until the
08 ROM is released (sometime in the £fall) the following
software fix will prevent this bug from appearing. Lines 30
and 40 insert a 25 jiffy delay prior to OPENing the format
channel:

10 OPEN 4, 4, O

20 PRINT#4, "HELLO"

30T =TI

40 IF TI - T < 25 THEN 40

50 OPEN 5, 4, 2

60 PRINT#5, " AAA 999 ...etc.

This bug can also be used to your advantage i.e. for LISTing
to the printer in lower case which was, in most cases,
impossible on printers containing an 03 ROM. There is,
however, an easier way of implementing it:

100 OPEMN 7, 4, 7 : PRINT#7 : CLOSE 7
...puts the printer in lower case mode. Pover down and up

gets you back to upper case and graphics.

PRINT Speed - _Up

In Transactor #2, Vol 2, a POKE was published that made
PRINT to the screen much faster than normal. On recent
machines this POKE can not only cause the machine to crash
but may also result in internal damage! Avoid including this
in your programs...especially those that you may want to RUN
on other peoples machines. Software portability 1is very
important, particularly business software. If your package
crashes your clients machine, you may find yourself in a very
embarassing situation.

Verbatim MD 577 Super Minidisk

In the past Commodore has frowned on the use of Verbatim
diskettes for the 2040 floppy disk, particularly the MD

May Not Reprint Without Permiss

Wil

525-16. Verbatim recognized the problems wigbV%ﬁéNﬂ:@nQQQOCMDFQ Ca
and have improved the auality subethém B4l yithout Permission
Result: The MD 577 Super Mini.

First, the thickness of the jacket FVC material has been
increased from 7.5 to 8 mils giving the disks greater
rigidity.

Secondly, the lamination pattern, which secures the
inner 1lining to the jacket, was redesigned to eliminate
potential "pillowing" problems. "Pillows" are minute raised
areas on the lining surface which can interfere with the
sideways movement of the disk.

Most importantly though, the new Verbatim MD 577s are
provided with a factory installed "hard hole" or hub
reinforcement ring, thus creating better centerincg ability
and reducing the possibility of hub damage. Coincidentally,
the performance of almost any diskette can be substentially
improved by adding a hub ring prior to formatting.

Part of the problem was also the boxes they were
packaged in, which put creases in the front two or three
disks. These are no longer used.

We have tested the Verbatim 577s and found them to be of
quite high quality. We've also decided to use them for
distributing Commodore software which should appear on the
market this fall.

w

_ _ « Www.Commodore.ca
Controlling Garbage Collections "Lﬁemgy&_rqupw,p,w son
Toronto, Ont. I

We all know that the PET garbage collection can take an
annoyingly long time. One highly frustrating time for a
garbage collection to happen is while you are executing a GET
loop input from the keyboaré. There you are, typing away, and
suddenly the cursor is still flashing at you, but no inputs are
accepted.

To avoid this, we'd 1like to force an early garbage
collection, at the start of the input, but only if it would
have happened anyway.

First things first. A GET loop is very productive of
garbage collections because it uses lots of memory. The
typical form of this loop is:

10 GET AS: IF AS = "" THEN 10
20 BS=BS$+AS

What this does is create a set of partial strings. If the
input is 'Mary had a little lamb', then the strings are:

M

Ma

Mar

Mary

and so on to

Mary had a little lam
Mary had a little lamb

That's a lot. Exactly how much ? We could count the
number of characters and sum the numbers from 1 to n, but a
rule of thumb is n squared over 2. (A more exact figure is (n
squared + n)/2) For 22 characters, the memory used is 242
bytes. For 80 characters, it's around 3240 bytes.

So, what can we do about it. Well, we need some way of
determining the free memory space. FRE(0) will do this - but
it will cause a garbage collection, and we don't really want
one yet. Let's define a function, FNFR(X):

1 DEF FNFR(X) = PEEK(48) + 256*PEEK(49) - (PEEK(46) +
256*PEEK(47))

That's simply the distance between the beginning of
strings and the end of arrays. The argument is a dummy, just
like FRE(X).

Cur test then is:
5 IF FNFR(X) < (L*L)/2 THEN Q = FRE(0)
where L is the anticipated maximum string length.
One peculiarity of FNFR is that the statement:
PRINT FNFR(0)-FRE(O0) is almost never the same as:

PRINT FRE(Q)-FNFR(O0) which is always O.

Software Product Review: ng&”&ﬁ%@ggln)HWOCMDre Ca
T oot Ramitl, out Perm
EASTERN IICUSE SOPTWARE Assembler Languadge lacro Packages

- CGrephics Drewing Compiler
- PET Husic and Scuncd Composer

The two macro packages have similar requirements and
content &s follows:

Reguirements

- ASSK/TED, Fastern House Scoftware's assembler and text
editor. This in turn requires:

- 16K RAM

- BASIC 2.0 ROMs

Content

- a library of macros. This includes several general
purpose macros as well as those specific to the topic.

- conmplete and useful documentation

- patches to enhance ASSM/TED

Recommendation

If you are really into assembler language, and have
ASSM/TED, you should buy the Graphics Compiler. This will
give you a 'cookbook' on how to write macros, some very handy
enhancements to the assembler, and the macros themselves.

Given the similarities, it would seem appropriate to
obtain the package which is of greater interest to you -
music or c¢raphics. However, I believe that the Music
Composer has a significant limitation: it supports only CB2
sound. Since CB2 can be driven entirely adequately from
BASIC, do it in BASIC. The raw speed and exactness of timing
which are the main benefits of using assembler are not
required, so simplicity should be most important. Besides,
if you want real music, you should be using the entire
parallel port and a digital-to-analog converter. This is not
really difficult to do, and the results are worth it. Keep
in mind that the above comments reflect the attitudes and
prejudices of one Person. Just Go not expect more than CB2
contrcl from the Music Composer.

The remainder of this review concentrates on the
Graphics Compiler,
What You Get

The graphics package includes a cassette with the macro

library and an example program, and some excellent
documentation. This includes:

Genreral intrcduction

Instruction fet - description of the 29 macros
Enhancerents - description of the additions to ASSH/TED
Cperation - how to use the package (mechanics)

!

~ Useful details - some programming
- Adding your own macros — with a non- t Y idlovekangrre! ¥
- Instruction set summary

- Combining machine-language anc BASIC programs

- Graphics Compiler source listing

- patches for the assembler

Instruction_ Set

ADD - single-byte add

SUB

single-byte subtract

BEGIN initialization and all subroutines

BRELL make a beep on CB2

CLEAR clear screen from current cursor position to end

HOME home the cursor

sle] loop the number of times specified in a variable

END terminate a DO loop

DEFINE set a variable to a specified value

DRAWD draw a line - down

DRAWL - left

DRAWR - right

DRAWU - up

GRAPHN set upper/lower case mode

GRAPHY set graphics mode

INPUTB input a byte as two hexadecimal digits

INPUTC input one ASCII character

JUMP jump - unconditional

JUMPE - if a (one byte) variable contains zerc

JUMPG - if a variable is positive

JUMPGE - if a variable is zero or positive

JUMPL - if a variable is negative

JUMPLE - if a variable is negative or zero

JUMPN - if a variable is not zero

OUTPUTB output a byte as two hexadecimal digits

QUTPUTC output one ASCII character

PRINT print a text string

POSABS position the cursor to a specified location

POSREL move the cursor a specified number of rows and
columns

REVRSY set reverse video on

REVRSHN set reverse video off

SETA set the predefined variable A to a literal value

SETAB set A and B (note: A, B, C, and D are defined in
BEGIN)

SETABC set A, B, and C

SETABCD set A, B, C, and D

VECTUR draw a diagonal line - up and right

VECTUL - up and left

VECTLE - lover right

VECTLL - lower left

There are also two undocumented macros, WAIT and SCROLL,
as well as a number of internal macros used by begin,

The commands do provide some capabilities which are not
found in BASIC (as single statements), although there is
nothing radical. I would appreciate some form of ARC
function, even if it meant invoking a subroutine in ROM to do
the trigonometry, and the compatibility problems which

6

cuggegtlvg;‘vw Commodore Ca

n

result. As well, graphs made with the ouacéé%ﬂgx&éQQQ””OC“Dfe Ca

(considering the screen to be an area of &0 by™s0 'posi€iens)”
are very nice (and slow in BASIC) but not supported.

Assembler Enhancements

There are three additions to the assembler itself.
These are:

- BUILD - a new command with three operands:
MACROS - to seal off your macros so that they
are unaffected by NUMBER, EDIT,
PRINT, etc.

LIBRARY - to seal off a library of external
definitions (eg. page zero locations)

CLEAR - to allow you to modify macros or
library

- FORMAT (CLEAR or SET) n - where 'n' is the maximum
label length from 1 to 31 (default
10). This will clean up the listing
if you have a narrow printer, and on
the screen.

- allowing you to return to BASIC from ASSM/TED, Since
the assembler uses the first 64 bytes of page zero, it
is normally not possible to return to BASIC, The
patch maintains a page-zero swap area, allowing you to
go back and forth from one to the other. It can be
extremely useful for testing a routine which is to be
called from BASIC,

The enhancements come in haré copy form. You are
required to enter a 240-byte routine wusing the machine
language monitor, then single instructions at seven locations
within the assembler itself. Memory required by the
assembler thus goes up by two pages.

Summary

As stated earlier, I recommend the Graphics Compiler if
you are a serious user of ASSM/TED, whether you are
interested in graphics or not. The examples of macro
definitions, several of which have nothing to do with
graphics, and the additions to the assembler have significant
value. The fine documentation and actual graphics support
could well be treated as a bonus.

out Pe

n

lore On Screen Print __ ;pM%mﬁﬁﬁgﬁggﬁTNDd?re Ca
1 e RePOH tjthout Perr

I found Jim Butterfield's machine 1anguage Screen Print
Routine (Transactor #5) very useful in a program I am
developing. But in order to stretch the forty columns on the
screen to eighty columns on the printer I have added an

o g by e g e e pa g S Ty

The change is quite easy.
Method #1 using Supermonl.0
1. load the screen print routine code,

2. use command '.T 0359 03B3 O035E' to open up 5 bytes in
the code at $0359,

3. use command '.M 0359 035E' and change
',: 0359 A9 11 AE 4C E8 A9 11 AE' to
'.: 0359 A9 01 20 D2 FF A9 11 AE',

4, use command '.M O3B0 03B7' and change ‘'A6' at $03B0 to
'Al’,

5. use command '.S "dn:name",dv,033A,03B9'.
Method #2 using the Basic Loader for the code

1. load the screen print routine basic loader,
2. change 947 in line 100 to 952,

3. add ',1,32,210,255,169' to the end of the DATA statement
at line 230,

4. change 166 at the end of line 330 to 161,
5. save the modified program.

