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Computer music is probably one of the most
talked about serious applications for home
computers. By serious I mean an application
that has a degree of complexity and open-
endedness which can totally preoccupy
experimenters and funded institutions for
years. Computer performance of music is a
discipline so vast that the final, "best" tech-
nique for its implementation or even a good
definition of such a technique may never be
discovered.

At the same time, computer music is an easy
field to break into. With only minimal effort
and expenditure a very impressive (to the
uninitiated) music performance
demonstration may be put together. With a little
more work a system may be assembled which is
of great value to other family members,
particularly children just starting to learn
music theory. Such a system could, for
example, eliminate manual dexterity as a
factor in a child's musical development.
Finally, on the highest level, it is no longer
very difficult to break into truly original
research in serious performance of music by
computer. The advances in digital and linear
integrated circuits have made putting to-
gether the hardware system for supporting such
research largely a matter of clever system
design rather than brute financial strength.
Programming, tempered with musical knowledge,
is the real key to obtaining significant results.
Thus, in the future, hobbyists working with
their own systems will be making important
contributions toward advancement of the
computer music art.

While the scope of one article cannot

fully cover such an extensive topic, it should
serve to acquaint the reader with the more
popular techniques, their implementation,
strengths, weaknesses, and ultimate potential.

Generally, all computer music perfor-
mance techniques can be classified into two
generic groups. The first includes schemes in
which the computer generates the sound directly.
Theecond covers systems where the computer
acts as a controller for external sound
generation apparatus such as an electronic organ
or sound synthesizer.

Early Techniques

Just as soon as standard commercial com-
puters such as the IBM 709 and, later, the 1401
made their appearance, programmers started to
do frivolous things with them after hours,
such as playing games and music. Since
elementary monotonic (one note at a time)
music is just a series of tones with different
frequencies and durations, and since a
computer can be a very precise timing device, it
did not take long for these early tinkerers to
figure out how to get the machine to play
such music. The fundamental concept used
was that of a timed loop.

A timed loop is a series of machine language
instructions which are carefully chosen for their
execution time as well as function, and which
are organized into a loop. Some of the
instructions implement a counter that controls
the number of passes through the loop before
exiting.

Let's examine some fundamental

PIN CONNECTIONS FOR THE MTU K-1002 8 BIT AUDIO SYSTEM BOARD

K - 1 0 0 2 KIM-1
Pin A p p l l c a n o n Signal Name

Number P i n  N u m b e r
1 Power  Ampl i f ie r  Output  (Speaker  H igh)
2 512 Vo l ts  Supp ly  Vo l tage
3 - Raw Ana log  Ou tpu t  ( see  no te  1  )
4 2 D ig i t a l  B i t  3
5 3 D ig i t a l  B i t  2
6 Dig i ta l :  B i t  1
7 14 Digi ta l  But  0 (Least .  Signi f icant  Bl t l
8 6 D ig i t a l  B i t  5
9
10 t5 Vol ts  Supply Vol tage (see note 2)
71 7 D ig i t a l  B i t  6
12 8 Dig i ta l  B i t  7  (Most  S ign i f i cant  B i t )
1 3 5 D ig i t a l  B i t  4
14 Common Ground
15 Common g round  (Speaker  Re tu rn )

Note 1. The raw analog output is an unf i l te red, fa i t se t t l ing ana log vo l tage between 0 vo l ts for a zero d ig i ta l input and -5 vo l ts for a d ig i ta l input o f
255 dec imal . Source impedance is 5K ohms. In order to use th is output . cu t thee pr in ted c i rcu i t t race between the two unused ho les on the
board .  To resume use o f  the  on-board  f i l te r  and ampl i f ie r ,  so lder  a  jumper  between these two ho les .

Note 2.  This vol tage is  used as a reference source for  the d ig i ta l  to  analog converter  and b ias source for  the f i l ter  and ampl i f ier .  A l though heavi ly
f i l te red,  i t  shou ld  be wel l l  regu la ted for  app l ica t ions  o ther  than sound genera t ion .  Cur rent  dra in  is  under  2  MA.



timed loop relationships. If the sum total
execution time of the instructions in the loop
is M microseconds then we have a loop
frequency of

If the initial value of the decrementing
counter that controls the number of loop
passes is N, then the total execution time before
exit from the loop is (MxN) microseconds.
Thus what we really have is a "tone" with a
frequency of

and a duration of

Using different loops with more or fewer in-
structions will give us different Ms and thus
different notes. Using different Ns when
entering these loops gives different durations for
the notes, and so we have satisfied the definition
of elementary monotonic music.

Of course at this point the computer is
merely humming to itself. Several techniques,
some of them quite strange, have evolved to
make the humming audible to mortals.

One such method that doesn't even require a
connection to the computer is to use an AM
portable radio tuned to a quiet spot on the
broadcast band and held close to the computer.
Viola! [S ic ] The humming rings forth. in loud,
relatively clear notes. As a matter of fact, music
programs using this form of output were very
popular in the "early days" when most small
system computers had only 256 bytes of
memory and no 10 peripherals except the
front panel.

What is actually happening is that the internal
logic circuitry with its fast rise time pulses is
spewing harmonics that extend up into the
broadcast band region of the radio spectrum.
Since some logic gates will undoubtedly switch
only once per loop iteration, the harmonics of
the switching will be separated in frequency by
the switching or loop frequency. Those high
frequency harmonics that fall within the
passband of the radio are treated as a "
carrier" and a bunch of equally spaced nearly
equal amplitude sidebands. The radio's detector
generates an output frequency equal to the
common differences of all these sidebands, which
is the loop frequency and its harmonics. The
timbre of the resulting tones is altered somewhat
by the

choice of instructions in the loop, but basically
has a flat audio spectrum like that of a
narrow pulse waveform. Noise and distortion
arise from other logic circuitry in the
computer which switches erratically with
respect to the timed loops. One practical
difficulty with this method is there is no
clearly identifiable way to get the computer
to "shut up" for rests or space between
identical notes.

The Hammer-Klavier

Other early methods used some kind of
output peripheral to make sound. In a
demonstration of an IBM 1401 over a de-
cade ago this was literally true: the com-
puter played a line printer! It seems that the
hookup between a 1401 central processing
unit and the 1403 printer was such that
software had control of the printer hammer
timing. Each time a hammer was fired a
pulse of sound was emitted upon impact
with the paper. Using a timed loop program
with a print hammer fire instruction im-
bedded in the loop gave a raspy but accurately
pitched buzz. [It also tended to cause
IBM, customer engineers great trepid
ation ...CHJ This same scheme should also be
possible on some of the small, completely
software controlled dot matrix printers that are
now coming on the market.

A sane approach, however, is to connect a
speaker to an output port bit through an
amplifier. Instructions would then be placed
inside the timed loops to toggle the bit and
thus produce a clean, noise-free rectangular wave.

Timed Loop Example

Let's look at an example of a timed loop
music playing program, not so much for its
musical value (which is negligable), but for some
insight into what is involved, and also to
introduce some terms. The MOS Technology
6502 microprocessor will be used for these
examples. These programs are designed to run on
a KIM-1 system, and should run on most other
6502-based systems with very minor
modifications. Motorola 6800 users should be
able to easily convert the programs into
6800 machine language. 8080 users will
benefit most because successful conversion
indicates a thorough understanding of the
concepts involved.

Figure 1: A basic tone generation subroutine. There are two nested loops in this
routine: the first, or inner loop controls the frequency (or pitch) of the note
to be generated, while the second, outer loop controls the duration of the
note. A train of square waves is generated at the output port bit which is used
to drive the circuit in figure 2 to produce an audible tone.
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Note Frequency (Hz)
Middle C 261.62
C# 277.18
D 293.66
D# 311.13
E 329.63
F 349.23
F# 369.99
G 391.99
G# 415.30
A 440.00
A# 466.16
B 493.28

Table 1: Equally tempered
scale note frequencies in
Hertz. In order to deter-
mine frequencies of notes in
the higher octaves, multiply
by 2 for each octave above
this one. For lower octaves,
divide by 2 for each lower
octave.

The heart of the program is the tone
generation subroutine which will be named
TONE. Ideally, such a routine would accept
as input two arguments: one related to the
pitch of the note and the other controlling
the duration. With such a subroutine avail-
able, playing a piece of music amounts to
simply fetching the arguments from a "song"
table in memory and calling the routine for
each note to be played.

,As mentioned previously, we could have a
separate, carefully timed loop for each
different tone frequency needed. TONE
would then call the proper one based on
the pitch parameter. Indeed this approach
is very accurate (to within 1 gs on the
6502) but a great deal of memory is
consumed for the 30 or so notes typically
required. It also lacks flexibility. (This will
be discussed later.) A better approach is to
embed a second, waiting loop to control the
execution time of one pass through the outer
loop, and thus the tone's frequency. Figure
1 is a flowchart illustrating this. When using
this scheme, the frequency argument directly
determines the number of times through the
inner, waiting loop and the duration parameter
directly determines the number of times
through the outer, tone generation loop.

