
QOITimOClOPB Commodore Canada's
Tech/News Periodical

The Transactor
VOLUME 1

Issue #4

Bits & Pieces

Suppressed '?'

In the latest Midnight Software Gazette a POKE was

published to suppress the question mark that follows an INPUT
command prompt. Try this short program:

10 POKE 16, 1 (BASIC 2.0: POKE 14, 1)
20 INPUT "DATA ";A$

30 PRINT A$

Note that line 20 prompts for 'DATA • with no "?" following.

But when you hit RETURN after typing some characters, line 30

prints this string on the same line. This is a residual

affect of the POKE in line 10. You might be able to use this

to your advantage but to get a line feed between lines 20 and

30 you'll have to do an extra PRINT. Subsequent INPUT

commands will also have the "?" suppressed. Get it back with

POKE 16, 0. The program then becomes:

10 POKE 16, 1 (BASIC 2.0: POKE 14, 1)

20 INPUT "DATA ";A$

10 POKE 16, 0 (BASIC 2.0: POKE 14, 0)
40 PRINT

50 PRINT A$

By the way, the Midnight Software Gazette is available FREE

by sending a self-address STAMPED envelope to:

CIPUG

635 Maple

Mt. Zion, Illinois

U.S.A.

62549

The Midnight publishes some great editorials and

reviews, the latest news, other info sources, and interesting

facts about PET, CBM and now VIC! And for the price, it
can't be beat!

The Transactor is produced on the CBM 803? with WordPro IV

Plus and the NEC SDinwritpr

Index Transactor #4

Bits & Pieces 1

Suppressed '?' 1

Cassette Notes 3

Weekday Calculator 4

Steve's BBS 4

Disk User Notes 5

SYS 'EM! 6

Linefeed De-Defeat 6

Harmless Bugs Dept 6

CONCAT 7

Sound OFF 7

COLLECT 8

Keyword Abbreviations 10

Subscription Fees 11

M.L. Keyed Random Access 12

ROM Sockets 18

4032 Program Conversions 20

Butterfield On Tap! 24

Word Count 9 28

COMAL Users Group Information 37

Review: SX-100 Modem Software 3 8

DUMP-MATE; A Cassette Multi-Loader ... 40

The User Port Cookbook

Get Your PET On The IEEE-4 88 Bus

J.B.'s SuperChart

Jeff Kriss of Toronto has submitted the POKEs for

turning the cassette motors on or off for BASIC 4.0 machines.

It seems they1re not quite the same as before. Now you need

an extra POKE to turn them off.

Cassette #1: OFF POKE 249, 52

POKE 59411, 61

ON POKE 249, 0

Cassette #2: OFF POKE 250f 52

POKE 59456, 61

ON POKE 250, 0

Ernest Blaschke of Toronto has this friendly bit of

information:

"When loading a program or reading a data-file from tape,

quite often I forget to press the cassette deck STOP button

after the tape has stopped moving. - This can result in dire

consequences when later, in the program, a file is opened for

writing on tape, and yet the cassette is still on "PLAY"

rather than "PLAY & RECORD". As a safeguard against this

happening, I now routinely include a line in my program as

follows:

10 IF (PEEK (59408) AND 16) = 0 THEN

PRINT "STOP TAPE" : WAIT 59408, 16

Anyone using two tape drives will need these, two lines:

10 P9 = PEEK(241) : P8 - 59408

20 IF (PEEK (P8) AND 16 * P9) = 0 THEN

PRINT "STOP TAPE #";P9 : WAIT P8, 16 * P9

This will eliminate any potential problems. Presumably the

59408 location may have changed with the new ROMs ?"

The above is for BASIC 1.0 ROMs. For BASIC 2.0 & 4.0 the

59408 location stays the same. Change the 241 in line 10 to
a 212.

The circuit below can be added to the Poor Man's D/A

Converter (Volume 2, Issue #11) or simply used by itself.

Pins 6 and 8 of the User Port (top pins) are connected to the

tape read pins on the cassette ports. Due to numerous main

logic board variations, it would be tod difficult to say

which pin belongs to which cassette. But for the price of

two 330K resistors, it would be a shame not to hook up both.

o V out

The 8K resitor and the .01 microfd cap, are already in the

D/A. If you already have this D/A circuit builtf simply add

these parts. Now when the cassette is being readr the signal

will also be sent to your amplifier... an audio cassette

monitor 1

Weekday Calculator

This neat little subroutine returns the day of the week

for any date given in DAY/MONTH/YEAR format. Of course you

could change it around for YEAR/MONTH/DAY... just alter the
order of the variables following the INPUT statement. The

program does not check for date validity... but that's no

problem. Just do some testing for day greater than 31 some

months, 30 other months and 28 for February. For leapyears,

do an extra test of YEAR/4=INT(YEAR/4) in the case of Feb.

29.

100 INPUT "DD, MM, YYYY";D,MfY

110 K = INT((60+ (100/M))/100)

120 F = 365 * Y + D + 31 * (M-l) - INT(.4*M+2,3) * (1-K)

130 F = F + INT((Y-K/4) - INT(.75*(INT((Y-K) / 100+1)))

140 F = F - INT(F/7) * 7

150 PRINT MID$("SATSUNMONTUEWEDTHUFRIttr F * 3 + 1, 3)

Steve's BBS

Steve Punter of WordPro fame (and fortune I hasten to

add) , has developed a Bulletin Board System for use with

PET/CBMs. Much like WordPro, the system has several great

features; User LOG and daily LOG, upload/download

capabilities for programs, WordPro files and SEQ files,

optional protection on messages and-programs, optional

password sign-on, formatted messages, bulletin section and

much more... plus all the editing functions a SYSOP could

ever ask for! Steve runs his own system at 416-624-5431.

Operating hours are:

Mon-Fri: 8 PM. - 9 AM.

Weekends: All Day!

Give it a try! (mention how you found out about it) Steve's

system runs TV, movie, and restaurant reviews plus numerous

provocative discussions and debates by regular columnists.

Any ASCII terminal or terminal program can be used, but to

up/download programs you111 need Stevefs own terminal program

which is FREE of charge (see your Commodore dealer).

The Bulletin Board Host System will soon be distributed

by Commodore and available from any authorized Commodore

dealer. A simple circuit schematic is included to modify the

Commodore 8010 Modem for auto-answering capability. Steve

even plans to make the system compatable with the DATAPAC

network (available early 1982) .

- 4 -

Disk User Notes

Henry Troup of Mississauga has this valuable information

for BASIC 4,0 programmers with disk units:

"Mixing BASIC 2.0 OPEN to disk and BASIC 4.0 DOPEN commands

can be hazardous to your health! The full OPEN command is:

OPEN lfr dv, sar fn

where: If is the logical file number

dv is the device number

sa is the secondary address

fn is the filename

But the BASIC 4.0 command is:

DOPEN#lff fn

Notice that only "If1 and 'fn1 are declared by the programmer

('dv1 defaults to 8)• While there is convenience in allowing

the machine to choose the secondary address, there is danger

in mixing the two forms. If DOPEN has used a secondary

address, there is absolutely nothing to stop you from

re-using it in a subsequent OPEN. There never was before

either (when DOPEN didn't exist), but at least you could see

the secondary addresses selected.

The only mechanism the disk drive has to tell two files apart

is the secondary address: if two open files have the same SA,

they are considered the same file. This can cause all kinds

of havoc with your files.

What's the cure? Don't mix OPEN to disk with DOPEN. Use one

or the other, but if you choose the OPEN command for disk I/O

(which is still supported by. BASIC 4.0), be sure that

different secondary addresses are selected for files that

will be open simultaneously. If you want to see what DOPEN

is doing in terms of secondary addresses, see my article

"FILESTATUS" in Transactor #10, Volume 2.

One last note... a string variable to specify the filename in

a DOPEN command, the variable must enclosed in round brackets

or parenthesis. The same goes for variables used to specify

logical file number, drive number, device or unit number, and

record length.

100 DOPEN#8, "SOME FILE", dl, u9

using variables: 100 LF=8 : FN$="SOME FILE" : DR=1 : DV=9

110 DOPENt(LF), (FN$), D(DR), U(DV)

- 5 -

SYS 'EMI

Two useful SYS addresses to note:

SYS 64790

SYS 54386

The first does a jump to 'warm start1... kinda like

turning the machine off and back on again, but without that

nasty power interruption. The second can be extremely handy

when you want to send an M.L.M. memory dump to the printer.

It seems that breaking to the monitor with SYS 4 cancels any

CMD status you may have set up previously.

Extra Linefeeds Anyone ?

In BASIC 2.0, the PRINT* command always wanted to send a

Linefeed (CHR$(10)) after the Carriage Return (CHR$(10)).
As a lot of us disk users know, this was a pain! But not

always... some printers that don't automatically do a line

advance require that linefeed character to be sent (eg. LIST

to printer)• So when Commodore decided to alter this for

BASIC 4.0, some careful thinking was necessary. The

engineers decided that logical file numbers of 128 or greater

would send the LF, while numbers below 128 would not. With

PRINT! to the disk, you would usually opt to suppress LFs,

while you could OPEN128.4 to do double spacing, or follow

that with CMD128 to LIST to a printer without a hardware line

advance.

A Most Harmless Buq!

Jim Butterfield (who else?!) wins the award for

discovering the most insignifJLgant DOS bug, although he'll

get absolutely nothing for it! He found that after using

APPEND* to add a small bit of data to a very small SEQ file,

that the block count was unjustifiably increased from 1 block

to 2. This wasn't possible since the total amount of data

was less than 60 bytes, which is nowhere near the 254 byte

capacity of a block. The answer? A bug. It seems that DOS

just assumes that the result of an append will increase any

file size by at least 1 block. But the 'blocks free1 count

didn't change, indicating that the disk hadn't really used

another block but just incremented the block count that's

stored in the directory along with the filename.

APPEND*ing large amounts of data won't cause this
problem. Evidently it only happens when the results of the

'append' do NOT warrant the use of an extra block. When

extra blocks are required for the appended data, the DOS

correctly increments the block count before updating the

directory.

- 6 -

The same bug nay surface after a CONCAT of two files,
depending (of course) on the size of the file being

concatenated (ie. the file that is added. NOT the file that

is added to) . Apparently the DOS uses the same routines to
perform this operation.

The solution? There isn't one., nor is one necessary!
Even a COLLECT won't restore proper block count, BUT, this

bug will cause absolutely no damage or ill side effects on

your diskette! Thanks again Jim.

CQNCATenating Programs

The preceding item brings to mind another question

frequently posed to Commodore. "Why will the CONCAT command

concatenate two SEQ files but fail to work on two programs ?"

The answer ?: CONCAT will not join two program files because

it can't merge two programs. What if there were a line in

each file that has the same line number ? The disk was not

designed to deal with this type of situation.

But you say, "I could make sure that all line numbers in

the file to be concatenated are higher than the line numbers

in the first file". Well... that's not really the problem.

All BASIC program files (PET/CBM) end with three binary

zeros. This is so the LIST command knows when to stop

listing. GOTO and GOSUB also look for these zeros when

searching for a line. If the line is not found before

encountering '00 00 00', an ?ONDEFID STATEMENT ERROR occurs.

If you could concatenate two program files, the three zeros

that belong to the first programwould reside in memory ahead

of code that was concatenated. LIST, GOTO and GOSUB would

never look past this point.

For those doing a lot of program merging, it might be

best to consider one of many .'toolkit9 or programmers aid

ROMs that include this feature.

Sound Off!

No this is not the complaints department, but rather a

neat trick out of St. Catherines Ontario. Have you ever been

playing a game with sound, and then STOPped the game while

the sound is activated ? The scenario is usually a frantic

programmer looking through memory maps or trying to remember

that POKE to turn it off. Before you turn the power off, try

this (12" screens only): use CRSR right until you get to that

point on the screen that rings the bell. After the jingle,

CB2 sound will be de-activated.

- 7 -

Collect

One disk command that doesn't get nearly as much

attention as it should is COLLECT. BASIC 2 users will know

this as the disk Verify or Validate command.

Collect causes the disk to throw away the old BAM (Block

Availability Map) and rebuild a new one. The process starts

with the first directory entry. The disk picks up the track

and sector co-ordinates of the first block of the first file

and begins tracing the block chain. During the trace, the

disk re-allocates each block back into the BAM. Collect is

complete once all directory entries (PRG, SEQ, REL and USR)
have been examined.

Improperly closed files are thrown away by the Collect

operation. An improperly closed file is indicated by an

asterisk (*) preceding the file type in a directory listing.

This can occur in any number of ways; no DCLOSE or CLOSE

command after recording a file; DISK FULL occurring before

the file is CLOSEd; hitting STOP while saving a program; or a

power failure while storing data.

Regardless of how it happens* unclosed files should NOT

be SCRATCHED! As you know, SCRATCH does not erase blocks, it

merely de-allocates them from the BAM. This means that the

old data is left behind (including track & sector chain

pointers) but in blocks that are now available for re-use.

Consider this: You pull out a full or almost full

diskette. The diskette has no improperly closed files. Now

you want to save a couple of programs on this diskette but

there's not enough room. So you SCRATCH 4 or 5 old files

that are no longer needed. With more than enough space you

SAVE your first new program... no problem. Now you go to

save the second program and foe some reason the operation is

aborted (DISK FULL, STOP keyf etc.) leaving this file

improperly closed! Chances are that the last block to be

written points at a block that was previously used by one of

your old files. This block would contain old track & sector

pointers which might point at other blocks that are now in

use by (quite possibly) the program that you just saved

successfully. SCRATCHing this unclosed file would then go

de-allocating blocks that were just written PLUS blocks that

belong to your other program. Another SAVE at this point

could be hazardous. The disk might choose to re-use those

free blocks that belong to the other program, thus replacing

parts of the first program with parts of the second... YUK!

A COLLECT after the aborted SAVE would have avoided all

problems. The unclosed PRG file would be discarded, and the

integrity of the other files preserved. Some believe that

reported problems with write & replace (using the f@" symbol)

are connected somehow to the presence of unclosed files, but

no proof is available.

- 8 -

Collect has only one drawback. Any blocks allocated by
the block-allocate (B-A) command will be freed by Collect as

these will not belong to a chain as with other files.

Subsequent B-A & B-W commands v/ill use these blocks, possibly

overwriting valid data. However, with the advent, of Relative

files, direct access should be fading from use.

Otherwise, itfs never too soon for a Collect. If your

block count doesn't add up or you suspect another undesirable

condition, use Collect to be safe.

'Now let "S see. for optimum results add 1.29987143 cups offlour."

- 9 -

Keyword Abbreviations

PFT/CBH/VIC keywords include all commands in BASIC:

LOAD, POKE, NJEXT, GOSUB, MIDS, to name but a few. Each

keyword has a respective number or 'token1 (eg. El-ID is a 128,

FOR is 129 and so on) . As commands are entered, the

operating system scans cr parses the characters typed and

compares them against the keyword table in ROM. When it

'sees1 a keyword that it recognizes, PET crunches it into its

respective token. In direct mode, this token is then passed

to the operating system to be executed. When writing a

program line, the token is stored in RAM for later execution.

By doing this, PET can use a single byte to represent a

command, thus optimizing on memory space and maximizing on

speed during execution.

But just like PRINT, which is abbreviated with a "?",

all BASIC commands and statements can be abbreviated. Thanks

to a "bug" (?!) in the operating system, all keywords can be

entered by typing the first letter followed by the shifted

second letter. Depending of what mode you're inr the latter

will show up as either a graphic character or a capital

letter. If they are entered into- program lines, you'll see

that the LIST command uncrunches the tokens into their

expanded versions.

This can be extremely useful in circumstances such as:

often used commands like CATALOG (eg. cAdO) , LIST (II) and

DSAVE (dS) can be entered quickly with a minimum of typing

effort; program lines that, for one reason or another,

contain more code than can fit on a line and; after

displaying the directory, the cursor can be moved up beside

the filename where* any number of commands could be issued

without the need for retyping the filename or moving it over

to accommodate the expanded keyword. Here you could give dL

for DLOAD, sC for SCRATCH, reN for RENAME, cO for COPY, and

more just by typing the abbreviation on top of the block

count (you'll also have to erase the file type or place a

colon after the filename else 7SYNTAX ERROR).

There are a few exceptions. The abbreviation for PRINT

is not "pRw... that belongs to PRINT*. There is no

abbreviation for INPUT, but INPUT* is "iN". Words such as

TO, IF, OR and ON also cannot be abbreviated, nor can

reserved variables such as ST, TI, TI$, DS or DS$... but lets

not be too lazy since they're only two letters anyways.

Other keywords have the same second letter: LET, LEN and

LEFT?; READ, RESTORE, RETURN and RENAME; GOTO and GOSUB. The

shortest of theses sets will be abbreviated with the shifted

second letter, the others with the shifted third letter. The

TAB (tA) and SPC (sP) functions will also give you the

opening bracket, so watch that you don't add in a second onel

There are a few rules to remember, but with practise

you'll find using abbreviations most enjoyable!

- 10 -

From The Editor - Karl J. Hildon

This issue is probably our biggest ever! Many thanks to all
contributing writers, especially Dave Hook, Ted Evers, Glen
Pearce, Jim Butterfield and Greg Yob. Don't miss Gregs1 two
articles on the IEEE bus and the User Port, reprinted by
permission from Kilobaud Mag. Jim Butterfield1s latest
"SuperChart" appears again this issue with updates for screen
control characters and VIC-20 colour controls. Next issue we
plan a special VIC bonus section which may develope into a
new Commodore Canada magazine... any ideas for a name ?

The Best of

The Transactor Volqroe J.

The Transactor Volume 2

The Transactor Volume 3

Subscription Fees

Canada U.S.A. All other

foreign

$10.00 $10.00 $12.00

$15.00 $17.00 $19.00

$10.00 $11.00 $13.00

The Best of The Transactor Volume 1 is Volume 1 back

issues together in one bind.

All 12 of The Transactor Volume 2 back issues will be

available for a limited time only. After supplies run out.

The Best of The Transactor Vol. 2 will replace the back

issues, cost unchanged.

A subscription to The Transactor Volume 3 will cover 6

issues, back issues included.

NOTE: Pre-payment required,

subscription fees.

Invoices cannot be issued for

Commodore Business Machines

3370 Pharmacy Ave.

AGINCOURT, Ontario

H1W 2K4

Atn: The Transactor

Keyed Random Access For The PET/CBM Glen Pearce

Commodore Johannesburg

Since the advent of Relative Files and the large storage

capacity of the CBM 8050 Disk, some form of 'K.R.A' (Keyed

Random Access) would be useful to make full use of these

facilities. Here is a version that meets most of the

specifications of K.R.Ar but is relatively (excuse the pun!)

easy to use. It works as follows:-

An ordinary sequential file is used to store a

•key-file1 of all records held within a system (eg. Stock,

Accounts, Clients, etc.). This key-file would normally
contain the first 10 characters of a Customer's name (Part #,

Account #, etc.) followed by the Relative Record Number of

the record containing the remaing data for that Customer.

Right - now all you have to do is search through this

key-file until you find the record you1re looking for;

retrieve the relative record number and you have access to

the main record. The only problem in doing this in BASIC is

time - especially if you have 500 to 1000 records or more!

Here is a machine-code routine which will do the above

significantly faster (it searches through 500 ten-character

record keys in approximately 4 seconds)• This routine may

only be used with BASIC 4.0 and DOS 2.0. Here's how you use

it:-

The length of each record in the key-file (SEQ) is not

important and it may contain any valid ASCII characters (for

safety's sake, stick to alpha-numerics only). To seperate

the record-key from the associated relative record number, a

delimiter must be used. In this case the delimiter is a '#'

symbol. Therefore, a record in the SEQ key-file should look

something like:

SMITH* 1234

The space between the delimiter and the rel/rec number is the

sign of the number and can be suppressed if space-saving on

the disk is necessary.

It is important that each record in the key-file be

seperated by a Carriage Return - CHR$(13)• This shouldn't

present any problem as the PET/CBM automatically sends this

character after each PRINT* command.

The K.R.A. machine code program must be located at the

top of memory and protected in the usual way:

POKE 53, 127 : POKE 52, 0 : CLR

...must be the first statement in your program.

- 12 -

This program also allows you to do a form of
•pattern-matching1 • Say, for instance, you don't know the

exact spelling of a record-key in the key-file. All you do

is enter the first few characters of the record-key and allow

the program to search for that. When a 'match1 is found in

the file, the attached rel/rec number will be returned. You

could then retrieve that relative record and display it. If

it is NOT the correct record, simply tell the program to

continue searching the key-file until it finds another match

and so on. If NO match is found, a relative record number of

0 (zero) will be returned by the K.R.A. routine.

Here is an example of a BASIC program using the routine:

100 A$="" : A=0 : REM INITIALIZE VARIABLES BEFORE

USING K.R.A.

110 INPUT "ENTER SEARCH-STRING";A$

120 DOPEN*2,"KEY-FILE" : IF DS <> 0 THEN PRINT DS$:

STOP

130 SYS 32512, 2, A$, A

140 IF A = 0 THEN DCLOSE#2 : STOP : REM NO MATCH

150 REM RETRIEVE THE ASSOCIATED RELATIVE RECORD

160 REM AT THIS STAGE, IF THE REL/REC IS NOT CORRECT

170 REM YOU COULD 'GOTO 130' TO LOOK FOR ANOTHER MATCH

Any string and numeric variable may be used, but should

be declared before the SYS 32512 to the routine* (In the

above example fA$f would have been initialized by the INPUT

statement anyways). The f2f used after the first comma in

the SYS command is the logical file number used in the DOPEN

statement. It is important to check the DISK STATUS word

(DS) after opening the file.

Adding records to the key-file could be a problem once

the file gets large. Make use of the APPEND* command in

BASIC 4.0 to simply append new record-keys to the file.

Another suggestion is to have seperate key-files. For

alphabetic keys there would be 26 titled 'A1 to 'Z1; for

numeric keys, 10 labelled f0f to f9'; or combine for

alphanumeric and have 36 seperate key files. Now you could

simply check the first character of the search string (ie.

LEFT$(A$,1)) and open that particular file. This would

reduce your key-file size to approximately 100 records per

file in a 2000 record system, thereby making your search-

tiroes even faster!

Editor's Note

Glen's K.R.A. routine could be a perfect partner for the

BMB Stringthing published in Volume 3, Issue #1. Only one

problem... they both want to live at the same place in

memory. For those with assemblers, either routine could be

reassembled lower in memory ($7D00) . Don't forget to change

the SYS numbers and also the POKEs to lower top of memory

farther down.

For those without assemblers, it will probably be easier

to move K.R.A. down rather than Stringthing. Simply change

each occurence of $7F in the source listings (127 in the

BASIC loader) to $7D (decimal 125) . This means that K.R.A.
will start at $7D00. Remember that the BMB Stringthing

requires a 256 byte buffer which has been slated for the

$7E00 page and followed by the program at $7F02. Therefore

K.R.A. must go an extra page lower... but no problem. Now

enter K.R.A. with SYS 32000 and the POKEs to protect it in

high memory become: POKE 53, 125 : POKE 52, 0 : CLR .

You111 also have to change the parameters of the FOR/NEXT

loop in the loader to FOR I = 32000 to 32255...

One last thing to watch... both K.R.A. and Stringthing

use locations 0 and 1 in zero page for work space. This

won't harm the operation of either routine but the

Stringthing returns the results of Position Search into $00.

This result is then PEEKefi by the programmer. If, for any

reason, you'll need this value after a call to K.R.A., then

you'd better save it (ie. PS=PEEK(0)) or K.R.A. will clobber
it!

_ •**••••***••*•****••*••****•*•••**••*•*•**•*•*****

40 REM * *
50 REM * BASIC LOADER FOR MACHINE CODE ISAM ROUTINE *

60 REM * GLEN PEARCE 20/8/81
7 0 PPM *

30 REM

40 REM

50 REM

60 REM

70 REM

11U tUK .

200 DATA

210 DATA

220 DATA

230 DATA

240 DATA

250 DATA

260 DATA

270 DATA

280 DATA u,

290 DATA 177,

300 DATA 32,

310 DATA 7, 162, 144, 32, 122, 205, 160, 0, 165, 94

320 DATA 145, 68, 200, 165, 95, 41, 127, 145, 68, 200
330 DATA 165, 96, 145, 68, 200, 165, 97, 145, 68, 200
340 DATA 165, 98, 145, 68, 32, 204, 255, 96, 32, 73
350 DATA 127, 169, 0, 133, 95, 133, 7, 32, 195, 127

360 DATA 201, 13, 240, 23, 166, 150, 208, 188, 133, 96
370 DATA 32, 195, 127, 201, 13, 240, 10, 166, 150, 208
380 DATA 175, 32, 213, 127, 76, 170, 127, 162, 144, 32
390 DATA 122, 205, 76, 116, 127, 32, 228, 255, 201, 13

400 DATA 240, 10, 201, 48, 144, 245, 201, 58, 176, 241

410 DATA 41, 15, 96, 133, 0, 165, 95, 72, 165, 96
420 DATA 72, 6, 96, 38, 95, 6, 96, 38, 95, 104
430 DATA 101, 96, 133, 96, 104, 101, 95, 133, 95, 6

440 DATA 96, 38, 95, 165, 0, 101, 96, 133, 96, 169

450 DATA 0, 101, 95, 133, 95, 96

ISAM.SRC PAGE 0001

LINE// LOC CODE LINE

0001

0002

0003
0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015
0016

0017

0018

0019
0020

0021

0022

0023
0024

0025
0026

0027

0028

0029
0030

0031
0032

0033
0034

0035
0036

0037
0038

0039
0040

0041

0042

0043

0044

0045
0046

0047
0048

0049

0050

0051
0052

0053
0054

0055

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

7F00

7F00

7F03
7FO6

7F08
7F0A

7F0D

7F0F

7F11

7F14

7F16

7F19

7F19
7F1B

7F1E

7F20

7F22

7F24

7F26

7F28

7F2A

7F2B

7F2D

7F2F

7F32

7F34

7F36

7F38
7F3A

;XXX

;* SEARCH THRU A SEQ FILE FOR A KEY RECORD AND *

;* THEN RETRIEVE AN ATTACHED REL/REC NUMBER.

20 49 7F

20 2D C9

A5 12

FO 03

4C 00 BF

A5 11

85 D2
20 52 7F

A6 D2

20 C6 FF

AO 00

20 E4 FF

A6 96

DO 42

C9 OD

FO F3

D1 01

DO 12

C8
C4 00

90 EC

20 E4 FF

A6 96

DO 2E

C9 23
FO 5A

DO F3

x

*

22/08/81 *
;* COMMODORE, JOHANNESBURG, SOUTH AFRICA *
•xxx

GLEH PEARCE

COMMODORE, JOHANNESBURG,

; ## CONSTANTS

GETCHR = $FFE4

CLRCHN = $FFCC

COIN = $FFC6

CHKCOM = $BEF5

FRMEVL = $BD98

FACINT = $C92D

SNERR = $BFOO

FROM PET BASIC (BASIC 4.0) #1

;GET A CHARACTER

;CLOSE I/O CHANNELS

;SET INPUT DEVICE

;CHK FOR COMMA

;EVALUATE EXPRESSION

;CONVERT FL/P TO INT

;PRINT SYNTAX ERROR

PAGE ZERO VARIABLES

LENGTH

WORK1

CHKINT

CURFIL

VARPNT

FAC

FIND

$00

$01

$11

$D2

$44

$5E

= $7F00

JSR EVALEX

JSR FACINT

LDA CHKINT+1

BEQ ISINTG

JMP SNERR

ISINTG LDA CHKINT

STA CURFIL

JSR FNDEXP

LDX CURFIL

JSR COIN

GET10 LDY

GET11 JSR

LDX

BNE

CMP

BEQ

CMP

BNE

INY

CPY

BCC

FNDDEL JSR

LDX

BNE

CMP

BEQ

BNE

#0

GETCHR

$96

D0NE1

#13
GET10

(WORKDY

CLRSTR

LENGTH

GET11

GETCHR

$96

D0NE1

#'#

RELNUM

FNDDEL

;TEMP STORE OF STR LENGTH

;TEMP WORK AREA

;CHECK FOR INTEGER

;CURRENT FILE NUMBER

; PNTR TO CURRENT VARIABLE

;MAIN FLT/PNT ACCUMULATOR

;CHK SYNTAX OF COMMAND

;IN BASIC LINE & EXTRACT LFN

;AND SEARCH STRING

;EXIT IF SYNTAX ERROR

;SET UP LFN FOR READ

;FIND SRCH STRING

;SET I/O FOR READ

;GET CHAR FROM FILE

;CHK STATUS BYTE FOR EOF

;CHK FOR C/RET

;MOVE TO NEXT RECORD

;COMPARE TO EQUIVALENT

;CHAR OF SEARCH STRING

;IF NUMBR OF CHARS CHK'D

;EQUALS LEN OF SEARCH STRING

;THEN MATCH IS MADE

.;FIND DELIMITER &THEN GO

;AND READ IN REL/NO.

- 15 -

i-'.S

LINE.?

0056

0057

0058

0059
0060

0061

0062

0063
0064

0065
0066

0067
0068
0069

0070

0071
0072

0073
0074

0075
0076

0077

0078

0079
0080

0081

0082

0083
0084

0085
0086

0087
0088

0089
0090

0091
0092

0093
0094

0095

0096

0097
0098

0099
0100

0101

0102

0103
0104

0105

0106

0107

0108

0109

0110

RC P

LOG CODE

7F3C

7F3F

7F41

7F43

7F45

7F47

7F49

7F49
7F4C

7F4F

7F51
7F52

7F52

7F55

7F57

7F59
7F5A

7F5C

7F5E

7F5F

7F61

7F63
7F64

7F64

7F67
7F69
7F6B

7F6D

7F6F

7F71

7F74

7F76

7F78

7F7A

7F7B

7F7D

7F7F

7F81

7F82

7F84

7F86

7F87
7F89
7F8B

7F8C

7F8E

7F9O

7F93
7F94

7F94

7F97

7F99
7F9B

7F9D

7FA0

20

A6

DO

C9
FO

DO

20

20

AO

60

20

B1

85

C8

B1

85
C8

B1

85
60

20

A9

85

85

85

A2

20

AO

A5

91
C8

A5

29
91
C8

A5

91

C8

A5

91

C8

A5

91
20

60

20

A9

85

85
20

eg

/tUL U002

LINE

E4 i

96

21

OD

D2

F3

F5

98

00

49
44

00

44

01

44

02

49
00

5F

60

07

90

7A

00

5E

44

5F

7F

44

60

44

61

44

62

44

CC

49
00

5F

07

i C3

i OD

FF

BE

BD

7F

7F

CD

FF

7F

7F

CLRSTR JSR

LDX

BHE

CMP

BEQ

BNE

t

EVALEX JSR

JSR

LDY

RTS

f

FNDEXP JSR

LDA

STA

IHY

LDA

STA

INY

LDA

STA

RTS

D0NE1 JSR

LDA

STA

STA

STA

LDX

JSR

D0NE2 LDY

LDA

STA

INY

LDA

AND

STA

INY

LDA

STA

INY

LDA

STA

INY

LDA

STA

JSR

RTS

RELNUM JSR

LDA

STA

STA

JSR

CMP

GETCUR

$96

D0NE1

#13
GET10

CLRSTR

CHKCOM

FRMEVL

#0

EVALEX

(VARPNT)Y

LEIIGTH

(VARPNT)Y

W0RK1

(VARPNT)Y

W0RK1+1

EVALEX

#0

$5F

$60

$07

//$90

$CD7A

#0

FAC

(VARPNT)Y

FAC+1

#$7F

(VARPNT)Y

FAC+2

(VARPNT)Y

FAC+3

(VARPNT)Y

FAC+4

(VARPNT)Y

CLRCHN

EVALEX

#0

$5F

$07

NEWDIG

#13

;DISCARD REST OF STRING

;G0 AND CHK NEXT STRING

;CHK FOR COMMA

;& EVALUATE EXPRESSION

;FIND SRCH STRING

;SET UP STRING PNTRS

;IN TEMP WORK AREAS

;IF NO MATCH FOUND THEN

;RETURN A REL/NO. OF ZERO

;SET VARIABLE TYPE TO NUMERIC

;CONVERT HEX TO FL/P

;TRANSFER BCD VALUE OF

;REL/NO. TO NUMERIC VAR

;SPECIFIED IN SYS CMD

;STRIP OFF SIGN

;CLEAR ALL I/O CHANS AND

;EXIT PROGRAM

;FIND VARIABLE FOR REL/NO.

;READ IN REL/NO. AND CONVERT

;IT TO A 2-BYTE HEX DIGIT

- 16 -

AM.J

LINE//

0111

0112

0113
0114

0115

0116

0117

0118

0119
0120

0121

0122

0123
0124

0125
0126

0127
0128

0129
0130

0131
0132

0133
0134

0135

0136

0137
0138

0139
0140

0141

0142

0143
0144

0145
0146

0147
0148

0149
0150

0151
0152

0153
0154

0155
0156

0157
0158

0159
0160

5RC pahf nnm

LOC CODE

7FA2

7FA4

7FA6

7FA8
7FAA

7FAD

7FAF

7FB1

7FB3
7FB5

7FB8
7FBB

7FBD

7FC0

7FC3

7FC3
7FC6

7FC8

7FCA

7FCC

7FCE

7FD0

7FD2

7FD4

7FD5

7FD5

7FD7

7FD9
7FDA

7FDC

7FDD

7FDF

7FE1

7FE3

7FE5
7FE6

7FE8

7FEA

7FEB

7FED

7FEF

7FF1

7FF3

7FF5

7FF7
7FF9

7FFB

7FFD

7FFF

8000

FO

A6

DO

85
20

C9
FO

A6

DO

20

4C

A2

20

4C

20

C9
FO

C9
90

C9
BO

29
60

85
A5

48

A5

48
06

26

06

26

68

65
85

68

65
85
06

26

A5

65

85
A9

65
85
60

ERRORS = 0000

LINE.

17
96

BC

60

C3 7F

OD

OA

96
AF

D5 7F

AA 7F

90

7A CD

74 7F

E4 FF

OD

OA

30

F5

3A

F1

OF

00

5F

60

60

5F

60

5F

60

60

5F

5F

60

5F

00

60

60

00

5F

5F

NXTDIG

PUTVAR

NEWDIG

ENDDIG

J

ASCHEX

RETN

BEQ

LDX

BNE

STA

JSR

CMP

BEQ

LDX

BNE

JSR

JMP

LDX

JSR

JMP

JSR

CMP

BEQ

CMP

BCC

CMP

BCS

AND

RTS

STA

LDA

PHA

LDA

PHA

ASL

ROL

ASL

ROL

PLA

ADC

STA

PLA

ADC

STA

ASL

ROL

LDA

ADC

STA

LDA

ADC

STA

RTS

-

PUTVAR

$96

D0NE1

$60

NEWDIG

#13
PUTVAR

$96

D0NE1

ASCHEX

NXTDIG

#$90

$CD7A
D0NE2

GETCHR

#13
ENDDIG

#$30

NEWDIG

#$3A

NEWDIG

#$0F

LENGTH

$5F

$60

$60

$5F

$60

$5F

$60

$60

-$5F

$5F

$60

$5F

LENGTH

$60

$60

#0

$5F

$5F

.END

;GET NEXT REL/NO. DIGIT

;CHK FOR NUMERIC

;MASK OUT THE FOUR MSB'S

; HANDLE ASC - HEX CONVERSION

- 17 -

ROn Sockets S. Donalc, Rossland B.C.