This modification sends a control character (CHR$(1l) as
per the above modification) to the printer after every-
carriage return.

To use the screen print routine simply use 'SYS826' in
your code. To change or ensure the mode of the routine just
use 'POKE858,1 or 129' before the SYS826 command. For

B e G s

ufmgn«f%wmm:»r-ﬂ' mode, use 'l1': for 'unenhanced' mode, use

= www.Commodore.c
True ASCII Qutput He oy NDriappnt Without Permission
: Toronto, Ont.

We are all aware that the PET does not use true ASCII1
coding internallly. However, many of us have printers that o
use real ASCII. In order to get upper and lower case
operation, some code conversion is needed.

In this article, I shall present two ways of doing the
conversion: one in BASIC, and one machine language. Both
operate by a table lookup. This has the advantage that any
other code conversion (to screen poke, Baudot or teletype code,
for example, or ISO, or EIA, or what have you) can be had
simply by changing the table. Or, a simple conversion to lower
case can be had by ANDing each byte with 127.

I personally keep the conversion table in a disk file. It
is appended at the end of this article.

First, the BASIC method. We dimension an integer array,
M%(255), and use it as the table. Then we assign the string to
be converted to S§.

1000 REM CONVERSICN ROUTINE

1010 MS$="" : IF S$= "" THEN 1050

1020 FOR I = 1 TO LEN(SS)

1030 MS = M$S + CHRS (M%(ASC(MIDS$(SS$,I))))
1040 NEXT I

1050 RETURM

This is slow, but tolerable if you're not doing too much
conversion. It uses 519 bytes for storage of the table, and
needs an available space of about five times the length of the
string for working storage (it will work with less, but garbage
collections will cause delays).

Now, the machine lanquage method. This is faster and uses
less storage. Here is the assembler listing. This program
operates on the variable after the SYS. You must set up the
table (anywhere you can get 256 bytes of free memory), and move
the BASIC pointers. Then you can call the program.

sl

ts
va
.skip

.skip
lda
pha
lda
pha
jsr
jsr
lda
bne
jmp

.skip

start CcpX

beq
ldy
lda
sta
dey
lda
sta
dey
lda
tay
beq
dey
loop2 lda

tax
lda
sta
dey
Cpy
bne
null pla
sta
pla
sta
rts
.end

:to use this routine:

$dd

$7£00
$44

826
sl
sl+1

Scdfs8
Scféd
$07

start
Scc9a

#500

null
#502

(va) ,y
sl+1

(va) ,y
sl

(va),y
null

(sl),y

ts,x
(Sl)ry

#SEL
loop2

sl+1

sl

;convert2.src g Www.Commodore.c

;convert petasedi '@ NexGeprint Without Permissio

;ascii by lookup

;a convenient place to put

;the pointer (used in tape i/o)
;start of table

;check comma

;find variable

;check type

;type mismatch error if numeric
:check for null string

;or undefined variable

;ptr lo

;ptr hi

;length

;any character handling routine
;can be substituted for the
;hext lines

;do table lookup
;put back in string

stest for end

;restore zero page

;sys 826,(string variable)

sthe converted string

space

]JLis returned into the original

;note: if the variable is defined in text, it will be

changed in tex

t

;string array variables work, except for the Oth element
sundefined variables are taken as nulls.
;undimmed arrays will be created

10

i

And as a basic loader:

top of memory pointer)

10 DATA 16
15 DATA 3
20 DATA 16
25 DATA 20
30 DATA

35 DATA

40 DATA 6
45 DATA 22
50 DATA 22
60 DATA 10

1000
1010
1020
1030

FOR X
IFP
IFP

[T}

5, 221,
2, 248,

5,

2, 177,
68,
8, 168,
1, 170,
1, 136,
4, 133,

= 826 TO 914:READ P
-1 THEN P
-2 THEN P
POKE X,P :NEXTX

205,

7, 208,,
4, 224,

68,
133,
240,
189,
192, 255,
222, 104

0, 240,
133,
221,
14,
_1’

A _Sample Initialigzation: _

10 POKES3,PEEK(53-1) :CLR:REM MOVE TOP OF MEMORY
20 OPEN4,4:GOSUB1000:REM GET PROGRAM
40 OPEN5,8,5,"CONVERT,S,R":REMM GET TABLE FROM DISK
50 FORX=0T0255:INPUT#5,M%:POKEPEEK(53) +X,M% :NEXTX:CLOSES :REM
TABLE IN
S$="THIS
CONVERSION

PUT
60

IS

This is much faster,

table.

1000
1010

1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

The conversion table follows:

data
cata
data
data
datea
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

0,
10,
16,
26,
36,
46,
56,

1,
11,
17,
27,
37,
47,
57,

98 , 99,

108,
118,

96,
106,
116,
126,
136,
l46,
156,
166,
176,
186,

68,

78,

88,
226,
236,
246,

109,
119,

97,
107,
117,
127,
137,
147,
157,
167,
177,
187,

69,

79,

8¢,
2217,
237,
247,

32,

3,

72, 165, 222, 172
109, 207

76, 154

31, 160
222, 136
136, 177
136, 177

-2, 145
208, 243

PEEK(54) :REM RELOCATE TABLE
PEEK(53)

A TEST":SYS826,S$:PRINT#4,S$:REM

ACTUAL

and needs only the 256 bytes to store the

2,
12,
18,
28,
38,
48’
58'
100,
110,
120,

98,
108,
118,
128,
138,
148,
158,
168,
178,
188,

70'

80,

90,
228,
238,
248,

3,
13,
19,
29,
39,
49,
59,
101,
111,
121,

99,
109,
119,
129,
139,
149,
159,
169,
179,
189,

71,

81,
219,
229,
239,
249,

4,
14,
20,
30'
40'
50,
60,
102,
112,
122,
100,
110,
120,
130,
140,
150,
160,
170,
180,
190,

72'

82'
220,
230,
240,
250,

15

21,
31,
41,
51,
61,

22,
32,
42,
52,
62,

103, 104,
113, 114,

91,

92,

101, 102,
111, 112,
121, 122,
131, 132,
141, 142,
151, 152,
lel, 162,
171, 172,
181, 182,
191, 192,

73,
83,

74,
84,

221, 222,
231, 232,
241, 242,
251, 252,

23,
33,
43,
53,
63'
105,
115,

103,
113,
123,
133,
143,
153,
163,
173,
183,
65
75,
85,
223,
233,
243,
253,

8,

24,
34,
44,
54,
64,
106,
116,
94,
104,
114,
124,
134,
144,
154,
164,
174,
184,
66,
76
86,
224,
234,
244,
254,

25
35
45
55
97
107
117

105
115
125
135
145
155
165
175
185
67
77
87
225
235
245
255

Without Permissio

(which locates the EaWwW;@@mmodore.C

May Not Reprint

i

PET 2040 DISK BUFFER I/0 ROUTINE J .soogsmraayW.Commodore.c
BOX 20N S By flat RESinLWithout Permission
CALGARY,. ALTA.

The major difficulty in programming direct access
routines for the PET 2040 disk drives is the computation of
the exact location of the recorded information on a disk
sector, for the reason that the PET prints its data to the
disk rather than transferring it byte for byte.

This results in variable length records on each disk
write, unless the programmer takes special care converting
each variable to a fixed length string variable before
writing it to the disk. This is not too bad for string
variables, but other variables could be ranging in length
from one to more than ten characters after conversion to an
equivalent string variable.

Suppose we want to program a direct access file
consisting of records made up of an ITEM-RO, DESCRIPTION and
COsT.

The ITEM-NO ranges from 1 to 9999
The DESCRIPTION is 12 bytes long
The COST ranges from .00 to 999%999.00

We need 4 characters for the ITEM-NO, 12 for the
DESCRIPTION and 10 for the COST. This would total up to 26
characters per record, but in order to be able to read it
back we have to add at least one carriage return character
after the COST string. After reading we can de-compose the
information with MIDS$ calls. Or, if we wish to be able to
update each field individually, a carriage return character
must be added after each field, which ups our total record
length to 29 characters

I personally found this method rather wasteful and
cumbersome to program with all the STR$ calls and BLANK
padding. No other software seemed to be available, except
for Bill Macleans BRlock Get Routine published in the
Commodore Transactor Vol 2, Dec 31, 1979. An excellent
routine, but it can only read from the disk buffers with
special care to be taken for the allocation of the input
string variable.

So, what I needed was a routine with the following
characteristics:

.. Be able to read the disk block buffers.
.. Be able to write the disk block buffers.

.. No need for blank padding of any variables or the need of
adding carriage return characters.

.. Record and read numeric variables as 5 binary characters,
as stored in PET's memory. This allows records of up to 51
numeric variables on a disk sector.

.. Be able to read single character string variables with an

ASC value of zero, in stead of getting a NULL strlhﬁNVVCXDHWHWOCNDFQ ca
May Not Reprint Without Permis

.. Exercise full control over the RBlock Buffer P01nters.
.. Perform like a basic WRITE or READ statement.

.. No need for special declarations or dummy manipulations of
input variables.

.. Be able to output any kind of proper expressions.

.. Be totally relocatable.

Aided with Jim Butterfields excellent PET maps and the
Macro-Tea assembler of Skyles Electric Works, I succesfully
coded the needed routine.

I'll explain how to use it with some basic coding
examples.,

The basic format for the call to the PET 2040 disk buffer
I/0 routine is:

SYSs XX, 10, CH, (BP ,VA ,(LN))

XX = Address were the routine is loaded.
I0 = Input / Output key value.

CH = Disk direct access channel no.

BP = Buffer pointer value.

VA

Variable name.
LN = No of characters.
For single BP control the IO values are:
0 For normal reading.
1 For normal writing.
2 For special reading.
3 Same as 1.
For multiple BP control the I0 values are:
4 For normal reading.
5 For normal writing.

6 For special reading.
7 Same as 5

13

on

BASIC NUMERIC VARIABLE EXAMPLES - V,VW\:NC(O??mOLd?reC
IYiQay O Keprint wirnout rermission

10 DK = 1: CE = 15: CH = 2: XX = 634

20 OPEN CE,8,CE
30 OPEN CH,8,CH,"#"

40 T = 2: S = 5: BP = 13

50 REM WRITE 3 VARIABLES TO DISK

60 SYS XX, 1, CH, BP, A, B, C :REM OUTPUT
70 PRINT#CE, "U2:"CH;DK;T;S

880 REM READ 3 VARIABLES FROM DISK

—— e —— A — —— ——— —_ T S W S T . S — O f— - o

90 PRINT#CE, "U2:"CH;DK;T;S
100 sys xx, 0, CH, BP, X, Y, Z :REM INPUT

In this example we are writing the 3 numeric variables
(A,B,C) to the disk buffer starting at character position 13.
The result is then written to disk drive 1 at Track 2, Sector
5. The buffer pointer is automatically incremented by 5 for
each variable and the variables are recorded in internal PET
format. Note no padding or carriage returns needed. After
the write, the variables are read back into X, Y and Z.