Now, how are the argument values
determined to get the frequencies and
durations desired? First the execution time
of the nested loops must be determined. In the
KIM-1 with a 1 MHz clock and a 6502 the
tightest inner waiting

loop that can be written is 5 µs, assuming
that the inner loop count (frequency argu-
ment) is 256 or less and that it is held in a
register. The total time spent in the loop is [(
5xM)-1 ] ) microseconds, where M is the
frequency argument and the -1 is due to the
shorter execution time of an unsuccessful
branch. (The observant reader wil l note that
the execution time of some 6502
instructions is altered if they cross a memory "
page boundary"; thus, an assumption of no
page crossing is made.) But there is still the
time required for a pass through the outer
loop to output a pulse and decrement the
duration counter. This is termed "loop
overhead." For an example, let's say that the
loop overhead is 25 us. As a result, the total
outer loop time is [(5xM)-1+25], or [(5xM)+2-f]
microseconds which is the period of the
audio waveform output. In order to determine
the M required for a particular note, a table
of note frequencies (see table 1) is consulted.
Then the equation,

where F is the desired frequency, is solved for
the nearest integer value of M. Lower
frequency notes are preferred so that the
percentage error incurred due to rounding M is
minimized. The duration argument is actually
a count of the number of audio tone cycles
which are to he generated for the note, and
thus its value is dependent on the tone
frequency as well as the duration. Its value
can be determined from the relation N=
DxF, where N is the duration argument, D
is the duration in seconds, and F is the note
frequency in Hertz.

As a complete example, let's assume that an
eighth note Gµ an octave above middle C is
to be played, and that the piece is in 4/4
time with a metronome marking of 80 beats
per minute. Since an eighth note in this
case is one half of a beat, the duration will he,

or 0.375 seconds. The note table shows that
the frequency of G#an octave above middle C
is 830.6 Hz, which yields a frequency
argument of 236. The duration argument is
311. So if TONE is called with these para-
meters, a nice G# eighth note will be pro-
duced.

Now let's go a step further and look at a
practical "music peripheral" and TONE sub-
routine. Figure 2 shows a circuit for driving a
speaker from any kind of TTL compatible

Figure 2: A speaker driver circuit designed to accept square or rectangular waves
and produce audible tones through a loudspeaker. In this particular application the
circuit is driven from an output port bit of a KIM-1 microcomputer,
although the circuit can accept any TTL compatible output port bit. When the
input to the circuit is a logical 0 level, the transistor turns on and drives the
speaker. When the input is a logical 1, the transistor turns off and current to the
speaker is interrupted.



By graduating to a more sophisticated music
peripheral, control of dynamics and amplitude
envelopes can be achieved with a timed loop
music program. The secret is to use a digital to
analog converter connected to all eight bits of
the output port. A digital to analog converter (
DAC) does just what its name implies: it accepts
a binary number from the output port as input
and generates a corresponding DC voltage as
its output.

where I is the binary number input between 0
and 255. When working with this kind of DAC,
it is convenient to regard the binary number, I,
as a fraction between 0 and 1 rather than an
integer. The benefit of this will become apparent
later when calculations will be performed to
arrive at the value of I. The output of the DAC
must be used with a sound system or the
amplifier circuit in figure 8, not the simple
transistor speaker driver circuit in figure 2.

As written, the TONE subroutine (see
listing 1) alternately sends 0 and 255 to the
output port with the music peripheral. With a
DAC connected to that port, voltages of 0 and
5 V will be produced for the low and high
portions of the rectangular wave. If instead 0
and 127 were output, the DAC would produce
only 0 and 2.5 V giving a rectangular wave
with about half the amplitude. This in turn
produces a less loud tone, and so control
over dynamics is possible by altering the
byte stored at hexadecimal 101.

Arbitrary amplitude envelopes are also
made possible by continuously exercising
control over the amplitude during a note.
Simple envelope shapes such as a linear attack and
decay can be computed in line while the note is
being sounded. A more general method is to
build a table in memory describing the shape.
Such a table can be quickly referenced during
note playing. Great care must be taken,
however, to insure that loop timing is kept
stable when the additional instructions necessary
to implement amplitude envelopes are added.

More Complex Techniques

Even if all of the improvements mentioned
above were fully implemented, the
elementary timed loop approach falls far
short of significant musical potential. The
primary limitations are a narrow range of tone
colors and restriction to monotonic
performance. The latter difficulty may be
alleviated through the use of a multitrack
tape recorder to combine separate parts, but this
requires an investment in noncomputer
hardware and is certainly not automatic.
Also, unpitched percussive sounds such as drum
beats are generally not possible. Musicians,
too, will probably notice a host of other
limitations such as lack of vibrato and

The circuit in figure 3, which can be used
with any TTL compatible output port, gives an
output voltage

ANALOG
OUTPUT

VOTE. ABOVE RESISTORS MUST BE
5% CARBON FILM TYPES- 47K
SHOULD BE FROM THE SAME
BATCH

Figure 3: An 8 bit digital to analog converter (DA C). This circuit accepts an 8 bit
binary number from the output port and generates a corresponding DC
voltage as its output. The output voltage from this circuit is equal to ((
11255)x5) V, where / is the decimal equivalent of the 8 bit input which can
take on any value from 0 to 225.



Wave Harmonics
Duty
Cycle

Fund 2 3 4 5 6 7 8 9 10
1/2 1.00 0 0.333 0 0.200 0 0.143 0 0.111 0
1 /3 1.00 0.500 0 0.250 0.200 0 0.143 0.125 0 0.100
1 /4 1.00 0.707 0.333 0 0.162 0.236 0.143 0 0.111 0.141

1/5 1.00 0.841 0.561 0.259 0 0173 0.240 0.210 0.116 0
1 /6 1.00 0.867 0.667 0.433 0.200 0 0.143 0.217 0.222 0.173

Table 2: Harmonic amplitudes of rectangular waves. Note that, unlike square waves, asymmetrical
rectangular waves contain even numbered harmonics. This simple technique of varying the duty
cycle of such waves can have an appreciable effect on the timbre of the resulting sound.

output port bit, including those found in the
6530 "combo chips" used in the KIM-1.
When the output port bit is a logic 0 level, the
transistor turns on and drives a current
determined by the volume control setting
through the speaker. When the bit is a logic l,
the current is interrupted. Larger speakers or
even a high fidelity speaker system will give a
richer timbre to the lower pitched tones. The
AUX input to a sound system may also be used
instead of the transistor circuit. Using a patch
cord, connect the shield to the common
terminal of the power supply and the center
conductor to the output port bit through a
10 K to 100 K isolation resistor.

Listing 1 shows an assembled listing of a
practical timed loop tone generation subroutine
for the 6502 microprocessor. Several refinements
beyond the flowcharted example have been made
to improve tone quality and flexibility. The
inner waiting loop has been split into two
loops. The first loop determines the length of
time that the output rectangular waveform is to
be a logic 1 and the second loop determines the 0
time. If both loops receive the same frequency
argument (which they do as written) and the
loop time of both loops is the same, then a
symmetrical square wave output is produced.
However, if one or more "do nothing"
instructions is inserted into one of the two
loops, the output waveform will become
nonsymmetrical. The significance of this is that
the rectangular waveform's duty cycle affects'
its harmonic spectrum, and thus its timbre. In
particular, there is a large audible difference
between a 50%-50% duty cycle (square wave) and
a 25%-75% duty cycle. Table 2 lists the harmonic
structure of some possible rectangular waves. As
a result, some control over the timbre can be
exercised if a separate TONE subroutine is
written for each "voice" desired.
Unfortunately, if this is done the frequency
arguments will have to be recom

puted since the outer loop time will then be
altered.

Real music also possesses dynamics, which are
the changes in overall volume during a
performance. Furthermore, the amplitude
envelope of a tone is an important contributor
to its overall subjective timbre. The latter term
refers to rapid changes in volume during a
single note. This is the case with a piano note,
which builds up rapidly at the beginning and
slowly trails off thereafter. Of course the setup
described thus far has no control over either of
these parameters: the volume level is constant,
and the envelope of each note is rectangular
with sudden onset and termination.

