
COMP1/711 	 Seplent,ev

A Monthly Column

Machine
Language
Jim Butterfield
Associate Editor

III May Memel
The 6502 goes about its job, executing instructions
at lightning speed. As each instruction is completed,
the processor checks: should this process be
interrupted?

There are two kinds of interrupt, called IRQ
and NMI. They have different features and uses,
but they share common characteristics. They may
only take effect when the current machine language
instruction has been completed. At that time, the
address of the following machine language instruc-
tion is pushed to the stack together with the Status
Register. Then the machine gets an interrupt
address stored high in memory, and starts to ex-
ecute instructions from that address. At a later
time, when the interrupt job has been serviced, an
irri instruction will cause the previously stored
information to be reclaimed from the stack and the
interrupted program to continue.

Interrupt is high priority. It tends to be used
where fast response is vital. Don't throw it away on
some unimportant job which is not time-sensitive:
save these big guns for a real time crunch. I tend to
recommend the following priorities: if you can, use
straight coiling: if you need to, use a timer or two;
if you must, use interrupt.

Because an interrupt stops the work in progress
to handle a special rush job, users often tend to
think of it as instantaneous. Not quite. Don't forget
that there's a variable wait to complete the instruc-
tion under way (up to seven cycles) in addition to
the fixed delay of seven cycles while the interrupt
does its bookkeeping work. The effect of the vari-
able wait is "timing jitter" - occasionally important
even though the tine involved is small.

The Blg Tvo
IRQ- Interrupt Request - is the less powerful of
the two interrupts, but it's usually easier for the
pmgrammer to handle. It may be locked out with
an SEI instruction (Set Interrupt Disable)to prevent
interruption from striking at an embarrassing mo-
ment; the lockout is released with CL) (Clear In-
terrupt Disable). Using SEI/CLI adds to the possible
timing jitter by a substantial amount, of course.

When an interrupt takes place, an SEI-type Inc
automatically takes effect, so that another IR
interrupt will have no effect until RTI releases
lockout. This is handy for the programmer - h .
knows that the code in his IRQ type system will se
free from further interrupts.

NMI - Non-Maskable Interrupt - is Imo e
powerful and less controllable. It cannot be loc
out. As a result, the programmer has to be m ac -
more careful in sensitive aress: for example,
changing the interrupt vector itself can beat c ish
job since the coding cannot prevent the NMI f m
striking in mid-change with potentially disastro s
results. 'DJ add to the complexity: an NMI cold
cause an interrupt, and while it is being handl
smother NMI could interrupt again. Careful co in)

is needed to avoid data corruption if such a
multiple-level interrupt is anticipated.

There's another fundamental difference
between IRQ and NMI. IRQ is level-sensitive:
when the IRQ pin on the 6502 chip receives a I
level, interrupt is being requested. NMI, on t te
other hand, is edge-sensitive: when the NMI pi
on the 6502 chip goes from high level to low a
"latch" is triggered within the chip that will sign •I
that NMI needs attention. Think of it this way: f I
held the IRQ pin low permanently, the corny ut r
would be continuously interrupting. It wool g
into interrupt, do the job, and upon complct n
with RTI, the interrupt would take place again
since IRQ is still low. In contrast, if I pulled NN I
low permanently, I would have only one inter pt
- the one that was triggered when the signal we t
low. A new "edge" would be needed to trigge r
NMI again.

IRQ Latches
This gives us two seemingly conflicting requir

pt signal at the IRQ pin F fit mcnts for the interrupt
it must remain active until the interrupt take :
place; too brief an IRQ signal might be missed
entirely. Next, it must be turned off before tl e
interrupt coding completes its activity, or R I ill
just cause a new interrupt. This seems diffict It
not too fast and not too slow- but, in fact, we • c um
plish the job very easily with the help of este.
chips.

Most of the interface chips (the best kno n to
6502 users arc the 6520 PIA and the 6522 V A
contain latches that may be set by the extern I
interrupting circuits, and reset by the 6502. of
example, if a timer counts down to zero and i g
an interrupt, this will be latched and signalle
the 6502. Whets the 6502 gets around to sect ci
the Interrupt, it can switch off the latch.

This system of latches allows many into
to be received and forwarded to the process

Okwww.commodore.ca

alt

STAR SOFTWARE PRESENTS ...

<HINIDY-Meir\l m
ic, 00 ,2c, cc0 ,,u, Send $19.95

0 	 0 	TO:

Ci 	 < 0 0 Star Software
- P.O. Box 493

I 	0 n 	
r 'Merrick, NY

0 0 011 	
I I 1 11566

A Dame Featuring Tow PET at its Beata, 8K of Koh Speed
Machine Language Action-Real Time scrolling-Dual Player
Option Specify °LONEY/M.0 Roes and Disk/Ca.

chip. The computer can then interrogate the inter-
face chip and find out what caused the interrupt.
There might even be two events calling for service
at about the same time. The computer can decide
to service one of them, turn that particular latch
off, and do the job. The moment it gives RTI the
other event (whose latch is still locked in) will re-
interrupt and be serviced. It works out remarkably
elegantly.