For numeric variables the parameter LN is implied and
must not be coded.

If the PRINT#CE calls were omitted, no actual disk
writing or reading would take place, but merely a transfer to
and from the disk buffer allocated to channel CH, which maybe
useful in passing parameters between overlays.

Statement 60 could be something like

60 sYys XX, 1, CH, BP, 1., A, A+B*C :REM OUTPUT
or

60 SYS XX, 1, CH, BP, SCR(A), SIN(A+B), A/B :REM OUTPUT
or

The number of concatenated variables is only limited by
the maximum length of a BASIC line. But at least one must be
specified. We could also replace statement 60 by the
following lines:

60 SYS X¥, 1, CH, BP , A :REM OQUTPUT
61 SYS XX, 1, CH, BP+ 5, B :REM OUTPUT
62 SYS %X, 1, CH, BP+10, C :REM OUTPUT
Which have the same effect as the original line 60.

Statement 100 could also be replaced by the following
lines, which would read back the exact same information in

14

Lrd

the variables %, Y anu 2. _ WWW Commodore Ca

I INPUT
{REE INPUT

(9}

S X%, 0, CH, PP+
S

P y ¥y %
%, 0, Ci, 2P y 7

N
/
>

-

If we want more control over the buffer pointer on the
write, the value for IO mnust be 4 for reading and 5 for
writing.
Statements 60 and 100 which were:
60 sys x¥, 1, ¢, ©p, 2, B, C :REN OUTPUT
100 SYS X%, 0, Ci, PP, ¥, Y, 2 :REN INPUT

can now be coded as:

60 SY& ¥¥, 5, CH, EBP, A, BP+ 5, B, BP+10, C :REM OUTPUT
100 Ssys ¥¥, 4, ¢, BP, X, RP+ 5, Y, RP+10, Z :REM Inpry

The difference is that each variable now has a buffer
pointer value preceecing it. The statements can now also be:

60 SYS ¥¥, 5, CH, PP+ 5, B, BP, A&, BP+10, C :REM OUTPUT
100 SYS ¥¥, 4, Ci, RBP+10, Z, BP, X, BP+ 5, Y :REM INPUT
Since we now have full buffer pointer control.

BASIC STRINC VARIABLES EXAMPLES

———— . ———— ——— —— T (" —— — 0o W W — - > T —

I
o
(X
>

1
N
(V8]
T

10 DK = 1: CE = 15: CE
20 OPFI CE,E,CE
30 OPE!} CIZ, 8,CI.{, "#"

40 T = 2: 5 = 5: PP = 13

50 PEF WRITE 3 STRING VARIABLES TO DISK
60 8YS X%, 1, Ci, RP, A~,5, B$,6, C$,10 :REM OUTPUT
70 PRINT#CE, "U2: "CI'D“, HE2)

8C REI READ 3 STRING VARIABLES FROM DISK

—— — ———— ———————— T T__ — . - T W e T e G G e S S — 0 e G Eme

90 PRINT#CE, "U2:"CE;DKE;T;S
100 sys x¥, o0, CK, BP, ¥$,5, Y¥$,6, 25,10 :REM INPUT

In this example wve are writing the 3 STRING variables
(AS,PS$,CS) to the disk buffer starting at character position
13. The result is then written to c¢isk drive 1 at Track 2,
Sector 5.

The difference between a numeric variable and a string
variable is that the string variable is followed by LN, its
length or number of characters. The specied length does not
have to be the actual length of the string variable. 1In our
exanple the first 5 characters of X§ are transferred,

15

uku‘WC'ﬁop'rT out Perr

n

followed by the first 6 characters of Y$ and thanY¥W&Né§Q£DfﬂCﬂj0re-Ca
10 characters of 7$. NICRF RO REREINT SINOLL PRTRSsOn

The buffer pointer is automatically incremented by 5,6 and
10. Note no padding or carriage returns needed. After the
write, the variables are read back into the string$ X$, ¥Y$
and 7$

Lets now examine what happens if we have the following
statements:

55 Z$ = "HANS"+"MARGARET"
60 SYS XX, 1, CH, BP, ZS$,LEN(ZS) :REM OUTPUT

The disk buffer (CH) will now contain starting at
character position 13 the text "HANSMARGARET". The same
results of the next statement:

60 SYS XX, 1, CH, BP, "HANS"+"MARGARET",12 :REM OUTPUT
And the statement:
100 Sys Xx¥, 0, CH, BP, Z$,12 :REM INPUT

Will input and create a string variable with a length of
12 characters and containing the text "HANSMARGARET".
However the statement:

100 SYs Xx, 0, CH, BP, Z$,10 :REM INPUT

Will input and create a string variable with a length of
10 characters and containing the text "HANSMARGAR". Or the
statements:

100 SYS XX, 0, CH, BRP , X$,6 :REM INPUT
101 Ssys XX, 0, CH, BP+7, %Z$,5 :REM INPUT

Will input and create two string variables X$ and 2§,
containing "HANSMA" AND "GARET"

Mote that no extra 1linefeeds or <carriage return
characters are written and that the record space needed for
the original ITEM-NO, DESCRIPTION and COST example is now
5+12+5 or 22 characters instead of the 29 needed without this
buffer I/C routine.

If the PRINT#CE calls were omitted no actual disk
writing or reading would take place, but merely a transfer to
and from the disk buffer allocated to channel CH, which again
maybe useful in passing parameters between overlays, or to do
some fancy string manipulations.

P.E.:
10 AS = "EXXXXXXXXX"
11 BS = "yyyvyy"

12 sYs %X, 1, ¢H, 2, AS$, LEN(AS) :REM OUTPUT
13 SYSs XX, 1, CH, 5, BS$, LEN(BS) :REM OUTPUT
14 syss Xx, 0, CH, 2, A§, 10 :REM INPUT

16

. WWW. Commodore ca

First writes the string variables AS$ and BS overrayrinyg W
the AS information and then inputs and creates a string
variable AS containing "XXXYYYYYXX".

Statement 60 could be something like

60 SYS XX, 1, CH, BP, AS$+"X",5, AS$+BS$,6, AS+"Z"+C$,10
:REM OUTPUT

The number of concatenated string variables is only
limited by the maximum length of a BASIC line. But at least
one must be specified. We could also replace statement 60 by
the following lines:

60 SYS XX, 1, CH, BP . AS$,5 :REM OUTPUT

62 SYS XX, 1, CH, BP+11l, C$,10 :REM OUTPUT

Which have the same effect as the original line 60.

Statement 100 could also be replaced by the following
lines, which would read back the exact same information in
the string variables X$, Y$ and Z$

100 SYs XX, 0, CH, BpP+5, Y¥$,6, 2$,10 :REM INPUT
101 Ssys xx, 0, CH, BP , X§,5 :REM INPUT

If we want more control over the buffer pointer on the
write, the value for IO must be 4 for reading and 5 for
writing.

Statements 60 and 100 which were:

60 Sys XX, 1, CH, BP, AS$,5, BS$,6, C$,10 :REM OUTPUT
100 sys xx, 0, CH, BP, X$,5, Y$,6, Z$,10 :REM INPUT

can now be coded as:

60 SYS XX, 5, CH, BP,AS$,5, BP+5,B$,6, BP+11,C$,10 :REM
OUTPUT

100 sys XX, 4, CH, BP,X$,5, BP+5,Y$,6, BP+11,%2$,10 :REM
INPUT

The difference 1is that each string variable now has a
buffer pointer value preceeding it and still 1its 1length
following it. The statements can now also be:

60 SYS XX, 5, CH, BP+5,BS$,6, BP+11,C$,10, BP,AS,5 :REM
OUTPUT

100 sys XX, 4, CH, BP+11,725,10, BP,AS$,5, BP+5,Y$,6 :REM
INPUT

Since we now have full buffer pointer control.

So far I only discussed write and reads of string
variables of the same length on the writing and reading.

17

out Pe

SIOoN

, www.Commodore.c

Now suppose we have the following statementsb»fh

55 A$ = "HANS"
60 SYS XX, 5, CH, 10,AS$,10 , 20,AS+AS$,10 :REH CUTPUT

This transfers to the buffer, starting at character
location 10, the characters "hans*****hanshans**", where the
wnx" stands for an automatic padded carriage return character
with an ASC value of 13. 1In other words the routine will
always write the number of characters requested but if the
output string expression is too short, the output will be
padded with carriage return characters. This has a nice
effect when we read the same data back with the following
statement:

100 SYS XX, 4, CH, 10,AS$,10 , 20,BS,10 :REHM INPUT

This call will input and create the two string variables
AS and BS$, but their contents will be "HANS" AND "HANSHANS",
since the input quits on the first encountered carriage
return characters for each variable and their length will be
4 and 8. However an otherwise null character string will
always be returned as a character string of ASC value zero
with a length of one.

Sometimes this technique is undesirable and we want to
get back every character, no matter what their ASC values
are. Now the special read I/0 values 2 or 6 are to be used.
The statement:

100 SYS Xx, 6, CcH, 10,AS$,10 , 20,BS$,10 :REM INPUT

Will now input and create an A$ and BS$ variable
containing "hans******" and "hanshans**",

Note, the length limit of a string variable is 255 bytes,
allowing us to read or write entire disk buffer blocks at
once.

By no means do we have to write separate statements for
numeric or string variables, we can mix them up. The
following statements are quite legal:

51 IT = 5469
52 SS$ = “"PET COMPUTER"
53 CO = 1365.25

60 SYs XX, 1, CcH, 2, IT, SS$,12, CO :REM OUTPUT
100 SYS XX, 6, CH, 7,A$,12 ,2,A, 19,B :REM INPUT

Again the read call for I/O = 6 will properly return:
AS = "PET COMPUTER", A = 5469, B = 1365.25

Still confused, please contact me !

18

1y Not Reprint Without Permissio

i

0010; ROUTINE TO TRANSFER FLOATING POINT VARIABDE&/@MﬂTﬂ$$@@ﬁbre Ca
0020; VARIABLES BETWEEN PET'S MEMORY AND A _D/2,DISKy QUEFER.UP: SSio
0030 ; m==m——m— e m e e e e e S S m eSS
0040;

0050; WRITTEN BY J.HOOGSTRAAT

0060;

0070; BOX-20, SITE 7, SS1

0080; CALGARY, T2M-4N3, ALTA

0090; PHONE (403)239~-0900

0100;

0110; =mmmm— e e e e e e e e S
0120;

0130; THIS ROUTINE IS TOTAL RELOCATABLE AND CAN BE LOADED ANYWHERE.
0140;

0150; FLOATING POINT VARIABLES ARE TRANSFERRED AS 5 BYTES ONLY,
0160;

0170; STRING VARIABLES ARE TRANSFERRED WITHOUT LINEFEEDS

0180; OR CARRIAGE RETURNS.