For those of you v;ith the old 8k PET and 24 pin ROMs who

envy the three empty sockets in the newer machinesf good

news.

The 'upgrade1 ROMs for these machines only occupy four of

the seven sockets and a simple cut and hack operation on your

main board will enable you to use two of the freed sockets.

All three sockets may be used by the simple addition of one

more IC.

Furthermore, if you want to only use one socket for the

Toolkit, or the Word Pro 3, you don't even have to pull the

board from the case.

A word of advice, however. If you are not reasonably

expert in handling this type of operation (soldering directly

to the IC pins) , or live and work in a high 'static

electricty1 environment, don't try it.

This modification requires two sequences of events:

1. Change the bank select lines to the

emptied ROM sockets, and

2. Change the bank access to the external

PET data bus.:

Both these operations may be done with the main board

still in the case if only one socket is to be enabled. If

you want two sockets operational, you have to pull the board

to get at a trace on the underside.

Change Bank Select Lines

The 'bank' addresses of the three freed sockets has to be

changed from C, D, and F, (in hexadecimal notation; 12, 13,

and 15, in decimal), to 9, A, and B, or whatever. The three

bank select lines of interest originate at IC G2, pin 14

(select C or, 12), pin 15 (select D, or 13), and pin 16

(select F, or 15) . They run a short distance toward the

front of the board on the underside of the card, then surface

near socket K4. They run across upper surface of the board

toward the power supply for several inches then return to the

underside of the board to connect to pin 20 of the appropiate

socket. These three traces are to be cut just above H5. Be

very sure that the traces are completely cut and that you

remove all the metal scrap that is generated.

Now carefully solder three wires to IC G2 pin 10 (select

9), pin 11 (select A, or 10), and pin 13 (select B, or 11).

Run these wires to the solder dots on the ROM ends of the

traces just cut. Simple. But if you try to get the machine

to recognize ROMs plugged into these sockets, it will insist

that there is nothing there!

Data Bus Access

The problem lies in the design of the data bus. The PET
presumes that all addresses between the screen memory and the

four ROMs of the operating system are external to the

machine* When accessing these addresses, it enables the

external data bus drivers. These drivers take data from the

outside world and place it on the internal bus. In the

meantime the ROM you have just installed is trying to do the

same thing. That doesn't work well at all. The solution

here is quite simple; don't allow the external data bus

drivers to be activated when your ROM Socket is being
addressed.

The IC which controls this action is G4f a 74LS21. Two

of the input lines to this chip are not used in the original

model and may be 'stolen1 to enable two of the freed sockets.

The trace that ties the two pins of interest (pins 4 and 5)

together is on the underside of the board. If only one

socket is to be used (say for WordPro) you do not have to

seperate them and the board can be left in place during the

alteration.

These pins are held at logic 'I1 ('high') by a resistor

at IC G3. The trace of interest is on the upper surface of

the board, and goes from the resistor to IC G3, pin 9, and IC

G4, pin 5. Cut the trace near G4, remove the scrap metalr

and run a wire from G4 pin 5 to the appropiate bank select

wire installed in part lf above. To use a second socketr you

have to remove the main board, cut the trace connecting IC G4

pins 4 and 5 together, and run a second wire from pin 4 to

another bank select line.

The third socket may be used, but you have to instal

another IC. Drop me a line and I'll send you a schematic.
My address is Box 481, Rossland B.C., VOG 1Y0.

If you are like me and have the Toolkit hung on the side

of the PET at the expansion portf you can even have two ROMs

with same address, selectable with an external switch. The

bank select signal goes- to the switch and is routed to the

appropiate ROM. The unseleefeed -ROM must have the bank select

line pulled high with a Ik resistor to the +5 volt power

supply line. The circuit is left as a exercise, but don't

forget to switch the external data bus drivers at the same

time.

4032 Program Conversions Joe Ferrari,

Commodore Canada

The addition of some nev; features to the 40 column PET

has brcught about. some problems with program compatibility

between the 4032 nine inch and 4032 twelve inch CFT display

machines. In some cases the changes required to programs for

proper operation on the "FAT FORTY1 may be trivial, and in

other cases the conversion may be a little more difficult.

In the following text I will attempt to cover as many areas

where possible failure can occur and what changes need

implementing.

LEVEL 1: Programs Loading Below BASIC (<$0400)

Standard BASIC programs should work without any

modif icationf unless they "employ PEEKS and POKES or if the
program loads into memory below BASIC. The latter problem

can be a bit tricky to spot unless you know specifically what

to look for. If the program does load below BASIC (say

$033A) but does not use locations $03ES-03F9r one method that

will correct the problem is:

1) LOAD the program (don't execute)

2) enter the monitor (SYS 4)

3) display hex 03E9 - 03F9

4) modify the display as follows:

.: 03E9 10 10 09 10 00 00 00 00

.: C3F1 00 00 00 00 00 00 00 00

.: 03F9 00 ...[don't change]...

5) resave the program via the monitor

Tape Unit #2

Another area where the standard BASIC rpogram can fail

is in the utilization of the second cassette unit for

sequential file access. If any program calls files from Tape

Unit #2, unpredictable effects can result depending on the

data coming in to the buffer. In this case nothing can be

done to resolve the problem unless the data can be handled

from Cassette #1. This would require all associated OPEN

commands to be modified for device 1. The 12" 4032 uses

parts of the second cassette buffer for other reasons that

can't be interfered with.

PEEKS & POKES

Decimal location 151, which is often used to check if a

particular key has been pressed, is still the same on the 12

inch, but the value of the keys have changed and therefore

expected values for certain keys will return false

information. The following table will assist in the

conversion of a program with this problem*

- 20 -

OLDV KEWV KEY OLDV HEWV

0

A

E

C

D

E

F

G

H

I

J

K

L

H

N

0

P

Q
R

15

48

30

31

47

63

39

46

38

53

45

37

44

29

22

60

52

64

55

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

S

T

U

V

W

X

y

Z

0

1

2

3

4

5

6

7

8

9

40

62

61

23

56

24

54

32

10

26

18

25

42

34

41

58

50

57

83

84

85

86

87

88

89

90

48

49

50

51

52

53

54

55

56

57

When POKEs to this problem area are used for saving byte

variables (or any data for whatever purpose), they must be

moved to a free spot elsewhere in memory. If space is free
just below $03E9, then this could be a good area for

relocating the byte variables.

LEVEL 2: BASIC Programs Containing Machine Language

BASIC programs using machine language utilities that

reside in the second cassette buffer can work properly

provided they don't use the taboo area of the buffer (ie

decimal 1001-1017) . Again, if the utility uses this area,

the space must be relinquished to the PET operating system in

order to obtain successful operation of the program.

Usually, in the case of small machine language utilities, it

shouldn't be too difficult to understand and relocate to an

area of memory that is free.

LEVEL 3? Machine Language Programs

This will be the most difficult area to troubleshoot.

If you are going to attempt modifying this type of program,
be prepared to spend a good deal of time. Making the

necessary changes to get the program working will most likely

require a considerable amount of effort, which I personally

don't recommend. in most cases the author should be
contacted and he/she should facilitate the changes. If you

are really desperate, here are a few helpful hints that may

assist you:

- 21 -

1) use Supernon or Extramon to locate any

absolute occurences of memory addresses

from S03E9 to $03F9 and re-assign new

values

2) check hi-low tables for references to the

same address locations andr if any,

re-assign new values

3) seek all immediate operations involving :

$03 and $E9-F9... if any, look at code !
v/here occurence takes place and evaluate i

4) check all JSR & JMP occurences into the

$E000 ROM. All other ROMs can be ignored |
since they are identical* |

Factory CRT Setup

One other problem that may be encountered is screen

setup. If the user decides to enter 'text mode1 with

•"PRINT CHR$(14)"f the top line of the screen may run off the

upper edge and not be visible. To restore 'graphics mode1

enter "PRINT CHR$(142)". One easy solution to this problem
is to use "POKE 59468, 14". This will put the PET in text

mode without opening up pixel lines between text.

CONCLUSION

The changes required to existing softwaremay be a

problem now but, at the same time, these changes bring the

4032 to a closer compatibility with the 8032 model. Features

such as repeat keys, scroll up and down, the bell, and more

have been implemented. These changes make the 4032 a much

more desirable product. I hope the information in this

report will help support the 12 inch 4032. If anyone

encounters a problem that I have not covered, please let me

know.

Editor's Note

The new 12" monitors have an adjustment for screen

height. At the factory, the machines are turned on, and this

adjustment is used to set the top line of text just under the

top of the CRT face. However, unlike the 8032 which comes up

in text mode, the 4032 comes up in graphics mode. Therefore,

when text mode is set on the 4032, the top and bottom lines

get pushed off the screen. You'll also note that when

graphics mode is entered on the 8032, a 'rectangular1 display

results with a gap at the top and bottom of the screen.

If you want to use text mode on the 4032, you can adjust
the screen height with very little effort and bring the top

and bottom lines of text back onto the glass. Undo the

machines main housing screws under both sides of the

keyboard, open the "lid1, and set the stand in place. If you

look up. underneath the monitor, you'll see the bottom of the

video circuit board. There are two adjustments accessible

from here. One is marked 'Screen Height1. Fill the screen

with characters and enter text mode (CHR$(14))• With a

small screwdriver you can adjust Screen Height to get the

full display.

According to thm calculation*,

w«'f« only going to bt oUt to

moko thrto poymtnts on this thing.

Half a Dialogue - Inputting . Jim Butterfield, Toronto

Asking a program to go and -get input from the user is a

subtle thing for beginners. When you write your first j

programs, it's hard to look ahead and see the program j
independently communicating with the user, HIf the program j

needs a valuef I111 program it in right now . .• " It takes a j

level of sophistication to imagine a program accepting

working values at a later time, when it runs, and using

different values supplied by the user in different runs.

There are three fundamental ways of checking what the user is

doing at the keyboard: INPUT, GET, and a PEEK. We'll talk

about each, and its uses.

INPUT, I

The INPUT statement does a lot of work for you. It's

certainly one of the most powerful statements in Basic. Some

of us would like to see it more powerful, and some would like

to see it less sophisticated; for the moment, we'll have to

accept it as it is.

When you give the command INPUT in a program, a prompting

question mark is printed and the cursor begins to flash.

Your program is held in suspended animation; it will not

resume operation until RETURN is pressed. There's no code

which allows something like:

INPUT M:IF (NO REPLY IN 15 SECONDS) GOTO..*

Your code will hang on the INPUT statement forever if the

user doesn't reply.

When the user presses RETURN, -INPUT takes the information

from the screen. It doesn't matter if the user wandered back

and forth, changing, deleting and inserting; INPUT looks only

at the screen which is the result of his actions. In fact,

if there's something on the screen that the user didn't type,

INPUT will take that too. This can be useful for prompting:

you can arrange to type a sample response on the screen, and
the user will be able to press RETURN to have that response

entered. As INPUT takes the information from the screen, it

trims away all leading and trailing spaces; other than that

it takes the whole line, even though it may not need it.

Now INPUT starts to plow through the line, digging out the

information you need for your program. If it's looking for a

number it will not like to find a string, and will ask, REDO

FROM START. If it's looking for a string, it won't mind a

number at all: it will accept it as a string.

Road Signs for INPUT.

Whether INPUT is looking for a number or a string, it will

stop its search when it finds one of three things; comma,

colon, or end of line. If it finds a comma it will assume

that more information will be needed later in the INPUT

statement; if it finds a colon or end of line it assumes that
there is no mbre useful input from the user. If it needs

more, it will ask for it.

Suppose you need to input a string that contains a comma or a

colon, such as ULYSSES. M PHIPPSr PHD. or ATTENTION: JOHN,

MARY. Since INPUT normally stops at the comma or colon

character, we need to do something. The answer is easy: the

user roust put the desired input in quotes: "ATTENTION:

JOHN, MARY" and the whole thing, commas, colon and all, will

be received as a single string.

Keep in mind that the INPUT statement allows prompting.

INPUT "YOUR NAME";N$ causes the computer to type YOUR NAME?

and wait for input. That's a good human interface; help the

user along.

If a user presses RETURN without supplying any information on

the screen, programs on the PET/CBM will stop. There are

several ways to prevent this from happening; the easiest is

to add a "canned reply" to the input prompt message. When

you are writing the INPUT statement prompt (such as

YOUR NAME) add two extra spaces and, say, an asterisk

character; then type three Cursor-Lefts (they will print as

an odd-looking reversed bar) and close the quotes on the

prompt. Finish the INPUT statement in the usual way: a

semicolon behind the prompt and then the name of the variable

to be input. Now: the asterisk or whatever will print to

the right of the prompt and question mark. Unless the user

overtypes it, this character will be received from the screen

as his input - and the program won't stop.

One last comment: don't forget that INPUT can accept several

values. You can say INPUT N$,A$,C$ and allow the user to

type JOE BLOW, CITY HALL, DENVER. It's often better to use

separate input statements: users can respond better when

prompted for each piece of information.

GET and PEEK: a preview

GET isn't as clever as INPUT, - but it has valuable uses.

First of all, it doesn't wait; if a key isn't ready in the

keyboard buffer, the GET statement lets Basic continue.

Secondly, keystrokes received with GET don't affect the

screen unless you, the programmer, decide to allow them to do

so. This means that you have much more control over what the

user can do.

There's a PEEK location (PEEK(151) on most PET/CBMs,
PEEK(515) on Original ROMs, and PEEK(197) on the VIC that

tells you whether a key is being held down or not. This can

be useful to avoid the situation where a user needs to press

the same key repeatedly to cause some action; you can program

so that the key repeats its action if it is held down.

We'll talk in more detail about the GET and PEEK next time

around. They are more fun in some ways that the INPUT

statement... but they call for quite a bit more programming

work to be done.

Editor's Note

Jim's next article was made available to The Transactor just

shortly after this one. Rather than splitting them between

two issues, we've decided to include it here in Issue #4.

Half a dialogue - Reading kevs Jim Butterfield, Toronto

We've already discussed the INPUT statement* When you do an

INPUT, the program pauses and waits for the user to compose a

line on the screen. When the user presses RETURN, the

program resumes and uses the information entered.

This is often useful and convenient; but when we use INPUT,

we don't have complete control over the user. If the user

doesn't answer, the program is stopped forever, and other

jobs will not take place. The user might also do undesirable

things like clearing the screen, and might even stop the

program if he presses RETURN without any input on the screen.

We can deal with the user on a more elemental level by using

the GET command.

GET.

GET takes one character directly from the keyboard buffer;

the character does not go via the screen. It's usually a

good idea to echo the character to the screen so that the

user can see what he's typing (GET X$:PRINT X$;). There is a

GET numeric (GET X) which gets a single numeric digit, but

it's rare since the program will stop if the user

inadvertantly presses an alphabetic key.

GET doesn't wait. If there's no character in the input

buffer, GET returns with a null string. We can wait for a

key to be pressed with a line like:

300 GET X$:IF X$="" GOTO 300

You can see that if we get no character, we go back and try

again. More sophisticated versions of the same program might

allow us to wait for up to 10 seconds for the user to type a

key.

GET receives everything typed at the keyboard. Even cursor

movements or insert and delete keys are received as single

character strings. The RUN/STOP key and the SHIFT are about

the only keys that GET won't receive directly.

Screen control keys - cursor move, reverse, home, etc. - are

picked up directly by GET and don't influence the screen when

typed. If you want them actioned, you'll have to arrange for

it yourself, again by echoing the character with a PRINT. On

the other hand, GET is an excellent way to prevent a user

from clearing the screen or doing other things that you don't

want. The easiest way to identify such characters is by

their ASC ascii value, but the obvious also works:

GET X$:IF X$=n[HOME]" GOTO... The Reverse-S symbol will

appear where I have typed [HOME].

Sometimes there are left-over characters in the keyboard

buffer. The user might have touched the keyboard

accidentally, or the last key pressed might have "bounced11

and been registered twice. You can strip out such characters

with simple coding like GET X$,X$,X$,X$. If the keyboard

- 26 -

buffer contains up to four characters, they will be cleared
out; if there were none, GET still doesn't hold anything up.

Remember that GET takes characters from the keyboard buffer.

For one key depression, no matter if you tap a key quickly or

hold it down for five minutes, only one character will go

into the buffer and GET will find it there only once.

PEEK,

The value of PEEK(151) will tell you whether or not a key is

being held down. If you find 255 there, no key is being

pressed - except maybe the SHIFT key which doesn't register

there. If there is any value other than 255 in PEEK(151),

somebody's holding down a key.

Special note: for Original ROM PETs, the place to check is

PEEK(515)• And on the VIC, check location PEEK(197); a value

of 64 means that no key is being pressed.

It's possible to figure out which key is pressed based on the

value you find in the PEEK location, but I don't recommend

it. Different keyboards are "decoded" in different ways, and

what works on one machine won't necessarily work on another.
The best way to sort out which key is pressed is to use the

PEEK together with the GET statement.

The trick is this: if GET says that there is no character in

the keyboard buffer and PEEK says that someone is holding a

key down, it's safe to assume that the key being held down is

the last one you received with GET. Timing is important

here, since a key could be touched in the split second

between two Basic statements. I recommend the following kind

of sequence:

300 X=PEEK(151)

310 GET X$:IF X$<>"" THEN X1=ASC(X$):GOTO 330

320 IF X=255 GOTO [...NO KEY ACTIVE]

330 KEY ACTIVITY

This kind of test is very good for movement games, where you

are directing something (a ball, a paddle, a tank) around the

screen based on whether a key is held down or not..

Summary,

GET is more elementary than INPUT. You'll need to do more

work with GET, but you'll have more control over the user

input.

Use the PEEK where it's necessary to find out if a key is

being held down or not ... it can give you a nice interface,

especially where the user would otherwise pound repeatedly on

a key.

- 27 -

WORD COUNT 9 David A. Book, Barrie Ontario

Purpose;

After slaving over the composition of an article, most
writers are required to count the words, as the basis for

payment for their work. I am told that many commercial

word-processors include this function. Neither WordPro 3 nor

WordPro 4 contain this feature.

Although my writing efforts are infrequent, my wife has

done a lot of freelance work. Currently she is working on a

complete rewrite of a BASIC text to be used in Grade 9. This

project involves a 40% reduction in word count. Thus, this

program v/as created.

An initial effort was accomplished using BASIC. For a

WordPro file with 2200 words, the time to perform the count

was a shade over 21 minutes. This was acceptable, since

other tasks (non-computer) could be performed while the CBM

was busy.

However, we've all heard the praises sung for the speed

of Machine Language. The logic aspect was fairly

straightforward and already de-bugged in Basic. The results

are before you in this article.

The same WordPro file was counted in 12.67 seconds!!

The program works with either WordPro 3 or WordPro 4

files and with Basic 2.0 and Basic 4.0 (Regular-, Fat-40 and

80-column machines). The WordPro file is read from Drive #0

of the disk unit. DOS 2.1 is not necessary, although I have

not included an error-checking routine (except for Basic

4.0).

Procedure:

First, type in the BASIC listing exactly as given below.

Be very careful to include all the spaces specified,

especially in Line 8 of the program. There is one after the

CLR/HOME, 13 before the title and 12 following.

Now SAVE this part as "WC.BAS". After VERIFYing, reset

the machine for the next step:

For those who wish their own Assembly, skip to Step "b"

below.

a) For the "non-Assembler"-crowd here's the method for

you. Type in fSYS4f to get into the M.L. monitor. Then

enter the following line, right after the displayed "." (at

the present cursor position):

.M 0624 06BC <RETURM>

- 28 -

The screen will fill with a display much like that shown
in the 'HEX DUMP1 listing below. Your task is to carefully

change all of the displayed figures to match the listing (top
half) . Simply type in the proper values, remembering to hit
•RETURN1 at the end of each line.

For the remainder# do the same again after typing this
line:

.M 06BC 0733 <RETURN>

After making the required changes, this should be SAVEd,
using the monitor, as follows:

.S "0:WC.ML",08,0624,0733 <RETURN>

•X <RETURN> (exit the monitor)

You may VERIFY this normally, if you wish.

Now skip to Step "c" below.

b) The source code for the program has been included.

This code will work with either MAE or ASM/TED assemblers.

If you choose to relocate the machine-language "start

address19, remember that there are three references in the

Basic portion. Be sure that these get corrected, too.

c) If you1re still with me, only two things remain to be

done:

Simply reLOAD "WC.BAS" first, then reLOAD "WC.ML". Use
the normal BASIC SAVE command now, and both pieces will be

linked together.

Remember that any changes to the Basic portion now will

also move the machine language. Do so at your own risk.

Operation:

Before you RUN the program, be sure you know the file
name of the VJordPro file to be counted. Put this diskette

into Drive #0, and you are ready to go.

The program self-adjusts for 40- or 80-column operation.
This assumes that you will only be counting 40-column files

on a 40-column machine, and 80-column files on an 80-column

machine. Thus, the correction is based on the machine in

use, not the file being read.

The program ignores WordPro format commands (and

anything on the same line as a format command).

- 29 -

If you have used the " —" characters as a dash, there

should be no preceding or following blanks. If you use a

series of "-", (as I sometimes do for underlining) the count

may not be correct.

If you've entered everything correctly, the word count

total shoulo have appeared on the screen, after 2-25 seconds.

Disk activity should end and the "READY" prompt should now be

displayed.

Since none of us ever make any ndsteaks (??) , you should

be ready to count every WordPro file within reach. In our

house, this program has had a real workout. I hope it proves

useful to you too.

This is the usual place to acknowledge Jim Butterfield.

I blame him for getting me into this all-consuming habit...er

hobby i

CMJF3ZJD COUNT

ISTING

WORD COUNT 9 ~ WORDPRO 3

flS OF NOVEMBER 29, 1981

0 REM

1 REM

2 REM

3 REM <X> DflVID R. HOOK, 58 STEEL ST.

4 REM BflRRIE, ONTfiRIO, CflNflDfi, L4M 2E9

5 REM

6 REM HLL RIGHTS RESERVED

7 REM

8 PRINT".! a - WORD COUNT ML

9 PRINT"W(!ftPLfiCE PROGRRM DISK IN DRIVE #8

18 PRINT"MSWT fi KEV WHEN REflDV ■".:
11 GETZ$:IFZ*=""THEN11

12 PRINT" OK"

13 INPUT"MPROGRflM NflME *IHII";F$
14 OPEN1,8,15,"I0":CLOSE1

15 0PEN2,8,2, "0:"+F*+",P,R"

16 IFDSTHENZ*=DS*=G0T021
17 SVS1582

18 PRINT"SS«5l««««W5ftIi!WORD COUNT = ••;
19 PRINTPEEK<1572>+256*PEEK<1573>
20 Z$="DONE"

21 PR INT "WS" 2$ ■■ CL0SE2: END
REflDV.

- 30 -

:=-=:

COUNT

dumr

c*

PC IRQ SR AC XR YR SP

.; D780 E455 34 33 38 36 FA

0624

062C

0634

063C

0644

06 4C

0654

065C

0664

066C

0674

067C

0684

06 8C

0694

069C

06A4

06AC

06B4

06BC

06C4

06CC

06D4

06DC

06E4

06EC

06F4

06FC

0704

070C

0714

071C

0724

07 2C

45

24

06

8E

F0

20

07

06

6D

06

06

D8

2C

7A

07

AE

4C

AE

F0

F0

06

A8

F0

DO

06

AE

F0

2B

75

20

2C

FF

CA

CA

01

3A

CA

00

01

C6

A2

8E

26

69

AE

20

06

DO

4C

2B

92

27

OF

04

C9

A2

16

04

E8

2A

08

06

06

E4

06

A2

86

EC

99

A2

10

84

0A

FF

00

27

06

00

27

06

AC

09

55

06

06

06

CO

C9

20

FF

C9

CO

8E

06

EE

A2

AE

FF

A5

F8

B4

27

22

09

FA

AE

8D

20

8E

06

8D

8D

06

07

2D

8E

06

FO

AE

CA

6F

6F

FO

8E

6F

2D

2A

DO

26

FF

2C

DO

96

9A

20

06

11

A9

A9

00

28

06

2B

18

24

25

EC

EE

06

26

C9

03

29

DO

FO

DO

AC

29

FO

FO

06

84

06

8E

06

02

FO

60

06

BO

12

00

28

80

06

07

06

AD

06

06

28

27

A2

06

IF

EE

06

13

OB

03

C9

06

12

OF

4C

AE

A2

2A

8E

09

06

AE

07

F3

22

9D

A2

EO

A2

20

8E

24

AD

8E

06

06

00

20

DO

26

DO

CO

C9

EE

6F

C9

C9

8E

75

2B

00

06

2D

40

20

28

A6

60

5A

24

60

60

02

06

29

06

25

26

FO

AD

C9

21

OB

06

21

20

20

26

FO

20

2D

2B

06

06

8E

4C

06

8D

CC

06

B4

44

- 31 -

PAGE 01

0624-

0626-

0627-

0628-

0629-

062A-

062B-

062C-

062D-

062E-

0630-

0632-

A2 09

A9 00

9D 24 06

0001

00C2

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027 "

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

0056

0057

.LS
**

* *

*

*

*

*

*

*

*

*

*

* *

**

(C)

WORDCOUNT.SRC9 — WORDPRO 3

AS OF NOVEMBER 29, 1981

DAVID A, BOOK, 58 STEEL STREET

BARRIE, ONTARIO L4M 2E9

CANADA (705) 726-8126

ALL RIGHTS RESERVED

; VARIABLES

CHANNEL

ENDLIN

BLANK

LENGTH

DASH

SHFSPC

FORSPC

FORCMD

ST

SAVX
•

SCREEN

IMAGES

.DE

,DE

.DE

$02

$1F

$20

DE $28

DE $2D

$60

$6F

$7A

$96

.DE

.DE

.DE

.DE

.DE

.DE

.DE

$B4

$8000

$8400

;DISK CHANNEL NUMBER

;END OF LINE

;BLANK

;NORMAL =40 CHARS.

;SINGLE DASH

;SHIFTED SPACE

;FORCED SPACE

;FORMAT COMMAND

;STATUS BYTE

;KEEP R(X)

; SCREEN MEMORY

rSCREEN IMAGES (40 COL.)

BASIC ROUTINES

SETINP

CLRCHN

WRT

GETCHR

.DE

.DE

.DE

.DE

$FFC6

$FFCC

$FFD2

$FFE4

;SET INPUT DEVICE

;RESTORE DEFAULT I/O DEV.

;PRINT CHARACTER

;GET CHARACTER

;.OS (DON'T STORE CODE)

$0624

WORDTOT

LINETOT

CHARTOT

LINLEN

LINFLG

BLNKFLG

WORDFLG
•

CURCHAR

LASTCHAR

START

LOOP

.BA

.DS

.DS

.DS

.DS

.DS

.DS

.DS

• DS

.DS

2

1

1

1

1

1

1

1

1

;# WORDS (TOTAL)

;# WORDS (CURRENT LINE)

;# CHARACTERS (CUR. LINE)

;LENGTH OF WORDPRO LINE

;LINE START FLAG

;BLANK FLAG

;WORD FLAG

;CURRENT CHARACTER

;LAST CHARACTER

LDX #LASTCHAR-WORDTOT

LDA #0

STA WORDTOT,X

;INITIALIZE LOCS.

- 32 -

PAGE 02

0635- CA

0636- 10 PA

063 8- A9 28

063A- A2 60

063C- 8E 00 84

063F- AE 00 80

0642- E0 60

0644- FO 01

0646- OA

0647- 8D 28 06

064A- A2 02

064C- 20 C6 FF

064F- 20 06 07

0652- 20 06 07

0655- A2 00

0657- 8E 2B 06

065A- 8E 29 06

065D- 8E 27 06

0660- 18

0661- AD

0664- 6D

0667- 8D

066A- AD

066D- 69

066F- 8D

24 06

26 06

24 06

25 06

00

25 06

0672- 8E 26 06

0675- AE 27 06

0678- EC 28 06

067B- FO D8

067D- 20 06 07

0680- EE 27 06

06 83- AD 2C 06

0686- AC 2D 06

06 89- A2 00

06 8B- C9 7A

06 8D- DO 09

068F- 8E 26 06

0692- 20 21 07

0695- 4C 55 06

0698- C9 IF

069A- DO OB

069C- AE 2B 06

06 9F- FO 03

06A1- EE 26 06

0058

0059

0060

0061

0062

0063

0064

0065

0066

0067

0068

0069

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

0080

0081

0082

0083

0084

0085

0086

0087

0088

0089

0090

0091

0092

0093

0094

0095

0096

0097

0098

0099

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

0110

0111

0112

0113

0114

0115

;

SETLEN

EIGHTY

FORTY

SETCHN

LOADADR

;

LINESTRT

;

ADDLINE

CHKLINE

DEX

BPL LOOP

LDA #LENGTH

LDX fSHFSPC

STX IMAGES

LDX SCREEN

CPX tSHFSPC

BEQ FORTY

ASL A

STA LINLEN

LDX #CHANNEL

JSR SETINP

JSR GET

JSR GET

LDX #0

STX HORDFLG

STX LINFLG

STX CHARTOT

CLC ;SOM PREV.

LDA WORDTOT

ADC LINETOT

STA WORDTOT

LDA WORDTOT+1

ADC *0

STA WORDTOT+1

t40/80 COLUMN ?

;SET CHANNEL FOR INPUT

;IGNORE LOAD ADDRESS

;START A WORDPRO LINE

LINE INTO TOTAL

STX LINETOT

LDX CHARTOT

CPX LINLEN

BEQ LINESTRT

;IS LINE DONE ?

JSR GET

INC CHARTOT

LDA CURCHAR

LDY LASTCHAR

LDX #0

CMP IFORCMD ; WORDPRO FORMAT COMMAND ?

BNE NOTFORMAT

FORMAT

FINISH

NOTFORMAT

;ZERO LINE COUNT

;IGNORE REST OF LINE

;END OF LINE SYMBOL ?

STX LINETOT

JSR GETREST

JMP LINESTRT

CMP *ENDLIN

BNE MORE

LDX WORDFLG

BEQ DONELINE

INC LINETOT ;GOT A WORD

- 33 -

06A4- 4C 92 06

06A7-

06AA-

06AC-

06AF-

06B0-

06B2-

06B4-

06B6-

06B8-

06BA-

06BC-

06BE-

06C0-

AE 29 06

DO 21

AE 27 06

CA

DO 13

CO 20

FO OF

CO 6F

FO OB

C9 20

FO 04

C9 6F

DO 03

06C2- EE 26 06

06C5-

06C7-

06C9-

06CB-

06CD-

06CF-

06D2-

06D4-

06D6-

06D8-

06DA-

06DC-

06DE-

06E0-

06E2-

06E5-

06E6-

06E9-

06EC-

06EF-

06F1-

06F4-

06F6-

06F9-

06FB-

C9 20

FO AC

C9 6F

FO A8

A2 FF

8E 29 06

C9 20

FO 16

C9 6F

FO 12

C9 2D

DO 04

CO 2D

FO OF

8E 2B 06

E8

8E 2A 06

4C 75 06

AE 2A 06

DO 84

AE 2B 06

FO 08

EE 26 06

A2 00

8E 2B 06

0116 DONELINE

0117 ;

0118 MORE

0119

0120 ;

0121 LEADBLK

0122

0123

0124 ;

0125

0126

0127 ;

0128

0129

0130 ;

0131

0132

0133 ;

0134

0135

0136 ;

0137 COUNT

0138 ;

0139 NOTLEAD

0140

0141 ;

0142

0143

0144 ;

0145 CONTLIN

0146

0147 ;

0148

0149

0150 ;

0151

0152

0153 ;

0154

0155

0156 ;

0157

0158

0159 ?

0160 NOTDASH

0161

*0162
0163

0164 ;

0165 WORDCOONT

0166

0167 ;

016 8 DASHCOONT

0169

0170 ;

0171

017 2

0173

PAGE 03

JHP FINISH

LDX LINFLG ;STARTED LINE YET ?

BNE CONTLIN

LDX CHARTOT ;LEAD BLANK IMPORTANT ?

DEX

BNE NOTLEAD ;NOT FIRST CHAR.

CPY IBLANK ;LAST OF PREV. LINE ?

BEQ NOTLEAD

CPY #FORSPC

BEQ NOTLEAD

;CORRENT CHARACTER ?CMP #BLANK

BEQ COUNT

CMP #FORSPC

BNE NOTLEAD

INC LINETOT ;LEAD BLANK MEANS A WORD

CMP fBLANK ;IGNORE LEAD BLANKS

BEQ CHKLINE ;CONTINUE THE LINE

CMP #FORSPC

BEQ CHKLINE ;CONTINUE THE LINE

LDX #$FF

STX LINFLG

CMP #BLANK

BEQ WORDCOUNT

CMP tFORSPC

BEQ WORDCOUNT

CMP *DASH

BNE NOTDASH

;START THE LINE

; '—• IS ALSO A WORD END

CPY #DASH

BEQ DASHCOUNT

STX WORDFLG

INX

STX BLNKFLG

JMP CHKLINE ;CONTINUE THE LINE

LDX BLNKFLG ;FOUND END OF WORD ?

BNE CHKLINE ;CONTINUE THE LINE

LDX WORDFLG ;WERE WE ON A WORD ?

BEQ NOTYET

INC LINETOT ;COUNT A WORD

LDX #0

STX WORDFLG

- 34 -

PAGE 04

06FE- A2 FF

0700- 8E 2A 06

0703- 4C 75 06

0706- AE 2C 06

0709- 8E 2D 06

070C- 20 E4 FF

070F- DO 02

0711- 09 40

0713- 8D 2C 06

0716- A5 96

0718- FO 06

071A- 20 CC FF

071D- A2 F8

071F- 9A

0720- 60

0721- AE 28 06

0724- CA

0725- 86 B4

0727- 20 06 07

072A- A6 B4

07 2C- CA

072D- EC 27 06

0730- BO F3

0732- 60

0174 ;

0175 NOTYET

0176

0177

017 8 ;

017 9 GET

0180

0181

0182

0183 ;

0184

0185 NONZERO

0186 ;

0187

0188

0189 ;

0190

0191

0192

0193 ;

0194 OK

0195 ;

0196 GETREST

0197

0198 LOOP2

0199

0200

0201

0202

0203

0204 ;

0205

0206 ;

LDX #$FF ;MARK THE BLANK

STX BLNKFLG

JMP CHKLINE ;CONTINUE THE LINE

LDX CURCHAR ;GET A CHARACTER

STX LASTCHAR

JSR GETCHR

BNE NONZERO

ORA #%01000000

STA CURCHAR

LDA *ST

BEQ OK

♦END OF TEXT ?