TONE SUBROUTINE FOR 6502

ENTER WITH FREQUENCY PARAMETER IN ACCUMULATOR

DURATION PARAMETER STORED AT LOCATION OUR (LOW PART) AND

DUR.1  (HIGH PART) WHICH IS ASSUMED TO BE IN PAGE ZERO

ROUTINE USES A, X, AND DESTROYS DUR

LOOP TIME = 10'(FREQ PARAMETER).44 MICROSECONDS

17UU MPORT X11700

OOEO DUN X'EO

0100 A2FF TONE: LDX IX'FF

0102 8EO017 STX MPORT

0105 AA TAX

0106 CA WHIGH: DEX

0107 DOFD BNE WHIGH

0109 F000 BEQ ..2

OIOB F000 BEQ ..2

O 1 0 D FOOD BEQ ..2

aIOF F000 BEQ ..2

0111 FOOD BEQ . . 2
0113 A 2 0 0 LDX to
0115 BE0017 STX MPORT

0118 AA TAX

0119 CA WLOW: DEX

011A DOFD BNE WLOW

O11C C6ED DEC DUR

0 D005 BNE TIMWAS

0120 C 6 E 1 DEC DUR.1

0122 DODC BNE TONE
0124 60 RTS

0125 F000 TIMWAS: BEQ ..2
0127 F000 BEQ ..2

0129 DOD5 BNE TONE

ADDRESS OF OUTPUT PORT WITH SPEAKER

ARBITRARY PAGE 0  ADDRESS OF DURATION PARI

SEND ALL 1'S TO THE OUTPUT PORT

TRANSFER FREQ PARAMETER TO INDEX X

WAIT LOOP FOR WAVEFORM HIGH TIME

TIME IN THIS LOOP = 5'FREQ PARAMETER

WAIT 15 STATES TO MATCH TIME USED TO

DECREMENT AND CHECK DURATION COUNT AFTER

WAVEFORM LOW TIME

SEND ALL 0'S TO THE OUTPUT PORT

TRANSFER FREQ PARAMETER TO INDEX X

WAIT LOOP FOR WAVEFORM LOW TIME
TIME IN THIS  LOOP =  5 4FREQ PARAMETER

DECREMENT LOW PART OF DURATION COUNT

BRANCH IF NOT RUN OUT

DECREMENT HIGH PART OF DURATION COUNT

GO DO ANOTHER CYCLE OF THE TONE IF NOT 0

RETURN WHEN DURATION COUNT RUNS OUT

WASTE 7 CYCLES TO EQUAL TIME THAT WOULD

HAVE BEEN SPENT IF  HIGH PART OF DUR WAS
. ntrDCYCUTRn sun nn nn sunTURR rvrIR

Listing 1: An assembled listing of a practical timed loop tone generation sub-
routine for the 6502 microprocessor. This routine is an elaboration of the
flowchart shown in figure 1 which allows the user to generate nonsymmetri-
cal rectangular waves. Experimenting with the wave's duty cycle affects the
harmonic content of the resulting tone and creates many interesting aural
effects.



Figure 4: A sine wave as it would appear at the output from the digital to analog converter
shown in figure 3. Each step in the approximation of this wave is called a sample. This parti-
cular illustration shows a 1.2 kHz sine wave sampled at a rate of 25,000 samples per second.
The resulting waveform is only a very, rough approximation of the original, but low pass filter-
ing can improve accuracy (see figure 5 and text.

other subtle variations. All of these short-
comings may be overcome by allowing the
computer to compute the entire sound
waveform in detail at its own speed.

The one fundamental concept that makes
direct waveform computation possible is the
sampling theorem. Any waveform, no matter
how simple or complex, can be reconstructed
from a rapid series of discrete, voltage
values by means of a digital to analog
converter such as the one used earlier. As an
example, let's try to generate an accurate
sine wave using a DAC. If this can be done,
it follows from the Fourier (harmonic)
theorem that any other waveform may also
be synthesized.

Figure 4 shows a sine wave as it would
appear at the DAC output. Each step on the
approximation to the sine wave is termed a
sample, and the frequency with which these
samples emerge from the DAC is the sample
rate. An at tempt is being made in the
example to generate a 1.2 kHz sine wave at
a sample rate of 25 kHz, or one sample every
40 µs. Obviously this is a very poor sine
wave, a fact that can be easily demonstrated
with a distortion analyzer.

Before giving up, let's look at the fre-
quency spectrum of this staircase-like wave
on a spectrum analyzer. The spectral plot in
figure 5 shows a strong frequency com-
ponent at 1.2 kHz which is the sine wave
we are trying to synthesize. Also present are
the distortion component frequencies due

to the sampling process. Since all of the
distortion components are much higher in
frequency than the desired signal, they may be
easily removed with a sharp low pass filter.
After filtering, the distortion analyzer will
confirm that a smooth, pure sine wave is all
that remains.

What will happen if the sine wave fre-
quency is increased but the sampling fre-
quency remains constant? With even fewer
samples on each sine wave cycle the waveform
from the DAC will appear even more
distorted. The lowest frequency distortion
product is the one of concern since it is the
most difficult to filter out. Its frequency is
FD=(FS-f) Hertz, where FD is the lowest
distortion component frequency, FS is the
sampling frequency, and f is the sine wave
signal frequency. Thus as f increases, FD
decreases until they merge at f=FS/2. This
frequency is termed the Nyquist frequency
and is the highest theoretical frequency that
may be synthesized. Any attempt to syn-
thesize a higher frequency will result in the
desired signal being filtered out and the
distortion frequency emerging instead. This
situation is termed aliasing because the desired
signal frequency has been replaced by a
distortion component alias frequency.
Operating close to the Nyquist frequency
requires a very sharp filter to separate the
signal from the distortion. With practical
fi lters, signal frequencies up to 1/4 to 1/3
of the sampling frequency are realizable.



Figure 5: The spectral plot of the staircase-like sine wave approximation shown in figure 4. This
frequency versus amplitude graph indicates a strong frequency component at 1.2 kHz, the fre-
quency of the sine wave. Normally, this would be the only frequency component to appear on a
plot like this, but the presence of steeply rising steps in this waveform approximation intro-
duces distortion components at higher frequencies, as shown.

Since any sound, whether it is a pitched tone or
unpitched sound, is actually a combination of
sine waves, it follows that any possible sound may
be produced by a DAC. The only limitation is
the upper frequency response, which may be
made as high as desired by increasing the sample
rate. The low frequency response has no
limit, and extends down to DC.

There is another form of distortion in
DAC generated sounds which cannot be
filtered out, since it is spread throughout the
frequency spectrum. Quantization noise is due
to the fact that a DAC cannot generate voltages
that are exact samples on the desired waveform.
An 8 bit converter, for example, has only 256
possible output voltage values. When a
particular voltage is needed, the nearest available
value will have to be used. The theoretical signal
to noise ratio when using a perfect DAC is
related to the number of bits by the equation S/
N= (6xM)+4 decibels where M is the number of
bits. A practical DAC may be as much as 6 db
worse, but a cheap 8 bit unit can yield nearly
50 db, which is as good as many tape recorders.
When using 12 bits or more, the DAC will
outperform even the best professional
recorders. Thus it is apparent that computed
waveforms can, in theory, be used to generate
very high quality music; so high, in fact, that
conventional audio equipment is hard pressed
to reproduce it.

Now that we have the tools, let's see how
the limitations of computer music mentioned
earlier can be overcome. For tones of definite
pitch, the timbre is determined by the
waveshape and the amplitude envelope.
Concentrating on the waveshape, it should be
apparent that a waveform table in memory
repeatedly dumped into the DAC

will produce an equivalent sound waveform.
Each table entry becomes a sample, and the
entire table represents one cycle of the wave-
form. The frequency of the resulting tone
will be FS/N where FS is the sampling fre-
quency (rate at which table entries are sent to
the DAC) and N is the number of entries in
the table. To get other frequencies, either the
sample rate or the number of table entries
must be changed.

There are a number of reasons why the
sample rate should remain constant, so the
answer is to change the effective table length. If
the table dump routine were modified to
skip every other entry, the result would be
an effective halving of table size and thus
doubling of the tone frequency. If the table is
fairly long, such as 256 entries, a number of
frequencies are possible by skipping an integer
number of entries.

To get musically accurate frequencies, it is
necessary to be able to skip a fractional
number of table entries. At this point the
concept of a table increment is helpful in
dealing with programming such an oper-
ation. First, the table is visualized as a circle with
the first entry conceptually following the last
as in figure 6. A pointer locates a point
along the circular table which represents the
sample last sent to the DAC. To find what
should be sent to the DAC next, the table
pointer is moved clockwise a distance equal to
the table increment. The frequency of the
resulting tone is nnw

where FS and N are as before and I is the
increment.



TABLE
POINTER

Figure 6: Diagrammatic representation of the
circular table used for storing the waveform
"template. " The technique illustrated here is
that of storing a large number of samples of one
cycle of a musical waveform in memory as a
table which wraps around itself in circular
fashion. A pointer is used to point to the
next sample to be extracted. In order to
create a waveform with a given frequency,
the program is designed to skip a fractional
number of table entries to get the next
sample value. This fractional number is called
the table increment value. The process is
continued around the table for one revolution
to create a complete waveform. The cycle
around the table is repeated until the duration
counter decrements to zero.

With integer increments, the pointer always
points squarely to an entry. With mixed number
increments, the pointer also will take on a
fractional part. The sensible thing to do is to
interpolate between the table entries on either
side of the pointer to arrive at an accurate value to
give to the DAC. This is indeed necessary to
assure high quality; but simply choosing the
nearest entry may be acceptable in some cases,
particularly if the table is very large.