0190;

0200; THIS ROUTINE IS IDEALLY SUITABLE FOR DIRECT DISK ACCESSING,
0210; SINCE ALL BUFFER POINTERS CAN BE CALCULATED EXACTLY.

0220;
0230; === e e e e e S eSS — o
0240;
0250;
0260 .0S
0270 .BA 634 ;FIRST CASSETTE BUFFER FOR NOW.
0280;
0290; LOCAL VARIABLES
0300;
0310STADR .DI $1 ; SAVED ROUTINE START ADDRESS.
0320SYSXX : .DI $11 ;BASIC ROUTINE START ADDRESS AS SYS XX.
0330; :
034010 .DI $B1 ; SAVED 10.
0350DCH .DI $B2 : SAVED DCH.
0360LNG .DI $B7 ;s SAVED REQ. LENGTH.
0370S8STP .DI S$BS8 : SAVED DATA TYPE.
0380;
0390; LOCAL VALUES
0400;
0410DCE .DI SF :DISK COMMAND CHANNEL.
0420CRT .DI S$D s CARRIAGE RETURN.
0430FLN .DI $5 ;FLT PNT WORD LENGTH.
0440;
0450; BASIC AREAS USED
0460;
0470DTP .DI S$07 :DATA TYPE.,
0480SLN .DI S16 : STRING LENGTH.
0490 SAD .DI $17 ; STRING ADDRESS.
0500CAD .DI $44 : CURRENT VARIABLE ADDR.
0510ACC .DI S5E : ACCUMULATOR.
0520NCH .DI $77 ;:NEXT INPUT FIELD CHAR.
0530ASB .DI $100 ;ASC BUFFER.
0540;
027A-A511 0550START LDA *SYSXX : START START ADDR
027C~-8501 0560 STA *STADR ;FOR SELF RELOCATION,
027E~-A512 0570 LDA *SYSXX+1
0280-8502 0580 STA *STADR+1
0590;
0282-20F8CD 0600 JSR CHKCOM ;:UPTO NEXT FIELD.

19

0285-209FCC
0288-20D2D6
028B-84B1

028D-20F8CD
0290-209FCC
0293-20D2D6
0296-84B2

0298-20F8CD
029B-209FCC
029E-20E9DC

02A1-A20F
02A3-20C9FF

02A6-A0C4

02A8-A5B2
02AA-0930
02AC-9101

02AE-AOQ0C1
02B0-B101
~02B2-20D2FF
02B5-C8
02B6-COC6
02B8-DOF6

02BA-A201
02BC-BD0001
02BF-FO00A
02C1-20D2FF
02C4-ES8
02C5-DOF5
02C7-F002

02C9-DOCD

02CB-20CCFF

02CE-A6B2
02D0-A5B1
02D2-2901
02D4-F005

02D6-20C9OFF
02D9-D003

02DB-20C6FF

02DE-20F8CD

Ca

0610 JSR EVAEXP ;EVALUATE EXPPESS%W:NCOW]mOdore :
0620 JSR FLTFIX ;CONVERT TO INTEGER, o (eprntwinoutpemissio
0630 STY *IO : SAVE IO.

0640;

0650 JSR CHKCOM ;UPTO NEXT FIELD.

0660 JSR EVAEXP ;EVALUATE EXPRESSION.
0670 JSR FLTFIX ;CONVERT TO INTEGER.

06 80 STY *DCH : SAVE DCH.

0690;

0700AGAIN JSR CHKCOM ;UPTO NEXT FIELD.

0710 JSR EVAEXP ;EVALUATE EXPRESSSION.
0720 JSR BINASC ;CVT BPT TO ASC.

0730;

0740; ISSUE PRINT#CE, "B-P:"CH;BP

07503 ——mmm——m——m——mm e m

0760;

0770 LDX #DCE ;OPEN CHANNEL 'CE'.
0780 JSR STODEV

0790;

0800 LDY #BPDCH-START ; SET RELOCATION.
0810;

0820 LDA *DCH ;STOW ASC OF DCH
0830 ORA #$30 ;IN THE TEXT.
0840 STA (STADDR),Y

0850;

0860 LDY #BPTXT-START ; SET RELOCATION.
08700UTBP LDA (STADR),Y :OUTPUT “"B-P:"CH.
0880 JSR OUTCHR

0890 INY

0900 CPY #BPTXE-START ;END OF TEXT ?
0910 BNE OUTBP ;NO, CONTINUE.
0920;

0930 LDX #1

0940BPOUT LDA ASE, X ;OUTPUT ASC OF BP
0950 BEQ BPDON ;END OF ASC.

0960 JSR OUTCHR

0970 INX

0980 BNE BPOUT ;CONTINUE TILL END.
0990 BEQ BPDON

1000;

1010AGAJJ BNE AGAIN

1020;

1030BPDON JSR RESTIO

1040;

1050; ISSUE PRINT#CH FOR INPUT OR OUTPUT

1060; ——=-————c-mmm e

1070;

1080 LDX *DCH

1090;

1100 LDA *IO ; CHECK IO.

1110 AND #1

1120 BEQ OPINP ; INPUT.

1130;

11400POUT JSR STODEV ;OPEN OUTPUT CH.

1150 BNE TRFER

1160;

11700PINP JSR STIDEV ;OPEN INPUT CH.

1180;

11 90TRFER JSR CHKCOM ;UPTO NEXT FIELD.

1200;

20

02E1-AS05
02E3-85B7
02E5-8516

02E7-A5R1
02E©-2501
02EB-F053

02ED-209FCC
02F0-08

02F1-A507
02F3-FO1D

02F5-207DD5

02F8-28
02FS8-100A

02FB-A002
02FD-Bl44
02FF-591600
0302-88
0303-10F8

0305-20F&CD
0308-209FCC
030B-20D2D6
030E-84B7
0310-D011

0312-28

0313-A563
0315-3004

0317-065F
0319-465F

031B-A95E
031D-A000
031F-8517
0321-841¢8

0323-A000

0325-A90D
0327-C416
0329-B002
032B-B117
032D-2GD2FF

; DEFAULT LEMG;HWWW.CO mmodore

.Ca

:TO FLT PETSREN@THNOI Reprint Without Permission

;s CHECK IO0.

;READ INPUT.

; EVALUATE EXPRESSICH,
; SAVE STATUS

; CHARACTER STRING ?
;NO FLT PNT VARIABLE.

;DISCARD TEMP STRING

; GET STATUS
;NOT A CONTANT STRING

; SAVE STRING ADDRESS

;UPTO HEXT FIELD.
; EVALUATE EXPRESSION.
;CONVERT TO INTEGER.
; SAVE REQ. LENGTH,
;READY FOR OUTPUT.

IN ACCUMULATOR
;CLEAR STACK

; CORRECT SIGH ?
;s NO.

;REMOVE SIGN BIT
; FROM ACCUNULATOR.

;SET OUTPUT
;ADDRESS TO THE
; ACCUMLATOR.

; SET CHAR POINTER.

;DEFAULT TO CR.

; MORE THAN ACTUAL LENGTH ?
;YES, USE CR.

;USE INPUT CFHAR.

1210 LDA #FLNM
1220 STA *LNG
1230 STA *SLN
1240;

1250 LDA *I0
1260 AND #1
1270 BEQ RIKNPT
1280;

1290; WRITE OUTPUT DATA
1300; ——————emmmm
1310;

1320wWOoUTP JSR EVAEXP
1330 PHP

1340;

1350 LDA *DTP
1360 BEQ FLTDT
1370;

1380; CUTPUT STRING EXPRESSION
1390;

1400 JSR DSCSTR
1410;

1420 PLP

1430 BPL WOUTS
1440;

1450W0UTC LDY #2
1460STRAD LDA (CAD),Y
1470 STA SLN,Y
1480 DEY

14920 BPL, STRAD
1500;

1510WOUTS JSR CBKCOM
1520 JSR EVAEXP
1530 JSR FLTFIX
1540 STY *LNG
1550 BNE WRITE
1560;

1570; OUTPUT FLT PNT DATA
1580;

1580FLTDT PLP

1600;

1610 LDA *ACC+5
1620 BMI FLTCR
1630;

1640 ASL *ACC+l1
1650 LSR *ACC+1
1660;

1670FLTCR LDA #L,ACC
1680 LDY #H,ACC
1690 STA *SAD
1700 STY *SAD+1
1710;

1720; OUTPUT CHARACTER LOOP
1730;

17 40VIRITE LDY #0
1750;

1760WRIT1 LDA #CRT
1770 CPY *SLN
1780 BCS WRITZ2
1790 LDA (SAD),Y
18C0WRIT2 JSR OUTCHR

21

;OUTPUT THIS CHAR.

0330-C8

0331-C4B7
0333-DOF0
0335-F061

0337-D0%0
0339-F0A3

033B-422D50

033E-5820

0340-206DCF

0343-8517
0345-8418

0347-A507
0349-85B8

034B-F020

034D-20F8CD
0350-209FCC
0353-20D2D6

0356-98

0357-A000
0359-8516
035B-9117

035D-20D0D3

0360-98
0361-A002
0363-9117
0365-8545
0367-8A
03668-88
0369-9117
036B-8544

036D-A000
036F-A5B1
0371-2902
0373-F002

0375-84E8

= www.Commodore

.Ca

1810; g .
1820 INY May Not Reprint Without Permission
1830 CPY *LNG ;ALL DOME ?

1840 BNE WRIT1 : NO.

1850 BEQ FIELD ;YES.,

1860;

1870; INBETWEEN JUMP AND CONSTANTS

1880; ~=——-—emmmm e

1890;

1900AGAIJ MNE AGAJJ

1910TRFEJ BEQ TRFER

1920;

1930BPTXT .BY 'B-P!

1940BPDCH .BY X !

1950BPTXE DI =

1960;

1970; READ INPUT DATA

1980; -~=cemerm——————

1990;

2000RINPT JSR GETVAR :GET VARIABLE ADDR.
2010;

2020 STA *SAD ;s DEFAULT INPUT ADDRESS.
2030 STY *SAD+1 ;TO FLT PNT VARIABLE
2040;

2050 LDA *DTP :SAVE AND CHECK DATA TYPE.
2060 STA *8TP

2070;

2080; IHPUT FLT PNT VARIABLE

2090;

2100 BEQ READI ;FLT PNT INPUT VARIABLE.
2110;

2120; INPUT STRING VARIABLE

2130;

2140 JSR CHKCOM ;:UPTC NEXT FIELD.

2150 JSR EVAEXP ; EVALUATE EXPRESSION.
2160 JSR FLTFIX ;s CONVERT TC INTEGER.
2170;

2180 TYA

2190 LDY #0

2200 STA *SLN ;SAVE REQ. LLENGTH.

2210 STA (SAD),Y ;SAVE IN STRING INDEX.
2220;

2230 JSR GETSPEC ;GET SPACE FOR STRING.
2240;

2250 TYA

2260 LDY #2 ; SAVE ADDRESS OF SPACE
2270 STA (SAD),Y ;IN STRING INDEX

2280 STA *CAD+1 ; AD CURRENT VARIABLE ADDRESS.
2290 TXA

2300 DEY

2310 STA (SAD),Y

2320 STA *CAD

2330;

2340READI LDY #0 ; SET CHAR PCIKTER.