The interface chips may have external ports
or built-in devices such as timers and shift registers
which are allowed to cause interrupts. Each of
these may be logically connected to or disconnected
from the interrupt line. It seems complex at first;
but a little practice will show the system to be
straightforward and logical.

Registers
You may recall that only the instruction address
(Program Counter) and Status Register (sometimes
called the PSW) are saved on the stack during an
interrupt. If you plan to use the A, X or Y registers
during your interrupt processing, you must save
them by pushing them to the stack. Just before
giving RTI, bring them back. Your interrupt
must be truly "invisible" to the code that was
interrupted.

It's quite easy to implement interrupt. You
must be especially careful; debugging is much
more difficult for this type of code.

Try to keep your interrupt code short, and let
the "background" program pick up and do most of
the work. The briefer the interrupt program, the
more often you'll be able to service interrupts; that
will often yield a more powerful system.

Be very careful that a long interrupt doesn't
disturb a critical timing process in background
code. More than one thermal printer has had its
head "smoked" by a sluggish interrupt that didn't
know that the background program was waiting to
turn die heat off.

we are
commodore VI
experts!!

• We sell and service only VIC-20
Computers!

• We have more in stock merchandise
than anyone!

• We give the best service in the USA!
• One day delivery express mail!
• We handle warranty and service withi

24 hours!
• We give 15 day free trial on all

merchandise!
• We mail refunds within 24 hours after

receiving returns!
• We have over 400 programs — 270

educational tapes — programming
aids — business — home — games!

• We mail free catalogs — specify
category you desire!

• We accept Visa and Mastercard — pl s
we ship call!

• We are the first to offer new "in stock'
items!

"BUY YOUR COMPUTER'S CHRISTM S
PRESENT NOW!"

1. UP TO 60K EXPANSION MODULE
Aero space designed — 6 slot — add u• to
6 cartridges — switch select any progra
Start and stop any program with reset
button — not necessary to remove
cartridges or turn oft computer, saves ti e
television and computer (one year warra ty
List S149.00 — Sale Price $109.00.

2. 24K RAM MEMORY EXPANSION
Increase usable RAM programming pow 'r
800% (28, 159 bytes free). Expands you
total memory to 49K. Plugs in direct, do' s
not require expansion modulo! List $189
— Sale Price $149.00.

WE LOVE OUR CUSTOMERS.

PROTECT°
ENTERPRIZES (FACTORY DIRECT)

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 3121382-5244 to order

COMP117F1 	 Docareacf1582.4..431

A Monthly Column

Machine Language:

Hexed!
Jim Butter! e
Associate Editor

You often find nonsense printed about hexadecimal
numbering systems. For example, one source says.
"We use hexadecimal numbers when programming
in machine language, since that's what the computer
uses." Balderdash! There is no such thing as a
hexadecimal computer — they're all binary.

It may seem hard to believe at first, but
hexadecimal numbers are for human convenience.
The computer is happy with binary — in fact, binary
is all it's got—but we are not likely to wax enthusiastic
if we are asked to place a value of 00001100 into
location 1110100001001100. To make it easier for
people, we like to condense binary.

Einar/
The computer is made up of circuits and wires.
Each wire carries either of two kinds of electrical
signal—full voltage or no voltage. There's no vol-
ume control needed here: it's all or nothing. This
two-condition situation is called binary, for its two
states: voltage or no voltage, on or off, yes or no,
up or down, one or zero.

The one/zero name for the two conditions is
handy: it allows its to describe a group of logic
signals by a stream of digits. If the continuer has a
group of eight wires, three of which are carrying
full voltage while the others have no voltage, we
can describe these wires states concisely and accu-
rately With the expression 00101100.

Now, there's a very important group of 16
wires called the address bus. These wires "Gill up" a
certain part of memory. We might write out such
an address as 1110100001001100, giving the con-
dition of each wire of the address bus. The contents

of each memory location is delivered MI a group of

eight wires, called a data bus; we might store
00001100 into a location. A group of eight "bits" of

r 	station is culled a "byte".
But it seems unwieldy to write the individual

bits 0111, one by one.

Enter Hexadecimal
We can shorten these values by grouping the bits
together, four at a dine. Thus, the address
1110100001001100 may be broken up into 1110- ;
1000.0100-1100. Further, we can give a name to 	I

each of the 10 combinations that four hits can
have. For example. 0000 can he written as digit 0;
0001 as digit I: 0010 as digit 2: and so forth. The
weighting oldie four bits is 8-4-2-1, so that we
can quickly sec that 0101 can be represented as
4+1 or 5.