There is one elusive pitfall in this technique.
The table may contain the tabulation of any
waveform desired, subject to one limitation: a
nonzero harmonic component of the waveform
must not exceed the Nyquist frequency, FS/2.
This can easily happen with the larger table
increments (higher frequency tones), the
result being aliasing of the upper harmonics.
Theoretically this is a severe limitation. Often a
small amount of aliasing is not objectionable,
but

a large amount sounds like gross intermodu-
lation distortion. High sample rates reduce the
possibility or magnitude of aliasing, but of course
require more computation. For the moment, we
will ignore this problem and restrict ourselves
to relatively smooth waveforms without a lot of
high frequency harmonics.

Now that the DAC is used for generating the
actual waveshape, how is amplitude control
accomplished? If an amplitude parameter is
defined that ranges between 0 and 1.0 (
corresponding to amplitudes between zero and
maximum), the desired result is obtained by
simply multiplying each sample from the table by
this amplitude parameter and sending the
product to the DAC. Things are nice and
consistent if the table entries are also considered
as fractions between -1 and +1 because then the
product has a range between -1 and +1 which is
directly compatible with the DAC. (Note that
the DAC in figure 3 is unipolar. It can be
considered bipolar if +2.5 V output is the zero
reference and the sign bit is inverted.)

The last major hurdle is the generation of
simultaneous tones. Obviously, two simul-
taneous tones may be generated by going
through two tables, outputting to two
separate DACs, and mixing the results with an
audio mixer. This is relatively simple to do if the
sample rates of the two tones are the same.
Actually, all the audio mixer does is to add the
two input voltages together to produce its
output, but a very important realization is that
the addition can also be done in the computer
before the output conversion by the DAC!
The two samples are simply added together
with an ADD instruction, the sum is divided
by two (to constrain it to the range of -1 to +1),
and the result sent to a single DAC. This holds
true for any number of simultaneous tones! The
only requirement is that the composite samples
not overflow the -1 to +1 range that the DAC can
accept. Rather than dividing the sum, it is best
to adjust the amplitude factors of the individual "
voices" to prevent overflow. So now we have the
tools necesary to generate an ensemble of tones,
each one possibly having its own waveform,
amplitude envelope, and loudness relative to the
others. Indeed, this is all that is necessary to
simulate a typical organ.

Up to this point the timbre (waveform) of a
tone has been determined by the contents of a
fixed waveform table. Truly interesting musical
notes change their timbre during the duration of
the note. A reasonable alternative to switching
between similar tables for implementing this is to
build the tone from harmonic components.
Each harmonic component of the tone is simply



Listing 2: A program which, in conjunction with tables 3, 4 and 5, generates four
simultaneous musical voices, each with a different waveform and volume level. The
program is designed for use with the 6502 processor coupled to an 8 hit
unsigned digital to analog converter (DAC) like the one shown in figure 3.

•

T H I S  P R O G R A M  P L A Y S  M U S I C  I N  4 - P A R T  H A R M O N Y  O N  T H E  K I M - 1  O R
OTHER 5552 BASED SYSTEM USING AN 8-BIT UNSIGNED
DIGITAL-TO-ANALOG CONVERTER CONNECTED TO AN OUTPUT PORT.  TUNED
FOR SYSTEMS WITH A 1 MHZ CRYSTAL CLOCK. DOES NOT USE THE ROR
INSTRUCTION.
SONG TABLE IS AT "SONG"
ENTRY POINT IS  AT "MUSIC"

0000 0 ORG AT PAGE 0 LOCATION 0

1700 _AC X'1700 OUTPUT PORT ADDRESS 'WITH DAC

1701 LACDIF X'1701 DATA DIIECTION REGISTER FOR DAC PORT

1780 AUXRAM X'1780 ADDRESS OF EXTRA 126 BYTES OF RAM IN 6530

1022 KIh440N X'1022 ; ENTRY POINT TO KIM KEYBOARD MONITOR

0000 00 V1PT: BYTE 0 VOICE 1 WAVE POINTER, FRACTIONAL PART

0001 0000 WORD WAVITB INTEGER PART AND WAVE TABLE BASE

0003 00 V2PT: BYTE 0 VOICE 2

0004 DODO WORD WAV2TB

0006 00 V3PT: BYTE 0 VOICE 3

0007 0000 WORD WAV3TB

0009 00 V4PT: BYTE 0 VOICE 4
COCA 0000 WORD WAV4TB

000C 0000 V1IN: .WORD C VOICE 1 INCREMENT (FREQUENCY PARAMETER)

000E DODO V22N: 'WORD C VOICE 2

0010 0000 V3IN: .WORD 0 VOICE 3

0012 0000 V4IN: WORD 0 VOICE 4

0014 00 OUR: .877E C DURATION COUNTER

0015 0000 NOTES: WORD 0 NOTES POINTER

0017 0002 SONGA: .WORD SONG ; ADDRESS OF SONG

0019 0000 INCPT: WORD 0 POINTER FOR LOADING UP V1NT - VANT
0018 0000 INCA: .'WORD V1IN INITIAL VALUE OF INCPT

O O 1 D  5 2 0 0 TEMPO: 'WORD 82 TEMPO CONTROL VALUE,  TYPICAL VALUE FOR

3:4  TIME,  100  BEATS PER MINUTE,  DUR_64

DESIGNATES A QUARTER NOTE

0100 X'100 START PROGRAM CODE AT LOCATION 0100

MAIN M0JSI_ P10'0[N:1 01iii0RAM

0100 A9FF MUSIC: LDA #X'FF ; SET PERIPHERAL A DATA DIRECTION

0102 8DO117 STA DACDIR REGISTER TO OUTPUT

0105 D8 OLD ; INSURE BINARY ARITHMETIC

0106 A517 LDA SONGA INITIALIZE 40TES POINTER

0108 8515 STA NOTES TO BEGINNING OF SONG

010A A518 :.DA C04GA+1

0100 8516 sTA NOTES+1

010E A000 14USICI: LDY d0 S E T  U P  T O  T R A N S L A T E  4  N O T E  I D  N U M B E R S

0110 A51B LDA INCA INTO FREIUENC'i DETERMINING 'WAVE-FORM TABLE

0112 8519 STA INCPT INCREMENTS AND STORE IN VIIN - 1 » 1 N

0114 B115 LDA ,NOTES),Y GET DURATION FIRST

0116 F03C BEG ENDING BRANCH IF END 4F TONG

0118 C901 CMP #1 TEST :F END OF 20N0 TABLE SEGMENT

O11A F029 BEQ NXTSEG BRANCH IF SO

011C 8514 STA OUR OTHER'WOSE SAVE DURATION _N OUR

011E E615 MUSIC2: INC NOTES ; DOUBLE INCREMENT NOTES TO POINT TO THE

0120 D002 BNE MUSIC; NOTE ID OF THE FIRST VOICE

0122 E616 INC NOTES+1

0124 8115 MUSIC3: LDA f:NOTES; ,Y GET A NOTE ID NUMBER

0126 AA TAX INTO INDEX X

0127 B520 :. DA FRQTAB+1, i : GET LOW BYTE OF CORRESPONDING FREQUENCY

0129 9119 STA ;INCPT:i,Y , STORE INTO LOW BYTE OF VOICE INCREMENT

012B E619 I N C INCPT , INDEX TO HIGH BYTE

012D B51F LDA FRQTAB,X GET HIGH BYTE OF FREQUENCY

012F 9119 STA f,INCPTj,Y STORE INTO HIGH BYTE OF VOICE INCREMENT

0131 E615 I N C NOTES ; DOUBLE INCREMENT NOTES TO POINT TO THE

D133 D002 BNE MUSIC4 ; NOTE ID CF THE NEXT VOICE

0135 E616 INC NOTES+1

0137 E619 MUSIC4: I N C INCPT INDEX TO NEXT VOICE INCREMENT

0139 A519 LDA INCPT TEST IF 4 VOICE INCREMENTS DONE

0138 0914 CMP IV4IN+2

013D DOES BNE MUS:C3 LOOP IF NOT

013E 205701 JSR PLAY PLAY THIS GROUP OF NOTES

0142  4COEO1 JMP M1JSI^_1 G O  L O A D  O P  N E X T  3 E _  I F  N O T E S

0145 C8 NXTSEG: INY END OF SEGMENT,  NEXT TWO BYTES POINT TO

0146 8115 LDA (.NOTES),Y ; BEGINNING OF THE NEXT SEGMENT

0148 48 PHA
0149 C8 INY GET BOTH SEGMENT ADDRES5 BYTES

014A 8115 '.CA !NOTES),Y

0140 8516 STA NOTES-1 THEN STORE IN NOTES POINTER

014E 68 PLA

014F 8515 STA N17E5

0151 4COE01 JMP MUSICI GO START I47ERPRE'.ING NEW SEGMENTT

0154 402210 ENDSNG: JMP KIMMON END OF SONG, RETURN TO MONITOR

4 VOICE PLAY SUBROUTINE

a sine wave with an amplitude dependent on
the waveform of the resulting tone. Giving a
different amplitude envelope to each
harmonic is equivalent to smoothly changing
the timbre during the note. The aliasing
problem mentioned earlier can also be solved
by simply omitting any harmonics that
become too high in frequency.