JSR CLRCHN ;RESTORE NORMAL I/O DEVS.

LDX *$F8 ; RESTORE STACK AND '-
TXS ;GO BACK TO BASIC

RTS

LDX LINLEN

DEX

STX *SAVX

JSR GET

LDX *SAVX

DEX

CPX CHARTOT

BCS LOOP2

RTS

;IGNORE REST OF LINE

;KEEP R(X)

- 35 -

PAGE 05

0207

0208

- .EJ

.EN

LABEL FILE: (/ = EXTERNAL]

/CHANNEL=0002

/LENGTH=0028

/FORSPC=006F

/SAVX=00B4
/SETINP=FFC6

/GETCHR=FFE4

CHARTOT=0627

BLNKFLG=062A

LASTCHAR=062D

SETLEN=063 8

SETCHN=064A

ADDLINE=0660

FINISH=0692

MORE=06A7

NOTLEAD=06C5

WORDCOUNT=06EC

GET=0706

GETREST=0721

7/0000.0733,0733

/ENDLIN=001F

/DASH=002D

/FORCMD=007A

/SCREEN=8000
/CLRCHN=FFCC

WORDTOT=0624

LINLEN=0628

WORDFLG=062B

START=062E

EIGHTY=0646

LOADADR=064F

CHKLINE=0675
NOTFORMAT=0698

LEADBLK=06AC

CONTLIN=06CD

DASHCOUNT=06F1

MONZERO=0713

LOOP2=0725

/BLANK=0020
/SHFSPC=0060

/ST=009€

/IMAGES=8400

/WRT=FFD2

LINETOT=0626

LINFLG=0629

CDRCHAR=062C

LOOP=0632

FORTY=0647

LINESTRT=0655

FORMAT=068F
DONELINE=06A4

COUCT=06C2

NOTDASH=06E2

KOTYET=06FE

OK=0720

- 36 -

The battle between BASIC and PASCAL may soon be over. Enter

COMAL, a new programming language that combines the best of both.

COMAL gives you the ease of BASIC, albng with the power and

structures of PASCAL.

Commodore has generously placed CBM COMAL in the public domain.

Feel free to make disk copies for your friends or include it in a

User Group Program Library.

If you are interested in COMAL, keep us in mind. We are the COMAL

USERS GROUP. We keep you in mind with a Program Exchange,

Newsletter, COHAL Manual, COMAL Handbook, and COMAL. Reference

Card. If you would like to be a COMAL PIONEER, we have a

complete deluxe COMAL STARTER KIT that provides you with

everything you need now, and includes a subscription to our

newsletter, the COMAL CATALYST, as well as one year of free

updates to the Manual and Handbook. Here is what you get:

* CBM COMAL Interpretter

FULL version (only 5K free in a 32K PET/CBM)

SPLIT version (INPUT and EXECUTE modules, each 16K long)

* USER GROUP DISK #1 (Introduction to COMAL)
* HELP DISK (includes 90 sample programs, one for almost every

COMAL Keyword - with an automatic loading MENU)

* CBM COMAL Manual

* One year free updates to the manual

* COMAL Handbook

* One year free updates to the handbook

* COMAL Reference Card

* Subscription to the COMAL CATALYST Newsletter

* Plastic diskette sleeve that holds two diskettes

This comes neatly packaged in our custom padded 3 ring binder,

with a notepad included for your notes as you use COMAL. We ship

the kit in a box we had specially made to provide safe shipping.

The complete COMAL STARTER KIT costs only $47.50 (plus $2.00

shipping within the US, $4.50 shipping to Canada & Mexico, $7.00

Air Mail shipping elsewhere). Or we provide an 18 page COMAL

INFORMATION PACKET for FREE if you send us a large business size

envelope, self addressed with 40 cents postage.

5501 Groveland Terrace, Madison, WI 53716 U.S.A.

- 37 -

SX-100 IEEE Modem Software: A Review Don VJhite

Nepean, Ontario

The SX-100 IEEE Modem -Software was written by Eugene

Fisher, designer of the Livermore STAR Modem and, as marketed

under another cover, the CBM 8010 Modem. Gene is also

co-author of 'PET and the IEEE-4 88 Bus (GPIB)•. The package

is marketed by ECX Company, 267 8 North Main Street #6, Walnut

Creek, CA 94596.

According to the advertising, the SX-100 software offers

the following features:

1. Menu driven

2. Communications mode

3. Save communications to disk

4. PET to ASCII conversions

5* Save communications to printer

6. Business keyboard conversions

7. 40 or 80 character PET/CBM compatible

8. Full/half duplex operation

9. Receive files to disk(prg/seq)

10. Line verification before transmission, protocol

11. Disk directory handler

12. Automatic file creation for text storage

13. File playback for off-line viewing

14. Automatic talker/listener syncronization

15. WordPro III or IV compatible

16. Control operation: formfeed, linefeed, tab,

backspace, delete, escape, break, bell, etc.

The program requires a 16K PET/CBM. When run, it lowers

the top-of-memory and pokes a machine language routine into

memory and then requests you to input the date. Following

this you are presented with a menu of seven options.

C Start Communication

D Directory Listing

K Key Function Tables

L Look At Disk File

Q Quit

R Receive To Disk

T Transmit To Disk

The • Start Communication1 option allows you to use the

PET as a terminal to communicate with another system. In

this mode it will be possible to use the printer to retain a

hardcopy of the session if data is not being input too

quickly from the other computer, i.e. if the data being

transmitted is being typed into the transmitting computer.

While in the communications mode you can activate the disk

log. You will be prompted for the drive number and then a

SEQ file will be opened under a name created using the date

(ex: MODEM81-11-11.A) . This file can be closed at any time

or it will be closed automatically on returning to the menu.

Subsequent files can be opened during the same session. The

new file name will have the last letter incremented to

differentiate it from previous files.

- 38 -

The 'Directory Listing1 option allows you to view the
directories of either drives and is useful in preparation for

disk-to-disk communications. ..

The 'Key Function Tables1 is simply a help mode that

informs you of the keys to push to transmit the control

functions of the ASCII code to timesharing systems and

bulleting boards requiring them. Special IEEE and other

functions are controlled by typing a shifted number (or

shift-return, number on the business keyboard)•

The 'Look At Disk Piles1 option allows you to view the

contents of program or sequential disk files. A copy of the
file can be sent to the printer and the file dump can be

stopped by simply typing "end1. The dump of a PRG file is

only useful in giving you and indication of what the program

is about. It does not provide a program listing.

The 'Quit1 option resets the top-of-memory pointers and
ends the program.

The 'Receive To Disk' option allows you to receive

program and sequential disk files. The program will

automatically generate a file name utilizing the date or you

can supply a file name. The routine uses a handshake routine
which is only available from another SX-100 program. If you

indicate that the transmitting program is the SX-100 then

nothing will be sent to the disk until the proper link has

been established. Otherwise, everything received is sent to

the disk.

Finally, the 'Transmit To Disk' routine is the companion

option to 'Receive To Disk1. If connection with the other

computer cannot be established, you can exit this routine by

pressing any key on the keyboard. If you indicate that the

receiving computer is operating under an SX-100 program,

nothing will be sent until the proper handshake has taken

place. If the receiving program is not the SX-100 then

transmission will begin immediately. Exit from the routine

is automatic once transmission is completed.

I have used this program for a number of weeks now and

it seems to operate as described. It also appears to be

•bug-free'. I only have two complaints. Firstly, no cursor

is displayed when in the communications mode and secondly,

there is no routine included to handle parity and this has

prevented me from communicating with some time-sharing

systems. However, for anyone requiring the capability to

easily transmit and receive files between PETs I would

recommend this program.

The major drawback is the price, $79.95(US) - NOT $49.95
as advertised in COMPUTE!. There is also a 5% service charge

if you use VISA and a $1.50 shipping charge. By the time I

received the VISA statement I was committed to $102.75

(Canadian). The choice is yours.

- 39 -

dump-mate: Tecl Evers, Toronto

A multi-loac system fcr use with Commodore PET/CBMs.

As mentioned in a previous article, the original

multi-load system was part of our AV-8101 video-audio

interface for the Commodore 200C series computers, as shown

below.

s

s
€
T

r

p
o

R

r

By means of the spare inverter-driver on this boardr

programs could be dumped from the master computer to about

twenty slave units. In order to increase its capability to

load programs to up to sixty slaves, when so required, the

first "Dump-Mate11, a multi-output driver, was built.

However, with the introduction of the Commodore 8032 and

4032 (12" screen), the multi-load system used in the 2001 was

no longer possible, as all six inverters of the 7406 I.C.

were now required for the video interface. This problem was

overcome by the redesign of the "Dump-Mate" into a

self-contained, external type multi-loader.

Dwnp-M^r£

!-$*

Each of the four outputs can be connected to up to

twenty "slave11 computers by means of the cassette-ports

interface assembly shown below.

|rom

D A

mm
F D *

To :%l*v* it Z.

rffr
To-. To:

Ca V»

Connection between the input of- the Dump-Mate and the

output of the master computer is made by a short length of

five-conductor cable with "DIN" plugs (PREH #71418-50) on

both ends.

The output socket at the computer end is wired as per

diagram below:

"Hi
(fiOD£O\
\ Lfr*t>

Figure "A" is used for PET 2001 series with the AV-8101

interface and dump circuit, while figure "B" is the wiring

required for use with the regular 2000, 4000 and 8000 series

computers.

Another way of connecting the Dump-Mate to the computer

is shown below:

T?

•/^

- 41 -

In this manner, any PET computer can be utilized as the
master unit, however, the cassette port will not be available

for program loading.

The following is a short "how to" guide:

1. Be sure that the power to all equipment is OFF before

connecting or disconnecting cables.

2. When everything is in place, switch on all units f

including the Dump-Mate*

3. LOAD a program into the master computer.

4. The slave computers requiring this program should now

type:

NEW <return>

LOAD <return>

5. The monitors of these units should now show:

SEARCHING

6. On the master unit, type:

SAVE "name" <return>

7. Push the "dump" switch.

8. After about seven seconds, the "data" light will go off
and the slave monitors will show:

FOUND "name"

LOADING

9. Push the "dump" switch again.

10. The "data" light will stay on until the program is
loaded, at which time READY, and flashing cursor should

appear on all monitors.

11. Typing RUN <return> will execute the program.

- 42 -

Construction

Although the cicuit is simple enough to use direct

point-to-point wiring, for convenience sake. However, our

unit was built on two 2 1/2" x 1 3/4" printed circuit boards,

mounted back-to-back on a "U'-bracket.

Etching and drilling guides, with a components placement
diagram has been included.

DUMP-MATE Suggested Parts List

1 - Hammond I1454G Case

1 - Hammond I166G12 Transformer

1 - Preh #71200-050 Socket
4 - Switchcraft #3501-FP Connectors

1 - N/O pushbutton - Grayhill
1 - L.E.D, Mount

1 - 3-wire AC Cord A6sy.

1 - AC Cord Retainer - Heyco

2 - Marrette Connectors

1 - "0" Bracket

1 - 7406 IC

1-7805 Regulator (TO-3 pkg)
1 - 2N3906

1 - L.E.D.

2 - 1N4001 diode

1 - 10 microfd 15v Tant. Cap.

1 - 10 microfd 15v Elco

1 - 100 microfd 35v Elco

1 - 470 ohm resistor

6 - 2200 ohm resistor

1-22 K-ohm resistor

- Miscellaneous Mounting Hardware

Editor's Note

Dump-Mate was built originally for PET/CBMs, but it will

no doubt work with the VIC-20 since the cassette interface is
identical to the PETs.

- 43 -

l_

TE
81

canadmadal

- 44 -

- 45 -

Isl £SS SSB 5*8 *l 58 3S. SS SS GSK SSI ESK gf 88 9S 82
4J

IB t

855S5S33S355SS333i3353535S35S3S3S332S3S3S355S55552S5£2S5

t
»t

§ I in E£E Sit E=E E5B 5 ill §3S H53 §3S sf '539 552

j! I

it S3 sis ^5 £5 • S3 52 S5- eI 92 25S I»S E§ ifi 5S

5aS53§^^

J:^^S

s3

Isg ii zii ga it ii 38 ii d iii &ii esi sf ii s

i9t**0 ** *• ^4M« *-^ •» O •* •• «%^»Vt«O •-«» *>OHMn

PET User Port

Cookbook

Gregory Yob

Box 354

Palo Alto CA 94302

The PET personal computer

has several expansion ca

pabilities, including one known

as the userport. This is a set of

eight bidirectional lines and

two handshake lines intended

as a parallel port for the hobby

ist to use in his experimental

projects. Commodore has not

released much Information re

garding the user port, and the

object of this article is to ex

plain the user port and its use.

Fig. 1 shows the location of

the user port on the back of the

PET and the pin-out of the PC

edge. If you do not have a 12-po-

sltion, 24-contact edge connec

tor, use a larger one and cut It

off to the 12-posltlon size. If you

do this, be s*ure to insert a po-

tACKOFKT

««••

CASSCTTC IMC* WtTWMUTATlOa
»oct m»

^ POLARIZATION W.OTS—■—«^^^

nfffn o n nnriifrTln n r
(NO CM NO Ml Nt MS MM ftt HI MT Clt 6ND

Fig. 7. The user port—location and pin-out. The user port pin-out

as seen from the top. The user port pins are on the bottom of the

PC card edge. The pins on top carry a variety of signals that are not

related to the user port. Electrically, the lines correspond to one

TTL source or load, depending on whether the line is in output or in

put mode. Use buffering or short cables If high data rates are re

quired. The CB2 line does not have a pull-up resistor, so you may

have to provide one If you are using CB2 In input mode.

larization key in your connec

tor; I found that it was easy to

misalign a sawed-off connector

with the PC edge, causing vari

ous mysterious glitches. Also,

be sure that the top and bottom

connections are really separate

—the upper edge has a variety

of signals that wilt interfere

with the correct operation of

the user port.

The pin designations corre

spond to those on a MOS 6522

VIA (Versatile Interface Adap

ter), which is a complex LSI I/O

chip produced by MOS Tech

nology. (Write MOS Technology,

950 Rlttenhouse Road, Morris-

town PA 19401, for the specifi

cation sheet.) The user port is

connected directly to the VIA

within the PET, and the lines

are capable of sourclng or sink

ing one TTL load. If your appli

cation calls for a high data rate,

note that your cables should be

short or some buffering will be

required. .

As with all of the 650X micro

computer systems, the Input

and output appear to the micro

processor as a group of mem

ory locations. PETs BASICdoes

not have any PRINT or INPUT

statements for the user port,

which requires you to use the

PEEK and POKE statements.

This also places another limita

tion, that Is, BASICS speed,

which limits I/O through the

user port to around 50 charac

ters per second. If you want to

use a more rapid rate, you must

use machine language.

Since this article is con

cerned with the mechanics of

using the user port, most of the

examples will be In BASIC.

Table 1 shows the memory lo

cations for the 6522 In the PET.

At this point I must warn you:

all of the other VIA Unas are

used within the PET for Internal

uses. If you fall to restore the

VIA to its original stale whan

you are finished, you will find

that the PETbehaves strangely,

especially when dealing with

the tape drives.

When I wrote the program for

display of the VIA raQtstsrs

(which you will aae later on), I

didn't save It until I had It de

bugged. The PET wouldn't veri

fy or even find ths copy I had

tried to save, and after hand

writing the program, I reaMzsd

the next morning that the VIA

registers were not In their orto^

Inal states. Fortunately I had

left the PET on ovemlQht, and

when I restored the registers, I

was able to save th^program.

The Bllnkln' Lights Machine

For experimentation with the

user port It Is convenient to

build a miniature "front panel"

to Indicate the state of each

line and to control the lines via

manual switches. A breadboard

and some $20 worth of parts

(bought at the local costly retail

outlet) provided a handy "Blink-

in* LightsMachine" that hooked

to thq user port and used the + 5

volt supply from the second

cassette drive.

Copyright i960 by Kilobaud Microcomputing All rights reserved Used by permission

10

20

30

40

SO

60

70

80

90

100

REM SIMPLE OUTPUT EXAMPLE

REM SET DATA DIRECTION REGISTER TO OUTPUT

POKE 59459.255

REM COUNT FROM 0 TO 255

FORJ.0TO255

REM POKE TO OUTPUT REGISTER

POKE 59471.J

NEXTJ

REM DO IT AGAIN

GOTO 50

Example 1. Simple output example for user port.

Note that the circuit draws

200 mA, which is close to the

maximum you can steal from

the PET. If you have other PET

extensions that use the PET

supply, power the Blinkin'

Lights externally.

Fig. 2 shows the circuit for

the Blinkin' Lights Machine.

The extra inverter and capaci

tor on the CB2 line are for an

audio output to attach to your

hMi set for some simple music

making. One of the best ways

to build this device is on a Vec

tor breadboard, which has the

fingers for an edge connector.

This permits putting the Blinkin*

Lights in series with a device

under test to help with de

bugging the interface software

and hardware.

Most of the examples shown

below make use of the Blinkin'

Lights Machine, so building

one might be handy.

Simple Output

The simplest thing to do is

output bytes to the user port.

To do this, you must first set

the Data Direction register to

255 (all bits set) and then set

the Output register to the

byte<s) that are to be output. Ex

ample 11s a short program that

* counts from 0 to 255 and out

puts the count to the user port.

The Data Direction register

controls the PA0 through PA7

lines' data direction. If the bit is

set for a given line (I.e., bit 0 Is

for line PA0), the line will be an

output. If the bit Is zero, the line

will be an Input.

When the PET Is turned on

with the Blinkin' Lights at

tached, all the LEDs will be lit.

The PA0-PA7 lines are initially

set for Input, and the Blinkin'

Lights will see lines in the hlgh-

Impedance state as "high"

10

20

30

40

50

60

70

POKE 59459.255

K»1

POKE S9471.K

FOR J «1 TO 200: NEXT

K-K-2

IF K»256THEN 20

GOTO 30

Example 2. Another simple

output example.

Name

ORB

ORA

PDRB

ODRA

T1L-W

T1C-H

T1L-L

T1L-H

T2L-W

T2C-H

SR

ACR

PCR

IFR

IER

ORA

Address(hex)

E840

E841

E842

E843

E844

E845

E846

E847

E848

E849

E84A

E84B

E84C

E84D

E84E

E84F

Address(decimal)

59456

59457

59458

59459

59460

59461

59462

59463

59464

59465

59466

59467

59468

59469

59470

59471

Function

M (internal to PET)

Data with Handshake

##

Data Direction

#tf

*#

tfff

##

#ff

«#

Shift Register

Auxiliary Control

Peripheral Control

Interrupt Flags

Interrupt Enable

Data (no handshake)

Table 1. PET VIA register addresses. The named registers may be

used to work with the userport. Some of the settings usedmay dis

able other PET functions, such as tape I/O, so you should restore

the original settings when you are done. The registers with "##" in

the Function column are usedInternallyby the PET. Ifyou are bold,

there are two other I/O chips In the PET. These are MOS 6520s, with

one starting at SE810 (59408) for internal uses and one at SE820

(59425) for the IEEE-844 bus.

(pulled up by the 7404s), turning

on the LED for the line.

When the program (Example

1) Is RUN, the data lines show

that a binary count appears,

which cycles through about

once every three seconds. To

slow the rate down so that the

least significant bits (PA0 and

PA1) will change state, add:

65 FOR K-t TO 50: NEXT

This will slow the counting loop

down to around 10 Hz.

To see the effect of changing

the Data Direction register,

change line 30 to:

30* POKE 59459,15

Now the lines PA0-PA3 will

count, and lines PA4-PA7 will

remain lit (recall that an uncon

nected line will float to high

with the Blinkin' Ughts).

Example 2 shows another

short program. Try it and see

what It does! Note that In PET

BASIC the NEXT statement may

omit the loop counter If the In

nermost loop Is being termi

nated. Another diversion is to,

change the program In Example

2.

20

30

K ■ 1:1 m 128

POKE 50471, K OR L

50 K-K.2.L-U2

(Just change these lines and let

the others remain the same.)

Simple Input

To see simple input, POKE

the Data Direction register to

input mode and connect the

switches to the PAO-7 lines.

Note that the Blinkin' Lights

has some DIP switches to Iso

late the manual switches from

the data lines. This Is because

If they were always tied In, the

switch setting would force the

line to the switch's state.

o

o

o

o

o

o-

o-

cnoO

z-i/2 or a
4 POSITION

IMP SWITCH

i

nmm

vvvvvvvv

OPA3 S

■0**4 >

-£I>PA7 2

OCM

' X7 INVCNTORS ARC
TWO 7404,

() (J) AWT MAMOT LCD*

0ATA DISPLAY

C»2 CAI

handshaac

display

•isolation switcmcs

Fig. 2. Blinkin' Lights—PET user port switch register and Indicator.

Shown What It Represents

b

□

SPACE character (when not clear)

A lowercase character in a square box represents

the corresponding graphics character. For example,

(a| is the spade graphics character, or SHIFT-A:

Clear Screen

Home Cursor

Cursor Up

Cursor Down

Cursor Right

Cursor Left

»NST key

DEL key

Table 2. PET program listing special characters.

Data Register

Data Register, Handshake

Peripheral Control Register

Auxiliary Control Register

Interrupt Flag Register

DATA 59471

HDATA 59457

PCR 59468

ACR 59467

IFR 59469

Table 3.

Then, PEEK the Data register

and display the result on the

PET display screen in a loop. As

you change the switches, the

number displayed will change.

Example 3 is a program that

does this. (Note: Table 2 shows

how this article represents PET

listings.) Line 70 homes the cur

sor and prints the value of the

Data register. It then prints a

CURSOR LEFT and three blanks.

The reason for the CURSOR

LEFT is that the PET has an

oddity when it prints numbers

onto the screen. When a num

ber is printed, the format is:

(SPACE or +KDigits of Num-

berHCURSOR RIGHT).

When a short number is

printed over a longer one, the

printing stops after the CUR

SOR RIGHT. It is necessary to

erase the old numbers with

some blanks, so the cursor is

moved left once and three

blanks are printed. This pre

vents spurious numbers, such

as "328," appearing on the dis

play. (Try it, you won't like it!)

RUN this program and try the

manual switches one at a time.

You should see the sequence 0,

1, 2, 4, 8 ... 128 appear on the

PET screen.

If you set all the manual

switches to zero and discon

nect one of them with the DIP

switch, the line will go high and

the PET will see the bit as set.

Be careful of this when you are

using the Blinktn' Lights for

debugging.

Joysticks

A simple and enjoyable way

to use the user port is to attach

a switch-operated pair of joy

sticks to your PET. Each joy

stick has four switches—one

for each direction—that are

closed when the stick is pointed

that way. Fig. 3 shows a joy

stick circuit.

The program in Example 4

sets up the screen with a solid

and hollow ball. Each joystick

controls one of the balls, and

both balls may be in motion at

the same time. The switches

and bit settings are the same as

in Fig. 3.

Lines 170 and 180 clear the

screen and print the character

for the right and left joysticks.

The PEEK sets the cursors (C1

and C2) to thevalue needed for

use by POKE iater. The value

32768 is the first address in

memory in the display, which

occupies memory locations

32768 to 33767.

Line 260 fetches the data

from the user port. Since the

joysticks ground the lines to in

dicate switch closures, the byie

is complemented. It is then

ANDed with 255 to return to

eight bits, as the integer opera

tions of the PET are 2's comple

ment for 16 bits.

In Line 2010, the value for Z

must be shifted right by four

bits. This is done by dividing by

16 and truncating.

Lines 3020 and 3140 place a

blank and the cursor, respec

tively, on the screen. The multi

plication by 40 for Y is because

the PET screen is 40 characters

wide. If you delete line 3020, the

motions of the joysticks wilt

leave trails and let you draw

pictures.

Transferring Data

with Handshakes

The CA1 and CB2 lines per

mit data transfer with full hand

shaking for input and output.

The 6522 VIA has a variety of

options, and these are con

trolled by the registers in Table

3. In the 6522, the Peripheral

Control register and the Auxil

iary Control register select the

various options for the opera

tional modes for the VIA. Some

of these bits affect the CA1 and

CB2 lines and will be described

in detail later.

- The Interrupt Flag register

has bits for the detection of

several conditions that may be

used for interrupts. In the PET,

the use of the interrupts is a

hazardous affair, as the PET

has a 60 Hz internal interrupt,

which handles various house

keeping tasks such as scan

ning the keyboard and main

taining the internal clock. Since

these functions can only be

handled in machine language,

this article will not discuss how

to handle the Interrupt Enable

10

20

30

. <o

;-5o
GO

70

60

90

REM SIMPLE INPUT EXAMPLE

REM SET DATA DIRECTION TO INPUT

POKE 59459.0

REM CLEAR SCREEN

PRINT" © ";

REM PEEK DATA REGISTER & SHOW IT

PRINT" ® MPEEK(5947ir © W>b";
REM DO IT AGAIN

GOTO 70

Example 3. Simple input example for user port.

register.

To detect a condition, such

as the transition of the CA1

line, PEEK the Interrupt Flag

register and AND for the de

sired bit. The bit in the Flag reg

ister will remain set until other

actions are taken, usually the

reading or writing of data

through the Data Handshake

register.

If the above sounds confus

ing, that is because it is confus

ing, and with this in mind, you

should attempt the examples in

the following sections when

you try to use the PET user port.

Using CA1

The CA1 line is an input-only

line usually used to detect the

handshakes for data transfers.

For example, if a device is send-

5 REM 8Y GREGORY YOB. MAY 1976

10 REM DUAL CURSORS FOR JOY-STICKS

20 REM ATTACHE0 TO USER PORT WITH

30 REM BITS AS FOLLOWS:

40 REM LirC GROUN0E0 MIANS SWITCH IS

50 REM CLOSED ANO TO MOVE CURSOR

60 REM BIT 7 > LEFT STICK UP

70 REM " 6 » 00WN

80 REM - 5 « RIGHT

90 REM " 4 ■ LEFT

100 REM - 3 • RIGHT STICK UP

110 REM " 2 - DOWN

120 REM - 1 - RIGHT

130 REM * 0 • LEFT

140 REM OISPLAY IS WRAPAROUND

ISO REM

160 REM PUT YOUR OWN CURSORS HERE

170 PRINT" ©[a}";:C1«PEEK< 32768)
180 PRINT"© M";:C2««EK<32768)

190 REM INITIALIZE SCREEN 4 POSITIONS

200 PRINT*"©";
210 XL4:Y1«12:X2«35:Y2.I2

220 POKE 332S2,Ct:POKE 33283.C2

230 REM SET UP 0ATA DIRECTION REG

240 POKE 994)9,0

250 REM LOOK AT PORT

260 PcNOTCPEEKt59471))AN0 255

270 REM CHECK RIGHT i LEFT

280 IF P AND 15 THEN GOSUB 1000

290 IF P ANO 240 THEN GOSUB 2000

300 GOTO 260

500 REM ROUTINES 1000 4 2000 SET UP

510 REM XtY • POSITION

520 REM 2 • SWITCH SETTINGS

530 REM C • CURSOR CHARACTER

540 REM FOR ROUTINE 3000 WHICH

550 REM OOES MOVING 4 WRAPAROUND
560 REM

1000 REM RIGHT STICK

1010 X«X1:Y«YI:Z»P ANO 15:C-C1

1020 GOSUB 3000

1030 X1«X:Y1-Y:R£TURN

2000 REM LEFT STICK

2010 X-X2:Y»Y2:2»INT((P ANO 240)/16)

2020 C«C?:G0SUB 3000*
2030 X2«X:Y2«V:RETUW

2500 REM

3000 RCM MOVE CURSOR

3010 REM ERASE OLD ONE

3020 POKE 32768*40»Y*X,32

3030 R£M FIN0 NEW POSITION

3040 IF 2 ANO 6 THEN Y-Y-1

3050 IF 2 AND 4 THEN Y«Y*1

3060 IF 2 ANO 2 THEN X«X*1

3070 IF 2 AND 1 THEN X-X-1

3080 REM WRAPAROUNO CHECK

3090 IF X>39 THEN X«0

3100 If X<0 THEN X«39

3110 IF Y>24 THCN Y-0

3120 IF Y<.0 THEN Y>24

3130 RCM POKE IN NEW CURSOR

3»«0 POKE 32768«40*Y»X,C

31

Example 4. Program to

move two cursors with the

joysticks in Fig. 3.

»ny 3ata to tho PET. the CA1

line will be used to say that the

da:a is now valid. If the PET is

sending data, the CA1 line is

used by the device to signal

that it is ready for the data.

Using the CA1 line involves

these steps:

1. Select the options you

want and POKE the Peripheral

Control register (PCR) and Aux

iliary Control register (ACR)

accordingly.

2. In a loop, check the CA1

Flag bit in the Interrupt Flag

register (IFR) until it is set.

.3. PEEK or POKE the HDATA

(Data with Handshake) register

with the data. This will reset the

CA1 bit in the IFR.

Your options are as follows:

1. Positive or negative tran

sition. CA1 will set its flag bit

when the line goes high or low,

depending on bit 1 in the PCR.

For a negative transition,

use:

POKE (Sd468), PEEK(59468)AN0 254

This Is the value the PET initial

izes to when It is powered up.

The reason it uses a PEEK in

stead of just POKEing to a 1 is

that the other bits in the PCR

should not be changed be

cause they control other

things.

For a positive transition, use:

POKE (59468). P£EK(59468)OR 1

2. Latching of the input data.

If the input data is latched, the

values present on the data lines

will be latched when the CA1

line makes the correct transi
tion. If the data is not latched,

the values in the HDATA regis

ter will change as the data lines

change, it Is safest to use the

latched mode when handshak

ing your data.

To enable latching, use this

statement:

POKE (59467). PEEK(59467)OR 1

To disable latching, use:

POKE (59467). PEEK(59467) AND 254

To detect the Flag bit in the IFR,

use a statement of the form:

IF PEEK(S9469)AND 2 THEN

or

WAIT 59469.2

If you use the WAIT state

ment, note that the STOP key

will be ignored by the PET,

which means you must be sure

that the CA1 line will make a

transition—otherwise your PET

will be hung up. For debugging,

use the IF-THEN form. For read

ing or writing the HDATA regis

ter use:

PEEK (59457J

Or

POKE 59457.

At last it is time for some ex

amples. First, let's try counting

from 0 to 255, with a wait for the

CA1 line to be toggled before

the next value is sent to the

user port. Enter the program

in Example 5, recalling Exam

ple 1.

When this program is run, the

data lights will go out and will

stay out until the CA1 switch is

toggled. (If it doesn't, be sure

that your DIP swich has been

closed for CA1.) The first light

(PAO) will then light, and as you

toggle the CA1 swich, the

Blinkin* Lights will count in

binary.

Two things should be noted.

First, the bounce of the CA1

switch will guarantee that both

transitions occur, so the setting

of the transition bit doesn't

matter. Also, the speed of

BASIC is slow enough that the

bounce of CA1 doesn't cause

double or more rapid counts. (If

you try the equivalent program

in machine language, your CA1

will count 10 to 25 times each

time you flick the switch unless

you have debounced It.)

Second, you can shorten

your program by using the in

verse condition in line 110,

eliminating line 120:

110 IF(PEEK(59469)AND2)»OTHEN110

Beware of the precedence of

operators. If you tried:

110 IFPEEK(5946g)ANO2»0THENU0

your lights would have counted

up ignoring the CA1 line. The

reason for this is that the oper

ator = is evaluated before AND

is. So, the sub-expression 2=0

is evaluated, giving a -1,

which is ANDed with the IFR

with the result that any bit will

make the relation true. In this

case, no other bits are set; the

program then thinks that the

CA1 line had toggled; and it

drops through the loop.

Try it out—this error is quite

common, and that's the reason

Fig. 3a. Joysticks for the PET. The switch arrangement for my PET

joysticks is shown here. The switches are normally open.

MSBIPA7!

r |

1 **r 1 1 NIGHT 1 LC ft 1 UP i OOWl4 1 NIGHT 1

LSBIPAOI

Lift 1

AIGHT JOYSTICK

Fig. 3b. The byte input from the user port is shown here. This

design exploits the fact that the PET lines PAO to PA7will float to

high when they are disconnected. When a line goes low, the cor

responding switch is closed.

PLASTIC O* MCTAL SMCCT>^ /
nuMCn »ompcr-^ >- U4 tm. PLTW

C TO*

wooo

torn)* view

Fig. 3c. The Wobbilator—a low-cost alternative to Joysticks that is

easier to use as well. Eight low-cost miniature push buttons are

used to build two of these units. Either normally open or normally

closed push buttons may be used. (If normally closed, change

lines 260 in Example 4 accordingly.) The push buttons should not

be "snap action*' or "detent" or go "click" when depressed, and

should only move about 1/8 inch for closure. Use a bit of ribbon

cable to attach the connector for the user port to the Wobbilators.

Mark each^ Wobbijator with a dot for "Up"and "Right"and "Left."

Choose a dish that fits your hand comfortably.

10 REM SIMPLE OUTPUT WITH HANDSHAKE

20 REM SET DOR TO OUTPUT

30 POKE 59459.255

40 REM SET POSITIVE TRANSITION FOR CA1

50 POKE 59468.PEEK(59468)OR 1

60 REM COUNT 0 TO 255 .

70 FORJ=0TO255

80 REM OUTPUT TO PORT

90 POKE59457.J

100 REM WAIT FOR FLAG BIT

110 IF PEEK(59469)AND 2 THEN 130

120 GOTO 110

130 NEXTJ

140 REM DO IT AGAIN

150 GOTO 70

Example 5. Simple output with handshake for PET user port.

This program waits for a strobe on CA1 before sending the data

from the PET.

10 REM SIMPLE INPUT VIA HANDSHAKE

20 REM DDR TO INPUT

30 POKE 59459.0

40 REM NEGATIVE CA1 TRANSITION

SO POKE 59468.PEEK{59468)AND 254

60 REM CLEAR SCREEN

70 PRINT" © *:
80 REM WAIT FOR CA1

90 IF (PEEK(59469)AND 2) = 0 THEN 90

100 REM FETCH DATA ft DISPLAY

110 C = C + 1

120 A = PEEK(59457)

130 PRINT' ® bbbbbbbbbbbbbbbbbbbbb © ":
140 PRINT**COUNT"C"DATA"A

150 GOTO 90

Example 6. Simple input with handshake for PET user port

This program waits for a low on CA 1 before accepting the data

and then displays the decimal value of the data on the PET

screen.