This works well for the first ten combinations:
0000 is written as 0 and 1001 as 9. But there are six
combinations that total ten or more. Our objective
is to write one digit to represent the four bits, so we
can't write binary 1010 as 10 for ten: that's two
digits. We pick a new scheme for these values: 10 is
written as s letter A. II as a B, and so on, until we
reach 15. which is written as F. The whole table
beromes:

0000•0 	0100-4 	1000.8 	1100-C
0001-1 	0101.5 	1001.9 	1101-D
0010-2 	0110.6 	1010-A 	1110.E.
0011.3 	0111-7 	1011-8 	1111.E

Now we can write address 1110100001001100
as hexadecimal E84C, which is more compact and
easier to remember. We can go the other way easily.
too: if we see a value of hex 85 we can write it
immediately.. binary 10000101 if we need to.

Note: this is not the same as the decimal value
eighty-five, attd we tend to say "eight-five" to keep
the two numhcr systems clear.

So we can view hexadecimal notation as a
compact way of w • • g the computer's binary
numbers. I lexadecimal, by the way, means "based
on 16". You can see that there are 16 combinations.
Iii diffet et it digits.

Converting To Decimal
I f we have a hexadecimal number like 85, we some-
times would like to knots its equivalent value in
decimal. For example. if we PEEK the number in
BASIC, we would see a value of 133 stored in the
same location — that's the decimal value. We often
need to do conversion. Even to PEEK. we'd need to
change the hexadecimal address into decimal so
that we could tell BASIC where to look.

In the early days (remember?) we used to be
told that a number like 263 means "two hundreds,
and six tens, and three units." Sante rules for

252
	

COMPUMI
	

December 1 tracce.31

hexadecimal, except that we use powers of I6
instead of powers of 10. So 85 is "eight sixteens,
and live units"; or, to put it mathematically, 8 x 16
+5. This works out to 133, as mentioned before.
An address like E84C works out as 14 x 4096+8 x
254+4 x 16+ 12. The 14 is the value of the E
and 4096 is the third power of 16. The whole thing
works out to 59468.

You can do this quickly on your computer
(don't forget to use the asterisk for multiplication).
If you have a pocket calculator, there's an easier
method. Type in the value of the first digit. If
there are any more digits, multiply by 16 and add
the value of the new digit. Repeat until you run out
of digits.

Let's try this with E8•C. Type in 14 (that's the
E). Multiply by 16 and add the 8. Multiply by 16
and add the 4. Multiply by 16 and add 12 (for C).
That's it: you should get 59468 as before.

Decimal To Hexadecimal
You will often have a decimal number that you
would like to convert to hexadecimal. There are
several different methods of cluing this.

An easy manual method is to divide repeatedly
by 16: the remainder is the next Itexadmimal digit,
going from right to left. If we started with 133,
dividing by 16 gives 8 wilt a remainder of 5. The 5
is the right-hand digit. Now divide the 8 by 16: you
get zero with a remainder of 8. This goes to the left
of the 5 to give a result of 85 hex.

Remainders are hard to do on calculators and
computers. Here's a method I prefer that works
easily on either:

If the number is less titan 256, divide by 16;
otherwise divide by 4096. You'll get a number
which has a whole and fractional part. 'the whole
value is your first digit: make a now of it and then
subtract it. Now multiply by 16 and repeat the
whole procedure: you'll get two digits for numbers
less than 256, and four for greater numbers.

Suppose we have 59468 on our hand calculator.
Divide by 4096; you'll get a number like 14.51855.
The 14 is your first digit, E: write it down and then
subtract the 14. Multiply the remaining .51855 by
16 and you'll get 8.2968. Note the 8 behind the E.
subtract 8, and you're ready for the next multipli-
cation by 16. Keep going and you'll get the 4, and
finally the last digit will be 12 (it may he 11.99, but
we can stretch a point), for which we write down C.
Result: hexadecimal E84C.

Hexadecimal numbers are for our con-
venience. They are very close to the computer's
internal notation - binary - but a little more com-
pact and easier for us.

We've talked about simple conversion methods
from hexadecimal to decimal and back. They are

useful for small computers. If you are a numbers
freak, there's lots more for you to dig into: negative
numbers, fractions, and even floating point
hexadecimal. But the basics will take you a long
way.

Some beginners wonder if machine language
progra ,rs know secret spells and incantations
to make their programs work. I tell them that it's
purely logical- no special secrets are required. But
it's nice tit know how to deal with a hex... number.

0

COST EFFECTIVE SOFTWARE
er

-The Best little SolParo 5011.0 In Teas-

HOMEBASE IISOTT 	 .i.orua

• et 1 	 MVO 1.nvi 	 MOWS. titni. MOM [01111JACS

MATE. A011. 1151. (Mt. MAGI_ (01.(CAllYati stools SUB, SOM. ROIOUT.

