

GRAPHICS OVERVIEW

All of the graphics abilities of the Commodore 64 come from the 6567
Video Interface Chip (also known as the VIC-II chip). This chip gives a
variety of graphics modes, including a 40 column by 25 line text display,
a 320 by 200 dot high resolution display, and SPRITES, small movable
objects which make writing games simple. And if this weren't enough,
many of the graphics modes can be mixed on the same screen. It is
possible, for example, to define the top half of the screen to be in high
resolution mode, while the bottom half is in text mode. And SPRITESwill
combine with anything! More on sprites later. First the other graphics
modes.

The VIC-II chip has the following graphics display modes:

A) CHARACTER DISPLAYMODES

1) Standard Character Mode
a) ROM characters
b) RAM programmable characters

2) Multi-Color Character Mode
a) ROM characters
b) RAM programmable characters

3) Extended Background Color Mode
a) ROM characters
b) RAM programmable characters

B) BIT MAP MODES

1) Standard Bit Map Mode
2) Multi-Color Bit Map Mode

C) SPRITES

1) Standard Sprites
2) Multi-Color Sprites

100 PROGRAMMING GRAPHICS

GRAPHICS LOCATIONS

Some general information first. There are 1000 possible locations on
the Commodore 64 screen. Normally, the screen starts at location 1024
($0400 in HEXadecimal notation) and goes to location 2023. Each of
these locations is 8 bits wide. This means that it can hold any integer
number from 0 to 255. Connected with screen memory is a group of
1000 locations called COLOR MEMORY or COLOR RAM. These start at

location 55296 ($D800 in HEX) and go up to 56295. Each of the color
RAM locations is 4 bits wide, which means that it can hold any integer
number from 0 to 15. Since there are 16 possible colors that the Com-
modore 64 can use, this works out well.

In addition, there are 256 different characters that can be displayed

at any time. For normal screen display, each of the 1000 locations in
screen memory contains a code number which tells the VIC-II chip which
character to display at that screen location.

The various graphics modes are selected by the 47 CONTROL regis-
ters in the VIC-II chip. Many of the graphics functions can be controlled
by POKEing the correct value into one of the registers. The VIC-II dhip is
located starting at 53248 ($DOOOin HEX)through 53294 ($D02E in HEX).

VIDEO BANK SELECTION

The VIC-II chip can access ("see") 16K of memory at a time. Since
there is 64K of memory in the Commodore 64, you want to be able to
have the VIC-II chip see all of it. There is a way. There are 4 possible
BANKS (or sections) of 16K of memory. All that is needed is some means
of controlling which 16K bank the VIC-II chip looks at. In that way, the
chip can "see" the entire 64K of memory. The BANKSELECT bits that
allow you access to all the different sections of memory are located in
the 6526 COMPLEX INTERFACEADAPTERCHIP #2 (CIA #2). The POKE
and PEEK BASIC statements (or their machine language versions) are
used to select a bank by controlling bits 0 and 1 of PORT A of CIA#2
(location 56576 (or $DDOOHEX». These 2 bits must be set to outputs by
setting bits 0 and 1 of location 56578 ($DD02.HEX) to change banks. The
following example shows this:

POKE 56578,PEEK(56578)OR 3 :REM MAKE SURE BITS 0 AND 1 ARE
SET TO OUTPUTS
POKE 56576,(PEEK(56576)AND 252)OR A:REM CHANGE BANKS

"A" should have one of the following values:

PROGRAMMING GRAPHICS 101

This 16K bank concept is part of everything that the VIC-II chip does.
You should always be aware of which bank the VIC-II chip is pointing

at, since this will affect where character data patterns come from,

where the screen is, where sprites come from, etc. When you turn on the

power of your Commodore 64, bits 0 and 1 of location 56576 are auto-
matically set to BANK 0 ($0000-$3FFF) for all display information.

.NOTE: The Commodore 64 character set is not available to the VIC-II chip in BANKS

1 and 3. (See character memory section.)

SCREEN MEMORY

The location of screen memory can be changed easily by a POKE to

control register 53272 ($DOI8 HEX). However, this register is also used

to control which character set is used, so be careful to avoid disturbing

that part of the control register. The UPPER 4 bits control the location of

screen memory. To move the screen, the following statement should be
used:

POKE53272,(PEEK(53272)AND15)ORA

102 PROGRAMMING GRAPHICS

VALUE BITS BANK STARTING
VIC-II CHIP RANGE

OF A LOCATION

0 00 3 49152 ($COOO-$FFFF)*
1 01 2 32768 ($8000-$BFFF)
2 10 1 16384 ($4000- $7FFF)*
3 11 0 0 ($0000-$3FFF) (DEFAULT VALUE)

Where" A" has one of the following values:

'Remember that the BANK ADDRESS of the VIC-II chip must be added in.

You must also tell the KERNAL'Sscreen editor where the screen is as follows: POKE

648, page (where page = address/256, e.g., 1024/256= 4, so POKE 648,4).

COLOR MEMORY

Color memory can NOTmove. It is always located at locations 55296
($D800) through 56295 ($DBE7). Screen memory (the 1000 locations
starting at 1024) and color memory are used differently in the different
graphics modes. A picture created in one mode will often look com-
pletely different when displayed in another graphics mode.

CHARACTER MEMORY

Exactly where the VIC-II gets it character information is important to
graphic programming. Normally, the chip gets the shapes of the char-
acters you want to be displayed from the CHARACTERGENERATOR
ROM. In this chip are stored the patterns which make up the various
letters, numbers, punctuation symbols, and the other things that you see

PROGRAMMING GRAPHICS 103

LOCATION*
A BITS

DECIMAL HEX

0 OOOOXXXX 0 $0000
16 0001 XXXX 1024 $0400 (DEFAULT)

32 0010XXXX 2048 $0800
48 0011XXXX 3072 $OCOO
64 0100XXXX 4096 $1000
80 0101XXXX 5120 $1400
96 0110XXXX 6144 $1800

112 0111XXXX 7168 $lCOO
128 1000XXXX 8192 $2000
144 1001XXXX 9216 $2400
160 1010XXXX 10240 $2800
176 1011XXXX 11264 $2COO
192 1100XXXX 12288 $3000
208 1101XXXX 13312 $3400
224 1110XXXX 14336 $3800
240 1111 XXXX 15360 $3COO.

on the keyboard. One of the features of the Commodore 64 is the ability
to use patterns located in RAM memory. These RAM patterns are
created by you, and that means that you can have an almost infinite set
of symbols for" games, business applications, etc.

A normal character set contains 256 characters in which each c.har-
acter is defined by 8 bytes of data. Since each character takes up 8
bytes this means that a full character set is 256*8=2K bytes of memory.
Since the VIC-II chip looks at 16K of memory at a time, there are 8
possible locations for a complete character set. Naturally, you are free
to use less than a full character set. However, it must still start at one of
the 8 possible starting locations.

The location of character memory is controlled by 3 bits of the VIC-II
control register located at 53272 ($DOI8 in HEX notation). Bits 3,2, and
1 control where the characters' set is located in 2K blocks. Bit 0 is ig-
nored. Remember that this is the same register that deterrt.ines where
screen memory is located so avoid disturbing the screen memory bits. To
change the location of character me{T1ory,the following BASIC state-
ment can be used:

POKE 53272,(PEEK(53272)AND240)OR A

Where A is one of the following values:

'Remember to add in the BANKaddress.

104 PROGRAMMING GRAPHICS

VALUEI

LOCATION OF CHARACTER MEMORY*
BITS

of A DECIMAL HEX

0 XXXXOOOX 0 $0000-$07FF
2 XXXXOOIX 2048 $0800-$OFFF

4 XXXXOI0X 4096 $1000-$17FF ROM IMAGE in BANK

o & 2 (default)
6 XXXXOIIX 6144 $1800-$1 FFF ROM IMAGE in BANK

0&2

8 XXXX 1 OOX 8192 $2000-$27FF
10 XXXXI0IX 10240 $2800-$2FFF
12 XXXXII0X 12288 $3000-$37FF
14 XXXXIIIX 14336 $3800-$3FFF

The ROM IMAGE in the above table refers to the character generator

ROM. It appears in place of RAM at the above locations in bank O. It

also appears in the corresponding RAM at locations 36864-40959
($9000-$9FFF) in bank 2. Since the VIC-II chip can only access 16K of

memory at a time, the ROM character patterns appear in the 16K block

of memory the VIC-II chip looks at. Therefore, the system was designed

to make the VIC-II chip think that the ROM characters are at 4096-8191
($1000-$1 FFF) when your data is in bank 0, and 36864-40959

($9000-$9FFF) when your data is in bank 2, even though the character

ROM is actually at location 53248-57343 ($DOOO-$DFFF). This imaging

only applies to character data as seen by the VIC-II chip. It can be used

for programs, other data, etc., just like any other RAM memory.

NOTE: If these ROM images get in the way of your own graphics, then set the BANK
SELECT BITS to one of the BANKS without the images (BANKS 1 or 3). The ROM

patterns won't be there.

The location and contents of the character set in ROM are as follows:

Sharp-eyed readers will have just noticed something. The locations
occupied by the character ROM are the same as the ones occupied by
the VIC-II chip control registers. This is possible because they don't oc-
cupy the same locations at the same time. When the VIC-II chip needs to

PROGRAMMINGGRAPHICS 105

ADDRESS VIC-II CONTENTS
BLOCK DECIMAL HEX IMAGE

0 53248 DOOO- D1FF 1000- 11FF Upper case characters
53760 D200- D3FF 1200-13FF Graphics characters

54272 D400- D5FF 1400-15FF Reversed upper case
characters

54784 D600- D7FF 1600- 17FF Reversed graphics
characters

1 55296 D800- D9FF 1800- 19FF Lower case characters

55808 DAOO- DBFF 1AOO- 1BFF Upper case & graphics
characters

56320 DCOO- DDFF 1COO- 1DFF Reversed lower case
characters

56832 DEOO-DFFF 1EOO- 1FFF Reversed upper case &
graphics characters

access character data the ROM is switched in. It becomes an image in
the 16K bank of memory that the VIC-II chip is looking at. Otherwise,
the area is occupied by the I/O control registers, and the character ROM
is only available to the VIC-II chip.

However, you may need to get to the character ROM if you are going
to use programmable characters and want to copy some of the char-
acter ROM for some of your character definitions. In this case you must
switch out the I/O register, switch in the character ROM, and do your
copying. When you're finished, you must switch the I/O registers back in
again. During the copying process (when I/O is switched out) no inter-
rupts can be allowed to take place. This is because the I/O registers are
needed to service the interrupts. If you forget and perform an interrupt,
really strange things happen. The keyboard should not be read during
the copying process. To turn off the keyboard and other normal inter-
rupts that occur with your Commodore 64, the following POKE should be
used:

POKE 56334,PEEK(56334)AND254 (TURNS INTERRUPTS OFF)

After you are finished getting characters from the character ROM,
and are ready to continue with your program, you must turn the
keyboard scan back on by the following POKE:

POKE 56334,PEEK(56334)ORI (TURNS INTERRUPTS ON)

The following POKE will switch out I/O and switch the CHARACTER
ROM in:

POKE l,PEEK(1)AND251

The character ROM is now in the locations from 53248-57343 ($DOOO-

$DFFF).
To switch I/O back into $DOOOfor normal operation use the following

POKE:

POKE l,PEEK(l)OR 4

106 PROGRAMMING GRAPHICS

STANDARD CHARACTER MODE

Standard character mode is the mode the Commodore 64 is in when

you first turn it on. It is the mode you will generally program in.
Characters can be taken from ROM or from RAM, but normally they

are taken from ROM. When you want special graphics characters for a
program, all you have to do is define the new character shapes in RAM,
and tell the VIC-II chip to get its character information from there in-
stead of the character ROM. This is covered in more detail in the next
section.

In order to display characters on the screen in color, the VIC-II chip
accesses the screen memory to determine the character code for that
location on the screen. At the same time, it accesses the color memory
to determine what color you want for the character displayed. The
character code is translated by the VIC-II into the starting address of the
8-byte block holding your character pattern. The 8-byte block is located
in character memory.

The translation isn't too complicated, but a number of items are com-
bined to generate the desired address. First the character code you use
to POKE screen memory is multiplied by 8. Next add the start of char-
acter memory (see CHARACTERMEMORYsection). Then the Bank Select
Bits are taken into account by adding in the base address (see VIDEO
BANK SELECTIONsection). Below is a simple formula to illustrate what
happens:

CHARACTER ADDRESS = SCREEN CODE*8+(CHARACTER
S ET* 2048) + (BAN K* 16384)

CHARACTER DEFINITIONS

Each character is formed in an 8 by 8 grid of dots, where each dot
may be either on or off. The Commodore 64 character images are
stored in the Character Generator ROM chip. The characters are stored
as a set of 8 bytes for each character, with each byte representing the

dot pattern of a row in the character, and each bit representing a dot.
A zero bit means that dot is off, and a one bit means the dot is on.

The character memory in ROM begins at location 53248 (when the I/O
is switched off). The first 8 bytes from location 53248 ($DOOO)to 53255
($D007) contain the pattern for the @ sign, which has a character code
value of zero in the screen memory. The next 8 bytes, from location

PROGRAMMINGGRAPHICS 107

53256 ($D008) to 53263 ($DOOF), contain the information for forming the

letter A.

Each complete character set takes up 2K (2048 bits) of memory, 8

bytes per character and 256 characters. Since there are two character

sets, one for upper case and graphics and the other with upper and

lower case, the character generator ROM takes up a total of 4K loca-

tions.

PROGRAMMABLE CHARACTERS

Since the characters are stored in ROM, it would seem that there is no

way to change them for customizing characters. However, the memory

location that tells the VIC-II chip where to find the characters is a pro-

grammable register which can be changed to point to many sections of

memory. By changing the character memory pointer to point to RAM,

the character set may be programmed for any need.

If you want your character set to be located in RAM, there are a few

VERY IMPORTANT things to take into account when you decide to actu-

ally program your own charadter sets. In addition, there are two other

important points you must know to create your own special characters:

1) Itisan allor nothing pr0gess. Generally, ifyou use your own char-

acter set by telling the Vlt-II chip to get the character information

from the area you have prepared in RAM, the standard Commo-

dore 64 characters are unavailable to you. To solve this, you must

copy any letters,numbers, or standard Commodore 64 graphics

you intend to use intoyour own character memory in RAM. You can

pick and choose, take only the ones you want, and don't even

have to keep them in order!

108 PROGRAMMING GRAPHICS

IMAGE BINARY PEEK
** 00011000 24
**** 00111100 60
** **

011 0011 0 102
****** 01111110 126
** **

011 0011 0 102
** ** 01100110 102
** **

011 0011 0 102

00000000 0

2) Your character set takes memory space away from your BASIC
program. Of course, with 38K available for a BASIC program,
most applications won't have problems.

WARNING: You must be careful to protect the character set from being overwritten

by your BASIC program, which also uses the RAM.

There are two locations in the Commodore 64 to start your character
set that should NOT be used with BASIC: location 0 and location
2048. The first should not be used because the system stores important
data on page O. The second can't be used because that is where your
BASIC program starts! However, there are 6 other starting positions for
your custom character set.

The best place to put your character set for use with BASIC while
experimenting is beginning at 12288 ($3000 in HEX). This is done by
POKEing the low 4 bits of location 53272 with 12. Trythe POKE now, like
this:

POKE 53272,(PEEK(53272)AND240)+ 12

Immediately, all the letters on the screen turn to garbage, This is
because there are no characters set up at location 12288 right now. . .
only random bytes. Set the Commodore 64 back to normal by hitting
the .:mlr~'111111key and "then the .~j:l-'1(oI~j:llkey.

Now let's begin creating graphics characters. To protect your char-
acter set from BASIC, you should reduce the amount of memory BASIC
thinks it has. The amount of memory in your computer stays the
same. . . it's just that you've told BASIC not to use some of it. Type:

PRINT FRE(O)-(SGN(FRE(O»<O)*65535

The number displayed is the amount of memory space left unused. Now

type the following:

POKE 52,48:POKE56,48:CLR

Now type:

PRINT FRE(O)-(SGN(FRE(O»<0)*65535

PROGRAMMINGGRAPHICS 109

See the change? BASIC now thinks it has less memory to work with. The
memory you just claimed from BASIC is where you are going to put your
character set, safe from actions of BASIC.

The next step is to put your characters into RAM. When you begin,
there is random data beginning at 12288 ($3000 HEX). You must put
character patterns in RAM (in the same style as the ones in ROM) for the
VIC-II chip to use.

The following program moves 64 characters from ROM to your char-
acter set RAM:

5 PRINTCHR$(142) :REMSWITCH TO
UPPER CASE
10 POKE52,48:POKE56,48:CLR :REM RESERVE MEMORY
FOR CHARACTERS
20 POKE56334, PEEK (56334) At.m254 :REt1 TURt.~OFF
KEYSCAN INTERRUPTTIMER
30 POKE1,PEEK(1)AND251 :REMSWITCH IN
CHARACTER
4121 FOR I=0T0511 :POKE I+ 12288., PEEK (1+53248) : t~E:":T

50 POKE1,PEEK(1)OR4 :REM SWITCH IN I/O
60 POKE56334,PEEK(56334)OR1 :REM RESTART
KEYSCAN INTERRUPT TIMER
70 Et~D

Now POKE location 53272 with (PEEK(53272)AND240)+ 12. Nothing
happens, right? Well, almost nothing. The Commodore 64 is now getting
it's character information from your RAM, instead of from ROM. But
since we copied the characters from ROM exactly, no difference can be
seen. . . . yet.

You can easily change the characters now. Clear the screen and type
an @ sign. Move the cursor down a couple of lines, then type:

FOR I = 12288 TO 12288+7:POKE I, 255 - PEEK(I): NEXT

You just created a reversed @ sign!

