= www.Commodore.ca

May Not Reprint Without Permission

commodore

presents

The Best of
The Transactor
Volume 1

COMMODORE BUSINESS MACHINES LIMITED

3370 PHARMACY AVENUE, AGINCOURT, ONTARIO M1W 2K4
TELEPHONE (416) 4994292 — CABLE ADDRESS: COMTYPE
TELEX NUMBER 06-525400

g www.Commodor

A

Preface

The Best of The Transactor, Volume 1, is a collection of the
finer articles published in the first 11 issues of The Transactor.
These articles are printed in their entirety and follow the original
format. The Best of The Transactor was not intended to introduce
new material, but rather to unite material in co-existence.

I hope you will find this book a useful teaching tool and an
interesting reference manual. The Transactor is put together, at
least in part, with your input and I would like to say a special
"thank you" to all who have contributed. If you have an interesting
discovery, article or program listing that you would like to share,
or if there is a subject you would like covered, I would be pleased
to hear from you.

I have enjoyed my work with The Transactor over the past year
and hope, with your continued support, that The Transactor Volume 2
will be even better.

5wl () leor

Karl J. Hildon,
Editor.

May Not Reprint Without Pe

€.Cd

i

C‘ www.Commodore.ca
May Not Reprint Without Permission

« www.Commodor

A

BITS AND PIECES

ARE YOU READY?

There have been reported mysterious occurences of the out of

data error when editing and fiddling about in general.

This is not a bug, but is due to pressing RETURN whilst the
cursor is over the READY prompt. The machine interprets this
as READ Y and as there is usually no corresponding dat@ state-

ment around we get the error.

REDO

It must be remembered that when RETURN is pressed, the machine
consumes everything on the same line as the cursor, so even if
you have correct information at the beginning of a given line,
a single character of an incorrect type far over on the right
hand side of the screen on the same line is likely to cause
problems. A rather problematical example of this situation
occurs if you try and put up a graphic form or set of boxes
on the screen and then under programme control ask for data .
with an input statement, e.q.

NUMBER ?
When the number is typed and RETURN is pressed, the graphics
character making up the right-hand side of the box will be
entered as part of the inputting data. In the case of input
to a numeric variable, the graphics character is of course
non-numeric and not allowed and will give the error ? Redo

from start, so you must always leave such boxes open ended.

[

May Not Reprint Without Pe

.Ca

i

g Www. Commodore ca
May Not Reprint Without Perr

INVERSE TRIGNOMETRIC FUNCTIONS

Here are a couple of handy methods of obtaining are sine and arc
cosine {(remember, the result will be in radians) .

ASNX ATN (X/SQR(1-X%2)

ACSX ATN (SQR(1-X$2) /X)
For those of you who are used to working in degrees, here are some

handy user defined functions:

DEFFNS (V) = SIN(V/(180/4))
DEFFNC (V) = COS(V/(180/4)}
DEFFNT (V) = TAN(V/(180/+))

These are three user defined functions which when called with
arguments and degrees will give the appropriate results. In these
example§ V can be any variable but if all three are defined in

the same programme, you must use three different dummy variables.
EXAMPLE: PRINT FNS(30)

Result of this will be .5. Notice that the argument for FNS, or
FN anything for that matter, can be e€ither a variable or numeric
constant. Also, after a programme containing these definitions
has been run, these functions may be called using FN in the direct
mode, that is, from the keyboard directly without being in a

programme.

n

g www.Commodore

May Not Reprint Without Pe

INTERRUPT STRUCTURE

Interrupts (including Break or Software Interrupts) are handled

by software polling.

When the processor recognizes an interrupt it vectors through
FFFE, FFFF in ROM to a routine that first inspects the processor

hardware (IRQ line low).

If it was caused by a Break instruction, a Jump Indirect is
executed through locations 021B, C. If by a hardware interrupt then

a Jump Indirect is taken through locations 0219, A.

These locations being in RAM may be user-modified to point to

extra user code ahead of normal interrupt processing.

Note, however that the IRQ pointer is used by the cassette
routines and should be restored to standard values before the cassette

Save or Load functions are called.

various sections of the I/O chips can be set up to cause inter-

rupts through the IRQ line.

Example: POKE 59470,2 enables a negative edge on the

user port CAL line to cause an interrupt.
However, have your code set up to handle it when it happens!

Also note that each pass through the regular interrupt code

increments the time register.

8

.Ca

i

o www.Commodore.ca

May Not Reprint Without Permis \

EDITING

There is an interesting property of the screen edit routine

which gives rise to the following effects:-

If you insert using the INS key, more spaces than you type in
characters, the DEL key must be pressed twice the number of times
there are spare spaces. E.g. If you insert six spaces in a
middle of a line and only type in four new characters, the first
two presses of the DEL key will produce inverse chafacters which
will disappear on the next two presses. Remember, the INS key
will move all characters including the one under the cursor

to the right, whilst the DEL key will delete the character on its

immediate left.

=

g www.Commodore.c

May Not Repr

PET Matrix-Decoded Keyboard
See 515 & 516 in table below

8 7 6 5 4 (3) 2 1
sa T 17 sT%] TalNL (D] [ndr] £lad
48 lQlWlEIR]TiY]U]I1]|O}P} 718191/
32 lAls|D]FIG|H] JIKIL}: 415|161
16 [zIxiclviBIN|M] .} :1?]re 11213} +
o i@l []1lse J<f>i3tdsal 10f - f-1¢=

16 15 4 13 12 11 10 9

Interesting Locations Accessible from BASIC

nt Without Permiss

Location (decimal) Contents
[L
225, 224 Byte address of screen line with Cursor
226 Character position of Cursor (0 to 79)
515 Matrix~coordinate (row+column) of last key down
255 it no key down
516 1 if shift down, O if shift up
525 No. of characters in Keyboard Butfer
526-534 Keyboard Buffer
578 to 587 Logical numbers of open files
588 to 597 Device numbers of open files
598 to 607 Read/write modes of open files
610 How many open files

512, 513, 514
518, 517
59465, 59464

Clock that increments 60 times a second
Clock that increments 30 times a second?
Clock that decrements every microsecond

59456 WAIT 59456,32,32 waits for vertical retrace of display
64824 SYS(64824) simulates power-on reset
50469 Interrupt Flag Register; e.g., to input user port CA1:
[=PEEK(59469) AND 2: POKE 59469.I: IF =0 THEN CA1 low
IEEE PIA B Control, e.g., to run cassette#1 motor N jifties:
100 POKE 59411,53: T=Ti
59411 200 IF TI-T<N GOTO 200

300 POKE 59411,61

ADVICE: Run motor at ieast 3 jiffies per 191 output chars

Wil

out Perm
.

o~
00O
PP

www.Commodore.ca
un
(@]

NPT O <
ONOHOOOHH

W 00T ©3 0§
43

£°0

(OISITIIW) TWIL °"X0dddvy

9°0
(OFSITIIW) JAWIL °*XO0dddV¥

p 03 ¢
€°1
(OFSITIIW) TWIL °XOouddv

LON
J0 ‘daNvY

= (= v\v\Av~w

+
9sI®o
‘440 «»
9813
‘a/0 /
9SsT9

alde
‘4g10

TOdWAS
SYOLVYHIdO OILIAWHLIYUY

Ox¥Y

/%Y

g1

OT 03 L
(reyo xad Gzo'0) + ¥
8 03 O

(reyo x3d Gz0°0) + €
21

T

(zeyo xad z°*0) + G0

(DASITIIW) IAWIL °X0dddvV

$91S
$AINW
N1

' $143T
$9HO
oSy

+

NOILONNA
SNOILONMd ODNIYLS

$LHOTY

‘pneq 00§ °°°T

(xeyo QT x9d 29s 7) + 09s G

*SUT] MBU IBA0 9°() SOAPS

6°0
(HxZ°0) +
(¥x€°0) +

n
o

(yoes 9-°1) +
Nx9°0O

+ O0OM <~

A O0OO0ONHe—~AOA

o™
.

z o3

2/ ($¢X) NIT + ¥1
6T ©3 ST

—

A3TUTIUT O3 T
T
p 03 ¢
T
T

o1 o3

Nd x®sn
NVY.L
NIS
NOS
(1) ang
(0) ang
(T-) aNgd and
201
INI
dXd
S02
NLY
sdv
NOILONNA
SNOIIONNL DILAWHIIYVY
- A;A\H V~V\AV~H
TYA
NOILONNJA

(P,3UCD) SNOILONNA ONIUIS

(DISITIIW) IWIL ‘X0dddvV

SHTIVL DNIWIL

advoT1 x0 JAVS
‘:’uotT0o2 butsnp
NINLIAg

zg e Hq
H41S0D IO OLOD ¥ NO
g0S0D A0 0OLOD

dI
d3LS
T ¥od
(N)2ds
Gyl
OIS

Wag

£ ¥YILVd pue X VX
{$X INI¥d

LNI¥d 10 X INI™dd
sod

LdD

IL

$1L

aqod ‘d3dd

94

LONJISNOD
0/1T ANV SINIWALVLS DISvd

T LXdGN ~°° =

i

thout Perm

nt\

epr

ay Not R

A ~

Yl

www.Commodore.ca

!

o

*TIn3y Axesu

sT Aiowsw usaym ATqeadTIOU UMOP SMOTS wa3lsAs 9yl
.gAkeixe Putaazs 103 ¢=3 pue ‘shkeixe zsbajutl
tgkexxe jurtod bur3zeoly IO0F G=3F
axoym (uotsuawrtp I3d Z) + (T + DZTS) »3F 33
(3uswaT® Y30 SopniouT 921s ‘°"€°N) Kexxe yoes

butx3ls ays

jo yabusal 8yl ppe ’‘seTqerIea butals I03
{s93hq [so3yel anlea IO EutTTeds 3O sSsoT
piebax ‘poubrsse onfea © YiTm dTqeTIeA YoP®S

purpnIoUT

and
(N¢09)/ (EL-TI-ZLxZ) »000T LNI¥d
L = €L

T IX3N

N OL I = 1 9404

1L = 2L

T IX3AN

TdEH LONYLISNOD ISIL LNd WIY

N OL T = T ¥d0d

11 = I

00f = N

NINLIA

f1930vIRYD I9Y3lO0 ydea I03 T
paomKey OISVd yoes 103 T

Ioqumu SUTT 9yl IO ssaTprebax
i1g0oeds HUTMOTTOJF pue I=aqumnu SUTT I0F §

Juswalels yoeo

(03 sorqex ‘sxezing O/1) 8ZOT OISV

0011
000T
006
008
0oL
009
00S
016}
00t
00t
00T

WYIO0dd ONIWIL

(SELAX9 NI) dOVSN AYOWIW

(s3dtaxosqns JOo °ou)
x(G°T 03 1)

(zeyo> xad

Z0°0) + (L°0 ©3 9°0)
(3usuodxa 40°'€) + T°O
chmcomxw xP°0) + 2°0
(31btp x9d Z°'9) + L°O
3TbTp 23d 1

= Yy ueyly aaouw g9°'0

¥ ueyl sxow ¢€°0
anoqe ueyl aIouw Z°0
wexboad ut

soTqeTiea JO °"OU = AU
(T°OxALl + L°0) O3 L°O

(DASITIIW) IWIL °XO0¥Ydd¥

(o 0'1I) W

»wdd0HY

91-4

9Td

666°

666

=3VY

£ 4

= $VV¥'= V¥'$VV’'VY

= ¢¥'= ¥'$V‘VY
WALI

SLNVLSNOD (NV SITHVIYVA

Character ASC/CHR PEEK/POKE Character ASC/CHR PEEK /POKE Character ASC/CHR PEE'QPOW ’6Wc€roﬁ6(mOPd%/r@E(‘a

0 @ 54 0 128 N Mol I Wg200T ggmesfon
1 A 65 1 129 ,8 193 65
2 B 66 2 130 ,b 194 66
3 c 67 3 131 ,e 195 67
4 D 68 4 132 ,d 196 68
3 E 69 S 133 e 197 69
6 F 70 6 134 of 198 70
7 G 7 135 & 199 71
8 H 72 8 136 ,h 200 72
9 1 73 9 137 1 200 73
10 J 74 10 138 .3 202 74
11 K 75 11 139 ,k 203 75
12 L 76 12 140 ,1 206 76
RETURN 13 M 77 13 141 ,m 205 717
14 N 78 14 142 ,n 206 78
15 0 79 15 143 ,0 207 79
16 P 80 16 144 1.p 208 80
v 17 Q 81 17 @ 145 i, q 209 81
RVS 18 R 82 18 RVSoff 146 ol), r 210 82
HOME 19 s 83 19 CLEAR 147 ¥, 211 83
DEL 20 T 84 20 INST 148 if],¢e 212 84
21 U 85 21 149 ,u 213 85
22 v 86 22 150 WV 214 86
23 W 87 23 151 W 215 87
24 X 88 24 152 b, x 216 88
25 Y 89 25 153 1.y 217 89
26 z 90 26 154 @ .z 218 90
27 [91 27 155 219 91
28 \ 92 28 156 220 92
> 29] 93 29 < 157 221 93
30 L 4 94 30 158 B8 222 94
31 - 95 31 159 N 223 95
space 32 32 space 96 32 160 224 96
! 33 33 97 33 161 97 225 97
" 34 34 " 98 34 162 98 226 98
’ 35 35 ¢ 99 35 163 99 ' 227 99
$ 36 36 $ 100 36 1646 100) 228 100
4 37 37 2 101 37 165 101 ' 229 101
3 38 38 & 102 38 166 102 230 102
‘ 39 39 g 103 39 167 103 s 231 103
(40 40 (1046 40 168 104 232 104
) 41 41) 105 41 169 105 , B 233 105
* 42 42 * 106 42 170 106 t 234 106
+ 43 43 + 107 43 171 107 235 107
44 44 , 108 44 172 108 236 108
45 45 - 109 45 173 109 237 109
. 46 46 . 110 46 174 110 238 110
/ 47 47 / 111 47 175 111 3 239 111
0 48 48 0 112 48 176 112 260 112
1 49 49 1 113 49 177 113 241 113
2 50 50 2 114 50 178 114 262 114
3 51 s1 3 115 St 179 115 243 115
4 52 52 4 116 52 180 116 3 2644 116
5 53 53 5 117 53 181 117 3 245 117
6 54 54 6 118 54 182 118 3 246 118
7 55 55 7 119 55 183 119 3 247 119
8 56 56 8 120 56 184 120 ¥ 248 120
9 57 57 9 121 57 185 121 + 249 121
: 58 58 : 122 58 186 122 . 250 122
: 59 59 ; 123 59 187 123 251 123
< 60 60 < 126 60 188 124 252 124
- 61 61 - 125 61 189 125 253 125
> 62 62 > 126 62 190 126 E 254 126
4 63 63 ? 127 63 191 127, ! 255 127

« www.Commodore.c

o

Hardware available: May Not Reprint Without Permission

Convenience Living Systems, 648 Sheraton Drive, Sunnyvale,
CA 94087 EXPANDAPET for %455 assembled with 16K RAM, sockets

for 4K EPROM, 2 parallel 1/0 ports with handshake, slots for 3
option cards, and all cables and brackets.

Forethough Products, Box 8060, Cobur%, OR 97401. The
PETSI PET to S-100 interface/motherboard. 105 kit or #1160
assembled. Includes 4 slots, dynamic memory controller, and
sockets for 8K 2716 EPROM.

The Net Works, 5014 Narragansett #6, San Diego, CA 92107
has an IEEE to RS-2%2 board (with dual ports) for $160 assembled
and tested including on board power supplies. They also announced
their TNW-488 Low Speed Modem Module to interface IEEE-488 (PET
connector version) to the telephone network using the BELL 103A
standard. Doug Gagge, one of TNW's proprietors sent preliminary
announcement specs and some documentation. He also said they had
a prototype running for some time, and are now producing the
first units at $225 assembled.

The 8 bit user port is actually part of an MOS Technology MCS
6522 Versatile lnterface Adapter (VIA%. You can get a copy of

the VIA data sheet from Commodore Business Machines, 3370 Pharmacy
Avenue, Agincourt, Ont. (416)499-4292.Most of the VIA's features
apparently are used for the PET itself, leaving only an 8 bit

port and two handshake lines, which are really quite simple to use.

The new PET user manual briefly describes the 8 bit port
edge connector, pins A and N are grounded, pin B is CAl, the
input handshake line, pin M is CB2, the output handshake line,
and pins C through L are the 8 data lines, with C being the high
order (leftmost) and L the low order bit. When the PET is turned
on, the 8 data bits are programmed to act as inputs and CAl is
programmed to recognize a negative transition (from 1 to 0).

To generate an audio signal from the PET a programmable
square wave generator is included in the MCS6522 which interfaces
the PET Parallel User Port. When the tape drive is not in
operation, the generator can be used to produce one of 514
different frequencies between 243HZ and 125EHZ on CB2 (User Port
pin M). The 6522 makes this possible by recirculating shift
register intended for serial data input and output. With a
square wave pattern loaded into the shift register and the control
set for free running output under timer controlled rate, a
continuous square wave is produced on CB2.

= www.Commodore.c

May Not Reprint Without Permissio

The BASIC statements needed to control the output are
as follows:

POKE 59467,16 Sets shift register to free running output mode.
POKE 59464,C Sets shift rate. C is an integer of O to 255.
POKE 59466,D Loads shift register. D should be 15, 51, or

85 for a square wave output.

The frequency of the square wave can be determined from
the following equation:

FREQUENCY = %OOOOO HZ Where:D1 = 8 for D= 15
C+2)(D1) Dl = 4 for D= 51
D1 = 2 for D= 85

Reading or writing the shift register must be done last as
this initiates the shifting operation. The control register at
59467 must be reloaded with O for the tape drive to write correctly.

Do not connect a speaker or earphones directly to the CB2
output of the PET. An amplifier is necessary to isolate the 6522
from inductive loads.

The TAPE #2 READ signal on User Port pin 8 (TAPE #2 READ and
TAPE WRITE are reversed in the introductory manual) appears to be
the CBl line from the 6522 and carries the shift clock signal.
With both CBl and CB2 available, it may be possible to use the
I/0 port expansion scheme described in the MCS56522 Data Sheet.

PET CODES:

There are two ways to write to the screen of your PET:
either POKEing screen memory (32768-33767) or by PRINTing. Besides
this, there are two ways in which memory is interpreted by the
character generator: standard mode (location 59468 = binary
XXXX110X) or lower case mode (location #XXXX110X). Some of this
confusion may be simplified with a character code chart. In the
chart the OFF and RVS columns refer to values POKEed in screen
memory whereas CHRZ refers to the PRINT statement. Thus, either
POKE %2768, 129 or PRINT CHRZ(18) CHR$(65) will show a reverse A.

o This simple program: 10 INPUT M,N:PRINT M;N,"AA"CHR$(M)
CHR$(N)"BB":GOTO 10 allows you to explore the full CHR§ set
including cursor and reverse. The chart gives CHR$ codes from
(0-95) and (128-223). The missing values in the chart have the
equivalents:(96-127) = (32-63%), (224-254) = (160-190), and 255 = 222.

By referring to an ASCll code chart we see that ASCll

(0-95) = PET(0-95) but that ASC11(96-127) = PET(192-223), ie.
displaced by 96.

10

i

ww.Commodore.c

May Not Reg

Iy print Without Permission

o

The printing mode (standard or lower case) is set by
POKEing an address. So as not to disturb any of the other bits
in the peripheral control register a safe way to set the lower
case mode would be: POKE 59468,PEEK(59468) OR 14 and reset it to
standard mode with POKE 59468, PEEK(50468) AND 253 OR 12.

Standard Mode: Location 59468 = XXXX110X

OFF RVS CHRS OFF RVS CHRS OFF RVS CHR$ OFF RVS CHRS
B (3) o me (o] 2 28) 2 20 s
BRI ek IR REEN
G] 4 o 2 210210 R s w2 178
o 198 HERE! % 2 14 s 243 179
8 1% 1% o 212 212 5] ' = R
@ 17 8 219 213 191 229 168 7 28 18
70 178 198 s 214 214 192 20 166 e e
R @ 2 28 08 281 17 ng a7 18
M 72 o @ 216 216 04 22 168 TR
055 % 2Ey U R 2 e
74 w2 X2 0] 2 ez 10g 234 170 122 250 18
R 5 219 ue 7z) % By
(T] 7 28 UERA 106 2% 172 126 257 188
G 7o @ 322 09 27 173 125 253 189
G rmwl |2 E% PR FEE
(R]9 m B 127 255 191
Ey 12 (%) 146 o 57 EEE 131

Lower Case Mode: Location 59468 £ XXXX110X, Same Except 193 to 218 Prints as Lower Case a to z Plus Different Graphics:
7 105 233 169 122 250 186 E 94 222 222 § 95 223 223

11

o www.Commodore.ca

May Not Reprint Without Perr]

Number to Keyboard Conversion

0: End of line 89: Y 148: SAVE
1-31: unused 90: Z 149: VERIFY
32: space ;| 150: DEF
30 92: \ 151: POKE
34; v 93:] 152: PRINT#
35: 1/ 94: ¢ 153: PRINT
36: % . 95: ¢ 154: CONT
37: % 96: space 155: LIST
38: & 97: | 156: CLR
39: ! 98: " 157: CMD
40: (99: # 158: SYS
41:) 100: § 159: OPEN
42: * 101: % 160: CLOSE
43: + 102: & 161: GET
4. , 103: ' 162: NEW
45: - 104: (163: TAB(
46: 105:) 164: TO
47: / 106: * 165: FN
48: 0 107: + 166: SPC(
49: 1 108: , 167: THEN
50: 2 109: - 168: NOT
51: 3 110: . 169: STEP
52: 4 it/ 170: +

53: 5 112: 0 171: -

54: & H3: 1 172: *

55: 7 114: 2 173: /

56: 8 1s: 3 174: ¢

57: 9 116: 4 175: AND
58: : 117: 5 176: OR
59: ; 18: 6 177: >

60: ¢ 119: 7 178: =

é1: = 120: 8 179: <

62: > 121: 9 180: SGN
63: ? 122: : 181: INT
64. @ 123: ; 182: ABS
65: A 124: < 183: USR
66: B 125: = 184: FRE
67: C 126: > 185: POS
68: D 127: ? 186: SQR
69: E 128: END 187: RND
70: F 129: FOR 188: LOG
71: G 130: NEXT 189: EXP
72: H 131: DATA 190: COS
73: | 132: INPUTY 191: SIN
74: J 133: INPUT 192: TAN
75: K 134: DIM 193: ATN
76: L 135: READ 194: PEEK
77: M 136: LET 195: LEN
78: N 137: GOTO 196: STR$
79: O 138: RUN 197: VAL
80: P 139: IF 198: ASC
8l: Q 140: RESTORE 199: CHR$
82: R 141: GOSUB 200: LEFTS
83: S 142: RETURN 201: RIGHTS
84: T 143: REM 202: MID$
85: U 144: STOP : 203-254: unused
86: V 145: ON 255: w

87: W 146: WAIT

88: X 147: LOAD

12

« www.Commodore.c

o

May Not Reprint Without Permission

USING THE PKT COMPUTER

Note:- Words in a rectangle indicate a key to be pressed on the
PET keyboard, capitals are individual letters to be typed.

To enter and run a progran

1. Type NEW then |[RETURN] . This will clear out any old programs

in the useable memory.

2. Now type the program letter by letter én the keyboard, it will
g0 into memory and also appear on the screen. At the end of
each line you must press @@ .

3, After you have typed the entire program correctly you are ready
to run it. Type RUN then press and the program will
start to operate.

To correct errors -
1. The flashing cursor tells you where the next letter will go.
(a) to move the cursor to the right press CQ§§OR once for each
space.
(b) to move the cursor to the left hold [EEEEE] down and press
CﬁEéOR once for each space. =
(¢) to move the cursor down press CU%E?R once for each line.

(d) to move the cursor up hold |SHIFT| down and press CU%%OR
once for each line.

2. To change an instruction or part of one, move the cursor to the
last correct part of the instruction and then type the correct
part on top of the incorrect characters, to the end of that line,
Be sure to put spaces on top of any letters left after the correct-

ion is made, press |RETURN| at the end.

character you wish to delets then press . This removes
the character it is over and moves everything after it left one

3, To delete characters. Move the cursor to right of last
‘ DERL

space.

4. To insert characters. Move the cursor until it is located where

the insertion is needed, then hold !SHIFTldown, press %ﬁs?
followed by the character you wish to insert. You need to hold

SHIFT| down and press | Sﬁﬁ? for each letter you insert.

13

To

: www Commodore ca

[‘
May Not Reprint Wit uF

load a program from tape

1.

4.

Place the casette in the recorder but do not press any buttons

on the tape recorder.

Type LOAD followed by the name of the program, if no name is typed
it will load the next program on tape.

Ahen the computer is ready it will ask you to press the play

button on the tape recorder.

If the tape loads correctly the computerwill

then start to run the program. If there is just a ready indication
you may have to type RUN, If there is an error in loading from
tape, rewind the tape and start the loading instructions over.

Information on the screen

1.

2.

3

You may clear the screen and send the cursor to the upper left
CLR

corner by holding down Mand pressing | ¢ |-

If you wish to get a listing of the program in memory at any

time type LIST then [|RETURN| .

¥hen the screen is full the first lines get lost at the top and

new lines continue to be added at the bottom. If this happens

during the listing of a program and you wish to examine some

steps before they go off the top pressing|RUN/STO will stop the
listing. Actually presaing | RUN/STOP| at any time stops the computer
and if during the operation of your program it will tell you at

what step you stoped it.

14

10N

10
20
30
40
50
60
70
80
90
95
100
110
120
130
200
210
220
230
240
250
260
270
999

10
20
30
40
50
60
70
80
90

g Www.Commodore.c

May Not Reprint

TEST FOR A PRIME NUMBER (BAS3IC)
PRINT "TYPE A #HOLE NUMBER"
INPUT A
IP A = 0 GO TO 999
IF A =1 GO TO 200
IF A = 2 GO TO 220
B=2
C = A/2
D = A/B
E = INT(D)

P = B#E
IF P = A GO TO 240
IF B D> C GO TO 260
B=B+1
GO TO 80
PRINT " 1 IS SPECIAL"
GO TO 10
PRINT " 2 IS A PRIME"
GO TO 10
PRINT A " IS NOT A PRIME"
GO TO 10
PRINT A " IS A PRIME"
GO TO 10
END
To SORT UP TO 20 NUMBER3S INTU ASCENDING ORDER
DIM A(20)
PRINT "dOW MANY NUMBERS TO SORT"
INPUT N
IF N = 0 GO TO 230
PRINT " GIVE ME" N " NULBERS"
FORK =1 TON
INPUT A(K)
NEXT K
d = N=1

15

Without Permissio

i

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

10
20

40
50

70
80
90
100
110

120 E

130
140
150
160
170
999

= www.Commodore.ca

May Not Reprint Without Permission

TO SORT UP _TO 20 NUMBERS INTO ASCENDING ORDER ...continue

FOR M 1 TO0J

FOR I =1 TO g

IF A(I)< A(I+1l) GO TO 160
B = A(I+l)

A(I+1l) = A(I)

A(I) = B

NEXT I

NEXT M

PRINT "THE NUMBERS IN ASCENDING ORDER"
FOR K =1 TO N

PRINT A (K)

NEXT K

GO TO 20

PRINT "FINIS"

END

TABLE OF SQUARES, CUBES, ROOTS

PRINT " TYPE A STARTING NUMBER"
INPUT A

PRINT " TYPE THE ENDING NUMBER"
INPUT B
pRINT * [SHIPT][Gt | ™
PRINT "N SQUARE CUBE RUOT"
FOR N = A TO B

Nf2

= INT(C)

Wt3

= INT(D)

= SQR(N)

PRINT N;

PRINT TAB(6);C;

PRINT TaB(16);D;

PRINT TAB(26);E

NEXT N

END

g g a a
"

16

i

g Www.Commodore.c

May Not Reprint W

| DIFPERENCES

LETWEEN PET BASIC AiD FOURTRAN

In General

BASIC is an interpreter,
interpreting and executing
each statement as it comes
to it.

Statements

All statements must be
numbered in BASIC as it
executes them in numerical
order.

Conatants and Variables

All constants and variables
are real until you use the
Integer function
4 = INT(B) truncates the
value of B and puts it
in A.
Can get garbage in 9th digit

Arithmetic
BASIC uses A’b for A2

Decisions
BASIC IP is a logical if

e.g. I1F A =B
IP ACB
IP A>=B etc

Looping
BASIC PFOR N= 1 TO 20

NEXT N
Input
INPUT A,B s3stops calculating
and waits for two numbers to

be typed on keyboard and
return button to be pushed

READ A,B takes information
from a DATA statement in .o
sequence

17

PORTRAN is a compiler and makes
two compiling passes béfere it
attempts to execute.

Only statements to which you
transfer may be numbered and
must be numbered, numerical
order means nothing.

Has both integer and real
arithmetic and variable nares.
Lust be careful of mixed mode.
Has double precision for extra
accuracy.

FORTRAN uses A* 2 for 12

FORTRAN is a logical if
eogo IF(A‘B) 2’3,4

"PORTRAN DO 10 N= 1, 20

CONTINUE

READ(8,2)A,B
2 FORMAT (2P8.2) for card read

Some versions of FORTRAN have
simpler unformated reuds.

A,xv:\u- P‘“‘. Miss

Wil

= www.Commodore.c

May Not Reprint Without Permission

Cutput

PRINT A,B,C prints values
at 10,20,30,40

PRINT A;B3;C prints 3 spaces
apart

PRINT "HELLO™ prints characters
in quates

BASIC also has TAB and signals
at the end of the statement
for more detailed spacing

Subscripts

Dimension is DIM A(n)

Can have up to 4 subscripts
in PET BASIC and 256 limit to
their size.

Subroutines

GOSUB L in BASIC

#ust know the statement number
of the routine, and be sure
you use the same names of
variables to communicate with
a subroutine and subroutine
may destroy your variables if
you use the same namew’

Comments
REN followed by printing is

not executed by the program,
only used to help the reader
and programmer tell what is
taking place in the program

C.

WRITE(3,5)A,B,C

5 PORMAT(1X,3P15.2) format is
more complicated but allows
for great flexibility

Some FORTRANS have an output
much like BASIC.

Most FORTRANS only allow triple
subseripts, Dimension statement
is DIMENSION

CALL NAME(a,b,c...) in FORTRAN
Linkage is through the calling
sequence and the subroutine is
compiled at a different time, hence
the actual variable name is not
significant. Better for large
programs.

COMMENT followed by printing is
not executed by the program, only
to give notes to those who read
the program.

18

o

ww.Commodore.c

May Not Reprint Without Permission

1 OPENS .4 :CMDS

Z PRINTCHR$(26) PRINTCHR$(7) :PRINTCHR$(?)