10 REM INPUT ASCII FROM KEYBOARD

20 REM CONVERT & DISPLAY ON SCREEN

30 GOSUB 1000: REM INITIALIZE

40 GOSUB 2000: REM GET CHAR AS AS

50 PRINT AS:

60 GOTO 40

1000 REM INITIALIZE PORT & TABLE

1010 POKE59468.PEEK(59468)OR1

1020 POKE 59467,PEEK(59467)OR 1

1030 DIMTBQ1)

1040 FORJ«OT0 31

1050 READ TB<J): NEXTJ

1060 MOaO: RETURN

1100 DATA 0.0.0.0.19.145.29.0,0.18,0,0

1110 DATA 0.13.0,146.0,147.0.157,0,20

1120 DATA 0.0,17.148.0,0,0.0.0,0

1130 REM

2000 REM FETCH CHAR & CONVERT

2010 IF(PEEK(59469)AND 2)=0 THEN 2010

.- 2020 CH = PEEK(S9457)AND 127

2030 REM TEST IF CTRL CHAR

2040 IF CH>31 THEN 2130

2050 REM MODE FLAG TESTS

2060 IF CH = 10 THEN MO=0

2070 IFCH=27THENMD = 128

2080 REM CONVERT VIA TABLE

2090 CH«TB<CH)

2100 IF CHsO THEN 2010

2110 GOTO 2160

2120 REM CASE CONVERT

2130 IFCH>95THENCH=CH-32

2140 REM MODE CONVERT

2150 CHsCHORMO

2160 A$ = CHR$(CH): RETURN

Example 7. Input ASCII from keyboard, convert for all PETkeys

and display on PET screen. This program will accept the ASCII

codes from the user port and follovt the convention in Table 5

and in the text.

lor tnis lengmy explanation, be

sure your expression is doing

what you want it to, and if you

aren't sure, use parentheses or

try trial variations and print the

results on your screen.

The next thing to try is enter

ing a value on the data switches

with the Blinkin' Lights and

have the PET accept the data

when the CA1 line is toggled.

The program in Example 6

shows how.

When the program is run, you

may set the switches to a value

(be sure your DIP switches are

closed or you will just get 255s),

and when you toggle the CA1

switch, the count and value will

appear at the top of the PET dis

play. The count is used so you

can tell when you reenter the

same data value. Though the

desired transition forCAi is not

important in this example, line

50 shows the opposite direc

tion from the preceding output

example. In line 140, the de

limiter ••;'• is ignored because

PET BASIC will permit this.

A Keyboard Via the User Port

As an example of a useful

project for the user port, I inter

faced an ASCII-encoded key

board to the PET. Since I am a

fair typist, the PET keyboard is

frustrating for program entry

and debugging. The following

example is specific to my key

board, but almost any full ASCII

keyboard and most "Dumb

Teletype" keyboards can be in

terfaced in a similar way.

The pin-out for the keyboard

was determined and wired to

the PET user port as shown in

Table 4. Since the keyboard

drew 500 mA, it was connected

to a separate 5 volt supply.

At this point, the card edge

on the Blinkin* Lights was very

handy. The keyboard was con

nected to the Blinkin' Lights

and the Blinkin' Lights not con

nected to the PET. Some inves

tigation revealed that the key

board did encode the parity bit

and that it had a 2-key rollover.

The CA1 LED would turn on

when a key was depressed and

when a second key was de

pressed, it would flicker when

the first key was released. This

indicated that the strobe was a

positive transition and that

tnere was a 2-key rollover.

The keyboard was then at

tached to the PET, and the Sim

ple Input via Handshake pro

gram (Example 6) was tried with

line 50 changed to a positive

CA1 transition. After a short

warm-up, each keypress

showed a value, and the roll

over worked just fine.

Now that the keyboard was

working electrically, a dilemma

appeared: How can you emu

late all the PET keyboard func

tions? A careful study of the

PET keyboard, character set

and cursor control functions re

veals that there are 138 func

tions and that the ASCII code

has only 128 characters in it.

The solution I chose (feel free

to choose one of your own) was

to let the control character rep-

- resent the various nonprinting

keys (cursor movements, RVS

and so on) and to convert all

other characters from the key

board to uppercase. Since the

high bit for a given PET charac

ter is set if the character is a

graphics character, I decided to

have a Mode flag—if you

pressed ESCAPE, all further al

phanumeric keys would show

their graphics character, and

when you pressed LINEFEED,

the mode would be "normal,"

and the character would ap

pear.

It should be noted that the

PET character set is not ASCII

but is similar to ASCII. This re

sulted in some further transla

tion steps, and the entire con

version routine used these

steps:

1. Get the character from the

user port and remove the Parity

bit.

2. If it was a control charac

ter (0 to 31), do the following:

(a) Find a. value in a

32-element translation array

for the correct PET charac

ter. .

(b) If the table value is zero,

ignore and go to step 1.

(c) Print the character on the

screen and go to step 1.

3. If the character is in the

range 96 to 127, subtract 32.

(Converts lowercase to upper

case.)

4. If the Mode flag is set (for

graphics), OR with 128 to set

the highest bit.

5. Print the character on the

PET.

6. Go to step 1.

Note: in step 2, if the character

was an ESCAPE or a LINE

FEED, the Mode flag would be

set or reset, respectively, and

the table entry for these char

acters would be a zero.

The next thing to do was to

choose the meanings for the

control characters. Some con

trol characters, such as CTRL-M

and CTRL-J, were already used

for RETURN. LINEFEED, etc.

Keys were chosen for their con

venience on the keyboard in

Table 5.

The appropriate PET charac

ter values were then placed in a

32-value table for lookup by the

translating routine. A BASIC

program was written to test

this scheme out (see Example

7). Note that RETURN is the

same value, 13, as the value

fetching it (i.e., CH is 13 also). In

line 2020, the masking is done

to remove parity when the char

acter is read from the user port.

The Mode flag is set to 0 or 128,

which permits the use of OR in

line 2150.

Though this program is suit

able for entering data into a

BASIC program, the keyboard

cannot be used In direct mode,

that is, entering BASIC state

ments or LIST, etc. Example 8

shows a BASIC program which,

when run, will load a machine-

language program Into the sec

ond cassette buffer. When this

machine-language program is

10 REM •••• PET MACHINE C00€ LOADER ••••

20 «£M BY GREGORY YOB. 1978

30 R£M R£AOS DATA STRINGS IN FORMAT

40 R£M IDENTICAL TO PET MONITOR AND

50 R£M LOADS INTO InOiCATEO MlMORY

60 REM LOCATIONS. FIRST NUM3ER IS

70 REM START ADDRESS. NEXT 6 VALUES

80 REM AR£ BYTES TO LOAD.

90 REM IF A BYTE IS 'XX* IT WILL NOT

100 REM B€ LOADED. AND MEMORY CELL WILL

110 REM BE UNCHANGCO, AN0 NEXT BYTE

120 R£M LOA060 INTO NEXT CELL.

130 REM IF A BYTE IS •••• OR AN ADDRESS
140 REM IS •••••», THE LOAD WILL STOP.

ISO REM LINE 20000 GUARANTEES END IF
160 REM •••• OR • IS NOT FOUMO.

170 REM

180 REM NOIt: THIS PGM MORE USEFUL IF '

190 REM EXTENDED TO DATA TAPE FILES.

200 REM

300 PRINT© bPET LOADER PROGRAM"
310 READ AS: IF A*-"END" TV€N 950

315 PRINT <§)© "AS"®"
320 G0SL8 400 : REM GET ADDR

330 IF AOOR <0 THEN 950

340 FOR B - I TO 8

350 GOSUB 500 : REM GET BYTE

355 IF BYTE - -2 THEN 380

360 IF BYTE < 0 THEN 950

370 POKE AOOR.BYTE : REM DO THE DEED

375 PRINT A00R;TAB(10);BYTE

380 AOOR-ADOR+t : NEXT B

390 GOTO 310

400 REM •• PARSE ADDRESS ••

410 BS«MIDSCAS,t,4)

20 IF BWm~ THEN AOOR-1 :RETURN

430 GOSUB 600 : REM HEX CONVERTER

440 AOOft-tCX

450 RETURN

500 REM •• PARSE BYTES ••

510 BS-MIDSCAS,B»3+3,2)
520 IF BS«"XX« THEN BYTE—2 :RETURN

530 IF BS«"##" THEN BYTE--1 .-RETURN

540 GOSUB 600 : REM HEX CONVERTER

350 BYTE -HEX

560 RETURN

600 REM HEX CONVERTER

610 HEX-0

620 FOR H-1 TO LEN(BS)

630 HS-HID$(BS.H,1)

640 IF H% <*0" THEN 900 {"0" Is Z«ro)
650 IF HS >Ti THEN 900
660 IF H$ <":" THEN 700

670 IF HS <mAm THEN 900

680 D»ASCCH$)-55 : GOTO 710

700 D=ASC(MS)-48

7»0 HEX-HEX»16 ♦ 0

720 NEXT H

730 RETURN

900 PRINT"@® '#/' BAO VALUE IN OATA ////**
910 PRINT® LOAO ABORTED":END
950 PRINT©® LOAO FINISHED" :ENO
1000 DATA"0338 XX XX 78 A9 75 80 19 02"

1010 OATA-0340 A9 03 80 1A 02 A9 00 80"

1020 DATAN0348 43 E8 80 C7 03 AD 4C £8"

1030 DATA-0350 09 01 80 4C E8 AO 4B E8"

1040 OATA-0358 09 01 80 48 E8 58 60 78"

1050 DATA-0360 A9 85 80 19 02 A9 E6 80"

1060 DATAM0368 1A 02 58 60 A9 00 48 48"

1070 OATA-O37O 48 48 <C 85 E6 AD 40 E8"

1080 OATAM0378 29 02 DO 07 20 6C 03 EA"

1090 DATA"0380 4C 7£ E6 AO 41 E8 29 7F"

1100 DATA"0388 C9 IF 10 30 C9 OA DO 07"

1110 OATA"0390 A9 00 80 C7 03 FO E5 C9"

1120 DATA"0398 18 DO 07 A9 80 80 C7 03"

1130 DATAM03A0 DO DA AA BO C8 03 FO 04"

1140 DATAN03A8 EA AE 00 02 90 OF 02 E8"

1150 0ATAM03B0 EO OA 00 02 A2 00 8E 00"

1160 OATA-03B8 02 4C X 03 C9 60 30 02"

1170 0ATA-03C0 E9 20 00 C7 03 00 E2 00"

1180 DATAn03C8 00 00 00 00 13 91 ID 00"

1190 OATA"0300 00 12 00 00 00 00 00 92"

1200 0ATA*»03D8 00 93 00 90 00 14 00 00"

1210 DATA-03E0 11 94 00 00 00 00 00 00"

1220 DATA-03E8 • •• •• •■ •••

20000 DATA-END"

(Note: all 0

are leroes)

FOOL THE PET INTO REAOING THE USER PORT AS THE

C0MMAN0 KEYBOARD IN PARALLEL WITH THE NORMAL

KEYBOARD BY READING THE USER PORT WHEN THE 60 HZ

INTERRUPT IS SERVICED. IF A CHARACTER IS

PRESENT, TRANSLATES ACCORDING TO SCHEME DESCRIBED

IN USER PORT ARTICLE AND PUTS CHARACTER INTO

THE PET INPUT BUFFER.

THIS CODE TAKEN FROM AN IDEA BY RICHARD

TOBEY. IMPLEMENTED BY GREGORY YOB.

••• INITIALIZATION CODE •••

TURH OFF INTERRUPTS. AND SET THE PET

"INTERRUPT VECTOR" TO POINT TO THE ACTIVE CODE.

SET UP THE USER PORT TO REAO THE KEYBOARD. ANO

SET THE MODE VARIABLE TO "CHARACTER MODE" (0)

NOTE*" THIS COOE RESIDES IN THE SECOND CASSETTE

BUFFER (O33A TO 03FF)

033A

0339

0330

78

A9 75

80 19 02

XON SEI

LOA #S75

STA S0219

! DISABLE INTERRUPTS

! SET UP NEW

! "INTERRUPT

executed (by SYS(826)), the

keyboard attached to the user

port will operate "In parallel"

with the PET keyboard. If you

follow the cautions indicated in

Example 8, you will be able to

use the auxiliary keyboard for

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Keyboard Pin

INT Key

RPTKey

No connection

No connection

GND

+ 5 Volts (separate supply)

Strobe

Parity

Bit 4

Bit 3

Bit 1

Bit 7

Bit 2

Bit 6

Bit 5

PET User Port

—

—

CB2

GND

—

CA1

PA7

PA3

PA2

PA0

PA6

PA1

PA5

PA4

Table 4. ASCII keyboard to PET user port wiring list. Your key

board will, no doubt, have a different pin-out—fust notice the data

and handshake lines. If your keyboard requires an acknowledge,

connect your ACK to CB2.

other programs, etc.

The first program, A BASIC

Machine-Language Loader, will

load any machine-language

code In this format: AAAA HH

HH HH HH HH HH HH HH.

AAAA Is the starting address

for the first hexadecimal value,

HH. Eight hexadecimal values

are permitted per DATA string.

Each string must begin with the

address, and a space must sep

arate the values.

If the characters in an HH

field are "XX," the program will

not load a value into the corre

sponding byte (skipping it). The

characters in an HH field,

or In an AAAA field, will

end the load.

This data format (except

"XX" and ,) is Identi

cal to the one used by the PET

TIM monitor, so at a later time

you can easily use the PET

monitor to directly load this

code 'from the DATA state
ments.

The DATA statements in this

program contain the object

code for the second command

keyboard program described in

the text. To start the machine

program, enter SYS(826) arid

press RETURN. The PET tape

I/O will not work white the ma

chine code is running! Use

SYS(863) to stop the machine

code and make the tape I/O

workable.

Input from the second key

board follows the rules in Table

5 and as described In the text.

It is beyond the scope of this

article to describe the details of

the machine-language program.

A source listing Is provided in

Example 8 for those who wish

to puzzle it out.

A User Port Monitor Program

When you are attempting to

interface to the user port, it is

often necessary to write several

small programs to set and dis

play the VIA registers. The pro

gram In Example 0 performs

these functions and will often

0340

0342

034b

0347

034A

0340

0350

0352

0355

0358

035A

0350

035E

*>O35F
0360

0362

0365

0367

036A

0368

036C

•036E

036F

0370

0371

0372

0375
0378

037A

O37C

037F

0380

0383

0386

0388

A903

80»*02
i

A9Oo

8343Ed

8CC?03

AD4CEd

09Oi

604C£6

AD■»&£8

0?01

8C£3E8

56

60

IDA#103

STA$02u

LOA#S00

STAIE34;

STAMODE

LOA-IE84*.

ORA#S01

STASES4C

LDAJE84F

ORA/SOI

STASEP-^e

CLI

RTS

•••RESTORATIONCOOE•••

RESTORETHE"iNTEP

I/OCANWORKPROPERLY.

78

A965

801902

A9E6

801A02

58

60

XOFFSEI

LOA#$85

STA$0219

LOA#$E6

STA$021A

CLI

RTS

VECTOR"

SETUPUSERPORT&MODE

OATADIRECTIONREGISTER

MODECELL

PERIPHERY.OCNTROlF£G««»TEfi

PCP.

Au*i:.«APrCOMTROlREGiSTEP

!ACh

!iNABLtINTERRUPTS

!ANDRETURNTOCALLED

SWTVECTOR"SOTHATTAPE

!01SABLEINTERRUPTS

!SETUPOLO

!HINTERRUPT

!VECTOR*

!ENABLEINTERRUPTS

!ANDRETURNTOCALLER

!•••STACKADJUSTMENTROUTINE•••

!

A900

48

46

48

48

4C85E6

I

STAXLOA#S00

PHA

PHA

PHA

PHA

JMPSE685

!•••ACTIVECODE•••

PRESENT

!Dummypushestopetstackfor
!CORRECTOPERATIONOFTHE
!RESTORATIONCOOE

!JUMPTOPETINTERRUPTHANDLER

!TOCONTINUEPROCESSING

CHECKSUSERPORTIFRFORCHARACTER.IFNOT

,RETURNSTOPETINTERRUPTPROCESSOR.

IFPRESENT.TRANSLATESACCORDINGTOSCHEME

ANDPUTSINTOTHEINPUTBUFFER.

AO40E6

2902

0007

206C03

EA

4C7EE6
t

PCOOELOASE840

AND#$02

BNEKEYS

FINISHJSRSTAX

NOP

JMPSE67E

ICHARACTERPROCESSING
I

AO41E8

297F

C9IF

KEYSLOASE841

AND#$7F

CMP#$1F

!INTERRUPTFLAGSREGISTER

!DETECTEDCHARACTER

!SETUPTOCALLTHE

!PETRESTORATIONCOOE

!WHICHISFROMHERE

!ORAHANDSHAKEOATAREGISTER

!MASKOFFPARITY

038A

038C

636E
0390

0392

0395

0397

0399

039B

0390

03A0

03A2

O3A3

03A6

O3A8

03A9

03AC

03AF

03B0

0382

03B4

O3B6

0399

03BC

03BE

03C0

O3C2

O3C5

03C7

03C8

03C8

0300

0308

03E0

03E8

1030

C9OA

DO07

A900

60C7

FO£5

C916

DO07

A980

80C7

DODA

BPLNCTR!IFPOSITIVE,ISN'TACONTCOLCHAR

CMP#$0A

BNENLfD

LOA#$00

03STAMODE

8£0FINISH

NLFDCMP*$1B
BNECTRL

LDA#$60

C3STAMODE

BNEFINISH

CHARISN'TALINEFEED

SETMODETOCHARACTERS

BEQSAVESA3YTE

ESCAPE'

OTHERCTRLCHARS

SETMODETO

GRAPHICS

1SAVEANOTHERBYTE

iPROCESSCONTROLCHARSBYTABLELOOKUP

AA

BOC8

FO04

EA

1••■

CTRLTAX

03LOATABL.X

BEQFINISH!IGNOREIFTABLERETURNSZERO

NOP

STASHCHARACTERINTOINPUTBUFFER•••

1•NOTETHATBUFFERPOINTERMUSTBECHECKED&

!CORRECTLYADJUSTED.

AE0002STASHLOX$0200!PETINPUTBUFFERPOINTER

90OF

E8

EOOA

0002

A200

02STA$020F,X!BASEOFINDEXISSTARTOFBUFFER

INX

CPX#$0A!CHECKIFFULL

BNE"*4!SHORTJUMP(SKIPONEINSTR)

LOX#$00
6£0002STX$0200!SAVENEWPOINTER

4C7C
f

C960

3002

E920

03JMPFINISH!1KNOW,ICOULDHAVESAVEOABYTE.

NCTRLCMP#$60!CONVERTTOUPPERCASE

BMINCASE

SBC#$20

00C703ORAMOOE!CONVERTTOGRAPHICIF

00E2

!•••
1

00

!•••

BNESTASH!MOOE>0

OATASTORAGEAREA•••

MOOE!MODEBYTE■0IFCHARACTERS
!128IFGRAPHICS

TABL!CONTROLCHARACTERSCONVERSIONTABLE

.BYTE.00,00.00,00,13.91.10,00

.BYTE.00,12,00,00,00,00,00,92

.BYTE.00,93,00,90.00,14,00,00

.BYTE.U,94,00,00.00,00,00.00

ENDOFCOOE•••

Example8.PETmachinecodeprogramforasecondcommand

keyboard.

savesometimeandtrouble.

Somecommentsconcerning

thecodeareinorder:

Lines70to90holdthereg

isternames,whicharesimilar

to,andinthesameorderas,

thoseinFig.2.

Line210putsacolonand

someblanksattheendofeach

registernamefordisplaypur

poses.

Line250setstheFlagsarray

todisplaythemostcommonly

usedregisterswhenthepro

gramstarts.

Noticethethreeblanksbe

tweenthe4andthe3inline

310.

Line320movesthemenutoa

positionthatwillnotbeover-

writtenwhentheprogramis

displayingall16registers.

Cursormovementsareused

extensivelytocontrolthedis

play.Besuretocountthem

carefully.

Lines1000to1050displaya

numberinbinarybymovinga

maskbit(variable21)tothe

rightandprintingthesignof

theresult(line1030).

Subroutine2000isrequired

topermityoutochoosethe

timetoaccesstheHandshake

Dataregister.ThereasonIs

thateachaccesstothisregis

terwillresettheInterruptFlag

bit.TheD(DATA)commandwill

readthisregister.

Subroutine3000letsyou

changetheregistersyouwant

toseedisplayed.Ifyouforget

thenames(Ioftendo),entera

meaninglessname,suchas

"XXX,"andallthenameswill

beshown.

Sincethedisplayisinbinary,

soistheinput(seesubroutine

4500).

Subroutine4990providesa

"FalseCursor,"whichishandy

inmanyprograms.

WhentheCB2lineIstoggled,

theoriginalvaluesofthePCR

andACRaresaved,andafter

toggling,restored.CB2isforced

bothhighandlowtoguarantee

ahandshakepulse.

UsingthtUser

PortMonitorProgram

Afteryouhavetriedoutthe

variouscommandsandare

familiarwiththem,attachthe

Blinkin'lightstotheuserport

andruntheMonitorprogram.

ClosealloftheDataIsolation

switchesandsettheData

switchestolow.Ifyouarestart

ingfromaresetPET(you

haven'tchangedanyofthe

userportregisters),thePET

displaywilllooklikethis:

76543210

DORA:00000000

ACR:00000000

PCfl:00001100

IFR:01100000

OATA:00000000

D-DATAP-POKES-SHOW

H«HELPO«OUTTT*TOGGLE

The"1"bitsareaspectsof

theregistersusedInternallyby

thePETforItshousekeeping

functions.Ifyousetthelow

Character+CTRLPETFunction

QClearScreen

DHomeCursor

ECursorUp

SCursorLeft

FCursorRight

XCursorDown

YINST

UDEL

IRVSon

ORVSoff

Table5.ControlcharactersforPETspecialkeys.

10

20

30

40

50

GO

70

REM CB2 BLINKER

POKE 59467. PEEK(S9467) AND 227

POKE 59468.(PEEK(S»468) AND 31) OR 192

FOR J = 1 TO 300;: NEXT

POKE 59468. PEEk(59468) OR 244

FOR J = 1 TO 300: NEXT

GOTO 30

Example 10. CB2 Blinker program. The CB2 LED in the Blinkin'

Lights will blink at about 1Hz.

four bits on the Blinkin' Lights

Data switches to high, the

DATA: line will become 0 0 0 0

1111. As you change the switch

settings, you will notice that

there is a lag of about one sec

ond before the display

responds.

This illustrates how the Mon

itor program can show the data

you input to the user port. Now

disconnect the Data switches

by opening the Data Isolation

switches—the DATA: wilt now

become all ones.

With the P command, change

the DDRA to 1111 1111.The

DATA: is now 0000000 0.

This is the initial value stored In

the PET. Using P again, change

the DATA register to some

other value and watch It appear

on the LED* on the Blinkin9

Lights. This Illustrates data

output.

If you close the Data Isola

tion switches and change these

registers, with the P command,

you can demonstrate Input via

handshake with the CA1 line:

DORA Mtto 0000 0000

PCR Mtto 0000 1100 (N+Qathr*

transition)

ACR Mtto 0000 0001 (Enabto

latching)

When you return to the dis

play, the IFR may look like:

0110 0010. If it does, press D

and then press any key. The IFR

will now return to: 0110 0000,

indicating that the Flag bit was

reset when the Data with Hand

shake was read.

Set the Blinkin' Lights Data

switches to some value and

watch the DATA: on the dis

play. The value will follow the

switch settings. Now, flick the

CA1 toggle switch (be sure the

isolation switch Is closed), and

the IFR will show bit 1 as set If

you now change the Data

switches, the DATA: value wilt

not change. It will remain

latched until you do the D com

mand. This illustrates Input

with latching and handshaking.

Feel free to experiment with

other settings for the user port

with the Monitor program.

The CB2 Line

The CB2 line is the most com

plex of the user port lines. It can

be operated in a variety of

modes, including the provision

of an output handshake and the

serial transfer of data. As most

of the CB2 modes can only be

controlled from machine lan

guage, this article will cover

only the two modes that are

usable from BASIC.

C82 as an Output or Handshake

The CB2 line may be turned

off or on directly to provide

either a handshake line or a 9th

output bit for the user port In

either case, the shift register

modes must be disabled by set

ting the Auxiliary Control regis

ter (ACR) as follows:

POKE 59467. PEEK{S0467) AND 227

(In most cases the ACR Is al

ready zero, so this may be ig

nored. However, safety first!)

10 REM 6322 VIA 01SPLAY ANO MONITOR

20 REM PROGRAM

30 REM BY: GREGORY YOB. 1978

40 REM SET UP RS> REGISTER NAMES,

SO REM AO-REGISTER ADDRESSES,

60 REM FO-SH0W REGISTER IF>0

70 OATA ■ORer,'WV\"00RB<\"00RA"

80 OATA wTlLCH.I\-TIC-H",tl71L-L"#wT1l-Kt

90 OATA "T2LC-Ll»»trT2C-H\"SR(\-ACR-
100 OATATOT,"IFR-,-IER","OATA*

110 REM *C*TA* IS 0RA WITHOUT HANDSHAKE

120 OIMR5(16),A(16).F(16)
200 A-59456: FOR J-1 TO 16

210 READ AS:RS(J)-4.EFTS<AS*'*bbt>6M>t**l,6)+*;»

220 A(J)-A:A-A*1

230 NEXT J

240 REM SET FLAGS FOR INITIAL 01SPLAY
230 F(4)-1:F(12)(3

300 REM SET UP 01SPLAY

320 PRINT

330 PRIMTCK*'

340 PRINTH-HELP O^UIT

400 REM DISPLAY LOOP

410 PRINT®®® •;
420 FOR J-1 TO 16
430 IF F(J)-0 THEN 450

440 2-*"EEK(A(J)):PRINTRS(J);:G0SUB1000

450 NEXT J

460 REM IF NO INPUT 00 LOOP AGAIN

470 GETAS:IFAS«("*THEN 410

300 REM DO COMMANDS

310 IF Ai-tT THEN GOSUB 2000

320 IF AS-*P" THEN GOSUB 2500

3X IF AS--S* THEN GOSUB 3500

340 IF AS-"M" THEN GOSUB 3000

530 IF AJ-T THEN GOSUB 3500

360 IF AS--Q- THEN END

700 GOTO 310

1000 REM OISPLAY IN BINARY

1010 21-128

1020 FOR 22-1 TO 8

1030 PRINT SGN(Z ANO ZU;

1040 IF 22-4 THEN PRINT "b";

1050 21-21/2 : NEXT 22: PRINT : RETURN

2000 REM OISPLAY HANDSHAKE REGISTER

2010 Z - PEEK(59457) :PR|NT-®"RS(2>; GOSUB 1000
2020 PRINT©"; : GOSUB 4990:RETURN
2500 PRINT© POKE REGISTER(g3(g®-
2510 GOSUB 4000

2320 GOSUB 4500

2530 POKE A(2),8

2540 RETURN

(*** Is • null String)

3000 PRINT"© bb 6322 REGISTER OISPLAY ANO CHANGE (§®
3010 PRINTTHIS SHOWS THE VALUES FOR THE PET'S
3020 PRINTVIA REGISTERS. YOU CAN LOOK AT ALL OF

X30 PRINT"THEM. THOSE USED FOR THE USER

3040 PRINTPORT ARE SHOW «CN THE PROGRAM

3050 PRINT-STARTS. ®©CD© THE DISPLAY IS REFRESHEO ABOUT 0X2
3060 PR I NT"PCR SECOND. PRESS A KEY TO 00 A COMMWO

3070 PRINT"® bbOO-OATA READS ORA WITH HANDSHAKE
3080 PRINT" P*"OKE LETS YOU POKE A REGISTER

3090 PRINT- S-SHOW SELECTS REGISTERS TO OISPLAY

3100 PRINT- <W»T STOPS PROGRAM

3110 PRINT* T-TOGGLE TURNS CB2 OX, THEN OFF TO

3120 PRINT" FORCE HANDSHAKE 4 THEN

31X PRINT* RESTORES TO PRIOR STATE

3300 PRINT (§®**;:G0SUB4990:RETURN
3300 REM CHANGE OISPLAYEO REGISTERS

3910 PRINT-© SHOW REGISTERS®®©
3320 GOSUB 4000

3530 PRINTS«SN0tf,E«£RASE,X-FWISHED"; :GQSUB: 3000
3940 IF AS--S* THEN F(2)-l

3930 IF Al-T1 THEN F(2)-0

3360 IF AS-"X" THEN RETURN

3970 PRINT<g®@®§)":
x*\^q GOTO 3320

4000 REM GETREGISTER NAME, RETURN Z-INOEX

4010 PRINT®® REGISTER NAME:l
tlMPUTAS

4020 RESTORE:F0RZ-1TO16:REAOBS

4030 IFBS-ASTHEN I

4040 NEXTZ:PRINT®@§) THE REGISTERS ARE CALLED:
4030 FOR J-npj&PRINTLEFrtJWJ^
4060 print (3)(gXyXyMD(yXyXii®ii)®'';: goto 4010
4500 REM - GET BINARY NUMBER

4310 PRINT-BINARY VALUE: **;:INPUT AS:ZI-128:B-O

4320 IF LEN(Af) < 8 THEN PRINT •©";: GOTO 4310
4530 FOR J-1T08

4340 IF MIDS(M.J.I)-"1*THEN B-B OR Zl

4330 21-2»/2:NEXT J

4360 RETURN

4990 PRINTPFESS A KEY*

3000 GET AS: PRINT(&)(
3010 PR1NTb(p";:F0R»
3020 IF AS«*~THEN 3000

5030 RETURN

5500 REM TOGGLE C82

5510 A«PEEK(59467>:B-PEEK(59468)

5520 C-e ANO 131 OR 192 .

5530 0- B OR 224

5540 POKE 59468,C

5550 POKE 59468.0

3560 POKE 59468.B

3570 POKE 39467.A

3360 RETURN

7*;:FOR K-1 TO 20: NEXT K

• 1 TO 20: NEXT K

(**- is a no11 string)

Example 9. PET user port display and monitor program.

Then, the CB2 line Is set high

by-

POKE 59468. PEEK<59468) OR 224

and it is set low by:

POKE S9468.(PEEK(S9468)ANO 31) OR 192

The parentheses are required

to ensure that the operations

AND and OR are done correctly.

Example 10 is a short "CB2

Blinker" that blinks CB2 at

about 1 Hz.

9 interlacing the Writehander

The Writehander is a one-

handed input keyboard manu

factured by the NewO Com

pany. 246 Walter Hays Drive,

Palo Alto CA 94303 (see Kilo

baud No. 23, p. 9, for a descrip

tion of the Writehander).

The Writehander is a gray

plastic ball about six inches

across with switches placed so

that the fingers and thumb may

touch them. By altering the fin

ger arrangements, you can

send any of the 128 ASCII codes

to the computer. When the byte

is ready, the Writehander pro

vides a strobe and then re

quires an acknowledge signal

before it sen^s the next byte.

The wiring to the PET user

port is shown In Table 6. The

grounds were connected to

gether for the power supply, the

PET and the Writehander. The

Writehander has several jumper

options that were wired as:

1) Strotw goes active km ♦ to - ~_

2) Acfcnowt«dQ« ictto low +to-~L

3) Parity (Bit 8) set low Gnd

This means that the follow

ing steps are required to talk

with the Writehander.

1. Poke the DDR to all in

puts

2. Set CA1 to detect the Hi

to Low transition

3. Disable the CB2 Shift

Register mode

4. Enable latching with CA1

5. Turn CB2 on (high)

6. Wait for the Interrupt flag

inthelFR

7. Read the Data with Hand

shake

8. Mask off the parity bit

and display the data (or

whatever)

9. Turn CB2 off (low)

10. Go to step 5

These steps were incorporat

ed into a program, Example 11,

which was only intended to ac

cept characters from the Write

hander and display their values

on the PET screen. See the pro

gram in Example 7 for a more

complete processing of the

characters. (If you are a real

diehard, modify the assembly

program in Example 8 to pro

vide the required CB2 logic.)

Lines 30 and 40 can be com

bined, but this program keeps

them separate to show the dif

ferent things being done. If you

want to show the character

rather than the value, use:

90 PRINT CHR$(X AND 127 fc

I encountered several frus

trating experiences during the

development of the above

(simple!) program:

1. The Writehander would

work perfectly when attached

to the Blinkin' Lights by itself,

and the program would work

perfectly when it was attached

to the Blinkin' Lights...and

(guess), when the Writehander

5

10

20

30

40

50

60

70

80

90

100

PRINT" © ";

POKE 59459.0

POKE 59468, PEEK(59468) AND 254

POKE 59467. PEEK(59467) AND 227

POKE 59467. PEEK(59467) OR 1

POKE 59468. PEEKJ59468) OR 224

IF (PEEK(59469) AND 2) =0 THEN 60

X a PEEK(59457)

POKE 59468. (PEEK(59468)ANO 31) OR 192

PRINT X AND 127;

GOTO 50

Example 11. Writehander input program.

was attached to the PET, it

wouldn't work! After much fid

dling, I discovered that the

Writehander required that the

ACK (CB2) be high before it

would bring the Strobe (CA1)

low. Thus CB2 had to be set

high before trying to look for a

character.

2. The parenthesis around

the PEEK in line 80 is required

for the CB2 to be set low due to

the precedence relations of

AND and OR.

3. PET ASCII isn't ASCII, so

the "wrong" character would

be displayed (see A Keyboard

Via the User Port section for a

detailed discussion).

CB2 as a Shift Register

The CB2 line may be made to

act as a shift register by setting

a combination of bits 2,3 and 4

in the Auxiliary Control register

(ACR). Only one of these modes

is usable from BASIC. The

others require the use of ma

chine language to be controlled

properly (see the 6522 VIA spec

ification for details).

One nice way to experiment

with this is to use the PET to

make "square wave music."

Fig. 4 shows two ways to attach

an audio extension to the PET.

Each of these simply uses the

CB2 line for the audio signal.

Checking It Out

Once you have your audio ex

tension together, one way to

check it out is to toggle CB2 In

Handshake mode as fast as

BASIC will go:

10 POKE 594«7.P€EK(59407)ANO 227

20 A«59468:X«PEEK(A)AND131Ofl192

30 Y«PEEK(A)OR224

bH>

Fig. 4a. Add the inverter and capacitor to the output of the CB2 in

verter In the Blinkin9 Lights. Fig. 2 has this addition indicated.

Line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Color

Brown

Red

Orange

Yellow

Green

Blue

Violet

Gray

White

Black

Brown

Red

Orange

Yellow

Green

Blue

Function

Bit 1

+ 7 to + 23 V power (unused)

Bit 2

Ground

Bit 3

+ 5 V (separate power supply)

Bit 4

—

Bit 5

—

Bit 6

—

Bit 7

Strobe

Bit 8

Acknowledge(ACK)

PET

PA0

PA1

GND

PA2

PA3

PA4

PA5

PA6

CA1

PA7

CB2

Table 6. Writehander wiring list.