2350;

2360 LDA *I0 ; CHECK IO.

2370 AND #2 ; SPECIAL STRING READ ?
2380 BEQ READ1 s NO.

2390;

2400 STY *8TP ; CHANGE FROM 'FF' TO '00°'.

22

0377-20CFFF

037A-C90D
037C-D004

037E-A6BS8
0380-D009

0382-9144

0384-C8

0385-C4l6
0387-DOEE
0389-F00D

038B-98
03 8C-FOré

038E-2000
0390-84B¢8
0392-6117
0394-A8
0395-1¢€
0386-S0EC

0398-4000
03%A-B177
039C-Co2C
03S%E-DO0O&
03A0-A5SBL
03A2-290C
03A4-F093
03A6-DOSF

03A8-20CCFF

03AB-60

2410;
2420READ1
2430;
2440

2450
2460;
2470

2480
2490;
2500READ2
2510;
2520READ3
2530

2540

2550
2560;
2570READ4
2580
2590;
2600

2610

2620

2630

2640

2650
2660;

2670; CHECK FOR
2680; =mmmmmm——m———————mm e

2690;
2700FIELD
2710

2720

2730

2740

2750

2760

2770
2780;

JSR INPCHR

CMP #CRT
BNE READ2

LDX *STP
BNE READ4

STA (CAD),Y

INY

CPY *SLM
BNE READ1
BEQ FIELD

TYA
BEQ READ2

LDY #0
STY *STP

STA (SAD),Y

TAY
CLC
BCC READ3

FMORE FIELDS

LDY #0

LDA (NCH),Y

CHP #°',
ENE ADONE
LDA *IO
AND %12
BEQ TRFEJ
BKHE AGAIJ

2790; TERMIMATE ROUTIHNE

2800; -=--——--

2810;
2820AD0ONE
2830
2840;

JSR RESTIO
RTS

2850; BASIC ROUTINES USED

2860;
2870EVAEXP
2880CHEKCOHM
2B90GETVER
2900GETSPC
2910DSCSTR
2920FLTFIX
2930RBINASC
2840RESTIO
2950STIDEV
29608T0ODEV
2970IHPCHR
29800QUTCHR
2990

.DE $CCOF
.DE SCDF8
.DE SCF6D
.DE $D3DO
.DE $D57D
.DE $SD6D2
.DE $DCE9
.DE SFFCC
.DE S$FFC6
.DE SFFC9
.DE SFFCF
.DE SFFD2
LEN

23

: www Commodore ca

s INPCT A CrIAR Not Reprint Without Pe

; CARRIAGE RETURN ?
; NO.

;YES. STRING ?
;YES. TERMINATE STRING.

; STOW CHAR INTO INPUT.

;ALL DONE ?
; NO.
: YES.

;s INTERCEPT NULL STRINGS

; SET RECORDED STRING LENGTH.
;RESET DATA TYPE.
; TRUNCATE STRING IN INDEX.

;CONTINUE READING.

; MORE FIELDS ARE PRESENT
; IF THERE IS A COMMA IN
:BASIC'S INPUT BUFFER.

; N0, WE QUIT,

;WHAT KIND

;GO AGAIN, NO BP
;GC AGAIN, BP SET

;RESTORE I/0 DEVICE.

; EVALUATE EXPRESSICHN.

; CHECK FOR COMHA.

;GET BASIC VARIABLE.

;GET STRING SPACE.

;DISCARD TEMP STRING.

; FLOAT TC INTEGER. CONVERSION
; CONVERT FLT TO ASC.

; RESTCRE DEFAULT I/C ADDRESSES.

; SET INPUT DEVICE,

; SET QUTPUTT DEVICE,
; INPUT CHARACTER.,

; OUTPUT CHARACTER.

n

STADR
I0

LNG

DCE

FLN

SLN

CAD

NCH
START
OUTBP
AGAJJ
oroUT
TRFER
WOouTC
WOuTSs
FLTCR
WRIT1
AGAIJ
BPTXT
BPTXE
READI
READ2
READ4
ADONE
/CHRCOM
/GETSPC
/FLTFIX
/RESTIOC
/STODEV
/OUTCHR

1L | | | | | O | | O | ¢ L (T (O | O O | A |

LABELS

0001
00B1
ooB7
000F
0005
0016
0044
0077
027A
02B0
02C9
02D6
02DE
02FB
0305
031B
0325
0337
033B
0340
036D
0382
038E
03A8
CDF8
D3D0C
D6D2
FFCC
FFC9
FFD2

SYSXX
DCH

STP

CRT

DTP

SAD

ACC

ASB
AGAIN
BPOUT
BPDON
OPINP
WOUTP
STRAD
FLTDT
WRITE
WRIT2
TRFEJ
BPDCH
RINPT
READ]
READ3
FIELD
/EVAEXP
/GETVAR
/DSCSTR
/BINASC
/STIDEV
/ INPCER

L T (I ¢ (L © | N T | (N ¢ {1 | | O T 1 1}

24

0011
00B2
00B8
000D
0007
0017
005E
0100
0298
02BC
02CB
02DB
02ED
02FD
0312
0323
032D
0339
033E
0340
0377
0384
03¢8
CCIOF
CF6D
D57D
DCES
FFC6
FFCF

A
(e |
Yl

P

rint Without Permissio

o www.Commodore.c
May Not Re

i

027A
0282
028A
0292
£29A
02A2
02AA
02R2
02RA
02C2
02CA
02D2
02DA
02E2
02EA
02Fr2
C2FA
0302
030A
0312
031A
0322
032A
0332
033A
0342
034A
0352
035A
0362
036A
0372
037A
0382
038A
0392
039A
03A2
03AA

BEXADECIMAL

11
F8
84
20
20
20
30
D2
01
FE
20
c1l
20
85
FO
FQ
AQ
10
20
AS5
A9
AQ
Rl
DO
42
85
FO
20
al
91
85
FO
0D
44
98
17
77
0C
60

85
CD
Bl
D2
OF
C9o

FF
BD
ES
CC
FQ
Cé6
B7
53
1D
02
F8
D2
63
5E
00
17
FO
2D
17
20
D2
17
17

02
DO
C8
FO
A8
C9
FO

01
20
20
D6
cC
FF
01
C8
00
DO
FF
05
FF
85
20
20
Bl
20
D6
30
A0
A9
20
FO
50
84
20
D6
20
85
AO
84
04
C4
F4
18
2C
93

DUNP

12
CC
CD
B2
E9
C4
Cl
Cé6
FO
FO
B2
Cco
Fg
A5
CC
D5
99
CD
B7
06
85
C4
FF
Do
20
A5
CD
AQ
D3
8A
A5
20
B8
DO
00
EC
og
8F

&5
20
20
20
al
A5
Bl
DO
0A
02
A5
FF
CD
Bl
o8
28
16
20
Do
5F
17

c8
90
20
07
20

98
88
Bl
CF
DO
EE
84
AOQ
A5
20

25

A,xv:\u- P‘“‘.,y\ SSI10

= www.Commodore.c

May Not Reprint W

i

60000 REM DATA STATEMENTS FOR D/A BUFFER ROUT&NE\/WW.COH‘ImOdOre.C
60001 REM May Not Reprint Without Permission
60002 REM TOTAL LENGTH 306 BYTES

60003 REM

60004 DATA 165, 17, 133, 1, 165, 18, 133, 2
60005 DATA 32, 248, 205, 32, 159, 204, 32, 210
60006 DATA 214, 132, 177, 32, 248, 205, 32, 159
60007 DATA 204, 32, 210, 214, 132, 178, 32, 248
60008 DATA 205, 32, 159, 204, 32, 233, 220, 162
60009 DATA 15, 32, 201, 255, 160, 196, 165, 178
60010 DATA 9, 48, 145, 1, 160, 193, 177, 1
60011 DATA 32, 210, 255, 200, 192, 198, 208, 246
60012 DATA 162, 1, 189, 0, 1, 240, 10, 32
60013 DATA 210, 255, 232, 208, 245, 240, 2, 208
60014 DATA 205, 32, 204, 255, 166, 178, 165, 177
60015 DATA 41, 1, 240, 5, 32, 201, 255, 208
60016 DATA 3, 32, 198, 255, 32, 248, 205, 169
60017 DATA 5, 133, 183, 133, 22, 165, 177, 4l
60018 DATA 1, 240, 83, 32, 159, 204, 8, 165
60019 DATA 7, 240, 29, 32, 125, 213, 40, 16
60020 DATA 10, 160, 2, 177, 68, 153, 22, 0
60021 DATA 136, 16, 248, 32, 248, 205, 32, 159
60022 DATA 204, 32, 210, 214, 132, 183, 208, 17
60023 DATA 40, 165, 99, 48, 4, 6, 95, 70
60024 DATA 95, 169, 94, 160, 0, 133, 23, 132
60025 DATA 24, 160, 0, 169, 13, 196, 22, 176
60026 DATA 2, 177, 23, 32, 210, 255, 200, 196
60027 DATA 183, 208, 240, 240, 97, 208, 144, 240
60028 DATA 163, 66, 45, 80, 88, 32, 32, 109
60029 DATA 207, 133, 23, 132, 24, 165, 7, 133
60030 DATA 184, 240, 32, 32, 248, 205, 32, 159
60031 DATA 204, 32, 210, 214, 152, 160, 0, 133
60032 DATA 22, 145, 23, 32, 208, 211, 152, 160
60033 DATA 2, 145, 23, 133, 69, 138, 136, 145
60034 DATA 23, 133, 68, 160, 0, 165, 177, 41
60035 DATA 2, 240, 2, 132, 184, 32, 207, 255
60036 DATA 201, 13, 208, 4, 166, 184, 208, 9
60037 DATA 145, 68, 200, 196, 22, 208, 238, 240
60038 DATA 13, 152, 240, 244, 160, 0, 132, 184
60039 DATA 145, 23, 168, 24, 144, 236, 160, 0
60040 DATA 177, 119, 201, 44, 208, 8, 165, 177
60041 DATA 41, 12, 240, 147, 208, 143, 32, 204
60042 DATA 255, 96