LABILS. t0.10. PflefT. LOT. PRETORY. 	 /WO. LOWIR DAL LIU

11010EBASI MY 44 MIMIC tiSTS In au oneven. IIVWBOO*3

PROCESS*(; Our.. PARIS US'S IMO moo- .1, AUDIO FIECOCIt 1.1
et P.m OA OWE pi,. 	 Meer NI /..111.1./0wriati

1.0

▪

1.11055 ti 11018 .11011 a Tut od YOE,

PIT 5 SY PC PSI sit 	 lri.SS Sett mil x nage...ppm 81 N.

Psi ItIf Its 	 anus
	

shp inC11.1

Sind tor 	 rani.
	 SOFT SECTRE

AratilAd 	 MAR
	

PO. SOS 1111. MAIO. TI

ATARI. o I: MP%
800(16K) 	 8649.00
400 16K 	 279.00

400 YOURS to 32K or 481(CALL
410 RECORDER 	 79.00

810 DISK DRIVE 	 449.00
850 INTERFACE 	 165.00
830 MODEM 	 149.00

825 PRINTER 	 575.00
481 ENTERTAINER KIT 	 79.00

484 COMMUNICATOR KIT 	 309.00
PRINTERS-Atari. Epson. Smith Corona 	 CALL

Prices subject to change without notice.

Shipping extra. No tax out of state.

Ca. residents odd appropriate taxes.

WE ARE AN AUTHORIZED ATARI SALES AND

AN. 	
SERVICE CENTER

COMPUTERTIME, INC.
P.O. Box 216

KentEeld, CA 94914

CALL TOLL-FREE 	800227-2520
In California 	800-772-4064

For product and price nee sad 50.00 for lapping.

www.commodore.ca

MACHINE LANGUAGE

Part I

NUMERIC OUTPUT
Outputting strings from machine language is no
problem. The programmer lakes the characters
from memory and sends them out. Numbers need
more work: the binary values must be changed
to ASCII characters which must be sent out one at
a time.

An added complexity is format: numbers
often need to be carefully formed into a specific
number of characters, so that they will print neatly
in columns. Zero suppression is often desirable,
so that a number such as 00204 will print as 204.
Some of these jobs are fairly straightforward
mechanical tasks; the hardest part is often the
math routine which is needed to break up a binary
number into several digits.

Single Digits
Binary values of zero to nine are easy. All we need
to do is to change them to ASCII before sending
them out.

We've mentioned before that ASCII repre-
sents the character zero, for example, as hexadec-
imal 30, decimal 48. PRINT CHR$(0) will not print
a zero character - indeed, it won't print anything
- so that we must do the job with PRINT CFIRS(48).
So, to print a binary zero, we must change it to
hex 30, binary one must be changed to hex 31,
and so forth, up to binary 9 changing to hex 39.
Binary 10 is a different matter: we must make two
digits out of it, one and zero. The easiest way to
convert a single digit is with an ORA command:
ORA #530 will insert the desired high bits.

When we move on to more complex numbers,
we'll need to remember that each digit, as we
generate it, must be converted to ASCII before
output.

Let's write a simple program to print several
single numeric digits. We'll use $FFD2 for PRINT;
this will work on all PF.T/CIIM machines, VIC,
and Commodore 64. Our coding goes:

LOX *5110 (start at r.ero)

	

LOOP 174A 	(move number 10A)
ORA *S30 (convert lo ASCII)
(SR SFF/32 (p , ,,, 11)

	

INX 	 (gob, next number)

tit. CAMOLTP Mce roF13

CPX *SOA (less than len?)
BCC LOOP (yes, print it)
IITS

The output looks like a large number - the digits
are printed side by side - but, in fact, it's ten
independent digits.

As an exercise, let's convert the above pro-
gram to BASIC l'OKEs and run it. Our BASIC
equivalent goes:

ton DATA 162, 0, 130. 9.48
110 DATA 32,210,253, 232, 224,10
120 DATA 144,243, 96
200 FOR/ 6840 TO 061:1LFAU X
210 POKE hX:NEXT I
300 FOR 1= 1 TO 10:SYS SU:NEXT)

The first three lines give the machine language
program in decimal. The individual instructions
have been separated by spaces to make them more
visible. Lines 200 and 210 POKE the program into
the cassette area. Finally, line 300 invokes the
machine language program ten times; you'll get a
hundred digits printed .

Hexadecimal Output
Hex output, like input, is fairly easy. Hexadecimal

might be viewed as a compact way of representing
binary, and since the computer has binary, the
conversion must be easy. It is. All we need to do
is grab four bits at a time. Each g p of four bits
is a hex digit value, which can be converted to
ASCII and then output. For example, a decimal
value of 225 (hex El) can be converted this way:
take the high four bits, binary 1110, and convert
and print as a hex character. That works out to a
letter E. Now take the low four hits, binary 0004
and do the same, giving us the digit 1. We've
printed El, the hex value.