Dynamic timbre variation can also be
accomplished by a digital filter which does the
same thing to a sampled waveform that a real
inductance-capacitance filter does to a normal
waveform. A digital filter is simply a subroutine
which accepts a sample value as an argument
and gives back a sample value which
represents the filtered output. The equations
used in the subroutine determine the filter
type, and other arguments determine the
cutoff frequency, Q, etc. This is a fascinating
subject which deserves its own article.

What about other, unpitched sounds?
They too can be handled with a few simple
techniques. Most sounds in this category are
based in part on random noise. In sampled
form, random white noise with a uniform
frequency spectrum is simply a stream of
random numbers. For example, a fairly
realistic snare drum sound may he
generated by simply giving the proper ampli-
tude envelope to pure white noise. Other
types of drum sounds may be generated by
using a digital filter to shape the frequency
spectrum of the noise. A resonant type of
digital filter would be used for tomtoms and
similar semipitched drums, for example. A
high pass filter is useful for simulating brush
and cymbal sounds. An infinite number of
variations are possible. This is one area where
direct computation of sound waveforms really
shines.

The sampling theorem works both ways
also. Any waveform may be converted into
digital samples with an analog to digital
converter (ADC) with no loss of information.
The only requirement is that the signal being
sampled have no frequency components
higher than half of the sampling frequency.
This may be accomplished by passing the
signal to be digitized through a sharp low
pass filter prior to presenting it to the ADC.
Once sound is in digi t ized form, literally
anything may be done to it. A simple (in
concept) application is intricate editing of
the sound with a graphic display, light pen
and large capacity disk. The sound may be
analyzed into harmonic components and the
result or a transformation of it applied to a
synthesized sound. Again, this is an area that
deserves its own article.



Listing 2, continued:

0157 A000 PLAY: LDY #0 SET Y TO ZERO FOR STRAIGHT INDIRECT
0159 A61D LDX TEMPO SET X TO TEMPO COUNT

COMPUTE AND OUTPUT A COMPOSITE SAMPLE

0158 18 =.A?': CLC CLEAR CARRY
015C 8101 LDA (V1PT.1;,Y ADD UP 4 VOICE SAMPLES
015E 7104 ADC (V2PT.1),Y USING INDIRECT ADDRESSING THROUGH VOICE
0160 7107 ADC (V3PT.1),Y ; POINTERS INTO WAVEFORM TABLES
0162 710A ADC (V4PT.1),Y STRAIGHT INDIRECT WHEN Y INDEX = 0
0164 8DO017 STA X'1700 SEND SUM TO DIGITAL-TO-ANALOG CONVERTER
0167 A500 LDA V1PT ADD INCREMENTS TO POINTERS FOR
0169 650C ADC V1IN THE 4 VOICES
0168 8500 STA V1PT FIRST FRACTIONAL PART
016D A501 LDA V1PT+1
016F 650D ADC V1IN.1
0171 8501 STA V1PT.1 ; THEN INTEGER PART
0173 A503 LDA V2PT VOICE 2
0175 650E ADC V2IN
0177 8503 STA V2PT
0179 A504 LDA V2PT+1
017B 650F ADC V21N.1
017D 8504 STA V2PT.1
017F A506 LDA V3PT ''DICE 3
0181 6510 ADC V3IN
0183 8506 STA V3PT
0185 A507 LDA V3PT+1
0187 6511 ADC V3IN.1
0189 8507 STA V3PT+1
018B A509 LDA V4PT ; VOICE 4
018D 6512 ADC V41N
018E 8509 STA V4PT
0191 A50A LDA V4PT.1
0193 6513 ADC V41N+1
0195 850A STA V4PT+1
0197 CA DEX DECREMENT & CHECK TEMPO COUNT
3198 D008 BNE TIMfAS BRANCH TO TIME WASTE IF NOT RUN OUT
019A C614 DEC DUR ; DECREMENT & CHECK DURATION COUNTER
019C FOOC BEQ ENDNOT JUMP DUT IF END OF NOTE
019E A61D LDX TEMPO RESTORE TEMPO COUNT
01A0 DOB9 BNE PLAY1 CONTINUE PLAYING
01A2 D000 TIM'AAS: BNE ..2 3 WASTE 12 STATES
01A4 D000 BNE ..2 3
DIA6 D000 BNE ..2 3
J:A8 DI-B1 BNE PLAY1 3 CONTINUE PLAYING
0'AA a0 ENDNOT: RTS ; RETURN

TOTAL LOOP TIME = 114 STATES = 8770 HZ

0IAB PlEND - ; DEFINE BEGINNING ADDRESS FOR THIRD PART
OF SONG TABLE

Sampled Waveform Example

It should be obvious by now that while
these sampled waveform techniques are
completely general and capable of high
quality, there can be a great deal of com-
putation required. Even the most powerful
computers in existence would be hard
pressed to compute samples for a
significant piece of music with many voices
and all subtleties implemented at a rate fast
enough for direct output to a DAC and
speaker. Typically the samples are
computed at whatever rate the program runs and
are saved on a mass storage device. After the piece
has been "computed," a playback program
retrieves the samples and sends them to the DAC
at a uniform high rate.

Most microprocessors are fast enough to do
a limited amount of sampled waveform
computation in real time. The 6502 is one of
the best 8 bit machines in this capacity due to its
indexed and indirect addressing modes and its
overall high speed. The example program shown
in listing 2 has the inherent capability to
generate four simul

taneous voices, each with a different wave-
form and volume level. In order to make the
whole thing fit in a basic KIM-1, however,
only one waveform table is actually used.

This program could probably be con-
sidered as a variation of the timed loop tech-
nique, since the sample rate is determined by the
execution time of a particular loop. The major
differences are that all of the instructions in the
loop perform an essential function and that the
loop time is constant regardless of the notes
being played. Using the program as shown on a
full speed (1.0 MHz) 6502 gives a sample rate of
8.77 kHz, which results in a useful upper
frequency limit of 3 kHz. The low pass filter in
figure 7 coupled with the DAC in figure 3 and
audio system or amplifier in figure 8 are all the
specialized hardware necessary to run the
program with full 4 part harmony.

The program consists of two major routines:
MUSIC and PLAY. MUSIC steps through the
list of notes in the song table and sets up DUR
and V1 IN thru V41N for the PLAY routine.
PLAY simultaneously plays the four notes
specified by V11N thru V41N for the time
period specified by DUR. Another variable,
TEMPO, in page zero controls the overall tempo
of the music independently of the durations
specified in the song table. The waveform tables
for the four voices are located at WAVITB
thru WAV4TB and require 256 bytes (one
memory page) each. The actual waveform
samples stored in the table have already been
scaled so that when four of them are added up
there is no possibility of overflow.

The song table has an entry for each musical "
event" in the piece. An entry requires five
bytes, the first of which is a duration parameter.
By suitable choice of the TEMPO parameter in
page 0, "round" (in the binary sense) numbers
may be used for duration parameters of
common note durations. A duration parameter
of 0 signals the end of the song, in which case the
program returns to the monitor. A duration
parameter of 1 is used to specify a break in the
sequential flow of the song table. In this case
the next two bytes point to the continuation
of the table elsewhere in memory. This feature
was necessary to deal with the fragmented
memory of the KIM-I, but has other uses as
well. All other possible duration values are taken
literally and are followed by four bytes which
identify the notes to be played by each voice.
Each note ID points to a location in the note
frequency table which in turn contains a 2 byte
frequency parameter for that note which is
placed in Vl IN thru V4IN.

The PLAY routine is optimized for speed,



How does it sound? With the waveform table
shown and a reasonably good speaker system,
the result sounds very much like an electronic
organ, such as a Hammond. There is a
noticeable background noise level due to
compromises such as prescaled waveforms and
lack of interpolation in the tables, but it is not
objectionable. The pitches are very accurate,
but there is some beating on chords due to
compromises inherent in the standard
equally tempered musical scale. Also
there are noticeable clicks between notes
due to the time taken by the MUSIC routine to
set up the next set of notes. All in all the
program makes a good and certainly
inexpensive basis for the "family music
application" mentioned earlier.

Synthesizer Control Techniques

Figure 8. An inexpensive,
wide band low power audio
amplifier. This circuit,
when coupled with the
circuits in figures 3 and
7, is all the experimenter
needs to create music with
his or her microprocessor.