60043 END

26

100 REM A RAMNDOM FILE DEMONSTRATION
110 REM WHICH MEEDS MO BLOCK-ALLOCATE
120 REM BY USING THE SPACE ALLLOCATED
130 REM OF ANY PREVICUS CREATED FILE.
140 REHM
150 REM TEBE RAMNDOM UPDATES CAN BE BITS
160 REM OF INFORMATIOM OF UPTO 254
170 REM BYTES OF STRING INFORMATIOHNM.
180 REM
190 REM FLOATING POINT VARIABLES ALWAYS
200 REM ARE ONLY 5 BYTES LONG. THE FIVE
21C REM BYTES PET USES.
220 REM

230 REM THIS DEMONSTRATIO!N NEEDS THE
240 REM D/A BUFFER ROUTINE LOADED AT
250 REM XX=634.

260 REM

270 REM TESTING DONE OM DISK DRIVE 1
280 REM
290 REM ======s===sc—==========
360 REM J . HOOGSTRAAT
310 REM

320 REM BOX 20, SITE 7, S5 1
330 REM CALGARY, ALTA. T2M-4N3
340 REHM PH(403) 239-0900
350 REM =z===c====s=s=o====sSommmoo
360 REM
370 REH

380 REM CREATE A SEQUENTIAL TEST FILE
390 REM =~==—=———mr—mr e e e
400 REM
410 F$="TESTING-TESTING"

420 XX=634:GOSUB1120
430 DK=1:CE=15:CS=2:CR=3:NN=200
440 DIMT(40),S(40)
450 AS="I"+CHRS(48+DK) :OPENCE, 8,CE,AS
460 AS="@"+CHRS(48+DK)+":"+FS+",U,W"
470 OPEMNCS,8,CS,AS

480 AS="...":FORI=1T03:AS$=AS+AS:NEXT
490 FORI=1TO27:PRINT#CS,AS:NEXT
500 CLOSECS
510 REHM
520 REM FIND TRACK ARD SECTOR EXTENTS
530 REM FOR CREATED TEST FILE
54¢ REM ===
550 REM
560 L=LEM(FS)
570 AS=CHRS(48+DK)+":"+4FS$+",U,R"
580 OPENCS,8,CS,AS
590 T=18:8=1:N=0
600 PRINT#CE,"Ul:"CS;DK;T;S
610 SYSXX,0,CS,1,5$,1:5=ASC(SS)
620 FORI=2TO255STEP32
630 SYSXX,0,Cs,1,A$,2,T7$,1,58$,1,NS8,L
640 IFASC(AS)>128ANDFS=NSTHENG670
650 HNEXT:IFS<255THENG60OO
660 PRIMT"FILE "FS$" NOT FOUND":END
670 l=H+]

27

" -
viQay

' Not Reprint Without Permissio

, www.Commodore.c

o

i

680 T(N)=ASC(T$):S(N)=ASC(S%) = WW:NC?TmO??reC

690 PRINT#CE,"Ul:"CS;DK;T(N);S(N) R o
700 GET#CS,TS,T$,S$:IFTS<O>O""THENGTO
710 CLOSECS

720 REM

730 REM OPFEN RANDOM FILE WITH THE TEST
740 REM FILE EXTENTS. FILL IT ALL UP
750 REM ——=—mmme— e e m e — e m e —
760 REM

770 PRINT"[cs]"

780 OPENCR,8,CR,"#"

790 FORI=1TON:AS=CHRS(I+48)

800 FORL=1TO5:AS$S=AS+AS+AS:NEXT

810 PRINT#CE,"Ul:"CR;DK;T(I);S(I)

820 SYSXX,1,CR,2,I,-1,A$,NN

830 SYsxx,0,CR,2,S,U,AS$,NN

840 PRINT"[dn]BLOCK";S:PRINTAS;

850 PRINT#CE,"U2:"CR;DK;T(I);S(I)

860 NEXT

870 REM

880 REM UPDATE SOME TEXT IN A BLOCK
890 REM —=m—m—mmmmm e e e
900 REM

910 REM

920 INPUT"[dn]BLOCK,POS,TEXT";B,P,RBS
930 PRINT"[cs]"

940 FORI=1TON

950 PRINT#CE,"Ul:"CR;DK;T(I);S(I)

960 IFI<>BTHEN990

970 SYSXX,1,CR,7,P

980 SYSXX,1,CR,11+P,BS$,LEN(BS)

990 SYSXX,0,CR,2,S,U,AS$,NN

1000 PRINT"[dn]BLOCK"S;

1010 PRINT" LAST UPDATE AT POS";U

1020 PRINTAS;

1030 PRINT#CE,"U2:"CR;DK;T(I);S(I)
1040 NEXT

1050 GOT0920

1060 REM

1070 REM LOAD UP THE D/A BUFFER ROUTINE
1080 REM AT LOCATION XX. THIS ROUTINE
1090 REM A TOTAL RELOCATABLE.

1100 REM ==-=mmem e e
1110 REM

1120 FORI=1TO306 :READA :POKEXX-1+I,A:NEXT
1130 RETURN

1140 REM

1150 REM INSERT DATA STATEMENTS

1160 REM FOR D/A BUFFER ROUTINE HERE
1170 REM TOTAL LENGTH 306 BYTES

1180 REM

28

PET to Heathkit H14 Printer Serial Interface (. g WWW. Commodore ca
Not Reprint Without Pe
The following article was submitted by Sheldon H. Dean
of Calgary, Alberta. Mr. Dean's interface is a modified
version of a serial interface by Harvey B. Herman and Charles
Pate that appeared in the March/Aprll, 1980 issue of COMPUTE
Magazine. Unlike the circuit in COMPUTE (and also one in an
earlier Transactor), Sheldon's frees up the parallel user
port by including an onboard oscillator for the UART
clock....

This interface provides a 300 baud (bps)
asynchronous communication interface between the
PET 1mp1emented, IEEE-488 bus and the Heathkit H14
line printer using the 20mA current loop standard.
The interface 1is consructed using standard TTL
devices. It provides true upper and lower case
ASCII without the necessity of a handshake between
the PET and the H1l4 printer. The interface plugs
directly into the IEEE port on the PET and a simple
wire pair connects the interface to the H14 printer
by a standard DB-25S cable connector.

Sheldon H. Dean
Although Sheldon has designed the interface for his Heathkit

printer, it could undoubtedly be connected to other equipment
that uses the 20mA current loop convention.

29

+5

nc

ICI

16

|20

40

39

38

37

36
35
34

33

32
31
30
25
28
27
26
25
24
23
22
21

thout Per

PINC

+5 o__/\/\
R2

Figure One

* see note 4

8

= www.Commodore.c

May Not Reprint W

i IEEE (PET,
Y 12 || o D107 (C)
~ to PJ
Fig.2 13
|t 3 2 5 D108 (D)
1e2 _ D106 (B)
4
l 6
tcz | | —op105 (A)
—-5 __g}
—nNC
18c1Cq 113 o D104 (4)
co<tea ! o D103 (3)
191G 1! o D102 (2)
| % -oD101 (1)
5 \05 -20mA (18)*
1C4 o
——nc v
o NRFD (7)
P 100 O NDAC (8)
R —
! 5 O———\/V —0 +20mA (19)*
l OGND (12)
~
1
ATN (1)
12
12 1
IC5 10
7 69
I l o DAV (6)
cl

10N

Ca

'« Www.Commodore.
Wy May Not Reprint Without Permissior
0 +5
f; R3 R4
to 5%
Fig. 1<t
IC6 R5
S
=~ (2
-/ C3
< :L:
Figure Two
T 1c7 QO +5 volts
—=c4 =<cs
Figure Three
IC# +5 volts ground
1 1,34,37 3,16,21,35,36,38,39
2 14 7 This table Tliststhe power
3 14 7 requirements of the various ICs.
4 14 7
5 16 8,9
6 4,8 1

TABLE ONE

Cl
ce
€3
c4
€5

R1
R2
R3
R4
R5

IC1
IC2
IC3
IC4
IC5
IC6
IC7

T1

S1

= www.Commodore.c

May Not Reprint W

PARTS LIST

.001 uF mylar

.1 uF mylar

.005 uF mylar

100 uF, 6V electrelytic

33 uF, 10V tantalum electrolytic

220 ohm, i/4 watt

10000 ohm, 1/4 watt

2200 ohm, i/4 watt

1000 ohm, 1/4 watt

50000 ohm, 10 turn precision potentiometer (see note 1)

Intersil IM6402 UART or equivalent (see note 2)
7400 Quad 2 input NAND gate

7402 Quad 2 input NOR gate

7404 Hex Inverter

74123 Monostable multivibrator

555 Timer

7805 Five volt regulator

9 volt DC 300 mA calculator power supply transformer

40 pin IC socket

S2, S3, S4 14 pin IC socket

S5
S6

16 pin IC socket
8 pin IC socket

Cinch 251-12-13-160 edge connector or equivalent
Amphenol DB-25S cable connector or equivalent
Radio Shack 276-153 printed circuit board or equivalent

NOTES:

The output of figure two is adjusted to 4800 Hz using R5. This
provides a data transfer rate of 300 bps. A frequency counter
is necessary to accurately accomplish this.

Any pin compatible UART may be used such as a $S1883 or AY-3-1015.

The circuit may be implemented using MOS devices for most gates.
This will result in reduced power consumption.

Pin 18 and pin 19 are pins of the DB-25S connector and provide

the -20 mA and +20 mA signals for the printer. All other pin
assignments are on the PET IEEE edge connector.

32

A,xv:\u- P‘“‘.,y\ SSI10

i

Filestatus « Vs yCoroupodore.c
May Not Reprint Without Permission
There's been quite a lot written about disk filesh and
tape files, but very 1little about the PET's logical files.
Here are some suggestions and a routine which may have some
utility.

When you OPEN a file, you specify a logical file number, a
device number, and (optionally) a secondary address, and
filename. Then the PET does what 1is necessary. This
information is saved, the number of files open is incremented
and checked, and action is taken to open the file.

The file data is stored in three tables - logical files,
devices, and secondary addresses. The tables start at $0251
($0242 old ROM), $025B ($024C), and $0265 ($0256) respectively.
The count of number of files is at $O00AE ($0262). The filename
is not saved - it's sent to the device.

The secondary address is OR'd with $60, and then stored.
If no SA is specified, a value of $FF will be found in the
table.

When a file is closed, the file last opened is swapped
into its place. So if you open files 1, 3, and 5; and then
close 1, the file table contains entries for 5 and 3 (plus a
dummy copy of 5).