16 DIMA$L7S) ,B$(75)

28 FORI=GTOT4

38 READA$:1) B$(1)

48 MEXT

@ PRINT'LTHIS FROGRAM MILL TEST YOUR KNOWLEDGE OFWORLD CAPITAL CITIES."
6@ FPRIMT:PRINT:PRINT"AFTER EACH STATE (SELECTED AT RANDOM)"

65 PRINT"PLEARSE TYPE IM THE APPROPRIATE CAPITAL FOLLOWED EY A “RETURN‘.™
3@ PRINT PRINT

9@ M=@:0=0:W=a

188 N=M+1: IFN>18THEN4@E

185 I=T4¥RND! &)

186 I=INTL D)

188 7=8

118 PRIMT:FRINT:PRINT"WHAT IS THE CAPITAL OF * TASED) S
115 PRIMT: INFUTZ$

12@ 1FZ$=B${1> THENZ@8

136 FRIMT'NOT CORRECT!...TRY AGAIN" W=k+1

148 p=0+1: IFQ>=2 THENSE®

156 507118

6@ R=4#RND 1) C=C+1

261 R=INTIR)

Z1@ IFR=1THENZ88

2r@ IFR=2THENZ@1

236 IFR=3THEN3@Z

248 IFR=4THENZ@3

258 PRIMTUCORRECT..YOU'RE A GENIUS!":GOTO188

@@ PRINTURIGHT ON, BARY!" :G0TO189

@1 PRIMTUALL RIGHTI " . GOT0186

3@z PRIMTUYES SIR!IY :G0T0168

3@% PRIMT"YOU'RE To0 MUCHI" '60To16@

480 PRINT'LYOUR SCORE 15".0C;"CORRECT." ;Wi "WRONG"

461 PRINT PRIMT'RATING" ;C/oC+k) ¥1e@; " x"

482 PRINT:-FRIMT:FRINT"DO %OU WISH T CONTINUE THE LESSON {TYPE YES OR NO»7

483 INPUTCEH
44 [FC$="YES" THEN
485 IFC$="NO" THENS
4g6 G50 To482
688 DATAAFGHANISTAN . KABUL . ANGOLA , LUANDHA . ALGER A, ALGIERS ARGENTINA, BUENOS ALRES
610 DATAAUS TRAL 1A, CANBERRA . AUSTR1A, ¥ IENNA, BELSTUM, BRUSSELS, BOL IV 1A . SUCRE
628 DATABRAZIL .ERASILIA.BULGAR 1A, SOF A, BURMA RANGOON ., CAMBOD 1A, PHNOM PENH
638 DATACAMNADA.OTTAMA. CHILE . SANTIAGO, COLUMBIAR,EOGOTA. COSTA RICA,SAN JOSE
646 DATACUBA . HAVANA . CYPRUS, NICOSIA, CEECHOSLOYAK 1A . FRAGUE , DENMARK , COPENHAGEN
658 DATADOMINICAN REPUBLIC.SAMTO DOMINGD,ECURDOR,QUITO.ESYFT.CAIRD
668 DATAEL SALWADOR.SAN SALYADOR,ETHIOFIA.ADDIS ABABA,F INLAND.HELSINKI
€70 DATAFRANCE .PARIS. W.SERMANY . BONN,E.GERMANY . BERL IN, GREECE . ATHENS
688 DATAGUARTEMALA.GUATEMALA CITY,GUYANA . GEORGEROWN,HAITI FORT-AU-PRINCE
5968 DATAHONDURAS . TESUCIGALPA . HUNGARY . BUDARFEST, ICELAND, REYKJAYIK
@@ DATAINDIA.NEW DELHI.IRAN, TEHRAN, IRAT. BAGHDAD, IRELAND . DUBL IN
~1@ DATAISRAEL . JERUSALEM. ITALY . ROME, JAMA LA, K INGSTON, JAPAN. TOKYO, JORDAN , AMMAN
vaea DETAKENYA . NAIROBI, LEBANON . BEIRUT. LIECHTENSTEIN, YADUZ ., LUKEMBOURS . LUKEMBOURG
233 DATAMALTA,.VALLETTA.MEXICO,MEXICO CITY . MOROCCO . RABAT.NETHERLAND . AMSTERDAM
=43 DATANEW ZEALAND . WELL INGTON,NICARAGUA , MANAGUA , NIGER A, LAGOS NORKWAY . OSLY
TS DHTRPHRHGUHVEHSUNCION:PERUJLINH;POLHND,MHRSHH,PORTUGHL;LISEON)SPHlN,MHDRID
Toed DATASUDAN . KHARTOUM, SHEDEN . STOCKHOLM . SWITZERLAND . BERN . SYR1A, DAMASTUS
77d DHTHTHHILHND;BHNGKOK;TURKE?,HNKRRH,UGHNDH,KHMPHLH;USSR;MDSCOH,USH,NHSHINGTQ
H
734 DHTHU.K.sLONDON,URUGURV;MOHTEUIDEO,UENEEUELH,CHRHCHSJ?UGUSLHVIH;EEL@HHDE
90 PRINT'LMWELL .1 GUESS ¥OU REALLY DON’T KNOW IT!! (SHAME)"
84F PRINT:PRINT:FPRIMT"THE CORRECT ANSWER I5 “",B$il),"~’
315 PRINT - FRIMT'NOW 1 WILL ASK YOU AGAIN!"
3z@ 50701883
838 END
READY, 19

=]
5]

-
3

2 www.Commodore

rint Without Pe

May Not Rep

KA KOO0 KKK R KK KK KK IOKK KKK KKK XK K KKK KK ok Kok K

1)
759
raiely]
ail
803
a4
80S
0 d
857
8
KKK EKK
2}
78y
8BGO
801
802
803
804
BOS
80¢
807
B8GE
|07
810
811

FOM112.MICH1
£oes s8OFDOL
Co8C 68
C58L BOFEO1L
L8900 @2FC
€592 94
L5923 A%00
L5935 888D
CS%7 BSé1
Caee 60
C894 18

HOOK XK XK X Xk

ROM192.HICH1
£3589 A8
CS8a 68
LC3BEF AZFE
€38l 94
C3B8E 48
CS8F 98
CS90 46
CS91 A%900
C593 BS8L
L3595 8561
C597 60
D298 5160
C594 18

tM=A
{
MA
z
g
EM

E!

X

STA
FLA
5TA
L.IX

TXS

LIia
STé
STA
RTS
CLC

TAY
FLA
L IX
TXS
FHA
TYA
FHA
LIA
STA
STA

RTS
- EOR

CL

OL1FL

C1FE
#FC

$00

8L
61

#FE

$00
8L
61

(&0) 5 Y

RRHHHKRF XA AORRRAAIIR KKK IR K KRR KK KK AR KKK KKK
DIFFERENCES FOUND BETWEEN ROM 011 AND ROM 019

TO CORRECT LOSS OF CURSOR.

20

r

.Ca

i

1 REME¥®¥¥SQUIGGLE VERSION Z.B%¥ENEEX
2 REM IDEA BY PAUL HITTLE

4 REM PROGRAMMING BY B.SEILER. G.YOB
4 REM CLEAR SCREEN TO START

S PRINT"L",

9 REM SQUIGGLE GRAPHICS CHAFACTERS
1'U DHTHH '“ R et N o B LAy B " rll N 0._' n

18 REM CHARACTERS FOR EACH DIRECTION
19 REM 2@8-UFP.3@-DOWN,46-RIGHT.S@-LEFT
28 DATAL1.8.5.0

38 DATARB.1.4.3

48 DATR3.6.2.8

S8 DATA4.5.08.2

55 REM A$ HOLDS CHARS., B HOLDS PTRS
56 REM FOR EACH DIRECTION

668 DIMAS$(S) ,B(5,5)

65 REM SET UP A% AND B

Ve FOR1=68T05

8¢ FEADASCD)

98 NEXT 1

1oy FORI=1T704

118 FORJ=1T704

12@ READB(J, D)

136 NEXT 1

140 NEXT 1

156 REM INITIAL YALUES

1604 KEM 11,72 = DIRECTION OF TEAVEL
161 REM T1 15 CURRENT DIRECTION

162 REM T2 15 PREWIOQUS DIRECTION

163 REM 1=UF, 2=DOMWN, 3I=RIGHT. 4=LEFT
178 REM

186 REM X,Y¥ ARE FOSITION OF WRIGSLER
181 REM ON SCREEN. 6,8 IS5 UPPER LEFT
182 REM CORNER (CURSOR HOMED

183 REM 2@,12 1S5 CENTER OF SCREEN
198 Ti=1

Ze@ Tz=1

216 X=Z98

228 vy=1¢

21

o www.Commodore.c

May Not Reprint Without Permission

i

KEM GE | RANDOM FROCOR
FRINI'WIGGLE FACTOR (H—-9)"
FRINT"@": FOR J=110130 MNEXTJ
FRINT" W' FOR J=1TO4@@ NEX1J
GET WS IFWE="" THENZSS

IF W$C"@" DR MW$ 39" THEN zo@
W=WVAL (W) S 1e+. 1

FRINT L

HEMEREMAIN LOGEE##

REM #% TURN Ok NO T2

b RNDCLa 2k ¥ THEM 229

REM YES. DO TUKN
T1=4¥RND 1) +1
IFBEOTL, T2 =@ HENS 11

REM DRAW MOYE ON SCREEM
HOSUBZEEE

Tz=11

KEM UFDATE FOST1LI0N
ONTLGOTO4EE ., 418, 428, 45

Y=y -1 G0 TOSUE

WAL GO TOSEH

WER AL GO

K==t RO TONEE

REM ADJUST FOF WRAF-AROUND
IFYCLTHENY =23 30 T038y

IF Y223 THENY=1 50 T0H 36
IFRCLTHEM =39 30 70 56

TP RIS THENN =L 50 T0 2

50 TO3eE

REM ®¥$DRAM NS SUBROUT IHE $$%
REM FOSITL0M CURSOR AT R
FRINT @

FORI=1T0Y

FRINT"@®";

B MEXT 1

L
Zei
EERD Y

g F Ok 1= 1TOR

FRINT"E"

- MEHT]

e FREINT THE “HRRALDTER
FriMIRs BTl 32 —10
ME LR

22

P

rint Without Permissio

o www.Commodore.c
1y Not Re

va

i

w O W

H

: www Commodore ca

May Not Reprint Without Pe

ATTACHING A VIDEO MONITOR TO PET

L I.C. = 74LS@2
VERT. 1 SPARE GATE
220c PF 47 -
+ TANT.
- I+ ’
HORIZ. 15K
? 1N 4748 etc
COMPOSITE
—e VIDEO
our
30 . -
o —AM—
VIDEO z90 2 =
¢ GRND.] This I.C. requires +5V on pin 1l4. Pin 7 is

— ground () connect a 1 uF TANT. capacitor
B between pins 14 and 7. observing polarity

Above is a simple circuit which takes the horizontal drive,
vertical drive and video waveforms from the PET User Port and
converts them to composite video suitable for driving an RF
modulator or a straightforward monitor. The circuitvrequires

a 5 volt power supply and this may be obtained from a 2nd
cassette socket which has a few milliamps available at 5 volts.
There are no particular points to watch out for when constructing
this circuit. Lay-out is not critical. 1In the unlikely event of
the horizontal hold of your display device misbehaving, adjust

the value of the 1l.5K resistor. This will alter the horizontal

sync. pulse width.

23

n

8 C

166
209
366
488
56D
608
558
766
3a8
1@aae
1160
1268
1306
350
1430
1420
1425
1438
1448
1478
1475
1598
530
£58
16500
READY

= www.Commodore.ca

6502 ASSEMBLER FOR PET 2001

The 6502 Assembler in BASIC is designed to run on an 8K
Commodore PET. It accepts all standard 6502 instruction mnemonics,
pseudoops and addressing modes, and evaluates binary, octal, hex,
decimal, and character constants, symbols and expressions. Source
statements can be read from cassette or from DATA lists and machine
code can be assembled anywhere in memory or directed to an external
device through a user-supplied subroutine.

The package includes a text editor in BASIC, and an execution
monitor with a disassembler. Price with documentation is $24.95
by cheque or Visa/MC from Personal Software, P.O. Box 13%6-17,
Cambridge, MA 02138, (617)783-0694.

LRCFRINTVW" ., :POKE 245,686 :PRINT

FRINT"THIS PROGRAM TESTS YOUR REFLEXES BY"
PRINT"MEASURING YQUR REACTION TIME. WHENEVER"
FRINT"THE SCREEM IS5 CLERRED HIT ANY CHARACTER—"
FRIMNT"YOUR REARCTION TIME IN SECONDS WILL BE"
PRINT"DISPLAYED--WHEN THIS DISSAPPEARS HIT"
PRINT"ANOTHER KEY <ANY KEY WILL DO) AND 390 ON—"
FOR I=1 TO 7388 NEXT:FPRINT TAB{15)"AGET READY"

FOR I=1 TO 2580 MEXT:PRINT"L" :POKE 245,11

PRIMT-PRIMT TABL{113 " @HIT ANY KEY NOWE: " :GETA$.A$.A%$.A%, A%, A5, A%:50TD 110a

For I=1 TO RND{1)#2066+758 GET CH NEXKT PRINT"L";
T=TI1:FOR I=1 T0 S8B:GET C$:IF C$>"" THEN 1508

MEKT :PRINT"L" :FOKE 245,18:FRINT

FRINT"E YOU SHOULD HAWE TYFED A CHARECTER WHEM ',
PRINT"IA "
PRINT"IA THE SCREEN WAS CLEARED "
FOR I=1 70 1868 MEXT

FOR I=1 TO 48 :FRIMT"R ", NEXKT

FRINT"IR (3TAND BY FOR MORE INSTRUCTIONS) !
FOR I=1 TO 1868 :GETC$:IF C${3>"" THEN 15@8

MEKT :GO0TO 5@

GOTO 58

Ti=TI-T:PRINT"L", :POKE 245,11

FOR I=1 TO %80 :oETCEH: IF C30"" THEM 1569
FRINT:FOKE 2&86.17

FRINT INT((T1-08%18885+.5).-16806:50T0180606

24

May Not Reprint Without Permission

i

g Www.Commodore.c

May Not Reprint W

DELAYS

Quiﬁéra few people have asked how to put delays into

programs. Here are two common methods:

1 FOR A = 1 to 1¢@@ : NEXT this will cause a delay

of approximately 1 second

1 FOR A = 1 to 2¢¢@g : NEXT this will cause a delay

of approximately 2 seconds etc.

14 T=TI

20 IFTI - T < 6@ THEN 2¢
Lines 1¢ and 2@ cause a delay of approximately one second
and work as follows:
Line 1¢ sets the variable T equal to the real time jiffy
clock TI (a jiffy is 1/6¢ of a second)
Line 2¢ tests to see whether 6@/6¢ of a second have elapsed,

if not the program returns to the beginning of line 2@ and

checks again.

Here is a small program you might like to try which uses

delays involving the real time clock in an interesting manner.

READY.

5 PRINT"KEY IN A NUMBER>";

19 T=f:48=""

28 GETK$:IFK$=""THEN2#

30 T=T1:60T068

A9 GETK$

5§ IFTI-T-64THEN79

o8 TFK$< ""THENPRINTKS; :A$=A$+K$:T=TI:607049
45 GOTOAS ,

78 IFA=#THENPRINT"+";:A=VAL(A$):GOTO1S
88 PRINT"="A+VAL(AS$)
READY.

25

thout Permiss

Wil

;»wvmwﬁonwnodore

PLOTTING

It is possible, with very little effort, to address locations
on the screen using simple XY co-ordinates. Below we have
a program that uses a simple formula that enables one to do

this.

READY.

5 DATA12,15,22,9,12,25,33

18 FRINT™"

28 FI=3.141592435

30 FORA=@TOA%PI STEF(4+F)/39

46 Y=INT(SIN{AI®12412) X=X+

58 GOSURSH

68 NEXT

78 FORA=33348T033574:READZ:FOKEA,ZiNEXT

75 607075

88 FOKE((24-Y)#49+327458)4X,44:RETURN
KEADY.

The line that does the actual XY co-ordinate conversion is
line 8@. For the sake of clarity line 8¢ has been made a sub-
~routine but the formula is so compact that in some cases,
including this one, it is not necessary. Line 5 and 7¢ should
be included when you test this program out but may be omitted

subsequently. X has a range of ¢-39 and Y has a range of

g-24.

26

May Not Reprint Without Permis

.Ca

i

g Www.Commodore.c

May Not Reprint W

DATA FILE ERRORS

A problem with opening files to write on either built-in cassette #1, or
external cassette #2, has been discovered. When a file is opened, garbage
will be written out instead of a proper data tape file header. Without this
header, it is impossible to open the tape file for reading.

You may not have encountered this problem previously, because it is
disguised by having loaded a program on the cassette prior to writing a data file.
In this mode, the start address of the buffer with the header information is
initialized properly but cassette data file operation still could be random.

Fortunately, there is a software patch you can implement in your BASIC
program to force the open for write on tape to work every time.

B efore opening to write on #1 cassette:

POKE 243,122
POKE 244,2

and on #2 cassette:

POKE - 243,58
POKE 244,3

Locations 243 and 244 contain the lo and hi order bytes respectively of
the address of the currently active cassette buffer. The start address of buffer
#2 is $33A which is 3,58 ($3=3,$3A=58)in double byte decimal. Similarly
cassette #1 is $27A ($2=2,%$7A=122).

27

thout Permissio

i

= www.Commodor

May Not Reprint Without Pe

More User Port Info

r——LT L A T L T T
. DATA REGISTER ADDRESS
?—65439.15659471
r. . rrT*T r~ 1+ 1
DATA DIRECTION REGISTER

1 ¢ 2 @ 1 ¢ 1 1 59459

“Twis 1T
Ky 2eFers To 1=0UT @=IN

THIS 81T &TC.

The major portion of the user port consists of 8 connections

at the rear of the PET. Whether these connections are used

for INPUT or OUTPUT is up to the programmer. These 8 wires

may be used as either input or output. Before using this

8 -it port you must first configure these wires as inputs or
ouzputs. This is done by writing a byte to the data direction
register at address 59459, 1In the example above bits ¢, 1,

3 and 7 are configured as outputs. Bits 2,4,5 and 6 aie
configured as inputs. The bit that you see in the data direction
register is generated by poke 59459, 139. 1In order to test a

particular bit being used as an input in the data register

(59471) one must peek 59471 and apply a "mask" in order to
mask out unwanted bits. For instance to examine bit 2 we
would use the expression PRINT PEEK (59471) AND 4. If the
result of this expression is ¢ then bit 2 of the data

register (59471) has been held at ¢ volts by the outside world.

28

€.Ca

i

A

May Not Reprint Without Perr

g www.Commodore.ca

i

MACHINE CODE ENVIRONMENT

If you wish to write machine code programs in your PET and
do not wish to have BASIC trampling all over them here is

a suggestion:

When the PET is first powered up a test pattern is written
into and read back from the RAM in ascending address order.
When this routine discovers a location which does not read
back properly it presumes that it has run out of RAM and
displays XXXX bytes free. At this point it makes a note of
where it thinks the 'top'of memory' is.. A Quick glance at

the memory map will show that BASIC program text is stored
from location 1¢25 upwards and strings are stored from the
top of the memory downwards which means that in any normal
circumstances there is nowhere in the PET main memory where
you can hide‘your machine code routines.

If however, the first thing you do after powering up the PET
is to .alter the top of ﬁemory pointer to say 6¢9¢ everything
from 6p¢l upwards, as far as PET is concerned, does not exist.
e.g. strings will be stored from 6¢¢¢ downwards etc. and mach-
ine code programs can be safely put in location 6¢¢l upwards.
This pecinter is held in locations 134 and 135 constituting a
16 bit pointer with 134 being its lower 8 bits. This is a
binary pointer which means that we must convert your 6p¢¢

or whatevér to binary before POKING locations 134 and 135 with

the information. In the standard 8K PET 134 will be ¢ and 135

29

= www.Commodore.c

May Not Reprint Without Permiss

MACHINE CODE ENVIRONMENT (cont.)

will be 32 (32 x 256 = 8192) Remember that 1@25 bytes are
used for house keeping by the PET (8192 - 1§25 = 7167)
However to give the PET a ceiling of 6@@¢ we convert 6@¢gg

into binary which gives us POKE 134, 112 and POKE 135, 23.

LIFE FOR YOUR PET

Here is a good example of what can be done in machine code

in the PET. It is the game of "LIFE"™ by John H. Conway of
Cambridge. If one attempts to write a Commodore PET screen
size (160@ cell) version of LIFE in BASIC it can take up

to two or three minutes per generation. This program performs
two generations per second. 1In order to use it type in a
listing in the form of data statements and load in the machine
code with a small BASIC routine being careful to fill in

the gaps between 1928 (HEX) and 193¢ and also 1954 and 197¢
with no-ops. Below is a listing of the documentation provi-

ded by'the author.

30

Wil

= v Nt
May NOt Re

print

LIFE FOR YOUR PET

Since this is the first time 1 have
attempted to set down a machine lang-
vage program for the public eye, I will
attempt to be as complete as practical
without overdoing it.

The programs I will document here are
concerned with the game of "LIFE", and

are written 1in 6502 machine language

specifically for the PET 2001 (8K ver-
sion). The principles apply to any
6502 system with graphic display capa-
bility, and can be debugged (as I did)
on non-graphic systems such as the
KIM-1.

The first I heard of LI1FE was in Martin
Gardner's '"Recreational Mathematics"
section in Scientific American, Oct-Nov
1970; Feb. 1971. As 1 understand it,
the game was invented by John H. Con-
way, an English mathematician. In
brief, LIFE is a "cellular automation"
scheme, where the arena is a rectang-
ular grid (ideally of infinite size).
Each square in the grid is either occu-
pied or unoccupied with "seeds", the
fate of which are governed by relative-
ly simple rules, i.e. the "facts of
LIFE". The rules are: 1. A seed sur-
vives to the next generation if and on-
ly if it has two or three neighbors
(right, left, up, down, and the four
diagonally adjacent cells) otherwise it
dies of loneliness or overcrowding,
as the case may be. 2. A seed is born
in a vacant cell on the next genera-
tion if it has exactly 3 neighbors.

With these simple rules, a surprisingly
rich game results. The original Scien-
tific American article, and several
subsequent articles reveal many curious
and surprising initial patterns and
results. I understand that there even
nas been formed a LIFE group, complete
with newsletter, although I have not
personally seen it.

Thé game can of course be played man-
ually on a piece of graph paper, but it
is slow and prone to mistakes, which
have usually disasterous effects on the
final results. It would seem to be the
ideal thing to put to a microprocessor
with bare-bones graphics, since the
rules are so simple and there are es-

31

sentially no arithmetic operations in-
volved, except for keeping track of ad-
dresses and locating neighbors.

As you know, the PET-2001 has an excel-
lent BASIC interpreter, but as yet very
little documentation on machine lang-
uage operation. My first stab was to
write a BASIC program, using the entire
PET display as the arena (more 1bout
boundaries later), and the filled
circle graphic display character as the

seed. This worked just fine, except
for one thing - it took about 2-1/2
minutes for the interpreter to go

through one generation! I suppose 1
shouldn't have been surprised since the
program has to check eight neighboring
cells to determine the fate of a par-
ticular cell, and do this 1000 times to
complete the entire generation (40x25
charactera for the PET display).

The program following is a 6502 version
of LIFE written for the PET. It needs
to be POKE'd into the PET memory,
since 1 have yet to see or discover a
machine language monitor for the PET.
1 did it with a simple BASIC program
and many DATA statements (taking up
much more of the program memory space
than the actual machine language pro-
gram!). A routine for assembling, and
saving on tape machine language pro-
grams on the PET is sorely needed.

The program is accessed by the SYS com-
mand, and takes advantage of the dis-
play monitor (cursor control) for in-
serting seeds, and clearing the arena.
Without a serious attempt at maximizing
for speed, the program takes about 1/2
second to go through an entire genera-
tion, about 300 times faster than the
BASIC equivalent! Enough said about
the efficiency of machine language pro-
gramming versus BASIC interpreters?

BASIC is great for number crunching,
where you can quickly compose your pro-
gram and have plenty of time to await
the results.

The program may be broken down into
manageable chunks by subroutining.
There follows a brief description of
the salient features of each section:

ww.Commodore.c

Without Permission

MAIN (hex 1900)

In a fit of overcaution (since this was
the first time I attempted to write a
PET machine language program) you
will notice the series of pushes at the
beginning and pulls at the end. I de-
cided to save all the internal regis-
ters on the stack in page 1, and also
included the CLD (clear decimal mode)
Just in case. Then follows a series of
subroutine calls to do the LIFE genera-
tion and display transfers. The zero
page location, TIMES, is a counter to
permit several loops through LIFE be-
fore returning. As set up, TIMES is
initialized to zero (hex location 1953)
so that it will loop 256 times before
Jumping back. This of course can be
changed either initially or while in
BASIC via the POKE command. The return
via the JMP BASIC (4C 8B C3) may not be
strictly orthodox, but it seems to work
all right.

INIT (hex 1930) and DATA (hex 193B)

This shorty reads in the constants
needed, and stores them in page zero.
SCR refers to the PET screen, TEMP is
a temporary working area to hold the
new generation as it is evolved, and
RCS 1is essentially a copy of the PET
screen data, which I found to be neces-
sary to avoid "snow" on the screen dur-
ing read/write operations directly on
the screen locations. Up, down, etc.
are the offsets to be added or subtrac-
ted from an address to get all the
neighbor addresses. The observant
reader will note the gap in the addres-
ses between some of the routines.

TMPSCR (hex 1970)

This subroutine quickly transfers the
contents of Temp and dumps it to the
screen, using a dot (81 dec) symdol for
a live cell (a 1 in TEMP) and a space
(32 dec) for the absence of a live cell
(a 0 in TEMP).

SCRTMP (hex 1984a)
This is the inverse of TMPSCR, quickly
transferring (and encoding) data
from the screen into TEMP.

RSTORE (hex 19A6)
This subroutine fetches the initial

addresses (high and low) for the SCR,
TEMP, and RCS memory spaces.

32

« www.Commodore.c

o

"~ May Not Reprint W
NXTADR (hex 19BD)

Since we are dealing with 1000 bytes of
data, we need a routine to increment to
the next location, check for page cros-
sing (adding 1 to the high address when
it occurs), and thecking for the end.
?he end is signaled by returning a 01
in the accumulator, otherwise a 00 is
returned via the accumuiator.

TMPRCS (hex 19E6)

The RCS address Space is a copy of the
Screen, used as mentioned before to
avoid constant "snow" on the screen if
the screen were being continually ac-
cessed. This subroutine dumps data
from TEMP, where the new generation has
been computed, to RCS.

GENER (hex 1A00)

We finally arrive at a subroutine where
LIFE is actually generated. After
finding out the number of neighbors of
the current RCS data byte from NBRS,
GENER checks for births (CMPIM $03 at
hex addr. 1AOE) if tte cell was prev-
iously unoccupied. If a birth does not
occur, there is an immediate branch to
GENADK (the data byte remains 00). 1f
the cell was occupied (CMPIM 81 dec =2t
hex 1408), OCC checks for survival
(CMPIM $03 at hex 1AlA and CMPIM $02 at
hex 1AlE), branching to GENADH when
these two conditions are met, otherwise
the cell dies (LDAIM $00 at hex 1A22).
The results are stored in TEMP for the
1000 cells.

NBRS (hex 1A2F)

NBRS is the subroutine that really does
most of the work and where most of the
speed could be gained by more efficient
programming. Its job, to find the tot-
al number of occupied neighbors of a
given RCS data location, is complicated
by page crossing and edge boundaries.
In the present version, page crossing
is taken care of, bu* edge boundaries
(left, right, top, and bottom of the
screen) are somewhat "strange". Above
the top line and below the bottom line
are considered as sort of forbidden re-
gions where there should practically
always be no "life" (data in those re-
gions are not defined by the program,
but I have found that there has never
been a case where 81's have been pres-
ent (all other data is considered as
"unoccupied" characters). The right
and left edges are different, however,

Without Permission

and lead to a special type of "geom-
etry". A cell at either edge is not
considered a. special by NBRS, and so
to the right of a right-edge location
{s the next sequential address. On the
screen this is really the left edge
location, and one line lower. The in-
verse is true, of course for left ad-
dresses of left-edge locations. Topo-
logically, this is equivalent to a
"helix". No special effects of this
are seen during a simple LIFE evolution
since it just gives the impression of
disappearing off one edge while appear-
ing on the other edge. For an object
like the "spaceship" (see Scientific
American articles), then, the path
eventually would cover the whole LIFE
arena. The fun comes in when a config-
uration spreads out so much that it
spills over both edges, and interacts
with {tself. This, of course cannot
happen in an infinite universe, so that
some of the more complex patterns will
not have the same fate in the present
version of LIFE. Mcst of the "blink-
ers", including the "glider gun" come
out OK.

This 40x25 version of LIFE can undoubt-
edly be made more efficient, and other
edge algorithms could be found, but 1
chose to leave it in its original form
as a benchmark for my first successful-
ly executed program in writing machine

g www.Commodore.c

A~

May Not Reprint Without Permiss

language on the PET. One ronfession,
however - I used the KIM-1 to debug
most of the subroutines. Almost all of
them did not run on the first shot!
Without a good understanding of PET
memory allocation particularly in page
zero, 1 was bound to crash many times
over, with no recovery other than pul-
ling the plug. The actual BASIC pro-
gram consisted of a POKING loop with
many DATA statements (always save on
tape before running!).

P o

—

A Brief Introduction
to the Game of Life

One of the interesting properties of
the game of LIFE is that such simple
rules can lead to such complex activ-
ity. The simplicity comes from the
fact that the rules a~ply to each in-
dividual cell. The complexity comes
from the interactions between the indi-
vidual cells. Each individual cell is
affected by its eight adjacent neigh-
pors, and nothing else.

The rules are:

2. A cell dies from overcrowding if it
has four or more neighbors. It dies
from isolation if it has one or zero
neighbors.

3. A cell is born when an empty space
has exactly three neighbors.

With these few rules, many different
types of activity can occur. Some pat-
terns are STABLE, that is they do not
change at all. Some are REPEATERS,
patterns which undergo one or more
changes and return to the original
pattern. A REPEATER may repeat as fast
as every other generation, or may have
a longer period. A GLIDER is a pattern
wnich moves as it repeats.

1. A cell survives if it has two or
three neighbors.
REPEATERS
¢ GLIDERS
STABLE A . n ® &
. . # P »

#*] ® #*
[#* * ¢ %
% @ # * ¢ *

* & & % % # & % %

33

Wil

1900

1900
1900
1900
1900

1900
1900
1600
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1500
1900
1900
1900
1900
1900
1900
. 1900

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1904
190D
1910
1913
1916
1919
191B
191D
191E
191F

1920

08
48
8A
u8
98
48
BA
8a
48
D8
20
20
20
20
20
E6
DO
68
AA
9A
68

30
8A
Eb
00
70

F3

19
19
19
1A
19

LIFE

BASIC
OFFSET
boT
BLANK

SCRL
SCRH
CHL
CHH
SCRLO
SCRHO
TEMPL
TEMPH
TEMPLO
TEMPHO
up
DOWN
RIGHT
LEFT
UR

UL

LR

LL

N
SCRLL
SCRLH
RCSLO
RCSHO
TMP
TIMES
RCSL
RCSH

MAIN

GEN

ORG

‘-"-‘-'....K‘l..l“‘l‘.“.