TIP: Reverse.d characters are just characters with their bit patterns in character memory
reversed.

Now move the cursor up to the program again and hit ...
again to re-reverse the character (bring it back to. normal). By looking at
the table of screen display codes, you can figure out where in RAMeach
character is. Just remember that each character takes eight memory
locations to store. Here's a few examples just to get you started:

110 PROGRAMMING GRAPHICS

Remember that we only took the first 64 characters. Something else

will have to be done if you want one of the other characters.

What if you wanted character number 154, a reversed Z? Well, you
could make it yourself, by reversing a Z, or you could copy the set of
reversed characters from the ROM, or just take the one. character you

want from ROM and replace one of the characters you have in RAM that

you don't need.
Suppose you decide that you won't need the> sign. Let's replace the

> sign with the reversed Z. Type this:

FOR 1=0 TO 7: POKE 12784 + I, 255-PEEK(I+12496): NEXT

Now type a > sign. It comes up as a reversed Z. No matter how

many times you type the>, it comes out as a reversed Z. (This change
is really an illusion. Though the> sign looks like a reversed Z, it still acts

like a >in a program. Try something that needs a > sign. It will still

work fine, only it will look strange.)

A quick review: You can now copy characters from ROM into RAM.
You can even pick and choose only the ones you want. There's only one

step left in programmable characters (the best step!) . . . making your
own characters.

Remember how characters are stored in ROM? Each character is

stored as a group of eight bytes. The bit patterns of the bytes directly
control the character. If you arrange 8 bytes, one on top of another,
and write out each byte as eight binary digits, it forms an eight by eight
matrix, looking like the characters. When a bit is a one, there is a dot at
that location. When a bit is a zero, there is a space at that location.

When creating your own characters, you set up the same kind of table
In memory. Type NEWand then type this program:

10 FOR I = 12448 TO 12455 : READ A: POKE I,A: NEXT

20 DATA 60, 66, 165, 129, 165, 153, 66, 60

PROGRAMMING GRAPHICS 111

CHARACTER DISPLAYCODE CURRENTSTARTINGLOCATION IN RAM

@ 0 12288
A 1 12296
! 33 12552

> 62 12784

Now type RUN. The program will replace the letter T with a smile face
character. Type a few 1's to see the face. Each of the numbers in the
DATA statement in line 20 is a row in the smile face character. The
matrix for the face looks like this:

1

7 6 5 4 2 1 o
o

2

3

4

5

6

7

Figure 3-1. Programmable Character Worksheet.

112 PROGRAMMING GRAPHICS

7 65432 1 0 BINARY DECIMAL

ROW 0 * * * * 001111 00 60
1 * * 01000010 66
2 * * * * 10100101 165
3 * * 10000001 129
4 * * * * 10100101 165
5 * * * * 10011001 153
6 * * 01000010 66

ROW 7 * * * * 001111:00 60

The Programmable Character Worksheet (Figure 3-1) will help you
design your own characters. There is an 8 by 8 matrix on the sheet, with
row numbers, and numbers at the top of each column. (If you view each
row as a binary word, the numbers are the value of that bit position.
Each is a power of 2. The leftmost bit is equal to 128 or 2 to the 7th
power, the next is equal to 64 or 2 to the 6th, and so on, until you reach
the rightmost bit (bit 0) which is equal to 1 or 2 to the 0 power.)

Place an X on the matrix at every location where you want a dot to be
in your character. When your character is ready you can create the
DATAstatement for your character.

Begin with the first row. Wherever you placed an X, take the number
at the top of the column (the power-of-2 number, as explained above)
and write it down. When you have the numbers for every column of the
first row, add them together. Write this number down, next to the row.
This is the number that you will put into the DATAstatement to draw this
row.

Do the same thing with all of the other rows (I -7). When you are

finished you should have 8 numbers between 0 and 255. If any of your
numbers are not within range, recheck your addition. The numbers must
be in this range to be correct! If you have less than 8 numbers, you
missed a row. It's OK if some are o. The 0 rows are just as important as
the other numbers.

Replace the numbers in the DATAstatement in line 20 with the num-
bers you just calculated, and RUN the program. Then type a T. Every
time you type it, you'll see your own character!

If you don't like the way the character turned out, just change the
numbers in the DATAstatement and re-RUN the program until you are

happy with your character.
That's all there is to it!

HINT: For best results, always make any vertical lines in your characters at least 2

dots (bits) wide. This helps prevent CHROMA noise (color distortion) on your char-

acters when they ore displayed on a TV screen.

PROGRAMMING GRAPHICS 113

Here is an example of a program using standard programmable
characters:

10 REM* EXAMPLE1 *
2121REM CREATING PROGRAMMABLE CHARACTERS
31 POKE56334.PEEK(56334)AND254:POKE1,PEEK(I)AND251:
REM TURN OFF KB AND 110
35 FORI=0T063:REM CHARACTER RANGE TO BE COPIED
FROt1 ROM
36 FORJ=0T07:REM COPY ALL 8 BYTES PER CHARACTER
37 POKEI2288+I~8+J,PEEK(53248+I*8+J);REM COpy A
B'r'TE
38 NEXTJ:NEXTI:REM GOTO NEXT BYTE OR CHARACTER
39 POKE1,PEEK(I)OR4:POKE56334,PEEK(56334)OR1;REM
TURN ON 1/0 AND KB
40 POKE532?2,(PEEK(53272)AND240)+12:REM SET CHAR
POINTER TO MEM. 12288
6121FORCHAR=60TOG3:REM PROGRAM CHARACTERS 6121THRU 63
8121FORBYTE=I21TO?;REM DO ALL 8 BYTES OF A CHARACTER
10121READ NUMBER:REM READ IN 1/8TH OF CHARACTER DATA
12121POKE 12288+ (S*-CHAR)+B'r'TE.. NUMBER: REM STORE THE
DATA I t.~ t1EMOR'T'
14121 NEXTBYTE:NEXTCHAR;REM ALSO COULD BE NEXT BYTE,
CHAR
15121 PRINTCHR$(147)TAB(255)CHR$(60);
155 PRINTCHR$(61)TAB(55)CHR$(62)CHR$(63)
160 REM LINE 150 PUTS THE NEWLY DEFINED CHARACTERS
Ot~ THE SCREEN
170 GETA$:REM WAIT FOR USER TO PRESS A KEY
18121 I FA$=" "THE~~GOTO171.::1: REM I F ~m KE'r'S ~.jERE PRESSED,

TR'T' AGAIN!
19121POKE53272,21:REM RETURN TO NORMAL CHARACTERS
21210 DATA4.G,?,5,7,?3,3:REM DATA FOR CHARACTER 6121
21121 DATA 32,96,224, 16121,224,224,192,192;REM DATA
FOR CHARACTER 61
22121 DATA?,7,7.31,31,95, 143,127:REM DATA FOR
CHARACTER 62
23121 DATA 224,224.224,248,248,248,24121,224:REM DATA
FOR CHARACTER 63
240 END

114 PROGRAMMING GRAPHICS

MULTI-COLOR MODE GRAPHICS

Standard high-resolution graphics give you control of very small dots
on the screen. Each dot in character memory can have 2 possible
values, 1 for on and 0 for off. When a dot is off, the color of the screen
is used in the space reserved for that dot. If the dot is on, the dot is
colored with the character color you have chosen for that screen posi-
tion. When you're using standard high-resolution graphics, all the dots
within each 8 X 8 character can either have background color or fore-
ground color. In some ways this limits the color resolution within that
space. For example, problems may occur when two different colored
lines cross.

Multi-color mode gives you a solution to this problem. Each dot in
multi-color mode can be one of 4 colors: screen color (background color
register #0), the color in background register #1, the color in back-
ground color register #2, or character color. The only sacrifice is in the
horizontal resolution, because each multi-color mode dot is twice as
wide as a high-resolution dot. This minimal loss of resolution is more
than compensated for by the extra abilities of multi-color mode.

MULTI-COLOR MODE BIT

To turn on multi-color character mode, set bit 4 of the VIC-II control

register at 53270 ($D016) to a 1 by using the following POKE:

POKE 53270,PEEK(53270)OR 16

To turn off multi-color character mode, set bit 4 of location 53270 to a

o by the following POKE:

POKE 53270,PEEK(53270)AND 239

Multi-color mode is set on or off for each space on the screen, so that
multi-color graphics can be mixed with high-resolution (hi-res) graphics.
This is controlled by bit 3 in color memory. Color memory begins at
location 55296 ($D800 in HEX). If the number in color memory is less

than 8 (0-7) the corresponding space on the video screen will be
standard hi-res, in the color (0-7) you've chosen. If the number located
in color memory is greater or equal to 8 (from 8 to 15), then that space
will be displayed in multi-color mode.

PROGRAMMINGGRAPHICS 115

By POKEing a number into color memory, you can change the color of
the character in that position on the screen. POKEing a number from 0 to
7 gives the normal character colors. POKEing a number between 8 and
15 puts the space into multi-color mode. In other words, turning BIT 3
ON in color memory, sets MULTI-COLORMODE. Turning BIT 3 OFF in
color memory, sets the normal, HIGH-RESOLUTIONmode.

Once multi-color mode is set in a space, the bits in the character
determine which colors are displayed for the dots. For example, here is
a picture of the letter A, and its bit pattern:

In normal or high-resolution mode, the screen color is displayed
everywhere there is a 0 bit, and the character color is displayed where
the bit is a 1. Multi-color mode uses the bits in pairs, like so:

IMAGE
AABB

CCCC
AABBAABB

AACCCCBB
AABBAABB

AABBAABB
AABBAABB

BIT PATTERN

00 01 10 00
00 11 11 00
01 10 01 10
01 11 11 10
01 1001 10
01 10 01 10
01 10 01 10
00 00 00 00

In the image area above, the spaces marked AA are drawn in the
background #1 color, the spaces marked BB use the background #2
color, and the spaces marked CC use the character color. The bit pairs
determine this, according to the following chart;

116 PROGRAMMING GRAPHICS

IMAGE BIT PATTERN
** 00011 000

***** 00111100
** ** 0110011 0
****** 01111110
** ** 01100110
** ** 011 00110
** ** 011 0011 0

00000000

NOTE: The sprite foreground color is a 10. The character foreground color is a 11.

Type NEW and then type this demonstration program:

lee POKE53281,I:REM SET BACKGROUND COLOR i0 TO
~IHITE
110 POKE53282,3:REM SET BACKGROUND COLOR il TO CYAN
1213 POKE53283,8:REM SET BACKGROUND COLOR i2 TO
ORANGE
1313 POKE5327ehPEEK (53270) OR16 : REt1 TURr~ Ot~
t'1ULTI COLOR t10DE
1413 C=13*4096+8*256:REM SET C TO POINT TO COLOR
t1Et10RY
1513 PRItHCHR$(147) "AAAAAAAAAA"

.1613 FORL-=13T09
179 POKEC+L,8:REM USE MULTI BLACK
1813 t'~E;:n

The screen color is white, the character color is black, one color regis-
ter is cyan (greenish blue), the other is orange.

You're not really putting color codes in the :space for character color,
you're actually using references to the registers associated with those
colors. This conserves memory, since 2 bits can be used to pick 16 colors
(background) or 8 colors (character). This also 'makes some neat tricks
possible. Simply changing one of the indirect registers will change every
dot drawn in that color. Therefore everything drawn in the screen and

PROGRAMMINGGRAPHICS 117

BIT PAIR COLOR REGISTER LOCATION

00 Background #0 color (screen color) 53281 ($D021)
01 Background #1 color 53282 ($D022)
10 Background #2 color 53283 ($D023)
11 Color specified by the color RAM

lower 3 bits in color memory

background colors can be changed on the whole screen instantly. Here
is an example of changing background color register #1:

10121 POKE53270.PEEK(5327e)OR16:REM TURN ON
~IULTI COLOR t10DE
110 PRINTCHR$(147)CHR$(18),

Aa
12121PR I ~n" ;:t~"; : REM TYPE C= ~\ 1 FOR ORANGE OR
MULTICOLOR BLACK BACKGROUND
130 FORL=1T022: PRINTCHR$(65) ,: NEXT
135 FORT=1T0500:NEXT

140 PRI ~n" =f.7~1;';~ TYPE CTRL .!\ 7 FOR BLUE COLOR
CHA~jGE
145 FORT=1T0500:NEXT

~a
150 PRINT"8HIT A KEY"
1610 GETI'=!$:I FA$=" "THEN 160
170 X=INT(RND(1)~16)
18121 POKE 53282.X
19121GOTO 160

By using the [I key and the COLOR keys the characters can be
changed to any color, including multi-color characters. For example,
type this command:

POKE 53270,PEEK(53270)OR 16:PRINT " II ";: REM LT.RED/

MULTI-COLORRED t ~

~
The word READY and anything else you type will be displayed in

multi-color mode. Another color control can set you back to regular text.

118 PROGRAMMING GRAPHICS

Here is an example of a program using multi-color programmable
characters:

10 REM ~ EXAMPLE 2'~

2(1 REt1 CF.:EAT II.m t1ULT I COLOR PROGRAt1t1ABLE CHARACTERS
31 POKE56334,PEEK(56334)AND254:POKE1,PEEKC1)AND251
35 FOP I =OT063 :REt1 CHARACTER F.:ANGETO I:E COP IED
FRor1 F.:or1

36 FOR,J=0TCi?: REt1 COP'r' ALL 8 B'T'TES PEF.:CHAF.:ACTER
37 POKE 1228:::+U:::+,J.'PEEK(5:;:248+I~8+J): REt1 COP',.'A
B'T'TE

38 NEXTJ,I:REM GOTO NEXT BYTE OR CHARACTER

:39 POKE 1 , PEEK (1 ::00F.:4 : POKE56334, PEEK (56:;;:34) OF.:1 : R:Et1
TURN ON I/O AND KB
4C1 POKE5::'=:272.. (PEEK (5:;;:272) AHD24E:1) + 12 : REM SET CHAF.:

POINTER TO MEM. 12288
50 POI<E53270., PEEJ<(5327121) OF.:16
51 POKE532:::! 1 .' (I : REt1 SET BACKGROUI.m
52 POKE53282,2:REM SET BACKGROUND
53 POKE53283,7:REM SET BACKGROUND
\'ELLm..1
6121FORCHI"!R=6(1T06:;:: R:Et'1 PROGRAt'1 CHARACTEF.:S 60 THRU 63
:30 FORB'T'TE=(IT07: F.:Et1 DO ALL 8 1;:'T'TES OF A CHARf'iCTEF.:
:l00 F::EADHUt1BEF.::PEt'1 REi"1D 1 ':::TH OF CHARACTEF.: DATA
120 POKEI2288+(8*CHAR)+BYTE,NUMBER:REM STORE THE
DATI"! I~1 t'IEt'IOR''''

140 NEXTBYTE,CHAR

15121 ~rDIm
PRINT"~"TAB(255)CHR$(60)CHR$(61)TAB(55)CHR$(62)CHR$(63)
160 REt'l L I t.jE 150 PUTS THE l.jEJ,1L'T'DEFI HED CHARACTEF.:S
ON THE SCREEI'-.I
1 ;'[1 GET I,,!:$::PEr1 J,1f'iI T FOF.: USEF.: TO PF.:ESS A I<E'T'
1:3121 I FfU:=" "THEI..j 1 7(1 : REt'1 IF 1.10 KE',.'S t.JEF.:E PRESSED.,
TR'T' AOA Hj
19121 POKE53272'., 21: POI<E5:;;:27121.. PEEI«53271)AI.jIf239: F.:Et1
RETIJRN TO NORMAL CHARACTERS
200 DATAI29,37,21,29,93.85,85,85'REM DATA FOR
CHARACTER 6121
210 DRTA66,72,84,116,117,85,85,85:REM DATA FOR
CHAF.:~1CTEF.' 61
220 DATA87,87,85,21,8,S,40,O:REM DATA FOR
CHI=IF::AC"':::R 6;<:
238 DR-' fQ 13, 213.. 85.. :::4., 32.. 3Z~., 40.. 0 : F.:Et'1 DATA FOR
CHf~F.:ACTEF.: 6::"
24~:1 EI.m

COLOR #0 TO BLACK
COLOR #1 TO F.:ED

COLOR #2 TO

PROGRAMMINGGRAPHICS 119

EXTENDED BACKGROUND COLOR MODE

Extended background color mode gives you control over the back-
ground color of each individual character, as well as over the fore-
ground color. For example, in this mode you could display a blue char-
acter with a yellow background on a white screen.

There are 4 registers available for extended background color mode.
Each of the registers can be set to any of the 16 colors.

Color memory is used to hold the foreground color in extended back-
ground mode. It is used the same as in standard character mode.

Extended character mode places a limit on the number of different
characters you can display, however. When extended color mode is on,
only the first 64 characters in the character ROM (or the first 64 char-
acters in your programmable character set) can be used. This is be-
cause two of the bits of the character code are used to select the back-

ground color. It might work something like this:
The character code (the number you would POKE.to the. screen) of the

letter "A" is a 1. When extended color mode is on, if you POKEd a 1 to
the screen, an "A" would appear. If you POKEd a 65 to the screen
normally, you would expect the character with character code (CHR$)
129 to appear, which is a reversed "A." This does NOT happen in ex-
tended color mode. Instead you get the same unreversed "A" as before,
but on a different background color. The following chart gives the
codes:

Extended color mode is turned ON by setting bit 6 of the VIC-II regis-
ter to a .1at location 53265 ($D011 in HEX). The following POKE does it:

POKE 53265, PEEK(53265)OR 64

120 PROGRAMMING GRAPHICS

CHARACTERCODE BACKGROUND COLOR REGISTER

RANGE BIT 7 BIT 6 NUMBER ADDRESS

0-63 0 0 0 53281 ($D021)
64-127 0 1 1 53282 ($D022)
128-191 1 0 2 53283 ($D023)
192-255 1 1 3 53284 ($D024)

Extended color mode is turned OFF by setting bit 6 of the VIC-II regis-
ter to a 0 at location 53265 ($D011). The following statement will do this:

POKE 53265, PEEK(53265)AND 191

BIT MAPPED GRAPHICS

When writing games, plotting charts for business applications, or
other types of programs, sooner or later you get to the point where you
want high-resolution displays.