Now, we can write a routine to check on file status. Here it
is:

10 REM FIND FILE STATUS

15 INPUT"LOGICAL FILE NUMBER ";LF

20 NF = PEEK(174):IF NF = 0 THEN PRINT "NO FILES
OPEN" :END

30 PF = 0:FOR X=1 TO NF:IF PEEK(592+X) = LF THEN PF = X
40 NEXTX:IF PF = 0 THEN PRINT "FILE" LF "NOT OPEN":END

50 PRINT "LOGICAL FILE";LF "OPEN"

52 PRINT "ON DEVICE";PEEK(602+PF)

55 P = PEEK(612+PF) AND 159 :IF P = 159 THEN P = 0

60 PRINT "WITH SECONDARY ADDRESS";P

To use this, just open the files, and GOTOl0. If you RUN the
program, you'll abort all files.

You could use a version of this routine if you're doing
dynamic LOADs - files are not affected by the LOAD, and you can
find them.

33

BASIC 4.0 MEMORY MAP

2 I VT .V"“ A"v:\tl- P

Compiled by Jim Butterfield

There are some differences between usage between the 40- and
80-column machines.

Hex
0000-0002
0003
0004
0005
0006
0007
0008
0009
oooa
000B
ooocC
000D-000F
0010
0011-0012
0013-0015
0016-001E
001F-0022
0023-0027
0028-0029
002A-002B
002C-002D
002E-002F
0030-0031
0032-0033
0034-0035
C036-0037
0038-0039
003A-003B
003C-003D
003E-003F
0040-0041
0042-0043
0044-0045
0046-0047
0048-0049
004A
004B-0050
0051-0053
0054-005D
005E
005F-0062
0063
0064
0065
0066-006B
006C
006D
006E-CO6F
0070-0087
0077-0078
0088-008C

Decimal

102-107
108

106

110-111
112-135
119-120
136-140

Description

USR jump

Search character
Scan-between-quotes flag

Input buffer pointer; # of subscripts
Default DIM flag

Type: FF=string, 00=numeric

Type: 80=integer, 00=floating point
Flag: DATA scan; LIST quote; memory
Subscript flag; FNX flag

0=INPUT; $40=GET; $98=READ

ATN sign/Comparison Evaluation flag
Disk status DS$ descriptor

Current I/0 device for prompt-suppress
Integer value (for SYS, GOTO etc)
Pointers for descriptor stack
Descriptor stack(temp strings)
Utility pointer area

Product area for multiplication
Pointer: Start-of-Basic

Pointer: Start-of-Variables
Pointer: Start-of-Arrays

Pointer: End-cf-Arrays

Pointer: String-storage(moving down)
Utility string pointer

Pointer: Limit-of-memory

Current Basic line number

Previous Basic line number

Pointer: Rasic statement for CONT
Current DATA line number

Current DATA address

Input vector

Current variable name

Current variable acddress

Variable pointer for FOR/NEXT
Y-save; op-save; Basic pointer save
Comparison symbol accumulator

Misc work area, pointers, etc

Jump vector for functions

Misc numeric work area

Accum#l: Exponent

Accum#l: Mantissa

Accum#l: Sign

Series evalueation constant pointer
Accum#l hi-order (overflow)
Accum#2: Exponent, etc.

Sign comparison, Acc#l vs #2
Accum#l lo-order (rounding)
Cassette buff len/Series pointer
CHRGET subroutine; get Basic char
Basic pointer (within subrtn)
Random number seed.

34

r

M.Co %{égore
May Not Reprir

.Ca

008D-008F
0090-0091
0092-0093
0094-0095
0096
0097
0098
0099-009A
009B
009C
009D
009E
009F
00A0
00Al
00A3-00A4
00A5
00A6
00A7
00A8
00A9
00AA
00AB
00AC
00AD
00AE
OOAF
00BO
00Bl1
00B2
O0B3
00B4
00B5
00B7
00B9
00BA
00BB-00BC
00BD
00OBE
OO0BF
00C0-00C1
00cC2
00C3
00C4-00C5
00Cé6
00C7-00C8
00C9-00CA
00CB-00CC
00CD
00CE
00CF
00DO
00D1
00D2
00D3
00D4
00D5
00D6-00D7
00D8
00D9

141-143
144-145
146-147
148-149
150
151
152
153-154
155
156
157
158
159
160
161
163-164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
183
185
186
187-188
189
190
191
192-193
194
195
196-1¢97
198
199-200
201-202
203-204
205
206
207
208
209
210
211
212
213
214-215
216
217

Jiffy clock for TI and TIf Www.Commodore.c

Bardware interrupt vectow MayNoiReprni
BRK interrupt vector

NMI interrupt vector

Status word ST

Which key down; 255=no key

Shift key: 1 if depressed
Correction clock

Keyswitch PIA: STOP and RVS flags
Timing constant for tape

Load=0, Verify=1

Number of characters in keybd buffer
Screen reverse flag

IEEE output; 255=character pending
End-of-line-for-input pointer
Cursor log (row, column)

IEEE output buffer

Key image

0=flash cursor

Cursor timing countdown

Character under cursor

Cursor in blink phase

EOT received from tape

Input from screen/from keyboarc

X save

How many open files

Input device, normally 0

Output CMD device, normally 3

Tape character parity

Byte received flag

Logical Address temporary save
Tape buffer character; MLM command
File name pointer; MLM flag, counter
Serial bit count

Cycle counter

Tape writer countdown

Tape buffer pointers, #1 and #2
Write leader count; read passl/2
Write new byte; read error flag
Write start bit; read bit seq error
Error log pointers, passl/2
0=Scan/1-15=Count/$40=Load/$80=End
Write leader length; read checksum
Pointer to screen line

Position of cursor on above line
Utility pointer: tape, scroll

Tape end addrs/End of current program
Tape timing constants

O0=direct cursor, else programmed
Tape read timer 1 enabled

EOT received from tape

Read character error

characters in file name

Current file logical address
Current file secondary addrs
Current file device number
Right-hand window or line margin
Pointer: Start of tape buffer

Line where cursor lives

Last key/checksum/misc.

Without Permission

www Commodore ca

00DA-00DB 218-219 File name pointer ™ May Not Reprint Without Pe
00DC 220 Number of INSERTs outstanding n
00DD 221 Write shift word/read character in
00DE 222 Tape blocks remaining to write/read
00DF 223 Serial word buffer

00EC-OOF8 224-248 (40-column) Screen line wrap table
00EO-00E1 224-225 (80-column) Top, bottom of window
00E2 226 (80-column) Left window margin
00E3 227 (80-column) Limit of keybd buffer
00E4 228 (80-column) Key repeat flag

00ES5 229 {80-column) Repeat countdown

00E6 230 (80-column) New key marker

00E7 231 (80-column) Chime time

00ES8 232 (80-column) HOME count

00ES-COEA 233-234 (80-column) Input vector

00EB-CO0EC 235-236 (80~-column) Output vector
00F9-00FA 249-250 Cassette status, #1 and #2
00FB-00FC 251-252 MLM pointer/Tape start address
00FD-00FE 253-254 MLM, DOS pointer, misc.

0100-010A 256-266 STRS work area, MLM work

0100-013E 256~-31¢€ Tape read error log

0100-01FF 256-511 Processor stack

0200~0250 512-592 MLM work area; Input buffer
0251-025A 593-602 File logical address table
025B-0264 603-612 File device number table

0265-026E 613-622 File secondary adds table
026F-0278 623-632 Keyboard input buffer

027A-0339 634-825 Tape#l input buffer

033A-03F9 826~1017 Tape#2 input buffer

033A 826 DOS character pointer

033B 827 DOS drive 1 flag

033C 828 DOS drive 2 flag

033D 829 DOS length/write flag

033E 830 DOS syntax flags

033F-0340 831-832 DOS disk ID

0341 833 DOS command string count

0342-0352 834-850 DOS file name buffer

0353-0380 851-856 DOS command string buffer
03EE-03F7 1006-1015 (80-column) Tab stop table
03FA-03FB 1018-1019 Monitor extension vector

03FC 1020 IEEE timeout defeat

0400-7FFF 1024-32767 Available RAM including expansion
8000-83FF 32768-33791 (40-column) Video RAM

8000-87FF 32768-34815 (80-column) Video RAM

9000-AFFF 36864-45055 Available ROM expansion area
ROOO-DFFF 45056-57343 Basic, DOS, Machine Lang Monitor

EQQO0-E7FF
E810-E813
E§20-E823
E840-E84F
E880~-E881
FOO0O-FFFF

57344-59391
59408-59411
59424-59427
59456-59471
59520-59521
61440-65535

Screen, Keyboard,

PIA 1 - Keyboard I/0
PIA 2 - IEEE-488 I/0
VIA - I/C and timers

(80-column)

CRT Controller
Reset, 1/0 handlers, Tape routines

Interrupt programs

PET 4.0 ROM Routines

z Www.Commodor
J im Bt téayfhice Rekyint Without Pe

Toronto

The 40-character and 8C-character machines are the same
except for addresses $SEQ00-SE7FF.

This map shows where various routines lie.

The first address

is not necessarily the proper entry point for the routine,
Similarly, many routines require register setup or data
preparation before calling.

B000-B065
B066-B(C93
B094-B0B1
BOB2-BE20C
B20D-E321
B322-B34F
B350-B392
B393-B39F
B3A0~B3CC
B3CD

B3FF-B41E
B41F-B4EB5
B4B6-B4El
B4E2-B4FA
BAFB-B5A2
B5A3-BE5D1
B5D2

BS5EC-B621
B622-B62F
B630-B6DD
B6DE-B7 84
B785-B7B6
B7B7-B7C5
B7C6-B7ED
B7EE-B807
B808-B812
B813-B82F
B830-B85C
B85D

B883-B890
B891

B894-B8B2
BBBE3

B8C6-EBD5
B8D6-B8F5
B8F6~-B92F
BR930~BA87
BA88-BASD
BABE-BAAl
BAA2-EB1C
BB1D-EB39
EB3A-BB4E
BB4C-BB79
BB7A-EBA3
BBA4-BBBD
BBBE-EBF4
BBF5-BCO1

Description
Action addresses for primary keywords
Action addresses for functions
Hierarchy and action addresses for operators
Table of Basic keywords
Basic messages, mostly error messages
Search the stack for FOR or GOSUB activity
Open up space in memory
Test: stack too deep?
Check available memory
Send canned error message, then:
Warm start; wait for Basic command
Handle new Basic line input
Rebuild chaining of Basic lines
Receive line from keyboard
Crunch keywords into Basic tokens
Search Basic for given line number
Perform NEW, and;
Perform CLR
Reset Basic execution to start
Perform LIST
Perform FOR
Execute Basic statement
Perform RESTORE
Perform STOP or END
Perform CONT
Perform RUR
Perform GOSUB
Perform GOTO
Perform RETURN, then:
Perform DATA: skip statement
Scan for next Basic statement
Scan for next Basic line
Perform IF, and perhaps:
Perform REM: skip line
Perform Ol
Accept fixed-point number
Perform LET
Perform PRINT#
Perform CMD
Perform PRINT
Print string from memory
Print single format character
Handle bad input data
Perform GET
Perform INPUT#
Perform INPUT
Prompt and receive input