PHP
PHA
TXA
PHA
TYA
PHA
TSX
TXA
PHA
CLD
JSR
JSR
JSR
JSR
JSR
INCZ
BNE
PLA
TAX
TXS
PLA

$1900

$C38B
$0024
40051
$0020

$0020
$0021
$0022
$0023
$0024
$0025
$0026
$0027
$0028
$0029
$002A
$002B
$002C
$002D
$002E
$002F
$0030
$0031
$0032
$0033
$0034
$0035
$0036
$0037
$0038
$0039
$003A

INIT
SCRTMP
TMPRCS
GENER
TMPSCR
TIMES
GEN

;»wvmwﬁonwnodore

May Not Reprint Without Permis

RETURN TO BASIC ADDRESS
PAGE ZERO DATA AREA POINTER
DOT SYMBOL = 81 DECIMAL
BLANK SYMBOL = 32 DECIMAL

PAGE ZERO LOCATIONS

SAVE EVERYTHING
ON STACK

CLEAR DECIMAL MODE

REPEAT 255 TIMES
BEFORE QUITTING
RESTORE EVERYTHING

34

.Ca

i

1621
1922
1923
1924
1925
1926

1920

1930
1932
1935
1937
1938
1934

193B
193C
193D
193E
193F
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
194A
194B
194C
194D
194E
194F
1950
1951
1952
1953

1970

1970
1973
1975
1977
1979
197B
197D
197F
1981
1984

A8
68
AA
68
28
uc

A2
BD
95
Ca
DO
60

00
80
00
15
00
80
00
1B
00
1B
D7
28
0t
FE
D8
D6
29
27
00
E8

00
15
00

20
B1
DO
A9
91
DO
A9
91
20
FO

8B C3

19
3A
1F

F8

19

A6 19

26
06
20
20
o4
51
20
BD
ED

i9

TAY
PLA
TAX
PLA
PLP
JMP

ORG

BASIC

$1930

« www.Commodor

A

May Not Reprint Without Perr

RETURN TO BASIC

MOVE VALUES INTO PAGE ZERO

INIT
LOAD

DATA

TMPSCR
TSLOAD

TSONE

TSNEXT

LDXIM $19
LDAX DATA
STAZX $1F

DEX

BNE

RTS

ORI (R I L LI TR DO LN L LI LT (T T T O T IO N (IO B LN LI

ORG

JSR

LDAIY
. TSONE

BNE

LDAIM
STAIY

BNE

LDAIM
STAIY

JSR
BEQ

35

LOAD

$00
$80
$00
$15
$00
$80
$00
$1B
$00
$1B
$D7
$28
$01
$FE
$D8
$D6
$29
$27
$00
$ES
$83
$00
$15
$00
$00

$1970

RSTORE
TEMPL

BLANK
SCRL
TSNEXT
DOT
SCRL
NXTADR
TSLOAD

MOVE 25. VALUES
-01
STORE IN PAGE ZERO

SCRL
SCRH
CHL
CHH
SCRLO
SCRHO
TEMPL
TEMPH
TEMPLO
TEMPHO
up
DOWN
RIGHT
LEFT
UR

UL

LR

LL

N
SCRLL
SCRLH
RCSLO
RCSHO
T™P
TIMES

GET INIT ADDRESSES
FETCH BYTE FROM TEMP
BRANCH IF NOT ZERO
BLANK SYMBOL

DUMP IT TO SCREEN

DOT SYMBOL
DUMP IT TO SCREEN
FETCH NEXT ADDRESS

.Ca

i

1986
1989

1984
198D
198F
1991
1993
1995
1997
1999
199B
199D
19A0
1942
19A5

1946
19A8
19A9
1944
19AC
19AE
19B0
19B2
19BY4
19B6
19B8
19BA
19BC

198D
19BF
19C1
19C3
19CY
19C6
19C8
19CA
19CC
19CE
19D0
19D2
19Dy
19D6
19D8
19DA
19DC
19DD
19DF

19Eb
19E6

19E9
19EB

20
60

20
B1
C9
Fo
A9
9
FO
A9
9
20
FO
20
60

A9
AA
A8
85
85
85
A5
85
AS
85
A5
8
60

E6
Eb
E6
E8
EY4
FO
EO
DO
E6
E6
E6
Do
A5
Cc5
FO
A9
60
A9
60

20
B1
DO

A6

A6
20
51
06
00
26
o4
01
26
BD
EB
Ab

00

20
26
39
25
21
29
271
36
3A

26
20
39

33
0c

00
OE
27
21
3A

34
21
03
00

01

Ab 1

26
06

19

19

19

19

SCRTMP
STLOAD

STONE

STNEXT

RSTORE

NXTADR

PAGECH

NALOAD

NADONE

TMPRCS
TRLOAD

JSR
RTS

JSR
LDAIY
CMPIM
BEQ
LDAIM
STATY
BEQ
LDAIM
STAIY
JSR
BEQ
JSR
RTS

LDAIM
TAX
TAY
STAZ
STAZ
STAZ
LDAZ
STAZ
LDAZ
STAZ
LDAZ
STAZ
RTS

INCZ
INCZ
INCZ
INX
CPXZ
BEQ"
CPXIM
BNE
INCZ
INCZ
INCZ
BNE
LDAZ
CMPZ
BEQ
LDAIM
RTS
LLDAIM
RTS

ORG
JSR

LDAIY
BNE

RSTORE

RSTORE
SCRL
DOT
STONE
$00
TEMPL
STNEXT
$01
TEMPL
NXTADR
STLORD
RSTORE

$00

SCRL
TEMPL
RCSL
SCRHO
SCRH
TEMPHO
TEMPH
RCSHO
RCSH

TEMPL
SCRL
RCSL

SCRLL
PAGECH
$00
NALOAD
TkmPH
SCRH
RCSH
NALOAD
SCRLH
SCRH
NADONE
$00

$01

$19E6

RSTORE
TEMPL
TRONE

RESTORE INITJD}%&%&S'}CWO’ mmodo

nt Without Pe

GET INIT ADDRESSES
READ DATA FROM SCREEN
TEST FOR DOT

BRANCH IF DOT
OTHERWISE ITS A BLANK
STORE IT

UNCOND. BRANCH

A DOT WAS FOUND

STORE 1IT

FETCH NEXT ADDRESS

RESTORE INIT ADDRESSES

ZERO A, X, Y

INIT VALUES

GET NEXT LOW ORDER
BYTE ADDRESS

IS IT THE LAST?

IS IT THE LAST PAGE?
IS IT A PAGE BOUNDARY?
IF NOT, THEN NOT DONE
OTHERWISE ADVANCE TC
NEXT PAGE

UNCONDITIONAL BRANCH
CHECK FOR LAST PAGE

IF YES, THEN DONE
KETURN WITH A=0

RETURN WITH A=1

INIT ADDRESSES
FETCH DATA FRCGt T'EMP
IF NOT_ ZERO THri ITS ALIVE

re.ca

i

"19ED
19EF
19F1
19F3
19F5
19F17
19FA
1GFC
19FF

1A00
1A03
1A06
1A08
1A0A
1A0C
1A0E
1A10
1A12
1A14
1416
1418
1A1A
1A1C
1A1E
1A20
1A22
1A24
1426
1A29
1A2B
1A2E

1A2F
1A30
1A31
1A32
1A33
1A35
1A37

. 1A39

1A3B
1A3D
1A3F
1AM
1A42
1A4L
1A46
1A48
1ALA
1AUC
1A4E
1A50
1A52

1A5%

1A55

A9
91
DO
A9
9
20
FO
20
60

20
20
B1
C9
Fo
AS
c9
DO

‘A9

91
DO
A5
c9
FO
C9
FO
A9
9
20
FO
20
60

98
48

u8
A0
84
A2
BS
10
9
85
38
A5
ES
85
A5
85
BO
cé
po
18
65
85

20
39
ol
51
39
BD
ED
Ab

A6
2F
39
51
0ocC
32
03
14
01
26
OE
32
03
08
02
04
00
26
BD
D8
A6

00
32
08
29
15
FF
37

39
37
22
3A
23
11
23
ob

39
22

19

19

19
1A

19
19

TRONE

NEWADR

GENER
AGAIN

BIRTH

0occC

DEATH

GENADR

NBRS

OFFS

ADD

LDAIM
STAIY
BNE
LDAIM
STAIY
JSR
BEQ
JSR
RTS

JSR
JSR
LDAIY
CMPIM
BEQ
LDAZ
CMPIM
BNE
LDAIM
STAIY
BNE
LDAZ
CMPIM
BEQ
CMPIM
BEQ
LDAIM
STAIY
JSR
BEQ
JSR
RTS

TYA
PHA
TXA
PHA
LDYIM
STYZ
LDXIM
LDAZX
BPL
EORIM
STAZ
SEC
LDAZ
SBCZ
STAZ
LDAZ
STAZ
BCS
DECZ
BNE
CLC
ADCZ
STAZ

37

BLANK
RCSL
NEWADR
DOT
RCSL
NXTADR
TRLOAD
RSTORE

RSTORE
NBRS
RCSL
DOT
0cC

N

$03
GENADR
$01
TEMPL
GENADR
N

$03
GENADR
$02
GENADR
$00
TEMPL
NXTADR
AGAIN
RSTORE

$00

N

$08
OFFSET
ADD
$FF
T™MP

RCSL
T™MP
CHL
RCSH
CHH
EXAM
CHH
EXAM

RCSL
CHL

= www.Commodor

A

BLANK SYMBOL

STORE IT IN SCREEN COPY
THEN ON TO A NEW ADDRESS
THE DOT SYMBOL

STORE IT IN SCREEN COPY
FETCH NEXT ADDRESS

IF A=0, THEN NOT DONE
ELSE DONE. RESTORE

INIT ADDRESSES

FETCH NUMBER OF NEIGHBORS
FETCH CURRENT DATA

IS IT A DOT?

IF YES, THEN BRANCH
OTHERWISE ITS BLANK

SO WE CHECK FOR

A BIRTH

IT GIVES BIRTH

STORE IT IN TEMP
INCONDITIONAL BRANCH
FETCH NUMBER OF NEIGHBORS
IF IT HAS 3 OR 2
NEIGHBORS IT SURVIVES

IT DIED!?

STORE IT IN TEMP

FETCH NEXT ADDRESS

IF 0, THEN NOT DONE
RESTORE INIT ADDRESSES

SAVE Y AND X ON.STACK

SET Y AND N = O

CHECK 8 NEIGHBORS

~-01

ADD IF OFFSET 1S POSITIVE
OTHERWISE GET SET TO
SUBTRACT

SET CARRY BIT FOR SUBTRACT

SUBTRACT TO GET THE
CORRECT NEIGHBOR ADDRESS

0K, FIND OUT-WHAT'S THERE
PAGE CROSS

UNCOND. BRANCH

GET SET TO ADD

ADD

STORE THE LOW PART

May Not Reprint Without Pe

.Ca

i

1A57
1A59
1A5B
1A5D
1ASF
1461
1463
1465
1467
1A68
1A6A
1A6B
1A6C
1A6D
1A6E

A5
85
90

B1
c9
DO
Eb
CA
DO
68
AA
68
A8
60

3A
23
02
23
22
51
02
32

CF

LDAZ
STAZ
BCC
INCZ
EXAM LDATY
CMPIM
BNE
INCZ
NEXT DEX
BNE
PLA
TAX
PLA
TAY
RTS

RCSH
CHH
EXAM
CHH
CHL
DOT
NEXT

OFFS

www.Commodore.ca

May Not Reprint Without Perr
FET(4 THE HIGH PART

OK, WHAT'S THERE

PAGE CROSSING

FETCH THE NEIGHBOR

DATA BYTE AND SEE IF ITS
OCCUPIED

ACCUMULATE NUMBER OF NEIGHBORS

NOT DONE
RESTORE X, Y FROM STACK

This program was prepared by:

Dr. F. H. Covitz,
Deer Hill Road,

Lebanon,

N.J. 08833,

Usa,

38

s ON

196
114
128
1319
149
150
169
89
3g@
g
129
33é
349
359
369
378
388
399
469
419
420
439
44¢
450
468
479

g Wwww.Commodore.

A

READL

KEAD A$:C=LEN(ASI:IFA$S="+"THEML N]

IFC-1ORC-2THENCAS

A=ASCtAS)-4B8:B=ASL (RIGHTH A%, 1 -3

N=B+ 75 (B>9)-(C=2)%(14%(A+7% A7)

IFNAORN 255THENZSS

POKEL,N:zL=L+1:60T011¢@

FRINT"BYTE"L"=["A$"]1 T77":END

DATAG4EE .

BATA 08,48,8A,48,98,48.3A,8A.48.D8.20.3ﬂ,1?.29,8A.19.2@.E6,19,2%.60,1A
DATA25,79,19.A9.FF,CU,12,E8.FE,F6,4C.BB.E3,GA,68,28,4C.BB,C3

[IATA EA,EA,EA,EA,EA,EA,EA,A2.19.BD,SA,19,95.1F.CA,DQ.F8.6@.0Q.89.¢G.15.QG
DATABQ,QG.18,90,15,07,28.61.FE.UB,Dé,E?,Z?.GG.EB,BS.@@,15.9%.69
UATAEA,EA,EA,EA,EA.ER,EA.EA.EA.EA.EA.EA,EA.EG,EQ,EA.EA.EG.EA.EG.EA.EA,Ea
DATAEA,EA.EA.EA,EA,ZS,AG,19.B1,Zo.ne.eé.a9.29.91,2@.Uﬂ.ﬁ4.ﬁ9.51,¢1,:0,29
DATA Bn,19.F9.EU,20.#§.19.6%,2&,95.19,B1,2@.69,51.F@,@6.A?,Qﬂ,91.Za.Fa
DATAG4,A9,01.91,26,20,Bh.1?.F6.EB.26.A6.1?,5@.A9,9@,9A,AB,35,2@,85.26.85
DATAS?.A5.25,85,21,AS,Q?,BS.27,AS.S&.BS.3&,éﬂ,Ea,ﬁé.Eé.QG,Eé,l?.EB.E4
DATA33.FG,OC.EG,¢6,D3,9E.Eb,E?.Eé.21,Eé.Bé,De,ﬂb.A5,34.C5,? F3,83,A7,89
LATA 60,A9,e1,6ﬂ,EA,Ea.EA,EA.EA.EA.Eﬂ,Aa,1?.31,Eé.D@,ﬁs.A?,Zﬂ.91,3?,DO
DATA04,A9,SI,91,39,2G,RD,$9,Fﬁ,ED.Z@,Aé,19.6%,26,A6,I?,2@,2F,IA.B1,39,C9
DATAS?,Fﬂ,@C.AS,ZZ,E?,GZ,D@.14,99,01,91.26.D@,GE,AS,Z:,C?.%S.FG,68,C9,62
DﬁTAFB,G#,A?,ﬁ@,?i,Zé,ZG,BD.19,F6,D8,29,66.19,69,?8.48,8#,48.éﬂ.ﬂe.84.32
DATAAQ,@B.BS,Q?,KG,15.49,FF,85.37,38,A5,39,E5,37,85,EZ,AS.SA,BS,ZB,BQ,lI
DATAC&,23,D6,0D,18,65,39,85,22,95,3A,BS,23,9B,52.E6.23,31,22,C?.51,D9,ﬂ2
[ATHES,32,CA,00,CF,68,AA,68,R8,68,%

READY.

Mr. J. Smith of 38 Claremont Crescent, Croxley Green, Rickmansworth,
Herts. WD3 3QR

wrote in: The error in the definition of arc cos X shoulq,I
feey’be corrected. A possible version is:-C:)
ACS X = ATN(SQR (1-X%2)/X) + (1-SGN(X))*T /2

this correctly gives (unless X=Qﬁ arc cos (j¢.5) as

(annkfﬂ..

39

Ca

May Not Reprint Without Permission

: www Commodore ca

May Not Reprint Without Perr

YOUR LETTERS (cont.)

2™ /3 (12¢°) : your formula gives

arc cos (j¢.5) as -68° this would be incorrect

in e.g. a "cosine rule" problem.
As you expect PET to be used in educational establish-
ments for solving trig. problems, I think it important
to put this right.
(:)Note that if X is negative

1-SGN(X) = 2

& if X is positive

1-SGN(X) = &

this ensures that a correct multiple of T\ is added to the

arctangent. Also, would it not be better to suggest..

P = 188/ (before FNS is used)
DEFFNS (V) = SIN (V/P) etc.

for the user defined functions?

HERE ARE SOME COMMENTS FROM MR. M.J. SMYTH who is the
Senior Lecturer, Department of Astronomy, Royal Observatory,
Edinburgh EH9 3HJ.

Using BASIC and the IEEE 488 bus, PET can input 4¢
numbers per second from a 3% digit voltmeter (Hewlett
Packard 3437A). Also using BASIC, the user port can

generate an output trigger (e.g. to a measuring device)

40

n

v www Commodore ca

A

YOUR LETTERS (cont.)

within about 1¢ ms of an input trigger. We have not
yet tried using assembler., But the BASIC speeds make
possible very interesting applications in equipment

control and real-time data processing.

To input data in BASIC without returning to BASIC command mode
on receipt of a null string then an input statement can be simulated
by a GET loop which contains additional statements to cope with DEL
codes. This has the additional advantage that if there is a’displayed
frame on screen the frame characters will not be accepted as part of

the input.

The attached listing shows the above routine. This starts at line 9000
and to use it, instead of INPUT A8 you put GOSUB 8000:A8=INS.

£008 REM SUBROUTINE TO SINULATE NON-FET STANDARD INPUT STATEMENT
8818 REM STANDARD INPUT DOES NOT BREAK ON RECEIPT OF A NULL STRING
€626 REM "TINPUT" COULD BE ALSD BE SIMULATED EASILY

£030 REM ZA$ 15 DEFINED IN LINE 16

9EEa IN$="" PRINT" 2 ",

9010 505UB9G78 : PRINTZA$(ZE) ; : IF24=""THENTE 18

5828 IFZ$=CHR$(13) THENPRINT" " RETURNM

oE38 |FZ$=CHR$ (2@) THENONSGNCLEN (INS)) +130709618. 3368
9E48 PRINTZS: - IN$=IN$+24:60T03818

%6804 PRXNTEi;:!NS=HID3(IN$.1»LEN(INS)—1}:GOTO?BlG
9@73 ZR=1+:2B=1) :FORZA=1T06EB . GETZ4: IFZ3<2" " THENRE TURN
9833 NEXT:RETURN

41 -

May Not Reprint Without Perr

n

o

Snowless Version of Life:

The "Life" program listed in Transactor #5 can be further

refined to eliminate the snowy effect on the screen.

Mark Taylor, in the U.K., has written to us with a snowless
version of Life. He also included another interesting program
illustrated in example 2:

166
118
120
130
148
158
168
2008
384
316
329

41@
428
438

450
468
478

1. If you are plagued by snow on the screen during POKE operations to
the screen RAM or with machine code programmes, then if in BASIC
location 59409 is POKEd with 52 then that will inhibit the character
generator. Any transfer operations can then be carried out with the
screen totally blank. To restore normal operation the above location
should be POKEd with 60. For machine code programmes then LDA 52 &

STA ABSOLUTE the above location will be somewhat faster.

The attached listing is a snowless version of '"Life".

READL

READAS :C=LEN(AE) : IFA$="%"THENEND
IFCCLORCI2 THENZOB
A=ASC(A$)-48:B=ASC(RIGHT$:A$,1))-43

N=B+7¥(B33) -(C=20# (16 KLA+TH(AIF) D

IFNCBORID 25 5 THEN2G]

POKEL.N:L=L+1:G0OT)11@

PRINT"BYIE"L"=L"A4$"]1 772" :END

DATAB408

DATAZB.36,19,26.8A,19, 26.E6,19, 26.08,1A,A%.34,3D, 11.E3
DATA28.768,19,A9,3C.3D,11.E8,A9,FF.CD,12,E6.F@,E6,4C.38B,23,AR.68.23, 4C. 3R, 3
DATAR EA.EA,ER,EA.EAR,EA,EA.A2,19,BD.3A4,19,95.1F,CA,DA.F3,46,08.33,808,15.0a
DATABEB.088,1B,06.1B,07,28.01,FE,DE.D6,29,27.68,E3,683.08,15,60.00
DATAEA.EA,EA,EA.EA.EN, EA.ER,EA,EA.EA.EA,EA.EA.EA, EA.EA.EA . EA.ER.EA.ER.EA
DATAEAR.EA,EA,EA.EN,.28,RE.13,B1,26.D8.,86,A9.20.31,26.08,84,R9.51.91,26.28
DATA BD.13,.F@,ED.28,76,19.68,268,A6.13,81,20.:29,51,FB.85,A%,808.31,26.F08
DATAB4.AT.01,91.26,20,ED.13,F8,ER.20,A6,15.68,A9%, 60.AR AR, R5.23,35,26.35
DATA39,A5,25,85,21,85,25.85,27,A5.36,35,3A.68 ,E5, 26.FE5,2@,E6.39.E3,E4
DATAR33.FB8,8C,E6.88.08,8E.E6,27,E6.21,E6,3A.D3,36,A5.34.05,21.F8,83,A9.82
DATA 68.,A3,81,60.ER.EA.EA.EA.ER.EA.23,R6,19.8B1.26,00.35,39.28.31,39,DA
DATAB4.A3,51,91.33,28,BD0.19,F@,ED.23,46,19.63,28,A6.13.,2@, 2F . 1A.B1, 39.:23
DATAS1.FB,8C,A5.32,09,83.D8,14,A%9.01,31,26.D3,8E,A5.32.29,683.F3,83,(9.82
DATAFB.84,A49,88,91,26,26.BD,19,F6.D3,208,A6.13,6@, 98.43 .37, 46.A8,88, 84 .32
DATARZ,B8,85,29.18,15,49.FF,35,37.33,45,39.E5,37,85.22.A5,3A.35.23,B6. 11
DATACE,23.D8,8D.13,65,39.85,22,A5.31,35,23.93,82,E£6.23,81,22.C9.,51,D00.82
DATAEG.32.,CA,DB.CF,563, ARA.53,A8,68. %

42

ww.Commodore.c

May Not Reprint Without Perm

10N

: www Commodore ca

A

Programme Overlays on a PET - Supplied by !Mike Stone

1.

The 8K core of a PET is not usually a limitation in the
home computer and hobbyist world, nor even in an
educational environment where students are just creating
small exercise programs. With the devices now available
for attachement - the second cassette,(the printer, and
floppy discs shortly)- the PET becomes a valid and
genuine data processing machine, and complex string

handling programs with files may well run out of space.

Programmers with experience on other computers know

that one answer to this kind of problem is to break

the program down into segments, SO that only part of

it is occupying memory at any time, and all or part

is "overlaid" by other segments as required. When

the program segments are on a disc, direct access features
normally permit great flexibility, in that any required
segment can be loaded; for tape only systems, the

segments have to be arranged in order of need - e.g. job

initialisation, main coding, and termination segments.

Since PET's BASIC includes a LOAD instruction to acquire
dynamically a new program from tape, and (provided the
new program is no longer than the one issuing the IOAD)
all data areas remain available to the loaded program,
the basis exists for an overlay system. However, for
true overlaying, it is essential that some of the
original program (e.g. control of the program flow,
common subroutines, etc.) be retained throughout,
whatever new segments are loaded. PET does not do

this automatically; this paper tells you how to do 1it.

43

May No eprin t Without Perr

n

= www.Commodor

May Not Reprint Without Pe

PET stores BASIC programs in location 1024 upwards.
Note that the pointers, and line numbets, are pairs of
bytes giving low/high. The high must be multiplied by
256 and added to the low to give the actual quantity.

Whenever a line of code is entered from the keyboard,
PET moves every statement around as necesgsary and re-
adjusts all the chaining, so that statements are always
stored in strict sequence of line number.

When your program contains a LOAD statement, this does
NOT imply either CLR or NEW. The.new program is simply
loaded in at (and then executed from) location 1024,
for as much space as it needs. The new program does
NOT (as with some BASIC's) just replace those statements
with identical line numbers; it is strictly a new
program in its own right. However, any program
statements at the end of the LOADING program whose
space 1s not required by the LOADED program do remain
unscathed by the LOAD. The problem is that the new
program has no (forward-) chain into them, so PET

knows nothing about them.

It follows from the above that if we code the
instructions-to-be-preserved with high line numbers;
and if the space needed by the newly-loaded segment
does not over-write them; and if we can force the new
segment to chain into the old instructions; then

we have a real overlay system. So, if during the
original program you can find in memory the last
statement not to be preserved, you know it forward
chains into the next highest line number, i.e. the
first of the statements you do want preserved. Then
when the overlay arrives, you need only find its
very last statement and replace its forward-chain by
the one you previously found, and both new and old
code form a contiguous program.

44

€.Ca

i

g WWW. Commodore ca

May Not Reprint Without Perr

8. A very simple illustration follows

Enter this program (do NOT put any spaces, except
after line numbers):

1¢
20
3¢
5¢
55

A=A+l
GOSUB5@
LOAD"NEWPROG"
PRINTA*2
RETURN

This is stored as follows ("PEEK" values):

1024)
5)
6)
7)
8)
- 9)
1030)
1)
2)
3)

11

10

65
178
65
170
49

forward chain;

4 x 256 = 1024 + 11 = 1035

z line number 10

A

- o+ ¥

45

g www.Commodore.ca

May Not Reprint Without Permission

4) o)
” Z; lz ’ forward chain; 4 x 256 = 1024 + 19 = 1043
7) 20 } line number 20
8) o
9) 141 GOSUB
1040) 53 5
1) 48 0
2) 0
>3 34 } forward chain; 4 x 256 = 1024 + 34 = 1058
4) 4
°) 30 line number 30
6) 0
7) 147 LOAD
8) 34 n
9) 78 N
1050) 69 E
1) 87 W
2) 80 P
3) 82 R
4) 79 0
5) 71 G
6) 34 "
7) o]
> 8) 43 } forward chain; 4 x 256 = 1024 + 43 = 1067
9) 4
1060) >0 line number 50
1) o]
2) 153 PRINT
3) 65 A
4) 172 *
5) 50 2
6) 0
749 i forward chain; 4 x 256 = 1024 + 49 = 1073
8) 4
2) >5 j line number 55
1070) o
1) 142 RETURN
2) o
»> 3) o}

46

g WWW. Commodore ca

If we want lines 50 and 55 to be available to dnvove Fariyp, Without Perr

the important information is the forward chain in line 30,
i.e. locations 1043 and 1044.

To see how it works, SAVE"PROG" and leave the cassette

Record and Play keys down.

Enter NEW; then the following (again, no spaces):

5 A=A*2
19 GOSUB5@
15 STOP

LIST if you like, to confirm that there are no lines
50 and 55.
SAVE"NEWPROG" .

Now rewind your tape, and press RUN.

PROG will be loaded, will print "2", and continue up

the tape. When NEWPROG has been loaded, you will get
?UNDEF'D STATEMENT ERROR IN 1¢

That is because the overlay looks like this:

1024) 0
5) 11 " forward chain to 1035
6) 4
7 > line number 5
8) 0
9) 65 A
1030) 178 =
1) 65 A
2) 172 *
3) 50 2
4) 0
> 5) 13 forward chain to 1043
6) 4
7) 10 i line number 10
8) 0
9) 141 GOSUB
1040) 53 .5

47

n

10.

11.

= www.Commodor

May Not Reprint Without Pe

1) 48 0
2) 0
> 3) 25 forward chain to 1049
4) 4
>) 15 ; line number 15
6) 0
7) 144 STOP
8) 0
-+ 9) 0

The last line, 15, does not chain into the old line 50.
But that line 50 is still there, in location 1058 et seq.
So, do this:

POKE 1043,34
POKE 1044, 4

LIST - and behold, NEWPROG now includes lines 50
and 55!

You can RUN if you like, to prove it.

What we have done is to use what we discovered about
the first program {(last sentence of paragraph 9) to

modify the second program.

How do you program all this to happen automatically? It
is not at all difficult. Let us assume that the
statements-to-be-preserved are at lines 5000 and upwards.
So, just before that, code this (NO SPACES):

4997 N1=PEEK (201) Get (low) address of line 4998
4998 N2=PEEK (202) Get (high) address of line 4999
4999 RETURN

5000 ceee eeee

(Locations 201, 202 always contain, during instruction

execution, the address of the next instruction -

strictly, the "@" between instructions.)

48

€.Ca

i

12. Now, just before your program wants to load in the

: www Commodore ca

overlay program, code this (spaces if you like!l):

850
860

870
880
890
900

910

920

GOSUB 4997
N1 = N1 + 14 Low address of 4999 (the length
of 4998 is 14 bytes)

N2 = N2 * 256 Actual high address of 4999

If N1 < 256 THEN 900 Adjust low for page boundary

N1l = N1 - 256

BC = N1 + N2 + 1 BC is now actual machine address
of line 4999

Zz1 = PEEK(BC) :22=PEEK (BC+1l) Hold the forward-chain
locations out of 4999

LOAD "NEWPROG"

13. As the first instructions of NEWPROG, the chain-adjusting

must be done. The necessary code is very similar:

At the end of NEWPROG, as the very last statements,

code (NO spaces):

3997 N1=PEEK (201)

3998 N2=PEEK (202)

3999 RETURN

And ét the beginning code:

10 GOSUB3997
20 N1=N1+14

A30 N2=N2*256
40 IF N1<256 THEN 60
50 N1=N1-256
60 BC=N1+N2+1 BC is now actual machine

address of 3999

70 POKE BC,Z1:POKE BC+1,Z2

14. It is worth just reiterating that the total size of the

incoming overlay (irrespective of line numbers; just its

size in bytes occupied) must be less than the total

size of the instructions being overlaid.

Mike Stone

49

1y Not Reprint Without Perr

n

= www.Commodor

A

ABBREVIATING BASIC WORDS

As explained in the instruction manual, any BASIC word takes
up 1 byte of memory storage space. It has been stated that
the work "PRINT" can be abbreviated to "?" which saves time
on entering programs. When listed, the word is expanded

to its full form. Both forms take 1 byte per word.

We now have information on how to abbreviate the complete

list of BASIC words. The algorithm to remember is as follows:

1. For any BASIC word, type in the first letter of the
word (e.g. V for VERIFY).

2, Hold down the 'Shift' key and type in the second letter.
If you are in graphics mode, this will appear as a
graphic character (e.g.a for E). It is a good idea
to go into lower case mode as the two letters are then
easy to read.(Poke 59468, 14 ~=# 12 for PET to graphics).

In some cases, this two-letter method gives a possibility of
more than one BASIC word (e.g. READ and RESTORE). For one
of the words (usually the longer) it will be necessary to
type the first two letters and the shifted third. All these
abbreviations are converted to full words upon the command

LIST.

Below is a complete list of the words and abbreviations:

50

May Not Reprint Without Pe

.Ca

i

BASIC ABBREV
LET Le
READ Re
PRINT ?
PRINT# Pr
DATA Da
THEN Th
FOR Fo
NEXT Ne
DIM Di
END . En
GOTO Go
RESTORE REs
GET Ge
GOSUB GOs
OPEN Op
CLOSE CLo
SAVE Sa
LOAD Lo

SIMULATING A CALCULATOR ON YOUR PET

BASIC ABBREV
DEF De
RETURN REt
STOP St
STEP STe
INPUTH In
SGN Sg
ABS Ab
SQR 5q
RND Rn
SIN Si
ATN At
EXP Ex
AND An
NOT No
VAL Va
ASC As
CMD Cm
VERIFY Ve

= www.Commodor

May Not Reprint Without Pe

BASIC ABBREV
RUN Ru
CLR Cl
LIST Li
CONT Co
FRE Fr
TAB (Ta
SPC(Sp
.PEEK Pe
POKE Po
USR Us
SYS Sy
WAIT Wa
LEFTZ LEf
RIGHTZ Ri
MIDg Mi
CHRgZ Ch
STRE STr

Many users have asked whether the PET can do live calculations.

Although a simple sum such as 2 + 3 can be performed thus:
PRINT 2 + 3

it would be more convenient if the operation of a calculator

'RETURN'

could be simulated directly.

give you an idea of how this can be achieved:

The following program should

51

.Ca

i

S REN GRAPHICS

18 PRINT"(, {
28 PRINT" |
25 PRINT" I
38 PRINT” -

"

rl
rl

48 FORI1=1T013
S8 PRINT” [~]
66 MEXT

: www Commodore ca

May Not Reprint Without Perr

18448
1818
1628
1638
1643
16858
1655
1658
1673
ceed
2618
2628
ce3a
2848
£E53
cE83
£ees
£ 873
<Ee8
4003

4812 -

4623
4633
46403
4B42
4643
4045
4658

saea8
Te10
sa28
S63a8
sa4g
saesa
51008
5118
5115
5128

READY.

REM CONTROLLER .° INF
SETAS. IFAS=" "G0TO10 1
A=ASCIAS)
IFAYSTTHEN 4 a@E
IFAC4BANDA () 46 THEN2G 88

IF T=1 THERW$="" 7=
I7LENGI$) =3 THEND 3= "ERFOR
R$=KEHAS =VALIHSS GOSURSE28
597016088

REM OPERATIRS

IF AC4BCRA=4 4 THEND 3= "ERR(
IFA=SBTHENR=N+1 BN} =X
IFOF=" %" THEN K=}k
IFO§="/"THE =

IF 6=+ THE NN =4
IFa8="~"TH
At OP=AS

"GOBUBSLLT T=1:60T01833

CLR:GOTO 1200

iR " 39 SUBSLL!
= =1:GO5UB5008

cEE =R NI 0= 0 T 130791608

-4 N m
.;:
II l!