So far we have discussed techniques in which
the computer itself generates the sound. It is
also possible to interface a computer to
specialized sound generation hardware and have
it act as a control element.

The most obvious kind of equipment to
control is the standard, modular, voltage
controlled sound synthesizer. Since the
interface characteristics of nearly all synthe-
sizers and modules are standardized, a com-
puter interface to such equipment could
be used with nearly any synthesizer in
common use.

Generally speaking, the function of a
voltage controlled module is influenced
by one or more DC control voltages. These are
usually assumed to be in the range of 0 to +10
volts, although some modules will

•

SONG TABLE
EACH MUSICAL EVENT CONSISTS OF 5 BYTES
THE FIRST IS THE DURATION OF THE EVENT IN UNITS ACCORDING TO
THE VALUE OF "TEMPO-, ZERO DENOTES THE END OF THE SONG.
THE NEXT 4 BYTES CONTAIN THE NOTE ID OF THE 4 VOICES, I THROUGH
4. 0 INDICATES SILENCE FOR THE VOICE.

0200 X'200 ; START SONG AT 0200

SONG 'ABLE FOR THE STAR SPANGLED BANNER BY FRANCIS SCOTT KEY
AND J. STAFFORD SMITH
DURATION -OUNT = 64 FOR QUARTER NOTE

0200 604A000032 SONG: BYTE 96,74,0,0,50 ; 3/8 C5 C4 1
0205 1044000020 BYTE 16,68,0,0,44 1/16 A4 A3
020A 4040000024 BYTE 64 ; 1/4 G4 F3 2
020F 4044000024 BYTE 64,68,0,0,36 1/4 A4 F3
0214 404A000022 .BYTE 64,74,0,0,34 1/4 C5 E3
0219 80544E441E BYTE 128,84,78,68,30 1/2 F5 D5 A4 D3 3
021E 3050524410 BYTE 48,92,82,68,28 ; 3/16 A5 E5 A4 C03
0223 1058004010 BYTE 16,88,0,64,28 1/16 G5 G4 C#3
0228 405400301E BYTE 64,84,0,60,30 1/4 F5 F4 D3 4
022D 4044003CIE BYTE 64,68,0,60,30 ; 1/4 A4 F4 D3
0232 4048403028 BYTE 64,72,64,60,40 ; 1/4 B4 G4 F4 G3
0237 804A403A32 BYTE 128,74,64,58,50 1/2 C5 G4 E4 C4 5
023C 204A000032 BYTE 32,74,0,0,50 1/8 C5 C4
0241 204A000032 BYTE 32,74,0,0,50 ; 1/8 C5 C4
0246 6050544424 .BYTE 96,92,84,68,36 3/8 A5 F5 A4 F3 6
024B 2058004028 BYTE 32,88,0,64,40 1/8 G5 G4 G3
0250 4054003020 BYTE 64,84,0,60,44 1/4 F5 F4 A3
0255 80524A4032 BYTE 128,82,74,64,50 1/2 E5 C5 G4 C4 7
025A 304E46002E BYTE 48,78,70,0,46 3/16 D5 BE4 383
025E 10524A402E BYTE 16,82,74,64,46 1/16 E5 C5 G4 3!3
0264 40544A442C BYTE 64,84,74,68,44 ; 1/4 F5 C5 A4 A3 8
0269 405400003C BYTE 64,84,0,0,60 1/4 F5 F4
026E 404A000032 BYTE 64,74,0,0,50 ; 1/4 C5 C4
0273 4044000020 BYTE 64,68,0,0,44 ; 1/4 A4 A3 9
0278 4030000024 BYTE 64,60,0,0,36 ; 1/4 F4 F3
027D 304A000032 BYTE 48,74,0,0,50 ; 3/16 C5 C4
0282 1044000020 BYTE 16,68,0,0,44 ; 1/16 A4 A3
0287 4030000024 BYTE 64,60,0,0,36 ; 1/4 F4 F3 10
028C 4044000024 .BYTE 64,68,0,0,36 1/4 A4 F3
0291 404A000022 BYTE 64,74,0,0,34 ; 1/4 C5 E3
0296 80544E441E .BYTE 128,84,78,68,30 1/2 F5 D5 A4 D3 11
029B 3050524410 BY7E. 48,92,82,68,28 ; 3/16 A5 E5 A4 Oi3

Table 4: This song table is an encoding of "The Star Spangled Banner" in 4
part harmony which is used by the program in listing 2. Each musical
event in the table consists of five bytes. The first byte represents the dur-
ation of the event in units, according to the value of the "tempo " (0 denotes
the end of the song). The next four bytes contain the note identifications of
the four voices (0 indicates silence for the voice).



Table 4, continued:

02AC 105800401C BYTE 16,88,0,64,26 1116 G5 G4 Ci3

02A5 405400301E BYTE 64,84,0,60,30 F5 F4 D3 12

02AA 4044003CIE BYTE 64,68,0,60,30 ; 114 A4 F4 D3

02AF 4048403028 BYTE 64,72,64,60,40 1,4 B4 G4 F4 G3

0234 804A403A32 BYTE 128,74,64,58,50 V'2 C5 G4 E4 C4 13

0289 204AG00032 BYTE 32,74,0,0,50 1/8 C5 C4

02BE 204A000032 BYTE 32,74,0,0,50 1/8 C5 C4

0203 6050544424 .BYTE 96,92,84,68,36 3/8 A5 F5 A4 F3 14
0208 2058004028 BYTE 32,88,0,64,40 1/8 G5 G4 G3

02CD 2054003CZC BYTE 32,84,0,60,44 1/8 F5 F4 A3

02D2 80524A4032 .BYTE 128,82,74,64,50 ; 1/2 E5 C5 G4 C4 15
02D7 304E46002E BYTE 48,78,70,0,46 3/16 D5 3B4 B 0 3
02DC 10524A402E BYTE 16,82,74,64,46 1/16 E5 C5 G4 BB3
02EI 40544A442C .BYTE 64,84,74,68,44 1/4 F5 C5 A4 A3 16
02E6 4054000030 BYTE 64,84,0,0,60 ; 1/4 F5 F4

02EB 404A000032 BYTE 64,74,0,0,50 1/4 C5 C4

02FO 4044000020 BYTE 64,68,0,0,44 1/4 A4 A3 17

02F5 4030000024 BYTE 64,60,0,0,36 1/4 F4 F3

02FA 01 .BYTE I ; DEFINE END OF THIS SEGMENT
02FB 8300 WORD POEND ADDRESS OF BEGINNING 3F

NEXT

0083 POEND

SEGMENT
ORG AT END OF PAGE 0 i~GDE

0083 3050544428 BYTE 48,92,84,68,40 3/16 AS F5 A4 G3

0088 105C544428 BYTE 16,92,84,68,40 1/16 A5 F5 A4 G3

008D 4050544424 BYTE 64,92,84,68,36 1/4 AS F5 A4 F3 18

0092 405E544628 BYTE 64,94,84,70,40 1/4 BB5 F5 BB4 G3
0097 4062544A2C BYTE 64,98,84,74,44 1/4 C6 F5 C5 A3

0090 8062544A2C BYTE 128,98,84,74,44 1/2 C6 F5 C5 A3 19

)CA1 205E544628 BYTE 32,94,84,70,40 1/8 BB5 F5 BB4 G3

00A6 2050544420 BYTE 32,92,84,68,44 1/8 A5 F5 A4 A3

OCAS 4058524032 BYTE 64,88,82,64,50 1/4 G5 E5 G4 C4 20
OGBO 4050544430 BYTE 64,92,84,68,60 1/4 A5 F5 A4 F4

0085 405E524640 BYTE 64,94,82,70,64 1/4 BB5 E5 BB4 G4
DOBA 805E58461A BYTE 128,94,88,70,26 1/2 BB5 G5 3B4 C3 21

OOBF 405E52461A BYTE 64,94,82,70,26 1:, 4 BB5 E5 BBL C3

0004 605C4A4424 BYTE 96,92,74,68,36 3;8 AS C5 A4 F3 22

3009 20584A402F BYTE 32,88,74,64,40 118 G5 C5 G4 G3

000E 40544A3C2C BYTE 64,84,74,60,44 1i F5 C5 F4 A3

OOD3 80524A4032 BYTE 128,82,74,64,0_0 E5 C5 G4 C4 23

0008 2 0 4 E C O 3 6 2 E BYTE 32,78,0,54,46 D5 D4 BB3

DODD 20524A3A2E BYTE 32,82,74,58,46 1:8 E5 C5 E4 BP3

OOE2 40544A3C2C BYTE 64,84,74,60,44 1/4 F5 C5 F4 A3 24

00E7 4044300036 BYTE 64,68,60,0,54 1/4 A4 F4 D4

OOEC O1 BYTE 1 DEFINE END OF THIS SEGMENT
OOED ABO1 WORD P1END ADDRESS OF BEGINNING OF

NEXTSEGMENT
31AB P1END ORG AT END OF PAGE 1 CODE
D1AB 4048403028 BYTE 64,72,64,60,40 1/4 B4 G4 F4 G3
0 1 & 7  8 0 4 A 4 0 3 A 1 A BYTE 128,74,64,58,26 1/2 C5 34 E4 C3 25
0185 4G4A000032 .BYTE 64,74,0,0,50 1/4 C5 C4