Let's get technical. I low do we get the four
high bits? By giving four shift-right instructions.
The bits obligingly move over to the low order
side, and zeros are left in the vacated space. Later,.
how do we get the four low bits? By taking the
original value and performing an AND #$OF,
which wipes out the high bits.

When the four-bit group is extracted, how do

run, COW,. 10. DEFECT rREE

VSYMIES (I Mt Ms.
10.,5 	 (/ 5P5mt

MC. 16,55o.

103. 19.93.15.

emi 5203 55 0OPO

...SISAL 00

OMIT(IREMPEESIRMTED

MINIMLOPPY DIGITS

COMPUFen CREATIONS. Inc.
PO. Oox leaaal

OPTT 45.02.
(51311.15-OPO or

(5131 2PmECOT

woo,. RMOTECT

MOIC11

RAT MRCS
SOFT SECTORED

we change to ASCII? If the four-bit value is zero
to nine, we can use the simple ORA #530 as men-
tioned before. For the six high values, ten to fifteen
(A to F), we would need to use arithmetic, usually
the ADC command. Of course, we could bypass
the whole question by setting up a table of digits
and looking up each digit. Most programmers go
for the arithmetic.

Multiple bytes are no problem for hex. We
just convert them starting at the high order end:
each byte generates two hex digits. Let's write a
program to convert some memory bytes into hex
and display them. First, a subroutine to convert
and output a four-bit value in the A register as
two hex digits:

	

HEXDIG CMP #93A 	(alphabcticdtgit?)
BCC SKIP 	(no. skip next part)
ADC Mlle 	(adds...yen)

	

SKIP ADC Chit 	(convert to ASCII)
JMP SFED2 	(print it)

There are a couple of curious coding quirks
above. We need to add seven to the alphabetics:
why does the coding say ADC #506? Because the
carry bit is set, that's why. Adding six plus a carry
maker a total increase of seven. Another oddity:
the subroutine doesn't return with RTS. Instead,
it goes to another subroutine; when the other
subroutine (FFD2) returns, it will return directly
to the caller.

Now an outer subroutine. This one breaks a
byte in the A register into two four-bit numbers
and prints the two digits. It uses HEXDIG, above:

HEXOUT PHA
	

(save an:byte)
LSR A
LSR A
	

(extract lots,)
1$11 A
	

(.. high bits)
LSR A
JSR HEXDIG (pint hex char)
PLA
	

(bring back byte)
AND raS00
	

(extract low feud
IMP HEXDIG (teatime ASCII)

Again, we save an RTS by doing a JMP direct to a
subroutine.

Now we can do the main job: displaying a
number of memory location.

	

JOB LOX #800 	(counter)
JLOOP LDA SFFCO,X (get a byte)

JSR HEXOUT (print i1)
LDA 0820 	(spacechar)
JSR SHIM 	(pdnt it)
INX
CPX MOA 	den bytes yet?)
BCC 11.00P (n, do another)
LDA MOD 	(RETURN char)
JMP SPFD2 	(print it)

We've written the program to display a spe-
cific range of addresses. You may change it to
display what you wish.

The four LSR instructions may be considered
the equivalent of dividing by 16. That's what the
.sa COMM MOOS

word "hexadecimal" means, of Course: hex for six
and decimal for ten, giving a total of 16.

Sneaky Hex
You may have decided that hexadecimal output is
quite easy. It is, compared to decimal, and that
gives us an interesting possibility.

Could we write Ilex numbers that looked like
decimal numbers? In other words, could we print
decimal 22 by somehow converting it to look like
hex 22, and then printing it? It sounds complex:
decimal 22 would be written as Ilex 16, and hex 22
has a decimal value of 34. Not much in common
there. But there's a gimmick.

The 6502 processor has an arithmetic feature
called "decimal mode." When we invoke it (with
the SED, Set Decimal, command), decimal arith-
metic takes place using numbers that look like •
hex. In other words, the decimal value of 22 is
stored as hex 22. The proper name for this kind of
number is not hexadecimal, of course. This num•
bering system is called "binary coded decimal."

We can't go into the inner mysteries of BCD
at this time, but a few facts can be noted. Decimal
mode affects only the ADC (acid with carry) and
SBC (subtract) instructions; all other instructions
still deal with binary numbers. If you're going to
play with decimal mode, kill the interrupt for the
moment; your interrupt routines may not be able
to cope with "new math." And remember to put
everything back (clear decimal mode, restore the
interrupt) when you've finished doing the task at
hand.

Decimal mode arithmetic is great for things
like keeping score in video games. The scores can
be easily translated and delivered to the screen.
But decimal mode is not too good for serious
mathematics: multiplication, division, square
roots and such become much harder to handle.
For most applications, stick with binary.