37

€.Ca

i

BCO02-BECF6
BCF7-BED18
BD19-BD71
BD72-BD97
BD928

BREE9

BEEF

BF00-BFOB
BF8C-C046
C047-C085
Cc086-COBS
C0B6-C11D
Cl1E-Cl1l2A
Cl12B-C1BF
Clco-C2C7
C2C8-C2D8
C2D9-C2DC
C2DD-C2FB
C2FC-C4A7
C4A8

C4BC-C4C8
C4C9-CACE
C4CF-C4DB
C4DC-C509
C50A-C51C
C51D-C58D
C58E-C59D
C59E-C5AF
C5B0-C61C
C61D-C669
C66A-C74E
C74F-C78B
C78C-C7B4
C7B5-C810
C811-C821
C822-C835
C836-C861
C862-C86C
C86D-C896
C897-C8B1
C8B2-C8B7
C8B8-C8CO
C8C1-C8D0
C8D1-C8E2
C8E3-C920
ce21-Co2C
C92D-C9%42
C943-C959
C95A-C962
C963-CO7E
C97F-C985
C986

C998-CA7C
CATD-CAB3
CAB4-CABS8
CAB9-CAF1
CAF2-CB1F
CB20

CBSE-CBC1
CBC2-CBEC

Perform READ g www.Commodore.c

Canned Input error messages
Perform MNEXT

Check type mismatch
Evaluate expression
Evaluate expression within parentheses
Check parenthesis, comma
Syntax error exit

Variable name setup

Set up function references
Perform OR, AND

Perform comparisons
Perform DIM

Search for variable

Create new variable

Setup array pointer

32768 in floating binary
Evaluate integer expression
Find or make array

Perform FRE, and:

Convert fixed-to-floating
Perform POS

Check not Direct

Perform DEF

Check FNx syntax

Evaluate FNx

Perform STRS

Do string vector

Scan, set up string
BAllocate space for string
Garbage collection
Concatenate

Store string

Discard unwanted string
Clean descriptor stack
Perform CHRS

Perform LEFTS

Perform RIGHTS

Perform MIDS

Pull string data

Perform LEN

Switch string to numeric
Perform ASC

Get byte parameter

Perform VAL

Get two parameters for POKE or WAIT
Convert floating-to-fixed
Perform PEEK

Perform POKE

Perform WAIT

Add 0.5

Perform subtraction
Perform addition
Complement accum#l
Overflow exit
Multiply-a-byte

Constants

Perform LOG

Perform multiplication
Unpack memory into accum#2

A~

May Not Reprint Without Permission

CRED-CC09
CCOA-CC17
CCl18-CC2E
CC2F-CC33
CC34

CC3D

CC45~CCD7
CCD8-CCFC
CCrp~-CpD31
CD32-CDh41
CD42-CD50
CD51-CD690
CD61-CD6E
CD6F~CD8D
CD8E-CD9G
CD91-CDDO
CDbp1-CEO1
CE02~-CE28
CE29-CEB3
CEB4-CEES
CEE9-CEFE&
Cr78

CF7F-CF92
CF93-D0C6
DOC7-D107
D108

D112

D14B-D155
D156-D183
D1 84-D1D6
pPlCc7-D220
D221-D228
D229-D281
D282

D289-D2D1
D2D2~D2FD
D2FE~D32B
D32C-D35B
D35C-D398
D3929-D3B5
D3B6-D471
D472-D716
D717-D7AB
D7AC-D802
D803-D837
D838-D872
D873-D919
DY91A-D92E
DS2F-D941
D942-D976
DP977-D990
D9¢1-D9D]
D9D2-DA06
DAO7-DA30
DA31-DA6G4
DA65-DATD
DATE-DAAG
DAAT~DECE
DACT7~-DAD3
DAD4-DROC

Test & adjust accumulators
Handle overflow and uncerflow
Multiply by 10

10 in floating binary
Divide by 10

Perform divide-by

Perform divide-into

Unpack memory into accum#l
Pack accum#l into memory
Move accum#2 to #1

Move accum#l to #2

Round accum#l

Get accum#l sign

Perform SGHN

Perform ABS

Compare accum#l to memory
Floating-to-fixed

Perform INT

Convert string to floating-point

Get new ASCII digit
Constants

Print IN, then:
Print Basic line #

Convert floating-point to ASCII

Constants

Perform SQR

Perform power function
Perform negation

Constants

Perform EXP

Series evaluation

RMD constants

Perform RND

Perform COS

Perform SIN

Perform TAN

Constants

Perform ATN

Constants

CHRGET sub for zero page
Basic cold start

Machine Language Monitor
MLM subroutines

Perform RECORD

Disk parameter checks.
Dummy disk control messages
Perform CATALOG or DIRECTORY
Output

Find spare secondary address
Perform DOPEN

Perform APPEND

Get disk status

Perform HEADER

Perform DCLOSE

Set up disk record

Perform COLLECT

Perform BACKUP

Perform COPY

Perform CCNCAT

Insert command string values

A~

v
iYiay

Not Reprint Without Permissio

, www.Commodore.c

o

i

DBOD-DB3 9
DBE3A-DDRES
DE66-DBO8
DBES9-DBOD
DR9E-DBD6
DBD7-DBEO
DBE1-DBF9
DEFA-DCo67
DC6 8-DE29
DE2C-DE48
DE495-DE86
DE87-DESC

Perform DSAVE < Y}(W\:/V.’Con?mod?r
 Not Reprint Without Per

Perform DLOQCAD Wiay
Perform SCPATCH

Check Direct comnand

Query ARE YOU SURE?

Print DBAD DISK

Clear DS$ and ST

Assemble disk command string
Parse Basic DOS command

Get Device number

Get file name

Get small variable parameter

** Entry points only for FECOO-E7FF **

ECOO
EOA7
E116
E202
F442
E455
E600
* %

F000-FOD1
FOD2

FOD5

FOD7

F109-F142
F143-F150
F151-F16B
F16C-Fl6F
F170-F184
F185-F192
F193-F19D
F19E-F1AD
F1AE-F1BF
F1CO0-F204
F205-F214
F215-F265
F266~F2Al
F2A2

F2A6-F2CO
F2Cl1-F2DC
F2DD-F334
F335-F342
F343-F348
F349-F350
F351-F355
F356-F400
FL01-F448
F£49-FL6C
F4€D-T47C
F47D-FLRAL
FA4AS~-FLD2
FLD3-FLF5
FLFE-F50C
F50D-F55F
F560-F5E4
F5ES-F618
FE19-F67A
Fe7R-Feacd

Register/screen initialization
Input from keyboard
Input from screen
Qutput character
Main Interrupt entry
Interrupt: clock, cursor, keyboarc
Exit from Interrupt

* &
File
Send
Send
Send

messages

'Talk'’

'Listen'

IEEE command character
Send byte to IELEE

Send byte and clear ATN
Option: timeout or wait

DEVICE NOT PRESENT

Timeout on read, clear control lines
Send canned file message

Send byte, clear control lines
Send normal (deferred) IEEE char
Drop IELE device

Input byte from IEEE

GET a byte

INPUT a byte

Output a byte

Abort files

Restore default I/C devices
Find/setup file data

Perform CLOSE

Test STOP key

Action STCP key

Send message if Direct mode
Test if Direct mode

Program load subroutine
Perform LOAD

Print SEARCHING

Print LOADING or VERIFYING

Get Load/Save parameters

Send name to IELE

Find specific tape header
Perform VERIFY

Get Open/Close parameters
Perform OPEN

Find any tape header

Write tape header

Get start/end addres frem heacder

€.Ca

i

F695-FOAA
F6AB-F6C2
F6C3-F6CB
F6CC-F6DC
F6DD-F767
F76 8-FT7AE
F7AF-F7FD
F7FE-F84L
F84B-F856
F857-F879
F87A-FB8B
F88C-F899
F89A

F8CB

F8EO-F92A
F92B-F934
F935-F944
F945-F975
FO76-FA9B
FA9C-FBBA
FBBB-FBC3
FBC4-FBC8
FECS-FBD7
FBD8-FBF3
FBF4-FC85
FC86-FCBF
FCCO-FCDA
FCDB-FCEA
FCEB-FCF8
FCFS-FDOA
FDOB-FD15
FD16-FD4B
FD4C-FD5C

Set buffer address

Set buffer start & end addrs

Perform SYS

Set tape write start & end

Perform SAVE

Update clock

Connect input device

Connect output device

Bump tape buffer pointer

Wait for PLAY

Test cassette switch

Wait for RECORD

Initiate tape read

Initiate tape write

Common tape I/0

Test I/0 complete

Test STOP key

Tape bit timing adjust

Read tape bits

Read tape characters

Reset tape read address

Flag error into ST

Reset counters for new byte

Write a bit to tape

Tape write

Write tape leader

Terminate tape;

Set interrupt vector

Turn off tape motor

Checksum calculation

Advance load/save pointer

Power-on Reset

Table of interrupt vectors
*

** Jump table: *

FF23-FFOE
FFOF-FFARA
FFAB-FFB6
FFB7-FFBC
FFBED
FFCO
FFC3
FFC6
FFC9
FFCC
FFCF
FFD2
FFD5
FFDE
FFDD
FFDE
FFE1
FFE4
FFE7
FFEA
FFFA-FFFF

CONCAT, DOPEN, DCLOSE, RECORD
HEADER, COLLECT, BACKUP, COPY
APPEND,DSAVE, DLOAD, CATALOG
RENAME, SCRATCH

Get disk status

OPEN

CLOSE

Set input device

Set output device

Pestore default I/0 devices
INPUT a byte
Output a byte
LOAD

SAVE

VERIFY

5Ys

Test stop key
GET byvte

Abort all files
Update clock
Hard vectors:

NMI, Reset,

, www.Commodore.c

1y Not Reprint Without Permissio

restore interrupt

INT

'g www.Commodore.ca

May Not Reprint Without Permission

Index Transactor #10

Contrclling Garbage Collections........ 4
Software Review: Eastern HOUS€.eeesseee D
More On Screen PrinNt.cecesescscsccescses 8
True ASCII OUtPUt.ceeeeescsscccecnccsses 9
PET 2040 Disk Buffer I/C Routin€..ess..12
PET to Heathkit Printer Interface......29
FilesStatUS.eeeosesososcssnssossosssasssell
BASIC 4.0 MemOry MaPeesescccsscesscosssld
PET 4.0 ROM ROUtINES.cecaescoscssosoessld’