Fig. 4b. This circuit lets you add sound effects, etc., for you PET

without any additional equipment. Take the + 5 volts from the

second tape port. (That's the top or bottom pin, second in from the

side of the PET. Check your first tape recorder to find whether it is

on top or bottom—Commodore makes both kinds!) Find a 2 or 3

inch speakerandany handy NPN transistor capable of200mA cur

rent. The 47 Ohm resistor should be 1/2 Watt or larger and should

not be omitted. My unit was put on a 3x5 inch perlboard with con

nectors glued to one edge, which makes It easy to hook to my PET.

Data Directions Register

POKE 59459, 255

POKE 59459, 0

Simple Input tnd Output (no handshakes)

(value) = PEEK(59471)

POKE 59471. (value)

Input and Output with Handshaking

POKE 59468, PEEK(59468) AND 254

POKE 59468. PEEK(59468) OR 1

POKE 59467, PEEK(59467) OR 1

POKE 59467, PEEK(59467) AND 254

IF PEEKJ59469) AND 2 THEN —

WAIT 59469, 2

nnn IF(PEEK(59469) AND 2) = 0 THEN nnn

(value) = PEEK(59457)

POKE 59457, (value)

POKE 59468, PEEK(59468) OR 224

POKE 59468, (PEEK(59468) AND 31) OR 192

Shift Reglstery

POKE 59467, PEEK(59467) AND 227 OR 16

POKE 59467, PEEK(59467) AND 227

POKE 59466, (value)

POKE 59464, (value)

Miscellany

(value) = PEEK(515)

dresses are now of Interest:

Set user port to 8 bits output.

Set user port to 8 bits Input.

Input (value) from user port.

Output (value) to user port.

CA1 will trigger on falling edge.

CA1 will trigger on rising edge.

Data Is latched when CA1 triggers.

Data is not latched.

Three ways of detecting the CA1 Flag Bit.

Be careful with using WAIT.

Reads from user port, resets CA1 flag bit.

Writes to user port, resets CA1 flag bit.

Set CB2 line high.

Set CB2 line low.

Sets shift register to free running mode.

Disables shift register modes.

Puts (value) into shift register.

Sets timer 2 to (value)

Reads matrix value of key pressed.

255 = no keys pressed.

Reads shift keys. 1 if pressed, 0 otherwise.

SR

T2L-W

Shift Register

Tlrrw-2

59466

59464

(value) = PEEK(516)

Table 7. Summary of BASIC statements used to control the PET user port.

40 POKE AJ.POKEA.Y: GOTO 40

Line 10 disables the Shift

Register mode, and line 40

turns CB2 on and off. The rea

son that variables are used In

line 40 for the addresses is that

BASIC runs much faster when

variables are substituted for

constants.

RUN the program, and a buzz

wilt emerge from your speaker.

Try changing line 40 to:

40 POKE59468*:POKE5946e,Y:GOTO 40

and you will notice that the

pitch of the buzz Is much lower.

(Note: You will also hear a varia

tion In the pitch of the buzz.

This Is caused by the PETs In

terrupt routines "beating" with

the execution of the BASIC pro

gram.)

A last variation before going

10

20

30

40

50

eo

70

80

90

100

110

120

130

REM CLUMSY MUSIC MACHINE

REM SET S.R. MODE IN ACR

POKE S0467. P£EK<59467) ANO 227 OR 10

PRINT-TIMBRE !";

INPUT TC

IF TC<1 OR TO254 THEN 40

REM CHECK FOR KEYPRESSES

PWNT"PflESS KEYS FOR TONES**

K-P£EK<515)

IF K-256THEN POKE5*468,0: GOTO00

POKE 5*464,* POKE SMOftJC

"K - PEEK01S): IF K -258 THEN 100
GOTO 120

Example 12. A clumsy music machine.

10

20

30

* 100

110

POKE SQ467.P£EK(S0467)AND 227 OR 16

POKE 90466,15

FOR J -0TO 256; POKE 59464.J: NEXT

GET Af: IF AS -— THEN 30

POKE 50406,0

Example 13. Program for effect 1.

on to the shift register Is to

change the above program as

follows:

40 Z = 515

50 POKE A^fcFOR J = 1 TO PEEK©:

NEXT: POKE A,Y: GOTO 50

Pressing different keys will

vary the rate of clicking. (Note:

Location 515 Indicates which

key is depressed on the PET

keyboard. This is not in PET

ASCII but represents the matrix

position of the key.)

Shift Register Mod*

When the ACR bits 4,3 and 2

are "100" the shift register Is In

"free running mode." Two ad-

At a rate determined by the con

tents of Timer-2, the contents of

the shift register are placed on

the CB2 line. When eight bits

have been shifted out, the shift

register Is again shifted out.

This creates a continuous

stream of bits that repeats

every eight Timer-2 cycles.

Timer-2 accepts a number

from 0 to 225 and counts it

down to zero at the PET clock

rate. When it reaches zero, the

shift register is shifted and the

least significant bit (bit 0) Is

placed on the CB2 line.

By placing an appropriate

number into Timer-2 for the

pitch and a 15 into the shift reg

ister, square waves at audio fre

quency will emerge from CB2.

Here is the world's clumsiest

musical Instrument (see Ex

ample 12). Try It and you will

know why. Line 50 Inputs a

waveform to be put Into the

shift register when a key Is

pressed. Line 60 guarantees

that the waveform will result In

a sound (a 0 or a 255 will come

out as a dc voltage).

Line 90 detects the state of

the PET keyboard matrix. When

no key is depressed, the value

in this address is 255. line 100

puts a zero Into the shift regis

ter, turning the sound "off."

Then the keyboard Is checked

again.

If a key Is depressed, the

"pitch," or the matrix value of

the key, Is put into the timer and

the timbre Is put Into the shift

register. Now a sound Is heard

(for most of the keys; some will

30

40

FORJ

FORJ

. 10 TO 256 STEP 10: POKE 59464.J: NEXT

= 255 TO 10 STEP -10: POKE 5*464J: NEXT

Example 14. Changes in Example 13 tor effect 2.

30 FOR J -1 TO 100: POKE 5*464,240«RNO(1) ♦ 10: NEXT

Example 75. Change in Example 13 for effect 3.

30 FOR J »1 TO 30: POKE 50464,100: POKE 59464.200: NEXT

40 FORJ«1TO3& POKE 59464,150: POKE5*464.250: NEXT

Example 16. Changes in Example 13 for effect 4.

make inaudibly high notes).

Line 120 waits until the key is

released before starting over at

line 100.

Some time spent with a cal

culator or scope will yield

10

20

30

100

110

111

112

115

117

120

130

132

134

135

140

150

160

REM BETTER WOLF

REM GREGORY YOB

REM CB2 ON USER PORT & AMP

POKE 59467.16 :POKE 59466.15

FOR 1 a 160 TO 50 STEP - 3.POKE 59464.L:NEXT

FORJ«1TO6:NEXT

POKE 59466,0

FORJ-1TO150:NEXT

POKE 59466.15

FOR L «150 TO 80 STEP - 2: POKE 59464.LNEXT

FOR L s 90 TO 190: POKE 59464.L

FOR J «1 TO L/70: NEXT

NEXT

POKE 59467.0

PRINT-PRESS KEY TO DO IT AGAIN"

GET AS: IF AS a "" THEN 150

GOTO 100

Example 17.

about two octaves of pitches

that are reasonably close to the

'musical scale(s). Feel free to

write your own musical pro

grams.

Since the CB2 line, once in

Shift Register mode, wilt run in

dependently of the PET's other

activities, other computations

may be done while a tone is

sounded. Another aspect is the

making of sound effects for

games. See Examples 13-17

and try them out to find out

what they do.

Lines 100 and 110 in Example

13 provide a way of turning the

sound off. If you don't do this,

the PET will squeak at you after

you press the STOP key—and

only a direct version of line 110

will turn the squeak off! Exam

ples 14-16 show changes to Ex

ample 13.

Summing Up

The PET user port is a versa

tile way with which to commu

nicate between the PET and the

rest of the world. This article

has shown you the "nuts and

bolts'* required to interface

many devices, including joy

sticks, keyboards and music

makers, that add to the capabil

ities or your PET.

For your convenience, Table

7 summarizes the various

BASIC statements used to con

trol the user port. Now let me

see... robots, turtles, printers,

my lawn sprinklers ■

Get Your Pet on

The IEEE 488 Bus

This 3-part odyssey takes you along route 488. The first stop is here... tickets, please.

Gregory Yob

Box 354

Palo Alto. CA 94301

Perhaps the most obscure

Commodore PET feature is

its IEEE 488 (or HPIB or GPIB) in

terface. This three-part article

describes the rudiments of the

488 bus and how to use your

PET to communicate with in

struments having the 488 inter

face. Several working examples

with Hewlett-Packard equip

ment are shown. (HP lent me

•everal 488-compatible instru

ments to prepare this article.)

If you just want your PET to

talk to that costly instrument on

your bench, skip this month's in

stallment and start next time

with part 2. The first two parts of

this article will sketch the pre

requisites and give you enough

information to track down bugs

on your own.

What's a 488 Bus?

In 1972, engineers —some

with Hewlett-Packard— pro

posed a method of joining many

instruments in a standardized

way to help automate lab and

test measurements. This re

sulted in the IEEE Standard

488-1975. which describes how

to connect as many as 15 instru

ments on the same cable.

HP and several other labora

tory-instrument manufacturers

then offered the IEEE 438

scheme as an option. Presently,

several hundred instruments

have the 488 capability: Commo

dore used to provide a 5-page

list of these. The PET was later

designed with the instrumenta

tion and control market in mind,

so the IEEE 488 interface was

put into the PET.

Before the introduction of the

PET, instruments capable of

controlling the 488 bus cost sev

eral thousand dollars. Now the

PET often costs less than the in

struments it controls. Some 488

manufacturers have trouble ad

justing to this - their customers

balk at the idea of purchasing an

$800 microcomputer to control a

$30,000 instrument!

Now one connector joins the

PET to many peripherals. You

don't need a separate interface

and connector for each new

gadget. Commodore's printer

and disk are designed to use the

PETs 488 interface.

Physical Aspects

A PET and a 488-compatible

device have different connec

tors. Your first project is to wire

a cable to tie the two machines

together.

Fig. 1 shows the location of

the IEEE 488 connector on the

back of the PET. and Fig. 2

describes the pins and connec

tors used for the PET and the

IEEE 488. I used a 20-conductor

ribbon cable and tied the

S*C« CK PC!

miniiHii

fic •

O HBO

Fig. 1. Location of PET IEEE 488 port on the back of the PET next to

the power switch and fuse.

o o o o o o

010 •

OIO 2

010 S

OIO «

cot

0*V

M*'D

»OAC

I'C

t»0

Fig. 2. Pin-outs and connectors tor the IEEE 488.

Copynght 1980 by Kilobaud Microcomputing All rights reserved. UseO by permission.

grounds together into the four

lines left over after) connected

the signal wires.

When making the cable, bear

in mind that there are strict

limits to cable lengths:

1. The maximum distance be

tween two devices is 5 meters.

2. The longest distance from

one end of your setup to the

other is 20 meters.

3. A maximum of 15 devices, in

cluding the PET, can be hooked

together.

It is also wise to avoid electrical

ly noisy areas; don't drape your

IEEE 488 cable over your TV set.

If more than one device is

connected to the 488, you must

use extension cables. HP has

cables for about $50. If you want

to make your own, consult the

two configurations in Fig. 3. The

488 instruments always have a

female connector, so have an

excess of male connectors on

your cables.

Electrically, the 488 bus

works on an active-low princi

ple. Fig. 4 shows a circuit similar

to a 488 bus line. When all the

switches are open, thevoltmeter

will show 5 volts, which is the

false state (or 0) for the line. It

any of the switches are closed,

the line is grounded, and the

voltmeter shows zero volts, or

the true state.

This peculiar arrangement

permits several devices to be

connected to the same line. If

any one of them has a switch

closed, the line is true. Devices

frequently operate at different

speeds, and when each device is

ready, it opens Its switch. How

ever, the line remains true (low)

until the slowest device opens

fisWitch.

IEEE Btinfcin Utes Display

It is always convenient to

have a display and switches to

perform a front panel function

when you debug interfaces. I

built a box, which I call the 488

Blinkin Lites, to display the

states of each of the IEEE 488

lines and some switches to

force lines low if needed. Fig. 5

shows the circuit, and Fig. 6 is a

sketch of my box.

Each line is pulled up to +5

volts with a 10k resistor-the

high value was chosen to mini

mize the load on the 488 bus.

The switches can override any

line when they are closed to

ground. Though the PET doesn't

use all the IEEE 488 lines, future

machines will — so I put them all

in my box.

If you build this box, don't use

the PETs + 5 volts from the tape

port-the LEDs draw 170 mA,

which is too much for the PET.

Provide a connector to the PETs

IEEE port and a male and female

IEEE connector. This lets you in

terpose the IEEE Blinkin Lites

between the PET and an instru

ment.

I mounted a 5x7 inch perf-

board with 0.10 inch holes into a

standard breadboard box and

placed a label near each switch/

LED combination to identify the

IEEE lines. The three ICs are the

7404s used to drive the LEDs.

The cable leads to a homemade

junction with a PET connector

and IEEE male and female con

nectors. A mini phono jack con

nects to a separate + 5 volt sup

ply (see Fig. 6).

When you plug in the IEEE

Blinkin Utes, the LEDs will show

the state of the lines-an LED

that is off indicates a low line,

which is true; an on LED indi

cates high, which is. false.

Tr* IEEE 488 Ur**

The IEEE 488 is composed of

16 lines. Eight are for transfer of

data, five are for bus manage

ment and three are for hand

shaking. The eight data lines are

MALC

' FCMAIC

MALC

CCCIVC*^

Vcc (USUALLY

♦SV)

WHCN INTCMTACIN6 TO TMf.

tccc 4*a eus. opcn colccctom
OCV«CCS MUST •£ USCO

Fig. 4. IEEE 488 equivalent circuits. The lower circuit is the standard

methodof connecting TTL logic to the 488bus. The driver must be an

open collector and able to sink at least 48 mA at .4 volts and source

5.2mA at 2.4 or more volts. The PETuses MC3446Pbidirectional line

interface ICs for this function.

labeled DIO1 through DIO8, with

the most significant bit (MSB)

on DIO8. The 488 bus can trans

fer one byte at a time and is

sometimes called byte-parallel.

The five bus-management

lines in various combinations

and .sequences provide many

bus facilities, most of which are

rarely used:

EOl-End of Message. When

a group of bytes is sent via the

DIO lines, EOI is made true on

the last byte to indicate that the

message is completed. This is

optional, and many instruments

send the ASCII characters CR

and LF as data instead. Check

your instrument's manual.

IFC-Interface Clear. When

this line is true, all instruments

disconnect to a defined state.

(This usually is unaddressed

and untatked.) When you turn oh

the PET, IFC is true forabout 100

ms. If the PET is reset, IFC will

again be true.

SAO—Service Request This

permits an instrument tosignal

that it needs attention ... and

the device in charge of the bus

must find out what it needs.

The PET has this line as an in

put, but it takes some program

ming effort to use SRQ; most in

struments don't use SRQ.

REN—Remote Enable. Most

IEEE instruments have front

panels that permit stand-alone

operation-that is, they work

as ordinary instruments when

the 488 bus isn't connected.

REN lets the instrument dis

connect from the bus and be

controlled from its front panet

TO ICCC MALC

won rcT.Kxc

r
TO tUX

' 4TO0 *9t

xmor

Fig. 5. IEEE -Blinkin Utes" cir

cuit. Each IEEE line uses one

copy of this circuit.

Fig. 3. Convenient cable configurations for the IEEE 488 bus. Fig. 6. Sketch of the "Blinkin Lites."

~1

1 MAS OAV
\ <«»c -it- ;

I I

Fig. 7. The IEEE 488 handshake reproduced from Electronics. Nov. 14, 1974. p. 98. as reproduced in HP

part #59520055.

The PETs REN line is always

grounded.

ATN—Attention. This is the

most relevant line for this arti

cle. It tells the device whether

to regard the data on the DIO

lines as a command or as data.

When ATN is true, the byte on

the DIO l:nes is a command.

When ATN is false, DIO is seen

as data.

The three handshake lines

are used to pass bytes on the

DIO lines. When a byte is trans

ferred, the slow devices will

keep one or more of the hand

shake lines true until they are

finished. This ensures that data

is passed at the speed of the

slowest device and isn't lost.

The handshake lines are:

DAV (Data Valid)-When this

line is true, the-data on the DIO

lines is correct and the receiv

ing instruments can pick up the

byte.

NRFD (Not Ready For Data)-

When a receiving device is busy

or is still processing prior data,

it will make NRFD true, which

stops data transfers.

NDAC (Not Data Accepted)-

When the data is on the DIO

lines, the receiving devices

keep NDAC true until alt of

them have read the data byte.

Note that the handshake lines

don't care whether the data is a

command or not; every byte of

data or command has to under

go the handshake sequence.

The Handshake

For data transfer, one device

is the "talker," which provides

the data or commands for trans

fer. The recipients, or "listen

ers." pick up the data, and more

than one device may listen at

the same time. The handshake

specifies exactly how the data

transfer is accomplished.

Fig. 7 shows a flowchart of

the handshake sequence. When

the first event, NRFD. goes

false, this tells the talker that all

of the listeners are now ready to

receive a new data byte. The

slowest listener is the last one

to release NRFD. which will go

high.

Next, the talker puts the data

byte on the DIO lines and waits

briefly to let the signals settle

(usually about 10 ps). Once the

data is on the DIO lines. NRFD is

checked by the talker, if it is

false, the talker sets DAV to

true. The listeners now know

that the new data is ready for

pickup. (If NRFD is true, the

talker waits until it goes false.)

The first listener that detects

DAV true now sets NRFD true,

and all of the listeners pick up

the data byte from the DIO lines.

Up to now. NDAC has been true,

and as each listener gets its

byte, it releases NDAC. NDAC

goes false when all the listeners

have the data. The talker waits

for NDAC to go false, and when

it does, the talker sets DAV to

false. The listeners then make

NDAC true, and the entire hand

shake sequence begins again.

Since a device is either a

listener, talker or not addressed.

Fig. 7 is broken into two flow

charts: one for the talker and

one for the listener. A listener

will start the handshake with

NRFD and NDAC true, while the

talker checks these. If both are

false-the listener isn't there-

an error condition exists.

Commands and Messages

When ATN is true, any data on

DIO is seen as a command. Fig.

8 shows the entire ASCII set of

128 characters devoted to IEEE

488 commands.

The ASCII codes 32 through

62 (all numbers in decimal) des

ignate the listen address for a

device. Most IEEE-488-compati-

ble devices have a five-position

DIP switch next to the 488 con

nector set to the device's ad

dress, a number from 0 to 31.

(Note: For the PET, use 4-15.)

When the listen address is sent

with ATN true and this address

matches the device's address,

the device will now be ad

dressed to listen and will accept

any data sent with ATN false.

If the device is supposed to

send data, the talk address-

from ASCII codes 64 through 94

—will be used instead. The

device (it with matching ad

dress) will now send data bytes

to the bus.

If the device's address (by the

switches) is number 7, the listen

address value will be 32 + 7, or

39 (apostrophe). The talk ad

dress will be 64 -i- 7. or 71 (letter

G). Notice that bits' 5-7 desig

nate talk or listen, and bits 0-5

designate the address. Address

31 is reserved for two special

commands. Although you can

set the switches on a device to

31, it wont operate with this set

ting.

One instrument must provide

these talk and listen addresses.

This device is the controller, and

the PET is always the controller.

The controller can talk and lis

ten too. but only the controller

can set ATN true.

Two of the ASCII codes, 63

and 95, serve as "universal"

commands. The 63 code is

known as "unlisten" and tells all

addressed devices to stop

listening to the bus. This is

faster than trying to tell the

devices one at a time to stop

listening. The 95 code, "untalk,"

stops all data transmitters

(talkers).

When a message - or a group

of data bytes-is sent on the

data is present. (In normal oper

ation of the bus, the controller

doesn't have to take these

drastic measures.)

In some cases, a device will

have a secondary address,

which permits more than 31 ef

fective addresses on the bus.

For example, the Commodore

printer might be set as device 4.

To control internal functions,

secondary addresses select the

function in use. (See Commo-

IEEE

PAJ

! PA1

PA2

FAJ

PA*

PA$

PA*

PA7

CA1

CA2

Table 1.

1.88 MA (6520)

ICCC 0«t* In 1

2

" " 3

.. .. s

" •' 7
8

ATM In

NOAC Out

All PET I/O lines.

ADORESS: S E82O

PB6 IEEE D*t* Out

P81

PB2

P83

P64

PBS
PB6

PB7

CB1 SRQ In

CB2 DAV Out

59*2*

1

2

3

S
6

7

8

[

»4

<

>

>

1

1

I

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

1

1

ft*

0

0

1

1

0

0

1

1

0

0

t

0

0

1

1

•l

0

1

0

1

0

1

0

1

o

1

1

0

1

0

1

e

•

4

4

1

I

II

12

IS

14

IS

MULTIUNC

0

0

o

o

NUL

SON

STX

CTX

COT

CNO

ACK

•CL

•S

MT

VT

ff

CM

SO

SI

<D
MS6

6TL

soc

P*C®

«T

TCT

tNTCMI

0

0

1

1

OLC

OCI

OC2

OCS

0C4

HAK

SVN

CT1

CAN

CM

csc

FS

OS

»s

us

•ACt MCSSAGCS ISO-7 SIT COOC HCPftCSCNTATtO

(SCNT ANO ftCCClVCO WITH ATN*I)

MSG

LLO

OCL

SFO

1

0

2

SP

1

•

•

s

%

ft

1

«

-

MSG

w

>

-if—

0

1

1

s

0

1

2

S

4

9

<

>

ms«

w

s

Si

UNL

0

0

4

•

A

•

C

0

c

f

1

K

L

M

N

0

MS6

"s
•

-i

p

5-

»-

-2-

N

0

i

9

1

►

1

\

)

—

MSO

M
M

-5

-J>-

•

i

UNT

1

0

•

i

(

MS«

t

«I-

-■-

i

-1

«

t

[-

1,

7

I

%

)

1

X
t

OCL

MS6

-!

-

4K

It.
i

I .

AOOftCSSCO

COMMANO

C*OU^

UC6)

MS6*tNTC«trACC MCSSAGC

t», •OIO» ..»T *OIO7

*COUIRCS SCCONOAKY COMMANO

UMVCNSAL

COMMANO

6ftOUP
(UCC)

PIIIMAMY

LISTCN

AOMCSS

GftOU*

(LAG1

COMMAND GKOUr I^CG!

TALM

AOOKCSS

GAOU^

(TAG)

1

HOTCS

® OCNSC SUBSET (COLUMN 2 THN0U6H S)

Fig. 8. IEEE 488 command set reproduced from the IEEE Standard 488-1975/ANSI MC 1.1-1975, p. 77.

488 bus, the controller sets ATN

true and sends a listen address;

the controller sets ATN true and

sends a talk address; the talker

puts data on the bus, and the lis

tener picks it up. When the

talker is finished, it may set EOI

true on the last byte or send CR

LF as the last bytes. The con

troller now sets ATN true and

sends untalk (UNT) and unlisten

(UNL), which reset the two de

vices.

In many cases, the controller

— in this case, the PET —does

the talking or listening. The con

troller can make everything stop

by either setting IFC true or set

ting ATN true and putting UNT

on the bus. Since UNT has its

five lowest significant bits true,

the active low operation of the

IEEE lines overrides whatever

dore*s "PET Communication

with the Outside World," p. 19.) If

a secondary address is in use, it

is sent immediately after the

talk or listen address, known cs

the primary address, with ATN

true.

Several of the bus-manage

ment lines, such as SRO, EOI,

REN and IFC. serve special

functions. Many instruments do

respond to these, and often the

response depends upon the in

strument.

When ATN is low. about half

the ASCII code is devoted to

special commands, which come

in defined sequences whose

definition takes about two-

thirds of the format IEEE 488

specification. Most instruments

use only a few of these.

Flipping Bits

The PET ultimately communi

cates to the rest of the world by

the screen and some interface

chips—two 6520s and one 6522.

(For the specs on these chips,

contact MOS Technology.) The

6520 and 6522 chips can only

drive one TTL load, so the PET's

IEEE lines are connected to

some buffer chips to provide the

currents needed in the IEEE 488

bus.

Table 1 indicates all of the

PET's I/O line assignments as a

reference. The PET utilizes all 60

I/O lines as shown here. Most of

the IEEE lines are buffered with

MC 3446P bidirectional line

driver chips to provide the IEEE

current requirements. SRQ Is an

input only and connects directly

to the 6520 chip. IFC is buffered

with a NAND and some resistors

to the IEEE specification.

Table 1 reveals some interest

ing irregularities concerning the

IEEE 488 bus: If EOI is true, the

PET's display is turned off.

(Programs that PEEK and POKE

the display area in memory can

use this to avoid snow.) Later-

model PETs don't have this prob

lem. REN isn't listed; the PETs

REN line is wired to ground

(true). IFC is not shown. The

PETs IFC is connected to the

power-on one-shot, which sets

IFC true for about 100 ms when

the PET is turned on. If you reset

the PET by grounding the RES

line, IFC may not go true. A bet

ter approach is to trigger the

power-on one-shot by inserting

a switch between power and the

555's power pin. The SRQ line is

an input only. The PETs firm

ware does not use SRQ, so you

have to program it directly.

In a 650x-based system, all I/O

is seen as a set of memory ad

dresses. This means that BA

SIC'S PEEK and POKE can be

used to control the IEEE 488

lines. Table 2 indicates the ad

dresses and bits invoJved tor the.

PETs IEEE lines. In most cases,

a direct PEEK or POKE will do.

Two lines, ATN in and SRQ in, re

quire a more complex sequence.

These are connected to CA1 and

CB1 of a 6520, which set flag

bits in the Interrupt Flag regis

ter. Resetting these bits re

quires a memory access to the

DIO data register.

Table 3 lists the specific

PEEKs and POKEs to individual

ly sense or modify the IEEE

lines. In many cases the PEEK

ot POKE values can be ANDed

or ORed together to do several

operations at once. If you have

built the IEEE Blinkin Lites, try a

KEYBOARD FiA (6S?O)

fk Keyboar

PA I "

PA) . «S6

PAt S->tch. Cassette »»

FA6 CO I In

PA7 Di^nottic Ju-wer

CAI fte«d. C«\%ettr fi

CA7 Screen 8l*r»k C £01 Out

AOD».(SS: S tBlO S5;O8

PB0 Keyboard Colu

PB3

f*B<*

CBI V.deo t*or,z Sync In

CB? Motor, Cassette 'I

The D:*9no\tic LCD -ill lt9r>t If PAJ-Migh, PAI-Migh. <>A?-low.

USCR PORT VIA (6$2?) ADDRtSS S C81.0 S?""S6

f>B0 NOAC In

PB1 NRFO Out

PB2 ATN Out

PB3 Write. B£_r. C*%*ftte

PBt notor. C«tiette $ }

PiBS Video Hori/ Svr»C In

PBfc NRFQ In

»B7 OAV In

CBI Read. Cassette '2

CB? Usrr Port Handshake

CA2 selects t»»e MSB of the characters R0«. selecting the PCT's

Graphics or lo«*er case characters for the display.

PAI

PA)

PA«.

PAS

PA 7

CAI

CA?

V\e

\ \

Uve

Chj

r ro

r Po

r^C t

t LSB

* «S8

rt Handshake

tr% ROH Select

few of these PEEKs and POKEs

to see how they work.

When I was flipping bits with

PEEK and POKE for the IEEE

lines, I was confused each time I

had to figure out the decimal

numbers for each changed bit.

Perhaps it would be easier to

display a byte of memory on the

PETs screen in a -front panel"

format with simulated LEDs for

each bit and some simple key

board commands to change bits

and addresses. Memory Monitor

(see Listing 1) does this.

When Memory Monitor is

loaded and run, and the first

page of instructions is read, the

display in Fig. 9 is shown. A box

with four parts appears in the

middle of the screen with the ti

tle Memory Monitor placed

above the box. Left of the box is

a marker, ». which indicates

the part of the box accessible by

the keyboard.

The top of the box shows the

address of a memory location in

decimal. If you press SPACE,

the address will be erased, and a

new number can be entered.

Pressing number keys enters a

new address, and a reverse-field

cursor appears.

When a cursor isn't on the

screen, pressing RETURN will

move the marker to the next part

of the box. (The second part in

the box indicates the bit num

bers and is skipped by the

marker.)

The third part of the box dis

plays a front panel made of sclid

or hollow "balls" (or "LEDs").

This shows the eight bits of the

byte under investigation. The

numbers above the MLEDs" in

dicate the bit numbers, 7 the

MSB and 0 the LSB. To change

the byte, enter 0 or 1 (or Shift-Q

and Shlft-W), and the cursor will

appear. Pressing RETURN

enters the value.

The fourth part of the box is

the value of the byte in decimal

and is entered in the same way

Listing 1. Memory Monitor.

10 PRINT"clr sp sp Sp sp sp sp sp —> MEMORY MONITOR <--
20 PRINT"dn sp sp THIS PC* DISPLAYS A LOCATION IN THE

30 PRINT-PET'S MEMORY IN BOTH OCCIMAL ANO IN A

40 PRINT-'FRONT PANEL* FORMAT.

50 PRINT-dn sp sp YOU CAN CHANGE THE ADDRESS OR VALUE

60 PRINT-BY ENTERING A NEW VALUE WHEN THE '>>f

70 PRINT-MARKER IS NEXT TO THE ITEM YOU APE

60 PRINT-CHANGING.

90 PRlNT"dn sp sp PRESS 'RETURN* TO ENTER THE CHANGE

100 PRINTOR TO MOVE THE MARKER.

110 PRINT"dn sp sp THE PGM CONSTANTLY PEEKS THE LOCATION

120 PRINT-WHEN YOU AREN'T CHANGING A VALUE. IF

130 PRINT-YOU CHANGE THE AOORESS, THE PGM

140 PRINT-WILL SHOW THE NEW VALUE. IF YOU CHANGE

150 PRINT-A VALUE, IT IS POKED INTO MEMORY.

160 PRINT-do sp sp 'H' WILL GIVE YOU SOME HELP FOR EACH

170 PRINT"ITEM.

190 PRINT-dn PRESS ANY KEY TO START

195 GETAS:IFAS«*MTH£N195

200 REM DRAW 01 SPLAY FORMAT

210 PRINT-clr dn dn dn dn On dn";

220 D1i--f f f I §_l t t I tilli r "* shift-*)
230 03$""rt rt rt rt rt rt rt rt rt rtm (10 rt#s)

240 PRlNT-rt rt rt rt rt rt rt —>sp MEmDPy KMlTOR sp< ~"

250 PRlNTD3$-fDU-."

255 PRINTD3I"! AD0R£SS:sp *P *P *P *P *P >P *P 1" Q ** « vertical line!
260 PRINTD3S"*-O1iw3"

265 PRINT03S"! 7 sp~6 sp 5 sp 4 sp 3 sp 2 sp 1 sp 0 }w
270 PRINT03V;. i 21 7 « 2 £ 2 € 2 9 2 t 3"
280 PRINTD3S-I sp 1 sp J sp J sp J ^T} sp 1 sp J *? }m
290 PRINTD3S"* #2f2f2t2*2e>2€3"

300 PRINTD3S-J DECIMAL:" sp sp"*sp sp~sp sp'sp J"
310 PRINT03»"-"01*"«"

320 PRINT-dn "an d«"~

NOTE: For Uo« 200-320— Fig. 9.

400 REM IDLING PROGRAM

410 AO-59471:PT-1

500 REM DISPLAY AOORESS

510 G0SU3 1000

520 REM DlSP PANEL LiTES

525 0T«PEEK<AD>

530 GOSUB 1200

540 REM DlSP OECIMAL

550 GOSUB 1400.

560 REM DlSP PTR

570 GOSUB 1600
500 REM GET CHAR

590 GET AS

600 IF At-— THEN 500

610 IF AKHRK13) THEN 700

620 FG«0:GOSUB 2500

630 IF FG-« THEN 510

P4Q GOTO /lU

700 REM BUMP PTR

710 GOSUB 1800

720 GOTO 510

1000 REM OISP ADOR

1020 VS«STRJ(AO)**t$p sp sp sp Sp sp sp"

1030 V$-M|0S(VS.2,6>

1040 PRINT TAB(20);VJ

1050 RETUW

1200 REM OISP PANEL

1210 PRINT-dn dn dn-TABdU;

1220 VT«OT:DV>126

1230 FOR J>1 TO 6

1240 IF VT/DV< 1 THEN 1260
1250 PRINT- 0 rf; :VT-VT-DV:GOTO 1300

1260 PRINT" W rt";

1300 DV«0V/2~
1310 NEXT J

1400 REM OISP DECIMAL

1410 PRINT-dn"

1420 vt«STRS<OT)*" sp sp sp sp sp sp sp sp "

1430 VS*MIDS(V4,2.6>

1440 PRINT TAB(20);VS

1450 RETURN

1600 REM DlSP PTR

1610 PRlNT**hm dn dn dn dn dn dn <Jn"

1620 IF PT>1 THEN 1640

1630 PRINT TABC8)M>>#t;:R£TURN

1640 PRINT-dn dn dn"

1650 IF PT >? THEN 1670

1660 GOTO 1630

1670 PRINT"dnH:GOTO 1630

1800 REM BUMP PTR

1810 GOSUB 1600

1820 PRlNT-rt rt sp sp"

1830 PT-PTO: IF PT>3 THEM PT.1

1840 GOSUB 1600

1850 RETURN

2000 RETURN (This 1in« probtbly Isn't n««d*d)

2500 REM CHANGE ITEM

2510 ON PT GOSUB 3000.3500,4000

2520 RETURN

3000 REM CHANGE AOOR

3010 IF AI--H" THEN GOSUB 45OO:RElURN

VALUES fOft INPUTS

l£Ct LINC

DIO 1

OIO 7

010 3

010 4

010 5

010 6

DIO 7

DIO 8

cot

IFC

SRQ
REN

ATM

OAV

NHFD

NOAC

ADDRESS

(NEX)

E820

E82O

£820

C82O

E82O
£820

E82O

£820

£810
....

£82)

£821

E8<»0

E8dO

£840

ADORESS

(DECIMAL)

59*24i

59«*

59*2*1

59U*
S9^2<i
59*21,

59*08
.....

59*27

59*25

59*56

59*56

59*56

BIT

0

1-

2

3
4

5
6

7

6

.

7

7

7
6

0

VALUES TOR

IEEE LINE

oio-i

DIO 2

DIO 3

DIO *

DIO 5

010 6

DIO 7

DIO 8

£01

IFC

SRQ

KEN

ATN

OAV

NRFD

NOAC

OUTPUTS

ADDRESS

(HEX)

£822

£822

£822

£822
£822

£822

£822

£822

£811
....

£8*0

£823
E8*0

£821

Table. 2 Addresses and bits for the IEEE 488 lines.

ADDRESS

(DECIMAL)

59*26

59*26

59*26

59*26

59*26

59*26

59*26

59*26

59*09

59*56

59*27
59*56

59*25

BIT

0

1

2

3
i,

5
6

7

3
-

-

2

3
1

3

as the address.