3
Xl
»

i H=EN-1:T=8

~ U
£
A P
5l

l""l 1 2y -

SO 4K

ALK

AFﬁf—”L'THLI;— LOGTHD

IFA$="E" THENRK=EHP ()

1Fﬁ$‘”'"6"'72859

IFAf="e"THENCLE T=1

139 SURS0EY3

3 59701600

REM DISPLAY

AF=CSTR$H:

D$=RIGHTS${" "H{F,11) e "
IFX{=993333993AMDK) . 8160T05115
IFK=8G0T)511°5
IFABSCHID1E380RABS (X) (4E-33 THEND$="ERROR
R§=RIGHTS$ (" "+44,135)
DS=LEFTS(RS$, 11+ "+RIGHTS$(RS$.3)
PRINT'OEOOUSSENGNENI" D

RE TURN

":GOTOTL4S

52

n

= www.Commodor

A

Although the program is by no means perfected, the framework
exists for a versatile program. Lines 4000 onwards determine
the functions so that when 'S' is pressed the sine of the
number on display is calculated and to clear all registers
'+' is pressed. The normal operation for +, -, x and + is
the same as a straightforward calculator, and there are
multiple sets of brackets.

This idea could be used to simulate actual models - including
programmable calculators, thus giving access to a wide

range of ready-written low key software. We would like to
hear from any user who succeeds in doing this.

BITS AND PIECES

Some more hints and tips to help you write efficient
programs:

When writing REMark statements, graphics and lower
case can be included if they are put inside inverted
comma's. This enables separating lines such as:

l¢ REM " n

When using subscripted variables such as A(4) the operating
system automatically reserves 10 elements without having

to declare a dimension with DIM. If, however, you are
using a very long program and are using less than

10 elements per variable - say 4 - it will save space

to declare the dimension's length. For example:

1¢ DIM A(4), C8(3)

53

May Not Reprint Without Pe

€.Ca

i

= www.Commodore.c

May Not Reprint Without Permissio

To display a number (N) to D decimal places, use the

following routine:
1§ M = INT(N*1@+D+3.5)/1@4D

2¢ PRINT M

For an intriguing display of graphics, try running this

one line program entitled "BURROW"

1 Ag$="#¥>&":PRINTMIDS (A$,RND(.5) *4+1,1) "* € "; : FORT=1T03@:
NEXT:PRINT"@ ¥ & " ; : GOTO1

* * * * * * * * * * * *

STANDARD SYMBOLS

1 have assembled a small table of symbols that are not hard
to obtain from a typewriter (if you are using one) and are quite
distinguishable if you write out your programs in capital block
letters. It would be appreciated if you use these when submitting
software for publication; especially programs containing cursor
control.

SYMBOLS

-~ carriage return
« space (blank)

h - cursor home
¢ = clear screen

ISINEER S S

cr- cursor right - RVS on
cl- cursor left - RVS off
Cu- cursor up - Shift on

cd-~ cursor down
d - delete
i - insert

To represent ahy graphic characters cléarly, the character
below should be followed by the '@'. For example:

N=Ye (M w/Shift on)

Following this standard should make programs fairly easy to
read however any suggestions are quite welcome.

54

i

« Wwww.Commodore.ca
INTERFACERS.... ' , May Not Reprint Without Permission

This month I received a letter from Andrew Hwang of Concordia
Designs in Toronto. Andrew has successfully interfaced a PET
to an X-Y Plotter. Excellent! A copy of his response follows.
Thank you Andrew.

If anyone else has gizmos or gadgets interfaced to their FETs,
be it practical or unusual, write in and tell us about itt

A brief note is sufficient (such as Andrew's), and businessess...
the "TRANSACTOR" is sent to over 500 subscribers.
Get the hint?

INNOVATIVE

CUSTOM DESIG

SPECIALISTS

INTeRFACING DIVISICK
P.O.Box 219, Station D, Scarborough, Ontario, Canada. MI1R 5B7

CPU Club [i.embers

c/o Commodore business iachines Ltd.
3370 Pharmacy Ave., igincourt,
CNT~RIC. Mlw 284 13 Jec.197¢

Az: Full Graphical Plotting Capability
with the Pzl and a Jigital Plotter

Jear Fellow CPU liembers:

we have succeeded in interfacing the Pz«T with a
vigital Plotter made by Houston Instruments. Full hard-copy
gravhs of data or functions can now be easily plotted with pen
accuracy of up to 0.005 inches. usoftwares are also azvailable
to issue plotting commands in simple basic steps. Anyone wishing
more information may write to: Concordia uvesigns, Interfacing pDiv.,
P.C.Box 219, otation 0, Scarborough, Ontario, Canada. M1R 5B7.

Faithfully,

dir, Andrew ﬁ@angﬁinﬁﬁc.

55 P=T User Club ilember #€5

T s o e g

www Commodore ca

- Not Reprint Without Pe
Jim Butterfield, well known FPET entnu51aqt has sent to
Commodore a couple of interesting items which have also been
passed on to PET User Notes. Thanks Jim...and thanks for
recognizing Brad as a source--maybe he'll send in something
else as well.

Summary of Cassette data file "patches"

The following information has been passed around users, and is

now "official" with the issuance of a Commodore bulletin. It seems
worth while to summarize briefly:

I. Opening a file for writing: an omission in current ROM programs
makes it highly desirable to precede all OPEN statements with
a counle of POKEs:
before OPEN x,1,., for writing: ©POXE 243,122 : POKE 2lL,?
before OFEX x,2,.. for writing: POXE 243,58 : POKE 2Lk, 3

2. When writing taves, it is useful to increase the spacing betwesen
tave blocks; otherwise you might miss a block during subsequent
reading. There are several avoroaches to this: my technique is
to call the following subroutine immediat=ly after each PRINT#:

Cassette #1 Cassette #?
950 IF Z9<=PEEK(625)GOTO 990 950 IF Z9<=PEEK(626)GOTO 990
960 POKE 59411,53 960 POKE 59456,207
970 FOR Z9=1 TO 60:NEXT 29 970 FOR Z9=1 TO 60: NEXT Z9
980 POKE 59411,61 980 POKE 59U56,223
990 Z9=PEEK(625):RETURN 990 29=PEEK(626):RETURN

3. Even with the above coding, it seems wise to guard against a

potential "dropped block"”. Think in terms of writing a "number
of items" total on tape so that when reading, you can check that
nothing has been lost.

L. Don't PRINT# a line of over 80 characters unless you're prepared
to do some careful work with GET# statements when you read it back
in. In general, avoid "primt punctuation" when writing (PRINT#1, A;B
... PRINT#2, X8,Y8); each data element can be written as a separate
"line". Watch for long strings.

5. Either: check the value of ST after every read, or use your own
checking routines on your data. ST can be useful, but doesn't
guarantee your data is 100% good. IF ST=0 .. no errors are seen;
IF ST)63 .. you have come to the end of file; if anything else,
an error has been detected.

6. Always CLOSE your cassette files after you're finished with them,
When writing, your data is accumulated into a buffer .. if you
don't CLOSE, it may not go onto tave,.

Most Basic errors abort the cassette file without CLOSEing it;

if this haopens while you have a cassette tave open for writing,
better start over .. your tape will likely have data missing.

56

on

www Commodore ca

UNLIST Revisited Jim Butterfield, Totent dMay Not Reprint Without Perr

Larry Tessler's UNLIST appeared in User Notes without much fanfare.
If you can read between the lines, however (and cope with the
typos) it's quite a blockbuster of a program.

In general, it allows a program to be handled as data ... using the
UNLIST key, you can re-process programs as if they were data files,

and create such things as program-writing programs, l.nguage transkators,
and many other startling things.

Perhaps the most immediate use of UNLIST for the casual computerist
is to merge two programs together. One program could contamin
subroutines; and these could be merged with other programs to

save a lot of typing. It's especially useful to be able to merge

a single set of DATA statements into several programs, each of
which is set up to process the DATA in different ways.

Brad Templeton (Toronto) has passed me an even more concise way of
doing the same thing. I'll go through the whole operation, steo by
step. o

First, prepare the orogram you will want to merge in the following
manner. Load the prorram. Put a blank tave into the cassette and
rewind. Enter OPEN 1.1,1 : CMD 1 : LIST. Be sure to put this on

a s‘negle line, using colons as indicated. Press RECORD and PIAY as
instructed. The tave will move., When it stoos. type ?"POKES1l1,0":
PRINT#1:CLOSE1l. TYour tape is now ready, and PET should be back to

normal operation. You mavy file this tape and use it at any future
time.

Now for the merge. Vhen you have your second program loaded into
the PET, mount the tape you have previously written. Type OFEN1,
press PLAY as reauested, and wait for the tave to stop.

Here comes the tricky bit. Clear the screen, give L cursor down's,
and type the following line, but DO NOT HIT RETURN:

POKE611,1:POKES25,1: POKE527,13:?"h" (h is Cursor Home, disvlaying reverse S)

Don't hit return. Instead, press cursor home and 6 cursor downs ...
then type the identical line. This time, hit RETURN at the end of
the line and listen to the tape move.

Eventually, things will stop with a ?SYNTAX ERROR or ?0UT OF DATA
printed between the two lines, and the tape should stop. (If it
doesn't, stop it with the RUN-STOP key). The merge is now complete.
Tyve CLOSE 1 to close the file.

(The ?"20K=611.0" in varagravh 5 may be unnecessary .. I put it there

to guard apainst a processor crash situation I encountered during
early testing ...)

57

n

= www.Commodor

A

May Not Reprint Without Per

Jim has also submitted a schematic of a circuit he demons
demonstrated at the first meeting of the Toronto PET Users
Group. The schematic has been published in the club
newsletter and Lyman Duggan suggested I pass it on to
Transactor subscribers. Thanx again Jim. -Karl J.

Poar Man's D/A Converter

Cheap; good for gererating Chamberlin/stvle music. Pracision
resistors are preferred, but most anything will renerate a
recognizable sound.

Section B of the diarram suvnorts the CB2 sound effects - so that
one interface board covers most sound reovirements.

>N
P

3K % “IE,,‘(«J ;:;UFIER
17_\’

The capacitor provides some reduction of the samnling frequen;y
(when generating music) .. tone controls on the m amolifier will
also help, if available.

The HUH "Petunia" gives a high quality equivalent of this converter.
Toronto price - about $LO.

Reference: see BYTE, September 1977, lengthy article by Hal Chamberlin
on computer-generated music. 6502 programs are given.

58

€.Ca

i

r——— e

g www.Commodore.

A

The "ON...GOTO" Statement

e.g. 100 ON I GOTO 10, 20, 146, 2040

The above statement, when encountered, will cause program
execution to branch to the line indicated by the I'th number after
the GOTO. That is:

If I=1 GOTO 10
If I=2 GOTO 20
If I=3 GOTO 146
If I=4.4 GOTO 2040

I is truncated to an integer value. If I is equal to zero, or attempts
to select a non-existent line (greater than or equal to 5), in this
case the statement after the ON...GOTO is executed. As many line
numbers as will fit on a line can follow an ON...GOTO. Thus the main
purpose is to eliminate successive IF...GOTO statements and save on
memory consumption. -

e.g. 200 ON SGN(X)+2 GOTO 40, 50, 310
In this case, execution will branch to line 40 if the SGN(X) expression

is less than zero, line 50 if equal to zero and line 310 if equal to
one.

When using expressions in the ON...GOTO statement, do not
allow the final result to be negative. Implement an ABS function into
the expression, else an ILLEGAL QUANTITY ERROR will result.

The "ON...GOSUB" Statement

Identical to the ON...GOTO statement except that a subroutine
call is executed instead of an absolute GOTO. On return from the
subroutine, execution continues at the line following the ON...GOSUB.

A Short Note On Subroutines

Jumping out of a subroutine can be HAZARDOUS! That is,
subroutines containing IF...GOTO's or ON...GOTO's can cause an OUT OF
MEMORY ERROR for this reason: When a program encounters a GOSUB, the
machine loads the return address into a stack area. The subroutine is
then executed and let's say 'jumps out' on a GOTO statement within the
subroutine. Thus the RETURN statement is never executed and the return
address is not unloaded from the stack. The stack will fill to the
limit and the error message results.

59

Ca

May Not Reprint Without Permission

o www.Commodor

rint Without Pe

May Not Rep

To avoid this problem the ON...GOTO statement can be used
instead of RETURN. Thus all GOSUB statements directed at that
particular subroutine must also be replaced with absolute GOTO's.

By implementing a control variable just prior to the GOTO, the
return addresses can be placed after the ON...GOTO in the subroutine
and the hazard is eliminated. For example:

100 C=1:GOTO 5000
110 REM RETURN FROM SUB.

Subroutine address

500 C=2:GOTO 5000 Same subroutine
510 REM RETURN FROM SUB.

5000 REM SUBROUTINE
5010"(

-

'SUBROUTINE'

5080 -

5090 ON C GOTO 110, 510 Instead of RETURN

NEWSLETTER ADDRESSES

1. The "Tranasctor"
%570 Pharmacy Avenue
Agincourt, Ont.

M1W 2K4

(subs. $10.00 Cdn.)

2. PET User Notes
P.0. Box 371
Montgomeryville, PA 18936

(subs. $6.00 U.S.)

4
\
A

(subs. $15.00 U.S.) \\

A

%. THE PET PAPER
P.0O. Box 43
Audubon, PA 19407

4. Cursor (subs. $24.00 U.S.)
P.0. Box 550
- Goleta, Calif. 93017

5. The PET Gazette
c/o Len Lindsay
1929 Northport Drive -
Room © \
Madison, Wisconsin 53704

60

(Free w/lg. S.A.S.E. U.S. postage)

€.Ca

i

2 www.Commodore.ca

May Not Reprint Without Pe

FATLSAFING

Recently I have received a number of inguiries on how to

avoid entering the command mode by hitting "RETURN" after an
input statement without data entry. I know of three such
methods:

l.

The "GET" loop instead

e.g. 20 GET A$: IF A$=" " THEN 20
30 PRINT A$

The above routine will loop continuocusly in line 20 until a
key is depressed. Once entry is made, the routine will print
the entry be it alphabetic, numeric or graphic character.

Use of the numeric variable is confusing because even if no
key has been struck, the value returned is zero. That is:

20 GET A: IF STR$(A)=" " THEN 20
50 PRINT A

will return O immediately.

Forced Input

If after an INPUT statement you arrange an invalid input to
the right of the '?', hitting "RETURN" will result in a ?
REDO FROM START and go back to the INPUT statement. For
example:

10 INPUT "A VALUE ¥PK¥ % clclclcl”;A
20 PRINT A

The cursor is left 2 character spaces beyond the rer.
Therefore you must arrange your 'invalid input' such that

" it will be erased by the entry else it will be included

(be it to the right or left of the entry), and a 7REDO FROI1
START will be returned.

61

i

y www Commodore ca

May Not Reprint Without Pe

The above routine does not work with string variables bacause

%

' will be accepted as an alphabetic input if "RETURN" is hit.

Therefore a test statement must be added:

10 INPUT "A CHAR. ¥¥PY ™ clclclcl";A$
15 IF A$ = " & " THEN 10
20 PRINT A$

Opening the Keyboard as a File

By assigning the keyboard a file number using the OPEN

statement and opening that file for reading, all input statements
will accept data only as an entry. The following program will
demonstrate this.

1 OPEN 1,0,0 (last O optional)

500 PRINT "A VALUE?";
510 INPUT #1,A$

520 PRINT: PRINT A$
5%0 END

The open statement may be placed at the very beginning of
the program and may even be line O. Other programming can
be inserted (between 1 and 500). The preceding words and '?'
mist be displayed using a PRINT statement (line 500). The
double PRINT's in line 520 are required to get A% to print
on the next screen line. Otherwise A$ will be displayed
just to the right of the entry.

If anyone. should find bugs with this due to not closing
the file or otherwise, please let me know so that I may pass

it on.

62

n

g www.Commodore.ca
May Not Reprint Without Permission

HARDWARE FIX

Most PET Users involved with data files are aware of the problem
concerning file reads. That is after a block READ the tape motor
does not stop instantaneiously and tends to roll the tape past

the beginning of the next block resulting in 'LOST DATA'.
Realizing this, Richard Leon and Larry Phillips of the Vancouver
PET Users Group devised a hardware fix. 1t consists of a resistor,
a capacitor, a diode and the unused half of the DPDT switch
connected to the record button of the cassette deck (Figure 1).

(p.5v Motor Sovece

O—

ONDSED BaF |
oF ecowrp L

SUTTON J
SWTCH °
| z& . MoToR
100 s %W

-f

—T— 15,000 utd. 20v

GROONTD 1

= Fleorze 1.

63

i

: www Commodore ca

May Not Reprint Without Pe

Operation is relatively simple. During Data writes the record
switch is closed and the capacitor charges through the resistor.
When the block is finished the motor voltage turns off and C1
discharges into the motor through the diode causing the armature
to rotate that extra little bit. This allows a larger gap
between blocks. During reads, the motor still does not stop
instantaneously but it won't roll far enough for the tape head
to encounter the next block. (During reads the record switch

is up and the charging network is disabled).

The fix itself poses only one problem. Installation. Many of
you may not be willing to dismantle your cassette decks to
access the record button DPDT switch. Therefore I have a second
idea. Using the same concept as Richard Leon, build an
"INTERFACE' for your tape deck and install it between the 6 pin
molex plug and the printed circuit board edge connector.

The same circuitry is used with one major difference. The enable/
disable switch must be simulated such that identical operation
is obtained without using a mechanical switch. Therefore the
swtich needs control logic such that it enables the circuit
during data writes and disables it during reads. Ideally, this
could be done with logic gates, however most TTL logic chips
require +15 and -15 volt supplies. There is "logic" available
on the PCB cardedge. Here are the characteristics:

PIN OPERATION

on PCB
cardeds NONE . READ WRITE
READ Low Active Active
WRITE High High Active
SENSE High Low Low
MOTOR Open 6.5v 6.5v

(floating)

64

n

= www Commodore ca

May Not Reprint Without Pe

Using these lines a control must be de51gned to either
open the switch during reads or close it durlng writes. This
is where I stand right now. The 'write' line seems to be the
most likely candidate for the control input since 'write' 1is
held high constantly and goes low only during writes. Therefore
it could be used to hold open a N.C. (normally closed)switch.
However, when data is passed to the tape, 'write' is active
(high and low) which means the switch will be on, off or
unstable anyways.

If this signal could be 'filtered' and seen by the
switch input as low during writes the switch would stay closed
and the design is complete. Here's what I have so far. Will

it work?

0.5 v Motroe Soviece

ﬂ(3!
g |
| |
N T2 S T —4-- ZS [AMP Dode
une 159t %— | | Moo
v = |______ _
woxmgw
. ‘
T \EiOCXD/wf%L 20V
GWOUNY o

* N.C. integrated switch. Part number anyone?

SIOoN

TLASH g www.Commodore.c

May Not Reprint Without Permissio

Richvale felecommunicutionss 10610 3ayview save; Richinond
Hill,Ont-rio 14C 3NE 8284-4165 are plensed to announce
"Hampet'": Aiorse and WTY interface,

The "Hampet" is a morse and (ITY(Baudot) interface.You simply
olug the "Hampet" into the Pet,and your ready to display,
transmit and reccive morse and RTTY at rates upto 100WP,

The interface will also send random words and characters,
displayed and with audio from a built in side tone oscillator
and sveaker.In addition the "Vampet® can re-transmit 400
characters fron remnory for "broz" transmissions,

The "Hampet” is sold wired asnd tested,and comes in an
attractive,blue and sand,sloping front,alwainum case,with
on-off,volume control,frecuency control,PLL control,tune
LED,on LZD,headphone muting jack and four 2CA phone jacks,
The "liampet" is cawnablc of perfect copy with an "S4" signal,
The "Hampet" retailc [or 169 do.ilars with iumediate delivery.

Dexzler enquiries are invited,

ADDRESSING

Every memory location in your PET contains one byte of
information. In order for PET to get at these bytes it must
have a means of accessing them. Therefore each and every
memory location has its own individual address; all 65536 of
them. The microprocessor places these addresses on the address
buss which immediately enables one memory location to the data
buss. Bearing that in mind, one of two operations can happen
now. PET can either place a byte into that location (i.e. POKE)
or "look" at what's already there (i.e. PEEK). When performing
the first 6peration the microprocessor places a byte on the data
buss and transfers it zlong the buss and into the enabled

memory location.

In the second operation, the information or byte in the
enabled location is transferred onto the data buss and along

67

i

= www.Commodore.c

May Not Reprint Without Permiss

the data buss back to the microprocessor. This location is not
"emptied" but rather only a duplicate or copy of the information
is transferred. Once either of these operations is complete

the microprocessor then places a new address on the address buss
and another location is enabled. This process repeats thousands
of times every second, however these operations aren't possible
on all memory locations, but I'll explain this later.

The microprocessor has control of 99.9% of the addresses
being placed on the address buss. That extra 0.1% control was
left for the user and can be obtained through use of the PEEK,
POKE and SYS commands. When executing these commands the user
must choose an address. This address will be one of the 65,5%6
memory locations (i.e. O to 65535). This is where the memory
map enters the picture. The memory map may well be your most
powerful tool for choosing addresses. If you look at the map
you'll see that all of the addresses are listed in ascending
order down the left hand side; first in hexadecimal and then in
decimal. (See section on hexadecimal and binary for explanation
of this conversion) the decimal address i1s the one you use when
executing the above % BASIC commands. To the right are the
descriptions of what ybu can expect to find at the corresponding
addresses. If we then PEEK these addresses we are returned
the actual bytes that are in those particular memory locations.
For example, let's say during a program we hit the STOP key and
got:

BREAK IN 600
READY.
@

PET gets '600' from a storage register at addresses 138 and 139.
We could also PEEK these locations and find that 600 is indeed
stored in 1%8, 139. However it is not stored as a six, a zero

and a zero. Instead it is stored as the decimal conversion of

67

Wil

= www.Commodor

May Not Reprint Without Pe

the line numbers representation in hexadecimal. All information
of this type is returned in this manner. Now that we know what
the memory map will help us do let's cover some of the rules.

RAM and ROM

We all go through life with basically 3 types of memory:

1. DMEMORY PRESENT: This memory we use to remember things like
what street we're driving on or our present location.

2. DMEMORY PERMANENT: Things like our names and fire is hot we

never forget.

5. DMEMORY PAST: Recent occurrences and not so recent such as

things we did 10 or 12 years ago.

In the PET there are only two:

1. RAM Random Access Memory: This type of storage is used for
our programs and things that change such as the clock and

previous line number.

2. ROM Read Only Memory: This is PET's permanent memory. In
ROM are the addition routines, clock updating routines and
loading routines to name a few. These functions would have
to programmed into PET on each power up if they weren't

permanently 'burnt in'.

The third type, memory past, is instantly 'forgotten' on
power down. The only way to recall it is to first save 1t on

tape, disc, etc.
Recall earlier I mentioned that POKE and PEEK aren't
possible on all memory locations for several reasons:

A. Not all PET memory locations actually exist. On the memory
map, locations 1024 to %2767 is the 'available RAM including
expansion'. If you have a PET with 8K, simple arithmetic

68

€.Ca

i

= www.Commodore.c

May Not Reprint Without Permissio

shows that 3/4 of the available RAM space is non-existent.
If you decide to expand your system, PET will 'fit' the
added RAM into this area. However POKing or PEEKing this

space (i.e. 8192 to 3%2767) will return invalid results on
8K PETs.

B. The same concept applies to locations 36864 to 49151. This
is the available ROM expansion area.

C. Next on the memory map is the Microsoft BASIC area; loca-
tions 49152 to 57463. This is the memory that recognizes
and performs your commands. Changing the contents of these
locations is impossible because it is Read Only Memory and
is actually 'burnt in' at the factory. Therefore, POKing
these locations will simply do nothing. Also, Microsoft
requested that these locations return zeros if PEEKed (for
copyright reasons).

With these 3 rules and your memory map you are now equipped
to explore capabilities of your PET that you probably never
thought possible. Before we try some examples let's go into one
more important occurrence that may have had you scratching your
head ever since that first power up.

MISSING MEMORY?

“When you turn on your 8K (where X = 1024) PET, the first
thing it tells you is 7167 BYTES FREE; a reduction of almost 12%.

Q. Where did the missing 1024 bytes go?

A. It's still there...right below the available RAlM space
(notice it starts at location 1024). PET uses this memory
to do some very useful operations for you which you can
find and access by looking them up on the memory map.

Q. But why not do this in ROM space?

A. PET needs RAM type memory to store this data because it is
always changing. The information in this "low" end of memory
is actually produced by routines found in ROM.

69

i

= www.Commodore.c

May Not Reprint Without Permissio

Take for example the built-in clock. The clock or time
1s stored in locations 512, 513 and 514 of RAM. However the
data comes from a routine found in ROM at location F736y.. .
The time is of course always changing, therefore it must be
stored in RAIN. But because it is in RAM, you may also change
it; either by setting TI or TI$ or you can POKE the above 3
locations. Try it.

Now let's try some examples.

1. Location 226 (OOE2 in HEX) holds the position
of the cursor on the line. Try these:

POKE 226,20:?"PRINTS AT NEXT SPACE
?21123456789" ; : 7PEEK(226)

2. Location 245 (OOF5 in HEX) stores the line
the cursor is presently on (O to 24). POKing
this location will move the cursor to the
specified line after a display execution.

For example try:

?"A": POKE 245,10:2"B":?"C"
POKE 245,21-1:?"cu":POKE 226,20: ?"PRINTS HERE"

The above will move the cursor to line 20 (21-1),
print a 'cursor up' on line 21 and display your
message starting at column 21, line 20.

While experimenting with out-of-range values

I obtained some rather interesting results. Try
POKing location 245 with a number greater than 24,
séy 40 or 60, and hit the cursor up/down key a
number of times. Also, experiment with unusual

numbers in location 226 such as:

POKE 226,100: 2"123456789"

70

i

C‘ www.Commodore.ca
May Not Reprint Without Permission

, www.Commodore.c

May Not Reprint Without Permissio

In the command mode (i.e. when you're operating PET
directly all typed keys go first into the keyboard buffer
and then into screen memory or VIDEO RAM. However you may
also load the buffer under program control by POKing the
ASCII representations of the characters into sequential loca-
tions of the buffer. You must also increment by 1 the contents
of 525 each time another character is POKed in, but remember —--
not past 9. Page 6 of "Transactor" #2 contains a table of all
the values for characters and commands. "Transactor" #1,
page 12 lists some extras such as cursor controls and the
RETURN key (13). Try the following endless loop. 145 is a

cursor up
POKE 525, 4:POKES27,145: POKES28,145: POKES29,145: POKES30,13
Some other interesting items are:

POKES9409,52 - Blanks screen

POKES9409,61 - Screen back on
POKES9411,53% — Turns cassette motor on
POKES9411,61 - Turns motor off
POKES9468,14 - Lower case mode
POKES9468,12 - Graphics mode

POKES537,1%6 - Disables STOP key and clock

If anyone knows of or discovers any peculiarities by
"POKing" around, please send them in. When I receive enough of
them a handy dandy 'PETRIX' card will be included in a future

"Transactor" bulletin.

THE SYStem COMMAND

On the last three pages of the memory map are lis tings
of the subroutines stored in PET ROM that perform your commands

and programs. These subroutines are stored as machine language.

72

i

= www.Commodore.c

May Not Reprint Without Permiss

When a SYS command is executed PET jumps to the specified
decimal address and continues from there in machine language.
Take for example the Machine Language Monitor program. This
is a machine language program and is initialized by a SYS
command stored as a BASIC program line. ILOAD and RUN your
M.L.M. then type 'X' and hit 'RETURN' to exit to BASIC. Now
list. What you'll see is:

10 SYS (1039)

Location 1039 is the address to which PET will jump and
also the address at which the first maching language instruction
is stored. (A listing of all of the M.L.M. instructions is in
"Transactor" #5, pages 5A and 5B) . When this BASIC line is
executed PET operates in machine code beginning with address 1039.

The SYS command does not require brackets around the
specified address.

Since PET has its subroutines stored in machine language
you can use the SYS command to access and execute them. However
you may come up with some rather peculiar if not disastrous
results. When jumping into ROM you may find yourself in the
middle ofasubroutine or at the beginning of a subroutine belonging
to a major function routine. Often FET will 'hang-up' or crash
and you will be forced to power down to resume normal operation.
To demonstrate jumping into the middle of a routine, try the
following examples:

1. SYS52764 (CELC)
2. 8SYS62498 (Fu22)
2. POKES523,1:5YS62498 (Fu422)
4, 8YSe2463 (F3FF)
5. SYSeus824 (FD48)

73

Wil

o www.Commodor

May Not Reprint Without Pe

The numbers on the right sre the zddresses df the above sub-
routinez in hexade-im=al. Compare them to the memory map,

especially for e.g. #1. Alsco take a look at 523,

The following =zre examples of valid locations which you
can use with the 3Y3 command to accegs useful routines, however

these routines are already accessible through BASIC.

1. 8YS6e2651 (F346)
2. B5YS62278 (F4BB)
3. SYS63134 (F6OE)

Example #3% will perform a 'SAVE' but will not produce a
tape header. '

Experiment with your memory map. Hex to decimal
conversions can be obtained using the method following this

article.

SUMMARY

This has been merely 'a scratch on the surface' of the
extremely complex inner workings of PET. Do not be afraid to
experiment with the POKE and SYS commands. There is absolutely
nothing you can do to harm PET from the keyboard that turning
power off and on won't fix. Also do some PEEKing around
especially in low end memory. One good way is to write a small

monitor program:
107" c"PEEK(516) : GOTO 10

The above will monitor the 'CHIFT' key. Try running it

and depress 'SHIFT'. Compare the map.

74

€.Ca

i

rg Www.Commodore.ca

May Not Reprint Without Permission

When POKing or SYSing to random addresses, remember the
address you choose. Often PET will do something which may erase
the address from the screen (e.g. SYS64840).

The addresses that have been listed here are only a few of
many that are already known and only a minute percentage of the
ones not known. Probe around and send in any discoveries, useful,
peculiar or otherwise. They will be collected together and
published in a future "Transactor" bulletin.

75

= www.Commodore.c

May Not Reprint Without Permissio

BINARY to HEXADECIMAL to DECIMAL

We all know how to count in base 10 or decimal. We start

at zero and count one...two...three and so on to nine. Once nine
is reached we've run out of numbers, that is single digit numbers.
So in order to continue we must now make use of two digits; we
place a "1" in the 10's column and reset the 1's column back to
zero. Continuing from here, sooner or later we would reach 99.
Adding "1" would generate a carry into the 10's column and this
in turn will generate a carry into the 100's columns to zeros.

This explanation of base 10 was given simply to demonstrate
how we actually do our counting that we just do naturally.
Binary is much simpler than decimal because there are only two

numbers to worry about; zero (0O) and one (1).

Base 2 number set Base 10 number set
O,l 071’2, 5’4,5’6)7’8,9

With a little practise you'll see that counting in Binary
is just as easy as counting in decimal.

Binary is base 2 ('Bi') just as decimal is base 10 ('Deci')
just as hexadecimal is base 16 ('Hexadeci') but I'll talk about
the "HEX" numbering system later.

In base 10 we are 'allowed' to count up to 9 before carrying
the "1" into the next column. Generally in any base we count
to one less than the base # and generate a carry into the next
column. In base 2 we count up to "1" and do our carry. Just
as we cannot fit a "10" base ten into one column we cannot fit
a "2" base two into one column. The base # is most important.

Let's illustrate by comparison.

76

i

= www.Commodore.c

May Not Reprint Without Permiss

NUMBER REPRESENTATION IN:
NUMBER BASE 2 BASE 10
0 0000 0000
1 0001 0001
2 0010 0002
3 0011 0003
i 0100 0004
5 0101 0005
6 0110 0006
7 0111 0007
8 1000 0008
9 1001 0009
10 1010 0010
11 1011 0011

Notice how in binary, on every multiple of 2 a carry is
generated whereas in decimal the carry is generated upon
multiples of 10.