The Commodore 64 has been designed to do just that: high resolution
is available through bit mapping of the screen. Bit mapping is the
method in which each possible dot (pixel) of resolution on the screen is
assigned its own bit (location) in memory. If that memory bit is a one,
the dot it is assigned to is on. If the bit is set to zero, the dot is off.

High-resolution graphic design has a couple of drawbacks, which is

why it is not used all the time. First of all, it takes lots of memory to bit
map the entire screen. This is because every pixel must have a memory
bit to control it. You are going to need one bit of memory for each pixel
(or one byte for 8 pixels). Since each character is 8 by 8, and there are
40 lines with 25 characters in each line, the resolution is 320 pixels (dots)
by 200 pixels for the whole screen. That gives you 64000 separate dots,
each of which requires a bit in memory. In other words, 8000 bytes of
memory are needed to map the whole screen.

Generally, high-resolution operations are made of many short, sim-
ple, repetitive routines. Unfortunately, this kind of thing is usually rather
slow if you are trying to write high-resolution routines in BASIC. How-
ever, short, simple, repetitive routines are exactly what machine lan-
guage does best. The solution is to either write your programs entirely in
machine language, or call machine language, high-resolution sub-
routines from your BASIC program using the SYS command from BASIC.
That way you get both the ease of writing in BASIC, and the speed of
machine language for graphics. The VSP cartridge is also available to
add high-resolution commands to COMMODORE 64 BASIC.

All of the examples given in this section will be in BASICto make them
clear. Now to the technical details.

BITMAPPING is one of the most popular graphics techniques in the
computer world. It is used to create highly detailed pictures. Basically,
when the Commodore 64 goes into bit map mode, it directly displays an

PROGRAMMING GRAPHICS 121

8K section of memory on the TV screen. When in bit map mode, you can
directly control whether an individual dot on the screen is on or off.

There are two types of bit mapping available on the Commodore 64.
They are:

1) Standard (high-resolution) bit mapped mode (320-dot by 200-dot
resolution)

2) Multi-color bit mapped mode (160-dot by 200-dot resolution)

Each is very similar to the character type it is named for: standard has
greater resolution, but fewer color selections. On the other hand, multi-
color bit mapping trades horizontal resolution for a greater number of
colors in an 8-dot by a-dot square.

STANDARD HIGH-RESOLUTION BIT MAP MODE

Standard bit map mode gives you a 320 horizontal dot by 200 vertical
dot resolution, with a choice of 2 colors in each 8-dot by 8-dot section.
Bit map mode is selected (turned ON) by setting bit 5 of the VIC-II
control register to a 1 at location 53265 ($DOll in HEX). The following
POKE will do this:

POKE 53265,PEEK(53265)OR 32

Bit map mode is turned OFF by setting bit 5 of the VIC-II control
register to 0 at location 53265 ($D011), like this:

POKE 53265,PEEK(53265)AND 223

Before we get into the details of the bit map mode, there is one more
issue to tackle, and that is where to locate the bit map area.

HOW IT WORKS

If you remember the PROGRAMMABLECHARACTERSsection you will
recall that you were able to set the bit pattern of a character stored in

RAMto almost anything you wanted. If at the same time you change the
character that is displayed on the screen, you would be able to change
a single dot, and watch it happen. This is the basis of bit-mapping. The

122 PROGRAMMING GRAPHICS

entire screen is filled with programmable characters, and you make
your changes directly into the memory that the programmable char-
acters get their patterns from.

Each of the locations in screen memory that were used to control what
character was displayed, are now used for color information. For
example, instead of POKEing a 1 in location 1024 to make an "A" ap-
pear in the top left hand corner of the screen, location 1024 now con-
trols the colors of the bits in that top left space.

Colors of squares in bit map mode do not come from color memory,
as they do in the character modes. Instead, colors are taken from
screen memory. The upper 4 bits of screen memory become the color of
any bit that is set to 1 in the 8 by 8 area controlled by that screen
memory location. The lower 4 bits become the color of any bit that is set
to a O.

EXAMPLE:Type the following:

5 BASE=2~4096:POKE53272,PEEK(53272)OR8:REM PUT BIT
MAP AT 8192
10 POKE53265,PEEK(53265)OR32:REM ENTER BIT MAP MODE

Now RUN the program.
Garbage appears on the screen, right? Just like the normal screen

mode, you have to clear the HIGH-RESOLUTION(HI-RES) screen before
you use it. Unfortunately, printing a CLRwon't work in this case. Instead
you have to clear out the section of memory that you're using for your
programmable characters. Hit the .:UIlr~"IIIJ:1and .:I~"IIII:I:IIkeys, then
add the following lines to your program to clear the HI-RES screen:

20 FORI=BASETOBASE+7999:POKEI,0:NEXT:REM CLEAR BIT
MAP
30 FORI=1024T02023:POKEI,3:NEXT:REM SET COLOR TO
C'T'At.~ Arm BLACK

Now RUN the program again. You should see the screen clearing, then
the greenish blue color, cyan, should cover the whole screen. What we
want to do now is to turn the dots on and off on the HI-RES screen.

PROGRAMMING GRAPHICS 123

To SET a dot (turn a dot ON) or UNSETa dot (turn a dot OFF) you must
know how to find the correct bit in the character memory that you have
to set to a 1. In other words, you have to find the character you need to
change, the row of the character, and which bit of the row that you
have to change. You need a formula to calculate this.

We will use X and Y to stand for the horizontal and vertical positions
of a dot. The dot where x=o and y=o is at the upper-left of the dis-
play. Dots to the right have higher X values, and the dots toward the
bottom have higher Y values. The best way to use bit mapping is to
arrange the bit map display something like this:

O__n___n_n_n___u_nn_n__nn___n_n_n__ X 000000_00__00_00_0000_0000_00_00_00_00___00 319

y

199 _nOnn_nnn___ __nn_n___nn_nn_n_nn___nn_n_n__nn nnn_nnnnnn_n___

Each dot will have an X and a Y coordinate. With this format it is easy
to control any dot on the screen.

124 PROGRAMMING GRAPHICS

However, what you actually have is something like this:

w ~

Zo
=;3
!l.0
OCr!1-- ~

BYTE 0

BYTE 1
BYTE 2.

BYTE 3
BYTE 4

BYTE 5_

BYTE 6
BYTE7

BYTE 8

BYTE 9

BYTE 10

BYTE 11
BYTE 12

BYTE 13

BYTE 14

BYTE 15

BYTE 16 BYTE 24BYTE 312

BYTE313
BYTE314
BYTE315
BYTE316
BYTE317
BYTE318
BYTE319

BYTE 320 BYTE 328 BYTE 336- BYTE 344BYTE 632

BYTE 321 BYTE 329 BYTE 633
BYTE 322 BYTE 330 BYTE 634
BYTE 323 BYTE 331 BYTE 635

BYTE 324 BYTE 332 BYTE 636

BYTE 325 BYTE 333 BYTE 637
BYTE 326 BYTE 334 BYTE 638

BYTE 327 BYTE 335 BYTE 639

°3
ZoOCr!
u~
w
(/)

The programmable characters which make up the bit map are ar-
ranged in 25 rows of 40 columns each. While this is a good method of
organization for text, it makes bit mapping somewhat difficult. (There is
a good reason for this method, See the section on MIXED MODES.)

The following formula will make it easier to control a dot on the bit
map screen:

The- start of the display memory area is known as the BASE. The row
number (from 0 to 24) of your dot is:

ROW = INT(Y/8) (There are 320 bytes per line.)

The character position on that line (from 0 to 39) is:

CHAR = INT(x/8) (There are 8 bytes per character.)

The line of that character position (from 0 to 7) is:

LINE = Y AND 7

PROGRAMMING GRAPHICS 125

The bit of that byte is:

BIT = 7-(X AND 7)

Now we put these formulas together. The byte in which character
memory dot (X,Y) is located is calculated by:

BYTE = BASE+ ROW*320+ CHAR*8+ LINE

To turn on any bit on the grid with coordinates (X,V), use this line:

POKE BYTE, P.EEK(BYTE) OR 2jBIT

Let's add these calculations to the program. In the following example,
the COMMODORE 64 will plot a sine curve:

5121 FOR:X:=0T0319STEP. 5: REr1 WAVE WILL FILL THE SCREE~I
60 Y=INTC9121+80:f.SINCX/1121»
7(1 CH= I tH C;";/8::-
8121 RO=INTC'T'/8::-
85 UI='r'AND7
90 B'T'=BASE +RO*32121+8*CH+L~1
1121121BI=7-C:X:AND7)
11121 POKEB'r'" PEEK CB'r' ::0OR 0:2 t:E: I ::-
12121 t'IE:":n~
125 POKE1024..16
13121 GOT0130

The calculation in line 60 will change the values for the sine function
from a range of + 1 to -1 to a range of 10 to 170. Lines 70 to 100
calculate the character, row, byte, and bit being affected, using the
formulae as shown above. Line 125 signals the program is finished by
changing the color of the top left corner of the screen. Line 130 freezes
the program by putting it into an infinite loop. When you have finished
looking at the display, just hold down .:m/'~"tI'I:Iand hit .'1:1.'11I1'1:11.

126 PROGRAMMING GRAPHICS

As a further example, you can modify the sine curve program to dis-
playa semicircle. Here are the lines to type to make the changes:

50 FORX=0T0160:REM DO HALF THE SCREEN
55 'T' 1 '" 1 iZII21+SC!F: (161?!,jo::x:-:;<::t.;:.::)

56 Y2=100-SQR(160:t.X-X*X)
60 FORY=Y1TOY2STEPY1-Y2
7121 CH= nn (:x:/:::)
80 RO=U-ITCT'/8)
85 .U'I='T'AND7

90 BY=BASE+RO*320+S:t.CH+LN
10tC1 E:I=7-C<:At'1Dn

1 H3 POKEB'T'., PEEK (B'T') OR (2 'T'BI)
114 ~IEXT

This will create a semicircle in the HI-RES area of the screen.

WARNING: BASIC variables can overlay your high-resolutionscreen. If you need

more memory spaceyou must move thebottomof BASIC above the high-resolution

screen area. Or, you must move your high-resolutionscreen area. Thisproblem will

NOT occur in machine language. ItONLY happens when you're writingprograms in
BASIC.

MULTI-COLORBIT MAP MODE

Like multi-color mode characters, multi-color bit map mode allows you
to display up to four different colors in each 8 by 8 section of bit map.
And as in multi-character mode, there is a sacrifice of horizontal resolu-
tion (from 320 dots to 160 dots).

Multi-color bit map mode uses an 8K section of memory for the bit
map. You select your colors for multi-color bit map mode from (1) the
background color register 0, (the screen background color), (2) the video
matrix (the upper 4 bits give one possible color, the lower 4 bits an-
other), and (3) color memory.

Multi-color bit mapped mode is turned ON by setting bit 5 of 53265
($D011) and bit 4 at location 53270 ($D016) to a 1. The following POKE
does this:

POKE 53265,PEEK(53625)OR 32: POKE 53270,PEEK(53270)OR 16

PROGRAMMING GRAPHICS 127

Multi-color bit mapped mode is turned OFF by setting bit 5 of 53265
($0011) and bit 4 at location 53270 ($0016) to a O. The following POKE
does this:

POKE 53265,PEEK(53265)AND 223: POKE 53270,PEEK(53270)AND 239

As in standard (HI-RES) bit mapped mode, there is a one to one cor-
respondence between the 8K section of memory being used for the dis-
play, and what is shown on the screen. However, the horizontal dots are
two bits wide. Each 2 bits in the display memory area form a dot, which
can have one of 4 colors.

BITS
00
01
10
11

COLOR INFORMATION COMES FROM

Background color #0 (screen color)
Upper 4 bits of screen memory
lower 4 bits of screen memory
Color nybble (nybble = 1/2 byte = 4 bits)

SMOOTH SCROLLING

The VIC-II chip supports smooth scrolling in both the horizontal and
vertical directions. Smooth scrolling is a one pixel movement of the
entire screen in one direction. It can move either up, or down, or left, or
right. It is used to move new information smoothly onto the screen, while
smoothly removirlg characters from the other side.

While the VIC-II chip does much of the task for you, the actual scroll-
ing must be done by a machine language program. The VIC-II chip
features the ability to place the video screen in any of 8 horizontal posi-
tions, and 8 vertical positions. Positioning is controlled by the VIC-II
scrolling registers. The VIC-II chip also has a 38 column mode, and a 24

row mode. the smaller screen sizes are used to give you a place for your
new data to scroll on from.

The following are the steps for SMOOTH SCROLLING:

128 PROGRAMMINGGRAPHICS

1) Shrink the screen (the border will expand).

2) Set the scrolling register to maximum (or minimum value depend-
ing upon the direction of your scroll).

3) Place the new data on the proper (covered) portion of the screen.
4) Increment (or decrement) the scrolling register until it reaches the

maximum (or minimum) value.

5) At this point, use your machine language routine to shift the entire
screen one entire character in the direction of the scroll.

6) Go back to step 2.

To go into 38 column mode, bit 3 of location 53270 ($D016) must be
set to a O. The following POKE does this:

POKE 53270,PEEK(53270)AND 247

To return to 40 column mode, set bit 3 of location 53270 ($D016) to a
1. The following POKE does this:

POKE 53270,PEEK(53270)OR 8

To go into 24 row mode, bit 3 of location 53265 ($D011) must be set to
a O. The following POKE will do this:

POKE 53265,PEEK(53265)AND 247

To return to 25 row mode, set bit 3 of location 53265 ($DOll) to a 1.
The following POKE does this:

POKE 53265,PEEK(53265)OR 8

Whe, scrolling in the X direction, it is necessary to place "the VIC-II
chip into 38 column mode. This gives new data a place to scroll from.
When scrolling LEFT,the new data should be placed on the right. When
scrolling RIGHT the new data should be placed on the left. Please note
that there are still 40 columns to screen memory, but only 38 are visible.

When scrolling in the Ydirection, it is necessary to place the VIC-II chip
into 24 row mode. When scrolling UP, place the new data in the LAST
row. When scrolling DOWN, place the new data on the FIRSTrow. Un-
like X scrolling, where there are covered areas on each side of the

screen, there is only one covered area in Y scrolling. When the Y scroll-

PROGRAMMINGGRAPHICS 129

ing register is set to 0, the first line is covered, ready for new data.
When the Y scrolling register is set to 7 the last row is covered.

For scrolling in the X direction, the scroll register is located in bits 2 to
o of the VIC-II control register at location 53270 ($DOI6 in HEX). As
always, it is important to affect only those bits. The following POKEdoes
this:

POKE 53270, (PEEK(53270)AND 248)+X

where X is the X position of the screen from 0 to 7.
For scrolling in the Y direction, the scroll register is located in bits 2 to

o of the VIC-II control register at location 53265 ($DOII in HEX). As
always, it is important to affect only those bits. The following POKEdoes
this:

POKE 53265, (PEEK(53265)AND 248)+Y

where Y is the Y position of the screen from 0 to 7.
To scroll text onto the screen from the bottom, you would step the

low-order 3 bits of location 53265 from 0-7, put more data on the
covered line at the bottom of the screen, and then repeat the process.
To scroll characters onto the screen from left to right, you would step the
low-order 3 bits of location 53270 from 0 to 7, print or POKE another
column of new data into column 0 of the screen, then repeat the pro-
cess.

If you step the scroll bits by -I, your text will move in the opposite
direction.

EXAMPLE:Text scrolling onto the bottom of the screen:

10 POKE53265,PEEK(53265)AND247
INTO 24 ROW MODE
2121PRINTCHR$(147)
CLEAR THE SCREEN
30 FORX=lT024:PRINTCHR$(17); :NEXT
THE CURSOR TO THE BOTTOM
40 POKE53265,(PEEK(53265)AND248)+7:PRINT
POSITION FOR 1ST SCROLL
5121 PRItHII HELLOII;
6121FORP=6T00STEP-1
70 POKE53265,(PEEK(53265>AND24S)+P
8121FORX=lT050:NEXT :REM
DELAo,.' LOOP

910 t~E:>o:T:GOT041O

:REM GO

:REM

:REM MOVE

:REr1

130 PROGRAMMING GRAPHICS

SPRITES

A SPRITE is a special type of user definable character which can be

displayed anywhere on the screen. Sprites are maintained directly by
the VIC-II chip. And all you have to do is tell a sprite "what to look like,"
"what color to be," and "where to appear." The V/C-II chip will do the
rest! Sprites can be any of the 16 colors available.

Sprites can be used with ANY of the other graphics modes, bit
":lapped, character, multi-color, etc., and they'll keep their shape in all
of them. The sprite carries its own color definition, its own mode (HI-RES
or multi-colored), and its own shape.

Up to 8 sprites at a time can be maintained by the VIC-II chip auto-
matically. More sprites can be displayed using RASTER INTERRUPT
techniques.

The features of SPRITESinclude:

1) 24 horizontal dot by 21 vertical dot size.
2) Individual color control for each sprite.
3) Sprite multi-color mode.
4) Magnification (2X) in horizontal, vertical, or both directions.
5) Selectable sprite to background priority.
6) Fixed sprite to sprite priorities.
7) Sprite to sprite collision detection.
8) Sprite to background collision detection.

These special sprite abilities make it simple to program many arcade
style games. Because the sprites are maintained by hardware, it is even
possible to write a good quality game in BASIC!