We'll be talking about how to convert binary
numbers to decimal in the next session.

MACHINE LANGUAGE
,

Part II

NUMERIC OUTPUT
This is the second in a three-part series on techniques
of handling numeric displays or printouts in machine
language.

Preparing decimal output can be done in a number
of ways. The methods for converting binary inte-
gers to decimal can be summarized by direction:
right-to-left or left-to-right. In both cases, there is
usually a need to perform division. And don't
forget that each digit must be converted to ASCII
before it is output.

No matter which way we do the job, we need
to plan the output format. A one-byte number
might require three decimal digits to be printed
(e.g., 255), but a two-byte number might need
five digits (e.g., 65535). It's often a good idea to
plan to output a fixed number of digits, since num-
bers may need to be printed neatly into columns
or onto specific parts of the screen. We might also
find it desirable to suppress leading zeros on a
number so that 00307 becomes 307, with leading
spaces.

Right-To-Left
The method goes something like this: divide by
ten. The remainder is the rightmost digit. If the
quotient is non-zero, repeat. Thus, a binary value
of 287 is calculated: divide by 10, remainder 7;
divide quotient 28 by 10, remainder 8; divide quo-
tient 2 by 10, remainder 2. The quotient becomes
zero at this point, so we have the three digits - 2,
8, and 7.

The digits come out backwards, however. In
the above example, we can't print the 7 the mo-
ment we calculate it, since we must work out two
earlier digits. That's not a problem, since the digits
can be placed into a buffer area - or on the stack,
for that matter.

Right-to-left is attractive because it automati-
cally finds the number of digits that need to be
printed; the procedure stops when a quotient of
zero is reached. You can immediately spot num-
bers that are too big. It's also very easy to insert
leading spaces to fill out the number to any desired
250 comma .w e%63

length. You'll need a good divide-by-ten routine,
of course.

Left-To-Right
This method takes a little more effort to set up.
but generates digits in the "normal" order, which
allows you to output them directly. Zero suppres-
sion adds a little extra code.

We must start by assuming the number of
digits that we wish to output. Let's say, for ex-
ample, that we expect up to three digits. We would
follow roughly the following procedure:

Set FACTOR to 100;

Divide the number by FACTOR;

The quotient is the next digit;

Take the remainder, set FACTOR to 10, and
repeat;

Then set FACTOR to 1 and repeat; or for that
matter, the remainder from the lastcalculation
will be your last digit.

To convert 287, we divide by 10D; the quotient
of 2 is our first digit. Take the remainder (87) and
divide by 10; the quotient of 8 is the next digit.
Finally, the remainder of 7 is our last digit whether
or not we divide it by 1.

We can achieve this without a formal division
routine; repeated subtraction will work efficiently
enough for most purposes. We might change our
algorithm to read:

Set FACTOR to 100;

Set COUNTER to 0;

If the number is greater than or equal to FAC-
TOR, then subtract FACTOR from the
number, add 1 to COUNTER, and repeat this
step;

COUNTER now contains the first digit; you
may print it.

Now set FACTOR to 10, COUNTER to 0, and
repeat.

Our example of 287 would have 100 sub-
tracted from it until it reached 87. The counter
would have counted 2 subtractions, so we can

o www.commodore.ca

COM MODOR 64 • ATARI

THERE IS STRENGTH IN NUMBERS
JOIN

THE SOFTWARE CO-OP
NOW! Rae the cow 01 a singe same cartridge you
can Ion THE SOFTWARE CO-OP. Use iha arlsesSece

Of OvIkpurchasing and pay may GI Rues wAisIsn
eats Or games. genies end educational 501.priti
Reak-bettcrn prices on agodment and 91-001 44
Sovascp up to 4040. Guaranteed. Specraliswa in
'AC 20. Coma.. 54. AWL Apple and SticPir.

%HA today to. hoe <we.. shale au. co,Pq eaH carob
erta spar surestenni osna. Incluct. specie s SPIOO
,11en

THE SOFTWARE CO-OP
PO BOX 275 	ELIZABETH, NJ 07207

lEIVIV • 59 B000LNINO0 • 02 01A •

• VIC 20

LI

LT/

•

O

B
z

B

a

a.
a.

•

SC
HIGH GRADE
INTERFACE CABLES
AT YOUR COMPUTER '-•—:----
DEALER NOW
Centro.slype Cabs Assemblies
38-on Pal Pad. catao P71 Epson xel
Centre-Ps peeler, Art CCANP on..
rnalot Of 4.,. CCAPTS 0.0t la 50.141
Sue RBI: Meg
Vt. CCAP6P (PPP to Paella- 6e CCAPSS

lk
. 3 (male to rern.) Sop FL, 632.16

;RS232 Ca. AsHa0040
. RSS's2 Se oxstupoi• inenoc• 1451/1 15 UP .1.8,11 a
fl52120A4F SA. ptub to rnae) GuE. Hat 63245
R5p3:41,10P 16-4. PPP In mate, .S vol 837 .06

 Ycair carrsidar cle0ari:13 MOO, carer Scutern ca.