Let's now define the columns of the two number bases. In
base 10 we have the 1's column, 10's column, 100's column and
so on. FEach column is the previous column times ten; 1 = O.1 X
10, 10 = 1 x 10, 100 = 10 x 10 and so on. We can also represent
these using exponenté; 1l = ldz 10 = ld, 100 = 1Cf(lO 'squared'),
1000 = lOs(lO 'cubed'), and so on. In base two each column is
the previous column times two; we have the 1's column, 2's
column, 4's column, 8's, 16's, 32's and on. Using exponent
representation, 1 = 2° y 2 = 2 , 4 = 2° y 8 = o , 16 = o ’
32 = 2° , and so on. Now let's represent some numbers of the
two bases using their column breakdown:

77

Wil

2 page 10 = 0002
2hase 2 = 0010
70 = 0007
72 = 0111
120 = 0012

12, = 1100

o www.Commodore.ca

May Not Reprint Without Perr

0=1000 + 0=100 + O=10 + 2x}

0x8
0x1000
O=8
0=1000

1=8

The same three examples using

2 = 0002
2 = 0010
7 = 0007
7 = 0111

12 = 0012

12 = 1100

2° =
2' =
2t -
2% =

4

8

0x10
Om2
ox10°®
ox2*

ox10°

1%2

+ 0=

+ 182 + 01

+ 08100 + 0=10 + 71

+ 184

+ 152 + 1I»1

+ 02100 + 1=10 + 2»1

+ 1%4

+ 0x2 + 0Ox]

exponent representation will be:

+ 0x10°

+ 0%2

+ 0x10°

+ 122

+ ox10?

+ 1%2

E

+

+

1 ©
0x10 + 2»10

1%2' + ox2°

ox10' + 7x10°

122 + 102’

1x10' + 2x10°

ox2' + ox2°

= 16

= 32

= 64

= 128

Use this table as a reference for the following exercises.

78

i

o www.Commodore.c

May Not Reprint Without Permission

Try the following example on representing decimal numbers in binary by placing
al or a 0 in the correct column position.

NUMBER 2 2 2 2

4 =
2 =
]_3 =
14 =
15 =

What must be done to represent the number 16 in binary. If you said " A
fifth digit must be used at the leftmost position ", then you're absolutely
right. Except for one thing: digit is a word we use in decimal. 1In binary
we use the word BIT derived from Binary digIT. By implementing a fifth bit
it is now possible to represent numbers greater than 16 but only up to 31l. Once
past 31, a sixth bit position must be used. Continue with the exercise. Notice
the leftmost column values have changed.

5 Y 3 2 1 0

NUMBER 2 2 2 2 2 2

16 =
T
28 =
32 =
51 =
62 =

63 =

79

= www.Commodor

May Not Reprint Without Pe

] bitwgat would be the highest posible number you could represent using only
8

vy 2¢ 2 2 > 2 2 2
2 - 111 111

7 bits?
o= 1 1 1 1 1 1 1

8bits?
7 = 1 1 1 1 1 1 1 1

If your answers were 63, 127 and 255, you're correct. Notice how these
values are 1 less than the value of the next bit position to the left. (Ad =256)

The BYTE

Every memory location in PET is actually one byte. A byte
consists of 8 bits. In computer electronics the binary number
system is used. This way we can use a high voltage to represent
a "1" and a low voltage to represent a "O". Can you imagine the
cirouitry that would be required to operate a computer in decimal
or base 107 Ten unique voltages would have to be used to
represent each of the ten digits. Then a separate computer would
probably be required to distingusih between them all. By using
binary PET must only distinguish between two voltages. Since a
5 volt supply is used for the logic circuitry, anything over 2.4
volts is considered high or a "1" and anything under is considered
low or a "O". These voltages are typically 4.8 volts and 0.2 volts,
respectively. Each bit of every byte in memory holds one of these
voltages. With 8 bits in each byte, 256 combinations can be
obtained (0-255) as you can see from the above exercise. If you
look at the table on page 6, "Transactor #2, you'll see that all
the keys can be encoded into one of these combinations. PET
uses some combinations to represent the commands so that they
only take up one byte in memory. PET also uses some of these
combinations twice to represent graphics as you'll see by comparing

the table to page 12 of "Transactor" #L. PET KOM routines

distinguish between comm:.ids and propliico.

80

€.Ca

i

g WwWw. Commodore Ca

May Not Reprint Without Perr

Try POKing a RAM location, say 6000, with a number greater
than 255, say 256. A ?ILLEGAL QUANTITY ERROR will be returned

because more than 8 bits are required to represent 256 in binary.

256 = 1 0 O
Essentially, 256 won't 'fit' into a single byte.
Try PEEKing a non-existent memory location, say 10,000:
?PEEK(10000)
A 255 will be returned. A unconnected or open line is considered
nigh by PET. Since the byte is not really there, the data buss
lines will be open and read as high or all 1's by the micro-

processor.

Hexadecimal or "HEX"

Hexadecimal means base 16. This means we can count up to
15 before generating a carry. However we can't use the numbers
10, 11, 12, 1%, 14 and 15; these take up two columns. We need
to represent these numbers using a single character. Therefore
we use the first 6 letters of the alphabet.

Hexadecimal number set

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

A.|‘ = lo.o D 16 = 1550
Bw = 11, E. = 14,
C W = 12“' F e = 15"’

81

n

y www Commodore ca
May Not Reprint Without Permission

When counting in HEX we generate our carry upon 1l6:

14“, = Ee
{ i
15 o = F 7]
| i
16 0 = lO e

Recall in binary, 4 bits will yield a maximum of 15

15, = 1111, = F,

Now since a byte has 8 bits, we can split it up into two fields

of our and then represent it as two hexadecimal characters.

4, = 0000 0100, = Ok

12, = 0000 1100, = OC

255, = 1111 1111, = FF
J

HEX Addresses

We won't discuss how a byte recognizes its own address; this
is buried deep inside the integrated electronics of the IC chips.
The address buss consists of 16 lines, O through 15. PET needs
this many lines to address all ©65,5%6 bytes. Because location O
(zero) is included, the maximum address obtainable is 65,555 in
decimal. When this location is addressed, all 16 lines of the

address buss will have ahigh voltage. In other words logic 1.

5 14 &3 k4 i 7] q 23 27 (4 25 2u 23 22. 21 20
65,535 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o oM 0% 0T o 2% Dt P 2T e T 2t 2 T 2 2

On PET = 2415 + 21 14+... 240 Try it.

82

g Www.Commodore.c

May Not Reprint Without Permission

If we now split the 16 columns into four fields of four we can
also represent each field using a hexadecimal character thus
converting decimal to hexadecimal as Jim has on the left of the

memory map.

65,535, 1111 llll}l%%}’};}l

cz)

ety

- ¥FFF,

Recall e.g. #1 of the SYS command (pg.8)

52764, 1100 1110 0001 1100 ,,

CELC ,,

When operating PET, the decimal addresses are used for PEEK,
POKE and SYS. Therefore you probably won't find yourself
converting from decimal to HEX when using BASIC. However you
will need to convert from HEX to decimal when you want to SYS

to those ROM subroutines.

CEiC,, = 1100 1110 0001 1100

15 2

2 £ 29 0" 20 oy 2% L0t L2 s

ON PET 2+15 + 2t 14 +2t11 + 2110 +2t9 +2t4 + 2135 + 2¢2

D276

F422,, = 1111 0100 0010 0010

I S T - L L L

On PET 2415 + 2414 + 21135 +2t12 + 2110 +2t5+211

62498 4
Try verifying some of the other examples using the same

conversion method. With a little practice HEX conversions will be

as easy as counting to 'F'.

83

A

COMMERCTAL CONFUSION, Jim Butterfield
or, Toronto

"Where'd the penny go?"

PET is certainly the greatest business tool since electric pencil
sharpeners, and printers and floppy disks will herald an explosion
of commercial applications.

Basic seems like the ideal language for a small business system - but
it has a hidden "gotcha" that will give you problems if you don't
know how to handle it. I call it, "the missing pennies problem", and
it's common to almost all Basic implementations.

Crank up your PET and try this: PRINT 2.23 - 2.18 —-- it's a simple
business calculation and the answer has gotta be a nickel, right? So
how come PET says .0499999998?

Think of the mess this could cause if you're printing out neat columns
of dollar-and-cent results. Think of the problems if you arrange to
print the first two places behind the decimal point: you'll print .04
instead of .05' Think of what the auditor will say when he finds that
the totals don't add up correctly!

In a moment we'll discuss how to get rid of this problem. First, though,
let's see how it happens.

PET holds numbers in floating binary. That means certain fractions don't
work out evenly. Just as, in decimal, one third works out to .333333...,
an endless number, PET sees fractions like .10 or .68 as endless repeating
fractions - in binary. To fit the fraction in memory, it must trim it.
Thus, many fractions such as .37 are adjusted slightly before storage.

Try this program: it will tell you how numbers are stored inside PET:

100 INPUT"AMOUNT'";A:B=INT(A) :C=A-B:?A;"="";B;" ";
110 FORJ=1T010:C=C*10:D=INT(C) :C=C-D:?D;:IFC>0 THEN NEXTJ
120 ?:GOT0100

If you try entering numbers in our above example, 2.23 and 2.18, you'll
see how PET stores them - and why the problems happen.

How to fix the problem. Easy. Change all numbers to pennies - which .
eliminates fractions - and your troubles disappear. For example:’

340 INPUT"AMOUNT";A : A=INT (A*100 +.5) converts A to pennies;

® e85 8 60000008000

760 PRINT A/100 outputs pennies in dollars-and-cents.

84

= www.Commodore

.Ca

May Not Reprint Without Permission

y www Commodore ca
May Not Reprint Without Permission

Micro Magazine

Published monthly, MICRO is the only mag. devoted entlrely to
6502 based Systems. It covers software and hardware on PET, KIM-1,
APPLE, ATM, SYI and virtually anything to do with the MOS 6502. MICRO
has run out of back issues but they are offering "The Best of IMICRO
Volume 1", which covers issues 1 through 6. Cost is $6.00 plus $1.00
postage and handling, payable in US Funds. Subscriptions are also
available; $15.00 %US% for 12 issues. Send your name and address, etc.,
to:

MICRO Magazine
P.0.Box 3,

50. CHELMSFORD, MA
01824.

Specify Best of MICRO and/or subscription and at which issue you w1sh
your subscription to stzr® Highly recommended.

T I 5 Workbooks

Total Information Services now has 5 workbooks relating to
the PET. All are excellent, particularly PET Cassette on data file
writing.

Getting Started With Your PET - $5.00*
PET String and Array Handling - $5.00*
PET Graphics - $6.00*
PET Cassette - $6.00*
PET Miscellaneous - $5.00*

* payable in US Funds. Write To:

Total Information Services
P.0.Box 921,

LOS ATAMOS, NM

87544

85

C‘ www.Commodore.ca
May Not Reprint Without Permission

g WWW. Commodore ca
May Not Reprint ¥ out Permission

s DATA3P42. 426, 18
el DRTHAS21, 167, A7
ottt DFTH L. 48, 16
DATH-1E10. 8. 6
DHTHE~L
FEFDE L TF Tkl . by
Yty I FFIHT“HH FIF:r $“;H;“THH 1% W
[CsEMEO L FRIMTUON RMG O EY TSl TR AT Py "% 1% 75 1/10Q
ClF=CTOTAL. FED THCM TR=EY GOSUES1L5E
~hH~lka'b'H'-' Croddln=]
U THRE R T GOESUBEZLS58
T FEDERMAL TR+ GOeURs2an PRINT Digr=]

Fu=t +E

w THEMN T =5 GO Ol
FJP~' i

"::;l$~'ulHLFHL T REDUCT TOMY GUes U e

- (=3NS TE

- L= TOTHL
s GISLEZ 20 Do
HE sl B JF =
B R Es D

; N LT
ok : b +H-[F.FHL

iz "“4 1¥="I'I'IF'. = TGH T PRI GO

a1 D= UFORGH THCOME" : GOSUES

e TRT R ety s PR THTE S LEE: SR

(RIS

CGOSLUEZLEG

LB Do TRl L e

[e = SN T=FHS M GOEL
FERONT® . AMOTHER COUNTRY. T

=D IE="FEDERAL TN PR ELE " PRINT @ GOSED s
g [EERHE DS TR ERES T OMTARIO THRY GO
[F 3K — 100 T
Tre=0HTRRIO FROFERTY TAM

FTFL REMT FRYMENMTS" GOS
1B TG =P L) s D= wa@n OF FEHI”'UMW ;
IR C(C)ul Frast lf““}h -tu = OLLG RES" 05 LN

S0 Tl “W-T:“w}HI({\ LR VHQT+“ nu:ULhmun FRINT

ST R AN Spapla CImE Lt T0. M LOSLUE2150

i D FPRIMNT
AR DA =]

BITH et : ;
Fe=rOELES T CREDL | R TR
21 IT=00n
R s R NGl E b
3] B TEs= O e R F & R REDLTSY G0 R s ue
'F Gl T l I HL l i CREDTT" D GlsUBEz] 68
o l CITRL. IHT T Fe CREDRITSN I SN I KTHRE 515

D o] g l HYHELE " DGOSR 288
shdmfa D R0

- CREDITSY GOoUBZza0
o ERA
L
L2 TCo
113@ I C(C)
Lolabad A‘thwa
LAES D=l T
AR IS “HHFHFIH T .
LA Lgest “LE a:hH-HEb;Bﬁ FREINT
1W'W1;j:" """ @ Frasd o D= DU ILD %LF SLIPSY nncUpz1o8
10T . E[llh”: . 4o B

FrovMb M TS Tk

T=C T e T T L lPT:'“'-: H CFEINT
T*T“lHlHth DB s Tmm~1 0 IF I HTHkHIfT“FLFUHD:“:I=HESQI)

87

g Www. Commodore.ca
SR GSUEZEEE | PRINT viay ot Reprintiihout permissien
H2RD ERD
OFRINT PR INT Y === EGE s GOS0
& PHIHT:PRIHT"-:—EEHEDHLE"-
A R IMTRFL "0 RETLIR N~~ =R TR
Pl GETZE FRINTLE: "3

: SEOTOEL 45
“HH&W$:"“ﬁmTuxi45
CUGTOE LA

STORZ=20 0 AMD Y ECO " THENY 5L EFTE 0 v S, LEM S S 0=10 PRINTY "3 tGOTOS 47
Yo UTHERFRINTY G D=L v AL O FORT=LTOLEMS Y4 - FRINT " sHERT : GOTODL 16
AEFNG T =8 THEMFRINT " ",

HEMT=FRT O T+WAL CvE s 7 PRINT GOTOZ156

CEOTOZ4ss
d TF
oo MELES FORI=LERNCIFTOZS PRINTY " CHESTT I=fAESc]y - Fg=" V- F=R
Pz INTC M0 0 T Tl IFD=ZTHEMNFRINTY *; UHINLLZU
E$$“J” JWI@:PRIHTCHH$iD+483;

R THETRR lNT" SR
-I FE!HFN
R AT Q) il CRETLIR

TAX ONTARIO 1978

Last months listing of the Income Tax program requires a
few revisions due to the fact that the Centronics 779 does not
recognize PET graphics. The corrections are as follows:

111 INPUT"cdINSTRUCTI.....

112 PRINT"cdONTARIO IN.....

11% PRINT"cdFOLLOW YOUR.....

115 PRINT"cdFOR 'NIL' ITEMS.....

116 PRINT"cdFOR 'MULTIPLE' ITEMS.....

210 PRINT"!EXEMPTIONS.....

470 IF I 231E% THEN PRINT"!NO TAX PAYABIE.....
2110 Y§="":PRINT"&@c1";

2139 IF (Z=157 OR %=20) AND Y$ "" THEN Y§-LEFT$(Y$,
LEN(Y$)=1) : PRINT"c1§" ; : GOTO2147

2140 IF Z$="+" THEN PRINT"cd";:I=I+VAL(Y$):FORJ=1TO
LEN(Y$): PRINT“cl"' NEX.....

2142 IF Z=13 AND I=¢ THEN PRINT"cu";

cd-Cursor Down, !~RVS On, &@-Shifted '&', cl-Cursor Left,

B-Blank or Space, cu-Cursor Up. 88

= www.Commodore.ca

May Not Reprint Without Permission

When operating in machine language, PET is at top efficiency., Machine
code programs can execute at speeds 10 to 1000 times that of the equivalent
BASIC implementation. Also, depending on the operation, they may consume
as much as 10 times less memory. The reason BASIC is so "slow" is that BASIC
must first be interpreted into machine code such that the Microprocessor can
handle it. 1In fact, about 90% of the total execution time is spent interpreting
while only about 10% of the time is spent on the actual operation. In machine
code programs the BASIC interpreter is bypassed hence the greatly increased
speed of processing. This speed is realized most in programs where a lot of
tests or comparisons are made. MicroChess® is a prime example. At level
8 (playing at it's best) the machine can still spend as much as 10 minutes
on a move in some situations, Imagine a chess program coded in BASIC!

A brief explanation of machine language would be highly impracticle
because of the variations and possibilities of the concepts. Undoubtedly a
lot of imprtant information would be overlooked., However I have here an
exerpt from PET User Notes, Issue #5, written by Jim Butterfield:

"A Little Exercise in PET Machine Language
Jim Butterfield Toronto, Canada

Clear the PET completely (NEW:CLR) and enter the
foliowing three lines of BASIC...Do not insert extra
spaces! -

100 SYS(1050)
110 GOT0100
120 XXXXXXXXXXXXKXXXKXXKXKXXXKX

The last line should not be less than 15 X's, and pres: Iy
ferably a few more, say 25. You may list this program
but do not try to run yet.

Now you have some POKEing to do, and unfortunately
you can't have a program help you. First, make sure
that the above lines are OK by ?PEEK(1050); this should
return an 88 (X character). Now starting with POKE1050
»32...input the following values:

Starting at 1050: 32 228 255 208 1l 96 162 0 157 0
Starting at 1060: 128 157 0 129 157 0 130 157 0 131
Starting at 1070: 202 208 241 96

Double-check the above values by listing them with:

FOR J=1050 TO 1070 STEP 1l0:FOR K=0 TO 9:?PEEK(J+K);:
NEXTK:?:NEXTJ)

It is vital that these numbers be correct - one

mistake and your system will crash., Behind the 96 you
should see some leftover X's (88's),

89

i

« www.Commodor

May Not Reprint Without Per

Now type RUN, Try tapping a few keys and note how
the screen changes, Stop the program with the STOP key.
What's it all about? We've written a program in

machine language, the fundamental 6502 language of the
PET. 1In working with the inner fabric of the machine we
find we get: (i) compactness - we've fitted a whole
program within one BASIC line: (ii) speed - no BASIC
program could fill the screen that fast, We lose,
however, in the need for preciseness; cne mistake and
the system crashes, and you have to switch off and on
again., We also lose flexibility - adding an instruction
isn't easy.

For those who would like to try tracking the machine
language program above, a few brief notes., 32-228-255
calls the PET subroutine to get a character (something
like BASIC GET). 208-1--36 exits if no character is seen
(1ike IF X$=" " THEN RETURN). Now we're ready to zip
through the screen with the character we found. We set
up for repetition with 162-0 which loads an internal (X)
register for 256 repeats; much later we invoke the
repetition with 202-208-241, ard after the 256th time we
return (96)., Within the repetition itself, we set the
four quarters of the screen with four 157-0-xx instructions."

Those interested in getting seriously involved in machine language
should consider first the MOS KIM-1 Microcomputer Module and:

The First Book of KIM By: Jim Butterfield, Stan Ockers and
Eric Rehnke
Publisher: Hayden

The book is mostly machine language programs written for the KIM. Programming
them into PET would be most difficult even with the Machine Language Monitor.-
KIM has numerous subroutines in ROM that aren't like PET's.

Other suggested reading:

Programming a Microcomputer By: Caxton C. Foster
Publisher: Addison-Wesley

MOS 6500 Programming Manual By: Commodore/MOS Technology

6502 User Notes By: Eric Rehnke

P.0. Box 33093

- $12,00/Yr.? North Royalton, Ohio
44133

90

€.Ca

i

g WWW. Commodore ca

uku‘WC'ﬁop'rT out Perr

All four publications are excellent, but for beginners I suggest
the last three in order (if using PET with the M.L.M.).

Besides the program ocutlined in J. Butterfields article are four more
that also operate in machine language. The first three read from the DATA
statements data which has already been converted into decimal., This data
represents the machine language instructions which (in these three particular
programs) are POKEd into the second cassette buffer (826 to 1017). Since
they are in decimal, a conversion program has been included so you may
convert back to HEX and compare them to the table. However, not all of
these will necessarily be instructions (as you will see when you find one
that matches a "Future Expansion" code). Some may be addresses of direct
data depending on the preceeding instruction, Addresses will appear as
low order first, high order second, For example:

JSR 00 05
eessWill jump to the subroutine starting at location 0500.

The DATA statements in Life contain the actual hexadecimal repre-
sentations of the instructions and addresses. They are read by the
program (line 110), tested for validity (lines 120 and 150), converted to
decimal (lines 130 and 140) and POKEd into memory (line 160) starting at
decimal location 6400 (HEX 1900)., SYS 6400 executes the program.

View By Jim Butterfield
from an idea by Brad Templeton

16 FRINT“SYSS326 TURNS FRGEVIEW OW ANDAOR OFF

20 PRINT PRINTUSELECT FAGES WITH -FOKES45, X7

38 PRINT TRECLE0 U TRY d=i, 2, 4. 31, 232

40 FOR J=226 TO S5 ¢ FOKE T, NEXT: END
o DRTA LS. 173 25, 2, 75, D80, 141, 25, 0

GE DETA

FEODATA

SE DETE 2

Non-Stop By Jim Butterfield

0 REMasACHINE LANGUAGE STOP EEY DISABLESw

K B S ES28 BERD

St DETH D26, 1ad
. LHtﬁ 1.41 =

PO REAC b POKE Lo B MERT

n

: www Commodore ca

May No T Wit Perr sion
Auto-Repeat By The Software Shoppe =P -

From 'The Paper' Volume 1, Issue #10

| REMTHHRCHINE
~1 LARTH -
28 DATH 26, :
e DATH 206,
48 DATH =0,

s DATA 3
S8 DATA 165, &,
GATA 2

(S 1]

=4 i
B o B R B
G L
I T
-
-

&
.
3]
—
(] X
M
i
-

MEST T
FRIMTUSYEEES WILL EMAELE AND 01SAELE
FRINTUTHE AUTS REFEAT FUMCT ION

G B
' .

o
3 T
Poast

g

o)
b

H

Il

PN EUTO-REPEAT DN BAST G

LR S S i sl i UK

Life By Mark Taylor

168 READL

118 READAS :C=LEN(AS) : IFA$="¥" THENEND

128 IFCCL0RCI2 THENZOB

138 A=ASC(A$)-48:B=ASC(RIGHT3$(AS$,1)) 43

148 N=B+7¥(BJ9)-(C=2)# (16 KCA+TH(AID D)

158 IFNCBORIMD 255 THEN2GB

168 POKEL.M:L=L+1:60T)116

268 PRINT'BYTE"L"=L"R$"] =22 :END

388 DATAG408

318 DATARB.38,19,26.84,19,20.E6,19, 26.08,1A,A9.34,8D, 11.E3

3208 DATA2B.78.,19,A9.3C,3D,11.E8,A9,FF.CD,12,E6.F8.E6,4C.88,03,AH.63.23, 4C. 3R, 22
338 DATA EA.EALEA,EA.ER.EA,EA.A2,19.BD.3R,19,95.1F ,CA,DA.F3,68,R08.33,4@, 15.00
348 DATABB.B6, 1B, 80.1B,D7,28.01,FE,DE.D6,29,27.08,E8,83.08, 15, 66.0a

358 DATAEA.EA.EA,EA.ER.EA,EA.ER,EA,EA.EAEA , EA.EA.EA,EA.ER.EA,EA.EA.EA.EA.EA
368 DATAEA.EA,.EA,EA.EN,28,AE.13,B1,26.D8,86,A9.23.91,26.00.84,A9.51.91, 26. 23
378 DATA BD.19,F8,ED.208,A6,19.68,28,A6.19,81,26.29,51,F0.0856,39,080.91,26,F0
380 DATAB4.AJ,81,91.25,208,BD.19,F8,.EE.28,36,19.68,A%, 88.A3,A3,R5.23,35, 26.35
3938 DATA35,A5,25,85,21,485,29.85,27,A5.356,35,3A.68,E6,26.E5,208,E6.39.E3.E4
408 DATA33.F8,08C,EB,88,008,BE.E6,27,E6.21,E6,3A.03,86,A5.34,25,21.F3,83,A3.680
410 DATA 68»!‘!9.81,68.'EH.EH,Eﬁ.-EH,Eﬁ,EH.-EB.AG'1.9_-B1_-26,DB.-BES,R9.-EB.-91,39;D@
428 DATAB4,AT,54,91.33,28,RD.19,F8,EDL.23,46,19.68,2@,A6.19,28,2F. 17,81, 39.73
438 DATAS1.FB,8C,A5.32,09,682.D8,14,A%.81,91,26.D8,8E,A5.32.29,83.F3.083,(9.82
448 DATAFB.B4,A%,86.91,26,26.8D,19,F8.D3,208,A6.19,5@,98.43.34,48.A8,08, 84 .32
450 DATAAZ,B83,B5,29.10,15,49.FF ,35,37.38,A5,39.E5,37,85.22.45,3A.85.23,B8. 11
468 DATAC6,23,D8,8D.18,65,39.85,22,A5.3A,35,22.99,82,E6.23,81,22.C3,51,DR.82
478 DATAEG.32,CA,DB.CF .68, AA. B3, AR, 60. %

Reprint Without Pe

! 1
GEL Y o GOTO 118

NJI HM‘M

“!HEH Dol d 7o LY GOTO LA

e HER DIGITS oMLY GOTO 146

_.ll{LIJ H-r1+r: b . e o= UMGEOTo A
LR =g THER =80 M=hazha GoTO 1ad
adE FRINTYIN DED =cpcrcrerer "h:GOTO 14

FEM DEDIMAL TGO BINARY TO HESADECIMAL CORNYVERTER FROM TEAWNSACTOR ISSUE RO
FEM MEITTEN BY ERRL T HILDON ABRSOLUTELY NO COPYREIGHTS

LIM Afcdles

ITHFUTYLES WARLUE i leE

A=V L D

IF A-INTOR» -8 THEN FREINT: FFIHT”'INTEGE:S aMHLY Y FRINT GOTOLEG

IF BaShES WHEH FRINT: FFIHT“!:T?:T MAATMUM " PRINT . GOTOLZE6

FRINT FREINTYEINARY i

FEP #bdotetgbob ot seob godopodohog:

FEP B ITNARY CONVERT 4w

F:f E H o B 2 080 D58 S 245 SRS AP R BRSNS 3B oF N6 T S

Fide ==15 T a ZTEF-1
R I

IF Wi THEN FEidos=
IF Ye=8 THEMN RAFxi=
FRINT RFO=L
C=C+1:IF C=4 THEN FPREINT" " =@
MEHT

FEP sesdbsepdiokdubk kb bk

FEP ek HER COHVER T sk

FER dbbbobosbobsb bbb b b bbb

|'. e H.l.

PRINT :PRINT : FRINT"HE: "
FOR H=15 TO & STEF-1

Gt AL CRFCH S

IF G=1 THEM T=T+zth

,_
%
-,
wt

Poiny

T
L

oz,
B

H

iy
By

R NS £ B NN O I R B S
R

-
ARDARN

.
it

IF E<8 THEN GOSUE 408 =35 T=8

FRINT :FF
OM T+l GOTO &
PPIHT M T

RINT “1v+id;

L=t 70 Z2 FRINT e " (HEST FRINT . GOTO1ZE

2B A0 448 450 S8, 478 50, 490, 5OE, 518,
TR

TUIRRM

TR

TR

l:|
iod
X0
_n
Ju
3]
.
.0
a3

¥ E:‘ by
T

FRINT "FUe

93

o WA, Commodore.

Ca

16

= www.Commodore

.Ca

May Not Reprint Without Permission

SHIFTED CAPITALS

When writing programs with a great deal of text, it is sometimes
best to use the lower case character set. This makes for easier reading.
The game Hammurabi is a good example.

To obtain the lower case mode on PET, location 59468 must be POKEd
with 14 (12 returns it to graphics). Now lower case letters, plus some
other graphics are available on the PET by typing the desired letter while
depressing the 'shift' key. However when a lot of text is involved,
constantly holding down the shift key can become rather awkward. A
'keyboard inverter' would certainly be desirable,

P.T, Spencer, a high school teacher in Agincourt, enquired about this
possibility and then answered nhis own question with the following program
which he has submitted for the Transactor.

S I R U £ 0 T R

RO D DR TR R wlBERLD DR e
B tiad :

L

Fa=0 THER L

1 VbR derlau
Fomd THER Y=Y+l MRS el
TLE R

SOFND YIds THER Y=Y -L2u Gild

Y G

The program only affects the alphabetic characters and prints
everytning else out normally. Also, since the characters are being displayed
under program control the lines won't be entered into memory, only displayed!
To do this program execution would have to be halted and then line numbers
followed by ?" inserted at the beginning of every second line of text.
(Be careful not to type more than 75 characters per 2 lines or imserting is
impossible. Also do not stop program execution less than 5 lines from the
bottom or the "BREAK - READY" signal will cause text on the very top line
to be scrolled off the screen.) Once this insertion is finished, hitting
'RETURN' enters the characters as program text. Only one pitfall is that
these PRINT statements will return the text without the visual continuity
(i.e. '"PRINT' starts at extreme left) unless the closing quotation marks are
inserted and followed by semi-colons. Therefore it would be more desirable
to enter the text into DATA statements and concatenate using the READ command.
Instead you would insert the line numbers followed by DATA" or you could have
the program do it for you using the following modifications:
Pt

SRR RN LT

RN

Vil T

= www.Commodore.c

. May Not Reprint Without Permission
Hardware Fix

In Transactor #8, a hardware fix was illustrated to overcome the
data file write problem. However, to install it required dismantling
the cassette deck so the interface idea was presented. This still had
one problem area: the switch. Fortunately, I've received two responses
regarding the 'INTERFACE'. The first was from Jim Yost in Somerville,lMA.
He writes..... "In reference to Bulletin #8: The capacitor charging
switch you want is a simple transistor. The basic operational rule is
that whatever current flows in the base allows B times that to flow
into the collector. P's typically are 100 or more nowadays. The
circuit 1s thus:

1 or 2 of any 6.5v Motor source

handy diodes to

compensate difference

write 5v and motor 6,5v
S

base
WRITE —AW

4,7K-6,8K collector

emitter
PNP-any handy one

7

715,000 pf

“H

The write pulses (lows) charge the 15,000uF cap in pulses so
that it 1s charged at the end of a write sequence when the motor
source drops. Don't use the lipF - 1t would short the write pulses'.

' Secondly, And?ew Chiu of Toronto has designed, among other things,
an interface type fix for file writing to the cassette deck. This
and other devices are for sale through Rapid Electronics. Andrew

has gubmitted a complete description of the cassette deck interface
and its operation which follows.

Thank you, Andrew and Jim, and once again

, Andrew and Jim, and once again..... thanks to Richard
Leon for launching the concept.

g www.Commodore.ca

May Not Reprint Without Pe

Andrew Chiu

39 Farmview Cr.,
WILLOWDALE, Ontario
M2J 1G5

HARDWARE FIX ADAPTER

The object of this design is to adapt Richard Lean's
Hardware Fix (ref: TRANSACTOR BULLETIN #8) without dis-
mantling your cassette and using Karl's "Interface" idea
we can install a circuit between a 6 pin lMolex Plug and
the printed circuit board edge connector (see Fig.6).

A quick look at the table provided by Karl J. in the
Transactor Bulletin #8 (table 1) indicates that when the
cassette is doing a write operation the write-line is ‘'active'
and for other operations it is 'high', therefore based on this
unique active state a simple switching circuit can be controlled.

TABLE 1 PIN ‘ OPERATION

on PCB NONE READ WRITE
Cardedge
READ LOW ACTIVE ACTIVE
- - == = — = 1
WRITE | HIGH _ _ HIGH _ _ ACTIVE !
SENSE HIGH LOw LOwW
MOTOR OPEN 6,5V 6.5V

HOW IT WORKS, Most PET lovers are the software type,

in order to understand the theory behind this circuit,
let us review some characteristics of the key element,
a diode.

The ideal-diode approximation strips away all but the
bones of diode operation. What does a diode do? It conducts
well in the forward direction and poorly in the reverse
direction., Boil this down to its essence, and this is what
you get: ideally, a rectifier diode acts like a perfect
conductor (zero voltage) when forward-biased and like a
perfect insulator (zero current) when reverse-biased as
shHown in Fig.3.