Th(r.3 are 8 sprites supported directly by the VIC-II chip. They are
numbered from 0 to 7. Each of the sprites has it own definition location,
position registers and color register, and has its own bits for enable and
collision detection.

DEFINING A SPRITE

Sprites are defined like programmable characters are defined. How-
ever, since the size of the sprite is larger, more bytes are needed. A
sprite is 24 by 21 dots, or 504 dots. This works out to 63 bytes (504/8

PROGRAMMINGGRAPHICS 131

-Co)

..,
""
0
0

Z "'II0 10.
0 c

iiJ..,
Co)J:n .
to.)en .
VI"U
...
:;:
CD
C
CD
:!)

:;:
ir
D:J

0-n

COLUMN 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23NUMBER

BIT 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BITDATA
VALUES 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1
(ON .dxVAL)

ROW0

ROW1

ROW2

ROW3

ROW4

ROW5

ROW6

ROW7

ROW8

ROW9

ROW10

ROW11

ROW12

ROW13

ROW14

ROW15

ROW16

ROW17

ROW18
ROW19

ROW20

bits) needed to define a sprite. The 63 bytes are arranged in 21 rows of
3 bytes each. A sprite definition looks like this:

BYTE0
BYTE3
BYTE6

BYTE1
BYTE4
BYTE7

BYTE2
BYTE5
BYTE8

BYTE 60 BYTE 61 BYTE 62

Another way to view how a sprite is created is to take a look at the

sprite definition block on the bit level. It would look something like Figure
3-2.

In a standard (HI~RES)sprite, each bit set to 1 is displayed in that
sprite's foreground color. Each bit set to 0 is transparent and will display
whatever data is behind it. This is similar to a standard character.

Multi-color sprites are similar to multi-color characters. Horizontal

resolution is traded for extra color resolution. The resolution of the sprite
becomes 12 horizontal dots by 21 vertical dots. Each dot in the sprite
becomes twice as wide, but the number of colors displayable in the
sprite is increased to 4.

SPRITE POINTERS

Even though each sprite takes only 63 bytes to define, one more byte
is needed as a place holder at the end of each sprite. Each sprite, then,
takes up 64 bytes. This makes it easy to calculate where in memory your
sprite definition is, since 64 bytes is an even number and in binary it's an
even power.

EC'ch of the 8 sprites has a byte associated with it called the SPRITE
POINTER.The sprite pointers control where each sprite definition is lo-
cated in memory. These 8 bytes are always located as the last 8 bytes
of the 1K chunk of screen memory. Normally, on the Commodore 64,
this means they begin at location 2040 ($07F8 in HEX). However, if you
move the screen, the location of your sprite pointers will also move.

Each sprite pointer can hold a number from 0 to 255. This number
points to the definition for that sprite. Since each sprite definition takes
64 bytes, that means that the pointer can "see" anywhere in the 16K
block of memory that the VIC-II chip can access (since 256*64= 16K).

PROGRAMMING GRAPHICS 133

If sprite pointer #0, at location 2040, contains the number 14, for
example, this means that sprite 0 will be displayed using the 64 bytes
beginning at location 14*64 = 896 which is in the cassette buffer. The
following formula makes this clear:

LOCATION = (BANK * 16384) + (SPRITEPOINTER VALUE* 64)

Where BANK is the 16K segment of memory that the VIC-II chip is look-
ing at and is fr~m 0 to 3.

The above formula gives the start of the 64 bytes of the sprite
definition block.

When the VIC-II chip is looking at BANK0 or BANK 2, there is a ROM
IMAGE of the character set present in certain locations, as mentioned
before. Sprite definitions can NOT be placed there. If for some reason
you need more than 128 different sprite definitions, you should use one
of the banks without the ROM IMAGE, 1 or 3.

TURNING SPRITES ON

The VIC-II control register at location 53269 ($D015 in HEX) is known

as the SPRITE ENABLE register. Each of the sprites has a bit in this
register which controls whether that sprite is ON or OFF. The register
looks like this:

$D015 7 6 5 4 3 2 1 0

To turn on sprite 1, for example, it is necessary to turn that bit to a I.
The following POKE does this:

POKE 53269,PEEK(53269)OR 2

A more general statement would be the following:

POKE 53269,PEEK(53269}OR (2tSN)

where SN is the sprite number, from 0 to 7.

NOTE: A sprite must be turned ON before it con be seen.

134 'PROGRAMMING GRAPHICS

TURNING SPRITES OFF

A sprite is turned off by setting its bit in the VIC-lIcontrol register at
53269 ($0015 in HEX) to a O. The following POKE will do this:

POKE 53269, PEEK(53269)AND (255-2jSN)

where SN is the sprite number from 0 to 7.

COLORS

A sprite can be any of the 16 colors generated by the VIC-II chip.
Each of the sprites has its own sprite color register. These are the mem-
ory locations of the color registers:

53287
53288

53289
53290

53291
53292

53293
53294

ADDRESS

($0027)

($0028)

($0029)

($002A)

($0026)

($002C)

($0020)

($002E)

DESCRIPTION

SPRITE 0 COLOR REGISTER

SPRITE 1 COLOR REGISTER

SPRITE 2 COLOR REGISTER
SPRITE 3 COLOR REGISTER

SPRITE 4 COLOR REGISTER

SPRITE 5 COLOR REGISTER

SPRITE 6 COLOR REGISTER

SPRITE 7 COLOR REGISTER

All dots in the sprite will be displayed in the color contained in the
sprite color register. The rest of the sprite will be transparent, and will
show whatever is behind the sprite.

MULTI-COLOR MODE

Multi-color mode allows you to have up to 4 different colors in each
sprite. However, just like other multi-color modes, horizontal resolution is
cut in half. In other words, when you're working with sprite multi-color
mode (like in multi-color character mode), instead of 24 dots across the
sprite, there are 12 pairs of dots. Each pair of dots is called a BIT PAIR.
Think of each bit pair (pair of dots) as a single dot in your overall sprite
when it comes to choosing colors for the dots in your sprites. The table

PROGRAMMING GRAPHICS 135

below gives you the bit pair values needed to turn ON each of the four
colors you've chosen for your sprite:

BIT PAIR DESCRIPTION

00 TRANSPARENT,SCREEN COLOR
01 SPRITE MULTI-COLORREGISTER#0 (53285) ($D025)
10 SPRITE COLOR REGISTER

11 SPRITEMULTI-COLORREGISTER#1 (53286) ($D026)

NOTE: The sprite foreground color is a 10. The character foreground is a 11.

SEnlNG A SPRITE TO MULTI-COLORMODE

To switch a sprite into multi-color mode you must turn ON the VIC-II
control register at location 53276 ($D01C). The following POKEdoes this:

POKE 53276,PEEK(53276) OR (2tSN)

where SN is the sprite number (O to 7).
To switch a sprite out of multi-color mode you must turn OFF the VIC-II

control register at location 53276 ($D01C). The following POKEdoes this:

POKE 53276,PEEK(53276) AND (255-2tSN)

where SN is the sprite number (O to 7).

EXPANDED SPRITES

The VIC-II chip has the ability to expand a sprite in the vertical direc-
tion, the horizontal direction, or both at once. When expanded, each dot
in the sprite is twice as wide or twice as tall. Resolution doesn't actually
increase. . . the sprite just gets bigger.

To expand a sprite in the horizontal direction, the corresponding bit in
the VIC-IIcontrol register at location 53277 ($D01D in HEX)must be
turned ON (set to a 1). The following POKEexpands a sprite in the X
direction:

POKE 53277,PEEK(53277)OR (2tSN)

where SN is the sprite number from 0 to 7.

136 PROGRAMMING GRAPHICS

To unexpand a sprite in the horizontal direction, the corresponding bit
in the VIC-II control register at location 53277 ($DOID in HEX) must be
turned OFF (set to a 0). The following POKE "unexpands" a sprite in the
X direction:

POKE 53277,PEEK(53277)AND (255-2tSN)

where SN is the sprite number from 0 to 7.

To expand a sprite in the vertical direction, the corresponding bit in
the VIC-II control register at location 53271 ($DOI7 in HEX) must be
turned ON (set to a 1). The following POKE expands a sprite in the Y
direction:

POKE 53271, PEEK{53271)OR (2tSN)

where SN is the sprite number from 0 to 7.

To unexpand a sprite in the vertical direction, the corresponding bit in
the VIC-II control register at location 53271 ($DOI7 in HEX) must be
turned OFF (set to a 0). The following POKE "unexpands" a sprite in the
Y direction:

POKE 53271,PEEK(53271)AND (255-2tSN)

where SN is the sprite number from 0 to 7.

SPRITE POSITIONING

Once you've made a sprite you want to be able to move it around the
screen. To do this, your Commodore 64 uses three positioning registers:

1) SPRITE X POSITION REGISTER

2) SPRITE Y POSITION REGISTER

3) MOST SIGNIFICANT BIT X POSITION REGISTER

Each sprite has an X position register, a Y position register, and a bit
in the X most significant bit register. This lets you position your sprites
very accurately. You can place your sprite in 512 possible X positions
and 256 possible Y positions.

The X and Y position registers work together, in pairs, as a team. The
locatkms of the X and Y registers appear in the memory map as follows:
First is the X register for sprite 0, then the Y register for sprite O. Next

PROGRAMMINGGRAPHICS 137

comes the X register for sprite 1, the Y register for sprite 1, and so on.
After all 16 X and Y registers comes the most significant bit in the X
position (X MSB) located in its own register.

The chart below lists the locations of each sprite position register. You

use the locations at their appropriate time through POKEstatements:

The position of a sprite is calculated from the TOP LEFTcorner of the

24 dot by 21 dot area that your sprite can be designed in. It does NOT
matter how many or how few dots you use to make up a sprite. Even if
only one dot is used as a sprite, and you happen to want it in the middle

of the screen, you must still calculate the exact positioning by starting at
the top left corner location.

VERTICAL POSITIONING

Setting up positions in the horizontal direction is a little more difficult

than vertical positioning, so we'll discuss vertical (Y) positioning first.

There are 200 different dot positions that can be individually pro-

grammed onto your TV screen in the Y direction. The sprite Y position

registers can handle numbers up to 255. This means that you have more

138 PROGRAMMINGGRAPHICS

LOCATION
DESCRIPTION

DECIMAL HEX

53248 ($DOOO) SPRITE 0 X POSITION REGISTER

53249 ($DOOI) SPRITE 0 Y POSITION REGISTER

53250 ($D002) SPRITE 1 X POSITION REGISTER

53251 ($D003) SPRITE 1 Y POSITION REGISTER

53252 ($D004) SPRITE 2 X POSITION REGISTER

53253 ($D005) SPRITE 2 Y POSITION REGISTER

53254 ($D006) SPRITE 3 X POSITION REGISTER

53255 ($D007) SPRITE 3 Y POSITION REGISTER

53256 ($D008) SPRITE 4 X POSITION REGISTER

53257 ($D009) SPRITE 4 Y POSITION REGISTER
53258 ($DOOA) SPRITE 5 X POSITION REGISTER
53259 ($DOOB) SPRITE 5 Y POSITION REGISTER

53260 ($DOOC) SPRITE 6 X POSITION REGISTER

53261 ($DOOD) SPRITE 6 Y POSITION REGISTER

53262 ($DOOE) SPRITE 7 X POSITION REGISTER

53263 ($DOOF) SPRITE 7 Y POSITION REGISTER

53264 ($D010) SPRITE X MSB REGISTER

than enough register locations to handle moving a sprite up and down.
You also want to be able to smoothly move a sprite on and off the
screen. More than 200 values are needed for this.

The first on-screen value from the top of the screen, and in the Y
direction for an unexpanded sprite is 30. For a sprite expanded in the Y
direction it would be 9. (Since each dot is twice as tall, this makes a
certain amount of sense, as the initial position is STILLcalculated from
the top left corner of the sprite.)

The first Y value in which a sprite (expanded or not) is fully on the
screen (all 21 possible lines displayed) is 50.

The last Y value in which an unexpanded sprite is fully on the screen is
229. The last Y value in which an expanded sprite is fully on the screen
is 208.

The first Y value in which a sprite is fully off the screen is 250.

EXAMPLE:

---mD~
1121PRnn":T - : REt'1 CLEAF.: SCF.:EEt,1
20 POKE2040 , 13 :REM GET SPRITE 0
DATA FROM BLOCK 13
30 FORI=OT062:POKE832+I,129'NEXT:REM POKE SPRITE
DATA INTO BLOCK 13 (13*64=832)
40 V=53248 :REM SET BEGINNING
OF VIDEO CHIP
5121POKEV+21" 1 : F.'Et1 EI"IABLE ~;PRITE
1
60 pm~E""'+:39., 1
COLOR
71<:1POKE '+ 1 " 11210
'T' POSITIO~I
80 POKEV+16,0:POKEV,100
>': POSITION

:REM SET SPRITE (1

:REM SET SPRITE 0

:REM SET SPRITE 121

HORIZONTAL POSITIONING

Positioning in the horizontal direction is more complicated because
there are more than 256 positions. This means that an extra bit, or 9th
bit is used to control the X position. By adding the extra bit when neces-
sary a sprite now has 512 possible positions in the left/right, X, direc-
tion. This makes more possible combinations than can be seen on the
visible part of the screen. Each sprite can have a position from 0 to 511.

However, only those values between 24 and 343 are visible on the
screen. If the X position of a sprite is greater than 255 (on the right side
of the screen), the bit in the X MOST SIGNIFICANTBITPOSITION register
must be set to a 1 (turned ON). If the X position of a sprite is less than

PROGRAMMINGGRAPHICS 139

-
".
o

...'"
o

~
Z
C>
C>
~...
:rn
C/I

'ft

cO.
e
;
Co)
I
Co)

en
"U
...
:;:
CD

o (SOO) 24 (S18)
I I
I I
I I
I I

29 (S1D) -- - L _II
50 (S32) ___I

208 ($DO)-

250 (SFA)-I
I
I
I
I
I

488 (S1E8)

I
I
I

24 (S18)

VISIBLEVIEWING AREA

NTSC'
40 COLUMNS
25 ROWS

.North American televisiontransmissionstandardsfor your home TV.

296 (S128)
I
I
I

344 ($158)
I
I

1 8 ($08)

I
I
I
I

320 (S140)

-- 50 ($32)

-- - 229 ($E5)

-- - 250 ($FA)

I
1
I
I

344 (S158)

~
II>
:;:cr
~:r
co
n
:s-
a
::I-
!II

"'"
o
G')
~
~z
G')

G')

~"
J:n
VI

~

7 ($07) 31 ($1F)
I I
I I
I 1
I I
I 1

33 ($211 __ - _1__1I

54 ($36) I

204 ($CCI- -

246 ($F6)- -,
I
I
I
I
I
I

480 ($1EO)

1
31 ($1F)

VISIBLE VIEWING AREA

NTSC.
38 COLUMNS
24 ROWS

.North American television transmission standards for your home TV.

287 ($11FI
I
1
1
1

335 ($14FI
I
I
1

, 1- _ _ _ _ _ _ 12 ($OC)

- - 54($36)

- ---225 ($E1)

- - - -246 I$F6)

1
I
I
1
1

311 ($137)

I
I
I
I
I
I

335 ($14FI

256 (on the left side of the screen), then the X MSB of that sprite must
be 0 (turned OFF). Bits 0 to 7 of the X MSB register correspond to sprites
o to 7, respectively.

The following program moves a sprite across the screen:

EXAMPLE:

--IDIIiI"
10 PF.:It-IT"::T'-
20 F'OKE2040.13
30 FORI=0T062:POKE832+I.129:NEXT
40 ..,.=5:324:3
50 POKE'.'!+21,. 1
6121POKE"'!+3S<..1
70 POKEV+ 1 " 1121(1
8121FOF(J=!3TOcH7
90 HX=INTeJ/256)'LX=J-256*HX
100 POKEV.LX:POKEV+16.HX:NE~T

When moving expanded sprites onto the left side of the screen in the
X direction, you have to start the sprite OFFSCREENon the RIGHTSIDE.
Thisis because an expanded sprite is larger than the amount of space
available on the left side of the screen.

EXAMPLE:

,ABI"
1121pF.:nn":J"
2(1 F'OKE2!~140. 13
30 FORI=0T062:POKE832+I.129:NEXT
4121 \.':=::5::':248
50 POKE','!+21" 1
60 POKEV+39.1:POKEV+23.1:POKEV+29.1
70 POKE'.,!+1 . 10(~
:3121J~48:::
90 HX=INTeJ/256):LX=J-256*HX
100 POKEV,LX:POKEV+16.HX
110 J=J+l:IFJ)511THENJ=0
120 IFJ)4880RJ<348GOT090

The charts in Figure 3-3 explain sprite positioning.

By using these values, you can position each sprite anywhere. By mov-
ing the sprite a single dot position at a time, very smooth movement is
easy to achieve.

142 PROGRAMMING GRAPHICS

SPRITE POSITIONING SUMMARY

Unexpanded sprites are at least partially visible in the 40 column, by
25 row mode within the following parameters:

1 < = X < = 343

30 < = y < = 249

In the 38 column mode, the X parameters change to the following:

8 < = X < = 334

In the 24 row mode, the Y parameters change to the following:

34 < = Y < = 245

Expanded sprites are at least partially visible in the 40 column, by 25
row mode within the following parameters:

489 > = X < = 343

9 > = Y < = 249

In the 38 column mode, the X parameters change to the following:

1496> = X < = 334

In the 24 row mode, the Y parameters change to the following:

13 < = Y < = 245

PROGRAMMING GRAPHICS 143

SPRITE DISPLAY PRIORITIES

Sprites have-the ability to cross each other's paths, as well as cross in
front of, or behind other objects on the screen. This can give you a truly
three dimensional effect for games.