. If you press RETURN several

times, the marker rotates

through the three accessible

parts of the box. To recall how to

enter a value, press the letter H,

which clears the screen and pro

vides instructions.

The Memory Monitor eased

the tedium and frustration of

checking the PEEKs and POKEs

used in the IEEE 488 memory lo

cations. I have made Memory

Monitor simple to use, and I con

sider it a good example of user-

oriented programming.

Doing It the Hard Way

With direct access to the

PETs IEEE 488 lines, you can

use PEEK and POKE to operate

an IEEE instrument "by hand."

This is probably more difficult

than using the IEEE Blinkin

.ites box to communicate

switch by switch because it

takes more keystrokes to

change a bit with POKE.

The next step is to write a

BASIC program that performs

the required IEEE 488 opera

tions directly. Though the PET

has these "built in," there are a

few advantages to doing the

whole thing in BASIC.

Everything goes slowly. As

events happen, there is a

chance of seeing them as they

goby.

BASIC is accessible. If the

PET or your instrument decides

that the sky's the limit, pressing

the STOP key can illuminate

where the difficulties lie. The

PETs built-in IEEE 488 services

—> MCMOftV MONITOR <--

ADOftCSS

7 « S

OCCIMAL

. 9*471

4 J I I 0

2M

Fig. 9. Listing 1's initial display.

3020 Vl«A0

3030 GOSUB WOO

3040 IF V2< 0 THEN RETURN

3050 IF V2> 65535 THEN RETURN
3060 A0-V2:RETURN

3500 R£M CHANGE BINARY VALUE

3510 IF AS-WTHEN GOSUB 4600: RETURN

3520 V1«0T

3530 OOSLB 5500

3540 IF V2< 0 THEN RETURN

3550 IF V2>255 T>CN RETURN

3560 0T«V2:P0KE AD,DT:RETURN

4000 R£M CHANGE VALUE

4010 IF AJ*-HM THEN OOSUB 4500: RETURN

4C20 VI=DT

4030 GOSUB 5000
4040 IF V2< 0 THEN RETURN

4050 IF V2> 255 THEN RETURN

4060 OT*V2:POKE AD.DT: RETURN

4500 PRlNT-clr sp sp TYPE IN THE NEW NUM3E* AND PRESS

4505 FG«»

4510 PRINT*RETURN. PRESS *x» TO ABORT & NOT HAKE

4515 PRINT-THE CHANGE.

4520 PRINT- sp Sp PRESS SPACE TO ERASE REST Of NUMBER.

4530 PRINT-dn sp sp PRESS ANY KEY

4540 GETAS: |FAS=—THEN 45«0

4550 RETURN

4600 PRlNT-clr sp sp ENTER Mf OR • g * TO SET A BIT. AND

4610 PRINT-1** OR • W • TO RESET A BIT. PRESS
4620 PRINT-RETURN WHEN OOEN.

« 4625 PRINT- sp sp PRESS SPACE TO SKIP A BIT.

4630 PRINT-dn sp sp PRESS ANY KEY

4640 GETAS:IF AJ»— THEN 4*40

4650 RETURN

5000 REM NUMERIC ENTRY

5010 REM POS CURSOR

5020 PRINT TAB<20);

5030 REM MAKE 01 SP STR

5040 DS«MlOS<STRSlvl),2)»Hsp sp sp sp sp sp sp-

5050 DS«LEFTS(DS.6>

5060 REM SET RVS PTR & RETURN VAitf

5070 PC«!:v2=-»

5080 REM SEE INPUT & AC"

5090 IF A$«"X" TH£N RETURN

5100 IF A1«ChRX<13) ThLn v2«vAi iGJ) :«l "0^

5110 IF ASOM sp " THEN 5120

51U DS«LEFn<D4.PC-U*"sp sp sp *p sc *p":DlnEf U<D$.fc i

5116 GOTO 5210

5120 IF AS< "9" OR AJ>"9" TXfN 5*»l-
5125 REM REMAKE STRING

5130 OXJ«W:OS«—

5140 FOR J=l TO 6
5150 IF POJ THEN 0S«0$*AS:G0TO 5170

5160 DS«DS«MIO$(DXS,J,1)

5170 NEXT J

5180 PC*PC*1: IF PC >7 THEN PC«1

5200 REM DISPLAY RESULT & RESTORE CURSOR

5210 FOR J*1 TO 6
5220 IF J»PC THEN PRINT "rvs";

5230 PRINT MiDS(Di.J.I);
5240 IF J«PC THEN PRINT -off";

5250 NEXT J:PRINT"lft Ift Iff Iff l«t Iff;

5260 GET Ai: IF A$»— THEN 5260

5270 GOTO 5090

5500 REM BINARY ENTRY

5510 PRINT TABdl);

5520 FOR Js 1 TO 8

5525 V1*V1/2

5530 IF Vl«INT(Vl) THEN 0S«w £ "♦DJ: GOTO 5540

5535 0$** £ "♦OS

5540 VI * INT(VI)

5550 NEXT J

5570 REM SET RvS PTR

5580 PC»1:V2*--1

5590 REM LOOK AT INPUT

5600 IF AS»"X" THEN RETURN

5605 IF AS*CHRSd3)THEN 5780

5610 IF AS*-sp- THEN 5715

5620 IF AS="1" OR AS*" g - THEN AS*" fi ":GOTO 5660

5630 IF ASs-0" OR AS*** W - THEN AS*- W -.-GOTO 5660 •
5640 GETAS:IFAS«—THEN 5640

5650 GOTO 5600

5660 REM REMAKE STRING

5670 DXSsDSrOS'"-

5680 FOR J= 1 TO 8

5690 IF PC*J THEN DS»OS*AS: GOTO 5710

5700 DS*DS+MIDS(DXS.J.1>

5710 NEXT j

5715 PC*PC«1:lF PC>8 THEN PC*1

5720 REM OISP & FIX CURSOR

5730 FOR J» 1 TO 8

5735 IF J « PC THEN PRINT "rv$";

5740 PRINT MlOSCOS.J.1)Mrt-;

5745 IF J=PC THEN PRINT -o««";

5750 N£Xl J:PRlWT" lit lit Ift Ml lit Ift Ift Iff

M<>C GOTO X»40

\Vk B£M KAKt VALUt

5780 v2»0:FO»lJ«i TC 8

5765 v2»v2#2
5790 tf MiDStDi.J.'>«" w " Then 5810

5800 V?«V2O

5810 NEXT j

5820 RETURN

are mostly invisible, anc there s

often no wa> to find out why

something went wrong.

Everything is under control. It

Aii OiO Lines *

IN

OUT

EO»

IN

TRUE OUT

FALSE OUT:

POKE 59426.25S V = PEEKi59424. v . :NOTiVnANO25S

V = ;NOT<V»AND255. POKE 5942G v'

V = 11F PEEK(59408iANO 64 ThEN v - 0

POKE 59409. PEEKJ59409I AND 247

POKE 59409. PEEKI59409) OR e

REN & IFC - Not Applicable

SRQ-*

IN.

LO-HI

HILO

ATN**

IN.

LOW:

MILO:

TRUE OUT

FALSE OUT

DAV

IN

TRUE OUT

FALSE OUT

NRFO

IN:

TRUE OUT.

FALSE OUT:

NOAC

IN

TRUE OUT:

FALSE OUT.

V = 0 IF PEEKi59427) ANO 126 THEN V =1

Z = PEEK{59426>

POKE 59427 PEEK(59427) OR 2

POKE 5942?. PEEK-59427) ANO 253

V = 0 IF PcEK(59425i AND 64 THEN V = 1

Z = PEEK'^9424)

POKE 59409. PEEK(59409) OR 2

POKE 59409 PEEK(59409) AND 253

POKE 59456. PEEK45945Ci AND 251

POKE 59456. PEEK(59456> OR 4

V = 1: IF PEEK(59456) AND 128 THEN V = 0

POKE 59427. PEEK(59427) AND 247

POKE 59427. PEEK(59427) OR 8

V = 1: IF PEEKJ59456) AND 64 THEN V = 0

POKE 59456. PEEK(59456i AND 253

POKE 59456 PEEK(59456i OR 2

V = 1. IF PEEK(59456» ANO 1 THEN V = 0

POKE 59425. PEEK(59425» AND 247

POKE 59425. PEEK<59425) OP 8

•The extra parenthesis in ihe complementation ol V is required, lor the PET

evaluates AND before NOT

"The HILO or LO-HI determines which transition the CA/CBi inputs will respond

to. Set the HILO or LO HI before doing the IN. line. The Z = PEEK resets the Hag bit

Be sure to reset the Hag bit before checking the first time

SRO OUT is not available on me PET

Table 3. PEEKs and POKEs tor the IEEE 488 lines.

is simple enough to display

every step with suitable mes

sages to the screen. If neces

sary, you can insert a GET loop

tc make the PET wait until a key

is pressed before proceeding.

Changes are easy.

It's an educational experi

ence—those who must learn the

"nuts and bolts" of the IEEE bus

will find a BASIC emulator

useful.

I constructed the BASIC 488

program (see Listing 2) to pro

vide the following essential ser

vices: put the PEEK and POKE

values into variable form for rea

sonably fast execution and to

simplify debugging with direct

commands; do most of the

PEEKs and POKEs for line con

trol as short subroutines; pro

vide the listen and talk hand

shake sequences for one byte

and display their progress; pro

vide a way to send and receive

strings to a device on the bus;

set the program up as a skeleton

onto which you can add specific

programs to suit changing

needs.

Table 4 indicates the subrou

tines and variables used in the

BASIC 488 program. Load these

subroutines and then add the

code you need for your devices.

Some devices, such as those by

Commodore, may not follow the

IEEE time standard, and the BA

SIC 488 program will not be fast

enough to prevent time-outs.

I built the program from the

bottom up, starting with subrou

tines 1500 and the series start

ing at 9000. Subroutine 1500

sets up the essential variables.

A1-7 are the addresses of the

PEEK/POKE locations; M0-M7

and N0-N8 are AND and OR

masks to extract bits 0-7 from a

location (or to set the desired

bits); 01-07.are the original

values for addresses A1-A7.

(POKE A1.01, for example, will

restore location A1 to the PET's

power-on value, which helps you

to recover from disasters.)

The variables H1 to H6 are the

sense values for the IEEE lines.

For example, if H1 is 1, the DAV

line is true. If H1 is zero, DAV is

false.

When you enter BASIC 488.

enter lines 1000-1620 and lines

9000-9640 first. Use the IEEE

Blinkin Lites to check that the

subroutines in the 9000 series

function correctly. First, GOSUB

1000 in direct mode to set things

up. Then, GOSUB to the section

under test and look at the

Blinkin Lites to see what hap

pened. A PRINT H1 will inform

you of the sensing subroutines'

results. Be sure to thoroughly

test the 9000 series first!

Listing 2. BASIC 488 program.

1000 REM •••• IEEE 488 ••••

1005 R£M GREGORY voe, JAM 1979

1010 PEM BOX 354, PALO ALTO f> 9«!0i

1015 REK

1020 «EM THTSE ROUTINES PEPMiT OlPld

1025 REM MANIPULATION V TM£ Pf.T IEEE

1030 PEM 488 BUSS LINES AND (SLOW ,

1035 REM IEEE 486 OXWiL A'jD Data

1040 REM TRANSFEPS

1045 REM

1500 REM — INITIALIZATION —

1510 R£STOP:REA0 At ,A.2,A3.A4.A5.K,A7

1520 DATA 59424,5V426,59<25,59427,5>40%,iV

1530 READ M3,Mi,M2,Mj,M4,w}tM6,M7

1540 DATA 1.2.4,e.lt,32,t4,126

1550 READ Ne,Ni,N?,!i},u4,»iS.N<./*7

1560 DATA 254,253,25^.247.239,223,'9',U7

1570 READ N8

1580 DATA 255

1590 READ 01,02,03.04,05,06,07 Ifa*.*- o

1600 DATA 255,26t,t0.«,/49.255,«i

1610 OEF Furtx^riV/iiANC/I/.,

1620 RETURN

'•« Letter 0)

TO taot»

7000 PPHiT-cir GET MESS

7010 PPlNTMon PRE:r- "S *

7020 GFTAS: |F*W"fT*i%

7030 D2=FNF CDV*64 *

7040 BS=~*

7050 GOSUB 8000-.IF rNr»c«,»iyr.«EN7O7
7060 BJ»BJ*CHPl<Fnr{Q\,,:GGT0705G

7070 GOSUB8000:P£*

7080 PPlNT-dn do «CSSAGE

7090

7500 PPINT-clr SCND MESSAGE"
7510 lNPUT"dr. d'. MESSAGE :";C1

7520 D?=FNMDV*32) :00Sue9450:G0SL885O0:GOSUB9470

7530 fO*» J*1 TO LEN(CS)

7540 02=FNF<ASC:m!01(C1.J>>>

7550 GOSUe6500:NE/U

7560 PPlNT-dn <j-> MESSAGE SENT: sp"CX

7570 RETURN

8000 P&Wclr LISTEN HANDSHAKE en"

8010 GOSUB9350:GOSUa9250:GOSLe9370

8020 PRINT- sp NPFD TRUE <jnM:PRlNT" sp NDAC TRUE"

:PRINT" sp NRFD FALSE"

8030 PPINT-WAITING FOP OAV TRUE"

8040 GETA1:IFAJ<>-"THENPR|NTM—FORCED":G0T0B060

8050 GOSU891OO:IFHU0THEN8O4O

8060 C»SU39000:PRlNT"dn spDATA:"FNf (01)CKRJ(FNFC01))

6070 OOSUB9350:GOSLB9270

8080 PRlNT"dn sp NR*0 TRUE":PRINT" Sp NDAC FALSE"

8090 PPINT"WAITING FOP OAV FALSE"

8100 GETASrlFAJQ ""THENPPINT"--FORCED":GOTO8120

8110 GOSUe9»00:lfHiHTHEN8»00

d20 GOSUB9250

6130 PPlNT"<jn sp NOAC TRUE"

6140 RETURN

?500 PPIMT-CU TALK HANDSHAKE"

e5iO G0Sl£9W0

652C PPIN7"<jn sp DAV FALSE"

8i30 GOSUB9200:G0SUB9300

et40 ir m»»h/>0 TWF.N 8570

8550 PRinTm<jo>> sp ERROR STATE-PR£SS kEy TO FOPCE"

8555 PPiNT-NOTE : MAKE NRTD, NDAC TRUE"

e560 GETAS;iFA*=""TMENB560

8570 G0SUB9050

8590 PPi»4T"dn DATA On LINE :"FNF<02)CHRJCFNF<02>>

Nothing else will work if these

don't!

• If all else fails, refer to Tables

1, 2 and 3 and try a few direct

PEEKs and POKEs to ensure

that the IEEE lines are func

tional.

Add lines 8000-8140 and lines

8500-8690, which you can check

by attaching the 488 Blinkin

Lites and carefully tracing

through the handshake flow

chart in Fig. 7. Again, it is essen

tial to be sure these routines

work correctly. An additional

benefit is that you will learn the

handshake sequence in detail.

Note that the data trans

ferred, 01 or 02, must be com

plemented with the FNF func

tion as it enters or leaves the

IEEE bus. In some of the waiting

loops, such as lines 8030-8050,

a GET AS check is inserted. If

the instrument hangs up, press

ing a key will force the hand

shake to proceed, and a suitable

message will appear on the

screen. As the handshakes pro

ceed, their progress is reported

to the screen for your reference.

Next, add lines 7000-7570.

These routines require a device

address, DV, to function correct

ly. Subroutine 7000 will fetch a

message from a device, and

subroutine 7500 will send a mes

sage. The strings B$ and C$ are

used to store the messages.

Most devices will send an EOI

along with the last character of

their messages. This will turn off

the screen. In some cases, you

will have to. provide an EOI,

which will again turn off the

screen. To recover, enter:

GOSUB 9570 (and RETURN)

Another approach is to move the

cursor down until the screen

scrolls. A scroll turns the screen

off, and then on. If you have a

16K PET, the screen will not

blink.

Testing the last part via the

IEEE Blinkin Lites is tedious. If

you have an instrument avail

able, try talking to it! Be sure

you know exactly what your in

strument expects and its re

sponses!

Talking to the HP Clock via

BASIC 488

Now that you have checked

out BASIC 488 by hand, try it

with a real live instrument! I con

nected the HP clock, loaded

BASIC 488 and gave it a try (see

Example 1). The clock's front

panel shows the reset worked.

These commands can be

compressed to one line (see Ex

ample 2).

Next, try to read the clock. Ad

dress the clock to talk, then read

the 14-character message-

shown in Example 3. If you look

at the line DATA: on the display

for the Listen Handshake, you

can barely see the clocks mes

sage. A different version (see Ex

ample 4) will pick up the mes

sage and leave it later. Below

the Listen Handshake display

appears the clocks message:

0101000520

The BASIC 488 program has

two routines for sending and

reading entire strings via the

IEEE 488. Subroutine 7000 ad-

8590 print"dn WAITING FOR NRF0 FALSE"

8600 GETAS: IFAK>""TH£NPRl»fr--F0RCE0" :G0TO8620
8610 G0SUB9300:tFH3*1TH£N86O0

8620 00SU39130.

8630 PRINT*** sp DAV TRUE"

8640 PRINT*WAITING FOR K0AC FALSE"

8650 GETAS:IFAK>MHTHEN8670
8670 00SUB9170

8680 PRINT"dn sp 0AV FALSE"

8690 FETURM

9000 F0KEA2,N8:Dt*PEEK(A1):flETURM

9050 P0KEA2fD2:RETURN

9100 HU1:IFPEEK(A6)ANOH7THENHU0
9110 RETURN

9150 POKEA4,F€EK<A4)AN0N3:RETURN

9170 POKEA4,PEEK(A4)0RM3:RETURN

9200 H2«1:1FPEEK<A6>ANDJ4JTHENH2=0

9210 RETURN

9250 P0KEA3,PEEK(A3)ANt>O:R£TURN

9270 POKEA3,PEEK(A3)0RM3:RrruRN

9300 H3»1: IFPEEK(A6>ANOM6THENH3»0
9310 RETURN

9350 POKEA6,PEEK(A6)ANDn:RETURN

9370 POKEA6,PEEK(A6)ORH1 -.RETURN

9400 PRINT-NO ATN LEVEL":ST0P

9430 H4»0:IFPEEK(A3)AN0M7THENH4=1

9440 Z2«PEEK(A1):RETURN
9450 POKEA6,PEEK(A6)AND42:RETURN

9470 POKEA6.PEEK(A6)O<»t2:R£TuRN

9500 H5«1:IFPEEK(A5>ANDM6THENH5=0
9510 RETURN

9550 P0KEA7,PEEK(A7)ANCN3:RETURN

9570 POKEA7,PEEK(A7)ORK3:RETURN

9600 REM SRQ NOT OUTPUT

9630 H6*0:IFPEEK(A4)ANDK7THCNH6s1
9640 ZZ»P££K(A2):R£TURN

dresses device DV to talk and

read a string. Subroutine 7500

addresses device DV to listen

and sends a string. (Note: Rou

tine 7000 reads a string until a

carriage return is seen, and then

reads one more character. This

is because the HP clock ends

messages with CR and LF. You

might have to change this for

your device.)

To reset the clock:

DV = 7:GOSUB7500

The screen clears and asks for

SUBROUTINE 1500

SUBROUTINE 7000

SUBROUTINE 7500

SUBROUTINE 8000

SUBROUTINE 8500

Initialization (Must be done first)

Get Message as BS. Requires OV

Put Message CS. Requires DV

Listen Handshake

Talk Handshake

SUBROUTINES 9000tll9600 IEEE Unes Primitives

9000

9050

9100

9150

9170

9200

9250

9270

9300

9350

9370

9400

9430

9450

9470

9500

9550

9570

9630

PEEK/POKE AOORESSES

ReadDtOasDI

Write OK) as D2

Read OAV as H1

Set OAV TRUE

Set OAV FALSE

ReadNDACasH2

Set NDAC TRUE

Set NOAC FALSE

ReadNRFDasH3

SetNRFDTRUE

Set NRFO FALSE

Trap for ATN

Check ATN as H4 (I* changed)

Sot ATN TRUE

Set ATN FALSE

Read EOI as H5

Set ECH TRUE (Screen will blank)

Set EOI FALSE (Screen returns)

Check SRQ as H6 (H changed)

ORKStNAL VALUES

MO

M1

M2

M3

M4

M5

M6

M7

DV

A1

A2

A3

A4

A5

A6

A7

0000 0001

0000 0010

0000 0100

0000 1000

0001 0000

0010 0000

0100 0000

1000 0000

50424

59426

59425

59427

50408

59456

59400

1 NO

2 N1

4 N2

8 N3

16 N4

32 N5

64 N6

128 N7

N8

Device Address

01

02

03

04

OS

06

07

1111

1111

1111

1111

1110

1101

1011

0111

1111

1110

1101

1011

0111

1111

1111

1111

1111

1111

256

255

80

80

249

255

80

254

253 •

251

247

239

223

191

127

255

AS Keyboard dummy entry

BS Message from Device

C5 Message to Device

Functions:

FNF(X) Returns complement ol argument

Table 4. BASIC 486 program notes.

re \- r\e jr . 7»

COSJB *4S>

C2-. 216 GCSU6 6500

TALK HANDSHAKE

DAv FAlSE

DATA ON UNE 39

WAITING POR NRFO FALSE

DAV TRUE

WAITING FOR NDAC FALSE

DAV FALSE

READY

GOSU8 9470

PRINT FNRASCI ff'H

173

D2 = 173 GOSUB 8500

i)

G»M everything »eaov

This is ine value for D2 as a listen address

"Make ATN true

Send hslen address via handshake

The PET responds with the step by step

output handshake and goes successfully

tr.rougn the entire process

The HP Clock s addressed ught turns on1

Make ATN false

R fesets the dock

Send R as data

And this handshakes through OK too

Example 1. My dialogue with the HP clock via BASIC 488.

D2 = 216 GOSUB9450 GOSUB8S00 GOSUB9470 02 = 173.GOSUB8500

Example 2. A one-line command for Example 1.

PRINT FNF(64 * 7) Find out D2 lor talk address

184

02 r 184 GOSUB945C GOSUB8500 GOSUB9470

I) The handshake goes through

FOR J = 1 TO 14 GOSUB 8000:NEXT

i lor 14 times.)

Example 3. The dialogue for reading the clock.

the message (see Example 5).

The Talk Handshake flashes

on the screen twice, and the

message sent is displayed be

low:

MESSAGE SENT: R

The program uses routine 7000

to read the time. Since DV is al

ready set. we don't have to reas

sign DV = 7 again. See Example

5. Note that there are three

spaces between the colon and

the first zero. Two of these are

from the HP clock, which starts

all messages with two blanks.

The BASIC 488 program,

though slow to operate, never

times-out and lets you control

the IEEE 488 bus. This is helpful

when you debug a new IEEE

device with your PET.

If you are an experienced 6502

programmer, it is simple to

translate the BASIC 488 pro

gram into a set of machine-

languaga routines. If you do so,

I'd like a copy (tape and source).

Listing 3 shows a copy of the

IEEE handshakes in machine

language. (From the PET User

Notes, PO Box 371, Mont-

gomeryville, PA 18936. Vol. 1, Is

sue 7, (Nov.-Dec. 78), p. 8. This

is a reprint from the Commodore

PET Users Club of England.)

The PET handles the IEEE 488

as a file. Part 2 will cover this. ■

IEEE Bus Handshake Routine

- Main Program

1800 A200

1602 A9FB

1*04 2D4OE8

1807 8D4OE8

18OA A926

18OC 8501

160e 208018

1811 A9O8

1813 8501

LDX 400

lda m

AND £840

STA E640

LDA #26

STA 01

JSI 1880

LOA #08

STA 01

1815 208018 JSt 1880

1818 A9tS

181A 8501

181C 208018

181F A9F0

1821 2D4OE8

1824 8D4OE8

1827 A9F7

1829 2D21E8

182C 8D21E8

182? A9O4

1831 0D40E6

1834 8D4OC8

1837 A008

1839 20BO18

163C A3O2

183E 9DO119

1841 E8

1842 86

1843 D0F4

1845 A9FB

1847 2D4OE8

1B4A 8D4OC8

184D A9O2

1847 OD4OE8

18S2 6D40E8

1855 A9O8

LDA 448

STA 01

JSI 1880

LDA ¥FD

AND E84O

STA E640

LDA *T7

AND E621

STA E821

LDA fO4

ORA E64O

STA E640

LDT «08

JSR 18BO

LDA 02

STA 1901,X

INX

KT

BNE 1839

LDA *r»

AND E64O

STA C84O

LDA #02

OKA E84O

STA £640

LDA #08

1857 OD21C8 OtA C821

185A 8D21E8

USD A95F

185r 8501

I STA 1621

LDA 4"5F

STA 01

1661 208018 JSR 1880

1664 A9O4

1866 0D40EC

1669 8D4OEI

LDA #04

1 OtA EB4O

1 STA E64O

166C O0019 KC 1900

186f D091

1871 60

BNE 1802

ITS

prapare ioda» ragtatcr

•«t ATM low

NLA (28 for this device)

tuadaHaka iato bua

err

haodahaka

KTA

haadahaie

set NRTD lew

(raady to racaiva data)

aod NDAC low ale©

aat ATN high

ready to count 8 byte*

haodshaka data fro* bue

result to A

•tor* io 19O1«X

ju»? if T not ttro

■tt ATK low

•«t NR7D high

Mt NDAC high

UNT

handshake to bus

aat ATW high

decrease counteT

jus* if sot stro

retura to BASIC program

Subroutine to Handle

Handshake Into Bus

188O AD40E8 LDA 1840

1663 2940 AND «4O

1865 F0F9 BCQ I860

1867 A5O1 LDA 01

1689 49FF EOR *Tt

1688 802218 STA E822

168Z A9F7 LDA »F7

1890 2D23E8 AND 1823

1693 6D23E8 STA E823

1696 AD40E8 LDA E84O

1899 2901 AND «O1

1898 FOT9 BEQ 1696

169D A9O8 LDA «08

189F OD23E6 OBA E623

18A2 8D23E8 STA E623

16A5 A9FT LDA PTt

18A7 6D22E6 STA E822

18AA 6O »TS

NRJD t

juap back if oot raady

raady: gat data Vyta

covplviMDt it

aaod to bua

— t DAV low

jiMp back if oot accepted

accaptad; aat DAV high

return to mi

Subroutine to Handle

Handshake From Bus

I860 A9O2 LDA *O2 aet BIFB high

1SB2 0O4OE8 OBA £840

1885 6D40CS STA £840

1888 AD40ES LDA £640

1868 2980 AND *80

18BD D0F9 BNE 18B8

18BF AD20EB LDA E62O

18C2 49FF EOR *Tt

18C4 8502 STA 02

18C6 A9FD LDA »FD

16C8 2D4OC8 AND E84O

18C8 8D40E8 STA E840

18a A9O8 LDA «06

18D0 OD21E6 ORA £821

18D3 8D71E6 STA E871

18D6 AD4OT6 LDA E840

16D9 7980 AND *80

18D6 F0F9 8EQ 16D6

18D0 A9F7 LDA *F7

18DF 2D21E8 AND £621

18E7 8D21E6 STA £821

IK) A9FT LDA *TT

18E7 8D22E8 STA E822

18EA 6O RTS

DAV T

jxm? hack if *ot valid

gat data byta from bua

coafliatDt

atora io 6 0002

aat NRFD low

act NDAC high

DAV high T

juap b*ck if not

aat KDAC low

return to main

IEEE Bus Handshake Routine

Object Listing

1800 A? 00 A9 FB 2D 40 E8 80

1808 40 E8 A9 78 85 01 20 8O

1810 18 A9 08 85 01 20 80 18

1816 A9 48 85 01 20 80 18 A9

1820 n 2D 40 E6 8D 40 E8 A9

1628 F7 2D 21 £8 80 21 £8 A9

1830 04 00 40 £6 8D 40 £8 AO

1838 08 20 80 18 A5 02 9D 01

1840 19 £8 68 DO F4 A9 FB 2D

1848 40 £8 8D 40 £8 A9 02 00

1650 40 £8 8D 40 E6 A9 08 00

1838 21 £8 8D 21 £8 A9 3F 85

1660 01 20 60 16 A9 04 00 40

1668 £8 8D 40 £8 CE 00 19 DO

1870 91 60EAEAEAEA1AEA

1876 EAEAEAEAEAEAEAEA

1880 AD 40 £8 29 *O FO T9 A5

1868 01 49 FT 8D 22 £8 A9 F7

1890 3D 23 £8 BD 23 £6 AD 40

1898 £8 29 01 FO F9 A9 08 00

18A0 23 £8 80 23 £8 A9 FT 60

18A8 22 £8 60 EA EA EA EA EA

1880 A9 02 OD 40 £8 8D 40 E8

1868 AD 40 E8 29 80 DO F9 AD

18CO 20 £8 49 FT 83 02 A9 FD

18C8 2D 40 £8 8D 40 £6 A9 08

1800 00 21 £8 BD 21 £8 AD 40

18D8 £8 29 80 FO F9 A9 F7 20

18EO 21 £6 80 21 £8 A9 FF BD

18Z8 22 £8 6O

0001 data to go ioto bua

0002 data from bua

19O0 counter for »uaA>er of data transfers

Listing 3. IEEE bus handshake routine in machine language. MLA is My Listen Address; MTA is

My Talk Address: UNT is Untalk Command.

Gregory Yob

Box 354

Palo Alto, CA 94301

Get Your PET on the IEEE 488 Bus

Part 2 of this "opus computerus" examines the file characteristics of the IEEE 488 bus.

Your PET has a "built-in" way

of communicating through

the IEEE 488 bus. In BASIC, the

IEEE 488 looks like a file—just

as the cassettes are files. The

OPEN statement is used to

specify a physical device num

ber of 4 to 30, and the open logi

cal file now talks via the IEEE

488 bus.

A complete understanding of

PET tape files is a prerequisite

for working with the IEEE 488 as

a BASIC file. An article in the

January 1979 Kilobaud Micro

computing ("PET Techniques

Explained**) covers many "inno

cent** errors that will result in

mysterious malfunctions.

IEEE 488 Information Transfers

Talking to a Device.

1. OPEN a BASIC file to the

device's address. For example,

OPEN 1,4 wilt open the IEEE bus

to device 4. Your BASIC program

will see this as file #1.

2. PRINT# to your OPENed

file. PRINT#1,"HELLO, DEVICE**

will address the device to listen,

send the string HELLO, DEVICE,

add a carriage return with EOI

true and then issue the UNT (Un-

talk) command.

3. Repeat step 2 as needed.

Note that after each PRINT*, the

IEEE bus is free, since the UNT

has been sent.

PRINT# will send the same

characters, including the skip

character after numbers, as

PRINT does to the screen. If you

want to send several items, be

sure that any needed delimiters,

such as ",", are included.

Listening to a Device.

1. OPEN a BASIC file to the

device's address:

2. Use INPUT* or GET# to

fetch a line or a character from

the IEEE bus.

3. Check the status word, ST,

for an error, such as time-out. If

the device is slow, the PET will

complete the INPUT# or GET#

and put a nonzero value into ST,

which must be checked immedi

ately after the I/O operation. If

ST indicates a time-out, jump

back to step 2.

4. Convert the data from the

INPUT* or GET* as needed, and

if more is needed, go to step 2.

Note that after each INPUT*

or GET*, the UNT command is

sent to the IEEE bus. This will

truncate long messages from

the device, especially with

GET*. Also note that INPUT*

(string) and GET* (string) work

the best. The BASIC string func

tions (MID$, RIGHTS, LEFTS and

VAL) will help you get the data

into a usable form.

Talking to More than One De

vice.

10

20

X

40

SO

60

70

80

REMCMD EXAMPLE

PRINT—•-

OPEN1

GETf1. AS

PRINT AS;

IF AS-CHRS(90)THEN PRINT" •-:END

GOTO 40

REMZ

Example 1.

1. OPEN a file for each device.

2. Using CMD, send a dummy

message to each device. For ex

ample, CMD V.CMD 2.CMD 3 will

set up each device (as specified

in the OPENS for files 1,2 and 3)

by sending carriage returns to

the devices and leaving them as

listeners on the bus.

3. PRINT* to the IEEE bus.

Any of the OPENed files may be

used.

4. Repeat steps 2 and 3 as

needed. Since PRINT* ends with

the UNT, step 2 must be re

peated after each PRINT*.

Transfer from One Device to

Another

1. OPEN a file for each device.

2. CMD to the device that is to

be the listener.

3. INPUT* from the device

that is to be the talker.

4. Repeat step 3 as needed.

INPUT* does not send a UNL,

so the device that was CMDed

remains on the bus as a listener.

All information sent by the

talker to the PET is also received

by the listener. To turn off the

listener, use a PRINT* to the

listener's file. If the talker is

slow, check ST and repeat step3

as required.

LISTing a BASIC Program to a

Device

1. OPEN a file to the device.

2. CMD to the device.

3. Enter the LIST command.

4. When the LIST is finished,

do a CLR.

The PETS graphics and cur

sor characters will not print cor

rectly on a standard ASCII

printer. (I have a BASIC listing

program available.)

The best way to learn the PET

files and IEEE 488 is by specific

examples. After a detour

through CMD, we will continue

with two examples. These

should provide you with enough

information to get started. If you

have no success, refer to the

section on Common Errors

(found later In this installment).

CMD

CMD is an unusual PET com

mand. Consider its functions:

1. Anything that BASIC wants

to say is now routed to the

device that CMD's file number

refers to. If this isn't the screen,

nothing that BASIC says will ap

pear on the screen.

2. If a list of variables and

literals is provided after the

CMD, they will be sent to the

device in the same way as

PRINT* will.

3. However, if the device is on

the IEEE bus, no UNL wilt be

sent, so the device will remain in

the listening state and receive

any following data sent on the

IEEE bus.

To see how CMD operates,

get two scratch tapes and enter

the program in Example 1. Now

SAVE and VERIFY this program

on one of your tapes. Put the

other tape in the tape unit and

execute the following:

OPEN 1.1.1

PRESS PLAY & RECORD ON TAPEti

Perform this and wait until the

tape stops.

OK

REAOY.

Now enter CMD 1. Note that

READY, didn't appear; it was

provided by BASIC and is now

residing in the tape buffer. The

.cursor is blinking below the C in

CMD. Continue with:

Copyright i960 by Kilobaud Microcomputing. All rights reserved. Used by permission.

Note that the CLOSE 1 didn't

get the READY, back. It took the

CLR to return BASIC'S mes

sages to the screen. If you enter

LIST, the program wilt appear on

the screen. Rewind the tape and

RUN. Three asterisks now ap

pear after the RUN. These were

printed by the program. This is

one reason I don't trust my PET

after aCMD. The text between

the OK and the ending READY

was found as a data file.