96

i

= www.Commodore

nt Without Pe

May Not Repr

In circuit terms, an ideal diode acts like an automatic
switch., When conventional current tries to flow in the
direction of the diode arrow, the switch is closed (see Fig.3b).
If conventional current tries flowing the other way, the switch
is open (Fig. 3c). We cannot simplify the idea of the diode

beyond this point, IDEAL
CLOSED
T4
P = e
\‘ON"
ZERO FOAWARD CONVENTIONAY b)
VOLTAGE CURRENT
—
ZERO KEVERSE
CURRENT
Y IDEAL OPENED
a)
¢ O—M—o _— o—@o—0
—— “oFE"
CONVENTIONAL cc)
CVRRENT
Fig 3. (a) Ideal-diode Curve. (b) Cloded-switch analogy.

(¢) Open-switch analogy.

Once the operation of the diode is understood, then we
can look at Fig.l, It is a complete diagram of the Hardware
Fix Adapter. IC.l is connected as a negative-recovery
monostable circuit., As long as the write-line is active,
the circuit stays triggered and the output remains High.
(approximately equal supply voltage at no load). The current
flows out from pin 3 and the capacitor C3 charges through the
resistor R2 and diode D2, The capacitor is acting like a
temporary quick charge battery. When the block is finished,
the power to the motor is turned OFF and the write-line go
High, The capacitor C3 will discharge through D3 to the
cassette motor, The discharged energy provided power to the
motor for a small period of time. This allows a larger gap
between blocks,

Fig., 4 is a simplified circuit, only the diode and C3 is

shown., The imaginary switches are
and the transistor switch which is
operation of your PET, Fig, 4 a &
switch is turned ON and write-line
both ON, but D3 is OFF, Therefore
into the capacitor and the motor.

power switch is OFF and write-line
but D3 is ON,
D3 to the motor,

the approximation of IC.,1
controlled by the internal
b when the motor power

is active, D1 and D2 are
the current has to flow
Fig 4 ¢ & @ when motor

is High, D1 and D2 is Off,

Therefore the current can discharge through
The ideal diode model is a helpful tool to

explain the operation of the circuit,

97

r

.Ca

i

< www.Commodore.c

May Not Reprint Without Permission

Mof:: 34' _
oTo o
Sriror swiTem T CURRENT TO MOTOR
R - =) V
V‘.’ LHI . N v o +
Lo DL N
1 .]
Io cvRmEnT Yo 4 b1,DZ="oN
€3 X . P3 = “oFF’
L5 TIMER '
A ng S Z _
WRITE LINE L e
ACTINE WHEN BOTH
MOTOR SWITCH
anD
5CE TIMER
ARE “on"
-
(a)
X r—jim
- P4 - _
Vf S C-E ' H S V“' r /'
Hp -
P = ‘ON"
[y)
555 TIMER r b3 |, D1,p2z = "OFF
COEEY WHEN O (Ei)
WRITE LINE “ﬁ“ T —_—
WHEN Bord
Y MOTOR SWITCH
- AND
g b 555 TIMER
ARE ors”
= e

(e)
Fig, 4 Simplified circuit diagram of the Hardware Fix Adapter.

CONSTRUCTION, Wire-Wrap, point-to-point or printed-circuit
techniques can be employed in the construction of the Adapter.
However a printed-circut board definitely makes things easier
once it has been made or obtained., I built my unit with all

the components mounted on the board except the 20,000 uF capacitor.
Watch the polarity of all the diodes and C3. The cathode (-Ve)
end of the diode is marked with a Band or Bands. The polarity

of the capacitor is marked on the label, some are colour coded,
(red for positive), Transistor Q1 may be supplied in different
shapes, To identify the transistor leads, please check the
manuyfacturers data book, A component lay out diagram is shown

in Fig, 2., Watch the spacing (0.156") of the card-edge connector.
and the slot, The physical dimension must fit the 6 pin Molex
Plug which the cassette uses.

98

g WWW. Commodore ca

out Perr

A

May

1y Not Reprint ¥

D1
+ 6.5V o .ﬂ
iN4002
R1
D3
15K | 8 f,,“
Yw IN4002, .
6 R2 D2
ZN 3906) NESS5S V\/ MoToRr
, et 100SL (Naoce2
VW
WRITE o Q1 5 +
LINE 2 1 :
——cC1 — . C2 ZZZ C3
0.22 MF ©.01MF 20,000 MF 8V
—_ — — —_— _—
Fig 1. Circuit diagram of the Hardware Fix Adapter. ~
i ’
d GROVMND
2 N
o W
N lh’ TOR 6.5V
mo .
3 X
ﬂ T 3 READ LINE
9 q
@:‘r Dll‘ 8 “'l WRITE =Nk
’ 1]
@ 8
3\% ‘ SENSE LnN®
0 Y
NoTg : || l'l I
=huanaa W
INSULATED TJUMPER tl Il!l
scAE=2:1 'l““
0156 CoNTACT SPACING

Fig 2.

Parts placement, component-side view,

"o
-

= www.Commodore

May Not Reprint Without Pe

OPEN THE PET COMPUTER, (This is the procedure outlined in

the service manual)

1. Press the rocker switch to the OFF position,

2. Remove the power cord from the wall socket to avoid
possible electrical shock.

3. Remove the two screws located on each side of the unit
under the lip of the cover.,

4, Lift the cover slowly - a few inches. When you locate
the cable leading to the cassette, remove the connector
at the main board. Then left the cover all the way up
and engage the supporting rod located on the left side
of the cover,

INSTALLATION PROCEDURE OF THE ADAPTER. (see Fig, 5,6 & 7)

1, Plug the 6 pin liolex Plug to the Adapter's card-edge
connector,

2. Plug the Adapter to the main board's card-edge connector.

3. The big 20,000 uF capacitor can be mount in front of the
main board by locking cable ties and adhesive backed mounts,

FINAL TESTING. lurphy's law states that "If anything can

go wrong, IT WILL". So please check the polarity of all the
components again before you touch the power switch, One thing
will damage your PET for sure is a short circuit between ground
and +5V line or +6,5V motor control line., When you think
everything is 0K, Turn On your PET, and use a voltmeter to
measure the voltage across C3, it should give you a very small
reading (amost zero)., If the voltage is right, type in the
testing program, After you finished, SAVE the program, while
your PET is saving the program, monitor the voltage across C3
again, it should rise slowly to approximately to 4,5V and stop
there, ‘'/hen finished saving, the voltage will drop to zero
again (0,6V)., HNext, put a new ‘bape in the cassette and RUN
the test program, The test program will check and print the
nunber of drop out errors found - you should have none,

PARTS AVAILABILITY. Essential parts, including 6 pin
card-edge receptacle (# K60013PCSCGD6), Universal PC Board
and 20,000 uF are available from ARKON ELECTRONICS LTD.,
91 Queen Street E,, TORONTO, Ontario, KS5C 151,

A assembled and tested unit for $26.00 is available from
RAPID ELECTRONIC, P,0, Box 1031, Station 'B', WILLOWDALE,
Ontario, 12K 2Tsa,

100

r

.Cd

i

J MAIN LOGIC BCARD

b —)

| 14K Rom

\
8K RAM) \

< www.Commodore.ca

May Not Reprint Without Permission

Fig 5. Simplified
inside view of the PET

with the cover removed.

O

°—¢
\

Card-edge
connecter for

Card-edge
connector for
cassette No,l
6 pin Holex
Plug.

~

VOLTAGE REGULATO

HEAT SINKS .

y

/ﬂND

‘EER X0 [___| VSER I/

[V‘AGSJ.'.L I IZ““"

RECTIFIERS

e
a4 L
6502
— .l
14K RoM
8k RAM

101

cassette lo,C
6 pin Jclex
Plug.

Fig 7, Simplified

view of the main

logic board.

i

Fig, 6 Installation

10
20
30
40
50
60
70
80

g WWW. Commodore ca

uku‘WC'ﬁop'rT out Perr

Adapter
PC Board

of the Adapter. PET main

Logic Board

6 pin
Molex Plug
of Cassette
No,.1l

20,000 uF
8v

REM CREATION OF THE TEST FILE
POKE 243,122: POKE 244,2
OPEN 1,1,1 :REM OPEN CASSETTE NO,l

FOR I=1 TO 300
OTE: For C tte NO, 3 i

PRINT I N or Cassette NO,2 the following

lines have to be changed to :-
PRINT#1, I &

10 POKE 243,58:POKE 244,3
NEXT I

20 OPEN 1,2,1
PRINT#1: CLOSEl ey

105 OPEN 1,2
STOP

100 REM RECOVER AND TEST THE TEST FILE

105

OPEN 1

110 FOR I=1 TO 300
120 INPUT#1,A

130

IF (ST) AND 64 THEN GOTO 170

140 PRINT A;

150 IF A B+l THEN PRINT "ERROR": J=J+1
160 B=A: NEXT I

170 CLOSE 1: PRINT J;"ERRORS FOUND"

102

n

= www.Commodore.c

May Not Reprint Without Permissio

INIERUPIS ON IHE
COMMODANRE PEX

{c) 1979 Rrad Temnleton

One of the most important features of the COMMODORE °FT
operatinyg system is the use of interrupts. They are used to
reset the PET, and thsy handie most of the tane and atl of
the keyboard i/0. This article will provide an introduction
to interruots on the 6502 {The PET's cpu) and a description
ot how the PET hardles them.’ For your information, pseudo
source listing is nrovided for the interrunt software of the
PET» as oroduced by my disassembler,

Under normal conditions, a procsssor exsacutes machine
code in a linear fashion, It moves through memorys, ob-
taining instructions (which can be one, two or thres bytes
fong) and executing them, Sometimes, certain programmed in-
structions cause jumpns to other placess, just like GOTO and
GNSUB of basic. To make a machine more flaxible, however,
interrunts are provided to do jobs that .would bes very expen-
sive to do in software.

Essentially, an interrupt is controlied by a tine right
into the processor. When the processor detects the correct
voltage on this lines an interrupt may be gensrated. First,
in order to simplify mattors. the processor finishesltho in-

struction it is presently carrying out. Thens it the in-

- 103

i

www.Commodore.c

- May Not Reprint Without Permission
terrupt is ok (interrunts can be masked), The Drocessor saves
the program location it was at, and the contents of its
flags onto the stack., [t then goes to a snecial reserved
area of memory (in ROM on the PET) and pulls out two bytes
indicating what location it should start executing from, [t
then qoes there and executes machine code until the instruc-
tion RTI (Return from Interunt $40) is encountered, [t then
goes back to the stack and restores its flags, and loads the
focation it saved to the instruction counter. It then goas
and executes the code after where (it stonped as though
nothing had occured. (If the interrupt program was correctly
written)

On the 6502, thres types of hardware interrupts can oc-
curs as well as a fourth specisl type. The 1tocations they
branch to are kent in bhyte palirs called vectors at the end
/o! memory. 0One of these Iinterrupts, NMI or Non Maskable In-
terrupts, can not bhe used on the PEY, [ts vectors, $FFFA-B,
points to $CA60, which is the middle of a subroutine. The
line for this is also fixed off by a resistor on the pc
board., Later PETs may plan to include this.

The intesruot <called for oower up is named RES. It
branches to a routine which sets up basic and the operating
system, It alsor through what | consider to be ones of the
PET's worst design flawss branches to the routine to
destrpctively test how much memory is in the machine, At

the very start, it also tests the condition of the diag-

104

= www.Commodore.c

May Not Reprint Without Permissio

nostic sense (MSR of $FA10)s» and goes to the dizaanostic
routine if this is set. RES is fired by power ups» or by
arounding pin 27 on the hottom of your memory eaxnansion bus.
I you sat it by touching that pin, it doss not clear memory
below $400, so proarams there (the tape buffers) are safe.
This iss unfortunately, a very smal! area. It vectors
throuah $FFFC-D.

The qeneral use, hardware ints unt is the IR0, IRQ vec-
tors throunh $FFFE-F, as does BQK. This points to Incation
$E6GHAB in the PET, It is generated severy H0th of a sacond by
the tv hardwares and can also be generated from the memory
expansion buss on nin 28, It is also connected to the 6£527
varsatile interface adantor, I will discuss tha 60 nar
second interruots hare in detail. For information of genera-
tion by the 6522 (there is another whole article's worth ot
material in there) you can writs Mnébfor the manual on ijt.
Interrunts can be genaerated from it at exactly timed inter-~
valss and by certain ifo conditions on the user port and
I®EE bus, The saxactly timed intarvald are used to send
orecise freauency signals to the tane. (In facts tha 6£522
is tha PET's tane interface!)

The A0 par second intarunts do the foltowing:

Scan the ksyboards checking for new keys and dacoding them,
Increment the reat time clocks and check for midnight
Flash the cursor if it is on. ($0224=0)

Test tanme rscorder status for stoo-start

105

i

< www.Commodore.c

May Not Reprint Without Permission

Cobpy a bytes for the break key test.

Whatever efse you want them to do.

when the IRQ occurss the code at $F64B (see source) saves
the processor register A» X and ¥ on the stack. It than
checks» by toading back from the stacks, the flags, to see if
the BRK fla2q was sat, The ARK, a softwara 1I®Q, vectors
through the same places hut sats the BR¥ flag. This is han-
dy to test what tyne ot interrupt occured, It then does a
jump indirmct to one of two olaces in RAYM (%719 or $21R)
denending on the type of interrunt.

Normaltly, tha PAM RN vector is set to 31FA895, which is
the standard 12Q cnde, RﬁK has no default setting. The
small piece of code you see after the J¥P indirects is the
return cndes which restores the ragisters and does the °T],
‘“The first thing INT_CODF dnes is the JSR INCP_CLOCK which
increments the clock and copies the PlA register the break
Akey test uses. Whan Steve Punter ot VYississauga saw this
with the disassemblers he devised an ingenious way to.
disable tha B8FFAX key of the PET, 18y telling the PET to
branch to $FH88 instead of $FAK85 by meanc of a PNKE 537,‘1?6
statemant, thas PET bypasses the INCP_CLNCK subroutine, =anc
dnes not test the hreak key. (Note INCR_CLOCK passes through
a JMP vector tabla in high RIM at 4FFEA) This has the side
effect of turning 2ff the real time clocks When this state-
mant is not usad the clock proceeds normally., Aftar it is

undated, it is comnpared with a3 three byte table that con-

106

< www.Commodore.c

A~

May Not Reprint Without Permissio

tains the value for midnight. If it is midnight on the
clocks, it is zeroed. The PET also keeps a secondary clock
just. after the main one. This is used for calibrating the
real time clock. About every 6 sacondss this clock reaches
a3 spscial limit, and when it doess it is zeroed, and the
main clock is not incremantad on this cycle, This is
becuase thae jnterruot generator runs slightly faster than aex-
actly A0 times per second, Even with this comnensations, vyou
may have noticed the clock is a few seconds off after
several hours ot PET operation, It they had used the 60 hz
ac power line for ths interunt, it would have been more ac-
curates, but that would have caused nrobhlems for PETs sold
abroad.

Aftar doing the clocks it proceeds to filash the cursor,
once every third of a sacond, if the location FLASHING
($224) is set to zaro, (POKE 548,00 in a oprogram turns the
cursor ons, but with some bugs - try it and see.)]t does it
with a very silly method that has no apparent onurposas in-
stead of thea standard method, a2 EQOR $80, It then sets up
two keyboard test locations.,

In wusing your PET, you may have noticed that it the
tape drive is stopped by the machine itself» that you can
push ston and olay and the motor will run again. This is
handlied by the saction of code at $E6CD. After this comes
the ksyboard interpretation routines. The method of

decoding the keyboard PIA has already been published in your

107

i

= www.Commodore.ca

May Not Reprint Without Permiss

PET manuatls, and in PET user notess so I will not dwell on it
here, Once it has the matrix coordinate of the key, it
waits for it to stabitizers to avoid béunca and repeating
tatters. (The TRS-830 does this poorly). It then converts
the matrix number to an ascii character throuqh the table at
$c75C. (You can use this table in vyour bprogramss, {if you
want to account for how long a ey is held down - a great
raeal time featurs!) It then puts the key in the correct
nlace in the keyhoard bufter starting at $20Ff, Finally it

gnes back.

108

= www.Commodore.c

May Not Reprint Without Permissio

WHAL Y0OU CAN DO

Bacause the PFT IRQ goes through RAMs it is one of the
main links you have that can give you operating system con-
trol. You can insart your own programs before and after the
interunt code to have your PET do two Jjohs at onces like
handle i/0 while running basic. | have used intsrupts to
write nrograms to:

Internret thes PET keyboard and the full sized keyboard |
Aattached to the PET tike a regular ksyboard,

Provide functions like reoeat after a certain period of
time and shift lock,

Turn the ! key to a statement number keyr so that it would

nrovide a tine number 10 highsr wWith esvery nush,

Have upner case lIsatter keys onrint out as full basic keywords,

Nisolay whole pageas of PET memory constantly on the screen,

Provide a non-destructive reset that works in special cases.

Much more is possihle.

To wuse vyour own programss you merely set theﬁ uo in
some convenient focation (machine code only)s oreferably
starting at flocation that ends in $385, such as $385 in the
sacond tape buffer. Something locatad there can then be
started with a PNKES38,3 and stopped with POKE $38,230,
rather than having tao write a special machine 1languaae
program that disables the interrunt with SEls changes the

Incationss and enables the interrunt with CLI, You do not

109

i

= www.Commodore.c

May Not Reprint Without Permissio

nesed to disable if vyou are only changing one byts of the
location. Put some code theres and fotlow it with a J4p
$£685. This way it does your code and proceeds on to do its
own., If you out in the following serjas:

FE S50 80 4 B85 E#h

starting at $38% (901 base 10), and initiate it with POKE

538,31 you will see a hyte on the screen constantly in-

creasing in “value™, once every 60th of a second, The PET
will also be doing everything else as usual. The following
code:

42 00 BD 00 00 9D S0 AN E8 DN F7 4C BS E6
will dump a page of memory on the screen constantliy. You
can poke 905 with the page you wish to examine. Try
Ns1s2s4531,232, It starts with nage 0. When scanning paage
0s» move the cursor and see what hapnens,
While doing this» you may have noticed that there is no
flickar whatsoever on the scresn despite tha massive amount

of writing to it being dons, {Far faster than BASIC

printing). This is becausa the interiupt is fired by the

screan scan signals, and the scresn j§s doing nothing shortly
after the interrupt goes. This is also why the flashing cur-
sor will never "snow”™ the screen, You can store aimost halft
a screen Wwithout "snow" this way.

Somatimes it is important to put code in after the in-
tarrupt code of the PFT. This can be done by maniputation of

the stacks and is necassary for programs like the statement

110

i

g www.Commodore.c

A~

May Not Reprint Without Permiss

numberar or Kesyword printer 1 included in my list above. 1
have included some code you can obut in to allow you to do
this. >PRNG means the high order bytea of where your post in-
tarupt code starts and PROG is tha low order byte. PCLO and
PCH] Aare two locations for storing the correct pc you can
use. The nroqgram works by altering thas stacks so that the
PET goes to your orngram when it ®TIs. The second part of
the orogram, which tinishes your routine off (GORACK)
resets the stack and restoras tha proner program counter and
machine reqgisters. You should be able to have a lot of fun
with it

It should be noted that orobabty the only reason the
129 vector is in RAM js that the PET does change it for tane
i’/o routines. There is a table of nossible vectors starting
at $FN2R j§n the rom, and the table ends with the standard
vactor %tE685. 1f you ever change ths high order byte of the
IR0 RAM vector, you must reset it bafore tape i/fo is done,
1f you don't, the PFT wilf reset it anyway, but the tane i/o
may not be done, and you may crash your PET.

Incidentally, the disassembler was written in the system
languaace R (a very nices much improved BCPL) here at the
University of Waterloo where | an to school and work for the
Mathematics Faculty Computing Facitity. This articte was
also nrenpared and formatted on the <same Honeywall 66/560,
Many of the labels used in the disassembly were orovided

through the massive effort of examining the PETs R0OMs done

111

Wil

« www.Commodore.ca

May Not Reprint Without Permission

by Jim BRuttertieid of Torontoe. My next article for the
Transactor will be on programming intaractivaea games for the

PET.

@D The 6522 Data Sheets (24 pgs.) and other MOS publications
are available through dealers.

112

ERGR
E66C
EA6D
E6RE
EAR6F
EAT70
FAT71
FhT74
E676
EA78
EAT7R
E6TE
EHTF
EAAD
EA81]
£h 82
EA 83

EARRSG

£h 85
EAAB
Eh AR
€680
FAQD
£E6Q2
EARQ4
FARQ7
£A Q9
FAQC
EA QE
EAAD
EAAT
EAAD
EhAT
E5AQ
EAAA
FARAC
FAAD
FAAF
EARBO
EHRBR2
E585
FABRG
E6ARQ
FABR
EARE

Hers

48
A
48
948
48
BA
ap
29
F0
18
16
3%}
AR
6 R
AA
AR
40

A0

20
AD
no
CE
no
A9
aD
A4
4E
R1
80
£F
)
nA
80
28
20
18
Y
a1

A2
RE

8
13
A?
AD
29

is the code for the

Na
10
N3
1R
10

FA
4
21
2%
1F
14
25
F2
27
Fo
ne
>7
26

012

N1

EN
FF
73

04
50
10
F0

N1

0?
N2

FF
02

0?2

0?2

0>
0?2

02

EA

INTERUPTY

RETURN_INT

INT_CODE

113

PHA
TYA
PHA
TYA
PHA
TSX
LDA
AND
BEOD
Jp
J4p
PLA
TAY
PLA
TAX
PLA
RTT

RTS

JSP
LDA
RME
DEC
ANE
Lna
STA
LNy
LSR
LDA
BCS
INC
STA
ASL
RCS
SEC
’CS
CLC
RNR
STA
LNYX
STx
INY
STY
Lnx
LDA
AND

interruots on thsa

$104&s X
#%10
SEATR
[BRK_LNW)
(172 _LOW]

INCR_CLNCK
FLASHING
SEARN
C_TIvER
LEH3N

#%14
C_Tiuro
C_CAOLUMN
C_STATE
(C_ROWADR),Y
LEHAH
C_STATE
CHAR_UND_C

SE6AC

SF6AD

(C_ROWADR),»Y
#SFF
KEY_IvAGE

SHIFYT_FL
#$50
PIAl
#$F0

MAv

Yy

PET

P

rint Without Permissio

o www.Commodore.c
Not Re

i

o www.Commodore.ca

May Not Reprint Without Perr]

FACO 8D 10 ER STA o181
EAC3 A0 OO LOY #¢0
EACS AD 10 ES LDA PlAl
EACAR 0A ASL
FACY N2 ASL
EARCA 0A AStL
EACR 10 07 RPL SERDA
FACD RC n7 o> STY C1_STaAT
EAND AQ 3D LDA #%1D
FAN2 NO N7 BNF $E£NR
FAD4 AD 07 02 LNA C1_STAT
EADT? DO NS BNE SEANF
EANG9 AQ 138 LNa #4135
£ANR A 13 €8 STA PlAL_R4
EADE Q0 0& BCC SEAEA
FAFO AC 0OA 0?2 STY (C2_S5Tary
EAF3 AD 40 EAR LtNA PNRT_R
EAEH NO 1O NRA #%10
F6ER DO NA BNEF $FEAF4
FAEA AD DR 02 LDA C?2_STAT
FAFD NO N8 ANE SEARFT
EREF AD &40 ER LDA PDRT_R
EAF? 720 EF AND #8%EF
EAhF 4 RN 40 ER . STA ©o7NRT_R
EAFT AD DR LDY #%R
EAFQ AD 12 FAR LNA KBR_ROWIN
FAFC €D 12 EBR CMP KR_RNWIN
EAFF D0 F6 BNE $F6&F7?
E7nt 447 LsS®
£E702 =N 0S5 8CS ¢F7N9
£E7N4 LA PHA
ET0% 20 3F FE7? JSR NECONE _KRD
E70R AKR PLA
£709 CA NEX
E7NA FD NA REY ¢E714

. E7NnC AR NEY
F70Dp NN F? ANE SE701
F?70F FF 10 E8 INC o121
£712 DO £1 RNF SEARFT
E714 AD 23 02 LNA KEY_IMAGF
E717 €D 03 02 CMP KEY_DDWN
E71A £EQ 20 BFQ ¢E713C
£E71C "D 03 0? STA KEY_DOWN
E?1F AA TAX
E720 30 14 M $E73C
E?22 RD SB FE7 {NA S$ETSR,X
E772% 4&F 0& 02 “LSR SHIFT_FL
£728 90 0? BRCC s£72¢C
F724 N9 AN ORA #%A80
£?70(C AF 0D 02 LNX KEYCOUNT
E72F ° QD OF 02 STA KEY_RUFF,X
£E732 F8 INX
F733 FO OA CPX #%A
£735 DO N? ANE $F739

114

€737
F719
E73C
E73F
£742
E744
F746
E749
F748
E74D
ET4F
E751
£753
E756
€758
E758

F736
F£739
F738
F73E
F740
F743
F745
F747
F74A
F74C
F74F
F751
F7513
F75¢
F758
F758
F750
F760
F763
F765
F766
F768
F76A
F76C
F76F
£770
F772
F774
F776
F779
F77¢C
F77F
F782
F784
F787

A2
BE

4C

D
no
AQ
80
no
c9
FO
co
no
2C
30
AE
60

AD
&9
8D
20
EFE
r9
10
4D
co
FO
FE
No
EE
ne
FE
A2
RD
Do
Q0
E8
FO
Do
AQ
9D
CA
no
FO
AQ
abd
an
AD
D
no
ap
A0

00
0D
7€
58
07
01
04
10
FF
nc
3C
ns
11
02
23

0s
01
05
03
06k
hF
07
06
0?2
26
02
NR
01
013
no
00
00
88
17

03
F3
00
FF

FA
08
no
0%
né
12
12
Fa
no

0n?
E6
E?

0?

EA

0>

0?

0?

0?

0?

n?

02
F7

01

02
0’
E8
E3

02

DECNDE_KRD

PDATE_CLK

115

LOX
STX
JMP
LDA
ANE
LDA
STA
RNE
cup
REQ
cup
ANE
BIT
AW
STX
RTS

LNA
AnC
STA
RCC
INC
cue
BNE
LDA
cup
BEO
INC
ANE
INC
ANF
INC
LnX
LDA
cup
BCC
INX
cox
NE
LOA
STA
NEX
BNE
REO
LDA
STA
STA
LNA
cHep
BNF
STA
RTS

;»wvmwﬁonwnodore

nt Without Pe

May Not Repr

#40
KEYCOUNTY
RETURN_INTY
$E75R, X
$F74R

4%

SHIFT _FL
LE75R
$4FF
$E75R
#43C
$E7538
PIAYL + 1
$ET7S5R
KEY_]MAGE

CLOC¥_?
$41
CLOCK_?
$E 747
CLOCK _?
#46F

$F 74C
crocxk_? + 1
LS g

LF774
“_CLOCK + 2
$F 758
M_CLOCK + 1
$F 758
M_CLOCK

#3N
M_CLDCK»X
$F788, X
LFT77C

>
[

#%13

$F 75D
£330
$1FF, X

$F76C

$F77C

e N

cLoCK_?
CLNCK_? + 1
KB_ROWIN
KB_ROWIN
$F77C
PIA_CDPY

8

.Ca

i

Hero

START

GIBACK

is the source for

LNA
STA
LNA
STA
LDA
STA
LDA
STA
Jup
PEM
LDA
PHA
LDA
OHA
TS X
NEX
NEX
NEX
DF X
TXS
Jvp

$£105X
PCLN
€106, X
PCHI
PRNYG
$195,Y
SPRNYG
S1NA X
$E695
THIS CODE GNES
PCHI
on
PCLA

$EASE

the post interrupt code proagram

GET

PRNAGRAM
COUNTFR AND
STORE 1T
PUT IN YOUR
OWN CNDE
LOCATION

DO NORMAL INTERYPT

AFTER YNUe CODE, TO RETURN
PESTORE

LOCATION

RESET
STACK

00 RTI

116

= www.Commodore.ca

May Not Reprint Without Permissior

¢ WWW. Commodore ca

KVENICH & ASSOCIATES = "

International Trade Brokers

3 2w Dri Unit 5 Rexdale, Ontario M9W KE7 . Phone 675-7333
51 Carlingview Drive e 262985100

ATTENTION: NEW PRODUCTS

KVENICH & ASSOCIATES HAVE BEEN ASKED TO DISTRIBUTE THE WAVECOM
INTERFACE. DESIGNED BY THE MICRO-SYSTEMS ENGINEERING GROUP,
THIS NEW PRODUCT WILL INTERFACE THE PET COMPUTER AND THE I.B.M.
SELECTRIC TYPEWRITER FOR COMPREHENSIVE WORD PROCESSING.

THE WAVECOM INTERFACE IS A STAND ALONE DEVICE WHICH CONTAINS
ITS OWN PROCESSOR AND ROM MEMORY, NO PROGRAMMING IS REQUIRED
TO RESIDE IN THE PET'S 2nd CASSETTE BUFFER AS IS THE CASE WITH
MANY INTERFACES PRESENTLY ON THE MARKET., THIS FEATURE ALLOWS
THE USER THE 2nd CASSETTE FOR BUSINESS FILES OR ACCOUNTING
PROGRAMS.

FEATURES OF THE WAVECOM INTERFACE

. A stand alone interface.
2. Plugs into the PET COMPUTER via the IEEE port.
. All parts are included with the WAVECOM interface (including

plugs, and wire connectors).

4, Plugs into the SELECTRIC typewriter.

5. Installation of solenoids and plugs are required for the
SELECTRIC by the user or dealer all parts are included.
are provided.

6. Can be used with a SELECTRIC terminal. Communication is
via a telephone handset through an acoustic coupler. No
modifications are necessary.

7. Will also operate with many other computors such as TRS-80,
SOCERER, and APPLE.

8. Unplug the SELECTRIC typewriter from the WAVECOM Interface
and the typewriter will return to normal manual operation.

9. Allows any computor to completely control all user controlled

key includinag, the TAB FUNCTION and the BACKSPACE key.

NEWS RELEASE

117

HOME COMPUTER CENTRE

Computers for Home & Small Business

= www.Commodore.c

A~

May Not Reprint Without Permission

(416) 222-1165
222-1166

6101 YONGE STREET, WILLOWDALE. ONTARIO M2M 3W2, CANADA

HOME COMPUTER CENTRE
ANNOUNCES

THE NEW RELEASE OF PET SOFTWARE

The following programs are now officially released with complete

documentation.
1. ENTRY -

List Price
$24,95

2. PROCESS -

List Price
$24.95

3. INVENTORY -

List price
$24.95

Used as a general purpose data entry program for busi-
ness applications with user definable entry format,

the program may be used for a Mail List, Daily Journial,
General Ledger, Record Keeping etc. It works with
cassette printer, and other IEEE devices.

General purpose data process program. It is designed
for limited data processing power on the PET. Basic
operation includes SORT, EDIT, DELETE, INSERT, and
MACRO. The program is particularly useful for merging
large amounts of data from different input sources.

Inventory control program on the PET Data includes,item
#, description, quantity on hand, reorder limit and
prices. It generates inventory report and low inventory
report. Handle up to 60 items on the 8K PET. Data may
be insert, delete, change, on the memory instantly.

All the HCC offically released programs come with complete documentation.
The programs are intended for practical business applications, and special
techniques are used to insure easy operation and data reliability. Special
features include interactive message, error-free operation, recoverable
operator errors, general I/0 etc. The released programs have been tested
for an extended period of time.

118

COMPUTER COURSES FOR EVERYONE

Human Computing Resources Corporation presents an ongoing program of courses on computers.

The courses have been created in response to the growing need for an objective, non sales oriented, viewpoint
on how to evaluate personal computers, microcomputers and minicomputers. They will be attractive to
people from many walks of life — business people, professionals, artists, engineers, enthusiastic new users.
They will be doubly attractive to people who have researched the computer market and find they lack the

expertise to choose one system over another.