Sprite to sprite priority is fixed. That means that sprite 0 has the high-
est priority, sprite 1 has the next priority, and so on, until we get to
sprite 7, which has the lowest priority. In other words, if sprite 1 and
sprite 6 are positioned so that they cross each other, sprite 1 will be in
front of sprite 6.

So when you're planning which sprites will appear to be in the fore-
ground of the picture, they must be assigned lower sprite numbers than
those sprites you want to put towards the back of the scene. Those
sprites will be given higher sprite numbers.

NOTE: A "window" effect is possible. If a sprite with higher priority has "holes" in it
(areas where the dots are not set to 1 and thus turned ON), the sprite- with the lower

priority will show through. This also happens with sprite and background data.

Sprite to background priority is controllable by the SPRITE-BACK-
GROUND priority register located at 53275 ($DOIB). Each sprite has a
bit in this register. If that bit is 0, that sprite has a higher priority than
the background on the screen. In other words, the sprite appears in
front of background data. If that bit is aI, that sprite has a lower
priority than the background. Then the sprite appears behind the back-
ground data.

COLLISION DETECTS

One of the more interesting aspects of the VIC-II chip is its collision
detection abilities. Collisions can be detected between sprites, or be-
tween sprites and background data. A collision occurs when a non-zero
part of a sprite overlaps a non-zero portion of another sprite or char-
acters on the screen.

144 PROGRAMMINGGRAPHICS

SPRITE TO SPRITE COLLISIONS

Sprite to sprite collisions are recognized by the computer, or flagged,
in the spite to sprite collision register at location 53278 ($DOlE in HEX) in
the VIC-II chip control register. Each sprite has a bit in this register. If
that bit is a 1, then that sprite is involved in a collision. The bits in this
register will remain set until read (PEEKed). Once read, the register is
automatically cleared, so it is a good idea to save the value in a vari-
able until you are finished with it.

NOTE: Collisions can take place even when the sprites are off screen.

SPRITE TO DATA COLLISIONS

Sprite to data collisions are detected in the sprite to data collision
register at location 53279 ($DOlF in HEX)of the VIC-II chip control regis-
ter.

Each sprite has a bit in this register. If that bit is a 1, then that sprite
is involved in a collision. The bits in this register remain set until read
(PEEKed). Once read, the register is automatically cleared, so it is a
good idea to save the value in a variable until you are finished with it.

NOTE: MULTI-COLORdata 01 is considered transparent for collisions, even though it

shows up on the screen. When setting up a background screen, it is a good idea to
make everything that should not cause a collision 01 in multi-color mode.

PROGRAMMING GRAPHICS 145

10 REM SPRITE EXAMPLE 1...
20 REM THE HOT AIR BALLOON
30 VIC=13~4096:REM THIS IS WHERE THE VIC REGISTERS
BEGIN
35 POKEVIC+21,1:REM ENABLE SPRITE 0
36 POKEVIC+33, 14:REM SET BACKGROUND COLOR TO LIGHT
BLUE
37 POKEVIC+23,1:REM EXPAND SPRITE 0 IN Y
38 POKEVIC+29,1:REM EXPAND SPRITE 0 IN X
40 POKE2040 ,192:REM SET SPRITE 0~S POINTER
180 POKEVIC+0,100:REM SET SPRITE 0~S X POSITION
190 POKEVIC+l, 100:REM SET SPRITE 0~S Y POSITION
220 POKEVIC+39,1:REM SET SPRITE 0~S COLOR
250 FORY=0T063:REM BYTE COUNTER WITH SPRITE LOOP
300 READA:REM READ IN A BYTE
310 POKE192*64+Y,A:REM STORE THE DATA IN SPRITE
AREA
320 I~EXT'T':REM CLOSE LOOP
330 DX=l:DY=l
340 X=PEEK(VIC):REM LOOK AT SPRITE 0~S X POSITION
350 Y=PEEK(VIC+l):REM LOOK AT SPRITE 0~S Y POSITION
360 IFY=500RY=208THENDY=-DY:REM IF Y IS ON THE
EDGE OF THE....
370 REt1 SCREEN, THEt~ REVERSE DELTA Y
380 IFX=24AND(PEEK(VIC+16)AND1)=0THENDX=-DX:REM IF
SPRITE IS....
390 REM TOUCHIt~GTHE LEFT EDGE (>::=24 At~DTHE MSB
FOR SPRITE 0 IS 0), REVERSE IT
400 IFX=40AND(PEEK(VIC+16)AND1)=lTHENDX=-DX:REM IF
SPRITE IS....
410 REI1 TOUCHI.NG THE RIGHT EDGE (X=40 AND THE t1SB
FOR SPRITE 0 IS 1), REVERSE IT
420IFX=255ANDDX=lTHENX=-1:SIDE=1
430 REM SWITCH TO OTHER SIDE OF THE SCREEN
440 IFX=0ANDDX=-lTHENX=256:SIDE=0
450 REM SWITCH TO OTHER SIDE OF THE SCREEN
460 X=X+DX:REM ADD DELTA X TO X
470 X=XAND255:REM MAKE SURE X IS IN ALLOWED RANOE
480 Y=Y+DY:REM ADD DELTA Y TO Y
485 POKEVIC+16,SIDE
490 POKEVIC,X:REM PUT NEW X VALUE INTO SPRITE 0~S
X POSITION
510 POKEVIC+1,Y:REM PUT NEW Y VALUE INTO SPRITE
0~S 'iPOSITION
530 OOT0340
600 REM ***** SPRITE DATA *****
610 DATA0,127,0,1,255,192,3,255,224,3,231,224
620 DATA7,217,240,7,223,240,7,217,240,3,231,224
630 DATA3,255,224,3,255,224,2,255,160, 1,127,64
640 DATAl,62,64,0,156,128,e,156,128,0,73,a,a,73,a
650 DATA0,62,0,0,62,0,0,62,0,0,28,a,0

146 PROGRAMMING GRAPHICS

10 REt'l SPRITE E:":AMPLE 2...
20 REM THE HOT AIR BALLOON AGAIN
30 VIC=13*4096:REM THIS IS WHERE THE VIC REGISTERS
BEGIN
35 POKEVIC+21,63:REM ENABLE SPRITES 0 THRU 5
36 POKE"I IC+33., 14 :REM SET BACKGROUt.jD COLOR TO LIGHT
:BLUE
37 POKE"lIC+23.,:3: REf'l E:";PAND SPRITES 0 AND 1 IN 'T'
38 POKEY IC+29., 3 : REt1 E>::PAt~D SPR IrES 0 AND 1 HI X
40 POKE2040, 192:REM SET SPRITE 0~S POINTER
50 POKE2041 ,193:REM SET SPRITE l~S POINTER
60 POKE2042, 192:REM SET SPRITE 2~S POINTER
70 POKE2043, 193:REM SET SPRITE 3~S POINTER
80 POKE2044.. 192:REM SET SPRITE 4~S POINTER
90 POKE2045, 193:REM SET SPRITE 5~S POINTER
100 POKEVIC+4,30:REM SET SPRITE 2~S X POSITION
110 POKEY I C+5, 58 :REM SET SPR ITE 2 ~ S ',JPOS ITI ON

120 POKEVIC+6,65:REM SET SPRITE 3~S X POSITION
130 POKEVIC+7,58:REM SET SPRITE 3'S Y POSITION
140 POKEVIC+8, 100:REM SET SPRITE 4~S X POSITION
150 POKEVIC+9,58:REM SET SPRITE 4~S Y POSITION
160 POKEVIC+10, 100:REM SET SPRITE 5'S X POSITION
17(1 POKE..,.IC+ 11 , 58 :REM SET SPR IrE 5' S Y POS IT IO~!

J81J
175 PRINT" i:(']"TAB(15) "THIS IS TWO HIRES SPRITES".;

'mil"
176 PR HITTAB (55) "Ot.!TOP OF EACH OTHER"
180 POKEVIC+0,100:REM SET SPRITE 0~S X POSITION
190 POKEVIC+1, 100:REM SET SPRITE 0'S Y POSITION
200 POKEVIC+2, 100:REM SET SPRITE l'S X POSITION
210 POKEVIC+3, 100:REM SET SPRITE l~S Y POSITION
220 POKEVIC+39,1:REM SET SPRITE 0'S COLOR
230 POKEVIC+41,1:REM SET SPRITE 2~S COLOR
240 POKEVIC+43,1:REM SET SPRITE 4'S COLOR
.250 POKEV IC+40., 6 :REt1 SET SPFU TE l' S COLOF.:

260 POKEVIC+42,6:REM SET SPRITE 3'S COLOR
270 POKEVIC+44,6:REM SET SPRITE 5'S COLOR
280 FORX=192T0193:REM THE START OF THE LOOP THAT
DEFINES THE SPRITES
290 FORY=0T063:REM BYTE COUNTER WITH SPRITE LOOP
300 READA:REMREAD IN A BYTE
:310 POKE~<::+:64+Y,A :F.:E~1STORE THE DATA It-! SPR ITE AREFI
320 NEXTY,X:REM CLOSE LOOPS
330 D>::= 1 :DY= 1

340 X=PEEK(VIC):REM LOOK AT SPRITE 0~S X POSITION
350 Y=PEEK(VIC+l):REM LOOK AT SPRITE 0'S Y POSITION
360 IF'T'=500RY=208THEND'r'=-DY: REt1 IF 'T' IS ON THE

EDGE OF THE...
370 REM SCREEN, THEN REVERSE DELTA Y
380 IFX=24AND(PEEK(VIC+16)AND1)=0THENDX=-DX:REMIF
SPRITE IS...
390 REM TOUCHING THE LEFT EDGE, THEN REVERSE IT

PROGRAMMING GRAPHICS 147

400 I FK=40FH.m 0::PEEK 0::I.,.'I C+ 16) At.m 1) =1THE~m>,;=- Dr.:: REt1 IF
SPRITE IS...
410 REM TOUCHING THE RIGHT EDGE, THEN REVERSE IT
420 IFX=255ANDDX=1THENX=-1:SIDE=3
43(1 REt1 SJ..JITCH TO OTHER S I DE OF THE SCREEN
440 IF:.:=0At.mm':=-1 THEN:X:=256: SIDE=0
450 REM SWITCH TO OTHER SIDE OF THE SCREEN
460 :.:=:.:+m,:: REt1 ADD DELTA ::-::TO :.:
470 X=XAND255:REM MAKE SURE X IS IN ALLOWED RANGE
480 Y=Y+DY:REM ADD DELTA Y TO Y
485 POKEVIC+16,SIDE
490 POKEVIC,X:REM PUT NEW X VALUE INTO SPRITE O'S
?~ POSITIm~
500 POKEVIC+2, >:::REt1 PUT ~~EW:x: I'..'ALUE uno SPRITE
1 ':3 :.: POS IT ION
510 POKEVIC+l.Y:REM PUT NEW Y VALUE INTO SPRITE
O'S Y POSITIO~~
520 POKEV!C+3,Y:REM PUT NEW Y VALUE INTO SPRITE
1'S 'r POSITIO~~
530 GOT0340
600 REM ***** SPRITE DATA *****
610 DATA0,255,0,3,153,192,7,24,224,7,56,224,14, 126,
112,14,126,112,14,126,112
620 DATA6, 126,96,7,56,224,7,56,224,i,56,128,O,153,
0,0,90, (I, 0, 56.. °
6313 DATAO,56,0,0,0,O,O,O,O,O,12G,e,e,42,e,0,84,e,o,
413..0,0
640 DATAo,e,O,0,102,0,0,231,0,0,195,0,i,129,128,1,
129,128,1,129,128
650 DATA1,12~,128,0,195,O,0,195,0,4,195,32,2,102,
64,2,36,64,1,0,128
660 DATA1,0,128,0,153,O,O,153,O,O,0,O,0,84,0,O,42,
O,O,20,O,O

10 REt1 SPR ITE EXAMPLE3...
213 REM THE HOT AIR GORF
30 VIC=53248:REM THIS IS WHERE THE VIC REGISTERS
BEGIN
35 POKEVIC+21,1: REME~IABLESPRITE 0

148 PROGRAMMING GRAPHICS

36 POKEVIC+33, 14:REM SET BACKGROUND COLOR TO LIGHT
B..LUE
37 POKEVIC+23,1:REM EXPAND SPRITE 121IN ~
38 POKE~IC+29,1:REM EXPAND SPRITE 121IN X
40 POKE2€140, 192:REM SET SPRITE 0'8 PO HnEI':
5121 F'OKEVIC+28, 1:REt1 TURN O~j MULTICOLOR
60 POKEVIC+37,7:REM SET MULTICOLOR 121
7121POKEVIC+38,4:REM SET MULTICOLOR 1
180 POKEVIC+I2I, 1121121:REM SET SPRITE e's X POSITION
19121POKEVIC+1., 112110:REM SET SPRITE et'S 'T'POSITION
22121 F'OKEVIC+39.. 2: REt1 SET SPRITE I2I'SCOLOR
2910 FORY=etT063:REM BYTE COUNTER WITH SPRITE LOOP
3121121 READA:REM READ IN A BYTE
31121POKE12288+Y,A:REM STORE THE DATA IN SPRITE AREA
32121 NEXT Y:REM CLOSE LOOP
33121 D;:<:= 1 :DY= 1

34121 X=PEEK(VIC):REM LOOK AT SPRITE I2I'SX POSITION
35121Y=PEEK(VIC+1):REM LOOK AT SPRITE IZI'S~ POSITION
36121IFY=500RY=21Z18THENDY=-DY:REM IF Y IS ON THE
EDGE OF THE...
87121REM SCREEN, THEN REVERSE DELTA Y
38121 IF X=24AND(PEEK(,.lIC+16)At~D1)=0THEI.m:x;=-D:x:: REt"1

IF SPRITE IS...
39121REM TOUCHING THE LEFT EDGE, THEN REVERSE IT
4121121IFX=40AND(PEEK(VIC+16)AND1)=1THENDX=-DX:REM IF
SPRITE IS...
41121REM TOUCHING THE RIGHT EDGE, THEN REVERSE IT
42€1 I F;:':=255A~mDX= 1THE~jX=-1 :S I DE= 1

43121REM SWITCH TO OTHER SIDE OF THE SCREEN
44121 IFX=I2IANDDX=-1THENX=256:SIDE=1ZI
45121 REM SWITCH TO OTHER SIDE OF THE SCREEN
46121 X=X+DX:REM ADD DELTA X TO X
47121 >::=;x:At.JD255: REt1 MAKE SURE :";IS IH ALLm~ED RAt.JGE

48121 Y=~+D~:REM ADD DELTA Y TO Y
485 POKEVIC+16,SIDE
49121 POKEVIC,X:REM PUT HEW X VALUE IHTO SPRITE I2I'S
:>0:POS IT I OI.j
51121 POKEVIC+1.~:REM PUT HEW Y VALUE IHTO SPRITE
12I"S 'T' POSITImJ
52121 GETA$:REM GET A KE~ FROM THE KE~BOARD
521 IFA$="M"THENPOKEVIC+28,1:REM USER SELECTED
MUL TI COLOR

52;;:; I FA$=" H" THENPOKEV IC+28., 121:REM USER SELF;:CTED
HIGH RESOLUTIOt.j
53121 GOT034121

6121121 REM ***** SPRITE DATA *****
61121 DATA64.12I,1,16, 17121,4,6,17121,144,1121, 170,16121,42,
17121,168,41,105,11214,169,235,11216
62121 DATA169,235.11216,169,235,10G,17121,170,170,170,
170,170.170,170,170,170,170,170
63121 DATA166, 17121,154,169,S5, 11216.17121,85, 170,42,170,

168,10,170,160,1,0,64,1,121,64
640 DATA5 ..1;3,80 -'0

PROGRAMMING GRAPHICS 149

OTHER GRAPHICS FEATURES

SCREEN BLANKING

Bit 4 of the VIC-II control register controls the screen blanking func-
tion. It is found in the control register at location 53265 ($D011). When it
is turned ON (in other words, set to a 1) the screen is normal. When bit 4
is set to 0 (turned OFF), the entire screen changes to border color.

The following POKE blanks the screen. No data is lost, it just isn't
displayed.

"POKE53265,PEEK(53265)AND 239

To bring back the screen, use the POKE shown below:

POKE 53265,PEEK(53265)OR 16

NOTE: Turning off the screen will speed up the processor slightly. This means that

program RUNning is also sped up.

RASTER REGISTER

The raster register is found in the VIC-II chip at location 53266
($DOI2). The raster register is a dual purpose register. When you read
this register it returns the lower 8 bits of the current raster position. The
raster position of the most significant bit is in register location 53265
($D011). You use the raster register to set up timing changes in your
display so that you can get rid of screen flicker. The changes on your
screen should be made when the raster is not in the visible display area,
which is when your dot positions fall between 51 and 251.

When the raster register is w.ritten to (including the MSB) the number
written to is saved for use with the raster compare function. When the
actual raster value becomes the same as the number written to the

raster register, a bit in the VIC-II chip interrupt register 53273 ($DO19) is
turned ON by setting it to 1.

NOTE: If the proper interrupt bit is enabled (turned on), an interrupt (IRQ) will occur.

150 PROGRAMMING GRAPHICS

INTERRUPT STATUS REGISTER

The interrupt status register shows the current status of any interrupt
source. The current status of bit 2 of the interrupt register will be a 1
when two sprites hit each other. The same is true, in a corresponding 1
to 1 relationship, for bits 0-3 listed in the chart below. Bit 7 is also set
with aI, whenever an interrupt occurs.