;°774Z7.2°°"4«"'X'.71:17n°477=1:Irggrgf.=,;;.
yaw akienanto tompoWPS.

FREE SCOOTER"' T-SHIRT!
SEN13irgre=h:s_e(sales recede ter 620 in ,e

OR SEND the sante of your computer dealer it go
does not cony the Scooter'. High Grade Electronic
Component line,

WITH THIS COUPON and your name, address and
Tshirt Nan lo. ohinfelectronlcs, 746 VERMONT
ST., PALATINE. IL 60067

send the digit 2 to output.
The various factors (1000, 100, 10, 1, or what-

ever is needed) may be stored in a table for quick
reference rather than calculated. Using true divi-
sion would be faster than our subtraction al-
gorithm. But since we'll never need to subtract
more than nine times for each digit (and since
we're likely to spend much more time delivering
the output digit to its destination), it's not much
of a worry.

Mathematics fiends will tell you that the left-
to-right procedure may be easily extended to gen-
erate decimal fractions. Useful, but only if you are
using binary numbers with fractional parts in the
first place.

An Example
Let's do some very quick code to output a dozen
numbers from memory in decimal. We'll use the
left-to-right method. Zero suppression won't be
used. Address FFD2 will be used for output (PET/
CBMNIC/C64 compatible).

	

OUTPUT LOX #SOD 	Number counted
STX COUNT

NXNUM LDA $0350,X "Set mem value)

	

LOY #502 	12+1 digits)
LOOP CMP TABLE,Y

tK:C DONE
SBC TABLE,Y
INC COUNT
BNE LOOP

DONE PHA 	 (add seven)
LDA COUNT
ORA #530
JSR SFFD2
LDA 040

STA COUNT
PLA
DEY
BPL LOOP
LOA #5011
JSR SFED2
1NX
CPX #$OA
BCC NXNUM
RTS

TABLE .BYTE 	 1,10,100

It's fun he do this in a practical example. Let's
POKE it from BASIC:

100 DATA 162,0, 142,144,3, 189,80,3
110 DATA 160,2, 217,132,3, 144,8
120 DATA 249,132,3, 238,144,3
130 DATA 208,243, 72, 173,144,3, 9,48
140 DATA 32,210,255, 169,0, 141,144,3
150 DATA 101,136, 16,225, 169,13
160 DATA 32,210,255, 232, 224,10
170 DATA 144,210, 96, 1,10,100
200 FOR J.848 TO 902:READ X
210r= T +X:POKE J,X
220 NEXT
2301F TO 16199 THEN STOP
300 SYS 848

It will take a few moments to POKE the pro-
gram in place; after that, the decimal numbers
252 COMPSIO June083

come out with blinding speed (especially if you
have cleared the screen so that there is no need
for scrolling). The numbers, by the way, are the
same values as in the DATA statements in line
100 and part of 110.

But there's more.
These are the conventional methods, and

they have a number of variations that we haven't
mentioned.

But there's a very fast and radically different
method available on the 6502. It uses Decimal
mode in an unusual way to generate decimal
number output super fast.

More on that the next time around.

MACHINE LANGUAGE

A Bagel Break
Let's walk through an example of programming a
complete game, including machine language.
We'll make it a simple one: "Bagels," a guessing
game that has appeared under other names, in-
cluding the commercially packaged game, Master
Mind.

We'll make this one simple, with few frills.
We could do it entirely in BASIC, of course; we're
using machine language for the practice and for
the thrill of seeing the answers come up instantly.
You can judge for yourself whetheror not machine
language handles the job more efficiently.

Ground Rules
We will assume that BASIC will generate the ran-
dom codes. Yes, you can generate pseudo-random
numbers in machine language, too, but we'll shor-
ten the job with BASIC. Once we're into a game,
we'll stay entirely in machine language.

The program is written to work on all Com-
modore machines up to and including the VIC
and 64. This means that we need to be careful
about memory, since different machines have
differently arranged memories. We'll avoid this
problem by using the cassette buffer area that is
located in the sante area in all these machines.
And of course, we'll use the built-in Kernal
routines that work on all Commodore units: FED2
to print, FHA to get a character.

Planning
We'll need the following work areas:

• A counter which keeps track of the number
of guesses (let's put this at $0240 hexadecimal);

• A counter which says how many "exact"
matches have been found on this guess (let's use
50241);

• A counter which says how many "inexact"
matches have been found (use $0242);

• A counter to keep track of the number of
characters typed by the player (we'll use $0243);

• A place to keep the mystery code (four lo-
cations from $0244 to $0247 hex);

• A place to put a copy of the mystery code
(from $0248 to $204B);

• A place for the user's guess (from $024C to
$024F).