01BA 40544A4424 BYTE 64,34,74,68,36 1/4 F5 C5 A4 F3 26

018F 4054464028 BYTE 64,84,70,64,40 1/4 F5 BB4 G4 G3

0104 20544A442C BYTE 32,84,74,68,44 1/8 F5 C5 A4 A3

0109 20524A442C .BYTE 32,82,74,68,44 1/8 E5

01CE 404E463C2E .BYTE 64,78,70,60,46 1/4 D5 BB4 F4 BB3 27

0103 404E463C2E BYTE 64,78,70,60,46 1/4 D5 594 FL 5B3
0108 404E4A3E2C .BYTE 64,78,74,62,44 1/4 D5 C5 Fi<4 A3
O1DD 4058464028 BYTE 64,88,70,64,40 1/4 G5 BB4 G4 G3 28

01E2 205E460028 BYTE 32,94,70,0,40 1/8 BB5 BB4 03
01E7 2050440020 .BYTE 32,92,68,0,44 1/8 A5 A4 A3
OIEC 205840002E .BYTE 32,88,64,0,46 1/8 G5 G4 503

01F1 01 .BYTE 1 DEFINE END OF THIS SEGMENT

01F2 8017 WDRD AUXRAM ADDRESS OF BEGINNING OF
NEXTSEGMENT (IN 6530 RAM)

1780 AUXRAM ONG AT
BEGINNING

OF 6530 RAM
1780 2054300030 BYTE 32,84,60,0,48 1/8 F5 F4 B3
1785 40544A4432 BYTE 64,84,74,68,50 1/4 F5 C5 A4 C4 29

178A 40524A401A BYTE 64,82,74,64,26 1/4 E5 C5 G4 C3

178F 204A000032 BYTE 32,74,0,0,50 1/8 C5 14

1794 204A00002E BYTE 32,74,0,0,46 1/8 C5 BB3

1799 60544A442C BYTE 96,84,74,68,44 ; 3/8 F5 C5 A4 A3 30

179E 2058004032 .BYTE 32,88,0,64,50 1/8 G5 G4 C4

17A3 2050004440 BYTE 32,92,0,68,64 1/8 A5 A4 G4
17A8 205EO04640 .8YTE 32,94,0,70,64 1/8 BB5 384 G4
17AD 8062505444 .13YTE 128,98,92,N 68 1/2 C6 A5 F5 A4 31
1782 20544E4436 BYTE 32,84,78,68,54 1/8 F5 D5 A4 04
1787 2058484034 BYTE 32,88,72,64,52 1/8 35 B4 G4 DB4
17BC 605C544A32 BYTE 96,92,84,74,50 3/8 AS F5 C5 C4 32
1701 205E544E32 BYTE 32,94,84,78,50 1/8 BB5 F5 D5 C4
17C6 4058524632 BYTE 64,88,82,70,50 1/4 G5 E5 384 C4
17CB 80544A443C .BYTE 128,84,74,68,60 112 F5 C5 A4 F4 33
17DO 00 BYTE 0 END OF PIECE

have a predictable response to negative
voltages as well. In a voltage controlled
oscillator, for example, the output frequency
is determined by a control voltage. For
typical tuning, 0 V would correspond to 16
Hz (a very low C), and the frequency would
increase one volt per octave for higher
voltages. Thus, +4 V would produce middle
C, and the maximum input of +10 V

would produce a nearly inaudible 16.4 kHz.
A typical oscillator module has two or three
control inputs and a number of outputs. The
voltages at the inputs are internally summed to
form the effective control value (useful for
injecting vibrato), and the outputs provide
several different waveforms simultaneously.

A voltage controlled amplifier has as a
minimum a signal input, a control input,
and a signal output. The voltage at the
control input determines the gain from the
signal input to the signal output. In a typical
setting, +8 V would correspond to unity (0
db) gain, with lower voltages decreasing the
gain by 10 db per volt.

Many other voltage controlled devices
have been developed during the approximately
12 year history of this field. In order to play
music, the modules are first "patched"
together with patch cords (like old style
telephone switchboards) according to the
desired sound characteristics. Manually
operated control voltage sources such as
potentiometers, joysticks and specialized
organ-like keyboards are then manipulated by
the player. The music is generally monotonic
due to difficulties in the control elements (
now being largely overcome). Multitrack
tape recorders are universally utilized to
produce the results heard on recordings such as
Walter Carlos's Switched on Bach.

A useful computer interface to a synthesizer
can be accomplished with nothing more than
a handful of digital to analog and optionally
analog to digital converters. The DACs would
be used to generate control voltages under
program control and the ADCs would allow
operator input from the keyboard, for
example, to be stored. Since control voltages
vary slowly compared to the actual sound
waveforms, real time control of a number of
synthesizer modules is possible with the
average microprocessor. Due to the large
number of DACs required and the relatively
slow speeds necessary, a multiplexing scheme
using one DAC and a number of sample and
hold amplifiers is appropriate. The home
builder should be able to achieve costs as
low as s2 per channel for a 32 channel, 12 bit
unit capable of controlling a fairly large
synthesizer.

The routing of patch cords can also be
computerized. A matrix of reed relays or
possibly CMOS bilateral switches interfaced to
the computer might be used for this task.
The patches used for some contemporary
synthesizer sounds resemble the program
patch boards of early computers and thus are
difficult and time consuming to set up and
verify. With computer controlled patching, a
particular setup may be recalled



and set up in milliseconds, thus enhancing real
time performance as well as reducing the need for
a large number of different modules.

Other musical instruments may he interfaced
as well. One well-published teat is an
interface between a PDP-8 computer and a fair
sized pipe organ. There are doubtless several
interfaces to electronic organs in existence
also. Even piano mechanisms can be activated, as
noted elsewhere in this issue.

Recently, specialized music peripherals have
appeared, usually oriented toward the S-100 (
Altair) bus. In some cases these are digital
equivalents of analog modules of similar
function. For example, a variable
frequency oscillator may be implemented
using a divide-by-N counter driven by a
crystal clock. The output frequency is
determined by the value of N loaded into a
register in the device, much as a control voltage
affects a voltage controlled oscillator. Such
an approach bypasses the frequency drift
problems and interfacing expense of analog
modules. The biggest advantage, however, is
availability of advanced functions not
feasible with analog modules.

One of these is a programmable wave-
form. A small memory in the peripheral
holds the waveform (either as individual
sample values or Fourier coefficients), which can
be changed by writing in a new waveform under
program control. Another advantage is that time
multiplexing of the logic is usually possible. This
means that one set of logic may simulate the
function of several digital oscillators
simultaneously, thus reducing the per
oscillator cost substantially. Actually, such a
digital oscillator may be nothing more than a
hardware implementation of the PLAY routine
mentioned earlier.

Digital/analog hybrids are also possible. The
speech synthesizer module produced by
Computalker Consultants, for example,
combines a programmable oscillator, several
programmable amplifiers and filters, white noise
generator, and programmable switching on one
board. Although designed for producing speech,
its completely programmable nature gives it
significant musical potential, particularly in
vocals.

How do these various control techniques
compare with the direct waveform compu-
tation techniques discussed earlier' A de-
finite advantage of course is real time playing of
the music. Another advantage is simpler
programming, since sound generation has
already been taken care of. However, the number
of voices and complexity of subtle variations is
directly related to the quantity of synthesizer
modules available.
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Table 5: This table is an encoding of the samples of the waveform used by the
program in listing 2. The table is exactly one memory page long on a page
boundary. The maximum value of any entry is decimal 63 or hexadecimal 3F to
avoid overflow when all four voices are summed.



For example, if more voices are needed, either
more modules must be purchased or a
multitrack tape recording must be made,
which then takes us out of the strict real
time domain. On the other hand, a new voice in a
direct synthesis system is nothing more than a
few bytes added to some tables and a slightly
lengthened execution time. Additionally,
there may be effects that are simply not
possible with currently available analog
modules. With a direct synthesis system, one
merely codes a new subroutine, assuming that
an algorithm to produce the effect is known.