The interrupt status register is located at 53273 ($DOI9) and is as
follows:

BIT # DESCRIPTIONLATCH

IRST
IMDC

IMMC

ILP

IRQ

o Set when current raster count = stored raster count

1 Set by SPRITE-DATAcollision (1st one only, until reset)
2 Set by SPRITE-SPRITEcollision (1st one only, until reset)
3 Set by negative transition of light pen (1 per frame)
7 Set by latch set and enabled

Once an interrupt bit has been set, it's "latched" in and must be
cleared by writing a 1 to that bit in the. interrupt register when you're
ready to handle it. This allows selective interrupt handling, without hav-
ing.to store the other interrupt bits.

The INTERRUPTENABLEREGISTERis located at 53274 ($D01A). It has

the same format as the interrupt status register. Unless the correspond-
ing bit in the interrupt enable register is set to aI, no interrupt from that
source will take place. The interrupt status register can still be polled for
information, but no interrupts will be generated.

To enable an. interrupt request the corresponding interrupt enable bit
(as shown in the chart above) must be set to a 1.

This powerful interrupt structure lets you use split screen modes. For
instance you can have half of the screen bit mapped, half text, more
than 8 sprites at a time, etc. The secret is to use interrupts properly. For
example, if you want the top half of the screen to be bit mapped and
the bottom to be text, just set the raster compare register (as explained
previously) for halfway down the screen. When the interrupt occurs, tell
the VIC-II chip to get characters from ROM, then set the raster compare
register to interrupt at the top of the screen. When the interrupt occurs
at the top of the screen, tell the VIC-II chip to get characters from RAM
(bit map mode).

PROGRAMMING GRAPHICS 151

You can also display more than 8 sprites in the same way. Unfortu-
nately BASIC isn't fast enough to do this very well. So if you want to start
using display interrupts, you should work in machine language.

SUGGESTEDSCREEN AND CHARACTER
COLOR COMBINATIONS

Color TV sets are limited in their ability to place certain colors next to
each other on the same line. Certain combinations of screen and char-
acter colors produce blurred images. This chart shows which color com-
binations to avoid, and which work especially well together.

CHARACTER COLOR
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o

1

2

3

4

5
a:
9 6
8 7

~ 8
w
~ 9
(/)

10

11

12

13

14

15

. = EXCELLENT. = FAIR
X = POOR

152 PROGRAMMING GRAPHICS

x . X . . . X . . X
. X . X . . . X X . .
X . X X . X X . . X . X X X X .
. X X X X . . X X X X . X X . X

. . X X X X X X X X X X X X X .

. . X . X X X X X X X . X . X .

. . X . X X X X X X X X X . . .

. X . X X X . X X X X

. . . X X X X . X . X X X X X .
X . X X X X X . . X . X X X X .
. . . X X X X . X . X X X X X .
. . X . X X X . X X X X
. . . X X X . X X . X . X X X .
. X X X X . . X X X X . X X X X
. . X . X X . X X X X . X X X .
. . . X . . . X X X . X

PROGRAMMING SPRITES-ANOTHER LOOK
For those of you having trouble with graphics, this section has been

designed as a more elementary tutorial approach to sprites.

MAKING SPRITES IN BASIC-A SHORT PROGRAM

There are at least three different BASIC programming techniques

which let you create graphic images and cartoon animations on the
Commodore 64. You can use the computer's built-in graphics character

set (see Page 376). You can program your own characters (see Page
108) or . . . best of all . . . you can use the computer's built-in "sprite
graphics." To illustrate how easy it is, here's one of the shortest
spritemaking programs you can write in BASIC:

10
20
30
40
5(1
60
70
80

AllDramE
PR ItH "6' -

POKE2iZ14iZ1.. 13
FOF:::;=8:32TO::::32+62 : POKES, 255 : t'~EXT
11,"==5:3248

POKEV+21,l
POKE' +:39.. 1
POKE'v'.' 24
POKE + 1 .' 100

This program includes the key "ingredients" you need to create any
sprite. The POKE numbers come from the SPRITEMAKINGCHART on
Page 176. This program defines the first sprite . . . sprite 0 . . . as a

solid white square on the screen. Here's a line-by-line explanation of the
program:

LINE 10 clears the screen.

LINE 20 sets the "sprite pointer" to where the Commodore 64 will

read its sprite data from. Sprite 0 is set at 2040, sprite 1 at 2041, sprite
2 at 2042, and so on up to sprite 7 at 2047. You can set all 8 sprite
pointers to 13 by using this line in place of line 20:

20 FOR SP=2040T02047:POKE SP,13:NEXT SP

LINE 30 puts the first sprite (sprite 0) into 63 bytes of the Commodore

64's RAM memory starting at location 832 (each sprite requires 63 bytes

of memory). The first sprite (sprite 0) is "addressed" at memory locations
832 to 894.

PROGRAMMINGGRAPHICS 153

LINE 40 sets the variable "V" equal to 53248, the starting address of
the VIDEO CHIP. This entry lets us use the form (V+number) for sprite
settings. We're using the form (V+number) when POKEing sprite settings
because this format conserves memory and lets us work with smaller
numbers. For example, in line 50 we typed POKEV+21. This is the same
as typing POKE 53248+21 or POKE 53269 . . . but V+21 requires less

space than 53269, and is easier to remember.

LINE 50 enables or "turns on" sprite o. There are 8 sprites, numbered
from 0 to 7. To turn on an individual sprite, or a combination of sprites,
all you have to do is POKE V+21 followed by a number from 0 (turn all
sprites off) to 255 (turn all 8 sprites on). You can turn on one or more
sprites by POKEing the following numbers:

POKE V+21, 1 turns on sprite O. POKEV+21, 128 turns on sprite 7. You
can also turn on combinations of sprites. For example, POKE V+21, 129
turns on both sprite 0 and sprite 7 by adding the two "turn on" numbers
(1+128) together. (See SPRITEMAKINGCHART, Page 176.)

LINE 60 sets the COLOR of sprite O. There are 16 possible sprite
colors, numbered from 0 (black) to 15 (grey). Each sprite requires a
different POKE to set its color, from V+39 to V+46. POKE V+39,1
colors sprite 0 white. POKE V+46,15 colors sprite 7 grey. (See the
SPRITEMAKINGCHART for more information.)

When you create a sprite, as you just did, the sprite will STAY IN
MEMORY until you POKE it off, redefine it, or turn off your computer.
This lets you change the color, position and even shape of the sprite in
DIRECTor IMMEDIATEmode, which is useful for editing purposes. As an
example, RUN the program above, then type this line in DIRECTmode
(without a line number) and hit the .:~alll:U. key:

POKE V+39,8

The sprite on the screen is now ORANGE. Try POKEing some other num-
bers from 0 to 15 to see the other sprite colors. Because you did this in
DIRECTmode, if you RUNyour program the sprite will return to its origi-
nal color (white).

154 PROGRAMMING GRAPHICS

LINE 70 determines the HORIZONTALor "X" POSITION of the sprite
on the screen. This number represents the location of the UPPER LEFT
CORNER of the sprite. The farthest left horizontal (X) position which you
can see on your television screen is position number 24, although you
can move the sprite OFF THE SCREENto position number O.

LINE 80 determines the VERTICALor "Y" POSITION of thE:'sprite. In
this program, we placed the sprite at X (horizontal) position 24, and Y
(vertical) position 100. To try another location, type this POKE in DIRECT
mode and hit _t~:llIlt~/_:

POKE V,24:POKE V+l,50

This places the sprite at the upper left corner of the screen. To move the
sprite to the lower left corner, type this:

POKE V,24:POKE V+l,229

Each number from 832 to 895 in our sprite 0 address represents one
block of 8 pixels, with three 8-pixel blocks in each horizontal row of the
sprite. The loop in line 80 tells the computer to POKE 832,255 which
makes the first 8 pixels solid. . . then POKE 833,255 to make the second
8 pixels solid, and so on to location 894 which is the last group of 8
pixels in the bottom right corner of the sprite. To better see how this
works, try typing the following in DIRECT mode, and notice that the
second group of 8 pixels is erased:

POKE 833,0 (to put it back type POKE 833,255 or RUN your program)

The following line, which you can add to your program, erases the
blocks in the MIDDLEof the sprite you created:

90 FOR A=836 TO 891 STEP 3:POKE A,O:NEXTA

Remember, the pixels that make up the sprite are grouped in blocks of
eight. This line erases the 5th group of eight pixels (block 836) and every
third block up to block 890. Try POKEing any of the other numbers from
832 to 894 with either a 255 to make them solid or 0 to make them
blank.

PROGRAMMING GRAPHICS 155

CRUNCHING YOUR SPRITE PROGRAMS

Here's a helpful "crunching" tip: The program described above is already short, but it

can be made even shorter by "crunching" it smaller. In our example we list the key

sprite settings on separate program lines so you can see what's happening in the

program. In actual practice, a good programmer would probably write this program
as a TWO LINE PROGRAM. . . by "crunching" it as follows:

10PRINTCHR$(147):V=53248:POKEV+21, 1:POKE2040, 13:
POKEV+39,1

20FORS =832T0894: POKES,255:NEXT:POKEV,24: POKEY+ 1,100

For more tips on how to crunch your programs so they fit in less memory and run more

efficiently, see the "crunching guide" on Page 24.

TV SCREEN

A Sprite located here must have both its
X-position (horizontal) and V-position (vertical)
set so it can be displayed on the screen.

Figure 3-4. The display screen is divided into a grid of X and Y coor-
dinates.

156 PROGRAMMING GRAPHICS

!IA \
X POSITION = HORIZONTAL

...J
«
()

a:
w
>
II

Z
0

Ci5
0 /a.
>- /

I
/

POSITIONING SPRITES ON THE SCREEN

The entire display screen is divided into a grid of X and Y coordi-
nates, like a graph. The X COORDINATE is the HORIZONTALposition
across the screen and the Y COORDINATEis the VERTICALposition up
and down (see Figure 3-4).

To position any sprite on the screen, you must POKE TWO SETTINGS
. . . the X position and the Y position .. . these tell the computer where

to display the UPPER LEFTHAND CORNER of the sprite. Remember that
a sprite consists of 504 individual pixels, 24 across by 21 down. . . so if
you POKE a sprite onto the upper left corner of your screen, the sprite
will be displayed as a graphic image 24 pixels ACROSS and 21 pixels
DOWN starting at the X-V position you defined. The sprite will be dis-
played based on the upper left corner of the entire sprite, even if you
define the sprite using only a small part of the 24X21-pixel sprite area.

To understand how X-Y positioning works, study the following dia-
gram (Figure 3-5), which shows the X and Y numbers in relation to your
display screen. Note that the GREY AREA in the diagram shows your
television viewing area . . . the white area represents positions which
are OFF your viewing screen. . .

0--

50 -

::
oa:u.
Zit)
=>",a:C\I
(/)0
ZI-

~t

o 24
:~
1

X POSITIONS RUN FROM 0 TO 255,
THEN YOU MUST POKE V+16, 1 255

AND START OVER AT 0 TO 91 b' 'J1
I .

X =255. Y = 50 I POKE V+16, 1 AND

\ 1 X =65, Y =50

X =231, Y = 50 ': \ I

I

i

: x = 24,Y = 50

:/

I
I

VIEWINGSCREENAREA
I
I
I
I
I
I
I

x =24, Y =229 X = 229, Y = 231 I

x = 24, Y =250 POKE V+16, 1 AND
X = 65,Y =229

Figure 3-5. Determining X-V sprite. positions.

PROGRAMMINGGRAPHICS 157

To display a sprite in a given location, you must POKE the X and Y
settings for each SPRITE . . . remembering that every sprite has its own
unique X POKE and Y POKE. The X and Y settings for all 8 sprites are
shown here:

POKE THESE VAWES TO SET.X-Y SPRITE POSITIONS

POKEING AN X POSITION: The possible values of X are 0 to 255,
counting from left to right. Values 0 to 23 place all or part of the sprite
OUT OF THE VIEWINGAREAoff the left side of the screen. . . values 24

to 255 place the sprite IN THE VIEWING AREA up to the 255th position
(see next paragraph for settings beyond the 255th X position). To place
the sprite at one of these positions, just type the X-POSITION POKE for
the sprite you're using. For example, to POKE sprite 1 at the farthest left
X position IN THE VIEWING AREA, type: POKE V+2,24.

X VALUESBEYOND THE 255TH POSIT10N: To get beyond the 255th
position across the screen, you need to make a SECOND POKEusing the
numbers in the "RIGHT X" row of the chart (Figure 3-5). Normally, the
horizontal (X) numbering would continue past the 255th position to 256,
257, etc., but because registers only contain 8 bits we must use a "sec-
ond register" to access the RIGHT SIDE of the screen and start our X
numbering over again at O. So to get beyond X position 255, you must
POKE V+ 16 and a number (depending on the sprite). This gives you 65
additional X positions (renumbered from 0 to 65) in the viewing area on
the RIGHT side of the viewing screen. (You can actually POKE the right
side X value as high as 255, which takes you off the right edge of the
viewing screen.)

POKEING A Y POSITION: The possible values of Yare 0 to 255, count-
ing from top to bottom. Values 0 to 49 place all or part of the sprite OUT
OF THEVIEWINGAREAoff the TOP of the screen. Values 50 to 229 place
the sprite IN THE VIEWING AREA. Values 230 to 255 place all or part of
the sprite OUT OF THE VIEWING AREA off the BOTTOM of the screen.

158 PROGRAMMING GRAPHICS

SPRITEO SPRlTE1 SPRlTE2 SPRlTE3 SPRITE4 SPRITES SPRlTE6 SPRlTE7

SETX v,x V+2,X V+4,X V+6,X V+8,X V+10,X V+12,X V+14,X

SETY V+l,Y V+3,Y V+S,Y V+7,Y V+9,Y V+l1,Y V+13,Y V+1S,Y

RIGHTX V+16,1 V+16,2 V+16,4 V+16,8 V+16,16 V+16,32 V+16,64 V+16,128

let's see how this X-V positioning works, using sprite 1. Type this pro-
gram:

-'!mil G!DD
10 PRINT"~~3248:POKEV+21.2:POKE2041.13:
FOP::;=832T0895 :POKES, 255 :t.jE:'<T

20 POKE' +41;):, 7

3(1 POKEV+2., 24

4(1 POKEV+3, 50

This simple program establishes sprite 1 as a solid box and positions it
at the upper left corner of the screen. Now chclnge line 40 to read:

40 POKE V+3,229

This moves the sprite to the bottom left corner of the screen. Now let's
test the RIGHTX LIMITof the sprite. Change line 30 as shown:

30 POKE V+2,255

This moves the sprite to the RIGHTbut reaches the RIGHTX LIMIT,which
is 255. At this point, the "most significant bit" in register 16 must be SET.
In other words, you must type POKEV+16 and the number shown in the
"RIGHT X" column in the X-Y POKE CHART above to RESTARTthe X
position counter at the 256th pixel/position on the screen. Change line 30
as follows:

30 POKE V+16, PEEK(V+16)OR 2:POKE V+2,0

POKEV+ 16,2 sets the most'significant bit of the X position for sprite 1
and restarts it at the 256th pixel/position on the screen. POKE V+2,O
displays the sprite at the NEW POSITION ZERO, which is now reset to the
256th pixel.

To get back to the left side of the screen, you must reset the most
significant bit of the X position counter to 0 by typing (for sprite 1):

POKE V+16, PEEK(V+16)AND 253

TO SUMMARIZE how theX positioning works . . . POKEthe X POSI-
TION for any sprite with a number from 0 to 255. To access a position
beyond the 255th position/pixel across the screen, you must use an ad-
ditional POKE(V+ 16) which sets the most significant bit of the X position
and start counting from 0 again at the 256th pixel across the screen.

PROGRAMMINGGRAPHICS 159

This 'POKEstarts the X numbering over again from 0 at the 256th posi-
tion (Example: POKE V+16, PEEK(V+16)OR 1 and POKE V,1 must be
included to place sprite 0 at the 257th pixel across the screen.) To get
back -to the left side X positions you have to TURNOFFthe control setting
by typing 'POKE V+'16, PEEK(V+16)AND 254.

POSITIONING MUIIIPLE SPRITES ON THE SCREEN

Here's a program which defines THREE:DIFFERENTSPRITES(0, 1, and
2) in different colors .and places them in different positions .on the
screen:

...raI!tJ!n
10 PRI NT":i"~53248 : FORS=.832T0895 : POKES, 255 : t.jEXT
2121FORt1=2040T02042 :'POKEM, .13 ::NE:><:T
3(1 POKEV+21.,7
40 POKEV+.39,l: POKEV+4iZ1.,7 :P.OKEV+41, 8
50 POKEV,24:POKEV+l,50
,513 POKEV+2., .12 : POKEV+3., 229
70 POKEV+4,255:POKEV+5,50

For convenience, all 3 sprites have been defined as solid squares,
getting their data from. the same place. The 'important lesson here is
how the 3 sprites are positioned. The white .sprite 0 is ot the. top lefthand
corner. The.yellow sprite 1 is at the bottom lefthand corner but'HALF the
sprite is OFF THE SCREEN(remember, 24 is the leftmost X position in the
viewing area. . . an X position less than 24 puts 'oll'or part of the sprite
'off the screen and we .used an X position 12 here which put the s.prite
halfway off.the screen). Finally, the orange sprite 2 is at the RIGHT X
LIMIT (position 255) . . . but what if you want to display a sprite in the
area to .the RIGHT of X position 255?

DISPLAYINGA SPRITE BEYOND THE 255TH X-POSITION

Displaying a sprite beyond the 255th X position requires a special
POKEwhich SETSthe .most significant 'bit of the X position and starts over
at the 256th pixel position across the screen. Here's how it works. . .