Why do we make a copy of the'rnystery code?
Because we will destroy parts of this copy as we
216 COMM., Aucus,198.1

test for matches. that way, we will never count
the same item twice as a match.

Writing The Program
We lay out a blank piece of paper and try to write
the logic. We assume that the BASIC program has
placed the mystery code (alphabetic characters
from A to F) into hex addresses 0244 to 0247 before
it calls upon our program to play the game. Here
we go: we'll write a "main routine" first. Although
we plan to put it into the cassette buffer (starting
at hex 033C), we don't need to write in the ad-
dresses - yet.

START LDA #500
STA 50240

We set our "number of guesses" to zero for
starting. Now, on to the next guess:

GUESS INC S0240
LDA 50240

Our guess-number is set one higher, and we bring
it into the A register.

COW PSOA
B02 QUIT

If we've had nine guesses, we quit here and
let BASIC take over. By the way, we don't know
exactly where to branch ahead, so we give the
branch location a name rather than an address.
We'll fill this in soon. In the meantime, if we don't
branch, it's time to play:

pit PLAY

This subroutine will do the whole job of re-
ceiving one guess from the user and accounting
for it. If the user guesses perfectly, the Z flag will
be set. In any other case. we'll need to go back:

ONE GUESS
QUIT 	RTS

Again, we may not know the exact address
to which were looping back at the lime we scribble
down our first program outline. We'll fill it in
later. Sometimes we do this by "hand," and some-
times an assembler program will do it for us. A
full-scale assembler will take the "labels" we have
used - GUESS, QUIT, and PLAY - calculate their
addresses, and make the substitution for us. If we
have a smaller assembler, or are assembling by
hand, well need to write in the addresses. We do
this in two columns:

www.commodore.ca

033C LDA #500
033E STA $0240

	

GUESS 0341 	INC $0240

	

0344 	LDA $0240
0347 CMP #50A
0349 BEQ $0350
0340)511 30351
034E BNE 50341

QUIT 0350 RTS

The programmer will quickly learn to convert the
program into whatever form his development
programs need.

Will assume this translation (at least in part)
and continue with subroutine PLAY. First, we
must print the guess number. The binary number
in the A register must be converted to ASCII, and
printed, together with a following space:

	

0351 PLAY 	ORA 0530
ISO 555132
LDA #520
JSR SITD2

Now, on to the main play. Let's zero the counters,
including the player input count:

LDX #500
STX 50241
STX 50242
STX 50243

Here comes another loop, as we wait for each
character to be input. We test each character to
make sure that it's a letter from A to F:

0366 INLOOP JSR 555E4
CMP #541
BCC INLOOP
CMP #547
BCS INLOOP

We have a legal letter; echo it to the screen and
put it to memory.

550 5FFD2
LOX $0243
INC $0243
STA $024C,X

We must also copy the "secret" code into a work
area, so that we can destroy it as we test for
matches:

LOA S0244,X
STA 50248,X

Have we received all four letters of the guess yet?
If not, go back:

CPX #503
BNE INLOOP

Now we may check for exact matches. Xis
conveniently at three, so we may count it down
as we compare:

0381 COMPAR LDA 00348,0
CMP 5024C,X
ONE SKIP

If they don't match, will skip the next part. If

219 COMM .44.019133

they do, we must count the match and destroy
the values so that we don't use them again:

INC 50241
LDA #500
STA $0248,X
STA 5024C,X

Now, our coding rejoins. We move along to
test for the next match:

0594 SKIP 	DEX
BPI COMPAR

We have logged any exact matches. Now we must
look for the out-of-place matches. We may use X
and Y to move through the two values, remem-
bering to skip zeros.

LOY 0000
0399 RETRY 	LDX #500
03911 CHECK 	LOA $0248,Y

BEQ PASS
CMP 5024C,X
ONE PASS

Again, if we see a zero (already counted) or
no match, we skip the next bit and go to PASS.
Otherwise, we've got a match; we count it and
destroy the entry, as before:

INC 50242
LDA #500
STA 50248,Y
STA $024C.X

Our code comes together again. We have two
Loops to pick up:

0300 PASS 	INX
CPX #504
BCC CHECK
INT
CPY #504
!ICC RETRY

Now we may print the two results, stored in
$0241 and $0242. A loop will save a little time and
space:

LDX #500
03BC PLOOP LDA #020

JSR 51132
LDA $0241.X
ORA *SO
JSR $1102
INX
CPX #502
BCC PLOOP

Now a carriage return to end the line. Finally,
we must check for a "correct" solution (exact
matches =4) so that the calling routine will know
whether to quit or not:

LOA #5013
$50 011132
LOA $0241
CMP M504
BNE PLAY
RTS

That's it for our machine language part; we'll
start to put it together next time.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