A separate problem for the experimenter is
that a "critical mass" exists for serious work
with a direct synthesis system. To achieve
complexity significantly beyond the

t TOCCATA AND FUGUE IN D-MINOR BACH
VOI
CEI
VOI
CE2
VOI
CE3

40,0,0,0,0,30,0,0,0,0,0,0,0,60,0
37,0,0,0,0,0,0,0,50,0,0,0,0,50,0
0,0,9,0,38,0,0,0,38,19,0,0,0,28,0

10
10
15

30,30
60,60
100,250

TEM
PO

1/4=1200
-/

002 1A3,1/
64;

2A2,1/64
lA@3,1/
64;

2A@2,1/64
1A3,1/8;
R,1,132

2A2,1/8
103,1/
647;

262,1/64.
1F3,1/
64;
1E3,1/
64;
103,1/
64;

2F2,1/64
2E2,1/64
203,1/641043,1/

32;
2042,1/32

103,1/
16;
R,1/4

202,1/16
302,1/1; R,1/4
2C43,1F2; R,1/16
1E3,7/16; R,1/16
163,7/16; R,1/16
1B@3,5/16; R,1/
16
1044,4; 16; R,1,1
16
1E4,3/16

/-/
140 1B@4,1/8; 104,1/

8;
1E3,1/32
103,1/32
10@3,1/32
1044,1/32
1B@4,1/8

1E4,1/8; 2E3,1/8; 3C+i3,16

15@4,1/8; IG4,1,'
8;
1A4,1/8; IF#4,
1/8;

1E4,1/8;
104,1/8;

1044,1/8;
2F43,1/8;

2E3,1/
8;

303,1/
8

3043,1/8
TEMPO 1/4=
950 103,1/32TEMPO 1/4=1050

1A3,1/32TEMPO 1/4=1150
104, 1/32

TEMPO 1/4=1200
1F#4,1/
321A4,1/81A4,3/8; IF44,1/

8;
!04,1/8; 2F43,1/
8;

303,1/8
141 104,1/2; i0@3,1/

2;
2G3,1/2; 302,1/4

164,1/2; 3B@2,1/4
1E4,1/4; 1e44,1/

4;
2B@3,1/4; 3E2,1/4

1F4,1/4; 104,2;'4; 2A3,1/4; 3F2,1/4
142 1E4,1/2; 2A3,i/'2; 3A2,1;2; R,1/4

1C4,2/4; R,1/4
104,4/2; 2F3,1/4; 3B@2,1/4
2B@3,1/
4;

263,1/
4;

3G2,1/4
143
END

2A3,3/2; 2F3,3/2; 3D3,3/2; 302,3/2

Listing 3: Bach's "Toccata and Fugue in D r11inor" as encoded in NO TRAN, a music
language developed by the author (NOTRAN stands for NOte TRANslation).
The main function of the language is to transcribe organ music, but it will work
equally well with other types of music. Program statements are used to encode
duration, pitch, attack and decay rates, and loudness )l ouch rtr;te.

4 voice example program described earlier, a
high speed, large capacity mass storage
system is needed. This means an IBM type
digital tape drive or large hard surface disk
drive; usually at least $3000 for a new drive
less interface. Used 7 track tapes and 2311
type disks (7.5 megabytes) are often
available for $500 and certainly provide a
good start if the user can design his own
interface. Synthesizer modules or peripheral
boards, on the other hand, can be purchased
one at a time as needed.

Music Languages

Ultimately, software for controlling the
sound generation process, whether it be
direct or real time control, is the real fron-
tier. The very generality of computer music
synthesis means that many parameters and
other information must be specified in order
to produce meaningful music. One function
of the software package is to convert "
musical units of measure" into physical
sound parameters such as conversion of tempo
into time durations. Another part is a
language for describing music in sufficient
detail to realize the control power available
from music synthesis without burdening the
user with too much irrelevant or repetitious
detail. With a good language, a good editor
for the language, and real time (or nearly
so) execution of the language, the music
system becomes a powerful composition tool
much as a text editing system aids writers in
preparing manuscripts.

Music languages can take on two forms.
One is a descriptive form. Music written in
a descriptive language is analogous to a con-
ventional score except that it has been
coded in machine readable form. All
information in the score necessary for proper
performance of the piece is transcribed onto
the computer score in a form that is
meaningful to the user yet acceptable to
the computer. Additional information is
interspersed for control of tone color,
tempo, subtle variations, and other
parameters available to the computer
synthesist.

A simple example of such a language is
NOTRAN (NOte TRANslation) which was
developed by the author several years ago for
transcribing organ music. Listing 3 shows a
portion of Bach's "Toccata and Fugue in D
Minor" coded in NOTRAN. The basic thrust of
the language was simplicity of instruction (
to both the user and the interpreter
program), rather than minimization of typing
effort.

Briefly, the language consists of state-
ments of one line each which are executed in
straight line sequence as the music plays. If the
statement starts with a keyword, it is



a specification statement; otherwise, it is a
note statement. Specification statements
simply set up parameters that influence the
execution of succeeding note statements and
take no time themselves.

A VOICE statement assigns the timbre
described by its parameters to a voice number
which is used in the note statements. In the
example score, the first group of para-
meters describe the waveform in terms that are
implementation dependent, such as harmonic
amplitudes. The next, isolated parameter
specifies the overall loudness of the voice in
relation to other voice--. The last pair of
parameters specifies the attack and decay
times respectively for notes using this voice.
Depending on the particular implementation,
other parameters may be added without limit.
For example, vibrato might he described by
a set of three additional parameters such as
vibrato frequency, amplitude, and a delay from
the beginning of a note to the start of
vibrato.

A TEMPO statement relates note dura-
tions in standard fractional terms to real
time in milliseconds. The effect of a tempo
statement lasts until another is encountered.
Although the implementation for which the
example was written required a sequence of
tempo statements to obtain a retard, there is
no reason why an acceleration or a retard set of
parameters could not be added.

Note statements consist of one or more
note specifications and are indented four
spaces (the measure numbers are treated as
comments). Each note specification begins with
a voice number followed by a note name
consisting of a letter, optional sharp (-) or
flat ((_al) sign, and an octave number. Thus
C#4 is one half step above middle C.
Following the comma separator is a duration
fraction. Any fraction is acceptable, but
conventional musical fractions are normally
used. Following the duration are two op-
tional modifiers. A period (.) indicates a "
dotted" note which by convention extends
the note's duration by 50°':. An "S" specifies
a staccato note which is played as just an
attack and decay (as specified by the corres-
ponding voice statement) without any steady
state. The presence of a semicolon (;) after a
note indicates that additional notes which
are intended to be part of the same
statement are present, possibly extending to
succeeding lines.

The execution sequence of note state-
ments can become a little tricky due to the
fact that note durations in the statement
may not al l be equal . The rule is that al l
notes in the statement start simultaneously.
When the shortest one has ended, the notes in
the next statement are initiated, even
though some in the previous statement may

be still sounding. This could continue to any
depth such as the case of a whole note in the
bass against a series of sixteenth notes in the
melody. The actual implementation, of
course, l imits the maximum number of
simultaneous tones that may be built up.

Also available is a rest specification which
can be used like a note specification. Its
primary function is to provide silent space
between note statements, but it may also be
used to alter the "shortest note" decision
when a note statement is scanned. If the rest is
the shortest then the notes in the next
statement are started when the rest elapses
even though none of the current notes have
ended. A use of this property may be seen
in the last part of measure 2 where an
arpeggio is simulated.

As can he seen, NOTRAN is best suited
for describing conventional organ music,
although it could he extended to cover a
wider area as well. One such extension which
has been experimented with but not fully
implemented is percussion instruments. First a
set of implementation dependent para-
meters was chosen to define a percussive sound,
and then a PRCUS statement similar to the
VOICE statement was added to the
language. To initiate percussive sounds,
specifications such as "P3,1/4" would be
interspersed with the note specifications in
note statements. The "3" would refer to
percussive sound number 3 and the 1/4
would be a "duration" which would be
optional. All percussive sounds in the same
statement would start simultaneously with the
regular notes.

A much more general music language is
the well-known MUSIC V. It was designed to
make maximum use of the flexibil i ty afforded
by direct waveform computation without
overburdening the user. It is a massive
program written in FORTRAN and clearly
oriented toward large computers. Much
significant computer music work has been
done with MUSIC V, and it is indeed
powerful. An excellent hook is available
which describes the language in detail and
includes some background material on
digital sound generation (see entry I in the
list of references at the end of this article).

A different approach to music languages is a
"generative" language which describes the
structure of the music rather than the note
by note details. In use, the structure is
described by "loops," "subroutines," and "
conditional branches" much as an algorithm
is described by a computer language. The
structure is "executed" to produce detailed
statements in a conventional music language
which is then played to produce sound. The
intermediate step need not necessarily be
visible to the user. One well

thought out system is described
in reference 2. It was actually
developed as a musicological
analysis tool and so has no
provisions for dynamics, timbre,
etc. It could, however, be
extended to include these
factors. One easy way to imple-
ment such a language is to write a
set of macros using a good
minicomputer macroassembler.

Conclusion

By now it should be apparent
that computer generated music is
a broad, multidisciplinary field.
People with a variety of talents
can make significant contributions,
even on a personal basis. In
particular, clever system designers
and language designers or
implementers have wide open
opportunities in this field. Finally,
imaginative musicians are needed
to realize the potential of the
technique.
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