First, you POKE V+ 16 with the number for :the sprite you're using
(check the "RIGHT X" row in the X-Y chart. . . we'll use sprite 0). Now
we assign an X position, keeping in mind that the X counter starts .over

from 0 at the 256th position on the screen. Change line 50 to read as
follows:

50 POKEV+16,1:POKE V,24:POKE V+l,75

1-60 :PROGRAMMING GRAPHICS

This line POKEs V+16 with the number required to "open up" the right

side of the screen. . .the new X position 24 for sprite 0 now begins 24

pixels to the RIGHT of position 255. To check the right edge of the
screen, change line 60 to:

60 POKE V+16,1:POKE V,65:POKE V+l,75

Some experimentation with the settings in the sprite chart will give you
the settings you need to position and move sprites on the left and right
sides of the screen. The section on "moving sprites" will also increase
your understanding of how sprite positioning works.

SPRITE PRIORITIES

You can actually make different sprites seem to move IN FRONT OF or
BEHINDeach other on the screen. This incredible three dimensional illu-

sion is achieved by the built-in SPRITEPRIORITIESwhich determine which
sprites have priority over the others when 2 or more sprites OVERLAPon
the screen.

The rule is "first come, first served" which means lower-numbered

sprites AUTOMATICALLYhave priority over higher-numbered sprites. For
example, if you display sprite 0 and sprite 1 so they overlap on the
screen, sprite 0 will appear to be IN FRONT OF sprite 1. Actually, sprite
o always supersedes all the other sprites because it's the lowest num-
bered sprite. In comparison, sprite 1 has priority over sprites 2-7; sprite
2 has priority over sprites 3-7, etc. Sprite 7 (the last sprite) has LESS
PRIORITYthan any of the other sprites, and will always appear to be
displayed "BEHIND" any other sprites which overlap its position.

To illustrate how priorities work, change lines 50, 60, and 70 in the
program above to the following:

18
20
31Z1
48
5121
68
7121

~ I"'~.":I'IM:I
I .. II' _C:"'-' . ~_r'.'-t'-' C:-. f!"'. '-,IC:'!:':'. ...P~INT. .V-~3,48.FOR~-o~,T089~.POKE~,~~~.NE0T

FORt1=2048T02042 : POKEM, 13: t.1E:>I,T.
POKEV+21,7
POKEV+39,1:POKEV+40,7:POKEV+41,8
POKEV., 24 : POKEV+ 1 , 5121: pm~E',...+16., (I
POKEV+2.34:POKEV+3,60
POKEV+4,44:PC~EV+5,70

You should see a white sprite on top of a yellow sprite on top of an

orangesprite. Of course, now that you see how priorities work, you can
also MOVE SPRITESand take advantage of these priorities in your ani-
mation.

PROGRAMMING GRAPHICS 161

DRAWING A SPRITE

Drawing a Commodore sprite is like coloring the empty spaces in a
coloring book. Every sprite consists of tiny dots called pixels. To draw a
sprite, all you have to do is "color in" some of the pixels.

Look at the spritemaking grid in Figure 3-6. This is what a blank sprite
looks like:

1
6312631
4 2 6 842 1 8 4 2 6 842 1

1
263 1
8 4 2 6 8 4 2 1

Figure 3-6. Spritemaking grid.

Each little "square" represents one pixel in the sprite. There are 24 pixels
across and 21 pixels up and down, or 504 pixels in the entire sprite. To
make the sprite look like something, you have to color in these pixels
using a special PROGRAM . . . but how can you control over 500 indi-
vidual pixels? That's where computer programming can help you. In-
stead of typing 504 separate numbers, you only have to type 63 num-
bers for each sprite. Here's how it works .

162 PROGRAMMING GRAPHICS

CREATING A SPRITE . . . STEP BY STEP

To make this as easy as possible for you, we've put together this
simple step by step guide to help you draw your own sprites.

STEP 1:

Write the spritemaking program shown here ON A PIECEOF PAPER.
note that line 100 starts a special DATAsection of your program which
will contain the 63 numbers you need to create your sprite.

~m:mm
10 PR HIT":1" : POKE53;,80, 5 : POKE53281 , 6
20 V=53248:POKEV+34,3
30 POKE53269,4:POKE2042,13
40 FORH=(;H062: READQ: POKE':'32+t.l.. Q : t.jEXT

100 DATA255,255,255
1'211 DATAI28,0..1
102 DATAI28..0.. 1
103 DRTAI28, 0..1
1(14 DATAI44.0.1-
105 Dt1TI"I144..0..1-
106 DATAI44,0,1-
107 DRTI"I144..0, 1-
108 DATAI44,0,1-
109 DATAI44,O,I-
110 DATAI44,Q,1-
111 DATAI44,0,1-
112 DATAI44,0,1-
113 DATAI44..(I, 1-
114 DATAI28, 0..1-
115 DATAI28, 0..1-
116 DATAI28,O,I-
117 DATA128, 0.. 1-
11:3 DATA128..0..1-
119 DATAI28,0,1-
12121DATA255., 255., 255
:2(10 :.<:=200: 'T'=1(1(1: POKE53252.. :":: POKE53253.. 'r'

STEP 2:

Color in the pixels on the spritemaking grid on Page 162 (or use a piece
of graph paper. . . remember, a sprite has 24 squares across and 21
squares down). We suggest you use a pencil and draw lightly so you can
reuse this grid. You can create any image you like, but for our example
we'll draw a simple box.

STEP 3:

look at the first EIGHTpixels. Each column of pixels has a number (128,
64, 32, 16, 8, 4, 2, 1). The special type of addition we are going to
show you is a type of BINARYARITHMETICwhich is used by most com-

PROGRAMMING GRAPHICS 163

2664 32 16 6 4 2 , 12864 32 16' 8 4 2 , 12864 32 '6 6 4 2 ,

puters as a special way of counting. Here's a close-up view of the first

eight pixels in the top left hand corner of the sprite:

STEP4:

Add up the numbers of the SOLID pixels. This first group of eight pixels
is completely solid, so the total number is 255.

STEP5:

Enter that number as the FIRST DATA STATEMENTin line 100 of the

Spritemaking Program below. Enter 255 for the second and third groups
of eight.

STEP6:

Look at the FIRSTEIGHT PIXELSIN THE SECOND ROW of the sprite. Add
up the values of the solid pixels. Since only one of these pixels is solid,
the total value is 128. Enter this as the first DATAnumber in line 101.

1618 4 2 1

STEP7:

Add up the values of the next group of eight pixels (which is 0 because

they're all BLANK)and enter in line 101. Now move to the next group of
pixels and repeat the process for each GROUPOF EIGHTPIXELS(there
are 3 groups across each row, and 21 rows). This will give you a total of
63 numbers. Each number represents ONE group of 8 pixels, and 63
groups of eight equals 504 total individual pixels. Perhaps a better way
of looking at the program is like this . . . each line in the program
represents ONE ROW in the sprite. Each of the 3 numbers in each row
represents ONE GROUP OF EIGHT PIXELS. And each number tells the

computer which pixels to make SOLID and which pixels to leave blank.

164 PROGRAMMING GRAPHICS

STEP 8:

CRUNCH YOUR PROGRAM INTO A SMALLER SPACE BY RUNNING TO-

GETHER ALL THE DATA'STATEMENTS, AS SHOWN IN THE SAMPLE PRO-

GRAM BELOW. Note that we asked you to write your sprite program on
a piece of paper. We did this for a good reason. The DATA STATEMENT

LINES 100- 120 in. the program. in STEP 1 are only thereto help you. see
which numbers relate to which 'groups of pixels in your sprite. Your final
program should be "crunched" like this:

~S!iImm
1121"PRHlT":J" :'POI<E53280, 5: POKE53281., 6
2(1 V=5::::24:3: POKEV+34,. 3
30 POKE53269., 4 : POKE2042, 13
4121FOF.:I'I=0T062: READQ : POKE832+t.j, Q : NEi':T
100 DATA255,255,255,128,(I,1,128,0,1,128,O.I,144,(I,
1,144,0,1..144,0,1,144,(1,1
101 DATAL44,0,1,144~0,1,144,O,1,144,e,I,144,0,1,
144, 0., 1 .' 12:::., (I, L 128, 0, 1
11212DI=tTAI28, 10,1.,128.,121,1,128.,.(1,1.,128.. e.. 1..255.. 255, 25~l
20tt ;<:=200: ITI=100 : POI<E53252., :x:: POKE53253., IT'

MOVING YOUR SPRITE ON THE SCREEN

Now that you've created your sprite, let's do some interesting things.
with it. To move your sprite: smoothly across the screen, add these two

lines' to your program:

50 POKE V+5,100:FOR X=24T0255:POKE V+4,X:NEXT:POKE
V+16,4'

55 FOR X=OT065:POKE V+4,X:NEXT X:POKE V+ 16,0:GOTO 50

LINE 50 POKEs the. Y POSITION at 100 (try 50 or 229 instead for
variety). Then it sets up a FOR . . . NEXT loop which POKEs the sprite

into X position 0 to X position 255, in order. When it reaches the 255th

position, it POKEs the RIGHT X POSITION (POKE V+ 16,4) which is re-
quired to'cross to' the riglit.side of the s<:reen.

LINE55 hasa FOR. . . NEXTloop which continues to POKEthe sprite
in. the last 65 positions on the screen. Note that the X value was reset to
zero but because you. used the RIGHT X setting (POKE V+ 16,2) X starts
over on the right side of the screen.

This line keeps going back to itself (GOTO 50).. If you just. want the
sprite to' move ONCE' across the screen and disappear, then take. out
GOT050.

PROGRAMMINGGRAPHICS 165.

,Here's a line which moves the sprite BACKAND FORTH:

50 POKE V+5,100:FOR X=24T0255:POKE V+4,X:NEXT: POKE
V+16,4:FOR X=OT065: POKE V+4,X: NEXT X

55 FOR X=65TOO STEP-l:POKE V+4,X:NEXT:POKE V+16,O: FOR
X=255T024 STEP-l: POKE V+4,X:NEXT

60 GOTO 50

Do you see how these programs work? This program is the same as the
previous one, except when it reaches the end of the right side of the
screen, it REVERSES.ITSELFand goes back in the other direction. That is
what the STEP-l accomPlishe

~

. . . it tells the program to POKE the
sprite into X values from 65 to 0 on the right side of the screen, then
from 255 to 0 on the left sid of the screen, STEPping backwards
minus-l position at a time.

VERTICAL SCROLLING

This type of sprite movement

t
called "scrolling." To scroll your sprite

up or down in the Y position, 'ou only have to use ONE LINE. ERASE
LINES 50 and 55 by typing t e line numbers by themselves and
hitting .:l:IIII~~I. like this:

50 (

55 (

Now enter LINE50 again as follOws:

50 POKE V+4,24:FOR Y=OT0I255:POKE V+5,Y:NEXT'

THE DANCING MOUSE-A SPRITE PROGRAM EXAMPLE

Sometimes the techniques d

!
Cribed in a programmer's reference

manual are difficult to understa d, so we've put together a fun sprite
program called "Michael's Dan ing Mouse." This program uses three
different sprites in a cute animation with sound effects-and to help
you understand how it works we've included an explanation of EACH
COMMAND so you can see exactly how the program is constructed:

166 PROGRAMMING GRAPHICS

5 8=54272: POKES+24~, 15: POKES., 22121: POKES+ 1.-68 : POKES+5,
15:POKES+6,215
1121POKES+7,120:POKES+8,100:POKES+12,15:POKES+13,215

'~III.~.":I.h'JI:I

15 PRIHT":J": V=53248: POKEV+2L 1
2~ZI FORS 1 =12288TO 1235121 : READQ 1 : POKES 1 , Q1 : HE:":T

25 FORS2= 12352TO 12414 : F.:EAD02: POKES2., 02 : t.JE:":T
30 FORS3=12416TOI2478:READQ3:POKES3,Q3:HEXT
35 POKEV+39,15:POKEV+l,68

,,&lIB
40 PF.:IHTTAB (16(1) "=11 At-! THE
45 P=192
5121FORX=I2IT0347STEP3
55 RX=INT(X/256):LX=X-RX*256
60 POKE V, U<:: POKEV+ 16, f;:>~
7(1 I FP= 192THE~JG08U:E:200
75 IFP=193THEHGOSUB3121121
8121POKE204e,p:FORT=1T06121:HE>~
:35 P=P+l:IFP>194THENP=192
9121HE:":T
95 EHD
1121121DATi''I:3(1.-er, 12121.,63.- (I.- 252., 127, 129., 254., 127.- 129, 254,

DAtJC UJO t1iU I'''E
;6Ia

- -"-' ! ~II

127~189~254~127~255J254
101 DATA63,255,252,31,187J248J3,187,192Jl,255J128,
3,189,192,1,231,128,1,255,121
102 DATA31,255,O,0,124,0,0,254,0,1.199.32.3.131.
224,7,1,192.1.192,0,3,192,121
103 DATA30,12I. 12121,63.0,252,127,129,254,127, 129,254
127J189J254J127J255.. 254
11214 DATA63,255,252,31,221,248,3,221~192,1,255,128,
3J255J192~1}195J128}lJ231J3
105 DATA31)255J255)0)124)0)0)254~0)lJ199J0J7J1J128J
7,0,21214,1.128,124,7,128,56
106 DATA30,0.12121,63~0,252,127,129,254.127,129,254.
127)189)254)127)255)254
107 DATA63,255,252,31,221,248.3,221,192,1,255,134.
3,189,204,1,199,152~1,255,48
108 DATI'=!1 .255., 22"1., 1 .-252., 0., 3., 254., 0
109 DATA7,14,0,204,14,O,248,56,0,112,112,O,O.60,O.
-1
20121 POKES+4,129:POKES+4, 128:RETURN
31210 POKE8+11 , 129:POKES+l1. 128:RETURN

PROGRAMMING GRAPHICS 167

LINE 5:

5=54272

POKES+24, 15'

POKES,220

POKES+ 1,68

POKES+5,15

POKES+6~215

LINE' 10:

POKES+7,120

POKES+8,100

POKES+12,15

POKES'+13,2l5

LINE 15:

PRINT" Emil'
1...~.j:I.]fll:l II

V=53248

POKfV+2l,1

Sets the variable 5 equal to 54272, which is the
beginning memory location of the SOUND CH1P.
From now on, instead of poking a direct memory
location, we will POKE 5 plus a value..
Same, as POKE '54296,1-5 which sets VOLUME'to
highest leveL.
Same as POKE- 54272,220 which sets Low Fre-

quency in Voice 1"for a note which approximates'
high'C in Octave' 6.
Same as POKE.54273~68' which sets High Fre'"
quencyin Voice 1 for a. note: which approximates
high- C. in Octave 6;
Same as POKE 54277,15 which sets Attack/Decay
for Voice 1 and; in thi~ 'case co,nsists of the

maximum DECAYlevel' with no attack, which' pro'" .
duces the "echo"'effect.
Same as POKE 54278,21S'which sets' Sustain/ Re-
lease. for Voice 1 (21"5 represents a combination
of sustain and release values). .

Same as POKE 54279, 120'which sets the-Low Fre-
quency for Voice 2.
Same as POKE 54280,100 which se1s the High
Frequency' for Voice .2.
Same as POKE 54284,15 which sets Attack/Decay
for Voice 2 to same level .as Voice 1 above.
Same' as POKE 54285;215,which sets Sustain/ Re-
lease for Voice 2 to same level as Voice 1 above.

Clears the screen when the program begins.

Defines the variable "v" as the starting location

of the VIC chip which controls sprites. From now

on we will define sprite locations as V plus a
value.

Turns on (enables)' sprite number 1.

168 PROGRAMMING GRAPHICS

LINE 20:

FORS 1= 12288

TO 12350

READ Q 1

POKES1,Q1

NEXT

We are going to use ONE SPRITE(sprite 0) in this
animation, but we are going to use THREEsets of
sprite data to define three separate shapes. To
get our animation, we will switch the POINTERS
for sprite ° to the three places in memory where
we have stored the data which defines our three

different shapes. The same sprite will be rede-
fined rapidly over and over again as 3 different
shapes to produce the dancing mouse animation.
You can define dozens of sprite shapes in DATA
STATEMENTS,and rotate those shapes through
one or more sprites. So you see, you don't have to
limit one sprite to one shape or vice-versa. One
sprite can have many different shapes, simply by
changing the POINTER SETTING FOR THAT
SPRITE to different places in memory where the
sprite data for different shapes is stored. This
line means we have put the DATA for "sprite
shape 1" at memory locations 12288 to 12350.

Reads 63 numbers in order from the DATAstate-

ments which begin at line 100. Q1 is an arbitrary
variable name. It could just as easily be A, Z1 or
another numeric variable.

Pokes the first number from the DATA statements

(the first "Q1" is 30) into the first memory location
(the first memory location is 12288). This is the
same as POKE12288,30.

This tells the computer to look BETWEENthe FOR
and NEXT parts of the loop and perform those
in-between commands (READQ1 and POKES1,Q1

using the NEXTnumbers in order). In other words,
the NEXTstatement makes the computer READthe
NEXTQ1 from the DATASTATEMENTS,which is 0,
and also increments S1 by 1 to the next value,
which is 12289. The result is POKE12289,0 . . .
the NEXT command makes the loop keep going
back until the last values in the series, which are
POKE 12350,0.

PROGRAMMINGGRAPHICS 169

LINE 25:

FORS2 = 12352

TO 12414

READQ2

POKES2,Q2

NEXT

LINE 30:

FORS3= 12416
TO 12478
READQ3
POKES3,Q3

NEXT

LINE 35:

POKEV+39,15
POKEV+ 1,68

The second shape of sprite zero is defined by the
DATA which is located at locations 12352 to
12414. NOTE that location 12351 is SKIPPED. . .
this is the 64th location which is used in the

definition of the first sprite group but does not
contain any of the sprite data numbers. Just re-
member when defining sprites in consecutive lo-
cations that you will use 64 locations, but only
POKE sprite data into the first 63 locations.
Reads the 63 numbers which follow the numbers

we used for the first sprite shape. This READsim-
ply looks for the very next number in the DATA
area and starts reading 63 numbers, one at a
time.