When the PET was under the

influence of CMD, the letters

you typed in were put onto the

screen. This echoing is done by

the PETs operating system, so

CMD won't put these out to the

device.

Though CMD looks like a

good way to LIST program to

tapes as data files, there is a

snag. My example is shorter

than 191 characters, and a LIST

via CMD isn't smart enough to

"jiffy" the data tape (this has

been fixed on the new PETs).

You run the risk of losing tape

records when you try to read an

"unjiffied" tape.

Try to verify that CMD

V'HELLO OUT THERE" will

print HELLO OUT THERE onto

the tape. Remember that if you

CMD a device on the IEFE 488

bus, any PRINT* to the bus will

require a repetition of the CMD if

you want the device to remain in

the listening state.

Talking to the Clock Again

(For a description of the HP

clock see part 1 of this article.)

First, you must check the de

vice address on the DIP switch

(which will be near the 488 fe-.

male connector) and make sure

the address is in the range 4 to

15. The enter a short program

(Example 2) into the PET. This

program consists of three sub-

10

20

100

no

120

200

210

220

OPEN 1.7

RETURN

INPUT-SAY TO CLOCK.-.SJ

PRINT. 1.SS

RETURN

INPUT.1.CS

PRINT-CLOCK SAYS. ":CS

RETURN

Example 2.

routines to facilitate communi

cating with, the clock. Remem

ber that the PET will not accept

an INPUT statement as a direct

command.

First, enter GOSUB 10 as a di

rect command. This opens file 1

to device 7. which is our clock on

the IEEE bus. OPEN merely sets

things up: nothing is sent to the

bus yet.

To read the time, enter GO-

SUB 200:

GOSUB 200

CLOCK SAYS. 0103020204 iJan 3. 2 02 04

AM)

Your PET might give ? SYN

TAX ERROR after this opera

tion. This is a harmless feature

of the PET.

To set the clock, using Jan.

29. 9:17 pm, as our example,

enter.

GOSUB 100

SAY TO CLOCK? RDDDDDDDDDDODODO

DDDDDDDDDDODCX28 Ds)

The clock starts at day 1. To

set to day n. use n -1 Ds. To set

the hour, enter the following.

GOSUB 100

SAY TO CLOCK? HHHHHHHHHHHHHHH

HHHHHH(21HS)

Minutes and seconds are set

similarly.

GOSUB 100

SAY TO CLOCK? MMMMMMMMMMMMM

MMMMSSS(17Ms. 3Ss)

We are now set to 9:17:03. When

I did this by hand, the clock

moved forward about a minute,

so the number or M's used

should be changed to accom

modate for this.

Talking to the HP 8165A Pro

grammable Signal Source

(For a description of the HP

8165A, see part 1 of this article.)

The 8165A is a fine instrument

with many switches, knobs, but

tons and options and a cor

respondingly wide array of IEEE

488 commands (see Fig. 12, part

1)-

The precise contents of each

example concern the 8165A,

which is an instrument you will

probably never meet! My inten

tion is to show you how direct

mode commands—that is, BA

SIC statements without line

numbers—can be used to con

trol an instrument and help in

debugging.

First, I hooked the 8165 to the

488 cable, and the PET turned

on. The 8165 was addressed to

8. When the PET came on. IFC

was true for about one second.

This put the 8165 in local mode,

where the front panel works as

usual. Many instruments will ig

nore their front panels when the

488 bus addresses them. Once

the PET addresses the 8165. you

cannot control it from the front

panel anymore. (An LED indi

cates this on the 8165.)

The following short program

takes care of input from the in

strument:

10 INPUT01. AS

20 PRINT AS

This substitutes for the illegal

direct command (INPUT#1,A$:

PRINTAS). which I would like to

use, but the PET forbids (try it

and see!).

Since I wanted the 8165 to

output a 1 kHz sine wave at an

amplitude of 1.5 volts. I used the

following IEEE commands:

F1—Set to sine wave

FRQ 1 kHz—Set frequency

AMP 1.5 V—Set amplitude

11—Set to normal operation

(continuous signal output)

First, open the IEEE file:

OPEN 1.8 •

READY.

Then send the settings:

PRINT ii.'Fl" (At this point, the

"Remote LED went on. and I can no longer

wonx the front panel.)

PRINT #1."FRO1KHZ"

PRINT «1.-AMP1.5V

PRINT »l."|V

Nothing happened! My scope

showed only a flat trace! Upon

reviewing my steps, I noticed

that I overlooked the Disable

Output (OD) and Enable Output

(OE) commands. I entered

PRINT #1 ."OE", and a sine wave

appeared on the scope.

You could also send this set

ting as one string. For example,

PRINT #VF2FRQ1.2KHZAMP

1.2VI1OE" sets up a 1.2 kHz

triangle wave at 1.2 V amplitude.

The 8165 can also report

some of its switch settings. Now

we can use the tiny program in

the PET:

GOTO 10

Fl 02 12FM0AM0

Since the PET has difficulty

with GOSUB in direct mode and

the IEEE bus, we must make a

prograrrt change:

10 INPUTS. AS

20 PRINT AS

30 RETURN

We will quickly be reminded

that any time we change a pro

gram, all the variables, including

opened files, will be lost:

GOSUB 10 :

*>FILE NOT OPEN ERROR IN 10

So we try again:

OPEN 1.8

GOSUB 10

F1 D2 12 FMO AMO

7SYNTAX ERROR IN 22066

The PET will provide the

7SYNTAX ERROR about 90 per

cent of the time when the IEEE

is accessed via the INPUT*

statement and the PET is exe

cuting a directly called subrou

tine. However, this doesn't ap

pear to affect anything. I avoid

ed this by not making the little

program a subroutine the first

time.

So, if you are in a pinch, re

member that the PETs direct

command capability can rescue

you with IEEE 488 devices and

provides an inexpensive way to

explore a new instrument.

Talking to More than

One Device

Now that each of the instru

ments has been in the bus in

dividually, the next step is to try

the 488 with both of them on at

the same time. I connected the

HP clock and the 8165 to the 488

bus and gave the clock address

#7. and the 8165 address #8.

Then I entered the short pro

gram for INPUTs:

10 INPUT M. AS

20 PRINT AS

X END

100 INPUT «2. BS

110 PRINT BS

120 END

First, OPEN the files:

OPEN 1.7

OPEN 2.8

If you get a 7FILE OPEN ERROR,

just enter CLR and start over.

Taking a peek at the clock re

sulted in:

GOTO 10

0130051957 (30 Jan.. 5:19:57)

And peeking at the 8165 gets

me:

GOTO 100

Fl 02 12 FMO AMO

which is the usual mystery mes

sage that the 8165 says to me.

There isn't any point in explain

ing this message, for your in

strument will say something dif

ferent and meaningful only to

you.

PRINT #1 and PRINT #2 will

X$ = "":FORJ - 1TO14GOSUB8000 XS = XJ + CHRS<FNF<D1)| NEXTPRINTXS

0101000520

Example A. Putting the clock's message into X$, and the con

tents of X$.

DV = 7:GOSUB7500

SEND MESSAGE

MESSAGE:? R R for reset

GET MESSAGE

PRESS KEY TO START

(A tot of Listen Handshakes)

MESSAGE IS 0101000158

Example 5. Resetting the clock.

Program Listing Conventions

The PET's graphics and cursor control characters aren't easily

duplicated for program listings, so the conventions described

here will be used instead.

If a letter or numeral (or any character) is underlined, it means

the corresponding graphics character is to be used. (A is the

spade symbol on the PET.)

Lowercase letters indicate PET special functions:

clr Clear Screen hm Home Cursor

Cursor Left

Cursor Down

RVS field off

SPACE key

Sp in a line indicates leading or more-than-one blank. For ex

ample, dn/sp/sp/HELLO THERE means Cursor Down space

HELLO space THERE.

rt

up

rvs

cr

Cursor Right

Cursor Up

RVS field on

RETURN key

Ift

dn

off

sp

Two IEEE 488 Instruments

The two instruments described here are typical in the way they

are controlled via the IEEE 488 bus. Most instruments are con

trolled by sending and receiving ASCII characters, which are

mnemonics of the function being controlled. For example, the

HP clock uses the letter D to increment its days' counter. Num

bers are usually sent as ASCII strings—in the same way that

PRINT provides an ASCII string of digits to a terminal. CR and LF

usually indicate a message's end.

Some instruments will use more difficult formats. Two popular

forms are BCD, in which two digits per byte are sent, and pure bi

nary, where the value 0-255 is sent. Be sure you know the exact

formats used by your instruments! Most instruments are unfor

giving of bad data; and the responses range from ignoring mean

ingless characters to the instrument's unaddressing and leaving

the bus. Check your instrument's manual!

The HP 59309A Digital Clock

The HP clock is almost the simplest instrument that uses the

IEEE 488 bus. Your options are to either set the time or read the

time.

When the clock is addressed to talk, it will provide a string of

characters with the time in the following format:

(sp or ?) sp NNDDHHMMSS cr If

The first character is a space or a question mark. If the clock

hasn't been set since the last power-off, the question mark will

indicate this. The next two digits indicate the month, from 01 to

12. Then comes the day of the month, 01 to 31. (The clock keeps

track of the days in each month correctly and has a leap-year

switch). Then the hours (00 to 23), minutes and seconds are sent.

The carriage return and line feed indicate the end of the message.

• Inside the clock are switches that provide variations of the for

mat—colons or commas can either separate the fields, i.e.,

NN:DD:HH:MM:SS, or simply send the 24-hour time.

When the clock is addressed to listen, eight ASCII characters

are used for control:

P—Stop the clock

T—Start the clock

R—Reset the 01:01:00:00:00

S—Each S will increment the Seconds counter

M—Increment Minutes counter

H—Increment Hours counter

D—Increment Days counter

C—Note time, send it when addressed to talk.

For example, the following string will reset the clock to Jan 5,

8:07:12 AM.

PRDDDDHHHHHHHHMMMMMMMSSSSSSSSSSSST

The T at the end restarts the clock.

The HP 8165A Programmable Signal Source

This is a "Cadillac" 488 instrument—the front panel of this ma

chine has 41 buttons for selection of modes and a 12-button num

ber pad for entering times, and frequencies. This works put to 35

different command formats for setting up parameters and switch

settings and nine commands for telling the controller the ma

chine's setting or starting a sequence of actions. Some of the for

mats include:

F1—Select Sine Wave

F2—Select Triangle Wave

F3—Select Square Wave

FRQ f MZ—Select frequency in MHz. f is a number from 1 to 9999.

FRQ f MZ—Same for Hz

FRQ f KHZ—Same for kHz

SET:—Report all parameters currently operating when addressed

to talk.

SET: n—Report setting in memory # n (0-9)

The 8165 can store up to ten complete settings in its mem

ories, so the SET commands permit the controller to find out

what's in the 8165.

An instrument of this complexity is usually programmed with a

set of special-purpose programs as needed. Writing a general-

purpose BASIC program would be both tedious and wasteful. My

experience is that the hardest part is to get the PET and the in

strument to communicate. Once that is accomplished, the rest is

easy.

work just fine, and so two instru

ments and the PET can live in

harmony together

A Gotcha

I decided to turn off the 8165

with the PET set up for two in

struments as described above.

Sure enough, strange things

happened.

The clock worked fine:

goto 10

0130052525

And just for fun, look what

happens with the 8165 (which

isn't on):

GOTO 100

F1D2I2FM0AM0

The 8165 has some internal

batteries to store and memorize

settings until it is turned on

again. It also will respond to the

IEEE 488 bus.

Now to try things in reverse—

the clock doesn't have any bat

teries. (Clock is off; 8165 is on.)

GOTO 100

F1 0212 FM0 AMC The 8165 ts fine

GOTO 10

F1 0212 FM0 AMO What's this?

The 8165 wi!l reply to any ad

dress if it is the only device on

the bus. The clock acts in the

same way. (I don't know if this is

a PET fault or an HP design deci

sion. Check your device.)

If your program is intended

for more than one device, this

can be a disaster. Make sure all

required devices are operating

when using multiple devices on

the bus.

I ran into another gotcha: the

8165 wouldn't accept every fre

quency change. I tracked this

problem down to the presence

of the HP clock on the bus.

When I turned the clock off.

everything worked fine. When

debugging, remember to have

only one device on your bus.

Common Errors

In theory, if you have under

stood everything to this point,

you can now get an IEEE 488 in

strument and make it play with

your PET. In practice, this won't

happen.

Finding errors is the hardest

part of programming, and when

you work with the IEEE bus, you

can make many mistakes that

don't look like errors. When you

are able to see errors easily and

immediately, you won't need

this article.

Here i* an incomplete list of

the common errors in wait for

the unwary IEEE/PET program

mer.

The misplaced address. The

PETs IEEE addresses are from 4

through 30. The addresses 0 to 3

are reserved for the PET's other

I/O devices:

0— Keyboard

1—Tape unit #1

2—Tape unit #2

3—Video screen

If you OPEN a file to the re

served addresses, you won't be

speaking to the IEEE bus!

If a device isn't running when

the PET wants to talk to it, you

will usually get a 7DEVICE NOT

PRESENT ERROR. However, if

some other device is operating

on the bus, you might get the

other device's response instead.

This happened to me with the

HP clock and the 8165. If one

was turned off, the other would

respond, even though the OPEN

statement was referring to the

inactive device. This can badly

confuse your program.

Time-outs. The PET will only

wait for 64 milliseconds before

giving up on a device that is

slow to respond to the iEEE 488

handshake. Though the IEEE

488 is supposed to work at any

speed, you may wonder what to

do if a device on the bus has

failed. If the PET were to wait for

a response, there would be no

way to return to the user. The 64

ms interval was chosen from the

timers available on the 6522 VIA

chip, which can count up to

65535 at the 1 MHz clock rate of

the PET.

Most instruments wilt re

spond within the 64 ms interval,

and the PET will read and write

the data correctly. This was true

of the HP instruments at my dis

posal. To exercise the PET time

outs. I attached both the clock

and the 8165 to the bus, and

then OPENed a file to a non

existent address:

NEW

10 INPUT#3.AS

20 IF ST THEN PRtNT~ST IS" ST

30 PRINT AS

40 A$ = -'

OPEN 1.7 (Open the dock to file 1)

OPEN 2.8 (Open the 8165 to tile 2)

OPEN 3.10 fThe nonexistent device)

The little program attempts to

input from the nonexisting de

vice The ST value is a reserved

BASIC variable used by the PET

for indicating I/O conditions. If

ST isn't zero, something went

awry.

Now to talk a bit to the de

vices to wake them up:

PRINT »1."R" (And the clock resets)

PRINT «2."E0" (And the 8165 puts out

a signal)

If a look at ST is made, all's

well:

PRINT ST

0

This may take a few tries to work

right.

Now to try that nonexistent

device:

PRINT #3. "HELLO"

Looks OK, right? Well, let's

see...

PRINT ST

-128

This is the PETs ST code for

"device not present."

Now to try the little program:

GOTO 10

STIS2

READY.

The ST code is 2, which is the

time-out for reading data; the

nonexistent device didn't say

anything. Recall that line 30 said

to print A$. The PET did print A$,

which was an empty string.

The solution to this dilemma

is to keep on trying! Write a loop

that redoes the INPUT* or

PRINT*. In most cases, a slow

device will send its characters

rapidly enough—once it has its

message ready.

Consider these two sample

loops:

100 PRINT #5." some message or other"

110 IF ST = 1 THEN 100

200 INPUT #6.B5

210 IF ST = 2 THEN 200

If you want to mask for certain

bits, you can use the AND

operator, but parentheses are

needed. The above examples

would read:

The literal principle. PET u

puts to a file the same charac

ters that it sends to the screer,

This is also true for the IEEE 488

The PET's format for PRINTing a

number is:

(space oc •• sign) (digits) (optional e.

ponent) (cursor right)

This can raise havoc with an

IEEE device that is expecting a

character after the number.

Consider the following exam

ple:

10 PRINT "clr"; (clear screen)

20 FOR J a 1 TO 10

30 PRINT

40 NEXTJ

50 PRINT "hm": (home cursor)

60 FORJsiTOlO

70 PRINT J1 IS A NUMBER"

80 NEXTJ

110 IF (ST) AND 1 THEN 100 and

210 IF (ST) AND 2 THEN 200

The removal of the parentheses

makes the PET see the expres

sion as:

IF ST AND 1 looks like IF S TAN D 1

which will result in a 7SYNTAX

- ERROR. Use parentheses or re

arrange the order of operations

in these cases.

run

vis a number

2'IS A NUMBER

3-IS A NUMBER

etc

The asterisk after the number

comes from the cursor right

character that was sent to the

screen. The cursor right follows

any numbers sent to the IEEE

488 bus.

The following program sets

the frequency of the 8165.

10 OPEN 13 (The 8165 is at address 8*

'20 FOR J s 1000 TO2000 STEP 10

30 PRINT •1;FRO'J-H2"

40 FOR K = 1 TO 1000

50 NEXT K (This is a 3 second delay

loop)

60 NEXT J

When this is RUN, the 8165 gives

all signs of distress. The fre

quency appears on the front

panel, but the LED that indi

cates correct entry stays blink

ing (not completed). Also, the

scope shows no change. The

PET screen blinks at intervals,

indicating that EOI is made true

now and then. (I suspect the in

strument is making this hap

pen.)

The following modification

will fix this:

30 PRINT»1."FRO"STRJ(J)-H2"

The STR$ function converts a

number to the string that would

be PRINTed, without the cursor

right at the end! The general fix

for numbers is simple: convert

all numbers to strings before

putting on the IEEE 488 bus.

Fractions. Now that the fre

quency example is working

right, how about trying some

other STEP sizes. Here is a sim

ple change:

FOR J = 1 TO 2 STEP 01

PRINT «1. FRO STR$<J) KHZ"'

The J loop was changed to do

the same thing, but in kilohertz.

Line 30 was changed to reflect

this. When RUN, it all works fine

until about 1.25 kHz—the 8165

now shows 1.259 kHz instead of

1.260. A took at J gives us the

clue we need:

BREAK IN 40 (Press STOP key)

PRINT J

1.26999999

The PET slips up when com

puting with fractions ... and

this eventually shows up. The

.fraction .01 becomes a repeat

ing binary decimal, and after

repeated addition, the round-off

appears as a slight reduction of

the number being added to. In

this case, 1.260 turns into

1.25999999.

Catching this is easy... if J

were put onto the screen first!

35 PRINT STR${J)

If you do this, the first "blow up"

comes at 1.22999999. Now you

are faced with a programming

problem: how to get around

nasty numbers. One way is to

take the INT function, such as:

STRS(INT<J. 100 4 .5V100)

which rounds the number in the

hundredths place. More com

plex tricks will be needed if the

PET insists on scientific nota

tion, such as

2.35E - 03

PRINT your IEEE output onto

the screen while debugging.

Next month, we will wrap up

our three-part series with a fur

ther look at the programming

style with the IEEE 488. ■

The PET IEEE 488 File I/O Statements
The PET sees the IEEE 488 bus as a file, and the file VO statements apply to IEEE 468

transfers. Be sure you know the cassette file MO before tackling the IEEE 488 bus.

The PET file I/O statements are:

•OPEN (file number}, (device number), (secondary address), (filename)

OPEN instructs the PET to associate the file number with the desired I/O device. BA

SIC uses the file number in its PRINT?. INPUT* and GET# statements to determine

where the I/O is to take place. The file number may be from 1 to 255.

The device numbers are assigned as follows:

0- Keyboard

1-Cassette unit O

2-Cassetteunit #2

3-Screen

4-X IEEE 488 bus

This implies that your IEEE device must be addressed in the range of 4 to 30. Most IEEE

devices have a switch or jumpers that permit the changing of their addresses.

The secondary address and filename are optional. However, if you want to use the

filename, the secondary address must also be included. The secondary address has

the range of 0 to 31.

If the filename is not specified, the OPEN statement sends nothing to the IEEE 488

bus. When BASIC sees the PRINT*, INPUT? and GET* statements, the device number

(and secondary address, if specified) are put on the IEEE bus as part of the usual trans

fer sequences.

If a filename is specified, (i.e.. AS or "SOME NAME*"), the OPEN statement activates

the IEEE bus making ATN true and sends:

LISTEN (to the appropriate device)

SECONDARY ADDRESS (ORed with 11110000)

FILENAME (all characters)

This permits suitably complex command sequences that require ATN to be true to be

sent. If the command sequence has to be repealed later. CLOSE the file and OPEN it

again. I haven't been able to check if the above assertions about the filename are true. If

you have a bus analyzer, check this out!

• PRINT* (file number), (values to be sent)

First, dont use the abbreviation ?#; it wont work (when executed, you will see ?SYN-

TAX ERROR) and will list as PRINT*. Spell out PRINT completely!

The PRINT* sets ATN true and sends the device number as a LISTEN address. If a

secondary address as specified, it will be sent also. The device number and secondary

address aje taken from the appropriate OPEN statement.

ATN is Itwn made false, and the values to be sent are transmitted as ASCII charac

ters in exactly the sameway as they would be sent to the screen. For example, if a num

ber is sent, a cursor right character follows the last digit. If you use "," to separate col

umns, lots of cursor rights are sent. If the PET feels a number should be in scientific for

mat (i.e.. 1.53E - 07), that's what is sent! EOt is made true with the last character of data

sent

After the values are sent, an UNLISTEN is sent (with ATN true), and all listening de

vices are set free. .

• INPUT* (file number), (values to be input)

INPUT* sets ATN true and sends the device number as a TALK address. If a second

ary address was specified, it will be sent too. The pertinent OPEN statement is used for

these values.

ATN is then made false, and the PET accepts characters from the device to the PETs

input buffer. If the talker activates EOI. a carriage return is added to the end of the buf

fer.

After the characters are accepted and carriage return or EOI is recognized, the PET

sets ATN true and sends an UNTALK. which releases the device.

BASIC then scans the input buffer in the same way that an ordinary INPUT statement

looks at what is typed in. This means that commas and quotes will have the same ef

fects as with normal INPUT It is best to use an INPUT (string) form and hope your de

vice doesni send any commas!

As with cassette INPUT*, an 80-character buffer is used. It more than 79 characters

arrive without a carriage return, the PET will go into "limbo." and all is lost. (New PETs

have this fixed Over 80 characters are ignored (or worse, the butler is initialized, and

the first 80 characters are lost!). If you have a new PET. try it with cassettes and find out

what happens.

INPUT* is susceptible to "time out." and ST should be checked for a time out. Repeat

the INPUT* if a time out is detected.

•GET* (file number), (value for entry)

GET* sets ATN true and sends the device number as a TALKaddress and the second

ary address, if specified. ATN is made false, and a single character is accepted.

Then, the UNTALK with ATN true is sent, and the character given to BASIC. For the

reasons that make GET X unusable, be sure to only use the GET* (string) form.

The assertion of the UNTALK after GET* makes transmission of multicharacter

messages from devices impractical, as most devices will try to repeat their message on

repeated application of GET*.

As with INPUT! ST should be checked for a time out, and if timed out. the GET*

should be repeated.

•CLOSE (file number)

CLOSE releases the I/O assignments. The PET will allow a maximum of ten files

OPEN at one time, and CLOSE will let you reuse an MO assignment. If you OPEN more

than ten files, old PETs will go into limbo and all will be tost. New PETs presumably

have this fixed.

tf the corresponding OPEN statement had a filename specified. CLOSE sets ATN

true and sends the device number and secondary address (ORed 11100000). This fea

ture is intended for PET peripherals.

•CMD (file number), (values to be sent)

CMD initiates the same sequence as PRINT* and sends the values, if any. in the

same way that PRINT* does. When finished. CMD does not send the UNLISTEN, so any

devices addresses with CMD will listen to further CMDs or PRINT* to the IEEE bus.

All of BASIC'S output will be routed to the device defined in the OPEN statement for

the file number, tf the PET is in command mode, this includes the READY., error

messages and LIST. If in run mode, any BASIC printouts, from PRINT to the screen, will

go to the IEEE bus instead. A PRINT* will recover from the effects of CMD.

If you are using CMD in command mode, the cursor may not echo the RETURNS you

press. The PET will "echo" your keystrokes, but any outputs from BASIC will vanish to

the IEEE device. The PRINT* to your IEEE device is the safest recovery from CMD. Re

member that any editing of a BASIC program will destroy all variables. This includes

open files and CMDs.

• ST (status word)

After each I/O operation, the PET sets the value of a special variable named ST. which

will hold its value until the next I/O operation. So the best policy is to check it immedi

ately! The values of ST for the IEEE bus are:

1 Timeout on write

2 Timeout on read (This one should always be checked)

64 EOI true

-128 Device not present

The PET waits for 64 milliseconds to see if a device will respond to the IEEE hand

shake. If the device doesni. the I/O operation is quietly aborted, and ST is set. If you are

INPUT#ing. you will get "nothing" or zeroes back. If you are PRINTfing. everything

seems to be all right. If your device is slow to respond, checking ST is mandatory.

PRINT*. INPUT* and GET* will return the 7DEVICE NOT PRESENT error if the bus is

in an illegal state (which is true if the bus has no devices or the LISTEN or TALK isn't re

sponded to). ST will also be set.

• LOAD. SAVE and VERIFY

The old PETs have a severe error in their IEEE software which prevents the function

ing of LOAD. SAVE or VERIFY. The ATN line was left true during the data part of the

transfer. This is why owners of old PETs who purchase the PET disk get the new ROMS;

the disk wont function with the old ROMs.

The format is the same as with tapes:

LOAD (filename), (device number)

SAVE

VERIFY "

Once the IEEE bus is set to listen or talk, the first four bytes must contain the begin

ning and ending address ♦ 1 of the block to be transferred. The transfer is then done as

pure binary until finished. The bus is then released with an UNT or UNL as needed

VERIFY will say 7VERIFY ERROR and set ST to 16 if any mismatches were found be

tween the incoming data and the core image in the PETs memory Since my PET is an

old model with the original ROMs. I haven't been able to check LOAD. SAVE and VERI

FY tor the IEEE 488 bus.

Get Your PET

On the IEEE 488 Bus

The final stop on this three-part tour.

Gregory Yob

Box 354

Palo Alto. CA 94302

Commodore's printer and

disk use the secondary ad

dresses to control special func

tions within each device. The

secondary address extends the

range of allowable addresses

on the IEEE 488 bus and is in

cluded after the LISTEN or

TALK address with ATN made

true. Most IEEE devices do not

use secondary addresses.

The secondary address per

mits the device to distinguish

between data transfers (for ex

ample, file I/O via the disk) and

command sequences (for ex

ample, to initialize a new disk).

The following is a brief sum

mary of the secondary address

es used by Commodore's

devices.

PET Printer.

0- Normal printing. The printer

accepts characters and prints

them as received.

1-Formatted printing. The

characters are accepted and re

arranged according tcran inter

nally stored format specifica

tion.

2 —Format specification. The

characters specifying the for

mat to be used are accepted by

the printer.

3- Pagination control. Accepts

a number indicating the num

ber of lines per page.

4-Control of diagnostic mes

sages. If desired, diagnostic

messages will be printed when

errors are found. For example,

if a number overflows its for

mat, a message indicating this

will be printed. This secondary

address controls the options to

use this feature.

5-Load programmable char

acter. The printer accepts bytes

that specify the dot matrix for

one programmable character.

PET Disk.

2 to 14-Disk "channels" data

transfers. The PET disk can

have from zero to five files open

at once. Each file is defined

with an OPEN statement of the

form:

OPEN (Log Addr). (Device Addr). (Channel

Number). (Command String)

The channel number is a sec

ondary address in the range of

2 to 14. The command string

specifies the file type and drive.

For example, "0.FILEONE,

SEQ, WRITE" means open the

file named FILEONE on drive 0

as a sequential file for write on

ly access.

15 —Disk command channel. A

variety of commands to the

disk is sent via PRINT* to a file

opened to the secondary ad

dress of 15. Th*» disk ccn also

send error and diagnostic mes

sages to the PET through this

channel.

Though it is possible to con

trol complex devices in this

manner, these methods can be

come awkward and clumsy if

many data transfers are need

ed, as is the case for disks and

printers. Commodore chose

this method to avoid having to

modify or extend the PET's

BASIC.

Ironically, Commodore now

offers a machine-language pro

gram, WEDGE, which functions

as an extension to BASIC for

control of the PET Disk.

Two Examples

In most applications of IEEE

instruments, your task will ex

tend beyond communicating

with the device. Once commu

nications with the device are

established, there remains the

conversion of the data to a form

usable by people or some other

instrument that uses a different

form of data. Also, care should

be taken to make human com

munications as pleasant as

possible. If your application is

in a production (that is, for daily

use, and not as an occasional

experiment), clarity and relia

bility are important.

Two BASIC programs, which

illustrate how the HP Clock and

the HP Signal Source might be

used in real-life situations,

follow. They are presented here

as examples of programming

style with the IEEE 488.

Example 1: The HP Clock

Part 1 (Microcomputing, July

1980) describes the codes used

for the HP Clock with the IEEE

488 bus. Listing 1 interacts with

the HP clock in a "human-work

able" form. Let's first take a

look at how the program is seen

from the outside (often called

"human engineering" or "the

user interface").

When the program is RUN,

the following message appears

on the screen:

HP CLOCK PROGRAM

PRESS ANY KEY WHEN YOU HAVE THE

CLOCK CONNECTED VIA THE IEEE 488

ANO THE POWER ON.

This reminds the user to con

nect the clock on the bus and

turn on the clock's power. If the

PET tries to address a device

that isn't connected or turned

on, the 7DEVICE NOT PRES

ENT error message will appear

and stop the program. Unfor

tunately, there is no graceful

way to prevent this and keep

the program running (some ver

sions of BASIC have error

traps: i.e., ON ERROR 5

GOTO ...).

• After you press a key, the re

quest appears:

Copyright 1980 by Kilobaud Microcomputing. All rights reserved. Used by permission.

Listing 1. HP Clock program.

10 R£M NICE HP CLOCK PROGRAM

20 PRINTMclr HP CLOCK PROGRAM"

30 PRINTMdn dn PRESS ANY KEY WHEN YOU HAVE THE

40 PRINT'CLOCK CONNECTED VIA THE IEEE 488

30 PR I NT"AND THE POWER ON.

60 GET A$:IFAS=MM THEN 60

70 REM INITIALISE

80 DIM MJ(12),M(12)

90 FOR J=1 TO 12:REA0 M$(J),M<J):NEXT

100 DATA JANf31,FEB,28,MAR,31

HO OATA APR,30,MAY#31,JUN,30

120 OATA JUL,31.AUG,31,SEP,30

130 DATA OCT,31,NOVt20,DEC,31

140 INPUT"dn dn CLOCK'S DEVICE ADORESS:*\AD

150 IF AD<3 AND AD>16 THEN 170
160 PRINT-SORRY, LEGAL ADORESSES ARE 4 - 15'*:G0T0 140

170 OPEN 1tA0

180 INPUP'dn tin IS THIS A LEAPYEAR";LS

190 IF LEFT$(L$,1>=MY" THEN M(2)=29:PRINTBE SURE TO SET

THE CLOCK TO 366 DAYS"

200 REM TIME SETTING REQUEST

210 INPUP'dn dn'SET THE TIME";LS
220.IF LEFT$(L$,1)="Y" THEN GOSUB 1000

230 REM DISPLAY TIME

240 GOSUB 2000

250 GOTO 210

1000 REM TIME SETTING ROUTINE

1010 PRINTMclr sp SET THE DATE"

1020 PRINTMn dn ENTER MONTH AND DAY IN THE FORM:

1030 PRINT"dn sp sp Sp sp sp MONTH (SPACE) DAY

1040 PRINTHdn FOR EXAMPLE: sp sp MARCH 25

1050 INPUT"dn";MD$

1100 REM PARSE OUT MONTH & DAY *

1110 M1$rLEFT$(M0S,3)

1120 FOR MN=1 TO 12

1130 IF M1S=M$<MN> THEN 1200

1140 NEXT MN: PRINT'dn dn I DON'T RECOGNIZE THE MONTH.

1150 PRINT'PLEASf SPELL THE MONTH COMPLETELY.
1160 PRINT"dn dn* PRESS ANY KEY TO TRY AGAIN

1170 G£TA$:IFA$=W" THEM 1170

1180 GOTO 1010

1200 FOR J=1 TO LEN(MDS)

1210 IF MIDS(MD$,J,1)=" sp " THEN 1300

1220 NEXT J

1230 PRINT"dn dn YOU FORGOT THE DAY

1240 GOTO 1160

1300 DY»VAL<MID$(MDJ,J)>

1310 IF DY>0 AND DY<M(MN>«H THEN 1400
1320 PRINTdn dn YOUR DAY IS INCORRECT. IT MUST BE

1330 PRINT"FROM 1 Tff'MCMN)".**

1340 GOTO 1160

1400 REM COMPUTE NUM3ER OF DAY TICKS

0s* PM

CLOCK'S OEVICE ADDRESS;?

Now enter the address on the

DIP switches for the device. If

an unacceptable value, such as

16, is entered, the PET will re

spond with:

SORRY. LEGAL ADDRESSES ARE 4-15

and ask again. The best way to

avoid problems is to forbid il

legal values for inputs, tell the

user that he has goofed and

mention the correct range of

values.

Once the device address is

in, the PET asks:

tS.THIS A LEAP YEAR?

If "YES" is entered, a reminder

appears to set the clock ac

cordingly.

BE SURE TO SET THE CLOCK TO 366

DAYS

The last request asks:

SET THE TIME?

If the user doesn't want to set

the time, the screen clears and

the date and time are shown:

THE CURRENT TIME IS

DATE: JAN 29

TIME: 7:0*54 PM

PRESS ANY KEY TO SET TIME

The time ticks away with the

seconds changing the most

rapidly. A different set of values

will appear on the clock:

0129 1902 54

The program has translated

from 24-hour time to normal

am/pm time and changed the

month from a number to the

month's name.