Being offered in spring/summer 1979 are:

Introduction to Computing and Personal Computers (bimonthly; 9 hours)
How to Buy a Computer for Small Business (23 May and 18 July; one day)
Introduction to Microprocessors (23 and 30 June; 14 and 15 August; 2 days)
Introductory Programming in BASIC (monthly; 18 hours)

Programming in PASCAL (bimonthly, beginning in June; 18 hours)

In the works are courses on word processing, computers in the law office, and computers in medicine and in

the medical office (two courses).

Our instructors are skilled educators, business people and creative computer professionals. They have had
broad experience with all types of computers and computer applications.

All courses are held at HCR’s offices, 10 St Mary Street, Suite 401, Toronto (near Yonge and Bloor), or in
downtown Toronto hotel suites. Courses are priced at from $55 to $115. Fees for all courses are income

tax deductible.

For more information, mail in the form below, or call us at 922-1937.

= www.Commodore

May Not Reprint Without Pe

r

.Ca

Please send me information about these courses:

() Introduction to Computing and
Personal Computers

Introduction to Electronic Troubleshooting
Introduction to Computer Graphics
Introduction to Word Processing
Computers in the Legal Office

Computers in the Medical Office

Frontiers of Medical Computing

()
()
() How to Buy a Computer for Small Business ()
() Introduction to Microprocessors ()
() Introductory Programming in BASIC ()
() Programming in PASCAL ()
NAME
COMPANY & TITLE
ADDRESS
PHONE

119

i

= www.Commodore.ca

May Not Reprint Without Permission

HARLOMIT

SYST E M S ' N C . ‘80 HALE ROAD, UNIT 7, BRAMPTON, ONT. L6W 3M1 # (416) 459 7616

Nakcomm Systems Inc. wishes to extend thanks to Commodore for the
opportunity to cffer you several new PET cempatable items.

Ycu nay find “hese units an economical and easy way to expand tho
capabilities of your PET:

Mini Printer Model TC-100 Full Size Keyboard Model 74-Kh
40 Character Per Seccond lList Price $199.9%
96 Character set ,
5 X 7 dot matrix 32 K Bytce Expansion Board

List Price $499.95 . Model PME-32 List I'rice $912.95

SPLCLAL MOTRE: We also have available, an Interface Model plp-10,
allowing the PET to operate with any Centronics Printer. List Price $69.45

Orders placed directly on Nakcomm Systems Inc, will be dcalt with prompt ly.

Our 'lerms and Conditions are as follows:

Payment - Cash (cheque or money order) with order.
Warranty - 90 hays parts and labour.

Delivery - 1 to 3 weeks depending on item and stock.
After Warranty Scervice - Done on the Nakcomm premises.

1f you reguire any additional information on the above desciribed units ol
further explanation of our offer, contact us at any time.

Yours very truly,
Nakcomm Systems Inc.

Donald R. Young,
Marketing Co-Ordinator.

Dealer Inquiries Invited

120

i

Convert Upper to Lower Case

The following is a program that will convert all upper
case text to lower case. However, keep in mind that any
graphics above the alphabetic keys will now be unusable if
they are to appear simultaneously with lower case letters.

59030 FOR T=1024 TO 8006-FRE(O):A=PEEK(T)
59031 ON Z GOTO 5903L4,59037

59032 IF A=153 OR A=178 THEN Z=1

59033 NEXT

59034 IF A=34 THEN Z=2:NEXT

59035 IF A=58 OR A=0 THEN Z=0

59036 NEXT

59037 IF A 64 AND A 91 THEN POKE T,A+128
59038 B=PEEK(T+1):IF B=34 OR B=0 THEN Z=0
59039 NEXT:END

When writing the program use no spaces. The program
will convert strings and PRINT statements but will not
affect DATA statements. Also, it may terminate with a
1 2NEXT WITHOUT FOR ERROR IN 59036' but that's OK.

Of course you need not use the same line numbers. They
were chosen due to their unusualness. The program was then
recorded using the UNLIST routine in Transactor #7. It can
then be merged with other programs with a good chance of not
interfering with other program lines.

B0 00 0 000 000000 00 SIS0 00 L0 0L 000N B PP0 08B0 OGS0 000 000G NS CELN00 GOSN SETSTIIDS

To receive Transactor Volume 2 bulletins, please return this
form with your cheque for $15.00 annually renewable, to CBM

3370 Pharmacy Avenue, Agincourt, Ontario, M1W 2K4, Volume 1
back issues will be available at 10 dollars for a limited

time only (while supplies last).

NAm...ll...“000‘..0.00l.0...0..0..Q.0.0l0...‘...l‘.l..'...l.....ll..l'..
COMPANY (if applicable).l.0‘0‘C;...l..QO.l.....l.............0......‘.....
ADDRESS..'O..D.O..‘0...00.....0....00'“l.C‘..‘...“0.0..'.0‘.0.....Cl....

ooooolc.a'.lnc.tao000‘0.00000‘0000.00QQCO.QPOSTAL CoDE..ooo..oo..o.cootlll

RECEIPT REQUIRED? ves O vo [
(Invoices cannot be issued for the $15.00 annual fee)

IDEAS & COMMENTS...oo.-.uoo-ootnoooooo.oooo-oauoouoooo-.ooooconoooo.oooo-c

.o.t'l.l....l.....‘.O..Q..Clt.l.ll...l..l.l0..‘.0..000'.'.0......!l’..l.'.

121

May Not Reprint Without Pe

g www.Commodore.ca

i

g Www.Commodore.c
May Not Reprint Without Permission

NOTES

122

, www.Commodore.c

THE USER PORT COOKBOOK ™ May Not Reprint W

This bulleting describes how to use your PET's user port and
how to interface it to real devices.

The pin-out of the user port is shown below:

(Viewed from the top)

EH&MNM\?W\DI\NE
<< € € € £ € € € 4 M X
T O O Aol oA oA RO O
z

H o< moomEx DX a2

P.c.Bo1r0 5 ' S Top

{
- BoT'rom
POLARIQATION
SL6T S

The user port pins are on the bottom of the PET circuit board.

Page 22 of "An Introduction to Your New PET Personal Electronic
Transactor' describes the manufacturer part #&# for several edge
connectors which will fit the user port. If you cannot find a
12 position 24 contact connector, saw off a larger one to fit.

Note: Be sure that the upper and lower contacts in the con-
nector are not electrically connected! Other signals reside
on the top side which are not cowpatible with the user port.

The pin names correspond to the lines which connect to a MOS
6522 VIA, Versatile Interfree Adaptor.

The data sheet for this LSI chip is available from Commodore,
360 Euston Road, London NWl 3BL. (It is 24 pages long.)
This bulletin is concerned with using the user port, and will
not describe the 6522 in any more detail than is required.

Cont'd...
123

A,xv:\u- P‘“‘.,y\ SSI10

i

= www Commodore ca

May Not Reprint Without Perr

Pins CAl and CB2 act as "haudshake'" lines. Pins PAO through
PA7 act as data lines Electronically, these !ines can drive
one TTL load. If your cavle is more than 24" long, you may
have to buffer the lines.

A series of memory locations in the PET act as control and
data registers for the 6©522. These are accessed via PEEK and
POKE in BASIC, and by the 6502 machine language instructions
which read and write to memory.

The memory locations of use to us are:

Name Hexadecimal Decimal
Data Direction Register E843 59459
Data Register EB4F 59471
Data With Handshake E841 59457
Peripheral Control Register E84C 59468
Auxillary Control Register E84B 59467
Interrupt Flag Register E84D 1469

See the 6522 sepc. sheet for the exact definitions of these
registers. The examples in this bulletin will cover most of
your usual uses of the user port.

Cont'd...

124

n

: www Commodore ca

.l May Not Reprint Wit

THE "BLINKIN LIGHT'" MACHINE

One way to get started with the user port is to build a device
cappable of showing the status of each line and to permit

manual control of the lines

display/switch panel:

Here is a block diagram of a

"FRawm PeY FRom PtT
| l N BUFFER LN 8B.\v OATA
PAQ-PAT AMRLIFLERS Lev
¢ DL S PLAY Diopiay
L N b-
BOFFER 2R\ BAND
4
cM/cee AN VLIV ERY LED DI\4P, DS\‘:S\‘:EV
—
\
N 8 —N e DATA
Lo0WATeN Swntiwes S TS
Swtcnes To v ReersTen
(S
— N ? ——J‘~g NAnD
TS0LATON MOMENTARY SHAXE
Swnvlnes | %mt:"‘w CNIRY

To Vewdg T8 DeNwE

Some breadboard and about
resulted in the following
buffer amplifiers, the +5
dip switches are used for
register, and some toggle

Note: -This circuit draws
available from the PET.

$20.00 of parts (at very retail prices)
circuit. 7404 inverters serve as the
is taken from the cassette yg¥2 supply,
isolation, slide switches for the
switches for the handshakes.

~ 200MA which is close to the maximum

Cont'd..

125

out Pe

10N

v www Commodore ca

== Mav No epI nt Without Pe

Parallel User Port Indicator and Switch Register

£
Farowm B¢t 42
q Y- d
CAANP TV s o2 r %
LLggccaccy 25 o O o
Voo oaaooea) I - T od ™
PYOVQTO?QF-;? [od —4
{ R B K l\‘\P&NDS‘r\hKE
‘V”*”‘“““C>O“«NNN”“‘F*‘“ OIS VLAV
—>0 MM —fa—¢ +5V
t+ ~ = A0 -AMN—F—¢ .
— 1 - DA —F— DA
1 1 P LS PLAY
—-——ﬂ»—-r——m .A__{>O /\A/\A 13 :
4 'DO‘%W’_’M.
4 —t— ‘—{>O~VVW‘ -9
41— i —{ >0 -AMNV—F—¢
T ot LWAND SRAKE
I - I -t Sanilwe S
r e ,.: (MomenTARY
fa 4 pos DiP i Lm:{rmw)
““““ Olata LE
?f —— ! to gho
p— : ”ﬁ.: DAIA
o % A 2 BTN ES
~4 " i (st
‘r - n o g0 S TCHUeES)
: = j‘B-r
| — | - 9.5-0
._:___/ i o g‘a.. xSV
b o - 4
8 PoS 019 St Guo
‘,—‘
¢ L L’b I J L o b L
AL ; (8l GNo
T Bene Cont'd.

126

SIOoN

;»wvmwﬁonwnodor

May Not Reprint Without Pe

The following examples assume you have an equivalent device
Lto attach to your user port. Be sure that (i) the device
works correctly, and (ii) the connector is correctly pluged
in. Somet ines the PET PCB has its pins offset slightly,
making it possible to insert the connector so that one pin
on the connector touches two on the PET, etc. The lest
solution is to use the polarizer slots.

1. Simple Output

Lnter and run: (B¢ sure your isolation switches are all

open)

10 REM SINPLE OUTPUT

20 REM DATA DIRECTION = ALL GUiit !
30 POKE 59459,255

40 FOR J= O to 255

50 POKLE 59471, J

60 POKE - | to 10U : HEXT K

70 NEXT)

80 GO TO 40

You should see your data LkDs count in binary from 00 to
FF (0-255) with PAO, the LSB, blinking at about 3HZ.

Line 30 sets the data direction register to all 'l', which
sets all data lines for output. Each bit in the D.D.R.
corresponds to a given PAO-/ line. The PA line 1is:

Input if bit is zero
OQutput if bit is one

To see the effect of this, change line 30 to:

30 POKE 59459,15
Now, only the 4LSB (PAO-PA3) will blink. Lines PA4-PA7 will
be lit with no change. (Note: The TTL input of the 7404
will force the input lines high. Therefore the 4 MSB will
indicate A 'l' state If your display circuit is different
the state of the MSB might be zero. In any case, they won't
change.)

Try other masks to see other patterns.

Cont'd...

127

€.Ca

i

= www.Commodore.c

May Not Reprint Without Permissio

Line 50 POKES the data register with J (0-255) inside the For-
Next loop in lines 40-70.

Line 60 is a delay. Try removing it and you will notice that
the PAO line will blink too fast for you to see. (Vut PAl
will flicker).

Line 80 starts the counting loop over again.

You can write other programs to make moving patterns, etc.

II. Simple Input

Enter and run:

10 REM SIMPLE INPUT [vl Clear/home
20 REM D.D.R. = INPUT [s] Home

30 POKE 59459, 0O Cursor left
40 PRINT " [¥]";

50 PRINT "[3]" PEEK (59471) "[1]";

60 GO TO 50

Connect your data switch register by closing the 8 data isolation
switches When these switches are closed, the switch register
forces PAO-PA7 to the value selected by the switches.

A number will appear in the upper left cormer of your PET's
screen. Set your switches to all zero, and then set bit

0O tol. A 'l'" will now appear on the PET, and on your date
display.

Try one switch at a time to get: 1-2-4-8-16-32-64-128 and
then try other combinations.

Notice that if you open an isolation switch for a given bit,
it will become a 'l' due to the 7404's.

Line 30 sets the D.D.R. to all zeros, naming PAO-PA7 inputs.
Line 40 clears the screen.
Line 50 homes the cursor
prints the data register's value
prints the CURSOR LEFT and 3 blanks.
Line 60 loops back to line 50.

Note: .The CURSOR LEFT is required because numbers are printed
on the PET in the form:

123.45
%_JL_______Jljg
BLANK DIGITS CURSOR
OR "-" RIGHT Cont'd...

128

i

= www.Commodore.c

May Not Reprint W

This 'trick' removes left over digits from the previous
number - suppose you had set bits 7 and 3 (giving 136) and
then you reset bit 7 (leaving 8). If you don't remove
the characters, you will see 836!!

I1I. The Handshake Lines

The 6522 provides several options for the CAl and CB2 lines.
See the 6522 .specification for full details.

Note: Several of the addresses mentioned below control other
aspects of the 6522. If you can bits other than those
mentioned, you may have an inoperable PET, as your PET uses
the 6522 for internal uses as well. (The 6522 has CA2,

CBl, PBO-7 lines which the PET uses for other I/0 functions
than the user port.) You are warned! (I wasn't able to
SAVE a program until I had reset two of the registers which
had been POKEd erroneously!!)

For our purposes, these registers control the CAl and CB2
lines:

Data Register DATA

Data with Handshake HDATA
Peripheral Control Register PCREG
Auxillary Control Register AUXKEY
Interrupt Flag Register IFREG

The acronymns in the right column above will be used from here.

[CAl] CAl is an input only line which can detect a "Data Ready"
transition. When it does so, bit 1 of the interrupt flag
register is set. *(Our convention is MSB is bit 7, LSB is

bit 0)*

When the HDATA Register is read or written, the bit in the
IFREG will be reset. Accessing the data register has no
effect on the IFREG.

Detecting the flag bit is done by:

IF PEEK (59469) AND 2 THEN (Line #) or:
WAIT 59469, 2

Cont'd...

129

A,xv:\u- P‘“‘.,y\ SSI10

i

g www.Commodore.c

May Not Reprint

Bit O in the PCREG controls whether CAl sets the flag in the
IFREG. If this bit is zero, a negative transition sets the
flag bit. It it is one, a positive transition will be
detected ' |

Negative Transition

\ , POKE 59468, PEEK (59468) AND 254

Positive Transition

/ POKE 59468, PEEK (59468) OR 1

Use the expressions above to choose the transit-.on you want.

The flag bit will remain set until the HDATA register is read
or written. Bit O of the AUXKEY controls whether the data
is latched when the flag bit is set.

AUXKEY Bit O 0 = No latching The value of the
' DATA and HDATA registers follow the PAO-PA7
lines (those set for Input) regardless of th:
the CAl flag bit in the IFREG.

Bit O 1 = Latching. When the CAl flag bit
is set, DATA and HDATA will be latched.
Their value remains the same, even though
PA 0-PA7 may change. ‘ '

m Using CB2 is more complex than CAl. The 6522 specification
should be consulted for the more exotic ways of using CB2.

CB2 can be used as:

A. Handshake output
B. Handshake input
C. Shift register I1/0.

Bits 2, 3, and 4 of the AUXREG control whether handshake or
shift register mode is to be used. I1f the bits are all zero,
CB2 is in handshake mode.:. If any bit is not zero, CB2 is in
a shift register mode.

Cont'd...

130

V"“ A"v:\tl- P‘_‘.v‘\ s I/

i

= www.Commodore.c

May Not Reprint W

HANDSHAKE MODES

Output Mode

First you must set the AUXREG to disable the shift register.
This is done with POKE 59467, PEEK (59467) AND 227.

Then you can force CB2 low with POKE 59468, PEEK ((59468) AND
31) OR 192 and you can force CB2 high with:

POKE 59468, PEEK (59468) OR 224.

Here is an example program which blinks CB2 at about 1 HZ:

10 REM CB2 BLINKER

20 POKE 59467, PEEK (59467) AND 227

30 POKE 59468, PEEK (59468) AND 31 OR 192
40 FOR J= 1 TO 300: NEXTJ

70 GO TO 30

Input Mode

Note: This section has not worked in practice. Toggling
CB2 does not set the flag bit.

CB2 will set bit 3 in the IFREG if a transition occurs and
the PCREG is set correctly.

First, set the AUXREG bits 2, 3 and 4 to zero,
POKE 59467, PEEK (59467) AND 227

1f detection of a negative transition is wanted,
POKE 59468, PEEK (59468) AND 31

If a positive transition is wanted,
POKE 59468, PEEK (59468) AND 31 OR 64

Then, to detect a transition, check bit 3 6f IFREG:

IF PEEK (59469) AND 16 THEN (line ##)
or, WAIT 59469, 16

Cont'd...

131

A,xv:\u- P‘“‘.,y\ SSI10

i

= www.Commodore.c

May Not Reprint Without Permissio

To reset the flag bit, the B port register must be read.
X = PEEK (59456)
((Don't POKE this address!!))

SHIFT REGISTER MODES

If bits 2, 3 and 4 in the AUXREG are not zero, CB2 acts as
a shift register. Set the 6522 specification for details.

Only one of these MODES can be conveniently handled in BASIC.
The others require machine code to operate correctly.

The "Blinken Lites" can be given an audio capability with
the following change:

220

o——B? [So- AANAA o +5v
- I {>>3 [[o To Audio
[l Amplifier

.22 uf

Just add an extra inverter (two remain for use) and a
capacitator to the CB2 Led driver's output.

Note: It is advisable to add an electrolytic capacitator,
say 100 mfd to the Blinken Lite so that a sudden drain of
power won't reset the PET.

Check the audio extension by toggling the CB2 line in output
handshake mode:

10 POKE 59467, PEEK (59467) AND 227

20 A = 59468:X = PEEK (A) AND 131 OR 192
30 Y = PEEK (A) OR 224

50 . POKE A, X: POKE A, Y: GO TO 50

LINE 10 sets up AUXREG to disable shift registers,
LINE 50 turns CB2 on and off.

Cont'd...

139

I

= www.Commodore.c

May Not Reprint Without Permission

The reason for making the variables A, X and Y is because
BASIC references variables much faster than converting con-
stants. This maximizes BASIC's speed.

The PET keyboard can change the tones by using these changes:

40 Z=515
50 POKE A, X: FOR J=1 TO PEEK (2): NEXT: POKE A,Y:GOTO 50

Pressing different keys will give different rates of clicking.
You now have a low fidelity sound-maker.

FREE RUNNING MODE

When AUXREG bits 4-2 are '"100", the shift register cyclically
outputs its contents on CB2 at a rate determined by the Timer 2.
The addresses are:

SHIFT REGISTER: 59466
TIME 2 59464

Time 2 decrements to zero and then shifs the shift register
once . Timer 2 is reloaded and this goes on. The output bit
of the shift register is put in bit 7, causing the register to
"rotate right".

Here is a simple '"Music Maker" program:

10 REM MUSIC MAKER
20 POKE 59467, PEEK (59467) AND 227 OR 16
30 PRINT "TONE COLOR";
40 INPUT TC
50 IF TC < 1 OR TC > 254 THEN 30
60 POKE 59466, TC
70 PRINT "PRESS KEYS FOR TONES"
80 GET A S§: IF A S =" " THEN 80
90 POKE 59464, ASC (A §)
100 GO TO 80
It is streightforward to use the letters to make a true "key-
board'" - choose notes for each key and make a table which is
indexed by the ASCII value of the key. This is left as an
exercise. (With only 256 possible frequencies, the options

are somewhat limited.)

Cont'd...

133

: www Commodore Ca
Mav No epr nt Without Pe sionN

IV. Some Interfacing examples

The following program lets you monitor the user part and
modify any registers you wish as required. Be sure to save
it on tape BEFORE running it. (Also, be sure you have not
run any other programs first, i.e. turn the power on/off to
initialise properly!!)

Once you have it saved, RUN it, Its operation is quite
simple. The registers are named according to the 6522

specification with one exception, "DATA" is ORA without

handshake. Use the'3linken Lights" and this program to
see how all parts except the shift register works.

10 REM PET 6522 VIEWING PROGRAM
20 REM ‘tY: GREGORY YOB, COMMODORE
30 REM
40 REM SET UP R § = REGISTER NAMES,
50 REM A () = REGISTER ADDRESSES,
60 REM F () = SHOW REGISTER IF O
70 DATA 'ORB", '"ORA'", "DDRB", "DDRA"
80 ° DATA "TILC-L", "TIC-H", '"TlL-L", "TI1L-11"
90 DATA '"T2LC-L", "“T2C-11", "SR", "ACR"
100 DATA "PCR", "IFR", "IER', '"DATA"
110 REM 'DATA' IS ORA WITHOUT HANDSHAKE
120 DIM R $ (16), F (16), A (16)
200 A=59456: FOR J =1 TO 16
210 READ A §: R $ (J) = LEFT § (A § + "eight blanks",
E) +n.n
220 A(J) = A: A=A+l
230 NEXT J
240 F(4) = 1: F (12) = 1: F (13) = 1: F(l4) =
F(16) =
300 REM SET UP DISPLAY
310 PRINT " [¥] 6 5 4 3 2 o" .
320 PMT@@@@@@D@@@I@@
330 PRINT "D = DATA P = POKE S = SHOW"
340 PRINT "II = H&LP Q = QUIT"
W] = Clear/Home
[@Q] = Cursor Down
[S] lome
1] = Cursor Left

Cont'd...

134

= www.Commodore.c

May Not Reprint Without Permission

400 REM DISPLAY Y LOOP
410 PRINT ' S Q Q ';
420 FOR J = 1 TO 16
430 IF F(J) = ¢ THEN 450
440 2 = PEEK (A(J)): PRINT R $ (J);: COSUR 1000
450 NEXT J
460 REM IF NO INPUT DO LOOP AGAIN [@] = Cursor up
470 GET A $: IF A $ = ' ' THEN 410
500 REM DO COMMANDS
510 IF A $ = D' THEN GOSUB 2000
520 IF & ¢ = "P" THEN GOSUB 2500
530 TF o4 S = s THEN GOSUB 3500
540 [ioA “H'OTHEN GOSUB 3060
55 LF oA 5 - %" THEN END
700 CO TO 310
1000 REM BINARY D1SPLAY
1010 21 = 128
1020 FOR 22 = 1 TO 8
1030 PRINT SGIN (Z AND k1);
1040 tF 22 = 4 THEN PRINT " ";
1050 21 = Z21/2: NEXT 22: PRINT: XEYURN
2000 REM DISPLAY HANDSHAKE REGISTER
2010 Z = PEEK (59457): PRINT '[Q]' R § (2);: GOSUB 1000
2020 PRINT "[Q]";: GOSUB 4990: RETURN
2500 PRINT "[v] POKE REGISTER [S[Q[qQ]"
2510 GOSUB 4000
2520 GOSUB 4500
2530 POKE A (2), B
2540 RETUKN
3000 PRINT "[v] 6522 REGISTER DISPLAY AND CHANGE[Q[Q]
3010 PRINT '"THIS SHOWS THE VALUES FOR THE PLT'S
3020 PRINT "VIA REGISTERS. YOU CAN LOOK AT ALL OF
3030 PRINT "THEM. THOSE USED FOR THE USER
3040 PRINT "PORT ARE SHOWN WHEN THE PROGRAM
3050 PRINT "STARTS. [Q] [;[] THE DISPLAY IS REFRESHED
ABOUT ONCE
3060 PRINT "PER SECOND. PRESS A KEY TO DO A COMMAND
3070 PRINT "[Q] D = DATA READS ORA WITH HANDSHAKE

Cont'd...

= www.Commodore.c

May Not Reprint Without Permission

3080 PRINT " P = POKE LETS YOU POKE A REGISTER
3090 PRINT " S = SHOW SELECTS REGISTERS TO DISPLAY
3100 PRINT " Q = QUIT STOP PROGRAM
3300 PRINT "[]Q]";: GOSUB 4990: RETURN
3500 REM CHANGE DISPLAYED REGISTERS
3510 PRINT "[v]" SHOW REGISTERS
3520 GOSUB 4000
3530 PRINT "S = SHOW, E = ERASE, X = FINSISH";:
: GOSUB 5000
3540 IFAS ="S" THEN F (2) =1
3550 IF AS ="E" THEN F (Z) = 0
3560 IF A $ = "X" THEN RETURN
3570 PRINT "[S]QIQIQqQ]";
3580 GO TO 3520
4000 REM GET REGISTER NAME, RETURN Z = INDEX
4010 PRINT "QQ REGISTER NAME:[TTTITTT]TII];: INPUT AS
4020 RESTORE: FOR 2 = 1 TO 16: READ B S
4030 IF BS = AS THEN RETURN
4040 NEXT Z: PRINT "[Q[Q[Q]THE REGISTERS ARE CALLED:
4050 FOR J = 1 TO 16: PRINT LEFT § (R$ (J), 6)" *;:
NEXT J
4060 PRINT "6 0 006006060 60]|";: GO TO 4010
4500 REM GET BINARY NUMBER
4510 PRINT "BINARY VALUE: " ;: INPUT A$§: Z1 = 128:
B=¢g
4520 IF LEN (A$) < 8 THEN PRINT " @ "; GO TO 4510
4530 FOR J = 1 TO 8
4540 IF MID § (A8, J, 1) = "1'" THEN B = B OR 21
4550 Zl = 21/2: NEXT J
4560 RETURN
5000 GET A$: PRINT "[&]]]";: FOR K =1 TO 20: NEXT K
5010 PRINT "[M'"; FOR K = 1 TO 20: NEXT K
5020 IF A § = " " THEN 5000
5030 RETURN

EXAMPLE 1 An Encoded ASCIT Keyboard.

A surplus encoded ASCII keyboard was found with the following
pinout:

Keyboard Wired to PET'S
Pin 1 INT KEY 1
2 RPT KEY
3 —— (NO CORRECTION) CB2
& = '
Cont'd...

136

= www.Commodore.c

May Not Reprint

Keyboard Wired to PET'S
S GND GND
6 +5v (SEPARATE 45 SUPPLY)
7 STROBE CAl
8 PARITY PA7
9 B4 PA3

10 B3 ‘ "PA2

11 Bl PA@

12 B? PAG

13 B2 PAl

14 B6 ~ PAS

15 BS PA9

First, the keyboard was connected to the "Blinken Lights" to
check what it did, The "Blinken Lights" power was provided
by the supply for the keyboard.

Watching the LEDS for PA@-7 and CAl it was found that:
(1) the correct ASCII code with parity appeared, and (2) the
CAl went high when a key was depressed.

The CAl LED flickered when roll-over was tried (press one key,
press 2nd key, release first key), showing that the keyboard
had this feature.

Next, the keyboard was attached to the PET and the following
program entered:
10 PRINT " [S]'" PEEK (59471) and 127 "CO "s
20 GO TO 10
The ASCII values now appear in decimal on the PET's screen.

Now to us the CAl input, and write characters on the screen,
we have to:

1. Enable latching
2. Set CAl to positive transition
3. Wait for CAl FLAC bjt
4. Get the data and print it as a character
5. Go to 3.
In Basic:
10 REM PRINT ON SCREEN FROM USER PORT
20 PRINT "[¥]";
30 POKE 59468, PEEK (59468) OR 1: REM PCR +

Cont'd...
137

Without Permissio

i

, WWW. Commodore Ca
Mav No epr nt Without Pe sionN

40 POKE 59467, PEEK (59467) OR 1: REM ACR LATCH
50 IF PEEK (59469) AND 2 THEN 70

60 GO TO 50 :

70 PRINTS CHRS (PEEK (59457) AND 127);

80 GO TO 50

Of course (!!) you must enter your characters in UPPER case -
so press SHIFT if you have a FULL ASCII keyboard.

Note: When I was d01ng this, I would plug the unit in and
nothing would happen!! Using the Blinken Lights, I saw the
keyboard worked just fine. The actual problem? Be sure

your socket is CORRECTLY inserted and is LINED UP with the pins'

DIGRESSION

How to represent the PET character set using ASCII. A study
of PET & ASCII reveals that the PET recognizes 138 symbols and
functions while ASCII recognizes 128 combinations.

Here is a solution to this problem.

1. ASCII Characters O - 31 are ignored except for these:

(all values are in decimal)

1 A — RVS ON 17 — Q DELETE

2 B —= RVS OFF 18 - R INST

3 C — HOME 13 =———— RETURN

4 D — HOML/CLR

5 E -» CRSR DOWN

6 F - CRSR UP

7 G = CRSR RIGHT

8 H - CRSR LEFT
27 (ESCAPE) Puts the conversion into "Graphics Mode"
10 (LINE FLEED) Puts the conversion into '"Normal Mode'

2. Normal Mode

31 Are the same

93 Are Unchanged

127 Are changed to 64 - 95 (Convert to
Upper Case)

Characters @
Characters 3¢
Characters 96

t

3. Graphics Mode

Characters # - 31 Are the Same
Characters 32 95 Are Changed to 160 - 223

Characters 96 - 127 Are Changed to 192 - 223
Cont'd...

138

= www.Commodore.c
May Not Reprint

This subroutine fetches an ASCII character and converts it to
a PET character by the above rules. It is assumed that the
initialization is performed and the mode flag, MF, is not
changed.

1000 REM - INITIALIZE ROUTINE
1010 DATA @, 10, 146, 19, 147, 17, 145, 29, 157,
g, 8, 8, 6, 13, 8, 8, 8, 20, 148

1020 DIM TT (31): FOR J = @ TO 18: READ TT (J):
‘ NEXT J

1030 MF = ¢

1040 POKE 59468, PEEK (59468) OR 1

1050 POKE 59467, PEEK (59467) OR 1: RETURN

2000 REM - CONVERSION ROUTINE, RETURNS A$

2010 IF (PEEK (59469) AND 2) = @ THEN 2010

2020 CH = PEEK (59457) AND 127

2030 IF CH » 31 THEN 2100

2040 REM CTRL CHAR

2050 IF CH = 10 THEN MF = ¢

2060 IF CH = 27 THEN MF = 1

2070 . IF TT (CH) = O THEN 2010

2080 A S = CHRS (TT(CH)): RETURN

2090 REM CASE CONVERT

2100 IF CH > 95 THEN CH = CH-32

2110 REM MODE CONVERT

2120 CH = CH + MF * 128

2130 A § = CHRS (CH): RETURN

Try it out and see!! Look at your PET keyboard if you are
confused. '

Note: Don't férget the parenthesis in line 2020

EXAMPLE 2 The Writehander

The Writehander TM is a one-handed keyboard described in
INTERFACE AGE, January 1978, and is manufactured by the NEWO
Company, 246 Walter Hays Drive, Palo Alto, California 94303.
We interfaced it to the PET to try it out...

Cont'd...

139

Without Permissio

i

= www.Commodore.c

May Not Reprint Without Permissio

The Writehander has a 16 line rainbow ribbon cable with this
pinout:

WRITEHANDER PET
Line Color What
1 Brown Bit 1 PAg
2 Red +7-+23v Power
3 Orange Bit 2 PAl
4 Yellow GMD GND
5 Green Bit 3 PA2
6 Blue +5v +5 (Separate)
7 Violet Bit 4 PA3
8 Gray
9 White Bit 5 PA4
10 Black
11 Brown Bit © PAS
12 Red
13 Orange Bit 7 ' PA6
14 Yellow Strobe CAl
15 Green Bit 8 PA7

16 Blue ACK CB2

These were wired to the PET as indicated, with the ground and
+5V connected Lo a separate power supply.