Pokes the data (Q2) into the memory locations
(52) for our second sprite shape, which begins at
location 12352.
Same use as line 20 above.

The third shape of sprite zero is defined by the
DATAto be located at locations 12416 to 12478.

Reads last 63 numbers in order as Q3.
Pokes those numbers into locations 12416 to
12478.
Same as lines 20 and 25.

Sets color for sprite 0 to light grey.
Sets the upper right hand corner of the sprite
square to vertical (Y) position 68. For the sake of
comparison, position 50 is the top lefthand corner
Y position on the viewing screen.

170 PROGRAMMING GRAPHICS

LINE 40:

PRINTTAB(160)

I AM THE
DANCING
MOUSE!

mil"

LINE 45:

P= 192

LINE 50:

FORX=OT0347
STEP3

Tabs 160 spaces from the top lefthand CHAR-
ACTERSPACE on the screen, which is the same as
4 rows beneath the clear command. . . this starts

your PRINT message on the 6th line down on the
screen.

Hold down the B8 key and press the key
marked 11II at the same time. If you do this
inside quotation marks, a "reversed E" will ap-
pear. This sets the color to everything PRINTed
from then on to WHITE.

This is a simple PRINT statement.

This sets the color back to light blue when the
PRINT statement ends. Holding down m and

II at the same time inside quotation marks
causes a "reversed diamond symbol" to appear.

Sets the variable P equal to 192. This number 192
is the pointer you must use, in this case to "point"
sprite 0 to the memory locations that begin at lo-
cation 12288. Changing this pointer to the loca-
tions of the other two sprite shapes is the secret of
using one sprite to create an animation that is
actually three different shapes.

Steps the movement of your sprite 3 X positions at
a time (to provide fast movement) from position 0
to position 347.

PROGRAMMING GRAPHICS 171

LINE 55:

RX=INT(X/256)

LX=X-RX*256

LINE 60:

POKEV,LX

POKEV+16,RX

LINE 70:

IFP= 192THEN

GOSUB200

RXis the integer of X/256 which means that RXis
rounded off to 0 when X is less than 256, and RX
becomes 1 when X reaches position 256. We will
use RXin a moment to POKE V+16 with a 0 or 1
to turn on the "RIGHT SIDE" of the screen.

When the sprite is at X position 0, the formula
looks like this: LX= 0 - (0 times 256) or o. When
the sprite is at X position 1 the formula looks like
this: LX= 1 - (0 times 256) or 1. When the sprite
is at X position 256 the formula looks like this: LX
= 256 - (1 times 256) or 0 which resets X back to
o which must be done when you start over on the
RIGHT SIDEof the screen (POKEV+16,1).

You POKE V by itself with a value to set the Hori-
zontal (X) Position of sprite 0 on the screen. (See
SPRITEMAKING CHART on Page 176). As shown
above, the value of LX, which is the horizontal

position of the sprite, changes from 0 to 255 and
when it reaches 255 it automatically resets back
to zero because of the LXequation set up in line
55.

POKEV+16 always turns on the "right side" of
the screen beyond position 256, and resets the
horizontal positioning coordinates to zero. RX is
either a 0 or a 1 based on the position of the
sprite as determined by the RXformula in line 55.

If the sprite pointer is set to 192 (the first sprite
shape) the waveform control for the first sound ef-
fect is set to 129 and 128 per line 200.

172 PROGRAMMING GRAPHICS

LINE 75:

IFP=193THEN
GOSUB300

UNE 80:

POKE2040,P

FORT= lT060:
NEXT

LINE85:

P=P+1

IFP>194THEN
P= 192

If the sprite pointer is set to '193 (the second
sprite shape) the waveform control for the second
sound effect (Voice 2) is set to 129 and 128 per
line 300.

Sets the SPRITE POINTER to location 1-92 (re-
member P=192 in line 451 Here's where we use

the P).
A simple time delay loop which sets the speed at
.which the mouse dances. (Try a faster or slower
speed by increasing/decreasing the number t>0.)

Nowwe increase the value,of the pointer by add-
ing 1 'to the original value ofP.
We only w.ant to point the sprite YO3 memory lo-
cations. '192 points to locations 1"2288 to ,12350,
193 points to locatio'ns 12352 to 12414, and 194
points to locations 12416 to 12478. This line tells
the computer to reset P back to 192 as ,soon as P
becomes 195 so P never really becomes 195. P is
192, '193, 194 and then resets back to 192 and
the pointer winds up pointing consecutively to the
three sprite shapes in the three 64-byte groups of
memory locations containing the' DATA.

PROGRAMMING GRAPHICS 173

LINE90:

N EXTX

LINE 95

END

LINES100-109

DATA

After the sprite has become one of the 3 different
shapes defined by the DATA, only then is it
allowed to move across the screen. It will jump 3
X positions at a time (instead of scrolling smoothly
one position at a time, which is also possible).
STEPping 3 positions at a time makes the mouse
"dance" faster across the screen. NEXTX matches

the FOR. . . X position loop. in line 50.

ENDs the program, which occurs when the sprite
moves off the screen.

The sprite shapes are read from the data num-
bers, in order. First the 63 numbers which com-
prise sprite shape 1 are read, then the 63 num-
bers for sprite shape 2, and then sprite shape 3.
This data is permanently read into the.3 memory
locations and after it is read into these locations,
all the program has to do is point sprite 0 at the
3 memory locations and the sprite automatically
takes the shape of the data in those locations.
We are pointing the sprite at 3 locations one at a
time which produces the "animation" effect. If
you want to see how these numbers affect each
sprite, try changing the first 3 numbers in liNE
100 to 255, 255, 255. See the section on defining
sprite shapes for more information.

174 PROGRAMMING GRAPHICS

LINE 200:

POKES+4,129

POKES+4,128

RETURN

LINE 300:

POKES+11,129

POKES+ll,128

RETURN

Waveform control set to 129 turns on the sound
effect .
Waveform control set to 128 turns off the sound
effect .
Sends program back to end of line 70 after
waveform control settings are changed, to resume

program.

Waveform control set to 129 turns on the sound"
effect .
Waveform control set to 128 turns off the sound
effect .
Sends program back to end of line 75"to resume.

PROGRAMMING GRAPHICS 175

EASY SPR1TEMAKING CHART

176 PROGRAMMING' GRAPHICS

SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE

0 1 2 3 .. 5 6 7

Turn on Sprite V+21,r V+21,2 V+21,4 V+21,8 V+21,16 V+21,32 V+21,64 V+21,128

Put in.Memory 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047,

(Set Pointers) 192 193 194 195 196 197 198 199

Locations for 12288. 12352 12416 12480. 12544 12608 12672. 12736

Sprite Pixel to to to to to to to to

(12288-12798) 12350 12414' 1247.8 12542 12606 12670 12734 12798

Sprite Color V+39,C V+40,C V+41,C V+42,C .V+43,C V+44,C V+45,C V+46,C

Set LEFTX V+O,X V+2,X V+4,X V+6,X V+8,X V+10,X V+12,X V+14,X

Position (0-255)

Set RIGHT X V+16,1. V+16,2 V+16,4 V+16,8 V+16,16 V+16,32 V+16,64 V+16,128

Position. (0- 255) V+O,X V+2,X V+4,X' V+6,X V+8,X V+10,X V+12,X V+14,X

Set Y Position V+I,Y V+3,Y V+5,Y V+7;Y. V+9,Y V+I1,Y V+13,Y V+15,Y

Expand Sprite V+29,1 V+29,2 V+29,4 V+29,8 V+29,16 V+29,32 V+29,64 V+29,128

Horizontally/)(

Expand Sprite V+23',1 V+23,2 V+23.4 V+23,8 V+23,16 V+23,32 V+23,64 V+23,128

Vertica lIylY

Tum On (Set) V+28,1 V+28,2 V+28;4 V+28,8 V+28,16 V+28,32 V+28,64 V+28,128

Multi-Color Mode

Multi-Color 1 V+37,C V+37,C V+37;C V+37,C V+37,C. V+37,C V+37,C V+37,C'

(First Color)

Multi-Color 2 V+38;C V+38,C V+38,C V+38,C V+38,C V+38,C V+38,C V+38,C

(Second Color)

Set Priority The rule is that lower numbered '.sprites always have display priority over higher

of Sprites numbered sprites. For example, sprite'O has priority over ALLother sprites, sprite

7 has last priority. This means lower numbered sprites always appearto move
IN FRONT OF or ON TOP OF higher numbered sprites.

Collision (Sprite

to Sprite) V+30 IF PEEK(V+30)ANDX=X THEN [action]

Collision (Sprite

to Background) V+31 IF PEEK(V+31)ANDX=X THEN [action]"

SPRITEMAKING NOTES

Alternative Sprite Memory Pointers and Memory Locations
Using Cassette Buffer

TURNING ON SPRITES:

You can turn on any individual sprite by using POKE V+21 and the

number from the chart. . . BUT. . . turning on just ONE sprite will turn
OFF any others. To turn on TWO OR MORE sprites, ADD TOGETHERthe
numbers of the sprites you want to turn on (Example: POKEV+21, 6 turns
on sprites 1 and 2). Here is a method you can use to turn one sprite off
and on without affecting any of the others (useful for animation).

EXAMPLE:

To turn off just sprite 0 type: POKE V+21,PEEK V+21AND(255-l).
Change the number 1 in (255-1) to 1,2,4,8,16,32,64, or 128 (for sprites
0-7). To re-enable the sprite and not affect the other sprites currently
turned on, POKEV+21, PEEK(V+2l)OR 1 and change the OR 1 to OR 2
(sprite 2), OR 4 (sprite 3), etc.

X POSITION VALUESBEYOND 255:

X positions run from 0 to 255 . . . and then STARTOVER from 0 to
255. To put a sprite beyond X position 255 on the far right side of the
screen, you must first POKE V+ 16 as shown, THEN POKE a new X value
from 0 to 63, which will place the sprite in one of the X positions at the
right side of the screen. To get back to positions 0-255, POKE V+16,0
and POKE in an X value from 0 to 255.

Y POSITION VALUES:

Y positions run from 0 to 255, including 0 to 49 off the TOP of the
viewing area, 50 to 229 IN the viewing area, and 230 to 255 off the
BOTTOM of the viewing area.

PROGRAMMINGGRAPHICS 177

Put in Memory SPRITE 0 SPRITE 1 SPRITE 2 If you're using 1 to 3 sprites
(Set pointers) 2040,13 2041,14 2042,15 you can use these memory

locations in the cassette

Sprite Pixel 832 896 960 buffer (832 to 1023) but
Locations for to 894 to 958 to 1022 for more than 3 sprites we
Blocks 13-15 suggest using locations from

12288 to 12798 (see chart).

SPRITE COLORS:

To make sprite 0 WHITE, type: POKE V+39,1 (use COLOR POKE SET-
TING shown in chart, and INDIVIDUALCOLOR CODES shown below):

0- BLACK
1-WHITE
2-RED
3-CYAN

4-PURPLE
5-GREEN
6-BLUE
7 - YELLOW

8-0RANGE 12-MED. GREY
9-BROWN 13-LT. GREEN
10-LT. RED 14-LT. BLUE

ll-DARK GREY15-LT. GREY

MEMORY LOCATION:

You must "reserve" a separate 64-BYTE BLOCK of numbers in the
computer's memory for each sprite of which 63 BYTESwill be used for
sprite data. The memory settings shown below are recommended for
the "sprite pointer" settings in the chart above. Each sprite will be
unique and you'll have to define it as you wish. To make "all sprites
exactly the same, point the sprites you want to look the same to the
same register for sprites.

DIFFERENT SPRITE POINTER SETTINGS:

These sprite pointer settings are RECOMMENDATIONSONLY.
Caution: you can set your sprite pointers anywhere in RAM memory

but if you set them too "low" in memory a long BASIC program may
overwrite your sprite data, or vice versa. To protect an especially LONG
BASIC PROGRAM from overwriting sprite data, you may want to set the
sprites at a higher area of memory (for example, 2040,192 for sprite 0
at locations 12288 to 12350 . . . 2041,193 at locations 12352 to 12414

for sprite 1 and so on . . . by adjusting the memory locations from which
sprites get their "data," you can define as many as 64 different sprites
plus a sizable BASIC program. To do this, define several sprite "shapes"
in your DATAstatements and then redefine a particular sprite by chang-
ing the "pointer" so the sprite you are using is "pointed" at different
areas of memory containing different sprite picture data. See the "Danc-
ing Mouse" to see how this works. If you want two or more sprites to
have THE SAME SHAPE (you can still change position and color of each
sprite), use the same sprite pointer and memory location for the sprites
you want to match (for example, you can point sprites 0 and 1 to the
same location by using POKE 2040,192 and POKE 2041, 192).

178 PROGRAMMING GRAPHICS

PRIORITY:

Priority means one sprite will appear to move "in front of" or "behind"

another sprite on the display screen. Sprites with more priority always

appear to move "in front of" or "on top of" sprites with less priority. The
rule is that lower numbered sprites have priority over higher numbered

sprites. Sprite 0 has priority over all other sprites. Sprite 7 has no priority

in relation to the other sprites. Sprite 1 has priority over sprites 2-7, etc.

If you put two sprites in the same position, the sprite with the higher

priority will appear IN FRONT OF the sprite with the lower priority. The
sprite with lower priority will either be obscured, or will "show through"

(from "behind") the sprite with higher priority.

USING MULTI-COLOR:

You can create multi-colored sprites although using multi-color mode
requires that you use PAIRSof pixels instead of individual pixels in your
sprite picture (in other words each colored "dot" or "block" in the sprite
will consist of two pixels side by side). You have 4 colors to choose from:
Sprite Color (chart above), Multi-Color I, Multi-Color 2 and "Background
Color" (background is achieved by using zero settings which let the
background color "show through"). Consider one horizontal 8-pixel block
in a sprite picture. The color of each PAIRof pixels is determined accord-
ing to whether the left, right, or both pixels are solid, like this:

CD BACKGROUND (Making BOTH PIXELS BLANK (zero) lets the

INNER SCREEN COLOR (background) show

through.)

MULTI-COLOR 1 (Making the RIGHT PIXEL SOLID in a pair of
pixels sets BOTH PIXELS to Multi-Color 1.)

(Making the LEFTPIXEL SOLID in a pair of pixels
sets BOTH PIXELS to Sprite Color.)_ MULTI-COLOR 2 (Making BOTH PIXELS SOLID in a pair of pixels

sets BOTH PIXELSto Multi-Color 2.)

SPRITE COLOR

PROGRAMMING GRAPHICS 179

Look at the horizontal 8-pixel row shown below. This block sets the
first two pixels to background color, the second two pixels to Multi-Color
1, the third two pixels to Sprite Color and the fourth two pixels to Multi-
Color 2. The color of each PAIR of pixels depends on which bits in
each pair are solid and which are blank, according to the illustration
above. After you determine which colors you want in each pair of pixels,
the next step is to add the values of the solid pixels in the 8-pixel block,
and POKEthat number into the proper memory location. For example, if
the 8-pixel row shown below is the first block in a sprite which begins at
memory location 832, the value of the solid pixels is 16+8+2+1 = 27,
so you would POKE 832,27.

27

, 16 + 8 + 2 + l'

I 8 I 4 I 2 I 1 I

COLLISION:

You can detect whether a sprite has collided with another sprite by
using this line: IF PEEK(V+30)ANDX=XTHEN [insert action here]. This line
checks to see if a particular sprite has collided with ANY OTHERSPRITE,
where X equals 1 for sprite 0, 2 for sprite 1, 4 for sprite 2, 8 for sprite 3,
16 for sprite 4, 32 for sprite 5, 64 for sprite 6, and 128 for sprite 7. To
check to see if the sprite has collided with a "BACKGROUND CHAR-
ACTER" use this line: IF PEEK(V+3l)ANDX=XTHEN [insert action here].

180 PROGRAMMING GRAPHICS

USING GRAPHIC CHARACTERS IN DATA STATEMENTS

The following program allows you to .create Q.sprite using blanks and
solid circles (').in DATAstatements. The spr~te:and the num-
bers. POKEd .into the sprite data registers are displayed.

.:-BllilCIIiIII
18 PR!NT" ~ :FiJRI =8T063 : POKE832+ I .' 8 : HE)<:T
:;-~8GOSU:E:6iZ1000

.999 Et.m
6IZU,;I0€1DATA".......
613001 IIATA" GI1IiI..dill "
61,miZ12DATA" ,Ii.
6130103 DATA" 811I1111I'11I110
6012ltNDATI=t" .'IIII.iP8
613£11215DATA"
6013iZI6DATA" '1lilDiP....
6121131217DATA"
60808 DATA"...Ci.............
6(18£19 DA'TA "..............
6€11211121IIATA"111..'11I"111'.'Ii
612112111DATA" 11II...111... .
68tH2 DATA" " .
60813DATA"GI 1Ii1ill.
613014DATA" . ,... ..
60015 DATA" 011I. .
68016 DATA" II
613817DATA"
601318DfiTI"i"
68819 DATA"
61302121.DATA" ...
601£1(1 '11=53248: POKEV, 21313:POKEV+1.. 10121:POKEV+21, 1 :
POKEV+39,14:POKE2848,13
6~U 1215F.'OKE'y'+23, 1 : POKEV+29, 1
6121110 FOR I =(1T020 :.READA$: FORK=0T02 : T=13: FOF:J=1<n07 : B=13
612114121IFtlID$(,A$.. J+K:+:8+1.. 1)="."THEHB=l
6015121 T=T+B*2'f'(7-~T): HEXT: PRIHTT.; : POKE832+I*:;:HK, T:
NE:>::T : PFH t-n : t'IE>':T

612121210 RETUR:t.1

PROGRAMMING GRAPHICS .181