The HP clock will send a ? as

the first time character if the

clock has not been set since a

loss of power. If you pull the

plug on the clock and plug it in

again, the program will stop

with a 7DEVICE NOT PRESENT

ERROR. When the program is

RUN, the time will be displayed

with the following in the space

1410 DT = 0: 'p MM: 1 THtN ".4%

1420 TQP J-* TO W-1: DT=DT*M(J);N£X1 j

1430 D7=DT»r*-1

1450 R£M DT IS ♦ Of CAYS TO ADVANCE

1500 PRINT":ir sp SET THE TIM?"

1505 PPlN^'do dn ENTER Th£ Ti* in Th£ F.j-m-

1510 P*INT"dn Sp MOJP : MiNw'TE : SECOND : A*

1570 PRlNT"dn FC* EXAMPLE: sp sj, 2:25:36:??.-•

1530 FPlNVdn";:G0SU6 40C0

1600* PfM PAPSf Ot.'T HOURS,MINSfOtC$,AM?Pv

1610 T$--TJ*"x»";TH=VAL(Tl)

1620 GOScS 3000: \f PT>»2 ThEH 1700

1630 PRiNVdn vou DIDN'T INCLUDE EvLPiT~uN.;

1640 PftlNT"PlEASE ENTER ALL FOUR |TE"S WJTh

1650 PRINT'COLONS BETWEEN EACH OF THfM

1660 PP.iMTMdn PRESS AN' r.Zi TO T»Y AGAIN

1670 GETA$:lFAi=MM THEN 1670

1680 GOTO 1500 .
1700 T$=MIDS<TJ,PT*1)

1710 TM=VAL(TS)

1720 GOSUB 3000: IF PT=0 THEN 1630

1730 T$=MIDKT$,PT-H)

1740 TS*VAL(T$>

1750 GOSUB 3000: IF PT = 0 THEN 1630

1760 T$=MIDS(TS,PT-H,2)

1600 REM ERROR MESSAGES

1810 IF TH<1 OR TH>12 THEN PRINTMdn dn YOUR HOURS MUST
BE FROM 1 TO 12M:GOTO 1660

1820 IF TM<0 OR TM>59 THEN PRlNTMdn dn YOUR MINUTES
MUST BE FROM 0 TO 59**:GOTO 1660

1830 IF TS< 0 OR TS>59 THEN PRlNTHdn dn YOUR SECONDS
MUST BE FROM 0 TO 59M:GOTO 1660

1840 IF TSs"AM" OR T*="PM« THEN -I860

1830 PRINT"dn dn PLEASE USE AM OR PM ONLY**:GOTO 1660

1*860 REM AM/PM LOGIC
1870 IF TS^AM" AND TH=12 THEN TH=0

1880 IF TS^W AND TH<12 THEN TH=TH+12

1900 REM SET CLOCK AT LAST

1910 PRINT#1,HRP";

1920 IF DT>0 THEN FOR J«l TO DT -.PRINT/1 ."D^rNEXT

1930 IF TH>0 THEN FOR J«1 TO TH:PRINT#l,nH<f;:NIXT

1940 IF TM>0 THEN FOR J=1 TO TM:PRINT/1,"M";:NEXT

1950 IF TS>0 THEN FOR J«1 TO TS:PRINT#1,"S";:NEXT

1960 PRINT/I.-T"

1970 RETURN

2000 REM DISPLAY TIME

2010 PRlNT"clr sp sp sp sp sp. THE CURRENT TIME IS

2020 PRINT"dn dn sp sp DATE:"

2030 PRINTMdn dn sp sp TIME:1*

2040 PRINT«dn dn dn dn dn dn dn dn dn dn dn dn dn dn (14 dn's)

1 sp sp PRESS ANY KEY TO SET TIME

2050 GETA$:»FAK>mi THEN RETURN
2060 REM FETCH TIME

2070 INPUT /1,TS

2080 IF LEFTSCTS,1)=W?M THEN GOSUB 5000

2090 REM PARSE OUT PARTS

2100 TUVAL(MIDS(T$.1,2))

2110 T2=VAL<MlD$(T$,3t2J)

2120 T3=VAL(MID$<TS,5,2>)

2130 T3S*MIDSUS,5,2)

2140 T4$=MIDS(TJ,7,2)

2150 T5S»MIDS(T$,9,2>

2160 PRlNT'nm dn dn dn rt rt rt rt rt rt rt rt rf'MSCTl J;T2

2170 REM AM/PM CALCS

2180 TeS^AM11

2190 IF T3>11 THEN T6$«wP>r

2200 IF T3>12 THEN T3=»T>12

2210 IF T3=0 THEN T3*12

2220 T3S*RIGHT$(STRS(T3),2)

2250 PRINTlfdn dn rt rt rt rt rt rt rt rt**

T3Sw:"T4$":"T5Stl:ttT6S

2500 GOTO 2050

3000 REM SCAN T$ FOR COLONS

3010 FCR PT«1 TO LEN(TS)
3020 IF MIDS(T$,PT,!>=":" THEN RETURN

3030 NEXT PT

3040 PT=0: RETURN

4000 REM FETCH STRING VIA GET OUE TO

4010 REM FLAKEY PET INPUT STATEMENT

4015 TS*-;
4020 GET A$: IF A$O ttM THEN 4100
4030 PRINT'Vvs sp lft";:FOR J=l TO 300: NEXT

4040 GET AS: IF A$O "M THEN 4100
4050 PRINT-off sp lft";*:FOR J=1 TO 300: NEXT
4060 GOTO 4020

4100 PRINTMoff sp Iff;
4110 IF AS=CHRS(13) THEN PRINT: RETURN

4120 PRINT AJ;: TS=T$*A$: GOTO 4020

5000 PR!NT"hn> dn dn dn dn dn dn dn On dn dn dn dn

»»»> sp TIME NEEDS TO BE SET sp<«««
5010 PRINT{:dn>»»» sp DUE TO POWER FAILURE sp <«««
5020 T1=MID$(TS.3):R£TURN

r-ei-.veen t*.* :i;r..-- a-sci t^e

PRESS an>j KEY iine

Now:» you press a Key. the SET

THc 7!rV.E? request will reap-

near

The screen clears and will

display:

SET THE DATE

ENTER MONTH AND DAY IN THE FORM.

MONTH jSPACE) DAY

FOR EXAMPLE. MARCH 25

fJANUARY 23

If the first three letters :n the

month are incorrect, tho pro

gram will make you start over:

» DONT RECOGNIZE THE MOwTH

PLEASE SPELL THE MON"»H COM

PLETELY.

PRESS ANY KEY TO TRY AGAIN

If you missed the date, the PET

says:

YOU FORGOT THE DAY

PRESS ANY KEY TO TRY AGAIN

If you enter an inappropriate

date,, such as JAN 45. the PET,

will say:

YOUR DAY IS INCORRECT. IT MUST BE

FROM 1TO31.

The program has the number of

days for each month stored in

side. If the month were Febru

ary, the range 1 to 28 would

have been shown instead.

Now that the date is entered

correctly, the screen clears to

let the time be entered.

SET THE TIME

ENTER TIME IN THE FORM

HOUR MINUTE SECOND AM OR PM

FOR EXAMPLE: 2 25 36 PM

7.19.25.PM (you enter ir.:s »me»

The screen will flicker a bit, and

then the time display will ap

pear.

The PET won't correctly input

a string with colons in it, so the

entry here is "faked" to look like

a normal INPUT line. Unfortu

nately, if you must INST or DEL

to correct your line, the cor

rection won't really be entered.

This can be programmed

around, but I didn't feel like do

ing it with an instrument on

loan to me for a week. The sub

ject of faking INPUT is an arti

cle in itself.

Again, there are some error

messages to help and assist

the user:

YOU DIDN'T INCLUDE EVERYTHING

PLEASE ENTER ALL FOUR ITEMS WITH

COLONS BETWEEN EACH OF THEM

PRESS ANY KEY TO TRY AGAIN

YOUR HOURS MUST BE FROM 1 TO 12

YOUR MINUTES MUST BE FROM 0 TO 59

YOUR SECONDS MUST BE FROM 0 TO 59

PLEASE USE AM OR PM ONLY

Here, a bad entry only forces

>ou to feerte? tr»e :.me The

cj3te is OK. so why redo it?

Perhaps this example is ex

treme In many situations it

isn't worth the programming

time to make a program com

pletely convenient to use As an

idealist. I wrote it up to show

what can be done if ease of use

is required.

HP Clock BASIC Program

Review (Listing 1)

Lines 10 to 60 announce the

program and force the user to

wait until he has made sure the

HP Clock is attached to the

PETs IEEE 488 and the power is

turned on. DATA in lines 100 to

130 are placed in the months'

names' array MS and the

months* lengths* array M.

Lines 140 to 170 request the

HP Clock's address and check

to see if the address is legal.

Line 160 tells the user to try

again and mentions the legal

range as a hint. Lines 180 and

190 take care of the leap-year

problem by changing the

month length for February to 29

days and reminds the user to

check the leap-year switch on

the HP Clock.

In lines 200-220, the user is

asked if the time is to be set

(which must be done when the

clock is first used), and a loop is

entered in lines 240 and 250.

Subroutine 1000 sets the time,

and subroutine 2000 displays

the time. The program will not

leave subroutine 2000 until a

key is pressed. Line 250 jumps

to the time-change request as

needed.

Setting the time in subrou

tine 1000 is a complicated job,

requiring correctly entering the

data. First, you must enter the

month and day as explained in

lines 1010 to 1040, which give

an example of the expected for

mat.

Line 1050 picks up the user's

entry, and lines 1000 to 1180

take a look at the first three

characters to see if they fit a

month's name. Lines 1140 to

1180 take care of any mistake in

the entry of a month's name.

Lines 1200 to 1220. scan the

input string, MD$, until a space

is found. This removes the rem

nants of the month's name and

brings us up to the date digits.

Faiiu'e '.o find a space means

the day was forgotten, and the

user is told to start all over.

Lines 1300 to 1340 check the

day number with the number of

days «n the month M(MN). If

everything is OK. lines 1400 to

1450 will figure out the value

DT. which is used to send the

correct number of Ds to the

clock for date setting.

Now that we have the num

ber of days from Jan. 1 (in the

number DT). lines 1500 to 1530

will tell the user to enter the

time in a familiar format —

HH:MM:SS:AM or PM. Subrou

tine 4000 is used to enter the

string T$ via the GET state

ment. In lines 1620 to 1850, the

string T$ is snipped apart at the

colons, and each part is ex

amined for the correct range of

values; subroutine 3000 looks

for the colons, and lines 1680 to

1760 do the scissor-work. We

eventually end up with the

values TH. TM. TS and T$. for

hours, minutes, seconds and

am/pm values.

Lines 1860 to 1880 adjust the

hours. TH. according to the am

or pm value. Lines 1900 to 1970

set tre HP Clock-first the

clock is reset via "RP." and then

the correct numbers of "D," "H."

"M" and "S" are sent to set the

time. Then *T" is sent to start

the clock.

Subroutine 2000 sets up the

screen in lines 2010 to 2060.

Note that the GET in line 2050

only checks if a character was

entered. If not, it will continue

to line 2070. The HP Clock is ac

cessed in line 2070. and line

2080 checks for *'?." The "?"

means the clock saw a power

failure, and subroutine 5000

will warn of this event.

Lines 2100 to 2150 get the

various parts of the HP Clock's

message. T1 is the month

number; T2 is the day number.

Line 2160 displays the month

and day values.

Lines 2170 to 2220 adjust the

hours value, T3S, to reflect

whether an am or pm time is be

ing shown. Then line 2250

prints the hours, minutes,

seconds and am/pm marker.

In subroutine 3000, PT is the

position of the first colon found

in the string T$.

Subroutine 4000 simulates a

'cursor and constructs T$ from

the characters entered through

GET A$. No editing is provided,

so if you make an error, the en

try must be repeated. A little

more code could catch A$ = 20

(code for DEL) and give some

limited editing (equivalent to

back space or rubout on a ter

minal).

Subroutine 5000 puts the

power failure message on the

screen and strips the "?" from

T$. This permits the display of

time code to work correctly.

The astute programmer will

note that no provision is made

for bad messages from the HP

clock (which might make the

program fail in some cases).

You should check the values

T1, T2, T3. T3$. T4$ and T5$ for

their legal values and make

another attempt to read the

time made in case of an error. In

the event of several consecu

tive errors, the program should

mention this to the user.

There are limits to how "fail

safe" a program must be made.

In many cases, malfunctions

will not be critical, and it isn't

worth the effort required to

make the program survive the

errors. I do not recommend the

PET for any real-time control

applications that may result in

injury or loss of property in the

event of the PET's failure!

Example 2: The HP 8165A

Signal Source

Part 1 introduced the 8165A.

Naturally, your interest will be

with the devices that you have

available, and the example

shown here is a "laboratory ap

plication"; that is, a program

similar to one you might want

to build for your instrument.

Let's pretend that the re

sponse of a stereo amplifier

needs to be tested in a produc

tion line. The frequencies and

voltages to be tested are:

10 Hz. Sine Wave. 1.000 volts

10 Hz. Square Wave. 1.000 volts

20 Hz

20 Hz

50 Hz.

Test sine wave and square

wave responses at 1.000 volts

for 10. 20. 50, 100 ... up to 20

kHz.

The plan for a program is as

' follows:

1) Initialize. For example, open

10 PRINTclr STEREO TEST PROGRAM

20 PRINTdn do BE SURE* THE 8165 IS ON AND THAT

30 PRINT" THE IEEE 488 IS CONNECTED.

40 PRINT** R£>€*eER THE ADDRESS FOR THE 8165

50 PRINT"MUST BE 8. PLEASE CHECK THIS.

60 OOSUB 1000

70 OPEN 1,8

80 REH SET UP 8165

90 PRINT/1 t"FRO10HZAtf»1.M0vnD2OD-
100 R£M HOOK UP STEREO

110 PRINTclr STEREO A^f>LIFIER TEST"

120 PRINT"dn ATTACH THE NEW UNIT TO THE

130 PRINTTEST STATION."

140 GOSUB 1000

200 REM PERFORM TEST

210 PRINT"clr»» TEST IN PROGRESS«« ••
220 FOR Ll»1 TO 4

230 FA«l«tLl

240 FOR L2 s 1 TO 3

250 IF L2 « 1 THEN FR=FA/1000

260 IF 12 * 2 THEN FR=FA«2/1000

270 IF 12 « 3 THEN FR=FA«5/1000

275 IF FR >25 THEN 430
280 FOR W = 1 TO 2

290 IF W=1 THEN W$ = "SINE"

300 IF W=2 THEN WJ = "SQUARE"

310 REM SET 8165 UP

320 PRINT/1 ,"FRp"STR$(FR)"KH2fI

330 IF Wsi THEN PRINT#1,"F10E"

340 IF W=2 THEN PRINT/1 ,"F30E"

350 REM SET TIMER & REPORT

360 T1 = Tl

370 PRINT"rtm dn dn dn TEST AT:";

360 PRlNT"sp sp FR£Q:tfFR#i000Msp sp'Wsp sp sp"
#0 IF Tl - TK600 THEN 390

400 REM TURN 8165 OFF

410 PRINT/V'OD" (letters OD)

420 NEXT W

430 NE)CT L2

440 NEXT LI

450 REM TEST COMPLETE

460 PRINT"clr •••••• TEST COMPLETED ••••••«

470 PRlNT"dn dn REMOVE AMPLl/lER FROM TEST STATION"
480 GOSUB 1000

490 GOTO 110

1000 PRlNT"dn dn PRESS ANY KEY WHEN READY"

1010 GETA$:IF A$=M" THEN 1010

1020 RETURN

(letter F, numeral 1

letters OE)

(tee one = tee eye)'

Listing 2. Stereo Test program.

the IEEE 488 file.

2) Tell the operator to hook up

an amplifier

3) Start the test

4) Loop through the frequen

cies for each frequency

5) Loop through sine and

square

6) Walt for 10 seconds before

continuing

7) Report where the test is on

the screen

8) End of both loops

8) Tell the operator the test is

finished

10) Go to step 2

Listing 2 shows these steps

in a BASIC program. From the

user's point of view, when the

program is RUN, the message

below appears:

STEREO TEST PROGRAM

BE SURE THE 8165 IS ON AND THATTHE

IEEE 488 IS CONNECTED.

REMEMBER THE ADDRESS FOR THE

8166 MUST BE 8. PLEASE CHECK THIS.

PRESS ANY KEY WHEN READY

This reminder ensures that the

8165 is properly connected*

powered and addressed. The

PET program won't work if

these conditions aren't met.

Now it is time to test a unit:

The screen clears (after a key is

pressed) and displays:

STEREO AMPLIFIER TEST

ATTACH THE NEW UNIT TO THE TEST

STATION.

PRESS ANY KEY WHEN REAOY

Now the test commences, with

a report oh the current frequen

cy and waveform being used:

>»»TEST IN PROGRESS<««

TEST AT: FREQ: 200 SQUARE (current

freq & waveform)

After about two minutes

(each frequency and waveform

takes ten seconds), the screen

clears and tells the user:

TEST COMPLETED

REMOVE AMPLIFIER FROM TEST STA

TION

PRESS ANY KEY WHEN REAOY

Now we are ready to perform

another test. Look at the scope

and notice that the output of

the 8165 is turned off between

tests and between mounting

the new. amplifiers. Though un

important in this example,

more serious equipment

should always be set to a "safe"

state when the operator has to

handle the equipment.

Unes 10 to 60 in the BASIC

code state the program's name

and remind the user to check

the address setting on the HP

8165. Subroutine 1000 waits for

you to press a key.

Three nested loops are used

to scan through the frequen

cies and waveforms. The L1

loop sets the frequency decade

from the range 10-99 Hz to

10000-99999 Hz. The L2 loop is

used to select between 1,2 and

5 times the frequency selected

by L1. W chooses between sine

and square waves.

Unes 200 to 300 compute the

frequency FR in two steps (FA

is set to 10L1, and FR is set to

1,2 or 5 times FA), and W$ is set

to report sine or square. In line

275 the top value to be tested Is

20000 Hz, so to terminate the

loops requires a test of the fre

quency larger than 20000 Hz.

Instead of using 20000 for

the test, I am using 25000. (If

you look at the code, FA is in

kilohertz, so the test is for 25.)

Due to the PETs way of com

puting numbers, when L1 is 3

and L2 is 2, FA turns out to be a

tiny amount over 20, which ter

minates the test too soon.

When testing for equality or

differences, make sure the

number in the PET is what you

think it is. Most floating point

numbers will be slightly (and

unprintably) different than the

value you want, so fudge ac

cordingly.

Line 320 sends the correct

command to the 8165 for fre

quency. Note that FR is sent as

the string STR$(FR). This

avoids the Cursor Right after

the number, which could totally

confuse the 8165. Lines 330 and

340 specify the waveshape by

directly sending the correct set

of characters to the 8165. MOE"

turns the 8165 on.

Lines 350 to 390 print the test

values and wait for 600 jiffies,

or ten seconds. When they are

finished, line 410 turns the 8165

off (this is a "safe" state; e.g.,

during hook-up, the test leads

could be shorted).

Lines 450 to 490 announce

the end of the test and tell the

user to remove the stereo am

plifier. Note that the 8165 is in

the "off state. -%

I will leave it to you to figure

out how to use the HP clock to

control the timing of the stereo

test program (Listing 2, part 2)

instead of the PETs internal

clock. Another variation is to

put up the time each test is run

for logging purposes.

Program bugs.. When I was

debugging the HP Clock pro

gram (see Listing 1), the days'

count wouldn't come out right.

Some months tended to have

two or three too many days,

while others ran short. For ex

ample. May 5 put May 11 on the

clock, and February 10 showed

February 7.

I first thought that the IEEE

488 device was miscounting

characters. I checked by print

ing the number sent onto the

screen. The error wasnt here.

The eventual source of the

problem was that the routine

that counted the total days in

Function

Send TALK (MTA)

Send LISTEN (MLA)

Send UNTALK

Send UNUSTEN

Set ATN true and send

character in accumulator

Send data character in

accumulator* •

Get data character in

accumulator

Flag byte

Old tot

F086

FOBA

F17A

F17E

FOBC

FOF1

F187

0222

61622

61626

61818

61822

61628

61681

61831

545

New PET

Foee

FOBA

F17F

F183

FOBC

FOEE

F18C

O0A5

..Set flag byte to FF (255) before calling this routine.

Table 1. PET IEEE

61622

61626

61823

61827

61628

61678

61836

166

ROM and RAM locations.

the previous months just added

the same number each time For

May. it added 31 four times, and

for February, it added 28 once!

Another bug came from the

"hidden bits" in PET numbers. In

the Stereo Test program (Listing

2), there was the following line:

IFFR>20TH6N

The testing program stopped at

10 kHz instead of 20 kHz. When I

printed FR, I got 20. FR was

formed from the two computa

tions:

FA = 10*0

The PET's exponentiation op

erator isn't totally exact, so a

few bits slipped through. The

division didn't help, and FR end

ed up a slight amount over 20.

which is enough to make the

condition true. The cure was to

test for more than 25 instead.

These errors are subtle. If you

aren't a total expert on your PET,

these are nearly impossible to

find.

10 REM PET SERIAL OUTPUT

20 REM GREGORY YOB

30 PT « 826

40 READ BT: IF BT 0 THEN 60

50 POKE PT.BT: PT=PT>. 1: GOTO 40

60 DIM BD(6),PT<6)

70 FOR J*1 TO 6

80 READ BD(J),RT(Ji

90 NEXT J

100 PRlNT"clr SERIAL OuTPJT"

110 PRINT'dn PARITY"

120 PRINT"O=EVEN, 1=000, 2=MARK"

130 INPUT P

140 if p=o then leo

150 IF P«1 THE* 160

160 IF P=2 THEN P--255: GOTO 180

170 GOTO 110

180 POKE 994,P

190 PRINT'dn BAUD RATE"

200 INPUT BT

210 FOR J=1 TO 6

220 IF BT»BD(J) ThEn 380

23C NEXT J

240 PPINP'RATES ARE :"

250 FOR J=l TO 6. rt*iNT BD(J): NEXT

260 GOTO 190

380 POKE 995. RTU)

390 PRINT"* TlNCS TO REPEAT OAR"

40C INPUT N

410 NslNT(N): IF N<7 Cn N>2S5 *V<£r. 390

421 PRINT"PR£SS AN*. K£Y 1C SEnD Cha^"

4J0 GET AS: I? M*"" Then cjg

ACZ- PRINT AS

450 POKE 997,N: POKE 992, ASC(AS)

460 SYS(826)

470 GOTO 4?0

1000 DATA 171,4,2,234,234,240.1

1010 DATA 96,173,64,232,41,64,240

1020 DATA 241,120.21,192,3,144,2

1030 DATA 66,96.32,98.3,32,153

1040 DATA 3.88.76,58,3.234,24

1050 DATA 173,224,3.96,234,169.0

1060 DATA 141,225,2,172,224,3.^62

1070 DATA 1,160,0,24,74,144.5

1080 DATA 160.225,238,225,3,72,152

1090 DATA 157.240,3.104,232.224,8

1100 DATA 206.234,273,226,3,48,!2

1110 DATA 240.3,238,225.3,173.225

1120 DATA 3.41,1,240,2,169,255

1130 DATA 157,240,3.96,162.255.232

1140 DATA 169,240,3.141,34,23?,172

1150 DATA 227,3,173,0,64,173.0

1160 DATA 64,173,0,64,136,208,24c

1170 DATA 234,236,228,3,208,226.96

1180 DATA 96,0,0,0,0,0.0

1190 DATA 0,24,173,229,3,208,2

1200 DATA 56,96,173,224,3.206,i*29

1210 DATA 3,96,0.0,0.0,0

1220 DATA 0,0,0,0,0,0,0

1230 DATA 0,0,0,0,0,65,2

1240 DA-A 0.195,11,0,0.0.0

1250 DAT- CO.O.C.O.O.C

1260 DATA G,255,O.O,C.v,C

1270 DAT*. 255.0,2*5.:?t:-,C.V,

1280 DATA 0.0

1300 DATA -i

1999 REM PARAMETERS TOR BAUD RATES

2000 DATA 960C.5.4300.n,24Q:.,/3

2010 DATA 1200,46,600,97,300.195

Listing 3. Serial output via the IEEE 488 bus port.

Using the PET ROM

Since the PET knows the

IEEE bus. there have to be

routines in the PET ROM that

know how to work the bus. A

year ago, some of my clients'

requirements forced me to ac

cess the PET's ROM for the

IEEE. (One had a machine that

didn't like the PET's state be

tween IEEE messages; the

other wanted to know the PET's

maximum IEEE transfer rate.)

Table 1 indicates the perti

nent RAM and ROM locations

for the PET IEEE routines. Use

caution when working with

these, as I have only been able

to check the ones mentioned

below. In one case, a routine

sent a character at an apparent

rate of 5000 characters/sec

ond! (The listener didn't see

anything at all.) The routine in

Question took a look at the bus,

decided the bus wasn't in a

legal state and returned, in

stead of sending the character!

If you have an accurate PET dis

assembly, here is a good place

to use it.

Input from the IEEE Bus. This

can be approached either from

machine language or as a mix

of machine language and

BASIC. In all cases, the first

step is to open a file to the bus

via BASIC. (This must be done;

make sure that only one file is

open.)

The next step is to send a

TALK to the device. From

BASIC, tnis is a SYS(61622),

and in machine language it is a

JSR F0B6 (or 20 B6 FO).

To handshake a character in

requires calling the machine

language in ROM. Here's a

catch: the character arrives in

the A register. From BASIC, you

must SYS to a short routine

that performs JSR F187 and an

STA (somewhere) (and RTS to

get back). Then PEEK (some

where) gets your character. The

machine code in hexadecimal is

20 87 F1 8D xx xx 60. The xx

xx is your "somewhere." The

value from the IEEE bus is the

complement of your character;

that is, the Vs and Q's are ex

changed.

Send to the IEEE Bus. Again,

the first step is to open a file to
the bus and be sure that only

one file is open, then, send the

ATN LISTEN via SYS(61626). (In

machine language, JSR FOBA,

or 20 BA FO.) Now, put the com

plemented value into location

$0222 with a POKE 546, CHAR

ACTER.

The last step is to SYS

(61681), which sends the char

acter. In some cases, you will

have to set a flag first by set

ting location $021D to SFF by

POKE 541,255.1 have used both

methods with success.

The machine-language se

quence is A9 FF 8D 1D 02 20 xx

xx 8D 22 02 20 F1 FO 60. The 20

xx xx is a JSR to your routine at

xx xx, which gets a character in

the A register.

Both the input and the output

will leave the device active on

the bus. Make ATN true and

send the UNL and UNT value to

release the device.

The IEEE lines in the PET

don't have to be used for the

IEEE 488 bus. There are 12 easi

ly used bits of parallel I/O that

can be controlled with suitable

PEEKs and POKEs. and two

PET Hard Copy Easy," Kilobaud

Microcomputing, September

1979, p. 100.

Printing Hazards

The difference between the

PET's display and character

codes and the ASCII character

set causes some difficulties

when you use the IEEE 488 bus

for printed output.

1. ASCII printers use the

most significant bit (MSB) as a

parity bit. If the PET is sending

a graphics character (or lower

case, as provided by the POKE

59468,14 for old PETs), the

printer will either ignore this

End print the corresponding

ASCII for the seven less signifi

cant bits or print a "parity error"

character. If you get a parity er

ror character, set your printer

to the "no parity," or "mark"

parity, option.

2. The PET cursor control

characters result in the ASCII

values in the range 0 to 31,

which are control characters in

ASCII. If you are lucky, these

will be ignored; if you aren't,

some of these may result in set

ting your printer to unwanted

modes. (The Comprint printer is

Listing 4. Serial output, machine-language assembly listing.

This code was hand assembled and then patched - so the flow

Isn't contlnuious and there are occasional NOPs that aren't needed.

033A Ap

CA

FO

60

0342 AD

29

FO

04 02 SENSE

EA

01

40 E8 GO

40

F1

! Check SHIFT key

LOA SHIFT (0203)

NOP, HOP

BEQ GO (0342)

RTS

! See if device is

LOA IE840

AND #40

BEQ SENSE (O33A)

read shift key location

(tis a patch)

back to'BASIC if SHIFT

pressed

ready

Get all PB2 lines from VIA

Mask NRFD bit

Wait if not ready

Set up PET for transmission of characters

Turn off interrupts

Get character /

Set carry If no more characters

Set up Xmission table

Send character

0349

034A

0351

035C

0362

78

20

90

58

60

20

20

58

4C

EA

18

A0

60

EA

A9

80

AD

A2

CO

02

62

49

3A

E0

00

El

EO

01

03

03 GO1

03

03

.FFETCH

03/

SETUP

03

03

SEI

JSR

BCC

CLI

RTS

JSR

JSR

ai

JMP

N0P

CLC

LOA

RTS

N0P

FETCH (03C0)

G01 (0351)

SETUP

XMIT

SENSE

CHAR (OHO)

! Set up Xmission

LDA

STA

LOA

LOX

#00

PARITY (03E1)

CHAR (03E0)

#01

Interrupts off

Fetch Character

(Set up as a subroutine

to let you Mroll your own"

routine)

Interrupts on. If Carry 16

set, no more chars to send.

If you make your own FETCH,

use this convention.

Set up Xmit table for char In A

Send char

restore Interrupts

, Look at SHIFT key again

(patch)

Dummy version of FETCH

Test Char location

(guess)

Table

Initialize parity counter

Get char

X rea counts/7 bits of char.

! Shift char & If carry set, load FF Into

! Xmit table. If carry not set, load 00

! (NOTE: Start & Stop bits are assumed preset

! in Xmit table. Be sure this Is so In your

! program too.)

036C A0

16

4A

90

EE

48

98

90

66

E8

E0

00

0382 AD

30

FO

EE

AD

29

FO

A9

9D

60

0399 A2

E8

BD

80

03A2 AC

03A5 AO

• AD

00

05

El

FO

08

EA

E2

OC

03

El

El

01

02

FF

FO

FF
t

FO

22

E3

00

00

03AB AO00

03

03

03

03

03

03

03

E8

03

40

40

40

SLOAD

EVEN

WRK

ZILCH

XMIT

C0NT

AGAIN

LDY

CLC

LSR

BCC

INC

PHA

TYA

STA

PLA

INX

CPX

BNE

#00

A

H0PPITY

PARITY (03ED

START,X

#08

SLOAD (036C)

Y holds 00 or FF for bit

in char.

Shift LSB into Carry

Bit is fero

M» bit adds to parity count

Stuff A on stack

Y to A

Put into Xmit table. 1 just

love non-symmetrical

Instruction sets! (6502

has no Y indexed addressing)

Restore A from stack

On to next bit

7 bits yet?

no, repeat

! According to option, set the parity

! bit in the Xmit

LDA

BMl

BEQ

INC

LDA

AND

BEQ

LDA

STA

RTS

POPTION (03E2)

HARK

EVEN

PARITY

PARITY

#01

ZILCH

#FF

START.X

! Send Character

LDX

INX

LDA

STA

#fF

START,X

SE822

! Delay loop for 1

LDY

LDA

LDA

LDA

RATE (03E3)

S0400

$0400

S0400

table

Get option value

M5B means HARK parity

zero is EVEN

Add 1 for odd parity

LSB has parity in It

Save LDA #00 if A Is 00

Put in Xmit table. X happens

to be right value!

The next instruction

makes X zero.

Get byte to send

Put on IEEE DIO Lines (out)

>aud rate

Get countdown value

4 cycles of delay

ditto

ditto

a "lucky" one.)

3. As a result of these first

two steps, if you use CMD and

LIST, the listings you get will

have missing or misleading

characters. I have a program

(drop me a card) that will list a

BASIC program in a legible

form.

4. The PET does not transmit

a line feed. You must provide

CHR$(10) after every carriage

return.

5. If your printer needs a car

riage return delay, either print

the required number of CHR$<0)

or insert a small waiting loop;

i.e., FORJ = 1TO20:NEXT.

6. Most printers have no for

matting capabilities. If you

keep careful count of the num

ber of characters sent, format

ting is clumsy, but possible. Pit

falls include:

•A printed number has a

CHR$(29) sent after the last

digit, which is not a space and

is usually ignored by printers.

•TAB and SPC provide

CHR$(29)t and not spaces.

(New PETs have this fixed.)

•LEN(STRS(number)) will not

count a CHR$(29)t since STR$

produces a string without a

blank or skip after the last digit.

•If the number is small or large,

beware of scientific format; i.e.,

1.23E + 23.

7. If you are attempting a

word-processing program, the

PETs codes for the lowercase

characters and the ASCII codes

are different. The PET thinks

the lowercase tetters lie in the

range 192 to 223, and ASCII

likes the range 96 to 127.

A further complication is that

the ASCII character set and the

PET character sets don't

match. Backarrow on the PET is

ASCII underline; the curly

brackets, vertical bar and tilde

in ASCII don't exist on the PET.

The ASCII accent mark (looks

like a reverse apostrophe) is

seen by the PET as a space.

Your printer might have other

character options to puzzle

you.

Wrapping It Up

Working with the IEEE 488

bus is nearly an entire engineer

ing discipline in itself. I hope

my efforts enable you to get

63

DO 14

EA

03C0

03E0

03E1

O3E2

03E3

03E4

03E5

03F0

03FI

O3T8

03F9

ECE4 03

DO E4

60

..(some room here)

18

AD E5 03

00 02

38

60

AD EO 03

CE E5 03

60

... (some

00

00

00

00

00

00

FETCH

OK

OEv reCuce countdown

Bn£ AGAIN (OJA^J keep going till count is zero

NOF Successful branch takes 3

so this compensates tc

make a 17 cycle per loop

delay

CPX BITCOlNT Check number of bits to

be sent.

BNE CONT Do next bit

RTS

! Fetch Character for real. Feel free to

! make your own routine. Set carry bit when

! out of characters.

CLC Be sure to do this!

IDA CHCOUNT (03E5) # chars to send

BNE OK

SEC Set carry, out of chars

RTS

LDA CHAR Get char - you might use

TAX & LDA CHAR,X here.

DEC CHCOINT decmt chars counter

RTS

room here)

CHAR

PARITY

POPTION

RATE

! Data Area

BITCOUNT

CHCOWT

... (a gap again)

00

00 00 00

00

FF FF

START

00 00 00 00

Character to send. (Move elsewhere if you

want to send more than one)

Parity Counter

Parity Option. 0-even,1-odd,FF-mark

Initial countdown for baud rate. POKEd

by the BASIC program.

Nunfeer of bits to send (10 or 11 decimal)

Number of chars to send

...

! Start oi Xmlt table

! Character, Isb f irst

! Parity bit

! Stop bit(s)

aboard the IEEE 488 bus of your

PET and turn it to some profit

able use.B

References

1. "IEEE Standard Digital In-

terface for Programmable In

strumentation/* IEEE Std 488-

1975, ANSI MC 1.1-1975.

2. Hewlett-Packard, 1502

Page Mill Road, Palo Alto, CA

or PO Box 301, Loveland, CO

80537. Several publications are

available on request.

3. "PET 2001-8 User's Man

ual" and "PET Communication

with the Outside World," Com

modore Business Machines.

4. "Getting Aboard the

488-1975 Bus," Motorola.

5. "PET User Notes," PO Box

371, Montgomeryville, PA

18936.

6. MOS Technology, Inc., 950

Rittenhouse Road, Norristown,

PA 19401.

Has

1e5 £S8 HSB S*8 SS SB §Sg *S 58 ESS S8* ESM g« 88 88 88

1

^^

CD

-p
4J

6
•H

S55S£55SS5S5£*S2SS^

5 k*z
i i iI I iei b 5 ggE si iii ese i Hi sis hsh sas si sis sag is5

.-Se lES

83 Z55 ISS Efi • SB 53 35 ES S9 2SS $19 ES 99 i« 99

M*-.*.«*.*«a mgnm

§S8 S3 I3S 3S .8

si

MM M MM M MMM

ii §8 89 4l SSg
C MM

s§§ sf ii sis ii

i

£S^