The Writehander was wired with these options:

1 Strobe goes active low + to - |
2 Acknowledge is a tive low + to -"1_
3 Parity fixed at low (@)

This means the following sequence is required:

POKE DDR TO ALL INPUT

CAl TO HI-LD TRANSITION
DISABLE SHIFT REGISTER CB2 MODE
ENABLE CAl LATCHING

TURN CB2 ON

WAIT FOR INERRUPT FLAG

TURN CB2 OFF
DISPLAY VALUE ON SCREEN
GO TO 5

OCQwoo~NouULH WK~

—

Cont'd...

140

READ DATA WITH HANDSHAKE, MASK OFF, PARITY BIT

i

: www Commodore ca

May Not Reprint Wit

This was turned into a basic program:

5 PRINT "[&]";
10 POKE 59459, #.
20 POKE 59468, PEEK (59468) AND 254
30 POKE 59467, PEEK (59467) AND 227
40 POKE 59467, PEEK (59467) OR 1
50 POKE 59468, PEEK (59468) QR 224
60 IF (PEEK (59469) AND 2) = Q THEN 60
70 X = PEEK (59457)
80 POKE 59468, (PEEK (59468) AND 31), OR 192
90 PRINT X AND 127;
100 GO TO 50

This program shows the ASCII codes input by the Writehander.
To show the characters, change line 90 to:

90 PRINT CHRS (X AND 127);
Three items are worth noting::

1. The Writehander would work well with the Blinken Lightes
and refuse to work with the PET! Eventually it was learned
that:

CB2 (ACK) must be high when the Writehander brings

CAl (strobe) low. The Writehander won't strobe unless

(ACR) is high

2. OR is evaluated before AND by the PET! Lina 80 was first
written as:
POKE 59468, PEEK (59468) AND 31 OR 192

And it was discovered that the data went into the PET when CB2
was toggled manually! A PEEK of 59468 revealed bit @ was set,
i.e. positive CAl transition. When parenthesis were inserted

it worked!'!

So - interfacing has its hazards!!:

3. The CHR$§ function in PET does not correspond to the ASCII

code. To get the corresponding graphic character for an ASCII
LOWER case,

90 X = X AND 127: IF X » 95 THEN X = X + 96

100 PRINT CHR$ (X);: GO TO 5@

141

out Pe

SIOoN

re Ww.Commodore.c
NOTES s May Not Reprint Without Permission

142

1018jNWNJY O) A X3PUu| J3jsuel |
- 131U104 %2B1S 01 X X3pu| sajsuel)
Zz 1018)NWINJDY 0} X Xapu| J3jsuelf
B X Xapu| Ol J3IUI04 NIe1G J3jsuel |
- A X3pu| O} 101R|NWNIDYY J3jsuel |
@ X X3puj| O} JOIB|NWNIDY J3JSUBS|

www.Commodore.ca

AJOWaW Ul A X3pu| 31015

Alowaw ul X xapuj 301§

AJOWRN Ul 101BINWNIDY 31015

sn1eg ajqesig 1dnislug 18§

apow |ewidaQ 195

bej4 A 1ag

MOLIOE H1IM 1018|NWNJDY WOJ4 AJIOWaW 10811Qng

aunnNoIgNg WoJy uINlay

1dnuialu] wouy uiNlay

(4o18)NWINJIJY 4o AJowap) 1ybiy 11g auQ 3le1oy
(1018INWINJJY JO AJowa) Ya 11g auQ aleioy

3281G WOJ} SNIB1S 10SSad0Ud [|Nd
32815 WO} JOIRINWNIDY |iNd
32€1G U0 SN1e1S JOSSaT0Ig L|SNd
281G UO J0lRINWNIDY ySnd

101B)|NWINDJY Yaim AJOWaW ,, HO,,
uonesad(oN

(1018)NWIN22Y JO Asowap) iig auQ wybiy 11ys
AlOWay ylim A xapuj peo

AJOWIW Yim X xapu} peo}

AJOWBN Y1Im 10le|NwnIdy peon

ssauppy uiniay buireg uoneso] map 01 dwnf

AINANOIS JILFAVHATY — L3S NOLLONYLSNI JOSSTDOUJOUIIN SOSISOW-10S9SON

u011e207] MaN 01 dwnpf

3u() AQ A X3pu| 1U3WRIDU)
U AQ X X3pu| 1UIWRIDU|
U0 AQ AIowapy 1U3WAIDUY

1018]NWINJ2Y YlIMm AIOWap ,,40-3AISN|IX 3,

auQ AQ A x3puj JuawasaQg
auQ AQ X xapu) Juswaisda(Q
auQ AQ Asowap wawaldaQg

A X3pu| pue Aiowap aseduio)

X Xapuj pue Asowap asedwo)
J012|NWNJDY pue Alowapy aledwo?)
bej4 mojpianQ sea|d

11g 3|gest(] 1dnisau) Jeap)

3PON fewidaq Jeajn

bej4 A1) sead|d

135 MO[}J3A() UOC youe.g

183|D MO1}I3A(0 UO Youeag

3easq 82104

sn|d 1{Nsay uo youeuiy

0437 10U 1iNsay uo youeug

SNUIN 3NSaY UO youesg

101BINWNIOY Yiim AJOWIW UI S11G 153 |
0137 1nsay vo youeug

18S Ae) uo youeug

189D Aise) uo youeig

(4018INWNJ2Y 10 AJOWaW) 31g auQ 13 YIyS
101B{NWNJDY YIIM AJOWAW ,,ANV..
A11e] Yylm 103RINWNIDY 01 AJ0W3W PPY

143

g9
g1
@2
93
g4
@5
g6
@7
@8
89
pA
@B
#C
#D
¢E
@F
19
11

" 12

13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

BRK

ORA - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page
ASL - Zero Page
Future Expansion
PHP

ORA - Immediate
ASL - Accumulator
Future Expansion
Future Expansion
ORA - Absolute
ASL - Absolute
Future Expansion
BPL

ORA - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page,X
ASL - Zero Page,X
Future Expansion
CLC

ORA - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ORA - Absolute,X
ASL - Absolute,X

Future Expansion

144

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

= www.Commodore

May Not Reprint Without Permis

JSR

AND - (Indirect,X)
Future Expansion
Future Expansion
BIT - Zero Page
AND - Zero Page
ROL - Zero Page
Future Expansion
PLP

AND - Immediate
ROL - Accumulator
Future Expansion
BIT - Absolute
AND - Absolute
ROL - Absolute
Future Expansion
BM1

AND - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
AND - Zero Page,X
ROL - Zero Page, X
Future Expansion
SEC

AND - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
AND - Absolute,X
ROL - Absolute,X

Future Expansion

.Ca

i

49
41
42
43
44
45
46
47
48
49
4A
438
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
SF

RTI

EOR - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page
LSR - Zero Page
Future Expansion
PHA

EOR - Immediate
LSR - Accumulator
Future Expansion
JMP - Absolute
EOR - Absolute
LSR - Absolute
Future Expansion
BVC

EOR - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page,X
LSR - Zero Page,X
Future Expansion
CLI

EOR - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absolute,X
LSR - Absolute,X

Future Expansion

145

69
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
9
71
72
73
14
75
76
17
78
79
TA
7B
1C
D
7E
1F

= www.Commodor

May Not Reprint Without Pe

RTS

ADC - (Indirect,X) !
Future Expansion
Future Expansion
Future Expaunsion
ADC - Zero Page
ROR - Zero Page
Future Expansion
PLA

ADC - Immediate
ROR - Accumulator
Future Expansion
JMP - Indirect
ADC - Absolute
ROR - Absolute
Future Expansion
BVS

ADC - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page. X
ROR - Zero Page,X
Future Expansion
SE1

ADC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC - Absolute,X
ROR - Absolute, X

Future Expansion

.Ca

i

89
81
82
83
B4
85
86
87
88
B9
8A
8B
8C
8D
8E
8F
99
91
.92
93
94
95
96
97
98
99
%A
9B
9C
9D
9E
9F

Future Expansion
STA - (Indirect,X)
Future Expansion
Future Expansion
STY - Zero Page
STA - Zero Page
STX ~ Zero Page
Future Expansion
DEY

Future Expansion
TXA

Future Expansion
STY - Absolute
STA - Absolute
STX - Absolute
Future Expansion
BCC

STA - (Indirect),Y
Future Expansion
Future Expansion
STY - Zero Page,X
STA - Zero Page,X
STX - Zero Page,Y
Future Expansion
TYA

STA - Absolute,Y
TXS

Future Expansion
Future Expansion
STA - Absolute,X

Future Expansion

Future Expansion

146

Y
Al
A2
A3
VA

A6

A8

m BB 3B RS

BY
Bl
B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

= www.Commodor

May Not Reprint Without Pe

LDY - Immediate
LDA - (Indirect,X)
LDX - Immediate
Future Expansion
LDY - Zero Page
LDA - Zero Page
LDX - Zero Page
Future Expansion
TAY

LDA - Immediate
TAX

Future Expansion
LDY - Absolute
LDA - Absolute
LDX - Absolute
Future Expansion
BCS

LDA - (Indirect),Y
Future Expansion
Future Expansion
LDY - Zero Page,X
LDA - Zero Page,X
LDX - Zero Page,Y
Future Expansion
CLvV

LDA - Absolute,Y
TSX

Future Expansion
LDY - Absolute,X
LDA - Absolute,X
LDX - Absolute,Y

Future Expansion

€.Ca

i

cg
Cc1
c2
c3
Cé
CS
Cé
c7
c8
C9
CA
CB
cc
CD
CE
CF
D@
D1
D2
D3
D4
DS
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

CPY - Immediate

CMP - (Indirect,X)

Future Expansion
Future Expansion
CPY - Zero Page
CMP - Zero Page
DEC - Zero Page
Future Expansion
INY

CMP - Immediate
DEX

Future Expansion
CPY - Absolute
CMP - Absolute
DEC - Absolute
Future Expansion
BNE

CMP - (Indirect),Y

Future Expansion

Future Expansion

Future Expansion

CMP - Zero Page,X
DEC - Zero Page,X
Future Expansion

CLD

CMP - Absolute,Y

Future Expansion

Future Expansion

Future Expansion

CMP - Absolute,X

DEC - Absolute,X

Future Expansion

147

EQ
El
E2
E3
E4
E5
E6
E7
E8
E9

EB
EC
ED
EE
EF
F@
Fl
F2
F3
F4
F5
Fé
F1
F8
F9
FA

FC
FD
FE
FF

A

< www.Commodore.ca

May eprint Without Pe

CPX - Immediate

SBC - (Indirect,X)

Future Expansion
Future Expansion
CPX - Zero Page
SBC - Zero Page
INC - Zero Page
Future Expansion
INX

SBC - Immediate
NOP

Future Expansion
CPX - Absolute
SBC - Absolute
INC - Absolute
Future Expansion
BEQ

SBC - (Indirect),Y

Future Expansion

Future Expansion

Future Expansion

SBC - Zero Page,X
INC - Zero Page,X
Future Expansion

SED

SBC - Absolute,Y

Future Expansion

Future Expansion

Future Expansion

SBC - Absolute,X

INC - Absolute,X

Future Expansion

i

www.Commodore.ca
May Not Reprint Without Permission

148

PET MEMORY LOCATIONS

0000-0002
0003
0005
0008-0009
000A-0059
005A
0053
005C
005D
005E
OO5F
0060
Q061
0062
0063
006l
0065
0066
0067
0068-0070
0071-0072
0073-0074

0075~0C78

007A-00TB
007C-CO7D
Q07E-COTF
0080-0081
0082-0083
0084-028
0086-C0O87
0088-CC39
008A-0C 88
008c-0C8b
OO8E~008F
0090-0091
0092-0093
009L-0095
0096-0097
0098-0099
00%A

009C
009D-00A1
C0A2
O0A3-00A5
00A6-00AA
OOAB-0CAF
00BO-00B5
0CE6

ooB7Y
00B8-00BD
OOBE

OOBF

0-2
3

5
8-9
10-89
90
91
92
93
9L
95
96
97
98
99
100
101
102
103
104-112
113-114
115-116
117-120
122-123
12},-125
126-127
128-129
130-131
132-123
13L4-135
136-137
138-139
140-141
142-143
Wil ~145
146-147
148-149
150-151
152-153
154
156
157-161
162
163-165
166-170
171-175
176-161
182
183
184-189
190
191

o

May Not Reprint ¥
September 1978

USR Jump instruction

Current I/O Device for prompt-gsuporess

Cursor position for Innut & Print

Integer address from Basic (for SYS, GOTO. etec.)
Basic imput buffer; # of array subscripts
Search character (usuallv ':!' or end-of-line)
Scan-between-aquotes flag

Basic input buffer pointer; number of subscriots
First-character of array-name; default DIY flag
Type: FF=string; 0O=numeric

Type: 80=integer; 0O=floating point

'DATA' scan flag; LIST quote flag; memory flag
Subscriot flag; FNx flag

O=input, 6L=get, 152=read (flag)

flag for trigonometric signs/comparison evaluation flag
input flag (suporess output if negative)
variable pseudo-stack pointer

fixed-point pseudo-stack pointer

dummy value (O)

variable x pseudo-stack

pointer for nurmber transfer

number pointer

product staging area for multiplication

start of basic pointer

end of basic/start of varibles pointer

end of variables/startof arrays

start of available space pointer

bottom of strings (moving down) pointer

ton of strings (moving down) pointer

limit of Basic memory pointer

current program line mumber

previous line number

previous line address (for CONT)

line number of DATA line

memory address of DATA line

imout veetor (DATA ete.)

current variable name

current variable address

variable pointer for current FOR/NEXT

Y save register; new operator save
comparison symbol accumulator: €1 =2 Y
number work area for SQR, etc.

pseudo-stack yardstick (3 or 7)

jump vector for functions

numeric store area

numeric store area

prinary accumulator E,M,M M H.S

Taylor series constant count:r

accumulator high-order pronogation word
secondary accurmlator

sign comparison, primary/secondary

low-order rounding byte for orimary acc

149

ww.Commodore.c

Vithout Perm

10N

NOC0O-00C1
00C2-00D9
OODA-0NDE
O0CEO-0051
00E2
00Z3-00EL
OOES ~-00E6
OOE7-0CES8
OCE9
OCEA
OOEB
O0:EC
OOED
OCEE
OCEF
O0FO0
00F1
00F2
O00F3-0CFY
00FS
00F6
OOF7-00F8
O0F9-00FA
OOFR
O0FC
OCFD
OOFE
0100-"10A
Ol10E-0L5F
0200-0702
0203
0204
0205-0206
0207
0208
0209
020A
020B
020C
020D
020E
020F-0218
0219-0214
021B-021C
021C
021E

0220-0221

0222
0223
022l
0225
0226
0227
0228
0229-0241

192-193
194-217
218-222
22,225
226
227-228
229-230
231-232
233
234
235
236
237
238
239
2Lo
2h1
242
2L3-2Lk
2Ls
2L6
2L7-248
249-250
251
252
253
25)
256-266
267-511
€12-51L
515
516
517-516
519
520
521
522
523
52l
525
526
527-536
537-538
539-51,0
chi
542
sLL-5Ls
sLé
5L7
sL8
cL9
550
551
552
£53-577

: www Commodore ca

Sentemhen Tb?@ eprint Without Perr

Cassette buffer length/Tavlor constant pointer
Subrtn: Get Rasic Char; C9.CA=nointer
RND storage and work area

Pointer to screen cursor line

Poxsition of cursor on line

Utility pointer; tape buffer,scrolling
End of current program/tave end address
Tape timing constants

Tape buffer character
Direct/programmed cursor; Cd=direct
Tape read/verify flag

Tave write flag

Humber of k characters in file name
Logical file number

File command (from oI7N)

Device number

Maximum line length (LO or 80)

Tape buffr address (start of buffer)
Line where curscr lives

Last key pushed (ASCII); buffer checksum
Tape start address/tape pointer
File name pointer

Number of "insert" keys pushed
Serial bit shift word

4 blocks remaining to write

Serial word buffer

Zinarv to ASCII conversion area
S*ack area

T and TIS closk - jiffies

Which key depressed: 255 = no key

5hift kev: 1 if depressed

Clock {(unused?)

Cassette 1 status switch

Cassette 2 status switch

Keyswitch BIA: STOP & RVS flags, etc.

Load=0, Verify=1

Status

characters in keyboard buffer
Reverse flag

Keyboard buffer

Hardware interruot vector
Preak interr.n*t vector

Ind-of-line-for -input pointer

Curscr Jeg {(row, colunn)

PBD image for tave I/C

Key image

O=flashing cursor; else no cursor shows
Cursor timing countdown

Character under cursor

Cursor blink flag

Tsvne write

Line ad-ress righ # screen line wran tatle

150

n

, WWW. Commodore Ca
Mav No epr nt Without Pe sionN

September 1978
022-0248 578-587 Lorical numbers of oven files

02L4C-0255 588-597 Device numbers of onen files
0256-025F 598-607 Command/Secondary adAress of oven files

0260 608 Inout from screen/inout from kevboard
0261 609 X-save flag

0262 610 How many open files

0263 611 Inout device, normally O

026l 612 Output CMD device, normally 3
0265 613 Tape parity

0266 61l

0268 616 Pointer in filename transfer
026A 618

026C 620 Serial bit count

026F 623

0270 62 Tape write countdown

0271 625 Tape buffer #1 count

0272 626 Tape buffer #2 count

0273 627 leader counter

0274 628 Flag for tape error

0275 629 0 if 1st -byte cntr not written
0276 630 2nd l--byte cntr/tape error count
0277 631

0278 632 Cassette read flag

0279 633 Checksum working word

027A-0339 634-825 Tape #1 buffer

033A-03F9 826-1017 Tape #2 buffer

OLOO-7FFF 1024-32767 Available RAM including expansion
8000-857F 32768-36863 Video RAM

9000-BTFFF 36864-49151 Available ROM expansion area
CO00-EQ77 L9152-57L63 Microsoft Basic

E078- ET“B 57464-5938L Kevtoard/Screen/Interrupt monitor

E810 59L08 PJA1 - Kevboard A register; (Direction with CRA2=1)
E811 594,09 PTA1l - KevboarAd A control

5812 59410 PTA1l - Kevboard B register; (Direction with CR32s1)
£813 59411 2JA1l - Keyboard R control

£820 5942l PIA2 - IEET A register; (Direction with CRA2=1)
E821 59425 ©IA2 - IEEE A control

E822 59426 PIA2 - IEEE B register; (Direction with CRB2=1)
EB23 59427 PIA2 - IEEE B control

E84O 59456 VIA I/O register B

E8L1 59457 VIA I/0 register A with handshake

E8)2-E8L43 59458-59459 VIA Data Direction regs, A and B
E8L4L-EBL5 59460-59L61 VIA Timer 1

E8U6-E8LT 59462-59463 VIA Timer 1 latch

E8LB-EBLY 59L6L-59465 VIA Timer 2

E8LA 59466 VIA shift register

E8LB 59L67 ACS: T1.T1.T2.3R.SR.SR.PB.PA

E84C 59468 PCR: B2.B2.B2.B1,A2.A2.A2.A1
E8LD-EBLE 59469-59470 IFR, IZR: T1.T2.CBl.BC2.SR.CA1l.CA2
E8LF 5971 I/O Register A without handshake

FOOO-FFFF 6141,0-65535 Reset/tape/diagnostic monitor

151

EB10
E811
K812
E813

£820
E821
EB22
E623

E8LO
EBL1
E8L2

EGLL

E8L5
E8L6
E8L7
E8LS8
E8L9
E8LA
E8LB
E8lC
E8LD
ESLE
ESLF

-

May Not Reprint Without Permissio

DIAGu, | 1EEE CASSETTE SENSE| Wy =
cense | EOT in 42 EYBIRARY RoW ScLECT PA
Tﬁ“:' SCREEN BLANK ouTPur | DBRA ChesiTre #7
INPUT FLAG . R ca1]| Aceess | Reap CONTROL ¢ gy
KEYBOARD Row INPUT
RETRACE CASSETTE %/ noToR eurpuT | DORY RETRACE INTERR,
I FtAe .) ¢B1 | Reeess CeNTREL 31
1EEE. INPUT
ATn . l 1EEE " STA¢ oat Ddna 1EEE == .
I Fuae | Lol
N N CPa| Accrss cowrre AL
1IEEE- QUTPUT
Q.0 BEE o= Lt borp iEFE o
I Fent , . €P1] Access CouTpce CB1
Dav NRPD | RERACE [cAss g2 | Casserd] gTa NERD SBAC
‘n \ in "~ MoToR ouTPuUT out sut L In p‘)
DIRECTicn REGISTER B (ror ESAO)
DIRECTIon RECISTER J} (FerR Egup) (P.u.P)
“TIMER -
L i i
H
i TIMER 1 -
LATCH "
TIMER 2 L
H
SHIFT REGISTER
Tl CouTROL T2 coure.| SMIFT REC. ComTREL PB,PA (ATCH
PR our | Olher aon] PR emse coHTRaL
CRB2 (PuUP PunycouTolL | €8 i~ [CAL ‘,’Sr-PA-q)Louer Case)Contodl] CAL
CASSETT 2
IN/OUT PoLAR ™Y M /ouT PoLAkTY
iIRQ T T2 C B! cappdcB SR Ca (Pu DM CA?
STATU S 1T AT I~y (A INT 1uT NT
€nABLE | TI T2 Y, 2B SR cAl Az
CLEPR/SET LiNT ENAB [iwr €wAB | 10r EMAB 1iuT ENAR | /uT ENAB | 1ur EMAB |t EMAD
PARALLEL USER PoRT /o (PR) PA

152

59108
59409
59h10
5911

5942
59425
59126
59427

5956
59457
59458
59L59
59460
59461
59L62
59463
59L6L
59L65
59466
59467
59L68
59469
59470
59471

, www.Commodore.c

i

CDC1-CDE7
CDE8-CDF6
CDF7-CEQL
CEOS

CEOB

CEOE

CE11-CE1B
CE1C-CZ20
CE21-CE27
CE28-CE39
CE3R-CE%
CE97-CEDS
CED6-CF05
CF04-CF6D
CFSE-CF7A
CF7B-DO0O=
DOOF-DO78
D079-DOR?
DD88-D098
D099-D0OSC
DO9D-DO38
DOR9-D253
D26l -D277
D278-D23L
D285-D284
D28B-D2%Y
D295-D3L8
D3L9-D2cA
D36B-B3CZL
D3D2-D.32
DLOL-D5C3
£SChL-D537
L5D8-D652
D65L-DH62
D6613-D672
D673-D68L
L685-D6C3
D&CL-D6CF
T600-DAES
DEE6-D701
D702-D71D
D71E-D890
DEF1-DERE
98BF-DBFC
DRFD-D95D
NYST-NIYRA
D989-DIR 2
D9RL-DI=0
D9=1-Da73
DAT7L-DAGS
£A99-DACD
DACE-DADD
DADE-DAEC
CARD-TAFC
DAFD-DB29
DB24-DB2C
DB2D-DB6C

= www.Commodore.c

performs NOT function
checks for various functions
evaluates expression within parentheses ()
checks for right parenthesis)
checks for left varenthesis (
checks for comma
prints SINTAY FRAJR and exits
sets up function for future evaluation
set up a variable name search
checks for special variables 7I, TIS, and ST
identifies and sets up function references
perform the (R and AND functions
verforms comparisons
sets u» DIM execution
searches for a Basic variable
creates a new Basic variable
logs Basic variable location
is arrav ' vointer subroutine
is 32768 in floating binary
is floating voint-to-fixed conversion for signed values
locates and/or creates arrays
verforms FRE function
converts fixed -oint-to-floating
performs 205 function
checks direct/indirect command, gives 'ILLEGAL DIRECT'
executes IEF statements and evaluation Flx
verforms 3723 function

scans and sets uon string elements

bullds string vectors

does 'garbage collection' - discards unwanted strings
performs CHR3 function

verforms IEFTS, RIGHTS, MID$ functions
performs LEN, gets string length

performs ASC function

gets a single-byte wvalue from Basic

evaluates VAL function

gets two arguments (16-bit and 8-bit) from Basic

checks argument is in range 0-65535

verforms °EEK and POKE

executes WAIT statement

performs addition and subtraction

contains floating-voint constants

verforms LOG function

performs multinlication

loads secondary accumlator from memory (3B8 to 3BD)

test and adiust primary/secondary accurulators

routines to miltinly or divide by 10

verfoms division

loads primary accumulator from memory ($b0~$B5)

transfers primary accumulator to memory

transfers secondary accumulator to primary

transfers primary accumulator to secondary

rounds the primary accumulator

extracts primary sign; verforms SGN function

performs AES

compares orimary accurmulator to memory

153

vay Not Re
cnecks for special characters (+,-,",.) at start of expression

pI

nt Without Permissio

i

DB6D-DB9D
DB9E-DBCl
DBCS-DCLF
DC50-DC8Y
TC9L-DCAE
PCAF-DDE2
DDE3-DE23
DE2};-DE2D
NE2E-DESS
DE67-DE71
[DEAO-DEF?
DEF3-DF3C
DFL5-DF9D
DF9E

DFAS5-DFED
DFEE-E0L9
EOL8-E077
EOB5-EOCC
EOD2-E173
E19B-E1BB
E1BC-E1EQ
E1E1-E27C
E27D-E3C3
E3CL-E3E9
E3EA-ES2F
E530-E5DA
E5DB-E66A
E66B-E6TD
E6TE-E623
E685-E77%
ET73F-E7A3
E7AC-E7B9
E7DE-E7ER
FOB6-F1CB
F1CC-F22F
F230-F27C
F27D-F243
F2AL-F2AA
F2AB-F2B7
F2B8-F2C7
F2C8-¥329
F32A-F33F
F33F-F3L5
F3L6-F3FE
F3FF-Fl21
FL22-F}32
FL433-FL6L
FL62-FL9),
FLL95-FLBA
FLBB-F;D3
FuDL-F529
FS2A-FSAD
FSAE-FSE2
FSE3-FSEC
FSED-F&LC
FELD-F656

;»wvmwﬁonwnodor

May Not Reprint Without Pe

Convert Floatiry point to fixed, unsigned

verform INT function

convert ASCII string to floating point

get new ASCIT digit

orint Basic Line number

convert floating voint to ASCII string (at 0100 up)
conversion constants - decimal or clock

evaluation SOR function

evaluation of power function

negate (monadic -)

verform EXP function

perform function series evaluation

perform RND calculation

evaluate COS function

evaluate SIN function

evaluate TAN function

evaluate ATN function

Basic scan program, transferred to 00C2-00D9

completion of power-on-reset; memory test, etc.

partial test for TI and TI$

inmput/read/get director

initialize I/O registers. clear screen, reset subroutine
receive imput from keyboard/screen

set up new screen line

output character to screen

check for and perform screen scrolling

start new screen line

interrupt entr-

interrupt return

hardware interruot routine: cursor flash, tape motor, keyboard
convert kevboard matrix to ASCII

write-on-screen subroutine

orint canned monitor message

IEEE-L88 channel oven, test. close

get imput charact~r from kevtaord, screen cassette, IEER
outout character to screen, cassette, IEED

restore normal I/0, clear IEEE channels

abort (not close!) all files

locate logical file table entry

transfer file table entries to Device, Command

perform file CLOSE

test stop key

test if direct/indirect command for suppressing file advice
verform file LOAD

print "SEARCHING .. "

print "LOADING .. " or "VERIFYING"

get parameters for LOAD and SAVE

perform IEEE sequences for LOAD, SAVE, and O2EN

search for specific tape header

perform VERIFY
gel parameters
perform OPZN
search for any tzne header

clear tane buffer

write tane header

get start & end addresses from tape header

for OPEN and CLOSE

L4

€.Ca

i

F667-FOTC
FETD-F69),
F695-F69D
F&9E-F71R
F71C-F735
F736-F784
F78B-F7DR
F7DC-F82C
F82D-F834
F83B-F85D
F8SE-F870
F871-F8TE
FB87F-F8B8
F6B9-FB8D1
F8D2-F912
F913-F91D
¥915-F92D
F92rE-F953
FS5F~FBNB
FEDC-FBEL
FBES-FBEB
FEEC-FBFF
FCOO-FC1EB
FC1lC-FCFA
FCFB-FD15
FD16-FD37
FD38-FDL47
FDL8-FD7B
FD7C~FD8F
FD90-FDIA
FD9B-FFB1

FFCO
FFC3
FFC6
FFC9
FFCC
FFCF
FFD?2
FFIS
FFDB
FFDR
FFDE
FFEY
FFEL
FF=7
FFEA

FFED~FFFA
FFFA-FFFB

Set buffer start address

set tane buffer start and end vointers
verform SYS command

verform SAVE

find unused secondary address

undate clock

set inout device

set output device

bum tave buffer counter

wait for cassette PLAY switch

test cassette switch line

wait for cassette RECORD and PIAY switches
read tape initiation routine

write tave initiation rEoutine

comlete tave read or write

wait for I/0 comletion

test stop kev and abort if necessary
subroutine to set tave read timing
interruot routine for tape read

save memory pointer

set ST erroriflar

subroutine to count 8 serial bits per byte
subroutine to write a bit to tape
interrupt 1 for tave write - entry at FC21
terminate I/0 and restore normal vectors
subroutine to set interrupt vector
power-on reset entry; test for diagnostic
diagnostic routins

checksum routine

porrter advance subroutine

diagnostic routines

JUMAP TABIE:

OPEN

CLOSE

set imut device

set output device

restore normal I/0 devices

imout character (from screen)

outpot character

LoaD

SAVZ

V=RIFY

SYS

test ston kev

get character from keyboard buffer

abort all I/0 channels

update clock

turn off cassette motors
NMI vector (mangled)

FFrC-FFFD reset vector

FFFE~FFFF

interrupt vector

155

" -
YiQay

pI

nt Without Permissio

= www.Commodore.c
’ Not Re

i

I NDEKX

General

ASCII & POKE Values Table . e
BASIC - FORTRAN Comparison

Bits and Pieces
Commercial Confusion
Computer Courses . . .

Computer Mini-course (PET)

Data File Patches e e e e e e
Editing « v . o
Failsafing . . . e e e e e
Instruction Set, 6502 e e e e e
Interesting Memory Locations . .
Interrupts on the Commodore PET
Interrupt Structure
Inverse Trig. Functions . . .

Keyboard Matrix

Keyboard Values .

Keyword Abbreviations . e e e e e
Keyword Values
Machine Language
Memory Map (J. Butterfield's)
Micro Magazine e e e e e
Newsletter Addresses

ON - GOTO . .

Programme Overlays . e e

ROM Comparison: 011 vs. 019 .

Shifted Capitals e e

Standard Symbols

Time Delay Tips

Timing Tables

T.I.S. Workbooks

UNLIST

User Port Cookbook

User Port Information .

Software

Assembler, 6502
Auto - Repeat .
Business Software .

Calc. Simulator . . .
Decvert . . .
Hexvert . . e e e e .

LIFE For Your PET e e e e
LIFE, Snowless

Non - Stop e e e e .
Plotting «
Prime Number Test
Reflex Test
Squares, Cubes, Roots

156

g WWW. Commodore ca
b?n‘Wc'wepan out Permission

Pg.

8
<. .17
.« . 1,53
I 14
... 119
. 66
. 27,56
. 4
. 62
.143
. 5
.103
3
2
5
.11
. . .50
e 12
. 89
.149
. 85
. . 60
< .« . .59
- 43
. 20
. 94
. 54
. 25
6
. 85
57
123
9,28

24

. 92

.118

... .93
K

. 30,92
42

15

. . 16

Squiggle Version 2.0
Tax Ontario 1978
Twenty Number Sort

Upper to Lower Case Convert

View
World Capitols

Hardware

Available Hardware
Cassette Fix

D/A Converter
Hampet: RTTY Interfac
Selectric Interface .
Video Monitor Interface
X-Y Plotter .

157

0
'\':::.

May Not Reprint Without Permissio

21

. 86

. 15
.121
91
19

9,120

16 & 95

. 58
. 66
.117

23

9,28

a4 www.Commodore.ca

on

